Loading...
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 * Copyright (C) 2016 Mellanox Technologies
21 *
22 * This program is free software; you can redistribute it and/or modify
23 * it under the terms of the GNU General Public License version 2,
24 * as published by the Free Software Foundation.
25 */
26
27#include <linux/init.h>
28#include <linux/kd.h>
29#include <linux/kernel.h>
30#include <linux/tracehook.h>
31#include <linux/errno.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/task.h>
34#include <linux/lsm_hooks.h>
35#include <linux/xattr.h>
36#include <linux/capability.h>
37#include <linux/unistd.h>
38#include <linux/mm.h>
39#include <linux/mman.h>
40#include <linux/slab.h>
41#include <linux/pagemap.h>
42#include <linux/proc_fs.h>
43#include <linux/swap.h>
44#include <linux/spinlock.h>
45#include <linux/syscalls.h>
46#include <linux/dcache.h>
47#include <linux/file.h>
48#include <linux/fdtable.h>
49#include <linux/namei.h>
50#include <linux/mount.h>
51#include <linux/netfilter_ipv4.h>
52#include <linux/netfilter_ipv6.h>
53#include <linux/tty.h>
54#include <net/icmp.h>
55#include <net/ip.h> /* for local_port_range[] */
56#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
57#include <net/inet_connection_sock.h>
58#include <net/net_namespace.h>
59#include <net/netlabel.h>
60#include <linux/uaccess.h>
61#include <asm/ioctls.h>
62#include <linux/atomic.h>
63#include <linux/bitops.h>
64#include <linux/interrupt.h>
65#include <linux/netdevice.h> /* for network interface checks */
66#include <net/netlink.h>
67#include <linux/tcp.h>
68#include <linux/udp.h>
69#include <linux/dccp.h>
70#include <linux/sctp.h>
71#include <net/sctp/structs.h>
72#include <linux/quota.h>
73#include <linux/un.h> /* for Unix socket types */
74#include <net/af_unix.h> /* for Unix socket types */
75#include <linux/parser.h>
76#include <linux/nfs_mount.h>
77#include <net/ipv6.h>
78#include <linux/hugetlb.h>
79#include <linux/personality.h>
80#include <linux/audit.h>
81#include <linux/string.h>
82#include <linux/selinux.h>
83#include <linux/mutex.h>
84#include <linux/posix-timers.h>
85#include <linux/syslog.h>
86#include <linux/user_namespace.h>
87#include <linux/export.h>
88#include <linux/msg.h>
89#include <linux/shm.h>
90#include <linux/bpf.h>
91
92#include "avc.h"
93#include "objsec.h"
94#include "netif.h"
95#include "netnode.h"
96#include "netport.h"
97#include "ibpkey.h"
98#include "xfrm.h"
99#include "netlabel.h"
100#include "audit.h"
101#include "avc_ss.h"
102
103struct selinux_state selinux_state;
104
105/* SECMARK reference count */
106static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
107
108#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
109static int selinux_enforcing_boot;
110
111static int __init enforcing_setup(char *str)
112{
113 unsigned long enforcing;
114 if (!kstrtoul(str, 0, &enforcing))
115 selinux_enforcing_boot = enforcing ? 1 : 0;
116 return 1;
117}
118__setup("enforcing=", enforcing_setup);
119#else
120#define selinux_enforcing_boot 1
121#endif
122
123#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
124int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
125
126static int __init selinux_enabled_setup(char *str)
127{
128 unsigned long enabled;
129 if (!kstrtoul(str, 0, &enabled))
130 selinux_enabled = enabled ? 1 : 0;
131 return 1;
132}
133__setup("selinux=", selinux_enabled_setup);
134#else
135int selinux_enabled = 1;
136#endif
137
138static unsigned int selinux_checkreqprot_boot =
139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141static int __init checkreqprot_setup(char *str)
142{
143 unsigned long checkreqprot;
144
145 if (!kstrtoul(str, 0, &checkreqprot))
146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 return 1;
148}
149__setup("checkreqprot=", checkreqprot_setup);
150
151static struct kmem_cache *sel_inode_cache;
152static struct kmem_cache *file_security_cache;
153
154/**
155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156 *
157 * Description:
158 * This function checks the SECMARK reference counter to see if any SECMARK
159 * targets are currently configured, if the reference counter is greater than
160 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
161 * enabled, false (0) if SECMARK is disabled. If the always_check_network
162 * policy capability is enabled, SECMARK is always considered enabled.
163 *
164 */
165static int selinux_secmark_enabled(void)
166{
167 return (selinux_policycap_alwaysnetwork() ||
168 atomic_read(&selinux_secmark_refcount));
169}
170
171/**
172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173 *
174 * Description:
175 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
176 * (1) if any are enabled or false (0) if neither are enabled. If the
177 * always_check_network policy capability is enabled, peer labeling
178 * is always considered enabled.
179 *
180 */
181static int selinux_peerlbl_enabled(void)
182{
183 return (selinux_policycap_alwaysnetwork() ||
184 netlbl_enabled() || selinux_xfrm_enabled());
185}
186
187static int selinux_netcache_avc_callback(u32 event)
188{
189 if (event == AVC_CALLBACK_RESET) {
190 sel_netif_flush();
191 sel_netnode_flush();
192 sel_netport_flush();
193 synchronize_net();
194 }
195 return 0;
196}
197
198static int selinux_lsm_notifier_avc_callback(u32 event)
199{
200 if (event == AVC_CALLBACK_RESET) {
201 sel_ib_pkey_flush();
202 call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 }
204
205 return 0;
206}
207
208/*
209 * initialise the security for the init task
210 */
211static void cred_init_security(void)
212{
213 struct cred *cred = (struct cred *) current->real_cred;
214 struct task_security_struct *tsec;
215
216 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
217 if (!tsec)
218 panic("SELinux: Failed to initialize initial task.\n");
219
220 tsec->osid = tsec->sid = SECINITSID_KERNEL;
221 cred->security = tsec;
222}
223
224/*
225 * get the security ID of a set of credentials
226 */
227static inline u32 cred_sid(const struct cred *cred)
228{
229 const struct task_security_struct *tsec;
230
231 tsec = cred->security;
232 return tsec->sid;
233}
234
235/*
236 * get the objective security ID of a task
237 */
238static inline u32 task_sid(const struct task_struct *task)
239{
240 u32 sid;
241
242 rcu_read_lock();
243 sid = cred_sid(__task_cred(task));
244 rcu_read_unlock();
245 return sid;
246}
247
248/* Allocate and free functions for each kind of security blob. */
249
250static int inode_alloc_security(struct inode *inode)
251{
252 struct inode_security_struct *isec;
253 u32 sid = current_sid();
254
255 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
256 if (!isec)
257 return -ENOMEM;
258
259 spin_lock_init(&isec->lock);
260 INIT_LIST_HEAD(&isec->list);
261 isec->inode = inode;
262 isec->sid = SECINITSID_UNLABELED;
263 isec->sclass = SECCLASS_FILE;
264 isec->task_sid = sid;
265 isec->initialized = LABEL_INVALID;
266 inode->i_security = isec;
267
268 return 0;
269}
270
271static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
272
273/*
274 * Try reloading inode security labels that have been marked as invalid. The
275 * @may_sleep parameter indicates when sleeping and thus reloading labels is
276 * allowed; when set to false, returns -ECHILD when the label is
277 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
278 * when no dentry is available, set it to NULL instead.
279 */
280static int __inode_security_revalidate(struct inode *inode,
281 struct dentry *opt_dentry,
282 bool may_sleep)
283{
284 struct inode_security_struct *isec = inode->i_security;
285
286 might_sleep_if(may_sleep);
287
288 if (selinux_state.initialized &&
289 isec->initialized != LABEL_INITIALIZED) {
290 if (!may_sleep)
291 return -ECHILD;
292
293 /*
294 * Try reloading the inode security label. This will fail if
295 * @opt_dentry is NULL and no dentry for this inode can be
296 * found; in that case, continue using the old label.
297 */
298 inode_doinit_with_dentry(inode, opt_dentry);
299 }
300 return 0;
301}
302
303static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
304{
305 return inode->i_security;
306}
307
308static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
309{
310 int error;
311
312 error = __inode_security_revalidate(inode, NULL, !rcu);
313 if (error)
314 return ERR_PTR(error);
315 return inode->i_security;
316}
317
318/*
319 * Get the security label of an inode.
320 */
321static struct inode_security_struct *inode_security(struct inode *inode)
322{
323 __inode_security_revalidate(inode, NULL, true);
324 return inode->i_security;
325}
326
327static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
328{
329 struct inode *inode = d_backing_inode(dentry);
330
331 return inode->i_security;
332}
333
334/*
335 * Get the security label of a dentry's backing inode.
336 */
337static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
338{
339 struct inode *inode = d_backing_inode(dentry);
340
341 __inode_security_revalidate(inode, dentry, true);
342 return inode->i_security;
343}
344
345static void inode_free_rcu(struct rcu_head *head)
346{
347 struct inode_security_struct *isec;
348
349 isec = container_of(head, struct inode_security_struct, rcu);
350 kmem_cache_free(sel_inode_cache, isec);
351}
352
353static void inode_free_security(struct inode *inode)
354{
355 struct inode_security_struct *isec = inode->i_security;
356 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
357
358 /*
359 * As not all inode security structures are in a list, we check for
360 * empty list outside of the lock to make sure that we won't waste
361 * time taking a lock doing nothing.
362 *
363 * The list_del_init() function can be safely called more than once.
364 * It should not be possible for this function to be called with
365 * concurrent list_add(), but for better safety against future changes
366 * in the code, we use list_empty_careful() here.
367 */
368 if (!list_empty_careful(&isec->list)) {
369 spin_lock(&sbsec->isec_lock);
370 list_del_init(&isec->list);
371 spin_unlock(&sbsec->isec_lock);
372 }
373
374 /*
375 * The inode may still be referenced in a path walk and
376 * a call to selinux_inode_permission() can be made
377 * after inode_free_security() is called. Ideally, the VFS
378 * wouldn't do this, but fixing that is a much harder
379 * job. For now, simply free the i_security via RCU, and
380 * leave the current inode->i_security pointer intact.
381 * The inode will be freed after the RCU grace period too.
382 */
383 call_rcu(&isec->rcu, inode_free_rcu);
384}
385
386static int file_alloc_security(struct file *file)
387{
388 struct file_security_struct *fsec;
389 u32 sid = current_sid();
390
391 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
392 if (!fsec)
393 return -ENOMEM;
394
395 fsec->sid = sid;
396 fsec->fown_sid = sid;
397 file->f_security = fsec;
398
399 return 0;
400}
401
402static void file_free_security(struct file *file)
403{
404 struct file_security_struct *fsec = file->f_security;
405 file->f_security = NULL;
406 kmem_cache_free(file_security_cache, fsec);
407}
408
409static int superblock_alloc_security(struct super_block *sb)
410{
411 struct superblock_security_struct *sbsec;
412
413 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
414 if (!sbsec)
415 return -ENOMEM;
416
417 mutex_init(&sbsec->lock);
418 INIT_LIST_HEAD(&sbsec->isec_head);
419 spin_lock_init(&sbsec->isec_lock);
420 sbsec->sb = sb;
421 sbsec->sid = SECINITSID_UNLABELED;
422 sbsec->def_sid = SECINITSID_FILE;
423 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
424 sb->s_security = sbsec;
425
426 return 0;
427}
428
429static void superblock_free_security(struct super_block *sb)
430{
431 struct superblock_security_struct *sbsec = sb->s_security;
432 sb->s_security = NULL;
433 kfree(sbsec);
434}
435
436static inline int inode_doinit(struct inode *inode)
437{
438 return inode_doinit_with_dentry(inode, NULL);
439}
440
441enum {
442 Opt_error = -1,
443 Opt_context = 1,
444 Opt_fscontext = 2,
445 Opt_defcontext = 3,
446 Opt_rootcontext = 4,
447 Opt_labelsupport = 5,
448 Opt_nextmntopt = 6,
449};
450
451#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
452
453static const match_table_t tokens = {
454 {Opt_context, CONTEXT_STR "%s"},
455 {Opt_fscontext, FSCONTEXT_STR "%s"},
456 {Opt_defcontext, DEFCONTEXT_STR "%s"},
457 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
458 {Opt_labelsupport, LABELSUPP_STR},
459 {Opt_error, NULL},
460};
461
462#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
463
464static int may_context_mount_sb_relabel(u32 sid,
465 struct superblock_security_struct *sbsec,
466 const struct cred *cred)
467{
468 const struct task_security_struct *tsec = cred->security;
469 int rc;
470
471 rc = avc_has_perm(&selinux_state,
472 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
473 FILESYSTEM__RELABELFROM, NULL);
474 if (rc)
475 return rc;
476
477 rc = avc_has_perm(&selinux_state,
478 tsec->sid, sid, SECCLASS_FILESYSTEM,
479 FILESYSTEM__RELABELTO, NULL);
480 return rc;
481}
482
483static int may_context_mount_inode_relabel(u32 sid,
484 struct superblock_security_struct *sbsec,
485 const struct cred *cred)
486{
487 const struct task_security_struct *tsec = cred->security;
488 int rc;
489 rc = avc_has_perm(&selinux_state,
490 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
491 FILESYSTEM__RELABELFROM, NULL);
492 if (rc)
493 return rc;
494
495 rc = avc_has_perm(&selinux_state,
496 sid, sbsec->sid, SECCLASS_FILESYSTEM,
497 FILESYSTEM__ASSOCIATE, NULL);
498 return rc;
499}
500
501static int selinux_is_sblabel_mnt(struct super_block *sb)
502{
503 struct superblock_security_struct *sbsec = sb->s_security;
504
505 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
506 sbsec->behavior == SECURITY_FS_USE_TRANS ||
507 sbsec->behavior == SECURITY_FS_USE_TASK ||
508 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
509 /* Special handling. Genfs but also in-core setxattr handler */
510 !strcmp(sb->s_type->name, "sysfs") ||
511 !strcmp(sb->s_type->name, "pstore") ||
512 !strcmp(sb->s_type->name, "debugfs") ||
513 !strcmp(sb->s_type->name, "tracefs") ||
514 !strcmp(sb->s_type->name, "rootfs") ||
515 (selinux_policycap_cgroupseclabel() &&
516 (!strcmp(sb->s_type->name, "cgroup") ||
517 !strcmp(sb->s_type->name, "cgroup2")));
518}
519
520static int sb_finish_set_opts(struct super_block *sb)
521{
522 struct superblock_security_struct *sbsec = sb->s_security;
523 struct dentry *root = sb->s_root;
524 struct inode *root_inode = d_backing_inode(root);
525 int rc = 0;
526
527 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
528 /* Make sure that the xattr handler exists and that no
529 error other than -ENODATA is returned by getxattr on
530 the root directory. -ENODATA is ok, as this may be
531 the first boot of the SELinux kernel before we have
532 assigned xattr values to the filesystem. */
533 if (!(root_inode->i_opflags & IOP_XATTR)) {
534 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
535 "xattr support\n", sb->s_id, sb->s_type->name);
536 rc = -EOPNOTSUPP;
537 goto out;
538 }
539
540 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
541 if (rc < 0 && rc != -ENODATA) {
542 if (rc == -EOPNOTSUPP)
543 printk(KERN_WARNING "SELinux: (dev %s, type "
544 "%s) has no security xattr handler\n",
545 sb->s_id, sb->s_type->name);
546 else
547 printk(KERN_WARNING "SELinux: (dev %s, type "
548 "%s) getxattr errno %d\n", sb->s_id,
549 sb->s_type->name, -rc);
550 goto out;
551 }
552 }
553
554 sbsec->flags |= SE_SBINITIALIZED;
555
556 /*
557 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
558 * leave the flag untouched because sb_clone_mnt_opts might be handing
559 * us a superblock that needs the flag to be cleared.
560 */
561 if (selinux_is_sblabel_mnt(sb))
562 sbsec->flags |= SBLABEL_MNT;
563 else
564 sbsec->flags &= ~SBLABEL_MNT;
565
566 /* Initialize the root inode. */
567 rc = inode_doinit_with_dentry(root_inode, root);
568
569 /* Initialize any other inodes associated with the superblock, e.g.
570 inodes created prior to initial policy load or inodes created
571 during get_sb by a pseudo filesystem that directly
572 populates itself. */
573 spin_lock(&sbsec->isec_lock);
574next_inode:
575 if (!list_empty(&sbsec->isec_head)) {
576 struct inode_security_struct *isec =
577 list_entry(sbsec->isec_head.next,
578 struct inode_security_struct, list);
579 struct inode *inode = isec->inode;
580 list_del_init(&isec->list);
581 spin_unlock(&sbsec->isec_lock);
582 inode = igrab(inode);
583 if (inode) {
584 if (!IS_PRIVATE(inode))
585 inode_doinit(inode);
586 iput(inode);
587 }
588 spin_lock(&sbsec->isec_lock);
589 goto next_inode;
590 }
591 spin_unlock(&sbsec->isec_lock);
592out:
593 return rc;
594}
595
596/*
597 * This function should allow an FS to ask what it's mount security
598 * options were so it can use those later for submounts, displaying
599 * mount options, or whatever.
600 */
601static int selinux_get_mnt_opts(const struct super_block *sb,
602 struct security_mnt_opts *opts)
603{
604 int rc = 0, i;
605 struct superblock_security_struct *sbsec = sb->s_security;
606 char *context = NULL;
607 u32 len;
608 char tmp;
609
610 security_init_mnt_opts(opts);
611
612 if (!(sbsec->flags & SE_SBINITIALIZED))
613 return -EINVAL;
614
615 if (!selinux_state.initialized)
616 return -EINVAL;
617
618 /* make sure we always check enough bits to cover the mask */
619 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
620
621 tmp = sbsec->flags & SE_MNTMASK;
622 /* count the number of mount options for this sb */
623 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
624 if (tmp & 0x01)
625 opts->num_mnt_opts++;
626 tmp >>= 1;
627 }
628 /* Check if the Label support flag is set */
629 if (sbsec->flags & SBLABEL_MNT)
630 opts->num_mnt_opts++;
631
632 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
633 if (!opts->mnt_opts) {
634 rc = -ENOMEM;
635 goto out_free;
636 }
637
638 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
639 if (!opts->mnt_opts_flags) {
640 rc = -ENOMEM;
641 goto out_free;
642 }
643
644 i = 0;
645 if (sbsec->flags & FSCONTEXT_MNT) {
646 rc = security_sid_to_context(&selinux_state, sbsec->sid,
647 &context, &len);
648 if (rc)
649 goto out_free;
650 opts->mnt_opts[i] = context;
651 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
652 }
653 if (sbsec->flags & CONTEXT_MNT) {
654 rc = security_sid_to_context(&selinux_state,
655 sbsec->mntpoint_sid,
656 &context, &len);
657 if (rc)
658 goto out_free;
659 opts->mnt_opts[i] = context;
660 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
661 }
662 if (sbsec->flags & DEFCONTEXT_MNT) {
663 rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
664 &context, &len);
665 if (rc)
666 goto out_free;
667 opts->mnt_opts[i] = context;
668 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
669 }
670 if (sbsec->flags & ROOTCONTEXT_MNT) {
671 struct dentry *root = sbsec->sb->s_root;
672 struct inode_security_struct *isec = backing_inode_security(root);
673
674 rc = security_sid_to_context(&selinux_state, isec->sid,
675 &context, &len);
676 if (rc)
677 goto out_free;
678 opts->mnt_opts[i] = context;
679 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
680 }
681 if (sbsec->flags & SBLABEL_MNT) {
682 opts->mnt_opts[i] = NULL;
683 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
684 }
685
686 BUG_ON(i != opts->num_mnt_opts);
687
688 return 0;
689
690out_free:
691 security_free_mnt_opts(opts);
692 return rc;
693}
694
695static int bad_option(struct superblock_security_struct *sbsec, char flag,
696 u32 old_sid, u32 new_sid)
697{
698 char mnt_flags = sbsec->flags & SE_MNTMASK;
699
700 /* check if the old mount command had the same options */
701 if (sbsec->flags & SE_SBINITIALIZED)
702 if (!(sbsec->flags & flag) ||
703 (old_sid != new_sid))
704 return 1;
705
706 /* check if we were passed the same options twice,
707 * aka someone passed context=a,context=b
708 */
709 if (!(sbsec->flags & SE_SBINITIALIZED))
710 if (mnt_flags & flag)
711 return 1;
712 return 0;
713}
714
715/*
716 * Allow filesystems with binary mount data to explicitly set mount point
717 * labeling information.
718 */
719static int selinux_set_mnt_opts(struct super_block *sb,
720 struct security_mnt_opts *opts,
721 unsigned long kern_flags,
722 unsigned long *set_kern_flags)
723{
724 const struct cred *cred = current_cred();
725 int rc = 0, i;
726 struct superblock_security_struct *sbsec = sb->s_security;
727 const char *name = sb->s_type->name;
728 struct dentry *root = sbsec->sb->s_root;
729 struct inode_security_struct *root_isec;
730 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
731 u32 defcontext_sid = 0;
732 char **mount_options = opts->mnt_opts;
733 int *flags = opts->mnt_opts_flags;
734 int num_opts = opts->num_mnt_opts;
735
736 mutex_lock(&sbsec->lock);
737
738 if (!selinux_state.initialized) {
739 if (!num_opts) {
740 /* Defer initialization until selinux_complete_init,
741 after the initial policy is loaded and the security
742 server is ready to handle calls. */
743 goto out;
744 }
745 rc = -EINVAL;
746 printk(KERN_WARNING "SELinux: Unable to set superblock options "
747 "before the security server is initialized\n");
748 goto out;
749 }
750 if (kern_flags && !set_kern_flags) {
751 /* Specifying internal flags without providing a place to
752 * place the results is not allowed */
753 rc = -EINVAL;
754 goto out;
755 }
756
757 /*
758 * Binary mount data FS will come through this function twice. Once
759 * from an explicit call and once from the generic calls from the vfs.
760 * Since the generic VFS calls will not contain any security mount data
761 * we need to skip the double mount verification.
762 *
763 * This does open a hole in which we will not notice if the first
764 * mount using this sb set explict options and a second mount using
765 * this sb does not set any security options. (The first options
766 * will be used for both mounts)
767 */
768 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
769 && (num_opts == 0))
770 goto out;
771
772 root_isec = backing_inode_security_novalidate(root);
773
774 /*
775 * parse the mount options, check if they are valid sids.
776 * also check if someone is trying to mount the same sb more
777 * than once with different security options.
778 */
779 for (i = 0; i < num_opts; i++) {
780 u32 sid;
781
782 if (flags[i] == SBLABEL_MNT)
783 continue;
784 rc = security_context_str_to_sid(&selinux_state,
785 mount_options[i], &sid,
786 GFP_KERNEL);
787 if (rc) {
788 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
789 "(%s) failed for (dev %s, type %s) errno=%d\n",
790 mount_options[i], sb->s_id, name, rc);
791 goto out;
792 }
793 switch (flags[i]) {
794 case FSCONTEXT_MNT:
795 fscontext_sid = sid;
796
797 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
798 fscontext_sid))
799 goto out_double_mount;
800
801 sbsec->flags |= FSCONTEXT_MNT;
802 break;
803 case CONTEXT_MNT:
804 context_sid = sid;
805
806 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
807 context_sid))
808 goto out_double_mount;
809
810 sbsec->flags |= CONTEXT_MNT;
811 break;
812 case ROOTCONTEXT_MNT:
813 rootcontext_sid = sid;
814
815 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
816 rootcontext_sid))
817 goto out_double_mount;
818
819 sbsec->flags |= ROOTCONTEXT_MNT;
820
821 break;
822 case DEFCONTEXT_MNT:
823 defcontext_sid = sid;
824
825 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
826 defcontext_sid))
827 goto out_double_mount;
828
829 sbsec->flags |= DEFCONTEXT_MNT;
830
831 break;
832 default:
833 rc = -EINVAL;
834 goto out;
835 }
836 }
837
838 if (sbsec->flags & SE_SBINITIALIZED) {
839 /* previously mounted with options, but not on this attempt? */
840 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
841 goto out_double_mount;
842 rc = 0;
843 goto out;
844 }
845
846 if (strcmp(sb->s_type->name, "proc") == 0)
847 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
848
849 if (!strcmp(sb->s_type->name, "debugfs") ||
850 !strcmp(sb->s_type->name, "tracefs") ||
851 !strcmp(sb->s_type->name, "sysfs") ||
852 !strcmp(sb->s_type->name, "pstore") ||
853 !strcmp(sb->s_type->name, "cgroup") ||
854 !strcmp(sb->s_type->name, "cgroup2"))
855 sbsec->flags |= SE_SBGENFS;
856
857 if (!sbsec->behavior) {
858 /*
859 * Determine the labeling behavior to use for this
860 * filesystem type.
861 */
862 rc = security_fs_use(&selinux_state, sb);
863 if (rc) {
864 printk(KERN_WARNING
865 "%s: security_fs_use(%s) returned %d\n",
866 __func__, sb->s_type->name, rc);
867 goto out;
868 }
869 }
870
871 /*
872 * If this is a user namespace mount and the filesystem type is not
873 * explicitly whitelisted, then no contexts are allowed on the command
874 * line and security labels must be ignored.
875 */
876 if (sb->s_user_ns != &init_user_ns &&
877 strcmp(sb->s_type->name, "tmpfs") &&
878 strcmp(sb->s_type->name, "ramfs") &&
879 strcmp(sb->s_type->name, "devpts")) {
880 if (context_sid || fscontext_sid || rootcontext_sid ||
881 defcontext_sid) {
882 rc = -EACCES;
883 goto out;
884 }
885 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
886 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
887 rc = security_transition_sid(&selinux_state,
888 current_sid(),
889 current_sid(),
890 SECCLASS_FILE, NULL,
891 &sbsec->mntpoint_sid);
892 if (rc)
893 goto out;
894 }
895 goto out_set_opts;
896 }
897
898 /* sets the context of the superblock for the fs being mounted. */
899 if (fscontext_sid) {
900 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
901 if (rc)
902 goto out;
903
904 sbsec->sid = fscontext_sid;
905 }
906
907 /*
908 * Switch to using mount point labeling behavior.
909 * sets the label used on all file below the mountpoint, and will set
910 * the superblock context if not already set.
911 */
912 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
913 sbsec->behavior = SECURITY_FS_USE_NATIVE;
914 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
915 }
916
917 if (context_sid) {
918 if (!fscontext_sid) {
919 rc = may_context_mount_sb_relabel(context_sid, sbsec,
920 cred);
921 if (rc)
922 goto out;
923 sbsec->sid = context_sid;
924 } else {
925 rc = may_context_mount_inode_relabel(context_sid, sbsec,
926 cred);
927 if (rc)
928 goto out;
929 }
930 if (!rootcontext_sid)
931 rootcontext_sid = context_sid;
932
933 sbsec->mntpoint_sid = context_sid;
934 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
935 }
936
937 if (rootcontext_sid) {
938 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
939 cred);
940 if (rc)
941 goto out;
942
943 root_isec->sid = rootcontext_sid;
944 root_isec->initialized = LABEL_INITIALIZED;
945 }
946
947 if (defcontext_sid) {
948 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
949 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
950 rc = -EINVAL;
951 printk(KERN_WARNING "SELinux: defcontext option is "
952 "invalid for this filesystem type\n");
953 goto out;
954 }
955
956 if (defcontext_sid != sbsec->def_sid) {
957 rc = may_context_mount_inode_relabel(defcontext_sid,
958 sbsec, cred);
959 if (rc)
960 goto out;
961 }
962
963 sbsec->def_sid = defcontext_sid;
964 }
965
966out_set_opts:
967 rc = sb_finish_set_opts(sb);
968out:
969 mutex_unlock(&sbsec->lock);
970 return rc;
971out_double_mount:
972 rc = -EINVAL;
973 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
974 "security settings for (dev %s, type %s)\n", sb->s_id, name);
975 goto out;
976}
977
978static int selinux_cmp_sb_context(const struct super_block *oldsb,
979 const struct super_block *newsb)
980{
981 struct superblock_security_struct *old = oldsb->s_security;
982 struct superblock_security_struct *new = newsb->s_security;
983 char oldflags = old->flags & SE_MNTMASK;
984 char newflags = new->flags & SE_MNTMASK;
985
986 if (oldflags != newflags)
987 goto mismatch;
988 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
989 goto mismatch;
990 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
991 goto mismatch;
992 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
993 goto mismatch;
994 if (oldflags & ROOTCONTEXT_MNT) {
995 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
996 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
997 if (oldroot->sid != newroot->sid)
998 goto mismatch;
999 }
1000 return 0;
1001mismatch:
1002 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
1003 "different security settings for (dev %s, "
1004 "type %s)\n", newsb->s_id, newsb->s_type->name);
1005 return -EBUSY;
1006}
1007
1008static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009 struct super_block *newsb,
1010 unsigned long kern_flags,
1011 unsigned long *set_kern_flags)
1012{
1013 int rc = 0;
1014 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015 struct superblock_security_struct *newsbsec = newsb->s_security;
1016
1017 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
1018 int set_context = (oldsbsec->flags & CONTEXT_MNT);
1019 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
1020
1021 /*
1022 * if the parent was able to be mounted it clearly had no special lsm
1023 * mount options. thus we can safely deal with this superblock later
1024 */
1025 if (!selinux_state.initialized)
1026 return 0;
1027
1028 /*
1029 * Specifying internal flags without providing a place to
1030 * place the results is not allowed.
1031 */
1032 if (kern_flags && !set_kern_flags)
1033 return -EINVAL;
1034
1035 /* how can we clone if the old one wasn't set up?? */
1036 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037
1038 /* if fs is reusing a sb, make sure that the contexts match */
1039 if (newsbsec->flags & SE_SBINITIALIZED)
1040 return selinux_cmp_sb_context(oldsb, newsb);
1041
1042 mutex_lock(&newsbsec->lock);
1043
1044 newsbsec->flags = oldsbsec->flags;
1045
1046 newsbsec->sid = oldsbsec->sid;
1047 newsbsec->def_sid = oldsbsec->def_sid;
1048 newsbsec->behavior = oldsbsec->behavior;
1049
1050 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052 rc = security_fs_use(&selinux_state, newsb);
1053 if (rc)
1054 goto out;
1055 }
1056
1057 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060 }
1061
1062 if (set_context) {
1063 u32 sid = oldsbsec->mntpoint_sid;
1064
1065 if (!set_fscontext)
1066 newsbsec->sid = sid;
1067 if (!set_rootcontext) {
1068 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069 newisec->sid = sid;
1070 }
1071 newsbsec->mntpoint_sid = sid;
1072 }
1073 if (set_rootcontext) {
1074 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076
1077 newisec->sid = oldisec->sid;
1078 }
1079
1080 sb_finish_set_opts(newsb);
1081out:
1082 mutex_unlock(&newsbsec->lock);
1083 return rc;
1084}
1085
1086static int selinux_parse_opts_str(char *options,
1087 struct security_mnt_opts *opts)
1088{
1089 char *p;
1090 char *context = NULL, *defcontext = NULL;
1091 char *fscontext = NULL, *rootcontext = NULL;
1092 int rc, num_mnt_opts = 0;
1093
1094 opts->num_mnt_opts = 0;
1095
1096 /* Standard string-based options. */
1097 while ((p = strsep(&options, "|")) != NULL) {
1098 int token;
1099 substring_t args[MAX_OPT_ARGS];
1100
1101 if (!*p)
1102 continue;
1103
1104 token = match_token(p, tokens, args);
1105
1106 switch (token) {
1107 case Opt_context:
1108 if (context || defcontext) {
1109 rc = -EINVAL;
1110 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111 goto out_err;
1112 }
1113 context = match_strdup(&args[0]);
1114 if (!context) {
1115 rc = -ENOMEM;
1116 goto out_err;
1117 }
1118 break;
1119
1120 case Opt_fscontext:
1121 if (fscontext) {
1122 rc = -EINVAL;
1123 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124 goto out_err;
1125 }
1126 fscontext = match_strdup(&args[0]);
1127 if (!fscontext) {
1128 rc = -ENOMEM;
1129 goto out_err;
1130 }
1131 break;
1132
1133 case Opt_rootcontext:
1134 if (rootcontext) {
1135 rc = -EINVAL;
1136 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137 goto out_err;
1138 }
1139 rootcontext = match_strdup(&args[0]);
1140 if (!rootcontext) {
1141 rc = -ENOMEM;
1142 goto out_err;
1143 }
1144 break;
1145
1146 case Opt_defcontext:
1147 if (context || defcontext) {
1148 rc = -EINVAL;
1149 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150 goto out_err;
1151 }
1152 defcontext = match_strdup(&args[0]);
1153 if (!defcontext) {
1154 rc = -ENOMEM;
1155 goto out_err;
1156 }
1157 break;
1158 case Opt_labelsupport:
1159 break;
1160 default:
1161 rc = -EINVAL;
1162 printk(KERN_WARNING "SELinux: unknown mount option\n");
1163 goto out_err;
1164
1165 }
1166 }
1167
1168 rc = -ENOMEM;
1169 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170 if (!opts->mnt_opts)
1171 goto out_err;
1172
1173 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174 GFP_KERNEL);
1175 if (!opts->mnt_opts_flags)
1176 goto out_err;
1177
1178 if (fscontext) {
1179 opts->mnt_opts[num_mnt_opts] = fscontext;
1180 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181 }
1182 if (context) {
1183 opts->mnt_opts[num_mnt_opts] = context;
1184 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185 }
1186 if (rootcontext) {
1187 opts->mnt_opts[num_mnt_opts] = rootcontext;
1188 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189 }
1190 if (defcontext) {
1191 opts->mnt_opts[num_mnt_opts] = defcontext;
1192 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193 }
1194
1195 opts->num_mnt_opts = num_mnt_opts;
1196 return 0;
1197
1198out_err:
1199 security_free_mnt_opts(opts);
1200 kfree(context);
1201 kfree(defcontext);
1202 kfree(fscontext);
1203 kfree(rootcontext);
1204 return rc;
1205}
1206/*
1207 * string mount options parsing and call set the sbsec
1208 */
1209static int superblock_doinit(struct super_block *sb, void *data)
1210{
1211 int rc = 0;
1212 char *options = data;
1213 struct security_mnt_opts opts;
1214
1215 security_init_mnt_opts(&opts);
1216
1217 if (!data)
1218 goto out;
1219
1220 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221
1222 rc = selinux_parse_opts_str(options, &opts);
1223 if (rc)
1224 goto out_err;
1225
1226out:
1227 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228
1229out_err:
1230 security_free_mnt_opts(&opts);
1231 return rc;
1232}
1233
1234static void selinux_write_opts(struct seq_file *m,
1235 struct security_mnt_opts *opts)
1236{
1237 int i;
1238 char *prefix;
1239
1240 for (i = 0; i < opts->num_mnt_opts; i++) {
1241 char *has_comma;
1242
1243 if (opts->mnt_opts[i])
1244 has_comma = strchr(opts->mnt_opts[i], ',');
1245 else
1246 has_comma = NULL;
1247
1248 switch (opts->mnt_opts_flags[i]) {
1249 case CONTEXT_MNT:
1250 prefix = CONTEXT_STR;
1251 break;
1252 case FSCONTEXT_MNT:
1253 prefix = FSCONTEXT_STR;
1254 break;
1255 case ROOTCONTEXT_MNT:
1256 prefix = ROOTCONTEXT_STR;
1257 break;
1258 case DEFCONTEXT_MNT:
1259 prefix = DEFCONTEXT_STR;
1260 break;
1261 case SBLABEL_MNT:
1262 seq_putc(m, ',');
1263 seq_puts(m, LABELSUPP_STR);
1264 continue;
1265 default:
1266 BUG();
1267 return;
1268 };
1269 /* we need a comma before each option */
1270 seq_putc(m, ',');
1271 seq_puts(m, prefix);
1272 if (has_comma)
1273 seq_putc(m, '\"');
1274 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275 if (has_comma)
1276 seq_putc(m, '\"');
1277 }
1278}
1279
1280static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281{
1282 struct security_mnt_opts opts;
1283 int rc;
1284
1285 rc = selinux_get_mnt_opts(sb, &opts);
1286 if (rc) {
1287 /* before policy load we may get EINVAL, don't show anything */
1288 if (rc == -EINVAL)
1289 rc = 0;
1290 return rc;
1291 }
1292
1293 selinux_write_opts(m, &opts);
1294
1295 security_free_mnt_opts(&opts);
1296
1297 return rc;
1298}
1299
1300static inline u16 inode_mode_to_security_class(umode_t mode)
1301{
1302 switch (mode & S_IFMT) {
1303 case S_IFSOCK:
1304 return SECCLASS_SOCK_FILE;
1305 case S_IFLNK:
1306 return SECCLASS_LNK_FILE;
1307 case S_IFREG:
1308 return SECCLASS_FILE;
1309 case S_IFBLK:
1310 return SECCLASS_BLK_FILE;
1311 case S_IFDIR:
1312 return SECCLASS_DIR;
1313 case S_IFCHR:
1314 return SECCLASS_CHR_FILE;
1315 case S_IFIFO:
1316 return SECCLASS_FIFO_FILE;
1317
1318 }
1319
1320 return SECCLASS_FILE;
1321}
1322
1323static inline int default_protocol_stream(int protocol)
1324{
1325 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326}
1327
1328static inline int default_protocol_dgram(int protocol)
1329{
1330 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331}
1332
1333static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334{
1335 int extsockclass = selinux_policycap_extsockclass();
1336
1337 switch (family) {
1338 case PF_UNIX:
1339 switch (type) {
1340 case SOCK_STREAM:
1341 case SOCK_SEQPACKET:
1342 return SECCLASS_UNIX_STREAM_SOCKET;
1343 case SOCK_DGRAM:
1344 case SOCK_RAW:
1345 return SECCLASS_UNIX_DGRAM_SOCKET;
1346 }
1347 break;
1348 case PF_INET:
1349 case PF_INET6:
1350 switch (type) {
1351 case SOCK_STREAM:
1352 case SOCK_SEQPACKET:
1353 if (default_protocol_stream(protocol))
1354 return SECCLASS_TCP_SOCKET;
1355 else if (extsockclass && protocol == IPPROTO_SCTP)
1356 return SECCLASS_SCTP_SOCKET;
1357 else
1358 return SECCLASS_RAWIP_SOCKET;
1359 case SOCK_DGRAM:
1360 if (default_protocol_dgram(protocol))
1361 return SECCLASS_UDP_SOCKET;
1362 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363 protocol == IPPROTO_ICMPV6))
1364 return SECCLASS_ICMP_SOCKET;
1365 else
1366 return SECCLASS_RAWIP_SOCKET;
1367 case SOCK_DCCP:
1368 return SECCLASS_DCCP_SOCKET;
1369 default:
1370 return SECCLASS_RAWIP_SOCKET;
1371 }
1372 break;
1373 case PF_NETLINK:
1374 switch (protocol) {
1375 case NETLINK_ROUTE:
1376 return SECCLASS_NETLINK_ROUTE_SOCKET;
1377 case NETLINK_SOCK_DIAG:
1378 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379 case NETLINK_NFLOG:
1380 return SECCLASS_NETLINK_NFLOG_SOCKET;
1381 case NETLINK_XFRM:
1382 return SECCLASS_NETLINK_XFRM_SOCKET;
1383 case NETLINK_SELINUX:
1384 return SECCLASS_NETLINK_SELINUX_SOCKET;
1385 case NETLINK_ISCSI:
1386 return SECCLASS_NETLINK_ISCSI_SOCKET;
1387 case NETLINK_AUDIT:
1388 return SECCLASS_NETLINK_AUDIT_SOCKET;
1389 case NETLINK_FIB_LOOKUP:
1390 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391 case NETLINK_CONNECTOR:
1392 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393 case NETLINK_NETFILTER:
1394 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395 case NETLINK_DNRTMSG:
1396 return SECCLASS_NETLINK_DNRT_SOCKET;
1397 case NETLINK_KOBJECT_UEVENT:
1398 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399 case NETLINK_GENERIC:
1400 return SECCLASS_NETLINK_GENERIC_SOCKET;
1401 case NETLINK_SCSITRANSPORT:
1402 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403 case NETLINK_RDMA:
1404 return SECCLASS_NETLINK_RDMA_SOCKET;
1405 case NETLINK_CRYPTO:
1406 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407 default:
1408 return SECCLASS_NETLINK_SOCKET;
1409 }
1410 case PF_PACKET:
1411 return SECCLASS_PACKET_SOCKET;
1412 case PF_KEY:
1413 return SECCLASS_KEY_SOCKET;
1414 case PF_APPLETALK:
1415 return SECCLASS_APPLETALK_SOCKET;
1416 }
1417
1418 if (extsockclass) {
1419 switch (family) {
1420 case PF_AX25:
1421 return SECCLASS_AX25_SOCKET;
1422 case PF_IPX:
1423 return SECCLASS_IPX_SOCKET;
1424 case PF_NETROM:
1425 return SECCLASS_NETROM_SOCKET;
1426 case PF_ATMPVC:
1427 return SECCLASS_ATMPVC_SOCKET;
1428 case PF_X25:
1429 return SECCLASS_X25_SOCKET;
1430 case PF_ROSE:
1431 return SECCLASS_ROSE_SOCKET;
1432 case PF_DECnet:
1433 return SECCLASS_DECNET_SOCKET;
1434 case PF_ATMSVC:
1435 return SECCLASS_ATMSVC_SOCKET;
1436 case PF_RDS:
1437 return SECCLASS_RDS_SOCKET;
1438 case PF_IRDA:
1439 return SECCLASS_IRDA_SOCKET;
1440 case PF_PPPOX:
1441 return SECCLASS_PPPOX_SOCKET;
1442 case PF_LLC:
1443 return SECCLASS_LLC_SOCKET;
1444 case PF_CAN:
1445 return SECCLASS_CAN_SOCKET;
1446 case PF_TIPC:
1447 return SECCLASS_TIPC_SOCKET;
1448 case PF_BLUETOOTH:
1449 return SECCLASS_BLUETOOTH_SOCKET;
1450 case PF_IUCV:
1451 return SECCLASS_IUCV_SOCKET;
1452 case PF_RXRPC:
1453 return SECCLASS_RXRPC_SOCKET;
1454 case PF_ISDN:
1455 return SECCLASS_ISDN_SOCKET;
1456 case PF_PHONET:
1457 return SECCLASS_PHONET_SOCKET;
1458 case PF_IEEE802154:
1459 return SECCLASS_IEEE802154_SOCKET;
1460 case PF_CAIF:
1461 return SECCLASS_CAIF_SOCKET;
1462 case PF_ALG:
1463 return SECCLASS_ALG_SOCKET;
1464 case PF_NFC:
1465 return SECCLASS_NFC_SOCKET;
1466 case PF_VSOCK:
1467 return SECCLASS_VSOCK_SOCKET;
1468 case PF_KCM:
1469 return SECCLASS_KCM_SOCKET;
1470 case PF_QIPCRTR:
1471 return SECCLASS_QIPCRTR_SOCKET;
1472 case PF_SMC:
1473 return SECCLASS_SMC_SOCKET;
1474#if PF_MAX > 44
1475#error New address family defined, please update this function.
1476#endif
1477 }
1478 }
1479
1480 return SECCLASS_SOCKET;
1481}
1482
1483static int selinux_genfs_get_sid(struct dentry *dentry,
1484 u16 tclass,
1485 u16 flags,
1486 u32 *sid)
1487{
1488 int rc;
1489 struct super_block *sb = dentry->d_sb;
1490 char *buffer, *path;
1491
1492 buffer = (char *)__get_free_page(GFP_KERNEL);
1493 if (!buffer)
1494 return -ENOMEM;
1495
1496 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1497 if (IS_ERR(path))
1498 rc = PTR_ERR(path);
1499 else {
1500 if (flags & SE_SBPROC) {
1501 /* each process gets a /proc/PID/ entry. Strip off the
1502 * PID part to get a valid selinux labeling.
1503 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1504 while (path[1] >= '0' && path[1] <= '9') {
1505 path[1] = '/';
1506 path++;
1507 }
1508 }
1509 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1510 path, tclass, sid);
1511 }
1512 free_page((unsigned long)buffer);
1513 return rc;
1514}
1515
1516/* The inode's security attributes must be initialized before first use. */
1517static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1518{
1519 struct superblock_security_struct *sbsec = NULL;
1520 struct inode_security_struct *isec = inode->i_security;
1521 u32 task_sid, sid = 0;
1522 u16 sclass;
1523 struct dentry *dentry;
1524#define INITCONTEXTLEN 255
1525 char *context = NULL;
1526 unsigned len = 0;
1527 int rc = 0;
1528
1529 if (isec->initialized == LABEL_INITIALIZED)
1530 return 0;
1531
1532 spin_lock(&isec->lock);
1533 if (isec->initialized == LABEL_INITIALIZED)
1534 goto out_unlock;
1535
1536 if (isec->sclass == SECCLASS_FILE)
1537 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1538
1539 sbsec = inode->i_sb->s_security;
1540 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1541 /* Defer initialization until selinux_complete_init,
1542 after the initial policy is loaded and the security
1543 server is ready to handle calls. */
1544 spin_lock(&sbsec->isec_lock);
1545 if (list_empty(&isec->list))
1546 list_add(&isec->list, &sbsec->isec_head);
1547 spin_unlock(&sbsec->isec_lock);
1548 goto out_unlock;
1549 }
1550
1551 sclass = isec->sclass;
1552 task_sid = isec->task_sid;
1553 sid = isec->sid;
1554 isec->initialized = LABEL_PENDING;
1555 spin_unlock(&isec->lock);
1556
1557 switch (sbsec->behavior) {
1558 case SECURITY_FS_USE_NATIVE:
1559 break;
1560 case SECURITY_FS_USE_XATTR:
1561 if (!(inode->i_opflags & IOP_XATTR)) {
1562 sid = sbsec->def_sid;
1563 break;
1564 }
1565 /* Need a dentry, since the xattr API requires one.
1566 Life would be simpler if we could just pass the inode. */
1567 if (opt_dentry) {
1568 /* Called from d_instantiate or d_splice_alias. */
1569 dentry = dget(opt_dentry);
1570 } else {
1571 /*
1572 * Called from selinux_complete_init, try to find a dentry.
1573 * Some filesystems really want a connected one, so try
1574 * that first. We could split SECURITY_FS_USE_XATTR in
1575 * two, depending upon that...
1576 */
1577 dentry = d_find_alias(inode);
1578 if (!dentry)
1579 dentry = d_find_any_alias(inode);
1580 }
1581 if (!dentry) {
1582 /*
1583 * this is can be hit on boot when a file is accessed
1584 * before the policy is loaded. When we load policy we
1585 * may find inodes that have no dentry on the
1586 * sbsec->isec_head list. No reason to complain as these
1587 * will get fixed up the next time we go through
1588 * inode_doinit with a dentry, before these inodes could
1589 * be used again by userspace.
