Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v4.17
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *  Copyright (C) 2016 Mellanox Technologies
  21 *
  22 *	This program is free software; you can redistribute it and/or modify
  23 *	it under the terms of the GNU General Public License version 2,
  24 *	as published by the Free Software Foundation.
  25 */
  26
  27#include <linux/init.h>
  28#include <linux/kd.h>
  29#include <linux/kernel.h>
  30#include <linux/tracehook.h>
  31#include <linux/errno.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/task.h>
  34#include <linux/lsm_hooks.h>
  35#include <linux/xattr.h>
  36#include <linux/capability.h>
  37#include <linux/unistd.h>
  38#include <linux/mm.h>
  39#include <linux/mman.h>
  40#include <linux/slab.h>
  41#include <linux/pagemap.h>
  42#include <linux/proc_fs.h>
  43#include <linux/swap.h>
  44#include <linux/spinlock.h>
  45#include <linux/syscalls.h>
  46#include <linux/dcache.h>
  47#include <linux/file.h>
  48#include <linux/fdtable.h>
  49#include <linux/namei.h>
  50#include <linux/mount.h>
 
 
  51#include <linux/netfilter_ipv4.h>
  52#include <linux/netfilter_ipv6.h>
  53#include <linux/tty.h>
  54#include <net/icmp.h>
  55#include <net/ip.h>		/* for local_port_range[] */
  56#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  57#include <net/inet_connection_sock.h>
  58#include <net/net_namespace.h>
  59#include <net/netlabel.h>
  60#include <linux/uaccess.h>
  61#include <asm/ioctls.h>
  62#include <linux/atomic.h>
  63#include <linux/bitops.h>
  64#include <linux/interrupt.h>
  65#include <linux/netdevice.h>	/* for network interface checks */
  66#include <net/netlink.h>
  67#include <linux/tcp.h>
  68#include <linux/udp.h>
  69#include <linux/dccp.h>
  70#include <linux/sctp.h>
  71#include <net/sctp/structs.h>
  72#include <linux/quota.h>
  73#include <linux/un.h>		/* for Unix socket types */
  74#include <net/af_unix.h>	/* for Unix socket types */
  75#include <linux/parser.h>
  76#include <linux/nfs_mount.h>
  77#include <net/ipv6.h>
  78#include <linux/hugetlb.h>
  79#include <linux/personality.h>
  80#include <linux/audit.h>
  81#include <linux/string.h>
  82#include <linux/selinux.h>
  83#include <linux/mutex.h>
  84#include <linux/posix-timers.h>
  85#include <linux/syslog.h>
  86#include <linux/user_namespace.h>
  87#include <linux/export.h>
  88#include <linux/msg.h>
  89#include <linux/shm.h>
 
  90#include <linux/bpf.h>
 
 
 
 
 
 
 
  91
  92#include "avc.h"
  93#include "objsec.h"
  94#include "netif.h"
  95#include "netnode.h"
  96#include "netport.h"
  97#include "ibpkey.h"
  98#include "xfrm.h"
  99#include "netlabel.h"
 100#include "audit.h"
 101#include "avc_ss.h"
 102
 
 
 103struct selinux_state selinux_state;
 104
 105/* SECMARK reference count */
 106static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 107
 108#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 109static int selinux_enforcing_boot;
 110
 111static int __init enforcing_setup(char *str)
 112{
 113	unsigned long enforcing;
 114	if (!kstrtoul(str, 0, &enforcing))
 115		selinux_enforcing_boot = enforcing ? 1 : 0;
 116	return 1;
 117}
 118__setup("enforcing=", enforcing_setup);
 119#else
 120#define selinux_enforcing_boot 1
 121#endif
 122
 
 123#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 124int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 125
 126static int __init selinux_enabled_setup(char *str)
 127{
 128	unsigned long enabled;
 129	if (!kstrtoul(str, 0, &enabled))
 130		selinux_enabled = enabled ? 1 : 0;
 131	return 1;
 132}
 133__setup("selinux=", selinux_enabled_setup);
 134#else
 135int selinux_enabled = 1;
 136#endif
 137
 138static unsigned int selinux_checkreqprot_boot =
 139	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 140
 141static int __init checkreqprot_setup(char *str)
 142{
 143	unsigned long checkreqprot;
 144
 145	if (!kstrtoul(str, 0, &checkreqprot))
 146		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 
 
 147	return 1;
 148}
 149__setup("checkreqprot=", checkreqprot_setup);
 150
 151static struct kmem_cache *sel_inode_cache;
 152static struct kmem_cache *file_security_cache;
 153
 154/**
 155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 156 *
 157 * Description:
 158 * This function checks the SECMARK reference counter to see if any SECMARK
 159 * targets are currently configured, if the reference counter is greater than
 160 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 161 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 162 * policy capability is enabled, SECMARK is always considered enabled.
 163 *
 164 */
 165static int selinux_secmark_enabled(void)
 166{
 167	return (selinux_policycap_alwaysnetwork() ||
 168		atomic_read(&selinux_secmark_refcount));
 169}
 170
 171/**
 172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 173 *
 174 * Description:
 175 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 176 * (1) if any are enabled or false (0) if neither are enabled.  If the
 177 * always_check_network policy capability is enabled, peer labeling
 178 * is always considered enabled.
 179 *
 180 */
 181static int selinux_peerlbl_enabled(void)
 182{
 183	return (selinux_policycap_alwaysnetwork() ||
 184		netlbl_enabled() || selinux_xfrm_enabled());
 185}
 186
 187static int selinux_netcache_avc_callback(u32 event)
 188{
 189	if (event == AVC_CALLBACK_RESET) {
 190		sel_netif_flush();
 191		sel_netnode_flush();
 192		sel_netport_flush();
 193		synchronize_net();
 194	}
 195	return 0;
 196}
 197
 198static int selinux_lsm_notifier_avc_callback(u32 event)
 199{
 200	if (event == AVC_CALLBACK_RESET) {
 201		sel_ib_pkey_flush();
 202		call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 203	}
 204
 205	return 0;
 206}
 207
 208/*
 209 * initialise the security for the init task
 210 */
 211static void cred_init_security(void)
 212{
 213	struct cred *cred = (struct cred *) current->real_cred;
 214	struct task_security_struct *tsec;
 215
 216	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 217	if (!tsec)
 218		panic("SELinux:  Failed to initialize initial task.\n");
 219
 220	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 221	cred->security = tsec;
 222}
 223
 224/*
 225 * get the security ID of a set of credentials
 226 */
 227static inline u32 cred_sid(const struct cred *cred)
 228{
 229	const struct task_security_struct *tsec;
 230
 231	tsec = cred->security;
 232	return tsec->sid;
 233}
 234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235/*
 236 * get the objective security ID of a task
 237 */
 238static inline u32 task_sid(const struct task_struct *task)
 239{
 240	u32 sid;
 241
 242	rcu_read_lock();
 243	sid = cred_sid(__task_cred(task));
 244	rcu_read_unlock();
 245	return sid;
 246}
 247
 248/* Allocate and free functions for each kind of security blob. */
 249
 250static int inode_alloc_security(struct inode *inode)
 251{
 252	struct inode_security_struct *isec;
 253	u32 sid = current_sid();
 254
 255	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 256	if (!isec)
 257		return -ENOMEM;
 258
 259	spin_lock_init(&isec->lock);
 260	INIT_LIST_HEAD(&isec->list);
 261	isec->inode = inode;
 262	isec->sid = SECINITSID_UNLABELED;
 263	isec->sclass = SECCLASS_FILE;
 264	isec->task_sid = sid;
 265	isec->initialized = LABEL_INVALID;
 266	inode->i_security = isec;
 267
 268	return 0;
 269}
 270
 271static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 272
 273/*
 274 * Try reloading inode security labels that have been marked as invalid.  The
 275 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 276 * allowed; when set to false, returns -ECHILD when the label is
 277 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 278 * when no dentry is available, set it to NULL instead.
 279 */
 280static int __inode_security_revalidate(struct inode *inode,
 281				       struct dentry *opt_dentry,
 282				       bool may_sleep)
 283{
 284	struct inode_security_struct *isec = inode->i_security;
 285
 286	might_sleep_if(may_sleep);
 287
 288	if (selinux_state.initialized &&
 289	    isec->initialized != LABEL_INITIALIZED) {
 
 
 
 
 
 290		if (!may_sleep)
 291			return -ECHILD;
 292
 293		/*
 294		 * Try reloading the inode security label.  This will fail if
 295		 * @opt_dentry is NULL and no dentry for this inode can be
 296		 * found; in that case, continue using the old label.
 297		 */
 298		inode_doinit_with_dentry(inode, opt_dentry);
 299	}
 300	return 0;
 301}
 302
 303static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 304{
 305	return inode->i_security;
 306}
 307
 308static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 309{
 310	int error;
 311
 312	error = __inode_security_revalidate(inode, NULL, !rcu);
 313	if (error)
 314		return ERR_PTR(error);
 315	return inode->i_security;
 316}
 317
 318/*
 319 * Get the security label of an inode.
 320 */
 321static struct inode_security_struct *inode_security(struct inode *inode)
 322{
 323	__inode_security_revalidate(inode, NULL, true);
 324	return inode->i_security;
 325}
 326
 327static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 328{
 329	struct inode *inode = d_backing_inode(dentry);
 330
 331	return inode->i_security;
 332}
 333
 334/*
 335 * Get the security label of a dentry's backing inode.
 336 */
 337static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 338{
 339	struct inode *inode = d_backing_inode(dentry);
 340
 341	__inode_security_revalidate(inode, dentry, true);
 342	return inode->i_security;
 343}
 344
 345static void inode_free_rcu(struct rcu_head *head)
 346{
 347	struct inode_security_struct *isec;
 348
 349	isec = container_of(head, struct inode_security_struct, rcu);
 350	kmem_cache_free(sel_inode_cache, isec);
 351}
 352
 353static void inode_free_security(struct inode *inode)
 354{
 355	struct inode_security_struct *isec = inode->i_security;
 356	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 357
 
 
 
 358	/*
 359	 * As not all inode security structures are in a list, we check for
 360	 * empty list outside of the lock to make sure that we won't waste
 361	 * time taking a lock doing nothing.
 362	 *
 363	 * The list_del_init() function can be safely called more than once.
 364	 * It should not be possible for this function to be called with
 365	 * concurrent list_add(), but for better safety against future changes
 366	 * in the code, we use list_empty_careful() here.
 367	 */
 368	if (!list_empty_careful(&isec->list)) {
 369		spin_lock(&sbsec->isec_lock);
 370		list_del_init(&isec->list);
 371		spin_unlock(&sbsec->isec_lock);
 372	}
 373
 374	/*
 375	 * The inode may still be referenced in a path walk and
 376	 * a call to selinux_inode_permission() can be made
 377	 * after inode_free_security() is called. Ideally, the VFS
 378	 * wouldn't do this, but fixing that is a much harder
 379	 * job. For now, simply free the i_security via RCU, and
 380	 * leave the current inode->i_security pointer intact.
 381	 * The inode will be freed after the RCU grace period too.
 382	 */
 383	call_rcu(&isec->rcu, inode_free_rcu);
 384}
 385
 386static int file_alloc_security(struct file *file)
 387{
 388	struct file_security_struct *fsec;
 389	u32 sid = current_sid();
 390
 391	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 392	if (!fsec)
 393		return -ENOMEM;
 394
 395	fsec->sid = sid;
 396	fsec->fown_sid = sid;
 397	file->f_security = fsec;
 398
 399	return 0;
 400}
 401
 402static void file_free_security(struct file *file)
 403{
 404	struct file_security_struct *fsec = file->f_security;
 405	file->f_security = NULL;
 406	kmem_cache_free(file_security_cache, fsec);
 407}
 408
 409static int superblock_alloc_security(struct super_block *sb)
 410{
 411	struct superblock_security_struct *sbsec;
 412
 413	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 414	if (!sbsec)
 415		return -ENOMEM;
 416
 417	mutex_init(&sbsec->lock);
 418	INIT_LIST_HEAD(&sbsec->isec_head);
 419	spin_lock_init(&sbsec->isec_lock);
 420	sbsec->sb = sb;
 421	sbsec->sid = SECINITSID_UNLABELED;
 422	sbsec->def_sid = SECINITSID_FILE;
 423	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 424	sb->s_security = sbsec;
 425
 426	return 0;
 427}
 428
 429static void superblock_free_security(struct super_block *sb)
 430{
 431	struct superblock_security_struct *sbsec = sb->s_security;
 432	sb->s_security = NULL;
 433	kfree(sbsec);
 434}
 435
 436static inline int inode_doinit(struct inode *inode)
 437{
 438	return inode_doinit_with_dentry(inode, NULL);
 439}
 440
 441enum {
 442	Opt_error = -1,
 443	Opt_context = 1,
 
 444	Opt_fscontext = 2,
 445	Opt_defcontext = 3,
 446	Opt_rootcontext = 4,
 447	Opt_labelsupport = 5,
 448	Opt_nextmntopt = 6,
 449};
 450
 451#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 452
 453static const match_table_t tokens = {
 454	{Opt_context, CONTEXT_STR "%s"},
 455	{Opt_fscontext, FSCONTEXT_STR "%s"},
 456	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 457	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 458	{Opt_labelsupport, LABELSUPP_STR},
 459	{Opt_error, NULL},
 
 
 
 460};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461
 462#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 463
 464static int may_context_mount_sb_relabel(u32 sid,
 465			struct superblock_security_struct *sbsec,
 466			const struct cred *cred)
 467{
 468	const struct task_security_struct *tsec = cred->security;
 469	int rc;
 470
 471	rc = avc_has_perm(&selinux_state,
 472			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 473			  FILESYSTEM__RELABELFROM, NULL);
 474	if (rc)
 475		return rc;
 476
 477	rc = avc_has_perm(&selinux_state,
 478			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 479			  FILESYSTEM__RELABELTO, NULL);
 480	return rc;
 481}
 482
 483static int may_context_mount_inode_relabel(u32 sid,
 484			struct superblock_security_struct *sbsec,
 485			const struct cred *cred)
 486{
 487	const struct task_security_struct *tsec = cred->security;
 488	int rc;
 489	rc = avc_has_perm(&selinux_state,
 490			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 491			  FILESYSTEM__RELABELFROM, NULL);
 492	if (rc)
 493		return rc;
 494
 495	rc = avc_has_perm(&selinux_state,
 496			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 497			  FILESYSTEM__ASSOCIATE, NULL);
 498	return rc;
 499}
 500
 501static int selinux_is_sblabel_mnt(struct super_block *sb)
 502{
 503	struct superblock_security_struct *sbsec = sb->s_security;
 504
 505	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 506		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 507		sbsec->behavior == SECURITY_FS_USE_TASK ||
 508		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 509		/* Special handling. Genfs but also in-core setxattr handler */
 510		!strcmp(sb->s_type->name, "sysfs") ||
 511		!strcmp(sb->s_type->name, "pstore") ||
 512		!strcmp(sb->s_type->name, "debugfs") ||
 513		!strcmp(sb->s_type->name, "tracefs") ||
 514		!strcmp(sb->s_type->name, "rootfs") ||
 515		(selinux_policycap_cgroupseclabel() &&
 516		 (!strcmp(sb->s_type->name, "cgroup") ||
 517		  !strcmp(sb->s_type->name, "cgroup2")));
 518}
 519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520static int sb_finish_set_opts(struct super_block *sb)
 521{
 522	struct superblock_security_struct *sbsec = sb->s_security;
 523	struct dentry *root = sb->s_root;
 524	struct inode *root_inode = d_backing_inode(root);
 525	int rc = 0;
 526
 527	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 528		/* Make sure that the xattr handler exists and that no
 529		   error other than -ENODATA is returned by getxattr on
 530		   the root directory.  -ENODATA is ok, as this may be
 531		   the first boot of the SELinux kernel before we have
 532		   assigned xattr values to the filesystem. */
 533		if (!(root_inode->i_opflags & IOP_XATTR)) {
 534			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 535			       "xattr support\n", sb->s_id, sb->s_type->name);
 536			rc = -EOPNOTSUPP;
 537			goto out;
 538		}
 539
 540		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 541		if (rc < 0 && rc != -ENODATA) {
 542			if (rc == -EOPNOTSUPP)
 543				printk(KERN_WARNING "SELinux: (dev %s, type "
 544				       "%s) has no security xattr handler\n",
 545				       sb->s_id, sb->s_type->name);
 546			else
 547				printk(KERN_WARNING "SELinux: (dev %s, type "
 548				       "%s) getxattr errno %d\n", sb->s_id,
 549				       sb->s_type->name, -rc);
 550			goto out;
 551		}
 552	}
 553
 554	sbsec->flags |= SE_SBINITIALIZED;
 555
 556	/*
 557	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 558	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 559	 * us a superblock that needs the flag to be cleared.
 560	 */
 561	if (selinux_is_sblabel_mnt(sb))
 562		sbsec->flags |= SBLABEL_MNT;
 563	else
 564		sbsec->flags &= ~SBLABEL_MNT;
 565
 566	/* Initialize the root inode. */
 567	rc = inode_doinit_with_dentry(root_inode, root);
 568
 569	/* Initialize any other inodes associated with the superblock, e.g.
 570	   inodes created prior to initial policy load or inodes created
 571	   during get_sb by a pseudo filesystem that directly
 572	   populates itself. */
 573	spin_lock(&sbsec->isec_lock);
 574next_inode:
 575	if (!list_empty(&sbsec->isec_head)) {
 576		struct inode_security_struct *isec =
 577				list_entry(sbsec->isec_head.next,
 578					   struct inode_security_struct, list);
 579		struct inode *inode = isec->inode;
 580		list_del_init(&isec->list);
 581		spin_unlock(&sbsec->isec_lock);
 582		inode = igrab(inode);
 583		if (inode) {
 584			if (!IS_PRIVATE(inode))
 585				inode_doinit(inode);
 586			iput(inode);
 587		}
 588		spin_lock(&sbsec->isec_lock);
 589		goto next_inode;
 590	}
 591	spin_unlock(&sbsec->isec_lock);
 592out:
 593	return rc;
 594}
 595
 596/*
 597 * This function should allow an FS to ask what it's mount security
 598 * options were so it can use those later for submounts, displaying
 599 * mount options, or whatever.
 600 */
 601static int selinux_get_mnt_opts(const struct super_block *sb,
 602				struct security_mnt_opts *opts)
 603{
 604	int rc = 0, i;
 605	struct superblock_security_struct *sbsec = sb->s_security;
 606	char *context = NULL;
 607	u32 len;
 608	char tmp;
 609
 610	security_init_mnt_opts(opts);
 611
 612	if (!(sbsec->flags & SE_SBINITIALIZED))
 613		return -EINVAL;
 614
 615	if (!selinux_state.initialized)
 616		return -EINVAL;
 617
 618	/* make sure we always check enough bits to cover the mask */
 619	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 620
 621	tmp = sbsec->flags & SE_MNTMASK;
 622	/* count the number of mount options for this sb */
 623	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 624		if (tmp & 0x01)
 625			opts->num_mnt_opts++;
 626		tmp >>= 1;
 627	}
 628	/* Check if the Label support flag is set */
 629	if (sbsec->flags & SBLABEL_MNT)
 630		opts->num_mnt_opts++;
 631
 632	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 633	if (!opts->mnt_opts) {
 634		rc = -ENOMEM;
 635		goto out_free;
 636	}
 637
 638	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 639	if (!opts->mnt_opts_flags) {
 640		rc = -ENOMEM;
 641		goto out_free;
 642	}
 643
 644	i = 0;
 645	if (sbsec->flags & FSCONTEXT_MNT) {
 646		rc = security_sid_to_context(&selinux_state, sbsec->sid,
 647					     &context, &len);
 648		if (rc)
 649			goto out_free;
 650		opts->mnt_opts[i] = context;
 651		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 652	}
 653	if (sbsec->flags & CONTEXT_MNT) {
 654		rc = security_sid_to_context(&selinux_state,
 655					     sbsec->mntpoint_sid,
 656					     &context, &len);
 657		if (rc)
 658			goto out_free;
 659		opts->mnt_opts[i] = context;
 660		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 661	}
 662	if (sbsec->flags & DEFCONTEXT_MNT) {
 663		rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
 664					     &context, &len);
 665		if (rc)
 666			goto out_free;
 667		opts->mnt_opts[i] = context;
 668		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 669	}
 670	if (sbsec->flags & ROOTCONTEXT_MNT) {
 671		struct dentry *root = sbsec->sb->s_root;
 672		struct inode_security_struct *isec = backing_inode_security(root);
 673
 674		rc = security_sid_to_context(&selinux_state, isec->sid,
 675					     &context, &len);
 676		if (rc)
 677			goto out_free;
 678		opts->mnt_opts[i] = context;
 679		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 680	}
 681	if (sbsec->flags & SBLABEL_MNT) {
 682		opts->mnt_opts[i] = NULL;
 683		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 684	}
 685
 686	BUG_ON(i != opts->num_mnt_opts);
 687
 688	return 0;
 689
 690out_free:
 691	security_free_mnt_opts(opts);
 692	return rc;
 693}
 694
 695static int bad_option(struct superblock_security_struct *sbsec, char flag,
 696		      u32 old_sid, u32 new_sid)
 697{
 698	char mnt_flags = sbsec->flags & SE_MNTMASK;
 699
 700	/* check if the old mount command had the same options */
 701	if (sbsec->flags & SE_SBINITIALIZED)
 702		if (!(sbsec->flags & flag) ||
 703		    (old_sid != new_sid))
 704			return 1;
 705
 706	/* check if we were passed the same options twice,
 707	 * aka someone passed context=a,context=b
 708	 */
 709	if (!(sbsec->flags & SE_SBINITIALIZED))
 710		if (mnt_flags & flag)
 711			return 1;
 712	return 0;
 713}
 714
 715/*
 716 * Allow filesystems with binary mount data to explicitly set mount point
 717 * labeling information.
 718 */
 719static int selinux_set_mnt_opts(struct super_block *sb,
 720				struct security_mnt_opts *opts,
 721				unsigned long kern_flags,
 722				unsigned long *set_kern_flags)
 723{
 724	const struct cred *cred = current_cred();
 725	int rc = 0, i;
 726	struct superblock_security_struct *sbsec = sb->s_security;
 727	const char *name = sb->s_type->name;
 728	struct dentry *root = sbsec->sb->s_root;
 729	struct inode_security_struct *root_isec;
 730	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 731	u32 defcontext_sid = 0;
 732	char **mount_options = opts->mnt_opts;
 733	int *flags = opts->mnt_opts_flags;
 734	int num_opts = opts->num_mnt_opts;
 
 
 
 
 
 735
 736	mutex_lock(&sbsec->lock);
 737
 738	if (!selinux_state.initialized) {
 739		if (!num_opts) {
 740			/* Defer initialization until selinux_complete_init,
 741			   after the initial policy is loaded and the security
 742			   server is ready to handle calls. */
 
 
 
 
 743			goto out;
 744		}
 745		rc = -EINVAL;
 746		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 747			"before the security server is initialized\n");
 748		goto out;
 749	}
 750	if (kern_flags && !set_kern_flags) {
 751		/* Specifying internal flags without providing a place to
 752		 * place the results is not allowed */
 753		rc = -EINVAL;
 754		goto out;
 755	}
 756
 757	/*
 758	 * Binary mount data FS will come through this function twice.  Once
 759	 * from an explicit call and once from the generic calls from the vfs.
 760	 * Since the generic VFS calls will not contain any security mount data
 761	 * we need to skip the double mount verification.
 762	 *
 763	 * This does open a hole in which we will not notice if the first
 764	 * mount using this sb set explict options and a second mount using
 765	 * this sb does not set any security options.  (The first options
 766	 * will be used for both mounts)
 767	 */
 768	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 769	    && (num_opts == 0))
 770		goto out;
 771
 772	root_isec = backing_inode_security_novalidate(root);
 773
 774	/*
 775	 * parse the mount options, check if they are valid sids.
 776	 * also check if someone is trying to mount the same sb more
 777	 * than once with different security options.
 778	 */
 779	for (i = 0; i < num_opts; i++) {
 780		u32 sid;
 781
 782		if (flags[i] == SBLABEL_MNT)
 783			continue;
 784		rc = security_context_str_to_sid(&selinux_state,
 785						 mount_options[i], &sid,
 786						 GFP_KERNEL);
 787		if (rc) {
 788			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 789			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 790			       mount_options[i], sb->s_id, name, rc);
 791			goto out;
 792		}
 793		switch (flags[i]) {
 794		case FSCONTEXT_MNT:
 795			fscontext_sid = sid;
 796
 797			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 798					fscontext_sid))
 799				goto out_double_mount;
 800
 801			sbsec->flags |= FSCONTEXT_MNT;
 802			break;
 803		case CONTEXT_MNT:
 804			context_sid = sid;
 805
 806			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 807					context_sid))
 808				goto out_double_mount;
 809
 810			sbsec->flags |= CONTEXT_MNT;
 811			break;
 812		case ROOTCONTEXT_MNT:
 813			rootcontext_sid = sid;
 814
 815			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 816					rootcontext_sid))
 817				goto out_double_mount;
 818
 819			sbsec->flags |= ROOTCONTEXT_MNT;
 820
 821			break;
 822		case DEFCONTEXT_MNT:
 823			defcontext_sid = sid;
 824
 825			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 826					defcontext_sid))
 827				goto out_double_mount;
 828
 829			sbsec->flags |= DEFCONTEXT_MNT;
 830
 831			break;
 832		default:
 833			rc = -EINVAL;
 834			goto out;
 835		}
 836	}
 837
 838	if (sbsec->flags & SE_SBINITIALIZED) {
 839		/* previously mounted with options, but not on this attempt? */
 840		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 841			goto out_double_mount;
 842		rc = 0;
 843		goto out;
 844	}
 845
 846	if (strcmp(sb->s_type->name, "proc") == 0)
 847		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 848
 849	if (!strcmp(sb->s_type->name, "debugfs") ||
 850	    !strcmp(sb->s_type->name, "tracefs") ||
 851	    !strcmp(sb->s_type->name, "sysfs") ||
 
 852	    !strcmp(sb->s_type->name, "pstore") ||
 
 
 
 
 853	    !strcmp(sb->s_type->name, "cgroup") ||
 854	    !strcmp(sb->s_type->name, "cgroup2"))
 855		sbsec->flags |= SE_SBGENFS;
 856
 857	if (!sbsec->behavior) {
 858		/*
 859		 * Determine the labeling behavior to use for this
 860		 * filesystem type.
 861		 */
 862		rc = security_fs_use(&selinux_state, sb);
 863		if (rc) {
 864			printk(KERN_WARNING
 865				"%s: security_fs_use(%s) returned %d\n",
 866					__func__, sb->s_type->name, rc);
 867			goto out;
 868		}
 869	}
 870
 871	/*
 872	 * If this is a user namespace mount and the filesystem type is not
 873	 * explicitly whitelisted, then no contexts are allowed on the command
 874	 * line and security labels must be ignored.
 875	 */
 876	if (sb->s_user_ns != &init_user_ns &&
 877	    strcmp(sb->s_type->name, "tmpfs") &&
 878	    strcmp(sb->s_type->name, "ramfs") &&
 879	    strcmp(sb->s_type->name, "devpts")) {
 
 880		if (context_sid || fscontext_sid || rootcontext_sid ||
 881		    defcontext_sid) {
 882			rc = -EACCES;
 883			goto out;
 884		}
 885		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 886			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 887			rc = security_transition_sid(&selinux_state,
 888						     current_sid(),
 889						     current_sid(),
 890						     SECCLASS_FILE, NULL,
 891						     &sbsec->mntpoint_sid);
 892			if (rc)
 893				goto out;
 894		}
 895		goto out_set_opts;
 896	}
 897
 898	/* sets the context of the superblock for the fs being mounted. */
 899	if (fscontext_sid) {
 900		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 901		if (rc)
 902			goto out;
 903
 904		sbsec->sid = fscontext_sid;
 905	}
 906
 907	/*
 908	 * Switch to using mount point labeling behavior.
 909	 * sets the label used on all file below the mountpoint, and will set
 910	 * the superblock context if not already set.
 911	 */
 912	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 
 
 
 
 
 
 
 
 
 
 913		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 914		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 915	}
 916
 917	if (context_sid) {
 918		if (!fscontext_sid) {
 919			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 920							  cred);
 921			if (rc)
 922				goto out;
 923			sbsec->sid = context_sid;
 924		} else {
 925			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 926							     cred);
 927			if (rc)
 928				goto out;
 929		}
 930		if (!rootcontext_sid)
 931			rootcontext_sid = context_sid;
 932
 933		sbsec->mntpoint_sid = context_sid;
 934		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 935	}
 936
 937	if (rootcontext_sid) {
 938		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 939						     cred);
 940		if (rc)
 941			goto out;
 942
 943		root_isec->sid = rootcontext_sid;
 944		root_isec->initialized = LABEL_INITIALIZED;
 945	}
 946
 947	if (defcontext_sid) {
 948		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 949			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 950			rc = -EINVAL;
 951			printk(KERN_WARNING "SELinux: defcontext option is "
 952			       "invalid for this filesystem type\n");
 953			goto out;
 954		}
 955
 956		if (defcontext_sid != sbsec->def_sid) {
 957			rc = may_context_mount_inode_relabel(defcontext_sid,
 958							     sbsec, cred);
 959			if (rc)
 960				goto out;
 961		}
 962
 963		sbsec->def_sid = defcontext_sid;
 964	}
 965
 966out_set_opts:
 967	rc = sb_finish_set_opts(sb);
 968out:
 969	mutex_unlock(&sbsec->lock);
 970	return rc;
 971out_double_mount:
 972	rc = -EINVAL;
 973	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 974	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 975	goto out;
 976}
 977
 978static int selinux_cmp_sb_context(const struct super_block *oldsb,
 979				    const struct super_block *newsb)
 980{
 981	struct superblock_security_struct *old = oldsb->s_security;
 982	struct superblock_security_struct *new = newsb->s_security;
 983	char oldflags = old->flags & SE_MNTMASK;
 984	char newflags = new->flags & SE_MNTMASK;
 985
 986	if (oldflags != newflags)
 987		goto mismatch;
 988	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 989		goto mismatch;
 990	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 991		goto mismatch;
 992	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 993		goto mismatch;
 994	if (oldflags & ROOTCONTEXT_MNT) {
 995		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 996		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 997		if (oldroot->sid != newroot->sid)
 998			goto mismatch;
 999	}
1000	return 0;
1001mismatch:
1002	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
1003			    "different security settings for (dev %s, "
1004			    "type %s)\n", newsb->s_id, newsb->s_type->name);
1005	return -EBUSY;
1006}
1007
1008static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009					struct super_block *newsb,
1010					unsigned long kern_flags,
1011					unsigned long *set_kern_flags)
1012{
1013	int rc = 0;
1014	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015	struct superblock_security_struct *newsbsec = newsb->s_security;
 
1016
1017	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
1018	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
1019	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
1020
1021	/*
1022	 * if the parent was able to be mounted it clearly had no special lsm
1023	 * mount options.  thus we can safely deal with this superblock later
1024	 */
1025	if (!selinux_state.initialized)
1026		return 0;
1027
1028	/*
1029	 * Specifying internal flags without providing a place to
1030	 * place the results is not allowed.
1031	 */
1032	if (kern_flags && !set_kern_flags)
1033		return -EINVAL;
1034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035	/* how can we clone if the old one wasn't set up?? */
1036	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037
1038	/* if fs is reusing a sb, make sure that the contexts match */
1039	if (newsbsec->flags & SE_SBINITIALIZED)
 
 
 
1040		return selinux_cmp_sb_context(oldsb, newsb);
1041
1042	mutex_lock(&newsbsec->lock);
1043
1044	newsbsec->flags = oldsbsec->flags;
1045
1046	newsbsec->sid = oldsbsec->sid;
1047	newsbsec->def_sid = oldsbsec->def_sid;
1048	newsbsec->behavior = oldsbsec->behavior;
1049
1050	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052		rc = security_fs_use(&selinux_state, newsb);
1053		if (rc)
1054			goto out;
1055	}
1056
1057	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060	}
1061
1062	if (set_context) {
1063		u32 sid = oldsbsec->mntpoint_sid;
1064
1065		if (!set_fscontext)
1066			newsbsec->sid = sid;
1067		if (!set_rootcontext) {
1068			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069			newisec->sid = sid;
1070		}
1071		newsbsec->mntpoint_sid = sid;
1072	}
1073	if (set_rootcontext) {
1074		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076
1077		newisec->sid = oldisec->sid;
1078	}
1079
1080	sb_finish_set_opts(newsb);
1081out:
1082	mutex_unlock(&newsbsec->lock);
1083	return rc;
1084}
1085
1086static int selinux_parse_opts_str(char *options,
1087				  struct security_mnt_opts *opts)
1088{
1089	char *p;
1090	char *context = NULL, *defcontext = NULL;
1091	char *fscontext = NULL, *rootcontext = NULL;
1092	int rc, num_mnt_opts = 0;
1093
1094	opts->num_mnt_opts = 0;
1095
1096	/* Standard string-based options. */
1097	while ((p = strsep(&options, "|")) != NULL) {
1098		int token;
1099		substring_t args[MAX_OPT_ARGS];
1100
1101		if (!*p)
1102			continue;
1103
1104		token = match_token(p, tokens, args);
1105
1106		switch (token) {
1107		case Opt_context:
1108			if (context || defcontext) {
1109				rc = -EINVAL;
1110				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111				goto out_err;
1112			}
1113			context = match_strdup(&args[0]);
1114			if (!context) {
1115				rc = -ENOMEM;
1116				goto out_err;
1117			}
1118			break;
1119
1120		case Opt_fscontext:
1121			if (fscontext) {
1122				rc = -EINVAL;
1123				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124				goto out_err;
1125			}
1126			fscontext = match_strdup(&args[0]);
1127			if (!fscontext) {
1128				rc = -ENOMEM;
1129				goto out_err;
1130			}
1131			break;
1132
1133		case Opt_rootcontext:
1134			if (rootcontext) {
1135				rc = -EINVAL;
1136				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137				goto out_err;
1138			}
1139			rootcontext = match_strdup(&args[0]);
1140			if (!rootcontext) {
1141				rc = -ENOMEM;
1142				goto out_err;
1143			}
1144			break;
1145
1146		case Opt_defcontext:
1147			if (context || defcontext) {
1148				rc = -EINVAL;
1149				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150				goto out_err;
1151			}
1152			defcontext = match_strdup(&args[0]);
1153			if (!defcontext) {
1154				rc = -ENOMEM;
1155				goto out_err;
1156			}
1157			break;
1158		case Opt_labelsupport:
1159			break;
1160		default:
1161			rc = -EINVAL;
1162			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1163			goto out_err;
1164
1165		}
1166	}
1167
1168	rc = -ENOMEM;
1169	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170	if (!opts->mnt_opts)
1171		goto out_err;
1172
1173	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174				       GFP_KERNEL);
1175	if (!opts->mnt_opts_flags)
1176		goto out_err;
1177
1178	if (fscontext) {
1179		opts->mnt_opts[num_mnt_opts] = fscontext;
1180		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181	}
1182	if (context) {
1183		opts->mnt_opts[num_mnt_opts] = context;
1184		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185	}
1186	if (rootcontext) {
1187		opts->mnt_opts[num_mnt_opts] = rootcontext;
1188		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189	}
1190	if (defcontext) {
1191		opts->mnt_opts[num_mnt_opts] = defcontext;
1192		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193	}
1194
1195	opts->num_mnt_opts = num_mnt_opts;
1196	return 0;
1197
1198out_err:
1199	security_free_mnt_opts(opts);
1200	kfree(context);
1201	kfree(defcontext);
1202	kfree(fscontext);
1203	kfree(rootcontext);
1204	return rc;
1205}
1206/*
1207 * string mount options parsing and call set the sbsec
1208 */
1209static int superblock_doinit(struct super_block *sb, void *data)
1210{
1211	int rc = 0;
1212	char *options = data;
1213	struct security_mnt_opts opts;
1214
1215	security_init_mnt_opts(&opts);
 
 
 
 
1216
1217	if (!data)
1218		goto out;
 
 
1219
1220	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
 
 
 
 
 
1221
1222	rc = selinux_parse_opts_str(options, &opts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223	if (rc)
1224		goto out_err;
1225
1226out:
1227	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228
1229out_err:
1230	security_free_mnt_opts(&opts);
1231	return rc;
 
 
 
 
1232}
1233
1234static void selinux_write_opts(struct seq_file *m,
1235			       struct security_mnt_opts *opts)
1236{
1237	int i;
1238	char *prefix;
1239
1240	for (i = 0; i < opts->num_mnt_opts; i++) {
1241		char *has_comma;
1242
1243		if (opts->mnt_opts[i])
1244			has_comma = strchr(opts->mnt_opts[i], ',');
1245		else
1246			has_comma = NULL;
1247
1248		switch (opts->mnt_opts_flags[i]) {
1249		case CONTEXT_MNT:
1250			prefix = CONTEXT_STR;
1251			break;
1252		case FSCONTEXT_MNT:
1253			prefix = FSCONTEXT_STR;
1254			break;
1255		case ROOTCONTEXT_MNT:
1256			prefix = ROOTCONTEXT_STR;
1257			break;
1258		case DEFCONTEXT_MNT:
1259			prefix = DEFCONTEXT_STR;
1260			break;
1261		case SBLABEL_MNT:
1262			seq_putc(m, ',');
1263			seq_puts(m, LABELSUPP_STR);
1264			continue;
1265		default:
1266			BUG();
1267			return;
1268		};
1269		/* we need a comma before each option */
1270		seq_putc(m, ',');
1271		seq_puts(m, prefix);
1272		if (has_comma)
1273			seq_putc(m, '\"');
1274		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275		if (has_comma)
1276			seq_putc(m, '\"');
1277	}
 
 
1278}
1279
1280static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281{
1282	struct security_mnt_opts opts;
1283	int rc;
1284
1285	rc = selinux_get_mnt_opts(sb, &opts);
1286	if (rc) {
1287		/* before policy load we may get EINVAL, don't show anything */
1288		if (rc == -EINVAL)
1289			rc = 0;
1290		return rc;
1291	}
1292
1293	selinux_write_opts(m, &opts);
1294
1295	security_free_mnt_opts(&opts);
 
1296
1297	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298}
1299
1300static inline u16 inode_mode_to_security_class(umode_t mode)
1301{
1302	switch (mode & S_IFMT) {
1303	case S_IFSOCK:
1304		return SECCLASS_SOCK_FILE;
1305	case S_IFLNK:
1306		return SECCLASS_LNK_FILE;
1307	case S_IFREG:
1308		return SECCLASS_FILE;
1309	case S_IFBLK:
1310		return SECCLASS_BLK_FILE;
1311	case S_IFDIR:
1312		return SECCLASS_DIR;
1313	case S_IFCHR:
1314		return SECCLASS_CHR_FILE;
1315	case S_IFIFO:
1316		return SECCLASS_FIFO_FILE;
1317
1318	}
1319
1320	return SECCLASS_FILE;
1321}
1322
1323static inline int default_protocol_stream(int protocol)
1324{
1325	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
 
1326}
1327
1328static inline int default_protocol_dgram(int protocol)
1329{
1330	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331}
1332
1333static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334{
1335	int extsockclass = selinux_policycap_extsockclass();
1336
1337	switch (family) {
1338	case PF_UNIX:
1339		switch (type) {
1340		case SOCK_STREAM:
1341		case SOCK_SEQPACKET:
1342			return SECCLASS_UNIX_STREAM_SOCKET;
1343		case SOCK_DGRAM:
1344		case SOCK_RAW:
1345			return SECCLASS_UNIX_DGRAM_SOCKET;
1346		}
1347		break;
1348	case PF_INET:
1349	case PF_INET6:
1350		switch (type) {
1351		case SOCK_STREAM:
1352		case SOCK_SEQPACKET:
1353			if (default_protocol_stream(protocol))
1354				return SECCLASS_TCP_SOCKET;
1355			else if (extsockclass && protocol == IPPROTO_SCTP)
1356				return SECCLASS_SCTP_SOCKET;
1357			else
1358				return SECCLASS_RAWIP_SOCKET;
1359		case SOCK_DGRAM:
1360			if (default_protocol_dgram(protocol))
1361				return SECCLASS_UDP_SOCKET;
1362			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363						  protocol == IPPROTO_ICMPV6))
1364				return SECCLASS_ICMP_SOCKET;
1365			else
1366				return SECCLASS_RAWIP_SOCKET;
1367		case SOCK_DCCP:
1368			return SECCLASS_DCCP_SOCKET;
1369		default:
1370			return SECCLASS_RAWIP_SOCKET;
1371		}
1372		break;
1373	case PF_NETLINK:
1374		switch (protocol) {
1375		case NETLINK_ROUTE:
1376			return SECCLASS_NETLINK_ROUTE_SOCKET;
1377		case NETLINK_SOCK_DIAG:
1378			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379		case NETLINK_NFLOG:
1380			return SECCLASS_NETLINK_NFLOG_SOCKET;
1381		case NETLINK_XFRM:
1382			return SECCLASS_NETLINK_XFRM_SOCKET;
1383		case NETLINK_SELINUX:
1384			return SECCLASS_NETLINK_SELINUX_SOCKET;
1385		case NETLINK_ISCSI:
1386			return SECCLASS_NETLINK_ISCSI_SOCKET;
1387		case NETLINK_AUDIT:
1388			return SECCLASS_NETLINK_AUDIT_SOCKET;
1389		case NETLINK_FIB_LOOKUP:
1390			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391		case NETLINK_CONNECTOR:
1392			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393		case NETLINK_NETFILTER:
1394			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395		case NETLINK_DNRTMSG:
1396			return SECCLASS_NETLINK_DNRT_SOCKET;
1397		case NETLINK_KOBJECT_UEVENT:
1398			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399		case NETLINK_GENERIC:
1400			return SECCLASS_NETLINK_GENERIC_SOCKET;
1401		case NETLINK_SCSITRANSPORT:
1402			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403		case NETLINK_RDMA:
1404			return SECCLASS_NETLINK_RDMA_SOCKET;
1405		case NETLINK_CRYPTO:
1406			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407		default:
1408			return SECCLASS_NETLINK_SOCKET;
1409		}
1410	case PF_PACKET:
1411		return SECCLASS_PACKET_SOCKET;
1412	case PF_KEY:
1413		return SECCLASS_KEY_SOCKET;
1414	case PF_APPLETALK:
1415		return SECCLASS_APPLETALK_SOCKET;
1416	}
1417
1418	if (extsockclass) {
1419		switch (family) {
1420		case PF_AX25:
1421			return SECCLASS_AX25_SOCKET;
1422		case PF_IPX:
1423			return SECCLASS_IPX_SOCKET;
1424		case PF_NETROM:
1425			return SECCLASS_NETROM_SOCKET;
1426		case PF_ATMPVC:
1427			return SECCLASS_ATMPVC_SOCKET;
1428		case PF_X25:
1429			return SECCLASS_X25_SOCKET;
1430		case PF_ROSE:
1431			return SECCLASS_ROSE_SOCKET;
1432		case PF_DECnet:
1433			return SECCLASS_DECNET_SOCKET;
1434		case PF_ATMSVC:
1435			return SECCLASS_ATMSVC_SOCKET;
1436		case PF_RDS:
1437			return SECCLASS_RDS_SOCKET;
1438		case PF_IRDA:
1439			return SECCLASS_IRDA_SOCKET;
1440		case PF_PPPOX:
1441			return SECCLASS_PPPOX_SOCKET;
1442		case PF_LLC:
1443			return SECCLASS_LLC_SOCKET;
1444		case PF_CAN:
1445			return SECCLASS_CAN_SOCKET;
1446		case PF_TIPC:
1447			return SECCLASS_TIPC_SOCKET;
1448		case PF_BLUETOOTH:
1449			return SECCLASS_BLUETOOTH_SOCKET;
1450		case PF_IUCV:
1451			return SECCLASS_IUCV_SOCKET;
1452		case PF_RXRPC:
1453			return SECCLASS_RXRPC_SOCKET;
1454		case PF_ISDN:
1455			return SECCLASS_ISDN_SOCKET;
1456		case PF_PHONET:
1457			return SECCLASS_PHONET_SOCKET;
1458		case PF_IEEE802154:
1459			return SECCLASS_IEEE802154_SOCKET;
1460		case PF_CAIF:
1461			return SECCLASS_CAIF_SOCKET;
1462		case PF_ALG:
1463			return SECCLASS_ALG_SOCKET;
1464		case PF_NFC:
1465			return SECCLASS_NFC_SOCKET;
1466		case PF_VSOCK:
1467			return SECCLASS_VSOCK_SOCKET;
1468		case PF_KCM:
1469			return SECCLASS_KCM_SOCKET;
1470		case PF_QIPCRTR:
1471			return SECCLASS_QIPCRTR_SOCKET;
1472		case PF_SMC:
1473			return SECCLASS_SMC_SOCKET;
1474#if PF_MAX > 44
 
 
 
 
1475#error New address family defined, please update this function.
1476#endif
1477		}
1478	}
1479
1480	return SECCLASS_SOCKET;
1481}
1482
1483static int selinux_genfs_get_sid(struct dentry *dentry,
1484				 u16 tclass,
1485				 u16 flags,
1486				 u32 *sid)
1487{
1488	int rc;
1489	struct super_block *sb = dentry->d_sb;
1490	char *buffer, *path;
1491
1492	buffer = (char *)__get_free_page(GFP_KERNEL);
1493	if (!buffer)
1494		return -ENOMEM;
1495
1496	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1497	if (IS_ERR(path))
1498		rc = PTR_ERR(path);
1499	else {
1500		if (flags & SE_SBPROC) {
1501			/* each process gets a /proc/PID/ entry. Strip off the
1502			 * PID part to get a valid selinux labeling.
1503			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1504			while (path[1] >= '0' && path[1] <= '9') {
1505				path[1] = '/';
1506				path++;
1507			}
1508		}
1509		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1510					path, tclass, sid);
 
 
 
 
 
1511	}
1512	free_page((unsigned long)buffer);
1513	return rc;
1514}
1515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516/* The inode's security attributes must be initialized before first use. */
1517static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1518{
1519	struct superblock_security_struct *sbsec = NULL;
1520	struct inode_security_struct *isec = inode->i_security;
1521	u32 task_sid, sid = 0;
1522	u16 sclass;
1523	struct dentry *dentry;
1524#define INITCONTEXTLEN 255
1525	char *context = NULL;
1526	unsigned len = 0;
1527	int rc = 0;
1528
1529	if (isec->initialized == LABEL_INITIALIZED)
1530		return 0;
1531
1532	spin_lock(&isec->lock);
1533	if (isec->initialized == LABEL_INITIALIZED)
1534		goto out_unlock;
1535
1536	if (isec->sclass == SECCLASS_FILE)
1537		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1538
1539	sbsec = inode->i_sb->s_security;
1540	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1541		/* Defer initialization until selinux_complete_init,
1542		   after the initial policy is loaded and the security
1543		   server is ready to handle calls. */
1544		spin_lock(&sbsec->isec_lock);
1545		if (list_empty(&isec->list))
1546			list_add(&isec->list, &sbsec->isec_head);
1547		spin_unlock(&sbsec->isec_lock);
1548		goto out_unlock;
1549	}
1550
1551	sclass = isec->sclass;
1552	task_sid = isec->task_sid;
1553	sid = isec->sid;
1554	isec->initialized = LABEL_PENDING;
1555	spin_unlock(&isec->lock);
1556
1557	switch (sbsec->behavior) {
 
 
 
 
1558	case SECURITY_FS_USE_NATIVE:
1559		break;
1560	case SECURITY_FS_USE_XATTR:
1561		if (!(inode->i_opflags & IOP_XATTR)) {
1562			sid = sbsec->def_sid;
1563			break;
1564		}
1565		/* Need a dentry, since the xattr API requires one.
1566		   Life would be simpler if we could just pass the inode. */
1567		if (opt_dentry) {
1568			/* Called from d_instantiate or d_splice_alias. */
1569			dentry = dget(opt_dentry);
1570		} else {
1571			/*
1572			 * Called from selinux_complete_init, try to find a dentry.
1573			 * Some filesystems really want a connected one, so try
1574			 * that first.  We could split SECURITY_FS_USE_XATTR in
1575			 * two, depending upon that...
1576			 */
1577			dentry = d_find_alias(inode);
1578			if (!dentry)
1579				dentry = d_find_any_alias(inode);
1580		}
1581		if (!dentry) {
1582			/*
1583			 * this is can be hit on boot when a file is accessed
1584			 * before the policy is loaded.  When we load policy we
1585			 * may find inodes that have no dentry on the
1586			 * sbsec->isec_head list.  No reason to complain as these
1587			 * will get fixed up the next time we go through
1588			 * inode_doinit with a dentry, before these inodes could
1589			 * be used again by userspace.
1590			 */
1591			goto out;
1592		}
1593
1594		len = INITCONTEXTLEN;
1595		context = kmalloc(len+1, GFP_NOFS);
1596		if (!context) {
1597			rc = -ENOMEM;
1598			dput(dentry);
1599			goto out;
1600		}
1601		context[len] = '\0';
1602		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1603		if (rc == -ERANGE) {
1604			kfree(context);
1605
1606			/* Need a larger buffer.  Query for the right size. */
1607			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1608			if (rc < 0) {
1609				dput(dentry);
1610				goto out;
1611			}
1612			len = rc;
1613			context = kmalloc(len+1, GFP_NOFS);
1614			if (!context) {
1615				rc = -ENOMEM;
1616				dput(dentry);
1617				goto out;
1618			}
1619			context[len] = '\0';
1620			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1621		}
1622		dput(dentry);
1623		if (rc < 0) {
1624			if (rc != -ENODATA) {
1625				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1626				       "%d for dev=%s ino=%ld\n", __func__,
1627				       -rc, inode->i_sb->s_id, inode->i_ino);
1628				kfree(context);
1629				goto out;
1630			}
1631			/* Map ENODATA to the default file SID */
1632			sid = sbsec->def_sid;
1633			rc = 0;
1634		} else {
1635			rc = security_context_to_sid_default(&selinux_state,
1636							     context, rc, &sid,
1637							     sbsec->def_sid,
1638							     GFP_NOFS);
1639			if (rc) {
1640				char *dev = inode->i_sb->s_id;
1641				unsigned long ino = inode->i_ino;
1642
1643				if (rc == -EINVAL) {
1644					if (printk_ratelimit())
1645						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1646							"context=%s.  This indicates you may need to relabel the inode or the "
1647							"filesystem in question.\n", ino, dev, context);
1648				} else {
1649					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1650					       "returned %d for dev=%s ino=%ld\n",
1651					       __func__, context, -rc, dev, ino);
1652				}
1653				kfree(context);
1654				/* Leave with the unlabeled SID */
1655				rc = 0;
1656				break;
1657			}
1658		}
1659		kfree(context);
1660		break;
1661	case SECURITY_FS_USE_TASK:
1662		sid = task_sid;
1663		break;
1664	case SECURITY_FS_USE_TRANS:
1665		/* Default to the fs SID. */
1666		sid = sbsec->sid;
1667
1668		/* Try to obtain a transition SID. */
1669		rc = security_transition_sid(&selinux_state, task_sid, sid,
1670					     sclass, NULL, &sid);
1671		if (rc)
1672			goto out;
1673		break;
1674	case SECURITY_FS_USE_MNTPOINT:
1675		sid = sbsec->mntpoint_sid;
1676		break;
1677	default:
1678		/* Default to the fs superblock SID. */
1679		sid = sbsec->sid;
1680
1681		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
 
 
1682			/* We must have a dentry to determine the label on
1683			 * procfs inodes */
1684			if (opt_dentry) {
1685				/* Called from d_instantiate or
1686				 * d_splice_alias. */
1687				dentry = dget(opt_dentry);
1688			} else {
1689				/* Called from selinux_complete_init, try to
1690				 * find a dentry.  Some filesystems really want
1691				 * a connected one, so try that first.
1692				 */
1693				dentry = d_find_alias(inode);
1694				if (!dentry)
1695					dentry = d_find_any_alias(inode);
1696			}
1697			/*
1698			 * This can be hit on boot when a file is accessed
1699			 * before the policy is loaded.  When we load policy we
1700			 * may find inodes that have no dentry on the
1701			 * sbsec->isec_head list.  No reason to complain as
1702			 * these will get fixed up the next time we go through
1703			 * inode_doinit() with a dentry, before these inodes
1704			 * could be used again by userspace.
1705			 */
1706			if (!dentry)
1707				goto out;
1708			rc = selinux_genfs_get_sid(dentry, sclass,
1709						   sbsec->flags, &sid);
1710			dput(dentry);
1711			if (rc)
1712				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
1713		}
1714		break;
1715	}
1716
1717out:
1718	spin_lock(&isec->lock);
1719	if (isec->initialized == LABEL_PENDING) {
1720		if (!sid || rc) {
1721			isec->initialized = LABEL_INVALID;
1722			goto out_unlock;
1723		}
1724
1725		isec->initialized = LABEL_INITIALIZED;
1726		isec->sid = sid;
1727	}
1728
1729out_unlock:
1730	spin_unlock(&isec->lock);
1731	return rc;
 
 
 
 
 
 
 
 
 
