Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/sched/signal.h>
  17#include <linux/uaccess.h>
  18#include <linux/capability.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/gfp.h>
  21#include <linux/mm.h>
  22#include <linux/swap.h>
  23#include <linux/mman.h>
  24#include <linux/pagemap.h>
  25#include <linux/file.h>
  26#include <linux/uio.h>
 
  27#include <linux/hash.h>
  28#include <linux/writeback.h>
  29#include <linux/backing-dev.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/security.h>
  33#include <linux/cpuset.h>
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/shmem_fs.h>
  38#include <linux/rmap.h>
 
 
 
 
  39#include "internal.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/filemap.h>
  43
  44/*
  45 * FIXME: remove all knowledge of the buffer layer from the core VM
  46 */
  47#include <linux/buffer_head.h> /* for try_to_free_buffers */
  48
  49#include <asm/mman.h>
  50
  51/*
  52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  53 * though.
  54 *
  55 * Shared mappings now work. 15.8.1995  Bruno.
  56 *
  57 * finished 'unifying' the page and buffer cache and SMP-threaded the
  58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  59 *
  60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  61 */
  62
  63/*
  64 * Lock ordering:
  65 *
  66 *  ->i_mmap_rwsem		(truncate_pagecache)
  67 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  68 *      ->swap_lock		(exclusive_swap_page, others)
  69 *        ->i_pages lock
  70 *
  71 *  ->i_mutex
  72 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  73 *
  74 *  ->mmap_sem
  75 *    ->i_mmap_rwsem
  76 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  77 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  78 *
  79 *  ->mmap_sem
  80 *    ->lock_page		(access_process_vm)
  81 *
  82 *  ->i_mutex			(generic_perform_write)
  83 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  84 *
  85 *  bdi->wb.list_lock
  86 *    sb_lock			(fs/fs-writeback.c)
  87 *    ->i_pages lock		(__sync_single_inode)
  88 *
  89 *  ->i_mmap_rwsem
  90 *    ->anon_vma.lock		(vma_adjust)
  91 *
  92 *  ->anon_vma.lock
  93 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  94 *
  95 *  ->page_table_lock or pte_lock
  96 *    ->swap_lock		(try_to_unmap_one)
  97 *    ->private_lock		(try_to_unmap_one)
  98 *    ->i_pages lock		(try_to_unmap_one)
  99 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
 100 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
 101 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 102 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 103 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 105 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 106 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 107 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 108 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 109 *
 110 * ->i_mmap_rwsem
 111 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 112 */
 113
 114static int page_cache_tree_insert(struct address_space *mapping,
 115				  struct page *page, void **shadowp)
 116{
 117	struct radix_tree_node *node;
 118	void **slot;
 119	int error;
 120
 121	error = __radix_tree_create(&mapping->i_pages, page->index, 0,
 122				    &node, &slot);
 123	if (error)
 124		return error;
 125	if (*slot) {
 126		void *p;
 127
 128		p = radix_tree_deref_slot_protected(slot,
 129						    &mapping->i_pages.xa_lock);
 130		if (!radix_tree_exceptional_entry(p))
 131			return -EEXIST;
 132
 133		mapping->nrexceptional--;
 134		if (shadowp)
 135			*shadowp = p;
 136	}
 137	__radix_tree_replace(&mapping->i_pages, node, slot, page,
 138			     workingset_lookup_update(mapping));
 139	mapping->nrpages++;
 140	return 0;
 141}
 142
 143static void page_cache_tree_delete(struct address_space *mapping,
 144				   struct page *page, void *shadow)
 145{
 146	int i, nr;
 
 
 
 147
 148	/* hugetlb pages are represented by one entry in the radix tree */
 149	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 
 
 
 150
 151	VM_BUG_ON_PAGE(!PageLocked(page), page);
 152	VM_BUG_ON_PAGE(PageTail(page), page);
 153	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 154
 155	for (i = 0; i < nr; i++) {
 156		struct radix_tree_node *node;
 157		void **slot;
 158
 159		__radix_tree_lookup(&mapping->i_pages, page->index + i,
 160				    &node, &slot);
 161
 162		VM_BUG_ON_PAGE(!node && nr != 1, page);
 163
 164		radix_tree_clear_tags(&mapping->i_pages, node, slot);
 165		__radix_tree_replace(&mapping->i_pages, node, slot, shadow,
 166				workingset_lookup_update(mapping));
 167	}
 168
 169	page->mapping = NULL;
 170	/* Leave page->index set: truncation lookup relies upon it */
 171
 172	if (shadow) {
 173		mapping->nrexceptional += nr;
 174		/*
 175		 * Make sure the nrexceptional update is committed before
 176		 * the nrpages update so that final truncate racing
 177		 * with reclaim does not see both counters 0 at the
 178		 * same time and miss a shadow entry.
 179		 */
 180		smp_wmb();
 181	}
 182	mapping->nrpages -= nr;
 183}
 184
 185static void unaccount_page_cache_page(struct address_space *mapping,
 186				      struct page *page)
 187{
 188	int nr;
 189
 190	/*
 191	 * if we're uptodate, flush out into the cleancache, otherwise
 192	 * invalidate any existing cleancache entries.  We can't leave
 193	 * stale data around in the cleancache once our page is gone
 194	 */
 195	if (PageUptodate(page) && PageMappedToDisk(page))
 196		cleancache_put_page(page);
 197	else
 198		cleancache_invalidate_page(mapping, page);
 199
 200	VM_BUG_ON_PAGE(PageTail(page), page);
 201	VM_BUG_ON_PAGE(page_mapped(page), page);
 202	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 203		int mapcount;
 204
 205		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 206			 current->comm, page_to_pfn(page));
 207		dump_page(page, "still mapped when deleted");
 208		dump_stack();
 209		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 210
 211		mapcount = page_mapcount(page);
 212		if (mapping_exiting(mapping) &&
 213		    page_count(page) >= mapcount + 2) {
 214			/*
 215			 * All vmas have already been torn down, so it's
 216			 * a good bet that actually the page is unmapped,
 217			 * and we'd prefer not to leak it: if we're wrong,
 218			 * some other bad page check should catch it later.
 219			 */
 220			page_mapcount_reset(page);
 221			page_ref_sub(page, mapcount);
 222		}
 223	}
 224
 225	/* hugetlb pages do not participate in page cache accounting. */
 226	if (PageHuge(page))
 227		return;
 228
 229	nr = hpage_nr_pages(page);
 230
 231	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 232	if (PageSwapBacked(page)) {
 233		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 234		if (PageTransHuge(page))
 235			__dec_node_page_state(page, NR_SHMEM_THPS);
 236	} else {
 237		VM_BUG_ON_PAGE(PageTransHuge(page), page);
 
 238	}
 239
 240	/*
 241	 * At this point page must be either written or cleaned by
 242	 * truncate.  Dirty page here signals a bug and loss of
 243	 * unwritten data.
 244	 *
 245	 * This fixes dirty accounting after removing the page entirely
 246	 * but leaves PageDirty set: it has no effect for truncated
 247	 * page and anyway will be cleared before returning page into
 248	 * buddy allocator.
 249	 */
 250	if (WARN_ON_ONCE(PageDirty(page)))
 251		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 252}
 253
 254/*
 255 * Delete a page from the page cache and free it. Caller has to make
 256 * sure the page is locked and that nobody else uses it - or that usage
 257 * is safe.  The caller must hold the i_pages lock.
 258 */
 259void __delete_from_page_cache(struct page *page, void *shadow)
 260{
 261	struct address_space *mapping = page->mapping;
 262
 263	trace_mm_filemap_delete_from_page_cache(page);
 264
 265	unaccount_page_cache_page(mapping, page);
 266	page_cache_tree_delete(mapping, page, shadow);
 267}
 268
 269static void page_cache_free_page(struct address_space *mapping,
 270				struct page *page)
 271{
 272	void (*freepage)(struct page *);
 273
 274	freepage = mapping->a_ops->freepage;
 275	if (freepage)
 276		freepage(page);
 277
 278	if (PageTransHuge(page) && !PageHuge(page)) {
 279		page_ref_sub(page, HPAGE_PMD_NR);
 280		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 281	} else {
 282		put_page(page);
 283	}
 284}
 285
 286/**
 287 * delete_from_page_cache - delete page from page cache
 288 * @page: the page which the kernel is trying to remove from page cache
 289 *
 290 * This must be called only on pages that have been verified to be in the page
 291 * cache and locked.  It will never put the page into the free list, the caller
 292 * has a reference on the page.
 293 */
 294void delete_from_page_cache(struct page *page)
 295{
 296	struct address_space *mapping = page_mapping(page);
 297	unsigned long flags;
 298
 299	BUG_ON(!PageLocked(page));
 300	xa_lock_irqsave(&mapping->i_pages, flags);
 301	__delete_from_page_cache(page, NULL);
 302	xa_unlock_irqrestore(&mapping->i_pages, flags);
 303
 304	page_cache_free_page(mapping, page);
 305}
 306EXPORT_SYMBOL(delete_from_page_cache);
 307
 308/*
 309 * page_cache_tree_delete_batch - delete several pages from page cache
 310 * @mapping: the mapping to which pages belong
 311 * @pvec: pagevec with pages to delete
 312 *
 313 * The function walks over mapping->i_pages and removes pages passed in @pvec
 314 * from the mapping. The function expects @pvec to be sorted by page index.
 
 315 * It tolerates holes in @pvec (mapping entries at those indices are not
 316 * modified). The function expects only THP head pages to be present in the
 317 * @pvec and takes care to delete all corresponding tail pages from the
 318 * mapping as well.
 319 *
 320 * The function expects the i_pages lock to be held.
 321 */
 322static void
 323page_cache_tree_delete_batch(struct address_space *mapping,
 324			     struct pagevec *pvec)
 325{
 326	struct radix_tree_iter iter;
 327	void **slot;
 328	int total_pages = 0;
 329	int i = 0, tail_pages = 0;
 330	struct page *page;
 331	pgoff_t start;
 332
 333	start = pvec->pages[0]->index;
 334	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
 335		if (i >= pagevec_count(pvec) && !tail_pages)
 336			break;
 337		page = radix_tree_deref_slot_protected(slot,
 338						       &mapping->i_pages.xa_lock);
 339		if (radix_tree_exceptional_entry(page))
 340			continue;
 341		if (!tail_pages) {
 342			/*
 343			 * Some page got inserted in our range? Skip it. We
 344			 * have our pages locked so they are protected from
 345			 * being removed.
 346			 */
 347			if (page != pvec->pages[i])
 348				continue;
 349			WARN_ON_ONCE(!PageLocked(page));
 350			if (PageTransHuge(page) && !PageHuge(page))
 351				tail_pages = HPAGE_PMD_NR - 1;
 
 
 
 
 
 352			page->mapping = NULL;
 353			/*
 354			 * Leave page->index set: truncation lookup relies
 355			 * upon it
 356			 */
 
 
 
 
 357			i++;
 358		} else {
 359			tail_pages--;
 360		}
 361		radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
 362		__radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
 363				workingset_lookup_update(mapping));
 364		total_pages++;
 365	}
 366	mapping->nrpages -= total_pages;
 367}
 368
 369void delete_from_page_cache_batch(struct address_space *mapping,
 370				  struct pagevec *pvec)
 371{
 372	int i;
 373	unsigned long flags;
 374
 375	if (!pagevec_count(pvec))
 376		return;
 377
 378	xa_lock_irqsave(&mapping->i_pages, flags);
 379	for (i = 0; i < pagevec_count(pvec); i++) {
 380		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 381
 382		unaccount_page_cache_page(mapping, pvec->pages[i]);
 383	}
 384	page_cache_tree_delete_batch(mapping, pvec);
 385	xa_unlock_irqrestore(&mapping->i_pages, flags);
 386
 387	for (i = 0; i < pagevec_count(pvec); i++)
 388		page_cache_free_page(mapping, pvec->pages[i]);
 389}
 390
 391int filemap_check_errors(struct address_space *mapping)
 392{
 393	int ret = 0;
 394	/* Check for outstanding write errors */
 395	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 396	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 397		ret = -ENOSPC;
 398	if (test_bit(AS_EIO, &mapping->flags) &&
 399	    test_and_clear_bit(AS_EIO, &mapping->flags))
 400		ret = -EIO;
 401	return ret;
 402}
 403EXPORT_SYMBOL(filemap_check_errors);
 404
 405static int filemap_check_and_keep_errors(struct address_space *mapping)
 406{
 407	/* Check for outstanding write errors */
 408	if (test_bit(AS_EIO, &mapping->flags))
 409		return -EIO;
 410	if (test_bit(AS_ENOSPC, &mapping->flags))
 411		return -ENOSPC;
 412	return 0;
 413}
 414
 415/**
 416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 417 * @mapping:	address space structure to write
 418 * @start:	offset in bytes where the range starts
 419 * @end:	offset in bytes where the range ends (inclusive)
 420 * @sync_mode:	enable synchronous operation
 421 *
 422 * Start writeback against all of a mapping's dirty pages that lie
 423 * within the byte offsets <start, end> inclusive.
 424 *
 425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 426 * opposed to a regular memory cleansing writeback.  The difference between
 427 * these two operations is that if a dirty page/buffer is encountered, it must
 428 * be waited upon, and not just skipped over.
 
 
 429 */
 430int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 431				loff_t end, int sync_mode)
 432{
 433	int ret;
 434	struct writeback_control wbc = {
 435		.sync_mode = sync_mode,
 436		.nr_to_write = LONG_MAX,
 437		.range_start = start,
 438		.range_end = end,
 439	};
 440
 441	if (!mapping_cap_writeback_dirty(mapping))
 
 442		return 0;
 443
 444	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 445	ret = do_writepages(mapping, &wbc);
 446	wbc_detach_inode(&wbc);
 447	return ret;
 448}
 449
 450static inline int __filemap_fdatawrite(struct address_space *mapping,
 451	int sync_mode)
 452{
 453	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 454}
 455
 456int filemap_fdatawrite(struct address_space *mapping)
 457{
 458	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 459}
 460EXPORT_SYMBOL(filemap_fdatawrite);
 461
 462int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 463				loff_t end)
 464{
 465	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 466}
 467EXPORT_SYMBOL(filemap_fdatawrite_range);
 468
 469/**
 470 * filemap_flush - mostly a non-blocking flush
 471 * @mapping:	target address_space
 472 *
 473 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 474 * purposes - I/O may not be started against all dirty pages.
 
 
 475 */
 476int filemap_flush(struct address_space *mapping)
 477{
 478	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 479}
 480EXPORT_SYMBOL(filemap_flush);
 481
 482/**
 483 * filemap_range_has_page - check if a page exists in range.
 484 * @mapping:           address space within which to check
 485 * @start_byte:        offset in bytes where the range starts
 486 * @end_byte:          offset in bytes where the range ends (inclusive)
 487 *
 488 * Find at least one page in the range supplied, usually used to check if
 489 * direct writing in this range will trigger a writeback.
 
 
 
 490 */
 491bool filemap_range_has_page(struct address_space *mapping,
 492			   loff_t start_byte, loff_t end_byte)
 493{
 494	pgoff_t index = start_byte >> PAGE_SHIFT;
 495	pgoff_t end = end_byte >> PAGE_SHIFT;
 496	struct page *page;
 
 
 497
 498	if (end_byte < start_byte)
 499		return false;
 500
 501	if (mapping->nrpages == 0)
 502		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503
 504	if (!find_get_pages_range(mapping, &index, end, 1, &page))
 505		return false;
 506	put_page(page);
 507	return true;
 508}
 509EXPORT_SYMBOL(filemap_range_has_page);
 510
 511static void __filemap_fdatawait_range(struct address_space *mapping,
 512				     loff_t start_byte, loff_t end_byte)
 513{
 514	pgoff_t index = start_byte >> PAGE_SHIFT;
 515	pgoff_t end = end_byte >> PAGE_SHIFT;
 516	struct pagevec pvec;
 517	int nr_pages;
 518
 519	if (end_byte < start_byte)
 520		return;
 521
 522	pagevec_init(&pvec);
 523	while (index <= end) {
 524		unsigned i;
 525
 526		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 527				end, PAGECACHE_TAG_WRITEBACK);
 528		if (!nr_pages)
 529			break;
 530
 531		for (i = 0; i < nr_pages; i++) {
 532			struct page *page = pvec.pages[i];
 533
 534			wait_on_page_writeback(page);
 535			ClearPageError(page);
 536		}
 537		pagevec_release(&pvec);
 538		cond_resched();
 539	}
 540}
 541
 542/**
 543 * filemap_fdatawait_range - wait for writeback to complete
 544 * @mapping:		address space structure to wait for
 545 * @start_byte:		offset in bytes where the range starts
 546 * @end_byte:		offset in bytes where the range ends (inclusive)
 547 *
 548 * Walk the list of under-writeback pages of the given address space
 549 * in the given range and wait for all of them.  Check error status of
 550 * the address space and return it.
 551 *
 552 * Since the error status of the address space is cleared by this function,
 553 * callers are responsible for checking the return value and handling and/or
 554 * reporting the error.
 
 
 555 */
 556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 557			    loff_t end_byte)
 558{
 559	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 560	return filemap_check_errors(mapping);
 561}
 562EXPORT_SYMBOL(filemap_fdatawait_range);
 563
 564/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565 * file_fdatawait_range - wait for writeback to complete
 566 * @file:		file pointing to address space structure to wait for
 567 * @start_byte:		offset in bytes where the range starts
 568 * @end_byte:		offset in bytes where the range ends (inclusive)
 569 *
 570 * Walk the list of under-writeback pages of the address space that file
 571 * refers to, in the given range and wait for all of them.  Check error
 572 * status of the address space vs. the file->f_wb_err cursor and return it.
 573 *
 574 * Since the error status of the file is advanced by this function,
 575 * callers are responsible for checking the return value and handling and/or
 576 * reporting the error.
 
 
 577 */
 578int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 579{
 580	struct address_space *mapping = file->f_mapping;
 581
 582	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 583	return file_check_and_advance_wb_err(file);
 584}
 585EXPORT_SYMBOL(file_fdatawait_range);
 586
 587/**
 588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 589 * @mapping: address space structure to wait for
 590 *
 591 * Walk the list of under-writeback pages of the given address space
 592 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 593 * does not clear error status of the address space.
 594 *
 595 * Use this function if callers don't handle errors themselves.  Expected
 596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 597 * fsfreeze(8)
 
 
 598 */
 599int filemap_fdatawait_keep_errors(struct address_space *mapping)
 600{
 601	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 602	return filemap_check_and_keep_errors(mapping);
 603}
 604EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 605
 
 606static bool mapping_needs_writeback(struct address_space *mapping)
 607{
 608	return (!dax_mapping(mapping) && mapping->nrpages) ||
 609	    (dax_mapping(mapping) && mapping->nrexceptional);
 610}
 611
 612int filemap_write_and_wait(struct address_space *mapping)
 613{
 614	int err = 0;
 615
 616	if (mapping_needs_writeback(mapping)) {
 617		err = filemap_fdatawrite(mapping);
 618		/*
 619		 * Even if the above returned error, the pages may be
 620		 * written partially (e.g. -ENOSPC), so we wait for it.
 621		 * But the -EIO is special case, it may indicate the worst
 622		 * thing (e.g. bug) happened, so we avoid waiting for it.
 623		 */
 624		if (err != -EIO) {
 625			int err2 = filemap_fdatawait(mapping);
 626			if (!err)
 627				err = err2;
 628		} else {
 629			/* Clear any previously stored errors */
 630			filemap_check_errors(mapping);
 631		}
 632	} else {
 633		err = filemap_check_errors(mapping);
 634	}
 635	return err;
 636}
 637EXPORT_SYMBOL(filemap_write_and_wait);
 638
 639/**
 640 * filemap_write_and_wait_range - write out & wait on a file range
 641 * @mapping:	the address_space for the pages
 642 * @lstart:	offset in bytes where the range starts
 643 * @lend:	offset in bytes where the range ends (inclusive)
 644 *
 645 * Write out and wait upon file offsets lstart->lend, inclusive.
 646 *
 647 * Note that @lend is inclusive (describes the last byte to be written) so
 648 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 649 */
 650int filemap_write_and_wait_range(struct address_space *mapping,
 651				 loff_t lstart, loff_t lend)
 652{
 653	int err = 0;
 654
 655	if (mapping_needs_writeback(mapping)) {
 656		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 657						 WB_SYNC_ALL);
 658		/* See comment of filemap_write_and_wait() */
 
 
 
 
 
 659		if (err != -EIO) {
 660			int err2 = filemap_fdatawait_range(mapping,
 661						lstart, lend);
 662			if (!err)
 663				err = err2;
 664		} else {
 665			/* Clear any previously stored errors */
 666			filemap_check_errors(mapping);
 667		}
 668	} else {
 669		err = filemap_check_errors(mapping);
 670	}
 671	return err;
 672}
 673EXPORT_SYMBOL(filemap_write_and_wait_range);
 674
 675void __filemap_set_wb_err(struct address_space *mapping, int err)
 676{
 677	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 678
 679	trace_filemap_set_wb_err(mapping, eseq);
 680}
 681EXPORT_SYMBOL(__filemap_set_wb_err);
 682
 683/**
 684 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 685 * 				   and advance wb_err to current one
 686 * @file: struct file on which the error is being reported
 687 *
 688 * When userland calls fsync (or something like nfsd does the equivalent), we
 689 * want to report any writeback errors that occurred since the last fsync (or
 690 * since the file was opened if there haven't been any).
 691 *
 692 * Grab the wb_err from the mapping. If it matches what we have in the file,
 693 * then just quickly return 0. The file is all caught up.
 694 *
 695 * If it doesn't match, then take the mapping value, set the "seen" flag in
 696 * it and try to swap it into place. If it works, or another task beat us
 697 * to it with the new value, then update the f_wb_err and return the error
 698 * portion. The error at this point must be reported via proper channels
 699 * (a'la fsync, or NFS COMMIT operation, etc.).
 700 *
 701 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 702 * value is protected by the f_lock since we must ensure that it reflects
 703 * the latest value swapped in for this file descriptor.
 
 
 704 */
 705int file_check_and_advance_wb_err(struct file *file)
 706{
 707	int err = 0;
 708	errseq_t old = READ_ONCE(file->f_wb_err);
 709	struct address_space *mapping = file->f_mapping;
 710
 711	/* Locklessly handle the common case where nothing has changed */
 712	if (errseq_check(&mapping->wb_err, old)) {
 713		/* Something changed, must use slow path */
 714		spin_lock(&file->f_lock);
 715		old = file->f_wb_err;
 716		err = errseq_check_and_advance(&mapping->wb_err,
 717						&file->f_wb_err);
 718		trace_file_check_and_advance_wb_err(file, old);
 719		spin_unlock(&file->f_lock);
 720	}
 721
 722	/*
 723	 * We're mostly using this function as a drop in replacement for
 724	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 725	 * that the legacy code would have had on these flags.
 726	 */
 727	clear_bit(AS_EIO, &mapping->flags);
 728	clear_bit(AS_ENOSPC, &mapping->flags);
 729	return err;
 730}
 731EXPORT_SYMBOL(file_check_and_advance_wb_err);
 732
 733/**
 734 * file_write_and_wait_range - write out & wait on a file range
 735 * @file:	file pointing to address_space with pages
 736 * @lstart:	offset in bytes where the range starts
 737 * @lend:	offset in bytes where the range ends (inclusive)
 738 *
 739 * Write out and wait upon file offsets lstart->lend, inclusive.
 740 *
 741 * Note that @lend is inclusive (describes the last byte to be written) so
 742 * that this function can be used to write to the very end-of-file (end = -1).
 743 *
 744 * After writing out and waiting on the data, we check and advance the
 745 * f_wb_err cursor to the latest value, and return any errors detected there.
 
 
 746 */
 747int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 748{
 749	int err = 0, err2;
 750	struct address_space *mapping = file->f_mapping;
 751
 752	if (mapping_needs_writeback(mapping)) {
 753		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 754						 WB_SYNC_ALL);
 755		/* See comment of filemap_write_and_wait() */
 756		if (err != -EIO)
 757			__filemap_fdatawait_range(mapping, lstart, lend);
 758	}
 759	err2 = file_check_and_advance_wb_err(file);
 760	if (!err)
 761		err = err2;
 762	return err;
 763}
 764EXPORT_SYMBOL(file_write_and_wait_range);
 765
 766/**
 767 * replace_page_cache_page - replace a pagecache page with a new one
 768 * @old:	page to be replaced
 769 * @new:	page to replace with
 770 * @gfp_mask:	allocation mode
 771 *
 772 * This function replaces a page in the pagecache with a new one.  On
 773 * success it acquires the pagecache reference for the new page and
 774 * drops it for the old page.  Both the old and new pages must be
 775 * locked.  This function does not add the new page to the LRU, the
 776 * caller must do that.
 777 *
 778 * The remove + add is atomic.  The only way this function can fail is
 779 * memory allocation failure.
 
 780 */
 781int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 782{
 783	int error;
 
 
 
 
 784
 785	VM_BUG_ON_PAGE(!PageLocked(old), old);
 786	VM_BUG_ON_PAGE(!PageLocked(new), new);
 787	VM_BUG_ON_PAGE(new->mapping, new);
 788
 789	error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
 790	if (!error) {
 791		struct address_space *mapping = old->mapping;
 792		void (*freepage)(struct page *);
 793		unsigned long flags;
 794
 795		pgoff_t offset = old->index;
 796		freepage = mapping->a_ops->freepage;
 797
 798		get_page(new);
 799		new->mapping = mapping;
 800		new->index = offset;
 801
 802		xa_lock_irqsave(&mapping->i_pages, flags);
 803		__delete_from_page_cache(old, NULL);
 804		error = page_cache_tree_insert(mapping, new, NULL);
 805		BUG_ON(error);
 806
 807		/*
 808		 * hugetlb pages do not participate in page cache accounting.
 809		 */
 810		if (!PageHuge(new))
 811			__inc_node_page_state(new, NR_FILE_PAGES);
 812		if (PageSwapBacked(new))
 813			__inc_node_page_state(new, NR_SHMEM);
 814		xa_unlock_irqrestore(&mapping->i_pages, flags);
 815		mem_cgroup_migrate(old, new);
 816		radix_tree_preload_end();
 817		if (freepage)
 818			freepage(old);
 819		put_page(old);
 820	}
 821
 822	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823}
 824EXPORT_SYMBOL_GPL(replace_page_cache_page);
 825
 826static int __add_to_page_cache_locked(struct page *page,
 827				      struct address_space *mapping,
 828				      pgoff_t offset, gfp_t gfp_mask,
 829				      void **shadowp)
 830{
 
 831	int huge = PageHuge(page);
 832	struct mem_cgroup *memcg;
 833	int error;
 
 834
 835	VM_BUG_ON_PAGE(!PageLocked(page), page);
 836	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 
 
 
 
 
 837
 838	if (!huge) {
 839		error = mem_cgroup_try_charge(page, current->mm,
 840					      gfp_mask, &memcg, false);
 841		if (error)
 842			return error;
 843	}
 844
 845	error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
 846	if (error) {
 847		if (!huge)
 848			mem_cgroup_cancel_charge(page, memcg, false);
 849		return error;
 850	}
 
 
 851
 852	get_page(page);
 853	page->mapping = mapping;
 854	page->index = offset;
 
 
 
 855
 856	xa_lock_irq(&mapping->i_pages);
 857	error = page_cache_tree_insert(mapping, page, shadowp);
 858	radix_tree_preload_end();
 859	if (unlikely(error))
 860		goto err_insert;
 
 
 
 
 
 
 861
 862	/* hugetlb pages do not participate in page cache accounting. */
 863	if (!huge)
 864		__inc_node_page_state(page, NR_FILE_PAGES);
 865	xa_unlock_irq(&mapping->i_pages);
 866	if (!huge)
 867		mem_cgroup_commit_charge(page, memcg, false, false);
 868	trace_mm_filemap_add_to_page_cache(page);
 869	return 0;
 870err_insert:
 871	page->mapping = NULL;
 872	/* Leave page->index set: truncation relies upon it */
 873	xa_unlock_irq(&mapping->i_pages);
 874	if (!huge)
 875		mem_cgroup_cancel_charge(page, memcg, false);
 876	put_page(page);
 877	return error;
 878}
 
 879
 880/**
 881 * add_to_page_cache_locked - add a locked page to the pagecache
 882 * @page:	page to add
 883 * @mapping:	the page's address_space
 884 * @offset:	page index
 885 * @gfp_mask:	page allocation mode
 886 *
 887 * This function is used to add a page to the pagecache. It must be locked.
 888 * This function does not add the page to the LRU.  The caller must do that.
 