1590 */
1591 goto out;
1592 }
1593
1594 len = INITCONTEXTLEN;
1595 context = kmalloc(len+1, GFP_NOFS);
1596 if (!context) {
1597 rc = -ENOMEM;
1598 dput(dentry);
1599 goto out;
1600 }
1601 context[len] = '\0';
1602 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1603 if (rc == -ERANGE) {
1604 kfree(context);
1605
1606 /* Need a larger buffer. Query for the right size. */
1607 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1608 if (rc < 0) {
1609 dput(dentry);
1610 goto out;
1611 }
1612 len = rc;
1613 context = kmalloc(len+1, GFP_NOFS);
1614 if (!context) {
1615 rc = -ENOMEM;
1616 dput(dentry);
1617 goto out;
1618 }
1619 context[len] = '\0';
1620 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1621 }
1622 dput(dentry);
1623 if (rc < 0) {
1624 if (rc != -ENODATA) {
1625 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1626 "%d for dev=%s ino=%ld\n", __func__,
1627 -rc, inode->i_sb->s_id, inode->i_ino);
1628 kfree(context);
1629 goto out;
1630 }
1631 /* Map ENODATA to the default file SID */
1632 sid = sbsec->def_sid;
1633 rc = 0;
1634 } else {
1635 rc = security_context_to_sid_default(&selinux_state,
1636 context, rc, &sid,
1637 sbsec->def_sid,
1638 GFP_NOFS);
1639 if (rc) {
1640 char *dev = inode->i_sb->s_id;
1641 unsigned long ino = inode->i_ino;
1642
1643 if (rc == -EINVAL) {
1644 if (printk_ratelimit())
1645 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1646 "context=%s. This indicates you may need to relabel the inode or the "
1647 "filesystem in question.\n", ino, dev, context);
1648 } else {
1649 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1650 "returned %d for dev=%s ino=%ld\n",
1651 __func__, context, -rc, dev, ino);
1652 }
1653 kfree(context);
1654 /* Leave with the unlabeled SID */
1655 rc = 0;
1656 break;
1657 }
1658 }
1659 kfree(context);
1660 break;
1661 case SECURITY_FS_USE_TASK:
1662 sid = task_sid;
1663 break;
1664 case SECURITY_FS_USE_TRANS:
1665 /* Default to the fs SID. */
1666 sid = sbsec->sid;
1667
1668 /* Try to obtain a transition SID. */
1669 rc = security_transition_sid(&selinux_state, task_sid, sid,
1670 sclass, NULL, &sid);
1671 if (rc)
1672 goto out;
1673 break;
1674 case SECURITY_FS_USE_MNTPOINT:
1675 sid = sbsec->mntpoint_sid;
1676 break;
1677 default:
1678 /* Default to the fs superblock SID. */
1679 sid = sbsec->sid;
1680
1681 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1682 /* We must have a dentry to determine the label on
1683 * procfs inodes */
1684 if (opt_dentry) {
1685 /* Called from d_instantiate or
1686 * d_splice_alias. */
1687 dentry = dget(opt_dentry);
1688 } else {
1689 /* Called from selinux_complete_init, try to
1690 * find a dentry. Some filesystems really want
1691 * a connected one, so try that first.
1692 */
1693 dentry = d_find_alias(inode);
1694 if (!dentry)
1695 dentry = d_find_any_alias(inode);
1696 }
1697 /*
1698 * This can be hit on boot when a file is accessed
1699 * before the policy is loaded. When we load policy we
1700 * may find inodes that have no dentry on the
1701 * sbsec->isec_head list. No reason to complain as
1702 * these will get fixed up the next time we go through
1703 * inode_doinit() with a dentry, before these inodes
1704 * could be used again by userspace.
1705 */
1706 if (!dentry)
1707 goto out;
1708 rc = selinux_genfs_get_sid(dentry, sclass,
1709 sbsec->flags, &sid);
1710 dput(dentry);
1711 if (rc)
1712 goto out;
1713 }
1714 break;
1715 }
1716
1717out:
1718 spin_lock(&isec->lock);
1719 if (isec->initialized == LABEL_PENDING) {
1720 if (!sid || rc) {
1721 isec->initialized = LABEL_INVALID;
1722 goto out_unlock;
1723 }
1724
1725 isec->initialized = LABEL_INITIALIZED;
1726 isec->sid = sid;
1727 }
1728
1729out_unlock:
1730 spin_unlock(&isec->lock);
1731 return rc;
1732}
1733
1734/* Convert a Linux signal to an access vector. */
1735static inline u32 signal_to_av(int sig)
1736{
1737 u32 perm = 0;
1738
1739 switch (sig) {
1740 case SIGCHLD:
1741 /* Commonly granted from child to parent. */
1742 perm = PROCESS__SIGCHLD;
1743 break;
1744 case SIGKILL:
1745 /* Cannot be caught or ignored */
1746 perm = PROCESS__SIGKILL;
1747 break;
1748 case SIGSTOP:
1749 /* Cannot be caught or ignored */
1750 perm = PROCESS__SIGSTOP;
1751 break;
1752 default:
1753 /* All other signals. */
1754 perm = PROCESS__SIGNAL;
1755 break;
1756 }
1757
1758 return perm;
1759}
1760
1761#if CAP_LAST_CAP > 63
1762#error Fix SELinux to handle capabilities > 63.
1763#endif
1764
1765/* Check whether a task is allowed to use a capability. */
1766static int cred_has_capability(const struct cred *cred,
1767 int cap, int audit, bool initns)
1768{
1769 struct common_audit_data ad;
1770 struct av_decision avd;
1771 u16 sclass;
1772 u32 sid = cred_sid(cred);
1773 u32 av = CAP_TO_MASK(cap);
1774 int rc;
1775
1776 ad.type = LSM_AUDIT_DATA_CAP;
1777 ad.u.cap = cap;
1778
1779 switch (CAP_TO_INDEX(cap)) {
1780 case 0:
1781 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1782 break;
1783 case 1:
1784 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1785 break;
1786 default:
1787 printk(KERN_ERR
1788 "SELinux: out of range capability %d\n", cap);
1789 BUG();
1790 return -EINVAL;
1791 }
1792
1793 rc = avc_has_perm_noaudit(&selinux_state,
1794 sid, sid, sclass, av, 0, &avd);
1795 if (audit == SECURITY_CAP_AUDIT) {
1796 int rc2 = avc_audit(&selinux_state,
1797 sid, sid, sclass, av, &avd, rc, &ad, 0);
1798 if (rc2)
1799 return rc2;
1800 }
1801 return rc;
1802}
1803
1804/* Check whether a task has a particular permission to an inode.
1805 The 'adp' parameter is optional and allows other audit
1806 data to be passed (e.g. the dentry). */
1807static int inode_has_perm(const struct cred *cred,
1808 struct inode *inode,
1809 u32 perms,
1810 struct common_audit_data *adp)
1811{
1812 struct inode_security_struct *isec;
1813 u32 sid;
1814
1815 validate_creds(cred);
1816
1817 if (unlikely(IS_PRIVATE(inode)))
1818 return 0;
1819
1820 sid = cred_sid(cred);
1821 isec = inode->i_security;
1822
1823 return avc_has_perm(&selinux_state,
1824 sid, isec->sid, isec->sclass, perms, adp);
1825}
1826
1827/* Same as inode_has_perm, but pass explicit audit data containing
1828 the dentry to help the auditing code to more easily generate the
1829 pathname if needed. */
1830static inline int dentry_has_perm(const struct cred *cred,
1831 struct dentry *dentry,
1832 u32 av)
1833{
1834 struct inode *inode = d_backing_inode(dentry);
1835 struct common_audit_data ad;
1836
1837 ad.type = LSM_AUDIT_DATA_DENTRY;
1838 ad.u.dentry = dentry;
1839 __inode_security_revalidate(inode, dentry, true);
1840 return inode_has_perm(cred, inode, av, &ad);
1841}
1842
1843/* Same as inode_has_perm, but pass explicit audit data containing
1844 the path to help the auditing code to more easily generate the
1845 pathname if needed. */
1846static inline int path_has_perm(const struct cred *cred,
1847 const struct path *path,
1848 u32 av)
1849{
1850 struct inode *inode = d_backing_inode(path->dentry);
1851 struct common_audit_data ad;
1852
1853 ad.type = LSM_AUDIT_DATA_PATH;
1854 ad.u.path = *path;
1855 __inode_security_revalidate(inode, path->dentry, true);
1856 return inode_has_perm(cred, inode, av, &ad);
1857}
1858
1859/* Same as path_has_perm, but uses the inode from the file struct. */
1860static inline int file_path_has_perm(const struct cred *cred,
1861 struct file *file,
1862 u32 av)
1863{
1864 struct common_audit_data ad;
1865
1866 ad.type = LSM_AUDIT_DATA_FILE;
1867 ad.u.file = file;
1868 return inode_has_perm(cred, file_inode(file), av, &ad);
1869}
1870
1871#ifdef CONFIG_BPF_SYSCALL
1872static int bpf_fd_pass(struct file *file, u32 sid);
1873#endif
1874
1875/* Check whether a task can use an open file descriptor to
1876 access an inode in a given way. Check access to the
1877 descriptor itself, and then use dentry_has_perm to
1878 check a particular permission to the file.
1879 Access to the descriptor is implicitly granted if it
1880 has the same SID as the process. If av is zero, then
1881 access to the file is not checked, e.g. for cases
1882 where only the descriptor is affected like seek. */
1883static int file_has_perm(const struct cred *cred,
1884 struct file *file,
1885 u32 av)
1886{
1887 struct file_security_struct *fsec = file->f_security;
1888 struct inode *inode = file_inode(file);
1889 struct common_audit_data ad;
1890 u32 sid = cred_sid(cred);
1891 int rc;
1892
1893 ad.type = LSM_AUDIT_DATA_FILE;
1894 ad.u.file = file;
1895
1896 if (sid != fsec->sid) {
1897 rc = avc_has_perm(&selinux_state,
1898 sid, fsec->sid,
1899 SECCLASS_FD,
1900 FD__USE,
1901 &ad);
1902 if (rc)
1903 goto out;
1904 }
1905
1906#ifdef CONFIG_BPF_SYSCALL
1907 rc = bpf_fd_pass(file, cred_sid(cred));
1908 if (rc)
1909 return rc;
1910#endif
1911
1912 /* av is zero if only checking access to the descriptor. */
1913 rc = 0;
1914 if (av)
1915 rc = inode_has_perm(cred, inode, av, &ad);
1916
1917out:
1918 return rc;
1919}
1920
1921/*
1922 * Determine the label for an inode that might be unioned.
1923 */
1924static int
1925selinux_determine_inode_label(const struct task_security_struct *tsec,
1926 struct inode *dir,
1927 const struct qstr *name, u16 tclass,
1928 u32 *_new_isid)
1929{
1930 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1931
1932 if ((sbsec->flags & SE_SBINITIALIZED) &&
1933 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1934 *_new_isid = sbsec->mntpoint_sid;
1935 } else if ((sbsec->flags & SBLABEL_MNT) &&
1936 tsec->create_sid) {
1937 *_new_isid = tsec->create_sid;
1938 } else {
1939 const struct inode_security_struct *dsec = inode_security(dir);
1940 return security_transition_sid(&selinux_state, tsec->sid,
1941 dsec->sid, tclass,
1942 name, _new_isid);
1943 }
1944
1945 return 0;
1946}
1947
1948/* Check whether a task can create a file. */
1949static int may_create(struct inode *dir,
1950 struct dentry *dentry,
1951 u16 tclass)
1952{
1953 const struct task_security_struct *tsec = current_security();
1954 struct inode_security_struct *dsec;
1955 struct superblock_security_struct *sbsec;
1956 u32 sid, newsid;
1957 struct common_audit_data ad;
1958 int rc;
1959
1960 dsec = inode_security(dir);
1961 sbsec = dir->i_sb->s_security;
1962
1963 sid = tsec->sid;
1964
1965 ad.type = LSM_AUDIT_DATA_DENTRY;
1966 ad.u.dentry = dentry;
1967
1968 rc = avc_has_perm(&selinux_state,
1969 sid, dsec->sid, SECCLASS_DIR,
1970 DIR__ADD_NAME | DIR__SEARCH,
1971 &ad);
1972 if (rc)
1973 return rc;
1974
1975 rc = selinux_determine_inode_label(current_security(), dir,
1976 &dentry->d_name, tclass, &newsid);
1977 if (rc)
1978 return rc;
1979
1980 rc = avc_has_perm(&selinux_state,
1981 sid, newsid, tclass, FILE__CREATE, &ad);
1982 if (rc)
1983 return rc;
1984
1985 return avc_has_perm(&selinux_state,
1986 newsid, sbsec->sid,
1987 SECCLASS_FILESYSTEM,
1988 FILESYSTEM__ASSOCIATE, &ad);
1989}
1990
1991#define MAY_LINK 0
1992#define MAY_UNLINK 1
1993#define MAY_RMDIR 2
1994
1995/* Check whether a task can link, unlink, or rmdir a file/directory. */
1996static int may_link(struct inode *dir,
1997 struct dentry *dentry,
1998 int kind)
1999
2000{
2001 struct inode_security_struct *dsec, *isec;
2002 struct common_audit_data ad;
2003 u32 sid = current_sid();
2004 u32 av;
2005 int rc;
2006
2007 dsec = inode_security(dir);
2008 isec = backing_inode_security(dentry);
2009
2010 ad.type = LSM_AUDIT_DATA_DENTRY;
2011 ad.u.dentry = dentry;
2012
2013 av = DIR__SEARCH;
2014 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2015 rc = avc_has_perm(&selinux_state,
2016 sid, dsec->sid, SECCLASS_DIR, av, &ad);
2017 if (rc)
2018 return rc;
2019
2020 switch (kind) {
2021 case MAY_LINK:
2022 av = FILE__LINK;
2023 break;
2024 case MAY_UNLINK:
2025 av = FILE__UNLINK;
2026 break;
2027 case MAY_RMDIR:
2028 av = DIR__RMDIR;
2029 break;
2030 default:
2031 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
2032 __func__, kind);
2033 return 0;
2034 }
2035
2036 rc = avc_has_perm(&selinux_state,
2037 sid, isec->sid, isec->sclass, av, &ad);
2038 return rc;
2039}
2040
2041static inline int may_rename(struct inode *old_dir,
2042 struct dentry *old_dentry,
2043 struct inode *new_dir,
2044 struct dentry *new_dentry)
2045{
2046 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2047 struct common_audit_data ad;
2048 u32 sid = current_sid();
2049 u32 av;
2050 int old_is_dir, new_is_dir;
2051 int rc;
2052
2053 old_dsec = inode_security(old_dir);
2054 old_isec = backing_inode_security(old_dentry);
2055 old_is_dir = d_is_dir(old_dentry);
2056 new_dsec = inode_security(new_dir);
2057
2058 ad.type = LSM_AUDIT_DATA_DENTRY;
2059
2060 ad.u.dentry = old_dentry;
2061 rc = avc_has_perm(&selinux_state,
2062 sid, old_dsec->sid, SECCLASS_DIR,
2063 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2064 if (rc)
2065 return rc;
2066 rc = avc_has_perm(&selinux_state,
2067 sid, old_isec->sid,
2068 old_isec->sclass, FILE__RENAME, &ad);
2069 if (rc)
2070 return rc;
2071 if (old_is_dir && new_dir != old_dir) {
2072 rc = avc_has_perm(&selinux_state,
2073 sid, old_isec->sid,
2074 old_isec->sclass, DIR__REPARENT, &ad);
2075 if (rc)
2076 return rc;
2077 }
2078
2079 ad.u.dentry = new_dentry;
2080 av = DIR__ADD_NAME | DIR__SEARCH;
2081 if (d_is_positive(new_dentry))
2082 av |= DIR__REMOVE_NAME;
2083 rc = avc_has_perm(&selinux_state,
2084 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2085 if (rc)
2086 return rc;
2087 if (d_is_positive(new_dentry)) {
2088 new_isec = backing_inode_security(new_dentry);
2089 new_is_dir = d_is_dir(new_dentry);
2090 rc = avc_has_perm(&selinux_state,
2091 sid, new_isec->sid,
2092 new_isec->sclass,
2093 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2094 if (rc)
2095 return rc;
2096 }
2097
2098 return 0;
2099}
2100
2101/* Check whether a task can perform a filesystem operation. */
2102static int superblock_has_perm(const struct cred *cred,
2103 struct super_block *sb,
2104 u32 perms,
2105 struct common_audit_data *ad)
2106{
2107 struct superblock_security_struct *sbsec;
2108 u32 sid = cred_sid(cred);
2109
2110 sbsec = sb->s_security;
2111 return avc_has_perm(&selinux_state,
2112 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2113}
2114
2115/* Convert a Linux mode and permission mask to an access vector. */
2116static inline u32 file_mask_to_av(int mode, int mask)
2117{
2118 u32 av = 0;
2119
2120 if (!S_ISDIR(mode)) {
2121 if (mask & MAY_EXEC)
2122 av |= FILE__EXECUTE;
2123 if (mask & MAY_READ)
2124 av |= FILE__READ;
2125
2126 if (mask & MAY_APPEND)
2127 av |= FILE__APPEND;
2128 else if (mask & MAY_WRITE)
2129 av |= FILE__WRITE;
2130
2131 } else {
2132 if (mask & MAY_EXEC)
2133 av |= DIR__SEARCH;
2134 if (mask & MAY_WRITE)
2135 av |= DIR__WRITE;
2136 if (mask & MAY_READ)
2137 av |= DIR__READ;
2138 }
2139
2140 return av;
2141}
2142
2143/* Convert a Linux file to an access vector. */
2144static inline u32 file_to_av(struct file *file)
2145{
2146 u32 av = 0;
2147
2148 if (file->f_mode & FMODE_READ)
2149 av |= FILE__READ;
2150 if (file->f_mode & FMODE_WRITE) {
2151 if (file->f_flags & O_APPEND)
2152 av |= FILE__APPEND;
2153 else
2154 av |= FILE__WRITE;
2155 }
2156 if (!av) {
2157 /*
2158 * Special file opened with flags 3 for ioctl-only use.
2159 */
2160 av = FILE__IOCTL;
2161 }
2162
2163 return av;
2164}
2165
2166/*
2167 * Convert a file to an access vector and include the correct open
2168 * open permission.
2169 */
2170static inline u32 open_file_to_av(struct file *file)
2171{
2172 u32 av = file_to_av(file);
2173 struct inode *inode = file_inode(file);
2174
2175 if (selinux_policycap_openperm() &&
2176 inode->i_sb->s_magic != SOCKFS_MAGIC)
2177 av |= FILE__OPEN;
2178
2179 return av;
2180}
2181
2182/* Hook functions begin here. */
2183
2184static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2185{
2186 u32 mysid = current_sid();
2187 u32 mgrsid = task_sid(mgr);
2188
2189 return avc_has_perm(&selinux_state,
2190 mysid, mgrsid, SECCLASS_BINDER,
2191 BINDER__SET_CONTEXT_MGR, NULL);
2192}
2193
2194static int selinux_binder_transaction(struct task_struct *from,
2195 struct task_struct *to)
2196{
2197 u32 mysid = current_sid();
2198 u32 fromsid = task_sid(from);
2199 u32 tosid = task_sid(to);
2200 int rc;
2201
2202 if (mysid != fromsid) {
2203 rc = avc_has_perm(&selinux_state,
2204 mysid, fromsid, SECCLASS_BINDER,
2205 BINDER__IMPERSONATE, NULL);
2206 if (rc)
2207 return rc;
2208 }
2209
2210 return avc_has_perm(&selinux_state,
2211 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2212 NULL);
2213}
2214
2215static int selinux_binder_transfer_binder(struct task_struct *from,
2216 struct task_struct *to)
2217{
2218 u32 fromsid = task_sid(from);
2219 u32 tosid = task_sid(to);
2220
2221 return avc_has_perm(&selinux_state,
2222 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2223 NULL);
2224}
2225
2226static int selinux_binder_transfer_file(struct task_struct *from,
2227 struct task_struct *to,
2228 struct file *file)
2229{
2230 u32 sid = task_sid(to);
2231 struct file_security_struct *fsec = file->f_security;
2232 struct dentry *dentry = file->f_path.dentry;
2233 struct inode_security_struct *isec;
2234 struct common_audit_data ad;
2235 int rc;
2236
2237 ad.type = LSM_AUDIT_DATA_PATH;
2238 ad.u.path = file->f_path;
2239
2240 if (sid != fsec->sid) {
2241 rc = avc_has_perm(&selinux_state,
2242 sid, fsec->sid,
2243 SECCLASS_FD,
2244 FD__USE,
2245 &ad);
2246 if (rc)
2247 return rc;
2248 }
2249
2250#ifdef CONFIG_BPF_SYSCALL
2251 rc = bpf_fd_pass(file, sid);
2252 if (rc)
2253 return rc;
2254#endif
2255
2256 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2257 return 0;
2258
2259 isec = backing_inode_security(dentry);
2260 return avc_has_perm(&selinux_state,
2261 sid, isec->sid, isec->sclass, file_to_av(file),
2262 &ad);
2263}
2264
2265static int selinux_ptrace_access_check(struct task_struct *child,
2266 unsigned int mode)
2267{
2268 u32 sid = current_sid();
2269 u32 csid = task_sid(child);
2270
2271 if (mode & PTRACE_MODE_READ)
2272 return avc_has_perm(&selinux_state,
2273 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2274
2275 return avc_has_perm(&selinux_state,
2276 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2277}
2278
2279static int selinux_ptrace_traceme(struct task_struct *parent)
2280{
2281 return avc_has_perm(&selinux_state,
2282 task_sid(parent), current_sid(), SECCLASS_PROCESS,
2283 PROCESS__PTRACE, NULL);
2284}
2285
2286static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2287 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2288{
2289 return avc_has_perm(&selinux_state,
2290 current_sid(), task_sid(target), SECCLASS_PROCESS,
2291 PROCESS__GETCAP, NULL);
2292}
2293
2294static int selinux_capset(struct cred *new, const struct cred *old,
2295 const kernel_cap_t *effective,
2296 const kernel_cap_t *inheritable,
2297 const kernel_cap_t *permitted)
2298{
2299 return avc_has_perm(&selinux_state,
2300 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2301 PROCESS__SETCAP, NULL);
2302}
2303
2304/*
2305 * (This comment used to live with the selinux_task_setuid hook,
2306 * which was removed).
2307 *
2308 * Since setuid only affects the current process, and since the SELinux
2309 * controls are not based on the Linux identity attributes, SELinux does not
2310 * need to control this operation. However, SELinux does control the use of
2311 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2312 */
2313
2314static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2315 int cap, int audit)
2316{
2317 return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2318}
2319
2320static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2321{
2322 const struct cred *cred = current_cred();
2323 int rc = 0;
2324
2325 if (!sb)
2326 return 0;
2327
2328 switch (cmds) {
2329 case Q_SYNC:
2330 case Q_QUOTAON:
2331 case Q_QUOTAOFF:
2332 case Q_SETINFO:
2333 case Q_SETQUOTA:
2334 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2335 break;
2336 case Q_GETFMT:
2337 case Q_GETINFO:
2338 case Q_GETQUOTA:
2339 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2340 break;
2341 default:
2342 rc = 0; /* let the kernel handle invalid cmds */
2343 break;
2344 }
2345 return rc;
2346}
2347
2348static int selinux_quota_on(struct dentry *dentry)
2349{
2350 const struct cred *cred = current_cred();
2351
2352 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2353}
2354
2355static int selinux_syslog(int type)
2356{
2357 switch (type) {
2358 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2359 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2360 return avc_has_perm(&selinux_state,
2361 current_sid(), SECINITSID_KERNEL,
2362 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2363 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2364 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2365 /* Set level of messages printed to console */
2366 case SYSLOG_ACTION_CONSOLE_LEVEL:
2367 return avc_has_perm(&selinux_state,
2368 current_sid(), SECINITSID_KERNEL,
2369 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2370 NULL);
2371 }
2372 /* All other syslog types */
2373 return avc_has_perm(&selinux_state,
2374 current_sid(), SECINITSID_KERNEL,
2375 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2376}
2377
2378/*
2379 * Check that a process has enough memory to allocate a new virtual
2380 * mapping. 0 means there is enough memory for the allocation to
2381 * succeed and -ENOMEM implies there is not.
2382 *
2383 * Do not audit the selinux permission check, as this is applied to all
2384 * processes that allocate mappings.
2385 */
2386static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2387{
2388 int rc, cap_sys_admin = 0;
2389
2390 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2391 SECURITY_CAP_NOAUDIT, true);
2392 if (rc == 0)
2393 cap_sys_admin = 1;
2394
2395 return cap_sys_admin;
2396}
2397
2398/* binprm security operations */
2399
2400static u32 ptrace_parent_sid(void)
2401{
2402 u32 sid = 0;
2403 struct task_struct *tracer;
2404
2405 rcu_read_lock();
2406 tracer = ptrace_parent(current);
2407 if (tracer)
2408 sid = task_sid(tracer);
2409 rcu_read_unlock();
2410
2411 return sid;
2412}
2413
2414static int check_nnp_nosuid(const struct linux_binprm *bprm,
2415 const struct task_security_struct *old_tsec,
2416 const struct task_security_struct *new_tsec)
2417{
2418 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2419 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2420 int rc;
2421 u32 av;
2422
2423 if (!nnp && !nosuid)
2424 return 0; /* neither NNP nor nosuid */
2425
2426 if (new_tsec->sid == old_tsec->sid)
2427 return 0; /* No change in credentials */
2428
2429 /*
2430 * If the policy enables the nnp_nosuid_transition policy capability,
2431 * then we permit transitions under NNP or nosuid if the
2432 * policy allows the corresponding permission between
2433 * the old and new contexts.
2434 */
2435 if (selinux_policycap_nnp_nosuid_transition()) {
2436 av = 0;
2437 if (nnp)
2438 av |= PROCESS2__NNP_TRANSITION;
2439 if (nosuid)
2440 av |= PROCESS2__NOSUID_TRANSITION;
2441 rc = avc_has_perm(&selinux_state,
2442 old_tsec->sid, new_tsec->sid,
2443 SECCLASS_PROCESS2, av, NULL);
2444 if (!rc)
2445 return 0;
2446 }
2447
2448 /*
2449 * We also permit NNP or nosuid transitions to bounded SIDs,
2450 * i.e. SIDs that are guaranteed to only be allowed a subset
2451 * of the permissions of the current SID.
2452 */
2453 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2454 new_tsec->sid);
2455 if (!rc)
2456 return 0;
2457
2458 /*
2459 * On failure, preserve the errno values for NNP vs nosuid.
2460 * NNP: Operation not permitted for caller.
2461 * nosuid: Permission denied to file.
2462 */
2463 if (nnp)
2464 return -EPERM;
2465 return -EACCES;
2466}
2467
2468static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2469{
2470 const struct task_security_struct *old_tsec;
2471 struct task_security_struct *new_tsec;
2472 struct inode_security_struct *isec;
2473 struct common_audit_data ad;
2474 struct inode *inode = file_inode(bprm->file);
2475 int rc;
2476
2477 /* SELinux context only depends on initial program or script and not
2478 * the script interpreter */
2479 if (bprm->called_set_creds)
2480 return 0;
2481
2482 old_tsec = current_security();
2483 new_tsec = bprm->cred->security;
2484 isec = inode_security(inode);
2485
2486 /* Default to the current task SID. */
2487 new_tsec->sid = old_tsec->sid;
2488 new_tsec->osid = old_tsec->sid;
2489
2490 /* Reset fs, key, and sock SIDs on execve. */
2491 new_tsec->create_sid = 0;
2492 new_tsec->keycreate_sid = 0;
2493 new_tsec->sockcreate_sid = 0;
2494
2495 if (old_tsec->exec_sid) {
2496 new_tsec->sid = old_tsec->exec_sid;
2497 /* Reset exec SID on execve. */
2498 new_tsec->exec_sid = 0;
2499
2500 /* Fail on NNP or nosuid if not an allowed transition. */
2501 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2502 if (rc)
2503 return rc;
2504 } else {
2505 /* Check for a default transition on this program. */
2506 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2507 isec->sid, SECCLASS_PROCESS, NULL,
2508 &new_tsec->sid);
2509 if (rc)
2510 return rc;
2511
2512 /*
2513 * Fallback to old SID on NNP or nosuid if not an allowed
2514 * transition.
2515 */
2516 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2517 if (rc)
2518 new_tsec->sid = old_tsec->sid;
2519 }
2520
2521 ad.type = LSM_AUDIT_DATA_FILE;
2522 ad.u.file = bprm->file;
2523
2524 if (new_tsec->sid == old_tsec->sid) {
2525 rc = avc_has_perm(&selinux_state,
2526 old_tsec->sid, isec->sid,
2527 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2528 if (rc)
2529 return rc;
2530 } else {
2531 /* Check permissions for the transition. */
2532 rc = avc_has_perm(&selinux_state,
2533 old_tsec->sid, new_tsec->sid,
2534 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2535 if (rc)
2536 return rc;
2537
2538 rc = avc_has_perm(&selinux_state,
2539 new_tsec->sid, isec->sid,
2540 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2541 if (rc)
2542 return rc;
2543
2544 /* Check for shared state */
2545 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2546 rc = avc_has_perm(&selinux_state,
2547 old_tsec->sid, new_tsec->sid,
2548 SECCLASS_PROCESS, PROCESS__SHARE,
2549 NULL);
2550 if (rc)
2551 return -EPERM;
2552 }
2553
2554 /* Make sure that anyone attempting to ptrace over a task that
2555 * changes its SID has the appropriate permit */
2556 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2557 u32 ptsid = ptrace_parent_sid();
2558 if (ptsid != 0) {
2559 rc = avc_has_perm(&selinux_state,
2560 ptsid, new_tsec->sid,
2561 SECCLASS_PROCESS,
2562 PROCESS__PTRACE, NULL);
2563 if (rc)
2564 return -EPERM;
2565 }
2566 }
2567
2568 /* Clear any possibly unsafe personality bits on exec: */
2569 bprm->per_clear |= PER_CLEAR_ON_SETID;
2570
2571 /* Enable secure mode for SIDs transitions unless
2572 the noatsecure permission is granted between
2573 the two SIDs, i.e. ahp returns 0. */
2574 rc = avc_has_perm(&selinux_state,
2575 old_tsec->sid, new_tsec->sid,
2576 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2577 NULL);
2578 bprm->secureexec |= !!rc;
2579 }
2580
2581 return 0;
2582}
2583
2584static int match_file(const void *p, struct file *file, unsigned fd)
2585{
2586 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2587}
2588
2589/* Derived from fs/exec.c:flush_old_files. */
2590static inline void flush_unauthorized_files(const struct cred *cred,
2591 struct files_struct *files)
2592{
2593 struct file *file, *devnull = NULL;
2594 struct tty_struct *tty;
2595 int drop_tty = 0;
2596 unsigned n;
2597
2598 tty = get_current_tty();
2599 if (tty) {
2600 spin_lock(&tty->files_lock);
2601 if (!list_empty(&tty->tty_files)) {
2602 struct tty_file_private *file_priv;
2603
2604 /* Revalidate access to controlling tty.
2605 Use file_path_has_perm on the tty path directly
2606 rather than using file_has_perm, as this particular
2607 open file may belong to another process and we are
2608 only interested in the inode-based check here. */
2609 file_priv = list_first_entry(&tty->tty_files,
2610 struct tty_file_private, list);
2611 file = file_priv->file;
2612 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2613 drop_tty = 1;
2614 }
2615 spin_unlock(&tty->files_lock);
2616 tty_kref_put(tty);
2617 }
2618 /* Reset controlling tty. */
2619 if (drop_tty)
2620 no_tty();
2621
2622 /* Revalidate access to inherited open files. */
2623 n = iterate_fd(files, 0, match_file, cred);
2624 if (!n) /* none found? */
2625 return;
2626
2627 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2628 if (IS_ERR(devnull))
2629 devnull = NULL;
2630 /* replace all the matching ones with this */
2631 do {
2632 replace_fd(n - 1, devnull, 0);
2633 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2634 if (devnull)
2635 fput(devnull);
2636}
2637
2638/*
2639 * Prepare a process for imminent new credential changes due to exec
2640 */
2641static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2642{
2643 struct task_security_struct *new_tsec;
2644 struct rlimit *rlim, *initrlim;
2645 int rc, i;
2646
2647 new_tsec = bprm->cred->security;
2648 if (new_tsec->sid == new_tsec->osid)
2649 return;
2650
2651 /* Close files for which the new task SID is not authorized. */
2652 flush_unauthorized_files(bprm->cred, current->files);
2653
2654 /* Always clear parent death signal on SID transitions. */
2655 current->pdeath_signal = 0;
2656
2657 /* Check whether the new SID can inherit resource limits from the old
2658 * SID. If not, reset all soft limits to the lower of the current
2659 * task's hard limit and the init task's soft limit.
2660 *
2661 * Note that the setting of hard limits (even to lower them) can be
2662 * controlled by the setrlimit check. The inclusion of the init task's
2663 * soft limit into the computation is to avoid resetting soft limits
2664 * higher than the default soft limit for cases where the default is
2665 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2666 */
2667 rc = avc_has_perm(&selinux_state,
2668 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2669 PROCESS__RLIMITINH, NULL);
2670 if (rc) {
2671 /* protect against do_prlimit() */
2672 task_lock(current);
2673 for (i = 0; i < RLIM_NLIMITS; i++) {
2674 rlim = current->signal->rlim + i;
2675 initrlim = init_task.signal->rlim + i;
2676 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2677 }
2678 task_unlock(current);
2679 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2680 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2681 }
2682}
2683
2684/*
2685 * Clean up the process immediately after the installation of new credentials
2686 * due to exec
2687 */
2688static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2689{
2690 const struct task_security_struct *tsec = current_security();
2691 struct itimerval itimer;
2692 u32 osid, sid;
2693 int rc, i;
2694
2695 osid = tsec->osid;
2696 sid = tsec->sid;
2697
2698 if (sid == osid)
2699 return;
2700
2701 /* Check whether the new SID can inherit signal state from the old SID.
2702 * If not, clear itimers to avoid subsequent signal generation and
2703 * flush and unblock signals.
2704 *
2705 * This must occur _after_ the task SID has been updated so that any
2706 * kill done after the flush will be checked against the new SID.
2707 */
2708 rc = avc_has_perm(&selinux_state,
2709 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2710 if (rc) {
2711 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2712 memset(&itimer, 0, sizeof itimer);
2713 for (i = 0; i < 3; i++)
2714 do_setitimer(i, &itimer, NULL);
2715 }
2716 spin_lock_irq(¤t->sighand->siglock);
2717 if (!fatal_signal_pending(current)) {
2718 flush_sigqueue(¤t->pending);
2719 flush_sigqueue(¤t->signal->shared_pending);
2720 flush_signal_handlers(current, 1);
2721 sigemptyset(¤t->blocked);
2722 recalc_sigpending();
2723 }
2724 spin_unlock_irq(¤t->sighand->siglock);
2725 }
2726
2727 /* Wake up the parent if it is waiting so that it can recheck
2728 * wait permission to the new task SID. */
2729 read_lock(&tasklist_lock);
2730 __wake_up_parent(current, current->real_parent);
2731 read_unlock(&tasklist_lock);
2732}
2733
2734/* superblock security operations */
2735
2736static int selinux_sb_alloc_security(struct super_block *sb)
2737{
2738 return superblock_alloc_security(sb);
2739}
2740
2741static void selinux_sb_free_security(struct super_block *sb)
2742{
2743 superblock_free_security(sb);
2744}
2745
2746static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2747{
2748 if (plen > olen)
2749 return 0;
2750
2751 return !memcmp(prefix, option, plen);
2752}
2753
2754static inline int selinux_option(char *option, int len)
2755{
2756 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2757 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2758 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2759 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2760 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2761}
2762
2763static inline void take_option(char **to, char *from, int *first, int len)
2764{
2765 if (!*first) {
2766 **to = ',';
2767 *to += 1;
2768 } else
2769 *first = 0;
2770 memcpy(*to, from, len);
2771 *to += len;
2772}
2773
2774static inline void take_selinux_option(char **to, char *from, int *first,
2775 int len)
2776{
2777 int current_size = 0;
2778
2779 if (!*first) {
2780 **to = '|';
2781 *to += 1;
2782 } else
2783 *first = 0;
2784
2785 while (current_size < len) {
2786 if (*from != '"') {
2787 **to = *from;
2788 *to += 1;
2789 }
2790 from += 1;
2791 current_size += 1;
2792 }
2793}
2794
2795static int selinux_sb_copy_data(char *orig, char *copy)
2796{
2797 int fnosec, fsec, rc = 0;
2798 char *in_save, *in_curr, *in_end;
2799 char *sec_curr, *nosec_save, *nosec;
2800 int open_quote = 0;
2801
2802 in_curr = orig;
2803 sec_curr = copy;
2804
2805 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2806 if (!nosec) {
2807 rc = -ENOMEM;
2808 goto out;
2809 }
2810
2811 nosec_save = nosec;
2812 fnosec = fsec = 1;
2813 in_save = in_end = orig;
2814
2815 do {
2816 if (*in_end == '"')
2817 open_quote = !open_quote;
2818 if ((*in_end == ',' && open_quote == 0) ||
2819 *in_end == '\0') {
2820 int len = in_end - in_curr;
2821
2822 if (selinux_option(in_curr, len))
2823 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2824 else
2825 take_option(&nosec, in_curr, &fnosec, len);
2826
2827 in_curr = in_end + 1;
2828 }
2829 } while (*in_end++);
2830
2831 strcpy(in_save, nosec_save);
2832 free_page((unsigned long)nosec_save);
2833out:
2834 return rc;
2835}
2836
2837static int selinux_sb_remount(struct super_block *sb, void *data)
2838{
2839 int rc, i, *flags;
2840 struct security_mnt_opts opts;
2841 char *secdata, **mount_options;
2842 struct superblock_security_struct *sbsec = sb->s_security;
2843
2844 if (!(sbsec->flags & SE_SBINITIALIZED))
2845 return 0;
2846
2847 if (!data)
2848 return 0;
2849
2850 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2851 return 0;
2852
2853 security_init_mnt_opts(&opts);
2854 secdata = alloc_secdata();
2855 if (!secdata)
2856 return -ENOMEM;
2857 rc = selinux_sb_copy_data(data, secdata);
2858 if (rc)
2859 goto out_free_secdata;
2860
2861 rc = selinux_parse_opts_str(secdata, &opts);
2862 if (rc)
2863 goto out_free_secdata;
2864
2865 mount_options = opts.mnt_opts;
2866 flags = opts.mnt_opts_flags;
2867
2868 for (i = 0; i < opts.num_mnt_opts; i++) {
2869 u32 sid;
2870
2871 if (flags[i] == SBLABEL_MNT)
2872 continue;
2873 rc = security_context_str_to_sid(&selinux_state,
2874 mount_options[i], &sid,
2875 GFP_KERNEL);
2876 if (rc) {
2877 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2878 "(%s) failed for (dev %s, type %s) errno=%d\n",
2879 mount_options[i], sb->s_id, sb->s_type->name, rc);
2880 goto out_free_opts;
2881 }
2882 rc = -EINVAL;
2883 switch (flags[i]) {
2884 case FSCONTEXT_MNT:
2885 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2886 goto out_bad_option;
2887 break;
2888 case CONTEXT_MNT:
2889 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2890 goto out_bad_option;
2891 break;
2892 case ROOTCONTEXT_MNT: {
2893 struct inode_security_struct *root_isec;
2894 root_isec = backing_inode_security(sb->s_root);
2895
2896 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2897 goto out_bad_option;
2898 break;
2899 }
2900 case DEFCONTEXT_MNT:
2901 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2902 goto out_bad_option;
2903 break;
2904 default:
2905 goto out_free_opts;
2906 }
2907 }
2908
2909 rc = 0;
2910out_free_opts:
2911 security_free_mnt_opts(&opts);
2912out_free_secdata:
2913 free_secdata(secdata);
2914 return rc;
2915out_bad_option:
2916 printk(KERN_WARNING "SELinux: unable to change security options "
2917 "during remount (dev %s, type=%s)\n", sb->s_id,
2918 sb->s_type->name);
2919 goto out_free_opts;
2920}
2921
2922static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2923{
2924 const struct cred *cred = current_cred();
2925 struct common_audit_data ad;
2926 int rc;
2927
2928 rc = superblock_doinit(sb, data);
2929 if (rc)
2930 return rc;
2931
2932 /* Allow all mounts performed by the kernel */
2933 if (flags & MS_KERNMOUNT)
2934 return 0;
2935
2936 ad.type = LSM_AUDIT_DATA_DENTRY;
2937 ad.u.dentry = sb->s_root;
2938 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2939}
2940
2941static int selinux_sb_statfs(struct dentry *dentry)
2942{
2943 const struct cred *cred = current_cred();
2944 struct common_audit_data ad;
2945
2946 ad.type = LSM_AUDIT_DATA_DENTRY;
2947 ad.u.dentry = dentry->d_sb->s_root;
2948 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2949}
2950
2951static int selinux_mount(const char *dev_name,
2952 const struct path *path,
2953 const char *type,
2954 unsigned long flags,
2955 void *data)
2956{
2957 const struct cred *cred = current_cred();
2958
2959 if (flags & MS_REMOUNT)
2960 return superblock_has_perm(cred, path->dentry->d_sb,
2961 FILESYSTEM__REMOUNT, NULL);
2962 else
2963 return path_has_perm(cred, path, FILE__MOUNTON);
2964}
2965
2966static int selinux_umount(struct vfsmount *mnt, int flags)
2967{
2968 const struct cred *cred = current_cred();
2969
2970 return superblock_has_perm(cred, mnt->mnt_sb,
2971 FILESYSTEM__UNMOUNT, NULL);
2972}
2973
2974/* inode security operations */
2975
2976static int selinux_inode_alloc_security(struct inode *inode)
2977{
2978 return inode_alloc_security(inode);
2979}
2980
2981static void selinux_inode_free_security(struct inode *inode)
2982{
2983 inode_free_security(inode);
2984}
2985
2986static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2987 const struct qstr *name, void **ctx,
2988 u32 *ctxlen)
2989{
2990 u32 newsid;
2991 int rc;
2992
2993 rc = selinux_determine_inode_label(current_security(),
2994 d_inode(dentry->d_parent), name,
2995 inode_mode_to_security_class(mode),
2996 &newsid);
2997 if (rc)
2998 return rc;
2999
3000 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
3001 ctxlen);
3002}
3003
3004static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
3005 struct qstr *name,
3006 const struct cred *old,
3007 struct cred *new)
3008{
3009 u32 newsid;
3010 int rc;
3011 struct task_security_struct *tsec;
3012
3013 rc = selinux_determine_inode_label(old->security,
3014 d_inode(dentry->d_parent), name,
3015 inode_mode_to_security_class(mode),
3016 &newsid);
3017 if (rc)
3018 return rc;
3019
3020 tsec = new->security;
3021 tsec->create_sid = newsid;
3022 return 0;
3023}
3024
3025static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3026 const struct qstr *qstr,
3027 const char **name,
3028 void **value, size_t *len)
3029{
3030 const struct task_security_struct *tsec = current_security();
3031 struct superblock_security_struct *sbsec;
3032 u32 newsid, clen;
3033 int rc;
3034 char *context;
3035
3036 sbsec = dir->i_sb->s_security;
3037
3038 newsid = tsec->create_sid;
3039
3040 rc = selinux_determine_inode_label(current_security(),
3041 dir, qstr,
3042 inode_mode_to_security_class(inode->i_mode),
3043 &newsid);
3044 if (rc)
3045 return rc;
3046
3047 /* Possibly defer initialization to selinux_complete_init. */
3048 if (sbsec->flags & SE_SBINITIALIZED) {
3049 struct inode_security_struct *isec = inode->i_security;
3050 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3051 isec->sid = newsid;
3052 isec->initialized = LABEL_INITIALIZED;
3053 }
3054
3055 if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3056 return -EOPNOTSUPP;
3057
3058 if (name)
3059 *name = XATTR_SELINUX_SUFFIX;
3060
3061 if (value && len) {
3062 rc = security_sid_to_context_force(&selinux_state, newsid,
3063 &context, &clen);
3064 if (rc)
3065 return rc;
3066 *value = context;
3067 *len = clen;
3068 }
3069
3070 return 0;
3071}
3072
3073static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3074{
3075 return may_create(dir, dentry, SECCLASS_FILE);
3076}
3077
3078static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3079{
3080 return may_link(dir, old_dentry, MAY_LINK);
3081}
3082
3083static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3084{
3085 return may_link(dir, dentry, MAY_UNLINK);
3086}
3087
3088static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3089{
3090 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3091}
3092
3093static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3094{
3095 return may_create(dir, dentry, SECCLASS_DIR);
3096}
3097
3098static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3099{
3100 return may_link(dir, dentry, MAY_RMDIR);
3101}
3102
3103static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3104{
3105 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3106}
3107
3108static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3109 struct inode *new_inode, struct dentry *new_dentry)
3110{
3111 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3112}
3113
3114static int selinux_inode_readlink(struct dentry *dentry)
3115{
3116 const struct cred *cred = current_cred();
3117
3118 return dentry_has_perm(cred, dentry, FILE__READ);
3119}
3120
3121static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3122 bool rcu)
3123{
3124 const struct cred *cred = current_cred();
3125 struct common_audit_data ad;
3126 struct inode_security_struct *isec;
3127 u32 sid;
3128
3129 validate_creds(cred);
3130
3131 ad.type = LSM_AUDIT_DATA_DENTRY;
3132 ad.u.dentry = dentry;
3133 sid = cred_sid(cred);
3134 isec = inode_security_rcu(inode, rcu);
3135 if (IS_ERR(isec))
3136 return PTR_ERR(isec);
3137
3138 return avc_has_perm_flags(&selinux_state,
3139 sid, isec->sid, isec->sclass, FILE__READ, &ad,
3140 rcu ? MAY_NOT_BLOCK : 0);
3141}
3142
3143static noinline int audit_inode_permission(struct inode *inode,
3144 u32 perms, u32 audited, u32 denied,
3145 int result,
3146 unsigned flags)
3147{
3148 struct common_audit_data ad;
3149 struct inode_security_struct *isec = inode->i_security;
3150 int rc;
3151
3152 ad.type = LSM_AUDIT_DATA_INODE;
3153 ad.u.inode = inode;
3154
3155 rc = slow_avc_audit(&selinux_state,
3156 current_sid(), isec->sid, isec->sclass, perms,
3157 audited, denied, result, &ad, flags);
3158 if (rc)
3159 return rc;
3160 return 0;
3161}
3162
3163static int selinux_inode_permission(struct inode *inode, int mask)
3164{
3165 const struct cred *cred = current_cred();
3166 u32 perms;
3167 bool from_access;
3168 unsigned flags = mask & MAY_NOT_BLOCK;
3169 struct inode_security_struct *isec;
3170 u32 sid;
3171 struct av_decision avd;
3172 int rc, rc2;
3173 u32 audited, denied;
3174
3175 from_access = mask & MAY_ACCESS;
3176 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3177
3178 /* No permission to check. Existence test. */
3179 if (!mask)
3180 return 0;
3181
3182 validate_creds(cred);
3183
3184 if (unlikely(IS_PRIVATE(inode)))
3185 return 0;
3186
3187 perms = file_mask_to_av(inode->i_mode, mask);
3188
3189 sid = cred_sid(cred);
3190 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3191 if (IS_ERR(isec))
3192 return PTR_ERR(isec);
3193
3194 rc = avc_has_perm_noaudit(&selinux_state,
3195 sid, isec->sid, isec->sclass, perms, 0, &avd);
3196 audited = avc_audit_required(perms, &avd, rc,
3197 from_access ? FILE__AUDIT_ACCESS : 0,
3198 &denied);
3199 if (likely(!audited))
3200 return rc;
3201
3202 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3203 if (rc2)
3204 return rc2;
3205 return rc;
3206}
3207
3208static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3209{
3210 const struct cred *cred = current_cred();
3211 struct inode *inode = d_backing_inode(dentry);
3212 unsigned int ia_valid = iattr->ia_valid;
3213 __u32 av = FILE__WRITE;
3214
3215 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3216 if (ia_valid & ATTR_FORCE) {
3217 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3218 ATTR_FORCE);
3219 if (!ia_valid)
3220 return 0;
3221 }
3222
3223 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3224 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3225 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3226
3227 if (selinux_policycap_openperm() &&
3228 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3229 (ia_valid & ATTR_SIZE) &&
3230 !(ia_valid & ATTR_FILE))
3231 av |= FILE__OPEN;
3232
3233 return dentry_has_perm(cred, dentry, av);
3234}
3235
3236static int selinux_inode_getattr(const struct path *path)
3237{
3238 return path_has_perm(current_cred(), path, FILE__GETATTR);
3239}
3240
3241static bool has_cap_mac_admin(bool audit)
3242{
3243 const struct cred *cred = current_cred();
3244 int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3245
3246 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3247 return false;
3248 if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3249 return false;
3250 return true;
3251}
3252
3253static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3254 const void *value, size_t size, int flags)
3255{
3256 struct inode *inode = d_backing_inode(dentry);
3257 struct inode_security_struct *isec;
3258 struct superblock_security_struct *sbsec;
3259 struct common_audit_data ad;
3260 u32 newsid, sid = current_sid();
3261 int rc = 0;
3262
3263 if (strcmp(name, XATTR_NAME_SELINUX)) {
3264 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3265 if (rc)
3266 return rc;
3267
3268 /* Not an attribute we recognize, so just check the
3269 ordinary setattr permission. */
3270 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3271 }
3272
3273 sbsec = inode->i_sb->s_security;
3274 if (!(sbsec->flags & SBLABEL_MNT))
3275 return -EOPNOTSUPP;
3276
3277 if (!inode_owner_or_capable(inode))
3278 return -EPERM;
3279
3280 ad.type = LSM_AUDIT_DATA_DENTRY;
3281 ad.u.dentry = dentry;
3282
3283 isec = backing_inode_security(dentry);
3284 rc = avc_has_perm(&selinux_state,
3285 sid, isec->sid, isec->sclass,
3286 FILE__RELABELFROM, &ad);
3287 if (rc)
3288 return rc;
3289
3290 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3291 GFP_KERNEL);
3292 if (rc == -EINVAL) {
3293 if (!has_cap_mac_admin(true)) {
3294 struct audit_buffer *ab;
3295 size_t audit_size;
3296
3297 /* We strip a nul only if it is at the end, otherwise the
3298 * context contains a nul and we should audit that */
3299 if (value) {
3300 const char *str = value;
3301
3302 if (str[size - 1] == '\0')
3303 audit_size = size - 1;
3304 else
3305 audit_size = size;
3306 } else {
3307 audit_size = 0;
3308 }
3309 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3310 audit_log_format(ab, "op=setxattr invalid_context=");
3311 audit_log_n_untrustedstring(ab, value, audit_size);
3312 audit_log_end(ab);
3313
3314 return rc;
3315 }
3316 rc = security_context_to_sid_force(&selinux_state, value,
3317 size, &newsid);
3318 }
3319 if (rc)
3320 return rc;
3321
3322 rc = avc_has_perm(&selinux_state,
3323 sid, newsid, isec->sclass,
3324 FILE__RELABELTO, &ad);
3325 if (rc)
3326 return rc;
3327
3328 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3329 sid, isec->sclass);
3330 if (rc)
3331 return rc;
3332
3333 return avc_has_perm(&selinux_state,
3334 newsid,
3335 sbsec->sid,
3336 SECCLASS_FILESYSTEM,
3337 FILESYSTEM__ASSOCIATE,
3338 &ad);
3339}
3340
3341static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3342 const void *value, size_t size,
3343 int flags)
3344{
3345 struct inode *inode = d_backing_inode(dentry);
3346 struct inode_security_struct *isec;
3347 u32 newsid;
3348 int rc;
3349
3350 if (strcmp(name, XATTR_NAME_SELINUX)) {
3351 /* Not an attribute we recognize, so nothing to do. */
3352 return;
3353 }
3354
3355 rc = security_context_to_sid_force(&selinux_state, value, size,
3356 &newsid);
3357 if (rc) {
3358 printk(KERN_ERR "SELinux: unable to map context to SID"
3359 "for (%s, %lu), rc=%d\n",
3360 inode->i_sb->s_id, inode->i_ino, -rc);
3361 return;
3362 }
3363
3364 isec = backing_inode_security(dentry);
3365 spin_lock(&isec->lock);
3366 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3367 isec->sid = newsid;
3368 isec->initialized = LABEL_INITIALIZED;
3369 spin_unlock(&isec->lock);
3370
3371 return;
3372}
3373
3374static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3375{
3376 const struct cred *cred = current_cred();
3377
3378 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3379}
3380
3381static int selinux_inode_listxattr(struct dentry *dentry)
3382{
3383 const struct cred *cred = current_cred();
3384
3385 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3386}
3387
3388static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3389{
3390 if (strcmp(name, XATTR_NAME_SELINUX)) {
3391 int rc = cap_inode_removexattr(dentry, name);
3392 if (rc)
3393 return rc;
3394
3395 /* Not an attribute we recognize, so just check the
3396 ordinary setattr permission. */
3397 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3398 }
3399
3400 /* No one is allowed to remove a SELinux security label.
