Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/sched/signal.h>
  17#include <linux/uaccess.h>
  18#include <linux/capability.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/gfp.h>
  21#include <linux/mm.h>
  22#include <linux/swap.h>
  23#include <linux/mman.h>
  24#include <linux/pagemap.h>
  25#include <linux/file.h>
  26#include <linux/uio.h>
 
  27#include <linux/hash.h>
  28#include <linux/writeback.h>
  29#include <linux/backing-dev.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/security.h>
  33#include <linux/cpuset.h>
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/shmem_fs.h>
  38#include <linux/rmap.h>
 
 
 
 
 
 
  39#include "internal.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/filemap.h>
  43
  44/*
  45 * FIXME: remove all knowledge of the buffer layer from the core VM
  46 */
  47#include <linux/buffer_head.h> /* for try_to_free_buffers */
  48
  49#include <asm/mman.h>
  50
  51/*
  52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  53 * though.
  54 *
  55 * Shared mappings now work. 15.8.1995  Bruno.
  56 *
  57 * finished 'unifying' the page and buffer cache and SMP-threaded the
  58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  59 *
  60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  61 */
  62
  63/*
  64 * Lock ordering:
  65 *
  66 *  ->i_mmap_rwsem		(truncate_pagecache)
  67 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  68 *      ->swap_lock		(exclusive_swap_page, others)
  69 *        ->i_pages lock
  70 *
  71 *  ->i_mutex
  72 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  73 *
  74 *  ->mmap_sem
  75 *    ->i_mmap_rwsem
  76 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  77 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  78 *
  79 *  ->mmap_sem
  80 *    ->lock_page		(access_process_vm)
  81 *
  82 *  ->i_mutex			(generic_perform_write)
  83 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  84 *
  85 *  bdi->wb.list_lock
  86 *    sb_lock			(fs/fs-writeback.c)
  87 *    ->i_pages lock		(__sync_single_inode)
  88 *
  89 *  ->i_mmap_rwsem
  90 *    ->anon_vma.lock		(vma_adjust)
  91 *
  92 *  ->anon_vma.lock
  93 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  94 *
  95 *  ->page_table_lock or pte_lock
  96 *    ->swap_lock		(try_to_unmap_one)
  97 *    ->private_lock		(try_to_unmap_one)
  98 *    ->i_pages lock		(try_to_unmap_one)
  99 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
 100 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
 101 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 102 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 103 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 105 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 106 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 107 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 108 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 109 *
 110 * ->i_mmap_rwsem
 111 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 112 */
 113
 114static int page_cache_tree_insert(struct address_space *mapping,
 115				  struct page *page, void **shadowp)
 116{
 117	struct radix_tree_node *node;
 118	void **slot;
 119	int error;
 120
 121	error = __radix_tree_create(&mapping->i_pages, page->index, 0,
 122				    &node, &slot);
 123	if (error)
 124		return error;
 125	if (*slot) {
 126		void *p;
 127
 128		p = radix_tree_deref_slot_protected(slot,
 129						    &mapping->i_pages.xa_lock);
 130		if (!radix_tree_exceptional_entry(p))
 131			return -EEXIST;
 132
 133		mapping->nrexceptional--;
 134		if (shadowp)
 135			*shadowp = p;
 136	}
 137	__radix_tree_replace(&mapping->i_pages, node, slot, page,
 138			     workingset_lookup_update(mapping));
 139	mapping->nrpages++;
 140	return 0;
 141}
 142
 143static void page_cache_tree_delete(struct address_space *mapping,
 144				   struct page *page, void *shadow)
 145{
 146	int i, nr;
 
 
 
 147
 148	/* hugetlb pages are represented by one entry in the radix tree */
 149	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 
 
 
 150
 151	VM_BUG_ON_PAGE(!PageLocked(page), page);
 152	VM_BUG_ON_PAGE(PageTail(page), page);
 153	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 154
 155	for (i = 0; i < nr; i++) {
 156		struct radix_tree_node *node;
 157		void **slot;
 158
 159		__radix_tree_lookup(&mapping->i_pages, page->index + i,
 160				    &node, &slot);
 161
 162		VM_BUG_ON_PAGE(!node && nr != 1, page);
 163
 164		radix_tree_clear_tags(&mapping->i_pages, node, slot);
 165		__radix_tree_replace(&mapping->i_pages, node, slot, shadow,
 166				workingset_lookup_update(mapping));
 167	}
 168
 169	page->mapping = NULL;
 170	/* Leave page->index set: truncation lookup relies upon it */
 171
 172	if (shadow) {
 173		mapping->nrexceptional += nr;
 174		/*
 175		 * Make sure the nrexceptional update is committed before
 176		 * the nrpages update so that final truncate racing
 177		 * with reclaim does not see both counters 0 at the
 178		 * same time and miss a shadow entry.
 179		 */
 180		smp_wmb();
 181	}
 182	mapping->nrpages -= nr;
 183}
 184
 185static void unaccount_page_cache_page(struct address_space *mapping,
 186				      struct page *page)
 187{
 188	int nr;
 189
 190	/*
 191	 * if we're uptodate, flush out into the cleancache, otherwise
 192	 * invalidate any existing cleancache entries.  We can't leave
 193	 * stale data around in the cleancache once our page is gone
 194	 */
 195	if (PageUptodate(page) && PageMappedToDisk(page))
 196		cleancache_put_page(page);
 197	else
 198		cleancache_invalidate_page(mapping, page);
 199
 200	VM_BUG_ON_PAGE(PageTail(page), page);
 201	VM_BUG_ON_PAGE(page_mapped(page), page);
 202	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 203		int mapcount;
 204
 205		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 206			 current->comm, page_to_pfn(page));
 207		dump_page(page, "still mapped when deleted");
 208		dump_stack();
 209		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 210
 211		mapcount = page_mapcount(page);
 212		if (mapping_exiting(mapping) &&
 213		    page_count(page) >= mapcount + 2) {
 214			/*
 215			 * All vmas have already been torn down, so it's
 216			 * a good bet that actually the page is unmapped,
 217			 * and we'd prefer not to leak it: if we're wrong,
 218			 * some other bad page check should catch it later.
 219			 */
 220			page_mapcount_reset(page);
 221			page_ref_sub(page, mapcount);
 222		}
 223	}
 224
 225	/* hugetlb pages do not participate in page cache accounting. */
 226	if (PageHuge(page))
 227		return;
 228
 229	nr = hpage_nr_pages(page);
 230
 231	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 232	if (PageSwapBacked(page)) {
 233		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 234		if (PageTransHuge(page))
 235			__dec_node_page_state(page, NR_SHMEM_THPS);
 236	} else {
 237		VM_BUG_ON_PAGE(PageTransHuge(page), page);
 
 238	}
 239
 240	/*
 241	 * At this point page must be either written or cleaned by
 242	 * truncate.  Dirty page here signals a bug and loss of
 243	 * unwritten data.
 244	 *
 245	 * This fixes dirty accounting after removing the page entirely
 246	 * but leaves PageDirty set: it has no effect for truncated
 247	 * page and anyway will be cleared before returning page into
 248	 * buddy allocator.
 249	 */
 250	if (WARN_ON_ONCE(PageDirty(page)))
 251		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 252}
 253
 254/*
 255 * Delete a page from the page cache and free it. Caller has to make
 256 * sure the page is locked and that nobody else uses it - or that usage
 257 * is safe.  The caller must hold the i_pages lock.
 258 */
 259void __delete_from_page_cache(struct page *page, void *shadow)
 260{
 261	struct address_space *mapping = page->mapping;
 262
 263	trace_mm_filemap_delete_from_page_cache(page);
 264
 265	unaccount_page_cache_page(mapping, page);
 266	page_cache_tree_delete(mapping, page, shadow);
 267}
 268
 269static void page_cache_free_page(struct address_space *mapping,
 270				struct page *page)
 271{
 272	void (*freepage)(struct page *);
 273
 274	freepage = mapping->a_ops->freepage;
 275	if (freepage)
 276		freepage(page);
 277
 278	if (PageTransHuge(page) && !PageHuge(page)) {
 279		page_ref_sub(page, HPAGE_PMD_NR);
 280		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 281	} else {
 282		put_page(page);
 283	}
 284}
 285
 286/**
 287 * delete_from_page_cache - delete page from page cache
 288 * @page: the page which the kernel is trying to remove from page cache
 289 *
 290 * This must be called only on pages that have been verified to be in the page
 291 * cache and locked.  It will never put the page into the free list, the caller
 292 * has a reference on the page.
 293 */
 294void delete_from_page_cache(struct page *page)
 295{
 296	struct address_space *mapping = page_mapping(page);
 297	unsigned long flags;
 298
 299	BUG_ON(!PageLocked(page));
 300	xa_lock_irqsave(&mapping->i_pages, flags);
 301	__delete_from_page_cache(page, NULL);
 302	xa_unlock_irqrestore(&mapping->i_pages, flags);
 303
 304	page_cache_free_page(mapping, page);
 305}
 306EXPORT_SYMBOL(delete_from_page_cache);
 307
 308/*
 309 * page_cache_tree_delete_batch - delete several pages from page cache
 310 * @mapping: the mapping to which pages belong
 311 * @pvec: pagevec with pages to delete
 312 *
 313 * The function walks over mapping->i_pages and removes pages passed in @pvec
 314 * from the mapping. The function expects @pvec to be sorted by page index.
 
 315 * It tolerates holes in @pvec (mapping entries at those indices are not
 316 * modified). The function expects only THP head pages to be present in the
 317 * @pvec and takes care to delete all corresponding tail pages from the
 318 * mapping as well.
 319 *
 320 * The function expects the i_pages lock to be held.
 321 */
 322static void
 323page_cache_tree_delete_batch(struct address_space *mapping,
 324			     struct pagevec *pvec)
 325{
 326	struct radix_tree_iter iter;
 327	void **slot;
 328	int total_pages = 0;
 329	int i = 0, tail_pages = 0;
 330	struct page *page;
 331	pgoff_t start;
 332
 333	start = pvec->pages[0]->index;
 334	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
 335		if (i >= pagevec_count(pvec) && !tail_pages)
 336			break;
 337		page = radix_tree_deref_slot_protected(slot,
 338						       &mapping->i_pages.xa_lock);
 339		if (radix_tree_exceptional_entry(page))
 340			continue;
 341		if (!tail_pages) {
 342			/*
 343			 * Some page got inserted in our range? Skip it. We
 344			 * have our pages locked so they are protected from
 345			 * being removed.
 346			 */
 347			if (page != pvec->pages[i])
 348				continue;
 349			WARN_ON_ONCE(!PageLocked(page));
 350			if (PageTransHuge(page) && !PageHuge(page))
 351				tail_pages = HPAGE_PMD_NR - 1;
 
 
 
 
 
 352			page->mapping = NULL;
 353			/*
 354			 * Leave page->index set: truncation lookup relies
 355			 * upon it
 356			 */
 
 
 
 
 357			i++;
 358		} else {
 359			tail_pages--;
 360		}
 361		radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
 362		__radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
 363				workingset_lookup_update(mapping));
 364		total_pages++;
 365	}
 366	mapping->nrpages -= total_pages;
 367}
 368
 369void delete_from_page_cache_batch(struct address_space *mapping,
 370				  struct pagevec *pvec)
 371{
 372	int i;
 373	unsigned long flags;
 374
 375	if (!pagevec_count(pvec))
 376		return;
 377
 378	xa_lock_irqsave(&mapping->i_pages, flags);
 379	for (i = 0; i < pagevec_count(pvec); i++) {
 380		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 381
 382		unaccount_page_cache_page(mapping, pvec->pages[i]);
 383	}
 384	page_cache_tree_delete_batch(mapping, pvec);
 385	xa_unlock_irqrestore(&mapping->i_pages, flags);
 386
 387	for (i = 0; i < pagevec_count(pvec); i++)
 388		page_cache_free_page(mapping, pvec->pages[i]);
 389}
 390
 391int filemap_check_errors(struct address_space *mapping)
 392{
 393	int ret = 0;
 394	/* Check for outstanding write errors */
 395	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 396	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 397		ret = -ENOSPC;
 398	if (test_bit(AS_EIO, &mapping->flags) &&
 399	    test_and_clear_bit(AS_EIO, &mapping->flags))
 400		ret = -EIO;
 401	return ret;
 402}
 403EXPORT_SYMBOL(filemap_check_errors);
 404
 405static int filemap_check_and_keep_errors(struct address_space *mapping)
 406{
 407	/* Check for outstanding write errors */
 408	if (test_bit(AS_EIO, &mapping->flags))
 409		return -EIO;
 410	if (test_bit(AS_ENOSPC, &mapping->flags))
 411		return -ENOSPC;
 412	return 0;
 413}
 414
 415/**
 416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 417 * @mapping:	address space structure to write
 418 * @start:	offset in bytes where the range starts
 419 * @end:	offset in bytes where the range ends (inclusive)
 420 * @sync_mode:	enable synchronous operation
 421 *
 422 * Start writeback against all of a mapping's dirty pages that lie
 423 * within the byte offsets <start, end> inclusive.
 424 *
 425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 426 * opposed to a regular memory cleansing writeback.  The difference between
 427 * these two operations is that if a dirty page/buffer is encountered, it must
 428 * be waited upon, and not just skipped over.
 
 
 429 */
 430int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 431				loff_t end, int sync_mode)
 432{
 433	int ret;
 434	struct writeback_control wbc = {
 435		.sync_mode = sync_mode,
 436		.nr_to_write = LONG_MAX,
 437		.range_start = start,
 438		.range_end = end,
 439	};
 440
 441	if (!mapping_cap_writeback_dirty(mapping))
 
 442		return 0;
 443
 444	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 445	ret = do_writepages(mapping, &wbc);
 446	wbc_detach_inode(&wbc);
 447	return ret;
 448}
 449
 450static inline int __filemap_fdatawrite(struct address_space *mapping,
 451	int sync_mode)
 452{
 453	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 454}
 455
 456int filemap_fdatawrite(struct address_space *mapping)
 457{
 458	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 459}
 460EXPORT_SYMBOL(filemap_fdatawrite);
 461
 462int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 463				loff_t end)
 464{
 465	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 466}
 467EXPORT_SYMBOL(filemap_fdatawrite_range);
 468
 469/**
 470 * filemap_flush - mostly a non-blocking flush
 471 * @mapping:	target address_space
 472 *
 473 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 474 * purposes - I/O may not be started against all dirty pages.
 
 
 475 */
 476int filemap_flush(struct address_space *mapping)
 477{
 478	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 479}
 480EXPORT_SYMBOL(filemap_flush);
 481
 482/**
 483 * filemap_range_has_page - check if a page exists in range.
 484 * @mapping:           address space within which to check
 485 * @start_byte:        offset in bytes where the range starts
 486 * @end_byte:          offset in bytes where the range ends (inclusive)
 487 *
 488 * Find at least one page in the range supplied, usually used to check if
 489 * direct writing in this range will trigger a writeback.
 
 
 
 490 */
 491bool filemap_range_has_page(struct address_space *mapping,
 492			   loff_t start_byte, loff_t end_byte)
 493{
 494	pgoff_t index = start_byte >> PAGE_SHIFT;
 495	pgoff_t end = end_byte >> PAGE_SHIFT;
 496	struct page *page;
 
 
 497
 498	if (end_byte < start_byte)
 499		return false;
 500
 501	if (mapping->nrpages == 0)
 502		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503
 504	if (!find_get_pages_range(mapping, &index, end, 1, &page))
 505		return false;
 506	put_page(page);
 507	return true;
 508}
 509EXPORT_SYMBOL(filemap_range_has_page);
 510
 511static void __filemap_fdatawait_range(struct address_space *mapping,
 512				     loff_t start_byte, loff_t end_byte)
 513{
 514	pgoff_t index = start_byte >> PAGE_SHIFT;
 515	pgoff_t end = end_byte >> PAGE_SHIFT;
 516	struct pagevec pvec;
 517	int nr_pages;
 518
 519	if (end_byte < start_byte)
 520		return;
 521
 522	pagevec_init(&pvec);
 523	while (index <= end) {
 524		unsigned i;
 525
 526		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 527				end, PAGECACHE_TAG_WRITEBACK);
 528		if (!nr_pages)
 529			break;
 530
 531		for (i = 0; i < nr_pages; i++) {
 532			struct page *page = pvec.pages[i];
 533
 534			wait_on_page_writeback(page);
 535			ClearPageError(page);
 536		}
 537		pagevec_release(&pvec);
 538		cond_resched();
 539	}
 540}
 541
 542/**
 543 * filemap_fdatawait_range - wait for writeback to complete
 544 * @mapping:		address space structure to wait for
 545 * @start_byte:		offset in bytes where the range starts
 546 * @end_byte:		offset in bytes where the range ends (inclusive)
 547 *
 548 * Walk the list of under-writeback pages of the given address space
 549 * in the given range and wait for all of them.  Check error status of
 550 * the address space and return it.
 551 *
 552 * Since the error status of the address space is cleared by this function,
 553 * callers are responsible for checking the return value and handling and/or
 554 * reporting the error.
 
 
 555 */
 556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 557			    loff_t end_byte)
 558{
 559	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 560	return filemap_check_errors(mapping);
 561}
 562EXPORT_SYMBOL(filemap_fdatawait_range);
 563
 564/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565 * file_fdatawait_range - wait for writeback to complete
 566 * @file:		file pointing to address space structure to wait for
 567 * @start_byte:		offset in bytes where the range starts
 568 * @end_byte:		offset in bytes where the range ends (inclusive)
 569 *
 570 * Walk the list of under-writeback pages of the address space that file
 571 * refers to, in the given range and wait for all of them.  Check error
 572 * status of the address space vs. the file->f_wb_err cursor and return it.
 573 *
 574 * Since the error status of the file is advanced by this function,
 575 * callers are responsible for checking the return value and handling and/or
 576 * reporting the error.
 
 
 577 */
 578int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 579{
 580	struct address_space *mapping = file->f_mapping;
 581
 582	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 583	return file_check_and_advance_wb_err(file);
 584}
 585EXPORT_SYMBOL(file_fdatawait_range);
 586
 587/**
 588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 589 * @mapping: address space structure to wait for
 590 *
 591 * Walk the list of under-writeback pages of the given address space
 592 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 593 * does not clear error status of the address space.
 594 *
 595 * Use this function if callers don't handle errors themselves.  Expected
 596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 597 * fsfreeze(8)
 
 
 598 */
 599int filemap_fdatawait_keep_errors(struct address_space *mapping)
 600{
 601	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 602	return filemap_check_and_keep_errors(mapping);
 603}
 604EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 605
 
 606static bool mapping_needs_writeback(struct address_space *mapping)
 607{
 608	return (!dax_mapping(mapping) && mapping->nrpages) ||
 609	    (dax_mapping(mapping) && mapping->nrexceptional);
 610}
 611
 612int filemap_write_and_wait(struct address_space *mapping)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613{
 614	int err = 0;
 
 
 615
 616	if (mapping_needs_writeback(mapping)) {
 617		err = filemap_fdatawrite(mapping);
 618		/*
 619		 * Even if the above returned error, the pages may be
 620		 * written partially (e.g. -ENOSPC), so we wait for it.
 621		 * But the -EIO is special case, it may indicate the worst
 622		 * thing (e.g. bug) happened, so we avoid waiting for it.
 623		 */
 624		if (err != -EIO) {
 625			int err2 = filemap_fdatawait(mapping);
 626			if (!err)
 627				err = err2;
 628		} else {
 629			/* Clear any previously stored errors */
 630			filemap_check_errors(mapping);
 631		}
 632	} else {
 633		err = filemap_check_errors(mapping);
 634	}
 635	return err;
 
 636}
 637EXPORT_SYMBOL(filemap_write_and_wait);
 638
 639/**
 640 * filemap_write_and_wait_range - write out & wait on a file range
 641 * @mapping:	the address_space for the pages
 642 * @lstart:	offset in bytes where the range starts
 643 * @lend:	offset in bytes where the range ends (inclusive)
 644 *
 645 * Write out and wait upon file offsets lstart->lend, inclusive.
 646 *
 647 * Note that @lend is inclusive (describes the last byte to be written) so
 648 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 649 */
 650int filemap_write_and_wait_range(struct address_space *mapping,
 651				 loff_t lstart, loff_t lend)
 652{
 653	int err = 0;
 654
 655	if (mapping_needs_writeback(mapping)) {
 656		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 657						 WB_SYNC_ALL);
 658		/* See comment of filemap_write_and_wait() */
 
 
 
 
 
 659		if (err != -EIO) {
 660			int err2 = filemap_fdatawait_range(mapping,
 661						lstart, lend);
 662			if (!err)
 663				err = err2;
 664		} else {
 665			/* Clear any previously stored errors */
 666			filemap_check_errors(mapping);
 667		}
 668	} else {
 669		err = filemap_check_errors(mapping);
 670	}
 671	return err;
 672}
 673EXPORT_SYMBOL(filemap_write_and_wait_range);
 674
 675void __filemap_set_wb_err(struct address_space *mapping, int err)
 676{
 677	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 678
 679	trace_filemap_set_wb_err(mapping, eseq);
 680}
 681EXPORT_SYMBOL(__filemap_set_wb_err);
 682
 683/**
 684 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 685 * 				   and advance wb_err to current one
 686 * @file: struct file on which the error is being reported
 687 *
 688 * When userland calls fsync (or something like nfsd does the equivalent), we
 689 * want to report any writeback errors that occurred since the last fsync (or
 690 * since the file was opened if there haven't been any).
 691 *
 692 * Grab the wb_err from the mapping. If it matches what we have in the file,
 693 * then just quickly return 0. The file is all caught up.
 694 *
 695 * If it doesn't match, then take the mapping value, set the "seen" flag in
 696 * it and try to swap it into place. If it works, or another task beat us
 697 * to it with the new value, then update the f_wb_err and return the error
 698 * portion. The error at this point must be reported via proper channels
 699 * (a'la fsync, or NFS COMMIT operation, etc.).
 700 *
 701 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 702 * value is protected by the f_lock since we must ensure that it reflects
 703 * the latest value swapped in for this file descriptor.
 
 
 704 */
 705int file_check_and_advance_wb_err(struct file *file)
 706{
 707	int err = 0;
 708	errseq_t old = READ_ONCE(file->f_wb_err);
 709	struct address_space *mapping = file->f_mapping;
 710
 711	/* Locklessly handle the common case where nothing has changed */
 712	if (errseq_check(&mapping->wb_err, old)) {
 713		/* Something changed, must use slow path */
 714		spin_lock(&file->f_lock);
 715		old = file->f_wb_err;
 716		err = errseq_check_and_advance(&mapping->wb_err,
 717						&file->f_wb_err);
 718		trace_file_check_and_advance_wb_err(file, old);
 719		spin_unlock(&file->f_lock);
 720	}
 721
 722	/*
 723	 * We're mostly using this function as a drop in replacement for
 724	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 725	 * that the legacy code would have had on these flags.
 726	 */
 727	clear_bit(AS_EIO, &mapping->flags);
 728	clear_bit(AS_ENOSPC, &mapping->flags);
 729	return err;
 730}
 731EXPORT_SYMBOL(file_check_and_advance_wb_err);
 732
 733/**
 734 * file_write_and_wait_range - write out & wait on a file range
 735 * @file:	file pointing to address_space with pages
 736 * @lstart:	offset in bytes where the range starts
 737 * @lend:	offset in bytes where the range ends (inclusive)
 738 *
 739 * Write out and wait upon file offsets lstart->lend, inclusive.
 740 *
 741 * Note that @lend is inclusive (describes the last byte to be written) so
 742 * that this function can be used to write to the very end-of-file (end = -1).
 743 *
 744 * After writing out and waiting on the data, we check and advance the
 745 * f_wb_err cursor to the latest value, and return any errors detected there.
 
 
 746 */
 747int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 748{
 749	int err = 0, err2;
 750	struct address_space *mapping = file->f_mapping;
 751
 752	if (mapping_needs_writeback(mapping)) {
 753		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 754						 WB_SYNC_ALL);
 755		/* See comment of filemap_write_and_wait() */
 756		if (err != -EIO)
 757			__filemap_fdatawait_range(mapping, lstart, lend);
 758	}
 759	err2 = file_check_and_advance_wb_err(file);
 760	if (!err)
 761		err = err2;
 762	return err;
 763}
 764EXPORT_SYMBOL(file_write_and_wait_range);
 765
 766/**
 767 * replace_page_cache_page - replace a pagecache page with a new one
 768 * @old:	page to be replaced
 769 * @new:	page to replace with
 770 * @gfp_mask:	allocation mode
 771 *
 772 * This function replaces a page in the pagecache with a new one.  On
 773 * success it acquires the pagecache reference for the new page and
 774 * drops it for the old page.  Both the old and new pages must be
 775 * locked.  This function does not add the new page to the LRU, the
 776 * caller must do that.
 777 *
 778 * The remove + add is atomic.  The only way this function can fail is
 779 * memory allocation failure.
 780 */
 781int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 782{
 783	int error;
 
 
 
 
 784
 785	VM_BUG_ON_PAGE(!PageLocked(old), old);
 786	VM_BUG_ON_PAGE(!PageLocked(new), new);
 787	VM_BUG_ON_PAGE(new->mapping, new);
 788
 789	error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
 790	if (!error) {
 791		struct address_space *mapping = old->mapping;
 792		void (*freepage)(struct page *);
 793		unsigned long flags;
 794
 795		pgoff_t offset = old->index;
 796		freepage = mapping->a_ops->freepage;
 797
 798		get_page(new);
 799		new->mapping = mapping;
 800		new->index = offset;
 801
 802		xa_lock_irqsave(&mapping->i_pages, flags);
 803		__delete_from_page_cache(old, NULL);
 804		error = page_cache_tree_insert(mapping, new, NULL);
 805		BUG_ON(error);
 806
 807		/*
 808		 * hugetlb pages do not participate in page cache accounting.
 809		 */
 810		if (!PageHuge(new))
 811			__inc_node_page_state(new, NR_FILE_PAGES);
 812		if (PageSwapBacked(new))
 813			__inc_node_page_state(new, NR_SHMEM);
 814		xa_unlock_irqrestore(&mapping->i_pages, flags);
 815		mem_cgroup_migrate(old, new);
 816		radix_tree_preload_end();
 817		if (freepage)
 818			freepage(old);
 819		put_page(old);
 820	}
 821
 822	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823}
 824EXPORT_SYMBOL_GPL(replace_page_cache_page);
 825
 826static int __add_to_page_cache_locked(struct page *page,
 827				      struct address_space *mapping,
 828				      pgoff_t offset, gfp_t gfp_mask,
 829				      void **shadowp)
 830{
 
 831	int huge = PageHuge(page);
 832	struct mem_cgroup *memcg;
 833	int error;
 
 834
 835	VM_BUG_ON_PAGE(!PageLocked(page), page);
 836	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 
 
 
 
 
 837
 838	if (!huge) {
 839		error = mem_cgroup_try_charge(page, current->mm,
 840					      gfp_mask, &memcg, false);
 841		if (error)
 842			return error;
 
 843	}
 844
 845	error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
 846	if (error) {
 847		if (!huge)
 848			mem_cgroup_cancel_charge(page, memcg, false);
 849		return error;
 850	}
 851
 852	get_page(page);
 853	page->mapping = mapping;
 854	page->index = offset;
 855
 856	xa_lock_irq(&mapping->i_pages);
 857	error = page_cache_tree_insert(mapping, page, shadowp);
 858	radix_tree_preload_end();
 859	if (unlikely(error))
 860		goto err_insert;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861
 862	/* hugetlb pages do not participate in page cache accounting. */
 863	if (!huge)
 864		__inc_node_page_state(page, NR_FILE_PAGES);
 865	xa_unlock_irq(&mapping->i_pages);
 866	if (!huge)
 867		mem_cgroup_commit_charge(page, memcg, false, false);
 868	trace_mm_filemap_add_to_page_cache(page);
 869	return 0;
 870err_insert:
 871	page->mapping = NULL;
 872	/* Leave page->index set: truncation relies upon it */
 873	xa_unlock_irq(&mapping->i_pages);
 874	if (!huge)
 875		mem_cgroup_cancel_charge(page, memcg, false);
 876	put_page(page);
 877	return error;
 878}
 
 879
 880/**
 881 * add_to_page_cache_locked - add a locked page to the pagecache
 882 * @page:	page to add
 883 * @mapping:	the page's address_space
 884 * @offset:	page index
 885 * @gfp_mask:	page allocation mode
 886 *
 887 * This function is used to add a page to the pagecache. It must be locked.
 888 * This function does not add the page to the LRU.  The caller must do that.
 