1732}
1733
1734/* Convert a Linux signal to an access vector. */
1735static inline u32 signal_to_av(int sig)
1736{
1737	u32 perm = 0;
1738
1739	switch (sig) {
1740	case SIGCHLD:
1741		/* Commonly granted from child to parent. */
1742		perm = PROCESS__SIGCHLD;
1743		break;
1744	case SIGKILL:
1745		/* Cannot be caught or ignored */
1746		perm = PROCESS__SIGKILL;
1747		break;
1748	case SIGSTOP:
1749		/* Cannot be caught or ignored */
1750		perm = PROCESS__SIGSTOP;
1751		break;
1752	default:
1753		/* All other signals. */
1754		perm = PROCESS__SIGNAL;
1755		break;
1756	}
1757
1758	return perm;
1759}
1760
1761#if CAP_LAST_CAP > 63
1762#error Fix SELinux to handle capabilities > 63.
1763#endif
1764
1765/* Check whether a task is allowed to use a capability. */
1766static int cred_has_capability(const struct cred *cred,
1767			       int cap, int audit, bool initns)
1768{
1769	struct common_audit_data ad;
1770	struct av_decision avd;
1771	u16 sclass;
1772	u32 sid = cred_sid(cred);
1773	u32 av = CAP_TO_MASK(cap);
1774	int rc;
1775
1776	ad.type = LSM_AUDIT_DATA_CAP;
1777	ad.u.cap = cap;
1778
1779	switch (CAP_TO_INDEX(cap)) {
1780	case 0:
1781		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1782		break;
1783	case 1:
1784		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1785		break;
1786	default:
1787		printk(KERN_ERR
1788		       "SELinux:  out of range capability %d\n", cap);
1789		BUG();
1790		return -EINVAL;
1791	}
1792
1793	rc = avc_has_perm_noaudit(&selinux_state,
1794				  sid, sid, sclass, av, 0, &avd);
1795	if (audit == SECURITY_CAP_AUDIT) {
1796		int rc2 = avc_audit(&selinux_state,
1797				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1798		if (rc2)
1799			return rc2;
1800	}
1801	return rc;
1802}
1803
1804/* Check whether a task has a particular permission to an inode.
1805   The 'adp' parameter is optional and allows other audit
1806   data to be passed (e.g. the dentry). */
1807static int inode_has_perm(const struct cred *cred,
1808			  struct inode *inode,
1809			  u32 perms,
1810			  struct common_audit_data *adp)
1811{
1812	struct inode_security_struct *isec;
1813	u32 sid;
1814
1815	validate_creds(cred);
1816
1817	if (unlikely(IS_PRIVATE(inode)))
1818		return 0;
1819
1820	sid = cred_sid(cred);
1821	isec = inode->i_security;
1822
1823	return avc_has_perm(&selinux_state,
1824			    sid, isec->sid, isec->sclass, perms, adp);
1825}
1826
1827/* Same as inode_has_perm, but pass explicit audit data containing
1828   the dentry to help the auditing code to more easily generate the
1829   pathname if needed. */
1830static inline int dentry_has_perm(const struct cred *cred,
1831				  struct dentry *dentry,
1832				  u32 av)
1833{
1834	struct inode *inode = d_backing_inode(dentry);
1835	struct common_audit_data ad;
1836
1837	ad.type = LSM_AUDIT_DATA_DENTRY;
1838	ad.u.dentry = dentry;
1839	__inode_security_revalidate(inode, dentry, true);
1840	return inode_has_perm(cred, inode, av, &ad);
1841}
1842
1843/* Same as inode_has_perm, but pass explicit audit data containing
1844   the path to help the auditing code to more easily generate the
1845   pathname if needed. */
1846static inline int path_has_perm(const struct cred *cred,
1847				const struct path *path,
1848				u32 av)
1849{
1850	struct inode *inode = d_backing_inode(path->dentry);
1851	struct common_audit_data ad;
1852
1853	ad.type = LSM_AUDIT_DATA_PATH;
1854	ad.u.path = *path;
1855	__inode_security_revalidate(inode, path->dentry, true);
1856	return inode_has_perm(cred, inode, av, &ad);
1857}
1858
1859/* Same as path_has_perm, but uses the inode from the file struct. */
1860static inline int file_path_has_perm(const struct cred *cred,
1861				     struct file *file,
1862				     u32 av)
1863{
1864	struct common_audit_data ad;
1865
1866	ad.type = LSM_AUDIT_DATA_FILE;
1867	ad.u.file = file;
1868	return inode_has_perm(cred, file_inode(file), av, &ad);
1869}
1870
1871#ifdef CONFIG_BPF_SYSCALL
1872static int bpf_fd_pass(struct file *file, u32 sid);
1873#endif
1874
1875/* Check whether a task can use an open file descriptor to
1876   access an inode in a given way.  Check access to the
1877   descriptor itself, and then use dentry_has_perm to
1878   check a particular permission to the file.
1879   Access to the descriptor is implicitly granted if it
1880   has the same SID as the process.  If av is zero, then
1881   access to the file is not checked, e.g. for cases
1882   where only the descriptor is affected like seek. */
1883static int file_has_perm(const struct cred *cred,
1884			 struct file *file,
1885			 u32 av)
1886{
1887	struct file_security_struct *fsec = file->f_security;
1888	struct inode *inode = file_inode(file);
1889	struct common_audit_data ad;
1890	u32 sid = cred_sid(cred);
1891	int rc;
1892
1893	ad.type = LSM_AUDIT_DATA_FILE;
1894	ad.u.file = file;
1895
1896	if (sid != fsec->sid) {
1897		rc = avc_has_perm(&selinux_state,
1898				  sid, fsec->sid,
1899				  SECCLASS_FD,
1900				  FD__USE,
1901				  &ad);
1902		if (rc)
1903			goto out;
1904	}
1905
1906#ifdef CONFIG_BPF_SYSCALL
1907	rc = bpf_fd_pass(file, cred_sid(cred));
1908	if (rc)
1909		return rc;
1910#endif
1911
1912	/* av is zero if only checking access to the descriptor. */
1913	rc = 0;
1914	if (av)
1915		rc = inode_has_perm(cred, inode, av, &ad);
1916
1917out:
1918	return rc;
1919}
1920
1921/*
1922 * Determine the label for an inode that might be unioned.
1923 */
1924static int
1925selinux_determine_inode_label(const struct task_security_struct *tsec,
1926				 struct inode *dir,
1927				 const struct qstr *name, u16 tclass,
1928				 u32 *_new_isid)
1929{
1930	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
 
1931
1932	if ((sbsec->flags & SE_SBINITIALIZED) &&
1933	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1934		*_new_isid = sbsec->mntpoint_sid;
1935	} else if ((sbsec->flags & SBLABEL_MNT) &&
1936		   tsec->create_sid) {
1937		*_new_isid = tsec->create_sid;
1938	} else {
1939		const struct inode_security_struct *dsec = inode_security(dir);
1940		return security_transition_sid(&selinux_state, tsec->sid,
1941					       dsec->sid, tclass,
1942					       name, _new_isid);
1943	}
1944
1945	return 0;
1946}
1947
1948/* Check whether a task can create a file. */
1949static int may_create(struct inode *dir,
1950		      struct dentry *dentry,
1951		      u16 tclass)
1952{
1953	const struct task_security_struct *tsec = current_security();
1954	struct inode_security_struct *dsec;
1955	struct superblock_security_struct *sbsec;
1956	u32 sid, newsid;
1957	struct common_audit_data ad;
1958	int rc;
1959
1960	dsec = inode_security(dir);
1961	sbsec = dir->i_sb->s_security;
1962
1963	sid = tsec->sid;
1964
1965	ad.type = LSM_AUDIT_DATA_DENTRY;
1966	ad.u.dentry = dentry;
1967
1968	rc = avc_has_perm(&selinux_state,
1969			  sid, dsec->sid, SECCLASS_DIR,
1970			  DIR__ADD_NAME | DIR__SEARCH,
1971			  &ad);
1972	if (rc)
1973		return rc;
1974
1975	rc = selinux_determine_inode_label(current_security(), dir,
1976					   &dentry->d_name, tclass, &newsid);
1977	if (rc)
1978		return rc;
1979
1980	rc = avc_has_perm(&selinux_state,
1981			  sid, newsid, tclass, FILE__CREATE, &ad);
1982	if (rc)
1983		return rc;
1984
1985	return avc_has_perm(&selinux_state,
1986			    newsid, sbsec->sid,
1987			    SECCLASS_FILESYSTEM,
1988			    FILESYSTEM__ASSOCIATE, &ad);
1989}
1990
1991#define MAY_LINK	0
1992#define MAY_UNLINK	1
1993#define MAY_RMDIR	2
1994
1995/* Check whether a task can link, unlink, or rmdir a file/directory. */
1996static int may_link(struct inode *dir,
1997		    struct dentry *dentry,
1998		    int kind)
1999
2000{
2001	struct inode_security_struct *dsec, *isec;
2002	struct common_audit_data ad;
2003	u32 sid = current_sid();
2004	u32 av;
2005	int rc;
2006
2007	dsec = inode_security(dir);
2008	isec = backing_inode_security(dentry);
2009
2010	ad.type = LSM_AUDIT_DATA_DENTRY;
2011	ad.u.dentry = dentry;
2012
2013	av = DIR__SEARCH;
2014	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2015	rc = avc_has_perm(&selinux_state,
2016			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
2017	if (rc)
2018		return rc;
2019
2020	switch (kind) {
2021	case MAY_LINK:
2022		av = FILE__LINK;
2023		break;
2024	case MAY_UNLINK:
2025		av = FILE__UNLINK;
2026		break;
2027	case MAY_RMDIR:
2028		av = DIR__RMDIR;
2029		break;
2030	default:
2031		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
2032			__func__, kind);
2033		return 0;
2034	}
2035
2036	rc = avc_has_perm(&selinux_state,
2037			  sid, isec->sid, isec->sclass, av, &ad);
2038	return rc;
2039}
2040
2041static inline int may_rename(struct inode *old_dir,
2042			     struct dentry *old_dentry,
2043			     struct inode *new_dir,
2044			     struct dentry *new_dentry)
2045{
2046	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2047	struct common_audit_data ad;
2048	u32 sid = current_sid();
2049	u32 av;
2050	int old_is_dir, new_is_dir;
2051	int rc;
2052
2053	old_dsec = inode_security(old_dir);
2054	old_isec = backing_inode_security(old_dentry);
2055	old_is_dir = d_is_dir(old_dentry);
2056	new_dsec = inode_security(new_dir);
2057
2058	ad.type = LSM_AUDIT_DATA_DENTRY;
2059
2060	ad.u.dentry = old_dentry;
2061	rc = avc_has_perm(&selinux_state,
2062			  sid, old_dsec->sid, SECCLASS_DIR,
2063			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2064	if (rc)
2065		return rc;
2066	rc = avc_has_perm(&selinux_state,
2067			  sid, old_isec->sid,
2068			  old_isec->sclass, FILE__RENAME, &ad);
2069	if (rc)
2070		return rc;
2071	if (old_is_dir && new_dir != old_dir) {
2072		rc = avc_has_perm(&selinux_state,
2073				  sid, old_isec->sid,
2074				  old_isec->sclass, DIR__REPARENT, &ad);
2075		if (rc)
2076			return rc;
2077	}
2078
2079	ad.u.dentry = new_dentry;
2080	av = DIR__ADD_NAME | DIR__SEARCH;
2081	if (d_is_positive(new_dentry))
2082		av |= DIR__REMOVE_NAME;
2083	rc = avc_has_perm(&selinux_state,
2084			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2085	if (rc)
2086		return rc;
2087	if (d_is_positive(new_dentry)) {
2088		new_isec = backing_inode_security(new_dentry);
2089		new_is_dir = d_is_dir(new_dentry);
2090		rc = avc_has_perm(&selinux_state,
2091				  sid, new_isec->sid,
2092				  new_isec->sclass,
2093				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2094		if (rc)
2095			return rc;
2096	}
2097
2098	return 0;
2099}
2100
2101/* Check whether a task can perform a filesystem operation. */
2102static int superblock_has_perm(const struct cred *cred,
2103			       struct super_block *sb,
2104			       u32 perms,
2105			       struct common_audit_data *ad)
2106{
2107	struct superblock_security_struct *sbsec;
2108	u32 sid = cred_sid(cred);
2109
2110	sbsec = sb->s_security;
2111	return avc_has_perm(&selinux_state,
2112			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2113}
2114
2115/* Convert a Linux mode and permission mask to an access vector. */
2116static inline u32 file_mask_to_av(int mode, int mask)
2117{
2118	u32 av = 0;
2119
2120	if (!S_ISDIR(mode)) {
2121		if (mask & MAY_EXEC)
2122			av |= FILE__EXECUTE;
2123		if (mask & MAY_READ)
2124			av |= FILE__READ;
2125
2126		if (mask & MAY_APPEND)
2127			av |= FILE__APPEND;
2128		else if (mask & MAY_WRITE)
2129			av |= FILE__WRITE;
2130
2131	} else {
2132		if (mask & MAY_EXEC)
2133			av |= DIR__SEARCH;
2134		if (mask & MAY_WRITE)
2135			av |= DIR__WRITE;
2136		if (mask & MAY_READ)
2137			av |= DIR__READ;
2138	}
2139
2140	return av;
2141}
2142
2143/* Convert a Linux file to an access vector. */
2144static inline u32 file_to_av(struct file *file)
2145{
2146	u32 av = 0;
2147
2148	if (file->f_mode & FMODE_READ)
2149		av |= FILE__READ;
2150	if (file->f_mode & FMODE_WRITE) {
2151		if (file->f_flags & O_APPEND)
2152			av |= FILE__APPEND;
2153		else
2154			av |= FILE__WRITE;
2155	}
2156	if (!av) {
2157		/*
2158		 * Special file opened with flags 3 for ioctl-only use.
2159		 */
2160		av = FILE__IOCTL;
2161	}
2162
2163	return av;
2164}
2165
2166/*
2167 * Convert a file to an access vector and include the correct open
2168 * open permission.
2169 */
2170static inline u32 open_file_to_av(struct file *file)
2171{
2172	u32 av = file_to_av(file);
2173	struct inode *inode = file_inode(file);
2174
2175	if (selinux_policycap_openperm() &&
2176	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2177		av |= FILE__OPEN;
2178
2179	return av;
2180}
2181
2182/* Hook functions begin here. */
2183
2184static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2185{
2186	u32 mysid = current_sid();
2187	u32 mgrsid = task_sid(mgr);
2188
2189	return avc_has_perm(&selinux_state,
2190			    mysid, mgrsid, SECCLASS_BINDER,
2191			    BINDER__SET_CONTEXT_MGR, NULL);
2192}
2193
2194static int selinux_binder_transaction(struct task_struct *from,
2195				      struct task_struct *to)
2196{
2197	u32 mysid = current_sid();
2198	u32 fromsid = task_sid(from);
2199	u32 tosid = task_sid(to);
2200	int rc;
2201
2202	if (mysid != fromsid) {
2203		rc = avc_has_perm(&selinux_state,
2204				  mysid, fromsid, SECCLASS_BINDER,
2205				  BINDER__IMPERSONATE, NULL);
2206		if (rc)
2207			return rc;
2208	}
2209
2210	return avc_has_perm(&selinux_state,
2211			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2212			    NULL);
2213}
2214
2215static int selinux_binder_transfer_binder(struct task_struct *from,
2216					  struct task_struct *to)
2217{
2218	u32 fromsid = task_sid(from);
2219	u32 tosid = task_sid(to);
2220
2221	return avc_has_perm(&selinux_state,
2222			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2223			    NULL);
2224}
2225
2226static int selinux_binder_transfer_file(struct task_struct *from,
2227					struct task_struct *to,
2228					struct file *file)
2229{
2230	u32 sid = task_sid(to);
2231	struct file_security_struct *fsec = file->f_security;
2232	struct dentry *dentry = file->f_path.dentry;
2233	struct inode_security_struct *isec;
2234	struct common_audit_data ad;
2235	int rc;
2236
2237	ad.type = LSM_AUDIT_DATA_PATH;
2238	ad.u.path = file->f_path;
2239
2240	if (sid != fsec->sid) {
2241		rc = avc_has_perm(&selinux_state,
2242				  sid, fsec->sid,
2243				  SECCLASS_FD,
2244				  FD__USE,
2245				  &ad);
2246		if (rc)
2247			return rc;
2248	}
2249
2250#ifdef CONFIG_BPF_SYSCALL
2251	rc = bpf_fd_pass(file, sid);
2252	if (rc)
2253		return rc;
2254#endif
2255
2256	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2257		return 0;
2258
2259	isec = backing_inode_security(dentry);
2260	return avc_has_perm(&selinux_state,
2261			    sid, isec->sid, isec->sclass, file_to_av(file),
2262			    &ad);
2263}
2264
2265static int selinux_ptrace_access_check(struct task_struct *child,
2266				     unsigned int mode)
2267{
2268	u32 sid = current_sid();
2269	u32 csid = task_sid(child);
2270
2271	if (mode & PTRACE_MODE_READ)
2272		return avc_has_perm(&selinux_state,
2273				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2274
2275	return avc_has_perm(&selinux_state,
2276			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2277}
2278
2279static int selinux_ptrace_traceme(struct task_struct *parent)
2280{
2281	return avc_has_perm(&selinux_state,
2282			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2283			    PROCESS__PTRACE, NULL);
2284}
2285
2286static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2287			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2288{
2289	return avc_has_perm(&selinux_state,
2290			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2291			    PROCESS__GETCAP, NULL);
2292}
2293
2294static int selinux_capset(struct cred *new, const struct cred *old,
2295			  const kernel_cap_t *effective,
2296			  const kernel_cap_t *inheritable,
2297			  const kernel_cap_t *permitted)
2298{
2299	return avc_has_perm(&selinux_state,
2300			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2301			    PROCESS__SETCAP, NULL);
2302}
2303
2304/*
2305 * (This comment used to live with the selinux_task_setuid hook,
2306 * which was removed).
2307 *
2308 * Since setuid only affects the current process, and since the SELinux
2309 * controls are not based on the Linux identity attributes, SELinux does not
2310 * need to control this operation.  However, SELinux does control the use of
2311 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2312 */
2313
2314static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2315			   int cap, int audit)
2316{
2317	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2318}
2319
2320static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2321{
2322	const struct cred *cred = current_cred();
2323	int rc = 0;
2324
2325	if (!sb)
2326		return 0;
2327
2328	switch (cmds) {
2329	case Q_SYNC:
2330	case Q_QUOTAON:
2331	case Q_QUOTAOFF:
2332	case Q_SETINFO:
2333	case Q_SETQUOTA:
 
 
 
2334		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2335		break;
2336	case Q_GETFMT:
2337	case Q_GETINFO:
2338	case Q_GETQUOTA:
 
 
 
 
2339		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2340		break;
2341	default:
2342		rc = 0;  /* let the kernel handle invalid cmds */
2343		break;
2344	}
2345	return rc;
2346}
2347
2348static int selinux_quota_on(struct dentry *dentry)
2349{
2350	const struct cred *cred = current_cred();
2351
2352	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2353}
2354
2355static int selinux_syslog(int type)
2356{
2357	switch (type) {
2358	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2359	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2360		return avc_has_perm(&selinux_state,
2361				    current_sid(), SECINITSID_KERNEL,
2362				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2363	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2364	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2365	/* Set level of messages printed to console */
2366	case SYSLOG_ACTION_CONSOLE_LEVEL:
2367		return avc_has_perm(&selinux_state,
2368				    current_sid(), SECINITSID_KERNEL,
2369				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2370				    NULL);
2371	}
2372	/* All other syslog types */
2373	return avc_has_perm(&selinux_state,
2374			    current_sid(), SECINITSID_KERNEL,
2375			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2376}
2377
2378/*
2379 * Check that a process has enough memory to allocate a new virtual
2380 * mapping. 0 means there is enough memory for the allocation to
2381 * succeed and -ENOMEM implies there is not.
2382 *
2383 * Do not audit the selinux permission check, as this is applied to all
2384 * processes that allocate mappings.
2385 */
2386static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2387{
2388	int rc, cap_sys_admin = 0;
2389
2390	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2391				 SECURITY_CAP_NOAUDIT, true);
2392	if (rc == 0)
2393		cap_sys_admin = 1;
2394
2395	return cap_sys_admin;
2396}
2397
2398/* binprm security operations */
2399
2400static u32 ptrace_parent_sid(void)
2401{
2402	u32 sid = 0;
2403	struct task_struct *tracer;
2404
2405	rcu_read_lock();
2406	tracer = ptrace_parent(current);
2407	if (tracer)
2408		sid = task_sid(tracer);
2409	rcu_read_unlock();
2410
2411	return sid;
2412}
2413
2414static int check_nnp_nosuid(const struct linux_binprm *bprm,
2415			    const struct task_security_struct *old_tsec,
2416			    const struct task_security_struct *new_tsec)
2417{
2418	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2419	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2420	int rc;
2421	u32 av;
2422
2423	if (!nnp && !nosuid)
2424		return 0; /* neither NNP nor nosuid */
2425
2426	if (new_tsec->sid == old_tsec->sid)
2427		return 0; /* No change in credentials */
2428
2429	/*
2430	 * If the policy enables the nnp_nosuid_transition policy capability,
2431	 * then we permit transitions under NNP or nosuid if the
2432	 * policy allows the corresponding permission between
2433	 * the old and new contexts.
2434	 */
2435	if (selinux_policycap_nnp_nosuid_transition()) {
2436		av = 0;
2437		if (nnp)
2438			av |= PROCESS2__NNP_TRANSITION;
2439		if (nosuid)
2440			av |= PROCESS2__NOSUID_TRANSITION;
2441		rc = avc_has_perm(&selinux_state,
2442				  old_tsec->sid, new_tsec->sid,
2443				  SECCLASS_PROCESS2, av, NULL);
2444		if (!rc)
2445			return 0;
2446	}
2447
2448	/*
2449	 * We also permit NNP or nosuid transitions to bounded SIDs,
2450	 * i.e. SIDs that are guaranteed to only be allowed a subset
2451	 * of the permissions of the current SID.
2452	 */
2453	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2454					 new_tsec->sid);
2455	if (!rc)
2456		return 0;
2457
2458	/*
2459	 * On failure, preserve the errno values for NNP vs nosuid.
2460	 * NNP:  Operation not permitted for caller.
2461	 * nosuid:  Permission denied to file.
2462	 */
2463	if (nnp)
2464		return -EPERM;
2465	return -EACCES;
2466}
2467
2468static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2469{
2470	const struct task_security_struct *old_tsec;
2471	struct task_security_struct *new_tsec;
2472	struct inode_security_struct *isec;
2473	struct common_audit_data ad;
2474	struct inode *inode = file_inode(bprm->file);
2475	int rc;
2476
2477	/* SELinux context only depends on initial program or script and not
2478	 * the script interpreter */
2479	if (bprm->called_set_creds)
2480		return 0;
2481
2482	old_tsec = current_security();
2483	new_tsec = bprm->cred->security;
2484	isec = inode_security(inode);
2485
2486	/* Default to the current task SID. */
2487	new_tsec->sid = old_tsec->sid;
2488	new_tsec->osid = old_tsec->sid;
2489
2490	/* Reset fs, key, and sock SIDs on execve. */
2491	new_tsec->create_sid = 0;
2492	new_tsec->keycreate_sid = 0;
2493	new_tsec->sockcreate_sid = 0;
2494
 
 
 
 
 
 
 
 
 
 
 
 
 
2495	if (old_tsec->exec_sid) {
2496		new_tsec->sid = old_tsec->exec_sid;
2497		/* Reset exec SID on execve. */
2498		new_tsec->exec_sid = 0;
2499
2500		/* Fail on NNP or nosuid if not an allowed transition. */
2501		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2502		if (rc)
2503			return rc;
2504	} else {
2505		/* Check for a default transition on this program. */
2506		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2507					     isec->sid, SECCLASS_PROCESS, NULL,
2508					     &new_tsec->sid);
2509		if (rc)
2510			return rc;
2511
2512		/*
2513		 * Fallback to old SID on NNP or nosuid if not an allowed
2514		 * transition.
2515		 */
2516		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2517		if (rc)
2518			new_tsec->sid = old_tsec->sid;
2519	}
2520
2521	ad.type = LSM_AUDIT_DATA_FILE;
2522	ad.u.file = bprm->file;
2523
2524	if (new_tsec->sid == old_tsec->sid) {
2525		rc = avc_has_perm(&selinux_state,
2526				  old_tsec->sid, isec->sid,
2527				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2528		if (rc)
2529			return rc;
2530	} else {
2531		/* Check permissions for the transition. */
2532		rc = avc_has_perm(&selinux_state,
2533				  old_tsec->sid, new_tsec->sid,
2534				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2535		if (rc)
2536			return rc;
2537
2538		rc = avc_has_perm(&selinux_state,
2539				  new_tsec->sid, isec->sid,
2540				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2541		if (rc)
2542			return rc;
2543
2544		/* Check for shared state */
2545		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2546			rc = avc_has_perm(&selinux_state,
2547					  old_tsec->sid, new_tsec->sid,
2548					  SECCLASS_PROCESS, PROCESS__SHARE,
2549					  NULL);
2550			if (rc)
2551				return -EPERM;
2552		}
2553
2554		/* Make sure that anyone attempting to ptrace over a task that
2555		 * changes its SID has the appropriate permit */
2556		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2557			u32 ptsid = ptrace_parent_sid();
2558			if (ptsid != 0) {
2559				rc = avc_has_perm(&selinux_state,
2560						  ptsid, new_tsec->sid,
2561						  SECCLASS_PROCESS,
2562						  PROCESS__PTRACE, NULL);
2563				if (rc)
2564					return -EPERM;
2565			}
2566		}
2567
2568		/* Clear any possibly unsafe personality bits on exec: */
2569		bprm->per_clear |= PER_CLEAR_ON_SETID;
2570
2571		/* Enable secure mode for SIDs transitions unless
2572		   the noatsecure permission is granted between
2573		   the two SIDs, i.e. ahp returns 0. */
2574		rc = avc_has_perm(&selinux_state,
2575				  old_tsec->sid, new_tsec->sid,
2576				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2577				  NULL);
2578		bprm->secureexec |= !!rc;
2579	}
2580
2581	return 0;
2582}
2583
2584static int match_file(const void *p, struct file *file, unsigned fd)
2585{
2586	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2587}
2588
2589/* Derived from fs/exec.c:flush_old_files. */
2590static inline void flush_unauthorized_files(const struct cred *cred,
2591					    struct files_struct *files)
2592{
2593	struct file *file, *devnull = NULL;
2594	struct tty_struct *tty;
2595	int drop_tty = 0;
2596	unsigned n;
2597
2598	tty = get_current_tty();
2599	if (tty) {
2600		spin_lock(&tty->files_lock);
2601		if (!list_empty(&tty->tty_files)) {
2602			struct tty_file_private *file_priv;
2603
2604			/* Revalidate access to controlling tty.
2605			   Use file_path_has_perm on the tty path directly
2606			   rather than using file_has_perm, as this particular
2607			   open file may belong to another process and we are
2608			   only interested in the inode-based check here. */
2609			file_priv = list_first_entry(&tty->tty_files,
2610						struct tty_file_private, list);
2611			file = file_priv->file;
2612			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2613				drop_tty = 1;
2614		}
2615		spin_unlock(&tty->files_lock);
2616		tty_kref_put(tty);
2617	}
2618	/* Reset controlling tty. */
2619	if (drop_tty)
2620		no_tty();
2621
2622	/* Revalidate access to inherited open files. */
2623	n = iterate_fd(files, 0, match_file, cred);
2624	if (!n) /* none found? */
2625		return;
2626
2627	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2628	if (IS_ERR(devnull))
2629		devnull = NULL;
2630	/* replace all the matching ones with this */
2631	do {
2632		replace_fd(n - 1, devnull, 0);
2633	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2634	if (devnull)
2635		fput(devnull);
2636}
2637
2638/*
2639 * Prepare a process for imminent new credential changes due to exec
2640 */
2641static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2642{
2643	struct task_security_struct *new_tsec;
2644	struct rlimit *rlim, *initrlim;
2645	int rc, i;
2646
2647	new_tsec = bprm->cred->security;
2648	if (new_tsec->sid == new_tsec->osid)
2649		return;
2650
2651	/* Close files for which the new task SID is not authorized. */
2652	flush_unauthorized_files(bprm->cred, current->files);
2653
2654	/* Always clear parent death signal on SID transitions. */
2655	current->pdeath_signal = 0;
2656
2657	/* Check whether the new SID can inherit resource limits from the old
2658	 * SID.  If not, reset all soft limits to the lower of the current
2659	 * task's hard limit and the init task's soft limit.
2660	 *
2661	 * Note that the setting of hard limits (even to lower them) can be
2662	 * controlled by the setrlimit check.  The inclusion of the init task's
2663	 * soft limit into the computation is to avoid resetting soft limits
2664	 * higher than the default soft limit for cases where the default is
2665	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2666	 */
2667	rc = avc_has_perm(&selinux_state,
2668			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2669			  PROCESS__RLIMITINH, NULL);
2670	if (rc) {
2671		/* protect against do_prlimit() */
2672		task_lock(current);
2673		for (i = 0; i < RLIM_NLIMITS; i++) {
2674			rlim = current->signal->rlim + i;
2675			initrlim = init_task.signal->rlim + i;
2676			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2677		}
2678		task_unlock(current);
2679		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2680			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2681	}
2682}
2683
2684/*
2685 * Clean up the process immediately after the installation of new credentials
2686 * due to exec
2687 */
2688static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2689{
2690	const struct task_security_struct *tsec = current_security();
2691	struct itimerval itimer;
2692	u32 osid, sid;
2693	int rc, i;
2694
2695	osid = tsec->osid;
2696	sid = tsec->sid;
2697
2698	if (sid == osid)
2699		return;
2700
2701	/* Check whether the new SID can inherit signal state from the old SID.
2702	 * If not, clear itimers to avoid subsequent signal generation and
2703	 * flush and unblock signals.
2704	 *
2705	 * This must occur _after_ the task SID has been updated so that any
2706	 * kill done after the flush will be checked against the new SID.
2707	 */
2708	rc = avc_has_perm(&selinux_state,
2709			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2710	if (rc) {
2711		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2712			memset(&itimer, 0, sizeof itimer);
2713			for (i = 0; i < 3; i++)
2714				do_setitimer(i, &itimer, NULL);
2715		}
2716		spin_lock_irq(&current->sighand->siglock);
2717		if (!fatal_signal_pending(current)) {
2718			flush_sigqueue(&current->pending);
2719			flush_sigqueue(&current->signal->shared_pending);
2720			flush_signal_handlers(current, 1);
2721			sigemptyset(&current->blocked);
2722			recalc_sigpending();
2723		}
2724		spin_unlock_irq(&current->sighand->siglock);
2725	}
2726
2727	/* Wake up the parent if it is waiting so that it can recheck
2728	 * wait permission to the new task SID. */
2729	read_lock(&tasklist_lock);
2730	__wake_up_parent(current, current->real_parent);
2731	read_unlock(&tasklist_lock);
2732}
2733
2734/* superblock security operations */
2735
2736static int selinux_sb_alloc_security(struct super_block *sb)
2737{
2738	return superblock_alloc_security(sb);
2739}
2740
2741static void selinux_sb_free_security(struct super_block *sb)
2742{
2743	superblock_free_security(sb);
 
 
 
 
 
2744}
2745
2746static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2747{
2748	if (plen > olen)
2749		return 0;
 
2750
2751	return !memcmp(prefix, option, plen);
 
 
 
 
 
 
2752}
2753
2754static inline int selinux_option(char *option, int len)
2755{
2756	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2757		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2758		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2759		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2760		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2761}
2762
2763static inline void take_option(char **to, char *from, int *first, int len)
2764{
2765	if (!*first) {
2766		**to = ',';
2767		*to += 1;
2768	} else
2769		*first = 0;
2770	memcpy(*to, from, len);
2771	*to += len;
2772}
2773
2774static inline void take_selinux_option(char **to, char *from, int *first,
2775				       int len)
2776{
2777	int current_size = 0;
2778
2779	if (!*first) {
2780		**to = '|';
2781		*to += 1;
2782	} else
2783		*first = 0;
2784
2785	while (current_size < len) {
2786		if (*from != '"') {
2787			**to = *from;
2788			*to += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2789		}
2790		from += 1;
2791		current_size += 1;
 
2792	}
2793}
2794
2795static int selinux_sb_copy_data(char *orig, char *copy)
2796{
2797	int fnosec, fsec, rc = 0;
2798	char *in_save, *in_curr, *in_end;
2799	char *sec_curr, *nosec_save, *nosec;
2800	int open_quote = 0;
2801
2802	in_curr = orig;
2803	sec_curr = copy;
2804
2805	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2806	if (!nosec) {
2807		rc = -ENOMEM;
2808		goto out;
2809	}
 
 
2810
2811	nosec_save = nosec;
2812	fnosec = fsec = 1;
2813	in_save = in_end = orig;
 
2814
2815	do {
2816		if (*in_end == '"')
2817			open_quote = !open_quote;
2818		if ((*in_end == ',' && open_quote == 0) ||
2819				*in_end == '\0') {
2820			int len = in_end - in_curr;
2821
2822			if (selinux_option(in_curr, len))
2823				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2824			else
2825				take_option(&nosec, in_curr, &fnosec, len);
 
 
2826
2827			in_curr = in_end + 1;
2828		}
2829	} while (*in_end++);
 
 
 
 
 
 
 
 
 
2830
2831	strcpy(in_save, nosec_save);
2832	free_page((unsigned long)nosec_save);
2833out:
2834	return rc;
 
 
 
 
 
 
 
2835}
2836
2837static int selinux_sb_remount(struct super_block *sb, void *data)
2838{
2839	int rc, i, *flags;
2840	struct security_mnt_opts opts;
2841	char *secdata, **mount_options;
2842	struct superblock_security_struct *sbsec = sb->s_security;
2843
2844	if (!(sbsec->flags & SE_SBINITIALIZED))
2845		return 0;
2846
2847	if (!data)
2848		return 0;
2849
2850	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2851		return 0;
2852
2853	security_init_mnt_opts(&opts);
2854	secdata = alloc_secdata();
2855	if (!secdata)
2856		return -ENOMEM;
2857	rc = selinux_sb_copy_data(data, secdata);
2858	if (rc)
2859		goto out_free_secdata;
2860
2861	rc = selinux_parse_opts_str(secdata, &opts);
2862	if (rc)
2863		goto out_free_secdata;
2864
2865	mount_options = opts.mnt_opts;
2866	flags = opts.mnt_opts_flags;
2867
2868	for (i = 0; i < opts.num_mnt_opts; i++) {
2869		u32 sid;
2870
2871		if (flags[i] == SBLABEL_MNT)
2872			continue;
2873		rc = security_context_str_to_sid(&selinux_state,
2874						 mount_options[i], &sid,
2875						 GFP_KERNEL);
2876		if (rc) {
2877			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2878			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2879			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2880			goto out_free_opts;
2881		}
2882		rc = -EINVAL;
2883		switch (flags[i]) {
2884		case FSCONTEXT_MNT:
2885			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2886				goto out_bad_option;
2887			break;
2888		case CONTEXT_MNT:
2889			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2890				goto out_bad_option;
2891			break;
2892		case ROOTCONTEXT_MNT: {
2893			struct inode_security_struct *root_isec;
2894			root_isec = backing_inode_security(sb->s_root);
2895
2896			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2897				goto out_bad_option;
2898			break;
2899		}
2900		case DEFCONTEXT_MNT:
2901			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2902				goto out_bad_option;
2903			break;
2904		default:
2905			goto out_free_opts;
2906		}
2907	}
 
2908
2909	rc = 0;
2910out_free_opts:
2911	security_free_mnt_opts(&opts);
2912out_free_secdata:
2913	free_secdata(secdata);
2914	return rc;
2915out_bad_option:
2916	printk(KERN_WARNING "SELinux: unable to change security options "
2917	       "during remount (dev %s, type=%s)\n", sb->s_id,
2918	       sb->s_type->name);
2919	goto out_free_opts;
2920}
2921
2922static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2923{
2924	const struct cred *cred = current_cred();
2925	struct common_audit_data ad;
2926	int rc;
2927
2928	rc = superblock_doinit(sb, data);
2929	if (rc)
2930		return rc;
2931
2932	/* Allow all mounts performed by the kernel */
2933	if (flags & MS_KERNMOUNT)
2934		return 0;
2935
2936	ad.type = LSM_AUDIT_DATA_DENTRY;
2937	ad.u.dentry = sb->s_root;
2938	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2939}
2940
2941static int selinux_sb_statfs(struct dentry *dentry)
2942{
2943	const struct cred *cred = current_cred();
2944	struct common_audit_data ad;
2945
2946	ad.type = LSM_AUDIT_DATA_DENTRY;
2947	ad.u.dentry = dentry->d_sb->s_root;
2948	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2949}
2950
2951static int selinux_mount(const char *dev_name,
2952			 const struct path *path,
2953			 const char *type,
2954			 unsigned long flags,
2955			 void *data)
2956{
2957	const struct cred *cred = current_cred();
2958
2959	if (flags & MS_REMOUNT)
2960		return superblock_has_perm(cred, path->dentry->d_sb,
2961					   FILESYSTEM__REMOUNT, NULL);
2962	else
2963		return path_has_perm(cred, path, FILE__MOUNTON);
2964}
2965
 
 
 
 
 
 
 
 
2966static int selinux_umount(struct vfsmount *mnt, int flags)
2967{
2968	const struct cred *cred = current_cred();
2969
2970	return superblock_has_perm(cred, mnt->mnt_sb,
2971				   FILESYSTEM__UNMOUNT, NULL);
2972}
2973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2974/* inode security operations */
2975
2976static int selinux_inode_alloc_security(struct inode *inode)
2977{
2978	return inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
2979}
2980
2981static void selinux_inode_free_security(struct inode *inode)
2982{
2983	inode_free_security(inode);
2984}
2985
2986static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2987					const struct qstr *name, void **ctx,
 
2988					u32 *ctxlen)
2989{
2990	u32 newsid;
2991	int rc;
2992
2993	rc = selinux_determine_inode_label(current_security(),
2994					   d_inode(dentry->d_parent), name,
2995					   inode_mode_to_security_class(mode),
2996					   &newsid);
2997	if (rc)
2998		return rc;
2999
3000	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
 
 
 
3001				       ctxlen);
3002}
3003
3004static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
3005					  struct qstr *name,
3006					  const struct cred *old,
3007					  struct cred *new)
3008{
3009	u32 newsid;
3010	int rc;
3011	struct task_security_struct *tsec;
3012
3013	rc = selinux_determine_inode_label(old->security,
3014					   d_inode(dentry->d_parent), name,
3015					   inode_mode_to_security_class(mode),
3016					   &newsid);
3017	if (rc)
3018		return rc;
3019
3020	tsec = new->security;
3021	tsec->create_sid = newsid;
3022	return 0;
3023}
3024
3025static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3026				       const struct qstr *qstr,
3027				       const char **name,
3028				       void **value, size_t *len)
3029{
3030	const struct task_security_struct *tsec = current_security();
3031	struct superblock_security_struct *sbsec;
 
3032	u32 newsid, clen;
 
3033	int rc;
3034	char *context;
3035
3036	sbsec = dir->i_sb->s_security;
3037
3038	newsid = tsec->create_sid;
3039
3040	rc = selinux_determine_inode_label(current_security(),
3041		dir, qstr,
3042		inode_mode_to_security_class(inode->i_mode),
3043		&newsid);
3044	if (rc)
3045		return rc;
3046
3047	/* Possibly defer initialization to selinux_complete_init. */
3048	if (sbsec->flags & SE_SBINITIALIZED) {
3049		struct inode_security_struct *isec = inode->i_security;
3050		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3051		isec->sid = newsid;
3052		isec->initialized = LABEL_INITIALIZED;
3053	}
3054
3055	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
 
3056		return -EOPNOTSUPP;
3057
3058	if (name)
3059		*name = XATTR_SELINUX_SUFFIX;
3060
3061	if (value && len) {
3062		rc = security_sid_to_context_force(&selinux_state, newsid,
3063						   &context, &clen);
3064		if (rc)
3065			return rc;
3066		*value = context;
3067		*len = clen;
 
3068	}
3069
3070	return 0;
3071}
3072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3074{
3075	return may_create(dir, dentry, SECCLASS_FILE);
3076}
3077
3078static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3079{
3080	return may_link(dir, old_dentry, MAY_LINK);
3081}
3082
3083static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3084{
3085	return may_link(dir, dentry, MAY_UNLINK);
3086}
3087
3088static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3089{
3090	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3091}
3092
3093static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3094{
3095	return may_create(dir, dentry, SECCLASS_DIR);
3096}
3097
3098static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3099{
3100	return may_link(dir, dentry, MAY_RMDIR);
3101}
3102
3103static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3104{
3105	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3106}
3107
3108static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3109				struct inode *new_inode, struct dentry *new_dentry)
3110{
3111	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3112}
3113
3114static int selinux_inode_readlink(struct dentry *dentry)
3115{
3116	const struct cred *cred = current_cred();
3117
3118	return dentry_has_perm(cred, dentry, FILE__READ);
3119}
3120
3121static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3122				     bool rcu)
3123{
3124	const struct cred *cred = current_cred();
3125	struct common_audit_data ad;
3126	struct inode_security_struct *isec;
3127	u32 sid;
3128
3129	validate_creds(cred);
3130
3131	ad.type = LSM_AUDIT_DATA_DENTRY;
3132	ad.u.dentry = dentry;
3133	sid = cred_sid(cred);
3134	isec = inode_security_rcu(inode, rcu);
3135	if (IS_ERR(isec))
3136		return PTR_ERR(isec);
3137
3138	return avc_has_perm_flags(&selinux_state,
3139				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
3140				  rcu ? MAY_NOT_BLOCK : 0);
3141}
3142
3143static noinline int audit_inode_permission(struct inode *inode,
3144					   u32 perms, u32 audited, u32 denied,
3145					   int result,
3146					   unsigned flags)
3147{
3148	struct common_audit_data ad;
3149	struct inode_security_struct *isec = inode->i_security;
3150	int rc;
3151
3152	ad.type = LSM_AUDIT_DATA_INODE;
3153	ad.u.inode = inode;
3154
3155	rc = slow_avc_audit(&selinux_state,
3156			    current_sid(), isec->sid, isec->sclass, perms,
3157			    audited, denied, result, &ad, flags);
3158	if (rc)
3159		return rc;
3160	return 0;
3161}
3162
3163static int selinux_inode_permission(struct inode *inode, int mask)
3164{
3165	const struct cred *cred = current_cred();
3166	u32 perms;
3167	bool from_access;
3168	unsigned flags = mask & MAY_NOT_BLOCK;
3169	struct inode_security_struct *isec;
3170	u32 sid;
3171	struct av_decision avd;
3172	int rc, rc2;
3173	u32 audited, denied;
3174
3175	from_access = mask & MAY_ACCESS;
3176	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3177
3178	/* No permission to check.  Existence test. */
3179	if (!mask)
3180		return 0;
3181
3182	validate_creds(cred);
3183
3184	if (unlikely(IS_PRIVATE(inode)))
3185		return 0;
3186
3187	perms = file_mask_to_av(inode->i_mode, mask);
3188
3189	sid = cred_sid(cred);
3190	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3191	if (IS_ERR(isec))
3192		return PTR_ERR(isec);
3193
3194	rc = avc_has_perm_noaudit(&selinux_state,
3195				  sid, isec->sid, isec->sclass, perms, 0, &avd);
3196	audited = avc_audit_required(perms, &avd, rc,
3197				     from_access ? FILE__AUDIT_ACCESS : 0,
3198				     &denied);
3199	if (likely(!audited))
3200		return rc;
3201
3202	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3203	if (rc2)
3204		return rc2;
3205	return rc;
3206}
3207
3208static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
 
3209{
3210	const struct cred *cred = current_cred();
3211	struct inode *inode = d_backing_inode(dentry);
3212	unsigned int ia_valid = iattr->ia_valid;
3213	__u32 av = FILE__WRITE;
3214
3215	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3216	if (ia_valid & ATTR_FORCE) {
3217		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3218			      ATTR_FORCE);
3219		if (!ia_valid)
3220			return 0;
3221	}
3222
3223	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3224			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3225		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3226
3227	if (selinux_policycap_openperm() &&
3228	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3229	    (ia_valid & ATTR_SIZE) &&
3230	    !(ia_valid & ATTR_FILE))
3231		av |= FILE__OPEN;
3232
3233	return dentry_has_perm(cred, dentry, av);
3234}
3235
3236static int selinux_inode_getattr(const struct path *path)
3237{
3238	return path_has_perm(current_cred(), path, FILE__GETATTR);
3239}
3240
3241static bool has_cap_mac_admin(bool audit)
3242{
3243	const struct cred *cred = current_cred();
3244	int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3245
3246	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3247		return false;
3248	if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3249		return false;
3250	return true;
3251}
3252
3253static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3254				  const void *value, size_t size, int flags)
3255{
3256	struct inode *inode = d_backing_inode(dentry);
3257	struct inode_security_struct *isec;
3258	struct superblock_security_struct *sbsec;
3259	struct common_audit_data ad;
3260	u32 newsid, sid = current_sid();
3261	int rc = 0;
3262
3263	if (strcmp(name, XATTR_NAME_SELINUX)) {
3264		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3265		if (rc)
3266			return rc;
3267
3268		/* Not an attribute we recognize, so just check the
3269		   ordinary setattr permission. */
3270		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3271	}
3272
3273	sbsec = inode->i_sb->s_security;
 
 
 
3274	if (!(sbsec->flags & SBLABEL_MNT))
3275		return -EOPNOTSUPP;
3276
3277	if (!inode_owner_or_capable(inode))
3278		return -EPERM;
3279
3280	ad.type = LSM_AUDIT_DATA_DENTRY;
3281	ad.u.dentry = dentry;
3282
3283	isec = backing_inode_security(dentry);
3284	rc = avc_has_perm(&selinux_state,
3285			  sid, isec->sid, isec->sclass,
3286			  FILE__RELABELFROM, &ad);
3287	if (rc)
3288		return rc;
3289
3290	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3291				     GFP_KERNEL);
3292	if (rc == -EINVAL) {
3293		if (!has_cap_mac_admin(true)) {
3294			struct audit_buffer *ab;
3295			size_t audit_size;
3296
3297			/* We strip a nul only if it is at the end, otherwise the
3298			 * context contains a nul and we should audit that */
3299			if (value) {
3300				const char *str = value;
3301
3302				if (str[size - 1] == '\0')
3303					audit_size = size - 1;
3304				else
3305					audit_size = size;
3306			} else {
3307				audit_size = 0;
3308			}
3309			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
 
3310			audit_log_format(ab, "op=setxattr invalid_context=");
3311			audit_log_n_untrustedstring(ab, value, audit_size);
3312			audit_log_end(ab);
3313
3314			return rc;
3315		}
3316		rc = security_context_to_sid_force(&selinux_state, value,
3317						   size, &newsid);
3318	}
3319	if (rc)
3320		return rc;
3321
3322	rc = avc_has_perm(&selinux_state,
3323			  sid, newsid, isec->sclass,
3324			  FILE__RELABELTO, &ad);
3325	if (rc)
3326		return rc;
3327
3328	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3329					  sid, isec->sclass);
3330	if (rc)
3331		return rc;
3332
3333	return avc_has_perm(&selinux_state,
3334			    newsid,
3335			    sbsec->sid,
3336			    SECCLASS_FILESYSTEM,
3337			    FILESYSTEM__ASSOCIATE,
3338			    &ad);
3339}
3340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3341static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3342					const void *value, size_t size,
3343					int flags)
3344{
3345	struct inode *inode = d_backing_inode(dentry);
3346	struct inode_security_struct *isec;
3347	u32 newsid;
3348	int rc;
3349
3350	if (strcmp(name, XATTR_NAME_SELINUX)) {
3351		/* Not an attribute we recognize, so nothing to do. */
3352		return;
3353	}
3354
3355	rc = security_context_to_sid_force(&selinux_state, value, size,
 
 
 
 
 
 
 
 
 
3356					   &newsid);
3357	if (rc) {
3358		printk(KERN_ERR "SELinux:  unable to map context to SID"
3359		       "for (%s, %lu), rc=%d\n",
3360		       inode->i_sb->s_id, inode->i_ino, -rc);
3361		return;
3362	}
3363
3364	isec = backing_inode_security(dentry);
3365	spin_lock(&isec->lock);
3366	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3367	isec->sid = newsid;
3368	isec->initialized = LABEL_INITIALIZED;
3369	spin_unlock(&isec->lock);
3370
3371	return;
3372}
3373
3374static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3375{
3376	const struct cred *cred = current_cred();
3377
3378	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3379}
3380
3381static int selinux_inode_listxattr(struct dentry *dentry)
3382{
3383	const struct cred *cred = current_cred();
3384
3385	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3386}
3387
3388static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
 
3389{
3390	if (strcmp(name, XATTR_NAME_SELINUX)) {
3391		int rc = cap_inode_removexattr(dentry, name);
3392		if (rc)
3393			return rc;
3394
3395		/* Not an attribute we recognize, so just check the
3396		   ordinary setattr permission. */
3397		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3398	}
 
 
3399
3400	/* No one is allowed to remove a SELinux security label.
3401	   You can change the label, but all data must be labeled. */
3402	return -EACCES;
3403}
3404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3405/*
3406 * Copy the inode security context value to the user.
3407 *
3408 * Permission check is handled by selinux_inode_getxattr hook.
3409 */
3410static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
 
 
3411{
3412	u32 size;
3413	int error;
3414	char *context = NULL;
3415	struct inode_security_struct *isec;
3416
3417	if (strcmp(name, XATTR_SELINUX_SUFFIX))
 
 
 
 
 
3418		return -EOPNOTSUPP;
3419
3420	/*
3421	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3422	 * value even if it is not defined by current policy; otherwise,
3423	 * use the in-core value under current policy.
3424	 * Use the non-auditing forms of the permission checks since
3425	 * getxattr may be called by unprivileged processes commonly
3426	 * and lack of permission just means that we fall back to the
3427	 * in-core context value, not a denial.
3428	 */
3429	isec = inode_security(inode);
3430	if (has_cap_mac_admin(false))
3431		error = security_sid_to_context_force(&selinux_state,
3432						      isec->sid, &context,
3433						      &size);
3434	else
3435		error = security_sid_to_context(&selinux_state, isec->sid,
3436						&context, &size);
3437	if (error)
3438		return error;
3439	error = size;
3440	if (alloc) {
3441		*buffer = context;
3442		goto out_nofree;
3443	}
3444	kfree(context);
3445out_nofree:
3446	return error;
3447}
3448
3449static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3450				     const void *value, size_t size, int flags)
3451{
3452	struct inode_security_struct *isec = inode_security_novalidate(inode);
 
3453	u32 newsid;
3454	int rc;
3455
3456	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3457		return -EOPNOTSUPP;
3458
 
 
 
 
3459	if (!value || !size)
3460		return -EACCES;
3461
3462	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3463				     GFP_KERNEL);
3464	if (rc)
3465		return rc;
3466
3467	spin_lock(&isec->lock);
3468	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3469	isec->sid = newsid;
3470	isec->initialized = LABEL_INITIALIZED;
3471	spin_unlock(&isec->lock);
3472	return 0;
3473}
3474
3475static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3476{
3477	const int len = sizeof(XATTR_NAME_SELINUX);
 
 
 
 
3478	if (buffer && len <= buffer_size)
3479		memcpy(buffer, XATTR_NAME_SELINUX, len);
3480	return len;
3481}
3482
3483static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3484{
3485	struct inode_security_struct *isec = inode_security_novalidate(inode);
3486	*secid = isec->sid;
 
3487}
3488
3489static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3490{
3491	u32 sid;
3492	struct task_security_struct *tsec;
3493	struct cred *new_creds = *new;
3494
3495	if (new_creds == NULL) {
3496		new_creds = prepare_creds();
3497		if (!new_creds)
3498			return -ENOMEM;
3499	}
3500
3501	tsec = new_creds->security;
3502	/* Get label from overlay inode and set it in create_sid */
3503	selinux_inode_getsecid(d_inode(src), &sid);
3504	tsec->create_sid = sid;
3505	*new = new_creds;
3506	return 0;
3507}
3508
3509static int selinux_inode_copy_up_xattr(const char *name)
3510{
3511	/* The copy_up hook above sets the initial context on an inode, but we
3512	 * don't then want to overwrite it by blindly copying all the lower
3513	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
 
3514	 */
3515	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3516		return 1; /* Discard */
3517	/*
3518	 * Any other attribute apart from SELINUX is not claimed, supported
3519	 * by selinux.
3520	 */
3521	return -EOPNOTSUPP;
3522}
3523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3524/* file security operations */
3525
3526static int selinux_revalidate_file_permission(struct file *file, int mask)
3527{
3528	const struct cred *cred = current_cred();
3529	struct inode *inode = file_inode(file);
3530
3531	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3532	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3533		mask |= MAY_APPEND;
3534
3535	return file_has_perm(cred, file,
3536			     file_mask_to_av(inode->i_mode, mask));
3537}
3538
3539static int selinux_file_permission(struct file *file, int mask)
3540{
3541	struct inode *inode = file_inode(file);
3542	struct file_security_struct *fsec = file->f_security;
3543	struct inode_security_struct *isec;
3544	u32 sid = current_sid();
3545
3546	if (!mask)
3547		/* No permission to check.  Existence test. */
3548		return 0;
3549
3550	isec = inode_security(inode);
3551	if (sid == fsec->sid && fsec->isid == isec->sid &&
3552	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3553		/* No change since file_open check. */
3554		return 0;
3555
3556	return selinux_revalidate_file_permission(file, mask);
3557}
3558
3559static int selinux_file_alloc_security(struct file *file)
3560{
3561	return file_alloc_security(file);
3562}
3563
3564static void selinux_file_free_security(struct file *file)
3565{
3566	file_free_security(file);
 