3401 You can change the label, but all data must be labeled. */
3402 return -EACCES;
3403}
3404
3405/*
3406 * Copy the inode security context value to the user.
3407 *
3408 * Permission check is handled by selinux_inode_getxattr hook.
3409 */
3410static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3411{
3412 u32 size;
3413 int error;
3414 char *context = NULL;
3415 struct inode_security_struct *isec;
3416
3417 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3418 return -EOPNOTSUPP;
3419
3420 /*
3421 * If the caller has CAP_MAC_ADMIN, then get the raw context
3422 * value even if it is not defined by current policy; otherwise,
3423 * use the in-core value under current policy.
3424 * Use the non-auditing forms of the permission checks since
3425 * getxattr may be called by unprivileged processes commonly
3426 * and lack of permission just means that we fall back to the
3427 * in-core context value, not a denial.
3428 */
3429 isec = inode_security(inode);
3430 if (has_cap_mac_admin(false))
3431 error = security_sid_to_context_force(&selinux_state,
3432 isec->sid, &context,
3433 &size);
3434 else
3435 error = security_sid_to_context(&selinux_state, isec->sid,
3436 &context, &size);
3437 if (error)
3438 return error;
3439 error = size;
3440 if (alloc) {
3441 *buffer = context;
3442 goto out_nofree;
3443 }
3444 kfree(context);
3445out_nofree:
3446 return error;
3447}
3448
3449static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3450 const void *value, size_t size, int flags)
3451{
3452 struct inode_security_struct *isec = inode_security_novalidate(inode);
3453 u32 newsid;
3454 int rc;
3455
3456 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3457 return -EOPNOTSUPP;
3458
3459 if (!value || !size)
3460 return -EACCES;
3461
3462 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3463 GFP_KERNEL);
3464 if (rc)
3465 return rc;
3466
3467 spin_lock(&isec->lock);
3468 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3469 isec->sid = newsid;
3470 isec->initialized = LABEL_INITIALIZED;
3471 spin_unlock(&isec->lock);
3472 return 0;
3473}
3474
3475static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3476{
3477 const int len = sizeof(XATTR_NAME_SELINUX);
3478 if (buffer && len <= buffer_size)
3479 memcpy(buffer, XATTR_NAME_SELINUX, len);
3480 return len;
3481}
3482
3483static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3484{
3485 struct inode_security_struct *isec = inode_security_novalidate(inode);
3486 *secid = isec->sid;
3487}
3488
3489static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3490{
3491 u32 sid;
3492 struct task_security_struct *tsec;
3493 struct cred *new_creds = *new;
3494
3495 if (new_creds == NULL) {
3496 new_creds = prepare_creds();
3497 if (!new_creds)
3498 return -ENOMEM;
3499 }
3500
3501 tsec = new_creds->security;
3502 /* Get label from overlay inode and set it in create_sid */
3503 selinux_inode_getsecid(d_inode(src), &sid);
3504 tsec->create_sid = sid;
3505 *new = new_creds;
3506 return 0;
3507}
3508
3509static int selinux_inode_copy_up_xattr(const char *name)
3510{
3511 /* The copy_up hook above sets the initial context on an inode, but we
3512 * don't then want to overwrite it by blindly copying all the lower
3513 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3514 */
3515 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3516 return 1; /* Discard */
3517 /*
3518 * Any other attribute apart from SELINUX is not claimed, supported
3519 * by selinux.
3520 */
3521 return -EOPNOTSUPP;
3522}
3523
3524/* file security operations */
3525
3526static int selinux_revalidate_file_permission(struct file *file, int mask)
3527{
3528 const struct cred *cred = current_cred();
3529 struct inode *inode = file_inode(file);
3530
3531 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3532 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3533 mask |= MAY_APPEND;
3534
3535 return file_has_perm(cred, file,
3536 file_mask_to_av(inode->i_mode, mask));
3537}
3538
3539static int selinux_file_permission(struct file *file, int mask)
3540{
3541 struct inode *inode = file_inode(file);
3542 struct file_security_struct *fsec = file->f_security;
3543 struct inode_security_struct *isec;
3544 u32 sid = current_sid();
3545
3546 if (!mask)
3547 /* No permission to check. Existence test. */
3548 return 0;
3549
3550 isec = inode_security(inode);
3551 if (sid == fsec->sid && fsec->isid == isec->sid &&
3552 fsec->pseqno == avc_policy_seqno(&selinux_state))
3553 /* No change since file_open check. */
3554 return 0;
3555
3556 return selinux_revalidate_file_permission(file, mask);
3557}
3558
3559static int selinux_file_alloc_security(struct file *file)
3560{
3561 return file_alloc_security(file);
3562}
3563
3564static void selinux_file_free_security(struct file *file)
3565{
3566 file_free_security(file);
3567}
3568
3569/*
3570 * Check whether a task has the ioctl permission and cmd
3571 * operation to an inode.
3572 */
3573static int ioctl_has_perm(const struct cred *cred, struct file *file,
3574 u32 requested, u16 cmd)
3575{
3576 struct common_audit_data ad;
3577 struct file_security_struct *fsec = file->f_security;
3578 struct inode *inode = file_inode(file);
3579 struct inode_security_struct *isec;
3580 struct lsm_ioctlop_audit ioctl;
3581 u32 ssid = cred_sid(cred);
3582 int rc;
3583 u8 driver = cmd >> 8;
3584 u8 xperm = cmd & 0xff;
3585
3586 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3587 ad.u.op = &ioctl;
3588 ad.u.op->cmd = cmd;
3589 ad.u.op->path = file->f_path;
3590
3591 if (ssid != fsec->sid) {
3592 rc = avc_has_perm(&selinux_state,
3593 ssid, fsec->sid,
3594 SECCLASS_FD,
3595 FD__USE,
3596 &ad);
3597 if (rc)
3598 goto out;
3599 }
3600
3601 if (unlikely(IS_PRIVATE(inode)))
3602 return 0;
3603
3604 isec = inode_security(inode);
3605 rc = avc_has_extended_perms(&selinux_state,
3606 ssid, isec->sid, isec->sclass,
3607 requested, driver, xperm, &ad);
3608out:
3609 return rc;
3610}
3611
3612static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3613 unsigned long arg)
3614{
3615 const struct cred *cred = current_cred();
3616 int error = 0;
3617
3618 switch (cmd) {
3619 case FIONREAD:
3620 /* fall through */
3621 case FIBMAP:
3622 /* fall through */
3623 case FIGETBSZ:
3624 /* fall through */
3625 case FS_IOC_GETFLAGS:
3626 /* fall through */
3627 case FS_IOC_GETVERSION:
3628 error = file_has_perm(cred, file, FILE__GETATTR);
3629 break;
3630
3631 case FS_IOC_SETFLAGS:
3632 /* fall through */
3633 case FS_IOC_SETVERSION:
3634 error = file_has_perm(cred, file, FILE__SETATTR);
3635 break;
3636
3637 /* sys_ioctl() checks */
3638 case FIONBIO:
3639 /* fall through */
3640 case FIOASYNC:
3641 error = file_has_perm(cred, file, 0);
3642 break;
3643
3644 case KDSKBENT:
3645 case KDSKBSENT:
3646 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3647 SECURITY_CAP_AUDIT, true);
3648 break;
3649
3650 /* default case assumes that the command will go
3651 * to the file's ioctl() function.
3652 */
3653 default:
3654 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3655 }
3656 return error;
3657}
3658
3659static int default_noexec;
3660
3661static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3662{
3663 const struct cred *cred = current_cred();
3664 u32 sid = cred_sid(cred);
3665 int rc = 0;
3666
3667 if (default_noexec &&
3668 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3669 (!shared && (prot & PROT_WRITE)))) {
3670 /*
3671 * We are making executable an anonymous mapping or a
3672 * private file mapping that will also be writable.
3673 * This has an additional check.
3674 */
3675 rc = avc_has_perm(&selinux_state,
3676 sid, sid, SECCLASS_PROCESS,
3677 PROCESS__EXECMEM, NULL);
3678 if (rc)
3679 goto error;
3680 }
3681
3682 if (file) {
3683 /* read access is always possible with a mapping */
3684 u32 av = FILE__READ;
3685
3686 /* write access only matters if the mapping is shared */
3687 if (shared && (prot & PROT_WRITE))
3688 av |= FILE__WRITE;
3689
3690 if (prot & PROT_EXEC)
3691 av |= FILE__EXECUTE;
3692
3693 return file_has_perm(cred, file, av);
3694 }
3695
3696error:
3697 return rc;
3698}
3699
3700static int selinux_mmap_addr(unsigned long addr)
3701{
3702 int rc = 0;
3703
3704 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3705 u32 sid = current_sid();
3706 rc = avc_has_perm(&selinux_state,
3707 sid, sid, SECCLASS_MEMPROTECT,
3708 MEMPROTECT__MMAP_ZERO, NULL);
3709 }
3710
3711 return rc;
3712}
3713
3714static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3715 unsigned long prot, unsigned long flags)
3716{
3717 struct common_audit_data ad;
3718 int rc;
3719
3720 if (file) {
3721 ad.type = LSM_AUDIT_DATA_FILE;
3722 ad.u.file = file;
3723 rc = inode_has_perm(current_cred(), file_inode(file),
3724 FILE__MAP, &ad);
3725 if (rc)
3726 return rc;
3727 }
3728
3729 if (selinux_state.checkreqprot)
3730 prot = reqprot;
3731
3732 return file_map_prot_check(file, prot,
3733 (flags & MAP_TYPE) == MAP_SHARED);
3734}
3735
3736static int selinux_file_mprotect(struct vm_area_struct *vma,
3737 unsigned long reqprot,
3738 unsigned long prot)
3739{
3740 const struct cred *cred = current_cred();
3741 u32 sid = cred_sid(cred);
3742
3743 if (selinux_state.checkreqprot)
3744 prot = reqprot;
3745
3746 if (default_noexec &&
3747 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3748 int rc = 0;
3749 if (vma->vm_start >= vma->vm_mm->start_brk &&
3750 vma->vm_end <= vma->vm_mm->brk) {
3751 rc = avc_has_perm(&selinux_state,
3752 sid, sid, SECCLASS_PROCESS,
3753 PROCESS__EXECHEAP, NULL);
3754 } else if (!vma->vm_file &&
3755 ((vma->vm_start <= vma->vm_mm->start_stack &&
3756 vma->vm_end >= vma->vm_mm->start_stack) ||
3757 vma_is_stack_for_current(vma))) {
3758 rc = avc_has_perm(&selinux_state,
3759 sid, sid, SECCLASS_PROCESS,
3760 PROCESS__EXECSTACK, NULL);
3761 } else if (vma->vm_file && vma->anon_vma) {
3762 /*
3763 * We are making executable a file mapping that has
3764 * had some COW done. Since pages might have been
3765 * written, check ability to execute the possibly
3766 * modified content. This typically should only
3767 * occur for text relocations.
3768 */
3769 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3770 }
3771 if (rc)
3772 return rc;
3773 }
3774
3775 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3776}
3777
3778static int selinux_file_lock(struct file *file, unsigned int cmd)
3779{
3780 const struct cred *cred = current_cred();
3781
3782 return file_has_perm(cred, file, FILE__LOCK);
3783}
3784
3785static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3786 unsigned long arg)
3787{
3788 const struct cred *cred = current_cred();
3789 int err = 0;
3790
3791 switch (cmd) {
3792 case F_SETFL:
3793 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3794 err = file_has_perm(cred, file, FILE__WRITE);
3795 break;
3796 }
3797 /* fall through */
3798 case F_SETOWN:
3799 case F_SETSIG:
3800 case F_GETFL:
3801 case F_GETOWN:
3802 case F_GETSIG:
3803 case F_GETOWNER_UIDS:
3804 /* Just check FD__USE permission */
3805 err = file_has_perm(cred, file, 0);
3806 break;
3807 case F_GETLK:
3808 case F_SETLK:
3809 case F_SETLKW:
3810 case F_OFD_GETLK:
3811 case F_OFD_SETLK:
3812 case F_OFD_SETLKW:
3813#if BITS_PER_LONG == 32
3814 case F_GETLK64:
3815 case F_SETLK64:
3816 case F_SETLKW64:
3817#endif
3818 err = file_has_perm(cred, file, FILE__LOCK);
3819 break;
3820 }
3821
3822 return err;
3823}
3824
3825static void selinux_file_set_fowner(struct file *file)
3826{
3827 struct file_security_struct *fsec;
3828
3829 fsec = file->f_security;
3830 fsec->fown_sid = current_sid();
3831}
3832
3833static int selinux_file_send_sigiotask(struct task_struct *tsk,
3834 struct fown_struct *fown, int signum)
3835{
3836 struct file *file;
3837 u32 sid = task_sid(tsk);
3838 u32 perm;
3839 struct file_security_struct *fsec;
3840
3841 /* struct fown_struct is never outside the context of a struct file */
3842 file = container_of(fown, struct file, f_owner);
3843
3844 fsec = file->f_security;
3845
3846 if (!signum)
3847 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3848 else
3849 perm = signal_to_av(signum);
3850
3851 return avc_has_perm(&selinux_state,
3852 fsec->fown_sid, sid,
3853 SECCLASS_PROCESS, perm, NULL);
3854}
3855
3856static int selinux_file_receive(struct file *file)
3857{
3858 const struct cred *cred = current_cred();
3859
3860 return file_has_perm(cred, file, file_to_av(file));
3861}
3862
3863static int selinux_file_open(struct file *file, const struct cred *cred)
3864{
3865 struct file_security_struct *fsec;
3866 struct inode_security_struct *isec;
3867
3868 fsec = file->f_security;
3869 isec = inode_security(file_inode(file));
3870 /*
3871 * Save inode label and policy sequence number
3872 * at open-time so that selinux_file_permission
3873 * can determine whether revalidation is necessary.
3874 * Task label is already saved in the file security
3875 * struct as its SID.
3876 */
3877 fsec->isid = isec->sid;
3878 fsec->pseqno = avc_policy_seqno(&selinux_state);
3879 /*
3880 * Since the inode label or policy seqno may have changed
3881 * between the selinux_inode_permission check and the saving
3882 * of state above, recheck that access is still permitted.
3883 * Otherwise, access might never be revalidated against the
3884 * new inode label or new policy.
3885 * This check is not redundant - do not remove.
3886 */
3887 return file_path_has_perm(cred, file, open_file_to_av(file));
3888}
3889
3890/* task security operations */
3891
3892static int selinux_task_alloc(struct task_struct *task,
3893 unsigned long clone_flags)
3894{
3895 u32 sid = current_sid();
3896
3897 return avc_has_perm(&selinux_state,
3898 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3899}
3900
3901/*
3902 * allocate the SELinux part of blank credentials
3903 */
3904static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3905{
3906 struct task_security_struct *tsec;
3907
3908 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3909 if (!tsec)
3910 return -ENOMEM;
3911
3912 cred->security = tsec;
3913 return 0;
3914}
3915
3916/*
3917 * detach and free the LSM part of a set of credentials
3918 */
3919static void selinux_cred_free(struct cred *cred)
3920{
3921 struct task_security_struct *tsec = cred->security;
3922
3923 /*
3924 * cred->security == NULL if security_cred_alloc_blank() or
3925 * security_prepare_creds() returned an error.
3926 */
3927 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3928 cred->security = (void *) 0x7UL;
3929 kfree(tsec);
3930}
3931
3932/*
3933 * prepare a new set of credentials for modification
3934 */
3935static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3936 gfp_t gfp)
3937{
3938 const struct task_security_struct *old_tsec;
3939 struct task_security_struct *tsec;
3940
3941 old_tsec = old->security;
3942
3943 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3944 if (!tsec)
3945 return -ENOMEM;
3946
3947 new->security = tsec;
3948 return 0;
3949}
3950
3951/*
3952 * transfer the SELinux data to a blank set of creds
3953 */
3954static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3955{
3956 const struct task_security_struct *old_tsec = old->security;
3957 struct task_security_struct *tsec = new->security;
3958
3959 *tsec = *old_tsec;
3960}
3961
3962static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3963{
3964 *secid = cred_sid(c);
3965}
3966
3967/*
3968 * set the security data for a kernel service
3969 * - all the creation contexts are set to unlabelled
3970 */
3971static int selinux_kernel_act_as(struct cred *new, u32 secid)
3972{
3973 struct task_security_struct *tsec = new->security;
3974 u32 sid = current_sid();
3975 int ret;
3976
3977 ret = avc_has_perm(&selinux_state,
3978 sid, secid,
3979 SECCLASS_KERNEL_SERVICE,
3980 KERNEL_SERVICE__USE_AS_OVERRIDE,
3981 NULL);
3982 if (ret == 0) {
3983 tsec->sid = secid;
3984 tsec->create_sid = 0;
3985 tsec->keycreate_sid = 0;
3986 tsec->sockcreate_sid = 0;
3987 }
3988 return ret;
3989}
3990
3991/*
3992 * set the file creation context in a security record to the same as the
3993 * objective context of the specified inode
3994 */
3995static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3996{
3997 struct inode_security_struct *isec = inode_security(inode);
3998 struct task_security_struct *tsec = new->security;
3999 u32 sid = current_sid();
4000 int ret;
4001
4002 ret = avc_has_perm(&selinux_state,
4003 sid, isec->sid,
4004 SECCLASS_KERNEL_SERVICE,
4005 KERNEL_SERVICE__CREATE_FILES_AS,
4006 NULL);
4007
4008 if (ret == 0)
4009 tsec->create_sid = isec->sid;
4010 return ret;
4011}
4012
4013static int selinux_kernel_module_request(char *kmod_name)
4014{
4015 struct common_audit_data ad;
4016
4017 ad.type = LSM_AUDIT_DATA_KMOD;
4018 ad.u.kmod_name = kmod_name;
4019
4020 return avc_has_perm(&selinux_state,
4021 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4022 SYSTEM__MODULE_REQUEST, &ad);
4023}
4024
4025static int selinux_kernel_module_from_file(struct file *file)
4026{
4027 struct common_audit_data ad;
4028 struct inode_security_struct *isec;
4029 struct file_security_struct *fsec;
4030 u32 sid = current_sid();
4031 int rc;
4032
4033 /* init_module */
4034 if (file == NULL)
4035 return avc_has_perm(&selinux_state,
4036 sid, sid, SECCLASS_SYSTEM,
4037 SYSTEM__MODULE_LOAD, NULL);
4038
4039 /* finit_module */
4040
4041 ad.type = LSM_AUDIT_DATA_FILE;
4042 ad.u.file = file;
4043
4044 fsec = file->f_security;
4045 if (sid != fsec->sid) {
4046 rc = avc_has_perm(&selinux_state,
4047 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4048 if (rc)
4049 return rc;
4050 }
4051
4052 isec = inode_security(file_inode(file));
4053 return avc_has_perm(&selinux_state,
4054 sid, isec->sid, SECCLASS_SYSTEM,
4055 SYSTEM__MODULE_LOAD, &ad);
4056}
4057
4058static int selinux_kernel_read_file(struct file *file,
4059 enum kernel_read_file_id id)
4060{
4061 int rc = 0;
4062
4063 switch (id) {
4064 case READING_MODULE:
4065 rc = selinux_kernel_module_from_file(file);
4066 break;
4067 default:
4068 break;
4069 }
4070
4071 return rc;
4072}
4073
4074static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4075{
4076 return avc_has_perm(&selinux_state,
4077 current_sid(), task_sid(p), SECCLASS_PROCESS,
4078 PROCESS__SETPGID, NULL);
4079}
4080
4081static int selinux_task_getpgid(struct task_struct *p)
4082{
4083 return avc_has_perm(&selinux_state,
4084 current_sid(), task_sid(p), SECCLASS_PROCESS,
4085 PROCESS__GETPGID, NULL);
4086}
4087
4088static int selinux_task_getsid(struct task_struct *p)
4089{
4090 return avc_has_perm(&selinux_state,
4091 current_sid(), task_sid(p), SECCLASS_PROCESS,
4092 PROCESS__GETSESSION, NULL);
4093}
4094
4095static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4096{
4097 *secid = task_sid(p);
4098}
4099
4100static int selinux_task_setnice(struct task_struct *p, int nice)
4101{
4102 return avc_has_perm(&selinux_state,
4103 current_sid(), task_sid(p), SECCLASS_PROCESS,
4104 PROCESS__SETSCHED, NULL);
4105}
4106
4107static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4108{
4109 return avc_has_perm(&selinux_state,
4110 current_sid(), task_sid(p), SECCLASS_PROCESS,
4111 PROCESS__SETSCHED, NULL);
4112}
4113
4114static int selinux_task_getioprio(struct task_struct *p)
4115{
4116 return avc_has_perm(&selinux_state,
4117 current_sid(), task_sid(p), SECCLASS_PROCESS,
4118 PROCESS__GETSCHED, NULL);
4119}
4120
4121static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4122 unsigned int flags)
4123{
4124 u32 av = 0;
4125
4126 if (!flags)
4127 return 0;
4128 if (flags & LSM_PRLIMIT_WRITE)
4129 av |= PROCESS__SETRLIMIT;
4130 if (flags & LSM_PRLIMIT_READ)
4131 av |= PROCESS__GETRLIMIT;
4132 return avc_has_perm(&selinux_state,
4133 cred_sid(cred), cred_sid(tcred),
4134 SECCLASS_PROCESS, av, NULL);
4135}
4136
4137static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4138 struct rlimit *new_rlim)
4139{
4140 struct rlimit *old_rlim = p->signal->rlim + resource;
4141
4142 /* Control the ability to change the hard limit (whether
4143 lowering or raising it), so that the hard limit can
4144 later be used as a safe reset point for the soft limit
4145 upon context transitions. See selinux_bprm_committing_creds. */
4146 if (old_rlim->rlim_max != new_rlim->rlim_max)
4147 return avc_has_perm(&selinux_state,
4148 current_sid(), task_sid(p),
4149 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4150
4151 return 0;
4152}
4153
4154static int selinux_task_setscheduler(struct task_struct *p)
4155{
4156 return avc_has_perm(&selinux_state,
4157 current_sid(), task_sid(p), SECCLASS_PROCESS,
4158 PROCESS__SETSCHED, NULL);
4159}
4160
4161static int selinux_task_getscheduler(struct task_struct *p)
4162{
4163 return avc_has_perm(&selinux_state,
4164 current_sid(), task_sid(p), SECCLASS_PROCESS,
4165 PROCESS__GETSCHED, NULL);
4166}
4167
4168static int selinux_task_movememory(struct task_struct *p)
4169{
4170 return avc_has_perm(&selinux_state,
4171 current_sid(), task_sid(p), SECCLASS_PROCESS,
4172 PROCESS__SETSCHED, NULL);
4173}
4174
4175static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4176 int sig, const struct cred *cred)
4177{
4178 u32 secid;
4179 u32 perm;
4180
4181 if (!sig)
4182 perm = PROCESS__SIGNULL; /* null signal; existence test */
4183 else
4184 perm = signal_to_av(sig);
4185 if (!cred)
4186 secid = current_sid();
4187 else
4188 secid = cred_sid(cred);
4189 return avc_has_perm(&selinux_state,
4190 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4191}
4192
4193static void selinux_task_to_inode(struct task_struct *p,
4194 struct inode *inode)
4195{
4196 struct inode_security_struct *isec = inode->i_security;
4197 u32 sid = task_sid(p);
4198
4199 spin_lock(&isec->lock);
4200 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4201 isec->sid = sid;
4202 isec->initialized = LABEL_INITIALIZED;
4203 spin_unlock(&isec->lock);
4204}
4205
4206/* Returns error only if unable to parse addresses */
4207static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4208 struct common_audit_data *ad, u8 *proto)
4209{
4210 int offset, ihlen, ret = -EINVAL;
4211 struct iphdr _iph, *ih;
4212
4213 offset = skb_network_offset(skb);
4214 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4215 if (ih == NULL)
4216 goto out;
4217
4218 ihlen = ih->ihl * 4;
4219 if (ihlen < sizeof(_iph))
4220 goto out;
4221
4222 ad->u.net->v4info.saddr = ih->saddr;
4223 ad->u.net->v4info.daddr = ih->daddr;
4224 ret = 0;
4225
4226 if (proto)
4227 *proto = ih->protocol;
4228
4229 switch (ih->protocol) {
4230 case IPPROTO_TCP: {
4231 struct tcphdr _tcph, *th;
4232
4233 if (ntohs(ih->frag_off) & IP_OFFSET)
4234 break;
4235
4236 offset += ihlen;
4237 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4238 if (th == NULL)
4239 break;
4240
4241 ad->u.net->sport = th->source;
4242 ad->u.net->dport = th->dest;
4243 break;
4244 }
4245
4246 case IPPROTO_UDP: {
4247 struct udphdr _udph, *uh;
4248
4249 if (ntohs(ih->frag_off) & IP_OFFSET)
4250 break;
4251
4252 offset += ihlen;
4253 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4254 if (uh == NULL)
4255 break;
4256
4257 ad->u.net->sport = uh->source;
4258 ad->u.net->dport = uh->dest;
4259 break;
4260 }
4261
4262 case IPPROTO_DCCP: {
4263 struct dccp_hdr _dccph, *dh;
4264
4265 if (ntohs(ih->frag_off) & IP_OFFSET)
4266 break;
4267
4268 offset += ihlen;
4269 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4270 if (dh == NULL)
4271 break;
4272
4273 ad->u.net->sport = dh->dccph_sport;
4274 ad->u.net->dport = dh->dccph_dport;
4275 break;
4276 }
4277
4278#if IS_ENABLED(CONFIG_IP_SCTP)
4279 case IPPROTO_SCTP: {
4280 struct sctphdr _sctph, *sh;
4281
4282 if (ntohs(ih->frag_off) & IP_OFFSET)
4283 break;
4284
4285 offset += ihlen;
4286 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4287 if (sh == NULL)
4288 break;
4289
4290 ad->u.net->sport = sh->source;
4291 ad->u.net->dport = sh->dest;
4292 break;
4293 }
4294#endif
4295 default:
4296 break;
4297 }
4298out:
4299 return ret;
4300}
4301
4302#if IS_ENABLED(CONFIG_IPV6)
4303
4304/* Returns error only if unable to parse addresses */
4305static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4306 struct common_audit_data *ad, u8 *proto)
4307{
4308 u8 nexthdr;
4309 int ret = -EINVAL, offset;
4310 struct ipv6hdr _ipv6h, *ip6;
4311 __be16 frag_off;
4312
4313 offset = skb_network_offset(skb);
4314 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4315 if (ip6 == NULL)
4316 goto out;
4317
4318 ad->u.net->v6info.saddr = ip6->saddr;
4319 ad->u.net->v6info.daddr = ip6->daddr;
4320 ret = 0;
4321
4322 nexthdr = ip6->nexthdr;
4323 offset += sizeof(_ipv6h);
4324 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4325 if (offset < 0)
4326 goto out;
4327
4328 if (proto)
4329 *proto = nexthdr;
4330
4331 switch (nexthdr) {
4332 case IPPROTO_TCP: {
4333 struct tcphdr _tcph, *th;
4334
4335 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4336 if (th == NULL)
4337 break;
4338
4339 ad->u.net->sport = th->source;
4340 ad->u.net->dport = th->dest;
4341 break;
4342 }
4343
4344 case IPPROTO_UDP: {
4345 struct udphdr _udph, *uh;
4346
4347 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4348 if (uh == NULL)
4349 break;
4350
4351 ad->u.net->sport = uh->source;
4352 ad->u.net->dport = uh->dest;
4353 break;
4354 }
4355
4356 case IPPROTO_DCCP: {
4357 struct dccp_hdr _dccph, *dh;
4358
4359 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4360 if (dh == NULL)
4361 break;
4362
4363 ad->u.net->sport = dh->dccph_sport;
4364 ad->u.net->dport = dh->dccph_dport;
4365 break;
4366 }
4367
4368#if IS_ENABLED(CONFIG_IP_SCTP)
4369 case IPPROTO_SCTP: {
4370 struct sctphdr _sctph, *sh;
4371
4372 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4373 if (sh == NULL)
4374 break;
4375
4376 ad->u.net->sport = sh->source;
4377 ad->u.net->dport = sh->dest;
4378 break;
4379 }
4380#endif
4381 /* includes fragments */
4382 default:
4383 break;
4384 }
4385out:
4386 return ret;
4387}
4388
4389#endif /* IPV6 */
4390
4391static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4392 char **_addrp, int src, u8 *proto)
4393{
4394 char *addrp;
4395 int ret;
4396
4397 switch (ad->u.net->family) {
4398 case PF_INET:
4399 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4400 if (ret)
4401 goto parse_error;
4402 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4403 &ad->u.net->v4info.daddr);
4404 goto okay;
4405
4406#if IS_ENABLED(CONFIG_IPV6)
4407 case PF_INET6:
4408 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4409 if (ret)
4410 goto parse_error;
4411 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4412 &ad->u.net->v6info.daddr);
4413 goto okay;
4414#endif /* IPV6 */
4415 default:
4416 addrp = NULL;
4417 goto okay;
4418 }
4419
4420parse_error:
4421 printk(KERN_WARNING
4422 "SELinux: failure in selinux_parse_skb(),"
4423 " unable to parse packet\n");
4424 return ret;
4425
4426okay:
4427 if (_addrp)
4428 *_addrp = addrp;
4429 return 0;
4430}
4431
4432/**
4433 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4434 * @skb: the packet
4435 * @family: protocol family
4436 * @sid: the packet's peer label SID
4437 *
4438 * Description:
4439 * Check the various different forms of network peer labeling and determine
4440 * the peer label/SID for the packet; most of the magic actually occurs in
4441 * the security server function security_net_peersid_cmp(). The function
4442 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4443 * or -EACCES if @sid is invalid due to inconsistencies with the different
4444 * peer labels.
4445 *
4446 */
4447static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4448{
4449 int err;
4450 u32 xfrm_sid;
4451 u32 nlbl_sid;
4452 u32 nlbl_type;
4453
4454 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4455 if (unlikely(err))
4456 return -EACCES;
4457 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4458 if (unlikely(err))
4459 return -EACCES;
4460
4461 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4462 nlbl_type, xfrm_sid, sid);
4463 if (unlikely(err)) {
4464 printk(KERN_WARNING
4465 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4466 " unable to determine packet's peer label\n");
4467 return -EACCES;
4468 }
4469
4470 return 0;
4471}
4472
4473/**
4474 * selinux_conn_sid - Determine the child socket label for a connection
4475 * @sk_sid: the parent socket's SID
4476 * @skb_sid: the packet's SID
4477 * @conn_sid: the resulting connection SID
4478 *
4479 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4480 * combined with the MLS information from @skb_sid in order to create
4481 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4482 * of @sk_sid. Returns zero on success, negative values on failure.
4483 *
4484 */
4485static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4486{
4487 int err = 0;
4488
4489 if (skb_sid != SECSID_NULL)
4490 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4491 conn_sid);
4492 else
4493 *conn_sid = sk_sid;
4494
4495 return err;
4496}
4497
4498/* socket security operations */
4499
4500static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4501 u16 secclass, u32 *socksid)
4502{
4503 if (tsec->sockcreate_sid > SECSID_NULL) {
4504 *socksid = tsec->sockcreate_sid;
4505 return 0;
4506 }
4507
4508 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4509 secclass, NULL, socksid);
4510}
4511
4512static int sock_has_perm(struct sock *sk, u32 perms)
4513{
4514 struct sk_security_struct *sksec = sk->sk_security;
4515 struct common_audit_data ad;
4516 struct lsm_network_audit net = {0,};
4517
4518 if (sksec->sid == SECINITSID_KERNEL)
4519 return 0;
4520
4521 ad.type = LSM_AUDIT_DATA_NET;
4522 ad.u.net = &net;
4523 ad.u.net->sk = sk;
4524
4525 return avc_has_perm(&selinux_state,
4526 current_sid(), sksec->sid, sksec->sclass, perms,
4527 &ad);
4528}
4529
4530static int selinux_socket_create(int family, int type,
4531 int protocol, int kern)
4532{
4533 const struct task_security_struct *tsec = current_security();
4534 u32 newsid;
4535 u16 secclass;
4536 int rc;
4537
4538 if (kern)
4539 return 0;
4540
4541 secclass = socket_type_to_security_class(family, type, protocol);
4542 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4543 if (rc)
4544 return rc;
4545
4546 return avc_has_perm(&selinux_state,
4547 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4548}
4549
4550static int selinux_socket_post_create(struct socket *sock, int family,
4551 int type, int protocol, int kern)
4552{
4553 const struct task_security_struct *tsec = current_security();
4554 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4555 struct sk_security_struct *sksec;
4556 u16 sclass = socket_type_to_security_class(family, type, protocol);
4557 u32 sid = SECINITSID_KERNEL;
4558 int err = 0;
4559
4560 if (!kern) {
4561 err = socket_sockcreate_sid(tsec, sclass, &sid);
4562 if (err)
4563 return err;
4564 }
4565
4566 isec->sclass = sclass;
4567 isec->sid = sid;
4568 isec->initialized = LABEL_INITIALIZED;
4569
4570 if (sock->sk) {
4571 sksec = sock->sk->sk_security;
4572 sksec->sclass = sclass;
4573 sksec->sid = sid;
4574 /* Allows detection of the first association on this socket */
4575 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4576 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4577
4578 err = selinux_netlbl_socket_post_create(sock->sk, family);
4579 }
4580
4581 return err;
4582}
4583
4584/* Range of port numbers used to automatically bind.
4585 Need to determine whether we should perform a name_bind
4586 permission check between the socket and the port number. */
4587
4588static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4589{
4590 struct sock *sk = sock->sk;
4591 struct sk_security_struct *sksec = sk->sk_security;
4592 u16 family;
4593 int err;
4594
4595 err = sock_has_perm(sk, SOCKET__BIND);
4596 if (err)
4597 goto out;
4598
4599 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4600 family = sk->sk_family;
4601 if (family == PF_INET || family == PF_INET6) {
4602 char *addrp;
4603 struct common_audit_data ad;
4604 struct lsm_network_audit net = {0,};
4605 struct sockaddr_in *addr4 = NULL;
4606 struct sockaddr_in6 *addr6 = NULL;
4607 u16 family_sa = address->sa_family;
4608 unsigned short snum;
4609 u32 sid, node_perm;
4610
4611 /*
4612 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4613 * that validates multiple binding addresses. Because of this
4614 * need to check address->sa_family as it is possible to have
4615 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4616 */
4617 switch (family_sa) {
4618 case AF_UNSPEC:
4619 case AF_INET:
4620 if (addrlen < sizeof(struct sockaddr_in))
4621 return -EINVAL;
4622 addr4 = (struct sockaddr_in *)address;
4623 if (family_sa == AF_UNSPEC) {
4624 /* see __inet_bind(), we only want to allow
4625 * AF_UNSPEC if the address is INADDR_ANY
4626 */
4627 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4628 goto err_af;
4629 family_sa = AF_INET;
4630 }
4631 snum = ntohs(addr4->sin_port);
4632 addrp = (char *)&addr4->sin_addr.s_addr;
4633 break;
4634 case AF_INET6:
4635 if (addrlen < SIN6_LEN_RFC2133)
4636 return -EINVAL;
4637 addr6 = (struct sockaddr_in6 *)address;
4638 snum = ntohs(addr6->sin6_port);
4639 addrp = (char *)&addr6->sin6_addr.s6_addr;
4640 break;
4641 default:
4642 goto err_af;
4643 }
4644
4645 ad.type = LSM_AUDIT_DATA_NET;
4646 ad.u.net = &net;
4647 ad.u.net->sport = htons(snum);
4648 ad.u.net->family = family_sa;
4649
4650 if (snum) {
4651 int low, high;
4652
4653 inet_get_local_port_range(sock_net(sk), &low, &high);
4654
4655 if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4656 snum > high) {
4657 err = sel_netport_sid(sk->sk_protocol,
4658 snum, &sid);
4659 if (err)
4660 goto out;
4661 err = avc_has_perm(&selinux_state,
4662 sksec->sid, sid,
4663 sksec->sclass,
4664 SOCKET__NAME_BIND, &ad);
4665 if (err)
4666 goto out;
4667 }
4668 }
4669
4670 switch (sksec->sclass) {
4671 case SECCLASS_TCP_SOCKET:
4672 node_perm = TCP_SOCKET__NODE_BIND;
4673 break;
4674
4675 case SECCLASS_UDP_SOCKET:
4676 node_perm = UDP_SOCKET__NODE_BIND;
4677 break;
4678
4679 case SECCLASS_DCCP_SOCKET:
4680 node_perm = DCCP_SOCKET__NODE_BIND;
4681 break;
4682
4683 case SECCLASS_SCTP_SOCKET:
4684 node_perm = SCTP_SOCKET__NODE_BIND;
4685 break;
4686
4687 default:
4688 node_perm = RAWIP_SOCKET__NODE_BIND;
4689 break;
4690 }
4691
4692 err = sel_netnode_sid(addrp, family_sa, &sid);
4693 if (err)
4694 goto out;
4695
4696 if (family_sa == AF_INET)
4697 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4698 else
4699 ad.u.net->v6info.saddr = addr6->sin6_addr;
4700
4701 err = avc_has_perm(&selinux_state,
4702 sksec->sid, sid,
4703 sksec->sclass, node_perm, &ad);
4704 if (err)
4705 goto out;
4706 }
4707out:
4708 return err;
4709err_af:
4710 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4711 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4712 return -EINVAL;
4713 return -EAFNOSUPPORT;
4714}
4715
4716/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4717 * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4718 */
4719static int selinux_socket_connect_helper(struct socket *sock,
4720 struct sockaddr *address, int addrlen)
4721{
4722 struct sock *sk = sock->sk;
4723 struct sk_security_struct *sksec = sk->sk_security;
4724 int err;
4725
4726 err = sock_has_perm(sk, SOCKET__CONNECT);
4727 if (err)
4728 return err;
4729
4730 /*
4731 * If a TCP, DCCP or SCTP socket, check name_connect permission
4732 * for the port.
4733 */
4734 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4735 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4736 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4737 struct common_audit_data ad;
4738 struct lsm_network_audit net = {0,};
4739 struct sockaddr_in *addr4 = NULL;
4740 struct sockaddr_in6 *addr6 = NULL;
4741 unsigned short snum;
4742 u32 sid, perm;
4743
4744 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4745 * that validates multiple connect addresses. Because of this
4746 * need to check address->sa_family as it is possible to have
4747 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4748 */
4749 switch (address->sa_family) {
4750 case AF_INET:
4751 addr4 = (struct sockaddr_in *)address;
4752 if (addrlen < sizeof(struct sockaddr_in))
4753 return -EINVAL;
4754 snum = ntohs(addr4->sin_port);
4755 break;
4756 case AF_INET6:
4757 addr6 = (struct sockaddr_in6 *)address;
4758 if (addrlen < SIN6_LEN_RFC2133)
4759 return -EINVAL;
4760 snum = ntohs(addr6->sin6_port);
4761 break;
4762 default:
4763 /* Note that SCTP services expect -EINVAL, whereas
4764 * others expect -EAFNOSUPPORT.
