Linux Audio

Check our new training course

Loading...
v4.17
 
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * Native page reclaim
  18 * Charge lifetime sanitation
  19 * Lockless page tracking & accounting
  20 * Unified hierarchy configuration model
  21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22 *
  23 * This program is free software; you can redistribute it and/or modify
  24 * it under the terms of the GNU General Public License as published by
  25 * the Free Software Foundation; either version 2 of the License, or
  26 * (at your option) any later version.
  27 *
  28 * This program is distributed in the hope that it will be useful,
  29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  31 * GNU General Public License for more details.
  32 */
  33
  34#include <linux/page_counter.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cgroup.h>
  37#include <linux/mm.h>
  38#include <linux/sched/mm.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/hugetlb.h>
  41#include <linux/pagemap.h>
 
 
  42#include <linux/smp.h>
  43#include <linux/page-flags.h>
  44#include <linux/backing-dev.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/limits.h>
  48#include <linux/export.h>
  49#include <linux/mutex.h>
  50#include <linux/rbtree.h>
  51#include <linux/slab.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/spinlock.h>
  55#include <linux/eventfd.h>
  56#include <linux/poll.h>
  57#include <linux/sort.h>
  58#include <linux/fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/vmpressure.h>
 
  61#include <linux/mm_inline.h>
  62#include <linux/swap_cgroup.h>
  63#include <linux/cpu.h>
  64#include <linux/oom.h>
  65#include <linux/lockdep.h>
  66#include <linux/file.h>
  67#include <linux/tracehook.h>
 
 
 
 
  68#include "internal.h"
  69#include <net/sock.h>
  70#include <net/ip.h>
  71#include "slab.h"
 
  72
  73#include <linux/uaccess.h>
  74
  75#include <trace/events/vmscan.h>
  76
  77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  78EXPORT_SYMBOL(memory_cgrp_subsys);
  79
  80struct mem_cgroup *root_mem_cgroup __read_mostly;
  81
  82#define MEM_CGROUP_RECLAIM_RETRIES	5
 
 
  83
  84/* Socket memory accounting disabled? */
  85static bool cgroup_memory_nosocket;
  86
  87/* Kernel memory accounting disabled? */
  88static bool cgroup_memory_nokmem;
  89
  90/* Whether the swap controller is active */
  91#ifdef CONFIG_MEMCG_SWAP
  92int do_swap_account __read_mostly;
  93#else
  94#define do_swap_account		0
  95#endif
  96
  97/* Whether legacy memory+swap accounting is active */
  98static bool do_memsw_account(void)
  99{
 100	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
 101}
 102
 103static const char *const mem_cgroup_lru_names[] = {
 104	"inactive_anon",
 105	"active_anon",
 106	"inactive_file",
 107	"active_file",
 108	"unevictable",
 109};
 110
 111#define THRESHOLDS_EVENTS_TARGET 128
 112#define SOFTLIMIT_EVENTS_TARGET 1024
 113#define NUMAINFO_EVENTS_TARGET	1024
 114
 115/*
 116 * Cgroups above their limits are maintained in a RB-Tree, independent of
 117 * their hierarchy representation
 118 */
 119
 120struct mem_cgroup_tree_per_node {
 121	struct rb_root rb_root;
 122	struct rb_node *rb_rightmost;
 123	spinlock_t lock;
 124};
 125
 126struct mem_cgroup_tree {
 127	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 128};
 129
 130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 131
 132/* for OOM */
 133struct mem_cgroup_eventfd_list {
 134	struct list_head list;
 135	struct eventfd_ctx *eventfd;
 136};
 137
 138/*
 139 * cgroup_event represents events which userspace want to receive.
 140 */
 141struct mem_cgroup_event {
 142	/*
 143	 * memcg which the event belongs to.
 144	 */
 145	struct mem_cgroup *memcg;
 146	/*
 147	 * eventfd to signal userspace about the event.
 148	 */
 149	struct eventfd_ctx *eventfd;
 150	/*
 151	 * Each of these stored in a list by the cgroup.
 152	 */
 153	struct list_head list;
 154	/*
 155	 * register_event() callback will be used to add new userspace
 156	 * waiter for changes related to this event.  Use eventfd_signal()
 157	 * on eventfd to send notification to userspace.
 158	 */
 159	int (*register_event)(struct mem_cgroup *memcg,
 160			      struct eventfd_ctx *eventfd, const char *args);
 161	/*
 162	 * unregister_event() callback will be called when userspace closes
 163	 * the eventfd or on cgroup removing.  This callback must be set,
 164	 * if you want provide notification functionality.
 165	 */
 166	void (*unregister_event)(struct mem_cgroup *memcg,
 167				 struct eventfd_ctx *eventfd);
 168	/*
 169	 * All fields below needed to unregister event when
 170	 * userspace closes eventfd.
 171	 */
 172	poll_table pt;
 173	wait_queue_head_t *wqh;
 174	wait_queue_entry_t wait;
 175	struct work_struct remove;
 176};
 177
 178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 180
 181/* Stuffs for move charges at task migration. */
 182/*
 183 * Types of charges to be moved.
 184 */
 185#define MOVE_ANON	0x1U
 186#define MOVE_FILE	0x2U
 187#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 188
 189/* "mc" and its members are protected by cgroup_mutex */
 190static struct move_charge_struct {
 191	spinlock_t	  lock; /* for from, to */
 192	struct mm_struct  *mm;
 193	struct mem_cgroup *from;
 194	struct mem_cgroup *to;
 195	unsigned long flags;
 196	unsigned long precharge;
 197	unsigned long moved_charge;
 198	unsigned long moved_swap;
 199	struct task_struct *moving_task;	/* a task moving charges */
 200	wait_queue_head_t waitq;		/* a waitq for other context */
 201} mc = {
 202	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 203	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 204};
 205
 206/*
 207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 208 * limit reclaim to prevent infinite loops, if they ever occur.
 209 */
 210#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 211#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 212
 213enum charge_type {
 214	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 215	MEM_CGROUP_CHARGE_TYPE_ANON,
 216	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 217	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 218	NR_CHARGE_TYPE,
 219};
 220
 221/* for encoding cft->private value on file */
 222enum res_type {
 223	_MEM,
 224	_MEMSWAP,
 225	_OOM_TYPE,
 226	_KMEM,
 227	_TCP,
 228};
 229
 230#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 231#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 232#define MEMFILE_ATTR(val)	((val) & 0xffff)
 233/* Used for OOM nofiier */
 234#define OOM_CONTROL		(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235
 236/* Some nice accessors for the vmpressure. */
 237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 238{
 239	if (!memcg)
 240		memcg = root_mem_cgroup;
 241	return &memcg->vmpressure;
 242}
 243
 244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 245{
 246	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 247}
 248
 249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 
 
 
 
 
 
 250{
 251	return (memcg == root_mem_cgroup);
 252}
 253
 254#ifndef CONFIG_SLOB
 255/*
 256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 257 * The main reason for not using cgroup id for this:
 258 *  this works better in sparse environments, where we have a lot of memcgs,
 259 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 260 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 261 *  200 entry array for that.
 262 *
 263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 264 * will double each time we have to increase it.
 265 */
 266static DEFINE_IDA(memcg_cache_ida);
 267int memcg_nr_cache_ids;
 268
 269/* Protects memcg_nr_cache_ids */
 270static DECLARE_RWSEM(memcg_cache_ids_sem);
 271
 272void memcg_get_cache_ids(void)
 273{
 274	down_read(&memcg_cache_ids_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275}
 276
 277void memcg_put_cache_ids(void)
 278{
 279	up_read(&memcg_cache_ids_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280}
 281
 282/*
 283 * MIN_SIZE is different than 1, because we would like to avoid going through
 284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 285 * cgroups is a reasonable guess. In the future, it could be a parameter or
 286 * tunable, but that is strictly not necessary.
 287 *
 288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 289 * this constant directly from cgroup, but it is understandable that this is
 290 * better kept as an internal representation in cgroup.c. In any case, the
 291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 292 * increase ours as well if it increases.
 293 */
 294#define MEMCG_CACHES_MIN_SIZE 4
 295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 
 
 
 
 
 
 
 296
 297/*
 298 * A lot of the calls to the cache allocation functions are expected to be
 299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 300 * conditional to this static branch, we'll have to allow modules that does
 301 * kmem_cache_alloc and the such to see this symbol as well
 302 */
 303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 304EXPORT_SYMBOL(memcg_kmem_enabled_key);
 305
 306struct workqueue_struct *memcg_kmem_cache_wq;
 307
 308#endif /* !CONFIG_SLOB */
 
 
 309
 310/**
 311 * mem_cgroup_css_from_page - css of the memcg associated with a page
 312 * @page: page of interest
 313 *
 314 * If memcg is bound to the default hierarchy, css of the memcg associated
 315 * with @page is returned.  The returned css remains associated with @page
 316 * until it is released.
 317 *
 318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 319 * is returned.
 320 */
 321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 322{
 323	struct mem_cgroup *memcg;
 324
 325	memcg = page->mem_cgroup;
 326
 327	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 328		memcg = root_mem_cgroup;
 329
 330	return &memcg->css;
 331}
 332
 333/**
 334 * page_cgroup_ino - return inode number of the memcg a page is charged to
 335 * @page: the page
 336 *
 337 * Look up the closest online ancestor of the memory cgroup @page is charged to
 338 * and return its inode number or 0 if @page is not charged to any cgroup. It
 339 * is safe to call this function without holding a reference to @page.
 340 *
 341 * Note, this function is inherently racy, because there is nothing to prevent
 342 * the cgroup inode from getting torn down and potentially reallocated a moment
 343 * after page_cgroup_ino() returns, so it only should be used by callers that
 344 * do not care (such as procfs interfaces).
 345 */
 346ino_t page_cgroup_ino(struct page *page)
 347{
 348	struct mem_cgroup *memcg;
 349	unsigned long ino = 0;
 350
 351	rcu_read_lock();
 352	memcg = READ_ONCE(page->mem_cgroup);
 
 
 353	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 354		memcg = parent_mem_cgroup(memcg);
 355	if (memcg)
 356		ino = cgroup_ino(memcg->css.cgroup);
 357	rcu_read_unlock();
 358	return ino;
 359}
 360
 361static struct mem_cgroup_per_node *
 362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 363{
 364	int nid = page_to_nid(page);
 365
 366	return memcg->nodeinfo[nid];
 367}
 368
 369static struct mem_cgroup_tree_per_node *
 370soft_limit_tree_node(int nid)
 371{
 372	return soft_limit_tree.rb_tree_per_node[nid];
 373}
 374
 375static struct mem_cgroup_tree_per_node *
 376soft_limit_tree_from_page(struct page *page)
 377{
 378	int nid = page_to_nid(page);
 379
 380	return soft_limit_tree.rb_tree_per_node[nid];
 381}
 382
 383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 384					 struct mem_cgroup_tree_per_node *mctz,
 385					 unsigned long new_usage_in_excess)
 386{
 387	struct rb_node **p = &mctz->rb_root.rb_node;
 388	struct rb_node *parent = NULL;
 389	struct mem_cgroup_per_node *mz_node;
 390	bool rightmost = true;
 391
 392	if (mz->on_tree)
 393		return;
 394
 395	mz->usage_in_excess = new_usage_in_excess;
 396	if (!mz->usage_in_excess)
 397		return;
 398	while (*p) {
 399		parent = *p;
 400		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 401					tree_node);
 402		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 403			p = &(*p)->rb_left;
 404			rightmost = false;
 405		}
 406
 407		/*
 408		 * We can't avoid mem cgroups that are over their soft
 409		 * limit by the same amount
 410		 */
 411		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 412			p = &(*p)->rb_right;
 
 413	}
 414
 415	if (rightmost)
 416		mctz->rb_rightmost = &mz->tree_node;
 417
 418	rb_link_node(&mz->tree_node, parent, p);
 419	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 420	mz->on_tree = true;
 421}
 422
 423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 424					 struct mem_cgroup_tree_per_node *mctz)
 425{
 426	if (!mz->on_tree)
 427		return;
 428
 429	if (&mz->tree_node == mctz->rb_rightmost)
 430		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 431
 432	rb_erase(&mz->tree_node, &mctz->rb_root);
 433	mz->on_tree = false;
 434}
 435
 436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 437				       struct mem_cgroup_tree_per_node *mctz)
 438{
 439	unsigned long flags;
 440
 441	spin_lock_irqsave(&mctz->lock, flags);
 442	__mem_cgroup_remove_exceeded(mz, mctz);
 443	spin_unlock_irqrestore(&mctz->lock, flags);
 444}
 445
 446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 447{
 448	unsigned long nr_pages = page_counter_read(&memcg->memory);
 449	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 450	unsigned long excess = 0;
 451
 452	if (nr_pages > soft_limit)
 453		excess = nr_pages - soft_limit;
 454
 455	return excess;
 456}
 457
 458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 459{
 460	unsigned long excess;
 461	struct mem_cgroup_per_node *mz;
 462	struct mem_cgroup_tree_per_node *mctz;
 463
 464	mctz = soft_limit_tree_from_page(page);
 
 
 
 
 
 
 465	if (!mctz)
 466		return;
 467	/*
 468	 * Necessary to update all ancestors when hierarchy is used.
 469	 * because their event counter is not touched.
 470	 */
 471	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 472		mz = mem_cgroup_page_nodeinfo(memcg, page);
 473		excess = soft_limit_excess(memcg);
 474		/*
 475		 * We have to update the tree if mz is on RB-tree or
 476		 * mem is over its softlimit.
 477		 */
 478		if (excess || mz->on_tree) {
 479			unsigned long flags;
 480
 481			spin_lock_irqsave(&mctz->lock, flags);
 482			/* if on-tree, remove it */
 483			if (mz->on_tree)
 484				__mem_cgroup_remove_exceeded(mz, mctz);
 485			/*
 486			 * Insert again. mz->usage_in_excess will be updated.
 487			 * If excess is 0, no tree ops.
 488			 */
 489			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 490			spin_unlock_irqrestore(&mctz->lock, flags);
 491		}
 492	}
 493}
 494
 495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 496{
 497	struct mem_cgroup_tree_per_node *mctz;
 498	struct mem_cgroup_per_node *mz;
 499	int nid;
 500
 501	for_each_node(nid) {
 502		mz = mem_cgroup_nodeinfo(memcg, nid);
 503		mctz = soft_limit_tree_node(nid);
 504		if (mctz)
 505			mem_cgroup_remove_exceeded(mz, mctz);
 506	}
 507}
 508
 509static struct mem_cgroup_per_node *
 510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 511{
 512	struct mem_cgroup_per_node *mz;
 513
 514retry:
 515	mz = NULL;
 516	if (!mctz->rb_rightmost)
 517		goto done;		/* Nothing to reclaim from */
 518
 519	mz = rb_entry(mctz->rb_rightmost,
 520		      struct mem_cgroup_per_node, tree_node);
 521	/*
 522	 * Remove the node now but someone else can add it back,
 523	 * we will to add it back at the end of reclaim to its correct
 524	 * position in the tree.
 525	 */
 526	__mem_cgroup_remove_exceeded(mz, mctz);
 527	if (!soft_limit_excess(mz->memcg) ||
 528	    !css_tryget_online(&mz->memcg->css))
 529		goto retry;
 530done:
 531	return mz;
 532}
 533
 534static struct mem_cgroup_per_node *
 535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 536{
 537	struct mem_cgroup_per_node *mz;
 538
 539	spin_lock_irq(&mctz->lock);
 540	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 541	spin_unlock_irq(&mctz->lock);
 542	return mz;
 543}
 544
 545static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
 546				      int event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547{
 548	return atomic_long_read(&memcg->events[event]);
 
 
 
 549}
 550
 551static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 552					 struct page *page,
 553					 bool compound, int nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554{
 555	/*
 556	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 557	 * counted as CACHE even if it's on ANON LRU.
 558	 */
 559	if (PageAnon(page))
 560		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
 561	else {
 562		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
 563		if (PageSwapBacked(page))
 564			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
 565	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	if (compound) {
 568		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 569		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570	}
 571
 572	/* pagein of a big page is an event. So, ignore page size */
 573	if (nr_pages > 0)
 574		__count_memcg_events(memcg, PGPGIN, 1);
 575	else {
 576		__count_memcg_events(memcg, PGPGOUT, 1);
 577		nr_pages = -nr_pages; /* for event */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	}
 579
 580	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
 
 
 581}
 
 582
 583unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 584					   int nid, unsigned int lru_mask)
 585{
 586	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
 587	unsigned long nr = 0;
 588	enum lru_list lru;
 589
 590	VM_BUG_ON((unsigned)nid >= nr_node_ids);
 
 591
 592	for_each_lru(lru) {
 593		if (!(BIT(lru) & lru_mask))
 594			continue;
 595		nr += mem_cgroup_get_lru_size(lruvec, lru);
 
 
 
 
 
 
 
 596	}
 597	return nr;
 598}
 599
 600static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 601			unsigned int lru_mask)
 
 
 
 
 
 
 602{
 603	unsigned long nr = 0;
 604	int nid;
 605
 606	for_each_node_state(nid, N_MEMORY)
 607		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 608	return nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609}
 610
 611static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 612				       enum mem_cgroup_events_target target)
 613{
 614	unsigned long val, next;
 615
 616	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
 617	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
 618	/* from time_after() in jiffies.h */
 619	if ((long)(next - val) < 0) {
 620		switch (target) {
 621		case MEM_CGROUP_TARGET_THRESH:
 622			next = val + THRESHOLDS_EVENTS_TARGET;
 623			break;
 624		case MEM_CGROUP_TARGET_SOFTLIMIT:
 625			next = val + SOFTLIMIT_EVENTS_TARGET;
 626			break;
 627		case MEM_CGROUP_TARGET_NUMAINFO:
 628			next = val + NUMAINFO_EVENTS_TARGET;
 629			break;
 630		default:
 631			break;
 632		}
 633		__this_cpu_write(memcg->stat_cpu->targets[target], next);
 634		return true;
 635	}
 636	return false;
 637}
 638
 639/*
 640 * Check events in order.
 641 *
 642 */
 643static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 644{
 
 
 
 645	/* threshold event is triggered in finer grain than soft limit */
 646	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 647						MEM_CGROUP_TARGET_THRESH))) {
 648		bool do_softlimit;
 649		bool do_numainfo __maybe_unused;
 650
 651		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 652						MEM_CGROUP_TARGET_SOFTLIMIT);
 653#if MAX_NUMNODES > 1
 654		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 655						MEM_CGROUP_TARGET_NUMAINFO);
 656#endif
 657		mem_cgroup_threshold(memcg);
 658		if (unlikely(do_softlimit))
 659			mem_cgroup_update_tree(memcg, page);
 660#if MAX_NUMNODES > 1
 661		if (unlikely(do_numainfo))
 662			atomic_inc(&memcg->numainfo_events);
 663#endif
 664	}
 665}
 666
 667struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 668{
 669	/*
 670	 * mm_update_next_owner() may clear mm->owner to NULL
 671	 * if it races with swapoff, page migration, etc.
 672	 * So this can be called with p == NULL.
 673	 */
 674	if (unlikely(!p))
 675		return NULL;
 676
 677	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 678}
 679EXPORT_SYMBOL(mem_cgroup_from_task);
 680
 681static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 682{
 683	struct mem_cgroup *memcg = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684
 685	rcu_read_lock();
 686	do {
 687		/*
 688		 * Page cache insertions can happen withou an
 689		 * actual mm context, e.g. during disk probing
 690		 * on boot, loopback IO, acct() writes etc.
 691		 */
 692		if (unlikely(!mm))
 693			memcg = root_mem_cgroup;
 694		else {
 695			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 696			if (unlikely(!memcg))
 697				memcg = root_mem_cgroup;
 698		}
 699	} while (!css_tryget_online(&memcg->css));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 700	rcu_read_unlock();
 701	return memcg;
 702}
 703
 704/**
 705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 706 * @root: hierarchy root
 707 * @prev: previously returned memcg, NULL on first invocation
 708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 709 *
 710 * Returns references to children of the hierarchy below @root, or
 711 * @root itself, or %NULL after a full round-trip.
 712 *
 713 * Caller must pass the return value in @prev on subsequent
 714 * invocations for reference counting, or use mem_cgroup_iter_break()
 715 * to cancel a hierarchy walk before the round-trip is complete.
 716 *
 717 * Reclaimers can specify a node and a priority level in @reclaim to
 718 * divide up the memcgs in the hierarchy among all concurrent
 719 * reclaimers operating on the same node and priority.
 720 */
 721struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 722				   struct mem_cgroup *prev,
 723				   struct mem_cgroup_reclaim_cookie *reclaim)
 724{
 725	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 726	struct cgroup_subsys_state *css = NULL;
 727	struct mem_cgroup *memcg = NULL;
 728	struct mem_cgroup *pos = NULL;
 729
 730	if (mem_cgroup_disabled())
 731		return NULL;
 732
 733	if (!root)
 734		root = root_mem_cgroup;
 735
 736	if (prev && !reclaim)
 737		pos = prev;
 738
 739	if (!root->use_hierarchy && root != root_mem_cgroup) {
 740		if (prev)
 741			goto out;
 742		return root;
 743	}
 744
 745	rcu_read_lock();
 746
 747	if (reclaim) {
 748		struct mem_cgroup_per_node *mz;
 749
 750		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
 751		iter = &mz->iter[reclaim->priority];
 752
 753		if (prev && reclaim->generation != iter->generation)
 
 
 
 
 
 
 754			goto out_unlock;
 755
 756		while (1) {
 757			pos = READ_ONCE(iter->position);
 758			if (!pos || css_tryget(&pos->css))
 759				break;
 760			/*
 761			 * css reference reached zero, so iter->position will
 762			 * be cleared by ->css_released. However, we should not
 763			 * rely on this happening soon, because ->css_released
 764			 * is called from a work queue, and by busy-waiting we
 765			 * might block it. So we clear iter->position right
 766			 * away.
 767			 */
 768			(void)cmpxchg(&iter->position, pos, NULL);
 769		}
 
 
 770	}
 771
 772	if (pos)
 773		css = &pos->css;
 774
 775	for (;;) {
 776		css = css_next_descendant_pre(css, &root->css);
 777		if (!css) {
 778			/*
 779			 * Reclaimers share the hierarchy walk, and a
 780			 * new one might jump in right at the end of
 781			 * the hierarchy - make sure they see at least
 782			 * one group and restart from the beginning.
 783			 */
 784			if (!prev)
 785				continue;
 786			break;
 787		}
 788
 789		/*
 790		 * Verify the css and acquire a reference.  The root
 791		 * is provided by the caller, so we know it's alive
 792		 * and kicking, and don't take an extra reference.
 793		 */
 794		memcg = mem_cgroup_from_css(css);
 795
 796		if (css == &root->css)
 797			break;
 798
 799		if (css_tryget(css))
 800			break;
 801
 802		memcg = NULL;
 803	}
 804
 805	if (reclaim) {
 806		/*
 807		 * The position could have already been updated by a competing
 808		 * thread, so check that the value hasn't changed since we read
 809		 * it to avoid reclaiming from the same cgroup twice.
 810		 */
 811		(void)cmpxchg(&iter->position, pos, memcg);
 812
 813		if (pos)
 814			css_put(&pos->css);
 815
 816		if (!memcg)
 817			iter->generation++;
 818		else if (!prev)
 819			reclaim->generation = iter->generation;
 820	}
 821
 822out_unlock:
 823	rcu_read_unlock();
 824out:
 825	if (prev && prev != root)
 826		css_put(&prev->css);
 827
 828	return memcg;
 829}
 830
 831/**
 832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 833 * @root: hierarchy root
 834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 835 */
 836void mem_cgroup_iter_break(struct mem_cgroup *root,
 837			   struct mem_cgroup *prev)
 838{
 839	if (!root)
 840		root = root_mem_cgroup;
 841	if (prev && prev != root)
 842		css_put(&prev->css);
 843}
 844
 845static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 
 846{
 847	struct mem_cgroup *memcg = dead_memcg;
 848	struct mem_cgroup_reclaim_iter *iter;
 849	struct mem_cgroup_per_node *mz;
 850	int nid;
 851	int i;
 852
 853	while ((memcg = parent_mem_cgroup(memcg))) {
 854		for_each_node(nid) {
 855			mz = mem_cgroup_nodeinfo(memcg, nid);
 856			for (i = 0; i <= DEF_PRIORITY; i++) {
 857				iter = &mz->iter[i];
 858				cmpxchg(&iter->position,
 859					dead_memcg, NULL);
 860			}
 861		}
 862	}
 863}
 864
 865/*
 866 * Iteration constructs for visiting all cgroups (under a tree).  If
 867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 868 * be used for reference counting.
 869 */
 870#define for_each_mem_cgroup_tree(iter, root)		\
 871	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 872	     iter != NULL;				\
 873	     iter = mem_cgroup_iter(root, iter, NULL))
 874
 875#define for_each_mem_cgroup(iter)			\
 876	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 877	     iter != NULL;				\
 878	     iter = mem_cgroup_iter(NULL, iter, NULL))
 
 
 
 
 
 
 
 
 
 
 
 879
 880/**
 881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 882 * @memcg: hierarchy root
 883 * @fn: function to call for each task
 884 * @arg: argument passed to @fn
 885 *
 886 * This function iterates over tasks attached to @memcg or to any of its
 887 * descendants and calls @fn for each task. If @fn returns a non-zero
 888 * value, the function breaks the iteration loop and returns the value.
 889 * Otherwise, it will iterate over all tasks and return 0.
 890 *
 891 * This function must not be called for the root memory cgroup.
 892 */
 893int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
 894			  int (*fn)(struct task_struct *, void *), void *arg)
 895{
 896	struct mem_cgroup *iter;
 897	int ret = 0;
 898
 899	BUG_ON(memcg == root_mem_cgroup);
 900
 901	for_each_mem_cgroup_tree(iter, memcg) {
 902		struct css_task_iter it;
 903		struct task_struct *task;
 904
 905		css_task_iter_start(&iter->css, 0, &it);
 906		while (!ret && (task = css_task_iter_next(&it)))
 907			ret = fn(task, arg);
 908		css_task_iter_end(&it);
 909		if (ret) {
 910			mem_cgroup_iter_break(memcg, iter);
 911			break;
 912		}
 913	}
 914	return ret;
 915}
 916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917/**
 918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 919 * @page: the page
 920 * @pgdat: pgdat of the page
 
 
 
 
 