3567}
3568
3569/*
3570 * Check whether a task has the ioctl permission and cmd
3571 * operation to an inode.
3572 */
3573static int ioctl_has_perm(const struct cred *cred, struct file *file,
3574		u32 requested, u16 cmd)
3575{
3576	struct common_audit_data ad;
3577	struct file_security_struct *fsec = file->f_security;
3578	struct inode *inode = file_inode(file);
3579	struct inode_security_struct *isec;
3580	struct lsm_ioctlop_audit ioctl;
3581	u32 ssid = cred_sid(cred);
3582	int rc;
3583	u8 driver = cmd >> 8;
3584	u8 xperm = cmd & 0xff;
3585
3586	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3587	ad.u.op = &ioctl;
3588	ad.u.op->cmd = cmd;
3589	ad.u.op->path = file->f_path;
3590
3591	if (ssid != fsec->sid) {
3592		rc = avc_has_perm(&selinux_state,
3593				  ssid, fsec->sid,
3594				SECCLASS_FD,
3595				FD__USE,
3596				&ad);
3597		if (rc)
3598			goto out;
3599	}
3600
3601	if (unlikely(IS_PRIVATE(inode)))
3602		return 0;
3603
3604	isec = inode_security(inode);
3605	rc = avc_has_extended_perms(&selinux_state,
3606				    ssid, isec->sid, isec->sclass,
3607				    requested, driver, xperm, &ad);
3608out:
3609	return rc;
3610}
3611
3612static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3613			      unsigned long arg)
3614{
3615	const struct cred *cred = current_cred();
3616	int error = 0;
3617
3618	switch (cmd) {
3619	case FIONREAD:
3620	/* fall through */
3621	case FIBMAP:
3622	/* fall through */
3623	case FIGETBSZ:
3624	/* fall through */
3625	case FS_IOC_GETFLAGS:
3626	/* fall through */
3627	case FS_IOC_GETVERSION:
3628		error = file_has_perm(cred, file, FILE__GETATTR);
3629		break;
3630
3631	case FS_IOC_SETFLAGS:
3632	/* fall through */
3633	case FS_IOC_SETVERSION:
3634		error = file_has_perm(cred, file, FILE__SETATTR);
3635		break;
3636
3637	/* sys_ioctl() checks */
3638	case FIONBIO:
3639	/* fall through */
3640	case FIOASYNC:
3641		error = file_has_perm(cred, file, 0);
3642		break;
3643
3644	case KDSKBENT:
3645	case KDSKBSENT:
3646		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3647					    SECURITY_CAP_AUDIT, true);
 
 
 
 
 
 
3648		break;
3649
3650	/* default case assumes that the command will go
3651	 * to the file's ioctl() function.
3652	 */
3653	default:
3654		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3655	}
3656	return error;
3657}
3658
3659static int default_noexec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3660
3661static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3662{
3663	const struct cred *cred = current_cred();
3664	u32 sid = cred_sid(cred);
3665	int rc = 0;
3666
3667	if (default_noexec &&
3668	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3669				   (!shared && (prot & PROT_WRITE)))) {
3670		/*
3671		 * We are making executable an anonymous mapping or a
3672		 * private file mapping that will also be writable.
3673		 * This has an additional check.
3674		 */
3675		rc = avc_has_perm(&selinux_state,
3676				  sid, sid, SECCLASS_PROCESS,
3677				  PROCESS__EXECMEM, NULL);
3678		if (rc)
3679			goto error;
3680	}
3681
3682	if (file) {
3683		/* read access is always possible with a mapping */
3684		u32 av = FILE__READ;
3685
3686		/* write access only matters if the mapping is shared */
3687		if (shared && (prot & PROT_WRITE))
3688			av |= FILE__WRITE;
3689
3690		if (prot & PROT_EXEC)
3691			av |= FILE__EXECUTE;
3692
3693		return file_has_perm(cred, file, av);
3694	}
3695
3696error:
3697	return rc;
3698}
3699
3700static int selinux_mmap_addr(unsigned long addr)
3701{
3702	int rc = 0;
3703
3704	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3705		u32 sid = current_sid();
3706		rc = avc_has_perm(&selinux_state,
3707				  sid, sid, SECCLASS_MEMPROTECT,
3708				  MEMPROTECT__MMAP_ZERO, NULL);
3709	}
3710
3711	return rc;
3712}
3713
3714static int selinux_mmap_file(struct file *file, unsigned long reqprot,
 
3715			     unsigned long prot, unsigned long flags)
3716{
3717	struct common_audit_data ad;
3718	int rc;
3719
3720	if (file) {
3721		ad.type = LSM_AUDIT_DATA_FILE;
3722		ad.u.file = file;
3723		rc = inode_has_perm(current_cred(), file_inode(file),
3724				    FILE__MAP, &ad);
3725		if (rc)
3726			return rc;
3727	}
3728
3729	if (selinux_state.checkreqprot)
3730		prot = reqprot;
3731
3732	return file_map_prot_check(file, prot,
3733				   (flags & MAP_TYPE) == MAP_SHARED);
3734}
3735
3736static int selinux_file_mprotect(struct vm_area_struct *vma,
3737				 unsigned long reqprot,
3738				 unsigned long prot)
3739{
3740	const struct cred *cred = current_cred();
3741	u32 sid = cred_sid(cred);
3742
3743	if (selinux_state.checkreqprot)
3744		prot = reqprot;
3745
3746	if (default_noexec &&
3747	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3748		int rc = 0;
 
 
 
 
 
 
 
 
 
3749		if (vma->vm_start >= vma->vm_mm->start_brk &&
3750		    vma->vm_end <= vma->vm_mm->brk) {
3751			rc = avc_has_perm(&selinux_state,
3752					  sid, sid, SECCLASS_PROCESS,
3753					  PROCESS__EXECHEAP, NULL);
3754		} else if (!vma->vm_file &&
3755			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3756			     vma->vm_end >= vma->vm_mm->start_stack) ||
3757			    vma_is_stack_for_current(vma))) {
3758			rc = avc_has_perm(&selinux_state,
3759					  sid, sid, SECCLASS_PROCESS,
3760					  PROCESS__EXECSTACK, NULL);
3761		} else if (vma->vm_file && vma->anon_vma) {
3762			/*
3763			 * We are making executable a file mapping that has
3764			 * had some COW done. Since pages might have been
3765			 * written, check ability to execute the possibly
3766			 * modified content.  This typically should only
3767			 * occur for text relocations.
3768			 */
3769			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3770		}
3771		if (rc)
3772			return rc;
3773	}
3774
3775	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3776}
3777
3778static int selinux_file_lock(struct file *file, unsigned int cmd)
3779{
3780	const struct cred *cred = current_cred();
3781
3782	return file_has_perm(cred, file, FILE__LOCK);
3783}
3784
3785static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3786			      unsigned long arg)
3787{
3788	const struct cred *cred = current_cred();
3789	int err = 0;
3790
3791	switch (cmd) {
3792	case F_SETFL:
3793		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3794			err = file_has_perm(cred, file, FILE__WRITE);
3795			break;
3796		}
3797		/* fall through */
3798	case F_SETOWN:
3799	case F_SETSIG:
3800	case F_GETFL:
3801	case F_GETOWN:
3802	case F_GETSIG:
3803	case F_GETOWNER_UIDS:
3804		/* Just check FD__USE permission */
3805		err = file_has_perm(cred, file, 0);
3806		break;
3807	case F_GETLK:
3808	case F_SETLK:
3809	case F_SETLKW:
3810	case F_OFD_GETLK:
3811	case F_OFD_SETLK:
3812	case F_OFD_SETLKW:
3813#if BITS_PER_LONG == 32
3814	case F_GETLK64:
3815	case F_SETLK64:
3816	case F_SETLKW64:
3817#endif
3818		err = file_has_perm(cred, file, FILE__LOCK);
3819		break;
3820	}
3821
3822	return err;
3823}
3824
3825static void selinux_file_set_fowner(struct file *file)
3826{
3827	struct file_security_struct *fsec;
3828
3829	fsec = file->f_security;
3830	fsec->fown_sid = current_sid();
3831}
3832
3833static int selinux_file_send_sigiotask(struct task_struct *tsk,
3834				       struct fown_struct *fown, int signum)
3835{
3836	struct file *file;
3837	u32 sid = task_sid(tsk);
3838	u32 perm;
3839	struct file_security_struct *fsec;
3840
3841	/* struct fown_struct is never outside the context of a struct file */
3842	file = container_of(fown, struct file, f_owner);
3843
3844	fsec = file->f_security;
3845
3846	if (!signum)
3847		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3848	else
3849		perm = signal_to_av(signum);
3850
3851	return avc_has_perm(&selinux_state,
3852			    fsec->fown_sid, sid,
3853			    SECCLASS_PROCESS, perm, NULL);
3854}
3855
3856static int selinux_file_receive(struct file *file)
3857{
3858	const struct cred *cred = current_cred();
3859
3860	return file_has_perm(cred, file, file_to_av(file));
3861}
3862
3863static int selinux_file_open(struct file *file, const struct cred *cred)
3864{
3865	struct file_security_struct *fsec;
3866	struct inode_security_struct *isec;
3867
3868	fsec = file->f_security;
3869	isec = inode_security(file_inode(file));
3870	/*
3871	 * Save inode label and policy sequence number
3872	 * at open-time so that selinux_file_permission
3873	 * can determine whether revalidation is necessary.
3874	 * Task label is already saved in the file security
3875	 * struct as its SID.
3876	 */
3877	fsec->isid = isec->sid;
3878	fsec->pseqno = avc_policy_seqno(&selinux_state);
3879	/*
3880	 * Since the inode label or policy seqno may have changed
3881	 * between the selinux_inode_permission check and the saving
3882	 * of state above, recheck that access is still permitted.
3883	 * Otherwise, access might never be revalidated against the
3884	 * new inode label or new policy.
3885	 * This check is not redundant - do not remove.
3886	 */
3887	return file_path_has_perm(cred, file, open_file_to_av(file));
3888}
3889
3890/* task security operations */
3891
3892static int selinux_task_alloc(struct task_struct *task,
3893			      unsigned long clone_flags)
3894{
3895	u32 sid = current_sid();
3896
3897	return avc_has_perm(&selinux_state,
3898			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3899}
3900
3901/*
3902 * allocate the SELinux part of blank credentials
3903 */
3904static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3905{
3906	struct task_security_struct *tsec;
3907
3908	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3909	if (!tsec)
3910		return -ENOMEM;
3911
3912	cred->security = tsec;
3913	return 0;
3914}
3915
3916/*
3917 * detach and free the LSM part of a set of credentials
3918 */
3919static void selinux_cred_free(struct cred *cred)
3920{
3921	struct task_security_struct *tsec = cred->security;
3922
3923	/*
3924	 * cred->security == NULL if security_cred_alloc_blank() or
3925	 * security_prepare_creds() returned an error.
3926	 */
3927	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3928	cred->security = (void *) 0x7UL;
3929	kfree(tsec);
3930}
3931
3932/*
3933 * prepare a new set of credentials for modification
3934 */
3935static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3936				gfp_t gfp)
3937{
3938	const struct task_security_struct *old_tsec;
3939	struct task_security_struct *tsec;
3940
3941	old_tsec = old->security;
3942
3943	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3944	if (!tsec)
3945		return -ENOMEM;
3946
3947	new->security = tsec;
3948	return 0;
3949}
3950
3951/*
3952 * transfer the SELinux data to a blank set of creds
3953 */
3954static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3955{
3956	const struct task_security_struct *old_tsec = old->security;
3957	struct task_security_struct *tsec = new->security;
3958
3959	*tsec = *old_tsec;
3960}
3961
3962static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3963{
3964	*secid = cred_sid(c);
3965}
3966
 
 
 
 
 
3967/*
3968 * set the security data for a kernel service
3969 * - all the creation contexts are set to unlabelled
3970 */
3971static int selinux_kernel_act_as(struct cred *new, u32 secid)
3972{
3973	struct task_security_struct *tsec = new->security;
3974	u32 sid = current_sid();
3975	int ret;
3976
3977	ret = avc_has_perm(&selinux_state,
3978			   sid, secid,
3979			   SECCLASS_KERNEL_SERVICE,
3980			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3981			   NULL);
3982	if (ret == 0) {
3983		tsec->sid = secid;
3984		tsec->create_sid = 0;
3985		tsec->keycreate_sid = 0;
3986		tsec->sockcreate_sid = 0;
3987	}
3988	return ret;
3989}
3990
3991/*
3992 * set the file creation context in a security record to the same as the
3993 * objective context of the specified inode
3994 */
3995static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3996{
3997	struct inode_security_struct *isec = inode_security(inode);
3998	struct task_security_struct *tsec = new->security;
3999	u32 sid = current_sid();
4000	int ret;
4001
4002	ret = avc_has_perm(&selinux_state,
4003			   sid, isec->sid,
4004			   SECCLASS_KERNEL_SERVICE,
4005			   KERNEL_SERVICE__CREATE_FILES_AS,
4006			   NULL);
4007
4008	if (ret == 0)
4009		tsec->create_sid = isec->sid;
4010	return ret;
4011}
4012
4013static int selinux_kernel_module_request(char *kmod_name)
4014{
4015	struct common_audit_data ad;
4016
4017	ad.type = LSM_AUDIT_DATA_KMOD;
4018	ad.u.kmod_name = kmod_name;
4019
4020	return avc_has_perm(&selinux_state,
4021			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4022			    SYSTEM__MODULE_REQUEST, &ad);
4023}
4024
4025static int selinux_kernel_module_from_file(struct file *file)
4026{
4027	struct common_audit_data ad;
4028	struct inode_security_struct *isec;
4029	struct file_security_struct *fsec;
4030	u32 sid = current_sid();
4031	int rc;
4032
4033	/* init_module */
4034	if (file == NULL)
4035		return avc_has_perm(&selinux_state,
4036				    sid, sid, SECCLASS_SYSTEM,
4037					SYSTEM__MODULE_LOAD, NULL);
4038
4039	/* finit_module */
4040
4041	ad.type = LSM_AUDIT_DATA_FILE;
4042	ad.u.file = file;
4043
4044	fsec = file->f_security;
4045	if (sid != fsec->sid) {
4046		rc = avc_has_perm(&selinux_state,
4047				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4048		if (rc)
4049			return rc;
4050	}
4051
4052	isec = inode_security(file_inode(file));
4053	return avc_has_perm(&selinux_state,
4054			    sid, isec->sid, SECCLASS_SYSTEM,
4055				SYSTEM__MODULE_LOAD, &ad);
4056}
4057
4058static int selinux_kernel_read_file(struct file *file,
4059				    enum kernel_read_file_id id)
 
4060{
4061	int rc = 0;
4062
4063	switch (id) {
4064	case READING_MODULE:
4065		rc = selinux_kernel_module_from_file(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4066		break;
4067	default:
4068		break;
4069	}
4070
4071	return rc;
4072}
4073
4074static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4075{
4076	return avc_has_perm(&selinux_state,
4077			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4078			    PROCESS__SETPGID, NULL);
4079}
4080
4081static int selinux_task_getpgid(struct task_struct *p)
4082{
4083	return avc_has_perm(&selinux_state,
4084			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4085			    PROCESS__GETPGID, NULL);
4086}
4087
4088static int selinux_task_getsid(struct task_struct *p)
4089{
4090	return avc_has_perm(&selinux_state,
4091			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4092			    PROCESS__GETSESSION, NULL);
4093}
4094
4095static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4096{
4097	*secid = task_sid(p);
 
 
 
 
 
 
4098}
4099
4100static int selinux_task_setnice(struct task_struct *p, int nice)
4101{
4102	return avc_has_perm(&selinux_state,
4103			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4104			    PROCESS__SETSCHED, NULL);
4105}
4106
4107static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4108{
4109	return avc_has_perm(&selinux_state,
4110			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4111			    PROCESS__SETSCHED, NULL);
4112}
4113
4114static int selinux_task_getioprio(struct task_struct *p)
4115{
4116	return avc_has_perm(&selinux_state,
4117			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4118			    PROCESS__GETSCHED, NULL);
4119}
4120
4121static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4122				unsigned int flags)
4123{
4124	u32 av = 0;
4125
4126	if (!flags)
4127		return 0;
4128	if (flags & LSM_PRLIMIT_WRITE)
4129		av |= PROCESS__SETRLIMIT;
4130	if (flags & LSM_PRLIMIT_READ)
4131		av |= PROCESS__GETRLIMIT;
4132	return avc_has_perm(&selinux_state,
4133			    cred_sid(cred), cred_sid(tcred),
4134			    SECCLASS_PROCESS, av, NULL);
4135}
4136
4137static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4138		struct rlimit *new_rlim)
4139{
4140	struct rlimit *old_rlim = p->signal->rlim + resource;
4141
4142	/* Control the ability to change the hard limit (whether
4143	   lowering or raising it), so that the hard limit can
4144	   later be used as a safe reset point for the soft limit
4145	   upon context transitions.  See selinux_bprm_committing_creds. */
4146	if (old_rlim->rlim_max != new_rlim->rlim_max)
4147		return avc_has_perm(&selinux_state,
4148				    current_sid(), task_sid(p),
4149				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4150
4151	return 0;
4152}
4153
4154static int selinux_task_setscheduler(struct task_struct *p)
4155{
4156	return avc_has_perm(&selinux_state,
4157			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4158			    PROCESS__SETSCHED, NULL);
4159}
4160
4161static int selinux_task_getscheduler(struct task_struct *p)
4162{
4163	return avc_has_perm(&selinux_state,
4164			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4165			    PROCESS__GETSCHED, NULL);
4166}
4167
4168static int selinux_task_movememory(struct task_struct *p)
4169{
4170	return avc_has_perm(&selinux_state,
4171			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4172			    PROCESS__SETSCHED, NULL);
4173}
4174
4175static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4176				int sig, const struct cred *cred)
4177{
4178	u32 secid;
4179	u32 perm;
4180
4181	if (!sig)
4182		perm = PROCESS__SIGNULL; /* null signal; existence test */
4183	else
4184		perm = signal_to_av(sig);
4185	if (!cred)
4186		secid = current_sid();
4187	else
4188		secid = cred_sid(cred);
4189	return avc_has_perm(&selinux_state,
4190			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4191}
4192
4193static void selinux_task_to_inode(struct task_struct *p,
4194				  struct inode *inode)
4195{
4196	struct inode_security_struct *isec = inode->i_security;
4197	u32 sid = task_sid(p);
4198
4199	spin_lock(&isec->lock);
4200	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4201	isec->sid = sid;
4202	isec->initialized = LABEL_INITIALIZED;
4203	spin_unlock(&isec->lock);
4204}
4205
 
 
 
 
 
 
 
 
4206/* Returns error only if unable to parse addresses */
4207static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4208			struct common_audit_data *ad, u8 *proto)
4209{
4210	int offset, ihlen, ret = -EINVAL;
4211	struct iphdr _iph, *ih;
4212
4213	offset = skb_network_offset(skb);
4214	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4215	if (ih == NULL)
4216		goto out;
4217
4218	ihlen = ih->ihl * 4;
4219	if (ihlen < sizeof(_iph))
4220		goto out;
4221
4222	ad->u.net->v4info.saddr = ih->saddr;
4223	ad->u.net->v4info.daddr = ih->daddr;
4224	ret = 0;
4225
4226	if (proto)
4227		*proto = ih->protocol;
4228
4229	switch (ih->protocol) {
4230	case IPPROTO_TCP: {
4231		struct tcphdr _tcph, *th;
4232
4233		if (ntohs(ih->frag_off) & IP_OFFSET)
4234			break;
4235
4236		offset += ihlen;
4237		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4238		if (th == NULL)
4239			break;
4240
4241		ad->u.net->sport = th->source;
4242		ad->u.net->dport = th->dest;
4243		break;
4244	}
4245
4246	case IPPROTO_UDP: {
4247		struct udphdr _udph, *uh;
4248
4249		if (ntohs(ih->frag_off) & IP_OFFSET)
4250			break;
4251
4252		offset += ihlen;
4253		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4254		if (uh == NULL)
4255			break;
4256
4257		ad->u.net->sport = uh->source;
4258		ad->u.net->dport = uh->dest;
4259		break;
4260	}
4261
4262	case IPPROTO_DCCP: {
4263		struct dccp_hdr _dccph, *dh;
4264
4265		if (ntohs(ih->frag_off) & IP_OFFSET)
4266			break;
4267
4268		offset += ihlen;
4269		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4270		if (dh == NULL)
4271			break;
4272
4273		ad->u.net->sport = dh->dccph_sport;
4274		ad->u.net->dport = dh->dccph_dport;
4275		break;
4276	}
4277
4278#if IS_ENABLED(CONFIG_IP_SCTP)
4279	case IPPROTO_SCTP: {
4280		struct sctphdr _sctph, *sh;
4281
4282		if (ntohs(ih->frag_off) & IP_OFFSET)
4283			break;
4284
4285		offset += ihlen;
4286		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4287		if (sh == NULL)
4288			break;
4289
4290		ad->u.net->sport = sh->source;
4291		ad->u.net->dport = sh->dest;
4292		break;
4293	}
4294#endif
4295	default:
4296		break;
4297	}
4298out:
4299	return ret;
4300}
4301
4302#if IS_ENABLED(CONFIG_IPV6)
4303
4304/* Returns error only if unable to parse addresses */
4305static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4306			struct common_audit_data *ad, u8 *proto)
4307{
4308	u8 nexthdr;
4309	int ret = -EINVAL, offset;
4310	struct ipv6hdr _ipv6h, *ip6;
4311	__be16 frag_off;
4312
4313	offset = skb_network_offset(skb);
4314	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4315	if (ip6 == NULL)
4316		goto out;
4317
4318	ad->u.net->v6info.saddr = ip6->saddr;
4319	ad->u.net->v6info.daddr = ip6->daddr;
4320	ret = 0;
4321
4322	nexthdr = ip6->nexthdr;
4323	offset += sizeof(_ipv6h);
4324	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4325	if (offset < 0)
4326		goto out;
4327
4328	if (proto)
4329		*proto = nexthdr;
4330
4331	switch (nexthdr) {
4332	case IPPROTO_TCP: {
4333		struct tcphdr _tcph, *th;
4334
4335		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4336		if (th == NULL)
4337			break;
4338
4339		ad->u.net->sport = th->source;
4340		ad->u.net->dport = th->dest;
4341		break;
4342	}
4343
4344	case IPPROTO_UDP: {
4345		struct udphdr _udph, *uh;
4346
4347		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4348		if (uh == NULL)
4349			break;
4350
4351		ad->u.net->sport = uh->source;
4352		ad->u.net->dport = uh->dest;
4353		break;
4354	}
4355
4356	case IPPROTO_DCCP: {
4357		struct dccp_hdr _dccph, *dh;
4358
4359		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4360		if (dh == NULL)
4361			break;
4362
4363		ad->u.net->sport = dh->dccph_sport;
4364		ad->u.net->dport = dh->dccph_dport;
4365		break;
4366	}
4367
4368#if IS_ENABLED(CONFIG_IP_SCTP)
4369	case IPPROTO_SCTP: {
4370		struct sctphdr _sctph, *sh;
4371
4372		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4373		if (sh == NULL)
4374			break;
4375
4376		ad->u.net->sport = sh->source;
4377		ad->u.net->dport = sh->dest;
4378		break;
4379	}
4380#endif
4381	/* includes fragments */
4382	default:
4383		break;
4384	}
4385out:
4386	return ret;
4387}
4388
4389#endif /* IPV6 */
4390
4391static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4392			     char **_addrp, int src, u8 *proto)
4393{
4394	char *addrp;
4395	int ret;
4396
4397	switch (ad->u.net->family) {
4398	case PF_INET:
4399		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4400		if (ret)
4401			goto parse_error;
4402		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4403				       &ad->u.net->v4info.daddr);
4404		goto okay;
4405
4406#if IS_ENABLED(CONFIG_IPV6)
4407	case PF_INET6:
4408		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4409		if (ret)
4410			goto parse_error;
4411		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4412				       &ad->u.net->v6info.daddr);
4413		goto okay;
4414#endif	/* IPV6 */
4415	default:
4416		addrp = NULL;
4417		goto okay;
4418	}
4419
4420parse_error:
4421	printk(KERN_WARNING
4422	       "SELinux: failure in selinux_parse_skb(),"
4423	       " unable to parse packet\n");
4424	return ret;
4425
4426okay:
4427	if (_addrp)
4428		*_addrp = addrp;
4429	return 0;
4430}
4431
4432/**
4433 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4434 * @skb: the packet
4435 * @family: protocol family
4436 * @sid: the packet's peer label SID
4437 *
4438 * Description:
4439 * Check the various different forms of network peer labeling and determine
4440 * the peer label/SID for the packet; most of the magic actually occurs in
4441 * the security server function security_net_peersid_cmp().  The function
4442 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4443 * or -EACCES if @sid is invalid due to inconsistencies with the different
4444 * peer labels.
4445 *
4446 */
4447static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4448{
4449	int err;
4450	u32 xfrm_sid;
4451	u32 nlbl_sid;
4452	u32 nlbl_type;
4453
4454	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4455	if (unlikely(err))
4456		return -EACCES;
4457	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4458	if (unlikely(err))
4459		return -EACCES;
4460
4461	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4462					   nlbl_type, xfrm_sid, sid);
4463	if (unlikely(err)) {
4464		printk(KERN_WARNING
4465		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4466		       " unable to determine packet's peer label\n");
4467		return -EACCES;
4468	}
4469
4470	return 0;
4471}
4472
4473/**
4474 * selinux_conn_sid - Determine the child socket label for a connection
4475 * @sk_sid: the parent socket's SID
4476 * @skb_sid: the packet's SID
4477 * @conn_sid: the resulting connection SID
4478 *
4479 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4480 * combined with the MLS information from @skb_sid in order to create
4481 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4482 * of @sk_sid.  Returns zero on success, negative values on failure.
4483 *
4484 */
4485static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4486{
4487	int err = 0;
4488
4489	if (skb_sid != SECSID_NULL)
4490		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4491					    conn_sid);
4492	else
4493		*conn_sid = sk_sid;
4494
4495	return err;
4496}
4497
4498/* socket security operations */
4499
4500static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4501				 u16 secclass, u32 *socksid)
4502{
4503	if (tsec->sockcreate_sid > SECSID_NULL) {
4504		*socksid = tsec->sockcreate_sid;
4505		return 0;
4506	}
4507
4508	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4509				       secclass, NULL, socksid);
4510}
4511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4512static int sock_has_perm(struct sock *sk, u32 perms)
4513{
4514	struct sk_security_struct *sksec = sk->sk_security;
4515	struct common_audit_data ad;
4516	struct lsm_network_audit net = {0,};
4517
4518	if (sksec->sid == SECINITSID_KERNEL)
4519		return 0;
4520
4521	ad.type = LSM_AUDIT_DATA_NET;
4522	ad.u.net = &net;
4523	ad.u.net->sk = sk;
4524
4525	return avc_has_perm(&selinux_state,
4526			    current_sid(), sksec->sid, sksec->sclass, perms,
4527			    &ad);
4528}
4529
4530static int selinux_socket_create(int family, int type,
4531				 int protocol, int kern)
4532{
4533	const struct task_security_struct *tsec = current_security();
4534	u32 newsid;
4535	u16 secclass;
4536	int rc;
4537
4538	if (kern)
4539		return 0;
4540
4541	secclass = socket_type_to_security_class(family, type, protocol);
4542	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4543	if (rc)
4544		return rc;
4545
4546	return avc_has_perm(&selinux_state,
4547			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4548}
4549
4550static int selinux_socket_post_create(struct socket *sock, int family,
4551				      int type, int protocol, int kern)
4552{
4553	const struct task_security_struct *tsec = current_security();
4554	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4555	struct sk_security_struct *sksec;
4556	u16 sclass = socket_type_to_security_class(family, type, protocol);
4557	u32 sid = SECINITSID_KERNEL;
4558	int err = 0;
4559
4560	if (!kern) {
4561		err = socket_sockcreate_sid(tsec, sclass, &sid);
4562		if (err)
4563			return err;
4564	}
4565
4566	isec->sclass = sclass;
4567	isec->sid = sid;
4568	isec->initialized = LABEL_INITIALIZED;
4569
4570	if (sock->sk) {
4571		sksec = sock->sk->sk_security;
4572		sksec->sclass = sclass;
4573		sksec->sid = sid;
4574		/* Allows detection of the first association on this socket */
4575		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4576			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4577
4578		err = selinux_netlbl_socket_post_create(sock->sk, family);
4579	}
4580
4581	return err;
4582}
4583
 
 
 
 
 
 
 
 
 
 
 
 
4584/* Range of port numbers used to automatically bind.
4585   Need to determine whether we should perform a name_bind
4586   permission check between the socket and the port number. */
4587
4588static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4589{
4590	struct sock *sk = sock->sk;
4591	struct sk_security_struct *sksec = sk->sk_security;
4592	u16 family;
4593	int err;
4594
4595	err = sock_has_perm(sk, SOCKET__BIND);
4596	if (err)
4597		goto out;
4598
4599	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4600	family = sk->sk_family;
4601	if (family == PF_INET || family == PF_INET6) {
4602		char *addrp;
4603		struct common_audit_data ad;
4604		struct lsm_network_audit net = {0,};
4605		struct sockaddr_in *addr4 = NULL;
4606		struct sockaddr_in6 *addr6 = NULL;
4607		u16 family_sa = address->sa_family;
4608		unsigned short snum;
4609		u32 sid, node_perm;
4610
4611		/*
4612		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4613		 * that validates multiple binding addresses. Because of this
4614		 * need to check address->sa_family as it is possible to have
4615		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4616		 */
 
 
 
4617		switch (family_sa) {
4618		case AF_UNSPEC:
4619		case AF_INET:
4620			if (addrlen < sizeof(struct sockaddr_in))
4621				return -EINVAL;
4622			addr4 = (struct sockaddr_in *)address;
4623			if (family_sa == AF_UNSPEC) {
 
 
 
 
 
 
 
4624				/* see __inet_bind(), we only want to allow
4625				 * AF_UNSPEC if the address is INADDR_ANY
4626				 */
4627				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4628					goto err_af;
4629				family_sa = AF_INET;
4630			}
4631			snum = ntohs(addr4->sin_port);
4632			addrp = (char *)&addr4->sin_addr.s_addr;
4633			break;
4634		case AF_INET6:
4635			if (addrlen < SIN6_LEN_RFC2133)
4636				return -EINVAL;
4637			addr6 = (struct sockaddr_in6 *)address;
4638			snum = ntohs(addr6->sin6_port);
4639			addrp = (char *)&addr6->sin6_addr.s6_addr;
4640			break;
4641		default:
4642			goto err_af;
4643		}
4644
4645		ad.type = LSM_AUDIT_DATA_NET;
4646		ad.u.net = &net;
4647		ad.u.net->sport = htons(snum);
4648		ad.u.net->family = family_sa;
4649
4650		if (snum) {
4651			int low, high;
4652
4653			inet_get_local_port_range(sock_net(sk), &low, &high);
4654
4655			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4656			    snum > high) {
4657				err = sel_netport_sid(sk->sk_protocol,
4658						      snum, &sid);
4659				if (err)
4660					goto out;
4661				err = avc_has_perm(&selinux_state,
4662						   sksec->sid, sid,
4663						   sksec->sclass,
4664						   SOCKET__NAME_BIND, &ad);
4665				if (err)
4666					goto out;
4667			}
4668		}
4669
4670		switch (sksec->sclass) {
4671		case SECCLASS_TCP_SOCKET:
4672			node_perm = TCP_SOCKET__NODE_BIND;
4673			break;
4674
4675		case SECCLASS_UDP_SOCKET:
4676			node_perm = UDP_SOCKET__NODE_BIND;
4677			break;
4678
4679		case SECCLASS_DCCP_SOCKET:
4680			node_perm = DCCP_SOCKET__NODE_BIND;
4681			break;
4682
4683		case SECCLASS_SCTP_SOCKET:
4684			node_perm = SCTP_SOCKET__NODE_BIND;
4685			break;
4686
4687		default:
4688			node_perm = RAWIP_SOCKET__NODE_BIND;
4689			break;
4690		}
4691
4692		err = sel_netnode_sid(addrp, family_sa, &sid);
4693		if (err)
4694			goto out;
4695
4696		if (family_sa == AF_INET)
4697			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4698		else
4699			ad.u.net->v6info.saddr = addr6->sin6_addr;
4700
4701		err = avc_has_perm(&selinux_state,
4702				   sksec->sid, sid,
4703				   sksec->sclass, node_perm, &ad);
4704		if (err)
4705			goto out;
4706	}
4707out:
4708	return err;
4709err_af:
4710	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4711	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4712		return -EINVAL;
4713	return -EAFNOSUPPORT;
4714}
4715
4716/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4717 * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4718 */
4719static int selinux_socket_connect_helper(struct socket *sock,
4720					 struct sockaddr *address, int addrlen)
4721{
4722	struct sock *sk = sock->sk;
4723	struct sk_security_struct *sksec = sk->sk_security;
4724	int err;
4725
4726	err = sock_has_perm(sk, SOCKET__CONNECT);
4727	if (err)
4728		return err;
 
 
 
 
 
 
 
 
4729
4730	/*
4731	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4732	 * for the port.
4733	 */
4734	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4735	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4736	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4737		struct common_audit_data ad;
4738		struct lsm_network_audit net = {0,};
4739		struct sockaddr_in *addr4 = NULL;
4740		struct sockaddr_in6 *addr6 = NULL;
4741		unsigned short snum;
4742		u32 sid, perm;
4743
4744		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4745		 * that validates multiple connect addresses. Because of this
4746		 * need to check address->sa_family as it is possible to have
4747		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4748		 */
4749		switch (address->sa_family) {
4750		case AF_INET:
4751			addr4 = (struct sockaddr_in *)address;
4752			if (addrlen < sizeof(struct sockaddr_in))
4753				return -EINVAL;
4754			snum = ntohs(addr4->sin_port);
4755			break;
4756		case AF_INET6:
4757			addr6 = (struct sockaddr_in6 *)address;
4758			if (addrlen < SIN6_LEN_RFC2133)
4759				return -EINVAL;
4760			snum = ntohs(addr6->sin6_port);
4761			break;
4762		default:
4763			/* Note that SCTP services expect -EINVAL, whereas
4764			 * others expect -EAFNOSUPPORT.
4765			 */
4766			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4767				return -EINVAL;
4768			else
4769				return -EAFNOSUPPORT;
4770		}
4771
4772		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4773		if (err)
4774			return err;
4775
4776		switch (sksec->sclass) {
4777		case SECCLASS_TCP_SOCKET:
4778			perm = TCP_SOCKET__NAME_CONNECT;
4779			break;
4780		case SECCLASS_DCCP_SOCKET:
4781			perm = DCCP_SOCKET__NAME_CONNECT;
4782			break;
4783		case SECCLASS_SCTP_SOCKET:
4784			perm = SCTP_SOCKET__NAME_CONNECT;
4785			break;
4786		}
4787
4788		ad.type = LSM_AUDIT_DATA_NET;
4789		ad.u.net = &net;
4790		ad.u.net->dport = htons(snum);
4791		ad.u.net->family = address->sa_family;
4792		err = avc_has_perm(&selinux_state,
4793				   sksec->sid, sid, sksec->sclass, perm, &ad);
4794		if (err)
4795			return err;
4796	}
4797
4798	return 0;
4799}
4800
4801/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4802static int selinux_socket_connect(struct socket *sock,
4803				  struct sockaddr *address, int addrlen)
4804{
4805	int err;
4806	struct sock *sk = sock->sk;
4807
4808	err = selinux_socket_connect_helper(sock, address, addrlen);
4809	if (err)
4810		return err;
4811
4812	return selinux_netlbl_socket_connect(sk, address);
4813}
4814
4815static int selinux_socket_listen(struct socket *sock, int backlog)
4816{
4817	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4818}
4819
4820static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4821{
4822	int err;
4823	struct inode_security_struct *isec;
4824	struct inode_security_struct *newisec;
4825	u16 sclass;
4826	u32 sid;
4827
4828	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4829	if (err)
4830		return err;
4831
4832	isec = inode_security_novalidate(SOCK_INODE(sock));
4833	spin_lock(&isec->lock);
4834	sclass = isec->sclass;
4835	sid = isec->sid;
4836	spin_unlock(&isec->lock);
4837
4838	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4839	newisec->sclass = sclass;
4840	newisec->sid = sid;
4841	newisec->initialized = LABEL_INITIALIZED;
4842
4843	return 0;
4844}
4845
4846static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4847				  int size)
4848{
4849	return sock_has_perm(sock->sk, SOCKET__WRITE);
4850}
4851
4852static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4853				  int size, int flags)
4854{
4855	return sock_has_perm(sock->sk, SOCKET__READ);
4856}
4857
4858static int selinux_socket_getsockname(struct socket *sock)
4859{
4860	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4861}
4862
4863static int selinux_socket_getpeername(struct socket *sock)
4864{
4865	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4866}
4867
4868static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4869{
4870	int err;
4871
4872	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4873	if (err)
4874		return err;
4875
4876	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4877}
4878
4879static int selinux_socket_getsockopt(struct socket *sock, int level,
4880				     int optname)
4881{
4882	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4883}
4884
4885static int selinux_socket_shutdown(struct socket *sock, int how)
4886{
4887	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4888}
4889
4890static int selinux_socket_unix_stream_connect(struct sock *sock,
4891					      struct sock *other,
4892					      struct sock *newsk)
4893{
4894	struct sk_security_struct *sksec_sock = sock->sk_security;
4895	struct sk_security_struct *sksec_other = other->sk_security;
4896	struct sk_security_struct *sksec_new = newsk->sk_security;
4897	struct common_audit_data ad;
4898	struct lsm_network_audit net = {0,};
4899	int err;
4900
4901	ad.type = LSM_AUDIT_DATA_NET;
4902	ad.u.net = &net;
4903	ad.u.net->sk = other;
4904
4905	err = avc_has_perm(&selinux_state,
4906			   sksec_sock->sid, sksec_other->sid,
4907			   sksec_other->sclass,
4908			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4909	if (err)
4910		return err;
4911
4912	/* server child socket */
4913	sksec_new->peer_sid = sksec_sock->sid;
4914	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4915				    sksec_sock->sid, &sksec_new->sid);
4916	if (err)
4917		return err;
4918
4919	/* connecting socket */
4920	sksec_sock->peer_sid = sksec_new->sid;
4921
4922	return 0;
4923}
4924
4925static int selinux_socket_unix_may_send(struct socket *sock,
4926					struct socket *other)
4927{
4928	struct sk_security_struct *ssec = sock->sk->sk_security;
4929	struct sk_security_struct *osec = other->sk->sk_security;
4930	struct common_audit_data ad;
4931	struct lsm_network_audit net = {0,};
4932
4933	ad.type = LSM_AUDIT_DATA_NET;
4934	ad.u.net = &net;
4935	ad.u.net->sk = other->sk;
4936
4937	return avc_has_perm(&selinux_state,
4938			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4939			    &ad);
4940}
4941
4942static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4943				    char *addrp, u16 family, u32 peer_sid,
4944				    struct common_audit_data *ad)
4945{
4946	int err;
4947	u32 if_sid;
4948	u32 node_sid;
4949
4950	err = sel_netif_sid(ns, ifindex, &if_sid);
4951	if (err)
4952		return err;
4953	err = avc_has_perm(&selinux_state,
4954			   peer_sid, if_sid,
4955			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4956	if (err)
4957		return err;
4958
4959	err = sel_netnode_sid(addrp, family, &node_sid);
4960	if (err)
4961		return err;
4962	return avc_has_perm(&selinux_state,
4963			    peer_sid, node_sid,
4964			    SECCLASS_NODE, NODE__RECVFROM, ad);
4965}
4966
4967static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4968				       u16 family)
4969{
4970	int err = 0;
4971	struct sk_security_struct *sksec = sk->sk_security;
4972	u32 sk_sid = sksec->sid;
4973	struct common_audit_data ad;
4974	struct lsm_network_audit net = {0,};
4975	char *addrp;
4976
4977	ad.type = LSM_AUDIT_DATA_NET;
4978	ad.u.net = &net;
4979	ad.u.net->netif = skb->skb_iif;
4980	ad.u.net->family = family;
4981	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4982	if (err)
4983		return err;
4984
4985	if (selinux_secmark_enabled()) {
4986		err = avc_has_perm(&selinux_state,
4987				   sk_sid, skb->secmark, SECCLASS_PACKET,
4988				   PACKET__RECV, &ad);
4989		if (err)
4990			return err;
4991	}
4992
4993	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4994	if (err)
4995		return err;
4996	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4997
4998	return err;
4999}
5000
5001static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5002{
5003	int err;
5004	struct sk_security_struct *sksec = sk->sk_security;
5005	u16 family = sk->sk_family;
5006	u32 sk_sid = sksec->sid;
5007	struct common_audit_data ad;
5008	struct lsm_network_audit net = {0,};
5009	char *addrp;
5010	u8 secmark_active;
5011	u8 peerlbl_active;
5012
5013	if (family != PF_INET && family != PF_INET6)
5014		return 0;
5015
5016	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5017	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5018		family = PF_INET;
5019
5020	/* If any sort of compatibility mode is enabled then handoff processing
5021	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5022	 * special handling.  We do this in an attempt to keep this function
5023	 * as fast and as clean as possible. */
5024	if (!selinux_policycap_netpeer())
5025		return selinux_sock_rcv_skb_compat(sk, skb, family);
5026
5027	secmark_active = selinux_secmark_enabled();
5028	peerlbl_active = selinux_peerlbl_enabled();
5029	if (!secmark_active && !peerlbl_active)
5030		return 0;
5031
5032	ad.type = LSM_AUDIT_DATA_NET;
5033	ad.u.net = &net;
5034	ad.u.net->netif = skb->skb_iif;
5035	ad.u.net->family = family;
5036	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5037	if (err)
5038		return err;
5039
5040	if (peerlbl_active) {
5041		u32 peer_sid;
5042
5043		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5044		if (err)
5045			return err;
5046		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5047					       addrp, family, peer_sid, &ad);
5048		if (err) {
5049			selinux_netlbl_err(skb, family, err, 0);
5050			return err;
5051		}
5052		err = avc_has_perm(&selinux_state,
5053				   sk_sid, peer_sid, SECCLASS_PEER,
5054				   PEER__RECV, &ad);
5055		if (err) {
5056			selinux_netlbl_err(skb, family, err, 0);
5057			return err;
5058		}
5059	}
5060
5061	if (secmark_active) {
5062		err = avc_has_perm(&selinux_state,
5063				   sk_sid, skb->secmark, SECCLASS_PACKET,
5064				   PACKET__RECV, &ad);
5065		if (err)
5066			return err;
5067	}
5068
5069	return err;
5070}
5071
5072static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5073					    int __user *optlen, unsigned len)
 
5074{
5075	int err = 0;
5076	char *scontext;
5077	u32 scontext_len;
5078	struct sk_security_struct *sksec = sock->sk->sk_security;
5079	u32 peer_sid = SECSID_NULL;
5080
5081	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5082	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5083	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5084		peer_sid = sksec->peer_sid;
5085	if (peer_sid == SECSID_NULL)
5086		return -ENOPROTOOPT;
5087
5088	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5089				      &scontext_len);
5090	if (err)
5091		return err;
5092
5093	if (scontext_len > len) {
5094		err = -ERANGE;
5095		goto out_len;
5096	}
5097
5098	if (copy_to_user(optval, scontext, scontext_len))
5099		err = -EFAULT;
5100
5101out_len:
5102	if (put_user(scontext_len, optlen))
5103		err = -EFAULT;
5104	kfree(scontext);
5105	return err;
5106}
5107
5108static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
 
5109{
5110	u32 peer_secid = SECSID_NULL;
5111	u16 family;
5112	struct inode_security_struct *isec;
5113
5114	if (skb && skb->protocol == htons(ETH_P_IP))
5115		family = PF_INET;
5116	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5117		family = PF_INET6;
5118	else if (sock)
5119		family = sock->sk->sk_family;
5120	else
5121		goto out;
 
 
5122
5123	if (sock && family == PF_UNIX) {
 
5124		isec = inode_security_novalidate(SOCK_INODE(sock));
5125		peer_secid = isec->sid;
5126	} else if (skb)
5127		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5128
5129out:
5130	*secid = peer_secid;
5131	if (peer_secid == SECSID_NULL)
5132		return -EINVAL;
5133	return 0;
5134}
5135
5136static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5137{
5138	struct sk_security_struct *sksec;
5139
5140	sksec = kzalloc(sizeof(*sksec), priority);
5141	if (!sksec)
5142		return -ENOMEM;
5143
5144	sksec->peer_sid = SECINITSID_UNLABELED;
5145	sksec->sid = SECINITSID_UNLABELED;
5146	sksec->sclass = SECCLASS_SOCKET;
5147	selinux_netlbl_sk_security_reset(sksec);
5148	sk->sk_security = sksec;
5149
5150	return 0;
5151}
5152
5153static void selinux_sk_free_security(struct sock *sk)
5154{
5155	struct sk_security_struct *sksec = sk->sk_security;
5156
5157	sk->sk_security = NULL;
5158	selinux_netlbl_sk_security_free(sksec);
5159	kfree(sksec);
5160}
5161
5162static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5163{
5164	struct sk_security_struct *sksec = sk->sk_security;
5165	struct sk_security_struct *newsksec = newsk->sk_security;
5166
5167	newsksec->sid = sksec->sid;
5168	newsksec->peer_sid = sksec->peer_sid;
5169	newsksec->sclass = sksec->sclass;
5170
5171	selinux_netlbl_sk_security_reset(newsksec);
5172}
5173
5174static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5175{
5176	if (!sk)
5177		*secid = SECINITSID_ANY_SOCKET;
5178	else {
5179		struct sk_security_struct *sksec = sk->sk_security;
5180
5181		*secid = sksec->sid;
5182	}
5183}
5184
5185static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5186{
5187	struct inode_security_struct *isec =
5188		inode_security_novalidate(SOCK_INODE(parent));
5189	struct sk_security_struct *sksec = sk->sk_security;
5190
5191	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5192	    sk->sk_family == PF_UNIX)
5193		isec->sid = sksec->sid;
5194	sksec->sclass = isec->sclass;
5195}
5196
5197/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5198 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5199 * already present).
5200 */
5201static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5202				      struct sk_buff *skb)
5203{
5204	struct sk_security_struct *sksec = ep->base.sk->sk_security;
 
 
5205	struct common_audit_data ad;
5206	struct lsm_network_audit net = {0,};
5207	u8 peerlbl_active;
5208	u32 peer_sid = SECINITSID_UNLABELED;
5209	u32 conn_sid;
5210	int err = 0;
5211
5212	if (!selinux_policycap_extsockclass())
5213		return 0;
 
5214
5215	peerlbl_active = selinux_peerlbl_enabled();
 
5216
5217	if (peerlbl_active) {
5218		/* This will return peer_sid = SECSID_NULL if there are
5219		 * no peer labels, see security_net_peersid_resolve().
5220		 */
5221		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5222					      &peer_sid);
5223		if (err)
5224			return err;
5225
5226		if (peer_sid == SECSID_NULL)
5227			peer_sid = SECINITSID_UNLABELED;
 
 
5228	}
5229
5230	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5231		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5232
5233		/* Here as first association on socket. As the peer SID
5234		 * was allowed by peer recv (and the netif/node checks),
5235		 * then it is approved by policy and used as the primary
5236		 * peer SID for getpeercon(3).
5237		 */
5238		sksec->peer_sid = peer_sid;
5239	} else if  (sksec->peer_sid != peer_sid) {
5240		/* Other association peer SIDs are checked to enforce
5241		 * consistency among the peer SIDs.
5242		 */
5243		ad.type = LSM_AUDIT_DATA_NET;
5244		ad.u.net = &net;
5245		ad.u.net->sk = ep->base.sk;
5246		err = avc_has_perm(&selinux_state,
5247				   sksec->peer_sid, peer_sid, sksec->sclass,
5248				   SCTP_SOCKET__ASSOCIATION, &ad);
5249		if (err)
5250			return err;
5251	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5252
5253	/* Compute the MLS component for the connection and store
5254	 * the information in ep. This will be used by SCTP TCP type
5255	 * sockets and peeled off connections as they cause a new
5256	 * socket to be generated. selinux_sctp_sk_clone() will then
5257	 * plug this into the new socket.
5258	 */
5259	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5260	if (err)
5261		return err;
5262
5263	ep->secid = conn_sid;
5264	ep->peer_secid = peer_sid;
5265
5266	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5267	return selinux_netlbl_sctp_assoc_request(ep, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5268}
5269
5270/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5271 * based on their @optname.
5272 */
5273static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5274				     struct sockaddr *address,
5275				     int addrlen)
5276{
5277	int len, err = 0, walk_size = 0;
5278	void *addr_buf;
5279	struct sockaddr *addr;
5280	struct socket *sock;
5281
5282	if (!selinux_policycap_extsockclass())
5283		return 0;
5284
5285	/* Process one or more addresses that may be IPv4 or IPv6 */
5286	sock = sk->sk_socket;
5287	addr_buf = address;
5288
5289	while (walk_size < addrlen) {
 
 
 
5290		addr = addr_buf;
5291		switch (addr->sa_family) {
5292		case AF_UNSPEC:
5293		case AF_INET:
5294			len = sizeof(struct sockaddr_in);
5295			break;
5296		case AF_INET6:
5297			len = sizeof(struct sockaddr_in6);
5298			break;
5299		default:
5300			return -EINVAL;
5301		}
5302
 
 
 
5303		err = -EINVAL;
5304		switch (optname) {
5305		/* Bind checks */
5306		case SCTP_PRIMARY_ADDR:
5307		case SCTP_SET_PEER_PRIMARY_ADDR:
5308		case SCTP_SOCKOPT_BINDX_ADD:
5309			err = selinux_socket_bind(sock, addr, len);
5310			break;
5311		/* Connect checks */
5312		case SCTP_SOCKOPT_CONNECTX:
5313		case SCTP_PARAM_SET_PRIMARY:
5314		case SCTP_PARAM_ADD_IP:
5315		case SCTP_SENDMSG_CONNECT:
5316			err = selinux_socket_connect_helper(sock, addr, len);
5317			if (err)
5318				return err;
5319
5320			/* As selinux_sctp_bind_connect() is called by the
5321			 * SCTP protocol layer, the socket is already locked,
5322			 * therefore selinux_netlbl_socket_connect_locked() is
5323			 * is called here. The situations handled are:
5324			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5325			 * whenever a new IP address is added or when a new
5326			 * primary address is selected.
5327			 * Note that an SCTP connect(2) call happens before
5328			 * the SCTP protocol layer and is handled via
5329			 * selinux_socket_connect().
5330			 */
5331			err = selinux_netlbl_socket_connect_locked(sk, addr);
5332			break;
5333		}
5334
5335		if (err)
5336			return err;
5337
5338		addr_buf += len;
5339		walk_size += len;
5340	}
5341
5342	return 0;
5343}
5344
5345/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5346static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5347				  struct sock *newsk)
5348{
5349	struct sk_security_struct *sksec = sk->sk_security;
5350	struct sk_security_struct *newsksec = newsk->sk_security;
5351
5352	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5353	 * the non-sctp clone version.
5354	 */
5355	if (!selinux_policycap_extsockclass())
5356		return selinux_sk_clone_security(sk, newsk);
5357
5358	newsksec->sid = ep->secid;
5359	newsksec->peer_sid = ep->peer_secid;
5360	newsksec->sclass = sksec->sclass;
5361	selinux_netlbl_sctp_sk_clone(sk, newsk);
5362}
5363
5364static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5365				     struct request_sock *req)
5366{
5367	struct sk_security_struct *sksec = sk->sk_security;
5368	int err;
5369	u16 family = req->rsk_ops->family;
5370	u32 connsid;
5371	u32 peersid;
5372
5373	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5374	if (err)
5375		return err;
5376	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5377	if (err)
5378		return err;
5379	req->secid = connsid;
5380	req->peer_secid = peersid;
5381
5382	return selinux_netlbl_inet_conn_request(req, family);
5383}
5384
5385static void selinux_inet_csk_clone(struct sock *newsk,
5386				   const struct request_sock *req)
5387{
5388	struct sk_security_struct *newsksec = newsk->sk_security;
5389
5390	newsksec->sid = req->secid;
5391	newsksec->peer_sid = req->peer_secid;
5392	/* NOTE: Ideally, we should also get the isec->sid for the
5393	   new socket in sync, but we don't have the isec available yet.
5394	   So we will wait until sock_graft to do it, by which
5395	   time it will have been created and available. */
5396
5397	/* We don't need to take any sort of lock here as we are the only
5398	 * thread with access to newsksec */
5399	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5400}
5401
5402static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5403{
5404	u16 family = sk->sk_family;
5405	struct sk_security_struct *sksec = sk->sk_security;
5406
5407	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5408	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5409		family = PF_INET;
5410
5411	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5412}
5413
5414static int selinux_secmark_relabel_packet(u32 sid)
5415{
5416	const struct task_security_struct *__tsec;
5417	u32 tsid;
5418
5419	__tsec = current_security();
5420	tsid = __tsec->sid;
5421
5422	return avc_has_perm(&selinux_state,
5423			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5424			    NULL);
5425}
5426
5427static void selinux_secmark_refcount_inc(void)
5428{
5429	atomic_inc(&selinux_secmark_refcount);
5430}
5431
5432static void selinux_secmark_refcount_dec(void)
5433{
5434	atomic_dec(&selinux_secmark_refcount);
5435}
5436
5437static void selinux_req_classify_flow(const struct request_sock *req,
5438				      struct flowi *fl)
5439{
5440	fl->flowi_secid = req->secid;
5441}
5442
5443static int selinux_tun_dev_alloc_security(void **security)
5444{
5445	struct tun_security_struct *tunsec;
5446
5447	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5448	if (!tunsec)
5449		return -ENOMEM;
5450	tunsec->sid = current_sid();
5451
5452	*security = tunsec;
5453	return 0;
5454}
5455
5456static void selinux_tun_dev_free_security(void *security)
5457{
5458	kfree(security);
5459}
5460
5461static int selinux_tun_dev_create(void)
5462{
5463	u32 sid = current_sid();
5464
5465	/* we aren't taking into account the "sockcreate" SID since the socket
5466	 * that is being created here is not a socket in the traditional sense,
5467	 * instead it is a private sock, accessible only to the kernel, and
5468	 * representing a wide range of network traffic spanning multiple
5469	 * connections unlike traditional sockets - check the TUN driver to
5470	 * get a better understanding of why this socket is special */
5471
5472	return avc_has_perm(&selinux_state,
5473			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5474			    NULL);
5475}
5476
5477static int selinux_tun_dev_attach_queue(void *security)
5478{
5479	struct tun_security_struct *tunsec = security;
5480
5481	return avc_has_perm(&selinux_state,
5482			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5483			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5484}
5485
5486static int selinux_tun_dev_attach(struct sock *sk, void *security)
5487{
5488	struct tun_security_struct *tunsec = security;
5489	struct sk_security_struct *sksec = sk->sk_security;
5490
5491	/* we don't currently perform any NetLabel based labeling here and it
5492	 * isn't clear that we would want to do so anyway; while we could apply
5493	 * labeling without the support of the TUN user the resulting labeled
5494	 * traffic from the other end of the connection would almost certainly
5495	 * cause confusion to the TUN user that had no idea network labeling
5496	 * protocols were being used */
5497
5498	sksec->sid = tunsec->sid;
5499	sksec->sclass = SECCLASS_TUN_SOCKET;
5500
5501	return 0;
5502}
5503
5504static int selinux_tun_dev_open(void *security)
5505{
5506	struct tun_security_struct *tunsec = security;
5507	u32 sid = current_sid();
5508	int err;
5509
5510	err = avc_has_perm(&selinux_state,
5511			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5512			   TUN_SOCKET__RELABELFROM, NULL);
5513	if (err)
5514		return err;
5515	err = avc_has_perm(&selinux_state,
5516			   sid, sid, SECCLASS_TUN_SOCKET,
5517			   TUN_SOCKET__RELABELTO, NULL);
5518	if (err)
5519		return err;
5520	tunsec->sid = sid;
5521
5522	return 0;
5523}
5524
5525static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5526{
5527	int err = 0;
5528	u32 perm;
5529	struct nlmsghdr *nlh;
5530	struct sk_security_struct *sksec = sk->sk_security;
5531
5532	if (skb->len < NLMSG_HDRLEN) {
5533		err = -EINVAL;
5534		goto out;
5535	}
5536	nlh = nlmsg_hdr(skb);
5537
5538	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5539	if (err) {
5540		if (err == -EINVAL) {
5541			pr_warn_ratelimited("SELinux: unrecognized netlink"
5542			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5543			       " pig=%d comm=%s\n",
5544			       sk->sk_protocol, nlh->nlmsg_type,
5545			       secclass_map[sksec->sclass - 1].name,
5546			       task_pid_nr(current), current->comm);
5547			if (!enforcing_enabled(&selinux_state) ||
5548			    security_get_allow_unknown(&selinux_state))
5549				err = 0;
5550		}
5551
5552		/* Ignore */
5553		if (err == -ENOENT)
5554			err = 0;
5555		goto out;
5556	}
5557
5558	err = sock_has_perm(sk, perm);
5559out:
5560	return err;
5561}
5562
5563#ifdef CONFIG_NETFILTER
5564
5565static unsigned int selinux_ip_forward(struct sk_buff *skb,
5566				       const struct net_device *indev,
5567				       u16 family)
5568{
5569	int err;
 