4765 */
4766 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4767 return -EINVAL;
4768 else
4769 return -EAFNOSUPPORT;
4770 }
4771
4772 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4773 if (err)
4774 return err;
4775
4776 switch (sksec->sclass) {
4777 case SECCLASS_TCP_SOCKET:
4778 perm = TCP_SOCKET__NAME_CONNECT;
4779 break;
4780 case SECCLASS_DCCP_SOCKET:
4781 perm = DCCP_SOCKET__NAME_CONNECT;
4782 break;
4783 case SECCLASS_SCTP_SOCKET:
4784 perm = SCTP_SOCKET__NAME_CONNECT;
4785 break;
4786 }
4787
4788 ad.type = LSM_AUDIT_DATA_NET;
4789 ad.u.net = &net;
4790 ad.u.net->dport = htons(snum);
4791 ad.u.net->family = address->sa_family;
4792 err = avc_has_perm(&selinux_state,
4793 sksec->sid, sid, sksec->sclass, perm, &ad);
4794 if (err)
4795 return err;
4796 }
4797
4798 return 0;
4799}
4800
4801/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4802static int selinux_socket_connect(struct socket *sock,
4803 struct sockaddr *address, int addrlen)
4804{
4805 int err;
4806 struct sock *sk = sock->sk;
4807
4808 err = selinux_socket_connect_helper(sock, address, addrlen);
4809 if (err)
4810 return err;
4811
4812 return selinux_netlbl_socket_connect(sk, address);
4813}
4814
4815static int selinux_socket_listen(struct socket *sock, int backlog)
4816{
4817 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4818}
4819
4820static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4821{
4822 int err;
4823 struct inode_security_struct *isec;
4824 struct inode_security_struct *newisec;
4825 u16 sclass;
4826 u32 sid;
4827
4828 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4829 if (err)
4830 return err;
4831
4832 isec = inode_security_novalidate(SOCK_INODE(sock));
4833 spin_lock(&isec->lock);
4834 sclass = isec->sclass;
4835 sid = isec->sid;
4836 spin_unlock(&isec->lock);
4837
4838 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4839 newisec->sclass = sclass;
4840 newisec->sid = sid;
4841 newisec->initialized = LABEL_INITIALIZED;
4842
4843 return 0;
4844}
4845
4846static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4847 int size)
4848{
4849 return sock_has_perm(sock->sk, SOCKET__WRITE);
4850}
4851
4852static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4853 int size, int flags)
4854{
4855 return sock_has_perm(sock->sk, SOCKET__READ);
4856}
4857
4858static int selinux_socket_getsockname(struct socket *sock)
4859{
4860 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4861}
4862
4863static int selinux_socket_getpeername(struct socket *sock)
4864{
4865 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4866}
4867
4868static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4869{
4870 int err;
4871
4872 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4873 if (err)
4874 return err;
4875
4876 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4877}
4878
4879static int selinux_socket_getsockopt(struct socket *sock, int level,
4880 int optname)
4881{
4882 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4883}
4884
4885static int selinux_socket_shutdown(struct socket *sock, int how)
4886{
4887 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4888}
4889
4890static int selinux_socket_unix_stream_connect(struct sock *sock,
4891 struct sock *other,
4892 struct sock *newsk)
4893{
4894 struct sk_security_struct *sksec_sock = sock->sk_security;
4895 struct sk_security_struct *sksec_other = other->sk_security;
4896 struct sk_security_struct *sksec_new = newsk->sk_security;
4897 struct common_audit_data ad;
4898 struct lsm_network_audit net = {0,};
4899 int err;
4900
4901 ad.type = LSM_AUDIT_DATA_NET;
4902 ad.u.net = &net;
4903 ad.u.net->sk = other;
4904
4905 err = avc_has_perm(&selinux_state,
4906 sksec_sock->sid, sksec_other->sid,
4907 sksec_other->sclass,
4908 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4909 if (err)
4910 return err;
4911
4912 /* server child socket */
4913 sksec_new->peer_sid = sksec_sock->sid;
4914 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4915 sksec_sock->sid, &sksec_new->sid);
4916 if (err)
4917 return err;
4918
4919 /* connecting socket */
4920 sksec_sock->peer_sid = sksec_new->sid;
4921
4922 return 0;
4923}
4924
4925static int selinux_socket_unix_may_send(struct socket *sock,
4926 struct socket *other)
4927{
4928 struct sk_security_struct *ssec = sock->sk->sk_security;
4929 struct sk_security_struct *osec = other->sk->sk_security;
4930 struct common_audit_data ad;
4931 struct lsm_network_audit net = {0,};
4932
4933 ad.type = LSM_AUDIT_DATA_NET;
4934 ad.u.net = &net;
4935 ad.u.net->sk = other->sk;
4936
4937 return avc_has_perm(&selinux_state,
4938 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4939 &ad);
4940}
4941
4942static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4943 char *addrp, u16 family, u32 peer_sid,
4944 struct common_audit_data *ad)
4945{
4946 int err;
4947 u32 if_sid;
4948 u32 node_sid;
4949
4950 err = sel_netif_sid(ns, ifindex, &if_sid);
4951 if (err)
4952 return err;
4953 err = avc_has_perm(&selinux_state,
4954 peer_sid, if_sid,
4955 SECCLASS_NETIF, NETIF__INGRESS, ad);
4956 if (err)
4957 return err;
4958
4959 err = sel_netnode_sid(addrp, family, &node_sid);
4960 if (err)
4961 return err;
4962 return avc_has_perm(&selinux_state,
4963 peer_sid, node_sid,
4964 SECCLASS_NODE, NODE__RECVFROM, ad);
4965}
4966
4967static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4968 u16 family)
4969{
4970 int err = 0;
4971 struct sk_security_struct *sksec = sk->sk_security;
4972 u32 sk_sid = sksec->sid;
4973 struct common_audit_data ad;
4974 struct lsm_network_audit net = {0,};
4975 char *addrp;
4976
4977 ad.type = LSM_AUDIT_DATA_NET;
4978 ad.u.net = &net;
4979 ad.u.net->netif = skb->skb_iif;
4980 ad.u.net->family = family;
4981 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4982 if (err)
4983 return err;
4984
4985 if (selinux_secmark_enabled()) {
4986 err = avc_has_perm(&selinux_state,
4987 sk_sid, skb->secmark, SECCLASS_PACKET,
4988 PACKET__RECV, &ad);
4989 if (err)
4990 return err;
4991 }
4992
4993 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4994 if (err)
4995 return err;
4996 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4997
4998 return err;
4999}
5000
5001static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5002{
5003 int err;
5004 struct sk_security_struct *sksec = sk->sk_security;
5005 u16 family = sk->sk_family;
5006 u32 sk_sid = sksec->sid;
5007 struct common_audit_data ad;
5008 struct lsm_network_audit net = {0,};
5009 char *addrp;
5010 u8 secmark_active;
5011 u8 peerlbl_active;
5012
5013 if (family != PF_INET && family != PF_INET6)
5014 return 0;
5015
5016 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5017 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5018 family = PF_INET;
5019
5020 /* If any sort of compatibility mode is enabled then handoff processing
5021 * to the selinux_sock_rcv_skb_compat() function to deal with the
5022 * special handling. We do this in an attempt to keep this function
5023 * as fast and as clean as possible. */
5024 if (!selinux_policycap_netpeer())
5025 return selinux_sock_rcv_skb_compat(sk, skb, family);
5026
5027 secmark_active = selinux_secmark_enabled();
5028 peerlbl_active = selinux_peerlbl_enabled();
5029 if (!secmark_active && !peerlbl_active)
5030 return 0;
5031
5032 ad.type = LSM_AUDIT_DATA_NET;
5033 ad.u.net = &net;
5034 ad.u.net->netif = skb->skb_iif;
5035 ad.u.net->family = family;
5036 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5037 if (err)
5038 return err;
5039
5040 if (peerlbl_active) {
5041 u32 peer_sid;
5042
5043 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5044 if (err)
5045 return err;
5046 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5047 addrp, family, peer_sid, &ad);
5048 if (err) {
5049 selinux_netlbl_err(skb, family, err, 0);
5050 return err;
5051 }
5052 err = avc_has_perm(&selinux_state,
5053 sk_sid, peer_sid, SECCLASS_PEER,
5054 PEER__RECV, &ad);
5055 if (err) {
5056 selinux_netlbl_err(skb, family, err, 0);
5057 return err;
5058 }
5059 }
5060
5061 if (secmark_active) {
5062 err = avc_has_perm(&selinux_state,
5063 sk_sid, skb->secmark, SECCLASS_PACKET,
5064 PACKET__RECV, &ad);
5065 if (err)
5066 return err;
5067 }
5068
5069 return err;
5070}
5071
5072static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5073 int __user *optlen, unsigned len)
5074{
5075 int err = 0;
5076 char *scontext;
5077 u32 scontext_len;
5078 struct sk_security_struct *sksec = sock->sk->sk_security;
5079 u32 peer_sid = SECSID_NULL;
5080
5081 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5082 sksec->sclass == SECCLASS_TCP_SOCKET ||
5083 sksec->sclass == SECCLASS_SCTP_SOCKET)
5084 peer_sid = sksec->peer_sid;
5085 if (peer_sid == SECSID_NULL)
5086 return -ENOPROTOOPT;
5087
5088 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5089 &scontext_len);
5090 if (err)
5091 return err;
5092
5093 if (scontext_len > len) {
5094 err = -ERANGE;
5095 goto out_len;
5096 }
5097
5098 if (copy_to_user(optval, scontext, scontext_len))
5099 err = -EFAULT;
5100
5101out_len:
5102 if (put_user(scontext_len, optlen))
5103 err = -EFAULT;
5104 kfree(scontext);
5105 return err;
5106}
5107
5108static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5109{
5110 u32 peer_secid = SECSID_NULL;
5111 u16 family;
5112 struct inode_security_struct *isec;
5113
5114 if (skb && skb->protocol == htons(ETH_P_IP))
5115 family = PF_INET;
5116 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5117 family = PF_INET6;
5118 else if (sock)
5119 family = sock->sk->sk_family;
5120 else
5121 goto out;
5122
5123 if (sock && family == PF_UNIX) {
5124 isec = inode_security_novalidate(SOCK_INODE(sock));
5125 peer_secid = isec->sid;
5126 } else if (skb)
5127 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5128
5129out:
5130 *secid = peer_secid;
5131 if (peer_secid == SECSID_NULL)
5132 return -EINVAL;
5133 return 0;
5134}
5135
5136static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5137{
5138 struct sk_security_struct *sksec;
5139
5140 sksec = kzalloc(sizeof(*sksec), priority);
5141 if (!sksec)
5142 return -ENOMEM;
5143
5144 sksec->peer_sid = SECINITSID_UNLABELED;
5145 sksec->sid = SECINITSID_UNLABELED;
5146 sksec->sclass = SECCLASS_SOCKET;
5147 selinux_netlbl_sk_security_reset(sksec);
5148 sk->sk_security = sksec;
5149
5150 return 0;
5151}
5152
5153static void selinux_sk_free_security(struct sock *sk)
5154{
5155 struct sk_security_struct *sksec = sk->sk_security;
5156
5157 sk->sk_security = NULL;
5158 selinux_netlbl_sk_security_free(sksec);
5159 kfree(sksec);
5160}
5161
5162static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5163{
5164 struct sk_security_struct *sksec = sk->sk_security;
5165 struct sk_security_struct *newsksec = newsk->sk_security;
5166
5167 newsksec->sid = sksec->sid;
5168 newsksec->peer_sid = sksec->peer_sid;
5169 newsksec->sclass = sksec->sclass;
5170
5171 selinux_netlbl_sk_security_reset(newsksec);
5172}
5173
5174static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5175{
5176 if (!sk)
5177 *secid = SECINITSID_ANY_SOCKET;
5178 else {
5179 struct sk_security_struct *sksec = sk->sk_security;
5180
5181 *secid = sksec->sid;
5182 }
5183}
5184
5185static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5186{
5187 struct inode_security_struct *isec =
5188 inode_security_novalidate(SOCK_INODE(parent));
5189 struct sk_security_struct *sksec = sk->sk_security;
5190
5191 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5192 sk->sk_family == PF_UNIX)
5193 isec->sid = sksec->sid;
5194 sksec->sclass = isec->sclass;
5195}
5196
5197/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5198 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5199 * already present).
5200 */
5201static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5202 struct sk_buff *skb)
5203{
5204 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5205 struct common_audit_data ad;
5206 struct lsm_network_audit net = {0,};
5207 u8 peerlbl_active;
5208 u32 peer_sid = SECINITSID_UNLABELED;
5209 u32 conn_sid;
5210 int err = 0;
5211
5212 if (!selinux_policycap_extsockclass())
5213 return 0;
5214
5215 peerlbl_active = selinux_peerlbl_enabled();
5216
5217 if (peerlbl_active) {
5218 /* This will return peer_sid = SECSID_NULL if there are
5219 * no peer labels, see security_net_peersid_resolve().
5220 */
5221 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5222 &peer_sid);
5223 if (err)
5224 return err;
5225
5226 if (peer_sid == SECSID_NULL)
5227 peer_sid = SECINITSID_UNLABELED;
5228 }
5229
5230 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5231 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5232
5233 /* Here as first association on socket. As the peer SID
5234 * was allowed by peer recv (and the netif/node checks),
5235 * then it is approved by policy and used as the primary
5236 * peer SID for getpeercon(3).
5237 */
5238 sksec->peer_sid = peer_sid;
5239 } else if (sksec->peer_sid != peer_sid) {
5240 /* Other association peer SIDs are checked to enforce
5241 * consistency among the peer SIDs.
5242 */
5243 ad.type = LSM_AUDIT_DATA_NET;
5244 ad.u.net = &net;
5245 ad.u.net->sk = ep->base.sk;
5246 err = avc_has_perm(&selinux_state,
5247 sksec->peer_sid, peer_sid, sksec->sclass,
5248 SCTP_SOCKET__ASSOCIATION, &ad);
5249 if (err)
5250 return err;
5251 }
5252
5253 /* Compute the MLS component for the connection and store
5254 * the information in ep. This will be used by SCTP TCP type
5255 * sockets and peeled off connections as they cause a new
5256 * socket to be generated. selinux_sctp_sk_clone() will then
5257 * plug this into the new socket.
5258 */
5259 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5260 if (err)
5261 return err;
5262
5263 ep->secid = conn_sid;
5264 ep->peer_secid = peer_sid;
5265
5266 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5267 return selinux_netlbl_sctp_assoc_request(ep, skb);
5268}
5269
5270/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5271 * based on their @optname.
5272 */
5273static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5274 struct sockaddr *address,
5275 int addrlen)
5276{
5277 int len, err = 0, walk_size = 0;
5278 void *addr_buf;
5279 struct sockaddr *addr;
5280 struct socket *sock;
5281
5282 if (!selinux_policycap_extsockclass())
5283 return 0;
5284
5285 /* Process one or more addresses that may be IPv4 or IPv6 */
5286 sock = sk->sk_socket;
5287 addr_buf = address;
5288
5289 while (walk_size < addrlen) {
5290 addr = addr_buf;
5291 switch (addr->sa_family) {
5292 case AF_UNSPEC:
5293 case AF_INET:
5294 len = sizeof(struct sockaddr_in);
5295 break;
5296 case AF_INET6:
5297 len = sizeof(struct sockaddr_in6);
5298 break;
5299 default:
5300 return -EINVAL;
5301 }
5302
5303 err = -EINVAL;
5304 switch (optname) {
5305 /* Bind checks */
5306 case SCTP_PRIMARY_ADDR:
5307 case SCTP_SET_PEER_PRIMARY_ADDR:
5308 case SCTP_SOCKOPT_BINDX_ADD:
5309 err = selinux_socket_bind(sock, addr, len);
5310 break;
5311 /* Connect checks */
5312 case SCTP_SOCKOPT_CONNECTX:
5313 case SCTP_PARAM_SET_PRIMARY:
5314 case SCTP_PARAM_ADD_IP:
5315 case SCTP_SENDMSG_CONNECT:
5316 err = selinux_socket_connect_helper(sock, addr, len);
5317 if (err)
5318 return err;
5319
5320 /* As selinux_sctp_bind_connect() is called by the
5321 * SCTP protocol layer, the socket is already locked,
5322 * therefore selinux_netlbl_socket_connect_locked() is
5323 * is called here. The situations handled are:
5324 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5325 * whenever a new IP address is added or when a new
5326 * primary address is selected.
5327 * Note that an SCTP connect(2) call happens before
5328 * the SCTP protocol layer and is handled via
5329 * selinux_socket_connect().
5330 */
5331 err = selinux_netlbl_socket_connect_locked(sk, addr);
5332 break;
5333 }
5334
5335 if (err)
5336 return err;
5337
5338 addr_buf += len;
5339 walk_size += len;
5340 }
5341
5342 return 0;
5343}
5344
5345/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5346static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5347 struct sock *newsk)
5348{
5349 struct sk_security_struct *sksec = sk->sk_security;
5350 struct sk_security_struct *newsksec = newsk->sk_security;
5351
5352 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5353 * the non-sctp clone version.
5354 */
5355 if (!selinux_policycap_extsockclass())
5356 return selinux_sk_clone_security(sk, newsk);
5357
5358 newsksec->sid = ep->secid;
5359 newsksec->peer_sid = ep->peer_secid;
5360 newsksec->sclass = sksec->sclass;
5361 selinux_netlbl_sctp_sk_clone(sk, newsk);
5362}
5363
5364static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5365 struct request_sock *req)
5366{
5367 struct sk_security_struct *sksec = sk->sk_security;
5368 int err;
5369 u16 family = req->rsk_ops->family;
5370 u32 connsid;
5371 u32 peersid;
5372
5373 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5374 if (err)
5375 return err;
5376 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5377 if (err)
5378 return err;
5379 req->secid = connsid;
5380 req->peer_secid = peersid;
5381
5382 return selinux_netlbl_inet_conn_request(req, family);
5383}
5384
5385static void selinux_inet_csk_clone(struct sock *newsk,
5386 const struct request_sock *req)
5387{
5388 struct sk_security_struct *newsksec = newsk->sk_security;
5389
5390 newsksec->sid = req->secid;
5391 newsksec->peer_sid = req->peer_secid;
5392 /* NOTE: Ideally, we should also get the isec->sid for the
5393 new socket in sync, but we don't have the isec available yet.
5394 So we will wait until sock_graft to do it, by which
5395 time it will have been created and available. */
5396
5397 /* We don't need to take any sort of lock here as we are the only
5398 * thread with access to newsksec */
5399 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5400}
5401
5402static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5403{
5404 u16 family = sk->sk_family;
5405 struct sk_security_struct *sksec = sk->sk_security;
5406
5407 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5408 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5409 family = PF_INET;
5410
5411 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5412}
5413
5414static int selinux_secmark_relabel_packet(u32 sid)
5415{
5416 const struct task_security_struct *__tsec;
5417 u32 tsid;
5418
5419 __tsec = current_security();
5420 tsid = __tsec->sid;
5421
5422 return avc_has_perm(&selinux_state,
5423 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5424 NULL);
5425}
5426
5427static void selinux_secmark_refcount_inc(void)
5428{
5429 atomic_inc(&selinux_secmark_refcount);
5430}
5431
5432static void selinux_secmark_refcount_dec(void)
5433{
5434 atomic_dec(&selinux_secmark_refcount);
5435}
5436
5437static void selinux_req_classify_flow(const struct request_sock *req,
5438 struct flowi *fl)
5439{
5440 fl->flowi_secid = req->secid;
5441}
5442
5443static int selinux_tun_dev_alloc_security(void **security)
5444{
5445 struct tun_security_struct *tunsec;
5446
5447 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5448 if (!tunsec)
5449 return -ENOMEM;
5450 tunsec->sid = current_sid();
5451
5452 *security = tunsec;
5453 return 0;
5454}
5455
5456static void selinux_tun_dev_free_security(void *security)
5457{
5458 kfree(security);
5459}
5460
5461static int selinux_tun_dev_create(void)
5462{
5463 u32 sid = current_sid();
5464
5465 /* we aren't taking into account the "sockcreate" SID since the socket
5466 * that is being created here is not a socket in the traditional sense,
5467 * instead it is a private sock, accessible only to the kernel, and
5468 * representing a wide range of network traffic spanning multiple
5469 * connections unlike traditional sockets - check the TUN driver to
5470 * get a better understanding of why this socket is special */
5471
5472 return avc_has_perm(&selinux_state,
5473 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5474 NULL);
5475}
5476
5477static int selinux_tun_dev_attach_queue(void *security)
5478{
5479 struct tun_security_struct *tunsec = security;
5480
5481 return avc_has_perm(&selinux_state,
5482 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5483 TUN_SOCKET__ATTACH_QUEUE, NULL);
5484}
5485
5486static int selinux_tun_dev_attach(struct sock *sk, void *security)
5487{
5488 struct tun_security_struct *tunsec = security;
5489 struct sk_security_struct *sksec = sk->sk_security;
5490
5491 /* we don't currently perform any NetLabel based labeling here and it
5492 * isn't clear that we would want to do so anyway; while we could apply
5493 * labeling without the support of the TUN user the resulting labeled
5494 * traffic from the other end of the connection would almost certainly
5495 * cause confusion to the TUN user that had no idea network labeling
5496 * protocols were being used */
5497
5498 sksec->sid = tunsec->sid;
5499 sksec->sclass = SECCLASS_TUN_SOCKET;
5500
5501 return 0;
5502}
5503
5504static int selinux_tun_dev_open(void *security)
5505{
5506 struct tun_security_struct *tunsec = security;
5507 u32 sid = current_sid();
5508 int err;
5509
5510 err = avc_has_perm(&selinux_state,
5511 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5512 TUN_SOCKET__RELABELFROM, NULL);
5513 if (err)
5514 return err;
5515 err = avc_has_perm(&selinux_state,
5516 sid, sid, SECCLASS_TUN_SOCKET,
5517 TUN_SOCKET__RELABELTO, NULL);
5518 if (err)
5519 return err;
5520 tunsec->sid = sid;
5521
5522 return 0;
5523}
5524
5525static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5526{
5527 int err = 0;
5528 u32 perm;
5529 struct nlmsghdr *nlh;
5530 struct sk_security_struct *sksec = sk->sk_security;
5531
5532 if (skb->len < NLMSG_HDRLEN) {
5533 err = -EINVAL;
5534 goto out;
5535 }
5536 nlh = nlmsg_hdr(skb);
5537
5538 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5539 if (err) {
5540 if (err == -EINVAL) {
5541 pr_warn_ratelimited("SELinux: unrecognized netlink"
5542 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5543 " pig=%d comm=%s\n",
5544 sk->sk_protocol, nlh->nlmsg_type,
5545 secclass_map[sksec->sclass - 1].name,
5546 task_pid_nr(current), current->comm);
5547 if (!enforcing_enabled(&selinux_state) ||
5548 security_get_allow_unknown(&selinux_state))
5549 err = 0;
5550 }
5551
5552 /* Ignore */
5553 if (err == -ENOENT)
5554 err = 0;
5555 goto out;
5556 }
5557
5558 err = sock_has_perm(sk, perm);
5559out:
5560 return err;
5561}
5562
5563#ifdef CONFIG_NETFILTER
5564
5565static unsigned int selinux_ip_forward(struct sk_buff *skb,
5566 const struct net_device *indev,
5567 u16 family)
5568{
5569 int err;
5570 char *addrp;
5571 u32 peer_sid;
5572 struct common_audit_data ad;
5573 struct lsm_network_audit net = {0,};
5574 u8 secmark_active;
5575 u8 netlbl_active;
5576 u8 peerlbl_active;
5577
5578 if (!selinux_policycap_netpeer())
5579 return NF_ACCEPT;
5580
5581 secmark_active = selinux_secmark_enabled();
5582 netlbl_active = netlbl_enabled();
5583 peerlbl_active = selinux_peerlbl_enabled();
5584 if (!secmark_active && !peerlbl_active)
5585 return NF_ACCEPT;
5586
5587 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5588 return NF_DROP;
5589
5590 ad.type = LSM_AUDIT_DATA_NET;
5591 ad.u.net = &net;
5592 ad.u.net->netif = indev->ifindex;
5593 ad.u.net->family = family;
5594 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5595 return NF_DROP;
5596
5597 if (peerlbl_active) {
5598 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5599 addrp, family, peer_sid, &ad);
5600 if (err) {
5601 selinux_netlbl_err(skb, family, err, 1);
5602 return NF_DROP;
5603 }
5604 }
5605
5606 if (secmark_active)
5607 if (avc_has_perm(&selinux_state,
5608 peer_sid, skb->secmark,
5609 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5610 return NF_DROP;
5611
5612 if (netlbl_active)
5613 /* we do this in the FORWARD path and not the POST_ROUTING
5614 * path because we want to make sure we apply the necessary
5615 * labeling before IPsec is applied so we can leverage AH
5616 * protection */
5617 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5618 return NF_DROP;
5619
5620 return NF_ACCEPT;
5621}
5622
5623static unsigned int selinux_ipv4_forward(void *priv,
5624 struct sk_buff *skb,
5625 const struct nf_hook_state *state)
5626{
5627 return selinux_ip_forward(skb, state->in, PF_INET);
5628}
5629
5630#if IS_ENABLED(CONFIG_IPV6)
5631static unsigned int selinux_ipv6_forward(void *priv,
5632 struct sk_buff *skb,
5633 const struct nf_hook_state *state)
5634{
5635 return selinux_ip_forward(skb, state->in, PF_INET6);
5636}
5637#endif /* IPV6 */
5638
5639static unsigned int selinux_ip_output(struct sk_buff *skb,
5640 u16 family)
5641{
5642 struct sock *sk;
5643 u32 sid;
5644
5645 if (!netlbl_enabled())
5646 return NF_ACCEPT;
5647
5648 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5649 * because we want to make sure we apply the necessary labeling
5650 * before IPsec is applied so we can leverage AH protection */
5651 sk = skb->sk;
5652 if (sk) {
5653 struct sk_security_struct *sksec;
5654
5655 if (sk_listener(sk))
5656 /* if the socket is the listening state then this
5657 * packet is a SYN-ACK packet which means it needs to
5658 * be labeled based on the connection/request_sock and
5659 * not the parent socket. unfortunately, we can't
5660 * lookup the request_sock yet as it isn't queued on
5661 * the parent socket until after the SYN-ACK is sent.
5662 * the "solution" is to simply pass the packet as-is
5663 * as any IP option based labeling should be copied
5664 * from the initial connection request (in the IP
5665 * layer). it is far from ideal, but until we get a
5666 * security label in the packet itself this is the
5667 * best we can do. */
5668 return NF_ACCEPT;
5669
5670 /* standard practice, label using the parent socket */
5671 sksec = sk->sk_security;
5672 sid = sksec->sid;
5673 } else
5674 sid = SECINITSID_KERNEL;
5675 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5676 return NF_DROP;
5677
5678 return NF_ACCEPT;
5679}
5680
5681static unsigned int selinux_ipv4_output(void *priv,
5682 struct sk_buff *skb,
5683 const struct nf_hook_state *state)
5684{
5685 return selinux_ip_output(skb, PF_INET);
5686}
5687
5688#if IS_ENABLED(CONFIG_IPV6)
5689static unsigned int selinux_ipv6_output(void *priv,
5690 struct sk_buff *skb,
5691 const struct nf_hook_state *state)
5692{
5693 return selinux_ip_output(skb, PF_INET6);
5694}
5695#endif /* IPV6 */
5696
5697static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5698 int ifindex,
5699 u16 family)
5700{
5701 struct sock *sk = skb_to_full_sk(skb);
5702 struct sk_security_struct *sksec;
5703 struct common_audit_data ad;
5704 struct lsm_network_audit net = {0,};
5705 char *addrp;
5706 u8 proto;
5707
5708 if (sk == NULL)
5709 return NF_ACCEPT;
5710 sksec = sk->sk_security;
5711
5712 ad.type = LSM_AUDIT_DATA_NET;
5713 ad.u.net = &net;
5714 ad.u.net->netif = ifindex;
5715 ad.u.net->family = family;
5716 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5717 return NF_DROP;
5718
5719 if (selinux_secmark_enabled())
5720 if (avc_has_perm(&selinux_state,
5721 sksec->sid, skb->secmark,
5722 SECCLASS_PACKET, PACKET__SEND, &ad))
5723 return NF_DROP_ERR(-ECONNREFUSED);
5724
5725 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5726 return NF_DROP_ERR(-ECONNREFUSED);
5727
5728 return NF_ACCEPT;
5729}
5730
5731static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5732 const struct net_device *outdev,
5733 u16 family)
5734{
5735 u32 secmark_perm;
5736 u32 peer_sid;
5737 int ifindex = outdev->ifindex;
5738 struct sock *sk;
5739 struct common_audit_data ad;
5740 struct lsm_network_audit net = {0,};
5741 char *addrp;
5742 u8 secmark_active;
5743 u8 peerlbl_active;
5744
5745 /* If any sort of compatibility mode is enabled then handoff processing
5746 * to the selinux_ip_postroute_compat() function to deal with the
5747 * special handling. We do this in an attempt to keep this function
5748 * as fast and as clean as possible. */
5749 if (!selinux_policycap_netpeer())
5750 return selinux_ip_postroute_compat(skb, ifindex, family);
5751
5752 secmark_active = selinux_secmark_enabled();
5753 peerlbl_active = selinux_peerlbl_enabled();
5754 if (!secmark_active && !peerlbl_active)
5755 return NF_ACCEPT;
5756
5757 sk = skb_to_full_sk(skb);
5758
5759#ifdef CONFIG_XFRM
5760 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5761 * packet transformation so allow the packet to pass without any checks
5762 * since we'll have another chance to perform access control checks
5763 * when the packet is on it's final way out.
5764 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5765 * is NULL, in this case go ahead and apply access control.
5766 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5767 * TCP listening state we cannot wait until the XFRM processing
5768 * is done as we will miss out on the SA label if we do;
5769 * unfortunately, this means more work, but it is only once per
5770 * connection. */
5771 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5772 !(sk && sk_listener(sk)))
5773 return NF_ACCEPT;
5774#endif
5775
5776 if (sk == NULL) {
5777 /* Without an associated socket the packet is either coming
5778 * from the kernel or it is being forwarded; check the packet
5779 * to determine which and if the packet is being forwarded
5780 * query the packet directly to determine the security label. */
5781 if (skb->skb_iif) {
5782 secmark_perm = PACKET__FORWARD_OUT;
5783 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5784 return NF_DROP;
5785 } else {
5786 secmark_perm = PACKET__SEND;
5787 peer_sid = SECINITSID_KERNEL;
5788 }
5789 } else if (sk_listener(sk)) {
5790 /* Locally generated packet but the associated socket is in the
5791 * listening state which means this is a SYN-ACK packet. In
5792 * this particular case the correct security label is assigned
5793 * to the connection/request_sock but unfortunately we can't
5794 * query the request_sock as it isn't queued on the parent
5795 * socket until after the SYN-ACK packet is sent; the only
5796 * viable choice is to regenerate the label like we do in
5797 * selinux_inet_conn_request(). See also selinux_ip_output()
5798 * for similar problems. */
5799 u32 skb_sid;
5800 struct sk_security_struct *sksec;
5801
5802 sksec = sk->sk_security;
5803 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5804 return NF_DROP;
5805 /* At this point, if the returned skb peerlbl is SECSID_NULL
5806 * and the packet has been through at least one XFRM
5807 * transformation then we must be dealing with the "final"
5808 * form of labeled IPsec packet; since we've already applied
5809 * all of our access controls on this packet we can safely
5810 * pass the packet. */
5811 if (skb_sid == SECSID_NULL) {
5812 switch (family) {
5813 case PF_INET:
5814 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5815 return NF_ACCEPT;
5816 break;
5817 case PF_INET6:
5818 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5819 return NF_ACCEPT;
5820 break;
5821 default:
5822 return NF_DROP_ERR(-ECONNREFUSED);
5823 }
5824 }
5825 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5826 return NF_DROP;
5827 secmark_perm = PACKET__SEND;
5828 } else {
5829 /* Locally generated packet, fetch the security label from the
5830 * associated socket. */
5831 struct sk_security_struct *sksec = sk->sk_security;
5832 peer_sid = sksec->sid;
5833 secmark_perm = PACKET__SEND;
5834 }
5835
5836 ad.type = LSM_AUDIT_DATA_NET;
5837 ad.u.net = &net;
5838 ad.u.net->netif = ifindex;
5839 ad.u.net->family = family;
5840 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5841 return NF_DROP;
5842
5843 if (secmark_active)
5844 if (avc_has_perm(&selinux_state,
5845 peer_sid, skb->secmark,
5846 SECCLASS_PACKET, secmark_perm, &ad))
5847 return NF_DROP_ERR(-ECONNREFUSED);
5848
5849 if (peerlbl_active) {
5850 u32 if_sid;
5851 u32 node_sid;
5852
5853 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5854 return NF_DROP;
5855 if (avc_has_perm(&selinux_state,
5856 peer_sid, if_sid,
5857 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5858 return NF_DROP_ERR(-ECONNREFUSED);
5859
5860 if (sel_netnode_sid(addrp, family, &node_sid))
5861 return NF_DROP;
5862 if (avc_has_perm(&selinux_state,
5863 peer_sid, node_sid,
5864 SECCLASS_NODE, NODE__SENDTO, &ad))
5865 return NF_DROP_ERR(-ECONNREFUSED);
5866 }
5867
5868 return NF_ACCEPT;
5869}
5870
5871static unsigned int selinux_ipv4_postroute(void *priv,
5872 struct sk_buff *skb,
5873 const struct nf_hook_state *state)
5874{
5875 return selinux_ip_postroute(skb, state->out, PF_INET);
5876}
5877
5878#if IS_ENABLED(CONFIG_IPV6)
5879static unsigned int selinux_ipv6_postroute(void *priv,
5880 struct sk_buff *skb,
5881 const struct nf_hook_state *state)
5882{
5883 return selinux_ip_postroute(skb, state->out, PF_INET6);
5884}
5885#endif /* IPV6 */
5886
5887#endif /* CONFIG_NETFILTER */
5888
5889static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5890{
5891 return selinux_nlmsg_perm(sk, skb);
5892}
5893
5894static int ipc_alloc_security(struct kern_ipc_perm *perm,
5895 u16 sclass)
5896{
5897 struct ipc_security_struct *isec;
5898
5899 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5900 if (!isec)
5901 return -ENOMEM;
5902
5903 isec->sclass = sclass;
5904 isec->sid = current_sid();
5905 perm->security = isec;
5906
5907 return 0;
5908}
5909
5910static void ipc_free_security(struct kern_ipc_perm *perm)
5911{
5912 struct ipc_security_struct *isec = perm->security;
5913 perm->security = NULL;
5914 kfree(isec);
5915}
5916
5917static int msg_msg_alloc_security(struct msg_msg *msg)
5918{
5919 struct msg_security_struct *msec;
5920
5921 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5922 if (!msec)
5923 return -ENOMEM;
5924
5925 msec->sid = SECINITSID_UNLABELED;
5926 msg->security = msec;
5927
5928 return 0;
5929}
5930
5931static void msg_msg_free_security(struct msg_msg *msg)
5932{
5933 struct msg_security_struct *msec = msg->security;
5934
5935 msg->security = NULL;
5936 kfree(msec);
5937}
5938
5939static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5940 u32 perms)
5941{
5942 struct ipc_security_struct *isec;
5943 struct common_audit_data ad;
5944 u32 sid = current_sid();
5945
5946 isec = ipc_perms->security;
5947
5948 ad.type = LSM_AUDIT_DATA_IPC;
5949 ad.u.ipc_id = ipc_perms->key;
5950
5951 return avc_has_perm(&selinux_state,
5952 sid, isec->sid, isec->sclass, perms, &ad);
5953}
5954
5955static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5956{
5957 return msg_msg_alloc_security(msg);
5958}
5959
5960static void selinux_msg_msg_free_security(struct msg_msg *msg)
5961{
5962 msg_msg_free_security(msg);
5963}
5964
5965/* message queue security operations */
5966static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5967{
5968 struct ipc_security_struct *isec;
5969 struct common_audit_data ad;
5970 u32 sid = current_sid();
5971 int rc;
5972
5973 rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5974 if (rc)
5975 return rc;
5976
5977 isec = msq->security;
5978
5979 ad.type = LSM_AUDIT_DATA_IPC;
5980 ad.u.ipc_id = msq->key;
5981
5982 rc = avc_has_perm(&selinux_state,
5983 sid, isec->sid, SECCLASS_MSGQ,
5984 MSGQ__CREATE, &ad);
5985 if (rc) {
5986 ipc_free_security(msq);
5987 return rc;
5988 }
5989 return 0;
5990}
5991
5992static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5993{
5994 ipc_free_security(msq);
5995}
5996
5997static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5998{
5999 struct ipc_security_struct *isec;
6000 struct common_audit_data ad;
6001 u32 sid = current_sid();
6002
6003 isec = msq->security;
6004
6005 ad.type = LSM_AUDIT_DATA_IPC;
6006 ad.u.ipc_id = msq->key;
6007
6008 return avc_has_perm(&selinux_state,
6009 sid, isec->sid, SECCLASS_MSGQ,
6010 MSGQ__ASSOCIATE, &ad);
6011}
6012
6013static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6014{
6015 int err;
6016 int perms;
6017
6018 switch (cmd) {
6019 case IPC_INFO:
6020 case MSG_INFO:
6021 /* No specific object, just general system-wide information. */
6022 return avc_has_perm(&selinux_state,
6023 current_sid(), SECINITSID_KERNEL,
6024 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6025 case IPC_STAT:
6026 case MSG_STAT:
6027 case MSG_STAT_ANY:
6028 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6029 break;
6030 case IPC_SET:
6031 perms = MSGQ__SETATTR;
6032 break;
6033 case IPC_RMID:
6034 perms = MSGQ__DESTROY;
6035 break;
6036 default:
6037 return 0;
6038 }
6039
6040 err = ipc_has_perm(msq, perms);
6041 return err;
6042}
6043
6044static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6045{
6046 struct ipc_security_struct *isec;
6047 struct msg_security_struct *msec;
6048 struct common_audit_data ad;
6049 u32 sid = current_sid();
6050 int rc;
6051
6052 isec = msq->security;
6053 msec = msg->security;
6054
6055 /*
6056 * First time through, need to assign label to the message
6057 */
6058 if (msec->sid == SECINITSID_UNLABELED) {
6059 /*
6060 * Compute new sid based on current process and
6061 * message queue this message will be stored in
6062 */
6063 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6064 SECCLASS_MSG, NULL, &msec->sid);
6065 if (rc)
6066 return rc;
6067 }
6068
6069 ad.type = LSM_AUDIT_DATA_IPC;
6070 ad.u.ipc_id = msq->key;
6071
6072 /* Can this process write to the queue? */
6073 rc = avc_has_perm(&selinux_state,
6074 sid, isec->sid, SECCLASS_MSGQ,
6075 MSGQ__WRITE, &ad);
6076 if (!rc)
6077 /* Can this process send the message */
6078 rc = avc_has_perm(&selinux_state,
6079 sid, msec->sid, SECCLASS_MSG,
6080 MSG__SEND, &ad);
6081 if (!rc)
6082 /* Can the message be put in the queue? */
6083 rc = avc_has_perm(&selinux_state,
6084 msec->sid, isec->sid, SECCLASS_MSGQ,
6085 MSGQ__ENQUEUE, &ad);
6086
6087 return rc;
6088}
6089
6090static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6091 struct task_struct *target,
6092 long type, int mode)
6093{
6094 struct ipc_security_struct *isec;
6095 struct msg_security_struct *msec;
6096 struct common_audit_data ad;
6097 u32 sid = task_sid(target);
6098 int rc;
6099
6100 isec = msq->security;
6101 msec = msg->security;
6102
6103 ad.type = LSM_AUDIT_DATA_IPC;
6104 ad.u.ipc_id = msq->key;
6105
6106 rc = avc_has_perm(&selinux_state,
6107 sid, isec->sid,
6108 SECCLASS_MSGQ, MSGQ__READ, &ad);
6109 if (!rc)
6110 rc = avc_has_perm(&selinux_state,
6111 sid, msec->sid,
6112 SECCLASS_MSG, MSG__RECEIVE, &ad);
6113 return rc;
6114}
6115
6116/* Shared Memory security operations */
6117static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6118{
6119 struct ipc_security_struct *isec;
6120 struct common_audit_data ad;
6121 u32 sid = current_sid();
6122 int rc;
6123
6124 rc = ipc_alloc_security(shp, SECCLASS_SHM);
6125 if (rc)
6126 return rc;
6127
6128 isec = shp->security;
6129
6130 ad.type = LSM_AUDIT_DATA_IPC;
6131 ad.u.ipc_id = shp->key;
6132
6133 rc = avc_has_perm(&selinux_state,
6134 sid, isec->sid, SECCLASS_SHM,
6135 SHM__CREATE, &ad);
6136 if (rc) {
6137 ipc_free_security(shp);
6138 return rc;
6139 }
6140 return 0;
6141}
6142
6143static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6144{
6145 ipc_free_security(shp);
6146}
6147
6148static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6149{
6150 struct ipc_security_struct *isec;
6151 struct common_audit_data ad;
6152 u32 sid = current_sid();
6153
6154 isec = shp->security;
6155
6156 ad.type = LSM_AUDIT_DATA_IPC;
6157 ad.u.ipc_id = shp->key;
6158
6159 return avc_has_perm(&selinux_state,
6160 sid, isec->sid, SECCLASS_SHM,
6161 SHM__ASSOCIATE, &ad);
6162}
6163
6164/* Note, at this point, shp is locked down */
6165static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6166{
6167 int perms;
6168 int err;
6169
6170 switch (cmd) {
6171 case IPC_INFO:
6172 case SHM_INFO:
6173 /* No specific object, just general system-wide information. */
6174 return avc_has_perm(&selinux_state,
6175 current_sid(), SECINITSID_KERNEL,
6176 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6177 case IPC_STAT:
6178 case SHM_STAT:
6179 case SHM_STAT_ANY:
6180 perms = SHM__GETATTR | SHM__ASSOCIATE;
6181 break;
6182 case IPC_SET:
6183 perms = SHM__SETATTR;
6184 break;
6185 case SHM_LOCK:
6186 case SHM_UNLOCK:
6187 perms = SHM__LOCK;
6188 break;
6189 case IPC_RMID:
6190 perms = SHM__DESTROY;
6191 break;
6192 default:
6193 return 0;
6194 }
6195
6196 err = ipc_has_perm(shp, perms);
6197 return err;
6198}
6199
6200static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6201 char __user *shmaddr, int shmflg)
6202{
6203 u32 perms;
6204
6205 if (shmflg & SHM_RDONLY)
6206 perms = SHM__READ;
6207 else
6208 perms = SHM__READ | SHM__WRITE;
6209
6210 return ipc_has_perm(shp, perms);
6211}
6212
6213/* Semaphore security operations */
6214static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6215{
6216 struct ipc_security_struct *isec;
6217 struct common_audit_data ad;
6218 u32 sid = current_sid();
6219 int rc;
6220
6221 rc = ipc_alloc_security(sma, SECCLASS_SEM);
6222 if (rc)
6223 return rc;
6224
6225 isec = sma->security;
6226
6227 ad.type = LSM_AUDIT_DATA_IPC;
6228 ad.u.ipc_id = sma->key;
6229
6230 rc = avc_has_perm(&selinux_state,
6231 sid, isec->sid, SECCLASS_SEM,
6232 SEM__CREATE, &ad);
6233 if (rc) {
6234 ipc_free_security(sma);
6235 return rc;
6236 }
6237 return 0;
6238}
6239
6240static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6241{
6242 ipc_free_security(sma);
6243}
6244
6245static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6246{
6247 struct ipc_security_struct *isec;
6248 struct common_audit_data ad;
6249 u32 sid = current_sid();
6250
6251 isec = sma->security;
6252
6253 ad.type = LSM_AUDIT_DATA_IPC;
6254 ad.u.ipc_id = sma->key;
6255
6256 return avc_has_perm(&selinux_state,
6257 sid, isec->sid, SECCLASS_SEM,
6258 SEM__ASSOCIATE, &ad);
6259}
6260
6261/* Note, at this point, sma is locked down */
6262static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6263{
6264 int err;
6265 u32 perms;
6266
6267 switch (cmd) {
6268 case IPC_INFO:
6269 case SEM_INFO:
6270 /* No specific object, just general system-wide information. */
6271 return avc_has_perm(&selinux_state,
6272 current_sid(), SECINITSID_KERNEL,
6273 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6274 case GETPID:
6275 case GETNCNT:
6276 case GETZCNT:
6277 perms = SEM__GETATTR;
6278 break;
6279 case GETVAL:
6280 case GETALL:
6281 perms = SEM__READ;
6282 break;
6283 case SETVAL:
6284 case SETALL:
6285 perms = SEM__WRITE;
6286 break;
6287 case IPC_RMID:
6288 perms = SEM__DESTROY;
6289 break;
6290 case IPC_SET:
6291 perms = SEM__SETATTR;
6292 break;
6293 case IPC_STAT:
6294 case SEM_STAT:
6295 case SEM_STAT_ANY:
6296 perms = SEM__GETATTR | SEM__ASSOCIATE;
6297 break;
6298 default:
6299 return 0;
6300 }
6301
6302 err = ipc_has_perm(sma, perms);
6303 return err;
6304}
6305
6306static int selinux_sem_semop(struct kern_ipc_perm *sma,
6307 struct sembuf *sops, unsigned nsops, int alter)
6308{
6309 u32 perms;
6310
6311 if (alter)
6312 perms = SEM__READ | SEM__WRITE;
6313 else
6314 perms = SEM__READ;
6315
6316 return ipc_has_perm(sma, perms);
6317}
6318
6319static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6320{
6321 u32 av = 0;
6322
6323 av = 0;
6324 if (flag & S_IRUGO)
6325 av |= IPC__UNIX_READ;
6326 if (flag & S_IWUGO)
6327 av |= IPC__UNIX_WRITE;
6328
6329 if (av == 0)
6330 return 0;
6331
6332 return ipc_has_perm(ipcp, av);
6333}
6334
6335static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6336{
6337 struct ipc_security_struct *isec = ipcp->security;
6338 *secid = isec->sid;
6339}
6340
6341static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6342{
6343 if (inode)
6344 inode_doinit_with_dentry(inode, dentry);
6345}
6346
6347static int selinux_getprocattr(struct task_struct *p,
6348 char *name, char **value)
6349{
6350 const struct task_security_struct *__tsec;
6351 u32 sid;
6352 int error;
6353 unsigned len;
6354
6355 rcu_read_lock();
6356 __tsec = __task_cred(p)->security;
6357
6358 if (current != p) {
6359 error = avc_has_perm(&selinux_state,
6360 current_sid(), __tsec->sid,
6361 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362 if (error)
6363 goto bad;
6364 }
6365
6366 if (!strcmp(name, "current"))
6367 sid = __tsec->sid;
6368 else if (!strcmp(name, "prev"))
6369 sid = __tsec->osid;
6370 else if (!strcmp(name, "exec"))
6371 sid = __tsec->exec_sid;
6372 else if (!strcmp(name, "fscreate"))
6373 sid = __tsec->create_sid;
6374 else if (!strcmp(name, "keycreate"))
6375 sid = __tsec->keycreate_sid;
6376 else if (!strcmp(name, "sockcreate"))
6377 sid = __tsec->sockcreate_sid;
6378 else {
6379 error = -EINVAL;
6380 goto bad;
6381 }
6382 rcu_read_unlock();
6383
6384 if (!sid)
6385 return 0;
6386
6387 error = security_sid_to_context(&selinux_state, sid, value, &len);
6388 if (error)
6389 return error;
6390 return len;
6391
6392bad:
6393 rcu_read_unlock();
6394 return error;
6395}
6396
6397static int selinux_setprocattr(const char *name, void *value, size_t size)
6398{
6399 struct task_security_struct *tsec;
6400 struct cred *new;
6401 u32 mysid = current_sid(), sid = 0, ptsid;
6402 int error;
6403 char *str = value;
6404
6405 /*
6406 * Basic control over ability to set these attributes at all.
6407 */
6408 if (!strcmp(name, "exec"))
6409 error = avc_has_perm(&selinux_state,
6410 mysid, mysid, SECCLASS_PROCESS,
6411 PROCESS__SETEXEC, NULL);
6412 else if (!strcmp(name, "fscreate"))
6413 error = avc_has_perm(&selinux_state,
6414 mysid, mysid, SECCLASS_PROCESS,
6415 PROCESS__SETFSCREATE, NULL);
6416 else if (!strcmp(name, "keycreate"))
6417 error = avc_has_perm(&selinux_state,
6418 mysid, mysid, SECCLASS_PROCESS,
6419 PROCESS__SETKEYCREATE, NULL);
6420 else if (!strcmp(name, "sockcreate"))
6421 error = avc_has_perm(&selinux_state,
6422 mysid, mysid, SECCLASS_PROCESS,
6423 PROCESS__SETSOCKCREATE, NULL);
6424 else if (!strcmp(name, "current"))
6425 error = avc_has_perm(&selinux_state,
6426 mysid, mysid, SECCLASS_PROCESS,
6427 PROCESS__SETCURRENT, NULL);
6428 else
6429 error = -EINVAL;
6430 if (error)
6431 return error;
6432
6433 /* Obtain a SID for the context, if one was specified. */
6434 if (size && str[0] && str[0] != '\n') {
6435 if (str[size-1] == '\n') {
6436 str[size-1] = 0;
6437 size--;
6438 }
6439 error = security_context_to_sid(&selinux_state, value, size,
6440 &sid, GFP_KERNEL);
6441 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6442 if (!has_cap_mac_admin(true)) {
6443 struct audit_buffer *ab;
6444 size_t audit_size;
6445
6446 /* We strip a nul only if it is at the end, otherwise the
6447 * context contains a nul and we should audit that */
6448 if (str[size - 1] == '\0')
6449 audit_size = size - 1;
6450 else
6451 audit_size = size;
6452 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6453 audit_log_format(ab, "op=fscreate invalid_context=");
6454 audit_log_n_untrustedstring(ab, value, audit_size);
6455 audit_log_end(ab);
6456
6457 return error;
6458 }
6459 error = security_context_to_sid_force(
6460 &selinux_state,
6461 value, size, &sid);
6462 }
6463 if (error)
6464 return error;
6465 }
6466
6467 new = prepare_creds();
6468 if (!new)
6469 return -ENOMEM;
6470
6471 /* Permission checking based on the specified context is
6472 performed during the actual operation (execve,
6473 open/mkdir/...), when we know the full context of the
6474 operation. See selinux_bprm_set_creds for the execve
6475 checks and may_create for the file creation checks. The
6476 operation will then fail if the context is not permitted. */
6477 tsec = new->security;
6478 if (!strcmp(name, "exec")) {
6479 tsec->exec_sid = sid;
6480 } else if (!strcmp(name, "fscreate")) {
6481 tsec->create_sid = sid;
6482 } else if (!strcmp(name, "keycreate")) {
6483 error = avc_has_perm(&selinux_state,
6484 mysid, sid, SECCLASS_KEY, KEY__CREATE,
6485 NULL);
6486 if (error)
6487 goto abort_change;
6488 tsec->keycreate_sid = sid;
6489 } else if (!strcmp(name, "sockcreate")) {
6490 tsec->sockcreate_sid = sid;
6491 } else if (!strcmp(name, "current")) {
6492 error = -EINVAL;
6493 if (sid == 0)
6494 goto abort_change;
6495
6496 /* Only allow single threaded processes to change context */
6497 error = -EPERM;
6498 if (!current_is_single_threaded()) {
6499 error = security_bounded_transition(&selinux_state,
6500 tsec->sid, sid);
6501 if (error)
6502 goto abort_change;
6503 }
6504
6505 /* Check permissions for the transition. */
6506 error = avc_has_perm(&selinux_state,
6507 tsec->sid, sid, SECCLASS_PROCESS,
6508 PROCESS__DYNTRANSITION, NULL);
6509 if (error)
6510 goto abort_change;
6511
6512 /* Check for ptracing, and update the task SID if ok.
