Loading...
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/sched/mm.h>
39#include <linux/shmem_fs.h>
40#include <linux/hugetlb.h>
41#include <linux/pagemap.h>
42#include <linux/smp.h>
43#include <linux/page-flags.h>
44#include <linux/backing-dev.h>
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/limits.h>
48#include <linux/export.h>
49#include <linux/mutex.h>
50#include <linux/rbtree.h>
51#include <linux/slab.h>
52#include <linux/swap.h>
53#include <linux/swapops.h>
54#include <linux/spinlock.h>
55#include <linux/eventfd.h>
56#include <linux/poll.h>
57#include <linux/sort.h>
58#include <linux/fs.h>
59#include <linux/seq_file.h>
60#include <linux/vmpressure.h>
61#include <linux/mm_inline.h>
62#include <linux/swap_cgroup.h>
63#include <linux/cpu.h>
64#include <linux/oom.h>
65#include <linux/lockdep.h>
66#include <linux/file.h>
67#include <linux/tracehook.h>
68#include "internal.h"
69#include <net/sock.h>
70#include <net/ip.h>
71#include "slab.h"
72
73#include <linux/uaccess.h>
74
75#include <trace/events/vmscan.h>
76
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
79
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82#define MEM_CGROUP_RECLAIM_RETRIES 5
83
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
90/* Whether the swap controller is active */
91#ifdef CONFIG_MEMCG_SWAP
92int do_swap_account __read_mostly;
93#else
94#define do_swap_account 0
95#endif
96
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
103static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
114
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
124};
125
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
137
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
141struct mem_cgroup_event {
142 /*
143 * memcg which the event belongs to.
144 */
145 struct mem_cgroup *memcg;
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
176};
177
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180
181/* Stuffs for move charges at task migration. */
182/*
183 * Types of charges to be moved.
184 */
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
205
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
212
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
219};
220
221/* for encoding cft->private value on file */
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
228};
229
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232#define MEMFILE_ATTR(val) ((val) & 0xffff)
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
235
236/* Some nice accessors for the vmpressure. */
237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238{
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242}
243
244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245{
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247}
248
249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250{
251 return (memcg == root_mem_cgroup);
252}
253
254#ifndef CONFIG_SLOB
255/*
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
262 *
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
265 */
266static DEFINE_IDA(memcg_cache_ida);
267int memcg_nr_cache_ids;
268
269/* Protects memcg_nr_cache_ids */
270static DECLARE_RWSEM(memcg_cache_ids_sem);
271
272void memcg_get_cache_ids(void)
273{
274 down_read(&memcg_cache_ids_sem);
275}
276
277void memcg_put_cache_ids(void)
278{
279 up_read(&memcg_cache_ids_sem);
280}
281
282/*
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
287 *
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
293 */
294#define MEMCG_CACHES_MIN_SIZE 4
295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296
297/*
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
302 */
303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304EXPORT_SYMBOL(memcg_kmem_enabled_key);
305
306struct workqueue_struct *memcg_kmem_cache_wq;
307
308#endif /* !CONFIG_SLOB */
309
310/**
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
313 *
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
317 *
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
320 */
321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322{
323 struct mem_cgroup *memcg;
324
325 memcg = page->mem_cgroup;
326
327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 memcg = root_mem_cgroup;
329
330 return &memcg->css;
331}
332
333/**
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
336 *
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
340 *
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
345 */
346ino_t page_cgroup_ino(struct page *page)
347{
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
350
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
359}
360
361static struct mem_cgroup_per_node *
362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363{
364 int nid = page_to_nid(page);
365
366 return memcg->nodeinfo[nid];
367}
368
369static struct mem_cgroup_tree_per_node *
370soft_limit_tree_node(int nid)
371{
372 return soft_limit_tree.rb_tree_per_node[nid];
373}
374
375static struct mem_cgroup_tree_per_node *
376soft_limit_tree_from_page(struct page *page)
377{
378 int nid = page_to_nid(page);
379
380 return soft_limit_tree.rb_tree_per_node[nid];
381}
382
383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
385 unsigned long new_usage_in_excess)
386{
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
389 struct mem_cgroup_per_node *mz_node;
390 bool rightmost = true;
391
392 if (mz->on_tree)
393 return;
394
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401 tree_node);
402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
403 p = &(*p)->rb_left;
404 rightmost = false;
405 }
406
407 /*
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
410 */
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
413 }
414
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
417
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
421}
422
423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
425{
426 if (!mz->on_tree)
427 return;
428
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
431
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438{
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444}
445
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 if (!mctz)
466 return;
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 mz = mem_cgroup_page_nodeinfo(memcg, page);
473 excess = soft_limit_excess(memcg);
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
482 /* if on-tree, remove it */
483 if (mz->on_tree)
484 __mem_cgroup_remove_exceeded(mz, mctz);
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
490 spin_unlock_irqrestore(&mctz->lock, flags);
491 }
492 }
493}
494
495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496{
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
500
501 for_each_node(nid) {
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
506 }
507}
508
509static struct mem_cgroup_per_node *
510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511{
512 struct mem_cgroup_per_node *mz;
513
514retry:
515 mz = NULL;
516 if (!mctz->rb_rightmost)
517 goto done; /* Nothing to reclaim from */
518
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
521 /*
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
525 */
526 __mem_cgroup_remove_exceeded(mz, mctz);
527 if (!soft_limit_excess(mz->memcg) ||
528 !css_tryget_online(&mz->memcg->css))
529 goto retry;
530done:
531 return mz;
532}
533
534static struct mem_cgroup_per_node *
535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536{
537 struct mem_cgroup_per_node *mz;
538
539 spin_lock_irq(&mctz->lock);
540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 spin_unlock_irq(&mctz->lock);
542 return mz;
543}
544
545static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
546 int event)
547{
548 return atomic_long_read(&memcg->events[event]);
549}
550
551static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
552 struct page *page,
553 bool compound, int nr_pages)
554{
555 /*
556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
557 * counted as CACHE even if it's on ANON LRU.
558 */
559 if (PageAnon(page))
560 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
561 else {
562 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
563 if (PageSwapBacked(page))
564 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
565 }
566
567 if (compound) {
568 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
569 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
570 }
571
572 /* pagein of a big page is an event. So, ignore page size */
573 if (nr_pages > 0)
574 __count_memcg_events(memcg, PGPGIN, 1);
575 else {
576 __count_memcg_events(memcg, PGPGOUT, 1);
577 nr_pages = -nr_pages; /* for event */
578 }
579
580 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
581}
582
583unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
584 int nid, unsigned int lru_mask)
585{
586 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
587 unsigned long nr = 0;
588 enum lru_list lru;
589
590 VM_BUG_ON((unsigned)nid >= nr_node_ids);
591
592 for_each_lru(lru) {
593 if (!(BIT(lru) & lru_mask))
594 continue;
595 nr += mem_cgroup_get_lru_size(lruvec, lru);
596 }
597 return nr;
598}
599
600static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
601 unsigned int lru_mask)
602{
603 unsigned long nr = 0;
604 int nid;
605
606 for_each_node_state(nid, N_MEMORY)
607 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
608 return nr;
609}
610
611static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
612 enum mem_cgroup_events_target target)
613{
614 unsigned long val, next;
615
616 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
617 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
618 /* from time_after() in jiffies.h */
619 if ((long)(next - val) < 0) {
620 switch (target) {
621 case MEM_CGROUP_TARGET_THRESH:
622 next = val + THRESHOLDS_EVENTS_TARGET;
623 break;
624 case MEM_CGROUP_TARGET_SOFTLIMIT:
625 next = val + SOFTLIMIT_EVENTS_TARGET;
626 break;
627 case MEM_CGROUP_TARGET_NUMAINFO:
628 next = val + NUMAINFO_EVENTS_TARGET;
629 break;
630 default:
631 break;
632 }
633 __this_cpu_write(memcg->stat_cpu->targets[target], next);
634 return true;
635 }
636 return false;
637}
638
639/*
640 * Check events in order.
641 *
642 */
643static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
644{
645 /* threshold event is triggered in finer grain than soft limit */
646 if (unlikely(mem_cgroup_event_ratelimit(memcg,
647 MEM_CGROUP_TARGET_THRESH))) {
648 bool do_softlimit;
649 bool do_numainfo __maybe_unused;
650
651 do_softlimit = mem_cgroup_event_ratelimit(memcg,
652 MEM_CGROUP_TARGET_SOFTLIMIT);
653#if MAX_NUMNODES > 1
654 do_numainfo = mem_cgroup_event_ratelimit(memcg,
655 MEM_CGROUP_TARGET_NUMAINFO);
656#endif
657 mem_cgroup_threshold(memcg);
658 if (unlikely(do_softlimit))
659 mem_cgroup_update_tree(memcg, page);
660#if MAX_NUMNODES > 1
661 if (unlikely(do_numainfo))
662 atomic_inc(&memcg->numainfo_events);
663#endif
664 }
665}
666
667struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
668{
669 /*
670 * mm_update_next_owner() may clear mm->owner to NULL
671 * if it races with swapoff, page migration, etc.
672 * So this can be called with p == NULL.
673 */
674 if (unlikely(!p))
675 return NULL;
676
677 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
678}
679EXPORT_SYMBOL(mem_cgroup_from_task);
680
681static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
682{
683 struct mem_cgroup *memcg = NULL;
684
685 rcu_read_lock();
686 do {
687 /*
688 * Page cache insertions can happen withou an
689 * actual mm context, e.g. during disk probing
690 * on boot, loopback IO, acct() writes etc.
691 */
692 if (unlikely(!mm))
693 memcg = root_mem_cgroup;
694 else {
695 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!memcg))
697 memcg = root_mem_cgroup;
698 }
699 } while (!css_tryget_online(&memcg->css));
700 rcu_read_unlock();
701 return memcg;
702}
703
704/**
705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
706 * @root: hierarchy root
707 * @prev: previously returned memcg, NULL on first invocation
708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
709 *
710 * Returns references to children of the hierarchy below @root, or
711 * @root itself, or %NULL after a full round-trip.
712 *
713 * Caller must pass the return value in @prev on subsequent
714 * invocations for reference counting, or use mem_cgroup_iter_break()
715 * to cancel a hierarchy walk before the round-trip is complete.
716 *
717 * Reclaimers can specify a node and a priority level in @reclaim to
718 * divide up the memcgs in the hierarchy among all concurrent
719 * reclaimers operating on the same node and priority.
720 */
721struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
722 struct mem_cgroup *prev,
723 struct mem_cgroup_reclaim_cookie *reclaim)
724{
725 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
726 struct cgroup_subsys_state *css = NULL;
727 struct mem_cgroup *memcg = NULL;
728 struct mem_cgroup *pos = NULL;
729
730 if (mem_cgroup_disabled())
731 return NULL;
732
733 if (!root)
734 root = root_mem_cgroup;
735
736 if (prev && !reclaim)
737 pos = prev;
738
739 if (!root->use_hierarchy && root != root_mem_cgroup) {
740 if (prev)
741 goto out;
742 return root;
743 }
744
745 rcu_read_lock();
746
747 if (reclaim) {
748 struct mem_cgroup_per_node *mz;
749
750 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
751 iter = &mz->iter[reclaim->priority];
752
753 if (prev && reclaim->generation != iter->generation)
754 goto out_unlock;
755
756 while (1) {
757 pos = READ_ONCE(iter->position);
758 if (!pos || css_tryget(&pos->css))
759 break;
760 /*
761 * css reference reached zero, so iter->position will
762 * be cleared by ->css_released. However, we should not
763 * rely on this happening soon, because ->css_released
764 * is called from a work queue, and by busy-waiting we
765 * might block it. So we clear iter->position right
766 * away.
767 */
768 (void)cmpxchg(&iter->position, pos, NULL);
769 }
770 }
771
772 if (pos)
773 css = &pos->css;
774
775 for (;;) {
776 css = css_next_descendant_pre(css, &root->css);
777 if (!css) {
778 /*
779 * Reclaimers share the hierarchy walk, and a
780 * new one might jump in right at the end of
781 * the hierarchy - make sure they see at least
782 * one group and restart from the beginning.
783 */
784 if (!prev)
785 continue;
786 break;
787 }
788
789 /*
790 * Verify the css and acquire a reference. The root
791 * is provided by the caller, so we know it's alive
792 * and kicking, and don't take an extra reference.
793 */
794 memcg = mem_cgroup_from_css(css);
795
796 if (css == &root->css)
797 break;
798
799 if (css_tryget(css))
800 break;
801
802 memcg = NULL;
803 }
804
805 if (reclaim) {
806 /*
807 * The position could have already been updated by a competing
808 * thread, so check that the value hasn't changed since we read
809 * it to avoid reclaiming from the same cgroup twice.
810 */
811 (void)cmpxchg(&iter->position, pos, memcg);
812
813 if (pos)
814 css_put(&pos->css);
815
816 if (!memcg)
817 iter->generation++;
818 else if (!prev)
819 reclaim->generation = iter->generation;
820 }
821
822out_unlock:
823 rcu_read_unlock();
824out:
825 if (prev && prev != root)
826 css_put(&prev->css);
827
828 return memcg;
829}
830
831/**
832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
833 * @root: hierarchy root
834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
835 */
836void mem_cgroup_iter_break(struct mem_cgroup *root,
837 struct mem_cgroup *prev)
838{
839 if (!root)
840 root = root_mem_cgroup;
841 if (prev && prev != root)
842 css_put(&prev->css);
843}
844
845static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
846{
847 struct mem_cgroup *memcg = dead_memcg;
848 struct mem_cgroup_reclaim_iter *iter;
849 struct mem_cgroup_per_node *mz;
850 int nid;
851 int i;
852
853 while ((memcg = parent_mem_cgroup(memcg))) {
854 for_each_node(nid) {
855 mz = mem_cgroup_nodeinfo(memcg, nid);
856 for (i = 0; i <= DEF_PRIORITY; i++) {
857 iter = &mz->iter[i];
858 cmpxchg(&iter->position,
859 dead_memcg, NULL);
860 }
861 }
862 }
863}
864
865/*
866 * Iteration constructs for visiting all cgroups (under a tree). If
867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
868 * be used for reference counting.
869 */
870#define for_each_mem_cgroup_tree(iter, root) \
871 for (iter = mem_cgroup_iter(root, NULL, NULL); \
872 iter != NULL; \
873 iter = mem_cgroup_iter(root, iter, NULL))
874
875#define for_each_mem_cgroup(iter) \
876 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
877 iter != NULL; \
878 iter = mem_cgroup_iter(NULL, iter, NULL))
879
880/**
881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
882 * @memcg: hierarchy root
883 * @fn: function to call for each task
884 * @arg: argument passed to @fn
885 *
886 * This function iterates over tasks attached to @memcg or to any of its
887 * descendants and calls @fn for each task. If @fn returns a non-zero
888 * value, the function breaks the iteration loop and returns the value.
889 * Otherwise, it will iterate over all tasks and return 0.
890 *
891 * This function must not be called for the root memory cgroup.
892 */
893int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
894 int (*fn)(struct task_struct *, void *), void *arg)
895{
896 struct mem_cgroup *iter;
897 int ret = 0;
898
899 BUG_ON(memcg == root_mem_cgroup);
900
901 for_each_mem_cgroup_tree(iter, memcg) {
902 struct css_task_iter it;
903 struct task_struct *task;
904
905 css_task_iter_start(&iter->css, 0, &it);
906 while (!ret && (task = css_task_iter_next(&it)))
907 ret = fn(task, arg);
908 css_task_iter_end(&it);
909 if (ret) {
910 mem_cgroup_iter_break(memcg, iter);
911 break;
912 }
913 }
914 return ret;
915}
916
917/**
918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
919 * @page: the page
920 * @pgdat: pgdat of the page
921 *
922 * This function is only safe when following the LRU page isolation
923 * and putback protocol: the LRU lock must be held, and the page must
924 * either be PageLRU() or the caller must have isolated/allocated it.
925 */
926struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
927{
928 struct mem_cgroup_per_node *mz;
929 struct mem_cgroup *memcg;
930 struct lruvec *lruvec;
931
932 if (mem_cgroup_disabled()) {
933 lruvec = &pgdat->lruvec;
934 goto out;
935 }
936
937 memcg = page->mem_cgroup;
938 /*
939 * Swapcache readahead pages are added to the LRU - and
940 * possibly migrated - before they are charged.
941 */
942 if (!memcg)
943 memcg = root_mem_cgroup;
944
945 mz = mem_cgroup_page_nodeinfo(memcg, page);
946 lruvec = &mz->lruvec;
947out:
948 /*
949 * Since a node can be onlined after the mem_cgroup was created,
950 * we have to be prepared to initialize lruvec->zone here;
951 * and if offlined then reonlined, we need to reinitialize it.
952 */
953 if (unlikely(lruvec->pgdat != pgdat))
954 lruvec->pgdat = pgdat;
955 return lruvec;
956}
957
958/**
959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
960 * @lruvec: mem_cgroup per zone lru vector
961 * @lru: index of lru list the page is sitting on
962 * @zid: zone id of the accounted pages
963 * @nr_pages: positive when adding or negative when removing
964 *
965 * This function must be called under lru_lock, just before a page is added
966 * to or just after a page is removed from an lru list (that ordering being
967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
968 */
969void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
970 int zid, int nr_pages)
971{
972 struct mem_cgroup_per_node *mz;
973 unsigned long *lru_size;
974 long size;
975
976 if (mem_cgroup_disabled())
977 return;
978
979 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
980 lru_size = &mz->lru_zone_size[zid][lru];
981
982 if (nr_pages < 0)
983 *lru_size += nr_pages;
984
985 size = *lru_size;
986 if (WARN_ONCE(size < 0,
987 "%s(%p, %d, %d): lru_size %ld\n",
988 __func__, lruvec, lru, nr_pages, size)) {
989 VM_BUG_ON(1);
990 *lru_size = 0;
991 }
992
993 if (nr_pages > 0)
994 *lru_size += nr_pages;
995}
996
997bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
998{
999 struct mem_cgroup *task_memcg;
1000 struct task_struct *p;
1001 bool ret;
1002
1003 p = find_lock_task_mm(task);
1004 if (p) {
1005 task_memcg = get_mem_cgroup_from_mm(p->mm);
1006 task_unlock(p);
1007 } else {
1008 /*
1009 * All threads may have already detached their mm's, but the oom
1010 * killer still needs to detect if they have already been oom
1011 * killed to prevent needlessly killing additional tasks.
1012 */
1013 rcu_read_lock();
1014 task_memcg = mem_cgroup_from_task(task);
1015 css_get(&task_memcg->css);
1016 rcu_read_unlock();
1017 }
1018 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019 css_put(&task_memcg->css);
1020 return ret;
1021}
1022
1023/**
1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025 * @memcg: the memory cgroup
1026 *
1027 * Returns the maximum amount of memory @mem can be charged with, in
1028 * pages.
1029 */
1030static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1031{
1032 unsigned long margin = 0;
1033 unsigned long count;
1034 unsigned long limit;
1035
1036 count = page_counter_read(&memcg->memory);
1037 limit = READ_ONCE(memcg->memory.limit);
1038 if (count < limit)
1039 margin = limit - count;
1040
1041 if (do_memsw_account()) {
1042 count = page_counter_read(&memcg->memsw);
1043 limit = READ_ONCE(memcg->memsw.limit);
1044 if (count <= limit)
1045 margin = min(margin, limit - count);
1046 else
1047 margin = 0;
1048 }
1049
1050 return margin;
1051}
1052
1053/*
1054 * A routine for checking "mem" is under move_account() or not.
1055 *
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1058 * caused by "move".
1059 */
1060static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1061{
1062 struct mem_cgroup *from;
1063 struct mem_cgroup *to;
1064 bool ret = false;
1065 /*
1066 * Unlike task_move routines, we access mc.to, mc.from not under
1067 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1068 */
1069 spin_lock(&mc.lock);
1070 from = mc.from;
1071 to = mc.to;
1072 if (!from)
1073 goto unlock;
1074
1075 ret = mem_cgroup_is_descendant(from, memcg) ||
1076 mem_cgroup_is_descendant(to, memcg);
1077unlock:
1078 spin_unlock(&mc.lock);
1079 return ret;
1080}
1081
1082static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1083{
1084 if (mc.moving_task && current != mc.moving_task) {
1085 if (mem_cgroup_under_move(memcg)) {
1086 DEFINE_WAIT(wait);
1087 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088 /* moving charge context might have finished. */
1089 if (mc.moving_task)
1090 schedule();
1091 finish_wait(&mc.waitq, &wait);
1092 return true;
1093 }
1094 }
1095 return false;
1096}
1097
1098static const unsigned int memcg1_stats[] = {
1099 MEMCG_CACHE,
1100 MEMCG_RSS,
1101 MEMCG_RSS_HUGE,
1102 NR_SHMEM,
1103 NR_FILE_MAPPED,
1104 NR_FILE_DIRTY,
1105 NR_WRITEBACK,
1106 MEMCG_SWAP,
1107};
1108
1109static const char *const memcg1_stat_names[] = {
1110 "cache",
1111 "rss",
1112 "rss_huge",
1113 "shmem",
1114 "mapped_file",
1115 "dirty",
1116 "writeback",
1117 "swap",
1118};
1119
1120#define K(x) ((x) << (PAGE_SHIFT-10))
1121/**
1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1125 *
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1127 * enabled
1128 */
1129void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1130{
1131 struct mem_cgroup *iter;
1132 unsigned int i;
1133
1134 rcu_read_lock();
1135
1136 if (p) {
1137 pr_info("Task in ");
1138 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139 pr_cont(" killed as a result of limit of ");
1140 } else {
1141 pr_info("Memory limit reached of cgroup ");
1142 }
1143
1144 pr_cont_cgroup_path(memcg->css.cgroup);
1145 pr_cont("\n");
1146
1147 rcu_read_unlock();
1148
1149 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150 K((u64)page_counter_read(&memcg->memory)),
1151 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1152 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153 K((u64)page_counter_read(&memcg->memsw)),
1154 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1155 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156 K((u64)page_counter_read(&memcg->kmem)),
1157 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1158
1159 for_each_mem_cgroup_tree(iter, memcg) {
1160 pr_info("Memory cgroup stats for ");
1161 pr_cont_cgroup_path(iter->css.cgroup);
1162 pr_cont(":");
1163
1164 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166 continue;
1167 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168 K(memcg_page_state(iter, memcg1_stats[i])));
1169 }
1170
1171 for (i = 0; i < NR_LRU_LISTS; i++)
1172 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1174
1175 pr_cont("\n");
1176 }
1177}
1178
1179/*
1180 * Return the memory (and swap, if configured) limit for a memcg.
1181 */
1182unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1183{
1184 unsigned long limit;
1185
1186 limit = memcg->memory.limit;
1187 if (mem_cgroup_swappiness(memcg)) {
1188 unsigned long memsw_limit;
1189 unsigned long swap_limit;
1190
1191 memsw_limit = memcg->memsw.limit;
1192 swap_limit = memcg->swap.limit;
1193 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1194 limit = min(limit + swap_limit, memsw_limit);
1195 }
1196 return limit;
1197}
1198
1199static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200 int order)
1201{
1202 struct oom_control oc = {
1203 .zonelist = NULL,
1204 .nodemask = NULL,
1205 .memcg = memcg,
1206 .gfp_mask = gfp_mask,
1207 .order = order,
1208 };
1209 bool ret;
1210
1211 mutex_lock(&oom_lock);
1212 ret = out_of_memory(&oc);
1213 mutex_unlock(&oom_lock);
1214 return ret;
1215}
1216
1217#if MAX_NUMNODES > 1
1218
1219/**
1220 * test_mem_cgroup_node_reclaimable
1221 * @memcg: the target memcg
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1224 *
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1228 */
1229static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230 int nid, bool noswap)
1231{
1232 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233 return true;
1234 if (noswap || !total_swap_pages)
1235 return false;
1236 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237 return true;
1238 return false;
1239
1240}
1241
1242/*
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1246 *
1247 */
1248static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1249{
1250 int nid;
1251 /*
1252 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253 * pagein/pageout changes since the last update.
1254 */
1255 if (!atomic_read(&memcg->numainfo_events))
1256 return;
1257 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258 return;
1259
1260 /* make a nodemask where this memcg uses memory from */
1261 memcg->scan_nodes = node_states[N_MEMORY];
1262
1263 for_each_node_mask(nid, node_states[N_MEMORY]) {
1264
1265 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266 node_clear(nid, memcg->scan_nodes);
1267 }
1268
1269 atomic_set(&memcg->numainfo_events, 0);
1270 atomic_set(&memcg->numainfo_updating, 0);
1271}
1272
1273/*
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1277 *
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1282 *
1283 * Now, we use round-robin. Better algorithm is welcomed.
1284 */
1285int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1286{
1287 int node;
1288
1289 mem_cgroup_may_update_nodemask(memcg);
1290 node = memcg->last_scanned_node;
1291
1292 node = next_node_in(node, memcg->scan_nodes);
1293 /*
1294 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295 * last time it really checked all the LRUs due to rate limiting.
1296 * Fallback to the current node in that case for simplicity.
1297 */
1298 if (unlikely(node == MAX_NUMNODES))
1299 node = numa_node_id();
1300
1301 memcg->last_scanned_node = node;
1302 return node;
1303}
1304#else
1305int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1306{
1307 return 0;
1308}
1309#endif
1310
1311static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312 pg_data_t *pgdat,
1313 gfp_t gfp_mask,
1314 unsigned long *total_scanned)
1315{
1316 struct mem_cgroup *victim = NULL;
1317 int total = 0;
1318 int loop = 0;
1319 unsigned long excess;
1320 unsigned long nr_scanned;
1321 struct mem_cgroup_reclaim_cookie reclaim = {
1322 .pgdat = pgdat,
1323 .priority = 0,
1324 };
1325
1326 excess = soft_limit_excess(root_memcg);
1327
1328 while (1) {
1329 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1330 if (!victim) {
1331 loop++;
1332 if (loop >= 2) {
1333 /*
1334 * If we have not been able to reclaim
1335 * anything, it might because there are
1336 * no reclaimable pages under this hierarchy
1337 */
1338 if (!total)
1339 break;
1340 /*
1341 * We want to do more targeted reclaim.
1342 * excess >> 2 is not to excessive so as to
1343 * reclaim too much, nor too less that we keep
1344 * coming back to reclaim from this cgroup
1345 */
1346 if (total >= (excess >> 2) ||
1347 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1348 break;
1349 }
1350 continue;
1351 }
1352 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353 pgdat, &nr_scanned);
1354 *total_scanned += nr_scanned;
1355 if (!soft_limit_excess(root_memcg))
1356 break;
1357 }
1358 mem_cgroup_iter_break(root_memcg, victim);
1359 return total;
1360}
1361
1362#ifdef CONFIG_LOCKDEP
1363static struct lockdep_map memcg_oom_lock_dep_map = {
1364 .name = "memcg_oom_lock",
1365};
1366#endif
1367
1368static DEFINE_SPINLOCK(memcg_oom_lock);
1369
1370/*
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1373 */
1374static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1375{
1376 struct mem_cgroup *iter, *failed = NULL;
1377
1378 spin_lock(&memcg_oom_lock);
1379
1380 for_each_mem_cgroup_tree(iter, memcg) {
1381 if (iter->oom_lock) {
1382 /*
1383 * this subtree of our hierarchy is already locked
1384 * so we cannot give a lock.
1385 */
1386 failed = iter;
1387 mem_cgroup_iter_break(memcg, iter);
1388 break;
1389 } else
1390 iter->oom_lock = true;
1391 }
1392
1393 if (failed) {
1394 /*
1395 * OK, we failed to lock the whole subtree so we have
1396 * to clean up what we set up to the failing subtree
1397 */
1398 for_each_mem_cgroup_tree(iter, memcg) {
1399 if (iter == failed) {
1400 mem_cgroup_iter_break(memcg, iter);
1401 break;
1402 }
1403 iter->oom_lock = false;
1404 }
1405 } else
1406 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1407
1408 spin_unlock(&memcg_oom_lock);
1409
1410 return !failed;
1411}
1412
1413static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1414{
1415 struct mem_cgroup *iter;
1416
1417 spin_lock(&memcg_oom_lock);
1418 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419 for_each_mem_cgroup_tree(iter, memcg)
1420 iter->oom_lock = false;
1421 spin_unlock(&memcg_oom_lock);
1422}
1423
1424static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1425{
1426 struct mem_cgroup *iter;
1427
1428 spin_lock(&memcg_oom_lock);
1429 for_each_mem_cgroup_tree(iter, memcg)
1430 iter->under_oom++;
1431 spin_unlock(&memcg_oom_lock);
1432}
1433
1434static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1435{
1436 struct mem_cgroup *iter;
1437
1438 /*
1439 * When a new child is created while the hierarchy is under oom,
1440 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1441 */
1442 spin_lock(&memcg_oom_lock);
1443 for_each_mem_cgroup_tree(iter, memcg)
1444 if (iter->under_oom > 0)
1445 iter->under_oom--;
1446 spin_unlock(&memcg_oom_lock);
1447}
1448
1449static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1450
1451struct oom_wait_info {
1452 struct mem_cgroup *memcg;
1453 wait_queue_entry_t wait;
1454};
1455
1456static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1457 unsigned mode, int sync, void *arg)
1458{
1459 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460 struct mem_cgroup *oom_wait_memcg;
1461 struct oom_wait_info *oom_wait_info;
1462
1463 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464 oom_wait_memcg = oom_wait_info->memcg;
1465
1466 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1468 return 0;
1469 return autoremove_wake_function(wait, mode, sync, arg);
1470}
1471
1472static void memcg_oom_recover(struct mem_cgroup *memcg)
1473{
1474 /*
1475 * For the following lockless ->under_oom test, the only required
1476 * guarantee is that it must see the state asserted by an OOM when
1477 * this function is called as a result of userland actions
1478 * triggered by the notification of the OOM. This is trivially
1479 * achieved by invoking mem_cgroup_mark_under_oom() before
1480 * triggering notification.
1481 */
1482 if (memcg && memcg->under_oom)
1483 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1484}
1485
1486static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1487{
1488 if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489 return;
1490 /*
1491 * We are in the middle of the charge context here, so we
1492 * don't want to block when potentially sitting on a callstack
1493 * that holds all kinds of filesystem and mm locks.
1494 *
1495 * Also, the caller may handle a failed allocation gracefully
1496 * (like optional page cache readahead) and so an OOM killer
1497 * invocation might not even be necessary.
1498 *
1499 * That's why we don't do anything here except remember the
1500 * OOM context and then deal with it at the end of the page
1501 * fault when the stack is unwound, the locks are released,
1502 * and when we know whether the fault was overall successful.
1503 */
1504 css_get(&memcg->css);
1505 current->memcg_in_oom = memcg;
1506 current->memcg_oom_gfp_mask = mask;
1507 current->memcg_oom_order = order;
1508}
1509
1510/**
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512 * @handle: actually kill/wait or just clean up the OOM state
1513 *
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
1516 *
1517 * Memcg supports userspace OOM handling where failed allocations must
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation. Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522 * the end of the page fault to complete the OOM handling.
1523 *
1524 * Returns %true if an ongoing memcg OOM situation was detected and
1525 * completed, %false otherwise.
1526 */
1527bool mem_cgroup_oom_synchronize(bool handle)
1528{
1529 struct mem_cgroup *memcg = current->memcg_in_oom;
1530 struct oom_wait_info owait;
1531 bool locked;
1532
1533 /* OOM is global, do not handle */
1534 if (!memcg)
1535 return false;
1536
1537 if (!handle)
1538 goto cleanup;
1539
1540 owait.memcg = memcg;
1541 owait.wait.flags = 0;
1542 owait.wait.func = memcg_oom_wake_function;
1543 owait.wait.private = current;
1544 INIT_LIST_HEAD(&owait.wait.entry);
1545
1546 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547 mem_cgroup_mark_under_oom(memcg);
1548
1549 locked = mem_cgroup_oom_trylock(memcg);
1550
1551 if (locked)
1552 mem_cgroup_oom_notify(memcg);
1553
1554 if (locked && !memcg->oom_kill_disable) {
1555 mem_cgroup_unmark_under_oom(memcg);
1556 finish_wait(&memcg_oom_waitq, &owait.wait);
1557 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558 current->memcg_oom_order);
1559 } else {
1560 schedule();
1561 mem_cgroup_unmark_under_oom(memcg);
1562 finish_wait(&memcg_oom_waitq, &owait.wait);
1563 }
1564
1565 if (locked) {
1566 mem_cgroup_oom_unlock(memcg);
1567 /*
1568 * There is no guarantee that an OOM-lock contender
1569 * sees the wakeups triggered by the OOM kill
1570 * uncharges. Wake any sleepers explicitely.
1571 */
1572 memcg_oom_recover(memcg);
1573 }
1574cleanup:
1575 current->memcg_in_oom = NULL;
1576 css_put(&memcg->css);
1577 return true;
1578}
1579
1580/**
1581 * lock_page_memcg - lock a page->mem_cgroup binding
1582 * @page: the page
1583 *
1584 * This function protects unlocked LRU pages from being moved to
1585 * another cgroup.
1586 *
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
1590 */
1591struct mem_cgroup *lock_page_memcg(struct page *page)
1592{
1593 struct mem_cgroup *memcg;
1594 unsigned long flags;
1595
1596 /*
1597 * The RCU lock is held throughout the transaction. The fast
1598 * path can get away without acquiring the memcg->move_lock
1599 * because page moving starts with an RCU grace period.
1600 *
1601 * The RCU lock also protects the memcg from being freed when
1602 * the page state that is going to change is the only thing
1603 * preventing the page itself from being freed. E.g. writeback
1604 * doesn't hold a page reference and relies on PG_writeback to
1605 * keep off truncation, migration and so forth.
1606 */
1607 rcu_read_lock();
1608
1609 if (mem_cgroup_disabled())
1610 return NULL;
1611again:
1612 memcg = page->mem_cgroup;
1613 if (unlikely(!memcg))
1614 return NULL;
1615
1616 if (atomic_read(&memcg->moving_account) <= 0)
1617 return memcg;
1618
1619 spin_lock_irqsave(&memcg->move_lock, flags);
1620 if (memcg != page->mem_cgroup) {
1621 spin_unlock_irqrestore(&memcg->move_lock, flags);
1622 goto again;
1623 }
1624
1625 /*
1626 * When charge migration first begins, we can have locked and
1627 * unlocked page stat updates happening concurrently. Track
1628 * the task who has the lock for unlock_page_memcg().
1629 */
1630 memcg->move_lock_task = current;
1631 memcg->move_lock_flags = flags;
1632
1633 return memcg;
1634}
1635EXPORT_SYMBOL(lock_page_memcg);
1636
1637/**
1638 * __unlock_page_memcg - unlock and unpin a memcg
1639 * @memcg: the memcg
1640 *
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
1642 */
1643void __unlock_page_memcg(struct mem_cgroup *memcg)
1644{
1645 if (memcg && memcg->move_lock_task == current) {
1646 unsigned long flags = memcg->move_lock_flags;
1647
1648 memcg->move_lock_task = NULL;
1649 memcg->move_lock_flags = 0;
1650
1651 spin_unlock_irqrestore(&memcg->move_lock, flags);
1652 }
1653
1654 rcu_read_unlock();
1655}
1656
1657/**
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1659 * @page: the page
1660 */
1661void unlock_page_memcg(struct page *page)
1662{
1663 __unlock_page_memcg(page->mem_cgroup);
1664}
1665EXPORT_SYMBOL(unlock_page_memcg);
1666
1667struct memcg_stock_pcp {
1668 struct mem_cgroup *cached; /* this never be root cgroup */
1669 unsigned int nr_pages;
1670 struct work_struct work;
1671 unsigned long flags;
1672#define FLUSHING_CACHED_CHARGE 0
1673};
1674static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675static DEFINE_MUTEX(percpu_charge_mutex);
1676
1677/**
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1681 *
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock. Failure to
1684 * service an allocation will refill the stock.
1685 *
1686 * returns true if successful, false otherwise.
1687 */
1688static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1689{
1690 struct memcg_stock_pcp *stock;
1691 unsigned long flags;
1692 bool ret = false;
1693
1694 if (nr_pages > MEMCG_CHARGE_BATCH)
1695 return ret;
1696
1697 local_irq_save(flags);
1698
1699 stock = this_cpu_ptr(&memcg_stock);
1700 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701 stock->nr_pages -= nr_pages;
1702 ret = true;
1703 }
1704
1705 local_irq_restore(flags);
1706
1707 return ret;
1708}
1709
1710/*
1711 * Returns stocks cached in percpu and reset cached information.
1712 */
1713static void drain_stock(struct memcg_stock_pcp *stock)
1714{
1715 struct mem_cgroup *old = stock->cached;
1716
1717 if (stock->nr_pages) {
1718 page_counter_uncharge(&old->memory, stock->nr_pages);
1719 if (do_memsw_account())
1720 page_counter_uncharge(&old->memsw, stock->nr_pages);
1721 css_put_many(&old->css, stock->nr_pages);
1722 stock->nr_pages = 0;
1723 }
1724 stock->cached = NULL;
1725}
1726
1727static void drain_local_stock(struct work_struct *dummy)
1728{
1729 struct memcg_stock_pcp *stock;
1730 unsigned long flags;
1731
1732 /*
1733 * The only protection from memory hotplug vs. drain_stock races is
1734 * that we always operate on local CPU stock here with IRQ disabled
1735 */
1736 local_irq_save(flags);
1737
1738 stock = this_cpu_ptr(&memcg_stock);
1739 drain_stock(stock);
1740 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1741
1742 local_irq_restore(flags);
1743}
1744
1745/*
1746 * Cache charges(val) to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1748 */
1749static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1750{
1751 struct memcg_stock_pcp *stock;
1752 unsigned long flags;
1753
1754 local_irq_save(flags);
1755
1756 stock = this_cpu_ptr(&memcg_stock);
1757 if (stock->cached != memcg) { /* reset if necessary */
1758 drain_stock(stock);
1759 stock->cached = memcg;
1760 }
1761 stock->nr_pages += nr_pages;
1762
1763 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764 drain_stock(stock);
1765
1766 local_irq_restore(flags);
1767}
1768
1769/*
1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771 * of the hierarchy under it.
