Loading...
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/export.h>
13#include <linux/compiler.h>
14#include <linux/dax.h>
15#include <linux/fs.h>
16#include <linux/sched/signal.h>
17#include <linux/uaccess.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/gfp.h>
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
29#include <linux/backing-dev.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
33#include <linux/cpuset.h>
34#include <linux/hugetlb.h>
35#include <linux/memcontrol.h>
36#include <linux/cleancache.h>
37#include <linux/shmem_fs.h>
38#include <linux/rmap.h>
39#include "internal.h"
40
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
44/*
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
47#include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
66 * ->i_mmap_rwsem (truncate_pagecache)
67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->i_pages lock
70 *
71 * ->i_mutex
72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 *
74 * ->mmap_sem
75 * ->i_mmap_rwsem
76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
77 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
82 * ->i_mutex (generic_perform_write)
83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 *
85 * bdi->wb.list_lock
86 * sb_lock (fs/fs-writeback.c)
87 * ->i_pages lock (__sync_single_inode)
88 *
89 * ->i_mmap_rwsem
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->i_pages lock (try_to_unmap_one)
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->i_pages lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
110 * ->i_mmap_rwsem
111 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 */
113
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->i_pages, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot,
129 &mapping->i_pages.xa_lock);
130 if (!radix_tree_exceptional_entry(p))
131 return -EEXIST;
132
133 mapping->nrexceptional--;
134 if (shadowp)
135 *shadowp = p;
136 }
137 __radix_tree_replace(&mapping->i_pages, node, slot, page,
138 workingset_lookup_update(mapping));
139 mapping->nrpages++;
140 return 0;
141}
142
143static void page_cache_tree_delete(struct address_space *mapping,
144 struct page *page, void *shadow)
145{
146 int i, nr;
147
148 /* hugetlb pages are represented by one entry in the radix tree */
149 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
150
151 VM_BUG_ON_PAGE(!PageLocked(page), page);
152 VM_BUG_ON_PAGE(PageTail(page), page);
153 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
154
155 for (i = 0; i < nr; i++) {
156 struct radix_tree_node *node;
157 void **slot;
158
159 __radix_tree_lookup(&mapping->i_pages, page->index + i,
160 &node, &slot);
161
162 VM_BUG_ON_PAGE(!node && nr != 1, page);
163
164 radix_tree_clear_tags(&mapping->i_pages, node, slot);
165 __radix_tree_replace(&mapping->i_pages, node, slot, shadow,
166 workingset_lookup_update(mapping));
167 }
168
169 page->mapping = NULL;
170 /* Leave page->index set: truncation lookup relies upon it */
171
172 if (shadow) {
173 mapping->nrexceptional += nr;
174 /*
175 * Make sure the nrexceptional update is committed before
176 * the nrpages update so that final truncate racing
177 * with reclaim does not see both counters 0 at the
178 * same time and miss a shadow entry.
179 */
180 smp_wmb();
181 }
182 mapping->nrpages -= nr;
183}
184
185static void unaccount_page_cache_page(struct address_space *mapping,
186 struct page *page)
187{
188 int nr;
189
190 /*
191 * if we're uptodate, flush out into the cleancache, otherwise
192 * invalidate any existing cleancache entries. We can't leave
193 * stale data around in the cleancache once our page is gone
194 */
195 if (PageUptodate(page) && PageMappedToDisk(page))
196 cleancache_put_page(page);
197 else
198 cleancache_invalidate_page(mapping, page);
199
200 VM_BUG_ON_PAGE(PageTail(page), page);
201 VM_BUG_ON_PAGE(page_mapped(page), page);
202 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
203 int mapcount;
204
205 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
206 current->comm, page_to_pfn(page));
207 dump_page(page, "still mapped when deleted");
208 dump_stack();
209 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
210
211 mapcount = page_mapcount(page);
212 if (mapping_exiting(mapping) &&
213 page_count(page) >= mapcount + 2) {
214 /*
215 * All vmas have already been torn down, so it's
216 * a good bet that actually the page is unmapped,
217 * and we'd prefer not to leak it: if we're wrong,
218 * some other bad page check should catch it later.
219 */
220 page_mapcount_reset(page);
221 page_ref_sub(page, mapcount);
222 }
223 }
224
225 /* hugetlb pages do not participate in page cache accounting. */
226 if (PageHuge(page))
227 return;
228
229 nr = hpage_nr_pages(page);
230
231 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
232 if (PageSwapBacked(page)) {
233 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
234 if (PageTransHuge(page))
235 __dec_node_page_state(page, NR_SHMEM_THPS);
236 } else {
237 VM_BUG_ON_PAGE(PageTransHuge(page), page);
238 }
239
240 /*
241 * At this point page must be either written or cleaned by
242 * truncate. Dirty page here signals a bug and loss of
243 * unwritten data.
244 *
245 * This fixes dirty accounting after removing the page entirely
246 * but leaves PageDirty set: it has no effect for truncated
247 * page and anyway will be cleared before returning page into
248 * buddy allocator.
249 */
250 if (WARN_ON_ONCE(PageDirty(page)))
251 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
252}
253
254/*
255 * Delete a page from the page cache and free it. Caller has to make
256 * sure the page is locked and that nobody else uses it - or that usage
257 * is safe. The caller must hold the i_pages lock.
258 */
259void __delete_from_page_cache(struct page *page, void *shadow)
260{
261 struct address_space *mapping = page->mapping;
262
263 trace_mm_filemap_delete_from_page_cache(page);
264
265 unaccount_page_cache_page(mapping, page);
266 page_cache_tree_delete(mapping, page, shadow);
267}
268
269static void page_cache_free_page(struct address_space *mapping,
270 struct page *page)
271{
272 void (*freepage)(struct page *);
273
274 freepage = mapping->a_ops->freepage;
275 if (freepage)
276 freepage(page);
277
278 if (PageTransHuge(page) && !PageHuge(page)) {
279 page_ref_sub(page, HPAGE_PMD_NR);
280 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
281 } else {
282 put_page(page);
283 }
284}
285
286/**
287 * delete_from_page_cache - delete page from page cache
288 * @page: the page which the kernel is trying to remove from page cache
289 *
290 * This must be called only on pages that have been verified to be in the page
291 * cache and locked. It will never put the page into the free list, the caller
292 * has a reference on the page.
293 */
294void delete_from_page_cache(struct page *page)
295{
296 struct address_space *mapping = page_mapping(page);
297 unsigned long flags;
298
299 BUG_ON(!PageLocked(page));
300 xa_lock_irqsave(&mapping->i_pages, flags);
301 __delete_from_page_cache(page, NULL);
302 xa_unlock_irqrestore(&mapping->i_pages, flags);
303
304 page_cache_free_page(mapping, page);
305}
306EXPORT_SYMBOL(delete_from_page_cache);
307
308/*
309 * page_cache_tree_delete_batch - delete several pages from page cache
310 * @mapping: the mapping to which pages belong
311 * @pvec: pagevec with pages to delete
312 *
313 * The function walks over mapping->i_pages and removes pages passed in @pvec
314 * from the mapping. The function expects @pvec to be sorted by page index.
315 * It tolerates holes in @pvec (mapping entries at those indices are not
316 * modified). The function expects only THP head pages to be present in the
317 * @pvec and takes care to delete all corresponding tail pages from the
318 * mapping as well.
319 *
320 * The function expects the i_pages lock to be held.
321 */
322static void
323page_cache_tree_delete_batch(struct address_space *mapping,
324 struct pagevec *pvec)
325{
326 struct radix_tree_iter iter;
327 void **slot;
328 int total_pages = 0;
329 int i = 0, tail_pages = 0;
330 struct page *page;
331 pgoff_t start;
332
333 start = pvec->pages[0]->index;
334 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
335 if (i >= pagevec_count(pvec) && !tail_pages)
336 break;
337 page = radix_tree_deref_slot_protected(slot,
338 &mapping->i_pages.xa_lock);
339 if (radix_tree_exceptional_entry(page))
340 continue;
341 if (!tail_pages) {
342 /*
343 * Some page got inserted in our range? Skip it. We
344 * have our pages locked so they are protected from
345 * being removed.
346 */
347 if (page != pvec->pages[i])
348 continue;
349 WARN_ON_ONCE(!PageLocked(page));
350 if (PageTransHuge(page) && !PageHuge(page))
351 tail_pages = HPAGE_PMD_NR - 1;
352 page->mapping = NULL;
353 /*
354 * Leave page->index set: truncation lookup relies
355 * upon it
356 */
357 i++;
358 } else {
359 tail_pages--;
360 }
361 radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
362 __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
363 workingset_lookup_update(mapping));
364 total_pages++;
365 }
366 mapping->nrpages -= total_pages;
367}
368
369void delete_from_page_cache_batch(struct address_space *mapping,
370 struct pagevec *pvec)
371{
372 int i;
373 unsigned long flags;
374
375 if (!pagevec_count(pvec))
376 return;
377
378 xa_lock_irqsave(&mapping->i_pages, flags);
379 for (i = 0; i < pagevec_count(pvec); i++) {
380 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
381
382 unaccount_page_cache_page(mapping, pvec->pages[i]);
383 }
384 page_cache_tree_delete_batch(mapping, pvec);
385 xa_unlock_irqrestore(&mapping->i_pages, flags);
386
387 for (i = 0; i < pagevec_count(pvec); i++)
388 page_cache_free_page(mapping, pvec->pages[i]);
389}
390
391int filemap_check_errors(struct address_space *mapping)
392{
393 int ret = 0;
394 /* Check for outstanding write errors */
395 if (test_bit(AS_ENOSPC, &mapping->flags) &&
396 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
397 ret = -ENOSPC;
398 if (test_bit(AS_EIO, &mapping->flags) &&
399 test_and_clear_bit(AS_EIO, &mapping->flags))
400 ret = -EIO;
401 return ret;
402}
403EXPORT_SYMBOL(filemap_check_errors);
404
405static int filemap_check_and_keep_errors(struct address_space *mapping)
406{
407 /* Check for outstanding write errors */
408 if (test_bit(AS_EIO, &mapping->flags))
409 return -EIO;
410 if (test_bit(AS_ENOSPC, &mapping->flags))
411 return -ENOSPC;
412 return 0;
413}
414
415/**
416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
417 * @mapping: address space structure to write
418 * @start: offset in bytes where the range starts
419 * @end: offset in bytes where the range ends (inclusive)
420 * @sync_mode: enable synchronous operation
421 *
422 * Start writeback against all of a mapping's dirty pages that lie
423 * within the byte offsets <start, end> inclusive.
424 *
425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
426 * opposed to a regular memory cleansing writeback. The difference between
427 * these two operations is that if a dirty page/buffer is encountered, it must
428 * be waited upon, and not just skipped over.
429 */
430int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 loff_t end, int sync_mode)
432{
433 int ret;
434 struct writeback_control wbc = {
435 .sync_mode = sync_mode,
436 .nr_to_write = LONG_MAX,
437 .range_start = start,
438 .range_end = end,
439 };
440
441 if (!mapping_cap_writeback_dirty(mapping))
442 return 0;
443
444 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
445 ret = do_writepages(mapping, &wbc);
446 wbc_detach_inode(&wbc);
447 return ret;
448}
449
450static inline int __filemap_fdatawrite(struct address_space *mapping,
451 int sync_mode)
452{
453 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
454}
455
456int filemap_fdatawrite(struct address_space *mapping)
457{
458 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
459}
460EXPORT_SYMBOL(filemap_fdatawrite);
461
462int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
463 loff_t end)
464{
465 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
466}
467EXPORT_SYMBOL(filemap_fdatawrite_range);
468
469/**
470 * filemap_flush - mostly a non-blocking flush
471 * @mapping: target address_space
472 *
473 * This is a mostly non-blocking flush. Not suitable for data-integrity
474 * purposes - I/O may not be started against all dirty pages.
475 */
476int filemap_flush(struct address_space *mapping)
477{
478 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
479}
480EXPORT_SYMBOL(filemap_flush);
481
482/**
483 * filemap_range_has_page - check if a page exists in range.
484 * @mapping: address space within which to check
485 * @start_byte: offset in bytes where the range starts
486 * @end_byte: offset in bytes where the range ends (inclusive)
487 *
488 * Find at least one page in the range supplied, usually used to check if
489 * direct writing in this range will trigger a writeback.
490 */
491bool filemap_range_has_page(struct address_space *mapping,
492 loff_t start_byte, loff_t end_byte)
493{
494 pgoff_t index = start_byte >> PAGE_SHIFT;
495 pgoff_t end = end_byte >> PAGE_SHIFT;
496 struct page *page;
497
498 if (end_byte < start_byte)
499 return false;
500
501 if (mapping->nrpages == 0)
502 return false;
503
504 if (!find_get_pages_range(mapping, &index, end, 1, &page))
505 return false;
506 put_page(page);
507 return true;
508}
509EXPORT_SYMBOL(filemap_range_has_page);
510
511static void __filemap_fdatawait_range(struct address_space *mapping,
512 loff_t start_byte, loff_t end_byte)
513{
514 pgoff_t index = start_byte >> PAGE_SHIFT;
515 pgoff_t end = end_byte >> PAGE_SHIFT;
516 struct pagevec pvec;
517 int nr_pages;
518
519 if (end_byte < start_byte)
520 return;
521
522 pagevec_init(&pvec);
523 while (index <= end) {
524 unsigned i;
525
526 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
527 end, PAGECACHE_TAG_WRITEBACK);
528 if (!nr_pages)
529 break;
530
531 for (i = 0; i < nr_pages; i++) {
532 struct page *page = pvec.pages[i];
533
534 wait_on_page_writeback(page);
535 ClearPageError(page);
536 }
537 pagevec_release(&pvec);
538 cond_resched();
539 }
540}
541
542/**
543 * filemap_fdatawait_range - wait for writeback to complete
544 * @mapping: address space structure to wait for
545 * @start_byte: offset in bytes where the range starts
546 * @end_byte: offset in bytes where the range ends (inclusive)
547 *
548 * Walk the list of under-writeback pages of the given address space
549 * in the given range and wait for all of them. Check error status of
550 * the address space and return it.
551 *
552 * Since the error status of the address space is cleared by this function,
553 * callers are responsible for checking the return value and handling and/or
554 * reporting the error.
555 */
556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 loff_t end_byte)
558{
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return filemap_check_errors(mapping);
561}
562EXPORT_SYMBOL(filemap_fdatawait_range);
563
564/**
565 * file_fdatawait_range - wait for writeback to complete
566 * @file: file pointing to address space structure to wait for
567 * @start_byte: offset in bytes where the range starts
568 * @end_byte: offset in bytes where the range ends (inclusive)
569 *
570 * Walk the list of under-writeback pages of the address space that file
571 * refers to, in the given range and wait for all of them. Check error
572 * status of the address space vs. the file->f_wb_err cursor and return it.
573 *
574 * Since the error status of the file is advanced by this function,
575 * callers are responsible for checking the return value and handling and/or
576 * reporting the error.
577 */
578int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
579{
580 struct address_space *mapping = file->f_mapping;
581
582 __filemap_fdatawait_range(mapping, start_byte, end_byte);
583 return file_check_and_advance_wb_err(file);
584}
585EXPORT_SYMBOL(file_fdatawait_range);
586
587/**
588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
589 * @mapping: address space structure to wait for
590 *
591 * Walk the list of under-writeback pages of the given address space
592 * and wait for all of them. Unlike filemap_fdatawait(), this function
593 * does not clear error status of the address space.
594 *
595 * Use this function if callers don't handle errors themselves. Expected
596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
597 * fsfreeze(8)
598 */
599int filemap_fdatawait_keep_errors(struct address_space *mapping)
600{
601 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
602 return filemap_check_and_keep_errors(mapping);
603}
604EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
605
606static bool mapping_needs_writeback(struct address_space *mapping)
607{
608 return (!dax_mapping(mapping) && mapping->nrpages) ||
609 (dax_mapping(mapping) && mapping->nrexceptional);
610}
611
612int filemap_write_and_wait(struct address_space *mapping)
613{
614 int err = 0;
615
616 if (mapping_needs_writeback(mapping)) {
617 err = filemap_fdatawrite(mapping);
618 /*
619 * Even if the above returned error, the pages may be
620 * written partially (e.g. -ENOSPC), so we wait for it.
621 * But the -EIO is special case, it may indicate the worst
622 * thing (e.g. bug) happened, so we avoid waiting for it.
623 */
624 if (err != -EIO) {
625 int err2 = filemap_fdatawait(mapping);
626 if (!err)
627 err = err2;
628 } else {
629 /* Clear any previously stored errors */
630 filemap_check_errors(mapping);
631 }
632 } else {
633 err = filemap_check_errors(mapping);
634 }
635 return err;
636}
637EXPORT_SYMBOL(filemap_write_and_wait);
638
639/**
640 * filemap_write_and_wait_range - write out & wait on a file range
641 * @mapping: the address_space for the pages
642 * @lstart: offset in bytes where the range starts
643 * @lend: offset in bytes where the range ends (inclusive)
644 *
645 * Write out and wait upon file offsets lstart->lend, inclusive.
646 *
647 * Note that @lend is inclusive (describes the last byte to be written) so
648 * that this function can be used to write to the very end-of-file (end = -1).
649 */
650int filemap_write_and_wait_range(struct address_space *mapping,
651 loff_t lstart, loff_t lend)
652{
653 int err = 0;
654
655 if (mapping_needs_writeback(mapping)) {
656 err = __filemap_fdatawrite_range(mapping, lstart, lend,
657 WB_SYNC_ALL);
658 /* See comment of filemap_write_and_wait() */
659 if (err != -EIO) {
660 int err2 = filemap_fdatawait_range(mapping,
661 lstart, lend);
662 if (!err)
663 err = err2;
664 } else {
665 /* Clear any previously stored errors */
666 filemap_check_errors(mapping);
667 }
668 } else {
669 err = filemap_check_errors(mapping);
670 }
671 return err;
672}
673EXPORT_SYMBOL(filemap_write_and_wait_range);
674
675void __filemap_set_wb_err(struct address_space *mapping, int err)
676{
677 errseq_t eseq = errseq_set(&mapping->wb_err, err);
678
679 trace_filemap_set_wb_err(mapping, eseq);
680}
681EXPORT_SYMBOL(__filemap_set_wb_err);
682
683/**
684 * file_check_and_advance_wb_err - report wb error (if any) that was previously
685 * and advance wb_err to current one
686 * @file: struct file on which the error is being reported
687 *
688 * When userland calls fsync (or something like nfsd does the equivalent), we
689 * want to report any writeback errors that occurred since the last fsync (or
690 * since the file was opened if there haven't been any).
691 *
692 * Grab the wb_err from the mapping. If it matches what we have in the file,
693 * then just quickly return 0. The file is all caught up.
694 *
695 * If it doesn't match, then take the mapping value, set the "seen" flag in
696 * it and try to swap it into place. If it works, or another task beat us
697 * to it with the new value, then update the f_wb_err and return the error
698 * portion. The error at this point must be reported via proper channels
699 * (a'la fsync, or NFS COMMIT operation, etc.).
700 *
701 * While we handle mapping->wb_err with atomic operations, the f_wb_err
702 * value is protected by the f_lock since we must ensure that it reflects
703 * the latest value swapped in for this file descriptor.
704 */
705int file_check_and_advance_wb_err(struct file *file)
706{
707 int err = 0;
708 errseq_t old = READ_ONCE(file->f_wb_err);
709 struct address_space *mapping = file->f_mapping;
710
711 /* Locklessly handle the common case where nothing has changed */
712 if (errseq_check(&mapping->wb_err, old)) {
713 /* Something changed, must use slow path */
714 spin_lock(&file->f_lock);
715 old = file->f_wb_err;
716 err = errseq_check_and_advance(&mapping->wb_err,
717 &file->f_wb_err);
718 trace_file_check_and_advance_wb_err(file, old);
719 spin_unlock(&file->f_lock);
720 }
721
722 /*
723 * We're mostly using this function as a drop in replacement for
724 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
725 * that the legacy code would have had on these flags.
726 */
727 clear_bit(AS_EIO, &mapping->flags);
728 clear_bit(AS_ENOSPC, &mapping->flags);
729 return err;
730}
731EXPORT_SYMBOL(file_check_and_advance_wb_err);
732
733/**
734 * file_write_and_wait_range - write out & wait on a file range
735 * @file: file pointing to address_space with pages
736 * @lstart: offset in bytes where the range starts
737 * @lend: offset in bytes where the range ends (inclusive)
738 *
739 * Write out and wait upon file offsets lstart->lend, inclusive.
740 *
741 * Note that @lend is inclusive (describes the last byte to be written) so
742 * that this function can be used to write to the very end-of-file (end = -1).
743 *
744 * After writing out and waiting on the data, we check and advance the
745 * f_wb_err cursor to the latest value, and return any errors detected there.
746 */
747int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
748{
749 int err = 0, err2;
750 struct address_space *mapping = file->f_mapping;
751
752 if (mapping_needs_writeback(mapping)) {
753 err = __filemap_fdatawrite_range(mapping, lstart, lend,
754 WB_SYNC_ALL);
755 /* See comment of filemap_write_and_wait() */
756 if (err != -EIO)
757 __filemap_fdatawait_range(mapping, lstart, lend);
758 }
759 err2 = file_check_and_advance_wb_err(file);
760 if (!err)
761 err = err2;
762 return err;
763}
764EXPORT_SYMBOL(file_write_and_wait_range);
765
766/**
767 * replace_page_cache_page - replace a pagecache page with a new one
768 * @old: page to be replaced
769 * @new: page to replace with
770 * @gfp_mask: allocation mode
771 *
772 * This function replaces a page in the pagecache with a new one. On
773 * success it acquires the pagecache reference for the new page and
774 * drops it for the old page. Both the old and new pages must be
775 * locked. This function does not add the new page to the LRU, the
776 * caller must do that.
777 *
778 * The remove + add is atomic. The only way this function can fail is
779 * memory allocation failure.
780 */
781int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
782{
783 int error;
784
785 VM_BUG_ON_PAGE(!PageLocked(old), old);
786 VM_BUG_ON_PAGE(!PageLocked(new), new);
787 VM_BUG_ON_PAGE(new->mapping, new);
788
789 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
790 if (!error) {
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *);
793 unsigned long flags;
794
795 pgoff_t offset = old->index;
796 freepage = mapping->a_ops->freepage;
797
798 get_page(new);
799 new->mapping = mapping;
800 new->index = offset;
801
802 xa_lock_irqsave(&mapping->i_pages, flags);
803 __delete_from_page_cache(old, NULL);
804 error = page_cache_tree_insert(mapping, new, NULL);
805 BUG_ON(error);
806
807 /*
808 * hugetlb pages do not participate in page cache accounting.
809 */
810 if (!PageHuge(new))
811 __inc_node_page_state(new, NR_FILE_PAGES);
812 if (PageSwapBacked(new))
813 __inc_node_page_state(new, NR_SHMEM);
814 xa_unlock_irqrestore(&mapping->i_pages, flags);
815 mem_cgroup_migrate(old, new);
816 radix_tree_preload_end();
817 if (freepage)
818 freepage(old);
819 put_page(old);
820 }
821
822 return error;
823}
824EXPORT_SYMBOL_GPL(replace_page_cache_page);
825
826static int __add_to_page_cache_locked(struct page *page,
827 struct address_space *mapping,
828 pgoff_t offset, gfp_t gfp_mask,
829 void **shadowp)
830{
831 int huge = PageHuge(page);
832 struct mem_cgroup *memcg;
833 int error;
834
835 VM_BUG_ON_PAGE(!PageLocked(page), page);
836 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
837
838 if (!huge) {
839 error = mem_cgroup_try_charge(page, current->mm,
840 gfp_mask, &memcg, false);
841 if (error)
842 return error;
843 }
844
845 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
846 if (error) {
847 if (!huge)
848 mem_cgroup_cancel_charge(page, memcg, false);
849 return error;
850 }
851
852 get_page(page);
853 page->mapping = mapping;
854 page->index = offset;
855
856 xa_lock_irq(&mapping->i_pages);
857 error = page_cache_tree_insert(mapping, page, shadowp);
858 radix_tree_preload_end();
859 if (unlikely(error))
860 goto err_insert;
861
862 /* hugetlb pages do not participate in page cache accounting. */
863 if (!huge)
864 __inc_node_page_state(page, NR_FILE_PAGES);
865 xa_unlock_irq(&mapping->i_pages);
866 if (!huge)
867 mem_cgroup_commit_charge(page, memcg, false, false);
868 trace_mm_filemap_add_to_page_cache(page);
869 return 0;
870err_insert:
871 page->mapping = NULL;
872 /* Leave page->index set: truncation relies upon it */
873 xa_unlock_irq(&mapping->i_pages);
874 if (!huge)
875 mem_cgroup_cancel_charge(page, memcg, false);
876 put_page(page);
877 return error;
878}
879
880/**
881 * add_to_page_cache_locked - add a locked page to the pagecache
882 * @page: page to add
883 * @mapping: the page's address_space
884 * @offset: page index
885 * @gfp_mask: page allocation mode
886 *
887 * This function is used to add a page to the pagecache. It must be locked.
888 * This function does not add the page to the LRU. The caller must do that.
889 */
890int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
891 pgoff_t offset, gfp_t gfp_mask)
892{
893 return __add_to_page_cache_locked(page, mapping, offset,
894 gfp_mask, NULL);
895}
896EXPORT_SYMBOL(add_to_page_cache_locked);
897
898int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
899 pgoff_t offset, gfp_t gfp_mask)
900{
901 void *shadow = NULL;
902 int ret;
903
904 __SetPageLocked(page);
905 ret = __add_to_page_cache_locked(page, mapping, offset,
906 gfp_mask, &shadow);
907 if (unlikely(ret))
908 __ClearPageLocked(page);
909 else {
910 /*
911 * The page might have been evicted from cache only
912 * recently, in which case it should be activated like
913 * any other repeatedly accessed page.
914 * The exception is pages getting rewritten; evicting other
915 * data from the working set, only to cache data that will
916 * get overwritten with something else, is a waste of memory.
917 */
918 if (!(gfp_mask & __GFP_WRITE) &&
919 shadow && workingset_refault(shadow)) {
920 SetPageActive(page);
921 workingset_activation(page);
922 } else
923 ClearPageActive(page);
924 lru_cache_add(page);
925 }
926 return ret;
927}
928EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
929
930#ifdef CONFIG_NUMA
931struct page *__page_cache_alloc(gfp_t gfp)
932{
933 int n;
934 struct page *page;
935
936 if (cpuset_do_page_mem_spread()) {
937 unsigned int cpuset_mems_cookie;
938 do {
939 cpuset_mems_cookie = read_mems_allowed_begin();
940 n = cpuset_mem_spread_node();
941 page = __alloc_pages_node(n, gfp, 0);
942 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
943
944 return page;
945 }
946 return alloc_pages(gfp, 0);
947}
948EXPORT_SYMBOL(__page_cache_alloc);
949#endif
950
951/*
952 * In order to wait for pages to become available there must be
953 * waitqueues associated with pages. By using a hash table of
954 * waitqueues where the bucket discipline is to maintain all
955 * waiters on the same queue and wake all when any of the pages
956 * become available, and for the woken contexts to check to be
957 * sure the appropriate page became available, this saves space
958 * at a cost of "thundering herd" phenomena during rare hash
959 * collisions.
960 */
961#define PAGE_WAIT_TABLE_BITS 8
962#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
963static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
964
965static wait_queue_head_t *page_waitqueue(struct page *page)
966{
967 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
968}
969
970void __init pagecache_init(void)
971{
972 int i;
973
974 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
975 init_waitqueue_head(&page_wait_table[i]);
976
977 page_writeback_init();
978}
979
980/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
981struct wait_page_key {
982 struct page *page;
983 int bit_nr;
984 int page_match;
985};
986
987struct wait_page_queue {
988 struct page *page;
989 int bit_nr;
990 wait_queue_entry_t wait;
991};
992
993static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
994{
995 struct wait_page_key *key = arg;
996 struct wait_page_queue *wait_page
997 = container_of(wait, struct wait_page_queue, wait);
998
999 if (wait_page->page != key->page)
1000 return 0;
1001 key->page_match = 1;
1002
1003 if (wait_page->bit_nr != key->bit_nr)
1004 return 0;
1005
1006 /* Stop walking if it's locked */
1007 if (test_bit(key->bit_nr, &key->page->flags))
1008 return -1;
1009
1010 return autoremove_wake_function(wait, mode, sync, key);
1011}
1012
1013static void wake_up_page_bit(struct page *page, int bit_nr)
1014{
1015 wait_queue_head_t *q = page_waitqueue(page);
1016 struct wait_page_key key;
1017 unsigned long flags;
1018 wait_queue_entry_t bookmark;
1019
1020 key.page = page;
1021 key.bit_nr = bit_nr;
1022 key.page_match = 0;
1023
1024 bookmark.flags = 0;
1025 bookmark.private = NULL;
1026 bookmark.func = NULL;
1027 INIT_LIST_HEAD(&bookmark.entry);
1028
1029 spin_lock_irqsave(&q->lock, flags);
1030 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1031
1032 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1033 /*
1034 * Take a breather from holding the lock,
1035 * allow pages that finish wake up asynchronously
1036 * to acquire the lock and remove themselves
1037 * from wait queue
1038 */
1039 spin_unlock_irqrestore(&q->lock, flags);
1040 cpu_relax();
1041 spin_lock_irqsave(&q->lock, flags);
1042 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1043 }
1044
1045 /*
1046 * It is possible for other pages to have collided on the waitqueue
1047 * hash, so in that case check for a page match. That prevents a long-
1048 * term waiter
1049 *
1050 * It is still possible to miss a case here, when we woke page waiters
1051 * and removed them from the waitqueue, but there are still other
1052 * page waiters.
