Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v4.17
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/sched/signal.h>
  17#include <linux/uaccess.h>
  18#include <linux/capability.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/gfp.h>
  21#include <linux/mm.h>
  22#include <linux/swap.h>
 
 
  23#include <linux/mman.h>
  24#include <linux/pagemap.h>
  25#include <linux/file.h>
  26#include <linux/uio.h>
 
  27#include <linux/hash.h>
  28#include <linux/writeback.h>
  29#include <linux/backing-dev.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/security.h>
  33#include <linux/cpuset.h>
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/shmem_fs.h>
  38#include <linux/rmap.h>
 
 
 
 
 
 
 
 
 
 
  39#include "internal.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/filemap.h>
  43
  44/*
  45 * FIXME: remove all knowledge of the buffer layer from the core VM
  46 */
  47#include <linux/buffer_head.h> /* for try_to_free_buffers */
  48
  49#include <asm/mman.h>
  50
 
 
  51/*
  52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  53 * though.
  54 *
  55 * Shared mappings now work. 15.8.1995  Bruno.
  56 *
  57 * finished 'unifying' the page and buffer cache and SMP-threaded the
  58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  59 *
  60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  61 */
  62
  63/*
  64 * Lock ordering:
  65 *
  66 *  ->i_mmap_rwsem		(truncate_pagecache)
  67 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  68 *      ->swap_lock		(exclusive_swap_page, others)
  69 *        ->i_pages lock
  70 *
  71 *  ->i_mutex
  72 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
 
  73 *
  74 *  ->mmap_sem
  75 *    ->i_mmap_rwsem
  76 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  77 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  78 *
  79 *  ->mmap_sem
  80 *    ->lock_page		(access_process_vm)
 
  81 *
  82 *  ->i_mutex			(generic_perform_write)
  83 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  84 *
  85 *  bdi->wb.list_lock
  86 *    sb_lock			(fs/fs-writeback.c)
  87 *    ->i_pages lock		(__sync_single_inode)
  88 *
  89 *  ->i_mmap_rwsem
  90 *    ->anon_vma.lock		(vma_adjust)
  91 *
  92 *  ->anon_vma.lock
  93 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  94 *
  95 *  ->page_table_lock or pte_lock
  96 *    ->swap_lock		(try_to_unmap_one)
  97 *    ->private_lock		(try_to_unmap_one)
  98 *    ->i_pages lock		(try_to_unmap_one)
  99 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
 100 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
 101 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 102 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 103 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 105 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 106 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 107 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 108 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 109 *
 110 * ->i_mmap_rwsem
 111 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 112 */
 113
 114static int page_cache_tree_insert(struct address_space *mapping,
 115				  struct page *page, void **shadowp)
 116{
 117	struct radix_tree_node *node;
 118	void **slot;
 119	int error;
 120
 121	error = __radix_tree_create(&mapping->i_pages, page->index, 0,
 122				    &node, &slot);
 123	if (error)
 124		return error;
 125	if (*slot) {
 126		void *p;
 127
 128		p = radix_tree_deref_slot_protected(slot,
 129						    &mapping->i_pages.xa_lock);
 130		if (!radix_tree_exceptional_entry(p))
 131			return -EEXIST;
 132
 133		mapping->nrexceptional--;
 134		if (shadowp)
 135			*shadowp = p;
 136	}
 137	__radix_tree_replace(&mapping->i_pages, node, slot, page,
 138			     workingset_lookup_update(mapping));
 139	mapping->nrpages++;
 140	return 0;
 141}
 142
 143static void page_cache_tree_delete(struct address_space *mapping,
 144				   struct page *page, void *shadow)
 145{
 146	int i, nr;
 147
 148	/* hugetlb pages are represented by one entry in the radix tree */
 149	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 150
 151	VM_BUG_ON_PAGE(!PageLocked(page), page);
 152	VM_BUG_ON_PAGE(PageTail(page), page);
 153	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 154
 155	for (i = 0; i < nr; i++) {
 156		struct radix_tree_node *node;
 157		void **slot;
 158
 159		__radix_tree_lookup(&mapping->i_pages, page->index + i,
 160				    &node, &slot);
 161
 162		VM_BUG_ON_PAGE(!node && nr != 1, page);
 
 163
 164		radix_tree_clear_tags(&mapping->i_pages, node, slot);
 165		__radix_tree_replace(&mapping->i_pages, node, slot, shadow,
 166				workingset_lookup_update(mapping));
 167	}
 168
 169	page->mapping = NULL;
 170	/* Leave page->index set: truncation lookup relies upon it */
 171
 172	if (shadow) {
 173		mapping->nrexceptional += nr;
 174		/*
 175		 * Make sure the nrexceptional update is committed before
 176		 * the nrpages update so that final truncate racing
 177		 * with reclaim does not see both counters 0 at the
 178		 * same time and miss a shadow entry.
 179		 */
 180		smp_wmb();
 181	}
 182	mapping->nrpages -= nr;
 183}
 184
 185static void unaccount_page_cache_page(struct address_space *mapping,
 186				      struct page *page)
 187{
 188	int nr;
 189
 190	/*
 191	 * if we're uptodate, flush out into the cleancache, otherwise
 192	 * invalidate any existing cleancache entries.  We can't leave
 193	 * stale data around in the cleancache once our page is gone
 194	 */
 195	if (PageUptodate(page) && PageMappedToDisk(page))
 196		cleancache_put_page(page);
 197	else
 198		cleancache_invalidate_page(mapping, page);
 199
 200	VM_BUG_ON_PAGE(PageTail(page), page);
 201	VM_BUG_ON_PAGE(page_mapped(page), page);
 202	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 203		int mapcount;
 204
 
 
 205		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 206			 current->comm, page_to_pfn(page));
 207		dump_page(page, "still mapped when deleted");
 208		dump_stack();
 209		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 210
 211		mapcount = page_mapcount(page);
 212		if (mapping_exiting(mapping) &&
 213		    page_count(page) >= mapcount + 2) {
 214			/*
 215			 * All vmas have already been torn down, so it's
 216			 * a good bet that actually the page is unmapped,
 217			 * and we'd prefer not to leak it: if we're wrong,
 218			 * some other bad page check should catch it later.
 219			 */
 220			page_mapcount_reset(page);
 221			page_ref_sub(page, mapcount);
 
 
 222		}
 223	}
 224
 225	/* hugetlb pages do not participate in page cache accounting. */
 226	if (PageHuge(page))
 227		return;
 228
 229	nr = hpage_nr_pages(page);
 230
 231	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 232	if (PageSwapBacked(page)) {
 233		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 234		if (PageTransHuge(page))
 235			__dec_node_page_state(page, NR_SHMEM_THPS);
 236	} else {
 237		VM_BUG_ON_PAGE(PageTransHuge(page), page);
 
 238	}
 239
 240	/*
 241	 * At this point page must be either written or cleaned by
 242	 * truncate.  Dirty page here signals a bug and loss of
 243	 * unwritten data.
 
 
 
 
 244	 *
 245	 * This fixes dirty accounting after removing the page entirely
 246	 * but leaves PageDirty set: it has no effect for truncated
 247	 * page and anyway will be cleared before returning page into
 248	 * buddy allocator.
 249	 */
 250	if (WARN_ON_ONCE(PageDirty(page)))
 251		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 
 252}
 253
 254/*
 255 * Delete a page from the page cache and free it. Caller has to make
 256 * sure the page is locked and that nobody else uses it - or that usage
 257 * is safe.  The caller must hold the i_pages lock.
 258 */
 259void __delete_from_page_cache(struct page *page, void *shadow)
 260{
 261	struct address_space *mapping = page->mapping;
 262
 263	trace_mm_filemap_delete_from_page_cache(page);
 264
 265	unaccount_page_cache_page(mapping, page);
 266	page_cache_tree_delete(mapping, page, shadow);
 267}
 268
 269static void page_cache_free_page(struct address_space *mapping,
 270				struct page *page)
 271{
 272	void (*freepage)(struct page *);
 
 273
 274	freepage = mapping->a_ops->freepage;
 275	if (freepage)
 276		freepage(page);
 277
 278	if (PageTransHuge(page) && !PageHuge(page)) {
 279		page_ref_sub(page, HPAGE_PMD_NR);
 280		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 281	} else {
 282		put_page(page);
 283	}
 284}
 285
 286/**
 287 * delete_from_page_cache - delete page from page cache
 288 * @page: the page which the kernel is trying to remove from page cache
 289 *
 290 * This must be called only on pages that have been verified to be in the page
 291 * cache and locked.  It will never put the page into the free list, the caller
 292 * has a reference on the page.
 293 */
 294void delete_from_page_cache(struct page *page)
 295{
 296	struct address_space *mapping = page_mapping(page);
 297	unsigned long flags;
 
 
 
 
 
 
 
 
 298
 299	BUG_ON(!PageLocked(page));
 300	xa_lock_irqsave(&mapping->i_pages, flags);
 301	__delete_from_page_cache(page, NULL);
 302	xa_unlock_irqrestore(&mapping->i_pages, flags);
 303
 304	page_cache_free_page(mapping, page);
 305}
 306EXPORT_SYMBOL(delete_from_page_cache);
 307
 308/*
 309 * page_cache_tree_delete_batch - delete several pages from page cache
 310 * @mapping: the mapping to which pages belong
 311 * @pvec: pagevec with pages to delete
 312 *
 313 * The function walks over mapping->i_pages and removes pages passed in @pvec
 314 * from the mapping. The function expects @pvec to be sorted by page index.
 315 * It tolerates holes in @pvec (mapping entries at those indices are not
 316 * modified). The function expects only THP head pages to be present in the
 317 * @pvec and takes care to delete all corresponding tail pages from the
 318 * mapping as well.
 319 *
 320 * The function expects the i_pages lock to be held.
 321 */
 322static void
 323page_cache_tree_delete_batch(struct address_space *mapping,
 324			     struct pagevec *pvec)
 325{
 326	struct radix_tree_iter iter;
 327	void **slot;
 328	int total_pages = 0;
 329	int i = 0, tail_pages = 0;
 330	struct page *page;
 331	pgoff_t start;
 
 
 332
 333	start = pvec->pages[0]->index;
 334	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
 335		if (i >= pagevec_count(pvec) && !tail_pages)
 336			break;
 337		page = radix_tree_deref_slot_protected(slot,
 338						       &mapping->i_pages.xa_lock);
 339		if (radix_tree_exceptional_entry(page))
 
 
 
 
 
 
 340			continue;
 341		if (!tail_pages) {
 342			/*
 343			 * Some page got inserted in our range? Skip it. We
 344			 * have our pages locked so they are protected from
 345			 * being removed.
 346			 */
 347			if (page != pvec->pages[i])
 348				continue;
 349			WARN_ON_ONCE(!PageLocked(page));
 350			if (PageTransHuge(page) && !PageHuge(page))
 351				tail_pages = HPAGE_PMD_NR - 1;
 352			page->mapping = NULL;
 353			/*
 354			 * Leave page->index set: truncation lookup relies
 355			 * upon it
 356			 */
 357			i++;
 358		} else {
 359			tail_pages--;
 360		}
 361		radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
 362		__radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
 363				workingset_lookup_update(mapping));
 364		total_pages++;
 
 
 
 
 
 365	}
 366	mapping->nrpages -= total_pages;
 367}
 368
 369void delete_from_page_cache_batch(struct address_space *mapping,
 370				  struct pagevec *pvec)
 371{
 372	int i;
 373	unsigned long flags;
 374
 375	if (!pagevec_count(pvec))
 376		return;
 377
 378	xa_lock_irqsave(&mapping->i_pages, flags);
 379	for (i = 0; i < pagevec_count(pvec); i++) {
 380		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 
 381
 382		unaccount_page_cache_page(mapping, pvec->pages[i]);
 
 383	}
 384	page_cache_tree_delete_batch(mapping, pvec);
 385	xa_unlock_irqrestore(&mapping->i_pages, flags);
 
 
 
 386
 387	for (i = 0; i < pagevec_count(pvec); i++)
 388		page_cache_free_page(mapping, pvec->pages[i]);
 389}
 390
 391int filemap_check_errors(struct address_space *mapping)
 392{
 393	int ret = 0;
 394	/* Check for outstanding write errors */
 395	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 396	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 397		ret = -ENOSPC;
 398	if (test_bit(AS_EIO, &mapping->flags) &&
 399	    test_and_clear_bit(AS_EIO, &mapping->flags))
 400		ret = -EIO;
 401	return ret;
 402}
 403EXPORT_SYMBOL(filemap_check_errors);
 404
 405static int filemap_check_and_keep_errors(struct address_space *mapping)
 406{
 407	/* Check for outstanding write errors */
 408	if (test_bit(AS_EIO, &mapping->flags))
 409		return -EIO;
 410	if (test_bit(AS_ENOSPC, &mapping->flags))
 411		return -ENOSPC;
 412	return 0;
 413}
 414
 415/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 417 * @mapping:	address space structure to write
 418 * @start:	offset in bytes where the range starts
 419 * @end:	offset in bytes where the range ends (inclusive)
 420 * @sync_mode:	enable synchronous operation
 421 *
 422 * Start writeback against all of a mapping's dirty pages that lie
 423 * within the byte offsets <start, end> inclusive.
 424 *
 425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 426 * opposed to a regular memory cleansing writeback.  The difference between
 427 * these two operations is that if a dirty page/buffer is encountered, it must
 428 * be waited upon, and not just skipped over.
 
 
 429 */
 430int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 431				loff_t end, int sync_mode)
 432{
 433	int ret;
 434	struct writeback_control wbc = {
 435		.sync_mode = sync_mode,
 436		.nr_to_write = LONG_MAX,
 437		.range_start = start,
 438		.range_end = end,
 439	};
 440
 441	if (!mapping_cap_writeback_dirty(mapping))
 442		return 0;
 443
 444	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 445	ret = do_writepages(mapping, &wbc);
 446	wbc_detach_inode(&wbc);
 447	return ret;
 448}
 449
 450static inline int __filemap_fdatawrite(struct address_space *mapping,
 451	int sync_mode)
 452{
 453	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 454}
 455
 456int filemap_fdatawrite(struct address_space *mapping)
 457{
 458	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 459}
 460EXPORT_SYMBOL(filemap_fdatawrite);
 461
 462int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 463				loff_t end)
 464{
 465	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 466}
 467EXPORT_SYMBOL(filemap_fdatawrite_range);
 468
 469/**
 470 * filemap_flush - mostly a non-blocking flush
 471 * @mapping:	target address_space
 472 *
 473 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 474 * purposes - I/O may not be started against all dirty pages.
 
 
 475 */
 476int filemap_flush(struct address_space *mapping)
 477{
 478	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 479}
 480EXPORT_SYMBOL(filemap_flush);
 481
 482/**
 483 * filemap_range_has_page - check if a page exists in range.
 484 * @mapping:           address space within which to check
 485 * @start_byte:        offset in bytes where the range starts
 486 * @end_byte:          offset in bytes where the range ends (inclusive)
 487 *
 488 * Find at least one page in the range supplied, usually used to check if
 489 * direct writing in this range will trigger a writeback.
 
 
 
 490 */
 491bool filemap_range_has_page(struct address_space *mapping,
 492			   loff_t start_byte, loff_t end_byte)
 493{
 494	pgoff_t index = start_byte >> PAGE_SHIFT;
 495	pgoff_t end = end_byte >> PAGE_SHIFT;
 496	struct page *page;
 497
 498	if (end_byte < start_byte)
 499		return false;
 500
 501	if (mapping->nrpages == 0)
 502		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503
 504	if (!find_get_pages_range(mapping, &index, end, 1, &page))
 505		return false;
 506	put_page(page);
 507	return true;
 508}
 509EXPORT_SYMBOL(filemap_range_has_page);
 510
 511static void __filemap_fdatawait_range(struct address_space *mapping,
 512				     loff_t start_byte, loff_t end_byte)
 513{
 514	pgoff_t index = start_byte >> PAGE_SHIFT;
 515	pgoff_t end = end_byte >> PAGE_SHIFT;
 516	struct pagevec pvec;
 517	int nr_pages;
 518
 519	if (end_byte < start_byte)
 520		return;
 521
 522	pagevec_init(&pvec);
 523	while (index <= end) {
 524		unsigned i;
 525
 526		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 527				end, PAGECACHE_TAG_WRITEBACK);
 528		if (!nr_pages)
 
 529			break;
 530
 531		for (i = 0; i < nr_pages; i++) {
 532			struct page *page = pvec.pages[i];
 533
 534			wait_on_page_writeback(page);
 535			ClearPageError(page);
 536		}
 537		pagevec_release(&pvec);
 538		cond_resched();
 539	}
 540}
 541
 542/**
 543 * filemap_fdatawait_range - wait for writeback to complete
 544 * @mapping:		address space structure to wait for
 545 * @start_byte:		offset in bytes where the range starts
 546 * @end_byte:		offset in bytes where the range ends (inclusive)
 547 *
 548 * Walk the list of under-writeback pages of the given address space
 549 * in the given range and wait for all of them.  Check error status of
 550 * the address space and return it.
 551 *
 552 * Since the error status of the address space is cleared by this function,
 553 * callers are responsible for checking the return value and handling and/or
 554 * reporting the error.
 
 
 555 */
 556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 557			    loff_t end_byte)
 558{
 559	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 560	return filemap_check_errors(mapping);
 561}
 562EXPORT_SYMBOL(filemap_fdatawait_range);
 563
 564/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565 * file_fdatawait_range - wait for writeback to complete
 566 * @file:		file pointing to address space structure to wait for
 567 * @start_byte:		offset in bytes where the range starts
 568 * @end_byte:		offset in bytes where the range ends (inclusive)
 569 *
 570 * Walk the list of under-writeback pages of the address space that file
 571 * refers to, in the given range and wait for all of them.  Check error
 572 * status of the address space vs. the file->f_wb_err cursor and return it.
 573 *
 574 * Since the error status of the file is advanced by this function,
 575 * callers are responsible for checking the return value and handling and/or
 576 * reporting the error.
 
 
 577 */
 578int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 579{
 580	struct address_space *mapping = file->f_mapping;
 581
 582	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 583	return file_check_and_advance_wb_err(file);
 584}
 585EXPORT_SYMBOL(file_fdatawait_range);
 586
 587/**
 588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 589 * @mapping: address space structure to wait for
 590 *
 591 * Walk the list of under-writeback pages of the given address space
 592 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 593 * does not clear error status of the address space.
 594 *
 595 * Use this function if callers don't handle errors themselves.  Expected
 596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 597 * fsfreeze(8)
 
 
 598 */
 599int filemap_fdatawait_keep_errors(struct address_space *mapping)
 600{
 601	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 602	return filemap_check_and_keep_errors(mapping);
 603}
 604EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 605
 
 606static bool mapping_needs_writeback(struct address_space *mapping)
 607{
 608	return (!dax_mapping(mapping) && mapping->nrpages) ||
 609	    (dax_mapping(mapping) && mapping->nrexceptional);
 610}
 611
 612int filemap_write_and_wait(struct address_space *mapping)
 
 613{
 614	int err = 0;
 
 
 615
 616	if (mapping_needs_writeback(mapping)) {
 617		err = filemap_fdatawrite(mapping);
 618		/*
 619		 * Even if the above returned error, the pages may be
 620		 * written partially (e.g. -ENOSPC), so we wait for it.
 621		 * But the -EIO is special case, it may indicate the worst
 622		 * thing (e.g. bug) happened, so we avoid waiting for it.
 623		 */
 624		if (err != -EIO) {
 625			int err2 = filemap_fdatawait(mapping);
 626			if (!err)
 627				err = err2;
 628		} else {
 629			/* Clear any previously stored errors */
 630			filemap_check_errors(mapping);
 631		}
 632	} else {
 633		err = filemap_check_errors(mapping);
 634	}
 635	return err;
 
 636}
 637EXPORT_SYMBOL(filemap_write_and_wait);
 638
 639/**
 640 * filemap_write_and_wait_range - write out & wait on a file range
 641 * @mapping:	the address_space for the pages
 642 * @lstart:	offset in bytes where the range starts
 643 * @lend:	offset in bytes where the range ends (inclusive)
 644 *
 645 * Write out and wait upon file offsets lstart->lend, inclusive.
 646 *
 647 * Note that @lend is inclusive (describes the last byte to be written) so
 648 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 649 */
 650int filemap_write_and_wait_range(struct address_space *mapping,
 651				 loff_t lstart, loff_t lend)
 652{
 653	int err = 0;
 
 
 
 654
 655	if (mapping_needs_writeback(mapping)) {
 656		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 657						 WB_SYNC_ALL);
 658		/* See comment of filemap_write_and_wait() */
 659		if (err != -EIO) {
 660			int err2 = filemap_fdatawait_range(mapping,
 661						lstart, lend);
 662			if (!err)
 663				err = err2;
 664		} else {
 665			/* Clear any previously stored errors */
 666			filemap_check_errors(mapping);
 667		}
 668	} else {
 669		err = filemap_check_errors(mapping);
 670	}
 
 
 
 671	return err;
 672}
 673EXPORT_SYMBOL(filemap_write_and_wait_range);
 674
 675void __filemap_set_wb_err(struct address_space *mapping, int err)
 676{
 677	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 678
 679	trace_filemap_set_wb_err(mapping, eseq);
 680}
 681EXPORT_SYMBOL(__filemap_set_wb_err);
 682
 683/**
 684 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 685 * 				   and advance wb_err to current one
 686 * @file: struct file on which the error is being reported
 687 *
 688 * When userland calls fsync (or something like nfsd does the equivalent), we
 689 * want to report any writeback errors that occurred since the last fsync (or
 690 * since the file was opened if there haven't been any).
 691 *
 692 * Grab the wb_err from the mapping. If it matches what we have in the file,
 693 * then just quickly return 0. The file is all caught up.
 694 *
 695 * If it doesn't match, then take the mapping value, set the "seen" flag in
 696 * it and try to swap it into place. If it works, or another task beat us
 697 * to it with the new value, then update the f_wb_err and return the error
 698 * portion. The error at this point must be reported via proper channels
 699 * (a'la fsync, or NFS COMMIT operation, etc.).
 700 *
 701 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 702 * value is protected by the f_lock since we must ensure that it reflects
 703 * the latest value swapped in for this file descriptor.
 
 
 704 */
 705int file_check_and_advance_wb_err(struct file *file)
 706{
 707	int err = 0;
 708	errseq_t old = READ_ONCE(file->f_wb_err);
 709	struct address_space *mapping = file->f_mapping;
 710
 711	/* Locklessly handle the common case where nothing has changed */
 712	if (errseq_check(&mapping->wb_err, old)) {
 713		/* Something changed, must use slow path */
 714		spin_lock(&file->f_lock);
 715		old = file->f_wb_err;
 716		err = errseq_check_and_advance(&mapping->wb_err,
 717						&file->f_wb_err);
 718		trace_file_check_and_advance_wb_err(file, old);
 719		spin_unlock(&file->f_lock);
 720	}
 721
 722	/*
 723	 * We're mostly using this function as a drop in replacement for
 724	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 725	 * that the legacy code would have had on these flags.
 726	 */
 727	clear_bit(AS_EIO, &mapping->flags);
 728	clear_bit(AS_ENOSPC, &mapping->flags);
 729	return err;
 730}
 731EXPORT_SYMBOL(file_check_and_advance_wb_err);
 732
 733/**
 734 * file_write_and_wait_range - write out & wait on a file range
 735 * @file:	file pointing to address_space with pages
 736 * @lstart:	offset in bytes where the range starts
 737 * @lend:	offset in bytes where the range ends (inclusive)
 738 *
 739 * Write out and wait upon file offsets lstart->lend, inclusive.
 740 *
 741 * Note that @lend is inclusive (describes the last byte to be written) so
 742 * that this function can be used to write to the very end-of-file (end = -1).
 743 *
 744 * After writing out and waiting on the data, we check and advance the
 745 * f_wb_err cursor to the latest value, and return any errors detected there.
 
 
 746 */
 747int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 748{
 749	int err = 0, err2;
 750	struct address_space *mapping = file->f_mapping;
 751
 
 
 
 752	if (mapping_needs_writeback(mapping)) {
 753		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 754						 WB_SYNC_ALL);
 755		/* See comment of filemap_write_and_wait() */
 756		if (err != -EIO)
 757			__filemap_fdatawait_range(mapping, lstart, lend);
 758	}
 759	err2 = file_check_and_advance_wb_err(file);
 760	if (!err)
 761		err = err2;
 762	return err;
 763}
 764EXPORT_SYMBOL(file_write_and_wait_range);
 765
 766/**
 767 * replace_page_cache_page - replace a pagecache page with a new one
 768 * @old:	page to be replaced
 769 * @new:	page to replace with
 770 * @gfp_mask:	allocation mode
 771 *
 772 * This function replaces a page in the pagecache with a new one.  On
 773 * success it acquires the pagecache reference for the new page and
 774 * drops it for the old page.  Both the old and new pages must be
 775 * locked.  This function does not add the new page to the LRU, the
 776 * caller must do that.
 777 *
 778 * The remove + add is atomic.  The only way this function can fail is
 779 * memory allocation failure.
 780 */
 781int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 782{
 783	int error;
 
 
 
 784
 785	VM_BUG_ON_PAGE(!PageLocked(old), old);
 786	VM_BUG_ON_PAGE(!PageLocked(new), new);
 787	VM_BUG_ON_PAGE(new->mapping, new);
 788
 789	error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
 790	if (!error) {
 791		struct address_space *mapping = old->mapping;
 792		void (*freepage)(struct page *);
 793		unsigned long flags;
 794
 795		pgoff_t offset = old->index;
 796		freepage = mapping->a_ops->freepage;
 797
 798		get_page(new);
 799		new->mapping = mapping;
 800		new->index = offset;
 801
 802		xa_lock_irqsave(&mapping->i_pages, flags);
 803		__delete_from_page_cache(old, NULL);
 804		error = page_cache_tree_insert(mapping, new, NULL);
 805		BUG_ON(error);
 806
 807		/*
 808		 * hugetlb pages do not participate in page cache accounting.
 809		 */
 810		if (!PageHuge(new))
 811			__inc_node_page_state(new, NR_FILE_PAGES);
 812		if (PageSwapBacked(new))
 813			__inc_node_page_state(new, NR_SHMEM);
 814		xa_unlock_irqrestore(&mapping->i_pages, flags);
 815		mem_cgroup_migrate(old, new);
 816		radix_tree_preload_end();
 817		if (freepage)
 818			freepage(old);
 819		put_page(old);
 820	}
 821
 822	return error;
 823}
 824EXPORT_SYMBOL_GPL(replace_page_cache_page);
 825
 826static int __add_to_page_cache_locked(struct page *page,
 827				      struct address_space *mapping,
 828				      pgoff_t offset, gfp_t gfp_mask,
 829				      void **shadowp)
 830{
 831	int huge = PageHuge(page);
 832	struct mem_cgroup *memcg;
 833	int error;
 834
 835	VM_BUG_ON_PAGE(!PageLocked(page), page);
 836	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838	if (!huge) {
 839		error = mem_cgroup_try_charge(page, current->mm,
 840					      gfp_mask, &memcg, false);
 841		if (error)
 842			return error;
 
 843	}
 844
 845	error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
 846	if (error) {
 847		if (!huge)
 848			mem_cgroup_cancel_charge(page, memcg, false);
 849		return error;
 850	}
 851
 852	get_page(page);
 853	page->mapping = mapping;
 854	page->index = offset;
 
 855
 856	xa_lock_irq(&mapping->i_pages);
 857	error = page_cache_tree_insert(mapping, page, shadowp);
 858	radix_tree_preload_end();
 859	if (unlikely(error))
 860		goto err_insert;
 861
 862	/* hugetlb pages do not participate in page cache accounting. */
 863	if (!huge)
 864		__inc_node_page_state(page, NR_FILE_PAGES);
 865	xa_unlock_irq(&mapping->i_pages);
 866	if (!huge)
 867		mem_cgroup_commit_charge(page, memcg, false, false);
 868	trace_mm_filemap_add_to_page_cache(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869	return 0;
 870err_insert:
 871	page->mapping = NULL;
 
 
 872	/* Leave page->index set: truncation relies upon it */
 873	xa_unlock_irq(&mapping->i_pages);
 874	if (!huge)
 875		mem_cgroup_cancel_charge(page, memcg, false);
 876	put_page(page);
 877	return error;
 878}
 
 879
 880/**
 881 * add_to_page_cache_locked - add a locked page to the pagecache
 882 * @page:	page to add
 883 * @mapping:	the page's address_space
 884 * @offset:	page index
 885 * @gfp_mask:	page allocation mode
 886 *
 887 * This function is used to add a page to the pagecache. It must be locked.
 888 * This function does not add the page to the LRU.  The caller must do that.
 889 */
 890int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 891		pgoff_t offset, gfp_t gfp_mask)
 892{
 893	return __add_to_page_cache_locked(page, mapping, offset,
 894					  gfp_mask, NULL);
 895}
 896EXPORT_SYMBOL(add_to_page_cache_locked);
 897
 898int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 899				pgoff_t offset, gfp_t gfp_mask)
 900{
 901	void *shadow = NULL;
 902	int ret;
 903
 904	__SetPageLocked(page);
 905	ret = __add_to_page_cache_locked(page, mapping, offset,
 906					 gfp_mask, &shadow);
 907	if (unlikely(ret))
 908		__ClearPageLocked(page);
 909	else {
 910		/*
 911		 * The page might have been evicted from cache only
 912		 * recently, in which case it should be activated like
 913		 * any other repeatedly accessed page.
 914		 * The exception is pages getting rewritten; evicting other
 915		 * data from the working set, only to cache data that will
 916		 * get overwritten with something else, is a waste of memory.
 917		 */
 918		if (!(gfp_mask & __GFP_WRITE) &&
 919		    shadow && workingset_refault(shadow)) {
 920			SetPageActive(page);
 921			workingset_activation(page);
 922		} else
 923			ClearPageActive(page);
 924		lru_cache_add(page);
 925	}
 926	return ret;
 927}
 928EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 929
 930#ifdef CONFIG_NUMA
 931struct page *__page_cache_alloc(gfp_t gfp)
 932{
 933	int n;
 934	struct page *page;
 935
 936	if (cpuset_do_page_mem_spread()) {
 937		unsigned int cpuset_mems_cookie;
 938		do {
 939			cpuset_mems_cookie = read_mems_allowed_begin();
 940			n = cpuset_mem_spread_node();
 941			page = __alloc_pages_node(n, gfp, 0);
 942		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 943
 944		return page;
 945	}
 946	return alloc_pages(gfp, 0);
 947}
 948EXPORT_SYMBOL(__page_cache_alloc);
 949#endif
 950
 951/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952 * In order to wait for pages to become available there must be
 953 * waitqueues associated with pages. By using a hash table of
 954 * waitqueues where the bucket discipline is to maintain all
 955 * waiters on the same queue and wake all when any of the pages
 956 * become available, and for the woken contexts to check to be
 957 * sure the appropriate page became available, this saves space
 958 * at a cost of "thundering herd" phenomena during rare hash
 959 * collisions.
 960 */
 961#define PAGE_WAIT_TABLE_BITS 8
 962#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 963static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 964
 965static wait_queue_head_t *page_waitqueue(struct page *page)
 966{
 967	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 968}
 969
 970void __init pagecache_init(void)
 971{
 972	int i;
 973
 974	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 975		init_waitqueue_head(&page_wait_table[i]);
 976
 977	page_writeback_init();
 978}
 979
 980/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
 981struct wait_page_key {
 982	struct page *page;
 983	int bit_nr;
 984	int page_match;
 985};
 986
 987struct wait_page_queue {
 988	struct page *page;
 989	int bit_nr;
 990	wait_queue_entry_t wait;
 991};
 992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
 994{
 
