Loading...
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 * Copyright (C) 2016 Mellanox Technologies
21 *
22 * This program is free software; you can redistribute it and/or modify
23 * it under the terms of the GNU General Public License version 2,
24 * as published by the Free Software Foundation.
25 */
26
27#include <linux/init.h>
28#include <linux/kd.h>
29#include <linux/kernel.h>
30#include <linux/tracehook.h>
31#include <linux/errno.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/task.h>
34#include <linux/lsm_hooks.h>
35#include <linux/xattr.h>
36#include <linux/capability.h>
37#include <linux/unistd.h>
38#include <linux/mm.h>
39#include <linux/mman.h>
40#include <linux/slab.h>
41#include <linux/pagemap.h>
42#include <linux/proc_fs.h>
43#include <linux/swap.h>
44#include <linux/spinlock.h>
45#include <linux/syscalls.h>
46#include <linux/dcache.h>
47#include <linux/file.h>
48#include <linux/fdtable.h>
49#include <linux/namei.h>
50#include <linux/mount.h>
51#include <linux/netfilter_ipv4.h>
52#include <linux/netfilter_ipv6.h>
53#include <linux/tty.h>
54#include <net/icmp.h>
55#include <net/ip.h> /* for local_port_range[] */
56#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
57#include <net/inet_connection_sock.h>
58#include <net/net_namespace.h>
59#include <net/netlabel.h>
60#include <linux/uaccess.h>
61#include <asm/ioctls.h>
62#include <linux/atomic.h>
63#include <linux/bitops.h>
64#include <linux/interrupt.h>
65#include <linux/netdevice.h> /* for network interface checks */
66#include <net/netlink.h>
67#include <linux/tcp.h>
68#include <linux/udp.h>
69#include <linux/dccp.h>
70#include <linux/sctp.h>
71#include <net/sctp/structs.h>
72#include <linux/quota.h>
73#include <linux/un.h> /* for Unix socket types */
74#include <net/af_unix.h> /* for Unix socket types */
75#include <linux/parser.h>
76#include <linux/nfs_mount.h>
77#include <net/ipv6.h>
78#include <linux/hugetlb.h>
79#include <linux/personality.h>
80#include <linux/audit.h>
81#include <linux/string.h>
82#include <linux/selinux.h>
83#include <linux/mutex.h>
84#include <linux/posix-timers.h>
85#include <linux/syslog.h>
86#include <linux/user_namespace.h>
87#include <linux/export.h>
88#include <linux/msg.h>
89#include <linux/shm.h>
90#include <linux/bpf.h>
91
92#include "avc.h"
93#include "objsec.h"
94#include "netif.h"
95#include "netnode.h"
96#include "netport.h"
97#include "ibpkey.h"
98#include "xfrm.h"
99#include "netlabel.h"
100#include "audit.h"
101#include "avc_ss.h"
102
103struct selinux_state selinux_state;
104
105/* SECMARK reference count */
106static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
107
108#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
109static int selinux_enforcing_boot;
110
111static int __init enforcing_setup(char *str)
112{
113 unsigned long enforcing;
114 if (!kstrtoul(str, 0, &enforcing))
115 selinux_enforcing_boot = enforcing ? 1 : 0;
116 return 1;
117}
118__setup("enforcing=", enforcing_setup);
119#else
120#define selinux_enforcing_boot 1
121#endif
122
123#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
124int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
125
126static int __init selinux_enabled_setup(char *str)
127{
128 unsigned long enabled;
129 if (!kstrtoul(str, 0, &enabled))
130 selinux_enabled = enabled ? 1 : 0;
131 return 1;
132}
133__setup("selinux=", selinux_enabled_setup);
134#else
135int selinux_enabled = 1;
136#endif
137
138static unsigned int selinux_checkreqprot_boot =
139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141static int __init checkreqprot_setup(char *str)
142{
143 unsigned long checkreqprot;
144
145 if (!kstrtoul(str, 0, &checkreqprot))
146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 return 1;
148}
149__setup("checkreqprot=", checkreqprot_setup);
150
151static struct kmem_cache *sel_inode_cache;
152static struct kmem_cache *file_security_cache;
153
154/**
155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156 *
157 * Description:
158 * This function checks the SECMARK reference counter to see if any SECMARK
159 * targets are currently configured, if the reference counter is greater than
160 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
161 * enabled, false (0) if SECMARK is disabled. If the always_check_network
162 * policy capability is enabled, SECMARK is always considered enabled.
163 *
164 */
165static int selinux_secmark_enabled(void)
166{
167 return (selinux_policycap_alwaysnetwork() ||
168 atomic_read(&selinux_secmark_refcount));
169}
170
171/**
172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173 *
174 * Description:
175 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
176 * (1) if any are enabled or false (0) if neither are enabled. If the
177 * always_check_network policy capability is enabled, peer labeling
178 * is always considered enabled.
179 *
180 */
181static int selinux_peerlbl_enabled(void)
182{
183 return (selinux_policycap_alwaysnetwork() ||
184 netlbl_enabled() || selinux_xfrm_enabled());
185}
186
187static int selinux_netcache_avc_callback(u32 event)
188{
189 if (event == AVC_CALLBACK_RESET) {
190 sel_netif_flush();
191 sel_netnode_flush();
192 sel_netport_flush();
193 synchronize_net();
194 }
195 return 0;
196}
197
198static int selinux_lsm_notifier_avc_callback(u32 event)
199{
200 if (event == AVC_CALLBACK_RESET) {
201 sel_ib_pkey_flush();
202 call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 }
204
205 return 0;
206}
207
208/*
209 * initialise the security for the init task
210 */
211static void cred_init_security(void)
212{
213 struct cred *cred = (struct cred *) current->real_cred;
214 struct task_security_struct *tsec;
215
216 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
217 if (!tsec)
218 panic("SELinux: Failed to initialize initial task.\n");
219
220 tsec->osid = tsec->sid = SECINITSID_KERNEL;
221 cred->security = tsec;
222}
223
224/*
225 * get the security ID of a set of credentials
226 */
227static inline u32 cred_sid(const struct cred *cred)
228{
229 const struct task_security_struct *tsec;
230
231 tsec = cred->security;
232 return tsec->sid;
233}
234
235/*
236 * get the objective security ID of a task
237 */
238static inline u32 task_sid(const struct task_struct *task)
239{
240 u32 sid;
241
242 rcu_read_lock();
243 sid = cred_sid(__task_cred(task));
244 rcu_read_unlock();
245 return sid;
246}
247
248/* Allocate and free functions for each kind of security blob. */
249
250static int inode_alloc_security(struct inode *inode)
251{
252 struct inode_security_struct *isec;
253 u32 sid = current_sid();
254
255 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
256 if (!isec)
257 return -ENOMEM;
258
259 spin_lock_init(&isec->lock);
260 INIT_LIST_HEAD(&isec->list);
261 isec->inode = inode;
262 isec->sid = SECINITSID_UNLABELED;
263 isec->sclass = SECCLASS_FILE;
264 isec->task_sid = sid;
265 isec->initialized = LABEL_INVALID;
266 inode->i_security = isec;
267
268 return 0;
269}
270
271static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
272
273/*
274 * Try reloading inode security labels that have been marked as invalid. The
275 * @may_sleep parameter indicates when sleeping and thus reloading labels is
276 * allowed; when set to false, returns -ECHILD when the label is
277 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
278 * when no dentry is available, set it to NULL instead.
279 */
280static int __inode_security_revalidate(struct inode *inode,
281 struct dentry *opt_dentry,
282 bool may_sleep)
283{
284 struct inode_security_struct *isec = inode->i_security;
285
286 might_sleep_if(may_sleep);
287
288 if (selinux_state.initialized &&
289 isec->initialized != LABEL_INITIALIZED) {
290 if (!may_sleep)
291 return -ECHILD;
292
293 /*
294 * Try reloading the inode security label. This will fail if
295 * @opt_dentry is NULL and no dentry for this inode can be
296 * found; in that case, continue using the old label.
297 */
298 inode_doinit_with_dentry(inode, opt_dentry);
299 }
300 return 0;
301}
302
303static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
304{
305 return inode->i_security;
306}
307
308static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
309{
310 int error;
311
312 error = __inode_security_revalidate(inode, NULL, !rcu);
313 if (error)
314 return ERR_PTR(error);
315 return inode->i_security;
316}
317
318/*
319 * Get the security label of an inode.
320 */
321static struct inode_security_struct *inode_security(struct inode *inode)
322{
323 __inode_security_revalidate(inode, NULL, true);
324 return inode->i_security;
325}
326
327static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
328{
329 struct inode *inode = d_backing_inode(dentry);
330
331 return inode->i_security;
332}
333
334/*
335 * Get the security label of a dentry's backing inode.
336 */
337static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
338{
339 struct inode *inode = d_backing_inode(dentry);
340
341 __inode_security_revalidate(inode, dentry, true);
342 return inode->i_security;
343}
344
345static void inode_free_rcu(struct rcu_head *head)
346{
347 struct inode_security_struct *isec;
348
349 isec = container_of(head, struct inode_security_struct, rcu);
350 kmem_cache_free(sel_inode_cache, isec);
351}
352
353static void inode_free_security(struct inode *inode)
354{
355 struct inode_security_struct *isec = inode->i_security;
356 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
357
358 /*
359 * As not all inode security structures are in a list, we check for
360 * empty list outside of the lock to make sure that we won't waste
361 * time taking a lock doing nothing.
362 *
363 * The list_del_init() function can be safely called more than once.
364 * It should not be possible for this function to be called with
365 * concurrent list_add(), but for better safety against future changes
366 * in the code, we use list_empty_careful() here.
367 */
368 if (!list_empty_careful(&isec->list)) {
369 spin_lock(&sbsec->isec_lock);
370 list_del_init(&isec->list);
371 spin_unlock(&sbsec->isec_lock);
372 }
373
374 /*
375 * The inode may still be referenced in a path walk and
376 * a call to selinux_inode_permission() can be made
377 * after inode_free_security() is called. Ideally, the VFS
378 * wouldn't do this, but fixing that is a much harder
379 * job. For now, simply free the i_security via RCU, and
380 * leave the current inode->i_security pointer intact.
381 * The inode will be freed after the RCU grace period too.
382 */
383 call_rcu(&isec->rcu, inode_free_rcu);
384}
385
386static int file_alloc_security(struct file *file)
387{
388 struct file_security_struct *fsec;
389 u32 sid = current_sid();
390
391 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
392 if (!fsec)
393 return -ENOMEM;
394
395 fsec->sid = sid;
396 fsec->fown_sid = sid;
397 file->f_security = fsec;
398
399 return 0;
400}
401
402static void file_free_security(struct file *file)
403{
404 struct file_security_struct *fsec = file->f_security;
405 file->f_security = NULL;
406 kmem_cache_free(file_security_cache, fsec);
407}
408
409static int superblock_alloc_security(struct super_block *sb)
410{
411 struct superblock_security_struct *sbsec;
412
413 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
414 if (!sbsec)
415 return -ENOMEM;
416
417 mutex_init(&sbsec->lock);
418 INIT_LIST_HEAD(&sbsec->isec_head);
419 spin_lock_init(&sbsec->isec_lock);
420 sbsec->sb = sb;
421 sbsec->sid = SECINITSID_UNLABELED;
422 sbsec->def_sid = SECINITSID_FILE;
423 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
424 sb->s_security = sbsec;
425
426 return 0;
427}
428
429static void superblock_free_security(struct super_block *sb)
430{
431 struct superblock_security_struct *sbsec = sb->s_security;
432 sb->s_security = NULL;
433 kfree(sbsec);
434}
435
436static inline int inode_doinit(struct inode *inode)
437{
438 return inode_doinit_with_dentry(inode, NULL);
439}
440
441enum {
442 Opt_error = -1,
443 Opt_context = 1,
444 Opt_fscontext = 2,
445 Opt_defcontext = 3,
446 Opt_rootcontext = 4,
447 Opt_labelsupport = 5,
448 Opt_nextmntopt = 6,
449};
450
451#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
452
453static const match_table_t tokens = {
454 {Opt_context, CONTEXT_STR "%s"},
455 {Opt_fscontext, FSCONTEXT_STR "%s"},
456 {Opt_defcontext, DEFCONTEXT_STR "%s"},
457 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
458 {Opt_labelsupport, LABELSUPP_STR},
459 {Opt_error, NULL},
460};
461
462#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
463
464static int may_context_mount_sb_relabel(u32 sid,
465 struct superblock_security_struct *sbsec,
466 const struct cred *cred)
467{
468 const struct task_security_struct *tsec = cred->security;
469 int rc;
470
471 rc = avc_has_perm(&selinux_state,
472 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
473 FILESYSTEM__RELABELFROM, NULL);
474 if (rc)
475 return rc;
476
477 rc = avc_has_perm(&selinux_state,
478 tsec->sid, sid, SECCLASS_FILESYSTEM,
479 FILESYSTEM__RELABELTO, NULL);
480 return rc;
481}
482
483static int may_context_mount_inode_relabel(u32 sid,
484 struct superblock_security_struct *sbsec,
485 const struct cred *cred)
486{
487 const struct task_security_struct *tsec = cred->security;
488 int rc;
489 rc = avc_has_perm(&selinux_state,
490 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
491 FILESYSTEM__RELABELFROM, NULL);
492 if (rc)
493 return rc;
494
495 rc = avc_has_perm(&selinux_state,
496 sid, sbsec->sid, SECCLASS_FILESYSTEM,
497 FILESYSTEM__ASSOCIATE, NULL);
498 return rc;
499}
500
501static int selinux_is_sblabel_mnt(struct super_block *sb)
502{
503 struct superblock_security_struct *sbsec = sb->s_security;
504
505 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
506 sbsec->behavior == SECURITY_FS_USE_TRANS ||
507 sbsec->behavior == SECURITY_FS_USE_TASK ||
508 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
509 /* Special handling. Genfs but also in-core setxattr handler */
510 !strcmp(sb->s_type->name, "sysfs") ||
511 !strcmp(sb->s_type->name, "pstore") ||
512 !strcmp(sb->s_type->name, "debugfs") ||
513 !strcmp(sb->s_type->name, "tracefs") ||
514 !strcmp(sb->s_type->name, "rootfs") ||
515 (selinux_policycap_cgroupseclabel() &&
516 (!strcmp(sb->s_type->name, "cgroup") ||
517 !strcmp(sb->s_type->name, "cgroup2")));
518}
519
520static int sb_finish_set_opts(struct super_block *sb)
521{
522 struct superblock_security_struct *sbsec = sb->s_security;
523 struct dentry *root = sb->s_root;
524 struct inode *root_inode = d_backing_inode(root);
525 int rc = 0;
526
527 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
528 /* Make sure that the xattr handler exists and that no
529 error other than -ENODATA is returned by getxattr on
530 the root directory. -ENODATA is ok, as this may be
531 the first boot of the SELinux kernel before we have
532 assigned xattr values to the filesystem. */
533 if (!(root_inode->i_opflags & IOP_XATTR)) {
534 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
535 "xattr support\n", sb->s_id, sb->s_type->name);
536 rc = -EOPNOTSUPP;
537 goto out;
538 }
539
540 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
541 if (rc < 0 && rc != -ENODATA) {
542 if (rc == -EOPNOTSUPP)
543 printk(KERN_WARNING "SELinux: (dev %s, type "
544 "%s) has no security xattr handler\n",
545 sb->s_id, sb->s_type->name);
546 else
547 printk(KERN_WARNING "SELinux: (dev %s, type "
548 "%s) getxattr errno %d\n", sb->s_id,
549 sb->s_type->name, -rc);
550 goto out;
551 }
552 }
553
554 sbsec->flags |= SE_SBINITIALIZED;
555
556 /*
557 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
558 * leave the flag untouched because sb_clone_mnt_opts might be handing
559 * us a superblock that needs the flag to be cleared.
560 */
561 if (selinux_is_sblabel_mnt(sb))
562 sbsec->flags |= SBLABEL_MNT;
563 else
564 sbsec->flags &= ~SBLABEL_MNT;
565
566 /* Initialize the root inode. */
567 rc = inode_doinit_with_dentry(root_inode, root);
568
569 /* Initialize any other inodes associated with the superblock, e.g.
570 inodes created prior to initial policy load or inodes created
571 during get_sb by a pseudo filesystem that directly
572 populates itself. */
573 spin_lock(&sbsec->isec_lock);
574next_inode:
575 if (!list_empty(&sbsec->isec_head)) {
576 struct inode_security_struct *isec =
577 list_entry(sbsec->isec_head.next,
578 struct inode_security_struct, list);
579 struct inode *inode = isec->inode;
580 list_del_init(&isec->list);
581 spin_unlock(&sbsec->isec_lock);
582 inode = igrab(inode);
583 if (inode) {
584 if (!IS_PRIVATE(inode))
585 inode_doinit(inode);
586 iput(inode);
587 }
588 spin_lock(&sbsec->isec_lock);
589 goto next_inode;
590 }
591 spin_unlock(&sbsec->isec_lock);
592out:
593 return rc;
594}
595
596/*
597 * This function should allow an FS to ask what it's mount security
598 * options were so it can use those later for submounts, displaying
599 * mount options, or whatever.
600 */
601static int selinux_get_mnt_opts(const struct super_block *sb,
602 struct security_mnt_opts *opts)
603{
604 int rc = 0, i;
605 struct superblock_security_struct *sbsec = sb->s_security;
606 char *context = NULL;
607 u32 len;
608 char tmp;
609
610 security_init_mnt_opts(opts);
611
612 if (!(sbsec->flags & SE_SBINITIALIZED))
613 return -EINVAL;
614
615 if (!selinux_state.initialized)
616 return -EINVAL;
617
618 /* make sure we always check enough bits to cover the mask */
619 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
620
621 tmp = sbsec->flags & SE_MNTMASK;
622 /* count the number of mount options for this sb */
623 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
624 if (tmp & 0x01)
625 opts->num_mnt_opts++;
626 tmp >>= 1;
627 }
628 /* Check if the Label support flag is set */
629 if (sbsec->flags & SBLABEL_MNT)
630 opts->num_mnt_opts++;
631
632 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
633 if (!opts->mnt_opts) {
634 rc = -ENOMEM;
635 goto out_free;
636 }
637
638 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
639 if (!opts->mnt_opts_flags) {
640 rc = -ENOMEM;
641 goto out_free;
642 }
643
644 i = 0;
645 if (sbsec->flags & FSCONTEXT_MNT) {
646 rc = security_sid_to_context(&selinux_state, sbsec->sid,
647 &context, &len);
648 if (rc)
649 goto out_free;
650 opts->mnt_opts[i] = context;
651 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
652 }
653 if (sbsec->flags & CONTEXT_MNT) {
654 rc = security_sid_to_context(&selinux_state,
655 sbsec->mntpoint_sid,
656 &context, &len);
657 if (rc)
658 goto out_free;
659 opts->mnt_opts[i] = context;
660 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
661 }
662 if (sbsec->flags & DEFCONTEXT_MNT) {
663 rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
664 &context, &len);
665 if (rc)
666 goto out_free;
667 opts->mnt_opts[i] = context;
668 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
669 }
670 if (sbsec->flags & ROOTCONTEXT_MNT) {
671 struct dentry *root = sbsec->sb->s_root;
672 struct inode_security_struct *isec = backing_inode_security(root);
673
674 rc = security_sid_to_context(&selinux_state, isec->sid,
675 &context, &len);
676 if (rc)
677 goto out_free;
678 opts->mnt_opts[i] = context;
679 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
680 }
681 if (sbsec->flags & SBLABEL_MNT) {
682 opts->mnt_opts[i] = NULL;
683 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
684 }
685
686 BUG_ON(i != opts->num_mnt_opts);
687
688 return 0;
689
690out_free:
691 security_free_mnt_opts(opts);
692 return rc;
693}
694
695static int bad_option(struct superblock_security_struct *sbsec, char flag,
696 u32 old_sid, u32 new_sid)
697{
698 char mnt_flags = sbsec->flags & SE_MNTMASK;
699
700 /* check if the old mount command had the same options */
701 if (sbsec->flags & SE_SBINITIALIZED)
702 if (!(sbsec->flags & flag) ||
703 (old_sid != new_sid))
704 return 1;
705
706 /* check if we were passed the same options twice,
707 * aka someone passed context=a,context=b
708 */
709 if (!(sbsec->flags & SE_SBINITIALIZED))
710 if (mnt_flags & flag)
711 return 1;
712 return 0;
713}
714
715/*
716 * Allow filesystems with binary mount data to explicitly set mount point
717 * labeling information.
718 */
719static int selinux_set_mnt_opts(struct super_block *sb,
720 struct security_mnt_opts *opts,
721 unsigned long kern_flags,
722 unsigned long *set_kern_flags)
723{
724 const struct cred *cred = current_cred();
725 int rc = 0, i;
726 struct superblock_security_struct *sbsec = sb->s_security;
727 const char *name = sb->s_type->name;
728 struct dentry *root = sbsec->sb->s_root;
729 struct inode_security_struct *root_isec;
730 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
731 u32 defcontext_sid = 0;
732 char **mount_options = opts->mnt_opts;
733 int *flags = opts->mnt_opts_flags;
734 int num_opts = opts->num_mnt_opts;
735
736 mutex_lock(&sbsec->lock);
737
738 if (!selinux_state.initialized) {
739 if (!num_opts) {
740 /* Defer initialization until selinux_complete_init,
741 after the initial policy is loaded and the security
742 server is ready to handle calls. */
743 goto out;
744 }
745 rc = -EINVAL;
746 printk(KERN_WARNING "SELinux: Unable to set superblock options "
747 "before the security server is initialized\n");
748 goto out;
749 }
750 if (kern_flags && !set_kern_flags) {
751 /* Specifying internal flags without providing a place to
752 * place the results is not allowed */
753 rc = -EINVAL;
754 goto out;
755 }
756
757 /*
758 * Binary mount data FS will come through this function twice. Once
759 * from an explicit call and once from the generic calls from the vfs.
760 * Since the generic VFS calls will not contain any security mount data
761 * we need to skip the double mount verification.
762 *
763 * This does open a hole in which we will not notice if the first
764 * mount using this sb set explict options and a second mount using
765 * this sb does not set any security options. (The first options
766 * will be used for both mounts)
767 */
768 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
769 && (num_opts == 0))
770 goto out;
771
772 root_isec = backing_inode_security_novalidate(root);
773
774 /*
775 * parse the mount options, check if they are valid sids.
776 * also check if someone is trying to mount the same sb more
777 * than once with different security options.
778 */
779 for (i = 0; i < num_opts; i++) {
780 u32 sid;
781
782 if (flags[i] == SBLABEL_MNT)
783 continue;
784 rc = security_context_str_to_sid(&selinux_state,
785 mount_options[i], &sid,
786 GFP_KERNEL);
787 if (rc) {
788 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
789 "(%s) failed for (dev %s, type %s) errno=%d\n",
790 mount_options[i], sb->s_id, name, rc);
791 goto out;
792 }
793 switch (flags[i]) {
794 case FSCONTEXT_MNT:
795 fscontext_sid = sid;
796
797 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
798 fscontext_sid))
799 goto out_double_mount;
800
801 sbsec->flags |= FSCONTEXT_MNT;
802 break;
803 case CONTEXT_MNT:
804 context_sid = sid;
805
806 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
807 context_sid))
808 goto out_double_mount;
809
810 sbsec->flags |= CONTEXT_MNT;
811 break;
812 case ROOTCONTEXT_MNT:
813 rootcontext_sid = sid;
814
815 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
816 rootcontext_sid))
817 goto out_double_mount;
818
819 sbsec->flags |= ROOTCONTEXT_MNT;
820
821 break;
822 case DEFCONTEXT_MNT:
823 defcontext_sid = sid;
824
825 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
826 defcontext_sid))
827 goto out_double_mount;
828
829 sbsec->flags |= DEFCONTEXT_MNT;
830
831 break;
832 default:
833 rc = -EINVAL;
834 goto out;
835 }
836 }
837
838 if (sbsec->flags & SE_SBINITIALIZED) {
839 /* previously mounted with options, but not on this attempt? */
840 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
841 goto out_double_mount;
842 rc = 0;
843 goto out;
844 }
845
846 if (strcmp(sb->s_type->name, "proc") == 0)
847 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
848
849 if (!strcmp(sb->s_type->name, "debugfs") ||
850 !strcmp(sb->s_type->name, "tracefs") ||
851 !strcmp(sb->s_type->name, "sysfs") ||
852 !strcmp(sb->s_type->name, "pstore") ||
853 !strcmp(sb->s_type->name, "cgroup") ||
854 !strcmp(sb->s_type->name, "cgroup2"))
855 sbsec->flags |= SE_SBGENFS;
856
857 if (!sbsec->behavior) {
858 /*
859 * Determine the labeling behavior to use for this
860 * filesystem type.
861 */
862 rc = security_fs_use(&selinux_state, sb);
863 if (rc) {
864 printk(KERN_WARNING
865 "%s: security_fs_use(%s) returned %d\n",
866 __func__, sb->s_type->name, rc);
867 goto out;
868 }
869 }
870
871 /*
872 * If this is a user namespace mount and the filesystem type is not
873 * explicitly whitelisted, then no contexts are allowed on the command
874 * line and security labels must be ignored.
875 */
876 if (sb->s_user_ns != &init_user_ns &&
877 strcmp(sb->s_type->name, "tmpfs") &&
878 strcmp(sb->s_type->name, "ramfs") &&
879 strcmp(sb->s_type->name, "devpts")) {
880 if (context_sid || fscontext_sid || rootcontext_sid ||
881 defcontext_sid) {
882 rc = -EACCES;
883 goto out;
884 }
885 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
886 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
887 rc = security_transition_sid(&selinux_state,
888 current_sid(),
889 current_sid(),
890 SECCLASS_FILE, NULL,
891 &sbsec->mntpoint_sid);
892 if (rc)
893 goto out;
894 }
895 goto out_set_opts;
896 }
897
898 /* sets the context of the superblock for the fs being mounted. */
899 if (fscontext_sid) {
900 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
901 if (rc)
902 goto out;
903
904 sbsec->sid = fscontext_sid;
905 }
906
907 /*
908 * Switch to using mount point labeling behavior.
909 * sets the label used on all file below the mountpoint, and will set
910 * the superblock context if not already set.
911 */
912 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
913 sbsec->behavior = SECURITY_FS_USE_NATIVE;
914 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
915 }
916
917 if (context_sid) {
918 if (!fscontext_sid) {
919 rc = may_context_mount_sb_relabel(context_sid, sbsec,
920 cred);
921 if (rc)
922 goto out;
923 sbsec->sid = context_sid;
924 } else {
925 rc = may_context_mount_inode_relabel(context_sid, sbsec,
926 cred);
927 if (rc)
928 goto out;
929 }
930 if (!rootcontext_sid)
931 rootcontext_sid = context_sid;
932
933 sbsec->mntpoint_sid = context_sid;
934 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
935 }
936
937 if (rootcontext_sid) {
938 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
939 cred);
940 if (rc)
941 goto out;
942
943 root_isec->sid = rootcontext_sid;
944 root_isec->initialized = LABEL_INITIALIZED;
945 }
946
947 if (defcontext_sid) {
948 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
949 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
950 rc = -EINVAL;
951 printk(KERN_WARNING "SELinux: defcontext option is "
952 "invalid for this filesystem type\n");
953 goto out;
954 }
955
956 if (defcontext_sid != sbsec->def_sid) {
957 rc = may_context_mount_inode_relabel(defcontext_sid,
958 sbsec, cred);
959 if (rc)
960 goto out;
961 }
962
963 sbsec->def_sid = defcontext_sid;
964 }
965
966out_set_opts:
967 rc = sb_finish_set_opts(sb);
968out:
969 mutex_unlock(&sbsec->lock);
970 return rc;
971out_double_mount:
972 rc = -EINVAL;
973 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
974 "security settings for (dev %s, type %s)\n", sb->s_id, name);
975 goto out;
976}
977
978static int selinux_cmp_sb_context(const struct super_block *oldsb,
979 const struct super_block *newsb)
980{
981 struct superblock_security_struct *old = oldsb->s_security;
982 struct superblock_security_struct *new = newsb->s_security;
983 char oldflags = old->flags & SE_MNTMASK;
984 char newflags = new->flags & SE_MNTMASK;
985
986 if (oldflags != newflags)
987 goto mismatch;
988 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
989 goto mismatch;
990 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
991 goto mismatch;
992 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
993 goto mismatch;
994 if (oldflags & ROOTCONTEXT_MNT) {
995 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
996 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
997 if (oldroot->sid != newroot->sid)
998 goto mismatch;
999 }
1000 return 0;
1001mismatch:
1002 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
1003 "different security settings for (dev %s, "
1004 "type %s)\n", newsb->s_id, newsb->s_type->name);
1005 return -EBUSY;
1006}
1007
1008static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009 struct super_block *newsb,
1010 unsigned long kern_flags,
1011 unsigned long *set_kern_flags)
1012{
1013 int rc = 0;
1014 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015 struct superblock_security_struct *newsbsec = newsb->s_security;
1016
1017 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
1018 int set_context = (oldsbsec->flags & CONTEXT_MNT);
1019 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
1020
1021 /*
1022 * if the parent was able to be mounted it clearly had no special lsm
1023 * mount options. thus we can safely deal with this superblock later
1024 */
1025 if (!selinux_state.initialized)
1026 return 0;
1027
1028 /*
1029 * Specifying internal flags without providing a place to
1030 * place the results is not allowed.
1031 */
1032 if (kern_flags && !set_kern_flags)
1033 return -EINVAL;
1034
1035 /* how can we clone if the old one wasn't set up?? */
1036 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037
1038 /* if fs is reusing a sb, make sure that the contexts match */
1039 if (newsbsec->flags & SE_SBINITIALIZED)
1040 return selinux_cmp_sb_context(oldsb, newsb);
1041
1042 mutex_lock(&newsbsec->lock);
1043
1044 newsbsec->flags = oldsbsec->flags;
1045
1046 newsbsec->sid = oldsbsec->sid;
1047 newsbsec->def_sid = oldsbsec->def_sid;
1048 newsbsec->behavior = oldsbsec->behavior;
1049
1050 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052 rc = security_fs_use(&selinux_state, newsb);
1053 if (rc)
1054 goto out;
1055 }
1056
1057 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060 }
1061
1062 if (set_context) {
1063 u32 sid = oldsbsec->mntpoint_sid;
1064
1065 if (!set_fscontext)
1066 newsbsec->sid = sid;
1067 if (!set_rootcontext) {
1068 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069 newisec->sid = sid;
1070 }
1071 newsbsec->mntpoint_sid = sid;
1072 }
1073 if (set_rootcontext) {
1074 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076
1077 newisec->sid = oldisec->sid;
1078 }
1079
1080 sb_finish_set_opts(newsb);
1081out:
1082 mutex_unlock(&newsbsec->lock);
1083 return rc;
1084}
1085
1086static int selinux_parse_opts_str(char *options,
1087 struct security_mnt_opts *opts)
1088{
1089 char *p;
1090 char *context = NULL, *defcontext = NULL;
1091 char *fscontext = NULL, *rootcontext = NULL;
1092 int rc, num_mnt_opts = 0;
1093
1094 opts->num_mnt_opts = 0;
1095
1096 /* Standard string-based options. */
1097 while ((p = strsep(&options, "|")) != NULL) {
1098 int token;
1099 substring_t args[MAX_OPT_ARGS];
1100
1101 if (!*p)
1102 continue;
1103
1104 token = match_token(p, tokens, args);
1105
1106 switch (token) {
1107 case Opt_context:
1108 if (context || defcontext) {
1109 rc = -EINVAL;
1110 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111 goto out_err;
1112 }
1113 context = match_strdup(&args[0]);
1114 if (!context) {
1115 rc = -ENOMEM;
1116 goto out_err;
1117 }
1118 break;
1119
1120 case Opt_fscontext:
1121 if (fscontext) {
1122 rc = -EINVAL;
1123 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124 goto out_err;
1125 }
1126 fscontext = match_strdup(&args[0]);
1127 if (!fscontext) {
1128 rc = -ENOMEM;
1129 goto out_err;
1130 }
1131 break;
1132
1133 case Opt_rootcontext:
1134 if (rootcontext) {
1135 rc = -EINVAL;
1136 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137 goto out_err;
1138 }
1139 rootcontext = match_strdup(&args[0]);
1140 if (!rootcontext) {
1141 rc = -ENOMEM;
1142 goto out_err;
1143 }
1144 break;
1145
1146 case Opt_defcontext:
1147 if (context || defcontext) {
1148 rc = -EINVAL;
1149 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150 goto out_err;
1151 }
1152 defcontext = match_strdup(&args[0]);
1153 if (!defcontext) {
1154 rc = -ENOMEM;
1155 goto out_err;
1156 }
1157 break;
1158 case Opt_labelsupport:
1159 break;
1160 default:
1161 rc = -EINVAL;
1162 printk(KERN_WARNING "SELinux: unknown mount option\n");
1163 goto out_err;
1164
1165 }
1166 }
1167
1168 rc = -ENOMEM;
1169 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170 if (!opts->mnt_opts)
1171 goto out_err;
1172
1173 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174 GFP_KERNEL);
1175 if (!opts->mnt_opts_flags)
1176 goto out_err;
1177
1178 if (fscontext) {
1179 opts->mnt_opts[num_mnt_opts] = fscontext;
1180 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181 }
1182 if (context) {
1183 opts->mnt_opts[num_mnt_opts] = context;
1184 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185 }
1186 if (rootcontext) {
1187 opts->mnt_opts[num_mnt_opts] = rootcontext;
1188 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189 }
1190 if (defcontext) {
1191 opts->mnt_opts[num_mnt_opts] = defcontext;
1192 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193 }
1194
1195 opts->num_mnt_opts = num_mnt_opts;
1196 return 0;
1197
1198out_err:
1199 security_free_mnt_opts(opts);
1200 kfree(context);
1201 kfree(defcontext);
1202 kfree(fscontext);
1203 kfree(rootcontext);
1204 return rc;
1205}
1206/*
1207 * string mount options parsing and call set the sbsec
1208 */
1209static int superblock_doinit(struct super_block *sb, void *data)
1210{
1211 int rc = 0;
1212 char *options = data;
1213 struct security_mnt_opts opts;
1214
1215 security_init_mnt_opts(&opts);
1216
1217 if (!data)
1218 goto out;
1219
1220 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221
1222 rc = selinux_parse_opts_str(options, &opts);
1223 if (rc)
1224 goto out_err;
1225
1226out:
1227 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228
1229out_err:
1230 security_free_mnt_opts(&opts);
1231 return rc;
1232}
1233
1234static void selinux_write_opts(struct seq_file *m,
1235 struct security_mnt_opts *opts)
1236{
1237 int i;
1238 char *prefix;
1239
1240 for (i = 0; i < opts->num_mnt_opts; i++) {
1241 char *has_comma;
1242
1243 if (opts->mnt_opts[i])
1244 has_comma = strchr(opts->mnt_opts[i], ',');
1245 else
1246 has_comma = NULL;
1247
1248 switch (opts->mnt_opts_flags[i]) {
1249 case CONTEXT_MNT:
1250 prefix = CONTEXT_STR;
1251 break;
1252 case FSCONTEXT_MNT:
1253 prefix = FSCONTEXT_STR;
1254 break;
1255 case ROOTCONTEXT_MNT:
1256 prefix = ROOTCONTEXT_STR;
1257 break;
1258 case DEFCONTEXT_MNT:
1259 prefix = DEFCONTEXT_STR;
1260 break;
1261 case SBLABEL_MNT:
1262 seq_putc(m, ',');
1263 seq_puts(m, LABELSUPP_STR);
1264 continue;
1265 default:
1266 BUG();
1267 return;
1268 };
1269 /* we need a comma before each option */
1270 seq_putc(m, ',');
1271 seq_puts(m, prefix);
1272 if (has_comma)
1273 seq_putc(m, '\"');
1274 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275 if (has_comma)
1276 seq_putc(m, '\"');
1277 }
1278}
1279
1280static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281{
1282 struct security_mnt_opts opts;
1283 int rc;
1284
1285 rc = selinux_get_mnt_opts(sb, &opts);
1286 if (rc) {
1287 /* before policy load we may get EINVAL, don't show anything */
1288 if (rc == -EINVAL)
1289 rc = 0;
1290 return rc;
1291 }
1292
1293 selinux_write_opts(m, &opts);
1294
1295 security_free_mnt_opts(&opts);
1296
1297 return rc;
1298}
1299
1300static inline u16 inode_mode_to_security_class(umode_t mode)
1301{
1302 switch (mode & S_IFMT) {
1303 case S_IFSOCK:
1304 return SECCLASS_SOCK_FILE;
1305 case S_IFLNK:
1306 return SECCLASS_LNK_FILE;
1307 case S_IFREG:
1308 return SECCLASS_FILE;
1309 case S_IFBLK:
1310 return SECCLASS_BLK_FILE;
1311 case S_IFDIR:
1312 return SECCLASS_DIR;
1313 case S_IFCHR:
1314 return SECCLASS_CHR_FILE;
1315 case S_IFIFO:
1316 return SECCLASS_FIFO_FILE;
1317
1318 }
1319
1320 return SECCLASS_FILE;
1321}
1322
1323static inline int default_protocol_stream(int protocol)
1324{
1325 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326}
1327
1328static inline int default_protocol_dgram(int protocol)
1329{
1330 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331}
1332
1333static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334{
1335 int extsockclass = selinux_policycap_extsockclass();
1336
1337 switch (family) {
1338 case PF_UNIX:
1339 switch (type) {
1340 case SOCK_STREAM:
1341 case SOCK_SEQPACKET:
1342 return SECCLASS_UNIX_STREAM_SOCKET;
1343 case SOCK_DGRAM:
1344 case SOCK_RAW:
1345 return SECCLASS_UNIX_DGRAM_SOCKET;
1346 }
1347 break;
1348 case PF_INET:
1349 case PF_INET6:
1350 switch (type) {
1351 case SOCK_STREAM:
1352 case SOCK_SEQPACKET:
1353 if (default_protocol_stream(protocol))
1354 return SECCLASS_TCP_SOCKET;
1355 else if (extsockclass && protocol == IPPROTO_SCTP)
1356 return SECCLASS_SCTP_SOCKET;
1357 else
1358 return SECCLASS_RAWIP_SOCKET;
1359 case SOCK_DGRAM:
1360 if (default_protocol_dgram(protocol))
1361 return SECCLASS_UDP_SOCKET;
1362 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363 protocol == IPPROTO_ICMPV6))
1364 return SECCLASS_ICMP_SOCKET;
1365 else
1366 return SECCLASS_RAWIP_SOCKET;
1367 case SOCK_DCCP:
1368 return SECCLASS_DCCP_SOCKET;
1369 default:
1370 return SECCLASS_RAWIP_SOCKET;
1371 }
1372 break;
1373 case PF_NETLINK:
1374 switch (protocol) {
1375 case NETLINK_ROUTE:
1376 return SECCLASS_NETLINK_ROUTE_SOCKET;
1377 case NETLINK_SOCK_DIAG:
1378 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379 case NETLINK_NFLOG:
1380 return SECCLASS_NETLINK_NFLOG_SOCKET;
1381 case NETLINK_XFRM:
1382 return SECCLASS_NETLINK_XFRM_SOCKET;
1383 case NETLINK_SELINUX:
1384 return SECCLASS_NETLINK_SELINUX_SOCKET;
1385 case NETLINK_ISCSI:
1386 return SECCLASS_NETLINK_ISCSI_SOCKET;
1387 case NETLINK_AUDIT:
1388 return SECCLASS_NETLINK_AUDIT_SOCKET;
1389 case NETLINK_FIB_LOOKUP:
1390 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391 case NETLINK_CONNECTOR:
1392 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393 case NETLINK_NETFILTER:
1394 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395 case NETLINK_DNRTMSG:
1396 return SECCLASS_NETLINK_DNRT_SOCKET;
1397 case NETLINK_KOBJECT_UEVENT:
1398 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399 case NETLINK_GENERIC:
1400 return SECCLASS_NETLINK_GENERIC_SOCKET;
1401 case NETLINK_SCSITRANSPORT:
1402 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403 case NETLINK_RDMA:
1404 return SECCLASS_NETLINK_RDMA_SOCKET;
1405 case NETLINK_CRYPTO:
1406 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407 default:
1408 return SECCLASS_NETLINK_SOCKET;
1409 }
1410 case PF_PACKET:
1411 return SECCLASS_PACKET_SOCKET;
1412 case PF_KEY:
1413 return SECCLASS_KEY_SOCKET;
1414 case PF_APPLETALK:
1415 return SECCLASS_APPLETALK_SOCKET;
1416 }
1417
1418 if (extsockclass) {
1419 switch (family) {
1420 case PF_AX25:
1421 return SECCLASS_AX25_SOCKET;
1422 case PF_IPX:
1423 return SECCLASS_IPX_SOCKET;
1424 case PF_NETROM:
1425 return SECCLASS_NETROM_SOCKET;
1426 case PF_ATMPVC:
1427 return SECCLASS_ATMPVC_SOCKET;
1428 case PF_X25:
1429 return SECCLASS_X25_SOCKET;
1430 case PF_ROSE:
1431 return SECCLASS_ROSE_SOCKET;
1432 case PF_DECnet:
1433 return SECCLASS_DECNET_SOCKET;
1434 case PF_ATMSVC:
1435 return SECCLASS_ATMSVC_SOCKET;
1436 case PF_RDS:
1437 return SECCLASS_RDS_SOCKET;
1438 case PF_IRDA:
1439 return SECCLASS_IRDA_SOCKET;
1440 case PF_PPPOX:
1441 return SECCLASS_PPPOX_SOCKET;
1442 case PF_LLC:
1443 return SECCLASS_LLC_SOCKET;
1444 case PF_CAN:
1445 return SECCLASS_CAN_SOCKET;
1446 case PF_TIPC:
1447 return SECCLASS_TIPC_SOCKET;
1448 case PF_BLUETOOTH:
1449 return SECCLASS_BLUETOOTH_SOCKET;
1450 case PF_IUCV:
1451 return SECCLASS_IUCV_SOCKET;
1452 case PF_RXRPC:
1453 return SECCLASS_RXRPC_SOCKET;
1454 case PF_ISDN:
1455 return SECCLASS_ISDN_SOCKET;
1456 case PF_PHONET:
1457 return SECCLASS_PHONET_SOCKET;
1458 case PF_IEEE802154:
1459 return SECCLASS_IEEE802154_SOCKET;
1460 case PF_CAIF:
1461 return SECCLASS_CAIF_SOCKET;
1462 case PF_ALG:
1463 return SECCLASS_ALG_SOCKET;
1464 case PF_NFC:
1465 return SECCLASS_NFC_SOCKET;
1466 case PF_VSOCK:
1467 return SECCLASS_VSOCK_SOCKET;
1468 case PF_KCM:
1469 return SECCLASS_KCM_SOCKET;
1470 case PF_QIPCRTR:
1471 return SECCLASS_QIPCRTR_SOCKET;
1472 case PF_SMC:
1473 return SECCLASS_SMC_SOCKET;
1474#if PF_MAX > 44
1475#error New address family defined, please update this function.
1476#endif
1477 }
1478 }
1479
1480 return SECCLASS_SOCKET;
1481}
1482
1483static int selinux_genfs_get_sid(struct dentry *dentry,
1484 u16 tclass,
1485 u16 flags,
1486 u32 *sid)
1487{
1488 int rc;
1489 struct super_block *sb = dentry->d_sb;
1490 char *buffer, *path;
1491
1492 buffer = (char *)__get_free_page(GFP_KERNEL);
1493 if (!buffer)
1494 return -ENOMEM;
1495
1496 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1497 if (IS_ERR(path))
1498 rc = PTR_ERR(path);
1499 else {
1500 if (flags & SE_SBPROC) {
1501 /* each process gets a /proc/PID/ entry. Strip off the
1502 * PID part to get a valid selinux labeling.
1503 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1504 while (path[1] >= '0' && path[1] <= '9') {
1505 path[1] = '/';
1506 path++;
1507 }
1508 }
1509 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1510 path, tclass, sid);
1511 }
1512 free_page((unsigned long)buffer);
1513 return rc;
1514}
1515
1516/* The inode's security attributes must be initialized before first use. */
1517static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1518{
1519 struct superblock_security_struct *sbsec = NULL;
1520 struct inode_security_struct *isec = inode->i_security;
1521 u32 task_sid, sid = 0;
1522 u16 sclass;
1523 struct dentry *dentry;
1524#define INITCONTEXTLEN 255
1525 char *context = NULL;
1526 unsigned len = 0;
1527 int rc = 0;
1528
1529 if (isec->initialized == LABEL_INITIALIZED)
1530 return 0;
1531
1532 spin_lock(&isec->lock);
1533 if (isec->initialized == LABEL_INITIALIZED)
1534 goto out_unlock;
1535
1536 if (isec->sclass == SECCLASS_FILE)
1537 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1538
1539 sbsec = inode->i_sb->s_security;
1540 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1541 /* Defer initialization until selinux_complete_init,
1542 after the initial policy is loaded and the security
1543 server is ready to handle calls. */
1544 spin_lock(&sbsec->isec_lock);
1545 if (list_empty(&isec->list))
1546 list_add(&isec->list, &sbsec->isec_head);
1547 spin_unlock(&sbsec->isec_lock);
1548 goto out_unlock;
1549 }
1550
1551 sclass = isec->sclass;
1552 task_sid = isec->task_sid;
1553 sid = isec->sid;
1554 isec->initialized = LABEL_PENDING;
1555 spin_unlock(&isec->lock);
1556
1557 switch (sbsec->behavior) {
1558 case SECURITY_FS_USE_NATIVE:
1559 break;
1560 case SECURITY_FS_USE_XATTR:
1561 if (!(inode->i_opflags & IOP_XATTR)) {
1562 sid = sbsec->def_sid;
1563 break;
1564 }
1565 /* Need a dentry, since the xattr API requires one.
1566 Life would be simpler if we could just pass the inode. */
1567 if (opt_dentry) {
1568 /* Called from d_instantiate or d_splice_alias. */
1569 dentry = dget(opt_dentry);
1570 } else {
1571 /*
1572 * Called from selinux_complete_init, try to find a dentry.
1573 * Some filesystems really want a connected one, so try
1574 * that first. We could split SECURITY_FS_USE_XATTR in
1575 * two, depending upon that...
1576 */
1577 dentry = d_find_alias(inode);
1578 if (!dentry)
1579 dentry = d_find_any_alias(inode);
1580 }
1581 if (!dentry) {
1582 /*
1583 * this is can be hit on boot when a file is accessed
1584 * before the policy is loaded. When we load policy we
1585 * may find inodes that have no dentry on the
1586 * sbsec->isec_head list. No reason to complain as these
1587 * will get fixed up the next time we go through
1588 * inode_doinit with a dentry, before these inodes could
1589 * be used again by userspace.
1590 */
1591 goto out;
1592 }
1593
1594 len = INITCONTEXTLEN;
1595 context = kmalloc(len+1, GFP_NOFS);
1596 if (!context) {
1597 rc = -ENOMEM;
1598 dput(dentry);
1599 goto out;
1600 }
1601 context[len] = '\0';
1602 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1603 if (rc == -ERANGE) {
1604 kfree(context);
1605
1606 /* Need a larger buffer. Query for the right size. */
1607 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1608 if (rc < 0) {
1609 dput(dentry);
1610 goto out;
1611 }
1612 len = rc;
1613 context = kmalloc(len+1, GFP_NOFS);
1614 if (!context) {
1615 rc = -ENOMEM;
1616 dput(dentry);
1617 goto out;
1618 }
1619 context[len] = '\0';
1620 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1621 }
1622 dput(dentry);
1623 if (rc < 0) {
1624 if (rc != -ENODATA) {
1625 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1626 "%d for dev=%s ino=%ld\n", __func__,
1627 -rc, inode->i_sb->s_id, inode->i_ino);
1628 kfree(context);
1629 goto out;
1630 }
1631 /* Map ENODATA to the default file SID */
1632 sid = sbsec->def_sid;
1633 rc = 0;
1634 } else {
1635 rc = security_context_to_sid_default(&selinux_state,
1636 context, rc, &sid,
1637 sbsec->def_sid,
1638 GFP_NOFS);
1639 if (rc) {
1640 char *dev = inode->i_sb->s_id;
1641 unsigned long ino = inode->i_ino;
1642
1643 if (rc == -EINVAL) {
1644 if (printk_ratelimit())
1645 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1646 "context=%s. This indicates you may need to relabel the inode or the "
1647 "filesystem in question.\n", ino, dev, context);
1648 } else {
1649 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1650 "returned %d for dev=%s ino=%ld\n",
1651 __func__, context, -rc, dev, ino);
1652 }
1653 kfree(context);
1654 /* Leave with the unlabeled SID */
1655 rc = 0;
1656 break;
1657 }
1658 }
1659 kfree(context);
1660 break;
1661 case SECURITY_FS_USE_TASK:
1662 sid = task_sid;
1663 break;
1664 case SECURITY_FS_USE_TRANS:
1665 /* Default to the fs SID. */
1666 sid = sbsec->sid;
1667
1668 /* Try to obtain a transition SID. */
1669 rc = security_transition_sid(&selinux_state, task_sid, sid,
1670 sclass, NULL, &sid);
1671 if (rc)
1672 goto out;
1673 break;
1674 case SECURITY_FS_USE_MNTPOINT:
1675 sid = sbsec->mntpoint_sid;
1676 break;
1677 default:
1678 /* Default to the fs superblock SID. */
1679 sid = sbsec->sid;
1680
1681 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1682 /* We must have a dentry to determine the label on
1683 * procfs inodes */
1684 if (opt_dentry) {
1685 /* Called from d_instantiate or
1686 * d_splice_alias. */
1687 dentry = dget(opt_dentry);
1688 } else {
1689 /* Called from selinux_complete_init, try to
1690 * find a dentry. Some filesystems really want
1691 * a connected one, so try that first.
1692 */
1693 dentry = d_find_alias(inode);
1694 if (!dentry)
1695 dentry = d_find_any_alias(inode);
1696 }
1697 /*
1698 * This can be hit on boot when a file is accessed
1699 * before the policy is loaded. When we load policy we
1700 * may find inodes that have no dentry on the
1701 * sbsec->isec_head list. No reason to complain as
1702 * these will get fixed up the next time we go through
1703 * inode_doinit() with a dentry, before these inodes
1704 * could be used again by userspace.
1705 */
1706 if (!dentry)
1707 goto out;
1708 rc = selinux_genfs_get_sid(dentry, sclass,
1709 sbsec->flags, &sid);
1710 dput(dentry);
1711 if (rc)
1712 goto out;
1713 }
1714 break;
1715 }
1716
1717out:
1718 spin_lock(&isec->lock);
1719 if (isec->initialized == LABEL_PENDING) {
1720 if (!sid || rc) {
1721 isec->initialized = LABEL_INVALID;
1722 goto out_unlock;
1723 }
1724
1725 isec->initialized = LABEL_INITIALIZED;
1726 isec->sid = sid;
1727 }
1728
1729out_unlock:
1730 spin_unlock(&isec->lock);
1731 return rc;
1732}
1733
1734/* Convert a Linux signal to an access vector. */
1735static inline u32 signal_to_av(int sig)
1736{
1737 u32 perm = 0;
1738
1739 switch (sig) {
1740 case SIGCHLD:
1741 /* Commonly granted from child to parent. */
1742 perm = PROCESS__SIGCHLD;
1743 break;
1744 case SIGKILL:
1745 /* Cannot be caught or ignored */
1746 perm = PROCESS__SIGKILL;
1747 break;
1748 case SIGSTOP:
1749 /* Cannot be caught or ignored */
1750 perm = PROCESS__SIGSTOP;
1751 break;
1752 default:
1753 /* All other signals. */
1754 perm = PROCESS__SIGNAL;
1755 break;
1756 }
1757
1758 return perm;
1759}
1760
1761#if CAP_LAST_CAP > 63
1762#error Fix SELinux to handle capabilities > 63.
1763#endif
1764
1765/* Check whether a task is allowed to use a capability. */
1766static int cred_has_capability(const struct cred *cred,
1767 int cap, int audit, bool initns)
1768{
1769 struct common_audit_data ad;
1770 struct av_decision avd;
1771 u16 sclass;
1772 u32 sid = cred_sid(cred);
1773 u32 av = CAP_TO_MASK(cap);
1774 int rc;
1775
1776 ad.type = LSM_AUDIT_DATA_CAP;
1777 ad.u.cap = cap;
1778
1779 switch (CAP_TO_INDEX(cap)) {
1780 case 0:
1781 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1782 break;
1783 case 1:
1784 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1785 break;
1786 default:
1787 printk(KERN_ERR
1788 "SELinux: out of range capability %d\n", cap);
1789 BUG();
1790 return -EINVAL;
1791 }
1792
1793 rc = avc_has_perm_noaudit(&selinux_state,
1794 sid, sid, sclass, av, 0, &avd);
1795 if (audit == SECURITY_CAP_AUDIT) {
1796 int rc2 = avc_audit(&selinux_state,
1797 sid, sid, sclass, av, &avd, rc, &ad, 0);
1798 if (rc2)
1799 return rc2;
1800 }
1801 return rc;
1802}
1803
1804/* Check whether a task has a particular permission to an inode.
