Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/sched/signal.h>
  17#include <linux/uaccess.h>
  18#include <linux/capability.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/gfp.h>
  21#include <linux/mm.h>
  22#include <linux/swap.h>
  23#include <linux/mman.h>
  24#include <linux/pagemap.h>
  25#include <linux/file.h>
  26#include <linux/uio.h>
  27#include <linux/hash.h>
  28#include <linux/writeback.h>
  29#include <linux/backing-dev.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/security.h>
  33#include <linux/cpuset.h>
 
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/shmem_fs.h>
  38#include <linux/rmap.h>
  39#include "internal.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/filemap.h>
  43
  44/*
  45 * FIXME: remove all knowledge of the buffer layer from the core VM
  46 */
  47#include <linux/buffer_head.h> /* for try_to_free_buffers */
  48
  49#include <asm/mman.h>
  50
  51/*
  52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  53 * though.
  54 *
  55 * Shared mappings now work. 15.8.1995  Bruno.
  56 *
  57 * finished 'unifying' the page and buffer cache and SMP-threaded the
  58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  59 *
  60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  61 */
  62
  63/*
  64 * Lock ordering:
  65 *
  66 *  ->i_mmap_rwsem		(truncate_pagecache)
  67 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  68 *      ->swap_lock		(exclusive_swap_page, others)
  69 *        ->i_pages lock
  70 *
  71 *  ->i_mutex
  72 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  73 *
  74 *  ->mmap_sem
  75 *    ->i_mmap_rwsem
  76 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  77 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  78 *
  79 *  ->mmap_sem
  80 *    ->lock_page		(access_process_vm)
  81 *
  82 *  ->i_mutex			(generic_perform_write)
  83 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  84 *
  85 *  bdi->wb.list_lock
  86 *    sb_lock			(fs/fs-writeback.c)
  87 *    ->i_pages lock		(__sync_single_inode)
  88 *
  89 *  ->i_mmap_rwsem
  90 *    ->anon_vma.lock		(vma_adjust)
  91 *
  92 *  ->anon_vma.lock
  93 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  94 *
  95 *  ->page_table_lock or pte_lock
  96 *    ->swap_lock		(try_to_unmap_one)
  97 *    ->private_lock		(try_to_unmap_one)
  98 *    ->i_pages lock		(try_to_unmap_one)
  99 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
 100 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
 101 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 102 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 103 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 105 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 106 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 107 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 108 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 109 *
 110 * ->i_mmap_rwsem
 111 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 112 */
 113
 114static int page_cache_tree_insert(struct address_space *mapping,
 115				  struct page *page, void **shadowp)
 116{
 117	struct radix_tree_node *node;
 118	void **slot;
 119	int error;
 120
 121	error = __radix_tree_create(&mapping->i_pages, page->index, 0,
 122				    &node, &slot);
 123	if (error)
 124		return error;
 125	if (*slot) {
 126		void *p;
 127
 128		p = radix_tree_deref_slot_protected(slot,
 129						    &mapping->i_pages.xa_lock);
 130		if (!radix_tree_exceptional_entry(p))
 131			return -EEXIST;
 132
 133		mapping->nrexceptional--;
 134		if (shadowp)
 135			*shadowp = p;
 
 
 
 
 
 
 
 
 
 136	}
 137	__radix_tree_replace(&mapping->i_pages, node, slot, page,
 138			     workingset_lookup_update(mapping));
 139	mapping->nrpages++;
 140	return 0;
 141}
 142
 143static void page_cache_tree_delete(struct address_space *mapping,
 144				   struct page *page, void *shadow)
 145{
 146	int i, nr;
 147
 148	/* hugetlb pages are represented by one entry in the radix tree */
 149	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 150
 151	VM_BUG_ON_PAGE(!PageLocked(page), page);
 152	VM_BUG_ON_PAGE(PageTail(page), page);
 153	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 154
 155	for (i = 0; i < nr; i++) {
 156		struct radix_tree_node *node;
 157		void **slot;
 158
 159		__radix_tree_lookup(&mapping->i_pages, page->index + i,
 160				    &node, &slot);
 161
 162		VM_BUG_ON_PAGE(!node && nr != 1, page);
 163
 164		radix_tree_clear_tags(&mapping->i_pages, node, slot);
 165		__radix_tree_replace(&mapping->i_pages, node, slot, shadow,
 166				workingset_lookup_update(mapping));
 167	}
 168
 169	page->mapping = NULL;
 170	/* Leave page->index set: truncation lookup relies upon it */
 171
 172	if (shadow) {
 173		mapping->nrexceptional += nr;
 174		/*
 175		 * Make sure the nrexceptional update is committed before
 176		 * the nrpages update so that final truncate racing
 177		 * with reclaim does not see both counters 0 at the
 178		 * same time and miss a shadow entry.
 179		 */
 180		smp_wmb();
 181	}
 182	mapping->nrpages -= nr;
 183}
 184
 185static void unaccount_page_cache_page(struct address_space *mapping,
 186				      struct page *page)
 
 
 
 
 187{
 188	int nr;
 
 189
 
 190	/*
 191	 * if we're uptodate, flush out into the cleancache, otherwise
 192	 * invalidate any existing cleancache entries.  We can't leave
 193	 * stale data around in the cleancache once our page is gone
 194	 */
 195	if (PageUptodate(page) && PageMappedToDisk(page))
 196		cleancache_put_page(page);
 197	else
 198		cleancache_invalidate_page(mapping, page);
 199
 200	VM_BUG_ON_PAGE(PageTail(page), page);
 201	VM_BUG_ON_PAGE(page_mapped(page), page);
 202	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 203		int mapcount;
 204
 205		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 206			 current->comm, page_to_pfn(page));
 207		dump_page(page, "still mapped when deleted");
 208		dump_stack();
 209		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 210
 211		mapcount = page_mapcount(page);
 212		if (mapping_exiting(mapping) &&
 213		    page_count(page) >= mapcount + 2) {
 214			/*
 215			 * All vmas have already been torn down, so it's
 216			 * a good bet that actually the page is unmapped,
 217			 * and we'd prefer not to leak it: if we're wrong,
 218			 * some other bad page check should catch it later.
 219			 */
 220			page_mapcount_reset(page);
 221			page_ref_sub(page, mapcount);
 222		}
 223	}
 224
 225	/* hugetlb pages do not participate in page cache accounting. */
 226	if (PageHuge(page))
 227		return;
 228
 229	nr = hpage_nr_pages(page);
 
 230
 231	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 
 
 232	if (PageSwapBacked(page)) {
 233		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 234		if (PageTransHuge(page))
 235			__dec_node_page_state(page, NR_SHMEM_THPS);
 236	} else {
 237		VM_BUG_ON_PAGE(PageTransHuge(page), page);
 238	}
 239
 240	/*
 241	 * At this point page must be either written or cleaned by
 242	 * truncate.  Dirty page here signals a bug and loss of
 243	 * unwritten data.
 244	 *
 245	 * This fixes dirty accounting after removing the page entirely
 246	 * but leaves PageDirty set: it has no effect for truncated
 247	 * page and anyway will be cleared before returning page into
 248	 * buddy allocator.
 249	 */
 250	if (WARN_ON_ONCE(PageDirty(page)))
 251		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 252}
 253
 254/*
 255 * Delete a page from the page cache and free it. Caller has to make
 256 * sure the page is locked and that nobody else uses it - or that usage
 257 * is safe.  The caller must hold the i_pages lock.
 258 */
 259void __delete_from_page_cache(struct page *page, void *shadow)
 260{
 261	struct address_space *mapping = page->mapping;
 262
 263	trace_mm_filemap_delete_from_page_cache(page);
 264
 265	unaccount_page_cache_page(mapping, page);
 266	page_cache_tree_delete(mapping, page, shadow);
 267}
 268
 269static void page_cache_free_page(struct address_space *mapping,
 270				struct page *page)
 271{
 272	void (*freepage)(struct page *);
 273
 274	freepage = mapping->a_ops->freepage;
 275	if (freepage)
 276		freepage(page);
 277
 278	if (PageTransHuge(page) && !PageHuge(page)) {
 279		page_ref_sub(page, HPAGE_PMD_NR);
 280		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 281	} else {
 282		put_page(page);
 283	}
 284}
 285
 286/**
 287 * delete_from_page_cache - delete page from page cache
 288 * @page: the page which the kernel is trying to remove from page cache
 289 *
 290 * This must be called only on pages that have been verified to be in the page
 291 * cache and locked.  It will never put the page into the free list, the caller
 292 * has a reference on the page.
 293 */
 294void delete_from_page_cache(struct page *page)
 295{
 296	struct address_space *mapping = page_mapping(page);
 297	unsigned long flags;
 
 298
 299	BUG_ON(!PageLocked(page));
 300	xa_lock_irqsave(&mapping->i_pages, flags);
 301	__delete_from_page_cache(page, NULL);
 302	xa_unlock_irqrestore(&mapping->i_pages, flags);
 303
 304	page_cache_free_page(mapping, page);
 305}
 306EXPORT_SYMBOL(delete_from_page_cache);
 307
 308/*
 309 * page_cache_tree_delete_batch - delete several pages from page cache
 310 * @mapping: the mapping to which pages belong
 311 * @pvec: pagevec with pages to delete
 312 *
 313 * The function walks over mapping->i_pages and removes pages passed in @pvec
 314 * from the mapping. The function expects @pvec to be sorted by page index.
 315 * It tolerates holes in @pvec (mapping entries at those indices are not
 316 * modified). The function expects only THP head pages to be present in the
 317 * @pvec and takes care to delete all corresponding tail pages from the
 318 * mapping as well.
 319 *
 320 * The function expects the i_pages lock to be held.
 321 */
 322static void
 323page_cache_tree_delete_batch(struct address_space *mapping,
 324			     struct pagevec *pvec)
 325{
 326	struct radix_tree_iter iter;
 327	void **slot;
 328	int total_pages = 0;
 329	int i = 0, tail_pages = 0;
 330	struct page *page;
 331	pgoff_t start;
 332
 333	start = pvec->pages[0]->index;
 334	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
 335		if (i >= pagevec_count(pvec) && !tail_pages)
 336			break;
 337		page = radix_tree_deref_slot_protected(slot,
 338						       &mapping->i_pages.xa_lock);
 339		if (radix_tree_exceptional_entry(page))
 340			continue;
 341		if (!tail_pages) {
 342			/*
 343			 * Some page got inserted in our range? Skip it. We
 344			 * have our pages locked so they are protected from
 345			 * being removed.
 346			 */
 347			if (page != pvec->pages[i])
 348				continue;
 349			WARN_ON_ONCE(!PageLocked(page));
 350			if (PageTransHuge(page) && !PageHuge(page))
 351				tail_pages = HPAGE_PMD_NR - 1;
 352			page->mapping = NULL;
 353			/*
 354			 * Leave page->index set: truncation lookup relies
 355			 * upon it
 356			 */
 357			i++;
 358		} else {
 359			tail_pages--;
 360		}
 361		radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
 362		__radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
 363				workingset_lookup_update(mapping));
 364		total_pages++;
 365	}
 366	mapping->nrpages -= total_pages;
 367}
 368
 369void delete_from_page_cache_batch(struct address_space *mapping,
 370				  struct pagevec *pvec)
 371{
 372	int i;
 373	unsigned long flags;
 374
 375	if (!pagevec_count(pvec))
 376		return;
 
 377
 378	xa_lock_irqsave(&mapping->i_pages, flags);
 379	for (i = 0; i < pagevec_count(pvec); i++) {
 380		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 381
 382		unaccount_page_cache_page(mapping, pvec->pages[i]);
 
 
 
 
 383	}
 384	page_cache_tree_delete_batch(mapping, pvec);
 385	xa_unlock_irqrestore(&mapping->i_pages, flags);
 386
 387	for (i = 0; i < pagevec_count(pvec); i++)
 388		page_cache_free_page(mapping, pvec->pages[i]);
 389}
 
 390
 391int filemap_check_errors(struct address_space *mapping)
 392{
 393	int ret = 0;
 394	/* Check for outstanding write errors */
 395	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 396	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 397		ret = -ENOSPC;
 398	if (test_bit(AS_EIO, &mapping->flags) &&
 399	    test_and_clear_bit(AS_EIO, &mapping->flags))
 400		ret = -EIO;
 401	return ret;
 402}
 403EXPORT_SYMBOL(filemap_check_errors);
 404
 405static int filemap_check_and_keep_errors(struct address_space *mapping)
 406{
 407	/* Check for outstanding write errors */
 408	if (test_bit(AS_EIO, &mapping->flags))
 409		return -EIO;
 410	if (test_bit(AS_ENOSPC, &mapping->flags))
 411		return -ENOSPC;
 412	return 0;
 413}
 414
 415/**
 416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 417 * @mapping:	address space structure to write
 418 * @start:	offset in bytes where the range starts
 419 * @end:	offset in bytes where the range ends (inclusive)
 420 * @sync_mode:	enable synchronous operation
 421 *
 422 * Start writeback against all of a mapping's dirty pages that lie
 423 * within the byte offsets <start, end> inclusive.
 424 *
 425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 426 * opposed to a regular memory cleansing writeback.  The difference between
 427 * these two operations is that if a dirty page/buffer is encountered, it must
 428 * be waited upon, and not just skipped over.
 429 */
 430int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 431				loff_t end, int sync_mode)
 432{
 433	int ret;
 434	struct writeback_control wbc = {
 435		.sync_mode = sync_mode,
 436		.nr_to_write = LONG_MAX,
 437		.range_start = start,
 438		.range_end = end,
 439	};
 440
 441	if (!mapping_cap_writeback_dirty(mapping))
 442		return 0;
 443
 444	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 445	ret = do_writepages(mapping, &wbc);
 446	wbc_detach_inode(&wbc);
 447	return ret;
 448}
 449
 450static inline int __filemap_fdatawrite(struct address_space *mapping,
 451	int sync_mode)
 452{
 453	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 454}
 455
 456int filemap_fdatawrite(struct address_space *mapping)
 457{
 458	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 459}
 460EXPORT_SYMBOL(filemap_fdatawrite);
 461
 462int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 463				loff_t end)
 464{
 465	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 466}
 467EXPORT_SYMBOL(filemap_fdatawrite_range);
 468
 469/**
 470 * filemap_flush - mostly a non-blocking flush
 471 * @mapping:	target address_space
 472 *
 473 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 474 * purposes - I/O may not be started against all dirty pages.
 475 */
 476int filemap_flush(struct address_space *mapping)
 477{
 478	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 479}
 480EXPORT_SYMBOL(filemap_flush);
 481
 482/**
 483 * filemap_range_has_page - check if a page exists in range.
 484 * @mapping:           address space within which to check
 485 * @start_byte:        offset in bytes where the range starts
 486 * @end_byte:          offset in bytes where the range ends (inclusive)
 487 *
 488 * Find at least one page in the range supplied, usually used to check if
 489 * direct writing in this range will trigger a writeback.
 490 */
 491bool filemap_range_has_page(struct address_space *mapping,
 492			   loff_t start_byte, loff_t end_byte)
 493{
 494	pgoff_t index = start_byte >> PAGE_SHIFT;
 495	pgoff_t end = end_byte >> PAGE_SHIFT;
 496	struct page *page;
 497
 498	if (end_byte < start_byte)
 499		return false;
 500
 501	if (mapping->nrpages == 0)
 502		return false;
 503
 504	if (!find_get_pages_range(mapping, &index, end, 1, &page))
 505		return false;
 506	put_page(page);
 507	return true;
 508}
 509EXPORT_SYMBOL(filemap_range_has_page);
 510
 511static void __filemap_fdatawait_range(struct address_space *mapping,
 512				     loff_t start_byte, loff_t end_byte)
 513{
 514	pgoff_t index = start_byte >> PAGE_SHIFT;
 515	pgoff_t end = end_byte >> PAGE_SHIFT;
 516	struct pagevec pvec;
 517	int nr_pages;
 
 518
 519	if (end_byte < start_byte)
 520		return;
 521
 522	pagevec_init(&pvec);
 523	while (index <= end) {
 
 
 
 524		unsigned i;
 525
 526		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 527				end, PAGECACHE_TAG_WRITEBACK);
 528		if (!nr_pages)
 529			break;
 530
 531		for (i = 0; i < nr_pages; i++) {
 532			struct page *page = pvec.pages[i];
 533
 
 
 
 
 534			wait_on_page_writeback(page);
 535			ClearPageError(page);
 
 536		}
 537		pagevec_release(&pvec);
 538		cond_resched();
 539	}
 
 
 540}
 541
 542/**
 543 * filemap_fdatawait_range - wait for writeback to complete
 544 * @mapping:		address space structure to wait for
 545 * @start_byte:		offset in bytes where the range starts
 546 * @end_byte:		offset in bytes where the range ends (inclusive)
 547 *
 548 * Walk the list of under-writeback pages of the given address space
 549 * in the given range and wait for all of them.  Check error status of
 550 * the address space and return it.
 551 *
 552 * Since the error status of the address space is cleared by this function,
 553 * callers are responsible for checking the return value and handling and/or
 554 * reporting the error.
 555 */
 556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 557			    loff_t end_byte)
 558{
 559	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 560	return filemap_check_errors(mapping);
 561}
 562EXPORT_SYMBOL(filemap_fdatawait_range);
 563
 564/**
 565 * file_fdatawait_range - wait for writeback to complete
 566 * @file:		file pointing to address space structure to wait for
 567 * @start_byte:		offset in bytes where the range starts
 568 * @end_byte:		offset in bytes where the range ends (inclusive)
 569 *
 570 * Walk the list of under-writeback pages of the address space that file
 571 * refers to, in the given range and wait for all of them.  Check error
 572 * status of the address space vs. the file->f_wb_err cursor and return it.
 573 *
 574 * Since the error status of the file is advanced by this function,
 575 * callers are responsible for checking the return value and handling and/or
 576 * reporting the error.
 577 */
 578int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 579{
 580	struct address_space *mapping = file->f_mapping;
 581
 582	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 583	return file_check_and_advance_wb_err(file);
 584}
 585EXPORT_SYMBOL(file_fdatawait_range);
 586
 587/**
 588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 589 * @mapping: address space structure to wait for
 590 *
 591 * Walk the list of under-writeback pages of the given address space
 592 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 593 * does not clear error status of the address space.
 594 *
 595 * Use this function if callers don't handle errors themselves.  Expected
 596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 597 * fsfreeze(8)
 598 */
 599int filemap_fdatawait_keep_errors(struct address_space *mapping)
 600{
 601	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 602	return filemap_check_and_keep_errors(mapping);
 
 
 
 
 603}
 604EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 605
 606static bool mapping_needs_writeback(struct address_space *mapping)
 
 
 
 
 
 
 
 
 
 
 
 
 607{
 608	return (!dax_mapping(mapping) && mapping->nrpages) ||
 609	    (dax_mapping(mapping) && mapping->nrexceptional);
 
 
 
 
 610}
 
 611
 612int filemap_write_and_wait(struct address_space *mapping)
 613{
 614	int err = 0;
 615
 616	if (mapping_needs_writeback(mapping)) {
 
 617		err = filemap_fdatawrite(mapping);
 618		/*
 619		 * Even if the above returned error, the pages may be
 620		 * written partially (e.g. -ENOSPC), so we wait for it.
 621		 * But the -EIO is special case, it may indicate the worst
 622		 * thing (e.g. bug) happened, so we avoid waiting for it.
 623		 */
 624		if (err != -EIO) {
 625			int err2 = filemap_fdatawait(mapping);
 626			if (!err)
 627				err = err2;
 628		} else {
 629			/* Clear any previously stored errors */
 630			filemap_check_errors(mapping);
 631		}
 632	} else {
 633		err = filemap_check_errors(mapping);
 634	}
 635	return err;
 636}
 637EXPORT_SYMBOL(filemap_write_and_wait);
 638
 639/**
 640 * filemap_write_and_wait_range - write out & wait on a file range
 641 * @mapping:	the address_space for the pages
 642 * @lstart:	offset in bytes where the range starts
 643 * @lend:	offset in bytes where the range ends (inclusive)
 644 *
 645 * Write out and wait upon file offsets lstart->lend, inclusive.
 646 *
 647 * Note that @lend is inclusive (describes the last byte to be written) so
 648 * that this function can be used to write to the very end-of-file (end = -1).
 649 */
 650int filemap_write_and_wait_range(struct address_space *mapping,
 651				 loff_t lstart, loff_t lend)
 652{
 653	int err = 0;
 654
 655	if (mapping_needs_writeback(mapping)) {
 
