Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/sched/signal.h>
  17#include <linux/uaccess.h>
  18#include <linux/capability.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/gfp.h>
  21#include <linux/mm.h>
  22#include <linux/swap.h>
 
 
  23#include <linux/mman.h>
  24#include <linux/pagemap.h>
  25#include <linux/file.h>
  26#include <linux/uio.h>
 
  27#include <linux/hash.h>
  28#include <linux/writeback.h>
  29#include <linux/backing-dev.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/security.h>
  33#include <linux/cpuset.h>
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/shmem_fs.h>
  38#include <linux/rmap.h>
 
 
 
 
 
 
 
 
 
 
  39#include "internal.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/filemap.h>
  43
  44/*
  45 * FIXME: remove all knowledge of the buffer layer from the core VM
  46 */
  47#include <linux/buffer_head.h> /* for try_to_free_buffers */
  48
  49#include <asm/mman.h>
  50
 
 
  51/*
  52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  53 * though.
  54 *
  55 * Shared mappings now work. 15.8.1995  Bruno.
  56 *
  57 * finished 'unifying' the page and buffer cache and SMP-threaded the
  58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  59 *
  60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  61 */
  62
  63/*
  64 * Lock ordering:
  65 *
  66 *  ->i_mmap_rwsem		(truncate_pagecache)
  67 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  68 *      ->swap_lock		(exclusive_swap_page, others)
  69 *        ->i_pages lock
  70 *
  71 *  ->i_mutex
  72 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
 
  73 *
  74 *  ->mmap_sem
  75 *    ->i_mmap_rwsem
  76 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  77 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  78 *
  79 *  ->mmap_sem
  80 *    ->lock_page		(access_process_vm)
 
  81 *
  82 *  ->i_mutex			(generic_perform_write)
  83 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  84 *
  85 *  bdi->wb.list_lock
  86 *    sb_lock			(fs/fs-writeback.c)
  87 *    ->i_pages lock		(__sync_single_inode)
  88 *
  89 *  ->i_mmap_rwsem
  90 *    ->anon_vma.lock		(vma_adjust)
  91 *
  92 *  ->anon_vma.lock
  93 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  94 *
  95 *  ->page_table_lock or pte_lock
  96 *    ->swap_lock		(try_to_unmap_one)
  97 *    ->private_lock		(try_to_unmap_one)
  98 *    ->i_pages lock		(try_to_unmap_one)
  99 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
 100 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
 101 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 102 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 103 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 105 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 106 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 107 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 108 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 109 *
 110 * ->i_mmap_rwsem
 111 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 112 */
 113
 114static int page_cache_tree_insert(struct address_space *mapping,
 115				  struct page *page, void **shadowp)
 116{
 117	struct radix_tree_node *node;
 118	void **slot;
 119	int error;
 120
 121	error = __radix_tree_create(&mapping->i_pages, page->index, 0,
 122				    &node, &slot);
 123	if (error)
 124		return error;
 125	if (*slot) {
 126		void *p;
 127
 128		p = radix_tree_deref_slot_protected(slot,
 129						    &mapping->i_pages.xa_lock);
 130		if (!radix_tree_exceptional_entry(p))
 131			return -EEXIST;
 132
 133		mapping->nrexceptional--;
 134		if (shadowp)
 135			*shadowp = p;
 136	}
 137	__radix_tree_replace(&mapping->i_pages, node, slot, page,
 138			     workingset_lookup_update(mapping));
 139	mapping->nrpages++;
 140	return 0;
 141}
 142
 143static void page_cache_tree_delete(struct address_space *mapping,
 144				   struct page *page, void *shadow)
 145{
 146	int i, nr;
 147
 148	/* hugetlb pages are represented by one entry in the radix tree */
 149	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 150
 151	VM_BUG_ON_PAGE(!PageLocked(page), page);
 152	VM_BUG_ON_PAGE(PageTail(page), page);
 153	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 154
 155	for (i = 0; i < nr; i++) {
 156		struct radix_tree_node *node;
 157		void **slot;
 158
 159		__radix_tree_lookup(&mapping->i_pages, page->index + i,
 160				    &node, &slot);
 161
 162		VM_BUG_ON_PAGE(!node && nr != 1, page);
 
 163
 164		radix_tree_clear_tags(&mapping->i_pages, node, slot);
 165		__radix_tree_replace(&mapping->i_pages, node, slot, shadow,
 166				workingset_lookup_update(mapping));
 167	}
 168
 169	page->mapping = NULL;
 170	/* Leave page->index set: truncation lookup relies upon it */
 171
 172	if (shadow) {
 173		mapping->nrexceptional += nr;
 174		/*
 175		 * Make sure the nrexceptional update is committed before
 176		 * the nrpages update so that final truncate racing
 177		 * with reclaim does not see both counters 0 at the
 178		 * same time and miss a shadow entry.
 179		 */
 180		smp_wmb();
 181	}
 182	mapping->nrpages -= nr;
 183}
 184
 185static void unaccount_page_cache_page(struct address_space *mapping,
 186				      struct page *page)
 187{
 188	int nr;
 189
 190	/*
 191	 * if we're uptodate, flush out into the cleancache, otherwise
 192	 * invalidate any existing cleancache entries.  We can't leave
 193	 * stale data around in the cleancache once our page is gone
 194	 */
 195	if (PageUptodate(page) && PageMappedToDisk(page))
 196		cleancache_put_page(page);
 197	else
 198		cleancache_invalidate_page(mapping, page);
 199
 200	VM_BUG_ON_PAGE(PageTail(page), page);
 201	VM_BUG_ON_PAGE(page_mapped(page), page);
 202	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 203		int mapcount;
 204
 
 
 205		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 206			 current->comm, page_to_pfn(page));
 207		dump_page(page, "still mapped when deleted");
 208		dump_stack();
 209		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 210
 211		mapcount = page_mapcount(page);
 212		if (mapping_exiting(mapping) &&
 213		    page_count(page) >= mapcount + 2) {
 214			/*
 215			 * All vmas have already been torn down, so it's
 216			 * a good bet that actually the page is unmapped,
 217			 * and we'd prefer not to leak it: if we're wrong,
 218			 * some other bad page check should catch it later.
 219			 */
 220			page_mapcount_reset(page);
 221			page_ref_sub(page, mapcount);
 
 
 222		}
 223	}
 224
 225	/* hugetlb pages do not participate in page cache accounting. */
 226	if (PageHuge(page))
 227		return;
 228
 229	nr = hpage_nr_pages(page);
 230
 231	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 232	if (PageSwapBacked(page)) {
 233		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 234		if (PageTransHuge(page))
 235			__dec_node_page_state(page, NR_SHMEM_THPS);
 236	} else {
 237		VM_BUG_ON_PAGE(PageTransHuge(page), page);
 
 238	}
 239
 240	/*
 241	 * At this point page must be either written or cleaned by
 242	 * truncate.  Dirty page here signals a bug and loss of
 243	 * unwritten data.
 
 
 
 
 244	 *
 245	 * This fixes dirty accounting after removing the page entirely
 246	 * but leaves PageDirty set: it has no effect for truncated
 247	 * page and anyway will be cleared before returning page into
 248	 * buddy allocator.
 249	 */
 250	if (WARN_ON_ONCE(PageDirty(page)))
 251		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 
 252}
 253
 254/*
 255 * Delete a page from the page cache and free it. Caller has to make
 256 * sure the page is locked and that nobody else uses it - or that usage
 257 * is safe.  The caller must hold the i_pages lock.
 258 */
 259void __delete_from_page_cache(struct page *page, void *shadow)
 260{
 261	struct address_space *mapping = page->mapping;
 262
 263	trace_mm_filemap_delete_from_page_cache(page);
 264
 265	unaccount_page_cache_page(mapping, page);
 266	page_cache_tree_delete(mapping, page, shadow);
 267}
 268
 269static void page_cache_free_page(struct address_space *mapping,
 270				struct page *page)
 271{
 272	void (*freepage)(struct page *);
 
 273
 274	freepage = mapping->a_ops->freepage;
 275	if (freepage)
 276		freepage(page);
 277
 278	if (PageTransHuge(page) && !PageHuge(page)) {
 279		page_ref_sub(page, HPAGE_PMD_NR);
 280		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 281	} else {
 282		put_page(page);
 283	}
 284}
 285
 286/**
 287 * delete_from_page_cache - delete page from page cache
 288 * @page: the page which the kernel is trying to remove from page cache
 289 *
 290 * This must be called only on pages that have been verified to be in the page
 291 * cache and locked.  It will never put the page into the free list, the caller
 292 * has a reference on the page.
 293 */
 294void delete_from_page_cache(struct page *page)
 295{
 296	struct address_space *mapping = page_mapping(page);
 297	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 298
 299	BUG_ON(!PageLocked(page));
 300	xa_lock_irqsave(&mapping->i_pages, flags);
 301	__delete_from_page_cache(page, NULL);
 302	xa_unlock_irqrestore(&mapping->i_pages, flags);
 303
 304	page_cache_free_page(mapping, page);
 305}
 306EXPORT_SYMBOL(delete_from_page_cache);
 307
 308/*
 309 * page_cache_tree_delete_batch - delete several pages from page cache
 310 * @mapping: the mapping to which pages belong
 311 * @pvec: pagevec with pages to delete
 312 *
 313 * The function walks over mapping->i_pages and removes pages passed in @pvec
 314 * from the mapping. The function expects @pvec to be sorted by page index.
 315 * It tolerates holes in @pvec (mapping entries at those indices are not
 316 * modified). The function expects only THP head pages to be present in the
 317 * @pvec and takes care to delete all corresponding tail pages from the
 318 * mapping as well.
 319 *
 320 * The function expects the i_pages lock to be held.
 321 */
 322static void
 323page_cache_tree_delete_batch(struct address_space *mapping,
 324			     struct pagevec *pvec)
 325{
 326	struct radix_tree_iter iter;
 327	void **slot;
 328	int total_pages = 0;
 329	int i = 0, tail_pages = 0;
 330	struct page *page;
 331	pgoff_t start;
 
 
 332
 333	start = pvec->pages[0]->index;
 334	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
 335		if (i >= pagevec_count(pvec) && !tail_pages)
 336			break;
 337		page = radix_tree_deref_slot_protected(slot,
 338						       &mapping->i_pages.xa_lock);
 339		if (radix_tree_exceptional_entry(page))
 
 
 
 
 
 
 340			continue;
 341		if (!tail_pages) {
 342			/*
 343			 * Some page got inserted in our range? Skip it. We
 344			 * have our pages locked so they are protected from
 345			 * being removed.
 346			 */
 347			if (page != pvec->pages[i])
 348				continue;
 349			WARN_ON_ONCE(!PageLocked(page));
 350			if (PageTransHuge(page) && !PageHuge(page))
 351				tail_pages = HPAGE_PMD_NR - 1;
 352			page->mapping = NULL;
 353			/*
 354			 * Leave page->index set: truncation lookup relies
 355			 * upon it
 356			 */
 357			i++;
 358		} else {
 359			tail_pages--;
 360		}
 361		radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
 362		__radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
 363				workingset_lookup_update(mapping));
 364		total_pages++;
 
 
 
 
 
 365	}
 366	mapping->nrpages -= total_pages;
 367}
 368
 369void delete_from_page_cache_batch(struct address_space *mapping,
 370				  struct pagevec *pvec)
 371{
 372	int i;
 373	unsigned long flags;
 374
 375	if (!pagevec_count(pvec))
 376		return;
 377
 378	xa_lock_irqsave(&mapping->i_pages, flags);
 379	for (i = 0; i < pagevec_count(pvec); i++) {
 380		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 
 381
 382		unaccount_page_cache_page(mapping, pvec->pages[i]);
 
 383	}
 384	page_cache_tree_delete_batch(mapping, pvec);
 385	xa_unlock_irqrestore(&mapping->i_pages, flags);
 
 
 
 386
 387	for (i = 0; i < pagevec_count(pvec); i++)
 388		page_cache_free_page(mapping, pvec->pages[i]);
 389}
 390
 391int filemap_check_errors(struct address_space *mapping)
 392{
 393	int ret = 0;
 394	/* Check for outstanding write errors */
 395	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 396	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 397		ret = -ENOSPC;
 398	if (test_bit(AS_EIO, &mapping->flags) &&
 399	    test_and_clear_bit(AS_EIO, &mapping->flags))
 400		ret = -EIO;
 401	return ret;
 402}
 403EXPORT_SYMBOL(filemap_check_errors);
 404
 405static int filemap_check_and_keep_errors(struct address_space *mapping)
 406{
 407	/* Check for outstanding write errors */
 408	if (test_bit(AS_EIO, &mapping->flags))
 409		return -EIO;
 410	if (test_bit(AS_ENOSPC, &mapping->flags))
 411		return -ENOSPC;
 412	return 0;
 413}
 414
 415/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 417 * @mapping:	address space structure to write
 418 * @start:	offset in bytes where the range starts
 419 * @end:	offset in bytes where the range ends (inclusive)
 420 * @sync_mode:	enable synchronous operation
 421 *
 422 * Start writeback against all of a mapping's dirty pages that lie
 423 * within the byte offsets <start, end> inclusive.
 424 *
 425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 426 * opposed to a regular memory cleansing writeback.  The difference between
 427 * these two operations is that if a dirty page/buffer is encountered, it must
 428 * be waited upon, and not just skipped over.
 
 
 429 */
 430int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 431				loff_t end, int sync_mode)
 432{
 433	int ret;
 434	struct writeback_control wbc = {
 435		.sync_mode = sync_mode,
 436		.nr_to_write = LONG_MAX,
 437		.range_start = start,
 438		.range_end = end,
 439	};
 440
 441	if (!mapping_cap_writeback_dirty(mapping))
 442		return 0;
 443
 444	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 445	ret = do_writepages(mapping, &wbc);
 446	wbc_detach_inode(&wbc);
 447	return ret;
 448}
 449
 450static inline int __filemap_fdatawrite(struct address_space *mapping,
 451	int sync_mode)
 452{
 453	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 454}
 455
 456int filemap_fdatawrite(struct address_space *mapping)
 457{
 458	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 459}
 460EXPORT_SYMBOL(filemap_fdatawrite);
 461
 462int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 463				loff_t end)
 464{
 465	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 466}
 467EXPORT_SYMBOL(filemap_fdatawrite_range);
 468
 469/**
 470 * filemap_flush - mostly a non-blocking flush
 471 * @mapping:	target address_space
 472 *
 473 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 474 * purposes - I/O may not be started against all dirty pages.
 
 
 475 */
 476int filemap_flush(struct address_space *mapping)
 477{
 478	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 479}
 480EXPORT_SYMBOL(filemap_flush);
 481
 482/**
 483 * filemap_range_has_page - check if a page exists in range.
 484 * @mapping:           address space within which to check
 485 * @start_byte:        offset in bytes where the range starts
 486 * @end_byte:          offset in bytes where the range ends (inclusive)
 487 *
 488 * Find at least one page in the range supplied, usually used to check if
 489 * direct writing in this range will trigger a writeback.
 
 
 
 490 */
 491bool filemap_range_has_page(struct address_space *mapping,
 492			   loff_t start_byte, loff_t end_byte)
 493{
 494	pgoff_t index = start_byte >> PAGE_SHIFT;
 495	pgoff_t end = end_byte >> PAGE_SHIFT;
 496	struct page *page;
 497
 498	if (end_byte < start_byte)
 499		return false;
 500
 501	if (mapping->nrpages == 0)
 502		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503
 504	if (!find_get_pages_range(mapping, &index, end, 1, &page))
 505		return false;
 506	put_page(page);
 507	return true;
 508}
 509EXPORT_SYMBOL(filemap_range_has_page);
 510
 511static void __filemap_fdatawait_range(struct address_space *mapping,
 512				     loff_t start_byte, loff_t end_byte)
 513{
 514	pgoff_t index = start_byte >> PAGE_SHIFT;
 515	pgoff_t end = end_byte >> PAGE_SHIFT;
 516	struct pagevec pvec;
 517	int nr_pages;
 518
 519	if (end_byte < start_byte)
 520		return;
 521
 522	pagevec_init(&pvec);
 523	while (index <= end) {
 524		unsigned i;
 525
 526		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 527				end, PAGECACHE_TAG_WRITEBACK);
 528		if (!nr_pages)
 
 529			break;
 530
 531		for (i = 0; i < nr_pages; i++) {
 532			struct page *page = pvec.pages[i];
 533
 534			wait_on_page_writeback(page);
 535			ClearPageError(page);
 536		}
 537		pagevec_release(&pvec);
 538		cond_resched();
 539	}
 540}
 541
 542/**
 543 * filemap_fdatawait_range - wait for writeback to complete
 544 * @mapping:		address space structure to wait for
 545 * @start_byte:		offset in bytes where the range starts
 546 * @end_byte:		offset in bytes where the range ends (inclusive)
 547 *
 548 * Walk the list of under-writeback pages of the given address space
 549 * in the given range and wait for all of them.  Check error status of
 550 * the address space and return it.
 551 *
 552 * Since the error status of the address space is cleared by this function,
 553 * callers are responsible for checking the return value and handling and/or
 554 * reporting the error.
 
 
 555 */
 556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 557			    loff_t end_byte)
 558{
 559	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 560	return filemap_check_errors(mapping);
 561}
 562EXPORT_SYMBOL(filemap_fdatawait_range);
 563
 564/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565 * file_fdatawait_range - wait for writeback to complete
 566 * @file:		file pointing to address space structure to wait for
 567 * @start_byte:		offset in bytes where the range starts
 568 * @end_byte:		offset in bytes where the range ends (inclusive)
 569 *
 570 * Walk the list of under-writeback pages of the address space that file
 571 * refers to, in the given range and wait for all of them.  Check error
 572 * status of the address space vs. the file->f_wb_err cursor and return it.
 573 *
 574 * Since the error status of the file is advanced by this function,
 575 * callers are responsible for checking the return value and handling and/or
 576 * reporting the error.
 
 
 577 */
 578int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 579{
 580	struct address_space *mapping = file->f_mapping;
 581
 582	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 583	return file_check_and_advance_wb_err(file);
 584}
 585EXPORT_SYMBOL(file_fdatawait_range);
 586
 587/**
 588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 589 * @mapping: address space structure to wait for
 590 *
 591 * Walk the list of under-writeback pages of the given address space
 592 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 593 * does not clear error status of the address space.
 594 *
 595 * Use this function if callers don't handle errors themselves.  Expected
 596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 597 * fsfreeze(8)
 
 
 598 */
 599int filemap_fdatawait_keep_errors(struct address_space *mapping)
 600{
 601	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 602	return filemap_check_and_keep_errors(mapping);
 603}
 604EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 605
 
 606static bool mapping_needs_writeback(struct address_space *mapping)
 607{
 608	return (!dax_mapping(mapping) && mapping->nrpages) ||
 609	    (dax_mapping(mapping) && mapping->nrexceptional);
 610}
 611
 612int filemap_write_and_wait(struct address_space *mapping)
 
 613{
 614	int err = 0;
 
 
 615
 616	if (mapping_needs_writeback(mapping)) {
 617		err = filemap_fdatawrite(mapping);
 618		/*
 619		 * Even if the above returned error, the pages may be
 620		 * written partially (e.g. -ENOSPC), so we wait for it.
 621		 * But the -EIO is special case, it may indicate the worst
 622		 * thing (e.g. bug) happened, so we avoid waiting for it.
 623		 */
 624		if (err != -EIO) {
 625			int err2 = filemap_fdatawait(mapping);
 626			if (!err)
 627				err = err2;
 628		} else {
 629			/* Clear any previously stored errors */
 630			filemap_check_errors(mapping);
 631		}
 632	} else {
 633		err = filemap_check_errors(mapping);
 634	}
 635	return err;
 
 636}
 637EXPORT_SYMBOL(filemap_write_and_wait);
 638
 639/**
 640 * filemap_write_and_wait_range - write out & wait on a file range
 641 * @mapping:	the address_space for the pages
 642 * @lstart:	offset in bytes where the range starts
 643 * @lend:	offset in bytes where the range ends (inclusive)
 644 *
 645 * Write out and wait upon file offsets lstart->lend, inclusive.
 646 *
 647 * Note that @lend is inclusive (describes the last byte to be written) so
 648 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 649 */
 650int filemap_write_and_wait_range(struct address_space *mapping,
 651				 loff_t lstart, loff_t lend)
 652{
 653	int err = 0;
 
 
 
 654
 655	if (mapping_needs_writeback(mapping)) {
 656		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 657						 WB_SYNC_ALL);
 658		/* See comment of filemap_write_and_wait() */
 659		if (err != -EIO) {
 660			int err2 = filemap_fdatawait_range(mapping,
 661						lstart, lend);
 662			if (!err)
 663				err = err2;
 664		} else {
 665			/* Clear any previously stored errors */
 666			filemap_check_errors(mapping);
 667		}
 668	} else {
 669		err = filemap_check_errors(mapping);
 670	}
 
 
 
 671	return err;
 672}
 673EXPORT_SYMBOL(filemap_write_and_wait_range);
 674
 675void __filemap_set_wb_err(struct address_space *mapping, int err)
 676{
 677	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 678
 679	trace_filemap_set_wb_err(mapping, eseq);
 680}
 681EXPORT_SYMBOL(__filemap_set_wb_err);
 682
 683/**
 684 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 685 * 				   and advance wb_err to current one
 686 * @file: struct file on which the error is being reported
 687 *
 688 * When userland calls fsync (or something like nfsd does the equivalent), we
 689 * want to report any writeback errors that occurred since the last fsync (or
 690 * since the file was opened if there haven't been any).
 691 *
 692 * Grab the wb_err from the mapping. If it matches what we have in the file,
 693 * then just quickly return 0. The file is all caught up.
 694 *
 695 * If it doesn't match, then take the mapping value, set the "seen" flag in
 696 * it and try to swap it into place. If it works, or another task beat us
 697 * to it with the new value, then update the f_wb_err and return the error
 698 * portion. The error at this point must be reported via proper channels
 699 * (a'la fsync, or NFS COMMIT operation, etc.).
 700 *
 701 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 702 * value is protected by the f_lock since we must ensure that it reflects
 703 * the latest value swapped in for this file descriptor.
 
 
 704 */
 705int file_check_and_advance_wb_err(struct file *file)
 706{
 707	int err = 0;
 708	errseq_t old = READ_ONCE(file->f_wb_err);
 709	struct address_space *mapping = file->f_mapping;
 710
 711	/* Locklessly handle the common case where nothing has changed */
 712	if (errseq_check(&mapping->wb_err, old)) {
 713		/* Something changed, must use slow path */
 714		spin_lock(&file->f_lock);
 715		old = file->f_wb_err;
 716		err = errseq_check_and_advance(&mapping->wb_err,
 717						&file->f_wb_err);
 718		trace_file_check_and_advance_wb_err(file, old);
 719		spin_unlock(&file->f_lock);
 720	}
 721
 722	/*
 723	 * We're mostly using this function as a drop in replacement for
 724	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 725	 * that the legacy code would have had on these flags.
 726	 */
 727	clear_bit(AS_EIO, &mapping->flags);
 728	clear_bit(AS_ENOSPC, &mapping->flags);
 729	return err;
 730}
 731EXPORT_SYMBOL(file_check_and_advance_wb_err);
 732
 733/**
 734 * file_write_and_wait_range - write out & wait on a file range
 735 * @file:	file pointing to address_space with pages
 736 * @lstart:	offset in bytes where the range starts
 737 * @lend:	offset in bytes where the range ends (inclusive)
 738 *
 739 * Write out and wait upon file offsets lstart->lend, inclusive.
 740 *
 741 * Note that @lend is inclusive (describes the last byte to be written) so
 742 * that this function can be used to write to the very end-of-file (end = -1).
 743 *
 744 * After writing out and waiting on the data, we check and advance the
 745 * f_wb_err cursor to the latest value, and return any errors detected there.
 
 
 746 */
 747int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 748{
 749	int err = 0, err2;
 750	struct address_space *mapping = file->f_mapping;
 751
 
 
 
 752	if (mapping_needs_writeback(mapping)) {
 753		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 754						 WB_SYNC_ALL);
 755		/* See comment of filemap_write_and_wait() */
 756		if (err != -EIO)
 757			__filemap_fdatawait_range(mapping, lstart, lend);
 758	}
 759	err2 = file_check_and_advance_wb_err(file);
 760	if (!err)
 761		err = err2;
 762	return err;
 763}
 764EXPORT_SYMBOL(file_write_and_wait_range);
 765
 766/**
 767 * replace_page_cache_page - replace a pagecache page with a new one
 768 * @old:	page to be replaced
 769 * @new:	page to replace with
 770 * @gfp_mask:	allocation mode
 771 *
 772 * This function replaces a page in the pagecache with a new one.  On
 773 * success it acquires the pagecache reference for the new page and
 774 * drops it for the old page.  Both the old and new pages must be
 775 * locked.  This function does not add the new page to the LRU, the
 776 * caller must do that.
 777 *
 778 * The remove + add is atomic.  The only way this function can fail is
 779 * memory allocation failure.
 780 */
 781int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 782{
 783	int error;
 
 
 
 784
 785	VM_BUG_ON_PAGE(!PageLocked(old), old);
 786	VM_BUG_ON_PAGE(!PageLocked(new), new);
 787	VM_BUG_ON_PAGE(new->mapping, new);
 788
 789	error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
 790	if (!error) {
 791		struct address_space *mapping = old->mapping;
 792		void (*freepage)(struct page *);
 793		unsigned long flags;
 794
 795		pgoff_t offset = old->index;
 796		freepage = mapping->a_ops->freepage;
 797
 798		get_page(new);
 799		new->mapping = mapping;
 800		new->index = offset;
 801
 802		xa_lock_irqsave(&mapping->i_pages, flags);
 803		__delete_from_page_cache(old, NULL);
 804		error = page_cache_tree_insert(mapping, new, NULL);
 805		BUG_ON(error);
 806
 807		/*
 808		 * hugetlb pages do not participate in page cache accounting.
 809		 */
 810		if (!PageHuge(new))
 811			__inc_node_page_state(new, NR_FILE_PAGES);
 812		if (PageSwapBacked(new))
 813			__inc_node_page_state(new, NR_SHMEM);
 814		xa_unlock_irqrestore(&mapping->i_pages, flags);
 815		mem_cgroup_migrate(old, new);
 816		radix_tree_preload_end();
 817		if (freepage)
 818			freepage(old);
 819		put_page(old);
 820	}
 821
 822	return error;
 823}
 824EXPORT_SYMBOL_GPL(replace_page_cache_page);
 825
 826static int __add_to_page_cache_locked(struct page *page,
 827				      struct address_space *mapping,
 828				      pgoff_t offset, gfp_t gfp_mask,
 829				      void **shadowp)
 830{
 831	int huge = PageHuge(page);
 832	struct mem_cgroup *memcg;
 833	int error;
 834
 835	VM_BUG_ON_PAGE(!PageLocked(page), page);
 836	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838	if (!huge) {
 839		error = mem_cgroup_try_charge(page, current->mm,
 840					      gfp_mask, &memcg, false);
 841		if (error)
 842			return error;
 
 843	}
 844
 845	error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
 846	if (error) {
 847		if (!huge)
 848			mem_cgroup_cancel_charge(page, memcg, false);
 849		return error;
 850	}
 851
 852	get_page(page);
 853	page->mapping = mapping;
 854	page->index = offset;
 
 855
 856	xa_lock_irq(&mapping->i_pages);
 857	error = page_cache_tree_insert(mapping, page, shadowp);
 858	radix_tree_preload_end();
 859	if (unlikely(error))
 860		goto err_insert;
 861
 862	/* hugetlb pages do not participate in page cache accounting. */
 863	if (!huge)
 864		__inc_node_page_state(page, NR_FILE_PAGES);
 865	xa_unlock_irq(&mapping->i_pages);
 866	if (!huge)
 867		mem_cgroup_commit_charge(page, memcg, false, false);
 868	trace_mm_filemap_add_to_page_cache(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869	return 0;
 870err_insert:
 871	page->mapping = NULL;
 
 
 872	/* Leave page->index set: truncation relies upon it */
 873	xa_unlock_irq(&mapping->i_pages);
 874	if (!huge)
 875		mem_cgroup_cancel_charge(page, memcg, false);
 876	put_page(page);
 877	return error;
 878}
 
 879
 880/**
 881 * add_to_page_cache_locked - add a locked page to the pagecache
 882 * @page:	page to add
 883 * @mapping:	the page's address_space
 884 * @offset:	page index
 885 * @gfp_mask:	page allocation mode
 886 *
 887 * This function is used to add a page to the pagecache. It must be locked.
 888 * This function does not add the page to the LRU.  The caller must do that.
 889 */
 890int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 891		pgoff_t offset, gfp_t gfp_mask)
 892{
 893	return __add_to_page_cache_locked(page, mapping, offset,
 894					  gfp_mask, NULL);
 895}
 896EXPORT_SYMBOL(add_to_page_cache_locked);
 897
 898int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 899				pgoff_t offset, gfp_t gfp_mask)
 900{
 901	void *shadow = NULL;
 902	int ret;
 903
 904	__SetPageLocked(page);
 905	ret = __add_to_page_cache_locked(page, mapping, offset,
 906					 gfp_mask, &shadow);
 907	if (unlikely(ret))
 908		__ClearPageLocked(page);
 909	else {
 910		/*
 911		 * The page might have been evicted from cache only
 912		 * recently, in which case it should be activated like
 913		 * any other repeatedly accessed page.
 914		 * The exception is pages getting rewritten; evicting other
 915		 * data from the working set, only to cache data that will
 916		 * get overwritten with something else, is a waste of memory.
 917		 */
 918		if (!(gfp_mask & __GFP_WRITE) &&
 919		    shadow && workingset_refault(shadow)) {
 920			SetPageActive(page);
 921			workingset_activation(page);
 922		} else
 923			ClearPageActive(page);
 924		lru_cache_add(page);
 925	}
 926	return ret;
 927}
 928EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 929
 930#ifdef CONFIG_NUMA
 931struct page *__page_cache_alloc(gfp_t gfp)
 932{
 933	int n;
 934	struct page *page;
 935
 936	if (cpuset_do_page_mem_spread()) {
 937		unsigned int cpuset_mems_cookie;
 938		do {
 939			cpuset_mems_cookie = read_mems_allowed_begin();
 940			n = cpuset_mem_spread_node();
 941			page = __alloc_pages_node(n, gfp, 0);
 942		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 943
 944		return page;
 945	}
 946	return alloc_pages(gfp, 0);
 947}
 948EXPORT_SYMBOL(__page_cache_alloc);
 949#endif
 950
 951/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952 * In order to wait for pages to become available there must be
 953 * waitqueues associated with pages. By using a hash table of
 954 * waitqueues where the bucket discipline is to maintain all
 955 * waiters on the same queue and wake all when any of the pages
 956 * become available, and for the woken contexts to check to be
 957 * sure the appropriate page became available, this saves space
 958 * at a cost of "thundering herd" phenomena during rare hash
 959 * collisions.
 960 */
 961#define PAGE_WAIT_TABLE_BITS 8
 962#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 963static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 964
 965static wait_queue_head_t *page_waitqueue(struct page *page)
 966{
 967	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 968}
 969
 970void __init pagecache_init(void)
 971{
 972	int i;
 973
 974	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 975		init_waitqueue_head(&page_wait_table[i]);
 976
 977	page_writeback_init();
 978}
 979
 980/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
 981struct wait_page_key {
 982	struct page *page;
 983	int bit_nr;
 984	int page_match;
 985};
 986
 987struct wait_page_queue {
 988	struct page *page;
 989	int bit_nr;
 990	wait_queue_entry_t wait;
 991};
 992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
 994{
 