1805 The 'adp' parameter is optional and allows other audit
1806 data to be passed (e.g. the dentry). */
1807static int inode_has_perm(const struct cred *cred,
1808 struct inode *inode,
1809 u32 perms,
1810 struct common_audit_data *adp)
1811{
1812 struct inode_security_struct *isec;
1813 u32 sid;
1814
1815 validate_creds(cred);
1816
1817 if (unlikely(IS_PRIVATE(inode)))
1818 return 0;
1819
1820 sid = cred_sid(cred);
1821 isec = inode->i_security;
1822
1823 return avc_has_perm(&selinux_state,
1824 sid, isec->sid, isec->sclass, perms, adp);
1825}
1826
1827/* Same as inode_has_perm, but pass explicit audit data containing
1828 the dentry to help the auditing code to more easily generate the
1829 pathname if needed. */
1830static inline int dentry_has_perm(const struct cred *cred,
1831 struct dentry *dentry,
1832 u32 av)
1833{
1834 struct inode *inode = d_backing_inode(dentry);
1835 struct common_audit_data ad;
1836
1837 ad.type = LSM_AUDIT_DATA_DENTRY;
1838 ad.u.dentry = dentry;
1839 __inode_security_revalidate(inode, dentry, true);
1840 return inode_has_perm(cred, inode, av, &ad);
1841}
1842
1843/* Same as inode_has_perm, but pass explicit audit data containing
1844 the path to help the auditing code to more easily generate the
1845 pathname if needed. */
1846static inline int path_has_perm(const struct cred *cred,
1847 const struct path *path,
1848 u32 av)
1849{
1850 struct inode *inode = d_backing_inode(path->dentry);
1851 struct common_audit_data ad;
1852
1853 ad.type = LSM_AUDIT_DATA_PATH;
1854 ad.u.path = *path;
1855 __inode_security_revalidate(inode, path->dentry, true);
1856 return inode_has_perm(cred, inode, av, &ad);
1857}
1858
1859/* Same as path_has_perm, but uses the inode from the file struct. */
1860static inline int file_path_has_perm(const struct cred *cred,
1861 struct file *file,
1862 u32 av)
1863{
1864 struct common_audit_data ad;
1865
1866 ad.type = LSM_AUDIT_DATA_FILE;
1867 ad.u.file = file;
1868 return inode_has_perm(cred, file_inode(file), av, &ad);
1869}
1870
1871#ifdef CONFIG_BPF_SYSCALL
1872static int bpf_fd_pass(struct file *file, u32 sid);
1873#endif
1874
1875/* Check whether a task can use an open file descriptor to
1876 access an inode in a given way. Check access to the
1877 descriptor itself, and then use dentry_has_perm to
1878 check a particular permission to the file.
1879 Access to the descriptor is implicitly granted if it
1880 has the same SID as the process. If av is zero, then
1881 access to the file is not checked, e.g. for cases
1882 where only the descriptor is affected like seek. */
1883static int file_has_perm(const struct cred *cred,
1884 struct file *file,
1885 u32 av)
1886{
1887 struct file_security_struct *fsec = file->f_security;
1888 struct inode *inode = file_inode(file);
1889 struct common_audit_data ad;
1890 u32 sid = cred_sid(cred);
1891 int rc;
1892
1893 ad.type = LSM_AUDIT_DATA_FILE;
1894 ad.u.file = file;
1895
1896 if (sid != fsec->sid) {
1897 rc = avc_has_perm(&selinux_state,
1898 sid, fsec->sid,
1899 SECCLASS_FD,
1900 FD__USE,
1901 &ad);
1902 if (rc)
1903 goto out;
1904 }
1905
1906#ifdef CONFIG_BPF_SYSCALL
1907 rc = bpf_fd_pass(file, cred_sid(cred));
1908 if (rc)
1909 return rc;
1910#endif
1911
1912 /* av is zero if only checking access to the descriptor. */
1913 rc = 0;
1914 if (av)
1915 rc = inode_has_perm(cred, inode, av, &ad);
1916
1917out:
1918 return rc;
1919}
1920
1921/*
1922 * Determine the label for an inode that might be unioned.
1923 */
1924static int
1925selinux_determine_inode_label(const struct task_security_struct *tsec,
1926 struct inode *dir,
1927 const struct qstr *name, u16 tclass,
1928 u32 *_new_isid)
1929{
1930 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1931
1932 if ((sbsec->flags & SE_SBINITIALIZED) &&
1933 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1934 *_new_isid = sbsec->mntpoint_sid;
1935 } else if ((sbsec->flags & SBLABEL_MNT) &&
1936 tsec->create_sid) {
1937 *_new_isid = tsec->create_sid;
1938 } else {
1939 const struct inode_security_struct *dsec = inode_security(dir);
1940 return security_transition_sid(&selinux_state, tsec->sid,
1941 dsec->sid, tclass,
1942 name, _new_isid);
1943 }
1944
1945 return 0;
1946}
1947
1948/* Check whether a task can create a file. */
1949static int may_create(struct inode *dir,
1950 struct dentry *dentry,
1951 u16 tclass)
1952{
1953 const struct task_security_struct *tsec = current_security();
1954 struct inode_security_struct *dsec;
1955 struct superblock_security_struct *sbsec;
1956 u32 sid, newsid;
1957 struct common_audit_data ad;
1958 int rc;
1959
1960 dsec = inode_security(dir);
1961 sbsec = dir->i_sb->s_security;
1962
1963 sid = tsec->sid;
1964
1965 ad.type = LSM_AUDIT_DATA_DENTRY;
1966 ad.u.dentry = dentry;
1967
1968 rc = avc_has_perm(&selinux_state,
1969 sid, dsec->sid, SECCLASS_DIR,
1970 DIR__ADD_NAME | DIR__SEARCH,
1971 &ad);
1972 if (rc)
1973 return rc;
1974
1975 rc = selinux_determine_inode_label(current_security(), dir,
1976 &dentry->d_name, tclass, &newsid);
1977 if (rc)
1978 return rc;
1979
1980 rc = avc_has_perm(&selinux_state,
1981 sid, newsid, tclass, FILE__CREATE, &ad);
1982 if (rc)
1983 return rc;
1984
1985 return avc_has_perm(&selinux_state,
1986 newsid, sbsec->sid,
1987 SECCLASS_FILESYSTEM,
1988 FILESYSTEM__ASSOCIATE, &ad);
1989}
1990
1991#define MAY_LINK 0
1992#define MAY_UNLINK 1
1993#define MAY_RMDIR 2
1994
1995/* Check whether a task can link, unlink, or rmdir a file/directory. */
1996static int may_link(struct inode *dir,
1997 struct dentry *dentry,
1998 int kind)
1999
2000{
2001 struct inode_security_struct *dsec, *isec;
2002 struct common_audit_data ad;
2003 u32 sid = current_sid();
2004 u32 av;
2005 int rc;
2006
2007 dsec = inode_security(dir);
2008 isec = backing_inode_security(dentry);
2009
2010 ad.type = LSM_AUDIT_DATA_DENTRY;
2011 ad.u.dentry = dentry;
2012
2013 av = DIR__SEARCH;
2014 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2015 rc = avc_has_perm(&selinux_state,
2016 sid, dsec->sid, SECCLASS_DIR, av, &ad);
2017 if (rc)
2018 return rc;
2019
2020 switch (kind) {
2021 case MAY_LINK:
2022 av = FILE__LINK;
2023 break;
2024 case MAY_UNLINK:
2025 av = FILE__UNLINK;
2026 break;
2027 case MAY_RMDIR:
2028 av = DIR__RMDIR;
2029 break;
2030 default:
2031 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
2032 __func__, kind);
2033 return 0;
2034 }
2035
2036 rc = avc_has_perm(&selinux_state,
2037 sid, isec->sid, isec->sclass, av, &ad);
2038 return rc;
2039}
2040
2041static inline int may_rename(struct inode *old_dir,
2042 struct dentry *old_dentry,
2043 struct inode *new_dir,
2044 struct dentry *new_dentry)
2045{
2046 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2047 struct common_audit_data ad;
2048 u32 sid = current_sid();
2049 u32 av;
2050 int old_is_dir, new_is_dir;
2051 int rc;
2052
2053 old_dsec = inode_security(old_dir);
2054 old_isec = backing_inode_security(old_dentry);
2055 old_is_dir = d_is_dir(old_dentry);
2056 new_dsec = inode_security(new_dir);
2057
2058 ad.type = LSM_AUDIT_DATA_DENTRY;
2059
2060 ad.u.dentry = old_dentry;
2061 rc = avc_has_perm(&selinux_state,
2062 sid, old_dsec->sid, SECCLASS_DIR,
2063 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2064 if (rc)
2065 return rc;
2066 rc = avc_has_perm(&selinux_state,
2067 sid, old_isec->sid,
2068 old_isec->sclass, FILE__RENAME, &ad);
2069 if (rc)
2070 return rc;
2071 if (old_is_dir && new_dir != old_dir) {
2072 rc = avc_has_perm(&selinux_state,
2073 sid, old_isec->sid,
2074 old_isec->sclass, DIR__REPARENT, &ad);
2075 if (rc)
2076 return rc;
2077 }
2078
2079 ad.u.dentry = new_dentry;
2080 av = DIR__ADD_NAME | DIR__SEARCH;
2081 if (d_is_positive(new_dentry))
2082 av |= DIR__REMOVE_NAME;
2083 rc = avc_has_perm(&selinux_state,
2084 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2085 if (rc)
2086 return rc;
2087 if (d_is_positive(new_dentry)) {
2088 new_isec = backing_inode_security(new_dentry);
2089 new_is_dir = d_is_dir(new_dentry);
2090 rc = avc_has_perm(&selinux_state,
2091 sid, new_isec->sid,
2092 new_isec->sclass,
2093 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2094 if (rc)
2095 return rc;
2096 }
2097
2098 return 0;
2099}
2100
2101/* Check whether a task can perform a filesystem operation. */
2102static int superblock_has_perm(const struct cred *cred,
2103 struct super_block *sb,
2104 u32 perms,
2105 struct common_audit_data *ad)
2106{
2107 struct superblock_security_struct *sbsec;
2108 u32 sid = cred_sid(cred);
2109
2110 sbsec = sb->s_security;
2111 return avc_has_perm(&selinux_state,
2112 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2113}
2114
2115/* Convert a Linux mode and permission mask to an access vector. */
2116static inline u32 file_mask_to_av(int mode, int mask)
2117{
2118 u32 av = 0;
2119
2120 if (!S_ISDIR(mode)) {
2121 if (mask & MAY_EXEC)
2122 av |= FILE__EXECUTE;
2123 if (mask & MAY_READ)
2124 av |= FILE__READ;
2125
2126 if (mask & MAY_APPEND)
2127 av |= FILE__APPEND;
2128 else if (mask & MAY_WRITE)
2129 av |= FILE__WRITE;
2130
2131 } else {
2132 if (mask & MAY_EXEC)
2133 av |= DIR__SEARCH;
2134 if (mask & MAY_WRITE)
2135 av |= DIR__WRITE;
2136 if (mask & MAY_READ)
2137 av |= DIR__READ;
2138 }
2139
2140 return av;
2141}
2142
2143/* Convert a Linux file to an access vector. */
2144static inline u32 file_to_av(struct file *file)
2145{
2146 u32 av = 0;
2147
2148 if (file->f_mode & FMODE_READ)
2149 av |= FILE__READ;
2150 if (file->f_mode & FMODE_WRITE) {
2151 if (file->f_flags & O_APPEND)
2152 av |= FILE__APPEND;
2153 else
2154 av |= FILE__WRITE;
2155 }
2156 if (!av) {
2157 /*
2158 * Special file opened with flags 3 for ioctl-only use.
2159 */
2160 av = FILE__IOCTL;
2161 }
2162
2163 return av;
2164}
2165
2166/*
2167 * Convert a file to an access vector and include the correct open
2168 * open permission.
2169 */
2170static inline u32 open_file_to_av(struct file *file)
2171{
2172 u32 av = file_to_av(file);
2173 struct inode *inode = file_inode(file);
2174
2175 if (selinux_policycap_openperm() &&
2176 inode->i_sb->s_magic != SOCKFS_MAGIC)
2177 av |= FILE__OPEN;
2178
2179 return av;
2180}
2181
2182/* Hook functions begin here. */
2183
2184static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2185{
2186 u32 mysid = current_sid();
2187 u32 mgrsid = task_sid(mgr);
2188
2189 return avc_has_perm(&selinux_state,
2190 mysid, mgrsid, SECCLASS_BINDER,
2191 BINDER__SET_CONTEXT_MGR, NULL);
2192}
2193
2194static int selinux_binder_transaction(struct task_struct *from,
2195 struct task_struct *to)
2196{
2197 u32 mysid = current_sid();
2198 u32 fromsid = task_sid(from);
2199 u32 tosid = task_sid(to);
2200 int rc;
2201
2202 if (mysid != fromsid) {
2203 rc = avc_has_perm(&selinux_state,
2204 mysid, fromsid, SECCLASS_BINDER,
2205 BINDER__IMPERSONATE, NULL);
2206 if (rc)
2207 return rc;
2208 }
2209
2210 return avc_has_perm(&selinux_state,
2211 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2212 NULL);
2213}
2214
2215static int selinux_binder_transfer_binder(struct task_struct *from,
2216 struct task_struct *to)
2217{
2218 u32 fromsid = task_sid(from);
2219 u32 tosid = task_sid(to);
2220
2221 return avc_has_perm(&selinux_state,
2222 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2223 NULL);
2224}
2225
2226static int selinux_binder_transfer_file(struct task_struct *from,
2227 struct task_struct *to,
2228 struct file *file)
2229{
2230 u32 sid = task_sid(to);
2231 struct file_security_struct *fsec = file->f_security;
2232 struct dentry *dentry = file->f_path.dentry;
2233 struct inode_security_struct *isec;
2234 struct common_audit_data ad;
2235 int rc;
2236
2237 ad.type = LSM_AUDIT_DATA_PATH;
2238 ad.u.path = file->f_path;
2239
2240 if (sid != fsec->sid) {
2241 rc = avc_has_perm(&selinux_state,
2242 sid, fsec->sid,
2243 SECCLASS_FD,
2244 FD__USE,
2245 &ad);
2246 if (rc)
2247 return rc;
2248 }
2249
2250#ifdef CONFIG_BPF_SYSCALL
2251 rc = bpf_fd_pass(file, sid);
2252 if (rc)
2253 return rc;
2254#endif
2255
2256 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2257 return 0;
2258
2259 isec = backing_inode_security(dentry);
2260 return avc_has_perm(&selinux_state,
2261 sid, isec->sid, isec->sclass, file_to_av(file),
2262 &ad);
2263}
2264
2265static int selinux_ptrace_access_check(struct task_struct *child,
2266 unsigned int mode)
2267{
2268 u32 sid = current_sid();
2269 u32 csid = task_sid(child);
2270
2271 if (mode & PTRACE_MODE_READ)
2272 return avc_has_perm(&selinux_state,
2273 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2274
2275 return avc_has_perm(&selinux_state,
2276 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2277}
2278
2279static int selinux_ptrace_traceme(struct task_struct *parent)
2280{
2281 return avc_has_perm(&selinux_state,
2282 task_sid(parent), current_sid(), SECCLASS_PROCESS,
2283 PROCESS__PTRACE, NULL);
2284}
2285
2286static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2287 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2288{
2289 return avc_has_perm(&selinux_state,
2290 current_sid(), task_sid(target), SECCLASS_PROCESS,
2291 PROCESS__GETCAP, NULL);
2292}
2293
2294static int selinux_capset(struct cred *new, const struct cred *old,
2295 const kernel_cap_t *effective,
2296 const kernel_cap_t *inheritable,
2297 const kernel_cap_t *permitted)
2298{
2299 return avc_has_perm(&selinux_state,
2300 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2301 PROCESS__SETCAP, NULL);
2302}
2303
2304/*
2305 * (This comment used to live with the selinux_task_setuid hook,
2306 * which was removed).
2307 *
2308 * Since setuid only affects the current process, and since the SELinux
2309 * controls are not based on the Linux identity attributes, SELinux does not
2310 * need to control this operation. However, SELinux does control the use of
2311 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2312 */
2313
2314static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2315 int cap, int audit)
2316{
2317 return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2318}
2319
2320static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2321{
2322 const struct cred *cred = current_cred();
2323 int rc = 0;
2324
2325 if (!sb)
2326 return 0;
2327
2328 switch (cmds) {
2329 case Q_SYNC:
2330 case Q_QUOTAON:
2331 case Q_QUOTAOFF:
2332 case Q_SETINFO:
2333 case Q_SETQUOTA:
2334 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2335 break;
2336 case Q_GETFMT:
2337 case Q_GETINFO:
2338 case Q_GETQUOTA:
2339 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2340 break;
2341 default:
2342 rc = 0; /* let the kernel handle invalid cmds */
2343 break;
2344 }
2345 return rc;
2346}
2347
2348static int selinux_quota_on(struct dentry *dentry)
2349{
2350 const struct cred *cred = current_cred();
2351
2352 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2353}
2354
2355static int selinux_syslog(int type)
2356{
2357 switch (type) {
2358 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2359 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2360 return avc_has_perm(&selinux_state,
2361 current_sid(), SECINITSID_KERNEL,
2362 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2363 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2364 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2365 /* Set level of messages printed to console */
2366 case SYSLOG_ACTION_CONSOLE_LEVEL:
2367 return avc_has_perm(&selinux_state,
2368 current_sid(), SECINITSID_KERNEL,
2369 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2370 NULL);
2371 }
2372 /* All other syslog types */
2373 return avc_has_perm(&selinux_state,
2374 current_sid(), SECINITSID_KERNEL,
2375 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2376}
2377
2378/*
2379 * Check that a process has enough memory to allocate a new virtual
2380 * mapping. 0 means there is enough memory for the allocation to
2381 * succeed and -ENOMEM implies there is not.
2382 *
2383 * Do not audit the selinux permission check, as this is applied to all
2384 * processes that allocate mappings.
2385 */
2386static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2387{
2388 int rc, cap_sys_admin = 0;
2389
2390 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2391 SECURITY_CAP_NOAUDIT, true);
2392 if (rc == 0)
2393 cap_sys_admin = 1;
2394
2395 return cap_sys_admin;
2396}
2397
2398/* binprm security operations */
2399
2400static u32 ptrace_parent_sid(void)
2401{
2402 u32 sid = 0;
2403 struct task_struct *tracer;
2404
2405 rcu_read_lock();
2406 tracer = ptrace_parent(current);
2407 if (tracer)
2408 sid = task_sid(tracer);
2409 rcu_read_unlock();
2410
2411 return sid;
2412}
2413
2414static int check_nnp_nosuid(const struct linux_binprm *bprm,
2415 const struct task_security_struct *old_tsec,
2416 const struct task_security_struct *new_tsec)
2417{
2418 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2419 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2420 int rc;
2421 u32 av;
2422
2423 if (!nnp && !nosuid)
2424 return 0; /* neither NNP nor nosuid */
2425
2426 if (new_tsec->sid == old_tsec->sid)
2427 return 0; /* No change in credentials */
2428
2429 /*
2430 * If the policy enables the nnp_nosuid_transition policy capability,
2431 * then we permit transitions under NNP or nosuid if the
2432 * policy allows the corresponding permission between
2433 * the old and new contexts.
2434 */
2435 if (selinux_policycap_nnp_nosuid_transition()) {
2436 av = 0;
2437 if (nnp)
2438 av |= PROCESS2__NNP_TRANSITION;
2439 if (nosuid)
2440 av |= PROCESS2__NOSUID_TRANSITION;
2441 rc = avc_has_perm(&selinux_state,
2442 old_tsec->sid, new_tsec->sid,
2443 SECCLASS_PROCESS2, av, NULL);
2444 if (!rc)
2445 return 0;
2446 }
2447
2448 /*
2449 * We also permit NNP or nosuid transitions to bounded SIDs,
2450 * i.e. SIDs that are guaranteed to only be allowed a subset
2451 * of the permissions of the current SID.
2452 */
2453 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2454 new_tsec->sid);
2455 if (!rc)
2456 return 0;
2457
2458 /*
2459 * On failure, preserve the errno values for NNP vs nosuid.
2460 * NNP: Operation not permitted for caller.
2461 * nosuid: Permission denied to file.
2462 */
2463 if (nnp)
2464 return -EPERM;
2465 return -EACCES;
2466}
2467
2468static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2469{
2470 const struct task_security_struct *old_tsec;
2471 struct task_security_struct *new_tsec;
2472 struct inode_security_struct *isec;
2473 struct common_audit_data ad;
2474 struct inode *inode = file_inode(bprm->file);
2475 int rc;
2476
2477 /* SELinux context only depends on initial program or script and not
2478 * the script interpreter */
2479 if (bprm->called_set_creds)
2480 return 0;
2481
2482 old_tsec = current_security();
2483 new_tsec = bprm->cred->security;
2484 isec = inode_security(inode);
2485
2486 /* Default to the current task SID. */
2487 new_tsec->sid = old_tsec->sid;
2488 new_tsec->osid = old_tsec->sid;
2489
2490 /* Reset fs, key, and sock SIDs on execve. */
2491 new_tsec->create_sid = 0;
2492 new_tsec->keycreate_sid = 0;
2493 new_tsec->sockcreate_sid = 0;
2494
2495 if (old_tsec->exec_sid) {
2496 new_tsec->sid = old_tsec->exec_sid;
2497 /* Reset exec SID on execve. */
2498 new_tsec->exec_sid = 0;
2499
2500 /* Fail on NNP or nosuid if not an allowed transition. */
2501 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2502 if (rc)
2503 return rc;
2504 } else {
2505 /* Check for a default transition on this program. */
2506 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2507 isec->sid, SECCLASS_PROCESS, NULL,
2508 &new_tsec->sid);
2509 if (rc)
2510 return rc;
2511
2512 /*
2513 * Fallback to old SID on NNP or nosuid if not an allowed
2514 * transition.
2515 */
2516 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2517 if (rc)
2518 new_tsec->sid = old_tsec->sid;
2519 }
2520
2521 ad.type = LSM_AUDIT_DATA_FILE;
2522 ad.u.file = bprm->file;
2523
2524 if (new_tsec->sid == old_tsec->sid) {
2525 rc = avc_has_perm(&selinux_state,
2526 old_tsec->sid, isec->sid,
2527 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2528 if (rc)
2529 return rc;
2530 } else {
2531 /* Check permissions for the transition. */
2532 rc = avc_has_perm(&selinux_state,
2533 old_tsec->sid, new_tsec->sid,
2534 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2535 if (rc)
2536 return rc;
2537
2538 rc = avc_has_perm(&selinux_state,
2539 new_tsec->sid, isec->sid,
2540 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2541 if (rc)
2542 return rc;
2543
2544 /* Check for shared state */
2545 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2546 rc = avc_has_perm(&selinux_state,
2547 old_tsec->sid, new_tsec->sid,
2548 SECCLASS_PROCESS, PROCESS__SHARE,
2549 NULL);
2550 if (rc)
2551 return -EPERM;
2552 }
2553
2554 /* Make sure that anyone attempting to ptrace over a task that
2555 * changes its SID has the appropriate permit */
2556 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2557 u32 ptsid = ptrace_parent_sid();
2558 if (ptsid != 0) {
2559 rc = avc_has_perm(&selinux_state,
2560 ptsid, new_tsec->sid,
2561 SECCLASS_PROCESS,
2562 PROCESS__PTRACE, NULL);
2563 if (rc)
2564 return -EPERM;
2565 }
2566 }
2567
2568 /* Clear any possibly unsafe personality bits on exec: */
2569 bprm->per_clear |= PER_CLEAR_ON_SETID;
2570
2571 /* Enable secure mode for SIDs transitions unless
2572 the noatsecure permission is granted between
2573 the two SIDs, i.e. ahp returns 0. */
2574 rc = avc_has_perm(&selinux_state,
2575 old_tsec->sid, new_tsec->sid,
2576 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2577 NULL);
2578 bprm->secureexec |= !!rc;
2579 }
2580
2581 return 0;
2582}
2583
2584static int match_file(const void *p, struct file *file, unsigned fd)
2585{
2586 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2587}
2588
2589/* Derived from fs/exec.c:flush_old_files. */
2590static inline void flush_unauthorized_files(const struct cred *cred,
2591 struct files_struct *files)
2592{
2593 struct file *file, *devnull = NULL;
2594 struct tty_struct *tty;
2595 int drop_tty = 0;
2596 unsigned n;
2597
2598 tty = get_current_tty();
2599 if (tty) {
2600 spin_lock(&tty->files_lock);
2601 if (!list_empty(&tty->tty_files)) {
2602 struct tty_file_private *file_priv;
2603
2604 /* Revalidate access to controlling tty.
2605 Use file_path_has_perm on the tty path directly
2606 rather than using file_has_perm, as this particular
2607 open file may belong to another process and we are
2608 only interested in the inode-based check here. */
2609 file_priv = list_first_entry(&tty->tty_files,
2610 struct tty_file_private, list);
2611 file = file_priv->file;
2612 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2613 drop_tty = 1;
2614 }
2615 spin_unlock(&tty->files_lock);
2616 tty_kref_put(tty);
2617 }
2618 /* Reset controlling tty. */
2619 if (drop_tty)
2620 no_tty();
2621
2622 /* Revalidate access to inherited open files. */
2623 n = iterate_fd(files, 0, match_file, cred);
2624 if (!n) /* none found? */
2625 return;
2626
2627 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2628 if (IS_ERR(devnull))
2629 devnull = NULL;
2630 /* replace all the matching ones with this */
2631 do {
2632 replace_fd(n - 1, devnull, 0);
2633 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2634 if (devnull)
2635 fput(devnull);
2636}
2637
2638/*
2639 * Prepare a process for imminent new credential changes due to exec
2640 */
2641static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2642{
2643 struct task_security_struct *new_tsec;
2644 struct rlimit *rlim, *initrlim;
2645 int rc, i;
2646
2647 new_tsec = bprm->cred->security;
2648 if (new_tsec->sid == new_tsec->osid)
2649 return;
2650
2651 /* Close files for which the new task SID is not authorized. */
2652 flush_unauthorized_files(bprm->cred, current->files);
2653
2654 /* Always clear parent death signal on SID transitions. */
2655 current->pdeath_signal = 0;
2656
2657 /* Check whether the new SID can inherit resource limits from the old
2658 * SID. If not, reset all soft limits to the lower of the current
2659 * task's hard limit and the init task's soft limit.
2660 *
2661 * Note that the setting of hard limits (even to lower them) can be
2662 * controlled by the setrlimit check. The inclusion of the init task's
2663 * soft limit into the computation is to avoid resetting soft limits
2664 * higher than the default soft limit for cases where the default is
2665 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2666 */
2667 rc = avc_has_perm(&selinux_state,
2668 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2669 PROCESS__RLIMITINH, NULL);
2670 if (rc) {
2671 /* protect against do_prlimit() */
2672 task_lock(current);
2673 for (i = 0; i < RLIM_NLIMITS; i++) {
2674 rlim = current->signal->rlim + i;
2675 initrlim = init_task.signal->rlim + i;
2676 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2677 }
2678 task_unlock(current);
2679 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2680 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2681 }
2682}
2683
2684/*
2685 * Clean up the process immediately after the installation of new credentials
2686 * due to exec
2687 */
2688static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2689{
2690 const struct task_security_struct *tsec = current_security();
2691 struct itimerval itimer;
2692 u32 osid, sid;
2693 int rc, i;
2694
2695 osid = tsec->osid;
2696 sid = tsec->sid;
2697
2698 if (sid == osid)
2699 return;
2700
2701 /* Check whether the new SID can inherit signal state from the old SID.
2702 * If not, clear itimers to avoid subsequent signal generation and
2703 * flush and unblock signals.
2704 *
2705 * This must occur _after_ the task SID has been updated so that any
2706 * kill done after the flush will be checked against the new SID.
2707 */
2708 rc = avc_has_perm(&selinux_state,
2709 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2710 if (rc) {
2711 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2712 memset(&itimer, 0, sizeof itimer);
2713 for (i = 0; i < 3; i++)
2714 do_setitimer(i, &itimer, NULL);
2715 }
2716 spin_lock_irq(¤t->sighand->siglock);
2717 if (!fatal_signal_pending(current)) {
2718 flush_sigqueue(¤t->pending);
2719 flush_sigqueue(¤t->signal->shared_pending);
2720 flush_signal_handlers(current, 1);
2721 sigemptyset(¤t->blocked);
2722 recalc_sigpending();
2723 }
2724 spin_unlock_irq(¤t->sighand->siglock);
2725 }
2726
2727 /* Wake up the parent if it is waiting so that it can recheck
2728 * wait permission to the new task SID. */
2729 read_lock(&tasklist_lock);
2730 __wake_up_parent(current, current->real_parent);
2731 read_unlock(&tasklist_lock);
2732}
2733
2734/* superblock security operations */
2735
2736static int selinux_sb_alloc_security(struct super_block *sb)
2737{
2738 return superblock_alloc_security(sb);
2739}
2740
2741static void selinux_sb_free_security(struct super_block *sb)
2742{
2743 superblock_free_security(sb);
2744}
2745
2746static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2747{
2748 if (plen > olen)
2749 return 0;
2750
2751 return !memcmp(prefix, option, plen);
2752}
2753
2754static inline int selinux_option(char *option, int len)
2755{
2756 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2757 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2758 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2759 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2760 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2761}
2762
2763static inline void take_option(char **to, char *from, int *first, int len)
2764{
2765 if (!*first) {
2766 **to = ',';
2767 *to += 1;
2768 } else
2769 *first = 0;
2770 memcpy(*to, from, len);
2771 *to += len;
2772}
2773
2774static inline void take_selinux_option(char **to, char *from, int *first,
2775 int len)
2776{
2777 int current_size = 0;
2778
2779 if (!*first) {
2780 **to = '|';
2781 *to += 1;
2782 } else
2783 *first = 0;
2784
2785 while (current_size < len) {
2786 if (*from != '"') {
2787 **to = *from;
2788 *to += 1;
2789 }
2790 from += 1;
2791 current_size += 1;
2792 }
2793}
2794
2795static int selinux_sb_copy_data(char *orig, char *copy)
2796{
2797 int fnosec, fsec, rc = 0;
2798 char *in_save, *in_curr, *in_end;
2799 char *sec_curr, *nosec_save, *nosec;
2800 int open_quote = 0;
2801
2802 in_curr = orig;
2803 sec_curr = copy;
2804
2805 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2806 if (!nosec) {
2807 rc = -ENOMEM;
2808 goto out;
2809 }
2810
2811 nosec_save = nosec;
2812 fnosec = fsec = 1;
2813 in_save = in_end = orig;
2814
2815 do {
2816 if (*in_end == '"')
2817 open_quote = !open_quote;
2818 if ((*in_end == ',' && open_quote == 0) ||
2819 *in_end == '\0') {
2820 int len = in_end - in_curr;
2821
2822 if (selinux_option(in_curr, len))
2823 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2824 else
2825 take_option(&nosec, in_curr, &fnosec, len);
2826
2827 in_curr = in_end + 1;
2828 }
2829 } while (*in_end++);
2830
2831 strcpy(in_save, nosec_save);
2832 free_page((unsigned long)nosec_save);
2833out:
2834 return rc;
2835}
2836
2837static int selinux_sb_remount(struct super_block *sb, void *data)
2838{
2839 int rc, i, *flags;
2840 struct security_mnt_opts opts;
2841 char *secdata, **mount_options;
2842 struct superblock_security_struct *sbsec = sb->s_security;
2843
2844 if (!(sbsec->flags & SE_SBINITIALIZED))
2845 return 0;
2846
2847 if (!data)
2848 return 0;
2849
2850 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2851 return 0;
2852
2853 security_init_mnt_opts(&opts);
2854 secdata = alloc_secdata();
2855 if (!secdata)
2856 return -ENOMEM;
2857 rc = selinux_sb_copy_data(data, secdata);
2858 if (rc)
2859 goto out_free_secdata;
2860
2861 rc = selinux_parse_opts_str(secdata, &opts);
2862 if (rc)
2863 goto out_free_secdata;
2864
2865 mount_options = opts.mnt_opts;
2866 flags = opts.mnt_opts_flags;
2867
2868 for (i = 0; i < opts.num_mnt_opts; i++) {
2869 u32 sid;
2870
2871 if (flags[i] == SBLABEL_MNT)
2872 continue;
2873 rc = security_context_str_to_sid(&selinux_state,
2874 mount_options[i], &sid,
2875 GFP_KERNEL);
2876 if (rc) {
2877 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2878 "(%s) failed for (dev %s, type %s) errno=%d\n",
2879 mount_options[i], sb->s_id, sb->s_type->name, rc);
2880 goto out_free_opts;
2881 }
2882 rc = -EINVAL;
2883 switch (flags[i]) {
2884 case FSCONTEXT_MNT:
2885 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2886 goto out_bad_option;
2887 break;
2888 case CONTEXT_MNT:
2889 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2890 goto out_bad_option;
2891 break;
2892 case ROOTCONTEXT_MNT: {
2893 struct inode_security_struct *root_isec;
2894 root_isec = backing_inode_security(sb->s_root);
2895
2896 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2897 goto out_bad_option;
2898 break;
2899 }
2900 case DEFCONTEXT_MNT:
2901 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2902 goto out_bad_option;
2903 break;
2904 default:
2905 goto out_free_opts;
2906 }
2907 }
2908
2909 rc = 0;
2910out_free_opts:
2911 security_free_mnt_opts(&opts);
2912out_free_secdata:
2913 free_secdata(secdata);
2914 return rc;
2915out_bad_option:
2916 printk(KERN_WARNING "SELinux: unable to change security options "
2917 "during remount (dev %s, type=%s)\n", sb->s_id,
2918 sb->s_type->name);
2919 goto out_free_opts;
2920}
2921
2922static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2923{
2924 const struct cred *cred = current_cred();
2925 struct common_audit_data ad;
2926 int rc;
2927
2928 rc = superblock_doinit(sb, data);
2929 if (rc)
2930 return rc;
2931
2932 /* Allow all mounts performed by the kernel */
2933 if (flags & MS_KERNMOUNT)
2934 return 0;
2935
2936 ad.type = LSM_AUDIT_DATA_DENTRY;
2937 ad.u.dentry = sb->s_root;
2938 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2939}
2940
2941static int selinux_sb_statfs(struct dentry *dentry)
2942{
2943 const struct cred *cred = current_cred();
2944 struct common_audit_data ad;
2945
2946 ad.type = LSM_AUDIT_DATA_DENTRY;
2947 ad.u.dentry = dentry->d_sb->s_root;
2948 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2949}
2950
2951static int selinux_mount(const char *dev_name,
2952 const struct path *path,
2953 const char *type,
2954 unsigned long flags,
2955 void *data)
2956{
2957 const struct cred *cred = current_cred();
2958
2959 if (flags & MS_REMOUNT)
2960 return superblock_has_perm(cred, path->dentry->d_sb,
2961 FILESYSTEM__REMOUNT, NULL);
2962 else
2963 return path_has_perm(cred, path, FILE__MOUNTON);
2964}
2965
2966static int selinux_umount(struct vfsmount *mnt, int flags)
2967{
2968 const struct cred *cred = current_cred();
2969
2970 return superblock_has_perm(cred, mnt->mnt_sb,
2971 FILESYSTEM__UNMOUNT, NULL);
2972}
2973
2974/* inode security operations */
2975
2976static int selinux_inode_alloc_security(struct inode *inode)
2977{
2978 return inode_alloc_security(inode);
2979}
2980
2981static void selinux_inode_free_security(struct inode *inode)
2982{
2983 inode_free_security(inode);
2984}
2985
2986static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2987 const struct qstr *name, void **ctx,
2988 u32 *ctxlen)
2989{
2990 u32 newsid;
2991 int rc;
2992
2993 rc = selinux_determine_inode_label(current_security(),
2994 d_inode(dentry->d_parent), name,
2995 inode_mode_to_security_class(mode),
2996 &newsid);
2997 if (rc)
2998 return rc;
2999
3000 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
3001 ctxlen);
3002}
3003
3004static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
3005 struct qstr *name,
3006 const struct cred *old,
3007 struct cred *new)
3008{
3009 u32 newsid;
3010 int rc;
3011 struct task_security_struct *tsec;
3012
3013 rc = selinux_determine_inode_label(old->security,
3014 d_inode(dentry->d_parent), name,
3015 inode_mode_to_security_class(mode),
3016 &newsid);
3017 if (rc)
3018 return rc;
3019
3020 tsec = new->security;
3021 tsec->create_sid = newsid;
3022 return 0;
3023}
3024
3025static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3026 const struct qstr *qstr,
3027 const char **name,
3028 void **value, size_t *len)
3029{
3030 const struct task_security_struct *tsec = current_security();
3031 struct superblock_security_struct *sbsec;
3032 u32 newsid, clen;
3033 int rc;
3034 char *context;
3035
3036 sbsec = dir->i_sb->s_security;
3037
3038 newsid = tsec->create_sid;
3039
3040 rc = selinux_determine_inode_label(current_security(),
3041 dir, qstr,
3042 inode_mode_to_security_class(inode->i_mode),
3043 &newsid);
3044 if (rc)
3045 return rc;
3046
3047 /* Possibly defer initialization to selinux_complete_init. */
3048 if (sbsec->flags & SE_SBINITIALIZED) {
3049 struct inode_security_struct *isec = inode->i_security;
3050 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3051 isec->sid = newsid;
3052 isec->initialized = LABEL_INITIALIZED;
3053 }
3054
3055 if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3056 return -EOPNOTSUPP;
3057
3058 if (name)
3059 *name = XATTR_SELINUX_SUFFIX;
3060
3061 if (value && len) {
3062 rc = security_sid_to_context_force(&selinux_state, newsid,
3063 &context, &clen);
3064 if (rc)
3065 return rc;
3066 *value = context;
3067 *len = clen;
3068 }
3069
3070 return 0;
3071}
3072
3073static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3074{
3075 return may_create(dir, dentry, SECCLASS_FILE);
3076}
3077
3078static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3079{
3080 return may_link(dir, old_dentry, MAY_LINK);
3081}
3082
3083static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3084{
3085 return may_link(dir, dentry, MAY_UNLINK);
3086}
3087
3088static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3089{
3090 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3091}
3092
3093static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3094{
3095 return may_create(dir, dentry, SECCLASS_DIR);
3096}
3097
3098static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3099{
3100 return may_link(dir, dentry, MAY_RMDIR);
3101}
3102
3103static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3104{
3105 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3106}
3107
3108static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3109 struct inode *new_inode, struct dentry *new_dentry)
3110{
3111 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3112}
3113
3114static int selinux_inode_readlink(struct dentry *dentry)
3115{
3116 const struct cred *cred = current_cred();
3117
3118 return dentry_has_perm(cred, dentry, FILE__READ);
3119}
3120
3121static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3122 bool rcu)
3123{
3124 const struct cred *cred = current_cred();
3125 struct common_audit_data ad;
3126 struct inode_security_struct *isec;
3127 u32 sid;
3128
3129 validate_creds(cred);
3130
3131 ad.type = LSM_AUDIT_DATA_DENTRY;
3132 ad.u.dentry = dentry;
3133 sid = cred_sid(cred);
3134 isec = inode_security_rcu(inode, rcu);
3135 if (IS_ERR(isec))
3136 return PTR_ERR(isec);
3137
3138 return avc_has_perm_flags(&selinux_state,
3139 sid, isec->sid, isec->sclass, FILE__READ, &ad,
3140 rcu ? MAY_NOT_BLOCK : 0);
3141}
3142
3143static noinline int audit_inode_permission(struct inode *inode,
3144 u32 perms, u32 audited, u32 denied,
3145 int result,
3146 unsigned flags)
3147{
3148 struct common_audit_data ad;
3149 struct inode_security_struct *isec = inode->i_security;
3150 int rc;
3151
3152 ad.type = LSM_AUDIT_DATA_INODE;
3153 ad.u.inode = inode;
3154
3155 rc = slow_avc_audit(&selinux_state,
3156 current_sid(), isec->sid, isec->sclass, perms,
3157 audited, denied, result, &ad, flags);
3158 if (rc)
3159 return rc;
3160 return 0;
3161}
3162
3163static int selinux_inode_permission(struct inode *inode, int mask)
3164{
3165 const struct cred *cred = current_cred();
3166 u32 perms;
3167 bool from_access;
3168 unsigned flags = mask & MAY_NOT_BLOCK;
3169 struct inode_security_struct *isec;
3170 u32 sid;
3171 struct av_decision avd;
3172 int rc, rc2;
3173 u32 audited, denied;
3174
3175 from_access = mask & MAY_ACCESS;
3176 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3177
3178 /* No permission to check. Existence test. */
3179 if (!mask)
3180 return 0;
3181
3182 validate_creds(cred);
3183
3184 if (unlikely(IS_PRIVATE(inode)))
3185 return 0;
3186
3187 perms = file_mask_to_av(inode->i_mode, mask);
3188
3189 sid = cred_sid(cred);
3190 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3191 if (IS_ERR(isec))
3192 return PTR_ERR(isec);
3193
3194 rc = avc_has_perm_noaudit(&selinux_state,
3195 sid, isec->sid, isec->sclass, perms, 0, &avd);
3196 audited = avc_audit_required(perms, &avd, rc,
3197 from_access ? FILE__AUDIT_ACCESS : 0,
3198 &denied);
3199 if (likely(!audited))
3200 return rc;
3201
3202 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3203 if (rc2)
3204 return rc2;
3205 return rc;
3206}
3207
3208static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3209{
3210 const struct cred *cred = current_cred();
3211 struct inode *inode = d_backing_inode(dentry);
3212 unsigned int ia_valid = iattr->ia_valid;
3213 __u32 av = FILE__WRITE;
3214
3215 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3216 if (ia_valid & ATTR_FORCE) {
3217 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3218 ATTR_FORCE);
3219 if (!ia_valid)
3220 return 0;
3221 }
3222
3223 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3224 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3225 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3226
3227 if (selinux_policycap_openperm() &&
3228 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3229 (ia_valid & ATTR_SIZE) &&
3230 !(ia_valid & ATTR_FILE))
3231 av |= FILE__OPEN;
3232
3233 return dentry_has_perm(cred, dentry, av);
3234}
3235
3236static int selinux_inode_getattr(const struct path *path)
3237{
3238 return path_has_perm(current_cred(), path, FILE__GETATTR);
3239}
3240
3241static bool has_cap_mac_admin(bool audit)
3242{
3243 const struct cred *cred = current_cred();
3244 int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3245
3246 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3247 return false;
3248 if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3249 return false;
3250 return true;
3251}
3252
3253static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3254 const void *value, size_t size, int flags)
3255{
3256 struct inode *inode = d_backing_inode(dentry);
3257 struct inode_security_struct *isec;
3258 struct superblock_security_struct *sbsec;
3259 struct common_audit_data ad;
3260 u32 newsid, sid = current_sid();
3261 int rc = 0;
3262
3263 if (strcmp(name, XATTR_NAME_SELINUX)) {
3264 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3265 if (rc)
3266 return rc;
3267
3268 /* Not an attribute we recognize, so just check the
3269 ordinary setattr permission. */
3270 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3271 }
3272
3273 sbsec = inode->i_sb->s_security;
3274 if (!(sbsec->flags & SBLABEL_MNT))
3275 return -EOPNOTSUPP;
3276
3277 if (!inode_owner_or_capable(inode))
3278 return -EPERM;
3279
3280 ad.type = LSM_AUDIT_DATA_DENTRY;
3281 ad.u.dentry = dentry;
3282
3283 isec = backing_inode_security(dentry);
3284 rc = avc_has_perm(&selinux_state,
3285 sid, isec->sid, isec->sclass,
3286 FILE__RELABELFROM, &ad);
3287 if (rc)
3288 return rc;
3289
3290 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3291 GFP_KERNEL);
3292 if (rc == -EINVAL) {
3293 if (!has_cap_mac_admin(true)) {
3294 struct audit_buffer *ab;
3295 size_t audit_size;
3296
3297 /* We strip a nul only if it is at the end, otherwise the
3298 * context contains a nul and we should audit that */
3299 if (value) {
3300 const char *str = value;
3301
3302 if (str[size - 1] == '\0')
3303 audit_size = size - 1;
3304 else
3305 audit_size = size;
3306 } else {
3307 audit_size = 0;
3308 }
3309 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3310 audit_log_format(ab, "op=setxattr invalid_context=");
3311 audit_log_n_untrustedstring(ab, value, audit_size);
3312 audit_log_end(ab);
3313
3314 return rc;
3315 }
3316 rc = security_context_to_sid_force(&selinux_state, value,
3317 size, &newsid);
3318 }
3319 if (rc)
3320 return rc;
3321
3322 rc = avc_has_perm(&selinux_state,
3323 sid, newsid, isec->sclass,
3324 FILE__RELABELTO, &ad);
3325 if (rc)
3326 return rc;
3327
3328 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3329 sid, isec->sclass);
3330 if (rc)
3331 return rc;
3332
3333 return avc_has_perm(&selinux_state,
3334 newsid,
3335 sbsec->sid,
3336 SECCLASS_FILESYSTEM,
3337 FILESYSTEM__ASSOCIATE,
3338 &ad);
3339}
3340
3341static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3342 const void *value, size_t size,
3343 int flags)
3344{
3345 struct inode *inode = d_backing_inode(dentry);
3346 struct inode_security_struct *isec;
3347 u32 newsid;
3348 int rc;
3349
3350 if (strcmp(name, XATTR_NAME_SELINUX)) {
3351 /* Not an attribute we recognize, so nothing to do. */
3352 return;
3353 }
3354
3355 rc = security_context_to_sid_force(&selinux_state, value, size,
3356 &newsid);
3357 if (rc) {
3358 printk(KERN_ERR "SELinux: unable to map context to SID"
3359 "for (%s, %lu), rc=%d\n",
3360 inode->i_sb->s_id, inode->i_ino, -rc);
3361 return;
3362 }
3363
3364 isec = backing_inode_security(dentry);
3365 spin_lock(&isec->lock);
3366 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3367 isec->sid = newsid;
3368 isec->initialized = LABEL_INITIALIZED;
3369 spin_unlock(&isec->lock);
3370
3371 return;
3372}
3373
3374static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3375{
3376 const struct cred *cred = current_cred();
3377
3378 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3379}
3380
3381static int selinux_inode_listxattr(struct dentry *dentry)
3382{
3383 const struct cred *cred = current_cred();
3384
3385 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3386}
3387
3388static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3389{
3390 if (strcmp(name, XATTR_NAME_SELINUX)) {
3391 int rc = cap_inode_removexattr(dentry, name);
3392 if (rc)
3393 return rc;
3394
3395 /* Not an attribute we recognize, so just check the
3396 ordinary setattr permission. */
3397 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3398 }
3399
3400 /* No one is allowed to remove a SELinux security label.
3401 You can change the label, but all data must be labeled. */
3402 return -EACCES;
3403}
3404
3405/*
3406 * Copy the inode security context value to the user.
3407 *
3408 * Permission check is handled by selinux_inode_getxattr hook.
3409 */
3410static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3411{
3412 u32 size;
3413 int error;
3414 char *context = NULL;
3415 struct inode_security_struct *isec;
3416
3417 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3418 return -EOPNOTSUPP;
3419
3420 /*
3421 * If the caller has CAP_MAC_ADMIN, then get the raw context
3422 * value even if it is not defined by current policy; otherwise,
3423 * use the in-core value under current policy.
3424 * Use the non-auditing forms of the permission checks since
3425 * getxattr may be called by unprivileged processes commonly
3426 * and lack of permission just means that we fall back to the
3427 * in-core context value, not a denial.
3428 */
3429 isec = inode_security(inode);
3430 if (has_cap_mac_admin(false))
3431 error = security_sid_to_context_force(&selinux_state,
3432 isec->sid, &context,
3433 &size);
3434 else
3435 error = security_sid_to_context(&selinux_state, isec->sid,
3436 &context, &size);
3437 if (error)
3438 return error;
3439 error = size;
3440 if (alloc) {
3441 *buffer = context;
3442 goto out_nofree;
3443 }
3444 kfree(context);
3445out_nofree:
3446 return error;
3447}
3448
3449static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3450 const void *value, size_t size, int flags)
3451{
3452 struct inode_security_struct *isec = inode_security_novalidate(inode);
3453 u32 newsid;
3454 int rc;
3455
3456 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3457 return -EOPNOTSUPP;
3458
3459 if (!value || !size)
3460 return -EACCES;
3461
3462 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3463 GFP_KERNEL);
3464 if (rc)
3465 return rc;
3466
3467 spin_lock(&isec->lock);
3468 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3469 isec->sid = newsid;
3470 isec->initialized = LABEL_INITIALIZED;
3471 spin_unlock(&isec->lock);
3472 return 0;
3473}
3474
3475static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3476{
3477 const int len = sizeof(XATTR_NAME_SELINUX);
3478 if (buffer && len <= buffer_size)
3479 memcpy(buffer, XATTR_NAME_SELINUX, len);
3480 return len;
3481}
3482
3483static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3484{
3485 struct inode_security_struct *isec = inode_security_novalidate(inode);
3486 *secid = isec->sid;
3487}
3488
3489static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3490{
3491 u32 sid;
3492 struct task_security_struct *tsec;
3493 struct cred *new_creds = *new;
3494
3495 if (new_creds == NULL) {
3496 new_creds = prepare_creds();
3497 if (!new_creds)
3498 return -ENOMEM;
3499 }
3500
3501 tsec = new_creds->security;
3502 /* Get label from overlay inode and set it in create_sid */
3503 selinux_inode_getsecid(d_inode(src), &sid);
3504 tsec->create_sid = sid;
3505 *new = new_creds;
3506 return 0;
3507}
3508
3509static int selinux_inode_copy_up_xattr(const char *name)
3510{
3511 /* The copy_up hook above sets the initial context on an inode, but we
3512 * don't then want to overwrite it by blindly copying all the lower
3513 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3514 */
3515 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3516 return 1; /* Discard */
3517 /*
3518 * Any other attribute apart from SELINUX is not claimed, supported
3519 * by selinux.
3520 */
3521 return -EOPNOTSUPP;
3522}
3523
3524/* file security operations */
3525
3526static int selinux_revalidate_file_permission(struct file *file, int mask)
3527{
3528 const struct cred *cred = current_cred();
3529 struct inode *inode = file_inode(file);
3530
3531 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3532 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3533 mask |= MAY_APPEND;
3534
3535 return file_has_perm(cred, file,
3536 file_mask_to_av(inode->i_mode, mask));
3537}
3538
3539static int selinux_file_permission(struct file *file, int mask)
3540{
3541 struct inode *inode = file_inode(file);
3542 struct file_security_struct *fsec = file->f_security;
3543 struct inode_security_struct *isec;
3544 u32 sid = current_sid();
3545
3546 if (!mask)
3547 /* No permission to check. Existence test. */
3548 return 0;
3549
3550 isec = inode_security(inode);
3551 if (sid == fsec->sid && fsec->isid == isec->sid &&
3552 fsec->pseqno == avc_policy_seqno(&selinux_state))
3553 /* No change since file_open check. */
3554 return 0;
3555
3556 return selinux_revalidate_file_permission(file, mask);
3557}
3558
3559static int selinux_file_alloc_security(struct file *file)
3560{
3561 return file_alloc_security(file);
3562}
3563
3564static void selinux_file_free_security(struct file *file)
3565{
3566 file_free_security(file);
3567}
3568
3569/*
3570 * Check whether a task has the ioctl permission and cmd
3571 * operation to an inode.
