Linux Audio

Check our new training course

Loading...
v4.17
 
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * Native page reclaim
  18 * Charge lifetime sanitation
  19 * Lockless page tracking & accounting
  20 * Unified hierarchy configuration model
  21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22 *
  23 * This program is free software; you can redistribute it and/or modify
  24 * it under the terms of the GNU General Public License as published by
  25 * the Free Software Foundation; either version 2 of the License, or
  26 * (at your option) any later version.
  27 *
  28 * This program is distributed in the hope that it will be useful,
  29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  31 * GNU General Public License for more details.
  32 */
  33
 
  34#include <linux/page_counter.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cgroup.h>
  37#include <linux/mm.h>
  38#include <linux/sched/mm.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/hugetlb.h>
  41#include <linux/pagemap.h>
 
 
  42#include <linux/smp.h>
  43#include <linux/page-flags.h>
  44#include <linux/backing-dev.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/limits.h>
  48#include <linux/export.h>
 
  49#include <linux/mutex.h>
  50#include <linux/rbtree.h>
  51#include <linux/slab.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/spinlock.h>
  55#include <linux/eventfd.h>
  56#include <linux/poll.h>
  57#include <linux/sort.h>
  58#include <linux/fs.h>
  59#include <linux/seq_file.h>
 
  60#include <linux/vmpressure.h>
 
  61#include <linux/mm_inline.h>
  62#include <linux/swap_cgroup.h>
  63#include <linux/cpu.h>
  64#include <linux/oom.h>
  65#include <linux/lockdep.h>
  66#include <linux/file.h>
  67#include <linux/tracehook.h>
 
 
 
  68#include "internal.h"
  69#include <net/sock.h>
  70#include <net/ip.h>
  71#include "slab.h"
 
  72
  73#include <linux/uaccess.h>
  74
 
 
 
 
  75#include <trace/events/vmscan.h>
  76
  77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  78EXPORT_SYMBOL(memory_cgrp_subsys);
  79
  80struct mem_cgroup *root_mem_cgroup __read_mostly;
  81
  82#define MEM_CGROUP_RECLAIM_RETRIES	5
 
 
  83
  84/* Socket memory accounting disabled? */
  85static bool cgroup_memory_nosocket;
  86
  87/* Kernel memory accounting disabled? */
  88static bool cgroup_memory_nokmem;
  89
  90/* Whether the swap controller is active */
  91#ifdef CONFIG_MEMCG_SWAP
  92int do_swap_account __read_mostly;
  93#else
  94#define do_swap_account		0
  95#endif
  96
  97/* Whether legacy memory+swap accounting is active */
  98static bool do_memsw_account(void)
  99{
 100	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
 
 101}
 102
 103static const char *const mem_cgroup_lru_names[] = {
 104	"inactive_anon",
 105	"active_anon",
 106	"inactive_file",
 107	"active_file",
 108	"unevictable",
 109};
 110
 111#define THRESHOLDS_EVENTS_TARGET 128
 112#define SOFTLIMIT_EVENTS_TARGET 1024
 113#define NUMAINFO_EVENTS_TARGET	1024
 
 114
 115/*
 116 * Cgroups above their limits are maintained in a RB-Tree, independent of
 117 * their hierarchy representation
 118 */
 119
 120struct mem_cgroup_tree_per_node {
 121	struct rb_root rb_root;
 122	struct rb_node *rb_rightmost;
 123	spinlock_t lock;
 124};
 125
 126struct mem_cgroup_tree {
 127	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 128};
 
 129
 130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 
 131
 132/* for OOM */
 133struct mem_cgroup_eventfd_list {
 134	struct list_head list;
 135	struct eventfd_ctx *eventfd;
 136};
 
 137
 138/*
 139 * cgroup_event represents events which userspace want to receive.
 140 */
 141struct mem_cgroup_event {
 142	/*
 143	 * memcg which the event belongs to.
 144	 */
 145	struct mem_cgroup *memcg;
 146	/*
 147	 * eventfd to signal userspace about the event.
 148	 */
 149	struct eventfd_ctx *eventfd;
 150	/*
 151	 * Each of these stored in a list by the cgroup.
 152	 */
 153	struct list_head list;
 154	/*
 155	 * register_event() callback will be used to add new userspace
 156	 * waiter for changes related to this event.  Use eventfd_signal()
 157	 * on eventfd to send notification to userspace.
 158	 */
 159	int (*register_event)(struct mem_cgroup *memcg,
 160			      struct eventfd_ctx *eventfd, const char *args);
 161	/*
 162	 * unregister_event() callback will be called when userspace closes
 163	 * the eventfd or on cgroup removing.  This callback must be set,
 164	 * if you want provide notification functionality.
 165	 */
 166	void (*unregister_event)(struct mem_cgroup *memcg,
 167				 struct eventfd_ctx *eventfd);
 168	/*
 169	 * All fields below needed to unregister event when
 170	 * userspace closes eventfd.
 
 
 
 
 
 
 
 
 
 171	 */
 172	poll_table pt;
 173	wait_queue_head_t *wqh;
 174	wait_queue_entry_t wait;
 175	struct work_struct remove;
 176};
 177
 178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 180
 181/* Stuffs for move charges at task migration. */
 182/*
 183 * Types of charges to be moved.
 184 */
 185#define MOVE_ANON	0x1U
 186#define MOVE_FILE	0x2U
 187#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 188
 189/* "mc" and its members are protected by cgroup_mutex */
 190static struct move_charge_struct {
 191	spinlock_t	  lock; /* for from, to */
 192	struct mm_struct  *mm;
 193	struct mem_cgroup *from;
 194	struct mem_cgroup *to;
 195	unsigned long flags;
 196	unsigned long precharge;
 197	unsigned long moved_charge;
 198	unsigned long moved_swap;
 199	struct task_struct *moving_task;	/* a task moving charges */
 200	wait_queue_head_t waitq;		/* a waitq for other context */
 201} mc = {
 202	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 203	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 204};
 205
 206/*
 207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 208 * limit reclaim to prevent infinite loops, if they ever occur.
 209 */
 210#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 211#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 212
 213enum charge_type {
 214	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 215	MEM_CGROUP_CHARGE_TYPE_ANON,
 216	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 217	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 218	NR_CHARGE_TYPE,
 219};
 220
 221/* for encoding cft->private value on file */
 222enum res_type {
 223	_MEM,
 224	_MEMSWAP,
 225	_OOM_TYPE,
 226	_KMEM,
 227	_TCP,
 228};
 229
 230#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 231#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 232#define MEMFILE_ATTR(val)	((val) & 0xffff)
 233/* Used for OOM nofiier */
 234#define OOM_CONTROL		(0)
 235
 236/* Some nice accessors for the vmpressure. */
 237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 238{
 239	if (!memcg)
 240		memcg = root_mem_cgroup;
 241	return &memcg->vmpressure;
 
 
 242}
 243
 244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 
 245{
 246	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 247}
 248
 249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 250{
 251	return (memcg == root_mem_cgroup);
 252}
 253
 254#ifndef CONFIG_SLOB
 255/*
 256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 257 * The main reason for not using cgroup id for this:
 258 *  this works better in sparse environments, where we have a lot of memcgs,
 259 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 260 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 261 *  200 entry array for that.
 262 *
 263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 264 * will double each time we have to increase it.
 265 */
 266static DEFINE_IDA(memcg_cache_ida);
 267int memcg_nr_cache_ids;
 268
 269/* Protects memcg_nr_cache_ids */
 270static DECLARE_RWSEM(memcg_cache_ids_sem);
 
 
 
 
 
 271
 272void memcg_get_cache_ids(void)
 273{
 274	down_read(&memcg_cache_ids_sem);
 275}
 276
 277void memcg_put_cache_ids(void)
 278{
 279	up_read(&memcg_cache_ids_sem);
 280}
 281
 282/*
 283 * MIN_SIZE is different than 1, because we would like to avoid going through
 284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 285 * cgroups is a reasonable guess. In the future, it could be a parameter or
 286 * tunable, but that is strictly not necessary.
 287 *
 288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 289 * this constant directly from cgroup, but it is understandable that this is
 290 * better kept as an internal representation in cgroup.c. In any case, the
 291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 292 * increase ours as well if it increases.
 293 */
 294#define MEMCG_CACHES_MIN_SIZE 4
 295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 296
 297/*
 298 * A lot of the calls to the cache allocation functions are expected to be
 299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 300 * conditional to this static branch, we'll have to allow modules that does
 301 * kmem_cache_alloc and the such to see this symbol as well
 302 */
 303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 304EXPORT_SYMBOL(memcg_kmem_enabled_key);
 305
 306struct workqueue_struct *memcg_kmem_cache_wq;
 307
 308#endif /* !CONFIG_SLOB */
 309
 310/**
 311 * mem_cgroup_css_from_page - css of the memcg associated with a page
 312 * @page: page of interest
 313 *
 314 * If memcg is bound to the default hierarchy, css of the memcg associated
 315 * with @page is returned.  The returned css remains associated with @page
 316 * until it is released.
 317 *
 318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 319 * is returned.
 320 */
 321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 322{
 323	struct mem_cgroup *memcg;
 324
 325	memcg = page->mem_cgroup;
 326
 327	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 328		memcg = root_mem_cgroup;
 329
 330	return &memcg->css;
 331}
 332
 333/**
 334 * page_cgroup_ino - return inode number of the memcg a page is charged to
 335 * @page: the page
 336 *
 337 * Look up the closest online ancestor of the memory cgroup @page is charged to
 338 * and return its inode number or 0 if @page is not charged to any cgroup. It
 339 * is safe to call this function without holding a reference to @page.
 340 *
 341 * Note, this function is inherently racy, because there is nothing to prevent
 342 * the cgroup inode from getting torn down and potentially reallocated a moment
 343 * after page_cgroup_ino() returns, so it only should be used by callers that
 344 * do not care (such as procfs interfaces).
 345 */
 346ino_t page_cgroup_ino(struct page *page)
 347{
 348	struct mem_cgroup *memcg;
 349	unsigned long ino = 0;
 350
 351	rcu_read_lock();
 352	memcg = READ_ONCE(page->mem_cgroup);
 
 
 353	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 354		memcg = parent_mem_cgroup(memcg);
 355	if (memcg)
 356		ino = cgroup_ino(memcg->css.cgroup);
 357	rcu_read_unlock();
 358	return ino;
 359}
 360
 361static struct mem_cgroup_per_node *
 362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363{
 364	int nid = page_to_nid(page);
 
 
 
 
 
 
 
 365
 366	return memcg->nodeinfo[nid];
 
 367}
 368
 369static struct mem_cgroup_tree_per_node *
 370soft_limit_tree_node(int nid)
 371{
 372	return soft_limit_tree.rb_tree_per_node[nid];
 373}
 374
 375static struct mem_cgroup_tree_per_node *
 376soft_limit_tree_from_page(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377{
 378	int nid = page_to_nid(page);
 
 
 
 
 
 
 
 
 
 379
 380	return soft_limit_tree.rb_tree_per_node[nid];
 
 
 
 
 
 
 381}
 382
 383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 384					 struct mem_cgroup_tree_per_node *mctz,
 385					 unsigned long new_usage_in_excess)
 386{
 387	struct rb_node **p = &mctz->rb_root.rb_node;
 388	struct rb_node *parent = NULL;
 389	struct mem_cgroup_per_node *mz_node;
 390	bool rightmost = true;
 391
 392	if (mz->on_tree)
 393		return;
 394
 395	mz->usage_in_excess = new_usage_in_excess;
 396	if (!mz->usage_in_excess)
 397		return;
 398	while (*p) {
 399		parent = *p;
 400		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 401					tree_node);
 402		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 403			p = &(*p)->rb_left;
 404			rightmost = false;
 405		}
 406
 407		/*
 408		 * We can't avoid mem cgroups that are over their soft
 409		 * limit by the same amount
 410		 */
 411		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 412			p = &(*p)->rb_right;
 413	}
 
 414
 415	if (rightmost)
 416		mctz->rb_rightmost = &mz->tree_node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417
 418	rb_link_node(&mz->tree_node, parent, p);
 419	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 420	mz->on_tree = true;
 421}
 422
 423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 424					 struct mem_cgroup_tree_per_node *mctz)
 425{
 426	if (!mz->on_tree)
 427		return;
 428
 429	if (&mz->tree_node == mctz->rb_rightmost)
 430		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 431
 432	rb_erase(&mz->tree_node, &mctz->rb_root);
 433	mz->on_tree = false;
 
 
 
 434}
 435
 436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 437				       struct mem_cgroup_tree_per_node *mctz)
 438{
 439	unsigned long flags;
 
 
 
 
 
 
 
 
 
 440
 441	spin_lock_irqsave(&mctz->lock, flags);
 442	__mem_cgroup_remove_exceeded(mz, mctz);
 443	spin_unlock_irqrestore(&mctz->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444}
 445
 446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 447{
 448	unsigned long nr_pages = page_counter_read(&memcg->memory);
 449	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 450	unsigned long excess = 0;
 
 
 
 
 451
 452	if (nr_pages > soft_limit)
 453		excess = nr_pages - soft_limit;
 454
 455	return excess;
 
 
 
 456}
 457
 458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 459{
 460	unsigned long excess;
 461	struct mem_cgroup_per_node *mz;
 462	struct mem_cgroup_tree_per_node *mctz;
 463
 464	mctz = soft_limit_tree_from_page(page);
 465	if (!mctz)
 466		return;
 467	/*
 468	 * Necessary to update all ancestors when hierarchy is used.
 469	 * because their event counter is not touched.
 470	 */
 471	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 472		mz = mem_cgroup_page_nodeinfo(memcg, page);
 473		excess = soft_limit_excess(memcg);
 
 
 474		/*
 475		 * We have to update the tree if mz is on RB-tree or
 476		 * mem is over its softlimit.
 477		 */
 478		if (excess || mz->on_tree) {
 479			unsigned long flags;
 480
 481			spin_lock_irqsave(&mctz->lock, flags);
 482			/* if on-tree, remove it */
 483			if (mz->on_tree)
 484				__mem_cgroup_remove_exceeded(mz, mctz);
 485			/*
 486			 * Insert again. mz->usage_in_excess will be updated.
 487			 * If excess is 0, no tree ops.
 488			 */
 489			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 490			spin_unlock_irqrestore(&mctz->lock, flags);
 491		}
 492	}
 493}
 494
 495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 496{
 497	struct mem_cgroup_tree_per_node *mctz;
 498	struct mem_cgroup_per_node *mz;
 499	int nid;
 500
 501	for_each_node(nid) {
 502		mz = mem_cgroup_nodeinfo(memcg, nid);
 503		mctz = soft_limit_tree_node(nid);
 504		if (mctz)
 505			mem_cgroup_remove_exceeded(mz, mctz);
 506	}
 507}
 508
 509static struct mem_cgroup_per_node *
 510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 511{
 512	struct mem_cgroup_per_node *mz;
 513
 514retry:
 515	mz = NULL;
 516	if (!mctz->rb_rightmost)
 517		goto done;		/* Nothing to reclaim from */
 518
 519	mz = rb_entry(mctz->rb_rightmost,
 520		      struct mem_cgroup_per_node, tree_node);
 521	/*
 522	 * Remove the node now but someone else can add it back,
 523	 * we will to add it back at the end of reclaim to its correct
 524	 * position in the tree.
 525	 */
 526	__mem_cgroup_remove_exceeded(mz, mctz);
 527	if (!soft_limit_excess(mz->memcg) ||
 528	    !css_tryget_online(&mz->memcg->css))
 529		goto retry;
 530done:
 531	return mz;
 532}
 533
 534static struct mem_cgroup_per_node *
 535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 
 
 
 
 
 
 
 
 536{
 537	struct mem_cgroup_per_node *mz;
 
 
 
 
 538
 539	spin_lock_irq(&mctz->lock);
 540	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 541	spin_unlock_irq(&mctz->lock);
 542	return mz;
 543}
 544
 545static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
 546				      int event)
 547{
 548	return atomic_long_read(&memcg->events[event]);
 
 
 549}
 550
 551static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 552					 struct page *page,
 553					 bool compound, int nr_pages)
 554{
 555	/*
 556	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 557	 * counted as CACHE even if it's on ANON LRU.
 558	 */
 559	if (PageAnon(page))
 560		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
 561	else {
 562		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
 563		if (PageSwapBacked(page))
 564			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
 565	}
 566
 567	if (compound) {
 568		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 569		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
 570	}
 571
 572	/* pagein of a big page is an event. So, ignore page size */
 573	if (nr_pages > 0)
 574		__count_memcg_events(memcg, PGPGIN, 1);
 575	else {
 576		__count_memcg_events(memcg, PGPGOUT, 1);
 577		nr_pages = -nr_pages; /* for event */
 578	}
 579
 580	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
 
 
 
 
 
 581}
 582
 583unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 584					   int nid, unsigned int lru_mask)
 
 
 
 
 
 585{
 586	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
 587	unsigned long nr = 0;
 588	enum lru_list lru;
 589
 590	VM_BUG_ON((unsigned)nid >= nr_node_ids);
 
 
 
 
 591
 592	for_each_lru(lru) {
 593		if (!(BIT(lru) & lru_mask))
 594			continue;
 595		nr += mem_cgroup_get_lru_size(lruvec, lru);
 596	}
 597	return nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598}
 599
 600static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 601			unsigned int lru_mask)
 602{
 603	unsigned long nr = 0;
 604	int nid;
 605
 606	for_each_node_state(nid, N_MEMORY)
 607		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 608	return nr;
 609}
 610
 611static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 612				       enum mem_cgroup_events_target target)
 613{
 614	unsigned long val, next;
 615
 616	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
 617	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
 618	/* from time_after() in jiffies.h */
 619	if ((long)(next - val) < 0) {
 620		switch (target) {
 621		case MEM_CGROUP_TARGET_THRESH:
 622			next = val + THRESHOLDS_EVENTS_TARGET;
 623			break;
 624		case MEM_CGROUP_TARGET_SOFTLIMIT:
 625			next = val + SOFTLIMIT_EVENTS_TARGET;
 626			break;
 627		case MEM_CGROUP_TARGET_NUMAINFO:
 628			next = val + NUMAINFO_EVENTS_TARGET;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629			break;
 630		default:
 631			break;
 632		}
 633		__this_cpu_write(memcg->stat_cpu->targets[target], next);
 634		return true;
 635	}
 636	return false;
 
 
 
 
 
 
 
 
 
 
 637}
 638
 639/*
 640 * Check events in order.
 
 
 
 641 *
 
 
 
 642 */
 643static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 
 644{
 645	/* threshold event is triggered in finer grain than soft limit */
 646	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 647						MEM_CGROUP_TARGET_THRESH))) {
 648		bool do_softlimit;
 649		bool do_numainfo __maybe_unused;
 650
 651		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 652						MEM_CGROUP_TARGET_SOFTLIMIT);
 653#if MAX_NUMNODES > 1
 654		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 655						MEM_CGROUP_TARGET_NUMAINFO);
 656#endif
 657		mem_cgroup_threshold(memcg);
 658		if (unlikely(do_softlimit))
 659			mem_cgroup_update_tree(memcg, page);
 660#if MAX_NUMNODES > 1
 661		if (unlikely(do_numainfo))
 662			atomic_inc(&memcg->numainfo_events);
 663#endif
 
 
 
 664	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665}
 666
 667struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 668{
 669	/*
 670	 * mm_update_next_owner() may clear mm->owner to NULL
 671	 * if it races with swapoff, page migration, etc.
 672	 * So this can be called with p == NULL.
 673	 */
 674	if (unlikely(!p))
 675		return NULL;
 676
 677	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 678}
 679EXPORT_SYMBOL(mem_cgroup_from_task);
 680
 681static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682{
 683	struct mem_cgroup *memcg = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684
 685	rcu_read_lock();
 686	do {
 687		/*
 688		 * Page cache insertions can happen withou an
 689		 * actual mm context, e.g. during disk probing
 690		 * on boot, loopback IO, acct() writes etc.
 691		 */
 692		if (unlikely(!mm))
 693			memcg = root_mem_cgroup;
 694		else {
 695			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 696			if (unlikely(!memcg))
 697				memcg = root_mem_cgroup;
 698		}
 699	} while (!css_tryget_online(&memcg->css));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700	rcu_read_unlock();
 701	return memcg;
 702}
 703
 704/**
 705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 706 * @root: hierarchy root
 707 * @prev: previously returned memcg, NULL on first invocation
 708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 709 *
 710 * Returns references to children of the hierarchy below @root, or
 711 * @root itself, or %NULL after a full round-trip.
 712 *
 713 * Caller must pass the return value in @prev on subsequent
 714 * invocations for reference counting, or use mem_cgroup_iter_break()
 715 * to cancel a hierarchy walk before the round-trip is complete.
 716 *
 717 * Reclaimers can specify a node and a priority level in @reclaim to
 718 * divide up the memcgs in the hierarchy among all concurrent
 719 * reclaimers operating on the same node and priority.
 720 */
 721struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 722				   struct mem_cgroup *prev,
 723				   struct mem_cgroup_reclaim_cookie *reclaim)
 724{
 725	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 726	struct cgroup_subsys_state *css = NULL;
 727	struct mem_cgroup *memcg = NULL;
 728	struct mem_cgroup *pos = NULL;
 729
 730	if (mem_cgroup_disabled())
 731		return NULL;
 732
 733	if (!root)
 734		root = root_mem_cgroup;
 735
 736	if (prev && !reclaim)
 737		pos = prev;
 738
 739	if (!root->use_hierarchy && root != root_mem_cgroup) {
 740		if (prev)
 741			goto out;
 742		return root;
 743	}
 744
 745	rcu_read_lock();
 
 
 746
 747	if (reclaim) {
 748		struct mem_cgroup_per_node *mz;
 
 749
 750		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
 751		iter = &mz->iter[reclaim->priority];
 752
 753		if (prev && reclaim->generation != iter->generation)
 
 
 
 
 
 
 754			goto out_unlock;
 755
 756		while (1) {
 757			pos = READ_ONCE(iter->position);
 758			if (!pos || css_tryget(&pos->css))
 759				break;
 760			/*
 761			 * css reference reached zero, so iter->position will
 762			 * be cleared by ->css_released. However, we should not
 763			 * rely on this happening soon, because ->css_released
 764			 * is called from a work queue, and by busy-waiting we
 765			 * might block it. So we clear iter->position right
 766			 * away.
 767			 */
 768			(void)cmpxchg(&iter->position, pos, NULL);
 769		}
 770	}
 771
 772	if (pos)
 773		css = &pos->css;
 774
 775	for (;;) {
 776		css = css_next_descendant_pre(css, &root->css);
 777		if (!css) {
 778			/*
 779			 * Reclaimers share the hierarchy walk, and a
 780			 * new one might jump in right at the end of
 781			 * the hierarchy - make sure they see at least
 782			 * one group and restart from the beginning.
 783			 */
 784			if (!prev)
 785				continue;
 786			break;
 787		}
 788
 
 789		/*
 790		 * Verify the css and acquire a reference.  The root
 791		 * is provided by the caller, so we know it's alive
 792		 * and kicking, and don't take an extra reference.
 793		 */
 794		memcg = mem_cgroup_from_css(css);
 795
 796		if (css == &root->css)
 797			break;
 798
 799		if (css_tryget(css))
 800			break;
 801
 802		memcg = NULL;
 803	}
 804
 
 
 805	if (reclaim) {
 806		/*
 807		 * The position could have already been updated by a competing
 808		 * thread, so check that the value hasn't changed since we read
 809		 * it to avoid reclaiming from the same cgroup twice.
 810		 */
 811		(void)cmpxchg(&iter->position, pos, memcg);
 
 
 
 
 812
 813		if (pos)
 814			css_put(&pos->css);
 815
 816		if (!memcg)
 817			iter->generation++;
 818		else if (!prev)
 819			reclaim->generation = iter->generation;
 
 
 
 
 
 820	}
 821
 822out_unlock:
 823	rcu_read_unlock();
 824out:
 825	if (prev && prev != root)
 826		css_put(&prev->css);
 827
 828	return memcg;
 829}
 830
 831/**
 832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 833 * @root: hierarchy root
 834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 835 */
 836void mem_cgroup_iter_break(struct mem_cgroup *root,
 837			   struct mem_cgroup *prev)
 838{
 839	if (!root)
 840		root = root_mem_cgroup;
 841	if (prev && prev != root)
 842		css_put(&prev->css);
 843}
 844
 845static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 
 846{
 847	struct mem_cgroup *memcg = dead_memcg;
 848	struct mem_cgroup_reclaim_iter *iter;
 849	struct mem_cgroup_per_node *mz;
 850	int nid;
 851	int i;
 852
 853	while ((memcg = parent_mem_cgroup(memcg))) {
 854		for_each_node(nid) {
 855			mz = mem_cgroup_nodeinfo(memcg, nid);
 856			for (i = 0; i <= DEF_PRIORITY; i++) {
 857				iter = &mz->iter[i];
 858				cmpxchg(&iter->position,
 859					dead_memcg, NULL);
 860			}
 861		}
 862	}
 863}
 864
 865/*
 866 * Iteration constructs for visiting all cgroups (under a tree).  If
 867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 868 * be used for reference counting.
 869 */
 870#define for_each_mem_cgroup_tree(iter, root)		\
 871	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 872	     iter != NULL;				\
 873	     iter = mem_cgroup_iter(root, iter, NULL))
 874
 875#define for_each_mem_cgroup(iter)			\
 876	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 877	     iter != NULL;				\
 878	     iter = mem_cgroup_iter(NULL, iter, NULL))
 
 
 
 
 
 
 879
 880/**
 881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 882 * @memcg: hierarchy root
 883 * @fn: function to call for each task
 884 * @arg: argument passed to @fn
 885 *
 886 * This function iterates over tasks attached to @memcg or to any of its
 887 * descendants and calls @fn for each task. If @fn returns a non-zero
 888 * value, the function breaks the iteration loop and returns the value.
 889 * Otherwise, it will iterate over all tasks and return 0.
 890 *
 891 * This function must not be called for the root memory cgroup.
 892 */
 893int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
 894			  int (*fn)(struct task_struct *, void *), void *arg)
 895{
 896	struct mem_cgroup *iter;
 897	int ret = 0;
 
 898
 899	BUG_ON(memcg == root_mem_cgroup);
 900
 901	for_each_mem_cgroup_tree(iter, memcg) {
 902		struct css_task_iter it;
 903		struct task_struct *task;
 904
 905		css_task_iter_start(&iter->css, 0, &it);
 906		while (!ret && (task = css_task_iter_next(&it)))
 
 
 
 907			ret = fn(task, arg);
 
 908		css_task_iter_end(&it);
 909		if (ret) {
 910			mem_cgroup_iter_break(memcg, iter);
 911			break;
 912		}
 913	}
 914	return ret;
 915}
 916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917/**
 918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 919 * @page: the page
 920 * @pgdat: pgdat of the page
 921 *
 922 * This function is only safe when following the LRU page isolation
 923 * and putback protocol: the LRU lock must be held, and the page must
 924 * either be PageLRU() or the caller must have isolated/allocated it.
 
 
 
 925 */
 926struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
 927{
 928	struct mem_cgroup_per_node *mz;
 929	struct mem_cgroup *memcg;
 930	struct lruvec *lruvec;
 931
 932	if (mem_cgroup_disabled()) {
 933		lruvec = &pgdat->lruvec;
 934		goto out;
 935	}
 936
 937	memcg = page->mem_cgroup;
 938	/*
 939	 * Swapcache readahead pages are added to the LRU - and
 940	 * possibly migrated - before they are charged.
 941	 */
 942	if (!memcg)
 943		memcg = root_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944
 945	mz = mem_cgroup_page_nodeinfo(memcg, page);
 946	lruvec = &mz->lruvec;
 947out:
 948	/*
 949	 * Since a node can be onlined after the mem_cgroup was created,
 950	 * we have to be prepared to initialize lruvec->zone here;
 951	 * and if offlined then reonlined, we need to reinitialize it.
 952	 */
 953	if (unlikely(lruvec->pgdat != pgdat))
 954		lruvec->pgdat = pgdat;
 955	return lruvec;
 956}
 957
 958/**
 959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 960 * @lruvec: mem_cgroup per zone lru vector
 961 * @lru: index of lru list the page is sitting on
 962 * @zid: zone id of the accounted pages
 963 * @nr_pages: positive when adding or negative when removing
 964 *
 965 * This function must be called under lru_lock, just before a page is added
 966 * to or just after a page is removed from an lru list (that ordering being
 967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
 968 */
 969void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 970				int zid, int nr_pages)
 971{
 972	struct mem_cgroup_per_node *mz;
 973	unsigned long *lru_size;
 974	long size;
 975
 976	if (mem_cgroup_disabled())
 977		return;
 978
 979	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 980	lru_size = &mz->lru_zone_size[zid][lru];
 981
 982	if (nr_pages < 0)
 983		*lru_size += nr_pages;
 984
 985	size = *lru_size;
 986	if (WARN_ONCE(size < 0,
 987		"%s(%p, %d, %d): lru_size %ld\n",
 988		__func__, lruvec, lru, nr_pages, size)) {
 989		VM_BUG_ON(1);
 990		*lru_size = 0;
 991	}
 992
 993	if (nr_pages > 0)
 994		*lru_size += nr_pages;
 995}
 996
 997bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
 998{
 999	struct mem_cgroup *task_memcg;
1000	struct task_struct *p;
1001	bool ret;
1002
1003	p = find_lock_task_mm(task);
1004	if (p) {
1005		task_memcg = get_mem_cgroup_from_mm(p->mm);
1006		task_unlock(p);
1007	} else {
1008		/*
1009		 * All threads may have already detached their mm's, but the oom
1010		 * killer still needs to detect if they have already been oom
1011		 * killed to prevent needlessly killing additional tasks.
1012		 */
1013		rcu_read_lock();
1014		task_memcg = mem_cgroup_from_task(task);
1015		css_get(&task_memcg->css);
1016		rcu_read_unlock();
1017	}
1018	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019	css_put(&task_memcg->css);
1020	return ret;
1021}
1022
1023/**
1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025 * @memcg: the memory cgroup
1026 *
1027 * Returns the maximum amount of memory @mem can be charged with, in
1028 * pages.
1029 */
1030static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1031{
1032	unsigned long margin = 0;
1033	unsigned long count;
1034	unsigned long limit;
1035
1036	count = page_counter_read(&memcg->memory);
1037	limit = READ_ONCE(memcg->memory.limit);
1038	if (count < limit)
1039		margin = limit - count;
1040
1041	if (do_memsw_account()) {
1042		count = page_counter_read(&memcg->memsw);
1043		limit = READ_ONCE(memcg->memsw.limit);
1044		if (count <= limit)
1045			margin = min(margin, limit - count);
1046		else
1047			margin = 0;
1048	}
1049
1050	return margin;
1051}
1052
1053/*
1054 * A routine for checking "mem" is under move_account() or not.
1055 *
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1058 * caused by "move".
1059 */
1060static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061{
1062	struct mem_cgroup *from;
1063	struct mem_cgroup *to;
1064	bool ret = false;
1065	/*
1066	 * Unlike task_move routines, we access mc.to, mc.from not under
1067	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
 
 
 
1068	 */
1069	spin_lock(&mc.lock);
1070	from = mc.from;
1071	to = mc.to;
1072	if (!from)
1073		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074
1075	ret = mem_cgroup_is_descendant(from, memcg) ||
1076		mem_cgroup_is_descendant(to, memcg);
1077unlock:
1078	spin_unlock(&mc.lock);
1079	return ret;
1080}
1081
1082static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1083{
1084	if (mc.moving_task && current != mc.moving_task) {
1085		if (mem_cgroup_under_move(memcg)) {
1086			DEFINE_WAIT(wait);
1087			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088			/* moving charge context might have finished. */
1089			if (mc.moving_task)
1090				schedule();
1091			finish_wait(&mc.waitq, &wait);
1092			return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093		}
1094	}
1095	return false;
1096}
1097
1098static const unsigned int memcg1_stats[] = {
1099	MEMCG_CACHE,
1100	MEMCG_RSS,
1101	MEMCG_RSS_HUGE,
1102	NR_SHMEM,
1103	NR_FILE_MAPPED,
1104	NR_FILE_DIRTY,
1105	NR_WRITEBACK,
1106	MEMCG_SWAP,
1107};
 
 
 
 
 
 
 
 
 
 
 
1108
1109static const char *const memcg1_stat_names[] = {
1110	"cache",
1111	"rss",
1112	"rss_huge",
1113	"shmem",
1114	"mapped_file",
1115	"dirty",
1116	"writeback",
1117	"swap",
1118};
1119
1120#define K(x) ((x) << (PAGE_SHIFT-10))
1121/**
1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
 
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1125 *
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1127 * enabled
1128 */
1129void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1130{
1131	struct mem_cgroup *iter;
1132	unsigned int i;
1133
1134	rcu_read_lock();
1135
 
 
 
 
 
1136	if (p) {
1137		pr_info("Task in ");
1138		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139		pr_cont(" killed as a result of limit of ");
1140	} else {
1141		pr_info("Memory limit reached of cgroup ");
1142	}
 
 
1143
1144	pr_cont_cgroup_path(memcg->css.cgroup);
1145	pr_cont("\n");
 
 
 
 
 
 
 
 
1146
1147	rcu_read_unlock();
1148
1149	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150		K((u64)page_counter_read(&memcg->memory)),
1151		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1152	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153		K((u64)page_counter_read(&memcg->memsw)),
1154		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1155	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156		K((u64)page_counter_read(&memcg->kmem)),
1157		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1158
1159	for_each_mem_cgroup_tree(iter, memcg) {
1160		pr_info("Memory cgroup stats for ");
1161		pr_cont_cgroup_path(iter->css.cgroup);
1162		pr_cont(":");
1163
1164		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166				continue;
1167			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168				K(memcg_page_state(iter, memcg1_stats[i])));
1169		}
1170
1171		for (i = 0; i < NR_LRU_LISTS; i++)
1172			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1174
1175		pr_cont("\n");
1176	}
 
 
 
 
 
 
 
 
1177}
1178
1179/*
1180 * Return the memory (and swap, if configured) limit for a memcg.
1181 */
1182unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1183{
1184	unsigned long limit;
 
 
 
 
 
1185
1186	limit = memcg->memory.limit;
1187	if (mem_cgroup_swappiness(memcg)) {
1188		unsigned long memsw_limit;
1189		unsigned long swap_limit;
1190
1191		memsw_limit = memcg->memsw.limit;
1192		swap_limit = memcg->swap.limit;
1193		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1194		limit = min(limit + swap_limit, memsw_limit);
1195	}
1196	return limit;
 
 
 
 
 
1197}
1198
1199static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200				     int order)
1201{
1202	struct oom_control oc = {
1203		.zonelist = NULL,
1204		.nodemask = NULL,
1205		.memcg = memcg,
1206		.gfp_mask = gfp_mask,
1207		.order = order,
1208	};
1209	bool ret;
1210
1211	mutex_lock(&oom_lock);
1212	ret = out_of_memory(&oc);
1213	mutex_unlock(&oom_lock);
1214	return ret;
1215}
1216
1217#if MAX_NUMNODES > 1
1218
1219/**
1220 * test_mem_cgroup_node_reclaimable
1221 * @memcg: the target memcg
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1224 *
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1228 */
1229static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230		int nid, bool noswap)
1231{
1232	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233		return true;
1234	if (noswap || !total_swap_pages)
1235		return false;
1236	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237		return true;
1238	return false;
1239
1240}
1241
1242/*
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1246 *
1247 */
1248static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1249{
1250	int nid;
1251	/*
1252	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253	 * pagein/pageout changes since the last update.
1254	 */
1255	if (!atomic_read(&memcg->numainfo_events))
1256		return;
1257	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258		return;
1259
1260	/* make a nodemask where this memcg uses memory from */
1261	memcg->scan_nodes = node_states[N_MEMORY];
1262
1263	for_each_node_mask(nid, node_states[N_MEMORY]) {
1264
1265		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266			node_clear(nid, memcg->scan_nodes);
1267	}
1268
1269	atomic_set(&memcg->numainfo_events, 0);
1270	atomic_set(&memcg->numainfo_updating, 0);
1271}
1272
1273/*
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1277 *
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1282 *
1283 * Now, we use round-robin. Better algorithm is welcomed.
1284 */
1285int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1286{
1287	int node;
1288
1289	mem_cgroup_may_update_nodemask(memcg);
1290	node = memcg->last_scanned_node;
1291
1292	node = next_node_in(node, memcg->scan_nodes);
1293	/*
1294	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295	 * last time it really checked all the LRUs due to rate limiting.
1296	 * Fallback to the current node in that case for simplicity.
1297	 */
1298	if (unlikely(node == MAX_NUMNODES))
1299		node = numa_node_id();
1300
1301	memcg->last_scanned_node = node;
1302	return node;
1303}
1304#else
1305int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1306{
1307	return 0;
1308}
1309#endif
1310
1311static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312				   pg_data_t *pgdat,
1313				   gfp_t gfp_mask,
1314				   unsigned long *total_scanned)
1315{
1316	struct mem_cgroup *victim = NULL;
1317	int total = 0;
1318	int loop = 0;
1319	unsigned long excess;
1320	unsigned long nr_scanned;
1321	struct mem_cgroup_reclaim_cookie reclaim = {
1322		.pgdat = pgdat,
1323		.priority = 0,
1324	};
1325
1326	excess = soft_limit_excess(root_memcg);
1327
1328	while (1) {
1329		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1330		if (!victim) {
1331			loop++;
1332			if (loop >= 2) {
1333				/*
1334				 * If we have not been able to reclaim
1335				 * anything, it might because there are
1336				 * no reclaimable pages under this hierarchy
1337				 */
1338				if (!total)
1339					break;
1340				/*
1341				 * We want to do more targeted reclaim.
1342				 * excess >> 2 is not to excessive so as to
1343				 * reclaim too much, nor too less that we keep
1344				 * coming back to reclaim from this cgroup
1345				 */
1346				if (total >= (excess >> 2) ||
1347					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1348					break;
1349			}
1350			continue;
1351		}
1352		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353					pgdat, &nr_scanned);
1354		*total_scanned += nr_scanned;
1355		if (!soft_limit_excess(root_memcg))
1356			break;
1357	}
1358	mem_cgroup_iter_break(root_memcg, victim);
1359	return total;
1360}
1361
1362#ifdef CONFIG_LOCKDEP
1363static struct lockdep_map memcg_oom_lock_dep_map = {
1364	.name = "memcg_oom_lock",
1365};
1366#endif
1367
1368static DEFINE_SPINLOCK(memcg_oom_lock);
1369
1370/*
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1373 */
1374static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1375{
1376	struct mem_cgroup *iter, *failed = NULL;
1377
1378	spin_lock(&memcg_oom_lock);
1379
1380	for_each_mem_cgroup_tree(iter, memcg) {
1381		if (iter->oom_lock) {
1382			/*
1383			 * this subtree of our hierarchy is already locked
1384			 * so we cannot give a lock.
1385			 */
1386			failed = iter;
1387			mem_cgroup_iter_break(memcg, iter);
1388			break;
1389		} else
1390			iter->oom_lock = true;
1391	}
1392
1393	if (failed) {
1394		/*
1395		 * OK, we failed to lock the whole subtree so we have
1396		 * to clean up what we set up to the failing subtree
1397		 */
1398		for_each_mem_cgroup_tree(iter, memcg) {
1399			if (iter == failed) {
1400				mem_cgroup_iter_break(memcg, iter);
1401				break;
1402			}
1403			iter->oom_lock = false;
1404		}
1405	} else
1406		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1407
1408	spin_unlock(&memcg_oom_lock);
1409
1410	return !failed;
1411}
1412
1413static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1414{
1415	struct mem_cgroup *iter;
1416
1417	spin_lock(&memcg_oom_lock);
1418	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419	for_each_mem_cgroup_tree(iter, memcg)
1420		iter->oom_lock = false;
1421	spin_unlock(&memcg_oom_lock);
1422}
1423
1424static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1425{
1426	struct mem_cgroup *iter;
1427
1428	spin_lock(&memcg_oom_lock);
1429	for_each_mem_cgroup_tree(iter, memcg)
1430		iter->under_oom++;
1431	spin_unlock(&memcg_oom_lock);
1432}
1433
1434static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1435{
1436	struct mem_cgroup *iter;
1437
1438	/*
1439	 * When a new child is created while the hierarchy is under oom,
1440	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1441	 */
1442	spin_lock(&memcg_oom_lock);
1443	for_each_mem_cgroup_tree(iter, memcg)
1444		if (iter->under_oom > 0)
1445			iter->under_oom--;
1446	spin_unlock(&memcg_oom_lock);
1447}
1448
1449static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1450
1451struct oom_wait_info {
1452	struct mem_cgroup *memcg;
1453	wait_queue_entry_t	wait;
1454};
1455
1456static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1457	unsigned mode, int sync, void *arg)
1458{
1459	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460	struct mem_cgroup *oom_wait_memcg;
1461	struct oom_wait_info *oom_wait_info;
1462
1463	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464	oom_wait_memcg = oom_wait_info->memcg;
1465
1466	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1468		return 0;
1469	return autoremove_wake_function(wait, mode, sync, arg);
1470}
1471
1472static void memcg_oom_recover(struct mem_cgroup *memcg)
1473{
1474	/*
1475	 * For the following lockless ->under_oom test, the only required
1476	 * guarantee is that it must see the state asserted by an OOM when
1477	 * this function is called as a result of userland actions
1478	 * triggered by the notification of the OOM.  This is trivially
1479	 * achieved by invoking mem_cgroup_mark_under_oom() before
1480	 * triggering notification.
1481	 */
1482	if (memcg && memcg->under_oom)
1483		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1484}
1485
1486static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1487{
1488	if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489		return;
1490	/*
1491	 * We are in the middle of the charge context here, so we
1492	 * don't want to block when potentially sitting on a callstack
1493	 * that holds all kinds of filesystem and mm locks.
1494	 *
1495	 * Also, the caller may handle a failed allocation gracefully
1496	 * (like optional page cache readahead) and so an OOM killer
1497	 * invocation might not even be necessary.
1498	 *
1499	 * That's why we don't do anything here except remember the
1500	 * OOM context and then deal with it at the end of the page
1501	 * fault when the stack is unwound, the locks are released,
1502	 * and when we know whether the fault was overall successful.
1503	 */
1504	css_get(&memcg->css);
1505	current->memcg_in_oom = memcg;
1506	current->memcg_oom_gfp_mask = mask;
1507	current->memcg_oom_order = order;
1508}
1509
1510/**
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512 * @handle: actually kill/wait or just clean up the OOM state
1513 *
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
1516 *
1517 * Memcg supports userspace OOM handling where failed allocations must
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation.  Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522 * the end of the page fault to complete the OOM handling.
1523 *
1524 * Returns %true if an ongoing memcg OOM situation was detected and
1525 * completed, %false otherwise.
1526 */
1527bool mem_cgroup_oom_synchronize(bool handle)
1528{
1529	struct mem_cgroup *memcg = current->memcg_in_oom;
1530	struct oom_wait_info owait;
1531	bool locked;
1532
1533	/* OOM is global, do not handle */
1534	if (!memcg)
1535		return false;
1536
1537	if (!handle)
1538		goto cleanup;
1539
1540	owait.memcg = memcg;
1541	owait.wait.flags = 0;
1542	owait.wait.func = memcg_oom_wake_function;
1543	owait.wait.private = current;
1544	INIT_LIST_HEAD(&owait.wait.entry);
1545
1546	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547	mem_cgroup_mark_under_oom(memcg);
1548
1549	locked = mem_cgroup_oom_trylock(memcg);
1550
1551	if (locked)
1552		mem_cgroup_oom_notify(memcg);
1553
1554	if (locked && !memcg->oom_kill_disable) {
1555		mem_cgroup_unmark_under_oom(memcg);
1556		finish_wait(&memcg_oom_waitq, &owait.wait);
1557		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558					 current->memcg_oom_order);
1559	} else {
1560		schedule();
1561		mem_cgroup_unmark_under_oom(memcg);
1562		finish_wait(&memcg_oom_waitq, &owait.wait);
1563	}
1564
1565	if (locked) {
1566		mem_cgroup_oom_unlock(memcg);
1567		/*
1568		 * There is no guarantee that an OOM-lock contender
1569		 * sees the wakeups triggered by the OOM kill
1570		 * uncharges.  Wake any sleepers explicitely.
1571		 */
1572		memcg_oom_recover(memcg);
1573	}
1574cleanup:
1575	current->memcg_in_oom = NULL;
1576	css_put(&memcg->css);
1577	return true;
1578}
1579
1580/**
1581 * lock_page_memcg - lock a page->mem_cgroup binding
1582 * @page: the page
 