 
 889 */
 890int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 891		pgoff_t offset, gfp_t gfp_mask)
 892{
 893	return __add_to_page_cache_locked(page, mapping, offset,
 894					  gfp_mask, NULL);
 895}
 896EXPORT_SYMBOL(add_to_page_cache_locked);
 897
 898int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 899				pgoff_t offset, gfp_t gfp_mask)
 900{
 901	void *shadow = NULL;
 902	int ret;
 903
 904	__SetPageLocked(page);
 905	ret = __add_to_page_cache_locked(page, mapping, offset,
 906					 gfp_mask, &shadow);
 907	if (unlikely(ret))
 908		__ClearPageLocked(page);
 909	else {
 910		/*
 911		 * The page might have been evicted from cache only
 912		 * recently, in which case it should be activated like
 913		 * any other repeatedly accessed page.
 914		 * The exception is pages getting rewritten; evicting other
 915		 * data from the working set, only to cache data that will
 916		 * get overwritten with something else, is a waste of memory.
 917		 */
 918		if (!(gfp_mask & __GFP_WRITE) &&
 919		    shadow && workingset_refault(shadow)) {
 920			SetPageActive(page);
 921			workingset_activation(page);
 922		} else
 923			ClearPageActive(page);
 924		lru_cache_add(page);
 925	}
 926	return ret;
 927}
 928EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 929
 930#ifdef CONFIG_NUMA
 931struct page *__page_cache_alloc(gfp_t gfp)
 932{
 933	int n;
 934	struct page *page;
 935
 936	if (cpuset_do_page_mem_spread()) {
 937		unsigned int cpuset_mems_cookie;
 938		do {
 939			cpuset_mems_cookie = read_mems_allowed_begin();
 940			n = cpuset_mem_spread_node();
 941			page = __alloc_pages_node(n, gfp, 0);
 942		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 943
 944		return page;
 945	}
 946	return alloc_pages(gfp, 0);
 947}
 948EXPORT_SYMBOL(__page_cache_alloc);
 949#endif
 950
 951/*
 952 * In order to wait for pages to become available there must be
 953 * waitqueues associated with pages. By using a hash table of
 954 * waitqueues where the bucket discipline is to maintain all
 955 * waiters on the same queue and wake all when any of the pages
 956 * become available, and for the woken contexts to check to be
 957 * sure the appropriate page became available, this saves space
 958 * at a cost of "thundering herd" phenomena during rare hash
 959 * collisions.
 960 */
 961#define PAGE_WAIT_TABLE_BITS 8
 962#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 963static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 964
 965static wait_queue_head_t *page_waitqueue(struct page *page)
 966{
 967	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 968}
 969
 970void __init pagecache_init(void)
 971{
 972	int i;
 973
 974	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 975		init_waitqueue_head(&page_wait_table[i]);
 976
 977	page_writeback_init();
 978}
 979
 980/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
 981struct wait_page_key {
 982	struct page *page;
 983	int bit_nr;
 984	int page_match;
 985};
 986
 987struct wait_page_queue {
 988	struct page *page;
 989	int bit_nr;
 990	wait_queue_entry_t wait;
 991};
 992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
 994{
 
 995	struct wait_page_key *key = arg;
 996	struct wait_page_queue *wait_page
 997		= container_of(wait, struct wait_page_queue, wait);
 998
 999	if (wait_page->page != key->page)
1000	       return 0;
1001	key->page_match = 1;
1002
1003	if (wait_page->bit_nr != key->bit_nr)
1004		return 0;
1005
1006	/* Stop walking if it's locked */
1007	if (test_bit(key->bit_nr, &key->page->flags))
1008		return -1;
 
 
 
 
 
 
 
 
 
 
 
1009
1010	return autoremove_wake_function(wait, mode, sync, key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011}
1012
1013static void wake_up_page_bit(struct page *page, int bit_nr)
1014{
1015	wait_queue_head_t *q = page_waitqueue(page);
1016	struct wait_page_key key;
1017	unsigned long flags;
1018	wait_queue_entry_t bookmark;
1019
1020	key.page = page;
1021	key.bit_nr = bit_nr;
1022	key.page_match = 0;
1023
1024	bookmark.flags = 0;
1025	bookmark.private = NULL;
1026	bookmark.func = NULL;
1027	INIT_LIST_HEAD(&bookmark.entry);
1028
1029	spin_lock_irqsave(&q->lock, flags);
1030	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1031
1032	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1033		/*
1034		 * Take a breather from holding the lock,
1035		 * allow pages that finish wake up asynchronously
1036		 * to acquire the lock and remove themselves
1037		 * from wait queue
1038		 */
1039		spin_unlock_irqrestore(&q->lock, flags);
1040		cpu_relax();
1041		spin_lock_irqsave(&q->lock, flags);
1042		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1043	}
1044
1045	/*
1046	 * It is possible for other pages to have collided on the waitqueue
1047	 * hash, so in that case check for a page match. That prevents a long-
1048	 * term waiter
1049	 *
1050	 * It is still possible to miss a case here, when we woke page waiters
1051	 * and removed them from the waitqueue, but there are still other
1052	 * page waiters.
1053	 */
1054	if (!waitqueue_active(q) || !key.page_match) {
1055		ClearPageWaiters(page);
1056		/*
1057		 * It's possible to miss clearing Waiters here, when we woke
1058		 * our page waiters, but the hashed waitqueue has waiters for
1059		 * other pages on it.
1060		 *
1061		 * That's okay, it's a rare case. The next waker will clear it.
1062		 */
1063	}
1064	spin_unlock_irqrestore(&q->lock, flags);
1065}
1066
1067static void wake_up_page(struct page *page, int bit)
1068{
1069	if (!PageWaiters(page))
1070		return;
1071	wake_up_page_bit(page, bit);
1072}
1073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075		struct page *page, int bit_nr, int state, bool lock)
1076{
 
1077	struct wait_page_queue wait_page;
1078	wait_queue_entry_t *wait = &wait_page.wait;
1079	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081	init_wait(wait);
1082	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1083	wait->func = wake_page_function;
1084	wait_page.page = page;
1085	wait_page.bit_nr = bit_nr;
1086
1087	for (;;) {
1088		spin_lock_irq(&q->lock);
 
 
 
 
 
1089
1090		if (likely(list_empty(&wait->entry))) {
1091			__add_wait_queue_entry_tail(q, wait);
1092			SetPageWaiters(page);
1093		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094
1095		set_current_state(state);
1096
1097		spin_unlock_irq(&q->lock);
 
 
 
 
1098
1099		if (likely(test_bit(bit_nr, &page->flags))) {
1100			io_schedule();
 
1101		}
1102
1103		if (lock) {
1104			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1105				break;
1106		} else {
1107			if (!test_bit(bit_nr, &page->flags))
1108				break;
1109		}
1110
1111		if (unlikely(signal_pending_state(state, current))) {
1112			ret = -EINTR;
1113			break;
1114		}
 
 
 
 
 
 
 
 
 
 
 
1115	}
1116
 
 
 
 
 
 
1117	finish_wait(q, wait);
1118
 
 
 
 
 
 
1119	/*
1120	 * A signal could leave PageWaiters set. Clearing it here if
1121	 * !waitqueue_active would be possible (by open-coding finish_wait),
1122	 * but still fail to catch it in the case of wait hash collision. We
1123	 * already can fail to clear wait hash collision cases, so don't
1124	 * bother with signals either.
 
 
 
 
 
 
1125	 */
 
 
1126
1127	return ret;
1128}
1129
1130void wait_on_page_bit(struct page *page, int bit_nr)
1131{
1132	wait_queue_head_t *q = page_waitqueue(page);
1133	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1134}
1135EXPORT_SYMBOL(wait_on_page_bit);
1136
1137int wait_on_page_bit_killable(struct page *page, int bit_nr)
1138{
1139	wait_queue_head_t *q = page_waitqueue(page);
1140	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1141}
1142EXPORT_SYMBOL(wait_on_page_bit_killable);
1143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144/**
1145 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1146 * @page: Page defining the wait queue of interest
1147 * @waiter: Waiter to add to the queue
1148 *
1149 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1150 */
1151void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1152{
1153	wait_queue_head_t *q = page_waitqueue(page);
1154	unsigned long flags;
1155
1156	spin_lock_irqsave(&q->lock, flags);
1157	__add_wait_queue_entry_tail(q, waiter);
1158	SetPageWaiters(page);
1159	spin_unlock_irqrestore(&q->lock, flags);
1160}
1161EXPORT_SYMBOL_GPL(add_page_wait_queue);
1162
1163#ifndef clear_bit_unlock_is_negative_byte
1164
1165/*
1166 * PG_waiters is the high bit in the same byte as PG_lock.
1167 *
1168 * On x86 (and on many other architectures), we can clear PG_lock and
1169 * test the sign bit at the same time. But if the architecture does
1170 * not support that special operation, we just do this all by hand
1171 * instead.
1172 *
1173 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1174 * being cleared, but a memory barrier should be unneccssary since it is
1175 * in the same byte as PG_locked.
1176 */
1177static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1178{
1179	clear_bit_unlock(nr, mem);
1180	/* smp_mb__after_atomic(); */
1181	return test_bit(PG_waiters, mem);
1182}
1183
1184#endif
1185
1186/**
1187 * unlock_page - unlock a locked page
1188 * @page: the page
1189 *
1190 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1191 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1192 * mechanism between PageLocked pages and PageWriteback pages is shared.
1193 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1194 *
1195 * Note that this depends on PG_waiters being the sign bit in the byte
1196 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1197 * clear the PG_locked bit and test PG_waiters at the same time fairly
1198 * portably (architectures that do LL/SC can test any bit, while x86 can
1199 * test the sign bit).
1200 */
1201void unlock_page(struct page *page)
1202{
1203	BUILD_BUG_ON(PG_waiters != 7);
1204	page = compound_head(page);
1205	VM_BUG_ON_PAGE(!PageLocked(page), page);
1206	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1207		wake_up_page_bit(page, PG_locked);
1208}
1209EXPORT_SYMBOL(unlock_page);
1210
1211/**
1212 * end_page_writeback - end writeback against a page
1213 * @page: the page
1214 */
1215void end_page_writeback(struct page *page)
1216{
1217	/*
1218	 * TestClearPageReclaim could be used here but it is an atomic
1219	 * operation and overkill in this particular case. Failing to
1220	 * shuffle a page marked for immediate reclaim is too mild to
1221	 * justify taking an atomic operation penalty at the end of
1222	 * ever page writeback.
1223	 */
1224	if (PageReclaim(page)) {
1225		ClearPageReclaim(page);
1226		rotate_reclaimable_page(page);
1227	}
1228
1229	if (!test_clear_page_writeback(page))
1230		BUG();
1231
1232	smp_mb__after_atomic();
1233	wake_up_page(page, PG_writeback);
1234}
1235EXPORT_SYMBOL(end_page_writeback);
1236
1237/*
1238 * After completing I/O on a page, call this routine to update the page
1239 * flags appropriately
1240 */
1241void page_endio(struct page *page, bool is_write, int err)
1242{
1243	if (!is_write) {
1244		if (!err) {
1245			SetPageUptodate(page);
1246		} else {
1247			ClearPageUptodate(page);
1248			SetPageError(page);
1249		}
1250		unlock_page(page);
1251	} else {
1252		if (err) {
1253			struct address_space *mapping;
1254
1255			SetPageError(page);
1256			mapping = page_mapping(page);
1257			if (mapping)
1258				mapping_set_error(mapping, err);
1259		}
1260		end_page_writeback(page);
1261	}
1262}
1263EXPORT_SYMBOL_GPL(page_endio);
1264
1265/**
1266 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1267 * @__page: the page to lock
1268 */
1269void __lock_page(struct page *__page)
1270{
1271	struct page *page = compound_head(__page);
1272	wait_queue_head_t *q = page_waitqueue(page);
1273	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
 
1274}
1275EXPORT_SYMBOL(__lock_page);
1276
1277int __lock_page_killable(struct page *__page)
1278{
1279	struct page *page = compound_head(__page);
1280	wait_queue_head_t *q = page_waitqueue(page);
1281	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
 
1282}
1283EXPORT_SYMBOL_GPL(__lock_page_killable);
1284
 
 
 
 
 
1285/*
1286 * Return values:
1287 * 1 - page is locked; mmap_sem is still held.
1288 * 0 - page is not locked.
1289 *     mmap_sem has been released (up_read()), unless flags had both
1290 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1291 *     which case mmap_sem is still held.
1292 *
1293 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1294 * with the page locked and the mmap_sem unperturbed.
1295 */
1296int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1297			 unsigned int flags)
1298{
1299	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1300		/*
1301		 * CAUTION! In this case, mmap_sem is not released
1302		 * even though return 0.
1303		 */
1304		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1305			return 0;
1306
1307		up_read(&mm->mmap_sem);
1308		if (flags & FAULT_FLAG_KILLABLE)
1309			wait_on_page_locked_killable(page);
1310		else
1311			wait_on_page_locked(page);
1312		return 0;
1313	} else {
1314		if (flags & FAULT_FLAG_KILLABLE) {
1315			int ret;
1316
1317			ret = __lock_page_killable(page);
1318			if (ret) {
1319				up_read(&mm->mmap_sem);
1320				return 0;
1321			}
1322		} else
1323			__lock_page(page);
1324		return 1;
1325	}
1326}
1327
1328/**
1329 * page_cache_next_hole - find the next hole (not-present entry)
1330 * @mapping: mapping
1331 * @index: index
1332 * @max_scan: maximum range to search
1333 *
1334 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1335 * lowest indexed hole.
1336 *
1337 * Returns: the index of the hole if found, otherwise returns an index
1338 * outside of the set specified (in which case 'return - index >=
1339 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1340 * be returned.
1341 *
1342 * page_cache_next_hole may be called under rcu_read_lock. However,
1343 * like radix_tree_gang_lookup, this will not atomically search a
1344 * snapshot of the tree at a single point in time. For example, if a
1345 * hole is created at index 5, then subsequently a hole is created at
1346 * index 10, page_cache_next_hole covering both indexes may return 10
1347 * if called under rcu_read_lock.
1348 */
1349pgoff_t page_cache_next_hole(struct address_space *mapping,
1350			     pgoff_t index, unsigned long max_scan)
1351{
1352	unsigned long i;
1353
1354	for (i = 0; i < max_scan; i++) {
1355		struct page *page;
1356
1357		page = radix_tree_lookup(&mapping->i_pages, index);
1358		if (!page || radix_tree_exceptional_entry(page))
1359			break;
1360		index++;
1361		if (index == 0)
1362			break;
1363	}
1364
1365	return index;
1366}
1367EXPORT_SYMBOL(page_cache_next_hole);
1368
1369/**
1370 * page_cache_prev_hole - find the prev hole (not-present entry)
1371 * @mapping: mapping
1372 * @index: index
1373 * @max_scan: maximum range to search
1374 *
1375 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1376 * the first hole.
1377 *
1378 * Returns: the index of the hole if found, otherwise returns an index
1379 * outside of the set specified (in which case 'index - return >=
1380 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1381 * will be returned.
 
1382 *
1383 * page_cache_prev_hole may be called under rcu_read_lock. However,
1384 * like radix_tree_gang_lookup, this will not atomically search a
1385 * snapshot of the tree at a single point in time. For example, if a
1386 * hole is created at index 10, then subsequently a hole is created at
1387 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1388 * called under rcu_read_lock.
1389 */
1390pgoff_t page_cache_prev_hole(struct address_space *mapping,
1391			     pgoff_t index, unsigned long max_scan)
1392{
1393	unsigned long i;
1394
1395	for (i = 0; i < max_scan; i++) {
1396		struct page *page;
1397
1398		page = radix_tree_lookup(&mapping->i_pages, index);
1399		if (!page || radix_tree_exceptional_entry(page))
1400			break;
1401		index--;
1402		if (index == ULONG_MAX)
1403			break;
1404	}
1405
1406	return index;
1407}
1408EXPORT_SYMBOL(page_cache_prev_hole);
1409
1410/**
1411 * find_get_entry - find and get a page cache entry
1412 * @mapping: the address_space to search
1413 * @offset: the page cache index
1414 *
1415 * Looks up the page cache slot at @mapping & @offset.  If there is a
1416 * page cache page, it is returned with an increased refcount.
1417 *
1418 * If the slot holds a shadow entry of a previously evicted page, or a
1419 * swap entry from shmem/tmpfs, it is returned.
1420 *
1421 * Otherwise, %NULL is returned.
1422 */
1423struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1424{
1425	void **pagep;
1426	struct page *head, *page;
1427
1428	rcu_read_lock();
1429repeat:
1430	page = NULL;
1431	pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1432	if (pagep) {
1433		page = radix_tree_deref_slot(pagep);
1434		if (unlikely(!page))
1435			goto out;
1436		if (radix_tree_exception(page)) {
1437			if (radix_tree_deref_retry(page))
1438				goto repeat;
1439			/*
1440			 * A shadow entry of a recently evicted page,
1441			 * or a swap entry from shmem/tmpfs.  Return
1442			 * it without attempting to raise page count.
1443			 */
1444			goto out;
1445		}
1446
1447		head = compound_head(page);
1448		if (!page_cache_get_speculative(head))
1449			goto repeat;
1450
1451		/* The page was split under us? */
1452		if (compound_head(page) != head) {
1453			put_page(head);
1454			goto repeat;
1455		}
1456
1457		/*
1458		 * Has the page moved?
1459		 * This is part of the lockless pagecache protocol. See
1460		 * include/linux/pagemap.h for details.
1461		 */
1462		if (unlikely(page != *pagep)) {
1463			put_page(head);
1464			goto repeat;
1465		}
1466	}
 
1467out:
1468	rcu_read_unlock();
1469
1470	return page;
1471}
1472EXPORT_SYMBOL(find_get_entry);
1473
1474/**
1475 * find_lock_entry - locate, pin and lock a page cache entry
1476 * @mapping: the address_space to search
1477 * @offset: the page cache index
1478 *
1479 * Looks up the page cache slot at @mapping & @offset.  If there is a
1480 * page cache page, it is returned locked and with an increased
1481 * refcount.
1482 *
1483 * If the slot holds a shadow entry of a previously evicted page, or a
1484 * swap entry from shmem/tmpfs, it is returned.
1485 *
1486 * Otherwise, %NULL is returned.
1487 *
1488 * find_lock_entry() may sleep.
 
 
1489 */
1490struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1491{
1492	struct page *page;
1493
1494repeat:
1495	page = find_get_entry(mapping, offset);
1496	if (page && !radix_tree_exception(page)) {
1497		lock_page(page);
1498		/* Has the page been truncated? */
1499		if (unlikely(page_mapping(page) != mapping)) {
1500			unlock_page(page);
1501			put_page(page);
1502			goto repeat;
1503		}
1504		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1505	}
1506	return page;
1507}
1508EXPORT_SYMBOL(find_lock_entry);
1509
1510/**
1511 * pagecache_get_page - find and get a page reference
1512 * @mapping: the address_space to search
1513 * @offset: the page index
1514 * @fgp_flags: PCG flags
1515 * @gfp_mask: gfp mask to use for the page cache data page allocation
1516 *
1517 * Looks up the page cache slot at @mapping & @offset.
1518 *
1519 * PCG flags modify how the page is returned.
 
 
 
 
 
 
 
 
 
 
 
 
1520 *
1521 * @fgp_flags can be:
1522 *
1523 * - FGP_ACCESSED: the page will be marked accessed
1524 * - FGP_LOCK: Page is return locked
1525 * - FGP_CREAT: If page is not present then a new page is allocated using
1526 *   @gfp_mask and added to the page cache and the VM's LRU
1527 *   list. The page is returned locked and with an increased
1528 *   refcount. Otherwise, NULL is returned.
1529 *
1530 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1531 * if the GFP flags specified for FGP_CREAT are atomic.
1532 *
1533 * If there is a page cache page, it is returned with an increased refcount.
 
 
1534 */
1535struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1536	int fgp_flags, gfp_t gfp_mask)
1537{
1538	struct page *page;
1539
1540repeat:
1541	page = find_get_entry(mapping, offset);
1542	if (radix_tree_exceptional_entry(page))
1543		page = NULL;
1544	if (!page)
1545		goto no_page;
1546
1547	if (fgp_flags & FGP_LOCK) {
1548		if (fgp_flags & FGP_NOWAIT) {
1549			if (!trylock_page(page)) {
1550				put_page(page);
1551				return NULL;
1552			}
1553		} else {
1554			lock_page(page);
1555		}
1556
1557		/* Has the page been truncated? */
1558		if (unlikely(page->mapping != mapping)) {
1559			unlock_page(page);
1560			put_page(page);
1561			goto repeat;
1562		}
1563		VM_BUG_ON_PAGE(page->index != offset, page);
1564	}
1565
1566	if (page && (fgp_flags & FGP_ACCESSED))
1567		mark_page_accessed(page);
 
 
 
 
 
1568
1569no_page:
1570	if (!page && (fgp_flags & FGP_CREAT)) {
1571		int err;
1572		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1573			gfp_mask |= __GFP_WRITE;
1574		if (fgp_flags & FGP_NOFS)
1575			gfp_mask &= ~__GFP_FS;
1576
1577		page = __page_cache_alloc(gfp_mask);
1578		if (!page)
1579			return NULL;
1580
1581		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1582			fgp_flags |= FGP_LOCK;
1583
1584		/* Init accessed so avoid atomic mark_page_accessed later */
1585		if (fgp_flags & FGP_ACCESSED)
1586			__SetPageReferenced(page);
1587
1588		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1589		if (unlikely(err)) {
1590			put_page(page);
1591			page = NULL;
1592			if (err == -EEXIST)
1593				goto repeat;
1594		}
 
 
 
 
 
 
 
1595	}
1596
1597	return page;
1598}
1599EXPORT_SYMBOL(pagecache_get_page);
1600
1601/**
1602 * find_get_entries - gang pagecache lookup
1603 * @mapping:	The address_space to search
1604 * @start:	The starting page cache index
1605 * @nr_entries:	The maximum number of entries
1606 * @entries:	Where the resulting entries are placed
1607 * @indices:	The cache indices corresponding to the entries in @entries
1608 *
1609 * find_get_entries() will search for and return a group of up to
1610 * @nr_entries entries in the mapping.  The entries are placed at
1611 * @entries.  find_get_entries() takes a reference against any actual
1612 * pages it returns.
1613 *
1614 * The search returns a group of mapping-contiguous page cache entries
1615 * with ascending indexes.  There may be holes in the indices due to
1616 * not-present pages.
1617 *
1618 * Any shadow entries of evicted pages, or swap entries from
1619 * shmem/tmpfs, are included in the returned array.
1620 *
1621 * find_get_entries() returns the number of pages and shadow entries
1622 * which were found.
 
 
 
 
1623 */
1624unsigned find_get_entries(struct address_space *mapping,
1625			  pgoff_t start, unsigned int nr_entries,
1626			  struct page **entries, pgoff_t *indices)
1627{
1628	void **slot;
 
1629	unsigned int ret = 0;
1630	struct radix_tree_iter iter;
1631
1632	if (!nr_entries)
1633		return 0;
1634
1635	rcu_read_lock();
1636	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1637		struct page *head, *page;
1638repeat:
1639		page = radix_tree_deref_slot(slot);
1640		if (unlikely(!page))
1641			continue;
1642		if (radix_tree_exception(page)) {
1643			if (radix_tree_deref_retry(page)) {
1644				slot = radix_tree_iter_retry(&iter);
1645				continue;
1646			}
1647			/*
1648			 * A shadow entry of a recently evicted page, a swap
1649			 * entry from shmem/tmpfs or a DAX entry.  Return it
1650			 * without attempting to raise page count.
1651			 */
1652			goto export;
1653		}
1654
1655		head = compound_head(page);
1656		if (!page_cache_get_speculative(head))
1657			goto repeat;
1658
1659		/* The page was split under us? */
1660		if (compound_head(page) != head) {
1661			put_page(head);
1662			goto repeat;
1663		}
1664
1665		/* Has the page moved? */
1666		if (unlikely(page != *slot)) {
1667			put_page(head);
1668			goto repeat;
 
 
 
1669		}
1670export:
1671		indices[ret] = iter.index;
1672		entries[ret] = page;
1673		if (++ret == nr_entries)
1674			break;
 
 
 
 
 
1675	}
1676	rcu_read_unlock();
1677	return ret;
1678}
1679
1680/**
1681 * find_get_pages_range - gang pagecache lookup
1682 * @mapping:	The address_space to search
1683 * @start:	The starting page index
1684 * @end:	The final page index (inclusive)
1685 * @nr_pages:	The maximum number of pages
1686 * @pages:	Where the resulting pages are placed
1687 *
1688 * find_get_pages_range() will search for and return a group of up to @nr_pages
1689 * pages in the mapping starting at index @start and up to index @end
1690 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1691 * a reference against the returned pages.
1692 *
1693 * The search returns a group of mapping-contiguous pages with ascending
1694 * indexes.  There may be holes in the indices due to not-present pages.
1695 * We also update @start to index the next page for the traversal.
1696 *
1697 * find_get_pages_range() returns the number of pages which were found. If this
1698 * number is smaller than @nr_pages, the end of specified range has been
1699 * reached.
1700 */
1701unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1702			      pgoff_t end, unsigned int nr_pages,
1703			      struct page **pages)
1704{
1705	struct radix_tree_iter iter;
1706	void **slot;
1707	unsigned ret = 0;
1708
1709	if (unlikely(!nr_pages))
1710		return 0;
1711
1712	rcu_read_lock();
1713	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1714		struct page *head, *page;
1715
1716		if (iter.index > end)
1717			break;
1718repeat:
1719		page = radix_tree_deref_slot(slot);
1720		if (unlikely(!page))
1721			continue;
1722
1723		if (radix_tree_exception(page)) {
1724			if (radix_tree_deref_retry(page)) {
1725				slot = radix_tree_iter_retry(&iter);
1726				continue;
1727			}
1728			/*
1729			 * A shadow entry of a recently evicted page,
1730			 * or a swap entry from shmem/tmpfs.  Skip
1731			 * over it.
1732			 */
1733			continue;
1734		}
1735
1736		head = compound_head(page);
1737		if (!page_cache_get_speculative(head))
1738			goto repeat;
1739
1740		/* The page was split under us? */
1741		if (compound_head(page) != head) {
1742			put_page(head);
1743			goto repeat;
1744		}
1745
1746		/* Has the page moved? */
1747		if (unlikely(page != *slot)) {
1748			put_page(head);
1749			goto repeat;
1750		}
1751
1752		pages[ret] = page;
1753		if (++ret == nr_pages) {
1754			*start = pages[ret - 1]->index + 1;
1755			goto out;
1756		}
 
 
 
 
 
1757	}
1758
1759	/*
1760	 * We come here when there is no page beyond @end. We take care to not
1761	 * overflow the index @start as it confuses some of the callers. This
1762	 * breaks the iteration when there is page at index -1 but that is
1763	 * already broken anyway.
1764	 */
1765	if (end == (pgoff_t)-1)
1766		*start = (pgoff_t)-1;
1767	else
1768		*start = end + 1;
1769out:
1770	rcu_read_unlock();
1771
1772	return ret;
1773}
1774
1775/**
1776 * find_get_pages_contig - gang contiguous pagecache lookup
1777 * @mapping:	The address_space to search
1778 * @index:	The starting page index
1779 * @nr_pages:	The maximum number of pages
1780 * @pages:	Where the resulting pages are placed
1781 *
1782 * find_get_pages_contig() works exactly like find_get_pages(), except
1783 * that the returned number of pages are guaranteed to be contiguous.
1784 *
1785 * find_get_pages_contig() returns the number of pages which were found.
1786 */
1787unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1788			       unsigned int nr_pages, struct page **pages)
1789{
1790	struct radix_tree_iter iter;
1791	void **slot;
1792	unsigned int ret = 0;
1793
1794	if (unlikely(!nr_pages))
1795		return 0;
1796
1797	rcu_read_lock();
1798	radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1799		struct page *head, *page;
1800repeat:
1801		page = radix_tree_deref_slot(slot);
1802		/* The hole, there no reason to continue */
1803		if (unlikely(!page))
1804			break;
1805
1806		if (radix_tree_exception(page)) {
1807			if (radix_tree_deref_retry(page)) {
1808				slot = radix_tree_iter_retry(&iter);
1809				continue;
1810			}
1811			/*
1812			 * A shadow entry of a recently evicted page,
1813			 * or a swap entry from shmem/tmpfs.  Stop
1814			 * looking for contiguous pages.
1815			 */
1816			break;
1817		}
1818
1819		head = compound_head(page);
1820		if (!page_cache_get_speculative(head))
1821			goto repeat;
1822
1823		/* The page was split under us? */
1824		if (compound_head(page) != head) {
1825			put_page(head);
1826			goto repeat;
1827		}
1828
1829		/* Has the page moved? */
1830		if (unlikely(page != *slot)) {
1831			put_page(head);
1832			goto repeat;
1833		}
1834
1835		/*
1836		 * must check mapping and index after taking the ref.
1837		 * otherwise we can get both false positives and false
1838		 * negatives, which is just confusing to the caller.
1839		 */
1840		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1841			put_page(page);
1842			break;
1843		}
1844
1845		pages[ret] = page;
 
 
 
 
 
 
 
1846		if (++ret == nr_pages)
1847			break;
 
 
 
 
 
1848	}
1849	rcu_read_unlock();
1850	return ret;
1851}
1852EXPORT_SYMBOL(find_get_pages_contig);
1853
1854/**
1855 * find_get_pages_range_tag - find and return pages in given range matching @tag
1856 * @mapping:	the address_space to search
1857 * @index:	the starting page index
1858 * @end:	The final page index (inclusive)
1859 * @tag:	the tag index
1860 * @nr_pages:	the maximum number of pages
1861 * @pages:	where the resulting pages are placed
1862 *
1863 * Like find_get_pages, except we only return pages which are tagged with
1864 * @tag.   We update @index to index the next page for the traversal.
 