3572 */
3573static int ioctl_has_perm(const struct cred *cred, struct file *file,
3574 u32 requested, u16 cmd)
3575{
3576 struct common_audit_data ad;
3577 struct file_security_struct *fsec = file->f_security;
3578 struct inode *inode = file_inode(file);
3579 struct inode_security_struct *isec;
3580 struct lsm_ioctlop_audit ioctl;
3581 u32 ssid = cred_sid(cred);
3582 int rc;
3583 u8 driver = cmd >> 8;
3584 u8 xperm = cmd & 0xff;
3585
3586 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3587 ad.u.op = &ioctl;
3588 ad.u.op->cmd = cmd;
3589 ad.u.op->path = file->f_path;
3590
3591 if (ssid != fsec->sid) {
3592 rc = avc_has_perm(&selinux_state,
3593 ssid, fsec->sid,
3594 SECCLASS_FD,
3595 FD__USE,
3596 &ad);
3597 if (rc)
3598 goto out;
3599 }
3600
3601 if (unlikely(IS_PRIVATE(inode)))
3602 return 0;
3603
3604 isec = inode_security(inode);
3605 rc = avc_has_extended_perms(&selinux_state,
3606 ssid, isec->sid, isec->sclass,
3607 requested, driver, xperm, &ad);
3608out:
3609 return rc;
3610}
3611
3612static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3613 unsigned long arg)
3614{
3615 const struct cred *cred = current_cred();
3616 int error = 0;
3617
3618 switch (cmd) {
3619 case FIONREAD:
3620 /* fall through */
3621 case FIBMAP:
3622 /* fall through */
3623 case FIGETBSZ:
3624 /* fall through */
3625 case FS_IOC_GETFLAGS:
3626 /* fall through */
3627 case FS_IOC_GETVERSION:
3628 error = file_has_perm(cred, file, FILE__GETATTR);
3629 break;
3630
3631 case FS_IOC_SETFLAGS:
3632 /* fall through */
3633 case FS_IOC_SETVERSION:
3634 error = file_has_perm(cred, file, FILE__SETATTR);
3635 break;
3636
3637 /* sys_ioctl() checks */
3638 case FIONBIO:
3639 /* fall through */
3640 case FIOASYNC:
3641 error = file_has_perm(cred, file, 0);
3642 break;
3643
3644 case KDSKBENT:
3645 case KDSKBSENT:
3646 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3647 SECURITY_CAP_AUDIT, true);
3648 break;
3649
3650 /* default case assumes that the command will go
3651 * to the file's ioctl() function.
3652 */
3653 default:
3654 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3655 }
3656 return error;
3657}
3658
3659static int default_noexec;
3660
3661static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3662{
3663 const struct cred *cred = current_cred();
3664 u32 sid = cred_sid(cred);
3665 int rc = 0;
3666
3667 if (default_noexec &&
3668 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3669 (!shared && (prot & PROT_WRITE)))) {
3670 /*
3671 * We are making executable an anonymous mapping or a
3672 * private file mapping that will also be writable.
3673 * This has an additional check.
3674 */
3675 rc = avc_has_perm(&selinux_state,
3676 sid, sid, SECCLASS_PROCESS,
3677 PROCESS__EXECMEM, NULL);
3678 if (rc)
3679 goto error;
3680 }
3681
3682 if (file) {
3683 /* read access is always possible with a mapping */
3684 u32 av = FILE__READ;
3685
3686 /* write access only matters if the mapping is shared */
3687 if (shared && (prot & PROT_WRITE))
3688 av |= FILE__WRITE;
3689
3690 if (prot & PROT_EXEC)
3691 av |= FILE__EXECUTE;
3692
3693 return file_has_perm(cred, file, av);
3694 }
3695
3696error:
3697 return rc;
3698}
3699
3700static int selinux_mmap_addr(unsigned long addr)
3701{
3702 int rc = 0;
3703
3704 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3705 u32 sid = current_sid();
3706 rc = avc_has_perm(&selinux_state,
3707 sid, sid, SECCLASS_MEMPROTECT,
3708 MEMPROTECT__MMAP_ZERO, NULL);
3709 }
3710
3711 return rc;
3712}
3713
3714static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3715 unsigned long prot, unsigned long flags)
3716{
3717 struct common_audit_data ad;
3718 int rc;
3719
3720 if (file) {
3721 ad.type = LSM_AUDIT_DATA_FILE;
3722 ad.u.file = file;
3723 rc = inode_has_perm(current_cred(), file_inode(file),
3724 FILE__MAP, &ad);
3725 if (rc)
3726 return rc;
3727 }
3728
3729 if (selinux_state.checkreqprot)
3730 prot = reqprot;
3731
3732 return file_map_prot_check(file, prot,
3733 (flags & MAP_TYPE) == MAP_SHARED);
3734}
3735
3736static int selinux_file_mprotect(struct vm_area_struct *vma,
3737 unsigned long reqprot,
3738 unsigned long prot)
3739{
3740 const struct cred *cred = current_cred();
3741 u32 sid = cred_sid(cred);
3742
3743 if (selinux_state.checkreqprot)
3744 prot = reqprot;
3745
3746 if (default_noexec &&
3747 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3748 int rc = 0;
3749 if (vma->vm_start >= vma->vm_mm->start_brk &&
3750 vma->vm_end <= vma->vm_mm->brk) {
3751 rc = avc_has_perm(&selinux_state,
3752 sid, sid, SECCLASS_PROCESS,
3753 PROCESS__EXECHEAP, NULL);
3754 } else if (!vma->vm_file &&
3755 ((vma->vm_start <= vma->vm_mm->start_stack &&
3756 vma->vm_end >= vma->vm_mm->start_stack) ||
3757 vma_is_stack_for_current(vma))) {
3758 rc = avc_has_perm(&selinux_state,
3759 sid, sid, SECCLASS_PROCESS,
3760 PROCESS__EXECSTACK, NULL);
3761 } else if (vma->vm_file && vma->anon_vma) {
3762 /*
3763 * We are making executable a file mapping that has
3764 * had some COW done. Since pages might have been
3765 * written, check ability to execute the possibly
3766 * modified content. This typically should only
3767 * occur for text relocations.
3768 */
3769 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3770 }
3771 if (rc)
3772 return rc;
3773 }
3774
3775 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3776}
3777
3778static int selinux_file_lock(struct file *file, unsigned int cmd)
3779{
3780 const struct cred *cred = current_cred();
3781
3782 return file_has_perm(cred, file, FILE__LOCK);
3783}
3784
3785static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3786 unsigned long arg)
3787{
3788 const struct cred *cred = current_cred();
3789 int err = 0;
3790
3791 switch (cmd) {
3792 case F_SETFL:
3793 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3794 err = file_has_perm(cred, file, FILE__WRITE);
3795 break;
3796 }
3797 /* fall through */
3798 case F_SETOWN:
3799 case F_SETSIG:
3800 case F_GETFL:
3801 case F_GETOWN:
3802 case F_GETSIG:
3803 case F_GETOWNER_UIDS:
3804 /* Just check FD__USE permission */
3805 err = file_has_perm(cred, file, 0);
3806 break;
3807 case F_GETLK:
3808 case F_SETLK:
3809 case F_SETLKW:
3810 case F_OFD_GETLK:
3811 case F_OFD_SETLK:
3812 case F_OFD_SETLKW:
3813#if BITS_PER_LONG == 32
3814 case F_GETLK64:
3815 case F_SETLK64:
3816 case F_SETLKW64:
3817#endif
3818 err = file_has_perm(cred, file, FILE__LOCK);
3819 break;
3820 }
3821
3822 return err;
3823}
3824
3825static void selinux_file_set_fowner(struct file *file)
3826{
3827 struct file_security_struct *fsec;
3828
3829 fsec = file->f_security;
3830 fsec->fown_sid = current_sid();
3831}
3832
3833static int selinux_file_send_sigiotask(struct task_struct *tsk,
3834 struct fown_struct *fown, int signum)
3835{
3836 struct file *file;
3837 u32 sid = task_sid(tsk);
3838 u32 perm;
3839 struct file_security_struct *fsec;
3840
3841 /* struct fown_struct is never outside the context of a struct file */
3842 file = container_of(fown, struct file, f_owner);
3843
3844 fsec = file->f_security;
3845
3846 if (!signum)
3847 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3848 else
3849 perm = signal_to_av(signum);
3850
3851 return avc_has_perm(&selinux_state,
3852 fsec->fown_sid, sid,
3853 SECCLASS_PROCESS, perm, NULL);
3854}
3855
3856static int selinux_file_receive(struct file *file)
3857{
3858 const struct cred *cred = current_cred();
3859
3860 return file_has_perm(cred, file, file_to_av(file));
3861}
3862
3863static int selinux_file_open(struct file *file, const struct cred *cred)
3864{
3865 struct file_security_struct *fsec;
3866 struct inode_security_struct *isec;
3867
3868 fsec = file->f_security;
3869 isec = inode_security(file_inode(file));
3870 /*
3871 * Save inode label and policy sequence number
3872 * at open-time so that selinux_file_permission
3873 * can determine whether revalidation is necessary.
3874 * Task label is already saved in the file security
3875 * struct as its SID.
3876 */
3877 fsec->isid = isec->sid;
3878 fsec->pseqno = avc_policy_seqno(&selinux_state);
3879 /*
3880 * Since the inode label or policy seqno may have changed
3881 * between the selinux_inode_permission check and the saving
3882 * of state above, recheck that access is still permitted.
3883 * Otherwise, access might never be revalidated against the
3884 * new inode label or new policy.
3885 * This check is not redundant - do not remove.
3886 */
3887 return file_path_has_perm(cred, file, open_file_to_av(file));
3888}
3889
3890/* task security operations */
3891
3892static int selinux_task_alloc(struct task_struct *task,
3893 unsigned long clone_flags)
3894{
3895 u32 sid = current_sid();
3896
3897 return avc_has_perm(&selinux_state,
3898 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3899}
3900
3901/*
3902 * allocate the SELinux part of blank credentials
3903 */
3904static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3905{
3906 struct task_security_struct *tsec;
3907
3908 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3909 if (!tsec)
3910 return -ENOMEM;
3911
3912 cred->security = tsec;
3913 return 0;
3914}
3915
3916/*
3917 * detach and free the LSM part of a set of credentials
3918 */
3919static void selinux_cred_free(struct cred *cred)
3920{
3921 struct task_security_struct *tsec = cred->security;
3922
3923 /*
3924 * cred->security == NULL if security_cred_alloc_blank() or
3925 * security_prepare_creds() returned an error.
3926 */
3927 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3928 cred->security = (void *) 0x7UL;
3929 kfree(tsec);
3930}
3931
3932/*
3933 * prepare a new set of credentials for modification
3934 */
3935static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3936 gfp_t gfp)
3937{
3938 const struct task_security_struct *old_tsec;
3939 struct task_security_struct *tsec;
3940
3941 old_tsec = old->security;
3942
3943 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3944 if (!tsec)
3945 return -ENOMEM;
3946
3947 new->security = tsec;
3948 return 0;
3949}
3950
3951/*
3952 * transfer the SELinux data to a blank set of creds
3953 */
3954static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3955{
3956 const struct task_security_struct *old_tsec = old->security;
3957 struct task_security_struct *tsec = new->security;
3958
3959 *tsec = *old_tsec;
3960}
3961
3962static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3963{
3964 *secid = cred_sid(c);
3965}
3966
3967/*
3968 * set the security data for a kernel service
3969 * - all the creation contexts are set to unlabelled
3970 */
3971static int selinux_kernel_act_as(struct cred *new, u32 secid)
3972{
3973 struct task_security_struct *tsec = new->security;
3974 u32 sid = current_sid();
3975 int ret;
3976
3977 ret = avc_has_perm(&selinux_state,
3978 sid, secid,
3979 SECCLASS_KERNEL_SERVICE,
3980 KERNEL_SERVICE__USE_AS_OVERRIDE,
3981 NULL);
3982 if (ret == 0) {
3983 tsec->sid = secid;
3984 tsec->create_sid = 0;
3985 tsec->keycreate_sid = 0;
3986 tsec->sockcreate_sid = 0;
3987 }
3988 return ret;
3989}
3990
3991/*
3992 * set the file creation context in a security record to the same as the
3993 * objective context of the specified inode
3994 */
3995static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3996{
3997 struct inode_security_struct *isec = inode_security(inode);
3998 struct task_security_struct *tsec = new->security;
3999 u32 sid = current_sid();
4000 int ret;
4001
4002 ret = avc_has_perm(&selinux_state,
4003 sid, isec->sid,
4004 SECCLASS_KERNEL_SERVICE,
4005 KERNEL_SERVICE__CREATE_FILES_AS,
4006 NULL);
4007
4008 if (ret == 0)
4009 tsec->create_sid = isec->sid;
4010 return ret;
4011}
4012
4013static int selinux_kernel_module_request(char *kmod_name)
4014{
4015 struct common_audit_data ad;
4016
4017 ad.type = LSM_AUDIT_DATA_KMOD;
4018 ad.u.kmod_name = kmod_name;
4019
4020 return avc_has_perm(&selinux_state,
4021 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4022 SYSTEM__MODULE_REQUEST, &ad);
4023}
4024
4025static int selinux_kernel_module_from_file(struct file *file)
4026{
4027 struct common_audit_data ad;
4028 struct inode_security_struct *isec;
4029 struct file_security_struct *fsec;
4030 u32 sid = current_sid();
4031 int rc;
4032
4033 /* init_module */
4034 if (file == NULL)
4035 return avc_has_perm(&selinux_state,
4036 sid, sid, SECCLASS_SYSTEM,
4037 SYSTEM__MODULE_LOAD, NULL);
4038
4039 /* finit_module */
4040
4041 ad.type = LSM_AUDIT_DATA_FILE;
4042 ad.u.file = file;
4043
4044 fsec = file->f_security;
4045 if (sid != fsec->sid) {
4046 rc = avc_has_perm(&selinux_state,
4047 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4048 if (rc)
4049 return rc;
4050 }
4051
4052 isec = inode_security(file_inode(file));
4053 return avc_has_perm(&selinux_state,
4054 sid, isec->sid, SECCLASS_SYSTEM,
4055 SYSTEM__MODULE_LOAD, &ad);
4056}
4057
4058static int selinux_kernel_read_file(struct file *file,
4059 enum kernel_read_file_id id)
4060{
4061 int rc = 0;
4062
4063 switch (id) {
4064 case READING_MODULE:
4065 rc = selinux_kernel_module_from_file(file);
4066 break;
4067 default:
4068 break;
4069 }
4070
4071 return rc;
4072}
4073
4074static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4075{
4076 return avc_has_perm(&selinux_state,
4077 current_sid(), task_sid(p), SECCLASS_PROCESS,
4078 PROCESS__SETPGID, NULL);
4079}
4080
4081static int selinux_task_getpgid(struct task_struct *p)
4082{
4083 return avc_has_perm(&selinux_state,
4084 current_sid(), task_sid(p), SECCLASS_PROCESS,
4085 PROCESS__GETPGID, NULL);
4086}
4087
4088static int selinux_task_getsid(struct task_struct *p)
4089{
4090 return avc_has_perm(&selinux_state,
4091 current_sid(), task_sid(p), SECCLASS_PROCESS,
4092 PROCESS__GETSESSION, NULL);
4093}
4094
4095static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4096{
4097 *secid = task_sid(p);
4098}
4099
4100static int selinux_task_setnice(struct task_struct *p, int nice)
4101{
4102 return avc_has_perm(&selinux_state,
4103 current_sid(), task_sid(p), SECCLASS_PROCESS,
4104 PROCESS__SETSCHED, NULL);
4105}
4106
4107static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4108{
4109 return avc_has_perm(&selinux_state,
4110 current_sid(), task_sid(p), SECCLASS_PROCESS,
4111 PROCESS__SETSCHED, NULL);
4112}
4113
4114static int selinux_task_getioprio(struct task_struct *p)
4115{
4116 return avc_has_perm(&selinux_state,
4117 current_sid(), task_sid(p), SECCLASS_PROCESS,
4118 PROCESS__GETSCHED, NULL);
4119}
4120
4121static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4122 unsigned int flags)
4123{
4124 u32 av = 0;
4125
4126 if (!flags)
4127 return 0;
4128 if (flags & LSM_PRLIMIT_WRITE)
4129 av |= PROCESS__SETRLIMIT;
4130 if (flags & LSM_PRLIMIT_READ)
4131 av |= PROCESS__GETRLIMIT;
4132 return avc_has_perm(&selinux_state,
4133 cred_sid(cred), cred_sid(tcred),
4134 SECCLASS_PROCESS, av, NULL);
4135}
4136
4137static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4138 struct rlimit *new_rlim)
4139{
4140 struct rlimit *old_rlim = p->signal->rlim + resource;
4141
4142 /* Control the ability to change the hard limit (whether
4143 lowering or raising it), so that the hard limit can
4144 later be used as a safe reset point for the soft limit
4145 upon context transitions. See selinux_bprm_committing_creds. */
4146 if (old_rlim->rlim_max != new_rlim->rlim_max)
4147 return avc_has_perm(&selinux_state,
4148 current_sid(), task_sid(p),
4149 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4150
4151 return 0;
4152}
4153
4154static int selinux_task_setscheduler(struct task_struct *p)
4155{
4156 return avc_has_perm(&selinux_state,
4157 current_sid(), task_sid(p), SECCLASS_PROCESS,
4158 PROCESS__SETSCHED, NULL);
4159}
4160
4161static int selinux_task_getscheduler(struct task_struct *p)
4162{
4163 return avc_has_perm(&selinux_state,
4164 current_sid(), task_sid(p), SECCLASS_PROCESS,
4165 PROCESS__GETSCHED, NULL);
4166}
4167
4168static int selinux_task_movememory(struct task_struct *p)
4169{
4170 return avc_has_perm(&selinux_state,
4171 current_sid(), task_sid(p), SECCLASS_PROCESS,
4172 PROCESS__SETSCHED, NULL);
4173}
4174
4175static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4176 int sig, const struct cred *cred)
4177{
4178 u32 secid;
4179 u32 perm;
4180
4181 if (!sig)
4182 perm = PROCESS__SIGNULL; /* null signal; existence test */
4183 else
4184 perm = signal_to_av(sig);
4185 if (!cred)
4186 secid = current_sid();
4187 else
4188 secid = cred_sid(cred);
4189 return avc_has_perm(&selinux_state,
4190 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4191}
4192
4193static void selinux_task_to_inode(struct task_struct *p,
4194 struct inode *inode)
4195{
4196 struct inode_security_struct *isec = inode->i_security;
4197 u32 sid = task_sid(p);
4198
4199 spin_lock(&isec->lock);
4200 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4201 isec->sid = sid;
4202 isec->initialized = LABEL_INITIALIZED;
4203 spin_unlock(&isec->lock);
4204}
4205
4206/* Returns error only if unable to parse addresses */
4207static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4208 struct common_audit_data *ad, u8 *proto)
4209{
4210 int offset, ihlen, ret = -EINVAL;
4211 struct iphdr _iph, *ih;
4212
4213 offset = skb_network_offset(skb);
4214 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4215 if (ih == NULL)
4216 goto out;
4217
4218 ihlen = ih->ihl * 4;
4219 if (ihlen < sizeof(_iph))
4220 goto out;
4221
4222 ad->u.net->v4info.saddr = ih->saddr;
4223 ad->u.net->v4info.daddr = ih->daddr;
4224 ret = 0;
4225
4226 if (proto)
4227 *proto = ih->protocol;
4228
4229 switch (ih->protocol) {
4230 case IPPROTO_TCP: {
4231 struct tcphdr _tcph, *th;
4232
4233 if (ntohs(ih->frag_off) & IP_OFFSET)
4234 break;
4235
4236 offset += ihlen;
4237 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4238 if (th == NULL)
4239 break;
4240
4241 ad->u.net->sport = th->source;
4242 ad->u.net->dport = th->dest;
4243 break;
4244 }
4245
4246 case IPPROTO_UDP: {
4247 struct udphdr _udph, *uh;
4248
4249 if (ntohs(ih->frag_off) & IP_OFFSET)
4250 break;
4251
4252 offset += ihlen;
4253 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4254 if (uh == NULL)
4255 break;
4256
4257 ad->u.net->sport = uh->source;
4258 ad->u.net->dport = uh->dest;
4259 break;
4260 }
4261
4262 case IPPROTO_DCCP: {
4263 struct dccp_hdr _dccph, *dh;
4264
4265 if (ntohs(ih->frag_off) & IP_OFFSET)
4266 break;
4267
4268 offset += ihlen;
4269 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4270 if (dh == NULL)
4271 break;
4272
4273 ad->u.net->sport = dh->dccph_sport;
4274 ad->u.net->dport = dh->dccph_dport;
4275 break;
4276 }
4277
4278#if IS_ENABLED(CONFIG_IP_SCTP)
4279 case IPPROTO_SCTP: {
4280 struct sctphdr _sctph, *sh;
4281
4282 if (ntohs(ih->frag_off) & IP_OFFSET)
4283 break;
4284
4285 offset += ihlen;
4286 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4287 if (sh == NULL)
4288 break;
4289
4290 ad->u.net->sport = sh->source;
4291 ad->u.net->dport = sh->dest;
4292 break;
4293 }
4294#endif
4295 default:
4296 break;
4297 }
4298out:
4299 return ret;
4300}
4301
4302#if IS_ENABLED(CONFIG_IPV6)
4303
4304/* Returns error only if unable to parse addresses */
4305static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4306 struct common_audit_data *ad, u8 *proto)
4307{
4308 u8 nexthdr;
4309 int ret = -EINVAL, offset;
4310 struct ipv6hdr _ipv6h, *ip6;
4311 __be16 frag_off;
4312
4313 offset = skb_network_offset(skb);
4314 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4315 if (ip6 == NULL)
4316 goto out;
4317
4318 ad->u.net->v6info.saddr = ip6->saddr;
4319 ad->u.net->v6info.daddr = ip6->daddr;
4320 ret = 0;
4321
4322 nexthdr = ip6->nexthdr;
4323 offset += sizeof(_ipv6h);
4324 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4325 if (offset < 0)
4326 goto out;
4327
4328 if (proto)
4329 *proto = nexthdr;
4330
4331 switch (nexthdr) {
4332 case IPPROTO_TCP: {
4333 struct tcphdr _tcph, *th;
4334
4335 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4336 if (th == NULL)
4337 break;
4338
4339 ad->u.net->sport = th->source;
4340 ad->u.net->dport = th->dest;
4341 break;
4342 }
4343
4344 case IPPROTO_UDP: {
4345 struct udphdr _udph, *uh;
4346
4347 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4348 if (uh == NULL)
4349 break;
4350
4351 ad->u.net->sport = uh->source;
4352 ad->u.net->dport = uh->dest;
4353 break;
4354 }
4355
4356 case IPPROTO_DCCP: {
4357 struct dccp_hdr _dccph, *dh;
4358
4359 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4360 if (dh == NULL)
4361 break;
4362
4363 ad->u.net->sport = dh->dccph_sport;
4364 ad->u.net->dport = dh->dccph_dport;
4365 break;
4366 }
4367
4368#if IS_ENABLED(CONFIG_IP_SCTP)
4369 case IPPROTO_SCTP: {
4370 struct sctphdr _sctph, *sh;
4371
4372 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4373 if (sh == NULL)
4374 break;
4375
4376 ad->u.net->sport = sh->source;
4377 ad->u.net->dport = sh->dest;
4378 break;
4379 }
4380#endif
4381 /* includes fragments */
4382 default:
4383 break;
4384 }
4385out:
4386 return ret;
4387}
4388
4389#endif /* IPV6 */
4390
4391static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4392 char **_addrp, int src, u8 *proto)
4393{
4394 char *addrp;
4395 int ret;
4396
4397 switch (ad->u.net->family) {
4398 case PF_INET:
4399 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4400 if (ret)
4401 goto parse_error;
4402 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4403 &ad->u.net->v4info.daddr);
4404 goto okay;
4405
4406#if IS_ENABLED(CONFIG_IPV6)
4407 case PF_INET6:
4408 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4409 if (ret)
4410 goto parse_error;
4411 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4412 &ad->u.net->v6info.daddr);
4413 goto okay;
4414#endif /* IPV6 */
4415 default:
4416 addrp = NULL;
4417 goto okay;
4418 }
4419
4420parse_error:
4421 printk(KERN_WARNING
4422 "SELinux: failure in selinux_parse_skb(),"
4423 " unable to parse packet\n");
4424 return ret;
4425
4426okay:
4427 if (_addrp)
4428 *_addrp = addrp;
4429 return 0;
4430}
4431
4432/**
4433 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4434 * @skb: the packet
4435 * @family: protocol family
4436 * @sid: the packet's peer label SID
4437 *
4438 * Description:
4439 * Check the various different forms of network peer labeling and determine
4440 * the peer label/SID for the packet; most of the magic actually occurs in
4441 * the security server function security_net_peersid_cmp(). The function
4442 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4443 * or -EACCES if @sid is invalid due to inconsistencies with the different
4444 * peer labels.
4445 *
4446 */
4447static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4448{
4449 int err;
4450 u32 xfrm_sid;
4451 u32 nlbl_sid;
4452 u32 nlbl_type;
4453
4454 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4455 if (unlikely(err))
4456 return -EACCES;
4457 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4458 if (unlikely(err))
4459 return -EACCES;
4460
4461 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4462 nlbl_type, xfrm_sid, sid);
4463 if (unlikely(err)) {
4464 printk(KERN_WARNING
4465 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4466 " unable to determine packet's peer label\n");
4467 return -EACCES;
4468 }
4469
4470 return 0;
4471}
4472
4473/**
4474 * selinux_conn_sid - Determine the child socket label for a connection
4475 * @sk_sid: the parent socket's SID
4476 * @skb_sid: the packet's SID
4477 * @conn_sid: the resulting connection SID
4478 *
4479 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4480 * combined with the MLS information from @skb_sid in order to create
4481 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4482 * of @sk_sid. Returns zero on success, negative values on failure.
4483 *
4484 */
4485static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4486{
4487 int err = 0;
4488
4489 if (skb_sid != SECSID_NULL)
4490 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4491 conn_sid);
4492 else
4493 *conn_sid = sk_sid;
4494
4495 return err;
4496}
4497
4498/* socket security operations */
4499
4500static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4501 u16 secclass, u32 *socksid)
4502{
4503 if (tsec->sockcreate_sid > SECSID_NULL) {
4504 *socksid = tsec->sockcreate_sid;
4505 return 0;
4506 }
4507
4508 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4509 secclass, NULL, socksid);
4510}
4511
4512static int sock_has_perm(struct sock *sk, u32 perms)
4513{
4514 struct sk_security_struct *sksec = sk->sk_security;
4515 struct common_audit_data ad;
4516 struct lsm_network_audit net = {0,};
4517
4518 if (sksec->sid == SECINITSID_KERNEL)
4519 return 0;
4520
4521 ad.type = LSM_AUDIT_DATA_NET;
4522 ad.u.net = &net;
4523 ad.u.net->sk = sk;
4524
4525 return avc_has_perm(&selinux_state,
4526 current_sid(), sksec->sid, sksec->sclass, perms,
4527 &ad);
4528}
4529
4530static int selinux_socket_create(int family, int type,
4531 int protocol, int kern)
4532{
4533 const struct task_security_struct *tsec = current_security();
4534 u32 newsid;
4535 u16 secclass;
4536 int rc;
4537
4538 if (kern)
4539 return 0;
4540
4541 secclass = socket_type_to_security_class(family, type, protocol);
4542 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4543 if (rc)
4544 return rc;
4545
4546 return avc_has_perm(&selinux_state,
4547 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4548}
4549
4550static int selinux_socket_post_create(struct socket *sock, int family,
4551 int type, int protocol, int kern)
4552{
4553 const struct task_security_struct *tsec = current_security();
4554 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4555 struct sk_security_struct *sksec;
4556 u16 sclass = socket_type_to_security_class(family, type, protocol);
4557 u32 sid = SECINITSID_KERNEL;
4558 int err = 0;
4559
4560 if (!kern) {
4561 err = socket_sockcreate_sid(tsec, sclass, &sid);
4562 if (err)
4563 return err;
4564 }
4565
4566 isec->sclass = sclass;
4567 isec->sid = sid;
4568 isec->initialized = LABEL_INITIALIZED;
4569
4570 if (sock->sk) {
4571 sksec = sock->sk->sk_security;
4572 sksec->sclass = sclass;
4573 sksec->sid = sid;
4574 /* Allows detection of the first association on this socket */
4575 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4576 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4577
4578 err = selinux_netlbl_socket_post_create(sock->sk, family);
4579 }
4580
4581 return err;
4582}
4583
4584/* Range of port numbers used to automatically bind.
4585 Need to determine whether we should perform a name_bind
4586 permission check between the socket and the port number. */
4587
4588static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4589{
4590 struct sock *sk = sock->sk;
4591 struct sk_security_struct *sksec = sk->sk_security;
4592 u16 family;
4593 int err;
4594
4595 err = sock_has_perm(sk, SOCKET__BIND);
4596 if (err)
4597 goto out;
4598
4599 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4600 family = sk->sk_family;
4601 if (family == PF_INET || family == PF_INET6) {
4602 char *addrp;
4603 struct common_audit_data ad;
4604 struct lsm_network_audit net = {0,};
4605 struct sockaddr_in *addr4 = NULL;
4606 struct sockaddr_in6 *addr6 = NULL;
4607 u16 family_sa = address->sa_family;
4608 unsigned short snum;
4609 u32 sid, node_perm;
4610
4611 /*
4612 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4613 * that validates multiple binding addresses. Because of this
4614 * need to check address->sa_family as it is possible to have
4615 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4616 */
4617 switch (family_sa) {
4618 case AF_UNSPEC:
4619 case AF_INET:
4620 if (addrlen < sizeof(struct sockaddr_in))
4621 return -EINVAL;
4622 addr4 = (struct sockaddr_in *)address;
4623 if (family_sa == AF_UNSPEC) {
4624 /* see __inet_bind(), we only want to allow
4625 * AF_UNSPEC if the address is INADDR_ANY
4626 */
4627 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4628 goto err_af;
4629 family_sa = AF_INET;
4630 }
4631 snum = ntohs(addr4->sin_port);
4632 addrp = (char *)&addr4->sin_addr.s_addr;
4633 break;
4634 case AF_INET6:
4635 if (addrlen < SIN6_LEN_RFC2133)
4636 return -EINVAL;
4637 addr6 = (struct sockaddr_in6 *)address;
4638 snum = ntohs(addr6->sin6_port);
4639 addrp = (char *)&addr6->sin6_addr.s6_addr;
4640 break;
4641 default:
4642 goto err_af;
4643 }
4644
4645 ad.type = LSM_AUDIT_DATA_NET;
4646 ad.u.net = &net;
4647 ad.u.net->sport = htons(snum);
4648 ad.u.net->family = family_sa;
4649
4650 if (snum) {
4651 int low, high;
4652
4653 inet_get_local_port_range(sock_net(sk), &low, &high);
4654
4655 if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4656 snum > high) {
4657 err = sel_netport_sid(sk->sk_protocol,
4658 snum, &sid);
4659 if (err)
4660 goto out;
4661 err = avc_has_perm(&selinux_state,
4662 sksec->sid, sid,
4663 sksec->sclass,
4664 SOCKET__NAME_BIND, &ad);
4665 if (err)
4666 goto out;
4667 }
4668 }
4669
4670 switch (sksec->sclass) {
4671 case SECCLASS_TCP_SOCKET:
4672 node_perm = TCP_SOCKET__NODE_BIND;
4673 break;
4674
4675 case SECCLASS_UDP_SOCKET:
4676 node_perm = UDP_SOCKET__NODE_BIND;
4677 break;
4678
4679 case SECCLASS_DCCP_SOCKET:
4680 node_perm = DCCP_SOCKET__NODE_BIND;
4681 break;
4682
4683 case SECCLASS_SCTP_SOCKET:
4684 node_perm = SCTP_SOCKET__NODE_BIND;
4685 break;
4686
4687 default:
4688 node_perm = RAWIP_SOCKET__NODE_BIND;
4689 break;
4690 }
4691
4692 err = sel_netnode_sid(addrp, family_sa, &sid);
4693 if (err)
4694 goto out;
4695
4696 if (family_sa == AF_INET)
4697 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4698 else
4699 ad.u.net->v6info.saddr = addr6->sin6_addr;
4700
4701 err = avc_has_perm(&selinux_state,
4702 sksec->sid, sid,
4703 sksec->sclass, node_perm, &ad);
4704 if (err)
4705 goto out;
4706 }
4707out:
4708 return err;
4709err_af:
4710 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4711 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4712 return -EINVAL;
4713 return -EAFNOSUPPORT;
4714}
4715
4716/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4717 * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4718 */
4719static int selinux_socket_connect_helper(struct socket *sock,
4720 struct sockaddr *address, int addrlen)
4721{
4722 struct sock *sk = sock->sk;
4723 struct sk_security_struct *sksec = sk->sk_security;
4724 int err;
4725
4726 err = sock_has_perm(sk, SOCKET__CONNECT);
4727 if (err)
4728 return err;
4729
4730 /*
4731 * If a TCP, DCCP or SCTP socket, check name_connect permission
4732 * for the port.
4733 */
4734 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4735 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4736 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4737 struct common_audit_data ad;
4738 struct lsm_network_audit net = {0,};
4739 struct sockaddr_in *addr4 = NULL;
4740 struct sockaddr_in6 *addr6 = NULL;
4741 unsigned short snum;
4742 u32 sid, perm;
4743
4744 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4745 * that validates multiple connect addresses. Because of this
4746 * need to check address->sa_family as it is possible to have
4747 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4748 */
4749 switch (address->sa_family) {
4750 case AF_INET:
4751 addr4 = (struct sockaddr_in *)address;
4752 if (addrlen < sizeof(struct sockaddr_in))
4753 return -EINVAL;
4754 snum = ntohs(addr4->sin_port);
4755 break;
4756 case AF_INET6:
4757 addr6 = (struct sockaddr_in6 *)address;
4758 if (addrlen < SIN6_LEN_RFC2133)
4759 return -EINVAL;
4760 snum = ntohs(addr6->sin6_port);
4761 break;
4762 default:
4763 /* Note that SCTP services expect -EINVAL, whereas
4764 * others expect -EAFNOSUPPORT.
4765 */
4766 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4767 return -EINVAL;
4768 else
4769 return -EAFNOSUPPORT;
4770 }
4771
4772 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4773 if (err)
4774 return err;
4775
4776 switch (sksec->sclass) {
4777 case SECCLASS_TCP_SOCKET:
4778 perm = TCP_SOCKET__NAME_CONNECT;
4779 break;
4780 case SECCLASS_DCCP_SOCKET:
4781 perm = DCCP_SOCKET__NAME_CONNECT;
4782 break;
4783 case SECCLASS_SCTP_SOCKET:
4784 perm = SCTP_SOCKET__NAME_CONNECT;
4785 break;
4786 }
4787
4788 ad.type = LSM_AUDIT_DATA_NET;
4789 ad.u.net = &net;
4790 ad.u.net->dport = htons(snum);
4791 ad.u.net->family = address->sa_family;
4792 err = avc_has_perm(&selinux_state,
4793 sksec->sid, sid, sksec->sclass, perm, &ad);
4794 if (err)
4795 return err;
4796 }
4797
4798 return 0;
4799}
4800
4801/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4802static int selinux_socket_connect(struct socket *sock,
4803 struct sockaddr *address, int addrlen)
4804{
4805 int err;
4806 struct sock *sk = sock->sk;
4807
4808 err = selinux_socket_connect_helper(sock, address, addrlen);
4809 if (err)
4810 return err;
4811
4812 return selinux_netlbl_socket_connect(sk, address);
4813}
4814
4815static int selinux_socket_listen(struct socket *sock, int backlog)
4816{
4817 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4818}
4819
4820static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4821{
4822 int err;
4823 struct inode_security_struct *isec;
4824 struct inode_security_struct *newisec;
4825 u16 sclass;
4826 u32 sid;
4827
4828 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4829 if (err)
4830 return err;
4831
4832 isec = inode_security_novalidate(SOCK_INODE(sock));
4833 spin_lock(&isec->lock);
4834 sclass = isec->sclass;
4835 sid = isec->sid;
4836 spin_unlock(&isec->lock);
4837
4838 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4839 newisec->sclass = sclass;
4840 newisec->sid = sid;
4841 newisec->initialized = LABEL_INITIALIZED;
4842
4843 return 0;
4844}
4845
4846static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4847 int size)
4848{
4849 return sock_has_perm(sock->sk, SOCKET__WRITE);
4850}
4851
4852static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4853 int size, int flags)
4854{
4855 return sock_has_perm(sock->sk, SOCKET__READ);
4856}
4857
4858static int selinux_socket_getsockname(struct socket *sock)
4859{
4860 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4861}
4862
4863static int selinux_socket_getpeername(struct socket *sock)
4864{
4865 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4866}
4867
4868static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4869{
4870 int err;
4871
4872 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4873 if (err)
4874 return err;
4875
4876 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4877}
4878
4879static int selinux_socket_getsockopt(struct socket *sock, int level,
4880 int optname)
4881{
4882 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4883}
4884
4885static int selinux_socket_shutdown(struct socket *sock, int how)
4886{
4887 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4888}
4889
4890static int selinux_socket_unix_stream_connect(struct sock *sock,
4891 struct sock *other,
4892 struct sock *newsk)
4893{
4894 struct sk_security_struct *sksec_sock = sock->sk_security;
4895 struct sk_security_struct *sksec_other = other->sk_security;
4896 struct sk_security_struct *sksec_new = newsk->sk_security;
4897 struct common_audit_data ad;
4898 struct lsm_network_audit net = {0,};
4899 int err;
4900
4901 ad.type = LSM_AUDIT_DATA_NET;
4902 ad.u.net = &net;
4903 ad.u.net->sk = other;
4904
4905 err = avc_has_perm(&selinux_state,
4906 sksec_sock->sid, sksec_other->sid,
4907 sksec_other->sclass,
4908 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4909 if (err)
4910 return err;
4911
4912 /* server child socket */
4913 sksec_new->peer_sid = sksec_sock->sid;
4914 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4915 sksec_sock->sid, &sksec_new->sid);
4916 if (err)
4917 return err;
4918
4919 /* connecting socket */
4920 sksec_sock->peer_sid = sksec_new->sid;
4921
4922 return 0;
4923}
4924
4925static int selinux_socket_unix_may_send(struct socket *sock,
4926 struct socket *other)
4927{
4928 struct sk_security_struct *ssec = sock->sk->sk_security;
4929 struct sk_security_struct *osec = other->sk->sk_security;
4930 struct common_audit_data ad;
4931 struct lsm_network_audit net = {0,};
4932
4933 ad.type = LSM_AUDIT_DATA_NET;
4934 ad.u.net = &net;
4935 ad.u.net->sk = other->sk;
4936
4937 return avc_has_perm(&selinux_state,
4938 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4939 &ad);
4940}
4941
4942static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4943 char *addrp, u16 family, u32 peer_sid,
4944 struct common_audit_data *ad)
4945{
4946 int err;
4947 u32 if_sid;
4948 u32 node_sid;
4949
4950 err = sel_netif_sid(ns, ifindex, &if_sid);
4951 if (err)
4952 return err;
4953 err = avc_has_perm(&selinux_state,
4954 peer_sid, if_sid,
4955 SECCLASS_NETIF, NETIF__INGRESS, ad);
4956 if (err)
4957 return err;
4958
4959 err = sel_netnode_sid(addrp, family, &node_sid);
4960 if (err)
4961 return err;
4962 return avc_has_perm(&selinux_state,
4963 peer_sid, node_sid,
4964 SECCLASS_NODE, NODE__RECVFROM, ad);
4965}
4966
4967static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4968 u16 family)
4969{
4970 int err = 0;
4971 struct sk_security_struct *sksec = sk->sk_security;
4972 u32 sk_sid = sksec->sid;
4973 struct common_audit_data ad;
4974 struct lsm_network_audit net = {0,};
4975 char *addrp;
4976
4977 ad.type = LSM_AUDIT_DATA_NET;
4978 ad.u.net = &net;
4979 ad.u.net->netif = skb->skb_iif;
4980 ad.u.net->family = family;
4981 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4982 if (err)
4983 return err;
4984
4985 if (selinux_secmark_enabled()) {
4986 err = avc_has_perm(&selinux_state,
4987 sk_sid, skb->secmark, SECCLASS_PACKET,
4988 PACKET__RECV, &ad);
4989 if (err)
4990 return err;
4991 }
4992
4993 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4994 if (err)
4995 return err;
4996 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4997
4998 return err;
4999}
5000
5001static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5002{
5003 int err;
5004 struct sk_security_struct *sksec = sk->sk_security;
5005 u16 family = sk->sk_family;
5006 u32 sk_sid = sksec->sid;
5007 struct common_audit_data ad;
5008 struct lsm_network_audit net = {0,};
5009 char *addrp;
5010 u8 secmark_active;
5011 u8 peerlbl_active;
5012
5013 if (family != PF_INET && family != PF_INET6)
5014 return 0;
5015
5016 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5017 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5018 family = PF_INET;
5019
5020 /* If any sort of compatibility mode is enabled then handoff processing
5021 * to the selinux_sock_rcv_skb_compat() function to deal with the
5022 * special handling. We do this in an attempt to keep this function
5023 * as fast and as clean as possible. */
5024 if (!selinux_policycap_netpeer())
5025 return selinux_sock_rcv_skb_compat(sk, skb, family);
5026
5027 secmark_active = selinux_secmark_enabled();
5028 peerlbl_active = selinux_peerlbl_enabled();
5029 if (!secmark_active && !peerlbl_active)
5030 return 0;
5031
5032 ad.type = LSM_AUDIT_DATA_NET;
5033 ad.u.net = &net;
5034 ad.u.net->netif = skb->skb_iif;
5035 ad.u.net->family = family;
5036 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5037 if (err)
5038 return err;
5039
5040 if (peerlbl_active) {
5041 u32 peer_sid;
5042
5043 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5044 if (err)
5045 return err;
5046 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5047 addrp, family, peer_sid, &ad);
5048 if (err) {
5049 selinux_netlbl_err(skb, family, err, 0);
5050 return err;
5051 }
5052 err = avc_has_perm(&selinux_state,
5053 sk_sid, peer_sid, SECCLASS_PEER,
5054 PEER__RECV, &ad);
5055 if (err) {
5056 selinux_netlbl_err(skb, family, err, 0);
5057 return err;
5058 }
5059 }
5060
5061 if (secmark_active) {
5062 err = avc_has_perm(&selinux_state,
5063 sk_sid, skb->secmark, SECCLASS_PACKET,
5064 PACKET__RECV, &ad);
5065 if (err)
5066 return err;
5067 }
5068
5069 return err;
5070}
5071
5072static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5073 int __user *optlen, unsigned len)
5074{
5075 int err = 0;
5076 char *scontext;
5077 u32 scontext_len;
5078 struct sk_security_struct *sksec = sock->sk->sk_security;
5079 u32 peer_sid = SECSID_NULL;
5080
5081 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5082 sksec->sclass == SECCLASS_TCP_SOCKET ||
5083 sksec->sclass == SECCLASS_SCTP_SOCKET)
5084 peer_sid = sksec->peer_sid;
5085 if (peer_sid == SECSID_NULL)
5086 return -ENOPROTOOPT;
5087
5088 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5089 &scontext_len);
5090 if (err)
5091 return err;
5092
5093 if (scontext_len > len) {
5094 err = -ERANGE;
5095 goto out_len;
5096 }
5097
5098 if (copy_to_user(optval, scontext, scontext_len))
5099 err = -EFAULT;
5100
5101out_len:
5102 if (put_user(scontext_len, optlen))
5103 err = -EFAULT;
5104 kfree(scontext);
5105 return err;
5106}
5107
5108static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5109{
5110 u32 peer_secid = SECSID_NULL;
5111 u16 family;
5112 struct inode_security_struct *isec;
5113
5114 if (skb && skb->protocol == htons(ETH_P_IP))
5115 family = PF_INET;
5116 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5117 family = PF_INET6;
5118 else if (sock)
5119 family = sock->sk->sk_family;
5120 else
5121 goto out;
5122
5123 if (sock && family == PF_UNIX) {
5124 isec = inode_security_novalidate(SOCK_INODE(sock));
5125 peer_secid = isec->sid;
5126 } else if (skb)
5127 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5128
5129out:
5130 *secid = peer_secid;
5131 if (peer_secid == SECSID_NULL)
5132 return -EINVAL;
5133 return 0;
5134}
5135
5136static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5137{
5138 struct sk_security_struct *sksec;
5139
5140 sksec = kzalloc(sizeof(*sksec), priority);
5141 if (!sksec)
5142 return -ENOMEM;
5143
5144 sksec->peer_sid = SECINITSID_UNLABELED;
5145 sksec->sid = SECINITSID_UNLABELED;
5146 sksec->sclass = SECCLASS_SOCKET;
5147 selinux_netlbl_sk_security_reset(sksec);
5148 sk->sk_security = sksec;
5149
5150 return 0;
5151}
5152
5153static void selinux_sk_free_security(struct sock *sk)
5154{
5155 struct sk_security_struct *sksec = sk->sk_security;
5156
5157 sk->sk_security = NULL;
5158 selinux_netlbl_sk_security_free(sksec);
5159 kfree(sksec);
5160}
5161
5162static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5163{
5164 struct sk_security_struct *sksec = sk->sk_security;
5165 struct sk_security_struct *newsksec = newsk->sk_security;
5166
5167 newsksec->sid = sksec->sid;
5168 newsksec->peer_sid = sksec->peer_sid;
5169 newsksec->sclass = sksec->sclass;
5170
5171 selinux_netlbl_sk_security_reset(newsksec);
5172}
5173
5174static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5175{
5176 if (!sk)
5177 *secid = SECINITSID_ANY_SOCKET;
5178 else {
5179 struct sk_security_struct *sksec = sk->sk_security;
5180
5181 *secid = sksec->sid;
5182 }
5183}
5184
5185static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5186{
5187 struct inode_security_struct *isec =
5188 inode_security_novalidate(SOCK_INODE(parent));
5189 struct sk_security_struct *sksec = sk->sk_security;
5190
5191 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5192 sk->sk_family == PF_UNIX)
5193 isec->sid = sksec->sid;
5194 sksec->sclass = isec->sclass;
5195}
5196
5197/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5198 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5199 * already present).
5200 */
5201static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5202 struct sk_buff *skb)
5203{
5204 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5205 struct common_audit_data ad;
5206 struct lsm_network_audit net = {0,};
5207 u8 peerlbl_active;
5208 u32 peer_sid = SECINITSID_UNLABELED;
5209 u32 conn_sid;
5210 int err = 0;
5211
5212 if (!selinux_policycap_extsockclass())
5213 return 0;
5214
5215 peerlbl_active = selinux_peerlbl_enabled();
5216
5217 if (peerlbl_active) {
5218 /* This will return peer_sid = SECSID_NULL if there are
5219 * no peer labels, see security_net_peersid_resolve().
5220 */
5221 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5222 &peer_sid);
5223 if (err)
5224 return err;
5225
5226 if (peer_sid == SECSID_NULL)
5227 peer_sid = SECINITSID_UNLABELED;
5228 }
5229
5230 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5231 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5232
5233 /* Here as first association on socket. As the peer SID
5234 * was allowed by peer recv (and the netif/node checks),
5235 * then it is approved by policy and used as the primary
5236 * peer SID for getpeercon(3).
5237 */
5238 sksec->peer_sid = peer_sid;
5239 } else if (sksec->peer_sid != peer_sid) {
5240 /* Other association peer SIDs are checked to enforce
5241 * consistency among the peer SIDs.
5242 */
5243 ad.type = LSM_AUDIT_DATA_NET;
5244 ad.u.net = &net;
5245 ad.u.net->sk = ep->base.sk;
5246 err = avc_has_perm(&selinux_state,
5247 sksec->peer_sid, peer_sid, sksec->sclass,
5248 SCTP_SOCKET__ASSOCIATION, &ad);
5249 if (err)
5250 return err;
5251 }
5252
5253 /* Compute the MLS component for the connection and store
5254 * the information in ep. This will be used by SCTP TCP type
5255 * sockets and peeled off connections as they cause a new
5256 * socket to be generated. selinux_sctp_sk_clone() will then
5257 * plug this into the new socket.
5258 */
5259 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5260 if (err)
5261 return err;
5262
5263 ep->secid = conn_sid;
5264 ep->peer_secid = peer_sid;
5265
5266 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5267 return selinux_netlbl_sctp_assoc_request(ep, skb);
5268}
5269
5270/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5271 * based on their @optname.
5272 */
5273static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5274 struct sockaddr *address,
5275 int addrlen)
5276{
5277 int len, err = 0, walk_size = 0;
5278 void *addr_buf;
5279 struct sockaddr *addr;
5280 struct socket *sock;
5281
5282 if (!selinux_policycap_extsockclass())
5283 return 0;
5284
5285 /* Process one or more addresses that may be IPv4 or IPv6 */
5286 sock = sk->sk_socket;
5287 addr_buf = address;
5288
5289 while (walk_size < addrlen) {
5290 addr = addr_buf;
5291 switch (addr->sa_family) {
5292 case AF_UNSPEC:
5293 case AF_INET:
5294 len = sizeof(struct sockaddr_in);
5295 break;
5296 case AF_INET6:
5297 len = sizeof(struct sockaddr_in6);
5298 break;
5299 default:
5300 return -EINVAL;
5301 }
5302
5303 err = -EINVAL;
5304 switch (optname) {
5305 /* Bind checks */
5306 case SCTP_PRIMARY_ADDR:
5307 case SCTP_SET_PEER_PRIMARY_ADDR:
5308 case SCTP_SOCKOPT_BINDX_ADD:
5309 err = selinux_socket_bind(sock, addr, len);
5310 break;
5311 /* Connect checks */
5312 case SCTP_SOCKOPT_CONNECTX:
5313 case SCTP_PARAM_SET_PRIMARY:
5314 case SCTP_PARAM_ADD_IP:
5315 case SCTP_SENDMSG_CONNECT:
5316 err = selinux_socket_connect_helper(sock, addr, len);
5317 if (err)
5318 return err;
5319
5320 /* As selinux_sctp_bind_connect() is called by the
5321 * SCTP protocol layer, the socket is already locked,
5322 * therefore selinux_netlbl_socket_connect_locked() is
5323 * is called here. The situations handled are:
5324 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5325 * whenever a new IP address is added or when a new
5326 * primary address is selected.
5327 * Note that an SCTP connect(2) call happens before
5328 * the SCTP protocol layer and is handled via
5329 * selinux_socket_connect().
5330 */
5331 err = selinux_netlbl_socket_connect_locked(sk, addr);
5332 break;
5333 }
5334
5335 if (err)
5336 return err;
5337
5338 addr_buf += len;
5339 walk_size += len;
5340 }
5341
5342 return 0;
5343}
5344
5345/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5346static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5347 struct sock *newsk)
5348{
5349 struct sk_security_struct *sksec = sk->sk_security;
5350 struct sk_security_struct *newsksec = newsk->sk_security;
5351
5352 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5353 * the non-sctp clone version.
5354 */
5355 if (!selinux_policycap_extsockclass())
5356 return selinux_sk_clone_security(sk, newsk);
5357
5358 newsksec->sid = ep->secid;
5359 newsksec->peer_sid = ep->peer_secid;
5360 newsksec->sclass = sksec->sclass;
5361 selinux_netlbl_sctp_sk_clone(sk, newsk);
5362}
5363
5364static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5365 struct request_sock *req)
5366{
5367 struct sk_security_struct *sksec = sk->sk_security;
5368 int err;
5369 u16 family = req->rsk_ops->family;
5370 u32 connsid;
5371 u32 peersid;
5372
5373 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5374 if (err)
5375 return err;
5376 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5377 if (err)
5378 return err;
5379 req->secid = connsid;
5380 req->peer_secid = peersid;
5381
5382 return selinux_netlbl_inet_conn_request(req, family);
5383}
5384
5385static void selinux_inet_csk_clone(struct sock *newsk,
5386 const struct request_sock *req)
5387{
5388 struct sk_security_struct *newsksec = newsk->sk_security;
5389
5390 newsksec->sid = req->secid;
5391 newsksec->peer_sid = req->peer_secid;
5392 /* NOTE: Ideally, we should also get the isec->sid for the
5393 new socket in sync, but we don't have the isec available yet.