 995	struct wait_page_key *key = arg;
 996	struct wait_page_queue *wait_page
 997		= container_of(wait, struct wait_page_queue, wait);
 998
 999	if (wait_page->page != key->page)
1000	       return 0;
1001	key->page_match = 1;
1002
1003	if (wait_page->bit_nr != key->bit_nr)
1004		return 0;
1005
1006	/* Stop walking if it's locked */
1007	if (test_bit(key->bit_nr, &key->page->flags))
1008		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009
1010	return autoremove_wake_function(wait, mode, sync, key);
 
 
 
 
 
 
 
 
 
 
 
1011}
1012
1013static void wake_up_page_bit(struct page *page, int bit_nr)
1014{
1015	wait_queue_head_t *q = page_waitqueue(page);
1016	struct wait_page_key key;
1017	unsigned long flags;
1018	wait_queue_entry_t bookmark;
1019
1020	key.page = page;
1021	key.bit_nr = bit_nr;
1022	key.page_match = 0;
1023
1024	bookmark.flags = 0;
1025	bookmark.private = NULL;
1026	bookmark.func = NULL;
1027	INIT_LIST_HEAD(&bookmark.entry);
1028
1029	spin_lock_irqsave(&q->lock, flags);
1030	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1031
1032	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1033		/*
1034		 * Take a breather from holding the lock,
1035		 * allow pages that finish wake up asynchronously
1036		 * to acquire the lock and remove themselves
1037		 * from wait queue
1038		 */
1039		spin_unlock_irqrestore(&q->lock, flags);
1040		cpu_relax();
1041		spin_lock_irqsave(&q->lock, flags);
1042		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1043	}
1044
1045	/*
1046	 * It is possible for other pages to have collided on the waitqueue
1047	 * hash, so in that case check for a page match. That prevents a long-
1048	 * term waiter
1049	 *
1050	 * It is still possible to miss a case here, when we woke page waiters
1051	 * and removed them from the waitqueue, but there are still other
1052	 * page waiters.
1053	 */
1054	if (!waitqueue_active(q) || !key.page_match) {
1055		ClearPageWaiters(page);
1056		/*
1057		 * It's possible to miss clearing Waiters here, when we woke
1058		 * our page waiters, but the hashed waitqueue has waiters for
1059		 * other pages on it.
1060		 *
1061		 * That's okay, it's a rare case. The next waker will clear it.
1062		 */
1063	}
1064	spin_unlock_irqrestore(&q->lock, flags);
1065}
1066
1067static void wake_up_page(struct page *page, int bit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068{
1069	if (!PageWaiters(page))
1070		return;
1071	wake_up_page_bit(page, bit);
 
 
 
 
 
1072}
1073
1074static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075		struct page *page, int bit_nr, int state, bool lock)
 
 
 
1076{
 
 
1077	struct wait_page_queue wait_page;
1078	wait_queue_entry_t *wait = &wait_page.wait;
1079	int ret = 0;
 
 
 
 
 
 
 
 
 
1080
1081	init_wait(wait);
1082	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1083	wait->func = wake_page_function;
1084	wait_page.page = page;
1085	wait_page.bit_nr = bit_nr;
1086
1087	for (;;) {
1088		spin_lock_irq(&q->lock);
 
 
 
 
 
1089
1090		if (likely(list_empty(&wait->entry))) {
1091			__add_wait_queue_entry_tail(q, wait);
1092			SetPageWaiters(page);
1093		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094
1095		set_current_state(state);
1096
1097		spin_unlock_irq(&q->lock);
 
 
 
 
1098
1099		if (likely(test_bit(bit_nr, &page->flags))) {
1100			io_schedule();
 
1101		}
1102
1103		if (lock) {
1104			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1105				break;
1106		} else {
1107			if (!test_bit(bit_nr, &page->flags))
1108				break;
1109		}
1110
1111		if (unlikely(signal_pending_state(state, current))) {
1112			ret = -EINTR;
1113			break;
1114		}
 
 
 
 
 
 
 
 
 
 
 
1115	}
1116
 
 
 
 
 
 
1117	finish_wait(q, wait);
1118
 
 
 
 
 
1119	/*
1120	 * A signal could leave PageWaiters set. Clearing it here if
1121	 * !waitqueue_active would be possible (by open-coding finish_wait),
1122	 * but still fail to catch it in the case of wait hash collision. We
1123	 * already can fail to clear wait hash collision cases, so don't
1124	 * bother with signals either.
 
 
 
 
 
 
1125	 */
 
 
1126
1127	return ret;
1128}
1129
1130void wait_on_page_bit(struct page *page, int bit_nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131{
1132	wait_queue_head_t *q = page_waitqueue(page);
1133	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134}
1135EXPORT_SYMBOL(wait_on_page_bit);
1136
1137int wait_on_page_bit_killable(struct page *page, int bit_nr)
1138{
1139	wait_queue_head_t *q = page_waitqueue(page);
1140	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1141}
1142EXPORT_SYMBOL(wait_on_page_bit_killable);
1143
1144/**
1145 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1146 * @page: Page defining the wait queue of interest
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147 * @waiter: Waiter to add to the queue
1148 *
1149 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1150 */
1151void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1152{
1153	wait_queue_head_t *q = page_waitqueue(page);
1154	unsigned long flags;
1155
1156	spin_lock_irqsave(&q->lock, flags);
1157	__add_wait_queue_entry_tail(q, waiter);
1158	SetPageWaiters(page);
1159	spin_unlock_irqrestore(&q->lock, flags);
1160}
1161EXPORT_SYMBOL_GPL(add_page_wait_queue);
1162
1163#ifndef clear_bit_unlock_is_negative_byte
1164
1165/*
1166 * PG_waiters is the high bit in the same byte as PG_lock.
 
1167 *
1168 * On x86 (and on many other architectures), we can clear PG_lock and
1169 * test the sign bit at the same time. But if the architecture does
1170 * not support that special operation, we just do this all by hand
1171 * instead.
1172 *
1173 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1174 * being cleared, but a memory barrier should be unneccssary since it is
1175 * in the same byte as PG_locked.
1176 */
1177static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1178{
1179	clear_bit_unlock(nr, mem);
1180	/* smp_mb__after_atomic(); */
1181	return test_bit(PG_waiters, mem);
 
 
 
1182}
 
1183
1184#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185
1186/**
1187 * unlock_page - unlock a locked page
1188 * @page: the page
 
 
 
1189 *
1190 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1191 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1192 * mechanism between PageLocked pages and PageWriteback pages is shared.
1193 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1194 *
1195 * Note that this depends on PG_waiters being the sign bit in the byte
1196 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1197 * clear the PG_locked bit and test PG_waiters at the same time fairly
1198 * portably (architectures that do LL/SC can test any bit, while x86 can
1199 * test the sign bit).
1200 */
1201void unlock_page(struct page *page)
1202{
1203	BUILD_BUG_ON(PG_waiters != 7);
1204	page = compound_head(page);
1205	VM_BUG_ON_PAGE(!PageLocked(page), page);
1206	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1207		wake_up_page_bit(page, PG_locked);
1208}
1209EXPORT_SYMBOL(unlock_page);
1210
1211/**
1212 * end_page_writeback - end writeback against a page
1213 * @page: the page
 
 
1214 */
1215void end_page_writeback(struct page *page)
1216{
1217	/*
1218	 * TestClearPageReclaim could be used here but it is an atomic
1219	 * operation and overkill in this particular case. Failing to
1220	 * shuffle a page marked for immediate reclaim is too mild to
1221	 * justify taking an atomic operation penalty at the end of
1222	 * ever page writeback.
1223	 */
1224	if (PageReclaim(page)) {
1225		ClearPageReclaim(page);
1226		rotate_reclaimable_page(page);
1227	}
1228
1229	if (!test_clear_page_writeback(page))
1230		BUG();
 
 
 
 
 
 
 
 
 
 
 
 
1231
1232	smp_mb__after_atomic();
1233	wake_up_page(page, PG_writeback);
 
 
 
 
 
1234}
1235EXPORT_SYMBOL(end_page_writeback);
1236
1237/*
1238 * After completing I/O on a page, call this routine to update the page
1239 * flags appropriately
 
 
 
 
1240 */
1241void page_endio(struct page *page, bool is_write, int err)
1242{
1243	if (!is_write) {
1244		if (!err) {
1245			SetPageUptodate(page);
1246		} else {
1247			ClearPageUptodate(page);
1248			SetPageError(page);
1249		}
1250		unlock_page(page);
1251	} else {
1252		if (err) {
1253			struct address_space *mapping;
1254
1255			SetPageError(page);
1256			mapping = page_mapping(page);
1257			if (mapping)
1258				mapping_set_error(mapping, err);
1259		}
1260		end_page_writeback(page);
 
 
 
 
1261	}
 
 
 
 
 
 
 
 
 
 
 
 
1262}
1263EXPORT_SYMBOL_GPL(page_endio);
1264
1265/**
1266 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1267 * @__page: the page to lock
1268 */
1269void __lock_page(struct page *__page)
1270{
1271	struct page *page = compound_head(__page);
1272	wait_queue_head_t *q = page_waitqueue(page);
1273	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1274}
1275EXPORT_SYMBOL(__lock_page);
1276
1277int __lock_page_killable(struct page *__page)
1278{
1279	struct page *page = compound_head(__page);
1280	wait_queue_head_t *q = page_waitqueue(page);
1281	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282}
1283EXPORT_SYMBOL_GPL(__lock_page_killable);
1284
1285/*
1286 * Return values:
1287 * 1 - page is locked; mmap_sem is still held.
1288 * 0 - page is not locked.
1289 *     mmap_sem has been released (up_read()), unless flags had both
1290 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1291 *     which case mmap_sem is still held.
1292 *
1293 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1294 * with the page locked and the mmap_sem unperturbed.
1295 */
1296int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1297			 unsigned int flags)
1298{
1299	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 
 
1300		/*
1301		 * CAUTION! In this case, mmap_sem is not released
1302		 * even though return 0.
1303		 */
1304		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1305			return 0;
1306
1307		up_read(&mm->mmap_sem);
1308		if (flags & FAULT_FLAG_KILLABLE)
1309			wait_on_page_locked_killable(page);
1310		else
1311			wait_on_page_locked(page);
1312		return 0;
1313	} else {
1314		if (flags & FAULT_FLAG_KILLABLE) {
1315			int ret;
1316
1317			ret = __lock_page_killable(page);
1318			if (ret) {
1319				up_read(&mm->mmap_sem);
1320				return 0;
1321			}
1322		} else
1323			__lock_page(page);
1324		return 1;
1325	}
 
 
1326}
1327
1328/**
1329 * page_cache_next_hole - find the next hole (not-present entry)
1330 * @mapping: mapping
1331 * @index: index
1332 * @max_scan: maximum range to search
1333 *
1334 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1335 * lowest indexed hole.
1336 *
1337 * Returns: the index of the hole if found, otherwise returns an index
1338 * outside of the set specified (in which case 'return - index >=
1339 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1340 * be returned.
1341 *
1342 * page_cache_next_hole may be called under rcu_read_lock. However,
1343 * like radix_tree_gang_lookup, this will not atomically search a
1344 * snapshot of the tree at a single point in time. For example, if a
1345 * hole is created at index 5, then subsequently a hole is created at
1346 * index 10, page_cache_next_hole covering both indexes may return 10
1347 * if called under rcu_read_lock.
1348 */
1349pgoff_t page_cache_next_hole(struct address_space *mapping,
1350			     pgoff_t index, unsigned long max_scan)
1351{
1352	unsigned long i;
1353
1354	for (i = 0; i < max_scan; i++) {
1355		struct page *page;
1356
1357		page = radix_tree_lookup(&mapping->i_pages, index);
1358		if (!page || radix_tree_exceptional_entry(page))
 
1359			break;
1360		index++;
1361		if (index == 0)
1362			break;
1363	}
1364
1365	return index;
1366}
1367EXPORT_SYMBOL(page_cache_next_hole);
1368
1369/**
1370 * page_cache_prev_hole - find the prev hole (not-present entry)
1371 * @mapping: mapping
1372 * @index: index
1373 * @max_scan: maximum range to search
1374 *
1375 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1376 * the first hole.
1377 *
1378 * Returns: the index of the hole if found, otherwise returns an index
1379 * outside of the set specified (in which case 'index - return >=
1380 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1381 * will be returned.
1382 *
1383 * page_cache_prev_hole may be called under rcu_read_lock. However,
1384 * like radix_tree_gang_lookup, this will not atomically search a
1385 * snapshot of the tree at a single point in time. For example, if a
1386 * hole is created at index 10, then subsequently a hole is created at
1387 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1388 * called under rcu_read_lock.
1389 */
1390pgoff_t page_cache_prev_hole(struct address_space *mapping,
1391			     pgoff_t index, unsigned long max_scan)
1392{
1393	unsigned long i;
1394
1395	for (i = 0; i < max_scan; i++) {
1396		struct page *page;
1397
1398		page = radix_tree_lookup(&mapping->i_pages, index);
1399		if (!page || radix_tree_exceptional_entry(page))
1400			break;
1401		index--;
1402		if (index == ULONG_MAX)
1403			break;
1404	}
1405
1406	return index;
1407}
1408EXPORT_SYMBOL(page_cache_prev_hole);
1409
1410/**
1411 * find_get_entry - find and get a page cache entry
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1412 * @mapping: the address_space to search
1413 * @offset: the page cache index
1414 *
1415 * Looks up the page cache slot at @mapping & @offset.  If there is a
1416 * page cache page, it is returned with an increased refcount.
1417 *
1418 * If the slot holds a shadow entry of a previously evicted page, or a
1419 * swap entry from shmem/tmpfs, it is returned.
 
 
1420 *
1421 * Otherwise, %NULL is returned.
1422 */
1423struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1424{
1425	void **pagep;
1426	struct page *head, *page;
1427
1428	rcu_read_lock();
1429repeat:
1430	page = NULL;
1431	pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1432	if (pagep) {
1433		page = radix_tree_deref_slot(pagep);
1434		if (unlikely(!page))
1435			goto out;
1436		if (radix_tree_exception(page)) {
1437			if (radix_tree_deref_retry(page))
1438				goto repeat;
1439			/*
1440			 * A shadow entry of a recently evicted page,
1441			 * or a swap entry from shmem/tmpfs.  Return
1442			 * it without attempting to raise page count.
1443			 */
1444			goto out;
1445		}
1446
1447		head = compound_head(page);
1448		if (!page_cache_get_speculative(head))
1449			goto repeat;
1450
1451		/* The page was split under us? */
1452		if (compound_head(page) != head) {
1453			put_page(head);
1454			goto repeat;
1455		}
1456
1457		/*
1458		 * Has the page moved?
1459		 * This is part of the lockless pagecache protocol. See
1460		 * include/linux/pagemap.h for details.
1461		 */
1462		if (unlikely(page != *pagep)) {
1463			put_page(head);
1464			goto repeat;
1465		}
1466	}
1467out:
1468	rcu_read_unlock();
1469
1470	return page;
1471}
1472EXPORT_SYMBOL(find_get_entry);
1473
1474/**
1475 * find_lock_entry - locate, pin and lock a page cache entry
1476 * @mapping: the address_space to search
1477 * @offset: the page cache index
1478 *
1479 * Looks up the page cache slot at @mapping & @offset.  If there is a
1480 * page cache page, it is returned locked and with an increased
1481 * refcount.
1482 *
1483 * If the slot holds a shadow entry of a previously evicted page, or a
1484 * swap entry from shmem/tmpfs, it is returned.
1485 *
1486 * Otherwise, %NULL is returned.
1487 *
1488 * find_lock_entry() may sleep.
1489 */
1490struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1491{
1492	struct page *page;
1493
1494repeat:
1495	page = find_get_entry(mapping, offset);
1496	if (page && !radix_tree_exception(page)) {
1497		lock_page(page);
1498		/* Has the page been truncated? */
1499		if (unlikely(page_mapping(page) != mapping)) {
1500			unlock_page(page);
1501			put_page(page);
1502			goto repeat;
1503		}
1504		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1505	}
1506	return page;
1507}
1508EXPORT_SYMBOL(find_lock_entry);
1509
1510/**
1511 * pagecache_get_page - find and get a page reference
1512 * @mapping: the address_space to search
1513 * @offset: the page index
1514 * @fgp_flags: PCG flags
1515 * @gfp_mask: gfp mask to use for the page cache data page allocation
1516 *
1517 * Looks up the page cache slot at @mapping & @offset.
1518 *
1519 * PCG flags modify how the page is returned.
 
1520 *
1521 * @fgp_flags can be:
1522 *
1523 * - FGP_ACCESSED: the page will be marked accessed
1524 * - FGP_LOCK: Page is return locked
1525 * - FGP_CREAT: If page is not present then a new page is allocated using
1526 *   @gfp_mask and added to the page cache and the VM's LRU
1527 *   list. The page is returned locked and with an increased
1528 *   refcount. Otherwise, NULL is returned.
1529 *
1530 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1531 * if the GFP flags specified for FGP_CREAT are atomic.
1532 *
1533 * If there is a page cache page, it is returned with an increased refcount.
1534 */
1535struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1536	int fgp_flags, gfp_t gfp_mask)
1537{
1538	struct page *page;
1539
1540repeat:
1541	page = find_get_entry(mapping, offset);
1542	if (radix_tree_exceptional_entry(page))
1543		page = NULL;
1544	if (!page)
1545		goto no_page;
1546
1547	if (fgp_flags & FGP_LOCK) {
1548		if (fgp_flags & FGP_NOWAIT) {
1549			if (!trylock_page(page)) {
1550				put_page(page);
1551				return NULL;
1552			}
1553		} else {
1554			lock_page(page);
1555		}
1556
1557		/* Has the page been truncated? */
1558		if (unlikely(page->mapping != mapping)) {
1559			unlock_page(page);
1560			put_page(page);
1561			goto repeat;
1562		}
1563		VM_BUG_ON_PAGE(page->index != offset, page);
1564	}
1565
1566	if (page && (fgp_flags & FGP_ACCESSED))
1567		mark_page_accessed(page);
 
 
 
 
 
1568
 
 
1569no_page:
1570	if (!page && (fgp_flags & FGP_CREAT)) {
 
1571		int err;
1572		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1573			gfp_mask |= __GFP_WRITE;
 
1574		if (fgp_flags & FGP_NOFS)
1575			gfp_mask &= ~__GFP_FS;
 
 
 
 
 
 
1576
1577		page = __page_cache_alloc(gfp_mask);
1578		if (!page)
1579			return NULL;
 
 
 
 
1580
1581		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1582			fgp_flags |= FGP_LOCK;
1583
1584		/* Init accessed so avoid atomic mark_page_accessed later */
1585		if (fgp_flags & FGP_ACCESSED)
1586			__SetPageReferenced(page);
 
 
 
 
 
1587
1588		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1589		if (unlikely(err)) {
1590			put_page(page);
1591			page = NULL;
1592			if (err == -EEXIST)
1593				goto repeat;
1594		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595	}
1596
1597	return page;
 
 
 
1598}
1599EXPORT_SYMBOL(pagecache_get_page);
1600
1601/**
1602 * find_get_entries - gang pagecache lookup
1603 * @mapping:	The address_space to search
1604 * @start:	The starting page cache index
1605 * @nr_entries:	The maximum number of entries
1606 * @entries:	Where the resulting entries are placed
1607 * @indices:	The cache indices corresponding to the entries in @entries
1608 *
1609 * find_get_entries() will search for and return a group of up to
1610 * @nr_entries entries in the mapping.  The entries are placed at
1611 * @entries.  find_get_entries() takes a reference against any actual
1612 * pages it returns.
1613 *
1614 * The search returns a group of mapping-contiguous page cache entries
1615 * with ascending indexes.  There may be holes in the indices due to
1616 * not-present pages.
1617 *
1618 * Any shadow entries of evicted pages, or swap entries from
 
 
 
1619 * shmem/tmpfs, are included in the returned array.
1620 *
1621 * find_get_entries() returns the number of pages and shadow entries
1622 * which were found.
1623 */
1624unsigned find_get_entries(struct address_space *mapping,
1625			  pgoff_t start, unsigned int nr_entries,
1626			  struct page **entries, pgoff_t *indices)
1627{
1628	void **slot;
1629	unsigned int ret = 0;
1630	struct radix_tree_iter iter;
1631
1632	if (!nr_entries)
1633		return 0;
1634
1635	rcu_read_lock();
1636	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1637		struct page *head, *page;
1638repeat:
1639		page = radix_tree_deref_slot(slot);
1640		if (unlikely(!page))
1641			continue;
1642		if (radix_tree_exception(page)) {
1643			if (radix_tree_deref_retry(page)) {
1644				slot = radix_tree_iter_retry(&iter);
1645				continue;
1646			}
1647			/*
1648			 * A shadow entry of a recently evicted page, a swap
1649			 * entry from shmem/tmpfs or a DAX entry.  Return it
1650			 * without attempting to raise page count.
1651			 */
1652			goto export;
1653		}
1654
1655		head = compound_head(page);
1656		if (!page_cache_get_speculative(head))
1657			goto repeat;
 
 
 
 
 
 
 
 
1658
1659		/* The page was split under us? */
1660		if (compound_head(page) != head) {
1661			put_page(head);
1662			goto repeat;
1663		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664
1665		/* Has the page moved? */
1666		if (unlikely(page != *slot)) {
1667			put_page(head);
1668			goto repeat;
 
 
 
 
 
 
 
 
 
 
1669		}
1670export:
1671		indices[ret] = iter.index;
1672		entries[ret] = page;
1673		if (++ret == nr_entries)
1674			break;
 
 
 
 
 
1675	}
1676	rcu_read_unlock();
1677	return ret;
 
 
 
 
 
 
 
 
 
 
1678}
1679
1680/**
1681 * find_get_pages_range - gang pagecache lookup
1682 * @mapping:	The address_space to search
1683 * @start:	The starting page index
1684 * @end:	The final page index (inclusive)
1685 * @nr_pages:	The maximum number of pages
1686 * @pages:	Where the resulting pages are placed
1687 *
1688 * find_get_pages_range() will search for and return a group of up to @nr_pages
1689 * pages in the mapping starting at index @start and up to index @end
1690 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1691 * a reference against the returned pages.
1692 *
1693 * The search returns a group of mapping-contiguous pages with ascending
1694 * indexes.  There may be holes in the indices due to not-present pages.
1695 * We also update @start to index the next page for the traversal.
1696 *
1697 * find_get_pages_range() returns the number of pages which were found. If this
1698 * number is smaller than @nr_pages, the end of specified range has been
1699 * reached.
1700 */
1701unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1702			      pgoff_t end, unsigned int nr_pages,
1703			      struct page **pages)
1704{
1705	struct radix_tree_iter iter;
1706	void **slot;
1707	unsigned ret = 0;
1708
1709	if (unlikely(!nr_pages))
1710		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711
1712	rcu_read_lock();
1713	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1714		struct page *head, *page;
1715
1716		if (iter.index > end)
1717			break;
1718repeat:
1719		page = radix_tree_deref_slot(slot);
1720		if (unlikely(!page))
1721			continue;
 
 
 
 
 
 
1722
1723		if (radix_tree_exception(page)) {
1724			if (radix_tree_deref_retry(page)) {
1725				slot = radix_tree_iter_retry(&iter);
1726				continue;
1727			}
1728			/*
1729			 * A shadow entry of a recently evicted page,
1730			 * or a swap entry from shmem/tmpfs.  Skip
1731			 * over it.
1732			 */
1733			continue;
1734		}
1735
1736		head = compound_head(page);
1737		if (!page_cache_get_speculative(head))
1738			goto repeat;
1739
1740		/* The page was split under us? */
1741		if (compound_head(page) != head) {
1742			put_page(head);
1743			goto repeat;
1744		}
 
 
 
1745
1746		/* Has the page moved? */
1747		if (unlikely(page != *slot)) {
1748			put_page(head);
1749			goto repeat;
1750		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751
1752		pages[ret] = page;
1753		if (++ret == nr_pages) {
1754			*start = pages[ret - 1]->index + 1;
 
 
 
 
 
 
 
 
 
1755			goto out;
1756		}
1757	}
1758
1759	/*
1760	 * We come here when there is no page beyond @end. We take care to not
1761	 * overflow the index @start as it confuses some of the callers. This
1762	 * breaks the iteration when there is page at index -1 but that is
1763	 * already broken anyway.
1764	 */
1765	if (end == (pgoff_t)-1)
1766		*start = (pgoff_t)-1;
1767	else
1768		*start = end + 1;
1769out:
1770	rcu_read_unlock();
1771
1772	return ret;
1773}
 
1774
1775/**
1776 * find_get_pages_contig - gang contiguous pagecache lookup
1777 * @mapping:	The address_space to search
1778 * @index:	The starting page index
1779 * @nr_pages:	The maximum number of pages
1780 * @pages:	Where the resulting pages are placed
1781 *
1782 * find_get_pages_contig() works exactly like find_get_pages(), except
1783 * that the returned number of pages are guaranteed to be contiguous.
 