 
1865 */
1866unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1867			pgoff_t end, int tag, unsigned int nr_pages,
1868			struct page **pages)
1869{
1870	struct radix_tree_iter iter;
1871	void **slot;
1872	unsigned ret = 0;
1873
1874	if (unlikely(!nr_pages))
1875		return 0;
1876
1877	rcu_read_lock();
1878	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1879		struct page *head, *page;
1880
1881		if (iter.index > end)
1882			break;
1883repeat:
1884		page = radix_tree_deref_slot(slot);
1885		if (unlikely(!page))
1886			continue;
1887
1888		if (radix_tree_exception(page)) {
1889			if (radix_tree_deref_retry(page)) {
1890				slot = radix_tree_iter_retry(&iter);
1891				continue;
1892			}
1893			/*
1894			 * A shadow entry of a recently evicted page.
1895			 *
1896			 * Those entries should never be tagged, but
1897			 * this tree walk is lockless and the tags are
1898			 * looked up in bulk, one radix tree node at a
1899			 * time, so there is a sizable window for page
1900			 * reclaim to evict a page we saw tagged.
1901			 *
1902			 * Skip over it.
1903			 */
1904			continue;
1905		}
1906
1907		head = compound_head(page);
1908		if (!page_cache_get_speculative(head))
1909			goto repeat;
1910
1911		/* The page was split under us? */
1912		if (compound_head(page) != head) {
1913			put_page(head);
1914			goto repeat;
1915		}
1916
1917		/* Has the page moved? */
1918		if (unlikely(page != *slot)) {
1919			put_page(head);
1920			goto repeat;
1921		}
1922
1923		pages[ret] = page;
1924		if (++ret == nr_pages) {
1925			*index = pages[ret - 1]->index + 1;
1926			goto out;
1927		}
 
 
 
 
 
1928	}
1929
1930	/*
1931	 * We come here when we got at @end. We take care to not overflow the
1932	 * index @index as it confuses some of the callers. This breaks the
1933	 * iteration when there is page at index -1 but that is already broken
1934	 * anyway.
1935	 */
1936	if (end == (pgoff_t)-1)
1937		*index = (pgoff_t)-1;
1938	else
1939		*index = end + 1;
1940out:
1941	rcu_read_unlock();
1942
1943	return ret;
1944}
1945EXPORT_SYMBOL(find_get_pages_range_tag);
1946
1947/**
1948 * find_get_entries_tag - find and return entries that match @tag
1949 * @mapping:	the address_space to search
1950 * @start:	the starting page cache index
1951 * @tag:	the tag index
1952 * @nr_entries:	the maximum number of entries
1953 * @entries:	where the resulting entries are placed
1954 * @indices:	the cache indices corresponding to the entries in @entries
1955 *
1956 * Like find_get_entries, except we only return entries which are tagged with
1957 * @tag.
1958 */
1959unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1960			int tag, unsigned int nr_entries,
1961			struct page **entries, pgoff_t *indices)
1962{
1963	void **slot;
1964	unsigned int ret = 0;
1965	struct radix_tree_iter iter;
1966
1967	if (!nr_entries)
1968		return 0;
1969
1970	rcu_read_lock();
1971	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1972		struct page *head, *page;
1973repeat:
1974		page = radix_tree_deref_slot(slot);
1975		if (unlikely(!page))
1976			continue;
1977		if (radix_tree_exception(page)) {
1978			if (radix_tree_deref_retry(page)) {
1979				slot = radix_tree_iter_retry(&iter);
1980				continue;
1981			}
1982
1983			/*
1984			 * A shadow entry of a recently evicted page, a swap
1985			 * entry from shmem/tmpfs or a DAX entry.  Return it
1986			 * without attempting to raise page count.
1987			 */
1988			goto export;
1989		}
1990
1991		head = compound_head(page);
1992		if (!page_cache_get_speculative(head))
1993			goto repeat;
1994
1995		/* The page was split under us? */
1996		if (compound_head(page) != head) {
1997			put_page(head);
1998			goto repeat;
1999		}
2000
2001		/* Has the page moved? */
2002		if (unlikely(page != *slot)) {
2003			put_page(head);
2004			goto repeat;
2005		}
2006export:
2007		indices[ret] = iter.index;
2008		entries[ret] = page;
2009		if (++ret == nr_entries)
2010			break;
2011	}
2012	rcu_read_unlock();
2013	return ret;
2014}
2015EXPORT_SYMBOL(find_get_entries_tag);
2016
2017/*
2018 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2019 * a _large_ part of the i/o request. Imagine the worst scenario:
2020 *
2021 *      ---R__________________________________________B__________
2022 *         ^ reading here                             ^ bad block(assume 4k)
2023 *
2024 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2025 * => failing the whole request => read(R) => read(R+1) =>
2026 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2027 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2028 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2029 *
2030 * It is going insane. Fix it by quickly scaling down the readahead size.
2031 */
2032static void shrink_readahead_size_eio(struct file *filp,
2033					struct file_ra_state *ra)
2034{
2035	ra->ra_pages /= 4;
2036}
2037
2038/**
2039 * generic_file_buffered_read - generic file read routine
2040 * @iocb:	the iocb to read
2041 * @iter:	data destination
2042 * @written:	already copied
2043 *
2044 * This is a generic file read routine, and uses the
2045 * mapping->a_ops->readpage() function for the actual low-level stuff.
2046 *
2047 * This is really ugly. But the goto's actually try to clarify some
2048 * of the logic when it comes to error handling etc.
 
 
 
 
2049 */
2050static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2051		struct iov_iter *iter, ssize_t written)
2052{
2053	struct file *filp = iocb->ki_filp;
2054	struct address_space *mapping = filp->f_mapping;
2055	struct inode *inode = mapping->host;
2056	struct file_ra_state *ra = &filp->f_ra;
2057	loff_t *ppos = &iocb->ki_pos;
2058	pgoff_t index;
2059	pgoff_t last_index;
2060	pgoff_t prev_index;
2061	unsigned long offset;      /* offset into pagecache page */
2062	unsigned int prev_offset;
2063	int error = 0;
2064
2065	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2066		return 0;
2067	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2068
2069	index = *ppos >> PAGE_SHIFT;
2070	prev_index = ra->prev_pos >> PAGE_SHIFT;
2071	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2072	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2073	offset = *ppos & ~PAGE_MASK;
2074
2075	for (;;) {
2076		struct page *page;
2077		pgoff_t end_index;
2078		loff_t isize;
2079		unsigned long nr, ret;
2080
2081		cond_resched();
2082find_page:
2083		if (fatal_signal_pending(current)) {
2084			error = -EINTR;
2085			goto out;
2086		}
2087
2088		page = find_get_page(mapping, index);
2089		if (!page) {
2090			if (iocb->ki_flags & IOCB_NOWAIT)
2091				goto would_block;
2092			page_cache_sync_readahead(mapping,
2093					ra, filp,
2094					index, last_index - index);
2095			page = find_get_page(mapping, index);
2096			if (unlikely(page == NULL))
2097				goto no_cached_page;
2098		}
2099		if (PageReadahead(page)) {
 
 
 
 
2100			page_cache_async_readahead(mapping,
2101					ra, filp, page,
2102					index, last_index - index);
2103		}
2104		if (!PageUptodate(page)) {
2105			if (iocb->ki_flags & IOCB_NOWAIT) {
2106				put_page(page);
2107				goto would_block;
2108			}
2109
2110			/*
2111			 * See comment in do_read_cache_page on why
2112			 * wait_on_page_locked is used to avoid unnecessarily
2113			 * serialisations and why it's safe.
2114			 */
2115			error = wait_on_page_locked_killable(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
2116			if (unlikely(error))
2117				goto readpage_error;
2118			if (PageUptodate(page))
2119				goto page_ok;
2120
2121			if (inode->i_blkbits == PAGE_SHIFT ||
2122					!mapping->a_ops->is_partially_uptodate)
2123				goto page_not_up_to_date;
2124			/* pipes can't handle partially uptodate pages */
2125			if (unlikely(iter->type & ITER_PIPE))
2126				goto page_not_up_to_date;
2127			if (!trylock_page(page))
2128				goto page_not_up_to_date;
2129			/* Did it get truncated before we got the lock? */
2130			if (!page->mapping)
2131				goto page_not_up_to_date_locked;
2132			if (!mapping->a_ops->is_partially_uptodate(page,
2133							offset, iter->count))
2134				goto page_not_up_to_date_locked;
2135			unlock_page(page);
2136		}
2137page_ok:
2138		/*
2139		 * i_size must be checked after we know the page is Uptodate.
2140		 *
2141		 * Checking i_size after the check allows us to calculate
2142		 * the correct value for "nr", which means the zero-filled
2143		 * part of the page is not copied back to userspace (unless
2144		 * another truncate extends the file - this is desired though).
2145		 */
2146
2147		isize = i_size_read(inode);
2148		end_index = (isize - 1) >> PAGE_SHIFT;
2149		if (unlikely(!isize || index > end_index)) {
2150			put_page(page);
2151			goto out;
2152		}
2153
2154		/* nr is the maximum number of bytes to copy from this page */
2155		nr = PAGE_SIZE;
2156		if (index == end_index) {
2157			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2158			if (nr <= offset) {
2159				put_page(page);
2160				goto out;
2161			}
2162		}
2163		nr = nr - offset;
2164
2165		/* If users can be writing to this page using arbitrary
2166		 * virtual addresses, take care about potential aliasing
2167		 * before reading the page on the kernel side.
2168		 */
2169		if (mapping_writably_mapped(mapping))
2170			flush_dcache_page(page);
2171
2172		/*
2173		 * When a sequential read accesses a page several times,
2174		 * only mark it as accessed the first time.
2175		 */
2176		if (prev_index != index || offset != prev_offset)
2177			mark_page_accessed(page);
2178		prev_index = index;
2179
2180		/*
2181		 * Ok, we have the page, and it's up-to-date, so
2182		 * now we can copy it to user space...
2183		 */
2184
2185		ret = copy_page_to_iter(page, offset, nr, iter);
2186		offset += ret;
2187		index += offset >> PAGE_SHIFT;
2188		offset &= ~PAGE_MASK;
2189		prev_offset = offset;
2190
2191		put_page(page);
2192		written += ret;
2193		if (!iov_iter_count(iter))
2194			goto out;
2195		if (ret < nr) {
2196			error = -EFAULT;
2197			goto out;
2198		}
2199		continue;
2200
2201page_not_up_to_date:
2202		/* Get exclusive access to the page ... */
2203		error = lock_page_killable(page);
 
 
 
2204		if (unlikely(error))
2205			goto readpage_error;
2206
2207page_not_up_to_date_locked:
2208		/* Did it get truncated before we got the lock? */
2209		if (!page->mapping) {
2210			unlock_page(page);
2211			put_page(page);
2212			continue;
2213		}
2214
2215		/* Did somebody else fill it already? */
2216		if (PageUptodate(page)) {
2217			unlock_page(page);
2218			goto page_ok;
2219		}
2220
2221readpage:
 
 
 
 
 
2222		/*
2223		 * A previous I/O error may have been due to temporary
2224		 * failures, eg. multipath errors.
2225		 * PG_error will be set again if readpage fails.
2226		 */
2227		ClearPageError(page);
2228		/* Start the actual read. The read will unlock the page. */
2229		error = mapping->a_ops->readpage(filp, page);
2230
2231		if (unlikely(error)) {
2232			if (error == AOP_TRUNCATED_PAGE) {
2233				put_page(page);
2234				error = 0;
2235				goto find_page;
2236			}
2237			goto readpage_error;
2238		}
2239
2240		if (!PageUptodate(page)) {
2241			error = lock_page_killable(page);
 
 
 
 
2242			if (unlikely(error))
2243				goto readpage_error;
2244			if (!PageUptodate(page)) {
2245				if (page->mapping == NULL) {
2246					/*
2247					 * invalidate_mapping_pages got it
2248					 */
2249					unlock_page(page);
2250					put_page(page);
2251					goto find_page;
2252				}
2253				unlock_page(page);
2254				shrink_readahead_size_eio(filp, ra);
2255				error = -EIO;
2256				goto readpage_error;
2257			}
2258			unlock_page(page);
2259		}
2260
2261		goto page_ok;
2262
2263readpage_error:
2264		/* UHHUH! A synchronous read error occurred. Report it */
2265		put_page(page);
2266		goto out;
2267
2268no_cached_page:
2269		/*
2270		 * Ok, it wasn't cached, so we need to create a new
2271		 * page..
2272		 */
2273		page = page_cache_alloc(mapping);
2274		if (!page) {
2275			error = -ENOMEM;
2276			goto out;
2277		}
2278		error = add_to_page_cache_lru(page, mapping, index,
2279				mapping_gfp_constraint(mapping, GFP_KERNEL));
2280		if (error) {
2281			put_page(page);
2282			if (error == -EEXIST) {
2283				error = 0;
2284				goto find_page;
2285			}
2286			goto out;
2287		}
2288		goto readpage;
2289	}
2290
2291would_block:
2292	error = -EAGAIN;
2293out:
2294	ra->prev_pos = prev_index;
2295	ra->prev_pos <<= PAGE_SHIFT;
2296	ra->prev_pos |= prev_offset;
2297
2298	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2299	file_accessed(filp);
2300	return written ? written : error;
2301}
 
2302
2303/**
2304 * generic_file_read_iter - generic filesystem read routine
2305 * @iocb:	kernel I/O control block
2306 * @iter:	destination for the data read
2307 *
2308 * This is the "read_iter()" routine for all filesystems
2309 * that can use the page cache directly.
 
 
 
 
 
 
 
 
 
 
 
 
 
2310 */
2311ssize_t
2312generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2313{
2314	size_t count = iov_iter_count(iter);
2315	ssize_t retval = 0;
2316
2317	if (!count)
2318		goto out; /* skip atime */
2319
2320	if (iocb->ki_flags & IOCB_DIRECT) {
2321		struct file *file = iocb->ki_filp;
2322		struct address_space *mapping = file->f_mapping;
2323		struct inode *inode = mapping->host;
2324		loff_t size;
2325
2326		size = i_size_read(inode);
2327		if (iocb->ki_flags & IOCB_NOWAIT) {
2328			if (filemap_range_has_page(mapping, iocb->ki_pos,
2329						   iocb->ki_pos + count - 1))
2330				return -EAGAIN;
2331		} else {
2332			retval = filemap_write_and_wait_range(mapping,
2333						iocb->ki_pos,
2334					        iocb->ki_pos + count - 1);
2335			if (retval < 0)
2336				goto out;
2337		}
2338
2339		file_accessed(file);
2340
2341		retval = mapping->a_ops->direct_IO(iocb, iter);
2342		if (retval >= 0) {
2343			iocb->ki_pos += retval;
2344			count -= retval;
2345		}
2346		iov_iter_revert(iter, count - iov_iter_count(iter));
2347
2348		/*
2349		 * Btrfs can have a short DIO read if we encounter
2350		 * compressed extents, so if there was an error, or if
2351		 * we've already read everything we wanted to, or if
2352		 * there was a short read because we hit EOF, go ahead
2353		 * and return.  Otherwise fallthrough to buffered io for
2354		 * the rest of the read.  Buffered reads will not work for
2355		 * DAX files, so don't bother trying.
2356		 */
2357		if (retval < 0 || !count || iocb->ki_pos >= size ||
2358		    IS_DAX(inode))
2359			goto out;
2360	}
2361
2362	retval = generic_file_buffered_read(iocb, iter, retval);
2363out:
2364	return retval;
2365}
2366EXPORT_SYMBOL(generic_file_read_iter);
2367
2368#ifdef CONFIG_MMU
2369/**
2370 * page_cache_read - adds requested page to the page cache if not already there
2371 * @file:	file to read
2372 * @offset:	page index
2373 * @gfp_mask:	memory allocation flags
2374 *
2375 * This adds the requested page to the page cache if it isn't already there,
2376 * and schedules an I/O to read in its contents from disk.
 
 
 
2377 */
2378static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
 
2379{
2380	struct address_space *mapping = file->f_mapping;
2381	struct page *page;
2382	int ret;
2383
2384	do {
2385		page = __page_cache_alloc(gfp_mask);
2386		if (!page)
2387			return -ENOMEM;
2388
2389		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2390		if (ret == 0)
2391			ret = mapping->a_ops->readpage(file, page);
2392		else if (ret == -EEXIST)
2393			ret = 0; /* losing race to add is OK */
2394
2395		put_page(page);
2396
2397	} while (ret == AOP_TRUNCATED_PAGE);
 
 
 
 
 
 
2398
2399	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2400}
2401
2402#define MMAP_LOTSAMISS  (100)
2403
2404/*
2405 * Synchronous readahead happens when we don't even find
2406 * a page in the page cache at all.
 
 
 
2407 */
2408static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2409				   struct file_ra_state *ra,
2410				   struct file *file,
2411				   pgoff_t offset)
2412{
 
 
2413	struct address_space *mapping = file->f_mapping;
 
 
 
2414
2415	/* If we don't want any read-ahead, don't bother */
2416	if (vma->vm_flags & VM_RAND_READ)
2417		return;
2418	if (!ra->ra_pages)
2419		return;
2420
2421	if (vma->vm_flags & VM_SEQ_READ) {
 
2422		page_cache_sync_readahead(mapping, ra, file, offset,
2423					  ra->ra_pages);
2424		return;
2425	}
2426
2427	/* Avoid banging the cache line if not needed */
2428	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2429		ra->mmap_miss++;
 
2430
2431	/*
2432	 * Do we miss much more than hit in this file? If so,
2433	 * stop bothering with read-ahead. It will only hurt.
2434	 */
2435	if (ra->mmap_miss > MMAP_LOTSAMISS)
2436		return;
2437
2438	/*
2439	 * mmap read-around
2440	 */
 
2441	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2442	ra->size = ra->ra_pages;
2443	ra->async_size = ra->ra_pages / 4;
2444	ra_submit(ra, mapping, file);
 
2445}
2446
2447/*
2448 * Asynchronous readahead happens when we find the page and PG_readahead,
2449 * so we want to possibly extend the readahead further..
 
2450 */
2451static void do_async_mmap_readahead(struct vm_area_struct *vma,
2452				    struct file_ra_state *ra,
2453				    struct file *file,
2454				    struct page *page,
2455				    pgoff_t offset)
2456{
 
 
2457	struct address_space *mapping = file->f_mapping;
 
 
 
2458
2459	/* If we don't want any read-ahead, don't bother */
2460	if (vma->vm_flags & VM_RAND_READ)
2461		return;
2462	if (ra->mmap_miss > 0)
2463		ra->mmap_miss--;
2464	if (PageReadahead(page))
 
 
2465		page_cache_async_readahead(mapping, ra, file,
2466					   page, offset, ra->ra_pages);
 
 
2467}
2468
2469/**
2470 * filemap_fault - read in file data for page fault handling
2471 * @vmf:	struct vm_fault containing details of the fault
2472 *
2473 * filemap_fault() is invoked via the vma operations vector for a
2474 * mapped memory region to read in file data during a page fault.
2475 *
2476 * The goto's are kind of ugly, but this streamlines the normal case of having
2477 * it in the page cache, and handles the special cases reasonably without
2478 * having a lot of duplicated code.
2479 *
2480 * vma->vm_mm->mmap_sem must be held on entry.
2481 *
2482 * If our return value has VM_FAULT_RETRY set, it's because
2483 * lock_page_or_retry() returned 0.
2484 * The mmap_sem has usually been released in this case.
2485 * See __lock_page_or_retry() for the exception.
2486 *
2487 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2488 * has not been released.
2489 *
2490 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
 
 
2491 */
2492int filemap_fault(struct vm_fault *vmf)
2493{
2494	int error;
2495	struct file *file = vmf->vma->vm_file;
 
2496	struct address_space *mapping = file->f_mapping;
2497	struct file_ra_state *ra = &file->f_ra;
2498	struct inode *inode = mapping->host;
2499	pgoff_t offset = vmf->pgoff;
2500	pgoff_t max_off;
2501	struct page *page;
2502	int ret = 0;
2503
2504	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2505	if (unlikely(offset >= max_off))
2506		return VM_FAULT_SIGBUS;
2507
2508	/*
2509	 * Do we have something in the page cache already?
2510	 */
2511	page = find_get_page(mapping, offset);
2512	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2513		/*
2514		 * We found the page, so try async readahead before
2515		 * waiting for the lock.
2516		 */
2517		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2518	} else if (!page) {
2519		/* No page in the page cache at all */
2520		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2521		count_vm_event(PGMAJFAULT);
2522		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2523		ret = VM_FAULT_MAJOR;
 
2524retry_find:
2525		page = find_get_page(mapping, offset);
2526		if (!page)
2527			goto no_cached_page;
 
 
 
 
 
2528	}
2529
2530	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2531		put_page(page);
2532		return ret | VM_FAULT_RETRY;
2533	}
2534
2535	/* Did it get truncated? */
2536	if (unlikely(page->mapping != mapping)) {
2537		unlock_page(page);
2538		put_page(page);
2539		goto retry_find;
2540	}
2541	VM_BUG_ON_PAGE(page->index != offset, page);
2542
2543	/*
2544	 * We have a locked page in the page cache, now we need to check
2545	 * that it's up-to-date. If not, it is going to be due to an error.
2546	 */
2547	if (unlikely(!PageUptodate(page)))
2548		goto page_not_uptodate;
2549
2550	/*
 
 
 
 
 
 
 
 
 
 
2551	 * Found the page and have a reference on it.
2552	 * We must recheck i_size under page lock.
2553	 */
2554	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2555	if (unlikely(offset >= max_off)) {
2556		unlock_page(page);
2557		put_page(page);
2558		return VM_FAULT_SIGBUS;
2559	}
2560
2561	vmf->page = page;
2562	return ret | VM_FAULT_LOCKED;
2563
2564no_cached_page:
2565	/*
2566	 * We're only likely to ever get here if MADV_RANDOM is in
2567	 * effect.
2568	 */
2569	error = page_cache_read(file, offset, vmf->gfp_mask);
2570
2571	/*
2572	 * The page we want has now been added to the page cache.
2573	 * In the unlikely event that someone removed it in the
2574	 * meantime, we'll just come back here and read it again.
2575	 */
2576	if (error >= 0)
2577		goto retry_find;
2578
2579	/*
2580	 * An error return from page_cache_read can result if the
2581	 * system is low on memory, or a problem occurs while trying
2582	 * to schedule I/O.
2583	 */
2584	if (error == -ENOMEM)
2585		return VM_FAULT_OOM;
2586	return VM_FAULT_SIGBUS;
2587
2588page_not_uptodate:
2589	/*
2590	 * Umm, take care of errors if the page isn't up-to-date.
2591	 * Try to re-read it _once_. We do this synchronously,
2592	 * because there really aren't any performance issues here
2593	 * and we need to check for errors.
2594	 */
2595	ClearPageError(page);
 
2596	error = mapping->a_ops->readpage(file, page);
2597	if (!error) {
2598		wait_on_page_locked(page);
2599		if (!PageUptodate(page))
2600			error = -EIO;
2601	}
 
 
2602	put_page(page);
2603
2604	if (!error || error == AOP_TRUNCATED_PAGE)
2605		goto retry_find;
2606
2607	/* Things didn't work out. Return zero to tell the mm layer so. */
2608	shrink_readahead_size_eio(file, ra);
2609	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
2610}
2611EXPORT_SYMBOL(filemap_fault);
2612
2613void filemap_map_pages(struct vm_fault *vmf,
2614		pgoff_t start_pgoff, pgoff_t end_pgoff)
2615{
2616	struct radix_tree_iter iter;
2617	void **slot;
2618	struct file *file = vmf->vma->vm_file;
2619	struct address_space *mapping = file->f_mapping;
2620	pgoff_t last_pgoff = start_pgoff;
2621	unsigned long max_idx;
2622	struct page *head, *page;
 
 
2623
2624	rcu_read_lock();
2625	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2626		if (iter.index > end_pgoff)
2627			break;
2628repeat:
2629		page = radix_tree_deref_slot(slot);
2630		if (unlikely(!page))
2631			goto next;
2632		if (radix_tree_exception(page)) {
2633			if (radix_tree_deref_retry(page)) {
2634				slot = radix_tree_iter_retry(&iter);
2635				continue;
2636			}
2637			goto next;
2638		}
2639
2640		head = compound_head(page);
2641		if (!page_cache_get_speculative(head))
2642			goto repeat;
2643
2644		/* The page was split under us? */
2645		if (compound_head(page) != head) {
2646			put_page(head);
2647			goto repeat;
2648		}
 
 
 