5394 So we will wait until sock_graft to do it, by which
5395 time it will have been created and available. */
5396
5397 /* We don't need to take any sort of lock here as we are the only
5398 * thread with access to newsksec */
5399 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5400}
5401
5402static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5403{
5404 u16 family = sk->sk_family;
5405 struct sk_security_struct *sksec = sk->sk_security;
5406
5407 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5408 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5409 family = PF_INET;
5410
5411 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5412}
5413
5414static int selinux_secmark_relabel_packet(u32 sid)
5415{
5416 const struct task_security_struct *__tsec;
5417 u32 tsid;
5418
5419 __tsec = current_security();
5420 tsid = __tsec->sid;
5421
5422 return avc_has_perm(&selinux_state,
5423 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5424 NULL);
5425}
5426
5427static void selinux_secmark_refcount_inc(void)
5428{
5429 atomic_inc(&selinux_secmark_refcount);
5430}
5431
5432static void selinux_secmark_refcount_dec(void)
5433{
5434 atomic_dec(&selinux_secmark_refcount);
5435}
5436
5437static void selinux_req_classify_flow(const struct request_sock *req,
5438 struct flowi *fl)
5439{
5440 fl->flowi_secid = req->secid;
5441}
5442
5443static int selinux_tun_dev_alloc_security(void **security)
5444{
5445 struct tun_security_struct *tunsec;
5446
5447 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5448 if (!tunsec)
5449 return -ENOMEM;
5450 tunsec->sid = current_sid();
5451
5452 *security = tunsec;
5453 return 0;
5454}
5455
5456static void selinux_tun_dev_free_security(void *security)
5457{
5458 kfree(security);
5459}
5460
5461static int selinux_tun_dev_create(void)
5462{
5463 u32 sid = current_sid();
5464
5465 /* we aren't taking into account the "sockcreate" SID since the socket
5466 * that is being created here is not a socket in the traditional sense,
5467 * instead it is a private sock, accessible only to the kernel, and
5468 * representing a wide range of network traffic spanning multiple
5469 * connections unlike traditional sockets - check the TUN driver to
5470 * get a better understanding of why this socket is special */
5471
5472 return avc_has_perm(&selinux_state,
5473 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5474 NULL);
5475}
5476
5477static int selinux_tun_dev_attach_queue(void *security)
5478{
5479 struct tun_security_struct *tunsec = security;
5480
5481 return avc_has_perm(&selinux_state,
5482 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5483 TUN_SOCKET__ATTACH_QUEUE, NULL);
5484}
5485
5486static int selinux_tun_dev_attach(struct sock *sk, void *security)
5487{
5488 struct tun_security_struct *tunsec = security;
5489 struct sk_security_struct *sksec = sk->sk_security;
5490
5491 /* we don't currently perform any NetLabel based labeling here and it
5492 * isn't clear that we would want to do so anyway; while we could apply
5493 * labeling without the support of the TUN user the resulting labeled
5494 * traffic from the other end of the connection would almost certainly
5495 * cause confusion to the TUN user that had no idea network labeling
5496 * protocols were being used */
5497
5498 sksec->sid = tunsec->sid;
5499 sksec->sclass = SECCLASS_TUN_SOCKET;
5500
5501 return 0;
5502}
5503
5504static int selinux_tun_dev_open(void *security)
5505{
5506 struct tun_security_struct *tunsec = security;
5507 u32 sid = current_sid();
5508 int err;
5509
5510 err = avc_has_perm(&selinux_state,
5511 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5512 TUN_SOCKET__RELABELFROM, NULL);
5513 if (err)
5514 return err;
5515 err = avc_has_perm(&selinux_state,
5516 sid, sid, SECCLASS_TUN_SOCKET,
5517 TUN_SOCKET__RELABELTO, NULL);
5518 if (err)
5519 return err;
5520 tunsec->sid = sid;
5521
5522 return 0;
5523}
5524
5525static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5526{
5527 int err = 0;
5528 u32 perm;
5529 struct nlmsghdr *nlh;
5530 struct sk_security_struct *sksec = sk->sk_security;
5531
5532 if (skb->len < NLMSG_HDRLEN) {
5533 err = -EINVAL;
5534 goto out;
5535 }
5536 nlh = nlmsg_hdr(skb);
5537
5538 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5539 if (err) {
5540 if (err == -EINVAL) {
5541 pr_warn_ratelimited("SELinux: unrecognized netlink"
5542 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5543 " pig=%d comm=%s\n",
5544 sk->sk_protocol, nlh->nlmsg_type,
5545 secclass_map[sksec->sclass - 1].name,
5546 task_pid_nr(current), current->comm);
5547 if (!enforcing_enabled(&selinux_state) ||
5548 security_get_allow_unknown(&selinux_state))
5549 err = 0;
5550 }
5551
5552 /* Ignore */
5553 if (err == -ENOENT)
5554 err = 0;
5555 goto out;
5556 }
5557
5558 err = sock_has_perm(sk, perm);
5559out:
5560 return err;
5561}
5562
5563#ifdef CONFIG_NETFILTER
5564
5565static unsigned int selinux_ip_forward(struct sk_buff *skb,
5566 const struct net_device *indev,
5567 u16 family)
5568{
5569 int err;
5570 char *addrp;
5571 u32 peer_sid;
5572 struct common_audit_data ad;
5573 struct lsm_network_audit net = {0,};
5574 u8 secmark_active;
5575 u8 netlbl_active;
5576 u8 peerlbl_active;
5577
5578 if (!selinux_policycap_netpeer())
5579 return NF_ACCEPT;
5580
5581 secmark_active = selinux_secmark_enabled();
5582 netlbl_active = netlbl_enabled();
5583 peerlbl_active = selinux_peerlbl_enabled();
5584 if (!secmark_active && !peerlbl_active)
5585 return NF_ACCEPT;
5586
5587 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5588 return NF_DROP;
5589
5590 ad.type = LSM_AUDIT_DATA_NET;
5591 ad.u.net = &net;
5592 ad.u.net->netif = indev->ifindex;
5593 ad.u.net->family = family;
5594 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5595 return NF_DROP;
5596
5597 if (peerlbl_active) {
5598 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5599 addrp, family, peer_sid, &ad);
5600 if (err) {
5601 selinux_netlbl_err(skb, family, err, 1);
5602 return NF_DROP;
5603 }
5604 }
5605
5606 if (secmark_active)
5607 if (avc_has_perm(&selinux_state,
5608 peer_sid, skb->secmark,
5609 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5610 return NF_DROP;
5611
5612 if (netlbl_active)
5613 /* we do this in the FORWARD path and not the POST_ROUTING
5614 * path because we want to make sure we apply the necessary
5615 * labeling before IPsec is applied so we can leverage AH
5616 * protection */
5617 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5618 return NF_DROP;
5619
5620 return NF_ACCEPT;
5621}
5622
5623static unsigned int selinux_ipv4_forward(void *priv,
5624 struct sk_buff *skb,
5625 const struct nf_hook_state *state)
5626{
5627 return selinux_ip_forward(skb, state->in, PF_INET);
5628}
5629
5630#if IS_ENABLED(CONFIG_IPV6)
5631static unsigned int selinux_ipv6_forward(void *priv,
5632 struct sk_buff *skb,
5633 const struct nf_hook_state *state)
5634{
5635 return selinux_ip_forward(skb, state->in, PF_INET6);
5636}
5637#endif /* IPV6 */
5638
5639static unsigned int selinux_ip_output(struct sk_buff *skb,
5640 u16 family)
5641{
5642 struct sock *sk;
5643 u32 sid;
5644
5645 if (!netlbl_enabled())
5646 return NF_ACCEPT;
5647
5648 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5649 * because we want to make sure we apply the necessary labeling
5650 * before IPsec is applied so we can leverage AH protection */
5651 sk = skb->sk;
5652 if (sk) {
5653 struct sk_security_struct *sksec;
5654
5655 if (sk_listener(sk))
5656 /* if the socket is the listening state then this
5657 * packet is a SYN-ACK packet which means it needs to
5658 * be labeled based on the connection/request_sock and
5659 * not the parent socket. unfortunately, we can't
5660 * lookup the request_sock yet as it isn't queued on
5661 * the parent socket until after the SYN-ACK is sent.
5662 * the "solution" is to simply pass the packet as-is
5663 * as any IP option based labeling should be copied
5664 * from the initial connection request (in the IP
5665 * layer). it is far from ideal, but until we get a
5666 * security label in the packet itself this is the
5667 * best we can do. */
5668 return NF_ACCEPT;
5669
5670 /* standard practice, label using the parent socket */
5671 sksec = sk->sk_security;
5672 sid = sksec->sid;
5673 } else
5674 sid = SECINITSID_KERNEL;
5675 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5676 return NF_DROP;
5677
5678 return NF_ACCEPT;
5679}
5680
5681static unsigned int selinux_ipv4_output(void *priv,
5682 struct sk_buff *skb,
5683 const struct nf_hook_state *state)
5684{
5685 return selinux_ip_output(skb, PF_INET);
5686}
5687
5688#if IS_ENABLED(CONFIG_IPV6)
5689static unsigned int selinux_ipv6_output(void *priv,
5690 struct sk_buff *skb,
5691 const struct nf_hook_state *state)
5692{
5693 return selinux_ip_output(skb, PF_INET6);
5694}
5695#endif /* IPV6 */
5696
5697static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5698 int ifindex,
5699 u16 family)
5700{
5701 struct sock *sk = skb_to_full_sk(skb);
5702 struct sk_security_struct *sksec;
5703 struct common_audit_data ad;
5704 struct lsm_network_audit net = {0,};
5705 char *addrp;
5706 u8 proto;
5707
5708 if (sk == NULL)
5709 return NF_ACCEPT;
5710 sksec = sk->sk_security;
5711
5712 ad.type = LSM_AUDIT_DATA_NET;
5713 ad.u.net = &net;
5714 ad.u.net->netif = ifindex;
5715 ad.u.net->family = family;
5716 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5717 return NF_DROP;
5718
5719 if (selinux_secmark_enabled())
5720 if (avc_has_perm(&selinux_state,
5721 sksec->sid, skb->secmark,
5722 SECCLASS_PACKET, PACKET__SEND, &ad))
5723 return NF_DROP_ERR(-ECONNREFUSED);
5724
5725 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5726 return NF_DROP_ERR(-ECONNREFUSED);
5727
5728 return NF_ACCEPT;
5729}
5730
5731static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5732 const struct net_device *outdev,
5733 u16 family)
5734{
5735 u32 secmark_perm;
5736 u32 peer_sid;
5737 int ifindex = outdev->ifindex;
5738 struct sock *sk;
5739 struct common_audit_data ad;
5740 struct lsm_network_audit net = {0,};
5741 char *addrp;
5742 u8 secmark_active;
5743 u8 peerlbl_active;
5744
5745 /* If any sort of compatibility mode is enabled then handoff processing
5746 * to the selinux_ip_postroute_compat() function to deal with the
5747 * special handling. We do this in an attempt to keep this function
5748 * as fast and as clean as possible. */
5749 if (!selinux_policycap_netpeer())
5750 return selinux_ip_postroute_compat(skb, ifindex, family);
5751
5752 secmark_active = selinux_secmark_enabled();
5753 peerlbl_active = selinux_peerlbl_enabled();
5754 if (!secmark_active && !peerlbl_active)
5755 return NF_ACCEPT;
5756
5757 sk = skb_to_full_sk(skb);
5758
5759#ifdef CONFIG_XFRM
5760 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5761 * packet transformation so allow the packet to pass without any checks
5762 * since we'll have another chance to perform access control checks
5763 * when the packet is on it's final way out.
5764 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5765 * is NULL, in this case go ahead and apply access control.
5766 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5767 * TCP listening state we cannot wait until the XFRM processing
5768 * is done as we will miss out on the SA label if we do;
5769 * unfortunately, this means more work, but it is only once per
5770 * connection. */
5771 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5772 !(sk && sk_listener(sk)))
5773 return NF_ACCEPT;
5774#endif
5775
5776 if (sk == NULL) {
5777 /* Without an associated socket the packet is either coming
5778 * from the kernel or it is being forwarded; check the packet
5779 * to determine which and if the packet is being forwarded
5780 * query the packet directly to determine the security label. */
5781 if (skb->skb_iif) {
5782 secmark_perm = PACKET__FORWARD_OUT;
5783 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5784 return NF_DROP;
5785 } else {
5786 secmark_perm = PACKET__SEND;
5787 peer_sid = SECINITSID_KERNEL;
5788 }
5789 } else if (sk_listener(sk)) {
5790 /* Locally generated packet but the associated socket is in the
5791 * listening state which means this is a SYN-ACK packet. In
5792 * this particular case the correct security label is assigned
5793 * to the connection/request_sock but unfortunately we can't
5794 * query the request_sock as it isn't queued on the parent
5795 * socket until after the SYN-ACK packet is sent; the only
5796 * viable choice is to regenerate the label like we do in
5797 * selinux_inet_conn_request(). See also selinux_ip_output()
5798 * for similar problems. */
5799 u32 skb_sid;
5800 struct sk_security_struct *sksec;
5801
5802 sksec = sk->sk_security;
5803 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5804 return NF_DROP;
5805 /* At this point, if the returned skb peerlbl is SECSID_NULL
5806 * and the packet has been through at least one XFRM
5807 * transformation then we must be dealing with the "final"
5808 * form of labeled IPsec packet; since we've already applied
5809 * all of our access controls on this packet we can safely
5810 * pass the packet. */
5811 if (skb_sid == SECSID_NULL) {
5812 switch (family) {
5813 case PF_INET:
5814 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5815 return NF_ACCEPT;
5816 break;
5817 case PF_INET6:
5818 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5819 return NF_ACCEPT;
5820 break;
5821 default:
5822 return NF_DROP_ERR(-ECONNREFUSED);
5823 }
5824 }
5825 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5826 return NF_DROP;
5827 secmark_perm = PACKET__SEND;
5828 } else {
5829 /* Locally generated packet, fetch the security label from the
5830 * associated socket. */
5831 struct sk_security_struct *sksec = sk->sk_security;
5832 peer_sid = sksec->sid;
5833 secmark_perm = PACKET__SEND;
5834 }
5835
5836 ad.type = LSM_AUDIT_DATA_NET;
5837 ad.u.net = &net;
5838 ad.u.net->netif = ifindex;
5839 ad.u.net->family = family;
5840 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5841 return NF_DROP;
5842
5843 if (secmark_active)
5844 if (avc_has_perm(&selinux_state,
5845 peer_sid, skb->secmark,
5846 SECCLASS_PACKET, secmark_perm, &ad))
5847 return NF_DROP_ERR(-ECONNREFUSED);
5848
5849 if (peerlbl_active) {
5850 u32 if_sid;
5851 u32 node_sid;
5852
5853 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5854 return NF_DROP;
5855 if (avc_has_perm(&selinux_state,
5856 peer_sid, if_sid,
5857 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5858 return NF_DROP_ERR(-ECONNREFUSED);
5859
5860 if (sel_netnode_sid(addrp, family, &node_sid))
5861 return NF_DROP;
5862 if (avc_has_perm(&selinux_state,
5863 peer_sid, node_sid,
5864 SECCLASS_NODE, NODE__SENDTO, &ad))
5865 return NF_DROP_ERR(-ECONNREFUSED);
5866 }
5867
5868 return NF_ACCEPT;
5869}
5870
5871static unsigned int selinux_ipv4_postroute(void *priv,
5872 struct sk_buff *skb,
5873 const struct nf_hook_state *state)
5874{
5875 return selinux_ip_postroute(skb, state->out, PF_INET);
5876}
5877
5878#if IS_ENABLED(CONFIG_IPV6)
5879static unsigned int selinux_ipv6_postroute(void *priv,
5880 struct sk_buff *skb,
5881 const struct nf_hook_state *state)
5882{
5883 return selinux_ip_postroute(skb, state->out, PF_INET6);
5884}
5885#endif /* IPV6 */
5886
5887#endif /* CONFIG_NETFILTER */
5888
5889static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5890{
5891 return selinux_nlmsg_perm(sk, skb);
5892}
5893
5894static int ipc_alloc_security(struct kern_ipc_perm *perm,
5895 u16 sclass)
5896{
5897 struct ipc_security_struct *isec;
5898
5899 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5900 if (!isec)
5901 return -ENOMEM;
5902
5903 isec->sclass = sclass;
5904 isec->sid = current_sid();
5905 perm->security = isec;
5906
5907 return 0;
5908}
5909
5910static void ipc_free_security(struct kern_ipc_perm *perm)
5911{
5912 struct ipc_security_struct *isec = perm->security;
5913 perm->security = NULL;
5914 kfree(isec);
5915}
5916
5917static int msg_msg_alloc_security(struct msg_msg *msg)
5918{
5919 struct msg_security_struct *msec;
5920
5921 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5922 if (!msec)
5923 return -ENOMEM;
5924
5925 msec->sid = SECINITSID_UNLABELED;
5926 msg->security = msec;
5927
5928 return 0;
5929}
5930
5931static void msg_msg_free_security(struct msg_msg *msg)
5932{
5933 struct msg_security_struct *msec = msg->security;
5934
5935 msg->security = NULL;
5936 kfree(msec);
5937}
5938
5939static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5940 u32 perms)
5941{
5942 struct ipc_security_struct *isec;
5943 struct common_audit_data ad;
5944 u32 sid = current_sid();
5945
5946 isec = ipc_perms->security;
5947
5948 ad.type = LSM_AUDIT_DATA_IPC;
5949 ad.u.ipc_id = ipc_perms->key;
5950
5951 return avc_has_perm(&selinux_state,
5952 sid, isec->sid, isec->sclass, perms, &ad);
5953}
5954
5955static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5956{
5957 return msg_msg_alloc_security(msg);
5958}
5959
5960static void selinux_msg_msg_free_security(struct msg_msg *msg)
5961{
5962 msg_msg_free_security(msg);
5963}
5964
5965/* message queue security operations */
5966static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5967{
5968 struct ipc_security_struct *isec;
5969 struct common_audit_data ad;
5970 u32 sid = current_sid();
5971 int rc;
5972
5973 rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5974 if (rc)
5975 return rc;
5976
5977 isec = msq->security;
5978
5979 ad.type = LSM_AUDIT_DATA_IPC;
5980 ad.u.ipc_id = msq->key;
5981
5982 rc = avc_has_perm(&selinux_state,
5983 sid, isec->sid, SECCLASS_MSGQ,
5984 MSGQ__CREATE, &ad);
5985 if (rc) {
5986 ipc_free_security(msq);
5987 return rc;
5988 }
5989 return 0;
5990}
5991
5992static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5993{
5994 ipc_free_security(msq);
5995}
5996
5997static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5998{
5999 struct ipc_security_struct *isec;
6000 struct common_audit_data ad;
6001 u32 sid = current_sid();
6002
6003 isec = msq->security;
6004
6005 ad.type = LSM_AUDIT_DATA_IPC;
6006 ad.u.ipc_id = msq->key;
6007
6008 return avc_has_perm(&selinux_state,
6009 sid, isec->sid, SECCLASS_MSGQ,
6010 MSGQ__ASSOCIATE, &ad);
6011}
6012
6013static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6014{
6015 int err;
6016 int perms;
6017
6018 switch (cmd) {
6019 case IPC_INFO:
6020 case MSG_INFO:
6021 /* No specific object, just general system-wide information. */
6022 return avc_has_perm(&selinux_state,
6023 current_sid(), SECINITSID_KERNEL,
6024 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6025 case IPC_STAT:
6026 case MSG_STAT:
6027 case MSG_STAT_ANY:
6028 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6029 break;
6030 case IPC_SET:
6031 perms = MSGQ__SETATTR;
6032 break;
6033 case IPC_RMID:
6034 perms = MSGQ__DESTROY;
6035 break;
6036 default:
6037 return 0;
6038 }
6039
6040 err = ipc_has_perm(msq, perms);
6041 return err;
6042}
6043
6044static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6045{
6046 struct ipc_security_struct *isec;
6047 struct msg_security_struct *msec;
6048 struct common_audit_data ad;
6049 u32 sid = current_sid();
6050 int rc;
6051
6052 isec = msq->security;
6053 msec = msg->security;
6054
6055 /*
6056 * First time through, need to assign label to the message
6057 */
6058 if (msec->sid == SECINITSID_UNLABELED) {
6059 /*
6060 * Compute new sid based on current process and
6061 * message queue this message will be stored in
6062 */
6063 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6064 SECCLASS_MSG, NULL, &msec->sid);
6065 if (rc)
6066 return rc;
6067 }
6068
6069 ad.type = LSM_AUDIT_DATA_IPC;
6070 ad.u.ipc_id = msq->key;
6071
6072 /* Can this process write to the queue? */
6073 rc = avc_has_perm(&selinux_state,
6074 sid, isec->sid, SECCLASS_MSGQ,
6075 MSGQ__WRITE, &ad);
6076 if (!rc)
6077 /* Can this process send the message */
6078 rc = avc_has_perm(&selinux_state,
6079 sid, msec->sid, SECCLASS_MSG,
6080 MSG__SEND, &ad);
6081 if (!rc)
6082 /* Can the message be put in the queue? */
6083 rc = avc_has_perm(&selinux_state,
6084 msec->sid, isec->sid, SECCLASS_MSGQ,
6085 MSGQ__ENQUEUE, &ad);
6086
6087 return rc;
6088}
6089
6090static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6091 struct task_struct *target,
6092 long type, int mode)
6093{
6094 struct ipc_security_struct *isec;
6095 struct msg_security_struct *msec;
6096 struct common_audit_data ad;
6097 u32 sid = task_sid(target);
6098 int rc;
6099
6100 isec = msq->security;
6101 msec = msg->security;
6102
6103 ad.type = LSM_AUDIT_DATA_IPC;
6104 ad.u.ipc_id = msq->key;
6105
6106 rc = avc_has_perm(&selinux_state,
6107 sid, isec->sid,
6108 SECCLASS_MSGQ, MSGQ__READ, &ad);
6109 if (!rc)
6110 rc = avc_has_perm(&selinux_state,
6111 sid, msec->sid,
6112 SECCLASS_MSG, MSG__RECEIVE, &ad);
6113 return rc;
6114}
6115
6116/* Shared Memory security operations */
6117static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6118{
6119 struct ipc_security_struct *isec;
6120 struct common_audit_data ad;
6121 u32 sid = current_sid();
6122 int rc;
6123
6124 rc = ipc_alloc_security(shp, SECCLASS_SHM);
6125 if (rc)
6126 return rc;
6127
6128 isec = shp->security;
6129
6130 ad.type = LSM_AUDIT_DATA_IPC;
6131 ad.u.ipc_id = shp->key;
6132
6133 rc = avc_has_perm(&selinux_state,
6134 sid, isec->sid, SECCLASS_SHM,
6135 SHM__CREATE, &ad);
6136 if (rc) {
6137 ipc_free_security(shp);
6138 return rc;
6139 }
6140 return 0;
6141}
6142
6143static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6144{
6145 ipc_free_security(shp);
6146}
6147
6148static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6149{
6150 struct ipc_security_struct *isec;
6151 struct common_audit_data ad;
6152 u32 sid = current_sid();
6153
6154 isec = shp->security;
6155
6156 ad.type = LSM_AUDIT_DATA_IPC;
6157 ad.u.ipc_id = shp->key;
6158
6159 return avc_has_perm(&selinux_state,
6160 sid, isec->sid, SECCLASS_SHM,
6161 SHM__ASSOCIATE, &ad);
6162}
6163
6164/* Note, at this point, shp is locked down */
6165static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6166{
6167 int perms;
6168 int err;
6169
6170 switch (cmd) {
6171 case IPC_INFO:
6172 case SHM_INFO:
6173 /* No specific object, just general system-wide information. */
6174 return avc_has_perm(&selinux_state,
6175 current_sid(), SECINITSID_KERNEL,
6176 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6177 case IPC_STAT:
6178 case SHM_STAT:
6179 case SHM_STAT_ANY:
6180 perms = SHM__GETATTR | SHM__ASSOCIATE;
6181 break;
6182 case IPC_SET:
6183 perms = SHM__SETATTR;
6184 break;
6185 case SHM_LOCK:
6186 case SHM_UNLOCK:
6187 perms = SHM__LOCK;
6188 break;
6189 case IPC_RMID:
6190 perms = SHM__DESTROY;
6191 break;
6192 default:
6193 return 0;
6194 }
6195
6196 err = ipc_has_perm(shp, perms);
6197 return err;
6198}
6199
6200static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6201 char __user *shmaddr, int shmflg)
6202{
6203 u32 perms;
6204
6205 if (shmflg & SHM_RDONLY)
6206 perms = SHM__READ;
6207 else
6208 perms = SHM__READ | SHM__WRITE;
6209
6210 return ipc_has_perm(shp, perms);
6211}
6212
6213/* Semaphore security operations */
6214static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6215{
6216 struct ipc_security_struct *isec;
6217 struct common_audit_data ad;
6218 u32 sid = current_sid();
6219 int rc;
6220
6221 rc = ipc_alloc_security(sma, SECCLASS_SEM);
6222 if (rc)
6223 return rc;
6224
6225 isec = sma->security;
6226
6227 ad.type = LSM_AUDIT_DATA_IPC;
6228 ad.u.ipc_id = sma->key;
6229
6230 rc = avc_has_perm(&selinux_state,
6231 sid, isec->sid, SECCLASS_SEM,
6232 SEM__CREATE, &ad);
6233 if (rc) {
6234 ipc_free_security(sma);
6235 return rc;
6236 }
6237 return 0;
6238}
6239
6240static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6241{
6242 ipc_free_security(sma);
6243}
6244
6245static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6246{
6247 struct ipc_security_struct *isec;
6248 struct common_audit_data ad;
6249 u32 sid = current_sid();
6250
6251 isec = sma->security;
6252
6253 ad.type = LSM_AUDIT_DATA_IPC;
6254 ad.u.ipc_id = sma->key;
6255
6256 return avc_has_perm(&selinux_state,
6257 sid, isec->sid, SECCLASS_SEM,
6258 SEM__ASSOCIATE, &ad);
6259}
6260
6261/* Note, at this point, sma is locked down */
6262static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6263{
6264 int err;
6265 u32 perms;
6266
6267 switch (cmd) {
6268 case IPC_INFO:
6269 case SEM_INFO:
6270 /* No specific object, just general system-wide information. */
6271 return avc_has_perm(&selinux_state,
6272 current_sid(), SECINITSID_KERNEL,
6273 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6274 case GETPID:
6275 case GETNCNT:
6276 case GETZCNT:
6277 perms = SEM__GETATTR;
6278 break;
6279 case GETVAL:
6280 case GETALL:
6281 perms = SEM__READ;
6282 break;
6283 case SETVAL:
6284 case SETALL:
6285 perms = SEM__WRITE;
6286 break;
6287 case IPC_RMID:
6288 perms = SEM__DESTROY;
6289 break;
6290 case IPC_SET:
6291 perms = SEM__SETATTR;
6292 break;
6293 case IPC_STAT:
6294 case SEM_STAT:
6295 case SEM_STAT_ANY:
6296 perms = SEM__GETATTR | SEM__ASSOCIATE;
6297 break;
6298 default:
6299 return 0;
6300 }
6301
6302 err = ipc_has_perm(sma, perms);
6303 return err;
6304}
6305
6306static int selinux_sem_semop(struct kern_ipc_perm *sma,
6307 struct sembuf *sops, unsigned nsops, int alter)
6308{
6309 u32 perms;
6310
6311 if (alter)
6312 perms = SEM__READ | SEM__WRITE;
6313 else
6314 perms = SEM__READ;
6315
6316 return ipc_has_perm(sma, perms);
6317}
6318
6319static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6320{
6321 u32 av = 0;
6322
6323 av = 0;
6324 if (flag & S_IRUGO)
6325 av |= IPC__UNIX_READ;
6326 if (flag & S_IWUGO)
6327 av |= IPC__UNIX_WRITE;
6328
6329 if (av == 0)
6330 return 0;
6331
6332 return ipc_has_perm(ipcp, av);
6333}
6334
6335static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6336{
6337 struct ipc_security_struct *isec = ipcp->security;
6338 *secid = isec->sid;
6339}
6340
6341static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6342{
6343 if (inode)
6344 inode_doinit_with_dentry(inode, dentry);
6345}
6346
6347static int selinux_getprocattr(struct task_struct *p,
6348 char *name, char **value)
6349{
6350 const struct task_security_struct *__tsec;
6351 u32 sid;
6352 int error;
6353 unsigned len;
6354
6355 rcu_read_lock();
6356 __tsec = __task_cred(p)->security;
6357
6358 if (current != p) {
6359 error = avc_has_perm(&selinux_state,
6360 current_sid(), __tsec->sid,
6361 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362 if (error)
6363 goto bad;
6364 }
6365
6366 if (!strcmp(name, "current"))
6367 sid = __tsec->sid;
6368 else if (!strcmp(name, "prev"))
6369 sid = __tsec->osid;
6370 else if (!strcmp(name, "exec"))
6371 sid = __tsec->exec_sid;
6372 else if (!strcmp(name, "fscreate"))
6373 sid = __tsec->create_sid;
6374 else if (!strcmp(name, "keycreate"))
6375 sid = __tsec->keycreate_sid;
6376 else if (!strcmp(name, "sockcreate"))
6377 sid = __tsec->sockcreate_sid;
6378 else {
6379 error = -EINVAL;
6380 goto bad;
6381 }
6382 rcu_read_unlock();
6383
6384 if (!sid)
6385 return 0;
6386
6387 error = security_sid_to_context(&selinux_state, sid, value, &len);
6388 if (error)
6389 return error;
6390 return len;
6391
6392bad:
6393 rcu_read_unlock();
6394 return error;
6395}
6396
6397static int selinux_setprocattr(const char *name, void *value, size_t size)
6398{
6399 struct task_security_struct *tsec;
6400 struct cred *new;
6401 u32 mysid = current_sid(), sid = 0, ptsid;
6402 int error;
6403 char *str = value;
6404
6405 /*
6406 * Basic control over ability to set these attributes at all.
6407 */
6408 if (!strcmp(name, "exec"))
6409 error = avc_has_perm(&selinux_state,
6410 mysid, mysid, SECCLASS_PROCESS,
6411 PROCESS__SETEXEC, NULL);
6412 else if (!strcmp(name, "fscreate"))
6413 error = avc_has_perm(&selinux_state,
6414 mysid, mysid, SECCLASS_PROCESS,
6415 PROCESS__SETFSCREATE, NULL);
6416 else if (!strcmp(name, "keycreate"))
6417 error = avc_has_perm(&selinux_state,
6418 mysid, mysid, SECCLASS_PROCESS,
6419 PROCESS__SETKEYCREATE, NULL);
6420 else if (!strcmp(name, "sockcreate"))
6421 error = avc_has_perm(&selinux_state,
6422 mysid, mysid, SECCLASS_PROCESS,
6423 PROCESS__SETSOCKCREATE, NULL);
6424 else if (!strcmp(name, "current"))
6425 error = avc_has_perm(&selinux_state,
6426 mysid, mysid, SECCLASS_PROCESS,
6427 PROCESS__SETCURRENT, NULL);
6428 else
6429 error = -EINVAL;
6430 if (error)
6431 return error;
6432
6433 /* Obtain a SID for the context, if one was specified. */
6434 if (size && str[0] && str[0] != '\n') {
6435 if (str[size-1] == '\n') {
6436 str[size-1] = 0;
6437 size--;
6438 }
6439 error = security_context_to_sid(&selinux_state, value, size,
6440 &sid, GFP_KERNEL);
6441 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6442 if (!has_cap_mac_admin(true)) {
6443 struct audit_buffer *ab;
6444 size_t audit_size;
6445
6446 /* We strip a nul only if it is at the end, otherwise the
6447 * context contains a nul and we should audit that */
6448 if (str[size - 1] == '\0')
6449 audit_size = size - 1;
6450 else
6451 audit_size = size;
6452 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6453 audit_log_format(ab, "op=fscreate invalid_context=");
6454 audit_log_n_untrustedstring(ab, value, audit_size);
6455 audit_log_end(ab);
6456
6457 return error;
6458 }
6459 error = security_context_to_sid_force(
6460 &selinux_state,
6461 value, size, &sid);
6462 }
6463 if (error)
6464 return error;
6465 }
6466
6467 new = prepare_creds();
6468 if (!new)
6469 return -ENOMEM;
6470
6471 /* Permission checking based on the specified context is
6472 performed during the actual operation (execve,
6473 open/mkdir/...), when we know the full context of the
6474 operation. See selinux_bprm_set_creds for the execve
6475 checks and may_create for the file creation checks. The
6476 operation will then fail if the context is not permitted. */
6477 tsec = new->security;
6478 if (!strcmp(name, "exec")) {
6479 tsec->exec_sid = sid;
6480 } else if (!strcmp(name, "fscreate")) {
6481 tsec->create_sid = sid;
6482 } else if (!strcmp(name, "keycreate")) {
6483 error = avc_has_perm(&selinux_state,
6484 mysid, sid, SECCLASS_KEY, KEY__CREATE,
6485 NULL);
6486 if (error)
6487 goto abort_change;
6488 tsec->keycreate_sid = sid;
6489 } else if (!strcmp(name, "sockcreate")) {
6490 tsec->sockcreate_sid = sid;
6491 } else if (!strcmp(name, "current")) {
6492 error = -EINVAL;
6493 if (sid == 0)
6494 goto abort_change;
6495
6496 /* Only allow single threaded processes to change context */
6497 error = -EPERM;
6498 if (!current_is_single_threaded()) {
6499 error = security_bounded_transition(&selinux_state,
6500 tsec->sid, sid);
6501 if (error)
6502 goto abort_change;
6503 }
6504
6505 /* Check permissions for the transition. */
6506 error = avc_has_perm(&selinux_state,
6507 tsec->sid, sid, SECCLASS_PROCESS,
6508 PROCESS__DYNTRANSITION, NULL);
6509 if (error)
6510 goto abort_change;
6511
6512 /* Check for ptracing, and update the task SID if ok.
6513 Otherwise, leave SID unchanged and fail. */
6514 ptsid = ptrace_parent_sid();
6515 if (ptsid != 0) {
6516 error = avc_has_perm(&selinux_state,
6517 ptsid, sid, SECCLASS_PROCESS,
6518 PROCESS__PTRACE, NULL);
6519 if (error)
6520 goto abort_change;
6521 }
6522
6523 tsec->sid = sid;
6524 } else {
6525 error = -EINVAL;
6526 goto abort_change;
6527 }
6528
6529 commit_creds(new);
6530 return size;
6531
6532abort_change:
6533 abort_creds(new);
6534 return error;
6535}
6536
6537static int selinux_ismaclabel(const char *name)
6538{
6539 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6540}
6541
6542static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6543{
6544 return security_sid_to_context(&selinux_state, secid,
6545 secdata, seclen);
6546}
6547
6548static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6549{
6550 return security_context_to_sid(&selinux_state, secdata, seclen,
6551 secid, GFP_KERNEL);
6552}
6553
6554static void selinux_release_secctx(char *secdata, u32 seclen)
6555{
6556 kfree(secdata);
6557}
6558
6559static void selinux_inode_invalidate_secctx(struct inode *inode)
6560{
6561 struct inode_security_struct *isec = inode->i_security;
6562
6563 spin_lock(&isec->lock);
6564 isec->initialized = LABEL_INVALID;
6565 spin_unlock(&isec->lock);
6566}
6567
6568/*
6569 * called with inode->i_mutex locked
6570 */
6571static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6572{
6573 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6574}
6575
6576/*
6577 * called with inode->i_mutex locked
6578 */
6579static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6580{
6581 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6582}
6583
6584static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6585{
6586 int len = 0;
6587 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6588 ctx, true);
6589 if (len < 0)
6590 return len;
6591 *ctxlen = len;
6592 return 0;
6593}
6594#ifdef CONFIG_KEYS
6595
6596static int selinux_key_alloc(struct key *k, const struct cred *cred,
6597 unsigned long flags)
6598{
6599 const struct task_security_struct *tsec;
6600 struct key_security_struct *ksec;
6601
6602 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6603 if (!ksec)
6604 return -ENOMEM;
6605
6606 tsec = cred->security;
6607 if (tsec->keycreate_sid)
6608 ksec->sid = tsec->keycreate_sid;
6609 else
6610 ksec->sid = tsec->sid;
6611
6612 k->security = ksec;
6613 return 0;
6614}
6615
6616static void selinux_key_free(struct key *k)
6617{
6618 struct key_security_struct *ksec = k->security;
6619
6620 k->security = NULL;
6621 kfree(ksec);
6622}
6623
6624static int selinux_key_permission(key_ref_t key_ref,
6625 const struct cred *cred,
6626 unsigned perm)
6627{
6628 struct key *key;
6629 struct key_security_struct *ksec;
6630 u32 sid;
6631
6632 /* if no specific permissions are requested, we skip the
6633 permission check. No serious, additional covert channels
6634 appear to be created. */
6635 if (perm == 0)
6636 return 0;
6637
6638 sid = cred_sid(cred);
6639
6640 key = key_ref_to_ptr(key_ref);
6641 ksec = key->security;
6642
6643 return avc_has_perm(&selinux_state,
6644 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6645}
6646
6647static int selinux_key_getsecurity(struct key *key, char **_buffer)
6648{
6649 struct key_security_struct *ksec = key->security;
6650 char *context = NULL;
6651 unsigned len;
6652 int rc;
6653
6654 rc = security_sid_to_context(&selinux_state, ksec->sid,
6655 &context, &len);
6656 if (!rc)
6657 rc = len;
6658 *_buffer = context;
6659 return rc;
6660}
6661#endif
6662
6663#ifdef CONFIG_SECURITY_INFINIBAND
6664static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6665{
6666 struct common_audit_data ad;
6667 int err;
6668 u32 sid = 0;
6669 struct ib_security_struct *sec = ib_sec;
6670 struct lsm_ibpkey_audit ibpkey;
6671
6672 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6673 if (err)
6674 return err;
6675
6676 ad.type = LSM_AUDIT_DATA_IBPKEY;
6677 ibpkey.subnet_prefix = subnet_prefix;
6678 ibpkey.pkey = pkey_val;
6679 ad.u.ibpkey = &ibpkey;
6680 return avc_has_perm(&selinux_state,
6681 sec->sid, sid,
6682 SECCLASS_INFINIBAND_PKEY,
6683 INFINIBAND_PKEY__ACCESS, &ad);
6684}
6685
6686static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6687 u8 port_num)
6688{
6689 struct common_audit_data ad;
6690 int err;
6691 u32 sid = 0;
6692 struct ib_security_struct *sec = ib_sec;
6693 struct lsm_ibendport_audit ibendport;
6694
6695 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6696 &sid);
6697
6698 if (err)
6699 return err;
6700
6701 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6702 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6703 ibendport.port = port_num;
6704 ad.u.ibendport = &ibendport;
6705 return avc_has_perm(&selinux_state,
6706 sec->sid, sid,
6707 SECCLASS_INFINIBAND_ENDPORT,
6708 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6709}
6710
6711static int selinux_ib_alloc_security(void **ib_sec)
6712{
6713 struct ib_security_struct *sec;
6714
6715 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6716 if (!sec)
6717 return -ENOMEM;
6718 sec->sid = current_sid();
6719
6720 *ib_sec = sec;
6721 return 0;
6722}
6723
6724static void selinux_ib_free_security(void *ib_sec)
6725{
6726 kfree(ib_sec);
6727}
6728#endif
6729
6730#ifdef CONFIG_BPF_SYSCALL
6731static int selinux_bpf(int cmd, union bpf_attr *attr,
6732 unsigned int size)
6733{
6734 u32 sid = current_sid();
6735 int ret;
6736
6737 switch (cmd) {
6738 case BPF_MAP_CREATE:
6739 ret = avc_has_perm(&selinux_state,
6740 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6741 NULL);
6742 break;
6743 case BPF_PROG_LOAD:
6744 ret = avc_has_perm(&selinux_state,
6745 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6746 NULL);
6747 break;
6748 default:
6749 ret = 0;
6750 break;
6751 }
6752
6753 return ret;
6754}
6755
6756static u32 bpf_map_fmode_to_av(fmode_t fmode)
6757{
6758 u32 av = 0;
6759
6760 if (fmode & FMODE_READ)
6761 av |= BPF__MAP_READ;
6762 if (fmode & FMODE_WRITE)
6763 av |= BPF__MAP_WRITE;
6764 return av;
6765}
6766
6767/* This function will check the file pass through unix socket or binder to see
6768 * if it is a bpf related object. And apply correspinding checks on the bpf
6769 * object based on the type. The bpf maps and programs, not like other files and
6770 * socket, are using a shared anonymous inode inside the kernel as their inode.
6771 * So checking that inode cannot identify if the process have privilege to
6772 * access the bpf object and that's why we have to add this additional check in
6773 * selinux_file_receive and selinux_binder_transfer_files.
6774 */
6775static int bpf_fd_pass(struct file *file, u32 sid)
6776{
6777 struct bpf_security_struct *bpfsec;
6778 struct bpf_prog *prog;
6779 struct bpf_map *map;
6780 int ret;
6781
6782 if (file->f_op == &bpf_map_fops) {
6783 map = file->private_data;
6784 bpfsec = map->security;
6785 ret = avc_has_perm(&selinux_state,
6786 sid, bpfsec->sid, SECCLASS_BPF,
6787 bpf_map_fmode_to_av(file->f_mode), NULL);
6788 if (ret)
6789 return ret;
6790 } else if (file->f_op == &bpf_prog_fops) {
6791 prog = file->private_data;
6792 bpfsec = prog->aux->security;
6793 ret = avc_has_perm(&selinux_state,
6794 sid, bpfsec->sid, SECCLASS_BPF,
6795 BPF__PROG_RUN, NULL);
6796 if (ret)
6797 return ret;
6798 }
6799 return 0;
6800}
6801
6802static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6803{
6804 u32 sid = current_sid();
6805 struct bpf_security_struct *bpfsec;
6806
6807 bpfsec = map->security;
6808 return avc_has_perm(&selinux_state,
6809 sid, bpfsec->sid, SECCLASS_BPF,
6810 bpf_map_fmode_to_av(fmode), NULL);
6811}
6812
6813static int selinux_bpf_prog(struct bpf_prog *prog)
6814{
6815 u32 sid = current_sid();
6816 struct bpf_security_struct *bpfsec;
6817
6818 bpfsec = prog->aux->security;
6819 return avc_has_perm(&selinux_state,
6820 sid, bpfsec->sid, SECCLASS_BPF,
6821 BPF__PROG_RUN, NULL);
6822}
6823
6824static int selinux_bpf_map_alloc(struct bpf_map *map)
6825{
6826 struct bpf_security_struct *bpfsec;
6827
6828 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6829 if (!bpfsec)
6830 return -ENOMEM;
6831
6832 bpfsec->sid = current_sid();
6833 map->security = bpfsec;
6834
6835 return 0;
6836}
6837
6838static void selinux_bpf_map_free(struct bpf_map *map)
6839{
6840 struct bpf_security_struct *bpfsec = map->security;
6841
6842 map->security = NULL;
6843 kfree(bpfsec);
6844}
6845
6846static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6847{
6848 struct bpf_security_struct *bpfsec;
6849
6850 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6851 if (!bpfsec)
6852 return -ENOMEM;
6853
6854 bpfsec->sid = current_sid();
6855 aux->security = bpfsec;
6856
6857 return 0;
6858}
6859
6860static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6861{
6862 struct bpf_security_struct *bpfsec = aux->security;
6863
6864 aux->security = NULL;
6865 kfree(bpfsec);
6866}
6867#endif
6868
6869static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6870 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6871 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6872 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6873 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6874
6875 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6876 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6877 LSM_HOOK_INIT(capget, selinux_capget),
6878 LSM_HOOK_INIT(capset, selinux_capset),
6879 LSM_HOOK_INIT(capable, selinux_capable),
6880 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6881 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6882 LSM_HOOK_INIT(syslog, selinux_syslog),
6883 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6884
6885 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6886
6887 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6888 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6889 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6890
6891 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6892 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6893 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6894 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6895 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6896 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6897 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6898 LSM_HOOK_INIT(sb_mount, selinux_mount),
6899 LSM_HOOK_INIT(sb_umount, selinux_umount),
6900 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6901 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6902 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6903
6904 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6905 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6906
6907 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6908 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6909 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6910 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6911 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6912 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6913 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6914 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6915 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6916 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6917 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6918 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6919 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6920 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6921 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6922 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6923 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6924 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6925 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6926 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6927 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6928 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6929 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6930 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6931 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6932 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6933 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6934
6935 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6936 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6937 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6938 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6939 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6940 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6941 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6942 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6943 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6944 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6945 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6946 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6947
6948 LSM_HOOK_INIT(file_open, selinux_file_open),
6949
6950 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6951 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6952 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6953 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6954 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6955 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6956 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6957 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6958 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6959 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6960 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6961 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6962 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6963 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6964 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6965 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6966 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6967 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6968 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6969 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6970 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6971 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6972 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6973 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6974
6975 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6976 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6977
6978 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6979 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6980
6981 LSM_HOOK_INIT(msg_queue_alloc_security,
6982 selinux_msg_queue_alloc_security),
6983 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6984 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6985 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6986 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6987 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6988
6989 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6990 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6991 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6992 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6993 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6994
6995 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6996 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6997 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6998 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6999 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7000
7001 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7002
7003 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7004 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7005
7006 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7007 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7008 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7009 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7010 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7011 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7012 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7013 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7014
7015 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7016 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7017
7018 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7019 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7020 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7021 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7022 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7023 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7024 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7025 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7026 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7027 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7028 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7029 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7030 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7031 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7032 LSM_HOOK_INIT(socket_getpeersec_stream,
7033 selinux_socket_getpeersec_stream),
7034 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7035 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7036 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7037 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7038 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7039 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7040 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7041 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7042 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7043 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7044 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7045 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7046 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7047 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7048 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7049 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7050 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7051 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7052 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7053 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7054 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7055 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7056#ifdef CONFIG_SECURITY_INFINIBAND
7057 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7058 LSM_HOOK_INIT(ib_endport_manage_subnet,
7059 selinux_ib_endport_manage_subnet),
7060 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7061 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7062#endif
7063#ifdef CONFIG_SECURITY_NETWORK_XFRM
7064 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7065 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7066 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7067 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7068 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7069 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7070 selinux_xfrm_state_alloc_acquire),
7071 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7072 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7073 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7074 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7075 selinux_xfrm_state_pol_flow_match),
7076 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7077#endif
7078
7079#ifdef CONFIG_KEYS
7080 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7081 LSM_HOOK_INIT(key_free, selinux_key_free),
7082 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7083 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7084#endif
7085
7086#ifdef CONFIG_AUDIT
7087 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7088 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7089 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7090 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7091#endif
7092
7093#ifdef CONFIG_BPF_SYSCALL
7094 LSM_HOOK_INIT(bpf, selinux_bpf),
7095 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7096 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7097 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7098 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7099 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7100 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7101#endif
7102};
7103
7104static __init int selinux_init(void)
7105{
7106 if (!security_module_enable("selinux")) {
7107 selinux_enabled = 0;
7108 return 0;
7109 }
7110
7111 if (!selinux_enabled) {
7112 printk(KERN_INFO "SELinux: Disabled at boot.\n");
7113 return 0;
7114 }
7115
7116 printk(KERN_INFO "SELinux: Initializing.\n");
7117
7118 memset(&selinux_state, 0, sizeof(selinux_state));
7119 enforcing_set(&selinux_state, selinux_enforcing_boot);
7120 selinux_state.checkreqprot = selinux_checkreqprot_boot;
7121 selinux_ss_init(&selinux_state.ss);
7122 selinux_avc_init(&selinux_state.avc);
7123
7124 /* Set the security state for the initial task. */
7125 cred_init_security();
7126
7127 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7128
7129 sel_inode_cache = kmem_cache_create("selinux_inode_security",
7130 sizeof(struct inode_security_struct),
7131 0, SLAB_PANIC, NULL);
7132 file_security_cache = kmem_cache_create("selinux_file_security",
7133 sizeof(struct file_security_struct),
7134 0, SLAB_PANIC, NULL);
7135 avc_init();
7136
7137 avtab_cache_init();
7138
7139 ebitmap_cache_init();
7140
7141 hashtab_cache_init();
7142
7143 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7144
7145 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7146 panic("SELinux: Unable to register AVC netcache callback\n");
7147
7148 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7149 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7150
7151 if (selinux_enforcing_boot)
7152 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
7153 else
7154 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
7155
7156 return 0;
7157}
7158
7159static void delayed_superblock_init(struct super_block *sb, void *unused)
7160{
7161 superblock_doinit(sb, NULL);
7162}
7163
7164void selinux_complete_init(void)
7165{
7166 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
7167
7168 /* Set up any superblocks initialized prior to the policy load. */
7169 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
7170 iterate_supers(delayed_superblock_init, NULL);
7171}
7172
7173/* SELinux requires early initialization in order to label
7174 all processes and objects when they are created. */
7175security_initcall(selinux_init);
7176
7177#if defined(CONFIG_NETFILTER)
7178
7179static const struct nf_hook_ops selinux_nf_ops[] = {
7180 {
7181 .hook = selinux_ipv4_postroute,
7182 .pf = NFPROTO_IPV4,
7183 .hooknum = NF_INET_POST_ROUTING,
7184 .priority = NF_IP_PRI_SELINUX_LAST,
7185 },
7186 {
7187 .hook = selinux_ipv4_forward,
7188 .pf = NFPROTO_IPV4,
7189 .hooknum = NF_INET_FORWARD,
7190 .priority = NF_IP_PRI_SELINUX_FIRST,
7191 },
7192 {
7193 .hook = selinux_ipv4_output,
7194 .pf = NFPROTO_IPV4,
7195 .hooknum = NF_INET_LOCAL_OUT,
7196 .priority = NF_IP_PRI_SELINUX_FIRST,
7197 },
7198#if IS_ENABLED(CONFIG_IPV6)
7199 {
7200 .hook = selinux_ipv6_postroute,
7201 .pf = NFPROTO_IPV6,
7202 .hooknum = NF_INET_POST_ROUTING,
7203 .priority = NF_IP6_PRI_SELINUX_LAST,
7204 },
7205 {
7206 .hook = selinux_ipv6_forward,
7207 .pf = NFPROTO_IPV6,
7208 .hooknum = NF_INET_FORWARD,
7209 .priority = NF_IP6_PRI_SELINUX_FIRST,
7210 },
7211 {
7212 .hook = selinux_ipv6_output,
7213 .pf = NFPROTO_IPV6,
7214 .hooknum = NF_INET_LOCAL_OUT,
7215 .priority = NF_IP6_PRI_SELINUX_FIRST,
7216 },
7217#endif /* IPV6 */
7218};
7219
7220static int __net_init selinux_nf_register(struct net *net)
7221{
7222 return nf_register_net_hooks(net, selinux_nf_ops,
7223 ARRAY_SIZE(selinux_nf_ops));
7224}
7225
7226static void __net_exit selinux_nf_unregister(struct net *net)
7227{
7228 nf_unregister_net_hooks(net, selinux_nf_ops,
7229 ARRAY_SIZE(selinux_nf_ops));
7230}
7231
7232static struct pernet_operations selinux_net_ops = {
7233 .init = selinux_nf_register,
7234 .exit = selinux_nf_unregister,
7235};
7236
7237static int __init selinux_nf_ip_init(void)
7238{
7239 int err;
7240
7241 if (!selinux_enabled)
7242 return 0;
7243
7244 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
7245
7246 err = register_pernet_subsys(&selinux_net_ops);
7247 if (err)
7248 panic("SELinux: register_pernet_subsys: error %d\n", err);
7249
7250 return 0;
7251}
7252__initcall(selinux_nf_ip_init);
7253
7254#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7255static void selinux_nf_ip_exit(void)
7256{
7257 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
7258
7259 unregister_pernet_subsys(&selinux_net_ops);
7260}
7261#endif
7262
7263#else /* CONFIG_NETFILTER */
7264
7265#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7266#define selinux_nf_ip_exit()
7267#endif
7268
7269#endif /* CONFIG_NETFILTER */
7270
7271#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7272int selinux_disable(struct selinux_state *state)
7273{
7274 if (state->initialized) {
7275 /* Not permitted after initial policy load. */
7276 return -EINVAL;
7277 }
7278
7279 if (state->disabled) {
7280 /* Only do this once. */
7281 return -EINVAL;
7282 }
7283
7284 state->disabled = 1;
7285
7286 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
7287
7288 selinux_enabled = 0;
7289
7290 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7291
7292 /* Try to destroy the avc node cache */
7293 avc_disable();
7294
7295 /* Unregister netfilter hooks. */
7296 selinux_nf_ip_exit();
7297
7298 /* Unregister selinuxfs. */
7299 exit_sel_fs();
7300
7301 return 0;
7302}
7303#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <uapi/linux/shm.h>
89#include <linux/bpf.h>
90#include <linux/kernfs.h>
91#include <linux/stringhash.h> /* for hashlen_string() */
92#include <uapi/linux/mount.h>
93#include <linux/fsnotify.h>
94#include <linux/fanotify.h>
95#include <linux/io_uring/cmd.h>
96#include <uapi/linux/lsm.h>
97
98#include "avc.h"
99#include "objsec.h"
100#include "netif.h"
101#include "netnode.h"
102#include "netport.h"
103#include "ibpkey.h"
104#include "xfrm.h"
105#include "netlabel.h"
106#include "audit.h"
107#include "avc_ss.h"
108
109#define SELINUX_INODE_INIT_XATTRS 1
110
111struct selinux_state selinux_state;
112
113/* SECMARK reference count */
114static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115
116#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117static int selinux_enforcing_boot __initdata;
118
119static int __init enforcing_setup(char *str)
120{
121 unsigned long enforcing;
122 if (!kstrtoul(str, 0, &enforcing))
123 selinux_enforcing_boot = enforcing ? 1 : 0;
124 return 1;
125}
126__setup("enforcing=", enforcing_setup);
127#else
128#define selinux_enforcing_boot 1
129#endif
130
131int selinux_enabled_boot __initdata = 1;
132#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133static int __init selinux_enabled_setup(char *str)
134{
135 unsigned long enabled;
136 if (!kstrtoul(str, 0, &enabled))
137 selinux_enabled_boot = enabled ? 1 : 0;
138 return 1;
139}
140__setup("selinux=", selinux_enabled_setup);
141#endif
142
143static int __init checkreqprot_setup(char *str)
144{
145 unsigned long checkreqprot;
146
147 if (!kstrtoul(str, 0, &checkreqprot)) {
148 if (checkreqprot)
149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218}
219
220/*
221 * get the security ID of a set of credentials
222 */
223static inline u32 cred_sid(const struct cred *cred)
224{
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229}
230
231static void __ad_net_init(struct common_audit_data *ad,
232 struct lsm_network_audit *net,
233 int ifindex, struct sock *sk, u16 family)
234{
235 ad->type = LSM_AUDIT_DATA_NET;
236 ad->u.net = net;
237 net->netif = ifindex;
238 net->sk = sk;
239 net->family = family;
240}
241
242static void ad_net_init_from_sk(struct common_audit_data *ad,
243 struct lsm_network_audit *net,
244 struct sock *sk)
245{
246 __ad_net_init(ad, net, 0, sk, 0);
247}
248
249static void ad_net_init_from_iif(struct common_audit_data *ad,
250 struct lsm_network_audit *net,
251 int ifindex, u16 family)
252{
253 __ad_net_init(ad, net, ifindex, NULL, family);
254}
255
256/*
257 * get the objective security ID of a task
258 */
259static inline u32 task_sid_obj(const struct task_struct *task)
260{
261 u32 sid;
262
263 rcu_read_lock();
264 sid = cred_sid(__task_cred(task));
265 rcu_read_unlock();
266 return sid;
267}
268
269static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270
271/*
272 * Try reloading inode security labels that have been marked as invalid. The
273 * @may_sleep parameter indicates when sleeping and thus reloading labels is
274 * allowed; when set to false, returns -ECHILD when the label is
275 * invalid. The @dentry parameter should be set to a dentry of the inode.