1053 */
1054 if (!waitqueue_active(q) || !key.page_match) {
1055 ClearPageWaiters(page);
1056 /*
1057 * It's possible to miss clearing Waiters here, when we woke
1058 * our page waiters, but the hashed waitqueue has waiters for
1059 * other pages on it.
1060 *
1061 * That's okay, it's a rare case. The next waker will clear it.
1062 */
1063 }
1064 spin_unlock_irqrestore(&q->lock, flags);
1065}
1066
1067static void wake_up_page(struct page *page, int bit)
1068{
1069 if (!PageWaiters(page))
1070 return;
1071 wake_up_page_bit(page, bit);
1072}
1073
1074static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075 struct page *page, int bit_nr, int state, bool lock)
1076{
1077 struct wait_page_queue wait_page;
1078 wait_queue_entry_t *wait = &wait_page.wait;
1079 int ret = 0;
1080
1081 init_wait(wait);
1082 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1083 wait->func = wake_page_function;
1084 wait_page.page = page;
1085 wait_page.bit_nr = bit_nr;
1086
1087 for (;;) {
1088 spin_lock_irq(&q->lock);
1089
1090 if (likely(list_empty(&wait->entry))) {
1091 __add_wait_queue_entry_tail(q, wait);
1092 SetPageWaiters(page);
1093 }
1094
1095 set_current_state(state);
1096
1097 spin_unlock_irq(&q->lock);
1098
1099 if (likely(test_bit(bit_nr, &page->flags))) {
1100 io_schedule();
1101 }
1102
1103 if (lock) {
1104 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1105 break;
1106 } else {
1107 if (!test_bit(bit_nr, &page->flags))
1108 break;
1109 }
1110
1111 if (unlikely(signal_pending_state(state, current))) {
1112 ret = -EINTR;
1113 break;
1114 }
1115 }
1116
1117 finish_wait(q, wait);
1118
1119 /*
1120 * A signal could leave PageWaiters set. Clearing it here if
1121 * !waitqueue_active would be possible (by open-coding finish_wait),
1122 * but still fail to catch it in the case of wait hash collision. We
1123 * already can fail to clear wait hash collision cases, so don't
1124 * bother with signals either.
1125 */
1126
1127 return ret;
1128}
1129
1130void wait_on_page_bit(struct page *page, int bit_nr)
1131{
1132 wait_queue_head_t *q = page_waitqueue(page);
1133 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1134}
1135EXPORT_SYMBOL(wait_on_page_bit);
1136
1137int wait_on_page_bit_killable(struct page *page, int bit_nr)
1138{
1139 wait_queue_head_t *q = page_waitqueue(page);
1140 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1141}
1142EXPORT_SYMBOL(wait_on_page_bit_killable);
1143
1144/**
1145 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1146 * @page: Page defining the wait queue of interest
1147 * @waiter: Waiter to add to the queue
1148 *
1149 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1150 */
1151void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1152{
1153 wait_queue_head_t *q = page_waitqueue(page);
1154 unsigned long flags;
1155
1156 spin_lock_irqsave(&q->lock, flags);
1157 __add_wait_queue_entry_tail(q, waiter);
1158 SetPageWaiters(page);
1159 spin_unlock_irqrestore(&q->lock, flags);
1160}
1161EXPORT_SYMBOL_GPL(add_page_wait_queue);
1162
1163#ifndef clear_bit_unlock_is_negative_byte
1164
1165/*
1166 * PG_waiters is the high bit in the same byte as PG_lock.
1167 *
1168 * On x86 (and on many other architectures), we can clear PG_lock and
1169 * test the sign bit at the same time. But if the architecture does
1170 * not support that special operation, we just do this all by hand
1171 * instead.
1172 *
1173 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1174 * being cleared, but a memory barrier should be unneccssary since it is
1175 * in the same byte as PG_locked.
1176 */
1177static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1178{
1179 clear_bit_unlock(nr, mem);
1180 /* smp_mb__after_atomic(); */
1181 return test_bit(PG_waiters, mem);
1182}
1183
1184#endif
1185
1186/**
1187 * unlock_page - unlock a locked page
1188 * @page: the page
1189 *
1190 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1191 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1192 * mechanism between PageLocked pages and PageWriteback pages is shared.
1193 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1194 *
1195 * Note that this depends on PG_waiters being the sign bit in the byte
1196 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1197 * clear the PG_locked bit and test PG_waiters at the same time fairly
1198 * portably (architectures that do LL/SC can test any bit, while x86 can
1199 * test the sign bit).
1200 */
1201void unlock_page(struct page *page)
1202{
1203 BUILD_BUG_ON(PG_waiters != 7);
1204 page = compound_head(page);
1205 VM_BUG_ON_PAGE(!PageLocked(page), page);
1206 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1207 wake_up_page_bit(page, PG_locked);
1208}
1209EXPORT_SYMBOL(unlock_page);
1210
1211/**
1212 * end_page_writeback - end writeback against a page
1213 * @page: the page
1214 */
1215void end_page_writeback(struct page *page)
1216{
1217 /*
1218 * TestClearPageReclaim could be used here but it is an atomic
1219 * operation and overkill in this particular case. Failing to
1220 * shuffle a page marked for immediate reclaim is too mild to
1221 * justify taking an atomic operation penalty at the end of
1222 * ever page writeback.
1223 */
1224 if (PageReclaim(page)) {
1225 ClearPageReclaim(page);
1226 rotate_reclaimable_page(page);
1227 }
1228
1229 if (!test_clear_page_writeback(page))
1230 BUG();
1231
1232 smp_mb__after_atomic();
1233 wake_up_page(page, PG_writeback);
1234}
1235EXPORT_SYMBOL(end_page_writeback);
1236
1237/*
1238 * After completing I/O on a page, call this routine to update the page
1239 * flags appropriately
1240 */
1241void page_endio(struct page *page, bool is_write, int err)
1242{
1243 if (!is_write) {
1244 if (!err) {
1245 SetPageUptodate(page);
1246 } else {
1247 ClearPageUptodate(page);
1248 SetPageError(page);
1249 }
1250 unlock_page(page);
1251 } else {
1252 if (err) {
1253 struct address_space *mapping;
1254
1255 SetPageError(page);
1256 mapping = page_mapping(page);
1257 if (mapping)
1258 mapping_set_error(mapping, err);
1259 }
1260 end_page_writeback(page);
1261 }
1262}
1263EXPORT_SYMBOL_GPL(page_endio);
1264
1265/**
1266 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1267 * @__page: the page to lock
1268 */
1269void __lock_page(struct page *__page)
1270{
1271 struct page *page = compound_head(__page);
1272 wait_queue_head_t *q = page_waitqueue(page);
1273 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1274}
1275EXPORT_SYMBOL(__lock_page);
1276
1277int __lock_page_killable(struct page *__page)
1278{
1279 struct page *page = compound_head(__page);
1280 wait_queue_head_t *q = page_waitqueue(page);
1281 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1282}
1283EXPORT_SYMBOL_GPL(__lock_page_killable);
1284
1285/*
1286 * Return values:
1287 * 1 - page is locked; mmap_sem is still held.
1288 * 0 - page is not locked.
1289 * mmap_sem has been released (up_read()), unless flags had both
1290 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1291 * which case mmap_sem is still held.
1292 *
1293 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1294 * with the page locked and the mmap_sem unperturbed.
1295 */
1296int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1297 unsigned int flags)
1298{
1299 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1300 /*
1301 * CAUTION! In this case, mmap_sem is not released
1302 * even though return 0.
1303 */
1304 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1305 return 0;
1306
1307 up_read(&mm->mmap_sem);
1308 if (flags & FAULT_FLAG_KILLABLE)
1309 wait_on_page_locked_killable(page);
1310 else
1311 wait_on_page_locked(page);
1312 return 0;
1313 } else {
1314 if (flags & FAULT_FLAG_KILLABLE) {
1315 int ret;
1316
1317 ret = __lock_page_killable(page);
1318 if (ret) {
1319 up_read(&mm->mmap_sem);
1320 return 0;
1321 }
1322 } else
1323 __lock_page(page);
1324 return 1;
1325 }
1326}
1327
1328/**
1329 * page_cache_next_hole - find the next hole (not-present entry)
1330 * @mapping: mapping
1331 * @index: index
1332 * @max_scan: maximum range to search
1333 *
1334 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1335 * lowest indexed hole.
1336 *
1337 * Returns: the index of the hole if found, otherwise returns an index
1338 * outside of the set specified (in which case 'return - index >=
1339 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1340 * be returned.
1341 *
1342 * page_cache_next_hole may be called under rcu_read_lock. However,
1343 * like radix_tree_gang_lookup, this will not atomically search a
1344 * snapshot of the tree at a single point in time. For example, if a
1345 * hole is created at index 5, then subsequently a hole is created at
1346 * index 10, page_cache_next_hole covering both indexes may return 10
1347 * if called under rcu_read_lock.
1348 */
1349pgoff_t page_cache_next_hole(struct address_space *mapping,
1350 pgoff_t index, unsigned long max_scan)
1351{
1352 unsigned long i;
1353
1354 for (i = 0; i < max_scan; i++) {
1355 struct page *page;
1356
1357 page = radix_tree_lookup(&mapping->i_pages, index);
1358 if (!page || radix_tree_exceptional_entry(page))
1359 break;
1360 index++;
1361 if (index == 0)
1362 break;
1363 }
1364
1365 return index;
1366}
1367EXPORT_SYMBOL(page_cache_next_hole);
1368
1369/**
1370 * page_cache_prev_hole - find the prev hole (not-present entry)
1371 * @mapping: mapping
1372 * @index: index
1373 * @max_scan: maximum range to search
1374 *
1375 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1376 * the first hole.
1377 *
1378 * Returns: the index of the hole if found, otherwise returns an index
1379 * outside of the set specified (in which case 'index - return >=
1380 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1381 * will be returned.
1382 *
1383 * page_cache_prev_hole may be called under rcu_read_lock. However,
1384 * like radix_tree_gang_lookup, this will not atomically search a
1385 * snapshot of the tree at a single point in time. For example, if a
1386 * hole is created at index 10, then subsequently a hole is created at
1387 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1388 * called under rcu_read_lock.
1389 */
1390pgoff_t page_cache_prev_hole(struct address_space *mapping,
1391 pgoff_t index, unsigned long max_scan)
1392{
1393 unsigned long i;
1394
1395 for (i = 0; i < max_scan; i++) {
1396 struct page *page;
1397
1398 page = radix_tree_lookup(&mapping->i_pages, index);
1399 if (!page || radix_tree_exceptional_entry(page))
1400 break;
1401 index--;
1402 if (index == ULONG_MAX)
1403 break;
1404 }
1405
1406 return index;
1407}
1408EXPORT_SYMBOL(page_cache_prev_hole);
1409
1410/**
1411 * find_get_entry - find and get a page cache entry
1412 * @mapping: the address_space to search
1413 * @offset: the page cache index
1414 *
1415 * Looks up the page cache slot at @mapping & @offset. If there is a
1416 * page cache page, it is returned with an increased refcount.
1417 *
1418 * If the slot holds a shadow entry of a previously evicted page, or a
1419 * swap entry from shmem/tmpfs, it is returned.
1420 *
1421 * Otherwise, %NULL is returned.
1422 */
1423struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1424{
1425 void **pagep;
1426 struct page *head, *page;
1427
1428 rcu_read_lock();
1429repeat:
1430 page = NULL;
1431 pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1432 if (pagep) {
1433 page = radix_tree_deref_slot(pagep);
1434 if (unlikely(!page))
1435 goto out;
1436 if (radix_tree_exception(page)) {
1437 if (radix_tree_deref_retry(page))
1438 goto repeat;
1439 /*
1440 * A shadow entry of a recently evicted page,
1441 * or a swap entry from shmem/tmpfs. Return
1442 * it without attempting to raise page count.
1443 */
1444 goto out;
1445 }
1446
1447 head = compound_head(page);
1448 if (!page_cache_get_speculative(head))
1449 goto repeat;
1450
1451 /* The page was split under us? */
1452 if (compound_head(page) != head) {
1453 put_page(head);
1454 goto repeat;
1455 }
1456
1457 /*
1458 * Has the page moved?
1459 * This is part of the lockless pagecache protocol. See
1460 * include/linux/pagemap.h for details.
1461 */
1462 if (unlikely(page != *pagep)) {
1463 put_page(head);
1464 goto repeat;
1465 }
1466 }
1467out:
1468 rcu_read_unlock();
1469
1470 return page;
1471}
1472EXPORT_SYMBOL(find_get_entry);
1473
1474/**
1475 * find_lock_entry - locate, pin and lock a page cache entry
1476 * @mapping: the address_space to search
1477 * @offset: the page cache index
1478 *
1479 * Looks up the page cache slot at @mapping & @offset. If there is a
1480 * page cache page, it is returned locked and with an increased
1481 * refcount.
1482 *
1483 * If the slot holds a shadow entry of a previously evicted page, or a
1484 * swap entry from shmem/tmpfs, it is returned.
1485 *
1486 * Otherwise, %NULL is returned.
1487 *
1488 * find_lock_entry() may sleep.
1489 */
1490struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1491{
1492 struct page *page;
1493
1494repeat:
1495 page = find_get_entry(mapping, offset);
1496 if (page && !radix_tree_exception(page)) {
1497 lock_page(page);
1498 /* Has the page been truncated? */
1499 if (unlikely(page_mapping(page) != mapping)) {
1500 unlock_page(page);
1501 put_page(page);
1502 goto repeat;
1503 }
1504 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1505 }
1506 return page;
1507}
1508EXPORT_SYMBOL(find_lock_entry);
1509
1510/**
1511 * pagecache_get_page - find and get a page reference
1512 * @mapping: the address_space to search
1513 * @offset: the page index
1514 * @fgp_flags: PCG flags
1515 * @gfp_mask: gfp mask to use for the page cache data page allocation
1516 *
1517 * Looks up the page cache slot at @mapping & @offset.
1518 *
1519 * PCG flags modify how the page is returned.
1520 *
1521 * @fgp_flags can be:
1522 *
1523 * - FGP_ACCESSED: the page will be marked accessed
1524 * - FGP_LOCK: Page is return locked
1525 * - FGP_CREAT: If page is not present then a new page is allocated using
1526 * @gfp_mask and added to the page cache and the VM's LRU
1527 * list. The page is returned locked and with an increased
1528 * refcount. Otherwise, NULL is returned.
1529 *
1530 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1531 * if the GFP flags specified for FGP_CREAT are atomic.
1532 *
1533 * If there is a page cache page, it is returned with an increased refcount.
1534 */
1535struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1536 int fgp_flags, gfp_t gfp_mask)
1537{
1538 struct page *page;
1539
1540repeat:
1541 page = find_get_entry(mapping, offset);
1542 if (radix_tree_exceptional_entry(page))
1543 page = NULL;
1544 if (!page)
1545 goto no_page;
1546
1547 if (fgp_flags & FGP_LOCK) {
1548 if (fgp_flags & FGP_NOWAIT) {
1549 if (!trylock_page(page)) {
1550 put_page(page);
1551 return NULL;
1552 }
1553 } else {
1554 lock_page(page);
1555 }
1556
1557 /* Has the page been truncated? */
1558 if (unlikely(page->mapping != mapping)) {
1559 unlock_page(page);
1560 put_page(page);
1561 goto repeat;
1562 }
1563 VM_BUG_ON_PAGE(page->index != offset, page);
1564 }
1565
1566 if (page && (fgp_flags & FGP_ACCESSED))
1567 mark_page_accessed(page);
1568
1569no_page:
1570 if (!page && (fgp_flags & FGP_CREAT)) {
1571 int err;
1572 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1573 gfp_mask |= __GFP_WRITE;
1574 if (fgp_flags & FGP_NOFS)
1575 gfp_mask &= ~__GFP_FS;
1576
1577 page = __page_cache_alloc(gfp_mask);
1578 if (!page)
1579 return NULL;
1580
1581 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1582 fgp_flags |= FGP_LOCK;
1583
1584 /* Init accessed so avoid atomic mark_page_accessed later */
1585 if (fgp_flags & FGP_ACCESSED)
1586 __SetPageReferenced(page);
1587
1588 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1589 if (unlikely(err)) {
1590 put_page(page);
1591 page = NULL;
1592 if (err == -EEXIST)
1593 goto repeat;
1594 }
1595 }
1596
1597 return page;
1598}
1599EXPORT_SYMBOL(pagecache_get_page);
1600
1601/**
1602 * find_get_entries - gang pagecache lookup
1603 * @mapping: The address_space to search
1604 * @start: The starting page cache index
1605 * @nr_entries: The maximum number of entries
1606 * @entries: Where the resulting entries are placed
1607 * @indices: The cache indices corresponding to the entries in @entries
1608 *
1609 * find_get_entries() will search for and return a group of up to
1610 * @nr_entries entries in the mapping. The entries are placed at
1611 * @entries. find_get_entries() takes a reference against any actual
1612 * pages it returns.
1613 *
1614 * The search returns a group of mapping-contiguous page cache entries
1615 * with ascending indexes. There may be holes in the indices due to
1616 * not-present pages.
1617 *
1618 * Any shadow entries of evicted pages, or swap entries from
1619 * shmem/tmpfs, are included in the returned array.
1620 *
1621 * find_get_entries() returns the number of pages and shadow entries
1622 * which were found.
1623 */
1624unsigned find_get_entries(struct address_space *mapping,
1625 pgoff_t start, unsigned int nr_entries,
1626 struct page **entries, pgoff_t *indices)
1627{
1628 void **slot;
1629 unsigned int ret = 0;
1630 struct radix_tree_iter iter;
1631
1632 if (!nr_entries)
1633 return 0;
1634
1635 rcu_read_lock();
1636 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1637 struct page *head, *page;
1638repeat:
1639 page = radix_tree_deref_slot(slot);
1640 if (unlikely(!page))
1641 continue;
1642 if (radix_tree_exception(page)) {
1643 if (radix_tree_deref_retry(page)) {
1644 slot = radix_tree_iter_retry(&iter);
1645 continue;
1646 }
1647 /*
1648 * A shadow entry of a recently evicted page, a swap
1649 * entry from shmem/tmpfs or a DAX entry. Return it
1650 * without attempting to raise page count.
1651 */
1652 goto export;
1653 }
1654
1655 head = compound_head(page);
1656 if (!page_cache_get_speculative(head))
1657 goto repeat;
1658
1659 /* The page was split under us? */
1660 if (compound_head(page) != head) {
1661 put_page(head);
1662 goto repeat;
1663 }
1664
1665 /* Has the page moved? */
1666 if (unlikely(page != *slot)) {
1667 put_page(head);
1668 goto repeat;
1669 }
1670export:
1671 indices[ret] = iter.index;
1672 entries[ret] = page;
1673 if (++ret == nr_entries)
1674 break;
1675 }
1676 rcu_read_unlock();
1677 return ret;
1678}
1679
1680/**
1681 * find_get_pages_range - gang pagecache lookup
1682 * @mapping: The address_space to search
1683 * @start: The starting page index
1684 * @end: The final page index (inclusive)
1685 * @nr_pages: The maximum number of pages
1686 * @pages: Where the resulting pages are placed
1687 *
1688 * find_get_pages_range() will search for and return a group of up to @nr_pages
1689 * pages in the mapping starting at index @start and up to index @end
1690 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1691 * a reference against the returned pages.
1692 *
1693 * The search returns a group of mapping-contiguous pages with ascending
1694 * indexes. There may be holes in the indices due to not-present pages.
1695 * We also update @start to index the next page for the traversal.
1696 *
1697 * find_get_pages_range() returns the number of pages which were found. If this
1698 * number is smaller than @nr_pages, the end of specified range has been
1699 * reached.
1700 */
1701unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1702 pgoff_t end, unsigned int nr_pages,
1703 struct page **pages)
1704{
1705 struct radix_tree_iter iter;
1706 void **slot;
1707 unsigned ret = 0;
1708
1709 if (unlikely(!nr_pages))
1710 return 0;
1711
1712 rcu_read_lock();
1713 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1714 struct page *head, *page;
1715
1716 if (iter.index > end)
1717 break;
1718repeat:
1719 page = radix_tree_deref_slot(slot);
1720 if (unlikely(!page))
1721 continue;
1722
1723 if (radix_tree_exception(page)) {
1724 if (radix_tree_deref_retry(page)) {
1725 slot = radix_tree_iter_retry(&iter);
1726 continue;
1727 }
1728 /*
1729 * A shadow entry of a recently evicted page,
1730 * or a swap entry from shmem/tmpfs. Skip
1731 * over it.
1732 */
1733 continue;
1734 }
1735
1736 head = compound_head(page);
1737 if (!page_cache_get_speculative(head))
1738 goto repeat;
1739
1740 /* The page was split under us? */
1741 if (compound_head(page) != head) {
1742 put_page(head);
1743 goto repeat;
1744 }
1745
1746 /* Has the page moved? */
1747 if (unlikely(page != *slot)) {
1748 put_page(head);
1749 goto repeat;
1750 }
1751
1752 pages[ret] = page;
1753 if (++ret == nr_pages) {
1754 *start = pages[ret - 1]->index + 1;
1755 goto out;
1756 }
1757 }
1758
1759 /*
1760 * We come here when there is no page beyond @end. We take care to not
1761 * overflow the index @start as it confuses some of the callers. This
1762 * breaks the iteration when there is page at index -1 but that is
1763 * already broken anyway.
1764 */
1765 if (end == (pgoff_t)-1)
1766 *start = (pgoff_t)-1;
1767 else
1768 *start = end + 1;
1769out:
1770 rcu_read_unlock();
1771
1772 return ret;
1773}
1774
1775/**
1776 * find_get_pages_contig - gang contiguous pagecache lookup
1777 * @mapping: The address_space to search
1778 * @index: The starting page index
1779 * @nr_pages: The maximum number of pages
1780 * @pages: Where the resulting pages are placed
1781 *
1782 * find_get_pages_contig() works exactly like find_get_pages(), except
1783 * that the returned number of pages are guaranteed to be contiguous.
1784 *
1785 * find_get_pages_contig() returns the number of pages which were found.
1786 */
1787unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1788 unsigned int nr_pages, struct page **pages)
1789{
1790 struct radix_tree_iter iter;
1791 void **slot;
1792 unsigned int ret = 0;
1793
1794 if (unlikely(!nr_pages))
1795 return 0;
1796
1797 rcu_read_lock();
1798 radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1799 struct page *head, *page;
1800repeat:
1801 page = radix_tree_deref_slot(slot);
1802 /* The hole, there no reason to continue */
1803 if (unlikely(!page))
1804 break;
1805
1806 if (radix_tree_exception(page)) {
1807 if (radix_tree_deref_retry(page)) {
1808 slot = radix_tree_iter_retry(&iter);
1809 continue;
1810 }
1811 /*
1812 * A shadow entry of a recently evicted page,
1813 * or a swap entry from shmem/tmpfs. Stop
1814 * looking for contiguous pages.
1815 */
1816 break;
1817 }
1818
1819 head = compound_head(page);
1820 if (!page_cache_get_speculative(head))
1821 goto repeat;
1822
1823 /* The page was split under us? */
1824 if (compound_head(page) != head) {
1825 put_page(head);
1826 goto repeat;
1827 }
1828
1829 /* Has the page moved? */
1830 if (unlikely(page != *slot)) {
1831 put_page(head);
1832 goto repeat;
1833 }
1834
1835 /*
1836 * must check mapping and index after taking the ref.
1837 * otherwise we can get both false positives and false
1838 * negatives, which is just confusing to the caller.
1839 */
1840 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1841 put_page(page);
1842 break;
1843 }
1844
1845 pages[ret] = page;
1846 if (++ret == nr_pages)
1847 break;
1848 }
1849 rcu_read_unlock();
1850 return ret;
1851}
1852EXPORT_SYMBOL(find_get_pages_contig);
1853
1854/**
1855 * find_get_pages_range_tag - find and return pages in given range matching @tag
1856 * @mapping: the address_space to search
1857 * @index: the starting page index
1858 * @end: The final page index (inclusive)
1859 * @tag: the tag index
1860 * @nr_pages: the maximum number of pages
1861 * @pages: where the resulting pages are placed
1862 *
1863 * Like find_get_pages, except we only return pages which are tagged with
1864 * @tag. We update @index to index the next page for the traversal.
1865 */
1866unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1867 pgoff_t end, int tag, unsigned int nr_pages,
1868 struct page **pages)
1869{
1870 struct radix_tree_iter iter;
1871 void **slot;
1872 unsigned ret = 0;
1873
1874 if (unlikely(!nr_pages))
1875 return 0;
1876
1877 rcu_read_lock();
1878 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1879 struct page *head, *page;
1880
1881 if (iter.index > end)
1882 break;
1883repeat:
1884 page = radix_tree_deref_slot(slot);
1885 if (unlikely(!page))
1886 continue;
1887
1888 if (radix_tree_exception(page)) {
1889 if (radix_tree_deref_retry(page)) {
1890 slot = radix_tree_iter_retry(&iter);
1891 continue;
1892 }
1893 /*
1894 * A shadow entry of a recently evicted page.
1895 *
1896 * Those entries should never be tagged, but
1897 * this tree walk is lockless and the tags are
1898 * looked up in bulk, one radix tree node at a
1899 * time, so there is a sizable window for page
1900 * reclaim to evict a page we saw tagged.
1901 *
1902 * Skip over it.
1903 */
1904 continue;
1905 }
1906
1907 head = compound_head(page);
1908 if (!page_cache_get_speculative(head))
1909 goto repeat;
1910
1911 /* The page was split under us? */
1912 if (compound_head(page) != head) {
1913 put_page(head);
1914 goto repeat;
1915 }
1916
1917 /* Has the page moved? */
1918 if (unlikely(page != *slot)) {
1919 put_page(head);
1920 goto repeat;
1921 }
1922
1923 pages[ret] = page;
1924 if (++ret == nr_pages) {
1925 *index = pages[ret - 1]->index + 1;
1926 goto out;
1927 }
1928 }
1929
1930 /*
1931 * We come here when we got at @end. We take care to not overflow the
1932 * index @index as it confuses some of the callers. This breaks the
1933 * iteration when there is page at index -1 but that is already broken
1934 * anyway.
1935 */
1936 if (end == (pgoff_t)-1)
1937 *index = (pgoff_t)-1;
1938 else
1939 *index = end + 1;
1940out:
1941 rcu_read_unlock();
1942
1943 return ret;
1944}
1945EXPORT_SYMBOL(find_get_pages_range_tag);
1946
1947/**
1948 * find_get_entries_tag - find and return entries that match @tag
1949 * @mapping: the address_space to search
1950 * @start: the starting page cache index
1951 * @tag: the tag index
1952 * @nr_entries: the maximum number of entries
1953 * @entries: where the resulting entries are placed
1954 * @indices: the cache indices corresponding to the entries in @entries
1955 *
1956 * Like find_get_entries, except we only return entries which are tagged with
1957 * @tag.
1958 */
1959unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1960 int tag, unsigned int nr_entries,
1961 struct page **entries, pgoff_t *indices)
1962{
1963 void **slot;
1964 unsigned int ret = 0;
1965 struct radix_tree_iter iter;
1966
1967 if (!nr_entries)
1968 return 0;
1969
1970 rcu_read_lock();
1971 radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1972 struct page *head, *page;
1973repeat:
1974 page = radix_tree_deref_slot(slot);
1975 if (unlikely(!page))
1976 continue;
1977 if (radix_tree_exception(page)) {
1978 if (radix_tree_deref_retry(page)) {
1979 slot = radix_tree_iter_retry(&iter);
1980 continue;
1981 }
1982
1983 /*
1984 * A shadow entry of a recently evicted page, a swap
1985 * entry from shmem/tmpfs or a DAX entry. Return it
1986 * without attempting to raise page count.