 995	struct wait_page_key *key = arg;
 996	struct wait_page_queue *wait_page
 997		= container_of(wait, struct wait_page_queue, wait);
 998
 999	if (wait_page->page != key->page)
1000	       return 0;
1001	key->page_match = 1;
1002
1003	if (wait_page->bit_nr != key->bit_nr)
1004		return 0;
1005
1006	/* Stop walking if it's locked */
1007	if (test_bit(key->bit_nr, &key->page->flags))
1008		return -1;
 
 
 
 
 
 
 
 
 
 
 
1009
1010	return autoremove_wake_function(wait, mode, sync, key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011}
1012
1013static void wake_up_page_bit(struct page *page, int bit_nr)
1014{
1015	wait_queue_head_t *q = page_waitqueue(page);
1016	struct wait_page_key key;
1017	unsigned long flags;
1018	wait_queue_entry_t bookmark;
1019
1020	key.page = page;
1021	key.bit_nr = bit_nr;
1022	key.page_match = 0;
1023
1024	bookmark.flags = 0;
1025	bookmark.private = NULL;
1026	bookmark.func = NULL;
1027	INIT_LIST_HEAD(&bookmark.entry);
1028
1029	spin_lock_irqsave(&q->lock, flags);
1030	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1031
1032	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1033		/*
1034		 * Take a breather from holding the lock,
1035		 * allow pages that finish wake up asynchronously
1036		 * to acquire the lock and remove themselves
1037		 * from wait queue
1038		 */
1039		spin_unlock_irqrestore(&q->lock, flags);
1040		cpu_relax();
1041		spin_lock_irqsave(&q->lock, flags);
1042		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1043	}
1044
1045	/*
1046	 * It is possible for other pages to have collided on the waitqueue
1047	 * hash, so in that case check for a page match. That prevents a long-
1048	 * term waiter
1049	 *
1050	 * It is still possible to miss a case here, when we woke page waiters
1051	 * and removed them from the waitqueue, but there are still other
1052	 * page waiters.
1053	 */
1054	if (!waitqueue_active(q) || !key.page_match) {
1055		ClearPageWaiters(page);
1056		/*
1057		 * It's possible to miss clearing Waiters here, when we woke
1058		 * our page waiters, but the hashed waitqueue has waiters for
1059		 * other pages on it.
1060		 *
1061		 * That's okay, it's a rare case. The next waker will clear it.
1062		 */
1063	}
1064	spin_unlock_irqrestore(&q->lock, flags);
1065}
1066
1067static void wake_up_page(struct page *page, int bit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068{
1069	if (!PageWaiters(page))
1070		return;
1071	wake_up_page_bit(page, bit);
 
 
 
 
 
1072}
1073
1074static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075		struct page *page, int bit_nr, int state, bool lock)
 
 
 
1076{
 
 
1077	struct wait_page_queue wait_page;
1078	wait_queue_entry_t *wait = &wait_page.wait;
1079	int ret = 0;
 
 
 
 
 
 
 
 
 
1080
1081	init_wait(wait);
1082	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1083	wait->func = wake_page_function;
1084	wait_page.page = page;
1085	wait_page.bit_nr = bit_nr;
1086
1087	for (;;) {
1088		spin_lock_irq(&q->lock);
 
 
 
 
 
1089
1090		if (likely(list_empty(&wait->entry))) {
1091			__add_wait_queue_entry_tail(q, wait);
1092			SetPageWaiters(page);
1093		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094
1095		set_current_state(state);
1096
1097		spin_unlock_irq(&q->lock);
 
 
 
 
1098
1099		if (likely(test_bit(bit_nr, &page->flags))) {
1100			io_schedule();
 
1101		}
1102
1103		if (lock) {
1104			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1105				break;
1106		} else {
1107			if (!test_bit(bit_nr, &page->flags))
1108				break;
1109		}
1110
1111		if (unlikely(signal_pending_state(state, current))) {
1112			ret = -EINTR;
1113			break;
1114		}
 
 
 
 
 
 
 
 
 
 
 
1115	}
1116
 
 
 
 
 
 
1117	finish_wait(q, wait);
1118
 
 
 
 
 
1119	/*
1120	 * A signal could leave PageWaiters set. Clearing it here if
1121	 * !waitqueue_active would be possible (by open-coding finish_wait),
1122	 * but still fail to catch it in the case of wait hash collision. We
1123	 * already can fail to clear wait hash collision cases, so don't
1124	 * bother with signals either.
 
 
 
 
 
 
1125	 */
 
 
1126
1127	return ret;
1128}
1129
1130void wait_on_page_bit(struct page *page, int bit_nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131{
1132	wait_queue_head_t *q = page_waitqueue(page);
1133	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134}
1135EXPORT_SYMBOL(wait_on_page_bit);
1136
1137int wait_on_page_bit_killable(struct page *page, int bit_nr)
1138{
1139	wait_queue_head_t *q = page_waitqueue(page);
1140	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141}
1142EXPORT_SYMBOL(wait_on_page_bit_killable);
1143
1144/**
1145 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1146 * @page: Page defining the wait queue of interest
1147 * @waiter: Waiter to add to the queue
1148 *
1149 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1150 */
1151void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1152{
1153	wait_queue_head_t *q = page_waitqueue(page);
1154	unsigned long flags;
1155
1156	spin_lock_irqsave(&q->lock, flags);
1157	__add_wait_queue_entry_tail(q, waiter);
1158	SetPageWaiters(page);
1159	spin_unlock_irqrestore(&q->lock, flags);
1160}
1161EXPORT_SYMBOL_GPL(add_page_wait_queue);
1162
1163#ifndef clear_bit_unlock_is_negative_byte
1164
1165/*
1166 * PG_waiters is the high bit in the same byte as PG_lock.
1167 *
1168 * On x86 (and on many other architectures), we can clear PG_lock and
1169 * test the sign bit at the same time. But if the architecture does
1170 * not support that special operation, we just do this all by hand
1171 * instead.
1172 *
1173 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1174 * being cleared, but a memory barrier should be unneccssary since it is
1175 * in the same byte as PG_locked.
1176 */
1177static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1178{
1179	clear_bit_unlock(nr, mem);
1180	/* smp_mb__after_atomic(); */
1181	return test_bit(PG_waiters, mem);
 
 
 
1182}
 
1183
1184#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185
1186/**
1187 * unlock_page - unlock a locked page
1188 * @page: the page
1189 *
1190 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1191 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1192 * mechanism between PageLocked pages and PageWriteback pages is shared.
1193 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1194 *
1195 * Note that this depends on PG_waiters being the sign bit in the byte
1196 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1197 * clear the PG_locked bit and test PG_waiters at the same time fairly
1198 * portably (architectures that do LL/SC can test any bit, while x86 can
1199 * test the sign bit).
1200 */
1201void unlock_page(struct page *page)
1202{
1203	BUILD_BUG_ON(PG_waiters != 7);
1204	page = compound_head(page);
1205	VM_BUG_ON_PAGE(!PageLocked(page), page);
1206	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1207		wake_up_page_bit(page, PG_locked);
1208}
1209EXPORT_SYMBOL(unlock_page);
1210
1211/**
1212 * end_page_writeback - end writeback against a page
1213 * @page: the page
 
 
1214 */
1215void end_page_writeback(struct page *page)
1216{
1217	/*
1218	 * TestClearPageReclaim could be used here but it is an atomic
1219	 * operation and overkill in this particular case. Failing to
1220	 * shuffle a page marked for immediate reclaim is too mild to
1221	 * justify taking an atomic operation penalty at the end of
1222	 * ever page writeback.
1223	 */
1224	if (PageReclaim(page)) {
1225		ClearPageReclaim(page);
1226		rotate_reclaimable_page(page);
1227	}
 
 
 
 
 
 
 
 
1228
1229	if (!test_clear_page_writeback(page))
1230		BUG();
 
 
 
1231
1232	smp_mb__after_atomic();
1233	wake_up_page(page, PG_writeback);
1234}
1235EXPORT_SYMBOL(end_page_writeback);
1236
1237/*
1238 * After completing I/O on a page, call this routine to update the page
1239 * flags appropriately
 
 
 
 
1240 */
1241void page_endio(struct page *page, bool is_write, int err)
1242{
1243	if (!is_write) {
1244		if (!err) {
1245			SetPageUptodate(page);
1246		} else {
1247			ClearPageUptodate(page);
1248			SetPageError(page);
1249		}
1250		unlock_page(page);
1251	} else {
1252		if (err) {
1253			struct address_space *mapping;
1254
1255			SetPageError(page);
1256			mapping = page_mapping(page);
1257			if (mapping)
1258				mapping_set_error(mapping, err);
1259		}
1260		end_page_writeback(page);
 
 
 
 
1261	}
 
 
 
 
 
 
 
 
 
 
 
 
1262}
1263EXPORT_SYMBOL_GPL(page_endio);
1264
1265/**
1266 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1267 * @__page: the page to lock
1268 */
1269void __lock_page(struct page *__page)
1270{
1271	struct page *page = compound_head(__page);
1272	wait_queue_head_t *q = page_waitqueue(page);
1273	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1274}
1275EXPORT_SYMBOL(__lock_page);
1276
1277int __lock_page_killable(struct page *__page)
1278{
1279	struct page *page = compound_head(__page);
1280	wait_queue_head_t *q = page_waitqueue(page);
1281	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282}
1283EXPORT_SYMBOL_GPL(__lock_page_killable);
1284
1285/*
1286 * Return values:
1287 * 1 - page is locked; mmap_sem is still held.
1288 * 0 - page is not locked.
1289 *     mmap_sem has been released (up_read()), unless flags had both
1290 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1291 *     which case mmap_sem is still held.
1292 *
1293 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1294 * with the page locked and the mmap_sem unperturbed.
1295 */
1296int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1297			 unsigned int flags)
1298{
1299	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 
 
1300		/*
1301		 * CAUTION! In this case, mmap_sem is not released
1302		 * even though return 0.
1303		 */
1304		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1305			return 0;
1306
1307		up_read(&mm->mmap_sem);
1308		if (flags & FAULT_FLAG_KILLABLE)
1309			wait_on_page_locked_killable(page);
1310		else
1311			wait_on_page_locked(page);
1312		return 0;
1313	} else {
1314		if (flags & FAULT_FLAG_KILLABLE) {
1315			int ret;
1316
1317			ret = __lock_page_killable(page);
1318			if (ret) {
1319				up_read(&mm->mmap_sem);
1320				return 0;
1321			}
1322		} else
1323			__lock_page(page);
1324		return 1;
1325	}
 
 
1326}
1327
1328/**
1329 * page_cache_next_hole - find the next hole (not-present entry)
1330 * @mapping: mapping
1331 * @index: index
1332 * @max_scan: maximum range to search
1333 *
1334 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1335 * lowest indexed hole.
1336 *
1337 * Returns: the index of the hole if found, otherwise returns an index
1338 * outside of the set specified (in which case 'return - index >=
1339 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1340 * be returned.
1341 *
1342 * page_cache_next_hole may be called under rcu_read_lock. However,
1343 * like radix_tree_gang_lookup, this will not atomically search a
1344 * snapshot of the tree at a single point in time. For example, if a
1345 * hole is created at index 5, then subsequently a hole is created at
1346 * index 10, page_cache_next_hole covering both indexes may return 10
1347 * if called under rcu_read_lock.
1348 */
1349pgoff_t page_cache_next_hole(struct address_space *mapping,
1350			     pgoff_t index, unsigned long max_scan)
1351{
1352	unsigned long i;
1353
1354	for (i = 0; i < max_scan; i++) {
1355		struct page *page;
1356
1357		page = radix_tree_lookup(&mapping->i_pages, index);
1358		if (!page || radix_tree_exceptional_entry(page))
 
1359			break;
1360		index++;
1361		if (index == 0)
1362			break;
1363	}
1364
1365	return index;
1366}
1367EXPORT_SYMBOL(page_cache_next_hole);
1368
1369/**
1370 * page_cache_prev_hole - find the prev hole (not-present entry)
1371 * @mapping: mapping
1372 * @index: index
1373 * @max_scan: maximum range to search
1374 *
1375 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1376 * the first hole.
1377 *
1378 * Returns: the index of the hole if found, otherwise returns an index
1379 * outside of the set specified (in which case 'index - return >=
1380 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1381 * will be returned.
1382 *
1383 * page_cache_prev_hole may be called under rcu_read_lock. However,
1384 * like radix_tree_gang_lookup, this will not atomically search a
1385 * snapshot of the tree at a single point in time. For example, if a
1386 * hole is created at index 10, then subsequently a hole is created at
1387 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1388 * called under rcu_read_lock.
1389 */
1390pgoff_t page_cache_prev_hole(struct address_space *mapping,
1391			     pgoff_t index, unsigned long max_scan)
1392{
1393	unsigned long i;
1394
1395	for (i = 0; i < max_scan; i++) {
1396		struct page *page;
1397
1398		page = radix_tree_lookup(&mapping->i_pages, index);
1399		if (!page || radix_tree_exceptional_entry(page))
 
1400			break;
1401		index--;
1402		if (index == ULONG_MAX)
1403			break;
1404	}
1405
1406	return index;
1407}
1408EXPORT_SYMBOL(page_cache_prev_hole);
1409
1410/**
1411 * find_get_entry - find and get a page cache entry
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1412 * @mapping: the address_space to search
1413 * @offset: the page cache index
1414 *
1415 * Looks up the page cache slot at @mapping & @offset.  If there is a
1416 * page cache page, it is returned with an increased refcount.
1417 *
1418 * If the slot holds a shadow entry of a previously evicted page, or a
1419 * swap entry from shmem/tmpfs, it is returned.
 
 
1420 *
1421 * Otherwise, %NULL is returned.
1422 */
1423struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1424{
1425	void **pagep;
1426	struct page *head, *page;
1427
1428	rcu_read_lock();
1429repeat:
1430	page = NULL;
1431	pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1432	if (pagep) {
1433		page = radix_tree_deref_slot(pagep);
1434		if (unlikely(!page))
1435			goto out;
1436		if (radix_tree_exception(page)) {
1437			if (radix_tree_deref_retry(page))
1438				goto repeat;
1439			/*
1440			 * A shadow entry of a recently evicted page,
1441			 * or a swap entry from shmem/tmpfs.  Return
1442			 * it without attempting to raise page count.
1443			 */
1444			goto out;
1445		}
1446
1447		head = compound_head(page);
1448		if (!page_cache_get_speculative(head))
1449			goto repeat;
1450
1451		/* The page was split under us? */
1452		if (compound_head(page) != head) {
1453			put_page(head);
1454			goto repeat;
1455		}
1456
1457		/*
1458		 * Has the page moved?
1459		 * This is part of the lockless pagecache protocol. See
1460		 * include/linux/pagemap.h for details.
1461		 */
1462		if (unlikely(page != *pagep)) {
1463			put_page(head);
1464			goto repeat;
1465		}
1466	}
1467out:
1468	rcu_read_unlock();
1469
1470	return page;
1471}
1472EXPORT_SYMBOL(find_get_entry);
1473
1474/**
1475 * find_lock_entry - locate, pin and lock a page cache entry
1476 * @mapping: the address_space to search
1477 * @offset: the page cache index
1478 *
1479 * Looks up the page cache slot at @mapping & @offset.  If there is a
1480 * page cache page, it is returned locked and with an increased
1481 * refcount.
1482 *
1483 * If the slot holds a shadow entry of a previously evicted page, or a
1484 * swap entry from shmem/tmpfs, it is returned.
1485 *
1486 * Otherwise, %NULL is returned.
1487 *
1488 * find_lock_entry() may sleep.
1489 */
1490struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1491{
1492	struct page *page;
1493
1494repeat:
1495	page = find_get_entry(mapping, offset);
1496	if (page && !radix_tree_exception(page)) {
1497		lock_page(page);
1498		/* Has the page been truncated? */
1499		if (unlikely(page_mapping(page) != mapping)) {
1500			unlock_page(page);
1501			put_page(page);
1502			goto repeat;
1503		}
1504		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1505	}
1506	return page;
1507}
1508EXPORT_SYMBOL(find_lock_entry);
1509
1510/**
1511 * pagecache_get_page - find and get a page reference
1512 * @mapping: the address_space to search
1513 * @offset: the page index
1514 * @fgp_flags: PCG flags
1515 * @gfp_mask: gfp mask to use for the page cache data page allocation
1516 *
1517 * Looks up the page cache slot at @mapping & @offset.
1518 *
1519 * PCG flags modify how the page is returned.
1520 *
1521 * @fgp_flags can be:
 
1522 *
1523 * - FGP_ACCESSED: the page will be marked accessed
1524 * - FGP_LOCK: Page is return locked
1525 * - FGP_CREAT: If page is not present then a new page is allocated using
1526 *   @gfp_mask and added to the page cache and the VM's LRU
1527 *   list. The page is returned locked and with an increased
1528 *   refcount. Otherwise, NULL is returned.
1529 *
1530 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1531 * if the GFP flags specified for FGP_CREAT are atomic.
1532 *
1533 * If there is a page cache page, it is returned with an increased refcount.
1534 */
1535struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1536	int fgp_flags, gfp_t gfp_mask)
1537{
1538	struct page *page;
1539
1540repeat:
1541	page = find_get_entry(mapping, offset);
1542	if (radix_tree_exceptional_entry(page))
1543		page = NULL;
1544	if (!page)
1545		goto no_page;
1546
1547	if (fgp_flags & FGP_LOCK) {
1548		if (fgp_flags & FGP_NOWAIT) {
1549			if (!trylock_page(page)) {
1550				put_page(page);
1551				return NULL;
1552			}
1553		} else {
1554			lock_page(page);
1555		}
1556
1557		/* Has the page been truncated? */
1558		if (unlikely(page->mapping != mapping)) {
1559			unlock_page(page);
1560			put_page(page);
1561			goto repeat;
1562		}
1563		VM_BUG_ON_PAGE(page->index != offset, page);
1564	}
1565
1566	if (page && (fgp_flags & FGP_ACCESSED))
1567		mark_page_accessed(page);
 
 
 
 
 
1568
 
 
1569no_page:
1570	if (!page && (fgp_flags & FGP_CREAT)) {
 
1571		int err;
1572		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1573			gfp_mask |= __GFP_WRITE;
 
1574		if (fgp_flags & FGP_NOFS)
1575			gfp_mask &= ~__GFP_FS;
 
 
 
 
 
 
1576
1577		page = __page_cache_alloc(gfp_mask);
1578		if (!page)
1579			return NULL;
 
 
 
 
1580
1581		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1582			fgp_flags |= FGP_LOCK;
1583
1584		/* Init accessed so avoid atomic mark_page_accessed later */
1585		if (fgp_flags & FGP_ACCESSED)
1586			__SetPageReferenced(page);
 
 
 
1587
1588		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1589		if (unlikely(err)) {
1590			put_page(page);
1591			page = NULL;
1592			if (err == -EEXIST)
1593				goto repeat;
1594		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595	}
1596
1597	return page;
 
 
 
1598}
1599EXPORT_SYMBOL(pagecache_get_page);
1600
1601/**
1602 * find_get_entries - gang pagecache lookup
1603 * @mapping:	The address_space to search
1604 * @start:	The starting page cache index
1605 * @nr_entries:	The maximum number of entries
1606 * @entries:	Where the resulting entries are placed
1607 * @indices:	The cache indices corresponding to the entries in @entries
1608 *
1609 * find_get_entries() will search for and return a group of up to
1610 * @nr_entries entries in the mapping.  The entries are placed at
1611 * @entries.  find_get_entries() takes a reference against any actual
1612 * pages it returns.
1613 *
1614 * The search returns a group of mapping-contiguous page cache entries
1615 * with ascending indexes.  There may be holes in the indices due to
1616 * not-present pages.
1617 *
1618 * Any shadow entries of evicted pages, or swap entries from
1619 * shmem/tmpfs, are included in the returned array.
1620 *
1621 * find_get_entries() returns the number of pages and shadow entries
1622 * which were found.
1623 */
1624unsigned find_get_entries(struct address_space *mapping,
1625			  pgoff_t start, unsigned int nr_entries,
1626			  struct page **entries, pgoff_t *indices)
1627{
1628	void **slot;
1629	unsigned int ret = 0;
1630	struct radix_tree_iter iter;
1631
1632	if (!nr_entries)
1633		return 0;
1634
1635	rcu_read_lock();
1636	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1637		struct page *head, *page;
1638repeat:
1639		page = radix_tree_deref_slot(slot);
1640		if (unlikely(!page))
1641			continue;
1642		if (radix_tree_exception(page)) {
1643			if (radix_tree_deref_retry(page)) {
1644				slot = radix_tree_iter_retry(&iter);
1645				continue;
1646			}
1647			/*
1648			 * A shadow entry of a recently evicted page, a swap
1649			 * entry from shmem/tmpfs or a DAX entry.  Return it
1650			 * without attempting to raise page count.
1651			 */
1652			goto export;
1653		}
1654
1655		head = compound_head(page);
1656		if (!page_cache_get_speculative(head))
1657			goto repeat;
 
 
 
 
 
 
 
 
1658
1659		/* The page was split under us? */
1660		if (compound_head(page) != head) {
1661			put_page(head);
1662			goto repeat;
1663		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664
1665		/* Has the page moved? */
1666		if (unlikely(page != *slot)) {
1667			put_page(head);
1668			goto repeat;
 
 
 
 
 
 
 
 
 
 
1669		}
1670export:
1671		indices[ret] = iter.index;
1672		entries[ret] = page;
1673		if (++ret == nr_entries)
1674			break;
 
 
 
 
 
1675	}
1676	rcu_read_unlock();
1677	return ret;
 
 
 
 
 
 
 
 
 
 
1678}
1679
1680/**
1681 * find_get_pages_range - gang pagecache lookup
1682 * @mapping:	The address_space to search
1683 * @start:	The starting page index
1684 * @end:	The final page index (inclusive)
1685 * @nr_pages:	The maximum number of pages
1686 * @pages:	Where the resulting pages are placed
1687 *
1688 * find_get_pages_range() will search for and return a group of up to @nr_pages
1689 * pages in the mapping starting at index @start and up to index @end
1690 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1691 * a reference against the returned pages.
1692 *
1693 * The search returns a group of mapping-contiguous pages with ascending
1694 * indexes.  There may be holes in the indices due to not-present pages.
1695 * We also update @start to index the next page for the traversal.
1696 *
1697 * find_get_pages_range() returns the number of pages which were found. If this
1698 * number is smaller than @nr_pages, the end of specified range has been
1699 * reached.
1700 */
1701unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1702			      pgoff_t end, unsigned int nr_pages,
1703			      struct page **pages)
1704{
1705	struct radix_tree_iter iter;
1706	void **slot;
1707	unsigned ret = 0;
1708
1709	if (unlikely(!nr_pages))
1710		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711
1712	rcu_read_lock();
1713	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1714		struct page *head, *page;
1715
1716		if (iter.index > end)
1717			break;
1718repeat:
1719		page = radix_tree_deref_slot(slot);
1720		if (unlikely(!page))
1721			continue;
 
 
 
 
 
 
1722
1723		if (radix_tree_exception(page)) {
1724			if (radix_tree_deref_retry(page)) {
1725				slot = radix_tree_iter_retry(&iter);
1726				continue;
1727			}
1728			/*
1729			 * A shadow entry of a recently evicted page,
1730			 * or a swap entry from shmem/tmpfs.  Skip
1731			 * over it.
1732			 */
1733			continue;
1734		}
1735
1736		head = compound_head(page);
1737		if (!page_cache_get_speculative(head))
1738			goto repeat;
1739
1740		/* The page was split under us? */
1741		if (compound_head(page) != head) {
1742			put_page(head);
1743			goto repeat;
1744		}
 
 
 
1745
1746		/* Has the page moved? */
1747		if (unlikely(page != *slot)) {
1748			put_page(head);
1749			goto repeat;
1750		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751
1752		pages[ret] = page;
1753		if (++ret == nr_pages) {
1754			*start = pages[ret - 1]->index + 1;
 
 
 
 
 
 
 
 
 
1755			goto out;
1756		}
1757	}
1758
1759	/*
1760	 * We come here when there is no page beyond @end. We take care to not
1761	 * overflow the index @start as it confuses some of the callers. This
1762	 * breaks the iteration when there is page at index -1 but that is
1763	 * already broken anyway.
1764	 */
1765	if (end == (pgoff_t)-1)
1766		*start = (pgoff_t)-1;
1767	else
1768		*start = end + 1;
1769out:
1770	rcu_read_unlock();
1771
1772	return ret;
1773}
 
1774
1775/**
1776 * find_get_pages_contig - gang contiguous pagecache lookup
1777 * @mapping:	The address_space to search
1778 * @index:	The starting page index
1779 * @nr_pages:	The maximum number of pages
1780 * @pages:	Where the resulting pages are placed
1781 *
1782 * find_get_pages_contig() works exactly like find_get_pages(), except
1783 * that the returned number of pages are guaranteed to be contiguous.
1784 *
1785 * find_get_pages_contig() returns the number of pages which were found.
 
 
 
 
 
 
1786 */
1787unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1788			       unsigned int nr_pages, struct page **pages)
1789{
1790	struct radix_tree_iter iter;
1791	void **slot;
1792	unsigned int ret = 0;
1793
1794	if (unlikely(!nr_pages))
1795		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797	rcu_read_lock();
1798	radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1799		struct page *head, *page;
1800repeat:
1801		page = radix_tree_deref_slot(slot);
1802		/* The hole, there no reason to continue */
1803		if (unlikely(!page))
1804			break;
1805
1806		if (radix_tree_exception(page)) {
1807			if (radix_tree_deref_retry(page)) {
1808				slot = radix_tree_iter_retry(&iter);
1809				continue;
1810			}
1811			/*
1812			 * A shadow entry of a recently evicted page,
1813			 * or a swap entry from shmem/tmpfs.  Stop
1814			 * looking for contiguous pages.
1815			 */
1816			break;
1817		}
 
1818
1819		head = compound_head(page);
1820		if (!page_cache_get_speculative(head))
1821			goto repeat;
1822
1823		/* The page was split under us? */
1824		if (compound_head(page) != head) {
1825			put_page(head);
1826			goto repeat;
1827		}
1828
1829		/* Has the page moved? */
1830		if (unlikely(page != *slot)) {
1831			put_page(head);
1832			goto repeat;
1833		}
1834
1835		/*
1836		 * must check mapping and index after taking the ref.
1837		 * otherwise we can get both false positives and false
1838		 * negatives, which is just confusing to the caller.
1839		 */
1840		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1841			put_page(page);
1842			break;
1843		}
1844
1845		pages[ret] = page;
1846		if (++ret == nr_pages)
1847			break;
 
 
 
 
 
 
1848	}
1849	rcu_read_unlock();
1850	return ret;
1851}
1852EXPORT_SYMBOL(find_get_pages_contig);
1853
1854/**
1855 * find_get_pages_range_tag - find and return pages in given range matching @tag
1856 * @mapping:	the address_space to search
1857 * @index:	the starting page index
1858 * @end:	The final page index (inclusive)
1859 * @tag:	the tag index
1860 * @nr_pages:	the maximum number of pages
1861 * @pages:	where the resulting pages are placed
1862 *
1863 * Like find_get_pages, except we only return pages which are tagged with
1864 * @tag.   We update @index to index the next page for the traversal.
1865 */
1866unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1867			pgoff_t end, int tag, unsigned int nr_pages,
1868			struct page **pages)
1869{
1870	struct radix_tree_iter iter;
1871	void **slot;
1872	unsigned ret = 0;
1873
1874	if (unlikely(!nr_pages))
1875		return 0;
 
 
 
 
1876
1877	rcu_read_lock();
1878	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1879		struct page *head, *page;
 
 
 
 
 
1880
1881		if (iter.index > end)
1882			break;
1883repeat:
1884		page = radix_tree_deref_slot(slot);
1885		if (unlikely(!page))
1886			continue;
 
 
 
1887
1888		if (radix_tree_exception(page)) {
1889			if (radix_tree_deref_retry(page)) {
1890				slot = radix_tree_iter_retry(&iter);
1891				continue;
1892			}
1893			/*
1894			 * A shadow entry of a recently evicted page.
1895			 *
1896			 * Those entries should never be tagged, but
1897			 * this tree walk is lockless and the tags are
1898			 * looked up in bulk, one radix tree node at a
1899			 * time, so there is a sizable window for page
1900			 * reclaim to evict a page we saw tagged.
1901			 *
1902			 * Skip over it.
1903			 */
1904			continue;
1905		}
1906
1907		head = compound_head(page);
1908		if (!page_cache_get_speculative(head))
1909			goto repeat;
 
 
 
1910
1911		/* The page was split under us? */
1912		if (compound_head(page) != head) {
1913			put_page(head);
1914			goto repeat;
1915		}
1916
1917		/* Has the page moved? */
1918		if (unlikely(page != *slot)) {
1919			put_page(head);
1920			goto repeat;
1921		}
1922
1923		pages[ret] = page;
1924		if (++ret == nr_pages) {
1925			*index = pages[ret - 1]->index + 1;
1926			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1927		}
 
 
 
1928	}
1929
1930	/*
1931	 * We come here when we got at @end. We take care to not overflow the
1932	 * index @index as it confuses some of the callers. This breaks the
1933	 * iteration when there is page at index -1 but that is already broken
1934	 * anyway.
1935	 */
1936	if (end == (pgoff_t)-1)
1937		*index = (pgoff_t)-1;
1938	else
1939		*index = end + 1;
1940out:
1941	rcu_read_unlock();
1942
1943	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944}
1945EXPORT_SYMBOL(find_get_pages_range_tag);
1946
1947/**
1948 * find_get_entries_tag - find and return entries that match @tag
1949 * @mapping:	the address_space to search
1950 * @start:	the starting page cache index
1951 * @tag:	the tag index
1952 * @nr_entries:	the maximum number of entries
1953 * @entries:	where the resulting entries are placed
1954 * @indices:	the cache indices corresponding to the entries in @entries
1955 *
1956 * Like find_get_entries, except we only return entries which are tagged with
1957 * @tag.
1958 */
1959unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1960			int tag, unsigned int nr_entries,
1961			struct page **entries, pgoff_t *indices)
1962{
1963	void **slot;
1964	unsigned int ret = 0;
1965	struct radix_tree_iter iter;
1966
1967	if (!nr_entries)
1968		return 0;
 
1969
1970	rcu_read_lock();
1971	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1972		struct page *head, *page;
1973repeat:
1974		page = radix_tree_deref_slot(slot);
1975		if (unlikely(!page))
1976			continue;
1977		if (radix_tree_exception(page)) {
1978			if (radix_tree_deref_retry(page)) {
1979				slot = radix_tree_iter_retry(&iter);
1980				continue;
1981			}
 
 
 
 
 
 
 
 
1982
1983			/*
1984			 * A shadow entry of a recently evicted page, a swap
1985			 * entry from shmem/tmpfs or a DAX entry.  Return it
1986			 * without attempting to raise page count.
1987			 */
1988			goto export;
1989		}
1990
1991		head = compound_head(page);
1992		if (!page_cache_get_speculative(head))
1993			goto repeat;
 
 
 
 
 
1994
1995		/* The page was split under us? */
1996		if (compound_head(page) != head) {
1997			put_page(head);
1998			goto repeat;
1999		}
 
 
 
 
 
 
2000
2001		/* Has the page moved? */
2002		if (unlikely(page != *slot)) {
2003			put_page(head);
2004			goto repeat;
2005		}
2006export:
2007		indices[ret] = iter.index;
2008		entries[ret] = page;
2009		if (++ret == nr_entries)
2010			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011	}
2012	rcu_read_unlock();
2013	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014}
2015EXPORT_SYMBOL(find_get_entries_tag);
2016
2017/*
2018 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2019 * a _large_ part of the i/o request. Imagine the worst scenario:
2020 *
2021 *      ---R__________________________________________B__________
2022 *         ^ reading here                             ^ bad block(assume 4k)
2023 *
2024 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2025 * => failing the whole request => read(R) => read(R+1) =>
2026 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2027 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2028 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2029 *
2030 * It is going insane. Fix it by quickly scaling down the readahead size.
2031 */
2032static void shrink_readahead_size_eio(struct file *filp,
2033					struct file_ra_state *ra)
2034{
2035	ra->ra_pages /= 4;
 
 
2036}
2037
2038/**
2039 * generic_file_buffered_read - generic file read routine
2040 * @iocb:	the iocb to read
2041 * @iter:	data destination
2042 * @written:	already copied
2043 *
2044 * This is a generic file read routine, and uses the
2045 * mapping->a_ops->readpage() function for the actual low-level stuff.
2046 *
2047 * This is really ugly. But the goto's actually try to clarify some
2048 * of the logic when it comes to error handling etc.
 