1583 *
1584 * This function protects unlocked LRU pages from being moved to
1585 * another cgroup.
1586 *
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
1590 */
1591struct mem_cgroup *lock_page_memcg(struct page *page)
 
1592{
 
1593	struct mem_cgroup *memcg;
1594	unsigned long flags;
1595
1596	/*
1597	 * The RCU lock is held throughout the transaction.  The fast
1598	 * path can get away without acquiring the memcg->move_lock
1599	 * because page moving starts with an RCU grace period.
1600	 *
1601	 * The RCU lock also protects the memcg from being freed when
1602	 * the page state that is going to change is the only thing
1603	 * preventing the page itself from being freed. E.g. writeback
1604	 * doesn't hold a page reference and relies on PG_writeback to
1605	 * keep off truncation, migration and so forth.
1606         */
1607	rcu_read_lock();
1608
1609	if (mem_cgroup_disabled())
1610		return NULL;
1611again:
1612	memcg = page->mem_cgroup;
1613	if (unlikely(!memcg))
1614		return NULL;
1615
1616	if (atomic_read(&memcg->moving_account) <= 0)
1617		return memcg;
1618
1619	spin_lock_irqsave(&memcg->move_lock, flags);
1620	if (memcg != page->mem_cgroup) {
1621		spin_unlock_irqrestore(&memcg->move_lock, flags);
1622		goto again;
1623	}
1624
1625	/*
1626	 * When charge migration first begins, we can have locked and
1627	 * unlocked page stat updates happening concurrently.  Track
1628	 * the task who has the lock for unlock_page_memcg().
1629	 */
1630	memcg->move_lock_task = current;
1631	memcg->move_lock_flags = flags;
1632
1633	return memcg;
1634}
1635EXPORT_SYMBOL(lock_page_memcg);
1636
1637/**
1638 * __unlock_page_memcg - unlock and unpin a memcg
1639 * @memcg: the memcg
1640 *
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
1642 */
1643void __unlock_page_memcg(struct mem_cgroup *memcg)
1644{
1645	if (memcg && memcg->move_lock_task == current) {
1646		unsigned long flags = memcg->move_lock_flags;
1647
1648		memcg->move_lock_task = NULL;
1649		memcg->move_lock_flags = 0;
 
 
 
 
 
 
1650
1651		spin_unlock_irqrestore(&memcg->move_lock, flags);
 
1652	}
1653
 
 
 
1654	rcu_read_unlock();
 
 
1655}
1656
1657/**
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1659 * @page: the page
1660 */
1661void unlock_page_memcg(struct page *page)
1662{
1663	__unlock_page_memcg(page->mem_cgroup);
 
 
1664}
1665EXPORT_SYMBOL(unlock_page_memcg);
1666
1667struct memcg_stock_pcp {
 
1668	struct mem_cgroup *cached; /* this never be root cgroup */
1669	unsigned int nr_pages;
 
 
 
 
 
 
 
1670	struct work_struct work;
1671	unsigned long flags;
1672#define FLUSHING_CACHED_CHARGE	0
1673};
1674static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
 
 
1675static DEFINE_MUTEX(percpu_charge_mutex);
1676
 
 
 
 
1677/**
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1681 *
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock.  Failure to
1684 * service an allocation will refill the stock.
1685 *
1686 * returns true if successful, false otherwise.
1687 */
1688static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1689{
1690	struct memcg_stock_pcp *stock;
 
1691	unsigned long flags;
1692	bool ret = false;
1693
1694	if (nr_pages > MEMCG_CHARGE_BATCH)
1695		return ret;
1696
1697	local_irq_save(flags);
1698
1699	stock = this_cpu_ptr(&memcg_stock);
1700	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701		stock->nr_pages -= nr_pages;
 
1702		ret = true;
1703	}
1704
1705	local_irq_restore(flags);
1706
1707	return ret;
1708}
1709
1710/*
1711 * Returns stocks cached in percpu and reset cached information.
1712 */
1713static void drain_stock(struct memcg_stock_pcp *stock)
1714{
1715	struct mem_cgroup *old = stock->cached;
 
 
 
 
1716
1717	if (stock->nr_pages) {
1718		page_counter_uncharge(&old->memory, stock->nr_pages);
1719		if (do_memsw_account())
1720			page_counter_uncharge(&old->memsw, stock->nr_pages);
1721		css_put_many(&old->css, stock->nr_pages);
1722		stock->nr_pages = 0;
1723	}
1724	stock->cached = NULL;
 
 
1725}
1726
1727static void drain_local_stock(struct work_struct *dummy)
1728{
1729	struct memcg_stock_pcp *stock;
 
1730	unsigned long flags;
1731
1732	/*
1733	 * The only protection from memory hotplug vs. drain_stock races is
1734	 * that we always operate on local CPU stock here with IRQ disabled
 
1735	 */
1736	local_irq_save(flags);
1737
1738	stock = this_cpu_ptr(&memcg_stock);
 
1739	drain_stock(stock);
1740	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1741
1742	local_irq_restore(flags);
 
1743}
1744
1745/*
1746 * Cache charges(val) to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1748 */
1749static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1750{
1751	struct memcg_stock_pcp *stock;
1752	unsigned long flags;
1753
1754	local_irq_save(flags);
1755
1756	stock = this_cpu_ptr(&memcg_stock);
1757	if (stock->cached != memcg) { /* reset if necessary */
1758		drain_stock(stock);
1759		stock->cached = memcg;
 
1760	}
1761	stock->nr_pages += nr_pages;
 
1762
1763	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764		drain_stock(stock);
 
 
 
 
 
1765
1766	local_irq_restore(flags);
 
 
1767}
1768
1769/*
1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771 * of the hierarchy under it.
1772 */
1773static void drain_all_stock(struct mem_cgroup *root_memcg)
1774{
1775	int cpu, curcpu;
1776
1777	/* If someone's already draining, avoid adding running more workers. */
1778	if (!mutex_trylock(&percpu_charge_mutex))
1779		return;
1780	/*
1781	 * Notify other cpus that system-wide "drain" is running
1782	 * We do not care about races with the cpu hotplug because cpu down
1783	 * as well as workers from this path always operate on the local
1784	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1785	 */
1786	curcpu = get_cpu();
 
1787	for_each_online_cpu(cpu) {
1788		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789		struct mem_cgroup *memcg;
 
1790
1791		memcg = stock->cached;
1792		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793			continue;
1794		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795			css_put(&memcg->css);
1796			continue;
1797		}
1798		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
 
 
 
1799			if (cpu == curcpu)
1800				drain_local_stock(&stock->work);
1801			else
1802				schedule_work_on(cpu, &stock->work);
1803		}
1804		css_put(&memcg->css);
1805	}
1806	put_cpu();
1807	mutex_unlock(&percpu_charge_mutex);
1808}
1809
1810static int memcg_hotplug_cpu_dead(unsigned int cpu)
1811{
1812	struct memcg_stock_pcp *stock;
1813	struct mem_cgroup *memcg;
1814
1815	stock = &per_cpu(memcg_stock, cpu);
1816	drain_stock(stock);
1817
1818	for_each_mem_cgroup(memcg) {
1819		int i;
1820
1821		for (i = 0; i < MEMCG_NR_STAT; i++) {
1822			int nid;
1823			long x;
1824
1825			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1826			if (x)
1827				atomic_long_add(x, &memcg->stat[i]);
1828
1829			if (i >= NR_VM_NODE_STAT_ITEMS)
1830				continue;
1831
1832			for_each_node(nid) {
1833				struct mem_cgroup_per_node *pn;
1834
1835				pn = mem_cgroup_nodeinfo(memcg, nid);
1836				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1837				if (x)
1838					atomic_long_add(x, &pn->lruvec_stat[i]);
1839			}
1840		}
1841
1842		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843			long x;
1844
1845			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1846			if (x)
1847				atomic_long_add(x, &memcg->events[i]);
1848		}
1849	}
1850
1851	return 0;
1852}
1853
1854static void reclaim_high(struct mem_cgroup *memcg,
1855			 unsigned int nr_pages,
1856			 gfp_t gfp_mask)
1857{
 
 
1858	do {
1859		if (page_counter_read(&memcg->memory) <= memcg->high)
 
 
 
1860			continue;
 
1861		memcg_memory_event(memcg, MEMCG_HIGH);
1862		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863	} while ((memcg = parent_mem_cgroup(memcg)));
 
 
 
 
 
 
 
 
 
1864}
1865
1866static void high_work_func(struct work_struct *work)
1867{
1868	struct mem_cgroup *memcg;
1869
1870	memcg = container_of(work, struct mem_cgroup, high_work);
1871	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1872}
1873
1874/*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1877 */
1878void mem_cgroup_handle_over_high(void)
 
 
 
1879{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880	unsigned int nr_pages = current->memcg_nr_pages_over_high;
 
1881	struct mem_cgroup *memcg;
 
1882
1883	if (likely(!nr_pages))
1884		return;
1885
1886	memcg = get_mem_cgroup_from_mm(current->mm);
1887	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888	css_put(&memcg->css);
1889	current->memcg_nr_pages_over_high = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890}
1891
1892static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893		      unsigned int nr_pages)
1894{
1895	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897	struct mem_cgroup *mem_over_limit;
1898	struct page_counter *counter;
1899	unsigned long nr_reclaimed;
1900	bool may_swap = true;
 
1901	bool drained = false;
 
 
1902
1903	if (mem_cgroup_is_root(memcg))
1904		return 0;
1905retry:
1906	if (consume_stock(memcg, nr_pages))
1907		return 0;
1908
1909	if (!do_memsw_account() ||
1910	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912			goto done_restock;
1913		if (do_memsw_account())
1914			page_counter_uncharge(&memcg->memsw, batch);
1915		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916	} else {
1917		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918		may_swap = false;
1919	}
1920
1921	if (batch > nr_pages) {
1922		batch = nr_pages;
1923		goto retry;
1924	}
1925
1926	/*
1927	 * Unlike in global OOM situations, memcg is not in a physical
1928	 * memory shortage.  Allow dying and OOM-killed tasks to
1929	 * bypass the last charges so that they can exit quickly and
1930	 * free their memory.
1931	 */
1932	if (unlikely(tsk_is_oom_victim(current) ||
1933		     fatal_signal_pending(current) ||
1934		     current->flags & PF_EXITING))
1935		goto force;
1936
1937	/*
1938	 * Prevent unbounded recursion when reclaim operations need to
1939	 * allocate memory. This might exceed the limits temporarily,
1940	 * but we prefer facilitating memory reclaim and getting back
1941	 * under the limit over triggering OOM kills in these cases.
1942	 */
1943	if (unlikely(current->flags & PF_MEMALLOC))
1944		goto force;
1945
1946	if (unlikely(task_in_memcg_oom(current)))
1947		goto nomem;
1948
1949	if (!gfpflags_allow_blocking(gfp_mask))
1950		goto nomem;
1951
1952	memcg_memory_event(mem_over_limit, MEMCG_MAX);
 
1953
 
1954	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955						    gfp_mask, may_swap);
 
1956
1957	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958		goto retry;
1959
1960	if (!drained) {
1961		drain_all_stock(mem_over_limit);
1962		drained = true;
1963		goto retry;
1964	}
1965
1966	if (gfp_mask & __GFP_NORETRY)
1967		goto nomem;
1968	/*
1969	 * Even though the limit is exceeded at this point, reclaim
1970	 * may have been able to free some pages.  Retry the charge
1971	 * before killing the task.
1972	 *
1973	 * Only for regular pages, though: huge pages are rather
1974	 * unlikely to succeed so close to the limit, and we fall back
1975	 * to regular pages anyway in case of failure.
1976	 */
1977	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978		goto retry;
1979	/*
1980	 * At task move, charge accounts can be doubly counted. So, it's
1981	 * better to wait until the end of task_move if something is going on.
1982	 */
1983	if (mem_cgroup_wait_acct_move(mem_over_limit))
1984		goto retry;
1985
1986	if (nr_retries--)
1987		goto retry;
1988
1989	if (gfp_mask & __GFP_NOFAIL)
1990		goto force;
1991
1992	if (fatal_signal_pending(current))
1993		goto force;
1994
1995	memcg_memory_event(mem_over_limit, MEMCG_OOM);
 
 
1996
1997	mem_cgroup_oom(mem_over_limit, gfp_mask,
1998		       get_order(nr_pages * PAGE_SIZE));
 
 
 
 
 
 
 
 
 
1999nomem:
2000	if (!(gfp_mask & __GFP_NOFAIL))
 
 
 
 
 
 
2001		return -ENOMEM;
2002force:
2003	/*
 
 
 
 
 
 
 
2004	 * The allocation either can't fail or will lead to more memory
2005	 * being freed very soon.  Allow memory usage go over the limit
2006	 * temporarily by force charging it.
2007	 */
2008	page_counter_charge(&memcg->memory, nr_pages);
2009	if (do_memsw_account())
2010		page_counter_charge(&memcg->memsw, nr_pages);
2011	css_get_many(&memcg->css, nr_pages);
2012
2013	return 0;
2014
2015done_restock:
2016	css_get_many(&memcg->css, batch);
2017	if (batch > nr_pages)
2018		refill_stock(memcg, batch - nr_pages);
2019
2020	/*
2021	 * If the hierarchy is above the normal consumption range, schedule
2022	 * reclaim on returning to userland.  We can perform reclaim here
2023	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2025	 * not recorded as it most likely matches current's and won't
2026	 * change in the meantime.  As high limit is checked again before
2027	 * reclaim, the cost of mismatch is negligible.
2028	 */
2029	do {
2030		if (page_counter_read(&memcg->memory) > memcg->high) {
2031			/* Don't bother a random interrupted task */
2032			if (in_interrupt()) {
 
 
 
 
 
 
 
2033				schedule_work(&memcg->high_work);
2034				break;
2035			}
 
 
 
 
 
 
 
 
 
 
 
 
 
2036			current->memcg_nr_pages_over_high += batch;
2037			set_notify_resume(current);
2038			break;
2039		}
2040	} while ((memcg = parent_mem_cgroup(memcg)));
2041
 
 
 
 
 
 
 
 
 
 
 
2042	return 0;
2043}
2044
2045static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
 
 
 
 
 
2046{
2047	if (mem_cgroup_is_root(memcg))
2048		return;
2049
2050	page_counter_uncharge(&memcg->memory, nr_pages);
2051	if (do_memsw_account())
2052		page_counter_uncharge(&memcg->memsw, nr_pages);
2053
2054	css_put_many(&memcg->css, nr_pages);
2055}
2056
2057static void lock_page_lru(struct page *page, int *isolated)
2058{
2059	struct zone *zone = page_zone(page);
2060
2061	spin_lock_irq(zone_lru_lock(zone));
2062	if (PageLRU(page)) {
2063		struct lruvec *lruvec;
2064
2065		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066		ClearPageLRU(page);
2067		del_page_from_lru_list(page, lruvec, page_lru(page));
2068		*isolated = 1;
2069	} else
2070		*isolated = 0;
2071}
2072
2073static void unlock_page_lru(struct page *page, int isolated)
2074{
2075	struct zone *zone = page_zone(page);
2076
2077	if (isolated) {
2078		struct lruvec *lruvec;
2079
2080		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081		VM_BUG_ON_PAGE(PageLRU(page), page);
2082		SetPageLRU(page);
2083		add_page_to_lru_list(page, lruvec, page_lru(page));
2084	}
2085	spin_unlock_irq(zone_lru_lock(zone));
2086}
2087
2088static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089			  bool lrucare)
2090{
2091	int isolated;
2092
2093	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2094
2095	/*
2096	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2098	 */
2099	if (lrucare)
2100		lock_page_lru(page, &isolated);
2101
2102	/*
2103	 * Nobody should be changing or seriously looking at
2104	 * page->mem_cgroup at this point:
2105	 *
2106	 * - the page is uncharged
2107	 *
2108	 * - the page is off-LRU
2109	 *
2110	 * - an anonymous fault has exclusive page access, except for
2111	 *   a locked page table
2112	 *
2113	 * - a page cache insertion, a swapin fault, or a migration
2114	 *   have the page locked
2115	 */
2116	page->mem_cgroup = memcg;
2117
2118	if (lrucare)
2119		unlock_page_lru(page, isolated);
2120}
2121
2122#ifndef CONFIG_SLOB
2123static int memcg_alloc_cache_id(void)
2124{
2125	int id, size;
2126	int err;
2127
2128	id = ida_simple_get(&memcg_cache_ida,
2129			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2130	if (id < 0)
2131		return id;
2132
2133	if (id < memcg_nr_cache_ids)
2134		return id;
2135
2136	/*
2137	 * There's no space for the new id in memcg_caches arrays,
2138	 * so we have to grow them.
2139	 */
2140	down_write(&memcg_cache_ids_sem);
2141
2142	size = 2 * (id + 1);
2143	if (size < MEMCG_CACHES_MIN_SIZE)
2144		size = MEMCG_CACHES_MIN_SIZE;
2145	else if (size > MEMCG_CACHES_MAX_SIZE)
2146		size = MEMCG_CACHES_MAX_SIZE;
2147
2148	err = memcg_update_all_caches(size);
2149	if (!err)
2150		err = memcg_update_all_list_lrus(size);
2151	if (!err)
2152		memcg_nr_cache_ids = size;
2153
2154	up_write(&memcg_cache_ids_sem);
2155
2156	if (err) {
2157		ida_simple_remove(&memcg_cache_ida, id);
2158		return err;
2159	}
2160	return id;
2161}
2162
2163static void memcg_free_cache_id(int id)
2164{
2165	ida_simple_remove(&memcg_cache_ida, id);
2166}
2167
2168struct memcg_kmem_cache_create_work {
2169	struct mem_cgroup *memcg;
2170	struct kmem_cache *cachep;
2171	struct work_struct work;
2172};
2173
2174static void memcg_kmem_cache_create_func(struct work_struct *w)
2175{
2176	struct memcg_kmem_cache_create_work *cw =
2177		container_of(w, struct memcg_kmem_cache_create_work, work);
2178	struct mem_cgroup *memcg = cw->memcg;
2179	struct kmem_cache *cachep = cw->cachep;
2180
2181	memcg_create_kmem_cache(memcg, cachep);
2182
2183	css_put(&memcg->css);
2184	kfree(cw);
2185}
2186
2187/*
2188 * Enqueue the creation of a per-memcg kmem_cache.
2189 */
2190static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191					       struct kmem_cache *cachep)
2192{
2193	struct memcg_kmem_cache_create_work *cw;
2194
2195	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196	if (!cw)
2197		return;
2198
2199	css_get(&memcg->css);
2200
2201	cw->memcg = memcg;
2202	cw->cachep = cachep;
2203	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2204
2205	queue_work(memcg_kmem_cache_wq, &cw->work);
2206}
2207
2208static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209					     struct kmem_cache *cachep)
 
2210{
2211	/*
2212	 * We need to stop accounting when we kmalloc, because if the
2213	 * corresponding kmalloc cache is not yet created, the first allocation
2214	 * in __memcg_schedule_kmem_cache_create will recurse.
2215	 *
2216	 * However, it is better to enclose the whole function. Depending on
2217	 * the debugging options enabled, INIT_WORK(), for instance, can
2218	 * trigger an allocation. This too, will make us recurse. Because at
2219	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220	 * the safest choice is to do it like this, wrapping the whole function.
2221	 */
2222	current->memcg_kmem_skip_account = 1;
2223	__memcg_schedule_kmem_cache_create(memcg, cachep);
2224	current->memcg_kmem_skip_account = 0;
2225}
2226
2227static inline bool memcg_kmem_bypass(void)
2228{
2229	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2230		return true;
2231	return false;
2232}
2233
2234/**
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2237 *
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2240 *
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
2244 *
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2248 * reference.
2249 */
2250struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2251{
2252	struct mem_cgroup *memcg;
2253	struct kmem_cache *memcg_cachep;
2254	int kmemcg_id;
2255
2256	VM_BUG_ON(!is_root_cache(cachep));
2257
2258	if (memcg_kmem_bypass())
2259		return cachep;
2260
2261	if (current->memcg_kmem_skip_account)
2262		return cachep;
 
 
 
2263
2264	memcg = get_mem_cgroup_from_mm(current->mm);
2265	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266	if (kmemcg_id < 0)
2267		goto out;
2268
2269	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270	if (likely(memcg_cachep))
2271		return memcg_cachep;
2272
2273	/*
2274	 * If we are in a safe context (can wait, and not in interrupt
2275	 * context), we could be be predictable and return right away.
2276	 * This would guarantee that the allocation being performed
2277	 * already belongs in the new cache.
2278	 *
2279	 * However, there are some clashes that can arrive from locking.
2280	 * For instance, because we acquire the slab_mutex while doing
2281	 * memcg_create_kmem_cache, this means no further allocation
2282	 * could happen with the slab_mutex held. So it's better to
2283	 * defer everything.
2284	 */
2285	memcg_schedule_kmem_cache_create(memcg, cachep);
2286out:
2287	css_put(&memcg->css);
2288	return cachep;
2289}
2290
2291/**
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2294 */
2295void memcg_kmem_put_cache(struct kmem_cache *cachep)
2296{
2297	if (!is_root_cache(cachep))
2298		css_put(&cachep->memcg_params.memcg->css);
2299}
2300
2301/**
2302 * memcg_kmem_charge_memcg: charge a kmem page
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2307 *
2308 * Returns 0 on success, an error code on failure.
2309 */
2310int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311			    struct mem_cgroup *memcg)
2312{
2313	unsigned int nr_pages = 1 << order;
2314	struct page_counter *counter;
2315	int ret;
2316
2317	ret = try_charge(memcg, gfp, nr_pages);
2318	if (ret)
2319		return ret;
2320
2321	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323		cancel_charge(memcg, nr_pages);
2324		return -ENOMEM;
2325	}
2326
2327	page->mem_cgroup = memcg;
2328
2329	return 0;
2330}
2331
2332/**
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2337 *
2338 * Returns 0 on success, an error code on failure.
 
2339 */
2340int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342	struct mem_cgroup *memcg;
2343	int ret = 0;
2344
2345	if (memcg_kmem_bypass())
2346		return 0;
2347
2348	memcg = get_mem_cgroup_from_mm(current->mm);
2349	if (!mem_cgroup_is_root(memcg)) {
2350		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351		if (!ret)
2352			__SetPageKmemcg(page);
2353	}
2354	css_put(&memcg->css);
2355	return ret;
2356}
2357/**
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2361 */
2362void memcg_kmem_uncharge(struct page *page, int order)
2363{
2364	struct mem_cgroup *memcg = page->mem_cgroup;
2365	unsigned int nr_pages = 1 << order;
2366
2367	if (!memcg)
2368		return;
2369
2370	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2371
2372	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373		page_counter_uncharge(&memcg->kmem, nr_pages);
2374
2375	page_counter_uncharge(&memcg->memory, nr_pages);
2376	if (do_memsw_account())
2377		page_counter_uncharge(&memcg->memsw, nr_pages);
2378
2379	page->mem_cgroup = NULL;
2380
2381	/* slab pages do not have PageKmemcg flag set */
2382	if (PageKmemcg(page))
2383		__ClearPageKmemcg(page);
2384
2385	css_put_many(&memcg->css, nr_pages);
2386}
2387#endif /* !CONFIG_SLOB */
2388
2389#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390
2391/*
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2394 */
2395void mem_cgroup_split_huge_fixup(struct page *head)
2396{
2397	int i;
2398
2399	if (mem_cgroup_disabled())
2400		return;
2401
2402	for (i = 1; i < HPAGE_PMD_NR; i++)
2403		head[i].mem_cgroup = head->mem_cgroup;
2404
2405	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2406}
2407#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408
2409#ifdef CONFIG_MEMCG_SWAP
2410/**
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from:  mem_cgroup which the entry is moved from
2414 * @to:  mem_cgroup which the entry is moved to
2415 *
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2418 *
2419 * Returns 0 on success, -EINVAL on failure.
2420 *
2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 * both res and memsw, and called css_get().
2423 */
2424static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425				struct mem_cgroup *from, struct mem_cgroup *to)
2426{
2427	unsigned short old_id, new_id;
2428
2429	old_id = mem_cgroup_id(from);
2430	new_id = mem_cgroup_id(to);
2431
2432	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433		mod_memcg_state(from, MEMCG_SWAP, -1);
2434		mod_memcg_state(to, MEMCG_SWAP, 1);
2435		return 0;
2436	}
2437	return -EINVAL;
2438}
2439#else
2440static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441				struct mem_cgroup *from, struct mem_cgroup *to)
2442{
2443	return -EINVAL;
2444}
2445#endif
2446
2447static DEFINE_MUTEX(memcg_limit_mutex);
2448
2449static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2450				   unsigned long limit, bool memsw)
2451{
2452	bool enlarge = false;
2453	int ret;
2454	bool limits_invariant;
2455	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2456
2457	do {
2458		if (signal_pending(current)) {
2459			ret = -EINTR;
2460			break;
 
 
 
 
 
2461		}
2462
2463		mutex_lock(&memcg_limit_mutex);
 
 
 
2464		/*
2465		 * Make sure that the new limit (memsw or memory limit) doesn't
2466		 * break our basic invariant rule memory.limit <= memsw.limit.
2467		 */
2468		limits_invariant = memsw ? limit >= memcg->memory.limit :
2469					   limit <= memcg->memsw.limit;
2470		if (!limits_invariant) {
2471			mutex_unlock(&memcg_limit_mutex);
2472			ret = -EINVAL;
2473			break;
2474		}
2475		if (limit > counter->limit)
2476			enlarge = true;
2477		ret = page_counter_limit(counter, limit);
2478		mutex_unlock(&memcg_limit_mutex);
2479
2480		if (!ret)
2481			break;
 
 
 
 
2482
2483		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2484					GFP_KERNEL, !memsw)) {
2485			ret = -EBUSY;
2486			break;
2487		}
2488	} while (true);
2489
2490	if (!ret && enlarge)
2491		memcg_oom_recover(memcg);
 
 
 
 
2492
2493	return ret;
2494}
2495
2496unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2497					    gfp_t gfp_mask,
2498					    unsigned long *total_scanned)
2499{
2500	unsigned long nr_reclaimed = 0;
2501	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2502	unsigned long reclaimed;
2503	int loop = 0;
2504	struct mem_cgroup_tree_per_node *mctz;
2505	unsigned long excess;
2506	unsigned long nr_scanned;
2507
2508	if (order > 0)
2509		return 0;
2510
2511	mctz = soft_limit_tree_node(pgdat->node_id);
2512
2513	/*
2514	 * Do not even bother to check the largest node if the root
2515	 * is empty. Do it lockless to prevent lock bouncing. Races
2516	 * are acceptable as soft limit is best effort anyway.
2517	 */
2518	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2519		return 0;
2520
2521	/*
2522	 * This loop can run a while, specially if mem_cgroup's continuously
2523	 * keep exceeding their soft limit and putting the system under
2524	 * pressure
2525	 */
2526	do {
2527		if (next_mz)
2528			mz = next_mz;
2529		else
2530			mz = mem_cgroup_largest_soft_limit_node(mctz);
2531		if (!mz)
2532			break;
2533
2534		nr_scanned = 0;
2535		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2536						    gfp_mask, &nr_scanned);
2537		nr_reclaimed += reclaimed;
2538		*total_scanned += nr_scanned;
2539		spin_lock_irq(&mctz->lock);
2540		__mem_cgroup_remove_exceeded(mz, mctz);
2541
 
 
 
 
 
 
 
 
2542		/*
2543		 * If we failed to reclaim anything from this memory cgroup
2544		 * it is time to move on to the next cgroup
2545		 */
2546		next_mz = NULL;
2547		if (!reclaimed)
2548			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2549
2550		excess = soft_limit_excess(mz->memcg);
2551		/*
2552		 * One school of thought says that we should not add
2553		 * back the node to the tree if reclaim returns 0.
2554		 * But our reclaim could return 0, simply because due
2555		 * to priority we are exposing a smaller subset of
2556		 * memory to reclaim from. Consider this as a longer
2557		 * term TODO.
2558		 */
2559		/* If excess == 0, no tree ops */
2560		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2561		spin_unlock_irq(&mctz->lock);
2562		css_put(&mz->memcg->css);
2563		loop++;
2564		/*
2565		 * Could not reclaim anything and there are no more
2566		 * mem cgroups to try or we seem to be looping without
2567		 * reclaiming anything.
 
2568		 */
2569		if (!nr_reclaimed &&
2570			(next_mz == NULL ||
2571			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2572			break;
2573	} while (!nr_reclaimed);
2574	if (next_mz)
2575		css_put(&next_mz->memcg->css);
2576	return nr_reclaimed;
2577}
2578
2579/*
2580 * Test whether @memcg has children, dead or alive.  Note that this
2581 * function doesn't care whether @memcg has use_hierarchy enabled and
2582 * returns %true if there are child csses according to the cgroup
2583 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2584 */
2585static inline bool memcg_has_children(struct mem_cgroup *memcg)
2586{
2587	bool ret;
2588
2589	rcu_read_lock();
2590	ret = css_next_child(NULL, &memcg->css);
2591	rcu_read_unlock();
2592	return ret;
2593}
2594
2595/*
2596 * Reclaims as many pages from the given memcg as possible.
2597 *
2598 * Caller is responsible for holding css reference for memcg.
2599 */
2600static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2601{
2602	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2603
2604	/* we call try-to-free pages for make this cgroup empty */
2605	lru_add_drain_all();
2606	/* try to free all pages in this cgroup */
2607	while (nr_retries && page_counter_read(&memcg->memory)) {
2608		int progress;
2609
2610		if (signal_pending(current))
2611			return -EINTR;
2612
2613		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2614							GFP_KERNEL, true);
2615		if (!progress) {
2616			nr_retries--;
2617			/* maybe some writeback is necessary */
2618			congestion_wait(BLK_RW_ASYNC, HZ/10);
2619		}
2620
 
 
 
 
 
 
 
2621	}
2622
2623	return 0;
2624}
2625
2626static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2627					    char *buf, size_t nbytes,
2628					    loff_t off)
2629{
2630	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2631
2632	if (mem_cgroup_is_root(memcg))
2633		return -EINVAL;
2634	return mem_cgroup_force_empty(memcg) ?: nbytes;
2635}
2636
2637static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2638				     struct cftype *cft)
2639{
2640	return mem_cgroup_from_css(css)->use_hierarchy;
2641}
2642
2643static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2644				      struct cftype *cft, u64 val)
2645{
2646	int retval = 0;
2647	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2648	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2649
2650	if (memcg->use_hierarchy == val)
2651		return 0;
2652
2653	/*
2654	 * If parent's use_hierarchy is set, we can't make any modifications
2655	 * in the child subtrees. If it is unset, then the change can
2656	 * occur, provided the current cgroup has no children.
2657	 *
2658	 * For the root cgroup, parent_mem is NULL, we allow value to be
2659	 * set if there are no children.
2660	 */
2661	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2662				(val == 1 || val == 0)) {
2663		if (!memcg_has_children(memcg))
2664			memcg->use_hierarchy = val;
2665		else
2666			retval = -EBUSY;
2667	} else
2668		retval = -EINVAL;
2669
2670	return retval;
2671}
2672
2673static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
 
 
 
 
 
 
 
 
 
2674{
2675	struct mem_cgroup *iter;
2676	int i;
2677
2678	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2679
2680	for_each_mem_cgroup_tree(iter, memcg) {
2681		for (i = 0; i < MEMCG_NR_STAT; i++)
2682			stat[i] += memcg_page_state(iter, i);
2683	}
2684}
2685
2686static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2687{
2688	struct mem_cgroup *iter;
2689	int i;
2690
2691	memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
 
 
 
2692
2693	for_each_mem_cgroup_tree(iter, memcg) {
2694		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2695			events[i] += memcg_sum_events(iter, i);
2696	}
2697}
2698
2699static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
 
 
 
 
 
 
 
 
2700{
2701	unsigned long val = 0;
2702
2703	if (mem_cgroup_is_root(memcg)) {
2704		struct mem_cgroup *iter;
2705
2706		for_each_mem_cgroup_tree(iter, memcg) {
2707			val += memcg_page_state(iter, MEMCG_CACHE);
2708			val += memcg_page_state(iter, MEMCG_RSS);
2709			if (swap)
2710				val += memcg_page_state(iter, MEMCG_SWAP);
 
 
 
2711		}
2712	} else {
2713		if (!swap)
2714			val = page_counter_read(&memcg->memory);
2715		else
2716			val = page_counter_read(&memcg->memsw);
2717	}
2718	return val;
2719}
2720
2721enum {
2722	RES_USAGE,
2723	RES_LIMIT,
2724	RES_MAX_USAGE,
2725	RES_FAILCNT,
2726	RES_SOFT_LIMIT,
2727};
2728
2729static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2730			       struct cftype *cft)
2731{
2732	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2733	struct page_counter *counter;
 
2734
2735	switch (MEMFILE_TYPE(cft->private)) {
2736	case _MEM:
2737		counter = &memcg->memory;
2738		break;
2739	case _MEMSWAP:
2740		counter = &memcg->memsw;
2741		break;
2742	case _KMEM:
2743		counter = &memcg->kmem;
2744		break;
2745	case _TCP:
2746		counter = &memcg->tcpmem;
2747		break;
2748	default:
2749		BUG();
2750	}
2751
2752	switch (MEMFILE_ATTR(cft->private)) {
2753	case RES_USAGE:
2754		if (counter == &memcg->memory)
2755			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2756		if (counter == &memcg->memsw)
2757			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2758		return (u64)page_counter_read(counter) * PAGE_SIZE;
2759	case RES_LIMIT:
2760		return (u64)counter->limit * PAGE_SIZE;
2761	case RES_MAX_USAGE:
2762		return (u64)counter->watermark * PAGE_SIZE;
2763	case RES_FAILCNT:
2764		return counter->failcnt;
2765	case RES_SOFT_LIMIT:
2766		return (u64)memcg->soft_limit * PAGE_SIZE;
2767	default:
2768		BUG();
2769	}
2770}
2771
2772#ifndef CONFIG_SLOB
2773static int memcg_online_kmem(struct mem_cgroup *memcg)
2774{
2775	int memcg_id;
2776
2777	if (cgroup_memory_nokmem)
2778		return 0;
2779
2780	BUG_ON(memcg->kmemcg_id >= 0);
2781	BUG_ON(memcg->kmem_state);
2782
2783	memcg_id = memcg_alloc_cache_id();
2784	if (memcg_id < 0)
2785		return memcg_id;
2786
2787	static_branch_inc(&memcg_kmem_enabled_key);
2788	/*
2789	 * A memory cgroup is considered kmem-online as soon as it gets
2790	 * kmemcg_id. Setting the id after enabling static branching will
2791	 * guarantee no one starts accounting before all call sites are
2792	 * patched.
2793	 */
2794	memcg->kmemcg_id = memcg_id;
2795	memcg->kmem_state = KMEM_ONLINE;
2796	INIT_LIST_HEAD(&memcg->kmem_caches);
2797
2798	return 0;
2799}
2800
2801static void memcg_offline_kmem(struct mem_cgroup *memcg)
2802{
2803	struct cgroup_subsys_state *css;
2804	struct mem_cgroup *parent, *child;
2805	int kmemcg_id;
2806
2807	if (memcg->kmem_state != KMEM_ONLINE)
2808		return;
2809	/*
2810	 * Clear the online state before clearing memcg_caches array
2811	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2812	 * guarantees that no cache will be created for this cgroup
2813	 * after we are done (see memcg_create_kmem_cache()).
2814	 */
2815	memcg->kmem_state = KMEM_ALLOCATED;
2816
2817	memcg_deactivate_kmem_caches(memcg);
2818
2819	kmemcg_id = memcg->kmemcg_id;
2820	BUG_ON(kmemcg_id < 0);
2821
2822	parent = parent_mem_cgroup(memcg);
2823	if (!parent)
2824		parent = root_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
2825
 
 
2826	/*
2827	 * Change kmemcg_id of this cgroup and all its descendants to the
2828	 * parent's id, and then move all entries from this cgroup's list_lrus
2829	 * to ones of the parent. After we have finished, all list_lrus
2830	 * corresponding to this cgroup are guaranteed to remain empty. The
2831	 * ordering is imposed by list_lru_node->lock taken by
2832	 * memcg_drain_all_list_lrus().
2833	 */
2834	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2835	css_for_each_descendant_pre(css, &memcg->css) {
2836		child = mem_cgroup_from_css(css);
2837		BUG_ON(child->kmemcg_id != kmemcg_id);
2838		child->kmemcg_id = parent->kmemcg_id;
2839		if (!memcg->use_hierarchy)
2840			break;
2841	}
2842	rcu_read_unlock();
 
2843
2844	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2845
2846	memcg_free_cache_id(kmemcg_id);
2847}
2848
2849static void memcg_free_kmem(struct mem_cgroup *memcg)
2850{
2851	/* css_alloc() failed, offlining didn't happen */
2852	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2853		memcg_offline_kmem(memcg);
 
 
2854
2855	if (memcg->kmem_state == KMEM_ALLOCATED) {
2856		memcg_destroy_kmem_caches(memcg);
2857		static_branch_dec(&memcg_kmem_enabled_key);
2858		WARN_ON(page_counter_read(&memcg->kmem));
2859	}
2860}
2861#else
2862static int memcg_online_kmem(struct mem_cgroup *memcg)
2863{
2864	return 0;
2865}
2866static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867{
2868}
2869static void memcg_free_kmem(struct mem_cgroup *memcg)
2870{
2871}
2872#endif /* !CONFIG_SLOB */
2873
2874static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2875				   unsigned long limit)
2876{
2877	int ret;
2878
2879	mutex_lock(&memcg_limit_mutex);
2880	ret = page_counter_limit(&memcg->kmem, limit);
2881	mutex_unlock(&memcg_limit_mutex);
2882	return ret;
2883}
2884
2885static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2886{
2887	int ret;
2888
2889	mutex_lock(&memcg_limit_mutex);
 