 921 *
 922 * This function is only safe when following the LRU page isolation
 923 * and putback protocol: the LRU lock must be held, and the page must
 924 * either be PageLRU() or the caller must have isolated/allocated it.
 925 */
 926struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
 927{
 928	struct mem_cgroup_per_node *mz;
 929	struct mem_cgroup *memcg;
 930	struct lruvec *lruvec;
 931
 932	if (mem_cgroup_disabled()) {
 933		lruvec = &pgdat->lruvec;
 934		goto out;
 935	}
 936
 937	memcg = page->mem_cgroup;
 938	/*
 939	 * Swapcache readahead pages are added to the LRU - and
 940	 * possibly migrated - before they are charged.
 941	 */
 942	if (!memcg)
 943		memcg = root_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944
 945	mz = mem_cgroup_page_nodeinfo(memcg, page);
 946	lruvec = &mz->lruvec;
 947out:
 948	/*
 949	 * Since a node can be onlined after the mem_cgroup was created,
 950	 * we have to be prepared to initialize lruvec->zone here;
 951	 * and if offlined then reonlined, we need to reinitialize it.
 952	 */
 953	if (unlikely(lruvec->pgdat != pgdat))
 954		lruvec->pgdat = pgdat;
 955	return lruvec;
 956}
 957
 958/**
 959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 960 * @lruvec: mem_cgroup per zone lru vector
 961 * @lru: index of lru list the page is sitting on
 962 * @zid: zone id of the accounted pages
 963 * @nr_pages: positive when adding or negative when removing
 964 *
 965 * This function must be called under lru_lock, just before a page is added
 966 * to or just after a page is removed from an lru list (that ordering being
 967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
 968 */
 969void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 970				int zid, int nr_pages)
 971{
 972	struct mem_cgroup_per_node *mz;
 973	unsigned long *lru_size;
 974	long size;
 975
 976	if (mem_cgroup_disabled())
 977		return;
 978
 979	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 980	lru_size = &mz->lru_zone_size[zid][lru];
 981
 982	if (nr_pages < 0)
 983		*lru_size += nr_pages;
 984
 985	size = *lru_size;
 986	if (WARN_ONCE(size < 0,
 987		"%s(%p, %d, %d): lru_size %ld\n",
 988		__func__, lruvec, lru, nr_pages, size)) {
 989		VM_BUG_ON(1);
 990		*lru_size = 0;
 991	}
 992
 993	if (nr_pages > 0)
 994		*lru_size += nr_pages;
 995}
 996
 997bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
 998{
 999	struct mem_cgroup *task_memcg;
1000	struct task_struct *p;
1001	bool ret;
1002
1003	p = find_lock_task_mm(task);
1004	if (p) {
1005		task_memcg = get_mem_cgroup_from_mm(p->mm);
1006		task_unlock(p);
1007	} else {
1008		/*
1009		 * All threads may have already detached their mm's, but the oom
1010		 * killer still needs to detect if they have already been oom
1011		 * killed to prevent needlessly killing additional tasks.
1012		 */
1013		rcu_read_lock();
1014		task_memcg = mem_cgroup_from_task(task);
1015		css_get(&task_memcg->css);
1016		rcu_read_unlock();
1017	}
1018	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019	css_put(&task_memcg->css);
1020	return ret;
1021}
1022
1023/**
1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025 * @memcg: the memory cgroup
1026 *
1027 * Returns the maximum amount of memory @mem can be charged with, in
1028 * pages.
1029 */
1030static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1031{
1032	unsigned long margin = 0;
1033	unsigned long count;
1034	unsigned long limit;
1035
1036	count = page_counter_read(&memcg->memory);
1037	limit = READ_ONCE(memcg->memory.limit);
1038	if (count < limit)
1039		margin = limit - count;
1040
1041	if (do_memsw_account()) {
1042		count = page_counter_read(&memcg->memsw);
1043		limit = READ_ONCE(memcg->memsw.limit);
1044		if (count <= limit)
1045			margin = min(margin, limit - count);
1046		else
1047			margin = 0;
1048	}
1049
1050	return margin;
1051}
1052
1053/*
1054 * A routine for checking "mem" is under move_account() or not.
1055 *
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1058 * caused by "move".
1059 */
1060static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1061{
1062	struct mem_cgroup *from;
1063	struct mem_cgroup *to;
1064	bool ret = false;
1065	/*
1066	 * Unlike task_move routines, we access mc.to, mc.from not under
1067	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1068	 */
1069	spin_lock(&mc.lock);
1070	from = mc.from;
1071	to = mc.to;
1072	if (!from)
1073		goto unlock;
1074
1075	ret = mem_cgroup_is_descendant(from, memcg) ||
1076		mem_cgroup_is_descendant(to, memcg);
1077unlock:
1078	spin_unlock(&mc.lock);
1079	return ret;
1080}
1081
1082static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1083{
1084	if (mc.moving_task && current != mc.moving_task) {
1085		if (mem_cgroup_under_move(memcg)) {
1086			DEFINE_WAIT(wait);
1087			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088			/* moving charge context might have finished. */
1089			if (mc.moving_task)
1090				schedule();
1091			finish_wait(&mc.waitq, &wait);
1092			return true;
1093		}
1094	}
1095	return false;
1096}
1097
1098static const unsigned int memcg1_stats[] = {
1099	MEMCG_CACHE,
1100	MEMCG_RSS,
1101	MEMCG_RSS_HUGE,
1102	NR_SHMEM,
1103	NR_FILE_MAPPED,
1104	NR_FILE_DIRTY,
1105	NR_WRITEBACK,
1106	MEMCG_SWAP,
1107};
1108
1109static const char *const memcg1_stat_names[] = {
1110	"cache",
1111	"rss",
1112	"rss_huge",
1113	"shmem",
1114	"mapped_file",
1115	"dirty",
1116	"writeback",
1117	"swap",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118};
1119
1120#define K(x) ((x) << (PAGE_SHIFT-10))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121/**
1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
 
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1125 *
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1127 * enabled
1128 */
1129void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1130{
1131	struct mem_cgroup *iter;
1132	unsigned int i;
1133
1134	rcu_read_lock();
1135
 
 
 
 
 
1136	if (p) {
1137		pr_info("Task in ");
1138		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139		pr_cont(" killed as a result of limit of ");
1140	} else {
1141		pr_info("Memory limit reached of cgroup ");
1142	}
 
 
1143
1144	pr_cont_cgroup_path(memcg->css.cgroup);
1145	pr_cont("\n");
 
 
 
 
 
 
 
 
1146
1147	rcu_read_unlock();
1148
1149	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150		K((u64)page_counter_read(&memcg->memory)),
1151		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1152	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153		K((u64)page_counter_read(&memcg->memsw)),
1154		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1155	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156		K((u64)page_counter_read(&memcg->kmem)),
1157		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1158
1159	for_each_mem_cgroup_tree(iter, memcg) {
1160		pr_info("Memory cgroup stats for ");
1161		pr_cont_cgroup_path(iter->css.cgroup);
1162		pr_cont(":");
1163
1164		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166				continue;
1167			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168				K(memcg_page_state(iter, memcg1_stats[i])));
1169		}
1170
1171		for (i = 0; i < NR_LRU_LISTS; i++)
1172			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1174
1175		pr_cont("\n");
1176	}
 
 
 
 
 
 
 
1177}
1178
1179/*
1180 * Return the memory (and swap, if configured) limit for a memcg.
1181 */
1182unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1183{
1184	unsigned long limit;
1185
1186	limit = memcg->memory.limit;
1187	if (mem_cgroup_swappiness(memcg)) {
1188		unsigned long memsw_limit;
1189		unsigned long swap_limit;
1190
1191		memsw_limit = memcg->memsw.limit;
1192		swap_limit = memcg->swap.limit;
1193		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1194		limit = min(limit + swap_limit, memsw_limit);
 
 
1195	}
1196	return limit;
 
 
 
 
 
1197}
1198
1199static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200				     int order)
1201{
1202	struct oom_control oc = {
1203		.zonelist = NULL,
1204		.nodemask = NULL,
1205		.memcg = memcg,
1206		.gfp_mask = gfp_mask,
1207		.order = order,
1208	};
1209	bool ret;
1210
1211	mutex_lock(&oom_lock);
1212	ret = out_of_memory(&oc);
1213	mutex_unlock(&oom_lock);
1214	return ret;
1215}
1216
1217#if MAX_NUMNODES > 1
1218
1219/**
1220 * test_mem_cgroup_node_reclaimable
1221 * @memcg: the target memcg
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1224 *
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1228 */
1229static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230		int nid, bool noswap)
1231{
1232	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233		return true;
1234	if (noswap || !total_swap_pages)
1235		return false;
1236	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237		return true;
1238	return false;
1239
1240}
1241
1242/*
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1246 *
1247 */
1248static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1249{
1250	int nid;
1251	/*
1252	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253	 * pagein/pageout changes since the last update.
1254	 */
1255	if (!atomic_read(&memcg->numainfo_events))
1256		return;
1257	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258		return;
1259
1260	/* make a nodemask where this memcg uses memory from */
1261	memcg->scan_nodes = node_states[N_MEMORY];
1262
1263	for_each_node_mask(nid, node_states[N_MEMORY]) {
1264
1265		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266			node_clear(nid, memcg->scan_nodes);
1267	}
1268
1269	atomic_set(&memcg->numainfo_events, 0);
1270	atomic_set(&memcg->numainfo_updating, 0);
1271}
1272
1273/*
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1277 *
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1282 *
1283 * Now, we use round-robin. Better algorithm is welcomed.
1284 */
1285int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1286{
1287	int node;
1288
1289	mem_cgroup_may_update_nodemask(memcg);
1290	node = memcg->last_scanned_node;
1291
1292	node = next_node_in(node, memcg->scan_nodes);
1293	/*
1294	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295	 * last time it really checked all the LRUs due to rate limiting.
1296	 * Fallback to the current node in that case for simplicity.
1297	 */
1298	if (unlikely(node == MAX_NUMNODES))
1299		node = numa_node_id();
1300
1301	memcg->last_scanned_node = node;
1302	return node;
1303}
1304#else
1305int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1306{
1307	return 0;
1308}
1309#endif
1310
1311static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312				   pg_data_t *pgdat,
1313				   gfp_t gfp_mask,
1314				   unsigned long *total_scanned)
1315{
1316	struct mem_cgroup *victim = NULL;
1317	int total = 0;
1318	int loop = 0;
1319	unsigned long excess;
1320	unsigned long nr_scanned;
1321	struct mem_cgroup_reclaim_cookie reclaim = {
1322		.pgdat = pgdat,
1323		.priority = 0,
1324	};
1325
1326	excess = soft_limit_excess(root_memcg);
1327
1328	while (1) {
1329		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1330		if (!victim) {
1331			loop++;
1332			if (loop >= 2) {
1333				/*
1334				 * If we have not been able to reclaim
1335				 * anything, it might because there are
1336				 * no reclaimable pages under this hierarchy
1337				 */
1338				if (!total)
1339					break;
1340				/*
1341				 * We want to do more targeted reclaim.
1342				 * excess >> 2 is not to excessive so as to
1343				 * reclaim too much, nor too less that we keep
1344				 * coming back to reclaim from this cgroup
1345				 */
1346				if (total >= (excess >> 2) ||
1347					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1348					break;
1349			}
1350			continue;
1351		}
1352		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353					pgdat, &nr_scanned);
1354		*total_scanned += nr_scanned;
1355		if (!soft_limit_excess(root_memcg))
1356			break;
1357	}
1358	mem_cgroup_iter_break(root_memcg, victim);
1359	return total;
1360}
1361
1362#ifdef CONFIG_LOCKDEP
1363static struct lockdep_map memcg_oom_lock_dep_map = {
1364	.name = "memcg_oom_lock",
1365};
1366#endif
1367
1368static DEFINE_SPINLOCK(memcg_oom_lock);
1369
1370/*
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1373 */
1374static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1375{
1376	struct mem_cgroup *iter, *failed = NULL;
1377
1378	spin_lock(&memcg_oom_lock);
1379
1380	for_each_mem_cgroup_tree(iter, memcg) {
1381		if (iter->oom_lock) {
1382			/*
1383			 * this subtree of our hierarchy is already locked
1384			 * so we cannot give a lock.
1385			 */
1386			failed = iter;
1387			mem_cgroup_iter_break(memcg, iter);
1388			break;
1389		} else
1390			iter->oom_lock = true;
1391	}
1392
1393	if (failed) {
1394		/*
1395		 * OK, we failed to lock the whole subtree so we have
1396		 * to clean up what we set up to the failing subtree
1397		 */
1398		for_each_mem_cgroup_tree(iter, memcg) {
1399			if (iter == failed) {
1400				mem_cgroup_iter_break(memcg, iter);
1401				break;
1402			}
1403			iter->oom_lock = false;
1404		}
1405	} else
1406		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1407
1408	spin_unlock(&memcg_oom_lock);
1409
1410	return !failed;
1411}
1412
1413static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1414{
1415	struct mem_cgroup *iter;
1416
1417	spin_lock(&memcg_oom_lock);
1418	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419	for_each_mem_cgroup_tree(iter, memcg)
1420		iter->oom_lock = false;
1421	spin_unlock(&memcg_oom_lock);
1422}
1423
1424static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1425{
1426	struct mem_cgroup *iter;
1427
1428	spin_lock(&memcg_oom_lock);
1429	for_each_mem_cgroup_tree(iter, memcg)
1430		iter->under_oom++;
1431	spin_unlock(&memcg_oom_lock);
1432}
1433
1434static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1435{
1436	struct mem_cgroup *iter;
1437
1438	/*
1439	 * When a new child is created while the hierarchy is under oom,
1440	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1441	 */
1442	spin_lock(&memcg_oom_lock);
1443	for_each_mem_cgroup_tree(iter, memcg)
1444		if (iter->under_oom > 0)
1445			iter->under_oom--;
1446	spin_unlock(&memcg_oom_lock);
1447}
1448
1449static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1450
1451struct oom_wait_info {
1452	struct mem_cgroup *memcg;
1453	wait_queue_entry_t	wait;
1454};
1455
1456static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1457	unsigned mode, int sync, void *arg)
1458{
1459	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460	struct mem_cgroup *oom_wait_memcg;
1461	struct oom_wait_info *oom_wait_info;
1462
1463	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464	oom_wait_memcg = oom_wait_info->memcg;
1465
1466	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1468		return 0;
1469	return autoremove_wake_function(wait, mode, sync, arg);
1470}
1471
1472static void memcg_oom_recover(struct mem_cgroup *memcg)
1473{
1474	/*
1475	 * For the following lockless ->under_oom test, the only required
1476	 * guarantee is that it must see the state asserted by an OOM when
1477	 * this function is called as a result of userland actions
1478	 * triggered by the notification of the OOM.  This is trivially
1479	 * achieved by invoking mem_cgroup_mark_under_oom() before
1480	 * triggering notification.
1481	 */
1482	if (memcg && memcg->under_oom)
1483		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1484}
1485
1486static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
 
 
 
 
1487{
1488	if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489		return;
 
 
 
 
 
1490	/*
1491	 * We are in the middle of the charge context here, so we
1492	 * don't want to block when potentially sitting on a callstack
1493	 * that holds all kinds of filesystem and mm locks.
1494	 *
1495	 * Also, the caller may handle a failed allocation gracefully
1496	 * (like optional page cache readahead) and so an OOM killer
1497	 * invocation might not even be necessary.
 
1498	 *
1499	 * That's why we don't do anything here except remember the
1500	 * OOM context and then deal with it at the end of the page
1501	 * fault when the stack is unwound, the locks are released,
1502	 * and when we know whether the fault was overall successful.
 
 
 
1503	 */
1504	css_get(&memcg->css);
1505	current->memcg_in_oom = memcg;
1506	current->memcg_oom_gfp_mask = mask;
1507	current->memcg_oom_order = order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508}
1509
1510/**
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512 * @handle: actually kill/wait or just clean up the OOM state
1513 *
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
1516 *
1517 * Memcg supports userspace OOM handling where failed allocations must
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation.  Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522 * the end of the page fault to complete the OOM handling.
1523 *
1524 * Returns %true if an ongoing memcg OOM situation was detected and
1525 * completed, %false otherwise.
1526 */
1527bool mem_cgroup_oom_synchronize(bool handle)
1528{
1529	struct mem_cgroup *memcg = current->memcg_in_oom;
1530	struct oom_wait_info owait;
1531	bool locked;
1532
1533	/* OOM is global, do not handle */
1534	if (!memcg)
1535		return false;
1536
1537	if (!handle)
1538		goto cleanup;
1539
1540	owait.memcg = memcg;
1541	owait.wait.flags = 0;
1542	owait.wait.func = memcg_oom_wake_function;
1543	owait.wait.private = current;
1544	INIT_LIST_HEAD(&owait.wait.entry);
1545
1546	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547	mem_cgroup_mark_under_oom(memcg);
1548
1549	locked = mem_cgroup_oom_trylock(memcg);
1550
1551	if (locked)
1552		mem_cgroup_oom_notify(memcg);
1553
1554	if (locked && !memcg->oom_kill_disable) {
1555		mem_cgroup_unmark_under_oom(memcg);
1556		finish_wait(&memcg_oom_waitq, &owait.wait);
1557		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558					 current->memcg_oom_order);
1559	} else {
1560		schedule();
1561		mem_cgroup_unmark_under_oom(memcg);
1562		finish_wait(&memcg_oom_waitq, &owait.wait);
1563	}
1564
1565	if (locked) {
1566		mem_cgroup_oom_unlock(memcg);
1567		/*
1568		 * There is no guarantee that an OOM-lock contender
1569		 * sees the wakeups triggered by the OOM kill
1570		 * uncharges.  Wake any sleepers explicitely.
1571		 */
1572		memcg_oom_recover(memcg);
1573	}
1574cleanup:
1575	current->memcg_in_oom = NULL;
1576	css_put(&memcg->css);
1577	return true;
1578}
1579
1580/**
1581 * lock_page_memcg - lock a page->mem_cgroup binding
1582 * @page: the page
 
 
 
 
1583 *
1584 * This function protects unlocked LRU pages from being moved to
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585 * another cgroup.
1586 *
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
1590 */
1591struct mem_cgroup *lock_page_memcg(struct page *page)
1592{
1593	struct mem_cgroup *memcg;
1594	unsigned long flags;
1595
1596	/*
1597	 * The RCU lock is held throughout the transaction.  The fast
1598	 * path can get away without acquiring the memcg->move_lock
1599	 * because page moving starts with an RCU grace period.
1600	 *
1601	 * The RCU lock also protects the memcg from being freed when
1602	 * the page state that is going to change is the only thing
1603	 * preventing the page itself from being freed. E.g. writeback
1604	 * doesn't hold a page reference and relies on PG_writeback to
1605	 * keep off truncation, migration and so forth.
1606         */
1607	rcu_read_lock();
1608
1609	if (mem_cgroup_disabled())
1610		return NULL;
1611again:
1612	memcg = page->mem_cgroup;
1613	if (unlikely(!memcg))
1614		return NULL;
 
 
 
 
 
 
1615
1616	if (atomic_read(&memcg->moving_account) <= 0)
1617		return memcg;
1618
1619	spin_lock_irqsave(&memcg->move_lock, flags);
1620	if (memcg != page->mem_cgroup) {
1621		spin_unlock_irqrestore(&memcg->move_lock, flags);
1622		goto again;
1623	}
1624
1625	/*
1626	 * When charge migration first begins, we can have locked and
1627	 * unlocked page stat updates happening concurrently.  Track
1628	 * the task who has the lock for unlock_page_memcg().
 
1629	 */
1630	memcg->move_lock_task = current;
1631	memcg->move_lock_flags = flags;
1632
1633	return memcg;
1634}
1635EXPORT_SYMBOL(lock_page_memcg);
1636
1637/**
1638 * __unlock_page_memcg - unlock and unpin a memcg
1639 * @memcg: the memcg
1640 *
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
1642 */
1643void __unlock_page_memcg(struct mem_cgroup *memcg)
1644{
1645	if (memcg && memcg->move_lock_task == current) {
1646		unsigned long flags = memcg->move_lock_flags;
1647
1648		memcg->move_lock_task = NULL;
1649		memcg->move_lock_flags = 0;
1650
1651		spin_unlock_irqrestore(&memcg->move_lock, flags);
1652	}
1653
1654	rcu_read_unlock();
1655}
1656
1657/**
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1659 * @page: the page
 
 
 
 
1660 */
1661void unlock_page_memcg(struct page *page)
1662{
1663	__unlock_page_memcg(page->mem_cgroup);
1664}
1665EXPORT_SYMBOL(unlock_page_memcg);
1666
1667struct memcg_stock_pcp {
 
1668	struct mem_cgroup *cached; /* this never be root cgroup */
1669	unsigned int nr_pages;
 
 
 
 
 
 
 
 
 
1670	struct work_struct work;
1671	unsigned long flags;
1672#define FLUSHING_CACHED_CHARGE	0
1673};
1674static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
 
 
1675static DEFINE_MUTEX(percpu_charge_mutex);
1676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1677/**
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1681 *
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock.  Failure to
1684 * service an allocation will refill the stock.
1685 *
1686 * returns true if successful, false otherwise.
1687 */
1688static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1689{
1690	struct memcg_stock_pcp *stock;
1691	unsigned long flags;
1692	bool ret = false;
1693
1694	if (nr_pages > MEMCG_CHARGE_BATCH)
1695		return ret;
1696
1697	local_irq_save(flags);
1698
1699	stock = this_cpu_ptr(&memcg_stock);
1700	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701		stock->nr_pages -= nr_pages;
1702		ret = true;
1703	}
1704
1705	local_irq_restore(flags);
1706
1707	return ret;
1708}
1709
1710/*
1711 * Returns stocks cached in percpu and reset cached information.
1712 */
1713static void drain_stock(struct memcg_stock_pcp *stock)
1714{
1715	struct mem_cgroup *old = stock->cached;
 
 
 
1716
1717	if (stock->nr_pages) {
1718		page_counter_uncharge(&old->memory, stock->nr_pages);
1719		if (do_memsw_account())
1720			page_counter_uncharge(&old->memsw, stock->nr_pages);
1721		css_put_many(&old->css, stock->nr_pages);
1722		stock->nr_pages = 0;
1723	}
1724	stock->cached = NULL;
 
 
1725}
1726
1727static void drain_local_stock(struct work_struct *dummy)
1728{
1729	struct memcg_stock_pcp *stock;
 
1730	unsigned long flags;
1731
1732	/*
1733	 * The only protection from memory hotplug vs. drain_stock races is
1734	 * that we always operate on local CPU stock here with IRQ disabled
 
1735	 */
1736	local_irq_save(flags);
1737
1738	stock = this_cpu_ptr(&memcg_stock);
 
1739	drain_stock(stock);
1740	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1741
1742	local_irq_restore(flags);
 
 
1743}
1744
1745/*
1746 * Cache charges(val) to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1748 */
1749static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1750{
1751	struct memcg_stock_pcp *stock;
1752	unsigned long flags;
1753
1754	local_irq_save(flags);
1755
1756	stock = this_cpu_ptr(&memcg_stock);
1757	if (stock->cached != memcg) { /* reset if necessary */
1758		drain_stock(stock);
1759		stock->cached = memcg;
 
1760	}
1761	stock->nr_pages += nr_pages;
1762
1763	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764		drain_stock(stock);
 
1765
1766	local_irq_restore(flags);
 
 
 
 
 
 
1767}
1768
1769/*
1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771 * of the hierarchy under it.
1772 */
1773static void drain_all_stock(struct mem_cgroup *root_memcg)
1774{
1775	int cpu, curcpu;
1776
1777	/* If someone's already draining, avoid adding running more workers. */
1778	if (!mutex_trylock(&percpu_charge_mutex))
1779		return;
1780	/*
1781	 * Notify other cpus that system-wide "drain" is running
1782	 * We do not care about races with the cpu hotplug because cpu down
1783	 * as well as workers from this path always operate on the local
1784	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1785	 */
1786	curcpu = get_cpu();
 
1787	for_each_online_cpu(cpu) {
1788		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789		struct mem_cgroup *memcg;
 
1790
1791		memcg = stock->cached;
1792		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793			continue;
1794		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795			css_put(&memcg->css);
1796			continue;
1797		}
1798		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
 
 
 
1799			if (cpu == curcpu)
1800				drain_local_stock(&stock->work);
1801			else
1802				schedule_work_on(cpu, &stock->work);
1803		}
1804		css_put(&memcg->css);
1805	}
1806	put_cpu();
1807	mutex_unlock(&percpu_charge_mutex);
1808}
1809
1810static int memcg_hotplug_cpu_dead(unsigned int cpu)
1811{
1812	struct memcg_stock_pcp *stock;
1813	struct mem_cgroup *memcg;
1814
1815	stock = &per_cpu(memcg_stock, cpu);
1816	drain_stock(stock);
1817
1818	for_each_mem_cgroup(memcg) {
1819		int i;
1820
1821		for (i = 0; i < MEMCG_NR_STAT; i++) {
1822			int nid;
1823			long x;
1824
1825			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1826			if (x)
1827				atomic_long_add(x, &memcg->stat[i]);
1828
1829			if (i >= NR_VM_NODE_STAT_ITEMS)
1830				continue;
1831
1832			for_each_node(nid) {
1833				struct mem_cgroup_per_node *pn;
1834
1835				pn = mem_cgroup_nodeinfo(memcg, nid);
1836				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1837				if (x)
1838					atomic_long_add(x, &pn->lruvec_stat[i]);
1839			}
1840		}
1841
1842		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843			long x;
1844
1845			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1846			if (x)
1847				atomic_long_add(x, &memcg->events[i]);
1848		}
1849	}
1850
1851	return 0;
1852}
1853
1854static void reclaim_high(struct mem_cgroup *memcg,
1855			 unsigned int nr_pages,
1856			 gfp_t gfp_mask)
1857{
 
 
1858	do {
1859		if (page_counter_read(&memcg->memory) <= memcg->high)
 
 
 
1860			continue;
 
1861		memcg_memory_event(memcg, MEMCG_HIGH);
1862		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863	} while ((memcg = parent_mem_cgroup(memcg)));
 
 
 
 
 
 
 
 
1864}
1865
1866static void high_work_func(struct work_struct *work)
1867{
1868	struct mem_cgroup *memcg;
1869
1870	memcg = container_of(work, struct mem_cgroup, high_work);
1871	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1872}
1873
1874/*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1877 */
1878void mem_cgroup_handle_over_high(void)
 
 
 
1879{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880	unsigned int nr_pages = current->memcg_nr_pages_over_high;
 
1881	struct mem_cgroup *memcg;
 
1882
1883	if (likely(!nr_pages))
1884		return;
1885
1886	memcg = get_mem_cgroup_from_mm(current->mm);
1887	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888	css_put(&memcg->css);
1889	current->memcg_nr_pages_over_high = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890}
1891
1892static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893		      unsigned int nr_pages)
1894{
1895	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897	struct mem_cgroup *mem_over_limit;
1898	struct page_counter *counter;
1899	unsigned long nr_reclaimed;
1900	bool may_swap = true;
 
1901	bool drained = false;
 
 
1902
1903	if (mem_cgroup_is_root(memcg))
1904		return 0;
1905retry:
1906	if (consume_stock(memcg, nr_pages))
1907		return 0;
1908
1909	if (!do_memsw_account() ||
1910	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912			goto done_restock;
1913		if (do_memsw_account())
1914			page_counter_uncharge(&memcg->memsw, batch);
1915		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916	} else {
1917		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918		may_swap = false;
1919	}
1920
1921	if (batch > nr_pages) {
1922		batch = nr_pages;
1923		goto retry;
1924	}
1925
1926	/*
1927	 * Unlike in global OOM situations, memcg is not in a physical
1928	 * memory shortage.  Allow dying and OOM-killed tasks to
1929	 * bypass the last charges so that they can exit quickly and
1930	 * free their memory.
1931	 */
1932	if (unlikely(tsk_is_oom_victim(current) ||
1933		     fatal_signal_pending(current) ||
1934		     current->flags & PF_EXITING))
1935		goto force;
1936
1937	/*
1938	 * Prevent unbounded recursion when reclaim operations need to
1939	 * allocate memory. This might exceed the limits temporarily,
1940	 * but we prefer facilitating memory reclaim and getting back
1941	 * under the limit over triggering OOM kills in these cases.
1942	 */
1943	if (unlikely(current->flags & PF_MEMALLOC))
1944		goto force;
1945
1946	if (unlikely(task_in_memcg_oom(current)))
1947		goto nomem;
1948
1949	if (!gfpflags_allow_blocking(gfp_mask))
1950		goto nomem;
1951
1952	memcg_memory_event(mem_over_limit, MEMCG_MAX);
 
1953
 
1954	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955						    gfp_mask, may_swap);
 
