Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *  Copyright (C) 2016 Mellanox Technologies
  21 *
  22 *	This program is free software; you can redistribute it and/or modify
  23 *	it under the terms of the GNU General Public License version 2,
  24 *	as published by the Free Software Foundation.
  25 */
  26
  27#include <linux/init.h>
  28#include <linux/kd.h>
  29#include <linux/kernel.h>
  30#include <linux/tracehook.h>
  31#include <linux/errno.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/task.h>
  34#include <linux/lsm_hooks.h>
  35#include <linux/xattr.h>
  36#include <linux/capability.h>
  37#include <linux/unistd.h>
  38#include <linux/mm.h>
  39#include <linux/mman.h>
  40#include <linux/slab.h>
  41#include <linux/pagemap.h>
  42#include <linux/proc_fs.h>
  43#include <linux/swap.h>
  44#include <linux/spinlock.h>
  45#include <linux/syscalls.h>
  46#include <linux/dcache.h>
  47#include <linux/file.h>
  48#include <linux/fdtable.h>
  49#include <linux/namei.h>
  50#include <linux/mount.h>
  51#include <linux/netfilter_ipv4.h>
  52#include <linux/netfilter_ipv6.h>
  53#include <linux/tty.h>
  54#include <net/icmp.h>
  55#include <net/ip.h>		/* for local_port_range[] */
 
  56#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  57#include <net/inet_connection_sock.h>
  58#include <net/net_namespace.h>
  59#include <net/netlabel.h>
  60#include <linux/uaccess.h>
  61#include <asm/ioctls.h>
  62#include <linux/atomic.h>
  63#include <linux/bitops.h>
  64#include <linux/interrupt.h>
  65#include <linux/netdevice.h>	/* for network interface checks */
  66#include <net/netlink.h>
  67#include <linux/tcp.h>
  68#include <linux/udp.h>
  69#include <linux/dccp.h>
  70#include <linux/sctp.h>
  71#include <net/sctp/structs.h>
  72#include <linux/quota.h>
  73#include <linux/un.h>		/* for Unix socket types */
  74#include <net/af_unix.h>	/* for Unix socket types */
  75#include <linux/parser.h>
  76#include <linux/nfs_mount.h>
  77#include <net/ipv6.h>
  78#include <linux/hugetlb.h>
  79#include <linux/personality.h>
  80#include <linux/audit.h>
  81#include <linux/string.h>
  82#include <linux/selinux.h>
  83#include <linux/mutex.h>
  84#include <linux/posix-timers.h>
  85#include <linux/syslog.h>
  86#include <linux/user_namespace.h>
  87#include <linux/export.h>
  88#include <linux/msg.h>
  89#include <linux/shm.h>
  90#include <linux/bpf.h>
  91
  92#include "avc.h"
  93#include "objsec.h"
  94#include "netif.h"
  95#include "netnode.h"
  96#include "netport.h"
  97#include "ibpkey.h"
  98#include "xfrm.h"
  99#include "netlabel.h"
 100#include "audit.h"
 101#include "avc_ss.h"
 102
 103struct selinux_state selinux_state;
 104
 105/* SECMARK reference count */
 106static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 107
 108#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 109static int selinux_enforcing_boot;
 110
 111static int __init enforcing_setup(char *str)
 112{
 113	unsigned long enforcing;
 114	if (!kstrtoul(str, 0, &enforcing))
 115		selinux_enforcing_boot = enforcing ? 1 : 0;
 116	return 1;
 117}
 118__setup("enforcing=", enforcing_setup);
 119#else
 120#define selinux_enforcing_boot 1
 121#endif
 122
 123#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 124int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 125
 126static int __init selinux_enabled_setup(char *str)
 127{
 128	unsigned long enabled;
 129	if (!kstrtoul(str, 0, &enabled))
 130		selinux_enabled = enabled ? 1 : 0;
 131	return 1;
 132}
 133__setup("selinux=", selinux_enabled_setup);
 134#else
 135int selinux_enabled = 1;
 136#endif
 137
 138static unsigned int selinux_checkreqprot_boot =
 139	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 140
 141static int __init checkreqprot_setup(char *str)
 142{
 143	unsigned long checkreqprot;
 144
 145	if (!kstrtoul(str, 0, &checkreqprot))
 146		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 147	return 1;
 148}
 149__setup("checkreqprot=", checkreqprot_setup);
 150
 151static struct kmem_cache *sel_inode_cache;
 152static struct kmem_cache *file_security_cache;
 153
 154/**
 155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 156 *
 157 * Description:
 158 * This function checks the SECMARK reference counter to see if any SECMARK
 159 * targets are currently configured, if the reference counter is greater than
 160 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 161 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 162 * policy capability is enabled, SECMARK is always considered enabled.
 163 *
 164 */
 165static int selinux_secmark_enabled(void)
 166{
 167	return (selinux_policycap_alwaysnetwork() ||
 168		atomic_read(&selinux_secmark_refcount));
 169}
 170
 171/**
 172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 173 *
 174 * Description:
 175 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 176 * (1) if any are enabled or false (0) if neither are enabled.  If the
 177 * always_check_network policy capability is enabled, peer labeling
 178 * is always considered enabled.
 179 *
 180 */
 181static int selinux_peerlbl_enabled(void)
 182{
 183	return (selinux_policycap_alwaysnetwork() ||
 184		netlbl_enabled() || selinux_xfrm_enabled());
 185}
 186
 187static int selinux_netcache_avc_callback(u32 event)
 188{
 189	if (event == AVC_CALLBACK_RESET) {
 190		sel_netif_flush();
 191		sel_netnode_flush();
 192		sel_netport_flush();
 193		synchronize_net();
 194	}
 195	return 0;
 196}
 197
 198static int selinux_lsm_notifier_avc_callback(u32 event)
 199{
 200	if (event == AVC_CALLBACK_RESET) {
 201		sel_ib_pkey_flush();
 202		call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 203	}
 204
 205	return 0;
 206}
 207
 208/*
 209 * initialise the security for the init task
 210 */
 211static void cred_init_security(void)
 212{
 213	struct cred *cred = (struct cred *) current->real_cred;
 214	struct task_security_struct *tsec;
 215
 216	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 217	if (!tsec)
 218		panic("SELinux:  Failed to initialize initial task.\n");
 219
 220	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 221	cred->security = tsec;
 222}
 223
 224/*
 225 * get the security ID of a set of credentials
 226 */
 227static inline u32 cred_sid(const struct cred *cred)
 228{
 229	const struct task_security_struct *tsec;
 230
 231	tsec = cred->security;
 232	return tsec->sid;
 233}
 234
 235/*
 236 * get the objective security ID of a task
 237 */
 238static inline u32 task_sid(const struct task_struct *task)
 239{
 240	u32 sid;
 241
 242	rcu_read_lock();
 243	sid = cred_sid(__task_cred(task));
 244	rcu_read_unlock();
 245	return sid;
 246}
 247
 
 
 
 
 
 
 
 
 
 
 248/* Allocate and free functions for each kind of security blob. */
 249
 250static int inode_alloc_security(struct inode *inode)
 251{
 252	struct inode_security_struct *isec;
 253	u32 sid = current_sid();
 254
 255	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 256	if (!isec)
 257		return -ENOMEM;
 258
 259	spin_lock_init(&isec->lock);
 260	INIT_LIST_HEAD(&isec->list);
 261	isec->inode = inode;
 262	isec->sid = SECINITSID_UNLABELED;
 263	isec->sclass = SECCLASS_FILE;
 264	isec->task_sid = sid;
 265	isec->initialized = LABEL_INVALID;
 266	inode->i_security = isec;
 267
 268	return 0;
 269}
 270
 271static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 272
 273/*
 274 * Try reloading inode security labels that have been marked as invalid.  The
 275 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 276 * allowed; when set to false, returns -ECHILD when the label is
 277 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 278 * when no dentry is available, set it to NULL instead.
 279 */
 280static int __inode_security_revalidate(struct inode *inode,
 281				       struct dentry *opt_dentry,
 282				       bool may_sleep)
 283{
 284	struct inode_security_struct *isec = inode->i_security;
 285
 286	might_sleep_if(may_sleep);
 287
 288	if (selinux_state.initialized &&
 289	    isec->initialized != LABEL_INITIALIZED) {
 290		if (!may_sleep)
 291			return -ECHILD;
 292
 293		/*
 294		 * Try reloading the inode security label.  This will fail if
 295		 * @opt_dentry is NULL and no dentry for this inode can be
 296		 * found; in that case, continue using the old label.
 297		 */
 298		inode_doinit_with_dentry(inode, opt_dentry);
 299	}
 300	return 0;
 301}
 302
 303static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 304{
 305	return inode->i_security;
 306}
 307
 308static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 309{
 310	int error;
 311
 312	error = __inode_security_revalidate(inode, NULL, !rcu);
 313	if (error)
 314		return ERR_PTR(error);
 315	return inode->i_security;
 316}
 317
 318/*
 319 * Get the security label of an inode.
 320 */
 321static struct inode_security_struct *inode_security(struct inode *inode)
 322{
 323	__inode_security_revalidate(inode, NULL, true);
 324	return inode->i_security;
 325}
 326
 327static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 328{
 329	struct inode *inode = d_backing_inode(dentry);
 330
 331	return inode->i_security;
 332}
 333
 334/*
 335 * Get the security label of a dentry's backing inode.
 336 */
 337static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 338{
 339	struct inode *inode = d_backing_inode(dentry);
 340
 341	__inode_security_revalidate(inode, dentry, true);
 342	return inode->i_security;
 343}
 344
 345static void inode_free_rcu(struct rcu_head *head)
 346{
 347	struct inode_security_struct *isec;
 348
 349	isec = container_of(head, struct inode_security_struct, rcu);
 350	kmem_cache_free(sel_inode_cache, isec);
 351}
 352
 353static void inode_free_security(struct inode *inode)
 354{
 355	struct inode_security_struct *isec = inode->i_security;
 356	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 357
 358	/*
 359	 * As not all inode security structures are in a list, we check for
 360	 * empty list outside of the lock to make sure that we won't waste
 361	 * time taking a lock doing nothing.
 362	 *
 363	 * The list_del_init() function can be safely called more than once.
 364	 * It should not be possible for this function to be called with
 365	 * concurrent list_add(), but for better safety against future changes
 366	 * in the code, we use list_empty_careful() here.
 367	 */
 368	if (!list_empty_careful(&isec->list)) {
 369		spin_lock(&sbsec->isec_lock);
 370		list_del_init(&isec->list);
 371		spin_unlock(&sbsec->isec_lock);
 372	}
 373
 374	/*
 375	 * The inode may still be referenced in a path walk and
 376	 * a call to selinux_inode_permission() can be made
 377	 * after inode_free_security() is called. Ideally, the VFS
 378	 * wouldn't do this, but fixing that is a much harder
 379	 * job. For now, simply free the i_security via RCU, and
 380	 * leave the current inode->i_security pointer intact.
 381	 * The inode will be freed after the RCU grace period too.
 382	 */
 383	call_rcu(&isec->rcu, inode_free_rcu);
 384}
 385
 386static int file_alloc_security(struct file *file)
 387{
 388	struct file_security_struct *fsec;
 389	u32 sid = current_sid();
 390
 391	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 392	if (!fsec)
 393		return -ENOMEM;
 394
 395	fsec->sid = sid;
 396	fsec->fown_sid = sid;
 397	file->f_security = fsec;
 398
 399	return 0;
 400}
 401
 402static void file_free_security(struct file *file)
 403{
 404	struct file_security_struct *fsec = file->f_security;
 405	file->f_security = NULL;
 406	kmem_cache_free(file_security_cache, fsec);
 407}
 408
 409static int superblock_alloc_security(struct super_block *sb)
 410{
 411	struct superblock_security_struct *sbsec;
 412
 413	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 414	if (!sbsec)
 415		return -ENOMEM;
 416
 417	mutex_init(&sbsec->lock);
 418	INIT_LIST_HEAD(&sbsec->isec_head);
 419	spin_lock_init(&sbsec->isec_lock);
 420	sbsec->sb = sb;
 421	sbsec->sid = SECINITSID_UNLABELED;
 422	sbsec->def_sid = SECINITSID_FILE;
 423	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 424	sb->s_security = sbsec;
 425
 426	return 0;
 427}
 428
 429static void superblock_free_security(struct super_block *sb)
 430{
 431	struct superblock_security_struct *sbsec = sb->s_security;
 432	sb->s_security = NULL;
 433	kfree(sbsec);
 434}
 435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436static inline int inode_doinit(struct inode *inode)
 437{
 438	return inode_doinit_with_dentry(inode, NULL);
 439}
 440
 441enum {
 442	Opt_error = -1,
 443	Opt_context = 1,
 444	Opt_fscontext = 2,
 445	Opt_defcontext = 3,
 446	Opt_rootcontext = 4,
 447	Opt_labelsupport = 5,
 448	Opt_nextmntopt = 6,
 449};
 450
 451#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 452
 453static const match_table_t tokens = {
 454	{Opt_context, CONTEXT_STR "%s"},
 455	{Opt_fscontext, FSCONTEXT_STR "%s"},
 456	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 457	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 458	{Opt_labelsupport, LABELSUPP_STR},
 459	{Opt_error, NULL},
 460};
 461
 462#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 463
 464static int may_context_mount_sb_relabel(u32 sid,
 465			struct superblock_security_struct *sbsec,
 466			const struct cred *cred)
 467{
 468	const struct task_security_struct *tsec = cred->security;
 469	int rc;
 470
 471	rc = avc_has_perm(&selinux_state,
 472			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 473			  FILESYSTEM__RELABELFROM, NULL);
 474	if (rc)
 475		return rc;
 476
 477	rc = avc_has_perm(&selinux_state,
 478			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 479			  FILESYSTEM__RELABELTO, NULL);
 480	return rc;
 481}
 482
 483static int may_context_mount_inode_relabel(u32 sid,
 484			struct superblock_security_struct *sbsec,
 485			const struct cred *cred)
 486{
 487	const struct task_security_struct *tsec = cred->security;
 488	int rc;
 489	rc = avc_has_perm(&selinux_state,
 490			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 491			  FILESYSTEM__RELABELFROM, NULL);
 492	if (rc)
 493		return rc;
 494
 495	rc = avc_has_perm(&selinux_state,
 496			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 497			  FILESYSTEM__ASSOCIATE, NULL);
 498	return rc;
 499}
 500
 501static int selinux_is_sblabel_mnt(struct super_block *sb)
 502{
 503	struct superblock_security_struct *sbsec = sb->s_security;
 504
 505	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 506		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 507		sbsec->behavior == SECURITY_FS_USE_TASK ||
 508		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 509		/* Special handling. Genfs but also in-core setxattr handler */
 510		!strcmp(sb->s_type->name, "sysfs") ||
 511		!strcmp(sb->s_type->name, "pstore") ||
 512		!strcmp(sb->s_type->name, "debugfs") ||
 513		!strcmp(sb->s_type->name, "tracefs") ||
 514		!strcmp(sb->s_type->name, "rootfs") ||
 515		(selinux_policycap_cgroupseclabel() &&
 516		 (!strcmp(sb->s_type->name, "cgroup") ||
 517		  !strcmp(sb->s_type->name, "cgroup2")));
 
 
 
 
 518}
 519
 520static int sb_finish_set_opts(struct super_block *sb)
 521{
 522	struct superblock_security_struct *sbsec = sb->s_security;
 523	struct dentry *root = sb->s_root;
 524	struct inode *root_inode = d_backing_inode(root);
 525	int rc = 0;
 526
 527	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 528		/* Make sure that the xattr handler exists and that no
 529		   error other than -ENODATA is returned by getxattr on
 530		   the root directory.  -ENODATA is ok, as this may be
 531		   the first boot of the SELinux kernel before we have
 532		   assigned xattr values to the filesystem. */
 533		if (!(root_inode->i_opflags & IOP_XATTR)) {
 534			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 535			       "xattr support\n", sb->s_id, sb->s_type->name);
 536			rc = -EOPNOTSUPP;
 537			goto out;
 538		}
 539
 540		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 541		if (rc < 0 && rc != -ENODATA) {
 542			if (rc == -EOPNOTSUPP)
 543				printk(KERN_WARNING "SELinux: (dev %s, type "
 544				       "%s) has no security xattr handler\n",
 545				       sb->s_id, sb->s_type->name);
 546			else
 547				printk(KERN_WARNING "SELinux: (dev %s, type "
 548				       "%s) getxattr errno %d\n", sb->s_id,
 549				       sb->s_type->name, -rc);
 550			goto out;
 551		}
 552	}
 553
 554	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 
 
 555
 556	/*
 557	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 558	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 559	 * us a superblock that needs the flag to be cleared.
 560	 */
 561	if (selinux_is_sblabel_mnt(sb))
 562		sbsec->flags |= SBLABEL_MNT;
 563	else
 564		sbsec->flags &= ~SBLABEL_MNT;
 565
 566	/* Initialize the root inode. */
 567	rc = inode_doinit_with_dentry(root_inode, root);
 568
 569	/* Initialize any other inodes associated with the superblock, e.g.
 570	   inodes created prior to initial policy load or inodes created
 571	   during get_sb by a pseudo filesystem that directly
 572	   populates itself. */
 573	spin_lock(&sbsec->isec_lock);
 574next_inode:
 575	if (!list_empty(&sbsec->isec_head)) {
 576		struct inode_security_struct *isec =
 577				list_entry(sbsec->isec_head.next,
 578					   struct inode_security_struct, list);
 579		struct inode *inode = isec->inode;
 580		list_del_init(&isec->list);
 581		spin_unlock(&sbsec->isec_lock);
 582		inode = igrab(inode);
 583		if (inode) {
 584			if (!IS_PRIVATE(inode))
 585				inode_doinit(inode);
 586			iput(inode);
 587		}
 588		spin_lock(&sbsec->isec_lock);
 
 589		goto next_inode;
 590	}
 591	spin_unlock(&sbsec->isec_lock);
 592out:
 593	return rc;
 594}
 595
 596/*
 597 * This function should allow an FS to ask what it's mount security
 598 * options were so it can use those later for submounts, displaying
 599 * mount options, or whatever.
 600 */
 601static int selinux_get_mnt_opts(const struct super_block *sb,
 602				struct security_mnt_opts *opts)
 603{
 604	int rc = 0, i;
 605	struct superblock_security_struct *sbsec = sb->s_security;
 606	char *context = NULL;
 607	u32 len;
 608	char tmp;
 609
 610	security_init_mnt_opts(opts);
 611
 612	if (!(sbsec->flags & SE_SBINITIALIZED))
 613		return -EINVAL;
 614
 615	if (!selinux_state.initialized)
 616		return -EINVAL;
 617
 618	/* make sure we always check enough bits to cover the mask */
 619	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 620
 621	tmp = sbsec->flags & SE_MNTMASK;
 622	/* count the number of mount options for this sb */
 623	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 624		if (tmp & 0x01)
 625			opts->num_mnt_opts++;
 626		tmp >>= 1;
 627	}
 628	/* Check if the Label support flag is set */
 629	if (sbsec->flags & SBLABEL_MNT)
 630		opts->num_mnt_opts++;
 631
 632	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 633	if (!opts->mnt_opts) {
 634		rc = -ENOMEM;
 635		goto out_free;
 636	}
 637
 638	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 639	if (!opts->mnt_opts_flags) {
 640		rc = -ENOMEM;
 641		goto out_free;
 642	}
 643
 644	i = 0;
 645	if (sbsec->flags & FSCONTEXT_MNT) {
 646		rc = security_sid_to_context(&selinux_state, sbsec->sid,
 647					     &context, &len);
 648		if (rc)
 649			goto out_free;
 650		opts->mnt_opts[i] = context;
 651		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 652	}
 653	if (sbsec->flags & CONTEXT_MNT) {
 654		rc = security_sid_to_context(&selinux_state,
 655					     sbsec->mntpoint_sid,
 656					     &context, &len);
 657		if (rc)
 658			goto out_free;
 659		opts->mnt_opts[i] = context;
 660		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 661	}
 662	if (sbsec->flags & DEFCONTEXT_MNT) {
 663		rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
 664					     &context, &len);
 665		if (rc)
 666			goto out_free;
 667		opts->mnt_opts[i] = context;
 668		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 669	}
 670	if (sbsec->flags & ROOTCONTEXT_MNT) {
 671		struct dentry *root = sbsec->sb->s_root;
 672		struct inode_security_struct *isec = backing_inode_security(root);
 673
 674		rc = security_sid_to_context(&selinux_state, isec->sid,
 675					     &context, &len);
 676		if (rc)
 677			goto out_free;
 678		opts->mnt_opts[i] = context;
 679		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 680	}
 681	if (sbsec->flags & SBLABEL_MNT) {
 682		opts->mnt_opts[i] = NULL;
 683		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 684	}
 685
 686	BUG_ON(i != opts->num_mnt_opts);
 687
 688	return 0;
 689
 690out_free:
 691	security_free_mnt_opts(opts);
 692	return rc;
 693}
 694
 695static int bad_option(struct superblock_security_struct *sbsec, char flag,
 696		      u32 old_sid, u32 new_sid)
 697{
 698	char mnt_flags = sbsec->flags & SE_MNTMASK;
 699
 700	/* check if the old mount command had the same options */
 701	if (sbsec->flags & SE_SBINITIALIZED)
 702		if (!(sbsec->flags & flag) ||
 703		    (old_sid != new_sid))
 704			return 1;
 705
 706	/* check if we were passed the same options twice,
 707	 * aka someone passed context=a,context=b
 708	 */
 709	if (!(sbsec->flags & SE_SBINITIALIZED))
 710		if (mnt_flags & flag)
 711			return 1;
 712	return 0;
 713}
 714
 715/*
 716 * Allow filesystems with binary mount data to explicitly set mount point
 717 * labeling information.
 718 */
 719static int selinux_set_mnt_opts(struct super_block *sb,
 720				struct security_mnt_opts *opts,
 721				unsigned long kern_flags,
 722				unsigned long *set_kern_flags)
 723{
 724	const struct cred *cred = current_cred();
 725	int rc = 0, i;
 726	struct superblock_security_struct *sbsec = sb->s_security;
 727	const char *name = sb->s_type->name;
 728	struct dentry *root = sbsec->sb->s_root;
 729	struct inode_security_struct *root_isec;
 730	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 731	u32 defcontext_sid = 0;
 732	char **mount_options = opts->mnt_opts;
 733	int *flags = opts->mnt_opts_flags;
 734	int num_opts = opts->num_mnt_opts;
 735
 736	mutex_lock(&sbsec->lock);
 737
 738	if (!selinux_state.initialized) {
 739		if (!num_opts) {
 740			/* Defer initialization until selinux_complete_init,
 741			   after the initial policy is loaded and the security
 742			   server is ready to handle calls. */
 743			goto out;
 744		}
 745		rc = -EINVAL;
 746		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 747			"before the security server is initialized\n");
 748		goto out;
 749	}
 750	if (kern_flags && !set_kern_flags) {
 751		/* Specifying internal flags without providing a place to
 752		 * place the results is not allowed */
 753		rc = -EINVAL;
 754		goto out;
 755	}
 756
 757	/*
 758	 * Binary mount data FS will come through this function twice.  Once
 759	 * from an explicit call and once from the generic calls from the vfs.
 760	 * Since the generic VFS calls will not contain any security mount data
 761	 * we need to skip the double mount verification.
 762	 *
 763	 * This does open a hole in which we will not notice if the first
 764	 * mount using this sb set explict options and a second mount using
 765	 * this sb does not set any security options.  (The first options
 766	 * will be used for both mounts)
 767	 */
 768	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 769	    && (num_opts == 0))
 770		goto out;
 771
 772	root_isec = backing_inode_security_novalidate(root);
 773
 774	/*
 775	 * parse the mount options, check if they are valid sids.
 776	 * also check if someone is trying to mount the same sb more
 777	 * than once with different security options.
 778	 */
 779	for (i = 0; i < num_opts; i++) {
 780		u32 sid;
 781
 782		if (flags[i] == SBLABEL_MNT)
 783			continue;
 784		rc = security_context_str_to_sid(&selinux_state,
 785						 mount_options[i], &sid,
 786						 GFP_KERNEL);
 787		if (rc) {
 788			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 789			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 790			       mount_options[i], sb->s_id, name, rc);
 791			goto out;
 792		}
 793		switch (flags[i]) {
 794		case FSCONTEXT_MNT:
 795			fscontext_sid = sid;
 796
 797			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 798					fscontext_sid))
 799				goto out_double_mount;
 800
 801			sbsec->flags |= FSCONTEXT_MNT;
 802			break;
 803		case CONTEXT_MNT:
 804			context_sid = sid;
 805
 806			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 807					context_sid))
 808				goto out_double_mount;
 809
 810			sbsec->flags |= CONTEXT_MNT;
 811			break;
 812		case ROOTCONTEXT_MNT:
 813			rootcontext_sid = sid;
 814
 815			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 816					rootcontext_sid))
 817				goto out_double_mount;
 818
 819			sbsec->flags |= ROOTCONTEXT_MNT;
 820
 821			break;
 822		case DEFCONTEXT_MNT:
 823			defcontext_sid = sid;
 824
 825			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 826					defcontext_sid))
 827				goto out_double_mount;
 828
 829			sbsec->flags |= DEFCONTEXT_MNT;
 830
 831			break;
 832		default:
 833			rc = -EINVAL;
 834			goto out;
 835		}
 836	}
 837
 838	if (sbsec->flags & SE_SBINITIALIZED) {
 839		/* previously mounted with options, but not on this attempt? */
 840		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 841			goto out_double_mount;
 842		rc = 0;
 843		goto out;
 844	}
 845
 846	if (strcmp(sb->s_type->name, "proc") == 0)
 847		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 848
 849	if (!strcmp(sb->s_type->name, "debugfs") ||
 850	    !strcmp(sb->s_type->name, "tracefs") ||
 851	    !strcmp(sb->s_type->name, "sysfs") ||
 852	    !strcmp(sb->s_type->name, "pstore") ||
 853	    !strcmp(sb->s_type->name, "cgroup") ||
 854	    !strcmp(sb->s_type->name, "cgroup2"))
 855		sbsec->flags |= SE_SBGENFS;
 856
 857	if (!sbsec->behavior) {
 858		/*
 859		 * Determine the labeling behavior to use for this
 860		 * filesystem type.
 861		 */
 862		rc = security_fs_use(&selinux_state, sb);
 863		if (rc) {
 864			printk(KERN_WARNING
 865				"%s: security_fs_use(%s) returned %d\n",
 866					__func__, sb->s_type->name, rc);
 867			goto out;
 868		}
 869	}
 870
 871	/*
 872	 * If this is a user namespace mount and the filesystem type is not
 873	 * explicitly whitelisted, then no contexts are allowed on the command
 874	 * line and security labels must be ignored.
 875	 */
 876	if (sb->s_user_ns != &init_user_ns &&
 877	    strcmp(sb->s_type->name, "tmpfs") &&
 878	    strcmp(sb->s_type->name, "ramfs") &&
 879	    strcmp(sb->s_type->name, "devpts")) {
 880		if (context_sid || fscontext_sid || rootcontext_sid ||
 881		    defcontext_sid) {
 882			rc = -EACCES;
 883			goto out;
 884		}
 885		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 886			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 887			rc = security_transition_sid(&selinux_state,
 888						     current_sid(),
 889						     current_sid(),
 890						     SECCLASS_FILE, NULL,
 891						     &sbsec->mntpoint_sid);
 892			if (rc)
 893				goto out;
 894		}
 895		goto out_set_opts;
 896	}
 897
 898	/* sets the context of the superblock for the fs being mounted. */
 899	if (fscontext_sid) {
 900		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 901		if (rc)
 902			goto out;
 903
 904		sbsec->sid = fscontext_sid;
 905	}
 906
 907	/*
 908	 * Switch to using mount point labeling behavior.
 909	 * sets the label used on all file below the mountpoint, and will set
 910	 * the superblock context if not already set.
 911	 */
 912	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 913		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 914		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 915	}
 916
 917	if (context_sid) {
 918		if (!fscontext_sid) {
 919			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 920							  cred);
 921			if (rc)
 922				goto out;
 923			sbsec->sid = context_sid;
 924		} else {
 925			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 926							     cred);
 927			if (rc)
 928				goto out;
 929		}
 930		if (!rootcontext_sid)
 931			rootcontext_sid = context_sid;
 932
 933		sbsec->mntpoint_sid = context_sid;
 934		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 935	}
 936
 937	if (rootcontext_sid) {
 938		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 939						     cred);
 940		if (rc)
 941			goto out;
 942
 943		root_isec->sid = rootcontext_sid;
 944		root_isec->initialized = LABEL_INITIALIZED;
 945	}
 946
 947	if (defcontext_sid) {
 948		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 949			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 950			rc = -EINVAL;
 951			printk(KERN_WARNING "SELinux: defcontext option is "
 952			       "invalid for this filesystem type\n");
 953			goto out;
 954		}
 955
 956		if (defcontext_sid != sbsec->def_sid) {
 957			rc = may_context_mount_inode_relabel(defcontext_sid,
 958							     sbsec, cred);
 959			if (rc)
 960				goto out;
 961		}
 962
 963		sbsec->def_sid = defcontext_sid;
 964	}
 965
 966out_set_opts:
 967	rc = sb_finish_set_opts(sb);
 968out:
 969	mutex_unlock(&sbsec->lock);
 970	return rc;
 971out_double_mount:
 972	rc = -EINVAL;
 973	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 974	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 975	goto out;
 976}
 977
 978static int selinux_cmp_sb_context(const struct super_block *oldsb,
 979				    const struct super_block *newsb)
 980{
 981	struct superblock_security_struct *old = oldsb->s_security;
 982	struct superblock_security_struct *new = newsb->s_security;
 983	char oldflags = old->flags & SE_MNTMASK;
 984	char newflags = new->flags & SE_MNTMASK;
 985
 986	if (oldflags != newflags)
 987		goto mismatch;
 988	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 989		goto mismatch;
 990	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 991		goto mismatch;
 992	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 993		goto mismatch;
 994	if (oldflags & ROOTCONTEXT_MNT) {
 995		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 996		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 997		if (oldroot->sid != newroot->sid)
 998			goto mismatch;
 999	}
1000	return 0;
1001mismatch:
1002	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
1003			    "different security settings for (dev %s, "
1004			    "type %s)\n", newsb->s_id, newsb->s_type->name);
1005	return -EBUSY;
1006}
1007
1008static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009					struct super_block *newsb,
1010					unsigned long kern_flags,
1011					unsigned long *set_kern_flags)
1012{
1013	int rc = 0;
1014	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015	struct superblock_security_struct *newsbsec = newsb->s_security;
1016
1017	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
1018	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
1019	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
1020
1021	/*
1022	 * if the parent was able to be mounted it clearly had no special lsm
1023	 * mount options.  thus we can safely deal with this superblock later
1024	 */
1025	if (!selinux_state.initialized)
1026		return 0;
1027
1028	/*
1029	 * Specifying internal flags without providing a place to
1030	 * place the results is not allowed.
1031	 */
1032	if (kern_flags && !set_kern_flags)
1033		return -EINVAL;
1034
1035	/* how can we clone if the old one wasn't set up?? */
1036	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037
1038	/* if fs is reusing a sb, make sure that the contexts match */
1039	if (newsbsec->flags & SE_SBINITIALIZED)
1040		return selinux_cmp_sb_context(oldsb, newsb);
1041
1042	mutex_lock(&newsbsec->lock);
1043
1044	newsbsec->flags = oldsbsec->flags;
1045
1046	newsbsec->sid = oldsbsec->sid;
1047	newsbsec->def_sid = oldsbsec->def_sid;
1048	newsbsec->behavior = oldsbsec->behavior;
1049
1050	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052		rc = security_fs_use(&selinux_state, newsb);
1053		if (rc)
1054			goto out;
1055	}
1056
1057	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060	}
1061
1062	if (set_context) {
1063		u32 sid = oldsbsec->mntpoint_sid;
1064
1065		if (!set_fscontext)
1066			newsbsec->sid = sid;
1067		if (!set_rootcontext) {
1068			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
1069			newisec->sid = sid;
1070		}
1071		newsbsec->mntpoint_sid = sid;
1072	}
1073	if (set_rootcontext) {
1074		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 
1076
1077		newisec->sid = oldisec->sid;
1078	}
1079
1080	sb_finish_set_opts(newsb);
1081out:
1082	mutex_unlock(&newsbsec->lock);
1083	return rc;
1084}
1085
1086static int selinux_parse_opts_str(char *options,
1087				  struct security_mnt_opts *opts)
1088{
1089	char *p;
1090	char *context = NULL, *defcontext = NULL;
1091	char *fscontext = NULL, *rootcontext = NULL;
1092	int rc, num_mnt_opts = 0;
1093
1094	opts->num_mnt_opts = 0;
1095
1096	/* Standard string-based options. */
1097	while ((p = strsep(&options, "|")) != NULL) {
1098		int token;
1099		substring_t args[MAX_OPT_ARGS];
1100
1101		if (!*p)
1102			continue;
1103
1104		token = match_token(p, tokens, args);
1105
1106		switch (token) {
1107		case Opt_context:
1108			if (context || defcontext) {
1109				rc = -EINVAL;
1110				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111				goto out_err;
1112			}
1113			context = match_strdup(&args[0]);
1114			if (!context) {
1115				rc = -ENOMEM;
1116				goto out_err;
1117			}
1118			break;
1119
1120		case Opt_fscontext:
1121			if (fscontext) {
1122				rc = -EINVAL;
1123				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124				goto out_err;
1125			}
1126			fscontext = match_strdup(&args[0]);
1127			if (!fscontext) {
1128				rc = -ENOMEM;
1129				goto out_err;
1130			}
1131			break;
1132
1133		case Opt_rootcontext:
1134			if (rootcontext) {
1135				rc = -EINVAL;
1136				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137				goto out_err;
1138			}
1139			rootcontext = match_strdup(&args[0]);
1140			if (!rootcontext) {
1141				rc = -ENOMEM;
1142				goto out_err;
1143			}
1144			break;
1145
1146		case Opt_defcontext:
1147			if (context || defcontext) {
1148				rc = -EINVAL;
1149				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150				goto out_err;
1151			}
1152			defcontext = match_strdup(&args[0]);
1153			if (!defcontext) {
1154				rc = -ENOMEM;
1155				goto out_err;
1156			}
1157			break;
1158		case Opt_labelsupport:
1159			break;
1160		default:
1161			rc = -EINVAL;
1162			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1163			goto out_err;
1164
1165		}
1166	}
1167
1168	rc = -ENOMEM;
1169	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170	if (!opts->mnt_opts)
1171		goto out_err;
1172
1173	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174				       GFP_KERNEL);
1175	if (!opts->mnt_opts_flags)
1176		goto out_err;
 
1177
1178	if (fscontext) {
1179		opts->mnt_opts[num_mnt_opts] = fscontext;
1180		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181	}
1182	if (context) {
1183		opts->mnt_opts[num_mnt_opts] = context;
1184		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185	}
1186	if (rootcontext) {
1187		opts->mnt_opts[num_mnt_opts] = rootcontext;
1188		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189	}
1190	if (defcontext) {
1191		opts->mnt_opts[num_mnt_opts] = defcontext;
1192		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193	}
1194
1195	opts->num_mnt_opts = num_mnt_opts;
1196	return 0;
1197
1198out_err:
1199	security_free_mnt_opts(opts);
1200	kfree(context);
1201	kfree(defcontext);
1202	kfree(fscontext);
1203	kfree(rootcontext);
1204	return rc;
1205}
1206/*
1207 * string mount options parsing and call set the sbsec
1208 */
1209static int superblock_doinit(struct super_block *sb, void *data)
1210{
1211	int rc = 0;
1212	char *options = data;
1213	struct security_mnt_opts opts;
1214
1215	security_init_mnt_opts(&opts);
1216
1217	if (!data)
1218		goto out;
1219
1220	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221
1222	rc = selinux_parse_opts_str(options, &opts);
1223	if (rc)
1224		goto out_err;
1225
1226out:
1227	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228
1229out_err:
1230	security_free_mnt_opts(&opts);
1231	return rc;
1232}
1233
1234static void selinux_write_opts(struct seq_file *m,
1235			       struct security_mnt_opts *opts)
1236{
1237	int i;
1238	char *prefix;
1239
1240	for (i = 0; i < opts->num_mnt_opts; i++) {
1241		char *has_comma;
1242
1243		if (opts->mnt_opts[i])
1244			has_comma = strchr(opts->mnt_opts[i], ',');
1245		else
1246			has_comma = NULL;
1247
1248		switch (opts->mnt_opts_flags[i]) {
1249		case CONTEXT_MNT:
1250			prefix = CONTEXT_STR;
1251			break;
1252		case FSCONTEXT_MNT:
1253			prefix = FSCONTEXT_STR;
1254			break;
1255		case ROOTCONTEXT_MNT:
1256			prefix = ROOTCONTEXT_STR;
1257			break;
1258		case DEFCONTEXT_MNT:
1259			prefix = DEFCONTEXT_STR;
1260			break;
1261		case SBLABEL_MNT:
1262			seq_putc(m, ',');
1263			seq_puts(m, LABELSUPP_STR);
1264			continue;
1265		default:
1266			BUG();
1267			return;
1268		};
1269		/* we need a comma before each option */
1270		seq_putc(m, ',');
1271		seq_puts(m, prefix);
1272		if (has_comma)
1273			seq_putc(m, '\"');
1274		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275		if (has_comma)
1276			seq_putc(m, '\"');
1277	}
1278}
1279
1280static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281{
1282	struct security_mnt_opts opts;
1283	int rc;
1284
1285	rc = selinux_get_mnt_opts(sb, &opts);
1286	if (rc) {
1287		/* before policy load we may get EINVAL, don't show anything */
1288		if (rc == -EINVAL)
1289			rc = 0;
1290		return rc;
1291	}
1292
1293	selinux_write_opts(m, &opts);
1294
1295	security_free_mnt_opts(&opts);
1296
1297	return rc;
1298}
1299
1300static inline u16 inode_mode_to_security_class(umode_t mode)
1301{
1302	switch (mode & S_IFMT) {
1303	case S_IFSOCK:
1304		return SECCLASS_SOCK_FILE;
1305	case S_IFLNK:
1306		return SECCLASS_LNK_FILE;
1307	case S_IFREG:
1308		return SECCLASS_FILE;
1309	case S_IFBLK:
1310		return SECCLASS_BLK_FILE;
1311	case S_IFDIR:
1312		return SECCLASS_DIR;
1313	case S_IFCHR:
1314		return SECCLASS_CHR_FILE;
1315	case S_IFIFO:
1316		return SECCLASS_FIFO_FILE;
1317
1318	}
1319
1320	return SECCLASS_FILE;
1321}
1322
1323static inline int default_protocol_stream(int protocol)
1324{
1325	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326}
1327
1328static inline int default_protocol_dgram(int protocol)
1329{
1330	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331}
1332
1333static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334{
1335	int extsockclass = selinux_policycap_extsockclass();
1336
1337	switch (family) {
1338	case PF_UNIX:
1339		switch (type) {
1340		case SOCK_STREAM:
1341		case SOCK_SEQPACKET:
1342			return SECCLASS_UNIX_STREAM_SOCKET;
1343		case SOCK_DGRAM:
1344		case SOCK_RAW:
1345			return SECCLASS_UNIX_DGRAM_SOCKET;
1346		}
1347		break;
1348	case PF_INET:
1349	case PF_INET6:
1350		switch (type) {
1351		case SOCK_STREAM:
1352		case SOCK_SEQPACKET:
1353			if (default_protocol_stream(protocol))
1354				return SECCLASS_TCP_SOCKET;
1355			else if (extsockclass && protocol == IPPROTO_SCTP)
1356				return SECCLASS_SCTP_SOCKET;
1357			else
1358				return SECCLASS_RAWIP_SOCKET;
1359		case SOCK_DGRAM:
1360			if (default_protocol_dgram(protocol))
1361				return SECCLASS_UDP_SOCKET;
1362			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363						  protocol == IPPROTO_ICMPV6))
1364				return SECCLASS_ICMP_SOCKET;
1365			else
1366				return SECCLASS_RAWIP_SOCKET;
1367		case SOCK_DCCP:
1368			return SECCLASS_DCCP_SOCKET;
1369		default:
1370			return SECCLASS_RAWIP_SOCKET;
1371		}
1372		break;
1373	case PF_NETLINK:
1374		switch (protocol) {
1375		case NETLINK_ROUTE:
1376			return SECCLASS_NETLINK_ROUTE_SOCKET;
 
 
1377		case NETLINK_SOCK_DIAG:
1378			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379		case NETLINK_NFLOG:
1380			return SECCLASS_NETLINK_NFLOG_SOCKET;
1381		case NETLINK_XFRM:
1382			return SECCLASS_NETLINK_XFRM_SOCKET;
1383		case NETLINK_SELINUX:
1384			return SECCLASS_NETLINK_SELINUX_SOCKET;
1385		case NETLINK_ISCSI:
1386			return SECCLASS_NETLINK_ISCSI_SOCKET;
1387		case NETLINK_AUDIT:
1388			return SECCLASS_NETLINK_AUDIT_SOCKET;
1389		case NETLINK_FIB_LOOKUP:
1390			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391		case NETLINK_CONNECTOR:
1392			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393		case NETLINK_NETFILTER:
1394			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395		case NETLINK_DNRTMSG:
1396			return SECCLASS_NETLINK_DNRT_SOCKET;
1397		case NETLINK_KOBJECT_UEVENT:
1398			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399		case NETLINK_GENERIC:
1400			return SECCLASS_NETLINK_GENERIC_SOCKET;
1401		case NETLINK_SCSITRANSPORT:
1402			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403		case NETLINK_RDMA:
1404			return SECCLASS_NETLINK_RDMA_SOCKET;
1405		case NETLINK_CRYPTO:
1406			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407		default:
1408			return SECCLASS_NETLINK_SOCKET;
1409		}
1410	case PF_PACKET:
1411		return SECCLASS_PACKET_SOCKET;
1412	case PF_KEY:
1413		return SECCLASS_KEY_SOCKET;
1414	case PF_APPLETALK:
1415		return SECCLASS_APPLETALK_SOCKET;
1416	}
1417
1418	if (extsockclass) {
1419		switch (family) {
1420		case PF_AX25:
1421			return SECCLASS_AX25_SOCKET;
1422		case PF_IPX:
1423			return SECCLASS_IPX_SOCKET;
1424		case PF_NETROM:
1425			return SECCLASS_NETROM_SOCKET;
1426		case PF_ATMPVC:
1427			return SECCLASS_ATMPVC_SOCKET;
1428		case PF_X25:
1429			return SECCLASS_X25_SOCKET;
1430		case PF_ROSE:
1431			return SECCLASS_ROSE_SOCKET;
1432		case PF_DECnet:
1433			return SECCLASS_DECNET_SOCKET;
1434		case PF_ATMSVC:
1435			return SECCLASS_ATMSVC_SOCKET;
1436		case PF_RDS:
1437			return SECCLASS_RDS_SOCKET;
1438		case PF_IRDA:
1439			return SECCLASS_IRDA_SOCKET;
1440		case PF_PPPOX:
1441			return SECCLASS_PPPOX_SOCKET;
1442		case PF_LLC:
1443			return SECCLASS_LLC_SOCKET;
1444		case PF_CAN:
1445			return SECCLASS_CAN_SOCKET;
1446		case PF_TIPC:
1447			return SECCLASS_TIPC_SOCKET;
1448		case PF_BLUETOOTH:
1449			return SECCLASS_BLUETOOTH_SOCKET;
1450		case PF_IUCV:
1451			return SECCLASS_IUCV_SOCKET;
1452		case PF_RXRPC:
1453			return SECCLASS_RXRPC_SOCKET;
1454		case PF_ISDN:
1455			return SECCLASS_ISDN_SOCKET;
1456		case PF_PHONET:
1457			return SECCLASS_PHONET_SOCKET;
1458		case PF_IEEE802154:
1459			return SECCLASS_IEEE802154_SOCKET;
1460		case PF_CAIF:
1461			return SECCLASS_CAIF_SOCKET;
1462		case PF_ALG:
1463			return SECCLASS_ALG_SOCKET;
1464		case PF_NFC:
1465			return SECCLASS_NFC_SOCKET;
1466		case PF_VSOCK:
1467			return SECCLASS_VSOCK_SOCKET;
1468		case PF_KCM:
1469			return SECCLASS_KCM_SOCKET;
1470		case PF_QIPCRTR:
1471			return SECCLASS_QIPCRTR_SOCKET;
1472		case PF_SMC:
1473			return SECCLASS_SMC_SOCKET;
1474#if PF_MAX > 44
1475#error New address family defined, please update this function.
1476#endif
1477		}
1478	}
1479
1480	return SECCLASS_SOCKET;
1481}
1482
1483static int selinux_genfs_get_sid(struct dentry *dentry,
1484				 u16 tclass,
1485				 u16 flags,
1486				 u32 *sid)
1487{
1488	int rc;
1489	struct super_block *sb = dentry->d_sb;
1490	char *buffer, *path;
1491
1492	buffer = (char *)__get_free_page(GFP_KERNEL);
1493	if (!buffer)
1494		return -ENOMEM;
1495
1496	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1497	if (IS_ERR(path))
1498		rc = PTR_ERR(path);
1499	else {
1500		if (flags & SE_SBPROC) {
1501			/* each process gets a /proc/PID/ entry. Strip off the
1502			 * PID part to get a valid selinux labeling.
1503			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1504			while (path[1] >= '0' && path[1] <= '9') {
1505				path[1] = '/';
1506				path++;
1507			}
1508		}
1509		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1510					path, tclass, sid);
1511	}
1512	free_page((unsigned long)buffer);
1513	return rc;
1514}
 
 
 
 
 
 
 
 
1515
1516/* The inode's security attributes must be initialized before first use. */
1517static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1518{
1519	struct superblock_security_struct *sbsec = NULL;
1520	struct inode_security_struct *isec = inode->i_security;
1521	u32 task_sid, sid = 0;
1522	u16 sclass;
1523	struct dentry *dentry;
1524#define INITCONTEXTLEN 255
1525	char *context = NULL;
1526	unsigned len = 0;
1527	int rc = 0;
1528
1529	if (isec->initialized == LABEL_INITIALIZED)
1530		return 0;
1531
1532	spin_lock(&isec->lock);
1533	if (isec->initialized == LABEL_INITIALIZED)
1534		goto out_unlock;
1535
1536	if (isec->sclass == SECCLASS_FILE)
1537		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1538
1539	sbsec = inode->i_sb->s_security;
1540	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1541		/* Defer initialization until selinux_complete_init,
1542		   after the initial policy is loaded and the security
1543		   server is ready to handle calls. */
1544		spin_lock(&sbsec->isec_lock);
1545		if (list_empty(&isec->list))
1546			list_add(&isec->list, &sbsec->isec_head);
1547		spin_unlock(&sbsec->isec_lock);
1548		goto out_unlock;
1549	}
1550
1551	sclass = isec->sclass;
1552	task_sid = isec->task_sid;
1553	sid = isec->sid;
1554	isec->initialized = LABEL_PENDING;
1555	spin_unlock(&isec->lock);
1556
1557	switch (sbsec->behavior) {
1558	case SECURITY_FS_USE_NATIVE:
1559		break;
1560	case SECURITY_FS_USE_XATTR:
1561		if (!(inode->i_opflags & IOP_XATTR)) {
1562			sid = sbsec->def_sid;
1563			break;
1564		}
 
1565		/* Need a dentry, since the xattr API requires one.
1566		   Life would be simpler if we could just pass the inode. */
1567		if (opt_dentry) {
1568			/* Called from d_instantiate or d_splice_alias. */
1569			dentry = dget(opt_dentry);
1570		} else {
1571			/*
1572			 * Called from selinux_complete_init, try to find a dentry.
1573			 * Some filesystems really want a connected one, so try
1574			 * that first.  We could split SECURITY_FS_USE_XATTR in
1575			 * two, depending upon that...
1576			 */
1577			dentry = d_find_alias(inode);
1578			if (!dentry)
1579				dentry = d_find_any_alias(inode);
1580		}
1581		if (!dentry) {
1582			/*
1583			 * this is can be hit on boot when a file is accessed
1584			 * before the policy is loaded.  When we load policy we
1585			 * may find inodes that have no dentry on the
1586			 * sbsec->isec_head list.  No reason to complain as these
1587			 * will get fixed up the next time we go through
1588			 * inode_doinit with a dentry, before these inodes could
1589			 * be used again by userspace.
1590			 */
1591			goto out;
1592		}
1593
1594		len = INITCONTEXTLEN;
1595		context = kmalloc(len+1, GFP_NOFS);
1596		if (!context) {
1597			rc = -ENOMEM;
1598			dput(dentry);
1599			goto out;
1600		}
1601		context[len] = '\0';
1602		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
 