2890
2891	ret = page_counter_limit(&memcg->tcpmem, limit);
2892	if (ret)
2893		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
2894
2895	if (!memcg->tcpmem_active) {
2896		/*
2897		 * The active flag needs to be written after the static_key
2898		 * update. This is what guarantees that the socket activation
2899		 * function is the last one to run. See mem_cgroup_sk_alloc()
2900		 * for details, and note that we don't mark any socket as
2901		 * belonging to this memcg until that flag is up.
2902		 *
2903		 * We need to do this, because static_keys will span multiple
2904		 * sites, but we can't control their order. If we mark a socket
2905		 * as accounted, but the accounting functions are not patched in
2906		 * yet, we'll lose accounting.
2907		 *
2908		 * We never race with the readers in mem_cgroup_sk_alloc(),
2909		 * because when this value change, the code to process it is not
2910		 * patched in yet.
2911		 */
2912		static_branch_inc(&memcg_sockets_enabled_key);
2913		memcg->tcpmem_active = true;
2914	}
2915out:
2916	mutex_unlock(&memcg_limit_mutex);
2917	return ret;
2918}
2919
2920/*
2921 * The user of this function is...
2922 * RES_LIMIT.
2923 */
2924static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2925				char *buf, size_t nbytes, loff_t off)
2926{
2927	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2928	unsigned long nr_pages;
2929	int ret;
2930
2931	buf = strstrip(buf);
2932	ret = page_counter_memparse(buf, "-1", &nr_pages);
2933	if (ret)
2934		return ret;
2935
2936	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2937	case RES_LIMIT:
2938		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2939			ret = -EINVAL;
2940			break;
2941		}
2942		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2943		case _MEM:
2944			ret = mem_cgroup_resize_limit(memcg, nr_pages, false);
2945			break;
2946		case _MEMSWAP:
2947			ret = mem_cgroup_resize_limit(memcg, nr_pages, true);
2948			break;
2949		case _KMEM:
2950			ret = memcg_update_kmem_limit(memcg, nr_pages);
2951			break;
2952		case _TCP:
2953			ret = memcg_update_tcp_limit(memcg, nr_pages);
2954			break;
2955		}
2956		break;
2957	case RES_SOFT_LIMIT:
2958		memcg->soft_limit = nr_pages;
2959		ret = 0;
2960		break;
2961	}
2962	return ret ?: nbytes;
2963}
2964
2965static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2966				size_t nbytes, loff_t off)
2967{
2968	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2969	struct page_counter *counter;
2970
2971	switch (MEMFILE_TYPE(of_cft(of)->private)) {
2972	case _MEM:
2973		counter = &memcg->memory;
2974		break;
2975	case _MEMSWAP:
2976		counter = &memcg->memsw;
2977		break;
2978	case _KMEM:
2979		counter = &memcg->kmem;
2980		break;
2981	case _TCP:
2982		counter = &memcg->tcpmem;
2983		break;
2984	default:
2985		BUG();
2986	}
2987
2988	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989	case RES_MAX_USAGE:
2990		page_counter_reset_watermark(counter);
2991		break;
2992	case RES_FAILCNT:
2993		counter->failcnt = 0;
2994		break;
2995	default:
2996		BUG();
2997	}
2998
2999	return nbytes;
3000}
3001
3002static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3003					struct cftype *cft)
3004{
3005	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3006}
3007
3008#ifdef CONFIG_MMU
3009static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3010					struct cftype *cft, u64 val)
3011{
3012	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3013
3014	if (val & ~MOVE_MASK)
3015		return -EINVAL;
3016
3017	/*
3018	 * No kind of locking is needed in here, because ->can_attach() will
3019	 * check this value once in the beginning of the process, and then carry
3020	 * on with stale data. This means that changes to this value will only
3021	 * affect task migrations starting after the change.
3022	 */
3023	memcg->move_charge_at_immigrate = val;
3024	return 0;
3025}
3026#else
3027static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3028					struct cftype *cft, u64 val)
3029{
3030	return -ENOSYS;
3031}
3032#endif
3033
3034#ifdef CONFIG_NUMA
3035static int memcg_numa_stat_show(struct seq_file *m, void *v)
3036{
3037	struct numa_stat {
3038		const char *name;
3039		unsigned int lru_mask;
3040	};
3041
3042	static const struct numa_stat stats[] = {
3043		{ "total", LRU_ALL },
3044		{ "file", LRU_ALL_FILE },
3045		{ "anon", LRU_ALL_ANON },
3046		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3047	};
3048	const struct numa_stat *stat;
3049	int nid;
3050	unsigned long nr;
3051	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3052
3053	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3054		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3055		seq_printf(m, "%s=%lu", stat->name, nr);
3056		for_each_node_state(nid, N_MEMORY) {
3057			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3058							  stat->lru_mask);
3059			seq_printf(m, " N%d=%lu", nid, nr);
3060		}
3061		seq_putc(m, '\n');
3062	}
3063
3064	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3065		struct mem_cgroup *iter;
3066
3067		nr = 0;
3068		for_each_mem_cgroup_tree(iter, memcg)
3069			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3070		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3071		for_each_node_state(nid, N_MEMORY) {
3072			nr = 0;
3073			for_each_mem_cgroup_tree(iter, memcg)
3074				nr += mem_cgroup_node_nr_lru_pages(
3075					iter, nid, stat->lru_mask);
3076			seq_printf(m, " N%d=%lu", nid, nr);
3077		}
3078		seq_putc(m, '\n');
3079	}
3080
3081	return 0;
3082}
3083#endif /* CONFIG_NUMA */
3084
3085/* Universal VM events cgroup1 shows, original sort order */
3086unsigned int memcg1_events[] = {
3087	PGPGIN,
3088	PGPGOUT,
3089	PGFAULT,
3090	PGMAJFAULT,
3091};
3092
3093static const char *const memcg1_event_names[] = {
3094	"pgpgin",
3095	"pgpgout",
3096	"pgfault",
3097	"pgmajfault",
3098};
3099
3100static int memcg_stat_show(struct seq_file *m, void *v)
 
3101{
3102	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3103	unsigned long memory, memsw;
3104	struct mem_cgroup *mi;
3105	unsigned int i;
3106
3107	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3108	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3109
3110	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3111		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3112			continue;
3113		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3114			   memcg_page_state(memcg, memcg1_stats[i]) *
3115			   PAGE_SIZE);
3116	}
3117
3118	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3119		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3120			   memcg_sum_events(memcg, memcg1_events[i]));
3121
3122	for (i = 0; i < NR_LRU_LISTS; i++)
3123		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3124			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3125
3126	/* Hierarchical information */
3127	memory = memsw = PAGE_COUNTER_MAX;
3128	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3129		memory = min(memory, mi->memory.limit);
3130		memsw = min(memsw, mi->memsw.limit);
3131	}
3132	seq_printf(m, "hierarchical_memory_limit %llu\n",
3133		   (u64)memory * PAGE_SIZE);
3134	if (do_memsw_account())
3135		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3136			   (u64)memsw * PAGE_SIZE);
3137
3138	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3139		unsigned long long val = 0;
3140
3141		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3142			continue;
3143		for_each_mem_cgroup_tree(mi, memcg)
3144			val += memcg_page_state(mi, memcg1_stats[i]) *
3145			PAGE_SIZE;
3146		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3147	}
3148
3149	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3150		unsigned long long val = 0;
3151
3152		for_each_mem_cgroup_tree(mi, memcg)
3153			val += memcg_sum_events(mi, memcg1_events[i]);
3154		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3155	}
3156
3157	for (i = 0; i < NR_LRU_LISTS; i++) {
3158		unsigned long long val = 0;
 
 
3159
3160		for_each_mem_cgroup_tree(mi, memcg)
3161			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3162		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3163	}
3164
3165#ifdef CONFIG_DEBUG_VM
3166	{
3167		pg_data_t *pgdat;
3168		struct mem_cgroup_per_node *mz;
3169		struct zone_reclaim_stat *rstat;
3170		unsigned long recent_rotated[2] = {0, 0};
3171		unsigned long recent_scanned[2] = {0, 0};
3172
3173		for_each_online_pgdat(pgdat) {
3174			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3175			rstat = &mz->lruvec.reclaim_stat;
3176
3177			recent_rotated[0] += rstat->recent_rotated[0];
3178			recent_rotated[1] += rstat->recent_rotated[1];
3179			recent_scanned[0] += rstat->recent_scanned[0];
3180			recent_scanned[1] += rstat->recent_scanned[1];
3181		}
3182		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3183		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3184		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3185		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3186	}
3187#endif
 
 
 
 
 
 
 
 
 
3188
3189	return 0;
3190}
3191
3192static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3193				      struct cftype *cft)
3194{
3195	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3196
3197	return mem_cgroup_swappiness(memcg);
3198}
3199
3200static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3201				       struct cftype *cft, u64 val)
3202{
3203	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3204
3205	if (val > 100)
3206		return -EINVAL;
3207
3208	if (css->parent)
3209		memcg->swappiness = val;
3210	else
3211		vm_swappiness = val;
3212
3213	return 0;
3214}
3215
3216static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
 
3217{
3218	struct mem_cgroup_threshold_ary *t;
3219	unsigned long usage;
3220	int i;
3221
3222	rcu_read_lock();
3223	if (!swap)
3224		t = rcu_dereference(memcg->thresholds.primary);
3225	else
3226		t = rcu_dereference(memcg->memsw_thresholds.primary);
3227
3228	if (!t)
3229		goto unlock;
3230
3231	usage = mem_cgroup_usage(memcg, swap);
3232
3233	/*
3234	 * current_threshold points to threshold just below or equal to usage.
3235	 * If it's not true, a threshold was crossed after last
3236	 * call of __mem_cgroup_threshold().
3237	 */
3238	i = t->current_threshold;
 
 
3239
3240	/*
3241	 * Iterate backward over array of thresholds starting from
3242	 * current_threshold and check if a threshold is crossed.
3243	 * If none of thresholds below usage is crossed, we read
3244	 * only one element of the array here.
3245	 */
3246	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3247		eventfd_signal(t->entries[i].eventfd, 1);
3248
3249	/* i = current_threshold + 1 */
3250	i++;
3251
3252	/*
3253	 * Iterate forward over array of thresholds starting from
3254	 * current_threshold+1 and check if a threshold is crossed.
3255	 * If none of thresholds above usage is crossed, we read
3256	 * only one element of the array here.
3257	 */
3258	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3259		eventfd_signal(t->entries[i].eventfd, 1);
3260
3261	/* Update current_threshold */
3262	t->current_threshold = i - 1;
3263unlock:
3264	rcu_read_unlock();
3265}
3266
3267static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3268{
3269	while (memcg) {
3270		__mem_cgroup_threshold(memcg, false);
3271		if (do_memsw_account())
3272			__mem_cgroup_threshold(memcg, true);
3273
3274		memcg = parent_mem_cgroup(memcg);
 
3275	}
3276}
3277
3278static int compare_thresholds(const void *a, const void *b)
3279{
3280	const struct mem_cgroup_threshold *_a = a;
3281	const struct mem_cgroup_threshold *_b = b;
3282
3283	if (_a->threshold > _b->threshold)
3284		return 1;
3285
3286	if (_a->threshold < _b->threshold)
3287		return -1;
3288
3289	return 0;
3290}
3291
3292static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3293{
3294	struct mem_cgroup_eventfd_list *ev;
3295
3296	spin_lock(&memcg_oom_lock);
 
 
 
 
3297
3298	list_for_each_entry(ev, &memcg->oom_notify, list)
3299		eventfd_signal(ev->eventfd, 1);
 
 
 
 
3300
3301	spin_unlock(&memcg_oom_lock);
3302	return 0;
3303}
3304
3305static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
 
3306{
3307	struct mem_cgroup *iter;
 
 
 
 
 
 
 
3308
3309	for_each_mem_cgroup_tree(iter, memcg)
3310		mem_cgroup_oom_notify_cb(iter);
 
 
 
 
3311}
3312
3313static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3314	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
 
 
3315{
3316	struct mem_cgroup_thresholds *thresholds;
3317	struct mem_cgroup_threshold_ary *new;
3318	unsigned long threshold;
3319	unsigned long usage;
3320	int i, size, ret;
3321
3322	ret = page_counter_memparse(args, "-1", &threshold);
3323	if (ret)
3324		return ret;
3325
3326	mutex_lock(&memcg->thresholds_lock);
3327
3328	if (type == _MEM) {
3329		thresholds = &memcg->thresholds;
3330		usage = mem_cgroup_usage(memcg, false);
3331	} else if (type == _MEMSWAP) {
3332		thresholds = &memcg->memsw_thresholds;
3333		usage = mem_cgroup_usage(memcg, true);
3334	} else
3335		BUG();
3336
3337	/* Check if a threshold crossed before adding a new one */
3338	if (thresholds->primary)
3339		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3340
3341	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3342
3343	/* Allocate memory for new array of thresholds */
3344	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3345			GFP_KERNEL);
3346	if (!new) {
3347		ret = -ENOMEM;
3348		goto unlock;
3349	}
3350	new->size = size;
3351
3352	/* Copy thresholds (if any) to new array */
3353	if (thresholds->primary) {
3354		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3355				sizeof(struct mem_cgroup_threshold));
3356	}
3357
3358	/* Add new threshold */
3359	new->entries[size - 1].eventfd = eventfd;
3360	new->entries[size - 1].threshold = threshold;
3361
3362	/* Sort thresholds. Registering of new threshold isn't time-critical */
3363	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3364			compare_thresholds, NULL);
3365
3366	/* Find current threshold */
3367	new->current_threshold = -1;
3368	for (i = 0; i < size; i++) {
3369		if (new->entries[i].threshold <= usage) {
3370			/*
3371			 * new->current_threshold will not be used until
3372			 * rcu_assign_pointer(), so it's safe to increment
3373			 * it here.
3374			 */
3375			++new->current_threshold;
3376		} else
3377			break;
3378	}
3379
3380	/* Free old spare buffer and save old primary buffer as spare */
3381	kfree(thresholds->spare);
3382	thresholds->spare = thresholds->primary;
3383
3384	rcu_assign_pointer(thresholds->primary, new);
3385
3386	/* To be sure that nobody uses thresholds */
3387	synchronize_rcu();
3388
3389unlock:
3390	mutex_unlock(&memcg->thresholds_lock);
3391
3392	return ret;
3393}
3394
3395static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3396	struct eventfd_ctx *eventfd, const char *args)
3397{
3398	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3399}
3400
3401static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3402	struct eventfd_ctx *eventfd, const char *args)
3403{
3404	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3405}
3406
3407static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3408	struct eventfd_ctx *eventfd, enum res_type type)
3409{
3410	struct mem_cgroup_thresholds *thresholds;
3411	struct mem_cgroup_threshold_ary *new;
3412	unsigned long usage;
3413	int i, j, size;
3414
3415	mutex_lock(&memcg->thresholds_lock);
3416
3417	if (type == _MEM) {
3418		thresholds = &memcg->thresholds;
3419		usage = mem_cgroup_usage(memcg, false);
3420	} else if (type == _MEMSWAP) {
3421		thresholds = &memcg->memsw_thresholds;
3422		usage = mem_cgroup_usage(memcg, true);
3423	} else
3424		BUG();
3425
3426	if (!thresholds->primary)
3427		goto unlock;
3428
3429	/* Check if a threshold crossed before removing */
3430	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3431
3432	/* Calculate new number of threshold */
3433	size = 0;
3434	for (i = 0; i < thresholds->primary->size; i++) {
3435		if (thresholds->primary->entries[i].eventfd != eventfd)
3436			size++;
3437	}
3438
3439	new = thresholds->spare;
3440
3441	/* Set thresholds array to NULL if we don't have thresholds */
3442	if (!size) {
3443		kfree(new);
3444		new = NULL;
3445		goto swap_buffers;
3446	}
3447
3448	new->size = size;
3449
3450	/* Copy thresholds and find current threshold */
3451	new->current_threshold = -1;
3452	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3453		if (thresholds->primary->entries[i].eventfd == eventfd)
3454			continue;
3455
3456		new->entries[j] = thresholds->primary->entries[i];
3457		if (new->entries[j].threshold <= usage) {
3458			/*
3459			 * new->current_threshold will not be used
3460			 * until rcu_assign_pointer(), so it's safe to increment
3461			 * it here.
3462			 */
3463			++new->current_threshold;
3464		}
3465		j++;
3466	}
3467
3468swap_buffers:
3469	/* Swap primary and spare array */
3470	thresholds->spare = thresholds->primary;
3471
3472	rcu_assign_pointer(thresholds->primary, new);
3473
3474	/* To be sure that nobody uses thresholds */
3475	synchronize_rcu();
3476
3477	/* If all events are unregistered, free the spare array */
3478	if (!new) {
3479		kfree(thresholds->spare);
3480		thresholds->spare = NULL;
3481	}
3482unlock:
3483	mutex_unlock(&memcg->thresholds_lock);
3484}
3485
3486static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3487	struct eventfd_ctx *eventfd)
3488{
3489	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3490}
3491
3492static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3493	struct eventfd_ctx *eventfd)
3494{
3495	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3496}
3497
3498static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3499	struct eventfd_ctx *eventfd, const char *args)
3500{
3501	struct mem_cgroup_eventfd_list *event;
3502
3503	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3504	if (!event)
3505		return -ENOMEM;
3506
3507	spin_lock(&memcg_oom_lock);
 
 
 
3508
3509	event->eventfd = eventfd;
3510	list_add(&event->list, &memcg->oom_notify);
3511
3512	/* already in OOM ? */
3513	if (memcg->under_oom)
3514		eventfd_signal(eventfd, 1);
3515	spin_unlock(&memcg_oom_lock);
3516
3517	return 0;
3518}
3519
3520static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3521	struct eventfd_ctx *eventfd)
3522{
3523	struct mem_cgroup_eventfd_list *ev, *tmp;
3524
3525	spin_lock(&memcg_oom_lock);
3526
3527	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3528		if (ev->eventfd == eventfd) {
3529			list_del(&ev->list);
3530			kfree(ev);
3531		}
3532	}
3533
3534	spin_unlock(&memcg_oom_lock);
3535}
3536
3537static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3538{
3539	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3540
3541	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3542	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3543	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3544	return 0;
3545}
3546
3547static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3548	struct cftype *cft, u64 val)
3549{
3550	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551
3552	/* cannot set to root cgroup and only 0 and 1 are allowed */
3553	if (!css->parent || !((val == 0) || (val == 1)))
3554		return -EINVAL;
3555
3556	memcg->oom_kill_disable = val;
3557	if (!val)
3558		memcg_oom_recover(memcg);
3559
3560	return 0;
 
 
 
 
3561}
3562
3563#ifdef CONFIG_CGROUP_WRITEBACK
3564
3565struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3566{
3567	return &memcg->cgwb_list;
3568}
3569
3570static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3571{
3572	return wb_domain_init(&memcg->cgwb_domain, gfp);
3573}
3574
3575static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3576{
3577	wb_domain_exit(&memcg->cgwb_domain);
3578}
3579
3580static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3581{
3582	wb_domain_size_changed(&memcg->cgwb_domain);
3583}
3584
3585struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3586{
3587	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3588
3589	if (!memcg->css.parent)
3590		return NULL;
3591
3592	return &memcg->cgwb_domain;
3593}
3594
3595/**
3596 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3597 * @wb: bdi_writeback in question
3598 * @pfilepages: out parameter for number of file pages
3599 * @pheadroom: out parameter for number of allocatable pages according to memcg
3600 * @pdirty: out parameter for number of dirty pages
3601 * @pwriteback: out parameter for number of pages under writeback
3602 *
3603 * Determine the numbers of file, headroom, dirty, and writeback pages in
3604 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3605 * is a bit more involved.
3606 *
3607 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3608 * headroom is calculated as the lowest headroom of itself and the
3609 * ancestors.  Note that this doesn't consider the actual amount of
3610 * available memory in the system.  The caller should further cap
3611 * *@pheadroom accordingly.
3612 */
3613void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3614			 unsigned long *pheadroom, unsigned long *pdirty,
3615			 unsigned long *pwriteback)
3616{
3617	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618	struct mem_cgroup *parent;
3619
3620	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3621
3622	/* this should eventually include NR_UNSTABLE_NFS */
3623	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3624	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3625						     (1 << LRU_ACTIVE_FILE));
3626	*pheadroom = PAGE_COUNTER_MAX;
3627
 
3628	while ((parent = parent_mem_cgroup(memcg))) {
3629		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
 
3630		unsigned long used = page_counter_read(&memcg->memory);
3631
3632		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3633		memcg = parent;
3634	}
3635}
3636
3637#else	/* CONFIG_CGROUP_WRITEBACK */
3638
3639static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3640{
3641	return 0;
3642}
3643
3644static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3645{
3646}
3647
3648static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3649{
3650}
3651
3652#endif	/* CONFIG_CGROUP_WRITEBACK */
3653
3654/*
3655 * DO NOT USE IN NEW FILES.
3656 *
3657 * "cgroup.event_control" implementation.
3658 *
3659 * This is way over-engineered.  It tries to support fully configurable
3660 * events for each user.  Such level of flexibility is completely
3661 * unnecessary especially in the light of the planned unified hierarchy.
3662 *
3663 * Please deprecate this and replace with something simpler if at all
3664 * possible.
3665 */
3666
3667/*
3668 * Unregister event and free resources.
3669 *
3670 * Gets called from workqueue.
3671 */
3672static void memcg_event_remove(struct work_struct *work)
3673{
3674	struct mem_cgroup_event *event =
3675		container_of(work, struct mem_cgroup_event, remove);
3676	struct mem_cgroup *memcg = event->memcg;
3677
3678	remove_wait_queue(event->wqh, &event->wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3679
3680	event->unregister_event(memcg, event->eventfd);
3681
3682	/* Notify userspace the event is going away. */
3683	eventfd_signal(event->eventfd, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3684
3685	eventfd_ctx_put(event->eventfd);
3686	kfree(event);
3687	css_put(&memcg->css);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3688}
3689
3690/*
3691 * Gets called on EPOLLHUP on eventfd when user closes it.
3692 *
3693 * Called with wqh->lock held and interrupts disabled.
3694 */
3695static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3696			    int sync, void *key)
3697{
3698	struct mem_cgroup_event *event =
3699		container_of(wait, struct mem_cgroup_event, wait);
3700	struct mem_cgroup *memcg = event->memcg;
3701	__poll_t flags = key_to_poll(key);
 
 
 
3702
3703	if (flags & EPOLLHUP) {
3704		/*
3705		 * If the event has been detached at cgroup removal, we
3706		 * can simply return knowing the other side will cleanup
3707		 * for us.
3708		 *
3709		 * We can't race against event freeing since the other
3710		 * side will require wqh->lock via remove_wait_queue(),
3711		 * which we hold.
3712		 */
3713		spin_lock(&memcg->event_list_lock);
3714		if (!list_empty(&event->list)) {
3715			list_del_init(&event->list);
3716			/*
3717			 * We are in atomic context, but cgroup_event_remove()
3718			 * may sleep, so we have to call it in workqueue.
3719			 */
3720			schedule_work(&event->remove);
3721		}
3722		spin_unlock(&memcg->event_list_lock);
3723	}
 
3724
 
 
 
 
3725	return 0;
3726}
3727
3728static void memcg_event_ptable_queue_proc(struct file *file,
3729		wait_queue_head_t *wqh, poll_table *pt)
3730{
3731	struct mem_cgroup_event *event =
3732		container_of(pt, struct mem_cgroup_event, pt);
3733
3734	event->wqh = wqh;
3735	add_wait_queue(wqh, &event->wait);
3736}
3737
3738/*
3739 * DO NOT USE IN NEW FILES.
3740 *
3741 * Parse input and register new cgroup event handler.
3742 *
3743 * Input must be in format '<event_fd> <control_fd> <args>'.
3744 * Interpretation of args is defined by control file implementation.
3745 */
3746static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3747					 char *buf, size_t nbytes, loff_t off)
3748{
3749	struct cgroup_subsys_state *css = of_css(of);
3750	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3751	struct mem_cgroup_event *event;
3752	struct cgroup_subsys_state *cfile_css;
3753	unsigned int efd, cfd;
3754	struct fd efile;
3755	struct fd cfile;
3756	const char *name;
3757	char *endp;
3758	int ret;
3759
3760	buf = strstrip(buf);
3761
3762	efd = simple_strtoul(buf, &endp, 10);
3763	if (*endp != ' ')
3764		return -EINVAL;
3765	buf = endp + 1;
3766
3767	cfd = simple_strtoul(buf, &endp, 10);
3768	if ((*endp != ' ') && (*endp != '\0'))
3769		return -EINVAL;
3770	buf = endp + 1;
3771
3772	event = kzalloc(sizeof(*event), GFP_KERNEL);
3773	if (!event)
3774		return -ENOMEM;
3775
3776	event->memcg = memcg;
3777	INIT_LIST_HEAD(&event->list);
3778	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3779	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3780	INIT_WORK(&event->remove, memcg_event_remove);
3781
3782	efile = fdget(efd);
3783	if (!efile.file) {
3784		ret = -EBADF;
3785		goto out_kfree;
3786	}
3787
3788	event->eventfd = eventfd_ctx_fileget(efile.file);
3789	if (IS_ERR(event->eventfd)) {
3790		ret = PTR_ERR(event->eventfd);
3791		goto out_put_efile;
3792	}
3793
3794	cfile = fdget(cfd);
3795	if (!cfile.file) {
3796		ret = -EBADF;
3797		goto out_put_eventfd;
3798	}
3799
3800	/* the process need read permission on control file */
3801	/* AV: shouldn't we check that it's been opened for read instead? */
3802	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3803	if (ret < 0)
3804		goto out_put_cfile;
3805
3806	/*
3807	 * Determine the event callbacks and set them in @event.  This used
3808	 * to be done via struct cftype but cgroup core no longer knows
3809	 * about these events.  The following is crude but the whole thing
3810	 * is for compatibility anyway.
3811	 *
3812	 * DO NOT ADD NEW FILES.
3813	 */
3814	name = cfile.file->f_path.dentry->d_name.name;
3815
3816	if (!strcmp(name, "memory.usage_in_bytes")) {
3817		event->register_event = mem_cgroup_usage_register_event;
3818		event->unregister_event = mem_cgroup_usage_unregister_event;
3819	} else if (!strcmp(name, "memory.oom_control")) {
3820		event->register_event = mem_cgroup_oom_register_event;
3821		event->unregister_event = mem_cgroup_oom_unregister_event;
3822	} else if (!strcmp(name, "memory.pressure_level")) {
3823		event->register_event = vmpressure_register_event;
3824		event->unregister_event = vmpressure_unregister_event;
3825	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3826		event->register_event = memsw_cgroup_usage_register_event;
3827		event->unregister_event = memsw_cgroup_usage_unregister_event;
3828	} else {
3829		ret = -EINVAL;
3830		goto out_put_cfile;
3831	}
3832
3833	/*
3834	 * Verify @cfile should belong to @css.  Also, remaining events are
3835	 * automatically removed on cgroup destruction but the removal is
3836	 * asynchronous, so take an extra ref on @css.
3837	 */
3838	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3839					       &memory_cgrp_subsys);
3840	ret = -EINVAL;
3841	if (IS_ERR(cfile_css))
3842		goto out_put_cfile;
3843	if (cfile_css != css) {
3844		css_put(cfile_css);
3845		goto out_put_cfile;
3846	}
3847
3848	ret = event->register_event(memcg, event->eventfd, buf);
3849	if (ret)
3850		goto out_put_css;
3851
3852	efile.file->f_op->poll(efile.file, &event->pt);
3853
3854	spin_lock(&memcg->event_list_lock);
3855	list_add(&event->list, &memcg->event_list);
3856	spin_unlock(&memcg->event_list_lock);
3857
3858	fdput(cfile);
3859	fdput(efile);
3860
3861	return nbytes;
3862
3863out_put_css:
3864	css_put(css);
3865out_put_cfile:
3866	fdput(cfile);
3867out_put_eventfd:
3868	eventfd_ctx_put(event->eventfd);
3869out_put_efile:
3870	fdput(efile);
3871out_kfree:
3872	kfree(event);
3873
3874	return ret;
3875}
3876
3877static struct cftype mem_cgroup_legacy_files[] = {
3878	{
3879		.name = "usage_in_bytes",
3880		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3881		.read_u64 = mem_cgroup_read_u64,
3882	},
3883	{
3884		.name = "max_usage_in_bytes",
3885		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3886		.write = mem_cgroup_reset,
3887		.read_u64 = mem_cgroup_read_u64,
3888	},
3889	{
3890		.name = "limit_in_bytes",
3891		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3892		.write = mem_cgroup_write,
3893		.read_u64 = mem_cgroup_read_u64,
3894	},
3895	{
3896		.name = "soft_limit_in_bytes",
3897		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3898		.write = mem_cgroup_write,
3899		.read_u64 = mem_cgroup_read_u64,
3900	},
3901	{
3902		.name = "failcnt",
3903		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3904		.write = mem_cgroup_reset,
3905		.read_u64 = mem_cgroup_read_u64,
3906	},
3907	{
3908		.name = "stat",
3909		.seq_show = memcg_stat_show,
3910	},
3911	{
3912		.name = "force_empty",
3913		.write = mem_cgroup_force_empty_write,
3914	},
3915	{
3916		.name = "use_hierarchy",
3917		.write_u64 = mem_cgroup_hierarchy_write,
3918		.read_u64 = mem_cgroup_hierarchy_read,
3919	},
3920	{
3921		.name = "cgroup.event_control",		/* XXX: for compat */
3922		.write = memcg_write_event_control,
3923		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3924	},
3925	{
3926		.name = "swappiness",
3927		.read_u64 = mem_cgroup_swappiness_read,
3928		.write_u64 = mem_cgroup_swappiness_write,
3929	},
3930	{
3931		.name = "move_charge_at_immigrate",
3932		.read_u64 = mem_cgroup_move_charge_read,
3933		.write_u64 = mem_cgroup_move_charge_write,
3934	},
3935	{
3936		.name = "oom_control",
3937		.seq_show = mem_cgroup_oom_control_read,
3938		.write_u64 = mem_cgroup_oom_control_write,
3939		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3940	},
3941	{
3942		.name = "pressure_level",
3943	},
3944#ifdef CONFIG_NUMA
3945	{
3946		.name = "numa_stat",
3947		.seq_show = memcg_numa_stat_show,
3948	},
3949#endif
3950	{
3951		.name = "kmem.limit_in_bytes",
3952		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3953		.write = mem_cgroup_write,
3954		.read_u64 = mem_cgroup_read_u64,
3955	},
3956	{
3957		.name = "kmem.usage_in_bytes",
3958		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3959		.read_u64 = mem_cgroup_read_u64,
3960	},
3961	{
3962		.name = "kmem.failcnt",
3963		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3964		.write = mem_cgroup_reset,
3965		.read_u64 = mem_cgroup_read_u64,
3966	},
3967	{
3968		.name = "kmem.max_usage_in_bytes",
3969		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3970		.write = mem_cgroup_reset,
3971		.read_u64 = mem_cgroup_read_u64,
3972	},
3973#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3974	{
3975		.name = "kmem.slabinfo",
3976		.seq_start = memcg_slab_start,
3977		.seq_next = memcg_slab_next,
3978		.seq_stop = memcg_slab_stop,
3979		.seq_show = memcg_slab_show,
3980	},
3981#endif
3982	{
3983		.name = "kmem.tcp.limit_in_bytes",
3984		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3985		.write = mem_cgroup_write,
3986		.read_u64 = mem_cgroup_read_u64,
3987	},
3988	{
3989		.name = "kmem.tcp.usage_in_bytes",
3990		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3991		.read_u64 = mem_cgroup_read_u64,
3992	},
3993	{
3994		.name = "kmem.tcp.failcnt",
3995		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
3996		.write = mem_cgroup_reset,
3997		.read_u64 = mem_cgroup_read_u64,
3998	},
3999	{
4000		.name = "kmem.tcp.max_usage_in_bytes",
4001		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4002		.write = mem_cgroup_reset,
4003		.read_u64 = mem_cgroup_read_u64,
4004	},
4005	{ },	/* terminate */
4006};
4007
4008/*
4009 * Private memory cgroup IDR
4010 *
4011 * Swap-out records and page cache shadow entries need to store memcg
4012 * references in constrained space, so we maintain an ID space that is
4013 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4014 * memory-controlled cgroups to 64k.
4015 *
4016 * However, there usually are many references to the oflline CSS after
4017 * the cgroup has been destroyed, such as page cache or reclaimable
4018 * slab objects, that don't need to hang on to the ID. We want to keep
4019 * those dead CSS from occupying IDs, or we might quickly exhaust the
4020 * relatively small ID space and prevent the creation of new cgroups
4021 * even when there are much fewer than 64k cgroups - possibly none.
4022 *
4023 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4024 * be freed and recycled when it's no longer needed, which is usually
4025 * when the CSS is offlined.
4026 *
4027 * The only exception to that are records of swapped out tmpfs/shmem
4028 * pages that need to be attributed to live ancestors on swapin. But
4029 * those references are manageable from userspace.
4030 */
4031
4032static DEFINE_IDR(mem_cgroup_idr);
 
4033
4034static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4035{
4036	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4037	atomic_add(n, &memcg->id.ref);
 
 
4038}
4039
4040static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
 
4041{
4042	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4043	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4044		idr_remove(&mem_cgroup_idr, memcg->id.id);
4045		memcg->id.id = 0;
 
 
 
4046
4047		/* Memcg ID pins CSS */
4048		css_put(&memcg->css);
4049	}
4050}
4051
4052static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4053{
4054	mem_cgroup_id_get_many(memcg, 1);
4055}
4056
4057static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4058{
4059	mem_cgroup_id_put_many(memcg, 1);
4060}
4061
4062/**
4063 * mem_cgroup_from_id - look up a memcg from a memcg id
4064 * @id: the memcg id to look up
4065 *
4066 * Caller must hold rcu_read_lock().
4067 */
4068struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4069{
4070	WARN_ON_ONCE(!rcu_read_lock_held());
4071	return idr_find(&mem_cgroup_idr, id);
4072}
4073
4074static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4075{
4076	struct mem_cgroup_per_node *pn;
4077	int tmp = node;
4078	/*
4079	 * This routine is called against possible nodes.
4080	 * But it's BUG to call kmalloc() against offline node.
4081	 *
4082	 * TODO: this routine can waste much memory for nodes which will
4083	 *       never be onlined. It's better to use memory hotplug callback
4084	 *       function.
4085	 */
4086	if (!node_state(node, N_NORMAL_MEMORY))
4087		tmp = -1;
4088	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4089	if (!pn)
4090		return 1;
4091
4092	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4093	if (!pn->lruvec_stat_cpu) {
4094		kfree(pn);
4095		return 1;
4096	}
 
 
 
 
4097
4098	lruvec_init(&pn->lruvec);
4099	pn->usage_in_excess = 0;
4100	pn->on_tree = false;
4101	pn->memcg = memcg;
4102
4103	memcg->nodeinfo[node] = pn;
4104	return 0;
 
 
 
 
4105}
4106
4107static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4108{
4109	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4110
4111	if (!pn)
4112		return;
4113
4114	free_percpu(pn->lruvec_stat_cpu);
 
4115	kfree(pn);
4116}
4117
4118static void __mem_cgroup_free(struct mem_cgroup *memcg)
4119{
4120	int node;
4121
 
 
4122	for_each_node(node)
4123		free_mem_cgroup_per_node_info(memcg, node);
4124	free_percpu(memcg->stat_cpu);
 
 
4125	kfree(memcg);
4126}
4127
4128static void mem_cgroup_free(struct mem_cgroup *memcg)
4129{
 
4130	memcg_wb_domain_exit(memcg);
4131	__mem_cgroup_free(memcg);
4132}
4133
4134static struct mem_cgroup *mem_cgroup_alloc(void)
4135{
 
4136	struct mem_cgroup *memcg;
4137	size_t size;
4138	int node;
4139
4140	size = sizeof(struct mem_cgroup);
4141	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4142
4143	memcg = kzalloc(size, GFP_KERNEL);
4144	if (!memcg)
4145		return NULL;
4146
4147	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4148				 1, MEM_CGROUP_ID_MAX,
4149				 GFP_KERNEL);
4150	if (memcg->id.id < 0)
4151		goto fail;
 
4152
4153	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4154	if (!memcg->stat_cpu)
 
4155		goto fail;
4156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4157	for_each_node(node)
4158		if (alloc_mem_cgroup_per_node_info(memcg, node))
4159			goto fail;
4160
4161	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4162		goto fail;
4163
4164	INIT_WORK(&memcg->high_work, high_work_func);
4165	memcg->last_scanned_node = MAX_NUMNODES;
4166	INIT_LIST_HEAD(&memcg->oom_notify);
4167	mutex_init(&memcg->thresholds_lock);
4168	spin_lock_init(&memcg->move_lock);
4169	vmpressure_init(&memcg->vmpressure);
4170	INIT_LIST_HEAD(&memcg->event_list);
4171	spin_lock_init(&memcg->event_list_lock);
 
4172	memcg->socket_pressure = jiffies;
4173#ifndef CONFIG_SLOB
4174	memcg->kmemcg_id = -1;
4175#endif
4176#ifdef CONFIG_CGROUP_WRITEBACK
4177	INIT_LIST_HEAD(&memcg->cgwb_list);
 
 
 
4178#endif
4179	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
 
 
 
 
 
4180	return memcg;
4181fail:
4182	if (memcg->id.id > 0)
4183		idr_remove(&mem_cgroup_idr, memcg->id.id);
4184	__mem_cgroup_free(memcg);
4185	return NULL;
4186}
4187
4188static struct cgroup_subsys_state * __ref
4189mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4190{
4191	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4192	struct mem_cgroup *memcg;
4193	long error = -ENOMEM;
4194
4195	memcg = mem_cgroup_alloc();
4196	if (!memcg)
4197		return ERR_PTR(error);
4198
4199	memcg->high = PAGE_COUNTER_MAX;
4200	memcg->soft_limit = PAGE_COUNTER_MAX;
 
 
 
 
 
 
 
4201	if (parent) {
4202		memcg->swappiness = mem_cgroup_swappiness(parent);
4203		memcg->oom_kill_disable = parent->oom_kill_disable;
4204	}
4205	if (parent && parent->use_hierarchy) {
4206		memcg->use_hierarchy = true;
4207		page_counter_init(&memcg->memory, &parent->memory);
4208		page_counter_init(&memcg->swap, &parent->swap);
4209		page_counter_init(&memcg->memsw, &parent->memsw);
4210		page_counter_init(&memcg->kmem, &parent->kmem);
4211		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4212	} else {
4213		page_counter_init(&memcg->memory, NULL);
4214		page_counter_init(&memcg->swap, NULL);
4215		page_counter_init(&memcg->memsw, NULL);
4216		page_counter_init(&memcg->kmem, NULL);
4217		page_counter_init(&memcg->tcpmem, NULL);
4218		/*
4219		 * Deeper hierachy with use_hierarchy == false doesn't make
4220		 * much sense so let cgroup subsystem know about this
4221		 * unfortunate state in our controller.
4222		 */
4223		if (parent != root_mem_cgroup)
4224			memory_cgrp_subsys.broken_hierarchy = true;
4225	}
4226
4227	/* The following stuff does not apply to the root */
4228	if (!parent) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4229		root_mem_cgroup = memcg;
4230		return &memcg->css;
4231	}
4232
4233	error = memcg_online_kmem(memcg);
4234	if (error)
4235		goto fail;
4236
4237	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4238		static_branch_inc(&memcg_sockets_enabled_key);
4239
 
 
 
4240	return &memcg->css;
4241fail:
4242	mem_cgroup_free(memcg);
4243	return ERR_PTR(-ENOMEM);
4244}
4245
4246static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4247{
4248	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4250	/* Online state pins memcg ID, memcg ID pins CSS */
4251	atomic_set(&memcg->id.ref, 1);
4252	css_get(css);
 
 
 
 
 
 
 
 
 
 
 
 
 
4253	return 0;
 
 
 
 
 
4254}
4255
4256static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4257{
4258	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259	struct mem_cgroup_event *event, *tmp;
4260
4261	/*
4262	 * Unregister events and notify userspace.
4263	 * Notify userspace about cgroup removing only after rmdir of cgroup
4264	 * directory to avoid race between userspace and kernelspace.
4265	 */
4266	spin_lock(&memcg->event_list_lock);
4267	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4268		list_del_init(&event->list);
4269		schedule_work(&event->remove);
4270	}
4271	spin_unlock(&memcg->event_list_lock);
4272
4273	memcg->low = 0;
 
 
 
4274
4275	memcg_offline_kmem(memcg);
 
4276	wb_memcg_offline(memcg);
 
 
 
4277
4278	mem_cgroup_id_put(memcg);
4279}
4280
4281static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4282{
4283	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284
4285	invalidate_reclaim_iterators(memcg);
 
4286}
4287
4288static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4289{
4290	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
4291
 
 
 
 
4292	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4293		static_branch_dec(&memcg_sockets_enabled_key);
4294
4295	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4296		static_branch_dec(&memcg_sockets_enabled_key);
4297
 
 
 
4298	vmpressure_cleanup(&memcg->vmpressure);
4299	cancel_work_sync(&memcg->high_work);
4300	mem_cgroup_remove_from_trees(memcg);
4301	memcg_free_kmem(memcg);
4302	mem_cgroup_free(memcg);
4303}
4304
4305/**
4306 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4307 * @css: the target css
4308 *
4309 * Reset the states of the mem_cgroup associated with @css.  This is
4310 * invoked when the userland requests disabling on the default hierarchy
4311 * but the memcg is pinned through dependency.  The memcg should stop
4312 * applying policies and should revert to the vanilla state as it may be
4313 * made visible again.
4314 *
4315 * The current implementation only resets the essential configurations.
4316 * This needs to be expanded to cover all the visible parts.
4317 */
4318static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4319{
4320	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4321
4322	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4323	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4324	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4325	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4326	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4327	memcg->low = 0;
4328	memcg->high = PAGE_COUNTER_MAX;
4329	memcg->soft_limit = PAGE_COUNTER_MAX;
 
 
 
4330	memcg_wb_domain_size_changed(memcg);
4331}
4332
4333#ifdef CONFIG_MMU
4334/* Handlers for move charge at task migration. */
4335static int mem_cgroup_do_precharge(unsigned long count)
4336{
4337	int ret;
4338
4339	/* Try a single bulk charge without reclaim first, kswapd may wake */
4340	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4341	if (!ret) {
4342		mc.precharge += count;
4343		return ret;
4344	}
4345
4346	/* Try charges one by one with reclaim, but do not retry */
4347	while (count--) {
4348		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4349		if (ret)
4350			return ret;
4351		mc.precharge++;
4352		cond_resched();
4353	}
4354	return 0;
4355}
4356
4357union mc_target {
4358	struct page	*page;
4359	swp_entry_t	ent;
4360};
4361
4362enum mc_target_type {
4363	MC_TARGET_NONE = 0,
4364	MC_TARGET_PAGE,
4365	MC_TARGET_SWAP,
4366	MC_TARGET_DEVICE,
4367};
4368
4369static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4370						unsigned long addr, pte_t ptent)
4371{
4372	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4373
4374	if (!page || !page_mapped(page))
4375		return NULL;
4376	if (PageAnon(page)) {
4377		if (!(mc.flags & MOVE_ANON))
4378			return NULL;
4379	} else {
4380		if (!(mc.flags & MOVE_FILE))
4381			return NULL;
4382	}
4383	if (!get_page_unless_zero(page))
4384		return NULL;
4385
4386	return page;
4387}
4388
4389#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4390static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4391			pte_t ptent, swp_entry_t *entry)
4392{
4393	struct page *page = NULL;
4394	swp_entry_t ent = pte_to_swp_entry(ptent);
4395
4396	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4397		return NULL;
4398
4399	/*
4400	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4401	 * a device and because they are not accessible by CPU they are store
4402	 * as special swap entry in the CPU page table.
4403	 */
4404	if (is_device_private_entry(ent)) {
4405		page = device_private_entry_to_page(ent);
4406		/*
4407		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4408		 * a refcount of 1 when free (unlike normal page)
 
4409		 */
4410		if (!page_ref_add_unless(page, 1, 1))
4411			return NULL;
4412		return page;
4413	}
4414
4415	/*
4416	 * Because lookup_swap_cache() updates some statistics counter,
4417	 * we call find_get_page() with swapper_space directly.
4418	 */
4419	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4420	if (do_memsw_account())
4421		entry->val = ent.val;
4422
4423	return page;
4424}
4425#else
4426static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4427			pte_t ptent, swp_entry_t *entry)
4428{
4429	return NULL;
4430}
4431#endif
4432
4433static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4434			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4435{
4436	struct page *page = NULL;
4437	struct address_space *mapping;
4438	pgoff_t pgoff;
4439
4440	if (!vma->vm_file) /* anonymous vma */
4441		return NULL;
4442	if (!(mc.flags & MOVE_FILE))
4443		return NULL;
4444
4445	mapping = vma->vm_file->f_mapping;
4446	pgoff = linear_page_index(vma, addr);
 
4447
4448	/* page is moved even if it's not RSS of this task(page-faulted). */
4449#ifdef CONFIG_SWAP
4450	/* shmem/tmpfs may report page out on swap: account for that too. */
4451	if (shmem_mapping(mapping)) {
4452		page = find_get_entry(mapping, pgoff);
4453		if (radix_tree_exceptional_entry(page)) {
4454			swp_entry_t swp = radix_to_swp_entry(page);
4455			if (do_memsw_account())
4456				*entry = swp;
4457			page = find_get_page(swap_address_space(swp),
4458					     swp_offset(swp));
4459		}
4460	} else
4461		page = find_get_page(mapping, pgoff);
4462#else
4463	page = find_get_page(mapping, pgoff);
4464#endif
4465	return page;
4466}
4467
4468/**
4469 * mem_cgroup_move_account - move account of the page
4470 * @page: the page
4471 * @compound: charge the page as compound or small page
4472 * @from: mem_cgroup which the page is moved from.
4473 * @to:	mem_cgroup which the page is moved to. @from != @to.
4474 *
4475 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4476 *
4477 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4478 * from old cgroup.
4479 */
4480static int mem_cgroup_move_account(struct page *page,
4481				   bool compound,
4482				   struct mem_cgroup *from,
4483				   struct mem_cgroup *to)
4484{
4485	unsigned long flags;
4486	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4487	int ret;
4488	bool anon;
4489
4490	VM_BUG_ON(from == to);
4491	VM_BUG_ON_PAGE(PageLRU(page), page);
4492	VM_BUG_ON(compound && !PageTransHuge(page));
4493
4494	/*
4495	 * Prevent mem_cgroup_migrate() from looking at
4496	 * page->mem_cgroup of its source page while we change it.
4497	 */
4498	ret = -EBUSY;
4499	if (!trylock_page(page))
4500		goto out;
4501
4502	ret = -EINVAL;
4503	if (page->mem_cgroup != from)
4504		goto out_unlock;
 
 
 
 
 
 
 
4505
4506	anon = PageAnon(page);
 
 
 
 
 
 
 
 
 
4507
4508	spin_lock_irqsave(&from->move_lock, flags);
 
 
 
 
4509
4510	if (!anon && page_mapped(page)) {
4511		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4512		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4513	}
4514
4515	/*
4516	 * move_lock grabbed above and caller set from->moving_account, so
4517	 * mod_memcg_page_state will serialize updates to PageDirty.
4518	 * So mapping should be stable for dirty pages.
4519	 */
4520	if (!anon && PageDirty(page)) {
4521		struct address_space *mapping = page_mapping(page);
4522
4523		if (mapping_cap_account_dirty(mapping)) {
4524			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4525			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4526		}
4527	}
 
 
 
 
 
4528
4529	if (PageWriteback(page)) {
4530		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4531		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4532	}
 
 
 
 
 
4533
 
 
4534	/*
4535	 * It is safe to change page->mem_cgroup here because the page
4536	 * is referenced, charged, and isolated - we can't race with
4537	 * uncharging, charging, migration, or LRU putback.
 