 
 889 */
 890int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 891		pgoff_t offset, gfp_t gfp_mask)
 892{
 893	return __add_to_page_cache_locked(page, mapping, offset,
 894					  gfp_mask, NULL);
 895}
 896EXPORT_SYMBOL(add_to_page_cache_locked);
 897
 898int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 899				pgoff_t offset, gfp_t gfp_mask)
 900{
 901	void *shadow = NULL;
 902	int ret;
 903
 904	__SetPageLocked(page);
 905	ret = __add_to_page_cache_locked(page, mapping, offset,
 906					 gfp_mask, &shadow);
 907	if (unlikely(ret))
 908		__ClearPageLocked(page);
 909	else {
 910		/*
 911		 * The page might have been evicted from cache only
 912		 * recently, in which case it should be activated like
 913		 * any other repeatedly accessed page.
 914		 * The exception is pages getting rewritten; evicting other
 915		 * data from the working set, only to cache data that will
 916		 * get overwritten with something else, is a waste of memory.
 917		 */
 918		if (!(gfp_mask & __GFP_WRITE) &&
 919		    shadow && workingset_refault(shadow)) {
 920			SetPageActive(page);
 921			workingset_activation(page);
 922		} else
 923			ClearPageActive(page);
 924		lru_cache_add(page);
 925	}
 926	return ret;
 927}
 928EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 929
 930#ifdef CONFIG_NUMA
 931struct page *__page_cache_alloc(gfp_t gfp)
 932{
 933	int n;
 934	struct page *page;
 935
 936	if (cpuset_do_page_mem_spread()) {
 937		unsigned int cpuset_mems_cookie;
 938		do {
 939			cpuset_mems_cookie = read_mems_allowed_begin();
 940			n = cpuset_mem_spread_node();
 941			page = __alloc_pages_node(n, gfp, 0);
 942		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 943
 944		return page;
 945	}
 946	return alloc_pages(gfp, 0);
 947}
 948EXPORT_SYMBOL(__page_cache_alloc);
 949#endif
 950
 951/*
 952 * In order to wait for pages to become available there must be
 953 * waitqueues associated with pages. By using a hash table of
 954 * waitqueues where the bucket discipline is to maintain all
 955 * waiters on the same queue and wake all when any of the pages
 956 * become available, and for the woken contexts to check to be
 957 * sure the appropriate page became available, this saves space
 958 * at a cost of "thundering herd" phenomena during rare hash
 959 * collisions.
 960 */
 961#define PAGE_WAIT_TABLE_BITS 8
 962#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 963static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 964
 965static wait_queue_head_t *page_waitqueue(struct page *page)
 966{
 967	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 968}
 969
 970void __init pagecache_init(void)
 971{
 972	int i;
 973
 974	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 975		init_waitqueue_head(&page_wait_table[i]);
 976
 977	page_writeback_init();
 978}
 979
 980/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
 981struct wait_page_key {
 982	struct page *page;
 983	int bit_nr;
 984	int page_match;
 985};
 986
 987struct wait_page_queue {
 988	struct page *page;
 989	int bit_nr;
 990	wait_queue_entry_t wait;
 991};
 992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
 994{
 
 995	struct wait_page_key *key = arg;
 996	struct wait_page_queue *wait_page
 997		= container_of(wait, struct wait_page_queue, wait);
 998
 999	if (wait_page->page != key->page)
1000	       return 0;
1001	key->page_match = 1;
1002
1003	if (wait_page->bit_nr != key->bit_nr)
1004		return 0;
1005
1006	/* Stop walking if it's locked */
1007	if (test_bit(key->bit_nr, &key->page->flags))
1008		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009
1010	return autoremove_wake_function(wait, mode, sync, key);
 
 
 
 
 
 
 
 
 
 
 
1011}
1012
1013static void wake_up_page_bit(struct page *page, int bit_nr)
1014{
1015	wait_queue_head_t *q = page_waitqueue(page);
1016	struct wait_page_key key;
1017	unsigned long flags;
1018	wait_queue_entry_t bookmark;
1019
1020	key.page = page;
1021	key.bit_nr = bit_nr;
1022	key.page_match = 0;
1023
1024	bookmark.flags = 0;
1025	bookmark.private = NULL;
1026	bookmark.func = NULL;
1027	INIT_LIST_HEAD(&bookmark.entry);
1028
1029	spin_lock_irqsave(&q->lock, flags);
1030	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1031
1032	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1033		/*
1034		 * Take a breather from holding the lock,
1035		 * allow pages that finish wake up asynchronously
1036		 * to acquire the lock and remove themselves
1037		 * from wait queue
1038		 */
1039		spin_unlock_irqrestore(&q->lock, flags);
1040		cpu_relax();
1041		spin_lock_irqsave(&q->lock, flags);
1042		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1043	}
1044
1045	/*
1046	 * It is possible for other pages to have collided on the waitqueue
1047	 * hash, so in that case check for a page match. That prevents a long-
1048	 * term waiter
1049	 *
1050	 * It is still possible to miss a case here, when we woke page waiters
1051	 * and removed them from the waitqueue, but there are still other
1052	 * page waiters.
1053	 */
1054	if (!waitqueue_active(q) || !key.page_match) {
1055		ClearPageWaiters(page);
1056		/*
1057		 * It's possible to miss clearing Waiters here, when we woke
1058		 * our page waiters, but the hashed waitqueue has waiters for
1059		 * other pages on it.
1060		 *
1061		 * That's okay, it's a rare case. The next waker will clear it.
1062		 */
1063	}
1064	spin_unlock_irqrestore(&q->lock, flags);
1065}
1066
1067static void wake_up_page(struct page *page, int bit)
1068{
1069	if (!PageWaiters(page))
1070		return;
1071	wake_up_page_bit(page, bit);
1072}
1073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075		struct page *page, int bit_nr, int state, bool lock)
1076{
 
1077	struct wait_page_queue wait_page;
1078	wait_queue_entry_t *wait = &wait_page.wait;
1079	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081	init_wait(wait);
1082	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1083	wait->func = wake_page_function;
1084	wait_page.page = page;
1085	wait_page.bit_nr = bit_nr;
1086
1087	for (;;) {
1088		spin_lock_irq(&q->lock);
 
 
 
 
 
1089
1090		if (likely(list_empty(&wait->entry))) {
1091			__add_wait_queue_entry_tail(q, wait);
1092			SetPageWaiters(page);
1093		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094
1095		set_current_state(state);
1096
1097		spin_unlock_irq(&q->lock);
 
 
 
 
1098
1099		if (likely(test_bit(bit_nr, &page->flags))) {
1100			io_schedule();
 
1101		}
1102
1103		if (lock) {
1104			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1105				break;
1106		} else {
1107			if (!test_bit(bit_nr, &page->flags))
1108				break;
1109		}
1110
1111		if (unlikely(signal_pending_state(state, current))) {
1112			ret = -EINTR;
1113			break;
1114		}
 
 
 
 
 
 
 
 
 
 
 
1115	}
1116
 
 
 
 
 
 
1117	finish_wait(q, wait);
1118
 
 
 
 
 
 
1119	/*
1120	 * A signal could leave PageWaiters set. Clearing it here if
1121	 * !waitqueue_active would be possible (by open-coding finish_wait),
1122	 * but still fail to catch it in the case of wait hash collision. We
1123	 * already can fail to clear wait hash collision cases, so don't
1124	 * bother with signals either.
 
 
 
 
 
 
1125	 */
 
 
1126
1127	return ret;
1128}
1129
1130void wait_on_page_bit(struct page *page, int bit_nr)
1131{
1132	wait_queue_head_t *q = page_waitqueue(page);
1133	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1134}
1135EXPORT_SYMBOL(wait_on_page_bit);
1136
1137int wait_on_page_bit_killable(struct page *page, int bit_nr)
1138{
1139	wait_queue_head_t *q = page_waitqueue(page);
1140	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1141}
1142EXPORT_SYMBOL(wait_on_page_bit_killable);
1143
1144/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1146 * @page: Page defining the wait queue of interest
1147 * @waiter: Waiter to add to the queue
1148 *
1149 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1150 */
1151void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1152{
1153	wait_queue_head_t *q = page_waitqueue(page);
1154	unsigned long flags;
1155
1156	spin_lock_irqsave(&q->lock, flags);
1157	__add_wait_queue_entry_tail(q, waiter);
1158	SetPageWaiters(page);
1159	spin_unlock_irqrestore(&q->lock, flags);
1160}
1161EXPORT_SYMBOL_GPL(add_page_wait_queue);
1162
1163#ifndef clear_bit_unlock_is_negative_byte
1164
1165/*
1166 * PG_waiters is the high bit in the same byte as PG_lock.
1167 *
1168 * On x86 (and on many other architectures), we can clear PG_lock and
1169 * test the sign bit at the same time. But if the architecture does
1170 * not support that special operation, we just do this all by hand
1171 * instead.
1172 *
1173 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1174 * being cleared, but a memory barrier should be unneccssary since it is
1175 * in the same byte as PG_locked.
1176 */
1177static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1178{
1179	clear_bit_unlock(nr, mem);
1180	/* smp_mb__after_atomic(); */
1181	return test_bit(PG_waiters, mem);
1182}
1183
1184#endif
1185
1186/**
1187 * unlock_page - unlock a locked page
1188 * @page: the page
1189 *
1190 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1191 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1192 * mechanism between PageLocked pages and PageWriteback pages is shared.
1193 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1194 *
1195 * Note that this depends on PG_waiters being the sign bit in the byte
1196 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1197 * clear the PG_locked bit and test PG_waiters at the same time fairly
1198 * portably (architectures that do LL/SC can test any bit, while x86 can
1199 * test the sign bit).
1200 */
1201void unlock_page(struct page *page)
1202{
1203	BUILD_BUG_ON(PG_waiters != 7);
1204	page = compound_head(page);
1205	VM_BUG_ON_PAGE(!PageLocked(page), page);
1206	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1207		wake_up_page_bit(page, PG_locked);
1208}
1209EXPORT_SYMBOL(unlock_page);
1210
1211/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212 * end_page_writeback - end writeback against a page
1213 * @page: the page
1214 */
1215void end_page_writeback(struct page *page)
1216{
1217	/*
1218	 * TestClearPageReclaim could be used here but it is an atomic
1219	 * operation and overkill in this particular case. Failing to
1220	 * shuffle a page marked for immediate reclaim is too mild to
1221	 * justify taking an atomic operation penalty at the end of
1222	 * ever page writeback.
1223	 */
1224	if (PageReclaim(page)) {
1225		ClearPageReclaim(page);
1226		rotate_reclaimable_page(page);
1227	}
1228
 
 
 
 
 
 
 
1229	if (!test_clear_page_writeback(page))
1230		BUG();
1231
1232	smp_mb__after_atomic();
1233	wake_up_page(page, PG_writeback);
 
1234}
1235EXPORT_SYMBOL(end_page_writeback);
1236
1237/*
1238 * After completing I/O on a page, call this routine to update the page
1239 * flags appropriately
1240 */
1241void page_endio(struct page *page, bool is_write, int err)
1242{
1243	if (!is_write) {
1244		if (!err) {
1245			SetPageUptodate(page);
1246		} else {
1247			ClearPageUptodate(page);
1248			SetPageError(page);
1249		}
1250		unlock_page(page);
1251	} else {
1252		if (err) {
1253			struct address_space *mapping;
1254
1255			SetPageError(page);
1256			mapping = page_mapping(page);
1257			if (mapping)
1258				mapping_set_error(mapping, err);
1259		}
1260		end_page_writeback(page);
1261	}
1262}
1263EXPORT_SYMBOL_GPL(page_endio);
1264
1265/**
1266 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1267 * @__page: the page to lock
1268 */
1269void __lock_page(struct page *__page)
1270{
1271	struct page *page = compound_head(__page);
1272	wait_queue_head_t *q = page_waitqueue(page);
1273	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
 
1274}
1275EXPORT_SYMBOL(__lock_page);
1276
1277int __lock_page_killable(struct page *__page)
1278{
1279	struct page *page = compound_head(__page);
1280	wait_queue_head_t *q = page_waitqueue(page);
1281	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
 
1282}
1283EXPORT_SYMBOL_GPL(__lock_page_killable);
1284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285/*
1286 * Return values:
1287 * 1 - page is locked; mmap_sem is still held.
1288 * 0 - page is not locked.
1289 *     mmap_sem has been released (up_read()), unless flags had both
1290 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1291 *     which case mmap_sem is still held.
1292 *
1293 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1294 * with the page locked and the mmap_sem unperturbed.
1295 */
1296int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1297			 unsigned int flags)
1298{
1299	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1300		/*
1301		 * CAUTION! In this case, mmap_sem is not released
1302		 * even though return 0.
1303		 */
1304		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1305			return 0;
1306
1307		up_read(&mm->mmap_sem);
1308		if (flags & FAULT_FLAG_KILLABLE)
1309			wait_on_page_locked_killable(page);
1310		else
1311			wait_on_page_locked(page);
1312		return 0;
1313	} else {
1314		if (flags & FAULT_FLAG_KILLABLE) {
1315			int ret;
1316
1317			ret = __lock_page_killable(page);
1318			if (ret) {
1319				up_read(&mm->mmap_sem);
1320				return 0;
1321			}
1322		} else
1323			__lock_page(page);
1324		return 1;
1325	}
 
 
1326}
1327
1328/**
1329 * page_cache_next_hole - find the next hole (not-present entry)
1330 * @mapping: mapping
1331 * @index: index
1332 * @max_scan: maximum range to search
1333 *
1334 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1335 * lowest indexed hole.
1336 *
1337 * Returns: the index of the hole if found, otherwise returns an index
1338 * outside of the set specified (in which case 'return - index >=
1339 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1340 * be returned.
1341 *
1342 * page_cache_next_hole may be called under rcu_read_lock. However,
1343 * like radix_tree_gang_lookup, this will not atomically search a
1344 * snapshot of the tree at a single point in time. For example, if a
1345 * hole is created at index 5, then subsequently a hole is created at
1346 * index 10, page_cache_next_hole covering both indexes may return 10
1347 * if called under rcu_read_lock.
1348 */
1349pgoff_t page_cache_next_hole(struct address_space *mapping,
1350			     pgoff_t index, unsigned long max_scan)
1351{
1352	unsigned long i;
1353
1354	for (i = 0; i < max_scan; i++) {
1355		struct page *page;
1356
1357		page = radix_tree_lookup(&mapping->i_pages, index);
1358		if (!page || radix_tree_exceptional_entry(page))
1359			break;
1360		index++;
1361		if (index == 0)
1362			break;
1363	}
1364
1365	return index;
1366}
1367EXPORT_SYMBOL(page_cache_next_hole);
1368
1369/**
1370 * page_cache_prev_hole - find the prev hole (not-present entry)
1371 * @mapping: mapping
1372 * @index: index
1373 * @max_scan: maximum range to search
1374 *
1375 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1376 * the first hole.
1377 *
1378 * Returns: the index of the hole if found, otherwise returns an index
1379 * outside of the set specified (in which case 'index - return >=
1380 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1381 * will be returned.
 
1382 *
1383 * page_cache_prev_hole may be called under rcu_read_lock. However,
1384 * like radix_tree_gang_lookup, this will not atomically search a
1385 * snapshot of the tree at a single point in time. For example, if a
1386 * hole is created at index 10, then subsequently a hole is created at
1387 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1388 * called under rcu_read_lock.
1389 */
1390pgoff_t page_cache_prev_hole(struct address_space *mapping,
1391			     pgoff_t index, unsigned long max_scan)
1392{
1393	unsigned long i;
1394
1395	for (i = 0; i < max_scan; i++) {
1396		struct page *page;
1397
1398		page = radix_tree_lookup(&mapping->i_pages, index);
1399		if (!page || radix_tree_exceptional_entry(page))
 
1400			break;
1401		index--;
1402		if (index == ULONG_MAX)
1403			break;
1404	}
1405
1406	return index;
1407}
1408EXPORT_SYMBOL(page_cache_prev_hole);
1409
1410/**
1411 * find_get_entry - find and get a page cache entry
1412 * @mapping: the address_space to search
1413 * @offset: the page cache index
1414 *
1415 * Looks up the page cache slot at @mapping & @offset.  If there is a
1416 * page cache page, it is returned with an increased refcount.
1417 *
1418 * If the slot holds a shadow entry of a previously evicted page, or a
1419 * swap entry from shmem/tmpfs, it is returned.
1420 *
1421 * Otherwise, %NULL is returned.
1422 */
1423struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
 
1424{
1425	void **pagep;
1426	struct page *head, *page;
1427
1428	rcu_read_lock();
1429repeat:
1430	page = NULL;
1431	pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1432	if (pagep) {
1433		page = radix_tree_deref_slot(pagep);
1434		if (unlikely(!page))
1435			goto out;
1436		if (radix_tree_exception(page)) {
1437			if (radix_tree_deref_retry(page))
1438				goto repeat;
1439			/*
1440			 * A shadow entry of a recently evicted page,
1441			 * or a swap entry from shmem/tmpfs.  Return
1442			 * it without attempting to raise page count.
1443			 */
1444			goto out;
1445		}
1446
1447		head = compound_head(page);
1448		if (!page_cache_get_speculative(head))
1449			goto repeat;
1450
1451		/* The page was split under us? */
1452		if (compound_head(page) != head) {
1453			put_page(head);
1454			goto repeat;
1455		}
1456
1457		/*
1458		 * Has the page moved?
1459		 * This is part of the lockless pagecache protocol. See
1460		 * include/linux/pagemap.h for details.
1461		 */
1462		if (unlikely(page != *pagep)) {
1463			put_page(head);
1464			goto repeat;
1465		}
1466	}
1467out:
1468	rcu_read_unlock();
1469
1470	return page;
1471}
1472EXPORT_SYMBOL(find_get_entry);
1473
1474/**
1475 * find_lock_entry - locate, pin and lock a page cache entry
1476 * @mapping: the address_space to search
1477 * @offset: the page cache index
1478 *
1479 * Looks up the page cache slot at @mapping & @offset.  If there is a
1480 * page cache page, it is returned locked and with an increased
1481 * refcount.
1482 *
1483 * If the slot holds a shadow entry of a previously evicted page, or a
1484 * swap entry from shmem/tmpfs, it is returned.
1485 *
1486 * Otherwise, %NULL is returned.
1487 *
1488 * find_lock_entry() may sleep.
1489 */
1490struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1491{
1492	struct page *page;
1493
1494repeat:
1495	page = find_get_entry(mapping, offset);
1496	if (page && !radix_tree_exception(page)) {
1497		lock_page(page);
1498		/* Has the page been truncated? */
1499		if (unlikely(page_mapping(page) != mapping)) {
1500			unlock_page(page);
1501			put_page(page);
1502			goto repeat;
1503		}
1504		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1505	}
1506	return page;
1507}
1508EXPORT_SYMBOL(find_lock_entry);
1509
1510/**
1511 * pagecache_get_page - find and get a page reference
1512 * @mapping: the address_space to search
1513 * @offset: the page index
1514 * @fgp_flags: PCG flags
1515 * @gfp_mask: gfp mask to use for the page cache data page allocation
1516 *
1517 * Looks up the page cache slot at @mapping & @offset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518 *
1519 * PCG flags modify how the page is returned.
1520 *
1521 * @fgp_flags can be:
1522 *
1523 * - FGP_ACCESSED: the page will be marked accessed
1524 * - FGP_LOCK: Page is return locked
1525 * - FGP_CREAT: If page is not present then a new page is allocated using
1526 *   @gfp_mask and added to the page cache and the VM's LRU
1527 *   list. The page is returned locked and with an increased
1528 *   refcount. Otherwise, NULL is returned.
1529 *
1530 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1531 * if the GFP flags specified for FGP_CREAT are atomic.
1532 *
1533 * If there is a page cache page, it is returned with an increased refcount.
 
 
1534 */
1535struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1536	int fgp_flags, gfp_t gfp_mask)
1537{
1538	struct page *page;
1539
1540repeat:
1541	page = find_get_entry(mapping, offset);
1542	if (radix_tree_exceptional_entry(page))
 
 
1543		page = NULL;
 
1544	if (!page)
1545		goto no_page;
1546
1547	if (fgp_flags & FGP_LOCK) {
1548		if (fgp_flags & FGP_NOWAIT) {
1549			if (!trylock_page(page)) {
1550				put_page(page);
1551				return NULL;
1552			}
1553		} else {
1554			lock_page(page);
1555		}
1556
1557		/* Has the page been truncated? */
1558		if (unlikely(page->mapping != mapping)) {
1559			unlock_page(page);
1560			put_page(page);
1561			goto repeat;
1562		}
1563		VM_BUG_ON_PAGE(page->index != offset, page);
1564	}
1565
1566	if (page && (fgp_flags & FGP_ACCESSED))
1567		mark_page_accessed(page);
 
 
 
 
 
 
 
1568
1569no_page:
1570	if (!page && (fgp_flags & FGP_CREAT)) {
1571		int err;
1572		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1573			gfp_mask |= __GFP_WRITE;
1574		if (fgp_flags & FGP_NOFS)
1575			gfp_mask &= ~__GFP_FS;
1576
1577		page = __page_cache_alloc(gfp_mask);
1578		if (!page)
1579			return NULL;
1580
1581		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1582			fgp_flags |= FGP_LOCK;
1583
1584		/* Init accessed so avoid atomic mark_page_accessed later */
1585		if (fgp_flags & FGP_ACCESSED)
1586			__SetPageReferenced(page);
1587
1588		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1589		if (unlikely(err)) {
1590			put_page(page);
1591			page = NULL;
1592			if (err == -EEXIST)
1593				goto repeat;
1594		}
 
 
 
 
 
 
 
1595	}
1596
1597	return page;
1598}
1599EXPORT_SYMBOL(pagecache_get_page);
1600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601/**
1602 * find_get_entries - gang pagecache lookup
1603 * @mapping:	The address_space to search
1604 * @start:	The starting page cache index
1605 * @nr_entries:	The maximum number of entries
1606 * @entries:	Where the resulting entries are placed
1607 * @indices:	The cache indices corresponding to the entries in @entries
1608 *
1609 * find_get_entries() will search for and return a group of up to
1610 * @nr_entries entries in the mapping.  The entries are placed at
1611 * @entries.  find_get_entries() takes a reference against any actual
1612 * pages it returns.
1613 *
1614 * The search returns a group of mapping-contiguous page cache entries
1615 * with ascending indexes.  There may be holes in the indices due to
1616 * not-present pages.
1617 *
1618 * Any shadow entries of evicted pages, or swap entries from
1619 * shmem/tmpfs, are included in the returned array.
1620 *
1621 * find_get_entries() returns the number of pages and shadow entries
1622 * which were found.
 
 
 
 
1623 */
1624unsigned find_get_entries(struct address_space *mapping,
1625			  pgoff_t start, unsigned int nr_entries,
1626			  struct page **entries, pgoff_t *indices)
1627{
1628	void **slot;
 
1629	unsigned int ret = 0;
1630	struct radix_tree_iter iter;
1631
1632	if (!nr_entries)
1633		return 0;
1634
1635	rcu_read_lock();
1636	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1637		struct page *head, *page;
1638repeat:
1639		page = radix_tree_deref_slot(slot);
1640		if (unlikely(!page))
1641			continue;
1642		if (radix_tree_exception(page)) {
1643			if (radix_tree_deref_retry(page)) {
1644				slot = radix_tree_iter_retry(&iter);
1645				continue;
1646			}
1647			/*
1648			 * A shadow entry of a recently evicted page, a swap
1649			 * entry from shmem/tmpfs or a DAX entry.  Return it
1650			 * without attempting to raise page count.
1651			 */
1652			goto export;
1653		}
1654
1655		head = compound_head(page);
1656		if (!page_cache_get_speculative(head))
1657			goto repeat;
 
 
 
1658
1659		/* The page was split under us? */
1660		if (compound_head(page) != head) {
1661			put_page(head);
1662			goto repeat;
1663		}
1664
1665		/* Has the page moved? */
1666		if (unlikely(page != *slot)) {
1667			put_page(head);
1668			goto repeat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1669		}
1670export:
1671		indices[ret] = iter.index;
1672		entries[ret] = page;
1673		if (++ret == nr_entries)
1674			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675	}
1676	rcu_read_unlock();
1677	return ret;
 
1678}
1679
1680/**
1681 * find_get_pages_range - gang pagecache lookup
1682 * @mapping:	The address_space to search
1683 * @start:	The starting page index
1684 * @end:	The final page index (inclusive)
1685 * @nr_pages:	The maximum number of pages
1686 * @pages:	Where the resulting pages are placed
1687 *
1688 * find_get_pages_range() will search for and return a group of up to @nr_pages
1689 * pages in the mapping starting at index @start and up to index @end
1690 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1691 * a reference against the returned pages.
1692 *
1693 * The search returns a group of mapping-contiguous pages with ascending
1694 * indexes.  There may be holes in the indices due to not-present pages.
1695 * We also update @start to index the next page for the traversal.
1696 *
1697 * find_get_pages_range() returns the number of pages which were found. If this
1698 * number is smaller than @nr_pages, the end of specified range has been
1699 * reached.
1700 */
1701unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1702			      pgoff_t end, unsigned int nr_pages,
1703			      struct page **pages)
1704{
1705	struct radix_tree_iter iter;
1706	void **slot;
1707	unsigned ret = 0;
1708
1709	if (unlikely(!nr_pages))
1710		return 0;
1711
1712	rcu_read_lock();
1713	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1714		struct page *head, *page;
1715
1716		if (iter.index > end)
1717			break;
1718repeat:
1719		page = radix_tree_deref_slot(slot);
1720		if (unlikely(!page))
1721			continue;
1722
1723		if (radix_tree_exception(page)) {
1724			if (radix_tree_deref_retry(page)) {
1725				slot = radix_tree_iter_retry(&iter);
1726				continue;
1727			}
1728			/*
1729			 * A shadow entry of a recently evicted page,
1730			 * or a swap entry from shmem/tmpfs.  Skip
1731			 * over it.
1732			 */
1733			continue;
1734		}
1735
1736		head = compound_head(page);
1737		if (!page_cache_get_speculative(head))
1738			goto repeat;
1739
1740		/* The page was split under us? */
1741		if (compound_head(page) != head) {
1742			put_page(head);
1743			goto repeat;
1744		}
1745
1746		/* Has the page moved? */
1747		if (unlikely(page != *slot)) {
1748			put_page(head);
1749			goto repeat;
1750		}
1751
1752		pages[ret] = page;
1753		if (++ret == nr_pages) {
1754			*start = pages[ret - 1]->index + 1;
1755			goto out;
1756		}
1757	}
1758
1759	/*
1760	 * We come here when there is no page beyond @end. We take care to not
1761	 * overflow the index @start as it confuses some of the callers. This
1762	 * breaks the iteration when there is page at index -1 but that is
1763	 * already broken anyway.
1764	 */
1765	if (end == (pgoff_t)-1)
1766		*start = (pgoff_t)-1;
1767	else
1768		*start = end + 1;
1769out:
1770	rcu_read_unlock();
1771
1772	return ret;
1773}
1774
1775/**
1776 * find_get_pages_contig - gang contiguous pagecache lookup
1777 * @mapping:	The address_space to search
1778 * @index:	The starting page index
1779 * @nr_pages:	The maximum number of pages
1780 * @pages:	Where the resulting pages are placed
1781 *
1782 * find_get_pages_contig() works exactly like find_get_pages(), except
1783 * that the returned number of pages are guaranteed to be contiguous.
1784 *
1785 * find_get_pages_contig() returns the number of pages which were found.
1786 */
1787unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1788			       unsigned int nr_pages, struct page **pages)
1789{
1790	struct radix_tree_iter iter;
1791	void **slot;
1792	unsigned int ret = 0;
1793
1794	if (unlikely(!nr_pages))
1795		return 0;
1796
1797	rcu_read_lock();
1798	radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1799		struct page *head, *page;
1800repeat:
1801		page = radix_tree_deref_slot(slot);
1802		/* The hole, there no reason to continue */
1803		if (unlikely(!page))
1804			break;
1805
1806		if (radix_tree_exception(page)) {
1807			if (radix_tree_deref_retry(page)) {
1808				slot = radix_tree_iter_retry(&iter);
1809				continue;
1810			}
1811			/*
1812			 * A shadow entry of a recently evicted page,
1813			 * or a swap entry from shmem/tmpfs.  Stop
1814			 * looking for contiguous pages.
1815			 */
1816			break;
1817		}
1818
1819		head = compound_head(page);
1820		if (!page_cache_get_speculative(head))
1821			goto repeat;
1822
1823		/* The page was split under us? */
1824		if (compound_head(page) != head) {
1825			put_page(head);
1826			goto repeat;
1827		}
1828
1829		/* Has the page moved? */
1830		if (unlikely(page != *slot)) {
1831			put_page(head);
1832			goto repeat;
1833		}
1834
1835		/*
1836		 * must check mapping and index after taking the ref.
1837		 * otherwise we can get both false positives and false
1838		 * negatives, which is just confusing to the caller.
1839		 */
1840		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1841			put_page(page);
1842			break;
1843		}
1844
1845		pages[ret] = page;
 
 
 
 
 
 
 
1846		if (++ret == nr_pages)
1847			break;
 
 
 
 
 
1848	}
1849	rcu_read_unlock();
1850	return ret;
1851}
1852EXPORT_SYMBOL(find_get_pages_contig);
1853
1854/**
1855 * find_get_pages_range_tag - find and return pages in given range matching @tag
1856 * @mapping:	the address_space to search
1857 * @index:	the starting page index
1858 * @end:	The final page index (inclusive)
1859 * @tag:	the tag index
1860 * @nr_pages:	the maximum number of pages
1861 * @pages:	where the resulting pages are placed
1862 *
1863 * Like find_get_pages, except we only return pages which are tagged with
1864 * @tag.   We update @index to index the next page for the traversal.
 