2649
2650		/* Has the page moved? */
2651		if (unlikely(page != *slot)) {
2652			put_page(head);
2653			goto repeat;
2654		}
2655
2656		if (!PageUptodate(page) ||
2657				PageReadahead(page) ||
2658				PageHWPoison(page))
2659			goto skip;
2660		if (!trylock_page(page))
2661			goto skip;
2662
2663		if (page->mapping != mapping || !PageUptodate(page))
2664			goto unlock;
2665
2666		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2667		if (page->index >= max_idx)
2668			goto unlock;
2669
2670		if (file->f_ra.mmap_miss > 0)
2671			file->f_ra.mmap_miss--;
2672
2673		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2674		if (vmf->pte)
2675			vmf->pte += iter.index - last_pgoff;
2676		last_pgoff = iter.index;
2677		if (alloc_set_pte(vmf, NULL, page))
2678			goto unlock;
2679		unlock_page(page);
2680		goto next;
2681unlock:
2682		unlock_page(page);
2683skip:
2684		put_page(page);
2685next:
2686		/* Huge page is mapped? No need to proceed. */
2687		if (pmd_trans_huge(*vmf->pmd))
2688			break;
2689		if (iter.index == end_pgoff)
2690			break;
2691	}
2692	rcu_read_unlock();
 
2693}
2694EXPORT_SYMBOL(filemap_map_pages);
2695
2696int filemap_page_mkwrite(struct vm_fault *vmf)
2697{
2698	struct page *page = vmf->page;
2699	struct inode *inode = file_inode(vmf->vma->vm_file);
2700	int ret = VM_FAULT_LOCKED;
2701
2702	sb_start_pagefault(inode->i_sb);
2703	file_update_time(vmf->vma->vm_file);
2704	lock_page(page);
2705	if (page->mapping != inode->i_mapping) {
2706		unlock_page(page);
2707		ret = VM_FAULT_NOPAGE;
2708		goto out;
2709	}
2710	/*
2711	 * We mark the page dirty already here so that when freeze is in
2712	 * progress, we are guaranteed that writeback during freezing will
2713	 * see the dirty page and writeprotect it again.
2714	 */
2715	set_page_dirty(page);
2716	wait_for_stable_page(page);
2717out:
2718	sb_end_pagefault(inode->i_sb);
2719	return ret;
2720}
2721
2722const struct vm_operations_struct generic_file_vm_ops = {
2723	.fault		= filemap_fault,
2724	.map_pages	= filemap_map_pages,
2725	.page_mkwrite	= filemap_page_mkwrite,
2726};
2727
2728/* This is used for a general mmap of a disk file */
2729
2730int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2731{
2732	struct address_space *mapping = file->f_mapping;
2733
2734	if (!mapping->a_ops->readpage)
2735		return -ENOEXEC;
2736	file_accessed(file);
2737	vma->vm_ops = &generic_file_vm_ops;
2738	return 0;
2739}
2740
2741/*
2742 * This is for filesystems which do not implement ->writepage.
2743 */
2744int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2745{
2746	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2747		return -EINVAL;
2748	return generic_file_mmap(file, vma);
2749}
2750#else
2751int filemap_page_mkwrite(struct vm_fault *vmf)
2752{
2753	return -ENOSYS;
2754}
2755int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2756{
2757	return -ENOSYS;
2758}
2759int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2760{
2761	return -ENOSYS;
2762}
2763#endif /* CONFIG_MMU */
2764
2765EXPORT_SYMBOL(filemap_page_mkwrite);
2766EXPORT_SYMBOL(generic_file_mmap);
2767EXPORT_SYMBOL(generic_file_readonly_mmap);
2768
2769static struct page *wait_on_page_read(struct page *page)
2770{
2771	if (!IS_ERR(page)) {
2772		wait_on_page_locked(page);
2773		if (!PageUptodate(page)) {
2774			put_page(page);
2775			page = ERR_PTR(-EIO);
2776		}
2777	}
2778	return page;
2779}
2780
2781static struct page *do_read_cache_page(struct address_space *mapping,
2782				pgoff_t index,
2783				int (*filler)(void *, struct page *),
2784				void *data,
2785				gfp_t gfp)
2786{
2787	struct page *page;
2788	int err;
2789repeat:
2790	page = find_get_page(mapping, index);
2791	if (!page) {
2792		page = __page_cache_alloc(gfp);
2793		if (!page)
2794			return ERR_PTR(-ENOMEM);
2795		err = add_to_page_cache_lru(page, mapping, index, gfp);
2796		if (unlikely(err)) {
2797			put_page(page);
2798			if (err == -EEXIST)
2799				goto repeat;
2800			/* Presumably ENOMEM for radix tree node */
2801			return ERR_PTR(err);
2802		}
2803
2804filler:
2805		err = filler(data, page);
 
 
 
 
2806		if (err < 0) {
2807			put_page(page);
2808			return ERR_PTR(err);
2809		}
2810
2811		page = wait_on_page_read(page);
2812		if (IS_ERR(page))
2813			return page;
2814		goto out;
2815	}
2816	if (PageUptodate(page))
2817		goto out;
2818
2819	/*
2820	 * Page is not up to date and may be locked due one of the following
2821	 * case a: Page is being filled and the page lock is held
2822	 * case b: Read/write error clearing the page uptodate status
2823	 * case c: Truncation in progress (page locked)
2824	 * case d: Reclaim in progress
2825	 *
2826	 * Case a, the page will be up to date when the page is unlocked.
2827	 *    There is no need to serialise on the page lock here as the page
2828	 *    is pinned so the lock gives no additional protection. Even if the
2829	 *    the page is truncated, the data is still valid if PageUptodate as
2830	 *    it's a race vs truncate race.
2831	 * Case b, the page will not be up to date
2832	 * Case c, the page may be truncated but in itself, the data may still
2833	 *    be valid after IO completes as it's a read vs truncate race. The
2834	 *    operation must restart if the page is not uptodate on unlock but
2835	 *    otherwise serialising on page lock to stabilise the mapping gives
2836	 *    no additional guarantees to the caller as the page lock is
2837	 *    released before return.
2838	 * Case d, similar to truncation. If reclaim holds the page lock, it
2839	 *    will be a race with remove_mapping that determines if the mapping
2840	 *    is valid on unlock but otherwise the data is valid and there is
2841	 *    no need to serialise with page lock.
2842	 *
2843	 * As the page lock gives no additional guarantee, we optimistically
2844	 * wait on the page to be unlocked and check if it's up to date and
2845	 * use the page if it is. Otherwise, the page lock is required to
2846	 * distinguish between the different cases. The motivation is that we
2847	 * avoid spurious serialisations and wakeups when multiple processes
2848	 * wait on the same page for IO to complete.
2849	 */
2850	wait_on_page_locked(page);
2851	if (PageUptodate(page))
2852		goto out;
2853
2854	/* Distinguish between all the cases under the safety of the lock */
2855	lock_page(page);
2856
2857	/* Case c or d, restart the operation */
2858	if (!page->mapping) {
2859		unlock_page(page);
2860		put_page(page);
2861		goto repeat;
2862	}
2863
2864	/* Someone else locked and filled the page in a very small window */
2865	if (PageUptodate(page)) {
2866		unlock_page(page);
2867		goto out;
2868	}
 
 
 
 
 
 
 
 
2869	goto filler;
2870
2871out:
2872	mark_page_accessed(page);
2873	return page;
2874}
2875
2876/**
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping:	the page's address_space
2879 * @index:	the page index
2880 * @filler:	function to perform the read
2881 * @data:	first arg to filler(data, page) function, often left as NULL
2882 *
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2885 *
2886 * If the page does not get brought uptodate, return -EIO.
 
 
2887 */
2888struct page *read_cache_page(struct address_space *mapping,
2889				pgoff_t index,
2890				int (*filler)(void *, struct page *),
2891				void *data)
2892{
2893	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 
2894}
2895EXPORT_SYMBOL(read_cache_page);
2896
2897/**
2898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2899 * @mapping:	the page's address_space
2900 * @index:	the page index
2901 * @gfp:	the page allocator flags to use if allocating
2902 *
2903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2904 * any new page allocations done using the specified allocation flags.
2905 *
2906 * If the page does not get brought uptodate, return -EIO.
 
 
2907 */
2908struct page *read_cache_page_gfp(struct address_space *mapping,
2909				pgoff_t index,
2910				gfp_t gfp)
2911{
2912	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2913
2914	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2915}
2916EXPORT_SYMBOL(read_cache_page_gfp);
2917
2918/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2919 * Performs necessary checks before doing a write
2920 *
2921 * Can adjust writing position or amount of bytes to write.
2922 * Returns appropriate error code that caller should return or
2923 * zero in case that write should be allowed.
2924 */
2925inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2926{
2927	struct file *file = iocb->ki_filp;
2928	struct inode *inode = file->f_mapping->host;
2929	unsigned long limit = rlimit(RLIMIT_FSIZE);
2930	loff_t pos;
 
 
 
2931
2932	if (!iov_iter_count(from))
2933		return 0;
2934
2935	/* FIXME: this is for backwards compatibility with 2.4 */
2936	if (iocb->ki_flags & IOCB_APPEND)
2937		iocb->ki_pos = i_size_read(inode);
2938
2939	pos = iocb->ki_pos;
2940
2941	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2942		return -EINVAL;
2943
2944	if (limit != RLIM_INFINITY) {
2945		if (iocb->ki_pos >= limit) {
2946			send_sig(SIGXFSZ, current, 0);
2947			return -EFBIG;
2948		}
2949		iov_iter_truncate(from, limit - (unsigned long)pos);
2950	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2951
2952	/*
2953	 * LFS rule
 
 
 
 
2954	 */
2955	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2956				!(file->f_flags & O_LARGEFILE))) {
2957		if (pos >= MAX_NON_LFS)
2958			return -EFBIG;
2959		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
 
2960	}
2961
 
 
 
 
 
 
2962	/*
2963	 * Are we about to exceed the fs block limit ?
2964	 *
2965	 * If we have written data it becomes a short write.  If we have
2966	 * exceeded without writing data we send a signal and return EFBIG.
2967	 * Linus frestrict idea will clean these up nicely..
2968	 */
2969	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2970		return -EFBIG;
2971
2972	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2973	return iov_iter_count(from);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2974}
2975EXPORT_SYMBOL(generic_write_checks);
2976
2977int pagecache_write_begin(struct file *file, struct address_space *mapping,
2978				loff_t pos, unsigned len, unsigned flags,
2979				struct page **pagep, void **fsdata)
2980{
2981	const struct address_space_operations *aops = mapping->a_ops;
2982
2983	return aops->write_begin(file, mapping, pos, len, flags,
2984							pagep, fsdata);
2985}
2986EXPORT_SYMBOL(pagecache_write_begin);
2987
2988int pagecache_write_end(struct file *file, struct address_space *mapping,
2989				loff_t pos, unsigned len, unsigned copied,
2990				struct page *page, void *fsdata)
2991{
2992	const struct address_space_operations *aops = mapping->a_ops;
2993
2994	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2995}
2996EXPORT_SYMBOL(pagecache_write_end);
2997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2998ssize_t
2999generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3000{
3001	struct file	*file = iocb->ki_filp;
3002	struct address_space *mapping = file->f_mapping;
3003	struct inode	*inode = mapping->host;
3004	loff_t		pos = iocb->ki_pos;
3005	ssize_t		written;
3006	size_t		write_len;
3007	pgoff_t		end;
3008
3009	write_len = iov_iter_count(from);
3010	end = (pos + write_len - 1) >> PAGE_SHIFT;
3011
3012	if (iocb->ki_flags & IOCB_NOWAIT) {
3013		/* If there are pages to writeback, return */
3014		if (filemap_range_has_page(inode->i_mapping, pos,
3015					   pos + iov_iter_count(from)))
3016			return -EAGAIN;
3017	} else {
3018		written = filemap_write_and_wait_range(mapping, pos,
3019							pos + write_len - 1);
3020		if (written)
3021			goto out;
3022	}
3023
3024	/*
3025	 * After a write we want buffered reads to be sure to go to disk to get
3026	 * the new data.  We invalidate clean cached page from the region we're
3027	 * about to write.  We do this *before* the write so that we can return
3028	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3029	 */
3030	written = invalidate_inode_pages2_range(mapping,
3031					pos >> PAGE_SHIFT, end);
3032	/*
3033	 * If a page can not be invalidated, return 0 to fall back
3034	 * to buffered write.
3035	 */
3036	if (written) {
3037		if (written == -EBUSY)
3038			return 0;
3039		goto out;
3040	}
3041
3042	written = mapping->a_ops->direct_IO(iocb, from);
3043
3044	/*
3045	 * Finally, try again to invalidate clean pages which might have been
3046	 * cached by non-direct readahead, or faulted in by get_user_pages()
3047	 * if the source of the write was an mmap'ed region of the file
3048	 * we're writing.  Either one is a pretty crazy thing to do,
3049	 * so we don't support it 100%.  If this invalidation
3050	 * fails, tough, the write still worked...
3051	 *
3052	 * Most of the time we do not need this since dio_complete() will do
3053	 * the invalidation for us. However there are some file systems that
3054	 * do not end up with dio_complete() being called, so let's not break
3055	 * them by removing it completely
 
 
 
 
3056	 */
3057	if (mapping->nrpages)
3058		invalidate_inode_pages2_range(mapping,
3059					pos >> PAGE_SHIFT, end);
3060
3061	if (written > 0) {
3062		pos += written;
3063		write_len -= written;
3064		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3065			i_size_write(inode, pos);
3066			mark_inode_dirty(inode);
3067		}
3068		iocb->ki_pos = pos;
3069	}
3070	iov_iter_revert(from, write_len - iov_iter_count(from));
3071out:
3072	return written;
3073}
3074EXPORT_SYMBOL(generic_file_direct_write);
3075
3076/*
3077 * Find or create a page at the given pagecache position. Return the locked
3078 * page. This function is specifically for buffered writes.
3079 */
3080struct page *grab_cache_page_write_begin(struct address_space *mapping,
3081					pgoff_t index, unsigned flags)
3082{
3083	struct page *page;
3084	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3085
3086	if (flags & AOP_FLAG_NOFS)
3087		fgp_flags |= FGP_NOFS;
3088
3089	page = pagecache_get_page(mapping, index, fgp_flags,
3090			mapping_gfp_mask(mapping));
3091	if (page)
3092		wait_for_stable_page(page);
3093
3094	return page;
3095}
3096EXPORT_SYMBOL(grab_cache_page_write_begin);
3097
3098ssize_t generic_perform_write(struct file *file,
3099				struct iov_iter *i, loff_t pos)
3100{
3101	struct address_space *mapping = file->f_mapping;
3102	const struct address_space_operations *a_ops = mapping->a_ops;
3103	long status = 0;
3104	ssize_t written = 0;
3105	unsigned int flags = 0;
3106
3107	do {
3108		struct page *page;
3109		unsigned long offset;	/* Offset into pagecache page */
3110		unsigned long bytes;	/* Bytes to write to page */
3111		size_t copied;		/* Bytes copied from user */
3112		void *fsdata;
3113
3114		offset = (pos & (PAGE_SIZE - 1));
3115		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3116						iov_iter_count(i));
3117
3118again:
3119		/*
3120		 * Bring in the user page that we will copy from _first_.
3121		 * Otherwise there's a nasty deadlock on copying from the
3122		 * same page as we're writing to, without it being marked
3123		 * up-to-date.
3124		 *
3125		 * Not only is this an optimisation, but it is also required
3126		 * to check that the address is actually valid, when atomic
3127		 * usercopies are used, below.
3128		 */
3129		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3130			status = -EFAULT;
3131			break;
3132		}
3133
3134		if (fatal_signal_pending(current)) {
3135			status = -EINTR;
3136			break;
3137		}
3138
3139		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3140						&page, &fsdata);
3141		if (unlikely(status < 0))
3142			break;
3143
3144		if (mapping_writably_mapped(mapping))
3145			flush_dcache_page(page);
3146
3147		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3148		flush_dcache_page(page);
3149
3150		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3151						page, fsdata);
3152		if (unlikely(status < 0))
3153			break;
3154		copied = status;
3155
3156		cond_resched();
3157
3158		iov_iter_advance(i, copied);
3159		if (unlikely(copied == 0)) {
3160			/*
3161			 * If we were unable to copy any data at all, we must
3162			 * fall back to a single segment length write.
3163			 *
3164			 * If we didn't fallback here, we could livelock
3165			 * because not all segments in the iov can be copied at
3166			 * once without a pagefault.
3167			 */
3168			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3169						iov_iter_single_seg_count(i));
3170			goto again;
3171		}
3172		pos += copied;
3173		written += copied;
3174
3175		balance_dirty_pages_ratelimited(mapping);
3176	} while (iov_iter_count(i));
3177
3178	return written ? written : status;
3179}
3180EXPORT_SYMBOL(generic_perform_write);
3181
3182/**
3183 * __generic_file_write_iter - write data to a file
3184 * @iocb:	IO state structure (file, offset, etc.)
3185 * @from:	iov_iter with data to write
3186 *
3187 * This function does all the work needed for actually writing data to a
3188 * file. It does all basic checks, removes SUID from the file, updates
3189 * modification times and calls proper subroutines depending on whether we
3190 * do direct IO or a standard buffered write.
3191 *
3192 * It expects i_mutex to be grabbed unless we work on a block device or similar
3193 * object which does not need locking at all.
3194 *
3195 * This function does *not* take care of syncing data in case of O_SYNC write.
3196 * A caller has to handle it. This is mainly due to the fact that we want to
3197 * avoid syncing under i_mutex.
 
 
 
 
3198 */
3199ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3200{
3201	struct file *file = iocb->ki_filp;
3202	struct address_space * mapping = file->f_mapping;
3203	struct inode 	*inode = mapping->host;
3204	ssize_t		written = 0;
3205	ssize_t		err;
3206	ssize_t		status;
3207
3208	/* We can write back this queue in page reclaim */
3209	current->backing_dev_info = inode_to_bdi(inode);
3210	err = file_remove_privs(file);
3211	if (err)
3212		goto out;
3213
3214	err = file_update_time(file);
3215	if (err)
3216		goto out;
3217
3218	if (iocb->ki_flags & IOCB_DIRECT) {
3219		loff_t pos, endbyte;
3220
3221		written = generic_file_direct_write(iocb, from);
3222		/*
3223		 * If the write stopped short of completing, fall back to
3224		 * buffered writes.  Some filesystems do this for writes to
3225		 * holes, for example.  For DAX files, a buffered write will
3226		 * not succeed (even if it did, DAX does not handle dirty
3227		 * page-cache pages correctly).
3228		 */
3229		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3230			goto out;
3231
3232		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3233		/*
3234		 * If generic_perform_write() returned a synchronous error
3235		 * then we want to return the number of bytes which were
3236		 * direct-written, or the error code if that was zero.  Note
3237		 * that this differs from normal direct-io semantics, which
3238		 * will return -EFOO even if some bytes were written.
3239		 */
3240		if (unlikely(status < 0)) {
3241			err = status;
3242			goto out;
3243		}
3244		/*
3245		 * We need to ensure that the page cache pages are written to
3246		 * disk and invalidated to preserve the expected O_DIRECT
3247		 * semantics.
3248		 */
3249		endbyte = pos + status - 1;
3250		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3251		if (err == 0) {
3252			iocb->ki_pos = endbyte + 1;
3253			written += status;
3254			invalidate_mapping_pages(mapping,
3255						 pos >> PAGE_SHIFT,
3256						 endbyte >> PAGE_SHIFT);
3257		} else {
3258			/*
3259			 * We don't know how much we wrote, so just return
3260			 * the number of bytes which were direct-written
3261			 */
3262		}
3263	} else {
3264		written = generic_perform_write(file, from, iocb->ki_pos);
3265		if (likely(written > 0))
3266			iocb->ki_pos += written;
3267	}
3268out:
3269	current->backing_dev_info = NULL;
3270	return written ? written : err;
3271}
3272EXPORT_SYMBOL(__generic_file_write_iter);
3273
3274/**
3275 * generic_file_write_iter - write data to a file
3276 * @iocb:	IO state structure
3277 * @from:	iov_iter with data to write
3278 *
3279 * This is a wrapper around __generic_file_write_iter() to be used by most
3280 * filesystems. It takes care of syncing the file in case of O_SYNC file
3281 * and acquires i_mutex as needed.
 
 
 
 
3282 */
3283ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3284{
3285	struct file *file = iocb->ki_filp;
3286	struct inode *inode = file->f_mapping->host;
3287	ssize_t ret;
3288
3289	inode_lock(inode);
3290	ret = generic_write_checks(iocb, from);
3291	if (ret > 0)
3292		ret = __generic_file_write_iter(iocb, from);
3293	inode_unlock(inode);
3294
3295	if (ret > 0)
3296		ret = generic_write_sync(iocb, ret);
3297	return ret;
3298}
3299EXPORT_SYMBOL(generic_file_write_iter);
3300
3301/**
3302 * try_to_release_page() - release old fs-specific metadata on a page
3303 *
3304 * @page: the page which the kernel is trying to free
3305 * @gfp_mask: memory allocation flags (and I/O mode)
3306 *
3307 * The address_space is to try to release any data against the page
3308 * (presumably at page->private).  If the release was successful, return '1'.
3309 * Otherwise return zero.
3310 *
3311 * This may also be called if PG_fscache is set on a page, indicating that the
3312 * page is known to the local caching routines.
3313 *
3314 * The @gfp_mask argument specifies whether I/O may be performed to release
3315 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3316 *
 
3317 */
3318int try_to_release_page(struct page *page, gfp_t gfp_mask)
3319{
3320	struct address_space * const mapping = page->mapping;
3321
3322	BUG_ON(!PageLocked(page));
3323	if (PageWriteback(page))
3324		return 0;
3325
3326	if (mapping && mapping->a_ops->releasepage)
3327		return mapping->a_ops->releasepage(page, gfp_mask);
3328	return try_to_free_buffers(page);
3329}
3330
3331EXPORT_SYMBOL(try_to_release_page);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include "internal.h"
  46
  47#define CREATE_TRACE_POINTS
  48#include <trace/events/filemap.h>
  49
  50/*
  51 * FIXME: remove all knowledge of the buffer layer from the core VM
  52 */
  53#include <linux/buffer_head.h> /* for try_to_free_buffers */
  54
  55#include <asm/mman.h>
  56
  57/*
  58 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  59 * though.
  60 *
  61 * Shared mappings now work. 15.8.1995  Bruno.
  62 *
  63 * finished 'unifying' the page and buffer cache and SMP-threaded the
  64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  65 *
  66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  67 */
  68
  69/*
  70 * Lock ordering:
  71 *
  72 *  ->i_mmap_rwsem		(truncate_pagecache)
  73 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  74 *      ->swap_lock		(exclusive_swap_page, others)
  75 *        ->i_pages lock
  76 *
  77 *  ->i_mutex
  78 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  79 *
  80 *  ->mmap_lock
  81 *    ->i_mmap_rwsem
  82 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  83 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  84 *
  85 *  ->mmap_lock
  86 *    ->lock_page		(access_process_vm)
  87 *
  88 *  ->i_mutex			(generic_perform_write)
  89 *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
  90 *
  91 *  bdi->wb.list_lock
  92 *    sb_lock			(fs/fs-writeback.c)
  93 *    ->i_pages lock		(__sync_single_inode)
  94 *
  95 *  ->i_mmap_rwsem
  96 *    ->anon_vma.lock		(vma_adjust)
  97 *
  98 *  ->anon_vma.lock
  99 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 100 *
 101 *  ->page_table_lock or pte_lock
 102 *    ->swap_lock		(try_to_unmap_one)
 103 *    ->private_lock		(try_to_unmap_one)
 104 *    ->i_pages lock		(try_to_unmap_one)
 105 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 106 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
 107 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 108 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 109 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 110 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 111 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 112 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 113 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 114 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 115 *
 116 * ->i_mmap_rwsem
 117 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 118 */
 119
 120static void page_cache_delete(struct address_space *mapping,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121				   struct page *page, void *shadow)
 122{
 123	XA_STATE(xas, &mapping->i_pages, page->index);
 124	unsigned int nr = 1;
 125
 126	mapping_set_update(&xas, mapping);
 127
 128	/* hugetlb pages are represented by a single entry in the xarray */
 129	if (!PageHuge(page)) {
 130		xas_set_order(&xas, page->index, compound_order(page));
 131		nr = compound_nr(page);
 132	}
 133
 134	VM_BUG_ON_PAGE(!PageLocked(page), page);
 135	VM_BUG_ON_PAGE(PageTail(page), page);
 136	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 137
 138	xas_store(&xas, shadow);
 139	xas_init_marks(&xas);
 
 
 
 
 
 
 
 
 
 
 
 140
 141	page->mapping = NULL;
 142	/* Leave page->index set: truncation lookup relies upon it */
 143
 144	if (shadow) {
 145		mapping->nrexceptional += nr;
 146		/*
 147		 * Make sure the nrexceptional update is committed before
 148		 * the nrpages update so that final truncate racing
 149		 * with reclaim does not see both counters 0 at the
 150		 * same time and miss a shadow entry.
 151		 */
 152		smp_wmb();
 153	}
 154	mapping->nrpages -= nr;
 155}
 156
 157static void unaccount_page_cache_page(struct address_space *mapping,
 158				      struct page *page)
 159{
 160	int nr;
 161
 162	/*
 163	 * if we're uptodate, flush out into the cleancache, otherwise
 164	 * invalidate any existing cleancache entries.  We can't leave
 165	 * stale data around in the cleancache once our page is gone
 166	 */
 167	if (PageUptodate(page) && PageMappedToDisk(page))
 168		cleancache_put_page(page);
 169	else
 170		cleancache_invalidate_page(mapping, page);
 171
 172	VM_BUG_ON_PAGE(PageTail(page), page);
 173	VM_BUG_ON_PAGE(page_mapped(page), page);
 174	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 175		int mapcount;
 176
 177		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 178			 current->comm, page_to_pfn(page));
 179		dump_page(page, "still mapped when deleted");
 180		dump_stack();
 181		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 182
 183		mapcount = page_mapcount(page);
 184		if (mapping_exiting(mapping) &&
 185		    page_count(page) >= mapcount + 2) {
 186			/*
 187			 * All vmas have already been torn down, so it's
 188			 * a good bet that actually the page is unmapped,
 189			 * and we'd prefer not to leak it: if we're wrong,
 190			 * some other bad page check should catch it later.
 191			 */
 192			page_mapcount_reset(page);
 193			page_ref_sub(page, mapcount);
 194		}
 195	}
 196
 197	/* hugetlb pages do not participate in page cache accounting. */
 198	if (PageHuge(page))
 199		return;
 200
 201	nr = thp_nr_pages(page);
 202
 203	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
 204	if (PageSwapBacked(page)) {
 205		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
 206		if (PageTransHuge(page))
 207			__dec_node_page_state(page, NR_SHMEM_THPS);
 208	} else if (PageTransHuge(page)) {
 209		__dec_node_page_state(page, NR_FILE_THPS);
 210		filemap_nr_thps_dec(mapping);
 211	}
 212
 213	/*
 214	 * At this point page must be either written or cleaned by
 215	 * truncate.  Dirty page here signals a bug and loss of
 216	 * unwritten data.
 217	 *
 218	 * This fixes dirty accounting after removing the page entirely
 219	 * but leaves PageDirty set: it has no effect for truncated
 220	 * page and anyway will be cleared before returning page into
 221	 * buddy allocator.
 222	 */
 223	if (WARN_ON_ONCE(PageDirty(page)))
 224		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 225}
 226
 227/*
 228 * Delete a page from the page cache and free it. Caller has to make
 229 * sure the page is locked and that nobody else uses it - or that usage
 230 * is safe.  The caller must hold the i_pages lock.
 231 */
 232void __delete_from_page_cache(struct page *page, void *shadow)
 233{
 234	struct address_space *mapping = page->mapping;
 235
 236	trace_mm_filemap_delete_from_page_cache(page);
 237
 238	unaccount_page_cache_page(mapping, page);
 239	page_cache_delete(mapping, page, shadow);
 240}
 241
 242static void page_cache_free_page(struct address_space *mapping,
 243				struct page *page)
 244{
 245	void (*freepage)(struct page *);
 246
 247	freepage = mapping->a_ops->freepage;
 248	if (freepage)
 249		freepage(page);
 250
 251	if (PageTransHuge(page) && !PageHuge(page)) {
 252		page_ref_sub(page, HPAGE_PMD_NR);
 253		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 254	} else {
 255		put_page(page);
 256	}
 257}
 258
 259/**
 260 * delete_from_page_cache - delete page from page cache
 261 * @page: the page which the kernel is trying to remove from page cache
 262 *
 263 * This must be called only on pages that have been verified to be in the page
 264 * cache and locked.  It will never put the page into the free list, the caller
 265 * has a reference on the page.
 266 */
 267void delete_from_page_cache(struct page *page)
 268{
 269	struct address_space *mapping = page_mapping(page);
 270	unsigned long flags;
 271
 272	BUG_ON(!PageLocked(page));
 273	xa_lock_irqsave(&mapping->i_pages, flags);
 274	__delete_from_page_cache(page, NULL);
 275	xa_unlock_irqrestore(&mapping->i_pages, flags);
 276
 277	page_cache_free_page(mapping, page);
 278}
 279EXPORT_SYMBOL(delete_from_page_cache);
 280
 281/*
 282 * page_cache_delete_batch - delete several pages from page cache
 283 * @mapping: the mapping to which pages belong
 284 * @pvec: pagevec with pages to delete
 285 *
 286 * The function walks over mapping->i_pages and removes pages passed in @pvec
 287 * from the mapping. The function expects @pvec to be sorted by page index
 288 * and is optimised for it to be dense.
 289 * It tolerates holes in @pvec (mapping entries at those indices are not
 290 * modified). The function expects only THP head pages to be present in the
 291 * @pvec.
 