276 */
277static int __inode_security_revalidate(struct inode *inode,
278 struct dentry *dentry,
279 bool may_sleep)
280{
281 struct inode_security_struct *isec = selinux_inode(inode);
282
283 might_sleep_if(may_sleep);
284
285 /*
286 * The check of isec->initialized below is racy but
287 * inode_doinit_with_dentry() will recheck with
288 * isec->lock held.
289 */
290 if (selinux_initialized() &&
291 data_race(isec->initialized != LABEL_INITIALIZED)) {
292 if (!may_sleep)
293 return -ECHILD;
294
295 /*
296 * Try reloading the inode security label. This will fail if
297 * @opt_dentry is NULL and no dentry for this inode can be
298 * found; in that case, continue using the old label.
299 */
300 inode_doinit_with_dentry(inode, dentry);
301 }
302 return 0;
303}
304
305static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
306{
307 return selinux_inode(inode);
308}
309
310static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
311{
312 int error;
313
314 error = __inode_security_revalidate(inode, NULL, !rcu);
315 if (error)
316 return ERR_PTR(error);
317 return selinux_inode(inode);
318}
319
320/*
321 * Get the security label of an inode.
322 */
323static struct inode_security_struct *inode_security(struct inode *inode)
324{
325 __inode_security_revalidate(inode, NULL, true);
326 return selinux_inode(inode);
327}
328
329static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
330{
331 struct inode *inode = d_backing_inode(dentry);
332
333 return selinux_inode(inode);
334}
335
336/*
337 * Get the security label of a dentry's backing inode.
338 */
339static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
340{
341 struct inode *inode = d_backing_inode(dentry);
342
343 __inode_security_revalidate(inode, dentry, true);
344 return selinux_inode(inode);
345}
346
347static void inode_free_security(struct inode *inode)
348{
349 struct inode_security_struct *isec = selinux_inode(inode);
350 struct superblock_security_struct *sbsec;
351
352 if (!isec)
353 return;
354 sbsec = selinux_superblock(inode->i_sb);
355 /*
356 * As not all inode security structures are in a list, we check for
357 * empty list outside of the lock to make sure that we won't waste
358 * time taking a lock doing nothing.
359 *
360 * The list_del_init() function can be safely called more than once.
361 * It should not be possible for this function to be called with
362 * concurrent list_add(), but for better safety against future changes
363 * in the code, we use list_empty_careful() here.
364 */
365 if (!list_empty_careful(&isec->list)) {
366 spin_lock(&sbsec->isec_lock);
367 list_del_init(&isec->list);
368 spin_unlock(&sbsec->isec_lock);
369 }
370}
371
372struct selinux_mnt_opts {
373 u32 fscontext_sid;
374 u32 context_sid;
375 u32 rootcontext_sid;
376 u32 defcontext_sid;
377};
378
379static void selinux_free_mnt_opts(void *mnt_opts)
380{
381 kfree(mnt_opts);
382}
383
384enum {
385 Opt_error = -1,
386 Opt_context = 0,
387 Opt_defcontext = 1,
388 Opt_fscontext = 2,
389 Opt_rootcontext = 3,
390 Opt_seclabel = 4,
391};
392
393#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
394static const struct {
395 const char *name;
396 int len;
397 int opt;
398 bool has_arg;
399} tokens[] = {
400 A(context, true),
401 A(fscontext, true),
402 A(defcontext, true),
403 A(rootcontext, true),
404 A(seclabel, false),
405};
406#undef A
407
408static int match_opt_prefix(char *s, int l, char **arg)
409{
410 int i;
411
412 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
413 size_t len = tokens[i].len;
414 if (len > l || memcmp(s, tokens[i].name, len))
415 continue;
416 if (tokens[i].has_arg) {
417 if (len == l || s[len] != '=')
418 continue;
419 *arg = s + len + 1;
420 } else if (len != l)
421 continue;
422 return tokens[i].opt;
423 }
424 return Opt_error;
425}
426
427#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
428
429static int may_context_mount_sb_relabel(u32 sid,
430 struct superblock_security_struct *sbsec,
431 const struct cred *cred)
432{
433 const struct task_security_struct *tsec = selinux_cred(cred);
434 int rc;
435
436 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
437 FILESYSTEM__RELABELFROM, NULL);
438 if (rc)
439 return rc;
440
441 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
442 FILESYSTEM__RELABELTO, NULL);
443 return rc;
444}
445
446static int may_context_mount_inode_relabel(u32 sid,
447 struct superblock_security_struct *sbsec,
448 const struct cred *cred)
449{
450 const struct task_security_struct *tsec = selinux_cred(cred);
451 int rc;
452 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 FILESYSTEM__RELABELFROM, NULL);
454 if (rc)
455 return rc;
456
457 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
458 FILESYSTEM__ASSOCIATE, NULL);
459 return rc;
460}
461
462static int selinux_is_genfs_special_handling(struct super_block *sb)
463{
464 /* Special handling. Genfs but also in-core setxattr handler */
465 return !strcmp(sb->s_type->name, "sysfs") ||
466 !strcmp(sb->s_type->name, "pstore") ||
467 !strcmp(sb->s_type->name, "debugfs") ||
468 !strcmp(sb->s_type->name, "tracefs") ||
469 !strcmp(sb->s_type->name, "rootfs") ||
470 (selinux_policycap_cgroupseclabel() &&
471 (!strcmp(sb->s_type->name, "cgroup") ||
472 !strcmp(sb->s_type->name, "cgroup2")));
473}
474
475static int selinux_is_sblabel_mnt(struct super_block *sb)
476{
477 struct superblock_security_struct *sbsec = selinux_superblock(sb);
478
479 /*
480 * IMPORTANT: Double-check logic in this function when adding a new
481 * SECURITY_FS_USE_* definition!
482 */
483 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
484
485 switch (sbsec->behavior) {
486 case SECURITY_FS_USE_XATTR:
487 case SECURITY_FS_USE_TRANS:
488 case SECURITY_FS_USE_TASK:
489 case SECURITY_FS_USE_NATIVE:
490 return 1;
491
492 case SECURITY_FS_USE_GENFS:
493 return selinux_is_genfs_special_handling(sb);
494
495 /* Never allow relabeling on context mounts */
496 case SECURITY_FS_USE_MNTPOINT:
497 case SECURITY_FS_USE_NONE:
498 default:
499 return 0;
500 }
501}
502
503static int sb_check_xattr_support(struct super_block *sb)
504{
505 struct superblock_security_struct *sbsec = selinux_superblock(sb);
506 struct dentry *root = sb->s_root;
507 struct inode *root_inode = d_backing_inode(root);
508 u32 sid;
509 int rc;
510
511 /*
512 * Make sure that the xattr handler exists and that no
513 * error other than -ENODATA is returned by getxattr on
514 * the root directory. -ENODATA is ok, as this may be
515 * the first boot of the SELinux kernel before we have
516 * assigned xattr values to the filesystem.
517 */
518 if (!(root_inode->i_opflags & IOP_XATTR)) {
519 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
520 sb->s_id, sb->s_type->name);
521 goto fallback;
522 }
523
524 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
525 if (rc < 0 && rc != -ENODATA) {
526 if (rc == -EOPNOTSUPP) {
527 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
528 sb->s_id, sb->s_type->name);
529 goto fallback;
530 } else {
531 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
532 sb->s_id, sb->s_type->name, -rc);
533 return rc;
534 }
535 }
536 return 0;
537
538fallback:
539 /* No xattr support - try to fallback to genfs if possible. */
540 rc = security_genfs_sid(sb->s_type->name, "/",
541 SECCLASS_DIR, &sid);
542 if (rc)
543 return -EOPNOTSUPP;
544
545 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
546 sb->s_id, sb->s_type->name);
547 sbsec->behavior = SECURITY_FS_USE_GENFS;
548 sbsec->sid = sid;
549 return 0;
550}
551
552static int sb_finish_set_opts(struct super_block *sb)
553{
554 struct superblock_security_struct *sbsec = selinux_superblock(sb);
555 struct dentry *root = sb->s_root;
556 struct inode *root_inode = d_backing_inode(root);
557 int rc = 0;
558
559 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
560 rc = sb_check_xattr_support(sb);
561 if (rc)
562 return rc;
563 }
564
565 sbsec->flags |= SE_SBINITIALIZED;
566
567 /*
568 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
569 * leave the flag untouched because sb_clone_mnt_opts might be handing
570 * us a superblock that needs the flag to be cleared.
571 */
572 if (selinux_is_sblabel_mnt(sb))
573 sbsec->flags |= SBLABEL_MNT;
574 else
575 sbsec->flags &= ~SBLABEL_MNT;
576
577 /* Initialize the root inode. */
578 rc = inode_doinit_with_dentry(root_inode, root);
579
580 /* Initialize any other inodes associated with the superblock, e.g.
581 inodes created prior to initial policy load or inodes created
582 during get_sb by a pseudo filesystem that directly
583 populates itself. */
584 spin_lock(&sbsec->isec_lock);
585 while (!list_empty(&sbsec->isec_head)) {
586 struct inode_security_struct *isec =
587 list_first_entry(&sbsec->isec_head,
588 struct inode_security_struct, list);
589 struct inode *inode = isec->inode;
590 list_del_init(&isec->list);
591 spin_unlock(&sbsec->isec_lock);
592 inode = igrab(inode);
593 if (inode) {
594 if (!IS_PRIVATE(inode))
595 inode_doinit_with_dentry(inode, NULL);
596 iput(inode);
597 }
598 spin_lock(&sbsec->isec_lock);
599 }
600 spin_unlock(&sbsec->isec_lock);
601 return rc;
602}
603
604static int bad_option(struct superblock_security_struct *sbsec, char flag,
605 u32 old_sid, u32 new_sid)
606{
607 char mnt_flags = sbsec->flags & SE_MNTMASK;
608
609 /* check if the old mount command had the same options */
610 if (sbsec->flags & SE_SBINITIALIZED)
611 if (!(sbsec->flags & flag) ||
612 (old_sid != new_sid))
613 return 1;
614
615 /* check if we were passed the same options twice,
616 * aka someone passed context=a,context=b
617 */
618 if (!(sbsec->flags & SE_SBINITIALIZED))
619 if (mnt_flags & flag)
620 return 1;
621 return 0;
622}
623
624/*
625 * Allow filesystems with binary mount data to explicitly set mount point
626 * labeling information.
627 */
628static int selinux_set_mnt_opts(struct super_block *sb,
629 void *mnt_opts,
630 unsigned long kern_flags,
631 unsigned long *set_kern_flags)
632{
633 const struct cred *cred = current_cred();
634 struct superblock_security_struct *sbsec = selinux_superblock(sb);
635 struct dentry *root = sb->s_root;
636 struct selinux_mnt_opts *opts = mnt_opts;
637 struct inode_security_struct *root_isec;
638 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
639 u32 defcontext_sid = 0;
640 int rc = 0;
641
642 /*
643 * Specifying internal flags without providing a place to
644 * place the results is not allowed
645 */
646 if (kern_flags && !set_kern_flags)
647 return -EINVAL;
648
649 mutex_lock(&sbsec->lock);
650
651 if (!selinux_initialized()) {
652 if (!opts) {
653 /* Defer initialization until selinux_complete_init,
654 after the initial policy is loaded and the security
655 server is ready to handle calls. */
656 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
657 sbsec->flags |= SE_SBNATIVE;
658 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
659 }
660 goto out;
661 }
662 rc = -EINVAL;
663 pr_warn("SELinux: Unable to set superblock options "
664 "before the security server is initialized\n");
665 goto out;
666 }
667
668 /*
669 * Binary mount data FS will come through this function twice. Once
670 * from an explicit call and once from the generic calls from the vfs.
671 * Since the generic VFS calls will not contain any security mount data
672 * we need to skip the double mount verification.
673 *
674 * This does open a hole in which we will not notice if the first
675 * mount using this sb set explicit options and a second mount using
676 * this sb does not set any security options. (The first options
677 * will be used for both mounts)
678 */
679 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
680 && !opts)
681 goto out;
682
683 root_isec = backing_inode_security_novalidate(root);
684
685 /*
686 * parse the mount options, check if they are valid sids.
687 * also check if someone is trying to mount the same sb more
688 * than once with different security options.
689 */
690 if (opts) {
691 if (opts->fscontext_sid) {
692 fscontext_sid = opts->fscontext_sid;
693 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
694 fscontext_sid))
695 goto out_double_mount;
696 sbsec->flags |= FSCONTEXT_MNT;
697 }
698 if (opts->context_sid) {
699 context_sid = opts->context_sid;
700 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
701 context_sid))
702 goto out_double_mount;
703 sbsec->flags |= CONTEXT_MNT;
704 }
705 if (opts->rootcontext_sid) {
706 rootcontext_sid = opts->rootcontext_sid;
707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
708 rootcontext_sid))
709 goto out_double_mount;
710 sbsec->flags |= ROOTCONTEXT_MNT;
711 }
712 if (opts->defcontext_sid) {
713 defcontext_sid = opts->defcontext_sid;
714 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
715 defcontext_sid))
716 goto out_double_mount;
717 sbsec->flags |= DEFCONTEXT_MNT;
718 }
719 }
720
721 if (sbsec->flags & SE_SBINITIALIZED) {
722 /* previously mounted with options, but not on this attempt? */
723 if ((sbsec->flags & SE_MNTMASK) && !opts)
724 goto out_double_mount;
725 rc = 0;
726 goto out;
727 }
728
729 if (strcmp(sb->s_type->name, "proc") == 0)
730 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
731
732 if (!strcmp(sb->s_type->name, "debugfs") ||
733 !strcmp(sb->s_type->name, "tracefs") ||
734 !strcmp(sb->s_type->name, "binder") ||
735 !strcmp(sb->s_type->name, "bpf") ||
736 !strcmp(sb->s_type->name, "pstore") ||
737 !strcmp(sb->s_type->name, "securityfs"))
738 sbsec->flags |= SE_SBGENFS;
739
740 if (!strcmp(sb->s_type->name, "sysfs") ||
741 !strcmp(sb->s_type->name, "cgroup") ||
742 !strcmp(sb->s_type->name, "cgroup2"))
743 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
744
745 if (!sbsec->behavior) {
746 /*
747 * Determine the labeling behavior to use for this
748 * filesystem type.
749 */
750 rc = security_fs_use(sb);
751 if (rc) {
752 pr_warn("%s: security_fs_use(%s) returned %d\n",
753 __func__, sb->s_type->name, rc);
754 goto out;
755 }
756 }
757
758 /*
759 * If this is a user namespace mount and the filesystem type is not
760 * explicitly whitelisted, then no contexts are allowed on the command
761 * line and security labels must be ignored.
762 */
763 if (sb->s_user_ns != &init_user_ns &&
764 strcmp(sb->s_type->name, "tmpfs") &&
765 strcmp(sb->s_type->name, "ramfs") &&
766 strcmp(sb->s_type->name, "devpts") &&
767 strcmp(sb->s_type->name, "overlay")) {
768 if (context_sid || fscontext_sid || rootcontext_sid ||
769 defcontext_sid) {
770 rc = -EACCES;
771 goto out;
772 }
773 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
774 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
775 rc = security_transition_sid(current_sid(),
776 current_sid(),
777 SECCLASS_FILE, NULL,
778 &sbsec->mntpoint_sid);
779 if (rc)
780 goto out;
781 }
782 goto out_set_opts;
783 }
784
785 /* sets the context of the superblock for the fs being mounted. */
786 if (fscontext_sid) {
787 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
788 if (rc)
789 goto out;
790
791 sbsec->sid = fscontext_sid;
792 }
793
794 /*
795 * Switch to using mount point labeling behavior.
796 * sets the label used on all file below the mountpoint, and will set
797 * the superblock context if not already set.
798 */
799 if (sbsec->flags & SE_SBNATIVE) {
800 /*
801 * This means we are initializing a superblock that has been
802 * mounted before the SELinux was initialized and the
803 * filesystem requested native labeling. We had already
804 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
805 * in the original mount attempt, so now we just need to set
806 * the SECURITY_FS_USE_NATIVE behavior.
807 */
808 sbsec->behavior = SECURITY_FS_USE_NATIVE;
809 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
810 sbsec->behavior = SECURITY_FS_USE_NATIVE;
811 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
812 }
813
814 if (context_sid) {
815 if (!fscontext_sid) {
816 rc = may_context_mount_sb_relabel(context_sid, sbsec,
817 cred);
818 if (rc)
819 goto out;
820 sbsec->sid = context_sid;
821 } else {
822 rc = may_context_mount_inode_relabel(context_sid, sbsec,
823 cred);
824 if (rc)
825 goto out;
826 }
827 if (!rootcontext_sid)
828 rootcontext_sid = context_sid;
829
830 sbsec->mntpoint_sid = context_sid;
831 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
832 }
833
834 if (rootcontext_sid) {
835 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
836 cred);
837 if (rc)
838 goto out;
839
840 root_isec->sid = rootcontext_sid;
841 root_isec->initialized = LABEL_INITIALIZED;
842 }
843
844 if (defcontext_sid) {
845 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
846 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
847 rc = -EINVAL;
848 pr_warn("SELinux: defcontext option is "
849 "invalid for this filesystem type\n");
850 goto out;
851 }
852
853 if (defcontext_sid != sbsec->def_sid) {
854 rc = may_context_mount_inode_relabel(defcontext_sid,
855 sbsec, cred);
856 if (rc)
857 goto out;
858 }
859
860 sbsec->def_sid = defcontext_sid;
861 }
862
863out_set_opts:
864 rc = sb_finish_set_opts(sb);
865out:
866 mutex_unlock(&sbsec->lock);
867 return rc;
868out_double_mount:
869 rc = -EINVAL;
870 pr_warn("SELinux: mount invalid. Same superblock, different "
871 "security settings for (dev %s, type %s)\n", sb->s_id,
872 sb->s_type->name);
873 goto out;
874}
875
876static int selinux_cmp_sb_context(const struct super_block *oldsb,
877 const struct super_block *newsb)
878{
879 struct superblock_security_struct *old = selinux_superblock(oldsb);
880 struct superblock_security_struct *new = selinux_superblock(newsb);
881 char oldflags = old->flags & SE_MNTMASK;
882 char newflags = new->flags & SE_MNTMASK;
883
884 if (oldflags != newflags)
885 goto mismatch;
886 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
887 goto mismatch;
888 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
889 goto mismatch;
890 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
891 goto mismatch;
892 if (oldflags & ROOTCONTEXT_MNT) {
893 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
894 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
895 if (oldroot->sid != newroot->sid)
896 goto mismatch;
897 }
898 return 0;
899mismatch:
900 pr_warn("SELinux: mount invalid. Same superblock, "
901 "different security settings for (dev %s, "
902 "type %s)\n", newsb->s_id, newsb->s_type->name);
903 return -EBUSY;
904}
905
906static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
907 struct super_block *newsb,
908 unsigned long kern_flags,
909 unsigned long *set_kern_flags)
910{
911 int rc = 0;
912 const struct superblock_security_struct *oldsbsec =
913 selinux_superblock(oldsb);
914 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
915
916 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
917 int set_context = (oldsbsec->flags & CONTEXT_MNT);
918 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
919
920 /*
921 * Specifying internal flags without providing a place to
922 * place the results is not allowed.
923 */
924 if (kern_flags && !set_kern_flags)
925 return -EINVAL;
926
927 mutex_lock(&newsbsec->lock);
928
929 /*
930 * if the parent was able to be mounted it clearly had no special lsm
931 * mount options. thus we can safely deal with this superblock later
932 */
933 if (!selinux_initialized()) {
934 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
935 newsbsec->flags |= SE_SBNATIVE;
936 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
937 }
938 goto out;
939 }
940
941 /* how can we clone if the old one wasn't set up?? */
942 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
943
944 /* if fs is reusing a sb, make sure that the contexts match */
945 if (newsbsec->flags & SE_SBINITIALIZED) {
946 mutex_unlock(&newsbsec->lock);
947 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
948 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
949 return selinux_cmp_sb_context(oldsb, newsb);
950 }
951
952 newsbsec->flags = oldsbsec->flags;
953
954 newsbsec->sid = oldsbsec->sid;
955 newsbsec->def_sid = oldsbsec->def_sid;
956 newsbsec->behavior = oldsbsec->behavior;
957
958 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
959 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
960 rc = security_fs_use(newsb);
961 if (rc)
962 goto out;
963 }
964
965 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
966 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
967 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
968 }
969
970 if (set_context) {
971 u32 sid = oldsbsec->mntpoint_sid;
972
973 if (!set_fscontext)
974 newsbsec->sid = sid;
975 if (!set_rootcontext) {
976 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
977 newisec->sid = sid;
978 }
979 newsbsec->mntpoint_sid = sid;
980 }
981 if (set_rootcontext) {
982 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
983 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
984
985 newisec->sid = oldisec->sid;
986 }
987
988 sb_finish_set_opts(newsb);
989out:
990 mutex_unlock(&newsbsec->lock);
991 return rc;
992}
993
994/*
995 * NOTE: the caller is responsible for freeing the memory even if on error.
996 */
997static int selinux_add_opt(int token, const char *s, void **mnt_opts)
998{
999 struct selinux_mnt_opts *opts = *mnt_opts;
1000 u32 *dst_sid;
1001 int rc;
1002
1003 if (token == Opt_seclabel)
1004 /* eaten and completely ignored */
1005 return 0;
1006 if (!s)
1007 return -EINVAL;
1008
1009 if (!selinux_initialized()) {
1010 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1011 return -EINVAL;
1012 }
1013
1014 if (!opts) {
1015 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1016 if (!opts)
1017 return -ENOMEM;
1018 *mnt_opts = opts;
1019 }
1020
1021 switch (token) {
1022 case Opt_context:
1023 if (opts->context_sid || opts->defcontext_sid)
1024 goto err;
1025 dst_sid = &opts->context_sid;
1026 break;
1027 case Opt_fscontext:
1028 if (opts->fscontext_sid)
1029 goto err;
1030 dst_sid = &opts->fscontext_sid;
1031 break;
1032 case Opt_rootcontext:
1033 if (opts->rootcontext_sid)
1034 goto err;
1035 dst_sid = &opts->rootcontext_sid;
1036 break;
1037 case Opt_defcontext:
1038 if (opts->context_sid || opts->defcontext_sid)
1039 goto err;
1040 dst_sid = &opts->defcontext_sid;
1041 break;
1042 default:
1043 WARN_ON(1);
1044 return -EINVAL;
1045 }
1046 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1047 if (rc)
1048 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1049 s, rc);
1050 return rc;
1051
1052err:
1053 pr_warn(SEL_MOUNT_FAIL_MSG);
1054 return -EINVAL;
1055}
1056
1057static int show_sid(struct seq_file *m, u32 sid)
1058{
1059 char *context = NULL;
1060 u32 len;
1061 int rc;
1062
1063 rc = security_sid_to_context(sid, &context, &len);
1064 if (!rc) {
1065 bool has_comma = strchr(context, ',');
1066
1067 seq_putc(m, '=');
1068 if (has_comma)
1069 seq_putc(m, '\"');
1070 seq_escape(m, context, "\"\n\\");
1071 if (has_comma)
1072 seq_putc(m, '\"');
1073 }
1074 kfree(context);
1075 return rc;
1076}
1077
1078static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1079{
1080 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1081 int rc;
1082
1083 if (!(sbsec->flags & SE_SBINITIALIZED))
1084 return 0;
1085
1086 if (!selinux_initialized())
1087 return 0;
1088
1089 if (sbsec->flags & FSCONTEXT_MNT) {
1090 seq_putc(m, ',');
1091 seq_puts(m, FSCONTEXT_STR);
1092 rc = show_sid(m, sbsec->sid);
1093 if (rc)
1094 return rc;
1095 }
1096 if (sbsec->flags & CONTEXT_MNT) {
1097 seq_putc(m, ',');
1098 seq_puts(m, CONTEXT_STR);
1099 rc = show_sid(m, sbsec->mntpoint_sid);
1100 if (rc)
1101 return rc;
1102 }
1103 if (sbsec->flags & DEFCONTEXT_MNT) {
1104 seq_putc(m, ',');
1105 seq_puts(m, DEFCONTEXT_STR);
1106 rc = show_sid(m, sbsec->def_sid);
1107 if (rc)
1108 return rc;
1109 }
1110 if (sbsec->flags & ROOTCONTEXT_MNT) {
1111 struct dentry *root = sb->s_root;
1112 struct inode_security_struct *isec = backing_inode_security(root);
1113 seq_putc(m, ',');
1114 seq_puts(m, ROOTCONTEXT_STR);
1115 rc = show_sid(m, isec->sid);
1116 if (rc)
1117 return rc;
1118 }
1119 if (sbsec->flags & SBLABEL_MNT) {
1120 seq_putc(m, ',');
1121 seq_puts(m, SECLABEL_STR);
1122 }
1123 return 0;
1124}
1125
1126static inline u16 inode_mode_to_security_class(umode_t mode)
1127{
1128 switch (mode & S_IFMT) {
1129 case S_IFSOCK:
1130 return SECCLASS_SOCK_FILE;
1131 case S_IFLNK:
1132 return SECCLASS_LNK_FILE;
1133 case S_IFREG:
1134 return SECCLASS_FILE;
1135 case S_IFBLK:
1136 return SECCLASS_BLK_FILE;
1137 case S_IFDIR:
1138 return SECCLASS_DIR;
1139 case S_IFCHR:
1140 return SECCLASS_CHR_FILE;
1141 case S_IFIFO:
1142 return SECCLASS_FIFO_FILE;
1143
1144 }
1145
1146 return SECCLASS_FILE;
1147}
1148
1149static inline int default_protocol_stream(int protocol)
1150{
1151 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1152 protocol == IPPROTO_MPTCP);
1153}
1154
1155static inline int default_protocol_dgram(int protocol)
1156{
1157 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1158}
1159
1160static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1161{
1162 bool extsockclass = selinux_policycap_extsockclass();
1163
1164 switch (family) {
1165 case PF_UNIX:
1166 switch (type) {
1167 case SOCK_STREAM:
1168 case SOCK_SEQPACKET:
1169 return SECCLASS_UNIX_STREAM_SOCKET;
1170 case SOCK_DGRAM:
1171 case SOCK_RAW:
1172 return SECCLASS_UNIX_DGRAM_SOCKET;
1173 }
1174 break;
1175 case PF_INET:
1176 case PF_INET6:
1177 switch (type) {
1178 case SOCK_STREAM:
1179 case SOCK_SEQPACKET:
1180 if (default_protocol_stream(protocol))
1181 return SECCLASS_TCP_SOCKET;
1182 else if (extsockclass && protocol == IPPROTO_SCTP)
1183 return SECCLASS_SCTP_SOCKET;
1184 else
1185 return SECCLASS_RAWIP_SOCKET;
1186 case SOCK_DGRAM:
1187 if (default_protocol_dgram(protocol))
1188 return SECCLASS_UDP_SOCKET;
1189 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1190 protocol == IPPROTO_ICMPV6))
1191 return SECCLASS_ICMP_SOCKET;
1192 else
1193 return SECCLASS_RAWIP_SOCKET;
1194 case SOCK_DCCP:
1195 return SECCLASS_DCCP_SOCKET;
1196 default:
1197 return SECCLASS_RAWIP_SOCKET;
1198 }
1199 break;
1200 case PF_NETLINK:
1201 switch (protocol) {
1202 case NETLINK_ROUTE:
1203 return SECCLASS_NETLINK_ROUTE_SOCKET;
1204 case NETLINK_SOCK_DIAG:
1205 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1206 case NETLINK_NFLOG:
1207 return SECCLASS_NETLINK_NFLOG_SOCKET;
1208 case NETLINK_XFRM:
1209 return SECCLASS_NETLINK_XFRM_SOCKET;
1210 case NETLINK_SELINUX:
1211 return SECCLASS_NETLINK_SELINUX_SOCKET;
1212 case NETLINK_ISCSI:
1213 return SECCLASS_NETLINK_ISCSI_SOCKET;
1214 case NETLINK_AUDIT:
1215 return SECCLASS_NETLINK_AUDIT_SOCKET;
1216 case NETLINK_FIB_LOOKUP:
1217 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1218 case NETLINK_CONNECTOR:
1219 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1220 case NETLINK_NETFILTER:
1221 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1222 case NETLINK_DNRTMSG:
1223 return SECCLASS_NETLINK_DNRT_SOCKET;
1224 case NETLINK_KOBJECT_UEVENT:
1225 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1226 case NETLINK_GENERIC:
1227 return SECCLASS_NETLINK_GENERIC_SOCKET;
1228 case NETLINK_SCSITRANSPORT:
1229 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1230 case NETLINK_RDMA:
1231 return SECCLASS_NETLINK_RDMA_SOCKET;
1232 case NETLINK_CRYPTO:
1233 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1234 default:
1235 return SECCLASS_NETLINK_SOCKET;
1236 }
1237 case PF_PACKET:
1238 return SECCLASS_PACKET_SOCKET;
1239 case PF_KEY:
1240 return SECCLASS_KEY_SOCKET;
1241 case PF_APPLETALK:
1242 return SECCLASS_APPLETALK_SOCKET;
1243 }
1244
1245 if (extsockclass) {
1246 switch (family) {
1247 case PF_AX25:
1248 return SECCLASS_AX25_SOCKET;
1249 case PF_IPX:
1250 return SECCLASS_IPX_SOCKET;
1251 case PF_NETROM:
1252 return SECCLASS_NETROM_SOCKET;
1253 case PF_ATMPVC:
1254 return SECCLASS_ATMPVC_SOCKET;
1255 case PF_X25:
1256 return SECCLASS_X25_SOCKET;
1257 case PF_ROSE:
1258 return SECCLASS_ROSE_SOCKET;
1259 case PF_DECnet:
1260 return SECCLASS_DECNET_SOCKET;
1261 case PF_ATMSVC:
1262 return SECCLASS_ATMSVC_SOCKET;
1263 case PF_RDS:
1264 return SECCLASS_RDS_SOCKET;
1265 case PF_IRDA:
1266 return SECCLASS_IRDA_SOCKET;
1267 case PF_PPPOX:
1268 return SECCLASS_PPPOX_SOCKET;
1269 case PF_LLC:
1270 return SECCLASS_LLC_SOCKET;
1271 case PF_CAN:
1272 return SECCLASS_CAN_SOCKET;
1273 case PF_TIPC:
1274 return SECCLASS_TIPC_SOCKET;
1275 case PF_BLUETOOTH:
1276 return SECCLASS_BLUETOOTH_SOCKET;
1277 case PF_IUCV:
1278 return SECCLASS_IUCV_SOCKET;
1279 case PF_RXRPC:
1280 return SECCLASS_RXRPC_SOCKET;
1281 case PF_ISDN:
1282 return SECCLASS_ISDN_SOCKET;
1283 case PF_PHONET:
1284 return SECCLASS_PHONET_SOCKET;
1285 case PF_IEEE802154:
1286 return SECCLASS_IEEE802154_SOCKET;
1287 case PF_CAIF:
1288 return SECCLASS_CAIF_SOCKET;
1289 case PF_ALG:
1290 return SECCLASS_ALG_SOCKET;
1291 case PF_NFC:
1292 return SECCLASS_NFC_SOCKET;
1293 case PF_VSOCK:
1294 return SECCLASS_VSOCK_SOCKET;
1295 case PF_KCM:
1296 return SECCLASS_KCM_SOCKET;
1297 case PF_QIPCRTR:
1298 return SECCLASS_QIPCRTR_SOCKET;
1299 case PF_SMC:
1300 return SECCLASS_SMC_SOCKET;
1301 case PF_XDP:
1302 return SECCLASS_XDP_SOCKET;
1303 case PF_MCTP:
1304 return SECCLASS_MCTP_SOCKET;
1305#if PF_MAX > 46
1306#error New address family defined, please update this function.
1307#endif
1308 }
1309 }
1310
1311 return SECCLASS_SOCKET;
1312}
1313
1314static int selinux_genfs_get_sid(struct dentry *dentry,
1315 u16 tclass,
1316 u16 flags,
1317 u32 *sid)
1318{
1319 int rc;
1320 struct super_block *sb = dentry->d_sb;
1321 char *buffer, *path;
1322
1323 buffer = (char *)__get_free_page(GFP_KERNEL);
1324 if (!buffer)
1325 return -ENOMEM;
1326
1327 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1328 if (IS_ERR(path))
1329 rc = PTR_ERR(path);
1330 else {
1331 if (flags & SE_SBPROC) {
1332 /* each process gets a /proc/PID/ entry. Strip off the
1333 * PID part to get a valid selinux labeling.
1334 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1335 while (path[1] >= '0' && path[1] <= '9') {
1336 path[1] = '/';
1337 path++;
1338 }
1339 }
1340 rc = security_genfs_sid(sb->s_type->name,
1341 path, tclass, sid);
1342 if (rc == -ENOENT) {
1343 /* No match in policy, mark as unlabeled. */
1344 *sid = SECINITSID_UNLABELED;
1345 rc = 0;
1346 }
1347 }
1348 free_page((unsigned long)buffer);
1349 return rc;
1350}
1351
1352static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1353 u32 def_sid, u32 *sid)
1354{
1355#define INITCONTEXTLEN 255
1356 char *context;
1357 unsigned int len;
1358 int rc;
1359
1360 len = INITCONTEXTLEN;
1361 context = kmalloc(len + 1, GFP_NOFS);
1362 if (!context)
1363 return -ENOMEM;
1364
1365 context[len] = '\0';
1366 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1367 if (rc == -ERANGE) {
1368 kfree(context);
1369
1370 /* Need a larger buffer. Query for the right size. */
1371 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1372 if (rc < 0)
1373 return rc;
1374
1375 len = rc;
1376 context = kmalloc(len + 1, GFP_NOFS);
1377 if (!context)
1378 return -ENOMEM;
1379
1380 context[len] = '\0';
1381 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1382 context, len);
1383 }
1384 if (rc < 0) {
1385 kfree(context);
1386 if (rc != -ENODATA) {
1387 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1388 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1389 return rc;
1390 }
1391 *sid = def_sid;
1392 return 0;
1393 }
1394
1395 rc = security_context_to_sid_default(context, rc, sid,
1396 def_sid, GFP_NOFS);
1397 if (rc) {
1398 char *dev = inode->i_sb->s_id;
1399 unsigned long ino = inode->i_ino;
1400
1401 if (rc == -EINVAL) {
1402 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1403 ino, dev, context);
1404 } else {
1405 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1406 __func__, context, -rc, dev, ino);
1407 }
1408 }
1409 kfree(context);
1410 return 0;
1411}
1412
1413/* The inode's security attributes must be initialized before first use. */
1414static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1415{
1416 struct superblock_security_struct *sbsec = NULL;
1417 struct inode_security_struct *isec = selinux_inode(inode);
1418 u32 task_sid, sid = 0;
1419 u16 sclass;
1420 struct dentry *dentry;
1421 int rc = 0;
1422
1423 if (isec->initialized == LABEL_INITIALIZED)
1424 return 0;
1425
1426 spin_lock(&isec->lock);
1427 if (isec->initialized == LABEL_INITIALIZED)
1428 goto out_unlock;
1429
1430 if (isec->sclass == SECCLASS_FILE)
1431 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1432
1433 sbsec = selinux_superblock(inode->i_sb);
1434 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1435 /* Defer initialization until selinux_complete_init,
1436 after the initial policy is loaded and the security
1437 server is ready to handle calls. */
1438 spin_lock(&sbsec->isec_lock);
1439 if (list_empty(&isec->list))
1440 list_add(&isec->list, &sbsec->isec_head);
1441 spin_unlock(&sbsec->isec_lock);
1442 goto out_unlock;
1443 }
1444
1445 sclass = isec->sclass;
1446 task_sid = isec->task_sid;
1447 sid = isec->sid;
1448 isec->initialized = LABEL_PENDING;
1449 spin_unlock(&isec->lock);
1450
1451 switch (sbsec->behavior) {
1452 /*
1453 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1454 * via xattr when called from delayed_superblock_init().
1455 */
1456 case SECURITY_FS_USE_NATIVE:
1457 case SECURITY_FS_USE_XATTR:
1458 if (!(inode->i_opflags & IOP_XATTR)) {
1459 sid = sbsec->def_sid;
1460 break;
1461 }
1462 /* Need a dentry, since the xattr API requires one.
1463 Life would be simpler if we could just pass the inode. */
1464 if (opt_dentry) {
1465 /* Called from d_instantiate or d_splice_alias. */
1466 dentry = dget(opt_dentry);
1467 } else {
1468 /*
1469 * Called from selinux_complete_init, try to find a dentry.
1470 * Some filesystems really want a connected one, so try
1471 * that first. We could split SECURITY_FS_USE_XATTR in
1472 * two, depending upon that...
1473 */
1474 dentry = d_find_alias(inode);
1475 if (!dentry)
1476 dentry = d_find_any_alias(inode);
1477 }
1478 if (!dentry) {
1479 /*
1480 * this is can be hit on boot when a file is accessed
1481 * before the policy is loaded. When we load policy we
1482 * may find inodes that have no dentry on the
1483 * sbsec->isec_head list. No reason to complain as these
1484 * will get fixed up the next time we go through
1485 * inode_doinit with a dentry, before these inodes could
1486 * be used again by userspace.
1487 */
1488 goto out_invalid;
1489 }
1490
1491 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1492 &sid);
1493 dput(dentry);
1494 if (rc)
1495 goto out;
1496 break;
1497 case SECURITY_FS_USE_TASK:
1498 sid = task_sid;
1499 break;
1500 case SECURITY_FS_USE_TRANS:
1501 /* Default to the fs SID. */
1502 sid = sbsec->sid;
1503
1504 /* Try to obtain a transition SID. */
1505 rc = security_transition_sid(task_sid, sid,
1506 sclass, NULL, &sid);
1507 if (rc)
1508 goto out;
1509 break;
1510 case SECURITY_FS_USE_MNTPOINT:
1511 sid = sbsec->mntpoint_sid;
1512 break;
1513 default:
1514 /* Default to the fs superblock SID. */
1515 sid = sbsec->sid;
1516
1517 if ((sbsec->flags & SE_SBGENFS) &&
1518 (!S_ISLNK(inode->i_mode) ||
1519 selinux_policycap_genfs_seclabel_symlinks())) {
1520 /* We must have a dentry to determine the label on
1521 * procfs inodes */
1522 if (opt_dentry) {
1523 /* Called from d_instantiate or
1524 * d_splice_alias. */
1525 dentry = dget(opt_dentry);
1526 } else {
1527 /* Called from selinux_complete_init, try to
1528 * find a dentry. Some filesystems really want
1529 * a connected one, so try that first.
1530 */
1531 dentry = d_find_alias(inode);
1532 if (!dentry)
1533 dentry = d_find_any_alias(inode);
1534 }
1535 /*
1536 * This can be hit on boot when a file is accessed
1537 * before the policy is loaded. When we load policy we
1538 * may find inodes that have no dentry on the
1539 * sbsec->isec_head list. No reason to complain as
1540 * these will get fixed up the next time we go through
1541 * inode_doinit() with a dentry, before these inodes
1542 * could be used again by userspace.
1543 */
1544 if (!dentry)
1545 goto out_invalid;
1546 rc = selinux_genfs_get_sid(dentry, sclass,
1547 sbsec->flags, &sid);
1548 if (rc) {
1549 dput(dentry);
1550 goto out;
1551 }
1552
1553 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1554 (inode->i_opflags & IOP_XATTR)) {
1555 rc = inode_doinit_use_xattr(inode, dentry,
1556 sid, &sid);
1557 if (rc) {
1558 dput(dentry);
1559 goto out;
1560 }
1561 }
1562 dput(dentry);
1563 }
1564 break;
1565 }
1566
1567out:
1568 spin_lock(&isec->lock);
1569 if (isec->initialized == LABEL_PENDING) {
1570 if (rc) {
1571 isec->initialized = LABEL_INVALID;
1572 goto out_unlock;
1573 }
1574 isec->initialized = LABEL_INITIALIZED;
1575 isec->sid = sid;
1576 }
1577
1578out_unlock:
1579 spin_unlock(&isec->lock);
1580 return rc;
1581
1582out_invalid:
1583 spin_lock(&isec->lock);
1584 if (isec->initialized == LABEL_PENDING) {
1585 isec->initialized = LABEL_INVALID;
1586 isec->sid = sid;
1587 }
1588 spin_unlock(&isec->lock);
1589 return 0;
1590}
1591
1592/* Convert a Linux signal to an access vector. */
1593static inline u32 signal_to_av(int sig)
1594{
1595 u32 perm = 0;
1596
1597 switch (sig) {
1598 case SIGCHLD:
1599 /* Commonly granted from child to parent. */
1600 perm = PROCESS__SIGCHLD;
1601 break;
1602 case SIGKILL:
1603 /* Cannot be caught or ignored */
1604 perm = PROCESS__SIGKILL;
1605 break;
1606 case SIGSTOP:
1607 /* Cannot be caught or ignored */
1608 perm = PROCESS__SIGSTOP;
1609 break;
1610 default:
1611 /* All other signals. */
1612 perm = PROCESS__SIGNAL;
1613 break;
1614 }
1615
1616 return perm;
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625 int cap, unsigned int opts, bool initns)
1626{
1627 struct common_audit_data ad;
1628 struct av_decision avd;
1629 u16 sclass;
1630 u32 sid = cred_sid(cred);
1631 u32 av = CAP_TO_MASK(cap);
1632 int rc;
1633
1634 ad.type = LSM_AUDIT_DATA_CAP;
1635 ad.u.cap = cap;
1636
1637 switch (CAP_TO_INDEX(cap)) {
1638 case 0:
1639 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1640 break;
1641 case 1:
1642 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1643 break;
1644 default:
1645 pr_err("SELinux: out of range capability %d\n", cap);
1646 BUG();
1647 return -EINVAL;
1648 }
1649
1650 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1651 if (!(opts & CAP_OPT_NOAUDIT)) {
1652 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1653 if (rc2)
1654 return rc2;
1655 }
1656 return rc;
1657}
1658
1659/* Check whether a task has a particular permission to an inode.
1660 The 'adp' parameter is optional and allows other audit
1661 data to be passed (e.g. the dentry). */
1662static int inode_has_perm(const struct cred *cred,
1663 struct inode *inode,
1664 u32 perms,
1665 struct common_audit_data *adp)
1666{
1667 struct inode_security_struct *isec;
1668 u32 sid;
1669
1670 if (unlikely(IS_PRIVATE(inode)))
1671 return 0;
1672
1673 sid = cred_sid(cred);
1674 isec = selinux_inode(inode);
1675
1676 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1677}
1678
1679/* Same as inode_has_perm, but pass explicit audit data containing
1680 the dentry to help the auditing code to more easily generate the
1681 pathname if needed. */
1682static inline int dentry_has_perm(const struct cred *cred,
1683 struct dentry *dentry,
1684 u32 av)
1685{
1686 struct inode *inode = d_backing_inode(dentry);
1687 struct common_audit_data ad;
1688
1689 ad.type = LSM_AUDIT_DATA_DENTRY;
1690 ad.u.dentry = dentry;
1691 __inode_security_revalidate(inode, dentry, true);
1692 return inode_has_perm(cred, inode, av, &ad);
1693}
1694
1695/* Same as inode_has_perm, but pass explicit audit data containing
1696 the path to help the auditing code to more easily generate the
1697 pathname if needed. */
1698static inline int path_has_perm(const struct cred *cred,
1699 const struct path *path,
1700 u32 av)
1701{
1702 struct inode *inode = d_backing_inode(path->dentry);
1703 struct common_audit_data ad;
1704
1705 ad.type = LSM_AUDIT_DATA_PATH;
1706 ad.u.path = *path;
1707 __inode_security_revalidate(inode, path->dentry, true);
1708 return inode_has_perm(cred, inode, av, &ad);
1709}
1710
1711/* Same as path_has_perm, but uses the inode from the file struct. */
1712static inline int file_path_has_perm(const struct cred *cred,
1713 struct file *file,
1714 u32 av)
1715{
1716 struct common_audit_data ad;
1717
1718 ad.type = LSM_AUDIT_DATA_FILE;
1719 ad.u.file = file;
1720 return inode_has_perm(cred, file_inode(file), av, &ad);
1721}
1722
1723#ifdef CONFIG_BPF_SYSCALL
1724static int bpf_fd_pass(const struct file *file, u32 sid);
1725#endif
1726
1727/* Check whether a task can use an open file descriptor to
1728 access an inode in a given way. Check access to the
1729 descriptor itself, and then use dentry_has_perm to
1730 check a particular permission to the file.
1731 Access to the descriptor is implicitly granted if it
1732 has the same SID as the process. If av is zero, then
1733 access to the file is not checked, e.g. for cases
1734 where only the descriptor is affected like seek. */
1735static int file_has_perm(const struct cred *cred,
1736 struct file *file,
1737 u32 av)
1738{
1739 struct file_security_struct *fsec = selinux_file(file);
1740 struct inode *inode = file_inode(file);
1741 struct common_audit_data ad;
1742 u32 sid = cred_sid(cred);
1743 int rc;
1744
1745 ad.type = LSM_AUDIT_DATA_FILE;
1746 ad.u.file = file;
1747
1748 if (sid != fsec->sid) {
1749 rc = avc_has_perm(sid, fsec->sid,
1750 SECCLASS_FD,
1751 FD__USE,
1752 &ad);
1753 if (rc)
1754 goto out;
1755 }
1756
1757#ifdef CONFIG_BPF_SYSCALL
1758 rc = bpf_fd_pass(file, cred_sid(cred));
1759 if (rc)
1760 return rc;
1761#endif
1762
1763 /* av is zero if only checking access to the descriptor. */
1764 rc = 0;
1765 if (av)
1766 rc = inode_has_perm(cred, inode, av, &ad);
1767
1768out:
1769 return rc;
1770}
1771
1772/*
1773 * Determine the label for an inode that might be unioned.
1774 */
1775static int
1776selinux_determine_inode_label(const struct task_security_struct *tsec,
1777 struct inode *dir,
1778 const struct qstr *name, u16 tclass,
1779 u32 *_new_isid)
1780{
1781 const struct superblock_security_struct *sbsec =
1782 selinux_superblock(dir->i_sb);
1783
1784 if ((sbsec->flags & SE_SBINITIALIZED) &&
1785 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1786 *_new_isid = sbsec->mntpoint_sid;
1787 } else if ((sbsec->flags & SBLABEL_MNT) &&
1788 tsec->create_sid) {
1789 *_new_isid = tsec->create_sid;
1790 } else {
1791 const struct inode_security_struct *dsec = inode_security(dir);
1792 return security_transition_sid(tsec->sid,
1793 dsec->sid, tclass,
1794 name, _new_isid);
1795 }
1796
1797 return 0;
1798}
1799
1800/* Check whether a task can create a file. */
1801static int may_create(struct inode *dir,
1802 struct dentry *dentry,
1803 u16 tclass)
1804{
1805 const struct task_security_struct *tsec = selinux_cred(current_cred());
1806 struct inode_security_struct *dsec;
1807 struct superblock_security_struct *sbsec;
1808 u32 sid, newsid;
1809 struct common_audit_data ad;
1810 int rc;
1811
1812 dsec = inode_security(dir);
1813 sbsec = selinux_superblock(dir->i_sb);
1814
1815 sid = tsec->sid;
1816
1817 ad.type = LSM_AUDIT_DATA_DENTRY;
1818 ad.u.dentry = dentry;
1819
1820 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1821 DIR__ADD_NAME | DIR__SEARCH,
1822 &ad);
1823 if (rc)
1824 return rc;
1825
1826 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1827 &newsid);
1828 if (rc)
1829 return rc;
1830
1831 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1832 if (rc)
1833 return rc;
1834
1835 return avc_has_perm(newsid, sbsec->sid,
1836 SECCLASS_FILESYSTEM,
1837 FILESYSTEM__ASSOCIATE, &ad);
1838}
1839
1840#define MAY_LINK 0
1841#define MAY_UNLINK 1
1842#define MAY_RMDIR 2
1843
1844/* Check whether a task can link, unlink, or rmdir a file/directory. */
1845static int may_link(struct inode *dir,
1846 struct dentry *dentry,
1847 int kind)
1848
1849{
1850 struct inode_security_struct *dsec, *isec;
1851 struct common_audit_data ad;
1852 u32 sid = current_sid();
1853 u32 av;
1854 int rc;
1855
1856 dsec = inode_security(dir);
1857 isec = backing_inode_security(dentry);
1858
1859 ad.type = LSM_AUDIT_DATA_DENTRY;
1860 ad.u.dentry = dentry;
1861
1862 av = DIR__SEARCH;
1863 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1864 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1865 if (rc)
1866 return rc;
1867
1868 switch (kind) {
1869 case MAY_LINK:
1870 av = FILE__LINK;
1871 break;
1872 case MAY_UNLINK:
1873 av = FILE__UNLINK;
1874 break;
1875 case MAY_RMDIR:
1876 av = DIR__RMDIR;
1877 break;
1878 default:
1879 pr_warn("SELinux: %s: unrecognized kind %d\n",
1880 __func__, kind);
1881 return 0;
1882 }
1883
1884 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1885 return rc;
1886}
1887
1888static inline int may_rename(struct inode *old_dir,
1889 struct dentry *old_dentry,
1890 struct inode *new_dir,
1891 struct dentry *new_dentry)
1892{
1893 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1894 struct common_audit_data ad;
1895 u32 sid = current_sid();
1896 u32 av;
1897 int old_is_dir, new_is_dir;
1898 int rc;
1899
1900 old_dsec = inode_security(old_dir);
1901 old_isec = backing_inode_security(old_dentry);
1902 old_is_dir = d_is_dir(old_dentry);
1903 new_dsec = inode_security(new_dir);
1904
1905 ad.type = LSM_AUDIT_DATA_DENTRY;
1906
1907 ad.u.dentry = old_dentry;
1908 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1909 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1910 if (rc)
1911 return rc;
1912 rc = avc_has_perm(sid, old_isec->sid,
1913 old_isec->sclass, FILE__RENAME, &ad);
1914 if (rc)
1915 return rc;
1916 if (old_is_dir && new_dir != old_dir) {
1917 rc = avc_has_perm(sid, old_isec->sid,
1918 old_isec->sclass, DIR__REPARENT, &ad);
1919 if (rc)
1920 return rc;
1921 }
1922
1923 ad.u.dentry = new_dentry;
1924 av = DIR__ADD_NAME | DIR__SEARCH;
1925 if (d_is_positive(new_dentry))
1926 av |= DIR__REMOVE_NAME;
1927 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1928 if (rc)
1929 return rc;
1930 if (d_is_positive(new_dentry)) {
1931 new_isec = backing_inode_security(new_dentry);
1932 new_is_dir = d_is_dir(new_dentry);
1933 rc = avc_has_perm(sid, new_isec->sid,
1934 new_isec->sclass,
1935 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1936 if (rc)
1937 return rc;
1938 }
1939
1940 return 0;
1941}
1942
1943/* Check whether a task can perform a filesystem operation. */
1944static int superblock_has_perm(const struct cred *cred,
1945 const struct super_block *sb,
1946 u32 perms,
1947 struct common_audit_data *ad)
1948{
1949 struct superblock_security_struct *sbsec;
1950 u32 sid = cred_sid(cred);
1951
1952 sbsec = selinux_superblock(sb);
1953 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1954}
1955
1956/* Convert a Linux mode and permission mask to an access vector. */
1957static inline u32 file_mask_to_av(int mode, int mask)
1958{
1959 u32 av = 0;
1960
1961 if (!S_ISDIR(mode)) {
1962 if (mask & MAY_EXEC)
1963 av |= FILE__EXECUTE;
1964 if (mask & MAY_READ)
1965 av |= FILE__READ;
1966
1967 if (mask & MAY_APPEND)
1968 av |= FILE__APPEND;
1969 else if (mask & MAY_WRITE)
1970 av |= FILE__WRITE;
1971
1972 } else {
1973 if (mask & MAY_EXEC)
1974 av |= DIR__SEARCH;
1975 if (mask & MAY_WRITE)
1976 av |= DIR__WRITE;
1977 if (mask & MAY_READ)
1978 av |= DIR__READ;
1979 }
1980
1981 return av;
1982}
1983
1984/* Convert a Linux file to an access vector. */
1985static inline u32 file_to_av(const struct file *file)
1986{
1987 u32 av = 0;
1988
1989 if (file->f_mode & FMODE_READ)
1990 av |= FILE__READ;
1991 if (file->f_mode & FMODE_WRITE) {
1992 if (file->f_flags & O_APPEND)
1993 av |= FILE__APPEND;
1994 else
1995 av |= FILE__WRITE;
1996 }
1997 if (!av) {
1998 /*
1999 * Special file opened with flags 3 for ioctl-only use.