1772 */
1773static void drain_all_stock(struct mem_cgroup *root_memcg)
1774{
1775 int cpu, curcpu;
1776
1777 /* If someone's already draining, avoid adding running more workers. */
1778 if (!mutex_trylock(&percpu_charge_mutex))
1779 return;
1780 /*
1781 * Notify other cpus that system-wide "drain" is running
1782 * We do not care about races with the cpu hotplug because cpu down
1783 * as well as workers from this path always operate on the local
1784 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1785 */
1786 curcpu = get_cpu();
1787 for_each_online_cpu(cpu) {
1788 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789 struct mem_cgroup *memcg;
1790
1791 memcg = stock->cached;
1792 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793 continue;
1794 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795 css_put(&memcg->css);
1796 continue;
1797 }
1798 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1799 if (cpu == curcpu)
1800 drain_local_stock(&stock->work);
1801 else
1802 schedule_work_on(cpu, &stock->work);
1803 }
1804 css_put(&memcg->css);
1805 }
1806 put_cpu();
1807 mutex_unlock(&percpu_charge_mutex);
1808}
1809
1810static int memcg_hotplug_cpu_dead(unsigned int cpu)
1811{
1812 struct memcg_stock_pcp *stock;
1813 struct mem_cgroup *memcg;
1814
1815 stock = &per_cpu(memcg_stock, cpu);
1816 drain_stock(stock);
1817
1818 for_each_mem_cgroup(memcg) {
1819 int i;
1820
1821 for (i = 0; i < MEMCG_NR_STAT; i++) {
1822 int nid;
1823 long x;
1824
1825 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1826 if (x)
1827 atomic_long_add(x, &memcg->stat[i]);
1828
1829 if (i >= NR_VM_NODE_STAT_ITEMS)
1830 continue;
1831
1832 for_each_node(nid) {
1833 struct mem_cgroup_per_node *pn;
1834
1835 pn = mem_cgroup_nodeinfo(memcg, nid);
1836 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1837 if (x)
1838 atomic_long_add(x, &pn->lruvec_stat[i]);
1839 }
1840 }
1841
1842 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843 long x;
1844
1845 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1846 if (x)
1847 atomic_long_add(x, &memcg->events[i]);
1848 }
1849 }
1850
1851 return 0;
1852}
1853
1854static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1856 gfp_t gfp_mask)
1857{
1858 do {
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1860 continue;
1861 memcg_memory_event(memcg, MEMCG_HIGH);
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1864}
1865
1866static void high_work_func(struct work_struct *work)
1867{
1868 struct mem_cgroup *memcg;
1869
1870 memcg = container_of(work, struct mem_cgroup, high_work);
1871 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1872}
1873
1874/*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878void mem_cgroup_handle_over_high(void)
1879{
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881 struct mem_cgroup *memcg;
1882
1883 if (likely(!nr_pages))
1884 return;
1885
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1890}
1891
1892static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
1894{
1895 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897 struct mem_cgroup *mem_over_limit;
1898 struct page_counter *counter;
1899 unsigned long nr_reclaimed;
1900 bool may_swap = true;
1901 bool drained = false;
1902
1903 if (mem_cgroup_is_root(memcg))
1904 return 0;
1905retry:
1906 if (consume_stock(memcg, nr_pages))
1907 return 0;
1908
1909 if (!do_memsw_account() ||
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912 goto done_restock;
1913 if (do_memsw_account())
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916 } else {
1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918 may_swap = false;
1919 }
1920
1921 if (batch > nr_pages) {
1922 batch = nr_pages;
1923 goto retry;
1924 }
1925
1926 /*
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1931 */
1932 if (unlikely(tsk_is_oom_victim(current) ||
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
1935 goto force;
1936
1937 /*
1938 * Prevent unbounded recursion when reclaim operations need to
1939 * allocate memory. This might exceed the limits temporarily,
1940 * but we prefer facilitating memory reclaim and getting back
1941 * under the limit over triggering OOM kills in these cases.
1942 */
1943 if (unlikely(current->flags & PF_MEMALLOC))
1944 goto force;
1945
1946 if (unlikely(task_in_memcg_oom(current)))
1947 goto nomem;
1948
1949 if (!gfpflags_allow_blocking(gfp_mask))
1950 goto nomem;
1951
1952 memcg_memory_event(mem_over_limit, MEMCG_MAX);
1953
1954 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955 gfp_mask, may_swap);
1956
1957 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958 goto retry;
1959
1960 if (!drained) {
1961 drain_all_stock(mem_over_limit);
1962 drained = true;
1963 goto retry;
1964 }
1965
1966 if (gfp_mask & __GFP_NORETRY)
1967 goto nomem;
1968 /*
1969 * Even though the limit is exceeded at this point, reclaim
1970 * may have been able to free some pages. Retry the charge
1971 * before killing the task.
1972 *
1973 * Only for regular pages, though: huge pages are rather
1974 * unlikely to succeed so close to the limit, and we fall back
1975 * to regular pages anyway in case of failure.
1976 */
1977 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978 goto retry;
1979 /*
1980 * At task move, charge accounts can be doubly counted. So, it's
1981 * better to wait until the end of task_move if something is going on.
1982 */
1983 if (mem_cgroup_wait_acct_move(mem_over_limit))
1984 goto retry;
1985
1986 if (nr_retries--)
1987 goto retry;
1988
1989 if (gfp_mask & __GFP_NOFAIL)
1990 goto force;
1991
1992 if (fatal_signal_pending(current))
1993 goto force;
1994
1995 memcg_memory_event(mem_over_limit, MEMCG_OOM);
1996
1997 mem_cgroup_oom(mem_over_limit, gfp_mask,
1998 get_order(nr_pages * PAGE_SIZE));
1999nomem:
2000 if (!(gfp_mask & __GFP_NOFAIL))
2001 return -ENOMEM;
2002force:
2003 /*
2004 * The allocation either can't fail or will lead to more memory
2005 * being freed very soon. Allow memory usage go over the limit
2006 * temporarily by force charging it.
2007 */
2008 page_counter_charge(&memcg->memory, nr_pages);
2009 if (do_memsw_account())
2010 page_counter_charge(&memcg->memsw, nr_pages);
2011 css_get_many(&memcg->css, nr_pages);
2012
2013 return 0;
2014
2015done_restock:
2016 css_get_many(&memcg->css, batch);
2017 if (batch > nr_pages)
2018 refill_stock(memcg, batch - nr_pages);
2019
2020 /*
2021 * If the hierarchy is above the normal consumption range, schedule
2022 * reclaim on returning to userland. We can perform reclaim here
2023 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2025 * not recorded as it most likely matches current's and won't
2026 * change in the meantime. As high limit is checked again before
2027 * reclaim, the cost of mismatch is negligible.
2028 */
2029 do {
2030 if (page_counter_read(&memcg->memory) > memcg->high) {
2031 /* Don't bother a random interrupted task */
2032 if (in_interrupt()) {
2033 schedule_work(&memcg->high_work);
2034 break;
2035 }
2036 current->memcg_nr_pages_over_high += batch;
2037 set_notify_resume(current);
2038 break;
2039 }
2040 } while ((memcg = parent_mem_cgroup(memcg)));
2041
2042 return 0;
2043}
2044
2045static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2046{
2047 if (mem_cgroup_is_root(memcg))
2048 return;
2049
2050 page_counter_uncharge(&memcg->memory, nr_pages);
2051 if (do_memsw_account())
2052 page_counter_uncharge(&memcg->memsw, nr_pages);
2053
2054 css_put_many(&memcg->css, nr_pages);
2055}
2056
2057static void lock_page_lru(struct page *page, int *isolated)
2058{
2059 struct zone *zone = page_zone(page);
2060
2061 spin_lock_irq(zone_lru_lock(zone));
2062 if (PageLRU(page)) {
2063 struct lruvec *lruvec;
2064
2065 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066 ClearPageLRU(page);
2067 del_page_from_lru_list(page, lruvec, page_lru(page));
2068 *isolated = 1;
2069 } else
2070 *isolated = 0;
2071}
2072
2073static void unlock_page_lru(struct page *page, int isolated)
2074{
2075 struct zone *zone = page_zone(page);
2076
2077 if (isolated) {
2078 struct lruvec *lruvec;
2079
2080 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081 VM_BUG_ON_PAGE(PageLRU(page), page);
2082 SetPageLRU(page);
2083 add_page_to_lru_list(page, lruvec, page_lru(page));
2084 }
2085 spin_unlock_irq(zone_lru_lock(zone));
2086}
2087
2088static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089 bool lrucare)
2090{
2091 int isolated;
2092
2093 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2094
2095 /*
2096 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097 * may already be on some other mem_cgroup's LRU. Take care of it.
2098 */
2099 if (lrucare)
2100 lock_page_lru(page, &isolated);
2101
2102 /*
2103 * Nobody should be changing or seriously looking at
2104 * page->mem_cgroup at this point:
2105 *
2106 * - the page is uncharged
2107 *
2108 * - the page is off-LRU
2109 *
2110 * - an anonymous fault has exclusive page access, except for
2111 * a locked page table
2112 *
2113 * - a page cache insertion, a swapin fault, or a migration
2114 * have the page locked
2115 */
2116 page->mem_cgroup = memcg;
2117
2118 if (lrucare)
2119 unlock_page_lru(page, isolated);
2120}
2121
2122#ifndef CONFIG_SLOB
2123static int memcg_alloc_cache_id(void)
2124{
2125 int id, size;
2126 int err;
2127
2128 id = ida_simple_get(&memcg_cache_ida,
2129 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2130 if (id < 0)
2131 return id;
2132
2133 if (id < memcg_nr_cache_ids)
2134 return id;
2135
2136 /*
2137 * There's no space for the new id in memcg_caches arrays,
2138 * so we have to grow them.
2139 */
2140 down_write(&memcg_cache_ids_sem);
2141
2142 size = 2 * (id + 1);
2143 if (size < MEMCG_CACHES_MIN_SIZE)
2144 size = MEMCG_CACHES_MIN_SIZE;
2145 else if (size > MEMCG_CACHES_MAX_SIZE)
2146 size = MEMCG_CACHES_MAX_SIZE;
2147
2148 err = memcg_update_all_caches(size);
2149 if (!err)
2150 err = memcg_update_all_list_lrus(size);
2151 if (!err)
2152 memcg_nr_cache_ids = size;
2153
2154 up_write(&memcg_cache_ids_sem);
2155
2156 if (err) {
2157 ida_simple_remove(&memcg_cache_ida, id);
2158 return err;
2159 }
2160 return id;
2161}
2162
2163static void memcg_free_cache_id(int id)
2164{
2165 ida_simple_remove(&memcg_cache_ida, id);
2166}
2167
2168struct memcg_kmem_cache_create_work {
2169 struct mem_cgroup *memcg;
2170 struct kmem_cache *cachep;
2171 struct work_struct work;
2172};
2173
2174static void memcg_kmem_cache_create_func(struct work_struct *w)
2175{
2176 struct memcg_kmem_cache_create_work *cw =
2177 container_of(w, struct memcg_kmem_cache_create_work, work);
2178 struct mem_cgroup *memcg = cw->memcg;
2179 struct kmem_cache *cachep = cw->cachep;
2180
2181 memcg_create_kmem_cache(memcg, cachep);
2182
2183 css_put(&memcg->css);
2184 kfree(cw);
2185}
2186
2187/*
2188 * Enqueue the creation of a per-memcg kmem_cache.
2189 */
2190static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191 struct kmem_cache *cachep)
2192{
2193 struct memcg_kmem_cache_create_work *cw;
2194
2195 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196 if (!cw)
2197 return;
2198
2199 css_get(&memcg->css);
2200
2201 cw->memcg = memcg;
2202 cw->cachep = cachep;
2203 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2204
2205 queue_work(memcg_kmem_cache_wq, &cw->work);
2206}
2207
2208static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209 struct kmem_cache *cachep)
2210{
2211 /*
2212 * We need to stop accounting when we kmalloc, because if the
2213 * corresponding kmalloc cache is not yet created, the first allocation
2214 * in __memcg_schedule_kmem_cache_create will recurse.
2215 *
2216 * However, it is better to enclose the whole function. Depending on
2217 * the debugging options enabled, INIT_WORK(), for instance, can
2218 * trigger an allocation. This too, will make us recurse. Because at
2219 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220 * the safest choice is to do it like this, wrapping the whole function.
2221 */
2222 current->memcg_kmem_skip_account = 1;
2223 __memcg_schedule_kmem_cache_create(memcg, cachep);
2224 current->memcg_kmem_skip_account = 0;
2225}
2226
2227static inline bool memcg_kmem_bypass(void)
2228{
2229 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2230 return true;
2231 return false;
2232}
2233
2234/**
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2237 *
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2240 *
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
2244 *
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2248 * reference.
2249 */
2250struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2251{
2252 struct mem_cgroup *memcg;
2253 struct kmem_cache *memcg_cachep;
2254 int kmemcg_id;
2255
2256 VM_BUG_ON(!is_root_cache(cachep));
2257
2258 if (memcg_kmem_bypass())
2259 return cachep;
2260
2261 if (current->memcg_kmem_skip_account)
2262 return cachep;
2263
2264 memcg = get_mem_cgroup_from_mm(current->mm);
2265 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266 if (kmemcg_id < 0)
2267 goto out;
2268
2269 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270 if (likely(memcg_cachep))
2271 return memcg_cachep;
2272
2273 /*
2274 * If we are in a safe context (can wait, and not in interrupt
2275 * context), we could be be predictable and return right away.
2276 * This would guarantee that the allocation being performed
2277 * already belongs in the new cache.
2278 *
2279 * However, there are some clashes that can arrive from locking.
2280 * For instance, because we acquire the slab_mutex while doing
2281 * memcg_create_kmem_cache, this means no further allocation
2282 * could happen with the slab_mutex held. So it's better to
2283 * defer everything.
2284 */
2285 memcg_schedule_kmem_cache_create(memcg, cachep);
2286out:
2287 css_put(&memcg->css);
2288 return cachep;
2289}
2290
2291/**
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2294 */
2295void memcg_kmem_put_cache(struct kmem_cache *cachep)
2296{
2297 if (!is_root_cache(cachep))
2298 css_put(&cachep->memcg_params.memcg->css);
2299}
2300
2301/**
2302 * memcg_kmem_charge_memcg: charge a kmem page
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2307 *
2308 * Returns 0 on success, an error code on failure.
2309 */
2310int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311 struct mem_cgroup *memcg)
2312{
2313 unsigned int nr_pages = 1 << order;
2314 struct page_counter *counter;
2315 int ret;
2316
2317 ret = try_charge(memcg, gfp, nr_pages);
2318 if (ret)
2319 return ret;
2320
2321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323 cancel_charge(memcg, nr_pages);
2324 return -ENOMEM;
2325 }
2326
2327 page->mem_cgroup = memcg;
2328
2329 return 0;
2330}
2331
2332/**
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2337 *
2338 * Returns 0 on success, an error code on failure.
2339 */
2340int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2344
2345 if (memcg_kmem_bypass())
2346 return 0;
2347
2348 memcg = get_mem_cgroup_from_mm(current->mm);
2349 if (!mem_cgroup_is_root(memcg)) {
2350 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351 if (!ret)
2352 __SetPageKmemcg(page);
2353 }
2354 css_put(&memcg->css);
2355 return ret;
2356}
2357/**
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2361 */
2362void memcg_kmem_uncharge(struct page *page, int order)
2363{
2364 struct mem_cgroup *memcg = page->mem_cgroup;
2365 unsigned int nr_pages = 1 << order;
2366
2367 if (!memcg)
2368 return;
2369
2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2371
2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373 page_counter_uncharge(&memcg->kmem, nr_pages);
2374
2375 page_counter_uncharge(&memcg->memory, nr_pages);
2376 if (do_memsw_account())
2377 page_counter_uncharge(&memcg->memsw, nr_pages);
2378
2379 page->mem_cgroup = NULL;
2380
2381 /* slab pages do not have PageKmemcg flag set */
2382 if (PageKmemcg(page))
2383 __ClearPageKmemcg(page);
2384
2385 css_put_many(&memcg->css, nr_pages);
2386}
2387#endif /* !CONFIG_SLOB */
2388
2389#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390
2391/*
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2394 */
2395void mem_cgroup_split_huge_fixup(struct page *head)
2396{
2397 int i;
2398
2399 if (mem_cgroup_disabled())
2400 return;
2401
2402 for (i = 1; i < HPAGE_PMD_NR; i++)
2403 head[i].mem_cgroup = head->mem_cgroup;
2404
2405 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2406}
2407#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408
2409#ifdef CONFIG_MEMCG_SWAP
2410/**
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from: mem_cgroup which the entry is moved from
2414 * @to: mem_cgroup which the entry is moved to
2415 *
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2418 *
2419 * Returns 0 on success, -EINVAL on failure.
2420 *
2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 * both res and memsw, and called css_get().
2423 */
2424static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425 struct mem_cgroup *from, struct mem_cgroup *to)
2426{
2427 unsigned short old_id, new_id;
2428
2429 old_id = mem_cgroup_id(from);
2430 new_id = mem_cgroup_id(to);
2431
2432 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433 mod_memcg_state(from, MEMCG_SWAP, -1);
2434 mod_memcg_state(to, MEMCG_SWAP, 1);
2435 return 0;
2436 }
2437 return -EINVAL;
2438}
2439#else
2440static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441 struct mem_cgroup *from, struct mem_cgroup *to)
2442{
2443 return -EINVAL;
2444}
2445#endif
2446
2447static DEFINE_MUTEX(memcg_limit_mutex);
2448
2449static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2450 unsigned long limit, bool memsw)
2451{
2452 bool enlarge = false;
2453 int ret;
2454 bool limits_invariant;
2455 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2456
2457 do {
2458 if (signal_pending(current)) {
2459 ret = -EINTR;
2460 break;
2461 }
2462
2463 mutex_lock(&memcg_limit_mutex);
2464 /*
2465 * Make sure that the new limit (memsw or memory limit) doesn't
2466 * break our basic invariant rule memory.limit <= memsw.limit.
2467 */
2468 limits_invariant = memsw ? limit >= memcg->memory.limit :
2469 limit <= memcg->memsw.limit;
2470 if (!limits_invariant) {
2471 mutex_unlock(&memcg_limit_mutex);
2472 ret = -EINVAL;
2473 break;
2474 }
2475 if (limit > counter->limit)
2476 enlarge = true;
2477 ret = page_counter_limit(counter, limit);
2478 mutex_unlock(&memcg_limit_mutex);
2479
2480 if (!ret)
2481 break;
2482
2483 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2484 GFP_KERNEL, !memsw)) {
2485 ret = -EBUSY;
2486 break;
2487 }
2488 } while (true);
2489
2490 if (!ret && enlarge)
2491 memcg_oom_recover(memcg);
2492
2493 return ret;
2494}
2495
2496unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2497 gfp_t gfp_mask,
2498 unsigned long *total_scanned)
2499{
2500 unsigned long nr_reclaimed = 0;
2501 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2502 unsigned long reclaimed;
2503 int loop = 0;
2504 struct mem_cgroup_tree_per_node *mctz;
2505 unsigned long excess;
2506 unsigned long nr_scanned;
2507
2508 if (order > 0)
2509 return 0;
2510
2511 mctz = soft_limit_tree_node(pgdat->node_id);
2512
2513 /*
2514 * Do not even bother to check the largest node if the root
2515 * is empty. Do it lockless to prevent lock bouncing. Races
2516 * are acceptable as soft limit is best effort anyway.
2517 */
2518 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2519 return 0;
2520
2521 /*
2522 * This loop can run a while, specially if mem_cgroup's continuously
2523 * keep exceeding their soft limit and putting the system under
2524 * pressure
2525 */
2526 do {
2527 if (next_mz)
2528 mz = next_mz;
2529 else
2530 mz = mem_cgroup_largest_soft_limit_node(mctz);
2531 if (!mz)
2532 break;
2533
2534 nr_scanned = 0;
2535 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2536 gfp_mask, &nr_scanned);
2537 nr_reclaimed += reclaimed;
2538 *total_scanned += nr_scanned;
2539 spin_lock_irq(&mctz->lock);
2540 __mem_cgroup_remove_exceeded(mz, mctz);
2541
2542 /*
2543 * If we failed to reclaim anything from this memory cgroup
2544 * it is time to move on to the next cgroup
2545 */
2546 next_mz = NULL;
2547 if (!reclaimed)
2548 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2549
2550 excess = soft_limit_excess(mz->memcg);
2551 /*
2552 * One school of thought says that we should not add
2553 * back the node to the tree if reclaim returns 0.
2554 * But our reclaim could return 0, simply because due
2555 * to priority we are exposing a smaller subset of
2556 * memory to reclaim from. Consider this as a longer
2557 * term TODO.
2558 */
2559 /* If excess == 0, no tree ops */
2560 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2561 spin_unlock_irq(&mctz->lock);
2562 css_put(&mz->memcg->css);
2563 loop++;
2564 /*
2565 * Could not reclaim anything and there are no more
2566 * mem cgroups to try or we seem to be looping without
2567 * reclaiming anything.
2568 */
2569 if (!nr_reclaimed &&
2570 (next_mz == NULL ||
2571 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2572 break;
2573 } while (!nr_reclaimed);
2574 if (next_mz)
2575 css_put(&next_mz->memcg->css);
2576 return nr_reclaimed;
2577}
2578
2579/*
2580 * Test whether @memcg has children, dead or alive. Note that this
2581 * function doesn't care whether @memcg has use_hierarchy enabled and
2582 * returns %true if there are child csses according to the cgroup
2583 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2584 */
2585static inline bool memcg_has_children(struct mem_cgroup *memcg)
2586{
2587 bool ret;
2588
2589 rcu_read_lock();
2590 ret = css_next_child(NULL, &memcg->css);
2591 rcu_read_unlock();
2592 return ret;
2593}
2594
2595/*
2596 * Reclaims as many pages from the given memcg as possible.
2597 *
2598 * Caller is responsible for holding css reference for memcg.
2599 */
2600static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2601{
2602 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2603
2604 /* we call try-to-free pages for make this cgroup empty */
2605 lru_add_drain_all();
2606 /* try to free all pages in this cgroup */
2607 while (nr_retries && page_counter_read(&memcg->memory)) {
2608 int progress;
2609
2610 if (signal_pending(current))
2611 return -EINTR;
2612
2613 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2614 GFP_KERNEL, true);
2615 if (!progress) {
2616 nr_retries--;
2617 /* maybe some writeback is necessary */
2618 congestion_wait(BLK_RW_ASYNC, HZ/10);
2619 }
2620
2621 }
2622
2623 return 0;
2624}
2625
2626static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2627 char *buf, size_t nbytes,
2628 loff_t off)
2629{
2630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2631
2632 if (mem_cgroup_is_root(memcg))
2633 return -EINVAL;
2634 return mem_cgroup_force_empty(memcg) ?: nbytes;
2635}
2636
2637static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2638 struct cftype *cft)
2639{
2640 return mem_cgroup_from_css(css)->use_hierarchy;
2641}
2642
2643static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2644 struct cftype *cft, u64 val)
2645{
2646 int retval = 0;
2647 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2648 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2649
2650 if (memcg->use_hierarchy == val)
2651 return 0;
2652
2653 /*
2654 * If parent's use_hierarchy is set, we can't make any modifications
2655 * in the child subtrees. If it is unset, then the change can
2656 * occur, provided the current cgroup has no children.
2657 *
2658 * For the root cgroup, parent_mem is NULL, we allow value to be
2659 * set if there are no children.
2660 */
2661 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2662 (val == 1 || val == 0)) {
2663 if (!memcg_has_children(memcg))
2664 memcg->use_hierarchy = val;
2665 else
2666 retval = -EBUSY;
2667 } else
2668 retval = -EINVAL;
2669
2670 return retval;
2671}
2672
2673static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2674{
2675 struct mem_cgroup *iter;
2676 int i;
2677
2678 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2679
2680 for_each_mem_cgroup_tree(iter, memcg) {
2681 for (i = 0; i < MEMCG_NR_STAT; i++)
2682 stat[i] += memcg_page_state(iter, i);
2683 }
2684}
2685
2686static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2687{
2688 struct mem_cgroup *iter;
2689 int i;
2690
2691 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2692
2693 for_each_mem_cgroup_tree(iter, memcg) {
2694 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2695 events[i] += memcg_sum_events(iter, i);
2696 }
2697}
2698
2699static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2700{
2701 unsigned long val = 0;
2702
2703 if (mem_cgroup_is_root(memcg)) {
2704 struct mem_cgroup *iter;
2705
2706 for_each_mem_cgroup_tree(iter, memcg) {
2707 val += memcg_page_state(iter, MEMCG_CACHE);
2708 val += memcg_page_state(iter, MEMCG_RSS);
2709 if (swap)
2710 val += memcg_page_state(iter, MEMCG_SWAP);
2711 }
2712 } else {
2713 if (!swap)
2714 val = page_counter_read(&memcg->memory);
2715 else
2716 val = page_counter_read(&memcg->memsw);
2717 }
2718 return val;
2719}
2720
2721enum {
2722 RES_USAGE,
2723 RES_LIMIT,
2724 RES_MAX_USAGE,
2725 RES_FAILCNT,
2726 RES_SOFT_LIMIT,
2727};
2728
2729static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2730 struct cftype *cft)
2731{
2732 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2733 struct page_counter *counter;
2734
2735 switch (MEMFILE_TYPE(cft->private)) {
2736 case _MEM:
2737 counter = &memcg->memory;
2738 break;
2739 case _MEMSWAP:
2740 counter = &memcg->memsw;
2741 break;
2742 case _KMEM:
2743 counter = &memcg->kmem;
2744 break;
2745 case _TCP:
2746 counter = &memcg->tcpmem;
2747 break;
2748 default:
2749 BUG();
2750 }
2751
2752 switch (MEMFILE_ATTR(cft->private)) {
2753 case RES_USAGE:
2754 if (counter == &memcg->memory)
2755 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2756 if (counter == &memcg->memsw)
2757 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2758 return (u64)page_counter_read(counter) * PAGE_SIZE;
2759 case RES_LIMIT:
2760 return (u64)counter->limit * PAGE_SIZE;
2761 case RES_MAX_USAGE:
2762 return (u64)counter->watermark * PAGE_SIZE;
2763 case RES_FAILCNT:
2764 return counter->failcnt;
2765 case RES_SOFT_LIMIT:
2766 return (u64)memcg->soft_limit * PAGE_SIZE;
2767 default:
2768 BUG();
2769 }
2770}
2771
2772#ifndef CONFIG_SLOB
2773static int memcg_online_kmem(struct mem_cgroup *memcg)
2774{
2775 int memcg_id;
2776
2777 if (cgroup_memory_nokmem)
2778 return 0;
2779
2780 BUG_ON(memcg->kmemcg_id >= 0);
2781 BUG_ON(memcg->kmem_state);
2782
2783 memcg_id = memcg_alloc_cache_id();
2784 if (memcg_id < 0)
2785 return memcg_id;
2786
2787 static_branch_inc(&memcg_kmem_enabled_key);
2788 /*
2789 * A memory cgroup is considered kmem-online as soon as it gets
2790 * kmemcg_id. Setting the id after enabling static branching will
2791 * guarantee no one starts accounting before all call sites are
2792 * patched.
2793 */
2794 memcg->kmemcg_id = memcg_id;
2795 memcg->kmem_state = KMEM_ONLINE;
2796 INIT_LIST_HEAD(&memcg->kmem_caches);
2797
2798 return 0;
2799}
2800
2801static void memcg_offline_kmem(struct mem_cgroup *memcg)
2802{
2803 struct cgroup_subsys_state *css;
2804 struct mem_cgroup *parent, *child;
2805 int kmemcg_id;
2806
2807 if (memcg->kmem_state != KMEM_ONLINE)
2808 return;
2809 /*
2810 * Clear the online state before clearing memcg_caches array
2811 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2812 * guarantees that no cache will be created for this cgroup
2813 * after we are done (see memcg_create_kmem_cache()).
2814 */
2815 memcg->kmem_state = KMEM_ALLOCATED;
2816
2817 memcg_deactivate_kmem_caches(memcg);
2818
2819 kmemcg_id = memcg->kmemcg_id;
2820 BUG_ON(kmemcg_id < 0);
2821
2822 parent = parent_mem_cgroup(memcg);
2823 if (!parent)
2824 parent = root_mem_cgroup;
2825
2826 /*
2827 * Change kmemcg_id of this cgroup and all its descendants to the
2828 * parent's id, and then move all entries from this cgroup's list_lrus
2829 * to ones of the parent. After we have finished, all list_lrus
2830 * corresponding to this cgroup are guaranteed to remain empty. The
2831 * ordering is imposed by list_lru_node->lock taken by
2832 * memcg_drain_all_list_lrus().
2833 */
2834 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2835 css_for_each_descendant_pre(css, &memcg->css) {
2836 child = mem_cgroup_from_css(css);
2837 BUG_ON(child->kmemcg_id != kmemcg_id);
2838 child->kmemcg_id = parent->kmemcg_id;
2839 if (!memcg->use_hierarchy)
2840 break;
2841 }
2842 rcu_read_unlock();
2843
2844 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2845
2846 memcg_free_cache_id(kmemcg_id);
2847}
2848
2849static void memcg_free_kmem(struct mem_cgroup *memcg)
2850{
2851 /* css_alloc() failed, offlining didn't happen */
2852 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2853 memcg_offline_kmem(memcg);
2854
2855 if (memcg->kmem_state == KMEM_ALLOCATED) {
2856 memcg_destroy_kmem_caches(memcg);
2857 static_branch_dec(&memcg_kmem_enabled_key);
2858 WARN_ON(page_counter_read(&memcg->kmem));
2859 }
2860}
2861#else
2862static int memcg_online_kmem(struct mem_cgroup *memcg)
2863{
2864 return 0;
2865}
2866static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867{
2868}
2869static void memcg_free_kmem(struct mem_cgroup *memcg)
2870{
2871}
2872#endif /* !CONFIG_SLOB */
2873
2874static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2875 unsigned long limit)
2876{
2877 int ret;
2878
2879 mutex_lock(&memcg_limit_mutex);
2880 ret = page_counter_limit(&memcg->kmem, limit);
2881 mutex_unlock(&memcg_limit_mutex);
2882 return ret;
2883}
2884
2885static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2886{
2887 int ret;
2888
2889 mutex_lock(&memcg_limit_mutex);
2890
2891 ret = page_counter_limit(&memcg->tcpmem, limit);
2892 if (ret)
2893 goto out;
2894
2895 if (!memcg->tcpmem_active) {
2896 /*
2897 * The active flag needs to be written after the static_key
2898 * update. This is what guarantees that the socket activation
2899 * function is the last one to run. See mem_cgroup_sk_alloc()
2900 * for details, and note that we don't mark any socket as
2901 * belonging to this memcg until that flag is up.
2902 *
2903 * We need to do this, because static_keys will span multiple
2904 * sites, but we can't control their order. If we mark a socket
2905 * as accounted, but the accounting functions are not patched in
2906 * yet, we'll lose accounting.
2907 *
2908 * We never race with the readers in mem_cgroup_sk_alloc(),
2909 * because when this value change, the code to process it is not
2910 * patched in yet.
2911 */
2912 static_branch_inc(&memcg_sockets_enabled_key);
2913 memcg->tcpmem_active = true;
2914 }
2915out:
2916 mutex_unlock(&memcg_limit_mutex);
2917 return ret;
2918}
2919
2920/*
2921 * The user of this function is...
2922 * RES_LIMIT.
2923 */
2924static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2925 char *buf, size_t nbytes, loff_t off)
2926{
2927 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2928 unsigned long nr_pages;
2929 int ret;
2930
2931 buf = strstrip(buf);
2932 ret = page_counter_memparse(buf, "-1", &nr_pages);
2933 if (ret)
2934 return ret;
2935
2936 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2937 case RES_LIMIT:
2938 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2939 ret = -EINVAL;
2940 break;
2941 }
2942 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2943 case _MEM:
2944 ret = mem_cgroup_resize_limit(memcg, nr_pages, false);
2945 break;
2946 case _MEMSWAP:
2947 ret = mem_cgroup_resize_limit(memcg, nr_pages, true);
2948 break;
2949 case _KMEM:
2950 ret = memcg_update_kmem_limit(memcg, nr_pages);
2951 break;
2952 case _TCP:
2953 ret = memcg_update_tcp_limit(memcg, nr_pages);
2954 break;
2955 }
2956 break;
2957 case RES_SOFT_LIMIT:
2958 memcg->soft_limit = nr_pages;
2959 ret = 0;
2960 break;
2961 }
2962 return ret ?: nbytes;
2963}
2964
2965static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2966 size_t nbytes, loff_t off)
2967{
2968 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2969 struct page_counter *counter;
2970
2971 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2972 case _MEM:
2973 counter = &memcg->memory;
2974 break;
2975 case _MEMSWAP:
2976 counter = &memcg->memsw;
2977 break;
2978 case _KMEM:
2979 counter = &memcg->kmem;
2980 break;
2981 case _TCP:
2982 counter = &memcg->tcpmem;
2983 break;
2984 default:
2985 BUG();
2986 }
2987
2988 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989 case RES_MAX_USAGE:
2990 page_counter_reset_watermark(counter);
2991 break;
2992 case RES_FAILCNT:
2993 counter->failcnt = 0;
2994 break;
2995 default:
2996 BUG();
2997 }
2998
2999 return nbytes;
3000}
3001
3002static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3003 struct cftype *cft)
3004{
3005 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3006}
3007
3008#ifdef CONFIG_MMU
3009static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3010 struct cftype *cft, u64 val)
3011{
3012 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3013
3014 if (val & ~MOVE_MASK)
3015 return -EINVAL;
3016
3017 /*
3018 * No kind of locking is needed in here, because ->can_attach() will
3019 * check this value once in the beginning of the process, and then carry
3020 * on with stale data. This means that changes to this value will only
3021 * affect task migrations starting after the change.
3022 */
3023 memcg->move_charge_at_immigrate = val;
3024 return 0;
3025}
3026#else
3027static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3028 struct cftype *cft, u64 val)
3029{
3030 return -ENOSYS;
3031}
3032#endif
3033
3034#ifdef CONFIG_NUMA
3035static int memcg_numa_stat_show(struct seq_file *m, void *v)
3036{
3037 struct numa_stat {
3038 const char *name;
3039 unsigned int lru_mask;
3040 };
3041
3042 static const struct numa_stat stats[] = {
3043 { "total", LRU_ALL },
3044 { "file", LRU_ALL_FILE },
3045 { "anon", LRU_ALL_ANON },
3046 { "unevictable", BIT(LRU_UNEVICTABLE) },
3047 };
3048 const struct numa_stat *stat;
3049 int nid;
3050 unsigned long nr;
3051 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3052
3053 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3054 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3055 seq_printf(m, "%s=%lu", stat->name, nr);
3056 for_each_node_state(nid, N_MEMORY) {
3057 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3058 stat->lru_mask);
3059 seq_printf(m, " N%d=%lu", nid, nr);
3060 }
3061 seq_putc(m, '\n');
3062 }
3063
3064 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3065 struct mem_cgroup *iter;
3066
3067 nr = 0;
3068 for_each_mem_cgroup_tree(iter, memcg)
3069 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3070 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3071 for_each_node_state(nid, N_MEMORY) {
3072 nr = 0;
3073 for_each_mem_cgroup_tree(iter, memcg)
3074 nr += mem_cgroup_node_nr_lru_pages(
3075 iter, nid, stat->lru_mask);
3076 seq_printf(m, " N%d=%lu", nid, nr);
3077 }
3078 seq_putc(m, '\n');
3079 }
3080
3081 return 0;
3082}
3083#endif /* CONFIG_NUMA */
3084
3085/* Universal VM events cgroup1 shows, original sort order */
3086unsigned int memcg1_events[] = {
3087 PGPGIN,
3088 PGPGOUT,
3089 PGFAULT,
3090 PGMAJFAULT,
3091};
3092
3093static const char *const memcg1_event_names[] = {
3094 "pgpgin",
3095 "pgpgout",
3096 "pgfault",
3097 "pgmajfault",
3098};
3099
3100static int memcg_stat_show(struct seq_file *m, void *v)
3101{
3102 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3103 unsigned long memory, memsw;
3104 struct mem_cgroup *mi;
3105 unsigned int i;
3106
3107 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3108 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3109
3110 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3111 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3112 continue;
3113 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3114 memcg_page_state(memcg, memcg1_stats[i]) *
3115 PAGE_SIZE);
3116 }
3117
3118 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3119 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3120 memcg_sum_events(memcg, memcg1_events[i]));
3121
3122 for (i = 0; i < NR_LRU_LISTS; i++)
3123 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3124 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3125
3126 /* Hierarchical information */
3127 memory = memsw = PAGE_COUNTER_MAX;
3128 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3129 memory = min(memory, mi->memory.limit);
3130 memsw = min(memsw, mi->memsw.limit);
3131 }
3132 seq_printf(m, "hierarchical_memory_limit %llu\n",
3133 (u64)memory * PAGE_SIZE);
3134 if (do_memsw_account())
3135 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3136 (u64)memsw * PAGE_SIZE);
3137
3138 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3139 unsigned long long val = 0;
3140
3141 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3142 continue;
3143 for_each_mem_cgroup_tree(mi, memcg)
3144 val += memcg_page_state(mi, memcg1_stats[i]) *
3145 PAGE_SIZE;
3146 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3147 }
3148
3149 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3150 unsigned long long val = 0;
3151
3152 for_each_mem_cgroup_tree(mi, memcg)
3153 val += memcg_sum_events(mi, memcg1_events[i]);
3154 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3155 }
3156
3157 for (i = 0; i < NR_LRU_LISTS; i++) {
3158 unsigned long long val = 0;
3159
3160 for_each_mem_cgroup_tree(mi, memcg)
3161 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3162 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3163 }
3164
3165#ifdef CONFIG_DEBUG_VM
3166 {
3167 pg_data_t *pgdat;
3168 struct mem_cgroup_per_node *mz;
3169 struct zone_reclaim_stat *rstat;
3170 unsigned long recent_rotated[2] = {0, 0};
3171 unsigned long recent_scanned[2] = {0, 0};
3172
3173 for_each_online_pgdat(pgdat) {
3174 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3175 rstat = &mz->lruvec.reclaim_stat;
3176
3177 recent_rotated[0] += rstat->recent_rotated[0];
3178 recent_rotated[1] += rstat->recent_rotated[1];
3179 recent_scanned[0] += rstat->recent_scanned[0];
3180 recent_scanned[1] += rstat->recent_scanned[1];
3181 }
3182 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3183 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3184 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3185 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3186 }
3187#endif
3188
3189 return 0;
3190}
3191
3192static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3193 struct cftype *cft)
3194{
3195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3196
3197 return mem_cgroup_swappiness(memcg);
3198}
3199
3200static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3201 struct cftype *cft, u64 val)
3202{
3203 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3204
3205 if (val > 100)
3206 return -EINVAL;
3207
3208 if (css->parent)
3209 memcg->swappiness = val;
3210 else
3211 vm_swappiness = val;
3212
3213 return 0;
3214}
3215
3216static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3217{
3218 struct mem_cgroup_threshold_ary *t;
3219 unsigned long usage;
3220 int i;
3221
3222 rcu_read_lock();
3223 if (!swap)
3224 t = rcu_dereference(memcg->thresholds.primary);
3225 else
3226 t = rcu_dereference(memcg->memsw_thresholds.primary);
3227
3228 if (!t)
3229 goto unlock;
3230
3231 usage = mem_cgroup_usage(memcg, swap);
3232
3233 /*
3234 * current_threshold points to threshold just below or equal to usage.
3235 * If it's not true, a threshold was crossed after last
3236 * call of __mem_cgroup_threshold().
3237 */
3238 i = t->current_threshold;
3239
3240 /*
3241 * Iterate backward over array of thresholds starting from
3242 * current_threshold and check if a threshold is crossed.
3243 * If none of thresholds below usage is crossed, we read
3244 * only one element of the array here.
3245 */
3246 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3247 eventfd_signal(t->entries[i].eventfd, 1);
3248
3249 /* i = current_threshold + 1 */
3250 i++;
3251
3252 /*
3253 * Iterate forward over array of thresholds starting from
3254 * current_threshold+1 and check if a threshold is crossed.
3255 * If none of thresholds above usage is crossed, we read
3256 * only one element of the array here.