1956
1957	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958		goto retry;
1959
1960	if (!drained) {
1961		drain_all_stock(mem_over_limit);
1962		drained = true;
1963		goto retry;
1964	}
1965
1966	if (gfp_mask & __GFP_NORETRY)
1967		goto nomem;
1968	/*
1969	 * Even though the limit is exceeded at this point, reclaim
1970	 * may have been able to free some pages.  Retry the charge
1971	 * before killing the task.
1972	 *
1973	 * Only for regular pages, though: huge pages are rather
1974	 * unlikely to succeed so close to the limit, and we fall back
1975	 * to regular pages anyway in case of failure.
1976	 */
1977	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978		goto retry;
1979	/*
1980	 * At task move, charge accounts can be doubly counted. So, it's
1981	 * better to wait until the end of task_move if something is going on.
1982	 */
1983	if (mem_cgroup_wait_acct_move(mem_over_limit))
1984		goto retry;
1985
1986	if (nr_retries--)
1987		goto retry;
1988
1989	if (gfp_mask & __GFP_NOFAIL)
1990		goto force;
1991
1992	if (fatal_signal_pending(current))
1993		goto force;
1994
1995	memcg_memory_event(mem_over_limit, MEMCG_OOM);
 
 
1996
1997	mem_cgroup_oom(mem_over_limit, gfp_mask,
1998		       get_order(nr_pages * PAGE_SIZE));
 
 
 
 
 
 
 
 
 
1999nomem:
2000	if (!(gfp_mask & __GFP_NOFAIL))
 
 
 
 
 
 
2001		return -ENOMEM;
2002force:
2003	/*
 
 
 
 
 
 
 
2004	 * The allocation either can't fail or will lead to more memory
2005	 * being freed very soon.  Allow memory usage go over the limit
2006	 * temporarily by force charging it.
2007	 */
2008	page_counter_charge(&memcg->memory, nr_pages);
2009	if (do_memsw_account())
2010		page_counter_charge(&memcg->memsw, nr_pages);
2011	css_get_many(&memcg->css, nr_pages);
2012
2013	return 0;
2014
2015done_restock:
2016	css_get_many(&memcg->css, batch);
2017	if (batch > nr_pages)
2018		refill_stock(memcg, batch - nr_pages);
2019
2020	/*
2021	 * If the hierarchy is above the normal consumption range, schedule
2022	 * reclaim on returning to userland.  We can perform reclaim here
2023	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2025	 * not recorded as it most likely matches current's and won't
2026	 * change in the meantime.  As high limit is checked again before
2027	 * reclaim, the cost of mismatch is negligible.
2028	 */
2029	do {
2030		if (page_counter_read(&memcg->memory) > memcg->high) {
2031			/* Don't bother a random interrupted task */
2032			if (in_interrupt()) {
 
 
 
 
 
 
 
2033				schedule_work(&memcg->high_work);
2034				break;
2035			}
 
 
 
 
 
 
 
 
 
 
 
 
 
2036			current->memcg_nr_pages_over_high += batch;
2037			set_notify_resume(current);
2038			break;
2039		}
2040	} while ((memcg = parent_mem_cgroup(memcg)));
2041
 
 
 
 
 
 
 
 
 
 
 
2042	return 0;
2043}
2044
2045static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2046{
2047	if (mem_cgroup_is_root(memcg))
2048		return;
2049
2050	page_counter_uncharge(&memcg->memory, nr_pages);
2051	if (do_memsw_account())
2052		page_counter_uncharge(&memcg->memsw, nr_pages);
2053
2054	css_put_many(&memcg->css, nr_pages);
2055}
2056
2057static void lock_page_lru(struct page *page, int *isolated)
2058{
2059	struct zone *zone = page_zone(page);
 
 
 
 
 
 
 
 
 
 
 
2060
2061	spin_lock_irq(zone_lru_lock(zone));
2062	if (PageLRU(page)) {
2063		struct lruvec *lruvec;
 
 
 
 
 
 
2064
2065		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066		ClearPageLRU(page);
2067		del_page_from_lru_list(page, lruvec, page_lru(page));
2068		*isolated = 1;
2069	} else
2070		*isolated = 0;
2071}
2072
2073static void unlock_page_lru(struct page *page, int isolated)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2074{
2075	struct zone *zone = page_zone(page);
 
 
 
 
 
 
 
 
2076
2077	if (isolated) {
2078		struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
2079
2080		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081		VM_BUG_ON_PAGE(PageLRU(page), page);
2082		SetPageLRU(page);
2083		add_page_to_lru_list(page, lruvec, page_lru(page));
 
 
 
 
 
 
 
 
 
 
 
 
2084	}
2085	spin_unlock_irq(zone_lru_lock(zone));
 
 
2086}
2087
2088static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089			  bool lrucare)
2090{
2091	int isolated;
 
 
 
 
 
 
 
 
 
 
 
 
 
2092
2093	VM_BUG_ON_PAGE(page->mem_cgroup, page);
 
 
2094
2095	/*
2096	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2098	 */
2099	if (lrucare)
2100		lock_page_lru(page, &isolated);
2101
2102	/*
2103	 * Nobody should be changing or seriously looking at
2104	 * page->mem_cgroup at this point:
2105	 *
2106	 * - the page is uncharged
2107	 *
2108	 * - the page is off-LRU
2109	 *
2110	 * - an anonymous fault has exclusive page access, except for
2111	 *   a locked page table
2112	 *
2113	 * - a page cache insertion, a swapin fault, or a migration
2114	 *   have the page locked
2115	 */
2116	page->mem_cgroup = memcg;
2117
2118	if (lrucare)
2119		unlock_page_lru(page, isolated);
2120}
2121
2122#ifndef CONFIG_SLOB
2123static int memcg_alloc_cache_id(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
2124{
2125	int id, size;
2126	int err;
2127
2128	id = ida_simple_get(&memcg_cache_ida,
2129			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2130	if (id < 0)
2131		return id;
2132
2133	if (id < memcg_nr_cache_ids)
2134		return id;
 
 
2135
2136	/*
2137	 * There's no space for the new id in memcg_caches arrays,
2138	 * so we have to grow them.
2139	 */
2140	down_write(&memcg_cache_ids_sem);
2141
2142	size = 2 * (id + 1);
2143	if (size < MEMCG_CACHES_MIN_SIZE)
2144		size = MEMCG_CACHES_MIN_SIZE;
2145	else if (size > MEMCG_CACHES_MAX_SIZE)
2146		size = MEMCG_CACHES_MAX_SIZE;
 
 
 
 
 
 
 
 
 
2147
2148	err = memcg_update_all_caches(size);
2149	if (!err)
2150		err = memcg_update_all_list_lrus(size);
2151	if (!err)
2152		memcg_nr_cache_ids = size;
2153
2154	up_write(&memcg_cache_ids_sem);
 
 
2155
2156	if (err) {
2157		ida_simple_remove(&memcg_cache_ida, id);
2158		return err;
 
 
2159	}
2160	return id;
2161}
2162
2163static void memcg_free_cache_id(int id)
2164{
2165	ida_simple_remove(&memcg_cache_ida, id);
2166}
2167
2168struct memcg_kmem_cache_create_work {
2169	struct mem_cgroup *memcg;
2170	struct kmem_cache *cachep;
2171	struct work_struct work;
2172};
2173
2174static void memcg_kmem_cache_create_func(struct work_struct *w)
2175{
2176	struct memcg_kmem_cache_create_work *cw =
2177		container_of(w, struct memcg_kmem_cache_create_work, work);
2178	struct mem_cgroup *memcg = cw->memcg;
2179	struct kmem_cache *cachep = cw->cachep;
 
 
2180
2181	memcg_create_kmem_cache(memcg, cachep);
 
2182
2183	css_put(&memcg->css);
2184	kfree(cw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2185}
2186
2187/*
2188 * Enqueue the creation of a per-memcg kmem_cache.
2189 */
2190static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191					       struct kmem_cache *cachep)
2192{
2193	struct memcg_kmem_cache_create_work *cw;
 
2194
2195	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196	if (!cw)
2197		return;
 
 
 
 
 
 
 
 
 
 
 
2198
2199	css_get(&memcg->css);
 
 
2200
2201	cw->memcg = memcg;
2202	cw->cachep = cachep;
2203	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
 
 
 
 
 
 
 
 
 
 
 
 
2204
2205	queue_work(memcg_kmem_cache_wq, &cw->work);
2206}
2207
2208static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209					     struct kmem_cache *cachep)
2210{
2211	/*
2212	 * We need to stop accounting when we kmalloc, because if the
2213	 * corresponding kmalloc cache is not yet created, the first allocation
2214	 * in __memcg_schedule_kmem_cache_create will recurse.
2215	 *
2216	 * However, it is better to enclose the whole function. Depending on
2217	 * the debugging options enabled, INIT_WORK(), for instance, can
2218	 * trigger an allocation. This too, will make us recurse. Because at
2219	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220	 * the safest choice is to do it like this, wrapping the whole function.
2221	 */
2222	current->memcg_kmem_skip_account = 1;
2223	__memcg_schedule_kmem_cache_create(memcg, cachep);
2224	current->memcg_kmem_skip_account = 0;
 
 
 
 
 
 
2225}
2226
2227static inline bool memcg_kmem_bypass(void)
2228{
2229	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2230		return true;
2231	return false;
 
 
 
 
2232}
2233
2234/**
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2237 *
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2240 *
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
2244 *
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2248 * reference.
2249 */
2250struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
 
2251{
2252	struct mem_cgroup *memcg;
2253	struct kmem_cache *memcg_cachep;
2254	int kmemcg_id;
2255
2256	VM_BUG_ON(!is_root_cache(cachep));
2257
2258	if (memcg_kmem_bypass())
2259		return cachep;
2260
2261	if (current->memcg_kmem_skip_account)
2262		return cachep;
2263
2264	memcg = get_mem_cgroup_from_mm(current->mm);
2265	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266	if (kmemcg_id < 0)
2267		goto out;
2268
2269	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270	if (likely(memcg_cachep))
2271		return memcg_cachep;
2272
2273	/*
2274	 * If we are in a safe context (can wait, and not in interrupt
2275	 * context), we could be be predictable and return right away.
2276	 * This would guarantee that the allocation being performed
2277	 * already belongs in the new cache.
2278	 *
2279	 * However, there are some clashes that can arrive from locking.
2280	 * For instance, because we acquire the slab_mutex while doing
2281	 * memcg_create_kmem_cache, this means no further allocation
2282	 * could happen with the slab_mutex held. So it's better to
2283	 * defer everything.
2284	 */
2285	memcg_schedule_kmem_cache_create(memcg, cachep);
2286out:
2287	css_put(&memcg->css);
2288	return cachep;
2289}
2290
2291/**
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2294 */
2295void memcg_kmem_put_cache(struct kmem_cache *cachep)
2296{
2297	if (!is_root_cache(cachep))
2298		css_put(&cachep->memcg_params.memcg->css);
2299}
2300
2301/**
2302 * memcg_kmem_charge_memcg: charge a kmem page
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2307 *
2308 * Returns 0 on success, an error code on failure.
2309 */
2310int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311			    struct mem_cgroup *memcg)
2312{
2313	unsigned int nr_pages = 1 << order;
2314	struct page_counter *counter;
2315	int ret;
2316
2317	ret = try_charge(memcg, gfp, nr_pages);
2318	if (ret)
2319		return ret;
2320
2321	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323		cancel_charge(memcg, nr_pages);
2324		return -ENOMEM;
2325	}
2326
2327	page->mem_cgroup = memcg;
 
 
2328
2329	return 0;
2330}
2331
2332/**
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2337 *
2338 * Returns 0 on success, an error code on failure.
2339 */
2340int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342	struct mem_cgroup *memcg;
2343	int ret = 0;
2344
2345	if (memcg_kmem_bypass())
2346		return 0;
2347
2348	memcg = get_mem_cgroup_from_mm(current->mm);
2349	if (!mem_cgroup_is_root(memcg)) {
2350		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351		if (!ret)
2352			__SetPageKmemcg(page);
 
2353	}
2354	css_put(&memcg->css);
2355	return ret;
2356}
 
2357/**
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2361 */
2362void memcg_kmem_uncharge(struct page *page, int order)
2363{
2364	struct mem_cgroup *memcg = page->mem_cgroup;
 
2365	unsigned int nr_pages = 1 << order;
2366
2367	if (!memcg)
2368		return;
2369
2370	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
 
 
 
 
2371
2372	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373		page_counter_uncharge(&memcg->kmem, nr_pages);
 
 
 
 
 
2374
2375	page_counter_uncharge(&memcg->memory, nr_pages);
2376	if (do_memsw_account())
2377		page_counter_uncharge(&memcg->memsw, nr_pages);
2378
2379	page->mem_cgroup = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2380
2381	/* slab pages do not have PageKmemcg flag set */
2382	if (PageKmemcg(page))
2383		__ClearPageKmemcg(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384
2385	css_put_many(&memcg->css, nr_pages);
 
 
2386}
2387#endif /* !CONFIG_SLOB */
2388
2389#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390
2391/*
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2394 */
2395void mem_cgroup_split_huge_fixup(struct page *head)
2396{
 
 
2397	int i;
 
 
2398
2399	if (mem_cgroup_disabled())
2400		return;
2401
2402	for (i = 1; i < HPAGE_PMD_NR; i++)
2403		head[i].mem_cgroup = head->mem_cgroup;
2404
2405	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
 
 
 
2406}
2407#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408
2409#ifdef CONFIG_MEMCG_SWAP
2410/**
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from:  mem_cgroup which the entry is moved from
2414 * @to:  mem_cgroup which the entry is moved to
2415 *
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2418 *
2419 * Returns 0 on success, -EINVAL on failure.
2420 *
2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 * both res and memsw, and called css_get().
2423 */
2424static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425				struct mem_cgroup *from, struct mem_cgroup *to)
2426{
2427	unsigned short old_id, new_id;
2428
2429	old_id = mem_cgroup_id(from);
2430	new_id = mem_cgroup_id(to);
2431
2432	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433		mod_memcg_state(from, MEMCG_SWAP, -1);
2434		mod_memcg_state(to, MEMCG_SWAP, 1);
2435		return 0;
2436	}
2437	return -EINVAL;
2438}
2439#else
2440static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441				struct mem_cgroup *from, struct mem_cgroup *to)
2442{
2443	return -EINVAL;
2444}
2445#endif
2446
2447static DEFINE_MUTEX(memcg_limit_mutex);
2448
2449static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2450				   unsigned long limit, bool memsw)
2451{
2452	bool enlarge = false;
 
2453	int ret;
2454	bool limits_invariant;
2455	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2456
2457	do {
2458		if (signal_pending(current)) {
2459			ret = -EINTR;
2460			break;
2461		}
2462
2463		mutex_lock(&memcg_limit_mutex);
2464		/*
2465		 * Make sure that the new limit (memsw or memory limit) doesn't
2466		 * break our basic invariant rule memory.limit <= memsw.limit.
2467		 */
2468		limits_invariant = memsw ? limit >= memcg->memory.limit :
2469					   limit <= memcg->memsw.limit;
2470		if (!limits_invariant) {
2471			mutex_unlock(&memcg_limit_mutex);
2472			ret = -EINVAL;
2473			break;
2474		}
2475		if (limit > counter->limit)
2476			enlarge = true;
2477		ret = page_counter_limit(counter, limit);
2478		mutex_unlock(&memcg_limit_mutex);
2479
2480		if (!ret)
2481			break;
2482
2483		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2484					GFP_KERNEL, !memsw)) {
 
 
 
 
 
 
2485			ret = -EBUSY;
2486			break;
2487		}
2488	} while (true);
2489
2490	if (!ret && enlarge)
2491		memcg_oom_recover(memcg);
2492
2493	return ret;
2494}
2495
2496unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2497					    gfp_t gfp_mask,
2498					    unsigned long *total_scanned)
2499{
2500	unsigned long nr_reclaimed = 0;
2501	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2502	unsigned long reclaimed;
2503	int loop = 0;
2504	struct mem_cgroup_tree_per_node *mctz;
2505	unsigned long excess;
2506	unsigned long nr_scanned;
 
 
2507
2508	if (order > 0)
2509		return 0;
2510
2511	mctz = soft_limit_tree_node(pgdat->node_id);
2512
2513	/*
2514	 * Do not even bother to check the largest node if the root
2515	 * is empty. Do it lockless to prevent lock bouncing. Races
2516	 * are acceptable as soft limit is best effort anyway.
2517	 */
2518	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2519		return 0;
2520
2521	/*
2522	 * This loop can run a while, specially if mem_cgroup's continuously
2523	 * keep exceeding their soft limit and putting the system under
2524	 * pressure
2525	 */
2526	do {
2527		if (next_mz)
2528			mz = next_mz;
2529		else
2530			mz = mem_cgroup_largest_soft_limit_node(mctz);
2531		if (!mz)
2532			break;
2533
2534		nr_scanned = 0;
2535		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2536						    gfp_mask, &nr_scanned);
2537		nr_reclaimed += reclaimed;
2538		*total_scanned += nr_scanned;
2539		spin_lock_irq(&mctz->lock);
2540		__mem_cgroup_remove_exceeded(mz, mctz);
2541
2542		/*
2543		 * If we failed to reclaim anything from this memory cgroup
2544		 * it is time to move on to the next cgroup
2545		 */
2546		next_mz = NULL;
2547		if (!reclaimed)
2548			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2549
2550		excess = soft_limit_excess(mz->memcg);
2551		/*
2552		 * One school of thought says that we should not add
2553		 * back the node to the tree if reclaim returns 0.
2554		 * But our reclaim could return 0, simply because due
2555		 * to priority we are exposing a smaller subset of
2556		 * memory to reclaim from. Consider this as a longer
2557		 * term TODO.
2558		 */
2559		/* If excess == 0, no tree ops */
2560		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2561		spin_unlock_irq(&mctz->lock);
2562		css_put(&mz->memcg->css);
2563		loop++;
2564		/*
2565		 * Could not reclaim anything and there are no more
2566		 * mem cgroups to try or we seem to be looping without
2567		 * reclaiming anything.
2568		 */
2569		if (!nr_reclaimed &&
2570			(next_mz == NULL ||
2571			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2572			break;
2573	} while (!nr_reclaimed);
2574	if (next_mz)
2575		css_put(&next_mz->memcg->css);
2576	return nr_reclaimed;
2577}
2578
2579/*
2580 * Test whether @memcg has children, dead or alive.  Note that this
2581 * function doesn't care whether @memcg has use_hierarchy enabled and
2582 * returns %true if there are child csses according to the cgroup
2583 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2584 */
2585static inline bool memcg_has_children(struct mem_cgroup *memcg)
2586{
2587	bool ret;
2588
2589	rcu_read_lock();
2590	ret = css_next_child(NULL, &memcg->css);
2591	rcu_read_unlock();
2592	return ret;
2593}
2594
2595/*
2596 * Reclaims as many pages from the given memcg as possible.
2597 *
2598 * Caller is responsible for holding css reference for memcg.
2599 */
2600static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2601{
2602	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2603
2604	/* we call try-to-free pages for make this cgroup empty */
2605	lru_add_drain_all();
 
 
 
2606	/* try to free all pages in this cgroup */
2607	while (nr_retries && page_counter_read(&memcg->memory)) {
2608		int progress;
2609
2610		if (signal_pending(current))
2611			return -EINTR;
2612
2613		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2614							GFP_KERNEL, true);
2615		if (!progress) {
2616			nr_retries--;
2617			/* maybe some writeback is necessary */
2618			congestion_wait(BLK_RW_ASYNC, HZ/10);
2619		}
2620
2621	}
2622
2623	return 0;
2624}
2625
2626static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2627					    char *buf, size_t nbytes,
2628					    loff_t off)
2629{
2630	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2631
2632	if (mem_cgroup_is_root(memcg))
2633		return -EINVAL;
2634	return mem_cgroup_force_empty(memcg) ?: nbytes;
2635}
2636
2637static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2638				     struct cftype *cft)
2639{
2640	return mem_cgroup_from_css(css)->use_hierarchy;
2641}
2642
2643static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2644				      struct cftype *cft, u64 val)
2645{
2646	int retval = 0;
2647	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2648	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2649
2650	if (memcg->use_hierarchy == val)
2651		return 0;
2652
2653	/*
2654	 * If parent's use_hierarchy is set, we can't make any modifications
2655	 * in the child subtrees. If it is unset, then the change can
2656	 * occur, provided the current cgroup has no children.
2657	 *
2658	 * For the root cgroup, parent_mem is NULL, we allow value to be
2659	 * set if there are no children.
2660	 */
2661	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2662				(val == 1 || val == 0)) {
2663		if (!memcg_has_children(memcg))
2664			memcg->use_hierarchy = val;
2665		else
2666			retval = -EBUSY;
2667	} else
2668		retval = -EINVAL;
2669
2670	return retval;
2671}
2672
2673static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2674{
2675	struct mem_cgroup *iter;
2676	int i;
2677
2678	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2679
2680	for_each_mem_cgroup_tree(iter, memcg) {
2681		for (i = 0; i < MEMCG_NR_STAT; i++)
2682			stat[i] += memcg_page_state(iter, i);
2683	}
2684}
2685
2686static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2687{
2688	struct mem_cgroup *iter;
2689	int i;
2690
2691	memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2692
2693	for_each_mem_cgroup_tree(iter, memcg) {
2694		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2695			events[i] += memcg_sum_events(iter, i);
2696	}
2697}
2698
2699static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2700{
2701	unsigned long val = 0;
2702
2703	if (mem_cgroup_is_root(memcg)) {
2704		struct mem_cgroup *iter;
2705
2706		for_each_mem_cgroup_tree(iter, memcg) {
2707			val += memcg_page_state(iter, MEMCG_CACHE);
2708			val += memcg_page_state(iter, MEMCG_RSS);
2709			if (swap)
2710				val += memcg_page_state(iter, MEMCG_SWAP);
2711		}
2712	} else {
2713		if (!swap)
2714			val = page_counter_read(&memcg->memory);
2715		else
2716			val = page_counter_read(&memcg->memsw);
2717	}
2718	return val;
2719}
2720
2721enum {
2722	RES_USAGE,
2723	RES_LIMIT,
2724	RES_MAX_USAGE,
2725	RES_FAILCNT,
2726	RES_SOFT_LIMIT,
2727};
2728
2729static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2730			       struct cftype *cft)
2731{
2732	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2733	struct page_counter *counter;
2734
2735	switch (MEMFILE_TYPE(cft->private)) {
2736	case _MEM:
2737		counter = &memcg->memory;
2738		break;
2739	case _MEMSWAP:
2740		counter = &memcg->memsw;
2741		break;
2742	case _KMEM:
2743		counter = &memcg->kmem;
2744		break;
2745	case _TCP:
2746		counter = &memcg->tcpmem;
2747		break;
2748	default:
2749		BUG();
2750	}
2751
2752	switch (MEMFILE_ATTR(cft->private)) {
2753	case RES_USAGE:
2754		if (counter == &memcg->memory)
2755			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2756		if (counter == &memcg->memsw)
2757			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2758		return (u64)page_counter_read(counter) * PAGE_SIZE;
2759	case RES_LIMIT:
2760		return (u64)counter->limit * PAGE_SIZE;
2761	case RES_MAX_USAGE:
2762		return (u64)counter->watermark * PAGE_SIZE;
2763	case RES_FAILCNT:
2764		return counter->failcnt;
2765	case RES_SOFT_LIMIT:
2766		return (u64)memcg->soft_limit * PAGE_SIZE;
2767	default:
2768		BUG();
2769	}
2770}
2771
2772#ifndef CONFIG_SLOB
 
 
 
 
 
 
 
 
 
 
2773static int memcg_online_kmem(struct mem_cgroup *memcg)
2774{
2775	int memcg_id;
 
 
 
2776
2777	if (cgroup_memory_nokmem)
2778		return 0;
2779
2780	BUG_ON(memcg->kmemcg_id >= 0);
2781	BUG_ON(memcg->kmem_state);
 
 
 
 
 
 
 
 
2782
2783	memcg_id = memcg_alloc_cache_id();
2784	if (memcg_id < 0)
2785		return memcg_id;
2786
2787	static_branch_inc(&memcg_kmem_enabled_key);
2788	/*
2789	 * A memory cgroup is considered kmem-online as soon as it gets
2790	 * kmemcg_id. Setting the id after enabling static branching will
2791	 * guarantee no one starts accounting before all call sites are
2792	 * patched.
2793	 */
2794	memcg->kmemcg_id = memcg_id;
2795	memcg->kmem_state = KMEM_ONLINE;
2796	INIT_LIST_HEAD(&memcg->kmem_caches);
2797
2798	return 0;
2799}
2800
2801static void memcg_offline_kmem(struct mem_cgroup *memcg)
2802{
2803	struct cgroup_subsys_state *css;
2804	struct mem_cgroup *parent, *child;
2805	int kmemcg_id;
2806
2807	if (memcg->kmem_state != KMEM_ONLINE)
2808		return;
2809	/*
2810	 * Clear the online state before clearing memcg_caches array
2811	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2812	 * guarantees that no cache will be created for this cgroup
2813	 * after we are done (see memcg_create_kmem_cache()).
2814	 */
2815	memcg->kmem_state = KMEM_ALLOCATED;
2816
2817	memcg_deactivate_kmem_caches(memcg);
2818
2819	kmemcg_id = memcg->kmemcg_id;
2820	BUG_ON(kmemcg_id < 0);
2821
2822	parent = parent_mem_cgroup(memcg);
2823	if (!parent)
2824		parent = root_mem_cgroup;
2825
2826	/*
2827	 * Change kmemcg_id of this cgroup and all its descendants to the
2828	 * parent's id, and then move all entries from this cgroup's list_lrus
2829	 * to ones of the parent. After we have finished, all list_lrus
2830	 * corresponding to this cgroup are guaranteed to remain empty. The
2831	 * ordering is imposed by list_lru_node->lock taken by
2832	 * memcg_drain_all_list_lrus().
2833	 */
2834	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2835	css_for_each_descendant_pre(css, &memcg->css) {
2836		child = mem_cgroup_from_css(css);
2837		BUG_ON(child->kmemcg_id != kmemcg_id);
2838		child->kmemcg_id = parent->kmemcg_id;
2839		if (!memcg->use_hierarchy)
2840			break;
2841	}
2842	rcu_read_unlock();
2843
2844	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2845
2846	memcg_free_cache_id(kmemcg_id);
2847}
2848
2849static void memcg_free_kmem(struct mem_cgroup *memcg)
2850{
2851	/* css_alloc() failed, offlining didn't happen */
2852	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2853		memcg_offline_kmem(memcg);
2854
2855	if (memcg->kmem_state == KMEM_ALLOCATED) {
2856		memcg_destroy_kmem_caches(memcg);
2857		static_branch_dec(&memcg_kmem_enabled_key);
2858		WARN_ON(page_counter_read(&memcg->kmem));
2859	}
2860}
2861#else
2862static int memcg_online_kmem(struct mem_cgroup *memcg)
2863{
2864	return 0;
2865}
2866static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867{
2868}
2869static void memcg_free_kmem(struct mem_cgroup *memcg)
2870{
2871}
2872#endif /* !CONFIG_SLOB */
2873
2874static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2875				   unsigned long limit)
2876{
2877	int ret;
2878
2879	mutex_lock(&memcg_limit_mutex);
2880	ret = page_counter_limit(&memcg->kmem, limit);
2881	mutex_unlock(&memcg_limit_mutex);
2882	return ret;
2883}
2884
2885static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2886{
2887	int ret;
2888
2889	mutex_lock(&memcg_limit_mutex);
2890
2891	ret = page_counter_limit(&memcg->tcpmem, limit);
2892	if (ret)
2893		goto out;
2894
2895	if (!memcg->tcpmem_active) {
2896		/*
2897		 * The active flag needs to be written after the static_key
2898		 * update. This is what guarantees that the socket activation
2899		 * function is the last one to run. See mem_cgroup_sk_alloc()
2900		 * for details, and note that we don't mark any socket as
2901		 * belonging to this memcg until that flag is up.
2902		 *
2903		 * We need to do this, because static_keys will span multiple
2904		 * sites, but we can't control their order. If we mark a socket
2905		 * as accounted, but the accounting functions are not patched in
2906		 * yet, we'll lose accounting.
2907		 *
2908		 * We never race with the readers in mem_cgroup_sk_alloc(),
2909		 * because when this value change, the code to process it is not
2910		 * patched in yet.
2911		 */
2912		static_branch_inc(&memcg_sockets_enabled_key);
2913		memcg->tcpmem_active = true;
2914	}
2915out:
2916	mutex_unlock(&memcg_limit_mutex);
2917	return ret;
2918}
2919
2920/*
2921 * The user of this function is...
2922 * RES_LIMIT.
2923 */
2924static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2925				char *buf, size_t nbytes, loff_t off)
2926{
2927	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2928	unsigned long nr_pages;
2929	int ret;
2930
2931	buf = strstrip(buf);
2932	ret = page_counter_memparse(buf, "-1", &nr_pages);
2933	if (ret)
2934		return ret;
2935
2936	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2937	case RES_LIMIT:
2938		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2939			ret = -EINVAL;
2940			break;
2941		}
2942		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2943		case _MEM:
2944			ret = mem_cgroup_resize_limit(memcg, nr_pages, false);
2945			break;
2946		case _MEMSWAP:
2947			ret = mem_cgroup_resize_limit(memcg, nr_pages, true);
2948			break;
2949		case _KMEM:
2950			ret = memcg_update_kmem_limit(memcg, nr_pages);
 