6513 Otherwise, leave SID unchanged and fail. */
6514 ptsid = ptrace_parent_sid();
6515 if (ptsid != 0) {
6516 error = avc_has_perm(&selinux_state,
6517 ptsid, sid, SECCLASS_PROCESS,
6518 PROCESS__PTRACE, NULL);
6519 if (error)
6520 goto abort_change;
6521 }
6522
6523 tsec->sid = sid;
6524 } else {
6525 error = -EINVAL;
6526 goto abort_change;
6527 }
6528
6529 commit_creds(new);
6530 return size;
6531
6532abort_change:
6533 abort_creds(new);
6534 return error;
6535}
6536
6537static int selinux_ismaclabel(const char *name)
6538{
6539 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6540}
6541
6542static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6543{
6544 return security_sid_to_context(&selinux_state, secid,
6545 secdata, seclen);
6546}
6547
6548static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6549{
6550 return security_context_to_sid(&selinux_state, secdata, seclen,
6551 secid, GFP_KERNEL);
6552}
6553
6554static void selinux_release_secctx(char *secdata, u32 seclen)
6555{
6556 kfree(secdata);
6557}
6558
6559static void selinux_inode_invalidate_secctx(struct inode *inode)
6560{
6561 struct inode_security_struct *isec = inode->i_security;
6562
6563 spin_lock(&isec->lock);
6564 isec->initialized = LABEL_INVALID;
6565 spin_unlock(&isec->lock);
6566}
6567
6568/*
6569 * called with inode->i_mutex locked
6570 */
6571static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6572{
6573 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6574}
6575
6576/*
6577 * called with inode->i_mutex locked
6578 */
6579static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6580{
6581 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6582}
6583
6584static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6585{
6586 int len = 0;
6587 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6588 ctx, true);
6589 if (len < 0)
6590 return len;
6591 *ctxlen = len;
6592 return 0;
6593}
6594#ifdef CONFIG_KEYS
6595
6596static int selinux_key_alloc(struct key *k, const struct cred *cred,
6597 unsigned long flags)
6598{
6599 const struct task_security_struct *tsec;
6600 struct key_security_struct *ksec;
6601
6602 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6603 if (!ksec)
6604 return -ENOMEM;
6605
6606 tsec = cred->security;
6607 if (tsec->keycreate_sid)
6608 ksec->sid = tsec->keycreate_sid;
6609 else
6610 ksec->sid = tsec->sid;
6611
6612 k->security = ksec;
6613 return 0;
6614}
6615
6616static void selinux_key_free(struct key *k)
6617{
6618 struct key_security_struct *ksec = k->security;
6619
6620 k->security = NULL;
6621 kfree(ksec);
6622}
6623
6624static int selinux_key_permission(key_ref_t key_ref,
6625 const struct cred *cred,
6626 unsigned perm)
6627{
6628 struct key *key;
6629 struct key_security_struct *ksec;
6630 u32 sid;
6631
6632 /* if no specific permissions are requested, we skip the
6633 permission check. No serious, additional covert channels
6634 appear to be created. */
6635 if (perm == 0)
6636 return 0;
6637
6638 sid = cred_sid(cred);
6639
6640 key = key_ref_to_ptr(key_ref);
6641 ksec = key->security;
6642
6643 return avc_has_perm(&selinux_state,
6644 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6645}
6646
6647static int selinux_key_getsecurity(struct key *key, char **_buffer)
6648{
6649 struct key_security_struct *ksec = key->security;
6650 char *context = NULL;
6651 unsigned len;
6652 int rc;
6653
6654 rc = security_sid_to_context(&selinux_state, ksec->sid,
6655 &context, &len);
6656 if (!rc)
6657 rc = len;
6658 *_buffer = context;
6659 return rc;
6660}
6661#endif
6662
6663#ifdef CONFIG_SECURITY_INFINIBAND
6664static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6665{
6666 struct common_audit_data ad;
6667 int err;
6668 u32 sid = 0;
6669 struct ib_security_struct *sec = ib_sec;
6670 struct lsm_ibpkey_audit ibpkey;
6671
6672 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6673 if (err)
6674 return err;
6675
6676 ad.type = LSM_AUDIT_DATA_IBPKEY;
6677 ibpkey.subnet_prefix = subnet_prefix;
6678 ibpkey.pkey = pkey_val;
6679 ad.u.ibpkey = &ibpkey;
6680 return avc_has_perm(&selinux_state,
6681 sec->sid, sid,
6682 SECCLASS_INFINIBAND_PKEY,
6683 INFINIBAND_PKEY__ACCESS, &ad);
6684}
6685
6686static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6687 u8 port_num)
6688{
6689 struct common_audit_data ad;
6690 int err;
6691 u32 sid = 0;
6692 struct ib_security_struct *sec = ib_sec;
6693 struct lsm_ibendport_audit ibendport;
6694
6695 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6696 &sid);
6697
6698 if (err)
6699 return err;
6700
6701 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6702 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6703 ibendport.port = port_num;
6704 ad.u.ibendport = &ibendport;
6705 return avc_has_perm(&selinux_state,
6706 sec->sid, sid,
6707 SECCLASS_INFINIBAND_ENDPORT,
6708 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6709}
6710
6711static int selinux_ib_alloc_security(void **ib_sec)
6712{
6713 struct ib_security_struct *sec;
6714
6715 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6716 if (!sec)
6717 return -ENOMEM;
6718 sec->sid = current_sid();
6719
6720 *ib_sec = sec;
6721 return 0;
6722}
6723
6724static void selinux_ib_free_security(void *ib_sec)
6725{
6726 kfree(ib_sec);
6727}
6728#endif
6729
6730#ifdef CONFIG_BPF_SYSCALL
6731static int selinux_bpf(int cmd, union bpf_attr *attr,
6732 unsigned int size)
6733{
6734 u32 sid = current_sid();
6735 int ret;
6736
6737 switch (cmd) {
6738 case BPF_MAP_CREATE:
6739 ret = avc_has_perm(&selinux_state,
6740 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6741 NULL);
6742 break;
6743 case BPF_PROG_LOAD:
6744 ret = avc_has_perm(&selinux_state,
6745 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6746 NULL);
6747 break;
6748 default:
6749 ret = 0;
6750 break;
6751 }
6752
6753 return ret;
6754}
6755
6756static u32 bpf_map_fmode_to_av(fmode_t fmode)
6757{
6758 u32 av = 0;
6759
6760 if (fmode & FMODE_READ)
6761 av |= BPF__MAP_READ;
6762 if (fmode & FMODE_WRITE)
6763 av |= BPF__MAP_WRITE;
6764 return av;
6765}
6766
6767/* This function will check the file pass through unix socket or binder to see
6768 * if it is a bpf related object. And apply correspinding checks on the bpf
6769 * object based on the type. The bpf maps and programs, not like other files and
6770 * socket, are using a shared anonymous inode inside the kernel as their inode.
6771 * So checking that inode cannot identify if the process have privilege to
6772 * access the bpf object and that's why we have to add this additional check in
6773 * selinux_file_receive and selinux_binder_transfer_files.
6774 */
6775static int bpf_fd_pass(struct file *file, u32 sid)
6776{
6777 struct bpf_security_struct *bpfsec;
6778 struct bpf_prog *prog;
6779 struct bpf_map *map;
6780 int ret;
6781
6782 if (file->f_op == &bpf_map_fops) {
6783 map = file->private_data;
6784 bpfsec = map->security;
6785 ret = avc_has_perm(&selinux_state,
6786 sid, bpfsec->sid, SECCLASS_BPF,
6787 bpf_map_fmode_to_av(file->f_mode), NULL);
6788 if (ret)
6789 return ret;
6790 } else if (file->f_op == &bpf_prog_fops) {
6791 prog = file->private_data;
6792 bpfsec = prog->aux->security;
6793 ret = avc_has_perm(&selinux_state,
6794 sid, bpfsec->sid, SECCLASS_BPF,
6795 BPF__PROG_RUN, NULL);
6796 if (ret)
6797 return ret;
6798 }
6799 return 0;
6800}
6801
6802static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6803{
6804 u32 sid = current_sid();
6805 struct bpf_security_struct *bpfsec;
6806
6807 bpfsec = map->security;
6808 return avc_has_perm(&selinux_state,
6809 sid, bpfsec->sid, SECCLASS_BPF,
6810 bpf_map_fmode_to_av(fmode), NULL);
6811}
6812
6813static int selinux_bpf_prog(struct bpf_prog *prog)
6814{
6815 u32 sid = current_sid();
6816 struct bpf_security_struct *bpfsec;
6817
6818 bpfsec = prog->aux->security;
6819 return avc_has_perm(&selinux_state,
6820 sid, bpfsec->sid, SECCLASS_BPF,
6821 BPF__PROG_RUN, NULL);
6822}
6823
6824static int selinux_bpf_map_alloc(struct bpf_map *map)
6825{
6826 struct bpf_security_struct *bpfsec;
6827
6828 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6829 if (!bpfsec)
6830 return -ENOMEM;
6831
6832 bpfsec->sid = current_sid();
6833 map->security = bpfsec;
6834
6835 return 0;
6836}
6837
6838static void selinux_bpf_map_free(struct bpf_map *map)
6839{
6840 struct bpf_security_struct *bpfsec = map->security;
6841
6842 map->security = NULL;
6843 kfree(bpfsec);
6844}
6845
6846static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6847{
6848 struct bpf_security_struct *bpfsec;
6849
6850 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6851 if (!bpfsec)
6852 return -ENOMEM;
6853
6854 bpfsec->sid = current_sid();
6855 aux->security = bpfsec;
6856
6857 return 0;
6858}
6859
6860static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6861{
6862 struct bpf_security_struct *bpfsec = aux->security;
6863
6864 aux->security = NULL;
6865 kfree(bpfsec);
6866}
6867#endif
6868
6869static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6870 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6871 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6872 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6873 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6874
6875 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6876 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6877 LSM_HOOK_INIT(capget, selinux_capget),
6878 LSM_HOOK_INIT(capset, selinux_capset),
6879 LSM_HOOK_INIT(capable, selinux_capable),
6880 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6881 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6882 LSM_HOOK_INIT(syslog, selinux_syslog),
6883 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6884
6885 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6886
6887 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6888 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6889 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6890
6891 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6892 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6893 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6894 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6895 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6896 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6897 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6898 LSM_HOOK_INIT(sb_mount, selinux_mount),
6899 LSM_HOOK_INIT(sb_umount, selinux_umount),
6900 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6901 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6902 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6903
6904 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6905 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6906
6907 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6908 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6909 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6910 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6911 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6912 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6913 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6914 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6915 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6916 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6917 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6918 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6919 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6920 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6921 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6922 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6923 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6924 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6925 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6926 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6927 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6928 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6929 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6930 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6931 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6932 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6933 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6934
6935 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6936 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6937 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6938 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6939 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6940 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6941 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6942 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6943 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6944 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6945 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6946 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6947
6948 LSM_HOOK_INIT(file_open, selinux_file_open),
6949
6950 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6951 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6952 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6953 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6954 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6955 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6956 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6957 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6958 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6959 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6960 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6961 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6962 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6963 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6964 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6965 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6966 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6967 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6968 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6969 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6970 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6971 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6972 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6973 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6974
6975 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6976 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6977
6978 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6979 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6980
6981 LSM_HOOK_INIT(msg_queue_alloc_security,
6982 selinux_msg_queue_alloc_security),
6983 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6984 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6985 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6986 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6987 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6988
6989 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6990 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6991 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6992 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6993 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6994
6995 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6996 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6997 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6998 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6999 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7000
7001 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7002
7003 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7004 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7005
7006 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7007 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7008 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7009 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7010 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7011 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7012 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7013 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7014
7015 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7016 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7017
7018 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7019 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7020 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7021 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7022 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7023 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7024 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7025 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7026 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7027 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7028 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7029 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7030 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7031 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7032 LSM_HOOK_INIT(socket_getpeersec_stream,
7033 selinux_socket_getpeersec_stream),
7034 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7035 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7036 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7037 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7038 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7039 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7040 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7041 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7042 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7043 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7044 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7045 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7046 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7047 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7048 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7049 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7050 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7051 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7052 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7053 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7054 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7055 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7056#ifdef CONFIG_SECURITY_INFINIBAND
7057 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7058 LSM_HOOK_INIT(ib_endport_manage_subnet,
7059 selinux_ib_endport_manage_subnet),
7060 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7061 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7062#endif
7063#ifdef CONFIG_SECURITY_NETWORK_XFRM
7064 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7065 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7066 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7067 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7068 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7069 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7070 selinux_xfrm_state_alloc_acquire),
7071 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7072 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7073 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7074 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7075 selinux_xfrm_state_pol_flow_match),
7076 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7077#endif
7078
7079#ifdef CONFIG_KEYS
7080 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7081 LSM_HOOK_INIT(key_free, selinux_key_free),
7082 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7083 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7084#endif
7085
7086#ifdef CONFIG_AUDIT
7087 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7088 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7089 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7090 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7091#endif
7092
7093#ifdef CONFIG_BPF_SYSCALL
7094 LSM_HOOK_INIT(bpf, selinux_bpf),
7095 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7096 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7097 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7098 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7099 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7100 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7101#endif
7102};
7103
7104static __init int selinux_init(void)
7105{
7106 if (!security_module_enable("selinux")) {
7107 selinux_enabled = 0;
7108 return 0;
7109 }
7110
7111 if (!selinux_enabled) {
7112 printk(KERN_INFO "SELinux: Disabled at boot.\n");
7113 return 0;
7114 }
7115
7116 printk(KERN_INFO "SELinux: Initializing.\n");
7117
7118 memset(&selinux_state, 0, sizeof(selinux_state));
7119 enforcing_set(&selinux_state, selinux_enforcing_boot);
7120 selinux_state.checkreqprot = selinux_checkreqprot_boot;
7121 selinux_ss_init(&selinux_state.ss);
7122 selinux_avc_init(&selinux_state.avc);
7123
7124 /* Set the security state for the initial task. */
7125 cred_init_security();
7126
7127 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7128
7129 sel_inode_cache = kmem_cache_create("selinux_inode_security",
7130 sizeof(struct inode_security_struct),
7131 0, SLAB_PANIC, NULL);
7132 file_security_cache = kmem_cache_create("selinux_file_security",
7133 sizeof(struct file_security_struct),
7134 0, SLAB_PANIC, NULL);
7135 avc_init();
7136
7137 avtab_cache_init();
7138
7139 ebitmap_cache_init();
7140
7141 hashtab_cache_init();
7142
7143 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7144
7145 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7146 panic("SELinux: Unable to register AVC netcache callback\n");
7147
7148 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7149 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7150
7151 if (selinux_enforcing_boot)
7152 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
7153 else
7154 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
7155
7156 return 0;
7157}
7158
7159static void delayed_superblock_init(struct super_block *sb, void *unused)
7160{
7161 superblock_doinit(sb, NULL);
7162}
7163
7164void selinux_complete_init(void)
7165{
7166 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
7167
7168 /* Set up any superblocks initialized prior to the policy load. */
7169 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
7170 iterate_supers(delayed_superblock_init, NULL);
7171}
7172
7173/* SELinux requires early initialization in order to label
7174 all processes and objects when they are created. */
7175security_initcall(selinux_init);
7176
7177#if defined(CONFIG_NETFILTER)
7178
7179static const struct nf_hook_ops selinux_nf_ops[] = {
7180 {
7181 .hook = selinux_ipv4_postroute,
7182 .pf = NFPROTO_IPV4,
7183 .hooknum = NF_INET_POST_ROUTING,
7184 .priority = NF_IP_PRI_SELINUX_LAST,
7185 },
7186 {
7187 .hook = selinux_ipv4_forward,
7188 .pf = NFPROTO_IPV4,
7189 .hooknum = NF_INET_FORWARD,
7190 .priority = NF_IP_PRI_SELINUX_FIRST,
7191 },
7192 {
7193 .hook = selinux_ipv4_output,
7194 .pf = NFPROTO_IPV4,
7195 .hooknum = NF_INET_LOCAL_OUT,
7196 .priority = NF_IP_PRI_SELINUX_FIRST,
7197 },
7198#if IS_ENABLED(CONFIG_IPV6)
7199 {
7200 .hook = selinux_ipv6_postroute,
7201 .pf = NFPROTO_IPV6,
7202 .hooknum = NF_INET_POST_ROUTING,
7203 .priority = NF_IP6_PRI_SELINUX_LAST,
7204 },
7205 {
7206 .hook = selinux_ipv6_forward,
7207 .pf = NFPROTO_IPV6,
7208 .hooknum = NF_INET_FORWARD,
7209 .priority = NF_IP6_PRI_SELINUX_FIRST,
7210 },
7211 {
7212 .hook = selinux_ipv6_output,
7213 .pf = NFPROTO_IPV6,
7214 .hooknum = NF_INET_LOCAL_OUT,
7215 .priority = NF_IP6_PRI_SELINUX_FIRST,
7216 },
7217#endif /* IPV6 */
7218};
7219
7220static int __net_init selinux_nf_register(struct net *net)
7221{
7222 return nf_register_net_hooks(net, selinux_nf_ops,
7223 ARRAY_SIZE(selinux_nf_ops));
7224}
7225
7226static void __net_exit selinux_nf_unregister(struct net *net)
7227{
7228 nf_unregister_net_hooks(net, selinux_nf_ops,
7229 ARRAY_SIZE(selinux_nf_ops));
7230}
7231
7232static struct pernet_operations selinux_net_ops = {
7233 .init = selinux_nf_register,
7234 .exit = selinux_nf_unregister,
7235};
7236
7237static int __init selinux_nf_ip_init(void)
7238{
7239 int err;
7240
7241 if (!selinux_enabled)
7242 return 0;
7243
7244 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
7245
7246 err = register_pernet_subsys(&selinux_net_ops);
7247 if (err)
7248 panic("SELinux: register_pernet_subsys: error %d\n", err);
7249
7250 return 0;
7251}
7252__initcall(selinux_nf_ip_init);
7253
7254#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7255static void selinux_nf_ip_exit(void)
7256{
7257 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
7258
7259 unregister_pernet_subsys(&selinux_net_ops);
7260}
7261#endif
7262
7263#else /* CONFIG_NETFILTER */
7264
7265#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7266#define selinux_nf_ip_exit()
7267#endif
7268
7269#endif /* CONFIG_NETFILTER */
7270
7271#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7272int selinux_disable(struct selinux_state *state)
7273{
7274 if (state->initialized) {
7275 /* Not permitted after initial policy load. */
7276 return -EINVAL;
7277 }
7278
7279 if (state->disabled) {
7280 /* Only do this once. */
7281 return -EINVAL;
7282 }
7283
7284 state->disabled = 1;
7285
7286 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
7287
7288 selinux_enabled = 0;
7289
7290 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7291
7292 /* Try to destroy the avc node cache */
7293 avc_disable();
7294
7295 /* Unregister netfilter hooks. */
7296 selinux_nf_ip_exit();
7297
7298 /* Unregister selinuxfs. */
7299 exit_sel_fs();
7300
7301 return 0;
7302}
7303#endif
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/security.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/sock.h>
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/quota.h>
70#include <linux/un.h> /* for Unix socket types */
71#include <net/af_unix.h> /* for Unix socket types */
72#include <linux/parser.h>
73#include <linux/nfs_mount.h>
74#include <net/ipv6.h>
75#include <linux/hugetlb.h>
76#include <linux/personality.h>
77#include <linux/audit.h>
78#include <linux/string.h>
79#include <linux/selinux.h>
80#include <linux/mutex.h>
81#include <linux/posix-timers.h>
82#include <linux/syslog.h>
83#include <linux/user_namespace.h>
84#include <linux/export.h>
85#include <linux/msg.h>
86#include <linux/shm.h>
87
88#include "avc.h"
89#include "objsec.h"
90#include "netif.h"
91#include "netnode.h"
92#include "netport.h"
93#include "xfrm.h"
94#include "netlabel.h"
95#include "audit.h"
96#include "avc_ss.h"
97
98extern struct security_operations *security_ops;
99
100/* SECMARK reference count */
101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104int selinux_enforcing;
105
106static int __init enforcing_setup(char *str)
107{
108 unsigned long enforcing;
109 if (!kstrtoul(str, 0, &enforcing))
110 selinux_enforcing = enforcing ? 1 : 0;
111 return 1;
112}
113__setup("enforcing=", enforcing_setup);
114#endif
115
116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119static int __init selinux_enabled_setup(char *str)
120{
121 unsigned long enabled;
122 if (!kstrtoul(str, 0, &enabled))
123 selinux_enabled = enabled ? 1 : 0;
124 return 1;
125}
126__setup("selinux=", selinux_enabled_setup);
127#else
128int selinux_enabled = 1;
129#endif
130
131static struct kmem_cache *sel_inode_cache;
132
133/**
134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135 *
136 * Description:
137 * This function checks the SECMARK reference counter to see if any SECMARK
138 * targets are currently configured, if the reference counter is greater than
139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
140 * enabled, false (0) if SECMARK is disabled. If the always_check_network
141 * policy capability is enabled, SECMARK is always considered enabled.
142 *
143 */
144static int selinux_secmark_enabled(void)
145{
146 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
147}
148
149/**
150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
151 *
152 * Description:
153 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
154 * (1) if any are enabled or false (0) if neither are enabled. If the
155 * always_check_network policy capability is enabled, peer labeling
156 * is always considered enabled.
157 *
158 */
159static int selinux_peerlbl_enabled(void)
160{
161 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
162}
163
164/*
165 * initialise the security for the init task
166 */
167static void cred_init_security(void)
168{
169 struct cred *cred = (struct cred *) current->real_cred;
170 struct task_security_struct *tsec;
171
172 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
173 if (!tsec)
174 panic("SELinux: Failed to initialize initial task.\n");
175
176 tsec->osid = tsec->sid = SECINITSID_KERNEL;
177 cred->security = tsec;
178}
179
180/*
181 * get the security ID of a set of credentials
182 */
183static inline u32 cred_sid(const struct cred *cred)
184{
185 const struct task_security_struct *tsec;
186
187 tsec = cred->security;
188 return tsec->sid;
189}
190
191/*
192 * get the objective security ID of a task
193 */
194static inline u32 task_sid(const struct task_struct *task)
195{
196 u32 sid;
197
198 rcu_read_lock();
199 sid = cred_sid(__task_cred(task));
200 rcu_read_unlock();
201 return sid;
202}
203
204/*
205 * get the subjective security ID of the current task
206 */
207static inline u32 current_sid(void)
208{
209 const struct task_security_struct *tsec = current_security();
210
211 return tsec->sid;
212}
213
214/* Allocate and free functions for each kind of security blob. */
215
216static int inode_alloc_security(struct inode *inode)
217{
218 struct inode_security_struct *isec;
219 u32 sid = current_sid();
220
221 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
222 if (!isec)
223 return -ENOMEM;
224
225 mutex_init(&isec->lock);
226 INIT_LIST_HEAD(&isec->list);
227 isec->inode = inode;
228 isec->sid = SECINITSID_UNLABELED;
229 isec->sclass = SECCLASS_FILE;
230 isec->task_sid = sid;
231 inode->i_security = isec;
232
233 return 0;
234}
235
236static void inode_free_rcu(struct rcu_head *head)
237{
238 struct inode_security_struct *isec;
239
240 isec = container_of(head, struct inode_security_struct, rcu);
241 kmem_cache_free(sel_inode_cache, isec);
242}
243
244static void inode_free_security(struct inode *inode)
245{
246 struct inode_security_struct *isec = inode->i_security;
247 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
248
249 spin_lock(&sbsec->isec_lock);
250 if (!list_empty(&isec->list))
251 list_del_init(&isec->list);
252 spin_unlock(&sbsec->isec_lock);
253
254 /*
255 * The inode may still be referenced in a path walk and
256 * a call to selinux_inode_permission() can be made
257 * after inode_free_security() is called. Ideally, the VFS
258 * wouldn't do this, but fixing that is a much harder
259 * job. For now, simply free the i_security via RCU, and
260 * leave the current inode->i_security pointer intact.
261 * The inode will be freed after the RCU grace period too.
262 */
263 call_rcu(&isec->rcu, inode_free_rcu);
264}
265
266static int file_alloc_security(struct file *file)
267{
268 struct file_security_struct *fsec;
269 u32 sid = current_sid();
270
271 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
272 if (!fsec)
273 return -ENOMEM;
274
275 fsec->sid = sid;
276 fsec->fown_sid = sid;
277 file->f_security = fsec;
278
279 return 0;
280}
281
282static void file_free_security(struct file *file)
283{
284 struct file_security_struct *fsec = file->f_security;
285 file->f_security = NULL;
286 kfree(fsec);
287}
288
289static int superblock_alloc_security(struct super_block *sb)
290{
291 struct superblock_security_struct *sbsec;
292
293 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
294 if (!sbsec)
295 return -ENOMEM;
296
297 mutex_init(&sbsec->lock);
298 INIT_LIST_HEAD(&sbsec->isec_head);
299 spin_lock_init(&sbsec->isec_lock);
300 sbsec->sb = sb;
301 sbsec->sid = SECINITSID_UNLABELED;
302 sbsec->def_sid = SECINITSID_FILE;
303 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
304 sb->s_security = sbsec;
305
306 return 0;
307}
308
309static void superblock_free_security(struct super_block *sb)
310{
311 struct superblock_security_struct *sbsec = sb->s_security;
312 sb->s_security = NULL;
313 kfree(sbsec);
314}
315
316/* The file system's label must be initialized prior to use. */
317
318static const char *labeling_behaviors[7] = {
319 "uses xattr",
320 "uses transition SIDs",
321 "uses task SIDs",
322 "uses genfs_contexts",
323 "not configured for labeling",
324 "uses mountpoint labeling",
325 "uses native labeling",
326};
327
328static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
329
330static inline int inode_doinit(struct inode *inode)
331{
332 return inode_doinit_with_dentry(inode, NULL);
333}
334
335enum {
336 Opt_error = -1,
337 Opt_context = 1,
338 Opt_fscontext = 2,
339 Opt_defcontext = 3,
340 Opt_rootcontext = 4,
341 Opt_labelsupport = 5,
342 Opt_nextmntopt = 6,
343};
344
345#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
346
347static const match_table_t tokens = {
348 {Opt_context, CONTEXT_STR "%s"},
349 {Opt_fscontext, FSCONTEXT_STR "%s"},
350 {Opt_defcontext, DEFCONTEXT_STR "%s"},
351 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
352 {Opt_labelsupport, LABELSUPP_STR},
353 {Opt_error, NULL},
354};
355
356#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
357
358static int may_context_mount_sb_relabel(u32 sid,
359 struct superblock_security_struct *sbsec,
360 const struct cred *cred)
361{
362 const struct task_security_struct *tsec = cred->security;
363 int rc;
364
365 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
366 FILESYSTEM__RELABELFROM, NULL);
367 if (rc)
368 return rc;
369
370 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
371 FILESYSTEM__RELABELTO, NULL);
372 return rc;
373}
374
375static int may_context_mount_inode_relabel(u32 sid,
376 struct superblock_security_struct *sbsec,
377 const struct cred *cred)
378{
379 const struct task_security_struct *tsec = cred->security;
380 int rc;
381 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
382 FILESYSTEM__RELABELFROM, NULL);
383 if (rc)
384 return rc;
385
386 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
387 FILESYSTEM__ASSOCIATE, NULL);
388 return rc;
389}
390
391static int selinux_is_sblabel_mnt(struct super_block *sb)
392{
393 struct superblock_security_struct *sbsec = sb->s_security;
394
395 if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
396 sbsec->behavior == SECURITY_FS_USE_TRANS ||
397 sbsec->behavior == SECURITY_FS_USE_TASK)
398 return 1;
399
400 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
401 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
402 return 1;
403
404 /*
405 * Special handling for rootfs. Is genfs but supports
406 * setting SELinux context on in-core inodes.
407 */
408 if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
409 return 1;
410
411 return 0;
412}
413
414static int sb_finish_set_opts(struct super_block *sb)
415{
416 struct superblock_security_struct *sbsec = sb->s_security;
417 struct dentry *root = sb->s_root;
418 struct inode *root_inode = root->d_inode;
419 int rc = 0;
420
421 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422 /* Make sure that the xattr handler exists and that no
423 error other than -ENODATA is returned by getxattr on
424 the root directory. -ENODATA is ok, as this may be
425 the first boot of the SELinux kernel before we have
426 assigned xattr values to the filesystem. */
427 if (!root_inode->i_op->getxattr) {
428 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429 "xattr support\n", sb->s_id, sb->s_type->name);
430 rc = -EOPNOTSUPP;
431 goto out;
432 }
433 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434 if (rc < 0 && rc != -ENODATA) {
435 if (rc == -EOPNOTSUPP)
436 printk(KERN_WARNING "SELinux: (dev %s, type "
437 "%s) has no security xattr handler\n",
438 sb->s_id, sb->s_type->name);
439 else
440 printk(KERN_WARNING "SELinux: (dev %s, type "
441 "%s) getxattr errno %d\n", sb->s_id,
442 sb->s_type->name, -rc);
443 goto out;
444 }
445 }
446
447 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449 sb->s_id, sb->s_type->name);
450 else
451 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
452 sb->s_id, sb->s_type->name,
453 labeling_behaviors[sbsec->behavior-1]);
454
455 sbsec->flags |= SE_SBINITIALIZED;
456 if (selinux_is_sblabel_mnt(sb))
457 sbsec->flags |= SBLABEL_MNT;
458
459 /* Initialize the root inode. */
460 rc = inode_doinit_with_dentry(root_inode, root);
461
462 /* Initialize any other inodes associated with the superblock, e.g.
463 inodes created prior to initial policy load or inodes created
464 during get_sb by a pseudo filesystem that directly
465 populates itself. */
466 spin_lock(&sbsec->isec_lock);
467next_inode:
468 if (!list_empty(&sbsec->isec_head)) {
469 struct inode_security_struct *isec =
470 list_entry(sbsec->isec_head.next,
471 struct inode_security_struct, list);
472 struct inode *inode = isec->inode;
473 spin_unlock(&sbsec->isec_lock);
474 inode = igrab(inode);
475 if (inode) {
476 if (!IS_PRIVATE(inode))
477 inode_doinit(inode);
478 iput(inode);
479 }
480 spin_lock(&sbsec->isec_lock);
481 list_del_init(&isec->list);
482 goto next_inode;
483 }
484 spin_unlock(&sbsec->isec_lock);
485out:
486 return rc;
487}
488
489/*
490 * This function should allow an FS to ask what it's mount security
491 * options were so it can use those later for submounts, displaying
492 * mount options, or whatever.
493 */
494static int selinux_get_mnt_opts(const struct super_block *sb,
495 struct security_mnt_opts *opts)
496{
497 int rc = 0, i;
498 struct superblock_security_struct *sbsec = sb->s_security;
499 char *context = NULL;
500 u32 len;
501 char tmp;
502
503 security_init_mnt_opts(opts);
504
505 if (!(sbsec->flags & SE_SBINITIALIZED))
506 return -EINVAL;
507
508 if (!ss_initialized)
509 return -EINVAL;
510
511 /* make sure we always check enough bits to cover the mask */
512 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
513
514 tmp = sbsec->flags & SE_MNTMASK;
515 /* count the number of mount options for this sb */
516 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
517 if (tmp & 0x01)
518 opts->num_mnt_opts++;
519 tmp >>= 1;
520 }
521 /* Check if the Label support flag is set */
522 if (sbsec->flags & SBLABEL_MNT)
523 opts->num_mnt_opts++;
524
525 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
526 if (!opts->mnt_opts) {
527 rc = -ENOMEM;
528 goto out_free;
529 }
530
531 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
532 if (!opts->mnt_opts_flags) {
533 rc = -ENOMEM;
534 goto out_free;
535 }
536
537 i = 0;
538 if (sbsec->flags & FSCONTEXT_MNT) {
539 rc = security_sid_to_context(sbsec->sid, &context, &len);
540 if (rc)
541 goto out_free;
542 opts->mnt_opts[i] = context;
543 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
544 }
545 if (sbsec->flags & CONTEXT_MNT) {
546 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
547 if (rc)
548 goto out_free;
549 opts->mnt_opts[i] = context;
550 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
551 }
552 if (sbsec->flags & DEFCONTEXT_MNT) {
553 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
554 if (rc)
555 goto out_free;
556 opts->mnt_opts[i] = context;
557 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
558 }
559 if (sbsec->flags & ROOTCONTEXT_MNT) {
560 struct inode *root = sbsec->sb->s_root->d_inode;
561 struct inode_security_struct *isec = root->i_security;
562
563 rc = security_sid_to_context(isec->sid, &context, &len);
564 if (rc)
565 goto out_free;
566 opts->mnt_opts[i] = context;
567 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
568 }
569 if (sbsec->flags & SBLABEL_MNT) {
570 opts->mnt_opts[i] = NULL;
571 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
572 }
573
574 BUG_ON(i != opts->num_mnt_opts);
575
576 return 0;
577
578out_free:
579 security_free_mnt_opts(opts);
580 return rc;
581}
582
583static int bad_option(struct superblock_security_struct *sbsec, char flag,
584 u32 old_sid, u32 new_sid)
585{
586 char mnt_flags = sbsec->flags & SE_MNTMASK;
587
588 /* check if the old mount command had the same options */
589 if (sbsec->flags & SE_SBINITIALIZED)
590 if (!(sbsec->flags & flag) ||
591 (old_sid != new_sid))
592 return 1;
593
594 /* check if we were passed the same options twice,
595 * aka someone passed context=a,context=b
596 */
597 if (!(sbsec->flags & SE_SBINITIALIZED))
598 if (mnt_flags & flag)
599 return 1;
600 return 0;
601}
602
603/*
604 * Allow filesystems with binary mount data to explicitly set mount point
605 * labeling information.
606 */
607static int selinux_set_mnt_opts(struct super_block *sb,
608 struct security_mnt_opts *opts,
609 unsigned long kern_flags,
610 unsigned long *set_kern_flags)
611{
612 const struct cred *cred = current_cred();
613 int rc = 0, i;
614 struct superblock_security_struct *sbsec = sb->s_security;
615 const char *name = sb->s_type->name;
616 struct inode *inode = sbsec->sb->s_root->d_inode;
617 struct inode_security_struct *root_isec = inode->i_security;
618 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
619 u32 defcontext_sid = 0;
620 char **mount_options = opts->mnt_opts;
621 int *flags = opts->mnt_opts_flags;
622 int num_opts = opts->num_mnt_opts;
623
624 mutex_lock(&sbsec->lock);
625
626 if (!ss_initialized) {
627 if (!num_opts) {
628 /* Defer initialization until selinux_complete_init,
629 after the initial policy is loaded and the security
630 server is ready to handle calls. */
631 goto out;
632 }
633 rc = -EINVAL;
634 printk(KERN_WARNING "SELinux: Unable to set superblock options "
635 "before the security server is initialized\n");
636 goto out;
637 }
638 if (kern_flags && !set_kern_flags) {
639 /* Specifying internal flags without providing a place to
640 * place the results is not allowed */
641 rc = -EINVAL;
642 goto out;
643 }
644
645 /*
646 * Binary mount data FS will come through this function twice. Once
647 * from an explicit call and once from the generic calls from the vfs.
648 * Since the generic VFS calls will not contain any security mount data
649 * we need to skip the double mount verification.
650 *
651 * This does open a hole in which we will not notice if the first
652 * mount using this sb set explict options and a second mount using
653 * this sb does not set any security options. (The first options
654 * will be used for both mounts)
655 */
656 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
657 && (num_opts == 0))
658 goto out;
659
660 /*
661 * parse the mount options, check if they are valid sids.
662 * also check if someone is trying to mount the same sb more
663 * than once with different security options.
664 */
665 for (i = 0; i < num_opts; i++) {
666 u32 sid;
667
668 if (flags[i] == SBLABEL_MNT)
669 continue;
670 rc = security_context_to_sid(mount_options[i],
671 strlen(mount_options[i]), &sid, GFP_KERNEL);
672 if (rc) {
673 printk(KERN_WARNING "SELinux: security_context_to_sid"
674 "(%s) failed for (dev %s, type %s) errno=%d\n",
675 mount_options[i], sb->s_id, name, rc);
676 goto out;
677 }
678 switch (flags[i]) {
679 case FSCONTEXT_MNT:
680 fscontext_sid = sid;
681
682 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
683 fscontext_sid))
684 goto out_double_mount;
685
686 sbsec->flags |= FSCONTEXT_MNT;
687 break;
688 case CONTEXT_MNT:
689 context_sid = sid;
690
691 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
692 context_sid))
693 goto out_double_mount;
694
695 sbsec->flags |= CONTEXT_MNT;
696 break;
697 case ROOTCONTEXT_MNT:
698 rootcontext_sid = sid;
699
700 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
701 rootcontext_sid))
702 goto out_double_mount;
703
704 sbsec->flags |= ROOTCONTEXT_MNT;
705
706 break;
707 case DEFCONTEXT_MNT:
708 defcontext_sid = sid;
709
710 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
711 defcontext_sid))
712 goto out_double_mount;
713
714 sbsec->flags |= DEFCONTEXT_MNT;
715
716 break;
717 default:
718 rc = -EINVAL;
719 goto out;
720 }
721 }
722
723 if (sbsec->flags & SE_SBINITIALIZED) {
724 /* previously mounted with options, but not on this attempt? */
725 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
726 goto out_double_mount;
727 rc = 0;
728 goto out;
729 }
730
731 if (strcmp(sb->s_type->name, "proc") == 0)
732 sbsec->flags |= SE_SBPROC;
733
734 if (!sbsec->behavior) {
735 /*
736 * Determine the labeling behavior to use for this
737 * filesystem type.
738 */
739 rc = security_fs_use(sb);
740 if (rc) {
741 printk(KERN_WARNING
742 "%s: security_fs_use(%s) returned %d\n",
743 __func__, sb->s_type->name, rc);
744 goto out;
745 }
746 }
747 /* sets the context of the superblock for the fs being mounted. */
748 if (fscontext_sid) {
749 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
750 if (rc)
751 goto out;
752
753 sbsec->sid = fscontext_sid;
754 }
755
756 /*
757 * Switch to using mount point labeling behavior.
758 * sets the label used on all file below the mountpoint, and will set
759 * the superblock context if not already set.
760 */
761 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
762 sbsec->behavior = SECURITY_FS_USE_NATIVE;
763 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
764 }
765
766 if (context_sid) {
767 if (!fscontext_sid) {
768 rc = may_context_mount_sb_relabel(context_sid, sbsec,
769 cred);
770 if (rc)
771 goto out;
772 sbsec->sid = context_sid;
773 } else {
774 rc = may_context_mount_inode_relabel(context_sid, sbsec,
775 cred);
776 if (rc)
777 goto out;
778 }
779 if (!rootcontext_sid)
780 rootcontext_sid = context_sid;
781
782 sbsec->mntpoint_sid = context_sid;
783 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
784 }
785
786 if (rootcontext_sid) {
787 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
788 cred);
789 if (rc)
790 goto out;
791
792 root_isec->sid = rootcontext_sid;
793 root_isec->initialized = 1;
794 }
795
796 if (defcontext_sid) {
797 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
798 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
799 rc = -EINVAL;
800 printk(KERN_WARNING "SELinux: defcontext option is "
801 "invalid for this filesystem type\n");
802 goto out;
803 }
804
805 if (defcontext_sid != sbsec->def_sid) {
806 rc = may_context_mount_inode_relabel(defcontext_sid,
807 sbsec, cred);
808 if (rc)
809 goto out;
810 }
811
812 sbsec->def_sid = defcontext_sid;
813 }
814
815 rc = sb_finish_set_opts(sb);
816out:
817 mutex_unlock(&sbsec->lock);
818 return rc;
819out_double_mount:
820 rc = -EINVAL;
821 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
822 "security settings for (dev %s, type %s)\n", sb->s_id, name);
823 goto out;
824}
825
826static int selinux_cmp_sb_context(const struct super_block *oldsb,
827 const struct super_block *newsb)
828{
829 struct superblock_security_struct *old = oldsb->s_security;
830 struct superblock_security_struct *new = newsb->s_security;
831 char oldflags = old->flags & SE_MNTMASK;
832 char newflags = new->flags & SE_MNTMASK;
833
834 if (oldflags != newflags)
835 goto mismatch;
836 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
837 goto mismatch;
838 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
839 goto mismatch;
840 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
841 goto mismatch;
842 if (oldflags & ROOTCONTEXT_MNT) {
843 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
844 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
845 if (oldroot->sid != newroot->sid)
846 goto mismatch;
847 }
848 return 0;
849mismatch:
850 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
851 "different security settings for (dev %s, "
852 "type %s)\n", newsb->s_id, newsb->s_type->name);
853 return -EBUSY;
854}
855
856static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
857 struct super_block *newsb)
858{
859 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
860 struct superblock_security_struct *newsbsec = newsb->s_security;
861
862 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
863 int set_context = (oldsbsec->flags & CONTEXT_MNT);
864 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
865
866 /*
867 * if the parent was able to be mounted it clearly had no special lsm
868 * mount options. thus we can safely deal with this superblock later
869 */
870 if (!ss_initialized)
871 return 0;
872
873 /* how can we clone if the old one wasn't set up?? */
874 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
875
876 /* if fs is reusing a sb, make sure that the contexts match */
877 if (newsbsec->flags & SE_SBINITIALIZED)
878 return selinux_cmp_sb_context(oldsb, newsb);
879
880 mutex_lock(&newsbsec->lock);
881
882 newsbsec->flags = oldsbsec->flags;
883
884 newsbsec->sid = oldsbsec->sid;
885 newsbsec->def_sid = oldsbsec->def_sid;
886 newsbsec->behavior = oldsbsec->behavior;
887
888 if (set_context) {
889 u32 sid = oldsbsec->mntpoint_sid;
890
891 if (!set_fscontext)
892 newsbsec->sid = sid;
893 if (!set_rootcontext) {
894 struct inode *newinode = newsb->s_root->d_inode;
895 struct inode_security_struct *newisec = newinode->i_security;
896 newisec->sid = sid;
897 }
898 newsbsec->mntpoint_sid = sid;
899 }
900 if (set_rootcontext) {
901 const struct inode *oldinode = oldsb->s_root->d_inode;
902 const struct inode_security_struct *oldisec = oldinode->i_security;
903 struct inode *newinode = newsb->s_root->d_inode;
904 struct inode_security_struct *newisec = newinode->i_security;
905
906 newisec->sid = oldisec->sid;
907 }
908
909 sb_finish_set_opts(newsb);
910 mutex_unlock(&newsbsec->lock);
911 return 0;
912}
913
914static int selinux_parse_opts_str(char *options,
915 struct security_mnt_opts *opts)
916{
917 char *p;
918 char *context = NULL, *defcontext = NULL;
919 char *fscontext = NULL, *rootcontext = NULL;
920 int rc, num_mnt_opts = 0;
921
922 opts->num_mnt_opts = 0;
923
924 /* Standard string-based options. */
925 while ((p = strsep(&options, "|")) != NULL) {
926 int token;
927 substring_t args[MAX_OPT_ARGS];
928
929 if (!*p)
930 continue;
931
932 token = match_token(p, tokens, args);
933
934 switch (token) {
935 case Opt_context:
936 if (context || defcontext) {
937 rc = -EINVAL;
938 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
939 goto out_err;
940 }
941 context = match_strdup(&args[0]);
942 if (!context) {
943 rc = -ENOMEM;
944 goto out_err;
945 }
946 break;
947
948 case Opt_fscontext:
949 if (fscontext) {
950 rc = -EINVAL;
951 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
952 goto out_err;
953 }
954 fscontext = match_strdup(&args[0]);
955 if (!fscontext) {
956 rc = -ENOMEM;
957 goto out_err;
958 }
959 break;
960
961 case Opt_rootcontext:
962 if (rootcontext) {
963 rc = -EINVAL;
964 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
965 goto out_err;
966 }
967 rootcontext = match_strdup(&args[0]);
968 if (!rootcontext) {
969 rc = -ENOMEM;
970 goto out_err;
971 }
972 break;
973
974 case Opt_defcontext:
975 if (context || defcontext) {
976 rc = -EINVAL;
977 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
978 goto out_err;
979 }
980 defcontext = match_strdup(&args[0]);
981 if (!defcontext) {
982 rc = -ENOMEM;
983 goto out_err;
984 }
985 break;
986 case Opt_labelsupport:
987 break;
988 default:
989 rc = -EINVAL;
990 printk(KERN_WARNING "SELinux: unknown mount option\n");
991 goto out_err;
992
993 }
994 }
995
996 rc = -ENOMEM;
997 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
998 if (!opts->mnt_opts)
999 goto out_err;
1000
1001 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1002 if (!opts->mnt_opts_flags) {
1003 kfree(opts->mnt_opts);
1004 goto out_err;
1005 }
1006
1007 if (fscontext) {
1008 opts->mnt_opts[num_mnt_opts] = fscontext;
1009 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1010 }
1011 if (context) {
1012 opts->mnt_opts[num_mnt_opts] = context;
1013 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1014 }
1015 if (rootcontext) {
1016 opts->mnt_opts[num_mnt_opts] = rootcontext;
1017 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1018 }
1019 if (defcontext) {
1020 opts->mnt_opts[num_mnt_opts] = defcontext;
1021 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1022 }
1023
1024 opts->num_mnt_opts = num_mnt_opts;
1025 return 0;
1026
1027out_err:
1028 kfree(context);
1029 kfree(defcontext);
1030 kfree(fscontext);
1031 kfree(rootcontext);
1032 return rc;
1033}
1034/*
1035 * string mount options parsing and call set the sbsec
1036 */
1037static int superblock_doinit(struct super_block *sb, void *data)
1038{
1039 int rc = 0;
1040 char *options = data;
1041 struct security_mnt_opts opts;
1042
1043 security_init_mnt_opts(&opts);
1044
1045 if (!data)
1046 goto out;
1047
1048 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1049
1050 rc = selinux_parse_opts_str(options, &opts);
1051 if (rc)
1052 goto out_err;
1053
1054out:
1055 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1056
1057out_err:
1058 security_free_mnt_opts(&opts);
1059 return rc;
1060}
1061
1062static void selinux_write_opts(struct seq_file *m,
1063 struct security_mnt_opts *opts)
1064{
1065 int i;
1066 char *prefix;
1067
1068 for (i = 0; i < opts->num_mnt_opts; i++) {
1069 char *has_comma;
1070
1071 if (opts->mnt_opts[i])
1072 has_comma = strchr(opts->mnt_opts[i], ',');
1073 else
1074 has_comma = NULL;
1075
1076 switch (opts->mnt_opts_flags[i]) {
1077 case CONTEXT_MNT:
1078 prefix = CONTEXT_STR;
1079 break;
1080 case FSCONTEXT_MNT:
1081 prefix = FSCONTEXT_STR;
1082 break;
1083 case ROOTCONTEXT_MNT:
1084 prefix = ROOTCONTEXT_STR;
1085 break;
1086 case DEFCONTEXT_MNT:
1087 prefix = DEFCONTEXT_STR;
1088 break;
1089 case SBLABEL_MNT:
1090 seq_putc(m, ',');
1091 seq_puts(m, LABELSUPP_STR);
1092 continue;
1093 default:
1094 BUG();
1095 return;
1096 };
1097 /* we need a comma before each option */
1098 seq_putc(m, ',');
1099 seq_puts(m, prefix);
1100 if (has_comma)
1101 seq_putc(m, '\"');
1102 seq_puts(m, opts->mnt_opts[i]);
1103 if (has_comma)
1104 seq_putc(m, '\"');
1105 }
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110 struct security_mnt_opts opts;
1111 int rc;
1112
1113 rc = selinux_get_mnt_opts(sb, &opts);
1114 if (rc) {
1115 /* before policy load we may get EINVAL, don't show anything */
1116 if (rc == -EINVAL)
1117 rc = 0;
1118 return rc;
1119 }
1120
1121 selinux_write_opts(m, &opts);
1122
1123 security_free_mnt_opts(&opts);
1124
1125 return rc;
1126}
1127
1128static inline u16 inode_mode_to_security_class(umode_t mode)
1129{
1130 switch (mode & S_IFMT) {
1131 case S_IFSOCK:
1132 return SECCLASS_SOCK_FILE;
1133 case S_IFLNK:
1134 return SECCLASS_LNK_FILE;
1135 case S_IFREG:
1136 return SECCLASS_FILE;
1137 case S_IFBLK:
1138 return SECCLASS_BLK_FILE;
1139 case S_IFDIR:
1140 return SECCLASS_DIR;
1141 case S_IFCHR:
1142 return SECCLASS_CHR_FILE;
1143 case S_IFIFO:
1144 return SECCLASS_FIFO_FILE;
1145
1146 }
1147
1148 return SECCLASS_FILE;
1149}
1150
1151static inline int default_protocol_stream(int protocol)
1152{
1153 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1154}
1155
1156static inline int default_protocol_dgram(int protocol)
1157{
1158 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1159}
1160
1161static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1162{
1163 switch (family) {
1164 case PF_UNIX:
1165 switch (type) {
1166 case SOCK_STREAM:
1167 case SOCK_SEQPACKET:
1168 return SECCLASS_UNIX_STREAM_SOCKET;
1169 case SOCK_DGRAM:
1170 return SECCLASS_UNIX_DGRAM_SOCKET;
1171 }
1172 break;
1173 case PF_INET:
1174 case PF_INET6:
1175 switch (type) {
1176 case SOCK_STREAM:
1177 if (default_protocol_stream(protocol))
1178 return SECCLASS_TCP_SOCKET;
1179 else
1180 return SECCLASS_RAWIP_SOCKET;
1181 case SOCK_DGRAM:
1182 if (default_protocol_dgram(protocol))
1183 return SECCLASS_UDP_SOCKET;
1184 else
1185 return SECCLASS_RAWIP_SOCKET;
1186 case SOCK_DCCP:
1187 return SECCLASS_DCCP_SOCKET;
1188 default:
1189 return SECCLASS_RAWIP_SOCKET;
1190 }
1191 break;
1192 case PF_NETLINK:
1193 switch (protocol) {
1194 case NETLINK_ROUTE:
1195 return SECCLASS_NETLINK_ROUTE_SOCKET;
1196 case NETLINK_FIREWALL:
1197 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1198 case NETLINK_SOCK_DIAG:
1199 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1200 case NETLINK_NFLOG:
1201 return SECCLASS_NETLINK_NFLOG_SOCKET;
1202 case NETLINK_XFRM:
1203 return SECCLASS_NETLINK_XFRM_SOCKET;
1204 case NETLINK_SELINUX:
1205 return SECCLASS_NETLINK_SELINUX_SOCKET;
1206 case NETLINK_AUDIT:
1207 return SECCLASS_NETLINK_AUDIT_SOCKET;
1208 case NETLINK_IP6_FW:
1209 return SECCLASS_NETLINK_IP6FW_SOCKET;
1210 case NETLINK_DNRTMSG:
1211 return SECCLASS_NETLINK_DNRT_SOCKET;
1212 case NETLINK_KOBJECT_UEVENT:
1213 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1214 default:
1215 return SECCLASS_NETLINK_SOCKET;
1216 }
1217 case PF_PACKET:
1218 return SECCLASS_PACKET_SOCKET;
1219 case PF_KEY:
1220 return SECCLASS_KEY_SOCKET;
1221 case PF_APPLETALK:
1222 return SECCLASS_APPLETALK_SOCKET;
1223 }
1224
1225 return SECCLASS_SOCKET;
1226}
1227
1228#ifdef CONFIG_PROC_FS
1229static int selinux_proc_get_sid(struct dentry *dentry,
1230 u16 tclass,
1231 u32 *sid)
1232{
1233 int rc;
1234 char *buffer, *path;
1235
1236 buffer = (char *)__get_free_page(GFP_KERNEL);
1237 if (!buffer)
1238 return -ENOMEM;
1239
1240 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1241 if (IS_ERR(path))
1242 rc = PTR_ERR(path);
1243 else {
1244 /* each process gets a /proc/PID/ entry. Strip off the
1245 * PID part to get a valid selinux labeling.