5570	char *addrp;
5571	u32 peer_sid;
5572	struct common_audit_data ad;
5573	struct lsm_network_audit net = {0,};
5574	u8 secmark_active;
5575	u8 netlbl_active;
5576	u8 peerlbl_active;
5577
5578	if (!selinux_policycap_netpeer())
5579		return NF_ACCEPT;
5580
5581	secmark_active = selinux_secmark_enabled();
5582	netlbl_active = netlbl_enabled();
5583	peerlbl_active = selinux_peerlbl_enabled();
5584	if (!secmark_active && !peerlbl_active)
5585		return NF_ACCEPT;
5586
 
5587	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5588		return NF_DROP;
5589
5590	ad.type = LSM_AUDIT_DATA_NET;
5591	ad.u.net = &net;
5592	ad.u.net->netif = indev->ifindex;
5593	ad.u.net->family = family;
5594	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5595		return NF_DROP;
5596
5597	if (peerlbl_active) {
5598		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
 
 
5599					       addrp, family, peer_sid, &ad);
5600		if (err) {
5601			selinux_netlbl_err(skb, family, err, 1);
5602			return NF_DROP;
5603		}
5604	}
5605
5606	if (secmark_active)
5607		if (avc_has_perm(&selinux_state,
5608				 peer_sid, skb->secmark,
5609				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5610			return NF_DROP;
5611
5612	if (netlbl_active)
5613		/* we do this in the FORWARD path and not the POST_ROUTING
5614		 * path because we want to make sure we apply the necessary
5615		 * labeling before IPsec is applied so we can leverage AH
5616		 * protection */
5617		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5618			return NF_DROP;
5619
5620	return NF_ACCEPT;
5621}
5622
5623static unsigned int selinux_ipv4_forward(void *priv,
5624					 struct sk_buff *skb,
5625					 const struct nf_hook_state *state)
5626{
5627	return selinux_ip_forward(skb, state->in, PF_INET);
5628}
5629
5630#if IS_ENABLED(CONFIG_IPV6)
5631static unsigned int selinux_ipv6_forward(void *priv,
5632					 struct sk_buff *skb,
5633					 const struct nf_hook_state *state)
5634{
5635	return selinux_ip_forward(skb, state->in, PF_INET6);
5636}
5637#endif	/* IPV6 */
5638
5639static unsigned int selinux_ip_output(struct sk_buff *skb,
5640				      u16 family)
5641{
5642	struct sock *sk;
5643	u32 sid;
5644
5645	if (!netlbl_enabled())
5646		return NF_ACCEPT;
5647
5648	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5649	 * because we want to make sure we apply the necessary labeling
5650	 * before IPsec is applied so we can leverage AH protection */
5651	sk = skb->sk;
5652	if (sk) {
5653		struct sk_security_struct *sksec;
5654
5655		if (sk_listener(sk))
5656			/* if the socket is the listening state then this
5657			 * packet is a SYN-ACK packet which means it needs to
5658			 * be labeled based on the connection/request_sock and
5659			 * not the parent socket.  unfortunately, we can't
5660			 * lookup the request_sock yet as it isn't queued on
5661			 * the parent socket until after the SYN-ACK is sent.
5662			 * the "solution" is to simply pass the packet as-is
5663			 * as any IP option based labeling should be copied
5664			 * from the initial connection request (in the IP
5665			 * layer).  it is far from ideal, but until we get a
5666			 * security label in the packet itself this is the
5667			 * best we can do. */
5668			return NF_ACCEPT;
5669
5670		/* standard practice, label using the parent socket */
5671		sksec = sk->sk_security;
5672		sid = sksec->sid;
5673	} else
5674		sid = SECINITSID_KERNEL;
5675	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5676		return NF_DROP;
5677
5678	return NF_ACCEPT;
5679}
5680
5681static unsigned int selinux_ipv4_output(void *priv,
5682					struct sk_buff *skb,
5683					const struct nf_hook_state *state)
5684{
5685	return selinux_ip_output(skb, PF_INET);
5686}
5687
5688#if IS_ENABLED(CONFIG_IPV6)
5689static unsigned int selinux_ipv6_output(void *priv,
5690					struct sk_buff *skb,
5691					const struct nf_hook_state *state)
5692{
5693	return selinux_ip_output(skb, PF_INET6);
5694}
5695#endif	/* IPV6 */
5696
5697static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5698						int ifindex,
5699						u16 family)
5700{
5701	struct sock *sk = skb_to_full_sk(skb);
5702	struct sk_security_struct *sksec;
5703	struct common_audit_data ad;
5704	struct lsm_network_audit net = {0,};
5705	char *addrp;
5706	u8 proto;
5707
 
5708	if (sk == NULL)
5709		return NF_ACCEPT;
5710	sksec = sk->sk_security;
5711
5712	ad.type = LSM_AUDIT_DATA_NET;
5713	ad.u.net = &net;
5714	ad.u.net->netif = ifindex;
5715	ad.u.net->family = family;
5716	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5717		return NF_DROP;
5718
5719	if (selinux_secmark_enabled())
5720		if (avc_has_perm(&selinux_state,
5721				 sksec->sid, skb->secmark,
5722				 SECCLASS_PACKET, PACKET__SEND, &ad))
5723			return NF_DROP_ERR(-ECONNREFUSED);
5724
5725	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5726		return NF_DROP_ERR(-ECONNREFUSED);
5727
5728	return NF_ACCEPT;
5729}
5730
5731static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5732					 const struct net_device *outdev,
5733					 u16 family)
5734{
 
5735	u32 secmark_perm;
5736	u32 peer_sid;
5737	int ifindex = outdev->ifindex;
5738	struct sock *sk;
5739	struct common_audit_data ad;
5740	struct lsm_network_audit net = {0,};
5741	char *addrp;
5742	u8 secmark_active;
5743	u8 peerlbl_active;
5744
5745	/* If any sort of compatibility mode is enabled then handoff processing
5746	 * to the selinux_ip_postroute_compat() function to deal with the
5747	 * special handling.  We do this in an attempt to keep this function
5748	 * as fast and as clean as possible. */
5749	if (!selinux_policycap_netpeer())
5750		return selinux_ip_postroute_compat(skb, ifindex, family);
5751
5752	secmark_active = selinux_secmark_enabled();
5753	peerlbl_active = selinux_peerlbl_enabled();
5754	if (!secmark_active && !peerlbl_active)
5755		return NF_ACCEPT;
5756
5757	sk = skb_to_full_sk(skb);
5758
5759#ifdef CONFIG_XFRM
5760	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5761	 * packet transformation so allow the packet to pass without any checks
5762	 * since we'll have another chance to perform access control checks
5763	 * when the packet is on it's final way out.
5764	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5765	 *       is NULL, in this case go ahead and apply access control.
5766	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5767	 *       TCP listening state we cannot wait until the XFRM processing
5768	 *       is done as we will miss out on the SA label if we do;
5769	 *       unfortunately, this means more work, but it is only once per
5770	 *       connection. */
5771	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5772	    !(sk && sk_listener(sk)))
5773		return NF_ACCEPT;
5774#endif
5775
 
5776	if (sk == NULL) {
5777		/* Without an associated socket the packet is either coming
5778		 * from the kernel or it is being forwarded; check the packet
5779		 * to determine which and if the packet is being forwarded
5780		 * query the packet directly to determine the security label. */
5781		if (skb->skb_iif) {
5782			secmark_perm = PACKET__FORWARD_OUT;
5783			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5784				return NF_DROP;
5785		} else {
5786			secmark_perm = PACKET__SEND;
5787			peer_sid = SECINITSID_KERNEL;
5788		}
5789	} else if (sk_listener(sk)) {
5790		/* Locally generated packet but the associated socket is in the
5791		 * listening state which means this is a SYN-ACK packet.  In
5792		 * this particular case the correct security label is assigned
5793		 * to the connection/request_sock but unfortunately we can't
5794		 * query the request_sock as it isn't queued on the parent
5795		 * socket until after the SYN-ACK packet is sent; the only
5796		 * viable choice is to regenerate the label like we do in
5797		 * selinux_inet_conn_request().  See also selinux_ip_output()
5798		 * for similar problems. */
5799		u32 skb_sid;
5800		struct sk_security_struct *sksec;
5801
5802		sksec = sk->sk_security;
5803		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5804			return NF_DROP;
5805		/* At this point, if the returned skb peerlbl is SECSID_NULL
5806		 * and the packet has been through at least one XFRM
5807		 * transformation then we must be dealing with the "final"
5808		 * form of labeled IPsec packet; since we've already applied
5809		 * all of our access controls on this packet we can safely
5810		 * pass the packet. */
5811		if (skb_sid == SECSID_NULL) {
5812			switch (family) {
5813			case PF_INET:
5814				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5815					return NF_ACCEPT;
5816				break;
5817			case PF_INET6:
5818				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5819					return NF_ACCEPT;
5820				break;
5821			default:
5822				return NF_DROP_ERR(-ECONNREFUSED);
5823			}
5824		}
5825		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5826			return NF_DROP;
5827		secmark_perm = PACKET__SEND;
5828	} else {
5829		/* Locally generated packet, fetch the security label from the
5830		 * associated socket. */
5831		struct sk_security_struct *sksec = sk->sk_security;
5832		peer_sid = sksec->sid;
5833		secmark_perm = PACKET__SEND;
5834	}
5835
5836	ad.type = LSM_AUDIT_DATA_NET;
5837	ad.u.net = &net;
5838	ad.u.net->netif = ifindex;
5839	ad.u.net->family = family;
5840	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5841		return NF_DROP;
5842
5843	if (secmark_active)
5844		if (avc_has_perm(&selinux_state,
5845				 peer_sid, skb->secmark,
5846				 SECCLASS_PACKET, secmark_perm, &ad))
5847			return NF_DROP_ERR(-ECONNREFUSED);
5848
5849	if (peerlbl_active) {
5850		u32 if_sid;
5851		u32 node_sid;
5852
5853		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5854			return NF_DROP;
5855		if (avc_has_perm(&selinux_state,
5856				 peer_sid, if_sid,
5857				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5858			return NF_DROP_ERR(-ECONNREFUSED);
5859
5860		if (sel_netnode_sid(addrp, family, &node_sid))
5861			return NF_DROP;
5862		if (avc_has_perm(&selinux_state,
5863				 peer_sid, node_sid,
5864				 SECCLASS_NODE, NODE__SENDTO, &ad))
5865			return NF_DROP_ERR(-ECONNREFUSED);
5866	}
5867
5868	return NF_ACCEPT;
5869}
5870
5871static unsigned int selinux_ipv4_postroute(void *priv,
5872					   struct sk_buff *skb,
5873					   const struct nf_hook_state *state)
5874{
5875	return selinux_ip_postroute(skb, state->out, PF_INET);
5876}
5877
5878#if IS_ENABLED(CONFIG_IPV6)
5879static unsigned int selinux_ipv6_postroute(void *priv,
5880					   struct sk_buff *skb,
5881					   const struct nf_hook_state *state)
5882{
5883	return selinux_ip_postroute(skb, state->out, PF_INET6);
5884}
5885#endif	/* IPV6 */
5886
5887#endif	/* CONFIG_NETFILTER */
5888
5889static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5890{
5891	return selinux_nlmsg_perm(sk, skb);
5892}
 
 
 
5893
5894static int ipc_alloc_security(struct kern_ipc_perm *perm,
5895			      u16 sclass)
5896{
5897	struct ipc_security_struct *isec;
5898
5899	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5900	if (!isec)
5901		return -ENOMEM;
5902
5903	isec->sclass = sclass;
5904	isec->sid = current_sid();
5905	perm->security = isec;
5906
5907	return 0;
 
5908}
5909
5910static void ipc_free_security(struct kern_ipc_perm *perm)
5911{
5912	struct ipc_security_struct *isec = perm->security;
5913	perm->security = NULL;
5914	kfree(isec);
5915}
 
 
 
 
5916
5917static int msg_msg_alloc_security(struct msg_msg *msg)
5918{
5919	struct msg_security_struct *msec;
5920
5921	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5922	if (!msec)
5923		return -ENOMEM;
 
 
 
 
 
5924
5925	msec->sid = SECINITSID_UNLABELED;
5926	msg->security = msec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5927
5928	return 0;
 
 
 
 
 
 
 
 
5929}
5930
5931static void msg_msg_free_security(struct msg_msg *msg)
5932{
5933	struct msg_security_struct *msec = msg->security;
5934
5935	msg->security = NULL;
5936	kfree(msec);
5937}
5938
5939static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5940			u32 perms)
5941{
5942	struct ipc_security_struct *isec;
5943	struct common_audit_data ad;
5944	u32 sid = current_sid();
5945
5946	isec = ipc_perms->security;
5947
5948	ad.type = LSM_AUDIT_DATA_IPC;
5949	ad.u.ipc_id = ipc_perms->key;
5950
5951	return avc_has_perm(&selinux_state,
5952			    sid, isec->sid, isec->sclass, perms, &ad);
5953}
5954
5955static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5956{
5957	return msg_msg_alloc_security(msg);
5958}
5959
5960static void selinux_msg_msg_free_security(struct msg_msg *msg)
5961{
5962	msg_msg_free_security(msg);
 
5963}
5964
5965/* message queue security operations */
5966static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5967{
5968	struct ipc_security_struct *isec;
5969	struct common_audit_data ad;
5970	u32 sid = current_sid();
5971	int rc;
5972
5973	rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5974	if (rc)
5975		return rc;
5976
5977	isec = msq->security;
 
5978
5979	ad.type = LSM_AUDIT_DATA_IPC;
5980	ad.u.ipc_id = msq->key;
5981
5982	rc = avc_has_perm(&selinux_state,
5983			  sid, isec->sid, SECCLASS_MSGQ,
5984			  MSGQ__CREATE, &ad);
5985	if (rc) {
5986		ipc_free_security(msq);
5987		return rc;
5988	}
5989	return 0;
5990}
5991
5992static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5993{
5994	ipc_free_security(msq);
5995}
5996
5997static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5998{
5999	struct ipc_security_struct *isec;
6000	struct common_audit_data ad;
6001	u32 sid = current_sid();
6002
6003	isec = msq->security;
6004
6005	ad.type = LSM_AUDIT_DATA_IPC;
6006	ad.u.ipc_id = msq->key;
6007
6008	return avc_has_perm(&selinux_state,
6009			    sid, isec->sid, SECCLASS_MSGQ,
6010			    MSGQ__ASSOCIATE, &ad);
6011}
6012
6013static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6014{
6015	int err;
6016	int perms;
6017
6018	switch (cmd) {
6019	case IPC_INFO:
6020	case MSG_INFO:
6021		/* No specific object, just general system-wide information. */
6022		return avc_has_perm(&selinux_state,
6023				    current_sid(), SECINITSID_KERNEL,
6024				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6025	case IPC_STAT:
6026	case MSG_STAT:
6027	case MSG_STAT_ANY:
6028		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6029		break;
6030	case IPC_SET:
6031		perms = MSGQ__SETATTR;
6032		break;
6033	case IPC_RMID:
6034		perms = MSGQ__DESTROY;
6035		break;
6036	default:
6037		return 0;
6038	}
6039
6040	err = ipc_has_perm(msq, perms);
6041	return err;
6042}
6043
6044static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6045{
6046	struct ipc_security_struct *isec;
6047	struct msg_security_struct *msec;
6048	struct common_audit_data ad;
6049	u32 sid = current_sid();
6050	int rc;
6051
6052	isec = msq->security;
6053	msec = msg->security;
6054
6055	/*
6056	 * First time through, need to assign label to the message
6057	 */
6058	if (msec->sid == SECINITSID_UNLABELED) {
6059		/*
6060		 * Compute new sid based on current process and
6061		 * message queue this message will be stored in
6062		 */
6063		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6064					     SECCLASS_MSG, NULL, &msec->sid);
6065		if (rc)
6066			return rc;
6067	}
6068
6069	ad.type = LSM_AUDIT_DATA_IPC;
6070	ad.u.ipc_id = msq->key;
6071
6072	/* Can this process write to the queue? */
6073	rc = avc_has_perm(&selinux_state,
6074			  sid, isec->sid, SECCLASS_MSGQ,
6075			  MSGQ__WRITE, &ad);
6076	if (!rc)
6077		/* Can this process send the message */
6078		rc = avc_has_perm(&selinux_state,
6079				  sid, msec->sid, SECCLASS_MSG,
6080				  MSG__SEND, &ad);
6081	if (!rc)
6082		/* Can the message be put in the queue? */
6083		rc = avc_has_perm(&selinux_state,
6084				  msec->sid, isec->sid, SECCLASS_MSGQ,
6085				  MSGQ__ENQUEUE, &ad);
6086
6087	return rc;
6088}
6089
6090static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6091				    struct task_struct *target,
6092				    long type, int mode)
6093{
6094	struct ipc_security_struct *isec;
6095	struct msg_security_struct *msec;
6096	struct common_audit_data ad;
6097	u32 sid = task_sid(target);
6098	int rc;
6099
6100	isec = msq->security;
6101	msec = msg->security;
6102
6103	ad.type = LSM_AUDIT_DATA_IPC;
6104	ad.u.ipc_id = msq->key;
6105
6106	rc = avc_has_perm(&selinux_state,
6107			  sid, isec->sid,
6108			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6109	if (!rc)
6110		rc = avc_has_perm(&selinux_state,
6111				  sid, msec->sid,
6112				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6113	return rc;
6114}
6115
6116/* Shared Memory security operations */
6117static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6118{
6119	struct ipc_security_struct *isec;
6120	struct common_audit_data ad;
6121	u32 sid = current_sid();
6122	int rc;
6123
6124	rc = ipc_alloc_security(shp, SECCLASS_SHM);
6125	if (rc)
6126		return rc;
6127
6128	isec = shp->security;
6129
6130	ad.type = LSM_AUDIT_DATA_IPC;
6131	ad.u.ipc_id = shp->key;
6132
6133	rc = avc_has_perm(&selinux_state,
6134			  sid, isec->sid, SECCLASS_SHM,
6135			  SHM__CREATE, &ad);
6136	if (rc) {
6137		ipc_free_security(shp);
6138		return rc;
6139	}
6140	return 0;
6141}
6142
6143static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6144{
6145	ipc_free_security(shp);
6146}
6147
6148static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6149{
6150	struct ipc_security_struct *isec;
6151	struct common_audit_data ad;
6152	u32 sid = current_sid();
6153
6154	isec = shp->security;
6155
6156	ad.type = LSM_AUDIT_DATA_IPC;
6157	ad.u.ipc_id = shp->key;
6158
6159	return avc_has_perm(&selinux_state,
6160			    sid, isec->sid, SECCLASS_SHM,
6161			    SHM__ASSOCIATE, &ad);
6162}
6163
6164/* Note, at this point, shp is locked down */
6165static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6166{
6167	int perms;
6168	int err;
6169
6170	switch (cmd) {
6171	case IPC_INFO:
6172	case SHM_INFO:
6173		/* No specific object, just general system-wide information. */
6174		return avc_has_perm(&selinux_state,
6175				    current_sid(), SECINITSID_KERNEL,
6176				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6177	case IPC_STAT:
6178	case SHM_STAT:
6179	case SHM_STAT_ANY:
6180		perms = SHM__GETATTR | SHM__ASSOCIATE;
6181		break;
6182	case IPC_SET:
6183		perms = SHM__SETATTR;
6184		break;
6185	case SHM_LOCK:
6186	case SHM_UNLOCK:
6187		perms = SHM__LOCK;
6188		break;
6189	case IPC_RMID:
6190		perms = SHM__DESTROY;
6191		break;
6192	default:
6193		return 0;
6194	}
6195
6196	err = ipc_has_perm(shp, perms);
6197	return err;
6198}
6199
6200static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6201			     char __user *shmaddr, int shmflg)
6202{
6203	u32 perms;
6204
6205	if (shmflg & SHM_RDONLY)
6206		perms = SHM__READ;
6207	else
6208		perms = SHM__READ | SHM__WRITE;
6209
6210	return ipc_has_perm(shp, perms);
6211}
6212
6213/* Semaphore security operations */
6214static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6215{
6216	struct ipc_security_struct *isec;
6217	struct common_audit_data ad;
6218	u32 sid = current_sid();
6219	int rc;
6220
6221	rc = ipc_alloc_security(sma, SECCLASS_SEM);
6222	if (rc)
6223		return rc;
6224
6225	isec = sma->security;
6226
6227	ad.type = LSM_AUDIT_DATA_IPC;
6228	ad.u.ipc_id = sma->key;
6229
6230	rc = avc_has_perm(&selinux_state,
6231			  sid, isec->sid, SECCLASS_SEM,
6232			  SEM__CREATE, &ad);
6233	if (rc) {
6234		ipc_free_security(sma);
6235		return rc;
6236	}
6237	return 0;
6238}
6239
6240static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6241{
6242	ipc_free_security(sma);
6243}
6244
6245static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6246{
6247	struct ipc_security_struct *isec;
6248	struct common_audit_data ad;
6249	u32 sid = current_sid();
6250
6251	isec = sma->security;
6252
6253	ad.type = LSM_AUDIT_DATA_IPC;
6254	ad.u.ipc_id = sma->key;
6255
6256	return avc_has_perm(&selinux_state,
6257			    sid, isec->sid, SECCLASS_SEM,
6258			    SEM__ASSOCIATE, &ad);
6259}
6260
6261/* Note, at this point, sma is locked down */
6262static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6263{
6264	int err;
6265	u32 perms;
6266
6267	switch (cmd) {
6268	case IPC_INFO:
6269	case SEM_INFO:
6270		/* No specific object, just general system-wide information. */
6271		return avc_has_perm(&selinux_state,
6272				    current_sid(), SECINITSID_KERNEL,
6273				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6274	case GETPID:
6275	case GETNCNT:
6276	case GETZCNT:
6277		perms = SEM__GETATTR;
6278		break;
6279	case GETVAL:
6280	case GETALL:
6281		perms = SEM__READ;
6282		break;
6283	case SETVAL:
6284	case SETALL:
6285		perms = SEM__WRITE;
6286		break;
6287	case IPC_RMID:
6288		perms = SEM__DESTROY;
6289		break;
6290	case IPC_SET:
6291		perms = SEM__SETATTR;
6292		break;
6293	case IPC_STAT:
6294	case SEM_STAT:
6295	case SEM_STAT_ANY:
6296		perms = SEM__GETATTR | SEM__ASSOCIATE;
6297		break;
6298	default:
6299		return 0;
6300	}
6301
6302	err = ipc_has_perm(sma, perms);
6303	return err;
6304}
6305
6306static int selinux_sem_semop(struct kern_ipc_perm *sma,
6307			     struct sembuf *sops, unsigned nsops, int alter)
6308{
6309	u32 perms;
6310
6311	if (alter)
6312		perms = SEM__READ | SEM__WRITE;
6313	else
6314		perms = SEM__READ;
6315
6316	return ipc_has_perm(sma, perms);
6317}
6318
6319static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6320{
6321	u32 av = 0;
6322
6323	av = 0;
6324	if (flag & S_IRUGO)
6325		av |= IPC__UNIX_READ;
6326	if (flag & S_IWUGO)
6327		av |= IPC__UNIX_WRITE;
6328
6329	if (av == 0)
6330		return 0;
6331
6332	return ipc_has_perm(ipcp, av);
6333}
6334
6335static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 
6336{
6337	struct ipc_security_struct *isec = ipcp->security;
6338	*secid = isec->sid;
6339}
6340
6341static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6342{
6343	if (inode)
6344		inode_doinit_with_dentry(inode, dentry);
6345}
6346
6347static int selinux_getprocattr(struct task_struct *p,
6348			       char *name, char **value)
6349{
6350	const struct task_security_struct *__tsec;
6351	u32 sid;
6352	int error;
6353	unsigned len;
 
6354
6355	rcu_read_lock();
6356	__tsec = __task_cred(p)->security;
6357
6358	if (current != p) {
6359		error = avc_has_perm(&selinux_state,
6360				     current_sid(), __tsec->sid,
6361				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362		if (error)
6363			goto bad;
6364	}
6365
6366	if (!strcmp(name, "current"))
6367		sid = __tsec->sid;
6368	else if (!strcmp(name, "prev"))
6369		sid = __tsec->osid;
6370	else if (!strcmp(name, "exec"))
6371		sid = __tsec->exec_sid;
6372	else if (!strcmp(name, "fscreate"))
6373		sid = __tsec->create_sid;
6374	else if (!strcmp(name, "keycreate"))
6375		sid = __tsec->keycreate_sid;
6376	else if (!strcmp(name, "sockcreate"))
6377		sid = __tsec->sockcreate_sid;
6378	else {
6379		error = -EINVAL;
6380		goto bad;
 
 
 
 
 
 
6381	}
6382	rcu_read_unlock();
6383
6384	if (!sid)
 
6385		return 0;
 
6386
6387	error = security_sid_to_context(&selinux_state, sid, value, &len);
6388	if (error)
6389		return error;
6390	return len;
6391
6392bad:
6393	rcu_read_unlock();
6394	return error;
6395}
6396
6397static int selinux_setprocattr(const char *name, void *value, size_t size)
6398{
6399	struct task_security_struct *tsec;
6400	struct cred *new;
6401	u32 mysid = current_sid(), sid = 0, ptsid;
6402	int error;
6403	char *str = value;
6404
6405	/*
6406	 * Basic control over ability to set these attributes at all.
6407	 */
6408	if (!strcmp(name, "exec"))
6409		error = avc_has_perm(&selinux_state,
6410				     mysid, mysid, SECCLASS_PROCESS,
6411				     PROCESS__SETEXEC, NULL);
6412	else if (!strcmp(name, "fscreate"))
6413		error = avc_has_perm(&selinux_state,
6414				     mysid, mysid, SECCLASS_PROCESS,
6415				     PROCESS__SETFSCREATE, NULL);
6416	else if (!strcmp(name, "keycreate"))
6417		error = avc_has_perm(&selinux_state,
6418				     mysid, mysid, SECCLASS_PROCESS,
6419				     PROCESS__SETKEYCREATE, NULL);
6420	else if (!strcmp(name, "sockcreate"))
6421		error = avc_has_perm(&selinux_state,
6422				     mysid, mysid, SECCLASS_PROCESS,
6423				     PROCESS__SETSOCKCREATE, NULL);
6424	else if (!strcmp(name, "current"))
6425		error = avc_has_perm(&selinux_state,
6426				     mysid, mysid, SECCLASS_PROCESS,
6427				     PROCESS__SETCURRENT, NULL);
6428	else
6429		error = -EINVAL;
 
 
 
6430	if (error)
6431		return error;
6432
6433	/* Obtain a SID for the context, if one was specified. */
6434	if (size && str[0] && str[0] != '\n') {
6435		if (str[size-1] == '\n') {
6436			str[size-1] = 0;
6437			size--;
6438		}
6439		error = security_context_to_sid(&selinux_state, value, size,
6440						&sid, GFP_KERNEL);
6441		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6442			if (!has_cap_mac_admin(true)) {
6443				struct audit_buffer *ab;
6444				size_t audit_size;
6445
6446				/* We strip a nul only if it is at the end, otherwise the
6447				 * context contains a nul and we should audit that */
 
6448				if (str[size - 1] == '\0')
6449					audit_size = size - 1;
6450				else
6451					audit_size = size;
6452				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
 
 
6453				audit_log_format(ab, "op=fscreate invalid_context=");
6454				audit_log_n_untrustedstring(ab, value, audit_size);
 
6455				audit_log_end(ab);
6456
6457				return error;
6458			}
6459			error = security_context_to_sid_force(
6460						      &selinux_state,
6461						      value, size, &sid);
6462		}
6463		if (error)
6464			return error;
6465	}
6466
6467	new = prepare_creds();
6468	if (!new)
6469		return -ENOMEM;
6470
6471	/* Permission checking based on the specified context is
6472	   performed during the actual operation (execve,
6473	   open/mkdir/...), when we know the full context of the
6474	   operation.  See selinux_bprm_set_creds for the execve
6475	   checks and may_create for the file creation checks. The
6476	   operation will then fail if the context is not permitted. */
6477	tsec = new->security;
6478	if (!strcmp(name, "exec")) {
6479		tsec->exec_sid = sid;
6480	} else if (!strcmp(name, "fscreate")) {
6481		tsec->create_sid = sid;
6482	} else if (!strcmp(name, "keycreate")) {
6483		error = avc_has_perm(&selinux_state,
6484				     mysid, sid, SECCLASS_KEY, KEY__CREATE,
6485				     NULL);
6486		if (error)
6487			goto abort_change;
 
6488		tsec->keycreate_sid = sid;
6489	} else if (!strcmp(name, "sockcreate")) {
6490		tsec->sockcreate_sid = sid;
6491	} else if (!strcmp(name, "current")) {
6492		error = -EINVAL;
6493		if (sid == 0)
6494			goto abort_change;
6495
6496		/* Only allow single threaded processes to change context */
6497		error = -EPERM;
6498		if (!current_is_single_threaded()) {
6499			error = security_bounded_transition(&selinux_state,
6500							    tsec->sid, sid);
6501			if (error)
6502				goto abort_change;
6503		}
6504
6505		/* Check permissions for the transition. */
6506		error = avc_has_perm(&selinux_state,
6507				     tsec->sid, sid, SECCLASS_PROCESS,
6508				     PROCESS__DYNTRANSITION, NULL);
6509		if (error)
6510			goto abort_change;
6511
6512		/* Check for ptracing, and update the task SID if ok.
6513		   Otherwise, leave SID unchanged and fail. */
6514		ptsid = ptrace_parent_sid();
6515		if (ptsid != 0) {
6516			error = avc_has_perm(&selinux_state,
6517					     ptsid, sid, SECCLASS_PROCESS,
6518					     PROCESS__PTRACE, NULL);
6519			if (error)
6520				goto abort_change;
6521		}
6522
6523		tsec->sid = sid;
6524	} else {
6525		error = -EINVAL;
6526		goto abort_change;
6527	}
6528
6529	commit_creds(new);
6530	return size;
6531
6532abort_change:
6533	abort_creds(new);
6534	return error;
6535}
6536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6537static int selinux_ismaclabel(const char *name)
6538{
6539	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6540}
6541
6542static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6543{
6544	return security_sid_to_context(&selinux_state, secid,
6545				       secdata, seclen);
 
 
 
 
 
6546}
6547
6548static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6549{
6550	return security_context_to_sid(&selinux_state, secdata, seclen,
6551				       secid, GFP_KERNEL);
6552}
6553
6554static void selinux_release_secctx(char *secdata, u32 seclen)
6555{
6556	kfree(secdata);
6557}
6558
6559static void selinux_inode_invalidate_secctx(struct inode *inode)
6560{
6561	struct inode_security_struct *isec = inode->i_security;
6562
6563	spin_lock(&isec->lock);
6564	isec->initialized = LABEL_INVALID;
6565	spin_unlock(&isec->lock);
6566}
6567
6568/*
6569 *	called with inode->i_mutex locked
6570 */
6571static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6572{
6573	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
6574}
6575
6576/*
6577 *	called with inode->i_mutex locked
6578 */
6579static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6580{
6581	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
 
6582}
6583
6584static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6585{
6586	int len = 0;
6587	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6588						ctx, true);
6589	if (len < 0)
6590		return len;
6591	*ctxlen = len;
6592	return 0;
6593}
6594#ifdef CONFIG_KEYS
6595
6596static int selinux_key_alloc(struct key *k, const struct cred *cred,
6597			     unsigned long flags)
6598{
6599	const struct task_security_struct *tsec;
6600	struct key_security_struct *ksec;
6601
6602	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6603	if (!ksec)
6604		return -ENOMEM;
6605
6606	tsec = cred->security;
6607	if (tsec->keycreate_sid)
6608		ksec->sid = tsec->keycreate_sid;
6609	else
6610		ksec->sid = tsec->sid;
6611
6612	k->security = ksec;
6613	return 0;
6614}
6615
6616static void selinux_key_free(struct key *k)
6617{
6618	struct key_security_struct *ksec = k->security;
6619
6620	k->security = NULL;
6621	kfree(ksec);
6622}
6623
6624static int selinux_key_permission(key_ref_t key_ref,
6625				  const struct cred *cred,
6626				  unsigned perm)
6627{
6628	struct key *key;
6629	struct key_security_struct *ksec;
6630	u32 sid;
6631
6632	/* if no specific permissions are requested, we skip the
6633	   permission check. No serious, additional covert channels
6634	   appear to be created. */
6635	if (perm == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6636		return 0;
 
 
 
6637
6638	sid = cred_sid(cred);
6639
 
6640	key = key_ref_to_ptr(key_ref);
6641	ksec = key->security;
6642
6643	return avc_has_perm(&selinux_state,
6644			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6645}
6646
6647static int selinux_key_getsecurity(struct key *key, char **_buffer)
6648{
6649	struct key_security_struct *ksec = key->security;
6650	char *context = NULL;
6651	unsigned len;
6652	int rc;
6653
6654	rc = security_sid_to_context(&selinux_state, ksec->sid,
6655				     &context, &len);
6656	if (!rc)
6657		rc = len;
6658	*_buffer = context;
6659	return rc;
6660}
 
 
 
 
 
 
 
 
 
 
6661#endif
6662
6663#ifdef CONFIG_SECURITY_INFINIBAND
6664static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6665{
6666	struct common_audit_data ad;
6667	int err;
6668	u32 sid = 0;
6669	struct ib_security_struct *sec = ib_sec;
6670	struct lsm_ibpkey_audit ibpkey;
6671
6672	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6673	if (err)
6674		return err;
6675
6676	ad.type = LSM_AUDIT_DATA_IBPKEY;
6677	ibpkey.subnet_prefix = subnet_prefix;
6678	ibpkey.pkey = pkey_val;
6679	ad.u.ibpkey = &ibpkey;
6680	return avc_has_perm(&selinux_state,
6681			    sec->sid, sid,
6682			    SECCLASS_INFINIBAND_PKEY,
6683			    INFINIBAND_PKEY__ACCESS, &ad);
6684}
6685
6686static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6687					    u8 port_num)
6688{
6689	struct common_audit_data ad;
6690	int err;
6691	u32 sid = 0;
6692	struct ib_security_struct *sec = ib_sec;
6693	struct lsm_ibendport_audit ibendport;
6694
6695	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6696				      &sid);
6697
6698	if (err)
6699		return err;
6700
6701	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6702	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6703	ibendport.port = port_num;
6704	ad.u.ibendport = &ibendport;
6705	return avc_has_perm(&selinux_state,
6706			    sec->sid, sid,
6707			    SECCLASS_INFINIBAND_ENDPORT,
6708			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6709}
6710
6711static int selinux_ib_alloc_security(void **ib_sec)
6712{
6713	struct ib_security_struct *sec;
6714
6715	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6716	if (!sec)
6717		return -ENOMEM;
6718	sec->sid = current_sid();
6719
6720	*ib_sec = sec;
6721	return 0;
6722}
6723
6724static void selinux_ib_free_security(void *ib_sec)
6725{
6726	kfree(ib_sec);
6727}
6728#endif
6729
6730#ifdef CONFIG_BPF_SYSCALL
6731static int selinux_bpf(int cmd, union bpf_attr *attr,
6732				     unsigned int size)
6733{
6734	u32 sid = current_sid();
6735	int ret;
6736
6737	switch (cmd) {
6738	case BPF_MAP_CREATE:
6739		ret = avc_has_perm(&selinux_state,
6740				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6741				   NULL);
6742		break;
6743	case BPF_PROG_LOAD:
6744		ret = avc_has_perm(&selinux_state,
6745				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6746				   NULL);
6747		break;
6748	default:
6749		ret = 0;
6750		break;
6751	}
6752
6753	return ret;
6754}
6755
6756static u32 bpf_map_fmode_to_av(fmode_t fmode)
6757{
6758	u32 av = 0;
6759
6760	if (fmode & FMODE_READ)
6761		av |= BPF__MAP_READ;
6762	if (fmode & FMODE_WRITE)
6763		av |= BPF__MAP_WRITE;
6764	return av;
6765}
6766
6767/* This function will check the file pass through unix socket or binder to see
6768 * if it is a bpf related object. And apply correspinding checks on the bpf
6769 * object based on the type. The bpf maps and programs, not like other files and
6770 * socket, are using a shared anonymous inode inside the kernel as their inode.
6771 * So checking that inode cannot identify if the process have privilege to
6772 * access the bpf object and that's why we have to add this additional check in
6773 * selinux_file_receive and selinux_binder_transfer_files.
6774 */
6775static int bpf_fd_pass(struct file *file, u32 sid)
6776{
6777	struct bpf_security_struct *bpfsec;
6778	struct bpf_prog *prog;
6779	struct bpf_map *map;
6780	int ret;
6781
6782	if (file->f_op == &bpf_map_fops) {
6783		map = file->private_data;
6784		bpfsec = map->security;
6785		ret = avc_has_perm(&selinux_state,
6786				   sid, bpfsec->sid, SECCLASS_BPF,
6787				   bpf_map_fmode_to_av(file->f_mode), NULL);
6788		if (ret)
6789			return ret;
6790	} else if (file->f_op == &bpf_prog_fops) {
6791		prog = file->private_data;
6792		bpfsec = prog->aux->security;
6793		ret = avc_has_perm(&selinux_state,
6794				   sid, bpfsec->sid, SECCLASS_BPF,
6795				   BPF__PROG_RUN, NULL);
6796		if (ret)
6797			return ret;
6798	}
6799	return 0;
6800}
6801
6802static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6803{
6804	u32 sid = current_sid();
6805	struct bpf_security_struct *bpfsec;
6806
6807	bpfsec = map->security;
6808	return avc_has_perm(&selinux_state,
6809			    sid, bpfsec->sid, SECCLASS_BPF,
6810			    bpf_map_fmode_to_av(fmode), NULL);
6811}
6812
6813static int selinux_bpf_prog(struct bpf_prog *prog)
6814{
6815	u32 sid = current_sid();
6816	struct bpf_security_struct *bpfsec;
6817
6818	bpfsec = prog->aux->security;
6819	return avc_has_perm(&selinux_state,
6820			    sid, bpfsec->sid, SECCLASS_BPF,
6821			    BPF__PROG_RUN, NULL);
6822}
6823
6824static int selinux_bpf_map_alloc(struct bpf_map *map)
 
6825{
6826	struct bpf_security_struct *bpfsec;
6827
6828	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6829	if (!bpfsec)
6830		return -ENOMEM;
6831
6832	bpfsec->sid = current_sid();
6833	map->security = bpfsec;
6834
6835	return 0;
6836}
6837
6838static void selinux_bpf_map_free(struct bpf_map *map)
6839{
6840	struct bpf_security_struct *bpfsec = map->security;
6841
6842	map->security = NULL;
6843	kfree(bpfsec);
6844}
6845
6846static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6847{
6848	struct bpf_security_struct *bpfsec;
6849
6850	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6851	if (!bpfsec)
6852		return -ENOMEM;
6853
6854	bpfsec->sid = current_sid();
6855	aux->security = bpfsec;
6856
6857	return 0;
6858}
6859
6860static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6861{
6862	struct bpf_security_struct *bpfsec = aux->security;
6863
6864	aux->security = NULL;
6865	kfree(bpfsec);
6866}
6867#endif
6868
6869static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6870	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6871	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6872	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6873	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6874
6875	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6876	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6877	LSM_HOOK_INIT(capget, selinux_capget),
6878	LSM_HOOK_INIT(capset, selinux_capset),
6879	LSM_HOOK_INIT(capable, selinux_capable),
6880	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6881	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6882	LSM_HOOK_INIT(syslog, selinux_syslog),
6883	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6884
6885	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6886
6887	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6888	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6889	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6890
6891	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6892	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6893	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6894	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6895	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6896	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6897	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6898	LSM_HOOK_INIT(sb_mount, selinux_mount),
6899	LSM_HOOK_INIT(sb_umount, selinux_umount),
6900	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6901	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6902	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
 
6903
6904	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6905	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6906
6907	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6908	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6909	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
 
6910	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6911	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6912	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6913	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6914	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6915	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6916	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6917	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6918	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6919	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6920	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6921	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6922	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
 
6923	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6924	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6925	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6926	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6927	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
 
 
 
6928	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6929	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6930	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6931	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6932	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6933	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
 
 
 
6934
6935	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6936	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6937	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6938	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
 
6939	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6940	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6941	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6942	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6943	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6944	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6945	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6946	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6947
6948	LSM_HOOK_INIT(file_open, selinux_file_open),
6949
6950	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6951	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6952	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6953	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6954	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6955	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
 
6956	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6957	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6958	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
 
6959	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6960	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6961	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6962	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6963	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
 
6964	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6965	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6966	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6967	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6968	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6969	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6970	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6971	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6972	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6973	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
 
6974
6975	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6976	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6977
6978	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6979	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6980
6981	LSM_HOOK_INIT(msg_queue_alloc_security,
6982			selinux_msg_queue_alloc_security),
6983	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6984	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6985	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6986	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6987	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6988
6989	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6990	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6991	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6992	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6993	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6994
6995	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6996	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6997	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6998	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6999	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7000
7001	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7002
 
 
7003	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7004	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7005
7006	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7007	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7008	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7009	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7010	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7011	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7012	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7013	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7014
7015	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7016	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7017
7018	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7019	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
 
7020	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7021	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7022	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7023	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7024	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7025	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7026	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7027	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7028	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7029	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7030	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7031	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7032	LSM_HOOK_INIT(socket_getpeersec_stream,
7033			selinux_socket_getpeersec_stream),
7034	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7035	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7036	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7037	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7038	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7039	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7040	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7041	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7042	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
 
 
7043	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7044	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7045	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7046	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7047	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7048	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7049	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7050	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7051	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7052	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7053	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7054	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7055	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7056#ifdef CONFIG_SECURITY_INFINIBAND
7057	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7058	LSM_HOOK_INIT(ib_endport_manage_subnet,
7059		      selinux_ib_endport_manage_subnet),
7060	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7061	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7062#endif
7063#ifdef CONFIG_SECURITY_NETWORK_XFRM
7064	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7065	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7066	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7067	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7068	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7069	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7070			selinux_xfrm_state_alloc_acquire),
7071	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7072	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7073	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7074	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7075			selinux_xfrm_state_pol_flow_match),
7076	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7077#endif
7078
7079#ifdef CONFIG_KEYS
7080	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7081	LSM_HOOK_INIT(key_free, selinux_key_free),
7082	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7083	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
 
 
 
7084#endif
7085
7086#ifdef CONFIG_AUDIT
7087	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7088	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7089	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7090	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7091#endif
7092
7093#ifdef CONFIG_BPF_SYSCALL
7094	LSM_HOOK_INIT(bpf, selinux_bpf),
7095	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7096	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7097	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7098	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7099	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7100	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7101#endif
7102};
7103
7104static __init int selinux_init(void)
7105{
7106	if (!security_module_enable("selinux")) {
7107		selinux_enabled = 0;
7108		return 0;
7109	}
7110
7111	if (!selinux_enabled) {
7112		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
7113		return 0;
7114	}
7115
7116	printk(KERN_INFO "SELinux:  Initializing.\n");
7117
7118	memset(&selinux_state, 0, sizeof(selinux_state));
7119	enforcing_set(&selinux_state, selinux_enforcing_boot);
7120	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7121	selinux_ss_init(&selinux_state.ss);
7122	selinux_avc_init(&selinux_state.avc);
7123
7124	/* Set the security state for the initial task. */
7125	cred_init_security();
7126
7127	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
 
 
7128
7129	sel_inode_cache = kmem_cache_create("selinux_inode_security",
7130					    sizeof(struct inode_security_struct),
7131					    0, SLAB_PANIC, NULL);
7132	file_security_cache = kmem_cache_create("selinux_file_security",
7133					    sizeof(struct file_security_struct),
7134					    0, SLAB_PANIC, NULL);
7135	avc_init();
7136
7137	avtab_cache_init();
7138
7139	ebitmap_cache_init();
7140
7141	hashtab_cache_init();
7142
7143	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
 
7144
7145	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7146		panic("SELinux: Unable to register AVC netcache callback\n");
7147
7148	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7149		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7150
7151	if (selinux_enforcing_boot)
7152		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
7153	else
7154		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
7155
7156	return 0;
7157}
7158
7159static void delayed_superblock_init(struct super_block *sb, void *unused)
7160{
7161	superblock_doinit(sb, NULL);
7162}
7163
7164void selinux_complete_init(void)
7165{
7166	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
7167
7168	/* Set up any superblocks initialized prior to the policy load. */
7169	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
7170	iterate_supers(delayed_superblock_init, NULL);
7171}
7172
7173/* SELinux requires early initialization in order to label
7174   all processes and objects when they are created. */
7175security_initcall(selinux_init);
 
 
 
 
 
 
7176
7177#if defined(CONFIG_NETFILTER)
7178
7179static const struct nf_hook_ops selinux_nf_ops[] = {
7180	{
7181		.hook =		selinux_ipv4_postroute,
7182		.pf =		NFPROTO_IPV4,
7183		.hooknum =	NF_INET_POST_ROUTING,
7184		.priority =	NF_IP_PRI_SELINUX_LAST,
7185	},
7186	{
7187		.hook =		selinux_ipv4_forward,
7188		.pf =		NFPROTO_IPV4,
7189		.hooknum =	NF_INET_FORWARD,
7190		.priority =	NF_IP_PRI_SELINUX_FIRST,
7191	},
7192	{
7193		.hook =		selinux_ipv4_output,
7194		.pf =		NFPROTO_IPV4,
7195		.hooknum =	NF_INET_LOCAL_OUT,
7196		.priority =	NF_IP_PRI_SELINUX_FIRST,
7197	},
7198#if IS_ENABLED(CONFIG_IPV6)
7199	{
7200		.hook =		selinux_ipv6_postroute,
7201		.pf =		NFPROTO_IPV6,
7202		.hooknum =	NF_INET_POST_ROUTING,
7203		.priority =	NF_IP6_PRI_SELINUX_LAST,
7204	},
7205	{
7206		.hook =		selinux_ipv6_forward,
7207		.pf =		NFPROTO_IPV6,
7208		.hooknum =	NF_INET_FORWARD,
7209		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7210	},
7211	{
7212		.hook =		selinux_ipv6_output,
7213		.pf =		NFPROTO_IPV6,
7214		.hooknum =	NF_INET_LOCAL_OUT,
7215		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7216	},
7217#endif	/* IPV6 */
7218};
7219
7220static int __net_init selinux_nf_register(struct net *net)
7221{
7222	return nf_register_net_hooks(net, selinux_nf_ops,
7223				     ARRAY_SIZE(selinux_nf_ops));
7224}
7225
7226static void __net_exit selinux_nf_unregister(struct net *net)
7227{
7228	nf_unregister_net_hooks(net, selinux_nf_ops,
7229				ARRAY_SIZE(selinux_nf_ops));
7230}
7231
7232static struct pernet_operations selinux_net_ops = {
7233	.init = selinux_nf_register,
7234	.exit = selinux_nf_unregister,
7235};
7236
7237static int __init selinux_nf_ip_init(void)
7238{
7239	int err;
7240
7241	if (!selinux_enabled)
7242		return 0;
7243
7244	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
7245
7246	err = register_pernet_subsys(&selinux_net_ops);
7247	if (err)
7248		panic("SELinux: register_pernet_subsys: error %d\n", err);
7249
7250	return 0;
7251}
7252__initcall(selinux_nf_ip_init);
7253
7254#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7255static void selinux_nf_ip_exit(void)
7256{
7257	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
7258
7259	unregister_pernet_subsys(&selinux_net_ops);
7260}
7261#endif
7262
7263#else /* CONFIG_NETFILTER */
7264
7265#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7266#define selinux_nf_ip_exit()
7267#endif
7268
7269#endif /* CONFIG_NETFILTER */
7270
7271#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7272int selinux_disable(struct selinux_state *state)
7273{
7274	if (state->initialized) {
7275		/* Not permitted after initial policy load. */
7276		return -EINVAL;
7277	}
7278
7279	if (state->disabled) {
7280		/* Only do this once. */
7281		return -EINVAL;
7282	}
7283
7284	state->disabled = 1;
7285
7286	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
7287
7288	selinux_enabled = 0;
7289
7290	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7291
7292	/* Try to destroy the avc node cache */
7293	avc_disable();
7294
7295	/* Unregister netfilter hooks. */
7296	selinux_nf_ip_exit();
7297
7298	/* Unregister selinuxfs. */
7299	exit_sel_fs();
7300
7301	return 0;
7302}
7303#endif
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
 
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <uapi/linux/shm.h>
  89#include <linux/bpf.h>
  90#include <linux/kernfs.h>
  91#include <linux/stringhash.h>	/* for hashlen_string() */
  92#include <uapi/linux/mount.h>
  93#include <linux/fsnotify.h>
  94#include <linux/fanotify.h>
  95#include <linux/io_uring/cmd.h>
  96#include <uapi/linux/lsm.h>
  97
  98#include "avc.h"
  99#include "objsec.h"
 100#include "netif.h"
 101#include "netnode.h"
 102#include "netport.h"
 103#include "ibpkey.h"
 104#include "xfrm.h"
 105#include "netlabel.h"
 106#include "audit.h"
 107#include "avc_ss.h"
 108
 109#define SELINUX_INODE_INIT_XATTRS 1
 110
 111struct selinux_state selinux_state;
 112
 113/* SECMARK reference count */
 114static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 115
 116#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 117static int selinux_enforcing_boot __initdata;
 118
 119static int __init enforcing_setup(char *str)
 120{
 121	unsigned long enforcing;
 122	if (!kstrtoul(str, 0, &enforcing))
 123		selinux_enforcing_boot = enforcing ? 1 : 0;
 124	return 1;
 125}
 126__setup("enforcing=", enforcing_setup);
 127#else
 128#define selinux_enforcing_boot 1
 129#endif
 130
 131int selinux_enabled_boot __initdata = 1;
 132#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 133static int __init selinux_enabled_setup(char *str)
 134{
 135	unsigned long enabled;
 136	if (!kstrtoul(str, 0, &enabled))
 137		selinux_enabled_boot = enabled ? 1 : 0;
 138	return 1;
 139}
 140__setup("selinux=", selinux_enabled_setup);
 