1987 */
1988 goto export;
1989 }
1990
1991 head = compound_head(page);
1992 if (!page_cache_get_speculative(head))
1993 goto repeat;
1994
1995 /* The page was split under us? */
1996 if (compound_head(page) != head) {
1997 put_page(head);
1998 goto repeat;
1999 }
2000
2001 /* Has the page moved? */
2002 if (unlikely(page != *slot)) {
2003 put_page(head);
2004 goto repeat;
2005 }
2006export:
2007 indices[ret] = iter.index;
2008 entries[ret] = page;
2009 if (++ret == nr_entries)
2010 break;
2011 }
2012 rcu_read_unlock();
2013 return ret;
2014}
2015EXPORT_SYMBOL(find_get_entries_tag);
2016
2017/*
2018 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2019 * a _large_ part of the i/o request. Imagine the worst scenario:
2020 *
2021 * ---R__________________________________________B__________
2022 * ^ reading here ^ bad block(assume 4k)
2023 *
2024 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2025 * => failing the whole request => read(R) => read(R+1) =>
2026 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2027 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2028 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2029 *
2030 * It is going insane. Fix it by quickly scaling down the readahead size.
2031 */
2032static void shrink_readahead_size_eio(struct file *filp,
2033 struct file_ra_state *ra)
2034{
2035 ra->ra_pages /= 4;
2036}
2037
2038/**
2039 * generic_file_buffered_read - generic file read routine
2040 * @iocb: the iocb to read
2041 * @iter: data destination
2042 * @written: already copied
2043 *
2044 * This is a generic file read routine, and uses the
2045 * mapping->a_ops->readpage() function for the actual low-level stuff.
2046 *
2047 * This is really ugly. But the goto's actually try to clarify some
2048 * of the logic when it comes to error handling etc.
2049 */
2050static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2051 struct iov_iter *iter, ssize_t written)
2052{
2053 struct file *filp = iocb->ki_filp;
2054 struct address_space *mapping = filp->f_mapping;
2055 struct inode *inode = mapping->host;
2056 struct file_ra_state *ra = &filp->f_ra;
2057 loff_t *ppos = &iocb->ki_pos;
2058 pgoff_t index;
2059 pgoff_t last_index;
2060 pgoff_t prev_index;
2061 unsigned long offset; /* offset into pagecache page */
2062 unsigned int prev_offset;
2063 int error = 0;
2064
2065 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2066 return 0;
2067 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2068
2069 index = *ppos >> PAGE_SHIFT;
2070 prev_index = ra->prev_pos >> PAGE_SHIFT;
2071 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2072 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2073 offset = *ppos & ~PAGE_MASK;
2074
2075 for (;;) {
2076 struct page *page;
2077 pgoff_t end_index;
2078 loff_t isize;
2079 unsigned long nr, ret;
2080
2081 cond_resched();
2082find_page:
2083 if (fatal_signal_pending(current)) {
2084 error = -EINTR;
2085 goto out;
2086 }
2087
2088 page = find_get_page(mapping, index);
2089 if (!page) {
2090 if (iocb->ki_flags & IOCB_NOWAIT)
2091 goto would_block;
2092 page_cache_sync_readahead(mapping,
2093 ra, filp,
2094 index, last_index - index);
2095 page = find_get_page(mapping, index);
2096 if (unlikely(page == NULL))
2097 goto no_cached_page;
2098 }
2099 if (PageReadahead(page)) {
2100 page_cache_async_readahead(mapping,
2101 ra, filp, page,
2102 index, last_index - index);
2103 }
2104 if (!PageUptodate(page)) {
2105 if (iocb->ki_flags & IOCB_NOWAIT) {
2106 put_page(page);
2107 goto would_block;
2108 }
2109
2110 /*
2111 * See comment in do_read_cache_page on why
2112 * wait_on_page_locked is used to avoid unnecessarily
2113 * serialisations and why it's safe.
2114 */
2115 error = wait_on_page_locked_killable(page);
2116 if (unlikely(error))
2117 goto readpage_error;
2118 if (PageUptodate(page))
2119 goto page_ok;
2120
2121 if (inode->i_blkbits == PAGE_SHIFT ||
2122 !mapping->a_ops->is_partially_uptodate)
2123 goto page_not_up_to_date;
2124 /* pipes can't handle partially uptodate pages */
2125 if (unlikely(iter->type & ITER_PIPE))
2126 goto page_not_up_to_date;
2127 if (!trylock_page(page))
2128 goto page_not_up_to_date;
2129 /* Did it get truncated before we got the lock? */
2130 if (!page->mapping)
2131 goto page_not_up_to_date_locked;
2132 if (!mapping->a_ops->is_partially_uptodate(page,
2133 offset, iter->count))
2134 goto page_not_up_to_date_locked;
2135 unlock_page(page);
2136 }
2137page_ok:
2138 /*
2139 * i_size must be checked after we know the page is Uptodate.
2140 *
2141 * Checking i_size after the check allows us to calculate
2142 * the correct value for "nr", which means the zero-filled
2143 * part of the page is not copied back to userspace (unless
2144 * another truncate extends the file - this is desired though).
2145 */
2146
2147 isize = i_size_read(inode);
2148 end_index = (isize - 1) >> PAGE_SHIFT;
2149 if (unlikely(!isize || index > end_index)) {
2150 put_page(page);
2151 goto out;
2152 }
2153
2154 /* nr is the maximum number of bytes to copy from this page */
2155 nr = PAGE_SIZE;
2156 if (index == end_index) {
2157 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2158 if (nr <= offset) {
2159 put_page(page);
2160 goto out;
2161 }
2162 }
2163 nr = nr - offset;
2164
2165 /* If users can be writing to this page using arbitrary
2166 * virtual addresses, take care about potential aliasing
2167 * before reading the page on the kernel side.
2168 */
2169 if (mapping_writably_mapped(mapping))
2170 flush_dcache_page(page);
2171
2172 /*
2173 * When a sequential read accesses a page several times,
2174 * only mark it as accessed the first time.
2175 */
2176 if (prev_index != index || offset != prev_offset)
2177 mark_page_accessed(page);
2178 prev_index = index;
2179
2180 /*
2181 * Ok, we have the page, and it's up-to-date, so
2182 * now we can copy it to user space...
2183 */
2184
2185 ret = copy_page_to_iter(page, offset, nr, iter);
2186 offset += ret;
2187 index += offset >> PAGE_SHIFT;
2188 offset &= ~PAGE_MASK;
2189 prev_offset = offset;
2190
2191 put_page(page);
2192 written += ret;
2193 if (!iov_iter_count(iter))
2194 goto out;
2195 if (ret < nr) {
2196 error = -EFAULT;
2197 goto out;
2198 }
2199 continue;
2200
2201page_not_up_to_date:
2202 /* Get exclusive access to the page ... */
2203 error = lock_page_killable(page);
2204 if (unlikely(error))
2205 goto readpage_error;
2206
2207page_not_up_to_date_locked:
2208 /* Did it get truncated before we got the lock? */
2209 if (!page->mapping) {
2210 unlock_page(page);
2211 put_page(page);
2212 continue;
2213 }
2214
2215 /* Did somebody else fill it already? */
2216 if (PageUptodate(page)) {
2217 unlock_page(page);
2218 goto page_ok;
2219 }
2220
2221readpage:
2222 /*
2223 * A previous I/O error may have been due to temporary
2224 * failures, eg. multipath errors.
2225 * PG_error will be set again if readpage fails.
2226 */
2227 ClearPageError(page);
2228 /* Start the actual read. The read will unlock the page. */
2229 error = mapping->a_ops->readpage(filp, page);
2230
2231 if (unlikely(error)) {
2232 if (error == AOP_TRUNCATED_PAGE) {
2233 put_page(page);
2234 error = 0;
2235 goto find_page;
2236 }
2237 goto readpage_error;
2238 }
2239
2240 if (!PageUptodate(page)) {
2241 error = lock_page_killable(page);
2242 if (unlikely(error))
2243 goto readpage_error;
2244 if (!PageUptodate(page)) {
2245 if (page->mapping == NULL) {
2246 /*
2247 * invalidate_mapping_pages got it
2248 */
2249 unlock_page(page);
2250 put_page(page);
2251 goto find_page;
2252 }
2253 unlock_page(page);
2254 shrink_readahead_size_eio(filp, ra);
2255 error = -EIO;
2256 goto readpage_error;
2257 }
2258 unlock_page(page);
2259 }
2260
2261 goto page_ok;
2262
2263readpage_error:
2264 /* UHHUH! A synchronous read error occurred. Report it */
2265 put_page(page);
2266 goto out;
2267
2268no_cached_page:
2269 /*
2270 * Ok, it wasn't cached, so we need to create a new
2271 * page..
2272 */
2273 page = page_cache_alloc(mapping);
2274 if (!page) {
2275 error = -ENOMEM;
2276 goto out;
2277 }
2278 error = add_to_page_cache_lru(page, mapping, index,
2279 mapping_gfp_constraint(mapping, GFP_KERNEL));
2280 if (error) {
2281 put_page(page);
2282 if (error == -EEXIST) {
2283 error = 0;
2284 goto find_page;
2285 }
2286 goto out;
2287 }
2288 goto readpage;
2289 }
2290
2291would_block:
2292 error = -EAGAIN;
2293out:
2294 ra->prev_pos = prev_index;
2295 ra->prev_pos <<= PAGE_SHIFT;
2296 ra->prev_pos |= prev_offset;
2297
2298 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2299 file_accessed(filp);
2300 return written ? written : error;
2301}
2302
2303/**
2304 * generic_file_read_iter - generic filesystem read routine
2305 * @iocb: kernel I/O control block
2306 * @iter: destination for the data read
2307 *
2308 * This is the "read_iter()" routine for all filesystems
2309 * that can use the page cache directly.
2310 */
2311ssize_t
2312generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2313{
2314 size_t count = iov_iter_count(iter);
2315 ssize_t retval = 0;
2316
2317 if (!count)
2318 goto out; /* skip atime */
2319
2320 if (iocb->ki_flags & IOCB_DIRECT) {
2321 struct file *file = iocb->ki_filp;
2322 struct address_space *mapping = file->f_mapping;
2323 struct inode *inode = mapping->host;
2324 loff_t size;
2325
2326 size = i_size_read(inode);
2327 if (iocb->ki_flags & IOCB_NOWAIT) {
2328 if (filemap_range_has_page(mapping, iocb->ki_pos,
2329 iocb->ki_pos + count - 1))
2330 return -EAGAIN;
2331 } else {
2332 retval = filemap_write_and_wait_range(mapping,
2333 iocb->ki_pos,
2334 iocb->ki_pos + count - 1);
2335 if (retval < 0)
2336 goto out;
2337 }
2338
2339 file_accessed(file);
2340
2341 retval = mapping->a_ops->direct_IO(iocb, iter);
2342 if (retval >= 0) {
2343 iocb->ki_pos += retval;
2344 count -= retval;
2345 }
2346 iov_iter_revert(iter, count - iov_iter_count(iter));
2347
2348 /*
2349 * Btrfs can have a short DIO read if we encounter
2350 * compressed extents, so if there was an error, or if
2351 * we've already read everything we wanted to, or if
2352 * there was a short read because we hit EOF, go ahead
2353 * and return. Otherwise fallthrough to buffered io for
2354 * the rest of the read. Buffered reads will not work for
2355 * DAX files, so don't bother trying.
2356 */
2357 if (retval < 0 || !count || iocb->ki_pos >= size ||
2358 IS_DAX(inode))
2359 goto out;
2360 }
2361
2362 retval = generic_file_buffered_read(iocb, iter, retval);
2363out:
2364 return retval;
2365}
2366EXPORT_SYMBOL(generic_file_read_iter);
2367
2368#ifdef CONFIG_MMU
2369/**
2370 * page_cache_read - adds requested page to the page cache if not already there
2371 * @file: file to read
2372 * @offset: page index
2373 * @gfp_mask: memory allocation flags
2374 *
2375 * This adds the requested page to the page cache if it isn't already there,
2376 * and schedules an I/O to read in its contents from disk.
2377 */
2378static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2379{
2380 struct address_space *mapping = file->f_mapping;
2381 struct page *page;
2382 int ret;
2383
2384 do {
2385 page = __page_cache_alloc(gfp_mask);
2386 if (!page)
2387 return -ENOMEM;
2388
2389 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2390 if (ret == 0)
2391 ret = mapping->a_ops->readpage(file, page);
2392 else if (ret == -EEXIST)
2393 ret = 0; /* losing race to add is OK */
2394
2395 put_page(page);
2396
2397 } while (ret == AOP_TRUNCATED_PAGE);
2398
2399 return ret;
2400}
2401
2402#define MMAP_LOTSAMISS (100)
2403
2404/*
2405 * Synchronous readahead happens when we don't even find
2406 * a page in the page cache at all.
2407 */
2408static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2409 struct file_ra_state *ra,
2410 struct file *file,
2411 pgoff_t offset)
2412{
2413 struct address_space *mapping = file->f_mapping;
2414
2415 /* If we don't want any read-ahead, don't bother */
2416 if (vma->vm_flags & VM_RAND_READ)
2417 return;
2418 if (!ra->ra_pages)
2419 return;
2420
2421 if (vma->vm_flags & VM_SEQ_READ) {
2422 page_cache_sync_readahead(mapping, ra, file, offset,
2423 ra->ra_pages);
2424 return;
2425 }
2426
2427 /* Avoid banging the cache line if not needed */
2428 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2429 ra->mmap_miss++;
2430
2431 /*
2432 * Do we miss much more than hit in this file? If so,
2433 * stop bothering with read-ahead. It will only hurt.
2434 */
2435 if (ra->mmap_miss > MMAP_LOTSAMISS)
2436 return;
2437
2438 /*
2439 * mmap read-around
2440 */
2441 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2442 ra->size = ra->ra_pages;
2443 ra->async_size = ra->ra_pages / 4;
2444 ra_submit(ra, mapping, file);
2445}
2446
2447/*
2448 * Asynchronous readahead happens when we find the page and PG_readahead,
2449 * so we want to possibly extend the readahead further..
2450 */
2451static void do_async_mmap_readahead(struct vm_area_struct *vma,
2452 struct file_ra_state *ra,
2453 struct file *file,
2454 struct page *page,
2455 pgoff_t offset)
2456{
2457 struct address_space *mapping = file->f_mapping;
2458
2459 /* If we don't want any read-ahead, don't bother */
2460 if (vma->vm_flags & VM_RAND_READ)
2461 return;
2462 if (ra->mmap_miss > 0)
2463 ra->mmap_miss--;
2464 if (PageReadahead(page))
2465 page_cache_async_readahead(mapping, ra, file,
2466 page, offset, ra->ra_pages);
2467}
2468
2469/**
2470 * filemap_fault - read in file data for page fault handling
2471 * @vmf: struct vm_fault containing details of the fault
2472 *
2473 * filemap_fault() is invoked via the vma operations vector for a
2474 * mapped memory region to read in file data during a page fault.
2475 *
2476 * The goto's are kind of ugly, but this streamlines the normal case of having
2477 * it in the page cache, and handles the special cases reasonably without
2478 * having a lot of duplicated code.
2479 *
2480 * vma->vm_mm->mmap_sem must be held on entry.
2481 *
2482 * If our return value has VM_FAULT_RETRY set, it's because
2483 * lock_page_or_retry() returned 0.
2484 * The mmap_sem has usually been released in this case.
2485 * See __lock_page_or_retry() for the exception.
2486 *
2487 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2488 * has not been released.
2489 *
2490 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2491 */
2492int filemap_fault(struct vm_fault *vmf)
2493{
2494 int error;
2495 struct file *file = vmf->vma->vm_file;
2496 struct address_space *mapping = file->f_mapping;
2497 struct file_ra_state *ra = &file->f_ra;
2498 struct inode *inode = mapping->host;
2499 pgoff_t offset = vmf->pgoff;
2500 pgoff_t max_off;
2501 struct page *page;
2502 int ret = 0;
2503
2504 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2505 if (unlikely(offset >= max_off))
2506 return VM_FAULT_SIGBUS;
2507
2508 /*
2509 * Do we have something in the page cache already?
2510 */
2511 page = find_get_page(mapping, offset);
2512 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2513 /*
2514 * We found the page, so try async readahead before
2515 * waiting for the lock.
2516 */
2517 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2518 } else if (!page) {
2519 /* No page in the page cache at all */
2520 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2521 count_vm_event(PGMAJFAULT);
2522 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2523 ret = VM_FAULT_MAJOR;
2524retry_find:
2525 page = find_get_page(mapping, offset);
2526 if (!page)
2527 goto no_cached_page;
2528 }
2529
2530 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2531 put_page(page);
2532 return ret | VM_FAULT_RETRY;
2533 }
2534
2535 /* Did it get truncated? */
2536 if (unlikely(page->mapping != mapping)) {
2537 unlock_page(page);
2538 put_page(page);
2539 goto retry_find;
2540 }
2541 VM_BUG_ON_PAGE(page->index != offset, page);
2542
2543 /*
2544 * We have a locked page in the page cache, now we need to check
2545 * that it's up-to-date. If not, it is going to be due to an error.
2546 */
2547 if (unlikely(!PageUptodate(page)))
2548 goto page_not_uptodate;
2549
2550 /*
2551 * Found the page and have a reference on it.
2552 * We must recheck i_size under page lock.
2553 */
2554 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2555 if (unlikely(offset >= max_off)) {
2556 unlock_page(page);
2557 put_page(page);
2558 return VM_FAULT_SIGBUS;
2559 }
2560
2561 vmf->page = page;
2562 return ret | VM_FAULT_LOCKED;
2563
2564no_cached_page:
2565 /*
2566 * We're only likely to ever get here if MADV_RANDOM is in
2567 * effect.
2568 */
2569 error = page_cache_read(file, offset, vmf->gfp_mask);
2570
2571 /*
2572 * The page we want has now been added to the page cache.
2573 * In the unlikely event that someone removed it in the
2574 * meantime, we'll just come back here and read it again.
2575 */
2576 if (error >= 0)
2577 goto retry_find;
2578
2579 /*
2580 * An error return from page_cache_read can result if the
2581 * system is low on memory, or a problem occurs while trying
2582 * to schedule I/O.
2583 */
2584 if (error == -ENOMEM)
2585 return VM_FAULT_OOM;
2586 return VM_FAULT_SIGBUS;
2587
2588page_not_uptodate:
2589 /*
2590 * Umm, take care of errors if the page isn't up-to-date.
2591 * Try to re-read it _once_. We do this synchronously,
2592 * because there really aren't any performance issues here
2593 * and we need to check for errors.
2594 */
2595 ClearPageError(page);
2596 error = mapping->a_ops->readpage(file, page);
2597 if (!error) {
2598 wait_on_page_locked(page);
2599 if (!PageUptodate(page))
2600 error = -EIO;
2601 }
2602 put_page(page);
2603
2604 if (!error || error == AOP_TRUNCATED_PAGE)
2605 goto retry_find;
2606
2607 /* Things didn't work out. Return zero to tell the mm layer so. */
2608 shrink_readahead_size_eio(file, ra);
2609 return VM_FAULT_SIGBUS;
2610}
2611EXPORT_SYMBOL(filemap_fault);
2612
2613void filemap_map_pages(struct vm_fault *vmf,
2614 pgoff_t start_pgoff, pgoff_t end_pgoff)
2615{
2616 struct radix_tree_iter iter;
2617 void **slot;
2618 struct file *file = vmf->vma->vm_file;
2619 struct address_space *mapping = file->f_mapping;
2620 pgoff_t last_pgoff = start_pgoff;
2621 unsigned long max_idx;
2622 struct page *head, *page;
2623
2624 rcu_read_lock();
2625 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2626 if (iter.index > end_pgoff)
2627 break;
2628repeat:
2629 page = radix_tree_deref_slot(slot);
2630 if (unlikely(!page))
2631 goto next;
2632 if (radix_tree_exception(page)) {
2633 if (radix_tree_deref_retry(page)) {
2634 slot = radix_tree_iter_retry(&iter);
2635 continue;
2636 }
2637 goto next;
2638 }
2639
2640 head = compound_head(page);
2641 if (!page_cache_get_speculative(head))
2642 goto repeat;
2643
2644 /* The page was split under us? */
2645 if (compound_head(page) != head) {
2646 put_page(head);
2647 goto repeat;
2648 }
2649
2650 /* Has the page moved? */
2651 if (unlikely(page != *slot)) {
2652 put_page(head);
2653 goto repeat;
2654 }
2655
2656 if (!PageUptodate(page) ||
2657 PageReadahead(page) ||
2658 PageHWPoison(page))
2659 goto skip;
2660 if (!trylock_page(page))
2661 goto skip;
2662
2663 if (page->mapping != mapping || !PageUptodate(page))
2664 goto unlock;
2665
2666 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2667 if (page->index >= max_idx)
2668 goto unlock;
2669
2670 if (file->f_ra.mmap_miss > 0)
2671 file->f_ra.mmap_miss--;
2672
2673 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2674 if (vmf->pte)
2675 vmf->pte += iter.index - last_pgoff;
2676 last_pgoff = iter.index;
2677 if (alloc_set_pte(vmf, NULL, page))
2678 goto unlock;
2679 unlock_page(page);
2680 goto next;
2681unlock:
2682 unlock_page(page);
2683skip:
2684 put_page(page);
2685next:
2686 /* Huge page is mapped? No need to proceed. */
2687 if (pmd_trans_huge(*vmf->pmd))
2688 break;
2689 if (iter.index == end_pgoff)
2690 break;
2691 }
2692 rcu_read_unlock();
2693}
2694EXPORT_SYMBOL(filemap_map_pages);
2695
2696int filemap_page_mkwrite(struct vm_fault *vmf)
2697{
2698 struct page *page = vmf->page;
2699 struct inode *inode = file_inode(vmf->vma->vm_file);
2700 int ret = VM_FAULT_LOCKED;
2701
2702 sb_start_pagefault(inode->i_sb);
2703 file_update_time(vmf->vma->vm_file);
2704 lock_page(page);
2705 if (page->mapping != inode->i_mapping) {
2706 unlock_page(page);
2707 ret = VM_FAULT_NOPAGE;
2708 goto out;
2709 }
2710 /*
2711 * We mark the page dirty already here so that when freeze is in
2712 * progress, we are guaranteed that writeback during freezing will
2713 * see the dirty page and writeprotect it again.
2714 */
2715 set_page_dirty(page);
2716 wait_for_stable_page(page);
2717out:
2718 sb_end_pagefault(inode->i_sb);
2719 return ret;
2720}
2721
2722const struct vm_operations_struct generic_file_vm_ops = {
2723 .fault = filemap_fault,
2724 .map_pages = filemap_map_pages,
2725 .page_mkwrite = filemap_page_mkwrite,
2726};
2727
2728/* This is used for a general mmap of a disk file */
2729
2730int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2731{
2732 struct address_space *mapping = file->f_mapping;
2733
2734 if (!mapping->a_ops->readpage)
2735 return -ENOEXEC;
2736 file_accessed(file);
2737 vma->vm_ops = &generic_file_vm_ops;
2738 return 0;
2739}
2740
2741/*
2742 * This is for filesystems which do not implement ->writepage.
2743 */
2744int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2745{
2746 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2747 return -EINVAL;
2748 return generic_file_mmap(file, vma);
2749}
2750#else
2751int filemap_page_mkwrite(struct vm_fault *vmf)
2752{
2753 return -ENOSYS;
2754}
2755int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2756{
2757 return -ENOSYS;
2758}
2759int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2760{
2761 return -ENOSYS;
2762}
2763#endif /* CONFIG_MMU */
2764
2765EXPORT_SYMBOL(filemap_page_mkwrite);
2766EXPORT_SYMBOL(generic_file_mmap);
2767EXPORT_SYMBOL(generic_file_readonly_mmap);
2768
2769static struct page *wait_on_page_read(struct page *page)
2770{
2771 if (!IS_ERR(page)) {
2772 wait_on_page_locked(page);
2773 if (!PageUptodate(page)) {
2774 put_page(page);
2775 page = ERR_PTR(-EIO);
2776 }
2777 }
2778 return page;
2779}
2780
2781static struct page *do_read_cache_page(struct address_space *mapping,
2782 pgoff_t index,
2783 int (*filler)(void *, struct page *),
2784 void *data,
2785 gfp_t gfp)
2786{
2787 struct page *page;
2788 int err;
2789repeat:
2790 page = find_get_page(mapping, index);
2791 if (!page) {
2792 page = __page_cache_alloc(gfp);
2793 if (!page)
2794 return ERR_PTR(-ENOMEM);
2795 err = add_to_page_cache_lru(page, mapping, index, gfp);
2796 if (unlikely(err)) {
2797 put_page(page);
2798 if (err == -EEXIST)
2799 goto repeat;
2800 /* Presumably ENOMEM for radix tree node */
2801 return ERR_PTR(err);
2802 }
2803
2804filler:
2805 err = filler(data, page);
2806 if (err < 0) {
2807 put_page(page);
2808 return ERR_PTR(err);
2809 }
2810
2811 page = wait_on_page_read(page);
2812 if (IS_ERR(page))
2813 return page;
2814 goto out;
2815 }
2816 if (PageUptodate(page))
2817 goto out;
2818
2819 /*
2820 * Page is not up to date and may be locked due one of the following
2821 * case a: Page is being filled and the page lock is held
2822 * case b: Read/write error clearing the page uptodate status
2823 * case c: Truncation in progress (page locked)
2824 * case d: Reclaim in progress
2825 *
2826 * Case a, the page will be up to date when the page is unlocked.
2827 * There is no need to serialise on the page lock here as the page
2828 * is pinned so the lock gives no additional protection. Even if the
2829 * the page is truncated, the data is still valid if PageUptodate as
2830 * it's a race vs truncate race.
2831 * Case b, the page will not be up to date
2832 * Case c, the page may be truncated but in itself, the data may still
2833 * be valid after IO completes as it's a read vs truncate race. The
2834 * operation must restart if the page is not uptodate on unlock but
2835 * otherwise serialising on page lock to stabilise the mapping gives
2836 * no additional guarantees to the caller as the page lock is
2837 * released before return.
2838 * Case d, similar to truncation. If reclaim holds the page lock, it
2839 * will be a race with remove_mapping that determines if the mapping
2840 * is valid on unlock but otherwise the data is valid and there is
2841 * no need to serialise with page lock.
2842 *
2843 * As the page lock gives no additional guarantee, we optimistically
2844 * wait on the page to be unlocked and check if it's up to date and
2845 * use the page if it is. Otherwise, the page lock is required to
2846 * distinguish between the different cases. The motivation is that we
2847 * avoid spurious serialisations and wakeups when multiple processes
2848 * wait on the same page for IO to complete.
2849 */
2850 wait_on_page_locked(page);
2851 if (PageUptodate(page))
2852 goto out;
2853
2854 /* Distinguish between all the cases under the safety of the lock */
2855 lock_page(page);
2856
2857 /* Case c or d, restart the operation */
2858 if (!page->mapping) {
2859 unlock_page(page);
2860 put_page(page);
2861 goto repeat;
2862 }
2863
2864 /* Someone else locked and filled the page in a very small window */
2865 if (PageUptodate(page)) {
2866 unlock_page(page);
2867 goto out;
2868 }
2869 goto filler;
2870
2871out:
2872 mark_page_accessed(page);
2873 return page;
2874}
2875
2876/**
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping: the page's address_space
2879 * @index: the page index
2880 * @filler: function to perform the read
2881 * @data: first arg to filler(data, page) function, often left as NULL
2882 *
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2885 *
2886 * If the page does not get brought uptodate, return -EIO.
2887 */
2888struct page *read_cache_page(struct address_space *mapping,
2889 pgoff_t index,
2890 int (*filler)(void *, struct page *),
2891 void *data)
2892{
2893 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2894}
2895EXPORT_SYMBOL(read_cache_page);
2896
2897/**
2898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2899 * @mapping: the page's address_space
2900 * @index: the page index
2901 * @gfp: the page allocator flags to use if allocating
2902 *
2903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2904 * any new page allocations done using the specified allocation flags.
2905 *
2906 * If the page does not get brought uptodate, return -EIO.
2907 */
2908struct page *read_cache_page_gfp(struct address_space *mapping,
2909 pgoff_t index,
2910 gfp_t gfp)
2911{
2912 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2913
2914 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2915}
2916EXPORT_SYMBOL(read_cache_page_gfp);
2917
2918/*
2919 * Performs necessary checks before doing a write
2920 *
2921 * Can adjust writing position or amount of bytes to write.
2922 * Returns appropriate error code that caller should return or
2923 * zero in case that write should be allowed.
2924 */
2925inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2926{
2927 struct file *file = iocb->ki_filp;
2928 struct inode *inode = file->f_mapping->host;
2929 unsigned long limit = rlimit(RLIMIT_FSIZE);
2930 loff_t pos;
2931
2932 if (!iov_iter_count(from))
2933 return 0;
2934
2935 /* FIXME: this is for backwards compatibility with 2.4 */
2936 if (iocb->ki_flags & IOCB_APPEND)
2937 iocb->ki_pos = i_size_read(inode);
2938
2939 pos = iocb->ki_pos;
2940
2941 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2942 return -EINVAL;
2943
2944 if (limit != RLIM_INFINITY) {
2945 if (iocb->ki_pos >= limit) {
2946 send_sig(SIGXFSZ, current, 0);
2947 return -EFBIG;
2948 }
2949 iov_iter_truncate(from, limit - (unsigned long)pos);
2950 }
2951
2952 /*
2953 * LFS rule
2954 */
2955 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2956 !(file->f_flags & O_LARGEFILE))) {
2957 if (pos >= MAX_NON_LFS)
2958 return -EFBIG;
2959 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2960 }
2961
2962 /*
2963 * Are we about to exceed the fs block limit ?