2049 */
2050static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2051		struct iov_iter *iter, ssize_t written)
2052{
2053	struct file *filp = iocb->ki_filp;
 
2054	struct address_space *mapping = filp->f_mapping;
2055	struct inode *inode = mapping->host;
2056	struct file_ra_state *ra = &filp->f_ra;
2057	loff_t *ppos = &iocb->ki_pos;
2058	pgoff_t index;
2059	pgoff_t last_index;
2060	pgoff_t prev_index;
2061	unsigned long offset;      /* offset into pagecache page */
2062	unsigned int prev_offset;
2063	int error = 0;
2064
2065	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
 
 
2066		return 0;
 
2067	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
 
2068
2069	index = *ppos >> PAGE_SHIFT;
2070	prev_index = ra->prev_pos >> PAGE_SHIFT;
2071	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2072	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2073	offset = *ppos & ~PAGE_MASK;
2074
2075	for (;;) {
2076		struct page *page;
2077		pgoff_t end_index;
2078		loff_t isize;
2079		unsigned long nr, ret;
 
 
2080
2081		cond_resched();
2082find_page:
2083		if (fatal_signal_pending(current)) {
2084			error = -EINTR;
2085			goto out;
2086		}
2087
2088		page = find_get_page(mapping, index);
2089		if (!page) {
2090			if (iocb->ki_flags & IOCB_NOWAIT)
2091				goto would_block;
2092			page_cache_sync_readahead(mapping,
2093					ra, filp,
2094					index, last_index - index);
2095			page = find_get_page(mapping, index);
2096			if (unlikely(page == NULL))
2097				goto no_cached_page;
2098		}
2099		if (PageReadahead(page)) {
2100			page_cache_async_readahead(mapping,
2101					ra, filp, page,
2102					index, last_index - index);
2103		}
2104		if (!PageUptodate(page)) {
2105			if (iocb->ki_flags & IOCB_NOWAIT) {
2106				put_page(page);
2107				goto would_block;
2108			}
2109
2110			/*
2111			 * See comment in do_read_cache_page on why
2112			 * wait_on_page_locked is used to avoid unnecessarily
2113			 * serialisations and why it's safe.
2114			 */
2115			error = wait_on_page_locked_killable(page);
2116			if (unlikely(error))
2117				goto readpage_error;
2118			if (PageUptodate(page))
2119				goto page_ok;
2120
2121			if (inode->i_blkbits == PAGE_SHIFT ||
2122					!mapping->a_ops->is_partially_uptodate)
2123				goto page_not_up_to_date;
2124			/* pipes can't handle partially uptodate pages */
2125			if (unlikely(iter->type & ITER_PIPE))
2126				goto page_not_up_to_date;
2127			if (!trylock_page(page))
2128				goto page_not_up_to_date;
2129			/* Did it get truncated before we got the lock? */
2130			if (!page->mapping)
2131				goto page_not_up_to_date_locked;
2132			if (!mapping->a_ops->is_partially_uptodate(page,
2133							offset, iter->count))
2134				goto page_not_up_to_date_locked;
2135			unlock_page(page);
2136		}
2137page_ok:
2138		/*
2139		 * i_size must be checked after we know the page is Uptodate.
2140		 *
2141		 * Checking i_size after the check allows us to calculate
2142		 * the correct value for "nr", which means the zero-filled
2143		 * part of the page is not copied back to userspace (unless
2144		 * another truncate extends the file - this is desired though).
2145		 */
2146
2147		isize = i_size_read(inode);
2148		end_index = (isize - 1) >> PAGE_SHIFT;
2149		if (unlikely(!isize || index > end_index)) {
2150			put_page(page);
2151			goto out;
2152		}
2153
2154		/* nr is the maximum number of bytes to copy from this page */
2155		nr = PAGE_SIZE;
2156		if (index == end_index) {
2157			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2158			if (nr <= offset) {
2159				put_page(page);
2160				goto out;
2161			}
2162		}
2163		nr = nr - offset;
2164
2165		/* If users can be writing to this page using arbitrary
2166		 * virtual addresses, take care about potential aliasing
2167		 * before reading the page on the kernel side.
2168		 */
2169		if (mapping_writably_mapped(mapping))
2170			flush_dcache_page(page);
2171
2172		/*
2173		 * When a sequential read accesses a page several times,
2174		 * only mark it as accessed the first time.
2175		 */
2176		if (prev_index != index || offset != prev_offset)
2177			mark_page_accessed(page);
2178		prev_index = index;
2179
2180		/*
2181		 * Ok, we have the page, and it's up-to-date, so
2182		 * now we can copy it to user space...
2183		 */
 
 
 
 
 
 
 
 
 
 
 
2184
2185		ret = copy_page_to_iter(page, offset, nr, iter);
2186		offset += ret;
2187		index += offset >> PAGE_SHIFT;
2188		offset &= ~PAGE_MASK;
2189		prev_offset = offset;
 
 
 
 
 
 
2190
2191		put_page(page);
2192		written += ret;
2193		if (!iov_iter_count(iter))
2194			goto out;
2195		if (ret < nr) {
2196			error = -EFAULT;
2197			goto out;
2198		}
2199		continue;
2200
2201page_not_up_to_date:
2202		/* Get exclusive access to the page ... */
2203		error = lock_page_killable(page);
2204		if (unlikely(error))
2205			goto readpage_error;
2206
2207page_not_up_to_date_locked:
2208		/* Did it get truncated before we got the lock? */
2209		if (!page->mapping) {
2210			unlock_page(page);
2211			put_page(page);
2212			continue;
2213		}
2214
2215		/* Did somebody else fill it already? */
2216		if (PageUptodate(page)) {
2217			unlock_page(page);
2218			goto page_ok;
2219		}
2220
2221readpage:
2222		/*
2223		 * A previous I/O error may have been due to temporary
2224		 * failures, eg. multipath errors.
2225		 * PG_error will be set again if readpage fails.
2226		 */
2227		ClearPageError(page);
2228		/* Start the actual read. The read will unlock the page. */
2229		error = mapping->a_ops->readpage(filp, page);
2230
2231		if (unlikely(error)) {
2232			if (error == AOP_TRUNCATED_PAGE) {
2233				put_page(page);
2234				error = 0;
2235				goto find_page;
2236			}
2237			goto readpage_error;
2238		}
2239
2240		if (!PageUptodate(page)) {
2241			error = lock_page_killable(page);
2242			if (unlikely(error))
2243				goto readpage_error;
2244			if (!PageUptodate(page)) {
2245				if (page->mapping == NULL) {
2246					/*
2247					 * invalidate_mapping_pages got it
2248					 */
2249					unlock_page(page);
2250					put_page(page);
2251					goto find_page;
2252				}
2253				unlock_page(page);
2254				shrink_readahead_size_eio(filp, ra);
2255				error = -EIO;
2256				goto readpage_error;
2257			}
2258			unlock_page(page);
2259		}
 
 
 
 
 
2260
2261		goto page_ok;
 
 
 
 
2262
2263readpage_error:
2264		/* UHHUH! A synchronous read error occurred. Report it */
2265		put_page(page);
2266		goto out;
 
2267
2268no_cached_page:
2269		/*
2270		 * Ok, it wasn't cached, so we need to create a new
2271		 * page..
2272		 */
2273		page = page_cache_alloc(mapping);
2274		if (!page) {
2275			error = -ENOMEM;
2276			goto out;
2277		}
2278		error = add_to_page_cache_lru(page, mapping, index,
2279				mapping_gfp_constraint(mapping, GFP_KERNEL));
2280		if (error) {
2281			put_page(page);
2282			if (error == -EEXIST) {
2283				error = 0;
2284				goto find_page;
2285			}
2286			goto out;
2287		}
2288		goto readpage;
2289	}
2290
2291would_block:
2292	error = -EAGAIN;
2293out:
2294	ra->prev_pos = prev_index;
2295	ra->prev_pos <<= PAGE_SHIFT;
2296	ra->prev_pos |= prev_offset;
2297
2298	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2299	file_accessed(filp);
2300	return written ? written : error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301}
 
2302
2303/**
2304 * generic_file_read_iter - generic filesystem read routine
2305 * @iocb:	kernel I/O control block
2306 * @iter:	destination for the data read
2307 *
2308 * This is the "read_iter()" routine for all filesystems
2309 * that can use the page cache directly.
 
 
 
 
 
 
 
 
 
 
 
 
 
2310 */
2311ssize_t
2312generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2313{
2314	size_t count = iov_iter_count(iter);
2315	ssize_t retval = 0;
2316
2317	if (!count)
2318		goto out; /* skip atime */
2319
2320	if (iocb->ki_flags & IOCB_DIRECT) {
2321		struct file *file = iocb->ki_filp;
2322		struct address_space *mapping = file->f_mapping;
2323		struct inode *inode = mapping->host;
2324		loff_t size;
2325
2326		size = i_size_read(inode);
2327		if (iocb->ki_flags & IOCB_NOWAIT) {
2328			if (filemap_range_has_page(mapping, iocb->ki_pos,
2329						   iocb->ki_pos + count - 1))
2330				return -EAGAIN;
2331		} else {
2332			retval = filemap_write_and_wait_range(mapping,
2333						iocb->ki_pos,
2334					        iocb->ki_pos + count - 1);
2335			if (retval < 0)
2336				goto out;
2337		}
2338
 
 
 
2339		file_accessed(file);
2340
2341		retval = mapping->a_ops->direct_IO(iocb, iter);
2342		if (retval >= 0) {
2343			iocb->ki_pos += retval;
2344			count -= retval;
2345		}
2346		iov_iter_revert(iter, count - iov_iter_count(iter));
 
2347
2348		/*
2349		 * Btrfs can have a short DIO read if we encounter
2350		 * compressed extents, so if there was an error, or if
2351		 * we've already read everything we wanted to, or if
2352		 * there was a short read because we hit EOF, go ahead
2353		 * and return.  Otherwise fallthrough to buffered io for
2354		 * the rest of the read.  Buffered reads will not work for
2355		 * DAX files, so don't bother trying.
2356		 */
2357		if (retval < 0 || !count || iocb->ki_pos >= size ||
2358		    IS_DAX(inode))
2359			goto out;
 
2360	}
2361
2362	retval = generic_file_buffered_read(iocb, iter, retval);
2363out:
2364	return retval;
2365}
2366EXPORT_SYMBOL(generic_file_read_iter);
2367
2368#ifdef CONFIG_MMU
2369/**
2370 * page_cache_read - adds requested page to the page cache if not already there
2371 * @file:	file to read
2372 * @offset:	page index
2373 * @gfp_mask:	memory allocation flags
2374 *
2375 * This adds the requested page to the page cache if it isn't already there,
2376 * and schedules an I/O to read in its contents from disk.
2377 */
2378static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
 
2379{
2380	struct address_space *mapping = file->f_mapping;
2381	struct page *page;
2382	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2383
2384	do {
2385		page = __page_cache_alloc(gfp_mask);
2386		if (!page)
2387			return -ENOMEM;
2388
2389		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2390		if (ret == 0)
2391			ret = mapping->a_ops->readpage(file, page);
2392		else if (ret == -EEXIST)
2393			ret = 0; /* losing race to add is OK */
2394
2395		put_page(page);
 
2396
2397	} while (ret == AOP_TRUNCATED_PAGE);
 
 
 
2398
2399	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2400}
2401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2402#define MMAP_LOTSAMISS  (100)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2403
2404/*
2405 * Synchronous readahead happens when we don't even find
2406 * a page in the page cache at all.
 
 
 
2407 */
2408static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2409				   struct file_ra_state *ra,
2410				   struct file *file,
2411				   pgoff_t offset)
2412{
 
 
2413	struct address_space *mapping = file->f_mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414
2415	/* If we don't want any read-ahead, don't bother */
2416	if (vma->vm_flags & VM_RAND_READ)
2417		return;
2418	if (!ra->ra_pages)
2419		return;
2420
2421	if (vma->vm_flags & VM_SEQ_READ) {
2422		page_cache_sync_readahead(mapping, ra, file, offset,
2423					  ra->ra_pages);
2424		return;
2425	}
2426
2427	/* Avoid banging the cache line if not needed */
2428	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2429		ra->mmap_miss++;
 
2430
2431	/*
2432	 * Do we miss much more than hit in this file? If so,
2433	 * stop bothering with read-ahead. It will only hurt.
2434	 */
2435	if (ra->mmap_miss > MMAP_LOTSAMISS)
2436		return;
2437
2438	/*
2439	 * mmap read-around
2440	 */
2441	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
 
2442	ra->size = ra->ra_pages;
2443	ra->async_size = ra->ra_pages / 4;
2444	ra_submit(ra, mapping, file);
 
 
2445}
2446
2447/*
2448 * Asynchronous readahead happens when we find the page and PG_readahead,
2449 * so we want to possibly extend the readahead further..
 
2450 */
2451static void do_async_mmap_readahead(struct vm_area_struct *vma,
2452				    struct file_ra_state *ra,
2453				    struct file *file,
2454				    struct page *page,
2455				    pgoff_t offset)
2456{
2457	struct address_space *mapping = file->f_mapping;
 
 
 
 
2458
2459	/* If we don't want any read-ahead, don't bother */
2460	if (vma->vm_flags & VM_RAND_READ)
2461		return;
2462	if (ra->mmap_miss > 0)
2463		ra->mmap_miss--;
2464	if (PageReadahead(page))
2465		page_cache_async_readahead(mapping, ra, file,
2466					   page, offset, ra->ra_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2467}
2468
2469/**
2470 * filemap_fault - read in file data for page fault handling
2471 * @vmf:	struct vm_fault containing details of the fault
2472 *
2473 * filemap_fault() is invoked via the vma operations vector for a
2474 * mapped memory region to read in file data during a page fault.
2475 *
2476 * The goto's are kind of ugly, but this streamlines the normal case of having
2477 * it in the page cache, and handles the special cases reasonably without
2478 * having a lot of duplicated code.
2479 *
2480 * vma->vm_mm->mmap_sem must be held on entry.
2481 *
2482 * If our return value has VM_FAULT_RETRY set, it's because
2483 * lock_page_or_retry() returned 0.
2484 * The mmap_sem has usually been released in this case.
2485 * See __lock_page_or_retry() for the exception.
2486 *
2487 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2488 * has not been released.
2489 *
2490 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
 
 
2491 */
2492int filemap_fault(struct vm_fault *vmf)
2493{
2494	int error;
2495	struct file *file = vmf->vma->vm_file;
 
2496	struct address_space *mapping = file->f_mapping;
2497	struct file_ra_state *ra = &file->f_ra;
2498	struct inode *inode = mapping->host;
2499	pgoff_t offset = vmf->pgoff;
2500	pgoff_t max_off;
2501	struct page *page;
2502	int ret = 0;
2503
2504	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2505	if (unlikely(offset >= max_off))
2506		return VM_FAULT_SIGBUS;
2507
2508	/*
2509	 * Do we have something in the page cache already?
2510	 */
2511	page = find_get_page(mapping, offset);
2512	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2513		/*
2514		 * We found the page, so try async readahead before
2515		 * waiting for the lock.
2516		 */
2517		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2518	} else if (!page) {
 
 
 
 
 
 
 
 
 
2519		/* No page in the page cache at all */
2520		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2521		count_vm_event(PGMAJFAULT);
2522		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2523		ret = VM_FAULT_MAJOR;
 
2524retry_find:
2525		page = find_get_page(mapping, offset);
2526		if (!page)
2527			goto no_cached_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2528	}
2529
2530	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2531		put_page(page);
2532		return ret | VM_FAULT_RETRY;
2533	}
2534
2535	/* Did it get truncated? */
2536	if (unlikely(page->mapping != mapping)) {
2537		unlock_page(page);
2538		put_page(page);
2539		goto retry_find;
2540	}
2541	VM_BUG_ON_PAGE(page->index != offset, page);
2542
2543	/*
2544	 * We have a locked page in the page cache, now we need to check
2545	 * that it's up-to-date. If not, it is going to be due to an error.
 
2546	 */
2547	if (unlikely(!PageUptodate(page)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2548		goto page_not_uptodate;
 
 
 
 
 
 
 
 
 
 
 
 
 
2549
2550	/*
2551	 * Found the page and have a reference on it.
2552	 * We must recheck i_size under page lock.
2553	 */
2554	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2555	if (unlikely(offset >= max_off)) {
2556		unlock_page(page);
2557		put_page(page);
2558		return VM_FAULT_SIGBUS;
2559	}
2560
2561	vmf->page = page;
2562	return ret | VM_FAULT_LOCKED;
2563
2564no_cached_page:
2565	/*
2566	 * We're only likely to ever get here if MADV_RANDOM is in
2567	 * effect.
2568	 */
2569	error = page_cache_read(file, offset, vmf->gfp_mask);
2570
2571	/*
2572	 * The page we want has now been added to the page cache.
2573	 * In the unlikely event that someone removed it in the
2574	 * meantime, we'll just come back here and read it again.
2575	 */
2576	if (error >= 0)
2577		goto retry_find;
2578
2579	/*
2580	 * An error return from page_cache_read can result if the
2581	 * system is low on memory, or a problem occurs while trying
2582	 * to schedule I/O.
2583	 */
2584	if (error == -ENOMEM)
2585		return VM_FAULT_OOM;
2586	return VM_FAULT_SIGBUS;
2587
2588page_not_uptodate:
2589	/*
2590	 * Umm, take care of errors if the page isn't up-to-date.
2591	 * Try to re-read it _once_. We do this synchronously,
2592	 * because there really aren't any performance issues here
2593	 * and we need to check for errors.
2594	 */
2595	ClearPageError(page);
2596	error = mapping->a_ops->readpage(file, page);
2597	if (!error) {
2598		wait_on_page_locked(page);
2599		if (!PageUptodate(page))
2600			error = -EIO;
2601	}
2602	put_page(page);
2603
2604	if (!error || error == AOP_TRUNCATED_PAGE)
2605		goto retry_find;
 
2606
2607	/* Things didn't work out. Return zero to tell the mm layer so. */
2608	shrink_readahead_size_eio(file, ra);
2609	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610}
2611EXPORT_SYMBOL(filemap_fault);
2612
2613void filemap_map_pages(struct vm_fault *vmf,
2614		pgoff_t start_pgoff, pgoff_t end_pgoff)
2615{
2616	struct radix_tree_iter iter;
2617	void **slot;
2618	struct file *file = vmf->vma->vm_file;
2619	struct address_space *mapping = file->f_mapping;
2620	pgoff_t last_pgoff = start_pgoff;
2621	unsigned long max_idx;
2622	struct page *head, *page;
2623
2624	rcu_read_lock();
2625	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2626		if (iter.index > end_pgoff)
2627			break;
2628repeat:
2629		page = radix_tree_deref_slot(slot);
2630		if (unlikely(!page))
2631			goto next;
2632		if (radix_tree_exception(page)) {
2633			if (radix_tree_deref_retry(page)) {
2634				slot = radix_tree_iter_retry(&iter);
2635				continue;
2636			}
2637			goto next;
2638		}
 
2639
2640		head = compound_head(page);
2641		if (!page_cache_get_speculative(head))
2642			goto repeat;
2643
2644		/* The page was split under us? */
2645		if (compound_head(page) != head) {
2646			put_page(head);
2647			goto repeat;
2648		}
2649
2650		/* Has the page moved? */
2651		if (unlikely(page != *slot)) {
2652			put_page(head);
2653			goto repeat;
2654		}
2655
2656		if (!PageUptodate(page) ||
2657				PageReadahead(page) ||
2658				PageHWPoison(page))
 
 
 
 
 
 
 
 
 
 
2659			goto skip;
2660		if (!trylock_page(page))
2661			goto skip;
2662
2663		if (page->mapping != mapping || !PageUptodate(page))
 
 
 
2664			goto unlock;
2665
2666		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2667		if (page->index >= max_idx)
2668			goto unlock;
 
 
 
 
 
 
2669
2670		if (file->f_ra.mmap_miss > 0)
2671			file->f_ra.mmap_miss--;
2672
2673		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2674		if (vmf->pte)
2675			vmf->pte += iter.index - last_pgoff;
2676		last_pgoff = iter.index;
2677		if (alloc_set_pte(vmf, NULL, page))
2678			goto unlock;
2679		unlock_page(page);
2680		goto next;
2681unlock:
2682		unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2683skip:
2684		put_page(page);
2685next:
2686		/* Huge page is mapped? No need to proceed. */
2687		if (pmd_trans_huge(*vmf->pmd))
2688			break;
2689		if (iter.index == end_pgoff)
2690			break;
 
 
 
 
 
 
 
 
 
 
 
 
2691	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2692	rcu_read_unlock();
 
 
 
 
 
 
 
 
2693}
2694EXPORT_SYMBOL(filemap_map_pages);
2695
2696int filemap_page_mkwrite(struct vm_fault *vmf)
2697{
2698	struct page *page = vmf->page;
2699	struct inode *inode = file_inode(vmf->vma->vm_file);
2700	int ret = VM_FAULT_LOCKED;
2701
2702	sb_start_pagefault(inode->i_sb);
2703	file_update_time(vmf->vma->vm_file);
2704	lock_page(page);
2705	if (page->mapping != inode->i_mapping) {
2706		unlock_page(page);
2707		ret = VM_FAULT_NOPAGE;
2708		goto out;
2709	}
2710	/*
2711	 * We mark the page dirty already here so that when freeze is in
2712	 * progress, we are guaranteed that writeback during freezing will
2713	 * see the dirty page and writeprotect it again.
2714	 */
2715	set_page_dirty(page);
2716	wait_for_stable_page(page);
2717out:
2718	sb_end_pagefault(inode->i_sb);
2719	return ret;
2720}
2721
2722const struct vm_operations_struct generic_file_vm_ops = {
2723	.fault		= filemap_fault,
2724	.map_pages	= filemap_map_pages,
2725	.page_mkwrite	= filemap_page_mkwrite,
2726};
2727
2728/* This is used for a general mmap of a disk file */
2729
2730int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2731{
2732	struct address_space *mapping = file->f_mapping;
2733
2734	if (!mapping->a_ops->readpage)
2735		return -ENOEXEC;
2736	file_accessed(file);
2737	vma->vm_ops = &generic_file_vm_ops;
2738	return 0;
2739}
2740
2741/*
2742 * This is for filesystems which do not implement ->writepage.
2743 */
2744int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2745{
2746	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2747		return -EINVAL;
2748	return generic_file_mmap(file, vma);
2749}
2750#else
2751int filemap_page_mkwrite(struct vm_fault *vmf)
2752{
2753	return -ENOSYS;
2754}
2755int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2756{
2757	return -ENOSYS;
2758}
2759int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2760{
2761	return -ENOSYS;
2762}
2763#endif /* CONFIG_MMU */
2764
2765EXPORT_SYMBOL(filemap_page_mkwrite);
2766EXPORT_SYMBOL(generic_file_mmap);
2767EXPORT_SYMBOL(generic_file_readonly_mmap);
2768
2769static struct page *wait_on_page_read(struct page *page)
2770{
2771	if (!IS_ERR(page)) {
2772		wait_on_page_locked(page);
2773		if (!PageUptodate(page)) {
2774			put_page(page);
2775			page = ERR_PTR(-EIO);
2776		}
2777	}
2778	return page;
2779}
2780
2781static struct page *do_read_cache_page(struct address_space *mapping,
2782				pgoff_t index,
2783				int (*filler)(void *, struct page *),
2784				void *data,
2785				gfp_t gfp)
2786{
2787	struct page *page;
2788	int err;
 
 
 
2789repeat:
2790	page = find_get_page(mapping, index);
2791	if (!page) {
2792		page = __page_cache_alloc(gfp);
2793		if (!page)
2794			return ERR_PTR(-ENOMEM);
2795		err = add_to_page_cache_lru(page, mapping, index, gfp);
2796		if (unlikely(err)) {
2797			put_page(page);
2798			if (err == -EEXIST)
2799				goto repeat;
2800			/* Presumably ENOMEM for radix tree node */
2801			return ERR_PTR(err);
2802		}
2803
2804filler:
2805		err = filler(data, page);
2806		if (err < 0) {
2807			put_page(page);
2808			return ERR_PTR(err);
2809		}
2810
2811		page = wait_on_page_read(page);
2812		if (IS_ERR(page))
2813			return page;
2814		goto out;
2815	}
2816	if (PageUptodate(page))
2817		goto out;
2818
2819	/*
2820	 * Page is not up to date and may be locked due one of the following
2821	 * case a: Page is being filled and the page lock is held
2822	 * case b: Read/write error clearing the page uptodate status
2823	 * case c: Truncation in progress (page locked)
2824	 * case d: Reclaim in progress
2825	 *
2826	 * Case a, the page will be up to date when the page is unlocked.
2827	 *    There is no need to serialise on the page lock here as the page
2828	 *    is pinned so the lock gives no additional protection. Even if the
2829	 *    the page is truncated, the data is still valid if PageUptodate as
2830	 *    it's a race vs truncate race.
2831	 * Case b, the page will not be up to date
2832	 * Case c, the page may be truncated but in itself, the data may still
2833	 *    be valid after IO completes as it's a read vs truncate race. The
2834	 *    operation must restart if the page is not uptodate on unlock but
2835	 *    otherwise serialising on page lock to stabilise the mapping gives
2836	 *    no additional guarantees to the caller as the page lock is
2837	 *    released before return.
2838	 * Case d, similar to truncation. If reclaim holds the page lock, it
2839	 *    will be a race with remove_mapping that determines if the mapping
2840	 *    is valid on unlock but otherwise the data is valid and there is
2841	 *    no need to serialise with page lock.
2842	 *
2843	 * As the page lock gives no additional guarantee, we optimistically
2844	 * wait on the page to be unlocked and check if it's up to date and
2845	 * use the page if it is. Otherwise, the page lock is required to
2846	 * distinguish between the different cases. The motivation is that we
2847	 * avoid spurious serialisations and wakeups when multiple processes
2848	 * wait on the same page for IO to complete.
2849	 */
2850	wait_on_page_locked(page);
2851	if (PageUptodate(page))
2852		goto out;
2853
2854	/* Distinguish between all the cases under the safety of the lock */
2855	lock_page(page);
2856
2857	/* Case c or d, restart the operation */
2858	if (!page->mapping) {
2859		unlock_page(page);
2860		put_page(page);
2861		goto repeat;
2862	}
2863
2864	/* Someone else locked and filled the page in a very small window */
2865	if (PageUptodate(page)) {
2866		unlock_page(page);
2867		goto out;
2868	}
2869	goto filler;
 
 
 
 
 
 
 
 
2870
2871out:
2872	mark_page_accessed(page);
2873	return page;
2874}
2875
2876/**
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping:	the page's address_space
2879 * @index:	the page index
2880 * @filler:	function to perform the read
2881 * @data:	first arg to filler(data, page) function, often left as NULL
2882 *
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2885 *
2886 * If the page does not get brought uptodate, return -EIO.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2887 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2888struct page *read_cache_page(struct address_space *mapping,
2889				pgoff_t index,
2890				int (*filler)(void *, struct page *),
2891				void *data)
2892{
2893	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 
2894}
2895EXPORT_SYMBOL(read_cache_page);
2896
2897/**
2898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2899 * @mapping:	the page's address_space
2900 * @index:	the page index
2901 * @gfp:	the page allocator flags to use if allocating
2902 *
2903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2904 * any new page allocations done using the specified allocation flags.
2905 *
2906 * If the page does not get brought uptodate, return -EIO.
 