 656		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 657						 WB_SYNC_ALL);
 658		/* See comment of filemap_write_and_wait() */
 659		if (err != -EIO) {
 660			int err2 = filemap_fdatawait_range(mapping,
 661						lstart, lend);
 662			if (!err)
 663				err = err2;
 664		} else {
 665			/* Clear any previously stored errors */
 666			filemap_check_errors(mapping);
 667		}
 668	} else {
 669		err = filemap_check_errors(mapping);
 670	}
 671	return err;
 672}
 673EXPORT_SYMBOL(filemap_write_and_wait_range);
 674
 675void __filemap_set_wb_err(struct address_space *mapping, int err)
 676{
 677	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 678
 679	trace_filemap_set_wb_err(mapping, eseq);
 680}
 681EXPORT_SYMBOL(__filemap_set_wb_err);
 682
 683/**
 684 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 685 * 				   and advance wb_err to current one
 686 * @file: struct file on which the error is being reported
 687 *
 688 * When userland calls fsync (or something like nfsd does the equivalent), we
 689 * want to report any writeback errors that occurred since the last fsync (or
 690 * since the file was opened if there haven't been any).
 691 *
 692 * Grab the wb_err from the mapping. If it matches what we have in the file,
 693 * then just quickly return 0. The file is all caught up.
 694 *
 695 * If it doesn't match, then take the mapping value, set the "seen" flag in
 696 * it and try to swap it into place. If it works, or another task beat us
 697 * to it with the new value, then update the f_wb_err and return the error
 698 * portion. The error at this point must be reported via proper channels
 699 * (a'la fsync, or NFS COMMIT operation, etc.).
 700 *
 701 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 702 * value is protected by the f_lock since we must ensure that it reflects
 703 * the latest value swapped in for this file descriptor.
 704 */
 705int file_check_and_advance_wb_err(struct file *file)
 706{
 707	int err = 0;
 708	errseq_t old = READ_ONCE(file->f_wb_err);
 709	struct address_space *mapping = file->f_mapping;
 710
 711	/* Locklessly handle the common case where nothing has changed */
 712	if (errseq_check(&mapping->wb_err, old)) {
 713		/* Something changed, must use slow path */
 714		spin_lock(&file->f_lock);
 715		old = file->f_wb_err;
 716		err = errseq_check_and_advance(&mapping->wb_err,
 717						&file->f_wb_err);
 718		trace_file_check_and_advance_wb_err(file, old);
 719		spin_unlock(&file->f_lock);
 720	}
 721
 722	/*
 723	 * We're mostly using this function as a drop in replacement for
 724	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 725	 * that the legacy code would have had on these flags.
 726	 */
 727	clear_bit(AS_EIO, &mapping->flags);
 728	clear_bit(AS_ENOSPC, &mapping->flags);
 729	return err;
 730}
 731EXPORT_SYMBOL(file_check_and_advance_wb_err);
 732
 733/**
 734 * file_write_and_wait_range - write out & wait on a file range
 735 * @file:	file pointing to address_space with pages
 736 * @lstart:	offset in bytes where the range starts
 737 * @lend:	offset in bytes where the range ends (inclusive)
 738 *
 739 * Write out and wait upon file offsets lstart->lend, inclusive.
 740 *
 741 * Note that @lend is inclusive (describes the last byte to be written) so
 742 * that this function can be used to write to the very end-of-file (end = -1).
 743 *
 744 * After writing out and waiting on the data, we check and advance the
 745 * f_wb_err cursor to the latest value, and return any errors detected there.
 746 */
 747int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 748{
 749	int err = 0, err2;
 750	struct address_space *mapping = file->f_mapping;
 751
 752	if (mapping_needs_writeback(mapping)) {
 753		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 754						 WB_SYNC_ALL);
 755		/* See comment of filemap_write_and_wait() */
 756		if (err != -EIO)
 757			__filemap_fdatawait_range(mapping, lstart, lend);
 758	}
 759	err2 = file_check_and_advance_wb_err(file);
 760	if (!err)
 761		err = err2;
 762	return err;
 763}
 764EXPORT_SYMBOL(file_write_and_wait_range);
 765
 766/**
 767 * replace_page_cache_page - replace a pagecache page with a new one
 768 * @old:	page to be replaced
 769 * @new:	page to replace with
 770 * @gfp_mask:	allocation mode
 771 *
 772 * This function replaces a page in the pagecache with a new one.  On
 773 * success it acquires the pagecache reference for the new page and
 774 * drops it for the old page.  Both the old and new pages must be
 775 * locked.  This function does not add the new page to the LRU, the
 776 * caller must do that.
 777 *
 778 * The remove + add is atomic.  The only way this function can fail is
 779 * memory allocation failure.
 780 */
 781int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 782{
 783	int error;
 784
 785	VM_BUG_ON_PAGE(!PageLocked(old), old);
 786	VM_BUG_ON_PAGE(!PageLocked(new), new);
 787	VM_BUG_ON_PAGE(new->mapping, new);
 788
 789	error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
 790	if (!error) {
 791		struct address_space *mapping = old->mapping;
 792		void (*freepage)(struct page *);
 793		unsigned long flags;
 794
 795		pgoff_t offset = old->index;
 796		freepage = mapping->a_ops->freepage;
 797
 798		get_page(new);
 799		new->mapping = mapping;
 800		new->index = offset;
 801
 802		xa_lock_irqsave(&mapping->i_pages, flags);
 803		__delete_from_page_cache(old, NULL);
 804		error = page_cache_tree_insert(mapping, new, NULL);
 805		BUG_ON(error);
 806
 807		/*
 808		 * hugetlb pages do not participate in page cache accounting.
 809		 */
 810		if (!PageHuge(new))
 811			__inc_node_page_state(new, NR_FILE_PAGES);
 812		if (PageSwapBacked(new))
 813			__inc_node_page_state(new, NR_SHMEM);
 814		xa_unlock_irqrestore(&mapping->i_pages, flags);
 815		mem_cgroup_migrate(old, new);
 816		radix_tree_preload_end();
 817		if (freepage)
 818			freepage(old);
 819		put_page(old);
 820	}
 821
 822	return error;
 823}
 824EXPORT_SYMBOL_GPL(replace_page_cache_page);
 825
 826static int __add_to_page_cache_locked(struct page *page,
 827				      struct address_space *mapping,
 828				      pgoff_t offset, gfp_t gfp_mask,
 829				      void **shadowp)
 830{
 831	int huge = PageHuge(page);
 832	struct mem_cgroup *memcg;
 833	int error;
 834
 835	VM_BUG_ON_PAGE(!PageLocked(page), page);
 836	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 837
 838	if (!huge) {
 839		error = mem_cgroup_try_charge(page, current->mm,
 840					      gfp_mask, &memcg, false);
 841		if (error)
 842			return error;
 843	}
 844
 845	error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
 846	if (error) {
 847		if (!huge)
 848			mem_cgroup_cancel_charge(page, memcg, false);
 849		return error;
 850	}
 851
 852	get_page(page);
 853	page->mapping = mapping;
 854	page->index = offset;
 855
 856	xa_lock_irq(&mapping->i_pages);
 857	error = page_cache_tree_insert(mapping, page, shadowp);
 858	radix_tree_preload_end();
 859	if (unlikely(error))
 860		goto err_insert;
 861
 862	/* hugetlb pages do not participate in page cache accounting. */
 863	if (!huge)
 864		__inc_node_page_state(page, NR_FILE_PAGES);
 865	xa_unlock_irq(&mapping->i_pages);
 866	if (!huge)
 867		mem_cgroup_commit_charge(page, memcg, false, false);
 868	trace_mm_filemap_add_to_page_cache(page);
 869	return 0;
 870err_insert:
 871	page->mapping = NULL;
 872	/* Leave page->index set: truncation relies upon it */
 873	xa_unlock_irq(&mapping->i_pages);
 874	if (!huge)
 875		mem_cgroup_cancel_charge(page, memcg, false);
 876	put_page(page);
 877	return error;
 878}
 879
 880/**
 881 * add_to_page_cache_locked - add a locked page to the pagecache
 882 * @page:	page to add
 883 * @mapping:	the page's address_space
 884 * @offset:	page index
 885 * @gfp_mask:	page allocation mode
 886 *
 887 * This function is used to add a page to the pagecache. It must be locked.
 888 * This function does not add the page to the LRU.  The caller must do that.
 889 */
 890int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 891		pgoff_t offset, gfp_t gfp_mask)
 892{
 893	return __add_to_page_cache_locked(page, mapping, offset,
 894					  gfp_mask, NULL);
 895}
 896EXPORT_SYMBOL(add_to_page_cache_locked);
 897
 898int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 899				pgoff_t offset, gfp_t gfp_mask)
 900{
 901	void *shadow = NULL;
 902	int ret;
 903
 904	__SetPageLocked(page);
 905	ret = __add_to_page_cache_locked(page, mapping, offset,
 906					 gfp_mask, &shadow);
 907	if (unlikely(ret))
 908		__ClearPageLocked(page);
 909	else {
 910		/*
 911		 * The page might have been evicted from cache only
 912		 * recently, in which case it should be activated like
 913		 * any other repeatedly accessed page.
 914		 * The exception is pages getting rewritten; evicting other
 915		 * data from the working set, only to cache data that will
 916		 * get overwritten with something else, is a waste of memory.
 917		 */
 918		if (!(gfp_mask & __GFP_WRITE) &&
 919		    shadow && workingset_refault(shadow)) {
 920			SetPageActive(page);
 921			workingset_activation(page);
 922		} else
 923			ClearPageActive(page);
 924		lru_cache_add(page);
 925	}
 926	return ret;
 927}
 928EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 929
 930#ifdef CONFIG_NUMA
 931struct page *__page_cache_alloc(gfp_t gfp)
 932{
 933	int n;
 934	struct page *page;
 935
 936	if (cpuset_do_page_mem_spread()) {
 937		unsigned int cpuset_mems_cookie;
 938		do {
 939			cpuset_mems_cookie = read_mems_allowed_begin();
 940			n = cpuset_mem_spread_node();
 941			page = __alloc_pages_node(n, gfp, 0);
 942		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 943
 944		return page;
 945	}
 946	return alloc_pages(gfp, 0);
 947}
 948EXPORT_SYMBOL(__page_cache_alloc);
 949#endif
 950
 951/*
 952 * In order to wait for pages to become available there must be
 953 * waitqueues associated with pages. By using a hash table of
 954 * waitqueues where the bucket discipline is to maintain all
 955 * waiters on the same queue and wake all when any of the pages
 956 * become available, and for the woken contexts to check to be
 957 * sure the appropriate page became available, this saves space
 958 * at a cost of "thundering herd" phenomena during rare hash
 959 * collisions.
 960 */
 961#define PAGE_WAIT_TABLE_BITS 8
 962#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 963static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 964
 965static wait_queue_head_t *page_waitqueue(struct page *page)
 966{
 967	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 968}
 969
 970void __init pagecache_init(void)
 971{
 972	int i;
 973
 974	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 975		init_waitqueue_head(&page_wait_table[i]);
 976
 977	page_writeback_init();
 978}
 979
 980/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
 981struct wait_page_key {
 982	struct page *page;
 983	int bit_nr;
 984	int page_match;
 985};
 986
 987struct wait_page_queue {
 988	struct page *page;
 989	int bit_nr;
 990	wait_queue_entry_t wait;
 991};
 992
 993static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
 994{
 995	struct wait_page_key *key = arg;
 996	struct wait_page_queue *wait_page
 997		= container_of(wait, struct wait_page_queue, wait);
 998
 999	if (wait_page->page != key->page)
1000	       return 0;
1001	key->page_match = 1;
1002
1003	if (wait_page->bit_nr != key->bit_nr)
1004		return 0;
1005
1006	/* Stop walking if it's locked */
1007	if (test_bit(key->bit_nr, &key->page->flags))
1008		return -1;
1009
1010	return autoremove_wake_function(wait, mode, sync, key);
1011}
1012
1013static void wake_up_page_bit(struct page *page, int bit_nr)
1014{
1015	wait_queue_head_t *q = page_waitqueue(page);
1016	struct wait_page_key key;
1017	unsigned long flags;
1018	wait_queue_entry_t bookmark;
1019
1020	key.page = page;
1021	key.bit_nr = bit_nr;
1022	key.page_match = 0;
1023
1024	bookmark.flags = 0;
1025	bookmark.private = NULL;
1026	bookmark.func = NULL;
1027	INIT_LIST_HEAD(&bookmark.entry);
1028
1029	spin_lock_irqsave(&q->lock, flags);
1030	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1031
1032	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1033		/*
1034		 * Take a breather from holding the lock,
1035		 * allow pages that finish wake up asynchronously
1036		 * to acquire the lock and remove themselves
1037		 * from wait queue
1038		 */
1039		spin_unlock_irqrestore(&q->lock, flags);
1040		cpu_relax();
1041		spin_lock_irqsave(&q->lock, flags);
1042		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1043	}
1044
1045	/*
1046	 * It is possible for other pages to have collided on the waitqueue
1047	 * hash, so in that case check for a page match. That prevents a long-
1048	 * term waiter
1049	 *
1050	 * It is still possible to miss a case here, when we woke page waiters
1051	 * and removed them from the waitqueue, but there are still other
1052	 * page waiters.
1053	 */
1054	if (!waitqueue_active(q) || !key.page_match) {
1055		ClearPageWaiters(page);
1056		/*
1057		 * It's possible to miss clearing Waiters here, when we woke
1058		 * our page waiters, but the hashed waitqueue has waiters for
1059		 * other pages on it.
1060		 *
1061		 * That's okay, it's a rare case. The next waker will clear it.
1062		 */
1063	}
1064	spin_unlock_irqrestore(&q->lock, flags);
1065}
1066
1067static void wake_up_page(struct page *page, int bit)
1068{
1069	if (!PageWaiters(page))
1070		return;
1071	wake_up_page_bit(page, bit);
1072}
1073
1074static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075		struct page *page, int bit_nr, int state, bool lock)
1076{
1077	struct wait_page_queue wait_page;
1078	wait_queue_entry_t *wait = &wait_page.wait;
1079	int ret = 0;
1080
1081	init_wait(wait);
1082	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1083	wait->func = wake_page_function;
1084	wait_page.page = page;
1085	wait_page.bit_nr = bit_nr;
1086
1087	for (;;) {
1088		spin_lock_irq(&q->lock);
1089
1090		if (likely(list_empty(&wait->entry))) {
1091			__add_wait_queue_entry_tail(q, wait);
 
 
 
1092			SetPageWaiters(page);
1093		}
1094
1095		set_current_state(state);
1096
1097		spin_unlock_irq(&q->lock);
1098
1099		if (likely(test_bit(bit_nr, &page->flags))) {
1100			io_schedule();
 
 
 
 
1101		}
1102
1103		if (lock) {
1104			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1105				break;
1106		} else {
1107			if (!test_bit(bit_nr, &page->flags))
1108				break;
1109		}
1110
1111		if (unlikely(signal_pending_state(state, current))) {
1112			ret = -EINTR;
1113			break;
1114		}
1115	}
1116
1117	finish_wait(q, wait);
1118
1119	/*
1120	 * A signal could leave PageWaiters set. Clearing it here if
1121	 * !waitqueue_active would be possible (by open-coding finish_wait),
1122	 * but still fail to catch it in the case of wait hash collision. We
1123	 * already can fail to clear wait hash collision cases, so don't
1124	 * bother with signals either.
1125	 */
1126
1127	return ret;
1128}
1129
1130void wait_on_page_bit(struct page *page, int bit_nr)
1131{
1132	wait_queue_head_t *q = page_waitqueue(page);
1133	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1134}
1135EXPORT_SYMBOL(wait_on_page_bit);
1136
1137int wait_on_page_bit_killable(struct page *page, int bit_nr)
1138{
1139	wait_queue_head_t *q = page_waitqueue(page);
1140	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1141}
1142EXPORT_SYMBOL(wait_on_page_bit_killable);
1143
1144/**
1145 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1146 * @page: Page defining the wait queue of interest
1147 * @waiter: Waiter to add to the queue
1148 *
1149 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1150 */
1151void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1152{
1153	wait_queue_head_t *q = page_waitqueue(page);
1154	unsigned long flags;
1155
1156	spin_lock_irqsave(&q->lock, flags);
1157	__add_wait_queue_entry_tail(q, waiter);
1158	SetPageWaiters(page);
1159	spin_unlock_irqrestore(&q->lock, flags);
1160}
1161EXPORT_SYMBOL_GPL(add_page_wait_queue);
1162
1163#ifndef clear_bit_unlock_is_negative_byte
1164
1165/*
1166 * PG_waiters is the high bit in the same byte as PG_lock.
1167 *
1168 * On x86 (and on many other architectures), we can clear PG_lock and
1169 * test the sign bit at the same time. But if the architecture does
1170 * not support that special operation, we just do this all by hand
1171 * instead.
1172 *
1173 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1174 * being cleared, but a memory barrier should be unneccssary since it is
1175 * in the same byte as PG_locked.
1176 */
1177static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1178{
1179	clear_bit_unlock(nr, mem);
1180	/* smp_mb__after_atomic(); */
1181	return test_bit(PG_waiters, mem);
1182}
1183
1184#endif
1185
1186/**
1187 * unlock_page - unlock a locked page
1188 * @page: the page
1189 *
1190 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1191 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1192 * mechanism between PageLocked pages and PageWriteback pages is shared.
1193 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1194 *
1195 * Note that this depends on PG_waiters being the sign bit in the byte
1196 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1197 * clear the PG_locked bit and test PG_waiters at the same time fairly
1198 * portably (architectures that do LL/SC can test any bit, while x86 can
1199 * test the sign bit).
1200 */
1201void unlock_page(struct page *page)
1202{
1203	BUILD_BUG_ON(PG_waiters != 7);
1204	page = compound_head(page);
1205	VM_BUG_ON_PAGE(!PageLocked(page), page);
1206	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1207		wake_up_page_bit(page, PG_locked);
1208}
1209EXPORT_SYMBOL(unlock_page);
1210
1211/**
1212 * end_page_writeback - end writeback against a page
1213 * @page: the page
1214 */
1215void end_page_writeback(struct page *page)
1216{
1217	/*
1218	 * TestClearPageReclaim could be used here but it is an atomic
1219	 * operation and overkill in this particular case. Failing to
1220	 * shuffle a page marked for immediate reclaim is too mild to
1221	 * justify taking an atomic operation penalty at the end of
1222	 * ever page writeback.
1223	 */
1224	if (PageReclaim(page)) {
1225		ClearPageReclaim(page);
1226		rotate_reclaimable_page(page);
1227	}
1228
1229	if (!test_clear_page_writeback(page))
1230		BUG();
1231
1232	smp_mb__after_atomic();
1233	wake_up_page(page, PG_writeback);
1234}
1235EXPORT_SYMBOL(end_page_writeback);
1236
1237/*
1238 * After completing I/O on a page, call this routine to update the page
1239 * flags appropriately
1240 */
1241void page_endio(struct page *page, bool is_write, int err)
1242{
1243	if (!is_write) {
1244		if (!err) {
1245			SetPageUptodate(page);
1246		} else {
1247			ClearPageUptodate(page);
1248			SetPageError(page);
1249		}
1250		unlock_page(page);
1251	} else {
1252		if (err) {
1253			struct address_space *mapping;
1254
1255			SetPageError(page);
1256			mapping = page_mapping(page);
1257			if (mapping)
1258				mapping_set_error(mapping, err);
1259		}
1260		end_page_writeback(page);
1261	}
1262}
1263EXPORT_SYMBOL_GPL(page_endio);
1264
1265/**
1266 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1267 * @__page: the page to lock
1268 */
1269void __lock_page(struct page *__page)
1270{
1271	struct page *page = compound_head(__page);
1272	wait_queue_head_t *q = page_waitqueue(page);
1273	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1274}
1275EXPORT_SYMBOL(__lock_page);
1276
1277int __lock_page_killable(struct page *__page)
1278{
1279	struct page *page = compound_head(__page);
1280	wait_queue_head_t *q = page_waitqueue(page);
1281	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1282}
1283EXPORT_SYMBOL_GPL(__lock_page_killable);
1284
1285/*
1286 * Return values:
1287 * 1 - page is locked; mmap_sem is still held.
1288 * 0 - page is not locked.
1289 *     mmap_sem has been released (up_read()), unless flags had both
1290 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1291 *     which case mmap_sem is still held.
1292 *
1293 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1294 * with the page locked and the mmap_sem unperturbed.
1295 */
1296int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1297			 unsigned int flags)
1298{
1299	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1300		/*
1301		 * CAUTION! In this case, mmap_sem is not released
1302		 * even though return 0.
1303		 */
1304		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1305			return 0;
1306
1307		up_read(&mm->mmap_sem);
1308		if (flags & FAULT_FLAG_KILLABLE)
1309			wait_on_page_locked_killable(page);
1310		else
1311			wait_on_page_locked(page);
1312		return 0;
1313	} else {
1314		if (flags & FAULT_FLAG_KILLABLE) {
1315			int ret;
1316
1317			ret = __lock_page_killable(page);
1318			if (ret) {
1319				up_read(&mm->mmap_sem);
1320				return 0;
1321			}
1322		} else
1323			__lock_page(page);
1324		return 1;
1325	}
1326}
1327
1328/**
1329 * page_cache_next_hole - find the next hole (not-present entry)
1330 * @mapping: mapping
1331 * @index: index
1332 * @max_scan: maximum range to search
1333 *
1334 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1335 * lowest indexed hole.
1336 *
1337 * Returns: the index of the hole if found, otherwise returns an index
1338 * outside of the set specified (in which case 'return - index >=
1339 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1340 * be returned.
1341 *
1342 * page_cache_next_hole may be called under rcu_read_lock. However,
1343 * like radix_tree_gang_lookup, this will not atomically search a
1344 * snapshot of the tree at a single point in time. For example, if a
1345 * hole is created at index 5, then subsequently a hole is created at
1346 * index 10, page_cache_next_hole covering both indexes may return 10
1347 * if called under rcu_read_lock.
1348 */
1349pgoff_t page_cache_next_hole(struct address_space *mapping,
1350			     pgoff_t index, unsigned long max_scan)
1351{
1352	unsigned long i;
1353
1354	for (i = 0; i < max_scan; i++) {
1355		struct page *page;
1356
1357		page = radix_tree_lookup(&mapping->i_pages, index);
1358		if (!page || radix_tree_exceptional_entry(page))
1359			break;
1360		index++;
1361		if (index == 0)
1362			break;
1363	}
1364
1365	return index;
1366}
1367EXPORT_SYMBOL(page_cache_next_hole);
1368
1369/**
1370 * page_cache_prev_hole - find the prev hole (not-present entry)
1371 * @mapping: mapping
1372 * @index: index
1373 * @max_scan: maximum range to search
1374 *
1375 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1376 * the first hole.
1377 *
1378 * Returns: the index of the hole if found, otherwise returns an index
1379 * outside of the set specified (in which case 'index - return >=
1380 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1381 * will be returned.
1382 *
1383 * page_cache_prev_hole may be called under rcu_read_lock. However,
1384 * like radix_tree_gang_lookup, this will not atomically search a
1385 * snapshot of the tree at a single point in time. For example, if a
1386 * hole is created at index 10, then subsequently a hole is created at
1387 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1388 * called under rcu_read_lock.
1389 */
1390pgoff_t page_cache_prev_hole(struct address_space *mapping,
1391			     pgoff_t index, unsigned long max_scan)
1392{
1393	unsigned long i;
1394
1395	for (i = 0; i < max_scan; i++) {
1396		struct page *page;
1397
1398		page = radix_tree_lookup(&mapping->i_pages, index);
1399		if (!page || radix_tree_exceptional_entry(page))
1400			break;
1401		index--;
1402		if (index == ULONG_MAX)
1403			break;
1404	}
1405
1406	return index;
1407}
1408EXPORT_SYMBOL(page_cache_prev_hole);
1409
1410/**
1411 * find_get_entry - find and get a page cache entry
1412 * @mapping: the address_space to search
1413 * @offset: the page cache index
1414 *
1415 * Looks up the page cache slot at @mapping & @offset.  If there is a
1416 * page cache page, it is returned with an increased refcount.
1417 *
1418 * If the slot holds a shadow entry of a previously evicted page, or a
1419 * swap entry from shmem/tmpfs, it is returned.
1420 *
1421 * Otherwise, %NULL is returned.
1422 */
1423struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1424{
1425	void **pagep;
1426	struct page *head, *page;
1427
1428	rcu_read_lock();
1429repeat:
1430	page = NULL;
1431	pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1432	if (pagep) {
1433		page = radix_tree_deref_slot(pagep);
1434		if (unlikely(!page))
1435			goto out;
1436		if (radix_tree_exception(page)) {
1437			if (radix_tree_deref_retry(page))
1438				goto repeat;
1439			/*
1440			 * A shadow entry of a recently evicted page,
1441			 * or a swap entry from shmem/tmpfs.  Return
1442			 * it without attempting to raise page count.
1443			 */
1444			goto out;
1445		}
1446
1447		head = compound_head(page);
1448		if (!page_cache_get_speculative(head))
1449			goto repeat;
1450
1451		/* The page was split under us? */
1452		if (compound_head(page) != head) {
1453			put_page(head);
1454			goto repeat;
1455		}
1456
1457		/*
1458		 * Has the page moved?
1459		 * This is part of the lockless pagecache protocol. See
1460		 * include/linux/pagemap.h for details.
1461		 */
1462		if (unlikely(page != *pagep)) {
1463			put_page(head);
1464			goto repeat;
1465		}
1466	}
1467out:
1468	rcu_read_unlock();
1469
1470	return page;
1471}
1472EXPORT_SYMBOL(find_get_entry);
1473
1474/**
1475 * find_lock_entry - locate, pin and lock a page cache entry
1476 * @mapping: the address_space to search
1477 * @offset: the page cache index
1478 *
1479 * Looks up the page cache slot at @mapping & @offset.  If there is a
1480 * page cache page, it is returned locked and with an increased
1481 * refcount.
1482 *
1483 * If the slot holds a shadow entry of a previously evicted page, or a
1484 * swap entry from shmem/tmpfs, it is returned.
1485 *
1486 * Otherwise, %NULL is returned.
1487 *
1488 * find_lock_entry() may sleep.
1489 */
1490struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1491{
1492	struct page *page;
1493
1494repeat:
1495	page = find_get_entry(mapping, offset);
1496	if (page && !radix_tree_exception(page)) {
1497		lock_page(page);
1498		/* Has the page been truncated? */
1499		if (unlikely(page_mapping(page) != mapping)) {
1500			unlock_page(page);
1501			put_page(page);
1502			goto repeat;
1503		}
1504		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1505	}
1506	return page;
1507}
1508EXPORT_SYMBOL(find_lock_entry);
1509
1510/**
1511 * pagecache_get_page - find and get a page reference
1512 * @mapping: the address_space to search
1513 * @offset: the page index
1514 * @fgp_flags: PCG flags
1515 * @gfp_mask: gfp mask to use for the page cache data page allocation
1516 *
1517 * Looks up the page cache slot at @mapping & @offset.
1518 *
1519 * PCG flags modify how the page is returned.
1520 *
1521 * @fgp_flags can be:
1522 *
1523 * - FGP_ACCESSED: the page will be marked accessed
1524 * - FGP_LOCK: Page is return locked
1525 * - FGP_CREAT: If page is not present then a new page is allocated using
1526 *   @gfp_mask and added to the page cache and the VM's LRU
1527 *   list. The page is returned locked and with an increased
1528 *   refcount. Otherwise, NULL is returned.
1529 *
1530 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1531 * if the GFP flags specified for FGP_CREAT are atomic.
1532 *
1533 * If there is a page cache page, it is returned with an increased refcount.
1534 */
1535struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1536	int fgp_flags, gfp_t gfp_mask)
1537{
1538	struct page *page;
1539
1540repeat:
1541	page = find_get_entry(mapping, offset);
1542	if (radix_tree_exceptional_entry(page))
1543		page = NULL;
1544	if (!page)
1545		goto no_page;
1546
1547	if (fgp_flags & FGP_LOCK) {
1548		if (fgp_flags & FGP_NOWAIT) {
1549			if (!trylock_page(page)) {
1550				put_page(page);
1551				return NULL;
1552			}
1553		} else {
1554			lock_page(page);
1555		}
1556
1557		/* Has the page been truncated? */
1558		if (unlikely(page->mapping != mapping)) {
1559			unlock_page(page);
1560			put_page(page);
1561			goto repeat;
1562		}
1563		VM_BUG_ON_PAGE(page->index != offset, page);
1564	}
1565
1566	if (page && (fgp_flags & FGP_ACCESSED))
1567		mark_page_accessed(page);
1568
1569no_page:
1570	if (!page && (fgp_flags & FGP_CREAT)) {
1571		int err;
1572		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1573			gfp_mask |= __GFP_WRITE;
1574		if (fgp_flags & FGP_NOFS)
1575			gfp_mask &= ~__GFP_FS;
1576
1577		page = __page_cache_alloc(gfp_mask);
1578		if (!page)
1579			return NULL;
1580
1581		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1582			fgp_flags |= FGP_LOCK;
1583
1584		/* Init accessed so avoid atomic mark_page_accessed later */
1585		if (fgp_flags & FGP_ACCESSED)
1586			__SetPageReferenced(page);
1587
1588		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
 