 
 141#endif
 142
 
 
 
 143static int __init checkreqprot_setup(char *str)
 144{
 145	unsigned long checkreqprot;
 146
 147	if (!kstrtoul(str, 0, &checkreqprot)) {
 148		if (checkreqprot)
 149			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 
 
 
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 
 214	struct task_security_struct *tsec;
 215
 216	tsec = selinux_cred(unrcu_pointer(current->real_cred));
 
 
 
 217	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 218}
 219
 220/*
 221 * get the security ID of a set of credentials
 222 */
 223static inline u32 cred_sid(const struct cred *cred)
 224{
 225	const struct task_security_struct *tsec;
 226
 227	tsec = selinux_cred(cred);
 228	return tsec->sid;
 229}
 230
 231static void __ad_net_init(struct common_audit_data *ad,
 232			  struct lsm_network_audit *net,
 233			  int ifindex, struct sock *sk, u16 family)
 234{
 235	ad->type = LSM_AUDIT_DATA_NET;
 236	ad->u.net = net;
 237	net->netif = ifindex;
 238	net->sk = sk;
 239	net->family = family;
 240}
 241
 242static void ad_net_init_from_sk(struct common_audit_data *ad,
 243				struct lsm_network_audit *net,
 244				struct sock *sk)
 245{
 246	__ad_net_init(ad, net, 0, sk, 0);
 247}
 248
 249static void ad_net_init_from_iif(struct common_audit_data *ad,
 250				 struct lsm_network_audit *net,
 251				 int ifindex, u16 family)
 252{
 253	__ad_net_init(ad, net, ifindex, NULL, family);
 254}
 255
 256/*
 257 * get the objective security ID of a task
 258 */
 259static inline u32 task_sid_obj(const struct task_struct *task)
 260{
 261	u32 sid;
 262
 263	rcu_read_lock();
 264	sid = cred_sid(__task_cred(task));
 265	rcu_read_unlock();
 266	return sid;
 267}
 268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 270
 271/*
 272 * Try reloading inode security labels that have been marked as invalid.  The
 273 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 274 * allowed; when set to false, returns -ECHILD when the label is
 275 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 
 276 */
 277static int __inode_security_revalidate(struct inode *inode,
 278				       struct dentry *dentry,
 279				       bool may_sleep)
 280{
 281	struct inode_security_struct *isec = selinux_inode(inode);
 282
 283	might_sleep_if(may_sleep);
 284
 285	/*
 286	 * The check of isec->initialized below is racy but
 287	 * inode_doinit_with_dentry() will recheck with
 288	 * isec->lock held.
 289	 */
 290	if (selinux_initialized() &&
 291	    data_race(isec->initialized != LABEL_INITIALIZED)) {
 292		if (!may_sleep)
 293			return -ECHILD;
 294
 295		/*
 296		 * Try reloading the inode security label.  This will fail if
 297		 * @opt_dentry is NULL and no dentry for this inode can be
 298		 * found; in that case, continue using the old label.
 299		 */
 300		inode_doinit_with_dentry(inode, dentry);
 301	}
 302	return 0;
 303}
 304
 305static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 306{
 307	return selinux_inode(inode);
 308}
 309
 310static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 311{
 312	int error;
 313
 314	error = __inode_security_revalidate(inode, NULL, !rcu);
 315	if (error)
 316		return ERR_PTR(error);
 317	return selinux_inode(inode);
 318}
 319
 320/*
 321 * Get the security label of an inode.
 322 */
 323static struct inode_security_struct *inode_security(struct inode *inode)
 324{
 325	__inode_security_revalidate(inode, NULL, true);
 326	return selinux_inode(inode);
 327}
 328
 329static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 330{
 331	struct inode *inode = d_backing_inode(dentry);
 332
 333	return selinux_inode(inode);
 334}
 335
 336/*
 337 * Get the security label of a dentry's backing inode.
 338 */
 339static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 340{
 341	struct inode *inode = d_backing_inode(dentry);
 342
 343	__inode_security_revalidate(inode, dentry, true);
 344	return selinux_inode(inode);
 
 
 
 
 
 
 
 
 345}
 346
 347static void inode_free_security(struct inode *inode)
 348{
 349	struct inode_security_struct *isec = selinux_inode(inode);
 350	struct superblock_security_struct *sbsec;
 351
 352	if (!isec)
 353		return;
 354	sbsec = selinux_superblock(inode->i_sb);
 355	/*
 356	 * As not all inode security structures are in a list, we check for
 357	 * empty list outside of the lock to make sure that we won't waste
 358	 * time taking a lock doing nothing.
 359	 *
 360	 * The list_del_init() function can be safely called more than once.
 361	 * It should not be possible for this function to be called with
 362	 * concurrent list_add(), but for better safety against future changes
 363	 * in the code, we use list_empty_careful() here.
 364	 */
 365	if (!list_empty_careful(&isec->list)) {
 366		spin_lock(&sbsec->isec_lock);
 367		list_del_init(&isec->list);
 368		spin_unlock(&sbsec->isec_lock);
 369	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370}
 371
 372struct selinux_mnt_opts {
 373	u32 fscontext_sid;
 374	u32 context_sid;
 375	u32 rootcontext_sid;
 376	u32 defcontext_sid;
 377};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378
 379static void selinux_free_mnt_opts(void *mnt_opts)
 380{
 381	kfree(mnt_opts);
 382}
 383
 384enum {
 385	Opt_error = -1,
 386	Opt_context = 0,
 387	Opt_defcontext = 1,
 388	Opt_fscontext = 2,
 389	Opt_rootcontext = 3,
 390	Opt_seclabel = 4,
 
 
 391};
 392
 393#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 394static const struct {
 395	const char *name;
 396	int len;
 397	int opt;
 398	bool has_arg;
 399} tokens[] = {
 400	A(context, true),
 401	A(fscontext, true),
 402	A(defcontext, true),
 403	A(rootcontext, true),
 404	A(seclabel, false),
 405};
 406#undef A
 407
 408static int match_opt_prefix(char *s, int l, char **arg)
 409{
 410	int i;
 411
 412	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 413		size_t len = tokens[i].len;
 414		if (len > l || memcmp(s, tokens[i].name, len))
 415			continue;
 416		if (tokens[i].has_arg) {
 417			if (len == l || s[len] != '=')
 418				continue;
 419			*arg = s + len + 1;
 420		} else if (len != l)
 421			continue;
 422		return tokens[i].opt;
 423	}
 424	return Opt_error;
 425}
 426
 427#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 428
 429static int may_context_mount_sb_relabel(u32 sid,
 430			struct superblock_security_struct *sbsec,
 431			const struct cred *cred)
 432{
 433	const struct task_security_struct *tsec = selinux_cred(cred);
 434	int rc;
 435
 436	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 437			  FILESYSTEM__RELABELFROM, NULL);
 438	if (rc)
 439		return rc;
 440
 441	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 442			  FILESYSTEM__RELABELTO, NULL);
 443	return rc;
 444}
 445
 446static int may_context_mount_inode_relabel(u32 sid,
 447			struct superblock_security_struct *sbsec,
 448			const struct cred *cred)
 449{
 450	const struct task_security_struct *tsec = selinux_cred(cred);
 451	int rc;
 452	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 453			  FILESYSTEM__RELABELFROM, NULL);
 454	if (rc)
 455		return rc;
 456
 457	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 458			  FILESYSTEM__ASSOCIATE, NULL);
 459	return rc;
 460}
 461
 462static int selinux_is_genfs_special_handling(struct super_block *sb)
 463{
 464	/* Special handling. Genfs but also in-core setxattr handler */
 465	return	!strcmp(sb->s_type->name, "sysfs") ||
 
 
 
 
 
 
 466		!strcmp(sb->s_type->name, "pstore") ||
 467		!strcmp(sb->s_type->name, "debugfs") ||
 468		!strcmp(sb->s_type->name, "tracefs") ||
 469		!strcmp(sb->s_type->name, "rootfs") ||
 470		(selinux_policycap_cgroupseclabel() &&
 471		 (!strcmp(sb->s_type->name, "cgroup") ||
 472		  !strcmp(sb->s_type->name, "cgroup2")));
 473}
 474
 475static int selinux_is_sblabel_mnt(struct super_block *sb)
 476{
 477	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 478
 479	/*
 480	 * IMPORTANT: Double-check logic in this function when adding a new
 481	 * SECURITY_FS_USE_* definition!
 482	 */
 483	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 484
 485	switch (sbsec->behavior) {
 486	case SECURITY_FS_USE_XATTR:
 487	case SECURITY_FS_USE_TRANS:
 488	case SECURITY_FS_USE_TASK:
 489	case SECURITY_FS_USE_NATIVE:
 490		return 1;
 491
 492	case SECURITY_FS_USE_GENFS:
 493		return selinux_is_genfs_special_handling(sb);
 494
 495	/* Never allow relabeling on context mounts */
 496	case SECURITY_FS_USE_MNTPOINT:
 497	case SECURITY_FS_USE_NONE:
 498	default:
 499		return 0;
 500	}
 501}
 502
 503static int sb_check_xattr_support(struct super_block *sb)
 504{
 505	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 506	struct dentry *root = sb->s_root;
 507	struct inode *root_inode = d_backing_inode(root);
 508	u32 sid;
 509	int rc;
 510
 511	/*
 512	 * Make sure that the xattr handler exists and that no
 513	 * error other than -ENODATA is returned by getxattr on
 514	 * the root directory.  -ENODATA is ok, as this may be
 515	 * the first boot of the SELinux kernel before we have
 516	 * assigned xattr values to the filesystem.
 517	 */
 518	if (!(root_inode->i_opflags & IOP_XATTR)) {
 519		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 520			sb->s_id, sb->s_type->name);
 521		goto fallback;
 522	}
 523
 524	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 525	if (rc < 0 && rc != -ENODATA) {
 526		if (rc == -EOPNOTSUPP) {
 527			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 528				sb->s_id, sb->s_type->name);
 529			goto fallback;
 530		} else {
 531			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 532				sb->s_id, sb->s_type->name, -rc);
 533			return rc;
 534		}
 535	}
 536	return 0;
 537
 538fallback:
 539	/* No xattr support - try to fallback to genfs if possible. */
 540	rc = security_genfs_sid(sb->s_type->name, "/",
 541				SECCLASS_DIR, &sid);
 542	if (rc)
 543		return -EOPNOTSUPP;
 544
 545	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 546		sb->s_id, sb->s_type->name);
 547	sbsec->behavior = SECURITY_FS_USE_GENFS;
 548	sbsec->sid = sid;
 549	return 0;
 550}
 551
 552static int sb_finish_set_opts(struct super_block *sb)
 553{
 554	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 555	struct dentry *root = sb->s_root;
 556	struct inode *root_inode = d_backing_inode(root);
 557	int rc = 0;
 558
 559	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 560		rc = sb_check_xattr_support(sb);
 561		if (rc)
 562			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563	}
 564
 565	sbsec->flags |= SE_SBINITIALIZED;
 566
 567	/*
 568	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 569	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 570	 * us a superblock that needs the flag to be cleared.
 571	 */
 572	if (selinux_is_sblabel_mnt(sb))
 573		sbsec->flags |= SBLABEL_MNT;
 574	else
 575		sbsec->flags &= ~SBLABEL_MNT;
 576
 577	/* Initialize the root inode. */
 578	rc = inode_doinit_with_dentry(root_inode, root);
 579
 580	/* Initialize any other inodes associated with the superblock, e.g.
 581	   inodes created prior to initial policy load or inodes created
 582	   during get_sb by a pseudo filesystem that directly
 583	   populates itself. */
 584	spin_lock(&sbsec->isec_lock);
 585	while (!list_empty(&sbsec->isec_head)) {
 
 586		struct inode_security_struct *isec =
 587				list_first_entry(&sbsec->isec_head,
 588					   struct inode_security_struct, list);
 589		struct inode *inode = isec->inode;
 590		list_del_init(&isec->list);
 591		spin_unlock(&sbsec->isec_lock);
 592		inode = igrab(inode);
 593		if (inode) {
 594			if (!IS_PRIVATE(inode))
 595				inode_doinit_with_dentry(inode, NULL);
 596			iput(inode);
 597		}
 598		spin_lock(&sbsec->isec_lock);
 
 599	}
 600	spin_unlock(&sbsec->isec_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601	return rc;
 602}
 603
 604static int bad_option(struct superblock_security_struct *sbsec, char flag,
 605		      u32 old_sid, u32 new_sid)
 606{
 607	char mnt_flags = sbsec->flags & SE_MNTMASK;
 608
 609	/* check if the old mount command had the same options */
 610	if (sbsec->flags & SE_SBINITIALIZED)
 611		if (!(sbsec->flags & flag) ||
 612		    (old_sid != new_sid))
 613			return 1;
 614
 615	/* check if we were passed the same options twice,
 616	 * aka someone passed context=a,context=b
 617	 */
 618	if (!(sbsec->flags & SE_SBINITIALIZED))
 619		if (mnt_flags & flag)
 620			return 1;
 621	return 0;
 622}
 623
 624/*
 625 * Allow filesystems with binary mount data to explicitly set mount point
 626 * labeling information.
 627 */
 628static int selinux_set_mnt_opts(struct super_block *sb,
 629				void *mnt_opts,
 630				unsigned long kern_flags,
 631				unsigned long *set_kern_flags)
 632{
 633	const struct cred *cred = current_cred();
 634	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 635	struct dentry *root = sb->s_root;
 636	struct selinux_mnt_opts *opts = mnt_opts;
 
 637	struct inode_security_struct *root_isec;
 638	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 639	u32 defcontext_sid = 0;
 640	int rc = 0;
 641
 642	/*
 643	 * Specifying internal flags without providing a place to
 644	 * place the results is not allowed
 645	 */
 646	if (kern_flags && !set_kern_flags)
 647		return -EINVAL;
 648
 649	mutex_lock(&sbsec->lock);
 650
 651	if (!selinux_initialized()) {
 652		if (!opts) {
 653			/* Defer initialization until selinux_complete_init,
 654			   after the initial policy is loaded and the security
 655			   server is ready to handle calls. */
 656			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
 657				sbsec->flags |= SE_SBNATIVE;
 658				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 659			}
 660			goto out;
 661		}
 662		rc = -EINVAL;
 663		pr_warn("SELinux: Unable to set superblock options "
 664			"before the security server is initialized\n");
 665		goto out;
 666	}
 
 
 
 
 
 
 667
 668	/*
 669	 * Binary mount data FS will come through this function twice.  Once
 670	 * from an explicit call and once from the generic calls from the vfs.
 671	 * Since the generic VFS calls will not contain any security mount data
 672	 * we need to skip the double mount verification.
 673	 *
 674	 * This does open a hole in which we will not notice if the first
 675	 * mount using this sb set explicit options and a second mount using
 676	 * this sb does not set any security options.  (The first options
 677	 * will be used for both mounts)
 678	 */
 679	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 680	    && !opts)
 681		goto out;
 682
 683	root_isec = backing_inode_security_novalidate(root);
 684
 685	/*
 686	 * parse the mount options, check if they are valid sids.
 687	 * also check if someone is trying to mount the same sb more
 688	 * than once with different security options.
 689	 */
 690	if (opts) {
 691		if (opts->fscontext_sid) {
 692			fscontext_sid = opts->fscontext_sid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 694					fscontext_sid))
 695				goto out_double_mount;
 
 696			sbsec->flags |= FSCONTEXT_MNT;
 697		}
 698		if (opts->context_sid) {
 699			context_sid = opts->context_sid;
 
 700			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 701					context_sid))
 702				goto out_double_mount;
 
 703			sbsec->flags |= CONTEXT_MNT;
 704		}
 705		if (opts->rootcontext_sid) {
 706			rootcontext_sid = opts->rootcontext_sid;
 
 707			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 708					rootcontext_sid))
 709				goto out_double_mount;
 
 710			sbsec->flags |= ROOTCONTEXT_MNT;
 711		}
 712		if (opts->defcontext_sid) {
 713			defcontext_sid = opts->defcontext_sid;
 
 
 714			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 715					defcontext_sid))
 716				goto out_double_mount;
 
 717			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 718		}
 719	}
 720
 721	if (sbsec->flags & SE_SBINITIALIZED) {
 722		/* previously mounted with options, but not on this attempt? */
 723		if ((sbsec->flags & SE_MNTMASK) && !opts)
 724			goto out_double_mount;
 725		rc = 0;
 726		goto out;
 727	}
 728
 729	if (strcmp(sb->s_type->name, "proc") == 0)
 730		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 731
 732	if (!strcmp(sb->s_type->name, "debugfs") ||
 733	    !strcmp(sb->s_type->name, "tracefs") ||
 734	    !strcmp(sb->s_type->name, "binder") ||
 735	    !strcmp(sb->s_type->name, "bpf") ||
 736	    !strcmp(sb->s_type->name, "pstore") ||
 737	    !strcmp(sb->s_type->name, "securityfs"))
 738		sbsec->flags |= SE_SBGENFS;
 739
 740	if (!strcmp(sb->s_type->name, "sysfs") ||
 741	    !strcmp(sb->s_type->name, "cgroup") ||
 742	    !strcmp(sb->s_type->name, "cgroup2"))
 743		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 744
 745	if (!sbsec->behavior) {
 746		/*
 747		 * Determine the labeling behavior to use for this
 748		 * filesystem type.
 749		 */
 750		rc = security_fs_use(sb);
 751		if (rc) {
 752			pr_warn("%s: security_fs_use(%s) returned %d\n",
 
 753					__func__, sb->s_type->name, rc);
 754			goto out;
 755		}
 756	}
 757
 758	/*
 759	 * If this is a user namespace mount and the filesystem type is not
 760	 * explicitly whitelisted, then no contexts are allowed on the command
 761	 * line and security labels must be ignored.
 762	 */
 763	if (sb->s_user_ns != &init_user_ns &&
 764	    strcmp(sb->s_type->name, "tmpfs") &&
 765	    strcmp(sb->s_type->name, "ramfs") &&
 766	    strcmp(sb->s_type->name, "devpts") &&
 767	    strcmp(sb->s_type->name, "overlay")) {
 768		if (context_sid || fscontext_sid || rootcontext_sid ||
 769		    defcontext_sid) {
 770			rc = -EACCES;
 771			goto out;
 772		}
 773		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 774			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 775			rc = security_transition_sid(current_sid(),
 
 776						     current_sid(),
 777						     SECCLASS_FILE, NULL,
 778						     &sbsec->mntpoint_sid);
 779			if (rc)
 780				goto out;
 781		}
 782		goto out_set_opts;
 783	}
 784
 785	/* sets the context of the superblock for the fs being mounted. */
 786	if (fscontext_sid) {
 787		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 788		if (rc)
 789			goto out;
 790
 791		sbsec->sid = fscontext_sid;
 792	}
 793
 794	/*
 795	 * Switch to using mount point labeling behavior.
 796	 * sets the label used on all file below the mountpoint, and will set
 797	 * the superblock context if not already set.
 798	 */
 799	if (sbsec->flags & SE_SBNATIVE) {
 800		/*
 801		 * This means we are initializing a superblock that has been
 802		 * mounted before the SELinux was initialized and the
 803		 * filesystem requested native labeling. We had already
 804		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
 805		 * in the original mount attempt, so now we just need to set
 806		 * the SECURITY_FS_USE_NATIVE behavior.
 807		 */
 808		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 809	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 810		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 811		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 812	}
 813
 814	if (context_sid) {
 815		if (!fscontext_sid) {
 816			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 817							  cred);
 818			if (rc)
 819				goto out;
 820			sbsec->sid = context_sid;
 821		} else {
 822			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 823							     cred);
 824			if (rc)
 825				goto out;
 826		}
 827		if (!rootcontext_sid)
 828			rootcontext_sid = context_sid;
 829
 830		sbsec->mntpoint_sid = context_sid;
 831		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 832	}
 833
 834	if (rootcontext_sid) {
 835		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 836						     cred);
 837		if (rc)
 838			goto out;
 839
 840		root_isec->sid = rootcontext_sid;
 841		root_isec->initialized = LABEL_INITIALIZED;
 842	}
 843
 844	if (defcontext_sid) {
 845		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 846			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 847			rc = -EINVAL;
 848			pr_warn("SELinux: defcontext option is "
 849			       "invalid for this filesystem type\n");
 850			goto out;
 851		}
 852
 853		if (defcontext_sid != sbsec->def_sid) {
 854			rc = may_context_mount_inode_relabel(defcontext_sid,
 855							     sbsec, cred);
 856			if (rc)
 857				goto out;
 858		}
 859
 860		sbsec->def_sid = defcontext_sid;
 861	}
 862
 863out_set_opts:
 864	rc = sb_finish_set_opts(sb);
 865out:
 866	mutex_unlock(&sbsec->lock);
 867	return rc;
 868out_double_mount:
 869	rc = -EINVAL;
 870	pr_warn("SELinux: mount invalid.  Same superblock, different "
 871	       "security settings for (dev %s, type %s)\n", sb->s_id,
 872	       sb->s_type->name);
 873	goto out;
 874}
 875
 876static int selinux_cmp_sb_context(const struct super_block *oldsb,
 877				    const struct super_block *newsb)
 878{
 879	struct superblock_security_struct *old = selinux_superblock(oldsb);
 880	struct superblock_security_struct *new = selinux_superblock(newsb);
 881	char oldflags = old->flags & SE_MNTMASK;
 882	char newflags = new->flags & SE_MNTMASK;
 883
 884	if (oldflags != newflags)
 885		goto mismatch;
 886	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 887		goto mismatch;
 888	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 889		goto mismatch;
 890	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 891		goto mismatch;
 892	if (oldflags & ROOTCONTEXT_MNT) {
 893		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 894		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 895		if (oldroot->sid != newroot->sid)
 896			goto mismatch;
 897	}
 898	return 0;
 899mismatch:
 900	pr_warn("SELinux: mount invalid.  Same superblock, "
 901			    "different security settings for (dev %s, "
 902			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 903	return -EBUSY;
 904}
 905
 906static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 907					struct super_block *newsb,
 908					unsigned long kern_flags,
 909					unsigned long *set_kern_flags)
 910{
 911	int rc = 0;
 912	const struct superblock_security_struct *oldsbsec =
 913						selinux_superblock(oldsb);
 914	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 915
 916	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 917	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 918	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 919
 920	/*
 
 
 
 
 
 
 
 921	 * Specifying internal flags without providing a place to
 922	 * place the results is not allowed.
 923	 */
 924	if (kern_flags && !set_kern_flags)
 925		return -EINVAL;
 926
 927	mutex_lock(&newsbsec->lock);
 928
 929	/*
 930	 * if the parent was able to be mounted it clearly had no special lsm
 931	 * mount options.  thus we can safely deal with this superblock later
 932	 */
 933	if (!selinux_initialized()) {
 934		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
 935			newsbsec->flags |= SE_SBNATIVE;
 936			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 937		}
 938		goto out;
 939	}
 940
 941	/* how can we clone if the old one wasn't set up?? */
 942	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 943
 944	/* if fs is reusing a sb, make sure that the contexts match */
 945	if (newsbsec->flags & SE_SBINITIALIZED) {
 946		mutex_unlock(&newsbsec->lock);
 947		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 948			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 949		return selinux_cmp_sb_context(oldsb, newsb);
 950	}
 
 951
 952	newsbsec->flags = oldsbsec->flags;
 953
 954	newsbsec->sid = oldsbsec->sid;
 955	newsbsec->def_sid = oldsbsec->def_sid;
 956	newsbsec->behavior = oldsbsec->behavior;
 957
 958	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 959		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 960		rc = security_fs_use(newsb);
 961		if (rc)
 962			goto out;
 963	}
 964
 965	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 966		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 967		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 968	}
 969
 970	if (set_context) {
 971		u32 sid = oldsbsec->mntpoint_sid;
 972
 973		if (!set_fscontext)
 974			newsbsec->sid = sid;
 975		if (!set_rootcontext) {
 976			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 977			newisec->sid = sid;
 978		}
 979		newsbsec->mntpoint_sid = sid;
 980	}
 981	if (set_rootcontext) {
 982		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 983		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 984
 985		newisec->sid = oldisec->sid;
 986	}
 987
 988	sb_finish_set_opts(newsb);
 989out:
 990	mutex_unlock(&newsbsec->lock);
 991	return rc;
 992}
 993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994/*
 995 * NOTE: the caller is responsible for freeing the memory even if on error.
 996 */
 997static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 998{
 999	struct selinux_mnt_opts *opts = *mnt_opts;
1000	u32 *dst_sid;
1001	int rc;
1002
1003	if (token == Opt_seclabel)
1004		/* eaten and completely ignored */
1005		return 0;
1006	if (!s)
1007		return -EINVAL;
1008
1009	if (!selinux_initialized()) {
1010		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1011		return -EINVAL;
1012	}
1013
1014	if (!opts) {
1015		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1016		if (!opts)
1017			return -ENOMEM;
1018		*mnt_opts = opts;
1019	}
1020
1021	switch (token) {
1022	case Opt_context:
1023		if (opts->context_sid || opts->defcontext_sid)
1024			goto err;
1025		dst_sid = &opts->context_sid;
1026		break;
1027	case Opt_fscontext:
1028		if (opts->fscontext_sid)
1029			goto err;
1030		dst_sid = &opts->fscontext_sid;
1031		break;
1032	case Opt_rootcontext:
1033		if (opts->rootcontext_sid)
1034			goto err;
1035		dst_sid = &opts->rootcontext_sid;
1036		break;
1037	case Opt_defcontext:
1038		if (opts->context_sid || opts->defcontext_sid)
1039			goto err;
1040		dst_sid = &opts->defcontext_sid;
1041		break;
1042	default:
1043		WARN_ON(1);
1044		return -EINVAL;
1045	}
1046	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1047	if (rc)
1048		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1049			s, rc);
 
 
 
 
 
1050	return rc;
1051
1052err:
1053	pr_warn(SEL_MOUNT_FAIL_MSG);
1054	return -EINVAL;
1055}
1056
1057static int show_sid(struct seq_file *m, u32 sid)
 
1058{
1059	char *context = NULL;
1060	u32 len;
1061	int rc;
 
 
1062
1063	rc = security_sid_to_context(sid, &context, &len);
1064	if (!rc) {
1065		bool has_comma = strchr(context, ',');
 
1066
1067		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068		if (has_comma)
1069			seq_putc(m, '\"');
1070		seq_escape(m, context, "\"\n\\");
1071		if (has_comma)
1072			seq_putc(m, '\"');
1073	}
1074	kfree(context);
1075	return rc;
1076}
1077
1078static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1079{
1080	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1081	int rc;
1082
1083	if (!(sbsec->flags & SE_SBINITIALIZED))
1084		return 0;
 
 
 
 
 
 
 
1085
1086	if (!selinux_initialized())
1087		return 0;
1088
1089	if (sbsec->flags & FSCONTEXT_MNT) {
1090		seq_putc(m, ',');
1091		seq_puts(m, FSCONTEXT_STR);
1092		rc = show_sid(m, sbsec->sid);
1093		if (rc)
1094			return rc;
1095	}
1096	if (sbsec->flags & CONTEXT_MNT) {
1097		seq_putc(m, ',');
1098		seq_puts(m, CONTEXT_STR);
1099		rc = show_sid(m, sbsec->mntpoint_sid);
1100		if (rc)
1101			return rc;
1102	}
1103	if (sbsec->flags & DEFCONTEXT_MNT) {
1104		seq_putc(m, ',');
1105		seq_puts(m, DEFCONTEXT_STR);
1106		rc = show_sid(m, sbsec->def_sid);
1107		if (rc)
1108			return rc;
1109	}
1110	if (sbsec->flags & ROOTCONTEXT_MNT) {
1111		struct dentry *root = sb->s_root;
1112		struct inode_security_struct *isec = backing_inode_security(root);
1113		seq_putc(m, ',');
1114		seq_puts(m, ROOTCONTEXT_STR);
1115		rc = show_sid(m, isec->sid);
1116		if (rc)
1117			return rc;
1118	}
1119	if (sbsec->flags & SBLABEL_MNT) {
1120		seq_putc(m, ',');
1121		seq_puts(m, SECLABEL_STR);
1122	}
1123	return 0;
1124}
1125
1126static inline u16 inode_mode_to_security_class(umode_t mode)
1127{
1128	switch (mode & S_IFMT) {
1129	case S_IFSOCK:
1130		return SECCLASS_SOCK_FILE;
1131	case S_IFLNK:
1132		return SECCLASS_LNK_FILE;
1133	case S_IFREG:
1134		return SECCLASS_FILE;
1135	case S_IFBLK:
1136		return SECCLASS_BLK_FILE;
1137	case S_IFDIR:
1138		return SECCLASS_DIR;
1139	case S_IFCHR:
1140		return SECCLASS_CHR_FILE;
1141	case S_IFIFO:
1142		return SECCLASS_FIFO_FILE;
1143
1144	}
1145
1146	return SECCLASS_FILE;
1147}
1148
1149static inline int default_protocol_stream(int protocol)
1150{
1151	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1152		protocol == IPPROTO_MPTCP);
1153}
1154
1155static inline int default_protocol_dgram(int protocol)
1156{
1157	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1158}
1159
1160static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1161{
1162	bool extsockclass = selinux_policycap_extsockclass();
1163
1164	switch (family) {
1165	case PF_UNIX:
1166		switch (type) {
1167		case SOCK_STREAM:
1168		case SOCK_SEQPACKET:
1169			return SECCLASS_UNIX_STREAM_SOCKET;
1170		case SOCK_DGRAM:
1171		case SOCK_RAW:
1172			return SECCLASS_UNIX_DGRAM_SOCKET;
1173		}
1174		break;
1175	case PF_INET:
1176	case PF_INET6:
1177		switch (type) {
1178		case SOCK_STREAM:
1179		case SOCK_SEQPACKET:
1180			if (default_protocol_stream(protocol))
1181				return SECCLASS_TCP_SOCKET;
1182			else if (extsockclass && protocol == IPPROTO_SCTP)
1183				return SECCLASS_SCTP_SOCKET;
1184			else
1185				return SECCLASS_RAWIP_SOCKET;
1186		case SOCK_DGRAM:
1187			if (default_protocol_dgram(protocol))
1188				return SECCLASS_UDP_SOCKET;
1189			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1190						  protocol == IPPROTO_ICMPV6))
1191				return SECCLASS_ICMP_SOCKET;
1192			else
1193				return SECCLASS_RAWIP_SOCKET;
1194		case SOCK_DCCP:
1195			return SECCLASS_DCCP_SOCKET;
1196		default:
1197			return SECCLASS_RAWIP_SOCKET;
1198		}
1199		break;
1200	case PF_NETLINK:
1201		switch (protocol) {
1202		case NETLINK_ROUTE:
1203			return SECCLASS_NETLINK_ROUTE_SOCKET;
1204		case NETLINK_SOCK_DIAG:
1205			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1206		case NETLINK_NFLOG:
1207			return SECCLASS_NETLINK_NFLOG_SOCKET;
1208		case NETLINK_XFRM:
1209			return SECCLASS_NETLINK_XFRM_SOCKET;
1210		case NETLINK_SELINUX:
1211			return SECCLASS_NETLINK_SELINUX_SOCKET;
1212		case NETLINK_ISCSI:
1213			return SECCLASS_NETLINK_ISCSI_SOCKET;
1214		case NETLINK_AUDIT:
1215			return SECCLASS_NETLINK_AUDIT_SOCKET;
1216		case NETLINK_FIB_LOOKUP:
1217			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1218		case NETLINK_CONNECTOR:
1219			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1220		case NETLINK_NETFILTER:
1221			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1222		case NETLINK_DNRTMSG:
1223			return SECCLASS_NETLINK_DNRT_SOCKET;
1224		case NETLINK_KOBJECT_UEVENT:
1225			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1226		case NETLINK_GENERIC:
1227			return SECCLASS_NETLINK_GENERIC_SOCKET;
1228		case NETLINK_SCSITRANSPORT:
1229			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1230		case NETLINK_RDMA:
1231			return SECCLASS_NETLINK_RDMA_SOCKET;
1232		case NETLINK_CRYPTO:
1233			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1234		default:
1235			return SECCLASS_NETLINK_SOCKET;
1236		}
1237	case PF_PACKET:
1238		return SECCLASS_PACKET_SOCKET;
1239	case PF_KEY:
1240		return SECCLASS_KEY_SOCKET;
1241	case PF_APPLETALK:
1242		return SECCLASS_APPLETALK_SOCKET;
1243	}
1244
1245	if (extsockclass) {
1246		switch (family) {
1247		case PF_AX25:
1248			return SECCLASS_AX25_SOCKET;
1249		case PF_IPX:
1250			return SECCLASS_IPX_SOCKET;
1251		case PF_NETROM:
1252			return SECCLASS_NETROM_SOCKET;
1253		case PF_ATMPVC:
1254			return SECCLASS_ATMPVC_SOCKET;
1255		case PF_X25:
1256			return SECCLASS_X25_SOCKET;
1257		case PF_ROSE:
1258			return SECCLASS_ROSE_SOCKET;
1259		case PF_DECnet:
1260			return SECCLASS_DECNET_SOCKET;
1261		case PF_ATMSVC:
1262			return SECCLASS_ATMSVC_SOCKET;
1263		case PF_RDS:
1264			return SECCLASS_RDS_SOCKET;
1265		case PF_IRDA:
1266			return SECCLASS_IRDA_SOCKET;
1267		case PF_PPPOX:
1268			return SECCLASS_PPPOX_SOCKET;
1269		case PF_LLC:
1270			return SECCLASS_LLC_SOCKET;
1271		case PF_CAN:
1272			return SECCLASS_CAN_SOCKET;
1273		case PF_TIPC:
1274			return SECCLASS_TIPC_SOCKET;
1275		case PF_BLUETOOTH:
1276			return SECCLASS_BLUETOOTH_SOCKET;
1277		case PF_IUCV:
1278			return SECCLASS_IUCV_SOCKET;
1279		case PF_RXRPC:
1280			return SECCLASS_RXRPC_SOCKET;
1281		case PF_ISDN:
1282			return SECCLASS_ISDN_SOCKET;
1283		case PF_PHONET:
1284			return SECCLASS_PHONET_SOCKET;
1285		case PF_IEEE802154:
1286			return SECCLASS_IEEE802154_SOCKET;
1287		case PF_CAIF:
1288			return SECCLASS_CAIF_SOCKET;
1289		case PF_ALG:
1290			return SECCLASS_ALG_SOCKET;
1291		case PF_NFC:
1292			return SECCLASS_NFC_SOCKET;
1293		case PF_VSOCK:
1294			return SECCLASS_VSOCK_SOCKET;
1295		case PF_KCM:
1296			return SECCLASS_KCM_SOCKET;
1297		case PF_QIPCRTR:
1298			return SECCLASS_QIPCRTR_SOCKET;
1299		case PF_SMC:
1300			return SECCLASS_SMC_SOCKET;
1301		case PF_XDP:
1302			return SECCLASS_XDP_SOCKET;
1303		case PF_MCTP:
1304			return SECCLASS_MCTP_SOCKET;
1305#if PF_MAX > 46
1306#error New address family defined, please update this function.
1307#endif
1308		}
1309	}
1310
1311	return SECCLASS_SOCKET;
1312}
1313
1314static int selinux_genfs_get_sid(struct dentry *dentry,
1315				 u16 tclass,
1316				 u16 flags,
1317				 u32 *sid)
1318{
1319	int rc;
1320	struct super_block *sb = dentry->d_sb;
1321	char *buffer, *path;
1322
1323	buffer = (char *)__get_free_page(GFP_KERNEL);
1324	if (!buffer)
1325		return -ENOMEM;
1326
1327	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1328	if (IS_ERR(path))
1329		rc = PTR_ERR(path);
1330	else {
1331		if (flags & SE_SBPROC) {
1332			/* each process gets a /proc/PID/ entry. Strip off the
1333			 * PID part to get a valid selinux labeling.
1334			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1335			while (path[1] >= '0' && path[1] <= '9') {
1336				path[1] = '/';
1337				path++;
1338			}
1339		}
1340		rc = security_genfs_sid(sb->s_type->name,
1341					path, tclass, sid);
1342		if (rc == -ENOENT) {
1343			/* No match in policy, mark as unlabeled. */
1344			*sid = SECINITSID_UNLABELED;
1345			rc = 0;
1346		}
1347	}
1348	free_page((unsigned long)buffer);
1349	return rc;
1350}
1351
1352static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1353				  u32 def_sid, u32 *sid)
1354{
1355#define INITCONTEXTLEN 255
1356	char *context;
1357	unsigned int len;
1358	int rc;
1359
1360	len = INITCONTEXTLEN;
1361	context = kmalloc(len + 1, GFP_NOFS);
1362	if (!context)
1363		return -ENOMEM;
1364
1365	context[len] = '\0';
1366	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1367	if (rc == -ERANGE) {
1368		kfree(context);
1369
1370		/* Need a larger buffer.  Query for the right size. */
1371		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1372		if (rc < 0)
1373			return rc;
1374
1375		len = rc;
1376		context = kmalloc(len + 1, GFP_NOFS);
1377		if (!context)
1378			return -ENOMEM;
1379
1380		context[len] = '\0';
1381		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1382				    context, len);
1383	}
1384	if (rc < 0) {
1385		kfree(context);
1386		if (rc != -ENODATA) {
1387			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1388				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1389			return rc;
1390		}
1391		*sid = def_sid;
1392		return 0;
1393	}
1394
1395	rc = security_context_to_sid_default(context, rc, sid,
1396					     def_sid, GFP_NOFS);
1397	if (rc) {
1398		char *dev = inode->i_sb->s_id;
1399		unsigned long ino = inode->i_ino;
1400
1401		if (rc == -EINVAL) {
1402			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1403					      ino, dev, context);
1404		} else {
1405			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1406				__func__, context, -rc, dev, ino);
1407		}
1408	}
1409	kfree(context);
1410	return 0;
1411}
1412
1413/* The inode's security attributes must be initialized before first use. */
1414static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1415{
1416	struct superblock_security_struct *sbsec = NULL;
1417	struct inode_security_struct *isec = selinux_inode(inode);
1418	u32 task_sid, sid = 0;
1419	u16 sclass;
1420	struct dentry *dentry;
 
 
 
1421	int rc = 0;
1422
1423	if (isec->initialized == LABEL_INITIALIZED)
1424		return 0;
1425
1426	spin_lock(&isec->lock);
1427	if (isec->initialized == LABEL_INITIALIZED)
1428		goto out_unlock;
1429
1430	if (isec->sclass == SECCLASS_FILE)
1431		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1432
1433	sbsec = selinux_superblock(inode->i_sb);
1434	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1435		/* Defer initialization until selinux_complete_init,
1436		   after the initial policy is loaded and the security
1437		   server is ready to handle calls. */
1438		spin_lock(&sbsec->isec_lock);
1439		if (list_empty(&isec->list))
1440			list_add(&isec->list, &sbsec->isec_head);
1441		spin_unlock(&sbsec->isec_lock);
1442		goto out_unlock;
1443	}
1444
1445	sclass = isec->sclass;
1446	task_sid = isec->task_sid;
1447	sid = isec->sid;
1448	isec->initialized = LABEL_PENDING;
1449	spin_unlock(&isec->lock);
1450
1451	switch (sbsec->behavior) {
1452	/*
1453	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1454	 * via xattr when called from delayed_superblock_init().
1455	 */
1456	case SECURITY_FS_USE_NATIVE:
 
1457	case SECURITY_FS_USE_XATTR:
1458		if (!(inode->i_opflags & IOP_XATTR)) {
1459			sid = sbsec->def_sid;
1460			break;
1461		}
1462		/* Need a dentry, since the xattr API requires one.
1463		   Life would be simpler if we could just pass the inode. */
1464		if (opt_dentry) {
1465			/* Called from d_instantiate or d_splice_alias. */
1466			dentry = dget(opt_dentry);
1467		} else {
1468			/*
1469			 * Called from selinux_complete_init, try to find a dentry.
1470			 * Some filesystems really want a connected one, so try
1471			 * that first.  We could split SECURITY_FS_USE_XATTR in
1472			 * two, depending upon that...
1473			 */
1474			dentry = d_find_alias(inode);
1475			if (!dentry)
1476				dentry = d_find_any_alias(inode);
1477		}
1478		if (!dentry) {
1479			/*
1480			 * this is can be hit on boot when a file is accessed
1481			 * before the policy is loaded.  When we load policy we
1482			 * may find inodes that have no dentry on the
1483			 * sbsec->isec_head list.  No reason to complain as these
1484			 * will get fixed up the next time we go through
1485			 * inode_doinit with a dentry, before these inodes could
1486			 * be used again by userspace.
1487			 */
1488			goto out_invalid;
1489		}
1490
1491		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1492					    &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493		dput(dentry);
1494		if (rc)
1495			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496		break;
1497	case SECURITY_FS_USE_TASK:
1498		sid = task_sid;
1499		break;
1500	case SECURITY_FS_USE_TRANS:
1501		/* Default to the fs SID. */
1502		sid = sbsec->sid;
1503
1504		/* Try to obtain a transition SID. */
1505		rc = security_transition_sid(task_sid, sid,
1506					     sclass, NULL, &sid);
1507		if (rc)
1508			goto out;
1509		break;
1510	case SECURITY_FS_USE_MNTPOINT:
1511		sid = sbsec->mntpoint_sid;
1512		break;
1513	default:
1514		/* Default to the fs superblock SID. */
1515		sid = sbsec->sid;
1516
1517		if ((sbsec->flags & SE_SBGENFS) &&
1518		     (!S_ISLNK(inode->i_mode) ||
1519		      selinux_policycap_genfs_seclabel_symlinks())) {
1520			/* We must have a dentry to determine the label on
1521			 * procfs inodes */
1522			if (opt_dentry) {
1523				/* Called from d_instantiate or
1524				 * d_splice_alias. */
1525				dentry = dget(opt_dentry);
1526			} else {
1527				/* Called from selinux_complete_init, try to
1528				 * find a dentry.  Some filesystems really want
1529				 * a connected one, so try that first.
1530				 */
1531				dentry = d_find_alias(inode);
1532				if (!dentry)
1533					dentry = d_find_any_alias(inode);
1534			}
1535			/*
1536			 * This can be hit on boot when a file is accessed
1537			 * before the policy is loaded.  When we load policy we
1538			 * may find inodes that have no dentry on the
1539			 * sbsec->isec_head list.  No reason to complain as
1540			 * these will get fixed up the next time we go through
1541			 * inode_doinit() with a dentry, before these inodes
1542			 * could be used again by userspace.
1543			 */
1544			if (!dentry)
1545				goto out_invalid;
1546			rc = selinux_genfs_get_sid(dentry, sclass,
1547						   sbsec->flags, &sid);
1548			if (rc) {
1549				dput(dentry);
1550				goto out;
1551			}
1552
1553			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1554			    (inode->i_opflags & IOP_XATTR)) {
1555				rc = inode_doinit_use_xattr(inode, dentry,
1556							    sid, &sid);
1557				if (rc) {
1558					dput(dentry);
1559					goto out;
1560				}
1561			}
1562			dput(dentry);
1563		}
1564		break;
1565	}
1566
1567out:
1568	spin_lock(&isec->lock);
1569	if (isec->initialized == LABEL_PENDING) {
1570		if (rc) {
1571			isec->initialized = LABEL_INVALID;
1572			goto out_unlock;
1573		}
 
1574		isec->initialized = LABEL_INITIALIZED;
1575		isec->sid = sid;
1576	}
1577
1578out_unlock:
1579	spin_unlock(&isec->lock);
1580	return rc;
1581
1582out_invalid:
1583	spin_lock(&isec->lock);
1584	if (isec->initialized == LABEL_PENDING) {
1585		isec->initialized = LABEL_INVALID;
1586		isec->sid = sid;
1587	}
1588	spin_unlock(&isec->lock);
1589	return 0;
1590}
1591
1592/* Convert a Linux signal to an access vector. */
1593static inline u32 signal_to_av(int sig)
1594{
1595	u32 perm = 0;
1596
1597	switch (sig) {
1598	case SIGCHLD:
1599		/* Commonly granted from child to parent. */
1600		perm = PROCESS__SIGCHLD;
1601		break;
1602	case SIGKILL:
1603		/* Cannot be caught or ignored */
1604		perm = PROCESS__SIGKILL;
1605		break;
1606	case SIGSTOP:
1607		/* Cannot be caught or ignored */
1608		perm = PROCESS__SIGSTOP;
1609		break;
1610	default:
1611		/* All other signals. */
1612		perm = PROCESS__SIGNAL;
1613		break;
1614	}
1615
1616	return perm;
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625			       int cap, unsigned int opts, bool initns)
1626{
1627	struct common_audit_data ad;
1628	struct av_decision avd;
1629	u16 sclass;
1630	u32 sid = cred_sid(cred);
1631	u32 av = CAP_TO_MASK(cap);
1632	int rc;
1633
1634	ad.type = LSM_AUDIT_DATA_CAP;
1635	ad.u.cap = cap;
1636
1637	switch (CAP_TO_INDEX(cap)) {
1638	case 0:
1639		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1640		break;
1641	case 1:
1642		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1643		break;
1644	default:
1645		pr_err("SELinux:  out of range capability %d\n", cap);
 
1646		BUG();
1647		return -EINVAL;
1648	}
1649
1650	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1651	if (!(opts & CAP_OPT_NOAUDIT)) {
1652		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
 
 
1653		if (rc2)
1654			return rc2;
1655	}
1656	return rc;
1657}
1658
1659/* Check whether a task has a particular permission to an inode.
1660   The 'adp' parameter is optional and allows other audit
1661   data to be passed (e.g. the dentry). */
1662static int inode_has_perm(const struct cred *cred,
1663			  struct inode *inode,
1664			  u32 perms,
1665			  struct common_audit_data *adp)
1666{
1667	struct inode_security_struct *isec;
1668	u32 sid;
1669
 
 
1670	if (unlikely(IS_PRIVATE(inode)))
1671		return 0;
1672
1673	sid = cred_sid(cred);
1674	isec = selinux_inode(inode);
1675
1676	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1677}
1678
1679/* Same as inode_has_perm, but pass explicit audit data containing
1680   the dentry to help the auditing code to more easily generate the
1681   pathname if needed. */
1682static inline int dentry_has_perm(const struct cred *cred,
1683				  struct dentry *dentry,
1684				  u32 av)
1685{
1686	struct inode *inode = d_backing_inode(dentry);
1687	struct common_audit_data ad;
1688
1689	ad.type = LSM_AUDIT_DATA_DENTRY;
1690	ad.u.dentry = dentry;
1691	__inode_security_revalidate(inode, dentry, true);
1692	return inode_has_perm(cred, inode, av, &ad);
1693}
1694
1695/* Same as inode_has_perm, but pass explicit audit data containing
1696   the path to help the auditing code to more easily generate the
1697   pathname if needed. */
1698static inline int path_has_perm(const struct cred *cred,
1699				const struct path *path,
1700				u32 av)
1701{
1702	struct inode *inode = d_backing_inode(path->dentry);
1703	struct common_audit_data ad;
1704
1705	ad.type = LSM_AUDIT_DATA_PATH;
1706	ad.u.path = *path;
1707	__inode_security_revalidate(inode, path->dentry, true);
1708	return inode_has_perm(cred, inode, av, &ad);
1709}
1710
1711/* Same as path_has_perm, but uses the inode from the file struct. */
1712static inline int file_path_has_perm(const struct cred *cred,
1713				     struct file *file,
1714				     u32 av)
1715{
1716	struct common_audit_data ad;
1717
1718	ad.type = LSM_AUDIT_DATA_FILE;
1719	ad.u.file = file;
1720	return inode_has_perm(cred, file_inode(file), av, &ad);
1721}
1722
1723#ifdef CONFIG_BPF_SYSCALL
1724static int bpf_fd_pass(const struct file *file, u32 sid);
1725#endif
1726
1727/* Check whether a task can use an open file descriptor to
1728   access an inode in a given way.  Check access to the
1729   descriptor itself, and then use dentry_has_perm to
1730   check a particular permission to the file.
1731   Access to the descriptor is implicitly granted if it
1732   has the same SID as the process.  If av is zero, then
1733   access to the file is not checked, e.g. for cases
1734   where only the descriptor is affected like seek. */
1735static int file_has_perm(const struct cred *cred,
1736			 struct file *file,
1737			 u32 av)
1738{
1739	struct file_security_struct *fsec = selinux_file(file);
1740	struct inode *inode = file_inode(file);
1741	struct common_audit_data ad;
1742	u32 sid = cred_sid(cred);
1743	int rc;
1744
1745	ad.type = LSM_AUDIT_DATA_FILE;
1746	ad.u.file = file;
1747
1748	if (sid != fsec->sid) {
1749		rc = avc_has_perm(sid, fsec->sid,
 
1750				  SECCLASS_FD,
1751				  FD__USE,
1752				  &ad);
1753		if (rc)
1754			goto out;
1755	}
1756
1757#ifdef CONFIG_BPF_SYSCALL
1758	rc = bpf_fd_pass(file, cred_sid(cred));
1759	if (rc)
1760		return rc;
1761#endif
1762
1763	/* av is zero if only checking access to the descriptor. */
1764	rc = 0;
1765	if (av)
1766		rc = inode_has_perm(cred, inode, av, &ad);
1767
1768out:
1769	return rc;
1770}
1771
1772/*
1773 * Determine the label for an inode that might be unioned.
1774 */
1775static int
1776selinux_determine_inode_label(const struct task_security_struct *tsec,
1777				 struct inode *dir,
1778				 const struct qstr *name, u16 tclass,
1779				 u32 *_new_isid)
1780{
1781	const struct superblock_security_struct *sbsec =
1782						selinux_superblock(dir->i_sb);
1783
1784	if ((sbsec->flags & SE_SBINITIALIZED) &&
1785	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1786		*_new_isid = sbsec->mntpoint_sid;
1787	} else if ((sbsec->flags & SBLABEL_MNT) &&
1788		   tsec->create_sid) {
1789		*_new_isid = tsec->create_sid;
1790	} else {
1791		const struct inode_security_struct *dsec = inode_security(dir);
1792		return security_transition_sid(tsec->sid,
1793					       dsec->sid, tclass,
1794					       name, _new_isid);
1795	}
1796
1797	return 0;
1798}
1799
1800/* Check whether a task can create a file. */
1801static int may_create(struct inode *dir,
1802		      struct dentry *dentry,
1803		      u16 tclass)
1804{
1805	const struct task_security_struct *tsec = selinux_cred(current_cred());
1806	struct inode_security_struct *dsec;
1807	struct superblock_security_struct *sbsec;
1808	u32 sid, newsid;
1809	struct common_audit_data ad;
1810	int rc;
1811
1812	dsec = inode_security(dir);
1813	sbsec = selinux_superblock(dir->i_sb);
1814
1815	sid = tsec->sid;
1816
1817	ad.type = LSM_AUDIT_DATA_DENTRY;
1818	ad.u.dentry = dentry;
1819
1820	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1821			  DIR__ADD_NAME | DIR__SEARCH,
1822			  &ad);
1823	if (rc)
1824		return rc;
1825
1826	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1827					   &newsid);
1828	if (rc)
1829		return rc;
1830
1831	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1832	if (rc)
1833		return rc;
1834
1835	return avc_has_perm(newsid, sbsec->sid,
 
1836			    SECCLASS_FILESYSTEM,
1837			    FILESYSTEM__ASSOCIATE, &ad);
1838}
1839
1840#define MAY_LINK	0
1841#define MAY_UNLINK	1
1842#define MAY_RMDIR	2
1843
1844/* Check whether a task can link, unlink, or rmdir a file/directory. */
1845static int may_link(struct inode *dir,
1846		    struct dentry *dentry,
1847		    int kind)
1848
1849{
1850	struct inode_security_struct *dsec, *isec;
1851	struct common_audit_data ad;
1852	u32 sid = current_sid();
1853	u32 av;
1854	int rc;
1855
1856	dsec = inode_security(dir);
1857	isec = backing_inode_security(dentry);
1858
1859	ad.type = LSM_AUDIT_DATA_DENTRY;
1860	ad.u.dentry = dentry;
1861
1862	av = DIR__SEARCH;
1863	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1864	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1865	if (rc)
1866		return rc;
1867
1868	switch (kind) {
1869	case MAY_LINK:
1870		av = FILE__LINK;
1871		break;
1872	case MAY_UNLINK:
1873		av = FILE__UNLINK;
1874		break;
1875	case MAY_RMDIR:
1876		av = DIR__RMDIR;
1877		break;
1878	default:
1879		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1880			__func__, kind);
1881		return 0;
1882	}
1883
1884	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1885	return rc;
1886}
1887
1888static inline int may_rename(struct inode *old_dir,
1889			     struct dentry *old_dentry,
1890			     struct inode *new_dir,
1891			     struct dentry *new_dentry)
1892{
1893	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1894	struct common_audit_data ad;
1895	u32 sid = current_sid();
1896	u32 av;
1897	int old_is_dir, new_is_dir;
1898	int rc;
1899
1900	old_dsec = inode_security(old_dir);
1901	old_isec = backing_inode_security(old_dentry);
1902	old_is_dir = d_is_dir(old_dentry);
1903	new_dsec = inode_security(new_dir);
1904
1905	ad.type = LSM_AUDIT_DATA_DENTRY;
1906
1907	ad.u.dentry = old_dentry;
1908	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1909			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1910	if (rc)
1911		return rc;
1912	rc = avc_has_perm(sid, old_isec->sid,
 