 
 
1865 */
1866unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1867			pgoff_t end, int tag, unsigned int nr_pages,
1868			struct page **pages)
1869{
1870	struct radix_tree_iter iter;
1871	void **slot;
1872	unsigned ret = 0;
1873
1874	if (unlikely(!nr_pages))
1875		return 0;
1876
1877	rcu_read_lock();
1878	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1879		struct page *head, *page;
1880
1881		if (iter.index > end)
1882			break;
1883repeat:
1884		page = radix_tree_deref_slot(slot);
1885		if (unlikely(!page))
1886			continue;
1887
1888		if (radix_tree_exception(page)) {
1889			if (radix_tree_deref_retry(page)) {
1890				slot = radix_tree_iter_retry(&iter);
1891				continue;
1892			}
1893			/*
1894			 * A shadow entry of a recently evicted page.
1895			 *
1896			 * Those entries should never be tagged, but
1897			 * this tree walk is lockless and the tags are
1898			 * looked up in bulk, one radix tree node at a
1899			 * time, so there is a sizable window for page
1900			 * reclaim to evict a page we saw tagged.
1901			 *
1902			 * Skip over it.
1903			 */
1904			continue;
1905		}
1906
1907		head = compound_head(page);
1908		if (!page_cache_get_speculative(head))
1909			goto repeat;
1910
1911		/* The page was split under us? */
1912		if (compound_head(page) != head) {
1913			put_page(head);
1914			goto repeat;
1915		}
1916
1917		/* Has the page moved? */
1918		if (unlikely(page != *slot)) {
1919			put_page(head);
1920			goto repeat;
1921		}
1922
1923		pages[ret] = page;
1924		if (++ret == nr_pages) {
1925			*index = pages[ret - 1]->index + 1;
1926			goto out;
1927		}
1928	}
1929
1930	/*
1931	 * We come here when we got at @end. We take care to not overflow the
1932	 * index @index as it confuses some of the callers. This breaks the
1933	 * iteration when there is page at index -1 but that is already broken
1934	 * anyway.
1935	 */
1936	if (end == (pgoff_t)-1)
1937		*index = (pgoff_t)-1;
1938	else
1939		*index = end + 1;
1940out:
1941	rcu_read_unlock();
1942
1943	return ret;
1944}
1945EXPORT_SYMBOL(find_get_pages_range_tag);
1946
1947/**
1948 * find_get_entries_tag - find and return entries that match @tag
1949 * @mapping:	the address_space to search
1950 * @start:	the starting page cache index
1951 * @tag:	the tag index
1952 * @nr_entries:	the maximum number of entries
1953 * @entries:	where the resulting entries are placed
1954 * @indices:	the cache indices corresponding to the entries in @entries
1955 *
1956 * Like find_get_entries, except we only return entries which are tagged with
1957 * @tag.
1958 */
1959unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1960			int tag, unsigned int nr_entries,
1961			struct page **entries, pgoff_t *indices)
1962{
1963	void **slot;
1964	unsigned int ret = 0;
1965	struct radix_tree_iter iter;
1966
1967	if (!nr_entries)
1968		return 0;
1969
1970	rcu_read_lock();
1971	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1972		struct page *head, *page;
1973repeat:
1974		page = radix_tree_deref_slot(slot);
1975		if (unlikely(!page))
1976			continue;
1977		if (radix_tree_exception(page)) {
1978			if (radix_tree_deref_retry(page)) {
1979				slot = radix_tree_iter_retry(&iter);
1980				continue;
1981			}
1982
1983			/*
1984			 * A shadow entry of a recently evicted page, a swap
1985			 * entry from shmem/tmpfs or a DAX entry.  Return it
1986			 * without attempting to raise page count.
1987			 */
1988			goto export;
1989		}
1990
1991		head = compound_head(page);
1992		if (!page_cache_get_speculative(head))
1993			goto repeat;
1994
1995		/* The page was split under us? */
1996		if (compound_head(page) != head) {
1997			put_page(head);
1998			goto repeat;
1999		}
2000
2001		/* Has the page moved? */
2002		if (unlikely(page != *slot)) {
2003			put_page(head);
2004			goto repeat;
2005		}
2006export:
2007		indices[ret] = iter.index;
2008		entries[ret] = page;
2009		if (++ret == nr_entries)
2010			break;
2011	}
2012	rcu_read_unlock();
2013	return ret;
2014}
2015EXPORT_SYMBOL(find_get_entries_tag);
2016
2017/*
2018 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2019 * a _large_ part of the i/o request. Imagine the worst scenario:
2020 *
2021 *      ---R__________________________________________B__________
2022 *         ^ reading here                             ^ bad block(assume 4k)
2023 *
2024 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2025 * => failing the whole request => read(R) => read(R+1) =>
2026 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2027 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2028 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2029 *
2030 * It is going insane. Fix it by quickly scaling down the readahead size.
2031 */
2032static void shrink_readahead_size_eio(struct file *filp,
2033					struct file_ra_state *ra)
2034{
2035	ra->ra_pages /= 4;
2036}
2037
2038/**
2039 * generic_file_buffered_read - generic file read routine
2040 * @iocb:	the iocb to read
2041 * @iter:	data destination
2042 * @written:	already copied
2043 *
2044 * This is a generic file read routine, and uses the
2045 * mapping->a_ops->readpage() function for the actual low-level stuff.
2046 *
2047 * This is really ugly. But the goto's actually try to clarify some
2048 * of the logic when it comes to error handling etc.
 
 
 
2049 */
2050static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2051		struct iov_iter *iter, ssize_t written)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2052{
2053	struct file *filp = iocb->ki_filp;
2054	struct address_space *mapping = filp->f_mapping;
2055	struct inode *inode = mapping->host;
2056	struct file_ra_state *ra = &filp->f_ra;
2057	loff_t *ppos = &iocb->ki_pos;
2058	pgoff_t index;
2059	pgoff_t last_index;
2060	pgoff_t prev_index;
2061	unsigned long offset;      /* offset into pagecache page */
2062	unsigned int prev_offset;
2063	int error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064
2065	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
 
 
 
 
2066		return 0;
2067	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
 
 
 
2068
2069	index = *ppos >> PAGE_SHIFT;
2070	prev_index = ra->prev_pos >> PAGE_SHIFT;
2071	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2072	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2073	offset = *ppos & ~PAGE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2074
2075	for (;;) {
2076		struct page *page;
2077		pgoff_t end_index;
2078		loff_t isize;
2079		unsigned long nr, ret;
2080
 
 
 
 
2081		cond_resched();
2082find_page:
2083		if (fatal_signal_pending(current)) {
2084			error = -EINTR;
2085			goto out;
2086		}
2087
2088		page = find_get_page(mapping, index);
2089		if (!page) {
2090			if (iocb->ki_flags & IOCB_NOWAIT)
2091				goto would_block;
2092			page_cache_sync_readahead(mapping,
2093					ra, filp,
2094					index, last_index - index);
2095			page = find_get_page(mapping, index);
2096			if (unlikely(page == NULL))
2097				goto no_cached_page;
2098		}
2099		if (PageReadahead(page)) {
2100			page_cache_async_readahead(mapping,
2101					ra, filp, page,
2102					index, last_index - index);
2103		}
2104		if (!PageUptodate(page)) {
2105			if (iocb->ki_flags & IOCB_NOWAIT) {
2106				put_page(page);
2107				goto would_block;
2108			}
2109
2110			/*
2111			 * See comment in do_read_cache_page on why
2112			 * wait_on_page_locked is used to avoid unnecessarily
2113			 * serialisations and why it's safe.
2114			 */
2115			error = wait_on_page_locked_killable(page);
2116			if (unlikely(error))
2117				goto readpage_error;
2118			if (PageUptodate(page))
2119				goto page_ok;
2120
2121			if (inode->i_blkbits == PAGE_SHIFT ||
2122					!mapping->a_ops->is_partially_uptodate)
2123				goto page_not_up_to_date;
2124			/* pipes can't handle partially uptodate pages */
2125			if (unlikely(iter->type & ITER_PIPE))
2126				goto page_not_up_to_date;
2127			if (!trylock_page(page))
2128				goto page_not_up_to_date;
2129			/* Did it get truncated before we got the lock? */
2130			if (!page->mapping)
2131				goto page_not_up_to_date_locked;
2132			if (!mapping->a_ops->is_partially_uptodate(page,
2133							offset, iter->count))
2134				goto page_not_up_to_date_locked;
2135			unlock_page(page);
2136		}
2137page_ok:
2138		/*
2139		 * i_size must be checked after we know the page is Uptodate.
2140		 *
2141		 * Checking i_size after the check allows us to calculate
2142		 * the correct value for "nr", which means the zero-filled
2143		 * part of the page is not copied back to userspace (unless
2144		 * another truncate extends the file - this is desired though).
2145		 */
2146
2147		isize = i_size_read(inode);
2148		end_index = (isize - 1) >> PAGE_SHIFT;
2149		if (unlikely(!isize || index > end_index)) {
2150			put_page(page);
2151			goto out;
2152		}
2153
2154		/* nr is the maximum number of bytes to copy from this page */
2155		nr = PAGE_SIZE;
2156		if (index == end_index) {
2157			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2158			if (nr <= offset) {
2159				put_page(page);
2160				goto out;
2161			}
2162		}
2163		nr = nr - offset;
2164
2165		/* If users can be writing to this page using arbitrary
2166		 * virtual addresses, take care about potential aliasing
2167		 * before reading the page on the kernel side.
2168		 */
2169		if (mapping_writably_mapped(mapping))
2170			flush_dcache_page(page);
2171
2172		/*
2173		 * When a sequential read accesses a page several times,
2174		 * only mark it as accessed the first time.
2175		 */
2176		if (prev_index != index || offset != prev_offset)
2177			mark_page_accessed(page);
2178		prev_index = index;
2179
2180		/*
2181		 * Ok, we have the page, and it's up-to-date, so
2182		 * now we can copy it to user space...
2183		 */
 
 
 
2184
2185		ret = copy_page_to_iter(page, offset, nr, iter);
2186		offset += ret;
2187		index += offset >> PAGE_SHIFT;
2188		offset &= ~PAGE_MASK;
2189		prev_offset = offset;
2190
2191		put_page(page);
2192		written += ret;
2193		if (!iov_iter_count(iter))
2194			goto out;
2195		if (ret < nr) {
2196			error = -EFAULT;
2197			goto out;
2198		}
2199		continue;
2200
2201page_not_up_to_date:
2202		/* Get exclusive access to the page ... */
2203		error = lock_page_killable(page);
2204		if (unlikely(error))
2205			goto readpage_error;
2206
2207page_not_up_to_date_locked:
2208		/* Did it get truncated before we got the lock? */
2209		if (!page->mapping) {
2210			unlock_page(page);
2211			put_page(page);
2212			continue;
2213		}
2214
2215		/* Did somebody else fill it already? */
2216		if (PageUptodate(page)) {
2217			unlock_page(page);
2218			goto page_ok;
2219		}
2220
2221readpage:
2222		/*
2223		 * A previous I/O error may have been due to temporary
2224		 * failures, eg. multipath errors.
2225		 * PG_error will be set again if readpage fails.
2226		 */
2227		ClearPageError(page);
2228		/* Start the actual read. The read will unlock the page. */
2229		error = mapping->a_ops->readpage(filp, page);
 
 
2230
2231		if (unlikely(error)) {
2232			if (error == AOP_TRUNCATED_PAGE) {
2233				put_page(page);
2234				error = 0;
2235				goto find_page;
2236			}
2237			goto readpage_error;
2238		}
2239
2240		if (!PageUptodate(page)) {
2241			error = lock_page_killable(page);
2242			if (unlikely(error))
2243				goto readpage_error;
2244			if (!PageUptodate(page)) {
2245				if (page->mapping == NULL) {
2246					/*
2247					 * invalidate_mapping_pages got it
2248					 */
2249					unlock_page(page);
2250					put_page(page);
2251					goto find_page;
2252				}
2253				unlock_page(page);
2254				shrink_readahead_size_eio(filp, ra);
2255				error = -EIO;
2256				goto readpage_error;
2257			}
2258			unlock_page(page);
2259		}
2260
2261		goto page_ok;
 
 
2262
2263readpage_error:
2264		/* UHHUH! A synchronous read error occurred. Report it */
2265		put_page(page);
2266		goto out;
2267
2268no_cached_page:
2269		/*
2270		 * Ok, it wasn't cached, so we need to create a new
2271		 * page..
2272		 */
2273		page = page_cache_alloc(mapping);
2274		if (!page) {
2275			error = -ENOMEM;
2276			goto out;
2277		}
2278		error = add_to_page_cache_lru(page, mapping, index,
2279				mapping_gfp_constraint(mapping, GFP_KERNEL));
2280		if (error) {
2281			put_page(page);
2282			if (error == -EEXIST) {
2283				error = 0;
2284				goto find_page;
2285			}
2286			goto out;
2287		}
2288		goto readpage;
2289	}
 
 
 
2290
2291would_block:
2292	error = -EAGAIN;
2293out:
2294	ra->prev_pos = prev_index;
2295	ra->prev_pos <<= PAGE_SHIFT;
2296	ra->prev_pos |= prev_offset;
2297
2298	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2299	file_accessed(filp);
2300	return written ? written : error;
 
2301}
 
2302
2303/**
2304 * generic_file_read_iter - generic filesystem read routine
2305 * @iocb:	kernel I/O control block
2306 * @iter:	destination for the data read
2307 *
2308 * This is the "read_iter()" routine for all filesystems
2309 * that can use the page cache directly.
 
 
 
 
 
 
 
 
 
 
 
 
 
2310 */
2311ssize_t
2312generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2313{
2314	size_t count = iov_iter_count(iter);
2315	ssize_t retval = 0;
2316
2317	if (!count)
2318		goto out; /* skip atime */
2319
2320	if (iocb->ki_flags & IOCB_DIRECT) {
2321		struct file *file = iocb->ki_filp;
2322		struct address_space *mapping = file->f_mapping;
2323		struct inode *inode = mapping->host;
2324		loff_t size;
2325
2326		size = i_size_read(inode);
2327		if (iocb->ki_flags & IOCB_NOWAIT) {
2328			if (filemap_range_has_page(mapping, iocb->ki_pos,
2329						   iocb->ki_pos + count - 1))
2330				return -EAGAIN;
2331		} else {
2332			retval = filemap_write_and_wait_range(mapping,
2333						iocb->ki_pos,
2334					        iocb->ki_pos + count - 1);
2335			if (retval < 0)
2336				goto out;
2337		}
2338
2339		file_accessed(file);
2340
2341		retval = mapping->a_ops->direct_IO(iocb, iter);
2342		if (retval >= 0) {
2343			iocb->ki_pos += retval;
2344			count -= retval;
2345		}
2346		iov_iter_revert(iter, count - iov_iter_count(iter));
 
2347
2348		/*
2349		 * Btrfs can have a short DIO read if we encounter
2350		 * compressed extents, so if there was an error, or if
2351		 * we've already read everything we wanted to, or if
2352		 * there was a short read because we hit EOF, go ahead
2353		 * and return.  Otherwise fallthrough to buffered io for
2354		 * the rest of the read.  Buffered reads will not work for
2355		 * DAX files, so don't bother trying.
2356		 */
2357		if (retval < 0 || !count || iocb->ki_pos >= size ||
2358		    IS_DAX(inode))
2359			goto out;
2360	}
2361
2362	retval = generic_file_buffered_read(iocb, iter, retval);
2363out:
2364	return retval;
2365}
2366EXPORT_SYMBOL(generic_file_read_iter);
2367
2368#ifdef CONFIG_MMU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369/**
2370 * page_cache_read - adds requested page to the page cache if not already there
2371 * @file:	file to read
2372 * @offset:	page index
2373 * @gfp_mask:	memory allocation flags
 
2374 *
2375 * This adds the requested page to the page cache if it isn't already there,
2376 * and schedules an I/O to read in its contents from disk.
 
 
 
 
 
 
 
 
2377 */
2378static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
 
2379{
2380	struct address_space *mapping = file->f_mapping;
 
 
2381	struct page *page;
2382	int ret;
2383
2384	do {
2385		page = __page_cache_alloc(gfp_mask);
2386		if (!page)
2387			return -ENOMEM;
2388
2389		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2390		if (ret == 0)
2391			ret = mapping->a_ops->readpage(file, page);
2392		else if (ret == -EEXIST)
2393			ret = 0; /* losing race to add is OK */
 
 
 
 
 
2394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395		put_page(page);
 
 
 
 
2396
2397	} while (ret == AOP_TRUNCATED_PAGE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2398
2399	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2400}
2401
2402#define MMAP_LOTSAMISS  (100)
2403
2404/*
2405 * Synchronous readahead happens when we don't even find
2406 * a page in the page cache at all.
 
 
 
2407 */
2408static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2409				   struct file_ra_state *ra,
2410				   struct file *file,
2411				   pgoff_t offset)
2412{
 
 
2413	struct address_space *mapping = file->f_mapping;
 
 
 
2414
2415	/* If we don't want any read-ahead, don't bother */
2416	if (vma->vm_flags & VM_RAND_READ)
2417		return;
2418	if (!ra->ra_pages)
2419		return;
2420
2421	if (vma->vm_flags & VM_SEQ_READ) {
2422		page_cache_sync_readahead(mapping, ra, file, offset,
2423					  ra->ra_pages);
2424		return;
2425	}
2426
2427	/* Avoid banging the cache line if not needed */
2428	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2429		ra->mmap_miss++;
 
2430
2431	/*
2432	 * Do we miss much more than hit in this file? If so,
2433	 * stop bothering with read-ahead. It will only hurt.
2434	 */
2435	if (ra->mmap_miss > MMAP_LOTSAMISS)
2436		return;
2437
2438	/*
2439	 * mmap read-around
2440	 */
2441	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
 
2442	ra->size = ra->ra_pages;
2443	ra->async_size = ra->ra_pages / 4;
2444	ra_submit(ra, mapping, file);
 
 
2445}
2446
2447/*
2448 * Asynchronous readahead happens when we find the page and PG_readahead,
2449 * so we want to possibly extend the readahead further..
 
2450 */
2451static void do_async_mmap_readahead(struct vm_area_struct *vma,
2452				    struct file_ra_state *ra,
2453				    struct file *file,
2454				    struct page *page,
2455				    pgoff_t offset)
2456{
 
 
2457	struct address_space *mapping = file->f_mapping;
 
 
 
2458
2459	/* If we don't want any read-ahead, don't bother */
2460	if (vma->vm_flags & VM_RAND_READ)
2461		return;
2462	if (ra->mmap_miss > 0)
2463		ra->mmap_miss--;
2464	if (PageReadahead(page))
 
 
2465		page_cache_async_readahead(mapping, ra, file,
2466					   page, offset, ra->ra_pages);
 
 
2467}
2468
2469/**
2470 * filemap_fault - read in file data for page fault handling
2471 * @vmf:	struct vm_fault containing details of the fault
2472 *
2473 * filemap_fault() is invoked via the vma operations vector for a
2474 * mapped memory region to read in file data during a page fault.
2475 *
2476 * The goto's are kind of ugly, but this streamlines the normal case of having
2477 * it in the page cache, and handles the special cases reasonably without
2478 * having a lot of duplicated code.
2479 *
2480 * vma->vm_mm->mmap_sem must be held on entry.
2481 *
2482 * If our return value has VM_FAULT_RETRY set, it's because
2483 * lock_page_or_retry() returned 0.
2484 * The mmap_sem has usually been released in this case.
2485 * See __lock_page_or_retry() for the exception.
2486 *
2487 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2488 * has not been released.
2489 *
2490 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
 
 
2491 */
2492int filemap_fault(struct vm_fault *vmf)
2493{
2494	int error;
2495	struct file *file = vmf->vma->vm_file;
 
2496	struct address_space *mapping = file->f_mapping;
2497	struct file_ra_state *ra = &file->f_ra;
2498	struct inode *inode = mapping->host;
2499	pgoff_t offset = vmf->pgoff;
2500	pgoff_t max_off;
2501	struct page *page;
2502	int ret = 0;
2503
2504	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2505	if (unlikely(offset >= max_off))
2506		return VM_FAULT_SIGBUS;
2507
2508	/*
2509	 * Do we have something in the page cache already?
2510	 */
2511	page = find_get_page(mapping, offset);
2512	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2513		/*
2514		 * We found the page, so try async readahead before
2515		 * waiting for the lock.
2516		 */
2517		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2518	} else if (!page) {
2519		/* No page in the page cache at all */
2520		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2521		count_vm_event(PGMAJFAULT);
2522		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2523		ret = VM_FAULT_MAJOR;
 
2524retry_find:
2525		page = find_get_page(mapping, offset);
2526		if (!page)
2527			goto no_cached_page;
 
 
 
 
 
2528	}
2529
2530	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2531		put_page(page);
2532		return ret | VM_FAULT_RETRY;
2533	}
2534
2535	/* Did it get truncated? */
2536	if (unlikely(page->mapping != mapping)) {
2537		unlock_page(page);
2538		put_page(page);
2539		goto retry_find;
2540	}
2541	VM_BUG_ON_PAGE(page->index != offset, page);
2542
2543	/*
2544	 * We have a locked page in the page cache, now we need to check
2545	 * that it's up-to-date. If not, it is going to be due to an error.
2546	 */
2547	if (unlikely(!PageUptodate(page)))
2548		goto page_not_uptodate;
2549
2550	/*
 
 
 
 
 
 
 
 
 
 
2551	 * Found the page and have a reference on it.
2552	 * We must recheck i_size under page lock.
2553	 */
2554	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2555	if (unlikely(offset >= max_off)) {
2556		unlock_page(page);
2557		put_page(page);
2558		return VM_FAULT_SIGBUS;
2559	}
2560
2561	vmf->page = page;
2562	return ret | VM_FAULT_LOCKED;
2563
2564no_cached_page:
2565	/*
2566	 * We're only likely to ever get here if MADV_RANDOM is in
2567	 * effect.
2568	 */
2569	error = page_cache_read(file, offset, vmf->gfp_mask);
2570
2571	/*
2572	 * The page we want has now been added to the page cache.
2573	 * In the unlikely event that someone removed it in the
2574	 * meantime, we'll just come back here and read it again.
2575	 */
2576	if (error >= 0)
2577		goto retry_find;
2578
2579	/*
2580	 * An error return from page_cache_read can result if the
2581	 * system is low on memory, or a problem occurs while trying
2582	 * to schedule I/O.
2583	 */
2584	if (error == -ENOMEM)
2585		return VM_FAULT_OOM;
2586	return VM_FAULT_SIGBUS;
2587
2588page_not_uptodate:
2589	/*
2590	 * Umm, take care of errors if the page isn't up-to-date.
2591	 * Try to re-read it _once_. We do this synchronously,
2592	 * because there really aren't any performance issues here
2593	 * and we need to check for errors.
2594	 */
2595	ClearPageError(page);
2596	error = mapping->a_ops->readpage(file, page);
2597	if (!error) {
2598		wait_on_page_locked(page);
2599		if (!PageUptodate(page))
2600			error = -EIO;
2601	}
2602	put_page(page);
2603
2604	if (!error || error == AOP_TRUNCATED_PAGE)
2605		goto retry_find;
2606
2607	/* Things didn't work out. Return zero to tell the mm layer so. */
2608	shrink_readahead_size_eio(file, ra);
2609	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
2610}
2611EXPORT_SYMBOL(filemap_fault);
2612
2613void filemap_map_pages(struct vm_fault *vmf,
2614		pgoff_t start_pgoff, pgoff_t end_pgoff)
2615{
2616	struct radix_tree_iter iter;
2617	void **slot;
2618	struct file *file = vmf->vma->vm_file;
2619	struct address_space *mapping = file->f_mapping;
2620	pgoff_t last_pgoff = start_pgoff;
2621	unsigned long max_idx;
2622	struct page *head, *page;
2623
2624	rcu_read_lock();
2625	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2626		if (iter.index > end_pgoff)
2627			break;
2628repeat:
2629		page = radix_tree_deref_slot(slot);
2630		if (unlikely(!page))
2631			goto next;
2632		if (radix_tree_exception(page)) {
2633			if (radix_tree_deref_retry(page)) {
2634				slot = radix_tree_iter_retry(&iter);
2635				continue;
2636			}
2637			goto next;
2638		}
2639
2640		head = compound_head(page);
2641		if (!page_cache_get_speculative(head))
2642			goto repeat;
 
 
 
 
 
2643
2644		/* The page was split under us? */
2645		if (compound_head(page) != head) {
2646			put_page(head);
2647			goto repeat;
 
 
2648		}
 
 
2649
2650		/* Has the page moved? */
2651		if (unlikely(page != *slot)) {
2652			put_page(head);
2653			goto repeat;
2654		}
 
2655
2656		if (!PageUptodate(page) ||
2657				PageReadahead(page) ||
2658				PageHWPoison(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2659			goto skip;
2660		if (!trylock_page(page))
2661			goto skip;
2662
2663		if (page->mapping != mapping || !PageUptodate(page))
2664			goto unlock;
2665
2666		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2667		if (page->index >= max_idx)
2668			goto unlock;
2669
2670		if (file->f_ra.mmap_miss > 0)
2671			file->f_ra.mmap_miss--;
2672
2673		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2674		if (vmf->pte)
2675			vmf->pte += iter.index - last_pgoff;
2676		last_pgoff = iter.index;
2677		if (alloc_set_pte(vmf, NULL, page))
2678			goto unlock;
2679		unlock_page(page);
2680		goto next;
2681unlock:
2682		unlock_page(page);
2683skip:
2684		put_page(page);
2685next:
2686		/* Huge page is mapped? No need to proceed. */
2687		if (pmd_trans_huge(*vmf->pmd))
2688			break;
2689		if (iter.index == end_pgoff)
2690			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2691	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2692	rcu_read_unlock();
 
 
2693}
2694EXPORT_SYMBOL(filemap_map_pages);
2695
2696int filemap_page_mkwrite(struct vm_fault *vmf)
2697{
 