1246 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1247 while (path[1] >= '0' && path[1] <= '9') {
1248 path[1] = '/';
1249 path++;
1250 }
1251 rc = security_genfs_sid("proc", path, tclass, sid);
1252 }
1253 free_page((unsigned long)buffer);
1254 return rc;
1255}
1256#else
1257static int selinux_proc_get_sid(struct dentry *dentry,
1258 u16 tclass,
1259 u32 *sid)
1260{
1261 return -EINVAL;
1262}
1263#endif
1264
1265/* The inode's security attributes must be initialized before first use. */
1266static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1267{
1268 struct superblock_security_struct *sbsec = NULL;
1269 struct inode_security_struct *isec = inode->i_security;
1270 u32 sid;
1271 struct dentry *dentry;
1272#define INITCONTEXTLEN 255
1273 char *context = NULL;
1274 unsigned len = 0;
1275 int rc = 0;
1276
1277 if (isec->initialized)
1278 goto out;
1279
1280 mutex_lock(&isec->lock);
1281 if (isec->initialized)
1282 goto out_unlock;
1283
1284 sbsec = inode->i_sb->s_security;
1285 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1286 /* Defer initialization until selinux_complete_init,
1287 after the initial policy is loaded and the security
1288 server is ready to handle calls. */
1289 spin_lock(&sbsec->isec_lock);
1290 if (list_empty(&isec->list))
1291 list_add(&isec->list, &sbsec->isec_head);
1292 spin_unlock(&sbsec->isec_lock);
1293 goto out_unlock;
1294 }
1295
1296 switch (sbsec->behavior) {
1297 case SECURITY_FS_USE_NATIVE:
1298 break;
1299 case SECURITY_FS_USE_XATTR:
1300 if (!inode->i_op->getxattr) {
1301 isec->sid = sbsec->def_sid;
1302 break;
1303 }
1304
1305 /* Need a dentry, since the xattr API requires one.
1306 Life would be simpler if we could just pass the inode. */
1307 if (opt_dentry) {
1308 /* Called from d_instantiate or d_splice_alias. */
1309 dentry = dget(opt_dentry);
1310 } else {
1311 /* Called from selinux_complete_init, try to find a dentry. */
1312 dentry = d_find_alias(inode);
1313 }
1314 if (!dentry) {
1315 /*
1316 * this is can be hit on boot when a file is accessed
1317 * before the policy is loaded. When we load policy we
1318 * may find inodes that have no dentry on the
1319 * sbsec->isec_head list. No reason to complain as these
1320 * will get fixed up the next time we go through
1321 * inode_doinit with a dentry, before these inodes could
1322 * be used again by userspace.
1323 */
1324 goto out_unlock;
1325 }
1326
1327 len = INITCONTEXTLEN;
1328 context = kmalloc(len+1, GFP_NOFS);
1329 if (!context) {
1330 rc = -ENOMEM;
1331 dput(dentry);
1332 goto out_unlock;
1333 }
1334 context[len] = '\0';
1335 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1336 context, len);
1337 if (rc == -ERANGE) {
1338 kfree(context);
1339
1340 /* Need a larger buffer. Query for the right size. */
1341 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1342 NULL, 0);
1343 if (rc < 0) {
1344 dput(dentry);
1345 goto out_unlock;
1346 }
1347 len = rc;
1348 context = kmalloc(len+1, GFP_NOFS);
1349 if (!context) {
1350 rc = -ENOMEM;
1351 dput(dentry);
1352 goto out_unlock;
1353 }
1354 context[len] = '\0';
1355 rc = inode->i_op->getxattr(dentry,
1356 XATTR_NAME_SELINUX,
1357 context, len);
1358 }
1359 dput(dentry);
1360 if (rc < 0) {
1361 if (rc != -ENODATA) {
1362 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1363 "%d for dev=%s ino=%ld\n", __func__,
1364 -rc, inode->i_sb->s_id, inode->i_ino);
1365 kfree(context);
1366 goto out_unlock;
1367 }
1368 /* Map ENODATA to the default file SID */
1369 sid = sbsec->def_sid;
1370 rc = 0;
1371 } else {
1372 rc = security_context_to_sid_default(context, rc, &sid,
1373 sbsec->def_sid,
1374 GFP_NOFS);
1375 if (rc) {
1376 char *dev = inode->i_sb->s_id;
1377 unsigned long ino = inode->i_ino;
1378
1379 if (rc == -EINVAL) {
1380 if (printk_ratelimit())
1381 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1382 "context=%s. This indicates you may need to relabel the inode or the "
1383 "filesystem in question.\n", ino, dev, context);
1384 } else {
1385 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1386 "returned %d for dev=%s ino=%ld\n",
1387 __func__, context, -rc, dev, ino);
1388 }
1389 kfree(context);
1390 /* Leave with the unlabeled SID */
1391 rc = 0;
1392 break;
1393 }
1394 }
1395 kfree(context);
1396 isec->sid = sid;
1397 break;
1398 case SECURITY_FS_USE_TASK:
1399 isec->sid = isec->task_sid;
1400 break;
1401 case SECURITY_FS_USE_TRANS:
1402 /* Default to the fs SID. */
1403 isec->sid = sbsec->sid;
1404
1405 /* Try to obtain a transition SID. */
1406 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1408 isec->sclass, NULL, &sid);
1409 if (rc)
1410 goto out_unlock;
1411 isec->sid = sid;
1412 break;
1413 case SECURITY_FS_USE_MNTPOINT:
1414 isec->sid = sbsec->mntpoint_sid;
1415 break;
1416 default:
1417 /* Default to the fs superblock SID. */
1418 isec->sid = sbsec->sid;
1419
1420 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1421 /* We must have a dentry to determine the label on
1422 * procfs inodes */
1423 if (opt_dentry)
1424 /* Called from d_instantiate or
1425 * d_splice_alias. */
1426 dentry = dget(opt_dentry);
1427 else
1428 /* Called from selinux_complete_init, try to
1429 * find a dentry. */
1430 dentry = d_find_alias(inode);
1431 /*
1432 * This can be hit on boot when a file is accessed
1433 * before the policy is loaded. When we load policy we
1434 * may find inodes that have no dentry on the
1435 * sbsec->isec_head list. No reason to complain as
1436 * these will get fixed up the next time we go through
1437 * inode_doinit() with a dentry, before these inodes
1438 * could be used again by userspace.
1439 */
1440 if (!dentry)
1441 goto out_unlock;
1442 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1443 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1444 dput(dentry);
1445 if (rc)
1446 goto out_unlock;
1447 isec->sid = sid;
1448 }
1449 break;
1450 }
1451
1452 isec->initialized = 1;
1453
1454out_unlock:
1455 mutex_unlock(&isec->lock);
1456out:
1457 if (isec->sclass == SECCLASS_FILE)
1458 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1459 return rc;
1460}
1461
1462/* Convert a Linux signal to an access vector. */
1463static inline u32 signal_to_av(int sig)
1464{
1465 u32 perm = 0;
1466
1467 switch (sig) {
1468 case SIGCHLD:
1469 /* Commonly granted from child to parent. */
1470 perm = PROCESS__SIGCHLD;
1471 break;
1472 case SIGKILL:
1473 /* Cannot be caught or ignored */
1474 perm = PROCESS__SIGKILL;
1475 break;
1476 case SIGSTOP:
1477 /* Cannot be caught or ignored */
1478 perm = PROCESS__SIGSTOP;
1479 break;
1480 default:
1481 /* All other signals. */
1482 perm = PROCESS__SIGNAL;
1483 break;
1484 }
1485
1486 return perm;
1487}
1488
1489/*
1490 * Check permission between a pair of credentials
1491 * fork check, ptrace check, etc.
1492 */
1493static int cred_has_perm(const struct cred *actor,
1494 const struct cred *target,
1495 u32 perms)
1496{
1497 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1498
1499 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1500}
1501
1502/*
1503 * Check permission between a pair of tasks, e.g. signal checks,
1504 * fork check, ptrace check, etc.
1505 * tsk1 is the actor and tsk2 is the target
1506 * - this uses the default subjective creds of tsk1
1507 */
1508static int task_has_perm(const struct task_struct *tsk1,
1509 const struct task_struct *tsk2,
1510 u32 perms)
1511{
1512 const struct task_security_struct *__tsec1, *__tsec2;
1513 u32 sid1, sid2;
1514
1515 rcu_read_lock();
1516 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1517 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1518 rcu_read_unlock();
1519 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1520}
1521
1522/*
1523 * Check permission between current and another task, e.g. signal checks,
1524 * fork check, ptrace check, etc.
1525 * current is the actor and tsk2 is the target
1526 * - this uses current's subjective creds
1527 */
1528static int current_has_perm(const struct task_struct *tsk,
1529 u32 perms)
1530{
1531 u32 sid, tsid;
1532
1533 sid = current_sid();
1534 tsid = task_sid(tsk);
1535 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1536}
1537
1538#if CAP_LAST_CAP > 63
1539#error Fix SELinux to handle capabilities > 63.
1540#endif
1541
1542/* Check whether a task is allowed to use a capability. */
1543static int cred_has_capability(const struct cred *cred,
1544 int cap, int audit)
1545{
1546 struct common_audit_data ad;
1547 struct av_decision avd;
1548 u16 sclass;
1549 u32 sid = cred_sid(cred);
1550 u32 av = CAP_TO_MASK(cap);
1551 int rc;
1552
1553 ad.type = LSM_AUDIT_DATA_CAP;
1554 ad.u.cap = cap;
1555
1556 switch (CAP_TO_INDEX(cap)) {
1557 case 0:
1558 sclass = SECCLASS_CAPABILITY;
1559 break;
1560 case 1:
1561 sclass = SECCLASS_CAPABILITY2;
1562 break;
1563 default:
1564 printk(KERN_ERR
1565 "SELinux: out of range capability %d\n", cap);
1566 BUG();
1567 return -EINVAL;
1568 }
1569
1570 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1571 if (audit == SECURITY_CAP_AUDIT) {
1572 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1573 if (rc2)
1574 return rc2;
1575 }
1576 return rc;
1577}
1578
1579/* Check whether a task is allowed to use a system operation. */
1580static int task_has_system(struct task_struct *tsk,
1581 u32 perms)
1582{
1583 u32 sid = task_sid(tsk);
1584
1585 return avc_has_perm(sid, SECINITSID_KERNEL,
1586 SECCLASS_SYSTEM, perms, NULL);
1587}
1588
1589/* Check whether a task has a particular permission to an inode.
1590 The 'adp' parameter is optional and allows other audit
1591 data to be passed (e.g. the dentry). */
1592static int inode_has_perm(const struct cred *cred,
1593 struct inode *inode,
1594 u32 perms,
1595 struct common_audit_data *adp)
1596{
1597 struct inode_security_struct *isec;
1598 u32 sid;
1599
1600 validate_creds(cred);
1601
1602 if (unlikely(IS_PRIVATE(inode)))
1603 return 0;
1604
1605 sid = cred_sid(cred);
1606 isec = inode->i_security;
1607
1608 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1609}
1610
1611/* Same as inode_has_perm, but pass explicit audit data containing
1612 the dentry to help the auditing code to more easily generate the
1613 pathname if needed. */
1614static inline int dentry_has_perm(const struct cred *cred,
1615 struct dentry *dentry,
1616 u32 av)
1617{
1618 struct inode *inode = dentry->d_inode;
1619 struct common_audit_data ad;
1620
1621 ad.type = LSM_AUDIT_DATA_DENTRY;
1622 ad.u.dentry = dentry;
1623 return inode_has_perm(cred, inode, av, &ad);
1624}
1625
1626/* Same as inode_has_perm, but pass explicit audit data containing
1627 the path to help the auditing code to more easily generate the
1628 pathname if needed. */
1629static inline int path_has_perm(const struct cred *cred,
1630 struct path *path,
1631 u32 av)
1632{
1633 struct inode *inode = path->dentry->d_inode;
1634 struct common_audit_data ad;
1635
1636 ad.type = LSM_AUDIT_DATA_PATH;
1637 ad.u.path = *path;
1638 return inode_has_perm(cred, inode, av, &ad);
1639}
1640
1641/* Same as path_has_perm, but uses the inode from the file struct. */
1642static inline int file_path_has_perm(const struct cred *cred,
1643 struct file *file,
1644 u32 av)
1645{
1646 struct common_audit_data ad;
1647
1648 ad.type = LSM_AUDIT_DATA_PATH;
1649 ad.u.path = file->f_path;
1650 return inode_has_perm(cred, file_inode(file), av, &ad);
1651}
1652
1653/* Check whether a task can use an open file descriptor to
1654 access an inode in a given way. Check access to the
1655 descriptor itself, and then use dentry_has_perm to
1656 check a particular permission to the file.
1657 Access to the descriptor is implicitly granted if it
1658 has the same SID as the process. If av is zero, then
1659 access to the file is not checked, e.g. for cases
1660 where only the descriptor is affected like seek. */
1661static int file_has_perm(const struct cred *cred,
1662 struct file *file,
1663 u32 av)
1664{
1665 struct file_security_struct *fsec = file->f_security;
1666 struct inode *inode = file_inode(file);
1667 struct common_audit_data ad;
1668 u32 sid = cred_sid(cred);
1669 int rc;
1670
1671 ad.type = LSM_AUDIT_DATA_PATH;
1672 ad.u.path = file->f_path;
1673
1674 if (sid != fsec->sid) {
1675 rc = avc_has_perm(sid, fsec->sid,
1676 SECCLASS_FD,
1677 FD__USE,
1678 &ad);
1679 if (rc)
1680 goto out;
1681 }
1682
1683 /* av is zero if only checking access to the descriptor. */
1684 rc = 0;
1685 if (av)
1686 rc = inode_has_perm(cred, inode, av, &ad);
1687
1688out:
1689 return rc;
1690}
1691
1692/* Check whether a task can create a file. */
1693static int may_create(struct inode *dir,
1694 struct dentry *dentry,
1695 u16 tclass)
1696{
1697 const struct task_security_struct *tsec = current_security();
1698 struct inode_security_struct *dsec;
1699 struct superblock_security_struct *sbsec;
1700 u32 sid, newsid;
1701 struct common_audit_data ad;
1702 int rc;
1703
1704 dsec = dir->i_security;
1705 sbsec = dir->i_sb->s_security;
1706
1707 sid = tsec->sid;
1708 newsid = tsec->create_sid;
1709
1710 ad.type = LSM_AUDIT_DATA_DENTRY;
1711 ad.u.dentry = dentry;
1712
1713 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1714 DIR__ADD_NAME | DIR__SEARCH,
1715 &ad);
1716 if (rc)
1717 return rc;
1718
1719 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1720 rc = security_transition_sid(sid, dsec->sid, tclass,
1721 &dentry->d_name, &newsid);
1722 if (rc)
1723 return rc;
1724 }
1725
1726 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1727 if (rc)
1728 return rc;
1729
1730 return avc_has_perm(newsid, sbsec->sid,
1731 SECCLASS_FILESYSTEM,
1732 FILESYSTEM__ASSOCIATE, &ad);
1733}
1734
1735/* Check whether a task can create a key. */
1736static int may_create_key(u32 ksid,
1737 struct task_struct *ctx)
1738{
1739 u32 sid = task_sid(ctx);
1740
1741 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1742}
1743
1744#define MAY_LINK 0
1745#define MAY_UNLINK 1
1746#define MAY_RMDIR 2
1747
1748/* Check whether a task can link, unlink, or rmdir a file/directory. */
1749static int may_link(struct inode *dir,
1750 struct dentry *dentry,
1751 int kind)
1752
1753{
1754 struct inode_security_struct *dsec, *isec;
1755 struct common_audit_data ad;
1756 u32 sid = current_sid();
1757 u32 av;
1758 int rc;
1759
1760 dsec = dir->i_security;
1761 isec = dentry->d_inode->i_security;
1762
1763 ad.type = LSM_AUDIT_DATA_DENTRY;
1764 ad.u.dentry = dentry;
1765
1766 av = DIR__SEARCH;
1767 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1768 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1769 if (rc)
1770 return rc;
1771
1772 switch (kind) {
1773 case MAY_LINK:
1774 av = FILE__LINK;
1775 break;
1776 case MAY_UNLINK:
1777 av = FILE__UNLINK;
1778 break;
1779 case MAY_RMDIR:
1780 av = DIR__RMDIR;
1781 break;
1782 default:
1783 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1784 __func__, kind);
1785 return 0;
1786 }
1787
1788 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1789 return rc;
1790}
1791
1792static inline int may_rename(struct inode *old_dir,
1793 struct dentry *old_dentry,
1794 struct inode *new_dir,
1795 struct dentry *new_dentry)
1796{
1797 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1798 struct common_audit_data ad;
1799 u32 sid = current_sid();
1800 u32 av;
1801 int old_is_dir, new_is_dir;
1802 int rc;
1803
1804 old_dsec = old_dir->i_security;
1805 old_isec = old_dentry->d_inode->i_security;
1806 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1807 new_dsec = new_dir->i_security;
1808
1809 ad.type = LSM_AUDIT_DATA_DENTRY;
1810
1811 ad.u.dentry = old_dentry;
1812 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1813 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1814 if (rc)
1815 return rc;
1816 rc = avc_has_perm(sid, old_isec->sid,
1817 old_isec->sclass, FILE__RENAME, &ad);
1818 if (rc)
1819 return rc;
1820 if (old_is_dir && new_dir != old_dir) {
1821 rc = avc_has_perm(sid, old_isec->sid,
1822 old_isec->sclass, DIR__REPARENT, &ad);
1823 if (rc)
1824 return rc;
1825 }
1826
1827 ad.u.dentry = new_dentry;
1828 av = DIR__ADD_NAME | DIR__SEARCH;
1829 if (new_dentry->d_inode)
1830 av |= DIR__REMOVE_NAME;
1831 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1832 if (rc)
1833 return rc;
1834 if (new_dentry->d_inode) {
1835 new_isec = new_dentry->d_inode->i_security;
1836 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1837 rc = avc_has_perm(sid, new_isec->sid,
1838 new_isec->sclass,
1839 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1840 if (rc)
1841 return rc;
1842 }
1843
1844 return 0;
1845}
1846
1847/* Check whether a task can perform a filesystem operation. */
1848static int superblock_has_perm(const struct cred *cred,
1849 struct super_block *sb,
1850 u32 perms,
1851 struct common_audit_data *ad)
1852{
1853 struct superblock_security_struct *sbsec;
1854 u32 sid = cred_sid(cred);
1855
1856 sbsec = sb->s_security;
1857 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1858}
1859
1860/* Convert a Linux mode and permission mask to an access vector. */
1861static inline u32 file_mask_to_av(int mode, int mask)
1862{
1863 u32 av = 0;
1864
1865 if (!S_ISDIR(mode)) {
1866 if (mask & MAY_EXEC)
1867 av |= FILE__EXECUTE;
1868 if (mask & MAY_READ)
1869 av |= FILE__READ;
1870
1871 if (mask & MAY_APPEND)
1872 av |= FILE__APPEND;
1873 else if (mask & MAY_WRITE)
1874 av |= FILE__WRITE;
1875
1876 } else {
1877 if (mask & MAY_EXEC)
1878 av |= DIR__SEARCH;
1879 if (mask & MAY_WRITE)
1880 av |= DIR__WRITE;
1881 if (mask & MAY_READ)
1882 av |= DIR__READ;
1883 }
1884
1885 return av;
1886}
1887
1888/* Convert a Linux file to an access vector. */
1889static inline u32 file_to_av(struct file *file)
1890{
1891 u32 av = 0;
1892
1893 if (file->f_mode & FMODE_READ)
1894 av |= FILE__READ;
1895 if (file->f_mode & FMODE_WRITE) {
1896 if (file->f_flags & O_APPEND)
1897 av |= FILE__APPEND;
1898 else
1899 av |= FILE__WRITE;
1900 }
1901 if (!av) {
1902 /*
1903 * Special file opened with flags 3 for ioctl-only use.
1904 */
1905 av = FILE__IOCTL;
1906 }
1907
1908 return av;
1909}
1910
1911/*
1912 * Convert a file to an access vector and include the correct open
1913 * open permission.
1914 */
1915static inline u32 open_file_to_av(struct file *file)
1916{
1917 u32 av = file_to_av(file);
1918
1919 if (selinux_policycap_openperm)
1920 av |= FILE__OPEN;
1921
1922 return av;
1923}
1924
1925/* Hook functions begin here. */
1926
1927static int selinux_ptrace_access_check(struct task_struct *child,
1928 unsigned int mode)
1929{
1930 int rc;
1931
1932 rc = cap_ptrace_access_check(child, mode);
1933 if (rc)
1934 return rc;
1935
1936 if (mode & PTRACE_MODE_READ) {
1937 u32 sid = current_sid();
1938 u32 csid = task_sid(child);
1939 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1940 }
1941
1942 return current_has_perm(child, PROCESS__PTRACE);
1943}
1944
1945static int selinux_ptrace_traceme(struct task_struct *parent)
1946{
1947 int rc;
1948
1949 rc = cap_ptrace_traceme(parent);
1950 if (rc)
1951 return rc;
1952
1953 return task_has_perm(parent, current, PROCESS__PTRACE);
1954}
1955
1956static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1957 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1958{
1959 int error;
1960
1961 error = current_has_perm(target, PROCESS__GETCAP);
1962 if (error)
1963 return error;
1964
1965 return cap_capget(target, effective, inheritable, permitted);
1966}
1967
1968static int selinux_capset(struct cred *new, const struct cred *old,
1969 const kernel_cap_t *effective,
1970 const kernel_cap_t *inheritable,
1971 const kernel_cap_t *permitted)
1972{
1973 int error;
1974
1975 error = cap_capset(new, old,
1976 effective, inheritable, permitted);
1977 if (error)
1978 return error;
1979
1980 return cred_has_perm(old, new, PROCESS__SETCAP);
1981}
1982
1983/*
1984 * (This comment used to live with the selinux_task_setuid hook,
1985 * which was removed).
1986 *
1987 * Since setuid only affects the current process, and since the SELinux
1988 * controls are not based on the Linux identity attributes, SELinux does not
1989 * need to control this operation. However, SELinux does control the use of
1990 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1991 */
1992
1993static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1994 int cap, int audit)
1995{
1996 int rc;
1997
1998 rc = cap_capable(cred, ns, cap, audit);
1999 if (rc)
2000 return rc;
2001
2002 return cred_has_capability(cred, cap, audit);
2003}
2004
2005static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2006{
2007 const struct cred *cred = current_cred();
2008 int rc = 0;
2009
2010 if (!sb)
2011 return 0;
2012
2013 switch (cmds) {
2014 case Q_SYNC:
2015 case Q_QUOTAON:
2016 case Q_QUOTAOFF:
2017 case Q_SETINFO:
2018 case Q_SETQUOTA:
2019 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2020 break;
2021 case Q_GETFMT:
2022 case Q_GETINFO:
2023 case Q_GETQUOTA:
2024 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2025 break;
2026 default:
2027 rc = 0; /* let the kernel handle invalid cmds */
2028 break;
2029 }
2030 return rc;
2031}
2032
2033static int selinux_quota_on(struct dentry *dentry)
2034{
2035 const struct cred *cred = current_cred();
2036
2037 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2038}
2039
2040static int selinux_syslog(int type)
2041{
2042 int rc;
2043
2044 switch (type) {
2045 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2046 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2047 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2048 break;
2049 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2050 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2051 /* Set level of messages printed to console */
2052 case SYSLOG_ACTION_CONSOLE_LEVEL:
2053 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2054 break;
2055 case SYSLOG_ACTION_CLOSE: /* Close log */
2056 case SYSLOG_ACTION_OPEN: /* Open log */
2057 case SYSLOG_ACTION_READ: /* Read from log */
2058 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2059 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2060 default:
2061 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2062 break;
2063 }
2064 return rc;
2065}
2066
2067/*
2068 * Check that a process has enough memory to allocate a new virtual
2069 * mapping. 0 means there is enough memory for the allocation to
2070 * succeed and -ENOMEM implies there is not.
2071 *
2072 * Do not audit the selinux permission check, as this is applied to all
2073 * processes that allocate mappings.
2074 */
2075static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2076{
2077 int rc, cap_sys_admin = 0;
2078
2079 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2080 SECURITY_CAP_NOAUDIT);
2081 if (rc == 0)
2082 cap_sys_admin = 1;
2083
2084 return __vm_enough_memory(mm, pages, cap_sys_admin);
2085}
2086
2087/* binprm security operations */
2088
2089static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2090{
2091 const struct task_security_struct *old_tsec;
2092 struct task_security_struct *new_tsec;
2093 struct inode_security_struct *isec;
2094 struct common_audit_data ad;
2095 struct inode *inode = file_inode(bprm->file);
2096 int rc;
2097
2098 rc = cap_bprm_set_creds(bprm);
2099 if (rc)
2100 return rc;
2101
2102 /* SELinux context only depends on initial program or script and not
2103 * the script interpreter */
2104 if (bprm->cred_prepared)
2105 return 0;
2106
2107 old_tsec = current_security();
2108 new_tsec = bprm->cred->security;
2109 isec = inode->i_security;
2110
2111 /* Default to the current task SID. */
2112 new_tsec->sid = old_tsec->sid;
2113 new_tsec->osid = old_tsec->sid;
2114
2115 /* Reset fs, key, and sock SIDs on execve. */
2116 new_tsec->create_sid = 0;
2117 new_tsec->keycreate_sid = 0;
2118 new_tsec->sockcreate_sid = 0;
2119
2120 if (old_tsec->exec_sid) {
2121 new_tsec->sid = old_tsec->exec_sid;
2122 /* Reset exec SID on execve. */
2123 new_tsec->exec_sid = 0;
2124
2125 /*
2126 * Minimize confusion: if no_new_privs and a transition is
2127 * explicitly requested, then fail the exec.
2128 */
2129 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2130 return -EPERM;
2131 } else {
2132 /* Check for a default transition on this program. */
2133 rc = security_transition_sid(old_tsec->sid, isec->sid,
2134 SECCLASS_PROCESS, NULL,
2135 &new_tsec->sid);
2136 if (rc)
2137 return rc;
2138 }
2139
2140 ad.type = LSM_AUDIT_DATA_PATH;
2141 ad.u.path = bprm->file->f_path;
2142
2143 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2144 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2145 new_tsec->sid = old_tsec->sid;
2146
2147 if (new_tsec->sid == old_tsec->sid) {
2148 rc = avc_has_perm(old_tsec->sid, isec->sid,
2149 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2150 if (rc)
2151 return rc;
2152 } else {
2153 /* Check permissions for the transition. */
2154 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2155 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2156 if (rc)
2157 return rc;
2158
2159 rc = avc_has_perm(new_tsec->sid, isec->sid,
2160 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2161 if (rc)
2162 return rc;
2163
2164 /* Check for shared state */
2165 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2167 SECCLASS_PROCESS, PROCESS__SHARE,
2168 NULL);
2169 if (rc)
2170 return -EPERM;
2171 }
2172
2173 /* Make sure that anyone attempting to ptrace over a task that
2174 * changes its SID has the appropriate permit */
2175 if (bprm->unsafe &
2176 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177 struct task_struct *tracer;
2178 struct task_security_struct *sec;
2179 u32 ptsid = 0;
2180
2181 rcu_read_lock();
2182 tracer = ptrace_parent(current);
2183 if (likely(tracer != NULL)) {
2184 sec = __task_cred(tracer)->security;
2185 ptsid = sec->sid;
2186 }
2187 rcu_read_unlock();
2188
2189 if (ptsid != 0) {
2190 rc = avc_has_perm(ptsid, new_tsec->sid,
2191 SECCLASS_PROCESS,
2192 PROCESS__PTRACE, NULL);
2193 if (rc)
2194 return -EPERM;
2195 }
2196 }
2197
2198 /* Clear any possibly unsafe personality bits on exec: */
2199 bprm->per_clear |= PER_CLEAR_ON_SETID;
2200 }
2201
2202 return 0;
2203}
2204
2205static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2206{
2207 const struct task_security_struct *tsec = current_security();
2208 u32 sid, osid;
2209 int atsecure = 0;
2210
2211 sid = tsec->sid;
2212 osid = tsec->osid;
2213
2214 if (osid != sid) {
2215 /* Enable secure mode for SIDs transitions unless
2216 the noatsecure permission is granted between
2217 the two SIDs, i.e. ahp returns 0. */
2218 atsecure = avc_has_perm(osid, sid,
2219 SECCLASS_PROCESS,
2220 PROCESS__NOATSECURE, NULL);
2221 }
2222
2223 return (atsecure || cap_bprm_secureexec(bprm));
2224}
2225
2226static int match_file(const void *p, struct file *file, unsigned fd)
2227{
2228 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2229}
2230
2231/* Derived from fs/exec.c:flush_old_files. */
2232static inline void flush_unauthorized_files(const struct cred *cred,
2233 struct files_struct *files)
2234{
2235 struct file *file, *devnull = NULL;
2236 struct tty_struct *tty;
2237 int drop_tty = 0;
2238 unsigned n;
2239
2240 tty = get_current_tty();
2241 if (tty) {
2242 spin_lock(&tty_files_lock);
2243 if (!list_empty(&tty->tty_files)) {
2244 struct tty_file_private *file_priv;
2245
2246 /* Revalidate access to controlling tty.
2247 Use file_path_has_perm on the tty path directly
2248 rather than using file_has_perm, as this particular
2249 open file may belong to another process and we are
2250 only interested in the inode-based check here. */
2251 file_priv = list_first_entry(&tty->tty_files,
2252 struct tty_file_private, list);
2253 file = file_priv->file;
2254 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2255 drop_tty = 1;
2256 }
2257 spin_unlock(&tty_files_lock);
2258 tty_kref_put(tty);
2259 }
2260 /* Reset controlling tty. */
2261 if (drop_tty)
2262 no_tty();
2263
2264 /* Revalidate access to inherited open files. */
2265 n = iterate_fd(files, 0, match_file, cred);
2266 if (!n) /* none found? */
2267 return;
2268
2269 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2270 if (IS_ERR(devnull))
2271 devnull = NULL;
2272 /* replace all the matching ones with this */
2273 do {
2274 replace_fd(n - 1, devnull, 0);
2275 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2276 if (devnull)
2277 fput(devnull);
2278}
2279
2280/*
2281 * Prepare a process for imminent new credential changes due to exec
2282 */
2283static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2284{
2285 struct task_security_struct *new_tsec;
2286 struct rlimit *rlim, *initrlim;
2287 int rc, i;
2288
2289 new_tsec = bprm->cred->security;
2290 if (new_tsec->sid == new_tsec->osid)
2291 return;
2292
2293 /* Close files for which the new task SID is not authorized. */
2294 flush_unauthorized_files(bprm->cred, current->files);
2295
2296 /* Always clear parent death signal on SID transitions. */
2297 current->pdeath_signal = 0;
2298
2299 /* Check whether the new SID can inherit resource limits from the old
2300 * SID. If not, reset all soft limits to the lower of the current
2301 * task's hard limit and the init task's soft limit.
2302 *
2303 * Note that the setting of hard limits (even to lower them) can be
2304 * controlled by the setrlimit check. The inclusion of the init task's
2305 * soft limit into the computation is to avoid resetting soft limits
2306 * higher than the default soft limit for cases where the default is
2307 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2308 */
2309 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2310 PROCESS__RLIMITINH, NULL);
2311 if (rc) {
2312 /* protect against do_prlimit() */
2313 task_lock(current);
2314 for (i = 0; i < RLIM_NLIMITS; i++) {
2315 rlim = current->signal->rlim + i;
2316 initrlim = init_task.signal->rlim + i;
2317 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2318 }
2319 task_unlock(current);
2320 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2321 }
2322}
2323
2324/*
2325 * Clean up the process immediately after the installation of new credentials
2326 * due to exec
2327 */
2328static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2329{
2330 const struct task_security_struct *tsec = current_security();
2331 struct itimerval itimer;
2332 u32 osid, sid;
2333 int rc, i;
2334
2335 osid = tsec->osid;
2336 sid = tsec->sid;
2337
2338 if (sid == osid)
2339 return;
2340
2341 /* Check whether the new SID can inherit signal state from the old SID.
2342 * If not, clear itimers to avoid subsequent signal generation and
2343 * flush and unblock signals.
2344 *
2345 * This must occur _after_ the task SID has been updated so that any
2346 * kill done after the flush will be checked against the new SID.
2347 */
2348 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2349 if (rc) {
2350 memset(&itimer, 0, sizeof itimer);
2351 for (i = 0; i < 3; i++)
2352 do_setitimer(i, &itimer, NULL);
2353 spin_lock_irq(¤t->sighand->siglock);
2354 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2355 __flush_signals(current);
2356 flush_signal_handlers(current, 1);
2357 sigemptyset(¤t->blocked);
2358 }
2359 spin_unlock_irq(¤t->sighand->siglock);
2360 }
2361
2362 /* Wake up the parent if it is waiting so that it can recheck
2363 * wait permission to the new task SID. */
2364 read_lock(&tasklist_lock);
2365 __wake_up_parent(current, current->real_parent);
2366 read_unlock(&tasklist_lock);
2367}
2368
2369/* superblock security operations */
2370
2371static int selinux_sb_alloc_security(struct super_block *sb)
2372{
2373 return superblock_alloc_security(sb);
2374}
2375
2376static void selinux_sb_free_security(struct super_block *sb)
2377{
2378 superblock_free_security(sb);
2379}
2380
2381static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2382{
2383 if (plen > olen)
2384 return 0;
2385
2386 return !memcmp(prefix, option, plen);
2387}
2388
2389static inline int selinux_option(char *option, int len)
2390{
2391 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2392 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2393 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2394 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2395 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2396}
2397
2398static inline void take_option(char **to, char *from, int *first, int len)
2399{
2400 if (!*first) {
2401 **to = ',';
2402 *to += 1;
2403 } else
2404 *first = 0;
2405 memcpy(*to, from, len);
2406 *to += len;
2407}
2408
2409static inline void take_selinux_option(char **to, char *from, int *first,
2410 int len)
2411{
2412 int current_size = 0;
2413
2414 if (!*first) {
2415 **to = '|';
2416 *to += 1;
2417 } else
2418 *first = 0;
2419
2420 while (current_size < len) {
2421 if (*from != '"') {
2422 **to = *from;
2423 *to += 1;
2424 }
2425 from += 1;
2426 current_size += 1;
2427 }
2428}
2429
2430static int selinux_sb_copy_data(char *orig, char *copy)
2431{
2432 int fnosec, fsec, rc = 0;
2433 char *in_save, *in_curr, *in_end;
2434 char *sec_curr, *nosec_save, *nosec;
2435 int open_quote = 0;
2436
2437 in_curr = orig;
2438 sec_curr = copy;
2439
2440 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2441 if (!nosec) {
2442 rc = -ENOMEM;
2443 goto out;
2444 }
2445
2446 nosec_save = nosec;
2447 fnosec = fsec = 1;
2448 in_save = in_end = orig;
2449
2450 do {
2451 if (*in_end == '"')
2452 open_quote = !open_quote;
2453 if ((*in_end == ',' && open_quote == 0) ||
2454 *in_end == '\0') {
2455 int len = in_end - in_curr;
2456
2457 if (selinux_option(in_curr, len))
2458 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2459 else
2460 take_option(&nosec, in_curr, &fnosec, len);
2461
2462 in_curr = in_end + 1;
2463 }
2464 } while (*in_end++);
2465
2466 strcpy(in_save, nosec_save);
2467 free_page((unsigned long)nosec_save);
2468out:
2469 return rc;
2470}
2471
2472static int selinux_sb_remount(struct super_block *sb, void *data)
2473{
2474 int rc, i, *flags;
2475 struct security_mnt_opts opts;
2476 char *secdata, **mount_options;
2477 struct superblock_security_struct *sbsec = sb->s_security;
2478
2479 if (!(sbsec->flags & SE_SBINITIALIZED))
2480 return 0;
2481
2482 if (!data)
2483 return 0;
2484
2485 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2486 return 0;
2487
2488 security_init_mnt_opts(&opts);
2489 secdata = alloc_secdata();
2490 if (!secdata)
2491 return -ENOMEM;
2492 rc = selinux_sb_copy_data(data, secdata);
2493 if (rc)
2494 goto out_free_secdata;
2495
2496 rc = selinux_parse_opts_str(secdata, &opts);
2497 if (rc)
2498 goto out_free_secdata;
2499
2500 mount_options = opts.mnt_opts;
2501 flags = opts.mnt_opts_flags;
2502
2503 for (i = 0; i < opts.num_mnt_opts; i++) {
2504 u32 sid;
2505 size_t len;
2506
2507 if (flags[i] == SBLABEL_MNT)
2508 continue;
2509 len = strlen(mount_options[i]);
2510 rc = security_context_to_sid(mount_options[i], len, &sid,
2511 GFP_KERNEL);
2512 if (rc) {
2513 printk(KERN_WARNING "SELinux: security_context_to_sid"
2514 "(%s) failed for (dev %s, type %s) errno=%d\n",
2515 mount_options[i], sb->s_id, sb->s_type->name, rc);
2516 goto out_free_opts;
2517 }
2518 rc = -EINVAL;
2519 switch (flags[i]) {
2520 case FSCONTEXT_MNT:
2521 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2522 goto out_bad_option;
2523 break;
2524 case CONTEXT_MNT:
2525 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2526 goto out_bad_option;
2527 break;
2528 case ROOTCONTEXT_MNT: {
2529 struct inode_security_struct *root_isec;
2530 root_isec = sb->s_root->d_inode->i_security;
2531
2532 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2533 goto out_bad_option;
2534 break;
2535 }
2536 case DEFCONTEXT_MNT:
2537 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2538 goto out_bad_option;
2539 break;
2540 default:
2541 goto out_free_opts;
2542 }
2543 }
2544
2545 rc = 0;
2546out_free_opts:
2547 security_free_mnt_opts(&opts);
2548out_free_secdata:
2549 free_secdata(secdata);
2550 return rc;
2551out_bad_option:
2552 printk(KERN_WARNING "SELinux: unable to change security options "
2553 "during remount (dev %s, type=%s)\n", sb->s_id,
2554 sb->s_type->name);
2555 goto out_free_opts;
2556}
2557
2558static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2559{
2560 const struct cred *cred = current_cred();
2561 struct common_audit_data ad;
2562 int rc;
2563
2564 rc = superblock_doinit(sb, data);
2565 if (rc)
2566 return rc;
2567
2568 /* Allow all mounts performed by the kernel */
2569 if (flags & MS_KERNMOUNT)
2570 return 0;
2571
2572 ad.type = LSM_AUDIT_DATA_DENTRY;
2573 ad.u.dentry = sb->s_root;
2574 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2575}
2576
2577static int selinux_sb_statfs(struct dentry *dentry)
2578{
2579 const struct cred *cred = current_cred();
2580 struct common_audit_data ad;
2581
2582 ad.type = LSM_AUDIT_DATA_DENTRY;
2583 ad.u.dentry = dentry->d_sb->s_root;
2584 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2585}
2586
2587static int selinux_mount(const char *dev_name,
2588 struct path *path,
2589 const char *type,
2590 unsigned long flags,
2591 void *data)
2592{
2593 const struct cred *cred = current_cred();
2594
2595 if (flags & MS_REMOUNT)
2596 return superblock_has_perm(cred, path->dentry->d_sb,
2597 FILESYSTEM__REMOUNT, NULL);
2598 else
2599 return path_has_perm(cred, path, FILE__MOUNTON);
2600}
2601
2602static int selinux_umount(struct vfsmount *mnt, int flags)
2603{
2604 const struct cred *cred = current_cred();
2605
2606 return superblock_has_perm(cred, mnt->mnt_sb,
2607 FILESYSTEM__UNMOUNT, NULL);
2608}
2609
2610/* inode security operations */
2611
2612static int selinux_inode_alloc_security(struct inode *inode)
2613{
2614 return inode_alloc_security(inode);
2615}
2616
2617static void selinux_inode_free_security(struct inode *inode)
2618{
2619 inode_free_security(inode);
2620}
2621
2622static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2623 struct qstr *name, void **ctx,
2624 u32 *ctxlen)
2625{
2626 const struct cred *cred = current_cred();
2627 struct task_security_struct *tsec;
2628 struct inode_security_struct *dsec;
2629 struct superblock_security_struct *sbsec;
2630 struct inode *dir = dentry->d_parent->d_inode;
2631 u32 newsid;
2632 int rc;
2633
2634 tsec = cred->security;
2635 dsec = dir->i_security;
2636 sbsec = dir->i_sb->s_security;
2637
2638 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2639 newsid = tsec->create_sid;
2640 } else {
2641 rc = security_transition_sid(tsec->sid, dsec->sid,
2642 inode_mode_to_security_class(mode),
2643 name,
2644 &newsid);
2645 if (rc) {
2646 printk(KERN_WARNING
2647 "%s: security_transition_sid failed, rc=%d\n",
2648 __func__, -rc);
2649 return rc;
2650 }
2651 }
2652
2653 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2654}
2655
2656static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2657 const struct qstr *qstr,
2658 const char **name,
2659 void **value, size_t *len)
2660{
2661 const struct task_security_struct *tsec = current_security();
2662 struct inode_security_struct *dsec;
2663 struct superblock_security_struct *sbsec;
2664 u32 sid, newsid, clen;
2665 int rc;
2666 char *context;
2667
2668 dsec = dir->i_security;
2669 sbsec = dir->i_sb->s_security;
2670
2671 sid = tsec->sid;
2672 newsid = tsec->create_sid;
2673
2674 if ((sbsec->flags & SE_SBINITIALIZED) &&
2675 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2676 newsid = sbsec->mntpoint_sid;
2677 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2678 rc = security_transition_sid(sid, dsec->sid,
2679 inode_mode_to_security_class(inode->i_mode),
2680 qstr, &newsid);
2681 if (rc) {
2682 printk(KERN_WARNING "%s: "
2683 "security_transition_sid failed, rc=%d (dev=%s "
2684 "ino=%ld)\n",
2685 __func__,
2686 -rc, inode->i_sb->s_id, inode->i_ino);
2687 return rc;
2688 }
2689 }
2690
2691 /* Possibly defer initialization to selinux_complete_init. */
2692 if (sbsec->flags & SE_SBINITIALIZED) {
2693 struct inode_security_struct *isec = inode->i_security;
2694 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2695 isec->sid = newsid;
2696 isec->initialized = 1;
2697 }
2698
2699 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2700 return -EOPNOTSUPP;
2701
2702 if (name)
2703 *name = XATTR_SELINUX_SUFFIX;
2704
2705 if (value && len) {
2706 rc = security_sid_to_context_force(newsid, &context, &clen);
2707 if (rc)
2708 return rc;
2709 *value = context;
2710 *len = clen;
2711 }
2712
2713 return 0;
2714}
2715
2716static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2717{
2718 return may_create(dir, dentry, SECCLASS_FILE);
2719}
2720
2721static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2722{
2723 return may_link(dir, old_dentry, MAY_LINK);
2724}
2725
2726static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2727{
2728 return may_link(dir, dentry, MAY_UNLINK);
2729}
2730
2731static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2732{
2733 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2734}
2735
2736static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2737{
2738 return may_create(dir, dentry, SECCLASS_DIR);
2739}
2740
2741static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2742{
2743 return may_link(dir, dentry, MAY_RMDIR);
2744}
2745
2746static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2747{
2748 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2749}
2750
2751static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2752 struct inode *new_inode, struct dentry *new_dentry)
2753{
2754 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2755}
2756
2757static int selinux_inode_readlink(struct dentry *dentry)
2758{
2759 const struct cred *cred = current_cred();
2760
2761 return dentry_has_perm(cred, dentry, FILE__READ);
2762}
2763
2764static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2765{
2766 const struct cred *cred = current_cred();
2767
2768 return dentry_has_perm(cred, dentry, FILE__READ);
2769}
2770
2771static noinline int audit_inode_permission(struct inode *inode,
2772 u32 perms, u32 audited, u32 denied,
2773 unsigned flags)
2774{
2775 struct common_audit_data ad;
2776 struct inode_security_struct *isec = inode->i_security;
2777 int rc;
2778
2779 ad.type = LSM_AUDIT_DATA_INODE;
2780 ad.u.inode = inode;
2781
2782 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2783 audited, denied, &ad, flags);
2784 if (rc)
2785 return rc;
2786 return 0;
2787}
2788
2789static int selinux_inode_permission(struct inode *inode, int mask)
2790{
2791 const struct cred *cred = current_cred();
2792 u32 perms;
2793 bool from_access;
2794 unsigned flags = mask & MAY_NOT_BLOCK;
2795 struct inode_security_struct *isec;
2796 u32 sid;
2797 struct av_decision avd;
2798 int rc, rc2;
2799 u32 audited, denied;
2800
2801 from_access = mask & MAY_ACCESS;
2802 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2803
2804 /* No permission to check. Existence test. */
2805 if (!mask)
2806 return 0;
2807
2808 validate_creds(cred);
2809
2810 if (unlikely(IS_PRIVATE(inode)))
2811 return 0;
2812
2813 perms = file_mask_to_av(inode->i_mode, mask);
2814
2815 sid = cred_sid(cred);
2816 isec = inode->i_security;
2817
2818 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2819 audited = avc_audit_required(perms, &avd, rc,
2820 from_access ? FILE__AUDIT_ACCESS : 0,
2821 &denied);
2822 if (likely(!audited))
2823 return rc;
2824
2825 rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2826 if (rc2)
2827 return rc2;
2828 return rc;
2829}
2830
2831static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2832{
2833 const struct cred *cred = current_cred();
2834 unsigned int ia_valid = iattr->ia_valid;
2835 __u32 av = FILE__WRITE;
2836
2837 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2838 if (ia_valid & ATTR_FORCE) {
2839 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2840 ATTR_FORCE);
2841 if (!ia_valid)
2842 return 0;
2843 }
2844
2845 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2846 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2847 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2848
2849 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2850 av |= FILE__OPEN;
2851
2852 return dentry_has_perm(cred, dentry, av);
2853}
2854
2855static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2856{
2857 const struct cred *cred = current_cred();
2858 struct path path;
2859
2860 path.dentry = dentry;
2861 path.mnt = mnt;
2862
2863 return path_has_perm(cred, &path, FILE__GETATTR);
2864}
2865
2866static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2867{
2868 const struct cred *cred = current_cred();
2869
2870 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2871 sizeof XATTR_SECURITY_PREFIX - 1)) {
2872 if (!strcmp(name, XATTR_NAME_CAPS)) {
2873 if (!capable(CAP_SETFCAP))
2874 return -EPERM;
2875 } else if (!capable(CAP_SYS_ADMIN)) {
2876 /* A different attribute in the security namespace.