2964 *
2965 * If we have written data it becomes a short write. If we have
2966 * exceeded without writing data we send a signal and return EFBIG.
2967 * Linus frestrict idea will clean these up nicely..
2968 */
2969 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2970 return -EFBIG;
2971
2972 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2973 return iov_iter_count(from);
2974}
2975EXPORT_SYMBOL(generic_write_checks);
2976
2977int pagecache_write_begin(struct file *file, struct address_space *mapping,
2978 loff_t pos, unsigned len, unsigned flags,
2979 struct page **pagep, void **fsdata)
2980{
2981 const struct address_space_operations *aops = mapping->a_ops;
2982
2983 return aops->write_begin(file, mapping, pos, len, flags,
2984 pagep, fsdata);
2985}
2986EXPORT_SYMBOL(pagecache_write_begin);
2987
2988int pagecache_write_end(struct file *file, struct address_space *mapping,
2989 loff_t pos, unsigned len, unsigned copied,
2990 struct page *page, void *fsdata)
2991{
2992 const struct address_space_operations *aops = mapping->a_ops;
2993
2994 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2995}
2996EXPORT_SYMBOL(pagecache_write_end);
2997
2998ssize_t
2999generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3000{
3001 struct file *file = iocb->ki_filp;
3002 struct address_space *mapping = file->f_mapping;
3003 struct inode *inode = mapping->host;
3004 loff_t pos = iocb->ki_pos;
3005 ssize_t written;
3006 size_t write_len;
3007 pgoff_t end;
3008
3009 write_len = iov_iter_count(from);
3010 end = (pos + write_len - 1) >> PAGE_SHIFT;
3011
3012 if (iocb->ki_flags & IOCB_NOWAIT) {
3013 /* If there are pages to writeback, return */
3014 if (filemap_range_has_page(inode->i_mapping, pos,
3015 pos + iov_iter_count(from)))
3016 return -EAGAIN;
3017 } else {
3018 written = filemap_write_and_wait_range(mapping, pos,
3019 pos + write_len - 1);
3020 if (written)
3021 goto out;
3022 }
3023
3024 /*
3025 * After a write we want buffered reads to be sure to go to disk to get
3026 * the new data. We invalidate clean cached page from the region we're
3027 * about to write. We do this *before* the write so that we can return
3028 * without clobbering -EIOCBQUEUED from ->direct_IO().
3029 */
3030 written = invalidate_inode_pages2_range(mapping,
3031 pos >> PAGE_SHIFT, end);
3032 /*
3033 * If a page can not be invalidated, return 0 to fall back
3034 * to buffered write.
3035 */
3036 if (written) {
3037 if (written == -EBUSY)
3038 return 0;
3039 goto out;
3040 }
3041
3042 written = mapping->a_ops->direct_IO(iocb, from);
3043
3044 /*
3045 * Finally, try again to invalidate clean pages which might have been
3046 * cached by non-direct readahead, or faulted in by get_user_pages()
3047 * if the source of the write was an mmap'ed region of the file
3048 * we're writing. Either one is a pretty crazy thing to do,
3049 * so we don't support it 100%. If this invalidation
3050 * fails, tough, the write still worked...
3051 *
3052 * Most of the time we do not need this since dio_complete() will do
3053 * the invalidation for us. However there are some file systems that
3054 * do not end up with dio_complete() being called, so let's not break
3055 * them by removing it completely
3056 */
3057 if (mapping->nrpages)
3058 invalidate_inode_pages2_range(mapping,
3059 pos >> PAGE_SHIFT, end);
3060
3061 if (written > 0) {
3062 pos += written;
3063 write_len -= written;
3064 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3065 i_size_write(inode, pos);
3066 mark_inode_dirty(inode);
3067 }
3068 iocb->ki_pos = pos;
3069 }
3070 iov_iter_revert(from, write_len - iov_iter_count(from));
3071out:
3072 return written;
3073}
3074EXPORT_SYMBOL(generic_file_direct_write);
3075
3076/*
3077 * Find or create a page at the given pagecache position. Return the locked
3078 * page. This function is specifically for buffered writes.
3079 */
3080struct page *grab_cache_page_write_begin(struct address_space *mapping,
3081 pgoff_t index, unsigned flags)
3082{
3083 struct page *page;
3084 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3085
3086 if (flags & AOP_FLAG_NOFS)
3087 fgp_flags |= FGP_NOFS;
3088
3089 page = pagecache_get_page(mapping, index, fgp_flags,
3090 mapping_gfp_mask(mapping));
3091 if (page)
3092 wait_for_stable_page(page);
3093
3094 return page;
3095}
3096EXPORT_SYMBOL(grab_cache_page_write_begin);
3097
3098ssize_t generic_perform_write(struct file *file,
3099 struct iov_iter *i, loff_t pos)
3100{
3101 struct address_space *mapping = file->f_mapping;
3102 const struct address_space_operations *a_ops = mapping->a_ops;
3103 long status = 0;
3104 ssize_t written = 0;
3105 unsigned int flags = 0;
3106
3107 do {
3108 struct page *page;
3109 unsigned long offset; /* Offset into pagecache page */
3110 unsigned long bytes; /* Bytes to write to page */
3111 size_t copied; /* Bytes copied from user */
3112 void *fsdata;
3113
3114 offset = (pos & (PAGE_SIZE - 1));
3115 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3116 iov_iter_count(i));
3117
3118again:
3119 /*
3120 * Bring in the user page that we will copy from _first_.
3121 * Otherwise there's a nasty deadlock on copying from the
3122 * same page as we're writing to, without it being marked
3123 * up-to-date.
3124 *
3125 * Not only is this an optimisation, but it is also required
3126 * to check that the address is actually valid, when atomic
3127 * usercopies are used, below.
3128 */
3129 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3130 status = -EFAULT;
3131 break;
3132 }
3133
3134 if (fatal_signal_pending(current)) {
3135 status = -EINTR;
3136 break;
3137 }
3138
3139 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3140 &page, &fsdata);
3141 if (unlikely(status < 0))
3142 break;
3143
3144 if (mapping_writably_mapped(mapping))
3145 flush_dcache_page(page);
3146
3147 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3148 flush_dcache_page(page);
3149
3150 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3151 page, fsdata);
3152 if (unlikely(status < 0))
3153 break;
3154 copied = status;
3155
3156 cond_resched();
3157
3158 iov_iter_advance(i, copied);
3159 if (unlikely(copied == 0)) {
3160 /*
3161 * If we were unable to copy any data at all, we must
3162 * fall back to a single segment length write.
3163 *
3164 * If we didn't fallback here, we could livelock
3165 * because not all segments in the iov can be copied at
3166 * once without a pagefault.
3167 */
3168 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3169 iov_iter_single_seg_count(i));
3170 goto again;
3171 }
3172 pos += copied;
3173 written += copied;
3174
3175 balance_dirty_pages_ratelimited(mapping);
3176 } while (iov_iter_count(i));
3177
3178 return written ? written : status;
3179}
3180EXPORT_SYMBOL(generic_perform_write);
3181
3182/**
3183 * __generic_file_write_iter - write data to a file
3184 * @iocb: IO state structure (file, offset, etc.)
3185 * @from: iov_iter with data to write
3186 *
3187 * This function does all the work needed for actually writing data to a
3188 * file. It does all basic checks, removes SUID from the file, updates
3189 * modification times and calls proper subroutines depending on whether we
3190 * do direct IO or a standard buffered write.
3191 *
3192 * It expects i_mutex to be grabbed unless we work on a block device or similar
3193 * object which does not need locking at all.
3194 *
3195 * This function does *not* take care of syncing data in case of O_SYNC write.
3196 * A caller has to handle it. This is mainly due to the fact that we want to
3197 * avoid syncing under i_mutex.
3198 */
3199ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3200{
3201 struct file *file = iocb->ki_filp;
3202 struct address_space * mapping = file->f_mapping;
3203 struct inode *inode = mapping->host;
3204 ssize_t written = 0;
3205 ssize_t err;
3206 ssize_t status;
3207
3208 /* We can write back this queue in page reclaim */
3209 current->backing_dev_info = inode_to_bdi(inode);
3210 err = file_remove_privs(file);
3211 if (err)
3212 goto out;
3213
3214 err = file_update_time(file);
3215 if (err)
3216 goto out;
3217
3218 if (iocb->ki_flags & IOCB_DIRECT) {
3219 loff_t pos, endbyte;
3220
3221 written = generic_file_direct_write(iocb, from);
3222 /*
3223 * If the write stopped short of completing, fall back to
3224 * buffered writes. Some filesystems do this for writes to
3225 * holes, for example. For DAX files, a buffered write will
3226 * not succeed (even if it did, DAX does not handle dirty
3227 * page-cache pages correctly).
3228 */
3229 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3230 goto out;
3231
3232 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3233 /*
3234 * If generic_perform_write() returned a synchronous error
3235 * then we want to return the number of bytes which were
3236 * direct-written, or the error code if that was zero. Note
3237 * that this differs from normal direct-io semantics, which
3238 * will return -EFOO even if some bytes were written.
3239 */
3240 if (unlikely(status < 0)) {
3241 err = status;
3242 goto out;
3243 }
3244 /*
3245 * We need to ensure that the page cache pages are written to
3246 * disk and invalidated to preserve the expected O_DIRECT
3247 * semantics.
3248 */
3249 endbyte = pos + status - 1;
3250 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3251 if (err == 0) {
3252 iocb->ki_pos = endbyte + 1;
3253 written += status;
3254 invalidate_mapping_pages(mapping,
3255 pos >> PAGE_SHIFT,
3256 endbyte >> PAGE_SHIFT);
3257 } else {
3258 /*
3259 * We don't know how much we wrote, so just return
3260 * the number of bytes which were direct-written
3261 */
3262 }
3263 } else {
3264 written = generic_perform_write(file, from, iocb->ki_pos);
3265 if (likely(written > 0))
3266 iocb->ki_pos += written;
3267 }
3268out:
3269 current->backing_dev_info = NULL;
3270 return written ? written : err;
3271}
3272EXPORT_SYMBOL(__generic_file_write_iter);
3273
3274/**
3275 * generic_file_write_iter - write data to a file
3276 * @iocb: IO state structure
3277 * @from: iov_iter with data to write
3278 *
3279 * This is a wrapper around __generic_file_write_iter() to be used by most
3280 * filesystems. It takes care of syncing the file in case of O_SYNC file
3281 * and acquires i_mutex as needed.
3282 */
3283ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3284{
3285 struct file *file = iocb->ki_filp;
3286 struct inode *inode = file->f_mapping->host;
3287 ssize_t ret;
3288
3289 inode_lock(inode);
3290 ret = generic_write_checks(iocb, from);
3291 if (ret > 0)
3292 ret = __generic_file_write_iter(iocb, from);
3293 inode_unlock(inode);
3294
3295 if (ret > 0)
3296 ret = generic_write_sync(iocb, ret);
3297 return ret;
3298}
3299EXPORT_SYMBOL(generic_file_write_iter);
3300
3301/**
3302 * try_to_release_page() - release old fs-specific metadata on a page
3303 *
3304 * @page: the page which the kernel is trying to free
3305 * @gfp_mask: memory allocation flags (and I/O mode)
3306 *
3307 * The address_space is to try to release any data against the page
3308 * (presumably at page->private). If the release was successful, return '1'.
3309 * Otherwise return zero.
3310 *
3311 * This may also be called if PG_fscache is set on a page, indicating that the
3312 * page is known to the local caching routines.
3313 *
3314 * The @gfp_mask argument specifies whether I/O may be performed to release
3315 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3316 *
3317 */
3318int try_to_release_page(struct page *page, gfp_t gfp_mask)
3319{
3320 struct address_space * const mapping = page->mapping;
3321
3322 BUG_ON(!PageLocked(page));
3323 if (PageWriteback(page))
3324 return 0;
3325
3326 if (mapping && mapping->a_ops->releasepage)
3327 return mapping->a_ops->releasepage(page, gfp_mask);
3328 return try_to_free_buffers(page);
3329}
3330
3331EXPORT_SYMBOL(try_to_release_page);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13#include <linux/export.h>
14#include <linux/compiler.h>
15#include <linux/dax.h>
16#include <linux/fs.h>
17#include <linux/sched/signal.h>
18#include <linux/uaccess.h>
19#include <linux/capability.h>
20#include <linux/kernel_stat.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/syscalls.h>
26#include <linux/mman.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/uio.h>
30#include <linux/error-injection.h>
31#include <linux/hash.h>
32#include <linux/writeback.h>
33#include <linux/backing-dev.h>
34#include <linux/pagevec.h>
35#include <linux/security.h>
36#include <linux/cpuset.h>
37#include <linux/hugetlb.h>
38#include <linux/memcontrol.h>
39#include <linux/shmem_fs.h>
40#include <linux/rmap.h>
41#include <linux/delayacct.h>
42#include <linux/psi.h>
43#include <linux/ramfs.h>
44#include <linux/page_idle.h>
45#include <linux/migrate.h>
46#include <linux/pipe_fs_i.h>
47#include <linux/splice.h>
48#include <linux/rcupdate_wait.h>
49#include <asm/pgalloc.h>
50#include <asm/tlbflush.h>
51#include "internal.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/filemap.h>
55
56/*
57 * FIXME: remove all knowledge of the buffer layer from the core VM
58 */
59#include <linux/buffer_head.h> /* for try_to_free_buffers */
60
61#include <asm/mman.h>
62
63#include "swap.h"
64
65/*
66 * Shared mappings implemented 30.11.1994. It's not fully working yet,
67 * though.
68 *
69 * Shared mappings now work. 15.8.1995 Bruno.
70 *
71 * finished 'unifying' the page and buffer cache and SMP-threaded the
72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
73 *
74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
75 */
76
77/*
78 * Lock ordering:
79 *
80 * ->i_mmap_rwsem (truncate_pagecache)
81 * ->private_lock (__free_pte->block_dirty_folio)
82 * ->swap_lock (exclusive_swap_page, others)
83 * ->i_pages lock
84 *
85 * ->i_rwsem
86 * ->invalidate_lock (acquired by fs in truncate path)
87 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
88 *
89 * ->mmap_lock
90 * ->i_mmap_rwsem
91 * ->page_table_lock or pte_lock (various, mainly in memory.c)
92 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
93 *
94 * ->mmap_lock
95 * ->invalidate_lock (filemap_fault)
96 * ->lock_page (filemap_fault, access_process_vm)
97 *
98 * ->i_rwsem (generic_perform_write)
99 * ->mmap_lock (fault_in_readable->do_page_fault)
100 *
101 * bdi->wb.list_lock
102 * sb_lock (fs/fs-writeback.c)
103 * ->i_pages lock (__sync_single_inode)
104 *
105 * ->i_mmap_rwsem
106 * ->anon_vma.lock (vma_merge)
107 *
108 * ->anon_vma.lock
109 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
110 *
111 * ->page_table_lock or pte_lock
112 * ->swap_lock (try_to_unmap_one)
113 * ->private_lock (try_to_unmap_one)
114 * ->i_pages lock (try_to_unmap_one)
115 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
116 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
117 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
118 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
119 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
120 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
121 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock)
122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
123 * ->inode->i_lock (zap_pte_range->set_page_dirty)
124 * ->private_lock (zap_pte_range->block_dirty_folio)
125 */
126
127static void mapping_set_update(struct xa_state *xas,
128 struct address_space *mapping)
129{
130 if (dax_mapping(mapping) || shmem_mapping(mapping))
131 return;
132 xas_set_update(xas, workingset_update_node);
133 xas_set_lru(xas, &shadow_nodes);
134}
135
136static void page_cache_delete(struct address_space *mapping,
137 struct folio *folio, void *shadow)
138{
139 XA_STATE(xas, &mapping->i_pages, folio->index);
140 long nr = 1;
141
142 mapping_set_update(&xas, mapping);
143
144 xas_set_order(&xas, folio->index, folio_order(folio));
145 nr = folio_nr_pages(folio);
146
147 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
148
149 xas_store(&xas, shadow);
150 xas_init_marks(&xas);
151
152 folio->mapping = NULL;
153 /* Leave page->index set: truncation lookup relies upon it */
154 mapping->nrpages -= nr;
155}
156
157static void filemap_unaccount_folio(struct address_space *mapping,
158 struct folio *folio)
159{
160 long nr;
161
162 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
163 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
164 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
165 current->comm, folio_pfn(folio));
166 dump_page(&folio->page, "still mapped when deleted");
167 dump_stack();
168 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
169
170 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
171 int mapcount = page_mapcount(&folio->page);
172
173 if (folio_ref_count(folio) >= mapcount + 2) {
174 /*
175 * All vmas have already been torn down, so it's
176 * a good bet that actually the page is unmapped
177 * and we'd rather not leak it: if we're wrong,
178 * another bad page check should catch it later.
179 */
180 page_mapcount_reset(&folio->page);
181 folio_ref_sub(folio, mapcount);
182 }
183 }
184 }
185
186 /* hugetlb folios do not participate in page cache accounting. */
187 if (folio_test_hugetlb(folio))
188 return;
189
190 nr = folio_nr_pages(folio);
191
192 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
193 if (folio_test_swapbacked(folio)) {
194 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
195 if (folio_test_pmd_mappable(folio))
196 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
197 } else if (folio_test_pmd_mappable(folio)) {
198 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
199 filemap_nr_thps_dec(mapping);
200 }
201
202 /*
203 * At this point folio must be either written or cleaned by
204 * truncate. Dirty folio here signals a bug and loss of
205 * unwritten data - on ordinary filesystems.
206 *
207 * But it's harmless on in-memory filesystems like tmpfs; and can
208 * occur when a driver which did get_user_pages() sets page dirty
209 * before putting it, while the inode is being finally evicted.
210 *
211 * Below fixes dirty accounting after removing the folio entirely
212 * but leaves the dirty flag set: it has no effect for truncated
213 * folio and anyway will be cleared before returning folio to
214 * buddy allocator.
215 */
216 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
217 mapping_can_writeback(mapping)))
218 folio_account_cleaned(folio, inode_to_wb(mapping->host));
219}
220
221/*
222 * Delete a page from the page cache and free it. Caller has to make
223 * sure the page is locked and that nobody else uses it - or that usage
224 * is safe. The caller must hold the i_pages lock.
225 */
226void __filemap_remove_folio(struct folio *folio, void *shadow)
227{
228 struct address_space *mapping = folio->mapping;
229
230 trace_mm_filemap_delete_from_page_cache(folio);
231 filemap_unaccount_folio(mapping, folio);
232 page_cache_delete(mapping, folio, shadow);
233}
234
235void filemap_free_folio(struct address_space *mapping, struct folio *folio)
236{
237 void (*free_folio)(struct folio *);
238 int refs = 1;
239
240 free_folio = mapping->a_ops->free_folio;
241 if (free_folio)
242 free_folio(folio);
243
244 if (folio_test_large(folio))
245 refs = folio_nr_pages(folio);
246 folio_put_refs(folio, refs);
247}
248
249/**
250 * filemap_remove_folio - Remove folio from page cache.
251 * @folio: The folio.
252 *
253 * This must be called only on folios that are locked and have been
254 * verified to be in the page cache. It will never put the folio into
255 * the free list because the caller has a reference on the page.
256 */
257void filemap_remove_folio(struct folio *folio)
258{
259 struct address_space *mapping = folio->mapping;
260
261 BUG_ON(!folio_test_locked(folio));
262 spin_lock(&mapping->host->i_lock);
263 xa_lock_irq(&mapping->i_pages);
264 __filemap_remove_folio(folio, NULL);
265 xa_unlock_irq(&mapping->i_pages);
266 if (mapping_shrinkable(mapping))
267 inode_add_lru(mapping->host);
268 spin_unlock(&mapping->host->i_lock);
269
270 filemap_free_folio(mapping, folio);
271}
272
273/*
274 * page_cache_delete_batch - delete several folios from page cache
275 * @mapping: the mapping to which folios belong
276 * @fbatch: batch of folios to delete
277 *
278 * The function walks over mapping->i_pages and removes folios passed in
279 * @fbatch from the mapping. The function expects @fbatch to be sorted
280 * by page index and is optimised for it to be dense.
281 * It tolerates holes in @fbatch (mapping entries at those indices are not
282 * modified).
283 *
284 * The function expects the i_pages lock to be held.
285 */
286static void page_cache_delete_batch(struct address_space *mapping,
287 struct folio_batch *fbatch)
288{
289 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
290 long total_pages = 0;
291 int i = 0;
292 struct folio *folio;
293
294 mapping_set_update(&xas, mapping);
295 xas_for_each(&xas, folio, ULONG_MAX) {
296 if (i >= folio_batch_count(fbatch))
297 break;
298
299 /* A swap/dax/shadow entry got inserted? Skip it. */
300 if (xa_is_value(folio))
301 continue;
302 /*
303 * A page got inserted in our range? Skip it. We have our
304 * pages locked so they are protected from being removed.
305 * If we see a page whose index is higher than ours, it
306 * means our page has been removed, which shouldn't be
307 * possible because we're holding the PageLock.
308 */
309 if (folio != fbatch->folios[i]) {
310 VM_BUG_ON_FOLIO(folio->index >
311 fbatch->folios[i]->index, folio);
312 continue;
313 }
314
315 WARN_ON_ONCE(!folio_test_locked(folio));
316
317 folio->mapping = NULL;
318 /* Leave folio->index set: truncation lookup relies on it */
319
320 i++;
321 xas_store(&xas, NULL);
322 total_pages += folio_nr_pages(folio);
323 }
324 mapping->nrpages -= total_pages;
325}
326
327void delete_from_page_cache_batch(struct address_space *mapping,
328 struct folio_batch *fbatch)
329{
330 int i;
331
332 if (!folio_batch_count(fbatch))
333 return;
334
335 spin_lock(&mapping->host->i_lock);
336 xa_lock_irq(&mapping->i_pages);
337 for (i = 0; i < folio_batch_count(fbatch); i++) {
338 struct folio *folio = fbatch->folios[i];
339
340 trace_mm_filemap_delete_from_page_cache(folio);
341 filemap_unaccount_folio(mapping, folio);
342 }
343 page_cache_delete_batch(mapping, fbatch);
344 xa_unlock_irq(&mapping->i_pages);
345 if (mapping_shrinkable(mapping))
346 inode_add_lru(mapping->host);
347 spin_unlock(&mapping->host->i_lock);
348
349 for (i = 0; i < folio_batch_count(fbatch); i++)
350 filemap_free_folio(mapping, fbatch->folios[i]);
351}
352
353int filemap_check_errors(struct address_space *mapping)
354{
355 int ret = 0;
356 /* Check for outstanding write errors */
357 if (test_bit(AS_ENOSPC, &mapping->flags) &&
358 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
359 ret = -ENOSPC;
360 if (test_bit(AS_EIO, &mapping->flags) &&
361 test_and_clear_bit(AS_EIO, &mapping->flags))
362 ret = -EIO;
363 return ret;
364}
365EXPORT_SYMBOL(filemap_check_errors);
366
367static int filemap_check_and_keep_errors(struct address_space *mapping)
368{
369 /* Check for outstanding write errors */
370 if (test_bit(AS_EIO, &mapping->flags))
371 return -EIO;
372 if (test_bit(AS_ENOSPC, &mapping->flags))
373 return -ENOSPC;
374 return 0;
375}
376
377/**
378 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
379 * @mapping: address space structure to write
380 * @wbc: the writeback_control controlling the writeout
381 *
382 * Call writepages on the mapping using the provided wbc to control the
383 * writeout.
384 *
385 * Return: %0 on success, negative error code otherwise.
386 */
387int filemap_fdatawrite_wbc(struct address_space *mapping,
388 struct writeback_control *wbc)
389{
390 int ret;
391
392 if (!mapping_can_writeback(mapping) ||
393 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
394 return 0;
395
396 wbc_attach_fdatawrite_inode(wbc, mapping->host);
397 ret = do_writepages(mapping, wbc);
398 wbc_detach_inode(wbc);
399 return ret;
400}
401EXPORT_SYMBOL(filemap_fdatawrite_wbc);
402
403/**
404 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
405 * @mapping: address space structure to write
406 * @start: offset in bytes where the range starts
407 * @end: offset in bytes where the range ends (inclusive)
408 * @sync_mode: enable synchronous operation
409 *
410 * Start writeback against all of a mapping's dirty pages that lie
411 * within the byte offsets <start, end> inclusive.
412 *
413 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
414 * opposed to a regular memory cleansing writeback. The difference between
415 * these two operations is that if a dirty page/buffer is encountered, it must
416 * be waited upon, and not just skipped over.
417 *
418 * Return: %0 on success, negative error code otherwise.
419 */
420int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
421 loff_t end, int sync_mode)
422{
423 struct writeback_control wbc = {
424 .sync_mode = sync_mode,
425 .nr_to_write = LONG_MAX,
426 .range_start = start,
427 .range_end = end,
428 };
429
430 return filemap_fdatawrite_wbc(mapping, &wbc);
431}
432
433static inline int __filemap_fdatawrite(struct address_space *mapping,
434 int sync_mode)
435{
436 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
437}
438
439int filemap_fdatawrite(struct address_space *mapping)
440{
441 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
442}
443EXPORT_SYMBOL(filemap_fdatawrite);
444
445int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
446 loff_t end)
447{
448 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
449}
450EXPORT_SYMBOL(filemap_fdatawrite_range);
451
452/**
453 * filemap_flush - mostly a non-blocking flush
454 * @mapping: target address_space
455 *
456 * This is a mostly non-blocking flush. Not suitable for data-integrity
457 * purposes - I/O may not be started against all dirty pages.
458 *
459 * Return: %0 on success, negative error code otherwise.
460 */
461int filemap_flush(struct address_space *mapping)
462{
463 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
464}
465EXPORT_SYMBOL(filemap_flush);
466
467/**
468 * filemap_range_has_page - check if a page exists in range.
469 * @mapping: address space within which to check
470 * @start_byte: offset in bytes where the range starts
471 * @end_byte: offset in bytes where the range ends (inclusive)
472 *
473 * Find at least one page in the range supplied, usually used to check if
474 * direct writing in this range will trigger a writeback.
475 *
476 * Return: %true if at least one page exists in the specified range,
477 * %false otherwise.
478 */
479bool filemap_range_has_page(struct address_space *mapping,
480 loff_t start_byte, loff_t end_byte)
481{
482 struct folio *folio;
483 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 pgoff_t max = end_byte >> PAGE_SHIFT;
485
486 if (end_byte < start_byte)
487 return false;
488
489 rcu_read_lock();
490 for (;;) {
491 folio = xas_find(&xas, max);
492 if (xas_retry(&xas, folio))
493 continue;
494 /* Shadow entries don't count */
495 if (xa_is_value(folio))
496 continue;
497 /*
498 * We don't need to try to pin this page; we're about to
499 * release the RCU lock anyway. It is enough to know that
500 * there was a page here recently.
501 */
502 break;
503 }
504 rcu_read_unlock();
505
506 return folio != NULL;
507}
508EXPORT_SYMBOL(filemap_range_has_page);
509
510static void __filemap_fdatawait_range(struct address_space *mapping,
511 loff_t start_byte, loff_t end_byte)
512{
513 pgoff_t index = start_byte >> PAGE_SHIFT;
514 pgoff_t end = end_byte >> PAGE_SHIFT;
515 struct folio_batch fbatch;
516 unsigned nr_folios;
517
518 folio_batch_init(&fbatch);
519
520 while (index <= end) {
521 unsigned i;
522
523 nr_folios = filemap_get_folios_tag(mapping, &index, end,
524 PAGECACHE_TAG_WRITEBACK, &fbatch);
525
526 if (!nr_folios)
527 break;
528
529 for (i = 0; i < nr_folios; i++) {
530 struct folio *folio = fbatch.folios[i];
531
532 folio_wait_writeback(folio);
533 folio_clear_error(folio);
534 }
535 folio_batch_release(&fbatch);
536 cond_resched();
537 }
538}
539
540/**
541 * filemap_fdatawait_range - wait for writeback to complete
542 * @mapping: address space structure to wait for
543 * @start_byte: offset in bytes where the range starts
544 * @end_byte: offset in bytes where the range ends (inclusive)
545 *
546 * Walk the list of under-writeback pages of the given address space
547 * in the given range and wait for all of them. Check error status of
548 * the address space and return it.
549 *
550 * Since the error status of the address space is cleared by this function,
551 * callers are responsible for checking the return value and handling and/or
552 * reporting the error.
553 *
554 * Return: error status of the address space.
555 */
556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 loff_t end_byte)
558{
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return filemap_check_errors(mapping);
561}
562EXPORT_SYMBOL(filemap_fdatawait_range);
563
564/**
565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566 * @mapping: address space structure to wait for
567 * @start_byte: offset in bytes where the range starts
568 * @end_byte: offset in bytes where the range ends (inclusive)
569 *
570 * Walk the list of under-writeback pages of the given address space in the
571 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
572 * this function does not clear error status of the address space.