 
 
 
2907 */
2908struct page *read_cache_page_gfp(struct address_space *mapping,
2909				pgoff_t index,
2910				gfp_t gfp)
2911{
2912	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2913
2914	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2915}
2916EXPORT_SYMBOL(read_cache_page_gfp);
2917
2918/*
2919 * Performs necessary checks before doing a write
2920 *
2921 * Can adjust writing position or amount of bytes to write.
2922 * Returns appropriate error code that caller should return or
2923 * zero in case that write should be allowed.
2924 */
2925inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2926{
2927	struct file *file = iocb->ki_filp;
2928	struct inode *inode = file->f_mapping->host;
2929	unsigned long limit = rlimit(RLIMIT_FSIZE);
2930	loff_t pos;
2931
2932	if (!iov_iter_count(from))
2933		return 0;
2934
2935	/* FIXME: this is for backwards compatibility with 2.4 */
2936	if (iocb->ki_flags & IOCB_APPEND)
2937		iocb->ki_pos = i_size_read(inode);
2938
2939	pos = iocb->ki_pos;
2940
2941	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2942		return -EINVAL;
2943
2944	if (limit != RLIM_INFINITY) {
2945		if (iocb->ki_pos >= limit) {
2946			send_sig(SIGXFSZ, current, 0);
2947			return -EFBIG;
2948		}
2949		iov_iter_truncate(from, limit - (unsigned long)pos);
2950	}
2951
2952	/*
2953	 * LFS rule
2954	 */
2955	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2956				!(file->f_flags & O_LARGEFILE))) {
2957		if (pos >= MAX_NON_LFS)
2958			return -EFBIG;
2959		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2960	}
2961
2962	/*
2963	 * Are we about to exceed the fs block limit ?
2964	 *
2965	 * If we have written data it becomes a short write.  If we have
2966	 * exceeded without writing data we send a signal and return EFBIG.
2967	 * Linus frestrict idea will clean these up nicely..
2968	 */
2969	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2970		return -EFBIG;
2971
2972	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2973	return iov_iter_count(from);
2974}
2975EXPORT_SYMBOL(generic_write_checks);
2976
2977int pagecache_write_begin(struct file *file, struct address_space *mapping,
2978				loff_t pos, unsigned len, unsigned flags,
2979				struct page **pagep, void **fsdata)
2980{
2981	const struct address_space_operations *aops = mapping->a_ops;
2982
2983	return aops->write_begin(file, mapping, pos, len, flags,
2984							pagep, fsdata);
2985}
2986EXPORT_SYMBOL(pagecache_write_begin);
2987
2988int pagecache_write_end(struct file *file, struct address_space *mapping,
2989				loff_t pos, unsigned len, unsigned copied,
2990				struct page *page, void *fsdata)
2991{
2992	const struct address_space_operations *aops = mapping->a_ops;
2993
2994	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
 
 
 
 
2995}
2996EXPORT_SYMBOL(pagecache_write_end);
2997
2998ssize_t
2999generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3000{
3001	struct file	*file = iocb->ki_filp;
3002	struct address_space *mapping = file->f_mapping;
3003	struct inode	*inode = mapping->host;
3004	loff_t		pos = iocb->ki_pos;
3005	ssize_t		written;
3006	size_t		write_len;
3007	pgoff_t		end;
3008
3009	write_len = iov_iter_count(from);
3010	end = (pos + write_len - 1) >> PAGE_SHIFT;
3011
3012	if (iocb->ki_flags & IOCB_NOWAIT) {
3013		/* If there are pages to writeback, return */
3014		if (filemap_range_has_page(inode->i_mapping, pos,
3015					   pos + iov_iter_count(from)))
3016			return -EAGAIN;
3017	} else {
3018		written = filemap_write_and_wait_range(mapping, pos,
3019							pos + write_len - 1);
3020		if (written)
3021			goto out;
3022	}
3023
3024	/*
3025	 * After a write we want buffered reads to be sure to go to disk to get
3026	 * the new data.  We invalidate clean cached page from the region we're
3027	 * about to write.  We do this *before* the write so that we can return
3028	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3029	 */
3030	written = invalidate_inode_pages2_range(mapping,
3031					pos >> PAGE_SHIFT, end);
3032	/*
3033	 * If a page can not be invalidated, return 0 to fall back
3034	 * to buffered write.
3035	 */
 
3036	if (written) {
3037		if (written == -EBUSY)
3038			return 0;
3039		goto out;
3040	}
3041
3042	written = mapping->a_ops->direct_IO(iocb, from);
3043
3044	/*
3045	 * Finally, try again to invalidate clean pages which might have been
3046	 * cached by non-direct readahead, or faulted in by get_user_pages()
3047	 * if the source of the write was an mmap'ed region of the file
3048	 * we're writing.  Either one is a pretty crazy thing to do,
3049	 * so we don't support it 100%.  If this invalidation
3050	 * fails, tough, the write still worked...
3051	 *
3052	 * Most of the time we do not need this since dio_complete() will do
3053	 * the invalidation for us. However there are some file systems that
3054	 * do not end up with dio_complete() being called, so let's not break
3055	 * them by removing it completely
 
 
 
 
3056	 */
3057	if (mapping->nrpages)
3058		invalidate_inode_pages2_range(mapping,
3059					pos >> PAGE_SHIFT, end);
3060
3061	if (written > 0) {
 
 
 
 
3062		pos += written;
3063		write_len -= written;
3064		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3065			i_size_write(inode, pos);
3066			mark_inode_dirty(inode);
3067		}
3068		iocb->ki_pos = pos;
3069	}
3070	iov_iter_revert(from, write_len - iov_iter_count(from));
3071out:
3072	return written;
3073}
3074EXPORT_SYMBOL(generic_file_direct_write);
3075
3076/*
3077 * Find or create a page at the given pagecache position. Return the locked
3078 * page. This function is specifically for buffered writes.
3079 */
3080struct page *grab_cache_page_write_begin(struct address_space *mapping,
3081					pgoff_t index, unsigned flags)
3082{
3083	struct page *page;
3084	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3085
3086	if (flags & AOP_FLAG_NOFS)
3087		fgp_flags |= FGP_NOFS;
3088
3089	page = pagecache_get_page(mapping, index, fgp_flags,
3090			mapping_gfp_mask(mapping));
3091	if (page)
3092		wait_for_stable_page(page);
3093
3094	return page;
3095}
3096EXPORT_SYMBOL(grab_cache_page_write_begin);
3097
3098ssize_t generic_perform_write(struct file *file,
3099				struct iov_iter *i, loff_t pos)
3100{
 
 
3101	struct address_space *mapping = file->f_mapping;
3102	const struct address_space_operations *a_ops = mapping->a_ops;
3103	long status = 0;
3104	ssize_t written = 0;
3105	unsigned int flags = 0;
3106
3107	do {
3108		struct page *page;
3109		unsigned long offset;	/* Offset into pagecache page */
3110		unsigned long bytes;	/* Bytes to write to page */
3111		size_t copied;		/* Bytes copied from user */
3112		void *fsdata;
3113
3114		offset = (pos & (PAGE_SIZE - 1));
3115		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3116						iov_iter_count(i));
3117
3118again:
3119		/*
3120		 * Bring in the user page that we will copy from _first_.
3121		 * Otherwise there's a nasty deadlock on copying from the
3122		 * same page as we're writing to, without it being marked
3123		 * up-to-date.
3124		 *
3125		 * Not only is this an optimisation, but it is also required
3126		 * to check that the address is actually valid, when atomic
3127		 * usercopies are used, below.
3128		 */
3129		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3130			status = -EFAULT;
3131			break;
3132		}
3133
3134		if (fatal_signal_pending(current)) {
3135			status = -EINTR;
3136			break;
3137		}
3138
3139		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3140						&page, &fsdata);
3141		if (unlikely(status < 0))
3142			break;
3143
3144		if (mapping_writably_mapped(mapping))
3145			flush_dcache_page(page);
3146
3147		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3148		flush_dcache_page(page);
3149
3150		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3151						page, fsdata);
3152		if (unlikely(status < 0))
3153			break;
3154		copied = status;
3155
 
3156		cond_resched();
3157
3158		iov_iter_advance(i, copied);
3159		if (unlikely(copied == 0)) {
3160			/*
3161			 * If we were unable to copy any data at all, we must
3162			 * fall back to a single segment length write.
3163			 *
3164			 * If we didn't fallback here, we could livelock
3165			 * because not all segments in the iov can be copied at
3166			 * once without a pagefault.
3167			 */
3168			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3169						iov_iter_single_seg_count(i));
3170			goto again;
3171		}
3172		pos += copied;
3173		written += copied;
3174
3175		balance_dirty_pages_ratelimited(mapping);
3176	} while (iov_iter_count(i));
3177
3178	return written ? written : status;
 
 
 
3179}
3180EXPORT_SYMBOL(generic_perform_write);
3181
3182/**
3183 * __generic_file_write_iter - write data to a file
3184 * @iocb:	IO state structure (file, offset, etc.)
3185 * @from:	iov_iter with data to write
3186 *
3187 * This function does all the work needed for actually writing data to a
3188 * file. It does all basic checks, removes SUID from the file, updates
3189 * modification times and calls proper subroutines depending on whether we
3190 * do direct IO or a standard buffered write.
3191 *
3192 * It expects i_mutex to be grabbed unless we work on a block device or similar
3193 * object which does not need locking at all.
3194 *
3195 * This function does *not* take care of syncing data in case of O_SYNC write.
3196 * A caller has to handle it. This is mainly due to the fact that we want to
3197 * avoid syncing under i_mutex.
 
 
 
 
3198 */
3199ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3200{
3201	struct file *file = iocb->ki_filp;
3202	struct address_space * mapping = file->f_mapping;
3203	struct inode 	*inode = mapping->host;
3204	ssize_t		written = 0;
3205	ssize_t		err;
3206	ssize_t		status;
3207
3208	/* We can write back this queue in page reclaim */
3209	current->backing_dev_info = inode_to_bdi(inode);
3210	err = file_remove_privs(file);
3211	if (err)
3212		goto out;
3213
3214	err = file_update_time(file);
3215	if (err)
3216		goto out;
 
 
 
 
3217
3218	if (iocb->ki_flags & IOCB_DIRECT) {
3219		loff_t pos, endbyte;
3220
3221		written = generic_file_direct_write(iocb, from);
3222		/*
3223		 * If the write stopped short of completing, fall back to
3224		 * buffered writes.  Some filesystems do this for writes to
3225		 * holes, for example.  For DAX files, a buffered write will
3226		 * not succeed (even if it did, DAX does not handle dirty
3227		 * page-cache pages correctly).
3228		 */
3229		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3230			goto out;
3231
3232		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3233		/*
3234		 * If generic_perform_write() returned a synchronous error
3235		 * then we want to return the number of bytes which were
3236		 * direct-written, or the error code if that was zero.  Note
3237		 * that this differs from normal direct-io semantics, which
3238		 * will return -EFOO even if some bytes were written.
3239		 */
3240		if (unlikely(status < 0)) {
3241			err = status;
3242			goto out;
3243		}
3244		/*
3245		 * We need to ensure that the page cache pages are written to
3246		 * disk and invalidated to preserve the expected O_DIRECT
3247		 * semantics.
3248		 */
3249		endbyte = pos + status - 1;
3250		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3251		if (err == 0) {
3252			iocb->ki_pos = endbyte + 1;
3253			written += status;
3254			invalidate_mapping_pages(mapping,
3255						 pos >> PAGE_SHIFT,
3256						 endbyte >> PAGE_SHIFT);
3257		} else {
3258			/*
3259			 * We don't know how much we wrote, so just return
3260			 * the number of bytes which were direct-written
3261			 */
3262		}
3263	} else {
3264		written = generic_perform_write(file, from, iocb->ki_pos);
3265		if (likely(written > 0))
3266			iocb->ki_pos += written;
3267	}
3268out:
3269	current->backing_dev_info = NULL;
3270	return written ? written : err;
3271}
3272EXPORT_SYMBOL(__generic_file_write_iter);
3273
3274/**
3275 * generic_file_write_iter - write data to a file
3276 * @iocb:	IO state structure
3277 * @from:	iov_iter with data to write
3278 *
3279 * This is a wrapper around __generic_file_write_iter() to be used by most
3280 * filesystems. It takes care of syncing the file in case of O_SYNC file
3281 * and acquires i_mutex as needed.
 
 
 
 
3282 */
3283ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3284{
3285	struct file *file = iocb->ki_filp;
3286	struct inode *inode = file->f_mapping->host;
3287	ssize_t ret;
3288
3289	inode_lock(inode);
3290	ret = generic_write_checks(iocb, from);
3291	if (ret > 0)
3292		ret = __generic_file_write_iter(iocb, from);
3293	inode_unlock(inode);
3294
3295	if (ret > 0)
3296		ret = generic_write_sync(iocb, ret);
3297	return ret;
3298}
3299EXPORT_SYMBOL(generic_file_write_iter);
3300
3301/**
3302 * try_to_release_page() - release old fs-specific metadata on a page
 
 
3303 *
3304 * @page: the page which the kernel is trying to free
3305 * @gfp_mask: memory allocation flags (and I/O mode)
3306 *
3307 * The address_space is to try to release any data against the page
3308 * (presumably at page->private).  If the release was successful, return '1'.
3309 * Otherwise return zero.
3310 *
3311 * This may also be called if PG_fscache is set on a page, indicating that the
3312 * page is known to the local caching routines.
3313 *
3314 * The @gfp_mask argument specifies whether I/O may be performed to release
3315 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3316 *
 
3317 */
3318int try_to_release_page(struct page *page, gfp_t gfp_mask)
3319{
3320	struct address_space * const mapping = page->mapping;
3321
3322	BUG_ON(!PageLocked(page));
3323	if (PageWriteback(page))
3324		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3325
3326	if (mapping && mapping->a_ops->releasepage)
3327		return mapping->a_ops->releasepage(page, gfp_mask);
3328	return try_to_free_buffers(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3329}
3330
3331EXPORT_SYMBOL(try_to_release_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/syscalls.h>
  26#include <linux/mman.h>
  27#include <linux/pagemap.h>
  28#include <linux/file.h>
  29#include <linux/uio.h>
  30#include <linux/error-injection.h>
  31#include <linux/hash.h>
  32#include <linux/writeback.h>
  33#include <linux/backing-dev.h>
  34#include <linux/pagevec.h>
 
  35#include <linux/security.h>
  36#include <linux/cpuset.h>
  37#include <linux/hugetlb.h>
  38#include <linux/memcontrol.h>
 
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include <linux/migrate.h>
  46#include <linux/pipe_fs_i.h>
  47#include <linux/splice.h>
  48#include <linux/rcupdate_wait.h>
  49#include <asm/pgalloc.h>
  50#include <asm/tlbflush.h>
  51#include "internal.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/filemap.h>
  55
  56/*
  57 * FIXME: remove all knowledge of the buffer layer from the core VM
  58 */
  59#include <linux/buffer_head.h> /* for try_to_free_buffers */
  60
  61#include <asm/mman.h>
  62
  63#include "swap.h"
  64
  65/*
  66 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  67 * though.
  68 *
  69 * Shared mappings now work. 15.8.1995  Bruno.
  70 *
  71 * finished 'unifying' the page and buffer cache and SMP-threaded the
  72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  73 *
  74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  75 */
  76
  77/*
  78 * Lock ordering:
  79 *
  80 *  ->i_mmap_rwsem		(truncate_pagecache)
  81 *    ->private_lock		(__free_pte->block_dirty_folio)
  82 *      ->swap_lock		(exclusive_swap_page, others)
  83 *        ->i_pages lock
  84 *
  85 *  ->i_rwsem
  86 *    ->invalidate_lock		(acquired by fs in truncate path)
  87 *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  88 *
  89 *  ->mmap_lock
  90 *    ->i_mmap_rwsem
  91 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  92 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  93 *
  94 *  ->mmap_lock
  95 *    ->invalidate_lock		(filemap_fault)
  96 *      ->lock_page		(filemap_fault, access_process_vm)
  97 *
  98 *  ->i_rwsem			(generic_perform_write)
  99 *    ->mmap_lock		(fault_in_readable->do_page_fault)
 100 *
 101 *  bdi->wb.list_lock
 102 *    sb_lock			(fs/fs-writeback.c)
 103 *    ->i_pages lock		(__sync_single_inode)
 104 *
 105 *  ->i_mmap_rwsem
 106 *    ->anon_vma.lock		(vma_merge)
 107 *
 108 *  ->anon_vma.lock
 109 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 110 *
 111 *  ->page_table_lock or pte_lock
 112 *    ->swap_lock		(try_to_unmap_one)
 113 *    ->private_lock		(try_to_unmap_one)
 114 *    ->i_pages lock		(try_to_unmap_one)
 115 *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 116 *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 117 *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
 118 *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
 119 *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
 120 *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
 121 *    ->memcg->move_lock	(folio_remove_rmap_pte->folio_memcg_lock)
 122 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 123 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 124 *    ->private_lock		(zap_pte_range->block_dirty_folio)
 
 
 
 125 */
 126
 127static void mapping_set_update(struct xa_state *xas,
 128		struct address_space *mapping)
 129{
 130	if (dax_mapping(mapping) || shmem_mapping(mapping))
 131		return;
 132	xas_set_update(xas, workingset_update_node);
 133	xas_set_lru(xas, &shadow_nodes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134}
 135
 136static void page_cache_delete(struct address_space *mapping,
 137				   struct folio *folio, void *shadow)
 138{
 139	XA_STATE(xas, &mapping->i_pages, folio->index);
 140	long nr = 1;
 
 
 141
 142	mapping_set_update(&xas, mapping);
 
 
 143
 144	xas_set_order(&xas, folio->index, folio_order(folio));
 145	nr = folio_nr_pages(folio);
 
 146
 147	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 
 148
 149	xas_store(&xas, shadow);
 150	xas_init_marks(&xas);
 151
 152	folio->mapping = NULL;
 
 
 
 
 
 153	/* Leave page->index set: truncation lookup relies upon it */
 
 
 
 
 
 
 
 
 
 
 
 154	mapping->nrpages -= nr;
 155}
 156
 157static void filemap_unaccount_folio(struct address_space *mapping,
 158		struct folio *folio)
 159{
 160	long nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161
 162	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
 163	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
 164		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 165			 current->comm, folio_pfn(folio));
 166		dump_page(&folio->page, "still mapped when deleted");
 167		dump_stack();
 168		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 169
 170		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
 171			int mapcount = page_mapcount(&folio->page);
 172
 173			if (folio_ref_count(folio) >= mapcount + 2) {
 174				/*
 175				 * All vmas have already been torn down, so it's
 176				 * a good bet that actually the page is unmapped
 177				 * and we'd rather not leak it: if we're wrong,
 178				 * another bad page check should catch it later.
 179				 */
 180				page_mapcount_reset(&folio->page);
 181				folio_ref_sub(folio, mapcount);
 182			}
 183		}
 184	}
 185
 186	/* hugetlb folios do not participate in page cache accounting. */
 187	if (folio_test_hugetlb(folio))
 188		return;
 189
 190	nr = folio_nr_pages(folio);
 191
 192	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 193	if (folio_test_swapbacked(folio)) {
 194		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 195		if (folio_test_pmd_mappable(folio))
 196			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
 197	} else if (folio_test_pmd_mappable(folio)) {
 198		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
 199		filemap_nr_thps_dec(mapping);
 200	}
 201
 202	/*
 203	 * At this point folio must be either written or cleaned by
 204	 * truncate.  Dirty folio here signals a bug and loss of
 205	 * unwritten data - on ordinary filesystems.
 206	 *
 207	 * But it's harmless on in-memory filesystems like tmpfs; and can
 208	 * occur when a driver which did get_user_pages() sets page dirty
 209	 * before putting it, while the inode is being finally evicted.
 210	 *
 211	 * Below fixes dirty accounting after removing the folio entirely
 212	 * but leaves the dirty flag set: it has no effect for truncated
 213	 * folio and anyway will be cleared before returning folio to
 214	 * buddy allocator.
 215	 */
 216	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
 217			 mapping_can_writeback(mapping)))
 218		folio_account_cleaned(folio, inode_to_wb(mapping->host));
 219}
 220
 221/*
 222 * Delete a page from the page cache and free it. Caller has to make
 223 * sure the page is locked and that nobody else uses it - or that usage
 224 * is safe.  The caller must hold the i_pages lock.
 225 */
 226void __filemap_remove_folio(struct folio *folio, void *shadow)
 227{
 228	struct address_space *mapping = folio->mapping;
 229
 230	trace_mm_filemap_delete_from_page_cache(folio);
 231	filemap_unaccount_folio(mapping, folio);
 232	page_cache_delete(mapping, folio, shadow);
 
 233}
 234
 235void filemap_free_folio(struct address_space *mapping, struct folio *folio)
 
 236{
 237	void (*free_folio)(struct folio *);
 238	int refs = 1;
 239
 240	free_folio = mapping->a_ops->free_folio;
 241	if (free_folio)
 242		free_folio(folio);
 243
 244	if (folio_test_large(folio))
 245		refs = folio_nr_pages(folio);
 246	folio_put_refs(folio, refs);
 
 
 
 247}
 248
 249/**
 250 * filemap_remove_folio - Remove folio from page cache.
 251 * @folio: The folio.
 252 *
 253 * This must be called only on folios that are locked and have been
 254 * verified to be in the page cache.  It will never put the folio into
 255 * the free list because the caller has a reference on the page.
 256 */
 257void filemap_remove_folio(struct folio *folio)
 258{
 259	struct address_space *mapping = folio->mapping;
 260
 261	BUG_ON(!folio_test_locked(folio));
 262	spin_lock(&mapping->host->i_lock);
 263	xa_lock_irq(&mapping->i_pages);
 264	__filemap_remove_folio(folio, NULL);
 265	xa_unlock_irq(&mapping->i_pages);
 266	if (mapping_shrinkable(mapping))
 267		inode_add_lru(mapping->host);
 268	spin_unlock(&mapping->host->i_lock);
 269
 270	filemap_free_folio(mapping, folio);
 271}
 272
 273/*
 274 * page_cache_delete_batch - delete several folios from page cache
 275 * @mapping: the mapping to which folios belong
 276 * @fbatch: batch of folios to delete
 277 *
 278 * The function walks over mapping->i_pages and removes folios passed in
 279 * @fbatch from the mapping. The function expects @fbatch to be sorted
 280 * by page index and is optimised for it to be dense.
 281 * It tolerates holes in @fbatch (mapping entries at those indices are not
 282 * modified).
 
 
 
 
 
 
 
 283 *
 284 * The function expects the i_pages lock to be held.
 285 */
 286static void page_cache_delete_batch(struct address_space *mapping,
 287			     struct folio_batch *fbatch)
 288{
 289	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
 290	long total_pages = 0;
 291	int i = 0;
 292	struct folio *folio;
 293
 294	mapping_set_update(&xas, mapping);
 295	xas_for_each(&xas, folio, ULONG_MAX) {
 296		if (i >= folio_batch_count(fbatch))
 297			break;
 298
 299		/* A swap/dax/shadow entry got inserted? Skip it. */
 300		if (xa_is_value(folio))
 301			continue;
 302		/*
 303		 * A page got inserted in our range? Skip it. We have our
 304		 * pages locked so they are protected from being removed.
 305		 * If we see a page whose index is higher than ours, it
 306		 * means our page has been removed, which shouldn't be
 307		 * possible because we're holding the PageLock.
 308		 */
 309		if (folio != fbatch->folios[i]) {
 310			VM_BUG_ON_FOLIO(folio->index >
 311					fbatch->folios[i]->index, folio);
 312			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313		}
 314
 315		WARN_ON_ONCE(!folio_test_locked(folio));
 316
 317		folio->mapping = NULL;
 318		/* Leave folio->index set: truncation lookup relies on it */
 319
 320		i++;
 321		xas_store(&xas, NULL);
 322		total_pages += folio_nr_pages(folio);
 323	}
 324	mapping->nrpages -= total_pages;
 325}
 326
 327void delete_from_page_cache_batch(struct address_space *mapping,
 328				  struct folio_batch *fbatch)
 329{
 330	int i;
 
 331
 332	if (!folio_batch_count(fbatch))
 333		return;
 334
 335	spin_lock(&mapping->host->i_lock);
 336	xa_lock_irq(&mapping->i_pages);
 337	for (i = 0; i < folio_batch_count(fbatch); i++) {
 338		struct folio *folio = fbatch->folios[i];
 339
 340		trace_mm_filemap_delete_from_page_cache(folio);
 341		filemap_unaccount_folio(mapping, folio);
 342	}
 343	page_cache_delete_batch(mapping, fbatch);
 344	xa_unlock_irq(&mapping->i_pages);
 345	if (mapping_shrinkable(mapping))
 346		inode_add_lru(mapping->host);
 347	spin_unlock(&mapping->host->i_lock);
 348
 349	for (i = 0; i < folio_batch_count(fbatch); i++)
 350		filemap_free_folio(mapping, fbatch->folios[i]);
 351}
 352
 353int filemap_check_errors(struct address_space *mapping)
 354{
 355	int ret = 0;
 356	/* Check for outstanding write errors */
 357	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 358	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 359		ret = -ENOSPC;
 360	if (test_bit(AS_EIO, &mapping->flags) &&
 361	    test_and_clear_bit(AS_EIO, &mapping->flags))
 362		ret = -EIO;
 363	return ret;
 364}
 365EXPORT_SYMBOL(filemap_check_errors);
 366
 367static int filemap_check_and_keep_errors(struct address_space *mapping)
 368{
 369	/* Check for outstanding write errors */
 370	if (test_bit(AS_EIO, &mapping->flags))
 371		return -EIO;
 372	if (test_bit(AS_ENOSPC, &mapping->flags))
 373		return -ENOSPC;
 374	return 0;
 375}
 376
 377/**
 378 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
 379 * @mapping:	address space structure to write
 380 * @wbc:	the writeback_control controlling the writeout
 381 *
 382 * Call writepages on the mapping using the provided wbc to control the
 383 * writeout.
 384 *
 385 * Return: %0 on success, negative error code otherwise.
 386 */
 387int filemap_fdatawrite_wbc(struct address_space *mapping,
 388			   struct writeback_control *wbc)
 389{
 390	int ret;
 391
 392	if (!mapping_can_writeback(mapping) ||
 393	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 394		return 0;
 395
 396	wbc_attach_fdatawrite_inode(wbc, mapping->host);
 397	ret = do_writepages(mapping, wbc);
 398	wbc_detach_inode(wbc);
 399	return ret;
 400}
 401EXPORT_SYMBOL(filemap_fdatawrite_wbc);
 402
 403/**
 404 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 405 * @mapping:	address space structure to write
 406 * @start:	offset in bytes where the range starts
 407 * @end:	offset in bytes where the range ends (inclusive)
 408 * @sync_mode:	enable synchronous operation
 409 *
 410 * Start writeback against all of a mapping's dirty pages that lie
 411 * within the byte offsets <start, end> inclusive.
 412 *
 413 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 414 * opposed to a regular memory cleansing writeback.  The difference between
 415 * these two operations is that if a dirty page/buffer is encountered, it must
 416 * be waited upon, and not just skipped over.
 417 *
 418 * Return: %0 on success, negative error code otherwise.
 419 */
 420int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 421				loff_t end, int sync_mode)
 422{
 
 423	struct writeback_control wbc = {
 424		.sync_mode = sync_mode,
 425		.nr_to_write = LONG_MAX,
 426		.range_start = start,
 427		.range_end = end,
 428	};
 429
 430	return filemap_fdatawrite_wbc(mapping, &wbc);
 
 
 
 
 
 
 431}
 432
 433static inline int __filemap_fdatawrite(struct address_space *mapping,
 434	int sync_mode)
 435{
 436	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 437}
 438
 439int filemap_fdatawrite(struct address_space *mapping)
 440{
 441	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 442}
 443EXPORT_SYMBOL(filemap_fdatawrite);
 444
 445int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 446				loff_t end)
 447{
 448	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 449}
 450EXPORT_SYMBOL(filemap_fdatawrite_range);
 451
 452/**
 453 * filemap_flush - mostly a non-blocking flush
 454 * @mapping:	target address_space
 455 *
 456 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 457 * purposes - I/O may not be started against all dirty pages.
 458 *
 459 * Return: %0 on success, negative error code otherwise.
 460 */
 461int filemap_flush(struct address_space *mapping)
 462{
 463	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 464}
 465EXPORT_SYMBOL(filemap_flush);
 466
 467/**
 468 * filemap_range_has_page - check if a page exists in range.
 469 * @mapping:           address space within which to check
 470 * @start_byte:        offset in bytes where the range starts
 471 * @end_byte:          offset in bytes where the range ends (inclusive)
 472 *
 473 * Find at least one page in the range supplied, usually used to check if
 474 * direct writing in this range will trigger a writeback.
 475 *
 476 * Return: %true if at least one page exists in the specified range,
 477 * %false otherwise.
 478 */
 479bool filemap_range_has_page(struct address_space *mapping,
 480			   loff_t start_byte, loff_t end_byte)
 481{
 482	struct folio *folio;
 483	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 484	pgoff_t max = end_byte >> PAGE_SHIFT;
 485
 486	if (end_byte < start_byte)
 487		return false;
 488
 489	rcu_read_lock();
 490	for (;;) {
 491		folio = xas_find(&xas, max);
 492		if (xas_retry(&xas, folio))
 493			continue;
 494		/* Shadow entries don't count */
 495		if (xa_is_value(folio))
 496			continue;
 497		/*
 498		 * We don't need to try to pin this page; we're about to
 499		 * release the RCU lock anyway.  It is enough to know that
 500		 * there was a page here recently.
 501		 */
 502		break;
 503	}
 504	rcu_read_unlock();
 505
 506	return folio != NULL;
 