 
 
 
 
 
1784 *
1785 * find_get_pages_contig() returns the number of pages which were found.
1786 */
1787unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1788			       unsigned int nr_pages, struct page **pages)
1789{
1790	struct radix_tree_iter iter;
1791	void **slot;
1792	unsigned int ret = 0;
1793
1794	if (unlikely(!nr_pages))
1795		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797	rcu_read_lock();
1798	radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1799		struct page *head, *page;
1800repeat:
1801		page = radix_tree_deref_slot(slot);
1802		/* The hole, there no reason to continue */
1803		if (unlikely(!page))
1804			break;
1805
1806		if (radix_tree_exception(page)) {
1807			if (radix_tree_deref_retry(page)) {
1808				slot = radix_tree_iter_retry(&iter);
1809				continue;
1810			}
1811			/*
1812			 * A shadow entry of a recently evicted page,
1813			 * or a swap entry from shmem/tmpfs.  Stop
1814			 * looking for contiguous pages.
1815			 */
1816			break;
1817		}
1818
1819		head = compound_head(page);
1820		if (!page_cache_get_speculative(head))
1821			goto repeat;
1822
1823		/* The page was split under us? */
1824		if (compound_head(page) != head) {
1825			put_page(head);
1826			goto repeat;
1827		}
1828
1829		/* Has the page moved? */
1830		if (unlikely(page != *slot)) {
1831			put_page(head);
1832			goto repeat;
1833		}
1834
1835		/*
1836		 * must check mapping and index after taking the ref.
1837		 * otherwise we can get both false positives and false
1838		 * negatives, which is just confusing to the caller.
1839		 */
1840		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1841			put_page(page);
1842			break;
1843		}
1844
1845		pages[ret] = page;
1846		if (++ret == nr_pages)
1847			break;
 
 
 
 
 
 
1848	}
1849	rcu_read_unlock();
1850	return ret;
1851}
1852EXPORT_SYMBOL(find_get_pages_contig);
1853
1854/**
1855 * find_get_pages_range_tag - find and return pages in given range matching @tag
1856 * @mapping:	the address_space to search
1857 * @index:	the starting page index
1858 * @end:	The final page index (inclusive)
1859 * @tag:	the tag index
1860 * @nr_pages:	the maximum number of pages
1861 * @pages:	where the resulting pages are placed
1862 *
1863 * Like find_get_pages, except we only return pages which are tagged with
1864 * @tag.   We update @index to index the next page for the traversal.
1865 */
1866unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1867			pgoff_t end, int tag, unsigned int nr_pages,
1868			struct page **pages)
1869{
1870	struct radix_tree_iter iter;
1871	void **slot;
1872	unsigned ret = 0;
1873
1874	if (unlikely(!nr_pages))
1875		return 0;
 
 
 
 
1876
1877	rcu_read_lock();
1878	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1879		struct page *head, *page;
 
 
 
 
 
1880
1881		if (iter.index > end)
1882			break;
1883repeat:
1884		page = radix_tree_deref_slot(slot);
1885		if (unlikely(!page))
1886			continue;
 
 
 
1887
1888		if (radix_tree_exception(page)) {
1889			if (radix_tree_deref_retry(page)) {
1890				slot = radix_tree_iter_retry(&iter);
1891				continue;
1892			}
1893			/*
1894			 * A shadow entry of a recently evicted page.
1895			 *
1896			 * Those entries should never be tagged, but
1897			 * this tree walk is lockless and the tags are
1898			 * looked up in bulk, one radix tree node at a
1899			 * time, so there is a sizable window for page
1900			 * reclaim to evict a page we saw tagged.
1901			 *
1902			 * Skip over it.
1903			 */
1904			continue;
1905		}
1906
1907		head = compound_head(page);
1908		if (!page_cache_get_speculative(head))
1909			goto repeat;
 
 
 
1910
1911		/* The page was split under us? */
1912		if (compound_head(page) != head) {
1913			put_page(head);
1914			goto repeat;
1915		}
1916
1917		/* Has the page moved? */
1918		if (unlikely(page != *slot)) {
1919			put_page(head);
1920			goto repeat;
1921		}
1922
1923		pages[ret] = page;
1924		if (++ret == nr_pages) {
1925			*index = pages[ret - 1]->index + 1;
1926			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1927		}
 
 
 
1928	}
1929
1930	/*
1931	 * We come here when we got at @end. We take care to not overflow the
1932	 * index @index as it confuses some of the callers. This breaks the
1933	 * iteration when there is page at index -1 but that is already broken
1934	 * anyway.
1935	 */
1936	if (end == (pgoff_t)-1)
1937		*index = (pgoff_t)-1;
1938	else
1939		*index = end + 1;
1940out:
1941	rcu_read_unlock();
1942
1943	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944}
1945EXPORT_SYMBOL(find_get_pages_range_tag);
1946
1947/**
1948 * find_get_entries_tag - find and return entries that match @tag
1949 * @mapping:	the address_space to search
1950 * @start:	the starting page cache index
1951 * @tag:	the tag index
1952 * @nr_entries:	the maximum number of entries
1953 * @entries:	where the resulting entries are placed
1954 * @indices:	the cache indices corresponding to the entries in @entries
1955 *
1956 * Like find_get_entries, except we only return entries which are tagged with
1957 * @tag.
1958 */
1959unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1960			int tag, unsigned int nr_entries,
1961			struct page **entries, pgoff_t *indices)
1962{
1963	void **slot;
1964	unsigned int ret = 0;
1965	struct radix_tree_iter iter;
1966
1967	if (!nr_entries)
1968		return 0;
 
1969
1970	rcu_read_lock();
1971	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1972		struct page *head, *page;
1973repeat:
1974		page = radix_tree_deref_slot(slot);
1975		if (unlikely(!page))
1976			continue;
1977		if (radix_tree_exception(page)) {
1978			if (radix_tree_deref_retry(page)) {
1979				slot = radix_tree_iter_retry(&iter);
1980				continue;
1981			}
 
 
 
 
 
 
 
 
1982
1983			/*
1984			 * A shadow entry of a recently evicted page, a swap
1985			 * entry from shmem/tmpfs or a DAX entry.  Return it
1986			 * without attempting to raise page count.
1987			 */
1988			goto export;
1989		}
1990
1991		head = compound_head(page);
1992		if (!page_cache_get_speculative(head))
1993			goto repeat;
 
 
 
 
 
1994
1995		/* The page was split under us? */
1996		if (compound_head(page) != head) {
1997			put_page(head);
1998			goto repeat;
1999		}
 
 
 
 
 
 
2000
2001		/* Has the page moved? */
2002		if (unlikely(page != *slot)) {
2003			put_page(head);
2004			goto repeat;
2005		}
2006export:
2007		indices[ret] = iter.index;
2008		entries[ret] = page;
2009		if (++ret == nr_entries)
2010			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011	}
2012	rcu_read_unlock();
2013	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014}
2015EXPORT_SYMBOL(find_get_entries_tag);
2016
2017/*
2018 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2019 * a _large_ part of the i/o request. Imagine the worst scenario:
2020 *
2021 *      ---R__________________________________________B__________
2022 *         ^ reading here                             ^ bad block(assume 4k)
2023 *
2024 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2025 * => failing the whole request => read(R) => read(R+1) =>
2026 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2027 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2028 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2029 *
2030 * It is going insane. Fix it by quickly scaling down the readahead size.
2031 */
2032static void shrink_readahead_size_eio(struct file *filp,
2033					struct file_ra_state *ra)
2034{
2035	ra->ra_pages /= 4;
 
 
2036}
2037
2038/**
2039 * generic_file_buffered_read - generic file read routine
2040 * @iocb:	the iocb to read
2041 * @iter:	data destination
2042 * @written:	already copied
2043 *
2044 * This is a generic file read routine, and uses the
2045 * mapping->a_ops->readpage() function for the actual low-level stuff.
2046 *
2047 * This is really ugly. But the goto's actually try to clarify some
2048 * of the logic when it comes to error handling etc.
 
2049 */
2050static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2051		struct iov_iter *iter, ssize_t written)
2052{
2053	struct file *filp = iocb->ki_filp;
 
2054	struct address_space *mapping = filp->f_mapping;
2055	struct inode *inode = mapping->host;
2056	struct file_ra_state *ra = &filp->f_ra;
2057	loff_t *ppos = &iocb->ki_pos;
2058	pgoff_t index;
2059	pgoff_t last_index;
2060	pgoff_t prev_index;
2061	unsigned long offset;      /* offset into pagecache page */
2062	unsigned int prev_offset;
2063	int error = 0;
2064
2065	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
 
 
2066		return 0;
 
2067	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
 
2068
2069	index = *ppos >> PAGE_SHIFT;
2070	prev_index = ra->prev_pos >> PAGE_SHIFT;
2071	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2072	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2073	offset = *ppos & ~PAGE_MASK;
2074
2075	for (;;) {
2076		struct page *page;
2077		pgoff_t end_index;
2078		loff_t isize;
2079		unsigned long nr, ret;
 
 
2080
2081		cond_resched();
2082find_page:
2083		if (fatal_signal_pending(current)) {
2084			error = -EINTR;
2085			goto out;
2086		}
2087
2088		page = find_get_page(mapping, index);
2089		if (!page) {
2090			if (iocb->ki_flags & IOCB_NOWAIT)
2091				goto would_block;
2092			page_cache_sync_readahead(mapping,
2093					ra, filp,
2094					index, last_index - index);
2095			page = find_get_page(mapping, index);
2096			if (unlikely(page == NULL))
2097				goto no_cached_page;
2098		}
2099		if (PageReadahead(page)) {
2100			page_cache_async_readahead(mapping,
2101					ra, filp, page,
2102					index, last_index - index);
2103		}
2104		if (!PageUptodate(page)) {
2105			if (iocb->ki_flags & IOCB_NOWAIT) {
2106				put_page(page);
2107				goto would_block;
2108			}
2109
2110			/*
2111			 * See comment in do_read_cache_page on why
2112			 * wait_on_page_locked is used to avoid unnecessarily
2113			 * serialisations and why it's safe.
2114			 */
2115			error = wait_on_page_locked_killable(page);
2116			if (unlikely(error))
2117				goto readpage_error;
2118			if (PageUptodate(page))
2119				goto page_ok;
2120
2121			if (inode->i_blkbits == PAGE_SHIFT ||
2122					!mapping->a_ops->is_partially_uptodate)
2123				goto page_not_up_to_date;
2124			/* pipes can't handle partially uptodate pages */
2125			if (unlikely(iter->type & ITER_PIPE))
2126				goto page_not_up_to_date;
2127			if (!trylock_page(page))
2128				goto page_not_up_to_date;
2129			/* Did it get truncated before we got the lock? */
2130			if (!page->mapping)
2131				goto page_not_up_to_date_locked;
2132			if (!mapping->a_ops->is_partially_uptodate(page,
2133							offset, iter->count))
2134				goto page_not_up_to_date_locked;
2135			unlock_page(page);
2136		}
2137page_ok:
2138		/*
2139		 * i_size must be checked after we know the page is Uptodate.
2140		 *
2141		 * Checking i_size after the check allows us to calculate
2142		 * the correct value for "nr", which means the zero-filled
2143		 * part of the page is not copied back to userspace (unless
2144		 * another truncate extends the file - this is desired though).
2145		 */
2146
2147		isize = i_size_read(inode);
2148		end_index = (isize - 1) >> PAGE_SHIFT;
2149		if (unlikely(!isize || index > end_index)) {
2150			put_page(page);
2151			goto out;
2152		}
2153
2154		/* nr is the maximum number of bytes to copy from this page */
2155		nr = PAGE_SIZE;
2156		if (index == end_index) {
2157			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2158			if (nr <= offset) {
2159				put_page(page);
2160				goto out;
2161			}
2162		}
2163		nr = nr - offset;
2164
2165		/* If users can be writing to this page using arbitrary
2166		 * virtual addresses, take care about potential aliasing
2167		 * before reading the page on the kernel side.
 
 
 
2168		 */
2169		if (mapping_writably_mapped(mapping))
2170			flush_dcache_page(page);
2171
2172		/*
2173		 * When a sequential read accesses a page several times,
2174		 * only mark it as accessed the first time.
2175		 */
2176		if (prev_index != index || offset != prev_offset)
2177			mark_page_accessed(page);
2178		prev_index = index;
2179
2180		/*
2181		 * Ok, we have the page, and it's up-to-date, so
2182		 * now we can copy it to user space...
2183		 */
 
 
 
 
 
 
 
 
 
 
 
2184
2185		ret = copy_page_to_iter(page, offset, nr, iter);
2186		offset += ret;
2187		index += offset >> PAGE_SHIFT;
2188		offset &= ~PAGE_MASK;
2189		prev_offset = offset;
2190
2191		put_page(page);
2192		written += ret;
2193		if (!iov_iter_count(iter))
2194			goto out;
2195		if (ret < nr) {
2196			error = -EFAULT;
2197			goto out;
2198		}
2199		continue;
2200
2201page_not_up_to_date:
2202		/* Get exclusive access to the page ... */
2203		error = lock_page_killable(page);
2204		if (unlikely(error))
2205			goto readpage_error;
2206
2207page_not_up_to_date_locked:
2208		/* Did it get truncated before we got the lock? */
2209		if (!page->mapping) {
2210			unlock_page(page);
2211			put_page(page);
2212			continue;
2213		}
2214
2215		/* Did somebody else fill it already? */
2216		if (PageUptodate(page)) {
2217			unlock_page(page);
2218			goto page_ok;
2219		}
2220
2221readpage:
2222		/*
2223		 * A previous I/O error may have been due to temporary
2224		 * failures, eg. multipath errors.
2225		 * PG_error will be set again if readpage fails.
2226		 */
2227		ClearPageError(page);
2228		/* Start the actual read. The read will unlock the page. */
2229		error = mapping->a_ops->readpage(filp, page);
2230
2231		if (unlikely(error)) {
2232			if (error == AOP_TRUNCATED_PAGE) {
2233				put_page(page);
2234				error = 0;
2235				goto find_page;
2236			}
2237			goto readpage_error;
2238		}
2239
2240		if (!PageUptodate(page)) {
2241			error = lock_page_killable(page);
2242			if (unlikely(error))
2243				goto readpage_error;
2244			if (!PageUptodate(page)) {
2245				if (page->mapping == NULL) {
2246					/*
2247					 * invalidate_mapping_pages got it
2248					 */
2249					unlock_page(page);
2250					put_page(page);
2251					goto find_page;
2252				}
2253				unlock_page(page);
2254				shrink_readahead_size_eio(filp, ra);
2255				error = -EIO;
2256				goto readpage_error;
2257			}
2258			unlock_page(page);
2259		}
 
 
 
 
 
2260
2261		goto page_ok;
 
 
 
 
2262
2263readpage_error:
2264		/* UHHUH! A synchronous read error occurred. Report it */
2265		put_page(page);
2266		goto out;
 
2267
2268no_cached_page:
2269		/*
2270		 * Ok, it wasn't cached, so we need to create a new
2271		 * page..
2272		 */
2273		page = page_cache_alloc(mapping);
2274		if (!page) {
2275			error = -ENOMEM;
2276			goto out;
2277		}
2278		error = add_to_page_cache_lru(page, mapping, index,
2279				mapping_gfp_constraint(mapping, GFP_KERNEL));
2280		if (error) {
2281			put_page(page);
2282			if (error == -EEXIST) {
2283				error = 0;
2284				goto find_page;
2285			}
2286			goto out;
2287		}
2288		goto readpage;
2289	}
2290
2291would_block:
2292	error = -EAGAIN;
2293out:
2294	ra->prev_pos = prev_index;
2295	ra->prev_pos <<= PAGE_SHIFT;
2296	ra->prev_pos |= prev_offset;
2297
2298	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2299	file_accessed(filp);
2300	return written ? written : error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301}
 
2302
2303/**
2304 * generic_file_read_iter - generic filesystem read routine
2305 * @iocb:	kernel I/O control block
2306 * @iter:	destination for the data read
2307 *
2308 * This is the "read_iter()" routine for all filesystems
2309 * that can use the page cache directly.
 
 
 
 
 
 
 
 
 
 
 
 
 
2310 */
2311ssize_t
2312generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2313{
2314	size_t count = iov_iter_count(iter);
2315	ssize_t retval = 0;
2316
2317	if (!count)
2318		goto out; /* skip atime */
2319
2320	if (iocb->ki_flags & IOCB_DIRECT) {
2321		struct file *file = iocb->ki_filp;
2322		struct address_space *mapping = file->f_mapping;
2323		struct inode *inode = mapping->host;
2324		loff_t size;
2325
2326		size = i_size_read(inode);
2327		if (iocb->ki_flags & IOCB_NOWAIT) {
2328			if (filemap_range_has_page(mapping, iocb->ki_pos,
2329						   iocb->ki_pos + count - 1))
2330				return -EAGAIN;
2331		} else {
2332			retval = filemap_write_and_wait_range(mapping,
2333						iocb->ki_pos,
2334					        iocb->ki_pos + count - 1);
2335			if (retval < 0)
2336				goto out;
2337		}
2338
 
 
 
2339		file_accessed(file);
2340
2341		retval = mapping->a_ops->direct_IO(iocb, iter);
2342		if (retval >= 0) {
2343			iocb->ki_pos += retval;
2344			count -= retval;
2345		}
2346		iov_iter_revert(iter, count - iov_iter_count(iter));
 
2347
2348		/*
2349		 * Btrfs can have a short DIO read if we encounter
2350		 * compressed extents, so if there was an error, or if
2351		 * we've already read everything we wanted to, or if
2352		 * there was a short read because we hit EOF, go ahead
2353		 * and return.  Otherwise fallthrough to buffered io for
2354		 * the rest of the read.  Buffered reads will not work for
2355		 * DAX files, so don't bother trying.
2356		 */
2357		if (retval < 0 || !count || iocb->ki_pos >= size ||
2358		    IS_DAX(inode))
2359			goto out;
 
2360	}
2361
2362	retval = generic_file_buffered_read(iocb, iter, retval);
2363out:
2364	return retval;
2365}
2366EXPORT_SYMBOL(generic_file_read_iter);
2367
2368#ifdef CONFIG_MMU
2369/**
2370 * page_cache_read - adds requested page to the page cache if not already there
2371 * @file:	file to read
2372 * @offset:	page index
2373 * @gfp_mask:	memory allocation flags
2374 *
2375 * This adds the requested page to the page cache if it isn't already there,
2376 * and schedules an I/O to read in its contents from disk.
2377 */
2378static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
 
2379{
2380	struct address_space *mapping = file->f_mapping;
2381	struct page *page;
2382	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2383
2384	do {
2385		page = __page_cache_alloc(gfp_mask);
2386		if (!page)
2387			return -ENOMEM;
2388
2389		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2390		if (ret == 0)
2391			ret = mapping->a_ops->readpage(file, page);
2392		else if (ret == -EEXIST)
2393			ret = 0; /* losing race to add is OK */
2394
2395		put_page(page);
 
2396
2397	} while (ret == AOP_TRUNCATED_PAGE);
 
 
 
2398
2399	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2400}
2401
 
2402#define MMAP_LOTSAMISS  (100)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2403
2404/*
2405 * Synchronous readahead happens when we don't even find
2406 * a page in the page cache at all.
 
 
 
2407 */
2408static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2409				   struct file_ra_state *ra,
2410				   struct file *file,
2411				   pgoff_t offset)
2412{
 
 
2413	struct address_space *mapping = file->f_mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414
2415	/* If we don't want any read-ahead, don't bother */
2416	if (vma->vm_flags & VM_RAND_READ)
2417		return;
2418	if (!ra->ra_pages)
2419		return;
2420
2421	if (vma->vm_flags & VM_SEQ_READ) {
2422		page_cache_sync_readahead(mapping, ra, file, offset,
2423					  ra->ra_pages);
2424		return;
2425	}
2426
2427	/* Avoid banging the cache line if not needed */
2428	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2429		ra->mmap_miss++;
 
2430
2431	/*
2432	 * Do we miss much more than hit in this file? If so,
2433	 * stop bothering with read-ahead. It will only hurt.
2434	 */
2435	if (ra->mmap_miss > MMAP_LOTSAMISS)
2436		return;
2437
2438	/*
2439	 * mmap read-around
2440	 */
2441	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
 
2442	ra->size = ra->ra_pages;
2443	ra->async_size = ra->ra_pages / 4;
2444	ra_submit(ra, mapping, file);
 
 
2445}
2446
2447/*
2448 * Asynchronous readahead happens when we find the page and PG_readahead,
2449 * so we want to possibly extend the readahead further..
 
2450 */
2451static void do_async_mmap_readahead(struct vm_area_struct *vma,
2452				    struct file_ra_state *ra,
2453				    struct file *file,
2454				    struct page *page,
2455				    pgoff_t offset)
2456{
2457	struct address_space *mapping = file->f_mapping;
 
 
 
 
2458
2459	/* If we don't want any read-ahead, don't bother */
2460	if (vma->vm_flags & VM_RAND_READ)
2461		return;
2462	if (ra->mmap_miss > 0)
2463		ra->mmap_miss--;
2464	if (PageReadahead(page))
2465		page_cache_async_readahead(mapping, ra, file,
2466					   page, offset, ra->ra_pages);
 
 
 
 
 
2467}
2468
2469/**
2470 * filemap_fault - read in file data for page fault handling
2471 * @vmf:	struct vm_fault containing details of the fault
2472 *
2473 * filemap_fault() is invoked via the vma operations vector for a
2474 * mapped memory region to read in file data during a page fault.
2475 *
2476 * The goto's are kind of ugly, but this streamlines the normal case of having
2477 * it in the page cache, and handles the special cases reasonably without
2478 * having a lot of duplicated code.
2479 *
2480 * vma->vm_mm->mmap_sem must be held on entry.
2481 *
2482 * If our return value has VM_FAULT_RETRY set, it's because
2483 * lock_page_or_retry() returned 0.
2484 * The mmap_sem has usually been released in this case.
2485 * See __lock_page_or_retry() for the exception.
2486 *
2487 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2488 * has not been released.
2489 *
2490 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
 
 
2491 */
2492int filemap_fault(struct vm_fault *vmf)
2493{
2494	int error;
2495	struct file *file = vmf->vma->vm_file;
 
2496	struct address_space *mapping = file->f_mapping;
2497	struct file_ra_state *ra = &file->f_ra;
2498	struct inode *inode = mapping->host;
2499	pgoff_t offset = vmf->pgoff;
2500	pgoff_t max_off;
2501	struct page *page;
2502	int ret = 0;
2503
2504	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2505	if (unlikely(offset >= max_off))
2506		return VM_FAULT_SIGBUS;
2507
2508	/*
2509	 * Do we have something in the page cache already?
2510	 */
2511	page = find_get_page(mapping, offset);
2512	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2513		/*
2514		 * We found the page, so try async readahead before
2515		 * waiting for the lock.
2516		 */
2517		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2518	} else if (!page) {
 
 
 
 
 
2519		/* No page in the page cache at all */
2520		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2521		count_vm_event(PGMAJFAULT);
2522		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2523		ret = VM_FAULT_MAJOR;
 
2524retry_find:
2525		page = find_get_page(mapping, offset);
2526		if (!page)
2527			goto no_cached_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2528	}
2529
2530	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2531		put_page(page);
2532		return ret | VM_FAULT_RETRY;
2533	}
2534
2535	/* Did it get truncated? */
2536	if (unlikely(page->mapping != mapping)) {
2537		unlock_page(page);
2538		put_page(page);
2539		goto retry_find;
2540	}
2541	VM_BUG_ON_PAGE(page->index != offset, page);
2542
2543	/*
2544	 * We have a locked page in the page cache, now we need to check
2545	 * that it's up-to-date. If not, it is going to be due to an error.
 
2546	 */
2547	if (unlikely(!PageUptodate(page)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2548		goto page_not_uptodate;
 
 
 
 
 
 
 
 
 
 
 
 
 
2549
2550	/*
2551	 * Found the page and have a reference on it.
2552	 * We must recheck i_size under page lock.
2553	 */
2554	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2555	if (unlikely(offset >= max_off)) {
2556		unlock_page(page);
2557		put_page(page);
2558		return VM_FAULT_SIGBUS;
2559	}
2560
2561	vmf->page = page;
2562	return ret | VM_FAULT_LOCKED;
2563
2564no_cached_page:
2565	/*
2566	 * We're only likely to ever get here if MADV_RANDOM is in
2567	 * effect.
2568	 */
2569	error = page_cache_read(file, offset, vmf->gfp_mask);
2570
2571	/*
2572	 * The page we want has now been added to the page cache.
2573	 * In the unlikely event that someone removed it in the
2574	 * meantime, we'll just come back here and read it again.
2575	 */
2576	if (error >= 0)
2577		goto retry_find;
2578
2579	/*
2580	 * An error return from page_cache_read can result if the
2581	 * system is low on memory, or a problem occurs while trying
2582	 * to schedule I/O.
2583	 */
2584	if (error == -ENOMEM)
2585		return VM_FAULT_OOM;
2586	return VM_FAULT_SIGBUS;
2587
2588page_not_uptodate:
2589	/*
2590	 * Umm, take care of errors if the page isn't up-to-date.
2591	 * Try to re-read it _once_. We do this synchronously,
2592	 * because there really aren't any performance issues here
2593	 * and we need to check for errors.
2594	 */
2595	ClearPageError(page);
2596	error = mapping->a_ops->readpage(file, page);
2597	if (!error) {
2598		wait_on_page_locked(page);
2599		if (!PageUptodate(page))
2600			error = -EIO;
2601	}
2602	put_page(page);
2603
2604	if (!error || error == AOP_TRUNCATED_PAGE)
2605		goto retry_find;
 
2606
2607	/* Things didn't work out. Return zero to tell the mm layer so. */
2608	shrink_readahead_size_eio(file, ra);
2609	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610}
2611EXPORT_SYMBOL(filemap_fault);
2612
2613void filemap_map_pages(struct vm_fault *vmf,
2614		pgoff_t start_pgoff, pgoff_t end_pgoff)
2615{
2616	struct radix_tree_iter iter;
2617	void **slot;
2618	struct file *file = vmf->vma->vm_file;
2619	struct address_space *mapping = file->f_mapping;
2620	pgoff_t last_pgoff = start_pgoff;
2621	unsigned long max_idx;
2622	struct page *head, *page;
2623
2624	rcu_read_lock();
2625	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2626		if (iter.index > end_pgoff)
2627			break;
2628repeat:
2629		page = radix_tree_deref_slot(slot);
2630		if (unlikely(!page))
2631			goto next;
2632		if (radix_tree_exception(page)) {
2633			if (radix_tree_deref_retry(page)) {
2634				slot = radix_tree_iter_retry(&iter);
2635				continue;
2636			}
2637			goto next;
2638		}
 
2639
2640		head = compound_head(page);
2641		if (!page_cache_get_speculative(head))
2642			goto repeat;
2643
2644		/* The page was split under us? */
2645		if (compound_head(page) != head) {
2646			put_page(head);
2647			goto repeat;
2648		}
2649
2650		/* Has the page moved? */
2651		if (unlikely(page != *slot)) {
2652			put_page(head);
2653			goto repeat;
2654		}
2655
2656		if (!PageUptodate(page) ||
2657				PageReadahead(page) ||
2658				PageHWPoison(page))
 
 
 
 
 
 
 
 
 
 
2659			goto skip;
2660		if (!trylock_page(page))
2661			goto skip;
2662
2663		if (page->mapping != mapping || !PageUptodate(page))
 
 
 
2664			goto unlock;
2665
2666		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2667		if (page->index >= max_idx)
2668			goto unlock;
 
 
 
 
 
 
2669
2670		if (file->f_ra.mmap_miss > 0)
2671			file->f_ra.mmap_miss--;
2672
2673		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2674		if (vmf->pte)
2675			vmf->pte += iter.index - last_pgoff;
2676		last_pgoff = iter.index;
2677		if (alloc_set_pte(vmf, NULL, page))
2678			goto unlock;
2679		unlock_page(page);
2680		goto next;
2681unlock:
2682		unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2683skip:
2684		put_page(page);
2685next:
2686		/* Huge page is mapped? No need to proceed. */
2687		if (pmd_trans_huge(*vmf->pmd))
2688			break;
2689		if (iter.index == end_pgoff)
2690			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2691	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2692	rcu_read_unlock();
 
 
 
 
 
 
 
 
2693}
2694EXPORT_SYMBOL(filemap_map_pages);
2695
2696int filemap_page_mkwrite(struct vm_fault *vmf)
2697{
2698	struct page *page = vmf->page;
2699	struct inode *inode = file_inode(vmf->vma->vm_file);
2700	int ret = VM_FAULT_LOCKED;
2701
2702	sb_start_pagefault(inode->i_sb);
2703	file_update_time(vmf->vma->vm_file);
2704	lock_page(page);
2705	if (page->mapping != inode->i_mapping) {
2706		unlock_page(page);
2707		ret = VM_FAULT_NOPAGE;
2708		goto out;
2709	}
2710	/*
2711	 * We mark the page dirty already here so that when freeze is in
2712	 * progress, we are guaranteed that writeback during freezing will
2713	 * see the dirty page and writeprotect it again.
2714	 */
2715	set_page_dirty(page);
2716	wait_for_stable_page(page);
2717out:
2718	sb_end_pagefault(inode->i_sb);
2719	return ret;
2720}
2721
2722const struct vm_operations_struct generic_file_vm_ops = {
2723	.fault		= filemap_fault,
2724	.map_pages	= filemap_map_pages,
2725	.page_mkwrite	= filemap_page_mkwrite,
2726};
2727
2728/* This is used for a general mmap of a disk file */
2729
2730int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2731{
2732	struct address_space *mapping = file->f_mapping;
2733
2734	if (!mapping->a_ops->readpage)
2735		return -ENOEXEC;
2736	file_accessed(file);
2737	vma->vm_ops = &generic_file_vm_ops;
2738	return 0;
2739}
2740
2741/*
2742 * This is for filesystems which do not implement ->writepage.
2743 */
2744int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2745{
2746	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2747		return -EINVAL;
2748	return generic_file_mmap(file, vma);
2749}
2750#else
2751int filemap_page_mkwrite(struct vm_fault *vmf)
2752{
2753	return -ENOSYS;
2754}
2755int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2756{
2757	return -ENOSYS;
2758}
2759int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2760{
2761	return -ENOSYS;
2762}
2763#endif /* CONFIG_MMU */
2764
2765EXPORT_SYMBOL(filemap_page_mkwrite);
2766EXPORT_SYMBOL(generic_file_mmap);
2767EXPORT_SYMBOL(generic_file_readonly_mmap);
2768
2769static struct page *wait_on_page_read(struct page *page)
2770{
2771	if (!IS_ERR(page)) {
2772		wait_on_page_locked(page);
2773		if (!PageUptodate(page)) {
2774			put_page(page);
2775			page = ERR_PTR(-EIO);
2776		}
2777	}
2778	return page;
2779}
2780
2781static struct page *do_read_cache_page(struct address_space *mapping,
2782				pgoff_t index,
2783				int (*filler)(void *, struct page *),
2784				void *data,
2785				gfp_t gfp)
2786{
2787	struct page *page;
2788	int err;
 
 
 
2789repeat:
2790	page = find_get_page(mapping, index);
2791	if (!page) {
2792		page = __page_cache_alloc(gfp);
2793		if (!page)
2794			return ERR_PTR(-ENOMEM);
2795		err = add_to_page_cache_lru(page, mapping, index, gfp);
2796		if (unlikely(err)) {
2797			put_page(page);
2798			if (err == -EEXIST)
2799				goto repeat;
2800			/* Presumably ENOMEM for radix tree node */
2801			return ERR_PTR(err);
2802		}
2803
2804filler:
2805		err = filler(data, page);
2806		if (err < 0) {
2807			put_page(page);
2808			return ERR_PTR(err);
2809		}
2810
2811		page = wait_on_page_read(page);
2812		if (IS_ERR(page))
2813			return page;
2814		goto out;
2815	}
2816	if (PageUptodate(page))
2817		goto out;
2818
2819	/*
2820	 * Page is not up to date and may be locked due one of the following
2821	 * case a: Page is being filled and the page lock is held
2822	 * case b: Read/write error clearing the page uptodate status
2823	 * case c: Truncation in progress (page locked)
2824	 * case d: Reclaim in progress
2825	 *
2826	 * Case a, the page will be up to date when the page is unlocked.
2827	 *    There is no need to serialise on the page lock here as the page
2828	 *    is pinned so the lock gives no additional protection. Even if the
2829	 *    the page is truncated, the data is still valid if PageUptodate as
2830	 *    it's a race vs truncate race.
2831	 * Case b, the page will not be up to date
2832	 * Case c, the page may be truncated but in itself, the data may still
2833	 *    be valid after IO completes as it's a read vs truncate race. The
2834	 *    operation must restart if the page is not uptodate on unlock but
2835	 *    otherwise serialising on page lock to stabilise the mapping gives
2836	 *    no additional guarantees to the caller as the page lock is
2837	 *    released before return.
2838	 * Case d, similar to truncation. If reclaim holds the page lock, it
2839	 *    will be a race with remove_mapping that determines if the mapping
2840	 *    is valid on unlock but otherwise the data is valid and there is
2841	 *    no need to serialise with page lock.
2842	 *
2843	 * As the page lock gives no additional guarantee, we optimistically
2844	 * wait on the page to be unlocked and check if it's up to date and
2845	 * use the page if it is. Otherwise, the page lock is required to
2846	 * distinguish between the different cases. The motivation is that we
2847	 * avoid spurious serialisations and wakeups when multiple processes
2848	 * wait on the same page for IO to complete.
2849	 */
2850	wait_on_page_locked(page);
2851	if (PageUptodate(page))
2852		goto out;
2853
2854	/* Distinguish between all the cases under the safety of the lock */
2855	lock_page(page);
2856
2857	/* Case c or d, restart the operation */
2858	if (!page->mapping) {
2859		unlock_page(page);
2860		put_page(page);
2861		goto repeat;
2862	}
2863
2864	/* Someone else locked and filled the page in a very small window */
2865	if (PageUptodate(page)) {
2866		unlock_page(page);
2867		goto out;
2868	}
2869	goto filler;
 
 
 
 
 
 
 
 
2870
2871out:
2872	mark_page_accessed(page);
2873	return page;
2874}
2875
2876/**
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping:	the page's address_space
2879 * @index:	the page index
2880 * @filler:	function to perform the read
2881 * @data:	first arg to filler(data, page) function, often left as NULL
2882 *
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2885 *
2886 * If the page does not get brought uptodate, return -EIO.
 