1603		if (rc == -ERANGE) {
1604			kfree(context);
1605
1606			/* Need a larger buffer.  Query for the right size. */
1607			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
 
1608			if (rc < 0) {
1609				dput(dentry);
1610				goto out;
1611			}
1612			len = rc;
1613			context = kmalloc(len+1, GFP_NOFS);
1614			if (!context) {
1615				rc = -ENOMEM;
1616				dput(dentry);
1617				goto out;
1618			}
1619			context[len] = '\0';
1620			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
 
 
1621		}
1622		dput(dentry);
1623		if (rc < 0) {
1624			if (rc != -ENODATA) {
1625				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1626				       "%d for dev=%s ino=%ld\n", __func__,
1627				       -rc, inode->i_sb->s_id, inode->i_ino);
1628				kfree(context);
1629				goto out;
1630			}
1631			/* Map ENODATA to the default file SID */
1632			sid = sbsec->def_sid;
1633			rc = 0;
1634		} else {
1635			rc = security_context_to_sid_default(&selinux_state,
1636							     context, rc, &sid,
1637							     sbsec->def_sid,
1638							     GFP_NOFS);
1639			if (rc) {
1640				char *dev = inode->i_sb->s_id;
1641				unsigned long ino = inode->i_ino;
1642
1643				if (rc == -EINVAL) {
1644					if (printk_ratelimit())
1645						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1646							"context=%s.  This indicates you may need to relabel the inode or the "
1647							"filesystem in question.\n", ino, dev, context);
1648				} else {
1649					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1650					       "returned %d for dev=%s ino=%ld\n",
1651					       __func__, context, -rc, dev, ino);
1652				}
1653				kfree(context);
1654				/* Leave with the unlabeled SID */
1655				rc = 0;
1656				break;
1657			}
1658		}
1659		kfree(context);
 
1660		break;
1661	case SECURITY_FS_USE_TASK:
1662		sid = task_sid;
1663		break;
1664	case SECURITY_FS_USE_TRANS:
1665		/* Default to the fs SID. */
1666		sid = sbsec->sid;
1667
1668		/* Try to obtain a transition SID. */
1669		rc = security_transition_sid(&selinux_state, task_sid, sid,
1670					     sclass, NULL, &sid);
 
1671		if (rc)
1672			goto out;
 
1673		break;
1674	case SECURITY_FS_USE_MNTPOINT:
1675		sid = sbsec->mntpoint_sid;
1676		break;
1677	default:
1678		/* Default to the fs superblock SID. */
1679		sid = sbsec->sid;
1680
1681		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1682			/* We must have a dentry to determine the label on
1683			 * procfs inodes */
1684			if (opt_dentry) {
1685				/* Called from d_instantiate or
1686				 * d_splice_alias. */
1687				dentry = dget(opt_dentry);
1688			} else {
1689				/* Called from selinux_complete_init, try to
1690				 * find a dentry.  Some filesystems really want
1691				 * a connected one, so try that first.
1692				 */
1693				dentry = d_find_alias(inode);
1694				if (!dentry)
1695					dentry = d_find_any_alias(inode);
1696			}
1697			/*
1698			 * This can be hit on boot when a file is accessed
1699			 * before the policy is loaded.  When we load policy we
1700			 * may find inodes that have no dentry on the
1701			 * sbsec->isec_head list.  No reason to complain as
1702			 * these will get fixed up the next time we go through
1703			 * inode_doinit() with a dentry, before these inodes
1704			 * could be used again by userspace.
1705			 */
1706			if (!dentry)
1707				goto out;
1708			rc = selinux_genfs_get_sid(dentry, sclass,
1709						   sbsec->flags, &sid);
1710			dput(dentry);
1711			if (rc)
1712				goto out;
 
1713		}
1714		break;
1715	}
1716
1717out:
1718	spin_lock(&isec->lock);
1719	if (isec->initialized == LABEL_PENDING) {
1720		if (!sid || rc) {
1721			isec->initialized = LABEL_INVALID;
1722			goto out_unlock;
1723		}
1724
1725		isec->initialized = LABEL_INITIALIZED;
1726		isec->sid = sid;
1727	}
1728
1729out_unlock:
1730	spin_unlock(&isec->lock);
 
 
 
1731	return rc;
1732}
1733
1734/* Convert a Linux signal to an access vector. */
1735static inline u32 signal_to_av(int sig)
1736{
1737	u32 perm = 0;
1738
1739	switch (sig) {
1740	case SIGCHLD:
1741		/* Commonly granted from child to parent. */
1742		perm = PROCESS__SIGCHLD;
1743		break;
1744	case SIGKILL:
1745		/* Cannot be caught or ignored */
1746		perm = PROCESS__SIGKILL;
1747		break;
1748	case SIGSTOP:
1749		/* Cannot be caught or ignored */
1750		perm = PROCESS__SIGSTOP;
1751		break;
1752	default:
1753		/* All other signals. */
1754		perm = PROCESS__SIGNAL;
1755		break;
1756	}
1757
1758	return perm;
1759}
1760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761#if CAP_LAST_CAP > 63
1762#error Fix SELinux to handle capabilities > 63.
1763#endif
1764
1765/* Check whether a task is allowed to use a capability. */
1766static int cred_has_capability(const struct cred *cred,
1767			       int cap, int audit, bool initns)
1768{
1769	struct common_audit_data ad;
1770	struct av_decision avd;
1771	u16 sclass;
1772	u32 sid = cred_sid(cred);
1773	u32 av = CAP_TO_MASK(cap);
1774	int rc;
1775
1776	ad.type = LSM_AUDIT_DATA_CAP;
1777	ad.u.cap = cap;
1778
1779	switch (CAP_TO_INDEX(cap)) {
1780	case 0:
1781		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1782		break;
1783	case 1:
1784		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1785		break;
1786	default:
1787		printk(KERN_ERR
1788		       "SELinux:  out of range capability %d\n", cap);
1789		BUG();
1790		return -EINVAL;
1791	}
1792
1793	rc = avc_has_perm_noaudit(&selinux_state,
1794				  sid, sid, sclass, av, 0, &avd);
1795	if (audit == SECURITY_CAP_AUDIT) {
1796		int rc2 = avc_audit(&selinux_state,
1797				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1798		if (rc2)
1799			return rc2;
1800	}
1801	return rc;
1802}
1803
 
 
 
 
 
 
 
 
 
 
1804/* Check whether a task has a particular permission to an inode.
1805   The 'adp' parameter is optional and allows other audit
1806   data to be passed (e.g. the dentry). */
1807static int inode_has_perm(const struct cred *cred,
1808			  struct inode *inode,
1809			  u32 perms,
1810			  struct common_audit_data *adp)
1811{
1812	struct inode_security_struct *isec;
1813	u32 sid;
1814
1815	validate_creds(cred);
1816
1817	if (unlikely(IS_PRIVATE(inode)))
1818		return 0;
1819
1820	sid = cred_sid(cred);
1821	isec = inode->i_security;
1822
1823	return avc_has_perm(&selinux_state,
1824			    sid, isec->sid, isec->sclass, perms, adp);
1825}
1826
1827/* Same as inode_has_perm, but pass explicit audit data containing
1828   the dentry to help the auditing code to more easily generate the
1829   pathname if needed. */
1830static inline int dentry_has_perm(const struct cred *cred,
1831				  struct dentry *dentry,
1832				  u32 av)
1833{
1834	struct inode *inode = d_backing_inode(dentry);
1835	struct common_audit_data ad;
1836
1837	ad.type = LSM_AUDIT_DATA_DENTRY;
1838	ad.u.dentry = dentry;
1839	__inode_security_revalidate(inode, dentry, true);
1840	return inode_has_perm(cred, inode, av, &ad);
1841}
1842
1843/* Same as inode_has_perm, but pass explicit audit data containing
1844   the path to help the auditing code to more easily generate the
1845   pathname if needed. */
1846static inline int path_has_perm(const struct cred *cred,
1847				const struct path *path,
1848				u32 av)
1849{
1850	struct inode *inode = d_backing_inode(path->dentry);
1851	struct common_audit_data ad;
1852
1853	ad.type = LSM_AUDIT_DATA_PATH;
1854	ad.u.path = *path;
1855	__inode_security_revalidate(inode, path->dentry, true);
1856	return inode_has_perm(cred, inode, av, &ad);
1857}
1858
1859/* Same as path_has_perm, but uses the inode from the file struct. */
1860static inline int file_path_has_perm(const struct cred *cred,
1861				     struct file *file,
1862				     u32 av)
1863{
1864	struct common_audit_data ad;
1865
1866	ad.type = LSM_AUDIT_DATA_FILE;
1867	ad.u.file = file;
1868	return inode_has_perm(cred, file_inode(file), av, &ad);
1869}
1870
1871#ifdef CONFIG_BPF_SYSCALL
1872static int bpf_fd_pass(struct file *file, u32 sid);
1873#endif
1874
1875/* Check whether a task can use an open file descriptor to
1876   access an inode in a given way.  Check access to the
1877   descriptor itself, and then use dentry_has_perm to
1878   check a particular permission to the file.
1879   Access to the descriptor is implicitly granted if it
1880   has the same SID as the process.  If av is zero, then
1881   access to the file is not checked, e.g. for cases
1882   where only the descriptor is affected like seek. */
1883static int file_has_perm(const struct cred *cred,
1884			 struct file *file,
1885			 u32 av)
1886{
1887	struct file_security_struct *fsec = file->f_security;
1888	struct inode *inode = file_inode(file);
1889	struct common_audit_data ad;
1890	u32 sid = cred_sid(cred);
1891	int rc;
1892
1893	ad.type = LSM_AUDIT_DATA_FILE;
1894	ad.u.file = file;
1895
1896	if (sid != fsec->sid) {
1897		rc = avc_has_perm(&selinux_state,
1898				  sid, fsec->sid,
1899				  SECCLASS_FD,
1900				  FD__USE,
1901				  &ad);
1902		if (rc)
1903			goto out;
1904	}
1905
1906#ifdef CONFIG_BPF_SYSCALL
1907	rc = bpf_fd_pass(file, cred_sid(cred));
1908	if (rc)
1909		return rc;
1910#endif
1911
1912	/* av is zero if only checking access to the descriptor. */
1913	rc = 0;
1914	if (av)
1915		rc = inode_has_perm(cred, inode, av, &ad);
1916
1917out:
1918	return rc;
1919}
1920
1921/*
1922 * Determine the label for an inode that might be unioned.
1923 */
1924static int
1925selinux_determine_inode_label(const struct task_security_struct *tsec,
1926				 struct inode *dir,
1927				 const struct qstr *name, u16 tclass,
1928				 u32 *_new_isid)
1929{
1930	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1931
1932	if ((sbsec->flags & SE_SBINITIALIZED) &&
1933	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1934		*_new_isid = sbsec->mntpoint_sid;
1935	} else if ((sbsec->flags & SBLABEL_MNT) &&
1936		   tsec->create_sid) {
1937		*_new_isid = tsec->create_sid;
1938	} else {
1939		const struct inode_security_struct *dsec = inode_security(dir);
1940		return security_transition_sid(&selinux_state, tsec->sid,
1941					       dsec->sid, tclass,
1942					       name, _new_isid);
1943	}
1944
1945	return 0;
1946}
1947
1948/* Check whether a task can create a file. */
1949static int may_create(struct inode *dir,
1950		      struct dentry *dentry,
1951		      u16 tclass)
1952{
1953	const struct task_security_struct *tsec = current_security();
1954	struct inode_security_struct *dsec;
1955	struct superblock_security_struct *sbsec;
1956	u32 sid, newsid;
1957	struct common_audit_data ad;
1958	int rc;
1959
1960	dsec = inode_security(dir);
1961	sbsec = dir->i_sb->s_security;
1962
1963	sid = tsec->sid;
 
1964
1965	ad.type = LSM_AUDIT_DATA_DENTRY;
1966	ad.u.dentry = dentry;
1967
1968	rc = avc_has_perm(&selinux_state,
1969			  sid, dsec->sid, SECCLASS_DIR,
1970			  DIR__ADD_NAME | DIR__SEARCH,
1971			  &ad);
1972	if (rc)
1973		return rc;
1974
1975	rc = selinux_determine_inode_label(current_security(), dir,
1976					   &dentry->d_name, tclass, &newsid);
1977	if (rc)
1978		return rc;
 
 
1979
1980	rc = avc_has_perm(&selinux_state,
1981			  sid, newsid, tclass, FILE__CREATE, &ad);
1982	if (rc)
1983		return rc;
1984
1985	return avc_has_perm(&selinux_state,
1986			    newsid, sbsec->sid,
1987			    SECCLASS_FILESYSTEM,
1988			    FILESYSTEM__ASSOCIATE, &ad);
1989}
1990
 
 
 
 
 
 
 
 
 
1991#define MAY_LINK	0
1992#define MAY_UNLINK	1
1993#define MAY_RMDIR	2
1994
1995/* Check whether a task can link, unlink, or rmdir a file/directory. */
1996static int may_link(struct inode *dir,
1997		    struct dentry *dentry,
1998		    int kind)
1999
2000{
2001	struct inode_security_struct *dsec, *isec;
2002	struct common_audit_data ad;
2003	u32 sid = current_sid();
2004	u32 av;
2005	int rc;
2006
2007	dsec = inode_security(dir);
2008	isec = backing_inode_security(dentry);
2009
2010	ad.type = LSM_AUDIT_DATA_DENTRY;
2011	ad.u.dentry = dentry;
2012
2013	av = DIR__SEARCH;
2014	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2015	rc = avc_has_perm(&selinux_state,
2016			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
2017	if (rc)
2018		return rc;
2019
2020	switch (kind) {
2021	case MAY_LINK:
2022		av = FILE__LINK;
2023		break;
2024	case MAY_UNLINK:
2025		av = FILE__UNLINK;
2026		break;
2027	case MAY_RMDIR:
2028		av = DIR__RMDIR;
2029		break;
2030	default:
2031		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
2032			__func__, kind);
2033		return 0;
2034	}
2035
2036	rc = avc_has_perm(&selinux_state,
2037			  sid, isec->sid, isec->sclass, av, &ad);
2038	return rc;
2039}
2040
2041static inline int may_rename(struct inode *old_dir,
2042			     struct dentry *old_dentry,
2043			     struct inode *new_dir,
2044			     struct dentry *new_dentry)
2045{
2046	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2047	struct common_audit_data ad;
2048	u32 sid = current_sid();
2049	u32 av;
2050	int old_is_dir, new_is_dir;
2051	int rc;
2052
2053	old_dsec = inode_security(old_dir);
2054	old_isec = backing_inode_security(old_dentry);
2055	old_is_dir = d_is_dir(old_dentry);
2056	new_dsec = inode_security(new_dir);
2057
2058	ad.type = LSM_AUDIT_DATA_DENTRY;
2059
2060	ad.u.dentry = old_dentry;
2061	rc = avc_has_perm(&selinux_state,
2062			  sid, old_dsec->sid, SECCLASS_DIR,
2063			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2064	if (rc)
2065		return rc;
2066	rc = avc_has_perm(&selinux_state,
2067			  sid, old_isec->sid,
2068			  old_isec->sclass, FILE__RENAME, &ad);
2069	if (rc)
2070		return rc;
2071	if (old_is_dir && new_dir != old_dir) {
2072		rc = avc_has_perm(&selinux_state,
2073				  sid, old_isec->sid,
2074				  old_isec->sclass, DIR__REPARENT, &ad);
2075		if (rc)
2076			return rc;
2077	}
2078
2079	ad.u.dentry = new_dentry;
2080	av = DIR__ADD_NAME | DIR__SEARCH;
2081	if (d_is_positive(new_dentry))
2082		av |= DIR__REMOVE_NAME;
2083	rc = avc_has_perm(&selinux_state,
2084			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2085	if (rc)
2086		return rc;
2087	if (d_is_positive(new_dentry)) {
2088		new_isec = backing_inode_security(new_dentry);
2089		new_is_dir = d_is_dir(new_dentry);
2090		rc = avc_has_perm(&selinux_state,
2091				  sid, new_isec->sid,
2092				  new_isec->sclass,
2093				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2094		if (rc)
2095			return rc;
2096	}
2097
2098	return 0;
2099}
2100
2101/* Check whether a task can perform a filesystem operation. */
2102static int superblock_has_perm(const struct cred *cred,
2103			       struct super_block *sb,
2104			       u32 perms,
2105			       struct common_audit_data *ad)
2106{
2107	struct superblock_security_struct *sbsec;
2108	u32 sid = cred_sid(cred);
2109
2110	sbsec = sb->s_security;
2111	return avc_has_perm(&selinux_state,
2112			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2113}
2114
2115/* Convert a Linux mode and permission mask to an access vector. */
2116static inline u32 file_mask_to_av(int mode, int mask)
2117{
2118	u32 av = 0;
2119
2120	if (!S_ISDIR(mode)) {
2121		if (mask & MAY_EXEC)
2122			av |= FILE__EXECUTE;
2123		if (mask & MAY_READ)
2124			av |= FILE__READ;
2125
2126		if (mask & MAY_APPEND)
2127			av |= FILE__APPEND;
2128		else if (mask & MAY_WRITE)
2129			av |= FILE__WRITE;
2130
2131	} else {
2132		if (mask & MAY_EXEC)
2133			av |= DIR__SEARCH;
2134		if (mask & MAY_WRITE)
2135			av |= DIR__WRITE;
2136		if (mask & MAY_READ)
2137			av |= DIR__READ;
2138	}
2139
2140	return av;
2141}
2142
2143/* Convert a Linux file to an access vector. */
2144static inline u32 file_to_av(struct file *file)
2145{
2146	u32 av = 0;
2147
2148	if (file->f_mode & FMODE_READ)
2149		av |= FILE__READ;
2150	if (file->f_mode & FMODE_WRITE) {
2151		if (file->f_flags & O_APPEND)
2152			av |= FILE__APPEND;
2153		else
2154			av |= FILE__WRITE;
2155	}
2156	if (!av) {
2157		/*
2158		 * Special file opened with flags 3 for ioctl-only use.
2159		 */
2160		av = FILE__IOCTL;
2161	}
2162
2163	return av;
2164}
2165
2166/*
2167 * Convert a file to an access vector and include the correct open
2168 * open permission.
2169 */
2170static inline u32 open_file_to_av(struct file *file)
2171{
2172	u32 av = file_to_av(file);
2173	struct inode *inode = file_inode(file);
2174
2175	if (selinux_policycap_openperm() &&
2176	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2177		av |= FILE__OPEN;
2178
2179	return av;
2180}
2181
2182/* Hook functions begin here. */
2183
2184static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2185{
2186	u32 mysid = current_sid();
2187	u32 mgrsid = task_sid(mgr);
2188
2189	return avc_has_perm(&selinux_state,
2190			    mysid, mgrsid, SECCLASS_BINDER,
2191			    BINDER__SET_CONTEXT_MGR, NULL);
2192}
2193
2194static int selinux_binder_transaction(struct task_struct *from,
2195				      struct task_struct *to)
2196{
2197	u32 mysid = current_sid();
2198	u32 fromsid = task_sid(from);
2199	u32 tosid = task_sid(to);
2200	int rc;
2201
2202	if (mysid != fromsid) {
2203		rc = avc_has_perm(&selinux_state,
2204				  mysid, fromsid, SECCLASS_BINDER,
2205				  BINDER__IMPERSONATE, NULL);
2206		if (rc)
2207			return rc;
2208	}
2209
2210	return avc_has_perm(&selinux_state,
2211			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2212			    NULL);
2213}
2214
2215static int selinux_binder_transfer_binder(struct task_struct *from,
2216					  struct task_struct *to)
2217{
2218	u32 fromsid = task_sid(from);
2219	u32 tosid = task_sid(to);
2220
2221	return avc_has_perm(&selinux_state,
2222			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2223			    NULL);
2224}
2225
2226static int selinux_binder_transfer_file(struct task_struct *from,
2227					struct task_struct *to,
2228					struct file *file)
2229{
2230	u32 sid = task_sid(to);
2231	struct file_security_struct *fsec = file->f_security;
2232	struct dentry *dentry = file->f_path.dentry;
2233	struct inode_security_struct *isec;
2234	struct common_audit_data ad;
2235	int rc;
2236
2237	ad.type = LSM_AUDIT_DATA_PATH;
2238	ad.u.path = file->f_path;
2239
2240	if (sid != fsec->sid) {
2241		rc = avc_has_perm(&selinux_state,
2242				  sid, fsec->sid,
2243				  SECCLASS_FD,
2244				  FD__USE,
2245				  &ad);
2246		if (rc)
2247			return rc;
2248	}
2249
2250#ifdef CONFIG_BPF_SYSCALL
2251	rc = bpf_fd_pass(file, sid);
2252	if (rc)
2253		return rc;
2254#endif
2255
2256	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2257		return 0;
2258
2259	isec = backing_inode_security(dentry);
2260	return avc_has_perm(&selinux_state,
2261			    sid, isec->sid, isec->sclass, file_to_av(file),
2262			    &ad);
2263}
2264
2265static int selinux_ptrace_access_check(struct task_struct *child,
2266				     unsigned int mode)
2267{
2268	u32 sid = current_sid();
2269	u32 csid = task_sid(child);
2270
2271	if (mode & PTRACE_MODE_READ)
2272		return avc_has_perm(&selinux_state,
2273				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2274
2275	return avc_has_perm(&selinux_state,
2276			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2277}
2278
2279static int selinux_ptrace_traceme(struct task_struct *parent)
2280{
2281	return avc_has_perm(&selinux_state,
2282			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2283			    PROCESS__PTRACE, NULL);
2284}
2285
2286static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2287			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2288{
2289	return avc_has_perm(&selinux_state,
2290			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2291			    PROCESS__GETCAP, NULL);
 
 
 
 
2292}
2293
2294static int selinux_capset(struct cred *new, const struct cred *old,
2295			  const kernel_cap_t *effective,
2296			  const kernel_cap_t *inheritable,
2297			  const kernel_cap_t *permitted)
2298{
2299	return avc_has_perm(&selinux_state,
2300			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2301			    PROCESS__SETCAP, NULL);
 
 
 
 
 
2302}
2303
2304/*
2305 * (This comment used to live with the selinux_task_setuid hook,
2306 * which was removed).
2307 *
2308 * Since setuid only affects the current process, and since the SELinux
2309 * controls are not based on the Linux identity attributes, SELinux does not
2310 * need to control this operation.  However, SELinux does control the use of
2311 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2312 */
2313
2314static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2315			   int cap, int audit)
2316{
2317	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
 
 
 
 
 
 
2318}
2319
2320static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2321{
2322	const struct cred *cred = current_cred();
2323	int rc = 0;
2324
2325	if (!sb)
2326		return 0;
2327
2328	switch (cmds) {
2329	case Q_SYNC:
2330	case Q_QUOTAON:
2331	case Q_QUOTAOFF:
2332	case Q_SETINFO:
2333	case Q_SETQUOTA:
2334		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2335		break;
2336	case Q_GETFMT:
2337	case Q_GETINFO:
2338	case Q_GETQUOTA:
2339		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2340		break;
2341	default:
2342		rc = 0;  /* let the kernel handle invalid cmds */
2343		break;
2344	}
2345	return rc;
2346}
2347
2348static int selinux_quota_on(struct dentry *dentry)
2349{
2350	const struct cred *cred = current_cred();
2351
2352	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2353}
2354
2355static int selinux_syslog(int type)
2356{
 
 
2357	switch (type) {
2358	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2359	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2360		return avc_has_perm(&selinux_state,
2361				    current_sid(), SECINITSID_KERNEL,
2362				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2363	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2364	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2365	/* Set level of messages printed to console */
2366	case SYSLOG_ACTION_CONSOLE_LEVEL:
2367		return avc_has_perm(&selinux_state,
2368				    current_sid(), SECINITSID_KERNEL,
2369				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2370				    NULL);
2371	}
2372	/* All other syslog types */
2373	return avc_has_perm(&selinux_state,
2374			    current_sid(), SECINITSID_KERNEL,
2375			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2376}
2377
2378/*
2379 * Check that a process has enough memory to allocate a new virtual
2380 * mapping. 0 means there is enough memory for the allocation to
2381 * succeed and -ENOMEM implies there is not.
2382 *
2383 * Do not audit the selinux permission check, as this is applied to all
2384 * processes that allocate mappings.
2385 */
2386static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2387{
2388	int rc, cap_sys_admin = 0;
2389
2390	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2391				 SECURITY_CAP_NOAUDIT, true);
2392	if (rc == 0)
2393		cap_sys_admin = 1;
2394
2395	return cap_sys_admin;
2396}
2397
2398/* binprm security operations */
2399
2400static u32 ptrace_parent_sid(void)
2401{
2402	u32 sid = 0;
2403	struct task_struct *tracer;
2404
2405	rcu_read_lock();
2406	tracer = ptrace_parent(current);
2407	if (tracer)
2408		sid = task_sid(tracer);
2409	rcu_read_unlock();
2410
2411	return sid;
2412}
2413
2414static int check_nnp_nosuid(const struct linux_binprm *bprm,
2415			    const struct task_security_struct *old_tsec,
2416			    const struct task_security_struct *new_tsec)
2417{
2418	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2419	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2420	int rc;
2421	u32 av;
2422
2423	if (!nnp && !nosuid)
2424		return 0; /* neither NNP nor nosuid */
2425
2426	if (new_tsec->sid == old_tsec->sid)
2427		return 0; /* No change in credentials */
2428
2429	/*
2430	 * If the policy enables the nnp_nosuid_transition policy capability,
2431	 * then we permit transitions under NNP or nosuid if the
2432	 * policy allows the corresponding permission between
2433	 * the old and new contexts.
2434	 */
2435	if (selinux_policycap_nnp_nosuid_transition()) {
2436		av = 0;
2437		if (nnp)
2438			av |= PROCESS2__NNP_TRANSITION;
2439		if (nosuid)
2440			av |= PROCESS2__NOSUID_TRANSITION;
2441		rc = avc_has_perm(&selinux_state,
2442				  old_tsec->sid, new_tsec->sid,
2443				  SECCLASS_PROCESS2, av, NULL);
2444		if (!rc)
2445			return 0;
2446	}
2447
2448	/*
2449	 * We also permit NNP or nosuid transitions to bounded SIDs,
2450	 * i.e. SIDs that are guaranteed to only be allowed a subset
2451	 * of the permissions of the current SID.
2452	 */
2453	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2454					 new_tsec->sid);
2455	if (!rc)
2456		return 0;
2457
2458	/*
2459	 * On failure, preserve the errno values for NNP vs nosuid.
2460	 * NNP:  Operation not permitted for caller.
2461	 * nosuid:  Permission denied to file.
2462	 */
2463	if (nnp)
2464		return -EPERM;
2465	return -EACCES;
2466}
2467
2468static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2469{
2470	const struct task_security_struct *old_tsec;
2471	struct task_security_struct *new_tsec;
2472	struct inode_security_struct *isec;
2473	struct common_audit_data ad;
2474	struct inode *inode = file_inode(bprm->file);
2475	int rc;
2476
 
 
 
 
2477	/* SELinux context only depends on initial program or script and not
2478	 * the script interpreter */
2479	if (bprm->called_set_creds)
2480		return 0;
2481
2482	old_tsec = current_security();
2483	new_tsec = bprm->cred->security;
2484	isec = inode_security(inode);
2485
2486	/* Default to the current task SID. */
2487	new_tsec->sid = old_tsec->sid;
2488	new_tsec->osid = old_tsec->sid;
2489
2490	/* Reset fs, key, and sock SIDs on execve. */
2491	new_tsec->create_sid = 0;
2492	new_tsec->keycreate_sid = 0;
2493	new_tsec->sockcreate_sid = 0;
2494
2495	if (old_tsec->exec_sid) {
2496		new_tsec->sid = old_tsec->exec_sid;
2497		/* Reset exec SID on execve. */
2498		new_tsec->exec_sid = 0;
2499
2500		/* Fail on NNP or nosuid if not an allowed transition. */
2501		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2502		if (rc)
2503			return rc;
 
 
2504	} else {
2505		/* Check for a default transition on this program. */
2506		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2507					     isec->sid, SECCLASS_PROCESS, NULL,
2508					     &new_tsec->sid);
2509		if (rc)
2510			return rc;
2511
2512		/*
2513		 * Fallback to old SID on NNP or nosuid if not an allowed
2514		 * transition.
2515		 */
2516		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2517		if (rc)
2518			new_tsec->sid = old_tsec->sid;
2519	}
2520
2521	ad.type = LSM_AUDIT_DATA_FILE;
2522	ad.u.file = bprm->file;
 
 
 
 
2523
2524	if (new_tsec->sid == old_tsec->sid) {
2525		rc = avc_has_perm(&selinux_state,
2526				  old_tsec->sid, isec->sid,
2527				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2528		if (rc)
2529			return rc;
2530	} else {
2531		/* Check permissions for the transition. */
2532		rc = avc_has_perm(&selinux_state,
2533				  old_tsec->sid, new_tsec->sid,
2534				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2535		if (rc)
2536			return rc;
2537
2538		rc = avc_has_perm(&selinux_state,
2539				  new_tsec->sid, isec->sid,
2540				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2541		if (rc)
2542			return rc;
2543
2544		/* Check for shared state */
2545		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2546			rc = avc_has_perm(&selinux_state,
2547					  old_tsec->sid, new_tsec->sid,
2548					  SECCLASS_PROCESS, PROCESS__SHARE,
2549					  NULL);
2550			if (rc)
2551				return -EPERM;
2552		}
2553
2554		/* Make sure that anyone attempting to ptrace over a task that
2555		 * changes its SID has the appropriate permit */
2556		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2557			u32 ptsid = ptrace_parent_sid();
 
 
 
 
 
 
 
 
 
 
 
 
2558			if (ptsid != 0) {
2559				rc = avc_has_perm(&selinux_state,
2560						  ptsid, new_tsec->sid,
2561						  SECCLASS_PROCESS,
2562						  PROCESS__PTRACE, NULL);
2563				if (rc)
2564					return -EPERM;
2565			}
2566		}
2567
2568		/* Clear any possibly unsafe personality bits on exec: */
2569		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
 
 
 
 
 
 
 
 
 
 
 
 
2570
 
2571		/* Enable secure mode for SIDs transitions unless
2572		   the noatsecure permission is granted between
2573		   the two SIDs, i.e. ahp returns 0. */
2574		rc = avc_has_perm(&selinux_state,
2575				  old_tsec->sid, new_tsec->sid,
2576				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2577				  NULL);
2578		bprm->secureexec |= !!rc;
2579	}
2580
2581	return 0;
2582}
2583
2584static int match_file(const void *p, struct file *file, unsigned fd)
2585{
2586	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2587}
2588
2589/* Derived from fs/exec.c:flush_old_files. */
2590static inline void flush_unauthorized_files(const struct cred *cred,
2591					    struct files_struct *files)
2592{
2593	struct file *file, *devnull = NULL;
2594	struct tty_struct *tty;
2595	int drop_tty = 0;
2596	unsigned n;
2597
2598	tty = get_current_tty();
2599	if (tty) {
2600		spin_lock(&tty->files_lock);
2601		if (!list_empty(&tty->tty_files)) {
2602			struct tty_file_private *file_priv;
2603
2604			/* Revalidate access to controlling tty.
2605			   Use file_path_has_perm on the tty path directly
2606			   rather than using file_has_perm, as this particular
2607			   open file may belong to another process and we are
2608			   only interested in the inode-based check here. */
2609			file_priv = list_first_entry(&tty->tty_files,
2610						struct tty_file_private, list);
2611			file = file_priv->file;
2612			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2613				drop_tty = 1;
2614		}
2615		spin_unlock(&tty->files_lock);
2616		tty_kref_put(tty);
2617	}
2618	/* Reset controlling tty. */
2619	if (drop_tty)
2620		no_tty();
2621
2622	/* Revalidate access to inherited open files. */
2623	n = iterate_fd(files, 0, match_file, cred);
2624	if (!n) /* none found? */
2625		return;
2626
2627	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2628	if (IS_ERR(devnull))
2629		devnull = NULL;
2630	/* replace all the matching ones with this */
2631	do {
2632		replace_fd(n - 1, devnull, 0);
2633	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2634	if (devnull)
2635		fput(devnull);
2636}
2637
2638/*
2639 * Prepare a process for imminent new credential changes due to exec
2640 */
2641static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2642{
2643	struct task_security_struct *new_tsec;
2644	struct rlimit *rlim, *initrlim;
2645	int rc, i;
2646
2647	new_tsec = bprm->cred->security;
2648	if (new_tsec->sid == new_tsec->osid)
2649		return;
2650
2651	/* Close files for which the new task SID is not authorized. */
2652	flush_unauthorized_files(bprm->cred, current->files);
2653
2654	/* Always clear parent death signal on SID transitions. */
2655	current->pdeath_signal = 0;
2656
2657	/* Check whether the new SID can inherit resource limits from the old
2658	 * SID.  If not, reset all soft limits to the lower of the current
2659	 * task's hard limit and the init task's soft limit.
2660	 *
2661	 * Note that the setting of hard limits (even to lower them) can be
2662	 * controlled by the setrlimit check.  The inclusion of the init task's
2663	 * soft limit into the computation is to avoid resetting soft limits
2664	 * higher than the default soft limit for cases where the default is
2665	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2666	 */
2667	rc = avc_has_perm(&selinux_state,
2668			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2669			  PROCESS__RLIMITINH, NULL);
2670	if (rc) {
2671		/* protect against do_prlimit() */
2672		task_lock(current);
2673		for (i = 0; i < RLIM_NLIMITS; i++) {
2674			rlim = current->signal->rlim + i;
2675			initrlim = init_task.signal->rlim + i;
2676			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2677		}
2678		task_unlock(current);
2679		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2680			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2681	}
2682}
2683
2684/*
2685 * Clean up the process immediately after the installation of new credentials
2686 * due to exec
2687 */
2688static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2689{
2690	const struct task_security_struct *tsec = current_security();
2691	struct itimerval itimer;
2692	u32 osid, sid;
2693	int rc, i;
2694
2695	osid = tsec->osid;
2696	sid = tsec->sid;
2697
2698	if (sid == osid)
2699		return;
2700
2701	/* Check whether the new SID can inherit signal state from the old SID.
2702	 * If not, clear itimers to avoid subsequent signal generation and
2703	 * flush and unblock signals.
2704	 *
2705	 * This must occur _after_ the task SID has been updated so that any
2706	 * kill done after the flush will be checked against the new SID.
2707	 */
2708	rc = avc_has_perm(&selinux_state,
2709			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2710	if (rc) {
2711		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2712			memset(&itimer, 0, sizeof itimer);
2713			for (i = 0; i < 3; i++)
2714				do_setitimer(i, &itimer, NULL);
2715		}
2716		spin_lock_irq(&current->sighand->siglock);
2717		if (!fatal_signal_pending(current)) {
2718			flush_sigqueue(&current->pending);
2719			flush_sigqueue(&current->signal->shared_pending);
2720			flush_signal_handlers(current, 1);
2721			sigemptyset(&current->blocked);
2722			recalc_sigpending();
2723		}
2724		spin_unlock_irq(&current->sighand->siglock);
2725	}
2726
2727	/* Wake up the parent if it is waiting so that it can recheck
2728	 * wait permission to the new task SID. */
2729	read_lock(&tasklist_lock);
2730	__wake_up_parent(current, current->real_parent);
2731	read_unlock(&tasklist_lock);
2732}
2733
2734/* superblock security operations */
2735
2736static int selinux_sb_alloc_security(struct super_block *sb)
2737{
2738	return superblock_alloc_security(sb);
2739}
2740
2741static void selinux_sb_free_security(struct super_block *sb)
2742{
2743	superblock_free_security(sb);
2744}
2745
2746static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2747{
2748	if (plen > olen)
2749		return 0;
2750
2751	return !memcmp(prefix, option, plen);
2752}
2753
2754static inline int selinux_option(char *option, int len)
2755{
2756	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2757		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2758		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2759		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2760		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2761}
2762
2763static inline void take_option(char **to, char *from, int *first, int len)
2764{
2765	if (!*first) {
2766		**to = ',';
2767		*to += 1;
2768	} else
2769		*first = 0;
2770	memcpy(*to, from, len);
2771	*to += len;
2772}
2773
2774static inline void take_selinux_option(char **to, char *from, int *first,
2775				       int len)
2776{
2777	int current_size = 0;
2778
2779	if (!*first) {
2780		**to = '|';
2781		*to += 1;
2782	} else
2783		*first = 0;
2784
2785	while (current_size < len) {
2786		if (*from != '"') {
2787			**to = *from;
2788			*to += 1;
2789		}
2790		from += 1;
2791		current_size += 1;
2792	}
2793}
2794
2795static int selinux_sb_copy_data(char *orig, char *copy)
2796{
2797	int fnosec, fsec, rc = 0;
2798	char *in_save, *in_curr, *in_end;
2799	char *sec_curr, *nosec_save, *nosec;
2800	int open_quote = 0;
2801
2802	in_curr = orig;
2803	sec_curr = copy;
2804
2805	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2806	if (!nosec) {
2807		rc = -ENOMEM;
2808		goto out;
2809	}
2810
2811	nosec_save = nosec;
2812	fnosec = fsec = 1;
2813	in_save = in_end = orig;
2814
2815	do {
2816		if (*in_end == '"')
2817			open_quote = !open_quote;
2818		if ((*in_end == ',' && open_quote == 0) ||
2819				*in_end == '\0') {
2820			int len = in_end - in_curr;
2821
2822			if (selinux_option(in_curr, len))
2823				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2824			else
2825				take_option(&nosec, in_curr, &fnosec, len);
2826
2827			in_curr = in_end + 1;
2828		}
2829	} while (*in_end++);
2830
2831	strcpy(in_save, nosec_save);
2832	free_page((unsigned long)nosec_save);
2833out:
2834	return rc;
2835}
2836
2837static int selinux_sb_remount(struct super_block *sb, void *data)
2838{
2839	int rc, i, *flags;
2840	struct security_mnt_opts opts;
2841	char *secdata, **mount_options;
2842	struct superblock_security_struct *sbsec = sb->s_security;
2843
2844	if (!(sbsec->flags & SE_SBINITIALIZED))
2845		return 0;
2846
2847	if (!data)
2848		return 0;
2849
2850	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2851		return 0;
2852
2853	security_init_mnt_opts(&opts);
2854	secdata = alloc_secdata();
2855	if (!secdata)
2856		return -ENOMEM;
2857	rc = selinux_sb_copy_data(data, secdata);
2858	if (rc)
2859		goto out_free_secdata;
2860
2861	rc = selinux_parse_opts_str(secdata, &opts);
2862	if (rc)
2863		goto out_free_secdata;
2864
2865	mount_options = opts.mnt_opts;
2866	flags = opts.mnt_opts_flags;
2867
2868	for (i = 0; i < opts.num_mnt_opts; i++) {
2869		u32 sid;
 
2870
2871		if (flags[i] == SBLABEL_MNT)
2872			continue;
2873		rc = security_context_str_to_sid(&selinux_state,
2874						 mount_options[i], &sid,
2875						 GFP_KERNEL);
2876		if (rc) {
2877			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2878			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2879			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2880			goto out_free_opts;
2881		}
2882		rc = -EINVAL;
2883		switch (flags[i]) {
2884		case FSCONTEXT_MNT:
2885			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2886				goto out_bad_option;
2887			break;
2888		case CONTEXT_MNT:
2889			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2890				goto out_bad_option;
2891			break;
2892		case ROOTCONTEXT_MNT: {
2893			struct inode_security_struct *root_isec;
2894			root_isec = backing_inode_security(sb->s_root);
2895
2896			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2897				goto out_bad_option;
2898			break;
2899		}
2900		case DEFCONTEXT_MNT:
2901			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2902				goto out_bad_option;
2903			break;
2904		default:
2905			goto out_free_opts;
2906		}
2907	}
2908
2909	rc = 0;
2910out_free_opts:
2911	security_free_mnt_opts(&opts);
2912out_free_secdata:
2913	free_secdata(secdata);
2914	return rc;
2915out_bad_option:
2916	printk(KERN_WARNING "SELinux: unable to change security options "
2917	       "during remount (dev %s, type=%s)\n", sb->s_id,
2918	       sb->s_type->name);
2919	goto out_free_opts;
2920}
2921
2922static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2923{
2924	const struct cred *cred = current_cred();
2925	struct common_audit_data ad;
2926	int rc;
2927
2928	rc = superblock_doinit(sb, data);
2929	if (rc)
2930		return rc;
2931
2932	/* Allow all mounts performed by the kernel */
2933	if (flags & MS_KERNMOUNT)
2934		return 0;
2935
2936	ad.type = LSM_AUDIT_DATA_DENTRY;
2937	ad.u.dentry = sb->s_root;
2938	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2939}
2940
2941static int selinux_sb_statfs(struct dentry *dentry)
2942{
2943	const struct cred *cred = current_cred();
2944	struct common_audit_data ad;
2945
2946	ad.type = LSM_AUDIT_DATA_DENTRY;
2947	ad.u.dentry = dentry->d_sb->s_root;
2948	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2949}
2950
2951static int selinux_mount(const char *dev_name,
2952			 const struct path *path,
2953			 const char *type,
2954			 unsigned long flags,
2955			 void *data)
2956{
2957	const struct cred *cred = current_cred();
2958
2959	if (flags & MS_REMOUNT)
2960		return superblock_has_perm(cred, path->dentry->d_sb,
2961					   FILESYSTEM__REMOUNT, NULL);
2962	else
2963		return path_has_perm(cred, path, FILE__MOUNTON);
2964}
2965
2966static int selinux_umount(struct vfsmount *mnt, int flags)
2967{
2968	const struct cred *cred = current_cred();
2969
2970	return superblock_has_perm(cred, mnt->mnt_sb,
2971				   FILESYSTEM__UNMOUNT, NULL);
2972}
2973
2974/* inode security operations */
2975
2976static int selinux_inode_alloc_security(struct inode *inode)
2977{
2978	return inode_alloc_security(inode);
2979}
2980
2981static void selinux_inode_free_security(struct inode *inode)
2982{
2983	inode_free_security(inode);
2984}
2985
2986static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2987					const struct qstr *name, void **ctx,
2988					u32 *ctxlen)
2989{
 
 
 
 
 
2990	u32 newsid;
2991	int rc;
2992
2993	rc = selinux_determine_inode_label(current_security(),
2994					   d_inode(dentry->d_parent), name,
2995					   inode_mode_to_security_class(mode),
2996					   &newsid);
2997	if (rc)
2998		return rc;
2999
3000	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
3001				       ctxlen);
3002}
3003
3004static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
3005					  struct qstr *name,
3006					  const struct cred *old,
3007					  struct cred *new)
3008{
3009	u32 newsid;
3010	int rc;
3011	struct task_security_struct *tsec;
3012
3013	rc = selinux_determine_inode_label(old->security,
3014					   d_inode(dentry->d_parent), name,
3015					   inode_mode_to_security_class(mode),
3016					   &newsid);
3017	if (rc)
3018		return rc;
 
 
 
 
 
 
 
 
3019
3020	tsec = new->security;
3021	tsec->create_sid = newsid;
3022	return 0;
3023}
3024
3025static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3026				       const struct qstr *qstr,
3027				       const char **name,
3028				       void **value, size_t *len)
3029{
3030	const struct task_security_struct *tsec = current_security();
 
3031	struct superblock_security_struct *sbsec;
3032	u32 newsid, clen;
3033	int rc;
3034	char *context;
3035
 
3036	sbsec = dir->i_sb->s_security;
3037
 
3038	newsid = tsec->create_sid;
3039
3040	rc = selinux_determine_inode_label(current_security(),
3041		dir, qstr,
3042		inode_mode_to_security_class(inode->i_mode),
3043		&newsid);
3044	if (rc)
3045		return rc;
 
 
 
 
 
 
 
 
 
 
3046
3047	/* Possibly defer initialization to selinux_complete_init. */
3048	if (sbsec->flags & SE_SBINITIALIZED) {
3049		struct inode_security_struct *isec = inode->i_security;
3050		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3051		isec->sid = newsid;
3052		isec->initialized = LABEL_INITIALIZED;
3053	}
3054
3055	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3056		return -EOPNOTSUPP;
3057
3058	if (name)
3059		*name = XATTR_SELINUX_SUFFIX;
3060
3061	if (value && len) {
3062		rc = security_sid_to_context_force(&selinux_state, newsid,
3063						   &context, &clen);
3064		if (rc)
3065			return rc;
3066		*value = context;
3067		*len = clen;
3068	}
3069
3070	return 0;
3071}
3072
3073static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3074{
3075	return may_create(dir, dentry, SECCLASS_FILE);
3076}
3077
3078static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3079{
3080	return may_link(dir, old_dentry, MAY_LINK);
3081}
3082
3083static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3084{
3085	return may_link(dir, dentry, MAY_UNLINK);
3086}
3087
3088static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3089{
3090	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3091}
3092
3093static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3094{
3095	return may_create(dir, dentry, SECCLASS_DIR);
3096}
3097
3098static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3099{
3100	return may_link(dir, dentry, MAY_RMDIR);
3101}
3102
3103static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3104{
3105	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3106}
3107
3108static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3109				struct inode *new_inode, struct dentry *new_dentry)
3110{
3111	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3112}
3113
3114static int selinux_inode_readlink(struct dentry *dentry)
3115{
3116	const struct cred *cred = current_cred();
3117
3118	return dentry_has_perm(cred, dentry, FILE__READ);
3119}
3120
3121static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3122				     bool rcu)
3123{
3124	const struct cred *cred = current_cred();
3125	struct common_audit_data ad;
3126	struct inode_security_struct *isec;
3127	u32 sid;
3128
3129	validate_creds(cred);
3130
3131	ad.type = LSM_AUDIT_DATA_DENTRY;
3132	ad.u.dentry = dentry;
3133	sid = cred_sid(cred);
3134	isec = inode_security_rcu(inode, rcu);
3135	if (IS_ERR(isec))
3136		return PTR_ERR(isec);
3137
3138	return avc_has_perm_flags(&selinux_state,
3139				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
3140				  rcu ? MAY_NOT_BLOCK : 0);
3141}
3142
3143static noinline int audit_inode_permission(struct inode *inode,
3144					   u32 perms, u32 audited, u32 denied,
3145					   int result,
3146					   unsigned flags)
3147{
3148	struct common_audit_data ad;
3149	struct inode_security_struct *isec = inode->i_security;
3150	int rc;
3151
3152	ad.type = LSM_AUDIT_DATA_INODE;
3153	ad.u.inode = inode;
3154
3155	rc = slow_avc_audit(&selinux_state,
3156			    current_sid(), isec->sid, isec->sclass, perms,
3157			    audited, denied, result, &ad, flags);
3158	if (rc)
3159		return rc;
3160	return 0;
3161}
3162
3163static int selinux_inode_permission(struct inode *inode, int mask)
3164{
3165	const struct cred *cred = current_cred();
3166	u32 perms;
3167	bool from_access;
3168	unsigned flags = mask & MAY_NOT_BLOCK;
3169	struct inode_security_struct *isec;
3170	u32 sid;
3171	struct av_decision avd;
3172	int rc, rc2;
3173	u32 audited, denied;
3174
3175	from_access = mask & MAY_ACCESS;
3176	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3177
3178	/* No permission to check.  Existence test. */
3179	if (!mask)
3180		return 0;
3181
3182	validate_creds(cred);
3183
3184	if (unlikely(IS_PRIVATE(inode)))
3185		return 0;
3186
3187	perms = file_mask_to_av(inode->i_mode, mask);
3188
3189	sid = cred_sid(cred);
3190	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3191	if (IS_ERR(isec))
3192		return PTR_ERR(isec);
3193
3194	rc = avc_has_perm_noaudit(&selinux_state,
3195				  sid, isec->sid, isec->sclass, perms, 0, &avd);
3196	audited = avc_audit_required(perms, &avd, rc,
3197				     from_access ? FILE__AUDIT_ACCESS : 0,
3198				     &denied);
3199	if (likely(!audited))
3200		return rc;
3201
3202	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3203	if (rc2)
3204		return rc2;
3205	return rc;
3206}
3207
3208static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3209{
3210	const struct cred *cred = current_cred();
3211	struct inode *inode = d_backing_inode(dentry);
3212	unsigned int ia_valid = iattr->ia_valid;
3213	__u32 av = FILE__WRITE;
3214
3215	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3216	if (ia_valid & ATTR_FORCE) {
3217		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3218			      ATTR_FORCE);
3219		if (!ia_valid)
3220			return 0;
3221	}
3222
3223	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3224			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3225		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3226
3227	if (selinux_policycap_openperm() &&
3228	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3229	    (ia_valid & ATTR_SIZE) &&
3230	    !(ia_valid & ATTR_FILE))
3231		av |= FILE__OPEN;
3232
3233	return dentry_has_perm(cred, dentry, av);
3234}
3235
3236static int selinux_inode_getattr(const struct path *path)
3237{
3238	return path_has_perm(current_cred(), path, FILE__GETATTR);
 