 
 
 
2951			break;
2952		case _TCP:
2953			ret = memcg_update_tcp_limit(memcg, nr_pages);
2954			break;
2955		}
2956		break;
2957	case RES_SOFT_LIMIT:
2958		memcg->soft_limit = nr_pages;
2959		ret = 0;
 
 
 
 
2960		break;
2961	}
2962	return ret ?: nbytes;
2963}
2964
2965static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2966				size_t nbytes, loff_t off)
2967{
2968	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2969	struct page_counter *counter;
2970
2971	switch (MEMFILE_TYPE(of_cft(of)->private)) {
2972	case _MEM:
2973		counter = &memcg->memory;
2974		break;
2975	case _MEMSWAP:
2976		counter = &memcg->memsw;
2977		break;
2978	case _KMEM:
2979		counter = &memcg->kmem;
2980		break;
2981	case _TCP:
2982		counter = &memcg->tcpmem;
2983		break;
2984	default:
2985		BUG();
2986	}
2987
2988	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989	case RES_MAX_USAGE:
2990		page_counter_reset_watermark(counter);
2991		break;
2992	case RES_FAILCNT:
2993		counter->failcnt = 0;
2994		break;
2995	default:
2996		BUG();
2997	}
2998
2999	return nbytes;
3000}
3001
3002static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3003					struct cftype *cft)
3004{
3005	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3006}
3007
3008#ifdef CONFIG_MMU
3009static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3010					struct cftype *cft, u64 val)
3011{
3012	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3013
 
 
 
 
3014	if (val & ~MOVE_MASK)
3015		return -EINVAL;
3016
3017	/*
3018	 * No kind of locking is needed in here, because ->can_attach() will
3019	 * check this value once in the beginning of the process, and then carry
3020	 * on with stale data. This means that changes to this value will only
3021	 * affect task migrations starting after the change.
3022	 */
3023	memcg->move_charge_at_immigrate = val;
3024	return 0;
3025}
3026#else
3027static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3028					struct cftype *cft, u64 val)
3029{
3030	return -ENOSYS;
3031}
3032#endif
3033
3034#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035static int memcg_numa_stat_show(struct seq_file *m, void *v)
3036{
3037	struct numa_stat {
3038		const char *name;
3039		unsigned int lru_mask;
3040	};
3041
3042	static const struct numa_stat stats[] = {
3043		{ "total", LRU_ALL },
3044		{ "file", LRU_ALL_FILE },
3045		{ "anon", LRU_ALL_ANON },
3046		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3047	};
3048	const struct numa_stat *stat;
3049	int nid;
3050	unsigned long nr;
3051	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
 
3052
3053	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3054		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3055		seq_printf(m, "%s=%lu", stat->name, nr);
3056		for_each_node_state(nid, N_MEMORY) {
3057			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3058							  stat->lru_mask);
3059			seq_printf(m, " N%d=%lu", nid, nr);
3060		}
3061		seq_putc(m, '\n');
3062	}
3063
3064	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3065		struct mem_cgroup *iter;
3066
3067		nr = 0;
3068		for_each_mem_cgroup_tree(iter, memcg)
3069			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3070		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3071		for_each_node_state(nid, N_MEMORY) {
3072			nr = 0;
3073			for_each_mem_cgroup_tree(iter, memcg)
3074				nr += mem_cgroup_node_nr_lru_pages(
3075					iter, nid, stat->lru_mask);
3076			seq_printf(m, " N%d=%lu", nid, nr);
3077		}
3078		seq_putc(m, '\n');
3079	}
3080
3081	return 0;
3082}
3083#endif /* CONFIG_NUMA */
3084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3085/* Universal VM events cgroup1 shows, original sort order */
3086unsigned int memcg1_events[] = {
3087	PGPGIN,
3088	PGPGOUT,
3089	PGFAULT,
3090	PGMAJFAULT,
3091};
3092
3093static const char *const memcg1_event_names[] = {
3094	"pgpgin",
3095	"pgpgout",
3096	"pgfault",
3097	"pgmajfault",
3098};
3099
3100static int memcg_stat_show(struct seq_file *m, void *v)
3101{
3102	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3103	unsigned long memory, memsw;
3104	struct mem_cgroup *mi;
3105	unsigned int i;
3106
3107	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3108	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
 
3109
3110	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3111		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3112			continue;
3113		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3114			   memcg_page_state(memcg, memcg1_stats[i]) *
3115			   PAGE_SIZE);
3116	}
3117
3118	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3119		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3120			   memcg_sum_events(memcg, memcg1_events[i]));
3121
3122	for (i = 0; i < NR_LRU_LISTS; i++)
3123		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3124			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
 
3125
3126	/* Hierarchical information */
3127	memory = memsw = PAGE_COUNTER_MAX;
3128	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3129		memory = min(memory, mi->memory.limit);
3130		memsw = min(memsw, mi->memsw.limit);
3131	}
3132	seq_printf(m, "hierarchical_memory_limit %llu\n",
3133		   (u64)memory * PAGE_SIZE);
3134	if (do_memsw_account())
3135		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3136			   (u64)memsw * PAGE_SIZE);
3137
3138	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3139		unsigned long long val = 0;
3140
3141		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3142			continue;
3143		for_each_mem_cgroup_tree(mi, memcg)
3144			val += memcg_page_state(mi, memcg1_stats[i]) *
3145			PAGE_SIZE;
3146		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3147	}
3148
3149	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3150		unsigned long long val = 0;
3151
3152		for_each_mem_cgroup_tree(mi, memcg)
3153			val += memcg_sum_events(mi, memcg1_events[i]);
3154		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3155	}
3156
3157	for (i = 0; i < NR_LRU_LISTS; i++) {
3158		unsigned long long val = 0;
 
 
3159
3160		for_each_mem_cgroup_tree(mi, memcg)
3161			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3162		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3163	}
3164
3165#ifdef CONFIG_DEBUG_VM
3166	{
3167		pg_data_t *pgdat;
3168		struct mem_cgroup_per_node *mz;
3169		struct zone_reclaim_stat *rstat;
3170		unsigned long recent_rotated[2] = {0, 0};
3171		unsigned long recent_scanned[2] = {0, 0};
3172
3173		for_each_online_pgdat(pgdat) {
3174			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3175			rstat = &mz->lruvec.reclaim_stat;
3176
3177			recent_rotated[0] += rstat->recent_rotated[0];
3178			recent_rotated[1] += rstat->recent_rotated[1];
3179			recent_scanned[0] += rstat->recent_scanned[0];
3180			recent_scanned[1] += rstat->recent_scanned[1];
3181		}
3182		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3183		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3184		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3185		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3186	}
3187#endif
3188
3189	return 0;
3190}
3191
3192static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3193				      struct cftype *cft)
3194{
3195	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3196
3197	return mem_cgroup_swappiness(memcg);
3198}
3199
3200static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3201				       struct cftype *cft, u64 val)
3202{
3203	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3204
3205	if (val > 100)
3206		return -EINVAL;
3207
3208	if (css->parent)
3209		memcg->swappiness = val;
3210	else
3211		vm_swappiness = val;
3212
3213	return 0;
3214}
3215
3216static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3217{
3218	struct mem_cgroup_threshold_ary *t;
3219	unsigned long usage;
3220	int i;
3221
3222	rcu_read_lock();
3223	if (!swap)
3224		t = rcu_dereference(memcg->thresholds.primary);
3225	else
3226		t = rcu_dereference(memcg->memsw_thresholds.primary);
3227
3228	if (!t)
3229		goto unlock;
3230
3231	usage = mem_cgroup_usage(memcg, swap);
3232
3233	/*
3234	 * current_threshold points to threshold just below or equal to usage.
3235	 * If it's not true, a threshold was crossed after last
3236	 * call of __mem_cgroup_threshold().
3237	 */
3238	i = t->current_threshold;
3239
3240	/*
3241	 * Iterate backward over array of thresholds starting from
3242	 * current_threshold and check if a threshold is crossed.
3243	 * If none of thresholds below usage is crossed, we read
3244	 * only one element of the array here.
3245	 */
3246	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3247		eventfd_signal(t->entries[i].eventfd, 1);
3248
3249	/* i = current_threshold + 1 */
3250	i++;
3251
3252	/*
3253	 * Iterate forward over array of thresholds starting from
3254	 * current_threshold+1 and check if a threshold is crossed.
3255	 * If none of thresholds above usage is crossed, we read
3256	 * only one element of the array here.
3257	 */
3258	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3259		eventfd_signal(t->entries[i].eventfd, 1);
3260
3261	/* Update current_threshold */
3262	t->current_threshold = i - 1;
3263unlock:
3264	rcu_read_unlock();
3265}
3266
3267static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3268{
3269	while (memcg) {
3270		__mem_cgroup_threshold(memcg, false);
3271		if (do_memsw_account())
3272			__mem_cgroup_threshold(memcg, true);
3273
3274		memcg = parent_mem_cgroup(memcg);
3275	}
3276}
3277
3278static int compare_thresholds(const void *a, const void *b)
3279{
3280	const struct mem_cgroup_threshold *_a = a;
3281	const struct mem_cgroup_threshold *_b = b;
3282
3283	if (_a->threshold > _b->threshold)
3284		return 1;
3285
3286	if (_a->threshold < _b->threshold)
3287		return -1;
3288
3289	return 0;
3290}
3291
3292static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3293{
3294	struct mem_cgroup_eventfd_list *ev;
3295
3296	spin_lock(&memcg_oom_lock);
3297
3298	list_for_each_entry(ev, &memcg->oom_notify, list)
3299		eventfd_signal(ev->eventfd, 1);
3300
3301	spin_unlock(&memcg_oom_lock);
3302	return 0;
3303}
3304
3305static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3306{
3307	struct mem_cgroup *iter;
3308
3309	for_each_mem_cgroup_tree(iter, memcg)
3310		mem_cgroup_oom_notify_cb(iter);
3311}
3312
3313static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3314	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3315{
3316	struct mem_cgroup_thresholds *thresholds;
3317	struct mem_cgroup_threshold_ary *new;
3318	unsigned long threshold;
3319	unsigned long usage;
3320	int i, size, ret;
3321
3322	ret = page_counter_memparse(args, "-1", &threshold);
3323	if (ret)
3324		return ret;
3325
3326	mutex_lock(&memcg->thresholds_lock);
3327
3328	if (type == _MEM) {
3329		thresholds = &memcg->thresholds;
3330		usage = mem_cgroup_usage(memcg, false);
3331	} else if (type == _MEMSWAP) {
3332		thresholds = &memcg->memsw_thresholds;
3333		usage = mem_cgroup_usage(memcg, true);
3334	} else
3335		BUG();
3336
3337	/* Check if a threshold crossed before adding a new one */
3338	if (thresholds->primary)
3339		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3340
3341	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3342
3343	/* Allocate memory for new array of thresholds */
3344	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3345			GFP_KERNEL);
3346	if (!new) {
3347		ret = -ENOMEM;
3348		goto unlock;
3349	}
3350	new->size = size;
3351
3352	/* Copy thresholds (if any) to new array */
3353	if (thresholds->primary) {
3354		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3355				sizeof(struct mem_cgroup_threshold));
3356	}
3357
3358	/* Add new threshold */
3359	new->entries[size - 1].eventfd = eventfd;
3360	new->entries[size - 1].threshold = threshold;
3361
3362	/* Sort thresholds. Registering of new threshold isn't time-critical */
3363	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3364			compare_thresholds, NULL);
3365
3366	/* Find current threshold */
3367	new->current_threshold = -1;
3368	for (i = 0; i < size; i++) {
3369		if (new->entries[i].threshold <= usage) {
3370			/*
3371			 * new->current_threshold will not be used until
3372			 * rcu_assign_pointer(), so it's safe to increment
3373			 * it here.
3374			 */
3375			++new->current_threshold;
3376		} else
3377			break;
3378	}
3379
3380	/* Free old spare buffer and save old primary buffer as spare */
3381	kfree(thresholds->spare);
3382	thresholds->spare = thresholds->primary;
3383
3384	rcu_assign_pointer(thresholds->primary, new);
3385
3386	/* To be sure that nobody uses thresholds */
3387	synchronize_rcu();
3388
3389unlock:
3390	mutex_unlock(&memcg->thresholds_lock);
3391
3392	return ret;
3393}
3394
3395static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3396	struct eventfd_ctx *eventfd, const char *args)
3397{
3398	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3399}
3400
3401static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3402	struct eventfd_ctx *eventfd, const char *args)
3403{
3404	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3405}
3406
3407static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3408	struct eventfd_ctx *eventfd, enum res_type type)
3409{
3410	struct mem_cgroup_thresholds *thresholds;
3411	struct mem_cgroup_threshold_ary *new;
3412	unsigned long usage;
3413	int i, j, size;
3414
3415	mutex_lock(&memcg->thresholds_lock);
3416
3417	if (type == _MEM) {
3418		thresholds = &memcg->thresholds;
3419		usage = mem_cgroup_usage(memcg, false);
3420	} else if (type == _MEMSWAP) {
3421		thresholds = &memcg->memsw_thresholds;
3422		usage = mem_cgroup_usage(memcg, true);
3423	} else
3424		BUG();
3425
3426	if (!thresholds->primary)
3427		goto unlock;
3428
3429	/* Check if a threshold crossed before removing */
3430	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3431
3432	/* Calculate new number of threshold */
3433	size = 0;
3434	for (i = 0; i < thresholds->primary->size; i++) {
3435		if (thresholds->primary->entries[i].eventfd != eventfd)
3436			size++;
 
 
3437	}
3438
3439	new = thresholds->spare;
3440
 
 
 
 
3441	/* Set thresholds array to NULL if we don't have thresholds */
3442	if (!size) {
3443		kfree(new);
3444		new = NULL;
3445		goto swap_buffers;
3446	}
3447
3448	new->size = size;
3449
3450	/* Copy thresholds and find current threshold */
3451	new->current_threshold = -1;
3452	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3453		if (thresholds->primary->entries[i].eventfd == eventfd)
3454			continue;
3455
3456		new->entries[j] = thresholds->primary->entries[i];
3457		if (new->entries[j].threshold <= usage) {
3458			/*
3459			 * new->current_threshold will not be used
3460			 * until rcu_assign_pointer(), so it's safe to increment
3461			 * it here.
3462			 */
3463			++new->current_threshold;
3464		}
3465		j++;
3466	}
3467
3468swap_buffers:
3469	/* Swap primary and spare array */
3470	thresholds->spare = thresholds->primary;
3471
3472	rcu_assign_pointer(thresholds->primary, new);
3473
3474	/* To be sure that nobody uses thresholds */
3475	synchronize_rcu();
3476
3477	/* If all events are unregistered, free the spare array */
3478	if (!new) {
3479		kfree(thresholds->spare);
3480		thresholds->spare = NULL;
3481	}
3482unlock:
3483	mutex_unlock(&memcg->thresholds_lock);
3484}
3485
3486static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3487	struct eventfd_ctx *eventfd)
3488{
3489	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3490}
3491
3492static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3493	struct eventfd_ctx *eventfd)
3494{
3495	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3496}
3497
3498static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3499	struct eventfd_ctx *eventfd, const char *args)
3500{
3501	struct mem_cgroup_eventfd_list *event;
3502
3503	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3504	if (!event)
3505		return -ENOMEM;
3506
3507	spin_lock(&memcg_oom_lock);
3508
3509	event->eventfd = eventfd;
3510	list_add(&event->list, &memcg->oom_notify);
3511
3512	/* already in OOM ? */
3513	if (memcg->under_oom)
3514		eventfd_signal(eventfd, 1);
3515	spin_unlock(&memcg_oom_lock);
3516
3517	return 0;
3518}
3519
3520static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3521	struct eventfd_ctx *eventfd)
3522{
3523	struct mem_cgroup_eventfd_list *ev, *tmp;
3524
3525	spin_lock(&memcg_oom_lock);
3526
3527	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3528		if (ev->eventfd == eventfd) {
3529			list_del(&ev->list);
3530			kfree(ev);
3531		}
3532	}
3533
3534	spin_unlock(&memcg_oom_lock);
3535}
3536
3537static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3538{
3539	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3540
3541	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3542	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3543	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
 
3544	return 0;
3545}
3546
3547static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3548	struct cftype *cft, u64 val)
3549{
3550	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551
3552	/* cannot set to root cgroup and only 0 and 1 are allowed */
3553	if (!css->parent || !((val == 0) || (val == 1)))
3554		return -EINVAL;
3555
3556	memcg->oom_kill_disable = val;
3557	if (!val)
3558		memcg_oom_recover(memcg);
3559
3560	return 0;
3561}
3562
3563#ifdef CONFIG_CGROUP_WRITEBACK
3564
3565struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3566{
3567	return &memcg->cgwb_list;
3568}
3569
3570static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3571{
3572	return wb_domain_init(&memcg->cgwb_domain, gfp);
3573}
3574
3575static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3576{
3577	wb_domain_exit(&memcg->cgwb_domain);
3578}
3579
3580static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3581{
3582	wb_domain_size_changed(&memcg->cgwb_domain);
3583}
3584
3585struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3586{
3587	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3588
3589	if (!memcg->css.parent)
3590		return NULL;
3591
3592	return &memcg->cgwb_domain;
3593}
3594
3595/**
3596 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3597 * @wb: bdi_writeback in question
3598 * @pfilepages: out parameter for number of file pages
3599 * @pheadroom: out parameter for number of allocatable pages according to memcg
3600 * @pdirty: out parameter for number of dirty pages
3601 * @pwriteback: out parameter for number of pages under writeback
3602 *
3603 * Determine the numbers of file, headroom, dirty, and writeback pages in
3604 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3605 * is a bit more involved.
3606 *
3607 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3608 * headroom is calculated as the lowest headroom of itself and the
3609 * ancestors.  Note that this doesn't consider the actual amount of
3610 * available memory in the system.  The caller should further cap
3611 * *@pheadroom accordingly.
3612 */
3613void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3614			 unsigned long *pheadroom, unsigned long *pdirty,
3615			 unsigned long *pwriteback)
3616{
3617	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618	struct mem_cgroup *parent;
3619
3620	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3621
3622	/* this should eventually include NR_UNSTABLE_NFS */
3623	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3624	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3625						     (1 << LRU_ACTIVE_FILE));
3626	*pheadroom = PAGE_COUNTER_MAX;
3627
 
3628	while ((parent = parent_mem_cgroup(memcg))) {
3629		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
 
3630		unsigned long used = page_counter_read(&memcg->memory);
3631
3632		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3633		memcg = parent;
3634	}
3635}
3636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3637#else	/* CONFIG_CGROUP_WRITEBACK */
3638
3639static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3640{
3641	return 0;
3642}
3643
3644static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3645{
3646}
3647
3648static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3649{
3650}
3651
3652#endif	/* CONFIG_CGROUP_WRITEBACK */
3653
3654/*
3655 * DO NOT USE IN NEW FILES.
3656 *
3657 * "cgroup.event_control" implementation.
3658 *
3659 * This is way over-engineered.  It tries to support fully configurable
3660 * events for each user.  Such level of flexibility is completely
3661 * unnecessary especially in the light of the planned unified hierarchy.
3662 *
3663 * Please deprecate this and replace with something simpler if at all
3664 * possible.
3665 */
3666
3667/*
3668 * Unregister event and free resources.
3669 *
3670 * Gets called from workqueue.
3671 */
3672static void memcg_event_remove(struct work_struct *work)
3673{
3674	struct mem_cgroup_event *event =
3675		container_of(work, struct mem_cgroup_event, remove);
3676	struct mem_cgroup *memcg = event->memcg;
3677
3678	remove_wait_queue(event->wqh, &event->wait);
3679
3680	event->unregister_event(memcg, event->eventfd);
3681
3682	/* Notify userspace the event is going away. */
3683	eventfd_signal(event->eventfd, 1);
3684
3685	eventfd_ctx_put(event->eventfd);
3686	kfree(event);
3687	css_put(&memcg->css);
3688}
3689
3690/*
3691 * Gets called on EPOLLHUP on eventfd when user closes it.
3692 *
3693 * Called with wqh->lock held and interrupts disabled.
3694 */
3695static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3696			    int sync, void *key)
3697{
3698	struct mem_cgroup_event *event =
3699		container_of(wait, struct mem_cgroup_event, wait);
3700	struct mem_cgroup *memcg = event->memcg;
3701	__poll_t flags = key_to_poll(key);
3702
3703	if (flags & EPOLLHUP) {
3704		/*
3705		 * If the event has been detached at cgroup removal, we
3706		 * can simply return knowing the other side will cleanup
3707		 * for us.
3708		 *
3709		 * We can't race against event freeing since the other
3710		 * side will require wqh->lock via remove_wait_queue(),
3711		 * which we hold.
3712		 */
3713		spin_lock(&memcg->event_list_lock);
3714		if (!list_empty(&event->list)) {
3715			list_del_init(&event->list);
3716			/*
3717			 * We are in atomic context, but cgroup_event_remove()
3718			 * may sleep, so we have to call it in workqueue.
3719			 */
3720			schedule_work(&event->remove);
3721		}
3722		spin_unlock(&memcg->event_list_lock);
3723	}
3724
3725	return 0;
3726}
3727
3728static void memcg_event_ptable_queue_proc(struct file *file,
3729		wait_queue_head_t *wqh, poll_table *pt)
3730{
3731	struct mem_cgroup_event *event =
3732		container_of(pt, struct mem_cgroup_event, pt);
3733
3734	event->wqh = wqh;
3735	add_wait_queue(wqh, &event->wait);
3736}
3737
3738/*
3739 * DO NOT USE IN NEW FILES.
3740 *
3741 * Parse input and register new cgroup event handler.
3742 *
3743 * Input must be in format '<event_fd> <control_fd> <args>'.
3744 * Interpretation of args is defined by control file implementation.
3745 */
3746static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3747					 char *buf, size_t nbytes, loff_t off)
3748{
3749	struct cgroup_subsys_state *css = of_css(of);
3750	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3751	struct mem_cgroup_event *event;
3752	struct cgroup_subsys_state *cfile_css;
3753	unsigned int efd, cfd;
3754	struct fd efile;
3755	struct fd cfile;
 
3756	const char *name;
3757	char *endp;
3758	int ret;
3759
 
 
 
3760	buf = strstrip(buf);
3761
3762	efd = simple_strtoul(buf, &endp, 10);
3763	if (*endp != ' ')
3764		return -EINVAL;
3765	buf = endp + 1;
3766
3767	cfd = simple_strtoul(buf, &endp, 10);
3768	if ((*endp != ' ') && (*endp != '\0'))
3769		return -EINVAL;
3770	buf = endp + 1;
3771
3772	event = kzalloc(sizeof(*event), GFP_KERNEL);
3773	if (!event)
3774		return -ENOMEM;
3775
3776	event->memcg = memcg;
3777	INIT_LIST_HEAD(&event->list);
3778	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3779	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3780	INIT_WORK(&event->remove, memcg_event_remove);
3781
3782	efile = fdget(efd);
3783	if (!efile.file) {
3784		ret = -EBADF;
3785		goto out_kfree;
3786	}
3787
3788	event->eventfd = eventfd_ctx_fileget(efile.file);
3789	if (IS_ERR(event->eventfd)) {
3790		ret = PTR_ERR(event->eventfd);
3791		goto out_put_efile;
3792	}
3793
3794	cfile = fdget(cfd);
3795	if (!cfile.file) {
3796		ret = -EBADF;
3797		goto out_put_eventfd;
3798	}
3799
3800	/* the process need read permission on control file */
3801	/* AV: shouldn't we check that it's been opened for read instead? */
3802	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3803	if (ret < 0)
3804		goto out_put_cfile;
3805
3806	/*
 
 
 
 
 
 
 
 
 
 
3807	 * Determine the event callbacks and set them in @event.  This used
3808	 * to be done via struct cftype but cgroup core no longer knows
3809	 * about these events.  The following is crude but the whole thing
3810	 * is for compatibility anyway.
3811	 *
3812	 * DO NOT ADD NEW FILES.
3813	 */
3814	name = cfile.file->f_path.dentry->d_name.name;
3815
3816	if (!strcmp(name, "memory.usage_in_bytes")) {
3817		event->register_event = mem_cgroup_usage_register_event;
3818		event->unregister_event = mem_cgroup_usage_unregister_event;
3819	} else if (!strcmp(name, "memory.oom_control")) {
3820		event->register_event = mem_cgroup_oom_register_event;
3821		event->unregister_event = mem_cgroup_oom_unregister_event;
3822	} else if (!strcmp(name, "memory.pressure_level")) {
3823		event->register_event = vmpressure_register_event;
3824		event->unregister_event = vmpressure_unregister_event;
3825	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3826		event->register_event = memsw_cgroup_usage_register_event;
3827		event->unregister_event = memsw_cgroup_usage_unregister_event;
3828	} else {
3829		ret = -EINVAL;
3830		goto out_put_cfile;
3831	}
3832
3833	/*
3834	 * Verify @cfile should belong to @css.  Also, remaining events are
3835	 * automatically removed on cgroup destruction but the removal is
3836	 * asynchronous, so take an extra ref on @css.
3837	 */
3838	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3839					       &memory_cgrp_subsys);
3840	ret = -EINVAL;
3841	if (IS_ERR(cfile_css))
3842		goto out_put_cfile;
3843	if (cfile_css != css) {
3844		css_put(cfile_css);
3845		goto out_put_cfile;
3846	}
3847
3848	ret = event->register_event(memcg, event->eventfd, buf);
3849	if (ret)
3850		goto out_put_css;
3851
3852	efile.file->f_op->poll(efile.file, &event->pt);
3853
3854	spin_lock(&memcg->event_list_lock);
3855	list_add(&event->list, &memcg->event_list);
3856	spin_unlock(&memcg->event_list_lock);
3857
3858	fdput(cfile);
3859	fdput(efile);
3860
3861	return nbytes;
3862
3863out_put_css:
3864	css_put(css);
3865out_put_cfile:
3866	fdput(cfile);
3867out_put_eventfd:
3868	eventfd_ctx_put(event->eventfd);
3869out_put_efile:
3870	fdput(efile);
3871out_kfree:
3872	kfree(event);
3873
3874	return ret;
3875}
3876
 