1589		if (unlikely(err)) {
1590			put_page(page);
1591			page = NULL;
1592			if (err == -EEXIST)
1593				goto repeat;
1594		}
1595	}
1596
1597	return page;
1598}
1599EXPORT_SYMBOL(pagecache_get_page);
1600
1601/**
1602 * find_get_entries - gang pagecache lookup
1603 * @mapping:	The address_space to search
1604 * @start:	The starting page cache index
1605 * @nr_entries:	The maximum number of entries
1606 * @entries:	Where the resulting entries are placed
1607 * @indices:	The cache indices corresponding to the entries in @entries
1608 *
1609 * find_get_entries() will search for and return a group of up to
1610 * @nr_entries entries in the mapping.  The entries are placed at
1611 * @entries.  find_get_entries() takes a reference against any actual
1612 * pages it returns.
1613 *
1614 * The search returns a group of mapping-contiguous page cache entries
1615 * with ascending indexes.  There may be holes in the indices due to
1616 * not-present pages.
1617 *
1618 * Any shadow entries of evicted pages, or swap entries from
1619 * shmem/tmpfs, are included in the returned array.
1620 *
1621 * find_get_entries() returns the number of pages and shadow entries
1622 * which were found.
1623 */
1624unsigned find_get_entries(struct address_space *mapping,
1625			  pgoff_t start, unsigned int nr_entries,
1626			  struct page **entries, pgoff_t *indices)
1627{
1628	void **slot;
1629	unsigned int ret = 0;
1630	struct radix_tree_iter iter;
1631
1632	if (!nr_entries)
1633		return 0;
1634
1635	rcu_read_lock();
1636	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1637		struct page *head, *page;
1638repeat:
1639		page = radix_tree_deref_slot(slot);
1640		if (unlikely(!page))
1641			continue;
1642		if (radix_tree_exception(page)) {
1643			if (radix_tree_deref_retry(page)) {
1644				slot = radix_tree_iter_retry(&iter);
1645				continue;
1646			}
1647			/*
1648			 * A shadow entry of a recently evicted page, a swap
1649			 * entry from shmem/tmpfs or a DAX entry.  Return it
1650			 * without attempting to raise page count.
1651			 */
1652			goto export;
1653		}
1654
1655		head = compound_head(page);
1656		if (!page_cache_get_speculative(head))
1657			goto repeat;
1658
1659		/* The page was split under us? */
1660		if (compound_head(page) != head) {
1661			put_page(head);
1662			goto repeat;
1663		}
1664
1665		/* Has the page moved? */
1666		if (unlikely(page != *slot)) {
1667			put_page(head);
1668			goto repeat;
1669		}
1670export:
1671		indices[ret] = iter.index;
1672		entries[ret] = page;
1673		if (++ret == nr_entries)
1674			break;
1675	}
1676	rcu_read_unlock();
1677	return ret;
1678}
1679
1680/**
1681 * find_get_pages_range - gang pagecache lookup
1682 * @mapping:	The address_space to search
1683 * @start:	The starting page index
1684 * @end:	The final page index (inclusive)
1685 * @nr_pages:	The maximum number of pages
1686 * @pages:	Where the resulting pages are placed
1687 *
1688 * find_get_pages_range() will search for and return a group of up to @nr_pages
1689 * pages in the mapping starting at index @start and up to index @end
1690 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1691 * a reference against the returned pages.
1692 *
1693 * The search returns a group of mapping-contiguous pages with ascending
1694 * indexes.  There may be holes in the indices due to not-present pages.
1695 * We also update @start to index the next page for the traversal.
1696 *
1697 * find_get_pages_range() returns the number of pages which were found. If this
1698 * number is smaller than @nr_pages, the end of specified range has been
1699 * reached.
1700 */
1701unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1702			      pgoff_t end, unsigned int nr_pages,
1703			      struct page **pages)
1704{
1705	struct radix_tree_iter iter;
1706	void **slot;
1707	unsigned ret = 0;
1708
1709	if (unlikely(!nr_pages))
1710		return 0;
1711
1712	rcu_read_lock();
1713	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1714		struct page *head, *page;
1715
1716		if (iter.index > end)
1717			break;
1718repeat:
1719		page = radix_tree_deref_slot(slot);
1720		if (unlikely(!page))
1721			continue;
1722
1723		if (radix_tree_exception(page)) {
1724			if (radix_tree_deref_retry(page)) {
1725				slot = radix_tree_iter_retry(&iter);
1726				continue;
1727			}
1728			/*
1729			 * A shadow entry of a recently evicted page,
1730			 * or a swap entry from shmem/tmpfs.  Skip
1731			 * over it.
1732			 */
1733			continue;
1734		}
1735
1736		head = compound_head(page);
1737		if (!page_cache_get_speculative(head))
1738			goto repeat;
1739
1740		/* The page was split under us? */
1741		if (compound_head(page) != head) {
1742			put_page(head);
1743			goto repeat;
1744		}
1745
1746		/* Has the page moved? */
1747		if (unlikely(page != *slot)) {
1748			put_page(head);
1749			goto repeat;
1750		}
1751
1752		pages[ret] = page;
1753		if (++ret == nr_pages) {
1754			*start = pages[ret - 1]->index + 1;
1755			goto out;
1756		}
1757	}
1758
1759	/*
1760	 * We come here when there is no page beyond @end. We take care to not
1761	 * overflow the index @start as it confuses some of the callers. This
1762	 * breaks the iteration when there is page at index -1 but that is
1763	 * already broken anyway.
1764	 */
1765	if (end == (pgoff_t)-1)
1766		*start = (pgoff_t)-1;
1767	else
1768		*start = end + 1;
1769out:
1770	rcu_read_unlock();
1771
1772	return ret;
1773}
1774
1775/**
1776 * find_get_pages_contig - gang contiguous pagecache lookup
1777 * @mapping:	The address_space to search
1778 * @index:	The starting page index
1779 * @nr_pages:	The maximum number of pages
1780 * @pages:	Where the resulting pages are placed
1781 *
1782 * find_get_pages_contig() works exactly like find_get_pages(), except
1783 * that the returned number of pages are guaranteed to be contiguous.
1784 *
1785 * find_get_pages_contig() returns the number of pages which were found.
1786 */
1787unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1788			       unsigned int nr_pages, struct page **pages)
1789{
1790	struct radix_tree_iter iter;
1791	void **slot;
1792	unsigned int ret = 0;
1793
1794	if (unlikely(!nr_pages))
1795		return 0;
1796
1797	rcu_read_lock();
1798	radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1799		struct page *head, *page;
1800repeat:
1801		page = radix_tree_deref_slot(slot);
1802		/* The hole, there no reason to continue */
1803		if (unlikely(!page))
1804			break;
1805
1806		if (radix_tree_exception(page)) {
1807			if (radix_tree_deref_retry(page)) {
1808				slot = radix_tree_iter_retry(&iter);
1809				continue;
1810			}
1811			/*
1812			 * A shadow entry of a recently evicted page,
1813			 * or a swap entry from shmem/tmpfs.  Stop
1814			 * looking for contiguous pages.
1815			 */
1816			break;
1817		}
1818
1819		head = compound_head(page);
1820		if (!page_cache_get_speculative(head))
1821			goto repeat;
1822
1823		/* The page was split under us? */
1824		if (compound_head(page) != head) {
1825			put_page(head);
1826			goto repeat;
1827		}
1828
1829		/* Has the page moved? */
1830		if (unlikely(page != *slot)) {
1831			put_page(head);
1832			goto repeat;
1833		}
1834
1835		/*
1836		 * must check mapping and index after taking the ref.
1837		 * otherwise we can get both false positives and false
1838		 * negatives, which is just confusing to the caller.
1839		 */
1840		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1841			put_page(page);
1842			break;
1843		}
1844
1845		pages[ret] = page;
1846		if (++ret == nr_pages)
1847			break;
1848	}
1849	rcu_read_unlock();
1850	return ret;
1851}
1852EXPORT_SYMBOL(find_get_pages_contig);
1853
1854/**
1855 * find_get_pages_range_tag - find and return pages in given range matching @tag
1856 * @mapping:	the address_space to search
1857 * @index:	the starting page index
1858 * @end:	The final page index (inclusive)
1859 * @tag:	the tag index
1860 * @nr_pages:	the maximum number of pages
1861 * @pages:	where the resulting pages are placed
1862 *
1863 * Like find_get_pages, except we only return pages which are tagged with
1864 * @tag.   We update @index to index the next page for the traversal.
1865 */
1866unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1867			pgoff_t end, int tag, unsigned int nr_pages,
1868			struct page **pages)
1869{
1870	struct radix_tree_iter iter;
1871	void **slot;
1872	unsigned ret = 0;
1873
1874	if (unlikely(!nr_pages))
1875		return 0;
1876
1877	rcu_read_lock();
1878	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
 
1879		struct page *head, *page;
1880
1881		if (iter.index > end)
1882			break;
1883repeat:
1884		page = radix_tree_deref_slot(slot);
1885		if (unlikely(!page))
1886			continue;
1887
1888		if (radix_tree_exception(page)) {
1889			if (radix_tree_deref_retry(page)) {
1890				slot = radix_tree_iter_retry(&iter);
1891				continue;
1892			}
1893			/*
1894			 * A shadow entry of a recently evicted page.
1895			 *
1896			 * Those entries should never be tagged, but
1897			 * this tree walk is lockless and the tags are
1898			 * looked up in bulk, one radix tree node at a
1899			 * time, so there is a sizable window for page
1900			 * reclaim to evict a page we saw tagged.
1901			 *
1902			 * Skip over it.
1903			 */
1904			continue;
1905		}
1906
1907		head = compound_head(page);
1908		if (!page_cache_get_speculative(head))
1909			goto repeat;
1910
1911		/* The page was split under us? */
1912		if (compound_head(page) != head) {
1913			put_page(head);
1914			goto repeat;
1915		}
1916
1917		/* Has the page moved? */
1918		if (unlikely(page != *slot)) {
1919			put_page(head);
1920			goto repeat;
1921		}
1922
1923		pages[ret] = page;
1924		if (++ret == nr_pages) {
1925			*index = pages[ret - 1]->index + 1;
1926			goto out;
1927		}
1928	}
1929
1930	/*
1931	 * We come here when we got at @end. We take care to not overflow the
1932	 * index @index as it confuses some of the callers. This breaks the
1933	 * iteration when there is page at index -1 but that is already broken
1934	 * anyway.
1935	 */
1936	if (end == (pgoff_t)-1)
1937		*index = (pgoff_t)-1;
1938	else
1939		*index = end + 1;
1940out:
1941	rcu_read_unlock();
1942
 
 
 
1943	return ret;
1944}
1945EXPORT_SYMBOL(find_get_pages_range_tag);
1946
1947/**
1948 * find_get_entries_tag - find and return entries that match @tag
1949 * @mapping:	the address_space to search
1950 * @start:	the starting page cache index
1951 * @tag:	the tag index
1952 * @nr_entries:	the maximum number of entries
1953 * @entries:	where the resulting entries are placed
1954 * @indices:	the cache indices corresponding to the entries in @entries
1955 *
1956 * Like find_get_entries, except we only return entries which are tagged with
1957 * @tag.
1958 */
1959unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1960			int tag, unsigned int nr_entries,
1961			struct page **entries, pgoff_t *indices)
1962{
1963	void **slot;
1964	unsigned int ret = 0;
1965	struct radix_tree_iter iter;
1966
1967	if (!nr_entries)
1968		return 0;
1969
1970	rcu_read_lock();
1971	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
 
1972		struct page *head, *page;
1973repeat:
1974		page = radix_tree_deref_slot(slot);
1975		if (unlikely(!page))
1976			continue;
1977		if (radix_tree_exception(page)) {
1978			if (radix_tree_deref_retry(page)) {
1979				slot = radix_tree_iter_retry(&iter);
1980				continue;
1981			}
1982
1983			/*
1984			 * A shadow entry of a recently evicted page, a swap
1985			 * entry from shmem/tmpfs or a DAX entry.  Return it
1986			 * without attempting to raise page count.
1987			 */
1988			goto export;
1989		}
1990
1991		head = compound_head(page);
1992		if (!page_cache_get_speculative(head))
1993			goto repeat;
1994
1995		/* The page was split under us? */
1996		if (compound_head(page) != head) {
1997			put_page(head);
1998			goto repeat;
1999		}
2000
2001		/* Has the page moved? */
2002		if (unlikely(page != *slot)) {
2003			put_page(head);
2004			goto repeat;
2005		}
2006export:
2007		indices[ret] = iter.index;
2008		entries[ret] = page;
2009		if (++ret == nr_entries)
2010			break;
2011	}
2012	rcu_read_unlock();
2013	return ret;
2014}
2015EXPORT_SYMBOL(find_get_entries_tag);
2016
2017/*
2018 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2019 * a _large_ part of the i/o request. Imagine the worst scenario:
2020 *
2021 *      ---R__________________________________________B__________
2022 *         ^ reading here                             ^ bad block(assume 4k)
2023 *
2024 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2025 * => failing the whole request => read(R) => read(R+1) =>
2026 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2027 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2028 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2029 *
2030 * It is going insane. Fix it by quickly scaling down the readahead size.
2031 */
2032static void shrink_readahead_size_eio(struct file *filp,
2033					struct file_ra_state *ra)
2034{
2035	ra->ra_pages /= 4;
2036}
2037
2038/**
2039 * generic_file_buffered_read - generic file read routine
2040 * @iocb:	the iocb to read
 
2041 * @iter:	data destination
2042 * @written:	already copied
2043 *
2044 * This is a generic file read routine, and uses the
2045 * mapping->a_ops->readpage() function for the actual low-level stuff.
2046 *
2047 * This is really ugly. But the goto's actually try to clarify some
2048 * of the logic when it comes to error handling etc.
2049 */
2050static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2051		struct iov_iter *iter, ssize_t written)
2052{
2053	struct file *filp = iocb->ki_filp;
2054	struct address_space *mapping = filp->f_mapping;
2055	struct inode *inode = mapping->host;
2056	struct file_ra_state *ra = &filp->f_ra;
2057	loff_t *ppos = &iocb->ki_pos;
2058	pgoff_t index;
2059	pgoff_t last_index;
2060	pgoff_t prev_index;
2061	unsigned long offset;      /* offset into pagecache page */
2062	unsigned int prev_offset;
2063	int error = 0;
2064
2065	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2066		return 0;
2067	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2068
2069	index = *ppos >> PAGE_SHIFT;
2070	prev_index = ra->prev_pos >> PAGE_SHIFT;
2071	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2072	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2073	offset = *ppos & ~PAGE_MASK;
2074
2075	for (;;) {
2076		struct page *page;
2077		pgoff_t end_index;
2078		loff_t isize;
2079		unsigned long nr, ret;
2080
2081		cond_resched();
2082find_page:
2083		if (fatal_signal_pending(current)) {
2084			error = -EINTR;
2085			goto out;
2086		}
2087
2088		page = find_get_page(mapping, index);
2089		if (!page) {
2090			if (iocb->ki_flags & IOCB_NOWAIT)
2091				goto would_block;
2092			page_cache_sync_readahead(mapping,
2093					ra, filp,
2094					index, last_index - index);
2095			page = find_get_page(mapping, index);
2096			if (unlikely(page == NULL))
2097				goto no_cached_page;
2098		}
2099		if (PageReadahead(page)) {
2100			page_cache_async_readahead(mapping,
2101					ra, filp, page,
2102					index, last_index - index);
2103		}
2104		if (!PageUptodate(page)) {
2105			if (iocb->ki_flags & IOCB_NOWAIT) {
2106				put_page(page);
2107				goto would_block;
2108			}
2109
2110			/*
2111			 * See comment in do_read_cache_page on why
2112			 * wait_on_page_locked is used to avoid unnecessarily
2113			 * serialisations and why it's safe.
2114			 */
2115			error = wait_on_page_locked_killable(page);
2116			if (unlikely(error))
2117				goto readpage_error;
2118			if (PageUptodate(page))
2119				goto page_ok;
2120
2121			if (inode->i_blkbits == PAGE_SHIFT ||
2122					!mapping->a_ops->is_partially_uptodate)
2123				goto page_not_up_to_date;
2124			/* pipes can't handle partially uptodate pages */
2125			if (unlikely(iter->type & ITER_PIPE))
2126				goto page_not_up_to_date;
2127			if (!trylock_page(page))
2128				goto page_not_up_to_date;
2129			/* Did it get truncated before we got the lock? */
2130			if (!page->mapping)
2131				goto page_not_up_to_date_locked;
2132			if (!mapping->a_ops->is_partially_uptodate(page,
2133							offset, iter->count))
2134				goto page_not_up_to_date_locked;
2135			unlock_page(page);
2136		}
2137page_ok:
2138		/*
2139		 * i_size must be checked after we know the page is Uptodate.
2140		 *
2141		 * Checking i_size after the check allows us to calculate
2142		 * the correct value for "nr", which means the zero-filled
2143		 * part of the page is not copied back to userspace (unless
2144		 * another truncate extends the file - this is desired though).
2145		 */
2146
2147		isize = i_size_read(inode);
2148		end_index = (isize - 1) >> PAGE_SHIFT;
2149		if (unlikely(!isize || index > end_index)) {
2150			put_page(page);
2151			goto out;
2152		}
2153
2154		/* nr is the maximum number of bytes to copy from this page */
2155		nr = PAGE_SIZE;
2156		if (index == end_index) {
2157			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2158			if (nr <= offset) {
2159				put_page(page);
2160				goto out;
2161			}
2162		}
2163		nr = nr - offset;
2164
2165		/* If users can be writing to this page using arbitrary
2166		 * virtual addresses, take care about potential aliasing
2167		 * before reading the page on the kernel side.
2168		 */
2169		if (mapping_writably_mapped(mapping))
2170			flush_dcache_page(page);
2171
2172		/*
2173		 * When a sequential read accesses a page several times,
2174		 * only mark it as accessed the first time.
2175		 */
2176		if (prev_index != index || offset != prev_offset)
2177			mark_page_accessed(page);
2178		prev_index = index;
2179
2180		/*
2181		 * Ok, we have the page, and it's up-to-date, so
2182		 * now we can copy it to user space...
2183		 */
2184
2185		ret = copy_page_to_iter(page, offset, nr, iter);
2186		offset += ret;
2187		index += offset >> PAGE_SHIFT;
2188		offset &= ~PAGE_MASK;
2189		prev_offset = offset;
2190
2191		put_page(page);
2192		written += ret;
2193		if (!iov_iter_count(iter))
2194			goto out;
2195		if (ret < nr) {
2196			error = -EFAULT;
2197			goto out;
2198		}
2199		continue;
2200
2201page_not_up_to_date:
2202		/* Get exclusive access to the page ... */
2203		error = lock_page_killable(page);
2204		if (unlikely(error))
2205			goto readpage_error;
2206
2207page_not_up_to_date_locked:
2208		/* Did it get truncated before we got the lock? */
2209		if (!page->mapping) {
2210			unlock_page(page);
2211			put_page(page);
2212			continue;
2213		}
2214
2215		/* Did somebody else fill it already? */
2216		if (PageUptodate(page)) {
2217			unlock_page(page);
2218			goto page_ok;
2219		}
2220
2221readpage:
2222		/*
2223		 * A previous I/O error may have been due to temporary
2224		 * failures, eg. multipath errors.
2225		 * PG_error will be set again if readpage fails.
2226		 */
2227		ClearPageError(page);
2228		/* Start the actual read. The read will unlock the page. */
2229		error = mapping->a_ops->readpage(filp, page);
2230
2231		if (unlikely(error)) {
2232			if (error == AOP_TRUNCATED_PAGE) {
2233				put_page(page);
2234				error = 0;
2235				goto find_page;
2236			}
2237			goto readpage_error;
2238		}
2239
2240		if (!PageUptodate(page)) {
2241			error = lock_page_killable(page);
2242			if (unlikely(error))
2243				goto readpage_error;
2244			if (!PageUptodate(page)) {
2245				if (page->mapping == NULL) {
2246					/*
2247					 * invalidate_mapping_pages got it
2248					 */
2249					unlock_page(page);
2250					put_page(page);
2251					goto find_page;
2252				}
2253				unlock_page(page);
2254				shrink_readahead_size_eio(filp, ra);
2255				error = -EIO;
2256				goto readpage_error;
2257			}
2258			unlock_page(page);
2259		}
2260
2261		goto page_ok;
2262
2263readpage_error:
2264		/* UHHUH! A synchronous read error occurred. Report it */
2265		put_page(page);
2266		goto out;
2267
2268no_cached_page:
2269		/*
2270		 * Ok, it wasn't cached, so we need to create a new
2271		 * page..
2272		 */
2273		page = page_cache_alloc(mapping);
2274		if (!page) {
2275			error = -ENOMEM;
2276			goto out;
2277		}
2278		error = add_to_page_cache_lru(page, mapping, index,
2279				mapping_gfp_constraint(mapping, GFP_KERNEL));
2280		if (error) {
2281			put_page(page);
2282			if (error == -EEXIST) {
2283				error = 0;
2284				goto find_page;
2285			}
2286			goto out;
2287		}
2288		goto readpage;
2289	}
2290
2291would_block:
2292	error = -EAGAIN;
2293out:
2294	ra->prev_pos = prev_index;
2295	ra->prev_pos <<= PAGE_SHIFT;
2296	ra->prev_pos |= prev_offset;
2297
2298	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2299	file_accessed(filp);
2300	return written ? written : error;
2301}
2302
2303/**
2304 * generic_file_read_iter - generic filesystem read routine
2305 * @iocb:	kernel I/O control block
2306 * @iter:	destination for the data read
2307 *
2308 * This is the "read_iter()" routine for all filesystems
2309 * that can use the page cache directly.
2310 */
2311ssize_t
2312generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2313{
2314	size_t count = iov_iter_count(iter);
2315	ssize_t retval = 0;
 
2316
2317	if (!count)
2318		goto out; /* skip atime */
2319
2320	if (iocb->ki_flags & IOCB_DIRECT) {
2321		struct file *file = iocb->ki_filp;
2322		struct address_space *mapping = file->f_mapping;
2323		struct inode *inode = mapping->host;
 