 
 
 
 
 
3239}
3240
3241static bool has_cap_mac_admin(bool audit)
3242{
3243	const struct cred *cred = current_cred();
3244	int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3245
3246	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3247		return false;
3248	if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3249		return false;
3250	return true;
 
 
 
 
 
 
 
 
 
 
3251}
3252
3253static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3254				  const void *value, size_t size, int flags)
3255{
3256	struct inode *inode = d_backing_inode(dentry);
3257	struct inode_security_struct *isec;
3258	struct superblock_security_struct *sbsec;
3259	struct common_audit_data ad;
3260	u32 newsid, sid = current_sid();
3261	int rc = 0;
3262
3263	if (strcmp(name, XATTR_NAME_SELINUX)) {
3264		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3265		if (rc)
3266			return rc;
3267
3268		/* Not an attribute we recognize, so just check the
3269		   ordinary setattr permission. */
3270		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3271	}
3272
3273	sbsec = inode->i_sb->s_security;
3274	if (!(sbsec->flags & SBLABEL_MNT))
3275		return -EOPNOTSUPP;
3276
3277	if (!inode_owner_or_capable(inode))
3278		return -EPERM;
3279
3280	ad.type = LSM_AUDIT_DATA_DENTRY;
3281	ad.u.dentry = dentry;
3282
3283	isec = backing_inode_security(dentry);
3284	rc = avc_has_perm(&selinux_state,
3285			  sid, isec->sid, isec->sclass,
3286			  FILE__RELABELFROM, &ad);
3287	if (rc)
3288		return rc;
3289
3290	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3291				     GFP_KERNEL);
3292	if (rc == -EINVAL) {
3293		if (!has_cap_mac_admin(true)) {
3294			struct audit_buffer *ab;
3295			size_t audit_size;
 
3296
3297			/* We strip a nul only if it is at the end, otherwise the
3298			 * context contains a nul and we should audit that */
3299			if (value) {
3300				const char *str = value;
3301
3302				if (str[size - 1] == '\0')
3303					audit_size = size - 1;
3304				else
3305					audit_size = size;
3306			} else {
 
3307				audit_size = 0;
3308			}
3309			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3310			audit_log_format(ab, "op=setxattr invalid_context=");
3311			audit_log_n_untrustedstring(ab, value, audit_size);
3312			audit_log_end(ab);
3313
3314			return rc;
3315		}
3316		rc = security_context_to_sid_force(&selinux_state, value,
3317						   size, &newsid);
3318	}
3319	if (rc)
3320		return rc;
3321
3322	rc = avc_has_perm(&selinux_state,
3323			  sid, newsid, isec->sclass,
3324			  FILE__RELABELTO, &ad);
3325	if (rc)
3326		return rc;
3327
3328	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3329					  sid, isec->sclass);
3330	if (rc)
3331		return rc;
3332
3333	return avc_has_perm(&selinux_state,
3334			    newsid,
3335			    sbsec->sid,
3336			    SECCLASS_FILESYSTEM,
3337			    FILESYSTEM__ASSOCIATE,
3338			    &ad);
3339}
3340
3341static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3342					const void *value, size_t size,
3343					int flags)
3344{
3345	struct inode *inode = d_backing_inode(dentry);
3346	struct inode_security_struct *isec;
3347	u32 newsid;
3348	int rc;
3349
3350	if (strcmp(name, XATTR_NAME_SELINUX)) {
3351		/* Not an attribute we recognize, so nothing to do. */
3352		return;
3353	}
3354
3355	rc = security_context_to_sid_force(&selinux_state, value, size,
3356					   &newsid);
3357	if (rc) {
3358		printk(KERN_ERR "SELinux:  unable to map context to SID"
3359		       "for (%s, %lu), rc=%d\n",
3360		       inode->i_sb->s_id, inode->i_ino, -rc);
3361		return;
3362	}
3363
3364	isec = backing_inode_security(dentry);
3365	spin_lock(&isec->lock);
3366	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3367	isec->sid = newsid;
3368	isec->initialized = LABEL_INITIALIZED;
3369	spin_unlock(&isec->lock);
3370
3371	return;
3372}
3373
3374static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3375{
3376	const struct cred *cred = current_cred();
3377
3378	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3379}
3380
3381static int selinux_inode_listxattr(struct dentry *dentry)
3382{
3383	const struct cred *cred = current_cred();
3384
3385	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3386}
3387
3388static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3389{
3390	if (strcmp(name, XATTR_NAME_SELINUX)) {
3391		int rc = cap_inode_removexattr(dentry, name);
3392		if (rc)
3393			return rc;
3394
3395		/* Not an attribute we recognize, so just check the
3396		   ordinary setattr permission. */
3397		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3398	}
3399
3400	/* No one is allowed to remove a SELinux security label.
3401	   You can change the label, but all data must be labeled. */
3402	return -EACCES;
3403}
3404
3405/*
3406 * Copy the inode security context value to the user.
3407 *
3408 * Permission check is handled by selinux_inode_getxattr hook.
3409 */
3410static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3411{
3412	u32 size;
3413	int error;
3414	char *context = NULL;
3415	struct inode_security_struct *isec;
3416
3417	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3418		return -EOPNOTSUPP;
3419
3420	/*
3421	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3422	 * value even if it is not defined by current policy; otherwise,
3423	 * use the in-core value under current policy.
3424	 * Use the non-auditing forms of the permission checks since
3425	 * getxattr may be called by unprivileged processes commonly
3426	 * and lack of permission just means that we fall back to the
3427	 * in-core context value, not a denial.
3428	 */
3429	isec = inode_security(inode);
3430	if (has_cap_mac_admin(false))
3431		error = security_sid_to_context_force(&selinux_state,
3432						      isec->sid, &context,
3433						      &size);
3434	else
3435		error = security_sid_to_context(&selinux_state, isec->sid,
3436						&context, &size);
3437	if (error)
3438		return error;
3439	error = size;
3440	if (alloc) {
3441		*buffer = context;
3442		goto out_nofree;
3443	}
3444	kfree(context);
3445out_nofree:
3446	return error;
3447}
3448
3449static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3450				     const void *value, size_t size, int flags)
3451{
3452	struct inode_security_struct *isec = inode_security_novalidate(inode);
3453	u32 newsid;
3454	int rc;
3455
3456	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3457		return -EOPNOTSUPP;
3458
3459	if (!value || !size)
3460		return -EACCES;
3461
3462	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3463				     GFP_KERNEL);
3464	if (rc)
3465		return rc;
3466
3467	spin_lock(&isec->lock);
3468	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3469	isec->sid = newsid;
3470	isec->initialized = LABEL_INITIALIZED;
3471	spin_unlock(&isec->lock);
3472	return 0;
3473}
3474
3475static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3476{
3477	const int len = sizeof(XATTR_NAME_SELINUX);
3478	if (buffer && len <= buffer_size)
3479		memcpy(buffer, XATTR_NAME_SELINUX, len);
3480	return len;
3481}
3482
3483static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3484{
3485	struct inode_security_struct *isec = inode_security_novalidate(inode);
3486	*secid = isec->sid;
3487}
3488
3489static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3490{
3491	u32 sid;
3492	struct task_security_struct *tsec;
3493	struct cred *new_creds = *new;
3494
3495	if (new_creds == NULL) {
3496		new_creds = prepare_creds();
3497		if (!new_creds)
3498			return -ENOMEM;
3499	}
3500
3501	tsec = new_creds->security;
3502	/* Get label from overlay inode and set it in create_sid */
3503	selinux_inode_getsecid(d_inode(src), &sid);
3504	tsec->create_sid = sid;
3505	*new = new_creds;
3506	return 0;
3507}
3508
3509static int selinux_inode_copy_up_xattr(const char *name)
3510{
3511	/* The copy_up hook above sets the initial context on an inode, but we
3512	 * don't then want to overwrite it by blindly copying all the lower
3513	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3514	 */
3515	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3516		return 1; /* Discard */
3517	/*
3518	 * Any other attribute apart from SELINUX is not claimed, supported
3519	 * by selinux.
3520	 */
3521	return -EOPNOTSUPP;
3522}
3523
3524/* file security operations */
3525
3526static int selinux_revalidate_file_permission(struct file *file, int mask)
3527{
3528	const struct cred *cred = current_cred();
3529	struct inode *inode = file_inode(file);
3530
3531	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3532	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3533		mask |= MAY_APPEND;
3534
3535	return file_has_perm(cred, file,
3536			     file_mask_to_av(inode->i_mode, mask));
3537}
3538
3539static int selinux_file_permission(struct file *file, int mask)
3540{
3541	struct inode *inode = file_inode(file);
3542	struct file_security_struct *fsec = file->f_security;
3543	struct inode_security_struct *isec;
3544	u32 sid = current_sid();
3545
3546	if (!mask)
3547		/* No permission to check.  Existence test. */
3548		return 0;
3549
3550	isec = inode_security(inode);
3551	if (sid == fsec->sid && fsec->isid == isec->sid &&
3552	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3553		/* No change since file_open check. */
3554		return 0;
3555
3556	return selinux_revalidate_file_permission(file, mask);
3557}
3558
3559static int selinux_file_alloc_security(struct file *file)
3560{
3561	return file_alloc_security(file);
3562}
3563
3564static void selinux_file_free_security(struct file *file)
3565{
3566	file_free_security(file);
3567}
3568
3569/*
3570 * Check whether a task has the ioctl permission and cmd
3571 * operation to an inode.
3572 */
3573static int ioctl_has_perm(const struct cred *cred, struct file *file,
3574		u32 requested, u16 cmd)
3575{
3576	struct common_audit_data ad;
3577	struct file_security_struct *fsec = file->f_security;
3578	struct inode *inode = file_inode(file);
3579	struct inode_security_struct *isec;
3580	struct lsm_ioctlop_audit ioctl;
3581	u32 ssid = cred_sid(cred);
3582	int rc;
3583	u8 driver = cmd >> 8;
3584	u8 xperm = cmd & 0xff;
3585
3586	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3587	ad.u.op = &ioctl;
3588	ad.u.op->cmd = cmd;
3589	ad.u.op->path = file->f_path;
3590
3591	if (ssid != fsec->sid) {
3592		rc = avc_has_perm(&selinux_state,
3593				  ssid, fsec->sid,
3594				SECCLASS_FD,
3595				FD__USE,
3596				&ad);
3597		if (rc)
3598			goto out;
3599	}
3600
3601	if (unlikely(IS_PRIVATE(inode)))
3602		return 0;
3603
3604	isec = inode_security(inode);
3605	rc = avc_has_extended_perms(&selinux_state,
3606				    ssid, isec->sid, isec->sclass,
3607				    requested, driver, xperm, &ad);
3608out:
3609	return rc;
3610}
3611
3612static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3613			      unsigned long arg)
3614{
3615	const struct cred *cred = current_cred();
3616	int error = 0;
3617
3618	switch (cmd) {
3619	case FIONREAD:
3620	/* fall through */
3621	case FIBMAP:
3622	/* fall through */
3623	case FIGETBSZ:
3624	/* fall through */
3625	case FS_IOC_GETFLAGS:
3626	/* fall through */
3627	case FS_IOC_GETVERSION:
3628		error = file_has_perm(cred, file, FILE__GETATTR);
3629		break;
3630
3631	case FS_IOC_SETFLAGS:
3632	/* fall through */
3633	case FS_IOC_SETVERSION:
3634		error = file_has_perm(cred, file, FILE__SETATTR);
3635		break;
3636
3637	/* sys_ioctl() checks */
3638	case FIONBIO:
3639	/* fall through */
3640	case FIOASYNC:
3641		error = file_has_perm(cred, file, 0);
3642		break;
3643
3644	case KDSKBENT:
3645	case KDSKBSENT:
3646		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3647					    SECURITY_CAP_AUDIT, true);
3648		break;
3649
3650	/* default case assumes that the command will go
3651	 * to the file's ioctl() function.
3652	 */
3653	default:
3654		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3655	}
3656	return error;
3657}
3658
3659static int default_noexec;
3660
3661static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3662{
3663	const struct cred *cred = current_cred();
3664	u32 sid = cred_sid(cred);
3665	int rc = 0;
3666
3667	if (default_noexec &&
3668	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3669				   (!shared && (prot & PROT_WRITE)))) {
3670		/*
3671		 * We are making executable an anonymous mapping or a
3672		 * private file mapping that will also be writable.
3673		 * This has an additional check.
3674		 */
3675		rc = avc_has_perm(&selinux_state,
3676				  sid, sid, SECCLASS_PROCESS,
3677				  PROCESS__EXECMEM, NULL);
3678		if (rc)
3679			goto error;
3680	}
3681
3682	if (file) {
3683		/* read access is always possible with a mapping */
3684		u32 av = FILE__READ;
3685
3686		/* write access only matters if the mapping is shared */
3687		if (shared && (prot & PROT_WRITE))
3688			av |= FILE__WRITE;
3689
3690		if (prot & PROT_EXEC)
3691			av |= FILE__EXECUTE;
3692
3693		return file_has_perm(cred, file, av);
3694	}
3695
3696error:
3697	return rc;
3698}
3699
3700static int selinux_mmap_addr(unsigned long addr)
3701{
3702	int rc = 0;
 
 
 
 
 
3703
3704	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3705		u32 sid = current_sid();
3706		rc = avc_has_perm(&selinux_state,
3707				  sid, sid, SECCLASS_MEMPROTECT,
3708				  MEMPROTECT__MMAP_ZERO, NULL);
3709	}
3710
3711	return rc;
3712}
3713
3714static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3715			     unsigned long prot, unsigned long flags)
3716{
3717	struct common_audit_data ad;
3718	int rc;
3719
3720	if (file) {
3721		ad.type = LSM_AUDIT_DATA_FILE;
3722		ad.u.file = file;
3723		rc = inode_has_perm(current_cred(), file_inode(file),
3724				    FILE__MAP, &ad);
3725		if (rc)
3726			return rc;
3727	}
3728
3729	if (selinux_state.checkreqprot)
3730		prot = reqprot;
3731
3732	return file_map_prot_check(file, prot,
3733				   (flags & MAP_TYPE) == MAP_SHARED);
3734}
3735
3736static int selinux_file_mprotect(struct vm_area_struct *vma,
3737				 unsigned long reqprot,
3738				 unsigned long prot)
3739{
3740	const struct cred *cred = current_cred();
3741	u32 sid = cred_sid(cred);
3742
3743	if (selinux_state.checkreqprot)
3744		prot = reqprot;
3745
3746	if (default_noexec &&
3747	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3748		int rc = 0;
3749		if (vma->vm_start >= vma->vm_mm->start_brk &&
3750		    vma->vm_end <= vma->vm_mm->brk) {
3751			rc = avc_has_perm(&selinux_state,
3752					  sid, sid, SECCLASS_PROCESS,
3753					  PROCESS__EXECHEAP, NULL);
3754		} else if (!vma->vm_file &&
3755			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3756			     vma->vm_end >= vma->vm_mm->start_stack) ||
3757			    vma_is_stack_for_current(vma))) {
3758			rc = avc_has_perm(&selinux_state,
3759					  sid, sid, SECCLASS_PROCESS,
3760					  PROCESS__EXECSTACK, NULL);
3761		} else if (vma->vm_file && vma->anon_vma) {
3762			/*
3763			 * We are making executable a file mapping that has
3764			 * had some COW done. Since pages might have been
3765			 * written, check ability to execute the possibly
3766			 * modified content.  This typically should only
3767			 * occur for text relocations.
3768			 */
3769			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3770		}
3771		if (rc)
3772			return rc;
3773	}
3774
3775	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3776}
3777
3778static int selinux_file_lock(struct file *file, unsigned int cmd)
3779{
3780	const struct cred *cred = current_cred();
3781
3782	return file_has_perm(cred, file, FILE__LOCK);
3783}
3784
3785static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3786			      unsigned long arg)
3787{
3788	const struct cred *cred = current_cred();
3789	int err = 0;
3790
3791	switch (cmd) {
3792	case F_SETFL:
3793		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3794			err = file_has_perm(cred, file, FILE__WRITE);
3795			break;
3796		}
3797		/* fall through */
3798	case F_SETOWN:
3799	case F_SETSIG:
3800	case F_GETFL:
3801	case F_GETOWN:
3802	case F_GETSIG:
3803	case F_GETOWNER_UIDS:
3804		/* Just check FD__USE permission */
3805		err = file_has_perm(cred, file, 0);
3806		break;
3807	case F_GETLK:
3808	case F_SETLK:
3809	case F_SETLKW:
3810	case F_OFD_GETLK:
3811	case F_OFD_SETLK:
3812	case F_OFD_SETLKW:
3813#if BITS_PER_LONG == 32
3814	case F_GETLK64:
3815	case F_SETLK64:
3816	case F_SETLKW64:
3817#endif
3818		err = file_has_perm(cred, file, FILE__LOCK);
3819		break;
3820	}
3821
3822	return err;
3823}
3824
3825static void selinux_file_set_fowner(struct file *file)
3826{
3827	struct file_security_struct *fsec;
3828
3829	fsec = file->f_security;
3830	fsec->fown_sid = current_sid();
 
 
3831}
3832
3833static int selinux_file_send_sigiotask(struct task_struct *tsk,
3834				       struct fown_struct *fown, int signum)
3835{
3836	struct file *file;
3837	u32 sid = task_sid(tsk);
3838	u32 perm;
3839	struct file_security_struct *fsec;
3840
3841	/* struct fown_struct is never outside the context of a struct file */
3842	file = container_of(fown, struct file, f_owner);
3843
3844	fsec = file->f_security;
3845
3846	if (!signum)
3847		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3848	else
3849		perm = signal_to_av(signum);
3850
3851	return avc_has_perm(&selinux_state,
3852			    fsec->fown_sid, sid,
3853			    SECCLASS_PROCESS, perm, NULL);
3854}
3855
3856static int selinux_file_receive(struct file *file)
3857{
3858	const struct cred *cred = current_cred();
3859
3860	return file_has_perm(cred, file, file_to_av(file));
3861}
3862
3863static int selinux_file_open(struct file *file, const struct cred *cred)
3864{
3865	struct file_security_struct *fsec;
3866	struct inode_security_struct *isec;
3867
3868	fsec = file->f_security;
3869	isec = inode_security(file_inode(file));
3870	/*
3871	 * Save inode label and policy sequence number
3872	 * at open-time so that selinux_file_permission
3873	 * can determine whether revalidation is necessary.
3874	 * Task label is already saved in the file security
3875	 * struct as its SID.
3876	 */
3877	fsec->isid = isec->sid;
3878	fsec->pseqno = avc_policy_seqno(&selinux_state);
3879	/*
3880	 * Since the inode label or policy seqno may have changed
3881	 * between the selinux_inode_permission check and the saving
3882	 * of state above, recheck that access is still permitted.
3883	 * Otherwise, access might never be revalidated against the
3884	 * new inode label or new policy.
3885	 * This check is not redundant - do not remove.
3886	 */
3887	return file_path_has_perm(cred, file, open_file_to_av(file));
3888}
3889
3890/* task security operations */
3891
3892static int selinux_task_alloc(struct task_struct *task,
3893			      unsigned long clone_flags)
3894{
3895	u32 sid = current_sid();
3896
3897	return avc_has_perm(&selinux_state,
3898			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3899}
3900
3901/*
3902 * allocate the SELinux part of blank credentials
3903 */
3904static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3905{
3906	struct task_security_struct *tsec;
3907
3908	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3909	if (!tsec)
3910		return -ENOMEM;
3911
3912	cred->security = tsec;
3913	return 0;
3914}
3915
3916/*
3917 * detach and free the LSM part of a set of credentials
3918 */
3919static void selinux_cred_free(struct cred *cred)
3920{
3921	struct task_security_struct *tsec = cred->security;
3922
3923	/*
3924	 * cred->security == NULL if security_cred_alloc_blank() or
3925	 * security_prepare_creds() returned an error.
3926	 */
3927	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3928	cred->security = (void *) 0x7UL;
3929	kfree(tsec);
3930}
3931
3932/*
3933 * prepare a new set of credentials for modification
3934 */
3935static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3936				gfp_t gfp)
3937{
3938	const struct task_security_struct *old_tsec;
3939	struct task_security_struct *tsec;
3940
3941	old_tsec = old->security;
3942
3943	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3944	if (!tsec)
3945		return -ENOMEM;
3946
3947	new->security = tsec;
3948	return 0;
3949}
3950
3951/*
3952 * transfer the SELinux data to a blank set of creds
3953 */
3954static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3955{
3956	const struct task_security_struct *old_tsec = old->security;
3957	struct task_security_struct *tsec = new->security;
3958
3959	*tsec = *old_tsec;
3960}
3961
3962static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3963{
3964	*secid = cred_sid(c);
3965}
3966
3967/*
3968 * set the security data for a kernel service
3969 * - all the creation contexts are set to unlabelled
3970 */
3971static int selinux_kernel_act_as(struct cred *new, u32 secid)
3972{
3973	struct task_security_struct *tsec = new->security;
3974	u32 sid = current_sid();
3975	int ret;
3976
3977	ret = avc_has_perm(&selinux_state,
3978			   sid, secid,
3979			   SECCLASS_KERNEL_SERVICE,
3980			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3981			   NULL);
3982	if (ret == 0) {
3983		tsec->sid = secid;
3984		tsec->create_sid = 0;
3985		tsec->keycreate_sid = 0;
3986		tsec->sockcreate_sid = 0;
3987	}
3988	return ret;
3989}
3990
3991/*
3992 * set the file creation context in a security record to the same as the
3993 * objective context of the specified inode
3994 */
3995static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3996{
3997	struct inode_security_struct *isec = inode_security(inode);
3998	struct task_security_struct *tsec = new->security;
3999	u32 sid = current_sid();
4000	int ret;
4001
4002	ret = avc_has_perm(&selinux_state,
4003			   sid, isec->sid,
4004			   SECCLASS_KERNEL_SERVICE,
4005			   KERNEL_SERVICE__CREATE_FILES_AS,
4006			   NULL);
4007
4008	if (ret == 0)
4009		tsec->create_sid = isec->sid;
4010	return ret;
4011}
4012
4013static int selinux_kernel_module_request(char *kmod_name)
4014{
 
4015	struct common_audit_data ad;
4016
 
 
4017	ad.type = LSM_AUDIT_DATA_KMOD;
4018	ad.u.kmod_name = kmod_name;
4019
4020	return avc_has_perm(&selinux_state,
4021			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4022			    SYSTEM__MODULE_REQUEST, &ad);
4023}
4024
4025static int selinux_kernel_module_from_file(struct file *file)
4026{
4027	struct common_audit_data ad;
4028	struct inode_security_struct *isec;
4029	struct file_security_struct *fsec;
4030	u32 sid = current_sid();
4031	int rc;
4032
4033	/* init_module */
4034	if (file == NULL)
4035		return avc_has_perm(&selinux_state,
4036				    sid, sid, SECCLASS_SYSTEM,
4037					SYSTEM__MODULE_LOAD, NULL);
4038
4039	/* finit_module */
4040
4041	ad.type = LSM_AUDIT_DATA_FILE;
4042	ad.u.file = file;
4043
4044	fsec = file->f_security;
4045	if (sid != fsec->sid) {
4046		rc = avc_has_perm(&selinux_state,
4047				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4048		if (rc)
4049			return rc;
4050	}
4051
4052	isec = inode_security(file_inode(file));
4053	return avc_has_perm(&selinux_state,
4054			    sid, isec->sid, SECCLASS_SYSTEM,
4055				SYSTEM__MODULE_LOAD, &ad);
4056}
4057
4058static int selinux_kernel_read_file(struct file *file,
4059				    enum kernel_read_file_id id)
4060{
4061	int rc = 0;
4062
4063	switch (id) {
4064	case READING_MODULE:
4065		rc = selinux_kernel_module_from_file(file);
4066		break;
4067	default:
4068		break;
4069	}
4070
4071	return rc;
4072}
4073
4074static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4075{
4076	return avc_has_perm(&selinux_state,
4077			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4078			    PROCESS__SETPGID, NULL);
4079}
4080
4081static int selinux_task_getpgid(struct task_struct *p)
4082{
4083	return avc_has_perm(&selinux_state,
4084			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4085			    PROCESS__GETPGID, NULL);
4086}
4087
4088static int selinux_task_getsid(struct task_struct *p)
4089{
4090	return avc_has_perm(&selinux_state,
4091			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4092			    PROCESS__GETSESSION, NULL);
4093}
4094
4095static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4096{
4097	*secid = task_sid(p);
4098}
4099
4100static int selinux_task_setnice(struct task_struct *p, int nice)
4101{
4102	return avc_has_perm(&selinux_state,
4103			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4104			    PROCESS__SETSCHED, NULL);
 
 
 
 
4105}
4106
4107static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4108{
4109	return avc_has_perm(&selinux_state,
4110			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4111			    PROCESS__SETSCHED, NULL);
4112}
4113
4114static int selinux_task_getioprio(struct task_struct *p)
4115{
4116	return avc_has_perm(&selinux_state,
4117			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4118			    PROCESS__GETSCHED, NULL);
4119}
4120
4121static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4122				unsigned int flags)
4123{
4124	u32 av = 0;
4125
4126	if (!flags)
4127		return 0;
4128	if (flags & LSM_PRLIMIT_WRITE)
4129		av |= PROCESS__SETRLIMIT;
4130	if (flags & LSM_PRLIMIT_READ)
4131		av |= PROCESS__GETRLIMIT;
4132	return avc_has_perm(&selinux_state,
4133			    cred_sid(cred), cred_sid(tcred),
4134			    SECCLASS_PROCESS, av, NULL);
4135}
4136
4137static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4138		struct rlimit *new_rlim)
4139{
4140	struct rlimit *old_rlim = p->signal->rlim + resource;
4141
4142	/* Control the ability to change the hard limit (whether
4143	   lowering or raising it), so that the hard limit can
4144	   later be used as a safe reset point for the soft limit
4145	   upon context transitions.  See selinux_bprm_committing_creds. */
4146	if (old_rlim->rlim_max != new_rlim->rlim_max)
4147		return avc_has_perm(&selinux_state,
4148				    current_sid(), task_sid(p),
4149				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4150
4151	return 0;
4152}
4153
4154static int selinux_task_setscheduler(struct task_struct *p)
4155{
4156	return avc_has_perm(&selinux_state,
4157			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4158			    PROCESS__SETSCHED, NULL);
 
 
 
 
4159}
4160
4161static int selinux_task_getscheduler(struct task_struct *p)
4162{
4163	return avc_has_perm(&selinux_state,
4164			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4165			    PROCESS__GETSCHED, NULL);
4166}
4167
4168static int selinux_task_movememory(struct task_struct *p)
4169{
4170	return avc_has_perm(&selinux_state,
4171			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4172			    PROCESS__SETSCHED, NULL);
4173}
4174
4175static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4176				int sig, const struct cred *cred)
4177{
4178	u32 secid;
4179	u32 perm;
 
4180
4181	if (!sig)
4182		perm = PROCESS__SIGNULL; /* null signal; existence test */
4183	else
4184		perm = signal_to_av(sig);
4185	if (!cred)
4186		secid = current_sid();
 
4187	else
4188		secid = cred_sid(cred);
4189	return avc_has_perm(&selinux_state,
4190			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4191}
4192
4193static void selinux_task_to_inode(struct task_struct *p,
4194				  struct inode *inode)
4195{
4196	struct inode_security_struct *isec = inode->i_security;
4197	u32 sid = task_sid(p);
4198
4199	spin_lock(&isec->lock);
4200	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4201	isec->sid = sid;
4202	isec->initialized = LABEL_INITIALIZED;
4203	spin_unlock(&isec->lock);
4204}
4205
4206/* Returns error only if unable to parse addresses */
4207static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4208			struct common_audit_data *ad, u8 *proto)
4209{
4210	int offset, ihlen, ret = -EINVAL;
4211	struct iphdr _iph, *ih;
4212
4213	offset = skb_network_offset(skb);
4214	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4215	if (ih == NULL)
4216		goto out;
4217
4218	ihlen = ih->ihl * 4;
4219	if (ihlen < sizeof(_iph))
4220		goto out;
4221
4222	ad->u.net->v4info.saddr = ih->saddr;
4223	ad->u.net->v4info.daddr = ih->daddr;
4224	ret = 0;
4225
4226	if (proto)
4227		*proto = ih->protocol;
4228
4229	switch (ih->protocol) {
4230	case IPPROTO_TCP: {
4231		struct tcphdr _tcph, *th;
4232
4233		if (ntohs(ih->frag_off) & IP_OFFSET)
4234			break;
4235
4236		offset += ihlen;
4237		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4238		if (th == NULL)
4239			break;
4240
4241		ad->u.net->sport = th->source;
4242		ad->u.net->dport = th->dest;
4243		break;
4244	}
4245
4246	case IPPROTO_UDP: {
4247		struct udphdr _udph, *uh;
4248
4249		if (ntohs(ih->frag_off) & IP_OFFSET)
4250			break;
4251
4252		offset += ihlen;
4253		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4254		if (uh == NULL)
4255			break;
4256
4257		ad->u.net->sport = uh->source;
4258		ad->u.net->dport = uh->dest;
4259		break;
4260	}
4261
4262	case IPPROTO_DCCP: {
4263		struct dccp_hdr _dccph, *dh;
4264
4265		if (ntohs(ih->frag_off) & IP_OFFSET)
4266			break;
4267
4268		offset += ihlen;
4269		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4270		if (dh == NULL)
4271			break;
4272
4273		ad->u.net->sport = dh->dccph_sport;
4274		ad->u.net->dport = dh->dccph_dport;
4275		break;
4276	}
4277
4278#if IS_ENABLED(CONFIG_IP_SCTP)
4279	case IPPROTO_SCTP: {
4280		struct sctphdr _sctph, *sh;
4281
4282		if (ntohs(ih->frag_off) & IP_OFFSET)
4283			break;
4284
4285		offset += ihlen;
4286		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4287		if (sh == NULL)
4288			break;
4289
4290		ad->u.net->sport = sh->source;
4291		ad->u.net->dport = sh->dest;
4292		break;
4293	}
4294#endif
4295	default:
4296		break;
4297	}
4298out:
4299	return ret;
4300}
4301
4302#if IS_ENABLED(CONFIG_IPV6)
4303
4304/* Returns error only if unable to parse addresses */
4305static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4306			struct common_audit_data *ad, u8 *proto)
4307{
4308	u8 nexthdr;
4309	int ret = -EINVAL, offset;
4310	struct ipv6hdr _ipv6h, *ip6;
4311	__be16 frag_off;
4312
4313	offset = skb_network_offset(skb);
4314	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4315	if (ip6 == NULL)
4316		goto out;
4317
4318	ad->u.net->v6info.saddr = ip6->saddr;
4319	ad->u.net->v6info.daddr = ip6->daddr;
4320	ret = 0;
4321
4322	nexthdr = ip6->nexthdr;
4323	offset += sizeof(_ipv6h);
4324	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4325	if (offset < 0)
4326		goto out;
4327
4328	if (proto)
4329		*proto = nexthdr;
4330
4331	switch (nexthdr) {
4332	case IPPROTO_TCP: {
4333		struct tcphdr _tcph, *th;
4334
4335		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4336		if (th == NULL)
4337			break;
4338
4339		ad->u.net->sport = th->source;
4340		ad->u.net->dport = th->dest;
4341		break;
4342	}
4343
4344	case IPPROTO_UDP: {
4345		struct udphdr _udph, *uh;
4346
4347		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4348		if (uh == NULL)
4349			break;
4350
4351		ad->u.net->sport = uh->source;
4352		ad->u.net->dport = uh->dest;
4353		break;
4354	}
4355
4356	case IPPROTO_DCCP: {
4357		struct dccp_hdr _dccph, *dh;
4358
4359		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4360		if (dh == NULL)
4361			break;
4362
4363		ad->u.net->sport = dh->dccph_sport;
4364		ad->u.net->dport = dh->dccph_dport;
4365		break;
4366	}
4367
4368#if IS_ENABLED(CONFIG_IP_SCTP)
4369	case IPPROTO_SCTP: {
4370		struct sctphdr _sctph, *sh;
4371
4372		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4373		if (sh == NULL)
4374			break;
4375
4376		ad->u.net->sport = sh->source;
4377		ad->u.net->dport = sh->dest;
4378		break;
4379	}
4380#endif
4381	/* includes fragments */
4382	default:
4383		break;
4384	}
4385out:
4386	return ret;
4387}
4388
4389#endif /* IPV6 */
4390
4391static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4392			     char **_addrp, int src, u8 *proto)
4393{
4394	char *addrp;
4395	int ret;
4396
4397	switch (ad->u.net->family) {
4398	case PF_INET:
4399		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4400		if (ret)
4401			goto parse_error;
4402		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4403				       &ad->u.net->v4info.daddr);
4404		goto okay;
4405
4406#if IS_ENABLED(CONFIG_IPV6)
4407	case PF_INET6:
4408		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4409		if (ret)
4410			goto parse_error;
4411		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4412				       &ad->u.net->v6info.daddr);
4413		goto okay;
4414#endif	/* IPV6 */
4415	default:
4416		addrp = NULL;
4417		goto okay;
4418	}
4419
4420parse_error:
4421	printk(KERN_WARNING
4422	       "SELinux: failure in selinux_parse_skb(),"
4423	       " unable to parse packet\n");
4424	return ret;
4425
4426okay:
4427	if (_addrp)
4428		*_addrp = addrp;
4429	return 0;
4430}
4431
4432/**
4433 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4434 * @skb: the packet
4435 * @family: protocol family
4436 * @sid: the packet's peer label SID
4437 *
4438 * Description:
4439 * Check the various different forms of network peer labeling and determine
4440 * the peer label/SID for the packet; most of the magic actually occurs in
4441 * the security server function security_net_peersid_cmp().  The function
4442 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4443 * or -EACCES if @sid is invalid due to inconsistencies with the different
4444 * peer labels.
4445 *
4446 */
4447static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4448{
4449	int err;
4450	u32 xfrm_sid;
4451	u32 nlbl_sid;
4452	u32 nlbl_type;
4453
4454	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4455	if (unlikely(err))
4456		return -EACCES;
4457	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4458	if (unlikely(err))
4459		return -EACCES;
4460
4461	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4462					   nlbl_type, xfrm_sid, sid);
4463	if (unlikely(err)) {
4464		printk(KERN_WARNING
4465		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4466		       " unable to determine packet's peer label\n");
4467		return -EACCES;
4468	}
4469
4470	return 0;
4471}
4472
4473/**
4474 * selinux_conn_sid - Determine the child socket label for a connection
4475 * @sk_sid: the parent socket's SID
4476 * @skb_sid: the packet's SID
4477 * @conn_sid: the resulting connection SID
4478 *
4479 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4480 * combined with the MLS information from @skb_sid in order to create
4481 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4482 * of @sk_sid.  Returns zero on success, negative values on failure.
4483 *
4484 */
4485static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4486{
4487	int err = 0;
4488
4489	if (skb_sid != SECSID_NULL)
4490		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4491					    conn_sid);
4492	else
4493		*conn_sid = sk_sid;
4494
4495	return err;
4496}
4497
4498/* socket security operations */
4499
4500static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4501				 u16 secclass, u32 *socksid)
4502{
4503	if (tsec->sockcreate_sid > SECSID_NULL) {
4504		*socksid = tsec->sockcreate_sid;
4505		return 0;
4506	}
4507
4508	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4509				       secclass, NULL, socksid);
4510}
4511
4512static int sock_has_perm(struct sock *sk, u32 perms)
4513{
4514	struct sk_security_struct *sksec = sk->sk_security;
4515	struct common_audit_data ad;
4516	struct lsm_network_audit net = {0,};
 
4517
4518	if (sksec->sid == SECINITSID_KERNEL)
4519		return 0;
4520
4521	ad.type = LSM_AUDIT_DATA_NET;
4522	ad.u.net = &net;
4523	ad.u.net->sk = sk;
4524
4525	return avc_has_perm(&selinux_state,
4526			    current_sid(), sksec->sid, sksec->sclass, perms,
4527			    &ad);
4528}
4529
4530static int selinux_socket_create(int family, int type,
4531				 int protocol, int kern)
4532{
4533	const struct task_security_struct *tsec = current_security();
4534	u32 newsid;
4535	u16 secclass;
4536	int rc;
4537
4538	if (kern)
4539		return 0;
4540
4541	secclass = socket_type_to_security_class(family, type, protocol);
4542	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4543	if (rc)
4544		return rc;
4545
4546	return avc_has_perm(&selinux_state,
4547			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4548}
4549
4550static int selinux_socket_post_create(struct socket *sock, int family,
4551				      int type, int protocol, int kern)
4552{
4553	const struct task_security_struct *tsec = current_security();
4554	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4555	struct sk_security_struct *sksec;
4556	u16 sclass = socket_type_to_security_class(family, type, protocol);
4557	u32 sid = SECINITSID_KERNEL;
4558	int err = 0;
4559
4560	if (!kern) {
4561		err = socket_sockcreate_sid(tsec, sclass, &sid);
 
 
 
 
4562		if (err)
4563			return err;
4564	}
4565
4566	isec->sclass = sclass;
4567	isec->sid = sid;
4568	isec->initialized = LABEL_INITIALIZED;
4569
4570	if (sock->sk) {
4571		sksec = sock->sk->sk_security;
4572		sksec->sclass = sclass;
4573		sksec->sid = sid;
4574		/* Allows detection of the first association on this socket */
4575		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4576			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4577
4578		err = selinux_netlbl_socket_post_create(sock->sk, family);
4579	}
4580
4581	return err;
4582}
4583
4584/* Range of port numbers used to automatically bind.
4585   Need to determine whether we should perform a name_bind
4586   permission check between the socket and the port number. */
4587
4588static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4589{
4590	struct sock *sk = sock->sk;
4591	struct sk_security_struct *sksec = sk->sk_security;
4592	u16 family;
4593	int err;
4594
4595	err = sock_has_perm(sk, SOCKET__BIND);
4596	if (err)
4597		goto out;
4598
4599	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4600	family = sk->sk_family;
4601	if (family == PF_INET || family == PF_INET6) {
4602		char *addrp;
 
4603		struct common_audit_data ad;
4604		struct lsm_network_audit net = {0,};
4605		struct sockaddr_in *addr4 = NULL;
4606		struct sockaddr_in6 *addr6 = NULL;
4607		u16 family_sa = address->sa_family;
4608		unsigned short snum;
4609		u32 sid, node_perm;
4610
4611		/*
4612		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4613		 * that validates multiple binding addresses. Because of this
4614		 * need to check address->sa_family as it is possible to have
4615		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4616		 */
4617		switch (family_sa) {
4618		case AF_UNSPEC:
4619		case AF_INET:
4620			if (addrlen < sizeof(struct sockaddr_in))
4621				return -EINVAL;
4622			addr4 = (struct sockaddr_in *)address;
4623			if (family_sa == AF_UNSPEC) {
4624				/* see __inet_bind(), we only want to allow
4625				 * AF_UNSPEC if the address is INADDR_ANY
4626				 */
4627				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4628					goto err_af;
4629				family_sa = AF_INET;
4630			}
4631			snum = ntohs(addr4->sin_port);
4632			addrp = (char *)&addr4->sin_addr.s_addr;
4633			break;
4634		case AF_INET6:
4635			if (addrlen < SIN6_LEN_RFC2133)
4636				return -EINVAL;
4637			addr6 = (struct sockaddr_in6 *)address;
4638			snum = ntohs(addr6->sin6_port);
4639			addrp = (char *)&addr6->sin6_addr.s6_addr;
4640			break;
4641		default:
4642			goto err_af;
4643		}
4644
4645		ad.type = LSM_AUDIT_DATA_NET;
4646		ad.u.net = &net;
4647		ad.u.net->sport = htons(snum);
4648		ad.u.net->family = family_sa;
4649
4650		if (snum) {
4651			int low, high;
4652
4653			inet_get_local_port_range(sock_net(sk), &low, &high);
4654
4655			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4656			    snum > high) {
4657				err = sel_netport_sid(sk->sk_protocol,
4658						      snum, &sid);
4659				if (err)
4660					goto out;
4661				err = avc_has_perm(&selinux_state,
4662						   sksec->sid, sid,
 
 
 
4663						   sksec->sclass,
4664						   SOCKET__NAME_BIND, &ad);
4665				if (err)
4666					goto out;
4667			}
4668		}
4669
4670		switch (sksec->sclass) {
4671		case SECCLASS_TCP_SOCKET:
4672			node_perm = TCP_SOCKET__NODE_BIND;
4673			break;
4674
4675		case SECCLASS_UDP_SOCKET:
4676			node_perm = UDP_SOCKET__NODE_BIND;
4677			break;
4678
4679		case SECCLASS_DCCP_SOCKET:
4680			node_perm = DCCP_SOCKET__NODE_BIND;
4681			break;
4682
4683		case SECCLASS_SCTP_SOCKET:
4684			node_perm = SCTP_SOCKET__NODE_BIND;
4685			break;
4686
4687		default:
4688			node_perm = RAWIP_SOCKET__NODE_BIND;
4689			break;
4690		}
4691
4692		err = sel_netnode_sid(addrp, family_sa, &sid);
4693		if (err)
4694			goto out;
4695
4696		if (family_sa == AF_INET)
 
 
 
 
 
4697			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4698		else
4699			ad.u.net->v6info.saddr = addr6->sin6_addr;
4700
4701		err = avc_has_perm(&selinux_state,
4702				   sksec->sid, sid,
4703				   sksec->sclass, node_perm, &ad);
4704		if (err)
4705			goto out;
4706	}
4707out:
4708	return err;
4709err_af:
4710	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4711	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4712		return -EINVAL;
4713	return -EAFNOSUPPORT;
4714}
4715
4716/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4717 * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4718 */
4719static int selinux_socket_connect_helper(struct socket *sock,
4720					 struct sockaddr *address, int addrlen)
4721{
4722	struct sock *sk = sock->sk;
4723	struct sk_security_struct *sksec = sk->sk_security;
4724	int err;
4725
4726	err = sock_has_perm(sk, SOCKET__CONNECT);
4727	if (err)
4728		return err;
4729
4730	/*
4731	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4732	 * for the port.
4733	 */
4734	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4735	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4736	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4737		struct common_audit_data ad;
4738		struct lsm_network_audit net = {0,};
4739		struct sockaddr_in *addr4 = NULL;
4740		struct sockaddr_in6 *addr6 = NULL;
4741		unsigned short snum;
4742		u32 sid, perm;
4743
4744		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4745		 * that validates multiple connect addresses. Because of this
4746		 * need to check address->sa_family as it is possible to have
4747		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4748		 */
4749		switch (address->sa_family) {
4750		case AF_INET:
4751			addr4 = (struct sockaddr_in *)address;
4752			if (addrlen < sizeof(struct sockaddr_in))
4753				return -EINVAL;
4754			snum = ntohs(addr4->sin_port);
4755			break;
4756		case AF_INET6:
4757			addr6 = (struct sockaddr_in6 *)address;
4758			if (addrlen < SIN6_LEN_RFC2133)
4759				return -EINVAL;
4760			snum = ntohs(addr6->sin6_port);
4761			break;
4762		default:
4763			/* Note that SCTP services expect -EINVAL, whereas
4764			 * others expect -EAFNOSUPPORT.
4765			 */
4766			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4767				return -EINVAL;
4768			else
4769				return -EAFNOSUPPORT;
4770		}
4771
4772		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4773		if (err)
4774			return err;
4775
4776		switch (sksec->sclass) {
4777		case SECCLASS_TCP_SOCKET:
4778			perm = TCP_SOCKET__NAME_CONNECT;
4779			break;
4780		case SECCLASS_DCCP_SOCKET:
4781			perm = DCCP_SOCKET__NAME_CONNECT;
4782			break;
4783		case SECCLASS_SCTP_SOCKET:
4784			perm = SCTP_SOCKET__NAME_CONNECT;
4785			break;
4786		}
4787
4788		ad.type = LSM_AUDIT_DATA_NET;
4789		ad.u.net = &net;
4790		ad.u.net->dport = htons(snum);
4791		ad.u.net->family = address->sa_family;
4792		err = avc_has_perm(&selinux_state,
4793				   sksec->sid, sid, sksec->sclass, perm, &ad);
4794		if (err)
4795			return err;
4796	}
4797
4798	return 0;
4799}
4800
4801/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4802static int selinux_socket_connect(struct socket *sock,
4803				  struct sockaddr *address, int addrlen)
4804{
4805	int err;
4806	struct sock *sk = sock->sk;
4807
4808	err = selinux_socket_connect_helper(sock, address, addrlen);
4809	if (err)
4810		return err;
4811
4812	return selinux_netlbl_socket_connect(sk, address);
 