 
 
 
2887 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2888struct page *read_cache_page(struct address_space *mapping,
2889				pgoff_t index,
2890				int (*filler)(void *, struct page *),
2891				void *data)
2892{
2893	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 
2894}
2895EXPORT_SYMBOL(read_cache_page);
2896
2897/**
2898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2899 * @mapping:	the page's address_space
2900 * @index:	the page index
2901 * @gfp:	the page allocator flags to use if allocating
2902 *
2903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2904 * any new page allocations done using the specified allocation flags.
2905 *
2906 * If the page does not get brought uptodate, return -EIO.
 
 
 
 
2907 */
2908struct page *read_cache_page_gfp(struct address_space *mapping,
2909				pgoff_t index,
2910				gfp_t gfp)
2911{
2912	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2913
2914	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2915}
2916EXPORT_SYMBOL(read_cache_page_gfp);
2917
2918/*
2919 * Performs necessary checks before doing a write
2920 *
2921 * Can adjust writing position or amount of bytes to write.
2922 * Returns appropriate error code that caller should return or
2923 * zero in case that write should be allowed.
2924 */
2925inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2926{
2927	struct file *file = iocb->ki_filp;
2928	struct inode *inode = file->f_mapping->host;
2929	unsigned long limit = rlimit(RLIMIT_FSIZE);
2930	loff_t pos;
2931
2932	if (!iov_iter_count(from))
2933		return 0;
2934
2935	/* FIXME: this is for backwards compatibility with 2.4 */
2936	if (iocb->ki_flags & IOCB_APPEND)
2937		iocb->ki_pos = i_size_read(inode);
2938
2939	pos = iocb->ki_pos;
2940
2941	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2942		return -EINVAL;
2943
2944	if (limit != RLIM_INFINITY) {
2945		if (iocb->ki_pos >= limit) {
2946			send_sig(SIGXFSZ, current, 0);
2947			return -EFBIG;
2948		}
2949		iov_iter_truncate(from, limit - (unsigned long)pos);
2950	}
2951
2952	/*
2953	 * LFS rule
2954	 */
2955	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2956				!(file->f_flags & O_LARGEFILE))) {
2957		if (pos >= MAX_NON_LFS)
2958			return -EFBIG;
2959		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2960	}
2961
2962	/*
2963	 * Are we about to exceed the fs block limit ?
2964	 *
2965	 * If we have written data it becomes a short write.  If we have
2966	 * exceeded without writing data we send a signal and return EFBIG.
2967	 * Linus frestrict idea will clean these up nicely..
2968	 */
2969	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2970		return -EFBIG;
2971
2972	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2973	return iov_iter_count(from);
2974}
2975EXPORT_SYMBOL(generic_write_checks);
2976
2977int pagecache_write_begin(struct file *file, struct address_space *mapping,
2978				loff_t pos, unsigned len, unsigned flags,
2979				struct page **pagep, void **fsdata)
2980{
2981	const struct address_space_operations *aops = mapping->a_ops;
2982
2983	return aops->write_begin(file, mapping, pos, len, flags,
2984							pagep, fsdata);
 
 
 
2985}
2986EXPORT_SYMBOL(pagecache_write_begin);
2987
2988int pagecache_write_end(struct file *file, struct address_space *mapping,
2989				loff_t pos, unsigned len, unsigned copied,
2990				struct page *page, void *fsdata)
2991{
2992	const struct address_space_operations *aops = mapping->a_ops;
2993
2994	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2995}
2996EXPORT_SYMBOL(pagecache_write_end);
2997
2998ssize_t
2999generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3000{
3001	struct file	*file = iocb->ki_filp;
3002	struct address_space *mapping = file->f_mapping;
3003	struct inode	*inode = mapping->host;
3004	loff_t		pos = iocb->ki_pos;
3005	ssize_t		written;
3006	size_t		write_len;
3007	pgoff_t		end;
3008
3009	write_len = iov_iter_count(from);
3010	end = (pos + write_len - 1) >> PAGE_SHIFT;
3011
3012	if (iocb->ki_flags & IOCB_NOWAIT) {
3013		/* If there are pages to writeback, return */
3014		if (filemap_range_has_page(inode->i_mapping, pos,
3015					   pos + iov_iter_count(from)))
3016			return -EAGAIN;
3017	} else {
3018		written = filemap_write_and_wait_range(mapping, pos,
3019							pos + write_len - 1);
3020		if (written)
3021			goto out;
3022	}
3023
3024	/*
3025	 * After a write we want buffered reads to be sure to go to disk to get
3026	 * the new data.  We invalidate clean cached page from the region we're
3027	 * about to write.  We do this *before* the write so that we can return
3028	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3029	 */
3030	written = invalidate_inode_pages2_range(mapping,
3031					pos >> PAGE_SHIFT, end);
3032	/*
3033	 * If a page can not be invalidated, return 0 to fall back
3034	 * to buffered write.
3035	 */
 
3036	if (written) {
3037		if (written == -EBUSY)
3038			return 0;
3039		goto out;
3040	}
3041
3042	written = mapping->a_ops->direct_IO(iocb, from);
3043
3044	/*
3045	 * Finally, try again to invalidate clean pages which might have been
3046	 * cached by non-direct readahead, or faulted in by get_user_pages()
3047	 * if the source of the write was an mmap'ed region of the file
3048	 * we're writing.  Either one is a pretty crazy thing to do,
3049	 * so we don't support it 100%.  If this invalidation
3050	 * fails, tough, the write still worked...
3051	 *
3052	 * Most of the time we do not need this since dio_complete() will do
3053	 * the invalidation for us. However there are some file systems that
3054	 * do not end up with dio_complete() being called, so let's not break
3055	 * them by removing it completely
 
 
 
 
3056	 */
3057	if (mapping->nrpages)
3058		invalidate_inode_pages2_range(mapping,
3059					pos >> PAGE_SHIFT, end);
3060
3061	if (written > 0) {
 
 
 
 
3062		pos += written;
3063		write_len -= written;
3064		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3065			i_size_write(inode, pos);
3066			mark_inode_dirty(inode);
3067		}
3068		iocb->ki_pos = pos;
3069	}
3070	iov_iter_revert(from, write_len - iov_iter_count(from));
3071out:
3072	return written;
3073}
3074EXPORT_SYMBOL(generic_file_direct_write);
3075
3076/*
3077 * Find or create a page at the given pagecache position. Return the locked
3078 * page. This function is specifically for buffered writes.
3079 */
3080struct page *grab_cache_page_write_begin(struct address_space *mapping,
3081					pgoff_t index, unsigned flags)
3082{
3083	struct page *page;
3084	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3085
3086	if (flags & AOP_FLAG_NOFS)
3087		fgp_flags |= FGP_NOFS;
3088
3089	page = pagecache_get_page(mapping, index, fgp_flags,
3090			mapping_gfp_mask(mapping));
3091	if (page)
3092		wait_for_stable_page(page);
3093
3094	return page;
3095}
3096EXPORT_SYMBOL(grab_cache_page_write_begin);
3097
3098ssize_t generic_perform_write(struct file *file,
3099				struct iov_iter *i, loff_t pos)
3100{
 
 
3101	struct address_space *mapping = file->f_mapping;
3102	const struct address_space_operations *a_ops = mapping->a_ops;
3103	long status = 0;
3104	ssize_t written = 0;
3105	unsigned int flags = 0;
3106
3107	do {
3108		struct page *page;
3109		unsigned long offset;	/* Offset into pagecache page */
3110		unsigned long bytes;	/* Bytes to write to page */
3111		size_t copied;		/* Bytes copied from user */
3112		void *fsdata;
3113
3114		offset = (pos & (PAGE_SIZE - 1));
3115		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3116						iov_iter_count(i));
3117
3118again:
3119		/*
3120		 * Bring in the user page that we will copy from _first_.
3121		 * Otherwise there's a nasty deadlock on copying from the
3122		 * same page as we're writing to, without it being marked
3123		 * up-to-date.
3124		 *
3125		 * Not only is this an optimisation, but it is also required
3126		 * to check that the address is actually valid, when atomic
3127		 * usercopies are used, below.
3128		 */
3129		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3130			status = -EFAULT;
3131			break;
3132		}
3133
3134		if (fatal_signal_pending(current)) {
3135			status = -EINTR;
3136			break;
3137		}
3138
3139		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3140						&page, &fsdata);
3141		if (unlikely(status < 0))
3142			break;
3143
3144		if (mapping_writably_mapped(mapping))
3145			flush_dcache_page(page);
3146
3147		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3148		flush_dcache_page(page);
3149
3150		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3151						page, fsdata);
3152		if (unlikely(status < 0))
3153			break;
3154		copied = status;
3155
 
3156		cond_resched();
3157
3158		iov_iter_advance(i, copied);
3159		if (unlikely(copied == 0)) {
3160			/*
3161			 * If we were unable to copy any data at all, we must
3162			 * fall back to a single segment length write.
3163			 *
3164			 * If we didn't fallback here, we could livelock
3165			 * because not all segments in the iov can be copied at
3166			 * once without a pagefault.
3167			 */
3168			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3169						iov_iter_single_seg_count(i));
3170			goto again;
3171		}
3172		pos += copied;
3173		written += copied;
3174
3175		balance_dirty_pages_ratelimited(mapping);
3176	} while (iov_iter_count(i));
3177
3178	return written ? written : status;
 
 
 
3179}
3180EXPORT_SYMBOL(generic_perform_write);
3181
3182/**
3183 * __generic_file_write_iter - write data to a file
3184 * @iocb:	IO state structure (file, offset, etc.)
3185 * @from:	iov_iter with data to write
3186 *
3187 * This function does all the work needed for actually writing data to a
3188 * file. It does all basic checks, removes SUID from the file, updates
3189 * modification times and calls proper subroutines depending on whether we
3190 * do direct IO or a standard buffered write.
3191 *
3192 * It expects i_mutex to be grabbed unless we work on a block device or similar
3193 * object which does not need locking at all.
3194 *
3195 * This function does *not* take care of syncing data in case of O_SYNC write.
3196 * A caller has to handle it. This is mainly due to the fact that we want to
3197 * avoid syncing under i_mutex.
 
 
 
 
3198 */
3199ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3200{
3201	struct file *file = iocb->ki_filp;
3202	struct address_space * mapping = file->f_mapping;
3203	struct inode 	*inode = mapping->host;
3204	ssize_t		written = 0;
3205	ssize_t		err;
3206	ssize_t		status;
3207
3208	/* We can write back this queue in page reclaim */
3209	current->backing_dev_info = inode_to_bdi(inode);
3210	err = file_remove_privs(file);
3211	if (err)
3212		goto out;
3213
3214	err = file_update_time(file);
3215	if (err)
3216		goto out;
 
 
 
 
3217
3218	if (iocb->ki_flags & IOCB_DIRECT) {
3219		loff_t pos, endbyte;
3220
3221		written = generic_file_direct_write(iocb, from);
3222		/*
3223		 * If the write stopped short of completing, fall back to
3224		 * buffered writes.  Some filesystems do this for writes to
3225		 * holes, for example.  For DAX files, a buffered write will
3226		 * not succeed (even if it did, DAX does not handle dirty
3227		 * page-cache pages correctly).
3228		 */
3229		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3230			goto out;
3231
3232		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3233		/*
3234		 * If generic_perform_write() returned a synchronous error
3235		 * then we want to return the number of bytes which were
3236		 * direct-written, or the error code if that was zero.  Note
3237		 * that this differs from normal direct-io semantics, which
3238		 * will return -EFOO even if some bytes were written.
3239		 */
3240		if (unlikely(status < 0)) {
3241			err = status;
3242			goto out;
3243		}
3244		/*
3245		 * We need to ensure that the page cache pages are written to
3246		 * disk and invalidated to preserve the expected O_DIRECT
3247		 * semantics.
3248		 */
3249		endbyte = pos + status - 1;
3250		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3251		if (err == 0) {
3252			iocb->ki_pos = endbyte + 1;
3253			written += status;
3254			invalidate_mapping_pages(mapping,
3255						 pos >> PAGE_SHIFT,
3256						 endbyte >> PAGE_SHIFT);
3257		} else {
3258			/*
3259			 * We don't know how much we wrote, so just return
3260			 * the number of bytes which were direct-written
3261			 */
3262		}
3263	} else {
3264		written = generic_perform_write(file, from, iocb->ki_pos);
3265		if (likely(written > 0))
3266			iocb->ki_pos += written;
3267	}
3268out:
3269	current->backing_dev_info = NULL;
3270	return written ? written : err;
3271}
3272EXPORT_SYMBOL(__generic_file_write_iter);
3273
3274/**
3275 * generic_file_write_iter - write data to a file
3276 * @iocb:	IO state structure
3277 * @from:	iov_iter with data to write
3278 *
3279 * This is a wrapper around __generic_file_write_iter() to be used by most
3280 * filesystems. It takes care of syncing the file in case of O_SYNC file
3281 * and acquires i_mutex as needed.
 
 
 
 
3282 */
3283ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3284{
3285	struct file *file = iocb->ki_filp;
3286	struct inode *inode = file->f_mapping->host;
3287	ssize_t ret;
3288
3289	inode_lock(inode);
3290	ret = generic_write_checks(iocb, from);
3291	if (ret > 0)
3292		ret = __generic_file_write_iter(iocb, from);
3293	inode_unlock(inode);
3294
3295	if (ret > 0)
3296		ret = generic_write_sync(iocb, ret);
3297	return ret;
3298}
3299EXPORT_SYMBOL(generic_file_write_iter);
3300
3301/**
3302 * try_to_release_page() - release old fs-specific metadata on a page
3303 *
3304 * @page: the page which the kernel is trying to free
3305 * @gfp_mask: memory allocation flags (and I/O mode)
3306 *
3307 * The address_space is to try to release any data against the page
3308 * (presumably at page->private).  If the release was successful, return '1'.
3309 * Otherwise return zero.
3310 *
3311 * This may also be called if PG_fscache is set on a page, indicating that the
3312 * page is known to the local caching routines.
3313 *
3314 * The @gfp_mask argument specifies whether I/O may be performed to release
3315 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
 
3316 *
 
3317 */
3318int try_to_release_page(struct page *page, gfp_t gfp_mask)
3319{
3320	struct address_space * const mapping = page->mapping;
3321
3322	BUG_ON(!PageLocked(page));
3323	if (PageWriteback(page))
3324		return 0;
 
 
3325
3326	if (mapping && mapping->a_ops->releasepage)
3327		return mapping->a_ops->releasepage(page, gfp_mask);
3328	return try_to_free_buffers(page);
3329}
 
3330
3331EXPORT_SYMBOL(try_to_release_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/syscalls.h>
  26#include <linux/mman.h>
  27#include <linux/pagemap.h>
  28#include <linux/file.h>
  29#include <linux/uio.h>
  30#include <linux/error-injection.h>
  31#include <linux/hash.h>
  32#include <linux/writeback.h>
  33#include <linux/backing-dev.h>
  34#include <linux/pagevec.h>
 
  35#include <linux/security.h>
  36#include <linux/cpuset.h>
  37#include <linux/hugetlb.h>
  38#include <linux/memcontrol.h>
 
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include <linux/migrate.h>
  46#include <linux/pipe_fs_i.h>
  47#include <linux/splice.h>
  48#include <linux/rcupdate_wait.h>
  49#include <asm/pgalloc.h>
  50#include <asm/tlbflush.h>
  51#include "internal.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/filemap.h>
  55
  56/*
  57 * FIXME: remove all knowledge of the buffer layer from the core VM
  58 */
  59#include <linux/buffer_head.h> /* for try_to_free_buffers */
  60
  61#include <asm/mman.h>
  62
  63#include "swap.h"
  64
  65/*
  66 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  67 * though.
  68 *
  69 * Shared mappings now work. 15.8.1995  Bruno.
  70 *
  71 * finished 'unifying' the page and buffer cache and SMP-threaded the
  72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  73 *
  74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  75 */
  76
  77/*
  78 * Lock ordering:
  79 *
  80 *  ->i_mmap_rwsem		(truncate_pagecache)
  81 *    ->private_lock		(__free_pte->block_dirty_folio)
  82 *      ->swap_lock		(exclusive_swap_page, others)
  83 *        ->i_pages lock
  84 *
  85 *  ->i_rwsem
  86 *    ->invalidate_lock		(acquired by fs in truncate path)
  87 *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  88 *
  89 *  ->mmap_lock
  90 *    ->i_mmap_rwsem
  91 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  92 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  93 *
  94 *  ->mmap_lock
  95 *    ->invalidate_lock		(filemap_fault)
  96 *      ->lock_page		(filemap_fault, access_process_vm)
  97 *
  98 *  ->i_rwsem			(generic_perform_write)
  99 *    ->mmap_lock		(fault_in_readable->do_page_fault)
 100 *
 101 *  bdi->wb.list_lock
 102 *    sb_lock			(fs/fs-writeback.c)
 103 *    ->i_pages lock		(__sync_single_inode)
 104 *
 105 *  ->i_mmap_rwsem
 106 *    ->anon_vma.lock		(vma_merge)
 107 *
 108 *  ->anon_vma.lock
 109 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 110 *
 111 *  ->page_table_lock or pte_lock
 112 *    ->swap_lock		(try_to_unmap_one)
 113 *    ->private_lock		(try_to_unmap_one)
 114 *    ->i_pages lock		(try_to_unmap_one)
 115 *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 116 *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 117 *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
 118 *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
 119 *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
 120 *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
 121 *    ->memcg->move_lock	(folio_remove_rmap_pte->folio_memcg_lock)
 122 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 123 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 124 *    ->private_lock		(zap_pte_range->block_dirty_folio)
 
 
 
 125 */
 126
 127static void page_cache_delete(struct address_space *mapping,
 128				   struct folio *folio, void *shadow)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129{
 130	XA_STATE(xas, &mapping->i_pages, folio->index);
 131	long nr = 1;
 
 
 132
 133	mapping_set_update(&xas, mapping);
 
 
 134
 135	xas_set_order(&xas, folio->index, folio_order(folio));
 136	nr = folio_nr_pages(folio);
 
 137
 138	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 
 139
 140	xas_store(&xas, shadow);
 141	xas_init_marks(&xas);
 142
 143	folio->mapping = NULL;
 
 
 
 
 
 144	/* Leave page->index set: truncation lookup relies upon it */
 
 
 
 
 
 
 
 
 
 
 
 145	mapping->nrpages -= nr;
 146}
 147
 148static void filemap_unaccount_folio(struct address_space *mapping,
 149		struct folio *folio)
 150{
 151	long nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
 154	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
 155		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 156			 current->comm, folio_pfn(folio));
 157		dump_page(&folio->page, "still mapped when deleted");
 158		dump_stack();
 159		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 160
 161		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
 162			int mapcount = page_mapcount(&folio->page);
 163
 164			if (folio_ref_count(folio) >= mapcount + 2) {
 165				/*
 166				 * All vmas have already been torn down, so it's
 167				 * a good bet that actually the page is unmapped
 168				 * and we'd rather not leak it: if we're wrong,
 169				 * another bad page check should catch it later.
 170				 */
 171				page_mapcount_reset(&folio->page);
 172				folio_ref_sub(folio, mapcount);
 173			}
 174		}
 175	}
 176
 177	/* hugetlb folios do not participate in page cache accounting. */
 178	if (folio_test_hugetlb(folio))
 179		return;
 180
 181	nr = folio_nr_pages(folio);
 182
 183	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 184	if (folio_test_swapbacked(folio)) {
 185		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 186		if (folio_test_pmd_mappable(folio))
 187			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
 188	} else if (folio_test_pmd_mappable(folio)) {
 189		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
 190		filemap_nr_thps_dec(mapping);
 191	}
 192
 193	/*
 194	 * At this point folio must be either written or cleaned by
 195	 * truncate.  Dirty folio here signals a bug and loss of
 196	 * unwritten data - on ordinary filesystems.
 197	 *
 198	 * But it's harmless on in-memory filesystems like tmpfs; and can
 199	 * occur when a driver which did get_user_pages() sets page dirty
 200	 * before putting it, while the inode is being finally evicted.
 201	 *
 202	 * Below fixes dirty accounting after removing the folio entirely
 203	 * but leaves the dirty flag set: it has no effect for truncated
 204	 * folio and anyway will be cleared before returning folio to
 205	 * buddy allocator.
 206	 */
 207	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
 208			 mapping_can_writeback(mapping)))
 209		folio_account_cleaned(folio, inode_to_wb(mapping->host));
 210}
 211
 212/*
 213 * Delete a page from the page cache and free it. Caller has to make
 214 * sure the page is locked and that nobody else uses it - or that usage
 215 * is safe.  The caller must hold the i_pages lock.
 216 */
 217void __filemap_remove_folio(struct folio *folio, void *shadow)
 218{
 219	struct address_space *mapping = folio->mapping;
 220
 221	trace_mm_filemap_delete_from_page_cache(folio);
 222	filemap_unaccount_folio(mapping, folio);
 223	page_cache_delete(mapping, folio, shadow);
 
 224}
 225
 226void filemap_free_folio(struct address_space *mapping, struct folio *folio)
 
 227{
 228	void (*free_folio)(struct folio *);
 229	int refs = 1;
 230
 231	free_folio = mapping->a_ops->free_folio;
 232	if (free_folio)
 233		free_folio(folio);
 234
 235	if (folio_test_large(folio))
 236		refs = folio_nr_pages(folio);
 237	folio_put_refs(folio, refs);
 
 
 
 238}
 239
 240/**
 241 * filemap_remove_folio - Remove folio from page cache.
 242 * @folio: The folio.
 243 *
 244 * This must be called only on folios that are locked and have been
 245 * verified to be in the page cache.  It will never put the folio into
 246 * the free list because the caller has a reference on the page.
 247 */
 248void filemap_remove_folio(struct folio *folio)
 249{
 250	struct address_space *mapping = folio->mapping;
 251
 252	BUG_ON(!folio_test_locked(folio));
 253	spin_lock(&mapping->host->i_lock);
 254	xa_lock_irq(&mapping->i_pages);
 255	__filemap_remove_folio(folio, NULL);
 256	xa_unlock_irq(&mapping->i_pages);
 257	if (mapping_shrinkable(mapping))
 258		inode_add_lru(mapping->host);
 259	spin_unlock(&mapping->host->i_lock);
 260
 261	filemap_free_folio(mapping, folio);
 262}
 263
 264/*
 265 * page_cache_delete_batch - delete several folios from page cache
 266 * @mapping: the mapping to which folios belong
 267 * @fbatch: batch of folios to delete
 268 *
 269 * The function walks over mapping->i_pages and removes folios passed in
 270 * @fbatch from the mapping. The function expects @fbatch to be sorted
 271 * by page index and is optimised for it to be dense.
 272 * It tolerates holes in @fbatch (mapping entries at those indices are not
 273 * modified).
 
 
 
 
 
 
 
 
 
 
 274 *
 275 * The function expects the i_pages lock to be held.
 276 */
 277static void page_cache_delete_batch(struct address_space *mapping,
 278			     struct folio_batch *fbatch)
 279{
 280	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
 281	long total_pages = 0;
 282	int i = 0;
 283	struct folio *folio;
 284
 285	mapping_set_update(&xas, mapping);
 286	xas_for_each(&xas, folio, ULONG_MAX) {
 287		if (i >= folio_batch_count(fbatch))
 288			break;
 289
 290		/* A swap/dax/shadow entry got inserted? Skip it. */
 291		if (xa_is_value(folio))
 292			continue;
 293		/*
 294		 * A page got inserted in our range? Skip it. We have our
 295		 * pages locked so they are protected from being removed.
 296		 * If we see a page whose index is higher than ours, it
 297		 * means our page has been removed, which shouldn't be
 298		 * possible because we're holding the PageLock.
 299		 */
 300		if (folio != fbatch->folios[i]) {
 301			VM_BUG_ON_FOLIO(folio->index >
 302					fbatch->folios[i]->index, folio);
 303			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 304		}
 305
 306		WARN_ON_ONCE(!folio_test_locked(folio));
 307
 308		folio->mapping = NULL;
 309		/* Leave folio->index set: truncation lookup relies on it */
 310
 311		i++;
 312		xas_store(&xas, NULL);
 313		total_pages += folio_nr_pages(folio);
 314	}
 315	mapping->nrpages -= total_pages;
 316}
 317
 318void delete_from_page_cache_batch(struct address_space *mapping,
 319				  struct folio_batch *fbatch)
 320{
 321	int i;
 
 322
 323	if (!folio_batch_count(fbatch))
 324		return;
 325
 326	spin_lock(&mapping->host->i_lock);
 327	xa_lock_irq(&mapping->i_pages);
 328	for (i = 0; i < folio_batch_count(fbatch); i++) {
 329		struct folio *folio = fbatch->folios[i];
 330
 331		trace_mm_filemap_delete_from_page_cache(folio);
 332		filemap_unaccount_folio(mapping, folio);
 333	}
 334	page_cache_delete_batch(mapping, fbatch);
 335	xa_unlock_irq(&mapping->i_pages);
 336	if (mapping_shrinkable(mapping))
 337		inode_add_lru(mapping->host);
 338	spin_unlock(&mapping->host->i_lock);
 339
 340	for (i = 0; i < folio_batch_count(fbatch); i++)
 341		filemap_free_folio(mapping, fbatch->folios[i]);
 342}
 343
 344int filemap_check_errors(struct address_space *mapping)
 345{
 346	int ret = 0;
 347	/* Check for outstanding write errors */
 348	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 349	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 350		ret = -ENOSPC;
 351	if (test_bit(AS_EIO, &mapping->flags) &&
 352	    test_and_clear_bit(AS_EIO, &mapping->flags))
 353		ret = -EIO;
 354	return ret;
 355}
 356EXPORT_SYMBOL(filemap_check_errors);
 357
 358static int filemap_check_and_keep_errors(struct address_space *mapping)
 359{
 360	/* Check for outstanding write errors */
 361	if (test_bit(AS_EIO, &mapping->flags))
 362		return -EIO;
 363	if (test_bit(AS_ENOSPC, &mapping->flags))
 364		return -ENOSPC;
 365	return 0;
 366}
 367
 368/**
 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
 370 * @mapping:	address space structure to write
 371 * @wbc:	the writeback_control controlling the writeout
 372 *
 373 * Call writepages on the mapping using the provided wbc to control the
 374 * writeout.
 375 *
 376 * Return: %0 on success, negative error code otherwise.
 377 */
 378int filemap_fdatawrite_wbc(struct address_space *mapping,
 379			   struct writeback_control *wbc)
 380{
 381	int ret;
 382
 383	if (!mapping_can_writeback(mapping) ||
 384	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 385		return 0;
 386
 387	wbc_attach_fdatawrite_inode(wbc, mapping->host);
 388	ret = do_writepages(mapping, wbc);
 389	wbc_detach_inode(wbc);
 390	return ret;
 391}
 392EXPORT_SYMBOL(filemap_fdatawrite_wbc);
 393
 394/**
 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 396 * @mapping:	address space structure to write
 397 * @start:	offset in bytes where the range starts
 398 * @end:	offset in bytes where the range ends (inclusive)
 399 * @sync_mode:	enable synchronous operation
 400 *
 401 * Start writeback against all of a mapping's dirty pages that lie
 402 * within the byte offsets <start, end> inclusive.
 403 *
 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 405 * opposed to a regular memory cleansing writeback.  The difference between
 406 * these two operations is that if a dirty page/buffer is encountered, it must
 407 * be waited upon, and not just skipped over.
 408 *
 409 * Return: %0 on success, negative error code otherwise.
 410 */
 411int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 412				loff_t end, int sync_mode)
 413{
 
 414	struct writeback_control wbc = {
 415		.sync_mode = sync_mode,
 416		.nr_to_write = LONG_MAX,
 417		.range_start = start,
 418		.range_end = end,
 419	};
 420
 421	return filemap_fdatawrite_wbc(mapping, &wbc);
 
 
 
 
 
 
 422}
 423
 424static inline int __filemap_fdatawrite(struct address_space *mapping,
 425	int sync_mode)
 426{
 427	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 428}
 429
 430int filemap_fdatawrite(struct address_space *mapping)
 431{
 432	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 433}
 434EXPORT_SYMBOL(filemap_fdatawrite);
 435
 436int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 437				loff_t end)
 438{
 439	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 440}
 441EXPORT_SYMBOL(filemap_fdatawrite_range);
 442
 443/**
 444 * filemap_flush - mostly a non-blocking flush
 445 * @mapping:	target address_space
 446 *
 447 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 448 * purposes - I/O may not be started against all dirty pages.
 449 *
 450 * Return: %0 on success, negative error code otherwise.
 451 */
 452int filemap_flush(struct address_space *mapping)
 453{
 454	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 455}
 456EXPORT_SYMBOL(filemap_flush);
 457
 458/**
 459 * filemap_range_has_page - check if a page exists in range.
 460 * @mapping:           address space within which to check
 461 * @start_byte:        offset in bytes where the range starts
 462 * @end_byte:          offset in bytes where the range ends (inclusive)
 463 *
 464 * Find at least one page in the range supplied, usually used to check if
 465 * direct writing in this range will trigger a writeback.
 466 *
 467 * Return: %true if at least one page exists in the specified range,
 468 * %false otherwise.
 469 */
 470bool filemap_range_has_page(struct address_space *mapping,
 471			   loff_t start_byte, loff_t end_byte)
 472{
 473	struct folio *folio;
 474	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 475	pgoff_t max = end_byte >> PAGE_SHIFT;
 476
 477	if (end_byte < start_byte)
 478		return false;
 479
 480	rcu_read_lock();
 481	for (;;) {
 482		folio = xas_find(&xas, max);
 483		if (xas_retry(&xas, folio))
 484			continue;
 485		/* Shadow entries don't count */
 486		if (xa_is_value(folio))
 487			continue;
 488		/*
 489		 * We don't need to try to pin this page; we're about to
 490		 * release the RCU lock anyway.  It is enough to know that
 491		 * there was a page here recently.
 492		 */
 493		break;
 494	}
 495	rcu_read_unlock();
 496
 497	return folio != NULL;
 