 292 *
 293 * The function expects the i_pages lock to be held.
 294 */
 295static void page_cache_delete_batch(struct address_space *mapping,
 
 296			     struct pagevec *pvec)
 297{
 298	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 
 299	int total_pages = 0;
 300	int i = 0;
 301	struct page *page;
 
 302
 303	mapping_set_update(&xas, mapping);
 304	xas_for_each(&xas, page, ULONG_MAX) {
 305		if (i >= pagevec_count(pvec))
 306			break;
 307
 308		/* A swap/dax/shadow entry got inserted? Skip it. */
 309		if (xa_is_value(page))
 310			continue;
 311		/*
 312		 * A page got inserted in our range? Skip it. We have our
 313		 * pages locked so they are protected from being removed.
 314		 * If we see a page whose index is higher than ours, it
 315		 * means our page has been removed, which shouldn't be
 316		 * possible because we're holding the PageLock.
 317		 */
 318		if (page != pvec->pages[i]) {
 319			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 320					page);
 321			continue;
 322		}
 323
 324		WARN_ON_ONCE(!PageLocked(page));
 325
 326		if (page->index == xas.xa_index)
 327			page->mapping = NULL;
 328		/* Leave page->index set: truncation lookup relies on it */
 329
 330		/*
 331		 * Move to the next page in the vector if this is a regular
 332		 * page or the index is of the last sub-page of this compound
 333		 * page.
 334		 */
 335		if (page->index + compound_nr(page) - 1 == xas.xa_index)
 336			i++;
 337		xas_store(&xas, NULL);
 
 
 
 
 
 338		total_pages++;
 339	}
 340	mapping->nrpages -= total_pages;
 341}
 342
 343void delete_from_page_cache_batch(struct address_space *mapping,
 344				  struct pagevec *pvec)
 345{
 346	int i;
 347	unsigned long flags;
 348
 349	if (!pagevec_count(pvec))
 350		return;
 351
 352	xa_lock_irqsave(&mapping->i_pages, flags);
 353	for (i = 0; i < pagevec_count(pvec); i++) {
 354		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 355
 356		unaccount_page_cache_page(mapping, pvec->pages[i]);
 357	}
 358	page_cache_delete_batch(mapping, pvec);
 359	xa_unlock_irqrestore(&mapping->i_pages, flags);
 360
 361	for (i = 0; i < pagevec_count(pvec); i++)
 362		page_cache_free_page(mapping, pvec->pages[i]);
 363}
 364
 365int filemap_check_errors(struct address_space *mapping)
 366{
 367	int ret = 0;
 368	/* Check for outstanding write errors */
 369	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 370	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 371		ret = -ENOSPC;
 372	if (test_bit(AS_EIO, &mapping->flags) &&
 373	    test_and_clear_bit(AS_EIO, &mapping->flags))
 374		ret = -EIO;
 375	return ret;
 376}
 377EXPORT_SYMBOL(filemap_check_errors);
 378
 379static int filemap_check_and_keep_errors(struct address_space *mapping)
 380{
 381	/* Check for outstanding write errors */
 382	if (test_bit(AS_EIO, &mapping->flags))
 383		return -EIO;
 384	if (test_bit(AS_ENOSPC, &mapping->flags))
 385		return -ENOSPC;
 386	return 0;
 387}
 388
 389/**
 390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 391 * @mapping:	address space structure to write
 392 * @start:	offset in bytes where the range starts
 393 * @end:	offset in bytes where the range ends (inclusive)
 394 * @sync_mode:	enable synchronous operation
 395 *
 396 * Start writeback against all of a mapping's dirty pages that lie
 397 * within the byte offsets <start, end> inclusive.
 398 *
 399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 400 * opposed to a regular memory cleansing writeback.  The difference between
 401 * these two operations is that if a dirty page/buffer is encountered, it must
 402 * be waited upon, and not just skipped over.
 403 *
 404 * Return: %0 on success, negative error code otherwise.
 405 */
 406int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 407				loff_t end, int sync_mode)
 408{
 409	int ret;
 410	struct writeback_control wbc = {
 411		.sync_mode = sync_mode,
 412		.nr_to_write = LONG_MAX,
 413		.range_start = start,
 414		.range_end = end,
 415	};
 416
 417	if (!mapping_cap_writeback_dirty(mapping) ||
 418	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 419		return 0;
 420
 421	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 422	ret = do_writepages(mapping, &wbc);
 423	wbc_detach_inode(&wbc);
 424	return ret;
 425}
 426
 427static inline int __filemap_fdatawrite(struct address_space *mapping,
 428	int sync_mode)
 429{
 430	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 431}
 432
 433int filemap_fdatawrite(struct address_space *mapping)
 434{
 435	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 436}
 437EXPORT_SYMBOL(filemap_fdatawrite);
 438
 439int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 440				loff_t end)
 441{
 442	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 443}
 444EXPORT_SYMBOL(filemap_fdatawrite_range);
 445
 446/**
 447 * filemap_flush - mostly a non-blocking flush
 448 * @mapping:	target address_space
 449 *
 450 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 451 * purposes - I/O may not be started against all dirty pages.
 452 *
 453 * Return: %0 on success, negative error code otherwise.
 454 */
 455int filemap_flush(struct address_space *mapping)
 456{
 457	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 458}
 459EXPORT_SYMBOL(filemap_flush);
 460
 461/**
 462 * filemap_range_has_page - check if a page exists in range.
 463 * @mapping:           address space within which to check
 464 * @start_byte:        offset in bytes where the range starts
 465 * @end_byte:          offset in bytes where the range ends (inclusive)
 466 *
 467 * Find at least one page in the range supplied, usually used to check if
 468 * direct writing in this range will trigger a writeback.
 469 *
 470 * Return: %true if at least one page exists in the specified range,
 471 * %false otherwise.
 472 */
 473bool filemap_range_has_page(struct address_space *mapping,
 474			   loff_t start_byte, loff_t end_byte)
 475{
 
 
 476	struct page *page;
 477	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 478	pgoff_t max = end_byte >> PAGE_SHIFT;
 479
 480	if (end_byte < start_byte)
 481		return false;
 482
 483	rcu_read_lock();
 484	for (;;) {
 485		page = xas_find(&xas, max);
 486		if (xas_retry(&xas, page))
 487			continue;
 488		/* Shadow entries don't count */
 489		if (xa_is_value(page))
 490			continue;
 491		/*
 492		 * We don't need to try to pin this page; we're about to
 493		 * release the RCU lock anyway.  It is enough to know that
 494		 * there was a page here recently.
 495		 */
 496		break;
 497	}
 498	rcu_read_unlock();
 499
 500	return page != NULL;
 
 
 
 501}
 502EXPORT_SYMBOL(filemap_range_has_page);
 503
 504static void __filemap_fdatawait_range(struct address_space *mapping,
 505				     loff_t start_byte, loff_t end_byte)
 506{
 507	pgoff_t index = start_byte >> PAGE_SHIFT;
 508	pgoff_t end = end_byte >> PAGE_SHIFT;
 509	struct pagevec pvec;
 510	int nr_pages;
 511
 512	if (end_byte < start_byte)
 513		return;
 514
 515	pagevec_init(&pvec);
 516	while (index <= end) {
 517		unsigned i;
 518
 519		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 520				end, PAGECACHE_TAG_WRITEBACK);
 521		if (!nr_pages)
 522			break;
 523
 524		for (i = 0; i < nr_pages; i++) {
 525			struct page *page = pvec.pages[i];
 526
 527			wait_on_page_writeback(page);
 528			ClearPageError(page);
 529		}
 530		pagevec_release(&pvec);
 531		cond_resched();
 532	}
 533}
 534
 535/**
 536 * filemap_fdatawait_range - wait for writeback to complete
 537 * @mapping:		address space structure to wait for
 538 * @start_byte:		offset in bytes where the range starts
 539 * @end_byte:		offset in bytes where the range ends (inclusive)
 540 *
 541 * Walk the list of under-writeback pages of the given address space
 542 * in the given range and wait for all of them.  Check error status of
 543 * the address space and return it.
 544 *
 545 * Since the error status of the address space is cleared by this function,
 546 * callers are responsible for checking the return value and handling and/or
 547 * reporting the error.
 548 *
 549 * Return: error status of the address space.
 550 */
 551int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 552			    loff_t end_byte)
 553{
 554	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 555	return filemap_check_errors(mapping);
 556}
 557EXPORT_SYMBOL(filemap_fdatawait_range);
 558
 559/**
 560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 561 * @mapping:		address space structure to wait for
 562 * @start_byte:		offset in bytes where the range starts
 563 * @end_byte:		offset in bytes where the range ends (inclusive)
 564 *
 565 * Walk the list of under-writeback pages of the given address space in the
 566 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 567 * this function does not clear error status of the address space.
 568 *
 569 * Use this function if callers don't handle errors themselves.  Expected
 570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 571 * fsfreeze(8)
 572 */
 573int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 574		loff_t start_byte, loff_t end_byte)
 575{
 576	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 577	return filemap_check_and_keep_errors(mapping);
 578}
 579EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 580
 581/**
 582 * file_fdatawait_range - wait for writeback to complete
 583 * @file:		file pointing to address space structure to wait for
 584 * @start_byte:		offset in bytes where the range starts
 585 * @end_byte:		offset in bytes where the range ends (inclusive)
 586 *
 587 * Walk the list of under-writeback pages of the address space that file
 588 * refers to, in the given range and wait for all of them.  Check error
 589 * status of the address space vs. the file->f_wb_err cursor and return it.
 590 *
 591 * Since the error status of the file is advanced by this function,
 592 * callers are responsible for checking the return value and handling and/or
 593 * reporting the error.
 594 *
 595 * Return: error status of the address space vs. the file->f_wb_err cursor.
 596 */
 597int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 598{
 599	struct address_space *mapping = file->f_mapping;
 600
 601	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 602	return file_check_and_advance_wb_err(file);
 603}
 604EXPORT_SYMBOL(file_fdatawait_range);
 605
 606/**
 607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 608 * @mapping: address space structure to wait for
 609 *
 610 * Walk the list of under-writeback pages of the given address space
 611 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 612 * does not clear error status of the address space.
 613 *
 614 * Use this function if callers don't handle errors themselves.  Expected
 615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 616 * fsfreeze(8)
 617 *
 618 * Return: error status of the address space.
 619 */
 620int filemap_fdatawait_keep_errors(struct address_space *mapping)
 621{
 622	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 623	return filemap_check_and_keep_errors(mapping);
 624}
 625EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 626
 627/* Returns true if writeback might be needed or already in progress. */
 628static bool mapping_needs_writeback(struct address_space *mapping)
 629{
 630	if (dax_mapping(mapping))
 631		return mapping->nrexceptional;
 
 
 
 
 
 632
 633	return mapping->nrpages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634}
 
 635
 636/**
 637 * filemap_write_and_wait_range - write out & wait on a file range
 638 * @mapping:	the address_space for the pages
 639 * @lstart:	offset in bytes where the range starts
 640 * @lend:	offset in bytes where the range ends (inclusive)
 641 *
 642 * Write out and wait upon file offsets lstart->lend, inclusive.
 643 *
 644 * Note that @lend is inclusive (describes the last byte to be written) so
 645 * that this function can be used to write to the very end-of-file (end = -1).
 646 *
 647 * Return: error status of the address space.
 648 */
 649int filemap_write_and_wait_range(struct address_space *mapping,
 650				 loff_t lstart, loff_t lend)
 651{
 652	int err = 0;
 653
 654	if (mapping_needs_writeback(mapping)) {
 655		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 656						 WB_SYNC_ALL);
 657		/*
 658		 * Even if the above returned error, the pages may be
 659		 * written partially (e.g. -ENOSPC), so we wait for it.
 660		 * But the -EIO is special case, it may indicate the worst
 661		 * thing (e.g. bug) happened, so we avoid waiting for it.
 662		 */
 663		if (err != -EIO) {
 664			int err2 = filemap_fdatawait_range(mapping,
 665						lstart, lend);
 666			if (!err)
 667				err = err2;
 668		} else {
 669			/* Clear any previously stored errors */
 670			filemap_check_errors(mapping);
 671		}
 672	} else {
 673		err = filemap_check_errors(mapping);
 674	}
 675	return err;
 676}
 677EXPORT_SYMBOL(filemap_write_and_wait_range);
 678
 679void __filemap_set_wb_err(struct address_space *mapping, int err)
 680{
 681	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 682
 683	trace_filemap_set_wb_err(mapping, eseq);
 684}
 685EXPORT_SYMBOL(__filemap_set_wb_err);
 686
 687/**
 688 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 689 * 				   and advance wb_err to current one
 690 * @file: struct file on which the error is being reported
 691 *
 692 * When userland calls fsync (or something like nfsd does the equivalent), we
 693 * want to report any writeback errors that occurred since the last fsync (or
 694 * since the file was opened if there haven't been any).
 695 *
 696 * Grab the wb_err from the mapping. If it matches what we have in the file,
 697 * then just quickly return 0. The file is all caught up.
 698 *
 699 * If it doesn't match, then take the mapping value, set the "seen" flag in
 700 * it and try to swap it into place. If it works, or another task beat us
 701 * to it with the new value, then update the f_wb_err and return the error
 702 * portion. The error at this point must be reported via proper channels
 703 * (a'la fsync, or NFS COMMIT operation, etc.).
 704 *
 705 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 706 * value is protected by the f_lock since we must ensure that it reflects
 707 * the latest value swapped in for this file descriptor.
 708 *
 709 * Return: %0 on success, negative error code otherwise.
 710 */
 711int file_check_and_advance_wb_err(struct file *file)
 712{
 713	int err = 0;
 714	errseq_t old = READ_ONCE(file->f_wb_err);
 715	struct address_space *mapping = file->f_mapping;
 716
 717	/* Locklessly handle the common case where nothing has changed */
 718	if (errseq_check(&mapping->wb_err, old)) {
 719		/* Something changed, must use slow path */
 720		spin_lock(&file->f_lock);
 721		old = file->f_wb_err;
 722		err = errseq_check_and_advance(&mapping->wb_err,
 723						&file->f_wb_err);
 724		trace_file_check_and_advance_wb_err(file, old);
 725		spin_unlock(&file->f_lock);
 726	}
 727
 728	/*
 729	 * We're mostly using this function as a drop in replacement for
 730	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 731	 * that the legacy code would have had on these flags.
 732	 */
 733	clear_bit(AS_EIO, &mapping->flags);
 734	clear_bit(AS_ENOSPC, &mapping->flags);
 735	return err;
 736}
 737EXPORT_SYMBOL(file_check_and_advance_wb_err);
 738
 739/**
 740 * file_write_and_wait_range - write out & wait on a file range
 741 * @file:	file pointing to address_space with pages
 742 * @lstart:	offset in bytes where the range starts
 743 * @lend:	offset in bytes where the range ends (inclusive)
 744 *
 745 * Write out and wait upon file offsets lstart->lend, inclusive.
 746 *
 747 * Note that @lend is inclusive (describes the last byte to be written) so
 748 * that this function can be used to write to the very end-of-file (end = -1).
 749 *
 750 * After writing out and waiting on the data, we check and advance the
 751 * f_wb_err cursor to the latest value, and return any errors detected there.
 752 *
 753 * Return: %0 on success, negative error code otherwise.
 754 */
 755int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 756{
 757	int err = 0, err2;
 758	struct address_space *mapping = file->f_mapping;
 759
 760	if (mapping_needs_writeback(mapping)) {
 761		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 762						 WB_SYNC_ALL);
 763		/* See comment of filemap_write_and_wait() */
 764		if (err != -EIO)
 765			__filemap_fdatawait_range(mapping, lstart, lend);
 766	}
 767	err2 = file_check_and_advance_wb_err(file);
 768	if (!err)
 769		err = err2;
 770	return err;
 771}
 772EXPORT_SYMBOL(file_write_and_wait_range);
 773
 774/**
 775 * replace_page_cache_page - replace a pagecache page with a new one
 776 * @old:	page to be replaced
 777 * @new:	page to replace with
 778 * @gfp_mask:	allocation mode
 779 *
 780 * This function replaces a page in the pagecache with a new one.  On
 781 * success it acquires the pagecache reference for the new page and
 782 * drops it for the old page.  Both the old and new pages must be
 783 * locked.  This function does not add the new page to the LRU, the
 784 * caller must do that.
 785 *
 786 * The remove + add is atomic.  This function cannot fail.
 787 *
 788 * Return: %0
 789 */
 790int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 791{
 792	struct address_space *mapping = old->mapping;
 793	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 794	pgoff_t offset = old->index;
 795	XA_STATE(xas, &mapping->i_pages, offset);
 796	unsigned long flags;
 797
 798	VM_BUG_ON_PAGE(!PageLocked(old), old);
 799	VM_BUG_ON_PAGE(!PageLocked(new), new);
 800	VM_BUG_ON_PAGE(new->mapping, new);
 801
 802	get_page(new);
 803	new->mapping = mapping;
 804	new->index = offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805
 806	mem_cgroup_migrate(old, new);
 807
 808	xas_lock_irqsave(&xas, flags);
 809	xas_store(&xas, new);
 810
 811	old->mapping = NULL;
 812	/* hugetlb pages do not participate in page cache accounting. */
 813	if (!PageHuge(old))
 814		__dec_lruvec_page_state(old, NR_FILE_PAGES);
 815	if (!PageHuge(new))
 816		__inc_lruvec_page_state(new, NR_FILE_PAGES);
 817	if (PageSwapBacked(old))
 818		__dec_lruvec_page_state(old, NR_SHMEM);
 819	if (PageSwapBacked(new))
 820		__inc_lruvec_page_state(new, NR_SHMEM);
 821	xas_unlock_irqrestore(&xas, flags);
 822	if (freepage)
 823		freepage(old);
 824	put_page(old);
 825
 826	return 0;
 827}
 828EXPORT_SYMBOL_GPL(replace_page_cache_page);
 829
 830static int __add_to_page_cache_locked(struct page *page,
 831				      struct address_space *mapping,
 832				      pgoff_t offset, gfp_t gfp_mask,
 833				      void **shadowp)
 834{
 835	XA_STATE(xas, &mapping->i_pages, offset);
 836	int huge = PageHuge(page);
 
 837	int error;
 838	void *old;
 839
 840	VM_BUG_ON_PAGE(!PageLocked(page), page);
 841	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 842	mapping_set_update(&xas, mapping);
 843
 844	get_page(page);
 845	page->mapping = mapping;
 846	page->index = offset;
 847
 848	if (!huge) {
 849		error = mem_cgroup_charge(page, current->mm, gfp_mask);
 
 850		if (error)
 851			goto error;
 852	}
 853
 854	do {
 855		xas_lock_irq(&xas);
 856		old = xas_load(&xas);
 857		if (old && !xa_is_value(old))
 858			xas_set_err(&xas, -EEXIST);
 859		xas_store(&xas, page);
 860		if (xas_error(&xas))
 861			goto unlock;
 862
 863		if (xa_is_value(old)) {
 864			mapping->nrexceptional--;
 865			if (shadowp)
 866				*shadowp = old;
 867		}
 868		mapping->nrpages++;
 869
 870		/* hugetlb pages do not participate in page cache accounting */
 871		if (!huge)
 872			__inc_lruvec_page_state(page, NR_FILE_PAGES);
 873unlock:
 874		xas_unlock_irq(&xas);
 875	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
 876
 877	if (xas_error(&xas)) {
 878		error = xas_error(&xas);
 879		goto error;
 880	}
 881
 
 
 
 
 
 
 882	trace_mm_filemap_add_to_page_cache(page);
 883	return 0;
 884error:
 885	page->mapping = NULL;
 886	/* Leave page->index set: truncation relies upon it */
 
 
 
 887	put_page(page);
 888	return error;
 889}
 890ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 891
 892/**
 893 * add_to_page_cache_locked - add a locked page to the pagecache
 894 * @page:	page to add
 895 * @mapping:	the page's address_space
 896 * @offset:	page index
 897 * @gfp_mask:	page allocation mode
 898 *
 899 * This function is used to add a page to the pagecache. It must be locked.
 900 * This function does not add the page to the LRU.  The caller must do that.
 901 *
 902 * Return: %0 on success, negative error code otherwise.
 903 */
 904int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 905		pgoff_t offset, gfp_t gfp_mask)
 906{
 907	return __add_to_page_cache_locked(page, mapping, offset,
 908					  gfp_mask, NULL);
 909}
 910EXPORT_SYMBOL(add_to_page_cache_locked);
 911
 912int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 913				pgoff_t offset, gfp_t gfp_mask)
 914{
 915	void *shadow = NULL;
 916	int ret;
 917
 918	__SetPageLocked(page);
 919	ret = __add_to_page_cache_locked(page, mapping, offset,
 920					 gfp_mask, &shadow);
 921	if (unlikely(ret))
 922		__ClearPageLocked(page);
 923	else {
 924		/*
 925		 * The page might have been evicted from cache only
 926		 * recently, in which case it should be activated like
 927		 * any other repeatedly accessed page.
 928		 * The exception is pages getting rewritten; evicting other
 929		 * data from the working set, only to cache data that will
 930		 * get overwritten with something else, is a waste of memory.
 931		 */
 932		WARN_ON_ONCE(PageActive(page));
 933		if (!(gfp_mask & __GFP_WRITE) && shadow)
 934			workingset_refault(page, shadow);
 
 
 
 935		lru_cache_add(page);
 936	}
 937	return ret;
 938}
 939EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 940
 941#ifdef CONFIG_NUMA
 942struct page *__page_cache_alloc(gfp_t gfp)
 943{
 944	int n;
 945	struct page *page;
 946
 947	if (cpuset_do_page_mem_spread()) {
 948		unsigned int cpuset_mems_cookie;
 949		do {
 950			cpuset_mems_cookie = read_mems_allowed_begin();
 951			n = cpuset_mem_spread_node();
 952			page = __alloc_pages_node(n, gfp, 0);
 953		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 954
 955		return page;
 956	}
 957	return alloc_pages(gfp, 0);
 958}
 959EXPORT_SYMBOL(__page_cache_alloc);
 960#endif
 961
 962/*
 963 * In order to wait for pages to become available there must be
 964 * waitqueues associated with pages. By using a hash table of
 965 * waitqueues where the bucket discipline is to maintain all
 966 * waiters on the same queue and wake all when any of the pages
 967 * become available, and for the woken contexts to check to be
 968 * sure the appropriate page became available, this saves space
 969 * at a cost of "thundering herd" phenomena during rare hash
 970 * collisions.
 971 */
 972#define PAGE_WAIT_TABLE_BITS 8
 973#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 974static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 975
 976static wait_queue_head_t *page_waitqueue(struct page *page)
 977{
 978	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 979}
 980
 981void __init pagecache_init(void)
 982{
 983	int i;
 984
 985	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 986		init_waitqueue_head(&page_wait_table[i]);
 987
 988	page_writeback_init();
 989}
 990
 991/*
 992 * The page wait code treats the "wait->flags" somewhat unusually, because
 993 * we have multiple different kinds of waits, not just the usual "exclusive"
 994 * one.
 995 *
 996 * We have:
 997 *
 998 *  (a) no special bits set:
 999 *
1000 *	We're just waiting for the bit to be released, and when a waker
1001 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1002 *	and remove it from the wait queue.
1003 *
1004 *	Simple and straightforward.
1005 *
1006 *  (b) WQ_FLAG_EXCLUSIVE:
1007 *
1008 *	The waiter is waiting to get the lock, and only one waiter should
1009 *	be woken up to avoid any thundering herd behavior. We'll set the
1010 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1011 *
1012 *	This is the traditional exclusive wait.
1013 *
1014 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1015 *
1016 *	The waiter is waiting to get the bit, and additionally wants the
1017 *	lock to be transferred to it for fair lock behavior. If the lock
1018 *	cannot be taken, we stop walking the wait queue without waking
1019 *	the waiter.
1020 *
1021 *	This is the "fair lock handoff" case, and in addition to setting
1022 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1023 *	that it now has the lock.
1024 */
1025static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1026{
1027	unsigned int flags;
1028	struct wait_page_key *key = arg;
1029	struct wait_page_queue *wait_page
1030		= container_of(wait, struct wait_page_queue, wait);
1031
1032	if (!wake_page_match(wait_page, key))
 
 
 