573 *
574 * Use this function if callers don't handle errors themselves. Expected
575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576 * fsfreeze(8)
577 */
578int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579 loff_t start_byte, loff_t end_byte)
580{
581 __filemap_fdatawait_range(mapping, start_byte, end_byte);
582 return filemap_check_and_keep_errors(mapping);
583}
584EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585
586/**
587 * file_fdatawait_range - wait for writeback to complete
588 * @file: file pointing to address space structure to wait for
589 * @start_byte: offset in bytes where the range starts
590 * @end_byte: offset in bytes where the range ends (inclusive)
591 *
592 * Walk the list of under-writeback pages of the address space that file
593 * refers to, in the given range and wait for all of them. Check error
594 * status of the address space vs. the file->f_wb_err cursor and return it.
595 *
596 * Since the error status of the file is advanced by this function,
597 * callers are responsible for checking the return value and handling and/or
598 * reporting the error.
599 *
600 * Return: error status of the address space vs. the file->f_wb_err cursor.
601 */
602int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603{
604 struct address_space *mapping = file->f_mapping;
605
606 __filemap_fdatawait_range(mapping, start_byte, end_byte);
607 return file_check_and_advance_wb_err(file);
608}
609EXPORT_SYMBOL(file_fdatawait_range);
610
611/**
612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613 * @mapping: address space structure to wait for
614 *
615 * Walk the list of under-writeback pages of the given address space
616 * and wait for all of them. Unlike filemap_fdatawait(), this function
617 * does not clear error status of the address space.
618 *
619 * Use this function if callers don't handle errors themselves. Expected
620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621 * fsfreeze(8)
622 *
623 * Return: error status of the address space.
624 */
625int filemap_fdatawait_keep_errors(struct address_space *mapping)
626{
627 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
628 return filemap_check_and_keep_errors(mapping);
629}
630EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
631
632/* Returns true if writeback might be needed or already in progress. */
633static bool mapping_needs_writeback(struct address_space *mapping)
634{
635 return mapping->nrpages;
636}
637
638bool filemap_range_has_writeback(struct address_space *mapping,
639 loff_t start_byte, loff_t end_byte)
640{
641 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
642 pgoff_t max = end_byte >> PAGE_SHIFT;
643 struct folio *folio;
644
645 if (end_byte < start_byte)
646 return false;
647
648 rcu_read_lock();
649 xas_for_each(&xas, folio, max) {
650 if (xas_retry(&xas, folio))
651 continue;
652 if (xa_is_value(folio))
653 continue;
654 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
655 folio_test_writeback(folio))
656 break;
657 }
658 rcu_read_unlock();
659 return folio != NULL;
660}
661EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
662
663/**
664 * filemap_write_and_wait_range - write out & wait on a file range
665 * @mapping: the address_space for the pages
666 * @lstart: offset in bytes where the range starts
667 * @lend: offset in bytes where the range ends (inclusive)
668 *
669 * Write out and wait upon file offsets lstart->lend, inclusive.
670 *
671 * Note that @lend is inclusive (describes the last byte to be written) so
672 * that this function can be used to write to the very end-of-file (end = -1).
673 *
674 * Return: error status of the address space.
675 */
676int filemap_write_and_wait_range(struct address_space *mapping,
677 loff_t lstart, loff_t lend)
678{
679 int err = 0, err2;
680
681 if (lend < lstart)
682 return 0;
683
684 if (mapping_needs_writeback(mapping)) {
685 err = __filemap_fdatawrite_range(mapping, lstart, lend,
686 WB_SYNC_ALL);
687 /*
688 * Even if the above returned error, the pages may be
689 * written partially (e.g. -ENOSPC), so we wait for it.
690 * But the -EIO is special case, it may indicate the worst
691 * thing (e.g. bug) happened, so we avoid waiting for it.
692 */
693 if (err != -EIO)
694 __filemap_fdatawait_range(mapping, lstart, lend);
695 }
696 err2 = filemap_check_errors(mapping);
697 if (!err)
698 err = err2;
699 return err;
700}
701EXPORT_SYMBOL(filemap_write_and_wait_range);
702
703void __filemap_set_wb_err(struct address_space *mapping, int err)
704{
705 errseq_t eseq = errseq_set(&mapping->wb_err, err);
706
707 trace_filemap_set_wb_err(mapping, eseq);
708}
709EXPORT_SYMBOL(__filemap_set_wb_err);
710
711/**
712 * file_check_and_advance_wb_err - report wb error (if any) that was previously
713 * and advance wb_err to current one
714 * @file: struct file on which the error is being reported
715 *
716 * When userland calls fsync (or something like nfsd does the equivalent), we
717 * want to report any writeback errors that occurred since the last fsync (or
718 * since the file was opened if there haven't been any).
719 *
720 * Grab the wb_err from the mapping. If it matches what we have in the file,
721 * then just quickly return 0. The file is all caught up.
722 *
723 * If it doesn't match, then take the mapping value, set the "seen" flag in
724 * it and try to swap it into place. If it works, or another task beat us
725 * to it with the new value, then update the f_wb_err and return the error
726 * portion. The error at this point must be reported via proper channels
727 * (a'la fsync, or NFS COMMIT operation, etc.).
728 *
729 * While we handle mapping->wb_err with atomic operations, the f_wb_err
730 * value is protected by the f_lock since we must ensure that it reflects
731 * the latest value swapped in for this file descriptor.
732 *
733 * Return: %0 on success, negative error code otherwise.
734 */
735int file_check_and_advance_wb_err(struct file *file)
736{
737 int err = 0;
738 errseq_t old = READ_ONCE(file->f_wb_err);
739 struct address_space *mapping = file->f_mapping;
740
741 /* Locklessly handle the common case where nothing has changed */
742 if (errseq_check(&mapping->wb_err, old)) {
743 /* Something changed, must use slow path */
744 spin_lock(&file->f_lock);
745 old = file->f_wb_err;
746 err = errseq_check_and_advance(&mapping->wb_err,
747 &file->f_wb_err);
748 trace_file_check_and_advance_wb_err(file, old);
749 spin_unlock(&file->f_lock);
750 }
751
752 /*
753 * We're mostly using this function as a drop in replacement for
754 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
755 * that the legacy code would have had on these flags.
756 */
757 clear_bit(AS_EIO, &mapping->flags);
758 clear_bit(AS_ENOSPC, &mapping->flags);
759 return err;
760}
761EXPORT_SYMBOL(file_check_and_advance_wb_err);
762
763/**
764 * file_write_and_wait_range - write out & wait on a file range
765 * @file: file pointing to address_space with pages
766 * @lstart: offset in bytes where the range starts
767 * @lend: offset in bytes where the range ends (inclusive)
768 *
769 * Write out and wait upon file offsets lstart->lend, inclusive.
770 *
771 * Note that @lend is inclusive (describes the last byte to be written) so
772 * that this function can be used to write to the very end-of-file (end = -1).
773 *
774 * After writing out and waiting on the data, we check and advance the
775 * f_wb_err cursor to the latest value, and return any errors detected there.
776 *
777 * Return: %0 on success, negative error code otherwise.
778 */
779int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
780{
781 int err = 0, err2;
782 struct address_space *mapping = file->f_mapping;
783
784 if (lend < lstart)
785 return 0;
786
787 if (mapping_needs_writeback(mapping)) {
788 err = __filemap_fdatawrite_range(mapping, lstart, lend,
789 WB_SYNC_ALL);
790 /* See comment of filemap_write_and_wait() */
791 if (err != -EIO)
792 __filemap_fdatawait_range(mapping, lstart, lend);
793 }
794 err2 = file_check_and_advance_wb_err(file);
795 if (!err)
796 err = err2;
797 return err;
798}
799EXPORT_SYMBOL(file_write_and_wait_range);
800
801/**
802 * replace_page_cache_folio - replace a pagecache folio with a new one
803 * @old: folio to be replaced
804 * @new: folio to replace with
805 *
806 * This function replaces a folio in the pagecache with a new one. On
807 * success it acquires the pagecache reference for the new folio and
808 * drops it for the old folio. Both the old and new folios must be
809 * locked. This function does not add the new folio to the LRU, the
810 * caller must do that.
811 *
812 * The remove + add is atomic. This function cannot fail.
813 */
814void replace_page_cache_folio(struct folio *old, struct folio *new)
815{
816 struct address_space *mapping = old->mapping;
817 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
818 pgoff_t offset = old->index;
819 XA_STATE(xas, &mapping->i_pages, offset);
820
821 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
822 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
823 VM_BUG_ON_FOLIO(new->mapping, new);
824
825 folio_get(new);
826 new->mapping = mapping;
827 new->index = offset;
828
829 mem_cgroup_replace_folio(old, new);
830
831 xas_lock_irq(&xas);
832 xas_store(&xas, new);
833
834 old->mapping = NULL;
835 /* hugetlb pages do not participate in page cache accounting. */
836 if (!folio_test_hugetlb(old))
837 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
838 if (!folio_test_hugetlb(new))
839 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
840 if (folio_test_swapbacked(old))
841 __lruvec_stat_sub_folio(old, NR_SHMEM);
842 if (folio_test_swapbacked(new))
843 __lruvec_stat_add_folio(new, NR_SHMEM);
844 xas_unlock_irq(&xas);
845 if (free_folio)
846 free_folio(old);
847 folio_put(old);
848}
849EXPORT_SYMBOL_GPL(replace_page_cache_folio);
850
851noinline int __filemap_add_folio(struct address_space *mapping,
852 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
853{
854 XA_STATE(xas, &mapping->i_pages, index);
855 bool huge = folio_test_hugetlb(folio);
856 bool charged = false;
857 long nr = 1;
858
859 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
860 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
861 mapping_set_update(&xas, mapping);
862
863 if (!huge) {
864 int error = mem_cgroup_charge(folio, NULL, gfp);
865 if (error)
866 return error;
867 charged = true;
868 }
869
870 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
871 xas_set_order(&xas, index, folio_order(folio));
872 nr = folio_nr_pages(folio);
873
874 gfp &= GFP_RECLAIM_MASK;
875 folio_ref_add(folio, nr);
876 folio->mapping = mapping;
877 folio->index = xas.xa_index;
878
879 do {
880 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
881 void *entry, *old = NULL;
882
883 if (order > folio_order(folio))
884 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
885 order, gfp);
886 xas_lock_irq(&xas);
887 xas_for_each_conflict(&xas, entry) {
888 old = entry;
889 if (!xa_is_value(entry)) {
890 xas_set_err(&xas, -EEXIST);
891 goto unlock;
892 }
893 }
894
895 if (old) {
896 if (shadowp)
897 *shadowp = old;
898 /* entry may have been split before we acquired lock */
899 order = xa_get_order(xas.xa, xas.xa_index);
900 if (order > folio_order(folio)) {
901 /* How to handle large swap entries? */
902 BUG_ON(shmem_mapping(mapping));
903 xas_split(&xas, old, order);
904 xas_reset(&xas);
905 }
906 }
907
908 xas_store(&xas, folio);
909 if (xas_error(&xas))
910 goto unlock;
911
912 mapping->nrpages += nr;
913
914 /* hugetlb pages do not participate in page cache accounting */
915 if (!huge) {
916 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
917 if (folio_test_pmd_mappable(folio))
918 __lruvec_stat_mod_folio(folio,
919 NR_FILE_THPS, nr);
920 }
921unlock:
922 xas_unlock_irq(&xas);
923 } while (xas_nomem(&xas, gfp));
924
925 if (xas_error(&xas))
926 goto error;
927
928 trace_mm_filemap_add_to_page_cache(folio);
929 return 0;
930error:
931 if (charged)
932 mem_cgroup_uncharge(folio);
933 folio->mapping = NULL;
934 /* Leave page->index set: truncation relies upon it */
935 folio_put_refs(folio, nr);
936 return xas_error(&xas);
937}
938ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
939
940int filemap_add_folio(struct address_space *mapping, struct folio *folio,
941 pgoff_t index, gfp_t gfp)
942{
943 void *shadow = NULL;
944 int ret;
945
946 __folio_set_locked(folio);
947 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
948 if (unlikely(ret))
949 __folio_clear_locked(folio);
950 else {
951 /*
952 * The folio might have been evicted from cache only
953 * recently, in which case it should be activated like
954 * any other repeatedly accessed folio.
955 * The exception is folios getting rewritten; evicting other
956 * data from the working set, only to cache data that will
957 * get overwritten with something else, is a waste of memory.
958 */
959 WARN_ON_ONCE(folio_test_active(folio));
960 if (!(gfp & __GFP_WRITE) && shadow)
961 workingset_refault(folio, shadow);
962 folio_add_lru(folio);
963 }
964 return ret;
965}
966EXPORT_SYMBOL_GPL(filemap_add_folio);
967
968#ifdef CONFIG_NUMA
969struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
970{
971 int n;
972 struct folio *folio;
973
974 if (cpuset_do_page_mem_spread()) {
975 unsigned int cpuset_mems_cookie;
976 do {
977 cpuset_mems_cookie = read_mems_allowed_begin();
978 n = cpuset_mem_spread_node();
979 folio = __folio_alloc_node(gfp, order, n);
980 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
981
982 return folio;
983 }
984 return folio_alloc(gfp, order);
985}
986EXPORT_SYMBOL(filemap_alloc_folio);
987#endif
988
989/*
990 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
991 *
992 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
993 *
994 * @mapping1: the first mapping to lock
995 * @mapping2: the second mapping to lock
996 */
997void filemap_invalidate_lock_two(struct address_space *mapping1,
998 struct address_space *mapping2)
999{
1000 if (mapping1 > mapping2)
1001 swap(mapping1, mapping2);
1002 if (mapping1)
1003 down_write(&mapping1->invalidate_lock);
1004 if (mapping2 && mapping1 != mapping2)
1005 down_write_nested(&mapping2->invalidate_lock, 1);
1006}
1007EXPORT_SYMBOL(filemap_invalidate_lock_two);
1008
1009/*
1010 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1011 *
1012 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1013 *
1014 * @mapping1: the first mapping to unlock
1015 * @mapping2: the second mapping to unlock
1016 */
1017void filemap_invalidate_unlock_two(struct address_space *mapping1,
1018 struct address_space *mapping2)
1019{
1020 if (mapping1)
1021 up_write(&mapping1->invalidate_lock);
1022 if (mapping2 && mapping1 != mapping2)
1023 up_write(&mapping2->invalidate_lock);
1024}
1025EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1026
1027/*
1028 * In order to wait for pages to become available there must be
1029 * waitqueues associated with pages. By using a hash table of
1030 * waitqueues where the bucket discipline is to maintain all
1031 * waiters on the same queue and wake all when any of the pages
1032 * become available, and for the woken contexts to check to be
1033 * sure the appropriate page became available, this saves space
1034 * at a cost of "thundering herd" phenomena during rare hash
1035 * collisions.
1036 */
1037#define PAGE_WAIT_TABLE_BITS 8
1038#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1039static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1040
1041static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1042{
1043 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1044}
1045
1046void __init pagecache_init(void)
1047{
1048 int i;
1049
1050 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1051 init_waitqueue_head(&folio_wait_table[i]);
1052
1053 page_writeback_init();
1054}
1055
1056/*
1057 * The page wait code treats the "wait->flags" somewhat unusually, because
1058 * we have multiple different kinds of waits, not just the usual "exclusive"
1059 * one.
1060 *
1061 * We have:
1062 *
1063 * (a) no special bits set:
1064 *
1065 * We're just waiting for the bit to be released, and when a waker
1066 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1067 * and remove it from the wait queue.
1068 *
1069 * Simple and straightforward.
1070 *
1071 * (b) WQ_FLAG_EXCLUSIVE:
1072 *
1073 * The waiter is waiting to get the lock, and only one waiter should
1074 * be woken up to avoid any thundering herd behavior. We'll set the
1075 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1076 *
1077 * This is the traditional exclusive wait.
1078 *
1079 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1080 *
1081 * The waiter is waiting to get the bit, and additionally wants the
1082 * lock to be transferred to it for fair lock behavior. If the lock
1083 * cannot be taken, we stop walking the wait queue without waking
1084 * the waiter.
1085 *
1086 * This is the "fair lock handoff" case, and in addition to setting
1087 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1088 * that it now has the lock.
1089 */
1090static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1091{
1092 unsigned int flags;
1093 struct wait_page_key *key = arg;
1094 struct wait_page_queue *wait_page
1095 = container_of(wait, struct wait_page_queue, wait);
1096
1097 if (!wake_page_match(wait_page, key))
1098 return 0;
1099
1100 /*
1101 * If it's a lock handoff wait, we get the bit for it, and
1102 * stop walking (and do not wake it up) if we can't.
1103 */
1104 flags = wait->flags;
1105 if (flags & WQ_FLAG_EXCLUSIVE) {
1106 if (test_bit(key->bit_nr, &key->folio->flags))
1107 return -1;
1108 if (flags & WQ_FLAG_CUSTOM) {
1109 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1110 return -1;
1111 flags |= WQ_FLAG_DONE;
1112 }
1113 }
1114
1115 /*
1116 * We are holding the wait-queue lock, but the waiter that
1117 * is waiting for this will be checking the flags without
1118 * any locking.
1119 *
1120 * So update the flags atomically, and wake up the waiter
1121 * afterwards to avoid any races. This store-release pairs
1122 * with the load-acquire in folio_wait_bit_common().
1123 */
1124 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1125 wake_up_state(wait->private, mode);
1126
1127 /*
1128 * Ok, we have successfully done what we're waiting for,
1129 * and we can unconditionally remove the wait entry.
1130 *
1131 * Note that this pairs with the "finish_wait()" in the
1132 * waiter, and has to be the absolute last thing we do.
1133 * After this list_del_init(&wait->entry) the wait entry
1134 * might be de-allocated and the process might even have
1135 * exited.
1136 */
1137 list_del_init_careful(&wait->entry);
1138 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1139}
1140
1141static void folio_wake_bit(struct folio *folio, int bit_nr)
1142{
1143 wait_queue_head_t *q = folio_waitqueue(folio);
1144 struct wait_page_key key;
1145 unsigned long flags;
1146
1147 key.folio = folio;
1148 key.bit_nr = bit_nr;
1149 key.page_match = 0;
1150
1151 spin_lock_irqsave(&q->lock, flags);
1152 __wake_up_locked_key(q, TASK_NORMAL, &key);
1153
1154 /*
1155 * It's possible to miss clearing waiters here, when we woke our page
1156 * waiters, but the hashed waitqueue has waiters for other pages on it.
1157 * That's okay, it's a rare case. The next waker will clear it.
1158 *
1159 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1160 * other), the flag may be cleared in the course of freeing the page;
1161 * but that is not required for correctness.
1162 */
1163 if (!waitqueue_active(q) || !key.page_match)
1164 folio_clear_waiters(folio);
1165
1166 spin_unlock_irqrestore(&q->lock, flags);
1167}
1168
1169/*
1170 * A choice of three behaviors for folio_wait_bit_common():
1171 */
1172enum behavior {
1173 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1174 * __folio_lock() waiting on then setting PG_locked.
1175 */
1176 SHARED, /* Hold ref to page and check the bit when woken, like
1177 * folio_wait_writeback() waiting on PG_writeback.
1178 */
1179 DROP, /* Drop ref to page before wait, no check when woken,
1180 * like folio_put_wait_locked() on PG_locked.
1181 */
1182};
1183
1184/*
1185 * Attempt to check (or get) the folio flag, and mark us done
1186 * if successful.
1187 */
1188static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1189 struct wait_queue_entry *wait)
1190{
1191 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1192 if (test_and_set_bit(bit_nr, &folio->flags))
1193 return false;
1194 } else if (test_bit(bit_nr, &folio->flags))
1195 return false;
1196
1197 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1198 return true;
1199}
1200
1201/* How many times do we accept lock stealing from under a waiter? */
1202int sysctl_page_lock_unfairness = 5;
1203
1204static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1205 int state, enum behavior behavior)
1206{
1207 wait_queue_head_t *q = folio_waitqueue(folio);
1208 int unfairness = sysctl_page_lock_unfairness;
1209 struct wait_page_queue wait_page;
1210 wait_queue_entry_t *wait = &wait_page.wait;
1211 bool thrashing = false;
1212 unsigned long pflags;
1213 bool in_thrashing;
1214
1215 if (bit_nr == PG_locked &&
1216 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1217 delayacct_thrashing_start(&in_thrashing);
1218 psi_memstall_enter(&pflags);
1219 thrashing = true;
1220 }
1221
1222 init_wait(wait);
1223 wait->func = wake_page_function;
1224 wait_page.folio = folio;
1225 wait_page.bit_nr = bit_nr;
1226
1227repeat:
1228 wait->flags = 0;
1229 if (behavior == EXCLUSIVE) {
1230 wait->flags = WQ_FLAG_EXCLUSIVE;
1231 if (--unfairness < 0)
1232 wait->flags |= WQ_FLAG_CUSTOM;
1233 }
1234
1235 /*
1236 * Do one last check whether we can get the
1237 * page bit synchronously.
1238 *
1239 * Do the folio_set_waiters() marking before that
1240 * to let any waker we _just_ missed know they
1241 * need to wake us up (otherwise they'll never
1242 * even go to the slow case that looks at the
1243 * page queue), and add ourselves to the wait
1244 * queue if we need to sleep.
1245 *
1246 * This part needs to be done under the queue
1247 * lock to avoid races.
1248 */
1249 spin_lock_irq(&q->lock);
1250 folio_set_waiters(folio);
1251 if (!folio_trylock_flag(folio, bit_nr, wait))
1252 __add_wait_queue_entry_tail(q, wait);
1253 spin_unlock_irq(&q->lock);
1254
1255 /*
1256 * From now on, all the logic will be based on
1257 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1258 * see whether the page bit testing has already
1259 * been done by the wake function.
1260 *
1261 * We can drop our reference to the folio.
1262 */
1263 if (behavior == DROP)
1264 folio_put(folio);
1265
1266 /*
1267 * Note that until the "finish_wait()", or until
1268 * we see the WQ_FLAG_WOKEN flag, we need to
1269 * be very careful with the 'wait->flags', because
1270 * we may race with a waker that sets them.
1271 */
1272 for (;;) {
1273 unsigned int flags;
1274
1275 set_current_state(state);
1276
1277 /* Loop until we've been woken or interrupted */
1278 flags = smp_load_acquire(&wait->flags);
1279 if (!(flags & WQ_FLAG_WOKEN)) {
1280 if (signal_pending_state(state, current))
1281 break;
1282
1283 io_schedule();
1284 continue;
1285 }
1286
1287 /* If we were non-exclusive, we're done */
1288 if (behavior != EXCLUSIVE)
1289 break;
1290
1291 /* If the waker got the lock for us, we're done */
1292 if (flags & WQ_FLAG_DONE)
1293 break;
1294
1295 /*
1296 * Otherwise, if we're getting the lock, we need to
1297 * try to get it ourselves.
1298 *
1299 * And if that fails, we'll have to retry this all.
1300 */
1301 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1302 goto repeat;
1303
1304 wait->flags |= WQ_FLAG_DONE;
1305 break;
1306 }
1307
1308 /*
1309 * If a signal happened, this 'finish_wait()' may remove the last
1310 * waiter from the wait-queues, but the folio waiters bit will remain
1311 * set. That's ok. The next wakeup will take care of it, and trying
1312 * to do it here would be difficult and prone to races.
1313 */
1314 finish_wait(q, wait);
1315
1316 if (thrashing) {
1317 delayacct_thrashing_end(&in_thrashing);
1318 psi_memstall_leave(&pflags);
1319 }
1320
1321 /*
1322 * NOTE! The wait->flags weren't stable until we've done the
1323 * 'finish_wait()', and we could have exited the loop above due
1324 * to a signal, and had a wakeup event happen after the signal
1325 * test but before the 'finish_wait()'.
1326 *
1327 * So only after the finish_wait() can we reliably determine
1328 * if we got woken up or not, so we can now figure out the final
1329 * return value based on that state without races.
1330 *
1331 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1332 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1333 */
1334 if (behavior == EXCLUSIVE)
1335 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1336
1337 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1338}
1339
1340#ifdef CONFIG_MIGRATION
1341/**
1342 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1343 * @entry: migration swap entry.
1344 * @ptl: already locked ptl. This function will drop the lock.
1345 *
1346 * Wait for a migration entry referencing the given page to be removed. This is
1347 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1348 * this can be called without taking a reference on the page. Instead this
1349 * should be called while holding the ptl for the migration entry referencing
1350 * the page.
1351 *
1352 * Returns after unlocking the ptl.
1353 *
1354 * This follows the same logic as folio_wait_bit_common() so see the comments
1355 * there.
1356 */
1357void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1358 __releases(ptl)
1359{
1360 struct wait_page_queue wait_page;
1361 wait_queue_entry_t *wait = &wait_page.wait;
1362 bool thrashing = false;
1363 unsigned long pflags;
1364 bool in_thrashing;
1365 wait_queue_head_t *q;
1366 struct folio *folio = pfn_swap_entry_folio(entry);
1367
1368 q = folio_waitqueue(folio);
1369 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1370 delayacct_thrashing_start(&in_thrashing);
1371 psi_memstall_enter(&pflags);
1372 thrashing = true;
1373 }
1374
1375 init_wait(wait);
1376 wait->func = wake_page_function;
1377 wait_page.folio = folio;
1378 wait_page.bit_nr = PG_locked;
1379 wait->flags = 0;
1380
1381 spin_lock_irq(&q->lock);
1382 folio_set_waiters(folio);
1383 if (!folio_trylock_flag(folio, PG_locked, wait))
1384 __add_wait_queue_entry_tail(q, wait);
1385 spin_unlock_irq(&q->lock);
1386
1387 /*
1388 * If a migration entry exists for the page the migration path must hold
1389 * a valid reference to the page, and it must take the ptl to remove the
1390 * migration entry. So the page is valid until the ptl is dropped.
1391 */
1392 spin_unlock(ptl);
1393
1394 for (;;) {
1395 unsigned int flags;
1396
1397 set_current_state(TASK_UNINTERRUPTIBLE);
1398
1399 /* Loop until we've been woken or interrupted */
1400 flags = smp_load_acquire(&wait->flags);
1401 if (!(flags & WQ_FLAG_WOKEN)) {
1402 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1403 break;
1404
1405 io_schedule();
1406 continue;
1407 }
1408 break;
1409 }
1410
1411 finish_wait(q, wait);
1412
1413 if (thrashing) {
1414 delayacct_thrashing_end(&in_thrashing);
1415 psi_memstall_leave(&pflags);
1416 }
1417}
1418#endif
1419
1420void folio_wait_bit(struct folio *folio, int bit_nr)
1421{
1422 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1423}
1424EXPORT_SYMBOL(folio_wait_bit);
1425
1426int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1427{
1428 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1429}
1430EXPORT_SYMBOL(folio_wait_bit_killable);
1431
1432/**
1433 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1434 * @folio: The folio to wait for.
1435 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1436 *
1437 * The caller should hold a reference on @folio. They expect the page to
1438 * become unlocked relatively soon, but do not wish to hold up migration
1439 * (for example) by holding the reference while waiting for the folio to
1440 * come unlocked. After this function returns, the caller should not
1441 * dereference @folio.
1442 *
1443 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1444 */
1445static int folio_put_wait_locked(struct folio *folio, int state)
1446{
1447 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1448}
1449
1450/**
1451 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1452 * @folio: Folio defining the wait queue of interest
1453 * @waiter: Waiter to add to the queue
1454 *
1455 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1456 */
1457void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1458{
1459 wait_queue_head_t *q = folio_waitqueue(folio);
1460 unsigned long flags;
1461
1462 spin_lock_irqsave(&q->lock, flags);
1463 __add_wait_queue_entry_tail(q, waiter);
1464 folio_set_waiters(folio);
1465 spin_unlock_irqrestore(&q->lock, flags);
1466}
1467EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1468
1469/**
1470 * folio_unlock - Unlock a locked folio.
1471 * @folio: The folio.
1472 *
1473 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1474 *
1475 * Context: May be called from interrupt or process context. May not be
1476 * called from NMI context.
1477 */
1478void folio_unlock(struct folio *folio)
1479{
1480 /* Bit 7 allows x86 to check the byte's sign bit */
1481 BUILD_BUG_ON(PG_waiters != 7);
1482 BUILD_BUG_ON(PG_locked > 7);
1483 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1484 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1485 folio_wake_bit(folio, PG_locked);
1486}
1487EXPORT_SYMBOL(folio_unlock);
1488
1489/**
1490 * folio_end_read - End read on a folio.
1491 * @folio: The folio.
1492 * @success: True if all reads completed successfully.
1493 *
1494 * When all reads against a folio have completed, filesystems should
1495 * call this function to let the pagecache know that no more reads
1496 * are outstanding. This will unlock the folio and wake up any thread
1497 * sleeping on the lock. The folio will also be marked uptodate if all
1498 * reads succeeded.