2698	struct page *page = vmf->page;
2699	struct inode *inode = file_inode(vmf->vma->vm_file);
2700	int ret = VM_FAULT_LOCKED;
2701
2702	sb_start_pagefault(inode->i_sb);
2703	file_update_time(vmf->vma->vm_file);
2704	lock_page(page);
2705	if (page->mapping != inode->i_mapping) {
2706		unlock_page(page);
2707		ret = VM_FAULT_NOPAGE;
2708		goto out;
2709	}
2710	/*
2711	 * We mark the page dirty already here so that when freeze is in
2712	 * progress, we are guaranteed that writeback during freezing will
2713	 * see the dirty page and writeprotect it again.
2714	 */
2715	set_page_dirty(page);
2716	wait_for_stable_page(page);
2717out:
2718	sb_end_pagefault(inode->i_sb);
2719	return ret;
2720}
2721
2722const struct vm_operations_struct generic_file_vm_ops = {
2723	.fault		= filemap_fault,
2724	.map_pages	= filemap_map_pages,
2725	.page_mkwrite	= filemap_page_mkwrite,
2726};
2727
2728/* This is used for a general mmap of a disk file */
2729
2730int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2731{
2732	struct address_space *mapping = file->f_mapping;
2733
2734	if (!mapping->a_ops->readpage)
2735		return -ENOEXEC;
2736	file_accessed(file);
2737	vma->vm_ops = &generic_file_vm_ops;
2738	return 0;
2739}
2740
2741/*
2742 * This is for filesystems which do not implement ->writepage.
2743 */
2744int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2745{
2746	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2747		return -EINVAL;
2748	return generic_file_mmap(file, vma);
2749}
2750#else
2751int filemap_page_mkwrite(struct vm_fault *vmf)
2752{
2753	return -ENOSYS;
2754}
2755int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2756{
2757	return -ENOSYS;
2758}
2759int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2760{
2761	return -ENOSYS;
2762}
2763#endif /* CONFIG_MMU */
2764
2765EXPORT_SYMBOL(filemap_page_mkwrite);
2766EXPORT_SYMBOL(generic_file_mmap);
2767EXPORT_SYMBOL(generic_file_readonly_mmap);
2768
2769static struct page *wait_on_page_read(struct page *page)
2770{
2771	if (!IS_ERR(page)) {
2772		wait_on_page_locked(page);
2773		if (!PageUptodate(page)) {
2774			put_page(page);
2775			page = ERR_PTR(-EIO);
2776		}
2777	}
2778	return page;
2779}
2780
2781static struct page *do_read_cache_page(struct address_space *mapping,
2782				pgoff_t index,
2783				int (*filler)(void *, struct page *),
2784				void *data,
2785				gfp_t gfp)
2786{
2787	struct page *page;
2788	int err;
2789repeat:
2790	page = find_get_page(mapping, index);
2791	if (!page) {
2792		page = __page_cache_alloc(gfp);
2793		if (!page)
2794			return ERR_PTR(-ENOMEM);
2795		err = add_to_page_cache_lru(page, mapping, index, gfp);
2796		if (unlikely(err)) {
2797			put_page(page);
2798			if (err == -EEXIST)
2799				goto repeat;
2800			/* Presumably ENOMEM for radix tree node */
2801			return ERR_PTR(err);
2802		}
2803
2804filler:
2805		err = filler(data, page);
 
 
 
 
2806		if (err < 0) {
2807			put_page(page);
2808			return ERR_PTR(err);
2809		}
2810
2811		page = wait_on_page_read(page);
2812		if (IS_ERR(page))
2813			return page;
2814		goto out;
2815	}
2816	if (PageUptodate(page))
2817		goto out;
2818
2819	/*
2820	 * Page is not up to date and may be locked due one of the following
2821	 * case a: Page is being filled and the page lock is held
2822	 * case b: Read/write error clearing the page uptodate status
2823	 * case c: Truncation in progress (page locked)
2824	 * case d: Reclaim in progress
2825	 *
2826	 * Case a, the page will be up to date when the page is unlocked.
2827	 *    There is no need to serialise on the page lock here as the page
2828	 *    is pinned so the lock gives no additional protection. Even if the
2829	 *    the page is truncated, the data is still valid if PageUptodate as
2830	 *    it's a race vs truncate race.
2831	 * Case b, the page will not be up to date
2832	 * Case c, the page may be truncated but in itself, the data may still
2833	 *    be valid after IO completes as it's a read vs truncate race. The
2834	 *    operation must restart if the page is not uptodate on unlock but
2835	 *    otherwise serialising on page lock to stabilise the mapping gives
2836	 *    no additional guarantees to the caller as the page lock is
2837	 *    released before return.
2838	 * Case d, similar to truncation. If reclaim holds the page lock, it
2839	 *    will be a race with remove_mapping that determines if the mapping
2840	 *    is valid on unlock but otherwise the data is valid and there is
2841	 *    no need to serialise with page lock.
2842	 *
2843	 * As the page lock gives no additional guarantee, we optimistically
2844	 * wait on the page to be unlocked and check if it's up to date and
2845	 * use the page if it is. Otherwise, the page lock is required to
2846	 * distinguish between the different cases. The motivation is that we
2847	 * avoid spurious serialisations and wakeups when multiple processes
2848	 * wait on the same page for IO to complete.
2849	 */
2850	wait_on_page_locked(page);
2851	if (PageUptodate(page))
2852		goto out;
2853
2854	/* Distinguish between all the cases under the safety of the lock */
2855	lock_page(page);
2856
2857	/* Case c or d, restart the operation */
2858	if (!page->mapping) {
2859		unlock_page(page);
2860		put_page(page);
2861		goto repeat;
2862	}
2863
2864	/* Someone else locked and filled the page in a very small window */
2865	if (PageUptodate(page)) {
2866		unlock_page(page);
2867		goto out;
2868	}
 
 
 
 
 
 
 
 
2869	goto filler;
2870
2871out:
2872	mark_page_accessed(page);
2873	return page;
2874}
2875
2876/**
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping:	the page's address_space
2879 * @index:	the page index
2880 * @filler:	function to perform the read
2881 * @data:	first arg to filler(data, page) function, often left as NULL
2882 *
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2885 *
2886 * If the page does not get brought uptodate, return -EIO.
 
 
2887 */
2888struct page *read_cache_page(struct address_space *mapping,
2889				pgoff_t index,
2890				int (*filler)(void *, struct page *),
2891				void *data)
2892{
2893	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 
2894}
2895EXPORT_SYMBOL(read_cache_page);
2896
2897/**
2898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2899 * @mapping:	the page's address_space
2900 * @index:	the page index
2901 * @gfp:	the page allocator flags to use if allocating
2902 *
2903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2904 * any new page allocations done using the specified allocation flags.
2905 *
2906 * If the page does not get brought uptodate, return -EIO.
 
 
2907 */
2908struct page *read_cache_page_gfp(struct address_space *mapping,
2909				pgoff_t index,
2910				gfp_t gfp)
2911{
2912	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2913
2914	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2915}
2916EXPORT_SYMBOL(read_cache_page_gfp);
2917
2918/*
2919 * Performs necessary checks before doing a write
2920 *
2921 * Can adjust writing position or amount of bytes to write.
2922 * Returns appropriate error code that caller should return or
2923 * zero in case that write should be allowed.
2924 */
2925inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2926{
2927	struct file *file = iocb->ki_filp;
2928	struct inode *inode = file->f_mapping->host;
2929	unsigned long limit = rlimit(RLIMIT_FSIZE);
2930	loff_t pos;
2931
2932	if (!iov_iter_count(from))
2933		return 0;
2934
2935	/* FIXME: this is for backwards compatibility with 2.4 */
2936	if (iocb->ki_flags & IOCB_APPEND)
2937		iocb->ki_pos = i_size_read(inode);
2938
2939	pos = iocb->ki_pos;
2940
2941	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2942		return -EINVAL;
2943
2944	if (limit != RLIM_INFINITY) {
2945		if (iocb->ki_pos >= limit) {
2946			send_sig(SIGXFSZ, current, 0);
2947			return -EFBIG;
2948		}
2949		iov_iter_truncate(from, limit - (unsigned long)pos);
2950	}
2951
2952	/*
2953	 * LFS rule
2954	 */
2955	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2956				!(file->f_flags & O_LARGEFILE))) {
2957		if (pos >= MAX_NON_LFS)
2958			return -EFBIG;
2959		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2960	}
2961
2962	/*
2963	 * Are we about to exceed the fs block limit ?
2964	 *
2965	 * If we have written data it becomes a short write.  If we have
2966	 * exceeded without writing data we send a signal and return EFBIG.
2967	 * Linus frestrict idea will clean these up nicely..
2968	 */
2969	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2970		return -EFBIG;
2971
2972	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2973	return iov_iter_count(from);
2974}
2975EXPORT_SYMBOL(generic_write_checks);
2976
2977int pagecache_write_begin(struct file *file, struct address_space *mapping,
2978				loff_t pos, unsigned len, unsigned flags,
2979				struct page **pagep, void **fsdata)
2980{
2981	const struct address_space_operations *aops = mapping->a_ops;
2982
2983	return aops->write_begin(file, mapping, pos, len, flags,
2984							pagep, fsdata);
2985}
2986EXPORT_SYMBOL(pagecache_write_begin);
2987
2988int pagecache_write_end(struct file *file, struct address_space *mapping,
2989				loff_t pos, unsigned len, unsigned copied,
2990				struct page *page, void *fsdata)
2991{
2992	const struct address_space_operations *aops = mapping->a_ops;
2993
2994	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2995}
2996EXPORT_SYMBOL(pagecache_write_end);
2997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2998ssize_t
2999generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3000{
3001	struct file	*file = iocb->ki_filp;
3002	struct address_space *mapping = file->f_mapping;
3003	struct inode	*inode = mapping->host;
3004	loff_t		pos = iocb->ki_pos;
3005	ssize_t		written;
3006	size_t		write_len;
3007	pgoff_t		end;
3008
3009	write_len = iov_iter_count(from);
3010	end = (pos + write_len - 1) >> PAGE_SHIFT;
3011
3012	if (iocb->ki_flags & IOCB_NOWAIT) {
3013		/* If there are pages to writeback, return */
3014		if (filemap_range_has_page(inode->i_mapping, pos,
3015					   pos + iov_iter_count(from)))
3016			return -EAGAIN;
3017	} else {
3018		written = filemap_write_and_wait_range(mapping, pos,
3019							pos + write_len - 1);
3020		if (written)
3021			goto out;
3022	}
3023
3024	/*
3025	 * After a write we want buffered reads to be sure to go to disk to get
3026	 * the new data.  We invalidate clean cached page from the region we're
3027	 * about to write.  We do this *before* the write so that we can return
3028	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3029	 */
3030	written = invalidate_inode_pages2_range(mapping,
3031					pos >> PAGE_SHIFT, end);
3032	/*
3033	 * If a page can not be invalidated, return 0 to fall back
3034	 * to buffered write.
3035	 */
3036	if (written) {
3037		if (written == -EBUSY)
3038			return 0;
3039		goto out;
3040	}
3041
3042	written = mapping->a_ops->direct_IO(iocb, from);
3043
3044	/*
3045	 * Finally, try again to invalidate clean pages which might have been
3046	 * cached by non-direct readahead, or faulted in by get_user_pages()
3047	 * if the source of the write was an mmap'ed region of the file
3048	 * we're writing.  Either one is a pretty crazy thing to do,
3049	 * so we don't support it 100%.  If this invalidation
3050	 * fails, tough, the write still worked...
3051	 *
3052	 * Most of the time we do not need this since dio_complete() will do
3053	 * the invalidation for us. However there are some file systems that
3054	 * do not end up with dio_complete() being called, so let's not break
3055	 * them by removing it completely
 
 
 
 
3056	 */
3057	if (mapping->nrpages)
3058		invalidate_inode_pages2_range(mapping,
3059					pos >> PAGE_SHIFT, end);
3060
3061	if (written > 0) {
3062		pos += written;
3063		write_len -= written;
3064		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3065			i_size_write(inode, pos);
3066			mark_inode_dirty(inode);
3067		}
3068		iocb->ki_pos = pos;
3069	}
3070	iov_iter_revert(from, write_len - iov_iter_count(from));
 
3071out:
3072	return written;
3073}
3074EXPORT_SYMBOL(generic_file_direct_write);
3075
3076/*
3077 * Find or create a page at the given pagecache position. Return the locked
3078 * page. This function is specifically for buffered writes.
3079 */
3080struct page *grab_cache_page_write_begin(struct address_space *mapping,
3081					pgoff_t index, unsigned flags)
3082{
3083	struct page *page;
3084	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3085
3086	if (flags & AOP_FLAG_NOFS)
3087		fgp_flags |= FGP_NOFS;
3088
3089	page = pagecache_get_page(mapping, index, fgp_flags,
3090			mapping_gfp_mask(mapping));
3091	if (page)
3092		wait_for_stable_page(page);
3093
3094	return page;
3095}
3096EXPORT_SYMBOL(grab_cache_page_write_begin);
3097
3098ssize_t generic_perform_write(struct file *file,
3099				struct iov_iter *i, loff_t pos)
3100{
3101	struct address_space *mapping = file->f_mapping;
3102	const struct address_space_operations *a_ops = mapping->a_ops;
3103	long status = 0;
3104	ssize_t written = 0;
3105	unsigned int flags = 0;
3106
3107	do {
3108		struct page *page;
3109		unsigned long offset;	/* Offset into pagecache page */
3110		unsigned long bytes;	/* Bytes to write to page */
3111		size_t copied;		/* Bytes copied from user */
3112		void *fsdata;
3113
3114		offset = (pos & (PAGE_SIZE - 1));
3115		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3116						iov_iter_count(i));
3117
3118again:
3119		/*
3120		 * Bring in the user page that we will copy from _first_.
3121		 * Otherwise there's a nasty deadlock on copying from the
3122		 * same page as we're writing to, without it being marked
3123		 * up-to-date.
3124		 *
3125		 * Not only is this an optimisation, but it is also required
3126		 * to check that the address is actually valid, when atomic
3127		 * usercopies are used, below.
3128		 */
3129		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3130			status = -EFAULT;
3131			break;
3132		}
3133
3134		if (fatal_signal_pending(current)) {
3135			status = -EINTR;
3136			break;
3137		}
3138
3139		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3140						&page, &fsdata);
3141		if (unlikely(status < 0))
3142			break;
3143
3144		if (mapping_writably_mapped(mapping))
3145			flush_dcache_page(page);
3146
3147		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3148		flush_dcache_page(page);
3149
3150		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3151						page, fsdata);
3152		if (unlikely(status < 0))
3153			break;
3154		copied = status;
3155
 
3156		cond_resched();
3157
3158		iov_iter_advance(i, copied);
3159		if (unlikely(copied == 0)) {
3160			/*
3161			 * If we were unable to copy any data at all, we must
3162			 * fall back to a single segment length write.
3163			 *
3164			 * If we didn't fallback here, we could livelock
3165			 * because not all segments in the iov can be copied at
3166			 * once without a pagefault.
3167			 */
3168			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3169						iov_iter_single_seg_count(i));
3170			goto again;
3171		}
3172		pos += copied;
3173		written += copied;
3174
3175		balance_dirty_pages_ratelimited(mapping);
3176	} while (iov_iter_count(i));
3177
3178	return written ? written : status;
3179}
3180EXPORT_SYMBOL(generic_perform_write);
3181
3182/**
3183 * __generic_file_write_iter - write data to a file
3184 * @iocb:	IO state structure (file, offset, etc.)
3185 * @from:	iov_iter with data to write
3186 *
3187 * This function does all the work needed for actually writing data to a
3188 * file. It does all basic checks, removes SUID from the file, updates
3189 * modification times and calls proper subroutines depending on whether we
3190 * do direct IO or a standard buffered write.
3191 *
3192 * It expects i_mutex to be grabbed unless we work on a block device or similar
3193 * object which does not need locking at all.
3194 *
3195 * This function does *not* take care of syncing data in case of O_SYNC write.
3196 * A caller has to handle it. This is mainly due to the fact that we want to
3197 * avoid syncing under i_mutex.
 
 
 
 
3198 */
3199ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3200{
3201	struct file *file = iocb->ki_filp;
3202	struct address_space * mapping = file->f_mapping;
3203	struct inode 	*inode = mapping->host;
3204	ssize_t		written = 0;
3205	ssize_t		err;
3206	ssize_t		status;
3207
3208	/* We can write back this queue in page reclaim */
3209	current->backing_dev_info = inode_to_bdi(inode);
3210	err = file_remove_privs(file);
3211	if (err)
3212		goto out;
3213
3214	err = file_update_time(file);
3215	if (err)
3216		goto out;
3217
3218	if (iocb->ki_flags & IOCB_DIRECT) {
3219		loff_t pos, endbyte;
3220
3221		written = generic_file_direct_write(iocb, from);
3222		/*
3223		 * If the write stopped short of completing, fall back to
3224		 * buffered writes.  Some filesystems do this for writes to
3225		 * holes, for example.  For DAX files, a buffered write will
3226		 * not succeed (even if it did, DAX does not handle dirty
3227		 * page-cache pages correctly).
3228		 */
3229		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3230			goto out;
3231
3232		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3233		/*
3234		 * If generic_perform_write() returned a synchronous error
3235		 * then we want to return the number of bytes which were
3236		 * direct-written, or the error code if that was zero.  Note
3237		 * that this differs from normal direct-io semantics, which
3238		 * will return -EFOO even if some bytes were written.
3239		 */
3240		if (unlikely(status < 0)) {
3241			err = status;
3242			goto out;
3243		}
3244		/*
3245		 * We need to ensure that the page cache pages are written to
3246		 * disk and invalidated to preserve the expected O_DIRECT
3247		 * semantics.
3248		 */
3249		endbyte = pos + status - 1;
3250		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3251		if (err == 0) {
3252			iocb->ki_pos = endbyte + 1;
3253			written += status;
3254			invalidate_mapping_pages(mapping,
3255						 pos >> PAGE_SHIFT,
3256						 endbyte >> PAGE_SHIFT);
3257		} else {
3258			/*
3259			 * We don't know how much we wrote, so just return
3260			 * the number of bytes which were direct-written
3261			 */
3262		}
3263	} else {
3264		written = generic_perform_write(file, from, iocb->ki_pos);
3265		if (likely(written > 0))
3266			iocb->ki_pos += written;
3267	}
3268out:
3269	current->backing_dev_info = NULL;
3270	return written ? written : err;
3271}
3272EXPORT_SYMBOL(__generic_file_write_iter);
3273
3274/**
3275 * generic_file_write_iter - write data to a file
3276 * @iocb:	IO state structure
3277 * @from:	iov_iter with data to write
3278 *
3279 * This is a wrapper around __generic_file_write_iter() to be used by most
3280 * filesystems. It takes care of syncing the file in case of O_SYNC file
3281 * and acquires i_mutex as needed.
 
 
 
 
3282 */
3283ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3284{
3285	struct file *file = iocb->ki_filp;
3286	struct inode *inode = file->f_mapping->host;
3287	ssize_t ret;
3288
3289	inode_lock(inode);
3290	ret = generic_write_checks(iocb, from);
3291	if (ret > 0)
3292		ret = __generic_file_write_iter(iocb, from);
3293	inode_unlock(inode);
3294
3295	if (ret > 0)
3296		ret = generic_write_sync(iocb, ret);
3297	return ret;
3298}
3299EXPORT_SYMBOL(generic_file_write_iter);
3300
3301/**
3302 * try_to_release_page() - release old fs-specific metadata on a page
3303 *
3304 * @page: the page which the kernel is trying to free
3305 * @gfp_mask: memory allocation flags (and I/O mode)
3306 *
3307 * The address_space is to try to release any data against the page
3308 * (presumably at page->private).  If the release was successful, return '1'.
3309 * Otherwise return zero.
3310 *
3311 * This may also be called if PG_fscache is set on a page, indicating that the
3312 * page is known to the local caching routines.
3313 *
3314 * The @gfp_mask argument specifies whether I/O may be performed to release
3315 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3316 *
 
3317 */
3318int try_to_release_page(struct page *page, gfp_t gfp_mask)
3319{
3320	struct address_space * const mapping = page->mapping;
3321
3322	BUG_ON(!PageLocked(page));
3323	if (PageWriteback(page))
3324		return 0;
3325
3326	if (mapping && mapping->a_ops->releasepage)
3327		return mapping->a_ops->releasepage(page, gfp_mask);
3328	return try_to_free_buffers(page);
3329}
3330
3331EXPORT_SYMBOL(try_to_release_page);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include <asm/pgalloc.h>
  46#include <asm/tlbflush.h>
  47#include "internal.h"
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/filemap.h>
  51
  52/*
  53 * FIXME: remove all knowledge of the buffer layer from the core VM
  54 */
  55#include <linux/buffer_head.h> /* for try_to_free_buffers */
  56
  57#include <asm/mman.h>
  58
  59/*
  60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  61 * though.
  62 *
  63 * Shared mappings now work. 15.8.1995  Bruno.
  64 *
  65 * finished 'unifying' the page and buffer cache and SMP-threaded the
  66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  67 *
  68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  69 */
  70
  71/*
  72 * Lock ordering:
  73 *
  74 *  ->i_mmap_rwsem		(truncate_pagecache)
  75 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  76 *      ->swap_lock		(exclusive_swap_page, others)
  77 *        ->i_pages lock
  78 *
  79 *  ->i_mutex
  80 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  81 *
  82 *  ->mmap_lock
  83 *    ->i_mmap_rwsem
  84 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  85 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  86 *
  87 *  ->mmap_lock
  88 *    ->lock_page		(access_process_vm)
  89 *
  90 *  ->i_mutex			(generic_perform_write)
  91 *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
  92 *
  93 *  bdi->wb.list_lock
  94 *    sb_lock			(fs/fs-writeback.c)
  95 *    ->i_pages lock		(__sync_single_inode)
  96 *
  97 *  ->i_mmap_rwsem
  98 *    ->anon_vma.lock		(vma_adjust)
  99 *
 100 *  ->anon_vma.lock
 101 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 102 *
 103 *  ->page_table_lock or pte_lock
 104 *    ->swap_lock		(try_to_unmap_one)
 105 *    ->private_lock		(try_to_unmap_one)
 106 *    ->i_pages lock		(try_to_unmap_one)
 107 *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 108 *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 109 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 110 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 111 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 112 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 113 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 114 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 115 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 116 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 117 *
 118 * ->i_mmap_rwsem
 119 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 120 */
 121
 122static void page_cache_delete(struct address_space *mapping,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123				   struct page *page, void *shadow)
 124{
 125	XA_STATE(xas, &mapping->i_pages, page->index);
 126	unsigned int nr = 1;
 127
 128	mapping_set_update(&xas, mapping);
 129
 130	/* hugetlb pages are represented by a single entry in the xarray */
 131	if (!PageHuge(page)) {
 132		xas_set_order(&xas, page->index, compound_order(page));
 133		nr = compound_nr(page);
 134	}
 135
 136	VM_BUG_ON_PAGE(!PageLocked(page), page);
 137	VM_BUG_ON_PAGE(PageTail(page), page);
 138	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 139
 140	xas_store(&xas, shadow);
 141	xas_init_marks(&xas);
 
 
 
 
 
 
 
 
 
 
 
 142
 143	page->mapping = NULL;
 144	/* Leave page->index set: truncation lookup relies upon it */
 
 
 
 
 
 
 
 
 
 
 
 145	mapping->nrpages -= nr;
 146}
 147
 148static void unaccount_page_cache_page(struct address_space *mapping,
 149				      struct page *page)
 150{
 151	int nr;
 152
 153	/*
 154	 * if we're uptodate, flush out into the cleancache, otherwise
 155	 * invalidate any existing cleancache entries.  We can't leave
 156	 * stale data around in the cleancache once our page is gone
 157	 */
 158	if (PageUptodate(page) && PageMappedToDisk(page))
 159		cleancache_put_page(page);
 160	else
 161		cleancache_invalidate_page(mapping, page);
 162
 163	VM_BUG_ON_PAGE(PageTail(page), page);
 164	VM_BUG_ON_PAGE(page_mapped(page), page);
 165	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 166		int mapcount;
 167
 168		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 169			 current->comm, page_to_pfn(page));
 170		dump_page(page, "still mapped when deleted");
 171		dump_stack();
 172		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 173
 174		mapcount = page_mapcount(page);
 175		if (mapping_exiting(mapping) &&
 176		    page_count(page) >= mapcount + 2) {
 177			/*
 178			 * All vmas have already been torn down, so it's
 179			 * a good bet that actually the page is unmapped,
 180			 * and we'd prefer not to leak it: if we're wrong,
 181			 * some other bad page check should catch it later.
 182			 */
 183			page_mapcount_reset(page);
 184			page_ref_sub(page, mapcount);
 185		}
 186	}
 187
 188	/* hugetlb pages do not participate in page cache accounting. */
 189	if (PageHuge(page))
 190		return;
 191
 192	nr = thp_nr_pages(page);
 193
 194	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
 195	if (PageSwapBacked(page)) {
 196		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
 197		if (PageTransHuge(page))
 198			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
 199	} else if (PageTransHuge(page)) {
 200		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
 201		filemap_nr_thps_dec(mapping);
 202	}
 203
 204	/*
 205	 * At this point page must be either written or cleaned by
 206	 * truncate.  Dirty page here signals a bug and loss of
 207	 * unwritten data.
 208	 *
 209	 * This fixes dirty accounting after removing the page entirely
 210	 * but leaves PageDirty set: it has no effect for truncated
 211	 * page and anyway will be cleared before returning page into
 212	 * buddy allocator.
 213	 */
 214	if (WARN_ON_ONCE(PageDirty(page)))
 215		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 216}
 217
 218/*
 219 * Delete a page from the page cache and free it. Caller has to make
 220 * sure the page is locked and that nobody else uses it - or that usage
 221 * is safe.  The caller must hold the i_pages lock.
 222 */
 223void __delete_from_page_cache(struct page *page, void *shadow)
 224{
 225	struct address_space *mapping = page->mapping;
 226
 227	trace_mm_filemap_delete_from_page_cache(page);
 228
 229	unaccount_page_cache_page(mapping, page);
 230	page_cache_delete(mapping, page, shadow);
 231}
 232
 233static void page_cache_free_page(struct address_space *mapping,
 234				struct page *page)
 235{
 236	void (*freepage)(struct page *);
 237
 238	freepage = mapping->a_ops->freepage;
 239	if (freepage)
 240		freepage(page);
 241
 242	if (PageTransHuge(page) && !PageHuge(page)) {
 243		page_ref_sub(page, thp_nr_pages(page));
 244		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 245	} else {
 246		put_page(page);
 247	}
 248}
 249
 250/**
 251 * delete_from_page_cache - delete page from page cache
 252 * @page: the page which the kernel is trying to remove from page cache
 253 *
 254 * This must be called only on pages that have been verified to be in the page
 255 * cache and locked.  It will never put the page into the free list, the caller
 256 * has a reference on the page.
 257 */
 258void delete_from_page_cache(struct page *page)
 259{
 260	struct address_space *mapping = page_mapping(page);
 261	unsigned long flags;
 262
 263	BUG_ON(!PageLocked(page));
 264	xa_lock_irqsave(&mapping->i_pages, flags);
 265	__delete_from_page_cache(page, NULL);
 266	xa_unlock_irqrestore(&mapping->i_pages, flags);
 267
 268	page_cache_free_page(mapping, page);
 269}
 270EXPORT_SYMBOL(delete_from_page_cache);
 271
 272/*
 273 * page_cache_delete_batch - delete several pages from page cache
 274 * @mapping: the mapping to which pages belong
 275 * @pvec: pagevec with pages to delete
 276 *
 277 * The function walks over mapping->i_pages and removes pages passed in @pvec
 278 * from the mapping. The function expects @pvec to be sorted by page index
 279 * and is optimised for it to be dense.
 280 * It tolerates holes in @pvec (mapping entries at those indices are not
 281 * modified). The function expects only THP head pages to be present in the
 282 * @pvec.
 