2000 */
2001 av = FILE__IOCTL;
2002 }
2003
2004 return av;
2005}
2006
2007/*
2008 * Convert a file to an access vector and include the correct
2009 * open permission.
2010 */
2011static inline u32 open_file_to_av(struct file *file)
2012{
2013 u32 av = file_to_av(file);
2014 struct inode *inode = file_inode(file);
2015
2016 if (selinux_policycap_openperm() &&
2017 inode->i_sb->s_magic != SOCKFS_MAGIC)
2018 av |= FILE__OPEN;
2019
2020 return av;
2021}
2022
2023/* Hook functions begin here. */
2024
2025static int selinux_binder_set_context_mgr(const struct cred *mgr)
2026{
2027 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2028 BINDER__SET_CONTEXT_MGR, NULL);
2029}
2030
2031static int selinux_binder_transaction(const struct cred *from,
2032 const struct cred *to)
2033{
2034 u32 mysid = current_sid();
2035 u32 fromsid = cred_sid(from);
2036 u32 tosid = cred_sid(to);
2037 int rc;
2038
2039 if (mysid != fromsid) {
2040 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2041 BINDER__IMPERSONATE, NULL);
2042 if (rc)
2043 return rc;
2044 }
2045
2046 return avc_has_perm(fromsid, tosid,
2047 SECCLASS_BINDER, BINDER__CALL, NULL);
2048}
2049
2050static int selinux_binder_transfer_binder(const struct cred *from,
2051 const struct cred *to)
2052{
2053 return avc_has_perm(cred_sid(from), cred_sid(to),
2054 SECCLASS_BINDER, BINDER__TRANSFER,
2055 NULL);
2056}
2057
2058static int selinux_binder_transfer_file(const struct cred *from,
2059 const struct cred *to,
2060 const struct file *file)
2061{
2062 u32 sid = cred_sid(to);
2063 struct file_security_struct *fsec = selinux_file(file);
2064 struct dentry *dentry = file->f_path.dentry;
2065 struct inode_security_struct *isec;
2066 struct common_audit_data ad;
2067 int rc;
2068
2069 ad.type = LSM_AUDIT_DATA_PATH;
2070 ad.u.path = file->f_path;
2071
2072 if (sid != fsec->sid) {
2073 rc = avc_has_perm(sid, fsec->sid,
2074 SECCLASS_FD,
2075 FD__USE,
2076 &ad);
2077 if (rc)
2078 return rc;
2079 }
2080
2081#ifdef CONFIG_BPF_SYSCALL
2082 rc = bpf_fd_pass(file, sid);
2083 if (rc)
2084 return rc;
2085#endif
2086
2087 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2088 return 0;
2089
2090 isec = backing_inode_security(dentry);
2091 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2092 &ad);
2093}
2094
2095static int selinux_ptrace_access_check(struct task_struct *child,
2096 unsigned int mode)
2097{
2098 u32 sid = current_sid();
2099 u32 csid = task_sid_obj(child);
2100
2101 if (mode & PTRACE_MODE_READ)
2102 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2103 NULL);
2104
2105 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2106 NULL);
2107}
2108
2109static int selinux_ptrace_traceme(struct task_struct *parent)
2110{
2111 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2112 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2113}
2114
2115static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2116 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2117{
2118 return avc_has_perm(current_sid(), task_sid_obj(target),
2119 SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2120}
2121
2122static int selinux_capset(struct cred *new, const struct cred *old,
2123 const kernel_cap_t *effective,
2124 const kernel_cap_t *inheritable,
2125 const kernel_cap_t *permitted)
2126{
2127 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2128 PROCESS__SETCAP, NULL);
2129}
2130
2131/*
2132 * (This comment used to live with the selinux_task_setuid hook,
2133 * which was removed).
2134 *
2135 * Since setuid only affects the current process, and since the SELinux
2136 * controls are not based on the Linux identity attributes, SELinux does not
2137 * need to control this operation. However, SELinux does control the use of
2138 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2139 */
2140
2141static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2142 int cap, unsigned int opts)
2143{
2144 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2145}
2146
2147static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2148{
2149 const struct cred *cred = current_cred();
2150 int rc = 0;
2151
2152 if (!sb)
2153 return 0;
2154
2155 switch (cmds) {
2156 case Q_SYNC:
2157 case Q_QUOTAON:
2158 case Q_QUOTAOFF:
2159 case Q_SETINFO:
2160 case Q_SETQUOTA:
2161 case Q_XQUOTAOFF:
2162 case Q_XQUOTAON:
2163 case Q_XSETQLIM:
2164 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2165 break;
2166 case Q_GETFMT:
2167 case Q_GETINFO:
2168 case Q_GETQUOTA:
2169 case Q_XGETQUOTA:
2170 case Q_XGETQSTAT:
2171 case Q_XGETQSTATV:
2172 case Q_XGETNEXTQUOTA:
2173 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2174 break;
2175 default:
2176 rc = 0; /* let the kernel handle invalid cmds */
2177 break;
2178 }
2179 return rc;
2180}
2181
2182static int selinux_quota_on(struct dentry *dentry)
2183{
2184 const struct cred *cred = current_cred();
2185
2186 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2187}
2188
2189static int selinux_syslog(int type)
2190{
2191 switch (type) {
2192 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2193 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2194 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2195 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2196 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2197 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2198 /* Set level of messages printed to console */
2199 case SYSLOG_ACTION_CONSOLE_LEVEL:
2200 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2202 NULL);
2203 }
2204 /* All other syslog types */
2205 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2206 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2207}
2208
2209/*
2210 * Check permission for allocating a new virtual mapping. Returns
2211 * 0 if permission is granted, negative error code if not.
2212 *
2213 * Do not audit the selinux permission check, as this is applied to all
2214 * processes that allocate mappings.
2215 */
2216static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2217{
2218 return cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2219 CAP_OPT_NOAUDIT, true);
2220}
2221
2222/* binprm security operations */
2223
2224static u32 ptrace_parent_sid(void)
2225{
2226 u32 sid = 0;
2227 struct task_struct *tracer;
2228
2229 rcu_read_lock();
2230 tracer = ptrace_parent(current);
2231 if (tracer)
2232 sid = task_sid_obj(tracer);
2233 rcu_read_unlock();
2234
2235 return sid;
2236}
2237
2238static int check_nnp_nosuid(const struct linux_binprm *bprm,
2239 const struct task_security_struct *old_tsec,
2240 const struct task_security_struct *new_tsec)
2241{
2242 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2243 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2244 int rc;
2245 u32 av;
2246
2247 if (!nnp && !nosuid)
2248 return 0; /* neither NNP nor nosuid */
2249
2250 if (new_tsec->sid == old_tsec->sid)
2251 return 0; /* No change in credentials */
2252
2253 /*
2254 * If the policy enables the nnp_nosuid_transition policy capability,
2255 * then we permit transitions under NNP or nosuid if the
2256 * policy allows the corresponding permission between
2257 * the old and new contexts.
2258 */
2259 if (selinux_policycap_nnp_nosuid_transition()) {
2260 av = 0;
2261 if (nnp)
2262 av |= PROCESS2__NNP_TRANSITION;
2263 if (nosuid)
2264 av |= PROCESS2__NOSUID_TRANSITION;
2265 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2266 SECCLASS_PROCESS2, av, NULL);
2267 if (!rc)
2268 return 0;
2269 }
2270
2271 /*
2272 * We also permit NNP or nosuid transitions to bounded SIDs,
2273 * i.e. SIDs that are guaranteed to only be allowed a subset
2274 * of the permissions of the current SID.
2275 */
2276 rc = security_bounded_transition(old_tsec->sid,
2277 new_tsec->sid);
2278 if (!rc)
2279 return 0;
2280
2281 /*
2282 * On failure, preserve the errno values for NNP vs nosuid.
2283 * NNP: Operation not permitted for caller.
2284 * nosuid: Permission denied to file.
2285 */
2286 if (nnp)
2287 return -EPERM;
2288 return -EACCES;
2289}
2290
2291static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2292{
2293 const struct task_security_struct *old_tsec;
2294 struct task_security_struct *new_tsec;
2295 struct inode_security_struct *isec;
2296 struct common_audit_data ad;
2297 struct inode *inode = file_inode(bprm->file);
2298 int rc;
2299
2300 /* SELinux context only depends on initial program or script and not
2301 * the script interpreter */
2302
2303 old_tsec = selinux_cred(current_cred());
2304 new_tsec = selinux_cred(bprm->cred);
2305 isec = inode_security(inode);
2306
2307 /* Default to the current task SID. */
2308 new_tsec->sid = old_tsec->sid;
2309 new_tsec->osid = old_tsec->sid;
2310
2311 /* Reset fs, key, and sock SIDs on execve. */
2312 new_tsec->create_sid = 0;
2313 new_tsec->keycreate_sid = 0;
2314 new_tsec->sockcreate_sid = 0;
2315
2316 /*
2317 * Before policy is loaded, label any task outside kernel space
2318 * as SECINITSID_INIT, so that any userspace tasks surviving from
2319 * early boot end up with a label different from SECINITSID_KERNEL
2320 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2321 */
2322 if (!selinux_initialized()) {
2323 new_tsec->sid = SECINITSID_INIT;
2324 /* also clear the exec_sid just in case */
2325 new_tsec->exec_sid = 0;
2326 return 0;
2327 }
2328
2329 if (old_tsec->exec_sid) {
2330 new_tsec->sid = old_tsec->exec_sid;
2331 /* Reset exec SID on execve. */
2332 new_tsec->exec_sid = 0;
2333
2334 /* Fail on NNP or nosuid if not an allowed transition. */
2335 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336 if (rc)
2337 return rc;
2338 } else {
2339 /* Check for a default transition on this program. */
2340 rc = security_transition_sid(old_tsec->sid,
2341 isec->sid, SECCLASS_PROCESS, NULL,
2342 &new_tsec->sid);
2343 if (rc)
2344 return rc;
2345
2346 /*
2347 * Fallback to old SID on NNP or nosuid if not an allowed
2348 * transition.
2349 */
2350 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2351 if (rc)
2352 new_tsec->sid = old_tsec->sid;
2353 }
2354
2355 ad.type = LSM_AUDIT_DATA_FILE;
2356 ad.u.file = bprm->file;
2357
2358 if (new_tsec->sid == old_tsec->sid) {
2359 rc = avc_has_perm(old_tsec->sid, isec->sid,
2360 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2361 if (rc)
2362 return rc;
2363 } else {
2364 /* Check permissions for the transition. */
2365 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2366 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2367 if (rc)
2368 return rc;
2369
2370 rc = avc_has_perm(new_tsec->sid, isec->sid,
2371 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2372 if (rc)
2373 return rc;
2374
2375 /* Check for shared state */
2376 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2377 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2378 SECCLASS_PROCESS, PROCESS__SHARE,
2379 NULL);
2380 if (rc)
2381 return -EPERM;
2382 }
2383
2384 /* Make sure that anyone attempting to ptrace over a task that
2385 * changes its SID has the appropriate permit */
2386 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2387 u32 ptsid = ptrace_parent_sid();
2388 if (ptsid != 0) {
2389 rc = avc_has_perm(ptsid, new_tsec->sid,
2390 SECCLASS_PROCESS,
2391 PROCESS__PTRACE, NULL);
2392 if (rc)
2393 return -EPERM;
2394 }
2395 }
2396
2397 /* Clear any possibly unsafe personality bits on exec: */
2398 bprm->per_clear |= PER_CLEAR_ON_SETID;
2399
2400 /* Enable secure mode for SIDs transitions unless
2401 the noatsecure permission is granted between
2402 the two SIDs, i.e. ahp returns 0. */
2403 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2404 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2405 NULL);
2406 bprm->secureexec |= !!rc;
2407 }
2408
2409 return 0;
2410}
2411
2412static int match_file(const void *p, struct file *file, unsigned fd)
2413{
2414 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2415}
2416
2417/* Derived from fs/exec.c:flush_old_files. */
2418static inline void flush_unauthorized_files(const struct cred *cred,
2419 struct files_struct *files)
2420{
2421 struct file *file, *devnull = NULL;
2422 struct tty_struct *tty;
2423 int drop_tty = 0;
2424 unsigned n;
2425
2426 tty = get_current_tty();
2427 if (tty) {
2428 spin_lock(&tty->files_lock);
2429 if (!list_empty(&tty->tty_files)) {
2430 struct tty_file_private *file_priv;
2431
2432 /* Revalidate access to controlling tty.
2433 Use file_path_has_perm on the tty path directly
2434 rather than using file_has_perm, as this particular
2435 open file may belong to another process and we are
2436 only interested in the inode-based check here. */
2437 file_priv = list_first_entry(&tty->tty_files,
2438 struct tty_file_private, list);
2439 file = file_priv->file;
2440 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2441 drop_tty = 1;
2442 }
2443 spin_unlock(&tty->files_lock);
2444 tty_kref_put(tty);
2445 }
2446 /* Reset controlling tty. */
2447 if (drop_tty)
2448 no_tty();
2449
2450 /* Revalidate access to inherited open files. */
2451 n = iterate_fd(files, 0, match_file, cred);
2452 if (!n) /* none found? */
2453 return;
2454
2455 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2456 if (IS_ERR(devnull))
2457 devnull = NULL;
2458 /* replace all the matching ones with this */
2459 do {
2460 replace_fd(n - 1, devnull, 0);
2461 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2462 if (devnull)
2463 fput(devnull);
2464}
2465
2466/*
2467 * Prepare a process for imminent new credential changes due to exec
2468 */
2469static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2470{
2471 struct task_security_struct *new_tsec;
2472 struct rlimit *rlim, *initrlim;
2473 int rc, i;
2474
2475 new_tsec = selinux_cred(bprm->cred);
2476 if (new_tsec->sid == new_tsec->osid)
2477 return;
2478
2479 /* Close files for which the new task SID is not authorized. */
2480 flush_unauthorized_files(bprm->cred, current->files);
2481
2482 /* Always clear parent death signal on SID transitions. */
2483 current->pdeath_signal = 0;
2484
2485 /* Check whether the new SID can inherit resource limits from the old
2486 * SID. If not, reset all soft limits to the lower of the current
2487 * task's hard limit and the init task's soft limit.
2488 *
2489 * Note that the setting of hard limits (even to lower them) can be
2490 * controlled by the setrlimit check. The inclusion of the init task's
2491 * soft limit into the computation is to avoid resetting soft limits
2492 * higher than the default soft limit for cases where the default is
2493 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2494 */
2495 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2496 PROCESS__RLIMITINH, NULL);
2497 if (rc) {
2498 /* protect against do_prlimit() */
2499 task_lock(current);
2500 for (i = 0; i < RLIM_NLIMITS; i++) {
2501 rlim = current->signal->rlim + i;
2502 initrlim = init_task.signal->rlim + i;
2503 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2504 }
2505 task_unlock(current);
2506 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2507 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2508 }
2509}
2510
2511/*
2512 * Clean up the process immediately after the installation of new credentials
2513 * due to exec
2514 */
2515static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2516{
2517 const struct task_security_struct *tsec = selinux_cred(current_cred());
2518 u32 osid, sid;
2519 int rc;
2520
2521 osid = tsec->osid;
2522 sid = tsec->sid;
2523
2524 if (sid == osid)
2525 return;
2526
2527 /* Check whether the new SID can inherit signal state from the old SID.
2528 * If not, clear itimers to avoid subsequent signal generation and
2529 * flush and unblock signals.
2530 *
2531 * This must occur _after_ the task SID has been updated so that any
2532 * kill done after the flush will be checked against the new SID.
2533 */
2534 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2535 if (rc) {
2536 clear_itimer();
2537
2538 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2539 if (!fatal_signal_pending(current)) {
2540 flush_sigqueue(¤t->pending);
2541 flush_sigqueue(¤t->signal->shared_pending);
2542 flush_signal_handlers(current, 1);
2543 sigemptyset(¤t->blocked);
2544 recalc_sigpending();
2545 }
2546 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2547 }
2548
2549 /* Wake up the parent if it is waiting so that it can recheck
2550 * wait permission to the new task SID. */
2551 read_lock(&tasklist_lock);
2552 __wake_up_parent(current, unrcu_pointer(current->real_parent));
2553 read_unlock(&tasklist_lock);
2554}
2555
2556/* superblock security operations */
2557
2558static int selinux_sb_alloc_security(struct super_block *sb)
2559{
2560 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2561
2562 mutex_init(&sbsec->lock);
2563 INIT_LIST_HEAD(&sbsec->isec_head);
2564 spin_lock_init(&sbsec->isec_lock);
2565 sbsec->sid = SECINITSID_UNLABELED;
2566 sbsec->def_sid = SECINITSID_FILE;
2567 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2568
2569 return 0;
2570}
2571
2572static inline int opt_len(const char *s)
2573{
2574 bool open_quote = false;
2575 int len;
2576 char c;
2577
2578 for (len = 0; (c = s[len]) != '\0'; len++) {
2579 if (c == '"')
2580 open_quote = !open_quote;
2581 if (c == ',' && !open_quote)
2582 break;
2583 }
2584 return len;
2585}
2586
2587static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2588{
2589 char *from = options;
2590 char *to = options;
2591 bool first = true;
2592 int rc;
2593
2594 while (1) {
2595 int len = opt_len(from);
2596 int token;
2597 char *arg = NULL;
2598
2599 token = match_opt_prefix(from, len, &arg);
2600
2601 if (token != Opt_error) {
2602 char *p, *q;
2603
2604 /* strip quotes */
2605 if (arg) {
2606 for (p = q = arg; p < from + len; p++) {
2607 char c = *p;
2608 if (c != '"')
2609 *q++ = c;
2610 }
2611 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2612 if (!arg) {
2613 rc = -ENOMEM;
2614 goto free_opt;
2615 }
2616 }
2617 rc = selinux_add_opt(token, arg, mnt_opts);
2618 kfree(arg);
2619 arg = NULL;
2620 if (unlikely(rc)) {
2621 goto free_opt;
2622 }
2623 } else {
2624 if (!first) { // copy with preceding comma
2625 from--;
2626 len++;
2627 }
2628 if (to != from)
2629 memmove(to, from, len);
2630 to += len;
2631 first = false;
2632 }
2633 if (!from[len])
2634 break;
2635 from += len + 1;
2636 }
2637 *to = '\0';
2638 return 0;
2639
2640free_opt:
2641 if (*mnt_opts) {
2642 selinux_free_mnt_opts(*mnt_opts);
2643 *mnt_opts = NULL;
2644 }
2645 return rc;
2646}
2647
2648static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2649{
2650 struct selinux_mnt_opts *opts = mnt_opts;
2651 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2652
2653 /*
2654 * Superblock not initialized (i.e. no options) - reject if any
2655 * options specified, otherwise accept.
2656 */
2657 if (!(sbsec->flags & SE_SBINITIALIZED))
2658 return opts ? 1 : 0;
2659
2660 /*
2661 * Superblock initialized and no options specified - reject if
2662 * superblock has any options set, otherwise accept.
2663 */
2664 if (!opts)
2665 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2666
2667 if (opts->fscontext_sid) {
2668 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2669 opts->fscontext_sid))
2670 return 1;
2671 }
2672 if (opts->context_sid) {
2673 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2674 opts->context_sid))
2675 return 1;
2676 }
2677 if (opts->rootcontext_sid) {
2678 struct inode_security_struct *root_isec;
2679
2680 root_isec = backing_inode_security(sb->s_root);
2681 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2682 opts->rootcontext_sid))
2683 return 1;
2684 }
2685 if (opts->defcontext_sid) {
2686 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2687 opts->defcontext_sid))
2688 return 1;
2689 }
2690 return 0;
2691}
2692
2693static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2694{
2695 struct selinux_mnt_opts *opts = mnt_opts;
2696 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2697
2698 if (!(sbsec->flags & SE_SBINITIALIZED))
2699 return 0;
2700
2701 if (!opts)
2702 return 0;
2703
2704 if (opts->fscontext_sid) {
2705 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2706 opts->fscontext_sid))
2707 goto out_bad_option;
2708 }
2709 if (opts->context_sid) {
2710 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2711 opts->context_sid))
2712 goto out_bad_option;
2713 }
2714 if (opts->rootcontext_sid) {
2715 struct inode_security_struct *root_isec;
2716 root_isec = backing_inode_security(sb->s_root);
2717 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2718 opts->rootcontext_sid))
2719 goto out_bad_option;
2720 }
2721 if (opts->defcontext_sid) {
2722 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2723 opts->defcontext_sid))
2724 goto out_bad_option;
2725 }
2726 return 0;
2727
2728out_bad_option:
2729 pr_warn("SELinux: unable to change security options "
2730 "during remount (dev %s, type=%s)\n", sb->s_id,
2731 sb->s_type->name);
2732 return -EINVAL;
2733}
2734
2735static int selinux_sb_kern_mount(const struct super_block *sb)
2736{
2737 const struct cred *cred = current_cred();
2738 struct common_audit_data ad;
2739
2740 ad.type = LSM_AUDIT_DATA_DENTRY;
2741 ad.u.dentry = sb->s_root;
2742 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2743}
2744
2745static int selinux_sb_statfs(struct dentry *dentry)
2746{
2747 const struct cred *cred = current_cred();
2748 struct common_audit_data ad;
2749
2750 ad.type = LSM_AUDIT_DATA_DENTRY;
2751 ad.u.dentry = dentry->d_sb->s_root;
2752 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2753}
2754
2755static int selinux_mount(const char *dev_name,
2756 const struct path *path,
2757 const char *type,
2758 unsigned long flags,
2759 void *data)
2760{
2761 const struct cred *cred = current_cred();
2762
2763 if (flags & MS_REMOUNT)
2764 return superblock_has_perm(cred, path->dentry->d_sb,
2765 FILESYSTEM__REMOUNT, NULL);
2766 else
2767 return path_has_perm(cred, path, FILE__MOUNTON);
2768}
2769
2770static int selinux_move_mount(const struct path *from_path,
2771 const struct path *to_path)
2772{
2773 const struct cred *cred = current_cred();
2774
2775 return path_has_perm(cred, to_path, FILE__MOUNTON);
2776}
2777
2778static int selinux_umount(struct vfsmount *mnt, int flags)
2779{
2780 const struct cred *cred = current_cred();
2781
2782 return superblock_has_perm(cred, mnt->mnt_sb,
2783 FILESYSTEM__UNMOUNT, NULL);
2784}
2785
2786static int selinux_fs_context_submount(struct fs_context *fc,
2787 struct super_block *reference)
2788{
2789 const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2790 struct selinux_mnt_opts *opts;
2791
2792 /*
2793 * Ensure that fc->security remains NULL when no options are set
2794 * as expected by selinux_set_mnt_opts().
2795 */
2796 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2797 return 0;
2798
2799 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2800 if (!opts)
2801 return -ENOMEM;
2802
2803 if (sbsec->flags & FSCONTEXT_MNT)
2804 opts->fscontext_sid = sbsec->sid;
2805 if (sbsec->flags & CONTEXT_MNT)
2806 opts->context_sid = sbsec->mntpoint_sid;
2807 if (sbsec->flags & DEFCONTEXT_MNT)
2808 opts->defcontext_sid = sbsec->def_sid;
2809 fc->security = opts;
2810 return 0;
2811}
2812
2813static int selinux_fs_context_dup(struct fs_context *fc,
2814 struct fs_context *src_fc)
2815{
2816 const struct selinux_mnt_opts *src = src_fc->security;
2817
2818 if (!src)
2819 return 0;
2820
2821 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2822 return fc->security ? 0 : -ENOMEM;
2823}
2824
2825static const struct fs_parameter_spec selinux_fs_parameters[] = {
2826 fsparam_string(CONTEXT_STR, Opt_context),
2827 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2828 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2829 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2830 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2831 {}
2832};
2833
2834static int selinux_fs_context_parse_param(struct fs_context *fc,
2835 struct fs_parameter *param)
2836{
2837 struct fs_parse_result result;
2838 int opt;
2839
2840 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2841 if (opt < 0)
2842 return opt;
2843
2844 return selinux_add_opt(opt, param->string, &fc->security);
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851 struct inode_security_struct *isec = selinux_inode(inode);
2852 u32 sid = current_sid();
2853
2854 spin_lock_init(&isec->lock);
2855 INIT_LIST_HEAD(&isec->list);
2856 isec->inode = inode;
2857 isec->sid = SECINITSID_UNLABELED;
2858 isec->sclass = SECCLASS_FILE;
2859 isec->task_sid = sid;
2860 isec->initialized = LABEL_INVALID;
2861
2862 return 0;
2863}
2864
2865static void selinux_inode_free_security(struct inode *inode)
2866{
2867 inode_free_security(inode);
2868}
2869
2870static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2871 const struct qstr *name,
2872 const char **xattr_name, void **ctx,
2873 u32 *ctxlen)
2874{
2875 u32 newsid;
2876 int rc;
2877
2878 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2879 d_inode(dentry->d_parent), name,
2880 inode_mode_to_security_class(mode),
2881 &newsid);
2882 if (rc)
2883 return rc;
2884
2885 if (xattr_name)
2886 *xattr_name = XATTR_NAME_SELINUX;
2887
2888 return security_sid_to_context(newsid, (char **)ctx,
2889 ctxlen);
2890}
2891
2892static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2893 struct qstr *name,
2894 const struct cred *old,
2895 struct cred *new)
2896{
2897 u32 newsid;
2898 int rc;
2899 struct task_security_struct *tsec;
2900
2901 rc = selinux_determine_inode_label(selinux_cred(old),
2902 d_inode(dentry->d_parent), name,
2903 inode_mode_to_security_class(mode),
2904 &newsid);
2905 if (rc)
2906 return rc;
2907
2908 tsec = selinux_cred(new);
2909 tsec->create_sid = newsid;
2910 return 0;
2911}
2912
2913static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2914 const struct qstr *qstr,
2915 struct xattr *xattrs, int *xattr_count)
2916{
2917 const struct task_security_struct *tsec = selinux_cred(current_cred());
2918 struct superblock_security_struct *sbsec;
2919 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2920 u32 newsid, clen;
2921 u16 newsclass;
2922 int rc;
2923 char *context;
2924
2925 sbsec = selinux_superblock(dir->i_sb);
2926
2927 newsid = tsec->create_sid;
2928 newsclass = inode_mode_to_security_class(inode->i_mode);
2929 rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2930 if (rc)
2931 return rc;
2932
2933 /* Possibly defer initialization to selinux_complete_init. */
2934 if (sbsec->flags & SE_SBINITIALIZED) {
2935 struct inode_security_struct *isec = selinux_inode(inode);
2936 isec->sclass = newsclass;
2937 isec->sid = newsid;
2938 isec->initialized = LABEL_INITIALIZED;
2939 }
2940
2941 if (!selinux_initialized() ||
2942 !(sbsec->flags & SBLABEL_MNT))
2943 return -EOPNOTSUPP;
2944
2945 if (xattr) {
2946 rc = security_sid_to_context_force(newsid,
2947 &context, &clen);
2948 if (rc)
2949 return rc;
2950 xattr->value = context;
2951 xattr->value_len = clen;
2952 xattr->name = XATTR_SELINUX_SUFFIX;
2953 }
2954
2955 return 0;
2956}
2957
2958static int selinux_inode_init_security_anon(struct inode *inode,
2959 const struct qstr *name,
2960 const struct inode *context_inode)
2961{
2962 u32 sid = current_sid();
2963 struct common_audit_data ad;
2964 struct inode_security_struct *isec;
2965 int rc;
2966
2967 if (unlikely(!selinux_initialized()))
2968 return 0;
2969
2970 isec = selinux_inode(inode);
2971
2972 /*
2973 * We only get here once per ephemeral inode. The inode has
2974 * been initialized via inode_alloc_security but is otherwise
2975 * untouched.
2976 */
2977
2978 if (context_inode) {
2979 struct inode_security_struct *context_isec =
2980 selinux_inode(context_inode);
2981 if (context_isec->initialized != LABEL_INITIALIZED) {
2982 pr_err("SELinux: context_inode is not initialized\n");
2983 return -EACCES;
2984 }
2985
2986 isec->sclass = context_isec->sclass;
2987 isec->sid = context_isec->sid;
2988 } else {
2989 isec->sclass = SECCLASS_ANON_INODE;
2990 rc = security_transition_sid(
2991 sid, sid,
2992 isec->sclass, name, &isec->sid);
2993 if (rc)
2994 return rc;
2995 }
2996
2997 isec->initialized = LABEL_INITIALIZED;
2998 /*
2999 * Now that we've initialized security, check whether we're
3000 * allowed to actually create this type of anonymous inode.
3001 */
3002
3003 ad.type = LSM_AUDIT_DATA_ANONINODE;
3004 ad.u.anonclass = name ? (const char *)name->name : "?";
3005
3006 return avc_has_perm(sid,
3007 isec->sid,
3008 isec->sclass,
3009 FILE__CREATE,
3010 &ad);
3011}
3012
3013static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3014{
3015 return may_create(dir, dentry, SECCLASS_FILE);
3016}
3017
3018static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3019{
3020 return may_link(dir, old_dentry, MAY_LINK);
3021}
3022
3023static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3024{
3025 return may_link(dir, dentry, MAY_UNLINK);
3026}
3027
3028static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3029{
3030 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3031}
3032
3033static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3034{
3035 return may_create(dir, dentry, SECCLASS_DIR);
3036}
3037
3038static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3039{
3040 return may_link(dir, dentry, MAY_RMDIR);
3041}
3042
3043static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3044{
3045 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3046}
3047
3048static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3049 struct inode *new_inode, struct dentry *new_dentry)
3050{
3051 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3052}
3053
3054static int selinux_inode_readlink(struct dentry *dentry)
3055{
3056 const struct cred *cred = current_cred();
3057
3058 return dentry_has_perm(cred, dentry, FILE__READ);
3059}
3060
3061static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3062 bool rcu)
3063{
3064 struct common_audit_data ad;
3065 struct inode_security_struct *isec;
3066 u32 sid = current_sid();
3067
3068 ad.type = LSM_AUDIT_DATA_DENTRY;
3069 ad.u.dentry = dentry;
3070 isec = inode_security_rcu(inode, rcu);
3071 if (IS_ERR(isec))
3072 return PTR_ERR(isec);
3073
3074 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3075}
3076
3077static noinline int audit_inode_permission(struct inode *inode,
3078 u32 perms, u32 audited, u32 denied,
3079 int result)
3080{
3081 struct common_audit_data ad;
3082 struct inode_security_struct *isec = selinux_inode(inode);
3083
3084 ad.type = LSM_AUDIT_DATA_INODE;
3085 ad.u.inode = inode;
3086
3087 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3088 audited, denied, result, &ad);
3089}
3090
3091static int selinux_inode_permission(struct inode *inode, int mask)
3092{
3093 u32 perms;
3094 bool from_access;
3095 bool no_block = mask & MAY_NOT_BLOCK;
3096 struct inode_security_struct *isec;
3097 u32 sid = current_sid();
3098 struct av_decision avd;
3099 int rc, rc2;
3100 u32 audited, denied;
3101
3102 from_access = mask & MAY_ACCESS;
3103 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3104
3105 /* No permission to check. Existence test. */
3106 if (!mask)
3107 return 0;
3108
3109 if (unlikely(IS_PRIVATE(inode)))
3110 return 0;
3111
3112 perms = file_mask_to_av(inode->i_mode, mask);
3113
3114 isec = inode_security_rcu(inode, no_block);
3115 if (IS_ERR(isec))
3116 return PTR_ERR(isec);
3117
3118 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3119 &avd);
3120 audited = avc_audit_required(perms, &avd, rc,
3121 from_access ? FILE__AUDIT_ACCESS : 0,
3122 &denied);
3123 if (likely(!audited))
3124 return rc;
3125
3126 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3127 if (rc2)
3128 return rc2;
3129 return rc;
3130}
3131
3132static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3133 struct iattr *iattr)
3134{
3135 const struct cred *cred = current_cred();
3136 struct inode *inode = d_backing_inode(dentry);
3137 unsigned int ia_valid = iattr->ia_valid;
3138 __u32 av = FILE__WRITE;
3139
3140 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3141 if (ia_valid & ATTR_FORCE) {
3142 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3143 ATTR_FORCE);
3144 if (!ia_valid)
3145 return 0;
3146 }
3147
3148 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3149 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3150 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3151
3152 if (selinux_policycap_openperm() &&
3153 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3154 (ia_valid & ATTR_SIZE) &&
3155 !(ia_valid & ATTR_FILE))
3156 av |= FILE__OPEN;
3157
3158 return dentry_has_perm(cred, dentry, av);
3159}
3160
3161static int selinux_inode_getattr(const struct path *path)
3162{
3163 return path_has_perm(current_cred(), path, FILE__GETATTR);
3164}
3165
3166static bool has_cap_mac_admin(bool audit)
3167{
3168 const struct cred *cred = current_cred();
3169 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3170
3171 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3172 return false;
3173 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3174 return false;
3175 return true;
3176}
3177
3178/**
3179 * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3180 * @name: name of the xattr
3181 *
3182 * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3183 * named @name; the LSM layer should avoid enforcing any traditional
3184 * capability based access controls on this xattr. Returns 0 to indicate that
3185 * SELinux does not "own" the access control rights to xattrs named @name and is
3186 * deferring to the LSM layer for further access controls, including capability
3187 * based controls.
3188 */
3189static int selinux_inode_xattr_skipcap(const char *name)
3190{
3191 /* require capability check if not a selinux xattr */
3192 return !strcmp(name, XATTR_NAME_SELINUX);
3193}
3194
3195static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3196 struct dentry *dentry, const char *name,
3197 const void *value, size_t size, int flags)
3198{
3199 struct inode *inode = d_backing_inode(dentry);
3200 struct inode_security_struct *isec;
3201 struct superblock_security_struct *sbsec;
3202 struct common_audit_data ad;
3203 u32 newsid, sid = current_sid();
3204 int rc = 0;
3205
3206 /* if not a selinux xattr, only check the ordinary setattr perm */
3207 if (strcmp(name, XATTR_NAME_SELINUX))
3208 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3209
3210 if (!selinux_initialized())
3211 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3212
3213 sbsec = selinux_superblock(inode->i_sb);
3214 if (!(sbsec->flags & SBLABEL_MNT))
3215 return -EOPNOTSUPP;
3216
3217 if (!inode_owner_or_capable(idmap, inode))
3218 return -EPERM;
3219
3220 ad.type = LSM_AUDIT_DATA_DENTRY;
3221 ad.u.dentry = dentry;
3222
3223 isec = backing_inode_security(dentry);
3224 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3225 FILE__RELABELFROM, &ad);
3226 if (rc)
3227 return rc;
3228
3229 rc = security_context_to_sid(value, size, &newsid,
3230 GFP_KERNEL);
3231 if (rc == -EINVAL) {
3232 if (!has_cap_mac_admin(true)) {
3233 struct audit_buffer *ab;
3234 size_t audit_size;
3235
3236 /* We strip a nul only if it is at the end, otherwise the
3237 * context contains a nul and we should audit that */
3238 if (value) {
3239 const char *str = value;
3240
3241 if (str[size - 1] == '\0')
3242 audit_size = size - 1;
3243 else
3244 audit_size = size;
3245 } else {
3246 audit_size = 0;
3247 }
3248 ab = audit_log_start(audit_context(),
3249 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3250 if (!ab)
3251 return rc;
3252 audit_log_format(ab, "op=setxattr invalid_context=");
3253 audit_log_n_untrustedstring(ab, value, audit_size);
3254 audit_log_end(ab);
3255
3256 return rc;
3257 }
3258 rc = security_context_to_sid_force(value,
3259 size, &newsid);
3260 }
3261 if (rc)
3262 return rc;
3263
3264 rc = avc_has_perm(sid, newsid, isec->sclass,
3265 FILE__RELABELTO, &ad);
3266 if (rc)
3267 return rc;
3268
3269 rc = security_validate_transition(isec->sid, newsid,
3270 sid, isec->sclass);
3271 if (rc)
3272 return rc;
3273
3274 return avc_has_perm(newsid,
3275 sbsec->sid,
3276 SECCLASS_FILESYSTEM,
3277 FILESYSTEM__ASSOCIATE,
3278 &ad);
3279}
3280
3281static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3282 struct dentry *dentry, const char *acl_name,
3283 struct posix_acl *kacl)
3284{
3285 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3286}
3287
3288static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3289 struct dentry *dentry, const char *acl_name)
3290{
3291 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3292}
3293
3294static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3295 struct dentry *dentry, const char *acl_name)
3296{
3297 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3298}
3299
3300static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3301 const void *value, size_t size,
3302 int flags)
3303{
3304 struct inode *inode = d_backing_inode(dentry);
3305 struct inode_security_struct *isec;
3306 u32 newsid;
3307 int rc;
3308
3309 if (strcmp(name, XATTR_NAME_SELINUX)) {
3310 /* Not an attribute we recognize, so nothing to do. */
3311 return;
3312 }
3313
3314 if (!selinux_initialized()) {
3315 /* If we haven't even been initialized, then we can't validate
3316 * against a policy, so leave the label as invalid. It may
3317 * resolve to a valid label on the next revalidation try if
3318 * we've since initialized.
3319 */
3320 return;
3321 }
3322
3323 rc = security_context_to_sid_force(value, size,
3324 &newsid);
3325 if (rc) {
3326 pr_err("SELinux: unable to map context to SID"
3327 "for (%s, %lu), rc=%d\n",
3328 inode->i_sb->s_id, inode->i_ino, -rc);
3329 return;
3330 }
3331
3332 isec = backing_inode_security(dentry);
3333 spin_lock(&isec->lock);
3334 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3335 isec->sid = newsid;
3336 isec->initialized = LABEL_INITIALIZED;
3337 spin_unlock(&isec->lock);
3338}
3339
3340static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3341{
3342 const struct cred *cred = current_cred();
3343
3344 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3345}
3346
3347static int selinux_inode_listxattr(struct dentry *dentry)
3348{
3349 const struct cred *cred = current_cred();
3350
3351 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3352}
3353
3354static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3355 struct dentry *dentry, const char *name)
3356{
3357 /* if not a selinux xattr, only check the ordinary setattr perm */
3358 if (strcmp(name, XATTR_NAME_SELINUX))
3359 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360
3361 if (!selinux_initialized())
3362 return 0;
3363
3364 /* No one is allowed to remove a SELinux security label.
3365 You can change the label, but all data must be labeled. */
3366 return -EACCES;
3367}
3368
3369static int selinux_path_notify(const struct path *path, u64 mask,
3370 unsigned int obj_type)
3371{
3372 int ret;
3373 u32 perm;
3374
3375 struct common_audit_data ad;
3376
3377 ad.type = LSM_AUDIT_DATA_PATH;
3378 ad.u.path = *path;
3379
3380 /*
3381 * Set permission needed based on the type of mark being set.
3382 * Performs an additional check for sb watches.
3383 */
3384 switch (obj_type) {
3385 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3386 perm = FILE__WATCH_MOUNT;
3387 break;
3388 case FSNOTIFY_OBJ_TYPE_SB:
3389 perm = FILE__WATCH_SB;
3390 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3391 FILESYSTEM__WATCH, &ad);
3392 if (ret)
3393 return ret;
3394 break;
3395 case FSNOTIFY_OBJ_TYPE_INODE:
3396 perm = FILE__WATCH;
3397 break;
3398 default:
3399 return -EINVAL;
3400 }
3401
3402 /* blocking watches require the file:watch_with_perm permission */
3403 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3404 perm |= FILE__WATCH_WITH_PERM;
3405
3406 /* watches on read-like events need the file:watch_reads permission */
3407 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3408 perm |= FILE__WATCH_READS;
3409
3410 return path_has_perm(current_cred(), path, perm);
3411}
3412
3413/*
3414 * Copy the inode security context value to the user.
3415 *
3416 * Permission check is handled by selinux_inode_getxattr hook.
3417 */
3418static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3419 struct inode *inode, const char *name,
3420 void **buffer, bool alloc)
3421{
3422 u32 size;
3423 int error;
3424 char *context = NULL;
3425 struct inode_security_struct *isec;
3426
3427 /*
3428 * If we're not initialized yet, then we can't validate contexts, so
3429 * just let vfs_getxattr fall back to using the on-disk xattr.
3430 */
3431 if (!selinux_initialized() ||
3432 strcmp(name, XATTR_SELINUX_SUFFIX))
3433 return -EOPNOTSUPP;
3434
3435 /*
3436 * If the caller has CAP_MAC_ADMIN, then get the raw context
3437 * value even if it is not defined by current policy; otherwise,
3438 * use the in-core value under current policy.
3439 * Use the non-auditing forms of the permission checks since
3440 * getxattr may be called by unprivileged processes commonly
3441 * and lack of permission just means that we fall back to the
3442 * in-core context value, not a denial.
3443 */
3444 isec = inode_security(inode);
3445 if (has_cap_mac_admin(false))
3446 error = security_sid_to_context_force(isec->sid, &context,
3447 &size);
3448 else
3449 error = security_sid_to_context(isec->sid,
3450 &context, &size);
3451 if (error)
3452 return error;
3453 error = size;
3454 if (alloc) {
3455 *buffer = context;
3456 goto out_nofree;
3457 }
3458 kfree(context);
3459out_nofree:
3460 return error;
3461}
3462
3463static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3464 const void *value, size_t size, int flags)
3465{
3466 struct inode_security_struct *isec = inode_security_novalidate(inode);
3467 struct superblock_security_struct *sbsec;
3468 u32 newsid;
3469 int rc;
3470
3471 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3472 return -EOPNOTSUPP;
3473
3474 sbsec = selinux_superblock(inode->i_sb);
3475 if (!(sbsec->flags & SBLABEL_MNT))
3476 return -EOPNOTSUPP;
3477
3478 if (!value || !size)
3479 return -EACCES;
3480
3481 rc = security_context_to_sid(value, size, &newsid,
3482 GFP_KERNEL);
3483 if (rc)
3484 return rc;
3485
3486 spin_lock(&isec->lock);
3487 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3488 isec->sid = newsid;
3489 isec->initialized = LABEL_INITIALIZED;
3490 spin_unlock(&isec->lock);
3491 return 0;
3492}
3493
3494static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3495{
3496 const int len = sizeof(XATTR_NAME_SELINUX);
3497
3498 if (!selinux_initialized())
3499 return 0;
3500
3501 if (buffer && len <= buffer_size)
3502 memcpy(buffer, XATTR_NAME_SELINUX, len);
3503 return len;
3504}
3505
3506static void selinux_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
3507{
3508 struct inode_security_struct *isec = inode_security_novalidate(inode);
3509
3510 prop->selinux.secid = isec->sid;
3511}
3512
3513static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514{
3515 struct lsm_prop prop;
3516 struct task_security_struct *tsec;
3517 struct cred *new_creds = *new;
3518
3519 if (new_creds == NULL) {
3520 new_creds = prepare_creds();
3521 if (!new_creds)
3522 return -ENOMEM;
3523 }
3524
3525 tsec = selinux_cred(new_creds);
3526 /* Get label from overlay inode and set it in create_sid */
3527 selinux_inode_getlsmprop(d_inode(src), &prop);
3528 tsec->create_sid = prop.selinux.secid;
3529 *new = new_creds;
3530 return 0;
3531}
3532
3533static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3534{
3535 /* The copy_up hook above sets the initial context on an inode, but we
3536 * don't then want to overwrite it by blindly copying all the lower
3537 * xattrs up. Instead, filter out SELinux-related xattrs following
3538 * policy load.
3539 */
3540 if (selinux_initialized() && !strcmp(name, XATTR_NAME_SELINUX))
3541 return -ECANCELED; /* Discard */
3542 /*
3543 * Any other attribute apart from SELINUX is not claimed, supported
3544 * by selinux.
3545 */
3546 return -EOPNOTSUPP;
3547}
3548
3549/* kernfs node operations */
3550
3551static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552 struct kernfs_node *kn)
3553{
3554 const struct task_security_struct *tsec = selinux_cred(current_cred());
3555 u32 parent_sid, newsid, clen;
3556 int rc;
3557 char *context;
3558
3559 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560 if (rc == -ENODATA)
3561 return 0;
3562 else if (rc < 0)
3563 return rc;
3564
3565 clen = (u32)rc;
3566 context = kmalloc(clen, GFP_KERNEL);
3567 if (!context)
3568 return -ENOMEM;
3569
3570 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571 if (rc < 0) {
3572 kfree(context);
3573 return rc;
3574 }
3575
3576 rc = security_context_to_sid(context, clen, &parent_sid,
3577 GFP_KERNEL);
3578 kfree(context);
3579 if (rc)
3580 return rc;
3581
3582 if (tsec->create_sid) {
3583 newsid = tsec->create_sid;
3584 } else {
3585 u16 secclass = inode_mode_to_security_class(kn->mode);
3586 struct qstr q;
3587
3588 q.name = kn->name;
3589 q.hash_len = hashlen_string(kn_dir, kn->name);
3590
3591 rc = security_transition_sid(tsec->sid,
3592 parent_sid, secclass, &q,
3593 &newsid);
3594 if (rc)
3595 return rc;
3596 }
3597
3598 rc = security_sid_to_context_force(newsid,
3599 &context, &clen);
3600 if (rc)
3601 return rc;
3602
3603 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604 XATTR_CREATE);
3605 kfree(context);
3606 return rc;
3607}
3608
3609
3610/* file security operations */
3611
3612static int selinux_revalidate_file_permission(struct file *file, int mask)
3613{
3614 const struct cred *cred = current_cred();
3615 struct inode *inode = file_inode(file);
3616
3617 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619 mask |= MAY_APPEND;
3620
3621 return file_has_perm(cred, file,
3622 file_mask_to_av(inode->i_mode, mask));
3623}
3624
3625static int selinux_file_permission(struct file *file, int mask)
3626{
3627 struct inode *inode = file_inode(file);
3628 struct file_security_struct *fsec = selinux_file(file);
3629 struct inode_security_struct *isec;
3630 u32 sid = current_sid();
3631
3632 if (!mask)
3633 /* No permission to check. Existence test. */
3634 return 0;
3635
3636 isec = inode_security(inode);
3637 if (sid == fsec->sid && fsec->isid == isec->sid &&
3638 fsec->pseqno == avc_policy_seqno())
3639 /* No change since file_open check. */
3640 return 0;
3641
3642 return selinux_revalidate_file_permission(file, mask);
3643}
3644
3645static int selinux_file_alloc_security(struct file *file)
3646{
3647 struct file_security_struct *fsec = selinux_file(file);
3648 u32 sid = current_sid();
3649
3650 fsec->sid = sid;
3651 fsec->fown_sid = sid;
3652
3653 return 0;
3654}
3655
3656/*
3657 * Check whether a task has the ioctl permission and cmd
3658 * operation to an inode.
3659 */
3660static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661 u32 requested, u16 cmd)
3662{
3663 struct common_audit_data ad;
3664 struct file_security_struct *fsec = selinux_file(file);
3665 struct inode *inode = file_inode(file);
3666 struct inode_security_struct *isec;
3667 struct lsm_ioctlop_audit ioctl;
3668 u32 ssid = cred_sid(cred);
3669 int rc;
3670 u8 driver = cmd >> 8;
3671 u8 xperm = cmd & 0xff;
3672
3673 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674 ad.u.op = &ioctl;
3675 ad.u.op->cmd = cmd;
3676 ad.u.op->path = file->f_path;
3677
3678 if (ssid != fsec->sid) {
3679 rc = avc_has_perm(ssid, fsec->sid,
3680 SECCLASS_FD,
3681 FD__USE,
3682 &ad);
3683 if (rc)
3684 goto out;
3685 }
3686
3687 if (unlikely(IS_PRIVATE(inode)))
3688 return 0;
3689
3690 isec = inode_security(inode);
3691 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, requested,
3692 driver, AVC_EXT_IOCTL, xperm, &ad);
3693out:
3694 return rc;
3695}
3696
3697static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698 unsigned long arg)
3699{
3700 const struct cred *cred = current_cred();
3701 int error = 0;
3702
3703 switch (cmd) {
3704 case FIONREAD:
3705 case FIBMAP:
3706 case FIGETBSZ:
3707 case FS_IOC_GETFLAGS:
3708 case FS_IOC_GETVERSION:
3709 error = file_has_perm(cred, file, FILE__GETATTR);
3710 break;
3711
3712 case FS_IOC_SETFLAGS:
3713 case FS_IOC_SETVERSION:
3714 error = file_has_perm(cred, file, FILE__SETATTR);
3715 break;
3716
3717 /* sys_ioctl() checks */
3718 case FIONBIO:
3719 case FIOASYNC:
3720 error = file_has_perm(cred, file, 0);
3721 break;
3722
3723 case KDSKBENT:
3724 case KDSKBSENT:
3725 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726 CAP_OPT_NONE, true);
3727 break;
3728
3729 case FIOCLEX:
3730 case FIONCLEX:
3731 if (!selinux_policycap_ioctl_skip_cloexec())
3732 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733 break;
3734
3735 /* default case assumes that the command will go
3736 * to the file's ioctl() function.
3737 */
3738 default:
3739 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740 }
3741 return error;
3742}
3743
3744static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745 unsigned long arg)
3746{
3747 /*
3748 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749 * make sure we don't compare 32-bit flags to 64-bit flags.
3750 */
3751 switch (cmd) {
3752 case FS_IOC32_GETFLAGS:
3753 cmd = FS_IOC_GETFLAGS;
3754 break;
3755 case FS_IOC32_SETFLAGS:
3756 cmd = FS_IOC_SETFLAGS;
3757 break;
3758 case FS_IOC32_GETVERSION:
3759 cmd = FS_IOC_GETVERSION;
3760 break;
3761 case FS_IOC32_SETVERSION:
3762 cmd = FS_IOC_SETVERSION;
3763 break;
3764 default:
3765 break;
3766 }
3767
3768 return selinux_file_ioctl(file, cmd, arg);
3769}
3770
3771static int default_noexec __ro_after_init;
3772
3773static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774{
3775 const struct cred *cred = current_cred();
3776 u32 sid = cred_sid(cred);
3777 int rc = 0;
3778
3779 if (default_noexec &&
3780 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781 (!shared && (prot & PROT_WRITE)))) {
3782 /*
3783 * We are making executable an anonymous mapping or a
3784 * private file mapping that will also be writable.
3785 * This has an additional check.