4538	 */
4539
4540	/* caller should have done css_get */
4541	page->mem_cgroup = to;
4542	spin_unlock_irqrestore(&from->move_lock, flags);
4543
4544	ret = 0;
4545
4546	local_irq_disable();
4547	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548	memcg_check_events(to, page);
4549	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550	memcg_check_events(from, page);
4551	local_irq_enable();
4552out_unlock:
4553	unlock_page(page);
4554out:
4555	return ret;
4556}
4557
4558/**
4559 * get_mctgt_type - get target type of moving charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 *
4565 * Returns
4566 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 *     move charge. if @target is not NULL, the page is stored in target->page
4569 *     with extra refcnt got(Callers should handle it).
4570 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 *     target for charge migration. if @target is not NULL, the entry is stored
4572 *     in target->ent.
4573 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4574 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4575 *     For now we such page is charge like a regular page would be as for all
4576 *     intent and purposes it is just special memory taking the place of a
4577 *     regular page.
4578 *
4579 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4580 *
4581 * Called with pte lock held.
4582 */
4583
4584static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4585		unsigned long addr, pte_t ptent, union mc_target *target)
4586{
4587	struct page *page = NULL;
4588	enum mc_target_type ret = MC_TARGET_NONE;
4589	swp_entry_t ent = { .val = 0 };
4590
4591	if (pte_present(ptent))
4592		page = mc_handle_present_pte(vma, addr, ptent);
4593	else if (is_swap_pte(ptent))
4594		page = mc_handle_swap_pte(vma, ptent, &ent);
4595	else if (pte_none(ptent))
4596		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4597
4598	if (!page && !ent.val)
4599		return ret;
4600	if (page) {
4601		/*
4602		 * Do only loose check w/o serialization.
4603		 * mem_cgroup_move_account() checks the page is valid or
4604		 * not under LRU exclusion.
4605		 */
4606		if (page->mem_cgroup == mc.from) {
4607			ret = MC_TARGET_PAGE;
4608			if (is_device_private_page(page) ||
4609			    is_device_public_page(page))
4610				ret = MC_TARGET_DEVICE;
4611			if (target)
4612				target->page = page;
4613		}
4614		if (!ret || !target)
4615			put_page(page);
4616	}
4617	/*
4618	 * There is a swap entry and a page doesn't exist or isn't charged.
4619	 * But we cannot move a tail-page in a THP.
 
 
4620	 */
4621	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4622	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4623		ret = MC_TARGET_SWAP;
4624		if (target)
4625			target->ent = ent;
4626	}
4627	return ret;
4628}
4629
4630#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4631/*
4632 * We don't consider PMD mapped swapping or file mapped pages because THP does
4633 * not support them for now.
4634 * Caller should make sure that pmd_trans_huge(pmd) is true.
4635 */
4636static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4637		unsigned long addr, pmd_t pmd, union mc_target *target)
4638{
4639	struct page *page = NULL;
4640	enum mc_target_type ret = MC_TARGET_NONE;
4641
4642	if (unlikely(is_swap_pmd(pmd))) {
4643		VM_BUG_ON(thp_migration_supported() &&
4644				  !is_pmd_migration_entry(pmd));
4645		return ret;
4646	}
4647	page = pmd_page(pmd);
4648	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4649	if (!(mc.flags & MOVE_ANON))
4650		return ret;
4651	if (page->mem_cgroup == mc.from) {
4652		ret = MC_TARGET_PAGE;
4653		if (target) {
4654			get_page(page);
4655			target->page = page;
4656		}
4657	}
4658	return ret;
4659}
4660#else
4661static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4662		unsigned long addr, pmd_t pmd, union mc_target *target)
4663{
4664	return MC_TARGET_NONE;
4665}
4666#endif
4667
4668static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4669					unsigned long addr, unsigned long end,
4670					struct mm_walk *walk)
4671{
4672	struct vm_area_struct *vma = walk->vma;
4673	pte_t *pte;
4674	spinlock_t *ptl;
4675
4676	ptl = pmd_trans_huge_lock(pmd, vma);
4677	if (ptl) {
4678		/*
4679		 * Note their can not be MC_TARGET_DEVICE for now as we do not
4680		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4681		 * MEMORY_DEVICE_PRIVATE but this might change.
4682		 */
4683		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684			mc.precharge += HPAGE_PMD_NR;
4685		spin_unlock(ptl);
4686		return 0;
4687	}
4688
4689	if (pmd_trans_unstable(pmd))
4690		return 0;
4691	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692	for (; addr != end; pte++, addr += PAGE_SIZE)
4693		if (get_mctgt_type(vma, addr, *pte, NULL))
4694			mc.precharge++;	/* increment precharge temporarily */
4695	pte_unmap_unlock(pte - 1, ptl);
4696	cond_resched();
4697
4698	return 0;
 
 
 
4699}
 
 
 
4700
4701static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702{
4703	unsigned long precharge;
4704
4705	struct mm_walk mem_cgroup_count_precharge_walk = {
4706		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4707		.mm = mm,
4708	};
4709	down_read(&mm->mmap_sem);
4710	walk_page_range(0, mm->highest_vm_end,
4711			&mem_cgroup_count_precharge_walk);
4712	up_read(&mm->mmap_sem);
4713
4714	precharge = mc.precharge;
4715	mc.precharge = 0;
 
 
 
4716
4717	return precharge;
 
 
 
4718}
4719
4720static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4721{
4722	unsigned long precharge = mem_cgroup_count_precharge(mm);
 
 
 
4723
4724	VM_BUG_ON(mc.moving_task);
4725	mc.moving_task = current;
4726	return mem_cgroup_do_precharge(precharge);
4727}
4728
4729/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4730static void __mem_cgroup_clear_mc(void)
4731{
4732	struct mem_cgroup *from = mc.from;
4733	struct mem_cgroup *to = mc.to;
4734
4735	/* we must uncharge all the leftover precharges from mc.to */
4736	if (mc.precharge) {
4737		cancel_charge(mc.to, mc.precharge);
4738		mc.precharge = 0;
4739	}
4740	/*
4741	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4742	 * we must uncharge here.
4743	 */
4744	if (mc.moved_charge) {
4745		cancel_charge(mc.from, mc.moved_charge);
4746		mc.moved_charge = 0;
4747	}
4748	/* we must fixup refcnts and charges */
4749	if (mc.moved_swap) {
4750		/* uncharge swap account from the old cgroup */
4751		if (!mem_cgroup_is_root(mc.from))
4752			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4753
4754		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4755
4756		/*
4757		 * we charged both to->memory and to->memsw, so we
4758		 * should uncharge to->memory.
4759		 */
4760		if (!mem_cgroup_is_root(mc.to))
4761			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4762
4763		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4764		css_put_many(&mc.to->css, mc.moved_swap);
 
 
 
4765
4766		mc.moved_swap = 0;
4767	}
4768	memcg_oom_recover(from);
4769	memcg_oom_recover(to);
4770	wake_up_all(&mc.waitq);
4771}
4772
4773static void mem_cgroup_clear_mc(void)
4774{
4775	struct mm_struct *mm = mc.mm;
4776
4777	/*
4778	 * we must clear moving_task before waking up waiters at the end of
4779	 * task migration.
4780	 */
4781	mc.moving_task = NULL;
4782	__mem_cgroup_clear_mc();
4783	spin_lock(&mc.lock);
4784	mc.from = NULL;
4785	mc.to = NULL;
4786	mc.mm = NULL;
4787	spin_unlock(&mc.lock);
4788
4789	mmput(mm);
4790}
4791
4792static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4793{
4794	struct cgroup_subsys_state *css;
4795	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4796	struct mem_cgroup *from;
4797	struct task_struct *leader, *p;
4798	struct mm_struct *mm;
4799	unsigned long move_flags;
4800	int ret = 0;
4801
4802	/* charge immigration isn't supported on the default hierarchy */
4803	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4804		return 0;
4805
4806	/*
4807	 * Multi-process migrations only happen on the default hierarchy
4808	 * where charge immigration is not used.  Perform charge
4809	 * immigration if @tset contains a leader and whine if there are
4810	 * multiple.
4811	 */
4812	p = NULL;
4813	cgroup_taskset_for_each_leader(leader, css, tset) {
4814		WARN_ON_ONCE(p);
4815		p = leader;
4816		memcg = mem_cgroup_from_css(css);
4817	}
4818	if (!p)
4819		return 0;
4820
4821	/*
4822	 * We are now commited to this value whatever it is. Changes in this
4823	 * tunable will only affect upcoming migrations, not the current one.
4824	 * So we need to save it, and keep it going.
4825	 */
4826	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4827	if (!move_flags)
4828		return 0;
4829
4830	from = mem_cgroup_from_task(p);
4831
4832	VM_BUG_ON(from == memcg);
4833
4834	mm = get_task_mm(p);
4835	if (!mm)
4836		return 0;
4837	/* We move charges only when we move a owner of the mm */
4838	if (mm->owner == p) {
4839		VM_BUG_ON(mc.from);
4840		VM_BUG_ON(mc.to);
4841		VM_BUG_ON(mc.precharge);
4842		VM_BUG_ON(mc.moved_charge);
4843		VM_BUG_ON(mc.moved_swap);
4844
4845		spin_lock(&mc.lock);
4846		mc.mm = mm;
4847		mc.from = from;
4848		mc.to = memcg;
4849		mc.flags = move_flags;
4850		spin_unlock(&mc.lock);
4851		/* We set mc.moving_task later */
4852
4853		ret = mem_cgroup_precharge_mc(mm);
4854		if (ret)
4855			mem_cgroup_clear_mc();
4856	} else {
4857		mmput(mm);
4858	}
4859	return ret;
 
 
4860}
4861
4862static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
 
 
4863{
4864	if (mc.to)
4865		mem_cgroup_clear_mc();
4866}
 
4867
4868static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4869				unsigned long addr, unsigned long end,
4870				struct mm_walk *walk)
4871{
4872	int ret = 0;
4873	struct vm_area_struct *vma = walk->vma;
4874	pte_t *pte;
4875	spinlock_t *ptl;
4876	enum mc_target_type target_type;
4877	union mc_target target;
4878	struct page *page;
4879
4880	ptl = pmd_trans_huge_lock(pmd, vma);
4881	if (ptl) {
4882		if (mc.precharge < HPAGE_PMD_NR) {
4883			spin_unlock(ptl);
4884			return 0;
4885		}
4886		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4887		if (target_type == MC_TARGET_PAGE) {
4888			page = target.page;
4889			if (!isolate_lru_page(page)) {
4890				if (!mem_cgroup_move_account(page, true,
4891							     mc.from, mc.to)) {
4892					mc.precharge -= HPAGE_PMD_NR;
4893					mc.moved_charge += HPAGE_PMD_NR;
4894				}
4895				putback_lru_page(page);
4896			}
4897			put_page(page);
4898		} else if (target_type == MC_TARGET_DEVICE) {
4899			page = target.page;
4900			if (!mem_cgroup_move_account(page, true,
4901						     mc.from, mc.to)) {
4902				mc.precharge -= HPAGE_PMD_NR;
4903				mc.moved_charge += HPAGE_PMD_NR;
4904			}
4905			put_page(page);
4906		}
4907		spin_unlock(ptl);
4908		return 0;
4909	}
4910
4911	if (pmd_trans_unstable(pmd))
4912		return 0;
4913retry:
4914	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4915	for (; addr != end; addr += PAGE_SIZE) {
4916		pte_t ptent = *(pte++);
4917		bool device = false;
4918		swp_entry_t ent;
4919
4920		if (!mc.precharge)
4921			break;
 
4922
4923		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4924		case MC_TARGET_DEVICE:
4925			device = true;
4926			/* fall through */
4927		case MC_TARGET_PAGE:
4928			page = target.page;
4929			/*
4930			 * We can have a part of the split pmd here. Moving it
4931			 * can be done but it would be too convoluted so simply
4932			 * ignore such a partial THP and keep it in original
4933			 * memcg. There should be somebody mapping the head.
4934			 */
4935			if (PageTransCompound(page))
4936				goto put;
4937			if (!device && isolate_lru_page(page))
4938				goto put;
4939			if (!mem_cgroup_move_account(page, false,
4940						mc.from, mc.to)) {
4941				mc.precharge--;
4942				/* we uncharge from mc.from later. */
4943				mc.moved_charge++;
4944			}
4945			if (!device)
4946				putback_lru_page(page);
4947put:			/* get_mctgt_type() gets the page */
4948			put_page(page);
4949			break;
4950		case MC_TARGET_SWAP:
4951			ent = target.ent;
4952			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4953				mc.precharge--;
4954				/* we fixup refcnts and charges later. */
4955				mc.moved_swap++;
4956			}
4957			break;
4958		default:
4959			break;
4960		}
4961	}
4962	pte_unmap_unlock(pte - 1, ptl);
4963	cond_resched();
4964
4965	if (addr != end) {
4966		/*
4967		 * We have consumed all precharges we got in can_attach().
4968		 * We try charge one by one, but don't do any additional
4969		 * charges to mc.to if we have failed in charge once in attach()
4970		 * phase.
4971		 */
4972		ret = mem_cgroup_do_precharge(1);
4973		if (!ret)
4974			goto retry;
4975	}
4976
4977	return ret;
4978}
4979
4980static void mem_cgroup_move_charge(void)
 
4981{
4982	struct mm_walk mem_cgroup_move_charge_walk = {
4983		.pmd_entry = mem_cgroup_move_charge_pte_range,
4984		.mm = mc.mm,
4985	};
4986
4987	lru_add_drain_all();
4988	/*
4989	 * Signal lock_page_memcg() to take the memcg's move_lock
4990	 * while we're moving its pages to another memcg. Then wait
4991	 * for already started RCU-only updates to finish.
4992	 */
4993	atomic_inc(&mc.from->moving_account);
4994	synchronize_rcu();
4995retry:
4996	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4997		/*
4998		 * Someone who are holding the mmap_sem might be waiting in
4999		 * waitq. So we cancel all extra charges, wake up all waiters,
5000		 * and retry. Because we cancel precharges, we might not be able
5001		 * to move enough charges, but moving charge is a best-effort
5002		 * feature anyway, so it wouldn't be a big problem.
5003		 */
5004		__mem_cgroup_clear_mc();
5005		cond_resched();
5006		goto retry;
5007	}
5008	/*
5009	 * When we have consumed all precharges and failed in doing
5010	 * additional charge, the page walk just aborts.
5011	 */
5012	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5013
5014	up_read(&mc.mm->mmap_sem);
5015	atomic_dec(&mc.from->moving_account);
5016}
5017
5018static void mem_cgroup_move_task(void)
5019{
5020	if (mc.to) {
5021		mem_cgroup_move_charge();
5022		mem_cgroup_clear_mc();
5023	}
5024}
5025#else	/* !CONFIG_MMU */
5026static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5027{
5028	return 0;
5029}
5030static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5031{
5032}
5033static void mem_cgroup_move_task(void)
5034{
5035}
5036#endif
5037
5038/*
5039 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5040 * to verify whether we're attached to the default hierarchy on each mount
5041 * attempt.
5042 */
5043static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5044{
5045	/*
5046	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5047	 * guarantees that @root doesn't have any children, so turning it
5048	 * on for the root memcg is enough.
5049	 */
5050	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5051		root_mem_cgroup->use_hierarchy = true;
5052	else
5053		root_mem_cgroup->use_hierarchy = false;
5054}
5055
5056static u64 memory_current_read(struct cgroup_subsys_state *css,
5057			       struct cftype *cft)
5058{
5059	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
 
5060
5061	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
 
 
 
 
 
 
 
5062}
5063
5064static int memory_low_show(struct seq_file *m, void *v)
5065{
5066	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5067	unsigned long low = READ_ONCE(memcg->low);
5068
5069	if (low == PAGE_COUNTER_MAX)
5070		seq_puts(m, "max\n");
5071	else
5072		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5073
5074	return 0;
5075}
5076
5077static ssize_t memory_low_write(struct kernfs_open_file *of,
5078				char *buf, size_t nbytes, loff_t off)
5079{
5080	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5081	unsigned long low;
5082	int err;
5083
5084	buf = strstrip(buf);
5085	err = page_counter_memparse(buf, "max", &low);
5086	if (err)
5087		return err;
5088
5089	memcg->low = low;
5090
5091	return nbytes;
5092}
5093
5094static int memory_high_show(struct seq_file *m, void *v)
5095{
5096	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097	unsigned long high = READ_ONCE(memcg->high);
5098
5099	if (high == PAGE_COUNTER_MAX)
5100		seq_puts(m, "max\n");
5101	else
5102		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5103
5104	return 0;
5105}
5106
5107static ssize_t memory_high_write(struct kernfs_open_file *of,
5108				 char *buf, size_t nbytes, loff_t off)
5109{
5110	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5111	unsigned long nr_pages;
 
5112	unsigned long high;
5113	int err;
5114
5115	buf = strstrip(buf);
5116	err = page_counter_memparse(buf, "max", &high);
5117	if (err)
5118		return err;
5119
5120	memcg->high = high;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5121
5122	nr_pages = page_counter_read(&memcg->memory);
5123	if (nr_pages > high)
5124		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5125					     GFP_KERNEL, true);
 
 
5126
5127	memcg_wb_domain_size_changed(memcg);
5128	return nbytes;
5129}
5130
5131static int memory_max_show(struct seq_file *m, void *v)
5132{
5133	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5134	unsigned long max = READ_ONCE(memcg->memory.limit);
5135
5136	if (max == PAGE_COUNTER_MAX)
5137		seq_puts(m, "max\n");
5138	else
5139		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5140
5141	return 0;
5142}
5143
5144static ssize_t memory_max_write(struct kernfs_open_file *of,
5145				char *buf, size_t nbytes, loff_t off)
5146{
5147	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5148	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5149	bool drained = false;
5150	unsigned long max;
5151	int err;
5152
5153	buf = strstrip(buf);
5154	err = page_counter_memparse(buf, "max", &max);
5155	if (err)
5156		return err;
5157
5158	xchg(&memcg->memory.limit, max);
5159
5160	for (;;) {
5161		unsigned long nr_pages = page_counter_read(&memcg->memory);
5162
5163		if (nr_pages <= max)
5164			break;
5165
5166		if (signal_pending(current)) {
5167			err = -EINTR;
5168			break;
5169		}
5170
5171		if (!drained) {
5172			drain_all_stock(memcg);
5173			drained = true;
5174			continue;
5175		}
5176
5177		if (nr_reclaims) {
5178			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5179							  GFP_KERNEL, true))
5180				nr_reclaims--;
5181			continue;
5182		}
5183
5184		memcg_memory_event(memcg, MEMCG_OOM);
5185		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5186			break;
5187	}
5188
5189	memcg_wb_domain_size_changed(memcg);
5190	return nbytes;
5191}
5192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5193static int memory_events_show(struct seq_file *m, void *v)
5194{
5195	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5196
5197	seq_printf(m, "low %lu\n",
5198		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5199	seq_printf(m, "high %lu\n",
5200		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5201	seq_printf(m, "max %lu\n",
5202		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5203	seq_printf(m, "oom %lu\n",
5204		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5205	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5207	return 0;
5208}
5209
5210static int memory_stat_show(struct seq_file *m, void *v)
 
 
 
 
 
 
 
 
5211{
5212	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5213	unsigned long stat[MEMCG_NR_STAT];
5214	unsigned long events[NR_VM_EVENT_ITEMS];
5215	int i;
 
5216
5217	/*
5218	 * Provide statistics on the state of the memory subsystem as
5219	 * well as cumulative event counters that show past behavior.
5220	 *
5221	 * This list is ordered following a combination of these gradients:
5222	 * 1) generic big picture -> specifics and details
5223	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5224	 *
5225	 * Current memory state:
5226	 */
5227
5228	tree_stat(memcg, stat);
5229	tree_events(memcg, events);
5230
5231	seq_printf(m, "anon %llu\n",
5232		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5233	seq_printf(m, "file %llu\n",
5234		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5235	seq_printf(m, "kernel_stack %llu\n",
5236		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5237	seq_printf(m, "slab %llu\n",
5238		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
5239			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5240	seq_printf(m, "sock %llu\n",
5241		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5242
5243	seq_printf(m, "shmem %llu\n",
5244		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5245	seq_printf(m, "file_mapped %llu\n",
5246		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5247	seq_printf(m, "file_dirty %llu\n",
5248		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5249	seq_printf(m, "file_writeback %llu\n",
5250		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5251
5252	for (i = 0; i < NR_LRU_LISTS; i++) {
5253		struct mem_cgroup *mi;
5254		unsigned long val = 0;
5255
5256		for_each_mem_cgroup_tree(mi, memcg)
5257			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5258		seq_printf(m, "%s %llu\n",
5259			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5260	}
5261
5262	seq_printf(m, "slab_reclaimable %llu\n",
5263		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5264	seq_printf(m, "slab_unreclaimable %llu\n",
5265		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5266
5267	/* Accumulated memory events */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5268
5269	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5270	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
 
5271
5272	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5273	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5274		   events[PGSCAN_DIRECT]);
5275	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5276		   events[PGSTEAL_DIRECT]);
5277	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5278	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5279	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5280	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5281
5282	seq_printf(m, "workingset_refault %lu\n",
5283		   stat[WORKINGSET_REFAULT]);
5284	seq_printf(m, "workingset_activate %lu\n",
5285		   stat[WORKINGSET_ACTIVATE]);
5286	seq_printf(m, "workingset_nodereclaim %lu\n",
5287		   stat[WORKINGSET_NODERECLAIM]);
5288
5289	return 0;
5290}
5291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5292static struct cftype memory_files[] = {
5293	{
5294		.name = "current",
5295		.flags = CFTYPE_NOT_ON_ROOT,
5296		.read_u64 = memory_current_read,
5297	},
5298	{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5299		.name = "low",
5300		.flags = CFTYPE_NOT_ON_ROOT,
5301		.seq_show = memory_low_show,
5302		.write = memory_low_write,
5303	},
5304	{
5305		.name = "high",
5306		.flags = CFTYPE_NOT_ON_ROOT,
5307		.seq_show = memory_high_show,
5308		.write = memory_high_write,
5309	},
5310	{
5311		.name = "max",
5312		.flags = CFTYPE_NOT_ON_ROOT,
5313		.seq_show = memory_max_show,
5314		.write = memory_max_write,
5315	},
5316	{
5317		.name = "events",
5318		.flags = CFTYPE_NOT_ON_ROOT,
5319		.file_offset = offsetof(struct mem_cgroup, events_file),
5320		.seq_show = memory_events_show,
5321	},
5322	{
5323		.name = "stat",
5324		.flags = CFTYPE_NOT_ON_ROOT,
 
 
 
 
 
5325		.seq_show = memory_stat_show,
5326	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5327	{ }	/* terminate */
5328};
5329
5330struct cgroup_subsys memory_cgrp_subsys = {
5331	.css_alloc = mem_cgroup_css_alloc,
5332	.css_online = mem_cgroup_css_online,
5333	.css_offline = mem_cgroup_css_offline,
5334	.css_released = mem_cgroup_css_released,
5335	.css_free = mem_cgroup_css_free,
5336	.css_reset = mem_cgroup_css_reset,
5337	.can_attach = mem_cgroup_can_attach,
5338	.cancel_attach = mem_cgroup_cancel_attach,
5339	.post_attach = mem_cgroup_move_task,
5340	.bind = mem_cgroup_bind,
5341	.dfl_cftypes = memory_files,
 
5342	.legacy_cftypes = mem_cgroup_legacy_files,
 
5343	.early_init = 0,
5344};
5345
5346/**
5347 * mem_cgroup_low - check if memory consumption is below the normal range
5348 * @root: the top ancestor of the sub-tree being checked
5349 * @memcg: the memory cgroup to check
5350 *
5351 * Returns %true if memory consumption of @memcg, and that of all
5352 * ancestors up to (but not including) @root, is below the normal range.
5353 *
5354 * @root is exclusive; it is never low when looked at directly and isn't
5355 * checked when traversing the hierarchy.
5356 *
5357 * Excluding @root enables using memory.low to prioritize memory usage
5358 * between cgroups within a subtree of the hierarchy that is limited by
5359 * memory.high or memory.max.
5360 *
5361 * For example, given cgroup A with children B and C:
5362 *
5363 *    A
5364 *   / \
5365 *  B   C
5366 *
5367 * and
5368 *
5369 *  1. A/memory.current > A/memory.high
5370 *  2. A/B/memory.current < A/B/memory.low
5371 *  3. A/C/memory.current >= A/C/memory.low
5372 *
5373 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5374 * should reclaim from 'C' until 'A' is no longer high or until we can
5375 * no longer reclaim from 'C'.  If 'A', i.e. @root, isn't excluded by
5376 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5377 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5378 */
5379bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
 
5380{
 
 
 
5381	if (mem_cgroup_disabled())
5382		return false;
5383
5384	if (!root)
5385		root = root_mem_cgroup;
5386	if (memcg == root)
5387		return false;
5388
5389	for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5390		if (page_counter_read(&memcg->memory) >= memcg->low)
5391			return false;
5392	}
5393
5394	return true;
5395}
5396
5397/**
5398 * mem_cgroup_try_charge - try charging a page
5399 * @page: page to charge
5400 * @mm: mm context of the victim
5401 * @gfp_mask: reclaim mode
5402 * @memcgp: charged memcg return
5403 * @compound: charge the page as compound or small page
5404 *
5405 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5406 * pages according to @gfp_mask if necessary.
5407 *
5408 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5409 * Otherwise, an error code is returned.
5410 *
5411 * After page->mapping has been set up, the caller must finalize the
5412 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5413 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5414 */
5415int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5416			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5417			  bool compound)
5418{
5419	struct mem_cgroup *memcg = NULL;
5420	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5421	int ret = 0;
5422
5423	if (mem_cgroup_disabled())
 
5424		goto out;
5425
5426	if (PageSwapCache(page)) {
5427		/*
5428		 * Every swap fault against a single page tries to charge the
5429		 * page, bail as early as possible.  shmem_unuse() encounters
5430		 * already charged pages, too.  The USED bit is protected by
5431		 * the page lock, which serializes swap cache removal, which
5432		 * in turn serializes uncharging.
5433		 */
5434		VM_BUG_ON_PAGE(!PageLocked(page), page);
5435		if (compound_head(page)->mem_cgroup)
5436			goto out;
5437
5438		if (do_swap_account) {
5439			swp_entry_t ent = { .val = page_private(page), };
5440			unsigned short id = lookup_swap_cgroup_id(ent);
5441
5442			rcu_read_lock();
5443			memcg = mem_cgroup_from_id(id);
5444			if (memcg && !css_tryget_online(&memcg->css))
5445				memcg = NULL;
5446			rcu_read_unlock();
5447		}
5448	}
5449
5450	if (!memcg)
5451		memcg = get_mem_cgroup_from_mm(mm);
5452
5453	ret = try_charge(memcg, gfp_mask, nr_pages);
 
 
 
5454
 
 
5455	css_put(&memcg->css);
5456out:
5457	*memcgp = memcg;
5458	return ret;
5459}
5460
5461/**
5462 * mem_cgroup_commit_charge - commit a page charge
5463 * @page: page to charge
5464 * @memcg: memcg to charge the page to
5465 * @lrucare: page might be on LRU already
5466 * @compound: charge the page as compound or small page
5467 *
5468 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5469 * after page->mapping has been set up.  This must happen atomically
5470 * as part of the page instantiation, i.e. under the page table lock
5471 * for anonymous pages, under the page lock for page and swap cache.
5472 *
5473 * In addition, the page must not be on the LRU during the commit, to
5474 * prevent racing with task migration.  If it might be, use @lrucare.
 
 
5475 *
5476 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5477 */
5478void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5479			      bool lrucare, bool compound)
5480{
5481	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5482
5483	VM_BUG_ON_PAGE(!page->mapping, page);
5484	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5485
5486	if (mem_cgroup_disabled())
5487		return;
5488	/*
5489	 * Swap faults will attempt to charge the same page multiple
5490	 * times.  But reuse_swap_page() might have removed the page
5491	 * from swapcache already, so we can't check PageSwapCache().
5492	 */
5493	if (!memcg)
5494		return;
5495
5496	commit_charge(page, memcg, lrucare);
5497
5498	local_irq_disable();
5499	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5500	memcg_check_events(memcg, page);
5501	local_irq_enable();
5502
5503	if (do_memsw_account() && PageSwapCache(page)) {
5504		swp_entry_t entry = { .val = page_private(page) };
5505		/*
5506		 * The swap entry might not get freed for a long time,
5507		 * let's not wait for it.  The page already received a
5508		 * memory+swap charge, drop the swap entry duplicate.
5509		 */
5510		mem_cgroup_uncharge_swap(entry, nr_pages);
5511	}
5512}
5513
5514/**
5515 * mem_cgroup_cancel_charge - cancel a page charge
5516 * @page: page to charge
5517 * @memcg: memcg to charge the page to
5518 * @compound: charge the page as compound or small page
 
5519 *
5520 * Cancel a charge transaction started by mem_cgroup_try_charge().
 
 
 
5521 */
5522void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5523		bool compound)
5524{
5525	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
 
 
5526
5527	if (mem_cgroup_disabled())
5528		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5529	/*
5530	 * Swap faults will attempt to charge the same page multiple
5531	 * times.  But reuse_swap_page() might have removed the page
5532	 * from swapcache already, so we can't check PageSwapCache().
 
 
 
 
 
 
 
5533	 */
5534	if (!memcg)
5535		return;
5536
5537	cancel_charge(memcg, nr_pages);
 
 
 
 
5538}
5539
5540struct uncharge_gather {
5541	struct mem_cgroup *memcg;
 
5542	unsigned long pgpgout;
5543	unsigned long nr_anon;
5544	unsigned long nr_file;
5545	unsigned long nr_kmem;
5546	unsigned long nr_huge;
5547	unsigned long nr_shmem;
5548	struct page *dummy_page;
5549};
5550
5551static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5552{
5553	memset(ug, 0, sizeof(*ug));
5554}
5555
5556static void uncharge_batch(const struct uncharge_gather *ug)
5557{
5558	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5559	unsigned long flags;
5560
5561	if (!mem_cgroup_is_root(ug->memcg)) {
5562		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5563		if (do_memsw_account())
5564			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5565		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5566			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5567		memcg_oom_recover(ug->memcg);
 
 
5568	}
5569
5570	local_irq_save(flags);
5571	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5572	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5573	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5574	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5575	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5576	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5577	memcg_check_events(ug->memcg, ug->dummy_page);
5578	local_irq_restore(flags);
5579
5580	if (!mem_cgroup_is_root(ug->memcg))
5581		css_put_many(&ug->memcg->css, nr_pages);
5582}
5583
5584static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5585{
5586	VM_BUG_ON_PAGE(PageLRU(page), page);
5587	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5588			!PageHWPoison(page) , page);
5589
5590	if (!page->mem_cgroup)
5591		return;
5592
5593	/*
5594	 * Nobody should be changing or seriously looking at
5595	 * page->mem_cgroup at this point, we have fully
5596	 * exclusive access to the page.
5597	 */
 
 
 
 
 
 
 
 
 
 
5598
5599	if (ug->memcg != page->mem_cgroup) {
 
 
 
5600		if (ug->memcg) {
5601			uncharge_batch(ug);
5602			uncharge_gather_clear(ug);
5603		}
5604		ug->memcg = page->mem_cgroup;
 
 
 
 
5605	}
5606
5607	if (!PageKmemcg(page)) {
5608		unsigned int nr_pages = 1;
5609
5610		if (PageTransHuge(page)) {
5611			nr_pages <<= compound_order(page);
5612			ug->nr_huge += nr_pages;
5613		}
5614		if (PageAnon(page))
5615			ug->nr_anon += nr_pages;
5616		else {
5617			ug->nr_file += nr_pages;
5618			if (PageSwapBacked(page))
5619				ug->nr_shmem += nr_pages;
5620		}
5621		ug->pgpgout++;
5622	} else {
5623		ug->nr_kmem += 1 << compound_order(page);
5624		__ClearPageKmemcg(page);
 
 
 
 
 
5625	}
5626
5627	ug->dummy_page = page;
5628	page->mem_cgroup = NULL;
5629}
5630
5631static void uncharge_list(struct list_head *page_list)
5632{
5633	struct uncharge_gather ug;
5634	struct list_head *next;
5635
5636	uncharge_gather_clear(&ug);
5637
5638	/*
5639	 * Note that the list can be a single page->lru; hence the
5640	 * do-while loop instead of a simple list_for_each_entry().
5641	 */
5642	next = page_list->next;
5643	do {
5644		struct page *page;
5645
5646		page = list_entry(next, struct page, lru);
5647		next = page->lru.next;
 
 
5648
5649		uncharge_page(page, &ug);
5650	} while (next != page_list);
 
 
5651
 
 
 
5652	if (ug.memcg)
5653		uncharge_batch(&ug);
5654}
5655
5656/**
5657 * mem_cgroup_uncharge - uncharge a page
5658 * @page: page to uncharge
 
 
 
 
5659 *
5660 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5661 * mem_cgroup_commit_charge().
5662 */
5663void mem_cgroup_uncharge(struct page *page)
5664{
5665	struct uncharge_gather ug;
 
 
 
 
 
 
5666
5667	if (mem_cgroup_disabled())
5668		return;
5669
5670	/* Don't touch page->lru of any random page, pre-check: */
5671	if (!page->mem_cgroup)
5672		return;
5673
5674	uncharge_gather_clear(&ug);
5675	uncharge_page(page, &ug);
5676	uncharge_batch(&ug);
5677}
5678
5679/**
5680 * mem_cgroup_uncharge_list - uncharge a list of page
5681 * @page_list: list of pages to uncharge
5682 *
5683 * Uncharge a list of pages previously charged with
5684 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5685 */
5686void mem_cgroup_uncharge_list(struct list_head *page_list)
5687{
5688	if (mem_cgroup_disabled())
5689		return;
5690
5691	if (!list_empty(page_list))
5692		uncharge_list(page_list);
 
 
 
 
 
 
 
 
5693}
5694
5695/**
5696 * mem_cgroup_migrate - charge a page's replacement
5697 * @oldpage: currently circulating page
5698 * @newpage: replacement page
5699 *
5700 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5701 * be uncharged upon free.
 