2324		loff_t size;
2325
2326		size = i_size_read(inode);
2327		if (iocb->ki_flags & IOCB_NOWAIT) {
2328			if (filemap_range_has_page(mapping, iocb->ki_pos,
2329						   iocb->ki_pos + count - 1))
2330				return -EAGAIN;
2331		} else {
2332			retval = filemap_write_and_wait_range(mapping,
2333						iocb->ki_pos,
2334					        iocb->ki_pos + count - 1);
2335			if (retval < 0)
2336				goto out;
2337		}
2338
2339		file_accessed(file);
2340
2341		retval = mapping->a_ops->direct_IO(iocb, iter);
2342		if (retval >= 0) {
2343			iocb->ki_pos += retval;
2344			count -= retval;
2345		}
2346		iov_iter_revert(iter, count - iov_iter_count(iter));
2347
2348		/*
2349		 * Btrfs can have a short DIO read if we encounter
2350		 * compressed extents, so if there was an error, or if
2351		 * we've already read everything we wanted to, or if
2352		 * there was a short read because we hit EOF, go ahead
2353		 * and return.  Otherwise fallthrough to buffered io for
2354		 * the rest of the read.  Buffered reads will not work for
2355		 * DAX files, so don't bother trying.
2356		 */
2357		if (retval < 0 || !count || iocb->ki_pos >= size ||
2358		    IS_DAX(inode))
2359			goto out;
2360	}
2361
2362	retval = generic_file_buffered_read(iocb, iter, retval);
2363out:
2364	return retval;
2365}
2366EXPORT_SYMBOL(generic_file_read_iter);
2367
2368#ifdef CONFIG_MMU
2369/**
2370 * page_cache_read - adds requested page to the page cache if not already there
2371 * @file:	file to read
2372 * @offset:	page index
2373 * @gfp_mask:	memory allocation flags
2374 *
2375 * This adds the requested page to the page cache if it isn't already there,
2376 * and schedules an I/O to read in its contents from disk.
2377 */
2378static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2379{
2380	struct address_space *mapping = file->f_mapping;
2381	struct page *page;
2382	int ret;
2383
2384	do {
2385		page = __page_cache_alloc(gfp_mask);
2386		if (!page)
2387			return -ENOMEM;
2388
2389		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2390		if (ret == 0)
2391			ret = mapping->a_ops->readpage(file, page);
2392		else if (ret == -EEXIST)
2393			ret = 0; /* losing race to add is OK */
2394
2395		put_page(page);
2396
2397	} while (ret == AOP_TRUNCATED_PAGE);
2398
2399	return ret;
2400}
2401
2402#define MMAP_LOTSAMISS  (100)
2403
2404/*
2405 * Synchronous readahead happens when we don't even find
2406 * a page in the page cache at all.
2407 */
2408static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2409				   struct file_ra_state *ra,
2410				   struct file *file,
2411				   pgoff_t offset)
2412{
2413	struct address_space *mapping = file->f_mapping;
2414
2415	/* If we don't want any read-ahead, don't bother */
2416	if (vma->vm_flags & VM_RAND_READ)
2417		return;
2418	if (!ra->ra_pages)
2419		return;
2420
2421	if (vma->vm_flags & VM_SEQ_READ) {
2422		page_cache_sync_readahead(mapping, ra, file, offset,
2423					  ra->ra_pages);
2424		return;
2425	}
2426
2427	/* Avoid banging the cache line if not needed */
2428	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2429		ra->mmap_miss++;
2430
2431	/*
2432	 * Do we miss much more than hit in this file? If so,
2433	 * stop bothering with read-ahead. It will only hurt.
2434	 */
2435	if (ra->mmap_miss > MMAP_LOTSAMISS)
2436		return;
2437
2438	/*
2439	 * mmap read-around
2440	 */
2441	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2442	ra->size = ra->ra_pages;
2443	ra->async_size = ra->ra_pages / 4;
2444	ra_submit(ra, mapping, file);
2445}
2446
2447/*
2448 * Asynchronous readahead happens when we find the page and PG_readahead,
2449 * so we want to possibly extend the readahead further..
2450 */
2451static void do_async_mmap_readahead(struct vm_area_struct *vma,
2452				    struct file_ra_state *ra,
2453				    struct file *file,
2454				    struct page *page,
2455				    pgoff_t offset)
2456{
2457	struct address_space *mapping = file->f_mapping;
2458
2459	/* If we don't want any read-ahead, don't bother */
2460	if (vma->vm_flags & VM_RAND_READ)
2461		return;
2462	if (ra->mmap_miss > 0)
2463		ra->mmap_miss--;
2464	if (PageReadahead(page))
2465		page_cache_async_readahead(mapping, ra, file,
2466					   page, offset, ra->ra_pages);
2467}
2468
2469/**
2470 * filemap_fault - read in file data for page fault handling
 
2471 * @vmf:	struct vm_fault containing details of the fault
2472 *
2473 * filemap_fault() is invoked via the vma operations vector for a
2474 * mapped memory region to read in file data during a page fault.
2475 *
2476 * The goto's are kind of ugly, but this streamlines the normal case of having
2477 * it in the page cache, and handles the special cases reasonably without
2478 * having a lot of duplicated code.
2479 *
2480 * vma->vm_mm->mmap_sem must be held on entry.
2481 *
2482 * If our return value has VM_FAULT_RETRY set, it's because
2483 * lock_page_or_retry() returned 0.
2484 * The mmap_sem has usually been released in this case.
2485 * See __lock_page_or_retry() for the exception.
2486 *
2487 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2488 * has not been released.
2489 *
2490 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2491 */
2492int filemap_fault(struct vm_fault *vmf)
2493{
2494	int error;
2495	struct file *file = vmf->vma->vm_file;
2496	struct address_space *mapping = file->f_mapping;
2497	struct file_ra_state *ra = &file->f_ra;
2498	struct inode *inode = mapping->host;
2499	pgoff_t offset = vmf->pgoff;
2500	pgoff_t max_off;
2501	struct page *page;
 
2502	int ret = 0;
2503
2504	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2505	if (unlikely(offset >= max_off))
2506		return VM_FAULT_SIGBUS;
2507
2508	/*
2509	 * Do we have something in the page cache already?
2510	 */
2511	page = find_get_page(mapping, offset);
2512	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2513		/*
2514		 * We found the page, so try async readahead before
2515		 * waiting for the lock.
2516		 */
2517		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2518	} else if (!page) {
2519		/* No page in the page cache at all */
2520		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2521		count_vm_event(PGMAJFAULT);
2522		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2523		ret = VM_FAULT_MAJOR;
2524retry_find:
2525		page = find_get_page(mapping, offset);
2526		if (!page)
2527			goto no_cached_page;
2528	}
2529
2530	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2531		put_page(page);
2532		return ret | VM_FAULT_RETRY;
2533	}
2534
2535	/* Did it get truncated? */
2536	if (unlikely(page->mapping != mapping)) {
2537		unlock_page(page);
2538		put_page(page);
2539		goto retry_find;
2540	}
2541	VM_BUG_ON_PAGE(page->index != offset, page);
2542
2543	/*
2544	 * We have a locked page in the page cache, now we need to check
2545	 * that it's up-to-date. If not, it is going to be due to an error.
2546	 */
2547	if (unlikely(!PageUptodate(page)))
2548		goto page_not_uptodate;
2549
2550	/*
2551	 * Found the page and have a reference on it.
2552	 * We must recheck i_size under page lock.
2553	 */
2554	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2555	if (unlikely(offset >= max_off)) {
2556		unlock_page(page);
2557		put_page(page);
2558		return VM_FAULT_SIGBUS;
2559	}
2560
2561	vmf->page = page;
2562	return ret | VM_FAULT_LOCKED;
2563
2564no_cached_page:
2565	/*
2566	 * We're only likely to ever get here if MADV_RANDOM is in
2567	 * effect.
2568	 */
2569	error = page_cache_read(file, offset, vmf->gfp_mask);
2570
2571	/*
2572	 * The page we want has now been added to the page cache.
2573	 * In the unlikely event that someone removed it in the
2574	 * meantime, we'll just come back here and read it again.
2575	 */
2576	if (error >= 0)
2577		goto retry_find;
2578
2579	/*
2580	 * An error return from page_cache_read can result if the
2581	 * system is low on memory, or a problem occurs while trying
2582	 * to schedule I/O.
2583	 */
2584	if (error == -ENOMEM)
2585		return VM_FAULT_OOM;
2586	return VM_FAULT_SIGBUS;
2587
2588page_not_uptodate:
2589	/*
2590	 * Umm, take care of errors if the page isn't up-to-date.
2591	 * Try to re-read it _once_. We do this synchronously,
2592	 * because there really aren't any performance issues here
2593	 * and we need to check for errors.
2594	 */
2595	ClearPageError(page);
2596	error = mapping->a_ops->readpage(file, page);
2597	if (!error) {
2598		wait_on_page_locked(page);
2599		if (!PageUptodate(page))
2600			error = -EIO;
2601	}
2602	put_page(page);
2603
2604	if (!error || error == AOP_TRUNCATED_PAGE)
2605		goto retry_find;
2606
2607	/* Things didn't work out. Return zero to tell the mm layer so. */
2608	shrink_readahead_size_eio(file, ra);
2609	return VM_FAULT_SIGBUS;
2610}
2611EXPORT_SYMBOL(filemap_fault);
2612
2613void filemap_map_pages(struct vm_fault *vmf,
2614		pgoff_t start_pgoff, pgoff_t end_pgoff)
2615{
2616	struct radix_tree_iter iter;
2617	void **slot;
2618	struct file *file = vmf->vma->vm_file;
2619	struct address_space *mapping = file->f_mapping;
2620	pgoff_t last_pgoff = start_pgoff;
2621	unsigned long max_idx;
2622	struct page *head, *page;
2623
2624	rcu_read_lock();
2625	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
 
2626		if (iter.index > end_pgoff)
2627			break;
2628repeat:
2629		page = radix_tree_deref_slot(slot);
2630		if (unlikely(!page))
2631			goto next;
2632		if (radix_tree_exception(page)) {
2633			if (radix_tree_deref_retry(page)) {
2634				slot = radix_tree_iter_retry(&iter);
2635				continue;
2636			}
2637			goto next;
2638		}
2639
2640		head = compound_head(page);
2641		if (!page_cache_get_speculative(head))
2642			goto repeat;
2643
2644		/* The page was split under us? */
2645		if (compound_head(page) != head) {
2646			put_page(head);
2647			goto repeat;
2648		}
2649
2650		/* Has the page moved? */
2651		if (unlikely(page != *slot)) {
2652			put_page(head);
2653			goto repeat;
2654		}
2655
2656		if (!PageUptodate(page) ||
2657				PageReadahead(page) ||
2658				PageHWPoison(page))
2659			goto skip;
2660		if (!trylock_page(page))
2661			goto skip;
2662
2663		if (page->mapping != mapping || !PageUptodate(page))
2664			goto unlock;
2665
2666		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2667		if (page->index >= max_idx)
2668			goto unlock;
2669
2670		if (file->f_ra.mmap_miss > 0)
2671			file->f_ra.mmap_miss--;
2672
2673		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2674		if (vmf->pte)
2675			vmf->pte += iter.index - last_pgoff;
2676		last_pgoff = iter.index;
2677		if (alloc_set_pte(vmf, NULL, page))
2678			goto unlock;
2679		unlock_page(page);
2680		goto next;
2681unlock:
2682		unlock_page(page);
2683skip:
2684		put_page(page);
2685next:
2686		/* Huge page is mapped? No need to proceed. */
2687		if (pmd_trans_huge(*vmf->pmd))
2688			break;
2689		if (iter.index == end_pgoff)
2690			break;
2691	}
2692	rcu_read_unlock();
2693}
2694EXPORT_SYMBOL(filemap_map_pages);
2695
2696int filemap_page_mkwrite(struct vm_fault *vmf)
2697{
2698	struct page *page = vmf->page;
2699	struct inode *inode = file_inode(vmf->vma->vm_file);
2700	int ret = VM_FAULT_LOCKED;
2701
2702	sb_start_pagefault(inode->i_sb);
2703	file_update_time(vmf->vma->vm_file);
2704	lock_page(page);
2705	if (page->mapping != inode->i_mapping) {
2706		unlock_page(page);
2707		ret = VM_FAULT_NOPAGE;
2708		goto out;
2709	}
2710	/*
2711	 * We mark the page dirty already here so that when freeze is in
2712	 * progress, we are guaranteed that writeback during freezing will
2713	 * see the dirty page and writeprotect it again.
2714	 */
2715	set_page_dirty(page);
2716	wait_for_stable_page(page);
2717out:
2718	sb_end_pagefault(inode->i_sb);
2719	return ret;
2720}
 
2721
2722const struct vm_operations_struct generic_file_vm_ops = {
2723	.fault		= filemap_fault,
2724	.map_pages	= filemap_map_pages,
2725	.page_mkwrite	= filemap_page_mkwrite,
2726};
2727
2728/* This is used for a general mmap of a disk file */
2729
2730int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2731{
2732	struct address_space *mapping = file->f_mapping;
2733
2734	if (!mapping->a_ops->readpage)
2735		return -ENOEXEC;
2736	file_accessed(file);
2737	vma->vm_ops = &generic_file_vm_ops;
2738	return 0;
2739}
2740
2741/*
2742 * This is for filesystems which do not implement ->writepage.
2743 */
2744int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2745{
2746	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2747		return -EINVAL;
2748	return generic_file_mmap(file, vma);
2749}
2750#else
2751int filemap_page_mkwrite(struct vm_fault *vmf)
2752{
2753	return -ENOSYS;
2754}
2755int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2756{
2757	return -ENOSYS;
2758}
2759int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2760{
2761	return -ENOSYS;
2762}
2763#endif /* CONFIG_MMU */
2764
2765EXPORT_SYMBOL(filemap_page_mkwrite);
2766EXPORT_SYMBOL(generic_file_mmap);
2767EXPORT_SYMBOL(generic_file_readonly_mmap);
2768
2769static struct page *wait_on_page_read(struct page *page)
2770{
2771	if (!IS_ERR(page)) {
2772		wait_on_page_locked(page);
2773		if (!PageUptodate(page)) {
2774			put_page(page);
2775			page = ERR_PTR(-EIO);
2776		}
2777	}
2778	return page;
2779}
2780
2781static struct page *do_read_cache_page(struct address_space *mapping,
2782				pgoff_t index,
2783				int (*filler)(void *, struct page *),
2784				void *data,
2785				gfp_t gfp)
2786{
2787	struct page *page;
2788	int err;
2789repeat:
2790	page = find_get_page(mapping, index);
2791	if (!page) {
2792		page = __page_cache_alloc(gfp);
2793		if (!page)
2794			return ERR_PTR(-ENOMEM);
2795		err = add_to_page_cache_lru(page, mapping, index, gfp);
2796		if (unlikely(err)) {
2797			put_page(page);
2798			if (err == -EEXIST)
2799				goto repeat;
2800			/* Presumably ENOMEM for radix tree node */
2801			return ERR_PTR(err);
2802		}
2803
2804filler:
2805		err = filler(data, page);
2806		if (err < 0) {
2807			put_page(page);
2808			return ERR_PTR(err);
2809		}
2810
2811		page = wait_on_page_read(page);
2812		if (IS_ERR(page))
2813			return page;
2814		goto out;
2815	}
2816	if (PageUptodate(page))
2817		goto out;
2818
2819	/*
2820	 * Page is not up to date and may be locked due one of the following
2821	 * case a: Page is being filled and the page lock is held
2822	 * case b: Read/write error clearing the page uptodate status
2823	 * case c: Truncation in progress (page locked)
2824	 * case d: Reclaim in progress
2825	 *
2826	 * Case a, the page will be up to date when the page is unlocked.
2827	 *    There is no need to serialise on the page lock here as the page
2828	 *    is pinned so the lock gives no additional protection. Even if the
2829	 *    the page is truncated, the data is still valid if PageUptodate as
2830	 *    it's a race vs truncate race.
2831	 * Case b, the page will not be up to date
2832	 * Case c, the page may be truncated but in itself, the data may still
2833	 *    be valid after IO completes as it's a read vs truncate race. The
2834	 *    operation must restart if the page is not uptodate on unlock but
2835	 *    otherwise serialising on page lock to stabilise the mapping gives
2836	 *    no additional guarantees to the caller as the page lock is
2837	 *    released before return.
2838	 * Case d, similar to truncation. If reclaim holds the page lock, it
2839	 *    will be a race with remove_mapping that determines if the mapping
2840	 *    is valid on unlock but otherwise the data is valid and there is
2841	 *    no need to serialise with page lock.
2842	 *
2843	 * As the page lock gives no additional guarantee, we optimistically
2844	 * wait on the page to be unlocked and check if it's up to date and
2845	 * use the page if it is. Otherwise, the page lock is required to
2846	 * distinguish between the different cases. The motivation is that we
2847	 * avoid spurious serialisations and wakeups when multiple processes
2848	 * wait on the same page for IO to complete.
2849	 */
2850	wait_on_page_locked(page);
2851	if (PageUptodate(page))
2852		goto out;
2853
2854	/* Distinguish between all the cases under the safety of the lock */
2855	lock_page(page);
2856
2857	/* Case c or d, restart the operation */
2858	if (!page->mapping) {
2859		unlock_page(page);
2860		put_page(page);
2861		goto repeat;
2862	}
2863
2864	/* Someone else locked and filled the page in a very small window */
2865	if (PageUptodate(page)) {
2866		unlock_page(page);
2867		goto out;
2868	}
2869	goto filler;
2870
2871out:
2872	mark_page_accessed(page);
2873	return page;
2874}
2875
2876/**
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping:	the page's address_space
2879 * @index:	the page index
2880 * @filler:	function to perform the read
2881 * @data:	first arg to filler(data, page) function, often left as NULL
2882 *
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2885 *
2886 * If the page does not get brought uptodate, return -EIO.
2887 */
2888struct page *read_cache_page(struct address_space *mapping,
2889				pgoff_t index,
2890				int (*filler)(void *, struct page *),
2891				void *data)
2892{
2893	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2894}
2895EXPORT_SYMBOL(read_cache_page);
2896
2897/**
2898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2899 * @mapping:	the page's address_space
2900 * @index:	the page index
2901 * @gfp:	the page allocator flags to use if allocating
2902 *
2903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2904 * any new page allocations done using the specified allocation flags.
2905 *
2906 * If the page does not get brought uptodate, return -EIO.
2907 */
2908struct page *read_cache_page_gfp(struct address_space *mapping,
2909				pgoff_t index,
2910				gfp_t gfp)
2911{
2912	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2913
2914	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2915}
2916EXPORT_SYMBOL(read_cache_page_gfp);
2917
2918/*
2919 * Performs necessary checks before doing a write
2920 *
2921 * Can adjust writing position or amount of bytes to write.
2922 * Returns appropriate error code that caller should return or
2923 * zero in case that write should be allowed.
2924 */
2925inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2926{
2927	struct file *file = iocb->ki_filp;
2928	struct inode *inode = file->f_mapping->host;
2929	unsigned long limit = rlimit(RLIMIT_FSIZE);
2930	loff_t pos;
2931
2932	if (!iov_iter_count(from))
2933		return 0;
2934
2935	/* FIXME: this is for backwards compatibility with 2.4 */
2936	if (iocb->ki_flags & IOCB_APPEND)
2937		iocb->ki_pos = i_size_read(inode);
2938
2939	pos = iocb->ki_pos;
2940
2941	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2942		return -EINVAL;
2943
2944	if (limit != RLIM_INFINITY) {
2945		if (iocb->ki_pos >= limit) {
2946			send_sig(SIGXFSZ, current, 0);
2947			return -EFBIG;
2948		}
2949		iov_iter_truncate(from, limit - (unsigned long)pos);
2950	}
2951
2952	/*
2953	 * LFS rule
2954	 */
2955	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2956				!(file->f_flags & O_LARGEFILE))) {
2957		if (pos >= MAX_NON_LFS)
2958			return -EFBIG;
2959		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2960	}
2961
2962	/*
2963	 * Are we about to exceed the fs block limit ?
2964	 *
2965	 * If we have written data it becomes a short write.  If we have
2966	 * exceeded without writing data we send a signal and return EFBIG.
2967	 * Linus frestrict idea will clean these up nicely..
2968	 */
2969	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2970		return -EFBIG;
2971
2972	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2973	return iov_iter_count(from);
2974}
2975EXPORT_SYMBOL(generic_write_checks);
2976
2977int pagecache_write_begin(struct file *file, struct address_space *mapping,
2978				loff_t pos, unsigned len, unsigned flags,
2979				struct page **pagep, void **fsdata)
2980{
2981	const struct address_space_operations *aops = mapping->a_ops;
2982
2983	return aops->write_begin(file, mapping, pos, len, flags,
2984							pagep, fsdata);
2985}
2986EXPORT_SYMBOL(pagecache_write_begin);
2987
2988int pagecache_write_end(struct file *file, struct address_space *mapping,
2989				loff_t pos, unsigned len, unsigned copied,
2990				struct page *page, void *fsdata)
2991{
2992	const struct address_space_operations *aops = mapping->a_ops;
2993
2994	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2995}
2996EXPORT_SYMBOL(pagecache_write_end);
2997
2998ssize_t
2999generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3000{
3001	struct file	*file = iocb->ki_filp;
3002	struct address_space *mapping = file->f_mapping;
3003	struct inode	*inode = mapping->host;
3004	loff_t		pos = iocb->ki_pos;
3005	ssize_t		written;
3006	size_t		write_len;
3007	pgoff_t		end;
 
3008
3009	write_len = iov_iter_count(from);
3010	end = (pos + write_len - 1) >> PAGE_SHIFT;
3011
3012	if (iocb->ki_flags & IOCB_NOWAIT) {
3013		/* If there are pages to writeback, return */
3014		if (filemap_range_has_page(inode->i_mapping, pos,
3015					   pos + iov_iter_count(from)))
3016			return -EAGAIN;
3017	} else {
3018		written = filemap_write_and_wait_range(mapping, pos,
3019							pos + write_len - 1);
3020		if (written)
3021			goto out;
3022	}
3023
3024	/*
3025	 * After a write we want buffered reads to be sure to go to disk to get
3026	 * the new data.  We invalidate clean cached page from the region we're
3027	 * about to write.  We do this *before* the write so that we can return
3028	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3029	 */
3030	written = invalidate_inode_pages2_range(mapping,
 
3031					pos >> PAGE_SHIFT, end);
3032	/*
3033	 * If a page can not be invalidated, return 0 to fall back
3034	 * to buffered write.
3035	 */
3036	if (written) {
3037		if (written == -EBUSY)
3038			return 0;
3039		goto out;
 
3040	}
3041
3042	written = mapping->a_ops->direct_IO(iocb, from);
 
3043
3044	/*
3045	 * Finally, try again to invalidate clean pages which might have been
3046	 * cached by non-direct readahead, or faulted in by get_user_pages()
3047	 * if the source of the write was an mmap'ed region of the file
3048	 * we're writing.  Either one is a pretty crazy thing to do,
3049	 * so we don't support it 100%.  If this invalidation
3050	 * fails, tough, the write still worked...
3051	 *
3052	 * Most of the time we do not need this since dio_complete() will do
3053	 * the invalidation for us. However there are some file systems that
3054	 * do not end up with dio_complete() being called, so let's not break
3055	 * them by removing it completely
3056	 */
3057	if (mapping->nrpages)
3058		invalidate_inode_pages2_range(mapping,
3059					pos >> PAGE_SHIFT, end);
 
3060
3061	if (written > 0) {
3062		pos += written;
3063		write_len -= written;
3064		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3065			i_size_write(inode, pos);
3066			mark_inode_dirty(inode);
3067		}
3068		iocb->ki_pos = pos;
3069	}
3070	iov_iter_revert(from, write_len - iov_iter_count(from));
3071out:
3072	return written;
3073}
3074EXPORT_SYMBOL(generic_file_direct_write);
3075
3076/*
3077 * Find or create a page at the given pagecache position. Return the locked
3078 * page. This function is specifically for buffered writes.
3079 */
3080struct page *grab_cache_page_write_begin(struct address_space *mapping,
3081					pgoff_t index, unsigned flags)
3082{
3083	struct page *page;
3084	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3085
3086	if (flags & AOP_FLAG_NOFS)
3087		fgp_flags |= FGP_NOFS;
3088
3089	page = pagecache_get_page(mapping, index, fgp_flags,
3090			mapping_gfp_mask(mapping));
3091	if (page)
3092		wait_for_stable_page(page);
3093
3094	return page;
3095}
3096EXPORT_SYMBOL(grab_cache_page_write_begin);
3097
3098ssize_t generic_perform_write(struct file *file,
3099				struct iov_iter *i, loff_t pos)
3100{
3101	struct address_space *mapping = file->f_mapping;
3102	const struct address_space_operations *a_ops = mapping->a_ops;
3103	long status = 0;
3104	ssize_t written = 0;
3105	unsigned int flags = 0;
3106
 
 
 
 
 