3786 */
3787 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3788 PROCESS__EXECMEM, NULL);
3789 if (rc)
3790 goto error;
3791 }
3792
3793 if (file) {
3794 /* read access is always possible with a mapping */
3795 u32 av = FILE__READ;
3796
3797 /* write access only matters if the mapping is shared */
3798 if (shared && (prot & PROT_WRITE))
3799 av |= FILE__WRITE;
3800
3801 if (prot & PROT_EXEC)
3802 av |= FILE__EXECUTE;
3803
3804 return file_has_perm(cred, file, av);
3805 }
3806
3807error:
3808 return rc;
3809}
3810
3811static int selinux_mmap_addr(unsigned long addr)
3812{
3813 int rc = 0;
3814
3815 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816 u32 sid = current_sid();
3817 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3818 MEMPROTECT__MMAP_ZERO, NULL);
3819 }
3820
3821 return rc;
3822}
3823
3824static int selinux_mmap_file(struct file *file,
3825 unsigned long reqprot __always_unused,
3826 unsigned long prot, unsigned long flags)
3827{
3828 struct common_audit_data ad;
3829 int rc;
3830
3831 if (file) {
3832 ad.type = LSM_AUDIT_DATA_FILE;
3833 ad.u.file = file;
3834 rc = inode_has_perm(current_cred(), file_inode(file),
3835 FILE__MAP, &ad);
3836 if (rc)
3837 return rc;
3838 }
3839
3840 return file_map_prot_check(file, prot,
3841 (flags & MAP_TYPE) == MAP_SHARED);
3842}
3843
3844static int selinux_file_mprotect(struct vm_area_struct *vma,
3845 unsigned long reqprot __always_unused,
3846 unsigned long prot)
3847{
3848 const struct cred *cred = current_cred();
3849 u32 sid = cred_sid(cred);
3850
3851 if (default_noexec &&
3852 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853 int rc = 0;
3854 /*
3855 * We don't use the vma_is_initial_heap() helper as it has
3856 * a history of problems and is currently broken on systems
3857 * where there is no heap, e.g. brk == start_brk. Before
3858 * replacing the conditional below with vma_is_initial_heap(),
3859 * or something similar, please ensure that the logic is the
3860 * same as what we have below or you have tested every possible
3861 * corner case you can think to test.
3862 */
3863 if (vma->vm_start >= vma->vm_mm->start_brk &&
3864 vma->vm_end <= vma->vm_mm->brk) {
3865 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3866 PROCESS__EXECHEAP, NULL);
3867 } else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3868 vma_is_stack_for_current(vma))) {
3869 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3870 PROCESS__EXECSTACK, NULL);
3871 } else if (vma->vm_file && vma->anon_vma) {
3872 /*
3873 * We are making executable a file mapping that has
3874 * had some COW done. Since pages might have been
3875 * written, check ability to execute the possibly
3876 * modified content. This typically should only
3877 * occur for text relocations.
3878 */
3879 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3880 }
3881 if (rc)
3882 return rc;
3883 }
3884
3885 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3886}
3887
3888static int selinux_file_lock(struct file *file, unsigned int cmd)
3889{
3890 const struct cred *cred = current_cred();
3891
3892 return file_has_perm(cred, file, FILE__LOCK);
3893}
3894
3895static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3896 unsigned long arg)
3897{
3898 const struct cred *cred = current_cred();
3899 int err = 0;
3900
3901 switch (cmd) {
3902 case F_SETFL:
3903 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3904 err = file_has_perm(cred, file, FILE__WRITE);
3905 break;
3906 }
3907 fallthrough;
3908 case F_SETOWN:
3909 case F_SETSIG:
3910 case F_GETFL:
3911 case F_GETOWN:
3912 case F_GETSIG:
3913 case F_GETOWNER_UIDS:
3914 /* Just check FD__USE permission */
3915 err = file_has_perm(cred, file, 0);
3916 break;
3917 case F_GETLK:
3918 case F_SETLK:
3919 case F_SETLKW:
3920 case F_OFD_GETLK:
3921 case F_OFD_SETLK:
3922 case F_OFD_SETLKW:
3923#if BITS_PER_LONG == 32
3924 case F_GETLK64:
3925 case F_SETLK64:
3926 case F_SETLKW64:
3927#endif
3928 err = file_has_perm(cred, file, FILE__LOCK);
3929 break;
3930 }
3931
3932 return err;
3933}
3934
3935static void selinux_file_set_fowner(struct file *file)
3936{
3937 struct file_security_struct *fsec;
3938
3939 fsec = selinux_file(file);
3940 fsec->fown_sid = current_sid();
3941}
3942
3943static int selinux_file_send_sigiotask(struct task_struct *tsk,
3944 struct fown_struct *fown, int signum)
3945{
3946 struct file *file;
3947 u32 sid = task_sid_obj(tsk);
3948 u32 perm;
3949 struct file_security_struct *fsec;
3950
3951 /* struct fown_struct is never outside the context of a struct file */
3952 file = fown->file;
3953
3954 fsec = selinux_file(file);
3955
3956 if (!signum)
3957 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3958 else
3959 perm = signal_to_av(signum);
3960
3961 return avc_has_perm(fsec->fown_sid, sid,
3962 SECCLASS_PROCESS, perm, NULL);
3963}
3964
3965static int selinux_file_receive(struct file *file)
3966{
3967 const struct cred *cred = current_cred();
3968
3969 return file_has_perm(cred, file, file_to_av(file));
3970}
3971
3972static int selinux_file_open(struct file *file)
3973{
3974 struct file_security_struct *fsec;
3975 struct inode_security_struct *isec;
3976
3977 fsec = selinux_file(file);
3978 isec = inode_security(file_inode(file));
3979 /*
3980 * Save inode label and policy sequence number
3981 * at open-time so that selinux_file_permission
3982 * can determine whether revalidation is necessary.
3983 * Task label is already saved in the file security
3984 * struct as its SID.
3985 */
3986 fsec->isid = isec->sid;
3987 fsec->pseqno = avc_policy_seqno();
3988 /*
3989 * Since the inode label or policy seqno may have changed
3990 * between the selinux_inode_permission check and the saving
3991 * of state above, recheck that access is still permitted.
3992 * Otherwise, access might never be revalidated against the
3993 * new inode label or new policy.
3994 * This check is not redundant - do not remove.
3995 */
3996 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3997}
3998
3999/* task security operations */
4000
4001static int selinux_task_alloc(struct task_struct *task,
4002 unsigned long clone_flags)
4003{
4004 u32 sid = current_sid();
4005
4006 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4007}
4008
4009/*
4010 * prepare a new set of credentials for modification
4011 */
4012static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4013 gfp_t gfp)
4014{
4015 const struct task_security_struct *old_tsec = selinux_cred(old);
4016 struct task_security_struct *tsec = selinux_cred(new);
4017
4018 *tsec = *old_tsec;
4019 return 0;
4020}
4021
4022/*
4023 * transfer the SELinux data to a blank set of creds
4024 */
4025static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4026{
4027 const struct task_security_struct *old_tsec = selinux_cred(old);
4028 struct task_security_struct *tsec = selinux_cred(new);
4029
4030 *tsec = *old_tsec;
4031}
4032
4033static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4034{
4035 *secid = cred_sid(c);
4036}
4037
4038static void selinux_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
4039{
4040 prop->selinux.secid = cred_sid(c);
4041}
4042
4043/*
4044 * set the security data for a kernel service
4045 * - all the creation contexts are set to unlabelled
4046 */
4047static int selinux_kernel_act_as(struct cred *new, u32 secid)
4048{
4049 struct task_security_struct *tsec = selinux_cred(new);
4050 u32 sid = current_sid();
4051 int ret;
4052
4053 ret = avc_has_perm(sid, secid,
4054 SECCLASS_KERNEL_SERVICE,
4055 KERNEL_SERVICE__USE_AS_OVERRIDE,
4056 NULL);
4057 if (ret == 0) {
4058 tsec->sid = secid;
4059 tsec->create_sid = 0;
4060 tsec->keycreate_sid = 0;
4061 tsec->sockcreate_sid = 0;
4062 }
4063 return ret;
4064}
4065
4066/*
4067 * set the file creation context in a security record to the same as the
4068 * objective context of the specified inode
4069 */
4070static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4071{
4072 struct inode_security_struct *isec = inode_security(inode);
4073 struct task_security_struct *tsec = selinux_cred(new);
4074 u32 sid = current_sid();
4075 int ret;
4076
4077 ret = avc_has_perm(sid, isec->sid,
4078 SECCLASS_KERNEL_SERVICE,
4079 KERNEL_SERVICE__CREATE_FILES_AS,
4080 NULL);
4081
4082 if (ret == 0)
4083 tsec->create_sid = isec->sid;
4084 return ret;
4085}
4086
4087static int selinux_kernel_module_request(char *kmod_name)
4088{
4089 struct common_audit_data ad;
4090
4091 ad.type = LSM_AUDIT_DATA_KMOD;
4092 ad.u.kmod_name = kmod_name;
4093
4094 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4095 SYSTEM__MODULE_REQUEST, &ad);
4096}
4097
4098static int selinux_kernel_module_from_file(struct file *file)
4099{
4100 struct common_audit_data ad;
4101 struct inode_security_struct *isec;
4102 struct file_security_struct *fsec;
4103 u32 sid = current_sid();
4104 int rc;
4105
4106 /* init_module */
4107 if (file == NULL)
4108 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4109 SYSTEM__MODULE_LOAD, NULL);
4110
4111 /* finit_module */
4112
4113 ad.type = LSM_AUDIT_DATA_FILE;
4114 ad.u.file = file;
4115
4116 fsec = selinux_file(file);
4117 if (sid != fsec->sid) {
4118 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4119 if (rc)
4120 return rc;
4121 }
4122
4123 isec = inode_security(file_inode(file));
4124 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4125 SYSTEM__MODULE_LOAD, &ad);
4126}
4127
4128static int selinux_kernel_read_file(struct file *file,
4129 enum kernel_read_file_id id,
4130 bool contents)
4131{
4132 int rc = 0;
4133
4134 switch (id) {
4135 case READING_MODULE:
4136 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4137 break;
4138 default:
4139 break;
4140 }
4141
4142 return rc;
4143}
4144
4145static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4146{
4147 int rc = 0;
4148
4149 switch (id) {
4150 case LOADING_MODULE:
4151 rc = selinux_kernel_module_from_file(NULL);
4152 break;
4153 default:
4154 break;
4155 }
4156
4157 return rc;
4158}
4159
4160static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4161{
4162 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4163 PROCESS__SETPGID, NULL);
4164}
4165
4166static int selinux_task_getpgid(struct task_struct *p)
4167{
4168 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4169 PROCESS__GETPGID, NULL);
4170}
4171
4172static int selinux_task_getsid(struct task_struct *p)
4173{
4174 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4175 PROCESS__GETSESSION, NULL);
4176}
4177
4178static void selinux_current_getlsmprop_subj(struct lsm_prop *prop)
4179{
4180 prop->selinux.secid = current_sid();
4181}
4182
4183static void selinux_task_getlsmprop_obj(struct task_struct *p,
4184 struct lsm_prop *prop)
4185{
4186 prop->selinux.secid = task_sid_obj(p);
4187}
4188
4189static int selinux_task_setnice(struct task_struct *p, int nice)
4190{
4191 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4192 PROCESS__SETSCHED, NULL);
4193}
4194
4195static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4196{
4197 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4198 PROCESS__SETSCHED, NULL);
4199}
4200
4201static int selinux_task_getioprio(struct task_struct *p)
4202{
4203 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204 PROCESS__GETSCHED, NULL);
4205}
4206
4207static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4208 unsigned int flags)
4209{
4210 u32 av = 0;
4211
4212 if (!flags)
4213 return 0;
4214 if (flags & LSM_PRLIMIT_WRITE)
4215 av |= PROCESS__SETRLIMIT;
4216 if (flags & LSM_PRLIMIT_READ)
4217 av |= PROCESS__GETRLIMIT;
4218 return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4219 SECCLASS_PROCESS, av, NULL);
4220}
4221
4222static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4223 struct rlimit *new_rlim)
4224{
4225 struct rlimit *old_rlim = p->signal->rlim + resource;
4226
4227 /* Control the ability to change the hard limit (whether
4228 lowering or raising it), so that the hard limit can
4229 later be used as a safe reset point for the soft limit
4230 upon context transitions. See selinux_bprm_committing_creds. */
4231 if (old_rlim->rlim_max != new_rlim->rlim_max)
4232 return avc_has_perm(current_sid(), task_sid_obj(p),
4233 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4234
4235 return 0;
4236}
4237
4238static int selinux_task_setscheduler(struct task_struct *p)
4239{
4240 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4241 PROCESS__SETSCHED, NULL);
4242}
4243
4244static int selinux_task_getscheduler(struct task_struct *p)
4245{
4246 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4247 PROCESS__GETSCHED, NULL);
4248}
4249
4250static int selinux_task_movememory(struct task_struct *p)
4251{
4252 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4253 PROCESS__SETSCHED, NULL);
4254}
4255
4256static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4257 int sig, const struct cred *cred)
4258{
4259 u32 secid;
4260 u32 perm;
4261
4262 if (!sig)
4263 perm = PROCESS__SIGNULL; /* null signal; existence test */
4264 else
4265 perm = signal_to_av(sig);
4266 if (!cred)
4267 secid = current_sid();
4268 else
4269 secid = cred_sid(cred);
4270 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4271}
4272
4273static void selinux_task_to_inode(struct task_struct *p,
4274 struct inode *inode)
4275{
4276 struct inode_security_struct *isec = selinux_inode(inode);
4277 u32 sid = task_sid_obj(p);
4278
4279 spin_lock(&isec->lock);
4280 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4281 isec->sid = sid;
4282 isec->initialized = LABEL_INITIALIZED;
4283 spin_unlock(&isec->lock);
4284}
4285
4286static int selinux_userns_create(const struct cred *cred)
4287{
4288 u32 sid = current_sid();
4289
4290 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4291 USER_NAMESPACE__CREATE, NULL);
4292}
4293
4294/* Returns error only if unable to parse addresses */
4295static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4296 struct common_audit_data *ad, u8 *proto)
4297{
4298 int offset, ihlen, ret = -EINVAL;
4299 struct iphdr _iph, *ih;
4300
4301 offset = skb_network_offset(skb);
4302 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4303 if (ih == NULL)
4304 goto out;
4305
4306 ihlen = ih->ihl * 4;
4307 if (ihlen < sizeof(_iph))
4308 goto out;
4309
4310 ad->u.net->v4info.saddr = ih->saddr;
4311 ad->u.net->v4info.daddr = ih->daddr;
4312 ret = 0;
4313
4314 if (proto)
4315 *proto = ih->protocol;
4316
4317 switch (ih->protocol) {
4318 case IPPROTO_TCP: {
4319 struct tcphdr _tcph, *th;
4320
4321 if (ntohs(ih->frag_off) & IP_OFFSET)
4322 break;
4323
4324 offset += ihlen;
4325 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4326 if (th == NULL)
4327 break;
4328
4329 ad->u.net->sport = th->source;
4330 ad->u.net->dport = th->dest;
4331 break;
4332 }
4333
4334 case IPPROTO_UDP: {
4335 struct udphdr _udph, *uh;
4336
4337 if (ntohs(ih->frag_off) & IP_OFFSET)
4338 break;
4339
4340 offset += ihlen;
4341 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4342 if (uh == NULL)
4343 break;
4344
4345 ad->u.net->sport = uh->source;
4346 ad->u.net->dport = uh->dest;
4347 break;
4348 }
4349
4350 case IPPROTO_DCCP: {
4351 struct dccp_hdr _dccph, *dh;
4352
4353 if (ntohs(ih->frag_off) & IP_OFFSET)
4354 break;
4355
4356 offset += ihlen;
4357 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4358 if (dh == NULL)
4359 break;
4360
4361 ad->u.net->sport = dh->dccph_sport;
4362 ad->u.net->dport = dh->dccph_dport;
4363 break;
4364 }
4365
4366#if IS_ENABLED(CONFIG_IP_SCTP)
4367 case IPPROTO_SCTP: {
4368 struct sctphdr _sctph, *sh;
4369
4370 if (ntohs(ih->frag_off) & IP_OFFSET)
4371 break;
4372
4373 offset += ihlen;
4374 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4375 if (sh == NULL)
4376 break;
4377
4378 ad->u.net->sport = sh->source;
4379 ad->u.net->dport = sh->dest;
4380 break;
4381 }
4382#endif
4383 default:
4384 break;
4385 }
4386out:
4387 return ret;
4388}
4389
4390#if IS_ENABLED(CONFIG_IPV6)
4391
4392/* Returns error only if unable to parse addresses */
4393static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4394 struct common_audit_data *ad, u8 *proto)
4395{
4396 u8 nexthdr;
4397 int ret = -EINVAL, offset;
4398 struct ipv6hdr _ipv6h, *ip6;
4399 __be16 frag_off;
4400
4401 offset = skb_network_offset(skb);
4402 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4403 if (ip6 == NULL)
4404 goto out;
4405
4406 ad->u.net->v6info.saddr = ip6->saddr;
4407 ad->u.net->v6info.daddr = ip6->daddr;
4408 ret = 0;
4409
4410 nexthdr = ip6->nexthdr;
4411 offset += sizeof(_ipv6h);
4412 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4413 if (offset < 0)
4414 goto out;
4415
4416 if (proto)
4417 *proto = nexthdr;
4418
4419 switch (nexthdr) {
4420 case IPPROTO_TCP: {
4421 struct tcphdr _tcph, *th;
4422
4423 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4424 if (th == NULL)
4425 break;
4426
4427 ad->u.net->sport = th->source;
4428 ad->u.net->dport = th->dest;
4429 break;
4430 }
4431
4432 case IPPROTO_UDP: {
4433 struct udphdr _udph, *uh;
4434
4435 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4436 if (uh == NULL)
4437 break;
4438
4439 ad->u.net->sport = uh->source;
4440 ad->u.net->dport = uh->dest;
4441 break;
4442 }
4443
4444 case IPPROTO_DCCP: {
4445 struct dccp_hdr _dccph, *dh;
4446
4447 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4448 if (dh == NULL)
4449 break;
4450
4451 ad->u.net->sport = dh->dccph_sport;
4452 ad->u.net->dport = dh->dccph_dport;
4453 break;
4454 }
4455
4456#if IS_ENABLED(CONFIG_IP_SCTP)
4457 case IPPROTO_SCTP: {
4458 struct sctphdr _sctph, *sh;
4459
4460 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4461 if (sh == NULL)
4462 break;
4463
4464 ad->u.net->sport = sh->source;
4465 ad->u.net->dport = sh->dest;
4466 break;
4467 }
4468#endif
4469 /* includes fragments */
4470 default:
4471 break;
4472 }
4473out:
4474 return ret;
4475}
4476
4477#endif /* IPV6 */
4478
4479static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4480 char **_addrp, int src, u8 *proto)
4481{
4482 char *addrp;
4483 int ret;
4484
4485 switch (ad->u.net->family) {
4486 case PF_INET:
4487 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4488 if (ret)
4489 goto parse_error;
4490 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4491 &ad->u.net->v4info.daddr);
4492 goto okay;
4493
4494#if IS_ENABLED(CONFIG_IPV6)
4495 case PF_INET6:
4496 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4497 if (ret)
4498 goto parse_error;
4499 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4500 &ad->u.net->v6info.daddr);
4501 goto okay;
4502#endif /* IPV6 */
4503 default:
4504 addrp = NULL;
4505 goto okay;
4506 }
4507
4508parse_error:
4509 pr_warn(
4510 "SELinux: failure in selinux_parse_skb(),"
4511 " unable to parse packet\n");
4512 return ret;
4513
4514okay:
4515 if (_addrp)
4516 *_addrp = addrp;
4517 return 0;
4518}
4519
4520/**
4521 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4522 * @skb: the packet
4523 * @family: protocol family
4524 * @sid: the packet's peer label SID
4525 *
4526 * Description:
4527 * Check the various different forms of network peer labeling and determine
4528 * the peer label/SID for the packet; most of the magic actually occurs in
4529 * the security server function security_net_peersid_cmp(). The function
4530 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4531 * or -EACCES if @sid is invalid due to inconsistencies with the different
4532 * peer labels.
4533 *
4534 */
4535static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4536{
4537 int err;
4538 u32 xfrm_sid;
4539 u32 nlbl_sid;
4540 u32 nlbl_type;
4541
4542 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4543 if (unlikely(err))
4544 return -EACCES;
4545 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4546 if (unlikely(err))
4547 return -EACCES;
4548
4549 err = security_net_peersid_resolve(nlbl_sid,
4550 nlbl_type, xfrm_sid, sid);
4551 if (unlikely(err)) {
4552 pr_warn(
4553 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4554 " unable to determine packet's peer label\n");
4555 return -EACCES;
4556 }
4557
4558 return 0;
4559}
4560
4561/**
4562 * selinux_conn_sid - Determine the child socket label for a connection
4563 * @sk_sid: the parent socket's SID
4564 * @skb_sid: the packet's SID
4565 * @conn_sid: the resulting connection SID
4566 *
4567 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4568 * combined with the MLS information from @skb_sid in order to create
4569 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4570 * of @sk_sid. Returns zero on success, negative values on failure.
4571 *
4572 */
4573static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4574{
4575 int err = 0;
4576
4577 if (skb_sid != SECSID_NULL)
4578 err = security_sid_mls_copy(sk_sid, skb_sid,
4579 conn_sid);
4580 else
4581 *conn_sid = sk_sid;
4582
4583 return err;
4584}
4585
4586/* socket security operations */
4587
4588static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4589 u16 secclass, u32 *socksid)
4590{
4591 if (tsec->sockcreate_sid > SECSID_NULL) {
4592 *socksid = tsec->sockcreate_sid;
4593 return 0;
4594 }
4595
4596 return security_transition_sid(tsec->sid, tsec->sid,
4597 secclass, NULL, socksid);
4598}
4599
4600static bool sock_skip_has_perm(u32 sid)
4601{
4602 if (sid == SECINITSID_KERNEL)
4603 return true;
4604
4605 /*
4606 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4607 * inherited the kernel context from early boot used to be skipped
4608 * here, so preserve that behavior unless the capability is set.
4609 *
4610 * By setting the capability the policy signals that it is ready
4611 * for this quirk to be fixed. Note that sockets created by a kernel
4612 * thread or a usermode helper executed without a transition will
4613 * still be skipped in this check regardless of the policycap
4614 * setting.
4615 */
4616 if (!selinux_policycap_userspace_initial_context() &&
4617 sid == SECINITSID_INIT)
4618 return true;
4619 return false;
4620}
4621
4622
4623static int sock_has_perm(struct sock *sk, u32 perms)
4624{
4625 struct sk_security_struct *sksec = sk->sk_security;
4626 struct common_audit_data ad;
4627 struct lsm_network_audit net;
4628
4629 if (sock_skip_has_perm(sksec->sid))
4630 return 0;
4631
4632 ad_net_init_from_sk(&ad, &net, sk);
4633
4634 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4635 &ad);
4636}
4637
4638static int selinux_socket_create(int family, int type,
4639 int protocol, int kern)
4640{
4641 const struct task_security_struct *tsec = selinux_cred(current_cred());
4642 u32 newsid;
4643 u16 secclass;
4644 int rc;
4645
4646 if (kern)
4647 return 0;
4648
4649 secclass = socket_type_to_security_class(family, type, protocol);
4650 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4651 if (rc)
4652 return rc;
4653
4654 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4655}
4656
4657static int selinux_socket_post_create(struct socket *sock, int family,
4658 int type, int protocol, int kern)
4659{
4660 const struct task_security_struct *tsec = selinux_cred(current_cred());
4661 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4662 struct sk_security_struct *sksec;
4663 u16 sclass = socket_type_to_security_class(family, type, protocol);
4664 u32 sid = SECINITSID_KERNEL;
4665 int err = 0;
4666
4667 if (!kern) {
4668 err = socket_sockcreate_sid(tsec, sclass, &sid);
4669 if (err)
4670 return err;
4671 }
4672
4673 isec->sclass = sclass;
4674 isec->sid = sid;
4675 isec->initialized = LABEL_INITIALIZED;
4676
4677 if (sock->sk) {
4678 sksec = selinux_sock(sock->sk);
4679 sksec->sclass = sclass;
4680 sksec->sid = sid;
4681 /* Allows detection of the first association on this socket */
4682 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4684
4685 err = selinux_netlbl_socket_post_create(sock->sk, family);
4686 }
4687
4688 return err;
4689}
4690
4691static int selinux_socket_socketpair(struct socket *socka,
4692 struct socket *sockb)
4693{
4694 struct sk_security_struct *sksec_a = selinux_sock(socka->sk);
4695 struct sk_security_struct *sksec_b = selinux_sock(sockb->sk);
4696
4697 sksec_a->peer_sid = sksec_b->sid;
4698 sksec_b->peer_sid = sksec_a->sid;
4699
4700 return 0;
4701}
4702
4703/* Range of port numbers used to automatically bind.
4704 Need to determine whether we should perform a name_bind
4705 permission check between the socket and the port number. */
4706
4707static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4708{
4709 struct sock *sk = sock->sk;
4710 struct sk_security_struct *sksec = selinux_sock(sk);
4711 u16 family;
4712 int err;
4713
4714 err = sock_has_perm(sk, SOCKET__BIND);
4715 if (err)
4716 goto out;
4717
4718 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4719 family = sk->sk_family;
4720 if (family == PF_INET || family == PF_INET6) {
4721 char *addrp;
4722 struct common_audit_data ad;
4723 struct lsm_network_audit net = {0,};
4724 struct sockaddr_in *addr4 = NULL;
4725 struct sockaddr_in6 *addr6 = NULL;
4726 u16 family_sa;
4727 unsigned short snum;
4728 u32 sid, node_perm;
4729
4730 /*
4731 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4732 * that validates multiple binding addresses. Because of this
4733 * need to check address->sa_family as it is possible to have
4734 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4735 */
4736 if (addrlen < offsetofend(struct sockaddr, sa_family))
4737 return -EINVAL;
4738 family_sa = address->sa_family;
4739 switch (family_sa) {
4740 case AF_UNSPEC:
4741 case AF_INET:
4742 if (addrlen < sizeof(struct sockaddr_in))
4743 return -EINVAL;
4744 addr4 = (struct sockaddr_in *)address;
4745 if (family_sa == AF_UNSPEC) {
4746 if (family == PF_INET6) {
4747 /* Length check from inet6_bind_sk() */
4748 if (addrlen < SIN6_LEN_RFC2133)
4749 return -EINVAL;
4750 /* Family check from __inet6_bind() */
4751 goto err_af;
4752 }
4753 /* see __inet_bind(), we only want to allow
4754 * AF_UNSPEC if the address is INADDR_ANY
4755 */
4756 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4757 goto err_af;
4758 family_sa = AF_INET;
4759 }
4760 snum = ntohs(addr4->sin_port);
4761 addrp = (char *)&addr4->sin_addr.s_addr;
4762 break;
4763 case AF_INET6:
4764 if (addrlen < SIN6_LEN_RFC2133)
4765 return -EINVAL;
4766 addr6 = (struct sockaddr_in6 *)address;
4767 snum = ntohs(addr6->sin6_port);
4768 addrp = (char *)&addr6->sin6_addr.s6_addr;
4769 break;
4770 default:
4771 goto err_af;
4772 }
4773
4774 ad.type = LSM_AUDIT_DATA_NET;
4775 ad.u.net = &net;
4776 ad.u.net->sport = htons(snum);
4777 ad.u.net->family = family_sa;
4778
4779 if (snum) {
4780 int low, high;
4781
4782 inet_get_local_port_range(sock_net(sk), &low, &high);
4783
4784 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4785 snum < low || snum > high) {
4786 err = sel_netport_sid(sk->sk_protocol,
4787 snum, &sid);
4788 if (err)
4789 goto out;
4790 err = avc_has_perm(sksec->sid, sid,
4791 sksec->sclass,
4792 SOCKET__NAME_BIND, &ad);
4793 if (err)
4794 goto out;
4795 }
4796 }
4797
4798 switch (sksec->sclass) {
4799 case SECCLASS_TCP_SOCKET:
4800 node_perm = TCP_SOCKET__NODE_BIND;
4801 break;
4802
4803 case SECCLASS_UDP_SOCKET:
4804 node_perm = UDP_SOCKET__NODE_BIND;
4805 break;
4806
4807 case SECCLASS_DCCP_SOCKET:
4808 node_perm = DCCP_SOCKET__NODE_BIND;
4809 break;
4810
4811 case SECCLASS_SCTP_SOCKET:
4812 node_perm = SCTP_SOCKET__NODE_BIND;
4813 break;
4814
4815 default:
4816 node_perm = RAWIP_SOCKET__NODE_BIND;
4817 break;
4818 }
4819
4820 err = sel_netnode_sid(addrp, family_sa, &sid);
4821 if (err)
4822 goto out;
4823
4824 if (family_sa == AF_INET)
4825 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4826 else
4827 ad.u.net->v6info.saddr = addr6->sin6_addr;
4828
4829 err = avc_has_perm(sksec->sid, sid,
4830 sksec->sclass, node_perm, &ad);
4831 if (err)
4832 goto out;
4833 }
4834out:
4835 return err;
4836err_af:
4837 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4838 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4839 return -EINVAL;
4840 return -EAFNOSUPPORT;
4841}
4842
4843/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4844 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4845 */
4846static int selinux_socket_connect_helper(struct socket *sock,
4847 struct sockaddr *address, int addrlen)
4848{
4849 struct sock *sk = sock->sk;
4850 struct sk_security_struct *sksec = selinux_sock(sk);
4851 int err;
4852
4853 err = sock_has_perm(sk, SOCKET__CONNECT);
4854 if (err)
4855 return err;
4856 if (addrlen < offsetofend(struct sockaddr, sa_family))
4857 return -EINVAL;
4858
4859 /* connect(AF_UNSPEC) has special handling, as it is a documented
4860 * way to disconnect the socket
4861 */
4862 if (address->sa_family == AF_UNSPEC)
4863 return 0;
4864
4865 /*
4866 * If a TCP, DCCP or SCTP socket, check name_connect permission
4867 * for the port.
4868 */
4869 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4870 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4871 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4872 struct common_audit_data ad;
4873 struct lsm_network_audit net = {0,};
4874 struct sockaddr_in *addr4 = NULL;
4875 struct sockaddr_in6 *addr6 = NULL;
4876 unsigned short snum;
4877 u32 sid, perm;
4878
4879 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4880 * that validates multiple connect addresses. Because of this
4881 * need to check address->sa_family as it is possible to have
4882 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4883 */
4884 switch (address->sa_family) {
4885 case AF_INET:
4886 addr4 = (struct sockaddr_in *)address;
4887 if (addrlen < sizeof(struct sockaddr_in))
4888 return -EINVAL;
4889 snum = ntohs(addr4->sin_port);
4890 break;
4891 case AF_INET6:
4892 addr6 = (struct sockaddr_in6 *)address;
4893 if (addrlen < SIN6_LEN_RFC2133)
4894 return -EINVAL;
4895 snum = ntohs(addr6->sin6_port);
4896 break;
4897 default:
4898 /* Note that SCTP services expect -EINVAL, whereas
4899 * others expect -EAFNOSUPPORT.
4900 */
4901 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4902 return -EINVAL;
4903 else
4904 return -EAFNOSUPPORT;
4905 }
4906
4907 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4908 if (err)
4909 return err;
4910
4911 switch (sksec->sclass) {
4912 case SECCLASS_TCP_SOCKET:
4913 perm = TCP_SOCKET__NAME_CONNECT;
4914 break;
4915 case SECCLASS_DCCP_SOCKET:
4916 perm = DCCP_SOCKET__NAME_CONNECT;
4917 break;
4918 case SECCLASS_SCTP_SOCKET:
4919 perm = SCTP_SOCKET__NAME_CONNECT;
4920 break;
4921 }
4922
4923 ad.type = LSM_AUDIT_DATA_NET;
4924 ad.u.net = &net;
4925 ad.u.net->dport = htons(snum);
4926 ad.u.net->family = address->sa_family;
4927 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4928 if (err)
4929 return err;
4930 }
4931
4932 return 0;
4933}
4934
4935/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4936static int selinux_socket_connect(struct socket *sock,
4937 struct sockaddr *address, int addrlen)
4938{
4939 int err;
4940 struct sock *sk = sock->sk;
4941
4942 err = selinux_socket_connect_helper(sock, address, addrlen);
4943 if (err)
4944 return err;
4945
4946 return selinux_netlbl_socket_connect(sk, address);
4947}
4948
4949static int selinux_socket_listen(struct socket *sock, int backlog)
4950{
4951 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4952}
4953
4954static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4955{
4956 int err;
4957 struct inode_security_struct *isec;
4958 struct inode_security_struct *newisec;
4959 u16 sclass;
4960 u32 sid;
4961
4962 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4963 if (err)
4964 return err;
4965
4966 isec = inode_security_novalidate(SOCK_INODE(sock));
4967 spin_lock(&isec->lock);
4968 sclass = isec->sclass;
4969 sid = isec->sid;
4970 spin_unlock(&isec->lock);
4971
4972 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4973 newisec->sclass = sclass;
4974 newisec->sid = sid;
4975 newisec->initialized = LABEL_INITIALIZED;
4976
4977 return 0;
4978}
4979
4980static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4981 int size)
4982{
4983 return sock_has_perm(sock->sk, SOCKET__WRITE);
4984}
4985
4986static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4987 int size, int flags)
4988{
4989 return sock_has_perm(sock->sk, SOCKET__READ);
4990}
4991
4992static int selinux_socket_getsockname(struct socket *sock)
4993{
4994 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4995}
4996
4997static int selinux_socket_getpeername(struct socket *sock)
4998{
4999 return sock_has_perm(sock->sk, SOCKET__GETATTR);
5000}
5001
5002static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5003{
5004 int err;
5005
5006 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5007 if (err)
5008 return err;
5009
5010 return selinux_netlbl_socket_setsockopt(sock, level, optname);
5011}
5012
5013static int selinux_socket_getsockopt(struct socket *sock, int level,
5014 int optname)
5015{
5016 return sock_has_perm(sock->sk, SOCKET__GETOPT);
5017}
5018
5019static int selinux_socket_shutdown(struct socket *sock, int how)
5020{
5021 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5022}
5023
5024static int selinux_socket_unix_stream_connect(struct sock *sock,
5025 struct sock *other,
5026 struct sock *newsk)
5027{
5028 struct sk_security_struct *sksec_sock = selinux_sock(sock);
5029 struct sk_security_struct *sksec_other = selinux_sock(other);
5030 struct sk_security_struct *sksec_new = selinux_sock(newsk);
5031 struct common_audit_data ad;
5032 struct lsm_network_audit net;
5033 int err;
5034
5035 ad_net_init_from_sk(&ad, &net, other);
5036
5037 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5038 sksec_other->sclass,
5039 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5040 if (err)
5041 return err;
5042
5043 /* server child socket */
5044 sksec_new->peer_sid = sksec_sock->sid;
5045 err = security_sid_mls_copy(sksec_other->sid,
5046 sksec_sock->sid, &sksec_new->sid);
5047 if (err)
5048 return err;
5049
5050 /* connecting socket */
5051 sksec_sock->peer_sid = sksec_new->sid;
5052
5053 return 0;
5054}
5055
5056static int selinux_socket_unix_may_send(struct socket *sock,
5057 struct socket *other)
5058{
5059 struct sk_security_struct *ssec = selinux_sock(sock->sk);
5060 struct sk_security_struct *osec = selinux_sock(other->sk);
5061 struct common_audit_data ad;
5062 struct lsm_network_audit net;
5063
5064 ad_net_init_from_sk(&ad, &net, other->sk);
5065
5066 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5067 &ad);
5068}
5069
5070static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5071 char *addrp, u16 family, u32 peer_sid,
5072 struct common_audit_data *ad)
5073{
5074 int err;
5075 u32 if_sid;
5076 u32 node_sid;
5077
5078 err = sel_netif_sid(ns, ifindex, &if_sid);
5079 if (err)
5080 return err;
5081 err = avc_has_perm(peer_sid, if_sid,
5082 SECCLASS_NETIF, NETIF__INGRESS, ad);
5083 if (err)
5084 return err;
5085
5086 err = sel_netnode_sid(addrp, family, &node_sid);
5087 if (err)
5088 return err;
5089 return avc_has_perm(peer_sid, node_sid,
5090 SECCLASS_NODE, NODE__RECVFROM, ad);
5091}
5092
5093static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5094 u16 family)
5095{
5096 int err = 0;
5097 struct sk_security_struct *sksec = selinux_sock(sk);
5098 u32 sk_sid = sksec->sid;
5099 struct common_audit_data ad;
5100 struct lsm_network_audit net;
5101 char *addrp;
5102
5103 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5104 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5105 if (err)
5106 return err;
5107
5108 if (selinux_secmark_enabled()) {
5109 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5110 PACKET__RECV, &ad);
5111 if (err)
5112 return err;
5113 }
5114
5115 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5116 if (err)
5117 return err;
5118 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5119
5120 return err;
5121}
5122
5123static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5124{
5125 int err, peerlbl_active, secmark_active;
5126 struct sk_security_struct *sksec = selinux_sock(sk);
5127 u16 family = sk->sk_family;
5128 u32 sk_sid = sksec->sid;
5129 struct common_audit_data ad;
5130 struct lsm_network_audit net;
5131 char *addrp;
5132
5133 if (family != PF_INET && family != PF_INET6)
5134 return 0;
5135
5136 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5137 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5138 family = PF_INET;
5139
5140 /* If any sort of compatibility mode is enabled then handoff processing
5141 * to the selinux_sock_rcv_skb_compat() function to deal with the
5142 * special handling. We do this in an attempt to keep this function
5143 * as fast and as clean as possible. */
5144 if (!selinux_policycap_netpeer())
5145 return selinux_sock_rcv_skb_compat(sk, skb, family);
5146
5147 secmark_active = selinux_secmark_enabled();
5148 peerlbl_active = selinux_peerlbl_enabled();
5149 if (!secmark_active && !peerlbl_active)
5150 return 0;
5151
5152 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5153 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5154 if (err)
5155 return err;
5156
5157 if (peerlbl_active) {
5158 u32 peer_sid;
5159
5160 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5161 if (err)
5162 return err;
5163 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5164 addrp, family, peer_sid, &ad);
5165 if (err) {
5166 selinux_netlbl_err(skb, family, err, 0);
5167 return err;
5168 }
5169 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5170 PEER__RECV, &ad);
5171 if (err) {
5172 selinux_netlbl_err(skb, family, err, 0);
5173 return err;
5174 }
5175 }
5176
5177 if (secmark_active) {
5178 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5179 PACKET__RECV, &ad);
5180 if (err)
5181 return err;
5182 }
5183
5184 return err;
5185}
5186
5187static int selinux_socket_getpeersec_stream(struct socket *sock,
5188 sockptr_t optval, sockptr_t optlen,
5189 unsigned int len)
5190{
5191 int err = 0;
5192 char *scontext = NULL;
5193 u32 scontext_len;
5194 struct sk_security_struct *sksec = selinux_sock(sock->sk);
5195 u32 peer_sid = SECSID_NULL;
5196
5197 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5198 sksec->sclass == SECCLASS_TCP_SOCKET ||
5199 sksec->sclass == SECCLASS_SCTP_SOCKET)
5200 peer_sid = sksec->peer_sid;
5201 if (peer_sid == SECSID_NULL)
5202 return -ENOPROTOOPT;
5203
5204 err = security_sid_to_context(peer_sid, &scontext,
5205 &scontext_len);
5206 if (err)
5207 return err;
5208 if (scontext_len > len) {
5209 err = -ERANGE;
5210 goto out_len;
5211 }
5212
5213 if (copy_to_sockptr(optval, scontext, scontext_len))
5214 err = -EFAULT;
5215out_len:
5216 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5217 err = -EFAULT;
5218 kfree(scontext);
5219 return err;
5220}
5221
5222static int selinux_socket_getpeersec_dgram(struct socket *sock,
5223 struct sk_buff *skb, u32 *secid)
5224{
5225 u32 peer_secid = SECSID_NULL;
5226 u16 family;
5227
5228 if (skb && skb->protocol == htons(ETH_P_IP))
5229 family = PF_INET;
5230 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5231 family = PF_INET6;
5232 else if (sock)
5233 family = sock->sk->sk_family;
5234 else {
5235 *secid = SECSID_NULL;
5236 return -EINVAL;
5237 }
5238
5239 if (sock && family == PF_UNIX) {
5240 struct inode_security_struct *isec;
5241 isec = inode_security_novalidate(SOCK_INODE(sock));
5242 peer_secid = isec->sid;
5243 } else if (skb)
5244 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5245
5246 *secid = peer_secid;
5247 if (peer_secid == SECSID_NULL)
5248 return -ENOPROTOOPT;
5249 return 0;
5250}
5251
5252static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5253{
5254 struct sk_security_struct *sksec = selinux_sock(sk);
5255
5256 sksec->peer_sid = SECINITSID_UNLABELED;
5257 sksec->sid = SECINITSID_UNLABELED;
5258 sksec->sclass = SECCLASS_SOCKET;
5259 selinux_netlbl_sk_security_reset(sksec);
5260
5261 return 0;
5262}
5263
5264static void selinux_sk_free_security(struct sock *sk)
5265{
5266 struct sk_security_struct *sksec = selinux_sock(sk);
5267
5268 selinux_netlbl_sk_security_free(sksec);
5269}
5270
5271static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5272{
5273 struct sk_security_struct *sksec = selinux_sock(sk);
5274 struct sk_security_struct *newsksec = selinux_sock(newsk);
5275
5276 newsksec->sid = sksec->sid;
5277 newsksec->peer_sid = sksec->peer_sid;
5278 newsksec->sclass = sksec->sclass;
5279
5280 selinux_netlbl_sk_security_reset(newsksec);
5281}
5282
5283static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5284{
5285 if (!sk)
5286 *secid = SECINITSID_ANY_SOCKET;
5287 else {
5288 const struct sk_security_struct *sksec = selinux_sock(sk);
5289
5290 *secid = sksec->sid;
5291 }
5292}
5293
5294static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5295{
5296 struct inode_security_struct *isec =
5297 inode_security_novalidate(SOCK_INODE(parent));
5298 struct sk_security_struct *sksec = selinux_sock(sk);
5299
5300 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5301 sk->sk_family == PF_UNIX)
5302 isec->sid = sksec->sid;
5303 sksec->sclass = isec->sclass;
5304}
5305
5306/*
5307 * Determines peer_secid for the asoc and updates socket's peer label
5308 * if it's the first association on the socket.
5309 */
5310static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5311 struct sk_buff *skb)
5312{
5313 struct sock *sk = asoc->base.sk;
5314 u16 family = sk->sk_family;
5315 struct sk_security_struct *sksec = selinux_sock(sk);
5316 struct common_audit_data ad;
5317 struct lsm_network_audit net;
5318 int err;
5319
5320 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5321 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5322 family = PF_INET;
5323
5324 if (selinux_peerlbl_enabled()) {
5325 asoc->peer_secid = SECSID_NULL;
5326
5327 /* This will return peer_sid = SECSID_NULL if there are
5328 * no peer labels, see security_net_peersid_resolve().
5329 */
5330 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5331 if (err)
5332 return err;
5333
5334 if (asoc->peer_secid == SECSID_NULL)
5335 asoc->peer_secid = SECINITSID_UNLABELED;
5336 } else {
5337 asoc->peer_secid = SECINITSID_UNLABELED;
5338 }
5339
5340 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5341 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5342
5343 /* Here as first association on socket. As the peer SID
5344 * was allowed by peer recv (and the netif/node checks),
5345 * then it is approved by policy and used as the primary
5346 * peer SID for getpeercon(3).
5347 */
5348 sksec->peer_sid = asoc->peer_secid;
5349 } else if (sksec->peer_sid != asoc->peer_secid) {
5350 /* Other association peer SIDs are checked to enforce
5351 * consistency among the peer SIDs.
5352 */
5353 ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5354 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5355 sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5356 &ad);
5357 if (err)
5358 return err;
5359 }
5360 return 0;
5361}
5362
5363/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5364 * happens on an incoming connect(2), sctp_connectx(3) or
5365 * sctp_sendmsg(3) (with no association already present).
5366 */
5367static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5368 struct sk_buff *skb)
5369{
5370 struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5371 u32 conn_sid;
5372 int err;
5373
5374 if (!selinux_policycap_extsockclass())
5375 return 0;
5376
5377 err = selinux_sctp_process_new_assoc(asoc, skb);
5378 if (err)
5379 return err;
5380
5381 /* Compute the MLS component for the connection and store
5382 * the information in asoc. This will be used by SCTP TCP type
5383 * sockets and peeled off connections as they cause a new
5384 * socket to be generated. selinux_sctp_sk_clone() will then
5385 * plug this into the new socket.
5386 */
5387 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5388 if (err)
5389 return err;
5390
5391 asoc->secid = conn_sid;
5392
5393 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5394 return selinux_netlbl_sctp_assoc_request(asoc, skb);
5395}
5396
5397/* Called when SCTP receives a COOKIE ACK chunk as the final
5398 * response to an association request (initited by us).
5399 */
5400static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5401 struct sk_buff *skb)
5402{
5403 struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5404
5405 if (!selinux_policycap_extsockclass())
5406 return 0;
5407
5408 /* Inherit secid from the parent socket - this will be picked up
5409 * by selinux_sctp_sk_clone() if the association gets peeled off
5410 * into a new socket.
5411 */
5412 asoc->secid = sksec->sid;
5413
5414 return selinux_sctp_process_new_assoc(asoc, skb);
5415}
5416
5417/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5418 * based on their @optname.
5419 */
5420static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5421 struct sockaddr *address,
5422 int addrlen)
5423{
5424 int len, err = 0, walk_size = 0;
5425 void *addr_buf;
5426 struct sockaddr *addr;
5427 struct socket *sock;
5428
5429 if (!selinux_policycap_extsockclass())
5430 return 0;
5431
5432 /* Process one or more addresses that may be IPv4 or IPv6 */
5433 sock = sk->sk_socket;
5434 addr_buf = address;
5435
5436 while (walk_size < addrlen) {
5437 if (walk_size + sizeof(sa_family_t) > addrlen)
5438 return -EINVAL;
5439
5440 addr = addr_buf;
5441 switch (addr->sa_family) {
5442 case AF_UNSPEC:
5443 case AF_INET:
5444 len = sizeof(struct sockaddr_in);
5445 break;
5446 case AF_INET6:
5447 len = sizeof(struct sockaddr_in6);
5448 break;
5449 default:
5450 return -EINVAL;
5451 }
5452
5453 if (walk_size + len > addrlen)
5454 return -EINVAL;
5455
5456 err = -EINVAL;
5457 switch (optname) {
5458 /* Bind checks */
5459 case SCTP_PRIMARY_ADDR:
5460 case SCTP_SET_PEER_PRIMARY_ADDR:
5461 case SCTP_SOCKOPT_BINDX_ADD:
5462 err = selinux_socket_bind(sock, addr, len);
5463 break;
5464 /* Connect checks */
5465 case SCTP_SOCKOPT_CONNECTX:
5466 case SCTP_PARAM_SET_PRIMARY:
5467 case SCTP_PARAM_ADD_IP:
5468 case SCTP_SENDMSG_CONNECT:
5469 err = selinux_socket_connect_helper(sock, addr, len);
5470 if (err)
5471 return err;
5472
5473 /* As selinux_sctp_bind_connect() is called by the
5474 * SCTP protocol layer, the socket is already locked,
5475 * therefore selinux_netlbl_socket_connect_locked()
5476 * is called here. The situations handled are:
5477 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5478 * whenever a new IP address is added or when a new
5479 * primary address is selected.
5480 * Note that an SCTP connect(2) call happens before
5481 * the SCTP protocol layer and is handled via
5482 * selinux_socket_connect().
5483 */
5484 err = selinux_netlbl_socket_connect_locked(sk, addr);
5485 break;
5486 }
5487
5488 if (err)
5489 return err;
5490
5491 addr_buf += len;
5492 walk_size += len;
5493 }
5494
5495 return 0;
5496}
5497
5498/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5499static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5500 struct sock *newsk)
5501{
5502 struct sk_security_struct *sksec = selinux_sock(sk);
5503 struct sk_security_struct *newsksec = selinux_sock(newsk);
5504
5505 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5506 * the non-sctp clone version.
5507 */
5508 if (!selinux_policycap_extsockclass())
5509 return selinux_sk_clone_security(sk, newsk);
5510
5511 newsksec->sid = asoc->secid;
5512 newsksec->peer_sid = asoc->peer_secid;
5513 newsksec->sclass = sksec->sclass;
5514 selinux_netlbl_sctp_sk_clone(sk, newsk);
5515}
5516
5517static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5518{
5519 struct sk_security_struct *ssksec = selinux_sock(ssk);
5520 struct sk_security_struct *sksec = selinux_sock(sk);
5521
5522 ssksec->sclass = sksec->sclass;
5523 ssksec->sid = sksec->sid;
5524
5525 /* replace the existing subflow label deleting the existing one
5526 * and re-recreating a new label using the updated context
5527 */
5528 selinux_netlbl_sk_security_free(ssksec);
5529 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5530}
5531
5532static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5533 struct request_sock *req)
5534{
5535 struct sk_security_struct *sksec = selinux_sock(sk);
5536 int err;
5537 u16 family = req->rsk_ops->family;
5538 u32 connsid;
5539 u32 peersid;
5540
5541 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5542 if (err)
5543 return err;
5544 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5545 if (err)
5546 return err;
5547 req->secid = connsid;
5548 req->peer_secid = peersid;
5549
5550 return selinux_netlbl_inet_conn_request(req, family);
5551}
5552
5553static void selinux_inet_csk_clone(struct sock *newsk,
5554 const struct request_sock *req)
5555{
5556 struct sk_security_struct *newsksec = selinux_sock(newsk);
5557
5558 newsksec->sid = req->secid;
5559 newsksec->peer_sid = req->peer_secid;
5560 /* NOTE: Ideally, we should also get the isec->sid for the
5561 new socket in sync, but we don't have the isec available yet.
5562 So we will wait until sock_graft to do it, by which
5563 time it will have been created and available. */
5564
5565 /* We don't need to take any sort of lock here as we are the only
5566 * thread with access to newsksec */
5567 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5568}
5569
5570static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5571{
5572 u16 family = sk->sk_family;
5573 struct sk_security_struct *sksec = selinux_sock(sk);
5574
5575 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5576 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5577 family = PF_INET;
5578
5579 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5580}
5581
5582static int selinux_secmark_relabel_packet(u32 sid)
5583{
5584 return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
5585 NULL);
5586}
5587
5588static void selinux_secmark_refcount_inc(void)
5589{
5590 atomic_inc(&selinux_secmark_refcount);
5591}
5592
5593static void selinux_secmark_refcount_dec(void)
5594{
5595 atomic_dec(&selinux_secmark_refcount);
5596}
5597
5598static void selinux_req_classify_flow(const struct request_sock *req,
5599 struct flowi_common *flic)
5600{
5601 flic->flowic_secid = req->secid;
5602}
5603
5604static int selinux_tun_dev_alloc_security(void *security)
5605{
5606 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5607
5608 tunsec->sid = current_sid();
5609 return 0;
5610}
5611
5612static int selinux_tun_dev_create(void)
5613{
5614 u32 sid = current_sid();
5615
5616 /* we aren't taking into account the "sockcreate" SID since the socket
5617 * that is being created here is not a socket in the traditional sense,
5618 * instead it is a private sock, accessible only to the kernel, and
5619 * representing a wide range of network traffic spanning multiple
5620 * connections unlike traditional sockets - check the TUN driver to
5621 * get a better understanding of why this socket is special */
5622
5623 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5624 NULL);
5625}
5626
5627static int selinux_tun_dev_attach_queue(void *security)
5628{
5629 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5630
5631 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5632 TUN_SOCKET__ATTACH_QUEUE, NULL);
5633}
5634
5635static int selinux_tun_dev_attach(struct sock *sk, void *security)
5636{
5637 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5638 struct sk_security_struct *sksec = selinux_sock(sk);
5639
5640 /* we don't currently perform any NetLabel based labeling here and it
5641 * isn't clear that we would want to do so anyway; while we could apply
5642 * labeling without the support of the TUN user the resulting labeled
5643 * traffic from the other end of the connection would almost certainly
5644 * cause confusion to the TUN user that had no idea network labeling
5645 * protocols were being used */
5646
5647 sksec->sid = tunsec->sid;
5648 sksec->sclass = SECCLASS_TUN_SOCKET;
5649
5650 return 0;
5651}
5652
5653static int selinux_tun_dev_open(void *security)
5654{
5655 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5656 u32 sid = current_sid();
5657 int err;
5658
5659 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5660 TUN_SOCKET__RELABELFROM, NULL);
5661 if (err)
5662 return err;
5663 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5664 TUN_SOCKET__RELABELTO, NULL);
5665 if (err)
5666 return err;
5667 tunsec->sid = sid;
5668
5669 return 0;
5670}
5671
5672#ifdef CONFIG_NETFILTER
5673
5674static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5675 const struct nf_hook_state *state)
5676{
5677 int ifindex;
5678 u16 family;
5679 char *addrp;
5680 u32 peer_sid;
5681 struct common_audit_data ad;
5682 struct lsm_network_audit net;
5683 int secmark_active, peerlbl_active;
5684
5685 if (!selinux_policycap_netpeer())
5686 return NF_ACCEPT;
5687
5688 secmark_active = selinux_secmark_enabled();
5689 peerlbl_active = selinux_peerlbl_enabled();
5690 if (!secmark_active && !peerlbl_active)
5691 return NF_ACCEPT;
5692
5693 family = state->pf;
5694 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5695 return NF_DROP;
5696
5697 ifindex = state->in->ifindex;
5698 ad_net_init_from_iif(&ad, &net, ifindex, family);
5699 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5700 return NF_DROP;
5701
5702 if (peerlbl_active) {
5703 int err;
5704
5705 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5706 addrp, family, peer_sid, &ad);
5707 if (err) {
5708 selinux_netlbl_err(skb, family, err, 1);
5709 return NF_DROP;
5710 }
5711 }
5712
5713 if (secmark_active)
5714 if (avc_has_perm(peer_sid, skb->secmark,
5715 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5716 return NF_DROP;
5717
5718 if (netlbl_enabled())
5719 /* we do this in the FORWARD path and not the POST_ROUTING
5720 * path because we want to make sure we apply the necessary
5721 * labeling before IPsec is applied so we can leverage AH
5722 * protection */
5723 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5724 return NF_DROP;
5725
5726 return NF_ACCEPT;
5727}
5728
5729static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5730 const struct nf_hook_state *state)
5731{
5732 struct sock *sk;
5733 u32 sid;
5734
5735 if (!netlbl_enabled())
5736 return NF_ACCEPT;
5737
5738 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5739 * because we want to make sure we apply the necessary labeling
5740 * before IPsec is applied so we can leverage AH protection */
5741 sk = sk_to_full_sk(skb->sk);
5742 if (sk) {
5743 struct sk_security_struct *sksec;
5744
5745 if (sk_listener(sk))
5746 /* if the socket is the listening state then this
5747 * packet is a SYN-ACK packet which means it needs to
5748 * be labeled based on the connection/request_sock and
5749 * not the parent socket. unfortunately, we can't
5750 * lookup the request_sock yet as it isn't queued on
5751 * the parent socket until after the SYN-ACK is sent.