4813}
4814
4815static int selinux_socket_listen(struct socket *sock, int backlog)
4816{
4817	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4818}
4819
4820static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4821{
4822	int err;
4823	struct inode_security_struct *isec;
4824	struct inode_security_struct *newisec;
4825	u16 sclass;
4826	u32 sid;
4827
4828	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4829	if (err)
4830		return err;
4831
4832	isec = inode_security_novalidate(SOCK_INODE(sock));
4833	spin_lock(&isec->lock);
4834	sclass = isec->sclass;
4835	sid = isec->sid;
4836	spin_unlock(&isec->lock);
4837
4838	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4839	newisec->sclass = sclass;
4840	newisec->sid = sid;
4841	newisec->initialized = LABEL_INITIALIZED;
4842
4843	return 0;
4844}
4845
4846static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4847				  int size)
4848{
4849	return sock_has_perm(sock->sk, SOCKET__WRITE);
4850}
4851
4852static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4853				  int size, int flags)
4854{
4855	return sock_has_perm(sock->sk, SOCKET__READ);
4856}
4857
4858static int selinux_socket_getsockname(struct socket *sock)
4859{
4860	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4861}
4862
4863static int selinux_socket_getpeername(struct socket *sock)
4864{
4865	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4866}
4867
4868static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4869{
4870	int err;
4871
4872	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4873	if (err)
4874		return err;
4875
4876	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4877}
4878
4879static int selinux_socket_getsockopt(struct socket *sock, int level,
4880				     int optname)
4881{
4882	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4883}
4884
4885static int selinux_socket_shutdown(struct socket *sock, int how)
4886{
4887	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4888}
4889
4890static int selinux_socket_unix_stream_connect(struct sock *sock,
4891					      struct sock *other,
4892					      struct sock *newsk)
4893{
4894	struct sk_security_struct *sksec_sock = sock->sk_security;
4895	struct sk_security_struct *sksec_other = other->sk_security;
4896	struct sk_security_struct *sksec_new = newsk->sk_security;
4897	struct common_audit_data ad;
4898	struct lsm_network_audit net = {0,};
4899	int err;
4900
4901	ad.type = LSM_AUDIT_DATA_NET;
4902	ad.u.net = &net;
4903	ad.u.net->sk = other;
4904
4905	err = avc_has_perm(&selinux_state,
4906			   sksec_sock->sid, sksec_other->sid,
4907			   sksec_other->sclass,
4908			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4909	if (err)
4910		return err;
4911
4912	/* server child socket */
4913	sksec_new->peer_sid = sksec_sock->sid;
4914	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4915				    sksec_sock->sid, &sksec_new->sid);
4916	if (err)
4917		return err;
4918
4919	/* connecting socket */
4920	sksec_sock->peer_sid = sksec_new->sid;
4921
4922	return 0;
4923}
4924
4925static int selinux_socket_unix_may_send(struct socket *sock,
4926					struct socket *other)
4927{
4928	struct sk_security_struct *ssec = sock->sk->sk_security;
4929	struct sk_security_struct *osec = other->sk->sk_security;
4930	struct common_audit_data ad;
4931	struct lsm_network_audit net = {0,};
4932
4933	ad.type = LSM_AUDIT_DATA_NET;
4934	ad.u.net = &net;
4935	ad.u.net->sk = other->sk;
4936
4937	return avc_has_perm(&selinux_state,
4938			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4939			    &ad);
4940}
4941
4942static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4943				    char *addrp, u16 family, u32 peer_sid,
4944				    struct common_audit_data *ad)
4945{
4946	int err;
4947	u32 if_sid;
4948	u32 node_sid;
4949
4950	err = sel_netif_sid(ns, ifindex, &if_sid);
4951	if (err)
4952		return err;
4953	err = avc_has_perm(&selinux_state,
4954			   peer_sid, if_sid,
4955			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4956	if (err)
4957		return err;
4958
4959	err = sel_netnode_sid(addrp, family, &node_sid);
4960	if (err)
4961		return err;
4962	return avc_has_perm(&selinux_state,
4963			    peer_sid, node_sid,
4964			    SECCLASS_NODE, NODE__RECVFROM, ad);
4965}
4966
4967static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4968				       u16 family)
4969{
4970	int err = 0;
4971	struct sk_security_struct *sksec = sk->sk_security;
4972	u32 sk_sid = sksec->sid;
4973	struct common_audit_data ad;
4974	struct lsm_network_audit net = {0,};
4975	char *addrp;
4976
4977	ad.type = LSM_AUDIT_DATA_NET;
4978	ad.u.net = &net;
4979	ad.u.net->netif = skb->skb_iif;
4980	ad.u.net->family = family;
4981	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4982	if (err)
4983		return err;
4984
4985	if (selinux_secmark_enabled()) {
4986		err = avc_has_perm(&selinux_state,
4987				   sk_sid, skb->secmark, SECCLASS_PACKET,
4988				   PACKET__RECV, &ad);
4989		if (err)
4990			return err;
4991	}
4992
4993	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4994	if (err)
4995		return err;
4996	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4997
4998	return err;
4999}
5000
5001static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5002{
5003	int err;
5004	struct sk_security_struct *sksec = sk->sk_security;
5005	u16 family = sk->sk_family;
5006	u32 sk_sid = sksec->sid;
5007	struct common_audit_data ad;
5008	struct lsm_network_audit net = {0,};
5009	char *addrp;
5010	u8 secmark_active;
5011	u8 peerlbl_active;
5012
5013	if (family != PF_INET && family != PF_INET6)
5014		return 0;
5015
5016	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5017	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5018		family = PF_INET;
5019
5020	/* If any sort of compatibility mode is enabled then handoff processing
5021	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5022	 * special handling.  We do this in an attempt to keep this function
5023	 * as fast and as clean as possible. */
5024	if (!selinux_policycap_netpeer())
5025		return selinux_sock_rcv_skb_compat(sk, skb, family);
5026
5027	secmark_active = selinux_secmark_enabled();
5028	peerlbl_active = selinux_peerlbl_enabled();
5029	if (!secmark_active && !peerlbl_active)
5030		return 0;
5031
5032	ad.type = LSM_AUDIT_DATA_NET;
5033	ad.u.net = &net;
5034	ad.u.net->netif = skb->skb_iif;
5035	ad.u.net->family = family;
5036	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5037	if (err)
5038		return err;
5039
5040	if (peerlbl_active) {
5041		u32 peer_sid;
5042
5043		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5044		if (err)
5045			return err;
5046		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5047					       addrp, family, peer_sid, &ad);
5048		if (err) {
5049			selinux_netlbl_err(skb, family, err, 0);
5050			return err;
5051		}
5052		err = avc_has_perm(&selinux_state,
5053				   sk_sid, peer_sid, SECCLASS_PEER,
5054				   PEER__RECV, &ad);
5055		if (err) {
5056			selinux_netlbl_err(skb, family, err, 0);
5057			return err;
5058		}
5059	}
5060
5061	if (secmark_active) {
5062		err = avc_has_perm(&selinux_state,
5063				   sk_sid, skb->secmark, SECCLASS_PACKET,
5064				   PACKET__RECV, &ad);
5065		if (err)
5066			return err;
5067	}
5068
5069	return err;
5070}
5071
5072static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5073					    int __user *optlen, unsigned len)
5074{
5075	int err = 0;
5076	char *scontext;
5077	u32 scontext_len;
5078	struct sk_security_struct *sksec = sock->sk->sk_security;
5079	u32 peer_sid = SECSID_NULL;
5080
5081	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5082	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5083	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5084		peer_sid = sksec->peer_sid;
5085	if (peer_sid == SECSID_NULL)
5086		return -ENOPROTOOPT;
5087
5088	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5089				      &scontext_len);
5090	if (err)
5091		return err;
5092
5093	if (scontext_len > len) {
5094		err = -ERANGE;
5095		goto out_len;
5096	}
5097
5098	if (copy_to_user(optval, scontext, scontext_len))
5099		err = -EFAULT;
5100
5101out_len:
5102	if (put_user(scontext_len, optlen))
5103		err = -EFAULT;
5104	kfree(scontext);
5105	return err;
5106}
5107
5108static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5109{
5110	u32 peer_secid = SECSID_NULL;
5111	u16 family;
5112	struct inode_security_struct *isec;
5113
5114	if (skb && skb->protocol == htons(ETH_P_IP))
5115		family = PF_INET;
5116	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5117		family = PF_INET6;
5118	else if (sock)
5119		family = sock->sk->sk_family;
5120	else
5121		goto out;
5122
5123	if (sock && family == PF_UNIX) {
5124		isec = inode_security_novalidate(SOCK_INODE(sock));
5125		peer_secid = isec->sid;
5126	} else if (skb)
5127		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5128
5129out:
5130	*secid = peer_secid;
5131	if (peer_secid == SECSID_NULL)
5132		return -EINVAL;
5133	return 0;
5134}
5135
5136static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5137{
5138	struct sk_security_struct *sksec;
5139
5140	sksec = kzalloc(sizeof(*sksec), priority);
5141	if (!sksec)
5142		return -ENOMEM;
5143
5144	sksec->peer_sid = SECINITSID_UNLABELED;
5145	sksec->sid = SECINITSID_UNLABELED;
5146	sksec->sclass = SECCLASS_SOCKET;
5147	selinux_netlbl_sk_security_reset(sksec);
5148	sk->sk_security = sksec;
5149
5150	return 0;
5151}
5152
5153static void selinux_sk_free_security(struct sock *sk)
5154{
5155	struct sk_security_struct *sksec = sk->sk_security;
5156
5157	sk->sk_security = NULL;
5158	selinux_netlbl_sk_security_free(sksec);
5159	kfree(sksec);
5160}
5161
5162static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5163{
5164	struct sk_security_struct *sksec = sk->sk_security;
5165	struct sk_security_struct *newsksec = newsk->sk_security;
5166
5167	newsksec->sid = sksec->sid;
5168	newsksec->peer_sid = sksec->peer_sid;
5169	newsksec->sclass = sksec->sclass;
5170
5171	selinux_netlbl_sk_security_reset(newsksec);
5172}
5173
5174static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5175{
5176	if (!sk)
5177		*secid = SECINITSID_ANY_SOCKET;
5178	else {
5179		struct sk_security_struct *sksec = sk->sk_security;
5180
5181		*secid = sksec->sid;
5182	}
5183}
5184
5185static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5186{
5187	struct inode_security_struct *isec =
5188		inode_security_novalidate(SOCK_INODE(parent));
5189	struct sk_security_struct *sksec = sk->sk_security;
5190
5191	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5192	    sk->sk_family == PF_UNIX)
5193		isec->sid = sksec->sid;
5194	sksec->sclass = isec->sclass;
5195}
5196
5197/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5198 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5199 * already present).
5200 */
5201static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5202				      struct sk_buff *skb)
5203{
5204	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5205	struct common_audit_data ad;
5206	struct lsm_network_audit net = {0,};
5207	u8 peerlbl_active;
5208	u32 peer_sid = SECINITSID_UNLABELED;
5209	u32 conn_sid;
5210	int err = 0;
5211
5212	if (!selinux_policycap_extsockclass())
5213		return 0;
5214
5215	peerlbl_active = selinux_peerlbl_enabled();
5216
5217	if (peerlbl_active) {
5218		/* This will return peer_sid = SECSID_NULL if there are
5219		 * no peer labels, see security_net_peersid_resolve().
5220		 */
5221		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5222					      &peer_sid);
5223		if (err)
5224			return err;
5225
5226		if (peer_sid == SECSID_NULL)
5227			peer_sid = SECINITSID_UNLABELED;
5228	}
5229
5230	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5231		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5232
5233		/* Here as first association on socket. As the peer SID
5234		 * was allowed by peer recv (and the netif/node checks),
5235		 * then it is approved by policy and used as the primary
5236		 * peer SID for getpeercon(3).
5237		 */
5238		sksec->peer_sid = peer_sid;
5239	} else if  (sksec->peer_sid != peer_sid) {
5240		/* Other association peer SIDs are checked to enforce
5241		 * consistency among the peer SIDs.
5242		 */
5243		ad.type = LSM_AUDIT_DATA_NET;
5244		ad.u.net = &net;
5245		ad.u.net->sk = ep->base.sk;
5246		err = avc_has_perm(&selinux_state,
5247				   sksec->peer_sid, peer_sid, sksec->sclass,
5248				   SCTP_SOCKET__ASSOCIATION, &ad);
5249		if (err)
5250			return err;
5251	}
5252
5253	/* Compute the MLS component for the connection and store
5254	 * the information in ep. This will be used by SCTP TCP type
5255	 * sockets and peeled off connections as they cause a new
5256	 * socket to be generated. selinux_sctp_sk_clone() will then
5257	 * plug this into the new socket.
5258	 */
5259	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5260	if (err)
5261		return err;
5262
5263	ep->secid = conn_sid;
5264	ep->peer_secid = peer_sid;
5265
5266	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5267	return selinux_netlbl_sctp_assoc_request(ep, skb);
5268}
5269
5270/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5271 * based on their @optname.
5272 */
5273static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5274				     struct sockaddr *address,
5275				     int addrlen)
5276{
5277	int len, err = 0, walk_size = 0;
5278	void *addr_buf;
5279	struct sockaddr *addr;
5280	struct socket *sock;
5281
5282	if (!selinux_policycap_extsockclass())
5283		return 0;
5284
5285	/* Process one or more addresses that may be IPv4 or IPv6 */
5286	sock = sk->sk_socket;
5287	addr_buf = address;
5288
5289	while (walk_size < addrlen) {
5290		addr = addr_buf;
5291		switch (addr->sa_family) {
5292		case AF_UNSPEC:
5293		case AF_INET:
5294			len = sizeof(struct sockaddr_in);
5295			break;
5296		case AF_INET6:
5297			len = sizeof(struct sockaddr_in6);
5298			break;
5299		default:
5300			return -EINVAL;
5301		}
5302
5303		err = -EINVAL;
5304		switch (optname) {
5305		/* Bind checks */
5306		case SCTP_PRIMARY_ADDR:
5307		case SCTP_SET_PEER_PRIMARY_ADDR:
5308		case SCTP_SOCKOPT_BINDX_ADD:
5309			err = selinux_socket_bind(sock, addr, len);
5310			break;
5311		/* Connect checks */
5312		case SCTP_SOCKOPT_CONNECTX:
5313		case SCTP_PARAM_SET_PRIMARY:
5314		case SCTP_PARAM_ADD_IP:
5315		case SCTP_SENDMSG_CONNECT:
5316			err = selinux_socket_connect_helper(sock, addr, len);
5317			if (err)
5318				return err;
5319
5320			/* As selinux_sctp_bind_connect() is called by the
5321			 * SCTP protocol layer, the socket is already locked,
5322			 * therefore selinux_netlbl_socket_connect_locked() is
5323			 * is called here. The situations handled are:
5324			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5325			 * whenever a new IP address is added or when a new
5326			 * primary address is selected.
5327			 * Note that an SCTP connect(2) call happens before
5328			 * the SCTP protocol layer and is handled via
5329			 * selinux_socket_connect().
5330			 */
5331			err = selinux_netlbl_socket_connect_locked(sk, addr);
5332			break;
5333		}
5334
5335		if (err)
5336			return err;
5337
5338		addr_buf += len;
5339		walk_size += len;
5340	}
5341
5342	return 0;
5343}
5344
5345/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5346static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5347				  struct sock *newsk)
5348{
5349	struct sk_security_struct *sksec = sk->sk_security;
5350	struct sk_security_struct *newsksec = newsk->sk_security;
5351
5352	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5353	 * the non-sctp clone version.
5354	 */
5355	if (!selinux_policycap_extsockclass())
5356		return selinux_sk_clone_security(sk, newsk);
5357
5358	newsksec->sid = ep->secid;
5359	newsksec->peer_sid = ep->peer_secid;
5360	newsksec->sclass = sksec->sclass;
5361	selinux_netlbl_sctp_sk_clone(sk, newsk);
5362}
5363
5364static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5365				     struct request_sock *req)
5366{
5367	struct sk_security_struct *sksec = sk->sk_security;
5368	int err;
5369	u16 family = req->rsk_ops->family;
5370	u32 connsid;
5371	u32 peersid;
5372
5373	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5374	if (err)
5375		return err;
5376	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5377	if (err)
5378		return err;
5379	req->secid = connsid;
5380	req->peer_secid = peersid;
5381
5382	return selinux_netlbl_inet_conn_request(req, family);
5383}
5384
5385static void selinux_inet_csk_clone(struct sock *newsk,
5386				   const struct request_sock *req)
5387{
5388	struct sk_security_struct *newsksec = newsk->sk_security;
5389
5390	newsksec->sid = req->secid;
5391	newsksec->peer_sid = req->peer_secid;
5392	/* NOTE: Ideally, we should also get the isec->sid for the
5393	   new socket in sync, but we don't have the isec available yet.
5394	   So we will wait until sock_graft to do it, by which
5395	   time it will have been created and available. */
5396
5397	/* We don't need to take any sort of lock here as we are the only
5398	 * thread with access to newsksec */
5399	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5400}
5401
5402static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5403{
5404	u16 family = sk->sk_family;
5405	struct sk_security_struct *sksec = sk->sk_security;
5406
5407	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5408	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5409		family = PF_INET;
5410
5411	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5412}
5413
 
 
 
 
 
5414static int selinux_secmark_relabel_packet(u32 sid)
5415{
5416	const struct task_security_struct *__tsec;
5417	u32 tsid;
5418
5419	__tsec = current_security();
5420	tsid = __tsec->sid;
5421
5422	return avc_has_perm(&selinux_state,
5423			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5424			    NULL);
5425}
5426
5427static void selinux_secmark_refcount_inc(void)
5428{
5429	atomic_inc(&selinux_secmark_refcount);
5430}
5431
5432static void selinux_secmark_refcount_dec(void)
5433{
5434	atomic_dec(&selinux_secmark_refcount);
5435}
5436
5437static void selinux_req_classify_flow(const struct request_sock *req,
5438				      struct flowi *fl)
5439{
5440	fl->flowi_secid = req->secid;
5441}
5442
5443static int selinux_tun_dev_alloc_security(void **security)
5444{
5445	struct tun_security_struct *tunsec;
5446
5447	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5448	if (!tunsec)
5449		return -ENOMEM;
5450	tunsec->sid = current_sid();
5451
5452	*security = tunsec;
5453	return 0;
5454}
5455
5456static void selinux_tun_dev_free_security(void *security)
5457{
5458	kfree(security);
5459}
5460
5461static int selinux_tun_dev_create(void)
5462{
5463	u32 sid = current_sid();
5464
5465	/* we aren't taking into account the "sockcreate" SID since the socket
5466	 * that is being created here is not a socket in the traditional sense,
5467	 * instead it is a private sock, accessible only to the kernel, and
5468	 * representing a wide range of network traffic spanning multiple
5469	 * connections unlike traditional sockets - check the TUN driver to
5470	 * get a better understanding of why this socket is special */
5471
5472	return avc_has_perm(&selinux_state,
5473			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5474			    NULL);
5475}
5476
5477static int selinux_tun_dev_attach_queue(void *security)
5478{
5479	struct tun_security_struct *tunsec = security;
5480
5481	return avc_has_perm(&selinux_state,
5482			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5483			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5484}
5485
5486static int selinux_tun_dev_attach(struct sock *sk, void *security)
5487{
5488	struct tun_security_struct *tunsec = security;
5489	struct sk_security_struct *sksec = sk->sk_security;
5490
5491	/* we don't currently perform any NetLabel based labeling here and it
5492	 * isn't clear that we would want to do so anyway; while we could apply
5493	 * labeling without the support of the TUN user the resulting labeled
5494	 * traffic from the other end of the connection would almost certainly
5495	 * cause confusion to the TUN user that had no idea network labeling
5496	 * protocols were being used */
5497
5498	sksec->sid = tunsec->sid;
5499	sksec->sclass = SECCLASS_TUN_SOCKET;
5500
5501	return 0;
5502}
5503
5504static int selinux_tun_dev_open(void *security)
5505{
5506	struct tun_security_struct *tunsec = security;
5507	u32 sid = current_sid();
5508	int err;
5509
5510	err = avc_has_perm(&selinux_state,
5511			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5512			   TUN_SOCKET__RELABELFROM, NULL);
5513	if (err)
5514		return err;
5515	err = avc_has_perm(&selinux_state,
5516			   sid, sid, SECCLASS_TUN_SOCKET,
5517			   TUN_SOCKET__RELABELTO, NULL);
5518	if (err)
5519		return err;
5520	tunsec->sid = sid;
5521
5522	return 0;
5523}
5524
5525static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5526{
5527	int err = 0;
5528	u32 perm;
5529	struct nlmsghdr *nlh;
5530	struct sk_security_struct *sksec = sk->sk_security;
5531
5532	if (skb->len < NLMSG_HDRLEN) {
5533		err = -EINVAL;
5534		goto out;
5535	}
5536	nlh = nlmsg_hdr(skb);
5537
5538	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5539	if (err) {
5540		if (err == -EINVAL) {
5541			pr_warn_ratelimited("SELinux: unrecognized netlink"
5542			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5543			       " pig=%d comm=%s\n",
5544			       sk->sk_protocol, nlh->nlmsg_type,
5545			       secclass_map[sksec->sclass - 1].name,
5546			       task_pid_nr(current), current->comm);
5547			if (!enforcing_enabled(&selinux_state) ||
5548			    security_get_allow_unknown(&selinux_state))
5549				err = 0;
5550		}
5551
5552		/* Ignore */
5553		if (err == -ENOENT)
5554			err = 0;
5555		goto out;
5556	}
5557
5558	err = sock_has_perm(sk, perm);
5559out:
5560	return err;
5561}
5562
5563#ifdef CONFIG_NETFILTER
5564
5565static unsigned int selinux_ip_forward(struct sk_buff *skb,
5566				       const struct net_device *indev,
5567				       u16 family)
5568{
5569	int err;
5570	char *addrp;
5571	u32 peer_sid;
5572	struct common_audit_data ad;
5573	struct lsm_network_audit net = {0,};
5574	u8 secmark_active;
5575	u8 netlbl_active;
5576	u8 peerlbl_active;
5577
5578	if (!selinux_policycap_netpeer())
5579		return NF_ACCEPT;
5580
5581	secmark_active = selinux_secmark_enabled();
5582	netlbl_active = netlbl_enabled();
5583	peerlbl_active = selinux_peerlbl_enabled();
5584	if (!secmark_active && !peerlbl_active)
5585		return NF_ACCEPT;
5586
5587	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5588		return NF_DROP;
5589
5590	ad.type = LSM_AUDIT_DATA_NET;
5591	ad.u.net = &net;
5592	ad.u.net->netif = indev->ifindex;
5593	ad.u.net->family = family;
5594	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5595		return NF_DROP;
5596
5597	if (peerlbl_active) {
5598		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5599					       addrp, family, peer_sid, &ad);
5600		if (err) {
5601			selinux_netlbl_err(skb, family, err, 1);
5602			return NF_DROP;
5603		}
5604	}
5605
5606	if (secmark_active)
5607		if (avc_has_perm(&selinux_state,
5608				 peer_sid, skb->secmark,
5609				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5610			return NF_DROP;
5611
5612	if (netlbl_active)
5613		/* we do this in the FORWARD path and not the POST_ROUTING
5614		 * path because we want to make sure we apply the necessary
5615		 * labeling before IPsec is applied so we can leverage AH
5616		 * protection */
5617		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5618			return NF_DROP;
5619
5620	return NF_ACCEPT;
5621}
5622
5623static unsigned int selinux_ipv4_forward(void *priv,
5624					 struct sk_buff *skb,
5625					 const struct nf_hook_state *state)
 
 
5626{
5627	return selinux_ip_forward(skb, state->in, PF_INET);
5628}
5629
5630#if IS_ENABLED(CONFIG_IPV6)
5631static unsigned int selinux_ipv6_forward(void *priv,
5632					 struct sk_buff *skb,
5633					 const struct nf_hook_state *state)
 
 
5634{
5635	return selinux_ip_forward(skb, state->in, PF_INET6);
5636}
5637#endif	/* IPV6 */
5638
5639static unsigned int selinux_ip_output(struct sk_buff *skb,
5640				      u16 family)
5641{
5642	struct sock *sk;
5643	u32 sid;
5644
5645	if (!netlbl_enabled())
5646		return NF_ACCEPT;
5647
5648	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5649	 * because we want to make sure we apply the necessary labeling
5650	 * before IPsec is applied so we can leverage AH protection */
5651	sk = skb->sk;
5652	if (sk) {
5653		struct sk_security_struct *sksec;
5654
5655		if (sk_listener(sk))
5656			/* if the socket is the listening state then this
5657			 * packet is a SYN-ACK packet which means it needs to
5658			 * be labeled based on the connection/request_sock and
5659			 * not the parent socket.  unfortunately, we can't
5660			 * lookup the request_sock yet as it isn't queued on
5661			 * the parent socket until after the SYN-ACK is sent.
5662			 * the "solution" is to simply pass the packet as-is
5663			 * as any IP option based labeling should be copied
5664			 * from the initial connection request (in the IP
5665			 * layer).  it is far from ideal, but until we get a
5666			 * security label in the packet itself this is the
5667			 * best we can do. */
5668			return NF_ACCEPT;
5669
5670		/* standard practice, label using the parent socket */
5671		sksec = sk->sk_security;
5672		sid = sksec->sid;
5673	} else
5674		sid = SECINITSID_KERNEL;
5675	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5676		return NF_DROP;
5677
5678	return NF_ACCEPT;
5679}
5680
5681static unsigned int selinux_ipv4_output(void *priv,
5682					struct sk_buff *skb,
5683					const struct nf_hook_state *state)
 
 
5684{
5685	return selinux_ip_output(skb, PF_INET);
5686}
5687
5688#if IS_ENABLED(CONFIG_IPV6)
5689static unsigned int selinux_ipv6_output(void *priv,
5690					struct sk_buff *skb,
5691					const struct nf_hook_state *state)
5692{
5693	return selinux_ip_output(skb, PF_INET6);
5694}
5695#endif	/* IPV6 */
5696
5697static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5698						int ifindex,
5699						u16 family)
5700{
5701	struct sock *sk = skb_to_full_sk(skb);
5702	struct sk_security_struct *sksec;
5703	struct common_audit_data ad;
5704	struct lsm_network_audit net = {0,};
5705	char *addrp;
5706	u8 proto;
5707
5708	if (sk == NULL)
5709		return NF_ACCEPT;
5710	sksec = sk->sk_security;
5711
5712	ad.type = LSM_AUDIT_DATA_NET;
5713	ad.u.net = &net;
5714	ad.u.net->netif = ifindex;
5715	ad.u.net->family = family;
5716	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5717		return NF_DROP;
5718
5719	if (selinux_secmark_enabled())
5720		if (avc_has_perm(&selinux_state,
5721				 sksec->sid, skb->secmark,
5722				 SECCLASS_PACKET, PACKET__SEND, &ad))
5723			return NF_DROP_ERR(-ECONNREFUSED);
5724
5725	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5726		return NF_DROP_ERR(-ECONNREFUSED);
5727
5728	return NF_ACCEPT;
5729}
5730
5731static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5732					 const struct net_device *outdev,
5733					 u16 family)
5734{
5735	u32 secmark_perm;
5736	u32 peer_sid;
5737	int ifindex = outdev->ifindex;
5738	struct sock *sk;
5739	struct common_audit_data ad;
5740	struct lsm_network_audit net = {0,};
5741	char *addrp;
5742	u8 secmark_active;
5743	u8 peerlbl_active;
5744
5745	/* If any sort of compatibility mode is enabled then handoff processing
5746	 * to the selinux_ip_postroute_compat() function to deal with the
5747	 * special handling.  We do this in an attempt to keep this function
5748	 * as fast and as clean as possible. */
5749	if (!selinux_policycap_netpeer())
5750		return selinux_ip_postroute_compat(skb, ifindex, family);
5751
5752	secmark_active = selinux_secmark_enabled();
5753	peerlbl_active = selinux_peerlbl_enabled();
5754	if (!secmark_active && !peerlbl_active)
5755		return NF_ACCEPT;
5756
5757	sk = skb_to_full_sk(skb);
5758
5759#ifdef CONFIG_XFRM
5760	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5761	 * packet transformation so allow the packet to pass without any checks
5762	 * since we'll have another chance to perform access control checks
5763	 * when the packet is on it's final way out.
5764	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5765	 *       is NULL, in this case go ahead and apply access control.
5766	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5767	 *       TCP listening state we cannot wait until the XFRM processing
5768	 *       is done as we will miss out on the SA label if we do;
5769	 *       unfortunately, this means more work, but it is only once per
5770	 *       connection. */
5771	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5772	    !(sk && sk_listener(sk)))
5773		return NF_ACCEPT;
5774#endif
5775
5776	if (sk == NULL) {
5777		/* Without an associated socket the packet is either coming
5778		 * from the kernel or it is being forwarded; check the packet
5779		 * to determine which and if the packet is being forwarded
5780		 * query the packet directly to determine the security label. */
5781		if (skb->skb_iif) {
5782			secmark_perm = PACKET__FORWARD_OUT;
5783			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5784				return NF_DROP;
5785		} else {
5786			secmark_perm = PACKET__SEND;
5787			peer_sid = SECINITSID_KERNEL;
5788		}
5789	} else if (sk_listener(sk)) {
5790		/* Locally generated packet but the associated socket is in the
5791		 * listening state which means this is a SYN-ACK packet.  In
5792		 * this particular case the correct security label is assigned
5793		 * to the connection/request_sock but unfortunately we can't
5794		 * query the request_sock as it isn't queued on the parent
5795		 * socket until after the SYN-ACK packet is sent; the only
5796		 * viable choice is to regenerate the label like we do in
5797		 * selinux_inet_conn_request().  See also selinux_ip_output()
5798		 * for similar problems. */
5799		u32 skb_sid;
5800		struct sk_security_struct *sksec;
5801
5802		sksec = sk->sk_security;
5803		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5804			return NF_DROP;
5805		/* At this point, if the returned skb peerlbl is SECSID_NULL
5806		 * and the packet has been through at least one XFRM
5807		 * transformation then we must be dealing with the "final"
5808		 * form of labeled IPsec packet; since we've already applied
5809		 * all of our access controls on this packet we can safely
5810		 * pass the packet. */
5811		if (skb_sid == SECSID_NULL) {
5812			switch (family) {
5813			case PF_INET:
5814				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5815					return NF_ACCEPT;
5816				break;
5817			case PF_INET6:
5818				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5819					return NF_ACCEPT;
5820				break;
5821			default:
5822				return NF_DROP_ERR(-ECONNREFUSED);
5823			}
5824		}
5825		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5826			return NF_DROP;
5827		secmark_perm = PACKET__SEND;
5828	} else {
5829		/* Locally generated packet, fetch the security label from the
5830		 * associated socket. */
5831		struct sk_security_struct *sksec = sk->sk_security;
5832		peer_sid = sksec->sid;
5833		secmark_perm = PACKET__SEND;
5834	}
5835
5836	ad.type = LSM_AUDIT_DATA_NET;
5837	ad.u.net = &net;
5838	ad.u.net->netif = ifindex;
5839	ad.u.net->family = family;
5840	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5841		return NF_DROP;
5842
5843	if (secmark_active)
5844		if (avc_has_perm(&selinux_state,
5845				 peer_sid, skb->secmark,
5846				 SECCLASS_PACKET, secmark_perm, &ad))
5847			return NF_DROP_ERR(-ECONNREFUSED);
5848
5849	if (peerlbl_active) {
5850		u32 if_sid;
5851		u32 node_sid;
5852
5853		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5854			return NF_DROP;
5855		if (avc_has_perm(&selinux_state,
5856				 peer_sid, if_sid,
5857				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5858			return NF_DROP_ERR(-ECONNREFUSED);
5859
5860		if (sel_netnode_sid(addrp, family, &node_sid))
5861			return NF_DROP;
5862		if (avc_has_perm(&selinux_state,
5863				 peer_sid, node_sid,
5864				 SECCLASS_NODE, NODE__SENDTO, &ad))
5865			return NF_DROP_ERR(-ECONNREFUSED);
5866	}
5867
5868	return NF_ACCEPT;
5869}
5870
5871static unsigned int selinux_ipv4_postroute(void *priv,
5872					   struct sk_buff *skb,
5873					   const struct nf_hook_state *state)
 
 
5874{
5875	return selinux_ip_postroute(skb, state->out, PF_INET);
5876}
5877
5878#if IS_ENABLED(CONFIG_IPV6)
5879static unsigned int selinux_ipv6_postroute(void *priv,
5880					   struct sk_buff *skb,
5881					   const struct nf_hook_state *state)
 
 
5882{
5883	return selinux_ip_postroute(skb, state->out, PF_INET6);
5884}
5885#endif	/* IPV6 */
5886
5887#endif	/* CONFIG_NETFILTER */
5888
5889static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5890{
 
 
 
 
 
 
5891	return selinux_nlmsg_perm(sk, skb);
5892}
5893
5894static int ipc_alloc_security(struct kern_ipc_perm *perm,
 
5895			      u16 sclass)
5896{
5897	struct ipc_security_struct *isec;
 
5898
5899	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5900	if (!isec)
5901		return -ENOMEM;
5902
 
5903	isec->sclass = sclass;
5904	isec->sid = current_sid();
5905	perm->security = isec;
5906
5907	return 0;
5908}
5909
5910static void ipc_free_security(struct kern_ipc_perm *perm)
5911{
5912	struct ipc_security_struct *isec = perm->security;
5913	perm->security = NULL;
5914	kfree(isec);
5915}
5916
5917static int msg_msg_alloc_security(struct msg_msg *msg)
5918{
5919	struct msg_security_struct *msec;
5920
5921	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5922	if (!msec)
5923		return -ENOMEM;
5924
5925	msec->sid = SECINITSID_UNLABELED;
5926	msg->security = msec;
5927
5928	return 0;
5929}
5930
5931static void msg_msg_free_security(struct msg_msg *msg)
5932{
5933	struct msg_security_struct *msec = msg->security;
5934
5935	msg->security = NULL;
5936	kfree(msec);
5937}
5938
5939static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5940			u32 perms)
5941{
5942	struct ipc_security_struct *isec;
5943	struct common_audit_data ad;
5944	u32 sid = current_sid();
5945
5946	isec = ipc_perms->security;
5947
5948	ad.type = LSM_AUDIT_DATA_IPC;
5949	ad.u.ipc_id = ipc_perms->key;
5950
5951	return avc_has_perm(&selinux_state,
5952			    sid, isec->sid, isec->sclass, perms, &ad);
5953}
5954
5955static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5956{
5957	return msg_msg_alloc_security(msg);
5958}
5959
5960static void selinux_msg_msg_free_security(struct msg_msg *msg)
5961{
5962	msg_msg_free_security(msg);
5963}
5964
5965/* message queue security operations */
5966static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5967{
5968	struct ipc_security_struct *isec;
5969	struct common_audit_data ad;
5970	u32 sid = current_sid();
5971	int rc;
5972
5973	rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5974	if (rc)
5975		return rc;
5976
5977	isec = msq->security;
5978
5979	ad.type = LSM_AUDIT_DATA_IPC;
5980	ad.u.ipc_id = msq->key;
5981
5982	rc = avc_has_perm(&selinux_state,
5983			  sid, isec->sid, SECCLASS_MSGQ,
5984			  MSGQ__CREATE, &ad);
5985	if (rc) {
5986		ipc_free_security(msq);
5987		return rc;
5988	}
5989	return 0;
5990}
5991
5992static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5993{
5994	ipc_free_security(msq);
5995}
5996
5997static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5998{
5999	struct ipc_security_struct *isec;
6000	struct common_audit_data ad;
6001	u32 sid = current_sid();
6002
6003	isec = msq->security;
6004
6005	ad.type = LSM_AUDIT_DATA_IPC;
6006	ad.u.ipc_id = msq->key;
6007
6008	return avc_has_perm(&selinux_state,
6009			    sid, isec->sid, SECCLASS_MSGQ,
6010			    MSGQ__ASSOCIATE, &ad);
6011}
6012
6013static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6014{
6015	int err;
6016	int perms;
6017
6018	switch (cmd) {
6019	case IPC_INFO:
6020	case MSG_INFO:
6021		/* No specific object, just general system-wide information. */
6022		return avc_has_perm(&selinux_state,
6023				    current_sid(), SECINITSID_KERNEL,
6024				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6025	case IPC_STAT:
6026	case MSG_STAT:
6027	case MSG_STAT_ANY:
6028		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6029		break;
6030	case IPC_SET:
6031		perms = MSGQ__SETATTR;
6032		break;
6033	case IPC_RMID:
6034		perms = MSGQ__DESTROY;
6035		break;
6036	default:
6037		return 0;
6038	}
6039
6040	err = ipc_has_perm(msq, perms);
6041	return err;
6042}
6043
6044static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6045{
6046	struct ipc_security_struct *isec;
6047	struct msg_security_struct *msec;
6048	struct common_audit_data ad;
6049	u32 sid = current_sid();
6050	int rc;
6051
6052	isec = msq->security;
6053	msec = msg->security;
6054
6055	/*
6056	 * First time through, need to assign label to the message
6057	 */
6058	if (msec->sid == SECINITSID_UNLABELED) {
6059		/*
6060		 * Compute new sid based on current process and
6061		 * message queue this message will be stored in
6062		 */
6063		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6064					     SECCLASS_MSG, NULL, &msec->sid);
6065		if (rc)
6066			return rc;
6067	}
6068
6069	ad.type = LSM_AUDIT_DATA_IPC;
6070	ad.u.ipc_id = msq->key;
6071
6072	/* Can this process write to the queue? */
6073	rc = avc_has_perm(&selinux_state,
6074			  sid, isec->sid, SECCLASS_MSGQ,
6075			  MSGQ__WRITE, &ad);
6076	if (!rc)
6077		/* Can this process send the message */
6078		rc = avc_has_perm(&selinux_state,
6079				  sid, msec->sid, SECCLASS_MSG,
6080				  MSG__SEND, &ad);
6081	if (!rc)
6082		/* Can the message be put in the queue? */
6083		rc = avc_has_perm(&selinux_state,
6084				  msec->sid, isec->sid, SECCLASS_MSGQ,
6085				  MSGQ__ENQUEUE, &ad);
6086
6087	return rc;
6088}
6089
6090static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6091				    struct task_struct *target,
6092				    long type, int mode)
6093{
6094	struct ipc_security_struct *isec;
6095	struct msg_security_struct *msec;
6096	struct common_audit_data ad;
6097	u32 sid = task_sid(target);
6098	int rc;
6099
6100	isec = msq->security;
6101	msec = msg->security;
6102
6103	ad.type = LSM_AUDIT_DATA_IPC;
6104	ad.u.ipc_id = msq->key;
6105
6106	rc = avc_has_perm(&selinux_state,
6107			  sid, isec->sid,
6108			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6109	if (!rc)
6110		rc = avc_has_perm(&selinux_state,
6111				  sid, msec->sid,
6112				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6113	return rc;
6114}
6115
6116/* Shared Memory security operations */
6117static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6118{
6119	struct ipc_security_struct *isec;
6120	struct common_audit_data ad;
6121	u32 sid = current_sid();
6122	int rc;
6123
6124	rc = ipc_alloc_security(shp, SECCLASS_SHM);
6125	if (rc)
6126		return rc;
6127
6128	isec = shp->security;
6129
6130	ad.type = LSM_AUDIT_DATA_IPC;
6131	ad.u.ipc_id = shp->key;
6132
6133	rc = avc_has_perm(&selinux_state,
6134			  sid, isec->sid, SECCLASS_SHM,
6135			  SHM__CREATE, &ad);
6136	if (rc) {
6137		ipc_free_security(shp);
6138		return rc;
6139	}
6140	return 0;
6141}
6142
6143static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6144{
6145	ipc_free_security(shp);
6146}
6147
6148static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6149{
6150	struct ipc_security_struct *isec;
6151	struct common_audit_data ad;
6152	u32 sid = current_sid();
6153
6154	isec = shp->security;
6155
6156	ad.type = LSM_AUDIT_DATA_IPC;
6157	ad.u.ipc_id = shp->key;
6158
6159	return avc_has_perm(&selinux_state,
6160			    sid, isec->sid, SECCLASS_SHM,
6161			    SHM__ASSOCIATE, &ad);
6162}
6163
6164/* Note, at this point, shp is locked down */
6165static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6166{
6167	int perms;
6168	int err;
6169
6170	switch (cmd) {
6171	case IPC_INFO:
6172	case SHM_INFO:
6173		/* No specific object, just general system-wide information. */
6174		return avc_has_perm(&selinux_state,
6175				    current_sid(), SECINITSID_KERNEL,
6176				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6177	case IPC_STAT:
6178	case SHM_STAT:
6179	case SHM_STAT_ANY:
6180		perms = SHM__GETATTR | SHM__ASSOCIATE;
6181		break;
6182	case IPC_SET:
6183		perms = SHM__SETATTR;
6184		break;
6185	case SHM_LOCK:
6186	case SHM_UNLOCK:
6187		perms = SHM__LOCK;
6188		break;
6189	case IPC_RMID:
6190		perms = SHM__DESTROY;
6191		break;
6192	default:
6193		return 0;
6194	}
6195
6196	err = ipc_has_perm(shp, perms);
6197	return err;
6198}
6199
6200static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6201			     char __user *shmaddr, int shmflg)
6202{
6203	u32 perms;
6204
6205	if (shmflg & SHM_RDONLY)
6206		perms = SHM__READ;
6207	else
6208		perms = SHM__READ | SHM__WRITE;
6209
6210	return ipc_has_perm(shp, perms);
6211}
6212
6213/* Semaphore security operations */
6214static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6215{
6216	struct ipc_security_struct *isec;
6217	struct common_audit_data ad;
6218	u32 sid = current_sid();
6219	int rc;
6220
6221	rc = ipc_alloc_security(sma, SECCLASS_SEM);
6222	if (rc)
6223		return rc;
6224
6225	isec = sma->security;
6226
6227	ad.type = LSM_AUDIT_DATA_IPC;
6228	ad.u.ipc_id = sma->key;
6229
6230	rc = avc_has_perm(&selinux_state,
6231			  sid, isec->sid, SECCLASS_SEM,
6232			  SEM__CREATE, &ad);
6233	if (rc) {
6234		ipc_free_security(sma);
6235		return rc;
6236	}
6237	return 0;
6238}
6239
6240static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6241{
6242	ipc_free_security(sma);
6243}
6244
6245static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6246{
6247	struct ipc_security_struct *isec;
6248	struct common_audit_data ad;
6249	u32 sid = current_sid();
6250
6251	isec = sma->security;
6252
6253	ad.type = LSM_AUDIT_DATA_IPC;
6254	ad.u.ipc_id = sma->key;
6255
6256	return avc_has_perm(&selinux_state,
6257			    sid, isec->sid, SECCLASS_SEM,
6258			    SEM__ASSOCIATE, &ad);
6259}
6260
6261/* Note, at this point, sma is locked down */
6262static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6263{
6264	int err;
6265	u32 perms;
6266
6267	switch (cmd) {
6268	case IPC_INFO:
6269	case SEM_INFO:
6270		/* No specific object, just general system-wide information. */
6271		return avc_has_perm(&selinux_state,
6272				    current_sid(), SECINITSID_KERNEL,
6273				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6274	case GETPID:
6275	case GETNCNT:
6276	case GETZCNT:
6277		perms = SEM__GETATTR;
6278		break;
6279	case GETVAL:
6280	case GETALL:
6281		perms = SEM__READ;
6282		break;
6283	case SETVAL:
6284	case SETALL:
6285		perms = SEM__WRITE;
6286		break;
6287	case IPC_RMID:
6288		perms = SEM__DESTROY;
6289		break;
6290	case IPC_SET:
6291		perms = SEM__SETATTR;
6292		break;
6293	case IPC_STAT:
6294	case SEM_STAT:
6295	case SEM_STAT_ANY:
6296		perms = SEM__GETATTR | SEM__ASSOCIATE;
6297		break;
6298	default:
6299		return 0;
6300	}
6301
6302	err = ipc_has_perm(sma, perms);
6303	return err;
6304}
6305
6306static int selinux_sem_semop(struct kern_ipc_perm *sma,
6307			     struct sembuf *sops, unsigned nsops, int alter)
6308{
6309	u32 perms;
6310
6311	if (alter)
6312		perms = SEM__READ | SEM__WRITE;
6313	else
6314		perms = SEM__READ;
6315
6316	return ipc_has_perm(sma, perms);
6317}
6318
6319static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6320{
6321	u32 av = 0;
6322
6323	av = 0;
6324	if (flag & S_IRUGO)
6325		av |= IPC__UNIX_READ;
6326	if (flag & S_IWUGO)
6327		av |= IPC__UNIX_WRITE;
6328
6329	if (av == 0)
6330		return 0;
6331
6332	return ipc_has_perm(ipcp, av);
6333}
6334
6335static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6336{
6337	struct ipc_security_struct *isec = ipcp->security;
6338	*secid = isec->sid;
6339}
6340
6341static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6342{
6343	if (inode)
6344		inode_doinit_with_dentry(inode, dentry);
6345}
6346
6347static int selinux_getprocattr(struct task_struct *p,
6348			       char *name, char **value)
6349{
6350	const struct task_security_struct *__tsec;
6351	u32 sid;
6352	int error;
6353	unsigned len;
6354
6355	rcu_read_lock();
6356	__tsec = __task_cred(p)->security;
6357
6358	if (current != p) {
6359		error = avc_has_perm(&selinux_state,
6360				     current_sid(), __tsec->sid,
6361				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362		if (error)
6363			goto bad;
6364	}
6365
 
 
 
6366	if (!strcmp(name, "current"))
6367		sid = __tsec->sid;
6368	else if (!strcmp(name, "prev"))
6369		sid = __tsec->osid;
6370	else if (!strcmp(name, "exec"))
6371		sid = __tsec->exec_sid;
6372	else if (!strcmp(name, "fscreate"))
6373		sid = __tsec->create_sid;
6374	else if (!strcmp(name, "keycreate"))
6375		sid = __tsec->keycreate_sid;
6376	else if (!strcmp(name, "sockcreate"))
6377		sid = __tsec->sockcreate_sid;
6378	else {
6379		error = -EINVAL;
6380		goto bad;
6381	}
6382	rcu_read_unlock();
6383
6384	if (!sid)
6385		return 0;
6386
6387	error = security_sid_to_context(&selinux_state, sid, value, &len);
6388	if (error)
6389		return error;
6390	return len;
6391
6392bad:
6393	rcu_read_unlock();
6394	return error;
6395}
6396
6397static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6398{
6399	struct task_security_struct *tsec;
 
6400	struct cred *new;
6401	u32 mysid = current_sid(), sid = 0, ptsid;
6402	int error;
6403	char *str = value;
6404
 
 
 
 
 
 
6405	/*
6406	 * Basic control over ability to set these attributes at all.
 