5702 *
5703 * Both pages must be locked, @newpage->mapping must be set up.
5704 */
5705void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5706{
5707	struct mem_cgroup *memcg;
5708	unsigned int nr_pages;
5709	bool compound;
5710	unsigned long flags;
5711
5712	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5713	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5714	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5715	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5716		       newpage);
5717
5718	if (mem_cgroup_disabled())
5719		return;
5720
5721	/* Page cache replacement: new page already charged? */
5722	if (newpage->mem_cgroup)
5723		return;
5724
5725	/* Swapcache readahead pages can get replaced before being charged */
5726	memcg = oldpage->mem_cgroup;
 
5727	if (!memcg)
5728		return;
5729
5730	/* Force-charge the new page. The old one will be freed soon */
5731	compound = PageTransHuge(newpage);
5732	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5733
5734	page_counter_charge(&memcg->memory, nr_pages);
5735	if (do_memsw_account())
5736		page_counter_charge(&memcg->memsw, nr_pages);
5737	css_get_many(&memcg->css, nr_pages);
5738
5739	commit_charge(newpage, memcg, false);
5740
5741	local_irq_save(flags);
5742	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5743	memcg_check_events(memcg, newpage);
5744	local_irq_restore(flags);
5745}
5746
5747DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5748EXPORT_SYMBOL(memcg_sockets_enabled_key);
5749
5750void mem_cgroup_sk_alloc(struct sock *sk)
5751{
5752	struct mem_cgroup *memcg;
5753
5754	if (!mem_cgroup_sockets_enabled)
5755		return;
5756
5757	/*
5758	 * Socket cloning can throw us here with sk_memcg already
5759	 * filled. It won't however, necessarily happen from
5760	 * process context. So the test for root memcg given
5761	 * the current task's memcg won't help us in this case.
5762	 *
5763	 * Respecting the original socket's memcg is a better
5764	 * decision in this case.
5765	 */
5766	if (sk->sk_memcg) {
5767		css_get(&sk->sk_memcg->css);
5768		return;
5769	}
5770
5771	rcu_read_lock();
5772	memcg = mem_cgroup_from_task(current);
5773	if (memcg == root_mem_cgroup)
5774		goto out;
5775	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5776		goto out;
5777	if (css_tryget_online(&memcg->css))
5778		sk->sk_memcg = memcg;
5779out:
5780	rcu_read_unlock();
5781}
5782
5783void mem_cgroup_sk_free(struct sock *sk)
5784{
5785	if (sk->sk_memcg)
5786		css_put(&sk->sk_memcg->css);
5787}
5788
5789/**
5790 * mem_cgroup_charge_skmem - charge socket memory
5791 * @memcg: memcg to charge
5792 * @nr_pages: number of pages to charge
 
5793 *
5794 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5795 * @memcg's configured limit, %false if the charge had to be forced.
5796 */
5797bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
 
5798{
5799	gfp_t gfp_mask = GFP_KERNEL;
5800
5801	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5802		struct page_counter *fail;
5803
5804		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5805			memcg->tcpmem_pressure = 0;
5806			return true;
5807		}
5808		page_counter_charge(&memcg->tcpmem, nr_pages);
5809		memcg->tcpmem_pressure = 1;
5810		return false;
5811	}
5812
5813	/* Don't block in the packet receive path */
5814	if (in_softirq())
5815		gfp_mask = GFP_NOWAIT;
5816
5817	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5818
5819	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
 
5820		return true;
 
5821
5822	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5823	return false;
5824}
5825
5826/**
5827 * mem_cgroup_uncharge_skmem - uncharge socket memory
5828 * @memcg: memcg to uncharge
5829 * @nr_pages: number of pages to uncharge
5830 */
5831void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5832{
5833	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5834		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5835		return;
5836	}
5837
5838	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5839
5840	refill_stock(memcg, nr_pages);
5841}
5842
5843static int __init cgroup_memory(char *s)
5844{
5845	char *token;
5846
5847	while ((token = strsep(&s, ",")) != NULL) {
5848		if (!*token)
5849			continue;
5850		if (!strcmp(token, "nosocket"))
5851			cgroup_memory_nosocket = true;
5852		if (!strcmp(token, "nokmem"))
5853			cgroup_memory_nokmem = true;
 
 
5854	}
5855	return 0;
5856}
5857__setup("cgroup.memory=", cgroup_memory);
5858
5859/*
5860 * subsys_initcall() for memory controller.
5861 *
5862 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5863 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5864 * basically everything that doesn't depend on a specific mem_cgroup structure
5865 * should be initialized from here.
5866 */
5867static int __init mem_cgroup_init(void)
5868{
5869	int cpu, node;
5870
5871#ifndef CONFIG_SLOB
5872	/*
5873	 * Kmem cache creation is mostly done with the slab_mutex held,
5874	 * so use a workqueue with limited concurrency to avoid stalling
5875	 * all worker threads in case lots of cgroups are created and
5876	 * destroyed simultaneously.
5877	 */
5878	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5879	BUG_ON(!memcg_kmem_cache_wq);
5880#endif
5881
5882	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5883				  memcg_hotplug_cpu_dead);
5884
5885	for_each_possible_cpu(cpu)
5886		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5887			  drain_local_stock);
5888
5889	for_each_node(node) {
5890		struct mem_cgroup_tree_per_node *rtpn;
5891
5892		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5893				    node_online(node) ? node : NUMA_NO_NODE);
5894
5895		rtpn->rb_root = RB_ROOT;
5896		rtpn->rb_rightmost = NULL;
5897		spin_lock_init(&rtpn->lock);
5898		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5899	}
5900
5901	return 0;
5902}
5903subsys_initcall(mem_cgroup_init);
5904
5905#ifdef CONFIG_MEMCG_SWAP
5906static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5907{
5908	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5909		/*
5910		 * The root cgroup cannot be destroyed, so it's refcount must
5911		 * always be >= 1.
5912		 */
5913		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5914			VM_BUG_ON(1);
5915			break;
5916		}
5917		memcg = parent_mem_cgroup(memcg);
5918		if (!memcg)
5919			memcg = root_mem_cgroup;
5920	}
5921	return memcg;
5922}
5923
5924/**
5925 * mem_cgroup_swapout - transfer a memsw charge to swap
5926 * @page: page whose memsw charge to transfer
5927 * @entry: swap entry to move the charge to
5928 *
5929 * Transfer the memsw charge of @page to @entry.
5930 */
5931void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5932{
5933	struct mem_cgroup *memcg, *swap_memcg;
5934	unsigned int nr_entries;
5935	unsigned short oldid;
5936
5937	VM_BUG_ON_PAGE(PageLRU(page), page);
5938	VM_BUG_ON_PAGE(page_count(page), page);
 
 
 
5939
5940	if (!do_memsw_account())
5941		return;
5942
5943	memcg = page->mem_cgroup;
5944
5945	/* Readahead page, never charged */
5946	if (!memcg)
5947		return;
5948
5949	/*
5950	 * In case the memcg owning these pages has been offlined and doesn't
5951	 * have an ID allocated to it anymore, charge the closest online
5952	 * ancestor for the swap instead and transfer the memory+swap charge.
5953	 */
5954	swap_memcg = mem_cgroup_id_get_online(memcg);
5955	nr_entries = hpage_nr_pages(page);
5956	/* Get references for the tail pages, too */
5957	if (nr_entries > 1)
5958		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5959	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5960				   nr_entries);
5961	VM_BUG_ON_PAGE(oldid, page);
5962	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5963
5964	page->mem_cgroup = NULL;
 
5965
5966	if (!mem_cgroup_is_root(memcg))
5967		page_counter_uncharge(&memcg->memory, nr_entries);
5968
5969	if (memcg != swap_memcg) {
5970		if (!mem_cgroup_is_root(swap_memcg))
5971			page_counter_charge(&swap_memcg->memsw, nr_entries);
5972		page_counter_uncharge(&memcg->memsw, nr_entries);
5973	}
5974
5975	/*
5976	 * Interrupts should be disabled here because the caller holds the
5977	 * i_pages lock which is taken with interrupts-off. It is
5978	 * important here to have the interrupts disabled because it is the
5979	 * only synchronisation we have for updating the per-CPU variables.
5980	 */
5981	VM_BUG_ON(!irqs_disabled());
5982	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
5983				     -nr_entries);
5984	memcg_check_events(memcg, page);
5985
5986	if (!mem_cgroup_is_root(memcg))
5987		css_put_many(&memcg->css, nr_entries);
5988}
5989
5990/**
5991 * mem_cgroup_try_charge_swap - try charging swap space for a page
5992 * @page: page being added to swap
5993 * @entry: swap entry to charge
5994 *
5995 * Try to charge @page's memcg for the swap space at @entry.
5996 *
5997 * Returns 0 on success, -ENOMEM on failure.
5998 */
5999int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6000{
6001	unsigned int nr_pages = hpage_nr_pages(page);
6002	struct page_counter *counter;
6003	struct mem_cgroup *memcg;
6004	unsigned short oldid;
6005
6006	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6007		return 0;
6008
6009	memcg = page->mem_cgroup;
6010
6011	/* Readahead page, never charged */
6012	if (!memcg)
6013		return 0;
6014
 
 
 
 
 
6015	memcg = mem_cgroup_id_get_online(memcg);
6016
6017	if (!mem_cgroup_is_root(memcg) &&
6018	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
 
 
6019		mem_cgroup_id_put(memcg);
6020		return -ENOMEM;
6021	}
6022
6023	/* Get references for the tail pages, too */
6024	if (nr_pages > 1)
6025		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6026	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6027	VM_BUG_ON_PAGE(oldid, page);
6028	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6029
6030	return 0;
6031}
6032
6033/**
6034 * mem_cgroup_uncharge_swap - uncharge swap space
6035 * @entry: swap entry to uncharge
6036 * @nr_pages: the amount of swap space to uncharge
6037 */
6038void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6039{
6040	struct mem_cgroup *memcg;
6041	unsigned short id;
6042
6043	if (!do_swap_account)
6044		return;
6045
6046	id = swap_cgroup_record(entry, 0, nr_pages);
6047	rcu_read_lock();
6048	memcg = mem_cgroup_from_id(id);
6049	if (memcg) {
6050		if (!mem_cgroup_is_root(memcg)) {
6051			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6052				page_counter_uncharge(&memcg->swap, nr_pages);
6053			else
6054				page_counter_uncharge(&memcg->memsw, nr_pages);
 
 
6055		}
6056		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6057		mem_cgroup_id_put_many(memcg, nr_pages);
6058	}
6059	rcu_read_unlock();
6060}
6061
6062long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6063{
6064	long nr_swap_pages = get_nr_swap_pages();
6065
6066	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6067		return nr_swap_pages;
6068	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6069		nr_swap_pages = min_t(long, nr_swap_pages,
6070				      READ_ONCE(memcg->swap.limit) -
6071				      page_counter_read(&memcg->swap));
6072	return nr_swap_pages;
6073}
6074
6075bool mem_cgroup_swap_full(struct page *page)
6076{
6077	struct mem_cgroup *memcg;
6078
6079	VM_BUG_ON_PAGE(!PageLocked(page), page);
6080
6081	if (vm_swap_full())
6082		return true;
6083	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6084		return false;
6085
6086	memcg = page->mem_cgroup;
6087	if (!memcg)
6088		return false;
6089
6090	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6091		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
 
 
 
6092			return true;
 
6093
6094	return false;
6095}
6096
6097/* for remember boot option*/
6098#ifdef CONFIG_MEMCG_SWAP_ENABLED
6099static int really_do_swap_account __initdata = 1;
6100#else
6101static int really_do_swap_account __initdata;
6102#endif
6103
6104static int __init enable_swap_account(char *s)
6105{
6106	if (!strcmp(s, "1"))
6107		really_do_swap_account = 1;
6108	else if (!strcmp(s, "0"))
6109		really_do_swap_account = 0;
 
 
 
6110	return 1;
6111}
6112__setup("swapaccount=", enable_swap_account);
6113
6114static u64 swap_current_read(struct cgroup_subsys_state *css,
6115			     struct cftype *cft)
6116{
6117	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6118
6119	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6120}
6121
6122static int swap_max_show(struct seq_file *m, void *v)
6123{
6124	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6125	unsigned long max = READ_ONCE(memcg->swap.limit);
6126
6127	if (max == PAGE_COUNTER_MAX)
6128		seq_puts(m, "max\n");
6129	else
6130		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6131
6132	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6133}
6134
6135static ssize_t swap_max_write(struct kernfs_open_file *of,
6136			      char *buf, size_t nbytes, loff_t off)
6137{
6138	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6139	unsigned long max;
6140	int err;
6141
6142	buf = strstrip(buf);
6143	err = page_counter_memparse(buf, "max", &max);
6144	if (err)
6145		return err;
6146
6147	mutex_lock(&memcg_limit_mutex);
6148	err = page_counter_limit(&memcg->swap, max);
6149	mutex_unlock(&memcg_limit_mutex);
6150	if (err)
6151		return err;
6152
6153	return nbytes;
6154}
6155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6156static struct cftype swap_files[] = {
6157	{
6158		.name = "swap.current",
6159		.flags = CFTYPE_NOT_ON_ROOT,
6160		.read_u64 = swap_current_read,
6161	},
6162	{
 
 
 
 
 
 
6163		.name = "swap.max",
6164		.flags = CFTYPE_NOT_ON_ROOT,
6165		.seq_show = swap_max_show,
6166		.write = swap_max_write,
6167	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6168	{ }	/* terminate */
6169};
6170
6171static struct cftype memsw_cgroup_files[] = {
6172	{
6173		.name = "memsw.usage_in_bytes",
6174		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6175		.read_u64 = mem_cgroup_read_u64,
6176	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6177	{
6178		.name = "memsw.max_usage_in_bytes",
6179		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6180		.write = mem_cgroup_reset,
6181		.read_u64 = mem_cgroup_read_u64,
6182	},
6183	{
6184		.name = "memsw.limit_in_bytes",
6185		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6186		.write = mem_cgroup_write,
6187		.read_u64 = mem_cgroup_read_u64,
6188	},
6189	{
6190		.name = "memsw.failcnt",
6191		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6192		.write = mem_cgroup_reset,
6193		.read_u64 = mem_cgroup_read_u64,
6194	},
6195	{ },	/* terminate */
6196};
 
6197
6198static int __init mem_cgroup_swap_init(void)
6199{
6200	if (!mem_cgroup_disabled() && really_do_swap_account) {
6201		do_swap_account = 1;
6202		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6203					       swap_files));
6204		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6205						  memsw_cgroup_files));
6206	}
 
 
 
6207	return 0;
6208}
6209subsys_initcall(mem_cgroup_swap_init);
6210
6211#endif /* CONFIG_MEMCG_SWAP */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 *
  24 * Per memcg lru locking
  25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
 
 
 
 
 
 
 
  26 */
  27
  28#include <linux/cgroup-defs.h>
  29#include <linux/page_counter.h>
  30#include <linux/memcontrol.h>
  31#include <linux/cgroup.h>
 
  32#include <linux/sched/mm.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/hugetlb.h>
  35#include <linux/pagemap.h>
  36#include <linux/pagevec.h>
  37#include <linux/vm_event_item.h>
  38#include <linux/smp.h>
  39#include <linux/page-flags.h>
  40#include <linux/backing-dev.h>
  41#include <linux/bit_spinlock.h>
  42#include <linux/rcupdate.h>
  43#include <linux/limits.h>
  44#include <linux/export.h>
  45#include <linux/list.h>
  46#include <linux/mutex.h>
  47#include <linux/rbtree.h>
  48#include <linux/slab.h>
 
  49#include <linux/swapops.h>
  50#include <linux/spinlock.h>
 
 
 
  51#include <linux/fs.h>
  52#include <linux/seq_file.h>
  53#include <linux/parser.h>
  54#include <linux/vmpressure.h>
  55#include <linux/memremap.h>
  56#include <linux/mm_inline.h>
  57#include <linux/swap_cgroup.h>
  58#include <linux/cpu.h>
  59#include <linux/oom.h>
  60#include <linux/lockdep.h>
  61#include <linux/resume_user_mode.h>
  62#include <linux/psi.h>
  63#include <linux/seq_buf.h>
  64#include <linux/sched/isolation.h>
  65#include <linux/kmemleak.h>
  66#include "internal.h"
  67#include <net/sock.h>
  68#include <net/ip.h>
  69#include "slab.h"
  70#include "memcontrol-v1.h"
  71
  72#include <linux/uaccess.h>
  73
  74#define CREATE_TRACE_POINTS
  75#include <trace/events/memcg.h>
  76#undef CREATE_TRACE_POINTS
  77
  78#include <trace/events/vmscan.h>
  79
  80struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  81EXPORT_SYMBOL(memory_cgrp_subsys);
  82
  83struct mem_cgroup *root_mem_cgroup __read_mostly;
  84
  85/* Active memory cgroup to use from an interrupt context */
  86DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
  87EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
  88
  89/* Socket memory accounting disabled? */
  90static bool cgroup_memory_nosocket __ro_after_init;
  91
  92/* Kernel memory accounting disabled? */
  93static bool cgroup_memory_nokmem __ro_after_init;
  94
  95/* BPF memory accounting disabled? */
  96static bool cgroup_memory_nobpf __ro_after_init;
  97
  98#ifdef CONFIG_CGROUP_WRITEBACK
  99static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
 100#endif
 101
 102static inline bool task_is_dying(void)
 
 103{
 104	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 105		(current->flags & PF_EXITING);
 106}
 107
 108/* Some nice accessors for the vmpressure. */
 109struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 110{
 111	if (!memcg)
 112		memcg = root_mem_cgroup;
 113	return &memcg->vmpressure;
 114}
 115
 116struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
 117{
 118	return container_of(vmpr, struct mem_cgroup, vmpressure);
 119}
 120
 121#define SEQ_BUF_SIZE SZ_4K
 122#define CURRENT_OBJCG_UPDATE_BIT 0
 123#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
 
 124
 125static DEFINE_SPINLOCK(objcg_lock);
 
 
 
 
 126
 127bool mem_cgroup_kmem_disabled(void)
 128{
 129	return cgroup_memory_nokmem;
 130}
 131
 132static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
 133				      unsigned int nr_pages);
 134
 135static void obj_cgroup_release(struct percpu_ref *ref)
 136{
 137	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 138	unsigned int nr_bytes;
 139	unsigned int nr_pages;
 140	unsigned long flags;
 141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142	/*
 143	 * At this point all allocated objects are freed, and
 144	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 145	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 146	 *
 147	 * The following sequence can lead to it:
 148	 * 1) CPU0: objcg == stock->cached_objcg
 149	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 150	 *          PAGE_SIZE bytes are charged
 151	 * 3) CPU1: a process from another memcg is allocating something,
 152	 *          the stock if flushed,
 153	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 154	 * 5) CPU0: we do release this object,
 155	 *          92 bytes are added to stock->nr_bytes
 156	 * 6) CPU0: stock is flushed,
 157	 *          92 bytes are added to objcg->nr_charged_bytes
 158	 *
 159	 * In the result, nr_charged_bytes == PAGE_SIZE.
 160	 * This page will be uncharged in obj_cgroup_release().
 161	 */
 162	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 163	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 164	nr_pages = nr_bytes >> PAGE_SHIFT;
 
 
 165
 166	if (nr_pages)
 167		obj_cgroup_uncharge_pages(objcg, nr_pages);
 168
 169	spin_lock_irqsave(&objcg_lock, flags);
 170	list_del(&objcg->list);
 171	spin_unlock_irqrestore(&objcg_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172
 173	percpu_ref_exit(ref);
 174	kfree_rcu(objcg, rcu);
 175}
 
 
 
 
 176
 177static struct obj_cgroup *obj_cgroup_alloc(void)
 178{
 179	struct obj_cgroup *objcg;
 180	int ret;
 
 
 
 
 181
 182	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 183	if (!objcg)
 184		return NULL;
 
 
 185
 186	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 187			      GFP_KERNEL);
 188	if (ret) {
 189		kfree(objcg);
 190		return NULL;
 191	}
 192	INIT_LIST_HEAD(&objcg->list);
 193	return objcg;
 194}
 195
 196static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 197				  struct mem_cgroup *parent)
 198{
 199	struct obj_cgroup *objcg, *iter;
 
 200
 201	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 
 
 
 202
 203	spin_lock_irq(&objcg_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 204
 205	/* 1) Ready to reparent active objcg. */
 206	list_add(&objcg->list, &memcg->objcg_list);
 207	/* 2) Reparent active objcg and already reparented objcgs to parent. */
 208	list_for_each_entry(iter, &memcg->objcg_list, list)
 209		WRITE_ONCE(iter->memcg, parent);
 210	/* 3) Move already reparented objcgs to the parent's list */
 211	list_splice(&memcg->objcg_list, &parent->objcg_list);
 212
 213	spin_unlock_irq(&objcg_lock);
 
 
 
 214
 215	percpu_ref_kill(&objcg->refcnt);
 
 
 216}
 217
 218/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219 * A lot of the calls to the cache allocation functions are expected to be
 220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
 221 * conditional to this static branch, we'll have to allow modules that does
 222 * kmem_cache_alloc and the such to see this symbol as well
 223 */
 224DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
 225EXPORT_SYMBOL(memcg_kmem_online_key);
 226
 227DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
 228EXPORT_SYMBOL(memcg_bpf_enabled_key);
 
 229
 230/**
 231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
 232 * @folio: folio of interest
 233 *
 234 * If memcg is bound to the default hierarchy, css of the memcg associated
 235 * with @folio is returned.  The returned css remains associated with @folio
 236 * until it is released.
 237 *
 238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 239 * is returned.
 240 */
 241struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
 242{
 243	struct mem_cgroup *memcg = folio_memcg(folio);
 
 
 244
 245	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 246		memcg = root_mem_cgroup;
 247
 248	return &memcg->css;
 249}
 250
 251/**
 252 * page_cgroup_ino - return inode number of the memcg a page is charged to
 253 * @page: the page
 254 *
 255 * Look up the closest online ancestor of the memory cgroup @page is charged to
 256 * and return its inode number or 0 if @page is not charged to any cgroup. It
 257 * is safe to call this function without holding a reference to @page.
 258 *
 259 * Note, this function is inherently racy, because there is nothing to prevent
 260 * the cgroup inode from getting torn down and potentially reallocated a moment
 261 * after page_cgroup_ino() returns, so it only should be used by callers that
 262 * do not care (such as procfs interfaces).
 263 */
 264ino_t page_cgroup_ino(struct page *page)
 265{
 266	struct mem_cgroup *memcg;
 267	unsigned long ino = 0;
 268
 269	rcu_read_lock();
 270	/* page_folio() is racy here, but the entire function is racy anyway */
 271	memcg = folio_memcg_check(page_folio(page));
 272
 273	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 274		memcg = parent_mem_cgroup(memcg);
 275	if (memcg)
 276		ino = cgroup_ino(memcg->css.cgroup);
 277	rcu_read_unlock();
 278	return ino;
 279}
 280
 281/* Subset of node_stat_item for memcg stats */
 282static const unsigned int memcg_node_stat_items[] = {
 283	NR_INACTIVE_ANON,
 284	NR_ACTIVE_ANON,
 285	NR_INACTIVE_FILE,
 286	NR_ACTIVE_FILE,
 287	NR_UNEVICTABLE,
 288	NR_SLAB_RECLAIMABLE_B,
 289	NR_SLAB_UNRECLAIMABLE_B,
 290	WORKINGSET_REFAULT_ANON,
 291	WORKINGSET_REFAULT_FILE,
 292	WORKINGSET_ACTIVATE_ANON,
 293	WORKINGSET_ACTIVATE_FILE,
 294	WORKINGSET_RESTORE_ANON,
 295	WORKINGSET_RESTORE_FILE,
 296	WORKINGSET_NODERECLAIM,
 297	NR_ANON_MAPPED,
 298	NR_FILE_MAPPED,
 299	NR_FILE_PAGES,
 300	NR_FILE_DIRTY,
 301	NR_WRITEBACK,
 302	NR_SHMEM,
 303	NR_SHMEM_THPS,
 304	NR_FILE_THPS,
 305	NR_ANON_THPS,
 306	NR_KERNEL_STACK_KB,
 307	NR_PAGETABLE,
 308	NR_SECONDARY_PAGETABLE,
 309#ifdef CONFIG_SWAP
 310	NR_SWAPCACHE,
 311#endif
 312#ifdef CONFIG_NUMA_BALANCING
 313	PGPROMOTE_SUCCESS,
 314#endif
 315	PGDEMOTE_KSWAPD,
 316	PGDEMOTE_DIRECT,
 317	PGDEMOTE_KHUGEPAGED,
 318#ifdef CONFIG_HUGETLB_PAGE
 319	NR_HUGETLB,
 320#endif
 321};
 322
 323static const unsigned int memcg_stat_items[] = {
 324	MEMCG_SWAP,
 325	MEMCG_SOCK,
 326	MEMCG_PERCPU_B,
 327	MEMCG_VMALLOC,
 328	MEMCG_KMEM,
 329	MEMCG_ZSWAP_B,
 330	MEMCG_ZSWAPPED,
 331};
 332
 333#define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
 334#define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
 335			   ARRAY_SIZE(memcg_stat_items))
 336#define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
 337static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
 338
 339static void init_memcg_stats(void)
 340{
 341	u8 i, j = 0;
 342
 343	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
 344
 345	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
 346
 347	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
 348		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
 349
 350	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
 351		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
 352}
 353
 354static inline int memcg_stats_index(int idx)
 
 355{
 356	return mem_cgroup_stats_index[idx];
 357}
 358
 359struct lruvec_stats_percpu {
 360	/* Local (CPU and cgroup) state */
 361	long state[NR_MEMCG_NODE_STAT_ITEMS];
 362
 363	/* Delta calculation for lockless upward propagation */
 364	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
 365};
 366
 367struct lruvec_stats {
 368	/* Aggregated (CPU and subtree) state */
 369	long state[NR_MEMCG_NODE_STAT_ITEMS];
 370
 371	/* Non-hierarchical (CPU aggregated) state */
 372	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
 373
 374	/* Pending child counts during tree propagation */
 375	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
 376};
 377
 378unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
 379{
 380	struct mem_cgroup_per_node *pn;
 381	long x;
 382	int i;
 383
 384	if (mem_cgroup_disabled())
 385		return node_page_state(lruvec_pgdat(lruvec), idx);
 386
 387	i = memcg_stats_index(idx);
 388	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 389		return 0;
 390
 391	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 392	x = READ_ONCE(pn->lruvec_stats->state[i]);
 393#ifdef CONFIG_SMP
 394	if (x < 0)
 395		x = 0;
 396#endif
 397	return x;
 398}
 399
 400unsigned long lruvec_page_state_local(struct lruvec *lruvec,
 401				      enum node_stat_item idx)
 
 402{
 403	struct mem_cgroup_per_node *pn;
 404	long x;
 405	int i;
 
 406
 407	if (mem_cgroup_disabled())
 408		return node_page_state(lruvec_pgdat(lruvec), idx);
 409
 410	i = memcg_stats_index(idx);
 411	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 412		return 0;
 
 
 
 
 
 
 
 
 413
 414	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 415	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
 416#ifdef CONFIG_SMP
 417	if (x < 0)
 418		x = 0;
 419#endif
 420	return x;
 421}
 422
 423/* Subset of vm_event_item to report for memcg event stats */
 424static const unsigned int memcg_vm_event_stat[] = {
 425#ifdef CONFIG_MEMCG_V1
 426	PGPGIN,
 427	PGPGOUT,
 428#endif
 429	PSWPIN,
 430	PSWPOUT,
 431	PGSCAN_KSWAPD,
 432	PGSCAN_DIRECT,
 433	PGSCAN_KHUGEPAGED,
 434	PGSTEAL_KSWAPD,
 435	PGSTEAL_DIRECT,
 436	PGSTEAL_KHUGEPAGED,
 437	PGFAULT,
 438	PGMAJFAULT,
 439	PGREFILL,
 440	PGACTIVATE,
 441	PGDEACTIVATE,
 442	PGLAZYFREE,
 443	PGLAZYFREED,
 444#ifdef CONFIG_SWAP
 445	SWPIN_ZERO,
 446	SWPOUT_ZERO,
 447#endif
 448#ifdef CONFIG_ZSWAP
 449	ZSWPIN,
 450	ZSWPOUT,
 451	ZSWPWB,
 452#endif
 453#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 454	THP_FAULT_ALLOC,
 455	THP_COLLAPSE_ALLOC,
 456	THP_SWPOUT,
 457	THP_SWPOUT_FALLBACK,
 458#endif
 459#ifdef CONFIG_NUMA_BALANCING
 460	NUMA_PAGE_MIGRATE,
 461	NUMA_PTE_UPDATES,
 462	NUMA_HINT_FAULTS,
 463#endif
 464};
 465
 466#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
 467static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
 
 
 468
 469static void init_memcg_events(void)
 
 470{
 471	u8 i;
 
 472
 473	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
 
 474
 475	memset(mem_cgroup_events_index, U8_MAX,
 476	       sizeof(mem_cgroup_events_index));
 477
 478	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
 479		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
 480}
 481
 482static inline int memcg_events_index(enum vm_event_item idx)
 
 483{
 484	return mem_cgroup_events_index[idx];
 485}
 486
 487struct memcg_vmstats_percpu {
 488	/* Stats updates since the last flush */
 489	unsigned int			stats_updates;
 490
 491	/* Cached pointers for fast iteration in memcg_rstat_updated() */
 492	struct memcg_vmstats_percpu	*parent;
 493	struct memcg_vmstats		*vmstats;
 494
 495	/* The above should fit a single cacheline for memcg_rstat_updated() */
 496
 497	/* Local (CPU and cgroup) page state & events */
 498	long			state[MEMCG_VMSTAT_SIZE];
 499	unsigned long		events[NR_MEMCG_EVENTS];
 500
 501	/* Delta calculation for lockless upward propagation */
 502	long			state_prev[MEMCG_VMSTAT_SIZE];
 503	unsigned long		events_prev[NR_MEMCG_EVENTS];
 504} ____cacheline_aligned;
 505
 506struct memcg_vmstats {
 507	/* Aggregated (CPU and subtree) page state & events */
 508	long			state[MEMCG_VMSTAT_SIZE];
 509	unsigned long		events[NR_MEMCG_EVENTS];
 510
 511	/* Non-hierarchical (CPU aggregated) page state & events */
 512	long			state_local[MEMCG_VMSTAT_SIZE];
 513	unsigned long		events_local[NR_MEMCG_EVENTS];
 514
 515	/* Pending child counts during tree propagation */
 516	long			state_pending[MEMCG_VMSTAT_SIZE];
 517	unsigned long		events_pending[NR_MEMCG_EVENTS];
 518
 519	/* Stats updates since the last flush */
 520	atomic64_t		stats_updates;
 521};
 522
 523/*
 524 * memcg and lruvec stats flushing
 525 *
 526 * Many codepaths leading to stats update or read are performance sensitive and
 527 * adding stats flushing in such codepaths is not desirable. So, to optimize the
 528 * flushing the kernel does:
 529 *
 530 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
 531 *    rstat update tree grow unbounded.
 532 *
 533 * 2) Flush the stats synchronously on reader side only when there are more than
 534 *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
 535 *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
 536 *    only for 2 seconds due to (1).
 537 */
 538static void flush_memcg_stats_dwork(struct work_struct *w);
 539static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
 540static u64 flush_last_time;
 541
 542#define FLUSH_TIME (2UL*HZ)
 543
 544/*
 545 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
 546 * not rely on this as part of an acquired spinlock_t lock. These functions are
 547 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
 548 * is sufficient.
 549 */
 550static void memcg_stats_lock(void)
 551{
 552	preempt_disable_nested();
 553	VM_WARN_ON_IRQS_ENABLED();
 554}
 555
 556static void __memcg_stats_lock(void)
 557{
 558	preempt_disable_nested();
 559}
 560
 561static void memcg_stats_unlock(void)
 562{
 563	preempt_enable_nested();
 564}
 565
 
 
 566
 567static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
 568{
 569	return atomic64_read(&vmstats->stats_updates) >
 570		MEMCG_CHARGE_BATCH * num_online_cpus();
 571}
 572
 573static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
 574{
 575	struct memcg_vmstats_percpu *statc;
 576	int cpu = smp_processor_id();
 577	unsigned int stats_updates;
 578
 579	if (!val)
 
 580		return;
 581
 582	cgroup_rstat_updated(memcg->css.cgroup, cpu);
 583	statc = this_cpu_ptr(memcg->vmstats_percpu);
 584	for (; statc; statc = statc->parent) {
 585		stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
 586		WRITE_ONCE(statc->stats_updates, stats_updates);
 587		if (stats_updates < MEMCG_CHARGE_BATCH)
 588			continue;
 589
 590		/*
 591		 * If @memcg is already flush-able, increasing stats_updates is
 592		 * redundant. Avoid the overhead of the atomic update.
 593		 */
 594		if (!memcg_vmstats_needs_flush(statc->vmstats))
 595			atomic64_add(stats_updates,
 596				     &statc->vmstats->stats_updates);
 597		WRITE_ONCE(statc->stats_updates, 0);
 
 
 
 
 
 
 
 
 
 
 598	}
 599}
 600
 601static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
 602{
 603	bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
 
 
 604
 605	trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates),
 606		force, needs_flush);
 
 
 
 
 
 607
 608	if (!force && !needs_flush)
 609		return;
 
 
 610
 611	if (mem_cgroup_is_root(memcg))
 612		WRITE_ONCE(flush_last_time, jiffies_64);
 613
 614	cgroup_rstat_flush(memcg->css.cgroup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615}
 616
 617/*
 618 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
 619 * @memcg: root of the subtree to flush
 620 *
 621 * Flushing is serialized by the underlying global rstat lock. There is also a
 622 * minimum amount of work to be done even if there are no stat updates to flush.
 623 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
 624 * avoids unnecessary work and contention on the underlying lock.
 625 */
 626void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
 627{
 628	if (mem_cgroup_disabled())
 629		return;
 630
 631	if (!memcg)
 632		memcg = root_mem_cgroup;
 633
 634	__mem_cgroup_flush_stats(memcg, false);
 
 
 
 635}
 636
 637void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
 
 638{
 639	/* Only flush if the periodic flusher is one full cycle late */
 640	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
 641		mem_cgroup_flush_stats(memcg);
 642}
 643
 644static void flush_memcg_stats_dwork(struct work_struct *w)
 
 
 645{
 646	/*
 647	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
 648	 * in latency-sensitive paths is as cheap as possible.
 649	 */
 650	__mem_cgroup_flush_stats(root_mem_cgroup, true);
 651	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
 652}
 
 
 
 
 653
 654unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 655{
 656	long x;
 657	int i = memcg_stats_index(idx);
 658
 659	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 660		return 0;
 
 
 
 
 
 661
 662	x = READ_ONCE(memcg->vmstats->state[i]);
 663#ifdef CONFIG_SMP
 664	if (x < 0)
 665		x = 0;
 666#endif
 667	return x;
 668}
 669
 670static int memcg_page_state_unit(int item);
 671
 672/*
 673 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
 674 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
 675 */
 676static int memcg_state_val_in_pages(int idx, int val)
 677{
 678	int unit = memcg_page_state_unit(idx);
 
 
 679
 680	if (!val || unit == PAGE_SIZE)
 681		return val;
 682	else
 683		return max(val * unit / PAGE_SIZE, 1UL);
 684}
 685
 686/**
 687 * __mod_memcg_state - update cgroup memory statistics
 688 * @memcg: the memory cgroup
 689 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 690 * @val: delta to add to the counter, can be negative
 691 */
 692void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
 693		       int val)
 694{
 695	int i = memcg_stats_index(idx);
 696
 697	if (mem_cgroup_disabled())
 698		return;
 699
 700	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 701		return;
 702
 703	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
 704	val = memcg_state_val_in_pages(idx, val);
 705	memcg_rstat_updated(memcg, val);
 706	trace_mod_memcg_state(memcg, idx, val);
 707}
 708
 709/* idx can be of type enum memcg_stat_item or node_stat_item. */
 710unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
 711{
 712	long x;
 713	int i = memcg_stats_index(idx);
 714
 715	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 716		return 0;
 717
 718	x = READ_ONCE(memcg->vmstats->state_local[i]);
 719#ifdef CONFIG_SMP
 720	if (x < 0)
 721		x = 0;
 722#endif
 723	return x;
 724}
 725
 726static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
 727				     enum node_stat_item idx,
 728				     int val)
 729{
 730	struct mem_cgroup_per_node *pn;
 731	struct mem_cgroup *memcg;
 732	int i = memcg_stats_index(idx);
 733
 734	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 735		return;
 736
 737	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 738	memcg = pn->memcg;
 739
 740	/*
 741	 * The caller from rmap relies on disabled preemption because they never
 742	 * update their counter from in-interrupt context. For these two
 743	 * counters we check that the update is never performed from an
 744	 * interrupt context while other caller need to have disabled interrupt.
 745	 */
 746	__memcg_stats_lock();
 747	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
 748		switch (idx) {
 749		case NR_ANON_MAPPED:
 750		case NR_FILE_MAPPED:
 751		case NR_ANON_THPS:
 752			WARN_ON_ONCE(!in_task());
 753			break;
 754		default:
 755			VM_WARN_ON_IRQS_ENABLED();
 756		}
 
 
 757	}
 758
 759	/* Update memcg */
 760	__this_cpu_add(memcg->vmstats_percpu->state[i], val);
 761
 762	/* Update lruvec */
 763	__this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
 764
 765	val = memcg_state_val_in_pages(idx, val);
 766	memcg_rstat_updated(memcg, val);
 767	trace_mod_memcg_lruvec_state(memcg, idx, val);
 768	memcg_stats_unlock();
 769}
 770
 771/**
 772 * __mod_lruvec_state - update lruvec memory statistics
 773 * @lruvec: the lruvec
 774 * @idx: the stat item
 775 * @val: delta to add to the counter, can be negative
 776 *
 777 * The lruvec is the intersection of the NUMA node and a cgroup. This
 778 * function updates the all three counters that are affected by a
 779 * change of state at this level: per-node, per-cgroup, per-lruvec.
 780 */
 781void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 782			int val)
 783{
 784	/* Update node */
 785	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 786
 787	/* Update memcg and lruvec */
 788	if (!mem_cgroup_disabled())
 789		__mod_memcg_lruvec_state(lruvec, idx, val);
 790}
 791
 792void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
 793			     int val)
 794{
 795	struct mem_cgroup *memcg;
 796	pg_data_t *pgdat = folio_pgdat(folio);
 797	struct lruvec *lruvec;
 798
 799	rcu_read_lock();
 800	memcg = folio_memcg(folio);
 801	/* Untracked pages have no memcg, no lruvec. Update only the node */
 802	if (!memcg) {
 803		rcu_read_unlock();
 804		__mod_node_page_state(pgdat, idx, val);
 805		return;
 806	}
 807
 808	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 809	__mod_lruvec_state(lruvec, idx, val);
 810	rcu_read_unlock();
 811}
 812EXPORT_SYMBOL(__lruvec_stat_mod_folio);
 813
 814void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
 815{
 816	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 817	struct mem_cgroup *memcg;
 818	struct lruvec *lruvec;
 819
 820	rcu_read_lock();
 821	memcg = mem_cgroup_from_slab_obj(p);
 822
 823	/*
 824	 * Untracked pages have no memcg, no lruvec. Update only the
 825	 * node. If we reparent the slab objects to the root memcg,
 826	 * when we free the slab object, we need to update the per-memcg
 827	 * vmstats to keep it correct for the root memcg.
 828	 */
 829	if (!memcg) {
 830		__mod_node_page_state(pgdat, idx, val);
 831	} else {
 832		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 833		__mod_lruvec_state(lruvec, idx, val);
 834	}
 835	rcu_read_unlock();
 836}
 837
 838/**
 839 * __count_memcg_events - account VM events in a cgroup
 840 * @memcg: the memory cgroup
 841 * @idx: the event item
 842 * @count: the number of events that occurred
 843 */
 844void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 845			  unsigned long count)
 846{
 847	int i = memcg_events_index(idx);
 848
 849	if (mem_cgroup_disabled())
 850		return;
 851
 852	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
 853		return;
 854
 855	memcg_stats_lock();
 856	__this_cpu_add(memcg->vmstats_percpu->events[i], count);
 857	memcg_rstat_updated(memcg, count);
 858	trace_count_memcg_events(memcg, idx, count);
 859	memcg_stats_unlock();
 860}
 861
 862unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 863{
 864	int i = memcg_events_index(event);
 865
 866	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
 867		return 0;
 868
 869	return READ_ONCE(memcg->vmstats->events[i]);
 870}
 871
 872unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 873{
 874	int i = memcg_events_index(event);
 875
 876	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
 877		return 0;
 878
 879	return READ_ONCE(memcg->vmstats->events_local[i]);
 880}
 881
 882struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 883{
 884	/*
 885	 * mm_update_next_owner() may clear mm->owner to NULL
 886	 * if it races with swapoff, page migration, etc.
 887	 * So this can be called with p == NULL.
 888	 */
 889	if (unlikely(!p))
 890		return NULL;
 891
 892	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 893}
 894EXPORT_SYMBOL(mem_cgroup_from_task);
 895
 896static __always_inline struct mem_cgroup *active_memcg(void)
 897{
 898	if (!in_task())
 899		return this_cpu_read(int_active_memcg);
 900	else
 901		return current->active_memcg;
 902}
 903
 904/**
 905 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 906 * @mm: mm from which memcg should be extracted. It can be NULL.
 907 *
 908 * Obtain a reference on mm->memcg and returns it if successful. If mm
 909 * is NULL, then the memcg is chosen as follows:
 910 * 1) The active memcg, if set.
 911 * 2) current->mm->memcg, if available
 912 * 3) root memcg
 913 * If mem_cgroup is disabled, NULL is returned.
 914 */
 915struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 916{
 917	struct mem_cgroup *memcg;
 918
 919	if (mem_cgroup_disabled())
 920		return NULL;
 921
 922	/*
 923	 * Page cache insertions can happen without an
 924	 * actual mm context, e.g. during disk probing
 925	 * on boot, loopback IO, acct() writes etc.
 926	 *
 927	 * No need to css_get on root memcg as the reference
 928	 * counting is disabled on the root level in the
 929	 * cgroup core. See CSS_NO_REF.
 930	 */
 931	if (unlikely(!mm)) {
 932		memcg = active_memcg();
 933		if (unlikely(memcg)) {
 934			/* remote memcg must hold a ref */
 935			css_get(&memcg->css);
 936			return memcg;
 937		}
 938		mm = current->mm;
 939		if (unlikely(!mm))
 940			return root_mem_cgroup;
 941	}
 942
 943	rcu_read_lock();
 944	do {
 945		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 946		if (unlikely(!memcg))
 
 
 
 
 947			memcg = root_mem_cgroup;
 948	} while (!css_tryget(&memcg->css));
 949	rcu_read_unlock();
 950	return memcg;
 951}
 952EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 953
 954/**
 955 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
 956 */
 957struct mem_cgroup *get_mem_cgroup_from_current(void)
 958{
 959	struct mem_cgroup *memcg;
 960
 961	if (mem_cgroup_disabled())
 962		return NULL;
 963
 964again:
 965	rcu_read_lock();
 966	memcg = mem_cgroup_from_task(current);
 967	if (!css_tryget(&memcg->css)) {
 968		rcu_read_unlock();
 969		goto again;
 970	}
 971	rcu_read_unlock();
 972	return memcg;
 973}
 974
 975/**
 976 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
 977 * @folio: folio from which memcg should be extracted.
 978 */
 979struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
 980{
 981	struct mem_cgroup *memcg = folio_memcg(folio);
 982
 983	if (mem_cgroup_disabled())
 984		return NULL;
 985
 986	rcu_read_lock();
 987	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
 988		memcg = root_mem_cgroup;
 989	rcu_read_unlock();
 990	return memcg;
 991}
 992
 993/**
 994 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 995 * @root: hierarchy root
 996 * @prev: previously returned memcg, NULL on first invocation
 997 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 998 *
 999 * Returns references to children of the hierarchy below @root, or
1000 * @root itself, or %NULL after a full round-trip.
1001 *
1002 * Caller must pass the return value in @prev on subsequent
1003 * invocations for reference counting, or use mem_cgroup_iter_break()
1004 * to cancel a hierarchy walk before the round-trip is complete.
1005 *
1006 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1007 * in the hierarchy among all concurrent reclaimers operating on the
1008 * same node.
1009 */
1010struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1011				   struct mem_cgroup *prev,
1012				   struct mem_cgroup_reclaim_cookie *reclaim)
1013{
1014	struct mem_cgroup_reclaim_iter *iter;
1015	struct cgroup_subsys_state *css;
1016	struct mem_cgroup *pos;
1017	struct mem_cgroup *next;
1018
1019	if (mem_cgroup_disabled())
1020		return NULL;
1021
1022	if (!root)
1023		root = root_mem_cgroup;
1024
 
 
 
 
 
 
 
 
 
1025	rcu_read_lock();
1026restart:
1027	next = NULL;
1028
1029	if (reclaim) {
1030		int gen;
1031		int nid = reclaim->pgdat->node_id;
1032
1033		iter = &root->nodeinfo[nid]->iter;
1034		gen = atomic_read(&iter->generation);
1035
1036		/*
1037		 * On start, join the current reclaim iteration cycle.
1038		 * Exit when a concurrent walker completes it.
1039		 */
1040		if (!prev)
1041			reclaim->generation = gen;
1042		else if (reclaim->generation != gen)
1043			goto out_unlock;
1044
1045		pos = READ_ONCE(iter->position);
1046	} else
1047		pos = prev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048
1049	css = pos ? &pos->css : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
1050
1051	while ((css = css_next_descendant_pre(css, &root->css))) {
1052		/*
1053		 * Verify the css and acquire a reference.  The root
1054		 * is provided by the caller, so we know it's alive
1055		 * and kicking, and don't take an extra reference.
1056		 */
1057		if (css == &root->css || css_tryget(css))
 
 
 
 
 
1058			break;
 
 
1059	}
1060
1061	next = mem_cgroup_from_css(css);
1062
1063	if (reclaim) {
1064		/*
1065		 * The position could have already been updated by a competing
1066		 * thread, so check that the value hasn't changed since we read
1067		 * it to avoid reclaiming from the same cgroup twice.
1068		 */
1069		if (cmpxchg(&iter->position, pos, next) != pos) {
1070			if (css && css != &root->css)
1071				css_put(css);
1072			goto restart;
1073		}
1074
1075		if (!next) {
1076			atomic_inc(&iter->generation);
1077
1078			/*
1079			 * Reclaimers share the hierarchy walk, and a
1080			 * new one might jump in right at the end of
1081			 * the hierarchy - make sure they see at least
1082			 * one group and restart from the beginning.
1083			 */
1084			if (!prev)
1085				goto restart;
1086		}
1087	}
1088
1089out_unlock:
1090	rcu_read_unlock();
 
1091	if (prev && prev != root)
1092		css_put(&prev->css);
1093
1094	return next;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103			   struct mem_cgroup *prev)
1104{
1105	if (!root)
1106		root = root_mem_cgroup;
1107	if (prev && prev != root)
1108		css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112					struct mem_cgroup *dead_memcg)
1113{
 
1114	struct mem_cgroup_reclaim_iter *iter;
1115	struct mem_cgroup_per_node *mz;
1116	int nid;
 
1117
1118	for_each_node(nid) {
1119		mz = from->nodeinfo[nid];
1120		iter = &mz->iter;
1121		cmpxchg(&iter->position, dead_memcg, NULL);
 
 
 
 
 
1122	}
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127	struct mem_cgroup *memcg = dead_memcg;
1128	struct mem_cgroup *last;
1129
1130	do {
1131		__invalidate_reclaim_iterators(memcg, dead_memcg);
1132		last = memcg;
1133	} while ((memcg = parent_mem_cgroup(memcg)));
1134
1135	/*
1136	 * When cgroup1 non-hierarchy mode is used,
1137	 * parent_mem_cgroup() does not walk all the way up to the
1138	 * cgroup root (root_mem_cgroup). So we have to handle
1139	 * dead_memcg from cgroup root separately.
1140	 */
1141	if (!mem_cgroup_is_root(last))
1142		__invalidate_reclaim_iterators(root_mem_cgroup,
1143						dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop. Otherwise, it will iterate
1155 * over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160			   int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162	struct mem_cgroup *iter;
1163	int ret = 0;
1164	int i = 0;
1165
1166	BUG_ON(mem_cgroup_is_root(memcg));
1167
1168	for_each_mem_cgroup_tree(iter, memcg) {
1169		struct css_task_iter it;
1170		struct task_struct *task;
1171
1172		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1173		while (!ret && (task = css_task_iter_next(&it))) {
1174			/* Avoid potential softlockup warning */
1175			if ((++i & 1023) == 0)
1176				cond_resched();
1177			ret = fn(task, arg);
1178		}
1179		css_task_iter_end(&it);
1180		if (ret) {
1181			mem_cgroup_iter_break(memcg, iter);
1182			break;
1183		}
1184	}
 
1185}
1186
1187#ifdef CONFIG_DEBUG_VM
1188void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1189{
1190	struct mem_cgroup *memcg;
1191
1192	if (mem_cgroup_disabled())
1193		return;
1194
1195	memcg = folio_memcg(folio);
1196
1197	if (!memcg)
1198		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1199	else
1200		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1201}
1202#endif
1203
1204/**
1205 * folio_lruvec_lock - Lock the lruvec for a folio.
1206 * @folio: Pointer to the folio.
 