 283 *
 284 * The function expects the i_pages lock to be held.
 285 */
 286static void page_cache_delete_batch(struct address_space *mapping,
 
 287			     struct pagevec *pvec)
 288{
 289	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 
 290	int total_pages = 0;
 291	int i = 0;
 292	struct page *page;
 
 293
 294	mapping_set_update(&xas, mapping);
 295	xas_for_each(&xas, page, ULONG_MAX) {
 296		if (i >= pagevec_count(pvec))
 297			break;
 298
 299		/* A swap/dax/shadow entry got inserted? Skip it. */
 300		if (xa_is_value(page))
 301			continue;
 302		/*
 303		 * A page got inserted in our range? Skip it. We have our
 304		 * pages locked so they are protected from being removed.
 305		 * If we see a page whose index is higher than ours, it
 306		 * means our page has been removed, which shouldn't be
 307		 * possible because we're holding the PageLock.
 308		 */
 309		if (page != pvec->pages[i]) {
 310			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 311					page);
 312			continue;
 313		}
 314
 315		WARN_ON_ONCE(!PageLocked(page));
 316
 317		if (page->index == xas.xa_index)
 318			page->mapping = NULL;
 319		/* Leave page->index set: truncation lookup relies on it */
 320
 321		/*
 322		 * Move to the next page in the vector if this is a regular
 323		 * page or the index is of the last sub-page of this compound
 324		 * page.
 325		 */
 326		if (page->index + compound_nr(page) - 1 == xas.xa_index)
 327			i++;
 328		xas_store(&xas, NULL);
 
 
 
 
 
 329		total_pages++;
 330	}
 331	mapping->nrpages -= total_pages;
 332}
 333
 334void delete_from_page_cache_batch(struct address_space *mapping,
 335				  struct pagevec *pvec)
 336{
 337	int i;
 338	unsigned long flags;
 339
 340	if (!pagevec_count(pvec))
 341		return;
 342
 343	xa_lock_irqsave(&mapping->i_pages, flags);
 344	for (i = 0; i < pagevec_count(pvec); i++) {
 345		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 346
 347		unaccount_page_cache_page(mapping, pvec->pages[i]);
 348	}
 349	page_cache_delete_batch(mapping, pvec);
 350	xa_unlock_irqrestore(&mapping->i_pages, flags);
 351
 352	for (i = 0; i < pagevec_count(pvec); i++)
 353		page_cache_free_page(mapping, pvec->pages[i]);
 354}
 355
 356int filemap_check_errors(struct address_space *mapping)
 357{
 358	int ret = 0;
 359	/* Check for outstanding write errors */
 360	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 361	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 362		ret = -ENOSPC;
 363	if (test_bit(AS_EIO, &mapping->flags) &&
 364	    test_and_clear_bit(AS_EIO, &mapping->flags))
 365		ret = -EIO;
 366	return ret;
 367}
 368EXPORT_SYMBOL(filemap_check_errors);
 369
 370static int filemap_check_and_keep_errors(struct address_space *mapping)
 371{
 372	/* Check for outstanding write errors */
 373	if (test_bit(AS_EIO, &mapping->flags))
 374		return -EIO;
 375	if (test_bit(AS_ENOSPC, &mapping->flags))
 376		return -ENOSPC;
 377	return 0;
 378}
 379
 380/**
 381 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 382 * @mapping:	address space structure to write
 383 * @start:	offset in bytes where the range starts
 384 * @end:	offset in bytes where the range ends (inclusive)
 385 * @sync_mode:	enable synchronous operation
 386 *
 387 * Start writeback against all of a mapping's dirty pages that lie
 388 * within the byte offsets <start, end> inclusive.
 389 *
 390 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 391 * opposed to a regular memory cleansing writeback.  The difference between
 392 * these two operations is that if a dirty page/buffer is encountered, it must
 393 * be waited upon, and not just skipped over.
 394 *
 395 * Return: %0 on success, negative error code otherwise.
 396 */
 397int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 398				loff_t end, int sync_mode)
 399{
 400	int ret;
 401	struct writeback_control wbc = {
 402		.sync_mode = sync_mode,
 403		.nr_to_write = LONG_MAX,
 404		.range_start = start,
 405		.range_end = end,
 406	};
 407
 408	if (!mapping_can_writeback(mapping) ||
 409	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 410		return 0;
 411
 412	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 413	ret = do_writepages(mapping, &wbc);
 414	wbc_detach_inode(&wbc);
 415	return ret;
 416}
 417
 418static inline int __filemap_fdatawrite(struct address_space *mapping,
 419	int sync_mode)
 420{
 421	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 422}
 423
 424int filemap_fdatawrite(struct address_space *mapping)
 425{
 426	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 427}
 428EXPORT_SYMBOL(filemap_fdatawrite);
 429
 430int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 431				loff_t end)
 432{
 433	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 434}
 435EXPORT_SYMBOL(filemap_fdatawrite_range);
 436
 437/**
 438 * filemap_flush - mostly a non-blocking flush
 439 * @mapping:	target address_space
 440 *
 441 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 442 * purposes - I/O may not be started against all dirty pages.
 443 *
 444 * Return: %0 on success, negative error code otherwise.
 445 */
 446int filemap_flush(struct address_space *mapping)
 447{
 448	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 449}
 450EXPORT_SYMBOL(filemap_flush);
 451
 452/**
 453 * filemap_range_has_page - check if a page exists in range.
 454 * @mapping:           address space within which to check
 455 * @start_byte:        offset in bytes where the range starts
 456 * @end_byte:          offset in bytes where the range ends (inclusive)
 457 *
 458 * Find at least one page in the range supplied, usually used to check if
 459 * direct writing in this range will trigger a writeback.
 460 *
 461 * Return: %true if at least one page exists in the specified range,
 462 * %false otherwise.
 463 */
 464bool filemap_range_has_page(struct address_space *mapping,
 465			   loff_t start_byte, loff_t end_byte)
 466{
 
 
 467	struct page *page;
 468	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 469	pgoff_t max = end_byte >> PAGE_SHIFT;
 470
 471	if (end_byte < start_byte)
 472		return false;
 473
 474	rcu_read_lock();
 475	for (;;) {
 476		page = xas_find(&xas, max);
 477		if (xas_retry(&xas, page))
 478			continue;
 479		/* Shadow entries don't count */
 480		if (xa_is_value(page))
 481			continue;
 482		/*
 483		 * We don't need to try to pin this page; we're about to
 484		 * release the RCU lock anyway.  It is enough to know that
 485		 * there was a page here recently.
 486		 */
 487		break;
 488	}
 489	rcu_read_unlock();
 490
 491	return page != NULL;
 
 
 
 492}
 493EXPORT_SYMBOL(filemap_range_has_page);
 494
 495static void __filemap_fdatawait_range(struct address_space *mapping,
 496				     loff_t start_byte, loff_t end_byte)
 497{
 498	pgoff_t index = start_byte >> PAGE_SHIFT;
 499	pgoff_t end = end_byte >> PAGE_SHIFT;
 500	struct pagevec pvec;
 501	int nr_pages;
 502
 503	if (end_byte < start_byte)
 504		return;
 505
 506	pagevec_init(&pvec);
 507	while (index <= end) {
 508		unsigned i;
 509
 510		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 511				end, PAGECACHE_TAG_WRITEBACK);
 512		if (!nr_pages)
 513			break;
 514
 515		for (i = 0; i < nr_pages; i++) {
 516			struct page *page = pvec.pages[i];
 517
 518			wait_on_page_writeback(page);
 519			ClearPageError(page);
 520		}
 521		pagevec_release(&pvec);
 522		cond_resched();
 523	}
 524}
 525
 526/**
 527 * filemap_fdatawait_range - wait for writeback to complete
 528 * @mapping:		address space structure to wait for
 529 * @start_byte:		offset in bytes where the range starts
 530 * @end_byte:		offset in bytes where the range ends (inclusive)
 531 *
 532 * Walk the list of under-writeback pages of the given address space
 533 * in the given range and wait for all of them.  Check error status of
 534 * the address space and return it.
 535 *
 536 * Since the error status of the address space is cleared by this function,
 537 * callers are responsible for checking the return value and handling and/or
 538 * reporting the error.
 539 *
 540 * Return: error status of the address space.
 541 */
 542int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 543			    loff_t end_byte)
 544{
 545	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 546	return filemap_check_errors(mapping);
 547}
 548EXPORT_SYMBOL(filemap_fdatawait_range);
 549
 550/**
 551 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 552 * @mapping:		address space structure to wait for
 553 * @start_byte:		offset in bytes where the range starts
 554 * @end_byte:		offset in bytes where the range ends (inclusive)
 555 *
 556 * Walk the list of under-writeback pages of the given address space in the
 557 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 558 * this function does not clear error status of the address space.
 559 *
 560 * Use this function if callers don't handle errors themselves.  Expected
 561 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 562 * fsfreeze(8)
 563 */
 564int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 565		loff_t start_byte, loff_t end_byte)
 566{
 567	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 568	return filemap_check_and_keep_errors(mapping);
 569}
 570EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 571
 572/**
 573 * file_fdatawait_range - wait for writeback to complete
 574 * @file:		file pointing to address space structure to wait for
 575 * @start_byte:		offset in bytes where the range starts
 576 * @end_byte:		offset in bytes where the range ends (inclusive)
 577 *
 578 * Walk the list of under-writeback pages of the address space that file
 579 * refers to, in the given range and wait for all of them.  Check error
 580 * status of the address space vs. the file->f_wb_err cursor and return it.
 581 *
 582 * Since the error status of the file is advanced by this function,
 583 * callers are responsible for checking the return value and handling and/or
 584 * reporting the error.
 585 *
 586 * Return: error status of the address space vs. the file->f_wb_err cursor.
 587 */
 588int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 589{
 590	struct address_space *mapping = file->f_mapping;
 591
 592	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 593	return file_check_and_advance_wb_err(file);
 594}
 595EXPORT_SYMBOL(file_fdatawait_range);
 596
 597/**
 598 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 599 * @mapping: address space structure to wait for
 600 *
 601 * Walk the list of under-writeback pages of the given address space
 602 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 603 * does not clear error status of the address space.
 604 *
 605 * Use this function if callers don't handle errors themselves.  Expected
 606 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 607 * fsfreeze(8)
 608 *
 609 * Return: error status of the address space.
 610 */
 611int filemap_fdatawait_keep_errors(struct address_space *mapping)
 612{
 613	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 614	return filemap_check_and_keep_errors(mapping);
 615}
 616EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 617
 618/* Returns true if writeback might be needed or already in progress. */
 619static bool mapping_needs_writeback(struct address_space *mapping)
 620{
 621	return mapping->nrpages;
 
 622}
 623
 624/**
 625 * filemap_range_needs_writeback - check if range potentially needs writeback
 626 * @mapping:           address space within which to check
 627 * @start_byte:        offset in bytes where the range starts
 628 * @end_byte:          offset in bytes where the range ends (inclusive)
 629 *
 630 * Find at least one page in the range supplied, usually used to check if
 631 * direct writing in this range will trigger a writeback. Used by O_DIRECT
 632 * read/write with IOCB_NOWAIT, to see if the caller needs to do
 633 * filemap_write_and_wait_range() before proceeding.
 634 *
 635 * Return: %true if the caller should do filemap_write_and_wait_range() before
 636 * doing O_DIRECT to a page in this range, %false otherwise.
 637 */
 638bool filemap_range_needs_writeback(struct address_space *mapping,
 639				   loff_t start_byte, loff_t end_byte)
 640{
 641	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 642	pgoff_t max = end_byte >> PAGE_SHIFT;
 643	struct page *page;
 644
 645	if (!mapping_needs_writeback(mapping))
 646		return false;
 647	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
 648	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
 649		return false;
 650	if (end_byte < start_byte)
 651		return false;
 652
 653	rcu_read_lock();
 654	xas_for_each(&xas, page, max) {
 655		if (xas_retry(&xas, page))
 656			continue;
 657		if (xa_is_value(page))
 658			continue;
 659		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
 660			break;
 
 
 661	}
 662	rcu_read_unlock();
 663	return page != NULL;
 664}
 665EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
 666
 667/**
 668 * filemap_write_and_wait_range - write out & wait on a file range
 669 * @mapping:	the address_space for the pages
 670 * @lstart:	offset in bytes where the range starts
 671 * @lend:	offset in bytes where the range ends (inclusive)
 672 *
 673 * Write out and wait upon file offsets lstart->lend, inclusive.
 674 *
 675 * Note that @lend is inclusive (describes the last byte to be written) so
 676 * that this function can be used to write to the very end-of-file (end = -1).
 677 *
 678 * Return: error status of the address space.
 679 */
 680int filemap_write_and_wait_range(struct address_space *mapping,
 681				 loff_t lstart, loff_t lend)
 682{
 683	int err = 0;
 684
 685	if (mapping_needs_writeback(mapping)) {
 686		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 687						 WB_SYNC_ALL);
 688		/*
 689		 * Even if the above returned error, the pages may be
 690		 * written partially (e.g. -ENOSPC), so we wait for it.
 691		 * But the -EIO is special case, it may indicate the worst
 692		 * thing (e.g. bug) happened, so we avoid waiting for it.
 693		 */
 694		if (err != -EIO) {
 695			int err2 = filemap_fdatawait_range(mapping,
 696						lstart, lend);
 697			if (!err)
 698				err = err2;
 699		} else {
 700			/* Clear any previously stored errors */
 701			filemap_check_errors(mapping);
 702		}
 703	} else {
 704		err = filemap_check_errors(mapping);
 705	}
 706	return err;
 707}
 708EXPORT_SYMBOL(filemap_write_and_wait_range);
 709
 710void __filemap_set_wb_err(struct address_space *mapping, int err)
 711{
 712	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 713
 714	trace_filemap_set_wb_err(mapping, eseq);
 715}
 716EXPORT_SYMBOL(__filemap_set_wb_err);
 717
 718/**
 719 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 720 * 				   and advance wb_err to current one
 721 * @file: struct file on which the error is being reported
 722 *
 723 * When userland calls fsync (or something like nfsd does the equivalent), we
 724 * want to report any writeback errors that occurred since the last fsync (or
 725 * since the file was opened if there haven't been any).
 726 *
 727 * Grab the wb_err from the mapping. If it matches what we have in the file,
 728 * then just quickly return 0. The file is all caught up.
 729 *
 730 * If it doesn't match, then take the mapping value, set the "seen" flag in
 731 * it and try to swap it into place. If it works, or another task beat us
 732 * to it with the new value, then update the f_wb_err and return the error
 733 * portion. The error at this point must be reported via proper channels
 734 * (a'la fsync, or NFS COMMIT operation, etc.).
 735 *
 736 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 737 * value is protected by the f_lock since we must ensure that it reflects
 738 * the latest value swapped in for this file descriptor.
 739 *
 740 * Return: %0 on success, negative error code otherwise.
 741 */
 742int file_check_and_advance_wb_err(struct file *file)
 743{
 744	int err = 0;
 745	errseq_t old = READ_ONCE(file->f_wb_err);
 746	struct address_space *mapping = file->f_mapping;
 747
 748	/* Locklessly handle the common case where nothing has changed */
 749	if (errseq_check(&mapping->wb_err, old)) {
 750		/* Something changed, must use slow path */
 751		spin_lock(&file->f_lock);
 752		old = file->f_wb_err;
 753		err = errseq_check_and_advance(&mapping->wb_err,
 754						&file->f_wb_err);
 755		trace_file_check_and_advance_wb_err(file, old);
 756		spin_unlock(&file->f_lock);
 757	}
 758
 759	/*
 760	 * We're mostly using this function as a drop in replacement for
 761	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 762	 * that the legacy code would have had on these flags.
 763	 */
 764	clear_bit(AS_EIO, &mapping->flags);
 765	clear_bit(AS_ENOSPC, &mapping->flags);
 766	return err;
 767}
 768EXPORT_SYMBOL(file_check_and_advance_wb_err);
 769
 770/**
 771 * file_write_and_wait_range - write out & wait on a file range
 772 * @file:	file pointing to address_space with pages
 773 * @lstart:	offset in bytes where the range starts
 774 * @lend:	offset in bytes where the range ends (inclusive)
 775 *
 776 * Write out and wait upon file offsets lstart->lend, inclusive.
 777 *
 778 * Note that @lend is inclusive (describes the last byte to be written) so
 779 * that this function can be used to write to the very end-of-file (end = -1).
 780 *
 781 * After writing out and waiting on the data, we check and advance the
 782 * f_wb_err cursor to the latest value, and return any errors detected there.
 783 *
 784 * Return: %0 on success, negative error code otherwise.
 785 */
 786int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 787{
 788	int err = 0, err2;
 789	struct address_space *mapping = file->f_mapping;
 790
 791	if (mapping_needs_writeback(mapping)) {
 792		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 793						 WB_SYNC_ALL);
 794		/* See comment of filemap_write_and_wait() */
 795		if (err != -EIO)
 796			__filemap_fdatawait_range(mapping, lstart, lend);
 797	}
 798	err2 = file_check_and_advance_wb_err(file);
 799	if (!err)
 800		err = err2;
 801	return err;
 802}
 803EXPORT_SYMBOL(file_write_and_wait_range);
 804
 805/**
 806 * replace_page_cache_page - replace a pagecache page with a new one
 807 * @old:	page to be replaced
 808 * @new:	page to replace with
 
 809 *
 810 * This function replaces a page in the pagecache with a new one.  On
 811 * success it acquires the pagecache reference for the new page and
 812 * drops it for the old page.  Both the old and new pages must be
 813 * locked.  This function does not add the new page to the LRU, the
 814 * caller must do that.
 815 *
 816 * The remove + add is atomic.  This function cannot fail.
 
 817 */
 818void replace_page_cache_page(struct page *old, struct page *new)
 819{
 820	struct address_space *mapping = old->mapping;
 821	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 822	pgoff_t offset = old->index;
 823	XA_STATE(xas, &mapping->i_pages, offset);
 824	unsigned long flags;
 825
 826	VM_BUG_ON_PAGE(!PageLocked(old), old);
 827	VM_BUG_ON_PAGE(!PageLocked(new), new);
 828	VM_BUG_ON_PAGE(new->mapping, new);
 829
 830	get_page(new);
 831	new->mapping = mapping;
 832	new->index = offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834	mem_cgroup_migrate(old, new);
 835
 836	xas_lock_irqsave(&xas, flags);
 837	xas_store(&xas, new);
 838
 839	old->mapping = NULL;
 840	/* hugetlb pages do not participate in page cache accounting. */
 841	if (!PageHuge(old))
 842		__dec_lruvec_page_state(old, NR_FILE_PAGES);
 843	if (!PageHuge(new))
 844		__inc_lruvec_page_state(new, NR_FILE_PAGES);
 845	if (PageSwapBacked(old))
 846		__dec_lruvec_page_state(old, NR_SHMEM);
 847	if (PageSwapBacked(new))
 848		__inc_lruvec_page_state(new, NR_SHMEM);
 849	xas_unlock_irqrestore(&xas, flags);
 850	if (freepage)
 851		freepage(old);
 852	put_page(old);
 853}
 854EXPORT_SYMBOL_GPL(replace_page_cache_page);
 855
 856noinline int __add_to_page_cache_locked(struct page *page,
 857					struct address_space *mapping,
 858					pgoff_t offset, gfp_t gfp,
 859					void **shadowp)
 860{
 861	XA_STATE(xas, &mapping->i_pages, offset);
 862	int huge = PageHuge(page);
 
 863	int error;
 864	bool charged = false;
 865
 866	VM_BUG_ON_PAGE(!PageLocked(page), page);
 867	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 868	mapping_set_update(&xas, mapping);
 869
 870	get_page(page);
 871	page->mapping = mapping;
 872	page->index = offset;
 873
 874	if (!huge) {
 875		error = mem_cgroup_charge(page, NULL, gfp);
 
 876		if (error)
 877			goto error;
 878		charged = true;
 879	}
 880
 881	gfp &= GFP_RECLAIM_MASK;
 
 
 
 
 
 882
 883	do {
 884		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 885		void *entry, *old = NULL;
 886
 887		if (order > thp_order(page))
 888			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 889					order, gfp);
 890		xas_lock_irq(&xas);
 891		xas_for_each_conflict(&xas, entry) {
 892			old = entry;
 893			if (!xa_is_value(entry)) {
 894				xas_set_err(&xas, -EEXIST);
 895				goto unlock;
 896			}
 897		}
 898
 899		if (old) {
 900			if (shadowp)
 901				*shadowp = old;
 902			/* entry may have been split before we acquired lock */
 903			order = xa_get_order(xas.xa, xas.xa_index);
 904			if (order > thp_order(page)) {
 905				xas_split(&xas, old, order);
 906				xas_reset(&xas);
 907			}
 908		}
 909
 910		xas_store(&xas, page);
 911		if (xas_error(&xas))
 912			goto unlock;
 913
 914		mapping->nrpages++;
 915
 916		/* hugetlb pages do not participate in page cache accounting */
 917		if (!huge)
 918			__inc_lruvec_page_state(page, NR_FILE_PAGES);
 919unlock:
 920		xas_unlock_irq(&xas);
 921	} while (xas_nomem(&xas, gfp));
 922
 923	if (xas_error(&xas)) {
 924		error = xas_error(&xas);
 925		if (charged)
 926			mem_cgroup_uncharge(page);
 927		goto error;
 928	}
 929
 
 
 
 
 
 
 930	trace_mm_filemap_add_to_page_cache(page);
 931	return 0;
 932error:
 933	page->mapping = NULL;
 934	/* Leave page->index set: truncation relies upon it */
 
 
 
 935	put_page(page);
 936	return error;
 937}
 938ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 939
 940/**
 941 * add_to_page_cache_locked - add a locked page to the pagecache
 942 * @page:	page to add
 943 * @mapping:	the page's address_space
 944 * @offset:	page index
 945 * @gfp_mask:	page allocation mode
 946 *
 947 * This function is used to add a page to the pagecache. It must be locked.
 948 * This function does not add the page to the LRU.  The caller must do that.
 949 *
 950 * Return: %0 on success, negative error code otherwise.
 951 */
 952int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 953		pgoff_t offset, gfp_t gfp_mask)
 954{
 955	return __add_to_page_cache_locked(page, mapping, offset,
 956					  gfp_mask, NULL);
 957}
 958EXPORT_SYMBOL(add_to_page_cache_locked);
 959
 960int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 961				pgoff_t offset, gfp_t gfp_mask)
 962{
 963	void *shadow = NULL;
 964	int ret;
 965
 966	__SetPageLocked(page);
 967	ret = __add_to_page_cache_locked(page, mapping, offset,
 968					 gfp_mask, &shadow);
 969	if (unlikely(ret))
 970		__ClearPageLocked(page);
 971	else {
 972		/*
 973		 * The page might have been evicted from cache only
 974		 * recently, in which case it should be activated like
 975		 * any other repeatedly accessed page.
 976		 * The exception is pages getting rewritten; evicting other
 977		 * data from the working set, only to cache data that will
 978		 * get overwritten with something else, is a waste of memory.
 979		 */
 980		WARN_ON_ONCE(PageActive(page));
 981		if (!(gfp_mask & __GFP_WRITE) && shadow)
 982			workingset_refault(page, shadow);
 
 
 
 983		lru_cache_add(page);
 984	}
 985	return ret;
 986}
 987EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 988
 989#ifdef CONFIG_NUMA
 990struct page *__page_cache_alloc(gfp_t gfp)
 991{
 992	int n;
 993	struct page *page;
 994
 995	if (cpuset_do_page_mem_spread()) {
 996		unsigned int cpuset_mems_cookie;
 997		do {
 998			cpuset_mems_cookie = read_mems_allowed_begin();
 999			n = cpuset_mem_spread_node();
1000			page = __alloc_pages_node(n, gfp, 0);
1001		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1002
1003		return page;
1004	}
1005	return alloc_pages(gfp, 0);
1006}
1007EXPORT_SYMBOL(__page_cache_alloc);
1008#endif
1009
1010/*
1011 * In order to wait for pages to become available there must be
1012 * waitqueues associated with pages. By using a hash table of
1013 * waitqueues where the bucket discipline is to maintain all
1014 * waiters on the same queue and wake all when any of the pages
1015 * become available, and for the woken contexts to check to be
1016 * sure the appropriate page became available, this saves space
1017 * at a cost of "thundering herd" phenomena during rare hash
1018 * collisions.
1019 */
1020#define PAGE_WAIT_TABLE_BITS 8
1021#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1022static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1023
1024static wait_queue_head_t *page_waitqueue(struct page *page)
1025{
1026	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1027}
1028
1029void __init pagecache_init(void)
1030{
1031	int i;
1032
1033	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1034		init_waitqueue_head(&page_wait_table[i]);
1035
1036	page_writeback_init();
1037}
1038
1039/*
1040 * The page wait code treats the "wait->flags" somewhat unusually, because
1041 * we have multiple different kinds of waits, not just the usual "exclusive"
1042 * one.
1043 *
1044 * We have:
1045 *
1046 *  (a) no special bits set:
1047 *
1048 *	We're just waiting for the bit to be released, and when a waker
1049 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1050 *	and remove it from the wait queue.
1051 *
1052 *	Simple and straightforward.
1053 *
1054 *  (b) WQ_FLAG_EXCLUSIVE:
1055 *
1056 *	The waiter is waiting to get the lock, and only one waiter should
1057 *	be woken up to avoid any thundering herd behavior. We'll set the
1058 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1059 *
1060 *	This is the traditional exclusive wait.
1061 *
1062 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1063 *
1064 *	The waiter is waiting to get the bit, and additionally wants the
1065 *	lock to be transferred to it for fair lock behavior. If the lock
1066 *	cannot be taken, we stop walking the wait queue without waking
1067 *	the waiter.
1068 *
1069 *	This is the "fair lock handoff" case, and in addition to setting
1070 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1071 *	that it now has the lock.
1072 */
1073static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1074{
1075	unsigned int flags;
1076	struct wait_page_key *key = arg;
1077	struct wait_page_queue *wait_page
1078		= container_of(wait, struct wait_page_queue, wait);
1079
1080	if (!wake_page_match(wait_page, key))
 
 
 