 
6407	 */
6408	if (!strcmp(name, "exec"))
6409		error = avc_has_perm(&selinux_state,
6410				     mysid, mysid, SECCLASS_PROCESS,
6411				     PROCESS__SETEXEC, NULL);
6412	else if (!strcmp(name, "fscreate"))
6413		error = avc_has_perm(&selinux_state,
6414				     mysid, mysid, SECCLASS_PROCESS,
6415				     PROCESS__SETFSCREATE, NULL);
6416	else if (!strcmp(name, "keycreate"))
6417		error = avc_has_perm(&selinux_state,
6418				     mysid, mysid, SECCLASS_PROCESS,
6419				     PROCESS__SETKEYCREATE, NULL);
6420	else if (!strcmp(name, "sockcreate"))
6421		error = avc_has_perm(&selinux_state,
6422				     mysid, mysid, SECCLASS_PROCESS,
6423				     PROCESS__SETSOCKCREATE, NULL);
6424	else if (!strcmp(name, "current"))
6425		error = avc_has_perm(&selinux_state,
6426				     mysid, mysid, SECCLASS_PROCESS,
6427				     PROCESS__SETCURRENT, NULL);
6428	else
6429		error = -EINVAL;
6430	if (error)
6431		return error;
6432
6433	/* Obtain a SID for the context, if one was specified. */
6434	if (size && str[0] && str[0] != '\n') {
6435		if (str[size-1] == '\n') {
6436			str[size-1] = 0;
6437			size--;
6438		}
6439		error = security_context_to_sid(&selinux_state, value, size,
6440						&sid, GFP_KERNEL);
6441		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6442			if (!has_cap_mac_admin(true)) {
6443				struct audit_buffer *ab;
6444				size_t audit_size;
6445
6446				/* We strip a nul only if it is at the end, otherwise the
6447				 * context contains a nul and we should audit that */
6448				if (str[size - 1] == '\0')
6449					audit_size = size - 1;
6450				else
6451					audit_size = size;
6452				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6453				audit_log_format(ab, "op=fscreate invalid_context=");
6454				audit_log_n_untrustedstring(ab, value, audit_size);
6455				audit_log_end(ab);
6456
6457				return error;
6458			}
6459			error = security_context_to_sid_force(
6460						      &selinux_state,
6461						      value, size, &sid);
6462		}
6463		if (error)
6464			return error;
6465	}
6466
6467	new = prepare_creds();
6468	if (!new)
6469		return -ENOMEM;
6470
6471	/* Permission checking based on the specified context is
6472	   performed during the actual operation (execve,
6473	   open/mkdir/...), when we know the full context of the
6474	   operation.  See selinux_bprm_set_creds for the execve
6475	   checks and may_create for the file creation checks. The
6476	   operation will then fail if the context is not permitted. */
6477	tsec = new->security;
6478	if (!strcmp(name, "exec")) {
6479		tsec->exec_sid = sid;
6480	} else if (!strcmp(name, "fscreate")) {
6481		tsec->create_sid = sid;
6482	} else if (!strcmp(name, "keycreate")) {
6483		error = avc_has_perm(&selinux_state,
6484				     mysid, sid, SECCLASS_KEY, KEY__CREATE,
6485				     NULL);
6486		if (error)
6487			goto abort_change;
6488		tsec->keycreate_sid = sid;
6489	} else if (!strcmp(name, "sockcreate")) {
6490		tsec->sockcreate_sid = sid;
6491	} else if (!strcmp(name, "current")) {
6492		error = -EINVAL;
6493		if (sid == 0)
6494			goto abort_change;
6495
6496		/* Only allow single threaded processes to change context */
6497		error = -EPERM;
6498		if (!current_is_single_threaded()) {
6499			error = security_bounded_transition(&selinux_state,
6500							    tsec->sid, sid);
6501			if (error)
6502				goto abort_change;
6503		}
6504
6505		/* Check permissions for the transition. */
6506		error = avc_has_perm(&selinux_state,
6507				     tsec->sid, sid, SECCLASS_PROCESS,
6508				     PROCESS__DYNTRANSITION, NULL);
6509		if (error)
6510			goto abort_change;
6511
6512		/* Check for ptracing, and update the task SID if ok.
6513		   Otherwise, leave SID unchanged and fail. */
6514		ptsid = ptrace_parent_sid();
6515		if (ptsid != 0) {
6516			error = avc_has_perm(&selinux_state,
6517					     ptsid, sid, SECCLASS_PROCESS,
 
 
 
 
 
6518					     PROCESS__PTRACE, NULL);
6519			if (error)
6520				goto abort_change;
6521		}
6522
6523		tsec->sid = sid;
6524	} else {
6525		error = -EINVAL;
6526		goto abort_change;
6527	}
6528
6529	commit_creds(new);
6530	return size;
6531
6532abort_change:
6533	abort_creds(new);
6534	return error;
6535}
6536
6537static int selinux_ismaclabel(const char *name)
6538{
6539	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6540}
6541
6542static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6543{
6544	return security_sid_to_context(&selinux_state, secid,
6545				       secdata, seclen);
6546}
6547
6548static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6549{
6550	return security_context_to_sid(&selinux_state, secdata, seclen,
6551				       secid, GFP_KERNEL);
6552}
6553
6554static void selinux_release_secctx(char *secdata, u32 seclen)
6555{
6556	kfree(secdata);
6557}
6558
6559static void selinux_inode_invalidate_secctx(struct inode *inode)
6560{
6561	struct inode_security_struct *isec = inode->i_security;
6562
6563	spin_lock(&isec->lock);
6564	isec->initialized = LABEL_INVALID;
6565	spin_unlock(&isec->lock);
6566}
6567
6568/*
6569 *	called with inode->i_mutex locked
6570 */
6571static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6572{
6573	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6574}
6575
6576/*
6577 *	called with inode->i_mutex locked
6578 */
6579static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6580{
6581	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6582}
6583
6584static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6585{
6586	int len = 0;
6587	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6588						ctx, true);
6589	if (len < 0)
6590		return len;
6591	*ctxlen = len;
6592	return 0;
6593}
6594#ifdef CONFIG_KEYS
6595
6596static int selinux_key_alloc(struct key *k, const struct cred *cred,
6597			     unsigned long flags)
6598{
6599	const struct task_security_struct *tsec;
6600	struct key_security_struct *ksec;
6601
6602	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6603	if (!ksec)
6604		return -ENOMEM;
6605
6606	tsec = cred->security;
6607	if (tsec->keycreate_sid)
6608		ksec->sid = tsec->keycreate_sid;
6609	else
6610		ksec->sid = tsec->sid;
6611
6612	k->security = ksec;
6613	return 0;
6614}
6615
6616static void selinux_key_free(struct key *k)
6617{
6618	struct key_security_struct *ksec = k->security;
6619
6620	k->security = NULL;
6621	kfree(ksec);
6622}
6623
6624static int selinux_key_permission(key_ref_t key_ref,
6625				  const struct cred *cred,
6626				  unsigned perm)
6627{
6628	struct key *key;
6629	struct key_security_struct *ksec;
6630	u32 sid;
6631
6632	/* if no specific permissions are requested, we skip the
6633	   permission check. No serious, additional covert channels
6634	   appear to be created. */
6635	if (perm == 0)
6636		return 0;
6637
6638	sid = cred_sid(cred);
6639
6640	key = key_ref_to_ptr(key_ref);
6641	ksec = key->security;
6642
6643	return avc_has_perm(&selinux_state,
6644			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6645}
6646
6647static int selinux_key_getsecurity(struct key *key, char **_buffer)
6648{
6649	struct key_security_struct *ksec = key->security;
6650	char *context = NULL;
6651	unsigned len;
6652	int rc;
6653
6654	rc = security_sid_to_context(&selinux_state, ksec->sid,
6655				     &context, &len);
6656	if (!rc)
6657		rc = len;
6658	*_buffer = context;
6659	return rc;
6660}
6661#endif
6662
6663#ifdef CONFIG_SECURITY_INFINIBAND
6664static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6665{
6666	struct common_audit_data ad;
6667	int err;
6668	u32 sid = 0;
6669	struct ib_security_struct *sec = ib_sec;
6670	struct lsm_ibpkey_audit ibpkey;
6671
6672	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6673	if (err)
6674		return err;
6675
6676	ad.type = LSM_AUDIT_DATA_IBPKEY;
6677	ibpkey.subnet_prefix = subnet_prefix;
6678	ibpkey.pkey = pkey_val;
6679	ad.u.ibpkey = &ibpkey;
6680	return avc_has_perm(&selinux_state,
6681			    sec->sid, sid,
6682			    SECCLASS_INFINIBAND_PKEY,
6683			    INFINIBAND_PKEY__ACCESS, &ad);
6684}
6685
6686static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6687					    u8 port_num)
6688{
6689	struct common_audit_data ad;
6690	int err;
6691	u32 sid = 0;
6692	struct ib_security_struct *sec = ib_sec;
6693	struct lsm_ibendport_audit ibendport;
6694
6695	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6696				      &sid);
6697
6698	if (err)
6699		return err;
6700
6701	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6702	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6703	ibendport.port = port_num;
6704	ad.u.ibendport = &ibendport;
6705	return avc_has_perm(&selinux_state,
6706			    sec->sid, sid,
6707			    SECCLASS_INFINIBAND_ENDPORT,
6708			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6709}
6710
6711static int selinux_ib_alloc_security(void **ib_sec)
6712{
6713	struct ib_security_struct *sec;
6714
6715	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6716	if (!sec)
6717		return -ENOMEM;
6718	sec->sid = current_sid();
6719
6720	*ib_sec = sec;
6721	return 0;
6722}
6723
6724static void selinux_ib_free_security(void *ib_sec)
6725{
6726	kfree(ib_sec);
6727}
6728#endif
6729
6730#ifdef CONFIG_BPF_SYSCALL
6731static int selinux_bpf(int cmd, union bpf_attr *attr,
6732				     unsigned int size)
6733{
6734	u32 sid = current_sid();
6735	int ret;
6736
6737	switch (cmd) {
6738	case BPF_MAP_CREATE:
6739		ret = avc_has_perm(&selinux_state,
6740				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6741				   NULL);
6742		break;
6743	case BPF_PROG_LOAD:
6744		ret = avc_has_perm(&selinux_state,
6745				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6746				   NULL);
6747		break;
6748	default:
6749		ret = 0;
6750		break;
6751	}
6752
6753	return ret;
6754}
6755
6756static u32 bpf_map_fmode_to_av(fmode_t fmode)
6757{
6758	u32 av = 0;
6759
6760	if (fmode & FMODE_READ)
6761		av |= BPF__MAP_READ;
6762	if (fmode & FMODE_WRITE)
6763		av |= BPF__MAP_WRITE;
6764	return av;
6765}
6766
6767/* This function will check the file pass through unix socket or binder to see
6768 * if it is a bpf related object. And apply correspinding checks on the bpf
6769 * object based on the type. The bpf maps and programs, not like other files and
6770 * socket, are using a shared anonymous inode inside the kernel as their inode.
6771 * So checking that inode cannot identify if the process have privilege to
6772 * access the bpf object and that's why we have to add this additional check in
6773 * selinux_file_receive and selinux_binder_transfer_files.
6774 */
6775static int bpf_fd_pass(struct file *file, u32 sid)
6776{
6777	struct bpf_security_struct *bpfsec;
6778	struct bpf_prog *prog;
6779	struct bpf_map *map;
6780	int ret;
6781
6782	if (file->f_op == &bpf_map_fops) {
6783		map = file->private_data;
6784		bpfsec = map->security;
6785		ret = avc_has_perm(&selinux_state,
6786				   sid, bpfsec->sid, SECCLASS_BPF,
6787				   bpf_map_fmode_to_av(file->f_mode), NULL);
6788		if (ret)
6789			return ret;
6790	} else if (file->f_op == &bpf_prog_fops) {
6791		prog = file->private_data;
6792		bpfsec = prog->aux->security;
6793		ret = avc_has_perm(&selinux_state,
6794				   sid, bpfsec->sid, SECCLASS_BPF,
6795				   BPF__PROG_RUN, NULL);
6796		if (ret)
6797			return ret;
6798	}
6799	return 0;
6800}
6801
6802static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6803{
6804	u32 sid = current_sid();
6805	struct bpf_security_struct *bpfsec;
6806
6807	bpfsec = map->security;
6808	return avc_has_perm(&selinux_state,
6809			    sid, bpfsec->sid, SECCLASS_BPF,
6810			    bpf_map_fmode_to_av(fmode), NULL);
6811}
6812
6813static int selinux_bpf_prog(struct bpf_prog *prog)
6814{
6815	u32 sid = current_sid();
6816	struct bpf_security_struct *bpfsec;
6817
6818	bpfsec = prog->aux->security;
6819	return avc_has_perm(&selinux_state,
6820			    sid, bpfsec->sid, SECCLASS_BPF,
6821			    BPF__PROG_RUN, NULL);
6822}
6823
6824static int selinux_bpf_map_alloc(struct bpf_map *map)
6825{
6826	struct bpf_security_struct *bpfsec;
6827
6828	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6829	if (!bpfsec)
6830		return -ENOMEM;
6831
6832	bpfsec->sid = current_sid();
6833	map->security = bpfsec;
6834
6835	return 0;
6836}
6837
6838static void selinux_bpf_map_free(struct bpf_map *map)
6839{
6840	struct bpf_security_struct *bpfsec = map->security;
6841
6842	map->security = NULL;
6843	kfree(bpfsec);
6844}
6845
6846static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6847{
6848	struct bpf_security_struct *bpfsec;
6849
6850	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6851	if (!bpfsec)
6852		return -ENOMEM;
6853
6854	bpfsec->sid = current_sid();
6855	aux->security = bpfsec;
6856
6857	return 0;
6858}
6859
6860static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6861{
6862	struct bpf_security_struct *bpfsec = aux->security;
6863
6864	aux->security = NULL;
6865	kfree(bpfsec);
6866}
6867#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6868
6869static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6870	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6871	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6872	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6873	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6874
6875	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6876	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6877	LSM_HOOK_INIT(capget, selinux_capget),
6878	LSM_HOOK_INIT(capset, selinux_capset),
6879	LSM_HOOK_INIT(capable, selinux_capable),
6880	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6881	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6882	LSM_HOOK_INIT(syslog, selinux_syslog),
6883	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6884
6885	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6886
6887	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6888	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6889	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6890
6891	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6892	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6893	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6894	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6895	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6896	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6897	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6898	LSM_HOOK_INIT(sb_mount, selinux_mount),
6899	LSM_HOOK_INIT(sb_umount, selinux_umount),
6900	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6901	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6902	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6903
6904	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6905	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6906
6907	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6908	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6909	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6910	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6911	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6912	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6913	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6914	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6915	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6916	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6917	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6918	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6919	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6920	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6921	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6922	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6923	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6924	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6925	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6926	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6927	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6928	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6929	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6930	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6931	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6932	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6933	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6934
6935	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6936	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6937	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6938	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6939	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6940	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6941	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6942	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6943	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6944	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6945	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6946	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6947
6948	LSM_HOOK_INIT(file_open, selinux_file_open),
6949
6950	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6951	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6952	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6953	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6954	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6955	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6956	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6957	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6958	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6959	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6960	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6961	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6962	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6963	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6964	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6965	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6966	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6967	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6968	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6969	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6970	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6971	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6972	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6973	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6974
6975	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6976	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6977
6978	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6979	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6980
6981	LSM_HOOK_INIT(msg_queue_alloc_security,
6982			selinux_msg_queue_alloc_security),
6983	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6984	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6985	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6986	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6987	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6988
6989	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6990	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6991	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6992	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6993	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6994
6995	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6996	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6997	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6998	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6999	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7000
7001	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7002
7003	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7004	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7005
7006	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7007	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7008	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7009	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7010	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7011	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7012	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7013	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7014
7015	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7016	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7017
7018	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7019	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7020	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7021	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7022	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7023	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7024	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7025	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7026	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7027	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7028	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7029	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7030	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7031	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7032	LSM_HOOK_INIT(socket_getpeersec_stream,
7033			selinux_socket_getpeersec_stream),
7034	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7035	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7036	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7037	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7038	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7039	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7040	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7041	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7042	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7043	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7044	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7045	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7046	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7047	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7048	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7049	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7050	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7051	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7052	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7053	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7054	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7055	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7056#ifdef CONFIG_SECURITY_INFINIBAND
7057	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7058	LSM_HOOK_INIT(ib_endport_manage_subnet,
7059		      selinux_ib_endport_manage_subnet),
7060	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7061	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7062#endif
7063#ifdef CONFIG_SECURITY_NETWORK_XFRM
7064	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7065	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7066	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7067	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7068	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7069	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7070			selinux_xfrm_state_alloc_acquire),
7071	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7072	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7073	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7074	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7075			selinux_xfrm_state_pol_flow_match),
7076	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7077#endif
7078
7079#ifdef CONFIG_KEYS
7080	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7081	LSM_HOOK_INIT(key_free, selinux_key_free),
7082	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7083	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7084#endif
7085
7086#ifdef CONFIG_AUDIT
7087	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7088	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7089	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7090	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7091#endif
7092
7093#ifdef CONFIG_BPF_SYSCALL
7094	LSM_HOOK_INIT(bpf, selinux_bpf),
7095	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7096	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7097	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7098	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7099	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7100	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7101#endif
7102};
7103
7104static __init int selinux_init(void)
7105{
7106	if (!security_module_enable("selinux")) {
7107		selinux_enabled = 0;
7108		return 0;
7109	}
7110
7111	if (!selinux_enabled) {
7112		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
7113		return 0;
7114	}
7115
7116	printk(KERN_INFO "SELinux:  Initializing.\n");
7117
7118	memset(&selinux_state, 0, sizeof(selinux_state));
7119	enforcing_set(&selinux_state, selinux_enforcing_boot);
7120	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7121	selinux_ss_init(&selinux_state.ss);
7122	selinux_avc_init(&selinux_state.avc);
7123
7124	/* Set the security state for the initial task. */
7125	cred_init_security();
7126
7127	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7128
7129	sel_inode_cache = kmem_cache_create("selinux_inode_security",
7130					    sizeof(struct inode_security_struct),
7131					    0, SLAB_PANIC, NULL);
7132	file_security_cache = kmem_cache_create("selinux_file_security",
7133					    sizeof(struct file_security_struct),
7134					    0, SLAB_PANIC, NULL);
7135	avc_init();
7136
7137	avtab_cache_init();
7138
7139	ebitmap_cache_init();
7140
7141	hashtab_cache_init();
7142
7143	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7144
7145	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7146		panic("SELinux: Unable to register AVC netcache callback\n");
7147
7148	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7149		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7150
7151	if (selinux_enforcing_boot)
7152		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
7153	else
7154		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
7155
7156	return 0;
7157}
7158
7159static void delayed_superblock_init(struct super_block *sb, void *unused)
7160{
7161	superblock_doinit(sb, NULL);
7162}
7163
7164void selinux_complete_init(void)
7165{
7166	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
7167
7168	/* Set up any superblocks initialized prior to the policy load. */
7169	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
7170	iterate_supers(delayed_superblock_init, NULL);
7171}
7172
7173/* SELinux requires early initialization in order to label
7174   all processes and objects when they are created. */
7175security_initcall(selinux_init);
7176
7177#if defined(CONFIG_NETFILTER)
7178
7179static const struct nf_hook_ops selinux_nf_ops[] = {
7180	{
7181		.hook =		selinux_ipv4_postroute,
 
7182		.pf =		NFPROTO_IPV4,
7183		.hooknum =	NF_INET_POST_ROUTING,
7184		.priority =	NF_IP_PRI_SELINUX_LAST,
7185	},
7186	{
7187		.hook =		selinux_ipv4_forward,
 
7188		.pf =		NFPROTO_IPV4,
7189		.hooknum =	NF_INET_FORWARD,
7190		.priority =	NF_IP_PRI_SELINUX_FIRST,
7191	},
7192	{
7193		.hook =		selinux_ipv4_output,
 
7194		.pf =		NFPROTO_IPV4,
7195		.hooknum =	NF_INET_LOCAL_OUT,
7196		.priority =	NF_IP_PRI_SELINUX_FIRST,
7197	},
7198#if IS_ENABLED(CONFIG_IPV6)
 
 
 
 
7199	{
7200		.hook =		selinux_ipv6_postroute,
 
7201		.pf =		NFPROTO_IPV6,
7202		.hooknum =	NF_INET_POST_ROUTING,
7203		.priority =	NF_IP6_PRI_SELINUX_LAST,
7204	},
7205	{
7206		.hook =		selinux_ipv6_forward,
 
7207		.pf =		NFPROTO_IPV6,
7208		.hooknum =	NF_INET_FORWARD,
7209		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7210	},
7211	{
7212		.hook =		selinux_ipv6_output,
7213		.pf =		NFPROTO_IPV6,
7214		.hooknum =	NF_INET_LOCAL_OUT,
7215		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7216	},
7217#endif	/* IPV6 */
7218};
7219
7220static int __net_init selinux_nf_register(struct net *net)
7221{
7222	return nf_register_net_hooks(net, selinux_nf_ops,
7223				     ARRAY_SIZE(selinux_nf_ops));
7224}
7225
7226static void __net_exit selinux_nf_unregister(struct net *net)
7227{
7228	nf_unregister_net_hooks(net, selinux_nf_ops,
7229				ARRAY_SIZE(selinux_nf_ops));
7230}
7231
7232static struct pernet_operations selinux_net_ops = {
7233	.init = selinux_nf_register,
7234	.exit = selinux_nf_unregister,
7235};
7236
7237static int __init selinux_nf_ip_init(void)
7238{
7239	int err;
7240
7241	if (!selinux_enabled)
7242		return 0;
7243
7244	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
7245
7246	err = register_pernet_subsys(&selinux_net_ops);
7247	if (err)
7248		panic("SELinux: register_pernet_subsys: error %d\n", err);
7249
7250	return 0;
 
 
 
 
 
 
 
7251}
 
7252__initcall(selinux_nf_ip_init);
7253
7254#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7255static void selinux_nf_ip_exit(void)
7256{
7257	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
7258
7259	unregister_pernet_subsys(&selinux_net_ops);
 
 
 
7260}
7261#endif
7262
7263#else /* CONFIG_NETFILTER */
7264
7265#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7266#define selinux_nf_ip_exit()
7267#endif
7268
7269#endif /* CONFIG_NETFILTER */
7270
7271#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7272int selinux_disable(struct selinux_state *state)
 
 
7273{
7274	if (state->initialized) {
7275		/* Not permitted after initial policy load. */
7276		return -EINVAL;
7277	}
7278
7279	if (state->disabled) {
7280		/* Only do this once. */
7281		return -EINVAL;
7282	}
7283
7284	state->disabled = 1;
7285
7286	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
7287
 
7288	selinux_enabled = 0;
7289
7290	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7291
7292	/* Try to destroy the avc node cache */
7293	avc_disable();
7294
7295	/* Unregister netfilter hooks. */
7296	selinux_nf_ip_exit();
7297
7298	/* Unregister selinuxfs. */
7299	exit_sel_fs();
7300
7301	return 0;
7302}
7303#endif
v3.15
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
 
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/security.h>
 
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/sock.h>
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
 
 
  69#include <linux/quota.h>
  70#include <linux/un.h>		/* for Unix socket types */
  71#include <net/af_unix.h>	/* for Unix socket types */
  72#include <linux/parser.h>
  73#include <linux/nfs_mount.h>
  74#include <net/ipv6.h>
  75#include <linux/hugetlb.h>
  76#include <linux/personality.h>
  77#include <linux/audit.h>
  78#include <linux/string.h>
  79#include <linux/selinux.h>
  80#include <linux/mutex.h>
  81#include <linux/posix-timers.h>
  82#include <linux/syslog.h>
  83#include <linux/user_namespace.h>
  84#include <linux/export.h>
  85#include <linux/msg.h>
  86#include <linux/shm.h>
 
  87
  88#include "avc.h"
  89#include "objsec.h"
  90#include "netif.h"
  91#include "netnode.h"
  92#include "netport.h"
 
  93#include "xfrm.h"
  94#include "netlabel.h"
  95#include "audit.h"
  96#include "avc_ss.h"
  97
  98extern struct security_operations *security_ops;
  99
 100/* SECMARK reference count */
 101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 102
 103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 104int selinux_enforcing;
 105
 106static int __init enforcing_setup(char *str)
 107{
 108	unsigned long enforcing;
 109	if (!kstrtoul(str, 0, &enforcing))
 110		selinux_enforcing = enforcing ? 1 : 0;
 111	return 1;
 112}
 113__setup("enforcing=", enforcing_setup);
 
 
 114#endif
 115
 116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 118
 119static int __init selinux_enabled_setup(char *str)
 120{
 121	unsigned long enabled;
 122	if (!kstrtoul(str, 0, &enabled))
 123		selinux_enabled = enabled ? 1 : 0;
 124	return 1;
 125}
 126__setup("selinux=", selinux_enabled_setup);
 127#else
 128int selinux_enabled = 1;
 129#endif
 130
 
 
 
 
 
 
 
 
 
 
 
 
 
 131static struct kmem_cache *sel_inode_cache;
 
 132
 133/**
 134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 135 *
 136 * Description:
 137 * This function checks the SECMARK reference counter to see if any SECMARK
 138 * targets are currently configured, if the reference counter is greater than
 139 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 140 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 141 * policy capability is enabled, SECMARK is always considered enabled.
 142 *
 143 */
 144static int selinux_secmark_enabled(void)
 145{
 146	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 
 147}
 148
 149/**
 150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 151 *
 152 * Description:
 153 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 154 * (1) if any are enabled or false (0) if neither are enabled.  If the
 155 * always_check_network policy capability is enabled, peer labeling
 156 * is always considered enabled.
 157 *
 158 */
 159static int selinux_peerlbl_enabled(void)
 160{
 161	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162}
 163
 164/*
 165 * initialise the security for the init task
 166 */
 167static void cred_init_security(void)
 168{
 169	struct cred *cred = (struct cred *) current->real_cred;
 170	struct task_security_struct *tsec;
 171
 172	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 173	if (!tsec)
 174		panic("SELinux:  Failed to initialize initial task.\n");
 175
 176	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 177	cred->security = tsec;
 178}
 179
 180/*
 181 * get the security ID of a set of credentials
 182 */
 183static inline u32 cred_sid(const struct cred *cred)
 184{
 185	const struct task_security_struct *tsec;
 186
 187	tsec = cred->security;
 188	return tsec->sid;
 189}
 190
 191/*
 192 * get the objective security ID of a task
 193 */
 194static inline u32 task_sid(const struct task_struct *task)
 195{
 196	u32 sid;
 197
 198	rcu_read_lock();
 199	sid = cred_sid(__task_cred(task));
 200	rcu_read_unlock();
 201	return sid;
 202}
 203
 204/*
 205 * get the subjective security ID of the current task
 206 */
 207static inline u32 current_sid(void)
 208{
 209	const struct task_security_struct *tsec = current_security();
 210
 211	return tsec->sid;
 212}
 213
 214/* Allocate and free functions for each kind of security blob. */
 215
 216static int inode_alloc_security(struct inode *inode)
 217{
 218	struct inode_security_struct *isec;
 219	u32 sid = current_sid();
 220
 221	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 222	if (!isec)
 223		return -ENOMEM;
 224
 225	mutex_init(&isec->lock);
 226	INIT_LIST_HEAD(&isec->list);
 227	isec->inode = inode;
 228	isec->sid = SECINITSID_UNLABELED;
 229	isec->sclass = SECCLASS_FILE;
 230	isec->task_sid = sid;
 
 231	inode->i_security = isec;
 232
 233	return 0;
 234}
 235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236static void inode_free_rcu(struct rcu_head *head)
 237{
 238	struct inode_security_struct *isec;
 239
 240	isec = container_of(head, struct inode_security_struct, rcu);
 241	kmem_cache_free(sel_inode_cache, isec);
 242}
 243
 244static void inode_free_security(struct inode *inode)
 245{
 246	struct inode_security_struct *isec = inode->i_security;
 247	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 248
 249	spin_lock(&sbsec->isec_lock);
 250	if (!list_empty(&isec->list))
 
 
 
 
 
 
 
 
 
 
 251		list_del_init(&isec->list);
 252	spin_unlock(&sbsec->isec_lock);
 
 253
 254	/*
 255	 * The inode may still be referenced in a path walk and
 256	 * a call to selinux_inode_permission() can be made
 257	 * after inode_free_security() is called. Ideally, the VFS
 258	 * wouldn't do this, but fixing that is a much harder
 259	 * job. For now, simply free the i_security via RCU, and
 260	 * leave the current inode->i_security pointer intact.
 261	 * The inode will be freed after the RCU grace period too.
 262	 */
 263	call_rcu(&isec->rcu, inode_free_rcu);
 264}
 265
 266static int file_alloc_security(struct file *file)
 267{
 268	struct file_security_struct *fsec;
 269	u32 sid = current_sid();
 270
 271	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
 272	if (!fsec)
 273		return -ENOMEM;
 274
 275	fsec->sid = sid;
 276	fsec->fown_sid = sid;
 277	file->f_security = fsec;
 278
 279	return 0;
 280}
 281
 282static void file_free_security(struct file *file)
 283{
 284	struct file_security_struct *fsec = file->f_security;
 285	file->f_security = NULL;
 286	kfree(fsec);
 287}
 288
 289static int superblock_alloc_security(struct super_block *sb)
 290{
 291	struct superblock_security_struct *sbsec;
 292
 293	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 294	if (!sbsec)
 295		return -ENOMEM;
 296
 297	mutex_init(&sbsec->lock);
 298	INIT_LIST_HEAD(&sbsec->isec_head);
 299	spin_lock_init(&sbsec->isec_lock);
 300	sbsec->sb = sb;
 301	sbsec->sid = SECINITSID_UNLABELED;
 302	sbsec->def_sid = SECINITSID_FILE;
 303	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 304	sb->s_security = sbsec;
 305
 306	return 0;
 307}
 308
 309static void superblock_free_security(struct super_block *sb)
 310{
 311	struct superblock_security_struct *sbsec = sb->s_security;
 312	sb->s_security = NULL;
 313	kfree(sbsec);
 314}
 315
 316/* The file system's label must be initialized prior to use. */
 317
 318static const char *labeling_behaviors[7] = {
 319	"uses xattr",
 320	"uses transition SIDs",
 321	"uses task SIDs",
 322	"uses genfs_contexts",
 323	"not configured for labeling",
 324	"uses mountpoint labeling",
 325	"uses native labeling",
 326};
 327
 328static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 329
 330static inline int inode_doinit(struct inode *inode)
 331{
 332	return inode_doinit_with_dentry(inode, NULL);
 333}
 334
 335enum {
 336	Opt_error = -1,
 337	Opt_context = 1,
 338	Opt_fscontext = 2,
 339	Opt_defcontext = 3,
 340	Opt_rootcontext = 4,
 341	Opt_labelsupport = 5,
 342	Opt_nextmntopt = 6,
 343};
 344
 345#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 346
 347static const match_table_t tokens = {
 348	{Opt_context, CONTEXT_STR "%s"},
 349	{Opt_fscontext, FSCONTEXT_STR "%s"},
 350	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 351	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 352	{Opt_labelsupport, LABELSUPP_STR},
 353	{Opt_error, NULL},
 354};
 355
 356#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 357
 358static int may_context_mount_sb_relabel(u32 sid,
 359			struct superblock_security_struct *sbsec,
 360			const struct cred *cred)
 361{
 362	const struct task_security_struct *tsec = cred->security;
 363	int rc;
 364
 365	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 366			  FILESYSTEM__RELABELFROM, NULL);
 367	if (rc)
 368		return rc;
 369
 370	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 371			  FILESYSTEM__RELABELTO, NULL);
 372	return rc;
 373}
 374
 375static int may_context_mount_inode_relabel(u32 sid,
 376			struct superblock_security_struct *sbsec,
 377			const struct cred *cred)
 378{
 379	const struct task_security_struct *tsec = cred->security;
 380	int rc;
 381	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 382			  FILESYSTEM__RELABELFROM, NULL);
 383	if (rc)
 384		return rc;
 385
 386	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 387			  FILESYSTEM__ASSOCIATE, NULL);
 388	return rc;
 389}
 390
 391static int selinux_is_sblabel_mnt(struct super_block *sb)
 392{
 393	struct superblock_security_struct *sbsec = sb->s_security;
 394
 395	if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
 396	    sbsec->behavior == SECURITY_FS_USE_TRANS ||
 397	    sbsec->behavior == SECURITY_FS_USE_TASK)
 398		return 1;
 399
 400	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
 401	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
 402		return 1;
 403
 404	/*
 405	 * Special handling for rootfs. Is genfs but supports
 406	 * setting SELinux context on in-core inodes.
 407	 */
 408	if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
 409		return 1;
 410
 411	return 0;
 412}
 413
 414static int sb_finish_set_opts(struct super_block *sb)
 415{
 416	struct superblock_security_struct *sbsec = sb->s_security;
 417	struct dentry *root = sb->s_root;
 418	struct inode *root_inode = root->d_inode;
 419	int rc = 0;
 420
 421	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 422		/* Make sure that the xattr handler exists and that no
 423		   error other than -ENODATA is returned by getxattr on
 424		   the root directory.  -ENODATA is ok, as this may be
 425		   the first boot of the SELinux kernel before we have
 426		   assigned xattr values to the filesystem. */
 427		if (!root_inode->i_op->getxattr) {
 428			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 429			       "xattr support\n", sb->s_id, sb->s_type->name);
 430			rc = -EOPNOTSUPP;
 431			goto out;
 432		}
 433		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 
 434		if (rc < 0 && rc != -ENODATA) {
 435			if (rc == -EOPNOTSUPP)
 436				printk(KERN_WARNING "SELinux: (dev %s, type "
 437				       "%s) has no security xattr handler\n",
 438				       sb->s_id, sb->s_type->name);
 439			else
 440				printk(KERN_WARNING "SELinux: (dev %s, type "
 441				       "%s) getxattr errno %d\n", sb->s_id,
 442				       sb->s_type->name, -rc);
 443			goto out;
 444		}
 445	}
 446
 447	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 448		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 449		       sb->s_id, sb->s_type->name);
 450	else
 451		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
 452		       sb->s_id, sb->s_type->name,
 453		       labeling_behaviors[sbsec->behavior-1]);
 454
 455	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 456	if (selinux_is_sblabel_mnt(sb))
 457		sbsec->flags |= SBLABEL_MNT;
 
 
 458
 459	/* Initialize the root inode. */
 460	rc = inode_doinit_with_dentry(root_inode, root);
 461
 462	/* Initialize any other inodes associated with the superblock, e.g.
 463	   inodes created prior to initial policy load or inodes created
 464	   during get_sb by a pseudo filesystem that directly
 465	   populates itself. */
 466	spin_lock(&sbsec->isec_lock);
 467next_inode:
 468	if (!list_empty(&sbsec->isec_head)) {
 469		struct inode_security_struct *isec =
 470				list_entry(sbsec->isec_head.next,
 471					   struct inode_security_struct, list);
 472		struct inode *inode = isec->inode;
 
 473		spin_unlock(&sbsec->isec_lock);
 474		inode = igrab(inode);
 475		if (inode) {
 476			if (!IS_PRIVATE(inode))
 477				inode_doinit(inode);
 478			iput(inode);
 479		}
 480		spin_lock(&sbsec->isec_lock);
 481		list_del_init(&isec->list);
 482		goto next_inode;
 483	}
 484	spin_unlock(&sbsec->isec_lock);
 485out:
 486	return rc;
 487}
 488
 489/*
 490 * This function should allow an FS to ask what it's mount security
 491 * options were so it can use those later for submounts, displaying
 492 * mount options, or whatever.
 493 */
 494static int selinux_get_mnt_opts(const struct super_block *sb,
 495				struct security_mnt_opts *opts)
 496{
 497	int rc = 0, i;
 498	struct superblock_security_struct *sbsec = sb->s_security;
 499	char *context = NULL;
 500	u32 len;
 501	char tmp;
 502
 503	security_init_mnt_opts(opts);
 504
 505	if (!(sbsec->flags & SE_SBINITIALIZED))
 506		return -EINVAL;
 507
 508	if (!ss_initialized)
 509		return -EINVAL;
 510
 511	/* make sure we always check enough bits to cover the mask */
 512	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 513
 514	tmp = sbsec->flags & SE_MNTMASK;
 515	/* count the number of mount options for this sb */
 516	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 517		if (tmp & 0x01)
 518			opts->num_mnt_opts++;
 519		tmp >>= 1;
 520	}
 521	/* Check if the Label support flag is set */
 522	if (sbsec->flags & SBLABEL_MNT)
 523		opts->num_mnt_opts++;
 524
 525	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 526	if (!opts->mnt_opts) {
 527		rc = -ENOMEM;
 528		goto out_free;
 529	}
 530
 531	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 532	if (!opts->mnt_opts_flags) {
 533		rc = -ENOMEM;
 534		goto out_free;
 535	}
 536
 537	i = 0;
 538	if (sbsec->flags & FSCONTEXT_MNT) {
 539		rc = security_sid_to_context(sbsec->sid, &context, &len);
 
 540		if (rc)
 541			goto out_free;
 542		opts->mnt_opts[i] = context;
 543		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 544	}
 545	if (sbsec->flags & CONTEXT_MNT) {
 546		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 
 
 547		if (rc)
 548			goto out_free;
 549		opts->mnt_opts[i] = context;
 550		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 551	}
 552	if (sbsec->flags & DEFCONTEXT_MNT) {
 553		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 
 554		if (rc)
 555			goto out_free;
 556		opts->mnt_opts[i] = context;
 557		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 558	}
 559	if (sbsec->flags & ROOTCONTEXT_MNT) {
 560		struct inode *root = sbsec->sb->s_root->d_inode;
 561		struct inode_security_struct *isec = root->i_security;
 562
 563		rc = security_sid_to_context(isec->sid, &context, &len);
 
 564		if (rc)
 565			goto out_free;
 566		opts->mnt_opts[i] = context;
 567		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 568	}
 569	if (sbsec->flags & SBLABEL_MNT) {
 570		opts->mnt_opts[i] = NULL;
 571		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 572	}
 573
 574	BUG_ON(i != opts->num_mnt_opts);
 575
 576	return 0;
 577
 578out_free:
 579	security_free_mnt_opts(opts);
 580	return rc;
 581}
 582
 583static int bad_option(struct superblock_security_struct *sbsec, char flag,
 584		      u32 old_sid, u32 new_sid)
 585{
 586	char mnt_flags = sbsec->flags & SE_MNTMASK;
 587
 588	/* check if the old mount command had the same options */
 589	if (sbsec->flags & SE_SBINITIALIZED)
 590		if (!(sbsec->flags & flag) ||
 591		    (old_sid != new_sid))
 592			return 1;
 593
 594	/* check if we were passed the same options twice,
 595	 * aka someone passed context=a,context=b
 596	 */
 597	if (!(sbsec->flags & SE_SBINITIALIZED))
 598		if (mnt_flags & flag)
 599			return 1;
 600	return 0;
 601}
 602
 603/*
 604 * Allow filesystems with binary mount data to explicitly set mount point
 605 * labeling information.
 606 */
 607static int selinux_set_mnt_opts(struct super_block *sb,
 608				struct security_mnt_opts *opts,
 609				unsigned long kern_flags,
 610				unsigned long *set_kern_flags)
 611{
 612	const struct cred *cred = current_cred();
 613	int rc = 0, i;
 614	struct superblock_security_struct *sbsec = sb->s_security;
 615	const char *name = sb->s_type->name;
 616	struct inode *inode = sbsec->sb->s_root->d_inode;
 617	struct inode_security_struct *root_isec = inode->i_security;
 618	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 619	u32 defcontext_sid = 0;
 620	char **mount_options = opts->mnt_opts;
 621	int *flags = opts->mnt_opts_flags;
 622	int num_opts = opts->num_mnt_opts;
 623
 624	mutex_lock(&sbsec->lock);
 625
 626	if (!ss_initialized) {
 627		if (!num_opts) {
 628			/* Defer initialization until selinux_complete_init,
 629			   after the initial policy is loaded and the security
 630			   server is ready to handle calls. */
 631			goto out;
 632		}
 633		rc = -EINVAL;
 634		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 635			"before the security server is initialized\n");
 636		goto out;
 637	}
 638	if (kern_flags && !set_kern_flags) {
 639		/* Specifying internal flags without providing a place to
 640		 * place the results is not allowed */
 641		rc = -EINVAL;
 642		goto out;
 643	}
 644
 645	/*
 646	 * Binary mount data FS will come through this function twice.  Once
 647	 * from an explicit call and once from the generic calls from the vfs.
 648	 * Since the generic VFS calls will not contain any security mount data
 649	 * we need to skip the double mount verification.
 650	 *
 651	 * This does open a hole in which we will not notice if the first
 652	 * mount using this sb set explict options and a second mount using
 653	 * this sb does not set any security options.  (The first options
 654	 * will be used for both mounts)
 655	 */
 656	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 657	    && (num_opts == 0))
 658		goto out;
 659
 
 
 660	/*
 661	 * parse the mount options, check if they are valid sids.
 662	 * also check if someone is trying to mount the same sb more
 663	 * than once with different security options.
 664	 */
 665	for (i = 0; i < num_opts; i++) {
 666		u32 sid;
 667
 668		if (flags[i] == SBLABEL_MNT)
 669			continue;
 670		rc = security_context_to_sid(mount_options[i],
 671					     strlen(mount_options[i]), &sid, GFP_KERNEL);
 
 672		if (rc) {
 673			printk(KERN_WARNING "SELinux: security_context_to_sid"
 674			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 675			       mount_options[i], sb->s_id, name, rc);
 676			goto out;
 677		}
 678		switch (flags[i]) {
 679		case FSCONTEXT_MNT:
 680			fscontext_sid = sid;
 681
 682			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 683					fscontext_sid))
 684				goto out_double_mount;
 685
 686			sbsec->flags |= FSCONTEXT_MNT;
 687			break;
 688		case CONTEXT_MNT:
 689			context_sid = sid;
 690
 691			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 692					context_sid))
 693				goto out_double_mount;
 694
 695			sbsec->flags |= CONTEXT_MNT;
 696			break;
 697		case ROOTCONTEXT_MNT:
 698			rootcontext_sid = sid;
 699
 700			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 701					rootcontext_sid))
 702				goto out_double_mount;
 703
 704			sbsec->flags |= ROOTCONTEXT_MNT;
 705
 706			break;
 707		case DEFCONTEXT_MNT:
 708			defcontext_sid = sid;
 709
 710			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 711					defcontext_sid))
 712				goto out_double_mount;
 713
 714			sbsec->flags |= DEFCONTEXT_MNT;
 715
 716			break;
 717		default:
 718			rc = -EINVAL;
 719			goto out;
 720		}
 721	}
 722
 723	if (sbsec->flags & SE_SBINITIALIZED) {
 724		/* previously mounted with options, but not on this attempt? */
 725		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 726			goto out_double_mount;
 727		rc = 0;
 728		goto out;
 729	}
 730
 731	if (strcmp(sb->s_type->name, "proc") == 0)
 732		sbsec->flags |= SE_SBPROC;
 
 
 
 
 
 
 
 
 733
 734	if (!sbsec->behavior) {
 735		/*
 736		 * Determine the labeling behavior to use for this
 737		 * filesystem type.
 738		 */
 739		rc = security_fs_use(sb);
 740		if (rc) {
 741			printk(KERN_WARNING
 742				"%s: security_fs_use(%s) returned %d\n",
 743					__func__, sb->s_type->name, rc);
 744			goto out;
 745		}
 746	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747	/* sets the context of the superblock for the fs being mounted. */
 748	if (fscontext_sid) {
 749		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 750		if (rc)
 751			goto out;
 752
 753		sbsec->sid = fscontext_sid;
 754	}
 755
 756	/*
 757	 * Switch to using mount point labeling behavior.
 758	 * sets the label used on all file below the mountpoint, and will set
 759	 * the superblock context if not already set.
 760	 */
 761	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 762		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 763		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 764	}
 765
 766	if (context_sid) {
 767		if (!fscontext_sid) {
 768			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 769							  cred);
 770			if (rc)
 771				goto out;
 772			sbsec->sid = context_sid;
 773		} else {
 774			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 775							     cred);
 776			if (rc)
 777				goto out;
 778		}
 779		if (!rootcontext_sid)
 780			rootcontext_sid = context_sid;
 781
 782		sbsec->mntpoint_sid = context_sid;
 783		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 784	}
 785
 786	if (rootcontext_sid) {
 787		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 788						     cred);
 789		if (rc)
 790			goto out;
 791
 792		root_isec->sid = rootcontext_sid;
 793		root_isec->initialized = 1;
 794	}
 795
 796	if (defcontext_sid) {
 797		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 798			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 799			rc = -EINVAL;
 800			printk(KERN_WARNING "SELinux: defcontext option is "
 801			       "invalid for this filesystem type\n");
 802			goto out;
 803		}
 804
 805		if (defcontext_sid != sbsec->def_sid) {
 806			rc = may_context_mount_inode_relabel(defcontext_sid,
 807							     sbsec, cred);
 808			if (rc)
 809				goto out;
 810		}
 811
 812		sbsec->def_sid = defcontext_sid;
 813	}
 814
 
 815	rc = sb_finish_set_opts(sb);
 816out:
 817	mutex_unlock(&sbsec->lock);
 818	return rc;
 819out_double_mount:
 820	rc = -EINVAL;
 821	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 822	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 823	goto out;
 824}
 825
 826static int selinux_cmp_sb_context(const struct super_block *oldsb,
 827				    const struct super_block *newsb)
 828{
 829	struct superblock_security_struct *old = oldsb->s_security;
 830	struct superblock_security_struct *new = newsb->s_security;
 831	char oldflags = old->flags & SE_MNTMASK;
 832	char newflags = new->flags & SE_MNTMASK;
 833
 834	if (oldflags != newflags)
 835		goto mismatch;
 836	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 837		goto mismatch;
 838	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 839		goto mismatch;
 840	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 841		goto mismatch;
 842	if (oldflags & ROOTCONTEXT_MNT) {
 843		struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
 844		struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
 845		if (oldroot->sid != newroot->sid)
 846			goto mismatch;
 847	}
 848	return 0;
 849mismatch:
 850	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 851			    "different security settings for (dev %s, "
 852			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 853	return -EBUSY;
 854}
 855
 856static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 857					struct super_block *newsb)
 
 
 858{
 
 859	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 860	struct superblock_security_struct *newsbsec = newsb->s_security;
 861
 862	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 863	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 864	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 865
 866	/*
 867	 * if the parent was able to be mounted it clearly had no special lsm
 868	 * mount options.  thus we can safely deal with this superblock later
 869	 */
 870	if (!ss_initialized)
 871		return 0;
 872
 
 
 
 
 
 
 
 873	/* how can we clone if the old one wasn't set up?? */
 874	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 875
 876	/* if fs is reusing a sb, make sure that the contexts match */
 877	if (newsbsec->flags & SE_SBINITIALIZED)
 878		return selinux_cmp_sb_context(oldsb, newsb);
 879
 880	mutex_lock(&newsbsec->lock);
 881
 882	newsbsec->flags = oldsbsec->flags;
 883
 884	newsbsec->sid = oldsbsec->sid;
 885	newsbsec->def_sid = oldsbsec->def_sid;
 886	newsbsec->behavior = oldsbsec->behavior;
 887
 
 
 
 
 
 
 
 
 
 
 
 
 888	if (set_context) {
 889		u32 sid = oldsbsec->mntpoint_sid;
 890
 891		if (!set_fscontext)
 892			newsbsec->sid = sid;
 893		if (!set_rootcontext) {
 894			struct inode *newinode = newsb->s_root->d_inode;
 895			struct inode_security_struct *newisec = newinode->i_security;
 896			newisec->sid = sid;
 897		}
 898		newsbsec->mntpoint_sid = sid;
 899	}
 900	if (set_rootcontext) {
 901		const struct inode *oldinode = oldsb->s_root->d_inode;
 902		const struct inode_security_struct *oldisec = oldinode->i_security;
 903		struct inode *newinode = newsb->s_root->d_inode;
 904		struct inode_security_struct *newisec = newinode->i_security;
 905
 906		newisec->sid = oldisec->sid;
 907	}
 908
 909	sb_finish_set_opts(newsb);
 
 910	mutex_unlock(&newsbsec->lock);
 911	return 0;
 912}
 913
 914static int selinux_parse_opts_str(char *options,
 915				  struct security_mnt_opts *opts)
 916{
 917	char *p;
 918	char *context = NULL, *defcontext = NULL;
 919	char *fscontext = NULL, *rootcontext = NULL;
 920	int rc, num_mnt_opts = 0;
 921
 922	opts->num_mnt_opts = 0;
 923
 924	/* Standard string-based options. */
 925	while ((p = strsep(&options, "|")) != NULL) {
 926		int token;
 927		substring_t args[MAX_OPT_ARGS];
 928
 929		if (!*p)
 930			continue;
 931
 932		token = match_token(p, tokens, args);
 933
 934		switch (token) {
 935		case Opt_context:
 936			if (context || defcontext) {
 937				rc = -EINVAL;
 938				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 939				goto out_err;
 940			}
 941			context = match_strdup(&args[0]);
 942			if (!context) {
 943				rc = -ENOMEM;
 944				goto out_err;
 945			}
 946			break;
 947
 948		case Opt_fscontext:
 949			if (fscontext) {
 950				rc = -EINVAL;
 951				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 952				goto out_err;
 953			}
 954			fscontext = match_strdup(&args[0]);
 955			if (!fscontext) {
 956				rc = -ENOMEM;
 957				goto out_err;
 958			}
 959			break;
 960
 961		case Opt_rootcontext:
 962			if (rootcontext) {
 963				rc = -EINVAL;
 964				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 965				goto out_err;
 966			}
 967			rootcontext = match_strdup(&args[0]);
 968			if (!rootcontext) {
 969				rc = -ENOMEM;
 970				goto out_err;
 971			}
 972			break;
 973
 974		case Opt_defcontext:
 975			if (context || defcontext) {
 976				rc = -EINVAL;
 977				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 978				goto out_err;
 979			}
 980			defcontext = match_strdup(&args[0]);
 981			if (!defcontext) {
 982				rc = -ENOMEM;
 983				goto out_err;
 984			}
 985			break;
 986		case Opt_labelsupport:
 987			break;
 988		default:
 989			rc = -EINVAL;
 990			printk(KERN_WARNING "SELinux:  unknown mount option\n");
 991			goto out_err;
 992
 993		}
 994	}
 995
 996	rc = -ENOMEM;
 997	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
 998	if (!opts->mnt_opts)
 999		goto out_err;
1000
1001	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1002	if (!opts->mnt_opts_flags) {
1003		kfree(opts->mnt_opts);
1004		goto out_err;
1005	}
1006
1007	if (fscontext) {
1008		opts->mnt_opts[num_mnt_opts] = fscontext;
1009		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1010	}
1011	if (context) {
1012		opts->mnt_opts[num_mnt_opts] = context;
1013		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1014	}
1015	if (rootcontext) {
1016		opts->mnt_opts[num_mnt_opts] = rootcontext;
1017		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1018	}
1019	if (defcontext) {
1020		opts->mnt_opts[num_mnt_opts] = defcontext;
1021		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1022	}
1023
1024	opts->num_mnt_opts = num_mnt_opts;
1025	return 0;
1026
1027out_err:
 
1028	kfree(context);
1029	kfree(defcontext);
1030	kfree(fscontext);
1031	kfree(rootcontext);
1032	return rc;
1033}
1034/*
1035 * string mount options parsing and call set the sbsec
1036 */
1037static int superblock_doinit(struct super_block *sb, void *data)
1038{
1039	int rc = 0;
1040	char *options = data;
1041	struct security_mnt_opts opts;
1042
1043	security_init_mnt_opts(&opts);
1044
1045	if (!data)
1046		goto out;
1047
1048	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1049
1050	rc = selinux_parse_opts_str(options, &opts);
1051	if (rc)
1052		goto out_err;
1053
1054out:
1055	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1056
1057out_err:
1058	security_free_mnt_opts(&opts);
1059	return rc;
1060}
1061
1062static void selinux_write_opts(struct seq_file *m,
1063			       struct security_mnt_opts *opts)
1064{
1065	int i;
1066	char *prefix;
1067
1068	for (i = 0; i < opts->num_mnt_opts; i++) {
1069		char *has_comma;
1070
1071		if (opts->mnt_opts[i])
1072			has_comma = strchr(opts->mnt_opts[i], ',');
1073		else
1074			has_comma = NULL;
1075
1076		switch (opts->mnt_opts_flags[i]) {
1077		case CONTEXT_MNT:
1078			prefix = CONTEXT_STR;
1079			break;
1080		case FSCONTEXT_MNT:
1081			prefix = FSCONTEXT_STR;
1082			break;
1083		case ROOTCONTEXT_MNT:
1084			prefix = ROOTCONTEXT_STR;
1085			break;
1086		case DEFCONTEXT_MNT:
1087			prefix = DEFCONTEXT_STR;
1088			break;
1089		case SBLABEL_MNT:
1090			seq_putc(m, ',');
1091			seq_puts(m, LABELSUPP_STR);
1092			continue;
1093		default:
1094			BUG();
1095			return;
1096		};
1097		/* we need a comma before each option */
1098		seq_putc(m, ',');
1099		seq_puts(m, prefix);
1100		if (has_comma)
1101			seq_putc(m, '\"');
1102		seq_puts(m, opts->mnt_opts[i]);
1103		if (has_comma)
1104			seq_putc(m, '\"');
1105	}
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110	struct security_mnt_opts opts;
1111	int rc;
1112
1113	rc = selinux_get_mnt_opts(sb, &opts);
1114	if (rc) {
1115		/* before policy load we may get EINVAL, don't show anything */
1116		if (rc == -EINVAL)
1117			rc = 0;
1118		return rc;
1119	}
1120
1121	selinux_write_opts(m, &opts);
1122
1123	security_free_mnt_opts(&opts);
1124
1125	return rc;
1126}
1127
1128static inline u16 inode_mode_to_security_class(umode_t mode)
1129{
1130	switch (mode & S_IFMT) {
1131	case S_IFSOCK:
1132		return SECCLASS_SOCK_FILE;
1133	case S_IFLNK:
1134		return SECCLASS_LNK_FILE;
1135	case S_IFREG:
1136		return SECCLASS_FILE;
1137	case S_IFBLK:
1138		return SECCLASS_BLK_FILE;
1139	case S_IFDIR:
1140		return SECCLASS_DIR;
1141	case S_IFCHR:
1142		return SECCLASS_CHR_FILE;
1143	case S_IFIFO:
1144		return SECCLASS_FIFO_FILE;
1145
1146	}
1147
1148	return SECCLASS_FILE;
1149}
1150
1151static inline int default_protocol_stream(int protocol)
1152{
1153	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1154}
1155
1156static inline int default_protocol_dgram(int protocol)
1157{
1158	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1159}
1160
1161static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1162{
 