1207 *
1208 * These functions are safe to use under any of the following conditions:
1209 * - folio locked
1210 * - folio_test_lru false
1211 * - folio frozen (refcount of 0)
1212 *
1213 * Return: The lruvec this folio is on with its lock held.
1214 */
1215struct lruvec *folio_lruvec_lock(struct folio *folio)
1216{
1217	struct lruvec *lruvec = folio_lruvec(folio);
 
 
1218
1219	spin_lock(&lruvec->lru_lock);
1220	lruvec_memcg_debug(lruvec, folio);
 
 
1221
1222	return lruvec;
1223}
1224
1225/**
1226 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1227 * @folio: Pointer to the folio.
1228 *
1229 * These functions are safe to use under any of the following conditions:
1230 * - folio locked
1231 * - folio_test_lru false
1232 * - folio frozen (refcount of 0)
1233 *
1234 * Return: The lruvec this folio is on with its lock held and interrupts
1235 * disabled.
1236 */
1237struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1238{
1239	struct lruvec *lruvec = folio_lruvec(folio);
1240
1241	spin_lock_irq(&lruvec->lru_lock);
1242	lruvec_memcg_debug(lruvec, folio);
1243
1244	return lruvec;
1245}
1246
1247/**
1248 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1249 * @folio: Pointer to the folio.
1250 * @flags: Pointer to irqsave flags.
1251 *
1252 * These functions are safe to use under any of the following conditions:
1253 * - folio locked
1254 * - folio_test_lru false
1255 * - folio frozen (refcount of 0)
1256 *
1257 * Return: The lruvec this folio is on with its lock held and interrupts
1258 * disabled.
1259 */
1260struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1261		unsigned long *flags)
1262{
1263	struct lruvec *lruvec = folio_lruvec(folio);
1264
1265	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1266	lruvec_memcg_debug(lruvec, folio);
1267
 
 
 
 
 
 
 
 
 
 
1268	return lruvec;
1269}
1270
1271/**
1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1273 * @lruvec: mem_cgroup per zone lru vector
1274 * @lru: index of lru list the page is sitting on
1275 * @zid: zone id of the accounted pages
1276 * @nr_pages: positive when adding or negative when removing
1277 *
1278 * This function must be called under lru_lock, just before a page is added
1279 * to or just after a page is removed from an lru list.
 
1280 */
1281void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1282				int zid, int nr_pages)
1283{
1284	struct mem_cgroup_per_node *mz;
1285	unsigned long *lru_size;
1286	long size;
1287
1288	if (mem_cgroup_disabled())
1289		return;
1290
1291	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1292	lru_size = &mz->lru_zone_size[zid][lru];
1293
1294	if (nr_pages < 0)
1295		*lru_size += nr_pages;
1296
1297	size = *lru_size;
1298	if (WARN_ONCE(size < 0,
1299		"%s(%p, %d, %d): lru_size %ld\n",
1300		__func__, lruvec, lru, nr_pages, size)) {
1301		VM_BUG_ON(1);
1302		*lru_size = 0;
1303	}
1304
1305	if (nr_pages > 0)
1306		*lru_size += nr_pages;
1307}
1308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309/**
1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1311 * @memcg: the memory cgroup
1312 *
1313 * Returns the maximum amount of memory @mem can be charged with, in
1314 * pages.
1315 */
1316static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1317{
1318	unsigned long margin = 0;
1319	unsigned long count;
1320	unsigned long limit;
1321
1322	count = page_counter_read(&memcg->memory);
1323	limit = READ_ONCE(memcg->memory.max);
1324	if (count < limit)
1325		margin = limit - count;
1326
1327	if (do_memsw_account()) {
1328		count = page_counter_read(&memcg->memsw);
1329		limit = READ_ONCE(memcg->memsw.max);
1330		if (count < limit)
1331			margin = min(margin, limit - count);
1332		else
1333			margin = 0;
1334	}
1335
1336	return margin;
1337}
1338
1339struct memory_stat {
1340	const char *name;
1341	unsigned int idx;
1342};
1343
1344static const struct memory_stat memory_stats[] = {
1345	{ "anon",			NR_ANON_MAPPED			},
1346	{ "file",			NR_FILE_PAGES			},
1347	{ "kernel",			MEMCG_KMEM			},
1348	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1349	{ "pagetables",			NR_PAGETABLE			},
1350	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1351	{ "percpu",			MEMCG_PERCPU_B			},
1352	{ "sock",			MEMCG_SOCK			},
1353	{ "vmalloc",			MEMCG_VMALLOC			},
1354	{ "shmem",			NR_SHMEM			},
1355#ifdef CONFIG_ZSWAP
1356	{ "zswap",			MEMCG_ZSWAP_B			},
1357	{ "zswapped",			MEMCG_ZSWAPPED			},
1358#endif
1359	{ "file_mapped",		NR_FILE_MAPPED			},
1360	{ "file_dirty",			NR_FILE_DIRTY			},
1361	{ "file_writeback",		NR_WRITEBACK			},
1362#ifdef CONFIG_SWAP
1363	{ "swapcached",			NR_SWAPCACHE			},
1364#endif
1365#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1366	{ "anon_thp",			NR_ANON_THPS			},
1367	{ "file_thp",			NR_FILE_THPS			},
1368	{ "shmem_thp",			NR_SHMEM_THPS			},
1369#endif
1370	{ "inactive_anon",		NR_INACTIVE_ANON		},
1371	{ "active_anon",		NR_ACTIVE_ANON			},
1372	{ "inactive_file",		NR_INACTIVE_FILE		},
1373	{ "active_file",		NR_ACTIVE_FILE			},
1374	{ "unevictable",		NR_UNEVICTABLE			},
1375	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1376	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1377#ifdef CONFIG_HUGETLB_PAGE
1378	{ "hugetlb",			NR_HUGETLB			},
1379#endif
1380
1381	/* The memory events */
1382	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1383	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1384	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1385	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1386	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1387	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1388	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1389
1390	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
1391	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
1392	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
1393#ifdef CONFIG_NUMA_BALANCING
1394	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
1395#endif
1396};
1397
1398/* The actual unit of the state item, not the same as the output unit */
1399static int memcg_page_state_unit(int item)
1400{
1401	switch (item) {
1402	case MEMCG_PERCPU_B:
1403	case MEMCG_ZSWAP_B:
1404	case NR_SLAB_RECLAIMABLE_B:
1405	case NR_SLAB_UNRECLAIMABLE_B:
1406		return 1;
1407	case NR_KERNEL_STACK_KB:
1408		return SZ_1K;
1409	default:
1410		return PAGE_SIZE;
1411	}
1412}
1413
1414/* Translate stat items to the correct unit for memory.stat output */
1415static int memcg_page_state_output_unit(int item)
1416{
 
 
 
1417	/*
1418	 * Workingset state is actually in pages, but we export it to userspace
1419	 * as a scalar count of events, so special case it here.
1420	 *
1421	 * Demotion and promotion activities are exported in pages, consistent
1422	 * with their global counterparts.
1423	 */
1424	switch (item) {
1425	case WORKINGSET_REFAULT_ANON:
1426	case WORKINGSET_REFAULT_FILE:
1427	case WORKINGSET_ACTIVATE_ANON:
1428	case WORKINGSET_ACTIVATE_FILE:
1429	case WORKINGSET_RESTORE_ANON:
1430	case WORKINGSET_RESTORE_FILE:
1431	case WORKINGSET_NODERECLAIM:
1432	case PGDEMOTE_KSWAPD:
1433	case PGDEMOTE_DIRECT:
1434	case PGDEMOTE_KHUGEPAGED:
1435#ifdef CONFIG_NUMA_BALANCING
1436	case PGPROMOTE_SUCCESS:
1437#endif
1438		return 1;
1439	default:
1440		return memcg_page_state_unit(item);
1441	}
1442}
1443
1444unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1445{
1446	return memcg_page_state(memcg, item) *
1447		memcg_page_state_output_unit(item);
 
1448}
1449
1450unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1451{
1452	return memcg_page_state_local(memcg, item) *
1453		memcg_page_state_output_unit(item);
1454}
1455
1456static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1457{
1458	int i;
1459
1460	/*
1461	 * Provide statistics on the state of the memory subsystem as
1462	 * well as cumulative event counters that show past behavior.
1463	 *
1464	 * This list is ordered following a combination of these gradients:
1465	 * 1) generic big picture -> specifics and details
1466	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1467	 *
1468	 * Current memory state:
1469	 */
1470	mem_cgroup_flush_stats(memcg);
1471
1472	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1473		u64 size;
1474
1475#ifdef CONFIG_HUGETLB_PAGE
1476		if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1477		    !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
1478			continue;
1479#endif
1480		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1481		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1482
1483		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1484			size += memcg_page_state_output(memcg,
1485							NR_SLAB_RECLAIMABLE_B);
1486			seq_buf_printf(s, "slab %llu\n", size);
1487		}
1488	}
 
 
1489
1490	/* Accumulated memory events */
1491	seq_buf_printf(s, "pgscan %lu\n",
1492		       memcg_events(memcg, PGSCAN_KSWAPD) +
1493		       memcg_events(memcg, PGSCAN_DIRECT) +
1494		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1495	seq_buf_printf(s, "pgsteal %lu\n",
1496		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1497		       memcg_events(memcg, PGSTEAL_DIRECT) +
1498		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1499
1500	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1501#ifdef CONFIG_MEMCG_V1
1502		if (memcg_vm_event_stat[i] == PGPGIN ||
1503		    memcg_vm_event_stat[i] == PGPGOUT)
1504			continue;
1505#endif
1506		seq_buf_printf(s, "%s %lu\n",
1507			       vm_event_name(memcg_vm_event_stat[i]),
1508			       memcg_events(memcg, memcg_vm_event_stat[i]));
1509	}
1510}
1511
1512static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1513{
1514	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1515		memcg_stat_format(memcg, s);
1516	else
1517		memcg1_stat_format(memcg, s);
1518	if (seq_buf_has_overflowed(s))
1519		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1520}
 
1521
 
1522/**
1523 * mem_cgroup_print_oom_context: Print OOM information relevant to
1524 * memory controller.
1525 * @memcg: The memory cgroup that went over limit
1526 * @p: Task that is going to be killed
1527 *
1528 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1529 * enabled
1530 */
1531void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1532{
 
 
 
1533	rcu_read_lock();
1534
1535	if (memcg) {
1536		pr_cont(",oom_memcg=");
1537		pr_cont_cgroup_path(memcg->css.cgroup);
1538	} else
1539		pr_cont(",global_oom");
1540	if (p) {
1541		pr_cont(",task_memcg=");
1542		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
 
 
 
1543	}
1544	rcu_read_unlock();
1545}
1546
1547/**
1548 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1549 * memory controller.
1550 * @memcg: The memory cgroup that went over limit
1551 */
1552void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1553{
1554	/* Use static buffer, for the caller is holding oom_lock. */
1555	static char buf[SEQ_BUF_SIZE];
1556	struct seq_buf s;
1557
1558	lockdep_assert_held(&oom_lock);
1559
1560	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1561		K((u64)page_counter_read(&memcg->memory)),
1562		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1563	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1564		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1565			K((u64)page_counter_read(&memcg->swap)),
1566			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1567#ifdef CONFIG_MEMCG_V1
1568	else {
1569		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1570			K((u64)page_counter_read(&memcg->memsw)),
1571			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1572		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1573			K((u64)page_counter_read(&memcg->kmem)),
1574			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
 
 
 
 
 
 
 
 
 
 
 
 
1575	}
1576#endif
1577
1578	pr_info("Memory cgroup stats for ");
1579	pr_cont_cgroup_path(memcg->css.cgroup);
1580	pr_cont(":");
1581	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1582	memory_stat_format(memcg, &s);
1583	seq_buf_do_printk(&s, KERN_INFO);
1584}
1585
1586/*
1587 * Return the memory (and swap, if configured) limit for a memcg.
1588 */
1589unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1590{
1591	unsigned long max = READ_ONCE(memcg->memory.max);
1592
1593	if (do_memsw_account()) {
1594		if (mem_cgroup_swappiness(memcg)) {
1595			/* Calculate swap excess capacity from memsw limit */
1596			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1597
1598			max += min(swap, (unsigned long)total_swap_pages);
1599		}
1600	} else {
1601		if (mem_cgroup_swappiness(memcg))
1602			max += min(READ_ONCE(memcg->swap.max),
1603				   (unsigned long)total_swap_pages);
 
 
 
1604	}
1605	return max;
1606}
1607
1608unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1609{
1610	return page_counter_read(&memcg->memory);
1611}
1612
1613static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1614				     int order)
1615{
1616	struct oom_control oc = {
1617		.zonelist = NULL,
1618		.nodemask = NULL,
1619		.memcg = memcg,
1620		.gfp_mask = gfp_mask,
1621		.order = order,
1622	};
1623	bool ret = true;
1624
1625	if (mutex_lock_killable(&oom_lock))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1626		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627
1628	if (mem_cgroup_margin(memcg) >= (1 << order))
1629		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630
 
1631	/*
1632	 * A few threads which were not waiting at mutex_lock_killable() can
1633	 * fail to bail out. Therefore, check again after holding oom_lock.
 
1634	 */
1635	ret = task_is_dying() || out_of_memory(&oc);
 
1636
1637unlock:
1638	mutex_unlock(&oom_lock);
1639	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640}
1641
 
 
 
 
 
 
 
 
1642/*
1643 * Returns true if successfully killed one or more processes. Though in some
1644 * corner cases it can return true even without killing any process.
1645 */
1646static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1647{
1648	bool locked, ret;
1649
1650	if (order > PAGE_ALLOC_COSTLY_ORDER)
1651		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652
1653	memcg_memory_event(memcg, MEMCG_OOM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655	if (!memcg1_oom_prepare(memcg, &locked))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1656		return false;
1657
1658	ret = mem_cgroup_out_of_memory(memcg, mask, order);
 
1659
1660	memcg1_oom_finish(memcg, locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1661
1662	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1663}
1664
1665/**
1666 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1667 * @victim: task to be killed by the OOM killer
1668 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1669 *
1670 * Returns a pointer to a memory cgroup, which has to be cleaned up
1671 * by killing all belonging OOM-killable tasks.
1672 *
1673 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 
 
1674 */
1675struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1676					    struct mem_cgroup *oom_domain)
1677{
1678	struct mem_cgroup *oom_group = NULL;
1679	struct mem_cgroup *memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680
1681	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
 
 
 
 
1682		return NULL;
1683
1684	if (!oom_domain)
1685		oom_domain = root_mem_cgroup;
1686
1687	rcu_read_lock();
1688
1689	memcg = mem_cgroup_from_task(victim);
1690	if (mem_cgroup_is_root(memcg))
1691		goto out;
1692
1693	/*
1694	 * If the victim task has been asynchronously moved to a different
1695	 * memory cgroup, we might end up killing tasks outside oom_domain.
1696	 * In this case it's better to ignore memory.group.oom.
1697	 */
1698	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1699		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700
1701	/*
1702	 * Traverse the memory cgroup hierarchy from the victim task's
1703	 * cgroup up to the OOMing cgroup (or root) to find the
1704	 * highest-level memory cgroup with oom.group set.
1705	 */
1706	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1707		if (READ_ONCE(memcg->oom_group))
1708			oom_group = memcg;
1709
1710		if (memcg == oom_domain)
1711			break;
1712	}
1713
1714	if (oom_group)
1715		css_get(&oom_group->css);
1716out:
1717	rcu_read_unlock();
1718
1719	return oom_group;
1720}
1721
1722void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
 
 
 
 
1723{
1724	pr_info("Tasks in ");
1725	pr_cont_cgroup_path(memcg->css.cgroup);
1726	pr_cont(" are going to be killed due to memory.oom.group set\n");
1727}
 
1728
1729struct memcg_stock_pcp {
1730	local_lock_t stock_lock;
1731	struct mem_cgroup *cached; /* this never be root cgroup */
1732	unsigned int nr_pages;
1733
1734	struct obj_cgroup *cached_objcg;
1735	struct pglist_data *cached_pgdat;
1736	unsigned int nr_bytes;
1737	int nr_slab_reclaimable_b;
1738	int nr_slab_unreclaimable_b;
1739
1740	struct work_struct work;
1741	unsigned long flags;
1742#define FLUSHING_CACHED_CHARGE	0
1743};
1744static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1745	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
1746};
1747static DEFINE_MUTEX(percpu_charge_mutex);
1748
1749static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1750static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1751				     struct mem_cgroup *root_memcg);
1752
1753/**
1754 * consume_stock: Try to consume stocked charge on this cpu.
1755 * @memcg: memcg to consume from.
1756 * @nr_pages: how many pages to charge.
1757 *
1758 * The charges will only happen if @memcg matches the current cpu's memcg
1759 * stock, and at least @nr_pages are available in that stock.  Failure to
1760 * service an allocation will refill the stock.
1761 *
1762 * returns true if successful, false otherwise.
1763 */
1764static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1765{
1766	struct memcg_stock_pcp *stock;
1767	unsigned int stock_pages;
1768	unsigned long flags;
1769	bool ret = false;
1770
1771	if (nr_pages > MEMCG_CHARGE_BATCH)
1772		return ret;
1773
1774	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1775
1776	stock = this_cpu_ptr(&memcg_stock);
1777	stock_pages = READ_ONCE(stock->nr_pages);
1778	if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1779		WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1780		ret = true;
1781	}
1782
1783	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1784
1785	return ret;
1786}
1787
1788/*
1789 * Returns stocks cached in percpu and reset cached information.
1790 */
1791static void drain_stock(struct memcg_stock_pcp *stock)
1792{
1793	unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1794	struct mem_cgroup *old = READ_ONCE(stock->cached);
1795
1796	if (!old)
1797		return;
1798
1799	if (stock_pages) {
1800		page_counter_uncharge(&old->memory, stock_pages);
1801		if (do_memsw_account())
1802			page_counter_uncharge(&old->memsw, stock_pages);
1803
1804		WRITE_ONCE(stock->nr_pages, 0);
1805	}
1806
1807	css_put(&old->css);
1808	WRITE_ONCE(stock->cached, NULL);
1809}
1810
1811static void drain_local_stock(struct work_struct *dummy)
1812{
1813	struct memcg_stock_pcp *stock;
1814	struct obj_cgroup *old = NULL;
1815	unsigned long flags;
1816
1817	/*
1818	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1819	 * drain_stock races is that we always operate on local CPU stock
1820	 * here with IRQ disabled
1821	 */
1822	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1823
1824	stock = this_cpu_ptr(&memcg_stock);
1825	old = drain_obj_stock(stock);
1826	drain_stock(stock);
1827	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1828
1829	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1830	obj_cgroup_put(old);
1831}
1832
1833/*
1834 * Cache charges(val) to local per_cpu area.
1835 * This will be consumed by consume_stock() function, later.
1836 */
1837static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1838{
1839	struct memcg_stock_pcp *stock;
1840	unsigned int stock_pages;
 
 
1841
1842	stock = this_cpu_ptr(&memcg_stock);
1843	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1844		drain_stock(stock);
1845		css_get(&memcg->css);
1846		WRITE_ONCE(stock->cached, memcg);
1847	}
1848	stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1849	WRITE_ONCE(stock->nr_pages, stock_pages);
1850
1851	if (stock_pages > MEMCG_CHARGE_BATCH)
1852		drain_stock(stock);
1853}
1854
1855static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1856{
1857	unsigned long flags;
1858
1859	local_lock_irqsave(&memcg_stock.stock_lock, flags);
1860	__refill_stock(memcg, nr_pages);
1861	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1862}
1863
1864/*
1865 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1866 * of the hierarchy under it.
1867 */
1868void drain_all_stock(struct mem_cgroup *root_memcg)
1869{
1870	int cpu, curcpu;
1871
1872	/* If someone's already draining, avoid adding running more workers. */
1873	if (!mutex_trylock(&percpu_charge_mutex))
1874		return;
1875	/*
1876	 * Notify other cpus that system-wide "drain" is running
1877	 * We do not care about races with the cpu hotplug because cpu down
1878	 * as well as workers from this path always operate on the local
1879	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1880	 */
1881	migrate_disable();
1882	curcpu = smp_processor_id();
1883	for_each_online_cpu(cpu) {
1884		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1885		struct mem_cgroup *memcg;
1886		bool flush = false;
1887
1888		rcu_read_lock();
1889		memcg = READ_ONCE(stock->cached);
1890		if (memcg && READ_ONCE(stock->nr_pages) &&
1891		    mem_cgroup_is_descendant(memcg, root_memcg))
1892			flush = true;
1893		else if (obj_stock_flush_required(stock, root_memcg))
1894			flush = true;
1895		rcu_read_unlock();
1896
1897		if (flush &&
1898		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1899			if (cpu == curcpu)
1900				drain_local_stock(&stock->work);
1901			else if (!cpu_is_isolated(cpu))
1902				schedule_work_on(cpu, &stock->work);
1903		}
 
1904	}
1905	migrate_enable();
1906	mutex_unlock(&percpu_charge_mutex);
1907}
1908
1909static int memcg_hotplug_cpu_dead(unsigned int cpu)
1910{
1911	struct memcg_stock_pcp *stock;
 
1912
1913	stock = &per_cpu(memcg_stock, cpu);
1914	drain_stock(stock);
1915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1916	return 0;
1917}
1918
1919static unsigned long reclaim_high(struct mem_cgroup *memcg,
1920				  unsigned int nr_pages,
1921				  gfp_t gfp_mask)
1922{
1923	unsigned long nr_reclaimed = 0;
1924
1925	do {
1926		unsigned long pflags;
1927
1928		if (page_counter_read(&memcg->memory) <=
1929		    READ_ONCE(memcg->memory.high))
1930			continue;
1931
1932		memcg_memory_event(memcg, MEMCG_HIGH);
1933
1934		psi_memstall_enter(&pflags);
1935		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1936							gfp_mask,
1937							MEMCG_RECLAIM_MAY_SWAP,
1938							NULL);
1939		psi_memstall_leave(&pflags);
1940	} while ((memcg = parent_mem_cgroup(memcg)) &&
1941		 !mem_cgroup_is_root(memcg));
1942
1943	return nr_reclaimed;
1944}
1945
1946static void high_work_func(struct work_struct *work)
1947{
1948	struct mem_cgroup *memcg;
1949
1950	memcg = container_of(work, struct mem_cgroup, high_work);
1951	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1952}
1953
1954/*
1955 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1956 * enough to still cause a significant slowdown in most cases, while still
1957 * allowing diagnostics and tracing to proceed without becoming stuck.
1958 */
1959#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1960
1961/*
1962 * When calculating the delay, we use these either side of the exponentiation to
1963 * maintain precision and scale to a reasonable number of jiffies (see the table
1964 * below.
1965 *
1966 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1967 *   overage ratio to a delay.
1968 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1969 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
1970 *   to produce a reasonable delay curve.
1971 *
1972 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1973 * reasonable delay curve compared to precision-adjusted overage, not
1974 * penalising heavily at first, but still making sure that growth beyond the
1975 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1976 * example, with a high of 100 megabytes:
1977 *
1978 *  +-------+------------------------+
1979 *  | usage | time to allocate in ms |
1980 *  +-------+------------------------+
1981 *  | 100M  |                      0 |
1982 *  | 101M  |                      6 |
1983 *  | 102M  |                     25 |
1984 *  | 103M  |                     57 |
1985 *  | 104M  |                    102 |
1986 *  | 105M  |                    159 |
1987 *  | 106M  |                    230 |
1988 *  | 107M  |                    313 |
1989 *  | 108M  |                    409 |
1990 *  | 109M  |                    518 |
1991 *  | 110M  |                    639 |
1992 *  | 111M  |                    774 |
1993 *  | 112M  |                    921 |
1994 *  | 113M  |                   1081 |
1995 *  | 114M  |                   1254 |
1996 *  | 115M  |                   1439 |
1997 *  | 116M  |                   1638 |
1998 *  | 117M  |                   1849 |
1999 *  | 118M  |                   2000 |
2000 *  | 119M  |                   2000 |
2001 *  | 120M  |                   2000 |
2002 *  +-------+------------------------+
2003 */
2004 #define MEMCG_DELAY_PRECISION_SHIFT 20
2005 #define MEMCG_DELAY_SCALING_SHIFT 14
2006
2007static u64 calculate_overage(unsigned long usage, unsigned long high)
2008{
2009	u64 overage;
2010
2011	if (usage <= high)
2012		return 0;
2013
2014	/*
2015	 * Prevent division by 0 in overage calculation by acting as if
2016	 * it was a threshold of 1 page
2017	 */
2018	high = max(high, 1UL);
2019
2020	overage = usage - high;
2021	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2022	return div64_u64(overage, high);
2023}
2024
2025static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2026{
2027	u64 overage, max_overage = 0;
2028
2029	do {
2030		overage = calculate_overage(page_counter_read(&memcg->memory),
2031					    READ_ONCE(memcg->memory.high));
2032		max_overage = max(overage, max_overage);
2033	} while ((memcg = parent_mem_cgroup(memcg)) &&
2034		 !mem_cgroup_is_root(memcg));
2035
2036	return max_overage;
2037}
2038
2039static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2040{
2041	u64 overage, max_overage = 0;
2042
2043	do {
2044		overage = calculate_overage(page_counter_read(&memcg->swap),
2045					    READ_ONCE(memcg->swap.high));
2046		if (overage)
2047			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2048		max_overage = max(overage, max_overage);
2049	} while ((memcg = parent_mem_cgroup(memcg)) &&
2050		 !mem_cgroup_is_root(memcg));
2051
2052	return max_overage;
2053}
2054
2055/*
2056 * Get the number of jiffies that we should penalise a mischievous cgroup which
2057 * is exceeding its memory.high by checking both it and its ancestors.
2058 */
2059static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2060					  unsigned int nr_pages,
2061					  u64 max_overage)
2062{
2063	unsigned long penalty_jiffies;
2064
2065	if (!max_overage)
2066		return 0;
2067
2068	/*
2069	 * We use overage compared to memory.high to calculate the number of
2070	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2071	 * fairly lenient on small overages, and increasingly harsh when the
2072	 * memcg in question makes it clear that it has no intention of stopping
2073	 * its crazy behaviour, so we exponentially increase the delay based on
2074	 * overage amount.
2075	 */
2076	penalty_jiffies = max_overage * max_overage * HZ;
2077	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2078	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2079
2080	/*
2081	 * Factor in the task's own contribution to the overage, such that four
2082	 * N-sized allocations are throttled approximately the same as one
2083	 * 4N-sized allocation.
2084	 *
2085	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2086	 * larger the current charge patch is than that.
2087	 */
2088	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2089}
2090
2091/*
2092 * Reclaims memory over the high limit. Called directly from
2093 * try_charge() (context permitting), as well as from the userland
2094 * return path where reclaim is always able to block.
2095 */
2096void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2097{
2098	unsigned long penalty_jiffies;
2099	unsigned long pflags;
2100	unsigned long nr_reclaimed;
2101	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2102	int nr_retries = MAX_RECLAIM_RETRIES;
2103	struct mem_cgroup *memcg;
2104	bool in_retry = false;
2105
2106	if (likely(!nr_pages))
2107		return;
2108
2109	memcg = get_mem_cgroup_from_mm(current->mm);
 
 
2110	current->memcg_nr_pages_over_high = 0;
2111
2112retry_reclaim:
2113	/*
2114	 * Bail if the task is already exiting. Unlike memory.max,
2115	 * memory.high enforcement isn't as strict, and there is no
2116	 * OOM killer involved, which means the excess could already
2117	 * be much bigger (and still growing) than it could for
2118	 * memory.max; the dying task could get stuck in fruitless
2119	 * reclaim for a long time, which isn't desirable.
2120	 */
2121	if (task_is_dying())
2122		goto out;
2123
2124	/*
2125	 * The allocating task should reclaim at least the batch size, but for
2126	 * subsequent retries we only want to do what's necessary to prevent oom
2127	 * or breaching resource isolation.
2128	 *
2129	 * This is distinct from memory.max or page allocator behaviour because
2130	 * memory.high is currently batched, whereas memory.max and the page
2131	 * allocator run every time an allocation is made.
2132	 */
2133	nr_reclaimed = reclaim_high(memcg,
2134				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2135				    gfp_mask);
2136
2137	/*
2138	 * memory.high is breached and reclaim is unable to keep up. Throttle
2139	 * allocators proactively to slow down excessive growth.
2140	 */
2141	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2142					       mem_find_max_overage(memcg));
2143
2144	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2145						swap_find_max_overage(memcg));
2146
2147	/*
2148	 * Clamp the max delay per usermode return so as to still keep the
2149	 * application moving forwards and also permit diagnostics, albeit
2150	 * extremely slowly.
2151	 */
2152	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2153
2154	/*
2155	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2156	 * that it's not even worth doing, in an attempt to be nice to those who
2157	 * go only a small amount over their memory.high value and maybe haven't
2158	 * been aggressively reclaimed enough yet.
2159	 */
2160	if (penalty_jiffies <= HZ / 100)
2161		goto out;
2162
2163	/*
2164	 * If reclaim is making forward progress but we're still over
2165	 * memory.high, we want to encourage that rather than doing allocator
2166	 * throttling.
2167	 */
2168	if (nr_reclaimed || nr_retries--) {
2169		in_retry = true;
2170		goto retry_reclaim;
2171	}
2172
2173	/*
2174	 * Reclaim didn't manage to push usage below the limit, slow
2175	 * this allocating task down.
2176	 *
2177	 * If we exit early, we're guaranteed to die (since
2178	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2179	 * need to account for any ill-begotten jiffies to pay them off later.
2180	 */
2181	psi_memstall_enter(&pflags);
2182	schedule_timeout_killable(penalty_jiffies);
2183	psi_memstall_leave(&pflags);
2184
2185out:
2186	css_put(&memcg->css);
2187}
2188
2189int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2190		     unsigned int nr_pages)
2191{
2192	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2193	int nr_retries = MAX_RECLAIM_RETRIES;
2194	struct mem_cgroup *mem_over_limit;
2195	struct page_counter *counter;
2196	unsigned long nr_reclaimed;
2197	bool passed_oom = false;
2198	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2199	bool drained = false;
2200	bool raised_max_event = false;
2201	unsigned long pflags;
2202
 
 
2203retry:
2204	if (consume_stock(memcg, nr_pages))
2205		return 0;
2206
2207	if (!do_memsw_account() ||
2208	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2209		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2210			goto done_restock;
2211		if (do_memsw_account())
2212			page_counter_uncharge(&memcg->memsw, batch);
2213		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2214	} else {
2215		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2216		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2217	}
2218
2219	if (batch > nr_pages) {
2220		batch = nr_pages;
2221		goto retry;
2222	}
2223
2224	/*
 
 
 
 
 
 
 
 
 
 
 
2225	 * Prevent unbounded recursion when reclaim operations need to
2226	 * allocate memory. This might exceed the limits temporarily,
2227	 * but we prefer facilitating memory reclaim and getting back
2228	 * under the limit over triggering OOM kills in these cases.
2229	 */
2230	if (unlikely(current->flags & PF_MEMALLOC))
2231		goto force;
2232
2233	if (unlikely(task_in_memcg_oom(current)))
2234		goto nomem;
2235
2236	if (!gfpflags_allow_blocking(gfp_mask))
2237		goto nomem;
2238
2239	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2240	raised_max_event = true;
2241
2242	psi_memstall_enter(&pflags);
2243	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2244						    gfp_mask, reclaim_options, NULL);
2245	psi_memstall_leave(&pflags);
2246
2247	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2248		goto retry;
2249
2250	if (!drained) {
2251		drain_all_stock(mem_over_limit);
2252		drained = true;
2253		goto retry;
2254	}
2255
2256	if (gfp_mask & __GFP_NORETRY)
2257		goto nomem;
2258	/*
2259	 * Even though the limit is exceeded at this point, reclaim
2260	 * may have been able to free some pages.  Retry the charge
2261	 * before killing the task.
2262	 *
2263	 * Only for regular pages, though: huge pages are rather
2264	 * unlikely to succeed so close to the limit, and we fall back
2265	 * to regular pages anyway in case of failure.
2266	 */
2267	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2268		goto retry;
 
 
 
 
 
 
2269
2270	if (nr_retries--)
2271		goto retry;
2272
2273	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2274		goto nomem;
 
 
 
2275
2276	/* Avoid endless loop for tasks bypassed by the oom killer */
2277	if (passed_oom && task_is_dying())
2278		goto nomem;
2279
2280	/*
2281	 * keep retrying as long as the memcg oom killer is able to make
2282	 * a forward progress or bypass the charge if the oom killer
2283	 * couldn't make any progress.
2284	 */
2285	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2286			   get_order(nr_pages * PAGE_SIZE))) {
2287		passed_oom = true;
2288		nr_retries = MAX_RECLAIM_RETRIES;
2289		goto retry;
2290	}
2291nomem:
2292	/*
2293	 * Memcg doesn't have a dedicated reserve for atomic
2294	 * allocations. But like the global atomic pool, we need to
2295	 * put the burden of reclaim on regular allocation requests
2296	 * and let these go through as privileged allocations.
2297	 */
2298	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2299		return -ENOMEM;
2300force:
2301	/*
2302	 * If the allocation has to be enforced, don't forget to raise
2303	 * a MEMCG_MAX event.
2304	 */
2305	if (!raised_max_event)
2306		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2307
2308	/*
2309	 * The allocation either can't fail or will lead to more memory
2310	 * being freed very soon.  Allow memory usage go over the limit
2311	 * temporarily by force charging it.
2312	 */
2313	page_counter_charge(&memcg->memory, nr_pages);
2314	if (do_memsw_account())
2315		page_counter_charge(&memcg->memsw, nr_pages);
 
2316
2317	return 0;
2318
2319done_restock:
 
2320	if (batch > nr_pages)
2321		refill_stock(memcg, batch - nr_pages);
2322
2323	/*
2324	 * If the hierarchy is above the normal consumption range, schedule
2325	 * reclaim on returning to userland.  We can perform reclaim here
2326	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2327	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2328	 * not recorded as it most likely matches current's and won't
2329	 * change in the meantime.  As high limit is checked again before
2330	 * reclaim, the cost of mismatch is negligible.
2331	 */
2332	do {
2333		bool mem_high, swap_high;
2334
2335		mem_high = page_counter_read(&memcg->memory) >
2336			READ_ONCE(memcg->memory.high);
2337		swap_high = page_counter_read(&memcg->swap) >
2338			READ_ONCE(memcg->swap.high);
2339
2340		/* Don't bother a random interrupted task */
2341		if (!in_task()) {
2342			if (mem_high) {
2343				schedule_work(&memcg->high_work);
2344				break;
2345			}
2346			continue;
2347		}
2348
2349		if (mem_high || swap_high) {
2350			/*
2351			 * The allocating tasks in this cgroup will need to do
2352			 * reclaim or be throttled to prevent further growth
2353			 * of the memory or swap footprints.
2354			 *
2355			 * Target some best-effort fairness between the tasks,
2356			 * and distribute reclaim work and delay penalties
2357			 * based on how much each task is actually allocating.
2358			 */
2359			current->memcg_nr_pages_over_high += batch;
2360			set_notify_resume(current);
2361			break;
2362		}
2363	} while ((memcg = parent_mem_cgroup(memcg)));
2364
2365	/*
2366	 * Reclaim is set up above to be called from the userland
2367	 * return path. But also attempt synchronous reclaim to avoid
2368	 * excessive overrun while the task is still inside the
2369	 * kernel. If this is successful, the return path will see it
2370	 * when it rechecks the overage and simply bail out.
2371	 */
2372	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2373	    !(current->flags & PF_MEMALLOC) &&
2374	    gfpflags_allow_blocking(gfp_mask))
2375		mem_cgroup_handle_over_high(gfp_mask);
2376	return 0;
2377}
2378
2379/**
2380 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2381 * @memcg: memcg previously charged.
2382 * @nr_pages: number of pages previously charged.
2383 */
2384void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2385{
2386	if (mem_cgroup_is_root(memcg))
2387		return;
2388
2389	page_counter_uncharge(&memcg->memory, nr_pages);
2390	if (do_memsw_account())
2391		page_counter_uncharge(&memcg->memsw, nr_pages);
 
 
2392}
2393
2394static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2395{
2396	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397	/*
2398	 * Any of the following ensures page's memcg stability:
 
 
 
 
 
 
 
 
 
 
2399	 *
2400	 * - the page lock
2401	 * - LRU isolation
2402	 * - exclusive reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2403	 */
2404	folio->memcg_data = (unsigned long)memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2405}
2406
2407/**
2408 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2409 * @folio: folio to commit the charge to.
2410 * @memcg: memcg previously charged.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411 */
2412void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
 
2413{
 
 
 
 
 
 
2414	css_get(&memcg->css);
2415	commit_charge(folio, memcg);
2416	memcg1_commit_charge(folio, memcg);
 
 
 
 
2417}
2418
2419static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2420				       struct pglist_data *pgdat,
2421				       enum node_stat_item idx, int nr)
2422{
2423	struct mem_cgroup *memcg;
2424	struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
 
 
 
2425
2426	rcu_read_lock();
2427	memcg = obj_cgroup_memcg(objcg);
2428	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2429	__mod_memcg_lruvec_state(lruvec, idx, nr);
2430	rcu_read_unlock();
2431}
2432
2433static __always_inline
2434struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2435{
2436	/*
2437	 * Slab objects are accounted individually, not per-page.
2438	 * Memcg membership data for each individual object is saved in
2439	 * slab->obj_exts.
2440	 */
2441	if (folio_test_slab(folio)) {
2442		struct slabobj_ext *obj_exts;
2443		struct slab *slab;
2444		unsigned int off;
2445
2446		slab = folio_slab(folio);
2447		obj_exts = slab_obj_exts(slab);
2448		if (!obj_exts)
2449			return NULL;
2450
2451		off = obj_to_index(slab->slab_cache, slab, p);
2452		if (obj_exts[off].objcg)
2453			return obj_cgroup_memcg(obj_exts[off].objcg);
 
2454
2455		return NULL;
2456	}
 
2457
2458	/*
2459	 * folio_memcg_check() is used here, because in theory we can encounter
2460	 * a folio where the slab flag has been cleared already, but
2461	 * slab->obj_exts has not been freed yet
2462	 * folio_memcg_check() will guarantee that a proper memory
2463	 * cgroup pointer or NULL will be returned.
 
 
 
 
 
2464	 */
2465	return folio_memcg_check(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
2466}
2467
2468/*
2469 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2470 * It is not suitable for objects allocated using vmalloc().
 