1499 *
1500 * Context: May be called from interrupt or process context. May not be
1501 * called from NMI context.
1502 */
1503void folio_end_read(struct folio *folio, bool success)
1504{
1505 unsigned long mask = 1 << PG_locked;
1506
1507 /* Must be in bottom byte for x86 to work */
1508 BUILD_BUG_ON(PG_uptodate > 7);
1509 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1510 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1511
1512 if (likely(success))
1513 mask |= 1 << PG_uptodate;
1514 if (folio_xor_flags_has_waiters(folio, mask))
1515 folio_wake_bit(folio, PG_locked);
1516}
1517EXPORT_SYMBOL(folio_end_read);
1518
1519/**
1520 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1521 * @folio: The folio.
1522 *
1523 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1524 * it. The folio reference held for PG_private_2 being set is released.
1525 *
1526 * This is, for example, used when a netfs folio is being written to a local
1527 * disk cache, thereby allowing writes to the cache for the same folio to be
1528 * serialised.
1529 */
1530void folio_end_private_2(struct folio *folio)
1531{
1532 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1533 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1534 folio_wake_bit(folio, PG_private_2);
1535 folio_put(folio);
1536}
1537EXPORT_SYMBOL(folio_end_private_2);
1538
1539/**
1540 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1541 * @folio: The folio to wait on.
1542 *
1543 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1544 */
1545void folio_wait_private_2(struct folio *folio)
1546{
1547 while (folio_test_private_2(folio))
1548 folio_wait_bit(folio, PG_private_2);
1549}
1550EXPORT_SYMBOL(folio_wait_private_2);
1551
1552/**
1553 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1554 * @folio: The folio to wait on.
1555 *
1556 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1557 * fatal signal is received by the calling task.
1558 *
1559 * Return:
1560 * - 0 if successful.
1561 * - -EINTR if a fatal signal was encountered.
1562 */
1563int folio_wait_private_2_killable(struct folio *folio)
1564{
1565 int ret = 0;
1566
1567 while (folio_test_private_2(folio)) {
1568 ret = folio_wait_bit_killable(folio, PG_private_2);
1569 if (ret < 0)
1570 break;
1571 }
1572
1573 return ret;
1574}
1575EXPORT_SYMBOL(folio_wait_private_2_killable);
1576
1577/**
1578 * folio_end_writeback - End writeback against a folio.
1579 * @folio: The folio.
1580 *
1581 * The folio must actually be under writeback.
1582 *
1583 * Context: May be called from process or interrupt context.
1584 */
1585void folio_end_writeback(struct folio *folio)
1586{
1587 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1588
1589 /*
1590 * folio_test_clear_reclaim() could be used here but it is an
1591 * atomic operation and overkill in this particular case. Failing
1592 * to shuffle a folio marked for immediate reclaim is too mild
1593 * a gain to justify taking an atomic operation penalty at the
1594 * end of every folio writeback.
1595 */
1596 if (folio_test_reclaim(folio)) {
1597 folio_clear_reclaim(folio);
1598 folio_rotate_reclaimable(folio);
1599 }
1600
1601 /*
1602 * Writeback does not hold a folio reference of its own, relying
1603 * on truncation to wait for the clearing of PG_writeback.
1604 * But here we must make sure that the folio is not freed and
1605 * reused before the folio_wake_bit().
1606 */
1607 folio_get(folio);
1608 if (__folio_end_writeback(folio))
1609 folio_wake_bit(folio, PG_writeback);
1610 acct_reclaim_writeback(folio);
1611 folio_put(folio);
1612}
1613EXPORT_SYMBOL(folio_end_writeback);
1614
1615/**
1616 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1617 * @folio: The folio to lock
1618 */
1619void __folio_lock(struct folio *folio)
1620{
1621 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1622 EXCLUSIVE);
1623}
1624EXPORT_SYMBOL(__folio_lock);
1625
1626int __folio_lock_killable(struct folio *folio)
1627{
1628 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1629 EXCLUSIVE);
1630}
1631EXPORT_SYMBOL_GPL(__folio_lock_killable);
1632
1633static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1634{
1635 struct wait_queue_head *q = folio_waitqueue(folio);
1636 int ret;
1637
1638 wait->folio = folio;
1639 wait->bit_nr = PG_locked;
1640
1641 spin_lock_irq(&q->lock);
1642 __add_wait_queue_entry_tail(q, &wait->wait);
1643 folio_set_waiters(folio);
1644 ret = !folio_trylock(folio);
1645 /*
1646 * If we were successful now, we know we're still on the
1647 * waitqueue as we're still under the lock. This means it's
1648 * safe to remove and return success, we know the callback
1649 * isn't going to trigger.
1650 */
1651 if (!ret)
1652 __remove_wait_queue(q, &wait->wait);
1653 else
1654 ret = -EIOCBQUEUED;
1655 spin_unlock_irq(&q->lock);
1656 return ret;
1657}
1658
1659/*
1660 * Return values:
1661 * 0 - folio is locked.
1662 * non-zero - folio is not locked.
1663 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1664 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1665 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1666 *
1667 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1668 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1669 */
1670vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1671{
1672 unsigned int flags = vmf->flags;
1673
1674 if (fault_flag_allow_retry_first(flags)) {
1675 /*
1676 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1677 * released even though returning VM_FAULT_RETRY.
1678 */
1679 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1680 return VM_FAULT_RETRY;
1681
1682 release_fault_lock(vmf);
1683 if (flags & FAULT_FLAG_KILLABLE)
1684 folio_wait_locked_killable(folio);
1685 else
1686 folio_wait_locked(folio);
1687 return VM_FAULT_RETRY;
1688 }
1689 if (flags & FAULT_FLAG_KILLABLE) {
1690 bool ret;
1691
1692 ret = __folio_lock_killable(folio);
1693 if (ret) {
1694 release_fault_lock(vmf);
1695 return VM_FAULT_RETRY;
1696 }
1697 } else {
1698 __folio_lock(folio);
1699 }
1700
1701 return 0;
1702}
1703
1704/**
1705 * page_cache_next_miss() - Find the next gap in the page cache.
1706 * @mapping: Mapping.
1707 * @index: Index.
1708 * @max_scan: Maximum range to search.
1709 *
1710 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1711 * gap with the lowest index.
1712 *
1713 * This function may be called under the rcu_read_lock. However, this will
1714 * not atomically search a snapshot of the cache at a single point in time.
1715 * For example, if a gap is created at index 5, then subsequently a gap is
1716 * created at index 10, page_cache_next_miss covering both indices may
1717 * return 10 if called under the rcu_read_lock.
1718 *
1719 * Return: The index of the gap if found, otherwise an index outside the
1720 * range specified (in which case 'return - index >= max_scan' will be true).
1721 * In the rare case of index wrap-around, 0 will be returned.
1722 */
1723pgoff_t page_cache_next_miss(struct address_space *mapping,
1724 pgoff_t index, unsigned long max_scan)
1725{
1726 XA_STATE(xas, &mapping->i_pages, index);
1727
1728 while (max_scan--) {
1729 void *entry = xas_next(&xas);
1730 if (!entry || xa_is_value(entry))
1731 break;
1732 if (xas.xa_index == 0)
1733 break;
1734 }
1735
1736 return xas.xa_index;
1737}
1738EXPORT_SYMBOL(page_cache_next_miss);
1739
1740/**
1741 * page_cache_prev_miss() - Find the previous gap in the page cache.
1742 * @mapping: Mapping.
1743 * @index: Index.
1744 * @max_scan: Maximum range to search.
1745 *
1746 * Search the range [max(index - max_scan + 1, 0), index] for the
1747 * gap with the highest index.
1748 *
1749 * This function may be called under the rcu_read_lock. However, this will
1750 * not atomically search a snapshot of the cache at a single point in time.
1751 * For example, if a gap is created at index 10, then subsequently a gap is
1752 * created at index 5, page_cache_prev_miss() covering both indices may
1753 * return 5 if called under the rcu_read_lock.
1754 *
1755 * Return: The index of the gap if found, otherwise an index outside the
1756 * range specified (in which case 'index - return >= max_scan' will be true).
1757 * In the rare case of wrap-around, ULONG_MAX will be returned.
1758 */
1759pgoff_t page_cache_prev_miss(struct address_space *mapping,
1760 pgoff_t index, unsigned long max_scan)
1761{
1762 XA_STATE(xas, &mapping->i_pages, index);
1763
1764 while (max_scan--) {
1765 void *entry = xas_prev(&xas);
1766 if (!entry || xa_is_value(entry))
1767 break;
1768 if (xas.xa_index == ULONG_MAX)
1769 break;
1770 }
1771
1772 return xas.xa_index;
1773}
1774EXPORT_SYMBOL(page_cache_prev_miss);
1775
1776/*
1777 * Lockless page cache protocol:
1778 * On the lookup side:
1779 * 1. Load the folio from i_pages
1780 * 2. Increment the refcount if it's not zero
1781 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1782 *
1783 * On the removal side:
1784 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1785 * B. Remove the page from i_pages
1786 * C. Return the page to the page allocator
1787 *
1788 * This means that any page may have its reference count temporarily
1789 * increased by a speculative page cache (or fast GUP) lookup as it can
1790 * be allocated by another user before the RCU grace period expires.
1791 * Because the refcount temporarily acquired here may end up being the
1792 * last refcount on the page, any page allocation must be freeable by
1793 * folio_put().
1794 */
1795
1796/*
1797 * filemap_get_entry - Get a page cache entry.
1798 * @mapping: the address_space to search
1799 * @index: The page cache index.
1800 *
1801 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1802 * it is returned with an increased refcount. If it is a shadow entry
1803 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1804 * it is returned without further action.
1805 *
1806 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1807 */
1808void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1809{
1810 XA_STATE(xas, &mapping->i_pages, index);
1811 struct folio *folio;
1812
1813 rcu_read_lock();
1814repeat:
1815 xas_reset(&xas);
1816 folio = xas_load(&xas);
1817 if (xas_retry(&xas, folio))
1818 goto repeat;
1819 /*
1820 * A shadow entry of a recently evicted page, or a swap entry from
1821 * shmem/tmpfs. Return it without attempting to raise page count.
1822 */
1823 if (!folio || xa_is_value(folio))
1824 goto out;
1825
1826 if (!folio_try_get_rcu(folio))
1827 goto repeat;
1828
1829 if (unlikely(folio != xas_reload(&xas))) {
1830 folio_put(folio);
1831 goto repeat;
1832 }
1833out:
1834 rcu_read_unlock();
1835
1836 return folio;
1837}
1838
1839/**
1840 * __filemap_get_folio - Find and get a reference to a folio.
1841 * @mapping: The address_space to search.
1842 * @index: The page index.
1843 * @fgp_flags: %FGP flags modify how the folio is returned.
1844 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1845 *
1846 * Looks up the page cache entry at @mapping & @index.
1847 *
1848 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1849 * if the %GFP flags specified for %FGP_CREAT are atomic.
1850 *
1851 * If this function returns a folio, it is returned with an increased refcount.
1852 *
1853 * Return: The found folio or an ERR_PTR() otherwise.
1854 */
1855struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1856 fgf_t fgp_flags, gfp_t gfp)
1857{
1858 struct folio *folio;
1859
1860repeat:
1861 folio = filemap_get_entry(mapping, index);
1862 if (xa_is_value(folio))
1863 folio = NULL;
1864 if (!folio)
1865 goto no_page;
1866
1867 if (fgp_flags & FGP_LOCK) {
1868 if (fgp_flags & FGP_NOWAIT) {
1869 if (!folio_trylock(folio)) {
1870 folio_put(folio);
1871 return ERR_PTR(-EAGAIN);
1872 }
1873 } else {
1874 folio_lock(folio);
1875 }
1876
1877 /* Has the page been truncated? */
1878 if (unlikely(folio->mapping != mapping)) {
1879 folio_unlock(folio);
1880 folio_put(folio);
1881 goto repeat;
1882 }
1883 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1884 }
1885
1886 if (fgp_flags & FGP_ACCESSED)
1887 folio_mark_accessed(folio);
1888 else if (fgp_flags & FGP_WRITE) {
1889 /* Clear idle flag for buffer write */
1890 if (folio_test_idle(folio))
1891 folio_clear_idle(folio);
1892 }
1893
1894 if (fgp_flags & FGP_STABLE)
1895 folio_wait_stable(folio);
1896no_page:
1897 if (!folio && (fgp_flags & FGP_CREAT)) {
1898 unsigned order = FGF_GET_ORDER(fgp_flags);
1899 int err;
1900
1901 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1902 gfp |= __GFP_WRITE;
1903 if (fgp_flags & FGP_NOFS)
1904 gfp &= ~__GFP_FS;
1905 if (fgp_flags & FGP_NOWAIT) {
1906 gfp &= ~GFP_KERNEL;
1907 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1908 }
1909 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1910 fgp_flags |= FGP_LOCK;
1911
1912 if (!mapping_large_folio_support(mapping))
1913 order = 0;
1914 if (order > MAX_PAGECACHE_ORDER)
1915 order = MAX_PAGECACHE_ORDER;
1916 /* If we're not aligned, allocate a smaller folio */
1917 if (index & ((1UL << order) - 1))
1918 order = __ffs(index);
1919
1920 do {
1921 gfp_t alloc_gfp = gfp;
1922
1923 err = -ENOMEM;
1924 if (order > 0)
1925 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1926 folio = filemap_alloc_folio(alloc_gfp, order);
1927 if (!folio)
1928 continue;
1929
1930 /* Init accessed so avoid atomic mark_page_accessed later */
1931 if (fgp_flags & FGP_ACCESSED)
1932 __folio_set_referenced(folio);
1933
1934 err = filemap_add_folio(mapping, folio, index, gfp);
1935 if (!err)
1936 break;
1937 folio_put(folio);
1938 folio = NULL;
1939 } while (order-- > 0);
1940
1941 if (err == -EEXIST)
1942 goto repeat;
1943 if (err)
1944 return ERR_PTR(err);
1945 /*
1946 * filemap_add_folio locks the page, and for mmap
1947 * we expect an unlocked page.
1948 */
1949 if (folio && (fgp_flags & FGP_FOR_MMAP))
1950 folio_unlock(folio);
1951 }
1952
1953 if (!folio)
1954 return ERR_PTR(-ENOENT);
1955 return folio;
1956}
1957EXPORT_SYMBOL(__filemap_get_folio);
1958
1959static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1960 xa_mark_t mark)
1961{
1962 struct folio *folio;
1963
1964retry:
1965 if (mark == XA_PRESENT)
1966 folio = xas_find(xas, max);
1967 else
1968 folio = xas_find_marked(xas, max, mark);
1969
1970 if (xas_retry(xas, folio))
1971 goto retry;
1972 /*
1973 * A shadow entry of a recently evicted page, a swap
1974 * entry from shmem/tmpfs or a DAX entry. Return it
1975 * without attempting to raise page count.
1976 */
1977 if (!folio || xa_is_value(folio))
1978 return folio;
1979
1980 if (!folio_try_get_rcu(folio))
1981 goto reset;
1982
1983 if (unlikely(folio != xas_reload(xas))) {
1984 folio_put(folio);
1985 goto reset;
1986 }
1987
1988 return folio;
1989reset:
1990 xas_reset(xas);
1991 goto retry;
1992}
1993
1994/**
1995 * find_get_entries - gang pagecache lookup
1996 * @mapping: The address_space to search
1997 * @start: The starting page cache index
1998 * @end: The final page index (inclusive).
1999 * @fbatch: Where the resulting entries are placed.
2000 * @indices: The cache indices corresponding to the entries in @entries
2001 *
2002 * find_get_entries() will search for and return a batch of entries in
2003 * the mapping. The entries are placed in @fbatch. find_get_entries()
2004 * takes a reference on any actual folios it returns.
2005 *
2006 * The entries have ascending indexes. The indices may not be consecutive
2007 * due to not-present entries or large folios.
2008 *
2009 * Any shadow entries of evicted folios, or swap entries from
2010 * shmem/tmpfs, are included in the returned array.
2011 *
2012 * Return: The number of entries which were found.
2013 */
2014unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2015 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2016{
2017 XA_STATE(xas, &mapping->i_pages, *start);
2018 struct folio *folio;
2019
2020 rcu_read_lock();
2021 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2022 indices[fbatch->nr] = xas.xa_index;
2023 if (!folio_batch_add(fbatch, folio))
2024 break;
2025 }
2026 rcu_read_unlock();
2027
2028 if (folio_batch_count(fbatch)) {
2029 unsigned long nr = 1;
2030 int idx = folio_batch_count(fbatch) - 1;
2031
2032 folio = fbatch->folios[idx];
2033 if (!xa_is_value(folio))
2034 nr = folio_nr_pages(folio);
2035 *start = indices[idx] + nr;
2036 }
2037 return folio_batch_count(fbatch);
2038}
2039
2040/**
2041 * find_lock_entries - Find a batch of pagecache entries.
2042 * @mapping: The address_space to search.
2043 * @start: The starting page cache index.
2044 * @end: The final page index (inclusive).
2045 * @fbatch: Where the resulting entries are placed.
2046 * @indices: The cache indices of the entries in @fbatch.
2047 *
2048 * find_lock_entries() will return a batch of entries from @mapping.
2049 * Swap, shadow and DAX entries are included. Folios are returned
2050 * locked and with an incremented refcount. Folios which are locked
2051 * by somebody else or under writeback are skipped. Folios which are
2052 * partially outside the range are not returned.
2053 *
2054 * The entries have ascending indexes. The indices may not be consecutive
2055 * due to not-present entries, large folios, folios which could not be
2056 * locked or folios under writeback.
2057 *
2058 * Return: The number of entries which were found.
2059 */
2060unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2061 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2062{
2063 XA_STATE(xas, &mapping->i_pages, *start);
2064 struct folio *folio;
2065
2066 rcu_read_lock();
2067 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2068 if (!xa_is_value(folio)) {
2069 if (folio->index < *start)
2070 goto put;
2071 if (folio_next_index(folio) - 1 > end)
2072 goto put;
2073 if (!folio_trylock(folio))
2074 goto put;
2075 if (folio->mapping != mapping ||
2076 folio_test_writeback(folio))
2077 goto unlock;
2078 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2079 folio);
2080 }
2081 indices[fbatch->nr] = xas.xa_index;
2082 if (!folio_batch_add(fbatch, folio))
2083 break;
2084 continue;
2085unlock:
2086 folio_unlock(folio);
2087put:
2088 folio_put(folio);
2089 }
2090 rcu_read_unlock();
2091
2092 if (folio_batch_count(fbatch)) {
2093 unsigned long nr = 1;
2094 int idx = folio_batch_count(fbatch) - 1;
2095
2096 folio = fbatch->folios[idx];
2097 if (!xa_is_value(folio))
2098 nr = folio_nr_pages(folio);
2099 *start = indices[idx] + nr;
2100 }
2101 return folio_batch_count(fbatch);
2102}
2103
2104/**
2105 * filemap_get_folios - Get a batch of folios
2106 * @mapping: The address_space to search
2107 * @start: The starting page index
2108 * @end: The final page index (inclusive)
2109 * @fbatch: The batch to fill.
2110 *
2111 * Search for and return a batch of folios in the mapping starting at
2112 * index @start and up to index @end (inclusive). The folios are returned
2113 * in @fbatch with an elevated reference count.
2114 *
2115 * Return: The number of folios which were found.
2116 * We also update @start to index the next folio for the traversal.
2117 */
2118unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2119 pgoff_t end, struct folio_batch *fbatch)
2120{
2121 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2122}
2123EXPORT_SYMBOL(filemap_get_folios);
2124
2125/**
2126 * filemap_get_folios_contig - Get a batch of contiguous folios
2127 * @mapping: The address_space to search
2128 * @start: The starting page index
2129 * @end: The final page index (inclusive)
2130 * @fbatch: The batch to fill
2131 *
2132 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2133 * except the returned folios are guaranteed to be contiguous. This may
2134 * not return all contiguous folios if the batch gets filled up.
2135 *
2136 * Return: The number of folios found.
2137 * Also update @start to be positioned for traversal of the next folio.
2138 */
2139
2140unsigned filemap_get_folios_contig(struct address_space *mapping,
2141 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2142{
2143 XA_STATE(xas, &mapping->i_pages, *start);
2144 unsigned long nr;
2145 struct folio *folio;
2146
2147 rcu_read_lock();
2148
2149 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2150 folio = xas_next(&xas)) {
2151 if (xas_retry(&xas, folio))
2152 continue;
2153 /*
2154 * If the entry has been swapped out, we can stop looking.
2155 * No current caller is looking for DAX entries.
2156 */
2157 if (xa_is_value(folio))
2158 goto update_start;
2159
2160 if (!folio_try_get_rcu(folio))
2161 goto retry;
2162
2163 if (unlikely(folio != xas_reload(&xas)))
2164 goto put_folio;
2165
2166 if (!folio_batch_add(fbatch, folio)) {
2167 nr = folio_nr_pages(folio);
2168 *start = folio->index + nr;
2169 goto out;
2170 }
2171 continue;
2172put_folio:
2173 folio_put(folio);
2174
2175retry:
2176 xas_reset(&xas);
2177 }
2178
2179update_start:
2180 nr = folio_batch_count(fbatch);
2181
2182 if (nr) {
2183 folio = fbatch->folios[nr - 1];
2184 *start = folio_next_index(folio);
2185 }
2186out:
2187 rcu_read_unlock();
2188 return folio_batch_count(fbatch);
2189}
2190EXPORT_SYMBOL(filemap_get_folios_contig);
2191
2192/**
2193 * filemap_get_folios_tag - Get a batch of folios matching @tag
2194 * @mapping: The address_space to search
2195 * @start: The starting page index
2196 * @end: The final page index (inclusive)
2197 * @tag: The tag index
2198 * @fbatch: The batch to fill
2199 *
2200 * The first folio may start before @start; if it does, it will contain
2201 * @start. The final folio may extend beyond @end; if it does, it will
2202 * contain @end. The folios have ascending indices. There may be gaps
2203 * between the folios if there are indices which have no folio in the
2204 * page cache. If folios are added to or removed from the page cache
2205 * while this is running, they may or may not be found by this call.
2206 * Only returns folios that are tagged with @tag.
2207 *
2208 * Return: The number of folios found.
2209 * Also update @start to index the next folio for traversal.
2210 */
2211unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2212 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2213{
2214 XA_STATE(xas, &mapping->i_pages, *start);
2215 struct folio *folio;
2216
2217 rcu_read_lock();
2218 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2219 /*
2220 * Shadow entries should never be tagged, but this iteration
2221 * is lockless so there is a window for page reclaim to evict
2222 * a page we saw tagged. Skip over it.
2223 */
2224 if (xa_is_value(folio))
2225 continue;
2226 if (!folio_batch_add(fbatch, folio)) {
2227 unsigned long nr = folio_nr_pages(folio);
2228 *start = folio->index + nr;
2229 goto out;
2230 }
2231 }
2232 /*
2233 * We come here when there is no page beyond @end. We take care to not
2234 * overflow the index @start as it confuses some of the callers. This
2235 * breaks the iteration when there is a page at index -1 but that is
2236 * already broke anyway.
2237 */
2238 if (end == (pgoff_t)-1)
2239 *start = (pgoff_t)-1;
2240 else
2241 *start = end + 1;
2242out:
2243 rcu_read_unlock();
2244
2245 return folio_batch_count(fbatch);
2246}
2247EXPORT_SYMBOL(filemap_get_folios_tag);
2248
2249/*
2250 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251 * a _large_ part of the i/o request. Imagine the worst scenario:
2252 *
2253 * ---R__________________________________________B__________
2254 * ^ reading here ^ bad block(assume 4k)
2255 *
2256 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257 * => failing the whole request => read(R) => read(R+1) =>
2258 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261 *
2262 * It is going insane. Fix it by quickly scaling down the readahead size.
2263 */
2264static void shrink_readahead_size_eio(struct file_ra_state *ra)
2265{
2266 ra->ra_pages /= 4;
2267}
2268
2269/*
2270 * filemap_get_read_batch - Get a batch of folios for read
2271 *
2272 * Get a batch of folios which represent a contiguous range of bytes in
2273 * the file. No exceptional entries will be returned. If @index is in
2274 * the middle of a folio, the entire folio will be returned. The last
2275 * folio in the batch may have the readahead flag set or the uptodate flag
2276 * clear so that the caller can take the appropriate action.
2277 */
2278static void filemap_get_read_batch(struct address_space *mapping,
2279 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2280{
2281 XA_STATE(xas, &mapping->i_pages, index);
2282 struct folio *folio;
2283
2284 rcu_read_lock();
2285 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2286 if (xas_retry(&xas, folio))
2287 continue;
2288 if (xas.xa_index > max || xa_is_value(folio))
2289 break;
2290 if (xa_is_sibling(folio))
2291 break;
2292 if (!folio_try_get_rcu(folio))
2293 goto retry;
2294
2295 if (unlikely(folio != xas_reload(&xas)))
2296 goto put_folio;
2297
2298 if (!folio_batch_add(fbatch, folio))
2299 break;
2300 if (!folio_test_uptodate(folio))
2301 break;
2302 if (folio_test_readahead(folio))
2303 break;
2304 xas_advance(&xas, folio_next_index(folio) - 1);
2305 continue;
2306put_folio:
2307 folio_put(folio);
2308retry:
2309 xas_reset(&xas);
2310 }
2311 rcu_read_unlock();
2312}
2313
2314static int filemap_read_folio(struct file *file, filler_t filler,
2315 struct folio *folio)
2316{
2317 bool workingset = folio_test_workingset(folio);
2318 unsigned long pflags;
2319 int error;
2320
2321 /*
2322 * A previous I/O error may have been due to temporary failures,
2323 * eg. multipath errors. PG_error will be set again if read_folio
2324 * fails.
2325 */
2326 folio_clear_error(folio);
2327
2328 /* Start the actual read. The read will unlock the page. */
2329 if (unlikely(workingset))
2330 psi_memstall_enter(&pflags);
2331 error = filler(file, folio);
2332 if (unlikely(workingset))
2333 psi_memstall_leave(&pflags);
2334 if (error)
2335 return error;
2336
2337 error = folio_wait_locked_killable(folio);
2338 if (error)
2339 return error;
2340 if (folio_test_uptodate(folio))
2341 return 0;
2342 if (file)
2343 shrink_readahead_size_eio(&file->f_ra);
2344 return -EIO;
2345}
2346
2347static bool filemap_range_uptodate(struct address_space *mapping,
2348 loff_t pos, size_t count, struct folio *folio,
2349 bool need_uptodate)
2350{
2351 if (folio_test_uptodate(folio))
2352 return true;
2353 /* pipes can't handle partially uptodate pages */
2354 if (need_uptodate)
2355 return false;
2356 if (!mapping->a_ops->is_partially_uptodate)
2357 return false;
2358 if (mapping->host->i_blkbits >= folio_shift(folio))
2359 return false;
2360
2361 if (folio_pos(folio) > pos) {
2362 count -= folio_pos(folio) - pos;
2363 pos = 0;
2364 } else {
2365 pos -= folio_pos(folio);
2366 }
2367
2368 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2369}
2370
2371static int filemap_update_page(struct kiocb *iocb,
2372 struct address_space *mapping, size_t count,
2373 struct folio *folio, bool need_uptodate)
2374{
2375 int error;
2376
2377 if (iocb->ki_flags & IOCB_NOWAIT) {
2378 if (!filemap_invalidate_trylock_shared(mapping))
2379 return -EAGAIN;
2380 } else {
2381 filemap_invalidate_lock_shared(mapping);
2382 }
2383
2384 if (!folio_trylock(folio)) {
2385 error = -EAGAIN;
2386 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2387 goto unlock_mapping;
2388 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2389 filemap_invalidate_unlock_shared(mapping);
2390 /*
2391 * This is where we usually end up waiting for a
2392 * previously submitted readahead to finish.
2393 */
2394 folio_put_wait_locked(folio, TASK_KILLABLE);
2395 return AOP_TRUNCATED_PAGE;
2396 }
2397 error = __folio_lock_async(folio, iocb->ki_waitq);
2398 if (error)
2399 goto unlock_mapping;
2400 }
2401
2402 error = AOP_TRUNCATED_PAGE;
2403 if (!folio->mapping)
2404 goto unlock;
2405
2406 error = 0;
2407 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2408 need_uptodate))
2409 goto unlock;
2410
2411 error = -EAGAIN;
2412 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2413 goto unlock;
2414
2415 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2416 folio);
2417 goto unlock_mapping;
2418unlock:
2419 folio_unlock(folio);
2420unlock_mapping:
2421 filemap_invalidate_unlock_shared(mapping);
2422 if (error == AOP_TRUNCATED_PAGE)
2423 folio_put(folio);
2424 return error;
2425}
2426
2427static int filemap_create_folio(struct file *file,
2428 struct address_space *mapping, pgoff_t index,
2429 struct folio_batch *fbatch)
2430{
2431 struct folio *folio;
2432 int error;
2433
2434 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2435 if (!folio)
2436 return -ENOMEM;
2437
2438 /*
2439 * Protect against truncate / hole punch. Grabbing invalidate_lock
2440 * here assures we cannot instantiate and bring uptodate new
2441 * pagecache folios after evicting page cache during truncate
2442 * and before actually freeing blocks. Note that we could
2443 * release invalidate_lock after inserting the folio into
2444 * the page cache as the locked folio would then be enough to
2445 * synchronize with hole punching. But there are code paths
2446 * such as filemap_update_page() filling in partially uptodate
2447 * pages or ->readahead() that need to hold invalidate_lock
2448 * while mapping blocks for IO so let's hold the lock here as
2449 * well to keep locking rules simple.