3257 */
3258 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3259 eventfd_signal(t->entries[i].eventfd, 1);
3260
3261 /* Update current_threshold */
3262 t->current_threshold = i - 1;
3263unlock:
3264 rcu_read_unlock();
3265}
3266
3267static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3268{
3269 while (memcg) {
3270 __mem_cgroup_threshold(memcg, false);
3271 if (do_memsw_account())
3272 __mem_cgroup_threshold(memcg, true);
3273
3274 memcg = parent_mem_cgroup(memcg);
3275 }
3276}
3277
3278static int compare_thresholds(const void *a, const void *b)
3279{
3280 const struct mem_cgroup_threshold *_a = a;
3281 const struct mem_cgroup_threshold *_b = b;
3282
3283 if (_a->threshold > _b->threshold)
3284 return 1;
3285
3286 if (_a->threshold < _b->threshold)
3287 return -1;
3288
3289 return 0;
3290}
3291
3292static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3293{
3294 struct mem_cgroup_eventfd_list *ev;
3295
3296 spin_lock(&memcg_oom_lock);
3297
3298 list_for_each_entry(ev, &memcg->oom_notify, list)
3299 eventfd_signal(ev->eventfd, 1);
3300
3301 spin_unlock(&memcg_oom_lock);
3302 return 0;
3303}
3304
3305static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3306{
3307 struct mem_cgroup *iter;
3308
3309 for_each_mem_cgroup_tree(iter, memcg)
3310 mem_cgroup_oom_notify_cb(iter);
3311}
3312
3313static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3314 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3315{
3316 struct mem_cgroup_thresholds *thresholds;
3317 struct mem_cgroup_threshold_ary *new;
3318 unsigned long threshold;
3319 unsigned long usage;
3320 int i, size, ret;
3321
3322 ret = page_counter_memparse(args, "-1", &threshold);
3323 if (ret)
3324 return ret;
3325
3326 mutex_lock(&memcg->thresholds_lock);
3327
3328 if (type == _MEM) {
3329 thresholds = &memcg->thresholds;
3330 usage = mem_cgroup_usage(memcg, false);
3331 } else if (type == _MEMSWAP) {
3332 thresholds = &memcg->memsw_thresholds;
3333 usage = mem_cgroup_usage(memcg, true);
3334 } else
3335 BUG();
3336
3337 /* Check if a threshold crossed before adding a new one */
3338 if (thresholds->primary)
3339 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3340
3341 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3342
3343 /* Allocate memory for new array of thresholds */
3344 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3345 GFP_KERNEL);
3346 if (!new) {
3347 ret = -ENOMEM;
3348 goto unlock;
3349 }
3350 new->size = size;
3351
3352 /* Copy thresholds (if any) to new array */
3353 if (thresholds->primary) {
3354 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3355 sizeof(struct mem_cgroup_threshold));
3356 }
3357
3358 /* Add new threshold */
3359 new->entries[size - 1].eventfd = eventfd;
3360 new->entries[size - 1].threshold = threshold;
3361
3362 /* Sort thresholds. Registering of new threshold isn't time-critical */
3363 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3364 compare_thresholds, NULL);
3365
3366 /* Find current threshold */
3367 new->current_threshold = -1;
3368 for (i = 0; i < size; i++) {
3369 if (new->entries[i].threshold <= usage) {
3370 /*
3371 * new->current_threshold will not be used until
3372 * rcu_assign_pointer(), so it's safe to increment
3373 * it here.
3374 */
3375 ++new->current_threshold;
3376 } else
3377 break;
3378 }
3379
3380 /* Free old spare buffer and save old primary buffer as spare */
3381 kfree(thresholds->spare);
3382 thresholds->spare = thresholds->primary;
3383
3384 rcu_assign_pointer(thresholds->primary, new);
3385
3386 /* To be sure that nobody uses thresholds */
3387 synchronize_rcu();
3388
3389unlock:
3390 mutex_unlock(&memcg->thresholds_lock);
3391
3392 return ret;
3393}
3394
3395static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3396 struct eventfd_ctx *eventfd, const char *args)
3397{
3398 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3399}
3400
3401static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3402 struct eventfd_ctx *eventfd, const char *args)
3403{
3404 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3405}
3406
3407static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3408 struct eventfd_ctx *eventfd, enum res_type type)
3409{
3410 struct mem_cgroup_thresholds *thresholds;
3411 struct mem_cgroup_threshold_ary *new;
3412 unsigned long usage;
3413 int i, j, size;
3414
3415 mutex_lock(&memcg->thresholds_lock);
3416
3417 if (type == _MEM) {
3418 thresholds = &memcg->thresholds;
3419 usage = mem_cgroup_usage(memcg, false);
3420 } else if (type == _MEMSWAP) {
3421 thresholds = &memcg->memsw_thresholds;
3422 usage = mem_cgroup_usage(memcg, true);
3423 } else
3424 BUG();
3425
3426 if (!thresholds->primary)
3427 goto unlock;
3428
3429 /* Check if a threshold crossed before removing */
3430 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3431
3432 /* Calculate new number of threshold */
3433 size = 0;
3434 for (i = 0; i < thresholds->primary->size; i++) {
3435 if (thresholds->primary->entries[i].eventfd != eventfd)
3436 size++;
3437 }
3438
3439 new = thresholds->spare;
3440
3441 /* Set thresholds array to NULL if we don't have thresholds */
3442 if (!size) {
3443 kfree(new);
3444 new = NULL;
3445 goto swap_buffers;
3446 }
3447
3448 new->size = size;
3449
3450 /* Copy thresholds and find current threshold */
3451 new->current_threshold = -1;
3452 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3453 if (thresholds->primary->entries[i].eventfd == eventfd)
3454 continue;
3455
3456 new->entries[j] = thresholds->primary->entries[i];
3457 if (new->entries[j].threshold <= usage) {
3458 /*
3459 * new->current_threshold will not be used
3460 * until rcu_assign_pointer(), so it's safe to increment
3461 * it here.
3462 */
3463 ++new->current_threshold;
3464 }
3465 j++;
3466 }
3467
3468swap_buffers:
3469 /* Swap primary and spare array */
3470 thresholds->spare = thresholds->primary;
3471
3472 rcu_assign_pointer(thresholds->primary, new);
3473
3474 /* To be sure that nobody uses thresholds */
3475 synchronize_rcu();
3476
3477 /* If all events are unregistered, free the spare array */
3478 if (!new) {
3479 kfree(thresholds->spare);
3480 thresholds->spare = NULL;
3481 }
3482unlock:
3483 mutex_unlock(&memcg->thresholds_lock);
3484}
3485
3486static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3487 struct eventfd_ctx *eventfd)
3488{
3489 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3490}
3491
3492static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3493 struct eventfd_ctx *eventfd)
3494{
3495 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3496}
3497
3498static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3499 struct eventfd_ctx *eventfd, const char *args)
3500{
3501 struct mem_cgroup_eventfd_list *event;
3502
3503 event = kmalloc(sizeof(*event), GFP_KERNEL);
3504 if (!event)
3505 return -ENOMEM;
3506
3507 spin_lock(&memcg_oom_lock);
3508
3509 event->eventfd = eventfd;
3510 list_add(&event->list, &memcg->oom_notify);
3511
3512 /* already in OOM ? */
3513 if (memcg->under_oom)
3514 eventfd_signal(eventfd, 1);
3515 spin_unlock(&memcg_oom_lock);
3516
3517 return 0;
3518}
3519
3520static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3521 struct eventfd_ctx *eventfd)
3522{
3523 struct mem_cgroup_eventfd_list *ev, *tmp;
3524
3525 spin_lock(&memcg_oom_lock);
3526
3527 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3528 if (ev->eventfd == eventfd) {
3529 list_del(&ev->list);
3530 kfree(ev);
3531 }
3532 }
3533
3534 spin_unlock(&memcg_oom_lock);
3535}
3536
3537static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3538{
3539 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3540
3541 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3542 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3543 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3544 return 0;
3545}
3546
3547static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3548 struct cftype *cft, u64 val)
3549{
3550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551
3552 /* cannot set to root cgroup and only 0 and 1 are allowed */
3553 if (!css->parent || !((val == 0) || (val == 1)))
3554 return -EINVAL;
3555
3556 memcg->oom_kill_disable = val;
3557 if (!val)
3558 memcg_oom_recover(memcg);
3559
3560 return 0;
3561}
3562
3563#ifdef CONFIG_CGROUP_WRITEBACK
3564
3565struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3566{
3567 return &memcg->cgwb_list;
3568}
3569
3570static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3571{
3572 return wb_domain_init(&memcg->cgwb_domain, gfp);
3573}
3574
3575static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3576{
3577 wb_domain_exit(&memcg->cgwb_domain);
3578}
3579
3580static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3581{
3582 wb_domain_size_changed(&memcg->cgwb_domain);
3583}
3584
3585struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3586{
3587 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3588
3589 if (!memcg->css.parent)
3590 return NULL;
3591
3592 return &memcg->cgwb_domain;
3593}
3594
3595/**
3596 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3597 * @wb: bdi_writeback in question
3598 * @pfilepages: out parameter for number of file pages
3599 * @pheadroom: out parameter for number of allocatable pages according to memcg
3600 * @pdirty: out parameter for number of dirty pages
3601 * @pwriteback: out parameter for number of pages under writeback
3602 *
3603 * Determine the numbers of file, headroom, dirty, and writeback pages in
3604 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3605 * is a bit more involved.
3606 *
3607 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3608 * headroom is calculated as the lowest headroom of itself and the
3609 * ancestors. Note that this doesn't consider the actual amount of
3610 * available memory in the system. The caller should further cap
3611 * *@pheadroom accordingly.
3612 */
3613void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3614 unsigned long *pheadroom, unsigned long *pdirty,
3615 unsigned long *pwriteback)
3616{
3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618 struct mem_cgroup *parent;
3619
3620 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3621
3622 /* this should eventually include NR_UNSTABLE_NFS */
3623 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3624 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3625 (1 << LRU_ACTIVE_FILE));
3626 *pheadroom = PAGE_COUNTER_MAX;
3627
3628 while ((parent = parent_mem_cgroup(memcg))) {
3629 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3630 unsigned long used = page_counter_read(&memcg->memory);
3631
3632 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3633 memcg = parent;
3634 }
3635}
3636
3637#else /* CONFIG_CGROUP_WRITEBACK */
3638
3639static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3640{
3641 return 0;
3642}
3643
3644static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3645{
3646}
3647
3648static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3649{
3650}
3651
3652#endif /* CONFIG_CGROUP_WRITEBACK */
3653
3654/*
3655 * DO NOT USE IN NEW FILES.
3656 *
3657 * "cgroup.event_control" implementation.
3658 *
3659 * This is way over-engineered. It tries to support fully configurable
3660 * events for each user. Such level of flexibility is completely
3661 * unnecessary especially in the light of the planned unified hierarchy.
3662 *
3663 * Please deprecate this and replace with something simpler if at all
3664 * possible.
3665 */
3666
3667/*
3668 * Unregister event and free resources.
3669 *
3670 * Gets called from workqueue.
3671 */
3672static void memcg_event_remove(struct work_struct *work)
3673{
3674 struct mem_cgroup_event *event =
3675 container_of(work, struct mem_cgroup_event, remove);
3676 struct mem_cgroup *memcg = event->memcg;
3677
3678 remove_wait_queue(event->wqh, &event->wait);
3679
3680 event->unregister_event(memcg, event->eventfd);
3681
3682 /* Notify userspace the event is going away. */
3683 eventfd_signal(event->eventfd, 1);
3684
3685 eventfd_ctx_put(event->eventfd);
3686 kfree(event);
3687 css_put(&memcg->css);
3688}
3689
3690/*
3691 * Gets called on EPOLLHUP on eventfd when user closes it.
3692 *
3693 * Called with wqh->lock held and interrupts disabled.
3694 */
3695static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3696 int sync, void *key)
3697{
3698 struct mem_cgroup_event *event =
3699 container_of(wait, struct mem_cgroup_event, wait);
3700 struct mem_cgroup *memcg = event->memcg;
3701 __poll_t flags = key_to_poll(key);
3702
3703 if (flags & EPOLLHUP) {
3704 /*
3705 * If the event has been detached at cgroup removal, we
3706 * can simply return knowing the other side will cleanup
3707 * for us.
3708 *
3709 * We can't race against event freeing since the other
3710 * side will require wqh->lock via remove_wait_queue(),
3711 * which we hold.
3712 */
3713 spin_lock(&memcg->event_list_lock);
3714 if (!list_empty(&event->list)) {
3715 list_del_init(&event->list);
3716 /*
3717 * We are in atomic context, but cgroup_event_remove()
3718 * may sleep, so we have to call it in workqueue.
3719 */
3720 schedule_work(&event->remove);
3721 }
3722 spin_unlock(&memcg->event_list_lock);
3723 }
3724
3725 return 0;
3726}
3727
3728static void memcg_event_ptable_queue_proc(struct file *file,
3729 wait_queue_head_t *wqh, poll_table *pt)
3730{
3731 struct mem_cgroup_event *event =
3732 container_of(pt, struct mem_cgroup_event, pt);
3733
3734 event->wqh = wqh;
3735 add_wait_queue(wqh, &event->wait);
3736}
3737
3738/*
3739 * DO NOT USE IN NEW FILES.
3740 *
3741 * Parse input and register new cgroup event handler.
3742 *
3743 * Input must be in format '<event_fd> <control_fd> <args>'.
3744 * Interpretation of args is defined by control file implementation.
3745 */
3746static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3747 char *buf, size_t nbytes, loff_t off)
3748{
3749 struct cgroup_subsys_state *css = of_css(of);
3750 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3751 struct mem_cgroup_event *event;
3752 struct cgroup_subsys_state *cfile_css;
3753 unsigned int efd, cfd;
3754 struct fd efile;
3755 struct fd cfile;
3756 const char *name;
3757 char *endp;
3758 int ret;
3759
3760 buf = strstrip(buf);
3761
3762 efd = simple_strtoul(buf, &endp, 10);
3763 if (*endp != ' ')
3764 return -EINVAL;
3765 buf = endp + 1;
3766
3767 cfd = simple_strtoul(buf, &endp, 10);
3768 if ((*endp != ' ') && (*endp != '\0'))
3769 return -EINVAL;
3770 buf = endp + 1;
3771
3772 event = kzalloc(sizeof(*event), GFP_KERNEL);
3773 if (!event)
3774 return -ENOMEM;
3775
3776 event->memcg = memcg;
3777 INIT_LIST_HEAD(&event->list);
3778 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3779 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3780 INIT_WORK(&event->remove, memcg_event_remove);
3781
3782 efile = fdget(efd);
3783 if (!efile.file) {
3784 ret = -EBADF;
3785 goto out_kfree;
3786 }
3787
3788 event->eventfd = eventfd_ctx_fileget(efile.file);
3789 if (IS_ERR(event->eventfd)) {
3790 ret = PTR_ERR(event->eventfd);
3791 goto out_put_efile;
3792 }
3793
3794 cfile = fdget(cfd);
3795 if (!cfile.file) {
3796 ret = -EBADF;
3797 goto out_put_eventfd;
3798 }
3799
3800 /* the process need read permission on control file */
3801 /* AV: shouldn't we check that it's been opened for read instead? */
3802 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3803 if (ret < 0)
3804 goto out_put_cfile;
3805
3806 /*
3807 * Determine the event callbacks and set them in @event. This used
3808 * to be done via struct cftype but cgroup core no longer knows
3809 * about these events. The following is crude but the whole thing
3810 * is for compatibility anyway.
3811 *
3812 * DO NOT ADD NEW FILES.
3813 */
3814 name = cfile.file->f_path.dentry->d_name.name;
3815
3816 if (!strcmp(name, "memory.usage_in_bytes")) {
3817 event->register_event = mem_cgroup_usage_register_event;
3818 event->unregister_event = mem_cgroup_usage_unregister_event;
3819 } else if (!strcmp(name, "memory.oom_control")) {
3820 event->register_event = mem_cgroup_oom_register_event;
3821 event->unregister_event = mem_cgroup_oom_unregister_event;
3822 } else if (!strcmp(name, "memory.pressure_level")) {
3823 event->register_event = vmpressure_register_event;
3824 event->unregister_event = vmpressure_unregister_event;
3825 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3826 event->register_event = memsw_cgroup_usage_register_event;
3827 event->unregister_event = memsw_cgroup_usage_unregister_event;
3828 } else {
3829 ret = -EINVAL;
3830 goto out_put_cfile;
3831 }
3832
3833 /*
3834 * Verify @cfile should belong to @css. Also, remaining events are
3835 * automatically removed on cgroup destruction but the removal is
3836 * asynchronous, so take an extra ref on @css.
3837 */
3838 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3839 &memory_cgrp_subsys);
3840 ret = -EINVAL;
3841 if (IS_ERR(cfile_css))
3842 goto out_put_cfile;
3843 if (cfile_css != css) {
3844 css_put(cfile_css);
3845 goto out_put_cfile;
3846 }
3847
3848 ret = event->register_event(memcg, event->eventfd, buf);
3849 if (ret)
3850 goto out_put_css;
3851
3852 efile.file->f_op->poll(efile.file, &event->pt);
3853
3854 spin_lock(&memcg->event_list_lock);
3855 list_add(&event->list, &memcg->event_list);
3856 spin_unlock(&memcg->event_list_lock);
3857
3858 fdput(cfile);
3859 fdput(efile);
3860
3861 return nbytes;
3862
3863out_put_css:
3864 css_put(css);
3865out_put_cfile:
3866 fdput(cfile);
3867out_put_eventfd:
3868 eventfd_ctx_put(event->eventfd);
3869out_put_efile:
3870 fdput(efile);
3871out_kfree:
3872 kfree(event);
3873
3874 return ret;
3875}
3876
3877static struct cftype mem_cgroup_legacy_files[] = {
3878 {
3879 .name = "usage_in_bytes",
3880 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3881 .read_u64 = mem_cgroup_read_u64,
3882 },
3883 {
3884 .name = "max_usage_in_bytes",
3885 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3886 .write = mem_cgroup_reset,
3887 .read_u64 = mem_cgroup_read_u64,
3888 },
3889 {
3890 .name = "limit_in_bytes",
3891 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3892 .write = mem_cgroup_write,
3893 .read_u64 = mem_cgroup_read_u64,
3894 },
3895 {
3896 .name = "soft_limit_in_bytes",
3897 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3898 .write = mem_cgroup_write,
3899 .read_u64 = mem_cgroup_read_u64,
3900 },
3901 {
3902 .name = "failcnt",
3903 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3904 .write = mem_cgroup_reset,
3905 .read_u64 = mem_cgroup_read_u64,
3906 },
3907 {
3908 .name = "stat",
3909 .seq_show = memcg_stat_show,
3910 },
3911 {
3912 .name = "force_empty",
3913 .write = mem_cgroup_force_empty_write,
3914 },
3915 {
3916 .name = "use_hierarchy",
3917 .write_u64 = mem_cgroup_hierarchy_write,
3918 .read_u64 = mem_cgroup_hierarchy_read,
3919 },
3920 {
3921 .name = "cgroup.event_control", /* XXX: for compat */
3922 .write = memcg_write_event_control,
3923 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3924 },
3925 {
3926 .name = "swappiness",
3927 .read_u64 = mem_cgroup_swappiness_read,
3928 .write_u64 = mem_cgroup_swappiness_write,
3929 },
3930 {
3931 .name = "move_charge_at_immigrate",
3932 .read_u64 = mem_cgroup_move_charge_read,
3933 .write_u64 = mem_cgroup_move_charge_write,
3934 },
3935 {
3936 .name = "oom_control",
3937 .seq_show = mem_cgroup_oom_control_read,
3938 .write_u64 = mem_cgroup_oom_control_write,
3939 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3940 },
3941 {
3942 .name = "pressure_level",
3943 },
3944#ifdef CONFIG_NUMA
3945 {
3946 .name = "numa_stat",
3947 .seq_show = memcg_numa_stat_show,
3948 },
3949#endif
3950 {
3951 .name = "kmem.limit_in_bytes",
3952 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3953 .write = mem_cgroup_write,
3954 .read_u64 = mem_cgroup_read_u64,
3955 },
3956 {
3957 .name = "kmem.usage_in_bytes",
3958 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3959 .read_u64 = mem_cgroup_read_u64,
3960 },
3961 {
3962 .name = "kmem.failcnt",
3963 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3964 .write = mem_cgroup_reset,
3965 .read_u64 = mem_cgroup_read_u64,
3966 },
3967 {
3968 .name = "kmem.max_usage_in_bytes",
3969 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3970 .write = mem_cgroup_reset,
3971 .read_u64 = mem_cgroup_read_u64,
3972 },
3973#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3974 {
3975 .name = "kmem.slabinfo",
3976 .seq_start = memcg_slab_start,
3977 .seq_next = memcg_slab_next,
3978 .seq_stop = memcg_slab_stop,
3979 .seq_show = memcg_slab_show,
3980 },
3981#endif
3982 {
3983 .name = "kmem.tcp.limit_in_bytes",
3984 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3985 .write = mem_cgroup_write,
3986 .read_u64 = mem_cgroup_read_u64,
3987 },
3988 {
3989 .name = "kmem.tcp.usage_in_bytes",
3990 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3991 .read_u64 = mem_cgroup_read_u64,
3992 },
3993 {
3994 .name = "kmem.tcp.failcnt",
3995 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
3996 .write = mem_cgroup_reset,
3997 .read_u64 = mem_cgroup_read_u64,
3998 },
3999 {
4000 .name = "kmem.tcp.max_usage_in_bytes",
4001 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4002 .write = mem_cgroup_reset,
4003 .read_u64 = mem_cgroup_read_u64,
4004 },
4005 { }, /* terminate */
4006};
4007
4008/*
4009 * Private memory cgroup IDR
4010 *
4011 * Swap-out records and page cache shadow entries need to store memcg
4012 * references in constrained space, so we maintain an ID space that is
4013 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4014 * memory-controlled cgroups to 64k.
4015 *
4016 * However, there usually are many references to the oflline CSS after
4017 * the cgroup has been destroyed, such as page cache or reclaimable
4018 * slab objects, that don't need to hang on to the ID. We want to keep
4019 * those dead CSS from occupying IDs, or we might quickly exhaust the
4020 * relatively small ID space and prevent the creation of new cgroups
4021 * even when there are much fewer than 64k cgroups - possibly none.
4022 *
4023 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4024 * be freed and recycled when it's no longer needed, which is usually
4025 * when the CSS is offlined.
4026 *
4027 * The only exception to that are records of swapped out tmpfs/shmem
4028 * pages that need to be attributed to live ancestors on swapin. But
4029 * those references are manageable from userspace.
4030 */
4031
4032static DEFINE_IDR(mem_cgroup_idr);
4033
4034static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4035{
4036 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4037 atomic_add(n, &memcg->id.ref);
4038}
4039
4040static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4041{
4042 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4043 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4044 idr_remove(&mem_cgroup_idr, memcg->id.id);
4045 memcg->id.id = 0;
4046
4047 /* Memcg ID pins CSS */
4048 css_put(&memcg->css);
4049 }
4050}
4051
4052static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4053{
4054 mem_cgroup_id_get_many(memcg, 1);
4055}
4056
4057static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4058{
4059 mem_cgroup_id_put_many(memcg, 1);
4060}
4061
4062/**
4063 * mem_cgroup_from_id - look up a memcg from a memcg id
4064 * @id: the memcg id to look up
4065 *
4066 * Caller must hold rcu_read_lock().
4067 */
4068struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4069{
4070 WARN_ON_ONCE(!rcu_read_lock_held());
4071 return idr_find(&mem_cgroup_idr, id);
4072}
4073
4074static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4075{
4076 struct mem_cgroup_per_node *pn;
4077 int tmp = node;
4078 /*
4079 * This routine is called against possible nodes.
4080 * But it's BUG to call kmalloc() against offline node.
4081 *
4082 * TODO: this routine can waste much memory for nodes which will
4083 * never be onlined. It's better to use memory hotplug callback
4084 * function.
4085 */
4086 if (!node_state(node, N_NORMAL_MEMORY))
4087 tmp = -1;
4088 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4089 if (!pn)
4090 return 1;
4091
4092 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4093 if (!pn->lruvec_stat_cpu) {
4094 kfree(pn);
4095 return 1;
4096 }
4097
4098 lruvec_init(&pn->lruvec);
4099 pn->usage_in_excess = 0;
4100 pn->on_tree = false;
4101 pn->memcg = memcg;
4102
4103 memcg->nodeinfo[node] = pn;
4104 return 0;
4105}
4106
4107static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4108{
4109 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4110
4111 if (!pn)
4112 return;
4113
4114 free_percpu(pn->lruvec_stat_cpu);
4115 kfree(pn);
4116}
4117
4118static void __mem_cgroup_free(struct mem_cgroup *memcg)
4119{
4120 int node;
4121
4122 for_each_node(node)
4123 free_mem_cgroup_per_node_info(memcg, node);
4124 free_percpu(memcg->stat_cpu);
4125 kfree(memcg);
4126}
4127
4128static void mem_cgroup_free(struct mem_cgroup *memcg)
4129{
4130 memcg_wb_domain_exit(memcg);
4131 __mem_cgroup_free(memcg);
4132}
4133
4134static struct mem_cgroup *mem_cgroup_alloc(void)
4135{
4136 struct mem_cgroup *memcg;
4137 size_t size;
4138 int node;
4139
4140 size = sizeof(struct mem_cgroup);
4141 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4142
4143 memcg = kzalloc(size, GFP_KERNEL);
4144 if (!memcg)
4145 return NULL;
4146
4147 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4148 1, MEM_CGROUP_ID_MAX,
4149 GFP_KERNEL);
4150 if (memcg->id.id < 0)
4151 goto fail;
4152
4153 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4154 if (!memcg->stat_cpu)
4155 goto fail;
4156
4157 for_each_node(node)
4158 if (alloc_mem_cgroup_per_node_info(memcg, node))
4159 goto fail;
4160
4161 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4162 goto fail;
4163
4164 INIT_WORK(&memcg->high_work, high_work_func);
4165 memcg->last_scanned_node = MAX_NUMNODES;
4166 INIT_LIST_HEAD(&memcg->oom_notify);
4167 mutex_init(&memcg->thresholds_lock);
4168 spin_lock_init(&memcg->move_lock);
4169 vmpressure_init(&memcg->vmpressure);
4170 INIT_LIST_HEAD(&memcg->event_list);
4171 spin_lock_init(&memcg->event_list_lock);
4172 memcg->socket_pressure = jiffies;
4173#ifndef CONFIG_SLOB
4174 memcg->kmemcg_id = -1;
4175#endif
4176#ifdef CONFIG_CGROUP_WRITEBACK
4177 INIT_LIST_HEAD(&memcg->cgwb_list);
4178#endif
4179 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4180 return memcg;
4181fail:
4182 if (memcg->id.id > 0)
4183 idr_remove(&mem_cgroup_idr, memcg->id.id);
4184 __mem_cgroup_free(memcg);
4185 return NULL;
4186}
4187
4188static struct cgroup_subsys_state * __ref
4189mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4190{
4191 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4192 struct mem_cgroup *memcg;
4193 long error = -ENOMEM;
4194
4195 memcg = mem_cgroup_alloc();
4196 if (!memcg)
4197 return ERR_PTR(error);
4198
4199 memcg->high = PAGE_COUNTER_MAX;
4200 memcg->soft_limit = PAGE_COUNTER_MAX;
4201 if (parent) {
4202 memcg->swappiness = mem_cgroup_swappiness(parent);
4203 memcg->oom_kill_disable = parent->oom_kill_disable;
4204 }
4205 if (parent && parent->use_hierarchy) {
4206 memcg->use_hierarchy = true;
4207 page_counter_init(&memcg->memory, &parent->memory);
4208 page_counter_init(&memcg->swap, &parent->swap);
4209 page_counter_init(&memcg->memsw, &parent->memsw);
4210 page_counter_init(&memcg->kmem, &parent->kmem);
4211 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4212 } else {
4213 page_counter_init(&memcg->memory, NULL);
4214 page_counter_init(&memcg->swap, NULL);
4215 page_counter_init(&memcg->memsw, NULL);
4216 page_counter_init(&memcg->kmem, NULL);
4217 page_counter_init(&memcg->tcpmem, NULL);
4218 /*
4219 * Deeper hierachy with use_hierarchy == false doesn't make
4220 * much sense so let cgroup subsystem know about this
4221 * unfortunate state in our controller.
4222 */
4223 if (parent != root_mem_cgroup)
4224 memory_cgrp_subsys.broken_hierarchy = true;
4225 }
4226
4227 /* The following stuff does not apply to the root */
4228 if (!parent) {
4229 root_mem_cgroup = memcg;
4230 return &memcg->css;
4231 }
4232
4233 error = memcg_online_kmem(memcg);
4234 if (error)
4235 goto fail;
4236
4237 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4238 static_branch_inc(&memcg_sockets_enabled_key);
4239
4240 return &memcg->css;
4241fail:
4242 mem_cgroup_free(memcg);
4243 return ERR_PTR(-ENOMEM);
4244}
4245
4246static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4247{
4248 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4249
4250 /* Online state pins memcg ID, memcg ID pins CSS */
4251 atomic_set(&memcg->id.ref, 1);
4252 css_get(css);
4253 return 0;
4254}
4255
4256static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4257{
4258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259 struct mem_cgroup_event *event, *tmp;
4260
4261 /*
4262 * Unregister events and notify userspace.
4263 * Notify userspace about cgroup removing only after rmdir of cgroup
4264 * directory to avoid race between userspace and kernelspace.
4265 */
4266 spin_lock(&memcg->event_list_lock);
4267 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4268 list_del_init(&event->list);
4269 schedule_work(&event->remove);
4270 }
4271 spin_unlock(&memcg->event_list_lock);
4272
4273 memcg->low = 0;
4274
4275 memcg_offline_kmem(memcg);
4276 wb_memcg_offline(memcg);
4277
4278 mem_cgroup_id_put(memcg);
4279}
4280
4281static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4282{
4283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284
4285 invalidate_reclaim_iterators(memcg);
4286}
4287
4288static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4289{
4290 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4291
4292 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4293 static_branch_dec(&memcg_sockets_enabled_key);
4294
4295 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4296 static_branch_dec(&memcg_sockets_enabled_key);
4297
4298 vmpressure_cleanup(&memcg->vmpressure);
4299 cancel_work_sync(&memcg->high_work);
4300 mem_cgroup_remove_from_trees(memcg);
4301 memcg_free_kmem(memcg);
4302 mem_cgroup_free(memcg);
4303}
4304
4305/**
4306 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4307 * @css: the target css
4308 *
4309 * Reset the states of the mem_cgroup associated with @css. This is
4310 * invoked when the userland requests disabling on the default hierarchy
4311 * but the memcg is pinned through dependency. The memcg should stop
4312 * applying policies and should revert to the vanilla state as it may be
4313 * made visible again.
4314 *
4315 * The current implementation only resets the essential configurations.
4316 * This needs to be expanded to cover all the visible parts.
4317 */
4318static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4319{
4320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4321
4322 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4323 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4324 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4325 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4326 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4327 memcg->low = 0;
4328 memcg->high = PAGE_COUNTER_MAX;
4329 memcg->soft_limit = PAGE_COUNTER_MAX;
4330 memcg_wb_domain_size_changed(memcg);
4331}
4332
4333#ifdef CONFIG_MMU
4334/* Handlers for move charge at task migration. */
4335static int mem_cgroup_do_precharge(unsigned long count)
4336{
4337 int ret;
4338
4339 /* Try a single bulk charge without reclaim first, kswapd may wake */
4340 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4341 if (!ret) {
4342 mc.precharge += count;
4343 return ret;
4344 }
4345
4346 /* Try charges one by one with reclaim, but do not retry */
4347 while (count--) {
4348 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4349 if (ret)
4350 return ret;
4351 mc.precharge++;
4352 cond_resched();
4353 }
4354 return 0;
4355}
4356
4357union mc_target {
4358 struct page *page;
4359 swp_entry_t ent;
4360};
4361
4362enum mc_target_type {
4363 MC_TARGET_NONE = 0,
4364 MC_TARGET_PAGE,
4365 MC_TARGET_SWAP,
4366 MC_TARGET_DEVICE,
4367};
4368
4369static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4370 unsigned long addr, pte_t ptent)
4371{
4372 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4373
4374 if (!page || !page_mapped(page))
4375 return NULL;
4376 if (PageAnon(page)) {
4377 if (!(mc.flags & MOVE_ANON))
4378 return NULL;
4379 } else {
4380 if (!(mc.flags & MOVE_FILE))
4381 return NULL;
4382 }
4383 if (!get_page_unless_zero(page))
4384 return NULL;
4385
4386 return page;
4387}
4388
4389#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4390static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4391 pte_t ptent, swp_entry_t *entry)
4392{
4393 struct page *page = NULL;
4394 swp_entry_t ent = pte_to_swp_entry(ptent);
4395
4396 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4397 return NULL;
4398
4399 /*
4400 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4401 * a device and because they are not accessible by CPU they are store
4402 * as special swap entry in the CPU page table.
4403 */
4404 if (is_device_private_entry(ent)) {
4405 page = device_private_entry_to_page(ent);
4406 /*
4407 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4408 * a refcount of 1 when free (unlike normal page)
4409 */
4410 if (!page_ref_add_unless(page, 1, 1))
4411 return NULL;
4412 return page;
4413 }
4414
4415 /*
4416 * Because lookup_swap_cache() updates some statistics counter,
4417 * we call find_get_page() with swapper_space directly.
4418 */
4419 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4420 if (do_memsw_account())
4421 entry->val = ent.val;
4422
4423 return page;
4424}
4425#else
4426static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4427 pte_t ptent, swp_entry_t *entry)
4428{
4429 return NULL;
4430}
4431#endif
4432
4433static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4434 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4435{
4436 struct page *page = NULL;
4437 struct address_space *mapping;
4438 pgoff_t pgoff;
4439
4440 if (!vma->vm_file) /* anonymous vma */
4441 return NULL;
4442 if (!(mc.flags & MOVE_FILE))
4443 return NULL;
4444
4445 mapping = vma->vm_file->f_mapping;
4446 pgoff = linear_page_index(vma, addr);
4447
4448 /* page is moved even if it's not RSS of this task(page-faulted). */
4449#ifdef CONFIG_SWAP
4450 /* shmem/tmpfs may report page out on swap: account for that too. */
4451 if (shmem_mapping(mapping)) {
4452 page = find_get_entry(mapping, pgoff);
4453 if (radix_tree_exceptional_entry(page)) {
4454 swp_entry_t swp = radix_to_swp_entry(page);
4455 if (do_memsw_account())
4456 *entry = swp;
4457 page = find_get_page(swap_address_space(swp),
4458 swp_offset(swp));
4459 }
4460 } else
4461 page = find_get_page(mapping, pgoff);
4462#else
4463 page = find_get_page(mapping, pgoff);
4464#endif
4465 return page;
4466}
4467
4468/**
4469 * mem_cgroup_move_account - move account of the page
4470 * @page: the page
4471 * @compound: charge the page as compound or small page
4472 * @from: mem_cgroup which the page is moved from.
4473 * @to: mem_cgroup which the page is moved to. @from != @to.
4474 *
4475 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4476 *
4477 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4478 * from old cgroup.
4479 */
4480static int mem_cgroup_move_account(struct page *page,
4481 bool compound,
4482 struct mem_cgroup *from,
4483 struct mem_cgroup *to)
4484{
4485 unsigned long flags;
4486 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4487 int ret;
4488 bool anon;
4489
4490 VM_BUG_ON(from == to);
4491 VM_BUG_ON_PAGE(PageLRU(page), page);
4492 VM_BUG_ON(compound && !PageTransHuge(page));
4493
4494 /*
4495 * Prevent mem_cgroup_migrate() from looking at
4496 * page->mem_cgroup of its source page while we change it.
4497 */
4498 ret = -EBUSY;
4499 if (!trylock_page(page))
4500 goto out;
4501
4502 ret = -EINVAL;
4503 if (page->mem_cgroup != from)
4504 goto out_unlock;
4505
4506 anon = PageAnon(page);
4507
4508 spin_lock_irqsave(&from->move_lock, flags);
4509
4510 if (!anon && page_mapped(page)) {
4511 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4512 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4513 }
4514
4515 /*
4516 * move_lock grabbed above and caller set from->moving_account, so
4517 * mod_memcg_page_state will serialize updates to PageDirty.
4518 * So mapping should be stable for dirty pages.
4519 */
4520 if (!anon && PageDirty(page)) {
4521 struct address_space *mapping = page_mapping(page);
4522
4523 if (mapping_cap_account_dirty(mapping)) {
4524 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4525 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4526 }
4527 }
4528
4529 if (PageWriteback(page)) {
4530 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4531 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4532 }
4533
4534 /*
4535 * It is safe to change page->mem_cgroup here because the page
4536 * is referenced, charged, and isolated - we can't race with
4537 * uncharging, charging, migration, or LRU putback.
4538 */
4539
4540 /* caller should have done css_get */
4541 page->mem_cgroup = to;
4542 spin_unlock_irqrestore(&from->move_lock, flags);
4543
4544 ret = 0;
4545
4546 local_irq_disable();
4547 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548 memcg_check_events(to, page);
4549 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550 memcg_check_events(from, page);
4551 local_irq_enable();
4552out_unlock:
4553 unlock_page(page);
4554out:
4555 return ret;
4556}
4557
4558/**
4559 * get_mctgt_type - get target type of moving charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 *
4565 * Returns
4566 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 * move charge. if @target is not NULL, the page is stored in target->page
4569 * with extra refcnt got(Callers should handle it).
4570 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 * target for charge migration. if @target is not NULL, the entry is stored
4572 * in target->ent.
4573 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4574 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4575 * For now we such page is charge like a regular page would be as for all
4576 * intent and purposes it is just special memory taking the place of a
4577 * regular page.
4578 *
4579 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4580 *
4581 * Called with pte lock held.
4582 */
4583
4584static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4585 unsigned long addr, pte_t ptent, union mc_target *target)
4586{
4587 struct page *page = NULL;
4588 enum mc_target_type ret = MC_TARGET_NONE;
4589 swp_entry_t ent = { .val = 0 };
4590
4591 if (pte_present(ptent))
4592 page = mc_handle_present_pte(vma, addr, ptent);
4593 else if (is_swap_pte(ptent))
4594 page = mc_handle_swap_pte(vma, ptent, &ent);
4595 else if (pte_none(ptent))
4596 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4597
4598 if (!page && !ent.val)
4599 return ret;
4600 if (page) {
4601 /*
4602 * Do only loose check w/o serialization.
4603 * mem_cgroup_move_account() checks the page is valid or
4604 * not under LRU exclusion.
4605 */
4606 if (page->mem_cgroup == mc.from) {
4607 ret = MC_TARGET_PAGE;
4608 if (is_device_private_page(page) ||
4609 is_device_public_page(page))
4610 ret = MC_TARGET_DEVICE;
4611 if (target)
4612 target->page = page;
4613 }
4614 if (!ret || !target)
4615 put_page(page);
4616 }
4617 /*
4618 * There is a swap entry and a page doesn't exist or isn't charged.
4619 * But we cannot move a tail-page in a THP.
4620 */
4621 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4622 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4623 ret = MC_TARGET_SWAP;
4624 if (target)
4625 target->ent = ent;
4626 }
4627 return ret;
4628}
4629
4630#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4631/*
4632 * We don't consider PMD mapped swapping or file mapped pages because THP does
4633 * not support them for now.
4634 * Caller should make sure that pmd_trans_huge(pmd) is true.
4635 */
4636static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4637 unsigned long addr, pmd_t pmd, union mc_target *target)
4638{
4639 struct page *page = NULL;
4640 enum mc_target_type ret = MC_TARGET_NONE;
4641
4642 if (unlikely(is_swap_pmd(pmd))) {
4643 VM_BUG_ON(thp_migration_supported() &&
4644 !is_pmd_migration_entry(pmd));
4645 return ret;
4646 }
4647 page = pmd_page(pmd);
4648 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4649 if (!(mc.flags & MOVE_ANON))
4650 return ret;
4651 if (page->mem_cgroup == mc.from) {
4652 ret = MC_TARGET_PAGE;
4653 if (target) {
4654 get_page(page);
4655 target->page = page;
4656 }
4657 }
4658 return ret;
4659}
4660#else
4661static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4662 unsigned long addr, pmd_t pmd, union mc_target *target)
4663{
4664 return MC_TARGET_NONE;
4665}
4666#endif
4667
4668static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4669 unsigned long addr, unsigned long end,
4670 struct mm_walk *walk)
4671{
4672 struct vm_area_struct *vma = walk->vma;
4673 pte_t *pte;
4674 spinlock_t *ptl;
4675
4676 ptl = pmd_trans_huge_lock(pmd, vma);
4677 if (ptl) {
4678 /*
4679 * Note their can not be MC_TARGET_DEVICE for now as we do not
4680 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4681 * MEMORY_DEVICE_PRIVATE but this might change.