 
 
 498}
 499EXPORT_SYMBOL(filemap_range_has_page);
 500
 501static void __filemap_fdatawait_range(struct address_space *mapping,
 502				     loff_t start_byte, loff_t end_byte)
 503{
 504	pgoff_t index = start_byte >> PAGE_SHIFT;
 505	pgoff_t end = end_byte >> PAGE_SHIFT;
 506	struct folio_batch fbatch;
 507	unsigned nr_folios;
 508
 509	folio_batch_init(&fbatch);
 
 510
 
 511	while (index <= end) {
 512		unsigned i;
 513
 514		nr_folios = filemap_get_folios_tag(mapping, &index, end,
 515				PAGECACHE_TAG_WRITEBACK, &fbatch);
 516
 517		if (!nr_folios)
 518			break;
 519
 520		for (i = 0; i < nr_folios; i++) {
 521			struct folio *folio = fbatch.folios[i];
 522
 523			folio_wait_writeback(folio);
 524			folio_clear_error(folio);
 525		}
 526		folio_batch_release(&fbatch);
 527		cond_resched();
 528	}
 529}
 530
 531/**
 532 * filemap_fdatawait_range - wait for writeback to complete
 533 * @mapping:		address space structure to wait for
 534 * @start_byte:		offset in bytes where the range starts
 535 * @end_byte:		offset in bytes where the range ends (inclusive)
 536 *
 537 * Walk the list of under-writeback pages of the given address space
 538 * in the given range and wait for all of them.  Check error status of
 539 * the address space and return it.
 540 *
 541 * Since the error status of the address space is cleared by this function,
 542 * callers are responsible for checking the return value and handling and/or
 543 * reporting the error.
 544 *
 545 * Return: error status of the address space.
 546 */
 547int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 548			    loff_t end_byte)
 549{
 550	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 551	return filemap_check_errors(mapping);
 552}
 553EXPORT_SYMBOL(filemap_fdatawait_range);
 554
 555/**
 556 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 557 * @mapping:		address space structure to wait for
 558 * @start_byte:		offset in bytes where the range starts
 559 * @end_byte:		offset in bytes where the range ends (inclusive)
 560 *
 561 * Walk the list of under-writeback pages of the given address space in the
 562 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 563 * this function does not clear error status of the address space.
 564 *
 565 * Use this function if callers don't handle errors themselves.  Expected
 566 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 567 * fsfreeze(8)
 568 */
 569int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 570		loff_t start_byte, loff_t end_byte)
 571{
 572	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 573	return filemap_check_and_keep_errors(mapping);
 574}
 575EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 576
 577/**
 578 * file_fdatawait_range - wait for writeback to complete
 579 * @file:		file pointing to address space structure to wait for
 580 * @start_byte:		offset in bytes where the range starts
 581 * @end_byte:		offset in bytes where the range ends (inclusive)
 582 *
 583 * Walk the list of under-writeback pages of the address space that file
 584 * refers to, in the given range and wait for all of them.  Check error
 585 * status of the address space vs. the file->f_wb_err cursor and return it.
 586 *
 587 * Since the error status of the file is advanced by this function,
 588 * callers are responsible for checking the return value and handling and/or
 589 * reporting the error.
 590 *
 591 * Return: error status of the address space vs. the file->f_wb_err cursor.
 592 */
 593int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 594{
 595	struct address_space *mapping = file->f_mapping;
 596
 597	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 598	return file_check_and_advance_wb_err(file);
 599}
 600EXPORT_SYMBOL(file_fdatawait_range);
 601
 602/**
 603 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 604 * @mapping: address space structure to wait for
 605 *
 606 * Walk the list of under-writeback pages of the given address space
 607 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 608 * does not clear error status of the address space.
 609 *
 610 * Use this function if callers don't handle errors themselves.  Expected
 611 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 612 * fsfreeze(8)
 613 *
 614 * Return: error status of the address space.
 615 */
 616int filemap_fdatawait_keep_errors(struct address_space *mapping)
 617{
 618	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 619	return filemap_check_and_keep_errors(mapping);
 620}
 621EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 622
 623/* Returns true if writeback might be needed or already in progress. */
 624static bool mapping_needs_writeback(struct address_space *mapping)
 625{
 626	return mapping->nrpages;
 
 627}
 628
 629bool filemap_range_has_writeback(struct address_space *mapping,
 630				 loff_t start_byte, loff_t end_byte)
 631{
 632	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 633	pgoff_t max = end_byte >> PAGE_SHIFT;
 634	struct folio *folio;
 635
 636	if (end_byte < start_byte)
 637		return false;
 638
 639	rcu_read_lock();
 640	xas_for_each(&xas, folio, max) {
 641		if (xas_retry(&xas, folio))
 642			continue;
 643		if (xa_is_value(folio))
 644			continue;
 645		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
 646				folio_test_writeback(folio))
 647			break;
 
 
 
 
 
 
 648	}
 649	rcu_read_unlock();
 650	return folio != NULL;
 651}
 652EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
 653
 654/**
 655 * filemap_write_and_wait_range - write out & wait on a file range
 656 * @mapping:	the address_space for the pages
 657 * @lstart:	offset in bytes where the range starts
 658 * @lend:	offset in bytes where the range ends (inclusive)
 659 *
 660 * Write out and wait upon file offsets lstart->lend, inclusive.
 661 *
 662 * Note that @lend is inclusive (describes the last byte to be written) so
 663 * that this function can be used to write to the very end-of-file (end = -1).
 664 *
 665 * Return: error status of the address space.
 666 */
 667int filemap_write_and_wait_range(struct address_space *mapping,
 668				 loff_t lstart, loff_t lend)
 669{
 670	int err = 0, err2;
 671
 672	if (lend < lstart)
 673		return 0;
 674
 675	if (mapping_needs_writeback(mapping)) {
 676		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 677						 WB_SYNC_ALL);
 678		/*
 679		 * Even if the above returned error, the pages may be
 680		 * written partially (e.g. -ENOSPC), so we wait for it.
 681		 * But the -EIO is special case, it may indicate the worst
 682		 * thing (e.g. bug) happened, so we avoid waiting for it.
 683		 */
 684		if (err != -EIO)
 685			__filemap_fdatawait_range(mapping, lstart, lend);
 
 
 
 
 686	}
 687	err2 = filemap_check_errors(mapping);
 688	if (!err)
 689		err = err2;
 690	return err;
 691}
 692EXPORT_SYMBOL(filemap_write_and_wait_range);
 693
 694void __filemap_set_wb_err(struct address_space *mapping, int err)
 695{
 696	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 697
 698	trace_filemap_set_wb_err(mapping, eseq);
 699}
 700EXPORT_SYMBOL(__filemap_set_wb_err);
 701
 702/**
 703 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 704 * 				   and advance wb_err to current one
 705 * @file: struct file on which the error is being reported
 706 *
 707 * When userland calls fsync (or something like nfsd does the equivalent), we
 708 * want to report any writeback errors that occurred since the last fsync (or
 709 * since the file was opened if there haven't been any).
 710 *
 711 * Grab the wb_err from the mapping. If it matches what we have in the file,
 712 * then just quickly return 0. The file is all caught up.
 713 *
 714 * If it doesn't match, then take the mapping value, set the "seen" flag in
 715 * it and try to swap it into place. If it works, or another task beat us
 716 * to it with the new value, then update the f_wb_err and return the error
 717 * portion. The error at this point must be reported via proper channels
 718 * (a'la fsync, or NFS COMMIT operation, etc.).
 719 *
 720 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 721 * value is protected by the f_lock since we must ensure that it reflects
 722 * the latest value swapped in for this file descriptor.
 723 *
 724 * Return: %0 on success, negative error code otherwise.
 725 */
 726int file_check_and_advance_wb_err(struct file *file)
 727{
 728	int err = 0;
 729	errseq_t old = READ_ONCE(file->f_wb_err);
 730	struct address_space *mapping = file->f_mapping;
 731
 732	/* Locklessly handle the common case where nothing has changed */
 733	if (errseq_check(&mapping->wb_err, old)) {
 734		/* Something changed, must use slow path */
 735		spin_lock(&file->f_lock);
 736		old = file->f_wb_err;
 737		err = errseq_check_and_advance(&mapping->wb_err,
 738						&file->f_wb_err);
 739		trace_file_check_and_advance_wb_err(file, old);
 740		spin_unlock(&file->f_lock);
 741	}
 742
 743	/*
 744	 * We're mostly using this function as a drop in replacement for
 745	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 746	 * that the legacy code would have had on these flags.
 747	 */
 748	clear_bit(AS_EIO, &mapping->flags);
 749	clear_bit(AS_ENOSPC, &mapping->flags);
 750	return err;
 751}
 752EXPORT_SYMBOL(file_check_and_advance_wb_err);
 753
 754/**
 755 * file_write_and_wait_range - write out & wait on a file range
 756 * @file:	file pointing to address_space with pages
 757 * @lstart:	offset in bytes where the range starts
 758 * @lend:	offset in bytes where the range ends (inclusive)
 759 *
 760 * Write out and wait upon file offsets lstart->lend, inclusive.
 761 *
 762 * Note that @lend is inclusive (describes the last byte to be written) so
 763 * that this function can be used to write to the very end-of-file (end = -1).
 764 *
 765 * After writing out and waiting on the data, we check and advance the
 766 * f_wb_err cursor to the latest value, and return any errors detected there.
 767 *
 768 * Return: %0 on success, negative error code otherwise.
 769 */
 770int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 771{
 772	int err = 0, err2;
 773	struct address_space *mapping = file->f_mapping;
 774
 775	if (lend < lstart)
 776		return 0;
 777
 778	if (mapping_needs_writeback(mapping)) {
 779		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 780						 WB_SYNC_ALL);
 781		/* See comment of filemap_write_and_wait() */
 782		if (err != -EIO)
 783			__filemap_fdatawait_range(mapping, lstart, lend);
 784	}
 785	err2 = file_check_and_advance_wb_err(file);
 786	if (!err)
 787		err = err2;
 788	return err;
 789}
 790EXPORT_SYMBOL(file_write_and_wait_range);
 791
 792/**
 793 * replace_page_cache_folio - replace a pagecache folio with a new one
 794 * @old:	folio to be replaced
 795 * @new:	folio to replace with
 796 *
 797 * This function replaces a folio in the pagecache with a new one.  On
 798 * success it acquires the pagecache reference for the new folio and
 799 * drops it for the old folio.  Both the old and new folios must be
 800 * locked.  This function does not add the new folio to the LRU, the
 
 801 * caller must do that.
 802 *
 803 * The remove + add is atomic.  This function cannot fail.
 
 804 */
 805void replace_page_cache_folio(struct folio *old, struct folio *new)
 806{
 807	struct address_space *mapping = old->mapping;
 808	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
 809	pgoff_t offset = old->index;
 810	XA_STATE(xas, &mapping->i_pages, offset);
 811
 812	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
 813	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
 814	VM_BUG_ON_FOLIO(new->mapping, new);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815
 816	folio_get(new);
 817	new->mapping = mapping;
 818	new->index = offset;
 819
 820	mem_cgroup_replace_folio(old, new);
 821
 822	xas_lock_irq(&xas);
 823	xas_store(&xas, new);
 
 
 
 
 824
 825	old->mapping = NULL;
 826	/* hugetlb pages do not participate in page cache accounting. */
 827	if (!folio_test_hugetlb(old))
 828		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
 829	if (!folio_test_hugetlb(new))
 830		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
 831	if (folio_test_swapbacked(old))
 832		__lruvec_stat_sub_folio(old, NR_SHMEM);
 833	if (folio_test_swapbacked(new))
 834		__lruvec_stat_add_folio(new, NR_SHMEM);
 835	xas_unlock_irq(&xas);
 836	if (free_folio)
 837		free_folio(old);
 838	folio_put(old);
 839}
 840EXPORT_SYMBOL_GPL(replace_page_cache_folio);
 841
 842noinline int __filemap_add_folio(struct address_space *mapping,
 843		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
 844{
 845	XA_STATE(xas, &mapping->i_pages, index);
 846	int huge = folio_test_hugetlb(folio);
 847	bool charged = false;
 848	long nr = 1;
 849
 850	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 851	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
 852	mapping_set_update(&xas, mapping);
 853
 854	if (!huge) {
 855		int error = mem_cgroup_charge(folio, NULL, gfp);
 
 856		if (error)
 857			return error;
 858		charged = true;
 859	}
 860
 861	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
 862	xas_set_order(&xas, index, folio_order(folio));
 863	nr = folio_nr_pages(folio);
 
 
 
 864
 865	gfp &= GFP_RECLAIM_MASK;
 866	folio_ref_add(folio, nr);
 867	folio->mapping = mapping;
 868	folio->index = xas.xa_index;
 869
 870	do {
 871		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 872		void *entry, *old = NULL;
 
 
 873
 874		if (order > folio_order(folio))
 875			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 876					order, gfp);
 877		xas_lock_irq(&xas);
 878		xas_for_each_conflict(&xas, entry) {
 879			old = entry;
 880			if (!xa_is_value(entry)) {
 881				xas_set_err(&xas, -EEXIST);
 882				goto unlock;
 883			}
 884		}
 885
 886		if (old) {
 887			if (shadowp)
 888				*shadowp = old;
 889			/* entry may have been split before we acquired lock */
 890			order = xa_get_order(xas.xa, xas.xa_index);
 891			if (order > folio_order(folio)) {
 892				/* How to handle large swap entries? */
 893				BUG_ON(shmem_mapping(mapping));
 894				xas_split(&xas, old, order);
 895				xas_reset(&xas);
 896			}
 897		}
 898
 899		xas_store(&xas, folio);
 900		if (xas_error(&xas))
 901			goto unlock;
 902
 903		mapping->nrpages += nr;
 904
 905		/* hugetlb pages do not participate in page cache accounting */
 906		if (!huge) {
 907			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 908			if (folio_test_pmd_mappable(folio))
 909				__lruvec_stat_mod_folio(folio,
 910						NR_FILE_THPS, nr);
 911		}
 912unlock:
 913		xas_unlock_irq(&xas);
 914	} while (xas_nomem(&xas, gfp));
 915
 916	if (xas_error(&xas))
 917		goto error;
 918
 919	trace_mm_filemap_add_to_page_cache(folio);
 920	return 0;
 921error:
 922	if (charged)
 923		mem_cgroup_uncharge(folio);
 924	folio->mapping = NULL;
 925	/* Leave page->index set: truncation relies upon it */
 926	folio_put_refs(folio, nr);
 927	return xas_error(&xas);
 
 
 
 928}
 929ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
 930
 931int filemap_add_folio(struct address_space *mapping, struct folio *folio,
 932				pgoff_t index, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933{
 934	void *shadow = NULL;
 935	int ret;
 936
 937	__folio_set_locked(folio);
 938	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
 
 939	if (unlikely(ret))
 940		__folio_clear_locked(folio);
 941	else {
 942		/*
 943		 * The folio might have been evicted from cache only
 944		 * recently, in which case it should be activated like
 945		 * any other repeatedly accessed folio.
 946		 * The exception is folios getting rewritten; evicting other
 947		 * data from the working set, only to cache data that will
 948		 * get overwritten with something else, is a waste of memory.
 949		 */
 950		WARN_ON_ONCE(folio_test_active(folio));
 951		if (!(gfp & __GFP_WRITE) && shadow)
 952			workingset_refault(folio, shadow);
 953		folio_add_lru(folio);
 
 
 
 954	}
 955	return ret;
 956}
 957EXPORT_SYMBOL_GPL(filemap_add_folio);
 958
 959#ifdef CONFIG_NUMA
 960struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
 961{
 962	int n;
 963	struct folio *folio;
 964
 965	if (cpuset_do_page_mem_spread()) {
 966		unsigned int cpuset_mems_cookie;
 967		do {
 968			cpuset_mems_cookie = read_mems_allowed_begin();
 969			n = cpuset_mem_spread_node();
 970			folio = __folio_alloc_node(gfp, order, n);
 971		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
 972
 973		return folio;
 974	}
 975	return folio_alloc(gfp, order);
 976}
 977EXPORT_SYMBOL(filemap_alloc_folio);
 978#endif
 979
 980/*
 981 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
 982 *
 983 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
 984 *
 985 * @mapping1: the first mapping to lock
 986 * @mapping2: the second mapping to lock
 987 */
 988void filemap_invalidate_lock_two(struct address_space *mapping1,
 989				 struct address_space *mapping2)
 990{
 991	if (mapping1 > mapping2)
 992		swap(mapping1, mapping2);
 993	if (mapping1)
 994		down_write(&mapping1->invalidate_lock);
 995	if (mapping2 && mapping1 != mapping2)
 996		down_write_nested(&mapping2->invalidate_lock, 1);
 997}
 998EXPORT_SYMBOL(filemap_invalidate_lock_two);
 999
1000/*
1001 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1002 *
1003 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1004 *
1005 * @mapping1: the first mapping to unlock
1006 * @mapping2: the second mapping to unlock
1007 */
1008void filemap_invalidate_unlock_two(struct address_space *mapping1,
1009				   struct address_space *mapping2)
1010{
1011	if (mapping1)
1012		up_write(&mapping1->invalidate_lock);
1013	if (mapping2 && mapping1 != mapping2)
1014		up_write(&mapping2->invalidate_lock);
1015}
1016EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1017
1018/*
1019 * In order to wait for pages to become available there must be
1020 * waitqueues associated with pages. By using a hash table of
1021 * waitqueues where the bucket discipline is to maintain all
1022 * waiters on the same queue and wake all when any of the pages
1023 * become available, and for the woken contexts to check to be
1024 * sure the appropriate page became available, this saves space
1025 * at a cost of "thundering herd" phenomena during rare hash
1026 * collisions.
1027 */
1028#define PAGE_WAIT_TABLE_BITS 8
1029#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1030static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1031
1032static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1033{
1034	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1035}
1036
1037void __init pagecache_init(void)
1038{
1039	int i;
1040
1041	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1042		init_waitqueue_head(&folio_wait_table[i]);
1043
1044	page_writeback_init();
1045}
1046
1047/*
1048 * The page wait code treats the "wait->flags" somewhat unusually, because
1049 * we have multiple different kinds of waits, not just the usual "exclusive"
1050 * one.
1051 *
1052 * We have:
1053 *
1054 *  (a) no special bits set:
1055 *
1056 *	We're just waiting for the bit to be released, and when a waker
1057 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1058 *	and remove it from the wait queue.
1059 *
1060 *	Simple and straightforward.
1061 *
1062 *  (b) WQ_FLAG_EXCLUSIVE:
1063 *
1064 *	The waiter is waiting to get the lock, and only one waiter should
1065 *	be woken up to avoid any thundering herd behavior. We'll set the
1066 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1067 *
1068 *	This is the traditional exclusive wait.
1069 *
1070 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1071 *
1072 *	The waiter is waiting to get the bit, and additionally wants the
1073 *	lock to be transferred to it for fair lock behavior. If the lock
1074 *	cannot be taken, we stop walking the wait queue without waking
1075 *	the waiter.
1076 *
1077 *	This is the "fair lock handoff" case, and in addition to setting
1078 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1079 *	that it now has the lock.
1080 */
1081static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1082{
1083	unsigned int flags;
1084	struct wait_page_key *key = arg;
1085	struct wait_page_queue *wait_page
1086		= container_of(wait, struct wait_page_queue, wait);
1087
1088	if (!wake_page_match(wait_page, key))
 
 
 
 
1089		return 0;
1090
1091	/*
1092	 * If it's a lock handoff wait, we get the bit for it, and
1093	 * stop walking (and do not wake it up) if we can't.
1094	 */
1095	flags = wait->flags;
1096	if (flags & WQ_FLAG_EXCLUSIVE) {
1097		if (test_bit(key->bit_nr, &key->folio->flags))
1098			return -1;
1099		if (flags & WQ_FLAG_CUSTOM) {
1100			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1101				return -1;
1102			flags |= WQ_FLAG_DONE;
1103		}
1104	}
1105
1106	/*
1107	 * We are holding the wait-queue lock, but the waiter that
1108	 * is waiting for this will be checking the flags without
1109	 * any locking.
1110	 *
1111	 * So update the flags atomically, and wake up the waiter
1112	 * afterwards to avoid any races. This store-release pairs
1113	 * with the load-acquire in folio_wait_bit_common().
1114	 */
1115	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1116	wake_up_state(wait->private, mode);
1117
1118	/*
1119	 * Ok, we have successfully done what we're waiting for,
1120	 * and we can unconditionally remove the wait entry.
1121	 *
1122	 * Note that this pairs with the "finish_wait()" in the
1123	 * waiter, and has to be the absolute last thing we do.
1124	 * After this list_del_init(&wait->entry) the wait entry
1125	 * might be de-allocated and the process might even have
1126	 * exited.
1127	 */
1128	list_del_init_careful(&wait->entry);
1129	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1130}
1131
1132static void folio_wake_bit(struct folio *folio, int bit_nr)
1133{
1134	wait_queue_head_t *q = folio_waitqueue(folio);
1135	struct wait_page_key key;
1136	unsigned long flags;
 
1137
1138	key.folio = folio;
1139	key.bit_nr = bit_nr;
1140	key.page_match = 0;
1141
 
 
 
 
 
1142	spin_lock_irqsave(&q->lock, flags);
1143	__wake_up_locked_key(q, TASK_NORMAL, &key);
 
 
 
 
 
 
 
 
 
 
 
 
 
1144
1145	/*
1146	 * It's possible to miss clearing waiters here, when we woke our page
1147	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1148	 * That's okay, it's a rare case. The next waker will clear it.
1149	 *
1150	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1151	 * other), the flag may be cleared in the course of freeing the page;
1152	 * but that is not required for correctness.
1153	 */
1154	if (!waitqueue_active(q) || !key.page_match)
1155		folio_clear_waiters(folio);
1156
 
 
 
 
 
 
 
1157	spin_unlock_irqrestore(&q->lock, flags);
1158}
1159
1160/*
1161 * A choice of three behaviors for folio_wait_bit_common():
1162 */
1163enum behavior {
1164	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1165			 * __folio_lock() waiting on then setting PG_locked.
1166			 */
1167	SHARED,		/* Hold ref to page and check the bit when woken, like
1168			 * folio_wait_writeback() waiting on PG_writeback.
1169			 */
1170	DROP,		/* Drop ref to page before wait, no check when woken,
1171			 * like folio_put_wait_locked() on PG_locked.
1172			 */
1173};
1174
1175/*
1176 * Attempt to check (or get) the folio flag, and mark us done
1177 * if successful.
1178 */
1179static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1180					struct wait_queue_entry *wait)
1181{
1182	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1183		if (test_and_set_bit(bit_nr, &folio->flags))
1184			return false;
1185	} else if (test_bit(bit_nr, &folio->flags))
1186		return false;
1187
1188	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1189	return true;
1190}
1191
1192/* How many times do we accept lock stealing from under a waiter? */
1193int sysctl_page_lock_unfairness = 5;
1194
1195static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1196		int state, enum behavior behavior)
1197{
1198	wait_queue_head_t *q = folio_waitqueue(folio);
1199	int unfairness = sysctl_page_lock_unfairness;
1200	struct wait_page_queue wait_page;
1201	wait_queue_entry_t *wait = &wait_page.wait;
1202	bool thrashing = false;
1203	unsigned long pflags;
1204	bool in_thrashing;
1205
1206	if (bit_nr == PG_locked &&
1207	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1208		delayacct_thrashing_start(&in_thrashing);
1209		psi_memstall_enter(&pflags);
1210		thrashing = true;
1211	}
1212
1213	init_wait(wait);
 
1214	wait->func = wake_page_function;
1215	wait_page.folio = folio;
1216	wait_page.bit_nr = bit_nr;
1217
1218repeat:
1219	wait->flags = 0;
1220	if (behavior == EXCLUSIVE) {
1221		wait->flags = WQ_FLAG_EXCLUSIVE;
1222		if (--unfairness < 0)
1223			wait->flags |= WQ_FLAG_CUSTOM;
1224	}
1225
1226	/*
1227	 * Do one last check whether we can get the
1228	 * page bit synchronously.
1229	 *
1230	 * Do the folio_set_waiters() marking before that
1231	 * to let any waker we _just_ missed know they
1232	 * need to wake us up (otherwise they'll never
1233	 * even go to the slow case that looks at the
1234	 * page queue), and add ourselves to the wait
1235	 * queue if we need to sleep.
1236	 *
1237	 * This part needs to be done under the queue
1238	 * lock to avoid races.
1239	 */
1240	spin_lock_irq(&q->lock);
1241	folio_set_waiters(folio);
1242	if (!folio_trylock_flag(folio, bit_nr, wait))
1243		__add_wait_queue_entry_tail(q, wait);
1244	spin_unlock_irq(&q->lock);
1245
1246	/*
1247	 * From now on, all the logic will be based on
1248	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249	 * see whether the page bit testing has already
1250	 * been done by the wake function.
1251	 *
1252	 * We can drop our reference to the folio.
1253	 */
1254	if (behavior == DROP)
1255		folio_put(folio);
1256
1257	/*
1258	 * Note that until the "finish_wait()", or until
1259	 * we see the WQ_FLAG_WOKEN flag, we need to
1260	 * be very careful with the 'wait->flags', because
1261	 * we may race with a waker that sets them.
1262	 */
1263	for (;;) {
1264		unsigned int flags;
1265
1266		set_current_state(state);
1267
1268		/* Loop until we've been woken or interrupted */
1269		flags = smp_load_acquire(&wait->flags);
1270		if (!(flags & WQ_FLAG_WOKEN)) {
1271			if (signal_pending_state(state, current))
1272				break;
1273
 
1274			io_schedule();
1275			continue;
1276		}
1277
1278		/* If we were non-exclusive, we're done */
1279		if (behavior != EXCLUSIVE)
1280			break;
 
 
 
 
1281
1282		/* If the waker got the lock for us, we're done */
1283		if (flags & WQ_FLAG_DONE)
1284			break;
1285
1286		/*
1287		 * Otherwise, if we're getting the lock, we need to
1288		 * try to get it ourselves.
1289		 *
1290		 * And if that fails, we'll have to retry this all.
1291		 */
1292		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1293			goto repeat;
1294
1295		wait->flags |= WQ_FLAG_DONE;
1296		break;
1297	}
1298
1299	/*
1300	 * If a signal happened, this 'finish_wait()' may remove the last
1301	 * waiter from the wait-queues, but the folio waiters bit will remain
1302	 * set. That's ok. The next wakeup will take care of it, and trying
1303	 * to do it here would be difficult and prone to races.
1304	 */
1305	finish_wait(q, wait);
1306
1307	if (thrashing) {
1308		delayacct_thrashing_end(&in_thrashing);
1309		psi_memstall_leave(&pflags);
1310	}
1311
1312	/*
1313	 * NOTE! The wait->flags weren't stable until we've done the
1314	 * 'finish_wait()', and we could have exited the loop above due
1315	 * to a signal, and had a wakeup event happen after the signal
1316	 * test but before the 'finish_wait()'.
1317	 *
1318	 * So only after the finish_wait() can we reliably determine
1319	 * if we got woken up or not, so we can now figure out the final
1320	 * return value based on that state without races.
1321	 *
1322	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1323	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1324	 */
1325	if (behavior == EXCLUSIVE)
1326		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1327
1328	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1329}
1330
1331#ifdef CONFIG_MIGRATION
1332/**
1333 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1334 * @entry: migration swap entry.
1335 * @ptl: already locked ptl. This function will drop the lock.
1336 *
1337 * Wait for a migration entry referencing the given page to be removed. This is
1338 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1339 * this can be called without taking a reference on the page. Instead this
1340 * should be called while holding the ptl for the migration entry referencing
1341 * the page.
1342 *
1343 * Returns after unlocking the ptl.
1344 *
1345 * This follows the same logic as folio_wait_bit_common() so see the comments
1346 * there.
1347 */
1348void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1349	__releases(ptl)
1350{
1351	struct wait_page_queue wait_page;
1352	wait_queue_entry_t *wait = &wait_page.wait;
1353	bool thrashing = false;
1354	unsigned long pflags;
1355	bool in_thrashing;
1356	wait_queue_head_t *q;
1357	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1358
1359	q = folio_waitqueue(folio);
1360	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1361		delayacct_thrashing_start(&in_thrashing);
1362		psi_memstall_enter(&pflags);
1363		thrashing = true;
1364	}
1365
1366	init_wait(wait);
1367	wait->func = wake_page_function;
1368	wait_page.folio = folio;
1369	wait_page.bit_nr = PG_locked;
1370	wait->flags = 0;
1371
1372	spin_lock_irq(&q->lock);
1373	folio_set_waiters(folio);
1374	if (!folio_trylock_flag(folio, PG_locked, wait))
1375		__add_wait_queue_entry_tail(q, wait);
1376	spin_unlock_irq(&q->lock);
1377
1378	/*
1379	 * If a migration entry exists for the page the migration path must hold
1380	 * a valid reference to the page, and it must take the ptl to remove the
1381	 * migration entry. So the page is valid until the ptl is dropped.
1382	 */
1383	spin_unlock(ptl);
1384
1385	for (;;) {
1386		unsigned int flags;
1387
1388		set_current_state(TASK_UNINTERRUPTIBLE);
1389
1390		/* Loop until we've been woken or interrupted */
1391		flags = smp_load_acquire(&wait->flags);
1392		if (!(flags & WQ_FLAG_WOKEN)) {
1393			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1394				break;
1395
1396			io_schedule();
1397			continue;
1398		}
1399		break;
1400	}
1401
1402	finish_wait(q, wait);
1403
1404	if (thrashing) {
1405		delayacct_thrashing_end(&in_thrashing);
1406		psi_memstall_leave(&pflags);
1407	}
1408}
1409#endif
1410
1411void folio_wait_bit(struct folio *folio, int bit_nr)
1412{
1413	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1414}
1415EXPORT_SYMBOL(folio_wait_bit);
1416
1417int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1418{
1419	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
 
1420}
1421EXPORT_SYMBOL(folio_wait_bit_killable);
1422
1423/**
1424 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1425 * @folio: The folio to wait for.
1426 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1427 *
1428 * The caller should hold a reference on @folio.  They expect the page to
1429 * become unlocked relatively soon, but do not wish to hold up migration
1430 * (for example) by holding the reference while waiting for the folio to
1431 * come unlocked.  After this function returns, the caller should not
1432 * dereference @folio.
1433 *
1434 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1435 */
1436static int folio_put_wait_locked(struct folio *folio, int state)
1437{
1438	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1439}
1440
1441/**
1442 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1443 * @folio: Folio defining the wait queue of interest
1444 * @waiter: Waiter to add to the queue
1445 *
1446 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1447 */
1448void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1449{
1450	wait_queue_head_t *q = folio_waitqueue(folio);
1451	unsigned long flags;
1452
1453	spin_lock_irqsave(&q->lock, flags);
1454	__add_wait_queue_entry_tail(q, waiter);
1455	folio_set_waiters(folio);
1456	spin_unlock_irqrestore(&q->lock, flags);
1457}
1458EXPORT_SYMBOL_GPL(folio_add_wait_queue);
 
 
1459
1460/**
1461 * folio_unlock - Unlock a locked folio.
1462 * @folio: The folio.
1463 *
1464 * Unlocks the folio and wakes up any thread sleeping on the page lock.
 