 
1081		return 0;
1082
1083	/*
1084	 * If it's a lock handoff wait, we get the bit for it, and
1085	 * stop walking (and do not wake it up) if we can't.
1086	 */
1087	flags = wait->flags;
1088	if (flags & WQ_FLAG_EXCLUSIVE) {
1089		if (test_bit(key->bit_nr, &key->page->flags))
1090			return -1;
1091		if (flags & WQ_FLAG_CUSTOM) {
1092			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1093				return -1;
1094			flags |= WQ_FLAG_DONE;
1095		}
1096	}
1097
1098	/*
1099	 * We are holding the wait-queue lock, but the waiter that
1100	 * is waiting for this will be checking the flags without
1101	 * any locking.
1102	 *
1103	 * So update the flags atomically, and wake up the waiter
1104	 * afterwards to avoid any races. This store-release pairs
1105	 * with the load-acquire in wait_on_page_bit_common().
1106	 */
1107	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1108	wake_up_state(wait->private, mode);
1109
1110	/*
1111	 * Ok, we have successfully done what we're waiting for,
1112	 * and we can unconditionally remove the wait entry.
1113	 *
1114	 * Note that this pairs with the "finish_wait()" in the
1115	 * waiter, and has to be the absolute last thing we do.
1116	 * After this list_del_init(&wait->entry) the wait entry
1117	 * might be de-allocated and the process might even have
1118	 * exited.
1119	 */
1120	list_del_init_careful(&wait->entry);
1121	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1122}
1123
1124static void wake_up_page_bit(struct page *page, int bit_nr)
1125{
1126	wait_queue_head_t *q = page_waitqueue(page);
1127	struct wait_page_key key;
1128	unsigned long flags;
1129	wait_queue_entry_t bookmark;
1130
1131	key.page = page;
1132	key.bit_nr = bit_nr;
1133	key.page_match = 0;
1134
1135	bookmark.flags = 0;
1136	bookmark.private = NULL;
1137	bookmark.func = NULL;
1138	INIT_LIST_HEAD(&bookmark.entry);
1139
1140	spin_lock_irqsave(&q->lock, flags);
1141	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1142
1143	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1144		/*
1145		 * Take a breather from holding the lock,
1146		 * allow pages that finish wake up asynchronously
1147		 * to acquire the lock and remove themselves
1148		 * from wait queue
1149		 */
1150		spin_unlock_irqrestore(&q->lock, flags);
1151		cpu_relax();
1152		spin_lock_irqsave(&q->lock, flags);
1153		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1154	}
1155
1156	/*
1157	 * It is possible for other pages to have collided on the waitqueue
1158	 * hash, so in that case check for a page match. That prevents a long-
1159	 * term waiter
1160	 *
1161	 * It is still possible to miss a case here, when we woke page waiters
1162	 * and removed them from the waitqueue, but there are still other
1163	 * page waiters.
1164	 */
1165	if (!waitqueue_active(q) || !key.page_match) {
1166		ClearPageWaiters(page);
1167		/*
1168		 * It's possible to miss clearing Waiters here, when we woke
1169		 * our page waiters, but the hashed waitqueue has waiters for
1170		 * other pages on it.
1171		 *
1172		 * That's okay, it's a rare case. The next waker will clear it.
1173		 */
1174	}
1175	spin_unlock_irqrestore(&q->lock, flags);
1176}
1177
1178static void wake_up_page(struct page *page, int bit)
1179{
1180	if (!PageWaiters(page))
1181		return;
1182	wake_up_page_bit(page, bit);
1183}
1184
1185/*
1186 * A choice of three behaviors for wait_on_page_bit_common():
1187 */
1188enum behavior {
1189	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1190			 * __lock_page() waiting on then setting PG_locked.
1191			 */
1192	SHARED,		/* Hold ref to page and check the bit when woken, like
1193			 * wait_on_page_writeback() waiting on PG_writeback.
1194			 */
1195	DROP,		/* Drop ref to page before wait, no check when woken,
1196			 * like put_and_wait_on_page_locked() on PG_locked.
1197			 */
1198};
1199
1200/*
1201 * Attempt to check (or get) the page bit, and mark us done
1202 * if successful.
1203 */
1204static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1205					struct wait_queue_entry *wait)
1206{
1207	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1208		if (test_and_set_bit(bit_nr, &page->flags))
1209			return false;
1210	} else if (test_bit(bit_nr, &page->flags))
1211		return false;
1212
1213	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1214	return true;
1215}
1216
1217/* How many times do we accept lock stealing from under a waiter? */
1218int sysctl_page_lock_unfairness = 5;
1219
1220static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1221	struct page *page, int bit_nr, int state, enum behavior behavior)
1222{
1223	int unfairness = sysctl_page_lock_unfairness;
1224	struct wait_page_queue wait_page;
1225	wait_queue_entry_t *wait = &wait_page.wait;
1226	bool thrashing = false;
1227	bool delayacct = false;
1228	unsigned long pflags;
1229
1230	if (bit_nr == PG_locked &&
1231	    !PageUptodate(page) && PageWorkingset(page)) {
1232		if (!PageSwapBacked(page)) {
1233			delayacct_thrashing_start();
1234			delayacct = true;
1235		}
1236		psi_memstall_enter(&pflags);
1237		thrashing = true;
1238	}
1239
1240	init_wait(wait);
 
1241	wait->func = wake_page_function;
1242	wait_page.page = page;
1243	wait_page.bit_nr = bit_nr;
1244
1245repeat:
1246	wait->flags = 0;
1247	if (behavior == EXCLUSIVE) {
1248		wait->flags = WQ_FLAG_EXCLUSIVE;
1249		if (--unfairness < 0)
1250			wait->flags |= WQ_FLAG_CUSTOM;
1251	}
1252
1253	/*
1254	 * Do one last check whether we can get the
1255	 * page bit synchronously.
1256	 *
1257	 * Do the SetPageWaiters() marking before that
1258	 * to let any waker we _just_ missed know they
1259	 * need to wake us up (otherwise they'll never
1260	 * even go to the slow case that looks at the
1261	 * page queue), and add ourselves to the wait
1262	 * queue if we need to sleep.
1263	 *
1264	 * This part needs to be done under the queue
1265	 * lock to avoid races.
1266	 */
1267	spin_lock_irq(&q->lock);
1268	SetPageWaiters(page);
1269	if (!trylock_page_bit_common(page, bit_nr, wait))
1270		__add_wait_queue_entry_tail(q, wait);
1271	spin_unlock_irq(&q->lock);
1272
1273	/*
1274	 * From now on, all the logic will be based on
1275	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276	 * see whether the page bit testing has already
1277	 * been done by the wake function.
1278	 *
1279	 * We can drop our reference to the page.
1280	 */
1281	if (behavior == DROP)
1282		put_page(page);
1283
1284	/*
1285	 * Note that until the "finish_wait()", or until
1286	 * we see the WQ_FLAG_WOKEN flag, we need to
1287	 * be very careful with the 'wait->flags', because
1288	 * we may race with a waker that sets them.
1289	 */
1290	for (;;) {
1291		unsigned int flags;
1292
1293		set_current_state(state);
1294
1295		/* Loop until we've been woken or interrupted */
1296		flags = smp_load_acquire(&wait->flags);
1297		if (!(flags & WQ_FLAG_WOKEN)) {
1298			if (signal_pending_state(state, current))
1299				break;
1300
 
1301			io_schedule();
1302			continue;
1303		}
1304
1305		/* If we were non-exclusive, we're done */
1306		if (behavior != EXCLUSIVE)
1307			break;
 
 
 
 
1308
1309		/* If the waker got the lock for us, we're done */
1310		if (flags & WQ_FLAG_DONE)
1311			break;
1312
1313		/*
1314		 * Otherwise, if we're getting the lock, we need to
1315		 * try to get it ourselves.
1316		 *
1317		 * And if that fails, we'll have to retry this all.
1318		 */
1319		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1320			goto repeat;
1321
1322		wait->flags |= WQ_FLAG_DONE;
1323		break;
1324	}
1325
1326	/*
1327	 * If a signal happened, this 'finish_wait()' may remove the last
1328	 * waiter from the wait-queues, but the PageWaiters bit will remain
1329	 * set. That's ok. The next wakeup will take care of it, and trying
1330	 * to do it here would be difficult and prone to races.
1331	 */
1332	finish_wait(q, wait);
1333
1334	if (thrashing) {
1335		if (delayacct)
1336			delayacct_thrashing_end();
1337		psi_memstall_leave(&pflags);
1338	}
1339
1340	/*
1341	 * NOTE! The wait->flags weren't stable until we've done the
1342	 * 'finish_wait()', and we could have exited the loop above due
1343	 * to a signal, and had a wakeup event happen after the signal
1344	 * test but before the 'finish_wait()'.
1345	 *
1346	 * So only after the finish_wait() can we reliably determine
1347	 * if we got woken up or not, so we can now figure out the final
1348	 * return value based on that state without races.
1349	 *
1350	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1351	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1352	 */
1353	if (behavior == EXCLUSIVE)
1354		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1355
1356	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1357}
1358
1359void wait_on_page_bit(struct page *page, int bit_nr)
1360{
1361	wait_queue_head_t *q = page_waitqueue(page);
1362	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1363}
1364EXPORT_SYMBOL(wait_on_page_bit);
1365
1366int wait_on_page_bit_killable(struct page *page, int bit_nr)
1367{
1368	wait_queue_head_t *q = page_waitqueue(page);
1369	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1370}
1371EXPORT_SYMBOL(wait_on_page_bit_killable);
1372
1373/**
1374 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1375 * @page: The page to wait for.
1376 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1377 *
1378 * The caller should hold a reference on @page.  They expect the page to
1379 * become unlocked relatively soon, but do not wish to hold up migration
1380 * (for example) by holding the reference while waiting for the page to
1381 * come unlocked.  After this function returns, the caller should not
1382 * dereference @page.
1383 *
1384 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1385 */
1386int put_and_wait_on_page_locked(struct page *page, int state)
1387{
1388	wait_queue_head_t *q;
1389
1390	page = compound_head(page);
1391	q = page_waitqueue(page);
1392	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1393}
1394
1395/**
1396 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1397 * @page: Page defining the wait queue of interest
1398 * @waiter: Waiter to add to the queue
1399 *
1400 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1401 */
1402void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1403{
1404	wait_queue_head_t *q = page_waitqueue(page);
1405	unsigned long flags;
1406
1407	spin_lock_irqsave(&q->lock, flags);
1408	__add_wait_queue_entry_tail(q, waiter);
1409	SetPageWaiters(page);
1410	spin_unlock_irqrestore(&q->lock, flags);
1411}
1412EXPORT_SYMBOL_GPL(add_page_wait_queue);
1413
1414#ifndef clear_bit_unlock_is_negative_byte
1415
1416/*
1417 * PG_waiters is the high bit in the same byte as PG_lock.
1418 *
1419 * On x86 (and on many other architectures), we can clear PG_lock and
1420 * test the sign bit at the same time. But if the architecture does
1421 * not support that special operation, we just do this all by hand
1422 * instead.
1423 *
1424 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1425 * being cleared, but a memory barrier should be unnecessary since it is
1426 * in the same byte as PG_locked.
1427 */
1428static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1429{
1430	clear_bit_unlock(nr, mem);
1431	/* smp_mb__after_atomic(); */
1432	return test_bit(PG_waiters, mem);
1433}
1434
1435#endif
1436
1437/**
1438 * unlock_page - unlock a locked page
1439 * @page: the page
1440 *
1441 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1442 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1443 * mechanism between PageLocked pages and PageWriteback pages is shared.
1444 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1445 *
1446 * Note that this depends on PG_waiters being the sign bit in the byte
1447 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1448 * clear the PG_locked bit and test PG_waiters at the same time fairly
1449 * portably (architectures that do LL/SC can test any bit, while x86 can
1450 * test the sign bit).
1451 */
1452void unlock_page(struct page *page)
1453{
1454	BUILD_BUG_ON(PG_waiters != 7);
1455	page = compound_head(page);
1456	VM_BUG_ON_PAGE(!PageLocked(page), page);
1457	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1458		wake_up_page_bit(page, PG_locked);
1459}
1460EXPORT_SYMBOL(unlock_page);
1461
1462/**
1463 * end_page_private_2 - Clear PG_private_2 and release any waiters
1464 * @page: The page
1465 *
1466 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1467 * this.  The page ref held for PG_private_2 being set is released.
1468 *
1469 * This is, for example, used when a netfs page is being written to a local
1470 * disk cache, thereby allowing writes to the cache for the same page to be
1471 * serialised.
1472 */
1473void end_page_private_2(struct page *page)
1474{
1475	page = compound_head(page);
1476	VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1477	clear_bit_unlock(PG_private_2, &page->flags);
1478	wake_up_page_bit(page, PG_private_2);
1479	put_page(page);
1480}
1481EXPORT_SYMBOL(end_page_private_2);
1482
1483/**
1484 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1485 * @page: The page to wait on
1486 *
1487 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1488 */
1489void wait_on_page_private_2(struct page *page)
1490{
1491	page = compound_head(page);
1492	while (PagePrivate2(page))
1493		wait_on_page_bit(page, PG_private_2);
1494}
1495EXPORT_SYMBOL(wait_on_page_private_2);
1496
1497/**
1498 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1499 * @page: The page to wait on
1500 *
1501 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1502 * fatal signal is received by the calling task.
1503 *
1504 * Return:
1505 * - 0 if successful.
1506 * - -EINTR if a fatal signal was encountered.
1507 */
1508int wait_on_page_private_2_killable(struct page *page)
1509{
1510	int ret = 0;
1511
1512	page = compound_head(page);
1513	while (PagePrivate2(page)) {
1514		ret = wait_on_page_bit_killable(page, PG_private_2);
1515		if (ret < 0)
1516			break;
1517	}
1518
1519	return ret;
1520}
1521EXPORT_SYMBOL(wait_on_page_private_2_killable);
1522
1523/**
1524 * end_page_writeback - end writeback against a page
1525 * @page: the page
1526 */
1527void end_page_writeback(struct page *page)
1528{
1529	/*
1530	 * TestClearPageReclaim could be used here but it is an atomic
1531	 * operation and overkill in this particular case. Failing to
1532	 * shuffle a page marked for immediate reclaim is too mild to
1533	 * justify taking an atomic operation penalty at the end of
1534	 * ever page writeback.
1535	 */
1536	if (PageReclaim(page)) {
1537		ClearPageReclaim(page);
1538		rotate_reclaimable_page(page);
1539	}
1540
1541	/*
1542	 * Writeback does not hold a page reference of its own, relying
1543	 * on truncation to wait for the clearing of PG_writeback.
1544	 * But here we must make sure that the page is not freed and
1545	 * reused before the wake_up_page().
1546	 */
1547	get_page(page);
1548	if (!test_clear_page_writeback(page))
1549		BUG();
1550
1551	smp_mb__after_atomic();
1552	wake_up_page(page, PG_writeback);
1553	put_page(page);
1554}
1555EXPORT_SYMBOL(end_page_writeback);
1556
1557/*
1558 * After completing I/O on a page, call this routine to update the page
1559 * flags appropriately
1560 */
1561void page_endio(struct page *page, bool is_write, int err)
1562{
1563	if (!is_write) {
1564		if (!err) {
1565			SetPageUptodate(page);
1566		} else {
1567			ClearPageUptodate(page);
1568			SetPageError(page);
1569		}
1570		unlock_page(page);
1571	} else {
1572		if (err) {
1573			struct address_space *mapping;
1574
1575			SetPageError(page);
1576			mapping = page_mapping(page);
1577			if (mapping)
1578				mapping_set_error(mapping, err);
1579		}
1580		end_page_writeback(page);
1581	}
1582}
1583EXPORT_SYMBOL_GPL(page_endio);
1584
1585/**
1586 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1587 * @__page: the page to lock
1588 */
1589void __lock_page(struct page *__page)
1590{
1591	struct page *page = compound_head(__page);
1592	wait_queue_head_t *q = page_waitqueue(page);
1593	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1594				EXCLUSIVE);
1595}
1596EXPORT_SYMBOL(__lock_page);
1597
1598int __lock_page_killable(struct page *__page)
1599{
1600	struct page *page = compound_head(__page);
1601	wait_queue_head_t *q = page_waitqueue(page);
1602	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1603					EXCLUSIVE);
1604}
1605EXPORT_SYMBOL_GPL(__lock_page_killable);
1606
1607int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1608{
1609	struct wait_queue_head *q = page_waitqueue(page);
1610	int ret = 0;
1611
1612	wait->page = page;
1613	wait->bit_nr = PG_locked;
1614
1615	spin_lock_irq(&q->lock);
1616	__add_wait_queue_entry_tail(q, &wait->wait);
1617	SetPageWaiters(page);
1618	ret = !trylock_page(page);
1619	/*
1620	 * If we were successful now, we know we're still on the
1621	 * waitqueue as we're still under the lock. This means it's
1622	 * safe to remove and return success, we know the callback
1623	 * isn't going to trigger.
1624	 */
1625	if (!ret)
1626		__remove_wait_queue(q, &wait->wait);
1627	else
1628		ret = -EIOCBQUEUED;
1629	spin_unlock_irq(&q->lock);
1630	return ret;
1631}
1632
1633/*
1634 * Return values:
1635 * 1 - page is locked; mmap_lock is still held.
1636 * 0 - page is not locked.
1637 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1638 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1639 *     which case mmap_lock is still held.
1640 *
1641 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1642 * with the page locked and the mmap_lock unperturbed.
1643 */
1644int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1645			 unsigned int flags)
1646{
1647	if (fault_flag_allow_retry_first(flags)) {
1648		/*
1649		 * CAUTION! In this case, mmap_lock is not released
1650		 * even though return 0.
1651		 */
1652		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1653			return 0;
1654
1655		mmap_read_unlock(mm);
1656		if (flags & FAULT_FLAG_KILLABLE)
1657			wait_on_page_locked_killable(page);
1658		else
1659			wait_on_page_locked(page);
1660		return 0;
1661	}
1662	if (flags & FAULT_FLAG_KILLABLE) {
1663		int ret;
1664
1665		ret = __lock_page_killable(page);
1666		if (ret) {
1667			mmap_read_unlock(mm);
1668			return 0;
1669		}
1670	} else {
1671		__lock_page(page);
 
1672	}
1673	return 1;
1674
1675}
1676
1677/**
1678 * page_cache_next_miss() - Find the next gap in the page cache.
1679 * @mapping: Mapping.
1680 * @index: Index.
1681 * @max_scan: Maximum range to search.
1682 *
1683 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1684 * gap with the lowest index.
1685 *
1686 * This function may be called under the rcu_read_lock.  However, this will
1687 * not atomically search a snapshot of the cache at a single point in time.
1688 * For example, if a gap is created at index 5, then subsequently a gap is
1689 * created at index 10, page_cache_next_miss covering both indices may
1690 * return 10 if called under the rcu_read_lock.
1691 *
1692 * Return: The index of the gap if found, otherwise an index outside the
1693 * range specified (in which case 'return - index >= max_scan' will be true).
1694 * In the rare case of index wrap-around, 0 will be returned.
 
 
1695 */
1696pgoff_t page_cache_next_miss(struct address_space *mapping,
1697			     pgoff_t index, unsigned long max_scan)
1698{
1699	XA_STATE(xas, &mapping->i_pages, index);
1700
1701	while (max_scan--) {
1702		void *entry = xas_next(&xas);
1703		if (!entry || xa_is_value(entry))
 
 
1704			break;
1705		if (xas.xa_index == 0)
 
1706			break;
1707	}
1708
1709	return xas.xa_index;
1710}
1711EXPORT_SYMBOL(page_cache_next_miss);
1712
1713/**
1714 * page_cache_prev_miss() - Find the previous gap in the page cache.
1715 * @mapping: Mapping.
1716 * @index: Index.
1717 * @max_scan: Maximum range to search.
1718 *
1719 * Search the range [max(index - max_scan + 1, 0), index] for the
1720 * gap with the highest index.
1721 *
1722 * This function may be called under the rcu_read_lock.  However, this will
1723 * not atomically search a snapshot of the cache at a single point in time.
1724 * For example, if a gap is created at index 10, then subsequently a gap is
1725 * created at index 5, page_cache_prev_miss() covering both indices may
1726 * return 5 if called under the rcu_read_lock.
1727 *
1728 * Return: The index of the gap if found, otherwise an index outside the
1729 * range specified (in which case 'index - return >= max_scan' will be true).
1730 * In the rare case of wrap-around, ULONG_MAX will be returned.
 
 
 
1731 */
1732pgoff_t page_cache_prev_miss(struct address_space *mapping,
1733			     pgoff_t index, unsigned long max_scan)
1734{
1735	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1736
1737	while (max_scan--) {
1738		void *entry = xas_prev(&xas);
1739		if (!entry || xa_is_value(entry))
1740			break;
1741		if (xas.xa_index == ULONG_MAX)
 
1742			break;
1743	}
1744
1745	return xas.xa_index;
1746}
1747EXPORT_SYMBOL(page_cache_prev_miss);
1748
1749/*
1750 * mapping_get_entry - Get a page cache entry.
1751 * @mapping: the address_space to search
1752 * @index: The page cache index.
1753 *
1754 * Looks up the page cache slot at @mapping & @index.  If there is a
1755 * page cache page, the head page is returned with an increased refcount.
1756 *
1757 * If the slot holds a shadow entry of a previously evicted page, or a
1758 * swap entry from shmem/tmpfs, it is returned.
1759 *
1760 * Return: The head page or shadow entry, %NULL if nothing is found.
1761 */
1762static struct page *mapping_get_entry(struct address_space *mapping,
1763		pgoff_t index)
1764{
1765	XA_STATE(xas, &mapping->i_pages, index);
1766	struct page *page;
1767
1768	rcu_read_lock();
1769repeat:
1770	xas_reset(&xas);
1771	page = xas_load(&xas);
1772	if (xas_retry(&xas, page))
1773		goto repeat;
1774	/*
1775	 * A shadow entry of a recently evicted page, or a swap entry from
1776	 * shmem/tmpfs.  Return it without attempting to raise page count.
1777	 */
1778	if (!page || xa_is_value(page))
1779		goto out;
 
 
 
 
 
 
 
 
 
 
1780
1781	if (!page_cache_get_speculative(page))
1782		goto repeat;
 
 
 
1783
1784	/*
1785	 * Has the page moved or been split?
1786	 * This is part of the lockless pagecache protocol. See
1787	 * include/linux/pagemap.h for details.
1788	 */
1789	if (unlikely(page != xas_reload(&xas))) {
1790		put_page(page);
1791		goto repeat;
 
1792	}
1793out:
1794	rcu_read_unlock();
1795
1796	return page;
1797}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1798
1799/**
1800 * pagecache_get_page - Find and get a reference to a page.
1801 * @mapping: The address_space to search.
1802 * @index: The page index.
1803 * @fgp_flags: %FGP flags modify how the page is returned.
1804 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1805 *
1806 * Looks up the page cache entry at @mapping & @index.
1807 *
1808 * @fgp_flags can be zero or more of these flags:
1809 *
1810 * * %FGP_ACCESSED - The page will be marked accessed.
1811 * * %FGP_LOCK - The page is returned locked.
1812 * * %FGP_HEAD - If the page is present and a THP, return the head page
1813 *   rather than the exact page specified by the index.
1814 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1815 *   instead of allocating a new page to replace it.
1816 * * %FGP_CREAT - If no page is present then a new page is allocated using
1817 *   @gfp_mask and added to the page cache and the VM's LRU list.
1818 *   The page is returned locked and with an increased refcount.
1819 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1820 *   page is already in cache.  If the page was allocated, unlock it before
1821 *   returning so the caller can do the same dance.
1822 * * %FGP_WRITE - The page will be written
1823 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1824 * * %FGP_NOWAIT - Don't get blocked by page lock
1825 *
1826 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1827 * if the %GFP flags specified for %FGP_CREAT are atomic.
 
 
 
 
 
 
 
 
 
 
 
1828 *
1829 * If there is a page cache page, it is returned with an increased refcount.
1830 *
1831 * Return: The found page or %NULL otherwise.
1832 */
1833struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1834		int fgp_flags, gfp_t gfp_mask)
1835{
1836	struct page *page;
1837
1838repeat:
1839	page = mapping_get_entry(mapping, index);
1840	if (xa_is_value(page)) {
1841		if (fgp_flags & FGP_ENTRY)
1842			return page;
1843		page = NULL;
1844	}
1845	if (!page)
1846		goto no_page;
1847
1848	if (fgp_flags & FGP_LOCK) {
1849		if (fgp_flags & FGP_NOWAIT) {
1850			if (!trylock_page(page)) {
1851				put_page(page);
1852				return NULL;
1853			}
1854		} else {
1855			lock_page(page);
1856		}
1857
1858		/* Has the page been truncated? */
1859		if (unlikely(page->mapping != mapping)) {
1860			unlock_page(page);
1861			put_page(page);
1862			goto repeat;
1863		}
1864		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1865	}
1866
1867	if (fgp_flags & FGP_ACCESSED)
1868		mark_page_accessed(page);
1869	else if (fgp_flags & FGP_WRITE) {
1870		/* Clear idle flag for buffer write */
1871		if (page_is_idle(page))
1872			clear_page_idle(page);
1873	}
1874	if (!(fgp_flags & FGP_HEAD))
1875		page = find_subpage(page, index);
1876
1877no_page:
1878	if (!page && (fgp_flags & FGP_CREAT)) {
1879		int err;
1880		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1881			gfp_mask |= __GFP_WRITE;
1882		if (fgp_flags & FGP_NOFS)
1883			gfp_mask &= ~__GFP_FS;
1884
1885		page = __page_cache_alloc(gfp_mask);
1886		if (!page)
1887			return NULL;
1888
1889		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1890			fgp_flags |= FGP_LOCK;
1891
1892		/* Init accessed so avoid atomic mark_page_accessed later */
1893		if (fgp_flags & FGP_ACCESSED)
1894			__SetPageReferenced(page);
1895
1896		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1897		if (unlikely(err)) {
1898			put_page(page);
1899			page = NULL;
1900			if (err == -EEXIST)
1901				goto repeat;
1902		}
1903
1904		/*
1905		 * add_to_page_cache_lru locks the page, and for mmap we expect
1906		 * an unlocked page.
1907		 */
1908		if (page && (fgp_flags & FGP_FOR_MMAP))
1909			unlock_page(page);
1910	}
1911
1912	return page;
1913}
1914EXPORT_SYMBOL(pagecache_get_page);
1915
1916static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1917		xa_mark_t mark)
1918{
1919	struct page *page;
1920
1921retry:
1922	if (mark == XA_PRESENT)
1923		page = xas_find(xas, max);
1924	else
1925		page = xas_find_marked(xas, max, mark);
1926
1927	if (xas_retry(xas, page))
1928		goto retry;
1929	/*
1930	 * A shadow entry of a recently evicted page, a swap
1931	 * entry from shmem/tmpfs or a DAX entry.  Return it
1932	 * without attempting to raise page count.
1933	 */
1934	if (!page || xa_is_value(page))
1935		return page;
1936
1937	if (!page_cache_get_speculative(page))
1938		goto reset;
1939
1940	/* Has the page moved or been split? */
1941	if (unlikely(page != xas_reload(xas))) {
1942		put_page(page);
1943		goto reset;
1944	}
1945
1946	return page;
1947reset:
1948	xas_reset(xas);
1949	goto retry;
1950}
1951
1952/**
1953 * find_get_entries - gang pagecache lookup
1954 * @mapping:	The address_space to search
1955 * @start:	The starting page cache index
1956 * @end:	The final page index (inclusive).
1957 * @pvec:	Where the resulting entries are placed.
1958 * @indices:	The cache indices corresponding to the entries in @entries
1959 *
1960 * find_get_entries() will search for and return a batch of entries in
1961 * the mapping.  The entries are placed in @pvec.  find_get_entries()
1962 * takes a reference on any actual pages it returns.
 