1913			  old_isec->sclass, FILE__RENAME, &ad);
1914	if (rc)
1915		return rc;
1916	if (old_is_dir && new_dir != old_dir) {
1917		rc = avc_has_perm(sid, old_isec->sid,
 
1918				  old_isec->sclass, DIR__REPARENT, &ad);
1919		if (rc)
1920			return rc;
1921	}
1922
1923	ad.u.dentry = new_dentry;
1924	av = DIR__ADD_NAME | DIR__SEARCH;
1925	if (d_is_positive(new_dentry))
1926		av |= DIR__REMOVE_NAME;
1927	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1928	if (rc)
1929		return rc;
1930	if (d_is_positive(new_dentry)) {
1931		new_isec = backing_inode_security(new_dentry);
1932		new_is_dir = d_is_dir(new_dentry);
1933		rc = avc_has_perm(sid, new_isec->sid,
 
1934				  new_isec->sclass,
1935				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1936		if (rc)
1937			return rc;
1938	}
1939
1940	return 0;
1941}
1942
1943/* Check whether a task can perform a filesystem operation. */
1944static int superblock_has_perm(const struct cred *cred,
1945			       const struct super_block *sb,
1946			       u32 perms,
1947			       struct common_audit_data *ad)
1948{
1949	struct superblock_security_struct *sbsec;
1950	u32 sid = cred_sid(cred);
1951
1952	sbsec = selinux_superblock(sb);
1953	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1954}
1955
1956/* Convert a Linux mode and permission mask to an access vector. */
1957static inline u32 file_mask_to_av(int mode, int mask)
1958{
1959	u32 av = 0;
1960
1961	if (!S_ISDIR(mode)) {
1962		if (mask & MAY_EXEC)
1963			av |= FILE__EXECUTE;
1964		if (mask & MAY_READ)
1965			av |= FILE__READ;
1966
1967		if (mask & MAY_APPEND)
1968			av |= FILE__APPEND;
1969		else if (mask & MAY_WRITE)
1970			av |= FILE__WRITE;
1971
1972	} else {
1973		if (mask & MAY_EXEC)
1974			av |= DIR__SEARCH;
1975		if (mask & MAY_WRITE)
1976			av |= DIR__WRITE;
1977		if (mask & MAY_READ)
1978			av |= DIR__READ;
1979	}
1980
1981	return av;
1982}
1983
1984/* Convert a Linux file to an access vector. */
1985static inline u32 file_to_av(const struct file *file)
1986{
1987	u32 av = 0;
1988
1989	if (file->f_mode & FMODE_READ)
1990		av |= FILE__READ;
1991	if (file->f_mode & FMODE_WRITE) {
1992		if (file->f_flags & O_APPEND)
1993			av |= FILE__APPEND;
1994		else
1995			av |= FILE__WRITE;
1996	}
1997	if (!av) {
1998		/*
1999		 * Special file opened with flags 3 for ioctl-only use.
2000		 */
2001		av = FILE__IOCTL;
2002	}
2003
2004	return av;
2005}
2006
2007/*
2008 * Convert a file to an access vector and include the correct
2009 * open permission.
2010 */
2011static inline u32 open_file_to_av(struct file *file)
2012{
2013	u32 av = file_to_av(file);
2014	struct inode *inode = file_inode(file);
2015
2016	if (selinux_policycap_openperm() &&
2017	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2018		av |= FILE__OPEN;
2019
2020	return av;
2021}
2022
2023/* Hook functions begin here. */
2024
2025static int selinux_binder_set_context_mgr(const struct cred *mgr)
2026{
2027	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
 
 
 
 
2028			    BINDER__SET_CONTEXT_MGR, NULL);
2029}
2030
2031static int selinux_binder_transaction(const struct cred *from,
2032				      const struct cred *to)
2033{
2034	u32 mysid = current_sid();
2035	u32 fromsid = cred_sid(from);
2036	u32 tosid = cred_sid(to);
2037	int rc;
2038
2039	if (mysid != fromsid) {
2040		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
 
2041				  BINDER__IMPERSONATE, NULL);
2042		if (rc)
2043			return rc;
2044	}
2045
2046	return avc_has_perm(fromsid, tosid,
2047			    SECCLASS_BINDER, BINDER__CALL, NULL);
 
2048}
2049
2050static int selinux_binder_transfer_binder(const struct cred *from,
2051					  const struct cred *to)
2052{
2053	return avc_has_perm(cred_sid(from), cred_sid(to),
2054			    SECCLASS_BINDER, BINDER__TRANSFER,
 
 
 
2055			    NULL);
2056}
2057
2058static int selinux_binder_transfer_file(const struct cred *from,
2059					const struct cred *to,
2060					const struct file *file)
2061{
2062	u32 sid = cred_sid(to);
2063	struct file_security_struct *fsec = selinux_file(file);
2064	struct dentry *dentry = file->f_path.dentry;
2065	struct inode_security_struct *isec;
2066	struct common_audit_data ad;
2067	int rc;
2068
2069	ad.type = LSM_AUDIT_DATA_PATH;
2070	ad.u.path = file->f_path;
2071
2072	if (sid != fsec->sid) {
2073		rc = avc_has_perm(sid, fsec->sid,
 
2074				  SECCLASS_FD,
2075				  FD__USE,
2076				  &ad);
2077		if (rc)
2078			return rc;
2079	}
2080
2081#ifdef CONFIG_BPF_SYSCALL
2082	rc = bpf_fd_pass(file, sid);
2083	if (rc)
2084		return rc;
2085#endif
2086
2087	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2088		return 0;
2089
2090	isec = backing_inode_security(dentry);
2091	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
 
2092			    &ad);
2093}
2094
2095static int selinux_ptrace_access_check(struct task_struct *child,
2096				       unsigned int mode)
2097{
2098	u32 sid = current_sid();
2099	u32 csid = task_sid_obj(child);
2100
2101	if (mode & PTRACE_MODE_READ)
2102		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2103				NULL);
2104
2105	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2106			NULL);
2107}
2108
2109static int selinux_ptrace_traceme(struct task_struct *parent)
2110{
2111	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2112			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
 
2113}
2114
2115static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2116			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2117{
2118	return avc_has_perm(current_sid(), task_sid_obj(target),
2119			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
 
2120}
2121
2122static int selinux_capset(struct cred *new, const struct cred *old,
2123			  const kernel_cap_t *effective,
2124			  const kernel_cap_t *inheritable,
2125			  const kernel_cap_t *permitted)
2126{
2127	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
 
2128			    PROCESS__SETCAP, NULL);
2129}
2130
2131/*
2132 * (This comment used to live with the selinux_task_setuid hook,
2133 * which was removed).
2134 *
2135 * Since setuid only affects the current process, and since the SELinux
2136 * controls are not based on the Linux identity attributes, SELinux does not
2137 * need to control this operation.  However, SELinux does control the use of
2138 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2139 */
2140
2141static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2142			   int cap, unsigned int opts)
2143{
2144	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2145}
2146
2147static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2148{
2149	const struct cred *cred = current_cred();
2150	int rc = 0;
2151
2152	if (!sb)
2153		return 0;
2154
2155	switch (cmds) {
2156	case Q_SYNC:
2157	case Q_QUOTAON:
2158	case Q_QUOTAOFF:
2159	case Q_SETINFO:
2160	case Q_SETQUOTA:
2161	case Q_XQUOTAOFF:
2162	case Q_XQUOTAON:
2163	case Q_XSETQLIM:
2164		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2165		break;
2166	case Q_GETFMT:
2167	case Q_GETINFO:
2168	case Q_GETQUOTA:
2169	case Q_XGETQUOTA:
2170	case Q_XGETQSTAT:
2171	case Q_XGETQSTATV:
2172	case Q_XGETNEXTQUOTA:
2173		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2174		break;
2175	default:
2176		rc = 0;  /* let the kernel handle invalid cmds */
2177		break;
2178	}
2179	return rc;
2180}
2181
2182static int selinux_quota_on(struct dentry *dentry)
2183{
2184	const struct cred *cred = current_cred();
2185
2186	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2187}
2188
2189static int selinux_syslog(int type)
2190{
2191	switch (type) {
2192	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2193	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2194		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2195				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2196	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2197	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2198	/* Set level of messages printed to console */
2199	case SYSLOG_ACTION_CONSOLE_LEVEL:
2200		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2201				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2202				    NULL);
2203	}
2204	/* All other syslog types */
2205	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2206			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2207}
2208
2209/*
2210 * Check permission for allocating a new virtual mapping. Returns
2211 * 0 if permission is granted, negative error code if not.
 
2212 *
2213 * Do not audit the selinux permission check, as this is applied to all
2214 * processes that allocate mappings.
2215 */
2216static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2217{
2218	return cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2219				   CAP_OPT_NOAUDIT, true);
 
 
 
 
 
 
2220}
2221
2222/* binprm security operations */
2223
2224static u32 ptrace_parent_sid(void)
2225{
2226	u32 sid = 0;
2227	struct task_struct *tracer;
2228
2229	rcu_read_lock();
2230	tracer = ptrace_parent(current);
2231	if (tracer)
2232		sid = task_sid_obj(tracer);
2233	rcu_read_unlock();
2234
2235	return sid;
2236}
2237
2238static int check_nnp_nosuid(const struct linux_binprm *bprm,
2239			    const struct task_security_struct *old_tsec,
2240			    const struct task_security_struct *new_tsec)
2241{
2242	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2243	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2244	int rc;
2245	u32 av;
2246
2247	if (!nnp && !nosuid)
2248		return 0; /* neither NNP nor nosuid */
2249
2250	if (new_tsec->sid == old_tsec->sid)
2251		return 0; /* No change in credentials */
2252
2253	/*
2254	 * If the policy enables the nnp_nosuid_transition policy capability,
2255	 * then we permit transitions under NNP or nosuid if the
2256	 * policy allows the corresponding permission between
2257	 * the old and new contexts.
2258	 */
2259	if (selinux_policycap_nnp_nosuid_transition()) {
2260		av = 0;
2261		if (nnp)
2262			av |= PROCESS2__NNP_TRANSITION;
2263		if (nosuid)
2264			av |= PROCESS2__NOSUID_TRANSITION;
2265		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2266				  SECCLASS_PROCESS2, av, NULL);
2267		if (!rc)
2268			return 0;
2269	}
2270
2271	/*
2272	 * We also permit NNP or nosuid transitions to bounded SIDs,
2273	 * i.e. SIDs that are guaranteed to only be allowed a subset
2274	 * of the permissions of the current SID.
2275	 */
2276	rc = security_bounded_transition(old_tsec->sid,
2277					 new_tsec->sid);
2278	if (!rc)
2279		return 0;
2280
2281	/*
2282	 * On failure, preserve the errno values for NNP vs nosuid.
2283	 * NNP:  Operation not permitted for caller.
2284	 * nosuid:  Permission denied to file.
2285	 */
2286	if (nnp)
2287		return -EPERM;
2288	return -EACCES;
2289}
2290
2291static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2292{
2293	const struct task_security_struct *old_tsec;
2294	struct task_security_struct *new_tsec;
2295	struct inode_security_struct *isec;
2296	struct common_audit_data ad;
2297	struct inode *inode = file_inode(bprm->file);
2298	int rc;
2299
2300	/* SELinux context only depends on initial program or script and not
2301	 * the script interpreter */
 
 
2302
2303	old_tsec = selinux_cred(current_cred());
2304	new_tsec = selinux_cred(bprm->cred);
2305	isec = inode_security(inode);
2306
2307	/* Default to the current task SID. */
2308	new_tsec->sid = old_tsec->sid;
2309	new_tsec->osid = old_tsec->sid;
2310
2311	/* Reset fs, key, and sock SIDs on execve. */
2312	new_tsec->create_sid = 0;
2313	new_tsec->keycreate_sid = 0;
2314	new_tsec->sockcreate_sid = 0;
2315
2316	/*
2317	 * Before policy is loaded, label any task outside kernel space
2318	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2319	 * early boot end up with a label different from SECINITSID_KERNEL
2320	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2321	 */
2322	if (!selinux_initialized()) {
2323		new_tsec->sid = SECINITSID_INIT;
2324		/* also clear the exec_sid just in case */
2325		new_tsec->exec_sid = 0;
2326		return 0;
2327	}
2328
2329	if (old_tsec->exec_sid) {
2330		new_tsec->sid = old_tsec->exec_sid;
2331		/* Reset exec SID on execve. */
2332		new_tsec->exec_sid = 0;
2333
2334		/* Fail on NNP or nosuid if not an allowed transition. */
2335		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336		if (rc)
2337			return rc;
2338	} else {
2339		/* Check for a default transition on this program. */
2340		rc = security_transition_sid(old_tsec->sid,
2341					     isec->sid, SECCLASS_PROCESS, NULL,
2342					     &new_tsec->sid);
2343		if (rc)
2344			return rc;
2345
2346		/*
2347		 * Fallback to old SID on NNP or nosuid if not an allowed
2348		 * transition.
2349		 */
2350		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2351		if (rc)
2352			new_tsec->sid = old_tsec->sid;
2353	}
2354
2355	ad.type = LSM_AUDIT_DATA_FILE;
2356	ad.u.file = bprm->file;
2357
2358	if (new_tsec->sid == old_tsec->sid) {
2359		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2360				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2361		if (rc)
2362			return rc;
2363	} else {
2364		/* Check permissions for the transition. */
2365		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2366				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2367		if (rc)
2368			return rc;
2369
2370		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2371				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2372		if (rc)
2373			return rc;
2374
2375		/* Check for shared state */
2376		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2377			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2378					  SECCLASS_PROCESS, PROCESS__SHARE,
2379					  NULL);
2380			if (rc)
2381				return -EPERM;
2382		}
2383
2384		/* Make sure that anyone attempting to ptrace over a task that
2385		 * changes its SID has the appropriate permit */
2386		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2387			u32 ptsid = ptrace_parent_sid();
2388			if (ptsid != 0) {
2389				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2390						  SECCLASS_PROCESS,
2391						  PROCESS__PTRACE, NULL);
2392				if (rc)
2393					return -EPERM;
2394			}
2395		}
2396
2397		/* Clear any possibly unsafe personality bits on exec: */
2398		bprm->per_clear |= PER_CLEAR_ON_SETID;
2399
2400		/* Enable secure mode for SIDs transitions unless
2401		   the noatsecure permission is granted between
2402		   the two SIDs, i.e. ahp returns 0. */
2403		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2404				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2405				  NULL);
2406		bprm->secureexec |= !!rc;
2407	}
2408
2409	return 0;
2410}
2411
2412static int match_file(const void *p, struct file *file, unsigned fd)
2413{
2414	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2415}
2416
2417/* Derived from fs/exec.c:flush_old_files. */
2418static inline void flush_unauthorized_files(const struct cred *cred,
2419					    struct files_struct *files)
2420{
2421	struct file *file, *devnull = NULL;
2422	struct tty_struct *tty;
2423	int drop_tty = 0;
2424	unsigned n;
2425
2426	tty = get_current_tty();
2427	if (tty) {
2428		spin_lock(&tty->files_lock);
2429		if (!list_empty(&tty->tty_files)) {
2430			struct tty_file_private *file_priv;
2431
2432			/* Revalidate access to controlling tty.
2433			   Use file_path_has_perm on the tty path directly
2434			   rather than using file_has_perm, as this particular
2435			   open file may belong to another process and we are
2436			   only interested in the inode-based check here. */
2437			file_priv = list_first_entry(&tty->tty_files,
2438						struct tty_file_private, list);
2439			file = file_priv->file;
2440			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2441				drop_tty = 1;
2442		}
2443		spin_unlock(&tty->files_lock);
2444		tty_kref_put(tty);
2445	}
2446	/* Reset controlling tty. */
2447	if (drop_tty)
2448		no_tty();
2449
2450	/* Revalidate access to inherited open files. */
2451	n = iterate_fd(files, 0, match_file, cred);
2452	if (!n) /* none found? */
2453		return;
2454
2455	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2456	if (IS_ERR(devnull))
2457		devnull = NULL;
2458	/* replace all the matching ones with this */
2459	do {
2460		replace_fd(n - 1, devnull, 0);
2461	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2462	if (devnull)
2463		fput(devnull);
2464}
2465
2466/*
2467 * Prepare a process for imminent new credential changes due to exec
2468 */
2469static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2470{
2471	struct task_security_struct *new_tsec;
2472	struct rlimit *rlim, *initrlim;
2473	int rc, i;
2474
2475	new_tsec = selinux_cred(bprm->cred);
2476	if (new_tsec->sid == new_tsec->osid)
2477		return;
2478
2479	/* Close files for which the new task SID is not authorized. */
2480	flush_unauthorized_files(bprm->cred, current->files);
2481
2482	/* Always clear parent death signal on SID transitions. */
2483	current->pdeath_signal = 0;
2484
2485	/* Check whether the new SID can inherit resource limits from the old
2486	 * SID.  If not, reset all soft limits to the lower of the current
2487	 * task's hard limit and the init task's soft limit.
2488	 *
2489	 * Note that the setting of hard limits (even to lower them) can be
2490	 * controlled by the setrlimit check.  The inclusion of the init task's
2491	 * soft limit into the computation is to avoid resetting soft limits
2492	 * higher than the default soft limit for cases where the default is
2493	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2494	 */
2495	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2496			  PROCESS__RLIMITINH, NULL);
2497	if (rc) {
2498		/* protect against do_prlimit() */
2499		task_lock(current);
2500		for (i = 0; i < RLIM_NLIMITS; i++) {
2501			rlim = current->signal->rlim + i;
2502			initrlim = init_task.signal->rlim + i;
2503			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2504		}
2505		task_unlock(current);
2506		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2507			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2508	}
2509}
2510
2511/*
2512 * Clean up the process immediately after the installation of new credentials
2513 * due to exec
2514 */
2515static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2516{
2517	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2518	u32 osid, sid;
2519	int rc;
2520
2521	osid = tsec->osid;
2522	sid = tsec->sid;
2523
2524	if (sid == osid)
2525		return;
2526
2527	/* Check whether the new SID can inherit signal state from the old SID.
2528	 * If not, clear itimers to avoid subsequent signal generation and
2529	 * flush and unblock signals.
2530	 *
2531	 * This must occur _after_ the task SID has been updated so that any
2532	 * kill done after the flush will be checked against the new SID.
2533	 */
2534	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2535	if (rc) {
2536		clear_itimer();
2537
2538		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
 
 
 
2539		if (!fatal_signal_pending(current)) {
2540			flush_sigqueue(&current->pending);
2541			flush_sigqueue(&current->signal->shared_pending);
2542			flush_signal_handlers(current, 1);
2543			sigemptyset(&current->blocked);
2544			recalc_sigpending();
2545		}
2546		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2547	}
2548
2549	/* Wake up the parent if it is waiting so that it can recheck
2550	 * wait permission to the new task SID. */
2551	read_lock(&tasklist_lock);
2552	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2553	read_unlock(&tasklist_lock);
2554}
2555
2556/* superblock security operations */
2557
2558static int selinux_sb_alloc_security(struct super_block *sb)
2559{
2560	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 
2561
2562	mutex_init(&sbsec->lock);
2563	INIT_LIST_HEAD(&sbsec->isec_head);
2564	spin_lock_init(&sbsec->isec_lock);
2565	sbsec->sid = SECINITSID_UNLABELED;
2566	sbsec->def_sid = SECINITSID_FILE;
2567	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2568
2569	return 0;
2570}
2571
2572static inline int opt_len(const char *s)
2573{
2574	bool open_quote = false;
2575	int len;
2576	char c;
2577
2578	for (len = 0; (c = s[len]) != '\0'; len++) {
2579		if (c == '"')
2580			open_quote = !open_quote;
2581		if (c == ',' && !open_quote)
2582			break;
2583	}
2584	return len;
2585}
2586
2587static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2588{
2589	char *from = options;
2590	char *to = options;
2591	bool first = true;
2592	int rc;
 
 
2593
2594	while (1) {
2595		int len = opt_len(from);
2596		int token;
2597		char *arg = NULL;
 
 
 
 
 
 
2598
2599		token = match_opt_prefix(from, len, &arg);
 
 
 
2600
2601		if (token != Opt_error) {
2602			char *p, *q;
 
 
 
2603
2604			/* strip quotes */
2605			if (arg) {
2606				for (p = q = arg; p < from + len; p++) {
2607					char c = *p;
2608					if (c != '"')
2609						*q++ = c;
2610				}
2611				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2612				if (!arg) {
2613					rc = -ENOMEM;
2614					goto free_opt;
2615				}
2616			}
2617			rc = selinux_add_opt(token, arg, mnt_opts);
2618			kfree(arg);
2619			arg = NULL;
2620			if (unlikely(rc)) {
2621				goto free_opt;
2622			}
2623		} else {
2624			if (!first) {	// copy with preceding comma
2625				from--;
2626				len++;
2627			}
2628			if (to != from)
2629				memmove(to, from, len);
2630			to += len;
2631			first = false;
2632		}
2633		if (!from[len])
2634			break;
2635		from += len + 1;
2636	}
2637	*to = '\0';
2638	return 0;
 
 
 
 
 
 
 
 
 
2639
2640free_opt:
2641	if (*mnt_opts) {
2642		selinux_free_mnt_opts(*mnt_opts);
2643		*mnt_opts = NULL;
2644	}
2645	return rc;
2646}
2647
2648static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2649{
2650	struct selinux_mnt_opts *opts = mnt_opts;
2651	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2652
2653	/*
2654	 * Superblock not initialized (i.e. no options) - reject if any
2655	 * options specified, otherwise accept.
2656	 */
2657	if (!(sbsec->flags & SE_SBINITIALIZED))
2658		return opts ? 1 : 0;
2659
2660	/*
2661	 * Superblock initialized and no options specified - reject if
2662	 * superblock has any options set, otherwise accept.
2663	 */
2664	if (!opts)
2665		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2666
2667	if (opts->fscontext_sid) {
2668		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2669			       opts->fscontext_sid))
2670			return 1;
2671	}
2672	if (opts->context_sid) {
2673		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2674			       opts->context_sid))
2675			return 1;
2676	}
2677	if (opts->rootcontext_sid) {
2678		struct inode_security_struct *root_isec;
2679
2680		root_isec = backing_inode_security(sb->s_root);
2681		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2682			       opts->rootcontext_sid))
2683			return 1;
2684	}
2685	if (opts->defcontext_sid) {
2686		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2687			       opts->defcontext_sid))
2688			return 1;
2689	}
2690	return 0;
2691}
2692
2693static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2694{
2695	struct selinux_mnt_opts *opts = mnt_opts;
2696	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 
 
2697
2698	if (!(sbsec->flags & SE_SBINITIALIZED))
2699		return 0;
2700
2701	if (!opts)
 
 
 
2702		return 0;
2703
2704	if (opts->fscontext_sid) {
2705		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2706			       opts->fscontext_sid))
2707			goto out_bad_option;
2708	}
2709	if (opts->context_sid) {
2710		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2711			       opts->context_sid))
2712			goto out_bad_option;
2713	}
2714	if (opts->rootcontext_sid) {
2715		struct inode_security_struct *root_isec;
2716		root_isec = backing_inode_security(sb->s_root);
2717		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2718			       opts->rootcontext_sid))
2719			goto out_bad_option;
2720	}
2721	if (opts->defcontext_sid) {
2722		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2723			       opts->defcontext_sid))
2724			goto out_bad_option;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2725	}
2726	return 0;
2727
 
 
 
 
 
 
2728out_bad_option:
2729	pr_warn("SELinux: unable to change security options "
2730	       "during remount (dev %s, type=%s)\n", sb->s_id,
2731	       sb->s_type->name);
2732	return -EINVAL;
2733}
2734
2735static int selinux_sb_kern_mount(const struct super_block *sb)
2736{
2737	const struct cred *cred = current_cred();
2738	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2739
2740	ad.type = LSM_AUDIT_DATA_DENTRY;
2741	ad.u.dentry = sb->s_root;
2742	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2743}
2744
2745static int selinux_sb_statfs(struct dentry *dentry)
2746{
2747	const struct cred *cred = current_cred();
2748	struct common_audit_data ad;
2749
2750	ad.type = LSM_AUDIT_DATA_DENTRY;
2751	ad.u.dentry = dentry->d_sb->s_root;
2752	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2753}
2754
2755static int selinux_mount(const char *dev_name,
2756			 const struct path *path,
2757			 const char *type,
2758			 unsigned long flags,
2759			 void *data)
2760{
2761	const struct cred *cred = current_cred();
2762
2763	if (flags & MS_REMOUNT)
2764		return superblock_has_perm(cred, path->dentry->d_sb,
2765					   FILESYSTEM__REMOUNT, NULL);
2766	else
2767		return path_has_perm(cred, path, FILE__MOUNTON);
2768}
2769
2770static int selinux_move_mount(const struct path *from_path,
2771			      const struct path *to_path)
2772{
2773	const struct cred *cred = current_cred();
2774
2775	return path_has_perm(cred, to_path, FILE__MOUNTON);
2776}
2777
2778static int selinux_umount(struct vfsmount *mnt, int flags)
2779{
2780	const struct cred *cred = current_cred();
2781
2782	return superblock_has_perm(cred, mnt->mnt_sb,
2783				   FILESYSTEM__UNMOUNT, NULL);
2784}
2785
2786static int selinux_fs_context_submount(struct fs_context *fc,
2787				   struct super_block *reference)
2788{
2789	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2790	struct selinux_mnt_opts *opts;
2791
2792	/*
2793	 * Ensure that fc->security remains NULL when no options are set
2794	 * as expected by selinux_set_mnt_opts().
2795	 */
2796	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2797		return 0;
2798
2799	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2800	if (!opts)
2801		return -ENOMEM;
2802
2803	if (sbsec->flags & FSCONTEXT_MNT)
2804		opts->fscontext_sid = sbsec->sid;
2805	if (sbsec->flags & CONTEXT_MNT)
2806		opts->context_sid = sbsec->mntpoint_sid;
2807	if (sbsec->flags & DEFCONTEXT_MNT)
2808		opts->defcontext_sid = sbsec->def_sid;
2809	fc->security = opts;
2810	return 0;
2811}
2812
2813static int selinux_fs_context_dup(struct fs_context *fc,
2814				  struct fs_context *src_fc)
2815{
2816	const struct selinux_mnt_opts *src = src_fc->security;
2817
2818	if (!src)
2819		return 0;
2820
2821	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2822	return fc->security ? 0 : -ENOMEM;
2823}
2824
2825static const struct fs_parameter_spec selinux_fs_parameters[] = {
2826	fsparam_string(CONTEXT_STR,	Opt_context),
2827	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2828	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2829	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2830	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2831	{}
2832};
2833
2834static int selinux_fs_context_parse_param(struct fs_context *fc,
2835					  struct fs_parameter *param)
2836{
2837	struct fs_parse_result result;
2838	int opt;
2839
2840	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2841	if (opt < 0)
2842		return opt;
2843
2844	return selinux_add_opt(opt, param->string, &fc->security);
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851	struct inode_security_struct *isec = selinux_inode(inode);
2852	u32 sid = current_sid();
2853
2854	spin_lock_init(&isec->lock);
2855	INIT_LIST_HEAD(&isec->list);
2856	isec->inode = inode;
2857	isec->sid = SECINITSID_UNLABELED;
2858	isec->sclass = SECCLASS_FILE;
2859	isec->task_sid = sid;
2860	isec->initialized = LABEL_INVALID;
2861
2862	return 0;
2863}
2864
2865static void selinux_inode_free_security(struct inode *inode)
2866{
2867	inode_free_security(inode);
2868}
2869
2870static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2871					const struct qstr *name,
2872					const char **xattr_name, void **ctx,
2873					u32 *ctxlen)
2874{
2875	u32 newsid;
2876	int rc;
2877
2878	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2879					   d_inode(dentry->d_parent), name,
2880					   inode_mode_to_security_class(mode),
2881					   &newsid);
2882	if (rc)
2883		return rc;
2884
2885	if (xattr_name)
2886		*xattr_name = XATTR_NAME_SELINUX;
2887
2888	return security_sid_to_context(newsid, (char **)ctx,
2889				       ctxlen);
2890}
2891
2892static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2893					  struct qstr *name,
2894					  const struct cred *old,
2895					  struct cred *new)
2896{
2897	u32 newsid;
2898	int rc;
2899	struct task_security_struct *tsec;
2900
2901	rc = selinux_determine_inode_label(selinux_cred(old),
2902					   d_inode(dentry->d_parent), name,
2903					   inode_mode_to_security_class(mode),
2904					   &newsid);
2905	if (rc)
2906		return rc;
2907
2908	tsec = selinux_cred(new);
2909	tsec->create_sid = newsid;
2910	return 0;
2911}
2912
2913static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2914				       const struct qstr *qstr,
2915				       struct xattr *xattrs, int *xattr_count)
 
2916{
2917	const struct task_security_struct *tsec = selinux_cred(current_cred());
2918	struct superblock_security_struct *sbsec;
2919	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2920	u32 newsid, clen;
2921	u16 newsclass;
2922	int rc;
2923	char *context;
2924
2925	sbsec = selinux_superblock(dir->i_sb);
2926
2927	newsid = tsec->create_sid;
2928	newsclass = inode_mode_to_security_class(inode->i_mode);
2929	rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
 
 
 
2930	if (rc)
2931		return rc;
2932
2933	/* Possibly defer initialization to selinux_complete_init. */
2934	if (sbsec->flags & SE_SBINITIALIZED) {
2935		struct inode_security_struct *isec = selinux_inode(inode);
2936		isec->sclass = newsclass;
2937		isec->sid = newsid;
2938		isec->initialized = LABEL_INITIALIZED;
2939	}
2940
2941	if (!selinux_initialized() ||
2942	    !(sbsec->flags & SBLABEL_MNT))
2943		return -EOPNOTSUPP;
2944
2945	if (xattr) {
2946		rc = security_sid_to_context_force(newsid,
 
 
 
2947						   &context, &clen);
2948		if (rc)
2949			return rc;
2950		xattr->value = context;
2951		xattr->value_len = clen;
2952		xattr->name = XATTR_SELINUX_SUFFIX;
2953	}
2954
2955	return 0;
2956}
2957
2958static int selinux_inode_init_security_anon(struct inode *inode,
2959					    const struct qstr *name,
2960					    const struct inode *context_inode)
2961{
2962	u32 sid = current_sid();
2963	struct common_audit_data ad;
2964	struct inode_security_struct *isec;
2965	int rc;
2966
2967	if (unlikely(!selinux_initialized()))
2968		return 0;
2969
2970	isec = selinux_inode(inode);
2971
2972	/*
2973	 * We only get here once per ephemeral inode.  The inode has
2974	 * been initialized via inode_alloc_security but is otherwise
2975	 * untouched.
2976	 */
2977
2978	if (context_inode) {
2979		struct inode_security_struct *context_isec =
2980			selinux_inode(context_inode);
2981		if (context_isec->initialized != LABEL_INITIALIZED) {
2982			pr_err("SELinux:  context_inode is not initialized\n");
2983			return -EACCES;
2984		}
2985
2986		isec->sclass = context_isec->sclass;
2987		isec->sid = context_isec->sid;
2988	} else {
2989		isec->sclass = SECCLASS_ANON_INODE;
2990		rc = security_transition_sid(
2991			sid, sid,
2992			isec->sclass, name, &isec->sid);
2993		if (rc)
2994			return rc;
2995	}
2996
2997	isec->initialized = LABEL_INITIALIZED;
2998	/*
2999	 * Now that we've initialized security, check whether we're
3000	 * allowed to actually create this type of anonymous inode.
3001	 */
3002
3003	ad.type = LSM_AUDIT_DATA_ANONINODE;
3004	ad.u.anonclass = name ? (const char *)name->name : "?";
3005
3006	return avc_has_perm(sid,
3007			    isec->sid,
3008			    isec->sclass,
3009			    FILE__CREATE,
3010			    &ad);
3011}
3012
3013static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3014{
3015	return may_create(dir, dentry, SECCLASS_FILE);
3016}
3017
3018static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3019{
3020	return may_link(dir, old_dentry, MAY_LINK);
3021}
3022
3023static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3024{
3025	return may_link(dir, dentry, MAY_UNLINK);
3026}
3027
3028static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3029{
3030	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3031}
3032
3033static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3034{
3035	return may_create(dir, dentry, SECCLASS_DIR);
3036}
3037
3038static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3039{
3040	return may_link(dir, dentry, MAY_RMDIR);
3041}
3042
3043static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3044{
3045	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3046}
3047
3048static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3049				struct inode *new_inode, struct dentry *new_dentry)
3050{
3051	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3052}
3053
3054static int selinux_inode_readlink(struct dentry *dentry)
3055{
3056	const struct cred *cred = current_cred();
3057
3058	return dentry_has_perm(cred, dentry, FILE__READ);
3059}
3060
3061static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3062				     bool rcu)
3063{
 
3064	struct common_audit_data ad;
3065	struct inode_security_struct *isec;
3066	u32 sid = current_sid();
 
 
3067
3068	ad.type = LSM_AUDIT_DATA_DENTRY;
3069	ad.u.dentry = dentry;
 
3070	isec = inode_security_rcu(inode, rcu);
3071	if (IS_ERR(isec))
3072		return PTR_ERR(isec);
3073
3074	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
 
 
3075}
3076
3077static noinline int audit_inode_permission(struct inode *inode,
3078					   u32 perms, u32 audited, u32 denied,
3079					   int result)
 
3080{
3081	struct common_audit_data ad;
3082	struct inode_security_struct *isec = selinux_inode(inode);
 
3083
3084	ad.type = LSM_AUDIT_DATA_INODE;
3085	ad.u.inode = inode;
3086
3087	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3088			    audited, denied, result, &ad);
 
 
 
 
3089}
3090
3091static int selinux_inode_permission(struct inode *inode, int mask)
3092{
 
3093	u32 perms;
3094	bool from_access;
3095	bool no_block = mask & MAY_NOT_BLOCK;
3096	struct inode_security_struct *isec;
3097	u32 sid = current_sid();
3098	struct av_decision avd;
3099	int rc, rc2;
3100	u32 audited, denied;
3101
3102	from_access = mask & MAY_ACCESS;
3103	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3104
3105	/* No permission to check.  Existence test. */
3106	if (!mask)
3107		return 0;
3108
 
 
3109	if (unlikely(IS_PRIVATE(inode)))
3110		return 0;
3111
3112	perms = file_mask_to_av(inode->i_mode, mask);
3113
3114	isec = inode_security_rcu(inode, no_block);
 
3115	if (IS_ERR(isec))
3116		return PTR_ERR(isec);
3117
3118	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3119				  &avd);
3120	audited = avc_audit_required(perms, &avd, rc,
3121				     from_access ? FILE__AUDIT_ACCESS : 0,
3122				     &denied);
3123	if (likely(!audited))
3124		return rc;
3125
3126	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3127	if (rc2)
3128		return rc2;
3129	return rc;
3130}
3131
3132static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3133				 struct iattr *iattr)
3134{
3135	const struct cred *cred = current_cred();
3136	struct inode *inode = d_backing_inode(dentry);
3137	unsigned int ia_valid = iattr->ia_valid;
3138	__u32 av = FILE__WRITE;
3139
3140	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3141	if (ia_valid & ATTR_FORCE) {
3142		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3143			      ATTR_FORCE);
3144		if (!ia_valid)
3145			return 0;
3146	}
3147
3148	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3149			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3150		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3151
3152	if (selinux_policycap_openperm() &&
3153	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3154	    (ia_valid & ATTR_SIZE) &&
3155	    !(ia_valid & ATTR_FILE))
3156		av |= FILE__OPEN;
3157
3158	return dentry_has_perm(cred, dentry, av);
3159}
3160
3161static int selinux_inode_getattr(const struct path *path)
3162{
3163	return path_has_perm(current_cred(), path, FILE__GETATTR);
3164}
3165
3166static bool has_cap_mac_admin(bool audit)
3167{
3168	const struct cred *cred = current_cred();
3169	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3170
3171	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3172		return false;
3173	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3174		return false;
3175	return true;
3176}
3177
3178/**
3179 * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3180 * @name: name of the xattr
3181 *
3182 * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3183 * named @name; the LSM layer should avoid enforcing any traditional
3184 * capability based access controls on this xattr.  Returns 0 to indicate that
3185 * SELinux does not "own" the access control rights to xattrs named @name and is
3186 * deferring to the LSM layer for further access controls, including capability
3187 * based controls.
3188 */
3189static int selinux_inode_xattr_skipcap(const char *name)
3190{
3191	/* require capability check if not a selinux xattr */
3192	return !strcmp(name, XATTR_NAME_SELINUX);
3193}
3194
3195static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3196				  struct dentry *dentry, const char *name,
3197				  const void *value, size_t size, int flags)
3198{
3199	struct inode *inode = d_backing_inode(dentry);
3200	struct inode_security_struct *isec;
3201	struct superblock_security_struct *sbsec;
3202	struct common_audit_data ad;
3203	u32 newsid, sid = current_sid();
3204	int rc = 0;
3205
3206	/* if not a selinux xattr, only check the ordinary setattr perm */
3207	if (strcmp(name, XATTR_NAME_SELINUX))
 
 
 
 
 
3208		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
 
3209
3210	if (!selinux_initialized())
3211		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3212
3213	sbsec = selinux_superblock(inode->i_sb);
3214	if (!(sbsec->flags & SBLABEL_MNT))
3215		return -EOPNOTSUPP;
3216
3217	if (!inode_owner_or_capable(idmap, inode))
3218		return -EPERM;
3219
3220	ad.type = LSM_AUDIT_DATA_DENTRY;
3221	ad.u.dentry = dentry;
3222
3223	isec = backing_inode_security(dentry);
3224	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
3225			  FILE__RELABELFROM, &ad);
3226	if (rc)
3227		return rc;
3228
3229	rc = security_context_to_sid(value, size, &newsid,
3230				     GFP_KERNEL);
3231	if (rc == -EINVAL) {
3232		if (!has_cap_mac_admin(true)) {
3233			struct audit_buffer *ab;
3234			size_t audit_size;
3235
3236			/* We strip a nul only if it is at the end, otherwise the
3237			 * context contains a nul and we should audit that */
3238			if (value) {
3239				const char *str = value;
3240
3241				if (str[size - 1] == '\0')
3242					audit_size = size - 1;
3243				else
3244					audit_size = size;
3245			} else {
3246				audit_size = 0;
3247			}
3248			ab = audit_log_start(audit_context(),
3249					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3250			if (!ab)
3251				return rc;
3252			audit_log_format(ab, "op=setxattr invalid_context=");
3253			audit_log_n_untrustedstring(ab, value, audit_size);
3254			audit_log_end(ab);
3255
3256			return rc;
3257		}
3258		rc = security_context_to_sid_force(value,
3259						   size, &newsid);
3260	}
3261	if (rc)
3262		return rc;
3263
3264	rc = avc_has_perm(sid, newsid, isec->sclass,
 
3265			  FILE__RELABELTO, &ad);
3266	if (rc)
3267		return rc;
3268
3269	rc = security_validate_transition(isec->sid, newsid,
3270					  sid, isec->sclass);
3271	if (rc)
3272		return rc;
3273
3274	return avc_has_perm(newsid,
 
3275			    sbsec->sid,
3276			    SECCLASS_FILESYSTEM,
3277			    FILESYSTEM__ASSOCIATE,
3278			    &ad);
3279}
3280
3281static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3282				 struct dentry *dentry, const char *acl_name,
3283				 struct posix_acl *kacl)
3284{
3285	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3286}
3287
3288static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3289				 struct dentry *dentry, const char *acl_name)
3290{
3291	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3292}
3293
3294static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3295				    struct dentry *dentry, const char *acl_name)
3296{
3297	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3298}
3299
3300static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3301					const void *value, size_t size,
3302					int flags)
3303{
3304	struct inode *inode = d_backing_inode(dentry);
3305	struct inode_security_struct *isec;
3306	u32 newsid;
3307	int rc;
3308
3309	if (strcmp(name, XATTR_NAME_SELINUX)) {
3310		/* Not an attribute we recognize, so nothing to do. */
3311		return;
3312	}
3313
3314	if (!selinux_initialized()) {
3315		/* If we haven't even been initialized, then we can't validate
3316		 * against a policy, so leave the label as invalid. It may
3317		 * resolve to a valid label on the next revalidation try if
3318		 * we've since initialized.
3319		 */
3320		return;
3321	}
3322
3323	rc = security_context_to_sid_force(value, size,
3324					   &newsid);
3325	if (rc) {
3326		pr_err("SELinux:  unable to map context to SID"
3327		       "for (%s, %lu), rc=%d\n",
3328		       inode->i_sb->s_id, inode->i_ino, -rc);
3329		return;
3330	}
3331
3332	isec = backing_inode_security(dentry);
3333	spin_lock(&isec->lock);
3334	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3335	isec->sid = newsid;
3336	isec->initialized = LABEL_INITIALIZED;
3337	spin_unlock(&isec->lock);
 
 
3338}
3339
3340static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3341{
3342	const struct cred *cred = current_cred();
3343
3344	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3345}
3346
3347static int selinux_inode_listxattr(struct dentry *dentry)
3348{
3349	const struct cred *cred = current_cred();
3350
3351	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3352}
3353
3354static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3355				     struct dentry *dentry, const char *name)
3356{
3357	/* if not a selinux xattr, only check the ordinary setattr perm */
3358	if (strcmp(name, XATTR_NAME_SELINUX))
 
 
 
 
 
3359		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360
3361	if (!selinux_initialized())
3362		return 0;
3363
3364	/* No one is allowed to remove a SELinux security label.
3365	   You can change the label, but all data must be labeled. */
3366	return -EACCES;
3367}
3368
3369static int selinux_path_notify(const struct path *path, u64 mask,
3370						unsigned int obj_type)
3371{
3372	int ret;
3373	u32 perm;
3374
3375	struct common_audit_data ad;
3376
3377	ad.type = LSM_AUDIT_DATA_PATH;
3378	ad.u.path = *path;
3379
3380	/*
3381	 * Set permission needed based on the type of mark being set.
3382	 * Performs an additional check for sb watches.
3383	 */
3384	switch (obj_type) {
3385	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3386		perm = FILE__WATCH_MOUNT;
3387		break;
3388	case FSNOTIFY_OBJ_TYPE_SB:
3389		perm = FILE__WATCH_SB;
3390		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3391						FILESYSTEM__WATCH, &ad);
3392		if (ret)
3393			return ret;
3394		break;
3395	case FSNOTIFY_OBJ_TYPE_INODE:
3396		perm = FILE__WATCH;
3397		break;
3398	default:
3399		return -EINVAL;
3400	}
3401
3402	/* blocking watches require the file:watch_with_perm permission */
3403	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3404		perm |= FILE__WATCH_WITH_PERM;
3405
3406	/* watches on read-like events need the file:watch_reads permission */
3407	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3408		perm |= FILE__WATCH_READS;
3409
3410	return path_has_perm(current_cred(), path, perm);
3411}
3412
3413/*
3414 * Copy the inode security context value to the user.
3415 *
3416 * Permission check is handled by selinux_inode_getxattr hook.
3417 */
3418static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3419				     struct inode *inode, const char *name,
3420				     void **buffer, bool alloc)
3421{
3422	u32 size;
3423	int error;
3424	char *context = NULL;
3425	struct inode_security_struct *isec;
3426
3427	/*
3428	 * If we're not initialized yet, then we can't validate contexts, so
3429	 * just let vfs_getxattr fall back to using the on-disk xattr.
3430	 */
3431	if (!selinux_initialized() ||
3432	    strcmp(name, XATTR_SELINUX_SUFFIX))
3433		return -EOPNOTSUPP;
3434
3435	/*
3436	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3437	 * value even if it is not defined by current policy; otherwise,
3438	 * use the in-core value under current policy.
3439	 * Use the non-auditing forms of the permission checks since
3440	 * getxattr may be called by unprivileged processes commonly
3441	 * and lack of permission just means that we fall back to the
3442	 * in-core context value, not a denial.
3443	 */
3444	isec = inode_security(inode);
3445	if (has_cap_mac_admin(false))
3446		error = security_sid_to_context_force(isec->sid, &context,
 
3447						      &size);
3448	else
3449		error = security_sid_to_context(isec->sid,
3450						&context, &size);
3451	if (error)
3452		return error;
3453	error = size;
3454	if (alloc) {
3455		*buffer = context;
3456		goto out_nofree;
3457	}
3458	kfree(context);
3459out_nofree:
3460	return error;
3461}
3462
3463static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3464				     const void *value, size_t size, int flags)
3465{
3466	struct inode_security_struct *isec = inode_security_novalidate(inode);
3467	struct superblock_security_struct *sbsec;
3468	u32 newsid;
3469	int rc;
3470
3471	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3472		return -EOPNOTSUPP;
3473
3474	sbsec = selinux_superblock(inode->i_sb);
3475	if (!(sbsec->flags & SBLABEL_MNT))
3476		return -EOPNOTSUPP;
3477
3478	if (!value || !size)
3479		return -EACCES;
3480
3481	rc = security_context_to_sid(value, size, &newsid,
3482				     GFP_KERNEL);
3483	if (rc)
3484		return rc;
3485
3486	spin_lock(&isec->lock);
3487	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3488	isec->sid = newsid;
3489	isec->initialized = LABEL_INITIALIZED;
3490	spin_unlock(&isec->lock);
3491	return 0;
3492}
3493
3494static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3495{
3496	const int len = sizeof(XATTR_NAME_SELINUX);
3497
3498	if (!selinux_initialized())
3499		return 0;
3500
3501	if (buffer && len <= buffer_size)
3502		memcpy(buffer, XATTR_NAME_SELINUX, len);
3503	return len;
3504}
3505
3506static void selinux_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
3507{
3508	struct inode_security_struct *isec = inode_security_novalidate(inode);
3509
3510	prop->selinux.secid = isec->sid;
3511}
3512
3513static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514{
3515	struct lsm_prop prop;
3516	struct task_security_struct *tsec;
3517	struct cred *new_creds = *new;
3518
3519	if (new_creds == NULL) {
3520		new_creds = prepare_creds();
3521		if (!new_creds)
3522			return -ENOMEM;
3523	}
3524
3525	tsec = selinux_cred(new_creds);
3526	/* Get label from overlay inode and set it in create_sid */
3527	selinux_inode_getlsmprop(d_inode(src), &prop);
3528	tsec->create_sid = prop.selinux.secid;
3529	*new = new_creds;
3530	return 0;
3531}
3532
3533static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3534{
3535	/* The copy_up hook above sets the initial context on an inode, but we
3536	 * don't then want to overwrite it by blindly copying all the lower
3537	 * xattrs up.  Instead, filter out SELinux-related xattrs following
3538	 * policy load.
3539	 */
3540	if (selinux_initialized() && !strcmp(name, XATTR_NAME_SELINUX))
3541		return -ECANCELED; /* Discard */
3542	/*
3543	 * Any other attribute apart from SELINUX is not claimed, supported
3544	 * by selinux.
3545	 */
3546	return -EOPNOTSUPP;
3547}
3548
3549/* kernfs node operations */
3550
3551static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552					struct kernfs_node *kn)
3553{
3554	const struct task_security_struct *tsec = selinux_cred(current_cred());
3555	u32 parent_sid, newsid, clen;
3556	int rc;
3557	char *context;
3558
3559	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560	if (rc == -ENODATA)
3561		return 0;
3562	else if (rc < 0)
3563		return rc;
3564
3565	clen = (u32)rc;
3566	context = kmalloc(clen, GFP_KERNEL);
3567	if (!context)
3568		return -ENOMEM;
3569
3570	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571	if (rc < 0) {
3572		kfree(context);
3573		return rc;
3574	}
3575
3576	rc = security_context_to_sid(context, clen, &parent_sid,
3577				     GFP_KERNEL);
3578	kfree(context);
3579	if (rc)
3580		return rc;
3581
3582	if (tsec->create_sid) {
3583		newsid = tsec->create_sid;
3584	} else {
3585		u16 secclass = inode_mode_to_security_class(kn->mode);
3586		struct qstr q;
3587
3588		q.name = kn->name;
3589		q.hash_len = hashlen_string(kn_dir, kn->name);
3590
3591		rc = security_transition_sid(tsec->sid,
3592					     parent_sid, secclass, &q,
3593					     &newsid);
3594		if (rc)
3595			return rc;
3596	}
3597
3598	rc = security_sid_to_context_force(newsid,
3599					   &context, &clen);
3600	if (rc)
3601		return rc;
3602
3603	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604			      XATTR_CREATE);
3605	kfree(context);
3606	return rc;
3607}
3608
3609
3610/* file security operations */
3611
3612static int selinux_revalidate_file_permission(struct file *file, int mask)
3613{
3614	const struct cred *cred = current_cred();
3615	struct inode *inode = file_inode(file);
3616
3617	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619		mask |= MAY_APPEND;
3620
3621	return file_has_perm(cred, file,
3622			     file_mask_to_av(inode->i_mode, mask));
3623}
3624
3625static int selinux_file_permission(struct file *file, int mask)
3626{
3627	struct inode *inode = file_inode(file);
3628	struct file_security_struct *fsec = selinux_file(file);
3629	struct inode_security_struct *isec;
3630	u32 sid = current_sid();
3631
3632	if (!mask)
3633		/* No permission to check.  Existence test. */
3634		return 0;
3635
3636	isec = inode_security(inode);
3637	if (sid == fsec->sid && fsec->isid == isec->sid &&
3638	    fsec->pseqno == avc_policy_seqno())
3639		/* No change since file_open check. */
3640		return 0;
3641
3642	return selinux_revalidate_file_permission(file, mask);
3643}
3644
3645static int selinux_file_alloc_security(struct file *file)
3646{
3647	struct file_security_struct *fsec = selinux_file(file);
3648	u32 sid = current_sid();
3649
3650	fsec->sid = sid;
3651	fsec->fown_sid = sid;
3652
3653	return 0;
3654}
3655
3656/*
3657 * Check whether a task has the ioctl permission and cmd
3658 * operation to an inode.
3659 */
3660static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661		u32 requested, u16 cmd)
3662{
3663	struct common_audit_data ad;
3664	struct file_security_struct *fsec = selinux_file(file);
3665	struct inode *inode = file_inode(file);
3666	struct inode_security_struct *isec;
3667	struct lsm_ioctlop_audit ioctl;
3668	u32 ssid = cred_sid(cred);
3669	int rc;
3670	u8 driver = cmd >> 8;
3671	u8 xperm = cmd & 0xff;
3672
3673	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674	ad.u.op = &ioctl;
3675	ad.u.op->cmd = cmd;
3676	ad.u.op->path = file->f_path;
3677
3678	if (ssid != fsec->sid) {
3679		rc = avc_has_perm(ssid, fsec->sid,
 
3680				SECCLASS_FD,
3681				FD__USE,
3682				&ad);
3683		if (rc)
3684			goto out;
3685	}
3686
3687	if (unlikely(IS_PRIVATE(inode)))
3688		return 0;
3689
3690	isec = inode_security(inode);
3691	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, requested,
3692				    driver, AVC_EXT_IOCTL, xperm, &ad);
 
3693out:
3694	return rc;
3695}
3696
3697static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698			      unsigned long arg)
3699{
3700	const struct cred *cred = current_cred();
3701	int error = 0;
3702
3703	switch (cmd) {
3704	case FIONREAD:
 
3705	case FIBMAP:
 
3706	case FIGETBSZ:
 
3707	case FS_IOC_GETFLAGS:
 
3708	case FS_IOC_GETVERSION:
3709		error = file_has_perm(cred, file, FILE__GETATTR);
3710		break;
3711
3712	case FS_IOC_SETFLAGS:
 
3713	case FS_IOC_SETVERSION:
3714		error = file_has_perm(cred, file, FILE__SETATTR);
3715		break;
3716
3717	/* sys_ioctl() checks */
3718	case FIONBIO:
 
3719	case FIOASYNC:
3720		error = file_has_perm(cred, file, 0);
3721		break;
3722
3723	case KDSKBENT:
3724	case KDSKBSENT:
3725		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726					    CAP_OPT_NONE, true);
3727		break;
3728
3729	case FIOCLEX:
3730	case FIONCLEX:
3731		if (!selinux_policycap_ioctl_skip_cloexec())
3732			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733		break;
3734
3735	/* default case assumes that the command will go
3736	 * to the file's ioctl() function.
3737	 */
3738	default:
3739		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740	}
3741	return error;
3742}
3743
3744static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745			      unsigned long arg)
3746{
3747	/*
3748	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749	 * make sure we don't compare 32-bit flags to 64-bit flags.
3750	 */
3751	switch (cmd) {
3752	case FS_IOC32_GETFLAGS:
3753		cmd = FS_IOC_GETFLAGS;
3754		break;
3755	case FS_IOC32_SETFLAGS:
3756		cmd = FS_IOC_SETFLAGS;
3757		break;
3758	case FS_IOC32_GETVERSION:
3759		cmd = FS_IOC_GETVERSION;
3760		break;
3761	case FS_IOC32_SETVERSION:
3762		cmd = FS_IOC_SETVERSION;
3763		break;
3764	default:
3765		break;
3766	}
3767
3768	return selinux_file_ioctl(file, cmd, arg);
3769}
3770
3771static int default_noexec __ro_after_init;
3772
3773static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774{
3775	const struct cred *cred = current_cred();
3776	u32 sid = cred_sid(cred);
3777	int rc = 0;
3778
3779	if (default_noexec &&
3780	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781				   (!shared && (prot & PROT_WRITE)))) {
3782		/*
3783		 * We are making executable an anonymous mapping or a
3784		 * private file mapping that will also be writable.
3785		 * This has an additional check.
3786		 */
3787		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
3788				  PROCESS__EXECMEM, NULL);
3789		if (rc)
3790			goto error;
3791	}
3792
3793	if (file) {
3794		/* read access is always possible with a mapping */
3795		u32 av = FILE__READ;
3796
3797		/* write access only matters if the mapping is shared */
3798		if (shared && (prot & PROT_WRITE))
3799			av |= FILE__WRITE;
3800
3801		if (prot & PROT_EXEC)
3802			av |= FILE__EXECUTE;
3803
3804		return file_has_perm(cred, file, av);
3805	}
3806
3807error:
3808	return rc;
3809}
3810
3811static int selinux_mmap_addr(unsigned long addr)
3812{
3813	int rc = 0;
3814
3815	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816		u32 sid = current_sid();
3817		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3818				  MEMPROTECT__MMAP_ZERO, NULL);
3819	}
3820
3821	return rc;
3822}
3823
3824static int selinux_mmap_file(struct file *file,
3825			     unsigned long reqprot __always_unused,
3826			     unsigned long prot, unsigned long flags)
3827{
3828	struct common_audit_data ad;
3829	int rc;
3830
3831	if (file) {
3832		ad.type = LSM_AUDIT_DATA_FILE;
3833		ad.u.file = file;
3834		rc = inode_has_perm(current_cred(), file_inode(file),
3835				    FILE__MAP, &ad);
3836		if (rc)
3837			return rc;
3838	}
3839
 