 
1163	switch (family) {
1164	case PF_UNIX:
1165		switch (type) {
1166		case SOCK_STREAM:
1167		case SOCK_SEQPACKET:
1168			return SECCLASS_UNIX_STREAM_SOCKET;
1169		case SOCK_DGRAM:
 
1170			return SECCLASS_UNIX_DGRAM_SOCKET;
1171		}
1172		break;
1173	case PF_INET:
1174	case PF_INET6:
1175		switch (type) {
1176		case SOCK_STREAM:
 
1177			if (default_protocol_stream(protocol))
1178				return SECCLASS_TCP_SOCKET;
 
 
1179			else
1180				return SECCLASS_RAWIP_SOCKET;
1181		case SOCK_DGRAM:
1182			if (default_protocol_dgram(protocol))
1183				return SECCLASS_UDP_SOCKET;
 
 
 
1184			else
1185				return SECCLASS_RAWIP_SOCKET;
1186		case SOCK_DCCP:
1187			return SECCLASS_DCCP_SOCKET;
1188		default:
1189			return SECCLASS_RAWIP_SOCKET;
1190		}
1191		break;
1192	case PF_NETLINK:
1193		switch (protocol) {
1194		case NETLINK_ROUTE:
1195			return SECCLASS_NETLINK_ROUTE_SOCKET;
1196		case NETLINK_FIREWALL:
1197			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1198		case NETLINK_SOCK_DIAG:
1199			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1200		case NETLINK_NFLOG:
1201			return SECCLASS_NETLINK_NFLOG_SOCKET;
1202		case NETLINK_XFRM:
1203			return SECCLASS_NETLINK_XFRM_SOCKET;
1204		case NETLINK_SELINUX:
1205			return SECCLASS_NETLINK_SELINUX_SOCKET;
 
 
1206		case NETLINK_AUDIT:
1207			return SECCLASS_NETLINK_AUDIT_SOCKET;
1208		case NETLINK_IP6_FW:
1209			return SECCLASS_NETLINK_IP6FW_SOCKET;
 
 
 
 
1210		case NETLINK_DNRTMSG:
1211			return SECCLASS_NETLINK_DNRT_SOCKET;
1212		case NETLINK_KOBJECT_UEVENT:
1213			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
 
 
 
 
 
 
 
 
1214		default:
1215			return SECCLASS_NETLINK_SOCKET;
1216		}
1217	case PF_PACKET:
1218		return SECCLASS_PACKET_SOCKET;
1219	case PF_KEY:
1220		return SECCLASS_KEY_SOCKET;
1221	case PF_APPLETALK:
1222		return SECCLASS_APPLETALK_SOCKET;
1223	}
1224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225	return SECCLASS_SOCKET;
1226}
1227
1228#ifdef CONFIG_PROC_FS
1229static int selinux_proc_get_sid(struct dentry *dentry,
1230				u16 tclass,
1231				u32 *sid)
1232{
1233	int rc;
 
1234	char *buffer, *path;
1235
1236	buffer = (char *)__get_free_page(GFP_KERNEL);
1237	if (!buffer)
1238		return -ENOMEM;
1239
1240	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1241	if (IS_ERR(path))
1242		rc = PTR_ERR(path);
1243	else {
1244		/* each process gets a /proc/PID/ entry. Strip off the
1245		 * PID part to get a valid selinux labeling.
1246		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1247		while (path[1] >= '0' && path[1] <= '9') {
1248			path[1] = '/';
1249			path++;
 
 
1250		}
1251		rc = security_genfs_sid("proc", path, tclass, sid);
 
1252	}
1253	free_page((unsigned long)buffer);
1254	return rc;
1255}
1256#else
1257static int selinux_proc_get_sid(struct dentry *dentry,
1258				u16 tclass,
1259				u32 *sid)
1260{
1261	return -EINVAL;
1262}
1263#endif
1264
1265/* The inode's security attributes must be initialized before first use. */
1266static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1267{
1268	struct superblock_security_struct *sbsec = NULL;
1269	struct inode_security_struct *isec = inode->i_security;
1270	u32 sid;
 
1271	struct dentry *dentry;
1272#define INITCONTEXTLEN 255
1273	char *context = NULL;
1274	unsigned len = 0;
1275	int rc = 0;
1276
1277	if (isec->initialized)
1278		goto out;
1279
1280	mutex_lock(&isec->lock);
1281	if (isec->initialized)
1282		goto out_unlock;
1283
 
 
 
1284	sbsec = inode->i_sb->s_security;
1285	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1286		/* Defer initialization until selinux_complete_init,
1287		   after the initial policy is loaded and the security
1288		   server is ready to handle calls. */
1289		spin_lock(&sbsec->isec_lock);
1290		if (list_empty(&isec->list))
1291			list_add(&isec->list, &sbsec->isec_head);
1292		spin_unlock(&sbsec->isec_lock);
1293		goto out_unlock;
1294	}
1295
 
 
 
 
 
 
1296	switch (sbsec->behavior) {
1297	case SECURITY_FS_USE_NATIVE:
1298		break;
1299	case SECURITY_FS_USE_XATTR:
1300		if (!inode->i_op->getxattr) {
1301			isec->sid = sbsec->def_sid;
1302			break;
1303		}
1304
1305		/* Need a dentry, since the xattr API requires one.
1306		   Life would be simpler if we could just pass the inode. */
1307		if (opt_dentry) {
1308			/* Called from d_instantiate or d_splice_alias. */
1309			dentry = dget(opt_dentry);
1310		} else {
1311			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1312			dentry = d_find_alias(inode);
 
 
1313		}
1314		if (!dentry) {
1315			/*
1316			 * this is can be hit on boot when a file is accessed
1317			 * before the policy is loaded.  When we load policy we
1318			 * may find inodes that have no dentry on the
1319			 * sbsec->isec_head list.  No reason to complain as these
1320			 * will get fixed up the next time we go through
1321			 * inode_doinit with a dentry, before these inodes could
1322			 * be used again by userspace.
1323			 */
1324			goto out_unlock;
1325		}
1326
1327		len = INITCONTEXTLEN;
1328		context = kmalloc(len+1, GFP_NOFS);
1329		if (!context) {
1330			rc = -ENOMEM;
1331			dput(dentry);
1332			goto out_unlock;
1333		}
1334		context[len] = '\0';
1335		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1336					   context, len);
1337		if (rc == -ERANGE) {
1338			kfree(context);
1339
1340			/* Need a larger buffer.  Query for the right size. */
1341			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1342						   NULL, 0);
1343			if (rc < 0) {
1344				dput(dentry);
1345				goto out_unlock;
1346			}
1347			len = rc;
1348			context = kmalloc(len+1, GFP_NOFS);
1349			if (!context) {
1350				rc = -ENOMEM;
1351				dput(dentry);
1352				goto out_unlock;
1353			}
1354			context[len] = '\0';
1355			rc = inode->i_op->getxattr(dentry,
1356						   XATTR_NAME_SELINUX,
1357						   context, len);
1358		}
1359		dput(dentry);
1360		if (rc < 0) {
1361			if (rc != -ENODATA) {
1362				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1363				       "%d for dev=%s ino=%ld\n", __func__,
1364				       -rc, inode->i_sb->s_id, inode->i_ino);
1365				kfree(context);
1366				goto out_unlock;
1367			}
1368			/* Map ENODATA to the default file SID */
1369			sid = sbsec->def_sid;
1370			rc = 0;
1371		} else {
1372			rc = security_context_to_sid_default(context, rc, &sid,
 
1373							     sbsec->def_sid,
1374							     GFP_NOFS);
1375			if (rc) {
1376				char *dev = inode->i_sb->s_id;
1377				unsigned long ino = inode->i_ino;
1378
1379				if (rc == -EINVAL) {
1380					if (printk_ratelimit())
1381						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1382							"context=%s.  This indicates you may need to relabel the inode or the "
1383							"filesystem in question.\n", ino, dev, context);
1384				} else {
1385					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1386					       "returned %d for dev=%s ino=%ld\n",
1387					       __func__, context, -rc, dev, ino);
1388				}
1389				kfree(context);
1390				/* Leave with the unlabeled SID */
1391				rc = 0;
1392				break;
1393			}
1394		}
1395		kfree(context);
1396		isec->sid = sid;
1397		break;
1398	case SECURITY_FS_USE_TASK:
1399		isec->sid = isec->task_sid;
1400		break;
1401	case SECURITY_FS_USE_TRANS:
1402		/* Default to the fs SID. */
1403		isec->sid = sbsec->sid;
1404
1405		/* Try to obtain a transition SID. */
1406		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1408					     isec->sclass, NULL, &sid);
1409		if (rc)
1410			goto out_unlock;
1411		isec->sid = sid;
1412		break;
1413	case SECURITY_FS_USE_MNTPOINT:
1414		isec->sid = sbsec->mntpoint_sid;
1415		break;
1416	default:
1417		/* Default to the fs superblock SID. */
1418		isec->sid = sbsec->sid;
1419
1420		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1421			/* We must have a dentry to determine the label on
1422			 * procfs inodes */
1423			if (opt_dentry)
1424				/* Called from d_instantiate or
1425				 * d_splice_alias. */
1426				dentry = dget(opt_dentry);
1427			else
1428				/* Called from selinux_complete_init, try to
1429				 * find a dentry. */
 
 
1430				dentry = d_find_alias(inode);
 
 
 
1431			/*
1432			 * This can be hit on boot when a file is accessed
1433			 * before the policy is loaded.  When we load policy we
1434			 * may find inodes that have no dentry on the
1435			 * sbsec->isec_head list.  No reason to complain as
1436			 * these will get fixed up the next time we go through
1437			 * inode_doinit() with a dentry, before these inodes
1438			 * could be used again by userspace.
1439			 */
1440			if (!dentry)
1441				goto out_unlock;
1442			isec->sclass = inode_mode_to_security_class(inode->i_mode);
1443			rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1444			dput(dentry);
1445			if (rc)
1446				goto out_unlock;
1447			isec->sid = sid;
1448		}
1449		break;
1450	}
1451
1452	isec->initialized = 1;
 
 
 
 
 
 
 
 
 
 
1453
1454out_unlock:
1455	mutex_unlock(&isec->lock);
1456out:
1457	if (isec->sclass == SECCLASS_FILE)
1458		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1459	return rc;
1460}
1461
1462/* Convert a Linux signal to an access vector. */
1463static inline u32 signal_to_av(int sig)
1464{
1465	u32 perm = 0;
1466
1467	switch (sig) {
1468	case SIGCHLD:
1469		/* Commonly granted from child to parent. */
1470		perm = PROCESS__SIGCHLD;
1471		break;
1472	case SIGKILL:
1473		/* Cannot be caught or ignored */
1474		perm = PROCESS__SIGKILL;
1475		break;
1476	case SIGSTOP:
1477		/* Cannot be caught or ignored */
1478		perm = PROCESS__SIGSTOP;
1479		break;
1480	default:
1481		/* All other signals. */
1482		perm = PROCESS__SIGNAL;
1483		break;
1484	}
1485
1486	return perm;
1487}
1488
1489/*
1490 * Check permission between a pair of credentials
1491 * fork check, ptrace check, etc.
1492 */
1493static int cred_has_perm(const struct cred *actor,
1494			 const struct cred *target,
1495			 u32 perms)
1496{
1497	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1498
1499	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1500}
1501
1502/*
1503 * Check permission between a pair of tasks, e.g. signal checks,
1504 * fork check, ptrace check, etc.
1505 * tsk1 is the actor and tsk2 is the target
1506 * - this uses the default subjective creds of tsk1
1507 */
1508static int task_has_perm(const struct task_struct *tsk1,
1509			 const struct task_struct *tsk2,
1510			 u32 perms)
1511{
1512	const struct task_security_struct *__tsec1, *__tsec2;
1513	u32 sid1, sid2;
1514
1515	rcu_read_lock();
1516	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1517	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1518	rcu_read_unlock();
1519	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1520}
1521
1522/*
1523 * Check permission between current and another task, e.g. signal checks,
1524 * fork check, ptrace check, etc.
1525 * current is the actor and tsk2 is the target
1526 * - this uses current's subjective creds
1527 */
1528static int current_has_perm(const struct task_struct *tsk,
1529			    u32 perms)
1530{
1531	u32 sid, tsid;
1532
1533	sid = current_sid();
1534	tsid = task_sid(tsk);
1535	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1536}
1537
1538#if CAP_LAST_CAP > 63
1539#error Fix SELinux to handle capabilities > 63.
1540#endif
1541
1542/* Check whether a task is allowed to use a capability. */
1543static int cred_has_capability(const struct cred *cred,
1544			       int cap, int audit)
1545{
1546	struct common_audit_data ad;
1547	struct av_decision avd;
1548	u16 sclass;
1549	u32 sid = cred_sid(cred);
1550	u32 av = CAP_TO_MASK(cap);
1551	int rc;
1552
1553	ad.type = LSM_AUDIT_DATA_CAP;
1554	ad.u.cap = cap;
1555
1556	switch (CAP_TO_INDEX(cap)) {
1557	case 0:
1558		sclass = SECCLASS_CAPABILITY;
1559		break;
1560	case 1:
1561		sclass = SECCLASS_CAPABILITY2;
1562		break;
1563	default:
1564		printk(KERN_ERR
1565		       "SELinux:  out of range capability %d\n", cap);
1566		BUG();
1567		return -EINVAL;
1568	}
1569
1570	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
 
1571	if (audit == SECURITY_CAP_AUDIT) {
1572		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
 
1573		if (rc2)
1574			return rc2;
1575	}
1576	return rc;
1577}
1578
1579/* Check whether a task is allowed to use a system operation. */
1580static int task_has_system(struct task_struct *tsk,
1581			   u32 perms)
1582{
1583	u32 sid = task_sid(tsk);
1584
1585	return avc_has_perm(sid, SECINITSID_KERNEL,
1586			    SECCLASS_SYSTEM, perms, NULL);
1587}
1588
1589/* Check whether a task has a particular permission to an inode.
1590   The 'adp' parameter is optional and allows other audit
1591   data to be passed (e.g. the dentry). */
1592static int inode_has_perm(const struct cred *cred,
1593			  struct inode *inode,
1594			  u32 perms,
1595			  struct common_audit_data *adp)
1596{
1597	struct inode_security_struct *isec;
1598	u32 sid;
1599
1600	validate_creds(cred);
1601
1602	if (unlikely(IS_PRIVATE(inode)))
1603		return 0;
1604
1605	sid = cred_sid(cred);
1606	isec = inode->i_security;
1607
1608	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1609}
1610
1611/* Same as inode_has_perm, but pass explicit audit data containing
1612   the dentry to help the auditing code to more easily generate the
1613   pathname if needed. */
1614static inline int dentry_has_perm(const struct cred *cred,
1615				  struct dentry *dentry,
1616				  u32 av)
1617{
1618	struct inode *inode = dentry->d_inode;
1619	struct common_audit_data ad;
1620
1621	ad.type = LSM_AUDIT_DATA_DENTRY;
1622	ad.u.dentry = dentry;
 
1623	return inode_has_perm(cred, inode, av, &ad);
1624}
1625
1626/* Same as inode_has_perm, but pass explicit audit data containing
1627   the path to help the auditing code to more easily generate the
1628   pathname if needed. */
1629static inline int path_has_perm(const struct cred *cred,
1630				struct path *path,
1631				u32 av)
1632{
1633	struct inode *inode = path->dentry->d_inode;
1634	struct common_audit_data ad;
1635
1636	ad.type = LSM_AUDIT_DATA_PATH;
1637	ad.u.path = *path;
 
1638	return inode_has_perm(cred, inode, av, &ad);
1639}
1640
1641/* Same as path_has_perm, but uses the inode from the file struct. */
1642static inline int file_path_has_perm(const struct cred *cred,
1643				     struct file *file,
1644				     u32 av)
1645{
1646	struct common_audit_data ad;
1647
1648	ad.type = LSM_AUDIT_DATA_PATH;
1649	ad.u.path = file->f_path;
1650	return inode_has_perm(cred, file_inode(file), av, &ad);
1651}
1652
 
 
 
 
1653/* Check whether a task can use an open file descriptor to
1654   access an inode in a given way.  Check access to the
1655   descriptor itself, and then use dentry_has_perm to
1656   check a particular permission to the file.
1657   Access to the descriptor is implicitly granted if it
1658   has the same SID as the process.  If av is zero, then
1659   access to the file is not checked, e.g. for cases
1660   where only the descriptor is affected like seek. */
1661static int file_has_perm(const struct cred *cred,
1662			 struct file *file,
1663			 u32 av)
1664{
1665	struct file_security_struct *fsec = file->f_security;
1666	struct inode *inode = file_inode(file);
1667	struct common_audit_data ad;
1668	u32 sid = cred_sid(cred);
1669	int rc;
1670
1671	ad.type = LSM_AUDIT_DATA_PATH;
1672	ad.u.path = file->f_path;
1673
1674	if (sid != fsec->sid) {
1675		rc = avc_has_perm(sid, fsec->sid,
 
1676				  SECCLASS_FD,
1677				  FD__USE,
1678				  &ad);
1679		if (rc)
1680			goto out;
1681	}
1682
 
 
 
 
 
 
1683	/* av is zero if only checking access to the descriptor. */
1684	rc = 0;
1685	if (av)
1686		rc = inode_has_perm(cred, inode, av, &ad);
1687
1688out:
1689	return rc;
1690}
1691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692/* Check whether a task can create a file. */
1693static int may_create(struct inode *dir,
1694		      struct dentry *dentry,
1695		      u16 tclass)
1696{
1697	const struct task_security_struct *tsec = current_security();
1698	struct inode_security_struct *dsec;
1699	struct superblock_security_struct *sbsec;
1700	u32 sid, newsid;
1701	struct common_audit_data ad;
1702	int rc;
1703
1704	dsec = dir->i_security;
1705	sbsec = dir->i_sb->s_security;
1706
1707	sid = tsec->sid;
1708	newsid = tsec->create_sid;
1709
1710	ad.type = LSM_AUDIT_DATA_DENTRY;
1711	ad.u.dentry = dentry;
1712
1713	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1714			  DIR__ADD_NAME | DIR__SEARCH,
1715			  &ad);
1716	if (rc)
1717		return rc;
1718
1719	if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1720		rc = security_transition_sid(sid, dsec->sid, tclass,
1721					     &dentry->d_name, &newsid);
1722		if (rc)
1723			return rc;
1724	}
1725
1726	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1727	if (rc)
1728		return rc;
1729
1730	return avc_has_perm(newsid, sbsec->sid,
 
1731			    SECCLASS_FILESYSTEM,
1732			    FILESYSTEM__ASSOCIATE, &ad);
1733}
1734
1735/* Check whether a task can create a key. */
1736static int may_create_key(u32 ksid,
1737			  struct task_struct *ctx)
1738{
1739	u32 sid = task_sid(ctx);
1740
1741	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1742}
1743
1744#define MAY_LINK	0
1745#define MAY_UNLINK	1
1746#define MAY_RMDIR	2
1747
1748/* Check whether a task can link, unlink, or rmdir a file/directory. */
1749static int may_link(struct inode *dir,
1750		    struct dentry *dentry,
1751		    int kind)
1752
1753{
1754	struct inode_security_struct *dsec, *isec;
1755	struct common_audit_data ad;
1756	u32 sid = current_sid();
1757	u32 av;
1758	int rc;
1759
1760	dsec = dir->i_security;
1761	isec = dentry->d_inode->i_security;
1762
1763	ad.type = LSM_AUDIT_DATA_DENTRY;
1764	ad.u.dentry = dentry;
1765
1766	av = DIR__SEARCH;
1767	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1768	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1769	if (rc)
1770		return rc;
1771
1772	switch (kind) {
1773	case MAY_LINK:
1774		av = FILE__LINK;
1775		break;
1776	case MAY_UNLINK:
1777		av = FILE__UNLINK;
1778		break;
1779	case MAY_RMDIR:
1780		av = DIR__RMDIR;
1781		break;
1782	default:
1783		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1784			__func__, kind);
1785		return 0;
1786	}
1787
1788	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1789	return rc;
1790}
1791
1792static inline int may_rename(struct inode *old_dir,
1793			     struct dentry *old_dentry,
1794			     struct inode *new_dir,
1795			     struct dentry *new_dentry)
1796{
1797	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1798	struct common_audit_data ad;
1799	u32 sid = current_sid();
1800	u32 av;
1801	int old_is_dir, new_is_dir;
1802	int rc;
1803
1804	old_dsec = old_dir->i_security;
1805	old_isec = old_dentry->d_inode->i_security;
1806	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1807	new_dsec = new_dir->i_security;
1808
1809	ad.type = LSM_AUDIT_DATA_DENTRY;
1810
1811	ad.u.dentry = old_dentry;
1812	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1813			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1814	if (rc)
1815		return rc;
1816	rc = avc_has_perm(sid, old_isec->sid,
 
1817			  old_isec->sclass, FILE__RENAME, &ad);
1818	if (rc)
1819		return rc;
1820	if (old_is_dir && new_dir != old_dir) {
1821		rc = avc_has_perm(sid, old_isec->sid,
 
1822				  old_isec->sclass, DIR__REPARENT, &ad);
1823		if (rc)
1824			return rc;
1825	}
1826
1827	ad.u.dentry = new_dentry;
1828	av = DIR__ADD_NAME | DIR__SEARCH;
1829	if (new_dentry->d_inode)
1830		av |= DIR__REMOVE_NAME;
1831	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1832	if (rc)
1833		return rc;
1834	if (new_dentry->d_inode) {
1835		new_isec = new_dentry->d_inode->i_security;
1836		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1837		rc = avc_has_perm(sid, new_isec->sid,
 
1838				  new_isec->sclass,
1839				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1840		if (rc)
1841			return rc;
1842	}
1843
1844	return 0;
1845}
1846
1847/* Check whether a task can perform a filesystem operation. */
1848static int superblock_has_perm(const struct cred *cred,
1849			       struct super_block *sb,
1850			       u32 perms,
1851			       struct common_audit_data *ad)
1852{
1853	struct superblock_security_struct *sbsec;
1854	u32 sid = cred_sid(cred);
1855
1856	sbsec = sb->s_security;
1857	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1858}
1859
1860/* Convert a Linux mode and permission mask to an access vector. */
1861static inline u32 file_mask_to_av(int mode, int mask)
1862{
1863	u32 av = 0;
1864
1865	if (!S_ISDIR(mode)) {
1866		if (mask & MAY_EXEC)
1867			av |= FILE__EXECUTE;
1868		if (mask & MAY_READ)
1869			av |= FILE__READ;
1870
1871		if (mask & MAY_APPEND)
1872			av |= FILE__APPEND;
1873		else if (mask & MAY_WRITE)
1874			av |= FILE__WRITE;
1875
1876	} else {
1877		if (mask & MAY_EXEC)
1878			av |= DIR__SEARCH;
1879		if (mask & MAY_WRITE)
1880			av |= DIR__WRITE;
1881		if (mask & MAY_READ)
1882			av |= DIR__READ;
1883	}
1884
1885	return av;
1886}
1887
1888/* Convert a Linux file to an access vector. */
1889static inline u32 file_to_av(struct file *file)
1890{
1891	u32 av = 0;
1892
1893	if (file->f_mode & FMODE_READ)
1894		av |= FILE__READ;
1895	if (file->f_mode & FMODE_WRITE) {
1896		if (file->f_flags & O_APPEND)
1897			av |= FILE__APPEND;
1898		else
1899			av |= FILE__WRITE;
1900	}
1901	if (!av) {
1902		/*
1903		 * Special file opened with flags 3 for ioctl-only use.
1904		 */
1905		av = FILE__IOCTL;
1906	}
1907
1908	return av;
1909}
1910
1911/*
1912 * Convert a file to an access vector and include the correct open
1913 * open permission.
1914 */
1915static inline u32 open_file_to_av(struct file *file)
1916{
1917	u32 av = file_to_av(file);
 
1918
1919	if (selinux_policycap_openperm)
 
1920		av |= FILE__OPEN;
1921
1922	return av;
1923}
1924
1925/* Hook functions begin here. */
1926
1927static int selinux_ptrace_access_check(struct task_struct *child,
1928				     unsigned int mode)
 
 
 
 
 
 
 
 
 
 
1929{
 
 
 
1930	int rc;
1931
1932	rc = cap_ptrace_access_check(child, mode);
1933	if (rc)
1934		return rc;
 
 
 
 
 
 
 
 
 
1935
1936	if (mode & PTRACE_MODE_READ) {
1937		u32 sid = current_sid();
1938		u32 csid = task_sid(child);
1939		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1940	}
1941
1942	return current_has_perm(child, PROCESS__PTRACE);
 
 
1943}
1944
1945static int selinux_ptrace_traceme(struct task_struct *parent)
 
 
1946{
 
 
 
 
 
1947	int rc;
1948
1949	rc = cap_ptrace_traceme(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950	if (rc)
1951		return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952
1953	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
 
 
1954}
1955
1956static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1957			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1958{
1959	int error;
1960
1961	error = current_has_perm(target, PROCESS__GETCAP);
1962	if (error)
1963		return error;
1964
1965	return cap_capget(target, effective, inheritable, permitted);
1966}
1967
1968static int selinux_capset(struct cred *new, const struct cred *old,
1969			  const kernel_cap_t *effective,
1970			  const kernel_cap_t *inheritable,
1971			  const kernel_cap_t *permitted)
1972{
1973	int error;
1974
1975	error = cap_capset(new, old,
1976				      effective, inheritable, permitted);
1977	if (error)
1978		return error;
1979
1980	return cred_has_perm(old, new, PROCESS__SETCAP);
1981}
1982
1983/*
1984 * (This comment used to live with the selinux_task_setuid hook,
1985 * which was removed).
1986 *
1987 * Since setuid only affects the current process, and since the SELinux
1988 * controls are not based on the Linux identity attributes, SELinux does not
1989 * need to control this operation.  However, SELinux does control the use of
1990 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1991 */
1992
1993static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1994			   int cap, int audit)
1995{
1996	int rc;
1997
1998	rc = cap_capable(cred, ns, cap, audit);
1999	if (rc)
2000		return rc;
2001
2002	return cred_has_capability(cred, cap, audit);
2003}
2004
2005static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2006{
2007	const struct cred *cred = current_cred();
2008	int rc = 0;
2009
2010	if (!sb)
2011		return 0;
2012
2013	switch (cmds) {
2014	case Q_SYNC:
2015	case Q_QUOTAON:
2016	case Q_QUOTAOFF:
2017	case Q_SETINFO:
2018	case Q_SETQUOTA:
2019		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2020		break;
2021	case Q_GETFMT:
2022	case Q_GETINFO:
2023	case Q_GETQUOTA:
2024		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2025		break;
2026	default:
2027		rc = 0;  /* let the kernel handle invalid cmds */
2028		break;
2029	}
2030	return rc;
2031}
2032
2033static int selinux_quota_on(struct dentry *dentry)
2034{
2035	const struct cred *cred = current_cred();
2036
2037	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2038}
2039
2040static int selinux_syslog(int type)
2041{
2042	int rc;
2043
2044	switch (type) {
2045	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2046	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2047		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2048		break;
 
2049	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2050	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2051	/* Set level of messages printed to console */
2052	case SYSLOG_ACTION_CONSOLE_LEVEL:
2053		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2054		break;
2055	case SYSLOG_ACTION_CLOSE:	/* Close log */
2056	case SYSLOG_ACTION_OPEN:	/* Open log */
2057	case SYSLOG_ACTION_READ:	/* Read from log */
2058	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2059	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2060	default:
2061		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2062		break;
2063	}
2064	return rc;
2065}
2066
2067/*
2068 * Check that a process has enough memory to allocate a new virtual
2069 * mapping. 0 means there is enough memory for the allocation to
2070 * succeed and -ENOMEM implies there is not.
2071 *
2072 * Do not audit the selinux permission check, as this is applied to all
2073 * processes that allocate mappings.
2074 */
2075static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2076{
2077	int rc, cap_sys_admin = 0;
2078
2079	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2080			     SECURITY_CAP_NOAUDIT);
2081	if (rc == 0)
2082		cap_sys_admin = 1;
2083
2084	return __vm_enough_memory(mm, pages, cap_sys_admin);
2085}
2086
2087/* binprm security operations */
2088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2090{
2091	const struct task_security_struct *old_tsec;
2092	struct task_security_struct *new_tsec;
2093	struct inode_security_struct *isec;
2094	struct common_audit_data ad;
2095	struct inode *inode = file_inode(bprm->file);
2096	int rc;
2097
2098	rc = cap_bprm_set_creds(bprm);
2099	if (rc)
2100		return rc;
2101
2102	/* SELinux context only depends on initial program or script and not
2103	 * the script interpreter */
2104	if (bprm->cred_prepared)
2105		return 0;
2106
2107	old_tsec = current_security();
2108	new_tsec = bprm->cred->security;
2109	isec = inode->i_security;
2110
2111	/* Default to the current task SID. */
2112	new_tsec->sid = old_tsec->sid;
2113	new_tsec->osid = old_tsec->sid;
2114
2115	/* Reset fs, key, and sock SIDs on execve. */
2116	new_tsec->create_sid = 0;
2117	new_tsec->keycreate_sid = 0;
2118	new_tsec->sockcreate_sid = 0;
2119
2120	if (old_tsec->exec_sid) {
2121		new_tsec->sid = old_tsec->exec_sid;
2122		/* Reset exec SID on execve. */
2123		new_tsec->exec_sid = 0;
2124
2125		/*
2126		 * Minimize confusion: if no_new_privs and a transition is
2127		 * explicitly requested, then fail the exec.
2128		 */
2129		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2130			return -EPERM;
2131	} else {
2132		/* Check for a default transition on this program. */
2133		rc = security_transition_sid(old_tsec->sid, isec->sid,
2134					     SECCLASS_PROCESS, NULL,
2135					     &new_tsec->sid);
2136		if (rc)
2137			return rc;
 
 
 
 
 
 
 
 
2138	}
2139
2140	ad.type = LSM_AUDIT_DATA_PATH;
2141	ad.u.path = bprm->file->f_path;
2142
2143	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2144	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2145		new_tsec->sid = old_tsec->sid;
2146
2147	if (new_tsec->sid == old_tsec->sid) {
2148		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2149				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2150		if (rc)
2151			return rc;
2152	} else {
2153		/* Check permissions for the transition. */
2154		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2155				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2156		if (rc)
2157			return rc;
2158
2159		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2160				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2161		if (rc)
2162			return rc;
2163
2164		/* Check for shared state */
2165		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2167					  SECCLASS_PROCESS, PROCESS__SHARE,
2168					  NULL);
2169			if (rc)
2170				return -EPERM;
2171		}
2172
2173		/* Make sure that anyone attempting to ptrace over a task that
2174		 * changes its SID has the appropriate permit */
2175		if (bprm->unsafe &
2176		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177			struct task_struct *tracer;
2178			struct task_security_struct *sec;
2179			u32 ptsid = 0;
2180
2181			rcu_read_lock();
2182			tracer = ptrace_parent(current);
2183			if (likely(tracer != NULL)) {
2184				sec = __task_cred(tracer)->security;
2185				ptsid = sec->sid;
2186			}
2187			rcu_read_unlock();
2188
2189			if (ptsid != 0) {
2190				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2191						  SECCLASS_PROCESS,
2192						  PROCESS__PTRACE, NULL);
2193				if (rc)
2194					return -EPERM;
2195			}
2196		}
2197
2198		/* Clear any possibly unsafe personality bits on exec: */
2199		bprm->per_clear |= PER_CLEAR_ON_SETID;
2200	}
2201
2202	return 0;
2203}
2204
2205static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2206{
2207	const struct task_security_struct *tsec = current_security();
2208	u32 sid, osid;
2209	int atsecure = 0;
2210
2211	sid = tsec->sid;
2212	osid = tsec->osid;
2213
2214	if (osid != sid) {
2215		/* Enable secure mode for SIDs transitions unless
2216		   the noatsecure permission is granted between
2217		   the two SIDs, i.e. ahp returns 0. */
2218		atsecure = avc_has_perm(osid, sid,
2219					SECCLASS_PROCESS,
2220					PROCESS__NOATSECURE, NULL);
 
 
2221	}
2222
2223	return (atsecure || cap_bprm_secureexec(bprm));
2224}
2225
2226static int match_file(const void *p, struct file *file, unsigned fd)
2227{
2228	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2229}
2230
2231/* Derived from fs/exec.c:flush_old_files. */
2232static inline void flush_unauthorized_files(const struct cred *cred,
2233					    struct files_struct *files)
2234{
2235	struct file *file, *devnull = NULL;
2236	struct tty_struct *tty;
2237	int drop_tty = 0;
2238	unsigned n;
2239
2240	tty = get_current_tty();
2241	if (tty) {
2242		spin_lock(&tty_files_lock);
2243		if (!list_empty(&tty->tty_files)) {
2244			struct tty_file_private *file_priv;
2245
2246			/* Revalidate access to controlling tty.
2247			   Use file_path_has_perm on the tty path directly
2248			   rather than using file_has_perm, as this particular
2249			   open file may belong to another process and we are
2250			   only interested in the inode-based check here. */
2251			file_priv = list_first_entry(&tty->tty_files,
2252						struct tty_file_private, list);
2253			file = file_priv->file;
2254			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2255				drop_tty = 1;
2256		}
2257		spin_unlock(&tty_files_lock);
2258		tty_kref_put(tty);
2259	}
2260	/* Reset controlling tty. */
2261	if (drop_tty)
2262		no_tty();
2263
2264	/* Revalidate access to inherited open files. */
2265	n = iterate_fd(files, 0, match_file, cred);
2266	if (!n) /* none found? */
2267		return;
2268
2269	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2270	if (IS_ERR(devnull))
2271		devnull = NULL;
2272	/* replace all the matching ones with this */
2273	do {
2274		replace_fd(n - 1, devnull, 0);
2275	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2276	if (devnull)
2277		fput(devnull);
2278}
2279
2280/*
2281 * Prepare a process for imminent new credential changes due to exec
2282 */
2283static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2284{
2285	struct task_security_struct *new_tsec;
2286	struct rlimit *rlim, *initrlim;
2287	int rc, i;
2288
2289	new_tsec = bprm->cred->security;
2290	if (new_tsec->sid == new_tsec->osid)
2291		return;
2292
2293	/* Close files for which the new task SID is not authorized. */
2294	flush_unauthorized_files(bprm->cred, current->files);
2295
2296	/* Always clear parent death signal on SID transitions. */
2297	current->pdeath_signal = 0;
2298
2299	/* Check whether the new SID can inherit resource limits from the old
2300	 * SID.  If not, reset all soft limits to the lower of the current
2301	 * task's hard limit and the init task's soft limit.
2302	 *
2303	 * Note that the setting of hard limits (even to lower them) can be
2304	 * controlled by the setrlimit check.  The inclusion of the init task's
2305	 * soft limit into the computation is to avoid resetting soft limits
2306	 * higher than the default soft limit for cases where the default is
2307	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2308	 */
2309	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2310			  PROCESS__RLIMITINH, NULL);
2311	if (rc) {
2312		/* protect against do_prlimit() */
2313		task_lock(current);
2314		for (i = 0; i < RLIM_NLIMITS; i++) {
2315			rlim = current->signal->rlim + i;
2316			initrlim = init_task.signal->rlim + i;
2317			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2318		}
2319		task_unlock(current);
2320		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
 
2321	}
2322}
2323
2324/*
2325 * Clean up the process immediately after the installation of new credentials
2326 * due to exec
2327 */
2328static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2329{
2330	const struct task_security_struct *tsec = current_security();
2331	struct itimerval itimer;
2332	u32 osid, sid;
2333	int rc, i;
2334
2335	osid = tsec->osid;
2336	sid = tsec->sid;
2337
2338	if (sid == osid)
2339		return;
2340
2341	/* Check whether the new SID can inherit signal state from the old SID.
2342	 * If not, clear itimers to avoid subsequent signal generation and
2343	 * flush and unblock signals.
2344	 *
2345	 * This must occur _after_ the task SID has been updated so that any
2346	 * kill done after the flush will be checked against the new SID.
2347	 */
2348	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2349	if (rc) {
2350		memset(&itimer, 0, sizeof itimer);
2351		for (i = 0; i < 3; i++)
2352			do_setitimer(i, &itimer, NULL);
 
 
2353		spin_lock_irq(&current->sighand->siglock);
2354		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2355			__flush_signals(current);
 
2356			flush_signal_handlers(current, 1);
2357			sigemptyset(&current->blocked);
 
2358		}
2359		spin_unlock_irq(&current->sighand->siglock);
2360	}
2361
2362	/* Wake up the parent if it is waiting so that it can recheck
2363	 * wait permission to the new task SID. */
2364	read_lock(&tasklist_lock);
2365	__wake_up_parent(current, current->real_parent);
2366	read_unlock(&tasklist_lock);
2367}
2368
2369/* superblock security operations */
2370
2371static int selinux_sb_alloc_security(struct super_block *sb)
2372{
2373	return superblock_alloc_security(sb);
2374}
2375
2376static void selinux_sb_free_security(struct super_block *sb)
2377{
2378	superblock_free_security(sb);
2379}
2380
2381static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2382{
2383	if (plen > olen)
2384		return 0;
2385
2386	return !memcmp(prefix, option, plen);
2387}
2388
2389static inline int selinux_option(char *option, int len)
2390{
2391	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2392		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2393		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2394		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2395		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2396}
2397
2398static inline void take_option(char **to, char *from, int *first, int len)
2399{
2400	if (!*first) {
2401		**to = ',';
2402		*to += 1;
2403	} else
2404		*first = 0;
2405	memcpy(*to, from, len);
2406	*to += len;
2407}
2408
2409static inline void take_selinux_option(char **to, char *from, int *first,
2410				       int len)
2411{
2412	int current_size = 0;
2413
2414	if (!*first) {
2415		**to = '|';
2416		*to += 1;
2417	} else
2418		*first = 0;
2419
2420	while (current_size < len) {
2421		if (*from != '"') {
2422			**to = *from;
2423			*to += 1;
2424		}
2425		from += 1;
2426		current_size += 1;
2427	}
2428}
2429
2430static int selinux_sb_copy_data(char *orig, char *copy)
2431{
2432	int fnosec, fsec, rc = 0;
2433	char *in_save, *in_curr, *in_end;
2434	char *sec_curr, *nosec_save, *nosec;
2435	int open_quote = 0;
2436
2437	in_curr = orig;
2438	sec_curr = copy;
2439
2440	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2441	if (!nosec) {
2442		rc = -ENOMEM;
2443		goto out;
2444	}
2445
2446	nosec_save = nosec;
2447	fnosec = fsec = 1;
2448	in_save = in_end = orig;
2449
2450	do {
2451		if (*in_end == '"')
2452			open_quote = !open_quote;
2453		if ((*in_end == ',' && open_quote == 0) ||
2454				*in_end == '\0') {
2455			int len = in_end - in_curr;
2456
2457			if (selinux_option(in_curr, len))
2458				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2459			else
2460				take_option(&nosec, in_curr, &fnosec, len);
2461
2462			in_curr = in_end + 1;
2463		}
2464	} while (*in_end++);
2465
2466	strcpy(in_save, nosec_save);
2467	free_page((unsigned long)nosec_save);
2468out:
2469	return rc;
2470}
2471
2472static int selinux_sb_remount(struct super_block *sb, void *data)
2473{
2474	int rc, i, *flags;
2475	struct security_mnt_opts opts;
2476	char *secdata, **mount_options;
2477	struct superblock_security_struct *sbsec = sb->s_security;
2478
2479	if (!(sbsec->flags & SE_SBINITIALIZED))
2480		return 0;
2481
2482	if (!data)
2483		return 0;
2484
2485	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2486		return 0;
2487
2488	security_init_mnt_opts(&opts);
2489	secdata = alloc_secdata();
2490	if (!secdata)
2491		return -ENOMEM;
2492	rc = selinux_sb_copy_data(data, secdata);
2493	if (rc)
2494		goto out_free_secdata;
2495
2496	rc = selinux_parse_opts_str(secdata, &opts);
2497	if (rc)
2498		goto out_free_secdata;
2499
2500	mount_options = opts.mnt_opts;
2501	flags = opts.mnt_opts_flags;
2502
2503	for (i = 0; i < opts.num_mnt_opts; i++) {
2504		u32 sid;
2505		size_t len;
2506
2507		if (flags[i] == SBLABEL_MNT)
2508			continue;
2509		len = strlen(mount_options[i]);
2510		rc = security_context_to_sid(mount_options[i], len, &sid,
2511					     GFP_KERNEL);
2512		if (rc) {
2513			printk(KERN_WARNING "SELinux: security_context_to_sid"
2514			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2515			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2516			goto out_free_opts;
2517		}
2518		rc = -EINVAL;
2519		switch (flags[i]) {
2520		case FSCONTEXT_MNT:
2521			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2522				goto out_bad_option;
2523			break;
2524		case CONTEXT_MNT:
2525			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2526				goto out_bad_option;
2527			break;
2528		case ROOTCONTEXT_MNT: {
2529			struct inode_security_struct *root_isec;
2530			root_isec = sb->s_root->d_inode->i_security;
2531
2532			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2533				goto out_bad_option;
2534			break;
2535		}
2536		case DEFCONTEXT_MNT:
2537			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2538				goto out_bad_option;
2539			break;
2540		default:
2541			goto out_free_opts;
2542		}
2543	}
2544
2545	rc = 0;
2546out_free_opts:
2547	security_free_mnt_opts(&opts);
2548out_free_secdata:
2549	free_secdata(secdata);
2550	return rc;
2551out_bad_option:
2552	printk(KERN_WARNING "SELinux: unable to change security options "
2553	       "during remount (dev %s, type=%s)\n", sb->s_id,
2554	       sb->s_type->name);
2555	goto out_free_opts;
2556}
2557
2558static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2559{
2560	const struct cred *cred = current_cred();
2561	struct common_audit_data ad;
2562	int rc;
2563
2564	rc = superblock_doinit(sb, data);
2565	if (rc)
2566		return rc;
2567
2568	/* Allow all mounts performed by the kernel */
2569	if (flags & MS_KERNMOUNT)
2570		return 0;
2571
2572	ad.type = LSM_AUDIT_DATA_DENTRY;
2573	ad.u.dentry = sb->s_root;
2574	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2575}
2576
2577static int selinux_sb_statfs(struct dentry *dentry)
2578{
2579	const struct cred *cred = current_cred();
2580	struct common_audit_data ad;
2581
2582	ad.type = LSM_AUDIT_DATA_DENTRY;
2583	ad.u.dentry = dentry->d_sb->s_root;
2584	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2585}
2586
2587static int selinux_mount(const char *dev_name,
2588			 struct path *path,
2589			 const char *type,
2590			 unsigned long flags,
2591			 void *data)
2592{
2593	const struct cred *cred = current_cred();
2594
2595	if (flags & MS_REMOUNT)
2596		return superblock_has_perm(cred, path->dentry->d_sb,
2597					   FILESYSTEM__REMOUNT, NULL);
2598	else
2599		return path_has_perm(cred, path, FILE__MOUNTON);
2600}
2601
2602static int selinux_umount(struct vfsmount *mnt, int flags)
2603{
2604	const struct cred *cred = current_cred();
2605
2606	return superblock_has_perm(cred, mnt->mnt_sb,
2607				   FILESYSTEM__UNMOUNT, NULL);
2608}
2609
2610/* inode security operations */
2611
2612static int selinux_inode_alloc_security(struct inode *inode)
2613{
2614	return inode_alloc_security(inode);
2615}
2616
2617static void selinux_inode_free_security(struct inode *inode)
2618{
2619	inode_free_security(inode);
2620}
2621
2622static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2623					struct qstr *name, void **ctx,
2624					u32 *ctxlen)
2625{
2626	const struct cred *cred = current_cred();
2627	struct task_security_struct *tsec;
2628	struct inode_security_struct *dsec;
2629	struct superblock_security_struct *sbsec;
2630	struct inode *dir = dentry->d_parent->d_inode;
2631	u32 newsid;
2632	int rc;
2633
2634	tsec = cred->security;
2635	dsec = dir->i_security;
2636	sbsec = dir->i_sb->s_security;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637
2638	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2639		newsid = tsec->create_sid;
2640	} else {
2641		rc = security_transition_sid(tsec->sid, dsec->sid,
2642					     inode_mode_to_security_class(mode),
2643					     name,
2644					     &newsid);
2645		if (rc) {
2646			printk(KERN_WARNING
2647				"%s: security_transition_sid failed, rc=%d\n",
2648			       __func__, -rc);
2649			return rc;
2650		}
2651	}
2652
2653	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
 
 
2654}
2655
2656static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2657				       const struct qstr *qstr,
2658				       const char **name,
2659				       void **value, size_t *len)
2660{
2661	const struct task_security_struct *tsec = current_security();
2662	struct inode_security_struct *dsec;
2663	struct superblock_security_struct *sbsec;
2664	u32 sid, newsid, clen;
2665	int rc;
2666	char *context;
2667
2668	dsec = dir->i_security;
2669	sbsec = dir->i_sb->s_security;
2670
2671	sid = tsec->sid;
2672	newsid = tsec->create_sid;
2673
2674	if ((sbsec->flags & SE_SBINITIALIZED) &&
2675	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2676		newsid = sbsec->mntpoint_sid;
2677	else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2678		rc = security_transition_sid(sid, dsec->sid,
2679					     inode_mode_to_security_class(inode->i_mode),
2680					     qstr, &newsid);
2681		if (rc) {
2682			printk(KERN_WARNING "%s:  "
2683			       "security_transition_sid failed, rc=%d (dev=%s "
2684			       "ino=%ld)\n",
2685			       __func__,
2686			       -rc, inode->i_sb->s_id, inode->i_ino);
2687			return rc;
2688		}
2689	}
2690
2691	/* Possibly defer initialization to selinux_complete_init. */
2692	if (sbsec->flags & SE_SBINITIALIZED) {
2693		struct inode_security_struct *isec = inode->i_security;
2694		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2695		isec->sid = newsid;
2696		isec->initialized = 1;
2697	}
2698
2699	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2700		return -EOPNOTSUPP;
2701
2702	if (name)
2703		*name = XATTR_SELINUX_SUFFIX;
2704
2705	if (value && len) {
2706		rc = security_sid_to_context_force(newsid, &context, &clen);
 
2707		if (rc)
2708			return rc;
2709		*value = context;
2710		*len = clen;
2711	}
2712
2713	return 0;
2714}
2715
2716static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2717{
2718	return may_create(dir, dentry, SECCLASS_FILE);
2719}
2720
2721static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2722{
2723	return may_link(dir, old_dentry, MAY_LINK);
2724}
2725
2726static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2727{
2728	return may_link(dir, dentry, MAY_UNLINK);
2729}
2730
2731static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2732{
2733	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2734}
2735
2736static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2737{
2738	return may_create(dir, dentry, SECCLASS_DIR);
2739}
2740
2741static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2742{
2743	return may_link(dir, dentry, MAY_RMDIR);
2744}
2745
2746static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2747{
2748	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2749}
2750
2751static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2752				struct inode *new_inode, struct dentry *new_dentry)
2753{
2754	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2755}
2756
2757static int selinux_inode_readlink(struct dentry *dentry)
2758{
2759	const struct cred *cred = current_cred();
2760
2761	return dentry_has_perm(cred, dentry, FILE__READ);
2762}
2763
2764static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
 