4682 */
4683 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684 mc.precharge += HPAGE_PMD_NR;
4685 spin_unlock(ptl);
4686 return 0;
4687 }
4688
4689 if (pmd_trans_unstable(pmd))
4690 return 0;
4691 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692 for (; addr != end; pte++, addr += PAGE_SIZE)
4693 if (get_mctgt_type(vma, addr, *pte, NULL))
4694 mc.precharge++; /* increment precharge temporarily */
4695 pte_unmap_unlock(pte - 1, ptl);
4696 cond_resched();
4697
4698 return 0;
4699}
4700
4701static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702{
4703 unsigned long precharge;
4704
4705 struct mm_walk mem_cgroup_count_precharge_walk = {
4706 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4707 .mm = mm,
4708 };
4709 down_read(&mm->mmap_sem);
4710 walk_page_range(0, mm->highest_vm_end,
4711 &mem_cgroup_count_precharge_walk);
4712 up_read(&mm->mmap_sem);
4713
4714 precharge = mc.precharge;
4715 mc.precharge = 0;
4716
4717 return precharge;
4718}
4719
4720static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4721{
4722 unsigned long precharge = mem_cgroup_count_precharge(mm);
4723
4724 VM_BUG_ON(mc.moving_task);
4725 mc.moving_task = current;
4726 return mem_cgroup_do_precharge(precharge);
4727}
4728
4729/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4730static void __mem_cgroup_clear_mc(void)
4731{
4732 struct mem_cgroup *from = mc.from;
4733 struct mem_cgroup *to = mc.to;
4734
4735 /* we must uncharge all the leftover precharges from mc.to */
4736 if (mc.precharge) {
4737 cancel_charge(mc.to, mc.precharge);
4738 mc.precharge = 0;
4739 }
4740 /*
4741 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4742 * we must uncharge here.
4743 */
4744 if (mc.moved_charge) {
4745 cancel_charge(mc.from, mc.moved_charge);
4746 mc.moved_charge = 0;
4747 }
4748 /* we must fixup refcnts and charges */
4749 if (mc.moved_swap) {
4750 /* uncharge swap account from the old cgroup */
4751 if (!mem_cgroup_is_root(mc.from))
4752 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4753
4754 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4755
4756 /*
4757 * we charged both to->memory and to->memsw, so we
4758 * should uncharge to->memory.
4759 */
4760 if (!mem_cgroup_is_root(mc.to))
4761 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4762
4763 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4764 css_put_many(&mc.to->css, mc.moved_swap);
4765
4766 mc.moved_swap = 0;
4767 }
4768 memcg_oom_recover(from);
4769 memcg_oom_recover(to);
4770 wake_up_all(&mc.waitq);
4771}
4772
4773static void mem_cgroup_clear_mc(void)
4774{
4775 struct mm_struct *mm = mc.mm;
4776
4777 /*
4778 * we must clear moving_task before waking up waiters at the end of
4779 * task migration.
4780 */
4781 mc.moving_task = NULL;
4782 __mem_cgroup_clear_mc();
4783 spin_lock(&mc.lock);
4784 mc.from = NULL;
4785 mc.to = NULL;
4786 mc.mm = NULL;
4787 spin_unlock(&mc.lock);
4788
4789 mmput(mm);
4790}
4791
4792static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4793{
4794 struct cgroup_subsys_state *css;
4795 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4796 struct mem_cgroup *from;
4797 struct task_struct *leader, *p;
4798 struct mm_struct *mm;
4799 unsigned long move_flags;
4800 int ret = 0;
4801
4802 /* charge immigration isn't supported on the default hierarchy */
4803 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4804 return 0;
4805
4806 /*
4807 * Multi-process migrations only happen on the default hierarchy
4808 * where charge immigration is not used. Perform charge
4809 * immigration if @tset contains a leader and whine if there are
4810 * multiple.
4811 */
4812 p = NULL;
4813 cgroup_taskset_for_each_leader(leader, css, tset) {
4814 WARN_ON_ONCE(p);
4815 p = leader;
4816 memcg = mem_cgroup_from_css(css);
4817 }
4818 if (!p)
4819 return 0;
4820
4821 /*
4822 * We are now commited to this value whatever it is. Changes in this
4823 * tunable will only affect upcoming migrations, not the current one.
4824 * So we need to save it, and keep it going.
4825 */
4826 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4827 if (!move_flags)
4828 return 0;
4829
4830 from = mem_cgroup_from_task(p);
4831
4832 VM_BUG_ON(from == memcg);
4833
4834 mm = get_task_mm(p);
4835 if (!mm)
4836 return 0;
4837 /* We move charges only when we move a owner of the mm */
4838 if (mm->owner == p) {
4839 VM_BUG_ON(mc.from);
4840 VM_BUG_ON(mc.to);
4841 VM_BUG_ON(mc.precharge);
4842 VM_BUG_ON(mc.moved_charge);
4843 VM_BUG_ON(mc.moved_swap);
4844
4845 spin_lock(&mc.lock);
4846 mc.mm = mm;
4847 mc.from = from;
4848 mc.to = memcg;
4849 mc.flags = move_flags;
4850 spin_unlock(&mc.lock);
4851 /* We set mc.moving_task later */
4852
4853 ret = mem_cgroup_precharge_mc(mm);
4854 if (ret)
4855 mem_cgroup_clear_mc();
4856 } else {
4857 mmput(mm);
4858 }
4859 return ret;
4860}
4861
4862static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4863{
4864 if (mc.to)
4865 mem_cgroup_clear_mc();
4866}
4867
4868static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4869 unsigned long addr, unsigned long end,
4870 struct mm_walk *walk)
4871{
4872 int ret = 0;
4873 struct vm_area_struct *vma = walk->vma;
4874 pte_t *pte;
4875 spinlock_t *ptl;
4876 enum mc_target_type target_type;
4877 union mc_target target;
4878 struct page *page;
4879
4880 ptl = pmd_trans_huge_lock(pmd, vma);
4881 if (ptl) {
4882 if (mc.precharge < HPAGE_PMD_NR) {
4883 spin_unlock(ptl);
4884 return 0;
4885 }
4886 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4887 if (target_type == MC_TARGET_PAGE) {
4888 page = target.page;
4889 if (!isolate_lru_page(page)) {
4890 if (!mem_cgroup_move_account(page, true,
4891 mc.from, mc.to)) {
4892 mc.precharge -= HPAGE_PMD_NR;
4893 mc.moved_charge += HPAGE_PMD_NR;
4894 }
4895 putback_lru_page(page);
4896 }
4897 put_page(page);
4898 } else if (target_type == MC_TARGET_DEVICE) {
4899 page = target.page;
4900 if (!mem_cgroup_move_account(page, true,
4901 mc.from, mc.to)) {
4902 mc.precharge -= HPAGE_PMD_NR;
4903 mc.moved_charge += HPAGE_PMD_NR;
4904 }
4905 put_page(page);
4906 }
4907 spin_unlock(ptl);
4908 return 0;
4909 }
4910
4911 if (pmd_trans_unstable(pmd))
4912 return 0;
4913retry:
4914 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4915 for (; addr != end; addr += PAGE_SIZE) {
4916 pte_t ptent = *(pte++);
4917 bool device = false;
4918 swp_entry_t ent;
4919
4920 if (!mc.precharge)
4921 break;
4922
4923 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4924 case MC_TARGET_DEVICE:
4925 device = true;
4926 /* fall through */
4927 case MC_TARGET_PAGE:
4928 page = target.page;
4929 /*
4930 * We can have a part of the split pmd here. Moving it
4931 * can be done but it would be too convoluted so simply
4932 * ignore such a partial THP and keep it in original
4933 * memcg. There should be somebody mapping the head.
4934 */
4935 if (PageTransCompound(page))
4936 goto put;
4937 if (!device && isolate_lru_page(page))
4938 goto put;
4939 if (!mem_cgroup_move_account(page, false,
4940 mc.from, mc.to)) {
4941 mc.precharge--;
4942 /* we uncharge from mc.from later. */
4943 mc.moved_charge++;
4944 }
4945 if (!device)
4946 putback_lru_page(page);
4947put: /* get_mctgt_type() gets the page */
4948 put_page(page);
4949 break;
4950 case MC_TARGET_SWAP:
4951 ent = target.ent;
4952 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4953 mc.precharge--;
4954 /* we fixup refcnts and charges later. */
4955 mc.moved_swap++;
4956 }
4957 break;
4958 default:
4959 break;
4960 }
4961 }
4962 pte_unmap_unlock(pte - 1, ptl);
4963 cond_resched();
4964
4965 if (addr != end) {
4966 /*
4967 * We have consumed all precharges we got in can_attach().
4968 * We try charge one by one, but don't do any additional
4969 * charges to mc.to if we have failed in charge once in attach()
4970 * phase.
4971 */
4972 ret = mem_cgroup_do_precharge(1);
4973 if (!ret)
4974 goto retry;
4975 }
4976
4977 return ret;
4978}
4979
4980static void mem_cgroup_move_charge(void)
4981{
4982 struct mm_walk mem_cgroup_move_charge_walk = {
4983 .pmd_entry = mem_cgroup_move_charge_pte_range,
4984 .mm = mc.mm,
4985 };
4986
4987 lru_add_drain_all();
4988 /*
4989 * Signal lock_page_memcg() to take the memcg's move_lock
4990 * while we're moving its pages to another memcg. Then wait
4991 * for already started RCU-only updates to finish.
4992 */
4993 atomic_inc(&mc.from->moving_account);
4994 synchronize_rcu();
4995retry:
4996 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4997 /*
4998 * Someone who are holding the mmap_sem might be waiting in
4999 * waitq. So we cancel all extra charges, wake up all waiters,
5000 * and retry. Because we cancel precharges, we might not be able
5001 * to move enough charges, but moving charge is a best-effort
5002 * feature anyway, so it wouldn't be a big problem.
5003 */
5004 __mem_cgroup_clear_mc();
5005 cond_resched();
5006 goto retry;
5007 }
5008 /*
5009 * When we have consumed all precharges and failed in doing
5010 * additional charge, the page walk just aborts.
5011 */
5012 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5013
5014 up_read(&mc.mm->mmap_sem);
5015 atomic_dec(&mc.from->moving_account);
5016}
5017
5018static void mem_cgroup_move_task(void)
5019{
5020 if (mc.to) {
5021 mem_cgroup_move_charge();
5022 mem_cgroup_clear_mc();
5023 }
5024}
5025#else /* !CONFIG_MMU */
5026static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5027{
5028 return 0;
5029}
5030static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5031{
5032}
5033static void mem_cgroup_move_task(void)
5034{
5035}
5036#endif
5037
5038/*
5039 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5040 * to verify whether we're attached to the default hierarchy on each mount
5041 * attempt.
5042 */
5043static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5044{
5045 /*
5046 * use_hierarchy is forced on the default hierarchy. cgroup core
5047 * guarantees that @root doesn't have any children, so turning it
5048 * on for the root memcg is enough.
5049 */
5050 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5051 root_mem_cgroup->use_hierarchy = true;
5052 else
5053 root_mem_cgroup->use_hierarchy = false;
5054}
5055
5056static u64 memory_current_read(struct cgroup_subsys_state *css,
5057 struct cftype *cft)
5058{
5059 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5060
5061 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5062}
5063
5064static int memory_low_show(struct seq_file *m, void *v)
5065{
5066 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5067 unsigned long low = READ_ONCE(memcg->low);
5068
5069 if (low == PAGE_COUNTER_MAX)
5070 seq_puts(m, "max\n");
5071 else
5072 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5073
5074 return 0;
5075}
5076
5077static ssize_t memory_low_write(struct kernfs_open_file *of,
5078 char *buf, size_t nbytes, loff_t off)
5079{
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5081 unsigned long low;
5082 int err;
5083
5084 buf = strstrip(buf);
5085 err = page_counter_memparse(buf, "max", &low);
5086 if (err)
5087 return err;
5088
5089 memcg->low = low;
5090
5091 return nbytes;
5092}
5093
5094static int memory_high_show(struct seq_file *m, void *v)
5095{
5096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097 unsigned long high = READ_ONCE(memcg->high);
5098
5099 if (high == PAGE_COUNTER_MAX)
5100 seq_puts(m, "max\n");
5101 else
5102 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5103
5104 return 0;
5105}
5106
5107static ssize_t memory_high_write(struct kernfs_open_file *of,
5108 char *buf, size_t nbytes, loff_t off)
5109{
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5111 unsigned long nr_pages;
5112 unsigned long high;
5113 int err;
5114
5115 buf = strstrip(buf);
5116 err = page_counter_memparse(buf, "max", &high);
5117 if (err)
5118 return err;
5119
5120 memcg->high = high;
5121
5122 nr_pages = page_counter_read(&memcg->memory);
5123 if (nr_pages > high)
5124 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5125 GFP_KERNEL, true);
5126
5127 memcg_wb_domain_size_changed(memcg);
5128 return nbytes;
5129}
5130
5131static int memory_max_show(struct seq_file *m, void *v)
5132{
5133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5134 unsigned long max = READ_ONCE(memcg->memory.limit);
5135
5136 if (max == PAGE_COUNTER_MAX)
5137 seq_puts(m, "max\n");
5138 else
5139 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5140
5141 return 0;
5142}
5143
5144static ssize_t memory_max_write(struct kernfs_open_file *of,
5145 char *buf, size_t nbytes, loff_t off)
5146{
5147 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5148 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5149 bool drained = false;
5150 unsigned long max;
5151 int err;
5152
5153 buf = strstrip(buf);
5154 err = page_counter_memparse(buf, "max", &max);
5155 if (err)
5156 return err;
5157
5158 xchg(&memcg->memory.limit, max);
5159
5160 for (;;) {
5161 unsigned long nr_pages = page_counter_read(&memcg->memory);
5162
5163 if (nr_pages <= max)
5164 break;
5165
5166 if (signal_pending(current)) {
5167 err = -EINTR;
5168 break;
5169 }
5170
5171 if (!drained) {
5172 drain_all_stock(memcg);
5173 drained = true;
5174 continue;
5175 }
5176
5177 if (nr_reclaims) {
5178 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5179 GFP_KERNEL, true))
5180 nr_reclaims--;
5181 continue;
5182 }
5183
5184 memcg_memory_event(memcg, MEMCG_OOM);
5185 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5186 break;
5187 }
5188
5189 memcg_wb_domain_size_changed(memcg);
5190 return nbytes;
5191}
5192
5193static int memory_events_show(struct seq_file *m, void *v)
5194{
5195 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5196
5197 seq_printf(m, "low %lu\n",
5198 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5199 seq_printf(m, "high %lu\n",
5200 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5201 seq_printf(m, "max %lu\n",
5202 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5203 seq_printf(m, "oom %lu\n",
5204 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5205 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5206
5207 return 0;
5208}
5209
5210static int memory_stat_show(struct seq_file *m, void *v)
5211{
5212 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5213 unsigned long stat[MEMCG_NR_STAT];
5214 unsigned long events[NR_VM_EVENT_ITEMS];
5215 int i;
5216
5217 /*
5218 * Provide statistics on the state of the memory subsystem as
5219 * well as cumulative event counters that show past behavior.
5220 *
5221 * This list is ordered following a combination of these gradients:
5222 * 1) generic big picture -> specifics and details
5223 * 2) reflecting userspace activity -> reflecting kernel heuristics
5224 *
5225 * Current memory state:
5226 */
5227
5228 tree_stat(memcg, stat);
5229 tree_events(memcg, events);
5230
5231 seq_printf(m, "anon %llu\n",
5232 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5233 seq_printf(m, "file %llu\n",
5234 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5235 seq_printf(m, "kernel_stack %llu\n",
5236 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5237 seq_printf(m, "slab %llu\n",
5238 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5239 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5240 seq_printf(m, "sock %llu\n",
5241 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5242
5243 seq_printf(m, "shmem %llu\n",
5244 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5245 seq_printf(m, "file_mapped %llu\n",
5246 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5247 seq_printf(m, "file_dirty %llu\n",
5248 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5249 seq_printf(m, "file_writeback %llu\n",
5250 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5251
5252 for (i = 0; i < NR_LRU_LISTS; i++) {
5253 struct mem_cgroup *mi;
5254 unsigned long val = 0;
5255
5256 for_each_mem_cgroup_tree(mi, memcg)
5257 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5258 seq_printf(m, "%s %llu\n",
5259 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5260 }
5261
5262 seq_printf(m, "slab_reclaimable %llu\n",
5263 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5264 seq_printf(m, "slab_unreclaimable %llu\n",
5265 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5266
5267 /* Accumulated memory events */
5268
5269 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5270 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5271
5272 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5273 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5274 events[PGSCAN_DIRECT]);
5275 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5276 events[PGSTEAL_DIRECT]);
5277 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5278 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5279 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5280 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5281
5282 seq_printf(m, "workingset_refault %lu\n",
5283 stat[WORKINGSET_REFAULT]);
5284 seq_printf(m, "workingset_activate %lu\n",
5285 stat[WORKINGSET_ACTIVATE]);
5286 seq_printf(m, "workingset_nodereclaim %lu\n",
5287 stat[WORKINGSET_NODERECLAIM]);
5288
5289 return 0;
5290}
5291
5292static struct cftype memory_files[] = {
5293 {
5294 .name = "current",
5295 .flags = CFTYPE_NOT_ON_ROOT,
5296 .read_u64 = memory_current_read,
5297 },
5298 {
5299 .name = "low",
5300 .flags = CFTYPE_NOT_ON_ROOT,
5301 .seq_show = memory_low_show,
5302 .write = memory_low_write,
5303 },
5304 {
5305 .name = "high",
5306 .flags = CFTYPE_NOT_ON_ROOT,
5307 .seq_show = memory_high_show,
5308 .write = memory_high_write,
5309 },
5310 {
5311 .name = "max",
5312 .flags = CFTYPE_NOT_ON_ROOT,
5313 .seq_show = memory_max_show,
5314 .write = memory_max_write,
5315 },
5316 {
5317 .name = "events",
5318 .flags = CFTYPE_NOT_ON_ROOT,
5319 .file_offset = offsetof(struct mem_cgroup, events_file),
5320 .seq_show = memory_events_show,
5321 },
5322 {
5323 .name = "stat",
5324 .flags = CFTYPE_NOT_ON_ROOT,
5325 .seq_show = memory_stat_show,
5326 },
5327 { } /* terminate */
5328};
5329
5330struct cgroup_subsys memory_cgrp_subsys = {
5331 .css_alloc = mem_cgroup_css_alloc,
5332 .css_online = mem_cgroup_css_online,
5333 .css_offline = mem_cgroup_css_offline,
5334 .css_released = mem_cgroup_css_released,
5335 .css_free = mem_cgroup_css_free,
5336 .css_reset = mem_cgroup_css_reset,
5337 .can_attach = mem_cgroup_can_attach,
5338 .cancel_attach = mem_cgroup_cancel_attach,
5339 .post_attach = mem_cgroup_move_task,
5340 .bind = mem_cgroup_bind,
5341 .dfl_cftypes = memory_files,
5342 .legacy_cftypes = mem_cgroup_legacy_files,
5343 .early_init = 0,
5344};
5345
5346/**
5347 * mem_cgroup_low - check if memory consumption is below the normal range
5348 * @root: the top ancestor of the sub-tree being checked
5349 * @memcg: the memory cgroup to check
5350 *
5351 * Returns %true if memory consumption of @memcg, and that of all
5352 * ancestors up to (but not including) @root, is below the normal range.
5353 *
5354 * @root is exclusive; it is never low when looked at directly and isn't
5355 * checked when traversing the hierarchy.
5356 *
5357 * Excluding @root enables using memory.low to prioritize memory usage
5358 * between cgroups within a subtree of the hierarchy that is limited by
5359 * memory.high or memory.max.
5360 *
5361 * For example, given cgroup A with children B and C:
5362 *
5363 * A
5364 * / \
5365 * B C
5366 *
5367 * and
5368 *
5369 * 1. A/memory.current > A/memory.high
5370 * 2. A/B/memory.current < A/B/memory.low
5371 * 3. A/C/memory.current >= A/C/memory.low
5372 *
5373 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5374 * should reclaim from 'C' until 'A' is no longer high or until we can
5375 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5376 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5377 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5378 */
5379bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5380{
5381 if (mem_cgroup_disabled())
5382 return false;
5383
5384 if (!root)
5385 root = root_mem_cgroup;
5386 if (memcg == root)
5387 return false;
5388
5389 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5390 if (page_counter_read(&memcg->memory) >= memcg->low)
5391 return false;
5392 }
5393
5394 return true;
5395}
5396
5397/**
5398 * mem_cgroup_try_charge - try charging a page
5399 * @page: page to charge
5400 * @mm: mm context of the victim
5401 * @gfp_mask: reclaim mode
5402 * @memcgp: charged memcg return
5403 * @compound: charge the page as compound or small page
5404 *
5405 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5406 * pages according to @gfp_mask if necessary.
5407 *
5408 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5409 * Otherwise, an error code is returned.
5410 *
5411 * After page->mapping has been set up, the caller must finalize the
5412 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5413 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5414 */
5415int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5416 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5417 bool compound)
5418{
5419 struct mem_cgroup *memcg = NULL;
5420 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5421 int ret = 0;
5422
5423 if (mem_cgroup_disabled())
5424 goto out;
5425
5426 if (PageSwapCache(page)) {
5427 /*
5428 * Every swap fault against a single page tries to charge the
5429 * page, bail as early as possible. shmem_unuse() encounters
5430 * already charged pages, too. The USED bit is protected by
5431 * the page lock, which serializes swap cache removal, which
5432 * in turn serializes uncharging.
5433 */
5434 VM_BUG_ON_PAGE(!PageLocked(page), page);
5435 if (compound_head(page)->mem_cgroup)
5436 goto out;
5437
5438 if (do_swap_account) {
5439 swp_entry_t ent = { .val = page_private(page), };
5440 unsigned short id = lookup_swap_cgroup_id(ent);
5441
5442 rcu_read_lock();
5443 memcg = mem_cgroup_from_id(id);
5444 if (memcg && !css_tryget_online(&memcg->css))
5445 memcg = NULL;
5446 rcu_read_unlock();
5447 }
5448 }
5449
5450 if (!memcg)
5451 memcg = get_mem_cgroup_from_mm(mm);
5452
5453 ret = try_charge(memcg, gfp_mask, nr_pages);
5454
5455 css_put(&memcg->css);
5456out:
5457 *memcgp = memcg;
5458 return ret;
5459}
5460
5461/**
5462 * mem_cgroup_commit_charge - commit a page charge
5463 * @page: page to charge
5464 * @memcg: memcg to charge the page to
5465 * @lrucare: page might be on LRU already
5466 * @compound: charge the page as compound or small page
5467 *
5468 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5469 * after page->mapping has been set up. This must happen atomically
5470 * as part of the page instantiation, i.e. under the page table lock
5471 * for anonymous pages, under the page lock for page and swap cache.
5472 *
5473 * In addition, the page must not be on the LRU during the commit, to
5474 * prevent racing with task migration. If it might be, use @lrucare.
5475 *
5476 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5477 */
5478void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5479 bool lrucare, bool compound)
5480{
5481 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5482
5483 VM_BUG_ON_PAGE(!page->mapping, page);
5484 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5485
5486 if (mem_cgroup_disabled())
5487 return;
5488 /*
5489 * Swap faults will attempt to charge the same page multiple
5490 * times. But reuse_swap_page() might have removed the page
5491 * from swapcache already, so we can't check PageSwapCache().
5492 */
5493 if (!memcg)
5494 return;
5495
5496 commit_charge(page, memcg, lrucare);
5497
5498 local_irq_disable();
5499 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5500 memcg_check_events(memcg, page);
5501 local_irq_enable();
5502
5503 if (do_memsw_account() && PageSwapCache(page)) {
5504 swp_entry_t entry = { .val = page_private(page) };
5505 /*
5506 * The swap entry might not get freed for a long time,
5507 * let's not wait for it. The page already received a
5508 * memory+swap charge, drop the swap entry duplicate.
5509 */
5510 mem_cgroup_uncharge_swap(entry, nr_pages);
5511 }
5512}
5513
5514/**
5515 * mem_cgroup_cancel_charge - cancel a page charge
5516 * @page: page to charge
5517 * @memcg: memcg to charge the page to
5518 * @compound: charge the page as compound or small page
5519 *
5520 * Cancel a charge transaction started by mem_cgroup_try_charge().
5521 */
5522void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5523 bool compound)
5524{
5525 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5526
5527 if (mem_cgroup_disabled())
5528 return;
5529 /*
5530 * Swap faults will attempt to charge the same page multiple
5531 * times. But reuse_swap_page() might have removed the page
5532 * from swapcache already, so we can't check PageSwapCache().
5533 */
5534 if (!memcg)
5535 return;
5536
5537 cancel_charge(memcg, nr_pages);
5538}
5539
5540struct uncharge_gather {
5541 struct mem_cgroup *memcg;
5542 unsigned long pgpgout;
5543 unsigned long nr_anon;
5544 unsigned long nr_file;
5545 unsigned long nr_kmem;
5546 unsigned long nr_huge;
5547 unsigned long nr_shmem;
5548 struct page *dummy_page;
5549};
5550
5551static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5552{
5553 memset(ug, 0, sizeof(*ug));
5554}
5555
5556static void uncharge_batch(const struct uncharge_gather *ug)
5557{
5558 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5559 unsigned long flags;
5560
5561 if (!mem_cgroup_is_root(ug->memcg)) {
5562 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5563 if (do_memsw_account())
5564 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5565 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5566 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5567 memcg_oom_recover(ug->memcg);
5568 }
5569
5570 local_irq_save(flags);
5571 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5572 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5573 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5574 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5575 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5576 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5577 memcg_check_events(ug->memcg, ug->dummy_page);
5578 local_irq_restore(flags);
5579
5580 if (!mem_cgroup_is_root(ug->memcg))
5581 css_put_many(&ug->memcg->css, nr_pages);
5582}
5583
5584static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5585{
5586 VM_BUG_ON_PAGE(PageLRU(page), page);
5587 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5588 !PageHWPoison(page) , page);
5589
5590 if (!page->mem_cgroup)
5591 return;
5592
5593 /*
5594 * Nobody should be changing or seriously looking at
5595 * page->mem_cgroup at this point, we have fully
5596 * exclusive access to the page.
5597 */
5598
5599 if (ug->memcg != page->mem_cgroup) {
5600 if (ug->memcg) {
5601 uncharge_batch(ug);
5602 uncharge_gather_clear(ug);
5603 }
5604 ug->memcg = page->mem_cgroup;
5605 }
5606
5607 if (!PageKmemcg(page)) {
5608 unsigned int nr_pages = 1;
5609
5610 if (PageTransHuge(page)) {
5611 nr_pages <<= compound_order(page);
5612 ug->nr_huge += nr_pages;
5613 }
5614 if (PageAnon(page))
5615 ug->nr_anon += nr_pages;
5616 else {
5617 ug->nr_file += nr_pages;
5618 if (PageSwapBacked(page))
5619 ug->nr_shmem += nr_pages;
5620 }
5621 ug->pgpgout++;
5622 } else {
5623 ug->nr_kmem += 1 << compound_order(page);
5624 __ClearPageKmemcg(page);
5625 }
5626
5627 ug->dummy_page = page;
5628 page->mem_cgroup = NULL;
5629}
5630
5631static void uncharge_list(struct list_head *page_list)
5632{
5633 struct uncharge_gather ug;
5634 struct list_head *next;
5635
5636 uncharge_gather_clear(&ug);
5637
5638 /*
5639 * Note that the list can be a single page->lru; hence the
5640 * do-while loop instead of a simple list_for_each_entry().
5641 */
5642 next = page_list->next;
5643 do {
5644 struct page *page;
5645
5646 page = list_entry(next, struct page, lru);
5647 next = page->lru.next;
5648
5649 uncharge_page(page, &ug);
5650 } while (next != page_list);
5651
5652 if (ug.memcg)
5653 uncharge_batch(&ug);
5654}
5655
5656/**
5657 * mem_cgroup_uncharge - uncharge a page
5658 * @page: page to uncharge
5659 *
5660 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5661 * mem_cgroup_commit_charge().
5662 */
5663void mem_cgroup_uncharge(struct page *page)
5664{
5665 struct uncharge_gather ug;
5666
5667 if (mem_cgroup_disabled())
5668 return;
5669
5670 /* Don't touch page->lru of any random page, pre-check: */
5671 if (!page->mem_cgroup)
5672 return;
5673
5674 uncharge_gather_clear(&ug);
5675 uncharge_page(page, &ug);
5676 uncharge_batch(&ug);
5677}
5678
5679/**
5680 * mem_cgroup_uncharge_list - uncharge a list of page
5681 * @page_list: list of pages to uncharge
5682 *
5683 * Uncharge a list of pages previously charged with
5684 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5685 */
5686void mem_cgroup_uncharge_list(struct list_head *page_list)
5687{
5688 if (mem_cgroup_disabled())
5689 return;
5690
5691 if (!list_empty(page_list))
5692 uncharge_list(page_list);
5693}
5694
5695/**
5696 * mem_cgroup_migrate - charge a page's replacement
5697 * @oldpage: currently circulating page
5698 * @newpage: replacement page
5699 *
5700 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5701 * be uncharged upon free.
5702 *
5703 * Both pages must be locked, @newpage->mapping must be set up.
5704 */
5705void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5706{
5707 struct mem_cgroup *memcg;
5708 unsigned int nr_pages;
5709 bool compound;
5710 unsigned long flags;
5711
5712 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5713 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5714 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5715 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5716 newpage);
5717
5718 if (mem_cgroup_disabled())
5719 return;
5720
5721 /* Page cache replacement: new page already charged? */
5722 if (newpage->mem_cgroup)
5723 return;
5724
5725 /* Swapcache readahead pages can get replaced before being charged */
5726 memcg = oldpage->mem_cgroup;
5727 if (!memcg)
5728 return;
5729
5730 /* Force-charge the new page. The old one will be freed soon */
5731 compound = PageTransHuge(newpage);
5732 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5733
5734 page_counter_charge(&memcg->memory, nr_pages);
5735 if (do_memsw_account())
5736 page_counter_charge(&memcg->memsw, nr_pages);
5737 css_get_many(&memcg->css, nr_pages);
5738
5739 commit_charge(newpage, memcg, false);
5740
5741 local_irq_save(flags);
5742 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5743 memcg_check_events(memcg, newpage);
5744 local_irq_restore(flags);
5745}
5746
5747DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5748EXPORT_SYMBOL(memcg_sockets_enabled_key);
5749
5750void mem_cgroup_sk_alloc(struct sock *sk)
5751{
5752 struct mem_cgroup *memcg;
5753
5754 if (!mem_cgroup_sockets_enabled)
5755 return;
5756
5757 /*
5758 * Socket cloning can throw us here with sk_memcg already
5759 * filled. It won't however, necessarily happen from
5760 * process context. So the test for root memcg given
5761 * the current task's memcg won't help us in this case.
5762 *
5763 * Respecting the original socket's memcg is a better
5764 * decision in this case.
5765 */
5766 if (sk->sk_memcg) {
5767 css_get(&sk->sk_memcg->css);
5768 return;
5769 }
5770
5771 rcu_read_lock();
5772 memcg = mem_cgroup_from_task(current);
5773 if (memcg == root_mem_cgroup)
5774 goto out;
5775 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5776 goto out;
5777 if (css_tryget_online(&memcg->css))
5778 sk->sk_memcg = memcg;
5779out:
5780 rcu_read_unlock();
5781}
5782
5783void mem_cgroup_sk_free(struct sock *sk)
5784{
5785 if (sk->sk_memcg)
5786 css_put(&sk->sk_memcg->css);
5787}
5788
5789/**
5790 * mem_cgroup_charge_skmem - charge socket memory
5791 * @memcg: memcg to charge
5792 * @nr_pages: number of pages to charge
5793 *
5794 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5795 * @memcg's configured limit, %false if the charge had to be forced.
5796 */
5797bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5798{
5799 gfp_t gfp_mask = GFP_KERNEL;
5800
5801 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5802 struct page_counter *fail;
5803
5804 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5805 memcg->tcpmem_pressure = 0;
5806 return true;
5807 }
5808 page_counter_charge(&memcg->tcpmem, nr_pages);
5809 memcg->tcpmem_pressure = 1;
5810 return false;
5811 }
5812
5813 /* Don't block in the packet receive path */
5814 if (in_softirq())
5815 gfp_mask = GFP_NOWAIT;
5816
5817 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5818
5819 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5820 return true;
5821
5822 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5823 return false;
5824}
5825
5826/**
5827 * mem_cgroup_uncharge_skmem - uncharge socket memory
5828 * @memcg: memcg to uncharge
5829 * @nr_pages: number of pages to uncharge
5830 */
5831void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5832{
5833 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5834 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5835 return;
5836 }
5837
5838 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5839
5840 refill_stock(memcg, nr_pages);
5841}
5842
5843static int __init cgroup_memory(char *s)
5844{
5845 char *token;
5846
5847 while ((token = strsep(&s, ",")) != NULL) {
5848 if (!*token)
5849 continue;
5850 if (!strcmp(token, "nosocket"))
5851 cgroup_memory_nosocket = true;
5852 if (!strcmp(token, "nokmem"))
5853 cgroup_memory_nokmem = true;
5854 }
5855 return 0;
5856}
5857__setup("cgroup.memory=", cgroup_memory);
5858
5859/*
5860 * subsys_initcall() for memory controller.
5861 *
5862 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5863 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5864 * basically everything that doesn't depend on a specific mem_cgroup structure
5865 * should be initialized from here.
5866 */
5867static int __init mem_cgroup_init(void)
5868{
5869 int cpu, node;
5870
5871#ifndef CONFIG_SLOB
5872 /*
5873 * Kmem cache creation is mostly done with the slab_mutex held,
5874 * so use a workqueue with limited concurrency to avoid stalling
5875 * all worker threads in case lots of cgroups are created and
5876 * destroyed simultaneously.
5877 */
5878 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5879 BUG_ON(!memcg_kmem_cache_wq);
5880#endif
5881
5882 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5883 memcg_hotplug_cpu_dead);
5884
5885 for_each_possible_cpu(cpu)
5886 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5887 drain_local_stock);
5888
5889 for_each_node(node) {
5890 struct mem_cgroup_tree_per_node *rtpn;
5891
5892 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5893 node_online(node) ? node : NUMA_NO_NODE);
5894
5895 rtpn->rb_root = RB_ROOT;
5896 rtpn->rb_rightmost = NULL;
5897 spin_lock_init(&rtpn->lock);
5898 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5899 }
5900
5901 return 0;
5902}
5903subsys_initcall(mem_cgroup_init);
5904
5905#ifdef CONFIG_MEMCG_SWAP
5906static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5907{
5908 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5909 /*
5910 * The root cgroup cannot be destroyed, so it's refcount must
5911 * always be >= 1.
5912 */
5913 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5914 VM_BUG_ON(1);
5915 break;
5916 }
5917 memcg = parent_mem_cgroup(memcg);
5918 if (!memcg)
5919 memcg = root_mem_cgroup;
5920 }
5921 return memcg;
5922}
5923
5924/**
5925 * mem_cgroup_swapout - transfer a memsw charge to swap
5926 * @page: page whose memsw charge to transfer
5927 * @entry: swap entry to move the charge to
5928 *
5929 * Transfer the memsw charge of @page to @entry.
5930 */
5931void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5932{
5933 struct mem_cgroup *memcg, *swap_memcg;
5934 unsigned int nr_entries;
5935 unsigned short oldid;
5936
5937 VM_BUG_ON_PAGE(PageLRU(page), page);
5938 VM_BUG_ON_PAGE(page_count(page), page);
5939
5940 if (!do_memsw_account())
5941 return;
5942
5943 memcg = page->mem_cgroup;
5944
5945 /* Readahead page, never charged */
5946 if (!memcg)
5947 return;
5948
5949 /*
5950 * In case the memcg owning these pages has been offlined and doesn't
5951 * have an ID allocated to it anymore, charge the closest online
5952 * ancestor for the swap instead and transfer the memory+swap charge.
5953 */
5954 swap_memcg = mem_cgroup_id_get_online(memcg);
5955 nr_entries = hpage_nr_pages(page);
5956 /* Get references for the tail pages, too */
5957 if (nr_entries > 1)
5958 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5959 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5960 nr_entries);
5961 VM_BUG_ON_PAGE(oldid, page);
5962 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5963
5964 page->mem_cgroup = NULL;
5965
5966 if (!mem_cgroup_is_root(memcg))
5967 page_counter_uncharge(&memcg->memory, nr_entries);
5968
5969 if (memcg != swap_memcg) {
5970 if (!mem_cgroup_is_root(swap_memcg))
5971 page_counter_charge(&swap_memcg->memsw, nr_entries);
5972 page_counter_uncharge(&memcg->memsw, nr_entries);
5973 }
5974
5975 /*
5976 * Interrupts should be disabled here because the caller holds the
5977 * i_pages lock which is taken with interrupts-off. It is
5978 * important here to have the interrupts disabled because it is the
5979 * only synchronisation we have for updating the per-CPU variables.
5980 */
5981 VM_BUG_ON(!irqs_disabled());
5982 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
5983 -nr_entries);
5984 memcg_check_events(memcg, page);
5985
5986 if (!mem_cgroup_is_root(memcg))
5987 css_put_many(&memcg->css, nr_entries);
5988}
5989
5990/**
5991 * mem_cgroup_try_charge_swap - try charging swap space for a page
5992 * @page: page being added to swap
5993 * @entry: swap entry to charge
5994 *
5995 * Try to charge @page's memcg for the swap space at @entry.
5996 *
5997 * Returns 0 on success, -ENOMEM on failure.