 
 
 
 
 
 
 
 
 
 
 
 
3877static struct cftype mem_cgroup_legacy_files[] = {
3878	{
3879		.name = "usage_in_bytes",
3880		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3881		.read_u64 = mem_cgroup_read_u64,
3882	},
3883	{
3884		.name = "max_usage_in_bytes",
3885		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3886		.write = mem_cgroup_reset,
3887		.read_u64 = mem_cgroup_read_u64,
3888	},
3889	{
3890		.name = "limit_in_bytes",
3891		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3892		.write = mem_cgroup_write,
3893		.read_u64 = mem_cgroup_read_u64,
3894	},
3895	{
3896		.name = "soft_limit_in_bytes",
3897		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3898		.write = mem_cgroup_write,
3899		.read_u64 = mem_cgroup_read_u64,
3900	},
3901	{
3902		.name = "failcnt",
3903		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3904		.write = mem_cgroup_reset,
3905		.read_u64 = mem_cgroup_read_u64,
3906	},
3907	{
3908		.name = "stat",
3909		.seq_show = memcg_stat_show,
3910	},
3911	{
3912		.name = "force_empty",
3913		.write = mem_cgroup_force_empty_write,
3914	},
3915	{
3916		.name = "use_hierarchy",
3917		.write_u64 = mem_cgroup_hierarchy_write,
3918		.read_u64 = mem_cgroup_hierarchy_read,
3919	},
3920	{
3921		.name = "cgroup.event_control",		/* XXX: for compat */
3922		.write = memcg_write_event_control,
3923		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3924	},
3925	{
3926		.name = "swappiness",
3927		.read_u64 = mem_cgroup_swappiness_read,
3928		.write_u64 = mem_cgroup_swappiness_write,
3929	},
3930	{
3931		.name = "move_charge_at_immigrate",
3932		.read_u64 = mem_cgroup_move_charge_read,
3933		.write_u64 = mem_cgroup_move_charge_write,
3934	},
3935	{
3936		.name = "oom_control",
3937		.seq_show = mem_cgroup_oom_control_read,
3938		.write_u64 = mem_cgroup_oom_control_write,
3939		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3940	},
3941	{
3942		.name = "pressure_level",
 
3943	},
3944#ifdef CONFIG_NUMA
3945	{
3946		.name = "numa_stat",
3947		.seq_show = memcg_numa_stat_show,
3948	},
3949#endif
3950	{
3951		.name = "kmem.limit_in_bytes",
3952		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3953		.write = mem_cgroup_write,
3954		.read_u64 = mem_cgroup_read_u64,
3955	},
3956	{
3957		.name = "kmem.usage_in_bytes",
3958		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3959		.read_u64 = mem_cgroup_read_u64,
3960	},
3961	{
3962		.name = "kmem.failcnt",
3963		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3964		.write = mem_cgroup_reset,
3965		.read_u64 = mem_cgroup_read_u64,
3966	},
3967	{
3968		.name = "kmem.max_usage_in_bytes",
3969		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3970		.write = mem_cgroup_reset,
3971		.read_u64 = mem_cgroup_read_u64,
3972	},
3973#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3974	{
3975		.name = "kmem.slabinfo",
3976		.seq_start = memcg_slab_start,
3977		.seq_next = memcg_slab_next,
3978		.seq_stop = memcg_slab_stop,
3979		.seq_show = memcg_slab_show,
3980	},
3981#endif
3982	{
3983		.name = "kmem.tcp.limit_in_bytes",
3984		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3985		.write = mem_cgroup_write,
3986		.read_u64 = mem_cgroup_read_u64,
3987	},
3988	{
3989		.name = "kmem.tcp.usage_in_bytes",
3990		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3991		.read_u64 = mem_cgroup_read_u64,
3992	},
3993	{
3994		.name = "kmem.tcp.failcnt",
3995		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
3996		.write = mem_cgroup_reset,
3997		.read_u64 = mem_cgroup_read_u64,
3998	},
3999	{
4000		.name = "kmem.tcp.max_usage_in_bytes",
4001		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4002		.write = mem_cgroup_reset,
4003		.read_u64 = mem_cgroup_read_u64,
4004	},
4005	{ },	/* terminate */
4006};
4007
4008/*
4009 * Private memory cgroup IDR
4010 *
4011 * Swap-out records and page cache shadow entries need to store memcg
4012 * references in constrained space, so we maintain an ID space that is
4013 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4014 * memory-controlled cgroups to 64k.
4015 *
4016 * However, there usually are many references to the oflline CSS after
4017 * the cgroup has been destroyed, such as page cache or reclaimable
4018 * slab objects, that don't need to hang on to the ID. We want to keep
4019 * those dead CSS from occupying IDs, or we might quickly exhaust the
4020 * relatively small ID space and prevent the creation of new cgroups
4021 * even when there are much fewer than 64k cgroups - possibly none.
4022 *
4023 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4024 * be freed and recycled when it's no longer needed, which is usually
4025 * when the CSS is offlined.
4026 *
4027 * The only exception to that are records of swapped out tmpfs/shmem
4028 * pages that need to be attributed to live ancestors on swapin. But
4029 * those references are manageable from userspace.
4030 */
4031
 
4032static DEFINE_IDR(mem_cgroup_idr);
4033
4034static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
 
 
 
 
 
 
 
 
 
4035{
4036	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4037	atomic_add(n, &memcg->id.ref);
4038}
4039
4040static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4041{
4042	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4043	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4044		idr_remove(&mem_cgroup_idr, memcg->id.id);
4045		memcg->id.id = 0;
4046
4047		/* Memcg ID pins CSS */
4048		css_put(&memcg->css);
4049	}
4050}
4051
4052static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4053{
4054	mem_cgroup_id_get_many(memcg, 1);
4055}
4056
4057static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4058{
4059	mem_cgroup_id_put_many(memcg, 1);
4060}
4061
4062/**
4063 * mem_cgroup_from_id - look up a memcg from a memcg id
4064 * @id: the memcg id to look up
4065 *
4066 * Caller must hold rcu_read_lock().
4067 */
4068struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4069{
4070	WARN_ON_ONCE(!rcu_read_lock_held());
4071	return idr_find(&mem_cgroup_idr, id);
4072}
4073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4074static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4075{
4076	struct mem_cgroup_per_node *pn;
4077	int tmp = node;
4078	/*
4079	 * This routine is called against possible nodes.
4080	 * But it's BUG to call kmalloc() against offline node.
4081	 *
4082	 * TODO: this routine can waste much memory for nodes which will
4083	 *       never be onlined. It's better to use memory hotplug callback
4084	 *       function.
4085	 */
4086	if (!node_state(node, N_NORMAL_MEMORY))
4087		tmp = -1;
4088	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4089	if (!pn)
4090		return 1;
4091
4092	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4093	if (!pn->lruvec_stat_cpu) {
 
4094		kfree(pn);
4095		return 1;
4096	}
4097
4098	lruvec_init(&pn->lruvec);
4099	pn->usage_in_excess = 0;
4100	pn->on_tree = false;
4101	pn->memcg = memcg;
4102
4103	memcg->nodeinfo[node] = pn;
4104	return 0;
4105}
4106
4107static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4108{
4109	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4110
4111	if (!pn)
4112		return;
4113
4114	free_percpu(pn->lruvec_stat_cpu);
4115	kfree(pn);
4116}
4117
4118static void __mem_cgroup_free(struct mem_cgroup *memcg)
4119{
4120	int node;
4121
 
 
 
4122	for_each_node(node)
4123		free_mem_cgroup_per_node_info(memcg, node);
4124	free_percpu(memcg->stat_cpu);
 
4125	kfree(memcg);
4126}
4127
4128static void mem_cgroup_free(struct mem_cgroup *memcg)
4129{
 
4130	memcg_wb_domain_exit(memcg);
4131	__mem_cgroup_free(memcg);
4132}
4133
4134static struct mem_cgroup *mem_cgroup_alloc(void)
4135{
 
4136	struct mem_cgroup *memcg;
4137	size_t size;
4138	int node;
4139
4140	size = sizeof(struct mem_cgroup);
4141	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4142
4143	memcg = kzalloc(size, GFP_KERNEL);
4144	if (!memcg)
4145		return NULL;
4146
4147	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4148				 1, MEM_CGROUP_ID_MAX,
4149				 GFP_KERNEL);
4150	if (memcg->id.id < 0)
 
 
 
 
 
4151		goto fail;
4152
4153	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4154	if (!memcg->stat_cpu)
 
4155		goto fail;
4156
 
 
 
 
 
 
 
 
4157	for_each_node(node)
4158		if (alloc_mem_cgroup_per_node_info(memcg, node))
4159			goto fail;
4160
4161	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4162		goto fail;
4163
4164	INIT_WORK(&memcg->high_work, high_work_func);
4165	memcg->last_scanned_node = MAX_NUMNODES;
4166	INIT_LIST_HEAD(&memcg->oom_notify);
4167	mutex_init(&memcg->thresholds_lock);
4168	spin_lock_init(&memcg->move_lock);
4169	vmpressure_init(&memcg->vmpressure);
4170	INIT_LIST_HEAD(&memcg->event_list);
4171	spin_lock_init(&memcg->event_list_lock);
4172	memcg->socket_pressure = jiffies;
4173#ifndef CONFIG_SLOB
4174	memcg->kmemcg_id = -1;
 
4175#endif
4176#ifdef CONFIG_CGROUP_WRITEBACK
4177	INIT_LIST_HEAD(&memcg->cgwb_list);
 
 
 
4178#endif
4179	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
 
 
 
 
 
4180	return memcg;
4181fail:
4182	if (memcg->id.id > 0)
4183		idr_remove(&mem_cgroup_idr, memcg->id.id);
4184	__mem_cgroup_free(memcg);
4185	return NULL;
4186}
4187
4188static struct cgroup_subsys_state * __ref
4189mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4190{
4191	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4192	struct mem_cgroup *memcg;
4193	long error = -ENOMEM;
4194
4195	memcg = mem_cgroup_alloc();
4196	if (!memcg)
4197		return ERR_PTR(error);
4198
4199	memcg->high = PAGE_COUNTER_MAX;
4200	memcg->soft_limit = PAGE_COUNTER_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
4201	if (parent) {
4202		memcg->swappiness = mem_cgroup_swappiness(parent);
4203		memcg->oom_kill_disable = parent->oom_kill_disable;
4204	}
4205	if (parent && parent->use_hierarchy) {
4206		memcg->use_hierarchy = true;
4207		page_counter_init(&memcg->memory, &parent->memory);
4208		page_counter_init(&memcg->swap, &parent->swap);
4209		page_counter_init(&memcg->memsw, &parent->memsw);
4210		page_counter_init(&memcg->kmem, &parent->kmem);
4211		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4212	} else {
 
4213		page_counter_init(&memcg->memory, NULL);
4214		page_counter_init(&memcg->swap, NULL);
4215		page_counter_init(&memcg->memsw, NULL);
4216		page_counter_init(&memcg->kmem, NULL);
4217		page_counter_init(&memcg->tcpmem, NULL);
4218		/*
4219		 * Deeper hierachy with use_hierarchy == false doesn't make
4220		 * much sense so let cgroup subsystem know about this
4221		 * unfortunate state in our controller.
4222		 */
4223		if (parent != root_mem_cgroup)
4224			memory_cgrp_subsys.broken_hierarchy = true;
4225	}
4226
4227	/* The following stuff does not apply to the root */
4228	if (!parent) {
4229		root_mem_cgroup = memcg;
4230		return &memcg->css;
4231	}
4232
4233	error = memcg_online_kmem(memcg);
4234	if (error)
4235		goto fail;
4236
4237	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4238		static_branch_inc(&memcg_sockets_enabled_key);
4239
 
 
 
 
 
4240	return &memcg->css;
4241fail:
4242	mem_cgroup_free(memcg);
4243	return ERR_PTR(-ENOMEM);
4244}
4245
4246static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4247{
4248	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4250	/* Online state pins memcg ID, memcg ID pins CSS */
4251	atomic_set(&memcg->id.ref, 1);
4252	css_get(css);
 
 
 
 
 
 
 
 
 
 
 
 
 
4253	return 0;
 
 
 
 
 
4254}
4255
4256static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4257{
4258	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259	struct mem_cgroup_event *event, *tmp;
4260
4261	/*
4262	 * Unregister events and notify userspace.
4263	 * Notify userspace about cgroup removing only after rmdir of cgroup
4264	 * directory to avoid race between userspace and kernelspace.
4265	 */
4266	spin_lock(&memcg->event_list_lock);
4267	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4268		list_del_init(&event->list);
4269		schedule_work(&event->remove);
4270	}
4271	spin_unlock(&memcg->event_list_lock);
4272
4273	memcg->low = 0;
 
 
 
4274
4275	memcg_offline_kmem(memcg);
 
4276	wb_memcg_offline(memcg);
 
 
 
4277
4278	mem_cgroup_id_put(memcg);
4279}
4280
4281static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4282{
4283	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284
4285	invalidate_reclaim_iterators(memcg);
 
4286}
4287
4288static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4289{
4290	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
4291
 
 
 
 
4292	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4293		static_branch_dec(&memcg_sockets_enabled_key);
4294
4295	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4296		static_branch_dec(&memcg_sockets_enabled_key);
4297
 
 
 
 
 
4298	vmpressure_cleanup(&memcg->vmpressure);
4299	cancel_work_sync(&memcg->high_work);
4300	mem_cgroup_remove_from_trees(memcg);
4301	memcg_free_kmem(memcg);
4302	mem_cgroup_free(memcg);
4303}
4304
4305/**
4306 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4307 * @css: the target css
4308 *
4309 * Reset the states of the mem_cgroup associated with @css.  This is
4310 * invoked when the userland requests disabling on the default hierarchy
4311 * but the memcg is pinned through dependency.  The memcg should stop
4312 * applying policies and should revert to the vanilla state as it may be
4313 * made visible again.
4314 *
4315 * The current implementation only resets the essential configurations.
4316 * This needs to be expanded to cover all the visible parts.
4317 */
4318static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4319{
4320	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4321
4322	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4323	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4324	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4325	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4326	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4327	memcg->low = 0;
4328	memcg->high = PAGE_COUNTER_MAX;
4329	memcg->soft_limit = PAGE_COUNTER_MAX;
 
4330	memcg_wb_domain_size_changed(memcg);
4331}
4332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4333#ifdef CONFIG_MMU
4334/* Handlers for move charge at task migration. */
4335static int mem_cgroup_do_precharge(unsigned long count)
4336{
4337	int ret;
4338
4339	/* Try a single bulk charge without reclaim first, kswapd may wake */
4340	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4341	if (!ret) {
4342		mc.precharge += count;
4343		return ret;
4344	}
4345
4346	/* Try charges one by one with reclaim, but do not retry */
4347	while (count--) {
4348		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4349		if (ret)
4350			return ret;
4351		mc.precharge++;
4352		cond_resched();
4353	}
4354	return 0;
4355}
4356
4357union mc_target {
4358	struct page	*page;
4359	swp_entry_t	ent;
4360};
4361
4362enum mc_target_type {
4363	MC_TARGET_NONE = 0,
4364	MC_TARGET_PAGE,
4365	MC_TARGET_SWAP,
4366	MC_TARGET_DEVICE,
4367};
4368
4369static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4370						unsigned long addr, pte_t ptent)
4371{
4372	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4373
4374	if (!page || !page_mapped(page))
4375		return NULL;
4376	if (PageAnon(page)) {
4377		if (!(mc.flags & MOVE_ANON))
4378			return NULL;
4379	} else {
4380		if (!(mc.flags & MOVE_FILE))
4381			return NULL;
4382	}
4383	if (!get_page_unless_zero(page))
4384		return NULL;
4385
4386	return page;
4387}
4388
4389#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4390static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4391			pte_t ptent, swp_entry_t *entry)
4392{
4393	struct page *page = NULL;
4394	swp_entry_t ent = pte_to_swp_entry(ptent);
4395
4396	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4397		return NULL;
4398
4399	/*
4400	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4401	 * a device and because they are not accessible by CPU they are store
4402	 * as special swap entry in the CPU page table.
4403	 */
4404	if (is_device_private_entry(ent)) {
4405		page = device_private_entry_to_page(ent);
4406		/*
4407		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4408		 * a refcount of 1 when free (unlike normal page)
4409		 */
4410		if (!page_ref_add_unless(page, 1, 1))
4411			return NULL;
4412		return page;
4413	}
4414
 
 
 
4415	/*
4416	 * Because lookup_swap_cache() updates some statistics counter,
4417	 * we call find_get_page() with swapper_space directly.
4418	 */
4419	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4420	if (do_memsw_account())
4421		entry->val = ent.val;
4422
4423	return page;
4424}
4425#else
4426static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4427			pte_t ptent, swp_entry_t *entry)
4428{
4429	return NULL;
4430}
4431#endif
4432
4433static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4434			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4435{
4436	struct page *page = NULL;
4437	struct address_space *mapping;
4438	pgoff_t pgoff;
4439
4440	if (!vma->vm_file) /* anonymous vma */
4441		return NULL;
4442	if (!(mc.flags & MOVE_FILE))
4443		return NULL;
4444
4445	mapping = vma->vm_file->f_mapping;
4446	pgoff = linear_page_index(vma, addr);
4447
4448	/* page is moved even if it's not RSS of this task(page-faulted). */
4449#ifdef CONFIG_SWAP
4450	/* shmem/tmpfs may report page out on swap: account for that too. */
4451	if (shmem_mapping(mapping)) {
4452		page = find_get_entry(mapping, pgoff);
4453		if (radix_tree_exceptional_entry(page)) {
4454			swp_entry_t swp = radix_to_swp_entry(page);
4455			if (do_memsw_account())
4456				*entry = swp;
4457			page = find_get_page(swap_address_space(swp),
4458					     swp_offset(swp));
4459		}
4460	} else
4461		page = find_get_page(mapping, pgoff);
4462#else
4463	page = find_get_page(mapping, pgoff);
4464#endif
4465	return page;
4466}
4467
4468/**
4469 * mem_cgroup_move_account - move account of the page
4470 * @page: the page
4471 * @compound: charge the page as compound or small page
4472 * @from: mem_cgroup which the page is moved from.
4473 * @to:	mem_cgroup which the page is moved to. @from != @to.
4474 *
4475 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4476 *
4477 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4478 * from old cgroup.
4479 */
4480static int mem_cgroup_move_account(struct page *page,
4481				   bool compound,
4482				   struct mem_cgroup *from,
4483				   struct mem_cgroup *to)
4484{
4485	unsigned long flags;
4486	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4487	int ret;
4488	bool anon;
4489
4490	VM_BUG_ON(from == to);
4491	VM_BUG_ON_PAGE(PageLRU(page), page);
4492	VM_BUG_ON(compound && !PageTransHuge(page));
4493
4494	/*
4495	 * Prevent mem_cgroup_migrate() from looking at
4496	 * page->mem_cgroup of its source page while we change it.
4497	 */
4498	ret = -EBUSY;
4499	if (!trylock_page(page))
4500		goto out;
4501
4502	ret = -EINVAL;
4503	if (page->mem_cgroup != from)
4504		goto out_unlock;
4505
4506	anon = PageAnon(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4507
4508	spin_lock_irqsave(&from->move_lock, flags);
 
 
 
4509
4510	if (!anon && page_mapped(page)) {
4511		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4512		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4513	}
4514
4515	/*
4516	 * move_lock grabbed above and caller set from->moving_account, so
4517	 * mod_memcg_page_state will serialize updates to PageDirty.
4518	 * So mapping should be stable for dirty pages.
4519	 */
4520	if (!anon && PageDirty(page)) {
4521		struct address_space *mapping = page_mapping(page);
4522
4523		if (mapping_cap_account_dirty(mapping)) {
4524			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4525			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
 
 
 
4526		}
4527	}
4528
4529	if (PageWriteback(page)) {
4530		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4531		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
 
 
 
 
 
 
4532	}
4533
4534	/*
4535	 * It is safe to change page->mem_cgroup here because the page
4536	 * is referenced, charged, and isolated - we can't race with
4537	 * uncharging, charging, migration, or LRU putback.
 
 
 
 
 
 
 
 
4538	 */
 
4539
4540	/* caller should have done css_get */
4541	page->mem_cgroup = to;
4542	spin_unlock_irqrestore(&from->move_lock, flags);
 
 
 
4543
4544	ret = 0;
 
4545
4546	local_irq_disable();
4547	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548	memcg_check_events(to, page);
4549	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550	memcg_check_events(from, page);
4551	local_irq_enable();
4552out_unlock:
4553	unlock_page(page);
4554out:
4555	return ret;
4556}
4557
4558/**
4559 * get_mctgt_type - get target type of moving charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 *
4565 * Returns
4566 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 *     move charge. if @target is not NULL, the page is stored in target->page
4569 *     with extra refcnt got(Callers should handle it).
4570 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 *     target for charge migration. if @target is not NULL, the entry is stored
4572 *     in target->ent.
4573 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4574 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4575 *     For now we such page is charge like a regular page would be as for all
4576 *     intent and purposes it is just special memory taking the place of a
4577 *     regular page.
4578 *
4579 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4580 *
4581 * Called with pte lock held.
4582 */
4583
4584static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4585		unsigned long addr, pte_t ptent, union mc_target *target)
4586{
4587	struct page *page = NULL;
 
4588	enum mc_target_type ret = MC_TARGET_NONE;
4589	swp_entry_t ent = { .val = 0 };
4590
4591	if (pte_present(ptent))
4592		page = mc_handle_present_pte(vma, addr, ptent);
 
 
 
 
 
 
4593	else if (is_swap_pte(ptent))
4594		page = mc_handle_swap_pte(vma, ptent, &ent);
4595	else if (pte_none(ptent))
4596		page = mc_handle_file_pte(vma, addr, ptent, &ent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4597
4598	if (!page && !ent.val)
4599		return ret;
4600	if (page) {
4601		/*
4602		 * Do only loose check w/o serialization.
4603		 * mem_cgroup_move_account() checks the page is valid or
4604		 * not under LRU exclusion.
4605		 */
4606		if (page->mem_cgroup == mc.from) {
4607			ret = MC_TARGET_PAGE;
4608			if (is_device_private_page(page) ||
4609			    is_device_public_page(page))
4610				ret = MC_TARGET_DEVICE;
4611			if (target)
4612				target->page = page;
 
 
 
 
 
4613		}
4614		if (!ret || !target)
4615			put_page(page);
4616	}
4617	/*
4618	 * There is a swap entry and a page doesn't exist or isn't charged.
4619	 * But we cannot move a tail-page in a THP.
4620	 */
4621	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4622	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4623		ret = MC_TARGET_SWAP;
4624		if (target)
4625			target->ent = ent;
4626	}
4627	return ret;
4628}
4629
4630#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4631/*
4632 * We don't consider PMD mapped swapping or file mapped pages because THP does
4633 * not support them for now.
4634 * Caller should make sure that pmd_trans_huge(pmd) is true.
4635 */
4636static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4637		unsigned long addr, pmd_t pmd, union mc_target *target)
4638{
4639	struct page *page = NULL;
 
4640	enum mc_target_type ret = MC_TARGET_NONE;
4641
4642	if (unlikely(is_swap_pmd(pmd))) {
4643		VM_BUG_ON(thp_migration_supported() &&
4644				  !is_pmd_migration_entry(pmd));
4645		return ret;
4646	}
4647	page = pmd_page(pmd);
4648	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
 
4649	if (!(mc.flags & MOVE_ANON))
4650		return ret;
4651	if (page->mem_cgroup == mc.from) {
4652		ret = MC_TARGET_PAGE;
4653		if (target) {
4654			get_page(page);
4655			target->page = page;
 
 
 
 
4656		}
4657	}
4658	return ret;
4659}
4660#else
4661static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4662		unsigned long addr, pmd_t pmd, union mc_target *target)
4663{
4664	return MC_TARGET_NONE;
4665}
4666#endif
4667
4668static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4669					unsigned long addr, unsigned long end,
4670					struct mm_walk *walk)
4671{
4672	struct vm_area_struct *vma = walk->vma;
4673	pte_t *pte;
4674	spinlock_t *ptl;
4675
4676	ptl = pmd_trans_huge_lock(pmd, vma);
4677	if (ptl) {
4678		/*
4679		 * Note their can not be MC_TARGET_DEVICE for now as we do not
4680		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4681		 * MEMORY_DEVICE_PRIVATE but this might change.
4682		 */
4683		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684			mc.precharge += HPAGE_PMD_NR;
4685		spin_unlock(ptl);
4686		return 0;
4687	}
4688
4689	if (pmd_trans_unstable(pmd))
4690		return 0;
4691	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 
 
4692	for (; addr != end; pte++, addr += PAGE_SIZE)
4693		if (get_mctgt_type(vma, addr, *pte, NULL))
4694			mc.precharge++;	/* increment precharge temporarily */
4695	pte_unmap_unlock(pte - 1, ptl);
4696	cond_resched();
4697
4698	return 0;
4699}
4700
 
 
 
 
 