5752 * the "solution" is to simply pass the packet as-is
5753 * as any IP option based labeling should be copied
5754 * from the initial connection request (in the IP
5755 * layer). it is far from ideal, but until we get a
5756 * security label in the packet itself this is the
5757 * best we can do. */
5758 return NF_ACCEPT;
5759
5760 /* standard practice, label using the parent socket */
5761 sksec = selinux_sock(sk);
5762 sid = sksec->sid;
5763 } else
5764 sid = SECINITSID_KERNEL;
5765 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5766 return NF_DROP;
5767
5768 return NF_ACCEPT;
5769}
5770
5771
5772static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5773 const struct nf_hook_state *state)
5774{
5775 struct sock *sk;
5776 struct sk_security_struct *sksec;
5777 struct common_audit_data ad;
5778 struct lsm_network_audit net;
5779 u8 proto = 0;
5780
5781 sk = skb_to_full_sk(skb);
5782 if (sk == NULL)
5783 return NF_ACCEPT;
5784 sksec = selinux_sock(sk);
5785
5786 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5787 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5788 return NF_DROP;
5789
5790 if (selinux_secmark_enabled())
5791 if (avc_has_perm(sksec->sid, skb->secmark,
5792 SECCLASS_PACKET, PACKET__SEND, &ad))
5793 return NF_DROP_ERR(-ECONNREFUSED);
5794
5795 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5796 return NF_DROP_ERR(-ECONNREFUSED);
5797
5798 return NF_ACCEPT;
5799}
5800
5801static unsigned int selinux_ip_postroute(void *priv,
5802 struct sk_buff *skb,
5803 const struct nf_hook_state *state)
5804{
5805 u16 family;
5806 u32 secmark_perm;
5807 u32 peer_sid;
5808 int ifindex;
5809 struct sock *sk;
5810 struct common_audit_data ad;
5811 struct lsm_network_audit net;
5812 char *addrp;
5813 int secmark_active, peerlbl_active;
5814
5815 /* If any sort of compatibility mode is enabled then handoff processing
5816 * to the selinux_ip_postroute_compat() function to deal with the
5817 * special handling. We do this in an attempt to keep this function
5818 * as fast and as clean as possible. */
5819 if (!selinux_policycap_netpeer())
5820 return selinux_ip_postroute_compat(skb, state);
5821
5822 secmark_active = selinux_secmark_enabled();
5823 peerlbl_active = selinux_peerlbl_enabled();
5824 if (!secmark_active && !peerlbl_active)
5825 return NF_ACCEPT;
5826
5827 sk = skb_to_full_sk(skb);
5828
5829#ifdef CONFIG_XFRM
5830 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5831 * packet transformation so allow the packet to pass without any checks
5832 * since we'll have another chance to perform access control checks
5833 * when the packet is on it's final way out.
5834 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5835 * is NULL, in this case go ahead and apply access control.
5836 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5837 * TCP listening state we cannot wait until the XFRM processing
5838 * is done as we will miss out on the SA label if we do;
5839 * unfortunately, this means more work, but it is only once per
5840 * connection. */
5841 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5842 !(sk && sk_listener(sk)))
5843 return NF_ACCEPT;
5844#endif
5845
5846 family = state->pf;
5847 if (sk == NULL) {
5848 /* Without an associated socket the packet is either coming
5849 * from the kernel or it is being forwarded; check the packet
5850 * to determine which and if the packet is being forwarded
5851 * query the packet directly to determine the security label. */
5852 if (skb->skb_iif) {
5853 secmark_perm = PACKET__FORWARD_OUT;
5854 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5855 return NF_DROP;
5856 } else {
5857 secmark_perm = PACKET__SEND;
5858 peer_sid = SECINITSID_KERNEL;
5859 }
5860 } else if (sk_listener(sk)) {
5861 /* Locally generated packet but the associated socket is in the
5862 * listening state which means this is a SYN-ACK packet. In
5863 * this particular case the correct security label is assigned
5864 * to the connection/request_sock but unfortunately we can't
5865 * query the request_sock as it isn't queued on the parent
5866 * socket until after the SYN-ACK packet is sent; the only
5867 * viable choice is to regenerate the label like we do in
5868 * selinux_inet_conn_request(). See also selinux_ip_output()
5869 * for similar problems. */
5870 u32 skb_sid;
5871 struct sk_security_struct *sksec;
5872
5873 sksec = selinux_sock(sk);
5874 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5875 return NF_DROP;
5876 /* At this point, if the returned skb peerlbl is SECSID_NULL
5877 * and the packet has been through at least one XFRM
5878 * transformation then we must be dealing with the "final"
5879 * form of labeled IPsec packet; since we've already applied
5880 * all of our access controls on this packet we can safely
5881 * pass the packet. */
5882 if (skb_sid == SECSID_NULL) {
5883 switch (family) {
5884 case PF_INET:
5885 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5886 return NF_ACCEPT;
5887 break;
5888 case PF_INET6:
5889 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5890 return NF_ACCEPT;
5891 break;
5892 default:
5893 return NF_DROP_ERR(-ECONNREFUSED);
5894 }
5895 }
5896 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5897 return NF_DROP;
5898 secmark_perm = PACKET__SEND;
5899 } else {
5900 /* Locally generated packet, fetch the security label from the
5901 * associated socket. */
5902 struct sk_security_struct *sksec = selinux_sock(sk);
5903 peer_sid = sksec->sid;
5904 secmark_perm = PACKET__SEND;
5905 }
5906
5907 ifindex = state->out->ifindex;
5908 ad_net_init_from_iif(&ad, &net, ifindex, family);
5909 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5910 return NF_DROP;
5911
5912 if (secmark_active)
5913 if (avc_has_perm(peer_sid, skb->secmark,
5914 SECCLASS_PACKET, secmark_perm, &ad))
5915 return NF_DROP_ERR(-ECONNREFUSED);
5916
5917 if (peerlbl_active) {
5918 u32 if_sid;
5919 u32 node_sid;
5920
5921 if (sel_netif_sid(state->net, ifindex, &if_sid))
5922 return NF_DROP;
5923 if (avc_has_perm(peer_sid, if_sid,
5924 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5925 return NF_DROP_ERR(-ECONNREFUSED);
5926
5927 if (sel_netnode_sid(addrp, family, &node_sid))
5928 return NF_DROP;
5929 if (avc_has_perm(peer_sid, node_sid,
5930 SECCLASS_NODE, NODE__SENDTO, &ad))
5931 return NF_DROP_ERR(-ECONNREFUSED);
5932 }
5933
5934 return NF_ACCEPT;
5935}
5936#endif /* CONFIG_NETFILTER */
5937
5938static int nlmsg_sock_has_extended_perms(struct sock *sk, u32 perms, u16 nlmsg_type)
5939{
5940 struct sk_security_struct *sksec = sk->sk_security;
5941 struct common_audit_data ad;
5942 struct lsm_network_audit net;
5943 u8 driver;
5944 u8 xperm;
5945
5946 if (sock_skip_has_perm(sksec->sid))
5947 return 0;
5948
5949 ad_net_init_from_sk(&ad, &net, sk);
5950
5951 driver = nlmsg_type >> 8;
5952 xperm = nlmsg_type & 0xff;
5953
5954 return avc_has_extended_perms(current_sid(), sksec->sid, sksec->sclass,
5955 perms, driver, AVC_EXT_NLMSG, xperm, &ad);
5956}
5957
5958static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5959{
5960 int rc = 0;
5961 unsigned int msg_len;
5962 unsigned int data_len = skb->len;
5963 unsigned char *data = skb->data;
5964 struct nlmsghdr *nlh;
5965 struct sk_security_struct *sksec = selinux_sock(sk);
5966 u16 sclass = sksec->sclass;
5967 u32 perm;
5968
5969 while (data_len >= nlmsg_total_size(0)) {
5970 nlh = (struct nlmsghdr *)data;
5971
5972 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5973 * users which means we can't reject skb's with bogus
5974 * length fields; our solution is to follow what
5975 * netlink_rcv_skb() does and simply skip processing at
5976 * messages with length fields that are clearly junk
5977 */
5978 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5979 return 0;
5980
5981 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5982 if (rc == 0) {
5983 if (selinux_policycap_netlink_xperm()) {
5984 rc = nlmsg_sock_has_extended_perms(
5985 sk, perm, nlh->nlmsg_type);
5986 } else {
5987 rc = sock_has_perm(sk, perm);
5988 }
5989 if (rc)
5990 return rc;
5991 } else if (rc == -EINVAL) {
5992 /* -EINVAL is a missing msg/perm mapping */
5993 pr_warn_ratelimited("SELinux: unrecognized netlink"
5994 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5995 " pid=%d comm=%s\n",
5996 sk->sk_protocol, nlh->nlmsg_type,
5997 secclass_map[sclass - 1].name,
5998 task_pid_nr(current), current->comm);
5999 if (enforcing_enabled() &&
6000 !security_get_allow_unknown())
6001 return rc;
6002 rc = 0;
6003 } else if (rc == -ENOENT) {
6004 /* -ENOENT is a missing socket/class mapping, ignore */
6005 rc = 0;
6006 } else {
6007 return rc;
6008 }
6009
6010 /* move to the next message after applying netlink padding */
6011 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6012 if (msg_len >= data_len)
6013 return 0;
6014 data_len -= msg_len;
6015 data += msg_len;
6016 }
6017
6018 return rc;
6019}
6020
6021static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6022{
6023 isec->sclass = sclass;
6024 isec->sid = current_sid();
6025}
6026
6027static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6028 u32 perms)
6029{
6030 struct ipc_security_struct *isec;
6031 struct common_audit_data ad;
6032 u32 sid = current_sid();
6033
6034 isec = selinux_ipc(ipc_perms);
6035
6036 ad.type = LSM_AUDIT_DATA_IPC;
6037 ad.u.ipc_id = ipc_perms->key;
6038
6039 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6040}
6041
6042static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6043{
6044 struct msg_security_struct *msec;
6045
6046 msec = selinux_msg_msg(msg);
6047 msec->sid = SECINITSID_UNLABELED;
6048
6049 return 0;
6050}
6051
6052/* message queue security operations */
6053static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6054{
6055 struct ipc_security_struct *isec;
6056 struct common_audit_data ad;
6057 u32 sid = current_sid();
6058
6059 isec = selinux_ipc(msq);
6060 ipc_init_security(isec, SECCLASS_MSGQ);
6061
6062 ad.type = LSM_AUDIT_DATA_IPC;
6063 ad.u.ipc_id = msq->key;
6064
6065 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6066 MSGQ__CREATE, &ad);
6067}
6068
6069static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6070{
6071 struct ipc_security_struct *isec;
6072 struct common_audit_data ad;
6073 u32 sid = current_sid();
6074
6075 isec = selinux_ipc(msq);
6076
6077 ad.type = LSM_AUDIT_DATA_IPC;
6078 ad.u.ipc_id = msq->key;
6079
6080 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6081 MSGQ__ASSOCIATE, &ad);
6082}
6083
6084static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6085{
6086 u32 perms;
6087
6088 switch (cmd) {
6089 case IPC_INFO:
6090 case MSG_INFO:
6091 /* No specific object, just general system-wide information. */
6092 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6093 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6094 case IPC_STAT:
6095 case MSG_STAT:
6096 case MSG_STAT_ANY:
6097 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6098 break;
6099 case IPC_SET:
6100 perms = MSGQ__SETATTR;
6101 break;
6102 case IPC_RMID:
6103 perms = MSGQ__DESTROY;
6104 break;
6105 default:
6106 return 0;
6107 }
6108
6109 return ipc_has_perm(msq, perms);
6110}
6111
6112static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6113{
6114 struct ipc_security_struct *isec;
6115 struct msg_security_struct *msec;
6116 struct common_audit_data ad;
6117 u32 sid = current_sid();
6118 int rc;
6119
6120 isec = selinux_ipc(msq);
6121 msec = selinux_msg_msg(msg);
6122
6123 /*
6124 * First time through, need to assign label to the message
6125 */
6126 if (msec->sid == SECINITSID_UNLABELED) {
6127 /*
6128 * Compute new sid based on current process and
6129 * message queue this message will be stored in
6130 */
6131 rc = security_transition_sid(sid, isec->sid,
6132 SECCLASS_MSG, NULL, &msec->sid);
6133 if (rc)
6134 return rc;
6135 }
6136
6137 ad.type = LSM_AUDIT_DATA_IPC;
6138 ad.u.ipc_id = msq->key;
6139
6140 /* Can this process write to the queue? */
6141 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6142 MSGQ__WRITE, &ad);
6143 if (!rc)
6144 /* Can this process send the message */
6145 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6146 MSG__SEND, &ad);
6147 if (!rc)
6148 /* Can the message be put in the queue? */
6149 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6150 MSGQ__ENQUEUE, &ad);
6151
6152 return rc;
6153}
6154
6155static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6156 struct task_struct *target,
6157 long type, int mode)
6158{
6159 struct ipc_security_struct *isec;
6160 struct msg_security_struct *msec;
6161 struct common_audit_data ad;
6162 u32 sid = task_sid_obj(target);
6163 int rc;
6164
6165 isec = selinux_ipc(msq);
6166 msec = selinux_msg_msg(msg);
6167
6168 ad.type = LSM_AUDIT_DATA_IPC;
6169 ad.u.ipc_id = msq->key;
6170
6171 rc = avc_has_perm(sid, isec->sid,
6172 SECCLASS_MSGQ, MSGQ__READ, &ad);
6173 if (!rc)
6174 rc = avc_has_perm(sid, msec->sid,
6175 SECCLASS_MSG, MSG__RECEIVE, &ad);
6176 return rc;
6177}
6178
6179/* Shared Memory security operations */
6180static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6181{
6182 struct ipc_security_struct *isec;
6183 struct common_audit_data ad;
6184 u32 sid = current_sid();
6185
6186 isec = selinux_ipc(shp);
6187 ipc_init_security(isec, SECCLASS_SHM);
6188
6189 ad.type = LSM_AUDIT_DATA_IPC;
6190 ad.u.ipc_id = shp->key;
6191
6192 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6193 SHM__CREATE, &ad);
6194}
6195
6196static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6197{
6198 struct ipc_security_struct *isec;
6199 struct common_audit_data ad;
6200 u32 sid = current_sid();
6201
6202 isec = selinux_ipc(shp);
6203
6204 ad.type = LSM_AUDIT_DATA_IPC;
6205 ad.u.ipc_id = shp->key;
6206
6207 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6208 SHM__ASSOCIATE, &ad);
6209}
6210
6211/* Note, at this point, shp is locked down */
6212static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6213{
6214 u32 perms;
6215
6216 switch (cmd) {
6217 case IPC_INFO:
6218 case SHM_INFO:
6219 /* No specific object, just general system-wide information. */
6220 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6221 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6222 case IPC_STAT:
6223 case SHM_STAT:
6224 case SHM_STAT_ANY:
6225 perms = SHM__GETATTR | SHM__ASSOCIATE;
6226 break;
6227 case IPC_SET:
6228 perms = SHM__SETATTR;
6229 break;
6230 case SHM_LOCK:
6231 case SHM_UNLOCK:
6232 perms = SHM__LOCK;
6233 break;
6234 case IPC_RMID:
6235 perms = SHM__DESTROY;
6236 break;
6237 default:
6238 return 0;
6239 }
6240
6241 return ipc_has_perm(shp, perms);
6242}
6243
6244static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6245 char __user *shmaddr, int shmflg)
6246{
6247 u32 perms;
6248
6249 if (shmflg & SHM_RDONLY)
6250 perms = SHM__READ;
6251 else
6252 perms = SHM__READ | SHM__WRITE;
6253
6254 return ipc_has_perm(shp, perms);
6255}
6256
6257/* Semaphore security operations */
6258static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6259{
6260 struct ipc_security_struct *isec;
6261 struct common_audit_data ad;
6262 u32 sid = current_sid();
6263
6264 isec = selinux_ipc(sma);
6265 ipc_init_security(isec, SECCLASS_SEM);
6266
6267 ad.type = LSM_AUDIT_DATA_IPC;
6268 ad.u.ipc_id = sma->key;
6269
6270 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6271 SEM__CREATE, &ad);
6272}
6273
6274static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6275{
6276 struct ipc_security_struct *isec;
6277 struct common_audit_data ad;
6278 u32 sid = current_sid();
6279
6280 isec = selinux_ipc(sma);
6281
6282 ad.type = LSM_AUDIT_DATA_IPC;
6283 ad.u.ipc_id = sma->key;
6284
6285 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6286 SEM__ASSOCIATE, &ad);
6287}
6288
6289/* Note, at this point, sma is locked down */
6290static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6291{
6292 int err;
6293 u32 perms;
6294
6295 switch (cmd) {
6296 case IPC_INFO:
6297 case SEM_INFO:
6298 /* No specific object, just general system-wide information. */
6299 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6300 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6301 case GETPID:
6302 case GETNCNT:
6303 case GETZCNT:
6304 perms = SEM__GETATTR;
6305 break;
6306 case GETVAL:
6307 case GETALL:
6308 perms = SEM__READ;
6309 break;
6310 case SETVAL:
6311 case SETALL:
6312 perms = SEM__WRITE;
6313 break;
6314 case IPC_RMID:
6315 perms = SEM__DESTROY;
6316 break;
6317 case IPC_SET:
6318 perms = SEM__SETATTR;
6319 break;
6320 case IPC_STAT:
6321 case SEM_STAT:
6322 case SEM_STAT_ANY:
6323 perms = SEM__GETATTR | SEM__ASSOCIATE;
6324 break;
6325 default:
6326 return 0;
6327 }
6328
6329 err = ipc_has_perm(sma, perms);
6330 return err;
6331}
6332
6333static int selinux_sem_semop(struct kern_ipc_perm *sma,
6334 struct sembuf *sops, unsigned nsops, int alter)
6335{
6336 u32 perms;
6337
6338 if (alter)
6339 perms = SEM__READ | SEM__WRITE;
6340 else
6341 perms = SEM__READ;
6342
6343 return ipc_has_perm(sma, perms);
6344}
6345
6346static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6347{
6348 u32 av = 0;
6349
6350 av = 0;
6351 if (flag & S_IRUGO)
6352 av |= IPC__UNIX_READ;
6353 if (flag & S_IWUGO)
6354 av |= IPC__UNIX_WRITE;
6355
6356 if (av == 0)
6357 return 0;
6358
6359 return ipc_has_perm(ipcp, av);
6360}
6361
6362static void selinux_ipc_getlsmprop(struct kern_ipc_perm *ipcp,
6363 struct lsm_prop *prop)
6364{
6365 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6366 prop->selinux.secid = isec->sid;
6367}
6368
6369static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6370{
6371 if (inode)
6372 inode_doinit_with_dentry(inode, dentry);
6373}
6374
6375static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6376 char **value)
6377{
6378 const struct task_security_struct *tsec;
6379 int error;
6380 u32 sid;
6381 u32 len;
6382
6383 rcu_read_lock();
6384 tsec = selinux_cred(__task_cred(p));
6385 if (p != current) {
6386 error = avc_has_perm(current_sid(), tsec->sid,
6387 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6388 if (error)
6389 goto err_unlock;
6390 }
6391 switch (attr) {
6392 case LSM_ATTR_CURRENT:
6393 sid = tsec->sid;
6394 break;
6395 case LSM_ATTR_PREV:
6396 sid = tsec->osid;
6397 break;
6398 case LSM_ATTR_EXEC:
6399 sid = tsec->exec_sid;
6400 break;
6401 case LSM_ATTR_FSCREATE:
6402 sid = tsec->create_sid;
6403 break;
6404 case LSM_ATTR_KEYCREATE:
6405 sid = tsec->keycreate_sid;
6406 break;
6407 case LSM_ATTR_SOCKCREATE:
6408 sid = tsec->sockcreate_sid;
6409 break;
6410 default:
6411 error = -EOPNOTSUPP;
6412 goto err_unlock;
6413 }
6414 rcu_read_unlock();
6415
6416 if (sid == SECSID_NULL) {
6417 *value = NULL;
6418 return 0;
6419 }
6420
6421 error = security_sid_to_context(sid, value, &len);
6422 if (error)
6423 return error;
6424 return len;
6425
6426err_unlock:
6427 rcu_read_unlock();
6428 return error;
6429}
6430
6431static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6432{
6433 struct task_security_struct *tsec;
6434 struct cred *new;
6435 u32 mysid = current_sid(), sid = 0, ptsid;
6436 int error;
6437 char *str = value;
6438
6439 /*
6440 * Basic control over ability to set these attributes at all.
6441 */
6442 switch (attr) {
6443 case LSM_ATTR_EXEC:
6444 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6445 PROCESS__SETEXEC, NULL);
6446 break;
6447 case LSM_ATTR_FSCREATE:
6448 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6449 PROCESS__SETFSCREATE, NULL);
6450 break;
6451 case LSM_ATTR_KEYCREATE:
6452 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6453 PROCESS__SETKEYCREATE, NULL);
6454 break;
6455 case LSM_ATTR_SOCKCREATE:
6456 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6457 PROCESS__SETSOCKCREATE, NULL);
6458 break;
6459 case LSM_ATTR_CURRENT:
6460 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6461 PROCESS__SETCURRENT, NULL);
6462 break;
6463 default:
6464 error = -EOPNOTSUPP;
6465 break;
6466 }
6467 if (error)
6468 return error;
6469
6470 /* Obtain a SID for the context, if one was specified. */
6471 if (size && str[0] && str[0] != '\n') {
6472 if (str[size-1] == '\n') {
6473 str[size-1] = 0;
6474 size--;
6475 }
6476 error = security_context_to_sid(value, size,
6477 &sid, GFP_KERNEL);
6478 if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6479 if (!has_cap_mac_admin(true)) {
6480 struct audit_buffer *ab;
6481 size_t audit_size;
6482
6483 /* We strip a nul only if it is at the end,
6484 * otherwise the context contains a nul and
6485 * we should audit that */
6486 if (str[size - 1] == '\0')
6487 audit_size = size - 1;
6488 else
6489 audit_size = size;
6490 ab = audit_log_start(audit_context(),
6491 GFP_ATOMIC,
6492 AUDIT_SELINUX_ERR);
6493 if (!ab)
6494 return error;
6495 audit_log_format(ab, "op=fscreate invalid_context=");
6496 audit_log_n_untrustedstring(ab, value,
6497 audit_size);
6498 audit_log_end(ab);
6499
6500 return error;
6501 }
6502 error = security_context_to_sid_force(value, size,
6503 &sid);
6504 }
6505 if (error)
6506 return error;
6507 }
6508
6509 new = prepare_creds();
6510 if (!new)
6511 return -ENOMEM;
6512
6513 /* Permission checking based on the specified context is
6514 performed during the actual operation (execve,
6515 open/mkdir/...), when we know the full context of the
6516 operation. See selinux_bprm_creds_for_exec for the execve
6517 checks and may_create for the file creation checks. The
6518 operation will then fail if the context is not permitted. */
6519 tsec = selinux_cred(new);
6520 if (attr == LSM_ATTR_EXEC) {
6521 tsec->exec_sid = sid;
6522 } else if (attr == LSM_ATTR_FSCREATE) {
6523 tsec->create_sid = sid;
6524 } else if (attr == LSM_ATTR_KEYCREATE) {
6525 if (sid) {
6526 error = avc_has_perm(mysid, sid,
6527 SECCLASS_KEY, KEY__CREATE, NULL);
6528 if (error)
6529 goto abort_change;
6530 }
6531 tsec->keycreate_sid = sid;
6532 } else if (attr == LSM_ATTR_SOCKCREATE) {
6533 tsec->sockcreate_sid = sid;
6534 } else if (attr == LSM_ATTR_CURRENT) {
6535 error = -EINVAL;
6536 if (sid == 0)
6537 goto abort_change;
6538
6539 if (!current_is_single_threaded()) {
6540 error = security_bounded_transition(tsec->sid, sid);
6541 if (error)
6542 goto abort_change;
6543 }
6544
6545 /* Check permissions for the transition. */
6546 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6547 PROCESS__DYNTRANSITION, NULL);
6548 if (error)
6549 goto abort_change;
6550
6551 /* Check for ptracing, and update the task SID if ok.
6552 Otherwise, leave SID unchanged and fail. */
6553 ptsid = ptrace_parent_sid();
6554 if (ptsid != 0) {
6555 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6556 PROCESS__PTRACE, NULL);
6557 if (error)
6558 goto abort_change;
6559 }
6560
6561 tsec->sid = sid;
6562 } else {
6563 error = -EINVAL;
6564 goto abort_change;
6565 }
6566
6567 commit_creds(new);
6568 return size;
6569
6570abort_change:
6571 abort_creds(new);
6572 return error;
6573}
6574
6575/**
6576 * selinux_getselfattr - Get SELinux current task attributes
6577 * @attr: the requested attribute
6578 * @ctx: buffer to receive the result
6579 * @size: buffer size (input), buffer size used (output)
6580 * @flags: unused
6581 *
6582 * Fill the passed user space @ctx with the details of the requested
6583 * attribute.
6584 *
6585 * Returns the number of attributes on success, an error code otherwise.
6586 * There will only ever be one attribute.
6587 */
6588static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6589 u32 *size, u32 flags)
6590{
6591 int rc;
6592 char *val = NULL;
6593 int val_len;
6594
6595 val_len = selinux_lsm_getattr(attr, current, &val);
6596 if (val_len < 0)
6597 return val_len;
6598 rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6599 kfree(val);
6600 return (!rc ? 1 : rc);
6601}
6602
6603static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6604 u32 size, u32 flags)
6605{
6606 int rc;
6607
6608 rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6609 if (rc > 0)
6610 return 0;
6611 return rc;
6612}
6613
6614static int selinux_getprocattr(struct task_struct *p,
6615 const char *name, char **value)
6616{
6617 unsigned int attr = lsm_name_to_attr(name);
6618 int rc;
6619
6620 if (attr) {
6621 rc = selinux_lsm_getattr(attr, p, value);
6622 if (rc != -EOPNOTSUPP)
6623 return rc;
6624 }
6625
6626 return -EINVAL;
6627}
6628
6629static int selinux_setprocattr(const char *name, void *value, size_t size)
6630{
6631 int attr = lsm_name_to_attr(name);
6632
6633 if (attr)
6634 return selinux_lsm_setattr(attr, value, size);
6635 return -EINVAL;
6636}
6637
6638static int selinux_ismaclabel(const char *name)
6639{
6640 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6641}
6642
6643static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6644{
6645 return security_sid_to_context(secid, secdata, seclen);
6646}
6647
6648static int selinux_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
6649 u32 *seclen)
6650{
6651 return selinux_secid_to_secctx(prop->selinux.secid, secdata, seclen);
6652}
6653
6654static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6655{
6656 return security_context_to_sid(secdata, seclen,
6657 secid, GFP_KERNEL);
6658}
6659
6660static void selinux_release_secctx(char *secdata, u32 seclen)
6661{
6662 kfree(secdata);
6663}
6664
6665static void selinux_inode_invalidate_secctx(struct inode *inode)
6666{
6667 struct inode_security_struct *isec = selinux_inode(inode);
6668
6669 spin_lock(&isec->lock);
6670 isec->initialized = LABEL_INVALID;
6671 spin_unlock(&isec->lock);
6672}
6673
6674/*
6675 * called with inode->i_mutex locked
6676 */
6677static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6678{
6679 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6680 ctx, ctxlen, 0);
6681 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6682 return rc == -EOPNOTSUPP ? 0 : rc;
6683}
6684
6685/*
6686 * called with inode->i_mutex locked
6687 */
6688static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6689{
6690 return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6691 ctx, ctxlen, 0, NULL);
6692}
6693
6694static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6695{
6696 int len = 0;
6697 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6698 XATTR_SELINUX_SUFFIX, ctx, true);
6699 if (len < 0)
6700 return len;
6701 *ctxlen = len;
6702 return 0;
6703}
6704#ifdef CONFIG_KEYS
6705
6706static int selinux_key_alloc(struct key *k, const struct cred *cred,
6707 unsigned long flags)
6708{
6709 const struct task_security_struct *tsec;
6710 struct key_security_struct *ksec = selinux_key(k);
6711
6712 tsec = selinux_cred(cred);
6713 if (tsec->keycreate_sid)
6714 ksec->sid = tsec->keycreate_sid;
6715 else
6716 ksec->sid = tsec->sid;
6717
6718 return 0;
6719}
6720
6721static int selinux_key_permission(key_ref_t key_ref,
6722 const struct cred *cred,
6723 enum key_need_perm need_perm)
6724{
6725 struct key *key;
6726 struct key_security_struct *ksec;
6727 u32 perm, sid;
6728
6729 switch (need_perm) {
6730 case KEY_NEED_VIEW:
6731 perm = KEY__VIEW;
6732 break;
6733 case KEY_NEED_READ:
6734 perm = KEY__READ;
6735 break;
6736 case KEY_NEED_WRITE:
6737 perm = KEY__WRITE;
6738 break;
6739 case KEY_NEED_SEARCH:
6740 perm = KEY__SEARCH;
6741 break;
6742 case KEY_NEED_LINK:
6743 perm = KEY__LINK;
6744 break;
6745 case KEY_NEED_SETATTR:
6746 perm = KEY__SETATTR;
6747 break;
6748 case KEY_NEED_UNLINK:
6749 case KEY_SYSADMIN_OVERRIDE:
6750 case KEY_AUTHTOKEN_OVERRIDE:
6751 case KEY_DEFER_PERM_CHECK:
6752 return 0;
6753 default:
6754 WARN_ON(1);
6755 return -EPERM;
6756
6757 }
6758
6759 sid = cred_sid(cred);
6760 key = key_ref_to_ptr(key_ref);
6761 ksec = selinux_key(key);
6762
6763 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6764}
6765
6766static int selinux_key_getsecurity(struct key *key, char **_buffer)
6767{
6768 struct key_security_struct *ksec = selinux_key(key);
6769 char *context = NULL;
6770 unsigned len;
6771 int rc;
6772
6773 rc = security_sid_to_context(ksec->sid,
6774 &context, &len);
6775 if (!rc)
6776 rc = len;
6777 *_buffer = context;
6778 return rc;
6779}
6780
6781#ifdef CONFIG_KEY_NOTIFICATIONS
6782static int selinux_watch_key(struct key *key)
6783{
6784 struct key_security_struct *ksec = selinux_key(key);
6785 u32 sid = current_sid();
6786
6787 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6788}
6789#endif
6790#endif
6791
6792#ifdef CONFIG_SECURITY_INFINIBAND
6793static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6794{
6795 struct common_audit_data ad;
6796 int err;
6797 u32 sid = 0;
6798 struct ib_security_struct *sec = ib_sec;
6799 struct lsm_ibpkey_audit ibpkey;
6800
6801 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6802 if (err)
6803 return err;
6804
6805 ad.type = LSM_AUDIT_DATA_IBPKEY;
6806 ibpkey.subnet_prefix = subnet_prefix;
6807 ibpkey.pkey = pkey_val;
6808 ad.u.ibpkey = &ibpkey;
6809 return avc_has_perm(sec->sid, sid,
6810 SECCLASS_INFINIBAND_PKEY,
6811 INFINIBAND_PKEY__ACCESS, &ad);
6812}
6813
6814static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6815 u8 port_num)
6816{
6817 struct common_audit_data ad;
6818 int err;
6819 u32 sid = 0;
6820 struct ib_security_struct *sec = ib_sec;
6821 struct lsm_ibendport_audit ibendport;
6822
6823 err = security_ib_endport_sid(dev_name, port_num,
6824 &sid);
6825
6826 if (err)
6827 return err;
6828
6829 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6830 ibendport.dev_name = dev_name;
6831 ibendport.port = port_num;
6832 ad.u.ibendport = &ibendport;
6833 return avc_has_perm(sec->sid, sid,
6834 SECCLASS_INFINIBAND_ENDPORT,
6835 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6836}
6837
6838static int selinux_ib_alloc_security(void *ib_sec)
6839{
6840 struct ib_security_struct *sec = selinux_ib(ib_sec);
6841
6842 sec->sid = current_sid();
6843 return 0;
6844}
6845#endif
6846
6847#ifdef CONFIG_BPF_SYSCALL
6848static int selinux_bpf(int cmd, union bpf_attr *attr,
6849 unsigned int size)
6850{
6851 u32 sid = current_sid();
6852 int ret;
6853
6854 switch (cmd) {
6855 case BPF_MAP_CREATE:
6856 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6857 NULL);
6858 break;
6859 case BPF_PROG_LOAD:
6860 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6861 NULL);
6862 break;
6863 default:
6864 ret = 0;
6865 break;
6866 }
6867
6868 return ret;
6869}
6870
6871static u32 bpf_map_fmode_to_av(fmode_t fmode)
6872{
6873 u32 av = 0;
6874
6875 if (fmode & FMODE_READ)
6876 av |= BPF__MAP_READ;
6877 if (fmode & FMODE_WRITE)
6878 av |= BPF__MAP_WRITE;
6879 return av;
6880}
6881
6882/* This function will check the file pass through unix socket or binder to see
6883 * if it is a bpf related object. And apply corresponding checks on the bpf
6884 * object based on the type. The bpf maps and programs, not like other files and
6885 * socket, are using a shared anonymous inode inside the kernel as their inode.
6886 * So checking that inode cannot identify if the process have privilege to
6887 * access the bpf object and that's why we have to add this additional check in
6888 * selinux_file_receive and selinux_binder_transfer_files.
6889 */
6890static int bpf_fd_pass(const struct file *file, u32 sid)
6891{
6892 struct bpf_security_struct *bpfsec;
6893 struct bpf_prog *prog;
6894 struct bpf_map *map;
6895 int ret;
6896
6897 if (file->f_op == &bpf_map_fops) {
6898 map = file->private_data;
6899 bpfsec = map->security;
6900 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6901 bpf_map_fmode_to_av(file->f_mode), NULL);
6902 if (ret)
6903 return ret;
6904 } else if (file->f_op == &bpf_prog_fops) {
6905 prog = file->private_data;
6906 bpfsec = prog->aux->security;
6907 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6908 BPF__PROG_RUN, NULL);
6909 if (ret)
6910 return ret;
6911 }
6912 return 0;
6913}
6914
6915static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6916{
6917 u32 sid = current_sid();
6918 struct bpf_security_struct *bpfsec;
6919
6920 bpfsec = map->security;
6921 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6922 bpf_map_fmode_to_av(fmode), NULL);
6923}
6924
6925static int selinux_bpf_prog(struct bpf_prog *prog)
6926{
6927 u32 sid = current_sid();
6928 struct bpf_security_struct *bpfsec;
6929
6930 bpfsec = prog->aux->security;
6931 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6932 BPF__PROG_RUN, NULL);
6933}
6934
6935static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6936 struct bpf_token *token)
6937{
6938 struct bpf_security_struct *bpfsec;
6939
6940 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6941 if (!bpfsec)
6942 return -ENOMEM;
6943
6944 bpfsec->sid = current_sid();
6945 map->security = bpfsec;
6946
6947 return 0;
6948}
6949
6950static void selinux_bpf_map_free(struct bpf_map *map)
6951{
6952 struct bpf_security_struct *bpfsec = map->security;
6953
6954 map->security = NULL;
6955 kfree(bpfsec);
6956}
6957
6958static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6959 struct bpf_token *token)
6960{
6961 struct bpf_security_struct *bpfsec;
6962
6963 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6964 if (!bpfsec)
6965 return -ENOMEM;
6966
6967 bpfsec->sid = current_sid();
6968 prog->aux->security = bpfsec;
6969
6970 return 0;
6971}
6972
6973static void selinux_bpf_prog_free(struct bpf_prog *prog)
6974{
6975 struct bpf_security_struct *bpfsec = prog->aux->security;
6976
6977 prog->aux->security = NULL;
6978 kfree(bpfsec);
6979}
6980
6981static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6982 const struct path *path)
6983{
6984 struct bpf_security_struct *bpfsec;
6985
6986 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6987 if (!bpfsec)
6988 return -ENOMEM;
6989
6990 bpfsec->sid = current_sid();
6991 token->security = bpfsec;
6992
6993 return 0;
6994}
6995
6996static void selinux_bpf_token_free(struct bpf_token *token)
6997{
6998 struct bpf_security_struct *bpfsec = token->security;
6999
7000 token->security = NULL;
7001 kfree(bpfsec);
7002}
7003#endif
7004
7005struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
7006 .lbs_cred = sizeof(struct task_security_struct),
7007 .lbs_file = sizeof(struct file_security_struct),
7008 .lbs_inode = sizeof(struct inode_security_struct),
7009 .lbs_ipc = sizeof(struct ipc_security_struct),
7010 .lbs_key = sizeof(struct key_security_struct),
7011 .lbs_msg_msg = sizeof(struct msg_security_struct),
7012#ifdef CONFIG_PERF_EVENTS
7013 .lbs_perf_event = sizeof(struct perf_event_security_struct),
7014#endif
7015 .lbs_sock = sizeof(struct sk_security_struct),
7016 .lbs_superblock = sizeof(struct superblock_security_struct),
7017 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7018 .lbs_tun_dev = sizeof(struct tun_security_struct),
7019 .lbs_ib = sizeof(struct ib_security_struct),
7020};
7021
7022#ifdef CONFIG_PERF_EVENTS
7023static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7024{
7025 u32 requested, sid = current_sid();
7026
7027 if (type == PERF_SECURITY_OPEN)
7028 requested = PERF_EVENT__OPEN;
7029 else if (type == PERF_SECURITY_CPU)
7030 requested = PERF_EVENT__CPU;
7031 else if (type == PERF_SECURITY_KERNEL)
7032 requested = PERF_EVENT__KERNEL;
7033 else if (type == PERF_SECURITY_TRACEPOINT)
7034 requested = PERF_EVENT__TRACEPOINT;
7035 else
7036 return -EINVAL;
7037
7038 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7039 requested, NULL);
7040}
7041
7042static int selinux_perf_event_alloc(struct perf_event *event)
7043{
7044 struct perf_event_security_struct *perfsec;
7045
7046 perfsec = selinux_perf_event(event->security);
7047 perfsec->sid = current_sid();
7048
7049 return 0;
7050}
7051
7052static int selinux_perf_event_read(struct perf_event *event)
7053{
7054 struct perf_event_security_struct *perfsec = event->security;
7055 u32 sid = current_sid();
7056
7057 return avc_has_perm(sid, perfsec->sid,
7058 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7059}
7060
7061static int selinux_perf_event_write(struct perf_event *event)
7062{
7063 struct perf_event_security_struct *perfsec = event->security;
7064 u32 sid = current_sid();
7065
7066 return avc_has_perm(sid, perfsec->sid,
7067 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7068}
7069#endif
7070
7071#ifdef CONFIG_IO_URING
7072/**
7073 * selinux_uring_override_creds - check the requested cred override
7074 * @new: the target creds
7075 *
7076 * Check to see if the current task is allowed to override it's credentials
7077 * to service an io_uring operation.
7078 */
7079static int selinux_uring_override_creds(const struct cred *new)
7080{
7081 return avc_has_perm(current_sid(), cred_sid(new),
7082 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7083}
7084
7085/**
7086 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7087 *
7088 * Check to see if the current task is allowed to create a new io_uring
7089 * kernel polling thread.
7090 */
7091static int selinux_uring_sqpoll(void)
7092{
7093 u32 sid = current_sid();
7094
7095 return avc_has_perm(sid, sid,
7096 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7097}
7098
7099/**
7100 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7101 * @ioucmd: the io_uring command structure
7102 *
7103 * Check to see if the current domain is allowed to execute an
7104 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7105 *
7106 */
7107static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7108{
7109 struct file *file = ioucmd->file;
7110 struct inode *inode = file_inode(file);
7111 struct inode_security_struct *isec = selinux_inode(inode);
7112 struct common_audit_data ad;
7113
7114 ad.type = LSM_AUDIT_DATA_FILE;
7115 ad.u.file = file;
7116
7117 return avc_has_perm(current_sid(), isec->sid,
7118 SECCLASS_IO_URING, IO_URING__CMD, &ad);
7119}
7120#endif /* CONFIG_IO_URING */
7121
7122static const struct lsm_id selinux_lsmid = {
7123 .name = "selinux",
7124 .id = LSM_ID_SELINUX,
7125};
7126
7127/*
7128 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7129 * 1. any hooks that don't belong to (2.) or (3.) below,
7130 * 2. hooks that both access structures allocated by other hooks, and allocate
7131 * structures that can be later accessed by other hooks (mostly "cloning"
7132 * hooks),
7133 * 3. hooks that only allocate structures that can be later accessed by other
7134 * hooks ("allocating" hooks).
7135 *
7136 * Please follow block comment delimiters in the list to keep this order.
7137 */
7138static struct security_hook_list selinux_hooks[] __ro_after_init = {
7139 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7140 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7141 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7142 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7143
7144 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7145 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7146 LSM_HOOK_INIT(capget, selinux_capget),
7147 LSM_HOOK_INIT(capset, selinux_capset),
7148 LSM_HOOK_INIT(capable, selinux_capable),
7149 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7150 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7151 LSM_HOOK_INIT(syslog, selinux_syslog),
7152 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7153
7154 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7155
7156 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7157 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7158 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7159
7160 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7161 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7162 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7163 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7164 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7165 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7166 LSM_HOOK_INIT(sb_mount, selinux_mount),
7167 LSM_HOOK_INIT(sb_umount, selinux_umount),
7168 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7169 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7170
7171 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7172
7173 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7174 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7175
7176 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7177 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7178 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7179 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7180 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7181 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7182 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7183 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7184 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7185 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7186 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7187 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7188 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7189 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7190 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7191 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7192 LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7193 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7194 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7195 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7196 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7197 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7198 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7199 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7200 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7201 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7202 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7203 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7204 LSM_HOOK_INIT(inode_getlsmprop, selinux_inode_getlsmprop),
7205 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7206 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7207 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7208
7209 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7210
7211 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7212 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7213 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7214 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7215 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7216 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7217 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7218 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7219 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7220 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7221 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7222 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7223
7224 LSM_HOOK_INIT(file_open, selinux_file_open),
7225
7226 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7227 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7228 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7229 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7230 LSM_HOOK_INIT(cred_getlsmprop, selinux_cred_getlsmprop),
7231 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7232 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7233 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7234 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7235 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7236 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7237 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7238 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7239 LSM_HOOK_INIT(current_getlsmprop_subj, selinux_current_getlsmprop_subj),
7240 LSM_HOOK_INIT(task_getlsmprop_obj, selinux_task_getlsmprop_obj),
7241 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7242 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7243 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7244 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7245 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7246 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7247 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7248 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7249 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7250 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7251 LSM_HOOK_INIT(userns_create, selinux_userns_create),
7252
7253 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7254 LSM_HOOK_INIT(ipc_getlsmprop, selinux_ipc_getlsmprop),
7255
7256 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7257 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7258 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7259 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7260
7261 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7262 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7263 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7264
7265 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7266 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7267 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7268
7269 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7270
7271 LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7272 LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7273 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7274 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7275
7276 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7277 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7278 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7279 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7280 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7281 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7282
7283 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7284 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7285
7286 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7287 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7288 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7289 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7290 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7291 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7292 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7293 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7294 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7295 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7296 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7297 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7298 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7299 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7300 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7301 LSM_HOOK_INIT(socket_getpeersec_stream,
7302 selinux_socket_getpeersec_stream),
7303 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7304 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7305 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7306 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7307 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7308 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7309 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7310 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7311 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7312 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7313 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7314 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7315 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7316 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7317 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7318 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7319 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7320 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7321 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7322 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7323 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7324#ifdef CONFIG_SECURITY_INFINIBAND
7325 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7326 LSM_HOOK_INIT(ib_endport_manage_subnet,
7327 selinux_ib_endport_manage_subnet),
7328#endif
7329#ifdef CONFIG_SECURITY_NETWORK_XFRM
7330 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7331 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7332 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7333 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7334 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7335 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7336 selinux_xfrm_state_pol_flow_match),
7337 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7338#endif
7339
7340#ifdef CONFIG_KEYS
7341 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7342 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7343#ifdef CONFIG_KEY_NOTIFICATIONS
7344 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7345#endif
7346#endif
7347
7348#ifdef CONFIG_AUDIT
7349 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7350 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7351 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7352#endif
7353
7354#ifdef CONFIG_BPF_SYSCALL
7355 LSM_HOOK_INIT(bpf, selinux_bpf),
7356 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7357 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7358 LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7359 LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7360 LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7361#endif
7362
7363#ifdef CONFIG_PERF_EVENTS
7364 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7365 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7366 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7367#endif
7368
7369#ifdef CONFIG_IO_URING
7370 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7371 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7372 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7373#endif
7374
7375 /*
7376 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7377 */
7378 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7379 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7380 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7381 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7382#ifdef CONFIG_SECURITY_NETWORK_XFRM
7383 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7384#endif
7385
7386 /*
7387 * PUT "ALLOCATING" HOOKS HERE
7388 */
7389 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7390 LSM_HOOK_INIT(msg_queue_alloc_security,
7391 selinux_msg_queue_alloc_security),
7392 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7393 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7394 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7395 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7396 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7397 LSM_HOOK_INIT(lsmprop_to_secctx, selinux_lsmprop_to_secctx),
7398 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7399 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7400 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7401#ifdef CONFIG_SECURITY_INFINIBAND
7402 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7403#endif
7404#ifdef CONFIG_SECURITY_NETWORK_XFRM
7405 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7406 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7407 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7408 selinux_xfrm_state_alloc_acquire),
7409#endif
7410#ifdef CONFIG_KEYS
7411 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7412#endif
7413#ifdef CONFIG_AUDIT
7414 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7415#endif
7416#ifdef CONFIG_BPF_SYSCALL
7417 LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7418 LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7419 LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7420#endif
7421#ifdef CONFIG_PERF_EVENTS
7422 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7423#endif
7424};
7425
7426static __init int selinux_init(void)
7427{
7428 pr_info("SELinux: Initializing.\n");
7429
7430 memset(&selinux_state, 0, sizeof(selinux_state));
7431 enforcing_set(selinux_enforcing_boot);
7432 selinux_avc_init();
7433 mutex_init(&selinux_state.status_lock);
7434 mutex_init(&selinux_state.policy_mutex);
7435
7436 /* Set the security state for the initial task. */
7437 cred_init_security();
7438
7439 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7440 if (!default_noexec)
7441 pr_notice("SELinux: virtual memory is executable by default\n");
7442
7443 avc_init();
7444
7445 avtab_cache_init();
7446
7447 ebitmap_cache_init();
7448
7449 hashtab_cache_init();
7450
7451 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7452 &selinux_lsmid);
7453
7454 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7455 panic("SELinux: Unable to register AVC netcache callback\n");
7456
7457 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7458 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7459
7460 if (selinux_enforcing_boot)
7461 pr_debug("SELinux: Starting in enforcing mode\n");
7462 else
7463 pr_debug("SELinux: Starting in permissive mode\n");
7464
7465 fs_validate_description("selinux", selinux_fs_parameters);
7466
7467 return 0;
7468}
7469
7470static void delayed_superblock_init(struct super_block *sb, void *unused)
7471{
7472 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7473}
7474
7475void selinux_complete_init(void)
7476{
7477 pr_debug("SELinux: Completing initialization.\n");
7478
7479 /* Set up any superblocks initialized prior to the policy load. */
7480 pr_debug("SELinux: Setting up existing superblocks.\n");
7481 iterate_supers(delayed_superblock_init, NULL);
7482}
7483
7484/* SELinux requires early initialization in order to label
7485 all processes and objects when they are created. */
7486DEFINE_LSM(selinux) = {
7487 .name = "selinux",
7488 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7489 .enabled = &selinux_enabled_boot,
7490 .blobs = &selinux_blob_sizes,
7491 .init = selinux_init,
7492};
7493
7494#if defined(CONFIG_NETFILTER)
7495static const struct nf_hook_ops selinux_nf_ops[] = {
7496 {
7497 .hook = selinux_ip_postroute,
7498 .pf = NFPROTO_IPV4,
7499 .hooknum = NF_INET_POST_ROUTING,
7500 .priority = NF_IP_PRI_SELINUX_LAST,
7501 },
7502 {
7503 .hook = selinux_ip_forward,
7504 .pf = NFPROTO_IPV4,
7505 .hooknum = NF_INET_FORWARD,
7506 .priority = NF_IP_PRI_SELINUX_FIRST,
7507 },
7508 {
7509 .hook = selinux_ip_output,
7510 .pf = NFPROTO_IPV4,
7511 .hooknum = NF_INET_LOCAL_OUT,
7512 .priority = NF_IP_PRI_SELINUX_FIRST,
7513 },
7514#if IS_ENABLED(CONFIG_IPV6)
7515 {
7516 .hook = selinux_ip_postroute,
7517 .pf = NFPROTO_IPV6,
7518 .hooknum = NF_INET_POST_ROUTING,
7519 .priority = NF_IP6_PRI_SELINUX_LAST,
7520 },
7521 {
7522 .hook = selinux_ip_forward,
7523 .pf = NFPROTO_IPV6,
7524 .hooknum = NF_INET_FORWARD,
7525 .priority = NF_IP6_PRI_SELINUX_FIRST,
7526 },
7527 {
7528 .hook = selinux_ip_output,
7529 .pf = NFPROTO_IPV6,
7530 .hooknum = NF_INET_LOCAL_OUT,
7531 .priority = NF_IP6_PRI_SELINUX_FIRST,
7532 },
7533#endif /* IPV6 */
7534};
7535
7536static int __net_init selinux_nf_register(struct net *net)
7537{
7538 return nf_register_net_hooks(net, selinux_nf_ops,
7539 ARRAY_SIZE(selinux_nf_ops));
7540}
7541
7542static void __net_exit selinux_nf_unregister(struct net *net)
7543{
7544 nf_unregister_net_hooks(net, selinux_nf_ops,
7545 ARRAY_SIZE(selinux_nf_ops));
7546}
7547
7548static struct pernet_operations selinux_net_ops = {
7549 .init = selinux_nf_register,
7550 .exit = selinux_nf_unregister,
7551};
7552
7553static int __init selinux_nf_ip_init(void)
7554{
7555 int err;
7556
7557 if (!selinux_enabled_boot)
7558 return 0;
7559
7560 pr_debug("SELinux: Registering netfilter hooks\n");
7561
7562 err = register_pernet_subsys(&selinux_net_ops);
7563 if (err)
7564 panic("SELinux: register_pernet_subsys: error %d\n", err);
7565
7566 return 0;
7567}
7568__initcall(selinux_nf_ip_init);
7569#endif /* CONFIG_NETFILTER */