5998 */
5999int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6000{
6001 unsigned int nr_pages = hpage_nr_pages(page);
6002 struct page_counter *counter;
6003 struct mem_cgroup *memcg;
6004 unsigned short oldid;
6005
6006 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6007 return 0;
6008
6009 memcg = page->mem_cgroup;
6010
6011 /* Readahead page, never charged */
6012 if (!memcg)
6013 return 0;
6014
6015 memcg = mem_cgroup_id_get_online(memcg);
6016
6017 if (!mem_cgroup_is_root(memcg) &&
6018 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6019 mem_cgroup_id_put(memcg);
6020 return -ENOMEM;
6021 }
6022
6023 /* Get references for the tail pages, too */
6024 if (nr_pages > 1)
6025 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6026 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6027 VM_BUG_ON_PAGE(oldid, page);
6028 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6029
6030 return 0;
6031}
6032
6033/**
6034 * mem_cgroup_uncharge_swap - uncharge swap space
6035 * @entry: swap entry to uncharge
6036 * @nr_pages: the amount of swap space to uncharge
6037 */
6038void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6039{
6040 struct mem_cgroup *memcg;
6041 unsigned short id;
6042
6043 if (!do_swap_account)
6044 return;
6045
6046 id = swap_cgroup_record(entry, 0, nr_pages);
6047 rcu_read_lock();
6048 memcg = mem_cgroup_from_id(id);
6049 if (memcg) {
6050 if (!mem_cgroup_is_root(memcg)) {
6051 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6052 page_counter_uncharge(&memcg->swap, nr_pages);
6053 else
6054 page_counter_uncharge(&memcg->memsw, nr_pages);
6055 }
6056 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6057 mem_cgroup_id_put_many(memcg, nr_pages);
6058 }
6059 rcu_read_unlock();
6060}
6061
6062long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6063{
6064 long nr_swap_pages = get_nr_swap_pages();
6065
6066 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6067 return nr_swap_pages;
6068 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6069 nr_swap_pages = min_t(long, nr_swap_pages,
6070 READ_ONCE(memcg->swap.limit) -
6071 page_counter_read(&memcg->swap));
6072 return nr_swap_pages;
6073}
6074
6075bool mem_cgroup_swap_full(struct page *page)
6076{
6077 struct mem_cgroup *memcg;
6078
6079 VM_BUG_ON_PAGE(!PageLocked(page), page);
6080
6081 if (vm_swap_full())
6082 return true;
6083 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6084 return false;
6085
6086 memcg = page->mem_cgroup;
6087 if (!memcg)
6088 return false;
6089
6090 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6091 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6092 return true;
6093
6094 return false;
6095}
6096
6097/* for remember boot option*/
6098#ifdef CONFIG_MEMCG_SWAP_ENABLED
6099static int really_do_swap_account __initdata = 1;
6100#else
6101static int really_do_swap_account __initdata;
6102#endif
6103
6104static int __init enable_swap_account(char *s)
6105{
6106 if (!strcmp(s, "1"))
6107 really_do_swap_account = 1;
6108 else if (!strcmp(s, "0"))
6109 really_do_swap_account = 0;
6110 return 1;
6111}
6112__setup("swapaccount=", enable_swap_account);
6113
6114static u64 swap_current_read(struct cgroup_subsys_state *css,
6115 struct cftype *cft)
6116{
6117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6118
6119 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6120}
6121
6122static int swap_max_show(struct seq_file *m, void *v)
6123{
6124 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6125 unsigned long max = READ_ONCE(memcg->swap.limit);
6126
6127 if (max == PAGE_COUNTER_MAX)
6128 seq_puts(m, "max\n");
6129 else
6130 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6131
6132 return 0;
6133}
6134
6135static ssize_t swap_max_write(struct kernfs_open_file *of,
6136 char *buf, size_t nbytes, loff_t off)
6137{
6138 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6139 unsigned long max;
6140 int err;
6141
6142 buf = strstrip(buf);
6143 err = page_counter_memparse(buf, "max", &max);
6144 if (err)
6145 return err;
6146
6147 mutex_lock(&memcg_limit_mutex);
6148 err = page_counter_limit(&memcg->swap, max);
6149 mutex_unlock(&memcg_limit_mutex);
6150 if (err)
6151 return err;
6152
6153 return nbytes;
6154}
6155
6156static struct cftype swap_files[] = {
6157 {
6158 .name = "swap.current",
6159 .flags = CFTYPE_NOT_ON_ROOT,
6160 .read_u64 = swap_current_read,
6161 },
6162 {
6163 .name = "swap.max",
6164 .flags = CFTYPE_NOT_ON_ROOT,
6165 .seq_show = swap_max_show,
6166 .write = swap_max_write,
6167 },
6168 { } /* terminate */
6169};
6170
6171static struct cftype memsw_cgroup_files[] = {
6172 {
6173 .name = "memsw.usage_in_bytes",
6174 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6175 .read_u64 = mem_cgroup_read_u64,
6176 },
6177 {
6178 .name = "memsw.max_usage_in_bytes",
6179 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6180 .write = mem_cgroup_reset,
6181 .read_u64 = mem_cgroup_read_u64,
6182 },
6183 {
6184 .name = "memsw.limit_in_bytes",
6185 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6186 .write = mem_cgroup_write,
6187 .read_u64 = mem_cgroup_read_u64,
6188 },
6189 {
6190 .name = "memsw.failcnt",
6191 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6192 .write = mem_cgroup_reset,
6193 .read_u64 = mem_cgroup_read_u64,
6194 },
6195 { }, /* terminate */
6196};
6197
6198static int __init mem_cgroup_swap_init(void)
6199{
6200 if (!mem_cgroup_disabled() && really_do_swap_account) {
6201 do_swap_account = 1;
6202 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6203 swap_files));
6204 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6205 memsw_cgroup_files));
6206 }
6207 return 0;
6208}
6209subsys_initcall(mem_cgroup_swap_init);
6210
6211#endif /* CONFIG_MEMCG_SWAP */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/cgroup-defs.h>
29#include <linux/page_counter.h>
30#include <linux/memcontrol.h>
31#include <linux/cgroup.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/pagevec.h>
37#include <linux/vm_event_item.h>
38#include <linux/smp.h>
39#include <linux/page-flags.h>
40#include <linux/backing-dev.h>
41#include <linux/bit_spinlock.h>
42#include <linux/rcupdate.h>
43#include <linux/limits.h>
44#include <linux/export.h>
45#include <linux/list.h>
46#include <linux/mutex.h>
47#include <linux/rbtree.h>
48#include <linux/slab.h>
49#include <linux/swapops.h>
50#include <linux/spinlock.h>
51#include <linux/fs.h>
52#include <linux/seq_file.h>
53#include <linux/parser.h>
54#include <linux/vmpressure.h>
55#include <linux/memremap.h>
56#include <linux/mm_inline.h>
57#include <linux/swap_cgroup.h>
58#include <linux/cpu.h>
59#include <linux/oom.h>
60#include <linux/lockdep.h>
61#include <linux/resume_user_mode.h>
62#include <linux/psi.h>
63#include <linux/seq_buf.h>
64#include <linux/sched/isolation.h>
65#include <linux/kmemleak.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70#include "memcontrol-v1.h"
71
72#include <linux/uaccess.h>
73
74#define CREATE_TRACE_POINTS
75#include <trace/events/memcg.h>
76#undef CREATE_TRACE_POINTS
77
78#include <trace/events/vmscan.h>
79
80struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81EXPORT_SYMBOL(memory_cgrp_subsys);
82
83struct mem_cgroup *root_mem_cgroup __read_mostly;
84
85/* Active memory cgroup to use from an interrupt context */
86DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88
89/* Socket memory accounting disabled? */
90static bool cgroup_memory_nosocket __ro_after_init;
91
92/* Kernel memory accounting disabled? */
93static bool cgroup_memory_nokmem __ro_after_init;
94
95/* BPF memory accounting disabled? */
96static bool cgroup_memory_nobpf __ro_after_init;
97
98#ifdef CONFIG_CGROUP_WRITEBACK
99static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100#endif
101
102static inline bool task_is_dying(void)
103{
104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
105 (current->flags & PF_EXITING);
106}
107
108/* Some nice accessors for the vmpressure. */
109struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
110{
111 if (!memcg)
112 memcg = root_mem_cgroup;
113 return &memcg->vmpressure;
114}
115
116struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
117{
118 return container_of(vmpr, struct mem_cgroup, vmpressure);
119}
120
121#define SEQ_BUF_SIZE SZ_4K
122#define CURRENT_OBJCG_UPDATE_BIT 0
123#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
124
125static DEFINE_SPINLOCK(objcg_lock);
126
127bool mem_cgroup_kmem_disabled(void)
128{
129 return cgroup_memory_nokmem;
130}
131
132static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
133 unsigned int nr_pages);
134
135static void obj_cgroup_release(struct percpu_ref *ref)
136{
137 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
138 unsigned int nr_bytes;
139 unsigned int nr_pages;
140 unsigned long flags;
141
142 /*
143 * At this point all allocated objects are freed, and
144 * objcg->nr_charged_bytes can't have an arbitrary byte value.
145 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
146 *
147 * The following sequence can lead to it:
148 * 1) CPU0: objcg == stock->cached_objcg
149 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
150 * PAGE_SIZE bytes are charged
151 * 3) CPU1: a process from another memcg is allocating something,
152 * the stock if flushed,
153 * objcg->nr_charged_bytes = PAGE_SIZE - 92
154 * 5) CPU0: we do release this object,
155 * 92 bytes are added to stock->nr_bytes
156 * 6) CPU0: stock is flushed,
157 * 92 bytes are added to objcg->nr_charged_bytes
158 *
159 * In the result, nr_charged_bytes == PAGE_SIZE.
160 * This page will be uncharged in obj_cgroup_release().
161 */
162 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
163 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
164 nr_pages = nr_bytes >> PAGE_SHIFT;
165
166 if (nr_pages)
167 obj_cgroup_uncharge_pages(objcg, nr_pages);
168
169 spin_lock_irqsave(&objcg_lock, flags);
170 list_del(&objcg->list);
171 spin_unlock_irqrestore(&objcg_lock, flags);
172
173 percpu_ref_exit(ref);
174 kfree_rcu(objcg, rcu);
175}
176
177static struct obj_cgroup *obj_cgroup_alloc(void)
178{
179 struct obj_cgroup *objcg;
180 int ret;
181
182 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
183 if (!objcg)
184 return NULL;
185
186 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
187 GFP_KERNEL);
188 if (ret) {
189 kfree(objcg);
190 return NULL;
191 }
192 INIT_LIST_HEAD(&objcg->list);
193 return objcg;
194}
195
196static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
197 struct mem_cgroup *parent)
198{
199 struct obj_cgroup *objcg, *iter;
200
201 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
202
203 spin_lock_irq(&objcg_lock);
204
205 /* 1) Ready to reparent active objcg. */
206 list_add(&objcg->list, &memcg->objcg_list);
207 /* 2) Reparent active objcg and already reparented objcgs to parent. */
208 list_for_each_entry(iter, &memcg->objcg_list, list)
209 WRITE_ONCE(iter->memcg, parent);
210 /* 3) Move already reparented objcgs to the parent's list */
211 list_splice(&memcg->objcg_list, &parent->objcg_list);
212
213 spin_unlock_irq(&objcg_lock);
214
215 percpu_ref_kill(&objcg->refcnt);
216}
217
218/*
219 * A lot of the calls to the cache allocation functions are expected to be
220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
221 * conditional to this static branch, we'll have to allow modules that does
222 * kmem_cache_alloc and the such to see this symbol as well
223 */
224DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
225EXPORT_SYMBOL(memcg_kmem_online_key);
226
227DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
228EXPORT_SYMBOL(memcg_bpf_enabled_key);
229
230/**
231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
232 * @folio: folio of interest
233 *
234 * If memcg is bound to the default hierarchy, css of the memcg associated
235 * with @folio is returned. The returned css remains associated with @folio
236 * until it is released.
237 *
238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
239 * is returned.
240 */
241struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
242{
243 struct mem_cgroup *memcg = folio_memcg(folio);
244
245 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
246 memcg = root_mem_cgroup;
247
248 return &memcg->css;
249}
250
251/**
252 * page_cgroup_ino - return inode number of the memcg a page is charged to
253 * @page: the page
254 *
255 * Look up the closest online ancestor of the memory cgroup @page is charged to
256 * and return its inode number or 0 if @page is not charged to any cgroup. It
257 * is safe to call this function without holding a reference to @page.
258 *
259 * Note, this function is inherently racy, because there is nothing to prevent
260 * the cgroup inode from getting torn down and potentially reallocated a moment
261 * after page_cgroup_ino() returns, so it only should be used by callers that
262 * do not care (such as procfs interfaces).
263 */
264ino_t page_cgroup_ino(struct page *page)
265{
266 struct mem_cgroup *memcg;
267 unsigned long ino = 0;
268
269 rcu_read_lock();
270 /* page_folio() is racy here, but the entire function is racy anyway */
271 memcg = folio_memcg_check(page_folio(page));
272
273 while (memcg && !(memcg->css.flags & CSS_ONLINE))
274 memcg = parent_mem_cgroup(memcg);
275 if (memcg)
276 ino = cgroup_ino(memcg->css.cgroup);
277 rcu_read_unlock();
278 return ino;
279}
280
281/* Subset of node_stat_item for memcg stats */
282static const unsigned int memcg_node_stat_items[] = {
283 NR_INACTIVE_ANON,
284 NR_ACTIVE_ANON,
285 NR_INACTIVE_FILE,
286 NR_ACTIVE_FILE,
287 NR_UNEVICTABLE,
288 NR_SLAB_RECLAIMABLE_B,
289 NR_SLAB_UNRECLAIMABLE_B,
290 WORKINGSET_REFAULT_ANON,
291 WORKINGSET_REFAULT_FILE,
292 WORKINGSET_ACTIVATE_ANON,
293 WORKINGSET_ACTIVATE_FILE,
294 WORKINGSET_RESTORE_ANON,
295 WORKINGSET_RESTORE_FILE,
296 WORKINGSET_NODERECLAIM,
297 NR_ANON_MAPPED,
298 NR_FILE_MAPPED,
299 NR_FILE_PAGES,
300 NR_FILE_DIRTY,
301 NR_WRITEBACK,
302 NR_SHMEM,
303 NR_SHMEM_THPS,
304 NR_FILE_THPS,
305 NR_ANON_THPS,
306 NR_KERNEL_STACK_KB,
307 NR_PAGETABLE,
308 NR_SECONDARY_PAGETABLE,
309#ifdef CONFIG_SWAP
310 NR_SWAPCACHE,
311#endif
312#ifdef CONFIG_NUMA_BALANCING
313 PGPROMOTE_SUCCESS,
314#endif
315 PGDEMOTE_KSWAPD,
316 PGDEMOTE_DIRECT,
317 PGDEMOTE_KHUGEPAGED,
318#ifdef CONFIG_HUGETLB_PAGE
319 NR_HUGETLB,
320#endif
321};
322
323static const unsigned int memcg_stat_items[] = {
324 MEMCG_SWAP,
325 MEMCG_SOCK,
326 MEMCG_PERCPU_B,
327 MEMCG_VMALLOC,
328 MEMCG_KMEM,
329 MEMCG_ZSWAP_B,
330 MEMCG_ZSWAPPED,
331};
332
333#define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
334#define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
335 ARRAY_SIZE(memcg_stat_items))
336#define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
337static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
338
339static void init_memcg_stats(void)
340{
341 u8 i, j = 0;
342
343 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
344
345 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
346
347 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
348 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
349
350 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
351 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
352}
353
354static inline int memcg_stats_index(int idx)
355{
356 return mem_cgroup_stats_index[idx];
357}
358
359struct lruvec_stats_percpu {
360 /* Local (CPU and cgroup) state */
361 long state[NR_MEMCG_NODE_STAT_ITEMS];
362
363 /* Delta calculation for lockless upward propagation */
364 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
365};
366
367struct lruvec_stats {
368 /* Aggregated (CPU and subtree) state */
369 long state[NR_MEMCG_NODE_STAT_ITEMS];
370
371 /* Non-hierarchical (CPU aggregated) state */
372 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
373
374 /* Pending child counts during tree propagation */
375 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
376};
377
378unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
379{
380 struct mem_cgroup_per_node *pn;
381 long x;
382 int i;
383
384 if (mem_cgroup_disabled())
385 return node_page_state(lruvec_pgdat(lruvec), idx);
386
387 i = memcg_stats_index(idx);
388 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
389 return 0;
390
391 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
392 x = READ_ONCE(pn->lruvec_stats->state[i]);
393#ifdef CONFIG_SMP
394 if (x < 0)
395 x = 0;
396#endif
397 return x;
398}
399
400unsigned long lruvec_page_state_local(struct lruvec *lruvec,
401 enum node_stat_item idx)
402{
403 struct mem_cgroup_per_node *pn;
404 long x;
405 int i;
406
407 if (mem_cgroup_disabled())
408 return node_page_state(lruvec_pgdat(lruvec), idx);
409
410 i = memcg_stats_index(idx);
411 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
412 return 0;
413
414 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
415 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
416#ifdef CONFIG_SMP
417 if (x < 0)
418 x = 0;
419#endif
420 return x;
421}
422
423/* Subset of vm_event_item to report for memcg event stats */
424static const unsigned int memcg_vm_event_stat[] = {
425#ifdef CONFIG_MEMCG_V1
426 PGPGIN,
427 PGPGOUT,
428#endif
429 PSWPIN,
430 PSWPOUT,
431 PGSCAN_KSWAPD,
432 PGSCAN_DIRECT,
433 PGSCAN_KHUGEPAGED,
434 PGSTEAL_KSWAPD,
435 PGSTEAL_DIRECT,
436 PGSTEAL_KHUGEPAGED,
437 PGFAULT,
438 PGMAJFAULT,
439 PGREFILL,
440 PGACTIVATE,
441 PGDEACTIVATE,
442 PGLAZYFREE,
443 PGLAZYFREED,
444#ifdef CONFIG_SWAP
445 SWPIN_ZERO,
446 SWPOUT_ZERO,
447#endif
448#ifdef CONFIG_ZSWAP
449 ZSWPIN,
450 ZSWPOUT,
451 ZSWPWB,
452#endif
453#ifdef CONFIG_TRANSPARENT_HUGEPAGE
454 THP_FAULT_ALLOC,
455 THP_COLLAPSE_ALLOC,
456 THP_SWPOUT,
457 THP_SWPOUT_FALLBACK,
458#endif
459#ifdef CONFIG_NUMA_BALANCING
460 NUMA_PAGE_MIGRATE,
461 NUMA_PTE_UPDATES,
462 NUMA_HINT_FAULTS,
463#endif
464};
465
466#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
467static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
468
469static void init_memcg_events(void)
470{
471 u8 i;
472
473 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
474
475 memset(mem_cgroup_events_index, U8_MAX,
476 sizeof(mem_cgroup_events_index));
477
478 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
479 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
480}
481
482static inline int memcg_events_index(enum vm_event_item idx)
483{
484 return mem_cgroup_events_index[idx];
485}
486
487struct memcg_vmstats_percpu {
488 /* Stats updates since the last flush */
489 unsigned int stats_updates;
490
491 /* Cached pointers for fast iteration in memcg_rstat_updated() */
492 struct memcg_vmstats_percpu *parent;
493 struct memcg_vmstats *vmstats;
494
495 /* The above should fit a single cacheline for memcg_rstat_updated() */
496
497 /* Local (CPU and cgroup) page state & events */
498 long state[MEMCG_VMSTAT_SIZE];
499 unsigned long events[NR_MEMCG_EVENTS];
500
501 /* Delta calculation for lockless upward propagation */
502 long state_prev[MEMCG_VMSTAT_SIZE];
503 unsigned long events_prev[NR_MEMCG_EVENTS];
504} ____cacheline_aligned;
505
506struct memcg_vmstats {
507 /* Aggregated (CPU and subtree) page state & events */
508 long state[MEMCG_VMSTAT_SIZE];
509 unsigned long events[NR_MEMCG_EVENTS];
510
511 /* Non-hierarchical (CPU aggregated) page state & events */
512 long state_local[MEMCG_VMSTAT_SIZE];
513 unsigned long events_local[NR_MEMCG_EVENTS];
514
515 /* Pending child counts during tree propagation */
516 long state_pending[MEMCG_VMSTAT_SIZE];
517 unsigned long events_pending[NR_MEMCG_EVENTS];
518
519 /* Stats updates since the last flush */
520 atomic64_t stats_updates;
521};
522
523/*
524 * memcg and lruvec stats flushing
525 *
526 * Many codepaths leading to stats update or read are performance sensitive and
527 * adding stats flushing in such codepaths is not desirable. So, to optimize the
528 * flushing the kernel does:
529 *
530 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
531 * rstat update tree grow unbounded.
532 *
533 * 2) Flush the stats synchronously on reader side only when there are more than
534 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
535 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
536 * only for 2 seconds due to (1).
537 */
538static void flush_memcg_stats_dwork(struct work_struct *w);
539static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
540static u64 flush_last_time;
541
542#define FLUSH_TIME (2UL*HZ)
543
544/*
545 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
546 * not rely on this as part of an acquired spinlock_t lock. These functions are
547 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
548 * is sufficient.
549 */
550static void memcg_stats_lock(void)
551{
552 preempt_disable_nested();
553 VM_WARN_ON_IRQS_ENABLED();
554}
555
556static void __memcg_stats_lock(void)
557{
558 preempt_disable_nested();
559}
560
561static void memcg_stats_unlock(void)
562{
563 preempt_enable_nested();
564}
565
566
567static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
568{
569 return atomic64_read(&vmstats->stats_updates) >
570 MEMCG_CHARGE_BATCH * num_online_cpus();
571}
572
573static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
574{
575 struct memcg_vmstats_percpu *statc;
576 int cpu = smp_processor_id();
577 unsigned int stats_updates;
578
579 if (!val)
580 return;
581
582 cgroup_rstat_updated(memcg->css.cgroup, cpu);
583 statc = this_cpu_ptr(memcg->vmstats_percpu);
584 for (; statc; statc = statc->parent) {
585 stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
586 WRITE_ONCE(statc->stats_updates, stats_updates);
587 if (stats_updates < MEMCG_CHARGE_BATCH)
588 continue;
589
590 /*
591 * If @memcg is already flush-able, increasing stats_updates is
592 * redundant. Avoid the overhead of the atomic update.
593 */
594 if (!memcg_vmstats_needs_flush(statc->vmstats))
595 atomic64_add(stats_updates,
596 &statc->vmstats->stats_updates);
597 WRITE_ONCE(statc->stats_updates, 0);
598 }
599}
600
601static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
602{
603 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
604
605 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates),
606 force, needs_flush);
607
608 if (!force && !needs_flush)
609 return;
610
611 if (mem_cgroup_is_root(memcg))
612 WRITE_ONCE(flush_last_time, jiffies_64);
613
614 cgroup_rstat_flush(memcg->css.cgroup);
615}
616
617/*
618 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
619 * @memcg: root of the subtree to flush
620 *
621 * Flushing is serialized by the underlying global rstat lock. There is also a
622 * minimum amount of work to be done even if there are no stat updates to flush.
623 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
624 * avoids unnecessary work and contention on the underlying lock.
625 */
626void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
627{
628 if (mem_cgroup_disabled())
629 return;
630
631 if (!memcg)
632 memcg = root_mem_cgroup;
633
634 __mem_cgroup_flush_stats(memcg, false);
635}
636
637void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
638{
639 /* Only flush if the periodic flusher is one full cycle late */
640 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
641 mem_cgroup_flush_stats(memcg);
642}
643
644static void flush_memcg_stats_dwork(struct work_struct *w)
645{
646 /*
647 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
648 * in latency-sensitive paths is as cheap as possible.
649 */
650 __mem_cgroup_flush_stats(root_mem_cgroup, true);
651 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
652}
653
654unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
655{
656 long x;
657 int i = memcg_stats_index(idx);
658
659 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
660 return 0;
661
662 x = READ_ONCE(memcg->vmstats->state[i]);
663#ifdef CONFIG_SMP
664 if (x < 0)
665 x = 0;
666#endif
667 return x;
668}
669
670static int memcg_page_state_unit(int item);
671
672/*
673 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
674 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
675 */
676static int memcg_state_val_in_pages(int idx, int val)
677{
678 int unit = memcg_page_state_unit(idx);
679
680 if (!val || unit == PAGE_SIZE)
681 return val;
682 else
683 return max(val * unit / PAGE_SIZE, 1UL);
684}
685
686/**
687 * __mod_memcg_state - update cgroup memory statistics
688 * @memcg: the memory cgroup
689 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
690 * @val: delta to add to the counter, can be negative
691 */
692void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
693 int val)
694{
695 int i = memcg_stats_index(idx);
696
697 if (mem_cgroup_disabled())
698 return;
699
700 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
701 return;
702
703 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
704 val = memcg_state_val_in_pages(idx, val);
705 memcg_rstat_updated(memcg, val);
706 trace_mod_memcg_state(memcg, idx, val);
707}
708
709/* idx can be of type enum memcg_stat_item or node_stat_item. */
710unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
711{
712 long x;
713 int i = memcg_stats_index(idx);
714
715 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
716 return 0;
717
718 x = READ_ONCE(memcg->vmstats->state_local[i]);
719#ifdef CONFIG_SMP
720 if (x < 0)
721 x = 0;
722#endif
723 return x;
724}
725
726static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
727 enum node_stat_item idx,
728 int val)
729{
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 int i = memcg_stats_index(idx);
733
734 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
735 return;
736
737 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
738 memcg = pn->memcg;
739
740 /*
741 * The caller from rmap relies on disabled preemption because they never
742 * update their counter from in-interrupt context. For these two
743 * counters we check that the update is never performed from an
744 * interrupt context while other caller need to have disabled interrupt.
745 */
746 __memcg_stats_lock();
747 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
748 switch (idx) {
749 case NR_ANON_MAPPED:
750 case NR_FILE_MAPPED:
751 case NR_ANON_THPS:
752 WARN_ON_ONCE(!in_task());
753 break;
754 default:
755 VM_WARN_ON_IRQS_ENABLED();
756 }
757 }
758
759 /* Update memcg */
760 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
761
762 /* Update lruvec */
763 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
764
765 val = memcg_state_val_in_pages(idx, val);
766 memcg_rstat_updated(memcg, val);
767 trace_mod_memcg_lruvec_state(memcg, idx, val);
768 memcg_stats_unlock();
769}
770
771/**
772 * __mod_lruvec_state - update lruvec memory statistics
773 * @lruvec: the lruvec
774 * @idx: the stat item
775 * @val: delta to add to the counter, can be negative
776 *
777 * The lruvec is the intersection of the NUMA node and a cgroup. This
778 * function updates the all three counters that are affected by a
779 * change of state at this level: per-node, per-cgroup, per-lruvec.
780 */
781void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
782 int val)
783{
784 /* Update node */
785 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
786
787 /* Update memcg and lruvec */
788 if (!mem_cgroup_disabled())
789 __mod_memcg_lruvec_state(lruvec, idx, val);
790}
791
792void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
793 int val)
794{
795 struct mem_cgroup *memcg;
796 pg_data_t *pgdat = folio_pgdat(folio);
797 struct lruvec *lruvec;
798
799 rcu_read_lock();
800 memcg = folio_memcg(folio);
801 /* Untracked pages have no memcg, no lruvec. Update only the node */
802 if (!memcg) {
803 rcu_read_unlock();
804 __mod_node_page_state(pgdat, idx, val);
805 return;
806 }
807
808 lruvec = mem_cgroup_lruvec(memcg, pgdat);
809 __mod_lruvec_state(lruvec, idx, val);
810 rcu_read_unlock();
811}
812EXPORT_SYMBOL(__lruvec_stat_mod_folio);
813
814void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
815{
816 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
817 struct mem_cgroup *memcg;
818 struct lruvec *lruvec;
819
820 rcu_read_lock();
821 memcg = mem_cgroup_from_slab_obj(p);
822
823 /*
824 * Untracked pages have no memcg, no lruvec. Update only the
825 * node. If we reparent the slab objects to the root memcg,
826 * when we free the slab object, we need to update the per-memcg
827 * vmstats to keep it correct for the root memcg.
828 */
829 if (!memcg) {
830 __mod_node_page_state(pgdat, idx, val);
831 } else {
832 lruvec = mem_cgroup_lruvec(memcg, pgdat);
833 __mod_lruvec_state(lruvec, idx, val);
834 }
835 rcu_read_unlock();
836}
837
838/**
839 * __count_memcg_events - account VM events in a cgroup
840 * @memcg: the memory cgroup
841 * @idx: the event item
842 * @count: the number of events that occurred
843 */
844void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
845 unsigned long count)
846{
847 int i = memcg_events_index(idx);
848
849 if (mem_cgroup_disabled())
850 return;
851
852 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
853 return;
854
855 memcg_stats_lock();
856 __this_cpu_add(memcg->vmstats_percpu->events[i], count);
857 memcg_rstat_updated(memcg, count);
858 trace_count_memcg_events(memcg, idx, count);
859 memcg_stats_unlock();
860}
861
862unsigned long memcg_events(struct mem_cgroup *memcg, int event)
863{
864 int i = memcg_events_index(event);
865
866 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
867 return 0;
868
869 return READ_ONCE(memcg->vmstats->events[i]);
870}
871
872unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
873{
874 int i = memcg_events_index(event);
875
876 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
877 return 0;
878
879 return READ_ONCE(memcg->vmstats->events_local[i]);
880}
881
882struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
883{
884 /*
885 * mm_update_next_owner() may clear mm->owner to NULL
886 * if it races with swapoff, page migration, etc.
887 * So this can be called with p == NULL.
888 */
889 if (unlikely(!p))
890 return NULL;
891
892 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
893}
894EXPORT_SYMBOL(mem_cgroup_from_task);
895
896static __always_inline struct mem_cgroup *active_memcg(void)
897{
898 if (!in_task())
899 return this_cpu_read(int_active_memcg);
900 else
901 return current->active_memcg;
902}
903
904/**
905 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
906 * @mm: mm from which memcg should be extracted. It can be NULL.
907 *
908 * Obtain a reference on mm->memcg and returns it if successful. If mm
909 * is NULL, then the memcg is chosen as follows:
910 * 1) The active memcg, if set.
911 * 2) current->mm->memcg, if available
912 * 3) root memcg
913 * If mem_cgroup is disabled, NULL is returned.
914 */
915struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
916{
917 struct mem_cgroup *memcg;
918
919 if (mem_cgroup_disabled())
920 return NULL;
921
922 /*
923 * Page cache insertions can happen without an
924 * actual mm context, e.g. during disk probing
925 * on boot, loopback IO, acct() writes etc.
926 *
927 * No need to css_get on root memcg as the reference
928 * counting is disabled on the root level in the
929 * cgroup core. See CSS_NO_REF.
930 */
931 if (unlikely(!mm)) {
932 memcg = active_memcg();
933 if (unlikely(memcg)) {
934 /* remote memcg must hold a ref */
935 css_get(&memcg->css);
936 return memcg;
937 }
938 mm = current->mm;
939 if (unlikely(!mm))
940 return root_mem_cgroup;
941 }
942
943 rcu_read_lock();
944 do {
945 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
946 if (unlikely(!memcg))
947 memcg = root_mem_cgroup;
948 } while (!css_tryget(&memcg->css));
949 rcu_read_unlock();
950 return memcg;
951}
952EXPORT_SYMBOL(get_mem_cgroup_from_mm);
953
954/**
955 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
956 */
957struct mem_cgroup *get_mem_cgroup_from_current(void)
958{
959 struct mem_cgroup *memcg;
960
961 if (mem_cgroup_disabled())
962 return NULL;
963
964again:
965 rcu_read_lock();
966 memcg = mem_cgroup_from_task(current);
967 if (!css_tryget(&memcg->css)) {
968 rcu_read_unlock();
969 goto again;
970 }
971 rcu_read_unlock();
972 return memcg;
973}
974
975/**
976 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
977 * @folio: folio from which memcg should be extracted.
978 */
979struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
980{
981 struct mem_cgroup *memcg = folio_memcg(folio);
982
983 if (mem_cgroup_disabled())
984 return NULL;
985
986 rcu_read_lock();
987 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
988 memcg = root_mem_cgroup;
989 rcu_read_unlock();
990 return memcg;
991}
992
993/**
994 * mem_cgroup_iter - iterate over memory cgroup hierarchy
995 * @root: hierarchy root
996 * @prev: previously returned memcg, NULL on first invocation
997 * @reclaim: cookie for shared reclaim walks, NULL for full walks
998 *
999 * Returns references to children of the hierarchy below @root, or
1000 * @root itself, or %NULL after a full round-trip.
1001 *
1002 * Caller must pass the return value in @prev on subsequent
1003 * invocations for reference counting, or use mem_cgroup_iter_break()
1004 * to cancel a hierarchy walk before the round-trip is complete.
1005 *
1006 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1007 * in the hierarchy among all concurrent reclaimers operating on the
1008 * same node.
1009 */
1010struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1011 struct mem_cgroup *prev,
1012 struct mem_cgroup_reclaim_cookie *reclaim)
1013{
1014 struct mem_cgroup_reclaim_iter *iter;
1015 struct cgroup_subsys_state *css;
1016 struct mem_cgroup *pos;
1017 struct mem_cgroup *next;
1018
1019 if (mem_cgroup_disabled())
1020 return NULL;
1021
1022 if (!root)
1023 root = root_mem_cgroup;
1024
1025 rcu_read_lock();
1026restart:
1027 next = NULL;
1028
1029 if (reclaim) {
1030 int gen;
1031 int nid = reclaim->pgdat->node_id;
1032
1033 iter = &root->nodeinfo[nid]->iter;
1034 gen = atomic_read(&iter->generation);
1035
1036 /*
1037 * On start, join the current reclaim iteration cycle.
1038 * Exit when a concurrent walker completes it.
1039 */
1040 if (!prev)
1041 reclaim->generation = gen;
1042 else if (reclaim->generation != gen)
1043 goto out_unlock;
1044
1045 pos = READ_ONCE(iter->position);
1046 } else
1047 pos = prev;
1048
1049 css = pos ? &pos->css : NULL;
1050
1051 while ((css = css_next_descendant_pre(css, &root->css))) {
1052 /*
1053 * Verify the css and acquire a reference. The root
1054 * is provided by the caller, so we know it's alive
1055 * and kicking, and don't take an extra reference.
1056 */
1057 if (css == &root->css || css_tryget(css))
1058 break;
1059 }
1060
1061 next = mem_cgroup_from_css(css);
1062
1063 if (reclaim) {
1064 /*
1065 * The position could have already been updated by a competing
1066 * thread, so check that the value hasn't changed since we read
1067 * it to avoid reclaiming from the same cgroup twice.
1068 */
1069 if (cmpxchg(&iter->position, pos, next) != pos) {
1070 if (css && css != &root->css)
1071 css_put(css);
1072 goto restart;
1073 }
1074
1075 if (!next) {
1076 atomic_inc(&iter->generation);
1077
1078 /*
1079 * Reclaimers share the hierarchy walk, and a
1080 * new one might jump in right at the end of
1081 * the hierarchy - make sure they see at least
1082 * one group and restart from the beginning.
1083 */
1084 if (!prev)
1085 goto restart;
1086 }
1087 }
1088
1089out_unlock:
1090 rcu_read_unlock();
1091 if (prev && prev != root)
1092 css_put(&prev->css);
1093
1094 return next;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 struct mem_cgroup *prev)
1104{
1105 if (!root)
1106 root = root_mem_cgroup;
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 struct mem_cgroup *dead_memcg)
1113{
1114 struct mem_cgroup_reclaim_iter *iter;
1115 struct mem_cgroup_per_node *mz;
1116 int nid;
1117
1118 for_each_node(nid) {
1119 mz = from->nodeinfo[nid];
1120 iter = &mz->iter;
1121 cmpxchg(&iter->position, dead_memcg, NULL);
1122 }
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup *last;
1129
1130 do {
1131 __invalidate_reclaim_iterators(memcg, dead_memcg);
1132 last = memcg;
1133 } while ((memcg = parent_mem_cgroup(memcg)));
1134
1135 /*
1136 * When cgroup1 non-hierarchy mode is used,
1137 * parent_mem_cgroup() does not walk all the way up to the
1138 * cgroup root (root_mem_cgroup). So we have to handle
1139 * dead_memcg from cgroup root separately.
1140 */
1141 if (!mem_cgroup_is_root(last))
1142 __invalidate_reclaim_iterators(root_mem_cgroup,
1143 dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop. Otherwise, it will iterate
1155 * over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162 struct mem_cgroup *iter;
1163 int ret = 0;
1164 int i = 0;
1165
1166 BUG_ON(mem_cgroup_is_root(memcg));
1167
1168 for_each_mem_cgroup_tree(iter, memcg) {
1169 struct css_task_iter it;
1170 struct task_struct *task;
1171
1172 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1173 while (!ret && (task = css_task_iter_next(&it))) {
1174 /* Avoid potential softlockup warning */
1175 if ((++i & 1023) == 0)
1176 cond_resched();
1177 ret = fn(task, arg);
1178 }
1179 css_task_iter_end(&it);
1180 if (ret) {
1181 mem_cgroup_iter_break(memcg, iter);
1182 break;
1183 }
1184 }
1185}
1186
1187#ifdef CONFIG_DEBUG_VM
1188void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1189{
1190 struct mem_cgroup *memcg;
1191
1192 if (mem_cgroup_disabled())
1193 return;
1194
1195 memcg = folio_memcg(folio);
1196
1197 if (!memcg)
1198 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1199 else
1200 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1201}
1202#endif
1203
1204/**
1205 * folio_lruvec_lock - Lock the lruvec for a folio.
1206 * @folio: Pointer to the folio.
1207 *
1208 * These functions are safe to use under any of the following conditions:
1209 * - folio locked
1210 * - folio_test_lru false
1211 * - folio frozen (refcount of 0)
1212 *
1213 * Return: The lruvec this folio is on with its lock held.
1214 */
1215struct lruvec *folio_lruvec_lock(struct folio *folio)
1216{
1217 struct lruvec *lruvec = folio_lruvec(folio);
1218
1219 spin_lock(&lruvec->lru_lock);
1220 lruvec_memcg_debug(lruvec, folio);
1221
1222 return lruvec;
1223}
1224
1225/**
1226 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1227 * @folio: Pointer to the folio.
1228 *
1229 * These functions are safe to use under any of the following conditions:
1230 * - folio locked
1231 * - folio_test_lru false
1232 * - folio frozen (refcount of 0)
1233 *
1234 * Return: The lruvec this folio is on with its lock held and interrupts
1235 * disabled.
1236 */
1237struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1238{
1239 struct lruvec *lruvec = folio_lruvec(folio);
1240
1241 spin_lock_irq(&lruvec->lru_lock);
1242 lruvec_memcg_debug(lruvec, folio);
1243
1244 return lruvec;
1245}
1246
1247/**
1248 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1249 * @folio: Pointer to the folio.
1250 * @flags: Pointer to irqsave flags.
1251 *
1252 * These functions are safe to use under any of the following conditions:
1253 * - folio locked
1254 * - folio_test_lru false
1255 * - folio frozen (refcount of 0)
1256 *
1257 * Return: The lruvec this folio is on with its lock held and interrupts
1258 * disabled.
1259 */
1260struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1261 unsigned long *flags)
1262{
1263 struct lruvec *lruvec = folio_lruvec(folio);
1264
1265 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1266 lruvec_memcg_debug(lruvec, folio);
1267
1268 return lruvec;
1269}
1270
1271/**
1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1273 * @lruvec: mem_cgroup per zone lru vector
1274 * @lru: index of lru list the page is sitting on
1275 * @zid: zone id of the accounted pages
1276 * @nr_pages: positive when adding or negative when removing
1277 *
1278 * This function must be called under lru_lock, just before a page is added
1279 * to or just after a page is removed from an lru list.
1280 */
1281void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1282 int zid, int nr_pages)
1283{
1284 struct mem_cgroup_per_node *mz;
1285 unsigned long *lru_size;
1286 long size;
1287
1288 if (mem_cgroup_disabled())
1289 return;
1290
1291 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1292 lru_size = &mz->lru_zone_size[zid][lru];
1293
1294 if (nr_pages < 0)
1295 *lru_size += nr_pages;
1296
1297 size = *lru_size;
1298 if (WARN_ONCE(size < 0,
1299 "%s(%p, %d, %d): lru_size %ld\n",
1300 __func__, lruvec, lru, nr_pages, size)) {
1301 VM_BUG_ON(1);
1302 *lru_size = 0;
1303 }
1304
1305 if (nr_pages > 0)
1306 *lru_size += nr_pages;
1307}
1308
1309/**
1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1311 * @memcg: the memory cgroup
1312 *
1313 * Returns the maximum amount of memory @mem can be charged with, in
1314 * pages.