2765{
2766	const struct cred *cred = current_cred();
 
 
 
 
 
2767
2768	return dentry_has_perm(cred, dentry, FILE__READ);
 
 
 
 
 
 
 
 
 
2769}
2770
2771static noinline int audit_inode_permission(struct inode *inode,
2772					   u32 perms, u32 audited, u32 denied,
 
2773					   unsigned flags)
2774{
2775	struct common_audit_data ad;
2776	struct inode_security_struct *isec = inode->i_security;
2777	int rc;
2778
2779	ad.type = LSM_AUDIT_DATA_INODE;
2780	ad.u.inode = inode;
2781
2782	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2783			    audited, denied, &ad, flags);
 
2784	if (rc)
2785		return rc;
2786	return 0;
2787}
2788
2789static int selinux_inode_permission(struct inode *inode, int mask)
2790{
2791	const struct cred *cred = current_cred();
2792	u32 perms;
2793	bool from_access;
2794	unsigned flags = mask & MAY_NOT_BLOCK;
2795	struct inode_security_struct *isec;
2796	u32 sid;
2797	struct av_decision avd;
2798	int rc, rc2;
2799	u32 audited, denied;
2800
2801	from_access = mask & MAY_ACCESS;
2802	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2803
2804	/* No permission to check.  Existence test. */
2805	if (!mask)
2806		return 0;
2807
2808	validate_creds(cred);
2809
2810	if (unlikely(IS_PRIVATE(inode)))
2811		return 0;
2812
2813	perms = file_mask_to_av(inode->i_mode, mask);
2814
2815	sid = cred_sid(cred);
2816	isec = inode->i_security;
 
 
2817
2818	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
 
2819	audited = avc_audit_required(perms, &avd, rc,
2820				     from_access ? FILE__AUDIT_ACCESS : 0,
2821				     &denied);
2822	if (likely(!audited))
2823		return rc;
2824
2825	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2826	if (rc2)
2827		return rc2;
2828	return rc;
2829}
2830
2831static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2832{
2833	const struct cred *cred = current_cred();
 
2834	unsigned int ia_valid = iattr->ia_valid;
2835	__u32 av = FILE__WRITE;
2836
2837	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2838	if (ia_valid & ATTR_FORCE) {
2839		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2840			      ATTR_FORCE);
2841		if (!ia_valid)
2842			return 0;
2843	}
2844
2845	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2846			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2847		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2848
2849	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
 
 
 
2850		av |= FILE__OPEN;
2851
2852	return dentry_has_perm(cred, dentry, av);
2853}
2854
2855static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2856{
2857	const struct cred *cred = current_cred();
2858	struct path path;
2859
2860	path.dentry = dentry;
2861	path.mnt = mnt;
2862
2863	return path_has_perm(cred, &path, FILE__GETATTR);
2864}
2865
2866static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2867{
2868	const struct cred *cred = current_cred();
 
2869
2870	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2871		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2872		if (!strcmp(name, XATTR_NAME_CAPS)) {
2873			if (!capable(CAP_SETFCAP))
2874				return -EPERM;
2875		} else if (!capable(CAP_SYS_ADMIN)) {
2876			/* A different attribute in the security namespace.
2877			   Restrict to administrator. */
2878			return -EPERM;
2879		}
2880	}
2881
2882	/* Not an attribute we recognize, so just check the
2883	   ordinary setattr permission. */
2884	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2885}
2886
2887static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2888				  const void *value, size_t size, int flags)
2889{
2890	struct inode *inode = dentry->d_inode;
2891	struct inode_security_struct *isec = inode->i_security;
2892	struct superblock_security_struct *sbsec;
2893	struct common_audit_data ad;
2894	u32 newsid, sid = current_sid();
2895	int rc = 0;
2896
2897	if (strcmp(name, XATTR_NAME_SELINUX))
2898		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
2899
2900	sbsec = inode->i_sb->s_security;
2901	if (!(sbsec->flags & SBLABEL_MNT))
2902		return -EOPNOTSUPP;
2903
2904	if (!inode_owner_or_capable(inode))
2905		return -EPERM;
2906
2907	ad.type = LSM_AUDIT_DATA_DENTRY;
2908	ad.u.dentry = dentry;
2909
2910	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
 
2911			  FILE__RELABELFROM, &ad);
2912	if (rc)
2913		return rc;
2914
2915	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
2916	if (rc == -EINVAL) {
2917		if (!capable(CAP_MAC_ADMIN)) {
2918			struct audit_buffer *ab;
2919			size_t audit_size;
2920			const char *str;
2921
2922			/* We strip a nul only if it is at the end, otherwise the
2923			 * context contains a nul and we should audit that */
2924			if (value) {
2925				str = value;
 
2926				if (str[size - 1] == '\0')
2927					audit_size = size - 1;
2928				else
2929					audit_size = size;
2930			} else {
2931				str = "";
2932				audit_size = 0;
2933			}
2934			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2935			audit_log_format(ab, "op=setxattr invalid_context=");
2936			audit_log_n_untrustedstring(ab, value, audit_size);
2937			audit_log_end(ab);
2938
2939			return rc;
2940		}
2941		rc = security_context_to_sid_force(value, size, &newsid);
 
2942	}
2943	if (rc)
2944		return rc;
2945
2946	rc = avc_has_perm(sid, newsid, isec->sclass,
 
2947			  FILE__RELABELTO, &ad);
2948	if (rc)
2949		return rc;
2950
2951	rc = security_validate_transition(isec->sid, newsid, sid,
2952					  isec->sclass);
2953	if (rc)
2954		return rc;
2955
2956	return avc_has_perm(newsid,
 
2957			    sbsec->sid,
2958			    SECCLASS_FILESYSTEM,
2959			    FILESYSTEM__ASSOCIATE,
2960			    &ad);
2961}
2962
2963static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2964					const void *value, size_t size,
2965					int flags)
2966{
2967	struct inode *inode = dentry->d_inode;
2968	struct inode_security_struct *isec = inode->i_security;
2969	u32 newsid;
2970	int rc;
2971
2972	if (strcmp(name, XATTR_NAME_SELINUX)) {
2973		/* Not an attribute we recognize, so nothing to do. */
2974		return;
2975	}
2976
2977	rc = security_context_to_sid_force(value, size, &newsid);
 
2978	if (rc) {
2979		printk(KERN_ERR "SELinux:  unable to map context to SID"
2980		       "for (%s, %lu), rc=%d\n",
2981		       inode->i_sb->s_id, inode->i_ino, -rc);
2982		return;
2983	}
2984
 
 
2985	isec->sclass = inode_mode_to_security_class(inode->i_mode);
2986	isec->sid = newsid;
2987	isec->initialized = 1;
 
2988
2989	return;
2990}
2991
2992static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2993{
2994	const struct cred *cred = current_cred();
2995
2996	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2997}
2998
2999static int selinux_inode_listxattr(struct dentry *dentry)
3000{
3001	const struct cred *cred = current_cred();
3002
3003	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3004}
3005
3006static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3007{
3008	if (strcmp(name, XATTR_NAME_SELINUX))
3009		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
3010
3011	/* No one is allowed to remove a SELinux security label.
3012	   You can change the label, but all data must be labeled. */
3013	return -EACCES;
3014}
3015
3016/*
3017 * Copy the inode security context value to the user.
3018 *
3019 * Permission check is handled by selinux_inode_getxattr hook.
3020 */
3021static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3022{
3023	u32 size;
3024	int error;
3025	char *context = NULL;
3026	struct inode_security_struct *isec = inode->i_security;
3027
3028	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3029		return -EOPNOTSUPP;
3030
3031	/*
3032	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3033	 * value even if it is not defined by current policy; otherwise,
3034	 * use the in-core value under current policy.
3035	 * Use the non-auditing forms of the permission checks since
3036	 * getxattr may be called by unprivileged processes commonly
3037	 * and lack of permission just means that we fall back to the
3038	 * in-core context value, not a denial.
3039	 */
3040	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3041				SECURITY_CAP_NOAUDIT);
3042	if (!error)
3043		error = security_sid_to_context_force(isec->sid, &context,
3044						      &size);
3045	else
3046		error = security_sid_to_context(isec->sid, &context, &size);
 
3047	if (error)
3048		return error;
3049	error = size;
3050	if (alloc) {
3051		*buffer = context;
3052		goto out_nofree;
3053	}
3054	kfree(context);
3055out_nofree:
3056	return error;
3057}
3058
3059static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3060				     const void *value, size_t size, int flags)
3061{
3062	struct inode_security_struct *isec = inode->i_security;
3063	u32 newsid;
3064	int rc;
3065
3066	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3067		return -EOPNOTSUPP;
3068
3069	if (!value || !size)
3070		return -EACCES;
3071
3072	rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
 
3073	if (rc)
3074		return rc;
3075
 
3076	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3077	isec->sid = newsid;
3078	isec->initialized = 1;
 
3079	return 0;
3080}
3081
3082static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3083{
3084	const int len = sizeof(XATTR_NAME_SELINUX);
3085	if (buffer && len <= buffer_size)
3086		memcpy(buffer, XATTR_NAME_SELINUX, len);
3087	return len;
3088}
3089
3090static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3091{
3092	struct inode_security_struct *isec = inode->i_security;
3093	*secid = isec->sid;
3094}
3095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3096/* file security operations */
3097
3098static int selinux_revalidate_file_permission(struct file *file, int mask)
3099{
3100	const struct cred *cred = current_cred();
3101	struct inode *inode = file_inode(file);
3102
3103	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3104	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3105		mask |= MAY_APPEND;
3106
3107	return file_has_perm(cred, file,
3108			     file_mask_to_av(inode->i_mode, mask));
3109}
3110
3111static int selinux_file_permission(struct file *file, int mask)
3112{
3113	struct inode *inode = file_inode(file);
3114	struct file_security_struct *fsec = file->f_security;
3115	struct inode_security_struct *isec = inode->i_security;
3116	u32 sid = current_sid();
3117
3118	if (!mask)
3119		/* No permission to check.  Existence test. */
3120		return 0;
3121
 
3122	if (sid == fsec->sid && fsec->isid == isec->sid &&
3123	    fsec->pseqno == avc_policy_seqno())
3124		/* No change since file_open check. */
3125		return 0;
3126
3127	return selinux_revalidate_file_permission(file, mask);
3128}
3129
3130static int selinux_file_alloc_security(struct file *file)
3131{
3132	return file_alloc_security(file);
3133}
3134
3135static void selinux_file_free_security(struct file *file)
3136{
3137	file_free_security(file);
3138}
3139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3140static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3141			      unsigned long arg)
3142{
3143	const struct cred *cred = current_cred();
3144	int error = 0;
3145
3146	switch (cmd) {
3147	case FIONREAD:
3148	/* fall through */
3149	case FIBMAP:
3150	/* fall through */
3151	case FIGETBSZ:
3152	/* fall through */
3153	case FS_IOC_GETFLAGS:
3154	/* fall through */
3155	case FS_IOC_GETVERSION:
3156		error = file_has_perm(cred, file, FILE__GETATTR);
3157		break;
3158
3159	case FS_IOC_SETFLAGS:
3160	/* fall through */
3161	case FS_IOC_SETVERSION:
3162		error = file_has_perm(cred, file, FILE__SETATTR);
3163		break;
3164
3165	/* sys_ioctl() checks */
3166	case FIONBIO:
3167	/* fall through */
3168	case FIOASYNC:
3169		error = file_has_perm(cred, file, 0);
3170		break;
3171
3172	case KDSKBENT:
3173	case KDSKBSENT:
3174		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3175					    SECURITY_CAP_AUDIT);
3176		break;
3177
3178	/* default case assumes that the command will go
3179	 * to the file's ioctl() function.
3180	 */
3181	default:
3182		error = file_has_perm(cred, file, FILE__IOCTL);
3183	}
3184	return error;
3185}
3186
3187static int default_noexec;
3188
3189static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3190{
3191	const struct cred *cred = current_cred();
 
3192	int rc = 0;
3193
3194	if (default_noexec &&
3195	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
 
3196		/*
3197		 * We are making executable an anonymous mapping or a
3198		 * private file mapping that will also be writable.
3199		 * This has an additional check.
3200		 */
3201		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3202		if (rc)
3203			goto error;
3204	}
3205
3206	if (file) {
3207		/* read access is always possible with a mapping */
3208		u32 av = FILE__READ;
3209
3210		/* write access only matters if the mapping is shared */
3211		if (shared && (prot & PROT_WRITE))
3212			av |= FILE__WRITE;
3213
3214		if (prot & PROT_EXEC)
3215			av |= FILE__EXECUTE;
3216
3217		return file_has_perm(cred, file, av);
3218	}
3219
3220error:
3221	return rc;
3222}
3223
3224static int selinux_mmap_addr(unsigned long addr)
3225{
3226	int rc;
3227
3228	/* do DAC check on address space usage */
3229	rc = cap_mmap_addr(addr);
3230	if (rc)
3231		return rc;
3232
3233	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3234		u32 sid = current_sid();
3235		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3236				  MEMPROTECT__MMAP_ZERO, NULL);
3237	}
3238
3239	return rc;
3240}
3241
3242static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3243			     unsigned long prot, unsigned long flags)
3244{
3245	if (selinux_checkreqprot)
 
 
 
 
 
 
 
 
 
 
 
 
3246		prot = reqprot;
3247
3248	return file_map_prot_check(file, prot,
3249				   (flags & MAP_TYPE) == MAP_SHARED);
3250}
3251
3252static int selinux_file_mprotect(struct vm_area_struct *vma,
3253				 unsigned long reqprot,
3254				 unsigned long prot)
3255{
3256	const struct cred *cred = current_cred();
 
3257
3258	if (selinux_checkreqprot)
3259		prot = reqprot;
3260
3261	if (default_noexec &&
3262	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3263		int rc = 0;
3264		if (vma->vm_start >= vma->vm_mm->start_brk &&
3265		    vma->vm_end <= vma->vm_mm->brk) {
3266			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3267		} else if (!vma->vm_file &&
3268			   vma->vm_start <= vma->vm_mm->start_stack &&
3269			   vma->vm_end >= vma->vm_mm->start_stack) {
3270			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
 
3271		} else if (vma->vm_file && vma->anon_vma) {
3272			/*
3273			 * We are making executable a file mapping that has
3274			 * had some COW done. Since pages might have been
3275			 * written, check ability to execute the possibly
3276			 * modified content.  This typically should only
3277			 * occur for text relocations.
3278			 */
3279			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3280		}
3281		if (rc)
3282			return rc;
3283	}
3284
3285	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3286}
3287
3288static int selinux_file_lock(struct file *file, unsigned int cmd)
3289{
3290	const struct cred *cred = current_cred();
3291
3292	return file_has_perm(cred, file, FILE__LOCK);
3293}
3294
3295static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3296			      unsigned long arg)
3297{
3298	const struct cred *cred = current_cred();
3299	int err = 0;
3300
3301	switch (cmd) {
3302	case F_SETFL:
3303		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3304			err = file_has_perm(cred, file, FILE__WRITE);
3305			break;
3306		}
3307		/* fall through */
3308	case F_SETOWN:
3309	case F_SETSIG:
3310	case F_GETFL:
3311	case F_GETOWN:
3312	case F_GETSIG:
3313	case F_GETOWNER_UIDS:
3314		/* Just check FD__USE permission */
3315		err = file_has_perm(cred, file, 0);
3316		break;
3317	case F_GETLK:
3318	case F_SETLK:
3319	case F_SETLKW:
3320	case F_OFD_GETLK:
3321	case F_OFD_SETLK:
3322	case F_OFD_SETLKW:
3323#if BITS_PER_LONG == 32
3324	case F_GETLK64:
3325	case F_SETLK64:
3326	case F_SETLKW64:
3327#endif
3328		err = file_has_perm(cred, file, FILE__LOCK);
3329		break;
3330	}
3331
3332	return err;
3333}
3334
3335static int selinux_file_set_fowner(struct file *file)
3336{
3337	struct file_security_struct *fsec;
3338
3339	fsec = file->f_security;
3340	fsec->fown_sid = current_sid();
3341
3342	return 0;
3343}
3344
3345static int selinux_file_send_sigiotask(struct task_struct *tsk,
3346				       struct fown_struct *fown, int signum)
3347{
3348	struct file *file;
3349	u32 sid = task_sid(tsk);
3350	u32 perm;
3351	struct file_security_struct *fsec;
3352
3353	/* struct fown_struct is never outside the context of a struct file */
3354	file = container_of(fown, struct file, f_owner);
3355
3356	fsec = file->f_security;
3357
3358	if (!signum)
3359		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3360	else
3361		perm = signal_to_av(signum);
3362
3363	return avc_has_perm(fsec->fown_sid, sid,
 
3364			    SECCLASS_PROCESS, perm, NULL);
3365}
3366
3367static int selinux_file_receive(struct file *file)
3368{
3369	const struct cred *cred = current_cred();
3370
3371	return file_has_perm(cred, file, file_to_av(file));
3372}
3373
3374static int selinux_file_open(struct file *file, const struct cred *cred)
3375{
3376	struct file_security_struct *fsec;
3377	struct inode_security_struct *isec;
3378
3379	fsec = file->f_security;
3380	isec = file_inode(file)->i_security;
3381	/*
3382	 * Save inode label and policy sequence number
3383	 * at open-time so that selinux_file_permission
3384	 * can determine whether revalidation is necessary.
3385	 * Task label is already saved in the file security
3386	 * struct as its SID.
3387	 */
3388	fsec->isid = isec->sid;
3389	fsec->pseqno = avc_policy_seqno();
3390	/*
3391	 * Since the inode label or policy seqno may have changed
3392	 * between the selinux_inode_permission check and the saving
3393	 * of state above, recheck that access is still permitted.
3394	 * Otherwise, access might never be revalidated against the
3395	 * new inode label or new policy.
3396	 * This check is not redundant - do not remove.
3397	 */
3398	return file_path_has_perm(cred, file, open_file_to_av(file));
3399}
3400
3401/* task security operations */
3402
3403static int selinux_task_create(unsigned long clone_flags)
 
3404{
3405	return current_has_perm(current, PROCESS__FORK);
 
 
 
3406}
3407
3408/*
3409 * allocate the SELinux part of blank credentials
3410 */
3411static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3412{
3413	struct task_security_struct *tsec;
3414
3415	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3416	if (!tsec)
3417		return -ENOMEM;
3418
3419	cred->security = tsec;
3420	return 0;
3421}
3422
3423/*
3424 * detach and free the LSM part of a set of credentials
3425 */
3426static void selinux_cred_free(struct cred *cred)
3427{
3428	struct task_security_struct *tsec = cred->security;
3429
3430	/*
3431	 * cred->security == NULL if security_cred_alloc_blank() or
3432	 * security_prepare_creds() returned an error.
3433	 */
3434	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3435	cred->security = (void *) 0x7UL;
3436	kfree(tsec);
3437}
3438
3439/*
3440 * prepare a new set of credentials for modification
3441 */
3442static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3443				gfp_t gfp)
3444{
3445	const struct task_security_struct *old_tsec;
3446	struct task_security_struct *tsec;
3447
3448	old_tsec = old->security;
3449
3450	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3451	if (!tsec)
3452		return -ENOMEM;
3453
3454	new->security = tsec;
3455	return 0;
3456}
3457
3458/*
3459 * transfer the SELinux data to a blank set of creds
3460 */
3461static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3462{
3463	const struct task_security_struct *old_tsec = old->security;
3464	struct task_security_struct *tsec = new->security;
3465
3466	*tsec = *old_tsec;
3467}
3468
 
 
 
 
 
3469/*
3470 * set the security data for a kernel service
3471 * - all the creation contexts are set to unlabelled
3472 */
3473static int selinux_kernel_act_as(struct cred *new, u32 secid)
3474{
3475	struct task_security_struct *tsec = new->security;
3476	u32 sid = current_sid();
3477	int ret;
3478
3479	ret = avc_has_perm(sid, secid,
 
3480			   SECCLASS_KERNEL_SERVICE,
3481			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3482			   NULL);
3483	if (ret == 0) {
3484		tsec->sid = secid;
3485		tsec->create_sid = 0;
3486		tsec->keycreate_sid = 0;
3487		tsec->sockcreate_sid = 0;
3488	}
3489	return ret;
3490}
3491
3492/*
3493 * set the file creation context in a security record to the same as the
3494 * objective context of the specified inode
3495 */
3496static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3497{
3498	struct inode_security_struct *isec = inode->i_security;
3499	struct task_security_struct *tsec = new->security;
3500	u32 sid = current_sid();
3501	int ret;
3502
3503	ret = avc_has_perm(sid, isec->sid,
 
3504			   SECCLASS_KERNEL_SERVICE,
3505			   KERNEL_SERVICE__CREATE_FILES_AS,
3506			   NULL);
3507
3508	if (ret == 0)
3509		tsec->create_sid = isec->sid;
3510	return ret;
3511}
3512
3513static int selinux_kernel_module_request(char *kmod_name)
3514{
3515	u32 sid;
3516	struct common_audit_data ad;
3517
3518	sid = task_sid(current);
3519
3520	ad.type = LSM_AUDIT_DATA_KMOD;
3521	ad.u.kmod_name = kmod_name;
3522
3523	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3524			    SYSTEM__MODULE_REQUEST, &ad);
3525}
3526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3528{
3529	return current_has_perm(p, PROCESS__SETPGID);
 
 
3530}
3531
3532static int selinux_task_getpgid(struct task_struct *p)
3533{
3534	return current_has_perm(p, PROCESS__GETPGID);
 
 
3535}
3536
3537static int selinux_task_getsid(struct task_struct *p)
3538{
3539	return current_has_perm(p, PROCESS__GETSESSION);
 
 
3540}
3541
3542static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3543{
3544	*secid = task_sid(p);
3545}
3546
3547static int selinux_task_setnice(struct task_struct *p, int nice)
3548{
3549	int rc;
3550
3551	rc = cap_task_setnice(p, nice);
3552	if (rc)
3553		return rc;
3554
3555	return current_has_perm(p, PROCESS__SETSCHED);
3556}
3557
3558static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3559{
3560	int rc;
 
 
 
3561
3562	rc = cap_task_setioprio(p, ioprio);
3563	if (rc)
3564		return rc;
3565
3566	return current_has_perm(p, PROCESS__SETSCHED);
3567}
3568
3569static int selinux_task_getioprio(struct task_struct *p)
 
3570{
3571	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
3572}
3573
3574static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3575		struct rlimit *new_rlim)
3576{
3577	struct rlimit *old_rlim = p->signal->rlim + resource;
3578
3579	/* Control the ability to change the hard limit (whether
3580	   lowering or raising it), so that the hard limit can
3581	   later be used as a safe reset point for the soft limit
3582	   upon context transitions.  See selinux_bprm_committing_creds. */
3583	if (old_rlim->rlim_max != new_rlim->rlim_max)
3584		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3585
3586	return 0;
3587}
3588
3589static int selinux_task_setscheduler(struct task_struct *p)
3590{
3591	int rc;
3592
3593	rc = cap_task_setscheduler(p);
3594	if (rc)
3595		return rc;
3596
3597	return current_has_perm(p, PROCESS__SETSCHED);
3598}
3599
3600static int selinux_task_getscheduler(struct task_struct *p)
3601{
3602	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3603}
3604
3605static int selinux_task_movememory(struct task_struct *p)
3606{
3607	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3608}
3609
3610static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3611				int sig, u32 secid)
3612{
 
3613	u32 perm;
3614	int rc;
3615
3616	if (!sig)
3617		perm = PROCESS__SIGNULL; /* null signal; existence test */
3618	else
3619		perm = signal_to_av(sig);
3620	if (secid)
3621		rc = avc_has_perm(secid, task_sid(p),
3622				  SECCLASS_PROCESS, perm, NULL);
3623	else
3624		rc = current_has_perm(p, perm);
3625	return rc;
3626}
3627
3628static int selinux_task_wait(struct task_struct *p)
3629{
3630	return task_has_perm(p, current, PROCESS__SIGCHLD);
3631}
3632
3633static void selinux_task_to_inode(struct task_struct *p,
3634				  struct inode *inode)
3635{
3636	struct inode_security_struct *isec = inode->i_security;
3637	u32 sid = task_sid(p);
3638
 
 
3639	isec->sid = sid;
3640	isec->initialized = 1;
 
3641}
3642
3643/* Returns error only if unable to parse addresses */
3644static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3645			struct common_audit_data *ad, u8 *proto)
3646{
3647	int offset, ihlen, ret = -EINVAL;
3648	struct iphdr _iph, *ih;
3649
3650	offset = skb_network_offset(skb);
3651	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3652	if (ih == NULL)
3653		goto out;
3654
3655	ihlen = ih->ihl * 4;
3656	if (ihlen < sizeof(_iph))
3657		goto out;
3658
3659	ad->u.net->v4info.saddr = ih->saddr;
3660	ad->u.net->v4info.daddr = ih->daddr;
3661	ret = 0;
3662
3663	if (proto)
3664		*proto = ih->protocol;
3665
3666	switch (ih->protocol) {
3667	case IPPROTO_TCP: {
3668		struct tcphdr _tcph, *th;
3669
3670		if (ntohs(ih->frag_off) & IP_OFFSET)
3671			break;
3672
3673		offset += ihlen;
3674		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3675		if (th == NULL)
3676			break;
3677
3678		ad->u.net->sport = th->source;
3679		ad->u.net->dport = th->dest;
3680		break;
3681	}
3682
3683	case IPPROTO_UDP: {
3684		struct udphdr _udph, *uh;
3685
3686		if (ntohs(ih->frag_off) & IP_OFFSET)
3687			break;
3688
3689		offset += ihlen;
3690		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3691		if (uh == NULL)
3692			break;
3693
3694		ad->u.net->sport = uh->source;
3695		ad->u.net->dport = uh->dest;
3696		break;
3697	}
3698
3699	case IPPROTO_DCCP: {
3700		struct dccp_hdr _dccph, *dh;
3701
3702		if (ntohs(ih->frag_off) & IP_OFFSET)
3703			break;
3704
3705		offset += ihlen;
3706		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3707		if (dh == NULL)
3708			break;
3709
3710		ad->u.net->sport = dh->dccph_sport;
3711		ad->u.net->dport = dh->dccph_dport;
3712		break;
3713	}
3714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3715	default:
3716		break;
3717	}
3718out:
3719	return ret;
3720}
3721
3722#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3723
3724/* Returns error only if unable to parse addresses */
3725static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3726			struct common_audit_data *ad, u8 *proto)
3727{
3728	u8 nexthdr;
3729	int ret = -EINVAL, offset;
3730	struct ipv6hdr _ipv6h, *ip6;
3731	__be16 frag_off;
3732
3733	offset = skb_network_offset(skb);
3734	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3735	if (ip6 == NULL)
3736		goto out;
3737
3738	ad->u.net->v6info.saddr = ip6->saddr;
3739	ad->u.net->v6info.daddr = ip6->daddr;
3740	ret = 0;
3741
3742	nexthdr = ip6->nexthdr;
3743	offset += sizeof(_ipv6h);
3744	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3745	if (offset < 0)
3746		goto out;
3747
3748	if (proto)
3749		*proto = nexthdr;
3750
3751	switch (nexthdr) {
3752	case IPPROTO_TCP: {
3753		struct tcphdr _tcph, *th;
3754
3755		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3756		if (th == NULL)
3757			break;
3758
3759		ad->u.net->sport = th->source;
3760		ad->u.net->dport = th->dest;
3761		break;
3762	}
3763
3764	case IPPROTO_UDP: {
3765		struct udphdr _udph, *uh;
3766
3767		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3768		if (uh == NULL)
3769			break;
3770
3771		ad->u.net->sport = uh->source;
3772		ad->u.net->dport = uh->dest;
3773		break;
3774	}
3775
3776	case IPPROTO_DCCP: {
3777		struct dccp_hdr _dccph, *dh;
3778
3779		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3780		if (dh == NULL)
3781			break;
3782
3783		ad->u.net->sport = dh->dccph_sport;
3784		ad->u.net->dport = dh->dccph_dport;
3785		break;
3786	}
3787
 
 
 
 
 
 
 
 
 
 
 
 
 
3788	/* includes fragments */
3789	default:
3790		break;
3791	}
3792out:
3793	return ret;
3794}
3795
3796#endif /* IPV6 */
3797
3798static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3799			     char **_addrp, int src, u8 *proto)
3800{
3801	char *addrp;
3802	int ret;
3803
3804	switch (ad->u.net->family) {
3805	case PF_INET:
3806		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3807		if (ret)
3808			goto parse_error;
3809		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3810				       &ad->u.net->v4info.daddr);
3811		goto okay;
3812
3813#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3814	case PF_INET6:
3815		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3816		if (ret)
3817			goto parse_error;
3818		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3819				       &ad->u.net->v6info.daddr);
3820		goto okay;
3821#endif	/* IPV6 */
3822	default:
3823		addrp = NULL;
3824		goto okay;
3825	}
3826
3827parse_error:
3828	printk(KERN_WARNING
3829	       "SELinux: failure in selinux_parse_skb(),"
3830	       " unable to parse packet\n");
3831	return ret;
3832
3833okay:
3834	if (_addrp)
3835		*_addrp = addrp;
3836	return 0;
3837}
3838
3839/**
3840 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3841 * @skb: the packet
3842 * @family: protocol family
3843 * @sid: the packet's peer label SID
3844 *
3845 * Description:
3846 * Check the various different forms of network peer labeling and determine
3847 * the peer label/SID for the packet; most of the magic actually occurs in
3848 * the security server function security_net_peersid_cmp().  The function
3849 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3850 * or -EACCES if @sid is invalid due to inconsistencies with the different
3851 * peer labels.
3852 *
3853 */
3854static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3855{
3856	int err;
3857	u32 xfrm_sid;
3858	u32 nlbl_sid;
3859	u32 nlbl_type;
3860
3861	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3862	if (unlikely(err))
3863		return -EACCES;
3864	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3865	if (unlikely(err))
3866		return -EACCES;
3867
3868	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
3869	if (unlikely(err)) {
3870		printk(KERN_WARNING
3871		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3872		       " unable to determine packet's peer label\n");
3873		return -EACCES;
3874	}
3875
3876	return 0;
3877}
3878
3879/**
3880 * selinux_conn_sid - Determine the child socket label for a connection
3881 * @sk_sid: the parent socket's SID
3882 * @skb_sid: the packet's SID
3883 * @conn_sid: the resulting connection SID
3884 *
3885 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3886 * combined with the MLS information from @skb_sid in order to create
3887 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
3888 * of @sk_sid.  Returns zero on success, negative values on failure.
3889 *
3890 */
3891static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3892{
3893	int err = 0;
3894
3895	if (skb_sid != SECSID_NULL)
3896		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
 
3897	else
3898		*conn_sid = sk_sid;
3899
3900	return err;
3901}
3902
3903/* socket security operations */
3904
3905static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3906				 u16 secclass, u32 *socksid)
3907{
3908	if (tsec->sockcreate_sid > SECSID_NULL) {
3909		*socksid = tsec->sockcreate_sid;
3910		return 0;
3911	}
3912
3913	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3914				       socksid);
3915}
3916
3917static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3918{
3919	struct sk_security_struct *sksec = sk->sk_security;
3920	struct common_audit_data ad;
3921	struct lsm_network_audit net = {0,};
3922	u32 tsid = task_sid(task);
3923
3924	if (sksec->sid == SECINITSID_KERNEL)
3925		return 0;
3926
3927	ad.type = LSM_AUDIT_DATA_NET;
3928	ad.u.net = &net;
3929	ad.u.net->sk = sk;
3930
3931	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
3932}
3933
3934static int selinux_socket_create(int family, int type,
3935				 int protocol, int kern)
3936{
3937	const struct task_security_struct *tsec = current_security();
3938	u32 newsid;
3939	u16 secclass;
3940	int rc;
3941
3942	if (kern)
3943		return 0;
3944
3945	secclass = socket_type_to_security_class(family, type, protocol);
3946	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3947	if (rc)
3948		return rc;
3949
3950	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
3951}
3952
3953static int selinux_socket_post_create(struct socket *sock, int family,
3954				      int type, int protocol, int kern)
3955{
3956	const struct task_security_struct *tsec = current_security();
3957	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3958	struct sk_security_struct *sksec;
 
 
3959	int err = 0;
3960
3961	isec->sclass = socket_type_to_security_class(family, type, protocol);
3962
3963	if (kern)
3964		isec->sid = SECINITSID_KERNEL;
3965	else {
3966		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3967		if (err)
3968			return err;
3969	}
3970
3971	isec->initialized = 1;
 
 
3972
3973	if (sock->sk) {
3974		sksec = sock->sk->sk_security;
3975		sksec->sid = isec->sid;
3976		sksec->sclass = isec->sclass;
 
 
 
 
3977		err = selinux_netlbl_socket_post_create(sock->sk, family);
3978	}
3979
3980	return err;
3981}
3982
3983/* Range of port numbers used to automatically bind.
3984   Need to determine whether we should perform a name_bind
3985   permission check between the socket and the port number. */
3986
3987static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3988{
3989	struct sock *sk = sock->sk;
 
3990	u16 family;
3991	int err;
3992
3993	err = sock_has_perm(current, sk, SOCKET__BIND);
3994	if (err)
3995		goto out;
3996
3997	/*
3998	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3999	 * Multiple address binding for SCTP is not supported yet: we just
4000	 * check the first address now.
4001	 */
4002	family = sk->sk_family;
4003	if (family == PF_INET || family == PF_INET6) {
4004		char *addrp;
4005		struct sk_security_struct *sksec = sk->sk_security;
4006		struct common_audit_data ad;
4007		struct lsm_network_audit net = {0,};
4008		struct sockaddr_in *addr4 = NULL;
4009		struct sockaddr_in6 *addr6 = NULL;
 
4010		unsigned short snum;
4011		u32 sid, node_perm;
4012
4013		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
4014			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
4015			snum = ntohs(addr4->sin_port);
4016			addrp = (char *)&addr4->sin_addr.s_addr;
4017		} else {
 
 
 
4018			addr6 = (struct sockaddr_in6 *)address;
4019			snum = ntohs(addr6->sin6_port);
4020			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
4021		}
4022
 
 
 
 
 
4023		if (snum) {
4024			int low, high;
4025
4026			inet_get_local_port_range(sock_net(sk), &low, &high);
4027
4028			if (snum < max(PROT_SOCK, low) || snum > high) {
 
4029				err = sel_netport_sid(sk->sk_protocol,
4030						      snum, &sid);
4031				if (err)
4032					goto out;
4033				ad.type = LSM_AUDIT_DATA_NET;
4034				ad.u.net = &net;
4035				ad.u.net->sport = htons(snum);
4036				ad.u.net->family = family;
4037				err = avc_has_perm(sksec->sid, sid,
4038						   sksec->sclass,
4039						   SOCKET__NAME_BIND, &ad);
4040				if (err)
4041					goto out;
4042			}
4043		}
4044
4045		switch (sksec->sclass) {
4046		case SECCLASS_TCP_SOCKET:
4047			node_perm = TCP_SOCKET__NODE_BIND;
4048			break;
4049
4050		case SECCLASS_UDP_SOCKET:
4051			node_perm = UDP_SOCKET__NODE_BIND;
4052			break;
4053
4054		case SECCLASS_DCCP_SOCKET:
4055			node_perm = DCCP_SOCKET__NODE_BIND;
4056			break;
4057
 
 
 
 
4058		default:
4059			node_perm = RAWIP_SOCKET__NODE_BIND;
4060			break;
4061		}
4062
4063		err = sel_netnode_sid(addrp, family, &sid);
4064		if (err)
4065			goto out;
4066
4067		ad.type = LSM_AUDIT_DATA_NET;
4068		ad.u.net = &net;
4069		ad.u.net->sport = htons(snum);
4070		ad.u.net->family = family;
4071
4072		if (family == PF_INET)
4073			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4074		else
4075			ad.u.net->v6info.saddr = addr6->sin6_addr;
4076
4077		err = avc_has_perm(sksec->sid, sid,
 
4078				   sksec->sclass, node_perm, &ad);
4079		if (err)
4080			goto out;
4081	}
4082out:
4083	return err;
 
 
 
 
 
4084}
4085
4086static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
4087{
4088	struct sock *sk = sock->sk;
4089	struct sk_security_struct *sksec = sk->sk_security;
4090	int err;
4091
4092	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4093	if (err)
4094		return err;
4095
4096	/*
4097	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
4098	 */
4099	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4100	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
4101		struct common_audit_data ad;
4102		struct lsm_network_audit net = {0,};
4103		struct sockaddr_in *addr4 = NULL;
4104		struct sockaddr_in6 *addr6 = NULL;
4105		unsigned short snum;
4106		u32 sid, perm;
4107
4108		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
4109			addr4 = (struct sockaddr_in *)address;
4110			if (addrlen < sizeof(struct sockaddr_in))
4111				return -EINVAL;
4112			snum = ntohs(addr4->sin_port);
4113		} else {
 
4114			addr6 = (struct sockaddr_in6 *)address;
4115			if (addrlen < SIN6_LEN_RFC2133)
4116				return -EINVAL;
4117			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
4118		}
4119
4120		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4121		if (err)
4122			goto out;
4123
4124		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4125		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
4126
4127		ad.type = LSM_AUDIT_DATA_NET;
4128		ad.u.net = &net;
4129		ad.u.net->dport = htons(snum);
4130		ad.u.net->family = sk->sk_family;
4131		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4132		if (err)
4133			goto out;
4134	}
4135
4136	err = selinux_netlbl_socket_connect(sk, address);
 
 
 
 
 
 
 
 
 
 
 
 
4137
4138out:
4139	return err;
4140}
4141
4142static int selinux_socket_listen(struct socket *sock, int backlog)
4143{
4144	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4145}
4146
4147static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4148{
4149	int err;
4150	struct inode_security_struct *isec;
4151	struct inode_security_struct *newisec;
 
 
4152
4153	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4154	if (err)
4155		return err;
4156
4157	newisec = SOCK_INODE(newsock)->i_security;
4158
4159	isec = SOCK_INODE(sock)->i_security;
4160	newisec->sclass = isec->sclass;
4161	newisec->sid = isec->sid;
4162	newisec->initialized = 1;
 
 
 
 
4163
4164	return 0;
4165}
4166
4167static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4168				  int size)
4169{
4170	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4171}
4172
4173static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4174				  int size, int flags)
4175{
4176	return sock_has_perm(current, sock->sk, SOCKET__READ);
4177}
4178
4179static int selinux_socket_getsockname(struct socket *sock)
4180{
4181	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4182}
4183
4184static int selinux_socket_getpeername(struct socket *sock)
4185{
4186	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4187}
4188
4189static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4190{
4191	int err;
4192
4193	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4194	if (err)
4195		return err;
4196
4197	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4198}
4199
4200static int selinux_socket_getsockopt(struct socket *sock, int level,
4201				     int optname)
4202{
4203	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4204}
4205
4206static int selinux_socket_shutdown(struct socket *sock, int how)
4207{
4208	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4209}
4210
4211static int selinux_socket_unix_stream_connect(struct sock *sock,
4212					      struct sock *other,
4213					      struct sock *newsk)
4214{
4215	struct sk_security_struct *sksec_sock = sock->sk_security;
4216	struct sk_security_struct *sksec_other = other->sk_security;
4217	struct sk_security_struct *sksec_new = newsk->sk_security;
4218	struct common_audit_data ad;
4219	struct lsm_network_audit net = {0,};
4220	int err;
4221
4222	ad.type = LSM_AUDIT_DATA_NET;
4223	ad.u.net = &net;
4224	ad.u.net->sk = other;
4225
4226	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4227			   sksec_other->sclass,
4228			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4229	if (err)
4230		return err;
4231
4232	/* server child socket */
4233	sksec_new->peer_sid = sksec_sock->sid;
4234	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4235				    &sksec_new->sid);
4236	if (err)
4237		return err;
4238
4239	/* connecting socket */
4240	sksec_sock->peer_sid = sksec_new->sid;
4241
4242	return 0;
4243}
4244
4245static int selinux_socket_unix_may_send(struct socket *sock,
4246					struct socket *other)
4247{
4248	struct sk_security_struct *ssec = sock->sk->sk_security;
4249	struct sk_security_struct *osec = other->sk->sk_security;
4250	struct common_audit_data ad;
4251	struct lsm_network_audit net = {0,};
4252
4253	ad.type = LSM_AUDIT_DATA_NET;
4254	ad.u.net = &net;
4255	ad.u.net->sk = other->sk;
4256
4257	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4258			    &ad);
4259}
4260
4261static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4262				    u32 peer_sid,
4263				    struct common_audit_data *ad)
4264{
4265	int err;
4266	u32 if_sid;
4267	u32 node_sid;
4268
4269	err = sel_netif_sid(ifindex, &if_sid);
4270	if (err)
4271		return err;
4272	err = avc_has_perm(peer_sid, if_sid,
 
4273			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4274	if (err)
4275		return err;
4276
4277	err = sel_netnode_sid(addrp, family, &node_sid);
4278	if (err)
4279		return err;
4280	return avc_has_perm(peer_sid, node_sid,
 
4281			    SECCLASS_NODE, NODE__RECVFROM, ad);
4282}
4283
4284static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4285				       u16 family)
4286{
4287	int err = 0;
4288	struct sk_security_struct *sksec = sk->sk_security;
4289	u32 sk_sid = sksec->sid;
4290	struct common_audit_data ad;
4291	struct lsm_network_audit net = {0,};
4292	char *addrp;
4293
4294	ad.type = LSM_AUDIT_DATA_NET;
4295	ad.u.net = &net;
4296	ad.u.net->netif = skb->skb_iif;
4297	ad.u.net->family = family;
4298	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4299	if (err)
4300		return err;
4301
4302	if (selinux_secmark_enabled()) {
4303		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4304				   PACKET__RECV, &ad);
4305		if (err)
4306			return err;
4307	}
4308
4309	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4310	if (err)
4311		return err;
4312	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4313
4314	return err;
4315}
4316
4317static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4318{
4319	int err;
4320	struct sk_security_struct *sksec = sk->sk_security;
4321	u16 family = sk->sk_family;
4322	u32 sk_sid = sksec->sid;
4323	struct common_audit_data ad;
4324	struct lsm_network_audit net = {0,};
4325	char *addrp;
4326	u8 secmark_active;
4327	u8 peerlbl_active;
4328
4329	if (family != PF_INET && family != PF_INET6)
4330		return 0;
4331
4332	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4333	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4334		family = PF_INET;
4335
4336	/* If any sort of compatibility mode is enabled then handoff processing
4337	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4338	 * special handling.  We do this in an attempt to keep this function
4339	 * as fast and as clean as possible. */
4340	if (!selinux_policycap_netpeer)
4341		return selinux_sock_rcv_skb_compat(sk, skb, family);
4342
4343	secmark_active = selinux_secmark_enabled();
4344	peerlbl_active = selinux_peerlbl_enabled();
4345	if (!secmark_active && !peerlbl_active)
4346		return 0;
4347
4348	ad.type = LSM_AUDIT_DATA_NET;
4349	ad.u.net = &net;
4350	ad.u.net->netif = skb->skb_iif;
4351	ad.u.net->family = family;
4352	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4353	if (err)
4354		return err;
4355
4356	if (peerlbl_active) {
4357		u32 peer_sid;
4358
4359		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4360		if (err)
4361			return err;
4362		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4363					       peer_sid, &ad);
4364		if (err) {
4365			selinux_netlbl_err(skb, err, 0);
4366			return err;
4367		}
4368		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4369				   PEER__RECV, &ad);
4370		if (err) {
4371			selinux_netlbl_err(skb, err, 0);
4372			return err;
4373		}
4374	}
4375
4376	if (secmark_active) {
4377		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4378				   PACKET__RECV, &ad);
4379		if (err)
4380			return err;
4381	}
4382
4383	return err;
4384}
4385
4386static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4387					    int __user *optlen, unsigned len)
4388{
4389	int err = 0;
4390	char *scontext;
4391	u32 scontext_len;
4392	struct sk_security_struct *sksec = sock->sk->sk_security;
4393	u32 peer_sid = SECSID_NULL;
4394
4395	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4396	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4397		peer_sid = sksec->peer_sid;
4398	if (peer_sid == SECSID_NULL)
4399		return -ENOPROTOOPT;
4400
4401	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4402	if (err)
4403		return err;
4404
4405	if (scontext_len > len) {
4406		err = -ERANGE;
4407		goto out_len;
4408	}
4409
4410	if (copy_to_user(optval, scontext, scontext_len))
4411		err = -EFAULT;
4412
4413out_len:
4414	if (put_user(scontext_len, optlen))
4415		err = -EFAULT;
4416	kfree(scontext);
4417	return err;
4418}
4419
4420static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4421{
4422	u32 peer_secid = SECSID_NULL;
4423	u16 family;
 
4424
4425	if (skb && skb->protocol == htons(ETH_P_IP))
4426		family = PF_INET;
4427	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4428		family = PF_INET6;
4429	else if (sock)
4430		family = sock->sk->sk_family;
4431	else
4432		goto out;
4433
4434	if (sock && family == PF_UNIX)
4435		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4436	else if (skb)
 
4437		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4438
4439out:
4440	*secid = peer_secid;
4441	if (peer_secid == SECSID_NULL)
4442		return -EINVAL;
4443	return 0;
4444}
4445
4446static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4447{
4448	struct sk_security_struct *sksec;
4449
4450	sksec = kzalloc(sizeof(*sksec), priority);
4451	if (!sksec)
4452		return -ENOMEM;
4453
4454	sksec->peer_sid = SECINITSID_UNLABELED;
4455	sksec->sid = SECINITSID_UNLABELED;
 
4456	selinux_netlbl_sk_security_reset(sksec);
4457	sk->sk_security = sksec;
4458
4459	return 0;
4460}
4461
4462static void selinux_sk_free_security(struct sock *sk)
4463{
4464	struct sk_security_struct *sksec = sk->sk_security;
4465
4466	sk->sk_security = NULL;
4467	selinux_netlbl_sk_security_free(sksec);
4468	kfree(sksec);
4469}
4470
4471static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4472{
4473	struct sk_security_struct *sksec = sk->sk_security;
4474	struct sk_security_struct *newsksec = newsk->sk_security;
4475
4476	newsksec->sid = sksec->sid;
4477	newsksec->peer_sid = sksec->peer_sid;
4478	newsksec->sclass = sksec->sclass;
4479
4480	selinux_netlbl_sk_security_reset(newsksec);
4481}
4482
4483static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4484{
4485	if (!sk)
4486		*secid = SECINITSID_ANY_SOCKET;
4487	else {
4488		struct sk_security_struct *sksec = sk->sk_security;
4489
4490		*secid = sksec->sid;
4491	}
4492}
4493
4494static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4495{
4496	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
 