1963 *
1964 * The search returns a group of mapping-contiguous page cache entries
1965 * with ascending indexes.  There may be holes in the indices due to
1966 * not-present pages.
1967 *
1968 * Any shadow entries of evicted pages, or swap entries from
1969 * shmem/tmpfs, are included in the returned array.
1970 *
1971 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1972 * stops at that page: the caller is likely to have a better way to handle
1973 * the compound page as a whole, and then skip its extent, than repeatedly
1974 * calling find_get_entries() to return all its tails.
1975 *
1976 * Return: the number of pages and shadow entries which were found.
1977 */
1978unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1979		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
 
1980{
1981	XA_STATE(xas, &mapping->i_pages, start);
1982	struct page *page;
1983	unsigned int ret = 0;
1984	unsigned nr_entries = PAGEVEC_SIZE;
 
 
 
1985
1986	rcu_read_lock();
1987	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1988		/*
1989		 * Terminate early on finding a THP, to allow the caller to
1990		 * handle it all at once; but continue if this is hugetlbfs.
1991		 */
1992		if (!xa_is_value(page) && PageTransHuge(page) &&
1993				!PageHuge(page)) {
1994			page = find_subpage(page, xas.xa_index);
1995			nr_entries = ret + 1;
 
 
 
 
 
 
 
 
1996		}
1997
1998		indices[ret] = xas.xa_index;
1999		pvec->pages[ret] = page;
2000		if (++ret == nr_entries)
2001			break;
2002	}
2003	rcu_read_unlock();
2004
2005	pvec->nr = ret;
2006	return ret;
2007}
 
 
2008
2009/**
2010 * find_lock_entries - Find a batch of pagecache entries.
2011 * @mapping:	The address_space to search.
2012 * @start:	The starting page cache index.
2013 * @end:	The final page index (inclusive).
2014 * @pvec:	Where the resulting entries are placed.
2015 * @indices:	The cache indices of the entries in @pvec.
2016 *
2017 * find_lock_entries() will return a batch of entries from @mapping.
2018 * Swap, shadow and DAX entries are included.  Pages are returned
2019 * locked and with an incremented refcount.  Pages which are locked by
2020 * somebody else or under writeback are skipped.  Only the head page of
2021 * a THP is returned.  Pages which are partially outside the range are
2022 * not returned.
2023 *
2024 * The entries have ascending indexes.  The indices may not be consecutive
2025 * due to not-present entries, THP pages, pages which could not be locked
2026 * or pages under writeback.
2027 *
2028 * Return: The number of entries which were found.
2029 */
2030unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2031		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2032{
2033	XA_STATE(xas, &mapping->i_pages, start);
2034	struct page *page;
2035
2036	rcu_read_lock();
2037	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2038		if (!xa_is_value(page)) {
2039			if (page->index < start)
2040				goto put;
2041			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2042			if (page->index + thp_nr_pages(page) - 1 > end)
2043				goto put;
2044			if (!trylock_page(page))
2045				goto put;
2046			if (page->mapping != mapping || PageWriteback(page))
2047				goto unlock;
2048			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2049					page);
2050		}
2051		indices[pvec->nr] = xas.xa_index;
2052		if (!pagevec_add(pvec, page))
 
 
2053			break;
2054		goto next;
2055unlock:
2056		unlock_page(page);
2057put:
2058		put_page(page);
2059next:
2060		if (!xa_is_value(page) && PageTransHuge(page)) {
2061			unsigned int nr_pages = thp_nr_pages(page);
2062
2063			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2064			xas_set(&xas, page->index + nr_pages);
2065			if (xas.xa_index < nr_pages)
2066				break;
2067		}
2068	}
2069	rcu_read_unlock();
2070
2071	return pagevec_count(pvec);
2072}
2073
2074/**
2075 * find_get_pages_range - gang pagecache lookup
2076 * @mapping:	The address_space to search
2077 * @start:	The starting page index
2078 * @end:	The final page index (inclusive)
2079 * @nr_pages:	The maximum number of pages
2080 * @pages:	Where the resulting pages are placed
2081 *
2082 * find_get_pages_range() will search for and return a group of up to @nr_pages
2083 * pages in the mapping starting at index @start and up to index @end
2084 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2085 * a reference against the returned pages.
2086 *
2087 * The search returns a group of mapping-contiguous pages with ascending
2088 * indexes.  There may be holes in the indices due to not-present pages.
2089 * We also update @start to index the next page for the traversal.
2090 *
2091 * Return: the number of pages which were found. If this number is
2092 * smaller than @nr_pages, the end of specified range has been
2093 * reached.
2094 */
2095unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2096			      pgoff_t end, unsigned int nr_pages,
2097			      struct page **pages)
2098{
2099	XA_STATE(xas, &mapping->i_pages, *start);
2100	struct page *page;
2101	unsigned ret = 0;
2102
2103	if (unlikely(!nr_pages))
2104		return 0;
2105
2106	rcu_read_lock();
2107	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2108		/* Skip over shadow, swap and DAX entries */
2109		if (xa_is_value(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2110			continue;
 
2111
2112		pages[ret] = find_subpage(page, xas.xa_index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2113		if (++ret == nr_pages) {
2114			*start = xas.xa_index + 1;
2115			goto out;
2116		}
2117	}
2118
2119	/*
2120	 * We come here when there is no page beyond @end. We take care to not
2121	 * overflow the index @start as it confuses some of the callers. This
2122	 * breaks the iteration when there is a page at index -1 but that is
2123	 * already broken anyway.
2124	 */
2125	if (end == (pgoff_t)-1)
2126		*start = (pgoff_t)-1;
2127	else
2128		*start = end + 1;
2129out:
2130	rcu_read_unlock();
2131
2132	return ret;
2133}
2134
2135/**
2136 * find_get_pages_contig - gang contiguous pagecache lookup
2137 * @mapping:	The address_space to search
2138 * @index:	The starting page index
2139 * @nr_pages:	The maximum number of pages
2140 * @pages:	Where the resulting pages are placed
2141 *
2142 * find_get_pages_contig() works exactly like find_get_pages(), except
2143 * that the returned number of pages are guaranteed to be contiguous.
2144 *
2145 * Return: the number of pages which were found.
2146 */
2147unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2148			       unsigned int nr_pages, struct page **pages)
2149{
2150	XA_STATE(xas, &mapping->i_pages, index);
2151	struct page *page;
2152	unsigned int ret = 0;
2153
2154	if (unlikely(!nr_pages))
2155		return 0;
2156
2157	rcu_read_lock();
2158	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2159		if (xas_retry(&xas, page))
2160			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161		/*
2162		 * If the entry has been swapped out, we can stop looking.
2163		 * No current caller is looking for DAX entries.
 
2164		 */
2165		if (xa_is_value(page))
 
2166			break;
 
2167
2168		if (!page_cache_get_speculative(page))
2169			goto retry;
2170
2171		/* Has the page moved or been split? */
2172		if (unlikely(page != xas_reload(&xas)))
2173			goto put_page;
2174
2175		pages[ret] = find_subpage(page, xas.xa_index);
2176		if (++ret == nr_pages)
2177			break;
2178		continue;
2179put_page:
2180		put_page(page);
2181retry:
2182		xas_reset(&xas);
2183	}
2184	rcu_read_unlock();
2185	return ret;
2186}
2187EXPORT_SYMBOL(find_get_pages_contig);
2188
2189/**
2190 * find_get_pages_range_tag - Find and return head pages matching @tag.
2191 * @mapping:	the address_space to search
2192 * @index:	the starting page index
2193 * @end:	The final page index (inclusive)
2194 * @tag:	the tag index
2195 * @nr_pages:	the maximum number of pages
2196 * @pages:	where the resulting pages are placed
2197 *
2198 * Like find_get_pages(), except we only return head pages which are tagged
2199 * with @tag.  @index is updated to the index immediately after the last
2200 * page we return, ready for the next iteration.
2201 *
2202 * Return: the number of pages which were found.
2203 */
2204unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2205			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2206			struct page **pages)
2207{
2208	XA_STATE(xas, &mapping->i_pages, *index);
2209	struct page *page;
2210	unsigned ret = 0;
2211
2212	if (unlikely(!nr_pages))
2213		return 0;
2214
2215	rcu_read_lock();
2216	while ((page = find_get_entry(&xas, end, tag))) {
2217		/*
2218		 * Shadow entries should never be tagged, but this iteration
2219		 * is lockless so there is a window for page reclaim to evict
2220		 * a page we saw tagged.  Skip over it.
2221		 */
2222		if (xa_is_value(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2223			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2224
2225		pages[ret] = page;
2226		if (++ret == nr_pages) {
2227			*index = page->index + thp_nr_pages(page);
2228			goto out;
2229		}
2230	}
2231
2232	/*
2233	 * We come here when we got to @end. We take care to not overflow the
2234	 * index @index as it confuses some of the callers. This breaks the
2235	 * iteration when there is a page at index -1 but that is already
2236	 * broken anyway.
2237	 */
2238	if (end == (pgoff_t)-1)
2239		*index = (pgoff_t)-1;
2240	else
2241		*index = end + 1;
2242out:
2243	rcu_read_unlock();
2244
2245	return ret;
2246}
2247EXPORT_SYMBOL(find_get_pages_range_tag);
2248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2249/*
2250 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251 * a _large_ part of the i/o request. Imagine the worst scenario:
2252 *
2253 *      ---R__________________________________________B__________
2254 *         ^ reading here                             ^ bad block(assume 4k)
2255 *
2256 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257 * => failing the whole request => read(R) => read(R+1) =>
2258 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261 *
2262 * It is going insane. Fix it by quickly scaling down the readahead size.
2263 */
2264static void shrink_readahead_size_eio(struct file_ra_state *ra)
 
2265{
2266	ra->ra_pages /= 4;
2267}
2268
2269/*
2270 * filemap_get_read_batch - Get a batch of pages for read
 
 
 
 
 
 
2271 *
2272 * Get a batch of pages which represent a contiguous range of bytes
2273 * in the file.  No tail pages will be returned.  If @index is in the
2274 * middle of a THP, the entire THP will be returned.  The last page in
2275 * the batch may have Readahead set or be not Uptodate so that the
2276 * caller can take the appropriate action.
2277 */
2278static void filemap_get_read_batch(struct address_space *mapping,
2279		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2280{
2281	XA_STATE(xas, &mapping->i_pages, index);
2282	struct page *head;
2283
2284	rcu_read_lock();
2285	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2286		if (xas_retry(&xas, head))
2287			continue;
2288		if (xas.xa_index > max || xa_is_value(head))
2289			break;
2290		if (!page_cache_get_speculative(head))
2291			goto retry;
2292
2293		/* Has the page moved or been split? */
2294		if (unlikely(head != xas_reload(&xas)))
2295			goto put_page;
2296
2297		if (!pagevec_add(pvec, head))
2298			break;
2299		if (!PageUptodate(head))
2300			break;
2301		if (PageReadahead(head))
2302			break;
2303		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2304		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2305		continue;
2306put_page:
2307		put_page(head);
2308retry:
2309		xas_reset(&xas);
2310	}
2311	rcu_read_unlock();
2312}
2313
2314static int filemap_read_page(struct file *file, struct address_space *mapping,
2315		struct page *page)
2316{
2317	int error;
2318
2319	/*
2320	 * A previous I/O error may have been due to temporary failures,
2321	 * eg. multipath errors.  PG_error will be set again if readpage
2322	 * fails.
2323	 */
2324	ClearPageError(page);
2325	/* Start the actual read. The read will unlock the page. */
2326	error = mapping->a_ops->readpage(file, page);
2327	if (error)
2328		return error;
2329
2330	error = wait_on_page_locked_killable(page);
2331	if (error)
2332		return error;
2333	if (PageUptodate(page))
2334		return 0;
2335	shrink_readahead_size_eio(&file->f_ra);
2336	return -EIO;
2337}
2338
2339static bool filemap_range_uptodate(struct address_space *mapping,
2340		loff_t pos, struct iov_iter *iter, struct page *page)
2341{
2342	int count;
2343
2344	if (PageUptodate(page))
2345		return true;
2346	/* pipes can't handle partially uptodate pages */
2347	if (iov_iter_is_pipe(iter))
2348		return false;
2349	if (!mapping->a_ops->is_partially_uptodate)
2350		return false;
2351	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2352		return false;
2353
2354	count = iter->count;
2355	if (page_offset(page) > pos) {
2356		count -= page_offset(page) - pos;
2357		pos = 0;
2358	} else {
2359		pos -= page_offset(page);
2360	}
2361
2362	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2363}
2364
2365static int filemap_update_page(struct kiocb *iocb,
2366		struct address_space *mapping, struct iov_iter *iter,
2367		struct page *page)
2368{
2369	int error;
2370
2371	if (!trylock_page(page)) {
2372		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2373			return -EAGAIN;
2374		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2375			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2376			return AOP_TRUNCATED_PAGE;
2377		}
2378		error = __lock_page_async(page, iocb->ki_waitq);
2379		if (error)
2380			return error;
2381	}
2382
2383	if (!page->mapping)
2384		goto truncated;
2385
2386	error = 0;
2387	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2388		goto unlock;
2389
2390	error = -EAGAIN;
2391	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2392		goto unlock;
2393
2394	error = filemap_read_page(iocb->ki_filp, mapping, page);
2395	if (error == AOP_TRUNCATED_PAGE)
2396		put_page(page);
2397	return error;
2398truncated:
2399	unlock_page(page);
2400	put_page(page);
2401	return AOP_TRUNCATED_PAGE;
2402unlock:
2403	unlock_page(page);
2404	return error;
2405}
2406
2407static int filemap_create_page(struct file *file,
2408		struct address_space *mapping, pgoff_t index,
2409		struct pagevec *pvec)
2410{
2411	struct page *page;
2412	int error;
2413
2414	page = page_cache_alloc(mapping);
2415	if (!page)
2416		return -ENOMEM;
2417
2418	error = add_to_page_cache_lru(page, mapping, index,
2419			mapping_gfp_constraint(mapping, GFP_KERNEL));
2420	if (error == -EEXIST)
2421		error = AOP_TRUNCATED_PAGE;
2422	if (error)
2423		goto error;
2424
2425	error = filemap_read_page(file, mapping, page);
2426	if (error)
2427		goto error;
2428
2429	pagevec_add(pvec, page);
2430	return 0;
2431error:
2432	put_page(page);
2433	return error;
2434}
2435
2436static int filemap_readahead(struct kiocb *iocb, struct file *file,
2437		struct address_space *mapping, struct page *page,
2438		pgoff_t last_index)
2439{
2440	if (iocb->ki_flags & IOCB_NOIO)
2441		return -EAGAIN;
2442	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2443			page->index, last_index - page->index);
2444	return 0;
2445}
2446
2447static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2448		struct pagevec *pvec)
2449{
2450	struct file *filp = iocb->ki_filp;
2451	struct address_space *mapping = filp->f_mapping;
 
2452	struct file_ra_state *ra = &filp->f_ra;
2453	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
 
2454	pgoff_t last_index;
2455	struct page *page;
2456	int err = 0;
2457
2458	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2459retry:
2460	if (fatal_signal_pending(current))
2461		return -EINTR;
2462
2463	filemap_get_read_batch(mapping, index, last_index, pvec);
2464	if (!pagevec_count(pvec)) {
2465		if (iocb->ki_flags & IOCB_NOIO)
2466			return -EAGAIN;
2467		page_cache_sync_readahead(mapping, ra, filp, index,
2468				last_index - index);
2469		filemap_get_read_batch(mapping, index, last_index, pvec);
2470	}
2471	if (!pagevec_count(pvec)) {
2472		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2473			return -EAGAIN;
2474		err = filemap_create_page(filp, mapping,
2475				iocb->ki_pos >> PAGE_SHIFT, pvec);
2476		if (err == AOP_TRUNCATED_PAGE)
2477			goto retry;
2478		return err;
2479	}
2480
2481	page = pvec->pages[pagevec_count(pvec) - 1];
2482	if (PageReadahead(page)) {
2483		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2484		if (err)
2485			goto err;
2486	}
2487	if (!PageUptodate(page)) {
2488		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2489			iocb->ki_flags |= IOCB_NOWAIT;
2490		err = filemap_update_page(iocb, mapping, iter, page);
2491		if (err)
2492			goto err;
2493	}
2494
2495	return 0;
2496err:
2497	if (err < 0)
2498		put_page(page);
2499	if (likely(--pvec->nr))
2500		return 0;
2501	if (err == AOP_TRUNCATED_PAGE)
2502		goto retry;
2503	return err;
2504}
2505
2506/**
2507 * filemap_read - Read data from the page cache.
2508 * @iocb: The iocb to read.
2509 * @iter: Destination for the data.
2510 * @already_read: Number of bytes already read by the caller.
2511 *
2512 * Copies data from the page cache.  If the data is not currently present,
2513 * uses the readahead and readpage address_space operations to fetch it.
2514 *
2515 * Return: Total number of bytes copied, including those already read by
2516 * the caller.  If an error happens before any bytes are copied, returns
2517 * a negative error number.
2518 */
2519ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2520		ssize_t already_read)
2521{
2522	struct file *filp = iocb->ki_filp;
2523	struct file_ra_state *ra = &filp->f_ra;
2524	struct address_space *mapping = filp->f_mapping;
2525	struct inode *inode = mapping->host;
2526	struct pagevec pvec;
2527	int i, error = 0;
2528	bool writably_mapped;
2529	loff_t isize, end_offset;
2530
2531	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2532		return 0;
2533	if (unlikely(!iov_iter_count(iter)))
2534		return 0;
 
2535
2536	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2537	pagevec_init(&pvec);
2538
2539	do {
2540		cond_resched();
 
 
 
 
 
2541
2542		/*
2543		 * If we've already successfully copied some data, then we
2544		 * can no longer safely return -EIOCBQUEUED. Hence mark
2545		 * an async read NOWAIT at that point.
2546		 */
2547		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2548			iocb->ki_flags |= IOCB_NOWAIT;
2549
2550		error = filemap_get_pages(iocb, iter, &pvec);
2551		if (error < 0)
2552			break;
 
 
 
 
 
 
 
 
 
 
2553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2554		/*
2555		 * i_size must be checked after we know the pages are Uptodate.
2556		 *
2557		 * Checking i_size after the check allows us to calculate
2558		 * the correct value for "nr", which means the zero-filled
2559		 * part of the page is not copied back to userspace (unless
2560		 * another truncate extends the file - this is desired though).
2561		 */
 
2562		isize = i_size_read(inode);
2563		if (unlikely(iocb->ki_pos >= isize))
2564			goto put_pages;
2565		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566
2567		/*
2568		 * Once we start copying data, we don't want to be touching any
2569		 * cachelines that might be contended:
2570		 */
2571		writably_mapped = mapping_writably_mapped(mapping);
 
 
2572
2573		/*
2574		 * When a sequential read accesses a page several times, only
2575		 * mark it as accessed the first time.
2576		 */
2577		if (iocb->ki_pos >> PAGE_SHIFT !=
2578		    ra->prev_pos >> PAGE_SHIFT)
2579			mark_page_accessed(pvec.pages[0]);
2580
2581		for (i = 0; i < pagevec_count(&pvec); i++) {
2582			struct page *page = pvec.pages[i];
2583			size_t page_size = thp_size(page);
2584			size_t offset = iocb->ki_pos & (page_size - 1);
2585			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2586					     page_size - offset);
2587			size_t copied;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2588
2589			if (end_offset < page_offset(page))
2590				break;
2591			if (i > 0)
2592				mark_page_accessed(page);
2593			/*
2594			 * If users can be writing to this page using arbitrary
2595			 * virtual addresses, take care about potential aliasing
2596			 * before reading the page on the kernel side.
2597			 */
2598			if (writably_mapped) {
2599				int j;
2600
2601				for (j = 0; j < thp_nr_pages(page); j++)
2602					flush_dcache_page(page + j);
 
 
 
2603			}
 
 
2604
2605			copied = copy_page_to_iter(page, offset, bytes, iter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2606
2607			already_read += copied;
2608			iocb->ki_pos += copied;
2609			ra->prev_pos = iocb->ki_pos;
2610
2611			if (copied < bytes) {
2612				error = -EFAULT;
2613				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2614			}
 
2615		}
2616put_pages:
2617		for (i = 0; i < pagevec_count(&pvec); i++)
2618			put_page(pvec.pages[i]);
2619		pagevec_reinit(&pvec);
2620	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2621
 
 
 
 
 
 
 
 
2622	file_accessed(filp);
2623
2624	return already_read ? already_read : error;
2625}
2626EXPORT_SYMBOL_GPL(filemap_read);
2627
2628/**
2629 * generic_file_read_iter - generic filesystem read routine
2630 * @iocb:	kernel I/O control block
2631 * @iter:	destination for the data read
2632 *
2633 * This is the "read_iter()" routine for all filesystems
2634 * that can use the page cache directly.
2635 *
2636 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2637 * be returned when no data can be read without waiting for I/O requests
2638 * to complete; it doesn't prevent readahead.
2639 *
2640 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2641 * requests shall be made for the read or for readahead.  When no data
2642 * can be read, -EAGAIN shall be returned.  When readahead would be
2643 * triggered, a partial, possibly empty read shall be returned.
2644 *
2645 * Return:
2646 * * number of bytes copied, even for partial reads
2647 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2648 */
2649ssize_t
2650generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2651{
2652	size_t count = iov_iter_count(iter);
2653	ssize_t retval = 0;
2654
2655	if (!count)
2656		return 0; /* skip atime */
2657
2658	if (iocb->ki_flags & IOCB_DIRECT) {
2659		struct file *file = iocb->ki_filp;
2660		struct address_space *mapping = file->f_mapping;
2661		struct inode *inode = mapping->host;
2662		loff_t size;
2663
2664		size = i_size_read(inode);
2665		if (iocb->ki_flags & IOCB_NOWAIT) {
2666			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2667						iocb->ki_pos + count - 1))
2668				return -EAGAIN;
2669		} else {
2670			retval = filemap_write_and_wait_range(mapping,
2671						iocb->ki_pos,
2672					        iocb->ki_pos + count - 1);
2673			if (retval < 0)
2674				return retval;
2675		}
2676
2677		file_accessed(file);
2678
2679		retval = mapping->a_ops->direct_IO(iocb, iter);
2680		if (retval >= 0) {
2681			iocb->ki_pos += retval;
2682			count -= retval;
2683		}
2684		if (retval != -EIOCBQUEUED)
2685			iov_iter_revert(iter, count - iov_iter_count(iter));
2686
2687		/*
2688		 * Btrfs can have a short DIO read if we encounter
2689		 * compressed extents, so if there was an error, or if
2690		 * we've already read everything we wanted to, or if
2691		 * there was a short read because we hit EOF, go ahead
2692		 * and return.  Otherwise fallthrough to buffered io for
2693		 * the rest of the read.  Buffered reads will not work for
2694		 * DAX files, so don't bother trying.
2695		 */
2696		if (retval < 0 || !count || iocb->ki_pos >= size ||
2697		    IS_DAX(inode))
2698			return retval;
2699	}
2700
2701	return filemap_read(iocb, iter, retval);
 
 
2702}
2703EXPORT_SYMBOL(generic_file_read_iter);
2704
2705static inline loff_t page_seek_hole_data(struct xa_state *xas,
2706		struct address_space *mapping, struct page *page,
2707		loff_t start, loff_t end, bool seek_data)
2708{
2709	const struct address_space_operations *ops = mapping->a_ops;
2710	size_t offset, bsz = i_blocksize(mapping->host);
2711
2712	if (xa_is_value(page) || PageUptodate(page))
2713		return seek_data ? start : end;
2714	if (!ops->is_partially_uptodate)
2715		return seek_data ? end : start;
2716
2717	xas_pause(xas);
2718	rcu_read_unlock();
2719	lock_page(page);
2720	if (unlikely(page->mapping != mapping))
2721		goto unlock;
2722
2723	offset = offset_in_thp(page, start) & ~(bsz - 1);
2724
2725	do {
2726		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2727			break;
2728		start = (start + bsz) & ~(bsz - 1);
2729		offset += bsz;
2730	} while (offset < thp_size(page));
2731unlock:
2732	unlock_page(page);
2733	rcu_read_lock();
2734	return start;
2735}
2736
2737static inline
2738unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2739{
2740	if (xa_is_value(page))
2741		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2742	return thp_size(page);
2743}
2744
2745/**
2746 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2747 * @mapping: Address space to search.
2748 * @start: First byte to consider.
2749 * @end: Limit of search (exclusive).
2750 * @whence: Either SEEK_HOLE or SEEK_DATA.
2751 *
2752 * If the page cache knows which blocks contain holes and which blocks
2753 * contain data, your filesystem can use this function to implement
2754 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2755 * entirely memory-based such as tmpfs, and filesystems which support
2756 * unwritten extents.
2757 *
2758 * Return: The requested offset on success, or -ENXIO if @whence specifies
2759 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2760 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2761 * and @end contain data.
2762 */
2763loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2764		loff_t end, int whence)
2765{
2766	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2767	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2768	bool seek_data = (whence == SEEK_DATA);
2769	struct page *page;
 
2770
2771	if (end <= start)
2772		return -ENXIO;
 
 
2773
2774	rcu_read_lock();
2775	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2776		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2777		unsigned int seek_size;
2778
2779		if (start < pos) {
2780			if (!seek_data)
2781				goto unlock;
2782			start = pos;
2783		}
2784
2785		seek_size = seek_page_size(&xas, page);
2786		pos = round_up(pos + 1, seek_size);
2787		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2788				seek_data);
2789		if (start < pos)
2790			goto unlock;
2791		if (start >= end)
2792			break;
2793		if (seek_size > PAGE_SIZE)
2794			xas_set(&xas, pos >> PAGE_SHIFT);
2795		if (!xa_is_value(page))
2796			put_page(page);
2797	}
2798	if (seek_data)
2799		start = -ENXIO;
2800unlock:
2801	rcu_read_unlock();
2802	if (page && !xa_is_value(page))
2803		put_page(page);
2804	if (start > end)
2805		return end;
2806	return start;
2807}
2808
2809#ifdef CONFIG_MMU
2810#define MMAP_LOTSAMISS  (100)
2811/*
2812 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2813 * @vmf - the vm_fault for this fault.
2814 * @page - the page to lock.
2815 * @fpin - the pointer to the file we may pin (or is already pinned).
2816 *
2817 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2818 * It differs in that it actually returns the page locked if it returns 1 and 0
2819 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2820 * will point to the pinned file and needs to be fput()'ed at a later point.
2821 */
2822static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2823				     struct file **fpin)
2824{
2825	if (trylock_page(page))
2826		return 1;
2827
2828	/*
2829	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2830	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2831	 * is supposed to work. We have way too many special cases..
2832	 */
2833	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2834		return 0;
2835
2836	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2837	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2838		if (__lock_page_killable(page)) {
2839			/*
2840			 * We didn't have the right flags to drop the mmap_lock,
2841			 * but all fault_handlers only check for fatal signals
2842			 * if we return VM_FAULT_RETRY, so we need to drop the
2843			 * mmap_lock here and return 0 if we don't have a fpin.
2844			 */
2845			if (*fpin == NULL)
2846				mmap_read_unlock(vmf->vma->vm_mm);
2847			return 0;
2848		}
2849	} else
2850		__lock_page(page);
2851	return 1;
2852}
2853
 
2854
2855/*
2856 * Synchronous readahead happens when we don't even find a page in the page
2857 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2858 * to drop the mmap sem we return the file that was pinned in order for us to do
2859 * that.  If we didn't pin a file then we return NULL.  The file that is
2860 * returned needs to be fput()'ed when we're done with it.
2861 */
2862static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
2863{
2864	struct file *file = vmf->vma->vm_file;
2865	struct file_ra_state *ra = &file->f_ra;
2866	struct address_space *mapping = file->f_mapping;
2867	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2868	struct file *fpin = NULL;
2869	unsigned int mmap_miss;
2870
2871	/* If we don't want any read-ahead, don't bother */
2872	if (vmf->vma->vm_flags & VM_RAND_READ)
2873		return fpin;
2874	if (!ra->ra_pages)
2875		return fpin;
2876
2877	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2878		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2879		page_cache_sync_ra(&ractl, ra->ra_pages);
2880		return fpin;
2881	}
2882
2883	/* Avoid banging the cache line if not needed */
2884	mmap_miss = READ_ONCE(ra->mmap_miss);
2885	if (mmap_miss < MMAP_LOTSAMISS * 10)
2886		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2887
2888	/*
2889	 * Do we miss much more than hit in this file? If so,
2890	 * stop bothering with read-ahead. It will only hurt.
2891	 */
2892	if (mmap_miss > MMAP_LOTSAMISS)
2893		return fpin;
2894
2895	/*
2896	 * mmap read-around
2897	 */
2898	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2899	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2900	ra->size = ra->ra_pages;
2901	ra->async_size = ra->ra_pages / 4;
2902	ractl._index = ra->start;
2903	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2904	return fpin;
2905}
2906
2907/*
2908 * Asynchronous readahead happens when we find the page and PG_readahead,
2909 * so we want to possibly extend the readahead further.  We return the file that
2910 * was pinned if we have to drop the mmap_lock in order to do IO.
2911 */
2912static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2913					    struct page *page)
 
 
 
2914{
2915	struct file *file = vmf->vma->vm_file;
2916	struct file_ra_state *ra = &file->f_ra;
2917	struct address_space *mapping = file->f_mapping;
2918	struct file *fpin = NULL;
2919	unsigned int mmap_miss;
2920	pgoff_t offset = vmf->pgoff;
2921
2922	/* If we don't want any read-ahead, don't bother */
2923	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2924		return fpin;
2925	mmap_miss = READ_ONCE(ra->mmap_miss);
2926	if (mmap_miss)
2927		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2928	if (PageReadahead(page)) {
2929		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2930		page_cache_async_readahead(mapping, ra, file,
2931					   page, offset, ra->ra_pages);
2932	}
2933	return fpin;
2934}
2935
2936/**
2937 * filemap_fault - read in file data for page fault handling
2938 * @vmf:	struct vm_fault containing details of the fault
2939 *
2940 * filemap_fault() is invoked via the vma operations vector for a
2941 * mapped memory region to read in file data during a page fault.
2942 *
2943 * The goto's are kind of ugly, but this streamlines the normal case of having
2944 * it in the page cache, and handles the special cases reasonably without
2945 * having a lot of duplicated code.
2946 *
2947 * vma->vm_mm->mmap_lock must be held on entry.
2948 *
2949 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2950 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
 
 
2951 *
2952 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2953 * has not been released.
2954 *
2955 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2956 *
2957 * Return: bitwise-OR of %VM_FAULT_ codes.
2958 */
2959vm_fault_t filemap_fault(struct vm_fault *vmf)
2960{
2961	int error;
2962	struct file *file = vmf->vma->vm_file;
2963	struct file *fpin = NULL;
2964	struct address_space *mapping = file->f_mapping;
 