2877 Restrict to administrator. */
2878 return -EPERM;
2879 }
2880 }
2881
2882 /* Not an attribute we recognize, so just check the
2883 ordinary setattr permission. */
2884 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2885}
2886
2887static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2888 const void *value, size_t size, int flags)
2889{
2890 struct inode *inode = dentry->d_inode;
2891 struct inode_security_struct *isec = inode->i_security;
2892 struct superblock_security_struct *sbsec;
2893 struct common_audit_data ad;
2894 u32 newsid, sid = current_sid();
2895 int rc = 0;
2896
2897 if (strcmp(name, XATTR_NAME_SELINUX))
2898 return selinux_inode_setotherxattr(dentry, name);
2899
2900 sbsec = inode->i_sb->s_security;
2901 if (!(sbsec->flags & SBLABEL_MNT))
2902 return -EOPNOTSUPP;
2903
2904 if (!inode_owner_or_capable(inode))
2905 return -EPERM;
2906
2907 ad.type = LSM_AUDIT_DATA_DENTRY;
2908 ad.u.dentry = dentry;
2909
2910 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2911 FILE__RELABELFROM, &ad);
2912 if (rc)
2913 return rc;
2914
2915 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
2916 if (rc == -EINVAL) {
2917 if (!capable(CAP_MAC_ADMIN)) {
2918 struct audit_buffer *ab;
2919 size_t audit_size;
2920 const char *str;
2921
2922 /* We strip a nul only if it is at the end, otherwise the
2923 * context contains a nul and we should audit that */
2924 if (value) {
2925 str = value;
2926 if (str[size - 1] == '\0')
2927 audit_size = size - 1;
2928 else
2929 audit_size = size;
2930 } else {
2931 str = "";
2932 audit_size = 0;
2933 }
2934 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2935 audit_log_format(ab, "op=setxattr invalid_context=");
2936 audit_log_n_untrustedstring(ab, value, audit_size);
2937 audit_log_end(ab);
2938
2939 return rc;
2940 }
2941 rc = security_context_to_sid_force(value, size, &newsid);
2942 }
2943 if (rc)
2944 return rc;
2945
2946 rc = avc_has_perm(sid, newsid, isec->sclass,
2947 FILE__RELABELTO, &ad);
2948 if (rc)
2949 return rc;
2950
2951 rc = security_validate_transition(isec->sid, newsid, sid,
2952 isec->sclass);
2953 if (rc)
2954 return rc;
2955
2956 return avc_has_perm(newsid,
2957 sbsec->sid,
2958 SECCLASS_FILESYSTEM,
2959 FILESYSTEM__ASSOCIATE,
2960 &ad);
2961}
2962
2963static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2964 const void *value, size_t size,
2965 int flags)
2966{
2967 struct inode *inode = dentry->d_inode;
2968 struct inode_security_struct *isec = inode->i_security;
2969 u32 newsid;
2970 int rc;
2971
2972 if (strcmp(name, XATTR_NAME_SELINUX)) {
2973 /* Not an attribute we recognize, so nothing to do. */
2974 return;
2975 }
2976
2977 rc = security_context_to_sid_force(value, size, &newsid);
2978 if (rc) {
2979 printk(KERN_ERR "SELinux: unable to map context to SID"
2980 "for (%s, %lu), rc=%d\n",
2981 inode->i_sb->s_id, inode->i_ino, -rc);
2982 return;
2983 }
2984
2985 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2986 isec->sid = newsid;
2987 isec->initialized = 1;
2988
2989 return;
2990}
2991
2992static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2993{
2994 const struct cred *cred = current_cred();
2995
2996 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2997}
2998
2999static int selinux_inode_listxattr(struct dentry *dentry)
3000{
3001 const struct cred *cred = current_cred();
3002
3003 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3004}
3005
3006static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3007{
3008 if (strcmp(name, XATTR_NAME_SELINUX))
3009 return selinux_inode_setotherxattr(dentry, name);
3010
3011 /* No one is allowed to remove a SELinux security label.
3012 You can change the label, but all data must be labeled. */
3013 return -EACCES;
3014}
3015
3016/*
3017 * Copy the inode security context value to the user.
3018 *
3019 * Permission check is handled by selinux_inode_getxattr hook.
3020 */
3021static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3022{
3023 u32 size;
3024 int error;
3025 char *context = NULL;
3026 struct inode_security_struct *isec = inode->i_security;
3027
3028 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3029 return -EOPNOTSUPP;
3030
3031 /*
3032 * If the caller has CAP_MAC_ADMIN, then get the raw context
3033 * value even if it is not defined by current policy; otherwise,
3034 * use the in-core value under current policy.
3035 * Use the non-auditing forms of the permission checks since
3036 * getxattr may be called by unprivileged processes commonly
3037 * and lack of permission just means that we fall back to the
3038 * in-core context value, not a denial.
3039 */
3040 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3041 SECURITY_CAP_NOAUDIT);
3042 if (!error)
3043 error = security_sid_to_context_force(isec->sid, &context,
3044 &size);
3045 else
3046 error = security_sid_to_context(isec->sid, &context, &size);
3047 if (error)
3048 return error;
3049 error = size;
3050 if (alloc) {
3051 *buffer = context;
3052 goto out_nofree;
3053 }
3054 kfree(context);
3055out_nofree:
3056 return error;
3057}
3058
3059static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3060 const void *value, size_t size, int flags)
3061{
3062 struct inode_security_struct *isec = inode->i_security;
3063 u32 newsid;
3064 int rc;
3065
3066 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3067 return -EOPNOTSUPP;
3068
3069 if (!value || !size)
3070 return -EACCES;
3071
3072 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3073 if (rc)
3074 return rc;
3075
3076 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3077 isec->sid = newsid;
3078 isec->initialized = 1;
3079 return 0;
3080}
3081
3082static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3083{
3084 const int len = sizeof(XATTR_NAME_SELINUX);
3085 if (buffer && len <= buffer_size)
3086 memcpy(buffer, XATTR_NAME_SELINUX, len);
3087 return len;
3088}
3089
3090static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3091{
3092 struct inode_security_struct *isec = inode->i_security;
3093 *secid = isec->sid;
3094}
3095
3096/* file security operations */
3097
3098static int selinux_revalidate_file_permission(struct file *file, int mask)
3099{
3100 const struct cred *cred = current_cred();
3101 struct inode *inode = file_inode(file);
3102
3103 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3104 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3105 mask |= MAY_APPEND;
3106
3107 return file_has_perm(cred, file,
3108 file_mask_to_av(inode->i_mode, mask));
3109}
3110
3111static int selinux_file_permission(struct file *file, int mask)
3112{
3113 struct inode *inode = file_inode(file);
3114 struct file_security_struct *fsec = file->f_security;
3115 struct inode_security_struct *isec = inode->i_security;
3116 u32 sid = current_sid();
3117
3118 if (!mask)
3119 /* No permission to check. Existence test. */
3120 return 0;
3121
3122 if (sid == fsec->sid && fsec->isid == isec->sid &&
3123 fsec->pseqno == avc_policy_seqno())
3124 /* No change since file_open check. */
3125 return 0;
3126
3127 return selinux_revalidate_file_permission(file, mask);
3128}
3129
3130static int selinux_file_alloc_security(struct file *file)
3131{
3132 return file_alloc_security(file);
3133}
3134
3135static void selinux_file_free_security(struct file *file)
3136{
3137 file_free_security(file);
3138}
3139
3140static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3141 unsigned long arg)
3142{
3143 const struct cred *cred = current_cred();
3144 int error = 0;
3145
3146 switch (cmd) {
3147 case FIONREAD:
3148 /* fall through */
3149 case FIBMAP:
3150 /* fall through */
3151 case FIGETBSZ:
3152 /* fall through */
3153 case FS_IOC_GETFLAGS:
3154 /* fall through */
3155 case FS_IOC_GETVERSION:
3156 error = file_has_perm(cred, file, FILE__GETATTR);
3157 break;
3158
3159 case FS_IOC_SETFLAGS:
3160 /* fall through */
3161 case FS_IOC_SETVERSION:
3162 error = file_has_perm(cred, file, FILE__SETATTR);
3163 break;
3164
3165 /* sys_ioctl() checks */
3166 case FIONBIO:
3167 /* fall through */
3168 case FIOASYNC:
3169 error = file_has_perm(cred, file, 0);
3170 break;
3171
3172 case KDSKBENT:
3173 case KDSKBSENT:
3174 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3175 SECURITY_CAP_AUDIT);
3176 break;
3177
3178 /* default case assumes that the command will go
3179 * to the file's ioctl() function.
3180 */
3181 default:
3182 error = file_has_perm(cred, file, FILE__IOCTL);
3183 }
3184 return error;
3185}
3186
3187static int default_noexec;
3188
3189static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3190{
3191 const struct cred *cred = current_cred();
3192 int rc = 0;
3193
3194 if (default_noexec &&
3195 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3196 /*
3197 * We are making executable an anonymous mapping or a
3198 * private file mapping that will also be writable.
3199 * This has an additional check.
3200 */
3201 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3202 if (rc)
3203 goto error;
3204 }
3205
3206 if (file) {
3207 /* read access is always possible with a mapping */
3208 u32 av = FILE__READ;
3209
3210 /* write access only matters if the mapping is shared */
3211 if (shared && (prot & PROT_WRITE))
3212 av |= FILE__WRITE;
3213
3214 if (prot & PROT_EXEC)
3215 av |= FILE__EXECUTE;
3216
3217 return file_has_perm(cred, file, av);
3218 }
3219
3220error:
3221 return rc;
3222}
3223
3224static int selinux_mmap_addr(unsigned long addr)
3225{
3226 int rc;
3227
3228 /* do DAC check on address space usage */
3229 rc = cap_mmap_addr(addr);
3230 if (rc)
3231 return rc;
3232
3233 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3234 u32 sid = current_sid();
3235 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3236 MEMPROTECT__MMAP_ZERO, NULL);
3237 }
3238
3239 return rc;
3240}
3241
3242static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3243 unsigned long prot, unsigned long flags)
3244{
3245 if (selinux_checkreqprot)
3246 prot = reqprot;
3247
3248 return file_map_prot_check(file, prot,
3249 (flags & MAP_TYPE) == MAP_SHARED);
3250}
3251
3252static int selinux_file_mprotect(struct vm_area_struct *vma,
3253 unsigned long reqprot,
3254 unsigned long prot)
3255{
3256 const struct cred *cred = current_cred();
3257
3258 if (selinux_checkreqprot)
3259 prot = reqprot;
3260
3261 if (default_noexec &&
3262 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3263 int rc = 0;
3264 if (vma->vm_start >= vma->vm_mm->start_brk &&
3265 vma->vm_end <= vma->vm_mm->brk) {
3266 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3267 } else if (!vma->vm_file &&
3268 vma->vm_start <= vma->vm_mm->start_stack &&
3269 vma->vm_end >= vma->vm_mm->start_stack) {
3270 rc = current_has_perm(current, PROCESS__EXECSTACK);
3271 } else if (vma->vm_file && vma->anon_vma) {
3272 /*
3273 * We are making executable a file mapping that has
3274 * had some COW done. Since pages might have been
3275 * written, check ability to execute the possibly
3276 * modified content. This typically should only
3277 * occur for text relocations.
3278 */
3279 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3280 }
3281 if (rc)
3282 return rc;
3283 }
3284
3285 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3286}
3287
3288static int selinux_file_lock(struct file *file, unsigned int cmd)
3289{
3290 const struct cred *cred = current_cred();
3291
3292 return file_has_perm(cred, file, FILE__LOCK);
3293}
3294
3295static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3296 unsigned long arg)
3297{
3298 const struct cred *cred = current_cred();
3299 int err = 0;
3300
3301 switch (cmd) {
3302 case F_SETFL:
3303 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3304 err = file_has_perm(cred, file, FILE__WRITE);
3305 break;
3306 }
3307 /* fall through */
3308 case F_SETOWN:
3309 case F_SETSIG:
3310 case F_GETFL:
3311 case F_GETOWN:
3312 case F_GETSIG:
3313 case F_GETOWNER_UIDS:
3314 /* Just check FD__USE permission */
3315 err = file_has_perm(cred, file, 0);
3316 break;
3317 case F_GETLK:
3318 case F_SETLK:
3319 case F_SETLKW:
3320 case F_OFD_GETLK:
3321 case F_OFD_SETLK:
3322 case F_OFD_SETLKW:
3323#if BITS_PER_LONG == 32
3324 case F_GETLK64:
3325 case F_SETLK64:
3326 case F_SETLKW64:
3327#endif
3328 err = file_has_perm(cred, file, FILE__LOCK);
3329 break;
3330 }
3331
3332 return err;
3333}
3334
3335static int selinux_file_set_fowner(struct file *file)
3336{
3337 struct file_security_struct *fsec;
3338
3339 fsec = file->f_security;
3340 fsec->fown_sid = current_sid();
3341
3342 return 0;
3343}
3344
3345static int selinux_file_send_sigiotask(struct task_struct *tsk,
3346 struct fown_struct *fown, int signum)
3347{
3348 struct file *file;
3349 u32 sid = task_sid(tsk);
3350 u32 perm;
3351 struct file_security_struct *fsec;
3352
3353 /* struct fown_struct is never outside the context of a struct file */
3354 file = container_of(fown, struct file, f_owner);
3355
3356 fsec = file->f_security;
3357
3358 if (!signum)
3359 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3360 else
3361 perm = signal_to_av(signum);
3362
3363 return avc_has_perm(fsec->fown_sid, sid,
3364 SECCLASS_PROCESS, perm, NULL);
3365}
3366
3367static int selinux_file_receive(struct file *file)
3368{
3369 const struct cred *cred = current_cred();
3370
3371 return file_has_perm(cred, file, file_to_av(file));
3372}
3373
3374static int selinux_file_open(struct file *file, const struct cred *cred)
3375{
3376 struct file_security_struct *fsec;
3377 struct inode_security_struct *isec;
3378
3379 fsec = file->f_security;
3380 isec = file_inode(file)->i_security;
3381 /*
3382 * Save inode label and policy sequence number
3383 * at open-time so that selinux_file_permission
3384 * can determine whether revalidation is necessary.
3385 * Task label is already saved in the file security
3386 * struct as its SID.
3387 */
3388 fsec->isid = isec->sid;
3389 fsec->pseqno = avc_policy_seqno();
3390 /*
3391 * Since the inode label or policy seqno may have changed
3392 * between the selinux_inode_permission check and the saving
3393 * of state above, recheck that access is still permitted.
3394 * Otherwise, access might never be revalidated against the
3395 * new inode label or new policy.
3396 * This check is not redundant - do not remove.
3397 */
3398 return file_path_has_perm(cred, file, open_file_to_av(file));
3399}
3400
3401/* task security operations */
3402
3403static int selinux_task_create(unsigned long clone_flags)
3404{
3405 return current_has_perm(current, PROCESS__FORK);
3406}
3407
3408/*
3409 * allocate the SELinux part of blank credentials
3410 */
3411static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3412{
3413 struct task_security_struct *tsec;
3414
3415 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3416 if (!tsec)
3417 return -ENOMEM;
3418
3419 cred->security = tsec;
3420 return 0;
3421}
3422
3423/*
3424 * detach and free the LSM part of a set of credentials
3425 */
3426static void selinux_cred_free(struct cred *cred)
3427{
3428 struct task_security_struct *tsec = cred->security;
3429
3430 /*
3431 * cred->security == NULL if security_cred_alloc_blank() or
3432 * security_prepare_creds() returned an error.
3433 */
3434 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3435 cred->security = (void *) 0x7UL;
3436 kfree(tsec);
3437}
3438
3439/*
3440 * prepare a new set of credentials for modification
3441 */
3442static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3443 gfp_t gfp)
3444{
3445 const struct task_security_struct *old_tsec;
3446 struct task_security_struct *tsec;
3447
3448 old_tsec = old->security;
3449
3450 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3451 if (!tsec)
3452 return -ENOMEM;
3453
3454 new->security = tsec;
3455 return 0;
3456}
3457
3458/*
3459 * transfer the SELinux data to a blank set of creds
3460 */
3461static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3462{
3463 const struct task_security_struct *old_tsec = old->security;
3464 struct task_security_struct *tsec = new->security;
3465
3466 *tsec = *old_tsec;
3467}
3468
3469/*
3470 * set the security data for a kernel service
3471 * - all the creation contexts are set to unlabelled
3472 */
3473static int selinux_kernel_act_as(struct cred *new, u32 secid)
3474{
3475 struct task_security_struct *tsec = new->security;
3476 u32 sid = current_sid();
3477 int ret;
3478
3479 ret = avc_has_perm(sid, secid,
3480 SECCLASS_KERNEL_SERVICE,
3481 KERNEL_SERVICE__USE_AS_OVERRIDE,
3482 NULL);
3483 if (ret == 0) {
3484 tsec->sid = secid;
3485 tsec->create_sid = 0;
3486 tsec->keycreate_sid = 0;
3487 tsec->sockcreate_sid = 0;
3488 }
3489 return ret;
3490}
3491
3492/*
3493 * set the file creation context in a security record to the same as the
3494 * objective context of the specified inode
3495 */
3496static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3497{
3498 struct inode_security_struct *isec = inode->i_security;
3499 struct task_security_struct *tsec = new->security;
3500 u32 sid = current_sid();
3501 int ret;
3502
3503 ret = avc_has_perm(sid, isec->sid,
3504 SECCLASS_KERNEL_SERVICE,
3505 KERNEL_SERVICE__CREATE_FILES_AS,
3506 NULL);
3507
3508 if (ret == 0)
3509 tsec->create_sid = isec->sid;
3510 return ret;
3511}
3512
3513static int selinux_kernel_module_request(char *kmod_name)
3514{
3515 u32 sid;
3516 struct common_audit_data ad;
3517
3518 sid = task_sid(current);
3519
3520 ad.type = LSM_AUDIT_DATA_KMOD;
3521 ad.u.kmod_name = kmod_name;
3522
3523 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3524 SYSTEM__MODULE_REQUEST, &ad);
3525}
3526
3527static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3528{
3529 return current_has_perm(p, PROCESS__SETPGID);
3530}
3531
3532static int selinux_task_getpgid(struct task_struct *p)
3533{
3534 return current_has_perm(p, PROCESS__GETPGID);
3535}
3536
3537static int selinux_task_getsid(struct task_struct *p)
3538{
3539 return current_has_perm(p, PROCESS__GETSESSION);
3540}
3541
3542static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3543{
3544 *secid = task_sid(p);
3545}
3546
3547static int selinux_task_setnice(struct task_struct *p, int nice)
3548{
3549 int rc;
3550
3551 rc = cap_task_setnice(p, nice);
3552 if (rc)
3553 return rc;
3554
3555 return current_has_perm(p, PROCESS__SETSCHED);
3556}
3557
3558static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3559{
3560 int rc;
3561
3562 rc = cap_task_setioprio(p, ioprio);
3563 if (rc)
3564 return rc;
3565
3566 return current_has_perm(p, PROCESS__SETSCHED);
3567}
3568
3569static int selinux_task_getioprio(struct task_struct *p)
3570{
3571 return current_has_perm(p, PROCESS__GETSCHED);
3572}
3573
3574static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3575 struct rlimit *new_rlim)
3576{
3577 struct rlimit *old_rlim = p->signal->rlim + resource;
3578
3579 /* Control the ability to change the hard limit (whether
3580 lowering or raising it), so that the hard limit can
3581 later be used as a safe reset point for the soft limit
3582 upon context transitions. See selinux_bprm_committing_creds. */
3583 if (old_rlim->rlim_max != new_rlim->rlim_max)
3584 return current_has_perm(p, PROCESS__SETRLIMIT);
3585
3586 return 0;
3587}
3588
3589static int selinux_task_setscheduler(struct task_struct *p)
3590{
3591 int rc;
3592
3593 rc = cap_task_setscheduler(p);
3594 if (rc)
3595 return rc;
3596
3597 return current_has_perm(p, PROCESS__SETSCHED);
3598}
3599
3600static int selinux_task_getscheduler(struct task_struct *p)
3601{
3602 return current_has_perm(p, PROCESS__GETSCHED);
3603}
3604
3605static int selinux_task_movememory(struct task_struct *p)
3606{
3607 return current_has_perm(p, PROCESS__SETSCHED);
3608}
3609
3610static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3611 int sig, u32 secid)
3612{
3613 u32 perm;
3614 int rc;
3615
3616 if (!sig)
3617 perm = PROCESS__SIGNULL; /* null signal; existence test */
3618 else
3619 perm = signal_to_av(sig);
3620 if (secid)
3621 rc = avc_has_perm(secid, task_sid(p),
3622 SECCLASS_PROCESS, perm, NULL);
3623 else
3624 rc = current_has_perm(p, perm);
3625 return rc;
3626}
3627
3628static int selinux_task_wait(struct task_struct *p)
3629{
3630 return task_has_perm(p, current, PROCESS__SIGCHLD);
3631}
3632
3633static void selinux_task_to_inode(struct task_struct *p,
3634 struct inode *inode)
3635{
3636 struct inode_security_struct *isec = inode->i_security;
3637 u32 sid = task_sid(p);
3638
3639 isec->sid = sid;
3640 isec->initialized = 1;
3641}
3642
3643/* Returns error only if unable to parse addresses */
3644static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3645 struct common_audit_data *ad, u8 *proto)
3646{
3647 int offset, ihlen, ret = -EINVAL;
3648 struct iphdr _iph, *ih;
3649
3650 offset = skb_network_offset(skb);
3651 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3652 if (ih == NULL)
3653 goto out;
3654
3655 ihlen = ih->ihl * 4;
3656 if (ihlen < sizeof(_iph))
3657 goto out;
3658
3659 ad->u.net->v4info.saddr = ih->saddr;
3660 ad->u.net->v4info.daddr = ih->daddr;
3661 ret = 0;
3662
3663 if (proto)
3664 *proto = ih->protocol;
3665
3666 switch (ih->protocol) {
3667 case IPPROTO_TCP: {
3668 struct tcphdr _tcph, *th;
3669
3670 if (ntohs(ih->frag_off) & IP_OFFSET)
3671 break;
3672
3673 offset += ihlen;
3674 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3675 if (th == NULL)
3676 break;
3677
3678 ad->u.net->sport = th->source;
3679 ad->u.net->dport = th->dest;
3680 break;
3681 }
3682
3683 case IPPROTO_UDP: {
3684 struct udphdr _udph, *uh;
3685
3686 if (ntohs(ih->frag_off) & IP_OFFSET)
3687 break;
3688
3689 offset += ihlen;
3690 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3691 if (uh == NULL)
3692 break;
3693
3694 ad->u.net->sport = uh->source;
3695 ad->u.net->dport = uh->dest;
3696 break;
3697 }
3698
3699 case IPPROTO_DCCP: {
3700 struct dccp_hdr _dccph, *dh;
3701
3702 if (ntohs(ih->frag_off) & IP_OFFSET)
3703 break;
3704
3705 offset += ihlen;
3706 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3707 if (dh == NULL)
3708 break;
3709
3710 ad->u.net->sport = dh->dccph_sport;
3711 ad->u.net->dport = dh->dccph_dport;
3712 break;
3713 }
3714
3715 default:
3716 break;
3717 }
3718out:
3719 return ret;
3720}
3721
3722#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3723
3724/* Returns error only if unable to parse addresses */
3725static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3726 struct common_audit_data *ad, u8 *proto)
3727{
3728 u8 nexthdr;
3729 int ret = -EINVAL, offset;
3730 struct ipv6hdr _ipv6h, *ip6;
3731 __be16 frag_off;
3732
3733 offset = skb_network_offset(skb);
3734 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3735 if (ip6 == NULL)
3736 goto out;
3737
3738 ad->u.net->v6info.saddr = ip6->saddr;
3739 ad->u.net->v6info.daddr = ip6->daddr;
3740 ret = 0;
3741
3742 nexthdr = ip6->nexthdr;
3743 offset += sizeof(_ipv6h);
3744 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3745 if (offset < 0)
3746 goto out;
3747
3748 if (proto)
3749 *proto = nexthdr;
3750
3751 switch (nexthdr) {
3752 case IPPROTO_TCP: {
3753 struct tcphdr _tcph, *th;
3754
3755 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3756 if (th == NULL)
3757 break;
3758
3759 ad->u.net->sport = th->source;
3760 ad->u.net->dport = th->dest;
3761 break;
3762 }
3763
3764 case IPPROTO_UDP: {
3765 struct udphdr _udph, *uh;
3766
3767 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3768 if (uh == NULL)
3769 break;
3770
3771 ad->u.net->sport = uh->source;
3772 ad->u.net->dport = uh->dest;
3773 break;
3774 }
3775
3776 case IPPROTO_DCCP: {
3777 struct dccp_hdr _dccph, *dh;
3778
3779 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3780 if (dh == NULL)
3781 break;
3782
3783 ad->u.net->sport = dh->dccph_sport;
3784 ad->u.net->dport = dh->dccph_dport;
3785 break;
3786 }
3787
3788 /* includes fragments */
3789 default:
3790 break;
3791 }
3792out:
3793 return ret;
3794}
3795
3796#endif /* IPV6 */
3797
3798static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3799 char **_addrp, int src, u8 *proto)
3800{
3801 char *addrp;
3802 int ret;
3803
3804 switch (ad->u.net->family) {
3805 case PF_INET:
3806 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3807 if (ret)
3808 goto parse_error;
3809 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3810 &ad->u.net->v4info.daddr);
3811 goto okay;
3812
3813#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3814 case PF_INET6:
3815 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3816 if (ret)
3817 goto parse_error;
3818 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3819 &ad->u.net->v6info.daddr);
3820 goto okay;
3821#endif /* IPV6 */
3822 default:
3823 addrp = NULL;
3824 goto okay;
3825 }
3826
3827parse_error:
3828 printk(KERN_WARNING
3829 "SELinux: failure in selinux_parse_skb(),"
3830 " unable to parse packet\n");
3831 return ret;
3832
3833okay:
3834 if (_addrp)
3835 *_addrp = addrp;
3836 return 0;
3837}
3838
3839/**
3840 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3841 * @skb: the packet
3842 * @family: protocol family
3843 * @sid: the packet's peer label SID
3844 *
3845 * Description:
3846 * Check the various different forms of network peer labeling and determine
3847 * the peer label/SID for the packet; most of the magic actually occurs in
3848 * the security server function security_net_peersid_cmp(). The function
3849 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3850 * or -EACCES if @sid is invalid due to inconsistencies with the different
3851 * peer labels.
3852 *
3853 */
3854static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3855{
3856 int err;
3857 u32 xfrm_sid;
3858 u32 nlbl_sid;
3859 u32 nlbl_type;
3860
3861 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3862 if (unlikely(err))
3863 return -EACCES;
3864 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3865 if (unlikely(err))
3866 return -EACCES;
3867
3868 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3869 if (unlikely(err)) {
3870 printk(KERN_WARNING
3871 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3872 " unable to determine packet's peer label\n");
3873 return -EACCES;
3874 }
3875
3876 return 0;
3877}
3878
3879/**
3880 * selinux_conn_sid - Determine the child socket label for a connection
3881 * @sk_sid: the parent socket's SID
3882 * @skb_sid: the packet's SID
3883 * @conn_sid: the resulting connection SID
3884 *
3885 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3886 * combined with the MLS information from @skb_sid in order to create
3887 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
3888 * of @sk_sid. Returns zero on success, negative values on failure.
3889 *
3890 */
3891static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3892{
3893 int err = 0;
3894
3895 if (skb_sid != SECSID_NULL)
3896 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3897 else
3898 *conn_sid = sk_sid;
3899
3900 return err;
3901}
3902
3903/* socket security operations */
3904
3905static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3906 u16 secclass, u32 *socksid)
3907{
3908 if (tsec->sockcreate_sid > SECSID_NULL) {
3909 *socksid = tsec->sockcreate_sid;
3910 return 0;
3911 }
3912
3913 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3914 socksid);
3915}
3916
3917static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3918{
3919 struct sk_security_struct *sksec = sk->sk_security;
3920 struct common_audit_data ad;
3921 struct lsm_network_audit net = {0,};
3922 u32 tsid = task_sid(task);
3923
3924 if (sksec->sid == SECINITSID_KERNEL)
3925 return 0;
3926
3927 ad.type = LSM_AUDIT_DATA_NET;
3928 ad.u.net = &net;
3929 ad.u.net->sk = sk;
3930
3931 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3932}
3933
3934static int selinux_socket_create(int family, int type,
3935 int protocol, int kern)
3936{
3937 const struct task_security_struct *tsec = current_security();
3938 u32 newsid;
3939 u16 secclass;
3940 int rc;
3941
3942 if (kern)
3943 return 0;
3944
3945 secclass = socket_type_to_security_class(family, type, protocol);
3946 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3947 if (rc)
3948 return rc;
3949
3950 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3951}
3952
3953static int selinux_socket_post_create(struct socket *sock, int family,
3954 int type, int protocol, int kern)
3955{
3956 const struct task_security_struct *tsec = current_security();
3957 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3958 struct sk_security_struct *sksec;
3959 int err = 0;
3960
3961 isec->sclass = socket_type_to_security_class(family, type, protocol);
3962
3963 if (kern)
3964 isec->sid = SECINITSID_KERNEL;
3965 else {
3966 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3967 if (err)
3968 return err;
3969 }
3970
3971 isec->initialized = 1;
3972
3973 if (sock->sk) {
3974 sksec = sock->sk->sk_security;
3975 sksec->sid = isec->sid;
3976 sksec->sclass = isec->sclass;
3977 err = selinux_netlbl_socket_post_create(sock->sk, family);
3978 }
3979
3980 return err;
3981}
3982
3983/* Range of port numbers used to automatically bind.
3984 Need to determine whether we should perform a name_bind
3985 permission check between the socket and the port number. */
3986
3987static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3988{
3989 struct sock *sk = sock->sk;
3990 u16 family;
3991 int err;
3992
3993 err = sock_has_perm(current, sk, SOCKET__BIND);
3994 if (err)
3995 goto out;
3996
3997 /*
3998 * If PF_INET or PF_INET6, check name_bind permission for the port.
3999 * Multiple address binding for SCTP is not supported yet: we just
4000 * check the first address now.
4001 */
4002 family = sk->sk_family;
4003 if (family == PF_INET || family == PF_INET6) {
4004 char *addrp;
4005 struct sk_security_struct *sksec = sk->sk_security;
4006 struct common_audit_data ad;
4007 struct lsm_network_audit net = {0,};
4008 struct sockaddr_in *addr4 = NULL;
4009 struct sockaddr_in6 *addr6 = NULL;
4010 unsigned short snum;
4011 u32 sid, node_perm;
4012
4013 if (family == PF_INET) {
4014 addr4 = (struct sockaddr_in *)address;
4015 snum = ntohs(addr4->sin_port);
4016 addrp = (char *)&addr4->sin_addr.s_addr;
4017 } else {
4018 addr6 = (struct sockaddr_in6 *)address;
4019 snum = ntohs(addr6->sin6_port);
4020 addrp = (char *)&addr6->sin6_addr.s6_addr;
4021 }
4022
4023 if (snum) {
4024 int low, high;
4025
4026 inet_get_local_port_range(sock_net(sk), &low, &high);
4027
4028 if (snum < max(PROT_SOCK, low) || snum > high) {
4029 err = sel_netport_sid(sk->sk_protocol,
4030 snum, &sid);
4031 if (err)
4032 goto out;
4033 ad.type = LSM_AUDIT_DATA_NET;
4034 ad.u.net = &net;
4035 ad.u.net->sport = htons(snum);
4036 ad.u.net->family = family;
4037 err = avc_has_perm(sksec->sid, sid,
4038 sksec->sclass,
4039 SOCKET__NAME_BIND, &ad);
4040 if (err)
4041 goto out;
4042 }
4043 }
4044
4045 switch (sksec->sclass) {
4046 case SECCLASS_TCP_SOCKET:
4047 node_perm = TCP_SOCKET__NODE_BIND;
4048 break;
4049
4050 case SECCLASS_UDP_SOCKET:
4051 node_perm = UDP_SOCKET__NODE_BIND;
4052 break;
4053
4054 case SECCLASS_DCCP_SOCKET:
4055 node_perm = DCCP_SOCKET__NODE_BIND;
4056 break;
4057
4058 default:
4059 node_perm = RAWIP_SOCKET__NODE_BIND;
4060 break;
4061 }
4062
4063 err = sel_netnode_sid(addrp, family, &sid);
4064 if (err)
4065 goto out;
4066
4067 ad.type = LSM_AUDIT_DATA_NET;
4068 ad.u.net = &net;
4069 ad.u.net->sport = htons(snum);
4070 ad.u.net->family = family;
4071
4072 if (family == PF_INET)
4073 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4074 else
4075 ad.u.net->v6info.saddr = addr6->sin6_addr;
4076
4077 err = avc_has_perm(sksec->sid, sid,
4078 sksec->sclass, node_perm, &ad);
4079 if (err)
4080 goto out;
4081 }
4082out:
4083 return err;
4084}
4085
4086static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4087{
4088 struct sock *sk = sock->sk;
4089 struct sk_security_struct *sksec = sk->sk_security;
4090 int err;
4091
4092 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4093 if (err)
4094 return err;
4095
4096 /*
4097 * If a TCP or DCCP socket, check name_connect permission for the port.
4098 */
4099 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4100 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4101 struct common_audit_data ad;
4102 struct lsm_network_audit net = {0,};
4103 struct sockaddr_in *addr4 = NULL;
4104 struct sockaddr_in6 *addr6 = NULL;
4105 unsigned short snum;
4106 u32 sid, perm;
4107
4108 if (sk->sk_family == PF_INET) {
4109 addr4 = (struct sockaddr_in *)address;
4110 if (addrlen < sizeof(struct sockaddr_in))
4111 return -EINVAL;
4112 snum = ntohs(addr4->sin_port);
4113 } else {
4114 addr6 = (struct sockaddr_in6 *)address;
4115 if (addrlen < SIN6_LEN_RFC2133)
4116 return -EINVAL;
4117 snum = ntohs(addr6->sin6_port);
4118 }
4119
4120 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4121 if (err)
4122 goto out;
4123
4124 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4125 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4126
4127 ad.type = LSM_AUDIT_DATA_NET;
4128 ad.u.net = &net;
4129 ad.u.net->dport = htons(snum);
4130 ad.u.net->family = sk->sk_family;
4131 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4132 if (err)
4133 goto out;
4134 }
4135
4136 err = selinux_netlbl_socket_connect(sk, address);
4137
4138out:
4139 return err;
4140}
4141
4142static int selinux_socket_listen(struct socket *sock, int backlog)
4143{
4144 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4145}
4146
4147static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4148{
4149 int err;
4150 struct inode_security_struct *isec;
4151 struct inode_security_struct *newisec;
4152
4153 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4154 if (err)
4155 return err;
4156
4157 newisec = SOCK_INODE(newsock)->i_security;
4158
4159 isec = SOCK_INODE(sock)->i_security;
4160 newisec->sclass = isec->sclass;
4161 newisec->sid = isec->sid;
4162 newisec->initialized = 1;
4163
4164 return 0;
4165}
4166
4167static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4168 int size)
4169{
4170 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4171}
4172
4173static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4174 int size, int flags)
4175{
4176 return sock_has_perm(current, sock->sk, SOCKET__READ);
4177}
4178
4179static int selinux_socket_getsockname(struct socket *sock)
4180{
4181 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4182}
4183
4184static int selinux_socket_getpeername(struct socket *sock)
4185{
4186 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4187}
4188
4189static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4190{
4191 int err;
4192
4193 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4194 if (err)
4195 return err;
4196
4197 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4198}
4199
4200static int selinux_socket_getsockopt(struct socket *sock, int level,
4201 int optname)
4202{
4203 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4204}
4205
4206static int selinux_socket_shutdown(struct socket *sock, int how)
4207{
4208 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4209}
4210
4211static int selinux_socket_unix_stream_connect(struct sock *sock,
4212 struct sock *other,
4213 struct sock *newsk)
4214{
4215 struct sk_security_struct *sksec_sock = sock->sk_security;
4216 struct sk_security_struct *sksec_other = other->sk_security;
4217 struct sk_security_struct *sksec_new = newsk->sk_security;
4218 struct common_audit_data ad;
4219 struct lsm_network_audit net = {0,};
4220 int err;
4221
4222 ad.type = LSM_AUDIT_DATA_NET;
4223 ad.u.net = &net;
4224 ad.u.net->sk = other;
4225
4226 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4227 sksec_other->sclass,
4228 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4229 if (err)
4230 return err;
4231
4232 /* server child socket */
4233 sksec_new->peer_sid = sksec_sock->sid;
4234 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4235 &sksec_new->sid);
4236 if (err)
4237 return err;
4238
4239 /* connecting socket */
4240 sksec_sock->peer_sid = sksec_new->sid;
4241
4242 return 0;
4243}
4244
4245static int selinux_socket_unix_may_send(struct socket *sock,
4246 struct socket *other)
4247{
4248 struct sk_security_struct *ssec = sock->sk->sk_security;
4249 struct sk_security_struct *osec = other->sk->sk_security;
4250 struct common_audit_data ad;
4251 struct lsm_network_audit net = {0,};
4252
4253 ad.type = LSM_AUDIT_DATA_NET;
4254 ad.u.net = &net;
4255 ad.u.net->sk = other->sk;
4256
4257 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4258 &ad);
4259}
4260
4261static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4262 u32 peer_sid,
4263 struct common_audit_data *ad)
4264{
4265 int err;
4266 u32 if_sid;
4267 u32 node_sid;
4268
4269 err = sel_netif_sid(ifindex, &if_sid);
4270 if (err)
4271 return err;
4272 err = avc_has_perm(peer_sid, if_sid,
4273 SECCLASS_NETIF, NETIF__INGRESS, ad);
4274 if (err)
4275 return err;
4276
4277 err = sel_netnode_sid(addrp, family, &node_sid);
4278 if (err)
4279 return err;
4280 return avc_has_perm(peer_sid, node_sid,
4281 SECCLASS_NODE, NODE__RECVFROM, ad);
4282}
4283
4284static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4285 u16 family)
4286{
4287 int err = 0;
4288 struct sk_security_struct *sksec = sk->sk_security;
4289 u32 sk_sid = sksec->sid;
4290 struct common_audit_data ad;
4291 struct lsm_network_audit net = {0,};
4292 char *addrp;
4293
4294 ad.type = LSM_AUDIT_DATA_NET;
4295 ad.u.net = &net;
4296 ad.u.net->netif = skb->skb_iif;
4297 ad.u.net->family = family;
4298 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4299 if (err)
4300 return err;
4301
4302 if (selinux_secmark_enabled()) {
4303 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4304 PACKET__RECV, &ad);
4305 if (err)
4306 return err;
4307 }
4308
4309 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4310 if (err)
4311 return err;
4312 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4313
4314 return err;
4315}
4316
4317static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4318{
4319 int err;
4320 struct sk_security_struct *sksec = sk->sk_security;
4321 u16 family = sk->sk_family;
4322 u32 sk_sid = sksec->sid;
4323 struct common_audit_data ad;
4324 struct lsm_network_audit net = {0,};
4325 char *addrp;
4326 u8 secmark_active;
4327 u8 peerlbl_active;
4328
4329 if (family != PF_INET && family != PF_INET6)
4330 return 0;
4331
4332 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4333 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4334 family = PF_INET;
4335
4336 /* If any sort of compatibility mode is enabled then handoff processing
4337 * to the selinux_sock_rcv_skb_compat() function to deal with the
4338 * special handling. We do this in an attempt to keep this function
4339 * as fast and as clean as possible. */
4340 if (!selinux_policycap_netpeer)
4341 return selinux_sock_rcv_skb_compat(sk, skb, family);
4342
4343 secmark_active = selinux_secmark_enabled();
4344 peerlbl_active = selinux_peerlbl_enabled();
4345 if (!secmark_active && !peerlbl_active)
4346 return 0;
4347
4348 ad.type = LSM_AUDIT_DATA_NET;
4349 ad.u.net = &net;
4350 ad.u.net->netif = skb->skb_iif;
4351 ad.u.net->family = family;
4352 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4353 if (err)
4354 return err;
4355
4356 if (peerlbl_active) {
4357 u32 peer_sid;
4358
4359 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4360 if (err)
4361 return err;
4362 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4363 peer_sid, &ad);
4364 if (err) {
4365 selinux_netlbl_err(skb, err, 0);
4366 return err;
4367 }
4368 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4369 PEER__RECV, &ad);
4370 if (err) {
4371 selinux_netlbl_err(skb, err, 0);
4372 return err;
4373 }
4374 }
4375
4376 if (secmark_active) {
4377 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4378 PACKET__RECV, &ad);
4379 if (err)
4380 return err;
4381 }
4382
4383 return err;
4384}
4385
4386static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4387 int __user *optlen, unsigned len)
4388{
4389 int err = 0;
4390 char *scontext;
4391 u32 scontext_len;
4392 struct sk_security_struct *sksec = sock->sk->sk_security;
4393 u32 peer_sid = SECSID_NULL;
4394
4395 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4396 sksec->sclass == SECCLASS_TCP_SOCKET)
4397 peer_sid = sksec->peer_sid;
4398 if (peer_sid == SECSID_NULL)
4399 return -ENOPROTOOPT;
4400
4401 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4402 if (err)
4403 return err;
4404
4405 if (scontext_len > len) {
4406 err = -ERANGE;
4407 goto out_len;
4408 }
4409
4410 if (copy_to_user(optval, scontext, scontext_len))
4411 err = -EFAULT;
4412
4413out_len:
4414 if (put_user(scontext_len, optlen))
4415 err = -EFAULT;
4416 kfree(scontext);
4417 return err;
4418}
4419
4420static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4421{
4422 u32 peer_secid = SECSID_NULL;
4423 u16 family;
4424
4425 if (skb && skb->protocol == htons(ETH_P_IP))
4426 family = PF_INET;
4427 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4428 family = PF_INET6;
4429 else if (sock)
4430 family = sock->sk->sk_family;
4431 else
4432 goto out;
4433
4434 if (sock && family == PF_UNIX)
4435 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4436 else if (skb)
4437 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4438
4439out:
4440 *secid = peer_secid;
4441 if (peer_secid == SECSID_NULL)
4442 return -EINVAL;
4443 return 0;
4444}
4445
4446static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4447{
4448 struct sk_security_struct *sksec;
4449
4450 sksec = kzalloc(sizeof(*sksec), priority);
4451 if (!sksec)
4452 return -ENOMEM;
4453
4454 sksec->peer_sid = SECINITSID_UNLABELED;
4455 sksec->sid = SECINITSID_UNLABELED;
4456 selinux_netlbl_sk_security_reset(sksec);
4457 sk->sk_security = sksec;
4458
4459 return 0;
4460}
4461
4462static void selinux_sk_free_security(struct sock *sk)
4463{
4464 struct sk_security_struct *sksec = sk->sk_security;
4465
4466 sk->sk_security = NULL;
4467 selinux_netlbl_sk_security_free(sksec);
4468 kfree(sksec);
4469}
4470
4471static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4472{
4473 struct sk_security_struct *sksec = sk->sk_security;
4474 struct sk_security_struct *newsksec = newsk->sk_security;
4475
4476 newsksec->sid = sksec->sid;
4477 newsksec->peer_sid = sksec->peer_sid;
4478 newsksec->sclass = sksec->sclass;
4479
4480 selinux_netlbl_sk_security_reset(newsksec);
4481}
4482
4483static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4484{
4485 if (!sk)
4486 *secid = SECINITSID_ANY_SOCKET;
4487 else {
4488 struct sk_security_struct *sksec = sk->sk_security;
4489
4490 *secid = sksec->sid;
4491 }
4492}
4493
4494static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4495{
4496 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4497 struct sk_security_struct *sksec = sk->sk_security;
4498
4499 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4500 sk->sk_family == PF_UNIX)
4501 isec->sid = sksec->sid;
4502 sksec->sclass = isec->sclass;
4503}
4504
4505static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4506 struct request_sock *req)
4507{
4508 struct sk_security_struct *sksec = sk->sk_security;
4509 int err;
4510 u16 family = req->rsk_ops->family;
4511 u32 connsid;
4512 u32 peersid;
4513
4514 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4515 if (err)
4516 return err;
4517 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4518 if (err)
4519 return err;
4520 req->secid = connsid;
4521 req->peer_secid = peersid;
4522
4523 return selinux_netlbl_inet_conn_request(req, family);
4524}
4525
4526static void selinux_inet_csk_clone(struct sock *newsk,
4527 const struct request_sock *req)
4528{
4529 struct sk_security_struct *newsksec = newsk->sk_security;
4530
4531 newsksec->sid = req->secid;
4532 newsksec->peer_sid = req->peer_secid;
4533 /* NOTE: Ideally, we should also get the isec->sid for the
4534 new socket in sync, but we don't have the isec available yet.