4497	struct sk_security_struct *sksec = sk->sk_security;
4498
4499	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4500	    sk->sk_family == PF_UNIX)
4501		isec->sid = sksec->sid;
4502	sksec->sclass = isec->sclass;
4503}
4504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4505static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4506				     struct request_sock *req)
4507{
4508	struct sk_security_struct *sksec = sk->sk_security;
4509	int err;
4510	u16 family = req->rsk_ops->family;
4511	u32 connsid;
4512	u32 peersid;
4513
4514	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4515	if (err)
4516		return err;
4517	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4518	if (err)
4519		return err;
4520	req->secid = connsid;
4521	req->peer_secid = peersid;
4522
4523	return selinux_netlbl_inet_conn_request(req, family);
4524}
4525
4526static void selinux_inet_csk_clone(struct sock *newsk,
4527				   const struct request_sock *req)
4528{
4529	struct sk_security_struct *newsksec = newsk->sk_security;
4530
4531	newsksec->sid = req->secid;
4532	newsksec->peer_sid = req->peer_secid;
4533	/* NOTE: Ideally, we should also get the isec->sid for the
4534	   new socket in sync, but we don't have the isec available yet.
4535	   So we will wait until sock_graft to do it, by which
4536	   time it will have been created and available. */
4537
4538	/* We don't need to take any sort of lock here as we are the only
4539	 * thread with access to newsksec */
4540	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4541}
4542
4543static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4544{
4545	u16 family = sk->sk_family;
4546	struct sk_security_struct *sksec = sk->sk_security;
4547
4548	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4549	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4550		family = PF_INET;
4551
4552	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4553}
4554
4555static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4556{
4557	skb_set_owner_w(skb, sk);
4558}
4559
4560static int selinux_secmark_relabel_packet(u32 sid)
4561{
4562	const struct task_security_struct *__tsec;
4563	u32 tsid;
4564
4565	__tsec = current_security();
4566	tsid = __tsec->sid;
4567
4568	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4569}
4570
4571static void selinux_secmark_refcount_inc(void)
4572{
4573	atomic_inc(&selinux_secmark_refcount);
4574}
4575
4576static void selinux_secmark_refcount_dec(void)
4577{
4578	atomic_dec(&selinux_secmark_refcount);
4579}
4580
4581static void selinux_req_classify_flow(const struct request_sock *req,
4582				      struct flowi *fl)
4583{
4584	fl->flowi_secid = req->secid;
4585}
4586
4587static int selinux_tun_dev_alloc_security(void **security)
4588{
4589	struct tun_security_struct *tunsec;
4590
4591	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4592	if (!tunsec)
4593		return -ENOMEM;
4594	tunsec->sid = current_sid();
4595
4596	*security = tunsec;
4597	return 0;
4598}
4599
4600static void selinux_tun_dev_free_security(void *security)
4601{
4602	kfree(security);
4603}
4604
4605static int selinux_tun_dev_create(void)
4606{
4607	u32 sid = current_sid();
4608
4609	/* we aren't taking into account the "sockcreate" SID since the socket
4610	 * that is being created here is not a socket in the traditional sense,
4611	 * instead it is a private sock, accessible only to the kernel, and
4612	 * representing a wide range of network traffic spanning multiple
4613	 * connections unlike traditional sockets - check the TUN driver to
4614	 * get a better understanding of why this socket is special */
4615
4616	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4617			    NULL);
4618}
4619
4620static int selinux_tun_dev_attach_queue(void *security)
4621{
4622	struct tun_security_struct *tunsec = security;
4623
4624	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
4625			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4626}
4627
4628static int selinux_tun_dev_attach(struct sock *sk, void *security)
4629{
4630	struct tun_security_struct *tunsec = security;
4631	struct sk_security_struct *sksec = sk->sk_security;
4632
4633	/* we don't currently perform any NetLabel based labeling here and it
4634	 * isn't clear that we would want to do so anyway; while we could apply
4635	 * labeling without the support of the TUN user the resulting labeled
4636	 * traffic from the other end of the connection would almost certainly
4637	 * cause confusion to the TUN user that had no idea network labeling
4638	 * protocols were being used */
4639
4640	sksec->sid = tunsec->sid;
4641	sksec->sclass = SECCLASS_TUN_SOCKET;
4642
4643	return 0;
4644}
4645
4646static int selinux_tun_dev_open(void *security)
4647{
4648	struct tun_security_struct *tunsec = security;
4649	u32 sid = current_sid();
4650	int err;
4651
4652	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
4653			   TUN_SOCKET__RELABELFROM, NULL);
4654	if (err)
4655		return err;
4656	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
4657			   TUN_SOCKET__RELABELTO, NULL);
4658	if (err)
4659		return err;
4660	tunsec->sid = sid;
4661
4662	return 0;
4663}
4664
4665static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4666{
4667	int err = 0;
4668	u32 perm;
4669	struct nlmsghdr *nlh;
4670	struct sk_security_struct *sksec = sk->sk_security;
4671
4672	if (skb->len < NLMSG_HDRLEN) {
4673		err = -EINVAL;
4674		goto out;
4675	}
4676	nlh = nlmsg_hdr(skb);
4677
4678	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4679	if (err) {
4680		if (err == -EINVAL) {
4681			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4682				  "SELinux:  unrecognized netlink message"
4683				  " type=%hu for sclass=%hu\n",
4684				  nlh->nlmsg_type, sksec->sclass);
4685			if (!selinux_enforcing || security_get_allow_unknown())
 
 
 
4686				err = 0;
4687		}
4688
4689		/* Ignore */
4690		if (err == -ENOENT)
4691			err = 0;
4692		goto out;
4693	}
4694
4695	err = sock_has_perm(current, sk, perm);
4696out:
4697	return err;
4698}
4699
4700#ifdef CONFIG_NETFILTER
4701
4702static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
 
4703				       u16 family)
4704{
4705	int err;
4706	char *addrp;
4707	u32 peer_sid;
4708	struct common_audit_data ad;
4709	struct lsm_network_audit net = {0,};
4710	u8 secmark_active;
4711	u8 netlbl_active;
4712	u8 peerlbl_active;
4713
4714	if (!selinux_policycap_netpeer)
4715		return NF_ACCEPT;
4716
4717	secmark_active = selinux_secmark_enabled();
4718	netlbl_active = netlbl_enabled();
4719	peerlbl_active = selinux_peerlbl_enabled();
4720	if (!secmark_active && !peerlbl_active)
4721		return NF_ACCEPT;
4722
4723	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4724		return NF_DROP;
4725
4726	ad.type = LSM_AUDIT_DATA_NET;
4727	ad.u.net = &net;
4728	ad.u.net->netif = ifindex;
4729	ad.u.net->family = family;
4730	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4731		return NF_DROP;
4732
4733	if (peerlbl_active) {
4734		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4735					       peer_sid, &ad);
4736		if (err) {
4737			selinux_netlbl_err(skb, err, 1);
4738			return NF_DROP;
4739		}
4740	}
4741
4742	if (secmark_active)
4743		if (avc_has_perm(peer_sid, skb->secmark,
 
4744				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4745			return NF_DROP;
4746
4747	if (netlbl_active)
4748		/* we do this in the FORWARD path and not the POST_ROUTING
4749		 * path because we want to make sure we apply the necessary
4750		 * labeling before IPsec is applied so we can leverage AH
4751		 * protection */
4752		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4753			return NF_DROP;
4754
4755	return NF_ACCEPT;
4756}
4757
4758static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4759					 struct sk_buff *skb,
4760					 const struct net_device *in,
4761					 const struct net_device *out,
4762					 int (*okfn)(struct sk_buff *))
4763{
4764	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4765}
4766
4767#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4768static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4769					 struct sk_buff *skb,
4770					 const struct net_device *in,
4771					 const struct net_device *out,
4772					 int (*okfn)(struct sk_buff *))
4773{
4774	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4775}
4776#endif	/* IPV6 */
4777
4778static unsigned int selinux_ip_output(struct sk_buff *skb,
4779				      u16 family)
4780{
4781	struct sock *sk;
4782	u32 sid;
4783
4784	if (!netlbl_enabled())
4785		return NF_ACCEPT;
4786
4787	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4788	 * because we want to make sure we apply the necessary labeling
4789	 * before IPsec is applied so we can leverage AH protection */
4790	sk = skb->sk;
4791	if (sk) {
4792		struct sk_security_struct *sksec;
4793
4794		if (sk->sk_state == TCP_LISTEN)
4795			/* if the socket is the listening state then this
4796			 * packet is a SYN-ACK packet which means it needs to
4797			 * be labeled based on the connection/request_sock and
4798			 * not the parent socket.  unfortunately, we can't
4799			 * lookup the request_sock yet as it isn't queued on
4800			 * the parent socket until after the SYN-ACK is sent.
4801			 * the "solution" is to simply pass the packet as-is
4802			 * as any IP option based labeling should be copied
4803			 * from the initial connection request (in the IP
4804			 * layer).  it is far from ideal, but until we get a
4805			 * security label in the packet itself this is the
4806			 * best we can do. */
4807			return NF_ACCEPT;
4808
4809		/* standard practice, label using the parent socket */
4810		sksec = sk->sk_security;
4811		sid = sksec->sid;
4812	} else
4813		sid = SECINITSID_KERNEL;
4814	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4815		return NF_DROP;
4816
4817	return NF_ACCEPT;
4818}
4819
4820static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4821					struct sk_buff *skb,
4822					const struct net_device *in,
4823					const struct net_device *out,
4824					int (*okfn)(struct sk_buff *))
4825{
4826	return selinux_ip_output(skb, PF_INET);
4827}
4828
 
 
 
 
 
 
 
 
 
4829static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4830						int ifindex,
4831						u16 family)
4832{
4833	struct sock *sk = skb->sk;
4834	struct sk_security_struct *sksec;
4835	struct common_audit_data ad;
4836	struct lsm_network_audit net = {0,};
4837	char *addrp;
4838	u8 proto;
4839
4840	if (sk == NULL)
4841		return NF_ACCEPT;
4842	sksec = sk->sk_security;
4843
4844	ad.type = LSM_AUDIT_DATA_NET;
4845	ad.u.net = &net;
4846	ad.u.net->netif = ifindex;
4847	ad.u.net->family = family;
4848	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4849		return NF_DROP;
4850
4851	if (selinux_secmark_enabled())
4852		if (avc_has_perm(sksec->sid, skb->secmark,
 
4853				 SECCLASS_PACKET, PACKET__SEND, &ad))
4854			return NF_DROP_ERR(-ECONNREFUSED);
4855
4856	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4857		return NF_DROP_ERR(-ECONNREFUSED);
4858
4859	return NF_ACCEPT;
4860}
4861
4862static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
 
4863					 u16 family)
4864{
4865	u32 secmark_perm;
4866	u32 peer_sid;
 
4867	struct sock *sk;
4868	struct common_audit_data ad;
4869	struct lsm_network_audit net = {0,};
4870	char *addrp;
4871	u8 secmark_active;
4872	u8 peerlbl_active;
4873
4874	/* If any sort of compatibility mode is enabled then handoff processing
4875	 * to the selinux_ip_postroute_compat() function to deal with the
4876	 * special handling.  We do this in an attempt to keep this function
4877	 * as fast and as clean as possible. */
4878	if (!selinux_policycap_netpeer)
4879		return selinux_ip_postroute_compat(skb, ifindex, family);
4880
4881	secmark_active = selinux_secmark_enabled();
4882	peerlbl_active = selinux_peerlbl_enabled();
4883	if (!secmark_active && !peerlbl_active)
4884		return NF_ACCEPT;
4885
4886	sk = skb->sk;
4887
4888#ifdef CONFIG_XFRM
4889	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4890	 * packet transformation so allow the packet to pass without any checks
4891	 * since we'll have another chance to perform access control checks
4892	 * when the packet is on it's final way out.
4893	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4894	 *       is NULL, in this case go ahead and apply access control.
4895	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4896	 *       TCP listening state we cannot wait until the XFRM processing
4897	 *       is done as we will miss out on the SA label if we do;
4898	 *       unfortunately, this means more work, but it is only once per
4899	 *       connection. */
4900	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4901	    !(sk != NULL && sk->sk_state == TCP_LISTEN))
4902		return NF_ACCEPT;
4903#endif
4904
4905	if (sk == NULL) {
4906		/* Without an associated socket the packet is either coming
4907		 * from the kernel or it is being forwarded; check the packet
4908		 * to determine which and if the packet is being forwarded
4909		 * query the packet directly to determine the security label. */
4910		if (skb->skb_iif) {
4911			secmark_perm = PACKET__FORWARD_OUT;
4912			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4913				return NF_DROP;
4914		} else {
4915			secmark_perm = PACKET__SEND;
4916			peer_sid = SECINITSID_KERNEL;
4917		}
4918	} else if (sk->sk_state == TCP_LISTEN) {
4919		/* Locally generated packet but the associated socket is in the
4920		 * listening state which means this is a SYN-ACK packet.  In
4921		 * this particular case the correct security label is assigned
4922		 * to the connection/request_sock but unfortunately we can't
4923		 * query the request_sock as it isn't queued on the parent
4924		 * socket until after the SYN-ACK packet is sent; the only
4925		 * viable choice is to regenerate the label like we do in
4926		 * selinux_inet_conn_request().  See also selinux_ip_output()
4927		 * for similar problems. */
4928		u32 skb_sid;
4929		struct sk_security_struct *sksec = sk->sk_security;
 
 
4930		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4931			return NF_DROP;
4932		/* At this point, if the returned skb peerlbl is SECSID_NULL
4933		 * and the packet has been through at least one XFRM
4934		 * transformation then we must be dealing with the "final"
4935		 * form of labeled IPsec packet; since we've already applied
4936		 * all of our access controls on this packet we can safely
4937		 * pass the packet. */
4938		if (skb_sid == SECSID_NULL) {
4939			switch (family) {
4940			case PF_INET:
4941				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4942					return NF_ACCEPT;
4943				break;
4944			case PF_INET6:
4945				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4946					return NF_ACCEPT;
 
4947			default:
4948				return NF_DROP_ERR(-ECONNREFUSED);
4949			}
4950		}
4951		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4952			return NF_DROP;
4953		secmark_perm = PACKET__SEND;
4954	} else {
4955		/* Locally generated packet, fetch the security label from the
4956		 * associated socket. */
4957		struct sk_security_struct *sksec = sk->sk_security;
4958		peer_sid = sksec->sid;
4959		secmark_perm = PACKET__SEND;
4960	}
4961
4962	ad.type = LSM_AUDIT_DATA_NET;
4963	ad.u.net = &net;
4964	ad.u.net->netif = ifindex;
4965	ad.u.net->family = family;
4966	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4967		return NF_DROP;
4968
4969	if (secmark_active)
4970		if (avc_has_perm(peer_sid, skb->secmark,
 
4971				 SECCLASS_PACKET, secmark_perm, &ad))
4972			return NF_DROP_ERR(-ECONNREFUSED);
4973
4974	if (peerlbl_active) {
4975		u32 if_sid;
4976		u32 node_sid;
4977
4978		if (sel_netif_sid(ifindex, &if_sid))
4979			return NF_DROP;
4980		if (avc_has_perm(peer_sid, if_sid,
 
4981				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4982			return NF_DROP_ERR(-ECONNREFUSED);
4983
4984		if (sel_netnode_sid(addrp, family, &node_sid))
4985			return NF_DROP;
4986		if (avc_has_perm(peer_sid, node_sid,
 
4987				 SECCLASS_NODE, NODE__SENDTO, &ad))
4988			return NF_DROP_ERR(-ECONNREFUSED);
4989	}
4990
4991	return NF_ACCEPT;
4992}
4993
4994static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
4995					   struct sk_buff *skb,
4996					   const struct net_device *in,
4997					   const struct net_device *out,
4998					   int (*okfn)(struct sk_buff *))
4999{
5000	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
5001}
5002
5003#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5004static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5005					   struct sk_buff *skb,
5006					   const struct net_device *in,
5007					   const struct net_device *out,
5008					   int (*okfn)(struct sk_buff *))
5009{
5010	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5011}
5012#endif	/* IPV6 */
5013
5014#endif	/* CONFIG_NETFILTER */
5015
5016static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5017{
5018	int err;
5019
5020	err = cap_netlink_send(sk, skb);
5021	if (err)
5022		return err;
5023
5024	return selinux_nlmsg_perm(sk, skb);
5025}
5026
5027static int ipc_alloc_security(struct task_struct *task,
5028			      struct kern_ipc_perm *perm,
5029			      u16 sclass)
5030{
5031	struct ipc_security_struct *isec;
5032	u32 sid;
5033
5034	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5035	if (!isec)
5036		return -ENOMEM;
5037
5038	sid = task_sid(task);
5039	isec->sclass = sclass;
5040	isec->sid = sid;
5041	perm->security = isec;
5042
5043	return 0;
5044}
5045
5046static void ipc_free_security(struct kern_ipc_perm *perm)
5047{
5048	struct ipc_security_struct *isec = perm->security;
5049	perm->security = NULL;
5050	kfree(isec);
5051}
5052
5053static int msg_msg_alloc_security(struct msg_msg *msg)
5054{
5055	struct msg_security_struct *msec;
5056
5057	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5058	if (!msec)
5059		return -ENOMEM;
5060
5061	msec->sid = SECINITSID_UNLABELED;
5062	msg->security = msec;
5063
5064	return 0;
5065}
5066
5067static void msg_msg_free_security(struct msg_msg *msg)
5068{
5069	struct msg_security_struct *msec = msg->security;
5070
5071	msg->security = NULL;
5072	kfree(msec);
5073}
5074
5075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5076			u32 perms)
5077{
5078	struct ipc_security_struct *isec;
5079	struct common_audit_data ad;
5080	u32 sid = current_sid();
5081
5082	isec = ipc_perms->security;
5083
5084	ad.type = LSM_AUDIT_DATA_IPC;
5085	ad.u.ipc_id = ipc_perms->key;
5086
5087	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
5088}
5089
5090static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5091{
5092	return msg_msg_alloc_security(msg);
5093}
5094
5095static void selinux_msg_msg_free_security(struct msg_msg *msg)
5096{
5097	msg_msg_free_security(msg);
5098}
5099
5100/* message queue security operations */
5101static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5102{
5103	struct ipc_security_struct *isec;
5104	struct common_audit_data ad;
5105	u32 sid = current_sid();
5106	int rc;
5107
5108	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5109	if (rc)
5110		return rc;
5111
5112	isec = msq->q_perm.security;
5113
5114	ad.type = LSM_AUDIT_DATA_IPC;
5115	ad.u.ipc_id = msq->q_perm.key;
5116
5117	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5118			  MSGQ__CREATE, &ad);
5119	if (rc) {
5120		ipc_free_security(&msq->q_perm);
5121		return rc;
5122	}
5123	return 0;
5124}
5125
5126static void selinux_msg_queue_free_security(struct msg_queue *msq)
5127{
5128	ipc_free_security(&msq->q_perm);
5129}
5130
5131static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5132{
5133	struct ipc_security_struct *isec;
5134	struct common_audit_data ad;
5135	u32 sid = current_sid();
5136
5137	isec = msq->q_perm.security;
5138
5139	ad.type = LSM_AUDIT_DATA_IPC;
5140	ad.u.ipc_id = msq->q_perm.key;
5141
5142	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5143			    MSGQ__ASSOCIATE, &ad);
5144}
5145
5146static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5147{
5148	int err;
5149	int perms;
5150
5151	switch (cmd) {
5152	case IPC_INFO:
5153	case MSG_INFO:
5154		/* No specific object, just general system-wide information. */
5155		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5156	case IPC_STAT:
5157	case MSG_STAT:
 
5158		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5159		break;
5160	case IPC_SET:
5161		perms = MSGQ__SETATTR;
5162		break;
5163	case IPC_RMID:
5164		perms = MSGQ__DESTROY;
5165		break;
5166	default:
5167		return 0;
5168	}
5169
5170	err = ipc_has_perm(&msq->q_perm, perms);
5171	return err;
5172}
5173
5174static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5175{
5176	struct ipc_security_struct *isec;
5177	struct msg_security_struct *msec;
5178	struct common_audit_data ad;
5179	u32 sid = current_sid();
5180	int rc;
5181
5182	isec = msq->q_perm.security;
5183	msec = msg->security;
5184
5185	/*
5186	 * First time through, need to assign label to the message
5187	 */
5188	if (msec->sid == SECINITSID_UNLABELED) {
5189		/*
5190		 * Compute new sid based on current process and
5191		 * message queue this message will be stored in
5192		 */
5193		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5194					     NULL, &msec->sid);
5195		if (rc)
5196			return rc;
5197	}
5198
5199	ad.type = LSM_AUDIT_DATA_IPC;
5200	ad.u.ipc_id = msq->q_perm.key;
5201
5202	/* Can this process write to the queue? */
5203	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5204			  MSGQ__WRITE, &ad);
5205	if (!rc)
5206		/* Can this process send the message */
5207		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
5208				  MSG__SEND, &ad);
5209	if (!rc)
5210		/* Can the message be put in the queue? */
5211		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
5212				  MSGQ__ENQUEUE, &ad);
5213
5214	return rc;
5215}
5216
5217static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5218				    struct task_struct *target,
5219				    long type, int mode)
5220{
5221	struct ipc_security_struct *isec;
5222	struct msg_security_struct *msec;
5223	struct common_audit_data ad;
5224	u32 sid = task_sid(target);
5225	int rc;
5226
5227	isec = msq->q_perm.security;
5228	msec = msg->security;
5229
5230	ad.type = LSM_AUDIT_DATA_IPC;
5231	ad.u.ipc_id = msq->q_perm.key;
5232
5233	rc = avc_has_perm(sid, isec->sid,
 
5234			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5235	if (!rc)
5236		rc = avc_has_perm(sid, msec->sid,
 
5237				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5238	return rc;
5239}
5240
5241/* Shared Memory security operations */
5242static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5243{
5244	struct ipc_security_struct *isec;
5245	struct common_audit_data ad;
5246	u32 sid = current_sid();
5247	int rc;
5248
5249	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5250	if (rc)
5251		return rc;
5252
5253	isec = shp->shm_perm.security;
5254
5255	ad.type = LSM_AUDIT_DATA_IPC;
5256	ad.u.ipc_id = shp->shm_perm.key;
5257
5258	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5259			  SHM__CREATE, &ad);
5260	if (rc) {
5261		ipc_free_security(&shp->shm_perm);
5262		return rc;
5263	}
5264	return 0;
5265}
5266
5267static void selinux_shm_free_security(struct shmid_kernel *shp)
5268{
5269	ipc_free_security(&shp->shm_perm);
5270}
5271
5272static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5273{
5274	struct ipc_security_struct *isec;
5275	struct common_audit_data ad;
5276	u32 sid = current_sid();
5277
5278	isec = shp->shm_perm.security;
5279
5280	ad.type = LSM_AUDIT_DATA_IPC;
5281	ad.u.ipc_id = shp->shm_perm.key;
5282
5283	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5284			    SHM__ASSOCIATE, &ad);
5285}
5286
5287/* Note, at this point, shp is locked down */
5288static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5289{
5290	int perms;
5291	int err;
5292
5293	switch (cmd) {
5294	case IPC_INFO:
5295	case SHM_INFO:
5296		/* No specific object, just general system-wide information. */
5297		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5298	case IPC_STAT:
5299	case SHM_STAT:
 
5300		perms = SHM__GETATTR | SHM__ASSOCIATE;
5301		break;
5302	case IPC_SET:
5303		perms = SHM__SETATTR;
5304		break;
5305	case SHM_LOCK:
5306	case SHM_UNLOCK:
5307		perms = SHM__LOCK;
5308		break;
5309	case IPC_RMID:
5310		perms = SHM__DESTROY;
5311		break;
5312	default:
5313		return 0;
5314	}
5315
5316	err = ipc_has_perm(&shp->shm_perm, perms);
5317	return err;
5318}
5319
5320static int selinux_shm_shmat(struct shmid_kernel *shp,
5321			     char __user *shmaddr, int shmflg)
5322{
5323	u32 perms;
5324
5325	if (shmflg & SHM_RDONLY)
5326		perms = SHM__READ;
5327	else
5328		perms = SHM__READ | SHM__WRITE;
5329
5330	return ipc_has_perm(&shp->shm_perm, perms);
5331}
5332
5333/* Semaphore security operations */
5334static int selinux_sem_alloc_security(struct sem_array *sma)
5335{
5336	struct ipc_security_struct *isec;
5337	struct common_audit_data ad;
5338	u32 sid = current_sid();
5339	int rc;
5340
5341	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5342	if (rc)
5343		return rc;
5344
5345	isec = sma->sem_perm.security;
5346
5347	ad.type = LSM_AUDIT_DATA_IPC;
5348	ad.u.ipc_id = sma->sem_perm.key;
5349
5350	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5351			  SEM__CREATE, &ad);
5352	if (rc) {
5353		ipc_free_security(&sma->sem_perm);
5354		return rc;
5355	}
5356	return 0;
5357}
5358
5359static void selinux_sem_free_security(struct sem_array *sma)
5360{
5361	ipc_free_security(&sma->sem_perm);
5362}
5363
5364static int selinux_sem_associate(struct sem_array *sma, int semflg)
5365{
5366	struct ipc_security_struct *isec;
5367	struct common_audit_data ad;
5368	u32 sid = current_sid();
5369
5370	isec = sma->sem_perm.security;
5371
5372	ad.type = LSM_AUDIT_DATA_IPC;
5373	ad.u.ipc_id = sma->sem_perm.key;
5374
5375	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5376			    SEM__ASSOCIATE, &ad);
5377}
5378
5379/* Note, at this point, sma is locked down */
5380static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5381{
5382	int err;
5383	u32 perms;
5384
5385	switch (cmd) {
5386	case IPC_INFO:
5387	case SEM_INFO:
5388		/* No specific object, just general system-wide information. */
5389		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5390	case GETPID:
5391	case GETNCNT:
5392	case GETZCNT:
5393		perms = SEM__GETATTR;
5394		break;
5395	case GETVAL:
5396	case GETALL:
5397		perms = SEM__READ;
5398		break;
5399	case SETVAL:
5400	case SETALL:
5401		perms = SEM__WRITE;
5402		break;
5403	case IPC_RMID:
5404		perms = SEM__DESTROY;
5405		break;
5406	case IPC_SET:
5407		perms = SEM__SETATTR;
5408		break;
5409	case IPC_STAT:
5410	case SEM_STAT:
 
5411		perms = SEM__GETATTR | SEM__ASSOCIATE;
5412		break;
5413	default:
5414		return 0;
5415	}
5416
5417	err = ipc_has_perm(&sma->sem_perm, perms);
5418	return err;
5419}
5420
5421static int selinux_sem_semop(struct sem_array *sma,
5422			     struct sembuf *sops, unsigned nsops, int alter)
5423{
5424	u32 perms;
5425
5426	if (alter)
5427		perms = SEM__READ | SEM__WRITE;
5428	else
5429		perms = SEM__READ;
5430
5431	return ipc_has_perm(&sma->sem_perm, perms);
5432}
5433
5434static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5435{
5436	u32 av = 0;
5437
5438	av = 0;
5439	if (flag & S_IRUGO)
5440		av |= IPC__UNIX_READ;
5441	if (flag & S_IWUGO)
5442		av |= IPC__UNIX_WRITE;
5443
5444	if (av == 0)
5445		return 0;
5446
5447	return ipc_has_perm(ipcp, av);
5448}
5449
5450static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5451{
5452	struct ipc_security_struct *isec = ipcp->security;
5453	*secid = isec->sid;
5454}
5455
5456static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5457{
5458	if (inode)
5459		inode_doinit_with_dentry(inode, dentry);
5460}
5461
5462static int selinux_getprocattr(struct task_struct *p,
5463			       char *name, char **value)
5464{
5465	const struct task_security_struct *__tsec;
5466	u32 sid;
5467	int error;
5468	unsigned len;
5469
 
 
 
5470	if (current != p) {
5471		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5472		if (error)
5473			return error;
5474	}
5475
5476	rcu_read_lock();
5477	__tsec = __task_cred(p)->security;
5478
5479	if (!strcmp(name, "current"))
5480		sid = __tsec->sid;
5481	else if (!strcmp(name, "prev"))
5482		sid = __tsec->osid;
5483	else if (!strcmp(name, "exec"))
5484		sid = __tsec->exec_sid;
5485	else if (!strcmp(name, "fscreate"))
5486		sid = __tsec->create_sid;
5487	else if (!strcmp(name, "keycreate"))
5488		sid = __tsec->keycreate_sid;
5489	else if (!strcmp(name, "sockcreate"))
5490		sid = __tsec->sockcreate_sid;
5491	else
5492		goto invalid;
 
 
5493	rcu_read_unlock();
5494
5495	if (!sid)
5496		return 0;
5497
5498	error = security_sid_to_context(sid, value, &len);
5499	if (error)
5500		return error;
5501	return len;
5502
5503invalid:
5504	rcu_read_unlock();
5505	return -EINVAL;
5506}
5507
5508static int selinux_setprocattr(struct task_struct *p,
5509			       char *name, void *value, size_t size)
5510{
5511	struct task_security_struct *tsec;
5512	struct task_struct *tracer;
5513	struct cred *new;
5514	u32 sid = 0, ptsid;
5515	int error;
5516	char *str = value;
5517
5518	if (current != p) {
5519		/* SELinux only allows a process to change its own
5520		   security attributes. */
5521		return -EACCES;
5522	}
5523
5524	/*
5525	 * Basic control over ability to set these attributes at all.
5526	 * current == p, but we'll pass them separately in case the
5527	 * above restriction is ever removed.
5528	 */
5529	if (!strcmp(name, "exec"))
5530		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5531	else if (!strcmp(name, "fscreate"))
5532		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5533	else if (!strcmp(name, "keycreate"))
5534		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5535	else if (!strcmp(name, "sockcreate"))
5536		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5537	else if (!strcmp(name, "current"))
5538		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5539	else
5540		error = -EINVAL;
5541	if (error)
5542		return error;
5543
5544	/* Obtain a SID for the context, if one was specified. */
5545	if (size && str[1] && str[1] != '\n') {
5546		if (str[size-1] == '\n') {
5547			str[size-1] = 0;
5548			size--;
5549		}
5550		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
 
5551		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5552			if (!capable(CAP_MAC_ADMIN)) {
5553				struct audit_buffer *ab;
5554				size_t audit_size;
5555
5556				/* We strip a nul only if it is at the end, otherwise the
5557				 * context contains a nul and we should audit that */
5558				if (str[size - 1] == '\0')
5559					audit_size = size - 1;
5560				else
5561					audit_size = size;
5562				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5563				audit_log_format(ab, "op=fscreate invalid_context=");
5564				audit_log_n_untrustedstring(ab, value, audit_size);
5565				audit_log_end(ab);
5566
5567				return error;
5568			}
5569			error = security_context_to_sid_force(value, size,
5570							      &sid);
 
5571		}
5572		if (error)
5573			return error;
5574	}
5575
5576	new = prepare_creds();
5577	if (!new)
5578		return -ENOMEM;
5579
5580	/* Permission checking based on the specified context is
5581	   performed during the actual operation (execve,
5582	   open/mkdir/...), when we know the full context of the
5583	   operation.  See selinux_bprm_set_creds for the execve
5584	   checks and may_create for the file creation checks. The
5585	   operation will then fail if the context is not permitted. */
5586	tsec = new->security;
5587	if (!strcmp(name, "exec")) {
5588		tsec->exec_sid = sid;
5589	} else if (!strcmp(name, "fscreate")) {
5590		tsec->create_sid = sid;
5591	} else if (!strcmp(name, "keycreate")) {
5592		error = may_create_key(sid, p);
 
 
5593		if (error)
5594			goto abort_change;
5595		tsec->keycreate_sid = sid;
5596	} else if (!strcmp(name, "sockcreate")) {
5597		tsec->sockcreate_sid = sid;
5598	} else if (!strcmp(name, "current")) {
5599		error = -EINVAL;
5600		if (sid == 0)
5601			goto abort_change;
5602
5603		/* Only allow single threaded processes to change context */
5604		error = -EPERM;
5605		if (!current_is_single_threaded()) {
5606			error = security_bounded_transition(tsec->sid, sid);
 
5607			if (error)
5608				goto abort_change;
5609		}
5610
5611		/* Check permissions for the transition. */
5612		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5613				     PROCESS__DYNTRANSITION, NULL);
5614		if (error)
5615			goto abort_change;
5616
5617		/* Check for ptracing, and update the task SID if ok.
5618		   Otherwise, leave SID unchanged and fail. */
5619		ptsid = 0;
5620		rcu_read_lock();
5621		tracer = ptrace_parent(p);
5622		if (tracer)
5623			ptsid = task_sid(tracer);
5624		rcu_read_unlock();
5625
5626		if (tracer) {
5627			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5628					     PROCESS__PTRACE, NULL);
5629			if (error)
5630				goto abort_change;
5631		}
5632
5633		tsec->sid = sid;
5634	} else {
5635		error = -EINVAL;
5636		goto abort_change;
5637	}
5638
5639	commit_creds(new);
5640	return size;
5641
5642abort_change:
5643	abort_creds(new);
5644	return error;
5645}
5646
5647static int selinux_ismaclabel(const char *name)
5648{
5649	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5650}
5651
5652static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5653{
5654	return security_sid_to_context(secid, secdata, seclen);
 
5655}
5656
5657static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5658{
5659	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
 
5660}
5661
5662static void selinux_release_secctx(char *secdata, u32 seclen)
5663{
5664	kfree(secdata);
5665}
5666
 
 
 
 
 
 
 
 
 
5667/*
5668 *	called with inode->i_mutex locked
5669 */
5670static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5671{
5672	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5673}
5674
5675/*
5676 *	called with inode->i_mutex locked
5677 */
5678static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5679{
5680	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5681}
5682
5683static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5684{
5685	int len = 0;
5686	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5687						ctx, true);
5688	if (len < 0)
5689		return len;
5690	*ctxlen = len;
5691	return 0;
5692}
5693#ifdef CONFIG_KEYS
5694
5695static int selinux_key_alloc(struct key *k, const struct cred *cred,
5696			     unsigned long flags)
5697{
5698	const struct task_security_struct *tsec;
5699	struct key_security_struct *ksec;
5700
5701	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5702	if (!ksec)
5703		return -ENOMEM;
5704
5705	tsec = cred->security;
5706	if (tsec->keycreate_sid)
5707		ksec->sid = tsec->keycreate_sid;
5708	else
5709		ksec->sid = tsec->sid;
5710
5711	k->security = ksec;
5712	return 0;
5713}
5714
5715static void selinux_key_free(struct key *k)
5716{
5717	struct key_security_struct *ksec = k->security;
5718
5719	k->security = NULL;
5720	kfree(ksec);
5721}
5722
5723static int selinux_key_permission(key_ref_t key_ref,
5724				  const struct cred *cred,
5725				  key_perm_t perm)
5726{
5727	struct key *key;
5728	struct key_security_struct *ksec;
5729	u32 sid;
5730
5731	/* if no specific permissions are requested, we skip the
5732	   permission check. No serious, additional covert channels
5733	   appear to be created. */
5734	if (perm == 0)
5735		return 0;
5736
5737	sid = cred_sid(cred);
5738
5739	key = key_ref_to_ptr(key_ref);
5740	ksec = key->security;
5741
5742	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
5743}
5744
5745static int selinux_key_getsecurity(struct key *key, char **_buffer)
5746{
5747	struct key_security_struct *ksec = key->security;
5748	char *context = NULL;
5749	unsigned len;
5750	int rc;
5751
5752	rc = security_sid_to_context(ksec->sid, &context, &len);
 
5753	if (!rc)
5754		rc = len;
5755	*_buffer = context;
5756	return rc;
5757}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5758
 
 
 
 
5759#endif
5760
5761static struct security_operations selinux_ops = {
5762	.name =				"selinux",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5763
5764	.ptrace_access_check =		selinux_ptrace_access_check,
5765	.ptrace_traceme =		selinux_ptrace_traceme,
5766	.capget =			selinux_capget,
5767	.capset =			selinux_capset,
5768	.capable =			selinux_capable,
5769	.quotactl =			selinux_quotactl,
5770	.quota_on =			selinux_quota_on,
5771	.syslog =			selinux_syslog,
5772	.vm_enough_memory =		selinux_vm_enough_memory,
5773
5774	.netlink_send =			selinux_netlink_send,
5775
5776	.bprm_set_creds =		selinux_bprm_set_creds,
5777	.bprm_committing_creds =	selinux_bprm_committing_creds,
5778	.bprm_committed_creds =		selinux_bprm_committed_creds,
5779	.bprm_secureexec =		selinux_bprm_secureexec,
5780
5781	.sb_alloc_security =		selinux_sb_alloc_security,
5782	.sb_free_security =		selinux_sb_free_security,
5783	.sb_copy_data =			selinux_sb_copy_data,
5784	.sb_remount =			selinux_sb_remount,
5785	.sb_kern_mount =		selinux_sb_kern_mount,
5786	.sb_show_options =		selinux_sb_show_options,
5787	.sb_statfs =			selinux_sb_statfs,
5788	.sb_mount =			selinux_mount,
5789	.sb_umount =			selinux_umount,
5790	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5791	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5792	.sb_parse_opts_str = 		selinux_parse_opts_str,
5793
5794	.dentry_init_security =		selinux_dentry_init_security,
5795
5796	.inode_alloc_security =		selinux_inode_alloc_security,
5797	.inode_free_security =		selinux_inode_free_security,
5798	.inode_init_security =		selinux_inode_init_security,
5799	.inode_create =			selinux_inode_create,
5800	.inode_link =			selinux_inode_link,
5801	.inode_unlink =			selinux_inode_unlink,
5802	.inode_symlink =		selinux_inode_symlink,
5803	.inode_mkdir =			selinux_inode_mkdir,
5804	.inode_rmdir =			selinux_inode_rmdir,
5805	.inode_mknod =			selinux_inode_mknod,
5806	.inode_rename =			selinux_inode_rename,
5807	.inode_readlink =		selinux_inode_readlink,
5808	.inode_follow_link =		selinux_inode_follow_link,
5809	.inode_permission =		selinux_inode_permission,
5810	.inode_setattr =		selinux_inode_setattr,
5811	.inode_getattr =		selinux_inode_getattr,
5812	.inode_setxattr =		selinux_inode_setxattr,
5813	.inode_post_setxattr =		selinux_inode_post_setxattr,
5814	.inode_getxattr =		selinux_inode_getxattr,
5815	.inode_listxattr =		selinux_inode_listxattr,
5816	.inode_removexattr =		selinux_inode_removexattr,
5817	.inode_getsecurity =		selinux_inode_getsecurity,
5818	.inode_setsecurity =		selinux_inode_setsecurity,
5819	.inode_listsecurity =		selinux_inode_listsecurity,
5820	.inode_getsecid =		selinux_inode_getsecid,
5821
5822	.file_permission =		selinux_file_permission,
5823	.file_alloc_security =		selinux_file_alloc_security,
5824	.file_free_security =		selinux_file_free_security,
5825	.file_ioctl =			selinux_file_ioctl,
5826	.mmap_file =			selinux_mmap_file,
5827	.mmap_addr =			selinux_mmap_addr,
5828	.file_mprotect =		selinux_file_mprotect,
5829	.file_lock =			selinux_file_lock,
5830	.file_fcntl =			selinux_file_fcntl,
5831	.file_set_fowner =		selinux_file_set_fowner,
5832	.file_send_sigiotask =		selinux_file_send_sigiotask,
5833	.file_receive =			selinux_file_receive,
5834
5835	.file_open =			selinux_file_open,
5836
5837	.task_create =			selinux_task_create,
5838	.cred_alloc_blank =		selinux_cred_alloc_blank,
5839	.cred_free =			selinux_cred_free,
5840	.cred_prepare =			selinux_cred_prepare,
5841	.cred_transfer =		selinux_cred_transfer,
5842	.kernel_act_as =		selinux_kernel_act_as,
5843	.kernel_create_files_as =	selinux_kernel_create_files_as,
5844	.kernel_module_request =	selinux_kernel_module_request,
5845	.task_setpgid =			selinux_task_setpgid,
5846	.task_getpgid =			selinux_task_getpgid,
5847	.task_getsid =			selinux_task_getsid,
5848	.task_getsecid =		selinux_task_getsecid,
5849	.task_setnice =			selinux_task_setnice,
5850	.task_setioprio =		selinux_task_setioprio,
5851	.task_getioprio =		selinux_task_getioprio,
5852	.task_setrlimit =		selinux_task_setrlimit,
5853	.task_setscheduler =		selinux_task_setscheduler,
5854	.task_getscheduler =		selinux_task_getscheduler,
5855	.task_movememory =		selinux_task_movememory,
5856	.task_kill =			selinux_task_kill,
5857	.task_wait =			selinux_task_wait,
5858	.task_to_inode =		selinux_task_to_inode,
5859
5860	.ipc_permission =		selinux_ipc_permission,
5861	.ipc_getsecid =			selinux_ipc_getsecid,
5862
5863	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5864	.msg_msg_free_security =	selinux_msg_msg_free_security,
5865
5866	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5867	.msg_queue_free_security =	selinux_msg_queue_free_security,
5868	.msg_queue_associate =		selinux_msg_queue_associate,
5869	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5870	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5871	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5872
5873	.shm_alloc_security =		selinux_shm_alloc_security,
5874	.shm_free_security =		selinux_shm_free_security,
5875	.shm_associate =		selinux_shm_associate,
5876	.shm_shmctl =			selinux_shm_shmctl,
5877	.shm_shmat =			selinux_shm_shmat,
5878
5879	.sem_alloc_security =		selinux_sem_alloc_security,
5880	.sem_free_security =		selinux_sem_free_security,
5881	.sem_associate =		selinux_sem_associate,
5882	.sem_semctl =			selinux_sem_semctl,
5883	.sem_semop =			selinux_sem_semop,
5884
5885	.d_instantiate =		selinux_d_instantiate,
5886
5887	.getprocattr =			selinux_getprocattr,
5888	.setprocattr =			selinux_setprocattr,
5889
5890	.ismaclabel =			selinux_ismaclabel,
5891	.secid_to_secctx =		selinux_secid_to_secctx,
5892	.secctx_to_secid =		selinux_secctx_to_secid,
5893	.release_secctx =		selinux_release_secctx,
5894	.inode_notifysecctx =		selinux_inode_notifysecctx,
5895	.inode_setsecctx =		selinux_inode_setsecctx,
5896	.inode_getsecctx =		selinux_inode_getsecctx,
5897
5898	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5899	.unix_may_send =		selinux_socket_unix_may_send,
5900
5901	.socket_create =		selinux_socket_create,
5902	.socket_post_create =		selinux_socket_post_create,
5903	.socket_bind =			selinux_socket_bind,
5904	.socket_connect =		selinux_socket_connect,
5905	.socket_listen =		selinux_socket_listen,
5906	.socket_accept =		selinux_socket_accept,
5907	.socket_sendmsg =		selinux_socket_sendmsg,
5908	.socket_recvmsg =		selinux_socket_recvmsg,
5909	.socket_getsockname =		selinux_socket_getsockname,
5910	.socket_getpeername =		selinux_socket_getpeername,
5911	.socket_getsockopt =		selinux_socket_getsockopt,
5912	.socket_setsockopt =		selinux_socket_setsockopt,
5913	.socket_shutdown =		selinux_socket_shutdown,
5914	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5915	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5916	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5917	.sk_alloc_security =		selinux_sk_alloc_security,
5918	.sk_free_security =		selinux_sk_free_security,
5919	.sk_clone_security =		selinux_sk_clone_security,
5920	.sk_getsecid =			selinux_sk_getsecid,
5921	.sock_graft =			selinux_sock_graft,
5922	.inet_conn_request =		selinux_inet_conn_request,
5923	.inet_csk_clone =		selinux_inet_csk_clone,
5924	.inet_conn_established =	selinux_inet_conn_established,
5925	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5926	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5927	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5928	.req_classify_flow =		selinux_req_classify_flow,
5929	.tun_dev_alloc_security =	selinux_tun_dev_alloc_security,
5930	.tun_dev_free_security =	selinux_tun_dev_free_security,
5931	.tun_dev_create =		selinux_tun_dev_create,
5932	.tun_dev_attach_queue =		selinux_tun_dev_attach_queue,
5933	.tun_dev_attach =		selinux_tun_dev_attach,
5934	.tun_dev_open =			selinux_tun_dev_open,
5935	.skb_owned_by =			selinux_skb_owned_by,
5936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5937#ifdef CONFIG_SECURITY_NETWORK_XFRM
5938	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5939	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5940	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5941	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5942	.xfrm_state_alloc =		selinux_xfrm_state_alloc,
5943	.xfrm_state_alloc_acquire =	selinux_xfrm_state_alloc_acquire,
5944	.xfrm_state_free_security =	selinux_xfrm_state_free,
5945	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5946	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5947	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5948	.xfrm_decode_session =		selinux_xfrm_decode_session,
 
 
5949#endif
5950
5951#ifdef CONFIG_KEYS
5952	.key_alloc =			selinux_key_alloc,
5953	.key_free =			selinux_key_free,
5954	.key_permission =		selinux_key_permission,
5955	.key_getsecurity =		selinux_key_getsecurity,
5956#endif
5957
5958#ifdef CONFIG_AUDIT
5959	.audit_rule_init =		selinux_audit_rule_init,
5960	.audit_rule_known =		selinux_audit_rule_known,
5961	.audit_rule_match =		selinux_audit_rule_match,
5962	.audit_rule_free =		selinux_audit_rule_free,
 
 
 
 
 
 
 
 
 
 
5963#endif
5964};
5965
5966static __init int selinux_init(void)
5967{
5968	if (!security_module_enable(&selinux_ops)) {
5969		selinux_enabled = 0;
5970		return 0;
5971	}
5972
5973	if (!selinux_enabled) {
5974		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5975		return 0;
5976	}
5977
5978	printk(KERN_INFO "SELinux:  Initializing.\n");
5979
 
 
 
 
 
 
5980	/* Set the security state for the initial task. */
5981	cred_init_security();
5982
5983	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5984
5985	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5986					    sizeof(struct inode_security_struct),
5987					    0, SLAB_PANIC, NULL);
 
 
 
5988	avc_init();
5989
5990	if (register_security(&selinux_ops))
5991		panic("SELinux: Unable to register with kernel.\n");
 
 
 
 
 
5992
5993	if (selinux_enforcing)
 
 
 
 
 
 
5994		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5995	else
5996		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5997
5998	return 0;
5999}
6000
6001static void delayed_superblock_init(struct super_block *sb, void *unused)
6002{
6003	superblock_doinit(sb, NULL);
6004}
6005
6006void selinux_complete_init(void)
6007{
6008	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6009
6010	/* Set up any superblocks initialized prior to the policy load. */
6011	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6012	iterate_supers(delayed_superblock_init, NULL);
6013}
6014
6015/* SELinux requires early initialization in order to label
6016   all processes and objects when they are created. */
6017security_initcall(selinux_init);
6018
6019#if defined(CONFIG_NETFILTER)
6020
6021static struct nf_hook_ops selinux_ipv4_ops[] = {
6022	{
6023		.hook =		selinux_ipv4_postroute,
6024		.owner =	THIS_MODULE,
6025		.pf =		NFPROTO_IPV4,
6026		.hooknum =	NF_INET_POST_ROUTING,
6027		.priority =	NF_IP_PRI_SELINUX_LAST,
6028	},
6029	{
6030		.hook =		selinux_ipv4_forward,
6031		.owner =	THIS_MODULE,
6032		.pf =		NFPROTO_IPV4,
6033		.hooknum =	NF_INET_FORWARD,
6034		.priority =	NF_IP_PRI_SELINUX_FIRST,
6035	},
6036	{
6037		.hook =		selinux_ipv4_output,
6038		.owner =	THIS_MODULE,
6039		.pf =		NFPROTO_IPV4,
6040		.hooknum =	NF_INET_LOCAL_OUT,
6041		.priority =	NF_IP_PRI_SELINUX_FIRST,
6042	}
6043};
6044
6045#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6046
6047static struct nf_hook_ops selinux_ipv6_ops[] = {
6048	{
6049		.hook =		selinux_ipv6_postroute,
6050		.owner =	THIS_MODULE,
6051		.pf =		NFPROTO_IPV6,
6052		.hooknum =	NF_INET_POST_ROUTING,
6053		.priority =	NF_IP6_PRI_SELINUX_LAST,
6054	},
6055	{
6056		.hook =		selinux_ipv6_forward,
6057		.owner =	THIS_MODULE,
6058		.pf =		NFPROTO_IPV6,
6059		.hooknum =	NF_INET_FORWARD,
6060		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6061	}
 
 
 
 
 
 
 
6062};
6063
6064#endif	/* IPV6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6065
6066static int __init selinux_nf_ip_init(void)
6067{
6068	int err = 0;
6069
6070	if (!selinux_enabled)
6071		goto out;
6072
6073	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6074
6075	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6076	if (err)
6077		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6078
6079#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6080	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6081	if (err)
6082		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6083#endif	/* IPV6 */
6084
6085out:
6086	return err;
6087}
6088
6089__initcall(selinux_nf_ip_init);
6090
6091#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6092static void selinux_nf_ip_exit(void)
6093{
6094	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6095
6096	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6097#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6098	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6099#endif	/* IPV6 */
6100}
6101#endif
6102
6103#else /* CONFIG_NETFILTER */
6104
6105#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6106#define selinux_nf_ip_exit()
6107#endif
6108
6109#endif /* CONFIG_NETFILTER */
6110
6111#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6112static int selinux_disabled;
6113
6114int selinux_disable(void)
6115{
6116	if (ss_initialized) {
6117		/* Not permitted after initial policy load. */
6118		return -EINVAL;
6119	}
6120
6121	if (selinux_disabled) {
6122		/* Only do this once. */
6123		return -EINVAL;
6124	}
6125
 
 
6126	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6127
6128	selinux_disabled = 1;
6129	selinux_enabled = 0;
6130
6131	reset_security_ops();
6132
6133	/* Try to destroy the avc node cache */
6134	avc_disable();
6135
6136	/* Unregister netfilter hooks. */
6137	selinux_nf_ip_exit();
6138
6139	/* Unregister selinuxfs. */
6140	exit_sel_fs();
6141
6142	return 0;
6143}
6144#endif