 
3107	do {
3108		struct page *page;
3109		unsigned long offset;	/* Offset into pagecache page */
3110		unsigned long bytes;	/* Bytes to write to page */
3111		size_t copied;		/* Bytes copied from user */
3112		void *fsdata;
3113
3114		offset = (pos & (PAGE_SIZE - 1));
3115		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3116						iov_iter_count(i));
3117
3118again:
3119		/*
3120		 * Bring in the user page that we will copy from _first_.
3121		 * Otherwise there's a nasty deadlock on copying from the
3122		 * same page as we're writing to, without it being marked
3123		 * up-to-date.
3124		 *
3125		 * Not only is this an optimisation, but it is also required
3126		 * to check that the address is actually valid, when atomic
3127		 * usercopies are used, below.
3128		 */
3129		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3130			status = -EFAULT;
3131			break;
3132		}
3133
3134		if (fatal_signal_pending(current)) {
3135			status = -EINTR;
3136			break;
3137		}
3138
3139		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3140						&page, &fsdata);
3141		if (unlikely(status < 0))
3142			break;
3143
3144		if (mapping_writably_mapped(mapping))
3145			flush_dcache_page(page);
3146
3147		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3148		flush_dcache_page(page);
3149
3150		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3151						page, fsdata);
3152		if (unlikely(status < 0))
3153			break;
3154		copied = status;
3155
3156		cond_resched();
3157
3158		iov_iter_advance(i, copied);
3159		if (unlikely(copied == 0)) {
3160			/*
3161			 * If we were unable to copy any data at all, we must
3162			 * fall back to a single segment length write.
3163			 *
3164			 * If we didn't fallback here, we could livelock
3165			 * because not all segments in the iov can be copied at
3166			 * once without a pagefault.
3167			 */
3168			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3169						iov_iter_single_seg_count(i));
3170			goto again;
3171		}
3172		pos += copied;
3173		written += copied;
3174
3175		balance_dirty_pages_ratelimited(mapping);
3176	} while (iov_iter_count(i));
3177
3178	return written ? written : status;
3179}
3180EXPORT_SYMBOL(generic_perform_write);
3181
3182/**
3183 * __generic_file_write_iter - write data to a file
3184 * @iocb:	IO state structure (file, offset, etc.)
3185 * @from:	iov_iter with data to write
3186 *
3187 * This function does all the work needed for actually writing data to a
3188 * file. It does all basic checks, removes SUID from the file, updates
3189 * modification times and calls proper subroutines depending on whether we
3190 * do direct IO or a standard buffered write.
3191 *
3192 * It expects i_mutex to be grabbed unless we work on a block device or similar
3193 * object which does not need locking at all.
3194 *
3195 * This function does *not* take care of syncing data in case of O_SYNC write.
3196 * A caller has to handle it. This is mainly due to the fact that we want to
3197 * avoid syncing under i_mutex.
3198 */
3199ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3200{
3201	struct file *file = iocb->ki_filp;
3202	struct address_space * mapping = file->f_mapping;
3203	struct inode 	*inode = mapping->host;
3204	ssize_t		written = 0;
3205	ssize_t		err;
3206	ssize_t		status;
3207
3208	/* We can write back this queue in page reclaim */
3209	current->backing_dev_info = inode_to_bdi(inode);
3210	err = file_remove_privs(file);
3211	if (err)
3212		goto out;
3213
3214	err = file_update_time(file);
3215	if (err)
3216		goto out;
3217
3218	if (iocb->ki_flags & IOCB_DIRECT) {
3219		loff_t pos, endbyte;
3220
3221		written = generic_file_direct_write(iocb, from);
3222		/*
3223		 * If the write stopped short of completing, fall back to
3224		 * buffered writes.  Some filesystems do this for writes to
3225		 * holes, for example.  For DAX files, a buffered write will
3226		 * not succeed (even if it did, DAX does not handle dirty
3227		 * page-cache pages correctly).
3228		 */
3229		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3230			goto out;
3231
3232		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3233		/*
3234		 * If generic_perform_write() returned a synchronous error
3235		 * then we want to return the number of bytes which were
3236		 * direct-written, or the error code if that was zero.  Note
3237		 * that this differs from normal direct-io semantics, which
3238		 * will return -EFOO even if some bytes were written.
3239		 */
3240		if (unlikely(status < 0)) {
3241			err = status;
3242			goto out;
3243		}
3244		/*
3245		 * We need to ensure that the page cache pages are written to
3246		 * disk and invalidated to preserve the expected O_DIRECT
3247		 * semantics.
3248		 */
3249		endbyte = pos + status - 1;
3250		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3251		if (err == 0) {
3252			iocb->ki_pos = endbyte + 1;
3253			written += status;
3254			invalidate_mapping_pages(mapping,
3255						 pos >> PAGE_SHIFT,
3256						 endbyte >> PAGE_SHIFT);
3257		} else {
3258			/*
3259			 * We don't know how much we wrote, so just return
3260			 * the number of bytes which were direct-written
3261			 */
3262		}
3263	} else {
3264		written = generic_perform_write(file, from, iocb->ki_pos);
3265		if (likely(written > 0))
3266			iocb->ki_pos += written;
3267	}
3268out:
3269	current->backing_dev_info = NULL;
3270	return written ? written : err;
3271}
3272EXPORT_SYMBOL(__generic_file_write_iter);
3273
3274/**
3275 * generic_file_write_iter - write data to a file
3276 * @iocb:	IO state structure
3277 * @from:	iov_iter with data to write
3278 *
3279 * This is a wrapper around __generic_file_write_iter() to be used by most
3280 * filesystems. It takes care of syncing the file in case of O_SYNC file
3281 * and acquires i_mutex as needed.
3282 */
3283ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3284{
3285	struct file *file = iocb->ki_filp;
3286	struct inode *inode = file->f_mapping->host;
3287	ssize_t ret;
3288
3289	inode_lock(inode);
3290	ret = generic_write_checks(iocb, from);
3291	if (ret > 0)
3292		ret = __generic_file_write_iter(iocb, from);
3293	inode_unlock(inode);
3294
3295	if (ret > 0)
3296		ret = generic_write_sync(iocb, ret);
3297	return ret;
3298}
3299EXPORT_SYMBOL(generic_file_write_iter);
3300
3301/**
3302 * try_to_release_page() - release old fs-specific metadata on a page
3303 *
3304 * @page: the page which the kernel is trying to free
3305 * @gfp_mask: memory allocation flags (and I/O mode)
3306 *
3307 * The address_space is to try to release any data against the page
3308 * (presumably at page->private).  If the release was successful, return '1'.
3309 * Otherwise return zero.
3310 *
3311 * This may also be called if PG_fscache is set on a page, indicating that the
3312 * page is known to the local caching routines.
3313 *
3314 * The @gfp_mask argument specifies whether I/O may be performed to release
3315 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3316 *
3317 */
3318int try_to_release_page(struct page *page, gfp_t gfp_mask)
3319{
3320	struct address_space * const mapping = page->mapping;
3321
3322	BUG_ON(!PageLocked(page));
3323	if (PageWriteback(page))
3324		return 0;
3325
3326	if (mapping && mapping->a_ops->releasepage)
3327		return mapping->a_ops->releasepage(page, gfp_mask);
3328	return try_to_free_buffers(page);
3329}
3330
3331EXPORT_SYMBOL(try_to_release_page);
v4.10.11
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
 
  16#include <linux/uaccess.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
 
  37#include <linux/rmap.h>
  38#include "internal.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/filemap.h>
  42
  43/*
  44 * FIXME: remove all knowledge of the buffer layer from the core VM
  45 */
  46#include <linux/buffer_head.h> /* for try_to_free_buffers */
  47
  48#include <asm/mman.h>
  49
  50/*
  51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  52 * though.
  53 *
  54 * Shared mappings now work. 15.8.1995  Bruno.
  55 *
  56 * finished 'unifying' the page and buffer cache and SMP-threaded the
  57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  58 *
  59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  60 */
  61
  62/*
  63 * Lock ordering:
  64 *
  65 *  ->i_mmap_rwsem		(truncate_pagecache)
  66 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  67 *      ->swap_lock		(exclusive_swap_page, others)
  68 *        ->mapping->tree_lock
  69 *
  70 *  ->i_mutex
  71 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  72 *
  73 *  ->mmap_sem
  74 *    ->i_mmap_rwsem
  75 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  76 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  77 *
  78 *  ->mmap_sem
  79 *    ->lock_page		(access_process_vm)
  80 *
  81 *  ->i_mutex			(generic_perform_write)
  82 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  83 *
  84 *  bdi->wb.list_lock
  85 *    sb_lock			(fs/fs-writeback.c)
  86 *    ->mapping->tree_lock	(__sync_single_inode)
  87 *
  88 *  ->i_mmap_rwsem
  89 *    ->anon_vma.lock		(vma_adjust)
  90 *
  91 *  ->anon_vma.lock
  92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  93 *
  94 *  ->page_table_lock or pte_lock
  95 *    ->swap_lock		(try_to_unmap_one)
  96 *    ->private_lock		(try_to_unmap_one)
  97 *    ->tree_lock		(try_to_unmap_one)
  98 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
  99 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
 100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
 102 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 103 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 104 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 105 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 106 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 107 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 108 *
 109 * ->i_mmap_rwsem
 110 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 111 */
 112
 113static int page_cache_tree_insert(struct address_space *mapping,
 114				  struct page *page, void **shadowp)
 115{
 116	struct radix_tree_node *node;
 117	void **slot;
 118	int error;
 119
 120	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 121				    &node, &slot);
 122	if (error)
 123		return error;
 124	if (*slot) {
 125		void *p;
 126
 127		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 
 128		if (!radix_tree_exceptional_entry(p))
 129			return -EEXIST;
 130
 131		mapping->nrexceptional--;
 132		if (!dax_mapping(mapping)) {
 133			if (shadowp)
 134				*shadowp = p;
 135		} else {
 136			/* DAX can replace empty locked entry with a hole */
 137			WARN_ON_ONCE(p !=
 138				dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
 139			/* Wakeup waiters for exceptional entry lock */
 140			dax_wake_mapping_entry_waiter(mapping, page->index, p,
 141						      true);
 142		}
 143	}
 144	__radix_tree_replace(&mapping->page_tree, node, slot, page,
 145			     workingset_update_node, mapping);
 146	mapping->nrpages++;
 147	return 0;
 148}
 149
 150static void page_cache_tree_delete(struct address_space *mapping,
 151				   struct page *page, void *shadow)
 152{
 153	int i, nr;
 154
 155	/* hugetlb pages are represented by one entry in the radix tree */
 156	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 157
 158	VM_BUG_ON_PAGE(!PageLocked(page), page);
 159	VM_BUG_ON_PAGE(PageTail(page), page);
 160	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 161
 162	for (i = 0; i < nr; i++) {
 163		struct radix_tree_node *node;
 164		void **slot;
 165
 166		__radix_tree_lookup(&mapping->page_tree, page->index + i,
 167				    &node, &slot);
 168
 169		VM_BUG_ON_PAGE(!node && nr != 1, page);
 170
 171		radix_tree_clear_tags(&mapping->page_tree, node, slot);
 172		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
 173				     workingset_update_node, mapping);
 174	}
 175
 
 
 
 176	if (shadow) {
 177		mapping->nrexceptional += nr;
 178		/*
 179		 * Make sure the nrexceptional update is committed before
 180		 * the nrpages update so that final truncate racing
 181		 * with reclaim does not see both counters 0 at the
 182		 * same time and miss a shadow entry.
 183		 */
 184		smp_wmb();
 185	}
 186	mapping->nrpages -= nr;
 187}
 188
 189/*
 190 * Delete a page from the page cache and free it. Caller has to make
 191 * sure the page is locked and that nobody else uses it - or that usage
 192 * is safe.  The caller must hold the mapping's tree_lock.
 193 */
 194void __delete_from_page_cache(struct page *page, void *shadow)
 195{
 196	struct address_space *mapping = page->mapping;
 197	int nr = hpage_nr_pages(page);
 198
 199	trace_mm_filemap_delete_from_page_cache(page);
 200	/*
 201	 * if we're uptodate, flush out into the cleancache, otherwise
 202	 * invalidate any existing cleancache entries.  We can't leave
 203	 * stale data around in the cleancache once our page is gone
 204	 */
 205	if (PageUptodate(page) && PageMappedToDisk(page))
 206		cleancache_put_page(page);
 207	else
 208		cleancache_invalidate_page(mapping, page);
 209
 210	VM_BUG_ON_PAGE(PageTail(page), page);
 211	VM_BUG_ON_PAGE(page_mapped(page), page);
 212	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 213		int mapcount;
 214
 215		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 216			 current->comm, page_to_pfn(page));
 217		dump_page(page, "still mapped when deleted");
 218		dump_stack();
 219		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 220
 221		mapcount = page_mapcount(page);
 222		if (mapping_exiting(mapping) &&
 223		    page_count(page) >= mapcount + 2) {
 224			/*
 225			 * All vmas have already been torn down, so it's
 226			 * a good bet that actually the page is unmapped,
 227			 * and we'd prefer not to leak it: if we're wrong,
 228			 * some other bad page check should catch it later.
 229			 */
 230			page_mapcount_reset(page);
 231			page_ref_sub(page, mapcount);
 232		}
 233	}
 234
 235	page_cache_tree_delete(mapping, page, shadow);
 
 
 236
 237	page->mapping = NULL;
 238	/* Leave page->index set: truncation lookup relies upon it */
 239
 240	/* hugetlb pages do not participate in page cache accounting. */
 241	if (!PageHuge(page))
 242		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 243	if (PageSwapBacked(page)) {
 244		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 245		if (PageTransHuge(page))
 246			__dec_node_page_state(page, NR_SHMEM_THPS);
 247	} else {
 248		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
 249	}
 250
 251	/*
 252	 * At this point page must be either written or cleaned by truncate.
 253	 * Dirty page here signals a bug and loss of unwritten data.
 
 254	 *
 255	 * This fixes dirty accounting after removing the page entirely but
 256	 * leaves PageDirty set: it has no effect for truncated page and
 257	 * anyway will be cleared before returning page into buddy allocator.
 
 258	 */
 259	if (WARN_ON_ONCE(PageDirty(page)))
 260		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 261}
 262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263/**
 264 * delete_from_page_cache - delete page from page cache
 265 * @page: the page which the kernel is trying to remove from page cache
 266 *
 267 * This must be called only on pages that have been verified to be in the page
 268 * cache and locked.  It will never put the page into the free list, the caller
 269 * has a reference on the page.
 270 */
 271void delete_from_page_cache(struct page *page)
 272{
 273	struct address_space *mapping = page_mapping(page);
 274	unsigned long flags;
 275	void (*freepage)(struct page *);
 276
 277	BUG_ON(!PageLocked(page));
 
 
 
 278
 279	freepage = mapping->a_ops->freepage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280
 281	spin_lock_irqsave(&mapping->tree_lock, flags);
 282	__delete_from_page_cache(page, NULL);
 283	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 284
 285	if (freepage)
 286		freepage(page);
 
 287
 288	if (PageTransHuge(page) && !PageHuge(page)) {
 289		page_ref_sub(page, HPAGE_PMD_NR);
 290		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 291	} else {
 292		put_page(page);
 293	}
 
 
 
 
 
 294}
 295EXPORT_SYMBOL(delete_from_page_cache);
 296
 297int filemap_check_errors(struct address_space *mapping)
 298{
 299	int ret = 0;
 300	/* Check for outstanding write errors */
 301	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 302	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 303		ret = -ENOSPC;
 304	if (test_bit(AS_EIO, &mapping->flags) &&
 305	    test_and_clear_bit(AS_EIO, &mapping->flags))
 306		ret = -EIO;
 307	return ret;
 308}
 309EXPORT_SYMBOL(filemap_check_errors);
 310
 
 
 
 
 
 
 
 
 
 
 311/**
 312 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 313 * @mapping:	address space structure to write
 314 * @start:	offset in bytes where the range starts
 315 * @end:	offset in bytes where the range ends (inclusive)
 316 * @sync_mode:	enable synchronous operation
 317 *
 318 * Start writeback against all of a mapping's dirty pages that lie
 319 * within the byte offsets <start, end> inclusive.
 320 *
 321 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 322 * opposed to a regular memory cleansing writeback.  The difference between
 323 * these two operations is that if a dirty page/buffer is encountered, it must
 324 * be waited upon, and not just skipped over.
 325 */
 326int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 327				loff_t end, int sync_mode)
 328{
 329	int ret;
 330	struct writeback_control wbc = {
 331		.sync_mode = sync_mode,
 332		.nr_to_write = LONG_MAX,
 333		.range_start = start,
 334		.range_end = end,
 335	};
 336
 337	if (!mapping_cap_writeback_dirty(mapping))
 338		return 0;
 339
 340	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 341	ret = do_writepages(mapping, &wbc);
 342	wbc_detach_inode(&wbc);
 343	return ret;
 344}
 345
 346static inline int __filemap_fdatawrite(struct address_space *mapping,
 347	int sync_mode)
 348{
 349	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 350}
 351
 352int filemap_fdatawrite(struct address_space *mapping)
 353{
 354	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 355}
 356EXPORT_SYMBOL(filemap_fdatawrite);
 357
 358int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 359				loff_t end)
 360{
 361	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 362}
 363EXPORT_SYMBOL(filemap_fdatawrite_range);
 364
 365/**
 366 * filemap_flush - mostly a non-blocking flush
 367 * @mapping:	target address_space
 368 *
 369 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 370 * purposes - I/O may not be started against all dirty pages.
 371 */
 372int filemap_flush(struct address_space *mapping)
 373{
 374	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 375}
 376EXPORT_SYMBOL(filemap_flush);
 377
 378static int __filemap_fdatawait_range(struct address_space *mapping,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379				     loff_t start_byte, loff_t end_byte)
 380{
 381	pgoff_t index = start_byte >> PAGE_SHIFT;
 382	pgoff_t end = end_byte >> PAGE_SHIFT;
 383	struct pagevec pvec;
 384	int nr_pages;
 385	int ret = 0;
 386
 387	if (end_byte < start_byte)
 388		goto out;
 389
 390	pagevec_init(&pvec, 0);
 391	while ((index <= end) &&
 392			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 393			PAGECACHE_TAG_WRITEBACK,
 394			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 395		unsigned i;
 396
 
 
 
 
 
 397		for (i = 0; i < nr_pages; i++) {
 398			struct page *page = pvec.pages[i];
 399
 400			/* until radix tree lookup accepts end_index */
 401			if (page->index > end)
 402				continue;
 403
 404			wait_on_page_writeback(page);
 405			if (TestClearPageError(page))
 406				ret = -EIO;
 407		}
 408		pagevec_release(&pvec);
 409		cond_resched();
 410	}
 411out:
 412	return ret;
 413}
 414
 415/**
 416 * filemap_fdatawait_range - wait for writeback to complete
 417 * @mapping:		address space structure to wait for
 418 * @start_byte:		offset in bytes where the range starts
 419 * @end_byte:		offset in bytes where the range ends (inclusive)
 420 *
 421 * Walk the list of under-writeback pages of the given address space
 422 * in the given range and wait for all of them.  Check error status of
 423 * the address space and return it.
 424 *
 425 * Since the error status of the address space is cleared by this function,
 426 * callers are responsible for checking the return value and handling and/or
 427 * reporting the error.
 428 */
 429int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 430			    loff_t end_byte)
 431{
 432	int ret, ret2;
 
 
 
 433
 434	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
 435	ret2 = filemap_check_errors(mapping);
 436	if (!ret)
 437		ret = ret2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 438
 439	return ret;
 
 440}
 441EXPORT_SYMBOL(filemap_fdatawait_range);
 442
 443/**
 444 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 445 * @mapping: address space structure to wait for
 446 *
 447 * Walk the list of under-writeback pages of the given address space
 448 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 449 * does not clear error status of the address space.
 450 *
 451 * Use this function if callers don't handle errors themselves.  Expected
 452 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 453 * fsfreeze(8)
 454 */
 455void filemap_fdatawait_keep_errors(struct address_space *mapping)
 456{
 457	loff_t i_size = i_size_read(mapping->host);
 458
 459	if (i_size == 0)
 460		return;
 461
 462	__filemap_fdatawait_range(mapping, 0, i_size - 1);
 463}
 
 464
 465/**
 466 * filemap_fdatawait - wait for all under-writeback pages to complete
 467 * @mapping: address space structure to wait for
 468 *
 469 * Walk the list of under-writeback pages of the given address space
 470 * and wait for all of them.  Check error status of the address space
 471 * and return it.
 472 *
 473 * Since the error status of the address space is cleared by this function,
 474 * callers are responsible for checking the return value and handling and/or
 475 * reporting the error.
 476 */
 477int filemap_fdatawait(struct address_space *mapping)
 478{
 479	loff_t i_size = i_size_read(mapping->host);
 480
 481	if (i_size == 0)
 482		return 0;
 483
 484	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 485}
 486EXPORT_SYMBOL(filemap_fdatawait);
 487
 488int filemap_write_and_wait(struct address_space *mapping)
 489{
 490	int err = 0;
 491
 492	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 493	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 494		err = filemap_fdatawrite(mapping);
 495		/*
 496		 * Even if the above returned error, the pages may be
 497		 * written partially (e.g. -ENOSPC), so we wait for it.
 498		 * But the -EIO is special case, it may indicate the worst
 499		 * thing (e.g. bug) happened, so we avoid waiting for it.
 500		 */
 501		if (err != -EIO) {
 502			int err2 = filemap_fdatawait(mapping);
 503			if (!err)
 504				err = err2;
 
 
 
 505		}
 506	} else {
 507		err = filemap_check_errors(mapping);
 508	}
 509	return err;
 510}
 511EXPORT_SYMBOL(filemap_write_and_wait);
 512
 513/**
 514 * filemap_write_and_wait_range - write out & wait on a file range
 515 * @mapping:	the address_space for the pages
 516 * @lstart:	offset in bytes where the range starts
 517 * @lend:	offset in bytes where the range ends (inclusive)
 518 *
 519 * Write out and wait upon file offsets lstart->lend, inclusive.
 520 *
 521 * Note that `lend' is inclusive (describes the last byte to be written) so
 522 * that this function can be used to write to the very end-of-file (end = -1).
 523 */
 524int filemap_write_and_wait_range(struct address_space *mapping,
 525				 loff_t lstart, loff_t lend)
 526{
 527	int err = 0;
 528
 529	if ((!dax_mapping(mapping) && mapping->nrpages) ||
 530	    (dax_mapping(mapping) && mapping->nrexceptional)) {
 531		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 532						 WB_SYNC_ALL);
 533		/* See comment of filemap_write_and_wait() */
 534		if (err != -EIO) {
 535			int err2 = filemap_fdatawait_range(mapping,
 536						lstart, lend);
 537			if (!err)
 538				err = err2;
 
 
 