 
 
2471 *
2472 * A passed kernel object must be a slab object or a generic kernel page.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473 *
2474 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2475 * cgroup_mutex, etc.
2476 */
2477struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2478{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2479	if (mem_cgroup_disabled())
2480		return NULL;
 
 
 
2481
2482	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2483}
 
2484
2485static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2486{
2487	struct obj_cgroup *objcg = NULL;
2488
2489	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2490		objcg = rcu_dereference(memcg->objcg);
2491		if (likely(objcg && obj_cgroup_tryget(objcg)))
2492			break;
2493		objcg = NULL;
 
 
2494	}
2495	return objcg;
2496}
 
 
 
 
 
 
 
2497
2498static struct obj_cgroup *current_objcg_update(void)
 
 
 
2499{
2500	struct mem_cgroup *memcg;
2501	struct obj_cgroup *old, *objcg = NULL;
 
 
2502
2503	do {
2504		/* Atomically drop the update bit. */
2505		old = xchg(&current->objcg, NULL);
2506		if (old) {
2507			old = (struct obj_cgroup *)
2508				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2509			obj_cgroup_put(old);
2510
2511			old = NULL;
2512		}
2513
2514		/* If new objcg is NULL, no reason for the second atomic update. */
2515		if (!current->mm || (current->flags & PF_KTHREAD))
2516			return NULL;
2517
2518		/*
2519		 * Release the objcg pointer from the previous iteration,
2520		 * if try_cmpxcg() below fails.
2521		 */
2522		if (unlikely(objcg)) {
2523			obj_cgroup_put(objcg);
2524			objcg = NULL;
 
 
 
2525		}
 
 
 
 
2526
2527		/*
2528		 * Obtain the new objcg pointer. The current task can be
2529		 * asynchronously moved to another memcg and the previous
2530		 * memcg can be offlined. So let's get the memcg pointer
2531		 * and try get a reference to objcg under a rcu read lock.
2532		 */
2533
2534		rcu_read_lock();
2535		memcg = mem_cgroup_from_task(current);
2536		objcg = __get_obj_cgroup_from_memcg(memcg);
2537		rcu_read_unlock();
 
 
2538
2539		/*
2540		 * Try set up a new objcg pointer atomically. If it
2541		 * fails, it means the update flag was set concurrently, so
2542		 * the whole procedure should be repeated.
2543		 */
2544	} while (!try_cmpxchg(&current->objcg, &old, objcg));
2545
2546	return objcg;
2547}
2548
2549__always_inline struct obj_cgroup *current_obj_cgroup(void)
 
 
2550{
2551	struct mem_cgroup *memcg;
2552	struct obj_cgroup *objcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553
2554	if (in_task()) {
2555		memcg = current->active_memcg;
2556		if (unlikely(memcg))
2557			goto from_memcg;
2558
2559		objcg = READ_ONCE(current->objcg);
2560		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2561			objcg = current_objcg_update();
2562		/*
2563		 * Objcg reference is kept by the task, so it's safe
2564		 * to use the objcg by the current task.
2565		 */
2566		return objcg;
2567	}
 
2568
2569	memcg = this_cpu_read(int_active_memcg);
2570	if (unlikely(memcg))
2571		goto from_memcg;
2572
2573	return NULL;
2574
2575from_memcg:
2576	objcg = NULL;
2577	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
 
 
 
 
 
2578		/*
2579		 * Memcg pointer is protected by scope (see set_active_memcg())
2580		 * and is pinning the corresponding objcg, so objcg can't go
2581		 * away and can be used within the scope without any additional
2582		 * protection.
2583		 */
2584		objcg = rcu_dereference_check(memcg->objcg, 1);
2585		if (likely(objcg))
 
2586			break;
2587	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2588
2589	return objcg;
 
 
 
2590}
2591
2592struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
 
 
 
 
 
2593{
2594	struct obj_cgroup *objcg;
 
 
 
 
 
 
2595
2596	if (!memcg_kmem_online())
2597		return NULL;
2598
2599	if (folio_memcg_kmem(folio)) {
2600		objcg = __folio_objcg(folio);
2601		obj_cgroup_get(objcg);
2602	} else {
2603		struct mem_cgroup *memcg;
 
 
2604
2605		rcu_read_lock();
2606		memcg = __folio_memcg(folio);
2607		if (memcg)
2608			objcg = __get_obj_cgroup_from_memcg(memcg);
2609		else
2610			objcg = NULL;
2611		rcu_read_unlock();
2612	}
2613	return objcg;
 
 
 
 
 
 
 
 
 
 
 
 
2614}
2615
2616/*
2617 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2618 * @objcg: object cgroup to uncharge
2619 * @nr_pages: number of pages to uncharge
2620 */
2621static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2622				      unsigned int nr_pages)
 
2623{
2624	struct mem_cgroup *memcg;
 
 
2625
2626	memcg = get_mem_cgroup_from_objcg(objcg);
 
2627
2628	mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2629	memcg1_account_kmem(memcg, -nr_pages);
2630	refill_stock(memcg, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
2631
2632	css_put(&memcg->css);
2633}
2634
2635/*
2636 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2637 * @objcg: object cgroup to charge
2638 * @gfp: reclaim mode
2639 * @nr_pages: number of pages to charge
2640 *
2641 * Returns 0 on success, an error code on failure.
2642 */
2643static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2644				   unsigned int nr_pages)
2645{
2646	struct mem_cgroup *memcg;
2647	int ret;
 
 
2648
2649	memcg = get_mem_cgroup_from_objcg(objcg);
 
 
 
 
2650
2651	ret = try_charge_memcg(memcg, gfp, nr_pages);
2652	if (ret)
2653		goto out;
 
2654
2655	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2656	memcg1_account_kmem(memcg, nr_pages);
2657out:
2658	css_put(&memcg->css);
2659
2660	return ret;
 
 
 
2661}
2662
2663/**
2664 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2665 * @page: page to charge
2666 * @gfp: reclaim mode
2667 * @order: allocation order
2668 *
2669 * Returns 0 on success, an error code on failure.
2670 */
2671int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2672{
2673	struct obj_cgroup *objcg;
2674	int ret = 0;
 
 
2675
2676	objcg = current_obj_cgroup();
2677	if (objcg) {
2678		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2679		if (!ret) {
2680			obj_cgroup_get(objcg);
2681			page->memcg_data = (unsigned long)objcg |
2682				MEMCG_DATA_KMEM;
2683			return 0;
2684		}
 
 
 
 
 
2685	}
2686	return ret;
2687}
2688
2689/**
2690 * __memcg_kmem_uncharge_page: uncharge a kmem page
2691 * @page: page to uncharge
2692 * @order: allocation order
2693 */
2694void __memcg_kmem_uncharge_page(struct page *page, int order)
 
 
 
 
2695{
2696	struct folio *folio = page_folio(page);
2697	struct obj_cgroup *objcg;
2698	unsigned int nr_pages = 1 << order;
2699
2700	if (!folio_memcg_kmem(folio))
2701		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702
2703	objcg = __folio_objcg(folio);
2704	obj_cgroup_uncharge_pages(objcg, nr_pages);
2705	folio->memcg_data = 0;
2706	obj_cgroup_put(objcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2707}
2708
2709static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2710		     enum node_stat_item idx, int nr)
2711{
2712	struct memcg_stock_pcp *stock;
2713	struct obj_cgroup *old = NULL;
2714	unsigned long flags;
2715	int *bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2716
2717	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2718	stock = this_cpu_ptr(&memcg_stock);
 
 
 
2719
 
 
2720	/*
2721	 * Save vmstat data in stock and skip vmstat array update unless
2722	 * accumulating over a page of vmstat data or when pgdat or idx
2723	 * changes.
2724	 */
2725	if (READ_ONCE(stock->cached_objcg) != objcg) {
2726		old = drain_obj_stock(stock);
2727		obj_cgroup_get(objcg);
2728		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2729				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2730		WRITE_ONCE(stock->cached_objcg, objcg);
2731		stock->cached_pgdat = pgdat;
2732	} else if (stock->cached_pgdat != pgdat) {
2733		/* Flush the existing cached vmstat data */
2734		struct pglist_data *oldpg = stock->cached_pgdat;
2735
2736		if (stock->nr_slab_reclaimable_b) {
2737			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2738					  stock->nr_slab_reclaimable_b);
2739			stock->nr_slab_reclaimable_b = 0;
2740		}
2741		if (stock->nr_slab_unreclaimable_b) {
2742			__mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2743					  stock->nr_slab_unreclaimable_b);
2744			stock->nr_slab_unreclaimable_b = 0;
2745		}
2746		stock->cached_pgdat = pgdat;
2747	}
2748
2749	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2750					       : &stock->nr_slab_unreclaimable_b;
2751	/*
2752	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2753	 * cached locally at least once before pushing it out.
2754	 */
2755	if (!*bytes) {
2756		*bytes = nr;
2757		nr = 0;
2758	} else {
2759		*bytes += nr;
2760		if (abs(*bytes) > PAGE_SIZE) {
2761			nr = *bytes;
2762			*bytes = 0;
2763		} else {
2764			nr = 0;
2765		}
2766	}
2767	if (nr)
2768		__mod_objcg_mlstate(objcg, pgdat, idx, nr);
2769
2770	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2771	obj_cgroup_put(old);
 
2772}
2773
2774static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2775{
2776	struct memcg_stock_pcp *stock;
2777	unsigned long flags;
2778	bool ret = false;
2779
2780	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2781
2782	stock = this_cpu_ptr(&memcg_stock);
2783	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2784		stock->nr_bytes -= nr_bytes;
2785		ret = true;
2786	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2787
2788	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
 
 
 
2789
 
 
 
2790	return ret;
2791}
2792
2793static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2794{
2795	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2796
2797	if (!old)
2798		return NULL;
2799
2800	if (stock->nr_bytes) {
2801		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2802		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2803
2804		if (nr_pages) {
2805			struct mem_cgroup *memcg;
2806
2807			memcg = get_mem_cgroup_from_objcg(old);
2808
2809			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2810			memcg1_account_kmem(memcg, -nr_pages);
2811			__refill_stock(memcg, nr_pages);
2812
2813			css_put(&memcg->css);
2814		}
2815
 
2816		/*
2817		 * The leftover is flushed to the centralized per-memcg value.
2818		 * On the next attempt to refill obj stock it will be moved
2819		 * to a per-cpu stock (probably, on an other CPU), see
2820		 * refill_obj_stock().
 
2821		 *
2822		 * How often it's flushed is a trade-off between the memory
2823		 * limit enforcement accuracy and potential CPU contention,
2824		 * so it might be changed in the future.
 
 
 
 
 
2825		 */
2826		atomic_add(nr_bytes, &old->nr_charged_bytes);
2827		stock->nr_bytes = 0;
2828	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2829
2830	/*
2831	 * Flush the vmstat data in current stock
2832	 */
2833	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2834		if (stock->nr_slab_reclaimable_b) {
2835			__mod_objcg_mlstate(old, stock->cached_pgdat,
2836					  NR_SLAB_RECLAIMABLE_B,
2837					  stock->nr_slab_reclaimable_b);
2838			stock->nr_slab_reclaimable_b = 0;
 
2839		}
2840		if (stock->nr_slab_unreclaimable_b) {
2841			__mod_objcg_mlstate(old, stock->cached_pgdat,
2842					  NR_SLAB_UNRECLAIMABLE_B,
2843					  stock->nr_slab_unreclaimable_b);
2844			stock->nr_slab_unreclaimable_b = 0;
 
 
 
 
 
 
 
 
2845		}
2846		stock->cached_pgdat = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2847	}
2848
2849	WRITE_ONCE(stock->cached_objcg, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2850	/*
2851	 * The `old' objects needs to be released by the caller via
2852	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
 
 
2853	 */
2854	return old;
 
 
 
 
 
 
 
2855}
 
2856
2857static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2858				     struct mem_cgroup *root_memcg)
2859{
2860	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2861	struct mem_cgroup *memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2862
2863	if (objcg) {
2864		memcg = obj_cgroup_memcg(objcg);
2865		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2866			return true;
 
 
 
 
 
 
 
 
2867	}
2868
2869	return false;
2870}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2871
2872static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2873			     bool allow_uncharge)
2874{
2875	struct memcg_stock_pcp *stock;
2876	struct obj_cgroup *old = NULL;
2877	unsigned long flags;
2878	unsigned int nr_pages = 0;
2879
2880	local_lock_irqsave(&memcg_stock.stock_lock, flags);
 
2881
2882	stock = this_cpu_ptr(&memcg_stock);
2883	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2884		old = drain_obj_stock(stock);
2885		obj_cgroup_get(objcg);
2886		WRITE_ONCE(stock->cached_objcg, objcg);
2887		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2888				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2889		allow_uncharge = true;	/* Allow uncharge when objcg changes */
 
 
 
 
 
 
 
 
 
 
 
 
 
2890	}
2891	stock->nr_bytes += nr_bytes;
 
 
 
 
 
 
 
2892
2893	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2894		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2895		stock->nr_bytes &= (PAGE_SIZE - 1);
 
 
 
2896	}
2897
2898	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2899	obj_cgroup_put(old);
2900
2901	if (nr_pages)
2902		obj_cgroup_uncharge_pages(objcg, nr_pages);
2903}
 
2904
2905int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2906{
2907	unsigned int nr_pages, nr_bytes;
2908	int ret;
2909
2910	if (consume_obj_stock(objcg, size))
2911		return 0;
 
 
2912
2913	/*
2914	 * In theory, objcg->nr_charged_bytes can have enough
2915	 * pre-charged bytes to satisfy the allocation. However,
2916	 * flushing objcg->nr_charged_bytes requires two atomic
2917	 * operations, and objcg->nr_charged_bytes can't be big.
2918	 * The shared objcg->nr_charged_bytes can also become a
2919	 * performance bottleneck if all tasks of the same memcg are
2920	 * trying to update it. So it's better to ignore it and try
2921	 * grab some new pages. The stock's nr_bytes will be flushed to
2922	 * objcg->nr_charged_bytes later on when objcg changes.
2923	 *
2924	 * The stock's nr_bytes may contain enough pre-charged bytes
2925	 * to allow one less page from being charged, but we can't rely
2926	 * on the pre-charged bytes not being changed outside of
2927	 * consume_obj_stock() or refill_obj_stock(). So ignore those
2928	 * pre-charged bytes as well when charging pages. To avoid a
2929	 * page uncharge right after a page charge, we set the
2930	 * allow_uncharge flag to false when calling refill_obj_stock()
2931	 * to temporarily allow the pre-charged bytes to exceed the page
2932	 * size limit. The maximum reachable value of the pre-charged
2933	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2934	 * race.
2935	 */
2936	nr_pages = size >> PAGE_SHIFT;
2937	nr_bytes = size & (PAGE_SIZE - 1);
2938
2939	if (nr_bytes)
2940		nr_pages += 1;
2941
2942	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2943	if (!ret && nr_bytes)
2944		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2945
2946	return ret;
2947}
2948
2949void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
 
2950{
2951	refill_obj_stock(objcg, size, true);
 
 
2952}
2953
2954static inline size_t obj_full_size(struct kmem_cache *s)
 
2955{
2956	/*
2957	 * For each accounted object there is an extra space which is used
2958	 * to store obj_cgroup membership. Charge it too.
2959	 */
2960	return s->size + sizeof(struct obj_cgroup *);
 
 
 
 
 
 
2961}
2962
2963bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2964				  gfp_t flags, size_t size, void **p)
2965{
2966	struct obj_cgroup *objcg;
2967	struct slab *slab;
2968	unsigned long off;
2969	size_t i;
 
 
 
 
 
 
 
 
 
 
2970
2971	/*
2972	 * The obtained objcg pointer is safe to use within the current scope,
2973	 * defined by current task or set_active_memcg() pair.
2974	 * obj_cgroup_get() is used to get a permanent reference.
2975	 */
2976	objcg = current_obj_cgroup();
2977	if (!objcg)
2978		return true;
2979
2980	/*
2981	 * slab_alloc_node() avoids the NULL check, so we might be called with a
2982	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2983	 * the whole requested size.
2984	 * return success as there's nothing to free back
2985	 */
2986	if (unlikely(*p == NULL))
2987		return true;
 
 
 
2988
2989	flags &= gfp_allowed_mask;
 
 
 
 
 
 
 
2990
2991	if (lru) {
2992		int ret;
2993		struct mem_cgroup *memcg;
 
 
2994
2995		memcg = get_mem_cgroup_from_objcg(objcg);
2996		ret = memcg_list_lru_alloc(memcg, lru, flags);
2997		css_put(&memcg->css);
 
 
 
2998
2999		if (ret)
3000			return false;
3001	}
 
 
 
 
 
 
3002
3003	if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
3004		return false;
 
 
 
 
 
 
3005
3006	for (i = 0; i < size; i++) {
3007		slab = virt_to_slab(p[i]);
 
3008
3009		if (!slab_obj_exts(slab) &&
3010		    alloc_slab_obj_exts(slab, s, flags, false)) {
3011			obj_cgroup_uncharge(objcg, obj_full_size(s));
3012			continue;
3013		}
3014
3015		off = obj_to_index(s, slab, p[i]);
3016		obj_cgroup_get(objcg);
3017		slab_obj_exts(slab)[off].objcg = objcg;
3018		mod_objcg_state(objcg, slab_pgdat(slab),
3019				cache_vmstat_idx(s), obj_full_size(s));
3020	}
3021
3022	return true;
 
3023}
3024
3025void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3026			    void **p, int objects, struct slabobj_ext *obj_exts)
3027{
3028	for (int i = 0; i < objects; i++) {
3029		struct obj_cgroup *objcg;
3030		unsigned int off;
3031
3032		off = obj_to_index(s, slab, p[i]);
3033		objcg = obj_exts[off].objcg;
3034		if (!objcg)
3035			continue;
3036
3037		obj_exts[off].objcg = NULL;
3038		obj_cgroup_uncharge(objcg, obj_full_size(s));
3039		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3040				-obj_full_size(s));
3041		obj_cgroup_put(objcg);
3042	}
3043}
3044
3045/*
3046 * Because folio_memcg(head) is not set on tails, set it now.
3047 */
3048void split_page_memcg(struct page *head, int old_order, int new_order)
3049{
3050	struct folio *folio = page_folio(head);
3051	int i;
3052	unsigned int old_nr = 1 << old_order;
3053	unsigned int new_nr = 1 << new_order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054
3055	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3056		return;
3057
3058	for (i = new_nr; i < old_nr; i += new_nr)
3059		folio_page(folio, i)->memcg_data = folio->memcg_data;
 
 
 
3060
3061	if (folio_memcg_kmem(folio))
3062		obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3063	else
3064		css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3065}
3066
3067unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
 
3068{
3069	unsigned long val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3070
3071	if (mem_cgroup_is_root(memcg)) {
3072		/*
3073		 * Approximate root's usage from global state. This isn't
3074		 * perfect, but the root usage was always an approximation.
3075		 */
3076		val = global_node_page_state(NR_FILE_PAGES) +
3077			global_node_page_state(NR_ANON_MAPPED);
3078		if (swap)
3079			val += total_swap_pages - get_nr_swap_pages();
3080	} else {
3081		if (!swap)
3082			val = page_counter_read(&memcg->memory);
3083		else
3084			val = page_counter_read(&memcg->memsw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3085	}
3086	return val;
 
3087}
3088
3089static int memcg_online_kmem(struct mem_cgroup *memcg)
 
3090{
3091	struct obj_cgroup *objcg;
 
3092
3093	if (mem_cgroup_kmem_disabled())
3094		return 0;
 
 
 
3095
3096	if (unlikely(mem_cgroup_is_root(memcg)))
3097		return 0;
 
 
3098
3099	objcg = obj_cgroup_alloc();
3100	if (!objcg)
3101		return -ENOMEM;
3102
3103	objcg->memcg = memcg;
3104	rcu_assign_pointer(memcg->objcg, objcg);
3105	obj_cgroup_get(objcg);
3106	memcg->orig_objcg = objcg;
3107
3108	static_branch_enable(&memcg_kmem_online_key);
 
3109
3110	memcg->kmemcg_id = memcg->id.id;
 
 
 
3111
3112	return 0;
3113}
3114
3115static void memcg_offline_kmem(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3116{
3117	struct mem_cgroup *parent;
3118
3119	if (mem_cgroup_kmem_disabled())
3120		return;
 
 
 
3121
3122	if (unlikely(mem_cgroup_is_root(memcg)))
3123		return;
 
 
3124
3125	parent = parent_mem_cgroup(memcg);
3126	if (!parent)
3127		parent = root_mem_cgroup;
3128
3129	memcg_reparent_list_lrus(memcg, parent);
 
 
3130
3131	/*
3132	 * Objcg's reparenting must be after list_lru's, make sure list_lru
3133	 * helpers won't use parent's list_lru until child is drained.
3134	 */
3135	memcg_reparent_objcgs(memcg, parent);
3136}
3137
3138#ifdef CONFIG_CGROUP_WRITEBACK
3139
3140#include <trace/events/writeback.h>
 
 
 
3141
3142static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3143{
3144	return wb_domain_init(&memcg->cgwb_domain, gfp);
3145}
3146
3147static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3148{
3149	wb_domain_exit(&memcg->cgwb_domain);
3150}
3151
3152static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3153{
3154	wb_domain_size_changed(&memcg->cgwb_domain);
3155}
3156
3157struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3158{
3159	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3160
3161	if (!memcg->css.parent)
3162		return NULL;
3163
3164	return &memcg->cgwb_domain;
3165}
3166
3167/**
3168 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3169 * @wb: bdi_writeback in question
3170 * @pfilepages: out parameter for number of file pages
3171 * @pheadroom: out parameter for number of allocatable pages according to memcg
3172 * @pdirty: out parameter for number of dirty pages
3173 * @pwriteback: out parameter for number of pages under writeback
3174 *
3175 * Determine the numbers of file, headroom, dirty, and writeback pages in
3176 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3177 * is a bit more involved.
3178 *
3179 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3180 * headroom is calculated as the lowest headroom of itself and the
3181 * ancestors.  Note that this doesn't consider the actual amount of
3182 * available memory in the system.  The caller should further cap
3183 * *@pheadroom accordingly.
3184 */
3185void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3186			 unsigned long *pheadroom, unsigned long *pdirty,
3187			 unsigned long *pwriteback)
3188{
3189	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3190	struct mem_cgroup *parent;
3191
3192	mem_cgroup_flush_stats_ratelimited(memcg);
3193
3194	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3195	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3196	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3197			memcg_page_state(memcg, NR_ACTIVE_FILE);
 
3198
3199	*pheadroom = PAGE_COUNTER_MAX;
3200	while ((parent = parent_mem_cgroup(memcg))) {
3201		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3202					    READ_ONCE(memcg->memory.high));
3203		unsigned long used = page_counter_read(&memcg->memory);
3204
3205		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3206		memcg = parent;
3207	}
3208}
3209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3210/*
3211 * Foreign dirty flushing
3212 *
3213 * There's an inherent mismatch between memcg and writeback.  The former
3214 * tracks ownership per-page while the latter per-inode.  This was a
3215 * deliberate design decision because honoring per-page ownership in the
3216 * writeback path is complicated, may lead to higher CPU and IO overheads
3217 * and deemed unnecessary given that write-sharing an inode across
3218 * different cgroups isn't a common use-case.
3219 *
3220 * Combined with inode majority-writer ownership switching, this works well
3221 * enough in most cases but there are some pathological cases.  For
3222 * example, let's say there are two cgroups A and B which keep writing to
3223 * different but confined parts of the same inode.  B owns the inode and
3224 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3225 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3226 * triggering background writeback.  A will be slowed down without a way to
3227 * make writeback of the dirty pages happen.
3228 *
3229 * Conditions like the above can lead to a cgroup getting repeatedly and
3230 * severely throttled after making some progress after each
3231 * dirty_expire_interval while the underlying IO device is almost
3232 * completely idle.
3233 *
3234 * Solving this problem completely requires matching the ownership tracking
3235 * granularities between memcg and writeback in either direction.  However,
3236 * the more egregious behaviors can be avoided by simply remembering the
3237 * most recent foreign dirtying events and initiating remote flushes on
3238 * them when local writeback isn't enough to keep the memory clean enough.
3239 *
3240 * The following two functions implement such mechanism.  When a foreign
3241 * page - a page whose memcg and writeback ownerships don't match - is
3242 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3243 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3244 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3245 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3246 * foreign bdi_writebacks which haven't expired.  Both the numbers of
3247 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3248 * limited to MEMCG_CGWB_FRN_CNT.
3249 *
3250 * The mechanism only remembers IDs and doesn't hold any object references.
3251 * As being wrong occasionally doesn't matter, updates and accesses to the
3252 * records are lockless and racy.
3253 */
3254void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3255					     struct bdi_writeback *wb)
3256{
3257	struct mem_cgroup *memcg = folio_memcg(folio);
3258	struct memcg_cgwb_frn *frn;
3259	u64 now = get_jiffies_64();
3260	u64 oldest_at = now;
3261	int oldest = -1;
3262	int i;
3263
3264	trace_track_foreign_dirty(folio, wb);
3265
3266	/*
3267	 * Pick the slot to use.  If there is already a slot for @wb, keep
3268	 * using it.  If not replace the oldest one which isn't being
3269	 * written out.
3270	 */
3271	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3272		frn = &memcg->cgwb_frn[i];
3273		if (frn->bdi_id == wb->bdi->id &&
3274		    frn->memcg_id == wb->memcg_css->id)
3275			break;
3276		if (time_before64(frn->at, oldest_at) &&
3277		    atomic_read(&frn->done.cnt) == 1) {
3278			oldest = i;
3279			oldest_at = frn->at;
3280		}
3281	}
3282
3283	if (i < MEMCG_CGWB_FRN_CNT) {
3284		/*
3285		 * Re-using an existing one.  Update timestamp lazily to
3286		 * avoid making the cacheline hot.  We want them to be
3287		 * reasonably up-to-date and significantly shorter than
3288		 * dirty_expire_interval as that's what expires the record.
3289		 * Use the shorter of 1s and dirty_expire_interval / 8.
3290		 */
3291		unsigned long update_intv =
3292			min_t(unsigned long, HZ,
3293			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3294
3295		if (time_before64(frn->at, now - update_intv))
3296			frn->at = now;
3297	} else if (oldest >= 0) {
3298		/* replace the oldest free one */
3299		frn = &memcg->cgwb_frn[oldest];
3300		frn->bdi_id = wb->bdi->id;
3301		frn->memcg_id = wb->memcg_css->id;
3302		frn->at = now;
3303	}
3304}
3305
3306/* issue foreign writeback flushes for recorded foreign dirtying events */
3307void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
 
 
 
 
 
3308{
3309	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3310	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3311	u64 now = jiffies_64;
3312	int i;
3313
3314	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3315		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3316
 
3317		/*
3318		 * If the record is older than dirty_expire_interval,
3319		 * writeback on it has already started.  No need to kick it
3320		 * off again.  Also, don't start a new one if there's
3321		 * already one in flight.
 
 
 
3322		 */
3323		if (time_after64(frn->at, now - intv) &&
3324		    atomic_read(&frn->done.cnt) == 1) {
3325			frn->at = 0;
3326			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3327			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3328					       WB_REASON_FOREIGN_FLUSH,
3329					       &frn->done);
 
3330		}
 
3331	}
3332}
3333
3334#else	/* CONFIG_CGROUP_WRITEBACK */
3335
3336static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3337{
3338	return 0;
3339}
3340
3341static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
 
3342{
 
 
 
 
 
3343}
3344
3345static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
3346{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3347}
3348
3349#endif	/* CONFIG_CGROUP_WRITEBACK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3350
3351/*
3352 * Private memory cgroup IDR
3353 *
3354 * Swap-out records and page cache shadow entries need to store memcg
3355 * references in constrained space, so we maintain an ID space that is
3356 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3357 * memory-controlled cgroups to 64k.
3358 *
3359 * However, there usually are many references to the offline CSS after
3360 * the cgroup has been destroyed, such as page cache or reclaimable
3361 * slab objects, that don't need to hang on to the ID. We want to keep
3362 * those dead CSS from occupying IDs, or we might quickly exhaust the
3363 * relatively small ID space and prevent the creation of new cgroups
3364 * even when there are much fewer than 64k cgroups - possibly none.
3365 *
3366 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3367 * be freed and recycled when it's no longer needed, which is usually
3368 * when the CSS is offlined.
3369 *
3370 * The only exception to that are records of swapped out tmpfs/shmem
3371 * pages that need to be attributed to live ancestors on swapin. But
3372 * those references are manageable from userspace.
3373 */
3374
3375#define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3376static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3377
3378static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3379{
3380	if (memcg->id.id > 0) {
3381		xa_erase(&mem_cgroup_ids, memcg->id.id);
3382		memcg->id.id = 0;
3383	}
3384}
3385
3386void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3387					   unsigned int n)
3388{
3389	refcount_add(n, &memcg->id.ref);
3390}
3391
3392void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3393{
3394	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3395		mem_cgroup_id_remove(memcg);
3396
3397		/* Memcg ID pins CSS */
3398		css_put(&memcg->css);
3399	}
3400}
3401
 
 
 
 
 
3402static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3403{
3404	mem_cgroup_id_put_many(memcg, 1);
3405}
3406
3407/**
3408 * mem_cgroup_from_id - look up a memcg from a memcg id
3409 * @id: the memcg id to look up
3410 *
3411 * Caller must hold rcu_read_lock().
3412 */
3413struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3414{
3415	WARN_ON_ONCE(!rcu_read_lock_held());
3416	return xa_load(&mem_cgroup_ids, id);
3417}
3418
3419#ifdef CONFIG_SHRINKER_DEBUG
3420struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3421{
3422	struct cgroup *cgrp;
3423	struct cgroup_subsys_state *css;
3424	struct mem_cgroup *memcg;
3425
3426	cgrp = cgroup_get_from_id(ino);
3427	if (IS_ERR(cgrp))
3428		return ERR_CAST(cgrp);
3429
3430	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3431	if (css)
3432		memcg = container_of(css, struct mem_cgroup, css);
3433	else
3434		memcg = ERR_PTR(-ENOENT);
3435
3436	cgroup_put(cgrp);
3437
3438	return memcg;
3439}
3440#endif
3441
3442static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3443{
3444	struct mem_cgroup_per_node *pn;
3445
3446	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
 
 
 
 
 
 
 
 
 
 
3447	if (!pn)
3448		return false;
3449
3450	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3451					GFP_KERNEL_ACCOUNT, node);
3452	if (!pn->lruvec_stats)
3453		goto fail;
3454
3455	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3456						   GFP_KERNEL_ACCOUNT);
3457	if (!pn->lruvec_stats_percpu)
3458		goto fail;
3459
3460	lruvec_init(&pn->lruvec);
 
 
3461	pn->memcg = memcg;
3462
3463	memcg->nodeinfo[node] = pn;
3464	return true;
3465fail:
3466	kfree(pn->lruvec_stats);
3467	kfree(pn);
3468	return false;
3469}
3470
3471static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3472{
3473	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3474
3475	if (!pn)
3476		return;
3477
3478	free_percpu(pn->lruvec_stats_percpu);
3479	kfree(pn->lruvec_stats);
3480	kfree(pn);
3481}
3482
3483static void __mem_cgroup_free(struct mem_cgroup *memcg)
3484{
3485	int node;
3486
3487	obj_cgroup_put(memcg->orig_objcg);
3488
3489	for_each_node(node)
3490		free_mem_cgroup_per_node_info(memcg, node);
3491	memcg1_free_events(memcg);
3492	kfree(memcg->vmstats);
3493	free_percpu(memcg->vmstats_percpu);
3494	kfree(memcg);
3495}
3496
3497static void mem_cgroup_free(struct mem_cgroup *memcg)
3498{
3499	lru_gen_exit_memcg(memcg);
3500	memcg_wb_domain_exit(memcg);
3501	__mem_cgroup_free(memcg);
3502}
3503
3504static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3505{
3506	struct memcg_vmstats_percpu *statc, *pstatc;
3507	struct mem_cgroup *memcg;
3508	int node, cpu;
3509	int __maybe_unused i;
3510	long error;
 
 
3511
3512	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3513	if (!memcg)
3514		return ERR_PTR(-ENOMEM);
3515
3516	error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3517			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3518	if (error)
 
3519		goto fail;
3520	error = -ENOMEM;
3521
3522	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3523				 GFP_KERNEL_ACCOUNT);
3524	if (!memcg->vmstats)
3525		goto fail;
3526
3527	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3528						 GFP_KERNEL_ACCOUNT);
3529	if (!memcg->vmstats_percpu)
3530		goto fail;
3531
3532	if (!memcg1_alloc_events(memcg))
3533		goto fail;
3534
3535	for_each_possible_cpu(cpu) {
3536		if (parent)
3537			pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3538		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3539		statc->parent = parent ? pstatc : NULL;
3540		statc->vmstats = memcg->vmstats;
3541	}
3542
3543	for_each_node(node)
3544		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3545			goto fail;
3546
3547	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3548		goto fail;
3549
3550	INIT_WORK(&memcg->high_work, high_work_func);
 
 
 
 
3551	vmpressure_init(&memcg->vmpressure);
3552	INIT_LIST_HEAD(&memcg->memory_peaks);
3553	INIT_LIST_HEAD(&memcg->swap_peaks);
3554	spin_lock_init(&memcg->peaks_lock);
3555	memcg->socket_pressure = jiffies;
3556	memcg1_memcg_init(memcg);
3557	memcg->kmemcg_id = -1;
3558	INIT_LIST_HEAD(&memcg->objcg_list);
3559#ifdef CONFIG_CGROUP_WRITEBACK
3560	INIT_LIST_HEAD(&memcg->cgwb_list);
3561	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3562		memcg->cgwb_frn[i].done =
3563			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3564#endif
3565#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3566	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3567	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3568	memcg->deferred_split_queue.split_queue_len = 0;
3569#endif
3570	lru_gen_init_memcg(memcg);
3571	return memcg;
3572fail:
3573	mem_cgroup_id_remove(memcg);
 
3574	__mem_cgroup_free(memcg);
3575	return ERR_PTR(error);
3576}
3577
3578static struct cgroup_subsys_state * __ref
3579mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3580{
3581	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3582	struct mem_cgroup *memcg, *old_memcg;
 
3583
3584	old_memcg = set_active_memcg(parent);
3585	memcg = mem_cgroup_alloc(parent);
3586	set_active_memcg(old_memcg);
3587	if (IS_ERR(memcg))
3588		return ERR_CAST(memcg);
3589
3590	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3591	memcg1_soft_limit_reset(memcg);
3592#ifdef CONFIG_ZSWAP
3593	memcg->zswap_max = PAGE_COUNTER_MAX;
3594	WRITE_ONCE(memcg->zswap_writeback, true);
3595#endif
3596	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3597	if (parent) {
3598		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3599
3600		page_counter_init(&memcg->memory, &parent->memory, true);
3601		page_counter_init(&memcg->swap, &parent->swap, false);
3602#ifdef CONFIG_MEMCG_V1
3603		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3604		page_counter_init(&memcg->kmem, &parent->kmem, false);
3605		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3606#endif
3607	} else {
3608		init_memcg_stats();
3609		init_memcg_events();
3610		page_counter_init(&memcg->memory, NULL, true);
3611		page_counter_init(&memcg->swap, NULL, false);
3612#ifdef CONFIG_MEMCG_V1
3613		page_counter_init(&memcg->kmem, NULL, false);
3614		page_counter_init(&memcg->tcpmem, NULL, false);
3615#endif
3616		root_mem_cgroup = memcg;
3617		return &memcg->css;
3618	}
3619
 
 
 
 
3620	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3621		static_branch_inc(&memcg_sockets_enabled_key);
3622
3623	if (!cgroup_memory_nobpf)
3624		static_branch_inc(&memcg_bpf_enabled_key);
3625
3626	return &memcg->css;
 
 
 
3627}
3628
3629static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3630{
3631	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3632
3633	if (memcg_online_kmem(memcg))
3634		goto remove_id;
3635
3636	/*
3637	 * A memcg must be visible for expand_shrinker_info()
3638	 * by the time the maps are allocated. So, we allocate maps
3639	 * here, when for_each_mem_cgroup() can't skip it.
3640	 */
3641	if (alloc_shrinker_info(memcg))
3642		goto offline_kmem;
3643
3644	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3645		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3646				   FLUSH_TIME);
3647	lru_gen_online_memcg(memcg);
3648
3649	/* Online state pins memcg ID, memcg ID pins CSS */
3650	refcount_set(&memcg->id.ref, 1);
3651	css_get(css);
3652
3653	/*
3654	 * Ensure mem_cgroup_from_id() works once we're fully online.
3655	 *
3656	 * We could do this earlier and require callers to filter with
3657	 * css_tryget_online(). But right now there are no users that
3658	 * need earlier access, and the workingset code relies on the
3659	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3660	 * publish it here at the end of onlining. This matches the
3661	 * regular ID destruction during offlining.
3662	 */
3663	xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3664
3665	return 0;
3666offline_kmem:
3667	memcg_offline_kmem(memcg);
3668remove_id:
3669	mem_cgroup_id_remove(memcg);
3670	return -ENOMEM;
3671}
3672
3673static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3674{
3675	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
3676
3677	memcg1_css_offline(memcg);
 
 
 
 
 
 
 
 
 
 
3678
3679	page_counter_set_min(&memcg->memory, 0);
3680	page_counter_set_low(&memcg->memory, 0);
3681
3682	zswap_memcg_offline_cleanup(memcg);
3683
3684	memcg_offline_kmem(memcg);
3685	reparent_shrinker_deferred(memcg);
3686	wb_memcg_offline(memcg);
3687	lru_gen_offline_memcg(memcg);
3688
3689	drain_all_stock(memcg);
3690
3691	mem_cgroup_id_put(memcg);
3692}
3693
3694static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3695{
3696	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3697
3698	invalidate_reclaim_iterators(memcg);
3699	lru_gen_release_memcg(memcg);
3700}
3701
3702static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3703{
3704	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3705	int __maybe_unused i;
3706
3707#ifdef CONFIG_CGROUP_WRITEBACK
3708	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3709		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3710#endif
3711	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3712		static_branch_dec(&memcg_sockets_enabled_key);
3713
3714	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3715		static_branch_dec(&memcg_sockets_enabled_key);
3716
3717	if (!cgroup_memory_nobpf)
3718		static_branch_dec(&memcg_bpf_enabled_key);
3719
3720	vmpressure_cleanup(&memcg->vmpressure);
3721	cancel_work_sync(&memcg->high_work);
3722	memcg1_remove_from_trees(memcg);
3723	free_shrinker_info(memcg);
3724	mem_cgroup_free(memcg);
3725}
3726
3727/**
3728 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3729 * @css: the target css
3730 *
3731 * Reset the states of the mem_cgroup associated with @css.  This is
3732 * invoked when the userland requests disabling on the default hierarchy
3733 * but the memcg is pinned through dependency.  The memcg should stop
3734 * applying policies and should revert to the vanilla state as it may be
3735 * made visible again.
3736 *
3737 * The current implementation only resets the essential configurations.
3738 * This needs to be expanded to cover all the visible parts.
3739 */
3740static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3741{
3742	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3743
3744	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3745	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3746#ifdef CONFIG_MEMCG_V1
3747	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3748	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3749#endif
3750	page_counter_set_min(&memcg->memory, 0);
3751	page_counter_set_low(&memcg->memory, 0);
3752	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3753	memcg1_soft_limit_reset(memcg);
3754	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3755	memcg_wb_domain_size_changed(memcg);
3756}
3757
3758struct aggregate_control {
3759	/* pointer to the aggregated (CPU and subtree aggregated) counters */
3760	long *aggregate;
3761	/* pointer to the non-hierarchichal (CPU aggregated) counters */
3762	long *local;
3763	/* pointer to the pending child counters during tree propagation */
3764	long *pending;
3765	/* pointer to the parent's pending counters, could be NULL */
3766	long *ppending;
3767	/* pointer to the percpu counters to be aggregated */
3768	long *cstat;
3769	/* pointer to the percpu counters of the last aggregation*/
3770	long *cstat_prev;
3771	/* size of the above counters */
3772	int size;
 
 
 
 
 
 
 
 
 
 
 
 
3773};
3774
3775static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3776{
3777	int i;
3778	long delta, delta_cpu, v;
 
 
 
3779
3780	for (i = 0; i < ac->size; i++) {
 
 
 
 
 
 
3781		/*
3782		 * Collect the aggregated propagation counts of groups
3783		 * below us. We're in a per-cpu loop here and this is
3784		 * a global counter, so the first cycle will get them.
3785		 */
3786		delta = ac->pending[i];
3787		if (delta)
3788			ac->pending[i] = 0;
 
3789
3790		/* Add CPU changes on this level since the last flush */
3791		delta_cpu = 0;
3792		v = READ_ONCE(ac->cstat[i]);
3793		if (v != ac->cstat_prev[i]) {
3794			delta_cpu = v - ac->cstat_prev[i];
3795			delta += delta_cpu;
3796			ac->cstat_prev[i] = v;
3797		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3798
3799		/* Aggregate counts on this level and propagate upwards */
3800		if (delta_cpu)
3801			ac->local[i] += delta_cpu;
3802
3803		if (delta) {
3804			ac->aggregate[i] += delta;
3805			if (ac->ppending)
3806				ac->ppending[i] += delta;
 
 
 
 
 
 
 
3807		}
3808	}
 
 
 
 
 
3809}
3810
3811static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3812{
3813	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3814	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3815	struct memcg_vmstats_percpu *statc;
3816	struct aggregate_control ac;
3817	int nid;
 
 
 
3818
3819	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
 
 
 
 
 
 
3820
3821	ac = (struct aggregate_control) {
3822		.aggregate = memcg->vmstats->state,
3823		.local = memcg->vmstats->state_local,
3824		.pending = memcg->vmstats->state_pending,
3825		.ppending = parent ? parent->vmstats->state_pending : NULL,
3826		.cstat = statc->state,
3827		.cstat_prev = statc->state_prev,
3828		.size = MEMCG_VMSTAT_SIZE,
3829	};
3830	mem_cgroup_stat_aggregate(&ac);
3831
3832	ac = (struct aggregate_control) {
3833		.aggregate = memcg->vmstats->events,
3834		.local = memcg->vmstats->events_local,
3835		.pending = memcg->vmstats->events_pending,
3836		.ppending = parent ? parent->vmstats->events_pending : NULL,
3837		.cstat = statc->events,
3838		.cstat_prev = statc->events_prev,
3839		.size = NR_MEMCG_EVENTS,
3840	};
3841	mem_cgroup_stat_aggregate(&ac);
3842
3843	for_each_node_state(nid, N_MEMORY) {
3844		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3845		struct lruvec_stats *lstats = pn->lruvec_stats;
3846		struct lruvec_stats *plstats = NULL;
3847		struct lruvec_stats_percpu *lstatc;
3848
3849		if (parent)
3850			plstats = parent->nodeinfo[nid]->lruvec_stats;
 
 
3851
3852		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
 
 
 
 
 
 
3853
3854		ac = (struct aggregate_control) {
3855			.aggregate = lstats->state,
3856			.local = lstats->state_local,
3857			.pending = lstats->state_pending,
3858			.ppending = plstats ? plstats->state_pending : NULL,
3859			.cstat = lstatc->state,
3860			.cstat_prev = lstatc->state_prev,
3861			.size = NR_MEMCG_NODE_STAT_ITEMS,
3862		};
3863		mem_cgroup_stat_aggregate(&ac);
3864
 
 
 
3865	}
3866	WRITE_ONCE(statc->stats_updates, 0);
3867	/* We are in a per-cpu loop here, only do the atomic write once */
3868	if (atomic64_read(&memcg->vmstats->stats_updates))
3869		atomic64_set(&memcg->vmstats->stats_updates, 0);
3870}
3871
3872static void mem_cgroup_fork(struct task_struct *task)
3873{
3874	/*
3875	 * Set the update flag to cause task->objcg to be initialized lazily
3876	 * on the first allocation. It can be done without any synchronization
3877	 * because it's always performed on the current task, so does
3878	 * current_objcg_update().
3879	 */
3880	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3881}
3882
3883static void mem_cgroup_exit(struct task_struct *task)
3884{
3885	struct obj_cgroup *objcg = task->objcg;
3886
3887	objcg = (struct obj_cgroup *)
3888		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3889	obj_cgroup_put(objcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3891	/*
3892	 * Some kernel allocations can happen after this point,
3893	 * but let's ignore them. It can be done without any synchronization
3894	 * because it's always performed on the current task, so does
3895	 * current_objcg_update().
3896	 */
3897	task->objcg = NULL;
 
 
 
 
 
 
3898}
3899
3900#ifdef CONFIG_LRU_GEN
3901static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3902{
3903	struct task_struct *task;
3904	struct cgroup_subsys_state *css;
 
 
 
 
 
 
 
 
 
3905
3906	/* find the first leader if there is any */
3907	cgroup_taskset_for_each_leader(task, css, tset)
3908		break;
 
 
 
 
 
 
 
 
 
3909
3910	if (!task)
3911		return;
 
 
 
 
 
 
3912
3913	task_lock(task);
3914	if (task->mm && READ_ONCE(task->mm->owner) == task)
3915		lru_gen_migrate_mm(task->mm);
3916	task_unlock(task);
3917}
3918#else
3919static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3920#endif /* CONFIG_LRU_GEN */
3921
3922static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3923{
3924	struct task_struct *task;
3925	struct cgroup_subsys_state *css;
 
 
 
 
 
 
 
 
3926
3927	cgroup_taskset_for_each(task, css, tset) {
3928		/* atomically set the update bit */
3929		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3930	}
3931}
3932
3933static void mem_cgroup_attach(struct cgroup_taskset *tset)
3934{
3935	mem_cgroup_lru_gen_attach(tset);
3936	mem_cgroup_kmem_attach(tset);
3937}
3938
3939static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3940{
3941	if (value == PAGE_COUNTER_MAX)
3942		seq_puts(m, "max\n");
3943	else
3944		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3945
3946	return 0;
 