 
1033		return 0;
1034
1035	/*
1036	 * If it's a lock handoff wait, we get the bit for it, and
1037	 * stop walking (and do not wake it up) if we can't.
1038	 */
1039	flags = wait->flags;
1040	if (flags & WQ_FLAG_EXCLUSIVE) {
1041		if (test_bit(key->bit_nr, &key->page->flags))
1042			return -1;
1043		if (flags & WQ_FLAG_CUSTOM) {
1044			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1045				return -1;
1046			flags |= WQ_FLAG_DONE;
1047		}
1048	}
1049
1050	/*
1051	 * We are holding the wait-queue lock, but the waiter that
1052	 * is waiting for this will be checking the flags without
1053	 * any locking.
1054	 *
1055	 * So update the flags atomically, and wake up the waiter
1056	 * afterwards to avoid any races. This store-release pairs
1057	 * with the load-acquire in wait_on_page_bit_common().
1058	 */
1059	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1060	wake_up_state(wait->private, mode);
1061
1062	/*
1063	 * Ok, we have successfully done what we're waiting for,
1064	 * and we can unconditionally remove the wait entry.
1065	 *
1066	 * Note that this pairs with the "finish_wait()" in the
1067	 * waiter, and has to be the absolute last thing we do.
1068	 * After this list_del_init(&wait->entry) the wait entry
1069	 * might be de-allocated and the process might even have
1070	 * exited.
1071	 */
1072	list_del_init_careful(&wait->entry);
1073	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1074}
1075
1076static void wake_up_page_bit(struct page *page, int bit_nr)
1077{
1078	wait_queue_head_t *q = page_waitqueue(page);
1079	struct wait_page_key key;
1080	unsigned long flags;
1081	wait_queue_entry_t bookmark;
1082
1083	key.page = page;
1084	key.bit_nr = bit_nr;
1085	key.page_match = 0;
1086
1087	bookmark.flags = 0;
1088	bookmark.private = NULL;
1089	bookmark.func = NULL;
1090	INIT_LIST_HEAD(&bookmark.entry);
1091
1092	spin_lock_irqsave(&q->lock, flags);
1093	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1094
1095	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1096		/*
1097		 * Take a breather from holding the lock,
1098		 * allow pages that finish wake up asynchronously
1099		 * to acquire the lock and remove themselves
1100		 * from wait queue
1101		 */
1102		spin_unlock_irqrestore(&q->lock, flags);
1103		cpu_relax();
1104		spin_lock_irqsave(&q->lock, flags);
1105		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1106	}
1107
1108	/*
1109	 * It is possible for other pages to have collided on the waitqueue
1110	 * hash, so in that case check for a page match. That prevents a long-
1111	 * term waiter
1112	 *
1113	 * It is still possible to miss a case here, when we woke page waiters
1114	 * and removed them from the waitqueue, but there are still other
1115	 * page waiters.
1116	 */
1117	if (!waitqueue_active(q) || !key.page_match) {
1118		ClearPageWaiters(page);
1119		/*
1120		 * It's possible to miss clearing Waiters here, when we woke
1121		 * our page waiters, but the hashed waitqueue has waiters for
1122		 * other pages on it.
1123		 *
1124		 * That's okay, it's a rare case. The next waker will clear it.
1125		 */
1126	}
1127	spin_unlock_irqrestore(&q->lock, flags);
1128}
1129
1130static void wake_up_page(struct page *page, int bit)
1131{
1132	if (!PageWaiters(page))
1133		return;
1134	wake_up_page_bit(page, bit);
1135}
1136
1137/*
1138 * A choice of three behaviors for wait_on_page_bit_common():
1139 */
1140enum behavior {
1141	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1142			 * __lock_page() waiting on then setting PG_locked.
1143			 */
1144	SHARED,		/* Hold ref to page and check the bit when woken, like
1145			 * wait_on_page_writeback() waiting on PG_writeback.
1146			 */
1147	DROP,		/* Drop ref to page before wait, no check when woken,
1148			 * like put_and_wait_on_page_locked() on PG_locked.
1149			 */
1150};
1151
1152/*
1153 * Attempt to check (or get) the page bit, and mark us done
1154 * if successful.
1155 */
1156static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1157					struct wait_queue_entry *wait)
1158{
1159	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1160		if (test_and_set_bit(bit_nr, &page->flags))
1161			return false;
1162	} else if (test_bit(bit_nr, &page->flags))
1163		return false;
1164
1165	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1166	return true;
1167}
1168
1169/* How many times do we accept lock stealing from under a waiter? */
1170int sysctl_page_lock_unfairness = 5;
1171
1172static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1173	struct page *page, int bit_nr, int state, enum behavior behavior)
1174{
1175	int unfairness = sysctl_page_lock_unfairness;
1176	struct wait_page_queue wait_page;
1177	wait_queue_entry_t *wait = &wait_page.wait;
1178	bool thrashing = false;
1179	bool delayacct = false;
1180	unsigned long pflags;
1181
1182	if (bit_nr == PG_locked &&
1183	    !PageUptodate(page) && PageWorkingset(page)) {
1184		if (!PageSwapBacked(page)) {
1185			delayacct_thrashing_start();
1186			delayacct = true;
1187		}
1188		psi_memstall_enter(&pflags);
1189		thrashing = true;
1190	}
1191
1192	init_wait(wait);
 
1193	wait->func = wake_page_function;
1194	wait_page.page = page;
1195	wait_page.bit_nr = bit_nr;
1196
1197repeat:
1198	wait->flags = 0;
1199	if (behavior == EXCLUSIVE) {
1200		wait->flags = WQ_FLAG_EXCLUSIVE;
1201		if (--unfairness < 0)
1202			wait->flags |= WQ_FLAG_CUSTOM;
1203	}
1204
1205	/*
1206	 * Do one last check whether we can get the
1207	 * page bit synchronously.
1208	 *
1209	 * Do the SetPageWaiters() marking before that
1210	 * to let any waker we _just_ missed know they
1211	 * need to wake us up (otherwise they'll never
1212	 * even go to the slow case that looks at the
1213	 * page queue), and add ourselves to the wait
1214	 * queue if we need to sleep.
1215	 *
1216	 * This part needs to be done under the queue
1217	 * lock to avoid races.
1218	 */
1219	spin_lock_irq(&q->lock);
1220	SetPageWaiters(page);
1221	if (!trylock_page_bit_common(page, bit_nr, wait))
1222		__add_wait_queue_entry_tail(q, wait);
1223	spin_unlock_irq(&q->lock);
1224
1225	/*
1226	 * From now on, all the logic will be based on
1227	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1228	 * see whether the page bit testing has already
1229	 * been done by the wake function.
1230	 *
1231	 * We can drop our reference to the page.
1232	 */
1233	if (behavior == DROP)
1234		put_page(page);
1235
1236	/*
1237	 * Note that until the "finish_wait()", or until
1238	 * we see the WQ_FLAG_WOKEN flag, we need to
1239	 * be very careful with the 'wait->flags', because
1240	 * we may race with a waker that sets them.
1241	 */
1242	for (;;) {
1243		unsigned int flags;
1244
1245		set_current_state(state);
1246
1247		/* Loop until we've been woken or interrupted */
1248		flags = smp_load_acquire(&wait->flags);
1249		if (!(flags & WQ_FLAG_WOKEN)) {
1250			if (signal_pending_state(state, current))
1251				break;
1252
 
1253			io_schedule();
1254			continue;
1255		}
1256
1257		/* If we were non-exclusive, we're done */
1258		if (behavior != EXCLUSIVE)
1259			break;
 
 
 
 
1260
1261		/* If the waker got the lock for us, we're done */
1262		if (flags & WQ_FLAG_DONE)
1263			break;
1264
1265		/*
1266		 * Otherwise, if we're getting the lock, we need to
1267		 * try to get it ourselves.
1268		 *
1269		 * And if that fails, we'll have to retry this all.
1270		 */
1271		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1272			goto repeat;
1273
1274		wait->flags |= WQ_FLAG_DONE;
1275		break;
1276	}
1277
1278	/*
1279	 * If a signal happened, this 'finish_wait()' may remove the last
1280	 * waiter from the wait-queues, but the PageWaiters bit will remain
1281	 * set. That's ok. The next wakeup will take care of it, and trying
1282	 * to do it here would be difficult and prone to races.
1283	 */
1284	finish_wait(q, wait);
1285
1286	if (thrashing) {
1287		if (delayacct)
1288			delayacct_thrashing_end();
1289		psi_memstall_leave(&pflags);
1290	}
1291
1292	/*
1293	 * NOTE! The wait->flags weren't stable until we've done the
1294	 * 'finish_wait()', and we could have exited the loop above due
1295	 * to a signal, and had a wakeup event happen after the signal
1296	 * test but before the 'finish_wait()'.
1297	 *
1298	 * So only after the finish_wait() can we reliably determine
1299	 * if we got woken up or not, so we can now figure out the final
1300	 * return value based on that state without races.
1301	 *
1302	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1303	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1304	 */
1305	if (behavior == EXCLUSIVE)
1306		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1307
1308	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1309}
1310
1311void wait_on_page_bit(struct page *page, int bit_nr)
1312{
1313	wait_queue_head_t *q = page_waitqueue(page);
1314	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1315}
1316EXPORT_SYMBOL(wait_on_page_bit);
1317
1318int wait_on_page_bit_killable(struct page *page, int bit_nr)
1319{
1320	wait_queue_head_t *q = page_waitqueue(page);
1321	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1322}
1323EXPORT_SYMBOL(wait_on_page_bit_killable);
1324
1325static int __wait_on_page_locked_async(struct page *page,
1326				       struct wait_page_queue *wait, bool set)
1327{
1328	struct wait_queue_head *q = page_waitqueue(page);
1329	int ret = 0;
1330
1331	wait->page = page;
1332	wait->bit_nr = PG_locked;
1333
1334	spin_lock_irq(&q->lock);
1335	__add_wait_queue_entry_tail(q, &wait->wait);
1336	SetPageWaiters(page);
1337	if (set)
1338		ret = !trylock_page(page);
1339	else
1340		ret = PageLocked(page);
1341	/*
1342	 * If we were succesful now, we know we're still on the
1343	 * waitqueue as we're still under the lock. This means it's
1344	 * safe to remove and return success, we know the callback
1345	 * isn't going to trigger.
1346	 */
1347	if (!ret)
1348		__remove_wait_queue(q, &wait->wait);
1349	else
1350		ret = -EIOCBQUEUED;
1351	spin_unlock_irq(&q->lock);
1352	return ret;
1353}
1354
1355static int wait_on_page_locked_async(struct page *page,
1356				     struct wait_page_queue *wait)
1357{
1358	if (!PageLocked(page))
1359		return 0;
1360	return __wait_on_page_locked_async(compound_head(page), wait, false);
1361}
1362
1363/**
1364 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1365 * @page: The page to wait for.
1366 *
1367 * The caller should hold a reference on @page.  They expect the page to
1368 * become unlocked relatively soon, but do not wish to hold up migration
1369 * (for example) by holding the reference while waiting for the page to
1370 * come unlocked.  After this function returns, the caller should not
1371 * dereference @page.
1372 */
1373void put_and_wait_on_page_locked(struct page *page)
1374{
1375	wait_queue_head_t *q;
1376
1377	page = compound_head(page);
1378	q = page_waitqueue(page);
1379	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1380}
1381
1382/**
1383 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1384 * @page: Page defining the wait queue of interest
1385 * @waiter: Waiter to add to the queue
1386 *
1387 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1388 */
1389void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1390{
1391	wait_queue_head_t *q = page_waitqueue(page);
1392	unsigned long flags;
1393
1394	spin_lock_irqsave(&q->lock, flags);
1395	__add_wait_queue_entry_tail(q, waiter);
1396	SetPageWaiters(page);
1397	spin_unlock_irqrestore(&q->lock, flags);
1398}
1399EXPORT_SYMBOL_GPL(add_page_wait_queue);
1400
1401#ifndef clear_bit_unlock_is_negative_byte
1402
1403/*
1404 * PG_waiters is the high bit in the same byte as PG_lock.
1405 *
1406 * On x86 (and on many other architectures), we can clear PG_lock and
1407 * test the sign bit at the same time. But if the architecture does
1408 * not support that special operation, we just do this all by hand
1409 * instead.
1410 *
1411 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1412 * being cleared, but a memory barrier should be unnecessary since it is
1413 * in the same byte as PG_locked.
1414 */
1415static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1416{
1417	clear_bit_unlock(nr, mem);
1418	/* smp_mb__after_atomic(); */
1419	return test_bit(PG_waiters, mem);
1420}
1421
1422#endif
1423
1424/**
1425 * unlock_page - unlock a locked page
1426 * @page: the page
1427 *
1428 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1429 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1430 * mechanism between PageLocked pages and PageWriteback pages is shared.
1431 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1432 *
1433 * Note that this depends on PG_waiters being the sign bit in the byte
1434 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1435 * clear the PG_locked bit and test PG_waiters at the same time fairly
1436 * portably (architectures that do LL/SC can test any bit, while x86 can
1437 * test the sign bit).
1438 */
1439void unlock_page(struct page *page)
1440{
1441	BUILD_BUG_ON(PG_waiters != 7);
1442	page = compound_head(page);
1443	VM_BUG_ON_PAGE(!PageLocked(page), page);
1444	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1445		wake_up_page_bit(page, PG_locked);
1446}
1447EXPORT_SYMBOL(unlock_page);
1448
1449/**
1450 * end_page_writeback - end writeback against a page
1451 * @page: the page
1452 */
1453void end_page_writeback(struct page *page)
1454{
1455	/*
1456	 * TestClearPageReclaim could be used here but it is an atomic
1457	 * operation and overkill in this particular case. Failing to
1458	 * shuffle a page marked for immediate reclaim is too mild to
1459	 * justify taking an atomic operation penalty at the end of
1460	 * ever page writeback.
1461	 */
1462	if (PageReclaim(page)) {
1463		ClearPageReclaim(page);
1464		rotate_reclaimable_page(page);
1465	}
1466
1467	if (!test_clear_page_writeback(page))
1468		BUG();
1469
1470	smp_mb__after_atomic();
1471	wake_up_page(page, PG_writeback);
1472}
1473EXPORT_SYMBOL(end_page_writeback);
1474
1475/*
1476 * After completing I/O on a page, call this routine to update the page
1477 * flags appropriately
1478 */
1479void page_endio(struct page *page, bool is_write, int err)
1480{
1481	if (!is_write) {
1482		if (!err) {
1483			SetPageUptodate(page);
1484		} else {
1485			ClearPageUptodate(page);
1486			SetPageError(page);
1487		}
1488		unlock_page(page);
1489	} else {
1490		if (err) {
1491			struct address_space *mapping;
1492
1493			SetPageError(page);
1494			mapping = page_mapping(page);
1495			if (mapping)
1496				mapping_set_error(mapping, err);
1497		}
1498		end_page_writeback(page);
1499	}
1500}
1501EXPORT_SYMBOL_GPL(page_endio);
1502
1503/**
1504 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1505 * @__page: the page to lock
1506 */
1507void __lock_page(struct page *__page)
1508{
1509	struct page *page = compound_head(__page);
1510	wait_queue_head_t *q = page_waitqueue(page);
1511	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1512				EXCLUSIVE);
1513}
1514EXPORT_SYMBOL(__lock_page);
1515
1516int __lock_page_killable(struct page *__page)
1517{
1518	struct page *page = compound_head(__page);
1519	wait_queue_head_t *q = page_waitqueue(page);
1520	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1521					EXCLUSIVE);
1522}
1523EXPORT_SYMBOL_GPL(__lock_page_killable);
1524
1525int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1526{
1527	return __wait_on_page_locked_async(page, wait, true);
1528}
1529
1530/*
1531 * Return values:
1532 * 1 - page is locked; mmap_lock is still held.
1533 * 0 - page is not locked.
1534 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1535 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1536 *     which case mmap_lock is still held.
1537 *
1538 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1539 * with the page locked and the mmap_lock unperturbed.
1540 */
1541int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1542			 unsigned int flags)
1543{
1544	if (fault_flag_allow_retry_first(flags)) {
1545		/*
1546		 * CAUTION! In this case, mmap_lock is not released
1547		 * even though return 0.
1548		 */
1549		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1550			return 0;
1551
1552		mmap_read_unlock(mm);
1553		if (flags & FAULT_FLAG_KILLABLE)
1554			wait_on_page_locked_killable(page);
1555		else
1556			wait_on_page_locked(page);
1557		return 0;
1558	} else {
1559		if (flags & FAULT_FLAG_KILLABLE) {
1560			int ret;
1561
1562			ret = __lock_page_killable(page);
1563			if (ret) {
1564				mmap_read_unlock(mm);
1565				return 0;
1566			}
1567		} else
1568			__lock_page(page);
1569		return 1;
1570	}
1571}
1572
1573/**
1574 * page_cache_next_miss() - Find the next gap in the page cache.
1575 * @mapping: Mapping.
1576 * @index: Index.
1577 * @max_scan: Maximum range to search.
1578 *
1579 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1580 * gap with the lowest index.
1581 *
1582 * This function may be called under the rcu_read_lock.  However, this will
1583 * not atomically search a snapshot of the cache at a single point in time.
1584 * For example, if a gap is created at index 5, then subsequently a gap is
1585 * created at index 10, page_cache_next_miss covering both indices may
1586 * return 10 if called under the rcu_read_lock.
1587 *
1588 * Return: The index of the gap if found, otherwise an index outside the
1589 * range specified (in which case 'return - index >= max_scan' will be true).
1590 * In the rare case of index wrap-around, 0 will be returned.
 
 
1591 */
1592pgoff_t page_cache_next_miss(struct address_space *mapping,
1593			     pgoff_t index, unsigned long max_scan)
1594{
1595	XA_STATE(xas, &mapping->i_pages, index);
1596
1597	while (max_scan--) {
1598		void *entry = xas_next(&xas);
1599		if (!entry || xa_is_value(entry))
 
 
1600			break;
1601		if (xas.xa_index == 0)
 
1602			break;
1603	}
1604
1605	return xas.xa_index;
1606}
1607EXPORT_SYMBOL(page_cache_next_miss);
1608
1609/**
1610 * page_cache_prev_miss() - Find the previous gap in the page cache.
1611 * @mapping: Mapping.
1612 * @index: Index.
1613 * @max_scan: Maximum range to search.
1614 *
1615 * Search the range [max(index - max_scan + 1, 0), index] for the
1616 * gap with the highest index.
1617 *
1618 * This function may be called under the rcu_read_lock.  However, this will
1619 * not atomically search a snapshot of the cache at a single point in time.
1620 * For example, if a gap is created at index 10, then subsequently a gap is
1621 * created at index 5, page_cache_prev_miss() covering both indices may
1622 * return 5 if called under the rcu_read_lock.
1623 *
1624 * Return: The index of the gap if found, otherwise an index outside the
1625 * range specified (in which case 'index - return >= max_scan' will be true).
1626 * In the rare case of wrap-around, ULONG_MAX will be returned.
 
 
 
1627 */
1628pgoff_t page_cache_prev_miss(struct address_space *mapping,
1629			     pgoff_t index, unsigned long max_scan)
1630{
1631	XA_STATE(xas, &mapping->i_pages, index);
1632
1633	while (max_scan--) {
1634		void *entry = xas_prev(&xas);
1635		if (!entry || xa_is_value(entry))
 
 
1636			break;
1637		if (xas.xa_index == ULONG_MAX)
 
1638			break;
1639	}
1640
1641	return xas.xa_index;
1642}
1643EXPORT_SYMBOL(page_cache_prev_miss);
1644
1645/**
1646 * find_get_entry - find and get a page cache entry
1647 * @mapping: the address_space to search
1648 * @offset: the page cache index
1649 *
1650 * Looks up the page cache slot at @mapping & @offset.  If there is a
1651 * page cache page, it is returned with an increased refcount.
1652 *
1653 * If the slot holds a shadow entry of a previously evicted page, or a
1654 * swap entry from shmem/tmpfs, it is returned.
1655 *
1656 * Return: the found page or shadow entry, %NULL if nothing is found.
1657 */
1658struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1659{
1660	XA_STATE(xas, &mapping->i_pages, offset);
1661	struct page *page;
1662
1663	rcu_read_lock();
1664repeat:
1665	xas_reset(&xas);
1666	page = xas_load(&xas);
1667	if (xas_retry(&xas, page))
1668		goto repeat;
1669	/*
1670	 * A shadow entry of a recently evicted page, or a swap entry from
1671	 * shmem/tmpfs.  Return it without attempting to raise page count.
1672	 */
1673	if (!page || xa_is_value(page))
1674		goto out;
 
 
 
 
 
 
 
 
 
 
1675
1676	if (!page_cache_get_speculative(page))
1677		goto repeat;
 
 
 
1678
1679	/*
1680	 * Has the page moved or been split?
1681	 * This is part of the lockless pagecache protocol. See
1682	 * include/linux/pagemap.h for details.
1683	 */
1684	if (unlikely(page != xas_reload(&xas))) {
1685		put_page(page);
1686		goto repeat;
 
1687	}
1688	page = find_subpage(page, offset);
1689out:
1690	rcu_read_unlock();
1691
1692	return page;
1693}
 
1694
1695/**
1696 * find_lock_entry - locate, pin and lock a page cache entry
1697 * @mapping: the address_space to search
1698 * @offset: the page cache index
1699 *
1700 * Looks up the page cache slot at @mapping & @offset.  If there is a
1701 * page cache page, it is returned locked and with an increased
1702 * refcount.
1703 *
1704 * If the slot holds a shadow entry of a previously evicted page, or a
1705 * swap entry from shmem/tmpfs, it is returned.
1706 *
 
 
1707 * find_lock_entry() may sleep.
1708 *
1709 * Return: the found page or shadow entry, %NULL if nothing is found.
1710 */
1711struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1712{
1713	struct page *page;
1714
1715repeat:
1716	page = find_get_entry(mapping, offset);
1717	if (page && !xa_is_value(page)) {
1718		lock_page(page);
1719		/* Has the page been truncated? */
1720		if (unlikely(page_mapping(page) != mapping)) {
1721			unlock_page(page);
1722			put_page(page);
1723			goto repeat;
1724		}
1725		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1726	}
1727	return page;
1728}
1729EXPORT_SYMBOL(find_lock_entry);
1730
1731/**
1732 * pagecache_get_page - Find and get a reference to a page.
1733 * @mapping: The address_space to search.
1734 * @index: The page index.
1735 * @fgp_flags: %FGP flags modify how the page is returned.
1736 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1737 *
1738 * Looks up the page cache entry at @mapping & @index.
1739 *
1740 * @fgp_flags can be zero or more of these flags:
1741 *
1742 * * %FGP_ACCESSED - The page will be marked accessed.
1743 * * %FGP_LOCK - The page is returned locked.
1744 * * %FGP_CREAT - If no page is present then a new page is allocated using
1745 *   @gfp_mask and added to the page cache and the VM's LRU list.
1746 *   The page is returned locked and with an increased refcount.
1747 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1748 *   page is already in cache.  If the page was allocated, unlock it before
1749 *   returning so the caller can do the same dance.
1750 * * %FGP_WRITE - The page will be written
1751 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1752 * * %FGP_NOWAIT - Don't get blocked by page lock
1753 *
1754 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1755 * if the %GFP flags specified for %FGP_CREAT are atomic.
 
 
 
 
 
 
 
 
 
1756 *
1757 * If there is a page cache page, it is returned with an increased refcount.
1758 *
1759 * Return: The found page or %NULL otherwise.
1760 */
1761struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1762		int fgp_flags, gfp_t gfp_mask)
1763{
1764	struct page *page;
1765
1766repeat:
1767	page = find_get_entry(mapping, index);
1768	if (xa_is_value(page))
1769		page = NULL;
1770	if (!page)
1771		goto no_page;
1772
1773	if (fgp_flags & FGP_LOCK) {
1774		if (fgp_flags & FGP_NOWAIT) {
1775			if (!trylock_page(page)) {
1776				put_page(page);
1777				return NULL;
1778			}
1779		} else {
1780			lock_page(page);
1781		}
1782
1783		/* Has the page been truncated? */
1784		if (unlikely(compound_head(page)->mapping != mapping)) {
1785			unlock_page(page);
1786			put_page(page);
1787			goto repeat;
1788		}
1789		VM_BUG_ON_PAGE(page->index != index, page);
1790	}
1791
1792	if (fgp_flags & FGP_ACCESSED)
1793		mark_page_accessed(page);
1794	else if (fgp_flags & FGP_WRITE) {
1795		/* Clear idle flag for buffer write */
1796		if (page_is_idle(page))
1797			clear_page_idle(page);
1798	}
1799
1800no_page:
1801	if (!page && (fgp_flags & FGP_CREAT)) {
1802		int err;
1803		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1804			gfp_mask |= __GFP_WRITE;
1805		if (fgp_flags & FGP_NOFS)
1806			gfp_mask &= ~__GFP_FS;
1807
1808		page = __page_cache_alloc(gfp_mask);
1809		if (!page)
1810			return NULL;
1811
1812		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1813			fgp_flags |= FGP_LOCK;
1814
1815		/* Init accessed so avoid atomic mark_page_accessed later */
1816		if (fgp_flags & FGP_ACCESSED)
1817			__SetPageReferenced(page);
1818
1819		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1820		if (unlikely(err)) {
1821			put_page(page);
1822			page = NULL;
1823			if (err == -EEXIST)
1824				goto repeat;
1825		}
1826
1827		/*
1828		 * add_to_page_cache_lru locks the page, and for mmap we expect
1829		 * an unlocked page.
1830		 */
1831		if (page && (fgp_flags & FGP_FOR_MMAP))
1832			unlock_page(page);
1833	}
1834
1835	return page;
1836}
1837EXPORT_SYMBOL(pagecache_get_page);
1838
1839/**
1840 * find_get_entries - gang pagecache lookup
1841 * @mapping:	The address_space to search
1842 * @start:	The starting page cache index
1843 * @nr_entries:	The maximum number of entries
1844 * @entries:	Where the resulting entries are placed
1845 * @indices:	The cache indices corresponding to the entries in @entries
1846 *
1847 * find_get_entries() will search for and return a group of up to
1848 * @nr_entries entries in the mapping.  The entries are placed at
1849 * @entries.  find_get_entries() takes a reference against any actual
1850 * pages it returns.
1851 *
1852 * The search returns a group of mapping-contiguous page cache entries
1853 * with ascending indexes.  There may be holes in the indices due to
1854 * not-present pages.
1855 *
1856 * Any shadow entries of evicted pages, or swap entries from
1857 * shmem/tmpfs, are included in the returned array.
1858 *
1859 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1860 * stops at that page: the caller is likely to have a better way to handle
1861 * the compound page as a whole, and then skip its extent, than repeatedly
1862 * calling find_get_entries() to return all its tails.
1863 *
1864 * Return: the number of pages and shadow entries which were found.
1865 */
1866unsigned find_get_entries(struct address_space *mapping,
1867			  pgoff_t start, unsigned int nr_entries,
1868			  struct page **entries, pgoff_t *indices)
1869{
1870	XA_STATE(xas, &mapping->i_pages, start);
1871	struct page *page;
1872	unsigned int ret = 0;
 
1873
1874	if (!nr_entries)
1875		return 0;
1876
1877	rcu_read_lock();
1878	xas_for_each(&xas, page, ULONG_MAX) {
1879		if (xas_retry(&xas, page))
 
 
 
1880			continue;
1881		/*
1882		 * A shadow entry of a recently evicted page, a swap
1883		 * entry from shmem/tmpfs or a DAX entry.  Return it
1884		 * without attempting to raise page count.
1885		 */
1886		if (xa_is_value(page))
 
 
 
 
1887			goto export;
 
1888
1889		if (!page_cache_get_speculative(page))
1890			goto retry;
 
1891
1892		/* Has the page moved or been split? */
1893		if (unlikely(page != xas_reload(&xas)))
1894			goto put_page;
 
 
1895
1896		/*
1897		 * Terminate early on finding a THP, to allow the caller to
1898		 * handle it all at once; but continue if this is hugetlbfs.
1899		 */
1900		if (PageTransHuge(page) && !PageHuge(page)) {
1901			page = find_subpage(page, xas.xa_index);
1902			nr_entries = ret + 1;
1903		}
1904export:
1905		indices[ret] = xas.xa_index;
1906		entries[ret] = page;
1907		if (++ret == nr_entries)
1908			break;
1909		continue;
1910put_page:
1911		put_page(page);
1912retry:
1913		xas_reset(&xas);
1914	}
1915	rcu_read_unlock();
1916	return ret;
1917}
1918
1919/**
1920 * find_get_pages_range - gang pagecache lookup
1921 * @mapping:	The address_space to search
1922 * @start:	The starting page index
1923 * @end:	The final page index (inclusive)
1924 * @nr_pages:	The maximum number of pages
1925 * @pages:	Where the resulting pages are placed
1926 *
1927 * find_get_pages_range() will search for and return a group of up to @nr_pages
1928 * pages in the mapping starting at index @start and up to index @end
1929 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1930 * a reference against the returned pages.
1931 *
1932 * The search returns a group of mapping-contiguous pages with ascending
1933 * indexes.  There may be holes in the indices due to not-present pages.
1934 * We also update @start to index the next page for the traversal.
1935 *
1936 * Return: the number of pages which were found. If this number is
1937 * smaller than @nr_pages, the end of specified range has been
1938 * reached.
1939 */
1940unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1941			      pgoff_t end, unsigned int nr_pages,
1942			      struct page **pages)
1943{
1944	XA_STATE(xas, &mapping->i_pages, *start);
1945	struct page *page;
1946	unsigned ret = 0;
1947
1948	if (unlikely(!nr_pages))
1949		return 0;
1950
1951	rcu_read_lock();
1952	xas_for_each(&xas, page, end) {
1953		if (xas_retry(&xas, page))
 
 
 
 
 
 
1954			continue;
1955		/* Skip over shadow, swap and DAX entries */
1956		if (xa_is_value(page))
 
 
 
 
 
 
 
 
 
1957			continue;
 
 
 
 
 
1958
1959		if (!page_cache_get_speculative(page))
1960			goto retry;
 
 
 
1961
1962		/* Has the page moved or been split? */
1963		if (unlikely(page != xas_reload(&xas)))
1964			goto put_page;
 
 
1965
1966		pages[ret] = find_subpage(page, xas.xa_index);
1967		if (++ret == nr_pages) {
1968			*start = xas.xa_index + 1;
1969			goto out;
1970		}
1971		continue;
1972put_page:
1973		put_page(page);
1974retry:
1975		xas_reset(&xas);
1976	}
1977
1978	/*
1979	 * We come here when there is no page beyond @end. We take care to not
1980	 * overflow the index @start as it confuses some of the callers. This
1981	 * breaks the iteration when there is a page at index -1 but that is
1982	 * already broken anyway.
1983	 */
1984	if (end == (pgoff_t)-1)
1985		*start = (pgoff_t)-1;
1986	else
1987		*start = end + 1;
1988out:
1989	rcu_read_unlock();
1990
1991	return ret;
1992}
1993
1994/**
1995 * find_get_pages_contig - gang contiguous pagecache lookup
1996 * @mapping:	The address_space to search
1997 * @index:	The starting page index
1998 * @nr_pages:	The maximum number of pages
1999 * @pages:	Where the resulting pages are placed
2000 *
2001 * find_get_pages_contig() works exactly like find_get_pages(), except
2002 * that the returned number of pages are guaranteed to be contiguous.
2003 *
2004 * Return: the number of pages which were found.
2005 */
2006unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2007			       unsigned int nr_pages, struct page **pages)
2008{
2009	XA_STATE(xas, &mapping->i_pages, index);
2010	struct page *page;
2011	unsigned int ret = 0;
2012
2013	if (unlikely(!nr_pages))
2014		return 0;
2015
2016	rcu_read_lock();
2017	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2018		if (xas_retry(&xas, page))
2019			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020		/*
2021		 * If the entry has been swapped out, we can stop looking.
2022		 * No current caller is looking for DAX entries.
 