 
 
 507}
 508EXPORT_SYMBOL(filemap_range_has_page);
 509
 510static void __filemap_fdatawait_range(struct address_space *mapping,
 511				     loff_t start_byte, loff_t end_byte)
 512{
 513	pgoff_t index = start_byte >> PAGE_SHIFT;
 514	pgoff_t end = end_byte >> PAGE_SHIFT;
 515	struct folio_batch fbatch;
 516	unsigned nr_folios;
 517
 518	folio_batch_init(&fbatch);
 
 519
 
 520	while (index <= end) {
 521		unsigned i;
 522
 523		nr_folios = filemap_get_folios_tag(mapping, &index, end,
 524				PAGECACHE_TAG_WRITEBACK, &fbatch);
 525
 526		if (!nr_folios)
 527			break;
 528
 529		for (i = 0; i < nr_folios; i++) {
 530			struct folio *folio = fbatch.folios[i];
 531
 532			folio_wait_writeback(folio);
 533			folio_clear_error(folio);
 534		}
 535		folio_batch_release(&fbatch);
 536		cond_resched();
 537	}
 538}
 539
 540/**
 541 * filemap_fdatawait_range - wait for writeback to complete
 542 * @mapping:		address space structure to wait for
 543 * @start_byte:		offset in bytes where the range starts
 544 * @end_byte:		offset in bytes where the range ends (inclusive)
 545 *
 546 * Walk the list of under-writeback pages of the given address space
 547 * in the given range and wait for all of them.  Check error status of
 548 * the address space and return it.
 549 *
 550 * Since the error status of the address space is cleared by this function,
 551 * callers are responsible for checking the return value and handling and/or
 552 * reporting the error.
 553 *
 554 * Return: error status of the address space.
 555 */
 556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 557			    loff_t end_byte)
 558{
 559	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 560	return filemap_check_errors(mapping);
 561}
 562EXPORT_SYMBOL(filemap_fdatawait_range);
 563
 564/**
 565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 566 * @mapping:		address space structure to wait for
 567 * @start_byte:		offset in bytes where the range starts
 568 * @end_byte:		offset in bytes where the range ends (inclusive)
 569 *
 570 * Walk the list of under-writeback pages of the given address space in the
 571 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 572 * this function does not clear error status of the address space.
 573 *
 574 * Use this function if callers don't handle errors themselves.  Expected
 575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 576 * fsfreeze(8)
 577 */
 578int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 579		loff_t start_byte, loff_t end_byte)
 580{
 581	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 582	return filemap_check_and_keep_errors(mapping);
 583}
 584EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 585
 586/**
 587 * file_fdatawait_range - wait for writeback to complete
 588 * @file:		file pointing to address space structure to wait for
 589 * @start_byte:		offset in bytes where the range starts
 590 * @end_byte:		offset in bytes where the range ends (inclusive)
 591 *
 592 * Walk the list of under-writeback pages of the address space that file
 593 * refers to, in the given range and wait for all of them.  Check error
 594 * status of the address space vs. the file->f_wb_err cursor and return it.
 595 *
 596 * Since the error status of the file is advanced by this function,
 597 * callers are responsible for checking the return value and handling and/or
 598 * reporting the error.
 599 *
 600 * Return: error status of the address space vs. the file->f_wb_err cursor.
 601 */
 602int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 603{
 604	struct address_space *mapping = file->f_mapping;
 605
 606	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 607	return file_check_and_advance_wb_err(file);
 608}
 609EXPORT_SYMBOL(file_fdatawait_range);
 610
 611/**
 612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 613 * @mapping: address space structure to wait for
 614 *
 615 * Walk the list of under-writeback pages of the given address space
 616 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 617 * does not clear error status of the address space.
 618 *
 619 * Use this function if callers don't handle errors themselves.  Expected
 620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 621 * fsfreeze(8)
 622 *
 623 * Return: error status of the address space.
 624 */
 625int filemap_fdatawait_keep_errors(struct address_space *mapping)
 626{
 627	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 628	return filemap_check_and_keep_errors(mapping);
 629}
 630EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 631
 632/* Returns true if writeback might be needed or already in progress. */
 633static bool mapping_needs_writeback(struct address_space *mapping)
 634{
 635	return mapping->nrpages;
 
 636}
 637
 638bool filemap_range_has_writeback(struct address_space *mapping,
 639				 loff_t start_byte, loff_t end_byte)
 640{
 641	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 642	pgoff_t max = end_byte >> PAGE_SHIFT;
 643	struct folio *folio;
 644
 645	if (end_byte < start_byte)
 646		return false;
 647
 648	rcu_read_lock();
 649	xas_for_each(&xas, folio, max) {
 650		if (xas_retry(&xas, folio))
 651			continue;
 652		if (xa_is_value(folio))
 653			continue;
 654		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
 655				folio_test_writeback(folio))
 656			break;
 
 
 
 
 
 
 657	}
 658	rcu_read_unlock();
 659	return folio != NULL;
 660}
 661EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
 662
 663/**
 664 * filemap_write_and_wait_range - write out & wait on a file range
 665 * @mapping:	the address_space for the pages
 666 * @lstart:	offset in bytes where the range starts
 667 * @lend:	offset in bytes where the range ends (inclusive)
 668 *
 669 * Write out and wait upon file offsets lstart->lend, inclusive.
 670 *
 671 * Note that @lend is inclusive (describes the last byte to be written) so
 672 * that this function can be used to write to the very end-of-file (end = -1).
 673 *
 674 * Return: error status of the address space.
 675 */
 676int filemap_write_and_wait_range(struct address_space *mapping,
 677				 loff_t lstart, loff_t lend)
 678{
 679	int err = 0, err2;
 680
 681	if (lend < lstart)
 682		return 0;
 683
 684	if (mapping_needs_writeback(mapping)) {
 685		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 686						 WB_SYNC_ALL);
 687		/*
 688		 * Even if the above returned error, the pages may be
 689		 * written partially (e.g. -ENOSPC), so we wait for it.
 690		 * But the -EIO is special case, it may indicate the worst
 691		 * thing (e.g. bug) happened, so we avoid waiting for it.
 692		 */
 693		if (err != -EIO)
 694			__filemap_fdatawait_range(mapping, lstart, lend);
 
 
 
 
 695	}
 696	err2 = filemap_check_errors(mapping);
 697	if (!err)
 698		err = err2;
 699	return err;
 700}
 701EXPORT_SYMBOL(filemap_write_and_wait_range);
 702
 703void __filemap_set_wb_err(struct address_space *mapping, int err)
 704{
 705	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 706
 707	trace_filemap_set_wb_err(mapping, eseq);
 708}
 709EXPORT_SYMBOL(__filemap_set_wb_err);
 710
 711/**
 712 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 713 * 				   and advance wb_err to current one
 714 * @file: struct file on which the error is being reported
 715 *
 716 * When userland calls fsync (or something like nfsd does the equivalent), we
 717 * want to report any writeback errors that occurred since the last fsync (or
 718 * since the file was opened if there haven't been any).
 719 *
 720 * Grab the wb_err from the mapping. If it matches what we have in the file,
 721 * then just quickly return 0. The file is all caught up.
 722 *
 723 * If it doesn't match, then take the mapping value, set the "seen" flag in
 724 * it and try to swap it into place. If it works, or another task beat us
 725 * to it with the new value, then update the f_wb_err and return the error
 726 * portion. The error at this point must be reported via proper channels
 727 * (a'la fsync, or NFS COMMIT operation, etc.).
 728 *
 729 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 730 * value is protected by the f_lock since we must ensure that it reflects
 731 * the latest value swapped in for this file descriptor.
 732 *
 733 * Return: %0 on success, negative error code otherwise.
 734 */
 735int file_check_and_advance_wb_err(struct file *file)
 736{
 737	int err = 0;
 738	errseq_t old = READ_ONCE(file->f_wb_err);
 739	struct address_space *mapping = file->f_mapping;
 740
 741	/* Locklessly handle the common case where nothing has changed */
 742	if (errseq_check(&mapping->wb_err, old)) {
 743		/* Something changed, must use slow path */
 744		spin_lock(&file->f_lock);
 745		old = file->f_wb_err;
 746		err = errseq_check_and_advance(&mapping->wb_err,
 747						&file->f_wb_err);
 748		trace_file_check_and_advance_wb_err(file, old);
 749		spin_unlock(&file->f_lock);
 750	}
 751
 752	/*
 753	 * We're mostly using this function as a drop in replacement for
 754	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 755	 * that the legacy code would have had on these flags.
 756	 */
 757	clear_bit(AS_EIO, &mapping->flags);
 758	clear_bit(AS_ENOSPC, &mapping->flags);
 759	return err;
 760}
 761EXPORT_SYMBOL(file_check_and_advance_wb_err);
 762
 763/**
 764 * file_write_and_wait_range - write out & wait on a file range
 765 * @file:	file pointing to address_space with pages
 766 * @lstart:	offset in bytes where the range starts
 767 * @lend:	offset in bytes where the range ends (inclusive)
 768 *
 769 * Write out and wait upon file offsets lstart->lend, inclusive.
 770 *
 771 * Note that @lend is inclusive (describes the last byte to be written) so
 772 * that this function can be used to write to the very end-of-file (end = -1).
 773 *
 774 * After writing out and waiting on the data, we check and advance the
 775 * f_wb_err cursor to the latest value, and return any errors detected there.
 776 *
 777 * Return: %0 on success, negative error code otherwise.
 778 */
 779int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 780{
 781	int err = 0, err2;
 782	struct address_space *mapping = file->f_mapping;
 783
 784	if (lend < lstart)
 785		return 0;
 786
 787	if (mapping_needs_writeback(mapping)) {
 788		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 789						 WB_SYNC_ALL);
 790		/* See comment of filemap_write_and_wait() */
 791		if (err != -EIO)
 792			__filemap_fdatawait_range(mapping, lstart, lend);
 793	}
 794	err2 = file_check_and_advance_wb_err(file);
 795	if (!err)
 796		err = err2;
 797	return err;
 798}
 799EXPORT_SYMBOL(file_write_and_wait_range);
 800
 801/**
 802 * replace_page_cache_folio - replace a pagecache folio with a new one
 803 * @old:	folio to be replaced
 804 * @new:	folio to replace with
 805 *
 806 * This function replaces a folio in the pagecache with a new one.  On
 807 * success it acquires the pagecache reference for the new folio and
 808 * drops it for the old folio.  Both the old and new folios must be
 809 * locked.  This function does not add the new folio to the LRU, the
 
 810 * caller must do that.
 811 *
 812 * The remove + add is atomic.  This function cannot fail.
 
 813 */
 814void replace_page_cache_folio(struct folio *old, struct folio *new)
 815{
 816	struct address_space *mapping = old->mapping;
 817	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
 818	pgoff_t offset = old->index;
 819	XA_STATE(xas, &mapping->i_pages, offset);
 820
 821	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
 822	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
 823	VM_BUG_ON_FOLIO(new->mapping, new);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824
 825	folio_get(new);
 826	new->mapping = mapping;
 827	new->index = offset;
 828
 829	mem_cgroup_replace_folio(old, new);
 
 
 
 
 
 
 
 830
 831	xas_lock_irq(&xas);
 832	xas_store(&xas, new);
 833
 834	old->mapping = NULL;
 835	/* hugetlb pages do not participate in page cache accounting. */
 836	if (!folio_test_hugetlb(old))
 837		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
 838	if (!folio_test_hugetlb(new))
 839		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
 840	if (folio_test_swapbacked(old))
 841		__lruvec_stat_sub_folio(old, NR_SHMEM);
 842	if (folio_test_swapbacked(new))
 843		__lruvec_stat_add_folio(new, NR_SHMEM);
 844	xas_unlock_irq(&xas);
 845	if (free_folio)
 846		free_folio(old);
 847	folio_put(old);
 848}
 849EXPORT_SYMBOL_GPL(replace_page_cache_folio);
 850
 851noinline int __filemap_add_folio(struct address_space *mapping,
 852		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
 853{
 854	XA_STATE(xas, &mapping->i_pages, index);
 855	bool huge = folio_test_hugetlb(folio);
 856	bool charged = false;
 857	long nr = 1;
 858
 859	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 860	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
 861	mapping_set_update(&xas, mapping);
 862
 863	if (!huge) {
 864		int error = mem_cgroup_charge(folio, NULL, gfp);
 
 865		if (error)
 866			return error;
 867		charged = true;
 868	}
 869
 870	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
 871	xas_set_order(&xas, index, folio_order(folio));
 872	nr = folio_nr_pages(folio);
 
 
 
 873
 874	gfp &= GFP_RECLAIM_MASK;
 875	folio_ref_add(folio, nr);
 876	folio->mapping = mapping;
 877	folio->index = xas.xa_index;
 878
 879	do {
 880		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 881		void *entry, *old = NULL;
 
 
 882
 883		if (order > folio_order(folio))
 884			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 885					order, gfp);
 886		xas_lock_irq(&xas);
 887		xas_for_each_conflict(&xas, entry) {
 888			old = entry;
 889			if (!xa_is_value(entry)) {
 890				xas_set_err(&xas, -EEXIST);
 891				goto unlock;
 892			}
 893		}
 894
 895		if (old) {
 896			if (shadowp)
 897				*shadowp = old;
 898			/* entry may have been split before we acquired lock */
 899			order = xa_get_order(xas.xa, xas.xa_index);
 900			if (order > folio_order(folio)) {
 901				/* How to handle large swap entries? */
 902				BUG_ON(shmem_mapping(mapping));
 903				xas_split(&xas, old, order);
 904				xas_reset(&xas);
 905			}
 906		}
 907
 908		xas_store(&xas, folio);
 909		if (xas_error(&xas))
 910			goto unlock;
 911
 912		mapping->nrpages += nr;
 913
 914		/* hugetlb pages do not participate in page cache accounting */
 915		if (!huge) {
 916			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 917			if (folio_test_pmd_mappable(folio))
 918				__lruvec_stat_mod_folio(folio,
 919						NR_FILE_THPS, nr);
 920		}
 921unlock:
 922		xas_unlock_irq(&xas);
 923	} while (xas_nomem(&xas, gfp));
 924
 925	if (xas_error(&xas))
 926		goto error;
 927
 928	trace_mm_filemap_add_to_page_cache(folio);
 929	return 0;
 930error:
 931	if (charged)
 932		mem_cgroup_uncharge(folio);
 933	folio->mapping = NULL;
 934	/* Leave page->index set: truncation relies upon it */
 935	folio_put_refs(folio, nr);
 936	return xas_error(&xas);
 
 
 
 937}
 938ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
 939
 940int filemap_add_folio(struct address_space *mapping, struct folio *folio,
 941				pgoff_t index, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942{
 943	void *shadow = NULL;
 944	int ret;
 945
 946	__folio_set_locked(folio);
 947	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
 
 948	if (unlikely(ret))
 949		__folio_clear_locked(folio);
 950	else {
 951		/*
 952		 * The folio might have been evicted from cache only
 953		 * recently, in which case it should be activated like
 954		 * any other repeatedly accessed folio.
 955		 * The exception is folios getting rewritten; evicting other
 956		 * data from the working set, only to cache data that will
 957		 * get overwritten with something else, is a waste of memory.
 958		 */
 959		WARN_ON_ONCE(folio_test_active(folio));
 960		if (!(gfp & __GFP_WRITE) && shadow)
 961			workingset_refault(folio, shadow);
 962		folio_add_lru(folio);
 
 
 
 963	}
 964	return ret;
 965}
 966EXPORT_SYMBOL_GPL(filemap_add_folio);
 967
 968#ifdef CONFIG_NUMA
 969struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
 970{
 971	int n;
 972	struct folio *folio;
 973
 974	if (cpuset_do_page_mem_spread()) {
 975		unsigned int cpuset_mems_cookie;
 976		do {
 977			cpuset_mems_cookie = read_mems_allowed_begin();
 978			n = cpuset_mem_spread_node();
 979			folio = __folio_alloc_node(gfp, order, n);
 980		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
 981
 982		return folio;
 983	}
 984	return folio_alloc(gfp, order);
 985}
 986EXPORT_SYMBOL(filemap_alloc_folio);
 987#endif
 988
 989/*
 990 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
 991 *
 992 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
 993 *
 994 * @mapping1: the first mapping to lock
 995 * @mapping2: the second mapping to lock
 996 */
 997void filemap_invalidate_lock_two(struct address_space *mapping1,
 998				 struct address_space *mapping2)
 999{
1000	if (mapping1 > mapping2)
1001		swap(mapping1, mapping2);
1002	if (mapping1)
1003		down_write(&mapping1->invalidate_lock);
1004	if (mapping2 && mapping1 != mapping2)
1005		down_write_nested(&mapping2->invalidate_lock, 1);
1006}
1007EXPORT_SYMBOL(filemap_invalidate_lock_two);
1008
1009/*
1010 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1011 *
1012 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1013 *
1014 * @mapping1: the first mapping to unlock
1015 * @mapping2: the second mapping to unlock
1016 */
1017void filemap_invalidate_unlock_two(struct address_space *mapping1,
1018				   struct address_space *mapping2)
1019{
1020	if (mapping1)
1021		up_write(&mapping1->invalidate_lock);
1022	if (mapping2 && mapping1 != mapping2)
1023		up_write(&mapping2->invalidate_lock);
1024}
1025EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1026
1027/*
1028 * In order to wait for pages to become available there must be
1029 * waitqueues associated with pages. By using a hash table of
1030 * waitqueues where the bucket discipline is to maintain all
1031 * waiters on the same queue and wake all when any of the pages
1032 * become available, and for the woken contexts to check to be
1033 * sure the appropriate page became available, this saves space
1034 * at a cost of "thundering herd" phenomena during rare hash
1035 * collisions.
1036 */
1037#define PAGE_WAIT_TABLE_BITS 8
1038#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1039static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1040
1041static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1042{
1043	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1044}
1045
1046void __init pagecache_init(void)
1047{
1048	int i;
1049
1050	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1051		init_waitqueue_head(&folio_wait_table[i]);
1052
1053	page_writeback_init();
1054}
1055
1056/*
1057 * The page wait code treats the "wait->flags" somewhat unusually, because
1058 * we have multiple different kinds of waits, not just the usual "exclusive"
1059 * one.
1060 *
1061 * We have:
1062 *
1063 *  (a) no special bits set:
1064 *
1065 *	We're just waiting for the bit to be released, and when a waker
1066 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1067 *	and remove it from the wait queue.
1068 *
1069 *	Simple and straightforward.
1070 *
1071 *  (b) WQ_FLAG_EXCLUSIVE:
1072 *
1073 *	The waiter is waiting to get the lock, and only one waiter should
1074 *	be woken up to avoid any thundering herd behavior. We'll set the
1075 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1076 *
1077 *	This is the traditional exclusive wait.
1078 *
1079 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1080 *
1081 *	The waiter is waiting to get the bit, and additionally wants the
1082 *	lock to be transferred to it for fair lock behavior. If the lock
1083 *	cannot be taken, we stop walking the wait queue without waking
1084 *	the waiter.
1085 *
1086 *	This is the "fair lock handoff" case, and in addition to setting
1087 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1088 *	that it now has the lock.
1089 */
1090static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1091{
1092	unsigned int flags;
1093	struct wait_page_key *key = arg;
1094	struct wait_page_queue *wait_page
1095		= container_of(wait, struct wait_page_queue, wait);
1096
1097	if (!wake_page_match(wait_page, key))
 
 
 
 
1098		return 0;
1099
1100	/*
1101	 * If it's a lock handoff wait, we get the bit for it, and
1102	 * stop walking (and do not wake it up) if we can't.
1103	 */
1104	flags = wait->flags;
1105	if (flags & WQ_FLAG_EXCLUSIVE) {
1106		if (test_bit(key->bit_nr, &key->folio->flags))
1107			return -1;
1108		if (flags & WQ_FLAG_CUSTOM) {
1109			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1110				return -1;
1111			flags |= WQ_FLAG_DONE;
1112		}
1113	}
1114
1115	/*
1116	 * We are holding the wait-queue lock, but the waiter that
1117	 * is waiting for this will be checking the flags without
1118	 * any locking.
1119	 *
1120	 * So update the flags atomically, and wake up the waiter
1121	 * afterwards to avoid any races. This store-release pairs
1122	 * with the load-acquire in folio_wait_bit_common().
1123	 */
1124	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1125	wake_up_state(wait->private, mode);
1126
1127	/*
1128	 * Ok, we have successfully done what we're waiting for,
1129	 * and we can unconditionally remove the wait entry.
1130	 *
1131	 * Note that this pairs with the "finish_wait()" in the
1132	 * waiter, and has to be the absolute last thing we do.
1133	 * After this list_del_init(&wait->entry) the wait entry
1134	 * might be de-allocated and the process might even have
1135	 * exited.
1136	 */
1137	list_del_init_careful(&wait->entry);
1138	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1139}
1140
1141static void folio_wake_bit(struct folio *folio, int bit_nr)
1142{
1143	wait_queue_head_t *q = folio_waitqueue(folio);
1144	struct wait_page_key key;
1145	unsigned long flags;
 
1146
1147	key.folio = folio;
1148	key.bit_nr = bit_nr;
1149	key.page_match = 0;
1150
 
 
 
 
 
1151	spin_lock_irqsave(&q->lock, flags);
1152	__wake_up_locked_key(q, TASK_NORMAL, &key);
 
 
 
 
 
 
 
 
 
 
 
 
 
1153
1154	/*
1155	 * It's possible to miss clearing waiters here, when we woke our page
1156	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1157	 * That's okay, it's a rare case. The next waker will clear it.
1158	 *
1159	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1160	 * other), the flag may be cleared in the course of freeing the page;
1161	 * but that is not required for correctness.
1162	 */
1163	if (!waitqueue_active(q) || !key.page_match)
1164		folio_clear_waiters(folio);
1165
 
 
 
 
 
 
 
1166	spin_unlock_irqrestore(&q->lock, flags);
1167}
1168
1169/*
1170 * A choice of three behaviors for folio_wait_bit_common():
1171 */
1172enum behavior {
1173	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1174			 * __folio_lock() waiting on then setting PG_locked.
1175			 */
1176	SHARED,		/* Hold ref to page and check the bit when woken, like
1177			 * folio_wait_writeback() waiting on PG_writeback.
1178			 */
1179	DROP,		/* Drop ref to page before wait, no check when woken,
1180			 * like folio_put_wait_locked() on PG_locked.
1181			 */
1182};
1183
1184/*
1185 * Attempt to check (or get) the folio flag, and mark us done
1186 * if successful.
1187 */
1188static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1189					struct wait_queue_entry *wait)
1190{
1191	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1192		if (test_and_set_bit(bit_nr, &folio->flags))
1193			return false;
1194	} else if (test_bit(bit_nr, &folio->flags))
1195		return false;
1196
1197	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1198	return true;
1199}
1200
1201/* How many times do we accept lock stealing from under a waiter? */
1202int sysctl_page_lock_unfairness = 5;
1203
1204static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1205		int state, enum behavior behavior)
1206{
1207	wait_queue_head_t *q = folio_waitqueue(folio);
1208	int unfairness = sysctl_page_lock_unfairness;
1209	struct wait_page_queue wait_page;
1210	wait_queue_entry_t *wait = &wait_page.wait;
1211	bool thrashing = false;
1212	unsigned long pflags;
1213	bool in_thrashing;
1214
1215	if (bit_nr == PG_locked &&
1216	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1217		delayacct_thrashing_start(&in_thrashing);
1218		psi_memstall_enter(&pflags);
1219		thrashing = true;
1220	}
1221
1222	init_wait(wait);
 
1223	wait->func = wake_page_function;
1224	wait_page.folio = folio;
1225	wait_page.bit_nr = bit_nr;
1226
1227repeat:
1228	wait->flags = 0;
1229	if (behavior == EXCLUSIVE) {
1230		wait->flags = WQ_FLAG_EXCLUSIVE;
1231		if (--unfairness < 0)
1232			wait->flags |= WQ_FLAG_CUSTOM;
1233	}
1234
1235	/*
1236	 * Do one last check whether we can get the
1237	 * page bit synchronously.
1238	 *
1239	 * Do the folio_set_waiters() marking before that
1240	 * to let any waker we _just_ missed know they
1241	 * need to wake us up (otherwise they'll never
1242	 * even go to the slow case that looks at the
1243	 * page queue), and add ourselves to the wait
1244	 * queue if we need to sleep.
1245	 *
1246	 * This part needs to be done under the queue
1247	 * lock to avoid races.
1248	 */
1249	spin_lock_irq(&q->lock);
1250	folio_set_waiters(folio);
1251	if (!folio_trylock_flag(folio, bit_nr, wait))
1252		__add_wait_queue_entry_tail(q, wait);
1253	spin_unlock_irq(&q->lock);
1254
1255	/*
1256	 * From now on, all the logic will be based on
1257	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1258	 * see whether the page bit testing has already
1259	 * been done by the wake function.
1260	 *
1261	 * We can drop our reference to the folio.
1262	 */
1263	if (behavior == DROP)
1264		folio_put(folio);
1265
1266	/*
1267	 * Note that until the "finish_wait()", or until
1268	 * we see the WQ_FLAG_WOKEN flag, we need to
1269	 * be very careful with the 'wait->flags', because
1270	 * we may race with a waker that sets them.
1271	 */
1272	for (;;) {
1273		unsigned int flags;
1274
1275		set_current_state(state);
1276
1277		/* Loop until we've been woken or interrupted */
1278		flags = smp_load_acquire(&wait->flags);
1279		if (!(flags & WQ_FLAG_WOKEN)) {
1280			if (signal_pending_state(state, current))
1281				break;
1282
 
1283			io_schedule();
1284			continue;
1285		}
1286
1287		/* If we were non-exclusive, we're done */
1288		if (behavior != EXCLUSIVE)
1289			break;
 
 
 
 
1290
1291		/* If the waker got the lock for us, we're done */
1292		if (flags & WQ_FLAG_DONE)
1293			break;
1294
1295		/*
1296		 * Otherwise, if we're getting the lock, we need to
1297		 * try to get it ourselves.
1298		 *
1299		 * And if that fails, we'll have to retry this all.
1300		 */
1301		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1302			goto repeat;
1303
1304		wait->flags |= WQ_FLAG_DONE;
1305		break;
1306	}
1307
1308	/*
1309	 * If a signal happened, this 'finish_wait()' may remove the last
1310	 * waiter from the wait-queues, but the folio waiters bit will remain
1311	 * set. That's ok. The next wakeup will take care of it, and trying
1312	 * to do it here would be difficult and prone to races.
1313	 */
1314	finish_wait(q, wait);
1315
1316	if (thrashing) {
1317		delayacct_thrashing_end(&in_thrashing);
1318		psi_memstall_leave(&pflags);
1319	}
1320
1321	/*
1322	 * NOTE! The wait->flags weren't stable until we've done the
1323	 * 'finish_wait()', and we could have exited the loop above due
1324	 * to a signal, and had a wakeup event happen after the signal
1325	 * test but before the 'finish_wait()'.
1326	 *
1327	 * So only after the finish_wait() can we reliably determine
1328	 * if we got woken up or not, so we can now figure out the final
1329	 * return value based on that state without races.
1330	 *
1331	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1332	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1333	 */
1334	if (behavior == EXCLUSIVE)
1335		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1336
1337	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1338}
1339
1340#ifdef CONFIG_MIGRATION
1341/**
1342 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1343 * @entry: migration swap entry.
1344 * @ptl: already locked ptl. This function will drop the lock.
1345 *
1346 * Wait for a migration entry referencing the given page to be removed. This is
1347 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1348 * this can be called without taking a reference on the page. Instead this
1349 * should be called while holding the ptl for the migration entry referencing
1350 * the page.
1351 *
1352 * Returns after unlocking the ptl.
1353 *
1354 * This follows the same logic as folio_wait_bit_common() so see the comments
1355 * there.
1356 */
1357void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1358	__releases(ptl)
1359{
1360	struct wait_page_queue wait_page;
1361	wait_queue_entry_t *wait = &wait_page.wait;
1362	bool thrashing = false;
1363	unsigned long pflags;
1364	bool in_thrashing;
1365	wait_queue_head_t *q;
1366	struct folio *folio = pfn_swap_entry_folio(entry);
1367
1368	q = folio_waitqueue(folio);
1369	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1370		delayacct_thrashing_start(&in_thrashing);
1371		psi_memstall_enter(&pflags);
1372		thrashing = true;
1373	}
1374
1375	init_wait(wait);
1376	wait->func = wake_page_function;
1377	wait_page.folio = folio;
1378	wait_page.bit_nr = PG_locked;
1379	wait->flags = 0;
1380
1381	spin_lock_irq(&q->lock);
1382	folio_set_waiters(folio);
1383	if (!folio_trylock_flag(folio, PG_locked, wait))
1384		__add_wait_queue_entry_tail(q, wait);
1385	spin_unlock_irq(&q->lock);
1386
1387	/*
1388	 * If a migration entry exists for the page the migration path must hold
1389	 * a valid reference to the page, and it must take the ptl to remove the
1390	 * migration entry. So the page is valid until the ptl is dropped.
1391	 */
1392	spin_unlock(ptl);
1393
1394	for (;;) {
1395		unsigned int flags;
1396
1397		set_current_state(TASK_UNINTERRUPTIBLE);
1398
1399		/* Loop until we've been woken or interrupted */
1400		flags = smp_load_acquire(&wait->flags);
1401		if (!(flags & WQ_FLAG_WOKEN)) {
1402			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1403				break;
1404
1405			io_schedule();
1406			continue;
1407		}
1408		break;
1409	}
1410
1411	finish_wait(q, wait);
1412
1413	if (thrashing) {
1414		delayacct_thrashing_end(&in_thrashing);
1415		psi_memstall_leave(&pflags);
1416	}
1417}
1418#endif
1419
1420void folio_wait_bit(struct folio *folio, int bit_nr)
1421{
1422	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1423}
1424EXPORT_SYMBOL(folio_wait_bit);
1425
1426int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1427{
1428	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1429}
1430EXPORT_SYMBOL(folio_wait_bit_killable);
1431
1432/**
1433 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1434 * @folio: The folio to wait for.
1435 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1436 *
1437 * The caller should hold a reference on @folio.  They expect the page to
1438 * become unlocked relatively soon, but do not wish to hold up migration
1439 * (for example) by holding the reference while waiting for the folio to
1440 * come unlocked.  After this function returns, the caller should not
1441 * dereference @folio.
1442 *
1443 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1444 */
1445static int folio_put_wait_locked(struct folio *folio, int state)
1446{
1447	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1448}
 
1449
1450/**
1451 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1452 * @folio: Folio defining the wait queue of interest
1453 * @waiter: Waiter to add to the queue
1454 *
1455 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1456 */
1457void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1458{
1459	wait_queue_head_t *q = folio_waitqueue(folio);
1460	unsigned long flags;
1461
1462	spin_lock_irqsave(&q->lock, flags);
1463	__add_wait_queue_entry_tail(q, waiter);
1464	folio_set_waiters(folio);
1465	spin_unlock_irqrestore(&q->lock, flags);
1466}
1467EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1468
1469/**
1470 * folio_unlock - Unlock a locked folio.
1471 * @folio: The folio.
 