4701static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702{
4703	unsigned long precharge;
4704
4705	struct mm_walk mem_cgroup_count_precharge_walk = {
4706		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4707		.mm = mm,
4708	};
4709	down_read(&mm->mmap_sem);
4710	walk_page_range(0, mm->highest_vm_end,
4711			&mem_cgroup_count_precharge_walk);
4712	up_read(&mm->mmap_sem);
4713
4714	precharge = mc.precharge;
4715	mc.precharge = 0;
4716
4717	return precharge;
4718}
4719
4720static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4721{
4722	unsigned long precharge = mem_cgroup_count_precharge(mm);
4723
4724	VM_BUG_ON(mc.moving_task);
4725	mc.moving_task = current;
4726	return mem_cgroup_do_precharge(precharge);
4727}
4728
4729/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4730static void __mem_cgroup_clear_mc(void)
4731{
4732	struct mem_cgroup *from = mc.from;
4733	struct mem_cgroup *to = mc.to;
4734
4735	/* we must uncharge all the leftover precharges from mc.to */
4736	if (mc.precharge) {
4737		cancel_charge(mc.to, mc.precharge);
4738		mc.precharge = 0;
4739	}
4740	/*
4741	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4742	 * we must uncharge here.
4743	 */
4744	if (mc.moved_charge) {
4745		cancel_charge(mc.from, mc.moved_charge);
4746		mc.moved_charge = 0;
4747	}
4748	/* we must fixup refcnts and charges */
4749	if (mc.moved_swap) {
4750		/* uncharge swap account from the old cgroup */
4751		if (!mem_cgroup_is_root(mc.from))
4752			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4753
4754		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4755
4756		/*
4757		 * we charged both to->memory and to->memsw, so we
4758		 * should uncharge to->memory.
4759		 */
4760		if (!mem_cgroup_is_root(mc.to))
4761			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4762
4763		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4764		css_put_many(&mc.to->css, mc.moved_swap);
4765
4766		mc.moved_swap = 0;
4767	}
4768	memcg_oom_recover(from);
4769	memcg_oom_recover(to);
4770	wake_up_all(&mc.waitq);
4771}
4772
4773static void mem_cgroup_clear_mc(void)
4774{
4775	struct mm_struct *mm = mc.mm;
4776
4777	/*
4778	 * we must clear moving_task before waking up waiters at the end of
4779	 * task migration.
4780	 */
4781	mc.moving_task = NULL;
4782	__mem_cgroup_clear_mc();
4783	spin_lock(&mc.lock);
4784	mc.from = NULL;
4785	mc.to = NULL;
4786	mc.mm = NULL;
4787	spin_unlock(&mc.lock);
4788
4789	mmput(mm);
4790}
4791
4792static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4793{
4794	struct cgroup_subsys_state *css;
4795	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4796	struct mem_cgroup *from;
4797	struct task_struct *leader, *p;
4798	struct mm_struct *mm;
4799	unsigned long move_flags;
4800	int ret = 0;
4801
4802	/* charge immigration isn't supported on the default hierarchy */
4803	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4804		return 0;
4805
4806	/*
4807	 * Multi-process migrations only happen on the default hierarchy
4808	 * where charge immigration is not used.  Perform charge
4809	 * immigration if @tset contains a leader and whine if there are
4810	 * multiple.
4811	 */
4812	p = NULL;
4813	cgroup_taskset_for_each_leader(leader, css, tset) {
4814		WARN_ON_ONCE(p);
4815		p = leader;
4816		memcg = mem_cgroup_from_css(css);
4817	}
4818	if (!p)
4819		return 0;
4820
4821	/*
4822	 * We are now commited to this value whatever it is. Changes in this
4823	 * tunable will only affect upcoming migrations, not the current one.
4824	 * So we need to save it, and keep it going.
4825	 */
4826	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4827	if (!move_flags)
4828		return 0;
4829
4830	from = mem_cgroup_from_task(p);
4831
4832	VM_BUG_ON(from == memcg);
4833
4834	mm = get_task_mm(p);
4835	if (!mm)
4836		return 0;
4837	/* We move charges only when we move a owner of the mm */
4838	if (mm->owner == p) {
4839		VM_BUG_ON(mc.from);
4840		VM_BUG_ON(mc.to);
4841		VM_BUG_ON(mc.precharge);
4842		VM_BUG_ON(mc.moved_charge);
4843		VM_BUG_ON(mc.moved_swap);
4844
4845		spin_lock(&mc.lock);
4846		mc.mm = mm;
4847		mc.from = from;
4848		mc.to = memcg;
4849		mc.flags = move_flags;
4850		spin_unlock(&mc.lock);
4851		/* We set mc.moving_task later */
4852
4853		ret = mem_cgroup_precharge_mc(mm);
4854		if (ret)
4855			mem_cgroup_clear_mc();
4856	} else {
4857		mmput(mm);
4858	}
4859	return ret;
4860}
4861
4862static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4863{
4864	if (mc.to)
4865		mem_cgroup_clear_mc();
4866}
4867
4868static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4869				unsigned long addr, unsigned long end,
4870				struct mm_walk *walk)
4871{
4872	int ret = 0;
4873	struct vm_area_struct *vma = walk->vma;
4874	pte_t *pte;
4875	spinlock_t *ptl;
4876	enum mc_target_type target_type;
4877	union mc_target target;
4878	struct page *page;
4879
4880	ptl = pmd_trans_huge_lock(pmd, vma);
4881	if (ptl) {
4882		if (mc.precharge < HPAGE_PMD_NR) {
4883			spin_unlock(ptl);
4884			return 0;
4885		}
4886		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4887		if (target_type == MC_TARGET_PAGE) {
4888			page = target.page;
4889			if (!isolate_lru_page(page)) {
4890				if (!mem_cgroup_move_account(page, true,
4891							     mc.from, mc.to)) {
4892					mc.precharge -= HPAGE_PMD_NR;
4893					mc.moved_charge += HPAGE_PMD_NR;
4894				}
4895				putback_lru_page(page);
4896			}
4897			put_page(page);
 
4898		} else if (target_type == MC_TARGET_DEVICE) {
4899			page = target.page;
4900			if (!mem_cgroup_move_account(page, true,
4901						     mc.from, mc.to)) {
4902				mc.precharge -= HPAGE_PMD_NR;
4903				mc.moved_charge += HPAGE_PMD_NR;
4904			}
4905			put_page(page);
 
4906		}
4907		spin_unlock(ptl);
4908		return 0;
4909	}
4910
4911	if (pmd_trans_unstable(pmd))
4912		return 0;
4913retry:
4914	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 
 
4915	for (; addr != end; addr += PAGE_SIZE) {
4916		pte_t ptent = *(pte++);
4917		bool device = false;
4918		swp_entry_t ent;
4919
4920		if (!mc.precharge)
4921			break;
4922
4923		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4924		case MC_TARGET_DEVICE:
4925			device = true;
4926			/* fall through */
4927		case MC_TARGET_PAGE:
4928			page = target.page;
4929			/*
4930			 * We can have a part of the split pmd here. Moving it
4931			 * can be done but it would be too convoluted so simply
4932			 * ignore such a partial THP and keep it in original
4933			 * memcg. There should be somebody mapping the head.
4934			 */
4935			if (PageTransCompound(page))
4936				goto put;
4937			if (!device && isolate_lru_page(page))
4938				goto put;
4939			if (!mem_cgroup_move_account(page, false,
4940						mc.from, mc.to)) {
4941				mc.precharge--;
4942				/* we uncharge from mc.from later. */
4943				mc.moved_charge++;
4944			}
4945			if (!device)
4946				putback_lru_page(page);
4947put:			/* get_mctgt_type() gets the page */
4948			put_page(page);
 
4949			break;
4950		case MC_TARGET_SWAP:
4951			ent = target.ent;
4952			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4953				mc.precharge--;
4954				/* we fixup refcnts and charges later. */
 
4955				mc.moved_swap++;
4956			}
4957			break;
4958		default:
4959			break;
4960		}
4961	}
4962	pte_unmap_unlock(pte - 1, ptl);
4963	cond_resched();
4964
4965	if (addr != end) {
4966		/*
4967		 * We have consumed all precharges we got in can_attach().
4968		 * We try charge one by one, but don't do any additional
4969		 * charges to mc.to if we have failed in charge once in attach()
4970		 * phase.
4971		 */
4972		ret = mem_cgroup_do_precharge(1);
4973		if (!ret)
4974			goto retry;
4975	}
4976
4977	return ret;
4978}
4979
 
 
 
 
 
4980static void mem_cgroup_move_charge(void)
4981{
4982	struct mm_walk mem_cgroup_move_charge_walk = {
4983		.pmd_entry = mem_cgroup_move_charge_pte_range,
4984		.mm = mc.mm,
4985	};
4986
4987	lru_add_drain_all();
4988	/*
4989	 * Signal lock_page_memcg() to take the memcg's move_lock
4990	 * while we're moving its pages to another memcg. Then wait
4991	 * for already started RCU-only updates to finish.
4992	 */
4993	atomic_inc(&mc.from->moving_account);
4994	synchronize_rcu();
4995retry:
4996	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4997		/*
4998		 * Someone who are holding the mmap_sem might be waiting in
4999		 * waitq. So we cancel all extra charges, wake up all waiters,
5000		 * and retry. Because we cancel precharges, we might not be able
5001		 * to move enough charges, but moving charge is a best-effort
5002		 * feature anyway, so it wouldn't be a big problem.
5003		 */
5004		__mem_cgroup_clear_mc();
5005		cond_resched();
5006		goto retry;
5007	}
5008	/*
5009	 * When we have consumed all precharges and failed in doing
5010	 * additional charge, the page walk just aborts.
5011	 */
5012	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5013
5014	up_read(&mc.mm->mmap_sem);
5015	atomic_dec(&mc.from->moving_account);
5016}
5017
5018static void mem_cgroup_move_task(void)
5019{
5020	if (mc.to) {
5021		mem_cgroup_move_charge();
5022		mem_cgroup_clear_mc();
5023	}
5024}
 
5025#else	/* !CONFIG_MMU */
5026static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5027{
5028	return 0;
5029}
5030static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5031{
5032}
5033static void mem_cgroup_move_task(void)
5034{
5035}
5036#endif
5037
5038/*
5039 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5040 * to verify whether we're attached to the default hierarchy on each mount
5041 * attempt.
5042 */
5043static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5044{
5045	/*
5046	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5047	 * guarantees that @root doesn't have any children, so turning it
5048	 * on for the root memcg is enough.
 
5049	 */
5050	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5051		root_mem_cgroup->use_hierarchy = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5052	else
5053		root_mem_cgroup->use_hierarchy = false;
 
 
5054}
5055
5056static u64 memory_current_read(struct cgroup_subsys_state *css,
5057			       struct cftype *cft)
5058{
5059	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5060
5061	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5062}
5063
5064static int memory_low_show(struct seq_file *m, void *v)
 
5065{
5066	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5067	unsigned long low = READ_ONCE(memcg->low);
5068
5069	if (low == PAGE_COUNTER_MAX)
5070		seq_puts(m, "max\n");
5071	else
5072		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5073
5074	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5075}
5076
5077static ssize_t memory_low_write(struct kernfs_open_file *of,
5078				char *buf, size_t nbytes, loff_t off)
5079{
5080	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5081	unsigned long low;
5082	int err;
5083
5084	buf = strstrip(buf);
5085	err = page_counter_memparse(buf, "max", &low);
5086	if (err)
5087		return err;
5088
5089	memcg->low = low;
5090
5091	return nbytes;
5092}
5093
5094static int memory_high_show(struct seq_file *m, void *v)
5095{
5096	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097	unsigned long high = READ_ONCE(memcg->high);
5098
5099	if (high == PAGE_COUNTER_MAX)
5100		seq_puts(m, "max\n");
5101	else
5102		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5103
5104	return 0;
5105}
5106
5107static ssize_t memory_high_write(struct kernfs_open_file *of,
5108				 char *buf, size_t nbytes, loff_t off)
5109{
5110	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5111	unsigned long nr_pages;
 
5112	unsigned long high;
5113	int err;
5114
5115	buf = strstrip(buf);
5116	err = page_counter_memparse(buf, "max", &high);
5117	if (err)
5118		return err;
5119
5120	memcg->high = high;
5121
5122	nr_pages = page_counter_read(&memcg->memory);
5123	if (nr_pages > high)
5124		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5125					     GFP_KERNEL, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5126
5127	memcg_wb_domain_size_changed(memcg);
5128	return nbytes;
5129}
5130
5131static int memory_max_show(struct seq_file *m, void *v)
5132{
5133	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5134	unsigned long max = READ_ONCE(memcg->memory.limit);
5135
5136	if (max == PAGE_COUNTER_MAX)
5137		seq_puts(m, "max\n");
5138	else
5139		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5140
5141	return 0;
5142}
5143
5144static ssize_t memory_max_write(struct kernfs_open_file *of,
5145				char *buf, size_t nbytes, loff_t off)
5146{
5147	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5148	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5149	bool drained = false;
5150	unsigned long max;
5151	int err;
5152
5153	buf = strstrip(buf);
5154	err = page_counter_memparse(buf, "max", &max);
5155	if (err)
5156		return err;
5157
5158	xchg(&memcg->memory.limit, max);
5159
5160	for (;;) {
5161		unsigned long nr_pages = page_counter_read(&memcg->memory);
5162
5163		if (nr_pages <= max)
5164			break;
5165
5166		if (signal_pending(current)) {
5167			err = -EINTR;
5168			break;
5169		}
5170
5171		if (!drained) {
5172			drain_all_stock(memcg);
5173			drained = true;
5174			continue;
5175		}
5176
5177		if (nr_reclaims) {
5178			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5179							  GFP_KERNEL, true))
5180				nr_reclaims--;
5181			continue;
5182		}
5183
5184		memcg_memory_event(memcg, MEMCG_OOM);
5185		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5186			break;
5187	}
5188
5189	memcg_wb_domain_size_changed(memcg);
5190	return nbytes;
5191}
5192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5193static int memory_events_show(struct seq_file *m, void *v)
5194{
5195	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5196
5197	seq_printf(m, "low %lu\n",
5198		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5199	seq_printf(m, "high %lu\n",
5200		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5201	seq_printf(m, "max %lu\n",
5202		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5203	seq_printf(m, "oom %lu\n",
5204		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5205	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5206
 
5207	return 0;
5208}
5209
5210static int memory_stat_show(struct seq_file *m, void *v)
5211{
5212	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5213	unsigned long stat[MEMCG_NR_STAT];
5214	unsigned long events[NR_VM_EVENT_ITEMS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5215	int i;
 
5216
5217	/*
5218	 * Provide statistics on the state of the memory subsystem as
5219	 * well as cumulative event counters that show past behavior.
5220	 *
5221	 * This list is ordered following a combination of these gradients:
5222	 * 1) generic big picture -> specifics and details
5223	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5224	 *
5225	 * Current memory state:
5226	 */
5227
5228	tree_stat(memcg, stat);
5229	tree_events(memcg, events);
5230
5231	seq_printf(m, "anon %llu\n",
5232		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5233	seq_printf(m, "file %llu\n",
5234		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5235	seq_printf(m, "kernel_stack %llu\n",
5236		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5237	seq_printf(m, "slab %llu\n",
5238		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
5239			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5240	seq_printf(m, "sock %llu\n",
5241		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5242
5243	seq_printf(m, "shmem %llu\n",
5244		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5245	seq_printf(m, "file_mapped %llu\n",
5246		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5247	seq_printf(m, "file_dirty %llu\n",
5248		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5249	seq_printf(m, "file_writeback %llu\n",
5250		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5251
5252	for (i = 0; i < NR_LRU_LISTS; i++) {
5253		struct mem_cgroup *mi;
5254		unsigned long val = 0;
5255
5256		for_each_mem_cgroup_tree(mi, memcg)
5257			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5258		seq_printf(m, "%s %llu\n",
5259			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5260	}
5261
5262	seq_printf(m, "slab_reclaimable %llu\n",
5263		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5264	seq_printf(m, "slab_unreclaimable %llu\n",
5265		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5266
5267	/* Accumulated memory events */
 
 
 
5268
5269	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5270	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
 
 
 
 
 
5271
5272	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5273	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5274		   events[PGSCAN_DIRECT]);
5275	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5276		   events[PGSTEAL_DIRECT]);
5277	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5278	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5279	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5280	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5281
5282	seq_printf(m, "workingset_refault %lu\n",
5283		   stat[WORKINGSET_REFAULT]);
5284	seq_printf(m, "workingset_activate %lu\n",
5285		   stat[WORKINGSET_ACTIVATE]);
5286	seq_printf(m, "workingset_nodereclaim %lu\n",
5287		   stat[WORKINGSET_NODERECLAIM]);
5288
5289	return 0;
5290}
5291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5292static struct cftype memory_files[] = {
5293	{
5294		.name = "current",
5295		.flags = CFTYPE_NOT_ON_ROOT,
5296		.read_u64 = memory_current_read,
5297	},
5298	{
 
 
 
 
 
 
 
 
 
 
 
5299		.name = "low",
5300		.flags = CFTYPE_NOT_ON_ROOT,
5301		.seq_show = memory_low_show,
5302		.write = memory_low_write,
5303	},
5304	{
5305		.name = "high",
5306		.flags = CFTYPE_NOT_ON_ROOT,
5307		.seq_show = memory_high_show,
5308		.write = memory_high_write,
5309	},
5310	{
5311		.name = "max",
5312		.flags = CFTYPE_NOT_ON_ROOT,
5313		.seq_show = memory_max_show,
5314		.write = memory_max_write,
5315	},
5316	{
5317		.name = "events",
5318		.flags = CFTYPE_NOT_ON_ROOT,
5319		.file_offset = offsetof(struct mem_cgroup, events_file),
5320		.seq_show = memory_events_show,
5321	},
5322	{
5323		.name = "stat",
5324		.flags = CFTYPE_NOT_ON_ROOT,
 
 
 
 
 
5325		.seq_show = memory_stat_show,
5326	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5327	{ }	/* terminate */
5328};
5329
5330struct cgroup_subsys memory_cgrp_subsys = {
5331	.css_alloc = mem_cgroup_css_alloc,
5332	.css_online = mem_cgroup_css_online,
5333	.css_offline = mem_cgroup_css_offline,
5334	.css_released = mem_cgroup_css_released,
5335	.css_free = mem_cgroup_css_free,
5336	.css_reset = mem_cgroup_css_reset,
 
5337	.can_attach = mem_cgroup_can_attach,
 
 
 
5338	.cancel_attach = mem_cgroup_cancel_attach,
5339	.post_attach = mem_cgroup_move_task,
5340	.bind = mem_cgroup_bind,
 
 
 
5341	.dfl_cftypes = memory_files,
5342	.legacy_cftypes = mem_cgroup_legacy_files,
5343	.early_init = 0,
5344};
5345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5346/**
5347 * mem_cgroup_low - check if memory consumption is below the normal range
5348 * @root: the top ancestor of the sub-tree being checked
5349 * @memcg: the memory cgroup to check
5350 *
5351 * Returns %true if memory consumption of @memcg, and that of all
5352 * ancestors up to (but not including) @root, is below the normal range.
5353 *
5354 * @root is exclusive; it is never low when looked at directly and isn't
5355 * checked when traversing the hierarchy.
5356 *
5357 * Excluding @root enables using memory.low to prioritize memory usage
5358 * between cgroups within a subtree of the hierarchy that is limited by
5359 * memory.high or memory.max.
5360 *
5361 * For example, given cgroup A with children B and C:
5362 *
5363 *    A
5364 *   / \
5365 *  B   C
5366 *
5367 * and
5368 *
5369 *  1. A/memory.current > A/memory.high
5370 *  2. A/B/memory.current < A/B/memory.low
5371 *  3. A/C/memory.current >= A/C/memory.low
5372 *
5373 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5374 * should reclaim from 'C' until 'A' is no longer high or until we can
5375 * no longer reclaim from 'C'.  If 'A', i.e. @root, isn't excluded by
5376 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5377 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5378 */
5379bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
 
5380{
 
 
 
5381	if (mem_cgroup_disabled())
5382		return false;
5383
5384	if (!root)
5385		root = root_mem_cgroup;
 
 
 
 
 
 
 
 
5386	if (memcg == root)
5387		return false;
 
 
 
 
 
 
5388
5389	for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5390		if (page_counter_read(&memcg->memory) >= memcg->low)
5391			return false;
 
5392	}
5393
5394	return true;
 
 
 
 
 
 
 
 
 
 
5395}
5396
5397/**
5398 * mem_cgroup_try_charge - try charging a page
5399 * @page: page to charge
5400 * @mm: mm context of the victim
5401 * @gfp_mask: reclaim mode
5402 * @memcgp: charged memcg return
5403 * @compound: charge the page as compound or small page
5404 *
5405 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5406 * pages according to @gfp_mask if necessary.
5407 *
5408 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5409 * Otherwise, an error code is returned.
5410 *
5411 * After page->mapping has been set up, the caller must finalize the
5412 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5413 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5414 */
5415int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5416			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5417			  bool compound)
5418{
5419	struct mem_cgroup *memcg = NULL;
5420	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5421	int ret = 0;
5422
5423	if (mem_cgroup_disabled())
 
5424		goto out;
5425
5426	if (PageSwapCache(page)) {
5427		/*
5428		 * Every swap fault against a single page tries to charge the
5429		 * page, bail as early as possible.  shmem_unuse() encounters
5430		 * already charged pages, too.  The USED bit is protected by
5431		 * the page lock, which serializes swap cache removal, which
5432		 * in turn serializes uncharging.
5433		 */
5434		VM_BUG_ON_PAGE(!PageLocked(page), page);
5435		if (compound_head(page)->mem_cgroup)
5436			goto out;
5437
5438		if (do_swap_account) {
5439			swp_entry_t ent = { .val = page_private(page), };
5440			unsigned short id = lookup_swap_cgroup_id(ent);
5441
5442			rcu_read_lock();
5443			memcg = mem_cgroup_from_id(id);
5444			if (memcg && !css_tryget_online(&memcg->css))
5445				memcg = NULL;
5446			rcu_read_unlock();
5447		}
5448	}
5449
5450	if (!memcg)
5451		memcg = get_mem_cgroup_from_mm(mm);
5452
5453	ret = try_charge(memcg, gfp_mask, nr_pages);
 
 
 
5454
 
 
5455	css_put(&memcg->css);
5456out:
5457	*memcgp = memcg;
5458	return ret;
5459}
5460
5461/**
5462 * mem_cgroup_commit_charge - commit a page charge
5463 * @page: page to charge
5464 * @memcg: memcg to charge the page to
5465 * @lrucare: page might be on LRU already
5466 * @compound: charge the page as compound or small page
5467 *
5468 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5469 * after page->mapping has been set up.  This must happen atomically
5470 * as part of the page instantiation, i.e. under the page table lock
5471 * for anonymous pages, under the page lock for page and swap cache.
5472 *
5473 * In addition, the page must not be on the LRU during the commit, to
5474 * prevent racing with task migration.  If it might be, use @lrucare.
 
 
5475 *
5476 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5477 */
5478void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5479			      bool lrucare, bool compound)
5480{
5481	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5482
5483	VM_BUG_ON_PAGE(!page->mapping, page);
5484	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5485
5486	if (mem_cgroup_disabled())
5487		return;
5488	/*
5489	 * Swap faults will attempt to charge the same page multiple
5490	 * times.  But reuse_swap_page() might have removed the page
5491	 * from swapcache already, so we can't check PageSwapCache().
5492	 */
5493	if (!memcg)
5494		return;
 
 
5495
5496	commit_charge(page, memcg, lrucare);
5497
5498	local_irq_disable();
5499	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5500	memcg_check_events(memcg, page);
5501	local_irq_enable();
5502
5503	if (do_memsw_account() && PageSwapCache(page)) {
5504		swp_entry_t entry = { .val = page_private(page) };
5505		/*
5506		 * The swap entry might not get freed for a long time,
5507		 * let's not wait for it.  The page already received a
5508		 * memory+swap charge, drop the swap entry duplicate.
5509		 */
5510		mem_cgroup_uncharge_swap(entry, nr_pages);
5511	}
5512}
5513
5514/**
5515 * mem_cgroup_cancel_charge - cancel a page charge
5516 * @page: page to charge
5517 * @memcg: memcg to charge the page to
5518 * @compound: charge the page as compound or small page
 
 
 
 
5519 *
5520 * Cancel a charge transaction started by mem_cgroup_try_charge().
5521 */
5522void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5523		bool compound)
5524{
5525	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
 
 
5526
5527	if (mem_cgroup_disabled())
5528		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5529	/*
5530	 * Swap faults will attempt to charge the same page multiple
5531	 * times.  But reuse_swap_page() might have removed the page
5532	 * from swapcache already, so we can't check PageSwapCache().
 
 
 
 
 
 
 
5533	 */
5534	if (!memcg)
5535		return;
5536
5537	cancel_charge(memcg, nr_pages);
 
 
 
 
5538}
5539
5540struct uncharge_gather {
5541	struct mem_cgroup *memcg;
 
5542	unsigned long pgpgout;
5543	unsigned long nr_anon;
5544	unsigned long nr_file;
5545	unsigned long nr_kmem;
5546	unsigned long nr_huge;
5547	unsigned long nr_shmem;
5548	struct page *dummy_page;
5549};
5550
5551static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5552{
5553	memset(ug, 0, sizeof(*ug));
5554}
5555
5556static void uncharge_batch(const struct uncharge_gather *ug)
5557{
5558	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5559	unsigned long flags;
5560
5561	if (!mem_cgroup_is_root(ug->memcg)) {
5562		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5563		if (do_memsw_account())
5564			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5565		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5566			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5567		memcg_oom_recover(ug->memcg);
5568	}
5569
5570	local_irq_save(flags);
5571	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5572	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5573	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5574	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5575	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5576	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5577	memcg_check_events(ug->memcg, ug->dummy_page);
5578	local_irq_restore(flags);
5579
5580	if (!mem_cgroup_is_root(ug->memcg))
5581		css_put_many(&ug->memcg->css, nr_pages);
5582}
5583
5584static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5585{
5586	VM_BUG_ON_PAGE(PageLRU(page), page);
5587	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5588			!PageHWPoison(page) , page);
5589
5590	if (!page->mem_cgroup)
5591		return;
5592
5593	/*
5594	 * Nobody should be changing or seriously looking at
5595	 * page->mem_cgroup at this point, we have fully
5596	 * exclusive access to the page.
5597	 */
 
 
 
 
 
 
 
 
 
 
5598
5599	if (ug->memcg != page->mem_cgroup) {
 
 
 
5600		if (ug->memcg) {
5601			uncharge_batch(ug);
5602			uncharge_gather_clear(ug);
5603		}
5604		ug->memcg = page->mem_cgroup;
 
 
 
 
5605	}
5606
5607	if (!PageKmemcg(page)) {
5608		unsigned int nr_pages = 1;
5609
5610		if (PageTransHuge(page)) {
5611			nr_pages <<= compound_order(page);
5612			ug->nr_huge += nr_pages;
5613		}
5614		if (PageAnon(page))
5615			ug->nr_anon += nr_pages;
5616		else {
5617			ug->nr_file += nr_pages;
5618			if (PageSwapBacked(page))
5619				ug->nr_shmem += nr_pages;
5620		}
5621		ug->pgpgout++;
5622	} else {
5623		ug->nr_kmem += 1 << compound_order(page);
5624		__ClearPageKmemcg(page);
 
 
 
 
5625	}
5626
5627	ug->dummy_page = page;
5628	page->mem_cgroup = NULL;
5629}
5630
5631static void uncharge_list(struct list_head *page_list)
5632{
5633	struct uncharge_gather ug;
5634	struct list_head *next;
5635
5636	uncharge_gather_clear(&ug);
5637
5638	/*
5639	 * Note that the list can be a single page->lru; hence the
5640	 * do-while loop instead of a simple list_for_each_entry().
5641	 */
5642	next = page_list->next;
5643	do {
5644		struct page *page;
5645
5646		page = list_entry(next, struct page, lru);
5647		next = page->lru.next;
 
 
5648
5649		uncharge_page(page, &ug);
5650	} while (next != page_list);
 
 
5651
 
 
 
5652	if (ug.memcg)
5653		uncharge_batch(&ug);
5654}
5655
5656/**
5657 * mem_cgroup_uncharge - uncharge a page
5658 * @page: page to uncharge
 
 
 
 
 
5659 *
5660 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5661 * mem_cgroup_commit_charge().
5662 */
5663void mem_cgroup_uncharge(struct page *page)
5664{
5665	struct uncharge_gather ug;
 
 
 
 
 
 
 
5666
5667	if (mem_cgroup_disabled())
5668		return;
5669
5670	/* Don't touch page->lru of any random page, pre-check: */
5671	if (!page->mem_cgroup)
5672		return;
5673
5674	uncharge_gather_clear(&ug);
5675	uncharge_page(page, &ug);
5676	uncharge_batch(&ug);
5677}
5678
5679/**
5680 * mem_cgroup_uncharge_list - uncharge a list of page
5681 * @page_list: list of pages to uncharge
5682 *
5683 * Uncharge a list of pages previously charged with
5684 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5685 */
5686void mem_cgroup_uncharge_list(struct list_head *page_list)
5687{
5688	if (mem_cgroup_disabled())
5689		return;
5690
5691	if (!list_empty(page_list))
5692		uncharge_list(page_list);
 
 
 
 
 
 
 
 
 
 
 
 
5693}
5694
5695/**
5696 * mem_cgroup_migrate - charge a page's replacement
5697 * @oldpage: currently circulating page
5698 * @newpage: replacement page
5699 *
5700 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5701 * be uncharged upon free.
 