 
 
1465 *
1466 * Context: May be called from interrupt or process context.  May not be
1467 * called from NMI context.
 
1468 */
1469void folio_unlock(struct folio *folio)
1470{
1471	/* Bit 7 allows x86 to check the byte's sign bit */
1472	BUILD_BUG_ON(PG_waiters != 7);
1473	BUILD_BUG_ON(PG_locked > 7);
1474	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1475	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1476		folio_wake_bit(folio, PG_locked);
1477}
1478EXPORT_SYMBOL(folio_unlock);
1479
1480/**
1481 * folio_end_read - End read on a folio.
1482 * @folio: The folio.
1483 * @success: True if all reads completed successfully.
1484 *
1485 * When all reads against a folio have completed, filesystems should
1486 * call this function to let the pagecache know that no more reads
1487 * are outstanding.  This will unlock the folio and wake up any thread
1488 * sleeping on the lock.  The folio will also be marked uptodate if all
1489 * reads succeeded.
1490 *
1491 * Context: May be called from interrupt or process context.  May not be
1492 * called from NMI context.
1493 */
1494void folio_end_read(struct folio *folio, bool success)
1495{
1496	unsigned long mask = 1 << PG_locked;
1497
1498	/* Must be in bottom byte for x86 to work */
1499	BUILD_BUG_ON(PG_uptodate > 7);
1500	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1501	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1502
1503	if (likely(success))
1504		mask |= 1 << PG_uptodate;
1505	if (folio_xor_flags_has_waiters(folio, mask))
1506		folio_wake_bit(folio, PG_locked);
1507}
1508EXPORT_SYMBOL(folio_end_read);
1509
1510/**
1511 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1512 * @folio: The folio.
1513 *
1514 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1515 * it.  The folio reference held for PG_private_2 being set is released.
1516 *
1517 * This is, for example, used when a netfs folio is being written to a local
1518 * disk cache, thereby allowing writes to the cache for the same folio to be
1519 * serialised.
 
 
 
 
 
 
 
1520 */
1521void folio_end_private_2(struct folio *folio)
1522{
1523	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1524	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1525	folio_wake_bit(folio, PG_private_2);
1526	folio_put(folio);
 
1527}
1528EXPORT_SYMBOL(folio_end_private_2);
1529
1530/**
1531 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1532 * @folio: The folio to wait on.
1533 *
1534 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1535 */
1536void folio_wait_private_2(struct folio *folio)
1537{
1538	while (folio_test_private_2(folio))
1539		folio_wait_bit(folio, PG_private_2);
1540}
1541EXPORT_SYMBOL(folio_wait_private_2);
 
 
 
 
 
 
 
1542
1543/**
1544 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1545 * @folio: The folio to wait on.
1546 *
1547 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1548 * fatal signal is received by the calling task.
1549 *
1550 * Return:
1551 * - 0 if successful.
1552 * - -EINTR if a fatal signal was encountered.
1553 */
1554int folio_wait_private_2_killable(struct folio *folio)
1555{
1556	int ret = 0;
1557
1558	while (folio_test_private_2(folio)) {
1559		ret = folio_wait_bit_killable(folio, PG_private_2);
1560		if (ret < 0)
1561			break;
1562	}
1563
1564	return ret;
1565}
1566EXPORT_SYMBOL(folio_wait_private_2_killable);
1567
1568/**
1569 * folio_end_writeback - End writeback against a folio.
1570 * @folio: The folio.
1571 *
1572 * The folio must actually be under writeback.
1573 *
1574 * Context: May be called from process or interrupt context.
1575 */
1576void folio_end_writeback(struct folio *folio)
1577{
1578	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
 
 
 
 
 
 
 
 
 
 
1579
1580	/*
1581	 * folio_test_clear_reclaim() could be used here but it is an
1582	 * atomic operation and overkill in this particular case. Failing
1583	 * to shuffle a folio marked for immediate reclaim is too mild
1584	 * a gain to justify taking an atomic operation penalty at the
1585	 * end of every folio writeback.
1586	 */
1587	if (folio_test_reclaim(folio)) {
1588		folio_clear_reclaim(folio);
1589		folio_rotate_reclaimable(folio);
1590	}
1591
1592	/*
1593	 * Writeback does not hold a folio reference of its own, relying
1594	 * on truncation to wait for the clearing of PG_writeback.
1595	 * But here we must make sure that the folio is not freed and
1596	 * reused before the folio_wake_bit().
1597	 */
1598	folio_get(folio);
1599	if (__folio_end_writeback(folio))
1600		folio_wake_bit(folio, PG_writeback);
1601	acct_reclaim_writeback(folio);
1602	folio_put(folio);
1603}
1604EXPORT_SYMBOL(folio_end_writeback);
1605
1606/**
1607 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1608 * @folio: The folio to lock
1609 */
1610void __folio_lock(struct folio *folio)
1611{
1612	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1613				EXCLUSIVE);
 
1614}
1615EXPORT_SYMBOL(__folio_lock);
1616
1617int __folio_lock_killable(struct folio *folio)
1618{
1619	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1620					EXCLUSIVE);
1621}
1622EXPORT_SYMBOL_GPL(__folio_lock_killable);
1623
1624static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1625{
1626	struct wait_queue_head *q = folio_waitqueue(folio);
1627	int ret;
1628
1629	wait->folio = folio;
1630	wait->bit_nr = PG_locked;
1631
1632	spin_lock_irq(&q->lock);
1633	__add_wait_queue_entry_tail(q, &wait->wait);
1634	folio_set_waiters(folio);
1635	ret = !folio_trylock(folio);
1636	/*
1637	 * If we were successful now, we know we're still on the
1638	 * waitqueue as we're still under the lock. This means it's
1639	 * safe to remove and return success, we know the callback
1640	 * isn't going to trigger.
1641	 */
1642	if (!ret)
1643		__remove_wait_queue(q, &wait->wait);
1644	else
1645		ret = -EIOCBQUEUED;
1646	spin_unlock_irq(&q->lock);
1647	return ret;
1648}
 
1649
1650/*
1651 * Return values:
1652 * 0 - folio is locked.
1653 * non-zero - folio is not locked.
1654 *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1655 *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1656 *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1657 *
1658 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1659 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1660 */
1661vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
 
1662{
1663	unsigned int flags = vmf->flags;
1664
1665	if (fault_flag_allow_retry_first(flags)) {
1666		/*
1667		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1668		 * released even though returning VM_FAULT_RETRY.
1669		 */
1670		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1671			return VM_FAULT_RETRY;
1672
1673		release_fault_lock(vmf);
1674		if (flags & FAULT_FLAG_KILLABLE)
1675			folio_wait_locked_killable(folio);
1676		else
1677			folio_wait_locked(folio);
1678		return VM_FAULT_RETRY;
1679	}
1680	if (flags & FAULT_FLAG_KILLABLE) {
1681		bool ret;
1682
1683		ret = __folio_lock_killable(folio);
1684		if (ret) {
1685			release_fault_lock(vmf);
1686			return VM_FAULT_RETRY;
1687		}
1688	} else {
1689		__folio_lock(folio);
 
1690	}
1691
1692	return 0;
1693}
1694
1695/**
1696 * page_cache_next_miss() - Find the next gap in the page cache.
1697 * @mapping: Mapping.
1698 * @index: Index.
1699 * @max_scan: Maximum range to search.
1700 *
1701 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1702 * gap with the lowest index.
1703 *
1704 * This function may be called under the rcu_read_lock.  However, this will
1705 * not atomically search a snapshot of the cache at a single point in time.
1706 * For example, if a gap is created at index 5, then subsequently a gap is
1707 * created at index 10, page_cache_next_miss covering both indices may
1708 * return 10 if called under the rcu_read_lock.
1709 *
1710 * Return: The index of the gap if found, otherwise an index outside the
1711 * range specified (in which case 'return - index >= max_scan' will be true).
1712 * In the rare case of index wrap-around, 0 will be returned.
 
 
1713 */
1714pgoff_t page_cache_next_miss(struct address_space *mapping,
1715			     pgoff_t index, unsigned long max_scan)
1716{
1717	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1718
1719	while (max_scan--) {
1720		void *entry = xas_next(&xas);
1721		if (!entry || xa_is_value(entry))
1722			break;
1723		if (xas.xa_index == 0)
 
1724			break;
1725	}
1726
1727	return xas.xa_index;
1728}
1729EXPORT_SYMBOL(page_cache_next_miss);
1730
1731/**
1732 * page_cache_prev_miss() - Find the previous gap in the page cache.
1733 * @mapping: Mapping.
1734 * @index: Index.
1735 * @max_scan: Maximum range to search.
1736 *
1737 * Search the range [max(index - max_scan + 1, 0), index] for the
1738 * gap with the highest index.
1739 *
1740 * This function may be called under the rcu_read_lock.  However, this will
1741 * not atomically search a snapshot of the cache at a single point in time.
1742 * For example, if a gap is created at index 10, then subsequently a gap is
1743 * created at index 5, page_cache_prev_miss() covering both indices may
1744 * return 5 if called under the rcu_read_lock.
1745 *
1746 * Return: The index of the gap if found, otherwise an index outside the
1747 * range specified (in which case 'index - return >= max_scan' will be true).
1748 * In the rare case of wrap-around, ULONG_MAX will be returned.
 
 
1749 */
1750pgoff_t page_cache_prev_miss(struct address_space *mapping,
1751			     pgoff_t index, unsigned long max_scan)
1752{
1753	XA_STATE(xas, &mapping->i_pages, index);
1754
1755	while (max_scan--) {
1756		void *entry = xas_prev(&xas);
1757		if (!entry || xa_is_value(entry))
 
 
1758			break;
1759		if (xas.xa_index == ULONG_MAX)
 
1760			break;
1761	}
1762
1763	return xas.xa_index;
1764}
1765EXPORT_SYMBOL(page_cache_prev_miss);
1766
1767/*
1768 * Lockless page cache protocol:
1769 * On the lookup side:
1770 * 1. Load the folio from i_pages
1771 * 2. Increment the refcount if it's not zero
1772 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1773 *
1774 * On the removal side:
1775 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1776 * B. Remove the page from i_pages
1777 * C. Return the page to the page allocator
1778 *
1779 * This means that any page may have its reference count temporarily
1780 * increased by a speculative page cache (or fast GUP) lookup as it can
1781 * be allocated by another user before the RCU grace period expires.
1782 * Because the refcount temporarily acquired here may end up being the
1783 * last refcount on the page, any page allocation must be freeable by
1784 * folio_put().
1785 */
1786
1787/*
1788 * filemap_get_entry - Get a page cache entry.
1789 * @mapping: the address_space to search
1790 * @index: The page cache index.
 
 
 
1791 *
1792 * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1793 * it is returned with an increased refcount.  If it is a shadow entry
1794 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1795 * it is returned without further action.
1796 *
1797 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1798 */
1799void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1800{
1801	XA_STATE(xas, &mapping->i_pages, index);
1802	struct folio *folio;
1803
1804	rcu_read_lock();
1805repeat:
1806	xas_reset(&xas);
1807	folio = xas_load(&xas);
1808	if (xas_retry(&xas, folio))
1809		goto repeat;
1810	/*
1811	 * A shadow entry of a recently evicted page, or a swap entry from
1812	 * shmem/tmpfs.  Return it without attempting to raise page count.
1813	 */
1814	if (!folio || xa_is_value(folio))
1815		goto out;
 
 
 
 
 
 
 
 
 
 
1816
1817	if (!folio_try_get_rcu(folio))
1818		goto repeat;
 
 
 
1819
1820	if (unlikely(folio != xas_reload(&xas))) {
1821		folio_put(folio);
1822		goto repeat;
 
 
 
 
 
 
1823	}
1824out:
1825	rcu_read_unlock();
1826
1827	return folio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828}
 
1829
1830/**
1831 * __filemap_get_folio - Find and get a reference to a folio.
1832 * @mapping: The address_space to search.
1833 * @index: The page index.
1834 * @fgp_flags: %FGP flags modify how the folio is returned.
1835 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1836 *
1837 * Looks up the page cache entry at @mapping & @index.
1838 *
1839 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1840 * if the %GFP flags specified for %FGP_CREAT are atomic.
1841 *
1842 * If this function returns a folio, it is returned with an increased refcount.
1843 *
1844 * Return: The found folio or an ERR_PTR() otherwise.
 
 
 
 
 
 
 
 
 
 
1845 */
1846struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1847		fgf_t fgp_flags, gfp_t gfp)
1848{
1849	struct folio *folio;
1850
1851repeat:
1852	folio = filemap_get_entry(mapping, index);
1853	if (xa_is_value(folio))
1854		folio = NULL;
1855	if (!folio)
1856		goto no_page;
1857
1858	if (fgp_flags & FGP_LOCK) {
1859		if (fgp_flags & FGP_NOWAIT) {
1860			if (!folio_trylock(folio)) {
1861				folio_put(folio);
1862				return ERR_PTR(-EAGAIN);
1863			}
1864		} else {
1865			folio_lock(folio);
1866		}
1867
1868		/* Has the page been truncated? */
1869		if (unlikely(folio->mapping != mapping)) {
1870			folio_unlock(folio);
1871			folio_put(folio);
1872			goto repeat;
1873		}
1874		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1875	}
1876
1877	if (fgp_flags & FGP_ACCESSED)
1878		folio_mark_accessed(folio);
1879	else if (fgp_flags & FGP_WRITE) {
1880		/* Clear idle flag for buffer write */
1881		if (folio_test_idle(folio))
1882			folio_clear_idle(folio);
1883	}
1884
1885	if (fgp_flags & FGP_STABLE)
1886		folio_wait_stable(folio);
1887no_page:
1888	if (!folio && (fgp_flags & FGP_CREAT)) {
1889		unsigned order = FGF_GET_ORDER(fgp_flags);
1890		int err;
1891
1892		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1893			gfp |= __GFP_WRITE;
1894		if (fgp_flags & FGP_NOFS)
1895			gfp &= ~__GFP_FS;
1896		if (fgp_flags & FGP_NOWAIT) {
1897			gfp &= ~GFP_KERNEL;
1898			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1899		}
1900		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1901			fgp_flags |= FGP_LOCK;
1902
1903		if (!mapping_large_folio_support(mapping))
1904			order = 0;
1905		if (order > MAX_PAGECACHE_ORDER)
1906			order = MAX_PAGECACHE_ORDER;
1907		/* If we're not aligned, allocate a smaller folio */
1908		if (index & ((1UL << order) - 1))
1909			order = __ffs(index);
1910
1911		do {
1912			gfp_t alloc_gfp = gfp;
1913
1914			err = -ENOMEM;
1915			if (order == 1)
1916				order = 0;
1917			if (order > 0)
1918				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1919			folio = filemap_alloc_folio(alloc_gfp, order);
1920			if (!folio)
1921				continue;
1922
1923			/* Init accessed so avoid atomic mark_page_accessed later */
1924			if (fgp_flags & FGP_ACCESSED)
1925				__folio_set_referenced(folio);
1926
1927			err = filemap_add_folio(mapping, folio, index, gfp);
1928			if (!err)
1929				break;
1930			folio_put(folio);
1931			folio = NULL;
1932		} while (order-- > 0);
1933
1934		if (err == -EEXIST)
1935			goto repeat;
1936		if (err)
1937			return ERR_PTR(err);
1938		/*
1939		 * filemap_add_folio locks the page, and for mmap
1940		 * we expect an unlocked page.
1941		 */
1942		if (folio && (fgp_flags & FGP_FOR_MMAP))
1943			folio_unlock(folio);
1944	}
1945
1946	if (!folio)
1947		return ERR_PTR(-ENOENT);
1948	return folio;
1949}
1950EXPORT_SYMBOL(__filemap_get_folio);
1951
1952static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1953		xa_mark_t mark)
1954{
1955	struct folio *folio;
1956
1957retry:
1958	if (mark == XA_PRESENT)
1959		folio = xas_find(xas, max);
1960	else
1961		folio = xas_find_marked(xas, max, mark);
1962
1963	if (xas_retry(xas, folio))
1964		goto retry;
1965	/*
1966	 * A shadow entry of a recently evicted page, a swap
1967	 * entry from shmem/tmpfs or a DAX entry.  Return it
1968	 * without attempting to raise page count.
1969	 */
1970	if (!folio || xa_is_value(folio))
1971		return folio;
1972
1973	if (!folio_try_get_rcu(folio))
1974		goto reset;
1975
1976	if (unlikely(folio != xas_reload(xas))) {
1977		folio_put(folio);
1978		goto reset;
1979	}
1980
1981	return folio;
1982reset:
1983	xas_reset(xas);
1984	goto retry;
1985}
 
1986
1987/**
1988 * find_get_entries - gang pagecache lookup
1989 * @mapping:	The address_space to search
1990 * @start:	The starting page cache index
1991 * @end:	The final page index (inclusive).
1992 * @fbatch:	Where the resulting entries are placed.
1993 * @indices:	The cache indices corresponding to the entries in @entries
1994 *
1995 * find_get_entries() will search for and return a batch of entries in
1996 * the mapping.  The entries are placed in @fbatch.  find_get_entries()
1997 * takes a reference on any actual folios it returns.
 
 
 
 
 
1998 *
1999 * The entries have ascending indexes.  The indices may not be consecutive
2000 * due to not-present entries or large folios.
2001 *
2002 * Any shadow entries of evicted folios, or swap entries from
2003 * shmem/tmpfs, are included in the returned array.
2004 *
2005 * Return: The number of entries which were found.
 
2006 */
2007unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2008		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2009{
2010	XA_STATE(xas, &mapping->i_pages, *start);
2011	struct folio *folio;
 
 
 
 
 
2012
2013	rcu_read_lock();
2014	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2015		indices[fbatch->nr] = xas.xa_index;
2016		if (!folio_batch_add(fbatch, folio))
2017			break;
2018	}
2019	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
2020
2021	if (folio_batch_count(fbatch)) {
2022		unsigned long nr = 1;
2023		int idx = folio_batch_count(fbatch) - 1;
2024
2025		folio = fbatch->folios[idx];
2026		if (!xa_is_value(folio))
2027			nr = folio_nr_pages(folio);
2028		*start = indices[idx] + nr;
2029	}
2030	return folio_batch_count(fbatch);
2031}
2032
2033/**
2034 * find_lock_entries - Find a batch of pagecache entries.
2035 * @mapping:	The address_space to search.
2036 * @start:	The starting page cache index.
2037 * @end:	The final page index (inclusive).
2038 * @fbatch:	Where the resulting entries are placed.
2039 * @indices:	The cache indices of the entries in @fbatch.
2040 *
2041 * find_lock_entries() will return a batch of entries from @mapping.
2042 * Swap, shadow and DAX entries are included.  Folios are returned
2043 * locked and with an incremented refcount.  Folios which are locked
2044 * by somebody else or under writeback are skipped.  Folios which are
2045 * partially outside the range are not returned.
2046 *
2047 * The entries have ascending indexes.  The indices may not be consecutive
2048 * due to not-present entries, large folios, folios which could not be
2049 * locked or folios under writeback.
2050 *
2051 * Return: The number of entries which were found.
2052 */
2053unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2054		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2055{
2056	XA_STATE(xas, &mapping->i_pages, *start);
2057	struct folio *folio;
2058
2059	rcu_read_lock();
2060	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2061		if (!xa_is_value(folio)) {
2062			if (folio->index < *start)
2063				goto put;
2064			if (folio_next_index(folio) - 1 > end)
2065				goto put;
2066			if (!folio_trylock(folio))
2067				goto put;
2068			if (folio->mapping != mapping ||
2069			    folio_test_writeback(folio))
2070				goto unlock;
2071			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2072					folio);
2073		}
2074		indices[fbatch->nr] = xas.xa_index;
2075		if (!folio_batch_add(fbatch, folio))
 
 
2076			break;
2077		continue;
2078unlock:
2079		folio_unlock(folio);
2080put:
2081		folio_put(folio);
2082	}
2083	rcu_read_unlock();
2084
2085	if (folio_batch_count(fbatch)) {
2086		unsigned long nr = 1;
2087		int idx = folio_batch_count(fbatch) - 1;
2088
2089		folio = fbatch->folios[idx];
2090		if (!xa_is_value(folio))
2091			nr = folio_nr_pages(folio);
2092		*start = indices[idx] + nr;
2093	}
2094	return folio_batch_count(fbatch);
2095}
2096
2097/**
2098 * filemap_get_folios - Get a batch of folios
2099 * @mapping:	The address_space to search
2100 * @start:	The starting page index
2101 * @end:	The final page index (inclusive)
2102 * @fbatch:	The batch to fill.
 
2103 *
2104 * Search for and return a batch of folios in the mapping starting at
2105 * index @start and up to index @end (inclusive).  The folios are returned
2106 * in @fbatch with an elevated reference count.
2107 *
2108 * Return: The number of folios which were found.
2109 * We also update @start to index the next folio for the traversal.
2110 */
2111unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2112		pgoff_t end, struct folio_batch *fbatch)
2113{
2114	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2115}
2116EXPORT_SYMBOL(filemap_get_folios);
 
 
 
 
 
 
 
2117
2118/**
2119 * filemap_get_folios_contig - Get a batch of contiguous folios
2120 * @mapping:	The address_space to search
2121 * @start:	The starting page index
2122 * @end:	The final page index (inclusive)
2123 * @fbatch:	The batch to fill
2124 *
2125 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2126 * except the returned folios are guaranteed to be contiguous. This may
2127 * not return all contiguous folios if the batch gets filled up.
2128 *
2129 * Return: The number of folios found.
2130 * Also update @start to be positioned for traversal of the next folio.
2131 */
2132
2133unsigned filemap_get_folios_contig(struct address_space *mapping,
2134		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2135{
2136	XA_STATE(xas, &mapping->i_pages, *start);
2137	unsigned long nr;
2138	struct folio *folio;
2139
2140	rcu_read_lock();
 
 
2141
2142	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2143			folio = xas_next(&xas)) {
2144		if (xas_retry(&xas, folio))
 
 
2145			continue;
2146		/*
2147		 * If the entry has been swapped out, we can stop looking.
2148		 * No current caller is looking for DAX entries.
2149		 */
2150		if (xa_is_value(folio))
2151			goto update_start;
2152
2153		if (!folio_try_get_rcu(folio))
2154			goto retry;
 
 
 
 
 
 
 
 
 
 
2155
2156		if (unlikely(folio != xas_reload(&xas)))
2157			goto put_folio;
 
2158
2159		if (!folio_batch_add(fbatch, folio)) {
2160			nr = folio_nr_pages(folio);
2161			*start = folio->index + nr;
2162			goto out;
2163		}
2164		continue;
2165put_folio:
2166		folio_put(folio);
2167
2168retry:
2169		xas_reset(&xas);
2170	}
2171
2172update_start:
2173	nr = folio_batch_count(fbatch);
2174
2175	if (nr) {
2176		folio = fbatch->folios[nr - 1];
2177		*start = folio_next_index(folio);
2178	}
2179out:
2180	rcu_read_unlock();
2181	return folio_batch_count(fbatch);
2182}
2183EXPORT_SYMBOL(filemap_get_folios_contig);
2184
2185/**
2186 * filemap_get_folios_tag - Get a batch of folios matching @tag
2187 * @mapping:    The address_space to search
2188 * @start:      The starting page index
2189 * @end:        The final page index (inclusive)
2190 * @tag:        The tag index
2191 * @fbatch:     The batch to fill
2192 *
2193 * The first folio may start before @start; if it does, it will contain
2194 * @start.  The final folio may extend beyond @end; if it does, it will
2195 * contain @end.  The folios have ascending indices.  There may be gaps
2196 * between the folios if there are indices which have no folio in the
2197 * page cache.  If folios are added to or removed from the page cache
2198 * while this is running, they may or may not be found by this call.
2199 * Only returns folios that are tagged with @tag.
2200 *
2201 * Return: The number of folios found.
2202 * Also update @start to index the next folio for traversal.
2203 */
2204unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2205			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2206{
2207	XA_STATE(xas, &mapping->i_pages, *start);
2208	struct folio *folio;
2209
2210	rcu_read_lock();
2211	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2212		/*
2213		 * Shadow entries should never be tagged, but this iteration
2214		 * is lockless so there is a window for page reclaim to evict
2215		 * a page we saw tagged. Skip over it.
2216		 */
2217		if (xa_is_value(folio))
2218			continue;
2219		if (!folio_batch_add(fbatch, folio)) {
2220			unsigned long nr = folio_nr_pages(folio);
2221			*start = folio->index + nr;
2222			goto out;
2223		}
2224	}
 
2225	/*
2226	 * We come here when there is no page beyond @end. We take care to not
2227	 * overflow the index @start as it confuses some of the callers. This
2228	 * breaks the iteration when there is a page at index -1 but that is
2229	 * already broke anyway.
2230	 */
2231	if (end == (pgoff_t)-1)
2232		*start = (pgoff_t)-1;
2233	else
2234		*start = end + 1;
2235out:
2236	rcu_read_unlock();
2237
2238	return folio_batch_count(fbatch);
2239}
2240EXPORT_SYMBOL(filemap_get_folios_tag);
2241
2242/*
2243 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2244 * a _large_ part of the i/o request. Imagine the worst scenario:
 
 
 
2245 *
2246 *      ---R__________________________________________B__________
2247 *         ^ reading here                             ^ bad block(assume 4k)
2248 *
2249 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2250 * => failing the whole request => read(R) => read(R+1) =>
2251 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2252 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2253 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2254 *
2255 * It is going insane. Fix it by quickly scaling down the readahead size.
2256 */
2257static void shrink_readahead_size_eio(struct file_ra_state *ra)
 
2258{
2259	ra->ra_pages /= 4;
2260}
 
2261
2262/*
2263 * filemap_get_read_batch - Get a batch of folios for read
2264 *
2265 * Get a batch of folios which represent a contiguous range of bytes in
2266 * the file.  No exceptional entries will be returned.  If @index is in
2267 * the middle of a folio, the entire folio will be returned.  The last
2268 * folio in the batch may have the readahead flag set or the uptodate flag
2269 * clear so that the caller can take the appropriate action.
2270 */
2271static void filemap_get_read_batch(struct address_space *mapping,
2272		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2273{
2274	XA_STATE(xas, &mapping->i_pages, index);
2275	struct folio *folio;
2276
2277	rcu_read_lock();
2278	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2279		if (xas_retry(&xas, folio))
2280			continue;
2281		if (xas.xa_index > max || xa_is_value(folio))
 
 
2282			break;
2283		if (xa_is_sibling(folio))
 
 
 
 
 
 
 
 
 
 
2284			break;
2285		if (!folio_try_get_rcu(folio))
2286			goto retry;
 
 
 
 
 
 
 
 
 
2287
2288		if (unlikely(folio != xas_reload(&xas)))
2289			goto put_folio;
 
 
 
2290
2291		if (!folio_batch_add(fbatch, folio))
 
 
 
 
 
 
2292			break;
2293		if (!folio_test_uptodate(folio))
2294			break;
2295		if (folio_test_readahead(folio))
 
2296			break;
2297		xas_advance(&xas, folio_next_index(folio) - 1);
2298		continue;
2299put_folio:
2300		folio_put(folio);
2301retry:
2302		xas_reset(&xas);
2303	}
2304	rcu_read_unlock();
 
2305}
 
2306
2307static int filemap_read_folio(struct file *file, filler_t filler,
2308		struct folio *folio)
2309{
2310	bool workingset = folio_test_workingset(folio);
2311	unsigned long pflags;
2312	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
2313
2314	/*
2315	 * A previous I/O error may have been due to temporary failures,
2316	 * eg. multipath errors.  PG_error will be set again if read_folio
2317	 * fails.
2318	 */
2319	folio_clear_error(folio);
2320
2321	/* Start the actual read. The read will unlock the page. */
2322	if (unlikely(workingset))
2323		psi_memstall_enter(&pflags);
2324	error = filler(file, folio);
2325	if (unlikely(workingset))
2326		psi_memstall_leave(&pflags);
2327	if (error)
2328		return error;
2329
2330	error = folio_wait_locked_killable(folio);
2331	if (error)
2332		return error;
2333	if (folio_test_uptodate(folio))
2334		return 0;
2335	if (file)
2336		shrink_readahead_size_eio(&file->f_ra);
2337	return -EIO;
2338}
2339
2340static bool filemap_range_uptodate(struct address_space *mapping,
2341		loff_t pos, size_t count, struct folio *folio,
2342		bool need_uptodate)
2343{
2344	if (folio_test_uptodate(folio))
2345		return true;
2346	/* pipes can't handle partially uptodate pages */
2347	if (need_uptodate)
2348		return false;
2349	if (!mapping->a_ops->is_partially_uptodate)
2350		return false;
2351	if (mapping->host->i_blkbits >= folio_shift(folio))
2352		return false;
 