4535 So we will wait until sock_graft to do it, by which
4536 time it will have been created and available. */
4537
4538 /* We don't need to take any sort of lock here as we are the only
4539 * thread with access to newsksec */
4540 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4541}
4542
4543static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4544{
4545 u16 family = sk->sk_family;
4546 struct sk_security_struct *sksec = sk->sk_security;
4547
4548 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4549 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4550 family = PF_INET;
4551
4552 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4553}
4554
4555static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4556{
4557 skb_set_owner_w(skb, sk);
4558}
4559
4560static int selinux_secmark_relabel_packet(u32 sid)
4561{
4562 const struct task_security_struct *__tsec;
4563 u32 tsid;
4564
4565 __tsec = current_security();
4566 tsid = __tsec->sid;
4567
4568 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4569}
4570
4571static void selinux_secmark_refcount_inc(void)
4572{
4573 atomic_inc(&selinux_secmark_refcount);
4574}
4575
4576static void selinux_secmark_refcount_dec(void)
4577{
4578 atomic_dec(&selinux_secmark_refcount);
4579}
4580
4581static void selinux_req_classify_flow(const struct request_sock *req,
4582 struct flowi *fl)
4583{
4584 fl->flowi_secid = req->secid;
4585}
4586
4587static int selinux_tun_dev_alloc_security(void **security)
4588{
4589 struct tun_security_struct *tunsec;
4590
4591 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4592 if (!tunsec)
4593 return -ENOMEM;
4594 tunsec->sid = current_sid();
4595
4596 *security = tunsec;
4597 return 0;
4598}
4599
4600static void selinux_tun_dev_free_security(void *security)
4601{
4602 kfree(security);
4603}
4604
4605static int selinux_tun_dev_create(void)
4606{
4607 u32 sid = current_sid();
4608
4609 /* we aren't taking into account the "sockcreate" SID since the socket
4610 * that is being created here is not a socket in the traditional sense,
4611 * instead it is a private sock, accessible only to the kernel, and
4612 * representing a wide range of network traffic spanning multiple
4613 * connections unlike traditional sockets - check the TUN driver to
4614 * get a better understanding of why this socket is special */
4615
4616 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4617 NULL);
4618}
4619
4620static int selinux_tun_dev_attach_queue(void *security)
4621{
4622 struct tun_security_struct *tunsec = security;
4623
4624 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4625 TUN_SOCKET__ATTACH_QUEUE, NULL);
4626}
4627
4628static int selinux_tun_dev_attach(struct sock *sk, void *security)
4629{
4630 struct tun_security_struct *tunsec = security;
4631 struct sk_security_struct *sksec = sk->sk_security;
4632
4633 /* we don't currently perform any NetLabel based labeling here and it
4634 * isn't clear that we would want to do so anyway; while we could apply
4635 * labeling without the support of the TUN user the resulting labeled
4636 * traffic from the other end of the connection would almost certainly
4637 * cause confusion to the TUN user that had no idea network labeling
4638 * protocols were being used */
4639
4640 sksec->sid = tunsec->sid;
4641 sksec->sclass = SECCLASS_TUN_SOCKET;
4642
4643 return 0;
4644}
4645
4646static int selinux_tun_dev_open(void *security)
4647{
4648 struct tun_security_struct *tunsec = security;
4649 u32 sid = current_sid();
4650 int err;
4651
4652 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4653 TUN_SOCKET__RELABELFROM, NULL);
4654 if (err)
4655 return err;
4656 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4657 TUN_SOCKET__RELABELTO, NULL);
4658 if (err)
4659 return err;
4660 tunsec->sid = sid;
4661
4662 return 0;
4663}
4664
4665static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4666{
4667 int err = 0;
4668 u32 perm;
4669 struct nlmsghdr *nlh;
4670 struct sk_security_struct *sksec = sk->sk_security;
4671
4672 if (skb->len < NLMSG_HDRLEN) {
4673 err = -EINVAL;
4674 goto out;
4675 }
4676 nlh = nlmsg_hdr(skb);
4677
4678 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4679 if (err) {
4680 if (err == -EINVAL) {
4681 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4682 "SELinux: unrecognized netlink message"
4683 " type=%hu for sclass=%hu\n",
4684 nlh->nlmsg_type, sksec->sclass);
4685 if (!selinux_enforcing || security_get_allow_unknown())
4686 err = 0;
4687 }
4688
4689 /* Ignore */
4690 if (err == -ENOENT)
4691 err = 0;
4692 goto out;
4693 }
4694
4695 err = sock_has_perm(current, sk, perm);
4696out:
4697 return err;
4698}
4699
4700#ifdef CONFIG_NETFILTER
4701
4702static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4703 u16 family)
4704{
4705 int err;
4706 char *addrp;
4707 u32 peer_sid;
4708 struct common_audit_data ad;
4709 struct lsm_network_audit net = {0,};
4710 u8 secmark_active;
4711 u8 netlbl_active;
4712 u8 peerlbl_active;
4713
4714 if (!selinux_policycap_netpeer)
4715 return NF_ACCEPT;
4716
4717 secmark_active = selinux_secmark_enabled();
4718 netlbl_active = netlbl_enabled();
4719 peerlbl_active = selinux_peerlbl_enabled();
4720 if (!secmark_active && !peerlbl_active)
4721 return NF_ACCEPT;
4722
4723 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4724 return NF_DROP;
4725
4726 ad.type = LSM_AUDIT_DATA_NET;
4727 ad.u.net = &net;
4728 ad.u.net->netif = ifindex;
4729 ad.u.net->family = family;
4730 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4731 return NF_DROP;
4732
4733 if (peerlbl_active) {
4734 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4735 peer_sid, &ad);
4736 if (err) {
4737 selinux_netlbl_err(skb, err, 1);
4738 return NF_DROP;
4739 }
4740 }
4741
4742 if (secmark_active)
4743 if (avc_has_perm(peer_sid, skb->secmark,
4744 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4745 return NF_DROP;
4746
4747 if (netlbl_active)
4748 /* we do this in the FORWARD path and not the POST_ROUTING
4749 * path because we want to make sure we apply the necessary
4750 * labeling before IPsec is applied so we can leverage AH
4751 * protection */
4752 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4753 return NF_DROP;
4754
4755 return NF_ACCEPT;
4756}
4757
4758static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4759 struct sk_buff *skb,
4760 const struct net_device *in,
4761 const struct net_device *out,
4762 int (*okfn)(struct sk_buff *))
4763{
4764 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4765}
4766
4767#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4768static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4769 struct sk_buff *skb,
4770 const struct net_device *in,
4771 const struct net_device *out,
4772 int (*okfn)(struct sk_buff *))
4773{
4774 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4775}
4776#endif /* IPV6 */
4777
4778static unsigned int selinux_ip_output(struct sk_buff *skb,
4779 u16 family)
4780{
4781 struct sock *sk;
4782 u32 sid;
4783
4784 if (!netlbl_enabled())
4785 return NF_ACCEPT;
4786
4787 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4788 * because we want to make sure we apply the necessary labeling
4789 * before IPsec is applied so we can leverage AH protection */
4790 sk = skb->sk;
4791 if (sk) {
4792 struct sk_security_struct *sksec;
4793
4794 if (sk->sk_state == TCP_LISTEN)
4795 /* if the socket is the listening state then this
4796 * packet is a SYN-ACK packet which means it needs to
4797 * be labeled based on the connection/request_sock and
4798 * not the parent socket. unfortunately, we can't
4799 * lookup the request_sock yet as it isn't queued on
4800 * the parent socket until after the SYN-ACK is sent.
4801 * the "solution" is to simply pass the packet as-is
4802 * as any IP option based labeling should be copied
4803 * from the initial connection request (in the IP
4804 * layer). it is far from ideal, but until we get a
4805 * security label in the packet itself this is the
4806 * best we can do. */
4807 return NF_ACCEPT;
4808
4809 /* standard practice, label using the parent socket */
4810 sksec = sk->sk_security;
4811 sid = sksec->sid;
4812 } else
4813 sid = SECINITSID_KERNEL;
4814 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4815 return NF_DROP;
4816
4817 return NF_ACCEPT;
4818}
4819
4820static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4821 struct sk_buff *skb,
4822 const struct net_device *in,
4823 const struct net_device *out,
4824 int (*okfn)(struct sk_buff *))
4825{
4826 return selinux_ip_output(skb, PF_INET);
4827}
4828
4829static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4830 int ifindex,
4831 u16 family)
4832{
4833 struct sock *sk = skb->sk;
4834 struct sk_security_struct *sksec;
4835 struct common_audit_data ad;
4836 struct lsm_network_audit net = {0,};
4837 char *addrp;
4838 u8 proto;
4839
4840 if (sk == NULL)
4841 return NF_ACCEPT;
4842 sksec = sk->sk_security;
4843
4844 ad.type = LSM_AUDIT_DATA_NET;
4845 ad.u.net = &net;
4846 ad.u.net->netif = ifindex;
4847 ad.u.net->family = family;
4848 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4849 return NF_DROP;
4850
4851 if (selinux_secmark_enabled())
4852 if (avc_has_perm(sksec->sid, skb->secmark,
4853 SECCLASS_PACKET, PACKET__SEND, &ad))
4854 return NF_DROP_ERR(-ECONNREFUSED);
4855
4856 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4857 return NF_DROP_ERR(-ECONNREFUSED);
4858
4859 return NF_ACCEPT;
4860}
4861
4862static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4863 u16 family)
4864{
4865 u32 secmark_perm;
4866 u32 peer_sid;
4867 struct sock *sk;
4868 struct common_audit_data ad;
4869 struct lsm_network_audit net = {0,};
4870 char *addrp;
4871 u8 secmark_active;
4872 u8 peerlbl_active;
4873
4874 /* If any sort of compatibility mode is enabled then handoff processing
4875 * to the selinux_ip_postroute_compat() function to deal with the
4876 * special handling. We do this in an attempt to keep this function
4877 * as fast and as clean as possible. */
4878 if (!selinux_policycap_netpeer)
4879 return selinux_ip_postroute_compat(skb, ifindex, family);
4880
4881 secmark_active = selinux_secmark_enabled();
4882 peerlbl_active = selinux_peerlbl_enabled();
4883 if (!secmark_active && !peerlbl_active)
4884 return NF_ACCEPT;
4885
4886 sk = skb->sk;
4887
4888#ifdef CONFIG_XFRM
4889 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4890 * packet transformation so allow the packet to pass without any checks
4891 * since we'll have another chance to perform access control checks
4892 * when the packet is on it's final way out.
4893 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4894 * is NULL, in this case go ahead and apply access control.
4895 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4896 * TCP listening state we cannot wait until the XFRM processing
4897 * is done as we will miss out on the SA label if we do;
4898 * unfortunately, this means more work, but it is only once per
4899 * connection. */
4900 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4901 !(sk != NULL && sk->sk_state == TCP_LISTEN))
4902 return NF_ACCEPT;
4903#endif
4904
4905 if (sk == NULL) {
4906 /* Without an associated socket the packet is either coming
4907 * from the kernel or it is being forwarded; check the packet
4908 * to determine which and if the packet is being forwarded
4909 * query the packet directly to determine the security label. */
4910 if (skb->skb_iif) {
4911 secmark_perm = PACKET__FORWARD_OUT;
4912 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4913 return NF_DROP;
4914 } else {
4915 secmark_perm = PACKET__SEND;
4916 peer_sid = SECINITSID_KERNEL;
4917 }
4918 } else if (sk->sk_state == TCP_LISTEN) {
4919 /* Locally generated packet but the associated socket is in the
4920 * listening state which means this is a SYN-ACK packet. In
4921 * this particular case the correct security label is assigned
4922 * to the connection/request_sock but unfortunately we can't
4923 * query the request_sock as it isn't queued on the parent
4924 * socket until after the SYN-ACK packet is sent; the only
4925 * viable choice is to regenerate the label like we do in
4926 * selinux_inet_conn_request(). See also selinux_ip_output()
4927 * for similar problems. */
4928 u32 skb_sid;
4929 struct sk_security_struct *sksec = sk->sk_security;
4930 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4931 return NF_DROP;
4932 /* At this point, if the returned skb peerlbl is SECSID_NULL
4933 * and the packet has been through at least one XFRM
4934 * transformation then we must be dealing with the "final"
4935 * form of labeled IPsec packet; since we've already applied
4936 * all of our access controls on this packet we can safely
4937 * pass the packet. */
4938 if (skb_sid == SECSID_NULL) {
4939 switch (family) {
4940 case PF_INET:
4941 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4942 return NF_ACCEPT;
4943 break;
4944 case PF_INET6:
4945 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4946 return NF_ACCEPT;
4947 default:
4948 return NF_DROP_ERR(-ECONNREFUSED);
4949 }
4950 }
4951 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4952 return NF_DROP;
4953 secmark_perm = PACKET__SEND;
4954 } else {
4955 /* Locally generated packet, fetch the security label from the
4956 * associated socket. */
4957 struct sk_security_struct *sksec = sk->sk_security;
4958 peer_sid = sksec->sid;
4959 secmark_perm = PACKET__SEND;
4960 }
4961
4962 ad.type = LSM_AUDIT_DATA_NET;
4963 ad.u.net = &net;
4964 ad.u.net->netif = ifindex;
4965 ad.u.net->family = family;
4966 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4967 return NF_DROP;
4968
4969 if (secmark_active)
4970 if (avc_has_perm(peer_sid, skb->secmark,
4971 SECCLASS_PACKET, secmark_perm, &ad))
4972 return NF_DROP_ERR(-ECONNREFUSED);
4973
4974 if (peerlbl_active) {
4975 u32 if_sid;
4976 u32 node_sid;
4977
4978 if (sel_netif_sid(ifindex, &if_sid))
4979 return NF_DROP;
4980 if (avc_has_perm(peer_sid, if_sid,
4981 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4982 return NF_DROP_ERR(-ECONNREFUSED);
4983
4984 if (sel_netnode_sid(addrp, family, &node_sid))
4985 return NF_DROP;
4986 if (avc_has_perm(peer_sid, node_sid,
4987 SECCLASS_NODE, NODE__SENDTO, &ad))
4988 return NF_DROP_ERR(-ECONNREFUSED);
4989 }
4990
4991 return NF_ACCEPT;
4992}
4993
4994static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
4995 struct sk_buff *skb,
4996 const struct net_device *in,
4997 const struct net_device *out,
4998 int (*okfn)(struct sk_buff *))
4999{
5000 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
5001}
5002
5003#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5004static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5005 struct sk_buff *skb,
5006 const struct net_device *in,
5007 const struct net_device *out,
5008 int (*okfn)(struct sk_buff *))
5009{
5010 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5011}
5012#endif /* IPV6 */
5013
5014#endif /* CONFIG_NETFILTER */
5015
5016static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5017{
5018 int err;
5019
5020 err = cap_netlink_send(sk, skb);
5021 if (err)
5022 return err;
5023
5024 return selinux_nlmsg_perm(sk, skb);
5025}
5026
5027static int ipc_alloc_security(struct task_struct *task,
5028 struct kern_ipc_perm *perm,
5029 u16 sclass)
5030{
5031 struct ipc_security_struct *isec;
5032 u32 sid;
5033
5034 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5035 if (!isec)
5036 return -ENOMEM;
5037
5038 sid = task_sid(task);
5039 isec->sclass = sclass;
5040 isec->sid = sid;
5041 perm->security = isec;
5042
5043 return 0;
5044}
5045
5046static void ipc_free_security(struct kern_ipc_perm *perm)
5047{
5048 struct ipc_security_struct *isec = perm->security;
5049 perm->security = NULL;
5050 kfree(isec);
5051}
5052
5053static int msg_msg_alloc_security(struct msg_msg *msg)
5054{
5055 struct msg_security_struct *msec;
5056
5057 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5058 if (!msec)
5059 return -ENOMEM;
5060
5061 msec->sid = SECINITSID_UNLABELED;
5062 msg->security = msec;
5063
5064 return 0;
5065}
5066
5067static void msg_msg_free_security(struct msg_msg *msg)
5068{
5069 struct msg_security_struct *msec = msg->security;
5070
5071 msg->security = NULL;
5072 kfree(msec);
5073}
5074
5075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5076 u32 perms)
5077{
5078 struct ipc_security_struct *isec;
5079 struct common_audit_data ad;
5080 u32 sid = current_sid();
5081
5082 isec = ipc_perms->security;
5083
5084 ad.type = LSM_AUDIT_DATA_IPC;
5085 ad.u.ipc_id = ipc_perms->key;
5086
5087 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5088}
5089
5090static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5091{
5092 return msg_msg_alloc_security(msg);
5093}
5094
5095static void selinux_msg_msg_free_security(struct msg_msg *msg)
5096{
5097 msg_msg_free_security(msg);
5098}
5099
5100/* message queue security operations */
5101static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5102{
5103 struct ipc_security_struct *isec;
5104 struct common_audit_data ad;
5105 u32 sid = current_sid();
5106 int rc;
5107
5108 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5109 if (rc)
5110 return rc;
5111
5112 isec = msq->q_perm.security;
5113
5114 ad.type = LSM_AUDIT_DATA_IPC;
5115 ad.u.ipc_id = msq->q_perm.key;
5116
5117 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5118 MSGQ__CREATE, &ad);
5119 if (rc) {
5120 ipc_free_security(&msq->q_perm);
5121 return rc;
5122 }
5123 return 0;
5124}
5125
5126static void selinux_msg_queue_free_security(struct msg_queue *msq)
5127{
5128 ipc_free_security(&msq->q_perm);
5129}
5130
5131static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5132{
5133 struct ipc_security_struct *isec;
5134 struct common_audit_data ad;
5135 u32 sid = current_sid();
5136
5137 isec = msq->q_perm.security;
5138
5139 ad.type = LSM_AUDIT_DATA_IPC;
5140 ad.u.ipc_id = msq->q_perm.key;
5141
5142 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5143 MSGQ__ASSOCIATE, &ad);
5144}
5145
5146static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5147{
5148 int err;
5149 int perms;
5150
5151 switch (cmd) {
5152 case IPC_INFO:
5153 case MSG_INFO:
5154 /* No specific object, just general system-wide information. */
5155 return task_has_system(current, SYSTEM__IPC_INFO);
5156 case IPC_STAT:
5157 case MSG_STAT:
5158 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5159 break;
5160 case IPC_SET:
5161 perms = MSGQ__SETATTR;
5162 break;
5163 case IPC_RMID:
5164 perms = MSGQ__DESTROY;
5165 break;
5166 default:
5167 return 0;
5168 }
5169
5170 err = ipc_has_perm(&msq->q_perm, perms);
5171 return err;
5172}
5173
5174static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5175{
5176 struct ipc_security_struct *isec;
5177 struct msg_security_struct *msec;
5178 struct common_audit_data ad;
5179 u32 sid = current_sid();
5180 int rc;
5181
5182 isec = msq->q_perm.security;
5183 msec = msg->security;
5184
5185 /*
5186 * First time through, need to assign label to the message
5187 */
5188 if (msec->sid == SECINITSID_UNLABELED) {
5189 /*
5190 * Compute new sid based on current process and
5191 * message queue this message will be stored in
5192 */
5193 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5194 NULL, &msec->sid);
5195 if (rc)
5196 return rc;
5197 }
5198
5199 ad.type = LSM_AUDIT_DATA_IPC;
5200 ad.u.ipc_id = msq->q_perm.key;
5201
5202 /* Can this process write to the queue? */
5203 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5204 MSGQ__WRITE, &ad);
5205 if (!rc)
5206 /* Can this process send the message */
5207 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5208 MSG__SEND, &ad);
5209 if (!rc)
5210 /* Can the message be put in the queue? */
5211 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5212 MSGQ__ENQUEUE, &ad);
5213
5214 return rc;
5215}
5216
5217static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5218 struct task_struct *target,
5219 long type, int mode)
5220{
5221 struct ipc_security_struct *isec;
5222 struct msg_security_struct *msec;
5223 struct common_audit_data ad;
5224 u32 sid = task_sid(target);
5225 int rc;
5226
5227 isec = msq->q_perm.security;
5228 msec = msg->security;
5229
5230 ad.type = LSM_AUDIT_DATA_IPC;
5231 ad.u.ipc_id = msq->q_perm.key;
5232
5233 rc = avc_has_perm(sid, isec->sid,
5234 SECCLASS_MSGQ, MSGQ__READ, &ad);
5235 if (!rc)
5236 rc = avc_has_perm(sid, msec->sid,
5237 SECCLASS_MSG, MSG__RECEIVE, &ad);
5238 return rc;
5239}
5240
5241/* Shared Memory security operations */
5242static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5243{
5244 struct ipc_security_struct *isec;
5245 struct common_audit_data ad;
5246 u32 sid = current_sid();
5247 int rc;
5248
5249 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5250 if (rc)
5251 return rc;
5252
5253 isec = shp->shm_perm.security;
5254
5255 ad.type = LSM_AUDIT_DATA_IPC;
5256 ad.u.ipc_id = shp->shm_perm.key;
5257
5258 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5259 SHM__CREATE, &ad);
5260 if (rc) {
5261 ipc_free_security(&shp->shm_perm);
5262 return rc;
5263 }
5264 return 0;
5265}
5266
5267static void selinux_shm_free_security(struct shmid_kernel *shp)
5268{
5269 ipc_free_security(&shp->shm_perm);
5270}
5271
5272static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5273{
5274 struct ipc_security_struct *isec;
5275 struct common_audit_data ad;
5276 u32 sid = current_sid();
5277
5278 isec = shp->shm_perm.security;
5279
5280 ad.type = LSM_AUDIT_DATA_IPC;
5281 ad.u.ipc_id = shp->shm_perm.key;
5282
5283 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5284 SHM__ASSOCIATE, &ad);
5285}
5286
5287/* Note, at this point, shp is locked down */
5288static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5289{
5290 int perms;
5291 int err;
5292
5293 switch (cmd) {
5294 case IPC_INFO:
5295 case SHM_INFO:
5296 /* No specific object, just general system-wide information. */
5297 return task_has_system(current, SYSTEM__IPC_INFO);
5298 case IPC_STAT:
5299 case SHM_STAT:
5300 perms = SHM__GETATTR | SHM__ASSOCIATE;
5301 break;
5302 case IPC_SET:
5303 perms = SHM__SETATTR;
5304 break;
5305 case SHM_LOCK:
5306 case SHM_UNLOCK:
5307 perms = SHM__LOCK;
5308 break;
5309 case IPC_RMID:
5310 perms = SHM__DESTROY;
5311 break;
5312 default:
5313 return 0;
5314 }
5315
5316 err = ipc_has_perm(&shp->shm_perm, perms);
5317 return err;
5318}
5319
5320static int selinux_shm_shmat(struct shmid_kernel *shp,
5321 char __user *shmaddr, int shmflg)
5322{
5323 u32 perms;
5324
5325 if (shmflg & SHM_RDONLY)
5326 perms = SHM__READ;
5327 else
5328 perms = SHM__READ | SHM__WRITE;
5329
5330 return ipc_has_perm(&shp->shm_perm, perms);
5331}
5332
5333/* Semaphore security operations */
5334static int selinux_sem_alloc_security(struct sem_array *sma)
5335{
5336 struct ipc_security_struct *isec;
5337 struct common_audit_data ad;
5338 u32 sid = current_sid();
5339 int rc;
5340
5341 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5342 if (rc)
5343 return rc;
5344
5345 isec = sma->sem_perm.security;
5346
5347 ad.type = LSM_AUDIT_DATA_IPC;
5348 ad.u.ipc_id = sma->sem_perm.key;
5349
5350 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5351 SEM__CREATE, &ad);
5352 if (rc) {
5353 ipc_free_security(&sma->sem_perm);
5354 return rc;
5355 }
5356 return 0;
5357}
5358
5359static void selinux_sem_free_security(struct sem_array *sma)
5360{
5361 ipc_free_security(&sma->sem_perm);
5362}
5363
5364static int selinux_sem_associate(struct sem_array *sma, int semflg)
5365{
5366 struct ipc_security_struct *isec;
5367 struct common_audit_data ad;
5368 u32 sid = current_sid();
5369
5370 isec = sma->sem_perm.security;
5371
5372 ad.type = LSM_AUDIT_DATA_IPC;
5373 ad.u.ipc_id = sma->sem_perm.key;
5374
5375 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5376 SEM__ASSOCIATE, &ad);
5377}
5378
5379/* Note, at this point, sma is locked down */
5380static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5381{
5382 int err;
5383 u32 perms;
5384
5385 switch (cmd) {
5386 case IPC_INFO:
5387 case SEM_INFO:
5388 /* No specific object, just general system-wide information. */
5389 return task_has_system(current, SYSTEM__IPC_INFO);
5390 case GETPID:
5391 case GETNCNT:
5392 case GETZCNT:
5393 perms = SEM__GETATTR;
5394 break;
5395 case GETVAL:
5396 case GETALL:
5397 perms = SEM__READ;
5398 break;
5399 case SETVAL:
5400 case SETALL:
5401 perms = SEM__WRITE;
5402 break;
5403 case IPC_RMID:
5404 perms = SEM__DESTROY;
5405 break;
5406 case IPC_SET:
5407 perms = SEM__SETATTR;
5408 break;
5409 case IPC_STAT:
5410 case SEM_STAT:
5411 perms = SEM__GETATTR | SEM__ASSOCIATE;
5412 break;
5413 default:
5414 return 0;
5415 }
5416
5417 err = ipc_has_perm(&sma->sem_perm, perms);
5418 return err;
5419}
5420
5421static int selinux_sem_semop(struct sem_array *sma,
5422 struct sembuf *sops, unsigned nsops, int alter)
5423{
5424 u32 perms;
5425
5426 if (alter)
5427 perms = SEM__READ | SEM__WRITE;
5428 else
5429 perms = SEM__READ;
5430
5431 return ipc_has_perm(&sma->sem_perm, perms);
5432}
5433
5434static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5435{
5436 u32 av = 0;
5437
5438 av = 0;
5439 if (flag & S_IRUGO)
5440 av |= IPC__UNIX_READ;
5441 if (flag & S_IWUGO)
5442 av |= IPC__UNIX_WRITE;
5443
5444 if (av == 0)
5445 return 0;
5446
5447 return ipc_has_perm(ipcp, av);
5448}
5449
5450static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5451{
5452 struct ipc_security_struct *isec = ipcp->security;
5453 *secid = isec->sid;
5454}
5455
5456static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5457{
5458 if (inode)
5459 inode_doinit_with_dentry(inode, dentry);
5460}
5461
5462static int selinux_getprocattr(struct task_struct *p,
5463 char *name, char **value)
5464{
5465 const struct task_security_struct *__tsec;
5466 u32 sid;
5467 int error;
5468 unsigned len;
5469
5470 if (current != p) {
5471 error = current_has_perm(p, PROCESS__GETATTR);
5472 if (error)
5473 return error;
5474 }
5475
5476 rcu_read_lock();
5477 __tsec = __task_cred(p)->security;
5478
5479 if (!strcmp(name, "current"))
5480 sid = __tsec->sid;
5481 else if (!strcmp(name, "prev"))
5482 sid = __tsec->osid;
5483 else if (!strcmp(name, "exec"))
5484 sid = __tsec->exec_sid;
5485 else if (!strcmp(name, "fscreate"))
5486 sid = __tsec->create_sid;
5487 else if (!strcmp(name, "keycreate"))
5488 sid = __tsec->keycreate_sid;
5489 else if (!strcmp(name, "sockcreate"))
5490 sid = __tsec->sockcreate_sid;
5491 else
5492 goto invalid;
5493 rcu_read_unlock();
5494
5495 if (!sid)
5496 return 0;
5497
5498 error = security_sid_to_context(sid, value, &len);
5499 if (error)
5500 return error;
5501 return len;
5502
5503invalid:
5504 rcu_read_unlock();
5505 return -EINVAL;
5506}
5507
5508static int selinux_setprocattr(struct task_struct *p,
5509 char *name, void *value, size_t size)
5510{
5511 struct task_security_struct *tsec;
5512 struct task_struct *tracer;
5513 struct cred *new;
5514 u32 sid = 0, ptsid;
5515 int error;
5516 char *str = value;
5517
5518 if (current != p) {
5519 /* SELinux only allows a process to change its own
5520 security attributes. */
5521 return -EACCES;
5522 }
5523
5524 /*
5525 * Basic control over ability to set these attributes at all.
5526 * current == p, but we'll pass them separately in case the
5527 * above restriction is ever removed.
5528 */
5529 if (!strcmp(name, "exec"))
5530 error = current_has_perm(p, PROCESS__SETEXEC);
5531 else if (!strcmp(name, "fscreate"))
5532 error = current_has_perm(p, PROCESS__SETFSCREATE);
5533 else if (!strcmp(name, "keycreate"))
5534 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5535 else if (!strcmp(name, "sockcreate"))
5536 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5537 else if (!strcmp(name, "current"))
5538 error = current_has_perm(p, PROCESS__SETCURRENT);
5539 else
5540 error = -EINVAL;
5541 if (error)
5542 return error;
5543
5544 /* Obtain a SID for the context, if one was specified. */
5545 if (size && str[1] && str[1] != '\n') {
5546 if (str[size-1] == '\n') {
5547 str[size-1] = 0;
5548 size--;
5549 }
5550 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5551 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5552 if (!capable(CAP_MAC_ADMIN)) {
5553 struct audit_buffer *ab;
5554 size_t audit_size;
5555
5556 /* We strip a nul only if it is at the end, otherwise the
5557 * context contains a nul and we should audit that */
5558 if (str[size - 1] == '\0')
5559 audit_size = size - 1;
5560 else
5561 audit_size = size;
5562 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5563 audit_log_format(ab, "op=fscreate invalid_context=");
5564 audit_log_n_untrustedstring(ab, value, audit_size);
5565 audit_log_end(ab);
5566
5567 return error;
5568 }
5569 error = security_context_to_sid_force(value, size,
5570 &sid);
5571 }
5572 if (error)
5573 return error;
5574 }
5575
5576 new = prepare_creds();
5577 if (!new)
5578 return -ENOMEM;
5579
5580 /* Permission checking based on the specified context is
5581 performed during the actual operation (execve,
5582 open/mkdir/...), when we know the full context of the
5583 operation. See selinux_bprm_set_creds for the execve
5584 checks and may_create for the file creation checks. The
5585 operation will then fail if the context is not permitted. */
5586 tsec = new->security;
5587 if (!strcmp(name, "exec")) {
5588 tsec->exec_sid = sid;
5589 } else if (!strcmp(name, "fscreate")) {
5590 tsec->create_sid = sid;
5591 } else if (!strcmp(name, "keycreate")) {
5592 error = may_create_key(sid, p);
5593 if (error)
5594 goto abort_change;
5595 tsec->keycreate_sid = sid;
5596 } else if (!strcmp(name, "sockcreate")) {
5597 tsec->sockcreate_sid = sid;
5598 } else if (!strcmp(name, "current")) {
5599 error = -EINVAL;
5600 if (sid == 0)
5601 goto abort_change;
5602
5603 /* Only allow single threaded processes to change context */
5604 error = -EPERM;
5605 if (!current_is_single_threaded()) {
5606 error = security_bounded_transition(tsec->sid, sid);
5607 if (error)
5608 goto abort_change;
5609 }
5610
5611 /* Check permissions for the transition. */
5612 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5613 PROCESS__DYNTRANSITION, NULL);
5614 if (error)
5615 goto abort_change;
5616
5617 /* Check for ptracing, and update the task SID if ok.
5618 Otherwise, leave SID unchanged and fail. */
5619 ptsid = 0;
5620 rcu_read_lock();
5621 tracer = ptrace_parent(p);
5622 if (tracer)
5623 ptsid = task_sid(tracer);
5624 rcu_read_unlock();
5625
5626 if (tracer) {
5627 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5628 PROCESS__PTRACE, NULL);
5629 if (error)
5630 goto abort_change;
5631 }
5632
5633 tsec->sid = sid;
5634 } else {
5635 error = -EINVAL;
5636 goto abort_change;
5637 }
5638
5639 commit_creds(new);
5640 return size;
5641
5642abort_change:
5643 abort_creds(new);
5644 return error;
5645}
5646
5647static int selinux_ismaclabel(const char *name)
5648{
5649 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5650}
5651
5652static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5653{
5654 return security_sid_to_context(secid, secdata, seclen);
5655}
5656
5657static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5658{
5659 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5660}
5661
5662static void selinux_release_secctx(char *secdata, u32 seclen)
5663{
5664 kfree(secdata);
5665}
5666
5667/*
5668 * called with inode->i_mutex locked
5669 */
5670static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5671{
5672 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5673}
5674
5675/*
5676 * called with inode->i_mutex locked
5677 */
5678static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5679{
5680 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5681}
5682
5683static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5684{
5685 int len = 0;
5686 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5687 ctx, true);
5688 if (len < 0)
5689 return len;
5690 *ctxlen = len;
5691 return 0;
5692}
5693#ifdef CONFIG_KEYS
5694
5695static int selinux_key_alloc(struct key *k, const struct cred *cred,
5696 unsigned long flags)
5697{
5698 const struct task_security_struct *tsec;
5699 struct key_security_struct *ksec;
5700
5701 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5702 if (!ksec)
5703 return -ENOMEM;
5704
5705 tsec = cred->security;
5706 if (tsec->keycreate_sid)
5707 ksec->sid = tsec->keycreate_sid;
5708 else
5709 ksec->sid = tsec->sid;
5710
5711 k->security = ksec;
5712 return 0;
5713}
5714
5715static void selinux_key_free(struct key *k)
5716{
5717 struct key_security_struct *ksec = k->security;
5718
5719 k->security = NULL;
5720 kfree(ksec);
5721}
5722
5723static int selinux_key_permission(key_ref_t key_ref,
5724 const struct cred *cred,
5725 key_perm_t perm)
5726{
5727 struct key *key;
5728 struct key_security_struct *ksec;
5729 u32 sid;
5730
5731 /* if no specific permissions are requested, we skip the
5732 permission check. No serious, additional covert channels
5733 appear to be created. */
5734 if (perm == 0)
5735 return 0;
5736
5737 sid = cred_sid(cred);
5738
5739 key = key_ref_to_ptr(key_ref);
5740 ksec = key->security;
5741
5742 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5743}
5744
5745static int selinux_key_getsecurity(struct key *key, char **_buffer)
5746{
5747 struct key_security_struct *ksec = key->security;
5748 char *context = NULL;
5749 unsigned len;
5750 int rc;
5751
5752 rc = security_sid_to_context(ksec->sid, &context, &len);
5753 if (!rc)
5754 rc = len;
5755 *_buffer = context;
5756 return rc;
5757}
5758
5759#endif
5760
5761static struct security_operations selinux_ops = {
5762 .name = "selinux",
5763
5764 .ptrace_access_check = selinux_ptrace_access_check,
5765 .ptrace_traceme = selinux_ptrace_traceme,
5766 .capget = selinux_capget,
5767 .capset = selinux_capset,
5768 .capable = selinux_capable,
5769 .quotactl = selinux_quotactl,
5770 .quota_on = selinux_quota_on,
5771 .syslog = selinux_syslog,
5772 .vm_enough_memory = selinux_vm_enough_memory,
5773
5774 .netlink_send = selinux_netlink_send,
5775
5776 .bprm_set_creds = selinux_bprm_set_creds,
5777 .bprm_committing_creds = selinux_bprm_committing_creds,
5778 .bprm_committed_creds = selinux_bprm_committed_creds,
5779 .bprm_secureexec = selinux_bprm_secureexec,
5780
5781 .sb_alloc_security = selinux_sb_alloc_security,
5782 .sb_free_security = selinux_sb_free_security,
5783 .sb_copy_data = selinux_sb_copy_data,
5784 .sb_remount = selinux_sb_remount,
5785 .sb_kern_mount = selinux_sb_kern_mount,
5786 .sb_show_options = selinux_sb_show_options,
5787 .sb_statfs = selinux_sb_statfs,
5788 .sb_mount = selinux_mount,
5789 .sb_umount = selinux_umount,
5790 .sb_set_mnt_opts = selinux_set_mnt_opts,
5791 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5792 .sb_parse_opts_str = selinux_parse_opts_str,
5793
5794 .dentry_init_security = selinux_dentry_init_security,
5795
5796 .inode_alloc_security = selinux_inode_alloc_security,
5797 .inode_free_security = selinux_inode_free_security,
5798 .inode_init_security = selinux_inode_init_security,
5799 .inode_create = selinux_inode_create,
5800 .inode_link = selinux_inode_link,
5801 .inode_unlink = selinux_inode_unlink,
5802 .inode_symlink = selinux_inode_symlink,
5803 .inode_mkdir = selinux_inode_mkdir,
5804 .inode_rmdir = selinux_inode_rmdir,
5805 .inode_mknod = selinux_inode_mknod,
5806 .inode_rename = selinux_inode_rename,
5807 .inode_readlink = selinux_inode_readlink,
5808 .inode_follow_link = selinux_inode_follow_link,
5809 .inode_permission = selinux_inode_permission,
5810 .inode_setattr = selinux_inode_setattr,
5811 .inode_getattr = selinux_inode_getattr,
5812 .inode_setxattr = selinux_inode_setxattr,
5813 .inode_post_setxattr = selinux_inode_post_setxattr,
5814 .inode_getxattr = selinux_inode_getxattr,
5815 .inode_listxattr = selinux_inode_listxattr,
5816 .inode_removexattr = selinux_inode_removexattr,
5817 .inode_getsecurity = selinux_inode_getsecurity,
5818 .inode_setsecurity = selinux_inode_setsecurity,
5819 .inode_listsecurity = selinux_inode_listsecurity,
5820 .inode_getsecid = selinux_inode_getsecid,
5821
5822 .file_permission = selinux_file_permission,
5823 .file_alloc_security = selinux_file_alloc_security,
5824 .file_free_security = selinux_file_free_security,
5825 .file_ioctl = selinux_file_ioctl,
5826 .mmap_file = selinux_mmap_file,
5827 .mmap_addr = selinux_mmap_addr,
5828 .file_mprotect = selinux_file_mprotect,
5829 .file_lock = selinux_file_lock,
5830 .file_fcntl = selinux_file_fcntl,
5831 .file_set_fowner = selinux_file_set_fowner,
5832 .file_send_sigiotask = selinux_file_send_sigiotask,
5833 .file_receive = selinux_file_receive,
5834
5835 .file_open = selinux_file_open,
5836
5837 .task_create = selinux_task_create,
5838 .cred_alloc_blank = selinux_cred_alloc_blank,
5839 .cred_free = selinux_cred_free,
5840 .cred_prepare = selinux_cred_prepare,
5841 .cred_transfer = selinux_cred_transfer,
5842 .kernel_act_as = selinux_kernel_act_as,
5843 .kernel_create_files_as = selinux_kernel_create_files_as,
5844 .kernel_module_request = selinux_kernel_module_request,
5845 .task_setpgid = selinux_task_setpgid,
5846 .task_getpgid = selinux_task_getpgid,
5847 .task_getsid = selinux_task_getsid,
5848 .task_getsecid = selinux_task_getsecid,
5849 .task_setnice = selinux_task_setnice,
5850 .task_setioprio = selinux_task_setioprio,
5851 .task_getioprio = selinux_task_getioprio,
5852 .task_setrlimit = selinux_task_setrlimit,
5853 .task_setscheduler = selinux_task_setscheduler,
5854 .task_getscheduler = selinux_task_getscheduler,
5855 .task_movememory = selinux_task_movememory,
5856 .task_kill = selinux_task_kill,
5857 .task_wait = selinux_task_wait,
5858 .task_to_inode = selinux_task_to_inode,
5859
5860 .ipc_permission = selinux_ipc_permission,
5861 .ipc_getsecid = selinux_ipc_getsecid,
5862
5863 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5864 .msg_msg_free_security = selinux_msg_msg_free_security,
5865
5866 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5867 .msg_queue_free_security = selinux_msg_queue_free_security,
5868 .msg_queue_associate = selinux_msg_queue_associate,
5869 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5870 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5871 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5872
5873 .shm_alloc_security = selinux_shm_alloc_security,
5874 .shm_free_security = selinux_shm_free_security,
5875 .shm_associate = selinux_shm_associate,
5876 .shm_shmctl = selinux_shm_shmctl,
5877 .shm_shmat = selinux_shm_shmat,
5878
5879 .sem_alloc_security = selinux_sem_alloc_security,
5880 .sem_free_security = selinux_sem_free_security,
5881 .sem_associate = selinux_sem_associate,
5882 .sem_semctl = selinux_sem_semctl,
5883 .sem_semop = selinux_sem_semop,
5884
5885 .d_instantiate = selinux_d_instantiate,
5886
5887 .getprocattr = selinux_getprocattr,
5888 .setprocattr = selinux_setprocattr,
5889
5890 .ismaclabel = selinux_ismaclabel,
5891 .secid_to_secctx = selinux_secid_to_secctx,
5892 .secctx_to_secid = selinux_secctx_to_secid,
5893 .release_secctx = selinux_release_secctx,
5894 .inode_notifysecctx = selinux_inode_notifysecctx,
5895 .inode_setsecctx = selinux_inode_setsecctx,
5896 .inode_getsecctx = selinux_inode_getsecctx,
5897
5898 .unix_stream_connect = selinux_socket_unix_stream_connect,
5899 .unix_may_send = selinux_socket_unix_may_send,
5900
5901 .socket_create = selinux_socket_create,
5902 .socket_post_create = selinux_socket_post_create,
5903 .socket_bind = selinux_socket_bind,
5904 .socket_connect = selinux_socket_connect,
5905 .socket_listen = selinux_socket_listen,
5906 .socket_accept = selinux_socket_accept,
5907 .socket_sendmsg = selinux_socket_sendmsg,
5908 .socket_recvmsg = selinux_socket_recvmsg,
5909 .socket_getsockname = selinux_socket_getsockname,
5910 .socket_getpeername = selinux_socket_getpeername,
5911 .socket_getsockopt = selinux_socket_getsockopt,
5912 .socket_setsockopt = selinux_socket_setsockopt,
5913 .socket_shutdown = selinux_socket_shutdown,
5914 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5915 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5916 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5917 .sk_alloc_security = selinux_sk_alloc_security,
5918 .sk_free_security = selinux_sk_free_security,
5919 .sk_clone_security = selinux_sk_clone_security,
5920 .sk_getsecid = selinux_sk_getsecid,
5921 .sock_graft = selinux_sock_graft,
5922 .inet_conn_request = selinux_inet_conn_request,
5923 .inet_csk_clone = selinux_inet_csk_clone,
5924 .inet_conn_established = selinux_inet_conn_established,
5925 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5926 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5927 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5928 .req_classify_flow = selinux_req_classify_flow,
5929 .tun_dev_alloc_security = selinux_tun_dev_alloc_security,
5930 .tun_dev_free_security = selinux_tun_dev_free_security,
5931 .tun_dev_create = selinux_tun_dev_create,
5932 .tun_dev_attach_queue = selinux_tun_dev_attach_queue,
5933 .tun_dev_attach = selinux_tun_dev_attach,
5934 .tun_dev_open = selinux_tun_dev_open,
5935 .skb_owned_by = selinux_skb_owned_by,
5936
5937#ifdef CONFIG_SECURITY_NETWORK_XFRM
5938 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5939 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5940 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5941 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5942 .xfrm_state_alloc = selinux_xfrm_state_alloc,
5943 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire,
5944 .xfrm_state_free_security = selinux_xfrm_state_free,
5945 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5946 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5947 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5948 .xfrm_decode_session = selinux_xfrm_decode_session,
5949#endif
5950
5951#ifdef CONFIG_KEYS
5952 .key_alloc = selinux_key_alloc,
5953 .key_free = selinux_key_free,
5954 .key_permission = selinux_key_permission,
5955 .key_getsecurity = selinux_key_getsecurity,
5956#endif
5957
5958#ifdef CONFIG_AUDIT
5959 .audit_rule_init = selinux_audit_rule_init,
5960 .audit_rule_known = selinux_audit_rule_known,
5961 .audit_rule_match = selinux_audit_rule_match,
5962 .audit_rule_free = selinux_audit_rule_free,
5963#endif
5964};
5965
5966static __init int selinux_init(void)
5967{
5968 if (!security_module_enable(&selinux_ops)) {
5969 selinux_enabled = 0;
5970 return 0;
5971 }
5972
5973 if (!selinux_enabled) {
5974 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5975 return 0;
5976 }
5977
5978 printk(KERN_INFO "SELinux: Initializing.\n");
5979
5980 /* Set the security state for the initial task. */
5981 cred_init_security();
5982
5983 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5984
5985 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5986 sizeof(struct inode_security_struct),
5987 0, SLAB_PANIC, NULL);
5988 avc_init();
5989
5990 if (register_security(&selinux_ops))
5991 panic("SELinux: Unable to register with kernel.\n");
5992
5993 if (selinux_enforcing)
5994 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5995 else
5996 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5997
5998 return 0;
5999}
6000
6001static void delayed_superblock_init(struct super_block *sb, void *unused)
6002{
6003 superblock_doinit(sb, NULL);
6004}
6005
6006void selinux_complete_init(void)
6007{
6008 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6009
6010 /* Set up any superblocks initialized prior to the policy load. */
6011 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6012 iterate_supers(delayed_superblock_init, NULL);
6013}
6014
6015/* SELinux requires early initialization in order to label
6016 all processes and objects when they are created. */
6017security_initcall(selinux_init);
6018
6019#if defined(CONFIG_NETFILTER)
6020
6021static struct nf_hook_ops selinux_ipv4_ops[] = {
6022 {
6023 .hook = selinux_ipv4_postroute,
6024 .owner = THIS_MODULE,
6025 .pf = NFPROTO_IPV4,
6026 .hooknum = NF_INET_POST_ROUTING,
6027 .priority = NF_IP_PRI_SELINUX_LAST,
6028 },
6029 {
6030 .hook = selinux_ipv4_forward,
6031 .owner = THIS_MODULE,
6032 .pf = NFPROTO_IPV4,
6033 .hooknum = NF_INET_FORWARD,
6034 .priority = NF_IP_PRI_SELINUX_FIRST,
6035 },
6036 {
6037 .hook = selinux_ipv4_output,
6038 .owner = THIS_MODULE,
6039 .pf = NFPROTO_IPV4,
6040 .hooknum = NF_INET_LOCAL_OUT,
6041 .priority = NF_IP_PRI_SELINUX_FIRST,
6042 }
6043};
6044
6045#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6046
6047static struct nf_hook_ops selinux_ipv6_ops[] = {
6048 {
6049 .hook = selinux_ipv6_postroute,
6050 .owner = THIS_MODULE,
6051 .pf = NFPROTO_IPV6,
6052 .hooknum = NF_INET_POST_ROUTING,
6053 .priority = NF_IP6_PRI_SELINUX_LAST,
6054 },
6055 {
6056 .hook = selinux_ipv6_forward,
6057 .owner = THIS_MODULE,
6058 .pf = NFPROTO_IPV6,
6059 .hooknum = NF_INET_FORWARD,
6060 .priority = NF_IP6_PRI_SELINUX_FIRST,
6061 }
6062};
6063
6064#endif /* IPV6 */
6065
6066static int __init selinux_nf_ip_init(void)
6067{
6068 int err = 0;
6069
6070 if (!selinux_enabled)
6071 goto out;
6072
6073 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6074
6075 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6076 if (err)
6077 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6078
6079#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6080 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6081 if (err)
6082 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6083#endif /* IPV6 */
6084
6085out:
6086 return err;
6087}
6088
6089__initcall(selinux_nf_ip_init);
6090
6091#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6092static void selinux_nf_ip_exit(void)
6093{
6094 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6095
6096 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6097#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6098 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6099#endif /* IPV6 */
6100}
6101#endif
6102
6103#else /* CONFIG_NETFILTER */
6104
6105#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6106#define selinux_nf_ip_exit()
6107#endif
6108
6109#endif /* CONFIG_NETFILTER */
6110
6111#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6112static int selinux_disabled;
6113
6114int selinux_disable(void)
6115{
6116 if (ss_initialized) {
6117 /* Not permitted after initial policy load. */
6118 return -EINVAL;
6119 }
6120
6121 if (selinux_disabled) {
6122 /* Only do this once. */
6123 return -EINVAL;
6124 }
6125
6126 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6127
6128 selinux_disabled = 1;
6129 selinux_enabled = 0;
6130
6131 reset_security_ops();
6132
6133 /* Try to destroy the avc node cache */
6134 avc_disable();
6135
6136 /* Unregister netfilter hooks. */
6137 selinux_nf_ip_exit();
6138
6139 /* Unregister selinuxfs. */
6140 exit_sel_fs();
6141
6142 return 0;
6143}
6144#endif