 539		}
 540	} else {
 541		err = filemap_check_errors(mapping);
 542	}
 543	return err;
 544}
 545EXPORT_SYMBOL(filemap_write_and_wait_range);
 546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547/**
 548 * replace_page_cache_page - replace a pagecache page with a new one
 549 * @old:	page to be replaced
 550 * @new:	page to replace with
 551 * @gfp_mask:	allocation mode
 552 *
 553 * This function replaces a page in the pagecache with a new one.  On
 554 * success it acquires the pagecache reference for the new page and
 555 * drops it for the old page.  Both the old and new pages must be
 556 * locked.  This function does not add the new page to the LRU, the
 557 * caller must do that.
 558 *
 559 * The remove + add is atomic.  The only way this function can fail is
 560 * memory allocation failure.
 561 */
 562int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 563{
 564	int error;
 565
 566	VM_BUG_ON_PAGE(!PageLocked(old), old);
 567	VM_BUG_ON_PAGE(!PageLocked(new), new);
 568	VM_BUG_ON_PAGE(new->mapping, new);
 569
 570	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 571	if (!error) {
 572		struct address_space *mapping = old->mapping;
 573		void (*freepage)(struct page *);
 574		unsigned long flags;
 575
 576		pgoff_t offset = old->index;
 577		freepage = mapping->a_ops->freepage;
 578
 579		get_page(new);
 580		new->mapping = mapping;
 581		new->index = offset;
 582
 583		spin_lock_irqsave(&mapping->tree_lock, flags);
 584		__delete_from_page_cache(old, NULL);
 585		error = page_cache_tree_insert(mapping, new, NULL);
 586		BUG_ON(error);
 587
 588		/*
 589		 * hugetlb pages do not participate in page cache accounting.
 590		 */
 591		if (!PageHuge(new))
 592			__inc_node_page_state(new, NR_FILE_PAGES);
 593		if (PageSwapBacked(new))
 594			__inc_node_page_state(new, NR_SHMEM);
 595		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 596		mem_cgroup_migrate(old, new);
 597		radix_tree_preload_end();
 598		if (freepage)
 599			freepage(old);
 600		put_page(old);
 601	}
 602
 603	return error;
 604}
 605EXPORT_SYMBOL_GPL(replace_page_cache_page);
 606
 607static int __add_to_page_cache_locked(struct page *page,
 608				      struct address_space *mapping,
 609				      pgoff_t offset, gfp_t gfp_mask,
 610				      void **shadowp)
 611{
 612	int huge = PageHuge(page);
 613	struct mem_cgroup *memcg;
 614	int error;
 615
 616	VM_BUG_ON_PAGE(!PageLocked(page), page);
 617	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 618
 619	if (!huge) {
 620		error = mem_cgroup_try_charge(page, current->mm,
 621					      gfp_mask, &memcg, false);
 622		if (error)
 623			return error;
 624	}
 625
 626	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 627	if (error) {
 628		if (!huge)
 629			mem_cgroup_cancel_charge(page, memcg, false);
 630		return error;
 631	}
 632
 633	get_page(page);
 634	page->mapping = mapping;
 635	page->index = offset;
 636
 637	spin_lock_irq(&mapping->tree_lock);
 638	error = page_cache_tree_insert(mapping, page, shadowp);
 639	radix_tree_preload_end();
 640	if (unlikely(error))
 641		goto err_insert;
 642
 643	/* hugetlb pages do not participate in page cache accounting. */
 644	if (!huge)
 645		__inc_node_page_state(page, NR_FILE_PAGES);
 646	spin_unlock_irq(&mapping->tree_lock);
 647	if (!huge)
 648		mem_cgroup_commit_charge(page, memcg, false, false);
 649	trace_mm_filemap_add_to_page_cache(page);
 650	return 0;
 651err_insert:
 652	page->mapping = NULL;
 653	/* Leave page->index set: truncation relies upon it */
 654	spin_unlock_irq(&mapping->tree_lock);
 655	if (!huge)
 656		mem_cgroup_cancel_charge(page, memcg, false);
 657	put_page(page);
 658	return error;
 659}
 660
 661/**
 662 * add_to_page_cache_locked - add a locked page to the pagecache
 663 * @page:	page to add
 664 * @mapping:	the page's address_space
 665 * @offset:	page index
 666 * @gfp_mask:	page allocation mode
 667 *
 668 * This function is used to add a page to the pagecache. It must be locked.
 669 * This function does not add the page to the LRU.  The caller must do that.
 670 */
 671int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 672		pgoff_t offset, gfp_t gfp_mask)
 673{
 674	return __add_to_page_cache_locked(page, mapping, offset,
 675					  gfp_mask, NULL);
 676}
 677EXPORT_SYMBOL(add_to_page_cache_locked);
 678
 679int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 680				pgoff_t offset, gfp_t gfp_mask)
 681{
 682	void *shadow = NULL;
 683	int ret;
 684
 685	__SetPageLocked(page);
 686	ret = __add_to_page_cache_locked(page, mapping, offset,
 687					 gfp_mask, &shadow);
 688	if (unlikely(ret))
 689		__ClearPageLocked(page);
 690	else {
 691		/*
 692		 * The page might have been evicted from cache only
 693		 * recently, in which case it should be activated like
 694		 * any other repeatedly accessed page.
 695		 * The exception is pages getting rewritten; evicting other
 696		 * data from the working set, only to cache data that will
 697		 * get overwritten with something else, is a waste of memory.
 698		 */
 699		if (!(gfp_mask & __GFP_WRITE) &&
 700		    shadow && workingset_refault(shadow)) {
 701			SetPageActive(page);
 702			workingset_activation(page);
 703		} else
 704			ClearPageActive(page);
 705		lru_cache_add(page);
 706	}
 707	return ret;
 708}
 709EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 710
 711#ifdef CONFIG_NUMA
 712struct page *__page_cache_alloc(gfp_t gfp)
 713{
 714	int n;
 715	struct page *page;
 716
 717	if (cpuset_do_page_mem_spread()) {
 718		unsigned int cpuset_mems_cookie;
 719		do {
 720			cpuset_mems_cookie = read_mems_allowed_begin();
 721			n = cpuset_mem_spread_node();
 722			page = __alloc_pages_node(n, gfp, 0);
 723		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 724
 725		return page;
 726	}
 727	return alloc_pages(gfp, 0);
 728}
 729EXPORT_SYMBOL(__page_cache_alloc);
 730#endif
 731
 732/*
 733 * In order to wait for pages to become available there must be
 734 * waitqueues associated with pages. By using a hash table of
 735 * waitqueues where the bucket discipline is to maintain all
 736 * waiters on the same queue and wake all when any of the pages
 737 * become available, and for the woken contexts to check to be
 738 * sure the appropriate page became available, this saves space
 739 * at a cost of "thundering herd" phenomena during rare hash
 740 * collisions.
 741 */
 742#define PAGE_WAIT_TABLE_BITS 8
 743#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 744static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 745
 746static wait_queue_head_t *page_waitqueue(struct page *page)
 747{
 748	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 749}
 750
 751void __init pagecache_init(void)
 752{
 753	int i;
 754
 755	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 756		init_waitqueue_head(&page_wait_table[i]);
 757
 758	page_writeback_init();
 759}
 760
 
 761struct wait_page_key {
 762	struct page *page;
 763	int bit_nr;
 764	int page_match;
 765};
 766
 767struct wait_page_queue {
 768	struct page *page;
 769	int bit_nr;
 770	wait_queue_t wait;
 771};
 772
 773static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
 774{
 775	struct wait_page_key *key = arg;
 776	struct wait_page_queue *wait_page
 777		= container_of(wait, struct wait_page_queue, wait);
 778
 779	if (wait_page->page != key->page)
 780	       return 0;
 781	key->page_match = 1;
 782
 783	if (wait_page->bit_nr != key->bit_nr)
 784		return 0;
 
 
 785	if (test_bit(key->bit_nr, &key->page->flags))
 786		return 0;
 787
 788	return autoremove_wake_function(wait, mode, sync, key);
 789}
 790
 791void wake_up_page_bit(struct page *page, int bit_nr)
 792{
 793	wait_queue_head_t *q = page_waitqueue(page);
 794	struct wait_page_key key;
 795	unsigned long flags;
 
 796
 797	key.page = page;
 798	key.bit_nr = bit_nr;
 799	key.page_match = 0;
 800
 
 
 
 
 
 801	spin_lock_irqsave(&q->lock, flags);
 802	__wake_up_locked_key(q, TASK_NORMAL, &key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803	/*
 804	 * It is possible for other pages to have collided on the waitqueue
 805	 * hash, so in that case check for a page match. That prevents a long-
 806	 * term waiter
 807	 *
 808	 * It is still possible to miss a case here, when we woke page waiters
 809	 * and removed them from the waitqueue, but there are still other
 810	 * page waiters.
 811	 */
 812	if (!waitqueue_active(q) || !key.page_match) {
 813		ClearPageWaiters(page);
 814		/*
 815		 * It's possible to miss clearing Waiters here, when we woke
 816		 * our page waiters, but the hashed waitqueue has waiters for
 817		 * other pages on it.
 818		 *
 819		 * That's okay, it's a rare case. The next waker will clear it.
 820		 */
 821	}
 822	spin_unlock_irqrestore(&q->lock, flags);
 823}
 824EXPORT_SYMBOL(wake_up_page_bit);
 
 
 
 
 
 
 825
 826static inline int wait_on_page_bit_common(wait_queue_head_t *q,
 827		struct page *page, int bit_nr, int state, bool lock)
 828{
 829	struct wait_page_queue wait_page;
 830	wait_queue_t *wait = &wait_page.wait;
 831	int ret = 0;
 832
 833	init_wait(wait);
 
 834	wait->func = wake_page_function;
 835	wait_page.page = page;
 836	wait_page.bit_nr = bit_nr;
 837
 838	for (;;) {
 839		spin_lock_irq(&q->lock);
 840
 841		if (likely(list_empty(&wait->task_list))) {
 842			if (lock)
 843				__add_wait_queue_tail_exclusive(q, wait);
 844			else
 845				__add_wait_queue(q, wait);
 846			SetPageWaiters(page);
 847		}
 848
 849		set_current_state(state);
 850
 851		spin_unlock_irq(&q->lock);
 852
 853		if (likely(test_bit(bit_nr, &page->flags))) {
 854			io_schedule();
 855			if (unlikely(signal_pending_state(state, current))) {
 856				ret = -EINTR;
 857				break;
 858			}
 859		}
 860
 861		if (lock) {
 862			if (!test_and_set_bit_lock(bit_nr, &page->flags))
 863				break;
 864		} else {
 865			if (!test_bit(bit_nr, &page->flags))
 866				break;
 867		}
 
 
 
 
 
 868	}
 869
 870	finish_wait(q, wait);
 871
 872	/*
 873	 * A signal could leave PageWaiters set. Clearing it here if
 874	 * !waitqueue_active would be possible (by open-coding finish_wait),
 875	 * but still fail to catch it in the case of wait hash collision. We
 876	 * already can fail to clear wait hash collision cases, so don't
 877	 * bother with signals either.
 878	 */
 879
 880	return ret;
 881}
 882
 883void wait_on_page_bit(struct page *page, int bit_nr)
 884{
 885	wait_queue_head_t *q = page_waitqueue(page);
 886	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
 887}
 888EXPORT_SYMBOL(wait_on_page_bit);
 889
 890int wait_on_page_bit_killable(struct page *page, int bit_nr)
 891{
 892	wait_queue_head_t *q = page_waitqueue(page);
 893	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
 894}
 
 895
 896/**
 897 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 898 * @page: Page defining the wait queue of interest
 899 * @waiter: Waiter to add to the queue
 900 *
 901 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 902 */
 903void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 904{
 905	wait_queue_head_t *q = page_waitqueue(page);
 906	unsigned long flags;
 907
 908	spin_lock_irqsave(&q->lock, flags);
 909	__add_wait_queue(q, waiter);
 910	SetPageWaiters(page);
 911	spin_unlock_irqrestore(&q->lock, flags);
 912}
 913EXPORT_SYMBOL_GPL(add_page_wait_queue);
 914
 915#ifndef clear_bit_unlock_is_negative_byte
 916
 917/*
 918 * PG_waiters is the high bit in the same byte as PG_lock.
 919 *
 920 * On x86 (and on many other architectures), we can clear PG_lock and
 921 * test the sign bit at the same time. But if the architecture does
 922 * not support that special operation, we just do this all by hand
 923 * instead.
 924 *
 925 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 926 * being cleared, but a memory barrier should be unneccssary since it is
 927 * in the same byte as PG_locked.
 928 */
 929static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
 930{
 931	clear_bit_unlock(nr, mem);
 932	/* smp_mb__after_atomic(); */
 933	return test_bit(PG_waiters, mem);
 934}
 935
 936#endif
 937
 938/**
 939 * unlock_page - unlock a locked page
 940 * @page: the page
 941 *
 942 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 943 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 944 * mechanism between PageLocked pages and PageWriteback pages is shared.
 945 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 946 *
 947 * Note that this depends on PG_waiters being the sign bit in the byte
 948 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 949 * clear the PG_locked bit and test PG_waiters at the same time fairly
 950 * portably (architectures that do LL/SC can test any bit, while x86 can
 951 * test the sign bit).
 952 */
 953void unlock_page(struct page *page)
 954{
 955	BUILD_BUG_ON(PG_waiters != 7);
 956	page = compound_head(page);
 957	VM_BUG_ON_PAGE(!PageLocked(page), page);
 958	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
 959		wake_up_page_bit(page, PG_locked);
 960}
 961EXPORT_SYMBOL(unlock_page);
 962
 963/**
 964 * end_page_writeback - end writeback against a page
 965 * @page: the page
 966 */
 967void end_page_writeback(struct page *page)
 968{
 969	/*
 970	 * TestClearPageReclaim could be used here but it is an atomic
 971	 * operation and overkill in this particular case. Failing to
 972	 * shuffle a page marked for immediate reclaim is too mild to
 973	 * justify taking an atomic operation penalty at the end of
 974	 * ever page writeback.
 975	 */
 976	if (PageReclaim(page)) {
 977		ClearPageReclaim(page);
 978		rotate_reclaimable_page(page);
 979	}
 980
 981	if (!test_clear_page_writeback(page))
 982		BUG();
 983
 984	smp_mb__after_atomic();
 985	wake_up_page(page, PG_writeback);
 986}
 987EXPORT_SYMBOL(end_page_writeback);
 988
 989/*
 990 * After completing I/O on a page, call this routine to update the page
 991 * flags appropriately
 992 */
 993void page_endio(struct page *page, bool is_write, int err)
 994{
 995	if (!is_write) {
 996		if (!err) {
 997			SetPageUptodate(page);
 998		} else {
 999			ClearPageUptodate(page);
1000			SetPageError(page);
1001		}
1002		unlock_page(page);
1003	} else {
1004		if (err) {
1005			struct address_space *mapping;
1006
1007			SetPageError(page);
1008			mapping = page_mapping(page);
1009			if (mapping)
1010				mapping_set_error(mapping, err);
1011		}
1012		end_page_writeback(page);
1013	}
1014}
1015EXPORT_SYMBOL_GPL(page_endio);
1016
1017/**
1018 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1019 * @page: the page to lock
1020 */
1021void __lock_page(struct page *__page)
1022{
1023	struct page *page = compound_head(__page);
1024	wait_queue_head_t *q = page_waitqueue(page);
1025	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1026}
1027EXPORT_SYMBOL(__lock_page);
1028
1029int __lock_page_killable(struct page *__page)
1030{
1031	struct page *page = compound_head(__page);
1032	wait_queue_head_t *q = page_waitqueue(page);
1033	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1034}
1035EXPORT_SYMBOL_GPL(__lock_page_killable);
1036
1037/*
1038 * Return values:
1039 * 1 - page is locked; mmap_sem is still held.
1040 * 0 - page is not locked.
1041 *     mmap_sem has been released (up_read()), unless flags had both
1042 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1043 *     which case mmap_sem is still held.
1044 *
1045 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1046 * with the page locked and the mmap_sem unperturbed.
1047 */
1048int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1049			 unsigned int flags)
1050{
1051	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1052		/*
1053		 * CAUTION! In this case, mmap_sem is not released
1054		 * even though return 0.
1055		 */
1056		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1057			return 0;
1058
1059		up_read(&mm->mmap_sem);
1060		if (flags & FAULT_FLAG_KILLABLE)
1061			wait_on_page_locked_killable(page);
1062		else
1063			wait_on_page_locked(page);
1064		return 0;
1065	} else {
1066		if (flags & FAULT_FLAG_KILLABLE) {
1067			int ret;
1068
1069			ret = __lock_page_killable(page);
1070			if (ret) {
1071				up_read(&mm->mmap_sem);
1072				return 0;
1073			}
1074		} else
1075			__lock_page(page);
1076		return 1;
1077	}
1078}
1079
1080/**
1081 * page_cache_next_hole - find the next hole (not-present entry)
1082 * @mapping: mapping
1083 * @index: index
1084 * @max_scan: maximum range to search
1085 *
1086 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1087 * lowest indexed hole.
1088 *
1089 * Returns: the index of the hole if found, otherwise returns an index
1090 * outside of the set specified (in which case 'return - index >=
1091 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1092 * be returned.
1093 *
1094 * page_cache_next_hole may be called under rcu_read_lock. However,
1095 * like radix_tree_gang_lookup, this will not atomically search a
1096 * snapshot of the tree at a single point in time. For example, if a
1097 * hole is created at index 5, then subsequently a hole is created at
1098 * index 10, page_cache_next_hole covering both indexes may return 10
1099 * if called under rcu_read_lock.
1100 */
1101pgoff_t page_cache_next_hole(struct address_space *mapping,
1102			     pgoff_t index, unsigned long max_scan)
1103{
1104	unsigned long i;
1105
1106	for (i = 0; i < max_scan; i++) {
1107		struct page *page;
1108
1109		page = radix_tree_lookup(&mapping->page_tree, index);
1110		if (!page || radix_tree_exceptional_entry(page))
1111			break;
1112		index++;
1113		if (index == 0)
1114			break;
1115	}
1116
1117	return index;
1118}
1119EXPORT_SYMBOL(page_cache_next_hole);
1120
1121/**
1122 * page_cache_prev_hole - find the prev hole (not-present entry)
1123 * @mapping: mapping
1124 * @index: index
1125 * @max_scan: maximum range to search
1126 *
1127 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1128 * the first hole.
1129 *
1130 * Returns: the index of the hole if found, otherwise returns an index
1131 * outside of the set specified (in which case 'index - return >=
1132 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1133 * will be returned.
1134 *
1135 * page_cache_prev_hole may be called under rcu_read_lock. However,
1136 * like radix_tree_gang_lookup, this will not atomically search a
1137 * snapshot of the tree at a single point in time. For example, if a
1138 * hole is created at index 10, then subsequently a hole is created at
1139 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1140 * called under rcu_read_lock.
1141 */
1142pgoff_t page_cache_prev_hole(struct address_space *mapping,
1143			     pgoff_t index, unsigned long max_scan)
1144{
1145	unsigned long i;
1146
1147	for (i = 0; i < max_scan; i++) {
1148		struct page *page;
1149
1150		page = radix_tree_lookup(&mapping->page_tree, index);
1151		if (!page || radix_tree_exceptional_entry(page))
1152			break;
1153		index--;
1154		if (index == ULONG_MAX)
1155			break;
1156	}
1157
1158	return index;
1159}
1160EXPORT_SYMBOL(page_cache_prev_hole);
1161
1162/**
1163 * find_get_entry - find and get a page cache entry
1164 * @mapping: the address_space to search
1165 * @offset: the page cache index
1166 *
1167 * Looks up the page cache slot at @mapping & @offset.  If there is a
1168 * page cache page, it is returned with an increased refcount.
1169 *
1170 * If the slot holds a shadow entry of a previously evicted page, or a
1171 * swap entry from shmem/tmpfs, it is returned.
1172 *
1173 * Otherwise, %NULL is returned.
1174 */
1175struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1176{
1177	void **pagep;
1178	struct page *head, *page;
1179
1180	rcu_read_lock();
1181repeat:
1182	page = NULL;
1183	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1184	if (pagep) {
1185		page = radix_tree_deref_slot(pagep);
1186		if (unlikely(!page))
1187			goto out;
1188		if (radix_tree_exception(page)) {
1189			if (radix_tree_deref_retry(page))
1190				goto repeat;
1191			/*
1192			 * A shadow entry of a recently evicted page,
1193			 * or a swap entry from shmem/tmpfs.  Return
1194			 * it without attempting to raise page count.
1195			 */
1196			goto out;
1197		}
1198
1199		head = compound_head(page);
1200		if (!page_cache_get_speculative(head))
1201			goto repeat;
1202
1203		/* The page was split under us? */
1204		if (compound_head(page) != head) {
1205			put_page(head);
1206			goto repeat;
1207		}
1208
1209		/*
1210		 * Has the page moved?
1211		 * This is part of the lockless pagecache protocol. See
1212		 * include/linux/pagemap.h for details.
1213		 */
1214		if (unlikely(page != *pagep)) {
1215			put_page(head);
1216			goto repeat;
1217		}
1218	}
1219out:
1220	rcu_read_unlock();
1221
1222	return page;
1223}
1224EXPORT_SYMBOL(find_get_entry);
1225
1226/**
1227 * find_lock_entry - locate, pin and lock a page cache entry
1228 * @mapping: the address_space to search
1229 * @offset: the page cache index
1230 *
1231 * Looks up the page cache slot at @mapping & @offset.  If there is a
1232 * page cache page, it is returned locked and with an increased
1233 * refcount.
1234 *
1235 * If the slot holds a shadow entry of a previously evicted page, or a
1236 * swap entry from shmem/tmpfs, it is returned.
1237 *
1238 * Otherwise, %NULL is returned.
1239 *
1240 * find_lock_entry() may sleep.
1241 */
1242struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1243{
1244	struct page *page;
1245
1246repeat:
1247	page = find_get_entry(mapping, offset);
1248	if (page && !radix_tree_exception(page)) {
1249		lock_page(page);
1250		/* Has the page been truncated? */
1251		if (unlikely(page_mapping(page) != mapping)) {
1252			unlock_page(page);
1253			put_page(page);
1254			goto repeat;
1255		}
1256		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1257	}
1258	return page;
1259}
1260EXPORT_SYMBOL(find_lock_entry);
1261
1262/**
1263 * pagecache_get_page - find and get a page reference
1264 * @mapping: the address_space to search
1265 * @offset: the page index
1266 * @fgp_flags: PCG flags
1267 * @gfp_mask: gfp mask to use for the page cache data page allocation
1268 *
1269 * Looks up the page cache slot at @mapping & @offset.
1270 *
1271 * PCG flags modify how the page is returned.
1272 *
1273 * FGP_ACCESSED: the page will be marked accessed
1274 * FGP_LOCK: Page is return locked
1275 * FGP_CREAT: If page is not present then a new page is allocated using
1276 *		@gfp_mask and added to the page cache and the VM's LRU
1277 *		list. The page is returned locked and with an increased
1278 *		refcount. Otherwise, %NULL is returned.
 
 
1279 *
1280 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1281 * if the GFP flags specified for FGP_CREAT are atomic.
1282 *
1283 * If there is a page cache page, it is returned with an increased refcount.
1284 */
1285struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1286	int fgp_flags, gfp_t gfp_mask)
1287{
1288	struct page *page;
1289
1290repeat:
1291	page = find_get_entry(mapping, offset);
1292	if (radix_tree_exceptional_entry(page))
1293		page = NULL;
1294	if (!page)
1295		goto no_page;
1296
1297	if (fgp_flags & FGP_LOCK) {
1298		if (fgp_flags & FGP_NOWAIT) {
1299			if (!trylock_page(page)) {
1300				put_page(page);
1301				return NULL;
1302			}
1303		} else {
1304			lock_page(page);
1305		}
1306
1307		/* Has the page been truncated? */
1308		if (unlikely(page->mapping != mapping)) {
1309			unlock_page(page);
1310			put_page(page);
1311			goto repeat;
1312		}
1313		VM_BUG_ON_PAGE(page->index != offset, page);
1314	}
1315
1316	if (page && (fgp_flags & FGP_ACCESSED))
1317		mark_page_accessed(page);
1318
1319no_page:
1320	if (!page && (fgp_flags & FGP_CREAT)) {
1321		int err;
1322		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1323			gfp_mask |= __GFP_WRITE;
1324		if (fgp_flags & FGP_NOFS)
1325			gfp_mask &= ~__GFP_FS;
1326
1327		page = __page_cache_alloc(gfp_mask);
1328		if (!page)
1329			return NULL;
1330
1331		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1332			fgp_flags |= FGP_LOCK;
1333
1334		/* Init accessed so avoid atomic mark_page_accessed later */
1335		if (fgp_flags & FGP_ACCESSED)
1336			__SetPageReferenced(page);
1337
1338		err = add_to_page_cache_lru(page, mapping, offset,
1339				gfp_mask & GFP_RECLAIM_MASK);
1340		if (unlikely(err)) {
1341			put_page(page);
1342			page = NULL;
1343			if (err == -EEXIST)
1344				goto repeat;
1345		}
1346	}
1347
1348	return page;
1349}
1350EXPORT_SYMBOL(pagecache_get_page);
1351
1352/**
1353 * find_get_entries - gang pagecache lookup
1354 * @mapping:	The address_space to search
1355 * @start:	The starting page cache index
1356 * @nr_entries:	The maximum number of entries
1357 * @entries:	Where the resulting entries are placed
1358 * @indices:	The cache indices corresponding to the entries in @entries
1359 *
1360 * find_get_entries() will search for and return a group of up to
1361 * @nr_entries entries in the mapping.  The entries are placed at
1362 * @entries.  find_get_entries() takes a reference against any actual
1363 * pages it returns.
1364 *
1365 * The search returns a group of mapping-contiguous page cache entries
1366 * with ascending indexes.  There may be holes in the indices due to
1367 * not-present pages.
1368 *
1369 * Any shadow entries of evicted pages, or swap entries from
1370 * shmem/tmpfs, are included in the returned array.
1371 *
1372 * find_get_entries() returns the number of pages and shadow entries
1373 * which were found.
1374 */
1375unsigned find_get_entries(struct address_space *mapping,
1376			  pgoff_t start, unsigned int nr_entries,
1377			  struct page **entries, pgoff_t *indices)
1378{
1379	void **slot;
1380	unsigned int ret = 0;
1381	struct radix_tree_iter iter;
1382
1383	if (!nr_entries)
1384		return 0;
1385
1386	rcu_read_lock();
1387	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1388		struct page *head, *page;
1389repeat:
1390		page = radix_tree_deref_slot(slot);
1391		if (unlikely(!page))
1392			continue;
1393		if (radix_tree_exception(page)) {
1394			if (radix_tree_deref_retry(page)) {
1395				slot = radix_tree_iter_retry(&iter);
1396				continue;
1397			}
1398			/*
1399			 * A shadow entry of a recently evicted page, a swap
1400			 * entry from shmem/tmpfs or a DAX entry.  Return it
1401			 * without attempting to raise page count.
1402			 */
1403			goto export;
1404		}
1405
1406		head = compound_head(page);
1407		if (!page_cache_get_speculative(head))
1408			goto repeat;
1409
1410		/* The page was split under us? */
1411		if (compound_head(page) != head) {
1412			put_page(head);
1413			goto repeat;
1414		}
1415
1416		/* Has the page moved? */
1417		if (unlikely(page != *slot)) {
1418			put_page(head);
1419			goto repeat;
1420		}
1421export:
1422		indices[ret] = iter.index;
1423		entries[ret] = page;
1424		if (++ret == nr_entries)
1425			break;
1426	}
1427	rcu_read_unlock();
1428	return ret;
1429}
1430
1431/**
1432 * find_get_pages - gang pagecache lookup
1433 * @mapping:	The address_space to search
1434 * @start:	The starting page index
 
1435 * @nr_pages:	The maximum number of pages
1436 * @pages:	Where the resulting pages are placed
1437 *
1438 * find_get_pages() will search for and return a group of up to
1439 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1440 * find_get_pages() takes a reference against the returned pages.
 