1472 *
1473 * Unlocks the folio and wakes up any thread sleeping on the page lock.
 
 
 
1474 *
1475 * Context: May be called from interrupt or process context.  May not be
1476 * called from NMI context.
 
1477 */
1478void folio_unlock(struct folio *folio)
1479{
1480	/* Bit 7 allows x86 to check the byte's sign bit */
1481	BUILD_BUG_ON(PG_waiters != 7);
1482	BUILD_BUG_ON(PG_locked > 7);
1483	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1484	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1485		folio_wake_bit(folio, PG_locked);
1486}
1487EXPORT_SYMBOL(folio_unlock);
1488
1489/**
1490 * folio_end_read - End read on a folio.
1491 * @folio: The folio.
1492 * @success: True if all reads completed successfully.
1493 *
1494 * When all reads against a folio have completed, filesystems should
1495 * call this function to let the pagecache know that no more reads
1496 * are outstanding.  This will unlock the folio and wake up any thread
1497 * sleeping on the lock.  The folio will also be marked uptodate if all
1498 * reads succeeded.
1499 *
1500 * Context: May be called from interrupt or process context.  May not be
1501 * called from NMI context.
1502 */
1503void folio_end_read(struct folio *folio, bool success)
1504{
1505	unsigned long mask = 1 << PG_locked;
1506
1507	/* Must be in bottom byte for x86 to work */
1508	BUILD_BUG_ON(PG_uptodate > 7);
1509	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1510	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1511
1512	if (likely(success))
1513		mask |= 1 << PG_uptodate;
1514	if (folio_xor_flags_has_waiters(folio, mask))
1515		folio_wake_bit(folio, PG_locked);
1516}
1517EXPORT_SYMBOL(folio_end_read);
1518
1519/**
1520 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1521 * @folio: The folio.
1522 *
1523 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1524 * it.  The folio reference held for PG_private_2 being set is released.
1525 *
1526 * This is, for example, used when a netfs folio is being written to a local
1527 * disk cache, thereby allowing writes to the cache for the same folio to be
1528 * serialised.
 
 
 
 
1529 */
1530void folio_end_private_2(struct folio *folio)
1531{
1532	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1533	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1534	folio_wake_bit(folio, PG_private_2);
1535	folio_put(folio);
 
1536}
1537EXPORT_SYMBOL(folio_end_private_2);
1538
1539/**
1540 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1541 * @folio: The folio to wait on.
1542 *
1543 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1544 */
1545void folio_wait_private_2(struct folio *folio)
1546{
1547	while (folio_test_private_2(folio))
1548		folio_wait_bit(folio, PG_private_2);
1549}
1550EXPORT_SYMBOL(folio_wait_private_2);
1551
1552/**
1553 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1554 * @folio: The folio to wait on.
1555 *
1556 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1557 * fatal signal is received by the calling task.
1558 *
1559 * Return:
1560 * - 0 if successful.
1561 * - -EINTR if a fatal signal was encountered.
1562 */
1563int folio_wait_private_2_killable(struct folio *folio)
1564{
1565	int ret = 0;
1566
1567	while (folio_test_private_2(folio)) {
1568		ret = folio_wait_bit_killable(folio, PG_private_2);
1569		if (ret < 0)
1570			break;
1571	}
1572
1573	return ret;
 
1574}
1575EXPORT_SYMBOL(folio_wait_private_2_killable);
1576
1577/**
1578 * folio_end_writeback - End writeback against a folio.
1579 * @folio: The folio.
1580 *
1581 * The folio must actually be under writeback.
1582 *
1583 * Context: May be called from process or interrupt context.
1584 */
1585void folio_end_writeback(struct folio *folio)
1586{
1587	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
 
 
 
 
 
 
 
 
 
 
1588
1589	/*
1590	 * folio_test_clear_reclaim() could be used here but it is an
1591	 * atomic operation and overkill in this particular case. Failing
1592	 * to shuffle a folio marked for immediate reclaim is too mild
1593	 * a gain to justify taking an atomic operation penalty at the
1594	 * end of every folio writeback.
1595	 */
1596	if (folio_test_reclaim(folio)) {
1597		folio_clear_reclaim(folio);
1598		folio_rotate_reclaimable(folio);
1599	}
1600
1601	/*
1602	 * Writeback does not hold a folio reference of its own, relying
1603	 * on truncation to wait for the clearing of PG_writeback.
1604	 * But here we must make sure that the folio is not freed and
1605	 * reused before the folio_wake_bit().
1606	 */
1607	folio_get(folio);
1608	if (__folio_end_writeback(folio))
1609		folio_wake_bit(folio, PG_writeback);
1610	acct_reclaim_writeback(folio);
1611	folio_put(folio);
1612}
1613EXPORT_SYMBOL(folio_end_writeback);
1614
1615/**
1616 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1617 * @folio: The folio to lock
1618 */
1619void __folio_lock(struct folio *folio)
1620{
1621	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1622				EXCLUSIVE);
 
1623}
1624EXPORT_SYMBOL(__folio_lock);
1625
1626int __folio_lock_killable(struct folio *folio)
1627{
1628	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1629					EXCLUSIVE);
1630}
1631EXPORT_SYMBOL_GPL(__folio_lock_killable);
1632
1633static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1634{
1635	struct wait_queue_head *q = folio_waitqueue(folio);
1636	int ret;
1637
1638	wait->folio = folio;
1639	wait->bit_nr = PG_locked;
1640
1641	spin_lock_irq(&q->lock);
1642	__add_wait_queue_entry_tail(q, &wait->wait);
1643	folio_set_waiters(folio);
1644	ret = !folio_trylock(folio);
1645	/*
1646	 * If we were successful now, we know we're still on the
1647	 * waitqueue as we're still under the lock. This means it's
1648	 * safe to remove and return success, we know the callback
1649	 * isn't going to trigger.
1650	 */
1651	if (!ret)
1652		__remove_wait_queue(q, &wait->wait);
1653	else
1654		ret = -EIOCBQUEUED;
1655	spin_unlock_irq(&q->lock);
1656	return ret;
1657}
 
1658
1659/*
1660 * Return values:
1661 * 0 - folio is locked.
1662 * non-zero - folio is not locked.
1663 *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1664 *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1665 *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1666 *
1667 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1668 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1669 */
1670vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
 
1671{
1672	unsigned int flags = vmf->flags;
1673
1674	if (fault_flag_allow_retry_first(flags)) {
1675		/*
1676		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1677		 * released even though returning VM_FAULT_RETRY.
1678		 */
1679		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1680			return VM_FAULT_RETRY;
1681
1682		release_fault_lock(vmf);
1683		if (flags & FAULT_FLAG_KILLABLE)
1684			folio_wait_locked_killable(folio);
1685		else
1686			folio_wait_locked(folio);
1687		return VM_FAULT_RETRY;
1688	}
1689	if (flags & FAULT_FLAG_KILLABLE) {
1690		bool ret;
1691
1692		ret = __folio_lock_killable(folio);
1693		if (ret) {
1694			release_fault_lock(vmf);
1695			return VM_FAULT_RETRY;
1696		}
1697	} else {
1698		__folio_lock(folio);
 
1699	}
1700
1701	return 0;
1702}
1703
1704/**
1705 * page_cache_next_miss() - Find the next gap in the page cache.
1706 * @mapping: Mapping.
1707 * @index: Index.
1708 * @max_scan: Maximum range to search.
1709 *
1710 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1711 * gap with the lowest index.
1712 *
1713 * This function may be called under the rcu_read_lock.  However, this will
1714 * not atomically search a snapshot of the cache at a single point in time.
1715 * For example, if a gap is created at index 5, then subsequently a gap is
1716 * created at index 10, page_cache_next_miss covering both indices may
1717 * return 10 if called under the rcu_read_lock.
1718 *
1719 * Return: The index of the gap if found, otherwise an index outside the
1720 * range specified (in which case 'return - index >= max_scan' will be true).
1721 * In the rare case of index wrap-around, 0 will be returned.
 
 
1722 */
1723pgoff_t page_cache_next_miss(struct address_space *mapping,
1724			     pgoff_t index, unsigned long max_scan)
1725{
1726	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1727
1728	while (max_scan--) {
1729		void *entry = xas_next(&xas);
1730		if (!entry || xa_is_value(entry))
1731			break;
1732		if (xas.xa_index == 0)
 
1733			break;
1734	}
1735
1736	return xas.xa_index;
1737}
1738EXPORT_SYMBOL(page_cache_next_miss);
1739
1740/**
1741 * page_cache_prev_miss() - Find the previous gap in the page cache.
1742 * @mapping: Mapping.
1743 * @index: Index.
1744 * @max_scan: Maximum range to search.
1745 *
1746 * Search the range [max(index - max_scan + 1, 0), index] for the
1747 * gap with the highest index.
1748 *
1749 * This function may be called under the rcu_read_lock.  However, this will
1750 * not atomically search a snapshot of the cache at a single point in time.
1751 * For example, if a gap is created at index 10, then subsequently a gap is
1752 * created at index 5, page_cache_prev_miss() covering both indices may
1753 * return 5 if called under the rcu_read_lock.
1754 *
1755 * Return: The index of the gap if found, otherwise an index outside the
1756 * range specified (in which case 'index - return >= max_scan' will be true).
1757 * In the rare case of wrap-around, ULONG_MAX will be returned.
 
 
1758 */
1759pgoff_t page_cache_prev_miss(struct address_space *mapping,
1760			     pgoff_t index, unsigned long max_scan)
1761{
1762	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1763
1764	while (max_scan--) {
1765		void *entry = xas_prev(&xas);
1766		if (!entry || xa_is_value(entry))
1767			break;
1768		if (xas.xa_index == ULONG_MAX)
 
1769			break;
1770	}
1771
1772	return xas.xa_index;
1773}
1774EXPORT_SYMBOL(page_cache_prev_miss);
1775
1776/*
1777 * Lockless page cache protocol:
1778 * On the lookup side:
1779 * 1. Load the folio from i_pages
1780 * 2. Increment the refcount if it's not zero
1781 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1782 *
1783 * On the removal side:
1784 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1785 * B. Remove the page from i_pages
1786 * C. Return the page to the page allocator
1787 *
1788 * This means that any page may have its reference count temporarily
1789 * increased by a speculative page cache (or fast GUP) lookup as it can
1790 * be allocated by another user before the RCU grace period expires.
1791 * Because the refcount temporarily acquired here may end up being the
1792 * last refcount on the page, any page allocation must be freeable by
1793 * folio_put().
1794 */
1795
1796/*
1797 * filemap_get_entry - Get a page cache entry.
1798 * @mapping: the address_space to search
1799 * @index: The page cache index.
 
 
 
1800 *
1801 * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1802 * it is returned with an increased refcount.  If it is a shadow entry
1803 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1804 * it is returned without further action.
1805 *
1806 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1807 */
1808void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1809{
1810	XA_STATE(xas, &mapping->i_pages, index);
1811	struct folio *folio;
1812
1813	rcu_read_lock();
1814repeat:
1815	xas_reset(&xas);
1816	folio = xas_load(&xas);
1817	if (xas_retry(&xas, folio))
1818		goto repeat;
1819	/*
1820	 * A shadow entry of a recently evicted page, or a swap entry from
1821	 * shmem/tmpfs.  Return it without attempting to raise page count.
1822	 */
1823	if (!folio || xa_is_value(folio))
1824		goto out;
 
 
 
 
 
 
 
 
 
 
1825
1826	if (!folio_try_get_rcu(folio))
1827		goto repeat;
 
 
 
1828
1829	if (unlikely(folio != xas_reload(&xas))) {
1830		folio_put(folio);
1831		goto repeat;
 
 
 
 
 
 
1832	}
1833out:
1834	rcu_read_unlock();
1835
1836	return folio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837}
 
1838
1839/**
1840 * __filemap_get_folio - Find and get a reference to a folio.
1841 * @mapping: The address_space to search.
1842 * @index: The page index.
1843 * @fgp_flags: %FGP flags modify how the folio is returned.
1844 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
 
 
1845 *
1846 * Looks up the page cache entry at @mapping & @index.
1847 *
1848 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1849 * if the %GFP flags specified for %FGP_CREAT are atomic.
1850 *
1851 * If this function returns a folio, it is returned with an increased refcount.
 
 
 
 
 
1852 *
1853 * Return: The found folio or an ERR_PTR() otherwise.
 
 
 
1854 */
1855struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1856		fgf_t fgp_flags, gfp_t gfp)
1857{
1858	struct folio *folio;
1859
1860repeat:
1861	folio = filemap_get_entry(mapping, index);
1862	if (xa_is_value(folio))
1863		folio = NULL;
1864	if (!folio)
1865		goto no_page;
1866
1867	if (fgp_flags & FGP_LOCK) {
1868		if (fgp_flags & FGP_NOWAIT) {
1869			if (!folio_trylock(folio)) {
1870				folio_put(folio);
1871				return ERR_PTR(-EAGAIN);
1872			}
1873		} else {
1874			folio_lock(folio);
1875		}
1876
1877		/* Has the page been truncated? */
1878		if (unlikely(folio->mapping != mapping)) {
1879			folio_unlock(folio);
1880			folio_put(folio);
1881			goto repeat;
1882		}
1883		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1884	}
1885
1886	if (fgp_flags & FGP_ACCESSED)
1887		folio_mark_accessed(folio);
1888	else if (fgp_flags & FGP_WRITE) {
1889		/* Clear idle flag for buffer write */
1890		if (folio_test_idle(folio))
1891			folio_clear_idle(folio);
1892	}
1893
1894	if (fgp_flags & FGP_STABLE)
1895		folio_wait_stable(folio);
1896no_page:
1897	if (!folio && (fgp_flags & FGP_CREAT)) {
1898		unsigned order = FGF_GET_ORDER(fgp_flags);
1899		int err;
1900
1901		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1902			gfp |= __GFP_WRITE;
1903		if (fgp_flags & FGP_NOFS)
1904			gfp &= ~__GFP_FS;
1905		if (fgp_flags & FGP_NOWAIT) {
1906			gfp &= ~GFP_KERNEL;
1907			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1908		}
1909		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1910			fgp_flags |= FGP_LOCK;
1911
1912		if (!mapping_large_folio_support(mapping))
1913			order = 0;
1914		if (order > MAX_PAGECACHE_ORDER)
1915			order = MAX_PAGECACHE_ORDER;
1916		/* If we're not aligned, allocate a smaller folio */
1917		if (index & ((1UL << order) - 1))
1918			order = __ffs(index);
1919
1920		do {
1921			gfp_t alloc_gfp = gfp;
1922
1923			err = -ENOMEM;
1924			if (order > 0)
1925				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1926			folio = filemap_alloc_folio(alloc_gfp, order);
1927			if (!folio)
1928				continue;
1929
1930			/* Init accessed so avoid atomic mark_page_accessed later */
1931			if (fgp_flags & FGP_ACCESSED)
1932				__folio_set_referenced(folio);
1933
1934			err = filemap_add_folio(mapping, folio, index, gfp);
1935			if (!err)
1936				break;
1937			folio_put(folio);
1938			folio = NULL;
1939		} while (order-- > 0);
1940
1941		if (err == -EEXIST)
1942			goto repeat;
1943		if (err)
1944			return ERR_PTR(err);
1945		/*
1946		 * filemap_add_folio locks the page, and for mmap
1947		 * we expect an unlocked page.
1948		 */
1949		if (folio && (fgp_flags & FGP_FOR_MMAP))
1950			folio_unlock(folio);
1951	}
1952
1953	if (!folio)
1954		return ERR_PTR(-ENOENT);
1955	return folio;
1956}
1957EXPORT_SYMBOL(__filemap_get_folio);
1958
1959static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1960		xa_mark_t mark)
1961{
1962	struct folio *folio;
1963
1964retry:
1965	if (mark == XA_PRESENT)
1966		folio = xas_find(xas, max);
1967	else
1968		folio = xas_find_marked(xas, max, mark);
1969
1970	if (xas_retry(xas, folio))
1971		goto retry;
1972	/*
1973	 * A shadow entry of a recently evicted page, a swap
1974	 * entry from shmem/tmpfs or a DAX entry.  Return it
1975	 * without attempting to raise page count.
1976	 */
1977	if (!folio || xa_is_value(folio))
1978		return folio;
1979
1980	if (!folio_try_get_rcu(folio))
1981		goto reset;
1982
1983	if (unlikely(folio != xas_reload(xas))) {
1984		folio_put(folio);
1985		goto reset;
1986	}
1987
1988	return folio;
1989reset:
1990	xas_reset(xas);
1991	goto retry;
1992}
 
1993
1994/**
1995 * find_get_entries - gang pagecache lookup
1996 * @mapping:	The address_space to search
1997 * @start:	The starting page cache index
1998 * @end:	The final page index (inclusive).
1999 * @fbatch:	Where the resulting entries are placed.
2000 * @indices:	The cache indices corresponding to the entries in @entries
2001 *
2002 * find_get_entries() will search for and return a batch of entries in
2003 * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2004 * takes a reference on any actual folios it returns.
2005 *
2006 * The entries have ascending indexes.  The indices may not be consecutive
2007 * due to not-present entries or large folios.
 
 
2008 *
2009 * Any shadow entries of evicted folios, or swap entries from
2010 * shmem/tmpfs, are included in the returned array.
2011 *
2012 * Return: The number of entries which were found.
 
2013 */
2014unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2015		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2016{
2017	XA_STATE(xas, &mapping->i_pages, *start);
2018	struct folio *folio;
 
 
 
 
 
2019
2020	rcu_read_lock();
2021	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2022		indices[fbatch->nr] = xas.xa_index;
2023		if (!folio_batch_add(fbatch, folio))
2024			break;
2025	}
2026	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
2027
2028	if (folio_batch_count(fbatch)) {
2029		unsigned long nr = 1;
2030		int idx = folio_batch_count(fbatch) - 1;
2031
2032		folio = fbatch->folios[idx];
2033		if (!xa_is_value(folio))
2034			nr = folio_nr_pages(folio);
2035		*start = indices[idx] + nr;
2036	}
2037	return folio_batch_count(fbatch);
2038}
2039
2040/**
2041 * find_lock_entries - Find a batch of pagecache entries.
2042 * @mapping:	The address_space to search.
2043 * @start:	The starting page cache index.
2044 * @end:	The final page index (inclusive).
2045 * @fbatch:	Where the resulting entries are placed.
2046 * @indices:	The cache indices of the entries in @fbatch.
2047 *
2048 * find_lock_entries() will return a batch of entries from @mapping.
2049 * Swap, shadow and DAX entries are included.  Folios are returned
2050 * locked and with an incremented refcount.  Folios which are locked
2051 * by somebody else or under writeback are skipped.  Folios which are
2052 * partially outside the range are not returned.
2053 *
2054 * The entries have ascending indexes.  The indices may not be consecutive
2055 * due to not-present entries, large folios, folios which could not be
2056 * locked or folios under writeback.
2057 *
2058 * Return: The number of entries which were found.
2059 */
2060unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2061		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2062{
2063	XA_STATE(xas, &mapping->i_pages, *start);
2064	struct folio *folio;
2065
2066	rcu_read_lock();
2067	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2068		if (!xa_is_value(folio)) {
2069			if (folio->index < *start)
2070				goto put;
2071			if (folio_next_index(folio) - 1 > end)
2072				goto put;
2073			if (!folio_trylock(folio))
2074				goto put;
2075			if (folio->mapping != mapping ||
2076			    folio_test_writeback(folio))
2077				goto unlock;
2078			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2079					folio);
2080		}
2081		indices[fbatch->nr] = xas.xa_index;
2082		if (!folio_batch_add(fbatch, folio))
 
 
2083			break;
2084		continue;
2085unlock:
2086		folio_unlock(folio);
2087put:
2088		folio_put(folio);
2089	}
2090	rcu_read_unlock();
2091
2092	if (folio_batch_count(fbatch)) {
2093		unsigned long nr = 1;
2094		int idx = folio_batch_count(fbatch) - 1;
2095
2096		folio = fbatch->folios[idx];
2097		if (!xa_is_value(folio))
2098			nr = folio_nr_pages(folio);
2099		*start = indices[idx] + nr;
2100	}
2101	return folio_batch_count(fbatch);
2102}
2103
2104/**
2105 * filemap_get_folios - Get a batch of folios
2106 * @mapping:	The address_space to search
2107 * @start:	The starting page index
2108 * @end:	The final page index (inclusive)
2109 * @fbatch:	The batch to fill.
 
2110 *
2111 * Search for and return a batch of folios in the mapping starting at
2112 * index @start and up to index @end (inclusive).  The folios are returned
2113 * in @fbatch with an elevated reference count.
2114 *
2115 * Return: The number of folios which were found.
2116 * We also update @start to index the next folio for the traversal.
2117 */
2118unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2119		pgoff_t end, struct folio_batch *fbatch)
2120{
2121	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2122}
2123EXPORT_SYMBOL(filemap_get_folios);
 
 
 
 
 
 
 
2124
2125/**
2126 * filemap_get_folios_contig - Get a batch of contiguous folios
2127 * @mapping:	The address_space to search
2128 * @start:	The starting page index
2129 * @end:	The final page index (inclusive)
2130 * @fbatch:	The batch to fill
2131 *
2132 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2133 * except the returned folios are guaranteed to be contiguous. This may
2134 * not return all contiguous folios if the batch gets filled up.
2135 *
2136 * Return: The number of folios found.
2137 * Also update @start to be positioned for traversal of the next folio.
2138 */
2139
2140unsigned filemap_get_folios_contig(struct address_space *mapping,
2141		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2142{
2143	XA_STATE(xas, &mapping->i_pages, *start);
2144	unsigned long nr;
2145	struct folio *folio;
2146
2147	rcu_read_lock();
 
 
2148
2149	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2150			folio = xas_next(&xas)) {
2151		if (xas_retry(&xas, folio))
 
 
2152			continue;
2153		/*
2154		 * If the entry has been swapped out, we can stop looking.
2155		 * No current caller is looking for DAX entries.
2156		 */
2157		if (xa_is_value(folio))
2158			goto update_start;
2159
2160		if (!folio_try_get_rcu(folio))
2161			goto retry;
 
 
 
 
 
 
 
 
 
 
2162
2163		if (unlikely(folio != xas_reload(&xas)))
2164			goto put_folio;
 
2165
2166		if (!folio_batch_add(fbatch, folio)) {
2167			nr = folio_nr_pages(folio);
2168			*start = folio->index + nr;
2169			goto out;
2170		}
2171		continue;
2172put_folio:
2173		folio_put(folio);
2174
2175retry:
2176		xas_reset(&xas);
2177	}
2178
2179update_start:
2180	nr = folio_batch_count(fbatch);
2181
2182	if (nr) {
2183		folio = fbatch->folios[nr - 1];
2184		*start = folio_next_index(folio);
2185	}
2186out:
2187	rcu_read_unlock();
2188	return folio_batch_count(fbatch);
2189}
2190EXPORT_SYMBOL(filemap_get_folios_contig);
2191
2192/**
2193 * filemap_get_folios_tag - Get a batch of folios matching @tag
2194 * @mapping:    The address_space to search
2195 * @start:      The starting page index
2196 * @end:        The final page index (inclusive)
2197 * @tag:        The tag index
2198 * @fbatch:     The batch to fill
2199 *
2200 * The first folio may start before @start; if it does, it will contain
2201 * @start.  The final folio may extend beyond @end; if it does, it will
2202 * contain @end.  The folios have ascending indices.  There may be gaps
2203 * between the folios if there are indices which have no folio in the
2204 * page cache.  If folios are added to or removed from the page cache
2205 * while this is running, they may or may not be found by this call.
2206 * Only returns folios that are tagged with @tag.
2207 *
2208 * Return: The number of folios found.
2209 * Also update @start to index the next folio for traversal.
2210 */
2211unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2212			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2213{
2214	XA_STATE(xas, &mapping->i_pages, *start);
2215	struct folio *folio;
2216
2217	rcu_read_lock();
2218	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2219		/*
2220		 * Shadow entries should never be tagged, but this iteration
2221		 * is lockless so there is a window for page reclaim to evict
2222		 * a page we saw tagged. Skip over it.
2223		 */
2224		if (xa_is_value(folio))
2225			continue;
2226		if (!folio_batch_add(fbatch, folio)) {
2227			unsigned long nr = folio_nr_pages(folio);
2228			*start = folio->index + nr;
2229			goto out;
2230		}
2231	}
 
2232	/*
2233	 * We come here when there is no page beyond @end. We take care to not
2234	 * overflow the index @start as it confuses some of the callers. This
2235	 * breaks the iteration when there is a page at index -1 but that is
2236	 * already broke anyway.
2237	 */
2238	if (end == (pgoff_t)-1)
2239		*start = (pgoff_t)-1;
2240	else
2241		*start = end + 1;
2242out:
2243	rcu_read_unlock();
2244
2245	return folio_batch_count(fbatch);
2246}
2247EXPORT_SYMBOL(filemap_get_folios_tag);
2248
2249/*
2250 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251 * a _large_ part of the i/o request. Imagine the worst scenario:
 
 
 
2252 *
2253 *      ---R__________________________________________B__________
2254 *         ^ reading here                             ^ bad block(assume 4k)
2255 *
2256 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257 * => failing the whole request => read(R) => read(R+1) =>
2258 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261 *
2262 * It is going insane. Fix it by quickly scaling down the readahead size.
2263 */
2264static void shrink_readahead_size_eio(struct file_ra_state *ra)
 
2265{
2266	ra->ra_pages /= 4;
2267}
 
2268
2269/*
2270 * filemap_get_read_batch - Get a batch of folios for read
2271 *
2272 * Get a batch of folios which represent a contiguous range of bytes in
2273 * the file.  No exceptional entries will be returned.  If @index is in
2274 * the middle of a folio, the entire folio will be returned.  The last
2275 * folio in the batch may have the readahead flag set or the uptodate flag
2276 * clear so that the caller can take the appropriate action.
2277 */
2278static void filemap_get_read_batch(struct address_space *mapping,
2279		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2280{
2281	XA_STATE(xas, &mapping->i_pages, index);
2282	struct folio *folio;
2283
2284	rcu_read_lock();
2285	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2286		if (xas_retry(&xas, folio))
2287			continue;
2288		if (xas.xa_index > max || xa_is_value(folio))
 
 
2289			break;
2290		if (xa_is_sibling(folio))
 
 
 
 
 
 
 
 
 
 
2291			break;
2292		if (!folio_try_get_rcu(folio))
2293			goto retry;
2294
2295		if (unlikely(folio != xas_reload(&xas)))
2296			goto put_folio;
 
2297
2298		if (!folio_batch_add(fbatch, folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2299			break;
2300		if (!folio_test_uptodate(folio))
2301			break;
2302		if (folio_test_readahead(folio))
 
2303			break;
2304		xas_advance(&xas, folio_next_index(folio) - 1);
2305		continue;
2306put_folio:
2307		folio_put(folio);
2308retry:
2309		xas_reset(&xas);
2310	}
2311	rcu_read_unlock();
 
2312}
 
2313
2314static int filemap_read_folio(struct file *file, filler_t filler,
2315		struct folio *folio)
2316{
2317	bool workingset = folio_test_workingset(folio);
2318	unsigned long pflags;
2319	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
2320
2321	/*
2322	 * A previous I/O error may have been due to temporary failures,
2323	 * eg. multipath errors.  PG_error will be set again if read_folio
2324	 * fails.
2325	 */
2326	folio_clear_error(folio);
2327
2328	/* Start the actual read. The read will unlock the page. */
2329	if (unlikely(workingset))
2330		psi_memstall_enter(&pflags);
2331	error = filler(file, folio);
2332	if (unlikely(workingset))
2333		psi_memstall_leave(&pflags);
2334	if (error)
2335		return error;
2336
2337	error = folio_wait_locked_killable(folio);
2338	if (error)
2339		return error;
2340	if (folio_test_uptodate(folio))
2341		return 0;
2342	if (file)
2343		shrink_readahead_size_eio(&file->f_ra);
2344	return -EIO;
2345}
2346
2347static bool filemap_range_uptodate(struct address_space *mapping,
2348		loff_t pos, size_t count, struct folio *folio,
2349		bool need_uptodate)
2350{
2351	if (folio_test_uptodate(folio))
2352		return true;
2353	/* pipes can't handle partially uptodate pages */
2354	if (need_uptodate)
2355		return false;
2356	if (!mapping->a_ops->is_partially_uptodate)
2357		return false;
2358	if (mapping->host->i_blkbits >= folio_shift(folio))
2359		return false;
 
 
 
 
 
2360
2361	if (folio_pos(folio) > pos) {
2362		count -= folio_pos(folio) - pos;
2363		pos = 0;
2364	} else {
2365		pos -= folio_pos(folio);
2366	}
2367
2368	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2369}
 
 
 