 
 
 
 
2353
2354	if (folio_pos(folio) > pos) {
2355		count -= folio_pos(folio) - pos;
2356		pos = 0;
2357	} else {
2358		pos -= folio_pos(folio);
2359	}
2360
2361	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2362}
 
 
 
2363
2364static int filemap_update_page(struct kiocb *iocb,
2365		struct address_space *mapping, size_t count,
2366		struct folio *folio, bool need_uptodate)
2367{
2368	int error;
2369
2370	if (iocb->ki_flags & IOCB_NOWAIT) {
2371		if (!filemap_invalidate_trylock_shared(mapping))
2372			return -EAGAIN;
2373	} else {
2374		filemap_invalidate_lock_shared(mapping);
2375	}
2376
2377	if (!folio_trylock(folio)) {
2378		error = -EAGAIN;
2379		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2380			goto unlock_mapping;
2381		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2382			filemap_invalidate_unlock_shared(mapping);
2383			/*
2384			 * This is where we usually end up waiting for a
2385			 * previously submitted readahead to finish.
2386			 */
2387			folio_put_wait_locked(folio, TASK_KILLABLE);
2388			return AOP_TRUNCATED_PAGE;
2389		}
2390		error = __folio_lock_async(folio, iocb->ki_waitq);
2391		if (error)
2392			goto unlock_mapping;
2393	}
2394
2395	error = AOP_TRUNCATED_PAGE;
2396	if (!folio->mapping)
2397		goto unlock;
 
 
 
 
 
 
 
 
 
2398
2399	error = 0;
2400	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2401				   need_uptodate))
2402		goto unlock;
2403
2404	error = -EAGAIN;
2405	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2406		goto unlock;
2407
2408	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2409			folio);
2410	goto unlock_mapping;
2411unlock:
2412	folio_unlock(folio);
2413unlock_mapping:
2414	filemap_invalidate_unlock_shared(mapping);
2415	if (error == AOP_TRUNCATED_PAGE)
2416		folio_put(folio);
2417	return error;
2418}
 
2419
2420static int filemap_create_folio(struct file *file,
2421		struct address_space *mapping, pgoff_t index,
2422		struct folio_batch *fbatch)
 
 
 
 
 
 
 
 
 
 
 
 
2423{
2424	struct folio *folio;
2425	int error;
 
2426
2427	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2428	if (!folio)
2429		return -ENOMEM;
2430
2431	/*
2432	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2433	 * here assures we cannot instantiate and bring uptodate new
2434	 * pagecache folios after evicting page cache during truncate
2435	 * and before actually freeing blocks.	Note that we could
2436	 * release invalidate_lock after inserting the folio into
2437	 * the page cache as the locked folio would then be enough to
2438	 * synchronize with hole punching. But there are code paths
2439	 * such as filemap_update_page() filling in partially uptodate
2440	 * pages or ->readahead() that need to hold invalidate_lock
2441	 * while mapping blocks for IO so let's hold the lock here as
2442	 * well to keep locking rules simple.
2443	 */
2444	filemap_invalidate_lock_shared(mapping);
2445	error = filemap_add_folio(mapping, folio, index,
2446			mapping_gfp_constraint(mapping, GFP_KERNEL));
2447	if (error == -EEXIST)
2448		error = AOP_TRUNCATED_PAGE;
2449	if (error)
2450		goto error;
2451
2452	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2453	if (error)
2454		goto error;
 
 
 
 
2455
2456	filemap_invalidate_unlock_shared(mapping);
2457	folio_batch_add(fbatch, folio);
2458	return 0;
2459error:
2460	filemap_invalidate_unlock_shared(mapping);
2461	folio_put(folio);
2462	return error;
2463}
2464
2465static int filemap_readahead(struct kiocb *iocb, struct file *file,
2466		struct address_space *mapping, struct folio *folio,
2467		pgoff_t last_index)
2468{
2469	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2470
2471	if (iocb->ki_flags & IOCB_NOIO)
2472		return -EAGAIN;
2473	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2474	return 0;
2475}
2476
2477static int filemap_get_pages(struct kiocb *iocb, size_t count,
2478		struct folio_batch *fbatch, bool need_uptodate)
2479{
2480	struct file *filp = iocb->ki_filp;
2481	struct address_space *mapping = filp->f_mapping;
2482	struct file_ra_state *ra = &filp->f_ra;
2483	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2484	pgoff_t last_index;
2485	struct folio *folio;
2486	int err = 0;
2487
2488	/* "last_index" is the index of the page beyond the end of the read */
2489	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2490retry:
2491	if (fatal_signal_pending(current))
2492		return -EINTR;
2493
2494	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2495	if (!folio_batch_count(fbatch)) {
2496		if (iocb->ki_flags & IOCB_NOIO)
2497			return -EAGAIN;
2498		page_cache_sync_readahead(mapping, ra, filp, index,
2499				last_index - index);
2500		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2501	}
2502	if (!folio_batch_count(fbatch)) {
2503		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2504			return -EAGAIN;
2505		err = filemap_create_folio(filp, mapping,
2506				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2507		if (err == AOP_TRUNCATED_PAGE)
2508			goto retry;
2509		return err;
2510	}
2511
2512	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2513	if (folio_test_readahead(folio)) {
2514		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2515		if (err)
2516			goto err;
2517	}
2518	if (!folio_test_uptodate(folio)) {
2519		if ((iocb->ki_flags & IOCB_WAITQ) &&
2520		    folio_batch_count(fbatch) > 1)
2521			iocb->ki_flags |= IOCB_NOWAIT;
2522		err = filemap_update_page(iocb, mapping, count, folio,
2523					  need_uptodate);
2524		if (err)
2525			goto err;
2526	}
2527
2528	return 0;
2529err:
2530	if (err < 0)
2531		folio_put(folio);
2532	if (likely(--fbatch->nr))
2533		return 0;
2534	if (err == AOP_TRUNCATED_PAGE)
2535		goto retry;
2536	return err;
2537}
 
2538
2539static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2540{
2541	unsigned int shift = folio_shift(folio);
2542
2543	return (pos1 >> shift == pos2 >> shift);
2544}
2545
2546/**
2547 * filemap_read - Read data from the page cache.
2548 * @iocb: The iocb to read.
2549 * @iter: Destination for the data.
2550 * @already_read: Number of bytes already read by the caller.
2551 *
2552 * Copies data from the page cache.  If the data is not currently present,
2553 * uses the readahead and read_folio address_space operations to fetch it.
2554 *
2555 * Return: Total number of bytes copied, including those already read by
2556 * the caller.  If an error happens before any bytes are copied, returns
2557 * a negative error number.
2558 */
2559ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2560		ssize_t already_read)
2561{
2562	struct file *filp = iocb->ki_filp;
2563	struct file_ra_state *ra = &filp->f_ra;
2564	struct address_space *mapping = filp->f_mapping;
2565	struct inode *inode = mapping->host;
2566	struct folio_batch fbatch;
2567	int i, error = 0;
2568	bool writably_mapped;
2569	loff_t isize, end_offset;
2570	loff_t last_pos = ra->prev_pos;
 
 
 
2571
2572	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2573		return 0;
2574	if (unlikely(!iov_iter_count(iter)))
2575		return 0;
2576
2577	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2578	folio_batch_init(&fbatch);
2579
2580	do {
2581		cond_resched();
 
 
 
2582
2583		/*
2584		 * If we've already successfully copied some data, then we
2585		 * can no longer safely return -EIOCBQUEUED. Hence mark
2586		 * an async read NOWAIT at that point.
2587		 */
2588		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2589			iocb->ki_flags |= IOCB_NOWAIT;
2590
2591		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2592			break;
 
 
 
 
2593
2594		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2595		if (error < 0)
2596			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598		/*
2599		 * i_size must be checked after we know the pages are Uptodate.
2600		 *
2601		 * Checking i_size after the check allows us to calculate
2602		 * the correct value for "nr", which means the zero-filled
2603		 * part of the page is not copied back to userspace (unless
2604		 * another truncate extends the file - this is desired though).
2605		 */
 
2606		isize = i_size_read(inode);
2607		if (unlikely(iocb->ki_pos >= isize))
2608			goto put_folios;
2609		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
 
 
 
 
 
 
 
 
 
 
 
 
 
2610
2611		/*
2612		 * Pairs with a barrier in
2613		 * block_write_end()->mark_buffer_dirty() or other page
2614		 * dirtying routines like iomap_write_end() to ensure
2615		 * changes to page contents are visible before we see
2616		 * increased inode size.
2617		 */
2618		smp_rmb();
 
2619
2620		/*
2621		 * Once we start copying data, we don't want to be touching any
2622		 * cachelines that might be contended:
2623		 */
2624		writably_mapped = mapping_writably_mapped(mapping);
 
 
2625
2626		/*
2627		 * When a read accesses the same folio several times, only
2628		 * mark it as accessed the first time.
2629		 */
2630		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2631				    fbatch.folios[0]))
2632			folio_mark_accessed(fbatch.folios[0]);
2633
2634		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2635			struct folio *folio = fbatch.folios[i];
2636			size_t fsize = folio_size(folio);
2637			size_t offset = iocb->ki_pos & (fsize - 1);
2638			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2639					     fsize - offset);
2640			size_t copied;
2641
2642			if (end_offset < folio_pos(folio))
2643				break;
2644			if (i > 0)
2645				folio_mark_accessed(folio);
2646			/*
2647			 * If users can be writing to this folio using arbitrary
2648			 * virtual addresses, take care of potential aliasing
2649			 * before reading the folio on the kernel side.
2650			 */
2651			if (writably_mapped)
2652				flush_dcache_folio(folio);
 
 
 
 
2653
2654			copied = copy_folio_to_iter(folio, offset, bytes, iter);
 
 
 
 
 
 
 
 
 
 
 
 
2655
2656			already_read += copied;
2657			iocb->ki_pos += copied;
2658			last_pos = iocb->ki_pos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2659
2660			if (copied < bytes) {
2661				error = -EFAULT;
2662				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663			}
 
2664		}
2665put_folios:
2666		for (i = 0; i < folio_batch_count(&fbatch); i++)
2667			folio_put(fbatch.folios[i]);
2668		folio_batch_init(&fbatch);
2669	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2670
2671	file_accessed(filp);
2672	ra->prev_pos = last_pos;
2673	return already_read ? already_read : error;
2674}
2675EXPORT_SYMBOL_GPL(filemap_read);
2676
2677int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2678{
2679	struct address_space *mapping = iocb->ki_filp->f_mapping;
2680	loff_t pos = iocb->ki_pos;
2681	loff_t end = pos + count - 1;
2682
2683	if (iocb->ki_flags & IOCB_NOWAIT) {
2684		if (filemap_range_needs_writeback(mapping, pos, end))
2685			return -EAGAIN;
2686		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2687	}
2688
2689	return filemap_write_and_wait_range(mapping, pos, end);
2690}
2691EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
 
 
 
2692
2693int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2694{
2695	struct address_space *mapping = iocb->ki_filp->f_mapping;
2696	loff_t pos = iocb->ki_pos;
2697	loff_t end = pos + count - 1;
2698	int ret;
2699
2700	if (iocb->ki_flags & IOCB_NOWAIT) {
2701		/* we could block if there are any pages in the range */
2702		if (filemap_range_has_page(mapping, pos, end))
2703			return -EAGAIN;
2704	} else {
2705		ret = filemap_write_and_wait_range(mapping, pos, end);
2706		if (ret)
2707			return ret;
2708	}
2709
2710	/*
2711	 * After a write we want buffered reads to be sure to go to disk to get
2712	 * the new data.  We invalidate clean cached page from the region we're
2713	 * about to write.  We do this *before* the write so that we can return
2714	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2715	 */
2716	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2717					     end >> PAGE_SHIFT);
2718}
2719EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2720
2721/**
2722 * generic_file_read_iter - generic filesystem read routine
2723 * @iocb:	kernel I/O control block
2724 * @iter:	destination for the data read
2725 *
2726 * This is the "read_iter()" routine for all filesystems
2727 * that can use the page cache directly.
2728 *
2729 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2730 * be returned when no data can be read without waiting for I/O requests
2731 * to complete; it doesn't prevent readahead.
2732 *
2733 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2734 * requests shall be made for the read or for readahead.  When no data
2735 * can be read, -EAGAIN shall be returned.  When readahead would be
2736 * triggered, a partial, possibly empty read shall be returned.
2737 *
2738 * Return:
2739 * * number of bytes copied, even for partial reads
2740 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2741 */
2742ssize_t
2743generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2744{
2745	size_t count = iov_iter_count(iter);
2746	ssize_t retval = 0;
2747
2748	if (!count)
2749		return 0; /* skip atime */
2750
2751	if (iocb->ki_flags & IOCB_DIRECT) {
2752		struct file *file = iocb->ki_filp;
2753		struct address_space *mapping = file->f_mapping;
2754		struct inode *inode = mapping->host;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2755
2756		retval = kiocb_write_and_wait(iocb, count);
2757		if (retval < 0)
2758			return retval;
2759		file_accessed(file);
2760
2761		retval = mapping->a_ops->direct_IO(iocb, iter);
2762		if (retval >= 0) {
2763			iocb->ki_pos += retval;
2764			count -= retval;
2765		}
2766		if (retval != -EIOCBQUEUED)
2767			iov_iter_revert(iter, count - iov_iter_count(iter));
2768
2769		/*
2770		 * Btrfs can have a short DIO read if we encounter
2771		 * compressed extents, so if there was an error, or if
2772		 * we've already read everything we wanted to, or if
2773		 * there was a short read because we hit EOF, go ahead
2774		 * and return.  Otherwise fallthrough to buffered io for
2775		 * the rest of the read.  Buffered reads will not work for
2776		 * DAX files, so don't bother trying.
2777		 */
2778		if (retval < 0 || !count || IS_DAX(inode))
2779			return retval;
2780		if (iocb->ki_pos >= i_size_read(inode))
2781			return retval;
2782	}
2783
2784	return filemap_read(iocb, iter, retval);
 
 
2785}
2786EXPORT_SYMBOL(generic_file_read_iter);
2787
2788/*
2789 * Splice subpages from a folio into a pipe.
 
 
 
 
 
 
 
2790 */
2791size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2792			      struct folio *folio, loff_t fpos, size_t size)
2793{
 
2794	struct page *page;
2795	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2796
2797	page = folio_page(folio, offset / PAGE_SIZE);
2798	size = min(size, folio_size(folio) - offset);
2799	offset %= PAGE_SIZE;
2800
2801	while (spliced < size &&
2802	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2803		struct pipe_buffer *buf = pipe_head_buf(pipe);
2804		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2805
2806		*buf = (struct pipe_buffer) {
2807			.ops	= &page_cache_pipe_buf_ops,
2808			.page	= page,
2809			.offset	= offset,
2810			.len	= part,
2811		};
2812		folio_get(folio);
2813		pipe->head++;
2814		page++;
2815		spliced += part;
2816		offset = 0;
2817	}
2818
2819	return spliced;
2820}
2821
2822/**
2823 * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2824 * @in: The file to read from
2825 * @ppos: Pointer to the file position to read from
2826 * @pipe: The pipe to splice into
2827 * @len: The amount to splice
2828 * @flags: The SPLICE_F_* flags
2829 *
2830 * This function gets folios from a file's pagecache and splices them into the
2831 * pipe.  Readahead will be called as necessary to fill more folios.  This may
2832 * be used for blockdevs also.
2833 *
2834 * Return: On success, the number of bytes read will be returned and *@ppos
2835 * will be updated if appropriate; 0 will be returned if there is no more data
2836 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2837 * other negative error code will be returned on error.  A short read may occur
2838 * if the pipe has insufficient space, we reach the end of the data or we hit a
2839 * hole.
2840 */
2841ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2842			    struct pipe_inode_info *pipe,
2843			    size_t len, unsigned int flags)
2844{
2845	struct folio_batch fbatch;
2846	struct kiocb iocb;
2847	size_t total_spliced = 0, used, npages;
2848	loff_t isize, end_offset;
2849	bool writably_mapped;
2850	int i, error = 0;
2851
2852	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2853		return 0;
2854
2855	init_sync_kiocb(&iocb, in);
2856	iocb.ki_pos = *ppos;
2857
2858	/* Work out how much data we can actually add into the pipe */
2859	used = pipe_occupancy(pipe->head, pipe->tail);
2860	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2861	len = min_t(size_t, len, npages * PAGE_SIZE);
2862
2863	folio_batch_init(&fbatch);
2864
2865	do {
2866		cond_resched();
 
 
 
 
 
 
 
 
2867
2868		if (*ppos >= i_size_read(in->f_mapping->host))
2869			break;
2870
2871		iocb.ki_pos = *ppos;
2872		error = filemap_get_pages(&iocb, len, &fbatch, true);
2873		if (error < 0)
2874			break;
2875
2876		/*
2877		 * i_size must be checked after we know the pages are Uptodate.
2878		 *
2879		 * Checking i_size after the check allows us to calculate
2880		 * the correct value for "nr", which means the zero-filled
2881		 * part of the page is not copied back to userspace (unless
2882		 * another truncate extends the file - this is desired though).
2883		 */
2884		isize = i_size_read(in->f_mapping->host);
2885		if (unlikely(*ppos >= isize))
2886			break;
2887		end_offset = min_t(loff_t, isize, *ppos + len);
2888
2889		/*
2890		 * Once we start copying data, we don't want to be touching any
2891		 * cachelines that might be contended:
2892		 */
2893		writably_mapped = mapping_writably_mapped(in->f_mapping);
2894
2895		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2896			struct folio *folio = fbatch.folios[i];
2897			size_t n;
2898
2899			if (folio_pos(folio) >= end_offset)
2900				goto out;
2901			folio_mark_accessed(folio);
2902
2903			/*
2904			 * If users can be writing to this folio using arbitrary
2905			 * virtual addresses, take care of potential aliasing
2906			 * before reading the folio on the kernel side.
2907			 */
2908			if (writably_mapped)
2909				flush_dcache_folio(folio);
2910
2911			n = min_t(loff_t, len, isize - *ppos);
2912			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2913			if (!n)
2914				goto out;
2915			len -= n;
2916			total_spliced += n;
2917			*ppos += n;
2918			in->f_ra.prev_pos = *ppos;
2919			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2920				goto out;
2921		}
2922
2923		folio_batch_release(&fbatch);
2924	} while (len);
2925
2926out:
2927	folio_batch_release(&fbatch);
2928	file_accessed(in);
2929
2930	return total_spliced ? total_spliced : error;
2931}
2932EXPORT_SYMBOL(filemap_splice_read);
2933
2934static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2935		struct address_space *mapping, struct folio *folio,
2936		loff_t start, loff_t end, bool seek_data)
2937{
2938	const struct address_space_operations *ops = mapping->a_ops;
2939	size_t offset, bsz = i_blocksize(mapping->host);
2940
2941	if (xa_is_value(folio) || folio_test_uptodate(folio))
2942		return seek_data ? start : end;
2943	if (!ops->is_partially_uptodate)
2944		return seek_data ? end : start;
2945
2946	xas_pause(xas);
2947	rcu_read_unlock();
2948	folio_lock(folio);
2949	if (unlikely(folio->mapping != mapping))
2950		goto unlock;
2951
2952	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2953
2954	do {
2955		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2956							seek_data)
2957			break;
2958		start = (start + bsz) & ~(bsz - 1);
2959		offset += bsz;
2960	} while (offset < folio_size(folio));
2961unlock:
2962	folio_unlock(folio);
2963	rcu_read_lock();
2964	return start;
2965}
2966
2967static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2968{
2969	if (xa_is_value(folio))
2970		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2971	return folio_size(folio);
2972}
2973
2974/**
2975 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2976 * @mapping: Address space to search.
2977 * @start: First byte to consider.
2978 * @end: Limit of search (exclusive).
2979 * @whence: Either SEEK_HOLE or SEEK_DATA.
2980 *
2981 * If the page cache knows which blocks contain holes and which blocks
2982 * contain data, your filesystem can use this function to implement
2983 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2984 * entirely memory-based such as tmpfs, and filesystems which support
2985 * unwritten extents.
2986 *
2987 * Return: The requested offset on success, or -ENXIO if @whence specifies
2988 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2989 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2990 * and @end contain data.
2991 */
2992loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2993		loff_t end, int whence)
2994{
2995	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2996	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2997	bool seek_data = (whence == SEEK_DATA);
2998	struct folio *folio;
2999
3000	if (end <= start)
3001		return -ENXIO;
3002
3003	rcu_read_lock();
3004	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3005		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3006		size_t seek_size;
3007
3008		if (start < pos) {
3009			if (!seek_data)
3010				goto unlock;
3011			start = pos;
3012		}
3013
3014		seek_size = seek_folio_size(&xas, folio);
3015		pos = round_up((u64)pos + 1, seek_size);
3016		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3017				seek_data);
3018		if (start < pos)
3019			goto unlock;
3020		if (start >= end)
3021			break;
3022		if (seek_size > PAGE_SIZE)
3023			xas_set(&xas, pos >> PAGE_SHIFT);
3024		if (!xa_is_value(folio))
3025			folio_put(folio);
3026	}
3027	if (seek_data)
3028		start = -ENXIO;
3029unlock:
3030	rcu_read_unlock();
3031	if (folio && !xa_is_value(folio))
3032		folio_put(folio);
3033	if (start > end)
3034		return end;
3035	return start;
3036}
3037
3038#ifdef CONFIG_MMU
3039#define MMAP_LOTSAMISS  (100)
3040/*
3041 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3042 * @vmf - the vm_fault for this fault.
3043 * @folio - the folio to lock.
3044 * @fpin - the pointer to the file we may pin (or is already pinned).
3045 *
3046 * This works similar to lock_folio_or_retry in that it can drop the
3047 * mmap_lock.  It differs in that it actually returns the folio locked
3048 * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3049 * to drop the mmap_lock then fpin will point to the pinned file and
3050 * needs to be fput()'ed at a later point.
3051 */
3052static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3053				     struct file **fpin)
3054{
3055	if (folio_trylock(folio))
3056		return 1;
3057
3058	/*
3059	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3060	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3061	 * is supposed to work. We have way too many special cases..
3062	 */
3063	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3064		return 0;
3065
3066	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3067	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3068		if (__folio_lock_killable(folio)) {
3069			/*
3070			 * We didn't have the right flags to drop the
3071			 * fault lock, but all fault_handlers only check
3072			 * for fatal signals if we return VM_FAULT_RETRY,
3073			 * so we need to drop the fault lock here and
3074			 * return 0 if we don't have a fpin.
3075			 */
3076			if (*fpin == NULL)
3077				release_fault_lock(vmf);
3078			return 0;
3079		}
3080	} else
3081		__folio_lock(folio);
3082
3083	return 1;
3084}
3085
3086/*
3087 * Synchronous readahead happens when we don't even find a page in the page
3088 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3089 * to drop the mmap sem we return the file that was pinned in order for us to do
3090 * that.  If we didn't pin a file then we return NULL.  The file that is
3091 * returned needs to be fput()'ed when we're done with it.
3092 */
3093static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
3094{
3095	struct file *file = vmf->vma->vm_file;
3096	struct file_ra_state *ra = &file->f_ra;
3097	struct address_space *mapping = file->f_mapping;
3098	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3099	struct file *fpin = NULL;
3100	unsigned long vm_flags = vmf->vma->vm_flags;
3101	unsigned int mmap_miss;
3102
3103#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3104	/* Use the readahead code, even if readahead is disabled */
3105	if (vm_flags & VM_HUGEPAGE) {
3106		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3107		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3108		ra->size = HPAGE_PMD_NR;
3109		/*
3110		 * Fetch two PMD folios, so we get the chance to actually
3111		 * readahead, unless we've been told not to.
3112		 */
3113		if (!(vm_flags & VM_RAND_READ))
3114			ra->size *= 2;
3115		ra->async_size = HPAGE_PMD_NR;
3116		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3117		return fpin;
3118	}
3119#endif
3120
3121	/* If we don't want any read-ahead, don't bother */
3122	if (vm_flags & VM_RAND_READ)
3123		return fpin;
3124	if (!ra->ra_pages)
3125		return fpin;
3126
3127	if (vm_flags & VM_SEQ_READ) {
3128		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3129		page_cache_sync_ra(&ractl, ra->ra_pages);
3130		return fpin;
3131	}
3132
3133	/* Avoid banging the cache line if not needed */
3134	mmap_miss = READ_ONCE(ra->mmap_miss);
3135	if (mmap_miss < MMAP_LOTSAMISS * 10)
3136		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3137
3138	/*
3139	 * Do we miss much more than hit in this file? If so,
3140	 * stop bothering with read-ahead. It will only hurt.
3141	 */
3142	if (mmap_miss > MMAP_LOTSAMISS)
3143		return fpin;
3144
3145	/*
3146	 * mmap read-around
3147	 */
3148	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3149	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3150	ra->size = ra->ra_pages;
3151	ra->async_size = ra->ra_pages / 4;
3152	ractl._index = ra->start;
3153	page_cache_ra_order(&ractl, ra, 0);
3154	return fpin;
3155}
3156
3157/*
3158 * Asynchronous readahead happens when we find the page and PG_readahead,
3159 * so we want to possibly extend the readahead further.  We return the file that
3160 * was pinned if we have to drop the mmap_lock in order to do IO.
3161 */
3162static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3163					    struct folio *folio)
 
 
 
3164{
3165	struct file *file = vmf->vma->vm_file;
3166	struct file_ra_state *ra = &file->f_ra;
3167	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3168	struct file *fpin = NULL;
3169	unsigned int mmap_miss;
3170
3171	/* If we don't want any read-ahead, don't bother */
3172	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3173		return fpin;
3174
3175	mmap_miss = READ_ONCE(ra->mmap_miss);
3176	if (mmap_miss)
3177		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3178
3179	if (folio_test_readahead(folio)) {
3180		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3181		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3182	}
3183	return fpin;
3184}
3185
3186/**
3187 * filemap_fault - read in file data for page fault handling
3188 * @vmf:	struct vm_fault containing details of the fault
3189 *
3190 * filemap_fault() is invoked via the vma operations vector for a
3191 * mapped memory region to read in file data during a page fault.
3192 *
3193 * The goto's are kind of ugly, but this streamlines the normal case of having
3194 * it in the page cache, and handles the special cases reasonably without
3195 * having a lot of duplicated code.
3196 *
3197 * vma->vm_mm->mmap_lock must be held on entry.
3198 *
3199 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3200 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
 
 
3201 *
3202 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3203 * has not been released.
3204 *
3205 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3206 *
3207 * Return: bitwise-OR of %VM_FAULT_ codes.
3208 */
3209vm_fault_t filemap_fault(struct vm_fault *vmf)
3210{
3211	int error;
3212	struct file *file = vmf->vma->vm_file;
3213	struct file *fpin = NULL;
3214	struct address_space *mapping = file->f_mapping;
 
3215	struct inode *inode = mapping->host;
3216	pgoff_t max_idx, index = vmf->pgoff;
3217	struct folio *folio;
3218	vm_fault_t ret = 0;
3219	bool mapping_locked = false;
3220
3221	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3222	if (unlikely(index >= max_idx))
3223		return VM_FAULT_SIGBUS;
3224
3225	/*
3226	 * Do we have something in the page cache already?
3227	 */
3228	folio = filemap_get_folio(mapping, index);
3229	if (likely(!IS_ERR(folio))) {
3230		/*
3231		 * We found the page, so try async readahead before waiting for
3232		 * the lock.
3233		 */
3234		if (!(vmf->flags & FAULT_FLAG_TRIED))
3235			fpin = do_async_mmap_readahead(vmf, folio);
3236		if (unlikely(!folio_test_uptodate(folio))) {
3237			filemap_invalidate_lock_shared(mapping);
3238			mapping_locked = true;
3239		}
3240	} else {
3241		/* No page in the page cache at all */
 
3242		count_vm_event(PGMAJFAULT);
3243		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3244		ret = VM_FAULT_MAJOR;
3245		fpin = do_sync_mmap_readahead(vmf);
3246retry_find:
3247		/*
3248		 * See comment in filemap_create_folio() why we need
3249		 * invalidate_lock
3250		 */
3251		if (!mapping_locked) {
3252			filemap_invalidate_lock_shared(mapping);
3253			mapping_locked = true;
3254		}
3255		folio = __filemap_get_folio(mapping, index,
3256					  FGP_CREAT|FGP_FOR_MMAP,
3257					  vmf->gfp_mask);
3258		if (IS_ERR(folio)) {
3259			if (fpin)
3260				goto out_retry;
3261			filemap_invalidate_unlock_shared(mapping);
3262			return VM_FAULT_OOM;
3263		}
3264	}
3265
3266	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3267		goto out_retry;
 