2450 */
2451 filemap_invalidate_lock_shared(mapping);
2452 error = filemap_add_folio(mapping, folio, index,
2453 mapping_gfp_constraint(mapping, GFP_KERNEL));
2454 if (error == -EEXIST)
2455 error = AOP_TRUNCATED_PAGE;
2456 if (error)
2457 goto error;
2458
2459 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2460 if (error)
2461 goto error;
2462
2463 filemap_invalidate_unlock_shared(mapping);
2464 folio_batch_add(fbatch, folio);
2465 return 0;
2466error:
2467 filemap_invalidate_unlock_shared(mapping);
2468 folio_put(folio);
2469 return error;
2470}
2471
2472static int filemap_readahead(struct kiocb *iocb, struct file *file,
2473 struct address_space *mapping, struct folio *folio,
2474 pgoff_t last_index)
2475{
2476 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2477
2478 if (iocb->ki_flags & IOCB_NOIO)
2479 return -EAGAIN;
2480 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2481 return 0;
2482}
2483
2484static int filemap_get_pages(struct kiocb *iocb, size_t count,
2485 struct folio_batch *fbatch, bool need_uptodate)
2486{
2487 struct file *filp = iocb->ki_filp;
2488 struct address_space *mapping = filp->f_mapping;
2489 struct file_ra_state *ra = &filp->f_ra;
2490 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2491 pgoff_t last_index;
2492 struct folio *folio;
2493 int err = 0;
2494
2495 /* "last_index" is the index of the page beyond the end of the read */
2496 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2497retry:
2498 if (fatal_signal_pending(current))
2499 return -EINTR;
2500
2501 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2502 if (!folio_batch_count(fbatch)) {
2503 if (iocb->ki_flags & IOCB_NOIO)
2504 return -EAGAIN;
2505 page_cache_sync_readahead(mapping, ra, filp, index,
2506 last_index - index);
2507 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2508 }
2509 if (!folio_batch_count(fbatch)) {
2510 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2511 return -EAGAIN;
2512 err = filemap_create_folio(filp, mapping,
2513 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2514 if (err == AOP_TRUNCATED_PAGE)
2515 goto retry;
2516 return err;
2517 }
2518
2519 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2520 if (folio_test_readahead(folio)) {
2521 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2522 if (err)
2523 goto err;
2524 }
2525 if (!folio_test_uptodate(folio)) {
2526 if ((iocb->ki_flags & IOCB_WAITQ) &&
2527 folio_batch_count(fbatch) > 1)
2528 iocb->ki_flags |= IOCB_NOWAIT;
2529 err = filemap_update_page(iocb, mapping, count, folio,
2530 need_uptodate);
2531 if (err)
2532 goto err;
2533 }
2534
2535 return 0;
2536err:
2537 if (err < 0)
2538 folio_put(folio);
2539 if (likely(--fbatch->nr))
2540 return 0;
2541 if (err == AOP_TRUNCATED_PAGE)
2542 goto retry;
2543 return err;
2544}
2545
2546static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2547{
2548 unsigned int shift = folio_shift(folio);
2549
2550 return (pos1 >> shift == pos2 >> shift);
2551}
2552
2553/**
2554 * filemap_read - Read data from the page cache.
2555 * @iocb: The iocb to read.
2556 * @iter: Destination for the data.
2557 * @already_read: Number of bytes already read by the caller.
2558 *
2559 * Copies data from the page cache. If the data is not currently present,
2560 * uses the readahead and read_folio address_space operations to fetch it.
2561 *
2562 * Return: Total number of bytes copied, including those already read by
2563 * the caller. If an error happens before any bytes are copied, returns
2564 * a negative error number.
2565 */
2566ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2567 ssize_t already_read)
2568{
2569 struct file *filp = iocb->ki_filp;
2570 struct file_ra_state *ra = &filp->f_ra;
2571 struct address_space *mapping = filp->f_mapping;
2572 struct inode *inode = mapping->host;
2573 struct folio_batch fbatch;
2574 int i, error = 0;
2575 bool writably_mapped;
2576 loff_t isize, end_offset;
2577 loff_t last_pos = ra->prev_pos;
2578
2579 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2580 return 0;
2581 if (unlikely(!iov_iter_count(iter)))
2582 return 0;
2583
2584 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2585 folio_batch_init(&fbatch);
2586
2587 do {
2588 cond_resched();
2589
2590 /*
2591 * If we've already successfully copied some data, then we
2592 * can no longer safely return -EIOCBQUEUED. Hence mark
2593 * an async read NOWAIT at that point.
2594 */
2595 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2596 iocb->ki_flags |= IOCB_NOWAIT;
2597
2598 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2599 break;
2600
2601 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2602 if (error < 0)
2603 break;
2604
2605 /*
2606 * i_size must be checked after we know the pages are Uptodate.
2607 *
2608 * Checking i_size after the check allows us to calculate
2609 * the correct value for "nr", which means the zero-filled
2610 * part of the page is not copied back to userspace (unless
2611 * another truncate extends the file - this is desired though).
2612 */
2613 isize = i_size_read(inode);
2614 if (unlikely(iocb->ki_pos >= isize))
2615 goto put_folios;
2616 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2617
2618 /*
2619 * Once we start copying data, we don't want to be touching any
2620 * cachelines that might be contended:
2621 */
2622 writably_mapped = mapping_writably_mapped(mapping);
2623
2624 /*
2625 * When a read accesses the same folio several times, only
2626 * mark it as accessed the first time.
2627 */
2628 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2629 fbatch.folios[0]))
2630 folio_mark_accessed(fbatch.folios[0]);
2631
2632 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2633 struct folio *folio = fbatch.folios[i];
2634 size_t fsize = folio_size(folio);
2635 size_t offset = iocb->ki_pos & (fsize - 1);
2636 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2637 fsize - offset);
2638 size_t copied;
2639
2640 if (end_offset < folio_pos(folio))
2641 break;
2642 if (i > 0)
2643 folio_mark_accessed(folio);
2644 /*
2645 * If users can be writing to this folio using arbitrary
2646 * virtual addresses, take care of potential aliasing
2647 * before reading the folio on the kernel side.
2648 */
2649 if (writably_mapped)
2650 flush_dcache_folio(folio);
2651
2652 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2653
2654 already_read += copied;
2655 iocb->ki_pos += copied;
2656 last_pos = iocb->ki_pos;
2657
2658 if (copied < bytes) {
2659 error = -EFAULT;
2660 break;
2661 }
2662 }
2663put_folios:
2664 for (i = 0; i < folio_batch_count(&fbatch); i++)
2665 folio_put(fbatch.folios[i]);
2666 folio_batch_init(&fbatch);
2667 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2668
2669 file_accessed(filp);
2670 ra->prev_pos = last_pos;
2671 return already_read ? already_read : error;
2672}
2673EXPORT_SYMBOL_GPL(filemap_read);
2674
2675int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2676{
2677 struct address_space *mapping = iocb->ki_filp->f_mapping;
2678 loff_t pos = iocb->ki_pos;
2679 loff_t end = pos + count - 1;
2680
2681 if (iocb->ki_flags & IOCB_NOWAIT) {
2682 if (filemap_range_needs_writeback(mapping, pos, end))
2683 return -EAGAIN;
2684 return 0;
2685 }
2686
2687 return filemap_write_and_wait_range(mapping, pos, end);
2688}
2689EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2690
2691int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2692{
2693 struct address_space *mapping = iocb->ki_filp->f_mapping;
2694 loff_t pos = iocb->ki_pos;
2695 loff_t end = pos + count - 1;
2696 int ret;
2697
2698 if (iocb->ki_flags & IOCB_NOWAIT) {
2699 /* we could block if there are any pages in the range */
2700 if (filemap_range_has_page(mapping, pos, end))
2701 return -EAGAIN;
2702 } else {
2703 ret = filemap_write_and_wait_range(mapping, pos, end);
2704 if (ret)
2705 return ret;
2706 }
2707
2708 /*
2709 * After a write we want buffered reads to be sure to go to disk to get
2710 * the new data. We invalidate clean cached page from the region we're
2711 * about to write. We do this *before* the write so that we can return
2712 * without clobbering -EIOCBQUEUED from ->direct_IO().
2713 */
2714 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2715 end >> PAGE_SHIFT);
2716}
2717EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2718
2719/**
2720 * generic_file_read_iter - generic filesystem read routine
2721 * @iocb: kernel I/O control block
2722 * @iter: destination for the data read
2723 *
2724 * This is the "read_iter()" routine for all filesystems
2725 * that can use the page cache directly.
2726 *
2727 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2728 * be returned when no data can be read without waiting for I/O requests
2729 * to complete; it doesn't prevent readahead.
2730 *
2731 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2732 * requests shall be made for the read or for readahead. When no data
2733 * can be read, -EAGAIN shall be returned. When readahead would be
2734 * triggered, a partial, possibly empty read shall be returned.
2735 *
2736 * Return:
2737 * * number of bytes copied, even for partial reads
2738 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2739 */
2740ssize_t
2741generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2742{
2743 size_t count = iov_iter_count(iter);
2744 ssize_t retval = 0;
2745
2746 if (!count)
2747 return 0; /* skip atime */
2748
2749 if (iocb->ki_flags & IOCB_DIRECT) {
2750 struct file *file = iocb->ki_filp;
2751 struct address_space *mapping = file->f_mapping;
2752 struct inode *inode = mapping->host;
2753
2754 retval = kiocb_write_and_wait(iocb, count);
2755 if (retval < 0)
2756 return retval;
2757 file_accessed(file);
2758
2759 retval = mapping->a_ops->direct_IO(iocb, iter);
2760 if (retval >= 0) {
2761 iocb->ki_pos += retval;
2762 count -= retval;
2763 }
2764 if (retval != -EIOCBQUEUED)
2765 iov_iter_revert(iter, count - iov_iter_count(iter));
2766
2767 /*
2768 * Btrfs can have a short DIO read if we encounter
2769 * compressed extents, so if there was an error, or if
2770 * we've already read everything we wanted to, or if
2771 * there was a short read because we hit EOF, go ahead
2772 * and return. Otherwise fallthrough to buffered io for
2773 * the rest of the read. Buffered reads will not work for
2774 * DAX files, so don't bother trying.
2775 */
2776 if (retval < 0 || !count || IS_DAX(inode))
2777 return retval;
2778 if (iocb->ki_pos >= i_size_read(inode))
2779 return retval;
2780 }
2781
2782 return filemap_read(iocb, iter, retval);
2783}
2784EXPORT_SYMBOL(generic_file_read_iter);
2785
2786/*
2787 * Splice subpages from a folio into a pipe.
2788 */
2789size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2790 struct folio *folio, loff_t fpos, size_t size)
2791{
2792 struct page *page;
2793 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2794
2795 page = folio_page(folio, offset / PAGE_SIZE);
2796 size = min(size, folio_size(folio) - offset);
2797 offset %= PAGE_SIZE;
2798
2799 while (spliced < size &&
2800 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2801 struct pipe_buffer *buf = pipe_head_buf(pipe);
2802 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2803
2804 *buf = (struct pipe_buffer) {
2805 .ops = &page_cache_pipe_buf_ops,
2806 .page = page,
2807 .offset = offset,
2808 .len = part,
2809 };
2810 folio_get(folio);
2811 pipe->head++;
2812 page++;
2813 spliced += part;
2814 offset = 0;
2815 }
2816
2817 return spliced;
2818}
2819
2820/**
2821 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2822 * @in: The file to read from
2823 * @ppos: Pointer to the file position to read from
2824 * @pipe: The pipe to splice into
2825 * @len: The amount to splice
2826 * @flags: The SPLICE_F_* flags
2827 *
2828 * This function gets folios from a file's pagecache and splices them into the
2829 * pipe. Readahead will be called as necessary to fill more folios. This may
2830 * be used for blockdevs also.
2831 *
2832 * Return: On success, the number of bytes read will be returned and *@ppos
2833 * will be updated if appropriate; 0 will be returned if there is no more data
2834 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2835 * other negative error code will be returned on error. A short read may occur
2836 * if the pipe has insufficient space, we reach the end of the data or we hit a
2837 * hole.
2838 */
2839ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2840 struct pipe_inode_info *pipe,
2841 size_t len, unsigned int flags)
2842{
2843 struct folio_batch fbatch;
2844 struct kiocb iocb;
2845 size_t total_spliced = 0, used, npages;
2846 loff_t isize, end_offset;
2847 bool writably_mapped;
2848 int i, error = 0;
2849
2850 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2851 return 0;
2852
2853 init_sync_kiocb(&iocb, in);
2854 iocb.ki_pos = *ppos;
2855
2856 /* Work out how much data we can actually add into the pipe */
2857 used = pipe_occupancy(pipe->head, pipe->tail);
2858 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2859 len = min_t(size_t, len, npages * PAGE_SIZE);
2860
2861 folio_batch_init(&fbatch);
2862
2863 do {
2864 cond_resched();
2865
2866 if (*ppos >= i_size_read(in->f_mapping->host))
2867 break;
2868
2869 iocb.ki_pos = *ppos;
2870 error = filemap_get_pages(&iocb, len, &fbatch, true);
2871 if (error < 0)
2872 break;
2873
2874 /*
2875 * i_size must be checked after we know the pages are Uptodate.
2876 *
2877 * Checking i_size after the check allows us to calculate
2878 * the correct value for "nr", which means the zero-filled
2879 * part of the page is not copied back to userspace (unless
2880 * another truncate extends the file - this is desired though).
2881 */
2882 isize = i_size_read(in->f_mapping->host);
2883 if (unlikely(*ppos >= isize))
2884 break;
2885 end_offset = min_t(loff_t, isize, *ppos + len);
2886
2887 /*
2888 * Once we start copying data, we don't want to be touching any
2889 * cachelines that might be contended:
2890 */
2891 writably_mapped = mapping_writably_mapped(in->f_mapping);
2892
2893 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2894 struct folio *folio = fbatch.folios[i];
2895 size_t n;
2896
2897 if (folio_pos(folio) >= end_offset)
2898 goto out;
2899 folio_mark_accessed(folio);
2900
2901 /*
2902 * If users can be writing to this folio using arbitrary
2903 * virtual addresses, take care of potential aliasing
2904 * before reading the folio on the kernel side.
2905 */
2906 if (writably_mapped)
2907 flush_dcache_folio(folio);
2908
2909 n = min_t(loff_t, len, isize - *ppos);
2910 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2911 if (!n)
2912 goto out;
2913 len -= n;
2914 total_spliced += n;
2915 *ppos += n;
2916 in->f_ra.prev_pos = *ppos;
2917 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2918 goto out;
2919 }
2920
2921 folio_batch_release(&fbatch);
2922 } while (len);
2923
2924out:
2925 folio_batch_release(&fbatch);
2926 file_accessed(in);
2927
2928 return total_spliced ? total_spliced : error;
2929}
2930EXPORT_SYMBOL(filemap_splice_read);
2931
2932static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2933 struct address_space *mapping, struct folio *folio,
2934 loff_t start, loff_t end, bool seek_data)
2935{
2936 const struct address_space_operations *ops = mapping->a_ops;
2937 size_t offset, bsz = i_blocksize(mapping->host);
2938
2939 if (xa_is_value(folio) || folio_test_uptodate(folio))
2940 return seek_data ? start : end;
2941 if (!ops->is_partially_uptodate)
2942 return seek_data ? end : start;
2943
2944 xas_pause(xas);
2945 rcu_read_unlock();
2946 folio_lock(folio);
2947 if (unlikely(folio->mapping != mapping))
2948 goto unlock;
2949
2950 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2951
2952 do {
2953 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2954 seek_data)
2955 break;
2956 start = (start + bsz) & ~(bsz - 1);
2957 offset += bsz;
2958 } while (offset < folio_size(folio));
2959unlock:
2960 folio_unlock(folio);
2961 rcu_read_lock();
2962 return start;
2963}
2964
2965static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2966{
2967 if (xa_is_value(folio))
2968 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2969 return folio_size(folio);
2970}
2971
2972/**
2973 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2974 * @mapping: Address space to search.
2975 * @start: First byte to consider.
2976 * @end: Limit of search (exclusive).
2977 * @whence: Either SEEK_HOLE or SEEK_DATA.
2978 *
2979 * If the page cache knows which blocks contain holes and which blocks
2980 * contain data, your filesystem can use this function to implement
2981 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2982 * entirely memory-based such as tmpfs, and filesystems which support
2983 * unwritten extents.
2984 *
2985 * Return: The requested offset on success, or -ENXIO if @whence specifies
2986 * SEEK_DATA and there is no data after @start. There is an implicit hole
2987 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2988 * and @end contain data.
2989 */
2990loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2991 loff_t end, int whence)
2992{
2993 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2994 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2995 bool seek_data = (whence == SEEK_DATA);
2996 struct folio *folio;
2997
2998 if (end <= start)
2999 return -ENXIO;
3000
3001 rcu_read_lock();
3002 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3003 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3004 size_t seek_size;
3005
3006 if (start < pos) {
3007 if (!seek_data)
3008 goto unlock;
3009 start = pos;
3010 }
3011
3012 seek_size = seek_folio_size(&xas, folio);
3013 pos = round_up((u64)pos + 1, seek_size);
3014 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3015 seek_data);
3016 if (start < pos)
3017 goto unlock;
3018 if (start >= end)
3019 break;
3020 if (seek_size > PAGE_SIZE)
3021 xas_set(&xas, pos >> PAGE_SHIFT);
3022 if (!xa_is_value(folio))
3023 folio_put(folio);
3024 }
3025 if (seek_data)
3026 start = -ENXIO;
3027unlock:
3028 rcu_read_unlock();
3029 if (folio && !xa_is_value(folio))
3030 folio_put(folio);
3031 if (start > end)
3032 return end;
3033 return start;
3034}
3035
3036#ifdef CONFIG_MMU
3037#define MMAP_LOTSAMISS (100)
3038/*
3039 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3040 * @vmf - the vm_fault for this fault.
3041 * @folio - the folio to lock.
3042 * @fpin - the pointer to the file we may pin (or is already pinned).
3043 *
3044 * This works similar to lock_folio_or_retry in that it can drop the
3045 * mmap_lock. It differs in that it actually returns the folio locked
3046 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3047 * to drop the mmap_lock then fpin will point to the pinned file and
3048 * needs to be fput()'ed at a later point.
3049 */
3050static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3051 struct file **fpin)
3052{
3053 if (folio_trylock(folio))
3054 return 1;
3055
3056 /*
3057 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3058 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3059 * is supposed to work. We have way too many special cases..
3060 */
3061 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3062 return 0;
3063
3064 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3065 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3066 if (__folio_lock_killable(folio)) {
3067 /*
3068 * We didn't have the right flags to drop the
3069 * fault lock, but all fault_handlers only check
3070 * for fatal signals if we return VM_FAULT_RETRY,
3071 * so we need to drop the fault lock here and
3072 * return 0 if we don't have a fpin.
3073 */
3074 if (*fpin == NULL)
3075 release_fault_lock(vmf);
3076 return 0;
3077 }
3078 } else
3079 __folio_lock(folio);
3080
3081 return 1;
3082}
3083
3084/*
3085 * Synchronous readahead happens when we don't even find a page in the page
3086 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3087 * to drop the mmap sem we return the file that was pinned in order for us to do
3088 * that. If we didn't pin a file then we return NULL. The file that is
3089 * returned needs to be fput()'ed when we're done with it.
3090 */
3091static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3092{
3093 struct file *file = vmf->vma->vm_file;
3094 struct file_ra_state *ra = &file->f_ra;
3095 struct address_space *mapping = file->f_mapping;
3096 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3097 struct file *fpin = NULL;
3098 unsigned long vm_flags = vmf->vma->vm_flags;
3099 unsigned int mmap_miss;
3100
3101#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3102 /* Use the readahead code, even if readahead is disabled */
3103 if (vm_flags & VM_HUGEPAGE) {
3104 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3105 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3106 ra->size = HPAGE_PMD_NR;
3107 /*
3108 * Fetch two PMD folios, so we get the chance to actually
3109 * readahead, unless we've been told not to.
3110 */
3111 if (!(vm_flags & VM_RAND_READ))
3112 ra->size *= 2;
3113 ra->async_size = HPAGE_PMD_NR;
3114 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3115 return fpin;
3116 }
3117#endif
3118
3119 /* If we don't want any read-ahead, don't bother */
3120 if (vm_flags & VM_RAND_READ)
3121 return fpin;
3122 if (!ra->ra_pages)
3123 return fpin;
3124
3125 if (vm_flags & VM_SEQ_READ) {
3126 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3127 page_cache_sync_ra(&ractl, ra->ra_pages);
3128 return fpin;
3129 }
3130
3131 /* Avoid banging the cache line if not needed */
3132 mmap_miss = READ_ONCE(ra->mmap_miss);
3133 if (mmap_miss < MMAP_LOTSAMISS * 10)
3134 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3135
3136 /*
3137 * Do we miss much more than hit in this file? If so,
3138 * stop bothering with read-ahead. It will only hurt.
3139 */
3140 if (mmap_miss > MMAP_LOTSAMISS)
3141 return fpin;
3142
3143 /*
3144 * mmap read-around
3145 */
3146 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3147 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3148 ra->size = ra->ra_pages;
3149 ra->async_size = ra->ra_pages / 4;
3150 ractl._index = ra->start;
3151 page_cache_ra_order(&ractl, ra, 0);
3152 return fpin;
3153}
3154
3155/*
3156 * Asynchronous readahead happens when we find the page and PG_readahead,
3157 * so we want to possibly extend the readahead further. We return the file that
3158 * was pinned if we have to drop the mmap_lock in order to do IO.
3159 */
3160static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3161 struct folio *folio)
3162{
3163 struct file *file = vmf->vma->vm_file;
3164 struct file_ra_state *ra = &file->f_ra;
3165 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3166 struct file *fpin = NULL;
3167 unsigned int mmap_miss;
3168
3169 /* If we don't want any read-ahead, don't bother */
3170 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3171 return fpin;
3172
3173 mmap_miss = READ_ONCE(ra->mmap_miss);
3174 if (mmap_miss)
3175 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3176
3177 if (folio_test_readahead(folio)) {
3178 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3179 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3180 }
3181 return fpin;
3182}
3183
3184static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3185{
3186 struct vm_area_struct *vma = vmf->vma;
3187 vm_fault_t ret = 0;
3188 pte_t *ptep;
3189
3190 /*
3191 * We might have COW'ed a pagecache folio and might now have an mlocked
3192 * anon folio mapped. The original pagecache folio is not mlocked and
3193 * might have been evicted. During a read+clear/modify/write update of
3194 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3195 * temporarily clear the PTE under PT lock and might detect it here as
3196 * "none" when not holding the PT lock.
3197 *
3198 * Not rechecking the PTE under PT lock could result in an unexpected
3199 * major fault in an mlock'ed region. Recheck only for this special
3200 * scenario while holding the PT lock, to not degrade non-mlocked
3201 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3202 * the number of times we hold PT lock.
3203 */
3204 if (!(vma->vm_flags & VM_LOCKED))
3205 return 0;
3206
3207 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3208 return 0;
3209
3210 ptep = pte_offset_map(vmf->pmd, vmf->address);
3211 if (unlikely(!ptep))
3212 return VM_FAULT_NOPAGE;
3213
3214 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3215 ret = VM_FAULT_NOPAGE;
3216 } else {
3217 spin_lock(vmf->ptl);
3218 if (unlikely(!pte_none(ptep_get(ptep))))
3219 ret = VM_FAULT_NOPAGE;
3220 spin_unlock(vmf->ptl);
3221 }
3222 pte_unmap(ptep);
3223 return ret;
3224}
3225
3226/**
3227 * filemap_fault - read in file data for page fault handling
3228 * @vmf: struct vm_fault containing details of the fault
3229 *
3230 * filemap_fault() is invoked via the vma operations vector for a
3231 * mapped memory region to read in file data during a page fault.
3232 *
3233 * The goto's are kind of ugly, but this streamlines the normal case of having
3234 * it in the page cache, and handles the special cases reasonably without
3235 * having a lot of duplicated code.
3236 *
3237 * vma->vm_mm->mmap_lock must be held on entry.
3238 *
3239 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3240 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3241 *
3242 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3243 * has not been released.
3244 *
3245 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3246 *
3247 * Return: bitwise-OR of %VM_FAULT_ codes.
3248 */
3249vm_fault_t filemap_fault(struct vm_fault *vmf)
3250{
3251 int error;
3252 struct file *file = vmf->vma->vm_file;
3253 struct file *fpin = NULL;
3254 struct address_space *mapping = file->f_mapping;
3255 struct inode *inode = mapping->host;
3256 pgoff_t max_idx, index = vmf->pgoff;
3257 struct folio *folio;
3258 vm_fault_t ret = 0;
3259 bool mapping_locked = false;
3260
3261 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3262 if (unlikely(index >= max_idx))
3263 return VM_FAULT_SIGBUS;
3264
3265 /*
3266 * Do we have something in the page cache already?
3267 */
3268 folio = filemap_get_folio(mapping, index);
3269 if (likely(!IS_ERR(folio))) {
3270 /*
3271 * We found the page, so try async readahead before waiting for
3272 * the lock.
3273 */
3274 if (!(vmf->flags & FAULT_FLAG_TRIED))
3275 fpin = do_async_mmap_readahead(vmf, folio);
3276 if (unlikely(!folio_test_uptodate(folio))) {
3277 filemap_invalidate_lock_shared(mapping);
3278 mapping_locked = true;
3279 }
3280 } else {
3281 ret = filemap_fault_recheck_pte_none(vmf);
3282 if (unlikely(ret))
3283 return ret;
3284
3285 /* No page in the page cache at all */
3286 count_vm_event(PGMAJFAULT);
3287 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3288 ret = VM_FAULT_MAJOR;
3289 fpin = do_sync_mmap_readahead(vmf);
3290retry_find:
3291 /*
3292 * See comment in filemap_create_folio() why we need
3293 * invalidate_lock
3294 */
3295 if (!mapping_locked) {
3296 filemap_invalidate_lock_shared(mapping);
3297 mapping_locked = true;
3298 }
3299 folio = __filemap_get_folio(mapping, index,
3300 FGP_CREAT|FGP_FOR_MMAP,
3301 vmf->gfp_mask);
3302 if (IS_ERR(folio)) {
3303 if (fpin)
3304 goto out_retry;
3305 filemap_invalidate_unlock_shared(mapping);
3306 return VM_FAULT_OOM;
3307 }
3308 }
3309
3310 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3311 goto out_retry;
3312
3313 /* Did it get truncated? */
3314 if (unlikely(folio->mapping != mapping)) {
3315 folio_unlock(folio);
3316 folio_put(folio);
3317 goto retry_find;
3318 }
3319 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3320
3321 /*
3322 * We have a locked folio in the page cache, now we need to check
3323 * that it's up-to-date. If not, it is going to be due to an error,
3324 * or because readahead was otherwise unable to retrieve it.
3325 */
3326 if (unlikely(!folio_test_uptodate(folio))) {
3327 /*
3328 * If the invalidate lock is not held, the folio was in cache
3329 * and uptodate and now it is not. Strange but possible since we
3330 * didn't hold the page lock all the time. Let's drop
3331 * everything, get the invalidate lock and try again.
3332 */
3333 if (!mapping_locked) {
3334 folio_unlock(folio);
3335 folio_put(folio);
3336 goto retry_find;
3337 }
3338
3339 /*
3340 * OK, the folio is really not uptodate. This can be because the
3341 * VMA has the VM_RAND_READ flag set, or because an error
3342 * arose. Let's read it in directly.
3343 */
3344 goto page_not_uptodate;
3345 }
3346
3347 /*
3348 * We've made it this far and we had to drop our mmap_lock, now is the
3349 * time to return to the upper layer and have it re-find the vma and
3350 * redo the fault.
3351 */
3352 if (fpin) {
3353 folio_unlock(folio);
3354 goto out_retry;
3355 }
3356 if (mapping_locked)
3357 filemap_invalidate_unlock_shared(mapping);
3358
3359 /*
3360 * Found the page and have a reference on it.
3361 * We must recheck i_size under page lock.
3362 */
3363 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3364 if (unlikely(index >= max_idx)) {
3365 folio_unlock(folio);
3366 folio_put(folio);
3367 return VM_FAULT_SIGBUS;
3368 }
3369
3370 vmf->page = folio_file_page(folio, index);
3371 return ret | VM_FAULT_LOCKED;
3372
3373page_not_uptodate:
3374 /*
3375 * Umm, take care of errors if the page isn't up-to-date.