 
3947}
3948
3949static u64 memory_current_read(struct cgroup_subsys_state *css,
3950			       struct cftype *cft)
3951{
3952	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
3953
3954	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3955}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3956
3957#define OFP_PEAK_UNSET (((-1UL)))
3958
3959static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
3960{
3961	struct cgroup_of_peak *ofp = of_peak(sf->private);
3962	u64 fd_peak = READ_ONCE(ofp->value), peak;
 
 
3963
3964	/* User wants global or local peak? */
3965	if (fd_peak == OFP_PEAK_UNSET)
3966		peak = pc->watermark;
3967	else
3968		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
3969
3970	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
3971	return 0;
 
 
 
3972}
3973
3974static int memory_peak_show(struct seq_file *sf, void *v)
3975{
3976	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
 
 
 
 
 
 
 
 
 
 
 
 
3977
3978	return peak_show(sf, v, &memcg->memory);
3979}
3980
3981static int peak_open(struct kernfs_open_file *of)
3982{
3983	struct cgroup_of_peak *ofp = of_peak(of);
 
 
 
 
 
 
3984
3985	ofp->value = OFP_PEAK_UNSET;
3986	return 0;
3987}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3988
3989static void peak_release(struct kernfs_open_file *of)
3990{
3991	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3992	struct cgroup_of_peak *ofp = of_peak(of);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3993
3994	if (ofp->value == OFP_PEAK_UNSET) {
3995		/* fast path (no writes on this fd) */
3996		return;
 
 
3997	}
3998	spin_lock(&memcg->peaks_lock);
3999	list_del(&ofp->list);
4000	spin_unlock(&memcg->peaks_lock);
4001}
4002
4003static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4004			  loff_t off, struct page_counter *pc,
4005			  struct list_head *watchers)
4006{
4007	unsigned long usage;
4008	struct cgroup_of_peak *peer_ctx;
4009	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4010	struct cgroup_of_peak *ofp = of_peak(of);
4011
4012	spin_lock(&memcg->peaks_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4013
4014	usage = page_counter_read(pc);
4015	WRITE_ONCE(pc->local_watermark, usage);
 
 
 
 
 
 
4016
4017	list_for_each_entry(peer_ctx, watchers, list)
4018		if (usage > peer_ctx->value)
4019			WRITE_ONCE(peer_ctx->value, usage);
4020
4021	/* initial write, register watcher */
4022	if (ofp->value == -1)
4023		list_add(&ofp->list, watchers);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4024
4025	WRITE_ONCE(ofp->value, usage);
4026	spin_unlock(&memcg->peaks_lock);
 
 
 
 
 
 
 
 
 
4027
4028	return nbytes;
4029}
4030
4031static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4032				 size_t nbytes, loff_t off)
4033{
4034	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4035
4036	return peak_write(of, buf, nbytes, off, &memcg->memory,
4037			  &memcg->memory_peaks);
4038}
4039
4040#undef OFP_PEAK_UNSET
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4041
4042static int memory_min_show(struct seq_file *m, void *v)
 
 
 
 
 
4043{
4044	return seq_puts_memcg_tunable(m,
4045		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
 
 
 
 
 
 
 
4046}
4047
4048static ssize_t memory_min_write(struct kernfs_open_file *of,
4049				char *buf, size_t nbytes, loff_t off)
4050{
4051	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4052	unsigned long min;
4053	int err;
4054
4055	buf = strstrip(buf);
4056	err = page_counter_memparse(buf, "max", &min);
4057	if (err)
4058		return err;
4059
4060	page_counter_set_min(&memcg->memory, min);
4061
4062	return nbytes;
4063}
4064
4065static int memory_low_show(struct seq_file *m, void *v)
4066{
4067	return seq_puts_memcg_tunable(m,
4068		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
 
 
 
 
 
 
 
4069}
4070
4071static ssize_t memory_low_write(struct kernfs_open_file *of,
4072				char *buf, size_t nbytes, loff_t off)
4073{
4074	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4075	unsigned long low;
4076	int err;
4077
4078	buf = strstrip(buf);
4079	err = page_counter_memparse(buf, "max", &low);
4080	if (err)
4081		return err;
4082
4083	page_counter_set_low(&memcg->memory, low);
4084
4085	return nbytes;
4086}
4087
4088static int memory_high_show(struct seq_file *m, void *v)
4089{
4090	return seq_puts_memcg_tunable(m,
4091		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
 
 
 
 
 
 
 
4092}
4093
4094static ssize_t memory_high_write(struct kernfs_open_file *of,
4095				 char *buf, size_t nbytes, loff_t off)
4096{
4097	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4098	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4099	bool drained = false;
4100	unsigned long high;
4101	int err;
4102
4103	buf = strstrip(buf);
4104	err = page_counter_memparse(buf, "max", &high);
4105	if (err)
4106		return err;
4107
4108	page_counter_set_high(&memcg->memory, high);
4109
4110	for (;;) {
4111		unsigned long nr_pages = page_counter_read(&memcg->memory);
4112		unsigned long reclaimed;
4113
4114		if (nr_pages <= high)
4115			break;
4116
4117		if (signal_pending(current))
4118			break;
4119
4120		if (!drained) {
4121			drain_all_stock(memcg);
4122			drained = true;
4123			continue;
4124		}
4125
4126		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4127					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4128
4129		if (!reclaimed && !nr_retries--)
4130			break;
4131	}
4132
4133	memcg_wb_domain_size_changed(memcg);
4134	return nbytes;
4135}
4136
4137static int memory_max_show(struct seq_file *m, void *v)
4138{
4139	return seq_puts_memcg_tunable(m,
4140		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
 
 
 
 
 
 
 
4141}
4142
4143static ssize_t memory_max_write(struct kernfs_open_file *of,
4144				char *buf, size_t nbytes, loff_t off)
4145{
4146	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4147	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4148	bool drained = false;
4149	unsigned long max;
4150	int err;
4151
4152	buf = strstrip(buf);
4153	err = page_counter_memparse(buf, "max", &max);
4154	if (err)
4155		return err;
4156
4157	xchg(&memcg->memory.max, max);
4158
4159	for (;;) {
4160		unsigned long nr_pages = page_counter_read(&memcg->memory);
4161
4162		if (nr_pages <= max)
4163			break;
4164
4165		if (signal_pending(current))
 
4166			break;
 
4167
4168		if (!drained) {
4169			drain_all_stock(memcg);
4170			drained = true;
4171			continue;
4172		}
4173
4174		if (nr_reclaims) {
4175			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4176					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4177				nr_reclaims--;
4178			continue;
4179		}
4180
4181		memcg_memory_event(memcg, MEMCG_OOM);
4182		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4183			break;
4184	}
4185
4186	memcg_wb_domain_size_changed(memcg);
4187	return nbytes;
4188}
4189
4190/*
4191 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4192 * if any new events become available.
4193 */
4194static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4195{
4196	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4197	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4198	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4199	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4200	seq_printf(m, "oom_kill %lu\n",
4201		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4202	seq_printf(m, "oom_group_kill %lu\n",
4203		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4204}
4205
4206static int memory_events_show(struct seq_file *m, void *v)
4207{
4208	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4209
4210	__memory_events_show(m, memcg->memory_events);
4211	return 0;
4212}
 
 
 
 
 
 
4213
4214static int memory_events_local_show(struct seq_file *m, void *v)
4215{
4216	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4217
4218	__memory_events_show(m, memcg->memory_events_local);
4219	return 0;
4220}
4221
4222int memory_stat_show(struct seq_file *m, void *v)
4223{
4224	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4225	char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4226	struct seq_buf s;
4227
4228	if (!buf)
4229		return -ENOMEM;
4230	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4231	memory_stat_format(memcg, &s);
4232	seq_puts(m, buf);
4233	kfree(buf);
4234	return 0;
4235}
4236
4237#ifdef CONFIG_NUMA
4238static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4239						     int item)
4240{
4241	return lruvec_page_state(lruvec, item) *
4242		memcg_page_state_output_unit(item);
4243}
4244
4245static int memory_numa_stat_show(struct seq_file *m, void *v)
4246{
 
 
 
4247	int i;
4248	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4249
4250	mem_cgroup_flush_stats(memcg);
 
 
 
 
 
 
 
 
 
4251
4252	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4253		int nid;
4254
4255		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4256			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4257
4258		seq_printf(m, "%s", memory_stats[i].name);
4259		for_each_node_state(nid, N_MEMORY) {
4260			u64 size;
4261			struct lruvec *lruvec;
4262
4263			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4264			size = lruvec_page_state_output(lruvec,
4265							memory_stats[i].idx);
4266			seq_printf(m, " N%d=%llu", nid, size);
4267		}
4268		seq_putc(m, '\n');
4269	}
4270
4271	return 0;
4272}
4273#endif
4274
4275static int memory_oom_group_show(struct seq_file *m, void *v)
4276{
4277	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4278
4279	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4280
4281	return 0;
4282}
4283
4284static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4285				      char *buf, size_t nbytes, loff_t off)
4286{
4287	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4288	int ret, oom_group;
4289
4290	buf = strstrip(buf);
4291	if (!buf)
4292		return -EINVAL;
4293
4294	ret = kstrtoint(buf, 0, &oom_group);
4295	if (ret)
4296		return ret;
4297
4298	if (oom_group != 0 && oom_group != 1)
4299		return -EINVAL;
4300
4301	WRITE_ONCE(memcg->oom_group, oom_group);
4302
4303	return nbytes;
4304}
4305
4306enum {
4307	MEMORY_RECLAIM_SWAPPINESS = 0,
4308	MEMORY_RECLAIM_NULL,
4309};
4310
4311static const match_table_t tokens = {
4312	{ MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4313	{ MEMORY_RECLAIM_NULL, NULL },
4314};
4315
4316static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4317			      size_t nbytes, loff_t off)
4318{
4319	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4320	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4321	unsigned long nr_to_reclaim, nr_reclaimed = 0;
4322	int swappiness = -1;
4323	unsigned int reclaim_options;
4324	char *old_buf, *start;
4325	substring_t args[MAX_OPT_ARGS];
4326
4327	buf = strstrip(buf);
4328
4329	old_buf = buf;
4330	nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4331	if (buf == old_buf)
4332		return -EINVAL;
4333
4334	buf = strstrip(buf);
4335
4336	while ((start = strsep(&buf, " ")) != NULL) {
4337		if (!strlen(start))
4338			continue;
4339		switch (match_token(start, tokens, args)) {
4340		case MEMORY_RECLAIM_SWAPPINESS:
4341			if (match_int(&args[0], &swappiness))
4342				return -EINVAL;
4343			if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4344				return -EINVAL;
4345			break;
4346		default:
4347			return -EINVAL;
4348		}
4349	}
4350
4351	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4352	while (nr_reclaimed < nr_to_reclaim) {
4353		/* Will converge on zero, but reclaim enforces a minimum */
4354		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4355		unsigned long reclaimed;
4356
4357		if (signal_pending(current))
4358			return -EINTR;
4359
4360		/*
4361		 * This is the final attempt, drain percpu lru caches in the
4362		 * hope of introducing more evictable pages for
4363		 * try_to_free_mem_cgroup_pages().
4364		 */
4365		if (!nr_retries)
4366			lru_add_drain_all();
4367
4368		reclaimed = try_to_free_mem_cgroup_pages(memcg,
4369					batch_size, GFP_KERNEL,
4370					reclaim_options,
4371					swappiness == -1 ? NULL : &swappiness);
4372
4373		if (!reclaimed && !nr_retries--)
4374			return -EAGAIN;
4375
4376		nr_reclaimed += reclaimed;
4377	}
4378
4379	return nbytes;
4380}
4381
4382static struct cftype memory_files[] = {
4383	{
4384		.name = "current",
4385		.flags = CFTYPE_NOT_ON_ROOT,
4386		.read_u64 = memory_current_read,
4387	},
4388	{
4389		.name = "peak",
4390		.flags = CFTYPE_NOT_ON_ROOT,
4391		.open = peak_open,
4392		.release = peak_release,
4393		.seq_show = memory_peak_show,
4394		.write = memory_peak_write,
4395	},
4396	{
4397		.name = "min",
4398		.flags = CFTYPE_NOT_ON_ROOT,
4399		.seq_show = memory_min_show,
4400		.write = memory_min_write,
4401	},
4402	{
4403		.name = "low",
4404		.flags = CFTYPE_NOT_ON_ROOT,
4405		.seq_show = memory_low_show,
4406		.write = memory_low_write,
4407	},
4408	{
4409		.name = "high",
4410		.flags = CFTYPE_NOT_ON_ROOT,
4411		.seq_show = memory_high_show,
4412		.write = memory_high_write,
4413	},
4414	{
4415		.name = "max",
4416		.flags = CFTYPE_NOT_ON_ROOT,
4417		.seq_show = memory_max_show,
4418		.write = memory_max_write,
4419	},
4420	{
4421		.name = "events",
4422		.flags = CFTYPE_NOT_ON_ROOT,
4423		.file_offset = offsetof(struct mem_cgroup, events_file),
4424		.seq_show = memory_events_show,
4425	},
4426	{
4427		.name = "events.local",
4428		.flags = CFTYPE_NOT_ON_ROOT,
4429		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4430		.seq_show = memory_events_local_show,
4431	},
4432	{
4433		.name = "stat",
4434		.seq_show = memory_stat_show,
4435	},
4436#ifdef CONFIG_NUMA
4437	{
4438		.name = "numa_stat",
4439		.seq_show = memory_numa_stat_show,
4440	},
4441#endif
4442	{
4443		.name = "oom.group",
4444		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4445		.seq_show = memory_oom_group_show,
4446		.write = memory_oom_group_write,
4447	},
4448	{
4449		.name = "reclaim",
4450		.flags = CFTYPE_NS_DELEGATABLE,
4451		.write = memory_reclaim,
4452	},
4453	{ }	/* terminate */
4454};
4455
4456struct cgroup_subsys memory_cgrp_subsys = {
4457	.css_alloc = mem_cgroup_css_alloc,
4458	.css_online = mem_cgroup_css_online,
4459	.css_offline = mem_cgroup_css_offline,
4460	.css_released = mem_cgroup_css_released,
4461	.css_free = mem_cgroup_css_free,
4462	.css_reset = mem_cgroup_css_reset,
4463	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4464	.attach = mem_cgroup_attach,
4465	.fork = mem_cgroup_fork,
4466	.exit = mem_cgroup_exit,
4467	.dfl_cftypes = memory_files,
4468#ifdef CONFIG_MEMCG_V1
4469	.legacy_cftypes = mem_cgroup_legacy_files,
4470#endif
4471	.early_init = 0,
4472};
4473
4474/**
4475 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4476 * @root: the top ancestor of the sub-tree being checked
4477 * @memcg: the memory cgroup to check
4478 *
4479 * WARNING: This function is not stateless! It can only be used as part
4480 *          of a top-down tree iteration, not for isolated queries.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4481 */
4482void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4483				     struct mem_cgroup *memcg)
4484{
4485	bool recursive_protection =
4486		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4487
4488	if (mem_cgroup_disabled())
4489		return;
4490
4491	if (!root)
4492		root = root_mem_cgroup;
 
 
4493
4494	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
 
 
 
 
 
4495}
4496
4497static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4498			gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4499{
4500	int ret;
 
 
4501
4502	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4503	if (ret)
4504		goto out;
4505
4506	mem_cgroup_commit_charge(folio, memcg);
4507out:
4508	return ret;
4509}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4510
4511int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4512{
4513	struct mem_cgroup *memcg;
4514	int ret;
4515
4516	memcg = get_mem_cgroup_from_mm(mm);
4517	ret = charge_memcg(folio, memcg, gfp);
4518	css_put(&memcg->css);
4519
 
4520	return ret;
4521}
4522
4523/**
4524 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
4525 * @memcg: memcg to charge.
4526 * @gfp: reclaim mode.
4527 * @nr_pages: number of pages to charge.
 
4528 *
4529 * This function is called when allocating a huge page folio to determine if
4530 * the memcg has the capacity for it. It does not commit the charge yet,
4531 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
 
4532 *
4533 * Once we have obtained the hugetlb folio, we can call
4534 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
4535 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
4536 * of try_charge().
4537 *
4538 * Returns 0 on success. Otherwise, an error code is returned.
4539 */
4540int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
4541			long nr_pages)
4542{
 
 
 
 
 
 
 
4543	/*
4544	 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
4545	 * but do not attempt to commit charge later (or cancel on error) either.
 
4546	 */
4547	if (mem_cgroup_disabled() || !memcg ||
4548		!cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
4549		!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
4550		return -EOPNOTSUPP;
4551
4552	if (try_charge(memcg, gfp, nr_pages))
4553		return -ENOMEM;
 
 
4554
4555	return 0;
 
 
 
 
 
 
 
 
4556}
4557
4558/**
4559 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4560 * @folio: folio to charge.
4561 * @mm: mm context of the victim
4562 * @gfp: reclaim mode
4563 * @entry: swap entry for which the folio is allocated
4564 *
4565 * This function charges a folio allocated for swapin. Please call this before
4566 * adding the folio to the swapcache.
4567 *
4568 * Returns 0 on success. Otherwise, an error code is returned.
4569 */
4570int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4571				  gfp_t gfp, swp_entry_t entry)
4572{
4573	struct mem_cgroup *memcg;
4574	unsigned short id;
4575	int ret;
4576
4577	if (mem_cgroup_disabled())
4578		return 0;
4579
4580	id = lookup_swap_cgroup_id(entry);
4581	rcu_read_lock();
4582	memcg = mem_cgroup_from_id(id);
4583	if (!memcg || !css_tryget_online(&memcg->css))
4584		memcg = get_mem_cgroup_from_mm(mm);
4585	rcu_read_unlock();
4586
4587	ret = charge_memcg(folio, memcg, gfp);
4588
4589	css_put(&memcg->css);
4590	return ret;
4591}
4592
4593/*
4594 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4595 * @entry: the first swap entry for which the pages are charged
4596 * @nr_pages: number of pages which will be uncharged
4597 *
4598 * Call this function after successfully adding the charged page to swapcache.
4599 *
4600 * Note: This function assumes the page for which swap slot is being uncharged
4601 * is order 0 page.
4602 */
4603void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
4604{
4605	/*
4606	 * Cgroup1's unified memory+swap counter has been charged with the
4607	 * new swapcache page, finish the transfer by uncharging the swap
4608	 * slot. The swap slot would also get uncharged when it dies, but
4609	 * it can stick around indefinitely and we'd count the page twice
4610	 * the entire time.
4611	 *
4612	 * Cgroup2 has separate resource counters for memory and swap,
4613	 * so this is a non-issue here. Memory and swap charge lifetimes
4614	 * correspond 1:1 to page and swap slot lifetimes: we charge the
4615	 * page to memory here, and uncharge swap when the slot is freed.
4616	 */
4617	if (!mem_cgroup_disabled() && do_memsw_account()) {
4618		/*
4619		 * The swap entry might not get freed for a long time,
4620		 * let's not wait for it.  The page already received a
4621		 * memory+swap charge, drop the swap entry duplicate.
4622		 */
4623		mem_cgroup_uncharge_swap(entry, nr_pages);
4624	}
4625}
4626
4627struct uncharge_gather {
4628	struct mem_cgroup *memcg;
4629	unsigned long nr_memory;
4630	unsigned long pgpgout;
 
 
4631	unsigned long nr_kmem;
4632	int nid;
 
 
4633};
4634
4635static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4636{
4637	memset(ug, 0, sizeof(*ug));
4638}
4639
4640static void uncharge_batch(const struct uncharge_gather *ug)
4641{
4642	if (ug->nr_memory) {
4643		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
 
 
 
4644		if (do_memsw_account())
4645			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4646		if (ug->nr_kmem) {
4647			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4648			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4649		}
4650		memcg1_oom_recover(ug->memcg);
4651	}
4652
4653	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
 
 
 
 
 
 
 
 
4654
4655	/* drop reference from uncharge_folio */
4656	css_put(&ug->memcg->css);
4657}
4658
4659static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4660{
4661	long nr_pages;
4662	struct mem_cgroup *memcg;
4663	struct obj_cgroup *objcg;
4664
4665	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 
4666
4667	/*
4668	 * Nobody should be changing or seriously looking at
4669	 * folio memcg or objcg at this point, we have fully
4670	 * exclusive access to the folio.
4671	 */
4672	if (folio_memcg_kmem(folio)) {
4673		objcg = __folio_objcg(folio);
4674		/*
4675		 * This get matches the put at the end of the function and
4676		 * kmem pages do not hold memcg references anymore.
4677		 */
4678		memcg = get_mem_cgroup_from_objcg(objcg);
4679	} else {
4680		memcg = __folio_memcg(folio);
4681	}
4682
4683	if (!memcg)
4684		return;
4685
4686	if (ug->memcg != memcg) {
4687		if (ug->memcg) {
4688			uncharge_batch(ug);
4689			uncharge_gather_clear(ug);
4690		}
4691		ug->memcg = memcg;
4692		ug->nid = folio_nid(folio);
4693
4694		/* pairs with css_put in uncharge_batch */
4695		css_get(&memcg->css);
4696	}
4697
4698	nr_pages = folio_nr_pages(folio);
 
4699
4700	if (folio_memcg_kmem(folio)) {
4701		ug->nr_memory += nr_pages;
4702		ug->nr_kmem += nr_pages;
4703
4704		folio->memcg_data = 0;
4705		obj_cgroup_put(objcg);
 
 
 
 
 
 
4706	} else {
4707		/* LRU pages aren't accounted at the root level */
4708		if (!mem_cgroup_is_root(memcg))
4709			ug->nr_memory += nr_pages;
4710		ug->pgpgout++;
4711
4712		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4713		folio->memcg_data = 0;
4714	}
4715
4716	css_put(&memcg->css);
 
4717}
4718
4719void __mem_cgroup_uncharge(struct folio *folio)
4720{
4721	struct uncharge_gather ug;
 
4722
4723	/* Don't touch folio->lru of any random page, pre-check: */
4724	if (!folio_memcg_charged(folio))
4725		return;
 
 
 
 
 
 
4726
4727	uncharge_gather_clear(&ug);
4728	uncharge_folio(folio, &ug);
4729	uncharge_batch(&ug);
4730}
4731
4732void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4733{
4734	struct uncharge_gather ug;
4735	unsigned int i;
4736
4737	uncharge_gather_clear(&ug);
4738	for (i = 0; i < folios->nr; i++)
4739		uncharge_folio(folios->folios[i], &ug);
4740	if (ug.memcg)
4741		uncharge_batch(&ug);
4742}
4743
4744/**
4745 * mem_cgroup_replace_folio - Charge a folio's replacement.
4746 * @old: Currently circulating folio.
4747 * @new: Replacement folio.
4748 *
4749 * Charge @new as a replacement folio for @old. @old will
4750 * be uncharged upon free.
4751 *
4752 * Both folios must be locked, @new->mapping must be set up.
 
4753 */
4754void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4755{
4756	struct mem_cgroup *memcg;
4757	long nr_pages = folio_nr_pages(new);
4758
4759	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4760	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4761	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4762	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4763
4764	if (mem_cgroup_disabled())
4765		return;
4766
4767	/* Page cache replacement: new folio already charged? */
4768	if (folio_memcg_charged(new))
4769		return;
4770
4771	memcg = folio_memcg(old);
4772	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4773	if (!memcg)
 
 
 
 
 
 
 
 
 
 
 
 
4774		return;
4775
4776	/* Force-charge the new page. The old one will be freed soon */
4777	if (!mem_cgroup_is_root(memcg)) {
4778		page_counter_charge(&memcg->memory, nr_pages);
4779		if (do_memsw_account())
4780			page_counter_charge(&memcg->memsw, nr_pages);
4781	}
4782
4783	css_get(&memcg->css);
4784	commit_charge(new, memcg);
4785	memcg1_commit_charge(new, memcg);
4786}
4787
4788/**
4789 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4790 * @old: Currently circulating folio.
4791 * @new: Replacement folio.
4792 *
4793 * Transfer the memcg data from the old folio to the new folio for migration.
4794 * The old folio's data info will be cleared. Note that the memory counters
4795 * will remain unchanged throughout the process.
4796 *
4797 * Both folios must be locked, @new->mapping must be set up.
4798 */
4799void mem_cgroup_migrate(struct folio *old, struct folio *new)
4800{
4801	struct mem_cgroup *memcg;
 
 
 
4802
4803	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4804	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4805	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4806	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4807	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4808
4809	if (mem_cgroup_disabled())
4810		return;
4811
4812	memcg = folio_memcg(old);
4813	/*
4814	 * Note that it is normal to see !memcg for a hugetlb folio.
4815	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4816	 * was not selected.
4817	 */
4818	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4819	if (!memcg)
4820		return;
4821
4822	/* Transfer the charge and the css ref */
4823	commit_charge(new, memcg);
 
 
 
 
 
 
4824
4825	/* Warning should never happen, so don't worry about refcount non-0 */
4826	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4827	old->memcg_data = 0;
 
 
 
4828}
4829
4830DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4831EXPORT_SYMBOL(memcg_sockets_enabled_key);
4832
4833void mem_cgroup_sk_alloc(struct sock *sk)
4834{
4835	struct mem_cgroup *memcg;
4836
4837	if (!mem_cgroup_sockets_enabled)
4838		return;
4839
4840	/* Do not associate the sock with unrelated interrupted task's memcg. */
4841	if (!in_task())
 
 
 
 
 
 
 
 
 
4842		return;
 
4843
4844	rcu_read_lock();
4845	memcg = mem_cgroup_from_task(current);
4846	if (mem_cgroup_is_root(memcg))
4847		goto out;
4848	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4849		goto out;
4850	if (css_tryget(&memcg->css))
4851		sk->sk_memcg = memcg;
4852out:
4853	rcu_read_unlock();
4854}
4855
4856void mem_cgroup_sk_free(struct sock *sk)
4857{
4858	if (sk->sk_memcg)
4859		css_put(&sk->sk_memcg->css);
4860}
4861
4862/**
4863 * mem_cgroup_charge_skmem - charge socket memory
4864 * @memcg: memcg to charge
4865 * @nr_pages: number of pages to charge
4866 * @gfp_mask: reclaim mode
4867 *
4868 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4869 * @memcg's configured limit, %false if it doesn't.
4870 */
4871bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4872			     gfp_t gfp_mask)
4873{
4874	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4875		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4876
4877	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4878		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4879		return true;
4880	}
4881
 
4882	return false;
4883}
4884
4885/**
4886 * mem_cgroup_uncharge_skmem - uncharge socket memory
4887 * @memcg: memcg to uncharge
4888 * @nr_pages: number of pages to uncharge
4889 */
4890void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4891{
4892	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4893		memcg1_uncharge_skmem(memcg, nr_pages);
4894		return;
4895	}
4896
4897	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4898
4899	refill_stock(memcg, nr_pages);
4900}
4901
4902static int __init cgroup_memory(char *s)
4903{
4904	char *token;
4905
4906	while ((token = strsep(&s, ",")) != NULL) {
4907		if (!*token)
4908			continue;
4909		if (!strcmp(token, "nosocket"))
4910			cgroup_memory_nosocket = true;
4911		if (!strcmp(token, "nokmem"))
4912			cgroup_memory_nokmem = true;
4913		if (!strcmp(token, "nobpf"))
4914			cgroup_memory_nobpf = true;
4915	}
4916	return 1;
4917}
4918__setup("cgroup.memory=", cgroup_memory);
4919
4920/*
4921 * subsys_initcall() for memory controller.
4922 *
4923 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4924 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4925 * basically everything that doesn't depend on a specific mem_cgroup structure
4926 * should be initialized from here.
4927 */
4928static int __init mem_cgroup_init(void)
4929{
4930	int cpu;
4931
 
4932	/*
4933	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4934	 * used for per-memcg-per-cpu caching of per-node statistics. In order
4935	 * to work fine, we should make sure that the overfill threshold can't
4936	 * exceed S32_MAX / PAGE_SIZE.
4937	 */
4938	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
 
 
4939
4940	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4941				  memcg_hotplug_cpu_dead);
4942
4943	for_each_possible_cpu(cpu)
4944		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4945			  drain_local_stock);
4946
 
 
 
 
 
 
 
 
 
 
 
 
4947	return 0;
4948}
4949subsys_initcall(mem_cgroup_init);
4950
4951#ifdef CONFIG_SWAP
4952static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4953{
4954	while (!refcount_inc_not_zero(&memcg->id.ref)) {
4955		/*
4956		 * The root cgroup cannot be destroyed, so it's refcount must
4957		 * always be >= 1.
4958		 */
4959		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4960			VM_BUG_ON(1);
4961			break;
4962		}
4963		memcg = parent_mem_cgroup(memcg);
4964		if (!memcg)
4965			memcg = root_mem_cgroup;
4966	}
4967	return memcg;
4968}
4969
4970/**
4971 * mem_cgroup_swapout - transfer a memsw charge to swap
4972 * @folio: folio whose memsw charge to transfer
4973 * @entry: swap entry to move the charge to
4974 *
4975 * Transfer the memsw charge of @folio to @entry.
4976 */
4977void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4978{
4979	struct mem_cgroup *memcg, *swap_memcg;
4980	unsigned int nr_entries;
4981	unsigned short oldid;
4982
4983	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4984	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4985
4986	if (mem_cgroup_disabled())
4987		return;
4988
4989	if (!do_memsw_account())
4990		return;
4991
4992	memcg = folio_memcg(folio);
4993
4994	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4995	if (!memcg)
4996		return;
4997
4998	/*
4999	 * In case the memcg owning these pages has been offlined and doesn't
5000	 * have an ID allocated to it anymore, charge the closest online
5001	 * ancestor for the swap instead and transfer the memory+swap charge.
5002	 */
5003	swap_memcg = mem_cgroup_id_get_online(memcg);
5004	nr_entries = folio_nr_pages(folio);
5005	/* Get references for the tail pages, too */
5006	if (nr_entries > 1)
5007		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5008	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5009				   nr_entries);
5010	VM_BUG_ON_FOLIO(oldid, folio);
5011	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5012
5013	folio_unqueue_deferred_split(folio);
5014	folio->memcg_data = 0;
5015
5016	if (!mem_cgroup_is_root(memcg))
5017		page_counter_uncharge(&memcg->memory, nr_entries);
5018
5019	if (memcg != swap_memcg) {
5020		if (!mem_cgroup_is_root(swap_memcg))
5021			page_counter_charge(&swap_memcg->memsw, nr_entries);
5022		page_counter_uncharge(&memcg->memsw, nr_entries);
5023	}
5024
5025	memcg1_swapout(folio, memcg);
5026	css_put(&memcg->css);
 
 
 
 
 
 
 
 
 
 
 
5027}
5028
5029/**
5030 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5031 * @folio: folio being added to swap
5032 * @entry: swap entry to charge
5033 *
5034 * Try to charge @folio's memcg for the swap space at @entry.
5035 *
5036 * Returns 0 on success, -ENOMEM on failure.
5037 */
5038int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5039{
5040	unsigned int nr_pages = folio_nr_pages(folio);
5041	struct page_counter *counter;
5042	struct mem_cgroup *memcg;
5043	unsigned short oldid;
5044
5045	if (do_memsw_account())
5046		return 0;
5047
5048	memcg = folio_memcg(folio);
5049
5050	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5051	if (!memcg)
5052		return 0;
5053
5054	if (!entry.val) {
5055		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5056		return 0;
5057	}
5058
5059	memcg = mem_cgroup_id_get_online(memcg);
5060
5061	if (!mem_cgroup_is_root(memcg) &&
5062	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5063		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5064		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5065		mem_cgroup_id_put(memcg);
5066		return -ENOMEM;
5067	}
5068
5069	/* Get references for the tail pages, too */
5070	if (nr_pages > 1)
5071		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5072	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5073	VM_BUG_ON_FOLIO(oldid, folio);
5074	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5075
5076	return 0;
5077}
5078
5079/**
5080 * __mem_cgroup_uncharge_swap - uncharge swap space
5081 * @entry: swap entry to uncharge
5082 * @nr_pages: the amount of swap space to uncharge
5083 */
5084void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5085{
5086	struct mem_cgroup *memcg;
5087	unsigned short id;
5088
 
 
 
5089	id = swap_cgroup_record(entry, 0, nr_pages);
5090	rcu_read_lock();
5091	memcg = mem_cgroup_from_id(id);
5092	if (memcg) {
5093		if (!mem_cgroup_is_root(memcg)) {
5094			if (do_memsw_account())
 
 
5095				page_counter_uncharge(&memcg->memsw, nr_pages);
5096			else
5097				page_counter_uncharge(&memcg->swap, nr_pages);
5098		}
5099		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5100		mem_cgroup_id_put_many(memcg, nr_pages);
5101	}
5102	rcu_read_unlock();
5103}
5104
5105long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5106{
5107	long nr_swap_pages = get_nr_swap_pages();
5108
5109	if (mem_cgroup_disabled() || do_memsw_account())
5110		return nr_swap_pages;
5111	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5112		nr_swap_pages = min_t(long, nr_swap_pages,
5113				      READ_ONCE(memcg->swap.max) -
5114				      page_counter_read(&memcg->swap));
5115	return nr_swap_pages;
5116}
5117
5118bool mem_cgroup_swap_full(struct folio *folio)
5119{
5120	struct mem_cgroup *memcg;
5121
5122	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5123
5124	if (vm_swap_full())
5125		return true;
5126	if (do_memsw_account())
5127		return false;
5128
5129	memcg = folio_memcg(folio);
5130	if (!memcg)
5131		return false;
5132
5133	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5134		unsigned long usage = page_counter_read(&memcg->swap);
5135
5136		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5137		    usage * 2 >= READ_ONCE(memcg->swap.max))
5138			return true;
5139	}
5140
5141	return false;
5142}
5143
5144static int __init setup_swap_account(char *s)
 
 
 
 
 
 
 
5145{
5146	bool res;
5147
5148	if (!kstrtobool(s, &res) && !res)
5149		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5150			     "in favor of configuring swap control via cgroupfs. "
5151			     "Please report your usecase to linux-mm@kvack.org if you "
5152			     "depend on this functionality.\n");
5153	return 1;
5154}
5155__setup("swapaccount=", setup_swap_account);
5156
5157static u64 swap_current_read(struct cgroup_subsys_state *css,
5158			     struct cftype *cft)
5159{
5160	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5161
5162	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5163}
5164
5165static int swap_peak_show(struct seq_file *sf, void *v)
5166{
5167	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
 
5168
5169	return peak_show(sf, v, &memcg->swap);
5170}
 
 
5171
5172static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5173			       size_t nbytes, loff_t off)
5174{
5175	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5176
5177	return peak_write(of, buf, nbytes, off, &memcg->swap,
5178			  &memcg->swap_peaks);
5179}
5180
5181static int swap_high_show(struct seq_file *m, void *v)
5182{
5183	return seq_puts_memcg_tunable(m,
5184		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5185}
5186
5187static ssize_t swap_high_write(struct kernfs_open_file *of,
5188			       char *buf, size_t nbytes, loff_t off)
5189{
5190	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5191	unsigned long high;
5192	int err;
5193
5194	buf = strstrip(buf);
5195	err = page_counter_memparse(buf, "max", &high);
5196	if (err)
5197		return err;
5198
5199	page_counter_set_high(&memcg->swap, high);
5200
5201	return nbytes;
5202}
5203
5204static int swap_max_show(struct seq_file *m, void *v)
5205{
5206	return seq_puts_memcg_tunable(m,
5207		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5208}
5209
5210static ssize_t swap_max_write(struct kernfs_open_file *of,
5211			      char *buf, size_t nbytes, loff_t off)
5212{
5213	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5214	unsigned long max;
5215	int err;
5216
5217	buf = strstrip(buf);
5218	err = page_counter_memparse(buf, "max", &max);
5219	if (err)
5220		return err;
5221
5222	xchg(&memcg->swap.max, max);
 
 
 
 
5223
5224	return nbytes;
5225}
5226
5227static int swap_events_show(struct seq_file *m, void *v)
5228{
5229	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5230
5231	seq_printf(m, "high %lu\n",
5232		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5233	seq_printf(m, "max %lu\n",
5234		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5235	seq_printf(m, "fail %lu\n",
5236		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5237
5238	return 0;
5239}
5240
5241static struct cftype swap_files[] = {
5242	{
5243		.name = "swap.current",
5244		.flags = CFTYPE_NOT_ON_ROOT,
5245		.read_u64 = swap_current_read,
5246	},
5247	{
5248		.name = "swap.high",
5249		.flags = CFTYPE_NOT_ON_ROOT,
5250		.seq_show = swap_high_show,
5251		.write = swap_high_write,
5252	},
5253	{
5254		.name = "swap.max",
5255		.flags = CFTYPE_NOT_ON_ROOT,
5256		.seq_show = swap_max_show,
5257		.write = swap_max_write,
5258	},
5259	{
5260		.name = "swap.peak",
5261		.flags = CFTYPE_NOT_ON_ROOT,
5262		.open = peak_open,
5263		.release = peak_release,
5264		.seq_show = swap_peak_show,
5265		.write = swap_peak_write,
5266	},
5267	{
5268		.name = "swap.events",
5269		.flags = CFTYPE_NOT_ON_ROOT,
5270		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5271		.seq_show = swap_events_show,
5272	},
5273	{ }	/* terminate */
5274};
5275
5276#ifdef CONFIG_ZSWAP
5277/**
5278 * obj_cgroup_may_zswap - check if this cgroup can zswap
5279 * @objcg: the object cgroup
5280 *
5281 * Check if the hierarchical zswap limit has been reached.
5282 *
5283 * This doesn't check for specific headroom, and it is not atomic
5284 * either. But with zswap, the size of the allocation is only known
5285 * once compression has occurred, and this optimistic pre-check avoids
5286 * spending cycles on compression when there is already no room left
5287 * or zswap is disabled altogether somewhere in the hierarchy.
5288 */
5289bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5290{
5291	struct mem_cgroup *memcg, *original_memcg;
5292	bool ret = true;
5293
5294	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5295		return true;
5296
5297	original_memcg = get_mem_cgroup_from_objcg(objcg);
5298	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5299	     memcg = parent_mem_cgroup(memcg)) {
5300		unsigned long max = READ_ONCE(memcg->zswap_max);
5301		unsigned long pages;
5302
5303		if (max == PAGE_COUNTER_MAX)
5304			continue;
5305		if (max == 0) {
5306			ret = false;
5307			break;
5308		}
5309
5310		/* Force flush to get accurate stats for charging */
5311		__mem_cgroup_flush_stats(memcg, true);
5312		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5313		if (pages < max)
5314			continue;
5315		ret = false;
5316		break;
5317	}
5318	mem_cgroup_put(original_memcg);
5319	return ret;
5320}
5321
5322/**
5323 * obj_cgroup_charge_zswap - charge compression backend memory
5324 * @objcg: the object cgroup
5325 * @size: size of compressed object
5326 *
5327 * This forces the charge after obj_cgroup_may_zswap() allowed
5328 * compression and storage in zwap for this cgroup to go ahead.
5329 */
5330void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5331{
5332	struct mem_cgroup *memcg;
5333
5334	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5335		return;
5336
5337	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5338
5339	/* PF_MEMALLOC context, charging must succeed */
5340	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5341		VM_WARN_ON_ONCE(1);
5342
5343	rcu_read_lock();
5344	memcg = obj_cgroup_memcg(objcg);
5345	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5346	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5347	rcu_read_unlock();
5348}
5349
5350/**
5351 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5352 * @objcg: the object cgroup
5353 * @size: size of compressed object
5354 *
5355 * Uncharges zswap memory on page in.
5356 */
5357void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5358{
5359	struct mem_cgroup *memcg;
5360
5361	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5362		return;
5363
5364	obj_cgroup_uncharge(objcg, size);
5365
5366	rcu_read_lock();
5367	memcg = obj_cgroup_memcg(objcg);
5368	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5369	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5370	rcu_read_unlock();
5371}
5372
5373bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5374{
5375	/* if zswap is disabled, do not block pages going to the swapping device */
5376	if (!zswap_is_enabled())
5377		return true;
5378
5379	for (; memcg; memcg = parent_mem_cgroup(memcg))
5380		if (!READ_ONCE(memcg->zswap_writeback))
5381			return false;
5382
5383	return true;
5384}
5385
5386static u64 zswap_current_read(struct cgroup_subsys_state *css,
5387			      struct cftype *cft)
5388{
5389	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5390
5391	mem_cgroup_flush_stats(memcg);
5392	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5393}
5394
5395static int zswap_max_show(struct seq_file *m, void *v)
5396{
5397	return seq_puts_memcg_tunable(m,
5398		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5399}
5400
5401static ssize_t zswap_max_write(struct kernfs_open_file *of,
5402			       char *buf, size_t nbytes, loff_t off)
5403{
5404	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5405	unsigned long max;
5406	int err;
5407
5408	buf = strstrip(buf);
5409	err = page_counter_memparse(buf, "max", &max);
5410	if (err)
5411		return err;
5412
5413	xchg(&memcg->zswap_max, max);
5414
5415	return nbytes;
5416}
5417
5418static int zswap_writeback_show(struct seq_file *m, void *v)
5419{
5420	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5421
5422	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5423	return 0;
5424}
5425
5426static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5427				char *buf, size_t nbytes, loff_t off)
5428{
5429	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5430	int zswap_writeback;
5431	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5432
5433	if (parse_ret)
5434		return parse_ret;
5435
5436	if (zswap_writeback != 0 && zswap_writeback != 1)
5437		return -EINVAL;
5438
5439	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5440	return nbytes;
5441}
5442
5443static struct cftype zswap_files[] = {
5444	{
5445		.name = "zswap.current",
5446		.flags = CFTYPE_NOT_ON_ROOT,
5447		.read_u64 = zswap_current_read,
 
5448	},
5449	{
5450		.name = "zswap.max",
5451		.flags = CFTYPE_NOT_ON_ROOT,
5452		.seq_show = zswap_max_show,
5453		.write = zswap_max_write,
5454	},
5455	{
5456		.name = "zswap.writeback",
5457		.seq_show = zswap_writeback_show,
5458		.write = zswap_writeback_write,
 
5459	},
5460	{ }	/* terminate */
5461};
5462#endif /* CONFIG_ZSWAP */
5463
5464static int __init mem_cgroup_swap_init(void)
5465{
5466	if (mem_cgroup_disabled())
5467		return 0;
5468
5469	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5470#ifdef CONFIG_MEMCG_V1
5471	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5472#endif
5473#ifdef CONFIG_ZSWAP
5474	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5475#endif
5476	return 0;
5477}
5478subsys_initcall(mem_cgroup_swap_init);
5479
5480#endif /* CONFIG_SWAP */