 
 
3840	return file_map_prot_check(file, prot,
3841				   (flags & MAP_TYPE) == MAP_SHARED);
3842}
3843
3844static int selinux_file_mprotect(struct vm_area_struct *vma,
3845				 unsigned long reqprot __always_unused,
3846				 unsigned long prot)
3847{
3848	const struct cred *cred = current_cred();
3849	u32 sid = cred_sid(cred);
3850
 
 
 
3851	if (default_noexec &&
3852	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853		int rc = 0;
3854		/*
3855		 * We don't use the vma_is_initial_heap() helper as it has
3856		 * a history of problems and is currently broken on systems
3857		 * where there is no heap, e.g. brk == start_brk.  Before
3858		 * replacing the conditional below with vma_is_initial_heap(),
3859		 * or something similar, please ensure that the logic is the
3860		 * same as what we have below or you have tested every possible
3861		 * corner case you can think to test.
3862		 */
3863		if (vma->vm_start >= vma->vm_mm->start_brk &&
3864		    vma->vm_end <= vma->vm_mm->brk) {
3865			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
3866					  PROCESS__EXECHEAP, NULL);
3867		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
 
 
3868			    vma_is_stack_for_current(vma))) {
3869			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
3870					  PROCESS__EXECSTACK, NULL);
3871		} else if (vma->vm_file && vma->anon_vma) {
3872			/*
3873			 * We are making executable a file mapping that has
3874			 * had some COW done. Since pages might have been
3875			 * written, check ability to execute the possibly
3876			 * modified content.  This typically should only
3877			 * occur for text relocations.
3878			 */
3879			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3880		}
3881		if (rc)
3882			return rc;
3883	}
3884
3885	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3886}
3887
3888static int selinux_file_lock(struct file *file, unsigned int cmd)
3889{
3890	const struct cred *cred = current_cred();
3891
3892	return file_has_perm(cred, file, FILE__LOCK);
3893}
3894
3895static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3896			      unsigned long arg)
3897{
3898	const struct cred *cred = current_cred();
3899	int err = 0;
3900
3901	switch (cmd) {
3902	case F_SETFL:
3903		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3904			err = file_has_perm(cred, file, FILE__WRITE);
3905			break;
3906		}
3907		fallthrough;
3908	case F_SETOWN:
3909	case F_SETSIG:
3910	case F_GETFL:
3911	case F_GETOWN:
3912	case F_GETSIG:
3913	case F_GETOWNER_UIDS:
3914		/* Just check FD__USE permission */
3915		err = file_has_perm(cred, file, 0);
3916		break;
3917	case F_GETLK:
3918	case F_SETLK:
3919	case F_SETLKW:
3920	case F_OFD_GETLK:
3921	case F_OFD_SETLK:
3922	case F_OFD_SETLKW:
3923#if BITS_PER_LONG == 32
3924	case F_GETLK64:
3925	case F_SETLK64:
3926	case F_SETLKW64:
3927#endif
3928		err = file_has_perm(cred, file, FILE__LOCK);
3929		break;
3930	}
3931
3932	return err;
3933}
3934
3935static void selinux_file_set_fowner(struct file *file)
3936{
3937	struct file_security_struct *fsec;
3938
3939	fsec = selinux_file(file);
3940	fsec->fown_sid = current_sid();
3941}
3942
3943static int selinux_file_send_sigiotask(struct task_struct *tsk,
3944				       struct fown_struct *fown, int signum)
3945{
3946	struct file *file;
3947	u32 sid = task_sid_obj(tsk);
3948	u32 perm;
3949	struct file_security_struct *fsec;
3950
3951	/* struct fown_struct is never outside the context of a struct file */
3952	file = fown->file;
3953
3954	fsec = selinux_file(file);
3955
3956	if (!signum)
3957		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3958	else
3959		perm = signal_to_av(signum);
3960
3961	return avc_has_perm(fsec->fown_sid, sid,
 
3962			    SECCLASS_PROCESS, perm, NULL);
3963}
3964
3965static int selinux_file_receive(struct file *file)
3966{
3967	const struct cred *cred = current_cred();
3968
3969	return file_has_perm(cred, file, file_to_av(file));
3970}
3971
3972static int selinux_file_open(struct file *file)
3973{
3974	struct file_security_struct *fsec;
3975	struct inode_security_struct *isec;
3976
3977	fsec = selinux_file(file);
3978	isec = inode_security(file_inode(file));
3979	/*
3980	 * Save inode label and policy sequence number
3981	 * at open-time so that selinux_file_permission
3982	 * can determine whether revalidation is necessary.
3983	 * Task label is already saved in the file security
3984	 * struct as its SID.
3985	 */
3986	fsec->isid = isec->sid;
3987	fsec->pseqno = avc_policy_seqno();
3988	/*
3989	 * Since the inode label or policy seqno may have changed
3990	 * between the selinux_inode_permission check and the saving
3991	 * of state above, recheck that access is still permitted.
3992	 * Otherwise, access might never be revalidated against the
3993	 * new inode label or new policy.
3994	 * This check is not redundant - do not remove.
3995	 */
3996	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3997}
3998
3999/* task security operations */
4000
4001static int selinux_task_alloc(struct task_struct *task,
4002			      unsigned long clone_flags)
4003{
4004	u32 sid = current_sid();
4005
4006	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4007}
4008
4009/*
4010 * prepare a new set of credentials for modification
4011 */
4012static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4013				gfp_t gfp)
4014{
4015	const struct task_security_struct *old_tsec = selinux_cred(old);
4016	struct task_security_struct *tsec = selinux_cred(new);
 
 
4017
4018	*tsec = *old_tsec;
 
 
 
 
4019	return 0;
4020}
4021
4022/*
4023 * transfer the SELinux data to a blank set of creds
4024 */
4025static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4026{
4027	const struct task_security_struct *old_tsec = selinux_cred(old);
4028	struct task_security_struct *tsec = selinux_cred(new);
4029
4030	*tsec = *old_tsec;
4031}
4032
4033static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4034{
4035	*secid = cred_sid(c);
4036}
4037
4038static void selinux_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
4039{
4040	prop->selinux.secid = cred_sid(c);
4041}
4042
4043/*
4044 * set the security data for a kernel service
4045 * - all the creation contexts are set to unlabelled
4046 */
4047static int selinux_kernel_act_as(struct cred *new, u32 secid)
4048{
4049	struct task_security_struct *tsec = selinux_cred(new);
4050	u32 sid = current_sid();
4051	int ret;
4052
4053	ret = avc_has_perm(sid, secid,
 
4054			   SECCLASS_KERNEL_SERVICE,
4055			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4056			   NULL);
4057	if (ret == 0) {
4058		tsec->sid = secid;
4059		tsec->create_sid = 0;
4060		tsec->keycreate_sid = 0;
4061		tsec->sockcreate_sid = 0;
4062	}
4063	return ret;
4064}
4065
4066/*
4067 * set the file creation context in a security record to the same as the
4068 * objective context of the specified inode
4069 */
4070static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4071{
4072	struct inode_security_struct *isec = inode_security(inode);
4073	struct task_security_struct *tsec = selinux_cred(new);
4074	u32 sid = current_sid();
4075	int ret;
4076
4077	ret = avc_has_perm(sid, isec->sid,
 
4078			   SECCLASS_KERNEL_SERVICE,
4079			   KERNEL_SERVICE__CREATE_FILES_AS,
4080			   NULL);
4081
4082	if (ret == 0)
4083		tsec->create_sid = isec->sid;
4084	return ret;
4085}
4086
4087static int selinux_kernel_module_request(char *kmod_name)
4088{
4089	struct common_audit_data ad;
4090
4091	ad.type = LSM_AUDIT_DATA_KMOD;
4092	ad.u.kmod_name = kmod_name;
4093
4094	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
4095			    SYSTEM__MODULE_REQUEST, &ad);
4096}
4097
4098static int selinux_kernel_module_from_file(struct file *file)
4099{
4100	struct common_audit_data ad;
4101	struct inode_security_struct *isec;
4102	struct file_security_struct *fsec;
4103	u32 sid = current_sid();
4104	int rc;
4105
4106	/* init_module */
4107	if (file == NULL)
4108		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
 
4109					SYSTEM__MODULE_LOAD, NULL);
4110
4111	/* finit_module */
4112
4113	ad.type = LSM_AUDIT_DATA_FILE;
4114	ad.u.file = file;
4115
4116	fsec = selinux_file(file);
4117	if (sid != fsec->sid) {
4118		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
 
4119		if (rc)
4120			return rc;
4121	}
4122
4123	isec = inode_security(file_inode(file));
4124	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
 
4125				SYSTEM__MODULE_LOAD, &ad);
4126}
4127
4128static int selinux_kernel_read_file(struct file *file,
4129				    enum kernel_read_file_id id,
4130				    bool contents)
4131{
4132	int rc = 0;
4133
4134	switch (id) {
4135	case READING_MODULE:
4136		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4137		break;
4138	default:
4139		break;
4140	}
4141
4142	return rc;
4143}
4144
4145static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4146{
4147	int rc = 0;
4148
4149	switch (id) {
4150	case LOADING_MODULE:
4151		rc = selinux_kernel_module_from_file(NULL);
4152		break;
4153	default:
4154		break;
4155	}
4156
4157	return rc;
4158}
4159
4160static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4161{
4162	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4163			    PROCESS__SETPGID, NULL);
4164}
4165
4166static int selinux_task_getpgid(struct task_struct *p)
4167{
4168	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4169			    PROCESS__GETPGID, NULL);
4170}
4171
4172static int selinux_task_getsid(struct task_struct *p)
4173{
4174	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4175			    PROCESS__GETSESSION, NULL);
4176}
4177
4178static void selinux_current_getlsmprop_subj(struct lsm_prop *prop)
4179{
4180	prop->selinux.secid = current_sid();
4181}
4182
4183static void selinux_task_getlsmprop_obj(struct task_struct *p,
4184					struct lsm_prop *prop)
4185{
4186	prop->selinux.secid = task_sid_obj(p);
4187}
4188
4189static int selinux_task_setnice(struct task_struct *p, int nice)
4190{
4191	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4192			    PROCESS__SETSCHED, NULL);
4193}
4194
4195static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4196{
4197	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4198			    PROCESS__SETSCHED, NULL);
4199}
4200
4201static int selinux_task_getioprio(struct task_struct *p)
4202{
4203	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4204			    PROCESS__GETSCHED, NULL);
4205}
4206
4207static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4208				unsigned int flags)
4209{
4210	u32 av = 0;
4211
4212	if (!flags)
4213		return 0;
4214	if (flags & LSM_PRLIMIT_WRITE)
4215		av |= PROCESS__SETRLIMIT;
4216	if (flags & LSM_PRLIMIT_READ)
4217		av |= PROCESS__GETRLIMIT;
4218	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
 
4219			    SECCLASS_PROCESS, av, NULL);
4220}
4221
4222static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4223		struct rlimit *new_rlim)
4224{
4225	struct rlimit *old_rlim = p->signal->rlim + resource;
4226
4227	/* Control the ability to change the hard limit (whether
4228	   lowering or raising it), so that the hard limit can
4229	   later be used as a safe reset point for the soft limit
4230	   upon context transitions.  See selinux_bprm_committing_creds. */
4231	if (old_rlim->rlim_max != new_rlim->rlim_max)
4232		return avc_has_perm(current_sid(), task_sid_obj(p),
 
4233				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4234
4235	return 0;
4236}
4237
4238static int selinux_task_setscheduler(struct task_struct *p)
4239{
4240	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4241			    PROCESS__SETSCHED, NULL);
4242}
4243
4244static int selinux_task_getscheduler(struct task_struct *p)
4245{
4246	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4247			    PROCESS__GETSCHED, NULL);
4248}
4249
4250static int selinux_task_movememory(struct task_struct *p)
4251{
4252	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4253			    PROCESS__SETSCHED, NULL);
4254}
4255
4256static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4257				int sig, const struct cred *cred)
4258{
4259	u32 secid;
4260	u32 perm;
4261
4262	if (!sig)
4263		perm = PROCESS__SIGNULL; /* null signal; existence test */
4264	else
4265		perm = signal_to_av(sig);
4266	if (!cred)
4267		secid = current_sid();
4268	else
4269		secid = cred_sid(cred);
4270	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
 
4271}
4272
4273static void selinux_task_to_inode(struct task_struct *p,
4274				  struct inode *inode)
4275{
4276	struct inode_security_struct *isec = selinux_inode(inode);
4277	u32 sid = task_sid_obj(p);
4278
4279	spin_lock(&isec->lock);
4280	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4281	isec->sid = sid;
4282	isec->initialized = LABEL_INITIALIZED;
4283	spin_unlock(&isec->lock);
4284}
4285
4286static int selinux_userns_create(const struct cred *cred)
4287{
4288	u32 sid = current_sid();
4289
4290	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4291			USER_NAMESPACE__CREATE, NULL);
4292}
4293
4294/* Returns error only if unable to parse addresses */
4295static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4296			struct common_audit_data *ad, u8 *proto)
4297{
4298	int offset, ihlen, ret = -EINVAL;
4299	struct iphdr _iph, *ih;
4300
4301	offset = skb_network_offset(skb);
4302	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4303	if (ih == NULL)
4304		goto out;
4305
4306	ihlen = ih->ihl * 4;
4307	if (ihlen < sizeof(_iph))
4308		goto out;
4309
4310	ad->u.net->v4info.saddr = ih->saddr;
4311	ad->u.net->v4info.daddr = ih->daddr;
4312	ret = 0;
4313
4314	if (proto)
4315		*proto = ih->protocol;
4316
4317	switch (ih->protocol) {
4318	case IPPROTO_TCP: {
4319		struct tcphdr _tcph, *th;
4320
4321		if (ntohs(ih->frag_off) & IP_OFFSET)
4322			break;
4323
4324		offset += ihlen;
4325		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4326		if (th == NULL)
4327			break;
4328
4329		ad->u.net->sport = th->source;
4330		ad->u.net->dport = th->dest;
4331		break;
4332	}
4333
4334	case IPPROTO_UDP: {
4335		struct udphdr _udph, *uh;
4336
4337		if (ntohs(ih->frag_off) & IP_OFFSET)
4338			break;
4339
4340		offset += ihlen;
4341		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4342		if (uh == NULL)
4343			break;
4344
4345		ad->u.net->sport = uh->source;
4346		ad->u.net->dport = uh->dest;
4347		break;
4348	}
4349
4350	case IPPROTO_DCCP: {
4351		struct dccp_hdr _dccph, *dh;
4352
4353		if (ntohs(ih->frag_off) & IP_OFFSET)
4354			break;
4355
4356		offset += ihlen;
4357		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4358		if (dh == NULL)
4359			break;
4360
4361		ad->u.net->sport = dh->dccph_sport;
4362		ad->u.net->dport = dh->dccph_dport;
4363		break;
4364	}
4365
4366#if IS_ENABLED(CONFIG_IP_SCTP)
4367	case IPPROTO_SCTP: {
4368		struct sctphdr _sctph, *sh;
4369
4370		if (ntohs(ih->frag_off) & IP_OFFSET)
4371			break;
4372
4373		offset += ihlen;
4374		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4375		if (sh == NULL)
4376			break;
4377
4378		ad->u.net->sport = sh->source;
4379		ad->u.net->dport = sh->dest;
4380		break;
4381	}
4382#endif
4383	default:
4384		break;
4385	}
4386out:
4387	return ret;
4388}
4389
4390#if IS_ENABLED(CONFIG_IPV6)
4391
4392/* Returns error only if unable to parse addresses */
4393static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4394			struct common_audit_data *ad, u8 *proto)
4395{
4396	u8 nexthdr;
4397	int ret = -EINVAL, offset;
4398	struct ipv6hdr _ipv6h, *ip6;
4399	__be16 frag_off;
4400
4401	offset = skb_network_offset(skb);
4402	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4403	if (ip6 == NULL)
4404		goto out;
4405
4406	ad->u.net->v6info.saddr = ip6->saddr;
4407	ad->u.net->v6info.daddr = ip6->daddr;
4408	ret = 0;
4409
4410	nexthdr = ip6->nexthdr;
4411	offset += sizeof(_ipv6h);
4412	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4413	if (offset < 0)
4414		goto out;
4415
4416	if (proto)
4417		*proto = nexthdr;
4418
4419	switch (nexthdr) {
4420	case IPPROTO_TCP: {
4421		struct tcphdr _tcph, *th;
4422
4423		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4424		if (th == NULL)
4425			break;
4426
4427		ad->u.net->sport = th->source;
4428		ad->u.net->dport = th->dest;
4429		break;
4430	}
4431
4432	case IPPROTO_UDP: {
4433		struct udphdr _udph, *uh;
4434
4435		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4436		if (uh == NULL)
4437			break;
4438
4439		ad->u.net->sport = uh->source;
4440		ad->u.net->dport = uh->dest;
4441		break;
4442	}
4443
4444	case IPPROTO_DCCP: {
4445		struct dccp_hdr _dccph, *dh;
4446
4447		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4448		if (dh == NULL)
4449			break;
4450
4451		ad->u.net->sport = dh->dccph_sport;
4452		ad->u.net->dport = dh->dccph_dport;
4453		break;
4454	}
4455
4456#if IS_ENABLED(CONFIG_IP_SCTP)
4457	case IPPROTO_SCTP: {
4458		struct sctphdr _sctph, *sh;
4459
4460		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4461		if (sh == NULL)
4462			break;
4463
4464		ad->u.net->sport = sh->source;
4465		ad->u.net->dport = sh->dest;
4466		break;
4467	}
4468#endif
4469	/* includes fragments */
4470	default:
4471		break;
4472	}
4473out:
4474	return ret;
4475}
4476
4477#endif /* IPV6 */
4478
4479static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4480			     char **_addrp, int src, u8 *proto)
4481{
4482	char *addrp;
4483	int ret;
4484
4485	switch (ad->u.net->family) {
4486	case PF_INET:
4487		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4488		if (ret)
4489			goto parse_error;
4490		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4491				       &ad->u.net->v4info.daddr);
4492		goto okay;
4493
4494#if IS_ENABLED(CONFIG_IPV6)
4495	case PF_INET6:
4496		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4497		if (ret)
4498			goto parse_error;
4499		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4500				       &ad->u.net->v6info.daddr);
4501		goto okay;
4502#endif	/* IPV6 */
4503	default:
4504		addrp = NULL;
4505		goto okay;
4506	}
4507
4508parse_error:
4509	pr_warn(
4510	       "SELinux: failure in selinux_parse_skb(),"
4511	       " unable to parse packet\n");
4512	return ret;
4513
4514okay:
4515	if (_addrp)
4516		*_addrp = addrp;
4517	return 0;
4518}
4519
4520/**
4521 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4522 * @skb: the packet
4523 * @family: protocol family
4524 * @sid: the packet's peer label SID
4525 *
4526 * Description:
4527 * Check the various different forms of network peer labeling and determine
4528 * the peer label/SID for the packet; most of the magic actually occurs in
4529 * the security server function security_net_peersid_cmp().  The function
4530 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4531 * or -EACCES if @sid is invalid due to inconsistencies with the different
4532 * peer labels.
4533 *
4534 */
4535static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4536{
4537	int err;
4538	u32 xfrm_sid;
4539	u32 nlbl_sid;
4540	u32 nlbl_type;
4541
4542	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4543	if (unlikely(err))
4544		return -EACCES;
4545	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4546	if (unlikely(err))
4547		return -EACCES;
4548
4549	err = security_net_peersid_resolve(nlbl_sid,
4550					   nlbl_type, xfrm_sid, sid);
4551	if (unlikely(err)) {
4552		pr_warn(
4553		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4554		       " unable to determine packet's peer label\n");
4555		return -EACCES;
4556	}
4557
4558	return 0;
4559}
4560
4561/**
4562 * selinux_conn_sid - Determine the child socket label for a connection
4563 * @sk_sid: the parent socket's SID
4564 * @skb_sid: the packet's SID
4565 * @conn_sid: the resulting connection SID
4566 *
4567 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4568 * combined with the MLS information from @skb_sid in order to create
4569 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4570 * of @sk_sid.  Returns zero on success, negative values on failure.
4571 *
4572 */
4573static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4574{
4575	int err = 0;
4576
4577	if (skb_sid != SECSID_NULL)
4578		err = security_sid_mls_copy(sk_sid, skb_sid,
4579					    conn_sid);
4580	else
4581		*conn_sid = sk_sid;
4582
4583	return err;
4584}
4585
4586/* socket security operations */
4587
4588static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4589				 u16 secclass, u32 *socksid)
4590{
4591	if (tsec->sockcreate_sid > SECSID_NULL) {
4592		*socksid = tsec->sockcreate_sid;
4593		return 0;
4594	}
4595
4596	return security_transition_sid(tsec->sid, tsec->sid,
4597				       secclass, NULL, socksid);
4598}
4599
4600static bool sock_skip_has_perm(u32 sid)
4601{
4602	if (sid == SECINITSID_KERNEL)
4603		return true;
4604
4605	/*
4606	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4607	 * inherited the kernel context from early boot used to be skipped
4608	 * here, so preserve that behavior unless the capability is set.
4609	 *
4610	 * By setting the capability the policy signals that it is ready
4611	 * for this quirk to be fixed. Note that sockets created by a kernel
4612	 * thread or a usermode helper executed without a transition will
4613	 * still be skipped in this check regardless of the policycap
4614	 * setting.
4615	 */
4616	if (!selinux_policycap_userspace_initial_context() &&
4617	    sid == SECINITSID_INIT)
4618		return true;
4619	return false;
4620}
4621
4622
4623static int sock_has_perm(struct sock *sk, u32 perms)
4624{
4625	struct sk_security_struct *sksec = sk->sk_security;
4626	struct common_audit_data ad;
4627	struct lsm_network_audit net;
4628
4629	if (sock_skip_has_perm(sksec->sid))
4630		return 0;
4631
4632	ad_net_init_from_sk(&ad, &net, sk);
 
 
4633
4634	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
 
4635			    &ad);
4636}
4637
4638static int selinux_socket_create(int family, int type,
4639				 int protocol, int kern)
4640{
4641	const struct task_security_struct *tsec = selinux_cred(current_cred());
4642	u32 newsid;
4643	u16 secclass;
4644	int rc;
4645
4646	if (kern)
4647		return 0;
4648
4649	secclass = socket_type_to_security_class(family, type, protocol);
4650	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4651	if (rc)
4652		return rc;
4653
4654	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
4655}
4656
4657static int selinux_socket_post_create(struct socket *sock, int family,
4658				      int type, int protocol, int kern)
4659{
4660	const struct task_security_struct *tsec = selinux_cred(current_cred());
4661	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4662	struct sk_security_struct *sksec;
4663	u16 sclass = socket_type_to_security_class(family, type, protocol);
4664	u32 sid = SECINITSID_KERNEL;
4665	int err = 0;
4666
4667	if (!kern) {
4668		err = socket_sockcreate_sid(tsec, sclass, &sid);
4669		if (err)
4670			return err;
4671	}
4672
4673	isec->sclass = sclass;
4674	isec->sid = sid;
4675	isec->initialized = LABEL_INITIALIZED;
4676
4677	if (sock->sk) {
4678		sksec = selinux_sock(sock->sk);
4679		sksec->sclass = sclass;
4680		sksec->sid = sid;
4681		/* Allows detection of the first association on this socket */
4682		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4684
4685		err = selinux_netlbl_socket_post_create(sock->sk, family);
4686	}
4687
4688	return err;
4689}
4690
4691static int selinux_socket_socketpair(struct socket *socka,
4692				     struct socket *sockb)
4693{
4694	struct sk_security_struct *sksec_a = selinux_sock(socka->sk);
4695	struct sk_security_struct *sksec_b = selinux_sock(sockb->sk);
4696
4697	sksec_a->peer_sid = sksec_b->sid;
4698	sksec_b->peer_sid = sksec_a->sid;
4699
4700	return 0;
4701}
4702
4703/* Range of port numbers used to automatically bind.
4704   Need to determine whether we should perform a name_bind
4705   permission check between the socket and the port number. */
4706
4707static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4708{
4709	struct sock *sk = sock->sk;
4710	struct sk_security_struct *sksec = selinux_sock(sk);
4711	u16 family;
4712	int err;
4713
4714	err = sock_has_perm(sk, SOCKET__BIND);
4715	if (err)
4716		goto out;
4717
4718	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4719	family = sk->sk_family;
4720	if (family == PF_INET || family == PF_INET6) {
4721		char *addrp;
4722		struct common_audit_data ad;
4723		struct lsm_network_audit net = {0,};
4724		struct sockaddr_in *addr4 = NULL;
4725		struct sockaddr_in6 *addr6 = NULL;
4726		u16 family_sa;
4727		unsigned short snum;
4728		u32 sid, node_perm;
4729
4730		/*
4731		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4732		 * that validates multiple binding addresses. Because of this
4733		 * need to check address->sa_family as it is possible to have
4734		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4735		 */
4736		if (addrlen < offsetofend(struct sockaddr, sa_family))
4737			return -EINVAL;
4738		family_sa = address->sa_family;
4739		switch (family_sa) {
4740		case AF_UNSPEC:
4741		case AF_INET:
4742			if (addrlen < sizeof(struct sockaddr_in))
4743				return -EINVAL;
4744			addr4 = (struct sockaddr_in *)address;
4745			if (family_sa == AF_UNSPEC) {
4746				if (family == PF_INET6) {
4747					/* Length check from inet6_bind_sk() */
4748					if (addrlen < SIN6_LEN_RFC2133)
4749						return -EINVAL;
4750					/* Family check from __inet6_bind() */
4751					goto err_af;
4752				}
4753				/* see __inet_bind(), we only want to allow
4754				 * AF_UNSPEC if the address is INADDR_ANY
4755				 */
4756				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4757					goto err_af;
4758				family_sa = AF_INET;
4759			}
4760			snum = ntohs(addr4->sin_port);
4761			addrp = (char *)&addr4->sin_addr.s_addr;
4762			break;
4763		case AF_INET6:
4764			if (addrlen < SIN6_LEN_RFC2133)
4765				return -EINVAL;
4766			addr6 = (struct sockaddr_in6 *)address;
4767			snum = ntohs(addr6->sin6_port);
4768			addrp = (char *)&addr6->sin6_addr.s6_addr;
4769			break;
4770		default:
4771			goto err_af;
4772		}
4773
4774		ad.type = LSM_AUDIT_DATA_NET;
4775		ad.u.net = &net;
4776		ad.u.net->sport = htons(snum);
4777		ad.u.net->family = family_sa;
4778
4779		if (snum) {
4780			int low, high;
4781
4782			inet_get_local_port_range(sock_net(sk), &low, &high);
4783
4784			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4785			    snum < low || snum > high) {
4786				err = sel_netport_sid(sk->sk_protocol,
4787						      snum, &sid);
4788				if (err)
4789					goto out;
4790				err = avc_has_perm(sksec->sid, sid,
 
4791						   sksec->sclass,
4792						   SOCKET__NAME_BIND, &ad);
4793				if (err)
4794					goto out;
4795			}
4796		}
4797
4798		switch (sksec->sclass) {
4799		case SECCLASS_TCP_SOCKET:
4800			node_perm = TCP_SOCKET__NODE_BIND;
4801			break;
4802
4803		case SECCLASS_UDP_SOCKET:
4804			node_perm = UDP_SOCKET__NODE_BIND;
4805			break;
4806
4807		case SECCLASS_DCCP_SOCKET:
4808			node_perm = DCCP_SOCKET__NODE_BIND;
4809			break;
4810
4811		case SECCLASS_SCTP_SOCKET:
4812			node_perm = SCTP_SOCKET__NODE_BIND;
4813			break;
4814
4815		default:
4816			node_perm = RAWIP_SOCKET__NODE_BIND;
4817			break;
4818		}
4819
4820		err = sel_netnode_sid(addrp, family_sa, &sid);
4821		if (err)
4822			goto out;
4823
4824		if (family_sa == AF_INET)
4825			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4826		else
4827			ad.u.net->v6info.saddr = addr6->sin6_addr;
4828
4829		err = avc_has_perm(sksec->sid, sid,
 
4830				   sksec->sclass, node_perm, &ad);
4831		if (err)
4832			goto out;
4833	}
4834out:
4835	return err;
4836err_af:
4837	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4838	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4839		return -EINVAL;
4840	return -EAFNOSUPPORT;
4841}
4842
4843/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4844 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4845 */
4846static int selinux_socket_connect_helper(struct socket *sock,
4847					 struct sockaddr *address, int addrlen)
4848{
4849	struct sock *sk = sock->sk;
4850	struct sk_security_struct *sksec = selinux_sock(sk);
4851	int err;
4852
4853	err = sock_has_perm(sk, SOCKET__CONNECT);
4854	if (err)
4855		return err;
4856	if (addrlen < offsetofend(struct sockaddr, sa_family))
4857		return -EINVAL;
4858
4859	/* connect(AF_UNSPEC) has special handling, as it is a documented
4860	 * way to disconnect the socket
4861	 */
4862	if (address->sa_family == AF_UNSPEC)
4863		return 0;
4864
4865	/*
4866	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4867	 * for the port.
4868	 */
4869	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4870	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4871	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4872		struct common_audit_data ad;
4873		struct lsm_network_audit net = {0,};
4874		struct sockaddr_in *addr4 = NULL;
4875		struct sockaddr_in6 *addr6 = NULL;
4876		unsigned short snum;
4877		u32 sid, perm;
4878
4879		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4880		 * that validates multiple connect addresses. Because of this
4881		 * need to check address->sa_family as it is possible to have
4882		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4883		 */
4884		switch (address->sa_family) {
4885		case AF_INET:
4886			addr4 = (struct sockaddr_in *)address;
4887			if (addrlen < sizeof(struct sockaddr_in))
4888				return -EINVAL;
4889			snum = ntohs(addr4->sin_port);
4890			break;
4891		case AF_INET6:
4892			addr6 = (struct sockaddr_in6 *)address;
4893			if (addrlen < SIN6_LEN_RFC2133)
4894				return -EINVAL;
4895			snum = ntohs(addr6->sin6_port);
4896			break;
4897		default:
4898			/* Note that SCTP services expect -EINVAL, whereas
4899			 * others expect -EAFNOSUPPORT.
4900			 */
4901			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4902				return -EINVAL;
4903			else
4904				return -EAFNOSUPPORT;
4905		}
4906
4907		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4908		if (err)
4909			return err;
4910
4911		switch (sksec->sclass) {
4912		case SECCLASS_TCP_SOCKET:
4913			perm = TCP_SOCKET__NAME_CONNECT;
4914			break;
4915		case SECCLASS_DCCP_SOCKET:
4916			perm = DCCP_SOCKET__NAME_CONNECT;
4917			break;
4918		case SECCLASS_SCTP_SOCKET:
4919			perm = SCTP_SOCKET__NAME_CONNECT;
4920			break;
4921		}
4922
4923		ad.type = LSM_AUDIT_DATA_NET;
4924		ad.u.net = &net;
4925		ad.u.net->dport = htons(snum);
4926		ad.u.net->family = address->sa_family;
4927		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4928		if (err)
4929			return err;
4930	}
4931
4932	return 0;
4933}
4934
4935/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4936static int selinux_socket_connect(struct socket *sock,
4937				  struct sockaddr *address, int addrlen)
4938{
4939	int err;
4940	struct sock *sk = sock->sk;
4941
4942	err = selinux_socket_connect_helper(sock, address, addrlen);
4943	if (err)
4944		return err;
4945
4946	return selinux_netlbl_socket_connect(sk, address);
4947}
4948
4949static int selinux_socket_listen(struct socket *sock, int backlog)
4950{
4951	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4952}
4953
4954static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4955{
4956	int err;
4957	struct inode_security_struct *isec;
4958	struct inode_security_struct *newisec;
4959	u16 sclass;
4960	u32 sid;
4961
4962	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4963	if (err)
4964		return err;
4965
4966	isec = inode_security_novalidate(SOCK_INODE(sock));
4967	spin_lock(&isec->lock);
4968	sclass = isec->sclass;
4969	sid = isec->sid;
4970	spin_unlock(&isec->lock);
4971
4972	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4973	newisec->sclass = sclass;
4974	newisec->sid = sid;
4975	newisec->initialized = LABEL_INITIALIZED;
4976
4977	return 0;
4978}
4979
4980static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4981				  int size)
4982{
4983	return sock_has_perm(sock->sk, SOCKET__WRITE);
4984}
4985
4986static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4987				  int size, int flags)
4988{
4989	return sock_has_perm(sock->sk, SOCKET__READ);
4990}
4991
4992static int selinux_socket_getsockname(struct socket *sock)
4993{
4994	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4995}
4996
4997static int selinux_socket_getpeername(struct socket *sock)
4998{
4999	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5000}
5001
5002static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5003{
5004	int err;
5005
5006	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5007	if (err)
5008		return err;
5009
5010	return selinux_netlbl_socket_setsockopt(sock, level, optname);
5011}
5012
5013static int selinux_socket_getsockopt(struct socket *sock, int level,
5014				     int optname)
5015{
5016	return sock_has_perm(sock->sk, SOCKET__GETOPT);
5017}
5018
5019static int selinux_socket_shutdown(struct socket *sock, int how)
5020{
5021	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5022}
5023
5024static int selinux_socket_unix_stream_connect(struct sock *sock,
5025					      struct sock *other,
5026					      struct sock *newsk)
5027{
5028	struct sk_security_struct *sksec_sock = selinux_sock(sock);
5029	struct sk_security_struct *sksec_other = selinux_sock(other);
5030	struct sk_security_struct *sksec_new = selinux_sock(newsk);
5031	struct common_audit_data ad;
5032	struct lsm_network_audit net;
5033	int err;
5034
5035	ad_net_init_from_sk(&ad, &net, other);
 
 
5036
5037	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
5038			   sksec_other->sclass,
5039			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5040	if (err)
5041		return err;
5042
5043	/* server child socket */
5044	sksec_new->peer_sid = sksec_sock->sid;
5045	err = security_sid_mls_copy(sksec_other->sid,
5046				    sksec_sock->sid, &sksec_new->sid);
5047	if (err)
5048		return err;
5049
5050	/* connecting socket */
5051	sksec_sock->peer_sid = sksec_new->sid;
5052
5053	return 0;
5054}
5055
5056static int selinux_socket_unix_may_send(struct socket *sock,
5057					struct socket *other)
5058{
5059	struct sk_security_struct *ssec = selinux_sock(sock->sk);
5060	struct sk_security_struct *osec = selinux_sock(other->sk);
5061	struct common_audit_data ad;
5062	struct lsm_network_audit net;
5063
5064	ad_net_init_from_sk(&ad, &net, other->sk);
 
 
5065
5066	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
5067			    &ad);
5068}
5069
5070static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5071				    char *addrp, u16 family, u32 peer_sid,
5072				    struct common_audit_data *ad)
5073{
5074	int err;
5075	u32 if_sid;
5076	u32 node_sid;
5077
5078	err = sel_netif_sid(ns, ifindex, &if_sid);
5079	if (err)
5080		return err;
5081	err = avc_has_perm(peer_sid, if_sid,
 
5082			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5083	if (err)
5084		return err;
5085
5086	err = sel_netnode_sid(addrp, family, &node_sid);
5087	if (err)
5088		return err;
5089	return avc_has_perm(peer_sid, node_sid,
 
5090			    SECCLASS_NODE, NODE__RECVFROM, ad);
5091}
5092
5093static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5094				       u16 family)
5095{
5096	int err = 0;
5097	struct sk_security_struct *sksec = selinux_sock(sk);
5098	u32 sk_sid = sksec->sid;
5099	struct common_audit_data ad;
5100	struct lsm_network_audit net;
5101	char *addrp;
5102
5103	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
 
 
 
5104	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5105	if (err)
5106		return err;
5107
5108	if (selinux_secmark_enabled()) {
5109		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
5110				   PACKET__RECV, &ad);
5111		if (err)
5112			return err;
5113	}
5114
5115	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5116	if (err)
5117		return err;
5118	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5119
5120	return err;
5121}
5122
5123static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5124{
5125	int err, peerlbl_active, secmark_active;
5126	struct sk_security_struct *sksec = selinux_sock(sk);
5127	u16 family = sk->sk_family;
5128	u32 sk_sid = sksec->sid;
5129	struct common_audit_data ad;
5130	struct lsm_network_audit net;
5131	char *addrp;
 
 
5132
5133	if (family != PF_INET && family != PF_INET6)
5134		return 0;
5135
5136	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5137	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5138		family = PF_INET;
5139
5140	/* If any sort of compatibility mode is enabled then handoff processing
5141	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5142	 * special handling.  We do this in an attempt to keep this function
5143	 * as fast and as clean as possible. */
5144	if (!selinux_policycap_netpeer())
5145		return selinux_sock_rcv_skb_compat(sk, skb, family);
5146
5147	secmark_active = selinux_secmark_enabled();
5148	peerlbl_active = selinux_peerlbl_enabled();
5149	if (!secmark_active && !peerlbl_active)
5150		return 0;
5151
5152	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
 
 
 
5153	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5154	if (err)
5155		return err;
5156
5157	if (peerlbl_active) {
5158		u32 peer_sid;
5159
5160		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5161		if (err)
5162			return err;
5163		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5164					       addrp, family, peer_sid, &ad);
5165		if (err) {
5166			selinux_netlbl_err(skb, family, err, 0);
5167			return err;
5168		}
5169		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
5170				   PEER__RECV, &ad);
5171		if (err) {
5172			selinux_netlbl_err(skb, family, err, 0);
5173			return err;
5174		}
5175	}
5176
5177	if (secmark_active) {
5178		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
5179				   PACKET__RECV, &ad);
5180		if (err)
5181			return err;
5182	}
5183
5184	return err;
5185}
5186
5187static int selinux_socket_getpeersec_stream(struct socket *sock,
5188					    sockptr_t optval, sockptr_t optlen,
5189					    unsigned int len)
5190{
5191	int err = 0;
5192	char *scontext = NULL;
5193	u32 scontext_len;
5194	struct sk_security_struct *sksec = selinux_sock(sock->sk);
5195	u32 peer_sid = SECSID_NULL;
5196
5197	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5198	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5199	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5200		peer_sid = sksec->peer_sid;
5201	if (peer_sid == SECSID_NULL)
5202		return -ENOPROTOOPT;
5203
5204	err = security_sid_to_context(peer_sid, &scontext,
5205				      &scontext_len);
5206	if (err)
5207		return err;
 
5208	if (scontext_len > len) {
5209		err = -ERANGE;
5210		goto out_len;
5211	}
5212
5213	if (copy_to_sockptr(optval, scontext, scontext_len))
5214		err = -EFAULT;
 
5215out_len:
5216	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5217		err = -EFAULT;
5218	kfree(scontext);
5219	return err;
5220}
5221
5222static int selinux_socket_getpeersec_dgram(struct socket *sock,
5223					   struct sk_buff *skb, u32 *secid)
5224{
5225	u32 peer_secid = SECSID_NULL;
5226	u16 family;
 
5227
5228	if (skb && skb->protocol == htons(ETH_P_IP))
5229		family = PF_INET;
5230	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5231		family = PF_INET6;
5232	else if (sock)
5233		family = sock->sk->sk_family;
5234	else {
5235		*secid = SECSID_NULL;
5236		return -EINVAL;
5237	}
5238
5239	if (sock && family == PF_UNIX) {
5240		struct inode_security_struct *isec;
5241		isec = inode_security_novalidate(SOCK_INODE(sock));
5242		peer_secid = isec->sid;
5243	} else if (skb)
5244		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5245
 
5246	*secid = peer_secid;
5247	if (peer_secid == SECSID_NULL)
5248		return -ENOPROTOOPT;
5249	return 0;
5250}
5251
5252static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5253{
5254	struct sk_security_struct *sksec = selinux_sock(sk);
 
 
 
 
5255
5256	sksec->peer_sid = SECINITSID_UNLABELED;
5257	sksec->sid = SECINITSID_UNLABELED;
5258	sksec->sclass = SECCLASS_SOCKET;
5259	selinux_netlbl_sk_security_reset(sksec);
 
5260
5261	return 0;
5262}
5263
5264static void selinux_sk_free_security(struct sock *sk)
5265{
5266	struct sk_security_struct *sksec = selinux_sock(sk);
5267
 
5268	selinux_netlbl_sk_security_free(sksec);
 
5269}
5270
5271static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5272{
5273	struct sk_security_struct *sksec = selinux_sock(sk);
5274	struct sk_security_struct *newsksec = selinux_sock(newsk);
5275
5276	newsksec->sid = sksec->sid;
5277	newsksec->peer_sid = sksec->peer_sid;
5278	newsksec->sclass = sksec->sclass;
5279
5280	selinux_netlbl_sk_security_reset(newsksec);
5281}
5282
5283static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5284{
5285	if (!sk)
5286		*secid = SECINITSID_ANY_SOCKET;
5287	else {
5288		const struct sk_security_struct *sksec = selinux_sock(sk);
5289
5290		*secid = sksec->sid;
5291	}
5292}
5293
5294static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5295{
5296	struct inode_security_struct *isec =
5297		inode_security_novalidate(SOCK_INODE(parent));
5298	struct sk_security_struct *sksec = selinux_sock(sk);
5299
5300	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5301	    sk->sk_family == PF_UNIX)
5302		isec->sid = sksec->sid;
5303	sksec->sclass = isec->sclass;
5304}
5305
5306/*
5307 * Determines peer_secid for the asoc and updates socket's peer label
5308 * if it's the first association on the socket.
5309 */
5310static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5311					  struct sk_buff *skb)
5312{
5313	struct sock *sk = asoc->base.sk;
5314	u16 family = sk->sk_family;
5315	struct sk_security_struct *sksec = selinux_sock(sk);
5316	struct common_audit_data ad;
5317	struct lsm_network_audit net;
5318	int err;
 
 
 
5319
5320	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5321	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5322		family = PF_INET;
5323
5324	if (selinux_peerlbl_enabled()) {
5325		asoc->peer_secid = SECSID_NULL;
5326
 
5327		/* This will return peer_sid = SECSID_NULL if there are
5328		 * no peer labels, see security_net_peersid_resolve().
5329		 */
5330		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
 
5331		if (err)
5332			return err;
5333
5334		if (asoc->peer_secid == SECSID_NULL)
5335			asoc->peer_secid = SECINITSID_UNLABELED;
5336	} else {
5337		asoc->peer_secid = SECINITSID_UNLABELED;
5338	}
5339
5340	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5341		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5342
5343		/* Here as first association on socket. As the peer SID
5344		 * was allowed by peer recv (and the netif/node checks),
5345		 * then it is approved by policy and used as the primary
5346		 * peer SID for getpeercon(3).
5347		 */
5348		sksec->peer_sid = asoc->peer_secid;
5349	} else if (sksec->peer_sid != asoc->peer_secid) {
5350		/* Other association peer SIDs are checked to enforce
5351		 * consistency among the peer SIDs.
5352		 */
5353		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5354		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5355				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5356				   &ad);
 
 
5357		if (err)
5358			return err;
5359	}
5360	return 0;
5361}
5362
5363/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5364 * happens on an incoming connect(2), sctp_connectx(3) or
5365 * sctp_sendmsg(3) (with no association already present).
5366 */
5367static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5368				      struct sk_buff *skb)
5369{
5370	struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5371	u32 conn_sid;
5372	int err;
5373
5374	if (!selinux_policycap_extsockclass())
5375		return 0;
5376
5377	err = selinux_sctp_process_new_assoc(asoc, skb);
5378	if (err)
5379		return err;
5380
5381	/* Compute the MLS component for the connection and store
5382	 * the information in asoc. This will be used by SCTP TCP type
5383	 * sockets and peeled off connections as they cause a new
5384	 * socket to be generated. selinux_sctp_sk_clone() will then
5385	 * plug this into the new socket.
5386	 */
5387	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5388	if (err)
5389		return err;
5390
5391	asoc->secid = conn_sid;
 
5392
5393	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5394	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5395}
5396
5397/* Called when SCTP receives a COOKIE ACK chunk as the final
5398 * response to an association request (initited by us).
5399 */
5400static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5401					  struct sk_buff *skb)
5402{
5403	struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5404
5405	if (!selinux_policycap_extsockclass())
5406		return 0;
5407
5408	/* Inherit secid from the parent socket - this will be picked up
5409	 * by selinux_sctp_sk_clone() if the association gets peeled off
5410	 * into a new socket.
5411	 */
5412	asoc->secid = sksec->sid;
5413
5414	return selinux_sctp_process_new_assoc(asoc, skb);
5415}
5416
5417/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5418 * based on their @optname.
5419 */
5420static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5421				     struct sockaddr *address,
5422				     int addrlen)
5423{
5424	int len, err = 0, walk_size = 0;
5425	void *addr_buf;
5426	struct sockaddr *addr;
5427	struct socket *sock;
5428
5429	if (!selinux_policycap_extsockclass())
5430		return 0;
5431
5432	/* Process one or more addresses that may be IPv4 or IPv6 */
5433	sock = sk->sk_socket;
5434	addr_buf = address;
5435
5436	while (walk_size < addrlen) {
5437		if (walk_size + sizeof(sa_family_t) > addrlen)
5438			return -EINVAL;
5439
5440		addr = addr_buf;
5441		switch (addr->sa_family) {
5442		case AF_UNSPEC:
5443		case AF_INET:
5444			len = sizeof(struct sockaddr_in);
5445			break;
5446		case AF_INET6:
5447			len = sizeof(struct sockaddr_in6);
5448			break;
5449		default:
5450			return -EINVAL;
5451		}
5452
5453		if (walk_size + len > addrlen)
5454			return -EINVAL;
5455
5456		err = -EINVAL;
5457		switch (optname) {
5458		/* Bind checks */
5459		case SCTP_PRIMARY_ADDR:
5460		case SCTP_SET_PEER_PRIMARY_ADDR:
5461		case SCTP_SOCKOPT_BINDX_ADD:
5462			err = selinux_socket_bind(sock, addr, len);
5463			break;
5464		/* Connect checks */
5465		case SCTP_SOCKOPT_CONNECTX:
5466		case SCTP_PARAM_SET_PRIMARY:
5467		case SCTP_PARAM_ADD_IP:
5468		case SCTP_SENDMSG_CONNECT:
5469			err = selinux_socket_connect_helper(sock, addr, len);
5470			if (err)
5471				return err;
5472
5473			/* As selinux_sctp_bind_connect() is called by the
5474			 * SCTP protocol layer, the socket is already locked,
5475			 * therefore selinux_netlbl_socket_connect_locked()
5476			 * is called here. The situations handled are:
5477			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5478			 * whenever a new IP address is added or when a new
5479			 * primary address is selected.
5480			 * Note that an SCTP connect(2) call happens before
5481			 * the SCTP protocol layer and is handled via
5482			 * selinux_socket_connect().
5483			 */
5484			err = selinux_netlbl_socket_connect_locked(sk, addr);
5485			break;
5486		}
5487
5488		if (err)
5489			return err;
5490
5491		addr_buf += len;
5492		walk_size += len;
5493	}
5494
5495	return 0;
5496}
5497
5498/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5499static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5500				  struct sock *newsk)
5501{
5502	struct sk_security_struct *sksec = selinux_sock(sk);
5503	struct sk_security_struct *newsksec = selinux_sock(newsk);
5504
5505	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5506	 * the non-sctp clone version.
5507	 */
5508	if (!selinux_policycap_extsockclass())
5509		return selinux_sk_clone_security(sk, newsk);
5510
5511	newsksec->sid = asoc->secid;
5512	newsksec->peer_sid = asoc->peer_secid;
5513	newsksec->sclass = sksec->sclass;
5514	selinux_netlbl_sctp_sk_clone(sk, newsk);
5515}
5516
5517static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5518{
5519	struct sk_security_struct *ssksec = selinux_sock(ssk);
5520	struct sk_security_struct *sksec = selinux_sock(sk);
5521
5522	ssksec->sclass = sksec->sclass;
5523	ssksec->sid = sksec->sid;
5524
5525	/* replace the existing subflow label deleting the existing one
5526	 * and re-recreating a new label using the updated context
5527	 */
5528	selinux_netlbl_sk_security_free(ssksec);
5529	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5530}
5531
5532static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5533				     struct request_sock *req)
5534{
5535	struct sk_security_struct *sksec = selinux_sock(sk);
5536	int err;
5537	u16 family = req->rsk_ops->family;
5538	u32 connsid;
5539	u32 peersid;
5540
5541	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5542	if (err)
5543		return err;
5544	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5545	if (err)
5546		return err;
5547	req->secid = connsid;
5548	req->peer_secid = peersid;
5549
5550	return selinux_netlbl_inet_conn_request(req, family);
5551}
5552
5553static void selinux_inet_csk_clone(struct sock *newsk,
5554				   const struct request_sock *req)
5555{
5556	struct sk_security_struct *newsksec = selinux_sock(newsk);
5557
5558	newsksec->sid = req->secid;
5559	newsksec->peer_sid = req->peer_secid;
5560	/* NOTE: Ideally, we should also get the isec->sid for the
5561	   new socket in sync, but we don't have the isec available yet.
5562	   So we will wait until sock_graft to do it, by which
5563	   time it will have been created and available. */
5564
5565	/* We don't need to take any sort of lock here as we are the only
5566	 * thread with access to newsksec */
5567	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5568}
5569
5570static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5571{
5572	u16 family = sk->sk_family;
5573	struct sk_security_struct *sksec = selinux_sock(sk);
5574
5575	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5576	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5577		family = PF_INET;
5578
5579	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5580}
5581
5582static int selinux_secmark_relabel_packet(u32 sid)
5583{
5584	return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
 
 
 
 
 
 
 
5585			    NULL);
5586}
5587
5588static void selinux_secmark_refcount_inc(void)
5589{
5590	atomic_inc(&selinux_secmark_refcount);
5591}
5592
5593static void selinux_secmark_refcount_dec(void)
5594{
5595	atomic_dec(&selinux_secmark_refcount);
5596}
5597
5598static void selinux_req_classify_flow(const struct request_sock *req,
5599				      struct flowi_common *flic)
5600{
5601	flic->flowic_secid = req->secid;
5602}
5603
5604static int selinux_tun_dev_alloc_security(void *security)
5605{
5606	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5607
 
 
 
5608	tunsec->sid = current_sid();
 
 
5609	return 0;
5610}
5611
 
 
 
 
 
5612static int selinux_tun_dev_create(void)
5613{
5614	u32 sid = current_sid();
5615
5616	/* we aren't taking into account the "sockcreate" SID since the socket
5617	 * that is being created here is not a socket in the traditional sense,
5618	 * instead it is a private sock, accessible only to the kernel, and
5619	 * representing a wide range of network traffic spanning multiple
5620	 * connections unlike traditional sockets - check the TUN driver to
5621	 * get a better understanding of why this socket is special */
5622
5623	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
5624			    NULL);
5625}
5626
5627static int selinux_tun_dev_attach_queue(void *security)
5628{
5629	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5630
5631	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
5632			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5633}
5634
5635static int selinux_tun_dev_attach(struct sock *sk, void *security)
5636{
5637	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5638	struct sk_security_struct *sksec = selinux_sock(sk);
5639
5640	/* we don't currently perform any NetLabel based labeling here and it
5641	 * isn't clear that we would want to do so anyway; while we could apply
5642	 * labeling without the support of the TUN user the resulting labeled
5643	 * traffic from the other end of the connection would almost certainly
5644	 * cause confusion to the TUN user that had no idea network labeling
5645	 * protocols were being used */
5646
5647	sksec->sid = tunsec->sid;
5648	sksec->sclass = SECCLASS_TUN_SOCKET;
5649
5650	return 0;
5651}
5652
5653static int selinux_tun_dev_open(void *security)
5654{
5655	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5656	u32 sid = current_sid();
5657	int err;
5658
5659	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
5660			   TUN_SOCKET__RELABELFROM, NULL);
5661	if (err)
5662		return err;
5663	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
5664			   TUN_SOCKET__RELABELTO, NULL);
5665	if (err)
5666		return err;
5667	tunsec->sid = sid;
5668
5669	return 0;
5670}
5671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5672#ifdef CONFIG_NETFILTER
5673
5674static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5675				       const struct nf_hook_state *state)
 