1441 *
1442 * The search returns a group of mapping-contiguous pages with ascending
1443 * indexes.  There may be holes in the indices due to not-present pages.
 
1444 *
1445 * find_get_pages() returns the number of pages which were found.
1446 */
1447unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1448			    unsigned int nr_pages, struct page **pages)
 
 
 
1449{
1450	struct radix_tree_iter iter;
1451	void **slot;
1452	unsigned ret = 0;
1453
1454	if (unlikely(!nr_pages))
1455		return 0;
1456
1457	rcu_read_lock();
1458	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1459		struct page *head, *page;
 
 
 
1460repeat:
1461		page = radix_tree_deref_slot(slot);
1462		if (unlikely(!page))
1463			continue;
1464
1465		if (radix_tree_exception(page)) {
1466			if (radix_tree_deref_retry(page)) {
1467				slot = radix_tree_iter_retry(&iter);
1468				continue;
1469			}
1470			/*
1471			 * A shadow entry of a recently evicted page,
1472			 * or a swap entry from shmem/tmpfs.  Skip
1473			 * over it.
1474			 */
1475			continue;
1476		}
1477
1478		head = compound_head(page);
1479		if (!page_cache_get_speculative(head))
1480			goto repeat;
1481
1482		/* The page was split under us? */
1483		if (compound_head(page) != head) {
1484			put_page(head);
1485			goto repeat;
1486		}
1487
1488		/* Has the page moved? */
1489		if (unlikely(page != *slot)) {
1490			put_page(head);
1491			goto repeat;
1492		}
1493
1494		pages[ret] = page;
1495		if (++ret == nr_pages)
1496			break;
 
 
1497	}
1498
 
 
 
 
 
 
 
 
 
 
 
1499	rcu_read_unlock();
 
1500	return ret;
1501}
1502
1503/**
1504 * find_get_pages_contig - gang contiguous pagecache lookup
1505 * @mapping:	The address_space to search
1506 * @index:	The starting page index
1507 * @nr_pages:	The maximum number of pages
1508 * @pages:	Where the resulting pages are placed
1509 *
1510 * find_get_pages_contig() works exactly like find_get_pages(), except
1511 * that the returned number of pages are guaranteed to be contiguous.
1512 *
1513 * find_get_pages_contig() returns the number of pages which were found.
1514 */
1515unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1516			       unsigned int nr_pages, struct page **pages)
1517{
1518	struct radix_tree_iter iter;
1519	void **slot;
1520	unsigned int ret = 0;
1521
1522	if (unlikely(!nr_pages))
1523		return 0;
1524
1525	rcu_read_lock();
1526	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1527		struct page *head, *page;
1528repeat:
1529		page = radix_tree_deref_slot(slot);
1530		/* The hole, there no reason to continue */
1531		if (unlikely(!page))
1532			break;
1533
1534		if (radix_tree_exception(page)) {
1535			if (radix_tree_deref_retry(page)) {
1536				slot = radix_tree_iter_retry(&iter);
1537				continue;
1538			}
1539			/*
1540			 * A shadow entry of a recently evicted page,
1541			 * or a swap entry from shmem/tmpfs.  Stop
1542			 * looking for contiguous pages.
1543			 */
1544			break;
1545		}
1546
1547		head = compound_head(page);
1548		if (!page_cache_get_speculative(head))
1549			goto repeat;
1550
1551		/* The page was split under us? */
1552		if (compound_head(page) != head) {
1553			put_page(head);
1554			goto repeat;
1555		}
1556
1557		/* Has the page moved? */
1558		if (unlikely(page != *slot)) {
1559			put_page(head);
1560			goto repeat;
1561		}
1562
1563		/*
1564		 * must check mapping and index after taking the ref.
1565		 * otherwise we can get both false positives and false
1566		 * negatives, which is just confusing to the caller.
1567		 */
1568		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1569			put_page(page);
1570			break;
1571		}
1572
1573		pages[ret] = page;
1574		if (++ret == nr_pages)
1575			break;
1576	}
1577	rcu_read_unlock();
1578	return ret;
1579}
1580EXPORT_SYMBOL(find_get_pages_contig);
1581
1582/**
1583 * find_get_pages_tag - find and return pages that match @tag
1584 * @mapping:	the address_space to search
1585 * @index:	the starting page index
 
1586 * @tag:	the tag index
1587 * @nr_pages:	the maximum number of pages
1588 * @pages:	where the resulting pages are placed
1589 *
1590 * Like find_get_pages, except we only return pages which are tagged with
1591 * @tag.   We update @index to index the next page for the traversal.
1592 */
1593unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1594			int tag, unsigned int nr_pages, struct page **pages)
 
1595{
1596	struct radix_tree_iter iter;
1597	void **slot;
1598	unsigned ret = 0;
1599
1600	if (unlikely(!nr_pages))
1601		return 0;
1602
1603	rcu_read_lock();
1604	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1605				   &iter, *index, tag) {
1606		struct page *head, *page;
 
 
 
1607repeat:
1608		page = radix_tree_deref_slot(slot);
1609		if (unlikely(!page))
1610			continue;
1611
1612		if (radix_tree_exception(page)) {
1613			if (radix_tree_deref_retry(page)) {
1614				slot = radix_tree_iter_retry(&iter);
1615				continue;
1616			}
1617			/*
1618			 * A shadow entry of a recently evicted page.
1619			 *
1620			 * Those entries should never be tagged, but
1621			 * this tree walk is lockless and the tags are
1622			 * looked up in bulk, one radix tree node at a
1623			 * time, so there is a sizable window for page
1624			 * reclaim to evict a page we saw tagged.
1625			 *
1626			 * Skip over it.
1627			 */
1628			continue;
1629		}
1630
1631		head = compound_head(page);
1632		if (!page_cache_get_speculative(head))
1633			goto repeat;
1634
1635		/* The page was split under us? */
1636		if (compound_head(page) != head) {
1637			put_page(head);
1638			goto repeat;
1639		}
1640
1641		/* Has the page moved? */
1642		if (unlikely(page != *slot)) {
1643			put_page(head);
1644			goto repeat;
1645		}
1646
1647		pages[ret] = page;
1648		if (++ret == nr_pages)
1649			break;
 
 
1650	}
1651
 
 
 
 
 
 
 
 
 
 
 
1652	rcu_read_unlock();
1653
1654	if (ret)
1655		*index = pages[ret - 1]->index + 1;
1656
1657	return ret;
1658}
1659EXPORT_SYMBOL(find_get_pages_tag);
1660
1661/**
1662 * find_get_entries_tag - find and return entries that match @tag
1663 * @mapping:	the address_space to search
1664 * @start:	the starting page cache index
1665 * @tag:	the tag index
1666 * @nr_entries:	the maximum number of entries
1667 * @entries:	where the resulting entries are placed
1668 * @indices:	the cache indices corresponding to the entries in @entries
1669 *
1670 * Like find_get_entries, except we only return entries which are tagged with
1671 * @tag.
1672 */
1673unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1674			int tag, unsigned int nr_entries,
1675			struct page **entries, pgoff_t *indices)
1676{
1677	void **slot;
1678	unsigned int ret = 0;
1679	struct radix_tree_iter iter;
1680
1681	if (!nr_entries)
1682		return 0;
1683
1684	rcu_read_lock();
1685	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1686				   &iter, start, tag) {
1687		struct page *head, *page;
1688repeat:
1689		page = radix_tree_deref_slot(slot);
1690		if (unlikely(!page))
1691			continue;
1692		if (radix_tree_exception(page)) {
1693			if (radix_tree_deref_retry(page)) {
1694				slot = radix_tree_iter_retry(&iter);
1695				continue;
1696			}
1697
1698			/*
1699			 * A shadow entry of a recently evicted page, a swap
1700			 * entry from shmem/tmpfs or a DAX entry.  Return it
1701			 * without attempting to raise page count.
1702			 */
1703			goto export;
1704		}
1705
1706		head = compound_head(page);
1707		if (!page_cache_get_speculative(head))
1708			goto repeat;
1709
1710		/* The page was split under us? */
1711		if (compound_head(page) != head) {
1712			put_page(head);
1713			goto repeat;
1714		}
1715
1716		/* Has the page moved? */
1717		if (unlikely(page != *slot)) {
1718			put_page(head);
1719			goto repeat;
1720		}
1721export:
1722		indices[ret] = iter.index;
1723		entries[ret] = page;
1724		if (++ret == nr_entries)
1725			break;
1726	}
1727	rcu_read_unlock();
1728	return ret;
1729}
1730EXPORT_SYMBOL(find_get_entries_tag);
1731
1732/*
1733 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1734 * a _large_ part of the i/o request. Imagine the worst scenario:
1735 *
1736 *      ---R__________________________________________B__________
1737 *         ^ reading here                             ^ bad block(assume 4k)
1738 *
1739 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1740 * => failing the whole request => read(R) => read(R+1) =>
1741 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1742 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1743 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1744 *
1745 * It is going insane. Fix it by quickly scaling down the readahead size.
1746 */
1747static void shrink_readahead_size_eio(struct file *filp,
1748					struct file_ra_state *ra)
1749{
1750	ra->ra_pages /= 4;
1751}
1752
1753/**
1754 * do_generic_file_read - generic file read routine
1755 * @filp:	the file to read
1756 * @ppos:	current file position
1757 * @iter:	data destination
1758 * @written:	already copied
1759 *
1760 * This is a generic file read routine, and uses the
1761 * mapping->a_ops->readpage() function for the actual low-level stuff.
1762 *
1763 * This is really ugly. But the goto's actually try to clarify some
1764 * of the logic when it comes to error handling etc.
1765 */
1766static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1767		struct iov_iter *iter, ssize_t written)
1768{
 
1769	struct address_space *mapping = filp->f_mapping;
1770	struct inode *inode = mapping->host;
1771	struct file_ra_state *ra = &filp->f_ra;
 
1772	pgoff_t index;
1773	pgoff_t last_index;
1774	pgoff_t prev_index;
1775	unsigned long offset;      /* offset into pagecache page */
1776	unsigned int prev_offset;
1777	int error = 0;
1778
1779	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1780		return 0;
1781	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1782
1783	index = *ppos >> PAGE_SHIFT;
1784	prev_index = ra->prev_pos >> PAGE_SHIFT;
1785	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1786	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1787	offset = *ppos & ~PAGE_MASK;
1788
1789	for (;;) {
1790		struct page *page;
1791		pgoff_t end_index;
1792		loff_t isize;
1793		unsigned long nr, ret;
1794
1795		cond_resched();
1796find_page:
1797		if (fatal_signal_pending(current)) {
1798			error = -EINTR;
1799			goto out;
1800		}
1801
1802		page = find_get_page(mapping, index);
1803		if (!page) {
 
 
1804			page_cache_sync_readahead(mapping,
1805					ra, filp,
1806					index, last_index - index);
1807			page = find_get_page(mapping, index);
1808			if (unlikely(page == NULL))
1809				goto no_cached_page;
1810		}
1811		if (PageReadahead(page)) {
1812			page_cache_async_readahead(mapping,
1813					ra, filp, page,
1814					index, last_index - index);
1815		}
1816		if (!PageUptodate(page)) {
 
 
 
 
 
1817			/*
1818			 * See comment in do_read_cache_page on why
1819			 * wait_on_page_locked is used to avoid unnecessarily
1820			 * serialisations and why it's safe.
1821			 */
1822			error = wait_on_page_locked_killable(page);
1823			if (unlikely(error))
1824				goto readpage_error;
1825			if (PageUptodate(page))
1826				goto page_ok;
1827
1828			if (inode->i_blkbits == PAGE_SHIFT ||
1829					!mapping->a_ops->is_partially_uptodate)
1830				goto page_not_up_to_date;
1831			/* pipes can't handle partially uptodate pages */
1832			if (unlikely(iter->type & ITER_PIPE))
1833				goto page_not_up_to_date;
1834			if (!trylock_page(page))
1835				goto page_not_up_to_date;
1836			/* Did it get truncated before we got the lock? */
1837			if (!page->mapping)
1838				goto page_not_up_to_date_locked;
1839			if (!mapping->a_ops->is_partially_uptodate(page,
1840							offset, iter->count))
1841				goto page_not_up_to_date_locked;
1842			unlock_page(page);
1843		}
1844page_ok:
1845		/*
1846		 * i_size must be checked after we know the page is Uptodate.
1847		 *
1848		 * Checking i_size after the check allows us to calculate
1849		 * the correct value for "nr", which means the zero-filled
1850		 * part of the page is not copied back to userspace (unless
1851		 * another truncate extends the file - this is desired though).
1852		 */
1853
1854		isize = i_size_read(inode);
1855		end_index = (isize - 1) >> PAGE_SHIFT;
1856		if (unlikely(!isize || index > end_index)) {
1857			put_page(page);
1858			goto out;
1859		}
1860
1861		/* nr is the maximum number of bytes to copy from this page */
1862		nr = PAGE_SIZE;
1863		if (index == end_index) {
1864			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1865			if (nr <= offset) {
1866				put_page(page);
1867				goto out;
1868			}
1869		}
1870		nr = nr - offset;
1871
1872		/* If users can be writing to this page using arbitrary
1873		 * virtual addresses, take care about potential aliasing
1874		 * before reading the page on the kernel side.
1875		 */
1876		if (mapping_writably_mapped(mapping))
1877			flush_dcache_page(page);
1878
1879		/*
1880		 * When a sequential read accesses a page several times,
1881		 * only mark it as accessed the first time.
1882		 */
1883		if (prev_index != index || offset != prev_offset)
1884			mark_page_accessed(page);
1885		prev_index = index;
1886
1887		/*
1888		 * Ok, we have the page, and it's up-to-date, so
1889		 * now we can copy it to user space...
1890		 */
1891
1892		ret = copy_page_to_iter(page, offset, nr, iter);
1893		offset += ret;
1894		index += offset >> PAGE_SHIFT;
1895		offset &= ~PAGE_MASK;
1896		prev_offset = offset;
1897
1898		put_page(page);
1899		written += ret;
1900		if (!iov_iter_count(iter))
1901			goto out;
1902		if (ret < nr) {
1903			error = -EFAULT;
1904			goto out;
1905		}
1906		continue;
1907
1908page_not_up_to_date:
1909		/* Get exclusive access to the page ... */
1910		error = lock_page_killable(page);
1911		if (unlikely(error))
1912			goto readpage_error;
1913
1914page_not_up_to_date_locked:
1915		/* Did it get truncated before we got the lock? */
1916		if (!page->mapping) {
1917			unlock_page(page);
1918			put_page(page);
1919			continue;
1920		}
1921
1922		/* Did somebody else fill it already? */
1923		if (PageUptodate(page)) {
1924			unlock_page(page);
1925			goto page_ok;
1926		}
1927
1928readpage:
1929		/*
1930		 * A previous I/O error may have been due to temporary
1931		 * failures, eg. multipath errors.
1932		 * PG_error will be set again if readpage fails.
1933		 */
1934		ClearPageError(page);
1935		/* Start the actual read. The read will unlock the page. */
1936		error = mapping->a_ops->readpage(filp, page);
1937
1938		if (unlikely(error)) {
1939			if (error == AOP_TRUNCATED_PAGE) {
1940				put_page(page);
1941				error = 0;
1942				goto find_page;
1943			}
1944			goto readpage_error;
1945		}
1946
1947		if (!PageUptodate(page)) {
1948			error = lock_page_killable(page);
1949			if (unlikely(error))
1950				goto readpage_error;
1951			if (!PageUptodate(page)) {
1952				if (page->mapping == NULL) {
1953					/*
1954					 * invalidate_mapping_pages got it
1955					 */
1956					unlock_page(page);
1957					put_page(page);
1958					goto find_page;
1959				}
1960				unlock_page(page);
1961				shrink_readahead_size_eio(filp, ra);
1962				error = -EIO;
1963				goto readpage_error;
1964			}
1965			unlock_page(page);
1966		}
1967
1968		goto page_ok;
1969
1970readpage_error:
1971		/* UHHUH! A synchronous read error occurred. Report it */
1972		put_page(page);
1973		goto out;
1974
1975no_cached_page:
1976		/*
1977		 * Ok, it wasn't cached, so we need to create a new
1978		 * page..
1979		 */
1980		page = page_cache_alloc_cold(mapping);
1981		if (!page) {
1982			error = -ENOMEM;
1983			goto out;
1984		}
1985		error = add_to_page_cache_lru(page, mapping, index,
1986				mapping_gfp_constraint(mapping, GFP_KERNEL));
1987		if (error) {
1988			put_page(page);
1989			if (error == -EEXIST) {
1990				error = 0;
1991				goto find_page;
1992			}
1993			goto out;
1994		}
1995		goto readpage;
1996	}
1997
 
 
1998out:
1999	ra->prev_pos = prev_index;
2000	ra->prev_pos <<= PAGE_SHIFT;
2001	ra->prev_pos |= prev_offset;
2002
2003	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2004	file_accessed(filp);
2005	return written ? written : error;
2006}
2007
2008/**
2009 * generic_file_read_iter - generic filesystem read routine
2010 * @iocb:	kernel I/O control block
2011 * @iter:	destination for the data read
2012 *
2013 * This is the "read_iter()" routine for all filesystems
2014 * that can use the page cache directly.
2015 */
2016ssize_t
2017generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2018{
2019	struct file *file = iocb->ki_filp;
2020	ssize_t retval = 0;
2021	size_t count = iov_iter_count(iter);
2022
2023	if (!count)
2024		goto out; /* skip atime */
2025
2026	if (iocb->ki_flags & IOCB_DIRECT) {
 
2027		struct address_space *mapping = file->f_mapping;
2028		struct inode *inode = mapping->host;
2029		struct iov_iter data = *iter;
2030		loff_t size;
2031
2032		size = i_size_read(inode);
2033		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2034					iocb->ki_pos + count - 1);
2035		if (retval < 0)
2036			goto out;
 
 
 
 
 
 
 
2037
2038		file_accessed(file);
2039
2040		retval = mapping->a_ops->direct_IO(iocb, &data);
2041		if (retval >= 0) {
2042			iocb->ki_pos += retval;
2043			iov_iter_advance(iter, retval);
2044		}
 
2045
2046		/*
2047		 * Btrfs can have a short DIO read if we encounter
2048		 * compressed extents, so if there was an error, or if
2049		 * we've already read everything we wanted to, or if
2050		 * there was a short read because we hit EOF, go ahead
2051		 * and return.  Otherwise fallthrough to buffered io for
2052		 * the rest of the read.  Buffered reads will not work for
2053		 * DAX files, so don't bother trying.
2054		 */
2055		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2056		    IS_DAX(inode))
2057			goto out;
2058	}
2059
2060	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2061out:
2062	return retval;
2063}
2064EXPORT_SYMBOL(generic_file_read_iter);
2065
2066#ifdef CONFIG_MMU
2067/**
2068 * page_cache_read - adds requested page to the page cache if not already there
2069 * @file:	file to read
2070 * @offset:	page index
2071 * @gfp_mask:	memory allocation flags
2072 *
2073 * This adds the requested page to the page cache if it isn't already there,
2074 * and schedules an I/O to read in its contents from disk.
2075 */
2076static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2077{
2078	struct address_space *mapping = file->f_mapping;
2079	struct page *page;
2080	int ret;
2081
2082	do {
2083		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2084		if (!page)
2085			return -ENOMEM;
2086
2087		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2088		if (ret == 0)
2089			ret = mapping->a_ops->readpage(file, page);
2090		else if (ret == -EEXIST)
2091			ret = 0; /* losing race to add is OK */
2092
2093		put_page(page);
2094
2095	} while (ret == AOP_TRUNCATED_PAGE);
2096
2097	return ret;
2098}
2099
2100#define MMAP_LOTSAMISS  (100)
2101
2102/*
2103 * Synchronous readahead happens when we don't even find
2104 * a page in the page cache at all.
2105 */
2106static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2107				   struct file_ra_state *ra,
2108				   struct file *file,
2109				   pgoff_t offset)
2110{
2111	struct address_space *mapping = file->f_mapping;
2112
2113	/* If we don't want any read-ahead, don't bother */
2114	if (vma->vm_flags & VM_RAND_READ)
2115		return;
2116	if (!ra->ra_pages)
2117		return;
2118
2119	if (vma->vm_flags & VM_SEQ_READ) {
2120		page_cache_sync_readahead(mapping, ra, file, offset,
2121					  ra->ra_pages);
2122		return;
2123	}
2124
2125	/* Avoid banging the cache line if not needed */
2126	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2127		ra->mmap_miss++;
2128
2129	/*
2130	 * Do we miss much more than hit in this file? If so,
2131	 * stop bothering with read-ahead. It will only hurt.
2132	 */
2133	if (ra->mmap_miss > MMAP_LOTSAMISS)
2134		return;
2135
2136	/*
2137	 * mmap read-around
2138	 */
2139	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2140	ra->size = ra->ra_pages;
2141	ra->async_size = ra->ra_pages / 4;
2142	ra_submit(ra, mapping, file);
2143}
2144
2145/*
2146 * Asynchronous readahead happens when we find the page and PG_readahead,
2147 * so we want to possibly extend the readahead further..
2148 */
2149static void do_async_mmap_readahead(struct vm_area_struct *vma,
2150				    struct file_ra_state *ra,
2151				    struct file *file,
2152				    struct page *page,
2153				    pgoff_t offset)
2154{
2155	struct address_space *mapping = file->f_mapping;
2156
2157	/* If we don't want any read-ahead, don't bother */
2158	if (vma->vm_flags & VM_RAND_READ)
2159		return;
2160	if (ra->mmap_miss > 0)
2161		ra->mmap_miss--;
2162	if (PageReadahead(page))
2163		page_cache_async_readahead(mapping, ra, file,
2164					   page, offset, ra->ra_pages);
2165}
2166
2167/**
2168 * filemap_fault - read in file data for page fault handling
2169 * @vma:	vma in which the fault was taken
2170 * @vmf:	struct vm_fault containing details of the fault
2171 *
2172 * filemap_fault() is invoked via the vma operations vector for a
2173 * mapped memory region to read in file data during a page fault.
2174 *
2175 * The goto's are kind of ugly, but this streamlines the normal case of having
2176 * it in the page cache, and handles the special cases reasonably without
2177 * having a lot of duplicated code.
2178 *
2179 * vma->vm_mm->mmap_sem must be held on entry.
2180 *
2181 * If our return value has VM_FAULT_RETRY set, it's because
2182 * lock_page_or_retry() returned 0.
2183 * The mmap_sem has usually been released in this case.
2184 * See __lock_page_or_retry() for the exception.
2185 *
2186 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2187 * has not been released.
2188 *
2189 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2190 */
2191int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2192{
2193	int error;
2194	struct file *file = vma->vm_file;
2195	struct address_space *mapping = file->f_mapping;
2196	struct file_ra_state *ra = &file->f_ra;
2197	struct inode *inode = mapping->host;
2198	pgoff_t offset = vmf->pgoff;
 