 
3268
3269	/* Did it get truncated? */
3270	if (unlikely(folio->mapping != mapping)) {
3271		folio_unlock(folio);
3272		folio_put(folio);
3273		goto retry_find;
3274	}
3275	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3276
3277	/*
3278	 * We have a locked folio in the page cache, now we need to check
3279	 * that it's up-to-date. If not, it is going to be due to an error,
3280	 * or because readahead was otherwise unable to retrieve it.
3281	 */
3282	if (unlikely(!folio_test_uptodate(folio))) {
3283		/*
3284		 * If the invalidate lock is not held, the folio was in cache
3285		 * and uptodate and now it is not. Strange but possible since we
3286		 * didn't hold the page lock all the time. Let's drop
3287		 * everything, get the invalidate lock and try again.
3288		 */
3289		if (!mapping_locked) {
3290			folio_unlock(folio);
3291			folio_put(folio);
3292			goto retry_find;
3293		}
3294
3295		/*
3296		 * OK, the folio is really not uptodate. This can be because the
3297		 * VMA has the VM_RAND_READ flag set, or because an error
3298		 * arose. Let's read it in directly.
3299		 */
3300		goto page_not_uptodate;
3301	}
3302
3303	/*
3304	 * We've made it this far and we had to drop our mmap_lock, now is the
3305	 * time to return to the upper layer and have it re-find the vma and
3306	 * redo the fault.
3307	 */
3308	if (fpin) {
3309		folio_unlock(folio);
3310		goto out_retry;
3311	}
3312	if (mapping_locked)
3313		filemap_invalidate_unlock_shared(mapping);
3314
3315	/*
3316	 * Found the page and have a reference on it.
3317	 * We must recheck i_size under page lock.
3318	 */
3319	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3320	if (unlikely(index >= max_idx)) {
3321		folio_unlock(folio);
3322		folio_put(folio);
3323		return VM_FAULT_SIGBUS;
3324	}
3325
3326	vmf->page = folio_file_page(folio, index);
3327	return ret | VM_FAULT_LOCKED;
3328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3329page_not_uptodate:
3330	/*
3331	 * Umm, take care of errors if the page isn't up-to-date.
3332	 * Try to re-read it _once_. We do this synchronously,
3333	 * because there really aren't any performance issues here
3334	 * and we need to check for errors.
3335	 */
3336	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3337	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3338	if (fpin)
3339		goto out_retry;
3340	folio_put(folio);
 
 
 
3341
3342	if (!error || error == AOP_TRUNCATED_PAGE)
3343		goto retry_find;
3344	filemap_invalidate_unlock_shared(mapping);
3345
 
 
3346	return VM_FAULT_SIGBUS;
3347
3348out_retry:
3349	/*
3350	 * We dropped the mmap_lock, we need to return to the fault handler to
3351	 * re-find the vma and come back and find our hopefully still populated
3352	 * page.
3353	 */
3354	if (!IS_ERR(folio))
3355		folio_put(folio);
3356	if (mapping_locked)
3357		filemap_invalidate_unlock_shared(mapping);
3358	if (fpin)
3359		fput(fpin);
3360	return ret | VM_FAULT_RETRY;
3361}
3362EXPORT_SYMBOL(filemap_fault);
3363
3364static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3365		pgoff_t start)
3366{
3367	struct mm_struct *mm = vmf->vma->vm_mm;
 
 
 
 
 
 
3368
3369	/* Huge page is mapped? No need to proceed. */
3370	if (pmd_trans_huge(*vmf->pmd)) {
3371		folio_unlock(folio);
3372		folio_put(folio);
3373		return true;
3374	}
3375
3376	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3377		struct page *page = folio_file_page(folio, start);
3378		vm_fault_t ret = do_set_pmd(vmf, page);
3379		if (!ret) {
3380			/* The page is mapped successfully, reference consumed. */
3381			folio_unlock(folio);
3382			return true;
3383		}
3384	}
3385
3386	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3387		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
 
3388
3389	return false;
3390}
 
 
 
3391
3392static struct folio *next_uptodate_folio(struct xa_state *xas,
3393		struct address_space *mapping, pgoff_t end_pgoff)
3394{
3395	struct folio *folio = xas_next_entry(xas, end_pgoff);
3396	unsigned long max_idx;
3397
3398	do {
3399		if (!folio)
3400			return NULL;
3401		if (xas_retry(xas, folio))
3402			continue;
3403		if (xa_is_value(folio))
3404			continue;
3405		if (folio_test_locked(folio))
3406			continue;
3407		if (!folio_try_get_rcu(folio))
3408			continue;
3409		/* Has the page moved or been split? */
3410		if (unlikely(folio != xas_reload(xas)))
3411			goto skip;
3412		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3413			goto skip;
3414		if (!folio_trylock(folio))
3415			goto skip;
3416		if (folio->mapping != mapping)
3417			goto unlock;
3418		if (!folio_test_uptodate(folio))
3419			goto unlock;
 
3420		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3421		if (xas->xa_index >= max_idx)
3422			goto unlock;
3423		return folio;
3424unlock:
3425		folio_unlock(folio);
3426skip:
3427		folio_put(folio);
3428	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3429
3430	return NULL;
3431}
3432
3433/*
3434 * Map page range [start_page, start_page + nr_pages) of folio.
3435 * start_page is gotten from start by folio_page(folio, start)
3436 */
3437static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3438			struct folio *folio, unsigned long start,
3439			unsigned long addr, unsigned int nr_pages,
3440			unsigned int *mmap_miss)
3441{
3442	vm_fault_t ret = 0;
3443	struct page *page = folio_page(folio, start);
3444	unsigned int count = 0;
3445	pte_t *old_ptep = vmf->pte;
3446
3447	do {
3448		if (PageHWPoison(page + count))
3449			goto skip;
3450
3451		(*mmap_miss)++;
3452
3453		/*
3454		 * NOTE: If there're PTE markers, we'll leave them to be
3455		 * handled in the specific fault path, and it'll prohibit the
3456		 * fault-around logic.
3457		 */
3458		if (!pte_none(ptep_get(&vmf->pte[count])))
3459			goto skip;
3460
3461		count++;
3462		continue;
3463skip:
3464		if (count) {
3465			set_pte_range(vmf, folio, page, count, addr);
3466			folio_ref_add(folio, count);
3467			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3468				ret = VM_FAULT_NOPAGE;
3469		}
3470
3471		count++;
3472		page += count;
3473		vmf->pte += count;
3474		addr += count * PAGE_SIZE;
3475		count = 0;
3476	} while (--nr_pages > 0);
3477
3478	if (count) {
3479		set_pte_range(vmf, folio, page, count, addr);
3480		folio_ref_add(folio, count);
3481		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3482			ret = VM_FAULT_NOPAGE;
3483	}
3484
3485	vmf->pte = old_ptep;
3486
3487	return ret;
3488}
3489
3490static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3491		struct folio *folio, unsigned long addr,
3492		unsigned int *mmap_miss)
3493{
3494	vm_fault_t ret = 0;
3495	struct page *page = &folio->page;
3496
3497	if (PageHWPoison(page))
3498		return ret;
3499
3500	(*mmap_miss)++;
3501
3502	/*
3503	 * NOTE: If there're PTE markers, we'll leave them to be
3504	 * handled in the specific fault path, and it'll prohibit
3505	 * the fault-around logic.
3506	 */
3507	if (!pte_none(ptep_get(vmf->pte)))
3508		return ret;
3509
3510	if (vmf->address == addr)
3511		ret = VM_FAULT_NOPAGE;
3512
3513	set_pte_range(vmf, folio, page, 1, addr);
3514	folio_ref_inc(folio);
3515
3516	return ret;
3517}
3518
3519vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3520			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3521{
3522	struct vm_area_struct *vma = vmf->vma;
3523	struct file *file = vma->vm_file;
3524	struct address_space *mapping = file->f_mapping;
3525	pgoff_t last_pgoff = start_pgoff;
3526	unsigned long addr;
3527	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3528	struct folio *folio;
3529	vm_fault_t ret = 0;
3530	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3531
3532	rcu_read_lock();
3533	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3534	if (!folio)
3535		goto out;
3536
3537	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3538		ret = VM_FAULT_NOPAGE;
3539		goto out;
3540	}
3541
3542	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3543	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3544	if (!vmf->pte) {
3545		folio_unlock(folio);
3546		folio_put(folio);
3547		goto out;
3548	}
3549	do {
3550		unsigned long end;
3551
3552		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3553		vmf->pte += xas.xa_index - last_pgoff;
3554		last_pgoff = xas.xa_index;
3555		end = folio_next_index(folio) - 1;
3556		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3557
3558		if (!folio_test_large(folio))
3559			ret |= filemap_map_order0_folio(vmf,
3560					folio, addr, &mmap_miss);
3561		else
3562			ret |= filemap_map_folio_range(vmf, folio,
3563					xas.xa_index - folio->index, addr,
3564					nr_pages, &mmap_miss);
3565
3566		folio_unlock(folio);
3567		folio_put(folio);
3568	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3569	pte_unmap_unlock(vmf->pte, vmf->ptl);
3570out:
3571	rcu_read_unlock();
3572
3573	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3574	if (mmap_miss >= mmap_miss_saved)
3575		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3576	else
3577		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3578
3579	return ret;
3580}
3581EXPORT_SYMBOL(filemap_map_pages);
3582
3583vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3584{
3585	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3586	struct folio *folio = page_folio(vmf->page);
3587	vm_fault_t ret = VM_FAULT_LOCKED;
3588
3589	sb_start_pagefault(mapping->host->i_sb);
3590	file_update_time(vmf->vma->vm_file);
3591	folio_lock(folio);
3592	if (folio->mapping != mapping) {
3593		folio_unlock(folio);
3594		ret = VM_FAULT_NOPAGE;
3595		goto out;
3596	}
3597	/*
3598	 * We mark the folio dirty already here so that when freeze is in
3599	 * progress, we are guaranteed that writeback during freezing will
3600	 * see the dirty folio and writeprotect it again.
3601	 */
3602	folio_mark_dirty(folio);
3603	folio_wait_stable(folio);
3604out:
3605	sb_end_pagefault(mapping->host->i_sb);
3606	return ret;
3607}
3608
3609const struct vm_operations_struct generic_file_vm_ops = {
3610	.fault		= filemap_fault,
3611	.map_pages	= filemap_map_pages,
3612	.page_mkwrite	= filemap_page_mkwrite,
3613};
3614
3615/* This is used for a general mmap of a disk file */
3616
3617int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3618{
3619	struct address_space *mapping = file->f_mapping;
3620
3621	if (!mapping->a_ops->read_folio)
3622		return -ENOEXEC;
3623	file_accessed(file);
3624	vma->vm_ops = &generic_file_vm_ops;
3625	return 0;
3626}
3627
3628/*
3629 * This is for filesystems which do not implement ->writepage.
3630 */
3631int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3632{
3633	if (vma_is_shared_maywrite(vma))
3634		return -EINVAL;
3635	return generic_file_mmap(file, vma);
3636}
3637#else
3638vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3639{
3640	return VM_FAULT_SIGBUS;
3641}
3642int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3643{
3644	return -ENOSYS;
3645}
3646int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3647{
3648	return -ENOSYS;
3649}
3650#endif /* CONFIG_MMU */
3651
3652EXPORT_SYMBOL(filemap_page_mkwrite);
3653EXPORT_SYMBOL(generic_file_mmap);
3654EXPORT_SYMBOL(generic_file_readonly_mmap);
3655
3656static struct folio *do_read_cache_folio(struct address_space *mapping,
3657		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3658{
3659	struct folio *folio;
3660	int err;
3661
3662	if (!filler)
3663		filler = mapping->a_ops->read_folio;
3664repeat:
3665	folio = filemap_get_folio(mapping, index);
3666	if (IS_ERR(folio)) {
3667		folio = filemap_alloc_folio(gfp, 0);
3668		if (!folio)
3669			return ERR_PTR(-ENOMEM);
3670		err = filemap_add_folio(mapping, folio, index, gfp);
3671		if (unlikely(err)) {
3672			folio_put(folio);
3673			if (err == -EEXIST)
3674				goto repeat;
3675			/* Presumably ENOMEM for xarray node */
 
 
 
 
 
 
 
3676			return ERR_PTR(err);
3677		}
3678
3679		goto filler;
 
 
 
3680	}
3681	if (folio_test_uptodate(folio))
3682		goto out;
3683
3684	if (!folio_trylock(folio)) {
3685		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3686		goto repeat;
3687	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3688
3689	/* Folio was truncated from mapping */
3690	if (!folio->mapping) {
3691		folio_unlock(folio);
3692		folio_put(folio);
3693		goto repeat;
3694	}
3695
3696	/* Someone else locked and filled the page in a very small window */
3697	if (folio_test_uptodate(folio)) {
3698		folio_unlock(folio);
3699		goto out;
3700	}
3701
3702filler:
3703	err = filemap_read_folio(file, filler, folio);
3704	if (err) {
3705		folio_put(folio);
3706		if (err == AOP_TRUNCATED_PAGE)
3707			goto repeat;
3708		return ERR_PTR(err);
3709	}
3710
3711out:
3712	folio_mark_accessed(folio);
3713	return folio;
3714}
3715
3716/**
3717 * read_cache_folio - Read into page cache, fill it if needed.
3718 * @mapping: The address_space to read from.
3719 * @index: The index to read.
3720 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3721 * @file: Passed to filler function, may be NULL if not required.
3722 *
3723 * Read one page into the page cache.  If it succeeds, the folio returned
3724 * will contain @index, but it may not be the first page of the folio.
3725 *
3726 * If the filler function returns an error, it will be returned to the
3727 * caller.
3728 *
3729 * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3730 * Return: An uptodate folio on success, ERR_PTR() on failure.
3731 */
3732struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3733		filler_t filler, struct file *file)
3734{
3735	return do_read_cache_folio(mapping, index, filler, file,
3736			mapping_gfp_mask(mapping));
3737}
3738EXPORT_SYMBOL(read_cache_folio);
3739
3740/**
3741 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3742 * @mapping:	The address_space for the folio.
3743 * @index:	The index that the allocated folio will contain.
3744 * @gfp:	The page allocator flags to use if allocating.
3745 *
3746 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3747 * any new memory allocations done using the specified allocation flags.
3748 *
3749 * The most likely error from this function is EIO, but ENOMEM is
3750 * possible and so is EINTR.  If ->read_folio returns another error,
3751 * that will be returned to the caller.
3752 *
3753 * The function expects mapping->invalidate_lock to be already held.
3754 *
3755 * Return: Uptodate folio on success, ERR_PTR() on failure.
3756 */
3757struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3758		pgoff_t index, gfp_t gfp)
3759{
3760	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3761}
3762EXPORT_SYMBOL(mapping_read_folio_gfp);
3763
3764static struct page *do_read_cache_page(struct address_space *mapping,
3765		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3766{
3767	struct folio *folio;
3768
3769	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3770	if (IS_ERR(folio))
3771		return &folio->page;
3772	return folio_file_page(folio, index);
3773}
3774
3775struct page *read_cache_page(struct address_space *mapping,
3776			pgoff_t index, filler_t *filler, struct file *file)
 
 
3777{
3778	return do_read_cache_page(mapping, index, filler, file,
3779			mapping_gfp_mask(mapping));
3780}
3781EXPORT_SYMBOL(read_cache_page);
3782
3783/**
3784 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3785 * @mapping:	the page's address_space
3786 * @index:	the page index
3787 * @gfp:	the page allocator flags to use if allocating
3788 *
3789 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3790 * any new page allocations done using the specified allocation flags.
3791 *
3792 * If the page does not get brought uptodate, return -EIO.
3793 *
3794 * The function expects mapping->invalidate_lock to be already held.
3795 *
3796 * Return: up to date page on success, ERR_PTR() on failure.
3797 */
3798struct page *read_cache_page_gfp(struct address_space *mapping,
3799				pgoff_t index,
3800				gfp_t gfp)
3801{
3802	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 
 
3803}
3804EXPORT_SYMBOL(read_cache_page_gfp);
3805
3806/*
3807 * Warn about a page cache invalidation failure during a direct I/O write.
 
 
 
 
3808 */
3809static void dio_warn_stale_pagecache(struct file *filp)
3810{
3811	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3812	char pathname[128];
3813	char *path;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3814
3815	errseq_set(&filp->f_mapping->wb_err, -EIO);
3816	if (__ratelimit(&_rs)) {
3817		path = file_path(filp, pathname, sizeof(pathname));
3818		if (IS_ERR(path))
3819			path = "(unknown)";
3820		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3821		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3822			current->comm);
3823	}
 
 
 
 
 
 
 
 
 
 
 
 
 
3824}
 
3825
3826void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
 
 
3827{
3828	struct address_space *mapping = iocb->ki_filp->f_mapping;
3829
3830	if (mapping->nrpages &&
3831	    invalidate_inode_pages2_range(mapping,
3832			iocb->ki_pos >> PAGE_SHIFT,
3833			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3834		dio_warn_stale_pagecache(iocb->ki_filp);
3835}
 
 
 
 
 
 
 
 
 
 
 
3836
3837ssize_t
3838generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3839{
3840	struct address_space *mapping = iocb->ki_filp->f_mapping;
3841	size_t write_len = iov_iter_count(from);
3842	ssize_t written;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3843
3844	/*
 
 
 
 
 
 
 
 
3845	 * If a page can not be invalidated, return 0 to fall back
3846	 * to buffered write.
3847	 */
3848	written = kiocb_invalidate_pages(iocb, write_len);
3849	if (written) {
3850		if (written == -EBUSY)
3851			return 0;
3852		return written;
3853	}
3854
3855	written = mapping->a_ops->direct_IO(iocb, from);
3856
3857	/*
3858	 * Finally, try again to invalidate clean pages which might have been
3859	 * cached by non-direct readahead, or faulted in by get_user_pages()
3860	 * if the source of the write was an mmap'ed region of the file
3861	 * we're writing.  Either one is a pretty crazy thing to do,
3862	 * so we don't support it 100%.  If this invalidation
3863	 * fails, tough, the write still worked...
3864	 *
3865	 * Most of the time we do not need this since dio_complete() will do
3866	 * the invalidation for us. However there are some file systems that
3867	 * do not end up with dio_complete() being called, so let's not break
3868	 * them by removing it completely.
3869	 *
3870	 * Noticeable example is a blkdev_direct_IO().
3871	 *
3872	 * Skip invalidation for async writes or if mapping has no pages.
3873	 */
 
 
 
 
3874	if (written > 0) {
3875		struct inode *inode = mapping->host;
3876		loff_t pos = iocb->ki_pos;
3877
3878		kiocb_invalidate_post_direct_write(iocb, written);
3879		pos += written;
3880		write_len -= written;
3881		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3882			i_size_write(inode, pos);
3883			mark_inode_dirty(inode);
3884		}
3885		iocb->ki_pos = pos;
3886	}
3887	if (written != -EIOCBQUEUED)
3888		iov_iter_revert(from, write_len - iov_iter_count(from));
3889	return written;
3890}
3891EXPORT_SYMBOL(generic_file_direct_write);
3892
3893ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3894{
3895	struct file *file = iocb->ki_filp;
3896	loff_t pos = iocb->ki_pos;
3897	struct address_space *mapping = file->f_mapping;
3898	const struct address_space_operations *a_ops = mapping->a_ops;
3899	long status = 0;
3900	ssize_t written = 0;
 
3901
3902	do {
3903		struct page *page;
3904		unsigned long offset;	/* Offset into pagecache page */
3905		unsigned long bytes;	/* Bytes to write to page */
3906		size_t copied;		/* Bytes copied from user */
3907		void *fsdata = NULL;
3908
3909		offset = (pos & (PAGE_SIZE - 1));
3910		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3911						iov_iter_count(i));
3912
3913again:
3914		/*
3915		 * Bring in the user page that we will copy from _first_.
3916		 * Otherwise there's a nasty deadlock on copying from the
3917		 * same page as we're writing to, without it being marked
3918		 * up-to-date.
 
 
 
 
3919		 */
3920		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3921			status = -EFAULT;
3922			break;
3923		}
3924
3925		if (fatal_signal_pending(current)) {
3926			status = -EINTR;
3927			break;
3928		}
3929
3930		status = a_ops->write_begin(file, mapping, pos, bytes,
3931						&page, &fsdata);
3932		if (unlikely(status < 0))
3933			break;
3934
3935		if (mapping_writably_mapped(mapping))
3936			flush_dcache_page(page);
3937
3938		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3939		flush_dcache_page(page);
3940
3941		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3942						page, fsdata);
3943		if (unlikely(status != copied)) {
3944			iov_iter_revert(i, copied - max(status, 0L));
3945			if (unlikely(status < 0))
3946				break;
3947		}
3948		cond_resched();
3949
3950		if (unlikely(status == 0)) {
 
3951			/*
3952			 * A short copy made ->write_end() reject the
3953			 * thing entirely.  Might be memory poisoning
3954			 * halfway through, might be a race with munmap,
3955			 * might be severe memory pressure.
 
 
3956			 */
3957			if (copied)
3958				bytes = copied;
3959			goto again;
3960		}
3961		pos += status;
3962		written += status;
3963
3964		balance_dirty_pages_ratelimited(mapping);
3965	} while (iov_iter_count(i));
3966
3967	if (!written)
3968		return status;
3969	iocb->ki_pos += written;
3970	return written;
3971}
3972EXPORT_SYMBOL(generic_perform_write);
3973
3974/**
3975 * __generic_file_write_iter - write data to a file
3976 * @iocb:	IO state structure (file, offset, etc.)
3977 * @from:	iov_iter with data to write
3978 *
3979 * This function does all the work needed for actually writing data to a
3980 * file. It does all basic checks, removes SUID from the file, updates
3981 * modification times and calls proper subroutines depending on whether we
3982 * do direct IO or a standard buffered write.
3983 *
3984 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3985 * object which does not need locking at all.
3986 *
3987 * This function does *not* take care of syncing data in case of O_SYNC write.
3988 * A caller has to handle it. This is mainly due to the fact that we want to
3989 * avoid syncing under i_rwsem.
3990 *
3991 * Return:
3992 * * number of bytes written, even for truncated writes
3993 * * negative error code if no data has been written at all
3994 */
3995ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3996{
3997	struct file *file = iocb->ki_filp;
3998	struct address_space *mapping = file->f_mapping;
3999	struct inode *inode = mapping->host;
4000	ssize_t ret;
 
 
 
 
 
 
 
 
4001
4002	ret = file_remove_privs(file);
4003	if (ret)
4004		return ret;
4005
4006	ret = file_update_time(file);
4007	if (ret)
4008		return ret;
4009
4010	if (iocb->ki_flags & IOCB_DIRECT) {
4011		ret = generic_file_direct_write(iocb, from);
 
 
4012		/*
4013		 * If the write stopped short of completing, fall back to
4014		 * buffered writes.  Some filesystems do this for writes to
4015		 * holes, for example.  For DAX files, a buffered write will
4016		 * not succeed (even if it did, DAX does not handle dirty
4017		 * page-cache pages correctly).
4018		 */
4019		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4020			return ret;
4021		return direct_write_fallback(iocb, from, ret,
4022				generic_perform_write(iocb, from));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4023	}
4024
4025	return generic_perform_write(iocb, from);
 
4026}
4027EXPORT_SYMBOL(__generic_file_write_iter);
4028
4029/**
4030 * generic_file_write_iter - write data to a file
4031 * @iocb:	IO state structure
4032 * @from:	iov_iter with data to write
4033 *
4034 * This is a wrapper around __generic_file_write_iter() to be used by most
4035 * filesystems. It takes care of syncing the file in case of O_SYNC file
4036 * and acquires i_rwsem as needed.
4037 * Return:
4038 * * negative error code if no data has been written at all of
4039 *   vfs_fsync_range() failed for a synchronous write
4040 * * number of bytes written, even for truncated writes
4041 */
4042ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4043{
4044	struct file *file = iocb->ki_filp;
4045	struct inode *inode = file->f_mapping->host;
4046	ssize_t ret;
4047
4048	inode_lock(inode);
4049	ret = generic_write_checks(iocb, from);
4050	if (ret > 0)
4051		ret = __generic_file_write_iter(iocb, from);
4052	inode_unlock(inode);
4053
4054	if (ret > 0)
4055		ret = generic_write_sync(iocb, ret);
4056	return ret;
4057}
4058EXPORT_SYMBOL(generic_file_write_iter);
4059
4060/**
4061 * filemap_release_folio() - Release fs-specific metadata on a folio.
4062 * @folio: The folio which the kernel is trying to free.
4063 * @gfp: Memory allocation flags (and I/O mode).
 
4064 *
4065 * The address_space is trying to release any data attached to a folio
4066 * (presumably at folio->private).
 
4067 *
4068 * This will also be called if the private_2 flag is set on a page,
4069 * indicating that the folio has other metadata associated with it.
4070 *
4071 * The @gfp argument specifies whether I/O may be performed to release
4072 * this page (__GFP_IO), and whether the call may block
4073 * (__GFP_RECLAIM & __GFP_FS).
4074 *
4075 * Return: %true if the release was successful, otherwise %false.
4076 */
4077bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4078{
4079	struct address_space * const mapping = folio->mapping;
4080
4081	BUG_ON(!folio_test_locked(folio));
4082	if (!folio_needs_release(folio))
4083		return true;
4084	if (folio_test_writeback(folio))
4085		return false;
4086
4087	if (mapping && mapping->a_ops->release_folio)
4088		return mapping->a_ops->release_folio(folio, gfp);
4089	return try_to_free_buffers(folio);
4090}
4091EXPORT_SYMBOL(filemap_release_folio);
4092
4093#ifdef CONFIG_CACHESTAT_SYSCALL
4094/**
4095 * filemap_cachestat() - compute the page cache statistics of a mapping
4096 * @mapping:	The mapping to compute the statistics for.
4097 * @first_index:	The starting page cache index.
4098 * @last_index:	The final page index (inclusive).
4099 * @cs:	the cachestat struct to write the result to.
4100 *
4101 * This will query the page cache statistics of a mapping in the
4102 * page range of [first_index, last_index] (inclusive). The statistics
4103 * queried include: number of dirty pages, number of pages marked for
4104 * writeback, and the number of (recently) evicted pages.
4105 */
4106static void filemap_cachestat(struct address_space *mapping,
4107		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4108{
4109	XA_STATE(xas, &mapping->i_pages, first_index);
4110	struct folio *folio;
4111
4112	rcu_read_lock();
4113	xas_for_each(&xas, folio, last_index) {
4114		int order;
4115		unsigned long nr_pages;
4116		pgoff_t folio_first_index, folio_last_index;
4117
4118		/*
4119		 * Don't deref the folio. It is not pinned, and might
4120		 * get freed (and reused) underneath us.
4121		 *
4122		 * We *could* pin it, but that would be expensive for
4123		 * what should be a fast and lightweight syscall.
4124		 *
4125		 * Instead, derive all information of interest from
4126		 * the rcu-protected xarray.
4127		 */
4128
4129		if (xas_retry(&xas, folio))
4130			continue;
4131
4132		order = xa_get_order(xas.xa, xas.xa_index);
4133		nr_pages = 1 << order;
4134		folio_first_index = round_down(xas.xa_index, 1 << order);
4135		folio_last_index = folio_first_index + nr_pages - 1;
4136
4137		/* Folios might straddle the range boundaries, only count covered pages */
4138		if (folio_first_index < first_index)
4139			nr_pages -= first_index - folio_first_index;
4140
4141		if (folio_last_index > last_index)
4142			nr_pages -= folio_last_index - last_index;
4143
4144		if (xa_is_value(folio)) {
4145			/* page is evicted */
4146			void *shadow = (void *)folio;
4147			bool workingset; /* not used */
4148
4149			cs->nr_evicted += nr_pages;
4150
4151#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4152			if (shmem_mapping(mapping)) {
4153				/* shmem file - in swap cache */
4154				swp_entry_t swp = radix_to_swp_entry(folio);
4155
4156				shadow = get_shadow_from_swap_cache(swp);
4157			}
4158#endif
4159			if (workingset_test_recent(shadow, true, &workingset))
4160				cs->nr_recently_evicted += nr_pages;
4161
4162			goto resched;
4163		}
4164
4165		/* page is in cache */
4166		cs->nr_cache += nr_pages;
4167
4168		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4169			cs->nr_dirty += nr_pages;
4170
4171		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4172			cs->nr_writeback += nr_pages;
4173
4174resched:
4175		if (need_resched()) {
4176			xas_pause(&xas);
4177			cond_resched_rcu();
4178		}
4179	}
4180	rcu_read_unlock();
4181}
4182
4183/*
4184 * The cachestat(2) system call.
4185 *
4186 * cachestat() returns the page cache statistics of a file in the
4187 * bytes range specified by `off` and `len`: number of cached pages,
4188 * number of dirty pages, number of pages marked for writeback,
4189 * number of evicted pages, and number of recently evicted pages.
4190 *
4191 * An evicted page is a page that is previously in the page cache
4192 * but has been evicted since. A page is recently evicted if its last
4193 * eviction was recent enough that its reentry to the cache would
4194 * indicate that it is actively being used by the system, and that
4195 * there is memory pressure on the system.
4196 *
4197 * `off` and `len` must be non-negative integers. If `len` > 0,
4198 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4199 * we will query in the range from `off` to the end of the file.
4200 *
4201 * The `flags` argument is unused for now, but is included for future
4202 * extensibility. User should pass 0 (i.e no flag specified).
4203 *
4204 * Currently, hugetlbfs is not supported.
4205 *
4206 * Because the status of a page can change after cachestat() checks it
4207 * but before it returns to the application, the returned values may
4208 * contain stale information.
4209 *
4210 * return values:
4211 *  zero        - success
4212 *  -EFAULT     - cstat or cstat_range points to an illegal address
4213 *  -EINVAL     - invalid flags
4214 *  -EBADF      - invalid file descriptor
4215 *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4216 */
4217SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4218		struct cachestat_range __user *, cstat_range,
4219		struct cachestat __user *, cstat, unsigned int, flags)
4220{
4221	struct fd f = fdget(fd);
4222	struct address_space *mapping;
4223	struct cachestat_range csr;
4224	struct cachestat cs;
4225	pgoff_t first_index, last_index;
4226
4227	if (!f.file)
4228		return -EBADF;
4229
4230	if (copy_from_user(&csr, cstat_range,
4231			sizeof(struct cachestat_range))) {
4232		fdput(f);
4233		return -EFAULT;
4234	}
4235
4236	/* hugetlbfs is not supported */
4237	if (is_file_hugepages(f.file)) {
4238		fdput(f);
4239		return -EOPNOTSUPP;
4240	}
4241
4242	if (flags != 0) {
4243		fdput(f);
4244		return -EINVAL;
4245	}
4246
4247	first_index = csr.off >> PAGE_SHIFT;
4248	last_index =
4249		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4250	memset(&cs, 0, sizeof(struct cachestat));
4251	mapping = f.file->f_mapping;
4252	filemap_cachestat(mapping, first_index, last_index, &cs);
4253	fdput(f);
4254
4255	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4256		return -EFAULT;
4257
4258	return 0;
4259}
4260#endif /* CONFIG_CACHESTAT_SYSCALL */