2965	struct inode *inode = mapping->host;
2966	pgoff_t offset = vmf->pgoff;
2967	pgoff_t max_off;
2968	struct page *page;
2969	vm_fault_t ret = 0;
2970
2971	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2972	if (unlikely(offset >= max_off))
2973		return VM_FAULT_SIGBUS;
2974
2975	/*
2976	 * Do we have something in the page cache already?
2977	 */
2978	page = find_get_page(mapping, offset);
2979	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2980		/*
2981		 * We found the page, so try async readahead before
2982		 * waiting for the lock.
2983		 */
2984		fpin = do_async_mmap_readahead(vmf, page);
2985	} else if (!page) {
2986		/* No page in the page cache at all */
 
2987		count_vm_event(PGMAJFAULT);
2988		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2989		ret = VM_FAULT_MAJOR;
2990		fpin = do_sync_mmap_readahead(vmf);
2991retry_find:
2992		page = pagecache_get_page(mapping, offset,
2993					  FGP_CREAT|FGP_FOR_MMAP,
2994					  vmf->gfp_mask);
2995		if (!page) {
2996			if (fpin)
2997				goto out_retry;
2998			return VM_FAULT_OOM;
2999		}
3000	}
3001
3002	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3003		goto out_retry;
 
 
3004
3005	/* Did it get truncated? */
3006	if (unlikely(compound_head(page)->mapping != mapping)) {
3007		unlock_page(page);
3008		put_page(page);
3009		goto retry_find;
3010	}
3011	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3012
3013	/*
3014	 * We have a locked page in the page cache, now we need to check
3015	 * that it's up-to-date. If not, it is going to be due to an error.
3016	 */
3017	if (unlikely(!PageUptodate(page)))
3018		goto page_not_uptodate;
3019
3020	/*
3021	 * We've made it this far and we had to drop our mmap_lock, now is the
3022	 * time to return to the upper layer and have it re-find the vma and
3023	 * redo the fault.
3024	 */
3025	if (fpin) {
3026		unlock_page(page);
3027		goto out_retry;
3028	}
3029
3030	/*
3031	 * Found the page and have a reference on it.
3032	 * We must recheck i_size under page lock.
3033	 */
3034	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3035	if (unlikely(offset >= max_off)) {
3036		unlock_page(page);
3037		put_page(page);
3038		return VM_FAULT_SIGBUS;
3039	}
3040
3041	vmf->page = page;
3042	return ret | VM_FAULT_LOCKED;
3043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044page_not_uptodate:
3045	/*
3046	 * Umm, take care of errors if the page isn't up-to-date.
3047	 * Try to re-read it _once_. We do this synchronously,
3048	 * because there really aren't any performance issues here
3049	 * and we need to check for errors.
3050	 */
3051	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3052	error = filemap_read_page(file, mapping, page);
3053	if (fpin)
3054		goto out_retry;
 
 
 
3055	put_page(page);
3056
3057	if (!error || error == AOP_TRUNCATED_PAGE)
3058		goto retry_find;
3059
 
 
3060	return VM_FAULT_SIGBUS;
3061
3062out_retry:
3063	/*
3064	 * We dropped the mmap_lock, we need to return to the fault handler to
3065	 * re-find the vma and come back and find our hopefully still populated
3066	 * page.
3067	 */
3068	if (page)
3069		put_page(page);
3070	if (fpin)
3071		fput(fpin);
3072	return ret | VM_FAULT_RETRY;
3073}
3074EXPORT_SYMBOL(filemap_fault);
3075
3076static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
 
3077{
3078	struct mm_struct *mm = vmf->vma->vm_mm;
 
 
 
 
 
 
3079
3080	/* Huge page is mapped? No need to proceed. */
3081	if (pmd_trans_huge(*vmf->pmd)) {
3082		unlock_page(page);
3083		put_page(page);
3084		return true;
3085	}
 
 
 
 
 
 
 
 
 
3086
3087	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3088	    vm_fault_t ret = do_set_pmd(vmf, page);
3089	    if (!ret) {
3090		    /* The page is mapped successfully, reference consumed. */
3091		    unlock_page(page);
3092		    return true;
3093	    }
3094	}
3095
3096	if (pmd_none(*vmf->pmd)) {
3097		vmf->ptl = pmd_lock(mm, vmf->pmd);
3098		if (likely(pmd_none(*vmf->pmd))) {
3099			mm_inc_nr_ptes(mm);
3100			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3101			vmf->prealloc_pte = NULL;
3102		}
3103		spin_unlock(vmf->ptl);
3104	}
3105
3106	/* See comment in handle_pte_fault() */
3107	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3108		unlock_page(page);
3109		put_page(page);
3110		return true;
3111	}
3112
3113	return false;
3114}
3115
3116static struct page *next_uptodate_page(struct page *page,
3117				       struct address_space *mapping,
3118				       struct xa_state *xas, pgoff_t end_pgoff)
3119{
3120	unsigned long max_idx;
3121
3122	do {
3123		if (!page)
3124			return NULL;
3125		if (xas_retry(xas, page))
3126			continue;
3127		if (xa_is_value(page))
3128			continue;
3129		if (PageLocked(page))
3130			continue;
3131		if (!page_cache_get_speculative(page))
3132			continue;
3133		/* Has the page moved or been split? */
3134		if (unlikely(page != xas_reload(xas)))
3135			goto skip;
3136		if (!PageUptodate(page) || PageReadahead(page))
3137			goto skip;
3138		if (PageHWPoison(page))
3139			goto skip;
3140		if (!trylock_page(page))
3141			goto skip;
3142		if (page->mapping != mapping)
 
3143			goto unlock;
3144		if (!PageUptodate(page))
 
 
3145			goto unlock;
3146		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3147		if (xas->xa_index >= max_idx)
 
 
 
 
 
 
 
3148			goto unlock;
3149		return page;
 
3150unlock:
3151		unlock_page(page);
3152skip:
3153		put_page(page);
3154	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3155
3156	return NULL;
3157}
3158
3159static inline struct page *first_map_page(struct address_space *mapping,
3160					  struct xa_state *xas,
3161					  pgoff_t end_pgoff)
3162{
3163	return next_uptodate_page(xas_find(xas, end_pgoff),
3164				  mapping, xas, end_pgoff);
3165}
3166
3167static inline struct page *next_map_page(struct address_space *mapping,
3168					 struct xa_state *xas,
3169					 pgoff_t end_pgoff)
3170{
3171	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3172				  mapping, xas, end_pgoff);
3173}
3174
3175vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3176			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3177{
3178	struct vm_area_struct *vma = vmf->vma;
3179	struct file *file = vma->vm_file;
3180	struct address_space *mapping = file->f_mapping;
3181	pgoff_t last_pgoff = start_pgoff;
3182	unsigned long addr;
3183	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3184	struct page *head, *page;
3185	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3186	vm_fault_t ret = 0;
3187
3188	rcu_read_lock();
3189	head = first_map_page(mapping, &xas, end_pgoff);
3190	if (!head)
3191		goto out;
3192
3193	if (filemap_map_pmd(vmf, head)) {
3194		ret = VM_FAULT_NOPAGE;
3195		goto out;
3196	}
3197
3198	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3199	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3200	do {
3201		page = find_subpage(head, xas.xa_index);
3202		if (PageHWPoison(page))
3203			goto unlock;
3204
3205		if (mmap_miss > 0)
3206			mmap_miss--;
3207
3208		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3209		vmf->pte += xas.xa_index - last_pgoff;
3210		last_pgoff = xas.xa_index;
3211
3212		if (!pte_none(*vmf->pte))
3213			goto unlock;
3214
3215		/* We're about to handle the fault */
3216		if (vmf->address == addr)
3217			ret = VM_FAULT_NOPAGE;
3218
3219		do_set_pte(vmf, page, addr);
3220		/* no need to invalidate: a not-present page won't be cached */
3221		update_mmu_cache(vma, addr, vmf->pte);
3222		unlock_page(head);
3223		continue;
3224unlock:
3225		unlock_page(head);
3226		put_page(head);
3227	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3228	pte_unmap_unlock(vmf->pte, vmf->ptl);
3229out:
3230	rcu_read_unlock();
3231	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3232	return ret;
3233}
3234EXPORT_SYMBOL(filemap_map_pages);
3235
3236vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3237{
3238	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3239	struct page *page = vmf->page;
3240	vm_fault_t ret = VM_FAULT_LOCKED;
 
3241
3242	sb_start_pagefault(mapping->host->i_sb);
3243	file_update_time(vmf->vma->vm_file);
3244	lock_page(page);
3245	if (page->mapping != mapping) {
3246		unlock_page(page);
3247		ret = VM_FAULT_NOPAGE;
3248		goto out;
3249	}
3250	/*
3251	 * We mark the page dirty already here so that when freeze is in
3252	 * progress, we are guaranteed that writeback during freezing will
3253	 * see the dirty page and writeprotect it again.
3254	 */
3255	set_page_dirty(page);
3256	wait_for_stable_page(page);
3257out:
3258	sb_end_pagefault(mapping->host->i_sb);
3259	return ret;
3260}
3261
3262const struct vm_operations_struct generic_file_vm_ops = {
3263	.fault		= filemap_fault,
3264	.map_pages	= filemap_map_pages,
3265	.page_mkwrite	= filemap_page_mkwrite,
3266};
3267
3268/* This is used for a general mmap of a disk file */
3269
3270int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3271{
3272	struct address_space *mapping = file->f_mapping;
3273
3274	if (!mapping->a_ops->readpage)
3275		return -ENOEXEC;
3276	file_accessed(file);
3277	vma->vm_ops = &generic_file_vm_ops;
3278	return 0;
3279}
3280
3281/*
3282 * This is for filesystems which do not implement ->writepage.
3283 */
3284int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3285{
3286	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3287		return -EINVAL;
3288	return generic_file_mmap(file, vma);
3289}
3290#else
3291vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3292{
3293	return VM_FAULT_SIGBUS;
3294}
3295int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3296{
3297	return -ENOSYS;
3298}
3299int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3300{
3301	return -ENOSYS;
3302}
3303#endif /* CONFIG_MMU */
3304
3305EXPORT_SYMBOL(filemap_page_mkwrite);
3306EXPORT_SYMBOL(generic_file_mmap);
3307EXPORT_SYMBOL(generic_file_readonly_mmap);
3308
3309static struct page *wait_on_page_read(struct page *page)
3310{
3311	if (!IS_ERR(page)) {
3312		wait_on_page_locked(page);
3313		if (!PageUptodate(page)) {
3314			put_page(page);
3315			page = ERR_PTR(-EIO);
3316		}
3317	}
3318	return page;
3319}
3320
3321static struct page *do_read_cache_page(struct address_space *mapping,
3322				pgoff_t index,
3323				int (*filler)(void *, struct page *),
3324				void *data,
3325				gfp_t gfp)
3326{
3327	struct page *page;
3328	int err;
3329repeat:
3330	page = find_get_page(mapping, index);
3331	if (!page) {
3332		page = __page_cache_alloc(gfp);
3333		if (!page)
3334			return ERR_PTR(-ENOMEM);
3335		err = add_to_page_cache_lru(page, mapping, index, gfp);
3336		if (unlikely(err)) {
3337			put_page(page);
3338			if (err == -EEXIST)
3339				goto repeat;
3340			/* Presumably ENOMEM for xarray node */
3341			return ERR_PTR(err);
3342		}
3343
3344filler:
3345		if (filler)
3346			err = filler(data, page);
3347		else
3348			err = mapping->a_ops->readpage(data, page);
3349
3350		if (err < 0) {
3351			put_page(page);
3352			return ERR_PTR(err);
3353		}
3354
3355		page = wait_on_page_read(page);
3356		if (IS_ERR(page))
3357			return page;
3358		goto out;
3359	}
3360	if (PageUptodate(page))
3361		goto out;
3362
3363	/*
3364	 * Page is not up to date and may be locked due to one of the following
3365	 * case a: Page is being filled and the page lock is held
3366	 * case b: Read/write error clearing the page uptodate status
3367	 * case c: Truncation in progress (page locked)
3368	 * case d: Reclaim in progress
3369	 *
3370	 * Case a, the page will be up to date when the page is unlocked.
3371	 *    There is no need to serialise on the page lock here as the page
3372	 *    is pinned so the lock gives no additional protection. Even if the
3373	 *    page is truncated, the data is still valid if PageUptodate as
3374	 *    it's a race vs truncate race.
3375	 * Case b, the page will not be up to date
3376	 * Case c, the page may be truncated but in itself, the data may still
3377	 *    be valid after IO completes as it's a read vs truncate race. The
3378	 *    operation must restart if the page is not uptodate on unlock but
3379	 *    otherwise serialising on page lock to stabilise the mapping gives
3380	 *    no additional guarantees to the caller as the page lock is
3381	 *    released before return.
3382	 * Case d, similar to truncation. If reclaim holds the page lock, it
3383	 *    will be a race with remove_mapping that determines if the mapping
3384	 *    is valid on unlock but otherwise the data is valid and there is
3385	 *    no need to serialise with page lock.
3386	 *
3387	 * As the page lock gives no additional guarantee, we optimistically
3388	 * wait on the page to be unlocked and check if it's up to date and
3389	 * use the page if it is. Otherwise, the page lock is required to
3390	 * distinguish between the different cases. The motivation is that we
3391	 * avoid spurious serialisations and wakeups when multiple processes
3392	 * wait on the same page for IO to complete.
3393	 */
3394	wait_on_page_locked(page);
3395	if (PageUptodate(page))
3396		goto out;
3397
3398	/* Distinguish between all the cases under the safety of the lock */
3399	lock_page(page);
3400
3401	/* Case c or d, restart the operation */
3402	if (!page->mapping) {
3403		unlock_page(page);
3404		put_page(page);
3405		goto repeat;
3406	}
3407
3408	/* Someone else locked and filled the page in a very small window */
3409	if (PageUptodate(page)) {
3410		unlock_page(page);
3411		goto out;
3412	}
3413
3414	/*
3415	 * A previous I/O error may have been due to temporary
3416	 * failures.
3417	 * Clear page error before actual read, PG_error will be
3418	 * set again if read page fails.
3419	 */
3420	ClearPageError(page);
3421	goto filler;
3422
3423out:
3424	mark_page_accessed(page);
3425	return page;
3426}
3427
3428/**
3429 * read_cache_page - read into page cache, fill it if needed
3430 * @mapping:	the page's address_space
3431 * @index:	the page index
3432 * @filler:	function to perform the read
3433 * @data:	first arg to filler(data, page) function, often left as NULL
3434 *
3435 * Read into the page cache. If a page already exists, and PageUptodate() is
3436 * not set, try to fill the page and wait for it to become unlocked.
3437 *
3438 * If the page does not get brought uptodate, return -EIO.
3439 *
3440 * Return: up to date page on success, ERR_PTR() on failure.
3441 */
3442struct page *read_cache_page(struct address_space *mapping,
3443				pgoff_t index,
3444				int (*filler)(void *, struct page *),
3445				void *data)
3446{
3447	return do_read_cache_page(mapping, index, filler, data,
3448			mapping_gfp_mask(mapping));
3449}
3450EXPORT_SYMBOL(read_cache_page);
3451
3452/**
3453 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3454 * @mapping:	the page's address_space
3455 * @index:	the page index
3456 * @gfp:	the page allocator flags to use if allocating
3457 *
3458 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3459 * any new page allocations done using the specified allocation flags.
3460 *
3461 * If the page does not get brought uptodate, return -EIO.
3462 *
3463 * Return: up to date page on success, ERR_PTR() on failure.
3464 */
3465struct page *read_cache_page_gfp(struct address_space *mapping,
3466				pgoff_t index,
3467				gfp_t gfp)
3468{
3469	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 
 
3470}
3471EXPORT_SYMBOL(read_cache_page_gfp);
3472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3473int pagecache_write_begin(struct file *file, struct address_space *mapping,
3474				loff_t pos, unsigned len, unsigned flags,
3475				struct page **pagep, void **fsdata)
3476{
3477	const struct address_space_operations *aops = mapping->a_ops;
3478
3479	return aops->write_begin(file, mapping, pos, len, flags,
3480							pagep, fsdata);
3481}
3482EXPORT_SYMBOL(pagecache_write_begin);
3483
3484int pagecache_write_end(struct file *file, struct address_space *mapping,
3485				loff_t pos, unsigned len, unsigned copied,
3486				struct page *page, void *fsdata)
3487{
3488	const struct address_space_operations *aops = mapping->a_ops;
3489
3490	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3491}
3492EXPORT_SYMBOL(pagecache_write_end);
3493
3494/*
3495 * Warn about a page cache invalidation failure during a direct I/O write.
3496 */
3497void dio_warn_stale_pagecache(struct file *filp)
3498{
3499	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3500	char pathname[128];
3501	char *path;
3502
3503	errseq_set(&filp->f_mapping->wb_err, -EIO);
3504	if (__ratelimit(&_rs)) {
3505		path = file_path(filp, pathname, sizeof(pathname));
3506		if (IS_ERR(path))
3507			path = "(unknown)";
3508		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3509		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3510			current->comm);
3511	}
3512}
3513
3514ssize_t
3515generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3516{
3517	struct file	*file = iocb->ki_filp;
3518	struct address_space *mapping = file->f_mapping;
3519	struct inode	*inode = mapping->host;
3520	loff_t		pos = iocb->ki_pos;
3521	ssize_t		written;
3522	size_t		write_len;
3523	pgoff_t		end;
3524
3525	write_len = iov_iter_count(from);
3526	end = (pos + write_len - 1) >> PAGE_SHIFT;
3527
3528	if (iocb->ki_flags & IOCB_NOWAIT) {
3529		/* If there are pages to writeback, return */
3530		if (filemap_range_has_page(file->f_mapping, pos,
3531					   pos + write_len - 1))
3532			return -EAGAIN;
3533	} else {
3534		written = filemap_write_and_wait_range(mapping, pos,
3535							pos + write_len - 1);
3536		if (written)
3537			goto out;
3538	}
3539
3540	/*
3541	 * After a write we want buffered reads to be sure to go to disk to get
3542	 * the new data.  We invalidate clean cached page from the region we're
3543	 * about to write.  We do this *before* the write so that we can return
3544	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3545	 */
3546	written = invalidate_inode_pages2_range(mapping,
3547					pos >> PAGE_SHIFT, end);
3548	/*
3549	 * If a page can not be invalidated, return 0 to fall back
3550	 * to buffered write.
3551	 */
3552	if (written) {
3553		if (written == -EBUSY)
3554			return 0;
3555		goto out;
3556	}
3557
3558	written = mapping->a_ops->direct_IO(iocb, from);
3559
3560	/*
3561	 * Finally, try again to invalidate clean pages which might have been
3562	 * cached by non-direct readahead, or faulted in by get_user_pages()
3563	 * if the source of the write was an mmap'ed region of the file
3564	 * we're writing.  Either one is a pretty crazy thing to do,
3565	 * so we don't support it 100%.  If this invalidation
3566	 * fails, tough, the write still worked...
3567	 *
3568	 * Most of the time we do not need this since dio_complete() will do
3569	 * the invalidation for us. However there are some file systems that
3570	 * do not end up with dio_complete() being called, so let's not break
3571	 * them by removing it completely.
3572	 *
3573	 * Noticeable example is a blkdev_direct_IO().
3574	 *
3575	 * Skip invalidation for async writes or if mapping has no pages.
3576	 */
3577	if (written > 0 && mapping->nrpages &&
3578	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3579		dio_warn_stale_pagecache(file);
3580
3581	if (written > 0) {
3582		pos += written;
3583		write_len -= written;
3584		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3585			i_size_write(inode, pos);
3586			mark_inode_dirty(inode);
3587		}
3588		iocb->ki_pos = pos;
3589	}
3590	if (written != -EIOCBQUEUED)
3591		iov_iter_revert(from, write_len - iov_iter_count(from));
3592out:
3593	return written;
3594}
3595EXPORT_SYMBOL(generic_file_direct_write);
3596
3597/*
3598 * Find or create a page at the given pagecache position. Return the locked
3599 * page. This function is specifically for buffered writes.
3600 */
3601struct page *grab_cache_page_write_begin(struct address_space *mapping,
3602					pgoff_t index, unsigned flags)
3603{
3604	struct page *page;
3605	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3606
3607	if (flags & AOP_FLAG_NOFS)
3608		fgp_flags |= FGP_NOFS;
3609
3610	page = pagecache_get_page(mapping, index, fgp_flags,
3611			mapping_gfp_mask(mapping));
3612	if (page)
3613		wait_for_stable_page(page);
3614
3615	return page;
3616}
3617EXPORT_SYMBOL(grab_cache_page_write_begin);
3618
3619ssize_t generic_perform_write(struct file *file,
3620				struct iov_iter *i, loff_t pos)
3621{
3622	struct address_space *mapping = file->f_mapping;
3623	const struct address_space_operations *a_ops = mapping->a_ops;
3624	long status = 0;
3625	ssize_t written = 0;
3626	unsigned int flags = 0;
3627
3628	do {
3629		struct page *page;
3630		unsigned long offset;	/* Offset into pagecache page */
3631		unsigned long bytes;	/* Bytes to write to page */
3632		size_t copied;		/* Bytes copied from user */
3633		void *fsdata;
3634
3635		offset = (pos & (PAGE_SIZE - 1));
3636		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3637						iov_iter_count(i));
3638
3639again:
3640		/*
3641		 * Bring in the user page that we will copy from _first_.
3642		 * Otherwise there's a nasty deadlock on copying from the
3643		 * same page as we're writing to, without it being marked
3644		 * up-to-date.
 
 
 
 
3645		 */
3646		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3647			status = -EFAULT;
3648			break;
3649		}
3650
3651		if (fatal_signal_pending(current)) {
3652			status = -EINTR;
3653			break;
3654		}
3655
3656		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3657						&page, &fsdata);
3658		if (unlikely(status < 0))
3659			break;
3660
3661		if (mapping_writably_mapped(mapping))
3662			flush_dcache_page(page);
3663
3664		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3665		flush_dcache_page(page);
3666
3667		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3668						page, fsdata);
3669		if (unlikely(status != copied)) {
3670			iov_iter_revert(i, copied - max(status, 0L));
3671			if (unlikely(status < 0))
3672				break;
3673		}
3674		cond_resched();
3675
3676		if (unlikely(status == 0)) {
 
3677			/*
3678			 * A short copy made ->write_end() reject the
3679			 * thing entirely.  Might be memory poisoning
3680			 * halfway through, might be a race with munmap,
3681			 * might be severe memory pressure.
 
 
3682			 */
3683			if (copied)
3684				bytes = copied;
3685			goto again;
3686		}
3687		pos += status;
3688		written += status;
3689
3690		balance_dirty_pages_ratelimited(mapping);
3691	} while (iov_iter_count(i));
3692
3693	return written ? written : status;
3694}
3695EXPORT_SYMBOL(generic_perform_write);
3696
3697/**
3698 * __generic_file_write_iter - write data to a file
3699 * @iocb:	IO state structure (file, offset, etc.)
3700 * @from:	iov_iter with data to write
3701 *
3702 * This function does all the work needed for actually writing data to a
3703 * file. It does all basic checks, removes SUID from the file, updates
3704 * modification times and calls proper subroutines depending on whether we
3705 * do direct IO or a standard buffered write.
3706 *
3707 * It expects i_mutex to be grabbed unless we work on a block device or similar
3708 * object which does not need locking at all.
3709 *
3710 * This function does *not* take care of syncing data in case of O_SYNC write.
3711 * A caller has to handle it. This is mainly due to the fact that we want to
3712 * avoid syncing under i_mutex.
3713 *
3714 * Return:
3715 * * number of bytes written, even for truncated writes
3716 * * negative error code if no data has been written at all
3717 */
3718ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3719{
3720	struct file *file = iocb->ki_filp;
3721	struct address_space *mapping = file->f_mapping;
3722	struct inode 	*inode = mapping->host;
3723	ssize_t		written = 0;
3724	ssize_t		err;
3725	ssize_t		status;
3726
3727	/* We can write back this queue in page reclaim */
3728	current->backing_dev_info = inode_to_bdi(inode);
3729	err = file_remove_privs(file);
3730	if (err)
3731		goto out;
3732
3733	err = file_update_time(file);
3734	if (err)
3735		goto out;
3736
3737	if (iocb->ki_flags & IOCB_DIRECT) {
3738		loff_t pos, endbyte;
3739
3740		written = generic_file_direct_write(iocb, from);
3741		/*
3742		 * If the write stopped short of completing, fall back to
3743		 * buffered writes.  Some filesystems do this for writes to
3744		 * holes, for example.  For DAX files, a buffered write will
3745		 * not succeed (even if it did, DAX does not handle dirty
3746		 * page-cache pages correctly).
3747		 */
3748		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3749			goto out;
3750
3751		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3752		/*
3753		 * If generic_perform_write() returned a synchronous error
3754		 * then we want to return the number of bytes which were
3755		 * direct-written, or the error code if that was zero.  Note
3756		 * that this differs from normal direct-io semantics, which
3757		 * will return -EFOO even if some bytes were written.
3758		 */
3759		if (unlikely(status < 0)) {
3760			err = status;
3761			goto out;
3762		}
3763		/*
3764		 * We need to ensure that the page cache pages are written to
3765		 * disk and invalidated to preserve the expected O_DIRECT
3766		 * semantics.
3767		 */
3768		endbyte = pos + status - 1;
3769		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3770		if (err == 0) {
3771			iocb->ki_pos = endbyte + 1;
3772			written += status;
3773			invalidate_mapping_pages(mapping,
3774						 pos >> PAGE_SHIFT,
3775						 endbyte >> PAGE_SHIFT);
3776		} else {
3777			/*
3778			 * We don't know how much we wrote, so just return
3779			 * the number of bytes which were direct-written
3780			 */
3781		}
3782	} else {
3783		written = generic_perform_write(file, from, iocb->ki_pos);
3784		if (likely(written > 0))
3785			iocb->ki_pos += written;
3786	}
3787out:
3788	current->backing_dev_info = NULL;
3789	return written ? written : err;
3790}
3791EXPORT_SYMBOL(__generic_file_write_iter);
3792
3793/**
3794 * generic_file_write_iter - write data to a file
3795 * @iocb:	IO state structure
3796 * @from:	iov_iter with data to write
3797 *
3798 * This is a wrapper around __generic_file_write_iter() to be used by most
3799 * filesystems. It takes care of syncing the file in case of O_SYNC file
3800 * and acquires i_mutex as needed.
3801 * Return:
3802 * * negative error code if no data has been written at all of
3803 *   vfs_fsync_range() failed for a synchronous write
3804 * * number of bytes written, even for truncated writes
3805 */
3806ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3807{
3808	struct file *file = iocb->ki_filp;
3809	struct inode *inode = file->f_mapping->host;
3810	ssize_t ret;
3811
3812	inode_lock(inode);
3813	ret = generic_write_checks(iocb, from);
3814	if (ret > 0)
3815		ret = __generic_file_write_iter(iocb, from);
3816	inode_unlock(inode);
3817
3818	if (ret > 0)
3819		ret = generic_write_sync(iocb, ret);
3820	return ret;
3821}
3822EXPORT_SYMBOL(generic_file_write_iter);
3823
3824/**
3825 * try_to_release_page() - release old fs-specific metadata on a page
3826 *
3827 * @page: the page which the kernel is trying to free
3828 * @gfp_mask: memory allocation flags (and I/O mode)
3829 *
3830 * The address_space is to try to release any data against the page
3831 * (presumably at page->private).
 
3832 *
3833 * This may also be called if PG_fscache is set on a page, indicating that the
3834 * page is known to the local caching routines.
3835 *
3836 * The @gfp_mask argument specifies whether I/O may be performed to release
3837 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3838 *
3839 * Return: %1 if the release was successful, otherwise return zero.
3840 */
3841int try_to_release_page(struct page *page, gfp_t gfp_mask)
3842{
3843	struct address_space * const mapping = page->mapping;
3844
3845	BUG_ON(!PageLocked(page));
3846	if (PageWriteback(page))
3847		return 0;
3848
3849	if (mapping && mapping->a_ops->releasepage)
3850		return mapping->a_ops->releasepage(page, gfp_mask);
3851	return try_to_free_buffers(page);
3852}
3853
3854EXPORT_SYMBOL(try_to_release_page);