1315 */
1316static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1317{
1318 unsigned long margin = 0;
1319 unsigned long count;
1320 unsigned long limit;
1321
1322 count = page_counter_read(&memcg->memory);
1323 limit = READ_ONCE(memcg->memory.max);
1324 if (count < limit)
1325 margin = limit - count;
1326
1327 if (do_memsw_account()) {
1328 count = page_counter_read(&memcg->memsw);
1329 limit = READ_ONCE(memcg->memsw.max);
1330 if (count < limit)
1331 margin = min(margin, limit - count);
1332 else
1333 margin = 0;
1334 }
1335
1336 return margin;
1337}
1338
1339struct memory_stat {
1340 const char *name;
1341 unsigned int idx;
1342};
1343
1344static const struct memory_stat memory_stats[] = {
1345 { "anon", NR_ANON_MAPPED },
1346 { "file", NR_FILE_PAGES },
1347 { "kernel", MEMCG_KMEM },
1348 { "kernel_stack", NR_KERNEL_STACK_KB },
1349 { "pagetables", NR_PAGETABLE },
1350 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1351 { "percpu", MEMCG_PERCPU_B },
1352 { "sock", MEMCG_SOCK },
1353 { "vmalloc", MEMCG_VMALLOC },
1354 { "shmem", NR_SHMEM },
1355#ifdef CONFIG_ZSWAP
1356 { "zswap", MEMCG_ZSWAP_B },
1357 { "zswapped", MEMCG_ZSWAPPED },
1358#endif
1359 { "file_mapped", NR_FILE_MAPPED },
1360 { "file_dirty", NR_FILE_DIRTY },
1361 { "file_writeback", NR_WRITEBACK },
1362#ifdef CONFIG_SWAP
1363 { "swapcached", NR_SWAPCACHE },
1364#endif
1365#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1366 { "anon_thp", NR_ANON_THPS },
1367 { "file_thp", NR_FILE_THPS },
1368 { "shmem_thp", NR_SHMEM_THPS },
1369#endif
1370 { "inactive_anon", NR_INACTIVE_ANON },
1371 { "active_anon", NR_ACTIVE_ANON },
1372 { "inactive_file", NR_INACTIVE_FILE },
1373 { "active_file", NR_ACTIVE_FILE },
1374 { "unevictable", NR_UNEVICTABLE },
1375 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1376 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1377#ifdef CONFIG_HUGETLB_PAGE
1378 { "hugetlb", NR_HUGETLB },
1379#endif
1380
1381 /* The memory events */
1382 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1383 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1384 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1385 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1386 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1387 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1388 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1389
1390 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1391 { "pgdemote_direct", PGDEMOTE_DIRECT },
1392 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1393#ifdef CONFIG_NUMA_BALANCING
1394 { "pgpromote_success", PGPROMOTE_SUCCESS },
1395#endif
1396};
1397
1398/* The actual unit of the state item, not the same as the output unit */
1399static int memcg_page_state_unit(int item)
1400{
1401 switch (item) {
1402 case MEMCG_PERCPU_B:
1403 case MEMCG_ZSWAP_B:
1404 case NR_SLAB_RECLAIMABLE_B:
1405 case NR_SLAB_UNRECLAIMABLE_B:
1406 return 1;
1407 case NR_KERNEL_STACK_KB:
1408 return SZ_1K;
1409 default:
1410 return PAGE_SIZE;
1411 }
1412}
1413
1414/* Translate stat items to the correct unit for memory.stat output */
1415static int memcg_page_state_output_unit(int item)
1416{
1417 /*
1418 * Workingset state is actually in pages, but we export it to userspace
1419 * as a scalar count of events, so special case it here.
1420 *
1421 * Demotion and promotion activities are exported in pages, consistent
1422 * with their global counterparts.
1423 */
1424 switch (item) {
1425 case WORKINGSET_REFAULT_ANON:
1426 case WORKINGSET_REFAULT_FILE:
1427 case WORKINGSET_ACTIVATE_ANON:
1428 case WORKINGSET_ACTIVATE_FILE:
1429 case WORKINGSET_RESTORE_ANON:
1430 case WORKINGSET_RESTORE_FILE:
1431 case WORKINGSET_NODERECLAIM:
1432 case PGDEMOTE_KSWAPD:
1433 case PGDEMOTE_DIRECT:
1434 case PGDEMOTE_KHUGEPAGED:
1435#ifdef CONFIG_NUMA_BALANCING
1436 case PGPROMOTE_SUCCESS:
1437#endif
1438 return 1;
1439 default:
1440 return memcg_page_state_unit(item);
1441 }
1442}
1443
1444unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1445{
1446 return memcg_page_state(memcg, item) *
1447 memcg_page_state_output_unit(item);
1448}
1449
1450unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1451{
1452 return memcg_page_state_local(memcg, item) *
1453 memcg_page_state_output_unit(item);
1454}
1455
1456static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1457{
1458 int i;
1459
1460 /*
1461 * Provide statistics on the state of the memory subsystem as
1462 * well as cumulative event counters that show past behavior.
1463 *
1464 * This list is ordered following a combination of these gradients:
1465 * 1) generic big picture -> specifics and details
1466 * 2) reflecting userspace activity -> reflecting kernel heuristics
1467 *
1468 * Current memory state:
1469 */
1470 mem_cgroup_flush_stats(memcg);
1471
1472 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1473 u64 size;
1474
1475#ifdef CONFIG_HUGETLB_PAGE
1476 if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1477 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
1478 continue;
1479#endif
1480 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1481 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1482
1483 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1484 size += memcg_page_state_output(memcg,
1485 NR_SLAB_RECLAIMABLE_B);
1486 seq_buf_printf(s, "slab %llu\n", size);
1487 }
1488 }
1489
1490 /* Accumulated memory events */
1491 seq_buf_printf(s, "pgscan %lu\n",
1492 memcg_events(memcg, PGSCAN_KSWAPD) +
1493 memcg_events(memcg, PGSCAN_DIRECT) +
1494 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1495 seq_buf_printf(s, "pgsteal %lu\n",
1496 memcg_events(memcg, PGSTEAL_KSWAPD) +
1497 memcg_events(memcg, PGSTEAL_DIRECT) +
1498 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1499
1500 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1501#ifdef CONFIG_MEMCG_V1
1502 if (memcg_vm_event_stat[i] == PGPGIN ||
1503 memcg_vm_event_stat[i] == PGPGOUT)
1504 continue;
1505#endif
1506 seq_buf_printf(s, "%s %lu\n",
1507 vm_event_name(memcg_vm_event_stat[i]),
1508 memcg_events(memcg, memcg_vm_event_stat[i]));
1509 }
1510}
1511
1512static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1513{
1514 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1515 memcg_stat_format(memcg, s);
1516 else
1517 memcg1_stat_format(memcg, s);
1518 if (seq_buf_has_overflowed(s))
1519 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1520}
1521
1522/**
1523 * mem_cgroup_print_oom_context: Print OOM information relevant to
1524 * memory controller.
1525 * @memcg: The memory cgroup that went over limit
1526 * @p: Task that is going to be killed
1527 *
1528 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1529 * enabled
1530 */
1531void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1532{
1533 rcu_read_lock();
1534
1535 if (memcg) {
1536 pr_cont(",oom_memcg=");
1537 pr_cont_cgroup_path(memcg->css.cgroup);
1538 } else
1539 pr_cont(",global_oom");
1540 if (p) {
1541 pr_cont(",task_memcg=");
1542 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1543 }
1544 rcu_read_unlock();
1545}
1546
1547/**
1548 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1549 * memory controller.
1550 * @memcg: The memory cgroup that went over limit
1551 */
1552void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1553{
1554 /* Use static buffer, for the caller is holding oom_lock. */
1555 static char buf[SEQ_BUF_SIZE];
1556 struct seq_buf s;
1557
1558 lockdep_assert_held(&oom_lock);
1559
1560 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1561 K((u64)page_counter_read(&memcg->memory)),
1562 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1563 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1564 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1565 K((u64)page_counter_read(&memcg->swap)),
1566 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1567#ifdef CONFIG_MEMCG_V1
1568 else {
1569 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1570 K((u64)page_counter_read(&memcg->memsw)),
1571 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1572 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1573 K((u64)page_counter_read(&memcg->kmem)),
1574 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1575 }
1576#endif
1577
1578 pr_info("Memory cgroup stats for ");
1579 pr_cont_cgroup_path(memcg->css.cgroup);
1580 pr_cont(":");
1581 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1582 memory_stat_format(memcg, &s);
1583 seq_buf_do_printk(&s, KERN_INFO);
1584}
1585
1586/*
1587 * Return the memory (and swap, if configured) limit for a memcg.
1588 */
1589unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1590{
1591 unsigned long max = READ_ONCE(memcg->memory.max);
1592
1593 if (do_memsw_account()) {
1594 if (mem_cgroup_swappiness(memcg)) {
1595 /* Calculate swap excess capacity from memsw limit */
1596 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1597
1598 max += min(swap, (unsigned long)total_swap_pages);
1599 }
1600 } else {
1601 if (mem_cgroup_swappiness(memcg))
1602 max += min(READ_ONCE(memcg->swap.max),
1603 (unsigned long)total_swap_pages);
1604 }
1605 return max;
1606}
1607
1608unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1609{
1610 return page_counter_read(&memcg->memory);
1611}
1612
1613static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1614 int order)
1615{
1616 struct oom_control oc = {
1617 .zonelist = NULL,
1618 .nodemask = NULL,
1619 .memcg = memcg,
1620 .gfp_mask = gfp_mask,
1621 .order = order,
1622 };
1623 bool ret = true;
1624
1625 if (mutex_lock_killable(&oom_lock))
1626 return true;
1627
1628 if (mem_cgroup_margin(memcg) >= (1 << order))
1629 goto unlock;
1630
1631 /*
1632 * A few threads which were not waiting at mutex_lock_killable() can
1633 * fail to bail out. Therefore, check again after holding oom_lock.
1634 */
1635 ret = task_is_dying() || out_of_memory(&oc);
1636
1637unlock:
1638 mutex_unlock(&oom_lock);
1639 return ret;
1640}
1641
1642/*
1643 * Returns true if successfully killed one or more processes. Though in some
1644 * corner cases it can return true even without killing any process.
1645 */
1646static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1647{
1648 bool locked, ret;
1649
1650 if (order > PAGE_ALLOC_COSTLY_ORDER)
1651 return false;
1652
1653 memcg_memory_event(memcg, MEMCG_OOM);
1654
1655 if (!memcg1_oom_prepare(memcg, &locked))
1656 return false;
1657
1658 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1659
1660 memcg1_oom_finish(memcg, locked);
1661
1662 return ret;
1663}
1664
1665/**
1666 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1667 * @victim: task to be killed by the OOM killer
1668 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1669 *
1670 * Returns a pointer to a memory cgroup, which has to be cleaned up
1671 * by killing all belonging OOM-killable tasks.
1672 *
1673 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1674 */
1675struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1676 struct mem_cgroup *oom_domain)
1677{
1678 struct mem_cgroup *oom_group = NULL;
1679 struct mem_cgroup *memcg;
1680
1681 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1682 return NULL;
1683
1684 if (!oom_domain)
1685 oom_domain = root_mem_cgroup;
1686
1687 rcu_read_lock();
1688
1689 memcg = mem_cgroup_from_task(victim);
1690 if (mem_cgroup_is_root(memcg))
1691 goto out;
1692
1693 /*
1694 * If the victim task has been asynchronously moved to a different
1695 * memory cgroup, we might end up killing tasks outside oom_domain.
1696 * In this case it's better to ignore memory.group.oom.
1697 */
1698 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1699 goto out;
1700
1701 /*
1702 * Traverse the memory cgroup hierarchy from the victim task's
1703 * cgroup up to the OOMing cgroup (or root) to find the
1704 * highest-level memory cgroup with oom.group set.
1705 */
1706 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1707 if (READ_ONCE(memcg->oom_group))
1708 oom_group = memcg;
1709
1710 if (memcg == oom_domain)
1711 break;
1712 }
1713
1714 if (oom_group)
1715 css_get(&oom_group->css);
1716out:
1717 rcu_read_unlock();
1718
1719 return oom_group;
1720}
1721
1722void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1723{
1724 pr_info("Tasks in ");
1725 pr_cont_cgroup_path(memcg->css.cgroup);
1726 pr_cont(" are going to be killed due to memory.oom.group set\n");
1727}
1728
1729struct memcg_stock_pcp {
1730 local_lock_t stock_lock;
1731 struct mem_cgroup *cached; /* this never be root cgroup */
1732 unsigned int nr_pages;
1733
1734 struct obj_cgroup *cached_objcg;
1735 struct pglist_data *cached_pgdat;
1736 unsigned int nr_bytes;
1737 int nr_slab_reclaimable_b;
1738 int nr_slab_unreclaimable_b;
1739
1740 struct work_struct work;
1741 unsigned long flags;
1742#define FLUSHING_CACHED_CHARGE 0
1743};
1744static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1745 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
1746};
1747static DEFINE_MUTEX(percpu_charge_mutex);
1748
1749static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1750static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1751 struct mem_cgroup *root_memcg);
1752
1753/**
1754 * consume_stock: Try to consume stocked charge on this cpu.
1755 * @memcg: memcg to consume from.
1756 * @nr_pages: how many pages to charge.
1757 *
1758 * The charges will only happen if @memcg matches the current cpu's memcg
1759 * stock, and at least @nr_pages are available in that stock. Failure to
1760 * service an allocation will refill the stock.
1761 *
1762 * returns true if successful, false otherwise.
1763 */
1764static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1765{
1766 struct memcg_stock_pcp *stock;
1767 unsigned int stock_pages;
1768 unsigned long flags;
1769 bool ret = false;
1770
1771 if (nr_pages > MEMCG_CHARGE_BATCH)
1772 return ret;
1773
1774 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1775
1776 stock = this_cpu_ptr(&memcg_stock);
1777 stock_pages = READ_ONCE(stock->nr_pages);
1778 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1779 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1780 ret = true;
1781 }
1782
1783 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1784
1785 return ret;
1786}
1787
1788/*
1789 * Returns stocks cached in percpu and reset cached information.
1790 */
1791static void drain_stock(struct memcg_stock_pcp *stock)
1792{
1793 unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1794 struct mem_cgroup *old = READ_ONCE(stock->cached);
1795
1796 if (!old)
1797 return;
1798
1799 if (stock_pages) {
1800 page_counter_uncharge(&old->memory, stock_pages);
1801 if (do_memsw_account())
1802 page_counter_uncharge(&old->memsw, stock_pages);
1803
1804 WRITE_ONCE(stock->nr_pages, 0);
1805 }
1806
1807 css_put(&old->css);
1808 WRITE_ONCE(stock->cached, NULL);
1809}
1810
1811static void drain_local_stock(struct work_struct *dummy)
1812{
1813 struct memcg_stock_pcp *stock;
1814 struct obj_cgroup *old = NULL;
1815 unsigned long flags;
1816
1817 /*
1818 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1819 * drain_stock races is that we always operate on local CPU stock
1820 * here with IRQ disabled
1821 */
1822 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1823
1824 stock = this_cpu_ptr(&memcg_stock);
1825 old = drain_obj_stock(stock);
1826 drain_stock(stock);
1827 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1828
1829 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1830 obj_cgroup_put(old);
1831}
1832
1833/*
1834 * Cache charges(val) to local per_cpu area.
1835 * This will be consumed by consume_stock() function, later.
1836 */
1837static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1838{
1839 struct memcg_stock_pcp *stock;
1840 unsigned int stock_pages;
1841
1842 stock = this_cpu_ptr(&memcg_stock);
1843 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1844 drain_stock(stock);
1845 css_get(&memcg->css);
1846 WRITE_ONCE(stock->cached, memcg);
1847 }
1848 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1849 WRITE_ONCE(stock->nr_pages, stock_pages);
1850
1851 if (stock_pages > MEMCG_CHARGE_BATCH)
1852 drain_stock(stock);
1853}
1854
1855static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1856{
1857 unsigned long flags;
1858
1859 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1860 __refill_stock(memcg, nr_pages);
1861 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1862}
1863
1864/*
1865 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1866 * of the hierarchy under it.
1867 */
1868void drain_all_stock(struct mem_cgroup *root_memcg)
1869{
1870 int cpu, curcpu;
1871
1872 /* If someone's already draining, avoid adding running more workers. */
1873 if (!mutex_trylock(&percpu_charge_mutex))
1874 return;
1875 /*
1876 * Notify other cpus that system-wide "drain" is running
1877 * We do not care about races with the cpu hotplug because cpu down
1878 * as well as workers from this path always operate on the local
1879 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1880 */
1881 migrate_disable();
1882 curcpu = smp_processor_id();
1883 for_each_online_cpu(cpu) {
1884 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1885 struct mem_cgroup *memcg;
1886 bool flush = false;
1887
1888 rcu_read_lock();
1889 memcg = READ_ONCE(stock->cached);
1890 if (memcg && READ_ONCE(stock->nr_pages) &&
1891 mem_cgroup_is_descendant(memcg, root_memcg))
1892 flush = true;
1893 else if (obj_stock_flush_required(stock, root_memcg))
1894 flush = true;
1895 rcu_read_unlock();
1896
1897 if (flush &&
1898 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1899 if (cpu == curcpu)
1900 drain_local_stock(&stock->work);
1901 else if (!cpu_is_isolated(cpu))
1902 schedule_work_on(cpu, &stock->work);
1903 }
1904 }
1905 migrate_enable();
1906 mutex_unlock(&percpu_charge_mutex);
1907}
1908
1909static int memcg_hotplug_cpu_dead(unsigned int cpu)
1910{
1911 struct memcg_stock_pcp *stock;
1912
1913 stock = &per_cpu(memcg_stock, cpu);
1914 drain_stock(stock);
1915
1916 return 0;
1917}
1918
1919static unsigned long reclaim_high(struct mem_cgroup *memcg,
1920 unsigned int nr_pages,
1921 gfp_t gfp_mask)
1922{
1923 unsigned long nr_reclaimed = 0;
1924
1925 do {
1926 unsigned long pflags;
1927
1928 if (page_counter_read(&memcg->memory) <=
1929 READ_ONCE(memcg->memory.high))
1930 continue;
1931
1932 memcg_memory_event(memcg, MEMCG_HIGH);
1933
1934 psi_memstall_enter(&pflags);
1935 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1936 gfp_mask,
1937 MEMCG_RECLAIM_MAY_SWAP,
1938 NULL);
1939 psi_memstall_leave(&pflags);
1940 } while ((memcg = parent_mem_cgroup(memcg)) &&
1941 !mem_cgroup_is_root(memcg));
1942
1943 return nr_reclaimed;
1944}
1945
1946static void high_work_func(struct work_struct *work)
1947{
1948 struct mem_cgroup *memcg;
1949
1950 memcg = container_of(work, struct mem_cgroup, high_work);
1951 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1952}
1953
1954/*
1955 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1956 * enough to still cause a significant slowdown in most cases, while still
1957 * allowing diagnostics and tracing to proceed without becoming stuck.
1958 */
1959#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1960
1961/*
1962 * When calculating the delay, we use these either side of the exponentiation to
1963 * maintain precision and scale to a reasonable number of jiffies (see the table
1964 * below.
1965 *
1966 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1967 * overage ratio to a delay.
1968 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1969 * proposed penalty in order to reduce to a reasonable number of jiffies, and
1970 * to produce a reasonable delay curve.
1971 *
1972 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1973 * reasonable delay curve compared to precision-adjusted overage, not
1974 * penalising heavily at first, but still making sure that growth beyond the
1975 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1976 * example, with a high of 100 megabytes:
1977 *
1978 * +-------+------------------------+
1979 * | usage | time to allocate in ms |
1980 * +-------+------------------------+
1981 * | 100M | 0 |
1982 * | 101M | 6 |
1983 * | 102M | 25 |
1984 * | 103M | 57 |
1985 * | 104M | 102 |
1986 * | 105M | 159 |
1987 * | 106M | 230 |
1988 * | 107M | 313 |
1989 * | 108M | 409 |
1990 * | 109M | 518 |
1991 * | 110M | 639 |
1992 * | 111M | 774 |
1993 * | 112M | 921 |
1994 * | 113M | 1081 |
1995 * | 114M | 1254 |
1996 * | 115M | 1439 |
1997 * | 116M | 1638 |
1998 * | 117M | 1849 |
1999 * | 118M | 2000 |
2000 * | 119M | 2000 |
2001 * | 120M | 2000 |
2002 * +-------+------------------------+
2003 */
2004 #define MEMCG_DELAY_PRECISION_SHIFT 20
2005 #define MEMCG_DELAY_SCALING_SHIFT 14
2006
2007static u64 calculate_overage(unsigned long usage, unsigned long high)
2008{
2009 u64 overage;
2010
2011 if (usage <= high)
2012 return 0;
2013
2014 /*
2015 * Prevent division by 0 in overage calculation by acting as if
2016 * it was a threshold of 1 page
2017 */
2018 high = max(high, 1UL);
2019
2020 overage = usage - high;
2021 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2022 return div64_u64(overage, high);
2023}
2024
2025static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2026{
2027 u64 overage, max_overage = 0;
2028
2029 do {
2030 overage = calculate_overage(page_counter_read(&memcg->memory),
2031 READ_ONCE(memcg->memory.high));
2032 max_overage = max(overage, max_overage);
2033 } while ((memcg = parent_mem_cgroup(memcg)) &&
2034 !mem_cgroup_is_root(memcg));
2035
2036 return max_overage;
2037}
2038
2039static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2040{
2041 u64 overage, max_overage = 0;
2042
2043 do {
2044 overage = calculate_overage(page_counter_read(&memcg->swap),
2045 READ_ONCE(memcg->swap.high));
2046 if (overage)
2047 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2048 max_overage = max(overage, max_overage);
2049 } while ((memcg = parent_mem_cgroup(memcg)) &&
2050 !mem_cgroup_is_root(memcg));
2051
2052 return max_overage;
2053}
2054
2055/*
2056 * Get the number of jiffies that we should penalise a mischievous cgroup which
2057 * is exceeding its memory.high by checking both it and its ancestors.
2058 */
2059static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2060 unsigned int nr_pages,
2061 u64 max_overage)
2062{
2063 unsigned long penalty_jiffies;
2064
2065 if (!max_overage)
2066 return 0;
2067
2068 /*
2069 * We use overage compared to memory.high to calculate the number of
2070 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2071 * fairly lenient on small overages, and increasingly harsh when the
2072 * memcg in question makes it clear that it has no intention of stopping
2073 * its crazy behaviour, so we exponentially increase the delay based on
2074 * overage amount.
2075 */
2076 penalty_jiffies = max_overage * max_overage * HZ;
2077 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2078 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2079
2080 /*
2081 * Factor in the task's own contribution to the overage, such that four
2082 * N-sized allocations are throttled approximately the same as one
2083 * 4N-sized allocation.
2084 *
2085 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2086 * larger the current charge patch is than that.
2087 */
2088 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2089}
2090
2091/*
2092 * Reclaims memory over the high limit. Called directly from
2093 * try_charge() (context permitting), as well as from the userland
2094 * return path where reclaim is always able to block.
2095 */
2096void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2097{
2098 unsigned long penalty_jiffies;
2099 unsigned long pflags;
2100 unsigned long nr_reclaimed;
2101 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2102 int nr_retries = MAX_RECLAIM_RETRIES;
2103 struct mem_cgroup *memcg;
2104 bool in_retry = false;
2105
2106 if (likely(!nr_pages))
2107 return;
2108
2109 memcg = get_mem_cgroup_from_mm(current->mm);
2110 current->memcg_nr_pages_over_high = 0;
2111
2112retry_reclaim:
2113 /*
2114 * Bail if the task is already exiting. Unlike memory.max,
2115 * memory.high enforcement isn't as strict, and there is no
2116 * OOM killer involved, which means the excess could already
2117 * be much bigger (and still growing) than it could for
2118 * memory.max; the dying task could get stuck in fruitless
2119 * reclaim for a long time, which isn't desirable.
2120 */
2121 if (task_is_dying())
2122 goto out;
2123
2124 /*
2125 * The allocating task should reclaim at least the batch size, but for
2126 * subsequent retries we only want to do what's necessary to prevent oom
2127 * or breaching resource isolation.
2128 *
2129 * This is distinct from memory.max or page allocator behaviour because
2130 * memory.high is currently batched, whereas memory.max and the page
2131 * allocator run every time an allocation is made.
2132 */
2133 nr_reclaimed = reclaim_high(memcg,
2134 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2135 gfp_mask);
2136
2137 /*
2138 * memory.high is breached and reclaim is unable to keep up. Throttle
2139 * allocators proactively to slow down excessive growth.
2140 */
2141 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2142 mem_find_max_overage(memcg));
2143
2144 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2145 swap_find_max_overage(memcg));
2146
2147 /*
2148 * Clamp the max delay per usermode return so as to still keep the
2149 * application moving forwards and also permit diagnostics, albeit
2150 * extremely slowly.
2151 */
2152 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2153
2154 /*
2155 * Don't sleep if the amount of jiffies this memcg owes us is so low
2156 * that it's not even worth doing, in an attempt to be nice to those who
2157 * go only a small amount over their memory.high value and maybe haven't
2158 * been aggressively reclaimed enough yet.
2159 */
2160 if (penalty_jiffies <= HZ / 100)
2161 goto out;
2162
2163 /*
2164 * If reclaim is making forward progress but we're still over
2165 * memory.high, we want to encourage that rather than doing allocator
2166 * throttling.
2167 */
2168 if (nr_reclaimed || nr_retries--) {
2169 in_retry = true;
2170 goto retry_reclaim;
2171 }
2172
2173 /*
2174 * Reclaim didn't manage to push usage below the limit, slow
2175 * this allocating task down.
2176 *
2177 * If we exit early, we're guaranteed to die (since
2178 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2179 * need to account for any ill-begotten jiffies to pay them off later.
2180 */
2181 psi_memstall_enter(&pflags);
2182 schedule_timeout_killable(penalty_jiffies);
2183 psi_memstall_leave(&pflags);
2184
2185out:
2186 css_put(&memcg->css);
2187}
2188
2189int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2190 unsigned int nr_pages)
2191{
2192 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2193 int nr_retries = MAX_RECLAIM_RETRIES;
2194 struct mem_cgroup *mem_over_limit;
2195 struct page_counter *counter;
2196 unsigned long nr_reclaimed;
2197 bool passed_oom = false;
2198 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2199 bool drained = false;
2200 bool raised_max_event = false;
2201 unsigned long pflags;
2202
2203retry:
2204 if (consume_stock(memcg, nr_pages))
2205 return 0;
2206
2207 if (!do_memsw_account() ||
2208 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2209 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2210 goto done_restock;
2211 if (do_memsw_account())
2212 page_counter_uncharge(&memcg->memsw, batch);
2213 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2214 } else {
2215 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2216 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2217 }
2218
2219 if (batch > nr_pages) {
2220 batch = nr_pages;
2221 goto retry;
2222 }
2223
2224 /*
2225 * Prevent unbounded recursion when reclaim operations need to
2226 * allocate memory. This might exceed the limits temporarily,
2227 * but we prefer facilitating memory reclaim and getting back
2228 * under the limit over triggering OOM kills in these cases.
2229 */
2230 if (unlikely(current->flags & PF_MEMALLOC))
2231 goto force;
2232
2233 if (unlikely(task_in_memcg_oom(current)))
2234 goto nomem;
2235
2236 if (!gfpflags_allow_blocking(gfp_mask))
2237 goto nomem;
2238
2239 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2240 raised_max_event = true;
2241
2242 psi_memstall_enter(&pflags);
2243 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2244 gfp_mask, reclaim_options, NULL);
2245 psi_memstall_leave(&pflags);
2246
2247 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2248 goto retry;
2249
2250 if (!drained) {
2251 drain_all_stock(mem_over_limit);
2252 drained = true;
2253 goto retry;
2254 }
2255
2256 if (gfp_mask & __GFP_NORETRY)
2257 goto nomem;
2258 /*
2259 * Even though the limit is exceeded at this point, reclaim
2260 * may have been able to free some pages. Retry the charge
2261 * before killing the task.
2262 *
2263 * Only for regular pages, though: huge pages are rather
2264 * unlikely to succeed so close to the limit, and we fall back
2265 * to regular pages anyway in case of failure.
2266 */
2267 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2268 goto retry;
2269
2270 if (nr_retries--)
2271 goto retry;
2272
2273 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2274 goto nomem;
2275
2276 /* Avoid endless loop for tasks bypassed by the oom killer */
2277 if (passed_oom && task_is_dying())
2278 goto nomem;
2279
2280 /*
2281 * keep retrying as long as the memcg oom killer is able to make
2282 * a forward progress or bypass the charge if the oom killer
2283 * couldn't make any progress.
2284 */
2285 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2286 get_order(nr_pages * PAGE_SIZE))) {
2287 passed_oom = true;
2288 nr_retries = MAX_RECLAIM_RETRIES;
2289 goto retry;
2290 }
2291nomem:
2292 /*
2293 * Memcg doesn't have a dedicated reserve for atomic
2294 * allocations. But like the global atomic pool, we need to
2295 * put the burden of reclaim on regular allocation requests
2296 * and let these go through as privileged allocations.
2297 */
2298 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2299 return -ENOMEM;
2300force:
2301 /*
2302 * If the allocation has to be enforced, don't forget to raise
2303 * a MEMCG_MAX event.
2304 */
2305 if (!raised_max_event)
2306 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2307
2308 /*
2309 * The allocation either can't fail or will lead to more memory
2310 * being freed very soon. Allow memory usage go over the limit
2311 * temporarily by force charging it.
2312 */
2313 page_counter_charge(&memcg->memory, nr_pages);
2314 if (do_memsw_account())
2315 page_counter_charge(&memcg->memsw, nr_pages);
2316
2317 return 0;
2318
2319done_restock:
2320 if (batch > nr_pages)
2321 refill_stock(memcg, batch - nr_pages);
2322
2323 /*
2324 * If the hierarchy is above the normal consumption range, schedule
2325 * reclaim on returning to userland. We can perform reclaim here
2326 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2327 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2328 * not recorded as it most likely matches current's and won't
2329 * change in the meantime. As high limit is checked again before
2330 * reclaim, the cost of mismatch is negligible.
2331 */
2332 do {
2333 bool mem_high, swap_high;
2334
2335 mem_high = page_counter_read(&memcg->memory) >
2336 READ_ONCE(memcg->memory.high);
2337 swap_high = page_counter_read(&memcg->swap) >
2338 READ_ONCE(memcg->swap.high);
2339
2340 /* Don't bother a random interrupted task */
2341 if (!in_task()) {
2342 if (mem_high) {
2343 schedule_work(&memcg->high_work);
2344 break;
2345 }
2346 continue;
2347 }
2348
2349 if (mem_high || swap_high) {
2350 /*
2351 * The allocating tasks in this cgroup will need to do
2352 * reclaim or be throttled to prevent further growth
2353 * of the memory or swap footprints.
2354 *
2355 * Target some best-effort fairness between the tasks,
2356 * and distribute reclaim work and delay penalties
2357 * based on how much each task is actually allocating.
2358 */
2359 current->memcg_nr_pages_over_high += batch;
2360 set_notify_resume(current);
2361 break;
2362 }
2363 } while ((memcg = parent_mem_cgroup(memcg)));
2364
2365 /*
2366 * Reclaim is set up above to be called from the userland
2367 * return path. But also attempt synchronous reclaim to avoid
2368 * excessive overrun while the task is still inside the
2369 * kernel. If this is successful, the return path will see it
2370 * when it rechecks the overage and simply bail out.
2371 */
2372 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2373 !(current->flags & PF_MEMALLOC) &&
2374 gfpflags_allow_blocking(gfp_mask))
2375 mem_cgroup_handle_over_high(gfp_mask);
2376 return 0;
2377}
2378
2379/**
2380 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2381 * @memcg: memcg previously charged.
2382 * @nr_pages: number of pages previously charged.
2383 */
2384void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2385{
2386 if (mem_cgroup_is_root(memcg))
2387 return;
2388
2389 page_counter_uncharge(&memcg->memory, nr_pages);
2390 if (do_memsw_account())
2391 page_counter_uncharge(&memcg->memsw, nr_pages);
2392}
2393
2394static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2395{
2396 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2397 /*
2398 * Any of the following ensures page's memcg stability:
2399 *
2400 * - the page lock
2401 * - LRU isolation
2402 * - exclusive reference
2403 */
2404 folio->memcg_data = (unsigned long)memcg;
2405}
2406
2407/**
2408 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2409 * @folio: folio to commit the charge to.
2410 * @memcg: memcg previously charged.
2411 */
2412void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2413{
2414 css_get(&memcg->css);
2415 commit_charge(folio, memcg);
2416 memcg1_commit_charge(folio, memcg);
2417}
2418
2419static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2420 struct pglist_data *pgdat,
2421 enum node_stat_item idx, int nr)
2422{
2423 struct mem_cgroup *memcg;
2424 struct lruvec *lruvec;
2425
2426 rcu_read_lock();
2427 memcg = obj_cgroup_memcg(objcg);
2428 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2429 __mod_memcg_lruvec_state(lruvec, idx, nr);
2430 rcu_read_unlock();
2431}
2432
2433static __always_inline
2434struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2435{
2436 /*
2437 * Slab objects are accounted individually, not per-page.
2438 * Memcg membership data for each individual object is saved in
2439 * slab->obj_exts.
2440 */
2441 if (folio_test_slab(folio)) {
2442 struct slabobj_ext *obj_exts;
2443 struct slab *slab;
2444 unsigned int off;
2445
2446 slab = folio_slab(folio);
2447 obj_exts = slab_obj_exts(slab);
2448 if (!obj_exts)
2449 return NULL;
2450
2451 off = obj_to_index(slab->slab_cache, slab, p);
2452 if (obj_exts[off].objcg)
2453 return obj_cgroup_memcg(obj_exts[off].objcg);
2454
2455 return NULL;
2456 }
2457
2458 /*
2459 * folio_memcg_check() is used here, because in theory we can encounter
2460 * a folio where the slab flag has been cleared already, but
2461 * slab->obj_exts has not been freed yet
2462 * folio_memcg_check() will guarantee that a proper memory
2463 * cgroup pointer or NULL will be returned.
2464 */
2465 return folio_memcg_check(folio);
2466}
2467
2468/*
2469 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2470 * It is not suitable for objects allocated using vmalloc().
2471 *
2472 * A passed kernel object must be a slab object or a generic kernel page.
2473 *
2474 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2475 * cgroup_mutex, etc.
2476 */
2477struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2478{
2479 if (mem_cgroup_disabled())
2480 return NULL;
2481
2482 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2483}
2484
2485static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2486{
2487 struct obj_cgroup *objcg = NULL;
2488
2489 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2490 objcg = rcu_dereference(memcg->objcg);
2491 if (likely(objcg && obj_cgroup_tryget(objcg)))
2492 break;
2493 objcg = NULL;
2494 }
2495 return objcg;
2496}
2497
2498static struct obj_cgroup *current_objcg_update(void)
2499{
2500 struct mem_cgroup *memcg;
2501 struct obj_cgroup *old, *objcg = NULL;
2502
2503 do {
2504 /* Atomically drop the update bit. */
2505 old = xchg(¤t->objcg, NULL);
2506 if (old) {
2507 old = (struct obj_cgroup *)
2508 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2509 obj_cgroup_put(old);
2510
2511 old = NULL;
2512 }
2513
2514 /* If new objcg is NULL, no reason for the second atomic update. */
2515 if (!current->mm || (current->flags & PF_KTHREAD))
2516 return NULL;
2517
2518 /*
2519 * Release the objcg pointer from the previous iteration,
2520 * if try_cmpxcg() below fails.
2521 */
2522 if (unlikely(objcg)) {
2523 obj_cgroup_put(objcg);
2524 objcg = NULL;
2525 }
2526
2527 /*
2528 * Obtain the new objcg pointer. The current task can be
2529 * asynchronously moved to another memcg and the previous
2530 * memcg can be offlined. So let's get the memcg pointer
2531 * and try get a reference to objcg under a rcu read lock.
2532 */
2533
2534 rcu_read_lock();
2535 memcg = mem_cgroup_from_task(current);
2536 objcg = __get_obj_cgroup_from_memcg(memcg);
2537 rcu_read_unlock();
2538
2539 /*
2540 * Try set up a new objcg pointer atomically. If it
2541 * fails, it means the update flag was set concurrently, so
2542 * the whole procedure should be repeated.
2543 */
2544 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2545
2546 return objcg;
2547}
2548
2549__always_inline struct obj_cgroup *current_obj_cgroup(void)
2550{
2551 struct mem_cgroup *memcg;
2552 struct obj_cgroup *objcg;
2553
2554 if (in_task()) {
2555 memcg = current->active_memcg;
2556 if (unlikely(memcg))
2557 goto from_memcg;
2558
2559 objcg = READ_ONCE(current->objcg);
2560 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2561 objcg = current_objcg_update();
2562 /*
2563 * Objcg reference is kept by the task, so it's safe
2564 * to use the objcg by the current task.
2565 */
2566 return objcg;
2567 }
2568
2569 memcg = this_cpu_read(int_active_memcg);
2570 if (unlikely(memcg))
2571 goto from_memcg;
2572
2573 return NULL;
2574
2575from_memcg:
2576 objcg = NULL;
2577 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2578 /*
2579 * Memcg pointer is protected by scope (see set_active_memcg())
2580 * and is pinning the corresponding objcg, so objcg can't go
2581 * away and can be used within the scope without any additional
2582 * protection.
2583 */
2584 objcg = rcu_dereference_check(memcg->objcg, 1);
2585 if (likely(objcg))
2586 break;
2587 }
2588
2589 return objcg;
2590}
2591
2592struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2593{
2594 struct obj_cgroup *objcg;
2595
2596 if (!memcg_kmem_online())
2597 return NULL;
2598
2599 if (folio_memcg_kmem(folio)) {
2600 objcg = __folio_objcg(folio);
2601 obj_cgroup_get(objcg);
2602 } else {
2603 struct mem_cgroup *memcg;
2604
2605 rcu_read_lock();
2606 memcg = __folio_memcg(folio);
2607 if (memcg)
2608 objcg = __get_obj_cgroup_from_memcg(memcg);
2609 else
2610 objcg = NULL;
2611 rcu_read_unlock();
2612 }
2613 return objcg;
2614}
2615
2616/*
2617 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2618 * @objcg: object cgroup to uncharge
2619 * @nr_pages: number of pages to uncharge
2620 */
2621static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2622 unsigned int nr_pages)
2623{
2624 struct mem_cgroup *memcg;
2625
2626 memcg = get_mem_cgroup_from_objcg(objcg);
2627
2628 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2629 memcg1_account_kmem(memcg, -nr_pages);
2630 refill_stock(memcg, nr_pages);
2631
2632 css_put(&memcg->css);
2633}
2634
2635/*
2636 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2637 * @objcg: object cgroup to charge
2638 * @gfp: reclaim mode
2639 * @nr_pages: number of pages to charge
2640 *
2641 * Returns 0 on success, an error code on failure.
2642 */
2643static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2644 unsigned int nr_pages)
2645{
2646 struct mem_cgroup *memcg;
2647 int ret;
2648
2649 memcg = get_mem_cgroup_from_objcg(objcg);
2650
2651 ret = try_charge_memcg(memcg, gfp, nr_pages);
2652 if (ret)
2653 goto out;
2654
2655 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2656 memcg1_account_kmem(memcg, nr_pages);
2657out:
2658 css_put(&memcg->css);
2659
2660 return ret;
2661}
2662
2663/**
2664 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2665 * @page: page to charge
2666 * @gfp: reclaim mode
2667 * @order: allocation order
2668 *
2669 * Returns 0 on success, an error code on failure.