5702 *
5703 * Both pages must be locked, @newpage->mapping must be set up.
5704 */
5705void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5706{
5707	struct mem_cgroup *memcg;
5708	unsigned int nr_pages;
5709	bool compound;
5710	unsigned long flags;
5711
5712	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5713	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5714	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5715	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5716		       newpage);
5717
5718	if (mem_cgroup_disabled())
5719		return;
5720
5721	/* Page cache replacement: new page already charged? */
5722	if (newpage->mem_cgroup)
5723		return;
5724
5725	/* Swapcache readahead pages can get replaced before being charged */
5726	memcg = oldpage->mem_cgroup;
 
5727	if (!memcg)
5728		return;
5729
5730	/* Force-charge the new page. The old one will be freed soon */
5731	compound = PageTransHuge(newpage);
5732	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5733
5734	page_counter_charge(&memcg->memory, nr_pages);
5735	if (do_memsw_account())
5736		page_counter_charge(&memcg->memsw, nr_pages);
5737	css_get_many(&memcg->css, nr_pages);
5738
5739	commit_charge(newpage, memcg, false);
5740
5741	local_irq_save(flags);
5742	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5743	memcg_check_events(memcg, newpage);
5744	local_irq_restore(flags);
5745}
5746
5747DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5748EXPORT_SYMBOL(memcg_sockets_enabled_key);
5749
5750void mem_cgroup_sk_alloc(struct sock *sk)
5751{
5752	struct mem_cgroup *memcg;
5753
5754	if (!mem_cgroup_sockets_enabled)
5755		return;
5756
5757	/*
5758	 * Socket cloning can throw us here with sk_memcg already
5759	 * filled. It won't however, necessarily happen from
5760	 * process context. So the test for root memcg given
5761	 * the current task's memcg won't help us in this case.
5762	 *
5763	 * Respecting the original socket's memcg is a better
5764	 * decision in this case.
5765	 */
5766	if (sk->sk_memcg) {
5767		css_get(&sk->sk_memcg->css);
5768		return;
5769	}
5770
5771	rcu_read_lock();
5772	memcg = mem_cgroup_from_task(current);
5773	if (memcg == root_mem_cgroup)
5774		goto out;
5775	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5776		goto out;
5777	if (css_tryget_online(&memcg->css))
5778		sk->sk_memcg = memcg;
5779out:
5780	rcu_read_unlock();
5781}
5782
5783void mem_cgroup_sk_free(struct sock *sk)
5784{
5785	if (sk->sk_memcg)
5786		css_put(&sk->sk_memcg->css);
5787}
5788
5789/**
5790 * mem_cgroup_charge_skmem - charge socket memory
5791 * @memcg: memcg to charge
5792 * @nr_pages: number of pages to charge
 
5793 *
5794 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5795 * @memcg's configured limit, %false if the charge had to be forced.
5796 */
5797bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
 
5798{
5799	gfp_t gfp_mask = GFP_KERNEL;
5800
5801	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5802		struct page_counter *fail;
5803
5804		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5805			memcg->tcpmem_pressure = 0;
5806			return true;
5807		}
5808		page_counter_charge(&memcg->tcpmem, nr_pages);
5809		memcg->tcpmem_pressure = 1;
 
 
 
 
5810		return false;
5811	}
5812
5813	/* Don't block in the packet receive path */
5814	if (in_softirq())
5815		gfp_mask = GFP_NOWAIT;
5816
5817	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5818
5819	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5820		return true;
 
5821
5822	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5823	return false;
5824}
5825
5826/**
5827 * mem_cgroup_uncharge_skmem - uncharge socket memory
5828 * @memcg: memcg to uncharge
5829 * @nr_pages: number of pages to uncharge
5830 */
5831void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5832{
5833	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5834		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5835		return;
5836	}
5837
5838	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5839
5840	refill_stock(memcg, nr_pages);
5841}
5842
5843static int __init cgroup_memory(char *s)
5844{
5845	char *token;
5846
5847	while ((token = strsep(&s, ",")) != NULL) {
5848		if (!*token)
5849			continue;
5850		if (!strcmp(token, "nosocket"))
5851			cgroup_memory_nosocket = true;
5852		if (!strcmp(token, "nokmem"))
5853			cgroup_memory_nokmem = true;
 
 
5854	}
5855	return 0;
5856}
5857__setup("cgroup.memory=", cgroup_memory);
5858
5859/*
5860 * subsys_initcall() for memory controller.
5861 *
5862 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5863 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5864 * basically everything that doesn't depend on a specific mem_cgroup structure
5865 * should be initialized from here.
5866 */
5867static int __init mem_cgroup_init(void)
5868{
5869	int cpu, node;
5870
5871#ifndef CONFIG_SLOB
5872	/*
5873	 * Kmem cache creation is mostly done with the slab_mutex held,
5874	 * so use a workqueue with limited concurrency to avoid stalling
5875	 * all worker threads in case lots of cgroups are created and
5876	 * destroyed simultaneously.
5877	 */
5878	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5879	BUG_ON(!memcg_kmem_cache_wq);
5880#endif
5881
5882	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5883				  memcg_hotplug_cpu_dead);
5884
5885	for_each_possible_cpu(cpu)
5886		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5887			  drain_local_stock);
5888
5889	for_each_node(node) {
5890		struct mem_cgroup_tree_per_node *rtpn;
5891
5892		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5893				    node_online(node) ? node : NUMA_NO_NODE);
5894
5895		rtpn->rb_root = RB_ROOT;
5896		rtpn->rb_rightmost = NULL;
5897		spin_lock_init(&rtpn->lock);
5898		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5899	}
5900
5901	return 0;
5902}
5903subsys_initcall(mem_cgroup_init);
5904
5905#ifdef CONFIG_MEMCG_SWAP
5906static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5907{
5908	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5909		/*
5910		 * The root cgroup cannot be destroyed, so it's refcount must
5911		 * always be >= 1.
5912		 */
5913		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5914			VM_BUG_ON(1);
5915			break;
5916		}
5917		memcg = parent_mem_cgroup(memcg);
5918		if (!memcg)
5919			memcg = root_mem_cgroup;
5920	}
5921	return memcg;
5922}
5923
5924/**
5925 * mem_cgroup_swapout - transfer a memsw charge to swap
5926 * @page: page whose memsw charge to transfer
5927 * @entry: swap entry to move the charge to
5928 *
5929 * Transfer the memsw charge of @page to @entry.
5930 */
5931void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5932{
5933	struct mem_cgroup *memcg, *swap_memcg;
5934	unsigned int nr_entries;
5935	unsigned short oldid;
5936
5937	VM_BUG_ON_PAGE(PageLRU(page), page);
5938	VM_BUG_ON_PAGE(page_count(page), page);
 
 
 
5939
5940	if (!do_memsw_account())
5941		return;
5942
5943	memcg = page->mem_cgroup;
5944
5945	/* Readahead page, never charged */
5946	if (!memcg)
5947		return;
5948
5949	/*
5950	 * In case the memcg owning these pages has been offlined and doesn't
5951	 * have an ID allocated to it anymore, charge the closest online
5952	 * ancestor for the swap instead and transfer the memory+swap charge.
5953	 */
5954	swap_memcg = mem_cgroup_id_get_online(memcg);
5955	nr_entries = hpage_nr_pages(page);
5956	/* Get references for the tail pages, too */
5957	if (nr_entries > 1)
5958		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5959	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5960				   nr_entries);
5961	VM_BUG_ON_PAGE(oldid, page);
5962	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5963
5964	page->mem_cgroup = NULL;
5965
5966	if (!mem_cgroup_is_root(memcg))
5967		page_counter_uncharge(&memcg->memory, nr_entries);
5968
5969	if (memcg != swap_memcg) {
5970		if (!mem_cgroup_is_root(swap_memcg))
5971			page_counter_charge(&swap_memcg->memsw, nr_entries);
5972		page_counter_uncharge(&memcg->memsw, nr_entries);
5973	}
5974
5975	/*
5976	 * Interrupts should be disabled here because the caller holds the
5977	 * i_pages lock which is taken with interrupts-off. It is
5978	 * important here to have the interrupts disabled because it is the
5979	 * only synchronisation we have for updating the per-CPU variables.
5980	 */
5981	VM_BUG_ON(!irqs_disabled());
5982	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
5983				     -nr_entries);
5984	memcg_check_events(memcg, page);
5985
5986	if (!mem_cgroup_is_root(memcg))
5987		css_put_many(&memcg->css, nr_entries);
5988}
5989
5990/**
5991 * mem_cgroup_try_charge_swap - try charging swap space for a page
5992 * @page: page being added to swap
5993 * @entry: swap entry to charge
5994 *
5995 * Try to charge @page's memcg for the swap space at @entry.
5996 *
5997 * Returns 0 on success, -ENOMEM on failure.
5998 */
5999int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6000{
6001	unsigned int nr_pages = hpage_nr_pages(page);
6002	struct page_counter *counter;
6003	struct mem_cgroup *memcg;
6004	unsigned short oldid;
6005
6006	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6007		return 0;
6008
6009	memcg = page->mem_cgroup;
6010
6011	/* Readahead page, never charged */
6012	if (!memcg)
6013		return 0;
6014
 
 
 
 
 
6015	memcg = mem_cgroup_id_get_online(memcg);
6016
6017	if (!mem_cgroup_is_root(memcg) &&
6018	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
 
 
6019		mem_cgroup_id_put(memcg);
6020		return -ENOMEM;
6021	}
6022
6023	/* Get references for the tail pages, too */
6024	if (nr_pages > 1)
6025		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6026	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6027	VM_BUG_ON_PAGE(oldid, page);
6028	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6029
6030	return 0;
6031}
6032
6033/**
6034 * mem_cgroup_uncharge_swap - uncharge swap space
6035 * @entry: swap entry to uncharge
6036 * @nr_pages: the amount of swap space to uncharge
6037 */
6038void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6039{
6040	struct mem_cgroup *memcg;
6041	unsigned short id;
6042
6043	if (!do_swap_account)
6044		return;
6045
6046	id = swap_cgroup_record(entry, 0, nr_pages);
6047	rcu_read_lock();
6048	memcg = mem_cgroup_from_id(id);
6049	if (memcg) {
6050		if (!mem_cgroup_is_root(memcg)) {
6051			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6052				page_counter_uncharge(&memcg->swap, nr_pages);
6053			else
6054				page_counter_uncharge(&memcg->memsw, nr_pages);
 
 
6055		}
6056		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6057		mem_cgroup_id_put_many(memcg, nr_pages);
6058	}
6059	rcu_read_unlock();
6060}
6061
6062long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6063{
6064	long nr_swap_pages = get_nr_swap_pages();
6065
6066	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6067		return nr_swap_pages;
6068	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6069		nr_swap_pages = min_t(long, nr_swap_pages,
6070				      READ_ONCE(memcg->swap.limit) -
6071				      page_counter_read(&memcg->swap));
6072	return nr_swap_pages;
6073}
6074
6075bool mem_cgroup_swap_full(struct page *page)
6076{
6077	struct mem_cgroup *memcg;
6078
6079	VM_BUG_ON_PAGE(!PageLocked(page), page);
6080
6081	if (vm_swap_full())
6082		return true;
6083	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6084		return false;
6085
6086	memcg = page->mem_cgroup;
6087	if (!memcg)
6088		return false;
6089
6090	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6091		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
 
 
 
6092			return true;
 
6093
6094	return false;
6095}
6096
6097/* for remember boot option*/
6098#ifdef CONFIG_MEMCG_SWAP_ENABLED
6099static int really_do_swap_account __initdata = 1;
6100#else
6101static int really_do_swap_account __initdata;
6102#endif
6103
6104static int __init enable_swap_account(char *s)
6105{
6106	if (!strcmp(s, "1"))
6107		really_do_swap_account = 1;
6108	else if (!strcmp(s, "0"))
6109		really_do_swap_account = 0;
 
 
 
6110	return 1;
6111}
6112__setup("swapaccount=", enable_swap_account);
6113
6114static u64 swap_current_read(struct cgroup_subsys_state *css,
6115			     struct cftype *cft)
6116{
6117	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6118
6119	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6120}
6121
6122static int swap_max_show(struct seq_file *m, void *v)
 
6123{
6124	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6125	unsigned long max = READ_ONCE(memcg->swap.limit);
6126
6127	if (max == PAGE_COUNTER_MAX)
6128		seq_puts(m, "max\n");
6129	else
6130		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6131
6132	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6133}
6134
6135static ssize_t swap_max_write(struct kernfs_open_file *of,
6136			      char *buf, size_t nbytes, loff_t off)
6137{
6138	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6139	unsigned long max;
6140	int err;
6141
6142	buf = strstrip(buf);
6143	err = page_counter_memparse(buf, "max", &max);
6144	if (err)
6145		return err;
6146
6147	mutex_lock(&memcg_limit_mutex);
6148	err = page_counter_limit(&memcg->swap, max);
6149	mutex_unlock(&memcg_limit_mutex);
6150	if (err)
6151		return err;
6152
6153	return nbytes;
6154}
6155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6156static struct cftype swap_files[] = {
6157	{
6158		.name = "swap.current",
6159		.flags = CFTYPE_NOT_ON_ROOT,
6160		.read_u64 = swap_current_read,
6161	},
6162	{
 
 
 
 
 
 
6163		.name = "swap.max",
6164		.flags = CFTYPE_NOT_ON_ROOT,
6165		.seq_show = swap_max_show,
6166		.write = swap_max_write,
6167	},
 
 
 
 
 
 
 
 
 
 
 
6168	{ }	/* terminate */
6169};
6170
6171static struct cftype memsw_cgroup_files[] = {
6172	{
6173		.name = "memsw.usage_in_bytes",
6174		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6175		.read_u64 = mem_cgroup_read_u64,
6176	},
6177	{
6178		.name = "memsw.max_usage_in_bytes",
6179		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6180		.write = mem_cgroup_reset,
6181		.read_u64 = mem_cgroup_read_u64,
6182	},
6183	{
6184		.name = "memsw.limit_in_bytes",
6185		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6186		.write = mem_cgroup_write,
6187		.read_u64 = mem_cgroup_read_u64,
6188	},
6189	{
6190		.name = "memsw.failcnt",
6191		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6192		.write = mem_cgroup_reset,
6193		.read_u64 = mem_cgroup_read_u64,
6194	},
6195	{ },	/* terminate */
6196};
6197
6198static int __init mem_cgroup_swap_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
6199{
6200	if (!mem_cgroup_disabled() && really_do_swap_account) {
6201		do_swap_account = 1;
6202		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6203					       swap_files));
6204		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6205						  memsw_cgroup_files));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6206	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6207	return 0;
6208}
6209subsys_initcall(mem_cgroup_swap_init);
6210
6211#endif /* CONFIG_MEMCG_SWAP */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 *
  24 * Per memcg lru locking
  25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
 
 
 
 
 
 
 
  26 */
  27
  28#include <linux/page_counter.h>
  29#include <linux/memcontrol.h>
  30#include <linux/cgroup.h>
  31#include <linux/pagewalk.h>
  32#include <linux/sched/mm.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/hugetlb.h>
  35#include <linux/pagemap.h>
  36#include <linux/pagevec.h>
  37#include <linux/vm_event_item.h>
  38#include <linux/smp.h>
  39#include <linux/page-flags.h>
  40#include <linux/backing-dev.h>
  41#include <linux/bit_spinlock.h>
  42#include <linux/rcupdate.h>
  43#include <linux/limits.h>
  44#include <linux/export.h>
  45#include <linux/mutex.h>
  46#include <linux/rbtree.h>
  47#include <linux/slab.h>
  48#include <linux/swap.h>
  49#include <linux/swapops.h>
  50#include <linux/spinlock.h>
  51#include <linux/eventfd.h>
  52#include <linux/poll.h>
  53#include <linux/sort.h>
  54#include <linux/fs.h>
  55#include <linux/seq_file.h>
  56#include <linux/vmpressure.h>
  57#include <linux/memremap.h>
  58#include <linux/mm_inline.h>
  59#include <linux/swap_cgroup.h>
  60#include <linux/cpu.h>
  61#include <linux/oom.h>
  62#include <linux/lockdep.h>
  63#include <linux/file.h>
  64#include <linux/resume_user_mode.h>
  65#include <linux/psi.h>
  66#include <linux/seq_buf.h>
  67#include <linux/sched/isolation.h>
  68#include <linux/kmemleak.h>
  69#include "internal.h"
  70#include <net/sock.h>
  71#include <net/ip.h>
  72#include "slab.h"
  73#include "swap.h"
  74
  75#include <linux/uaccess.h>
  76
  77#include <trace/events/vmscan.h>
  78
  79struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  80EXPORT_SYMBOL(memory_cgrp_subsys);
  81
  82struct mem_cgroup *root_mem_cgroup __read_mostly;
  83
  84/* Active memory cgroup to use from an interrupt context */
  85DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
  86EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
  87
  88/* Socket memory accounting disabled? */
  89static bool cgroup_memory_nosocket __ro_after_init;
  90
  91/* Kernel memory accounting disabled? */
  92static bool cgroup_memory_nokmem __ro_after_init;
  93
  94/* BPF memory accounting disabled? */
  95static bool cgroup_memory_nobpf __ro_after_init;
  96
  97#ifdef CONFIG_CGROUP_WRITEBACK
  98static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
  99#endif
 100
 101/* Whether legacy memory+swap accounting is active */
 102static bool do_memsw_account(void)
 103{
 104	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
 105}
 106
 
 
 
 
 
 
 
 
 107#define THRESHOLDS_EVENTS_TARGET 128
 108#define SOFTLIMIT_EVENTS_TARGET 1024
 
 109
 110/*
 111 * Cgroups above their limits are maintained in a RB-Tree, independent of
 112 * their hierarchy representation
 113 */
 114
 115struct mem_cgroup_tree_per_node {
 116	struct rb_root rb_root;
 117	struct rb_node *rb_rightmost;
 118	spinlock_t lock;
 119};
 120
 121struct mem_cgroup_tree {
 122	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 123};
 124
 125static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 126
 127/* for OOM */
 128struct mem_cgroup_eventfd_list {
 129	struct list_head list;
 130	struct eventfd_ctx *eventfd;
 131};
 132
 133/*
 134 * cgroup_event represents events which userspace want to receive.
 135 */
 136struct mem_cgroup_event {
 137	/*
 138	 * memcg which the event belongs to.
 139	 */
 140	struct mem_cgroup *memcg;
 141	/*
 142	 * eventfd to signal userspace about the event.
 143	 */
 144	struct eventfd_ctx *eventfd;
 145	/*
 146	 * Each of these stored in a list by the cgroup.
 147	 */
 148	struct list_head list;
 149	/*
 150	 * register_event() callback will be used to add new userspace
 151	 * waiter for changes related to this event.  Use eventfd_signal()
 152	 * on eventfd to send notification to userspace.
 153	 */
 154	int (*register_event)(struct mem_cgroup *memcg,
 155			      struct eventfd_ctx *eventfd, const char *args);
 156	/*
 157	 * unregister_event() callback will be called when userspace closes
 158	 * the eventfd or on cgroup removing.  This callback must be set,
 159	 * if you want provide notification functionality.
 160	 */
 161	void (*unregister_event)(struct mem_cgroup *memcg,
 162				 struct eventfd_ctx *eventfd);
 163	/*
 164	 * All fields below needed to unregister event when
 165	 * userspace closes eventfd.
 166	 */
 167	poll_table pt;
 168	wait_queue_head_t *wqh;
 169	wait_queue_entry_t wait;
 170	struct work_struct remove;
 171};
 172
 173static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 174static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 175
 176/* Stuffs for move charges at task migration. */
 177/*
 178 * Types of charges to be moved.
 179 */
 180#define MOVE_ANON	0x1U
 181#define MOVE_FILE	0x2U
 182#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 183
 184/* "mc" and its members are protected by cgroup_mutex */
 185static struct move_charge_struct {
 186	spinlock_t	  lock; /* for from, to */
 187	struct mm_struct  *mm;
 188	struct mem_cgroup *from;
 189	struct mem_cgroup *to;
 190	unsigned long flags;
 191	unsigned long precharge;
 192	unsigned long moved_charge;
 193	unsigned long moved_swap;
 194	struct task_struct *moving_task;	/* a task moving charges */
 195	wait_queue_head_t waitq;		/* a waitq for other context */
 196} mc = {
 197	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 198	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 199};
 200
 201/*
 202 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
 203 * limit reclaim to prevent infinite loops, if they ever occur.
 204 */
 205#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 206#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 207
 
 
 
 
 
 
 
 
 208/* for encoding cft->private value on file */
 209enum res_type {
 210	_MEM,
 211	_MEMSWAP,
 
 212	_KMEM,
 213	_TCP,
 214};
 215
 216#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 217#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 218#define MEMFILE_ATTR(val)	((val) & 0xffff)
 219
 220/*
 221 * Iteration constructs for visiting all cgroups (under a tree).  If
 222 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 223 * be used for reference counting.
 224 */
 225#define for_each_mem_cgroup_tree(iter, root)		\
 226	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 227	     iter != NULL;				\
 228	     iter = mem_cgroup_iter(root, iter, NULL))
 229
 230#define for_each_mem_cgroup(iter)			\
 231	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 232	     iter != NULL;				\
 233	     iter = mem_cgroup_iter(NULL, iter, NULL))
 234
 235static inline bool task_is_dying(void)
 236{
 237	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 238		(current->flags & PF_EXITING);
 239}
 240
 241/* Some nice accessors for the vmpressure. */
 242struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 243{
 244	if (!memcg)
 245		memcg = root_mem_cgroup;
 246	return &memcg->vmpressure;
 247}
 248
 249struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
 250{
 251	return container_of(vmpr, struct mem_cgroup, vmpressure);
 252}
 253
 254#define CURRENT_OBJCG_UPDATE_BIT 0
 255#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
 256
 257#ifdef CONFIG_MEMCG_KMEM
 258static DEFINE_SPINLOCK(objcg_lock);
 259
 260bool mem_cgroup_kmem_disabled(void)
 261{
 262	return cgroup_memory_nokmem;
 263}
 264
 265static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
 266				      unsigned int nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267
 268static void obj_cgroup_release(struct percpu_ref *ref)
 269{
 270	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 271	unsigned int nr_bytes;
 272	unsigned int nr_pages;
 273	unsigned long flags;
 274
 275	/*
 276	 * At this point all allocated objects are freed, and
 277	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 278	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 279	 *
 280	 * The following sequence can lead to it:
 281	 * 1) CPU0: objcg == stock->cached_objcg
 282	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 283	 *          PAGE_SIZE bytes are charged
 284	 * 3) CPU1: a process from another memcg is allocating something,
 285	 *          the stock if flushed,
 286	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 287	 * 5) CPU0: we do release this object,
 288	 *          92 bytes are added to stock->nr_bytes
 289	 * 6) CPU0: stock is flushed,
 290	 *          92 bytes are added to objcg->nr_charged_bytes
 291	 *
 292	 * In the result, nr_charged_bytes == PAGE_SIZE.
 293	 * This page will be uncharged in obj_cgroup_release().
 294	 */
 295	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 296	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 297	nr_pages = nr_bytes >> PAGE_SHIFT;
 298
 299	if (nr_pages)
 300		obj_cgroup_uncharge_pages(objcg, nr_pages);
 301
 302	spin_lock_irqsave(&objcg_lock, flags);
 303	list_del(&objcg->list);
 304	spin_unlock_irqrestore(&objcg_lock, flags);
 305
 306	percpu_ref_exit(ref);
 307	kfree_rcu(objcg, rcu);
 308}
 309
 310static struct obj_cgroup *obj_cgroup_alloc(void)
 311{
 312	struct obj_cgroup *objcg;
 313	int ret;
 314
 315	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 316	if (!objcg)
 317		return NULL;
 318
 319	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 320			      GFP_KERNEL);
 321	if (ret) {
 322		kfree(objcg);
 323		return NULL;
 324	}
 325	INIT_LIST_HEAD(&objcg->list);
 326	return objcg;
 327}
 328
 329static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 330				  struct mem_cgroup *parent)
 331{
 332	struct obj_cgroup *objcg, *iter;
 333
 334	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 335
 336	spin_lock_irq(&objcg_lock);
 337
 338	/* 1) Ready to reparent active objcg. */
 339	list_add(&objcg->list, &memcg->objcg_list);
 340	/* 2) Reparent active objcg and already reparented objcgs to parent. */
 341	list_for_each_entry(iter, &memcg->objcg_list, list)
 342		WRITE_ONCE(iter->memcg, parent);
 343	/* 3) Move already reparented objcgs to the parent's list */
 344	list_splice(&memcg->objcg_list, &parent->objcg_list);
 345
 346	spin_unlock_irq(&objcg_lock);
 347
 348	percpu_ref_kill(&objcg->refcnt);
 349}
 350
 351/*
 352 * A lot of the calls to the cache allocation functions are expected to be
 353 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
 354 * conditional to this static branch, we'll have to allow modules that does
 355 * kmem_cache_alloc and the such to see this symbol as well
 356 */
 357DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
 358EXPORT_SYMBOL(memcg_kmem_online_key);
 
 
 359
 360DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
 361EXPORT_SYMBOL(memcg_bpf_enabled_key);
 362#endif
 363
 364/**
 365 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
 366 * @folio: folio of interest
 367 *
 368 * If memcg is bound to the default hierarchy, css of the memcg associated
 369 * with @folio is returned.  The returned css remains associated with @folio
 370 * until it is released.
 371 *
 372 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 373 * is returned.
 374 */
 375struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
 376{
 377	struct mem_cgroup *memcg = folio_memcg(folio);
 
 
 378
 379	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 380		memcg = root_mem_cgroup;
 381
 382	return &memcg->css;
 383}
 384
 385/**
 386 * page_cgroup_ino - return inode number of the memcg a page is charged to
 387 * @page: the page
 388 *
 389 * Look up the closest online ancestor of the memory cgroup @page is charged to
 390 * and return its inode number or 0 if @page is not charged to any cgroup. It
 391 * is safe to call this function without holding a reference to @page.
 392 *
 393 * Note, this function is inherently racy, because there is nothing to prevent
 394 * the cgroup inode from getting torn down and potentially reallocated a moment
 395 * after page_cgroup_ino() returns, so it only should be used by callers that
 396 * do not care (such as procfs interfaces).
 397 */
 398ino_t page_cgroup_ino(struct page *page)
 399{
 400	struct mem_cgroup *memcg;
 401	unsigned long ino = 0;
 402
 403	rcu_read_lock();
 404	/* page_folio() is racy here, but the entire function is racy anyway */
 405	memcg = folio_memcg_check(page_folio(page));
 406
 407	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 408		memcg = parent_mem_cgroup(memcg);
 409	if (memcg)
 410		ino = cgroup_ino(memcg->css.cgroup);
 411	rcu_read_unlock();
 412	return ino;
 413}
 414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 416					 struct mem_cgroup_tree_per_node *mctz,
 417					 unsigned long new_usage_in_excess)
 418{
 419	struct rb_node **p = &mctz->rb_root.rb_node;
 420	struct rb_node *parent = NULL;
 421	struct mem_cgroup_per_node *mz_node;
 422	bool rightmost = true;
 423
 424	if (mz->on_tree)
 425		return;
 426
 427	mz->usage_in_excess = new_usage_in_excess;
 428	if (!mz->usage_in_excess)
 429		return;
 430	while (*p) {
 431		parent = *p;
 432		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 433					tree_node);
 434		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 435			p = &(*p)->rb_left;
 436			rightmost = false;
 437		} else {
 
 
 
 
 