2370
2371static int filemap_update_page(struct kiocb *iocb,
2372		struct address_space *mapping, size_t count,
2373		struct folio *folio, bool need_uptodate)
2374{
2375	int error;
2376
2377	if (iocb->ki_flags & IOCB_NOWAIT) {
2378		if (!filemap_invalidate_trylock_shared(mapping))
2379			return -EAGAIN;
2380	} else {
2381		filemap_invalidate_lock_shared(mapping);
2382	}
2383
2384	if (!folio_trylock(folio)) {
2385		error = -EAGAIN;
2386		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2387			goto unlock_mapping;
2388		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2389			filemap_invalidate_unlock_shared(mapping);
2390			/*
2391			 * This is where we usually end up waiting for a
2392			 * previously submitted readahead to finish.
2393			 */
2394			folio_put_wait_locked(folio, TASK_KILLABLE);
2395			return AOP_TRUNCATED_PAGE;
2396		}
2397		error = __folio_lock_async(folio, iocb->ki_waitq);
2398		if (error)
2399			goto unlock_mapping;
2400	}
2401
2402	error = AOP_TRUNCATED_PAGE;
2403	if (!folio->mapping)
2404		goto unlock;
 
 
 
 
 
 
 
 
 
2405
2406	error = 0;
2407	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2408				   need_uptodate))
2409		goto unlock;
2410
2411	error = -EAGAIN;
2412	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2413		goto unlock;
2414
2415	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2416			folio);
2417	goto unlock_mapping;
2418unlock:
2419	folio_unlock(folio);
2420unlock_mapping:
2421	filemap_invalidate_unlock_shared(mapping);
2422	if (error == AOP_TRUNCATED_PAGE)
2423		folio_put(folio);
2424	return error;
2425}
 
2426
2427static int filemap_create_folio(struct file *file,
2428		struct address_space *mapping, pgoff_t index,
2429		struct folio_batch *fbatch)
 
 
 
 
 
 
 
 
 
 
 
 
2430{
2431	struct folio *folio;
2432	int error;
 
2433
2434	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2435	if (!folio)
2436		return -ENOMEM;
2437
2438	/*
2439	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2440	 * here assures we cannot instantiate and bring uptodate new
2441	 * pagecache folios after evicting page cache during truncate
2442	 * and before actually freeing blocks.	Note that we could
2443	 * release invalidate_lock after inserting the folio into
2444	 * the page cache as the locked folio would then be enough to
2445	 * synchronize with hole punching. But there are code paths
2446	 * such as filemap_update_page() filling in partially uptodate
2447	 * pages or ->readahead() that need to hold invalidate_lock
2448	 * while mapping blocks for IO so let's hold the lock here as
2449	 * well to keep locking rules simple.
2450	 */
2451	filemap_invalidate_lock_shared(mapping);
2452	error = filemap_add_folio(mapping, folio, index,
2453			mapping_gfp_constraint(mapping, GFP_KERNEL));
2454	if (error == -EEXIST)
2455		error = AOP_TRUNCATED_PAGE;
2456	if (error)
2457		goto error;
2458
2459	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2460	if (error)
2461		goto error;
 
 
 
 
2462
2463	filemap_invalidate_unlock_shared(mapping);
2464	folio_batch_add(fbatch, folio);
2465	return 0;
2466error:
2467	filemap_invalidate_unlock_shared(mapping);
2468	folio_put(folio);
2469	return error;
2470}
2471
2472static int filemap_readahead(struct kiocb *iocb, struct file *file,
2473		struct address_space *mapping, struct folio *folio,
2474		pgoff_t last_index)
2475{
2476	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2477
2478	if (iocb->ki_flags & IOCB_NOIO)
2479		return -EAGAIN;
2480	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2481	return 0;
2482}
2483
2484static int filemap_get_pages(struct kiocb *iocb, size_t count,
2485		struct folio_batch *fbatch, bool need_uptodate)
2486{
2487	struct file *filp = iocb->ki_filp;
2488	struct address_space *mapping = filp->f_mapping;
2489	struct file_ra_state *ra = &filp->f_ra;
2490	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2491	pgoff_t last_index;
2492	struct folio *folio;
2493	int err = 0;
2494
2495	/* "last_index" is the index of the page beyond the end of the read */
2496	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2497retry:
2498	if (fatal_signal_pending(current))
2499		return -EINTR;
2500
2501	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2502	if (!folio_batch_count(fbatch)) {
2503		if (iocb->ki_flags & IOCB_NOIO)
2504			return -EAGAIN;
2505		page_cache_sync_readahead(mapping, ra, filp, index,
2506				last_index - index);
2507		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2508	}
2509	if (!folio_batch_count(fbatch)) {
2510		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2511			return -EAGAIN;
2512		err = filemap_create_folio(filp, mapping,
2513				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2514		if (err == AOP_TRUNCATED_PAGE)
2515			goto retry;
2516		return err;
2517	}
2518
2519	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2520	if (folio_test_readahead(folio)) {
2521		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2522		if (err)
2523			goto err;
2524	}
2525	if (!folio_test_uptodate(folio)) {
2526		if ((iocb->ki_flags & IOCB_WAITQ) &&
2527		    folio_batch_count(fbatch) > 1)
2528			iocb->ki_flags |= IOCB_NOWAIT;
2529		err = filemap_update_page(iocb, mapping, count, folio,
2530					  need_uptodate);
2531		if (err)
2532			goto err;
2533	}
2534
2535	return 0;
2536err:
2537	if (err < 0)
2538		folio_put(folio);
2539	if (likely(--fbatch->nr))
2540		return 0;
2541	if (err == AOP_TRUNCATED_PAGE)
2542		goto retry;
2543	return err;
2544}
 
2545
2546static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547{
2548	unsigned int shift = folio_shift(folio);
2549
2550	return (pos1 >> shift == pos2 >> shift);
2551}
2552
2553/**
2554 * filemap_read - Read data from the page cache.
2555 * @iocb: The iocb to read.
2556 * @iter: Destination for the data.
2557 * @already_read: Number of bytes already read by the caller.
2558 *
2559 * Copies data from the page cache.  If the data is not currently present,
2560 * uses the readahead and read_folio address_space operations to fetch it.
2561 *
2562 * Return: Total number of bytes copied, including those already read by
2563 * the caller.  If an error happens before any bytes are copied, returns
2564 * a negative error number.
2565 */
2566ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2567		ssize_t already_read)
2568{
2569	struct file *filp = iocb->ki_filp;
2570	struct file_ra_state *ra = &filp->f_ra;
2571	struct address_space *mapping = filp->f_mapping;
2572	struct inode *inode = mapping->host;
2573	struct folio_batch fbatch;
2574	int i, error = 0;
2575	bool writably_mapped;
2576	loff_t isize, end_offset;
2577	loff_t last_pos = ra->prev_pos;
 
 
 
2578
2579	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2580		return 0;
2581	if (unlikely(!iov_iter_count(iter)))
2582		return 0;
2583
2584	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2585	folio_batch_init(&fbatch);
2586
2587	do {
2588		cond_resched();
 
 
 
2589
2590		/*
2591		 * If we've already successfully copied some data, then we
2592		 * can no longer safely return -EIOCBQUEUED. Hence mark
2593		 * an async read NOWAIT at that point.
2594		 */
2595		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2596			iocb->ki_flags |= IOCB_NOWAIT;
2597
2598		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2599			break;
 
 
 
 
2600
2601		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2602		if (error < 0)
2603			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605		/*
2606		 * i_size must be checked after we know the pages are Uptodate.
2607		 *
2608		 * Checking i_size after the check allows us to calculate
2609		 * the correct value for "nr", which means the zero-filled
2610		 * part of the page is not copied back to userspace (unless
2611		 * another truncate extends the file - this is desired though).
2612		 */
 
2613		isize = i_size_read(inode);
2614		if (unlikely(iocb->ki_pos >= isize))
2615			goto put_folios;
2616		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2617
2618		/*
2619		 * Once we start copying data, we don't want to be touching any
2620		 * cachelines that might be contended:
2621		 */
2622		writably_mapped = mapping_writably_mapped(mapping);
 
 
2623
2624		/*
2625		 * When a read accesses the same folio several times, only
2626		 * mark it as accessed the first time.
2627		 */
2628		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2629				    fbatch.folios[0]))
2630			folio_mark_accessed(fbatch.folios[0]);
2631
2632		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2633			struct folio *folio = fbatch.folios[i];
2634			size_t fsize = folio_size(folio);
2635			size_t offset = iocb->ki_pos & (fsize - 1);
2636			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2637					     fsize - offset);
2638			size_t copied;
2639
2640			if (end_offset < folio_pos(folio))
2641				break;
2642			if (i > 0)
2643				folio_mark_accessed(folio);
2644			/*
2645			 * If users can be writing to this folio using arbitrary
2646			 * virtual addresses, take care of potential aliasing
2647			 * before reading the folio on the kernel side.
2648			 */
2649			if (writably_mapped)
2650				flush_dcache_folio(folio);
2651
2652			copied = copy_folio_to_iter(folio, offset, bytes, iter);
 
 
 
 
 
 
 
 
2653
2654			already_read += copied;
2655			iocb->ki_pos += copied;
2656			last_pos = iocb->ki_pos;
 
 
 
 
 
 
 
 
 
 
2657
2658			if (copied < bytes) {
2659				error = -EFAULT;
2660				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661			}
 
2662		}
2663put_folios:
2664		for (i = 0; i < folio_batch_count(&fbatch); i++)
2665			folio_put(fbatch.folios[i]);
2666		folio_batch_init(&fbatch);
2667	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2668
2669	file_accessed(filp);
2670	ra->prev_pos = last_pos;
2671	return already_read ? already_read : error;
2672}
2673EXPORT_SYMBOL_GPL(filemap_read);
2674
2675int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2676{
2677	struct address_space *mapping = iocb->ki_filp->f_mapping;
2678	loff_t pos = iocb->ki_pos;
2679	loff_t end = pos + count - 1;
2680
2681	if (iocb->ki_flags & IOCB_NOWAIT) {
2682		if (filemap_range_needs_writeback(mapping, pos, end))
2683			return -EAGAIN;
2684		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2685	}
2686
2687	return filemap_write_and_wait_range(mapping, pos, end);
2688}
2689EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
 
 
 
2690
2691int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2692{
2693	struct address_space *mapping = iocb->ki_filp->f_mapping;
2694	loff_t pos = iocb->ki_pos;
2695	loff_t end = pos + count - 1;
2696	int ret;
2697
2698	if (iocb->ki_flags & IOCB_NOWAIT) {
2699		/* we could block if there are any pages in the range */
2700		if (filemap_range_has_page(mapping, pos, end))
2701			return -EAGAIN;
2702	} else {
2703		ret = filemap_write_and_wait_range(mapping, pos, end);
2704		if (ret)
2705			return ret;
2706	}
2707
2708	/*
2709	 * After a write we want buffered reads to be sure to go to disk to get
2710	 * the new data.  We invalidate clean cached page from the region we're
2711	 * about to write.  We do this *before* the write so that we can return
2712	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2713	 */
2714	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2715					     end >> PAGE_SHIFT);
2716}
2717EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2718
2719/**
2720 * generic_file_read_iter - generic filesystem read routine
2721 * @iocb:	kernel I/O control block
2722 * @iter:	destination for the data read
2723 *
2724 * This is the "read_iter()" routine for all filesystems
2725 * that can use the page cache directly.
2726 *
2727 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2728 * be returned when no data can be read without waiting for I/O requests
2729 * to complete; it doesn't prevent readahead.
2730 *
2731 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2732 * requests shall be made for the read or for readahead.  When no data
2733 * can be read, -EAGAIN shall be returned.  When readahead would be
2734 * triggered, a partial, possibly empty read shall be returned.
2735 *
2736 * Return:
2737 * * number of bytes copied, even for partial reads
2738 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2739 */
2740ssize_t
2741generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2742{
2743	size_t count = iov_iter_count(iter);
2744	ssize_t retval = 0;
2745
2746	if (!count)
2747		return 0; /* skip atime */
2748
2749	if (iocb->ki_flags & IOCB_DIRECT) {
2750		struct file *file = iocb->ki_filp;
2751		struct address_space *mapping = file->f_mapping;
2752		struct inode *inode = mapping->host;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2753
2754		retval = kiocb_write_and_wait(iocb, count);
2755		if (retval < 0)
2756			return retval;
2757		file_accessed(file);
2758
2759		retval = mapping->a_ops->direct_IO(iocb, iter);
2760		if (retval >= 0) {
2761			iocb->ki_pos += retval;
2762			count -= retval;
2763		}
2764		if (retval != -EIOCBQUEUED)
2765			iov_iter_revert(iter, count - iov_iter_count(iter));
2766
2767		/*
2768		 * Btrfs can have a short DIO read if we encounter
2769		 * compressed extents, so if there was an error, or if
2770		 * we've already read everything we wanted to, or if
2771		 * there was a short read because we hit EOF, go ahead
2772		 * and return.  Otherwise fallthrough to buffered io for
2773		 * the rest of the read.  Buffered reads will not work for
2774		 * DAX files, so don't bother trying.
2775		 */
2776		if (retval < 0 || !count || IS_DAX(inode))
2777			return retval;
2778		if (iocb->ki_pos >= i_size_read(inode))
2779			return retval;
2780	}
2781
2782	return filemap_read(iocb, iter, retval);
 
 
2783}
2784EXPORT_SYMBOL(generic_file_read_iter);
2785
2786/*
2787 * Splice subpages from a folio into a pipe.
 
 
 
 
 
 
 
2788 */
2789size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2790			      struct folio *folio, loff_t fpos, size_t size)
2791{
 
2792	struct page *page;
2793	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2794
2795	page = folio_page(folio, offset / PAGE_SIZE);
2796	size = min(size, folio_size(folio) - offset);
2797	offset %= PAGE_SIZE;
2798
2799	while (spliced < size &&
2800	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2801		struct pipe_buffer *buf = pipe_head_buf(pipe);
2802		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2803
2804		*buf = (struct pipe_buffer) {
2805			.ops	= &page_cache_pipe_buf_ops,
2806			.page	= page,
2807			.offset	= offset,
2808			.len	= part,
2809		};
2810		folio_get(folio);
2811		pipe->head++;
2812		page++;
2813		spliced += part;
2814		offset = 0;
2815	}
2816
2817	return spliced;
2818}
2819
2820/**
2821 * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2822 * @in: The file to read from
2823 * @ppos: Pointer to the file position to read from
2824 * @pipe: The pipe to splice into
2825 * @len: The amount to splice
2826 * @flags: The SPLICE_F_* flags
2827 *
2828 * This function gets folios from a file's pagecache and splices them into the
2829 * pipe.  Readahead will be called as necessary to fill more folios.  This may
2830 * be used for blockdevs also.
2831 *
2832 * Return: On success, the number of bytes read will be returned and *@ppos
2833 * will be updated if appropriate; 0 will be returned if there is no more data
2834 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2835 * other negative error code will be returned on error.  A short read may occur
2836 * if the pipe has insufficient space, we reach the end of the data or we hit a
2837 * hole.
2838 */
2839ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2840			    struct pipe_inode_info *pipe,
2841			    size_t len, unsigned int flags)
2842{
2843	struct folio_batch fbatch;
2844	struct kiocb iocb;
2845	size_t total_spliced = 0, used, npages;
2846	loff_t isize, end_offset;
2847	bool writably_mapped;
2848	int i, error = 0;
2849
2850	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2851		return 0;
2852
2853	init_sync_kiocb(&iocb, in);
2854	iocb.ki_pos = *ppos;
2855
2856	/* Work out how much data we can actually add into the pipe */
2857	used = pipe_occupancy(pipe->head, pipe->tail);
2858	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2859	len = min_t(size_t, len, npages * PAGE_SIZE);
2860
2861	folio_batch_init(&fbatch);
2862
2863	do {
2864		cond_resched();
 
 
 
 
 
 
 
 
2865
2866		if (*ppos >= i_size_read(in->f_mapping->host))
2867			break;
2868
2869		iocb.ki_pos = *ppos;
2870		error = filemap_get_pages(&iocb, len, &fbatch, true);
2871		if (error < 0)
2872			break;
2873
2874		/*
2875		 * i_size must be checked after we know the pages are Uptodate.
2876		 *
2877		 * Checking i_size after the check allows us to calculate
2878		 * the correct value for "nr", which means the zero-filled
2879		 * part of the page is not copied back to userspace (unless
2880		 * another truncate extends the file - this is desired though).
2881		 */
2882		isize = i_size_read(in->f_mapping->host);
2883		if (unlikely(*ppos >= isize))
2884			break;
2885		end_offset = min_t(loff_t, isize, *ppos + len);
2886
2887		/*
2888		 * Once we start copying data, we don't want to be touching any
2889		 * cachelines that might be contended:
2890		 */
2891		writably_mapped = mapping_writably_mapped(in->f_mapping);
2892
2893		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2894			struct folio *folio = fbatch.folios[i];
2895			size_t n;
2896
2897			if (folio_pos(folio) >= end_offset)
2898				goto out;
2899			folio_mark_accessed(folio);
2900
2901			/*
2902			 * If users can be writing to this folio using arbitrary
2903			 * virtual addresses, take care of potential aliasing
2904			 * before reading the folio on the kernel side.
2905			 */
2906			if (writably_mapped)
2907				flush_dcache_folio(folio);
2908
2909			n = min_t(loff_t, len, isize - *ppos);
2910			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2911			if (!n)
2912				goto out;
2913			len -= n;
2914			total_spliced += n;
2915			*ppos += n;
2916			in->f_ra.prev_pos = *ppos;
2917			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2918				goto out;
2919		}
2920
2921		folio_batch_release(&fbatch);
2922	} while (len);
2923
2924out:
2925	folio_batch_release(&fbatch);
2926	file_accessed(in);
2927
2928	return total_spliced ? total_spliced : error;
2929}
2930EXPORT_SYMBOL(filemap_splice_read);
2931
2932static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2933		struct address_space *mapping, struct folio *folio,
2934		loff_t start, loff_t end, bool seek_data)
2935{
2936	const struct address_space_operations *ops = mapping->a_ops;
2937	size_t offset, bsz = i_blocksize(mapping->host);
2938
2939	if (xa_is_value(folio) || folio_test_uptodate(folio))
2940		return seek_data ? start : end;
2941	if (!ops->is_partially_uptodate)
2942		return seek_data ? end : start;
2943
2944	xas_pause(xas);
2945	rcu_read_unlock();
2946	folio_lock(folio);
2947	if (unlikely(folio->mapping != mapping))
2948		goto unlock;
2949
2950	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2951
2952	do {
2953		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2954							seek_data)
2955			break;
2956		start = (start + bsz) & ~(bsz - 1);
2957		offset += bsz;
2958	} while (offset < folio_size(folio));
2959unlock:
2960	folio_unlock(folio);
2961	rcu_read_lock();
2962	return start;
2963}
2964
2965static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2966{
2967	if (xa_is_value(folio))
2968		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2969	return folio_size(folio);
2970}
2971
2972/**
2973 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2974 * @mapping: Address space to search.
2975 * @start: First byte to consider.
2976 * @end: Limit of search (exclusive).
2977 * @whence: Either SEEK_HOLE or SEEK_DATA.
2978 *
2979 * If the page cache knows which blocks contain holes and which blocks
2980 * contain data, your filesystem can use this function to implement
2981 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2982 * entirely memory-based such as tmpfs, and filesystems which support
2983 * unwritten extents.
2984 *
2985 * Return: The requested offset on success, or -ENXIO if @whence specifies
2986 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2987 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2988 * and @end contain data.
2989 */
2990loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2991		loff_t end, int whence)
2992{
2993	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2994	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2995	bool seek_data = (whence == SEEK_DATA);
2996	struct folio *folio;
2997
2998	if (end <= start)
2999		return -ENXIO;
3000
3001	rcu_read_lock();
3002	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3003		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3004		size_t seek_size;
3005
3006		if (start < pos) {
3007			if (!seek_data)
3008				goto unlock;
3009			start = pos;
3010		}
3011
3012		seek_size = seek_folio_size(&xas, folio);
3013		pos = round_up((u64)pos + 1, seek_size);
3014		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3015				seek_data);
3016		if (start < pos)
3017			goto unlock;
3018		if (start >= end)
3019			break;
3020		if (seek_size > PAGE_SIZE)
3021			xas_set(&xas, pos >> PAGE_SHIFT);
3022		if (!xa_is_value(folio))
3023			folio_put(folio);
3024	}
3025	if (seek_data)
3026		start = -ENXIO;
3027unlock:
3028	rcu_read_unlock();
3029	if (folio && !xa_is_value(folio))
3030		folio_put(folio);
3031	if (start > end)
3032		return end;
3033	return start;
3034}
3035
3036#ifdef CONFIG_MMU
3037#define MMAP_LOTSAMISS  (100)
3038/*
3039 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3040 * @vmf - the vm_fault for this fault.
3041 * @folio - the folio to lock.
3042 * @fpin - the pointer to the file we may pin (or is already pinned).
3043 *
3044 * This works similar to lock_folio_or_retry in that it can drop the
3045 * mmap_lock.  It differs in that it actually returns the folio locked
3046 * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3047 * to drop the mmap_lock then fpin will point to the pinned file and
3048 * needs to be fput()'ed at a later point.
3049 */
3050static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3051				     struct file **fpin)
3052{
3053	if (folio_trylock(folio))
3054		return 1;
3055
3056	/*
3057	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3058	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3059	 * is supposed to work. We have way too many special cases..
3060	 */
3061	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3062		return 0;
3063
3064	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3065	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3066		if (__folio_lock_killable(folio)) {
3067			/*
3068			 * We didn't have the right flags to drop the
3069			 * fault lock, but all fault_handlers only check
3070			 * for fatal signals if we return VM_FAULT_RETRY,
3071			 * so we need to drop the fault lock here and
3072			 * return 0 if we don't have a fpin.
3073			 */
3074			if (*fpin == NULL)
3075				release_fault_lock(vmf);
3076			return 0;
3077		}
3078	} else
3079		__folio_lock(folio);
3080
3081	return 1;
3082}
3083
3084/*
3085 * Synchronous readahead happens when we don't even find a page in the page
3086 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3087 * to drop the mmap sem we return the file that was pinned in order for us to do
3088 * that.  If we didn't pin a file then we return NULL.  The file that is
3089 * returned needs to be fput()'ed when we're done with it.
3090 */
3091static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
3092{
3093	struct file *file = vmf->vma->vm_file;
3094	struct file_ra_state *ra = &file->f_ra;
3095	struct address_space *mapping = file->f_mapping;
3096	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3097	struct file *fpin = NULL;
3098	unsigned long vm_flags = vmf->vma->vm_flags;
3099	unsigned int mmap_miss;
3100
3101#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3102	/* Use the readahead code, even if readahead is disabled */
3103	if (vm_flags & VM_HUGEPAGE) {
3104		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3105		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3106		ra->size = HPAGE_PMD_NR;
3107		/*
3108		 * Fetch two PMD folios, so we get the chance to actually
3109		 * readahead, unless we've been told not to.
3110		 */
3111		if (!(vm_flags & VM_RAND_READ))
3112			ra->size *= 2;
3113		ra->async_size = HPAGE_PMD_NR;
3114		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3115		return fpin;
3116	}
3117#endif
3118
3119	/* If we don't want any read-ahead, don't bother */
3120	if (vm_flags & VM_RAND_READ)
3121		return fpin;
3122	if (!ra->ra_pages)
3123		return fpin;
3124
3125	if (vm_flags & VM_SEQ_READ) {
3126		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3127		page_cache_sync_ra(&ractl, ra->ra_pages);
3128		return fpin;
3129	}
3130
3131	/* Avoid banging the cache line if not needed */
3132	mmap_miss = READ_ONCE(ra->mmap_miss);
3133	if (mmap_miss < MMAP_LOTSAMISS * 10)
3134		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3135
3136	/*
3137	 * Do we miss much more than hit in this file? If so,
3138	 * stop bothering with read-ahead. It will only hurt.
3139	 */
3140	if (mmap_miss > MMAP_LOTSAMISS)
3141		return fpin;
3142
3143	/*
3144	 * mmap read-around
3145	 */
3146	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3147	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3148	ra->size = ra->ra_pages;
3149	ra->async_size = ra->ra_pages / 4;
3150	ractl._index = ra->start;
3151	page_cache_ra_order(&ractl, ra, 0);
3152	return fpin;
3153}
3154
3155/*
3156 * Asynchronous readahead happens when we find the page and PG_readahead,
3157 * so we want to possibly extend the readahead further.  We return the file that
3158 * was pinned if we have to drop the mmap_lock in order to do IO.
3159 */
3160static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3161					    struct folio *folio)
 
 
 
3162{
3163	struct file *file = vmf->vma->vm_file;
3164	struct file_ra_state *ra = &file->f_ra;
3165	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3166	struct file *fpin = NULL;
3167	unsigned int mmap_miss;
3168
3169	/* If we don't want any read-ahead, don't bother */
3170	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3171		return fpin;
3172
3173	mmap_miss = READ_ONCE(ra->mmap_miss);
3174	if (mmap_miss)
3175		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3176
3177	if (folio_test_readahead(folio)) {
3178		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3179		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3180	}
3181	return fpin;
3182}
3183
3184static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3185{
3186	struct vm_area_struct *vma = vmf->vma;
3187	vm_fault_t ret = 0;
3188	pte_t *ptep;
3189
3190	/*
3191	 * We might have COW'ed a pagecache folio and might now have an mlocked
3192	 * anon folio mapped. The original pagecache folio is not mlocked and
3193	 * might have been evicted. During a read+clear/modify/write update of
3194	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3195	 * temporarily clear the PTE under PT lock and might detect it here as
3196	 * "none" when not holding the PT lock.
3197	 *
3198	 * Not rechecking the PTE under PT lock could result in an unexpected
3199	 * major fault in an mlock'ed region. Recheck only for this special
3200	 * scenario while holding the PT lock, to not degrade non-mlocked
3201	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3202	 * the number of times we hold PT lock.
3203	 */
3204	if (!(vma->vm_flags & VM_LOCKED))
3205		return 0;
3206
3207	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3208		return 0;
3209
3210	ptep = pte_offset_map(vmf->pmd, vmf->address);
3211	if (unlikely(!ptep))
3212		return VM_FAULT_NOPAGE;
3213
3214	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3215		ret = VM_FAULT_NOPAGE;
3216	} else {
3217		spin_lock(vmf->ptl);
3218		if (unlikely(!pte_none(ptep_get(ptep))))
3219			ret = VM_FAULT_NOPAGE;
3220		spin_unlock(vmf->ptl);
3221	}
3222	pte_unmap(ptep);
3223	return ret;
3224}
3225
3226/**
3227 * filemap_fault - read in file data for page fault handling
3228 * @vmf:	struct vm_fault containing details of the fault
3229 *
3230 * filemap_fault() is invoked via the vma operations vector for a
3231 * mapped memory region to read in file data during a page fault.
3232 *
3233 * The goto's are kind of ugly, but this streamlines the normal case of having
3234 * it in the page cache, and handles the special cases reasonably without
3235 * having a lot of duplicated code.
3236 *
3237 * vma->vm_mm->mmap_lock must be held on entry.
3238 *
3239 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3240 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
 
 
3241 *
3242 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3243 * has not been released.
3244 *
3245 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3246 *
3247 * Return: bitwise-OR of %VM_FAULT_ codes.
3248 */
3249vm_fault_t filemap_fault(struct vm_fault *vmf)
3250{
3251	int error;
3252	struct file *file = vmf->vma->vm_file;
3253	struct file *fpin = NULL;
3254	struct address_space *mapping = file->f_mapping;
 
3255	struct inode *inode = mapping->host;
3256	pgoff_t max_idx, index = vmf->pgoff;
3257	struct folio *folio;
3258	vm_fault_t ret = 0;
3259	bool mapping_locked = false;
3260
3261	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3262	if (unlikely(index >= max_idx))
3263		return VM_FAULT_SIGBUS;
3264
3265	/*
3266	 * Do we have something in the page cache already?
3267	 */
3268	folio = filemap_get_folio(mapping, index);
3269	if (likely(!IS_ERR(folio))) {
3270		/*
3271		 * We found the page, so try async readahead before waiting for
3272		 * the lock.
3273		 */
3274		if (!(vmf->flags & FAULT_FLAG_TRIED))
3275			fpin = do_async_mmap_readahead(vmf, folio);
3276		if (unlikely(!folio_test_uptodate(folio))) {
3277			filemap_invalidate_lock_shared(mapping);
3278			mapping_locked = true;
3279		}
3280	} else {
3281		ret = filemap_fault_recheck_pte_none(vmf);
3282		if (unlikely(ret))
3283			return ret;
3284
3285		/* No page in the page cache at all */
 
3286		count_vm_event(PGMAJFAULT);
3287		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3288		ret = VM_FAULT_MAJOR;
3289		fpin = do_sync_mmap_readahead(vmf);
3290retry_find:
3291		/*
3292		 * See comment in filemap_create_folio() why we need
3293		 * invalidate_lock
3294		 */
3295		if (!mapping_locked) {
3296			filemap_invalidate_lock_shared(mapping);
3297			mapping_locked = true;
3298		}
3299		folio = __filemap_get_folio(mapping, index,
3300					  FGP_CREAT|FGP_FOR_MMAP,
3301					  vmf->gfp_mask);
3302		if (IS_ERR(folio)) {
3303			if (fpin)
3304				goto out_retry;
3305			filemap_invalidate_unlock_shared(mapping);
3306			return VM_FAULT_OOM;
3307		}
3308	}
3309
3310	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3311		goto out_retry;
 
 
3312
3313	/* Did it get truncated? */
3314	if (unlikely(folio->mapping != mapping)) {
3315		folio_unlock(folio);
3316		folio_put(folio);
3317		goto retry_find;
3318	}
3319	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3320
3321	/*
3322	 * We have a locked folio in the page cache, now we need to check
3323	 * that it's up-to-date. If not, it is going to be due to an error,
3324	 * or because readahead was otherwise unable to retrieve it.
3325	 */
3326	if (unlikely(!folio_test_uptodate(folio))) {
3327		/*
3328		 * If the invalidate lock is not held, the folio was in cache
3329		 * and uptodate and now it is not. Strange but possible since we
3330		 * didn't hold the page lock all the time. Let's drop
3331		 * everything, get the invalidate lock and try again.
3332		 */
3333		if (!mapping_locked) {
3334			folio_unlock(folio);
3335			folio_put(folio);
3336			goto retry_find;
3337		}
3338
3339		/*
3340		 * OK, the folio is really not uptodate. This can be because the
3341		 * VMA has the VM_RAND_READ flag set, or because an error
3342		 * arose. Let's read it in directly.
3343		 */
3344		goto page_not_uptodate;
3345	}
3346
3347	/*
3348	 * We've made it this far and we had to drop our mmap_lock, now is the
3349	 * time to return to the upper layer and have it re-find the vma and
3350	 * redo the fault.
3351	 */
3352	if (fpin) {
3353		folio_unlock(folio);
3354		goto out_retry;
3355	}
3356	if (mapping_locked)
3357		filemap_invalidate_unlock_shared(mapping);
3358
3359	/*
3360	 * Found the page and have a reference on it.
3361	 * We must recheck i_size under page lock.
3362	 */
3363	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3364	if (unlikely(index >= max_idx)) {
3365		folio_unlock(folio);
3366		folio_put(folio);
3367		return VM_FAULT_SIGBUS;
3368	}
3369
3370	vmf->page = folio_file_page(folio, index);
3371	return ret | VM_FAULT_LOCKED;
3372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3373page_not_uptodate:
3374	/*
3375	 * Umm, take care of errors if the page isn't up-to-date.
3376	 * Try to re-read it _once_. We do this synchronously,
3377	 * because there really aren't any performance issues here
3378	 * and we need to check for errors.
3379	 */
3380	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3381	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3382	if (fpin)
3383		goto out_retry;
3384	folio_put(folio);
 