2670 */
2671int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2672{
2673 struct obj_cgroup *objcg;
2674 int ret = 0;
2675
2676 objcg = current_obj_cgroup();
2677 if (objcg) {
2678 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2679 if (!ret) {
2680 obj_cgroup_get(objcg);
2681 page->memcg_data = (unsigned long)objcg |
2682 MEMCG_DATA_KMEM;
2683 return 0;
2684 }
2685 }
2686 return ret;
2687}
2688
2689/**
2690 * __memcg_kmem_uncharge_page: uncharge a kmem page
2691 * @page: page to uncharge
2692 * @order: allocation order
2693 */
2694void __memcg_kmem_uncharge_page(struct page *page, int order)
2695{
2696 struct folio *folio = page_folio(page);
2697 struct obj_cgroup *objcg;
2698 unsigned int nr_pages = 1 << order;
2699
2700 if (!folio_memcg_kmem(folio))
2701 return;
2702
2703 objcg = __folio_objcg(folio);
2704 obj_cgroup_uncharge_pages(objcg, nr_pages);
2705 folio->memcg_data = 0;
2706 obj_cgroup_put(objcg);
2707}
2708
2709static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2710 enum node_stat_item idx, int nr)
2711{
2712 struct memcg_stock_pcp *stock;
2713 struct obj_cgroup *old = NULL;
2714 unsigned long flags;
2715 int *bytes;
2716
2717 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2718 stock = this_cpu_ptr(&memcg_stock);
2719
2720 /*
2721 * Save vmstat data in stock and skip vmstat array update unless
2722 * accumulating over a page of vmstat data or when pgdat or idx
2723 * changes.
2724 */
2725 if (READ_ONCE(stock->cached_objcg) != objcg) {
2726 old = drain_obj_stock(stock);
2727 obj_cgroup_get(objcg);
2728 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2729 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2730 WRITE_ONCE(stock->cached_objcg, objcg);
2731 stock->cached_pgdat = pgdat;
2732 } else if (stock->cached_pgdat != pgdat) {
2733 /* Flush the existing cached vmstat data */
2734 struct pglist_data *oldpg = stock->cached_pgdat;
2735
2736 if (stock->nr_slab_reclaimable_b) {
2737 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2738 stock->nr_slab_reclaimable_b);
2739 stock->nr_slab_reclaimable_b = 0;
2740 }
2741 if (stock->nr_slab_unreclaimable_b) {
2742 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2743 stock->nr_slab_unreclaimable_b);
2744 stock->nr_slab_unreclaimable_b = 0;
2745 }
2746 stock->cached_pgdat = pgdat;
2747 }
2748
2749 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2750 : &stock->nr_slab_unreclaimable_b;
2751 /*
2752 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2753 * cached locally at least once before pushing it out.
2754 */
2755 if (!*bytes) {
2756 *bytes = nr;
2757 nr = 0;
2758 } else {
2759 *bytes += nr;
2760 if (abs(*bytes) > PAGE_SIZE) {
2761 nr = *bytes;
2762 *bytes = 0;
2763 } else {
2764 nr = 0;
2765 }
2766 }
2767 if (nr)
2768 __mod_objcg_mlstate(objcg, pgdat, idx, nr);
2769
2770 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2771 obj_cgroup_put(old);
2772}
2773
2774static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2775{
2776 struct memcg_stock_pcp *stock;
2777 unsigned long flags;
2778 bool ret = false;
2779
2780 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2781
2782 stock = this_cpu_ptr(&memcg_stock);
2783 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2784 stock->nr_bytes -= nr_bytes;
2785 ret = true;
2786 }
2787
2788 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2789
2790 return ret;
2791}
2792
2793static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2794{
2795 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2796
2797 if (!old)
2798 return NULL;
2799
2800 if (stock->nr_bytes) {
2801 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2802 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2803
2804 if (nr_pages) {
2805 struct mem_cgroup *memcg;
2806
2807 memcg = get_mem_cgroup_from_objcg(old);
2808
2809 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2810 memcg1_account_kmem(memcg, -nr_pages);
2811 __refill_stock(memcg, nr_pages);
2812
2813 css_put(&memcg->css);
2814 }
2815
2816 /*
2817 * The leftover is flushed to the centralized per-memcg value.
2818 * On the next attempt to refill obj stock it will be moved
2819 * to a per-cpu stock (probably, on an other CPU), see
2820 * refill_obj_stock().
2821 *
2822 * How often it's flushed is a trade-off between the memory
2823 * limit enforcement accuracy and potential CPU contention,
2824 * so it might be changed in the future.
2825 */
2826 atomic_add(nr_bytes, &old->nr_charged_bytes);
2827 stock->nr_bytes = 0;
2828 }
2829
2830 /*
2831 * Flush the vmstat data in current stock
2832 */
2833 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2834 if (stock->nr_slab_reclaimable_b) {
2835 __mod_objcg_mlstate(old, stock->cached_pgdat,
2836 NR_SLAB_RECLAIMABLE_B,
2837 stock->nr_slab_reclaimable_b);
2838 stock->nr_slab_reclaimable_b = 0;
2839 }
2840 if (stock->nr_slab_unreclaimable_b) {
2841 __mod_objcg_mlstate(old, stock->cached_pgdat,
2842 NR_SLAB_UNRECLAIMABLE_B,
2843 stock->nr_slab_unreclaimable_b);
2844 stock->nr_slab_unreclaimable_b = 0;
2845 }
2846 stock->cached_pgdat = NULL;
2847 }
2848
2849 WRITE_ONCE(stock->cached_objcg, NULL);
2850 /*
2851 * The `old' objects needs to be released by the caller via
2852 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
2853 */
2854 return old;
2855}
2856
2857static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2858 struct mem_cgroup *root_memcg)
2859{
2860 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2861 struct mem_cgroup *memcg;
2862
2863 if (objcg) {
2864 memcg = obj_cgroup_memcg(objcg);
2865 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2866 return true;
2867 }
2868
2869 return false;
2870}
2871
2872static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2873 bool allow_uncharge)
2874{
2875 struct memcg_stock_pcp *stock;
2876 struct obj_cgroup *old = NULL;
2877 unsigned long flags;
2878 unsigned int nr_pages = 0;
2879
2880 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2881
2882 stock = this_cpu_ptr(&memcg_stock);
2883 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2884 old = drain_obj_stock(stock);
2885 obj_cgroup_get(objcg);
2886 WRITE_ONCE(stock->cached_objcg, objcg);
2887 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2888 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2889 allow_uncharge = true; /* Allow uncharge when objcg changes */
2890 }
2891 stock->nr_bytes += nr_bytes;
2892
2893 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2894 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2895 stock->nr_bytes &= (PAGE_SIZE - 1);
2896 }
2897
2898 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2899 obj_cgroup_put(old);
2900
2901 if (nr_pages)
2902 obj_cgroup_uncharge_pages(objcg, nr_pages);
2903}
2904
2905int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2906{
2907 unsigned int nr_pages, nr_bytes;
2908 int ret;
2909
2910 if (consume_obj_stock(objcg, size))
2911 return 0;
2912
2913 /*
2914 * In theory, objcg->nr_charged_bytes can have enough
2915 * pre-charged bytes to satisfy the allocation. However,
2916 * flushing objcg->nr_charged_bytes requires two atomic
2917 * operations, and objcg->nr_charged_bytes can't be big.
2918 * The shared objcg->nr_charged_bytes can also become a
2919 * performance bottleneck if all tasks of the same memcg are
2920 * trying to update it. So it's better to ignore it and try
2921 * grab some new pages. The stock's nr_bytes will be flushed to
2922 * objcg->nr_charged_bytes later on when objcg changes.
2923 *
2924 * The stock's nr_bytes may contain enough pre-charged bytes
2925 * to allow one less page from being charged, but we can't rely
2926 * on the pre-charged bytes not being changed outside of
2927 * consume_obj_stock() or refill_obj_stock(). So ignore those
2928 * pre-charged bytes as well when charging pages. To avoid a
2929 * page uncharge right after a page charge, we set the
2930 * allow_uncharge flag to false when calling refill_obj_stock()
2931 * to temporarily allow the pre-charged bytes to exceed the page
2932 * size limit. The maximum reachable value of the pre-charged
2933 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2934 * race.
2935 */
2936 nr_pages = size >> PAGE_SHIFT;
2937 nr_bytes = size & (PAGE_SIZE - 1);
2938
2939 if (nr_bytes)
2940 nr_pages += 1;
2941
2942 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2943 if (!ret && nr_bytes)
2944 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2945
2946 return ret;
2947}
2948
2949void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
2950{
2951 refill_obj_stock(objcg, size, true);
2952}
2953
2954static inline size_t obj_full_size(struct kmem_cache *s)
2955{
2956 /*
2957 * For each accounted object there is an extra space which is used
2958 * to store obj_cgroup membership. Charge it too.
2959 */
2960 return s->size + sizeof(struct obj_cgroup *);
2961}
2962
2963bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2964 gfp_t flags, size_t size, void **p)
2965{
2966 struct obj_cgroup *objcg;
2967 struct slab *slab;
2968 unsigned long off;
2969 size_t i;
2970
2971 /*
2972 * The obtained objcg pointer is safe to use within the current scope,
2973 * defined by current task or set_active_memcg() pair.
2974 * obj_cgroup_get() is used to get a permanent reference.
2975 */
2976 objcg = current_obj_cgroup();
2977 if (!objcg)
2978 return true;
2979
2980 /*
2981 * slab_alloc_node() avoids the NULL check, so we might be called with a
2982 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2983 * the whole requested size.
2984 * return success as there's nothing to free back
2985 */
2986 if (unlikely(*p == NULL))
2987 return true;
2988
2989 flags &= gfp_allowed_mask;
2990
2991 if (lru) {
2992 int ret;
2993 struct mem_cgroup *memcg;
2994
2995 memcg = get_mem_cgroup_from_objcg(objcg);
2996 ret = memcg_list_lru_alloc(memcg, lru, flags);
2997 css_put(&memcg->css);
2998
2999 if (ret)
3000 return false;
3001 }
3002
3003 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
3004 return false;
3005
3006 for (i = 0; i < size; i++) {
3007 slab = virt_to_slab(p[i]);
3008
3009 if (!slab_obj_exts(slab) &&
3010 alloc_slab_obj_exts(slab, s, flags, false)) {
3011 obj_cgroup_uncharge(objcg, obj_full_size(s));
3012 continue;
3013 }
3014
3015 off = obj_to_index(s, slab, p[i]);
3016 obj_cgroup_get(objcg);
3017 slab_obj_exts(slab)[off].objcg = objcg;
3018 mod_objcg_state(objcg, slab_pgdat(slab),
3019 cache_vmstat_idx(s), obj_full_size(s));
3020 }
3021
3022 return true;
3023}
3024
3025void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3026 void **p, int objects, struct slabobj_ext *obj_exts)
3027{
3028 for (int i = 0; i < objects; i++) {
3029 struct obj_cgroup *objcg;
3030 unsigned int off;
3031
3032 off = obj_to_index(s, slab, p[i]);
3033 objcg = obj_exts[off].objcg;
3034 if (!objcg)
3035 continue;
3036
3037 obj_exts[off].objcg = NULL;
3038 obj_cgroup_uncharge(objcg, obj_full_size(s));
3039 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3040 -obj_full_size(s));
3041 obj_cgroup_put(objcg);
3042 }
3043}
3044
3045/*
3046 * Because folio_memcg(head) is not set on tails, set it now.
3047 */
3048void split_page_memcg(struct page *head, int old_order, int new_order)
3049{
3050 struct folio *folio = page_folio(head);
3051 int i;
3052 unsigned int old_nr = 1 << old_order;
3053 unsigned int new_nr = 1 << new_order;
3054
3055 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3056 return;
3057
3058 for (i = new_nr; i < old_nr; i += new_nr)
3059 folio_page(folio, i)->memcg_data = folio->memcg_data;
3060
3061 if (folio_memcg_kmem(folio))
3062 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3063 else
3064 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3065}
3066
3067unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3068{
3069 unsigned long val;
3070
3071 if (mem_cgroup_is_root(memcg)) {
3072 /*
3073 * Approximate root's usage from global state. This isn't
3074 * perfect, but the root usage was always an approximation.
3075 */
3076 val = global_node_page_state(NR_FILE_PAGES) +
3077 global_node_page_state(NR_ANON_MAPPED);
3078 if (swap)
3079 val += total_swap_pages - get_nr_swap_pages();
3080 } else {
3081 if (!swap)
3082 val = page_counter_read(&memcg->memory);
3083 else
3084 val = page_counter_read(&memcg->memsw);
3085 }
3086 return val;
3087}
3088
3089static int memcg_online_kmem(struct mem_cgroup *memcg)
3090{
3091 struct obj_cgroup *objcg;
3092
3093 if (mem_cgroup_kmem_disabled())
3094 return 0;
3095
3096 if (unlikely(mem_cgroup_is_root(memcg)))
3097 return 0;
3098
3099 objcg = obj_cgroup_alloc();
3100 if (!objcg)
3101 return -ENOMEM;
3102
3103 objcg->memcg = memcg;
3104 rcu_assign_pointer(memcg->objcg, objcg);
3105 obj_cgroup_get(objcg);
3106 memcg->orig_objcg = objcg;
3107
3108 static_branch_enable(&memcg_kmem_online_key);
3109
3110 memcg->kmemcg_id = memcg->id.id;
3111
3112 return 0;
3113}
3114
3115static void memcg_offline_kmem(struct mem_cgroup *memcg)
3116{
3117 struct mem_cgroup *parent;
3118
3119 if (mem_cgroup_kmem_disabled())
3120 return;
3121
3122 if (unlikely(mem_cgroup_is_root(memcg)))
3123 return;
3124
3125 parent = parent_mem_cgroup(memcg);
3126 if (!parent)
3127 parent = root_mem_cgroup;
3128
3129 memcg_reparent_list_lrus(memcg, parent);
3130
3131 /*
3132 * Objcg's reparenting must be after list_lru's, make sure list_lru
3133 * helpers won't use parent's list_lru until child is drained.
3134 */
3135 memcg_reparent_objcgs(memcg, parent);
3136}
3137
3138#ifdef CONFIG_CGROUP_WRITEBACK
3139
3140#include <trace/events/writeback.h>
3141
3142static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3143{
3144 return wb_domain_init(&memcg->cgwb_domain, gfp);
3145}
3146
3147static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3148{
3149 wb_domain_exit(&memcg->cgwb_domain);
3150}
3151
3152static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3153{
3154 wb_domain_size_changed(&memcg->cgwb_domain);
3155}
3156
3157struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3158{
3159 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3160
3161 if (!memcg->css.parent)
3162 return NULL;
3163
3164 return &memcg->cgwb_domain;
3165}
3166
3167/**
3168 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3169 * @wb: bdi_writeback in question
3170 * @pfilepages: out parameter for number of file pages
3171 * @pheadroom: out parameter for number of allocatable pages according to memcg
3172 * @pdirty: out parameter for number of dirty pages
3173 * @pwriteback: out parameter for number of pages under writeback
3174 *
3175 * Determine the numbers of file, headroom, dirty, and writeback pages in
3176 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3177 * is a bit more involved.
3178 *
3179 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3180 * headroom is calculated as the lowest headroom of itself and the
3181 * ancestors. Note that this doesn't consider the actual amount of
3182 * available memory in the system. The caller should further cap
3183 * *@pheadroom accordingly.
3184 */
3185void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3186 unsigned long *pheadroom, unsigned long *pdirty,
3187 unsigned long *pwriteback)
3188{
3189 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3190 struct mem_cgroup *parent;
3191
3192 mem_cgroup_flush_stats_ratelimited(memcg);
3193
3194 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3195 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3196 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3197 memcg_page_state(memcg, NR_ACTIVE_FILE);
3198
3199 *pheadroom = PAGE_COUNTER_MAX;
3200 while ((parent = parent_mem_cgroup(memcg))) {
3201 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3202 READ_ONCE(memcg->memory.high));
3203 unsigned long used = page_counter_read(&memcg->memory);
3204
3205 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3206 memcg = parent;
3207 }
3208}
3209
3210/*
3211 * Foreign dirty flushing
3212 *
3213 * There's an inherent mismatch between memcg and writeback. The former
3214 * tracks ownership per-page while the latter per-inode. This was a
3215 * deliberate design decision because honoring per-page ownership in the
3216 * writeback path is complicated, may lead to higher CPU and IO overheads
3217 * and deemed unnecessary given that write-sharing an inode across
3218 * different cgroups isn't a common use-case.
3219 *
3220 * Combined with inode majority-writer ownership switching, this works well
3221 * enough in most cases but there are some pathological cases. For
3222 * example, let's say there are two cgroups A and B which keep writing to
3223 * different but confined parts of the same inode. B owns the inode and
3224 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3225 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3226 * triggering background writeback. A will be slowed down without a way to
3227 * make writeback of the dirty pages happen.
3228 *
3229 * Conditions like the above can lead to a cgroup getting repeatedly and
3230 * severely throttled after making some progress after each
3231 * dirty_expire_interval while the underlying IO device is almost
3232 * completely idle.
3233 *
3234 * Solving this problem completely requires matching the ownership tracking
3235 * granularities between memcg and writeback in either direction. However,
3236 * the more egregious behaviors can be avoided by simply remembering the
3237 * most recent foreign dirtying events and initiating remote flushes on
3238 * them when local writeback isn't enough to keep the memory clean enough.
3239 *
3240 * The following two functions implement such mechanism. When a foreign
3241 * page - a page whose memcg and writeback ownerships don't match - is
3242 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3243 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3244 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3245 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3246 * foreign bdi_writebacks which haven't expired. Both the numbers of
3247 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3248 * limited to MEMCG_CGWB_FRN_CNT.
3249 *
3250 * The mechanism only remembers IDs and doesn't hold any object references.
3251 * As being wrong occasionally doesn't matter, updates and accesses to the
3252 * records are lockless and racy.
3253 */
3254void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3255 struct bdi_writeback *wb)
3256{
3257 struct mem_cgroup *memcg = folio_memcg(folio);
3258 struct memcg_cgwb_frn *frn;
3259 u64 now = get_jiffies_64();
3260 u64 oldest_at = now;
3261 int oldest = -1;
3262 int i;
3263
3264 trace_track_foreign_dirty(folio, wb);
3265
3266 /*
3267 * Pick the slot to use. If there is already a slot for @wb, keep
3268 * using it. If not replace the oldest one which isn't being
3269 * written out.
3270 */
3271 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3272 frn = &memcg->cgwb_frn[i];
3273 if (frn->bdi_id == wb->bdi->id &&
3274 frn->memcg_id == wb->memcg_css->id)
3275 break;
3276 if (time_before64(frn->at, oldest_at) &&
3277 atomic_read(&frn->done.cnt) == 1) {
3278 oldest = i;
3279 oldest_at = frn->at;
3280 }
3281 }
3282
3283 if (i < MEMCG_CGWB_FRN_CNT) {
3284 /*
3285 * Re-using an existing one. Update timestamp lazily to
3286 * avoid making the cacheline hot. We want them to be
3287 * reasonably up-to-date and significantly shorter than
3288 * dirty_expire_interval as that's what expires the record.
3289 * Use the shorter of 1s and dirty_expire_interval / 8.
3290 */
3291 unsigned long update_intv =
3292 min_t(unsigned long, HZ,
3293 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3294
3295 if (time_before64(frn->at, now - update_intv))
3296 frn->at = now;
3297 } else if (oldest >= 0) {
3298 /* replace the oldest free one */
3299 frn = &memcg->cgwb_frn[oldest];
3300 frn->bdi_id = wb->bdi->id;
3301 frn->memcg_id = wb->memcg_css->id;
3302 frn->at = now;
3303 }
3304}
3305
3306/* issue foreign writeback flushes for recorded foreign dirtying events */
3307void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3308{
3309 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3310 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3311 u64 now = jiffies_64;
3312 int i;
3313
3314 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3315 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3316
3317 /*
3318 * If the record is older than dirty_expire_interval,
3319 * writeback on it has already started. No need to kick it
3320 * off again. Also, don't start a new one if there's
3321 * already one in flight.
3322 */
3323 if (time_after64(frn->at, now - intv) &&
3324 atomic_read(&frn->done.cnt) == 1) {
3325 frn->at = 0;
3326 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3327 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3328 WB_REASON_FOREIGN_FLUSH,
3329 &frn->done);
3330 }
3331 }
3332}
3333
3334#else /* CONFIG_CGROUP_WRITEBACK */
3335
3336static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3337{
3338 return 0;
3339}
3340
3341static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3342{
3343}
3344
3345static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3346{
3347}
3348
3349#endif /* CONFIG_CGROUP_WRITEBACK */
3350
3351/*
3352 * Private memory cgroup IDR
3353 *
3354 * Swap-out records and page cache shadow entries need to store memcg
3355 * references in constrained space, so we maintain an ID space that is
3356 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3357 * memory-controlled cgroups to 64k.
3358 *
3359 * However, there usually are many references to the offline CSS after
3360 * the cgroup has been destroyed, such as page cache or reclaimable
3361 * slab objects, that don't need to hang on to the ID. We want to keep
3362 * those dead CSS from occupying IDs, or we might quickly exhaust the
3363 * relatively small ID space and prevent the creation of new cgroups
3364 * even when there are much fewer than 64k cgroups - possibly none.
3365 *
3366 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3367 * be freed and recycled when it's no longer needed, which is usually
3368 * when the CSS is offlined.
3369 *
3370 * The only exception to that are records of swapped out tmpfs/shmem
3371 * pages that need to be attributed to live ancestors on swapin. But
3372 * those references are manageable from userspace.
3373 */
3374
3375#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3376static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3377
3378static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3379{
3380 if (memcg->id.id > 0) {
3381 xa_erase(&mem_cgroup_ids, memcg->id.id);
3382 memcg->id.id = 0;
3383 }
3384}
3385
3386void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3387 unsigned int n)
3388{
3389 refcount_add(n, &memcg->id.ref);
3390}
3391
3392void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3393{
3394 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3395 mem_cgroup_id_remove(memcg);
3396
3397 /* Memcg ID pins CSS */
3398 css_put(&memcg->css);
3399 }
3400}
3401
3402static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3403{
3404 mem_cgroup_id_put_many(memcg, 1);
3405}
3406
3407/**
3408 * mem_cgroup_from_id - look up a memcg from a memcg id
3409 * @id: the memcg id to look up
3410 *
3411 * Caller must hold rcu_read_lock().
3412 */
3413struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3414{
3415 WARN_ON_ONCE(!rcu_read_lock_held());
3416 return xa_load(&mem_cgroup_ids, id);
3417}
3418
3419#ifdef CONFIG_SHRINKER_DEBUG
3420struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3421{
3422 struct cgroup *cgrp;
3423 struct cgroup_subsys_state *css;
3424 struct mem_cgroup *memcg;
3425
3426 cgrp = cgroup_get_from_id(ino);
3427 if (IS_ERR(cgrp))
3428 return ERR_CAST(cgrp);
3429
3430 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3431 if (css)
3432 memcg = container_of(css, struct mem_cgroup, css);
3433 else
3434 memcg = ERR_PTR(-ENOENT);
3435
3436 cgroup_put(cgrp);
3437
3438 return memcg;
3439}
3440#endif
3441
3442static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3443{
3444 struct mem_cgroup_per_node *pn;
3445
3446 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
3447 if (!pn)
3448 return false;
3449
3450 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3451 GFP_KERNEL_ACCOUNT, node);
3452 if (!pn->lruvec_stats)
3453 goto fail;
3454
3455 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3456 GFP_KERNEL_ACCOUNT);
3457 if (!pn->lruvec_stats_percpu)
3458 goto fail;
3459
3460 lruvec_init(&pn->lruvec);
3461 pn->memcg = memcg;
3462
3463 memcg->nodeinfo[node] = pn;
3464 return true;
3465fail:
3466 kfree(pn->lruvec_stats);
3467 kfree(pn);
3468 return false;
3469}
3470
3471static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3472{
3473 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3474
3475 if (!pn)
3476 return;
3477
3478 free_percpu(pn->lruvec_stats_percpu);
3479 kfree(pn->lruvec_stats);
3480 kfree(pn);
3481}
3482
3483static void __mem_cgroup_free(struct mem_cgroup *memcg)
3484{
3485 int node;
3486
3487 obj_cgroup_put(memcg->orig_objcg);
3488
3489 for_each_node(node)
3490 free_mem_cgroup_per_node_info(memcg, node);
3491 memcg1_free_events(memcg);
3492 kfree(memcg->vmstats);
3493 free_percpu(memcg->vmstats_percpu);
3494 kfree(memcg);
3495}
3496
3497static void mem_cgroup_free(struct mem_cgroup *memcg)
3498{
3499 lru_gen_exit_memcg(memcg);
3500 memcg_wb_domain_exit(memcg);
3501 __mem_cgroup_free(memcg);
3502}
3503
3504static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3505{
3506 struct memcg_vmstats_percpu *statc, *pstatc;
3507 struct mem_cgroup *memcg;
3508 int node, cpu;
3509 int __maybe_unused i;
3510 long error;
3511
3512 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3513 if (!memcg)
3514 return ERR_PTR(-ENOMEM);
3515
3516 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3517 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3518 if (error)
3519 goto fail;
3520 error = -ENOMEM;
3521
3522 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3523 GFP_KERNEL_ACCOUNT);
3524 if (!memcg->vmstats)
3525 goto fail;
3526
3527 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3528 GFP_KERNEL_ACCOUNT);
3529 if (!memcg->vmstats_percpu)
3530 goto fail;
3531
3532 if (!memcg1_alloc_events(memcg))
3533 goto fail;
3534
3535 for_each_possible_cpu(cpu) {
3536 if (parent)
3537 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3538 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3539 statc->parent = parent ? pstatc : NULL;
3540 statc->vmstats = memcg->vmstats;
3541 }
3542
3543 for_each_node(node)
3544 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3545 goto fail;
3546
3547 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3548 goto fail;
3549
3550 INIT_WORK(&memcg->high_work, high_work_func);
3551 vmpressure_init(&memcg->vmpressure);
3552 INIT_LIST_HEAD(&memcg->memory_peaks);
3553 INIT_LIST_HEAD(&memcg->swap_peaks);
3554 spin_lock_init(&memcg->peaks_lock);
3555 memcg->socket_pressure = jiffies;
3556 memcg1_memcg_init(memcg);
3557 memcg->kmemcg_id = -1;
3558 INIT_LIST_HEAD(&memcg->objcg_list);
3559#ifdef CONFIG_CGROUP_WRITEBACK
3560 INIT_LIST_HEAD(&memcg->cgwb_list);
3561 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3562 memcg->cgwb_frn[i].done =
3563 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3564#endif
3565#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3566 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3567 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3568 memcg->deferred_split_queue.split_queue_len = 0;
3569#endif
3570 lru_gen_init_memcg(memcg);
3571 return memcg;
3572fail:
3573 mem_cgroup_id_remove(memcg);
3574 __mem_cgroup_free(memcg);
3575 return ERR_PTR(error);
3576}
3577
3578static struct cgroup_subsys_state * __ref
3579mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3580{
3581 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3582 struct mem_cgroup *memcg, *old_memcg;
3583
3584 old_memcg = set_active_memcg(parent);
3585 memcg = mem_cgroup_alloc(parent);
3586 set_active_memcg(old_memcg);
3587 if (IS_ERR(memcg))
3588 return ERR_CAST(memcg);
3589
3590 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3591 memcg1_soft_limit_reset(memcg);
3592#ifdef CONFIG_ZSWAP
3593 memcg->zswap_max = PAGE_COUNTER_MAX;
3594 WRITE_ONCE(memcg->zswap_writeback, true);
3595#endif
3596 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3597 if (parent) {
3598 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3599
3600 page_counter_init(&memcg->memory, &parent->memory, true);
3601 page_counter_init(&memcg->swap, &parent->swap, false);
3602#ifdef CONFIG_MEMCG_V1
3603 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3604 page_counter_init(&memcg->kmem, &parent->kmem, false);
3605 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3606#endif
3607 } else {
3608 init_memcg_stats();
3609 init_memcg_events();
3610 page_counter_init(&memcg->memory, NULL, true);
3611 page_counter_init(&memcg->swap, NULL, false);
3612#ifdef CONFIG_MEMCG_V1
3613 page_counter_init(&memcg->kmem, NULL, false);
3614 page_counter_init(&memcg->tcpmem, NULL, false);
3615#endif
3616 root_mem_cgroup = memcg;
3617 return &memcg->css;
3618 }
3619
3620 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3621 static_branch_inc(&memcg_sockets_enabled_key);
3622
3623 if (!cgroup_memory_nobpf)
3624 static_branch_inc(&memcg_bpf_enabled_key);
3625
3626 return &memcg->css;
3627}
3628
3629static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3630{
3631 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3632
3633 if (memcg_online_kmem(memcg))
3634 goto remove_id;
3635
3636 /*
3637 * A memcg must be visible for expand_shrinker_info()
3638 * by the time the maps are allocated. So, we allocate maps
3639 * here, when for_each_mem_cgroup() can't skip it.
3640 */
3641 if (alloc_shrinker_info(memcg))
3642 goto offline_kmem;
3643
3644 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3645 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3646 FLUSH_TIME);
3647 lru_gen_online_memcg(memcg);
3648
3649 /* Online state pins memcg ID, memcg ID pins CSS */
3650 refcount_set(&memcg->id.ref, 1);
3651 css_get(css);
3652
3653 /*
3654 * Ensure mem_cgroup_from_id() works once we're fully online.
3655 *
3656 * We could do this earlier and require callers to filter with
3657 * css_tryget_online(). But right now there are no users that
3658 * need earlier access, and the workingset code relies on the
3659 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3660 * publish it here at the end of onlining. This matches the
3661 * regular ID destruction during offlining.
3662 */
3663 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3664
3665 return 0;
3666offline_kmem:
3667 memcg_offline_kmem(memcg);
3668remove_id:
3669 mem_cgroup_id_remove(memcg);
3670 return -ENOMEM;
3671}
3672
3673static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3674{
3675 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3676
3677 memcg1_css_offline(memcg);
3678
3679 page_counter_set_min(&memcg->memory, 0);
3680 page_counter_set_low(&memcg->memory, 0);
3681
3682 zswap_memcg_offline_cleanup(memcg);
3683
3684 memcg_offline_kmem(memcg);
3685 reparent_shrinker_deferred(memcg);
3686 wb_memcg_offline(memcg);
3687 lru_gen_offline_memcg(memcg);
3688
3689 drain_all_stock(memcg);
3690
3691 mem_cgroup_id_put(memcg);
3692}
3693
3694static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3695{
3696 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3697
3698 invalidate_reclaim_iterators(memcg);
3699 lru_gen_release_memcg(memcg);
3700}
3701
3702static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3703{
3704 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3705 int __maybe_unused i;
3706
3707#ifdef CONFIG_CGROUP_WRITEBACK
3708 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3709 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3710#endif
3711 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3712 static_branch_dec(&memcg_sockets_enabled_key);
3713
3714 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3715 static_branch_dec(&memcg_sockets_enabled_key);
3716
3717 if (!cgroup_memory_nobpf)
3718 static_branch_dec(&memcg_bpf_enabled_key);
3719
3720 vmpressure_cleanup(&memcg->vmpressure);
3721 cancel_work_sync(&memcg->high_work);
3722 memcg1_remove_from_trees(memcg);
3723 free_shrinker_info(memcg);
3724 mem_cgroup_free(memcg);
3725}
3726
3727/**
3728 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3729 * @css: the target css
3730 *
3731 * Reset the states of the mem_cgroup associated with @css. This is
3732 * invoked when the userland requests disabling on the default hierarchy
3733 * but the memcg is pinned through dependency. The memcg should stop
3734 * applying policies and should revert to the vanilla state as it may be
3735 * made visible again.
3736 *
3737 * The current implementation only resets the essential configurations.
3738 * This needs to be expanded to cover all the visible parts.
3739 */
3740static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3741{
3742 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3743
3744 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3745 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3746#ifdef CONFIG_MEMCG_V1
3747 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3748 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3749#endif
3750 page_counter_set_min(&memcg->memory, 0);
3751 page_counter_set_low(&memcg->memory, 0);
3752 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3753 memcg1_soft_limit_reset(memcg);
3754 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3755 memcg_wb_domain_size_changed(memcg);
3756}
3757
3758struct aggregate_control {
3759 /* pointer to the aggregated (CPU and subtree aggregated) counters */
3760 long *aggregate;
3761 /* pointer to the non-hierarchichal (CPU aggregated) counters */
3762 long *local;
3763 /* pointer to the pending child counters during tree propagation */
3764 long *pending;
3765 /* pointer to the parent's pending counters, could be NULL */
3766 long *ppending;
3767 /* pointer to the percpu counters to be aggregated */
3768 long *cstat;
3769 /* pointer to the percpu counters of the last aggregation*/
3770 long *cstat_prev;
3771 /* size of the above counters */
3772 int size;
3773};
3774
3775static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3776{
3777 int i;
3778 long delta, delta_cpu, v;
3779
3780 for (i = 0; i < ac->size; i++) {
3781 /*
3782 * Collect the aggregated propagation counts of groups
3783 * below us. We're in a per-cpu loop here and this is
3784 * a global counter, so the first cycle will get them.
3785 */
3786 delta = ac->pending[i];
3787 if (delta)
3788 ac->pending[i] = 0;
3789
3790 /* Add CPU changes on this level since the last flush */
3791 delta_cpu = 0;
3792 v = READ_ONCE(ac->cstat[i]);
3793 if (v != ac->cstat_prev[i]) {
3794 delta_cpu = v - ac->cstat_prev[i];
3795 delta += delta_cpu;
3796 ac->cstat_prev[i] = v;
3797 }
3798
3799 /* Aggregate counts on this level and propagate upwards */
3800 if (delta_cpu)
3801 ac->local[i] += delta_cpu;
3802
3803 if (delta) {
3804 ac->aggregate[i] += delta;
3805 if (ac->ppending)
3806 ac->ppending[i] += delta;
3807 }
3808 }
3809}
3810
3811static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
3812{
3813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3814 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3815 struct memcg_vmstats_percpu *statc;
3816 struct aggregate_control ac;
3817 int nid;
3818
3819 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3820
3821 ac = (struct aggregate_control) {
3822 .aggregate = memcg->vmstats->state,
3823 .local = memcg->vmstats->state_local,
3824 .pending = memcg->vmstats->state_pending,
3825 .ppending = parent ? parent->vmstats->state_pending : NULL,
3826 .cstat = statc->state,
3827 .cstat_prev = statc->state_prev,
3828 .size = MEMCG_VMSTAT_SIZE,
3829 };
3830 mem_cgroup_stat_aggregate(&ac);
3831
3832 ac = (struct aggregate_control) {
3833 .aggregate = memcg->vmstats->events,
3834 .local = memcg->vmstats->events_local,
3835 .pending = memcg->vmstats->events_pending,
3836 .ppending = parent ? parent->vmstats->events_pending : NULL,
3837 .cstat = statc->events,
3838 .cstat_prev = statc->events_prev,
3839 .size = NR_MEMCG_EVENTS,
3840 };
3841 mem_cgroup_stat_aggregate(&ac);
3842
3843 for_each_node_state(nid, N_MEMORY) {
3844 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3845 struct lruvec_stats *lstats = pn->lruvec_stats;
3846 struct lruvec_stats *plstats = NULL;
3847 struct lruvec_stats_percpu *lstatc;
3848
3849 if (parent)
3850 plstats = parent->nodeinfo[nid]->lruvec_stats;
3851
3852 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3853
3854 ac = (struct aggregate_control) {
3855 .aggregate = lstats->state,
3856 .local = lstats->state_local,
3857 .pending = lstats->state_pending,
3858 .ppending = plstats ? plstats->state_pending : NULL,
3859 .cstat = lstatc->state,
3860 .cstat_prev = lstatc->state_prev,
3861 .size = NR_MEMCG_NODE_STAT_ITEMS,
3862 };
3863 mem_cgroup_stat_aggregate(&ac);
3864
3865 }
3866 WRITE_ONCE(statc->stats_updates, 0);
3867 /* We are in a per-cpu loop here, only do the atomic write once */
3868 if (atomic64_read(&memcg->vmstats->stats_updates))
3869 atomic64_set(&memcg->vmstats->stats_updates, 0);
3870}
3871
3872static void mem_cgroup_fork(struct task_struct *task)
3873{
3874 /*
3875 * Set the update flag to cause task->objcg to be initialized lazily
3876 * on the first allocation. It can be done without any synchronization
3877 * because it's always performed on the current task, so does
3878 * current_objcg_update().
3879 */
3880 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3881}
3882
3883static void mem_cgroup_exit(struct task_struct *task)
3884{
3885 struct obj_cgroup *objcg = task->objcg;
3886
3887 objcg = (struct obj_cgroup *)
3888 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3889 obj_cgroup_put(objcg);
3890
3891 /*
3892 * Some kernel allocations can happen after this point,
3893 * but let's ignore them. It can be done without any synchronization
3894 * because it's always performed on the current task, so does
3895 * current_objcg_update().