2023		 */
2024		if (xa_is_value(page))
 
2025			break;
 
2026
2027		if (!page_cache_get_speculative(page))
2028			goto retry;
2029
2030		/* Has the page moved or been split? */
2031		if (unlikely(page != xas_reload(&xas)))
2032			goto put_page;
2033
2034		pages[ret] = find_subpage(page, xas.xa_index);
2035		if (++ret == nr_pages)
2036			break;
2037		continue;
2038put_page:
2039		put_page(page);
2040retry:
2041		xas_reset(&xas);
2042	}
2043	rcu_read_unlock();
2044	return ret;
2045}
2046EXPORT_SYMBOL(find_get_pages_contig);
2047
2048/**
2049 * find_get_pages_range_tag - find and return pages in given range matching @tag
2050 * @mapping:	the address_space to search
2051 * @index:	the starting page index
2052 * @end:	The final page index (inclusive)
2053 * @tag:	the tag index
2054 * @nr_pages:	the maximum number of pages
2055 * @pages:	where the resulting pages are placed
2056 *
2057 * Like find_get_pages, except we only return pages which are tagged with
2058 * @tag.   We update @index to index the next page for the traversal.
2059 *
2060 * Return: the number of pages which were found.
2061 */
2062unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2063			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2064			struct page **pages)
2065{
2066	XA_STATE(xas, &mapping->i_pages, *index);
2067	struct page *page;
2068	unsigned ret = 0;
2069
2070	if (unlikely(!nr_pages))
2071		return 0;
2072
2073	rcu_read_lock();
2074	xas_for_each_marked(&xas, page, end, tag) {
2075		if (xas_retry(&xas, page))
 
 
 
 
 
 
2076			continue;
2077		/*
2078		 * Shadow entries should never be tagged, but this iteration
2079		 * is lockless so there is a window for page reclaim to evict
2080		 * a page we saw tagged.  Skip over it.
2081		 */
2082		if (xa_is_value(page))
 
 
 
 
 
 
 
 
 
 
 
2083			continue;
 
2084
2085		if (!page_cache_get_speculative(page))
2086			goto retry;
 
2087
2088		/* Has the page moved or been split? */
2089		if (unlikely(page != xas_reload(&xas)))
2090			goto put_page;
 
 
2091
2092		pages[ret] = find_subpage(page, xas.xa_index);
 
 
 
 
 
 
2093		if (++ret == nr_pages) {
2094			*index = xas.xa_index + 1;
2095			goto out;
2096		}
2097		continue;
2098put_page:
2099		put_page(page);
2100retry:
2101		xas_reset(&xas);
2102	}
2103
2104	/*
2105	 * We come here when we got to @end. We take care to not overflow the
2106	 * index @index as it confuses some of the callers. This breaks the
2107	 * iteration when there is a page at index -1 but that is already
2108	 * broken anyway.
2109	 */
2110	if (end == (pgoff_t)-1)
2111		*index = (pgoff_t)-1;
2112	else
2113		*index = end + 1;
2114out:
2115	rcu_read_unlock();
2116
2117	return ret;
2118}
2119EXPORT_SYMBOL(find_get_pages_range_tag);
2120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2121/*
2122 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2123 * a _large_ part of the i/o request. Imagine the worst scenario:
2124 *
2125 *      ---R__________________________________________B__________
2126 *         ^ reading here                             ^ bad block(assume 4k)
2127 *
2128 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2129 * => failing the whole request => read(R) => read(R+1) =>
2130 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2131 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2132 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2133 *
2134 * It is going insane. Fix it by quickly scaling down the readahead size.
2135 */
2136static void shrink_readahead_size_eio(struct file_ra_state *ra)
 
2137{
2138	ra->ra_pages /= 4;
2139}
2140
2141/**
2142 * generic_file_buffered_read - generic file read routine
2143 * @iocb:	the iocb to read
2144 * @iter:	data destination
2145 * @written:	already copied
2146 *
2147 * This is a generic file read routine, and uses the
2148 * mapping->a_ops->readpage() function for the actual low-level stuff.
2149 *
2150 * This is really ugly. But the goto's actually try to clarify some
2151 * of the logic when it comes to error handling etc.
2152 *
2153 * Return:
2154 * * total number of bytes copied, including those the were already @written
2155 * * negative error code if nothing was copied
2156 */
2157ssize_t generic_file_buffered_read(struct kiocb *iocb,
2158		struct iov_iter *iter, ssize_t written)
2159{
2160	struct file *filp = iocb->ki_filp;
2161	struct address_space *mapping = filp->f_mapping;
2162	struct inode *inode = mapping->host;
2163	struct file_ra_state *ra = &filp->f_ra;
2164	loff_t *ppos = &iocb->ki_pos;
2165	pgoff_t index;
2166	pgoff_t last_index;
2167	pgoff_t prev_index;
2168	unsigned long offset;      /* offset into pagecache page */
2169	unsigned int prev_offset;
2170	int error = 0;
2171
2172	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2173		return 0;
2174	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2175
2176	index = *ppos >> PAGE_SHIFT;
2177	prev_index = ra->prev_pos >> PAGE_SHIFT;
2178	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2179	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2180	offset = *ppos & ~PAGE_MASK;
2181
2182	for (;;) {
2183		struct page *page;
2184		pgoff_t end_index;
2185		loff_t isize;
2186		unsigned long nr, ret;
2187
2188		cond_resched();
2189find_page:
2190		if (fatal_signal_pending(current)) {
2191			error = -EINTR;
2192			goto out;
2193		}
2194
2195		page = find_get_page(mapping, index);
2196		if (!page) {
2197			if (iocb->ki_flags & IOCB_NOIO)
2198				goto would_block;
2199			page_cache_sync_readahead(mapping,
2200					ra, filp,
2201					index, last_index - index);
2202			page = find_get_page(mapping, index);
2203			if (unlikely(page == NULL))
2204				goto no_cached_page;
2205		}
2206		if (PageReadahead(page)) {
2207			if (iocb->ki_flags & IOCB_NOIO) {
2208				put_page(page);
2209				goto out;
2210			}
2211			page_cache_async_readahead(mapping,
2212					ra, filp, page,
2213					index, last_index - index);
2214		}
2215		if (!PageUptodate(page)) {
 
 
 
 
 
2216			/*
2217			 * See comment in do_read_cache_page on why
2218			 * wait_on_page_locked is used to avoid unnecessarily
2219			 * serialisations and why it's safe.
2220			 */
2221			if (iocb->ki_flags & IOCB_WAITQ) {
2222				if (written) {
2223					put_page(page);
2224					goto out;
2225				}
2226				error = wait_on_page_locked_async(page,
2227								iocb->ki_waitq);
2228			} else {
2229				if (iocb->ki_flags & IOCB_NOWAIT) {
2230					put_page(page);
2231					goto would_block;
2232				}
2233				error = wait_on_page_locked_killable(page);
2234			}
2235			if (unlikely(error))
2236				goto readpage_error;
2237			if (PageUptodate(page))
2238				goto page_ok;
2239
2240			if (inode->i_blkbits == PAGE_SHIFT ||
2241					!mapping->a_ops->is_partially_uptodate)
2242				goto page_not_up_to_date;
2243			/* pipes can't handle partially uptodate pages */
2244			if (unlikely(iov_iter_is_pipe(iter)))
2245				goto page_not_up_to_date;
2246			if (!trylock_page(page))
2247				goto page_not_up_to_date;
2248			/* Did it get truncated before we got the lock? */
2249			if (!page->mapping)
2250				goto page_not_up_to_date_locked;
2251			if (!mapping->a_ops->is_partially_uptodate(page,
2252							offset, iter->count))
2253				goto page_not_up_to_date_locked;
2254			unlock_page(page);
2255		}
2256page_ok:
2257		/*
2258		 * i_size must be checked after we know the page is Uptodate.
2259		 *
2260		 * Checking i_size after the check allows us to calculate
2261		 * the correct value for "nr", which means the zero-filled
2262		 * part of the page is not copied back to userspace (unless
2263		 * another truncate extends the file - this is desired though).
2264		 */
2265
2266		isize = i_size_read(inode);
2267		end_index = (isize - 1) >> PAGE_SHIFT;
2268		if (unlikely(!isize || index > end_index)) {
2269			put_page(page);
2270			goto out;
2271		}
2272
2273		/* nr is the maximum number of bytes to copy from this page */
2274		nr = PAGE_SIZE;
2275		if (index == end_index) {
2276			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2277			if (nr <= offset) {
2278				put_page(page);
2279				goto out;
2280			}
2281		}
2282		nr = nr - offset;
2283
2284		/* If users can be writing to this page using arbitrary
2285		 * virtual addresses, take care about potential aliasing
2286		 * before reading the page on the kernel side.
2287		 */
2288		if (mapping_writably_mapped(mapping))
2289			flush_dcache_page(page);
2290
2291		/*
2292		 * When a sequential read accesses a page several times,
2293		 * only mark it as accessed the first time.
2294		 */
2295		if (prev_index != index || offset != prev_offset)
2296			mark_page_accessed(page);
2297		prev_index = index;
2298
2299		/*
2300		 * Ok, we have the page, and it's up-to-date, so
2301		 * now we can copy it to user space...
2302		 */
2303
2304		ret = copy_page_to_iter(page, offset, nr, iter);
2305		offset += ret;
2306		index += offset >> PAGE_SHIFT;
2307		offset &= ~PAGE_MASK;
2308		prev_offset = offset;
2309
2310		put_page(page);
2311		written += ret;
2312		if (!iov_iter_count(iter))
2313			goto out;
2314		if (ret < nr) {
2315			error = -EFAULT;
2316			goto out;
2317		}
2318		continue;
2319
2320page_not_up_to_date:
2321		/* Get exclusive access to the page ... */
2322		if (iocb->ki_flags & IOCB_WAITQ)
2323			error = lock_page_async(page, iocb->ki_waitq);
2324		else
2325			error = lock_page_killable(page);
2326		if (unlikely(error))
2327			goto readpage_error;
2328
2329page_not_up_to_date_locked:
2330		/* Did it get truncated before we got the lock? */
2331		if (!page->mapping) {
2332			unlock_page(page);
2333			put_page(page);
2334			continue;
2335		}
2336
2337		/* Did somebody else fill it already? */
2338		if (PageUptodate(page)) {
2339			unlock_page(page);
2340			goto page_ok;
2341		}
2342
2343readpage:
2344		if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2345			unlock_page(page);
2346			put_page(page);
2347			goto would_block;
2348		}
2349		/*
2350		 * A previous I/O error may have been due to temporary
2351		 * failures, eg. multipath errors.
2352		 * PG_error will be set again if readpage fails.
2353		 */
2354		ClearPageError(page);
2355		/* Start the actual read. The read will unlock the page. */
2356		error = mapping->a_ops->readpage(filp, page);
2357
2358		if (unlikely(error)) {
2359			if (error == AOP_TRUNCATED_PAGE) {
2360				put_page(page);
2361				error = 0;
2362				goto find_page;
2363			}
2364			goto readpage_error;
2365		}
2366
2367		if (!PageUptodate(page)) {
2368			if (iocb->ki_flags & IOCB_WAITQ)
2369				error = lock_page_async(page, iocb->ki_waitq);
2370			else
2371				error = lock_page_killable(page);
2372
2373			if (unlikely(error))
2374				goto readpage_error;
2375			if (!PageUptodate(page)) {
2376				if (page->mapping == NULL) {
2377					/*
2378					 * invalidate_mapping_pages got it
2379					 */
2380					unlock_page(page);
2381					put_page(page);
2382					goto find_page;
2383				}
2384				unlock_page(page);
2385				shrink_readahead_size_eio(ra);
2386				error = -EIO;
2387				goto readpage_error;
2388			}
2389			unlock_page(page);
2390		}
2391
2392		goto page_ok;
2393
2394readpage_error:
2395		/* UHHUH! A synchronous read error occurred. Report it */
2396		put_page(page);
2397		goto out;
2398
2399no_cached_page:
2400		/*
2401		 * Ok, it wasn't cached, so we need to create a new
2402		 * page..
2403		 */
2404		page = page_cache_alloc(mapping);
2405		if (!page) {
2406			error = -ENOMEM;
2407			goto out;
2408		}
2409		error = add_to_page_cache_lru(page, mapping, index,
2410				mapping_gfp_constraint(mapping, GFP_KERNEL));
2411		if (error) {
2412			put_page(page);
2413			if (error == -EEXIST) {
2414				error = 0;
2415				goto find_page;
2416			}
2417			goto out;
2418		}
2419		goto readpage;
2420	}
2421
2422would_block:
2423	error = -EAGAIN;
2424out:
2425	ra->prev_pos = prev_index;
2426	ra->prev_pos <<= PAGE_SHIFT;
2427	ra->prev_pos |= prev_offset;
2428
2429	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2430	file_accessed(filp);
2431	return written ? written : error;
2432}
2433EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2434
2435/**
2436 * generic_file_read_iter - generic filesystem read routine
2437 * @iocb:	kernel I/O control block
2438 * @iter:	destination for the data read
2439 *
2440 * This is the "read_iter()" routine for all filesystems
2441 * that can use the page cache directly.
2442 *
2443 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2444 * be returned when no data can be read without waiting for I/O requests
2445 * to complete; it doesn't prevent readahead.
2446 *
2447 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2448 * requests shall be made for the read or for readahead.  When no data
2449 * can be read, -EAGAIN shall be returned.  When readahead would be
2450 * triggered, a partial, possibly empty read shall be returned.
2451 *
2452 * Return:
2453 * * number of bytes copied, even for partial reads
2454 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2455 */
2456ssize_t
2457generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2458{
2459	size_t count = iov_iter_count(iter);
2460	ssize_t retval = 0;
2461
2462	if (!count)
2463		goto out; /* skip atime */
2464
2465	if (iocb->ki_flags & IOCB_DIRECT) {
2466		struct file *file = iocb->ki_filp;
2467		struct address_space *mapping = file->f_mapping;
2468		struct inode *inode = mapping->host;
2469		loff_t size;
2470
2471		size = i_size_read(inode);
2472		if (iocb->ki_flags & IOCB_NOWAIT) {
2473			if (filemap_range_has_page(mapping, iocb->ki_pos,
2474						   iocb->ki_pos + count - 1))
2475				return -EAGAIN;
2476		} else {
2477			retval = filemap_write_and_wait_range(mapping,
2478						iocb->ki_pos,
2479					        iocb->ki_pos + count - 1);
2480			if (retval < 0)
2481				goto out;
2482		}
2483
2484		file_accessed(file);
2485
2486		retval = mapping->a_ops->direct_IO(iocb, iter);
2487		if (retval >= 0) {
2488			iocb->ki_pos += retval;
2489			count -= retval;
2490		}
2491		iov_iter_revert(iter, count - iov_iter_count(iter));
2492
2493		/*
2494		 * Btrfs can have a short DIO read if we encounter
2495		 * compressed extents, so if there was an error, or if
2496		 * we've already read everything we wanted to, or if
2497		 * there was a short read because we hit EOF, go ahead
2498		 * and return.  Otherwise fallthrough to buffered io for
2499		 * the rest of the read.  Buffered reads will not work for
2500		 * DAX files, so don't bother trying.
2501		 */
2502		if (retval < 0 || !count || iocb->ki_pos >= size ||
2503		    IS_DAX(inode))
2504			goto out;
2505	}
2506
2507	retval = generic_file_buffered_read(iocb, iter, retval);
2508out:
2509	return retval;
2510}
2511EXPORT_SYMBOL(generic_file_read_iter);
2512
2513#ifdef CONFIG_MMU
2514#define MMAP_LOTSAMISS  (100)
2515/*
2516 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2517 * @vmf - the vm_fault for this fault.
2518 * @page - the page to lock.
2519 * @fpin - the pointer to the file we may pin (or is already pinned).
2520 *
2521 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2522 * It differs in that it actually returns the page locked if it returns 1 and 0
2523 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2524 * will point to the pinned file and needs to be fput()'ed at a later point.
2525 */
2526static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2527				     struct file **fpin)
2528{
2529	if (trylock_page(page))
2530		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531
2532	/*
2533	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2534	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2535	 * is supposed to work. We have way too many special cases..
2536	 */
2537	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2538		return 0;
2539
2540	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2541	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2542		if (__lock_page_killable(page)) {
2543			/*
2544			 * We didn't have the right flags to drop the mmap_lock,
2545			 * but all fault_handlers only check for fatal signals
2546			 * if we return VM_FAULT_RETRY, so we need to drop the
2547			 * mmap_lock here and return 0 if we don't have a fpin.
2548			 */
2549			if (*fpin == NULL)
2550				mmap_read_unlock(vmf->vma->vm_mm);
2551			return 0;
2552		}
2553	} else
2554		__lock_page(page);
2555	return 1;
2556}
2557
 
2558
2559/*
2560 * Synchronous readahead happens when we don't even find a page in the page
2561 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2562 * to drop the mmap sem we return the file that was pinned in order for us to do
2563 * that.  If we didn't pin a file then we return NULL.  The file that is
2564 * returned needs to be fput()'ed when we're done with it.
2565 */
2566static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
2567{
2568	struct file *file = vmf->vma->vm_file;
2569	struct file_ra_state *ra = &file->f_ra;
2570	struct address_space *mapping = file->f_mapping;
2571	struct file *fpin = NULL;
2572	pgoff_t offset = vmf->pgoff;
2573	unsigned int mmap_miss;
2574
2575	/* If we don't want any read-ahead, don't bother */
2576	if (vmf->vma->vm_flags & VM_RAND_READ)
2577		return fpin;
2578	if (!ra->ra_pages)
2579		return fpin;
2580
2581	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2582		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2583		page_cache_sync_readahead(mapping, ra, file, offset,
2584					  ra->ra_pages);
2585		return fpin;
2586	}
2587
2588	/* Avoid banging the cache line if not needed */
2589	mmap_miss = READ_ONCE(ra->mmap_miss);
2590	if (mmap_miss < MMAP_LOTSAMISS * 10)
2591		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2592
2593	/*
2594	 * Do we miss much more than hit in this file? If so,
2595	 * stop bothering with read-ahead. It will only hurt.
2596	 */
2597	if (mmap_miss > MMAP_LOTSAMISS)
2598		return fpin;
2599
2600	/*
2601	 * mmap read-around
2602	 */
2603	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2604	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2605	ra->size = ra->ra_pages;
2606	ra->async_size = ra->ra_pages / 4;
2607	ra_submit(ra, mapping, file);
2608	return fpin;
2609}
2610
2611/*
2612 * Asynchronous readahead happens when we find the page and PG_readahead,
2613 * so we want to possibly extend the readahead further.  We return the file that
2614 * was pinned if we have to drop the mmap_lock in order to do IO.
2615 */
2616static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2617					    struct page *page)
 
 
 
2618{
2619	struct file *file = vmf->vma->vm_file;
2620	struct file_ra_state *ra = &file->f_ra;
2621	struct address_space *mapping = file->f_mapping;
2622	struct file *fpin = NULL;
2623	unsigned int mmap_miss;
2624	pgoff_t offset = vmf->pgoff;
2625
2626	/* If we don't want any read-ahead, don't bother */
2627	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2628		return fpin;
2629	mmap_miss = READ_ONCE(ra->mmap_miss);
2630	if (mmap_miss)
2631		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2632	if (PageReadahead(page)) {
2633		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2634		page_cache_async_readahead(mapping, ra, file,
2635					   page, offset, ra->ra_pages);
2636	}
2637	return fpin;
2638}
2639
2640/**
2641 * filemap_fault - read in file data for page fault handling
2642 * @vmf:	struct vm_fault containing details of the fault
2643 *
2644 * filemap_fault() is invoked via the vma operations vector for a
2645 * mapped memory region to read in file data during a page fault.
2646 *
2647 * The goto's are kind of ugly, but this streamlines the normal case of having
2648 * it in the page cache, and handles the special cases reasonably without
2649 * having a lot of duplicated code.
2650 *
2651 * vma->vm_mm->mmap_lock must be held on entry.
2652 *
2653 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2654 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
 
 
2655 *
2656 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2657 * has not been released.
2658 *
2659 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2660 *
2661 * Return: bitwise-OR of %VM_FAULT_ codes.
2662 */
2663vm_fault_t filemap_fault(struct vm_fault *vmf)
2664{
2665	int error;
2666	struct file *file = vmf->vma->vm_file;
2667	struct file *fpin = NULL;
2668	struct address_space *mapping = file->f_mapping;
2669	struct file_ra_state *ra = &file->f_ra;
2670	struct inode *inode = mapping->host;
2671	pgoff_t offset = vmf->pgoff;
2672	pgoff_t max_off;
2673	struct page *page;
2674	vm_fault_t ret = 0;
2675
2676	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2677	if (unlikely(offset >= max_off))
2678		return VM_FAULT_SIGBUS;
2679
2680	/*
2681	 * Do we have something in the page cache already?
2682	 */
2683	page = find_get_page(mapping, offset);
2684	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2685		/*
2686		 * We found the page, so try async readahead before
2687		 * waiting for the lock.
2688		 */
2689		fpin = do_async_mmap_readahead(vmf, page);
2690	} else if (!page) {
2691		/* No page in the page cache at all */
 
2692		count_vm_event(PGMAJFAULT);
2693		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2694		ret = VM_FAULT_MAJOR;
2695		fpin = do_sync_mmap_readahead(vmf);
2696retry_find:
2697		page = pagecache_get_page(mapping, offset,
2698					  FGP_CREAT|FGP_FOR_MMAP,
2699					  vmf->gfp_mask);
2700		if (!page) {
2701			if (fpin)
2702				goto out_retry;
2703			return VM_FAULT_OOM;
2704		}
2705	}
2706
2707	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2708		goto out_retry;
 
 
2709
2710	/* Did it get truncated? */
2711	if (unlikely(compound_head(page)->mapping != mapping)) {
2712		unlock_page(page);
2713		put_page(page);
2714		goto retry_find;
2715	}
2716	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2717
2718	/*
2719	 * We have a locked page in the page cache, now we need to check
2720	 * that it's up-to-date. If not, it is going to be due to an error.
2721	 */
2722	if (unlikely(!PageUptodate(page)))
2723		goto page_not_uptodate;
2724
2725	/*
2726	 * We've made it this far and we had to drop our mmap_lock, now is the
2727	 * time to return to the upper layer and have it re-find the vma and
2728	 * redo the fault.
2729	 */
2730	if (fpin) {
2731		unlock_page(page);
2732		goto out_retry;
2733	}
2734
2735	/*
2736	 * Found the page and have a reference on it.
2737	 * We must recheck i_size under page lock.
2738	 */
2739	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2740	if (unlikely(offset >= max_off)) {
2741		unlock_page(page);
2742		put_page(page);
2743		return VM_FAULT_SIGBUS;
2744	}
2745
2746	vmf->page = page;
2747	return ret | VM_FAULT_LOCKED;
2748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2749page_not_uptodate:
2750	/*
2751	 * Umm, take care of errors if the page isn't up-to-date.
2752	 * Try to re-read it _once_. We do this synchronously,
2753	 * because there really aren't any performance issues here
2754	 * and we need to check for errors.
2755	 */
2756	ClearPageError(page);
2757	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2758	error = mapping->a_ops->readpage(file, page);
2759	if (!error) {
2760		wait_on_page_locked(page);
2761		if (!PageUptodate(page))
2762			error = -EIO;
2763	}
2764	if (fpin)
2765		goto out_retry;
2766	put_page(page);
2767
2768	if (!error || error == AOP_TRUNCATED_PAGE)
2769		goto retry_find;
2770
2771	shrink_readahead_size_eio(ra);
 
2772	return VM_FAULT_SIGBUS;
2773
2774out_retry:
2775	/*
2776	 * We dropped the mmap_lock, we need to return to the fault handler to
2777	 * re-find the vma and come back and find our hopefully still populated
2778	 * page.
2779	 */
2780	if (page)
2781		put_page(page);
2782	if (fpin)
2783		fput(fpin);
2784	return ret | VM_FAULT_RETRY;
2785}
2786EXPORT_SYMBOL(filemap_fault);
2787
2788void filemap_map_pages(struct vm_fault *vmf,
2789		pgoff_t start_pgoff, pgoff_t end_pgoff)
2790{
 
 
2791	struct file *file = vmf->vma->vm_file;
2792	struct address_space *mapping = file->f_mapping;
2793	pgoff_t last_pgoff = start_pgoff;
2794	unsigned long max_idx;
2795	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2796	struct page *page;
2797	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2798
2799	rcu_read_lock();
2800	xas_for_each(&xas, page, end_pgoff) {
2801		if (xas_retry(&xas, page))
2802			continue;
2803		if (xa_is_value(page))
 
 
 
 
 
 
 
 
2804			goto next;
 
 
 
 
 
2805
2806		/*
2807		 * Check for a locked page first, as a speculative
2808		 * reference may adversely influence page migration.
2809		 */
2810		if (PageLocked(page))
2811			goto next;
2812		if (!page_cache_get_speculative(page))
2813			goto next;
2814
2815		/* Has the page moved or been split? */
2816		if (unlikely(page != xas_reload(&xas)))
2817			goto skip;
2818		page = find_subpage(page, xas.xa_index);
 
2819
2820		if (!PageUptodate(page) ||
2821				PageReadahead(page) ||
2822				PageHWPoison(page))
2823			goto skip;
2824		if (!trylock_page(page))
2825			goto skip;
2826
2827		if (page->mapping != mapping || !PageUptodate(page))
2828			goto unlock;
2829
2830		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2831		if (page->index >= max_idx)
2832			goto unlock;
2833
2834		if (mmap_miss > 0)
2835			mmap_miss--;
2836
2837		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2838		if (vmf->pte)
2839			vmf->pte += xas.xa_index - last_pgoff;
2840		last_pgoff = xas.xa_index;
2841		if (alloc_set_pte(vmf, page))
2842			goto unlock;
2843		unlock_page(page);
2844		goto next;
2845unlock:
2846		unlock_page(page);
2847skip:
2848		put_page(page);
2849next:
2850		/* Huge page is mapped? No need to proceed. */
2851		if (pmd_trans_huge(*vmf->pmd))
2852			break;
 