5676{
5677	int ifindex;
5678	u16 family;
5679	char *addrp;
5680	u32 peer_sid;
5681	struct common_audit_data ad;
5682	struct lsm_network_audit net;
5683	int secmark_active, peerlbl_active;
 
 
5684
5685	if (!selinux_policycap_netpeer())
5686		return NF_ACCEPT;
5687
5688	secmark_active = selinux_secmark_enabled();
 
5689	peerlbl_active = selinux_peerlbl_enabled();
5690	if (!secmark_active && !peerlbl_active)
5691		return NF_ACCEPT;
5692
5693	family = state->pf;
5694	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5695		return NF_DROP;
5696
5697	ifindex = state->in->ifindex;
5698	ad_net_init_from_iif(&ad, &net, ifindex, family);
 
 
5699	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5700		return NF_DROP;
5701
5702	if (peerlbl_active) {
5703		int err;
5704
5705		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5706					       addrp, family, peer_sid, &ad);
5707		if (err) {
5708			selinux_netlbl_err(skb, family, err, 1);
5709			return NF_DROP;
5710		}
5711	}
5712
5713	if (secmark_active)
5714		if (avc_has_perm(peer_sid, skb->secmark,
 
5715				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5716			return NF_DROP;
5717
5718	if (netlbl_enabled())
5719		/* we do this in the FORWARD path and not the POST_ROUTING
5720		 * path because we want to make sure we apply the necessary
5721		 * labeling before IPsec is applied so we can leverage AH
5722		 * protection */
5723		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5724			return NF_DROP;
5725
5726	return NF_ACCEPT;
5727}
5728
5729static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5730				      const struct nf_hook_state *state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5731{
5732	struct sock *sk;
5733	u32 sid;
5734
5735	if (!netlbl_enabled())
5736		return NF_ACCEPT;
5737
5738	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5739	 * because we want to make sure we apply the necessary labeling
5740	 * before IPsec is applied so we can leverage AH protection */
5741	sk = sk_to_full_sk(skb->sk);
5742	if (sk) {
5743		struct sk_security_struct *sksec;
5744
5745		if (sk_listener(sk))
5746			/* if the socket is the listening state then this
5747			 * packet is a SYN-ACK packet which means it needs to
5748			 * be labeled based on the connection/request_sock and
5749			 * not the parent socket.  unfortunately, we can't
5750			 * lookup the request_sock yet as it isn't queued on
5751			 * the parent socket until after the SYN-ACK is sent.
5752			 * the "solution" is to simply pass the packet as-is
5753			 * as any IP option based labeling should be copied
5754			 * from the initial connection request (in the IP
5755			 * layer).  it is far from ideal, but until we get a
5756			 * security label in the packet itself this is the
5757			 * best we can do. */
5758			return NF_ACCEPT;
5759
5760		/* standard practice, label using the parent socket */
5761		sksec = selinux_sock(sk);
5762		sid = sksec->sid;
5763	} else
5764		sid = SECINITSID_KERNEL;
5765	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5766		return NF_DROP;
5767
5768	return NF_ACCEPT;
5769}
5770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5771
5772static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5773					const struct nf_hook_state *state)
 
5774{
5775	struct sock *sk;
5776	struct sk_security_struct *sksec;
5777	struct common_audit_data ad;
5778	struct lsm_network_audit net;
5779	u8 proto = 0;
 
5780
5781	sk = skb_to_full_sk(skb);
5782	if (sk == NULL)
5783		return NF_ACCEPT;
5784	sksec = selinux_sock(sk);
5785
5786	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5787	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
 
 
 
5788		return NF_DROP;
5789
5790	if (selinux_secmark_enabled())
5791		if (avc_has_perm(sksec->sid, skb->secmark,
 
5792				 SECCLASS_PACKET, PACKET__SEND, &ad))
5793			return NF_DROP_ERR(-ECONNREFUSED);
5794
5795	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5796		return NF_DROP_ERR(-ECONNREFUSED);
5797
5798	return NF_ACCEPT;
5799}
5800
5801static unsigned int selinux_ip_postroute(void *priv,
5802					 struct sk_buff *skb,
5803					 const struct nf_hook_state *state)
5804{
5805	u16 family;
5806	u32 secmark_perm;
5807	u32 peer_sid;
5808	int ifindex;
5809	struct sock *sk;
5810	struct common_audit_data ad;
5811	struct lsm_network_audit net;
5812	char *addrp;
5813	int secmark_active, peerlbl_active;
 
5814
5815	/* If any sort of compatibility mode is enabled then handoff processing
5816	 * to the selinux_ip_postroute_compat() function to deal with the
5817	 * special handling.  We do this in an attempt to keep this function
5818	 * as fast and as clean as possible. */
5819	if (!selinux_policycap_netpeer())
5820		return selinux_ip_postroute_compat(skb, state);
5821
5822	secmark_active = selinux_secmark_enabled();
5823	peerlbl_active = selinux_peerlbl_enabled();
5824	if (!secmark_active && !peerlbl_active)
5825		return NF_ACCEPT;
5826
5827	sk = skb_to_full_sk(skb);
5828
5829#ifdef CONFIG_XFRM
5830	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5831	 * packet transformation so allow the packet to pass without any checks
5832	 * since we'll have another chance to perform access control checks
5833	 * when the packet is on it's final way out.
5834	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5835	 *       is NULL, in this case go ahead and apply access control.
5836	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5837	 *       TCP listening state we cannot wait until the XFRM processing
5838	 *       is done as we will miss out on the SA label if we do;
5839	 *       unfortunately, this means more work, but it is only once per
5840	 *       connection. */
5841	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5842	    !(sk && sk_listener(sk)))
5843		return NF_ACCEPT;
5844#endif
5845
5846	family = state->pf;
5847	if (sk == NULL) {
5848		/* Without an associated socket the packet is either coming
5849		 * from the kernel or it is being forwarded; check the packet
5850		 * to determine which and if the packet is being forwarded
5851		 * query the packet directly to determine the security label. */
5852		if (skb->skb_iif) {
5853			secmark_perm = PACKET__FORWARD_OUT;
5854			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5855				return NF_DROP;
5856		} else {
5857			secmark_perm = PACKET__SEND;
5858			peer_sid = SECINITSID_KERNEL;
5859		}
5860	} else if (sk_listener(sk)) {
5861		/* Locally generated packet but the associated socket is in the
5862		 * listening state which means this is a SYN-ACK packet.  In
5863		 * this particular case the correct security label is assigned
5864		 * to the connection/request_sock but unfortunately we can't
5865		 * query the request_sock as it isn't queued on the parent
5866		 * socket until after the SYN-ACK packet is sent; the only
5867		 * viable choice is to regenerate the label like we do in
5868		 * selinux_inet_conn_request().  See also selinux_ip_output()
5869		 * for similar problems. */
5870		u32 skb_sid;
5871		struct sk_security_struct *sksec;
5872
5873		sksec = selinux_sock(sk);
5874		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5875			return NF_DROP;
5876		/* At this point, if the returned skb peerlbl is SECSID_NULL
5877		 * and the packet has been through at least one XFRM
5878		 * transformation then we must be dealing with the "final"
5879		 * form of labeled IPsec packet; since we've already applied
5880		 * all of our access controls on this packet we can safely
5881		 * pass the packet. */
5882		if (skb_sid == SECSID_NULL) {
5883			switch (family) {
5884			case PF_INET:
5885				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5886					return NF_ACCEPT;
5887				break;
5888			case PF_INET6:
5889				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5890					return NF_ACCEPT;
5891				break;
5892			default:
5893				return NF_DROP_ERR(-ECONNREFUSED);
5894			}
5895		}
5896		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5897			return NF_DROP;
5898		secmark_perm = PACKET__SEND;
5899	} else {
5900		/* Locally generated packet, fetch the security label from the
5901		 * associated socket. */
5902		struct sk_security_struct *sksec = selinux_sock(sk);
5903		peer_sid = sksec->sid;
5904		secmark_perm = PACKET__SEND;
5905	}
5906
5907	ifindex = state->out->ifindex;
5908	ad_net_init_from_iif(&ad, &net, ifindex, family);
 
 
5909	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5910		return NF_DROP;
5911
5912	if (secmark_active)
5913		if (avc_has_perm(peer_sid, skb->secmark,
 
5914				 SECCLASS_PACKET, secmark_perm, &ad))
5915			return NF_DROP_ERR(-ECONNREFUSED);
5916
5917	if (peerlbl_active) {
5918		u32 if_sid;
5919		u32 node_sid;
5920
5921		if (sel_netif_sid(state->net, ifindex, &if_sid))
5922			return NF_DROP;
5923		if (avc_has_perm(peer_sid, if_sid,
 
5924				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5925			return NF_DROP_ERR(-ECONNREFUSED);
5926
5927		if (sel_netnode_sid(addrp, family, &node_sid))
5928			return NF_DROP;
5929		if (avc_has_perm(peer_sid, node_sid,
 
5930				 SECCLASS_NODE, NODE__SENDTO, &ad))
5931			return NF_DROP_ERR(-ECONNREFUSED);
5932	}
5933
5934	return NF_ACCEPT;
5935}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5936#endif	/* CONFIG_NETFILTER */
5937
5938static int nlmsg_sock_has_extended_perms(struct sock *sk, u32 perms, u16 nlmsg_type)
5939{
5940	struct sk_security_struct *sksec = sk->sk_security;
5941	struct common_audit_data ad;
5942	struct lsm_network_audit net;
5943	u8 driver;
5944	u8 xperm;
5945
5946	if (sock_skip_has_perm(sksec->sid))
5947		return 0;
 
 
5948
5949	ad_net_init_from_sk(&ad, &net, sk);
 
 
5950
5951	driver = nlmsg_type >> 8;
5952	xperm = nlmsg_type & 0xff;
 
5953
5954	return avc_has_extended_perms(current_sid(), sksec->sid, sksec->sclass,
5955				      perms, driver, AVC_EXT_NLMSG, xperm, &ad);
5956}
5957
5958static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5959{
5960	int rc = 0;
5961	unsigned int msg_len;
5962	unsigned int data_len = skb->len;
5963	unsigned char *data = skb->data;
5964	struct nlmsghdr *nlh;
5965	struct sk_security_struct *sksec = selinux_sock(sk);
5966	u16 sclass = sksec->sclass;
5967	u32 perm;
5968
5969	while (data_len >= nlmsg_total_size(0)) {
5970		nlh = (struct nlmsghdr *)data;
 
5971
5972		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5973		 *       users which means we can't reject skb's with bogus
5974		 *       length fields; our solution is to follow what
5975		 *       netlink_rcv_skb() does and simply skip processing at
5976		 *       messages with length fields that are clearly junk
5977		 */
5978		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5979			return 0;
5980
5981		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5982		if (rc == 0) {
5983			if (selinux_policycap_netlink_xperm()) {
5984				rc = nlmsg_sock_has_extended_perms(
5985					sk, perm, nlh->nlmsg_type);
5986			} else {
5987				rc = sock_has_perm(sk, perm);
5988			}
5989			if (rc)
5990				return rc;
5991		} else if (rc == -EINVAL) {
5992			/* -EINVAL is a missing msg/perm mapping */
5993			pr_warn_ratelimited("SELinux: unrecognized netlink"
5994				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5995				" pid=%d comm=%s\n",
5996				sk->sk_protocol, nlh->nlmsg_type,
5997				secclass_map[sclass - 1].name,
5998				task_pid_nr(current), current->comm);
5999			if (enforcing_enabled() &&
6000			    !security_get_allow_unknown())
6001				return rc;
6002			rc = 0;
6003		} else if (rc == -ENOENT) {
6004			/* -ENOENT is a missing socket/class mapping, ignore */
6005			rc = 0;
6006		} else {
6007			return rc;
6008		}
6009
6010		/* move to the next message after applying netlink padding */
6011		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6012		if (msg_len >= data_len)
6013			return 0;
6014		data_len -= msg_len;
6015		data += msg_len;
6016	}
6017
6018	return rc;
6019}
6020
6021static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6022{
6023	isec->sclass = sclass;
6024	isec->sid = current_sid();
 
 
6025}
6026
6027static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6028			u32 perms)
6029{
6030	struct ipc_security_struct *isec;
6031	struct common_audit_data ad;
6032	u32 sid = current_sid();
6033
6034	isec = selinux_ipc(ipc_perms);
6035
6036	ad.type = LSM_AUDIT_DATA_IPC;
6037	ad.u.ipc_id = ipc_perms->key;
6038
6039	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
6040}
6041
6042static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6043{
6044	struct msg_security_struct *msec;
 
6045
6046	msec = selinux_msg_msg(msg);
6047	msec->sid = SECINITSID_UNLABELED;
6048
6049	return 0;
6050}
6051
6052/* message queue security operations */
6053static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6054{
6055	struct ipc_security_struct *isec;
6056	struct common_audit_data ad;
6057	u32 sid = current_sid();
 
 
 
 
 
6058
6059	isec = selinux_ipc(msq);
6060	ipc_init_security(isec, SECCLASS_MSGQ);
6061
6062	ad.type = LSM_AUDIT_DATA_IPC;
6063	ad.u.ipc_id = msq->key;
6064
6065	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6066			    MSGQ__CREATE, &ad);
 
 
 
 
 
 
 
 
 
 
 
6067}
6068
6069static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6070{
6071	struct ipc_security_struct *isec;
6072	struct common_audit_data ad;
6073	u32 sid = current_sid();
6074
6075	isec = selinux_ipc(msq);
6076
6077	ad.type = LSM_AUDIT_DATA_IPC;
6078	ad.u.ipc_id = msq->key;
6079
6080	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
6081			    MSGQ__ASSOCIATE, &ad);
6082}
6083
6084static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6085{
6086	u32 perms;
 
6087
6088	switch (cmd) {
6089	case IPC_INFO:
6090	case MSG_INFO:
6091		/* No specific object, just general system-wide information. */
6092		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6093				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6094	case IPC_STAT:
6095	case MSG_STAT:
6096	case MSG_STAT_ANY:
6097		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6098		break;
6099	case IPC_SET:
6100		perms = MSGQ__SETATTR;
6101		break;
6102	case IPC_RMID:
6103		perms = MSGQ__DESTROY;
6104		break;
6105	default:
6106		return 0;
6107	}
6108
6109	return ipc_has_perm(msq, perms);
 
6110}
6111
6112static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6113{
6114	struct ipc_security_struct *isec;
6115	struct msg_security_struct *msec;
6116	struct common_audit_data ad;
6117	u32 sid = current_sid();
6118	int rc;
6119
6120	isec = selinux_ipc(msq);
6121	msec = selinux_msg_msg(msg);
6122
6123	/*
6124	 * First time through, need to assign label to the message
6125	 */
6126	if (msec->sid == SECINITSID_UNLABELED) {
6127		/*
6128		 * Compute new sid based on current process and
6129		 * message queue this message will be stored in
6130		 */
6131		rc = security_transition_sid(sid, isec->sid,
6132					     SECCLASS_MSG, NULL, &msec->sid);
6133		if (rc)
6134			return rc;
6135	}
6136
6137	ad.type = LSM_AUDIT_DATA_IPC;
6138	ad.u.ipc_id = msq->key;
6139
6140	/* Can this process write to the queue? */
6141	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
6142			  MSGQ__WRITE, &ad);
6143	if (!rc)
6144		/* Can this process send the message */
6145		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
6146				  MSG__SEND, &ad);
6147	if (!rc)
6148		/* Can the message be put in the queue? */
6149		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
6150				  MSGQ__ENQUEUE, &ad);
6151
6152	return rc;
6153}
6154
6155static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6156				    struct task_struct *target,
6157				    long type, int mode)
6158{
6159	struct ipc_security_struct *isec;
6160	struct msg_security_struct *msec;
6161	struct common_audit_data ad;
6162	u32 sid = task_sid_obj(target);
6163	int rc;
6164
6165	isec = selinux_ipc(msq);
6166	msec = selinux_msg_msg(msg);
6167
6168	ad.type = LSM_AUDIT_DATA_IPC;
6169	ad.u.ipc_id = msq->key;
6170
6171	rc = avc_has_perm(sid, isec->sid,
 
6172			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6173	if (!rc)
6174		rc = avc_has_perm(sid, msec->sid,
 
6175				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6176	return rc;
6177}
6178
6179/* Shared Memory security operations */
6180static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6181{
6182	struct ipc_security_struct *isec;
6183	struct common_audit_data ad;
6184	u32 sid = current_sid();
 
6185
6186	isec = selinux_ipc(shp);
6187	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6188
6189	ad.type = LSM_AUDIT_DATA_IPC;
6190	ad.u.ipc_id = shp->key;
6191
6192	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6193			    SHM__CREATE, &ad);
 
 
 
 
 
 
 
 
 
 
 
6194}
6195
6196static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6197{
6198	struct ipc_security_struct *isec;
6199	struct common_audit_data ad;
6200	u32 sid = current_sid();
6201
6202	isec = selinux_ipc(shp);
6203
6204	ad.type = LSM_AUDIT_DATA_IPC;
6205	ad.u.ipc_id = shp->key;
6206
6207	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
6208			    SHM__ASSOCIATE, &ad);
6209}
6210
6211/* Note, at this point, shp is locked down */
6212static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6213{
6214	u32 perms;
 
6215
6216	switch (cmd) {
6217	case IPC_INFO:
6218	case SHM_INFO:
6219		/* No specific object, just general system-wide information. */
6220		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6221				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6222	case IPC_STAT:
6223	case SHM_STAT:
6224	case SHM_STAT_ANY:
6225		perms = SHM__GETATTR | SHM__ASSOCIATE;
6226		break;
6227	case IPC_SET:
6228		perms = SHM__SETATTR;
6229		break;
6230	case SHM_LOCK:
6231	case SHM_UNLOCK:
6232		perms = SHM__LOCK;
6233		break;
6234	case IPC_RMID:
6235		perms = SHM__DESTROY;
6236		break;
6237	default:
6238		return 0;
6239	}
6240
6241	return ipc_has_perm(shp, perms);
 
6242}
6243
6244static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6245			     char __user *shmaddr, int shmflg)
6246{
6247	u32 perms;
6248
6249	if (shmflg & SHM_RDONLY)
6250		perms = SHM__READ;
6251	else
6252		perms = SHM__READ | SHM__WRITE;
6253
6254	return ipc_has_perm(shp, perms);
6255}
6256
6257/* Semaphore security operations */
6258static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6259{
6260	struct ipc_security_struct *isec;
6261	struct common_audit_data ad;
6262	u32 sid = current_sid();
 
6263
6264	isec = selinux_ipc(sma);
6265	ipc_init_security(isec, SECCLASS_SEM);
 
 
 
6266
6267	ad.type = LSM_AUDIT_DATA_IPC;
6268	ad.u.ipc_id = sma->key;
6269
6270	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6271			    SEM__CREATE, &ad);
 
 
 
 
 
 
 
 
 
 
 
6272}
6273
6274static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6275{
6276	struct ipc_security_struct *isec;
6277	struct common_audit_data ad;
6278	u32 sid = current_sid();
6279
6280	isec = selinux_ipc(sma);
6281
6282	ad.type = LSM_AUDIT_DATA_IPC;
6283	ad.u.ipc_id = sma->key;
6284
6285	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
6286			    SEM__ASSOCIATE, &ad);
6287}
6288
6289/* Note, at this point, sma is locked down */
6290static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6291{
6292	int err;
6293	u32 perms;
6294
6295	switch (cmd) {
6296	case IPC_INFO:
6297	case SEM_INFO:
6298		/* No specific object, just general system-wide information. */
6299		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6300				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6301	case GETPID:
6302	case GETNCNT:
6303	case GETZCNT:
6304		perms = SEM__GETATTR;
6305		break;
6306	case GETVAL:
6307	case GETALL:
6308		perms = SEM__READ;
6309		break;
6310	case SETVAL:
6311	case SETALL:
6312		perms = SEM__WRITE;
6313		break;
6314	case IPC_RMID:
6315		perms = SEM__DESTROY;
6316		break;
6317	case IPC_SET:
6318		perms = SEM__SETATTR;
6319		break;
6320	case IPC_STAT:
6321	case SEM_STAT:
6322	case SEM_STAT_ANY:
6323		perms = SEM__GETATTR | SEM__ASSOCIATE;
6324		break;
6325	default:
6326		return 0;
6327	}
6328
6329	err = ipc_has_perm(sma, perms);
6330	return err;
6331}
6332
6333static int selinux_sem_semop(struct kern_ipc_perm *sma,
6334			     struct sembuf *sops, unsigned nsops, int alter)
6335{
6336	u32 perms;
6337
6338	if (alter)
6339		perms = SEM__READ | SEM__WRITE;
6340	else
6341		perms = SEM__READ;
6342
6343	return ipc_has_perm(sma, perms);
6344}
6345
6346static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6347{
6348	u32 av = 0;
6349
6350	av = 0;
6351	if (flag & S_IRUGO)
6352		av |= IPC__UNIX_READ;
6353	if (flag & S_IWUGO)
6354		av |= IPC__UNIX_WRITE;
6355
6356	if (av == 0)
6357		return 0;
6358
6359	return ipc_has_perm(ipcp, av);
6360}
6361
6362static void selinux_ipc_getlsmprop(struct kern_ipc_perm *ipcp,
6363				   struct lsm_prop *prop)
6364{
6365	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6366	prop->selinux.secid = isec->sid;
6367}
6368
6369static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6370{
6371	if (inode)
6372		inode_doinit_with_dentry(inode, dentry);
6373}
6374
6375static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6376			       char **value)
6377{
6378	const struct task_security_struct *tsec;
 
6379	int error;
6380	u32 sid;
6381	u32 len;
6382
6383	rcu_read_lock();
6384	tsec = selinux_cred(__task_cred(p));
6385	if (p != current) {
6386		error = avc_has_perm(current_sid(), tsec->sid,
 
 
6387				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6388		if (error)
6389			goto err_unlock;
6390	}
6391	switch (attr) {
6392	case LSM_ATTR_CURRENT:
6393		sid = tsec->sid;
6394		break;
6395	case LSM_ATTR_PREV:
6396		sid = tsec->osid;
6397		break;
6398	case LSM_ATTR_EXEC:
6399		sid = tsec->exec_sid;
6400		break;
6401	case LSM_ATTR_FSCREATE:
6402		sid = tsec->create_sid;
6403		break;
6404	case LSM_ATTR_KEYCREATE:
6405		sid = tsec->keycreate_sid;
6406		break;
6407	case LSM_ATTR_SOCKCREATE:
6408		sid = tsec->sockcreate_sid;
6409		break;
6410	default:
6411		error = -EOPNOTSUPP;
6412		goto err_unlock;
6413	}
6414	rcu_read_unlock();
6415
6416	if (sid == SECSID_NULL) {
6417		*value = NULL;
6418		return 0;
6419	}
6420
6421	error = security_sid_to_context(sid, value, &len);
6422	if (error)
6423		return error;
6424	return len;
6425
6426err_unlock:
6427	rcu_read_unlock();
6428	return error;
6429}
6430
6431static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6432{
6433	struct task_security_struct *tsec;
6434	struct cred *new;
6435	u32 mysid = current_sid(), sid = 0, ptsid;
6436	int error;
6437	char *str = value;
6438
6439	/*
6440	 * Basic control over ability to set these attributes at all.
6441	 */
6442	switch (attr) {
6443	case LSM_ATTR_EXEC:
6444		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6445				     PROCESS__SETEXEC, NULL);
6446		break;
6447	case LSM_ATTR_FSCREATE:
6448		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6449				     PROCESS__SETFSCREATE, NULL);
6450		break;
6451	case LSM_ATTR_KEYCREATE:
6452		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6453				     PROCESS__SETKEYCREATE, NULL);
6454		break;
6455	case LSM_ATTR_SOCKCREATE:
6456		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6457				     PROCESS__SETSOCKCREATE, NULL);
6458		break;
6459	case LSM_ATTR_CURRENT:
6460		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6461				     PROCESS__SETCURRENT, NULL);
6462		break;
6463	default:
6464		error = -EOPNOTSUPP;
6465		break;
6466	}
6467	if (error)
6468		return error;
6469
6470	/* Obtain a SID for the context, if one was specified. */
6471	if (size && str[0] && str[0] != '\n') {
6472		if (str[size-1] == '\n') {
6473			str[size-1] = 0;
6474			size--;
6475		}
6476		error = security_context_to_sid(value, size,
6477						&sid, GFP_KERNEL);
6478		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6479			if (!has_cap_mac_admin(true)) {
6480				struct audit_buffer *ab;
6481				size_t audit_size;
6482
6483				/* We strip a nul only if it is at the end,
6484				 * otherwise the context contains a nul and
6485				 * we should audit that */
6486				if (str[size - 1] == '\0')
6487					audit_size = size - 1;
6488				else
6489					audit_size = size;
6490				ab = audit_log_start(audit_context(),
6491						     GFP_ATOMIC,
6492						     AUDIT_SELINUX_ERR);
6493				if (!ab)
6494					return error;
6495				audit_log_format(ab, "op=fscreate invalid_context=");
6496				audit_log_n_untrustedstring(ab, value,
6497							    audit_size);
6498				audit_log_end(ab);
6499
6500				return error;
6501			}
6502			error = security_context_to_sid_force(value, size,
6503							&sid);
 
6504		}
6505		if (error)
6506			return error;
6507	}
6508
6509	new = prepare_creds();
6510	if (!new)
6511		return -ENOMEM;
6512
6513	/* Permission checking based on the specified context is
6514	   performed during the actual operation (execve,
6515	   open/mkdir/...), when we know the full context of the
6516	   operation.  See selinux_bprm_creds_for_exec for the execve
6517	   checks and may_create for the file creation checks. The
6518	   operation will then fail if the context is not permitted. */
6519	tsec = selinux_cred(new);
6520	if (attr == LSM_ATTR_EXEC) {
6521		tsec->exec_sid = sid;
6522	} else if (attr == LSM_ATTR_FSCREATE) {
6523		tsec->create_sid = sid;
6524	} else if (attr == LSM_ATTR_KEYCREATE) {
6525		if (sid) {
6526			error = avc_has_perm(mysid, sid,
6527					     SECCLASS_KEY, KEY__CREATE, NULL);
6528			if (error)
6529				goto abort_change;
6530		}
6531		tsec->keycreate_sid = sid;
6532	} else if (attr == LSM_ATTR_SOCKCREATE) {
6533		tsec->sockcreate_sid = sid;
6534	} else if (attr == LSM_ATTR_CURRENT) {
6535		error = -EINVAL;
6536		if (sid == 0)
6537			goto abort_change;
6538
 
 
6539		if (!current_is_single_threaded()) {
6540			error = security_bounded_transition(tsec->sid, sid);
 
6541			if (error)
6542				goto abort_change;
6543		}
6544
6545		/* Check permissions for the transition. */
6546		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
6547				     PROCESS__DYNTRANSITION, NULL);
6548		if (error)
6549			goto abort_change;
6550
6551		/* Check for ptracing, and update the task SID if ok.
6552		   Otherwise, leave SID unchanged and fail. */
6553		ptsid = ptrace_parent_sid();
6554		if (ptsid != 0) {
6555			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
 
6556					     PROCESS__PTRACE, NULL);
6557			if (error)
6558				goto abort_change;
6559		}
6560
6561		tsec->sid = sid;
6562	} else {
6563		error = -EINVAL;
6564		goto abort_change;
6565	}
6566
6567	commit_creds(new);
6568	return size;
6569
6570abort_change:
6571	abort_creds(new);
6572	return error;
6573}
6574
6575/**
6576 * selinux_getselfattr - Get SELinux current task attributes
6577 * @attr: the requested attribute
6578 * @ctx: buffer to receive the result
6579 * @size: buffer size (input), buffer size used (output)
6580 * @flags: unused
6581 *
6582 * Fill the passed user space @ctx with the details of the requested
6583 * attribute.
6584 *
6585 * Returns the number of attributes on success, an error code otherwise.
6586 * There will only ever be one attribute.
6587 */
6588static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6589			       u32 *size, u32 flags)
6590{
6591	int rc;
6592	char *val = NULL;
6593	int val_len;
6594
6595	val_len = selinux_lsm_getattr(attr, current, &val);
6596	if (val_len < 0)
6597		return val_len;
6598	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6599	kfree(val);
6600	return (!rc ? 1 : rc);
6601}
6602
6603static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6604			       u32 size, u32 flags)
6605{
6606	int rc;
6607
6608	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6609	if (rc > 0)
6610		return 0;
6611	return rc;
6612}
6613
6614static int selinux_getprocattr(struct task_struct *p,
6615			       const char *name, char **value)
6616{
6617	unsigned int attr = lsm_name_to_attr(name);
6618	int rc;
6619
6620	if (attr) {
6621		rc = selinux_lsm_getattr(attr, p, value);
6622		if (rc != -EOPNOTSUPP)
6623			return rc;
6624	}
6625
6626	return -EINVAL;
6627}
6628
6629static int selinux_setprocattr(const char *name, void *value, size_t size)
6630{
6631	int attr = lsm_name_to_attr(name);
6632
6633	if (attr)
6634		return selinux_lsm_setattr(attr, value, size);
6635	return -EINVAL;
6636}
6637
6638static int selinux_ismaclabel(const char *name)
6639{
6640	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6641}
6642
6643static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6644{
6645	return security_sid_to_context(secid, secdata, seclen);
6646}
6647
6648static int selinux_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
6649				     u32 *seclen)
6650{
6651	return selinux_secid_to_secctx(prop->selinux.secid, secdata, seclen);
6652}
6653
6654static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6655{
6656	return security_context_to_sid(secdata, seclen,
6657				       secid, GFP_KERNEL);
6658}
6659
6660static void selinux_release_secctx(char *secdata, u32 seclen)
6661{
6662	kfree(secdata);
6663}
6664
6665static void selinux_inode_invalidate_secctx(struct inode *inode)
6666{
6667	struct inode_security_struct *isec = selinux_inode(inode);
6668
6669	spin_lock(&isec->lock);
6670	isec->initialized = LABEL_INVALID;
6671	spin_unlock(&isec->lock);
6672}
6673
6674/*
6675 *	called with inode->i_mutex locked
6676 */
6677static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6678{
6679	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6680					   ctx, ctxlen, 0);
6681	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6682	return rc == -EOPNOTSUPP ? 0 : rc;
6683}
6684
6685/*
6686 *	called with inode->i_mutex locked
6687 */
6688static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6689{
6690	return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6691				     ctx, ctxlen, 0, NULL);
6692}
6693
6694static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6695{
6696	int len = 0;
6697	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6698					XATTR_SELINUX_SUFFIX, ctx, true);
6699	if (len < 0)
6700		return len;
6701	*ctxlen = len;
6702	return 0;
6703}
6704#ifdef CONFIG_KEYS
6705
6706static int selinux_key_alloc(struct key *k, const struct cred *cred,
6707			     unsigned long flags)
6708{
6709	const struct task_security_struct *tsec;
6710	struct key_security_struct *ksec = selinux_key(k);
6711
6712	tsec = selinux_cred(cred);
 
 
 
 
6713	if (tsec->keycreate_sid)
6714		ksec->sid = tsec->keycreate_sid;
6715	else
6716		ksec->sid = tsec->sid;
6717
 
6718	return 0;
6719}
6720
 
 
 
 
 
 
 
 
6721static int selinux_key_permission(key_ref_t key_ref,
6722				  const struct cred *cred,
6723				  enum key_need_perm need_perm)
6724{
6725	struct key *key;
6726	struct key_security_struct *ksec;
6727	u32 perm, sid;
6728
6729	switch (need_perm) {
6730	case KEY_NEED_VIEW:
6731		perm = KEY__VIEW;
6732		break;
6733	case KEY_NEED_READ:
6734		perm = KEY__READ;
6735		break;
6736	case KEY_NEED_WRITE:
6737		perm = KEY__WRITE;
6738		break;
6739	case KEY_NEED_SEARCH:
6740		perm = KEY__SEARCH;
6741		break;
6742	case KEY_NEED_LINK:
6743		perm = KEY__LINK;
6744		break;
6745	case KEY_NEED_SETATTR:
6746		perm = KEY__SETATTR;
6747		break;
6748	case KEY_NEED_UNLINK:
6749	case KEY_SYSADMIN_OVERRIDE:
6750	case KEY_AUTHTOKEN_OVERRIDE:
6751	case KEY_DEFER_PERM_CHECK:
6752		return 0;
6753	default:
6754		WARN_ON(1);
6755		return -EPERM;
6756
6757	}
6758
6759	sid = cred_sid(cred);
6760	key = key_ref_to_ptr(key_ref);
6761	ksec = selinux_key(key);
6762
6763	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
6764}
6765
6766static int selinux_key_getsecurity(struct key *key, char **_buffer)
6767{
6768	struct key_security_struct *ksec = selinux_key(key);
6769	char *context = NULL;
6770	unsigned len;
6771	int rc;
6772
6773	rc = security_sid_to_context(ksec->sid,
6774				     &context, &len);
6775	if (!rc)
6776		rc = len;
6777	*_buffer = context;
6778	return rc;
6779}
6780
6781#ifdef CONFIG_KEY_NOTIFICATIONS
6782static int selinux_watch_key(struct key *key)
6783{
6784	struct key_security_struct *ksec = selinux_key(key);
6785	u32 sid = current_sid();
6786
6787	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6788}
6789#endif
6790#endif
6791
6792#ifdef CONFIG_SECURITY_INFINIBAND
6793static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6794{
6795	struct common_audit_data ad;
6796	int err;
6797	u32 sid = 0;
6798	struct ib_security_struct *sec = ib_sec;
6799	struct lsm_ibpkey_audit ibpkey;
6800
6801	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6802	if (err)
6803		return err;
6804
6805	ad.type = LSM_AUDIT_DATA_IBPKEY;
6806	ibpkey.subnet_prefix = subnet_prefix;
6807	ibpkey.pkey = pkey_val;
6808	ad.u.ibpkey = &ibpkey;
6809	return avc_has_perm(sec->sid, sid,
 
6810			    SECCLASS_INFINIBAND_PKEY,
6811			    INFINIBAND_PKEY__ACCESS, &ad);
6812}
6813
6814static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6815					    u8 port_num)
6816{
6817	struct common_audit_data ad;
6818	int err;
6819	u32 sid = 0;
6820	struct ib_security_struct *sec = ib_sec;
6821	struct lsm_ibendport_audit ibendport;
6822
6823	err = security_ib_endport_sid(dev_name, port_num,
6824				      &sid);
6825
6826	if (err)
6827		return err;
6828
6829	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6830	ibendport.dev_name = dev_name;
6831	ibendport.port = port_num;
6832	ad.u.ibendport = &ibendport;
6833	return avc_has_perm(sec->sid, sid,
 
6834			    SECCLASS_INFINIBAND_ENDPORT,
6835			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6836}
6837
6838static int selinux_ib_alloc_security(void *ib_sec)
6839{
6840	struct ib_security_struct *sec = selinux_ib(ib_sec);
6841
 
 
 
6842	sec->sid = current_sid();
 
 
6843	return 0;
6844}
 
 
 
 
 
6845#endif
6846
6847#ifdef CONFIG_BPF_SYSCALL
6848static int selinux_bpf(int cmd, union bpf_attr *attr,
6849				     unsigned int size)
6850{
6851	u32 sid = current_sid();
6852	int ret;
6853
6854	switch (cmd) {
6855	case BPF_MAP_CREATE:
6856		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
 
6857				   NULL);
6858		break;
6859	case BPF_PROG_LOAD:
6860		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
 
6861				   NULL);
6862		break;
6863	default:
6864		ret = 0;
6865		break;
6866	}
6867
6868	return ret;
6869}
6870
6871static u32 bpf_map_fmode_to_av(fmode_t fmode)
6872{
6873	u32 av = 0;
6874
6875	if (fmode & FMODE_READ)
6876		av |= BPF__MAP_READ;
6877	if (fmode & FMODE_WRITE)
6878		av |= BPF__MAP_WRITE;
6879	return av;
6880}
6881
6882/* This function will check the file pass through unix socket or binder to see
6883 * if it is a bpf related object. And apply corresponding checks on the bpf
6884 * object based on the type. The bpf maps and programs, not like other files and
6885 * socket, are using a shared anonymous inode inside the kernel as their inode.
6886 * So checking that inode cannot identify if the process have privilege to
6887 * access the bpf object and that's why we have to add this additional check in
6888 * selinux_file_receive and selinux_binder_transfer_files.
6889 */
6890static int bpf_fd_pass(const struct file *file, u32 sid)
6891{
6892	struct bpf_security_struct *bpfsec;
6893	struct bpf_prog *prog;
6894	struct bpf_map *map;
6895	int ret;
6896
6897	if (file->f_op == &bpf_map_fops) {
6898		map = file->private_data;
6899		bpfsec = map->security;
6900		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6901				   bpf_map_fmode_to_av(file->f_mode), NULL);
6902		if (ret)
6903			return ret;
6904	} else if (file->f_op == &bpf_prog_fops) {
6905		prog = file->private_data;
6906		bpfsec = prog->aux->security;
6907		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6908				   BPF__PROG_RUN, NULL);
6909		if (ret)
6910			return ret;
6911	}
6912	return 0;
6913}
6914
6915static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6916{
6917	u32 sid = current_sid();
6918	struct bpf_security_struct *bpfsec;
6919
6920	bpfsec = map->security;
6921	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6922			    bpf_map_fmode_to_av(fmode), NULL);
6923}
6924
6925static int selinux_bpf_prog(struct bpf_prog *prog)
6926{
6927	u32 sid = current_sid();
6928	struct bpf_security_struct *bpfsec;
6929
6930	bpfsec = prog->aux->security;
6931	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6932			    BPF__PROG_RUN, NULL);
6933}
6934
6935static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6936				  struct bpf_token *token)
6937{
6938	struct bpf_security_struct *bpfsec;
6939
6940	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6941	if (!bpfsec)
6942		return -ENOMEM;
6943
6944	bpfsec->sid = current_sid();
6945	map->security = bpfsec;
6946
6947	return 0;
6948}
6949
6950static void selinux_bpf_map_free(struct bpf_map *map)
6951{
6952	struct bpf_security_struct *bpfsec = map->security;
6953
6954	map->security = NULL;
6955	kfree(bpfsec);
6956}
6957
6958static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6959				 struct bpf_token *token)
6960{
6961	struct bpf_security_struct *bpfsec;
6962
6963	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6964	if (!bpfsec)
6965		return -ENOMEM;
6966
6967	bpfsec->sid = current_sid();
6968	prog->aux->security = bpfsec;
6969
6970	return 0;
6971}
6972
6973static void selinux_bpf_prog_free(struct bpf_prog *prog)
6974{
6975	struct bpf_security_struct *bpfsec = prog->aux->security;
6976
6977	prog->aux->security = NULL;
6978	kfree(bpfsec);
6979}
6980
6981static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6982				    const struct path *path)
6983{
6984	struct bpf_security_struct *bpfsec;
6985
6986	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6987	if (!bpfsec)
6988		return -ENOMEM;
6989
6990	bpfsec->sid = current_sid();
6991	token->security = bpfsec;
6992
6993	return 0;
6994}
6995
6996static void selinux_bpf_token_free(struct bpf_token *token)
6997{
6998	struct bpf_security_struct *bpfsec = token->security;
6999
7000	token->security = NULL;
7001	kfree(bpfsec);
7002}
7003#endif
7004
7005struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
7006	.lbs_cred = sizeof(struct task_security_struct),
7007	.lbs_file = sizeof(struct file_security_struct),
7008	.lbs_inode = sizeof(struct inode_security_struct),
7009	.lbs_ipc = sizeof(struct ipc_security_struct),
7010	.lbs_key = sizeof(struct key_security_struct),
7011	.lbs_msg_msg = sizeof(struct msg_security_struct),
7012#ifdef CONFIG_PERF_EVENTS
7013	.lbs_perf_event = sizeof(struct perf_event_security_struct),
7014#endif
7015	.lbs_sock = sizeof(struct sk_security_struct),
7016	.lbs_superblock = sizeof(struct superblock_security_struct),
7017	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7018	.lbs_tun_dev = sizeof(struct tun_security_struct),
7019	.lbs_ib = sizeof(struct ib_security_struct),
7020};
7021
7022#ifdef CONFIG_PERF_EVENTS
7023static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7024{
7025	u32 requested, sid = current_sid();
7026
7027	if (type == PERF_SECURITY_OPEN)
7028		requested = PERF_EVENT__OPEN;
7029	else if (type == PERF_SECURITY_CPU)
7030		requested = PERF_EVENT__CPU;
7031	else if (type == PERF_SECURITY_KERNEL)
7032		requested = PERF_EVENT__KERNEL;
7033	else if (type == PERF_SECURITY_TRACEPOINT)
7034		requested = PERF_EVENT__TRACEPOINT;
7035	else
7036		return -EINVAL;
7037
7038	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7039			    requested, NULL);
7040}
7041
7042static int selinux_perf_event_alloc(struct perf_event *event)
7043{
7044	struct perf_event_security_struct *perfsec;
7045
7046	perfsec = selinux_perf_event(event->security);
7047	perfsec->sid = current_sid();
7048
7049	return 0;
7050}
7051
7052static int selinux_perf_event_read(struct perf_event *event)
7053{
7054	struct perf_event_security_struct *perfsec = event->security;
7055	u32 sid = current_sid();
7056
7057	return avc_has_perm(sid, perfsec->sid,
7058			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7059}
7060
7061static int selinux_perf_event_write(struct perf_event *event)
7062{
7063	struct perf_event_security_struct *perfsec = event->security;
7064	u32 sid = current_sid();
7065
7066	return avc_has_perm(sid, perfsec->sid,
7067			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7068}
7069#endif
7070
7071#ifdef CONFIG_IO_URING
7072/**
7073 * selinux_uring_override_creds - check the requested cred override
7074 * @new: the target creds
7075 *
7076 * Check to see if the current task is allowed to override it's credentials
7077 * to service an io_uring operation.
7078 */
7079static int selinux_uring_override_creds(const struct cred *new)
7080{
7081	return avc_has_perm(current_sid(), cred_sid(new),
7082			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7083}
7084
7085/**
7086 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7087 *
7088 * Check to see if the current task is allowed to create a new io_uring
7089 * kernel polling thread.
7090 */
7091static int selinux_uring_sqpoll(void)
7092{
7093	u32 sid = current_sid();
7094
7095	return avc_has_perm(sid, sid,
7096			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7097}
7098
7099/**
7100 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7101 * @ioucmd: the io_uring command structure
7102 *
7103 * Check to see if the current domain is allowed to execute an
7104 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7105 *
7106 */
7107static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7108{
7109	struct file *file = ioucmd->file;
7110	struct inode *inode = file_inode(file);
7111	struct inode_security_struct *isec = selinux_inode(inode);
7112	struct common_audit_data ad;
7113
7114	ad.type = LSM_AUDIT_DATA_FILE;
7115	ad.u.file = file;
7116
7117	return avc_has_perm(current_sid(), isec->sid,
7118			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7119}
7120#endif /* CONFIG_IO_URING */
7121
7122static const struct lsm_id selinux_lsmid = {
7123	.name = "selinux",
7124	.id = LSM_ID_SELINUX,
7125};
7126
7127/*
7128 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7129 * 1. any hooks that don't belong to (2.) or (3.) below,
7130 * 2. hooks that both access structures allocated by other hooks, and allocate
7131 *    structures that can be later accessed by other hooks (mostly "cloning"
7132 *    hooks),
7133 * 3. hooks that only allocate structures that can be later accessed by other
7134 *    hooks ("allocating" hooks).
7135 *
7136 * Please follow block comment delimiters in the list to keep this order.
7137 */
7138static struct security_hook_list selinux_hooks[] __ro_after_init = {
7139	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7140	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7141	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7142	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7143
7144	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7145	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7146	LSM_HOOK_INIT(capget, selinux_capget),
7147	LSM_HOOK_INIT(capset, selinux_capset),
7148	LSM_HOOK_INIT(capable, selinux_capable),
7149	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7150	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7151	LSM_HOOK_INIT(syslog, selinux_syslog),
7152	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7153
7154	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7155
7156	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7157	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7158	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7159
7160	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7161	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
 
7162	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7163	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7164	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7165	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7166	LSM_HOOK_INIT(sb_mount, selinux_mount),
7167	LSM_HOOK_INIT(sb_umount, selinux_umount),
7168	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7169	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7170
7171	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7172
7173	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7174	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7175
 
7176	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7177	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7178	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7179	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7180	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7181	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7182	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7183	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7184	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7185	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7186	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7187	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7188	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7189	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7190	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7191	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7192	LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7193	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7194	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7195	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7196	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7197	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7198	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7199	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7200	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7201	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7202	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7203	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7204	LSM_HOOK_INIT(inode_getlsmprop, selinux_inode_getlsmprop),
7205	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7206	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7207	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7208
7209	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7210
7211	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7212	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
 
7213	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7214	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7215	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7216	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7217	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7218	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7219	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7220	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7221	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7222	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7223
7224	LSM_HOOK_INIT(file_open, selinux_file_open),
7225
7226	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
 
 
7227	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7228	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7229	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7230	LSM_HOOK_INIT(cred_getlsmprop, selinux_cred_getlsmprop),
7231	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7232	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7233	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7234	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7235	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7236	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7237	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7238	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7239	LSM_HOOK_INIT(current_getlsmprop_subj, selinux_current_getlsmprop_subj),
7240	LSM_HOOK_INIT(task_getlsmprop_obj, selinux_task_getlsmprop_obj),
7241	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7242	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7243	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7244	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7245	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7246	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7247	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7248	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7249	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7250	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7251	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7252
7253	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7254	LSM_HOOK_INIT(ipc_getlsmprop, selinux_ipc_getlsmprop),
7255
 
 
 
 
 
 
7256	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7257	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7258	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7259	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7260
 
 
7261	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7262	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7263	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7264
 
 
7265	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7266	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7267	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7268
7269	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7270
7271	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7272	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7273	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7274	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7275
7276	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
 
7277	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7278	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7279	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7280	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7281	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
 
7282
7283	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7284	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7285
7286	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7287	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7288	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7289	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7290	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7291	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7292	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7293	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7294	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7295	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7296	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7297	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7298	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7299	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7300	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7301	LSM_HOOK_INIT(socket_getpeersec_stream,
7302			selinux_socket_getpeersec_stream),
7303	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
 
7304	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7305	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7306	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7307	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7308	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7309	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7310	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7311	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7312	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7313	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7314	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7315	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7316	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7317	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7318	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7319	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
 
 
7320	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7321	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7322	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7323	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7324#ifdef CONFIG_SECURITY_INFINIBAND
7325	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7326	LSM_HOOK_INIT(ib_endport_manage_subnet,
7327		      selinux_ib_endport_manage_subnet),
 
 
7328#endif
7329#ifdef CONFIG_SECURITY_NETWORK_XFRM
 
 
7330	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7331	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
 
 
 
7332	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7333	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7334	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7335	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7336			selinux_xfrm_state_pol_flow_match),
7337	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7338#endif
7339
7340#ifdef CONFIG_KEYS
 
 
7341	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7342	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7343#ifdef CONFIG_KEY_NOTIFICATIONS
7344	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7345#endif
7346#endif
7347
7348#ifdef CONFIG_AUDIT
 
7349	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7350	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7351	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7352#endif
7353
7354#ifdef CONFIG_BPF_SYSCALL
7355	LSM_HOOK_INIT(bpf, selinux_bpf),
7356	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7357	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7358	LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7359	LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7360	LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7361#endif
7362
7363#ifdef CONFIG_PERF_EVENTS
7364	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7365	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7366	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7367#endif
7368
7369#ifdef CONFIG_IO_URING
7370	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7371	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7372	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7373#endif
7374
7375	/*
7376	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7377	 */
7378	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7379	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7380	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7381	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7382#ifdef CONFIG_SECURITY_NETWORK_XFRM
7383	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7384#endif
7385
7386	/*
7387	 * PUT "ALLOCATING" HOOKS HERE
7388	 */
7389	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7390	LSM_HOOK_INIT(msg_queue_alloc_security,
7391		      selinux_msg_queue_alloc_security),
7392	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7393	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7394	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7395	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7396	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7397	LSM_HOOK_INIT(lsmprop_to_secctx, selinux_lsmprop_to_secctx),
7398	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7399	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7400	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7401#ifdef CONFIG_SECURITY_INFINIBAND
7402	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7403#endif
7404#ifdef CONFIG_SECURITY_NETWORK_XFRM
7405	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7406	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7407	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7408		      selinux_xfrm_state_alloc_acquire),
7409#endif
7410#ifdef CONFIG_KEYS
7411	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7412#endif
7413#ifdef CONFIG_AUDIT
7414	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7415#endif
7416#ifdef CONFIG_BPF_SYSCALL
7417	LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7418	LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7419	LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7420#endif
7421#ifdef CONFIG_PERF_EVENTS
7422	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7423#endif
7424};
7425
7426static __init int selinux_init(void)
7427{
7428	pr_info("SELinux:  Initializing.\n");
 
 
 
 
 
 
 
 
 
 
7429
7430	memset(&selinux_state, 0, sizeof(selinux_state));
7431	enforcing_set(selinux_enforcing_boot);
7432	selinux_avc_init();
7433	mutex_init(&selinux_state.status_lock);
7434	mutex_init(&selinux_state.policy_mutex);
7435
7436	/* Set the security state for the initial task. */
7437	cred_init_security();
7438
7439	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7440	if (!default_noexec)
7441		pr_notice("SELinux:  virtual memory is executable by default\n");
7442
 
 
 
 
 
 
7443	avc_init();
7444
7445	avtab_cache_init();
7446
7447	ebitmap_cache_init();
7448
7449	hashtab_cache_init();
7450
7451	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7452			   &selinux_lsmid);
7453
7454	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7455		panic("SELinux: Unable to register AVC netcache callback\n");
7456
7457	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7458		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7459
7460	if (selinux_enforcing_boot)
7461		pr_debug("SELinux:  Starting in enforcing mode\n");
7462	else
7463		pr_debug("SELinux:  Starting in permissive mode\n");
7464
7465	fs_validate_description("selinux", selinux_fs_parameters);
7466
7467	return 0;
7468}
7469
7470static void delayed_superblock_init(struct super_block *sb, void *unused)
7471{
7472	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7473}
7474
7475void selinux_complete_init(void)
7476{
7477	pr_debug("SELinux:  Completing initialization.\n");
7478
7479	/* Set up any superblocks initialized prior to the policy load. */
7480	pr_debug("SELinux:  Setting up existing superblocks.\n");
7481	iterate_supers(delayed_superblock_init, NULL);
7482}
7483
7484/* SELinux requires early initialization in order to label
7485   all processes and objects when they are created. */
7486DEFINE_LSM(selinux) = {
7487	.name = "selinux",
7488	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7489	.enabled = &selinux_enabled_boot,
7490	.blobs = &selinux_blob_sizes,
7491	.init = selinux_init,
7492};
7493
7494#if defined(CONFIG_NETFILTER)
 
7495static const struct nf_hook_ops selinux_nf_ops[] = {
7496	{
7497		.hook =		selinux_ip_postroute,
7498		.pf =		NFPROTO_IPV4,
7499		.hooknum =	NF_INET_POST_ROUTING,
7500		.priority =	NF_IP_PRI_SELINUX_LAST,
7501	},
7502	{
7503		.hook =		selinux_ip_forward,
7504		.pf =		NFPROTO_IPV4,
7505		.hooknum =	NF_INET_FORWARD,
7506		.priority =	NF_IP_PRI_SELINUX_FIRST,
7507	},
7508	{
7509		.hook =		selinux_ip_output,
7510		.pf =		NFPROTO_IPV4,
7511		.hooknum =	NF_INET_LOCAL_OUT,
7512		.priority =	NF_IP_PRI_SELINUX_FIRST,
7513	},
7514#if IS_ENABLED(CONFIG_IPV6)
7515	{
7516		.hook =		selinux_ip_postroute,
7517		.pf =		NFPROTO_IPV6,
7518		.hooknum =	NF_INET_POST_ROUTING,
7519		.priority =	NF_IP6_PRI_SELINUX_LAST,
7520	},
7521	{
7522		.hook =		selinux_ip_forward,
7523		.pf =		NFPROTO_IPV6,
7524		.hooknum =	NF_INET_FORWARD,
7525		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7526	},
7527	{
7528		.hook =		selinux_ip_output,
7529		.pf =		NFPROTO_IPV6,
7530		.hooknum =	NF_INET_LOCAL_OUT,
7531		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7532	},
7533#endif	/* IPV6 */
7534};
7535
7536static int __net_init selinux_nf_register(struct net *net)
7537{
7538	return nf_register_net_hooks(net, selinux_nf_ops,
7539				     ARRAY_SIZE(selinux_nf_ops));
7540}
7541
7542static void __net_exit selinux_nf_unregister(struct net *net)
7543{
7544	nf_unregister_net_hooks(net, selinux_nf_ops,
7545				ARRAY_SIZE(selinux_nf_ops));
7546}
7547
7548static struct pernet_operations selinux_net_ops = {
7549	.init = selinux_nf_register,
7550	.exit = selinux_nf_unregister,
7551};
7552
7553static int __init selinux_nf_ip_init(void)
7554{
7555	int err;
7556
7557	if (!selinux_enabled_boot)
7558		return 0;
7559
7560	pr_debug("SELinux:  Registering netfilter hooks\n");
7561
7562	err = register_pernet_subsys(&selinux_net_ops);
7563	if (err)
7564		panic("SELinux: register_pernet_subsys: error %d\n", err);
7565
7566	return 0;
7567}
7568__initcall(selinux_nf_ip_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7569#endif /* CONFIG_NETFILTER */