3896 */
3897 task->objcg = NULL;
3898}
3899
3900#ifdef CONFIG_LRU_GEN
3901static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3902{
3903 struct task_struct *task;
3904 struct cgroup_subsys_state *css;
3905
3906 /* find the first leader if there is any */
3907 cgroup_taskset_for_each_leader(task, css, tset)
3908 break;
3909
3910 if (!task)
3911 return;
3912
3913 task_lock(task);
3914 if (task->mm && READ_ONCE(task->mm->owner) == task)
3915 lru_gen_migrate_mm(task->mm);
3916 task_unlock(task);
3917}
3918#else
3919static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3920#endif /* CONFIG_LRU_GEN */
3921
3922static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3923{
3924 struct task_struct *task;
3925 struct cgroup_subsys_state *css;
3926
3927 cgroup_taskset_for_each(task, css, tset) {
3928 /* atomically set the update bit */
3929 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3930 }
3931}
3932
3933static void mem_cgroup_attach(struct cgroup_taskset *tset)
3934{
3935 mem_cgroup_lru_gen_attach(tset);
3936 mem_cgroup_kmem_attach(tset);
3937}
3938
3939static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3940{
3941 if (value == PAGE_COUNTER_MAX)
3942 seq_puts(m, "max\n");
3943 else
3944 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3945
3946 return 0;
3947}
3948
3949static u64 memory_current_read(struct cgroup_subsys_state *css,
3950 struct cftype *cft)
3951{
3952 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3953
3954 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3955}
3956
3957#define OFP_PEAK_UNSET (((-1UL)))
3958
3959static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
3960{
3961 struct cgroup_of_peak *ofp = of_peak(sf->private);
3962 u64 fd_peak = READ_ONCE(ofp->value), peak;
3963
3964 /* User wants global or local peak? */
3965 if (fd_peak == OFP_PEAK_UNSET)
3966 peak = pc->watermark;
3967 else
3968 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
3969
3970 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
3971 return 0;
3972}
3973
3974static int memory_peak_show(struct seq_file *sf, void *v)
3975{
3976 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3977
3978 return peak_show(sf, v, &memcg->memory);
3979}
3980
3981static int peak_open(struct kernfs_open_file *of)
3982{
3983 struct cgroup_of_peak *ofp = of_peak(of);
3984
3985 ofp->value = OFP_PEAK_UNSET;
3986 return 0;
3987}
3988
3989static void peak_release(struct kernfs_open_file *of)
3990{
3991 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3992 struct cgroup_of_peak *ofp = of_peak(of);
3993
3994 if (ofp->value == OFP_PEAK_UNSET) {
3995 /* fast path (no writes on this fd) */
3996 return;
3997 }
3998 spin_lock(&memcg->peaks_lock);
3999 list_del(&ofp->list);
4000 spin_unlock(&memcg->peaks_lock);
4001}
4002
4003static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4004 loff_t off, struct page_counter *pc,
4005 struct list_head *watchers)
4006{
4007 unsigned long usage;
4008 struct cgroup_of_peak *peer_ctx;
4009 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4010 struct cgroup_of_peak *ofp = of_peak(of);
4011
4012 spin_lock(&memcg->peaks_lock);
4013
4014 usage = page_counter_read(pc);
4015 WRITE_ONCE(pc->local_watermark, usage);
4016
4017 list_for_each_entry(peer_ctx, watchers, list)
4018 if (usage > peer_ctx->value)
4019 WRITE_ONCE(peer_ctx->value, usage);
4020
4021 /* initial write, register watcher */
4022 if (ofp->value == -1)
4023 list_add(&ofp->list, watchers);
4024
4025 WRITE_ONCE(ofp->value, usage);
4026 spin_unlock(&memcg->peaks_lock);
4027
4028 return nbytes;
4029}
4030
4031static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4032 size_t nbytes, loff_t off)
4033{
4034 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4035
4036 return peak_write(of, buf, nbytes, off, &memcg->memory,
4037 &memcg->memory_peaks);
4038}
4039
4040#undef OFP_PEAK_UNSET
4041
4042static int memory_min_show(struct seq_file *m, void *v)
4043{
4044 return seq_puts_memcg_tunable(m,
4045 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4046}
4047
4048static ssize_t memory_min_write(struct kernfs_open_file *of,
4049 char *buf, size_t nbytes, loff_t off)
4050{
4051 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4052 unsigned long min;
4053 int err;
4054
4055 buf = strstrip(buf);
4056 err = page_counter_memparse(buf, "max", &min);
4057 if (err)
4058 return err;
4059
4060 page_counter_set_min(&memcg->memory, min);
4061
4062 return nbytes;
4063}
4064
4065static int memory_low_show(struct seq_file *m, void *v)
4066{
4067 return seq_puts_memcg_tunable(m,
4068 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4069}
4070
4071static ssize_t memory_low_write(struct kernfs_open_file *of,
4072 char *buf, size_t nbytes, loff_t off)
4073{
4074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4075 unsigned long low;
4076 int err;
4077
4078 buf = strstrip(buf);
4079 err = page_counter_memparse(buf, "max", &low);
4080 if (err)
4081 return err;
4082
4083 page_counter_set_low(&memcg->memory, low);
4084
4085 return nbytes;
4086}
4087
4088static int memory_high_show(struct seq_file *m, void *v)
4089{
4090 return seq_puts_memcg_tunable(m,
4091 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4092}
4093
4094static ssize_t memory_high_write(struct kernfs_open_file *of,
4095 char *buf, size_t nbytes, loff_t off)
4096{
4097 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4098 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4099 bool drained = false;
4100 unsigned long high;
4101 int err;
4102
4103 buf = strstrip(buf);
4104 err = page_counter_memparse(buf, "max", &high);
4105 if (err)
4106 return err;
4107
4108 page_counter_set_high(&memcg->memory, high);
4109
4110 for (;;) {
4111 unsigned long nr_pages = page_counter_read(&memcg->memory);
4112 unsigned long reclaimed;
4113
4114 if (nr_pages <= high)
4115 break;
4116
4117 if (signal_pending(current))
4118 break;
4119
4120 if (!drained) {
4121 drain_all_stock(memcg);
4122 drained = true;
4123 continue;
4124 }
4125
4126 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4127 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4128
4129 if (!reclaimed && !nr_retries--)
4130 break;
4131 }
4132
4133 memcg_wb_domain_size_changed(memcg);
4134 return nbytes;
4135}
4136
4137static int memory_max_show(struct seq_file *m, void *v)
4138{
4139 return seq_puts_memcg_tunable(m,
4140 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4141}
4142
4143static ssize_t memory_max_write(struct kernfs_open_file *of,
4144 char *buf, size_t nbytes, loff_t off)
4145{
4146 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4147 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4148 bool drained = false;
4149 unsigned long max;
4150 int err;
4151
4152 buf = strstrip(buf);
4153 err = page_counter_memparse(buf, "max", &max);
4154 if (err)
4155 return err;
4156
4157 xchg(&memcg->memory.max, max);
4158
4159 for (;;) {
4160 unsigned long nr_pages = page_counter_read(&memcg->memory);
4161
4162 if (nr_pages <= max)
4163 break;
4164
4165 if (signal_pending(current))
4166 break;
4167
4168 if (!drained) {
4169 drain_all_stock(memcg);
4170 drained = true;
4171 continue;
4172 }
4173
4174 if (nr_reclaims) {
4175 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4176 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4177 nr_reclaims--;
4178 continue;
4179 }
4180
4181 memcg_memory_event(memcg, MEMCG_OOM);
4182 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4183 break;
4184 }
4185
4186 memcg_wb_domain_size_changed(memcg);
4187 return nbytes;
4188}
4189
4190/*
4191 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4192 * if any new events become available.
4193 */
4194static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4195{
4196 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4197 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4198 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4199 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4200 seq_printf(m, "oom_kill %lu\n",
4201 atomic_long_read(&events[MEMCG_OOM_KILL]));
4202 seq_printf(m, "oom_group_kill %lu\n",
4203 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4204}
4205
4206static int memory_events_show(struct seq_file *m, void *v)
4207{
4208 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4209
4210 __memory_events_show(m, memcg->memory_events);
4211 return 0;
4212}
4213
4214static int memory_events_local_show(struct seq_file *m, void *v)
4215{
4216 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4217
4218 __memory_events_show(m, memcg->memory_events_local);
4219 return 0;
4220}
4221
4222int memory_stat_show(struct seq_file *m, void *v)
4223{
4224 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4225 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4226 struct seq_buf s;
4227
4228 if (!buf)
4229 return -ENOMEM;
4230 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4231 memory_stat_format(memcg, &s);
4232 seq_puts(m, buf);
4233 kfree(buf);
4234 return 0;
4235}
4236
4237#ifdef CONFIG_NUMA
4238static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4239 int item)
4240{
4241 return lruvec_page_state(lruvec, item) *
4242 memcg_page_state_output_unit(item);
4243}
4244
4245static int memory_numa_stat_show(struct seq_file *m, void *v)
4246{
4247 int i;
4248 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4249
4250 mem_cgroup_flush_stats(memcg);
4251
4252 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4253 int nid;
4254
4255 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4256 continue;
4257
4258 seq_printf(m, "%s", memory_stats[i].name);
4259 for_each_node_state(nid, N_MEMORY) {
4260 u64 size;
4261 struct lruvec *lruvec;
4262
4263 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4264 size = lruvec_page_state_output(lruvec,
4265 memory_stats[i].idx);
4266 seq_printf(m, " N%d=%llu", nid, size);
4267 }
4268 seq_putc(m, '\n');
4269 }
4270
4271 return 0;
4272}
4273#endif
4274
4275static int memory_oom_group_show(struct seq_file *m, void *v)
4276{
4277 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4278
4279 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4280
4281 return 0;
4282}
4283
4284static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4285 char *buf, size_t nbytes, loff_t off)
4286{
4287 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4288 int ret, oom_group;
4289
4290 buf = strstrip(buf);
4291 if (!buf)
4292 return -EINVAL;
4293
4294 ret = kstrtoint(buf, 0, &oom_group);
4295 if (ret)
4296 return ret;
4297
4298 if (oom_group != 0 && oom_group != 1)
4299 return -EINVAL;
4300
4301 WRITE_ONCE(memcg->oom_group, oom_group);
4302
4303 return nbytes;
4304}
4305
4306enum {
4307 MEMORY_RECLAIM_SWAPPINESS = 0,
4308 MEMORY_RECLAIM_NULL,
4309};
4310
4311static const match_table_t tokens = {
4312 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4313 { MEMORY_RECLAIM_NULL, NULL },
4314};
4315
4316static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4317 size_t nbytes, loff_t off)
4318{
4319 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4320 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4321 unsigned long nr_to_reclaim, nr_reclaimed = 0;
4322 int swappiness = -1;
4323 unsigned int reclaim_options;
4324 char *old_buf, *start;
4325 substring_t args[MAX_OPT_ARGS];
4326
4327 buf = strstrip(buf);
4328
4329 old_buf = buf;
4330 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4331 if (buf == old_buf)
4332 return -EINVAL;
4333
4334 buf = strstrip(buf);
4335
4336 while ((start = strsep(&buf, " ")) != NULL) {
4337 if (!strlen(start))
4338 continue;
4339 switch (match_token(start, tokens, args)) {
4340 case MEMORY_RECLAIM_SWAPPINESS:
4341 if (match_int(&args[0], &swappiness))
4342 return -EINVAL;
4343 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4344 return -EINVAL;
4345 break;
4346 default:
4347 return -EINVAL;
4348 }
4349 }
4350
4351 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4352 while (nr_reclaimed < nr_to_reclaim) {
4353 /* Will converge on zero, but reclaim enforces a minimum */
4354 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4355 unsigned long reclaimed;
4356
4357 if (signal_pending(current))
4358 return -EINTR;
4359
4360 /*
4361 * This is the final attempt, drain percpu lru caches in the
4362 * hope of introducing more evictable pages for
4363 * try_to_free_mem_cgroup_pages().
4364 */
4365 if (!nr_retries)
4366 lru_add_drain_all();
4367
4368 reclaimed = try_to_free_mem_cgroup_pages(memcg,
4369 batch_size, GFP_KERNEL,
4370 reclaim_options,
4371 swappiness == -1 ? NULL : &swappiness);
4372
4373 if (!reclaimed && !nr_retries--)
4374 return -EAGAIN;
4375
4376 nr_reclaimed += reclaimed;
4377 }
4378
4379 return nbytes;
4380}
4381
4382static struct cftype memory_files[] = {
4383 {
4384 .name = "current",
4385 .flags = CFTYPE_NOT_ON_ROOT,
4386 .read_u64 = memory_current_read,
4387 },
4388 {
4389 .name = "peak",
4390 .flags = CFTYPE_NOT_ON_ROOT,
4391 .open = peak_open,
4392 .release = peak_release,
4393 .seq_show = memory_peak_show,
4394 .write = memory_peak_write,
4395 },
4396 {
4397 .name = "min",
4398 .flags = CFTYPE_NOT_ON_ROOT,
4399 .seq_show = memory_min_show,
4400 .write = memory_min_write,
4401 },
4402 {
4403 .name = "low",
4404 .flags = CFTYPE_NOT_ON_ROOT,
4405 .seq_show = memory_low_show,
4406 .write = memory_low_write,
4407 },
4408 {
4409 .name = "high",
4410 .flags = CFTYPE_NOT_ON_ROOT,
4411 .seq_show = memory_high_show,
4412 .write = memory_high_write,
4413 },
4414 {
4415 .name = "max",
4416 .flags = CFTYPE_NOT_ON_ROOT,
4417 .seq_show = memory_max_show,
4418 .write = memory_max_write,
4419 },
4420 {
4421 .name = "events",
4422 .flags = CFTYPE_NOT_ON_ROOT,
4423 .file_offset = offsetof(struct mem_cgroup, events_file),
4424 .seq_show = memory_events_show,
4425 },
4426 {
4427 .name = "events.local",
4428 .flags = CFTYPE_NOT_ON_ROOT,
4429 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4430 .seq_show = memory_events_local_show,
4431 },
4432 {
4433 .name = "stat",
4434 .seq_show = memory_stat_show,
4435 },
4436#ifdef CONFIG_NUMA
4437 {
4438 .name = "numa_stat",
4439 .seq_show = memory_numa_stat_show,
4440 },
4441#endif
4442 {
4443 .name = "oom.group",
4444 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4445 .seq_show = memory_oom_group_show,
4446 .write = memory_oom_group_write,
4447 },
4448 {
4449 .name = "reclaim",
4450 .flags = CFTYPE_NS_DELEGATABLE,
4451 .write = memory_reclaim,
4452 },
4453 { } /* terminate */
4454};
4455
4456struct cgroup_subsys memory_cgrp_subsys = {
4457 .css_alloc = mem_cgroup_css_alloc,
4458 .css_online = mem_cgroup_css_online,
4459 .css_offline = mem_cgroup_css_offline,
4460 .css_released = mem_cgroup_css_released,
4461 .css_free = mem_cgroup_css_free,
4462 .css_reset = mem_cgroup_css_reset,
4463 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4464 .attach = mem_cgroup_attach,
4465 .fork = mem_cgroup_fork,
4466 .exit = mem_cgroup_exit,
4467 .dfl_cftypes = memory_files,
4468#ifdef CONFIG_MEMCG_V1
4469 .legacy_cftypes = mem_cgroup_legacy_files,
4470#endif
4471 .early_init = 0,
4472};
4473
4474/**
4475 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4476 * @root: the top ancestor of the sub-tree being checked
4477 * @memcg: the memory cgroup to check
4478 *
4479 * WARNING: This function is not stateless! It can only be used as part
4480 * of a top-down tree iteration, not for isolated queries.
4481 */
4482void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4483 struct mem_cgroup *memcg)
4484{
4485 bool recursive_protection =
4486 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4487
4488 if (mem_cgroup_disabled())
4489 return;
4490
4491 if (!root)
4492 root = root_mem_cgroup;
4493
4494 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4495}
4496
4497static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4498 gfp_t gfp)
4499{
4500 int ret;
4501
4502 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4503 if (ret)
4504 goto out;
4505
4506 mem_cgroup_commit_charge(folio, memcg);
4507out:
4508 return ret;
4509}
4510
4511int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4512{
4513 struct mem_cgroup *memcg;
4514 int ret;
4515
4516 memcg = get_mem_cgroup_from_mm(mm);
4517 ret = charge_memcg(folio, memcg, gfp);
4518 css_put(&memcg->css);
4519
4520 return ret;
4521}
4522
4523/**
4524 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
4525 * @memcg: memcg to charge.
4526 * @gfp: reclaim mode.
4527 * @nr_pages: number of pages to charge.
4528 *
4529 * This function is called when allocating a huge page folio to determine if
4530 * the memcg has the capacity for it. It does not commit the charge yet,
4531 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
4532 *
4533 * Once we have obtained the hugetlb folio, we can call
4534 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
4535 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
4536 * of try_charge().
4537 *
4538 * Returns 0 on success. Otherwise, an error code is returned.
4539 */
4540int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
4541 long nr_pages)
4542{
4543 /*
4544 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
4545 * but do not attempt to commit charge later (or cancel on error) either.
4546 */
4547 if (mem_cgroup_disabled() || !memcg ||
4548 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
4549 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
4550 return -EOPNOTSUPP;
4551
4552 if (try_charge(memcg, gfp, nr_pages))
4553 return -ENOMEM;
4554
4555 return 0;
4556}
4557
4558/**
4559 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4560 * @folio: folio to charge.
4561 * @mm: mm context of the victim
4562 * @gfp: reclaim mode
4563 * @entry: swap entry for which the folio is allocated
4564 *
4565 * This function charges a folio allocated for swapin. Please call this before
4566 * adding the folio to the swapcache.
4567 *
4568 * Returns 0 on success. Otherwise, an error code is returned.
4569 */
4570int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4571 gfp_t gfp, swp_entry_t entry)
4572{
4573 struct mem_cgroup *memcg;
4574 unsigned short id;
4575 int ret;
4576
4577 if (mem_cgroup_disabled())
4578 return 0;
4579
4580 id = lookup_swap_cgroup_id(entry);
4581 rcu_read_lock();
4582 memcg = mem_cgroup_from_id(id);
4583 if (!memcg || !css_tryget_online(&memcg->css))
4584 memcg = get_mem_cgroup_from_mm(mm);
4585 rcu_read_unlock();
4586
4587 ret = charge_memcg(folio, memcg, gfp);
4588
4589 css_put(&memcg->css);
4590 return ret;
4591}
4592
4593/*
4594 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4595 * @entry: the first swap entry for which the pages are charged
4596 * @nr_pages: number of pages which will be uncharged
4597 *
4598 * Call this function after successfully adding the charged page to swapcache.
4599 *
4600 * Note: This function assumes the page for which swap slot is being uncharged
4601 * is order 0 page.
4602 */
4603void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
4604{
4605 /*
4606 * Cgroup1's unified memory+swap counter has been charged with the
4607 * new swapcache page, finish the transfer by uncharging the swap
4608 * slot. The swap slot would also get uncharged when it dies, but
4609 * it can stick around indefinitely and we'd count the page twice
4610 * the entire time.
4611 *
4612 * Cgroup2 has separate resource counters for memory and swap,
4613 * so this is a non-issue here. Memory and swap charge lifetimes
4614 * correspond 1:1 to page and swap slot lifetimes: we charge the
4615 * page to memory here, and uncharge swap when the slot is freed.
4616 */
4617 if (!mem_cgroup_disabled() && do_memsw_account()) {
4618 /*
4619 * The swap entry might not get freed for a long time,
4620 * let's not wait for it. The page already received a
4621 * memory+swap charge, drop the swap entry duplicate.
4622 */
4623 mem_cgroup_uncharge_swap(entry, nr_pages);
4624 }
4625}
4626
4627struct uncharge_gather {
4628 struct mem_cgroup *memcg;
4629 unsigned long nr_memory;
4630 unsigned long pgpgout;
4631 unsigned long nr_kmem;
4632 int nid;
4633};
4634
4635static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4636{
4637 memset(ug, 0, sizeof(*ug));
4638}
4639
4640static void uncharge_batch(const struct uncharge_gather *ug)
4641{
4642 if (ug->nr_memory) {
4643 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
4644 if (do_memsw_account())
4645 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4646 if (ug->nr_kmem) {
4647 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4648 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4649 }
4650 memcg1_oom_recover(ug->memcg);
4651 }
4652
4653 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4654
4655 /* drop reference from uncharge_folio */
4656 css_put(&ug->memcg->css);
4657}
4658
4659static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4660{
4661 long nr_pages;
4662 struct mem_cgroup *memcg;
4663 struct obj_cgroup *objcg;
4664
4665 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4666
4667 /*
4668 * Nobody should be changing or seriously looking at
4669 * folio memcg or objcg at this point, we have fully
4670 * exclusive access to the folio.
4671 */
4672 if (folio_memcg_kmem(folio)) {
4673 objcg = __folio_objcg(folio);
4674 /*
4675 * This get matches the put at the end of the function and
4676 * kmem pages do not hold memcg references anymore.
4677 */
4678 memcg = get_mem_cgroup_from_objcg(objcg);
4679 } else {
4680 memcg = __folio_memcg(folio);
4681 }
4682
4683 if (!memcg)
4684 return;
4685
4686 if (ug->memcg != memcg) {
4687 if (ug->memcg) {
4688 uncharge_batch(ug);
4689 uncharge_gather_clear(ug);
4690 }
4691 ug->memcg = memcg;
4692 ug->nid = folio_nid(folio);
4693
4694 /* pairs with css_put in uncharge_batch */
4695 css_get(&memcg->css);
4696 }
4697
4698 nr_pages = folio_nr_pages(folio);
4699
4700 if (folio_memcg_kmem(folio)) {
4701 ug->nr_memory += nr_pages;
4702 ug->nr_kmem += nr_pages;
4703
4704 folio->memcg_data = 0;
4705 obj_cgroup_put(objcg);
4706 } else {
4707 /* LRU pages aren't accounted at the root level */
4708 if (!mem_cgroup_is_root(memcg))
4709 ug->nr_memory += nr_pages;
4710 ug->pgpgout++;
4711
4712 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4713 folio->memcg_data = 0;
4714 }
4715
4716 css_put(&memcg->css);
4717}
4718
4719void __mem_cgroup_uncharge(struct folio *folio)
4720{
4721 struct uncharge_gather ug;
4722
4723 /* Don't touch folio->lru of any random page, pre-check: */
4724 if (!folio_memcg_charged(folio))
4725 return;
4726
4727 uncharge_gather_clear(&ug);
4728 uncharge_folio(folio, &ug);
4729 uncharge_batch(&ug);
4730}
4731
4732void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4733{
4734 struct uncharge_gather ug;
4735 unsigned int i;
4736
4737 uncharge_gather_clear(&ug);
4738 for (i = 0; i < folios->nr; i++)
4739 uncharge_folio(folios->folios[i], &ug);
4740 if (ug.memcg)
4741 uncharge_batch(&ug);
4742}
4743
4744/**
4745 * mem_cgroup_replace_folio - Charge a folio's replacement.
4746 * @old: Currently circulating folio.
4747 * @new: Replacement folio.
4748 *
4749 * Charge @new as a replacement folio for @old. @old will
4750 * be uncharged upon free.
4751 *
4752 * Both folios must be locked, @new->mapping must be set up.
4753 */
4754void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4755{
4756 struct mem_cgroup *memcg;
4757 long nr_pages = folio_nr_pages(new);
4758
4759 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4760 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4761 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4762 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4763
4764 if (mem_cgroup_disabled())
4765 return;
4766
4767 /* Page cache replacement: new folio already charged? */
4768 if (folio_memcg_charged(new))
4769 return;
4770
4771 memcg = folio_memcg(old);
4772 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4773 if (!memcg)
4774 return;
4775
4776 /* Force-charge the new page. The old one will be freed soon */
4777 if (!mem_cgroup_is_root(memcg)) {
4778 page_counter_charge(&memcg->memory, nr_pages);
4779 if (do_memsw_account())
4780 page_counter_charge(&memcg->memsw, nr_pages);
4781 }
4782
4783 css_get(&memcg->css);
4784 commit_charge(new, memcg);
4785 memcg1_commit_charge(new, memcg);
4786}
4787
4788/**
4789 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4790 * @old: Currently circulating folio.
4791 * @new: Replacement folio.
4792 *
4793 * Transfer the memcg data from the old folio to the new folio for migration.
4794 * The old folio's data info will be cleared. Note that the memory counters
4795 * will remain unchanged throughout the process.
4796 *
4797 * Both folios must be locked, @new->mapping must be set up.
4798 */
4799void mem_cgroup_migrate(struct folio *old, struct folio *new)
4800{
4801 struct mem_cgroup *memcg;
4802
4803 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4804 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4805 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4806 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4807 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4808
4809 if (mem_cgroup_disabled())
4810 return;
4811
4812 memcg = folio_memcg(old);
4813 /*
4814 * Note that it is normal to see !memcg for a hugetlb folio.
4815 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4816 * was not selected.
4817 */
4818 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4819 if (!memcg)
4820 return;
4821
4822 /* Transfer the charge and the css ref */
4823 commit_charge(new, memcg);
4824
4825 /* Warning should never happen, so don't worry about refcount non-0 */
4826 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4827 old->memcg_data = 0;
4828}
4829
4830DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4831EXPORT_SYMBOL(memcg_sockets_enabled_key);
4832
4833void mem_cgroup_sk_alloc(struct sock *sk)
4834{
4835 struct mem_cgroup *memcg;
4836
4837 if (!mem_cgroup_sockets_enabled)
4838 return;
4839
4840 /* Do not associate the sock with unrelated interrupted task's memcg. */
4841 if (!in_task())
4842 return;
4843
4844 rcu_read_lock();
4845 memcg = mem_cgroup_from_task(current);
4846 if (mem_cgroup_is_root(memcg))
4847 goto out;
4848 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4849 goto out;
4850 if (css_tryget(&memcg->css))
4851 sk->sk_memcg = memcg;
4852out:
4853 rcu_read_unlock();
4854}
4855
4856void mem_cgroup_sk_free(struct sock *sk)
4857{
4858 if (sk->sk_memcg)
4859 css_put(&sk->sk_memcg->css);
4860}
4861
4862/**
4863 * mem_cgroup_charge_skmem - charge socket memory
4864 * @memcg: memcg to charge
4865 * @nr_pages: number of pages to charge
4866 * @gfp_mask: reclaim mode
4867 *
4868 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4869 * @memcg's configured limit, %false if it doesn't.
4870 */
4871bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4872 gfp_t gfp_mask)
4873{
4874 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4875 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
4876
4877 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4878 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4879 return true;
4880 }
4881
4882 return false;
4883}
4884
4885/**
4886 * mem_cgroup_uncharge_skmem - uncharge socket memory
4887 * @memcg: memcg to uncharge
4888 * @nr_pages: number of pages to uncharge
4889 */
4890void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4891{
4892 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4893 memcg1_uncharge_skmem(memcg, nr_pages);
4894 return;
4895 }
4896
4897 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4898
4899 refill_stock(memcg, nr_pages);
4900}
4901
4902static int __init cgroup_memory(char *s)
4903{
4904 char *token;
4905
4906 while ((token = strsep(&s, ",")) != NULL) {
4907 if (!*token)
4908 continue;
4909 if (!strcmp(token, "nosocket"))
4910 cgroup_memory_nosocket = true;
4911 if (!strcmp(token, "nokmem"))
4912 cgroup_memory_nokmem = true;
4913 if (!strcmp(token, "nobpf"))
4914 cgroup_memory_nobpf = true;
4915 }
4916 return 1;
4917}
4918__setup("cgroup.memory=", cgroup_memory);
4919
4920/*
4921 * subsys_initcall() for memory controller.
4922 *
4923 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4924 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4925 * basically everything that doesn't depend on a specific mem_cgroup structure
4926 * should be initialized from here.
4927 */
4928static int __init mem_cgroup_init(void)
4929{
4930 int cpu;
4931
4932 /*
4933 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4934 * used for per-memcg-per-cpu caching of per-node statistics. In order
4935 * to work fine, we should make sure that the overfill threshold can't
4936 * exceed S32_MAX / PAGE_SIZE.
4937 */
4938 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4939
4940 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4941 memcg_hotplug_cpu_dead);
4942
4943 for_each_possible_cpu(cpu)
4944 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4945 drain_local_stock);
4946
4947 return 0;
4948}
4949subsys_initcall(mem_cgroup_init);
4950
4951#ifdef CONFIG_SWAP
4952static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4953{
4954 while (!refcount_inc_not_zero(&memcg->id.ref)) {
4955 /*
4956 * The root cgroup cannot be destroyed, so it's refcount must
4957 * always be >= 1.
4958 */
4959 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4960 VM_BUG_ON(1);
4961 break;
4962 }
4963 memcg = parent_mem_cgroup(memcg);
4964 if (!memcg)
4965 memcg = root_mem_cgroup;
4966 }
4967 return memcg;
4968}
4969
4970/**
4971 * mem_cgroup_swapout - transfer a memsw charge to swap
4972 * @folio: folio whose memsw charge to transfer
4973 * @entry: swap entry to move the charge to
4974 *
4975 * Transfer the memsw charge of @folio to @entry.
4976 */
4977void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4978{
4979 struct mem_cgroup *memcg, *swap_memcg;
4980 unsigned int nr_entries;
4981 unsigned short oldid;
4982
4983 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4984 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4985
4986 if (mem_cgroup_disabled())
4987 return;
4988
4989 if (!do_memsw_account())
4990 return;
4991
4992 memcg = folio_memcg(folio);
4993
4994 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4995 if (!memcg)
4996 return;
4997
4998 /*
4999 * In case the memcg owning these pages has been offlined and doesn't
5000 * have an ID allocated to it anymore, charge the closest online
5001 * ancestor for the swap instead and transfer the memory+swap charge.
5002 */
5003 swap_memcg = mem_cgroup_id_get_online(memcg);
5004 nr_entries = folio_nr_pages(folio);
5005 /* Get references for the tail pages, too */
5006 if (nr_entries > 1)
5007 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5008 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5009 nr_entries);
5010 VM_BUG_ON_FOLIO(oldid, folio);
5011 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5012
5013 folio_unqueue_deferred_split(folio);
5014 folio->memcg_data = 0;
5015
5016 if (!mem_cgroup_is_root(memcg))
5017 page_counter_uncharge(&memcg->memory, nr_entries);
5018
5019 if (memcg != swap_memcg) {
5020 if (!mem_cgroup_is_root(swap_memcg))
5021 page_counter_charge(&swap_memcg->memsw, nr_entries);
5022 page_counter_uncharge(&memcg->memsw, nr_entries);
5023 }
5024
5025 memcg1_swapout(folio, memcg);
5026 css_put(&memcg->css);
5027}
5028
5029/**
5030 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5031 * @folio: folio being added to swap
5032 * @entry: swap entry to charge
5033 *
5034 * Try to charge @folio's memcg for the swap space at @entry.
5035 *
5036 * Returns 0 on success, -ENOMEM on failure.
5037 */
5038int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5039{
5040 unsigned int nr_pages = folio_nr_pages(folio);
5041 struct page_counter *counter;
5042 struct mem_cgroup *memcg;
5043 unsigned short oldid;
5044
5045 if (do_memsw_account())
5046 return 0;
5047
5048 memcg = folio_memcg(folio);
5049
5050 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5051 if (!memcg)
5052 return 0;
5053
5054 if (!entry.val) {
5055 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5056 return 0;
5057 }
5058
5059 memcg = mem_cgroup_id_get_online(memcg);
5060
5061 if (!mem_cgroup_is_root(memcg) &&
5062 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5063 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5064 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5065 mem_cgroup_id_put(memcg);
5066 return -ENOMEM;
5067 }
5068
5069 /* Get references for the tail pages, too */
5070 if (nr_pages > 1)
5071 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5072 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5073 VM_BUG_ON_FOLIO(oldid, folio);
5074 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5075
5076 return 0;
5077}
5078
5079/**
5080 * __mem_cgroup_uncharge_swap - uncharge swap space
5081 * @entry: swap entry to uncharge
5082 * @nr_pages: the amount of swap space to uncharge
5083 */
5084void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5085{
5086 struct mem_cgroup *memcg;
5087 unsigned short id;
5088
5089 id = swap_cgroup_record(entry, 0, nr_pages);
5090 rcu_read_lock();
5091 memcg = mem_cgroup_from_id(id);
5092 if (memcg) {
5093 if (!mem_cgroup_is_root(memcg)) {
5094 if (do_memsw_account())
5095 page_counter_uncharge(&memcg->memsw, nr_pages);
5096 else
5097 page_counter_uncharge(&memcg->swap, nr_pages);
5098 }
5099 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5100 mem_cgroup_id_put_many(memcg, nr_pages);
5101 }
5102 rcu_read_unlock();
5103}
5104
5105long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5106{
5107 long nr_swap_pages = get_nr_swap_pages();
5108
5109 if (mem_cgroup_disabled() || do_memsw_account())
5110 return nr_swap_pages;
5111 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5112 nr_swap_pages = min_t(long, nr_swap_pages,
5113 READ_ONCE(memcg->swap.max) -
5114 page_counter_read(&memcg->swap));
5115 return nr_swap_pages;
5116}
5117
5118bool mem_cgroup_swap_full(struct folio *folio)
5119{
5120 struct mem_cgroup *memcg;
5121
5122 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5123
5124 if (vm_swap_full())
5125 return true;
5126 if (do_memsw_account())
5127 return false;
5128
5129 memcg = folio_memcg(folio);
5130 if (!memcg)
5131 return false;
5132
5133 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5134 unsigned long usage = page_counter_read(&memcg->swap);
5135
5136 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5137 usage * 2 >= READ_ONCE(memcg->swap.max))
5138 return true;
5139 }
5140
5141 return false;
5142}
5143
5144static int __init setup_swap_account(char *s)
5145{
5146 bool res;
5147
5148 if (!kstrtobool(s, &res) && !res)
5149 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5150 "in favor of configuring swap control via cgroupfs. "
5151 "Please report your usecase to linux-mm@kvack.org if you "
5152 "depend on this functionality.\n");
5153 return 1;
5154}
5155__setup("swapaccount=", setup_swap_account);
5156
5157static u64 swap_current_read(struct cgroup_subsys_state *css,
5158 struct cftype *cft)
5159{
5160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5161
5162 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5163}
5164
5165static int swap_peak_show(struct seq_file *sf, void *v)
5166{
5167 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5168
5169 return peak_show(sf, v, &memcg->swap);
5170}
5171
5172static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5173 size_t nbytes, loff_t off)
5174{
5175 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5176
5177 return peak_write(of, buf, nbytes, off, &memcg->swap,
5178 &memcg->swap_peaks);
5179}
5180
5181static int swap_high_show(struct seq_file *m, void *v)
5182{
5183 return seq_puts_memcg_tunable(m,
5184 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5185}
5186
5187static ssize_t swap_high_write(struct kernfs_open_file *of,
5188 char *buf, size_t nbytes, loff_t off)
5189{
5190 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5191 unsigned long high;
5192 int err;
5193
5194 buf = strstrip(buf);
5195 err = page_counter_memparse(buf, "max", &high);
5196 if (err)
5197 return err;
5198
5199 page_counter_set_high(&memcg->swap, high);
5200
5201 return nbytes;
5202}
5203
5204static int swap_max_show(struct seq_file *m, void *v)
5205{
5206 return seq_puts_memcg_tunable(m,
5207 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5208}
5209
5210static ssize_t swap_max_write(struct kernfs_open_file *of,
5211 char *buf, size_t nbytes, loff_t off)
5212{
5213 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5214 unsigned long max;
5215 int err;
5216
5217 buf = strstrip(buf);
5218 err = page_counter_memparse(buf, "max", &max);
5219 if (err)
5220 return err;
5221
5222 xchg(&memcg->swap.max, max);
5223
5224 return nbytes;
5225}
5226
5227static int swap_events_show(struct seq_file *m, void *v)
5228{
5229 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5230
5231 seq_printf(m, "high %lu\n",
5232 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5233 seq_printf(m, "max %lu\n",
5234 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5235 seq_printf(m, "fail %lu\n",
5236 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5237
5238 return 0;
5239}
5240
5241static struct cftype swap_files[] = {
5242 {
5243 .name = "swap.current",
5244 .flags = CFTYPE_NOT_ON_ROOT,
5245 .read_u64 = swap_current_read,
5246 },
5247 {
5248 .name = "swap.high",
5249 .flags = CFTYPE_NOT_ON_ROOT,
5250 .seq_show = swap_high_show,
5251 .write = swap_high_write,
5252 },
5253 {
5254 .name = "swap.max",
5255 .flags = CFTYPE_NOT_ON_ROOT,
5256 .seq_show = swap_max_show,
5257 .write = swap_max_write,
5258 },
5259 {
5260 .name = "swap.peak",
5261 .flags = CFTYPE_NOT_ON_ROOT,
5262 .open = peak_open,
5263 .release = peak_release,
5264 .seq_show = swap_peak_show,
5265 .write = swap_peak_write,
5266 },
5267 {
5268 .name = "swap.events",
5269 .flags = CFTYPE_NOT_ON_ROOT,
5270 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5271 .seq_show = swap_events_show,
5272 },
5273 { } /* terminate */
5274};
5275
5276#ifdef CONFIG_ZSWAP
5277/**
5278 * obj_cgroup_may_zswap - check if this cgroup can zswap
5279 * @objcg: the object cgroup
5280 *
5281 * Check if the hierarchical zswap limit has been reached.
5282 *
5283 * This doesn't check for specific headroom, and it is not atomic
5284 * either. But with zswap, the size of the allocation is only known
5285 * once compression has occurred, and this optimistic pre-check avoids
5286 * spending cycles on compression when there is already no room left
5287 * or zswap is disabled altogether somewhere in the hierarchy.
5288 */
5289bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5290{
5291 struct mem_cgroup *memcg, *original_memcg;
5292 bool ret = true;
5293
5294 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5295 return true;
5296
5297 original_memcg = get_mem_cgroup_from_objcg(objcg);
5298 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5299 memcg = parent_mem_cgroup(memcg)) {
5300 unsigned long max = READ_ONCE(memcg->zswap_max);
5301 unsigned long pages;
5302
5303 if (max == PAGE_COUNTER_MAX)
5304 continue;
5305 if (max == 0) {
5306 ret = false;
5307 break;
5308 }
5309
5310 /* Force flush to get accurate stats for charging */
5311 __mem_cgroup_flush_stats(memcg, true);
5312 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5313 if (pages < max)
5314 continue;
5315 ret = false;
5316 break;
5317 }
5318 mem_cgroup_put(original_memcg);
5319 return ret;
5320}
5321
5322/**
5323 * obj_cgroup_charge_zswap - charge compression backend memory
5324 * @objcg: the object cgroup
5325 * @size: size of compressed object
5326 *
5327 * This forces the charge after obj_cgroup_may_zswap() allowed
5328 * compression and storage in zwap for this cgroup to go ahead.
5329 */
5330void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5331{
5332 struct mem_cgroup *memcg;
5333
5334 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5335 return;
5336
5337 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5338
5339 /* PF_MEMALLOC context, charging must succeed */
5340 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5341 VM_WARN_ON_ONCE(1);
5342
5343 rcu_read_lock();
5344 memcg = obj_cgroup_memcg(objcg);
5345 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5346 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5347 rcu_read_unlock();
5348}
5349
5350/**
5351 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5352 * @objcg: the object cgroup
5353 * @size: size of compressed object
5354 *
5355 * Uncharges zswap memory on page in.
5356 */
5357void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5358{
5359 struct mem_cgroup *memcg;
5360
5361 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5362 return;
5363
5364 obj_cgroup_uncharge(objcg, size);
5365
5366 rcu_read_lock();
5367 memcg = obj_cgroup_memcg(objcg);
5368 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5369 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5370 rcu_read_unlock();
5371}
5372
5373bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5374{
5375 /* if zswap is disabled, do not block pages going to the swapping device */
5376 if (!zswap_is_enabled())
5377 return true;
5378
5379 for (; memcg; memcg = parent_mem_cgroup(memcg))
5380 if (!READ_ONCE(memcg->zswap_writeback))
5381 return false;
5382
5383 return true;
5384}
5385
5386static u64 zswap_current_read(struct cgroup_subsys_state *css,
5387 struct cftype *cft)
5388{
5389 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5390
5391 mem_cgroup_flush_stats(memcg);
5392 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5393}
5394
5395static int zswap_max_show(struct seq_file *m, void *v)
5396{
5397 return seq_puts_memcg_tunable(m,
5398 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5399}
5400
5401static ssize_t zswap_max_write(struct kernfs_open_file *of,
5402 char *buf, size_t nbytes, loff_t off)
5403{
5404 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5405 unsigned long max;
5406 int err;
5407
5408 buf = strstrip(buf);
5409 err = page_counter_memparse(buf, "max", &max);
5410 if (err)
5411 return err;
5412
5413 xchg(&memcg->zswap_max, max);
5414
5415 return nbytes;
5416}
5417
5418static int zswap_writeback_show(struct seq_file *m, void *v)
5419{
5420 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5421
5422 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5423 return 0;
5424}
5425
5426static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5427 char *buf, size_t nbytes, loff_t off)
5428{
5429 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5430 int zswap_writeback;
5431 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5432
5433 if (parse_ret)
5434 return parse_ret;
5435
5436 if (zswap_writeback != 0 && zswap_writeback != 1)
5437 return -EINVAL;
5438
5439 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5440 return nbytes;
5441}
5442
5443static struct cftype zswap_files[] = {
5444 {
5445 .name = "zswap.current",
5446 .flags = CFTYPE_NOT_ON_ROOT,
5447 .read_u64 = zswap_current_read,
5448 },
5449 {
5450 .name = "zswap.max",
5451 .flags = CFTYPE_NOT_ON_ROOT,
5452 .seq_show = zswap_max_show,
5453 .write = zswap_max_write,
5454 },
5455 {
5456 .name = "zswap.writeback",
5457 .seq_show = zswap_writeback_show,
5458 .write = zswap_writeback_write,
5459 },
5460 { } /* terminate */
5461};
5462#endif /* CONFIG_ZSWAP */
5463
5464static int __init mem_cgroup_swap_init(void)
5465{
5466 if (mem_cgroup_disabled())
5467 return 0;
5468
5469 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5470#ifdef CONFIG_MEMCG_V1
5471 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5472#endif
5473#ifdef CONFIG_ZSWAP
5474 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5475#endif
5476 return 0;
5477}
5478subsys_initcall(mem_cgroup_swap_init);
5479
5480#endif /* CONFIG_SWAP */