 
2853	}
2854	rcu_read_unlock();
2855	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2856}
2857EXPORT_SYMBOL(filemap_map_pages);
2858
2859vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2860{
2861	struct page *page = vmf->page;
2862	struct inode *inode = file_inode(vmf->vma->vm_file);
2863	vm_fault_t ret = VM_FAULT_LOCKED;
2864
2865	sb_start_pagefault(inode->i_sb);
2866	file_update_time(vmf->vma->vm_file);
2867	lock_page(page);
2868	if (page->mapping != inode->i_mapping) {
2869		unlock_page(page);
2870		ret = VM_FAULT_NOPAGE;
2871		goto out;
2872	}
2873	/*
2874	 * We mark the page dirty already here so that when freeze is in
2875	 * progress, we are guaranteed that writeback during freezing will
2876	 * see the dirty page and writeprotect it again.
2877	 */
2878	set_page_dirty(page);
2879	wait_for_stable_page(page);
2880out:
2881	sb_end_pagefault(inode->i_sb);
2882	return ret;
2883}
2884
2885const struct vm_operations_struct generic_file_vm_ops = {
2886	.fault		= filemap_fault,
2887	.map_pages	= filemap_map_pages,
2888	.page_mkwrite	= filemap_page_mkwrite,
2889};
2890
2891/* This is used for a general mmap of a disk file */
2892
2893int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2894{
2895	struct address_space *mapping = file->f_mapping;
2896
2897	if (!mapping->a_ops->readpage)
2898		return -ENOEXEC;
2899	file_accessed(file);
2900	vma->vm_ops = &generic_file_vm_ops;
2901	return 0;
2902}
2903
2904/*
2905 * This is for filesystems which do not implement ->writepage.
2906 */
2907int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2908{
2909	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2910		return -EINVAL;
2911	return generic_file_mmap(file, vma);
2912}
2913#else
2914vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2915{
2916	return VM_FAULT_SIGBUS;
2917}
2918int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2919{
2920	return -ENOSYS;
2921}
2922int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2923{
2924	return -ENOSYS;
2925}
2926#endif /* CONFIG_MMU */
2927
2928EXPORT_SYMBOL(filemap_page_mkwrite);
2929EXPORT_SYMBOL(generic_file_mmap);
2930EXPORT_SYMBOL(generic_file_readonly_mmap);
2931
2932static struct page *wait_on_page_read(struct page *page)
2933{
2934	if (!IS_ERR(page)) {
2935		wait_on_page_locked(page);
2936		if (!PageUptodate(page)) {
2937			put_page(page);
2938			page = ERR_PTR(-EIO);
2939		}
2940	}
2941	return page;
2942}
2943
2944static struct page *do_read_cache_page(struct address_space *mapping,
2945				pgoff_t index,
2946				int (*filler)(void *, struct page *),
2947				void *data,
2948				gfp_t gfp)
2949{
2950	struct page *page;
2951	int err;
2952repeat:
2953	page = find_get_page(mapping, index);
2954	if (!page) {
2955		page = __page_cache_alloc(gfp);
2956		if (!page)
2957			return ERR_PTR(-ENOMEM);
2958		err = add_to_page_cache_lru(page, mapping, index, gfp);
2959		if (unlikely(err)) {
2960			put_page(page);
2961			if (err == -EEXIST)
2962				goto repeat;
2963			/* Presumably ENOMEM for xarray node */
2964			return ERR_PTR(err);
2965		}
2966
2967filler:
2968		if (filler)
2969			err = filler(data, page);
2970		else
2971			err = mapping->a_ops->readpage(data, page);
2972
2973		if (err < 0) {
2974			put_page(page);
2975			return ERR_PTR(err);
2976		}
2977
2978		page = wait_on_page_read(page);
2979		if (IS_ERR(page))
2980			return page;
2981		goto out;
2982	}
2983	if (PageUptodate(page))
2984		goto out;
2985
2986	/*
2987	 * Page is not up to date and may be locked due one of the following
2988	 * case a: Page is being filled and the page lock is held
2989	 * case b: Read/write error clearing the page uptodate status
2990	 * case c: Truncation in progress (page locked)
2991	 * case d: Reclaim in progress
2992	 *
2993	 * Case a, the page will be up to date when the page is unlocked.
2994	 *    There is no need to serialise on the page lock here as the page
2995	 *    is pinned so the lock gives no additional protection. Even if the
2996	 *    page is truncated, the data is still valid if PageUptodate as
2997	 *    it's a race vs truncate race.
2998	 * Case b, the page will not be up to date
2999	 * Case c, the page may be truncated but in itself, the data may still
3000	 *    be valid after IO completes as it's a read vs truncate race. The
3001	 *    operation must restart if the page is not uptodate on unlock but
3002	 *    otherwise serialising on page lock to stabilise the mapping gives
3003	 *    no additional guarantees to the caller as the page lock is
3004	 *    released before return.
3005	 * Case d, similar to truncation. If reclaim holds the page lock, it
3006	 *    will be a race with remove_mapping that determines if the mapping
3007	 *    is valid on unlock but otherwise the data is valid and there is
3008	 *    no need to serialise with page lock.
3009	 *
3010	 * As the page lock gives no additional guarantee, we optimistically
3011	 * wait on the page to be unlocked and check if it's up to date and
3012	 * use the page if it is. Otherwise, the page lock is required to
3013	 * distinguish between the different cases. The motivation is that we
3014	 * avoid spurious serialisations and wakeups when multiple processes
3015	 * wait on the same page for IO to complete.
3016	 */
3017	wait_on_page_locked(page);
3018	if (PageUptodate(page))
3019		goto out;
3020
3021	/* Distinguish between all the cases under the safety of the lock */
3022	lock_page(page);
3023
3024	/* Case c or d, restart the operation */
3025	if (!page->mapping) {
3026		unlock_page(page);
3027		put_page(page);
3028		goto repeat;
3029	}
3030
3031	/* Someone else locked and filled the page in a very small window */
3032	if (PageUptodate(page)) {
3033		unlock_page(page);
3034		goto out;
3035	}
3036
3037	/*
3038	 * A previous I/O error may have been due to temporary
3039	 * failures.
3040	 * Clear page error before actual read, PG_error will be
3041	 * set again if read page fails.
3042	 */
3043	ClearPageError(page);
3044	goto filler;
3045
3046out:
3047	mark_page_accessed(page);
3048	return page;
3049}
3050
3051/**
3052 * read_cache_page - read into page cache, fill it if needed
3053 * @mapping:	the page's address_space
3054 * @index:	the page index
3055 * @filler:	function to perform the read
3056 * @data:	first arg to filler(data, page) function, often left as NULL
3057 *
3058 * Read into the page cache. If a page already exists, and PageUptodate() is
3059 * not set, try to fill the page and wait for it to become unlocked.
3060 *
3061 * If the page does not get brought uptodate, return -EIO.
3062 *
3063 * Return: up to date page on success, ERR_PTR() on failure.
3064 */
3065struct page *read_cache_page(struct address_space *mapping,
3066				pgoff_t index,
3067				int (*filler)(void *, struct page *),
3068				void *data)
3069{
3070	return do_read_cache_page(mapping, index, filler, data,
3071			mapping_gfp_mask(mapping));
3072}
3073EXPORT_SYMBOL(read_cache_page);
3074
3075/**
3076 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3077 * @mapping:	the page's address_space
3078 * @index:	the page index
3079 * @gfp:	the page allocator flags to use if allocating
3080 *
3081 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3082 * any new page allocations done using the specified allocation flags.
3083 *
3084 * If the page does not get brought uptodate, return -EIO.
3085 *
3086 * Return: up to date page on success, ERR_PTR() on failure.
3087 */
3088struct page *read_cache_page_gfp(struct address_space *mapping,
3089				pgoff_t index,
3090				gfp_t gfp)
3091{
3092	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 
 
3093}
3094EXPORT_SYMBOL(read_cache_page_gfp);
3095
3096/*
3097 * Don't operate on ranges the page cache doesn't support, and don't exceed the
3098 * LFS limits.  If pos is under the limit it becomes a short access.  If it
3099 * exceeds the limit we return -EFBIG.
3100 */
3101static int generic_write_check_limits(struct file *file, loff_t pos,
3102				      loff_t *count)
3103{
3104	struct inode *inode = file->f_mapping->host;
3105	loff_t max_size = inode->i_sb->s_maxbytes;
3106	loff_t limit = rlimit(RLIMIT_FSIZE);
3107
3108	if (limit != RLIM_INFINITY) {
3109		if (pos >= limit) {
3110			send_sig(SIGXFSZ, current, 0);
3111			return -EFBIG;
3112		}
3113		*count = min(*count, limit - pos);
3114	}
3115
3116	if (!(file->f_flags & O_LARGEFILE))
3117		max_size = MAX_NON_LFS;
3118
3119	if (unlikely(pos >= max_size))
3120		return -EFBIG;
3121
3122	*count = min(*count, max_size - pos);
3123
3124	return 0;
3125}
3126
3127/*
3128 * Performs necessary checks before doing a write
3129 *
3130 * Can adjust writing position or amount of bytes to write.
3131 * Returns appropriate error code that caller should return or
3132 * zero in case that write should be allowed.
3133 */
3134inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
3135{
3136	struct file *file = iocb->ki_filp;
3137	struct inode *inode = file->f_mapping->host;
3138	loff_t count;
3139	int ret;
3140
3141	if (IS_SWAPFILE(inode))
3142		return -ETXTBSY;
3143
3144	if (!iov_iter_count(from))
3145		return 0;
3146
3147	/* FIXME: this is for backwards compatibility with 2.4 */
3148	if (iocb->ki_flags & IOCB_APPEND)
3149		iocb->ki_pos = i_size_read(inode);
3150
 
 
3151	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3152		return -EINVAL;
3153
3154	count = iov_iter_count(from);
3155	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3156	if (ret)
3157		return ret;
3158
3159	iov_iter_truncate(from, count);
3160	return iov_iter_count(from);
3161}
3162EXPORT_SYMBOL(generic_write_checks);
3163
3164/*
3165 * Performs necessary checks before doing a clone.
3166 *
3167 * Can adjust amount of bytes to clone via @req_count argument.
3168 * Returns appropriate error code that caller should return or
3169 * zero in case the clone should be allowed.
3170 */
3171int generic_remap_checks(struct file *file_in, loff_t pos_in,
3172			 struct file *file_out, loff_t pos_out,
3173			 loff_t *req_count, unsigned int remap_flags)
3174{
3175	struct inode *inode_in = file_in->f_mapping->host;
3176	struct inode *inode_out = file_out->f_mapping->host;
3177	uint64_t count = *req_count;
3178	uint64_t bcount;
3179	loff_t size_in, size_out;
3180	loff_t bs = inode_out->i_sb->s_blocksize;
3181	int ret;
3182
3183	/* The start of both ranges must be aligned to an fs block. */
3184	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3185		return -EINVAL;
3186
3187	/* Ensure offsets don't wrap. */
3188	if (pos_in + count < pos_in || pos_out + count < pos_out)
3189		return -EINVAL;
3190
3191	size_in = i_size_read(inode_in);
3192	size_out = i_size_read(inode_out);
3193
3194	/* Dedupe requires both ranges to be within EOF. */
3195	if ((remap_flags & REMAP_FILE_DEDUP) &&
3196	    (pos_in >= size_in || pos_in + count > size_in ||
3197	     pos_out >= size_out || pos_out + count > size_out))
3198		return -EINVAL;
3199
3200	/* Ensure the infile range is within the infile. */
3201	if (pos_in >= size_in)
3202		return -EINVAL;
3203	count = min(count, size_in - (uint64_t)pos_in);
3204
3205	ret = generic_write_check_limits(file_out, pos_out, &count);
3206	if (ret)
3207		return ret;
3208
3209	/*
3210	 * If the user wanted us to link to the infile's EOF, round up to the
3211	 * next block boundary for this check.
3212	 *
3213	 * Otherwise, make sure the count is also block-aligned, having
3214	 * already confirmed the starting offsets' block alignment.
3215	 */
3216	if (pos_in + count == size_in) {
3217		bcount = ALIGN(size_in, bs) - pos_in;
3218	} else {
3219		if (!IS_ALIGNED(count, bs))
3220			count = ALIGN_DOWN(count, bs);
3221		bcount = count;
3222	}
3223
3224	/* Don't allow overlapped cloning within the same file. */
3225	if (inode_in == inode_out &&
3226	    pos_out + bcount > pos_in &&
3227	    pos_out < pos_in + bcount)
3228		return -EINVAL;
3229
3230	/*
3231	 * We shortened the request but the caller can't deal with that, so
3232	 * bounce the request back to userspace.
 
 
 
3233	 */
3234	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3235		return -EINVAL;
3236
3237	*req_count = count;
3238	return 0;
3239}
3240
3241
3242/*
3243 * Performs common checks before doing a file copy/clone
3244 * from @file_in to @file_out.
3245 */
3246int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3247{
3248	struct inode *inode_in = file_inode(file_in);
3249	struct inode *inode_out = file_inode(file_out);
3250
3251	/* Don't copy dirs, pipes, sockets... */
3252	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3253		return -EISDIR;
3254	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3255		return -EINVAL;
3256
3257	if (!(file_in->f_mode & FMODE_READ) ||
3258	    !(file_out->f_mode & FMODE_WRITE) ||
3259	    (file_out->f_flags & O_APPEND))
3260		return -EBADF;
3261
3262	return 0;
3263}
3264
3265/*
3266 * Performs necessary checks before doing a file copy
3267 *
3268 * Can adjust amount of bytes to copy via @req_count argument.
3269 * Returns appropriate error code that caller should return or
3270 * zero in case the copy should be allowed.
3271 */
3272int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3273			     struct file *file_out, loff_t pos_out,
3274			     size_t *req_count, unsigned int flags)
3275{
3276	struct inode *inode_in = file_inode(file_in);
3277	struct inode *inode_out = file_inode(file_out);
3278	uint64_t count = *req_count;
3279	loff_t size_in;
3280	int ret;
3281
3282	ret = generic_file_rw_checks(file_in, file_out);
3283	if (ret)
3284		return ret;
3285
3286	/* Don't touch certain kinds of inodes */
3287	if (IS_IMMUTABLE(inode_out))
3288		return -EPERM;
3289
3290	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3291		return -ETXTBSY;
3292
3293	/* Ensure offsets don't wrap. */
3294	if (pos_in + count < pos_in || pos_out + count < pos_out)
3295		return -EOVERFLOW;
3296
3297	/* Shorten the copy to EOF */
3298	size_in = i_size_read(inode_in);
3299	if (pos_in >= size_in)
3300		count = 0;
3301	else
3302		count = min(count, size_in - (uint64_t)pos_in);
3303
3304	ret = generic_write_check_limits(file_out, pos_out, &count);
3305	if (ret)
3306		return ret;
3307
3308	/* Don't allow overlapped copying within the same file. */
3309	if (inode_in == inode_out &&
3310	    pos_out + count > pos_in &&
3311	    pos_out < pos_in + count)
3312		return -EINVAL;
3313
3314	*req_count = count;
3315	return 0;
3316}
 
3317
3318int pagecache_write_begin(struct file *file, struct address_space *mapping,
3319				loff_t pos, unsigned len, unsigned flags,
3320				struct page **pagep, void **fsdata)
3321{
3322	const struct address_space_operations *aops = mapping->a_ops;
3323
3324	return aops->write_begin(file, mapping, pos, len, flags,
3325							pagep, fsdata);
3326}
3327EXPORT_SYMBOL(pagecache_write_begin);
3328
3329int pagecache_write_end(struct file *file, struct address_space *mapping,
3330				loff_t pos, unsigned len, unsigned copied,
3331				struct page *page, void *fsdata)
3332{
3333	const struct address_space_operations *aops = mapping->a_ops;
3334
3335	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3336}
3337EXPORT_SYMBOL(pagecache_write_end);
3338
3339/*
3340 * Warn about a page cache invalidation failure during a direct I/O write.
3341 */
3342void dio_warn_stale_pagecache(struct file *filp)
3343{
3344	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3345	char pathname[128];
3346	struct inode *inode = file_inode(filp);
3347	char *path;
3348
3349	errseq_set(&inode->i_mapping->wb_err, -EIO);
3350	if (__ratelimit(&_rs)) {
3351		path = file_path(filp, pathname, sizeof(pathname));
3352		if (IS_ERR(path))
3353			path = "(unknown)";
3354		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3355		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3356			current->comm);
3357	}
3358}
3359
3360ssize_t
3361generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3362{
3363	struct file	*file = iocb->ki_filp;
3364	struct address_space *mapping = file->f_mapping;
3365	struct inode	*inode = mapping->host;
3366	loff_t		pos = iocb->ki_pos;
3367	ssize_t		written;
3368	size_t		write_len;
3369	pgoff_t		end;
3370
3371	write_len = iov_iter_count(from);
3372	end = (pos + write_len - 1) >> PAGE_SHIFT;
3373
3374	if (iocb->ki_flags & IOCB_NOWAIT) {
3375		/* If there are pages to writeback, return */
3376		if (filemap_range_has_page(inode->i_mapping, pos,
3377					   pos + write_len - 1))
3378			return -EAGAIN;
3379	} else {
3380		written = filemap_write_and_wait_range(mapping, pos,
3381							pos + write_len - 1);
3382		if (written)
3383			goto out;
3384	}
3385
3386	/*
3387	 * After a write we want buffered reads to be sure to go to disk to get
3388	 * the new data.  We invalidate clean cached page from the region we're
3389	 * about to write.  We do this *before* the write so that we can return
3390	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3391	 */
3392	written = invalidate_inode_pages2_range(mapping,
3393					pos >> PAGE_SHIFT, end);
3394	/*
3395	 * If a page can not be invalidated, return 0 to fall back
3396	 * to buffered write.
3397	 */
3398	if (written) {
3399		if (written == -EBUSY)
3400			return 0;
3401		goto out;
3402	}
3403
3404	written = mapping->a_ops->direct_IO(iocb, from);
3405
3406	/*
3407	 * Finally, try again to invalidate clean pages which might have been
3408	 * cached by non-direct readahead, or faulted in by get_user_pages()
3409	 * if the source of the write was an mmap'ed region of the file
3410	 * we're writing.  Either one is a pretty crazy thing to do,
3411	 * so we don't support it 100%.  If this invalidation
3412	 * fails, tough, the write still worked...
3413	 *
3414	 * Most of the time we do not need this since dio_complete() will do
3415	 * the invalidation for us. However there are some file systems that
3416	 * do not end up with dio_complete() being called, so let's not break
3417	 * them by removing it completely.
3418	 *
3419	 * Noticeable example is a blkdev_direct_IO().
3420	 *
3421	 * Skip invalidation for async writes or if mapping has no pages.
3422	 */
3423	if (written > 0 && mapping->nrpages &&
3424	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3425		dio_warn_stale_pagecache(file);
3426
3427	if (written > 0) {
3428		pos += written;
3429		write_len -= written;
3430		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3431			i_size_write(inode, pos);
3432			mark_inode_dirty(inode);
3433		}
3434		iocb->ki_pos = pos;
3435	}
3436	iov_iter_revert(from, write_len - iov_iter_count(from));
3437out:
3438	return written;
3439}
3440EXPORT_SYMBOL(generic_file_direct_write);
3441
3442/*
3443 * Find or create a page at the given pagecache position. Return the locked
3444 * page. This function is specifically for buffered writes.
3445 */
3446struct page *grab_cache_page_write_begin(struct address_space *mapping,
3447					pgoff_t index, unsigned flags)
3448{
3449	struct page *page;
3450	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3451
3452	if (flags & AOP_FLAG_NOFS)
3453		fgp_flags |= FGP_NOFS;
3454
3455	page = pagecache_get_page(mapping, index, fgp_flags,
3456			mapping_gfp_mask(mapping));
3457	if (page)
3458		wait_for_stable_page(page);
3459
3460	return page;
3461}
3462EXPORT_SYMBOL(grab_cache_page_write_begin);
3463
3464ssize_t generic_perform_write(struct file *file,
3465				struct iov_iter *i, loff_t pos)
3466{
3467	struct address_space *mapping = file->f_mapping;
3468	const struct address_space_operations *a_ops = mapping->a_ops;
3469	long status = 0;
3470	ssize_t written = 0;
3471	unsigned int flags = 0;
3472
3473	do {
3474		struct page *page;
3475		unsigned long offset;	/* Offset into pagecache page */
3476		unsigned long bytes;	/* Bytes to write to page */
3477		size_t copied;		/* Bytes copied from user */
3478		void *fsdata;
3479
3480		offset = (pos & (PAGE_SIZE - 1));
3481		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3482						iov_iter_count(i));
3483
3484again:
3485		/*
3486		 * Bring in the user page that we will copy from _first_.
3487		 * Otherwise there's a nasty deadlock on copying from the
3488		 * same page as we're writing to, without it being marked
3489		 * up-to-date.
3490		 *
3491		 * Not only is this an optimisation, but it is also required
3492		 * to check that the address is actually valid, when atomic
3493		 * usercopies are used, below.
3494		 */
3495		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3496			status = -EFAULT;
3497			break;
3498		}
3499
3500		if (fatal_signal_pending(current)) {
3501			status = -EINTR;
3502			break;
3503		}
3504
3505		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3506						&page, &fsdata);
3507		if (unlikely(status < 0))
3508			break;
3509
3510		if (mapping_writably_mapped(mapping))
3511			flush_dcache_page(page);
3512
3513		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3514		flush_dcache_page(page);
3515
3516		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3517						page, fsdata);
3518		if (unlikely(status < 0))
3519			break;
3520		copied = status;
3521
3522		cond_resched();
3523
3524		iov_iter_advance(i, copied);
3525		if (unlikely(copied == 0)) {
3526			/*
3527			 * If we were unable to copy any data at all, we must
3528			 * fall back to a single segment length write.
3529			 *
3530			 * If we didn't fallback here, we could livelock
3531			 * because not all segments in the iov can be copied at
3532			 * once without a pagefault.
3533			 */
3534			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3535						iov_iter_single_seg_count(i));
3536			goto again;
3537		}
3538		pos += copied;
3539		written += copied;
3540
3541		balance_dirty_pages_ratelimited(mapping);
3542	} while (iov_iter_count(i));
3543
3544	return written ? written : status;
3545}
3546EXPORT_SYMBOL(generic_perform_write);
3547
3548/**
3549 * __generic_file_write_iter - write data to a file
3550 * @iocb:	IO state structure (file, offset, etc.)
3551 * @from:	iov_iter with data to write
3552 *
3553 * This function does all the work needed for actually writing data to a
3554 * file. It does all basic checks, removes SUID from the file, updates
3555 * modification times and calls proper subroutines depending on whether we
3556 * do direct IO or a standard buffered write.
3557 *
3558 * It expects i_mutex to be grabbed unless we work on a block device or similar
3559 * object which does not need locking at all.
3560 *
3561 * This function does *not* take care of syncing data in case of O_SYNC write.
3562 * A caller has to handle it. This is mainly due to the fact that we want to
3563 * avoid syncing under i_mutex.
3564 *
3565 * Return:
3566 * * number of bytes written, even for truncated writes
3567 * * negative error code if no data has been written at all
3568 */
3569ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3570{
3571	struct file *file = iocb->ki_filp;
3572	struct address_space * mapping = file->f_mapping;
3573	struct inode 	*inode = mapping->host;
3574	ssize_t		written = 0;
3575	ssize_t		err;
3576	ssize_t		status;
3577
3578	/* We can write back this queue in page reclaim */
3579	current->backing_dev_info = inode_to_bdi(inode);
3580	err = file_remove_privs(file);
3581	if (err)
3582		goto out;
3583
3584	err = file_update_time(file);
3585	if (err)
3586		goto out;
3587
3588	if (iocb->ki_flags & IOCB_DIRECT) {
3589		loff_t pos, endbyte;
3590
3591		written = generic_file_direct_write(iocb, from);
3592		/*
3593		 * If the write stopped short of completing, fall back to
3594		 * buffered writes.  Some filesystems do this for writes to
3595		 * holes, for example.  For DAX files, a buffered write will
3596		 * not succeed (even if it did, DAX does not handle dirty
3597		 * page-cache pages correctly).
3598		 */
3599		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3600			goto out;
3601
3602		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3603		/*
3604		 * If generic_perform_write() returned a synchronous error
3605		 * then we want to return the number of bytes which were
3606		 * direct-written, or the error code if that was zero.  Note
3607		 * that this differs from normal direct-io semantics, which
3608		 * will return -EFOO even if some bytes were written.
3609		 */
3610		if (unlikely(status < 0)) {
3611			err = status;
3612			goto out;
3613		}
3614		/*
3615		 * We need to ensure that the page cache pages are written to
3616		 * disk and invalidated to preserve the expected O_DIRECT
3617		 * semantics.
3618		 */
3619		endbyte = pos + status - 1;
3620		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3621		if (err == 0) {
3622			iocb->ki_pos = endbyte + 1;
3623			written += status;
3624			invalidate_mapping_pages(mapping,
3625						 pos >> PAGE_SHIFT,
3626						 endbyte >> PAGE_SHIFT);
3627		} else {
3628			/*
3629			 * We don't know how much we wrote, so just return
3630			 * the number of bytes which were direct-written
3631			 */
3632		}
3633	} else {
3634		written = generic_perform_write(file, from, iocb->ki_pos);
3635		if (likely(written > 0))
3636			iocb->ki_pos += written;
3637	}
3638out:
3639	current->backing_dev_info = NULL;
3640	return written ? written : err;
3641}
3642EXPORT_SYMBOL(__generic_file_write_iter);
3643
3644/**
3645 * generic_file_write_iter - write data to a file
3646 * @iocb:	IO state structure
3647 * @from:	iov_iter with data to write
3648 *
3649 * This is a wrapper around __generic_file_write_iter() to be used by most
3650 * filesystems. It takes care of syncing the file in case of O_SYNC file
3651 * and acquires i_mutex as needed.
3652 * Return:
3653 * * negative error code if no data has been written at all of
3654 *   vfs_fsync_range() failed for a synchronous write
3655 * * number of bytes written, even for truncated writes
3656 */
3657ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3658{
3659	struct file *file = iocb->ki_filp;
3660	struct inode *inode = file->f_mapping->host;
3661	ssize_t ret;
3662
3663	inode_lock(inode);
3664	ret = generic_write_checks(iocb, from);
3665	if (ret > 0)
3666		ret = __generic_file_write_iter(iocb, from);
3667	inode_unlock(inode);
3668
3669	if (ret > 0)
3670		ret = generic_write_sync(iocb, ret);
3671	return ret;
3672}
3673EXPORT_SYMBOL(generic_file_write_iter);
3674
3675/**
3676 * try_to_release_page() - release old fs-specific metadata on a page
3677 *
3678 * @page: the page which the kernel is trying to free
3679 * @gfp_mask: memory allocation flags (and I/O mode)
3680 *
3681 * The address_space is to try to release any data against the page
3682 * (presumably at page->private).
 
3683 *
3684 * This may also be called if PG_fscache is set on a page, indicating that the
3685 * page is known to the local caching routines.
3686 *
3687 * The @gfp_mask argument specifies whether I/O may be performed to release
3688 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3689 *
3690 * Return: %1 if the release was successful, otherwise return zero.
3691 */
3692int try_to_release_page(struct page *page, gfp_t gfp_mask)
3693{
3694	struct address_space * const mapping = page->mapping;
3695
3696	BUG_ON(!PageLocked(page));
3697	if (PageWriteback(page))
3698		return 0;
3699
3700	if (mapping && mapping->a_ops->releasepage)
3701		return mapping->a_ops->releasepage(page, gfp_mask);
3702	return try_to_free_buffers(page);
3703}
3704
3705EXPORT_SYMBOL(try_to_release_page);