 
 
3385
3386	if (!error || error == AOP_TRUNCATED_PAGE)
3387		goto retry_find;
3388	filemap_invalidate_unlock_shared(mapping);
3389
 
 
3390	return VM_FAULT_SIGBUS;
3391
3392out_retry:
3393	/*
3394	 * We dropped the mmap_lock, we need to return to the fault handler to
3395	 * re-find the vma and come back and find our hopefully still populated
3396	 * page.
3397	 */
3398	if (!IS_ERR(folio))
3399		folio_put(folio);
3400	if (mapping_locked)
3401		filemap_invalidate_unlock_shared(mapping);
3402	if (fpin)
3403		fput(fpin);
3404	return ret | VM_FAULT_RETRY;
3405}
3406EXPORT_SYMBOL(filemap_fault);
3407
3408static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3409		pgoff_t start)
3410{
3411	struct mm_struct *mm = vmf->vma->vm_mm;
 
 
 
 
 
 
3412
3413	/* Huge page is mapped? No need to proceed. */
3414	if (pmd_trans_huge(*vmf->pmd)) {
3415		folio_unlock(folio);
3416		folio_put(folio);
3417		return true;
3418	}
3419
3420	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3421		struct page *page = folio_file_page(folio, start);
3422		vm_fault_t ret = do_set_pmd(vmf, page);
3423		if (!ret) {
3424			/* The page is mapped successfully, reference consumed. */
3425			folio_unlock(folio);
3426			return true;
3427		}
3428	}
3429
3430	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3431		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
 
3432
3433	return false;
3434}
 
 
 
3435
3436static struct folio *next_uptodate_folio(struct xa_state *xas,
3437		struct address_space *mapping, pgoff_t end_pgoff)
3438{
3439	struct folio *folio = xas_next_entry(xas, end_pgoff);
3440	unsigned long max_idx;
3441
3442	do {
3443		if (!folio)
3444			return NULL;
3445		if (xas_retry(xas, folio))
3446			continue;
3447		if (xa_is_value(folio))
3448			continue;
3449		if (folio_test_locked(folio))
3450			continue;
3451		if (!folio_try_get_rcu(folio))
3452			continue;
3453		/* Has the page moved or been split? */
3454		if (unlikely(folio != xas_reload(xas)))
3455			goto skip;
3456		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3457			goto skip;
3458		if (!folio_trylock(folio))
3459			goto skip;
3460		if (folio->mapping != mapping)
3461			goto unlock;
3462		if (!folio_test_uptodate(folio))
3463			goto unlock;
 
3464		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3465		if (xas->xa_index >= max_idx)
3466			goto unlock;
3467		return folio;
3468unlock:
3469		folio_unlock(folio);
3470skip:
3471		folio_put(folio);
3472	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3473
3474	return NULL;
3475}
3476
3477/*
3478 * Map page range [start_page, start_page + nr_pages) of folio.
3479 * start_page is gotten from start by folio_page(folio, start)
3480 */
3481static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3482			struct folio *folio, unsigned long start,
3483			unsigned long addr, unsigned int nr_pages,
3484			unsigned int *mmap_miss)
3485{
3486	vm_fault_t ret = 0;
3487	struct page *page = folio_page(folio, start);
3488	unsigned int count = 0;
3489	pte_t *old_ptep = vmf->pte;
3490
3491	do {
3492		if (PageHWPoison(page + count))
3493			goto skip;
3494
3495		(*mmap_miss)++;
3496
3497		/*
3498		 * NOTE: If there're PTE markers, we'll leave them to be
3499		 * handled in the specific fault path, and it'll prohibit the
3500		 * fault-around logic.
3501		 */
3502		if (!pte_none(ptep_get(&vmf->pte[count])))
3503			goto skip;
3504
3505		count++;
3506		continue;
3507skip:
3508		if (count) {
3509			set_pte_range(vmf, folio, page, count, addr);
3510			folio_ref_add(folio, count);
3511			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3512				ret = VM_FAULT_NOPAGE;
3513		}
3514
3515		count++;
3516		page += count;
3517		vmf->pte += count;
3518		addr += count * PAGE_SIZE;
3519		count = 0;
3520	} while (--nr_pages > 0);
3521
3522	if (count) {
3523		set_pte_range(vmf, folio, page, count, addr);
3524		folio_ref_add(folio, count);
3525		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3526			ret = VM_FAULT_NOPAGE;
3527	}
3528
3529	vmf->pte = old_ptep;
3530
3531	return ret;
3532}
3533
3534static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3535		struct folio *folio, unsigned long addr,
3536		unsigned int *mmap_miss)
3537{
3538	vm_fault_t ret = 0;
3539	struct page *page = &folio->page;
3540
3541	if (PageHWPoison(page))
3542		return ret;
3543
3544	(*mmap_miss)++;
3545
3546	/*
3547	 * NOTE: If there're PTE markers, we'll leave them to be
3548	 * handled in the specific fault path, and it'll prohibit
3549	 * the fault-around logic.
3550	 */
3551	if (!pte_none(ptep_get(vmf->pte)))
3552		return ret;
3553
3554	if (vmf->address == addr)
3555		ret = VM_FAULT_NOPAGE;
3556
3557	set_pte_range(vmf, folio, page, 1, addr);
3558	folio_ref_inc(folio);
3559
3560	return ret;
3561}
3562
3563vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3564			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3565{
3566	struct vm_area_struct *vma = vmf->vma;
3567	struct file *file = vma->vm_file;
3568	struct address_space *mapping = file->f_mapping;
3569	pgoff_t last_pgoff = start_pgoff;
3570	unsigned long addr;
3571	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3572	struct folio *folio;
3573	vm_fault_t ret = 0;
3574	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3575
3576	rcu_read_lock();
3577	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3578	if (!folio)
3579		goto out;
3580
3581	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3582		ret = VM_FAULT_NOPAGE;
3583		goto out;
3584	}
3585
3586	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3587	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3588	if (!vmf->pte) {
3589		folio_unlock(folio);
3590		folio_put(folio);
3591		goto out;
3592	}
3593	do {
3594		unsigned long end;
3595
3596		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3597		vmf->pte += xas.xa_index - last_pgoff;
3598		last_pgoff = xas.xa_index;
3599		end = folio_next_index(folio) - 1;
3600		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3601
3602		if (!folio_test_large(folio))
3603			ret |= filemap_map_order0_folio(vmf,
3604					folio, addr, &mmap_miss);
3605		else
3606			ret |= filemap_map_folio_range(vmf, folio,
3607					xas.xa_index - folio->index, addr,
3608					nr_pages, &mmap_miss);
3609
3610		folio_unlock(folio);
3611		folio_put(folio);
3612	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3613	pte_unmap_unlock(vmf->pte, vmf->ptl);
3614out:
3615	rcu_read_unlock();
3616
3617	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3618	if (mmap_miss >= mmap_miss_saved)
3619		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3620	else
3621		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3622
3623	return ret;
3624}
3625EXPORT_SYMBOL(filemap_map_pages);
3626
3627vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3628{
3629	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3630	struct folio *folio = page_folio(vmf->page);
3631	vm_fault_t ret = VM_FAULT_LOCKED;
3632
3633	sb_start_pagefault(mapping->host->i_sb);
3634	file_update_time(vmf->vma->vm_file);
3635	folio_lock(folio);
3636	if (folio->mapping != mapping) {
3637		folio_unlock(folio);
3638		ret = VM_FAULT_NOPAGE;
3639		goto out;
3640	}
3641	/*
3642	 * We mark the folio dirty already here so that when freeze is in
3643	 * progress, we are guaranteed that writeback during freezing will
3644	 * see the dirty folio and writeprotect it again.
3645	 */
3646	folio_mark_dirty(folio);
3647	folio_wait_stable(folio);
3648out:
3649	sb_end_pagefault(mapping->host->i_sb);
3650	return ret;
3651}
3652
3653const struct vm_operations_struct generic_file_vm_ops = {
3654	.fault		= filemap_fault,
3655	.map_pages	= filemap_map_pages,
3656	.page_mkwrite	= filemap_page_mkwrite,
3657};
3658
3659/* This is used for a general mmap of a disk file */
3660
3661int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3662{
3663	struct address_space *mapping = file->f_mapping;
3664
3665	if (!mapping->a_ops->read_folio)
3666		return -ENOEXEC;
3667	file_accessed(file);
3668	vma->vm_ops = &generic_file_vm_ops;
3669	return 0;
3670}
3671
3672/*
3673 * This is for filesystems which do not implement ->writepage.
3674 */
3675int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3676{
3677	if (vma_is_shared_maywrite(vma))
3678		return -EINVAL;
3679	return generic_file_mmap(file, vma);
3680}
3681#else
3682vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3683{
3684	return VM_FAULT_SIGBUS;
3685}
3686int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3687{
3688	return -ENOSYS;
3689}
3690int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3691{
3692	return -ENOSYS;
3693}
3694#endif /* CONFIG_MMU */
3695
3696EXPORT_SYMBOL(filemap_page_mkwrite);
3697EXPORT_SYMBOL(generic_file_mmap);
3698EXPORT_SYMBOL(generic_file_readonly_mmap);
3699
3700static struct folio *do_read_cache_folio(struct address_space *mapping,
3701		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3702{
3703	struct folio *folio;
3704	int err;
3705
3706	if (!filler)
3707		filler = mapping->a_ops->read_folio;
3708repeat:
3709	folio = filemap_get_folio(mapping, index);
3710	if (IS_ERR(folio)) {
3711		folio = filemap_alloc_folio(gfp, 0);
3712		if (!folio)
3713			return ERR_PTR(-ENOMEM);
3714		err = filemap_add_folio(mapping, folio, index, gfp);
3715		if (unlikely(err)) {
3716			folio_put(folio);
3717			if (err == -EEXIST)
3718				goto repeat;
3719			/* Presumably ENOMEM for xarray node */
 
 
 
 
 
 
 
3720			return ERR_PTR(err);
3721		}
3722
3723		goto filler;
 
 
 
3724	}
3725	if (folio_test_uptodate(folio))
3726		goto out;
3727
3728	if (!folio_trylock(folio)) {
3729		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3730		goto repeat;
3731	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3732
3733	/* Folio was truncated from mapping */
3734	if (!folio->mapping) {
3735		folio_unlock(folio);
3736		folio_put(folio);
3737		goto repeat;
3738	}
3739
3740	/* Someone else locked and filled the page in a very small window */
3741	if (folio_test_uptodate(folio)) {
3742		folio_unlock(folio);
3743		goto out;
3744	}
3745
3746filler:
3747	err = filemap_read_folio(file, filler, folio);
3748	if (err) {
3749		folio_put(folio);
3750		if (err == AOP_TRUNCATED_PAGE)
3751			goto repeat;
3752		return ERR_PTR(err);
3753	}
3754
3755out:
3756	folio_mark_accessed(folio);
3757	return folio;
3758}
3759
3760/**
3761 * read_cache_folio - Read into page cache, fill it if needed.
3762 * @mapping: The address_space to read from.
3763 * @index: The index to read.
3764 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3765 * @file: Passed to filler function, may be NULL if not required.
3766 *
3767 * Read one page into the page cache.  If it succeeds, the folio returned
3768 * will contain @index, but it may not be the first page of the folio.
3769 *
3770 * If the filler function returns an error, it will be returned to the
3771 * caller.
3772 *
3773 * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3774 * Return: An uptodate folio on success, ERR_PTR() on failure.
3775 */
3776struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3777		filler_t filler, struct file *file)
3778{
3779	return do_read_cache_folio(mapping, index, filler, file,
3780			mapping_gfp_mask(mapping));
3781}
3782EXPORT_SYMBOL(read_cache_folio);
3783
3784/**
3785 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3786 * @mapping:	The address_space for the folio.
3787 * @index:	The index that the allocated folio will contain.
3788 * @gfp:	The page allocator flags to use if allocating.
3789 *
3790 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3791 * any new memory allocations done using the specified allocation flags.
3792 *
3793 * The most likely error from this function is EIO, but ENOMEM is
3794 * possible and so is EINTR.  If ->read_folio returns another error,
3795 * that will be returned to the caller.
3796 *
3797 * The function expects mapping->invalidate_lock to be already held.
3798 *
3799 * Return: Uptodate folio on success, ERR_PTR() on failure.
3800 */
3801struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3802		pgoff_t index, gfp_t gfp)
3803{
3804	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3805}
3806EXPORT_SYMBOL(mapping_read_folio_gfp);
3807
3808static struct page *do_read_cache_page(struct address_space *mapping,
3809		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3810{
3811	struct folio *folio;
3812
3813	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3814	if (IS_ERR(folio))
3815		return &folio->page;
3816	return folio_file_page(folio, index);
3817}
3818
3819struct page *read_cache_page(struct address_space *mapping,
3820			pgoff_t index, filler_t *filler, struct file *file)
 
 
3821{
3822	return do_read_cache_page(mapping, index, filler, file,
3823			mapping_gfp_mask(mapping));
3824}
3825EXPORT_SYMBOL(read_cache_page);
3826
3827/**
3828 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3829 * @mapping:	the page's address_space
3830 * @index:	the page index
3831 * @gfp:	the page allocator flags to use if allocating
3832 *
3833 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3834 * any new page allocations done using the specified allocation flags.
3835 *
3836 * If the page does not get brought uptodate, return -EIO.
3837 *
3838 * The function expects mapping->invalidate_lock to be already held.
3839 *
3840 * Return: up to date page on success, ERR_PTR() on failure.
3841 */
3842struct page *read_cache_page_gfp(struct address_space *mapping,
3843				pgoff_t index,
3844				gfp_t gfp)
3845{
3846	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 
 
3847}
3848EXPORT_SYMBOL(read_cache_page_gfp);
3849
3850/*
3851 * Warn about a page cache invalidation failure during a direct I/O write.
 
 
 
 
3852 */
3853static void dio_warn_stale_pagecache(struct file *filp)
3854{
3855	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3856	char pathname[128];
3857	char *path;
 
3858
3859	errseq_set(&filp->f_mapping->wb_err, -EIO);
3860	if (__ratelimit(&_rs)) {
3861		path = file_path(filp, pathname, sizeof(pathname));
3862		if (IS_ERR(path))
3863			path = "(unknown)";
3864		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3865		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3866			current->comm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3867	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3868}
 
3869
3870void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
 
 
3871{
3872	struct address_space *mapping = iocb->ki_filp->f_mapping;
3873
3874	if (mapping->nrpages &&
3875	    invalidate_inode_pages2_range(mapping,
3876			iocb->ki_pos >> PAGE_SHIFT,
3877			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3878		dio_warn_stale_pagecache(iocb->ki_filp);
3879}
 
3880
3881ssize_t
3882generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3883{
3884	struct address_space *mapping = iocb->ki_filp->f_mapping;
3885	size_t write_len = iov_iter_count(from);
3886	ssize_t written;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3887
3888	/*
 
 
 
 
 
 
 
 
3889	 * If a page can not be invalidated, return 0 to fall back
3890	 * to buffered write.
3891	 */
3892	written = kiocb_invalidate_pages(iocb, write_len);
3893	if (written) {
3894		if (written == -EBUSY)
3895			return 0;
3896		return written;
3897	}
3898
3899	written = mapping->a_ops->direct_IO(iocb, from);
3900
3901	/*
3902	 * Finally, try again to invalidate clean pages which might have been
3903	 * cached by non-direct readahead, or faulted in by get_user_pages()
3904	 * if the source of the write was an mmap'ed region of the file
3905	 * we're writing.  Either one is a pretty crazy thing to do,
3906	 * so we don't support it 100%.  If this invalidation
3907	 * fails, tough, the write still worked...
3908	 *
3909	 * Most of the time we do not need this since dio_complete() will do
3910	 * the invalidation for us. However there are some file systems that
3911	 * do not end up with dio_complete() being called, so let's not break
3912	 * them by removing it completely.
3913	 *
3914	 * Noticeable example is a blkdev_direct_IO().
3915	 *
3916	 * Skip invalidation for async writes or if mapping has no pages.
3917	 */
 
 
 
 
3918	if (written > 0) {
3919		struct inode *inode = mapping->host;
3920		loff_t pos = iocb->ki_pos;
3921
3922		kiocb_invalidate_post_direct_write(iocb, written);
3923		pos += written;
3924		write_len -= written;
3925		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3926			i_size_write(inode, pos);
3927			mark_inode_dirty(inode);
3928		}
3929		iocb->ki_pos = pos;
3930	}
3931	if (written != -EIOCBQUEUED)
3932		iov_iter_revert(from, write_len - iov_iter_count(from));
3933	return written;
3934}
3935EXPORT_SYMBOL(generic_file_direct_write);
3936
3937ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3938{
3939	struct file *file = iocb->ki_filp;
3940	loff_t pos = iocb->ki_pos;
3941	struct address_space *mapping = file->f_mapping;
3942	const struct address_space_operations *a_ops = mapping->a_ops;
3943	long status = 0;
3944	ssize_t written = 0;
 
3945
3946	do {
3947		struct page *page;
3948		unsigned long offset;	/* Offset into pagecache page */
3949		unsigned long bytes;	/* Bytes to write to page */
3950		size_t copied;		/* Bytes copied from user */
3951		void *fsdata = NULL;
3952
3953		offset = (pos & (PAGE_SIZE - 1));
3954		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3955						iov_iter_count(i));
3956
3957again:
3958		/*
3959		 * Bring in the user page that we will copy from _first_.
3960		 * Otherwise there's a nasty deadlock on copying from the
3961		 * same page as we're writing to, without it being marked
3962		 * up-to-date.
 
 
 
 
3963		 */
3964		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3965			status = -EFAULT;
3966			break;
3967		}
3968
3969		if (fatal_signal_pending(current)) {
3970			status = -EINTR;
3971			break;
3972		}
3973
3974		status = a_ops->write_begin(file, mapping, pos, bytes,
3975						&page, &fsdata);
3976		if (unlikely(status < 0))
3977			break;
3978
3979		if (mapping_writably_mapped(mapping))
3980			flush_dcache_page(page);
3981
3982		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3983		flush_dcache_page(page);
3984
3985		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3986						page, fsdata);
3987		if (unlikely(status != copied)) {
3988			iov_iter_revert(i, copied - max(status, 0L));
3989			if (unlikely(status < 0))
3990				break;
3991		}
3992		cond_resched();
3993
3994		if (unlikely(status == 0)) {
 
3995			/*
3996			 * A short copy made ->write_end() reject the
3997			 * thing entirely.  Might be memory poisoning
3998			 * halfway through, might be a race with munmap,
3999			 * might be severe memory pressure.
 
 
4000			 */
4001			if (copied)
4002				bytes = copied;
4003			goto again;
4004		}
4005		pos += status;
4006		written += status;
4007
4008		balance_dirty_pages_ratelimited(mapping);
4009	} while (iov_iter_count(i));
4010
4011	if (!written)
4012		return status;
4013	iocb->ki_pos += written;
4014	return written;
4015}
4016EXPORT_SYMBOL(generic_perform_write);
4017
4018/**
4019 * __generic_file_write_iter - write data to a file
4020 * @iocb:	IO state structure (file, offset, etc.)
4021 * @from:	iov_iter with data to write
4022 *
4023 * This function does all the work needed for actually writing data to a
4024 * file. It does all basic checks, removes SUID from the file, updates
4025 * modification times and calls proper subroutines depending on whether we
4026 * do direct IO or a standard buffered write.
4027 *
4028 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4029 * object which does not need locking at all.
4030 *
4031 * This function does *not* take care of syncing data in case of O_SYNC write.
4032 * A caller has to handle it. This is mainly due to the fact that we want to
4033 * avoid syncing under i_rwsem.
4034 *
4035 * Return:
4036 * * number of bytes written, even for truncated writes
4037 * * negative error code if no data has been written at all
4038 */
4039ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4040{
4041	struct file *file = iocb->ki_filp;
4042	struct address_space *mapping = file->f_mapping;
4043	struct inode *inode = mapping->host;
4044	ssize_t ret;
 
 
 
 
 
 
 
 
4045
4046	ret = file_remove_privs(file);
4047	if (ret)
4048		return ret;
4049
4050	ret = file_update_time(file);
4051	if (ret)
4052		return ret;
4053
4054	if (iocb->ki_flags & IOCB_DIRECT) {
4055		ret = generic_file_direct_write(iocb, from);
 
 
4056		/*
4057		 * If the write stopped short of completing, fall back to
4058		 * buffered writes.  Some filesystems do this for writes to
4059		 * holes, for example.  For DAX files, a buffered write will
4060		 * not succeed (even if it did, DAX does not handle dirty
4061		 * page-cache pages correctly).
4062		 */
4063		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4064			return ret;
4065		return direct_write_fallback(iocb, from, ret,
4066				generic_perform_write(iocb, from));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4067	}
4068
4069	return generic_perform_write(iocb, from);
 
4070}
4071EXPORT_SYMBOL(__generic_file_write_iter);
4072
4073/**
4074 * generic_file_write_iter - write data to a file
4075 * @iocb:	IO state structure
4076 * @from:	iov_iter with data to write
4077 *
4078 * This is a wrapper around __generic_file_write_iter() to be used by most
4079 * filesystems. It takes care of syncing the file in case of O_SYNC file
4080 * and acquires i_rwsem as needed.
4081 * Return:
4082 * * negative error code if no data has been written at all of
4083 *   vfs_fsync_range() failed for a synchronous write
4084 * * number of bytes written, even for truncated writes
4085 */
4086ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4087{
4088	struct file *file = iocb->ki_filp;
4089	struct inode *inode = file->f_mapping->host;
4090	ssize_t ret;
4091
4092	inode_lock(inode);
4093	ret = generic_write_checks(iocb, from);
4094	if (ret > 0)
4095		ret = __generic_file_write_iter(iocb, from);
4096	inode_unlock(inode);
4097
4098	if (ret > 0)
4099		ret = generic_write_sync(iocb, ret);
4100	return ret;
4101}
4102EXPORT_SYMBOL(generic_file_write_iter);
4103
4104/**
4105 * filemap_release_folio() - Release fs-specific metadata on a folio.
4106 * @folio: The folio which the kernel is trying to free.
4107 * @gfp: Memory allocation flags (and I/O mode).
4108 *
4109 * The address_space is trying to release any data attached to a folio
4110 * (presumably at folio->private).
4111 *
4112 * This will also be called if the private_2 flag is set on a page,
4113 * indicating that the folio has other metadata associated with it.
 
4114 *
4115 * The @gfp argument specifies whether I/O may be performed to release
4116 * this page (__GFP_IO), and whether the call may block
4117 * (__GFP_RECLAIM & __GFP_FS).
 
 
4118 *
4119 * Return: %true if the release was successful, otherwise %false.
4120 */
4121bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4122{
4123	struct address_space * const mapping = folio->mapping;
4124
4125	BUG_ON(!folio_test_locked(folio));
4126	if (!folio_needs_release(folio))
4127		return true;
4128	if (folio_test_writeback(folio))
4129		return false;
4130
4131	if (mapping && mapping->a_ops->release_folio)
4132		return mapping->a_ops->release_folio(folio, gfp);
4133	return try_to_free_buffers(folio);
4134}
4135EXPORT_SYMBOL(filemap_release_folio);
4136
4137#ifdef CONFIG_CACHESTAT_SYSCALL
4138/**
4139 * filemap_cachestat() - compute the page cache statistics of a mapping
4140 * @mapping:	The mapping to compute the statistics for.
4141 * @first_index:	The starting page cache index.
4142 * @last_index:	The final page index (inclusive).
4143 * @cs:	the cachestat struct to write the result to.
4144 *
4145 * This will query the page cache statistics of a mapping in the
4146 * page range of [first_index, last_index] (inclusive). The statistics
4147 * queried include: number of dirty pages, number of pages marked for
4148 * writeback, and the number of (recently) evicted pages.
4149 */
4150static void filemap_cachestat(struct address_space *mapping,
4151		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4152{
4153	XA_STATE(xas, &mapping->i_pages, first_index);
4154	struct folio *folio;
4155
4156	rcu_read_lock();
4157	xas_for_each(&xas, folio, last_index) {
4158		int order;
4159		unsigned long nr_pages;
4160		pgoff_t folio_first_index, folio_last_index;
4161
4162		/*
4163		 * Don't deref the folio. It is not pinned, and might
4164		 * get freed (and reused) underneath us.
4165		 *
4166		 * We *could* pin it, but that would be expensive for
4167		 * what should be a fast and lightweight syscall.
4168		 *
4169		 * Instead, derive all information of interest from
4170		 * the rcu-protected xarray.
4171		 */
4172
4173		if (xas_retry(&xas, folio))
4174			continue;
4175
4176		order = xa_get_order(xas.xa, xas.xa_index);
4177		nr_pages = 1 << order;
4178		folio_first_index = round_down(xas.xa_index, 1 << order);
4179		folio_last_index = folio_first_index + nr_pages - 1;
4180
4181		/* Folios might straddle the range boundaries, only count covered pages */
4182		if (folio_first_index < first_index)
4183			nr_pages -= first_index - folio_first_index;
4184
4185		if (folio_last_index > last_index)
4186			nr_pages -= folio_last_index - last_index;
4187
4188		if (xa_is_value(folio)) {
4189			/* page is evicted */
4190			void *shadow = (void *)folio;
4191			bool workingset; /* not used */
4192
4193			cs->nr_evicted += nr_pages;
4194
4195#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4196			if (shmem_mapping(mapping)) {
4197				/* shmem file - in swap cache */
4198				swp_entry_t swp = radix_to_swp_entry(folio);
4199
4200				/* swapin error results in poisoned entry */
4201				if (non_swap_entry(swp))
4202					goto resched;
4203
4204				/*
4205				 * Getting a swap entry from the shmem
4206				 * inode means we beat
4207				 * shmem_unuse(). rcu_read_lock()
4208				 * ensures swapoff waits for us before
4209				 * freeing the swapper space. However,
4210				 * we can race with swapping and
4211				 * invalidation, so there might not be
4212				 * a shadow in the swapcache (yet).
4213				 */
4214				shadow = get_shadow_from_swap_cache(swp);
4215				if (!shadow)
4216					goto resched;
4217			}
4218#endif
4219			if (workingset_test_recent(shadow, true, &workingset))
4220				cs->nr_recently_evicted += nr_pages;
4221
4222			goto resched;
4223		}
4224
4225		/* page is in cache */
4226		cs->nr_cache += nr_pages;
4227
4228		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4229			cs->nr_dirty += nr_pages;
4230
4231		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4232			cs->nr_writeback += nr_pages;
4233
4234resched:
4235		if (need_resched()) {
4236			xas_pause(&xas);
4237			cond_resched_rcu();
4238		}
4239	}
4240	rcu_read_unlock();
4241}
4242
4243/*
4244 * The cachestat(2) system call.
4245 *
4246 * cachestat() returns the page cache statistics of a file in the
4247 * bytes range specified by `off` and `len`: number of cached pages,
4248 * number of dirty pages, number of pages marked for writeback,
4249 * number of evicted pages, and number of recently evicted pages.
4250 *
4251 * An evicted page is a page that is previously in the page cache
4252 * but has been evicted since. A page is recently evicted if its last
4253 * eviction was recent enough that its reentry to the cache would
4254 * indicate that it is actively being used by the system, and that
4255 * there is memory pressure on the system.
4256 *
4257 * `off` and `len` must be non-negative integers. If `len` > 0,
4258 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4259 * we will query in the range from `off` to the end of the file.
4260 *
4261 * The `flags` argument is unused for now, but is included for future
4262 * extensibility. User should pass 0 (i.e no flag specified).
4263 *
4264 * Currently, hugetlbfs is not supported.
4265 *
4266 * Because the status of a page can change after cachestat() checks it
4267 * but before it returns to the application, the returned values may
4268 * contain stale information.
4269 *
4270 * return values:
4271 *  zero        - success
4272 *  -EFAULT     - cstat or cstat_range points to an illegal address
4273 *  -EINVAL     - invalid flags
4274 *  -EBADF      - invalid file descriptor
4275 *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4276 */
4277SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4278		struct cachestat_range __user *, cstat_range,
4279		struct cachestat __user *, cstat, unsigned int, flags)
4280{
4281	struct fd f = fdget(fd);
4282	struct address_space *mapping;
4283	struct cachestat_range csr;
4284	struct cachestat cs;
4285	pgoff_t first_index, last_index;
4286
4287	if (!f.file)
4288		return -EBADF;
4289
4290	if (copy_from_user(&csr, cstat_range,
4291			sizeof(struct cachestat_range))) {
4292		fdput(f);
4293		return -EFAULT;
4294	}
4295
4296	/* hugetlbfs is not supported */
4297	if (is_file_hugepages(f.file)) {
4298		fdput(f);
4299		return -EOPNOTSUPP;
4300	}
4301
4302	if (flags != 0) {
4303		fdput(f);
4304		return -EINVAL;
4305	}
4306
4307	first_index = csr.off >> PAGE_SHIFT;
4308	last_index =
4309		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4310	memset(&cs, 0, sizeof(struct cachestat));
4311	mapping = f.file->f_mapping;
4312	filemap_cachestat(mapping, first_index, last_index, &cs);
4313	fdput(f);
4314
4315	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4316		return -EFAULT;
4317
4318	return 0;
4319}
4320#endif /* CONFIG_CACHESTAT_SYSCALL */