3376 * Try to re-read it _once_. We do this synchronously,
3377 * because there really aren't any performance issues here
3378 * and we need to check for errors.
3379 */
3380 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3381 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3382 if (fpin)
3383 goto out_retry;
3384 folio_put(folio);
3385
3386 if (!error || error == AOP_TRUNCATED_PAGE)
3387 goto retry_find;
3388 filemap_invalidate_unlock_shared(mapping);
3389
3390 return VM_FAULT_SIGBUS;
3391
3392out_retry:
3393 /*
3394 * We dropped the mmap_lock, we need to return to the fault handler to
3395 * re-find the vma and come back and find our hopefully still populated
3396 * page.
3397 */
3398 if (!IS_ERR(folio))
3399 folio_put(folio);
3400 if (mapping_locked)
3401 filemap_invalidate_unlock_shared(mapping);
3402 if (fpin)
3403 fput(fpin);
3404 return ret | VM_FAULT_RETRY;
3405}
3406EXPORT_SYMBOL(filemap_fault);
3407
3408static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3409 pgoff_t start)
3410{
3411 struct mm_struct *mm = vmf->vma->vm_mm;
3412
3413 /* Huge page is mapped? No need to proceed. */
3414 if (pmd_trans_huge(*vmf->pmd)) {
3415 folio_unlock(folio);
3416 folio_put(folio);
3417 return true;
3418 }
3419
3420 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3421 struct page *page = folio_file_page(folio, start);
3422 vm_fault_t ret = do_set_pmd(vmf, page);
3423 if (!ret) {
3424 /* The page is mapped successfully, reference consumed. */
3425 folio_unlock(folio);
3426 return true;
3427 }
3428 }
3429
3430 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3431 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3432
3433 return false;
3434}
3435
3436static struct folio *next_uptodate_folio(struct xa_state *xas,
3437 struct address_space *mapping, pgoff_t end_pgoff)
3438{
3439 struct folio *folio = xas_next_entry(xas, end_pgoff);
3440 unsigned long max_idx;
3441
3442 do {
3443 if (!folio)
3444 return NULL;
3445 if (xas_retry(xas, folio))
3446 continue;
3447 if (xa_is_value(folio))
3448 continue;
3449 if (folio_test_locked(folio))
3450 continue;
3451 if (!folio_try_get_rcu(folio))
3452 continue;
3453 /* Has the page moved or been split? */
3454 if (unlikely(folio != xas_reload(xas)))
3455 goto skip;
3456 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3457 goto skip;
3458 if (!folio_trylock(folio))
3459 goto skip;
3460 if (folio->mapping != mapping)
3461 goto unlock;
3462 if (!folio_test_uptodate(folio))
3463 goto unlock;
3464 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3465 if (xas->xa_index >= max_idx)
3466 goto unlock;
3467 return folio;
3468unlock:
3469 folio_unlock(folio);
3470skip:
3471 folio_put(folio);
3472 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3473
3474 return NULL;
3475}
3476
3477/*
3478 * Map page range [start_page, start_page + nr_pages) of folio.
3479 * start_page is gotten from start by folio_page(folio, start)
3480 */
3481static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3482 struct folio *folio, unsigned long start,
3483 unsigned long addr, unsigned int nr_pages,
3484 unsigned int *mmap_miss)
3485{
3486 vm_fault_t ret = 0;
3487 struct page *page = folio_page(folio, start);
3488 unsigned int count = 0;
3489 pte_t *old_ptep = vmf->pte;
3490
3491 do {
3492 if (PageHWPoison(page + count))
3493 goto skip;
3494
3495 (*mmap_miss)++;
3496
3497 /*
3498 * NOTE: If there're PTE markers, we'll leave them to be
3499 * handled in the specific fault path, and it'll prohibit the
3500 * fault-around logic.
3501 */
3502 if (!pte_none(ptep_get(&vmf->pte[count])))
3503 goto skip;
3504
3505 count++;
3506 continue;
3507skip:
3508 if (count) {
3509 set_pte_range(vmf, folio, page, count, addr);
3510 folio_ref_add(folio, count);
3511 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3512 ret = VM_FAULT_NOPAGE;
3513 }
3514
3515 count++;
3516 page += count;
3517 vmf->pte += count;
3518 addr += count * PAGE_SIZE;
3519 count = 0;
3520 } while (--nr_pages > 0);
3521
3522 if (count) {
3523 set_pte_range(vmf, folio, page, count, addr);
3524 folio_ref_add(folio, count);
3525 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3526 ret = VM_FAULT_NOPAGE;
3527 }
3528
3529 vmf->pte = old_ptep;
3530
3531 return ret;
3532}
3533
3534static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3535 struct folio *folio, unsigned long addr,
3536 unsigned int *mmap_miss)
3537{
3538 vm_fault_t ret = 0;
3539 struct page *page = &folio->page;
3540
3541 if (PageHWPoison(page))
3542 return ret;
3543
3544 (*mmap_miss)++;
3545
3546 /*
3547 * NOTE: If there're PTE markers, we'll leave them to be
3548 * handled in the specific fault path, and it'll prohibit
3549 * the fault-around logic.
3550 */
3551 if (!pte_none(ptep_get(vmf->pte)))
3552 return ret;
3553
3554 if (vmf->address == addr)
3555 ret = VM_FAULT_NOPAGE;
3556
3557 set_pte_range(vmf, folio, page, 1, addr);
3558 folio_ref_inc(folio);
3559
3560 return ret;
3561}
3562
3563vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3564 pgoff_t start_pgoff, pgoff_t end_pgoff)
3565{
3566 struct vm_area_struct *vma = vmf->vma;
3567 struct file *file = vma->vm_file;
3568 struct address_space *mapping = file->f_mapping;
3569 pgoff_t last_pgoff = start_pgoff;
3570 unsigned long addr;
3571 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3572 struct folio *folio;
3573 vm_fault_t ret = 0;
3574 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3575
3576 rcu_read_lock();
3577 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3578 if (!folio)
3579 goto out;
3580
3581 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3582 ret = VM_FAULT_NOPAGE;
3583 goto out;
3584 }
3585
3586 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3587 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3588 if (!vmf->pte) {
3589 folio_unlock(folio);
3590 folio_put(folio);
3591 goto out;
3592 }
3593 do {
3594 unsigned long end;
3595
3596 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3597 vmf->pte += xas.xa_index - last_pgoff;
3598 last_pgoff = xas.xa_index;
3599 end = folio_next_index(folio) - 1;
3600 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3601
3602 if (!folio_test_large(folio))
3603 ret |= filemap_map_order0_folio(vmf,
3604 folio, addr, &mmap_miss);
3605 else
3606 ret |= filemap_map_folio_range(vmf, folio,
3607 xas.xa_index - folio->index, addr,
3608 nr_pages, &mmap_miss);
3609
3610 folio_unlock(folio);
3611 folio_put(folio);
3612 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3613 pte_unmap_unlock(vmf->pte, vmf->ptl);
3614out:
3615 rcu_read_unlock();
3616
3617 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3618 if (mmap_miss >= mmap_miss_saved)
3619 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3620 else
3621 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3622
3623 return ret;
3624}
3625EXPORT_SYMBOL(filemap_map_pages);
3626
3627vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3628{
3629 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3630 struct folio *folio = page_folio(vmf->page);
3631 vm_fault_t ret = VM_FAULT_LOCKED;
3632
3633 sb_start_pagefault(mapping->host->i_sb);
3634 file_update_time(vmf->vma->vm_file);
3635 folio_lock(folio);
3636 if (folio->mapping != mapping) {
3637 folio_unlock(folio);
3638 ret = VM_FAULT_NOPAGE;
3639 goto out;
3640 }
3641 /*
3642 * We mark the folio dirty already here so that when freeze is in
3643 * progress, we are guaranteed that writeback during freezing will
3644 * see the dirty folio and writeprotect it again.
3645 */
3646 folio_mark_dirty(folio);
3647 folio_wait_stable(folio);
3648out:
3649 sb_end_pagefault(mapping->host->i_sb);
3650 return ret;
3651}
3652
3653const struct vm_operations_struct generic_file_vm_ops = {
3654 .fault = filemap_fault,
3655 .map_pages = filemap_map_pages,
3656 .page_mkwrite = filemap_page_mkwrite,
3657};
3658
3659/* This is used for a general mmap of a disk file */
3660
3661int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3662{
3663 struct address_space *mapping = file->f_mapping;
3664
3665 if (!mapping->a_ops->read_folio)
3666 return -ENOEXEC;
3667 file_accessed(file);
3668 vma->vm_ops = &generic_file_vm_ops;
3669 return 0;
3670}
3671
3672/*
3673 * This is for filesystems which do not implement ->writepage.
3674 */
3675int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3676{
3677 if (vma_is_shared_maywrite(vma))
3678 return -EINVAL;
3679 return generic_file_mmap(file, vma);
3680}
3681#else
3682vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3683{
3684 return VM_FAULT_SIGBUS;
3685}
3686int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3687{
3688 return -ENOSYS;
3689}
3690int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3691{
3692 return -ENOSYS;
3693}
3694#endif /* CONFIG_MMU */
3695
3696EXPORT_SYMBOL(filemap_page_mkwrite);
3697EXPORT_SYMBOL(generic_file_mmap);
3698EXPORT_SYMBOL(generic_file_readonly_mmap);
3699
3700static struct folio *do_read_cache_folio(struct address_space *mapping,
3701 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3702{
3703 struct folio *folio;
3704 int err;
3705
3706 if (!filler)
3707 filler = mapping->a_ops->read_folio;
3708repeat:
3709 folio = filemap_get_folio(mapping, index);
3710 if (IS_ERR(folio)) {
3711 folio = filemap_alloc_folio(gfp, 0);
3712 if (!folio)
3713 return ERR_PTR(-ENOMEM);
3714 err = filemap_add_folio(mapping, folio, index, gfp);
3715 if (unlikely(err)) {
3716 folio_put(folio);
3717 if (err == -EEXIST)
3718 goto repeat;
3719 /* Presumably ENOMEM for xarray node */
3720 return ERR_PTR(err);
3721 }
3722
3723 goto filler;
3724 }
3725 if (folio_test_uptodate(folio))
3726 goto out;
3727
3728 if (!folio_trylock(folio)) {
3729 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3730 goto repeat;
3731 }
3732
3733 /* Folio was truncated from mapping */
3734 if (!folio->mapping) {
3735 folio_unlock(folio);
3736 folio_put(folio);
3737 goto repeat;
3738 }
3739
3740 /* Someone else locked and filled the page in a very small window */
3741 if (folio_test_uptodate(folio)) {
3742 folio_unlock(folio);
3743 goto out;
3744 }
3745
3746filler:
3747 err = filemap_read_folio(file, filler, folio);
3748 if (err) {
3749 folio_put(folio);
3750 if (err == AOP_TRUNCATED_PAGE)
3751 goto repeat;
3752 return ERR_PTR(err);
3753 }
3754
3755out:
3756 folio_mark_accessed(folio);
3757 return folio;
3758}
3759
3760/**
3761 * read_cache_folio - Read into page cache, fill it if needed.
3762 * @mapping: The address_space to read from.
3763 * @index: The index to read.
3764 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3765 * @file: Passed to filler function, may be NULL if not required.
3766 *
3767 * Read one page into the page cache. If it succeeds, the folio returned
3768 * will contain @index, but it may not be the first page of the folio.
3769 *
3770 * If the filler function returns an error, it will be returned to the
3771 * caller.
3772 *
3773 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3774 * Return: An uptodate folio on success, ERR_PTR() on failure.
3775 */
3776struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3777 filler_t filler, struct file *file)
3778{
3779 return do_read_cache_folio(mapping, index, filler, file,
3780 mapping_gfp_mask(mapping));
3781}
3782EXPORT_SYMBOL(read_cache_folio);
3783
3784/**
3785 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3786 * @mapping: The address_space for the folio.
3787 * @index: The index that the allocated folio will contain.
3788 * @gfp: The page allocator flags to use if allocating.
3789 *
3790 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3791 * any new memory allocations done using the specified allocation flags.
3792 *
3793 * The most likely error from this function is EIO, but ENOMEM is
3794 * possible and so is EINTR. If ->read_folio returns another error,
3795 * that will be returned to the caller.
3796 *
3797 * The function expects mapping->invalidate_lock to be already held.
3798 *
3799 * Return: Uptodate folio on success, ERR_PTR() on failure.
3800 */
3801struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3802 pgoff_t index, gfp_t gfp)
3803{
3804 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3805}
3806EXPORT_SYMBOL(mapping_read_folio_gfp);
3807
3808static struct page *do_read_cache_page(struct address_space *mapping,
3809 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3810{
3811 struct folio *folio;
3812
3813 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3814 if (IS_ERR(folio))
3815 return &folio->page;
3816 return folio_file_page(folio, index);
3817}
3818
3819struct page *read_cache_page(struct address_space *mapping,
3820 pgoff_t index, filler_t *filler, struct file *file)
3821{
3822 return do_read_cache_page(mapping, index, filler, file,
3823 mapping_gfp_mask(mapping));
3824}
3825EXPORT_SYMBOL(read_cache_page);
3826
3827/**
3828 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3829 * @mapping: the page's address_space
3830 * @index: the page index
3831 * @gfp: the page allocator flags to use if allocating
3832 *
3833 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3834 * any new page allocations done using the specified allocation flags.
3835 *
3836 * If the page does not get brought uptodate, return -EIO.
3837 *
3838 * The function expects mapping->invalidate_lock to be already held.
3839 *
3840 * Return: up to date page on success, ERR_PTR() on failure.
3841 */
3842struct page *read_cache_page_gfp(struct address_space *mapping,
3843 pgoff_t index,
3844 gfp_t gfp)
3845{
3846 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3847}
3848EXPORT_SYMBOL(read_cache_page_gfp);
3849
3850/*
3851 * Warn about a page cache invalidation failure during a direct I/O write.
3852 */
3853static void dio_warn_stale_pagecache(struct file *filp)
3854{
3855 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3856 char pathname[128];
3857 char *path;
3858
3859 errseq_set(&filp->f_mapping->wb_err, -EIO);
3860 if (__ratelimit(&_rs)) {
3861 path = file_path(filp, pathname, sizeof(pathname));
3862 if (IS_ERR(path))
3863 path = "(unknown)";
3864 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3865 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3866 current->comm);
3867 }
3868}
3869
3870void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3871{
3872 struct address_space *mapping = iocb->ki_filp->f_mapping;
3873
3874 if (mapping->nrpages &&
3875 invalidate_inode_pages2_range(mapping,
3876 iocb->ki_pos >> PAGE_SHIFT,
3877 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3878 dio_warn_stale_pagecache(iocb->ki_filp);
3879}
3880
3881ssize_t
3882generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3883{
3884 struct address_space *mapping = iocb->ki_filp->f_mapping;
3885 size_t write_len = iov_iter_count(from);
3886 ssize_t written;
3887
3888 /*
3889 * If a page can not be invalidated, return 0 to fall back
3890 * to buffered write.
3891 */
3892 written = kiocb_invalidate_pages(iocb, write_len);
3893 if (written) {
3894 if (written == -EBUSY)
3895 return 0;
3896 return written;
3897 }
3898
3899 written = mapping->a_ops->direct_IO(iocb, from);
3900
3901 /*
3902 * Finally, try again to invalidate clean pages which might have been
3903 * cached by non-direct readahead, or faulted in by get_user_pages()
3904 * if the source of the write was an mmap'ed region of the file
3905 * we're writing. Either one is a pretty crazy thing to do,
3906 * so we don't support it 100%. If this invalidation
3907 * fails, tough, the write still worked...
3908 *
3909 * Most of the time we do not need this since dio_complete() will do
3910 * the invalidation for us. However there are some file systems that
3911 * do not end up with dio_complete() being called, so let's not break
3912 * them by removing it completely.
3913 *
3914 * Noticeable example is a blkdev_direct_IO().
3915 *
3916 * Skip invalidation for async writes or if mapping has no pages.
3917 */
3918 if (written > 0) {
3919 struct inode *inode = mapping->host;
3920 loff_t pos = iocb->ki_pos;
3921
3922 kiocb_invalidate_post_direct_write(iocb, written);
3923 pos += written;
3924 write_len -= written;
3925 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3926 i_size_write(inode, pos);
3927 mark_inode_dirty(inode);
3928 }
3929 iocb->ki_pos = pos;
3930 }
3931 if (written != -EIOCBQUEUED)
3932 iov_iter_revert(from, write_len - iov_iter_count(from));
3933 return written;
3934}
3935EXPORT_SYMBOL(generic_file_direct_write);
3936
3937ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3938{
3939 struct file *file = iocb->ki_filp;
3940 loff_t pos = iocb->ki_pos;
3941 struct address_space *mapping = file->f_mapping;
3942 const struct address_space_operations *a_ops = mapping->a_ops;
3943 long status = 0;
3944 ssize_t written = 0;
3945
3946 do {
3947 struct page *page;
3948 unsigned long offset; /* Offset into pagecache page */
3949 unsigned long bytes; /* Bytes to write to page */
3950 size_t copied; /* Bytes copied from user */
3951 void *fsdata = NULL;
3952
3953 offset = (pos & (PAGE_SIZE - 1));
3954 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3955 iov_iter_count(i));
3956
3957again:
3958 /*
3959 * Bring in the user page that we will copy from _first_.
3960 * Otherwise there's a nasty deadlock on copying from the
3961 * same page as we're writing to, without it being marked
3962 * up-to-date.
3963 */
3964 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3965 status = -EFAULT;
3966 break;
3967 }
3968
3969 if (fatal_signal_pending(current)) {
3970 status = -EINTR;
3971 break;
3972 }
3973
3974 status = a_ops->write_begin(file, mapping, pos, bytes,
3975 &page, &fsdata);
3976 if (unlikely(status < 0))
3977 break;
3978
3979 if (mapping_writably_mapped(mapping))
3980 flush_dcache_page(page);
3981
3982 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3983 flush_dcache_page(page);
3984
3985 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3986 page, fsdata);
3987 if (unlikely(status != copied)) {
3988 iov_iter_revert(i, copied - max(status, 0L));
3989 if (unlikely(status < 0))
3990 break;
3991 }
3992 cond_resched();
3993
3994 if (unlikely(status == 0)) {
3995 /*
3996 * A short copy made ->write_end() reject the
3997 * thing entirely. Might be memory poisoning
3998 * halfway through, might be a race with munmap,
3999 * might be severe memory pressure.
4000 */
4001 if (copied)
4002 bytes = copied;
4003 goto again;
4004 }
4005 pos += status;
4006 written += status;
4007
4008 balance_dirty_pages_ratelimited(mapping);
4009 } while (iov_iter_count(i));
4010
4011 if (!written)
4012 return status;
4013 iocb->ki_pos += written;
4014 return written;
4015}
4016EXPORT_SYMBOL(generic_perform_write);
4017
4018/**
4019 * __generic_file_write_iter - write data to a file
4020 * @iocb: IO state structure (file, offset, etc.)
4021 * @from: iov_iter with data to write
4022 *
4023 * This function does all the work needed for actually writing data to a
4024 * file. It does all basic checks, removes SUID from the file, updates
4025 * modification times and calls proper subroutines depending on whether we
4026 * do direct IO or a standard buffered write.
4027 *
4028 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4029 * object which does not need locking at all.
4030 *
4031 * This function does *not* take care of syncing data in case of O_SYNC write.
4032 * A caller has to handle it. This is mainly due to the fact that we want to
4033 * avoid syncing under i_rwsem.
4034 *
4035 * Return:
4036 * * number of bytes written, even for truncated writes
4037 * * negative error code if no data has been written at all
4038 */
4039ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4040{
4041 struct file *file = iocb->ki_filp;
4042 struct address_space *mapping = file->f_mapping;
4043 struct inode *inode = mapping->host;
4044 ssize_t ret;
4045
4046 ret = file_remove_privs(file);
4047 if (ret)
4048 return ret;
4049
4050 ret = file_update_time(file);
4051 if (ret)
4052 return ret;
4053
4054 if (iocb->ki_flags & IOCB_DIRECT) {
4055 ret = generic_file_direct_write(iocb, from);
4056 /*
4057 * If the write stopped short of completing, fall back to
4058 * buffered writes. Some filesystems do this for writes to
4059 * holes, for example. For DAX files, a buffered write will
4060 * not succeed (even if it did, DAX does not handle dirty
4061 * page-cache pages correctly).
4062 */
4063 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4064 return ret;
4065 return direct_write_fallback(iocb, from, ret,
4066 generic_perform_write(iocb, from));
4067 }
4068
4069 return generic_perform_write(iocb, from);
4070}
4071EXPORT_SYMBOL(__generic_file_write_iter);
4072
4073/**
4074 * generic_file_write_iter - write data to a file
4075 * @iocb: IO state structure
4076 * @from: iov_iter with data to write
4077 *
4078 * This is a wrapper around __generic_file_write_iter() to be used by most
4079 * filesystems. It takes care of syncing the file in case of O_SYNC file
4080 * and acquires i_rwsem as needed.
4081 * Return:
4082 * * negative error code if no data has been written at all of
4083 * vfs_fsync_range() failed for a synchronous write
4084 * * number of bytes written, even for truncated writes
4085 */
4086ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4087{
4088 struct file *file = iocb->ki_filp;
4089 struct inode *inode = file->f_mapping->host;
4090 ssize_t ret;
4091
4092 inode_lock(inode);
4093 ret = generic_write_checks(iocb, from);
4094 if (ret > 0)
4095 ret = __generic_file_write_iter(iocb, from);
4096 inode_unlock(inode);
4097
4098 if (ret > 0)
4099 ret = generic_write_sync(iocb, ret);
4100 return ret;
4101}
4102EXPORT_SYMBOL(generic_file_write_iter);
4103
4104/**
4105 * filemap_release_folio() - Release fs-specific metadata on a folio.
4106 * @folio: The folio which the kernel is trying to free.
4107 * @gfp: Memory allocation flags (and I/O mode).
4108 *
4109 * The address_space is trying to release any data attached to a folio
4110 * (presumably at folio->private).
4111 *
4112 * This will also be called if the private_2 flag is set on a page,
4113 * indicating that the folio has other metadata associated with it.
4114 *
4115 * The @gfp argument specifies whether I/O may be performed to release
4116 * this page (__GFP_IO), and whether the call may block
4117 * (__GFP_RECLAIM & __GFP_FS).
4118 *
4119 * Return: %true if the release was successful, otherwise %false.
4120 */
4121bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4122{
4123 struct address_space * const mapping = folio->mapping;
4124
4125 BUG_ON(!folio_test_locked(folio));
4126 if (!folio_needs_release(folio))
4127 return true;
4128 if (folio_test_writeback(folio))
4129 return false;
4130
4131 if (mapping && mapping->a_ops->release_folio)
4132 return mapping->a_ops->release_folio(folio, gfp);
4133 return try_to_free_buffers(folio);
4134}
4135EXPORT_SYMBOL(filemap_release_folio);
4136
4137#ifdef CONFIG_CACHESTAT_SYSCALL
4138/**
4139 * filemap_cachestat() - compute the page cache statistics of a mapping
4140 * @mapping: The mapping to compute the statistics for.
4141 * @first_index: The starting page cache index.
4142 * @last_index: The final page index (inclusive).
4143 * @cs: the cachestat struct to write the result to.
4144 *
4145 * This will query the page cache statistics of a mapping in the
4146 * page range of [first_index, last_index] (inclusive). The statistics
4147 * queried include: number of dirty pages, number of pages marked for
4148 * writeback, and the number of (recently) evicted pages.
4149 */
4150static void filemap_cachestat(struct address_space *mapping,
4151 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4152{
4153 XA_STATE(xas, &mapping->i_pages, first_index);
4154 struct folio *folio;
4155
4156 rcu_read_lock();
4157 xas_for_each(&xas, folio, last_index) {
4158 int order;
4159 unsigned long nr_pages;
4160 pgoff_t folio_first_index, folio_last_index;
4161
4162 /*
4163 * Don't deref the folio. It is not pinned, and might
4164 * get freed (and reused) underneath us.
4165 *
4166 * We *could* pin it, but that would be expensive for
4167 * what should be a fast and lightweight syscall.
4168 *
4169 * Instead, derive all information of interest from
4170 * the rcu-protected xarray.
4171 */
4172
4173 if (xas_retry(&xas, folio))
4174 continue;
4175
4176 order = xa_get_order(xas.xa, xas.xa_index);
4177 nr_pages = 1 << order;
4178 folio_first_index = round_down(xas.xa_index, 1 << order);
4179 folio_last_index = folio_first_index + nr_pages - 1;
4180
4181 /* Folios might straddle the range boundaries, only count covered pages */
4182 if (folio_first_index < first_index)
4183 nr_pages -= first_index - folio_first_index;
4184
4185 if (folio_last_index > last_index)
4186 nr_pages -= folio_last_index - last_index;
4187
4188 if (xa_is_value(folio)) {
4189 /* page is evicted */
4190 void *shadow = (void *)folio;
4191 bool workingset; /* not used */
4192
4193 cs->nr_evicted += nr_pages;
4194
4195#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4196 if (shmem_mapping(mapping)) {
4197 /* shmem file - in swap cache */
4198 swp_entry_t swp = radix_to_swp_entry(folio);
4199
4200 /* swapin error results in poisoned entry */
4201 if (non_swap_entry(swp))
4202 goto resched;
4203
4204 /*
4205 * Getting a swap entry from the shmem
4206 * inode means we beat
4207 * shmem_unuse(). rcu_read_lock()
4208 * ensures swapoff waits for us before
4209 * freeing the swapper space. However,
4210 * we can race with swapping and
4211 * invalidation, so there might not be
4212 * a shadow in the swapcache (yet).
4213 */
4214 shadow = get_shadow_from_swap_cache(swp);
4215 if (!shadow)
4216 goto resched;
4217 }
4218#endif
4219 if (workingset_test_recent(shadow, true, &workingset))
4220 cs->nr_recently_evicted += nr_pages;
4221
4222 goto resched;
4223 }
4224
4225 /* page is in cache */
4226 cs->nr_cache += nr_pages;
4227
4228 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4229 cs->nr_dirty += nr_pages;
4230
4231 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4232 cs->nr_writeback += nr_pages;
4233
4234resched:
4235 if (need_resched()) {
4236 xas_pause(&xas);
4237 cond_resched_rcu();
4238 }
4239 }
4240 rcu_read_unlock();
4241}
4242
4243/*
4244 * The cachestat(2) system call.
4245 *
4246 * cachestat() returns the page cache statistics of a file in the
4247 * bytes range specified by `off` and `len`: number of cached pages,
4248 * number of dirty pages, number of pages marked for writeback,
4249 * number of evicted pages, and number of recently evicted pages.
4250 *
4251 * An evicted page is a page that is previously in the page cache
4252 * but has been evicted since. A page is recently evicted if its last
4253 * eviction was recent enough that its reentry to the cache would
4254 * indicate that it is actively being used by the system, and that
4255 * there is memory pressure on the system.
4256 *
4257 * `off` and `len` must be non-negative integers. If `len` > 0,
4258 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4259 * we will query in the range from `off` to the end of the file.
4260 *
4261 * The `flags` argument is unused for now, but is included for future
4262 * extensibility. User should pass 0 (i.e no flag specified).
4263 *
4264 * Currently, hugetlbfs is not supported.
4265 *
4266 * Because the status of a page can change after cachestat() checks it
4267 * but before it returns to the application, the returned values may
4268 * contain stale information.
4269 *
4270 * return values:
4271 * zero - success
4272 * -EFAULT - cstat or cstat_range points to an illegal address
4273 * -EINVAL - invalid flags
4274 * -EBADF - invalid file descriptor
4275 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4276 */
4277SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4278 struct cachestat_range __user *, cstat_range,
4279 struct cachestat __user *, cstat, unsigned int, flags)
4280{
4281 struct fd f = fdget(fd);
4282 struct address_space *mapping;
4283 struct cachestat_range csr;
4284 struct cachestat cs;
4285 pgoff_t first_index, last_index;
4286
4287 if (!f.file)
4288 return -EBADF;
4289
4290 if (copy_from_user(&csr, cstat_range,
4291 sizeof(struct cachestat_range))) {
4292 fdput(f);
4293 return -EFAULT;
4294 }
4295
4296 /* hugetlbfs is not supported */
4297 if (is_file_hugepages(f.file)) {
4298 fdput(f);
4299 return -EOPNOTSUPP;
4300 }
4301
4302 if (flags != 0) {
4303 fdput(f);
4304 return -EINVAL;
4305 }
4306
4307 first_index = csr.off >> PAGE_SHIFT;
4308 last_index =
4309 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4310 memset(&cs, 0, sizeof(struct cachestat));
4311 mapping = f.file->f_mapping;
4312 filemap_cachestat(mapping, first_index, last_index, &cs);
4313 fdput(f);
4314
4315 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4316 return -EFAULT;
4317
4318 return 0;
4319}
4320#endif /* CONFIG_CACHESTAT_SYSCALL */