2199	struct page *page;
2200	loff_t size;
2201	int ret = 0;
2202
2203	size = round_up(i_size_read(inode), PAGE_SIZE);
2204	if (offset >= size >> PAGE_SHIFT)
2205		return VM_FAULT_SIGBUS;
2206
2207	/*
2208	 * Do we have something in the page cache already?
2209	 */
2210	page = find_get_page(mapping, offset);
2211	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2212		/*
2213		 * We found the page, so try async readahead before
2214		 * waiting for the lock.
2215		 */
2216		do_async_mmap_readahead(vma, ra, file, page, offset);
2217	} else if (!page) {
2218		/* No page in the page cache at all */
2219		do_sync_mmap_readahead(vma, ra, file, offset);
2220		count_vm_event(PGMAJFAULT);
2221		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2222		ret = VM_FAULT_MAJOR;
2223retry_find:
2224		page = find_get_page(mapping, offset);
2225		if (!page)
2226			goto no_cached_page;
2227	}
2228
2229	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2230		put_page(page);
2231		return ret | VM_FAULT_RETRY;
2232	}
2233
2234	/* Did it get truncated? */
2235	if (unlikely(page->mapping != mapping)) {
2236		unlock_page(page);
2237		put_page(page);
2238		goto retry_find;
2239	}
2240	VM_BUG_ON_PAGE(page->index != offset, page);
2241
2242	/*
2243	 * We have a locked page in the page cache, now we need to check
2244	 * that it's up-to-date. If not, it is going to be due to an error.
2245	 */
2246	if (unlikely(!PageUptodate(page)))
2247		goto page_not_uptodate;
2248
2249	/*
2250	 * Found the page and have a reference on it.
2251	 * We must recheck i_size under page lock.
2252	 */
2253	size = round_up(i_size_read(inode), PAGE_SIZE);
2254	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2255		unlock_page(page);
2256		put_page(page);
2257		return VM_FAULT_SIGBUS;
2258	}
2259
2260	vmf->page = page;
2261	return ret | VM_FAULT_LOCKED;
2262
2263no_cached_page:
2264	/*
2265	 * We're only likely to ever get here if MADV_RANDOM is in
2266	 * effect.
2267	 */
2268	error = page_cache_read(file, offset, vmf->gfp_mask);
2269
2270	/*
2271	 * The page we want has now been added to the page cache.
2272	 * In the unlikely event that someone removed it in the
2273	 * meantime, we'll just come back here and read it again.
2274	 */
2275	if (error >= 0)
2276		goto retry_find;
2277
2278	/*
2279	 * An error return from page_cache_read can result if the
2280	 * system is low on memory, or a problem occurs while trying
2281	 * to schedule I/O.
2282	 */
2283	if (error == -ENOMEM)
2284		return VM_FAULT_OOM;
2285	return VM_FAULT_SIGBUS;
2286
2287page_not_uptodate:
2288	/*
2289	 * Umm, take care of errors if the page isn't up-to-date.
2290	 * Try to re-read it _once_. We do this synchronously,
2291	 * because there really aren't any performance issues here
2292	 * and we need to check for errors.
2293	 */
2294	ClearPageError(page);
2295	error = mapping->a_ops->readpage(file, page);
2296	if (!error) {
2297		wait_on_page_locked(page);
2298		if (!PageUptodate(page))
2299			error = -EIO;
2300	}
2301	put_page(page);
2302
2303	if (!error || error == AOP_TRUNCATED_PAGE)
2304		goto retry_find;
2305
2306	/* Things didn't work out. Return zero to tell the mm layer so. */
2307	shrink_readahead_size_eio(file, ra);
2308	return VM_FAULT_SIGBUS;
2309}
2310EXPORT_SYMBOL(filemap_fault);
2311
2312void filemap_map_pages(struct vm_fault *vmf,
2313		pgoff_t start_pgoff, pgoff_t end_pgoff)
2314{
2315	struct radix_tree_iter iter;
2316	void **slot;
2317	struct file *file = vmf->vma->vm_file;
2318	struct address_space *mapping = file->f_mapping;
2319	pgoff_t last_pgoff = start_pgoff;
2320	loff_t size;
2321	struct page *head, *page;
2322
2323	rcu_read_lock();
2324	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2325			start_pgoff) {
2326		if (iter.index > end_pgoff)
2327			break;
2328repeat:
2329		page = radix_tree_deref_slot(slot);
2330		if (unlikely(!page))
2331			goto next;
2332		if (radix_tree_exception(page)) {
2333			if (radix_tree_deref_retry(page)) {
2334				slot = radix_tree_iter_retry(&iter);
2335				continue;
2336			}
2337			goto next;
2338		}
2339
2340		head = compound_head(page);
2341		if (!page_cache_get_speculative(head))
2342			goto repeat;
2343
2344		/* The page was split under us? */
2345		if (compound_head(page) != head) {
2346			put_page(head);
2347			goto repeat;
2348		}
2349
2350		/* Has the page moved? */
2351		if (unlikely(page != *slot)) {
2352			put_page(head);
2353			goto repeat;
2354		}
2355
2356		if (!PageUptodate(page) ||
2357				PageReadahead(page) ||
2358				PageHWPoison(page))
2359			goto skip;
2360		if (!trylock_page(page))
2361			goto skip;
2362
2363		if (page->mapping != mapping || !PageUptodate(page))
2364			goto unlock;
2365
2366		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2367		if (page->index >= size >> PAGE_SHIFT)
2368			goto unlock;
2369
2370		if (file->f_ra.mmap_miss > 0)
2371			file->f_ra.mmap_miss--;
2372
2373		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2374		if (vmf->pte)
2375			vmf->pte += iter.index - last_pgoff;
2376		last_pgoff = iter.index;
2377		if (alloc_set_pte(vmf, NULL, page))
2378			goto unlock;
2379		unlock_page(page);
2380		goto next;
2381unlock:
2382		unlock_page(page);
2383skip:
2384		put_page(page);
2385next:
2386		/* Huge page is mapped? No need to proceed. */
2387		if (pmd_trans_huge(*vmf->pmd))
2388			break;
2389		if (iter.index == end_pgoff)
2390			break;
2391	}
2392	rcu_read_unlock();
2393}
2394EXPORT_SYMBOL(filemap_map_pages);
2395
2396int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2397{
2398	struct page *page = vmf->page;
2399	struct inode *inode = file_inode(vma->vm_file);
2400	int ret = VM_FAULT_LOCKED;
2401
2402	sb_start_pagefault(inode->i_sb);
2403	file_update_time(vma->vm_file);
2404	lock_page(page);
2405	if (page->mapping != inode->i_mapping) {
2406		unlock_page(page);
2407		ret = VM_FAULT_NOPAGE;
2408		goto out;
2409	}
2410	/*
2411	 * We mark the page dirty already here so that when freeze is in
2412	 * progress, we are guaranteed that writeback during freezing will
2413	 * see the dirty page and writeprotect it again.
2414	 */
2415	set_page_dirty(page);
2416	wait_for_stable_page(page);
2417out:
2418	sb_end_pagefault(inode->i_sb);
2419	return ret;
2420}
2421EXPORT_SYMBOL(filemap_page_mkwrite);
2422
2423const struct vm_operations_struct generic_file_vm_ops = {
2424	.fault		= filemap_fault,
2425	.map_pages	= filemap_map_pages,
2426	.page_mkwrite	= filemap_page_mkwrite,
2427};
2428
2429/* This is used for a general mmap of a disk file */
2430
2431int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2432{
2433	struct address_space *mapping = file->f_mapping;
2434
2435	if (!mapping->a_ops->readpage)
2436		return -ENOEXEC;
2437	file_accessed(file);
2438	vma->vm_ops = &generic_file_vm_ops;
2439	return 0;
2440}
2441
2442/*
2443 * This is for filesystems which do not implement ->writepage.
2444 */
2445int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2446{
2447	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2448		return -EINVAL;
2449	return generic_file_mmap(file, vma);
2450}
2451#else
 
 
 
 
2452int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2453{
2454	return -ENOSYS;
2455}
2456int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2457{
2458	return -ENOSYS;
2459}
2460#endif /* CONFIG_MMU */
2461
 
2462EXPORT_SYMBOL(generic_file_mmap);
2463EXPORT_SYMBOL(generic_file_readonly_mmap);
2464
2465static struct page *wait_on_page_read(struct page *page)
2466{
2467	if (!IS_ERR(page)) {
2468		wait_on_page_locked(page);
2469		if (!PageUptodate(page)) {
2470			put_page(page);
2471			page = ERR_PTR(-EIO);
2472		}
2473	}
2474	return page;
2475}
2476
2477static struct page *do_read_cache_page(struct address_space *mapping,
2478				pgoff_t index,
2479				int (*filler)(void *, struct page *),
2480				void *data,
2481				gfp_t gfp)
2482{
2483	struct page *page;
2484	int err;
2485repeat:
2486	page = find_get_page(mapping, index);
2487	if (!page) {
2488		page = __page_cache_alloc(gfp | __GFP_COLD);
2489		if (!page)
2490			return ERR_PTR(-ENOMEM);
2491		err = add_to_page_cache_lru(page, mapping, index, gfp);
2492		if (unlikely(err)) {
2493			put_page(page);
2494			if (err == -EEXIST)
2495				goto repeat;
2496			/* Presumably ENOMEM for radix tree node */
2497			return ERR_PTR(err);
2498		}
2499
2500filler:
2501		err = filler(data, page);
2502		if (err < 0) {
2503			put_page(page);
2504			return ERR_PTR(err);
2505		}
2506
2507		page = wait_on_page_read(page);
2508		if (IS_ERR(page))
2509			return page;
2510		goto out;
2511	}
2512	if (PageUptodate(page))
2513		goto out;
2514
2515	/*
2516	 * Page is not up to date and may be locked due one of the following
2517	 * case a: Page is being filled and the page lock is held
2518	 * case b: Read/write error clearing the page uptodate status
2519	 * case c: Truncation in progress (page locked)
2520	 * case d: Reclaim in progress
2521	 *
2522	 * Case a, the page will be up to date when the page is unlocked.
2523	 *    There is no need to serialise on the page lock here as the page
2524	 *    is pinned so the lock gives no additional protection. Even if the
2525	 *    the page is truncated, the data is still valid if PageUptodate as
2526	 *    it's a race vs truncate race.
2527	 * Case b, the page will not be up to date
2528	 * Case c, the page may be truncated but in itself, the data may still
2529	 *    be valid after IO completes as it's a read vs truncate race. The
2530	 *    operation must restart if the page is not uptodate on unlock but
2531	 *    otherwise serialising on page lock to stabilise the mapping gives
2532	 *    no additional guarantees to the caller as the page lock is
2533	 *    released before return.
2534	 * Case d, similar to truncation. If reclaim holds the page lock, it
2535	 *    will be a race with remove_mapping that determines if the mapping
2536	 *    is valid on unlock but otherwise the data is valid and there is
2537	 *    no need to serialise with page lock.
2538	 *
2539	 * As the page lock gives no additional guarantee, we optimistically
2540	 * wait on the page to be unlocked and check if it's up to date and
2541	 * use the page if it is. Otherwise, the page lock is required to
2542	 * distinguish between the different cases. The motivation is that we
2543	 * avoid spurious serialisations and wakeups when multiple processes
2544	 * wait on the same page for IO to complete.
2545	 */
2546	wait_on_page_locked(page);
2547	if (PageUptodate(page))
2548		goto out;
2549
2550	/* Distinguish between all the cases under the safety of the lock */
2551	lock_page(page);
2552
2553	/* Case c or d, restart the operation */
2554	if (!page->mapping) {
2555		unlock_page(page);
2556		put_page(page);
2557		goto repeat;
2558	}
2559
2560	/* Someone else locked and filled the page in a very small window */
2561	if (PageUptodate(page)) {
2562		unlock_page(page);
2563		goto out;
2564	}
2565	goto filler;
2566
2567out:
2568	mark_page_accessed(page);
2569	return page;
2570}
2571
2572/**
2573 * read_cache_page - read into page cache, fill it if needed
2574 * @mapping:	the page's address_space
2575 * @index:	the page index
2576 * @filler:	function to perform the read
2577 * @data:	first arg to filler(data, page) function, often left as NULL
2578 *
2579 * Read into the page cache. If a page already exists, and PageUptodate() is
2580 * not set, try to fill the page and wait for it to become unlocked.
2581 *
2582 * If the page does not get brought uptodate, return -EIO.
2583 */
2584struct page *read_cache_page(struct address_space *mapping,
2585				pgoff_t index,
2586				int (*filler)(void *, struct page *),
2587				void *data)
2588{
2589	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2590}
2591EXPORT_SYMBOL(read_cache_page);
2592
2593/**
2594 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2595 * @mapping:	the page's address_space
2596 * @index:	the page index
2597 * @gfp:	the page allocator flags to use if allocating
2598 *
2599 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2600 * any new page allocations done using the specified allocation flags.
2601 *
2602 * If the page does not get brought uptodate, return -EIO.
2603 */
2604struct page *read_cache_page_gfp(struct address_space *mapping,
2605				pgoff_t index,
2606				gfp_t gfp)
2607{
2608	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2609
2610	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2611}
2612EXPORT_SYMBOL(read_cache_page_gfp);
2613
2614/*
2615 * Performs necessary checks before doing a write
2616 *
2617 * Can adjust writing position or amount of bytes to write.
2618 * Returns appropriate error code that caller should return or
2619 * zero in case that write should be allowed.
2620 */
2621inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2622{
2623	struct file *file = iocb->ki_filp;
2624	struct inode *inode = file->f_mapping->host;
2625	unsigned long limit = rlimit(RLIMIT_FSIZE);
2626	loff_t pos;
2627
2628	if (!iov_iter_count(from))
2629		return 0;
2630
2631	/* FIXME: this is for backwards compatibility with 2.4 */
2632	if (iocb->ki_flags & IOCB_APPEND)
2633		iocb->ki_pos = i_size_read(inode);
2634
2635	pos = iocb->ki_pos;
2636
 
 
 
2637	if (limit != RLIM_INFINITY) {
2638		if (iocb->ki_pos >= limit) {
2639			send_sig(SIGXFSZ, current, 0);
2640			return -EFBIG;
2641		}
2642		iov_iter_truncate(from, limit - (unsigned long)pos);
2643	}
2644
2645	/*
2646	 * LFS rule
2647	 */
2648	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2649				!(file->f_flags & O_LARGEFILE))) {
2650		if (pos >= MAX_NON_LFS)
2651			return -EFBIG;
2652		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2653	}
2654
2655	/*
2656	 * Are we about to exceed the fs block limit ?
2657	 *
2658	 * If we have written data it becomes a short write.  If we have
2659	 * exceeded without writing data we send a signal and return EFBIG.
2660	 * Linus frestrict idea will clean these up nicely..
2661	 */
2662	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2663		return -EFBIG;
2664
2665	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2666	return iov_iter_count(from);
2667}
2668EXPORT_SYMBOL(generic_write_checks);
2669
2670int pagecache_write_begin(struct file *file, struct address_space *mapping,
2671				loff_t pos, unsigned len, unsigned flags,
2672				struct page **pagep, void **fsdata)
2673{
2674	const struct address_space_operations *aops = mapping->a_ops;
2675
2676	return aops->write_begin(file, mapping, pos, len, flags,
2677							pagep, fsdata);
2678}
2679EXPORT_SYMBOL(pagecache_write_begin);
2680
2681int pagecache_write_end(struct file *file, struct address_space *mapping,
2682				loff_t pos, unsigned len, unsigned copied,
2683				struct page *page, void *fsdata)
2684{
2685	const struct address_space_operations *aops = mapping->a_ops;
2686
2687	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2688}
2689EXPORT_SYMBOL(pagecache_write_end);
2690
2691ssize_t
2692generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2693{
2694	struct file	*file = iocb->ki_filp;
2695	struct address_space *mapping = file->f_mapping;
2696	struct inode	*inode = mapping->host;
2697	loff_t		pos = iocb->ki_pos;
2698	ssize_t		written;
2699	size_t		write_len;
2700	pgoff_t		end;
2701	struct iov_iter data;
2702
2703	write_len = iov_iter_count(from);
2704	end = (pos + write_len - 1) >> PAGE_SHIFT;
2705
2706	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2707	if (written)
2708		goto out;
 
 
 
 
 
 
 
 
2709
2710	/*
2711	 * After a write we want buffered reads to be sure to go to disk to get
2712	 * the new data.  We invalidate clean cached page from the region we're
2713	 * about to write.  We do this *before* the write so that we can return
2714	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2715	 */
2716	if (mapping->nrpages) {
2717		written = invalidate_inode_pages2_range(mapping,
2718					pos >> PAGE_SHIFT, end);
2719		/*
2720		 * If a page can not be invalidated, return 0 to fall back
2721		 * to buffered write.
2722		 */
2723		if (written) {
2724			if (written == -EBUSY)
2725				return 0;
2726			goto out;
2727		}
2728	}
2729
2730	data = *from;
2731	written = mapping->a_ops->direct_IO(iocb, &data);
2732
2733	/*
2734	 * Finally, try again to invalidate clean pages which might have been
2735	 * cached by non-direct readahead, or faulted in by get_user_pages()
2736	 * if the source of the write was an mmap'ed region of the file
2737	 * we're writing.  Either one is a pretty crazy thing to do,
2738	 * so we don't support it 100%.  If this invalidation
2739	 * fails, tough, the write still worked...
 
 
 
 
 
2740	 */
2741	if (mapping->nrpages) {
2742		invalidate_inode_pages2_range(mapping,
2743					      pos >> PAGE_SHIFT, end);
2744	}
2745
2746	if (written > 0) {
2747		pos += written;
2748		iov_iter_advance(from, written);
2749		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2750			i_size_write(inode, pos);
2751			mark_inode_dirty(inode);
2752		}
2753		iocb->ki_pos = pos;
2754	}
 
2755out:
2756	return written;
2757}
2758EXPORT_SYMBOL(generic_file_direct_write);
2759
2760/*
2761 * Find or create a page at the given pagecache position. Return the locked
2762 * page. This function is specifically for buffered writes.
2763 */
2764struct page *grab_cache_page_write_begin(struct address_space *mapping,
2765					pgoff_t index, unsigned flags)
2766{
2767	struct page *page;
2768	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2769
2770	if (flags & AOP_FLAG_NOFS)
2771		fgp_flags |= FGP_NOFS;
2772
2773	page = pagecache_get_page(mapping, index, fgp_flags,
2774			mapping_gfp_mask(mapping));
2775	if (page)
2776		wait_for_stable_page(page);
2777
2778	return page;
2779}
2780EXPORT_SYMBOL(grab_cache_page_write_begin);
2781
2782ssize_t generic_perform_write(struct file *file,
2783				struct iov_iter *i, loff_t pos)
2784{
2785	struct address_space *mapping = file->f_mapping;
2786	const struct address_space_operations *a_ops = mapping->a_ops;
2787	long status = 0;
2788	ssize_t written = 0;
2789	unsigned int flags = 0;
2790
2791	/*
2792	 * Copies from kernel address space cannot fail (NFSD is a big user).
2793	 */
2794	if (!iter_is_iovec(i))
2795		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2796
2797	do {
2798		struct page *page;
2799		unsigned long offset;	/* Offset into pagecache page */
2800		unsigned long bytes;	/* Bytes to write to page */
2801		size_t copied;		/* Bytes copied from user */
2802		void *fsdata;
2803
2804		offset = (pos & (PAGE_SIZE - 1));
2805		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2806						iov_iter_count(i));
2807
2808again:
2809		/*
2810		 * Bring in the user page that we will copy from _first_.
2811		 * Otherwise there's a nasty deadlock on copying from the
2812		 * same page as we're writing to, without it being marked
2813		 * up-to-date.
2814		 *
2815		 * Not only is this an optimisation, but it is also required
2816		 * to check that the address is actually valid, when atomic
2817		 * usercopies are used, below.
2818		 */
2819		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2820			status = -EFAULT;
2821			break;
2822		}
2823
2824		if (fatal_signal_pending(current)) {
2825			status = -EINTR;
2826			break;
2827		}
2828
2829		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2830						&page, &fsdata);
2831		if (unlikely(status < 0))
2832			break;
2833
2834		if (mapping_writably_mapped(mapping))
2835			flush_dcache_page(page);
2836
2837		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2838		flush_dcache_page(page);
2839
2840		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2841						page, fsdata);
2842		if (unlikely(status < 0))
2843			break;
2844		copied = status;
2845
2846		cond_resched();
2847
2848		iov_iter_advance(i, copied);
2849		if (unlikely(copied == 0)) {
2850			/*
2851			 * If we were unable to copy any data at all, we must
2852			 * fall back to a single segment length write.
2853			 *
2854			 * If we didn't fallback here, we could livelock
2855			 * because not all segments in the iov can be copied at
2856			 * once without a pagefault.
2857			 */
2858			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2859						iov_iter_single_seg_count(i));
2860			goto again;
2861		}
2862		pos += copied;
2863		written += copied;
2864
2865		balance_dirty_pages_ratelimited(mapping);
2866	} while (iov_iter_count(i));
2867
2868	return written ? written : status;
2869}
2870EXPORT_SYMBOL(generic_perform_write);
2871
2872/**
2873 * __generic_file_write_iter - write data to a file
2874 * @iocb:	IO state structure (file, offset, etc.)
2875 * @from:	iov_iter with data to write
2876 *
2877 * This function does all the work needed for actually writing data to a
2878 * file. It does all basic checks, removes SUID from the file, updates
2879 * modification times and calls proper subroutines depending on whether we
2880 * do direct IO or a standard buffered write.
2881 *
2882 * It expects i_mutex to be grabbed unless we work on a block device or similar
2883 * object which does not need locking at all.
2884 *
2885 * This function does *not* take care of syncing data in case of O_SYNC write.
2886 * A caller has to handle it. This is mainly due to the fact that we want to
2887 * avoid syncing under i_mutex.
2888 */
2889ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2890{
2891	struct file *file = iocb->ki_filp;
2892	struct address_space * mapping = file->f_mapping;
2893	struct inode 	*inode = mapping->host;
2894	ssize_t		written = 0;
2895	ssize_t		err;
2896	ssize_t		status;
2897
2898	/* We can write back this queue in page reclaim */
2899	current->backing_dev_info = inode_to_bdi(inode);
2900	err = file_remove_privs(file);
2901	if (err)
2902		goto out;
2903
2904	err = file_update_time(file);
2905	if (err)
2906		goto out;
2907
2908	if (iocb->ki_flags & IOCB_DIRECT) {
2909		loff_t pos, endbyte;
2910
2911		written = generic_file_direct_write(iocb, from);
2912		/*
2913		 * If the write stopped short of completing, fall back to
2914		 * buffered writes.  Some filesystems do this for writes to
2915		 * holes, for example.  For DAX files, a buffered write will
2916		 * not succeed (even if it did, DAX does not handle dirty
2917		 * page-cache pages correctly).
2918		 */
2919		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2920			goto out;
2921
2922		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2923		/*
2924		 * If generic_perform_write() returned a synchronous error
2925		 * then we want to return the number of bytes which were
2926		 * direct-written, or the error code if that was zero.  Note
2927		 * that this differs from normal direct-io semantics, which
2928		 * will return -EFOO even if some bytes were written.
2929		 */
2930		if (unlikely(status < 0)) {
2931			err = status;
2932			goto out;
2933		}
2934		/*
2935		 * We need to ensure that the page cache pages are written to
2936		 * disk and invalidated to preserve the expected O_DIRECT
2937		 * semantics.
2938		 */
2939		endbyte = pos + status - 1;
2940		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2941		if (err == 0) {
2942			iocb->ki_pos = endbyte + 1;
2943			written += status;
2944			invalidate_mapping_pages(mapping,
2945						 pos >> PAGE_SHIFT,
2946						 endbyte >> PAGE_SHIFT);
2947		} else {
2948			/*
2949			 * We don't know how much we wrote, so just return
2950			 * the number of bytes which were direct-written
2951			 */
2952		}
2953	} else {
2954		written = generic_perform_write(file, from, iocb->ki_pos);
2955		if (likely(written > 0))
2956			iocb->ki_pos += written;
2957	}
2958out:
2959	current->backing_dev_info = NULL;
2960	return written ? written : err;
2961}
2962EXPORT_SYMBOL(__generic_file_write_iter);
2963
2964/**
2965 * generic_file_write_iter - write data to a file
2966 * @iocb:	IO state structure
2967 * @from:	iov_iter with data to write
2968 *
2969 * This is a wrapper around __generic_file_write_iter() to be used by most
2970 * filesystems. It takes care of syncing the file in case of O_SYNC file
2971 * and acquires i_mutex as needed.
2972 */
2973ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2974{
2975	struct file *file = iocb->ki_filp;
2976	struct inode *inode = file->f_mapping->host;
2977	ssize_t ret;
2978
2979	inode_lock(inode);
2980	ret = generic_write_checks(iocb, from);
2981	if (ret > 0)
2982		ret = __generic_file_write_iter(iocb, from);
2983	inode_unlock(inode);
2984
2985	if (ret > 0)
2986		ret = generic_write_sync(iocb, ret);
2987	return ret;
2988}
2989EXPORT_SYMBOL(generic_file_write_iter);
2990
2991/**
2992 * try_to_release_page() - release old fs-specific metadata on a page
2993 *
2994 * @page: the page which the kernel is trying to free
2995 * @gfp_mask: memory allocation flags (and I/O mode)
2996 *
2997 * The address_space is to try to release any data against the page
2998 * (presumably at page->private).  If the release was successful, return `1'.
2999 * Otherwise return zero.
3000 *
3001 * This may also be called if PG_fscache is set on a page, indicating that the
3002 * page is known to the local caching routines.
3003 *
3004 * The @gfp_mask argument specifies whether I/O may be performed to release
3005 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3006 *
3007 */
3008int try_to_release_page(struct page *page, gfp_t gfp_mask)
3009{
3010	struct address_space * const mapping = page->mapping;
3011
3012	BUG_ON(!PageLocked(page));
3013	if (PageWriteback(page))
3014		return 0;
3015
3016	if (mapping && mapping->a_ops->releasepage)
3017		return mapping->a_ops->releasepage(page, gfp_mask);
3018	return try_to_free_buffers(page);
3019}
3020
3021EXPORT_SYMBOL(try_to_release_page);