 
 438			p = &(*p)->rb_right;
 439		}
 440	}
 441
 442	if (rightmost)
 443		mctz->rb_rightmost = &mz->tree_node;
 444
 445	rb_link_node(&mz->tree_node, parent, p);
 446	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 447	mz->on_tree = true;
 448}
 449
 450static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 451					 struct mem_cgroup_tree_per_node *mctz)
 452{
 453	if (!mz->on_tree)
 454		return;
 455
 456	if (&mz->tree_node == mctz->rb_rightmost)
 457		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 458
 459	rb_erase(&mz->tree_node, &mctz->rb_root);
 460	mz->on_tree = false;
 461}
 462
 463static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 464				       struct mem_cgroup_tree_per_node *mctz)
 465{
 466	unsigned long flags;
 467
 468	spin_lock_irqsave(&mctz->lock, flags);
 469	__mem_cgroup_remove_exceeded(mz, mctz);
 470	spin_unlock_irqrestore(&mctz->lock, flags);
 471}
 472
 473static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 474{
 475	unsigned long nr_pages = page_counter_read(&memcg->memory);
 476	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 477	unsigned long excess = 0;
 478
 479	if (nr_pages > soft_limit)
 480		excess = nr_pages - soft_limit;
 481
 482	return excess;
 483}
 484
 485static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
 486{
 487	unsigned long excess;
 488	struct mem_cgroup_per_node *mz;
 489	struct mem_cgroup_tree_per_node *mctz;
 490
 491	if (lru_gen_enabled()) {
 492		if (soft_limit_excess(memcg))
 493			lru_gen_soft_reclaim(memcg, nid);
 494		return;
 495	}
 496
 497	mctz = soft_limit_tree.rb_tree_per_node[nid];
 498	if (!mctz)
 499		return;
 500	/*
 501	 * Necessary to update all ancestors when hierarchy is used.
 502	 * because their event counter is not touched.
 503	 */
 504	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 505		mz = memcg->nodeinfo[nid];
 506		excess = soft_limit_excess(memcg);
 507		/*
 508		 * We have to update the tree if mz is on RB-tree or
 509		 * mem is over its softlimit.
 510		 */
 511		if (excess || mz->on_tree) {
 512			unsigned long flags;
 513
 514			spin_lock_irqsave(&mctz->lock, flags);
 515			/* if on-tree, remove it */
 516			if (mz->on_tree)
 517				__mem_cgroup_remove_exceeded(mz, mctz);
 518			/*
 519			 * Insert again. mz->usage_in_excess will be updated.
 520			 * If excess is 0, no tree ops.
 521			 */
 522			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 523			spin_unlock_irqrestore(&mctz->lock, flags);
 524		}
 525	}
 526}
 527
 528static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 529{
 530	struct mem_cgroup_tree_per_node *mctz;
 531	struct mem_cgroup_per_node *mz;
 532	int nid;
 533
 534	for_each_node(nid) {
 535		mz = memcg->nodeinfo[nid];
 536		mctz = soft_limit_tree.rb_tree_per_node[nid];
 537		if (mctz)
 538			mem_cgroup_remove_exceeded(mz, mctz);
 539	}
 540}
 541
 542static struct mem_cgroup_per_node *
 543__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 544{
 545	struct mem_cgroup_per_node *mz;
 546
 547retry:
 548	mz = NULL;
 549	if (!mctz->rb_rightmost)
 550		goto done;		/* Nothing to reclaim from */
 551
 552	mz = rb_entry(mctz->rb_rightmost,
 553		      struct mem_cgroup_per_node, tree_node);
 554	/*
 555	 * Remove the node now but someone else can add it back,
 556	 * we will to add it back at the end of reclaim to its correct
 557	 * position in the tree.
 558	 */
 559	__mem_cgroup_remove_exceeded(mz, mctz);
 560	if (!soft_limit_excess(mz->memcg) ||
 561	    !css_tryget(&mz->memcg->css))
 562		goto retry;
 563done:
 564	return mz;
 565}
 566
 567static struct mem_cgroup_per_node *
 568mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 569{
 570	struct mem_cgroup_per_node *mz;
 571
 572	spin_lock_irq(&mctz->lock);
 573	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 574	spin_unlock_irq(&mctz->lock);
 575	return mz;
 576}
 577
 578/* Subset of vm_event_item to report for memcg event stats */
 579static const unsigned int memcg_vm_event_stat[] = {
 580	PGPGIN,
 581	PGPGOUT,
 582	PGSCAN_KSWAPD,
 583	PGSCAN_DIRECT,
 584	PGSCAN_KHUGEPAGED,
 585	PGSTEAL_KSWAPD,
 586	PGSTEAL_DIRECT,
 587	PGSTEAL_KHUGEPAGED,
 588	PGFAULT,
 589	PGMAJFAULT,
 590	PGREFILL,
 591	PGACTIVATE,
 592	PGDEACTIVATE,
 593	PGLAZYFREE,
 594	PGLAZYFREED,
 595#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
 596	ZSWPIN,
 597	ZSWPOUT,
 598	ZSWPWB,
 599#endif
 600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 601	THP_FAULT_ALLOC,
 602	THP_COLLAPSE_ALLOC,
 603	THP_SWPOUT,
 604	THP_SWPOUT_FALLBACK,
 605#endif
 606};
 607
 608#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
 609static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
 610
 611static void init_memcg_events(void)
 612{
 613	int i;
 614
 615	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
 616		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
 617}
 618
 619static inline int memcg_events_index(enum vm_event_item idx)
 620{
 621	return mem_cgroup_events_index[idx] - 1;
 622}
 623
 624struct memcg_vmstats_percpu {
 625	/* Stats updates since the last flush */
 626	unsigned int			stats_updates;
 627
 628	/* Cached pointers for fast iteration in memcg_rstat_updated() */
 629	struct memcg_vmstats_percpu	*parent;
 630	struct memcg_vmstats		*vmstats;
 631
 632	/* The above should fit a single cacheline for memcg_rstat_updated() */
 633
 634	/* Local (CPU and cgroup) page state & events */
 635	long			state[MEMCG_NR_STAT];
 636	unsigned long		events[NR_MEMCG_EVENTS];
 637
 638	/* Delta calculation for lockless upward propagation */
 639	long			state_prev[MEMCG_NR_STAT];
 640	unsigned long		events_prev[NR_MEMCG_EVENTS];
 641
 642	/* Cgroup1: threshold notifications & softlimit tree updates */
 643	unsigned long		nr_page_events;
 644	unsigned long		targets[MEM_CGROUP_NTARGETS];
 645} ____cacheline_aligned;
 646
 647struct memcg_vmstats {
 648	/* Aggregated (CPU and subtree) page state & events */
 649	long			state[MEMCG_NR_STAT];
 650	unsigned long		events[NR_MEMCG_EVENTS];
 651
 652	/* Non-hierarchical (CPU aggregated) page state & events */
 653	long			state_local[MEMCG_NR_STAT];
 654	unsigned long		events_local[NR_MEMCG_EVENTS];
 655
 656	/* Pending child counts during tree propagation */
 657	long			state_pending[MEMCG_NR_STAT];
 658	unsigned long		events_pending[NR_MEMCG_EVENTS];
 659
 660	/* Stats updates since the last flush */
 661	atomic64_t		stats_updates;
 662};
 663
 664/*
 665 * memcg and lruvec stats flushing
 666 *
 667 * Many codepaths leading to stats update or read are performance sensitive and
 668 * adding stats flushing in such codepaths is not desirable. So, to optimize the
 669 * flushing the kernel does:
 670 *
 671 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
 672 *    rstat update tree grow unbounded.
 673 *
 674 * 2) Flush the stats synchronously on reader side only when there are more than
 675 *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
 676 *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
 677 *    only for 2 seconds due to (1).
 678 */
 679static void flush_memcg_stats_dwork(struct work_struct *w);
 680static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
 681static u64 flush_last_time;
 682
 683#define FLUSH_TIME (2UL*HZ)
 684
 685/*
 686 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
 687 * not rely on this as part of an acquired spinlock_t lock. These functions are
 688 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
 689 * is sufficient.
 690 */
 691static void memcg_stats_lock(void)
 692{
 693	preempt_disable_nested();
 694	VM_WARN_ON_IRQS_ENABLED();
 695}
 696
 697static void __memcg_stats_lock(void)
 698{
 699	preempt_disable_nested();
 700}
 701
 702static void memcg_stats_unlock(void)
 703{
 704	preempt_enable_nested();
 705}
 706
 707
 708static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
 709{
 710	return atomic64_read(&vmstats->stats_updates) >
 711		MEMCG_CHARGE_BATCH * num_online_cpus();
 712}
 713
 714static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
 715{
 716	struct memcg_vmstats_percpu *statc;
 717	int cpu = smp_processor_id();
 718
 719	if (!val)
 720		return;
 721
 722	cgroup_rstat_updated(memcg->css.cgroup, cpu);
 723	statc = this_cpu_ptr(memcg->vmstats_percpu);
 724	for (; statc; statc = statc->parent) {
 725		statc->stats_updates += abs(val);
 726		if (statc->stats_updates < MEMCG_CHARGE_BATCH)
 727			continue;
 728
 729		/*
 730		 * If @memcg is already flush-able, increasing stats_updates is
 731		 * redundant. Avoid the overhead of the atomic update.
 732		 */
 733		if (!memcg_vmstats_needs_flush(statc->vmstats))
 734			atomic64_add(statc->stats_updates,
 735				     &statc->vmstats->stats_updates);
 736		statc->stats_updates = 0;
 737	}
 738}
 739
 740static void do_flush_stats(struct mem_cgroup *memcg)
 741{
 742	if (mem_cgroup_is_root(memcg))
 743		WRITE_ONCE(flush_last_time, jiffies_64);
 744
 745	cgroup_rstat_flush(memcg->css.cgroup);
 746}
 747
 748/*
 749 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
 750 * @memcg: root of the subtree to flush
 751 *
 752 * Flushing is serialized by the underlying global rstat lock. There is also a
 753 * minimum amount of work to be done even if there are no stat updates to flush.
 754 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
 755 * avoids unnecessary work and contention on the underlying lock.
 756 */
 757void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
 758{
 759	if (mem_cgroup_disabled())
 760		return;
 761
 762	if (!memcg)
 763		memcg = root_mem_cgroup;
 764
 765	if (memcg_vmstats_needs_flush(memcg->vmstats))
 766		do_flush_stats(memcg);
 767}
 768
 769void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
 770{
 771	/* Only flush if the periodic flusher is one full cycle late */
 772	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
 773		mem_cgroup_flush_stats(memcg);
 774}
 775
 776static void flush_memcg_stats_dwork(struct work_struct *w)
 777{
 778	/*
 779	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
 780	 * in latency-sensitive paths is as cheap as possible.
 781	 */
 782	do_flush_stats(root_mem_cgroup);
 783	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
 784}
 785
 786unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 787{
 788	long x = READ_ONCE(memcg->vmstats->state[idx]);
 789#ifdef CONFIG_SMP
 790	if (x < 0)
 791		x = 0;
 792#endif
 793	return x;
 794}
 795
 796static int memcg_page_state_unit(int item);
 797
 798/*
 799 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
 800 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
 801 */
 802static int memcg_state_val_in_pages(int idx, int val)
 803{
 804	int unit = memcg_page_state_unit(idx);
 805
 806	if (!val || unit == PAGE_SIZE)
 807		return val;
 808	else
 809		return max(val * unit / PAGE_SIZE, 1UL);
 810}
 811
 812/**
 813 * __mod_memcg_state - update cgroup memory statistics
 814 * @memcg: the memory cgroup
 815 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 816 * @val: delta to add to the counter, can be negative
 817 */
 818void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 819{
 820	if (mem_cgroup_disabled())
 821		return;
 822
 823	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
 824	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
 825}
 826
 827/* idx can be of type enum memcg_stat_item or node_stat_item. */
 828static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
 829{
 830	long x = READ_ONCE(memcg->vmstats->state_local[idx]);
 831
 832#ifdef CONFIG_SMP
 833	if (x < 0)
 834		x = 0;
 835#endif
 836	return x;
 837}
 838
 839void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 840			      int val)
 841{
 842	struct mem_cgroup_per_node *pn;
 843	struct mem_cgroup *memcg;
 844
 845	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 846	memcg = pn->memcg;
 847
 848	/*
 849	 * The caller from rmap relies on disabled preemption because they never
 850	 * update their counter from in-interrupt context. For these two
 851	 * counters we check that the update is never performed from an
 852	 * interrupt context while other caller need to have disabled interrupt.
 853	 */
 854	__memcg_stats_lock();
 855	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
 856		switch (idx) {
 857		case NR_ANON_MAPPED:
 858		case NR_FILE_MAPPED:
 859		case NR_ANON_THPS:
 860		case NR_SHMEM_PMDMAPPED:
 861		case NR_FILE_PMDMAPPED:
 862			WARN_ON_ONCE(!in_task());
 863			break;
 864		default:
 865			VM_WARN_ON_IRQS_ENABLED();
 866		}
 867	}
 868
 869	/* Update memcg */
 870	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
 871
 872	/* Update lruvec */
 873	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
 874
 875	memcg_rstat_updated(memcg, memcg_state_val_in_pages(idx, val));
 876	memcg_stats_unlock();
 877}
 878
 879/**
 880 * __mod_lruvec_state - update lruvec memory statistics
 881 * @lruvec: the lruvec
 882 * @idx: the stat item
 883 * @val: delta to add to the counter, can be negative
 884 *
 885 * The lruvec is the intersection of the NUMA node and a cgroup. This
 886 * function updates the all three counters that are affected by a
 887 * change of state at this level: per-node, per-cgroup, per-lruvec.
 888 */
 889void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 890			int val)
 891{
 892	/* Update node */
 893	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 894
 895	/* Update memcg and lruvec */
 896	if (!mem_cgroup_disabled())
 897		__mod_memcg_lruvec_state(lruvec, idx, val);
 898}
 899
 900void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
 901			     int val)
 902{
 903	struct mem_cgroup *memcg;
 904	pg_data_t *pgdat = folio_pgdat(folio);
 905	struct lruvec *lruvec;
 906
 907	rcu_read_lock();
 908	memcg = folio_memcg(folio);
 909	/* Untracked pages have no memcg, no lruvec. Update only the node */
 910	if (!memcg) {
 911		rcu_read_unlock();
 912		__mod_node_page_state(pgdat, idx, val);
 913		return;
 914	}
 915
 916	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 917	__mod_lruvec_state(lruvec, idx, val);
 918	rcu_read_unlock();
 919}
 920EXPORT_SYMBOL(__lruvec_stat_mod_folio);
 921
 922void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
 
 923{
 924	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 925	struct mem_cgroup *memcg;
 926	struct lruvec *lruvec;
 927
 928	rcu_read_lock();
 929	memcg = mem_cgroup_from_slab_obj(p);
 930
 931	/*
 932	 * Untracked pages have no memcg, no lruvec. Update only the
 933	 * node. If we reparent the slab objects to the root memcg,
 934	 * when we free the slab object, we need to update the per-memcg
 935	 * vmstats to keep it correct for the root memcg.
 936	 */
 937	if (!memcg) {
 938		__mod_node_page_state(pgdat, idx, val);
 939	} else {
 940		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 941		__mod_lruvec_state(lruvec, idx, val);
 942	}
 943	rcu_read_unlock();
 944}
 945
 946/**
 947 * __count_memcg_events - account VM events in a cgroup
 948 * @memcg: the memory cgroup
 949 * @idx: the event item
 950 * @count: the number of events that occurred
 951 */
 952void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 953			  unsigned long count)
 954{
 955	int index = memcg_events_index(idx);
 
 956
 957	if (mem_cgroup_disabled() || index < 0)
 958		return;
 959
 960	memcg_stats_lock();
 961	__this_cpu_add(memcg->vmstats_percpu->events[index], count);
 962	memcg_rstat_updated(memcg, count);
 963	memcg_stats_unlock();
 964}
 965
 966static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 967{
 968	int index = memcg_events_index(event);
 969
 970	if (index < 0)
 971		return 0;
 972	return READ_ONCE(memcg->vmstats->events[index]);
 973}
 974
 975static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 976{
 977	int index = memcg_events_index(event);
 978
 979	if (index < 0)
 980		return 0;
 981
 982	return READ_ONCE(memcg->vmstats->events_local[index]);
 983}
 984
 985static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 986					 int nr_pages)
 987{
 988	/* pagein of a big page is an event. So, ignore page size */
 989	if (nr_pages > 0)
 990		__count_memcg_events(memcg, PGPGIN, 1);
 991	else {
 992		__count_memcg_events(memcg, PGPGOUT, 1);
 993		nr_pages = -nr_pages; /* for event */
 994	}
 995
 996	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 997}
 998
 999static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1000				       enum mem_cgroup_events_target target)
1001{
1002	unsigned long val, next;
1003
1004	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
1005	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
1006	/* from time_after() in jiffies.h */
1007	if ((long)(next - val) < 0) {
1008		switch (target) {
1009		case MEM_CGROUP_TARGET_THRESH:
1010			next = val + THRESHOLDS_EVENTS_TARGET;
1011			break;
1012		case MEM_CGROUP_TARGET_SOFTLIMIT:
1013			next = val + SOFTLIMIT_EVENTS_TARGET;
1014			break;
 
 
 
1015		default:
1016			break;
1017		}
1018		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
1019		return true;
1020	}
1021	return false;
1022}
1023
1024/*
1025 * Check events in order.
1026 *
1027 */
1028static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1029{
1030	if (IS_ENABLED(CONFIG_PREEMPT_RT))
1031		return;
1032
1033	/* threshold event is triggered in finer grain than soft limit */
1034	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1035						MEM_CGROUP_TARGET_THRESH))) {
1036		bool do_softlimit;
 
1037
1038		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1039						MEM_CGROUP_TARGET_SOFTLIMIT);
 
 
 
 
1040		mem_cgroup_threshold(memcg);
1041		if (unlikely(do_softlimit))
1042			mem_cgroup_update_tree(memcg, nid);
 
 
 
 
1043	}
1044}
1045
1046struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1047{
1048	/*
1049	 * mm_update_next_owner() may clear mm->owner to NULL
1050	 * if it races with swapoff, page migration, etc.
1051	 * So this can be called with p == NULL.
1052	 */
1053	if (unlikely(!p))
1054		return NULL;
1055
1056	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1057}
1058EXPORT_SYMBOL(mem_cgroup_from_task);
1059
1060static __always_inline struct mem_cgroup *active_memcg(void)
1061{
1062	if (!in_task())
1063		return this_cpu_read(int_active_memcg);
1064	else
1065		return current->active_memcg;
1066}
1067
1068/**
1069 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1070 * @mm: mm from which memcg should be extracted. It can be NULL.
1071 *
1072 * Obtain a reference on mm->memcg and returns it if successful. If mm
1073 * is NULL, then the memcg is chosen as follows:
1074 * 1) The active memcg, if set.
1075 * 2) current->mm->memcg, if available
1076 * 3) root memcg
1077 * If mem_cgroup is disabled, NULL is returned.
1078 */
1079struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1080{
1081	struct mem_cgroup *memcg;
1082
1083	if (mem_cgroup_disabled())
1084		return NULL;
1085
1086	/*
1087	 * Page cache insertions can happen without an
1088	 * actual mm context, e.g. during disk probing
1089	 * on boot, loopback IO, acct() writes etc.
1090	 *
1091	 * No need to css_get on root memcg as the reference
1092	 * counting is disabled on the root level in the
1093	 * cgroup core. See CSS_NO_REF.
1094	 */
1095	if (unlikely(!mm)) {
1096		memcg = active_memcg();
1097		if (unlikely(memcg)) {
1098			/* remote memcg must hold a ref */
1099			css_get(&memcg->css);
1100			return memcg;
1101		}
1102		mm = current->mm;
1103		if (unlikely(!mm))
1104			return root_mem_cgroup;
1105	}
1106
1107	rcu_read_lock();
1108	do {
1109		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1110		if (unlikely(!memcg))
 
 
 
 
1111			memcg = root_mem_cgroup;
1112	} while (!css_tryget(&memcg->css));
1113	rcu_read_unlock();
1114	return memcg;
1115}
1116EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1117
1118/**
1119 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1120 */
1121struct mem_cgroup *get_mem_cgroup_from_current(void)
1122{
1123	struct mem_cgroup *memcg;
1124
1125	if (mem_cgroup_disabled())
1126		return NULL;
1127
1128again:
1129	rcu_read_lock();
1130	memcg = mem_cgroup_from_task(current);
1131	if (!css_tryget(&memcg->css)) {
1132		rcu_read_unlock();
1133		goto again;
1134	}
1135	rcu_read_unlock();
1136	return memcg;
1137}
1138
1139/**
1140 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1141 * @root: hierarchy root
1142 * @prev: previously returned memcg, NULL on first invocation
1143 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1144 *
1145 * Returns references to children of the hierarchy below @root, or
1146 * @root itself, or %NULL after a full round-trip.
1147 *
1148 * Caller must pass the return value in @prev on subsequent
1149 * invocations for reference counting, or use mem_cgroup_iter_break()
1150 * to cancel a hierarchy walk before the round-trip is complete.
1151 *
1152 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1153 * in the hierarchy among all concurrent reclaimers operating on the
1154 * same node.
1155 */
1156struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1157				   struct mem_cgroup *prev,
1158				   struct mem_cgroup_reclaim_cookie *reclaim)
1159{
1160	struct mem_cgroup_reclaim_iter *iter;
1161	struct cgroup_subsys_state *css = NULL;
1162	struct mem_cgroup *memcg = NULL;
1163	struct mem_cgroup *pos = NULL;
1164
1165	if (mem_cgroup_disabled())
1166		return NULL;
1167
1168	if (!root)
1169		root = root_mem_cgroup;
1170
 
 
 
 
 
 
 
 
 
1171	rcu_read_lock();
1172
1173	if (reclaim) {
1174		struct mem_cgroup_per_node *mz;
1175
1176		mz = root->nodeinfo[reclaim->pgdat->node_id];
1177		iter = &mz->iter;
1178
1179		/*
1180		 * On start, join the current reclaim iteration cycle.
1181		 * Exit when a concurrent walker completes it.
1182		 */
1183		if (!prev)
1184			reclaim->generation = iter->generation;
1185		else if (reclaim->generation != iter->generation)
1186			goto out_unlock;
1187
1188		while (1) {
1189			pos = READ_ONCE(iter->position);
1190			if (!pos || css_tryget(&pos->css))
1191				break;
1192			/*
1193			 * css reference reached zero, so iter->position will
1194			 * be cleared by ->css_released. However, we should not
1195			 * rely on this happening soon, because ->css_released
1196			 * is called from a work queue, and by busy-waiting we
1197			 * might block it. So we clear iter->position right
1198			 * away.
1199			 */
1200			(void)cmpxchg(&iter->position, pos, NULL);
1201		}
1202	} else if (prev) {
1203		pos = prev;
1204	}
1205
1206	if (pos)
1207		css = &pos->css;
1208
1209	for (;;) {
1210		css = css_next_descendant_pre(css, &root->css);
1211		if (!css) {
1212			/*
1213			 * Reclaimers share the hierarchy walk, and a
1214			 * new one might jump in right at the end of
1215			 * the hierarchy - make sure they see at least
1216			 * one group and restart from the beginning.
1217			 */
1218			if (!prev)
1219				continue;
1220			break;
1221		}
1222
1223		/*
1224		 * Verify the css and acquire a reference.  The root
1225		 * is provided by the caller, so we know it's alive
1226		 * and kicking, and don't take an extra reference.
1227		 */
1228		if (css == &root->css || css_tryget(css)) {
1229			memcg = mem_cgroup_from_css(css);
 
1230			break;
1231		}
 
 
 
 
1232	}
1233
1234	if (reclaim) {
1235		/*
1236		 * The position could have already been updated by a competing
1237		 * thread, so check that the value hasn't changed since we read
1238		 * it to avoid reclaiming from the same cgroup twice.
1239		 */
1240		(void)cmpxchg(&iter->position, pos, memcg);
1241
1242		if (pos)
1243			css_put(&pos->css);
1244
1245		if (!memcg)
1246			iter->generation++;
 
 
1247	}
1248
1249out_unlock:
1250	rcu_read_unlock();
 
1251	if (prev && prev != root)
1252		css_put(&prev->css);
1253
1254	return memcg;
1255}
1256
1257/**
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261 */
1262void mem_cgroup_iter_break(struct mem_cgroup *root,
1263			   struct mem_cgroup *prev)
1264{
1265	if (!root)
1266		root = root_mem_cgroup;
1267	if (prev && prev != root)
1268		css_put(&prev->css);
1269}
1270
1271static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1272					struct mem_cgroup *dead_memcg)
1273{
 
1274	struct mem_cgroup_reclaim_iter *iter;
1275	struct mem_cgroup_per_node *mz;
1276	int nid;
 
1277
1278	for_each_node(nid) {
1279		mz = from->nodeinfo[nid];
1280		iter = &mz->iter;
1281		cmpxchg(&iter->position, dead_memcg, NULL);
 
 
 
 
 
1282	}
1283}
1284
1285static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1286{
1287	struct mem_cgroup *memcg = dead_memcg;
1288	struct mem_cgroup *last;
 
 
 
 
 
1289
1290	do {
1291		__invalidate_reclaim_iterators(memcg, dead_memcg);
1292		last = memcg;
1293	} while ((memcg = parent_mem_cgroup(memcg)));
1294
1295	/*
1296	 * When cgroup1 non-hierarchy mode is used,
1297	 * parent_mem_cgroup() does not walk all the way up to the
1298	 * cgroup root (root_mem_cgroup). So we have to handle
1299	 * dead_memcg from cgroup root separately.
1300	 */
1301	if (!mem_cgroup_is_root(last))
1302		__invalidate_reclaim_iterators(root_mem_cgroup,
1303						dead_memcg);
1304}
1305
1306/**
1307 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1308 * @memcg: hierarchy root
1309 * @fn: function to call for each task
1310 * @arg: argument passed to @fn
1311 *
1312 * This function iterates over tasks attached to @memcg or to any of its
1313 * descendants and calls @fn for each task. If @fn returns a non-zero
1314 * value, the function breaks the iteration loop. Otherwise, it will iterate
1315 * over all tasks and return 0.
1316 *
1317 * This function must not be called for the root memory cgroup.
1318 */
1319void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1320			   int (*fn)(struct task_struct *, void *), void *arg)
1321{
1322	struct mem_cgroup *iter;
1323	int ret = 0;
1324
1325	BUG_ON(mem_cgroup_is_root(memcg));
1326
1327	for_each_mem_cgroup_tree(iter, memcg) {
1328		struct css_task_iter it;
1329		struct task_struct *task;
1330
1331		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1332		while (!ret && (task = css_task_iter_next(&it)))
1333			ret = fn(task, arg);
1334		css_task_iter_end(&it);
1335		if (ret) {
1336			mem_cgroup_iter_break(memcg, iter);
1337			break;
1338		}
1339	}
 
1340}
1341
1342#ifdef CONFIG_DEBUG_VM
1343void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1344{
1345	struct mem_cgroup *memcg;
1346
1347	if (mem_cgroup_disabled())
1348		return;
1349
1350	memcg = folio_memcg(folio);
1351
1352	if (!memcg)
1353		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1354	else
1355		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1356}
1357#endif
1358
1359/**
1360 * folio_lruvec_lock - Lock the lruvec for a folio.
1361 * @folio: Pointer to the folio.
1362 *
1363 * These functions are safe to use under any of the following conditions:
1364 * - folio locked
1365 * - folio_test_lru false
1366 * - folio_memcg_lock()
1367 * - folio frozen (refcount of 0)
1368 *
1369 * Return: The lruvec this folio is on with its lock held.
 
 
1370 */
1371struct lruvec *folio_lruvec_lock(struct folio *folio)
1372{
1373	struct lruvec *lruvec = folio_lruvec(folio);
 
 
1374
1375	spin_lock(&lruvec->lru_lock);
1376	lruvec_memcg_debug(lruvec, folio);
 
 
1377
1378	return lruvec;
1379}
1380
1381/**
1382 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1383 * @folio: Pointer to the folio.
1384 *
1385 * These functions are safe to use under any of the following conditions:
1386 * - folio locked
1387 * - folio_test_lru false
1388 * - folio_memcg_lock()
1389 * - folio frozen (refcount of 0)
1390 *
1391 * Return: The lruvec this folio is on with its lock held and interrupts
1392 * disabled.
1393 */
1394struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1395{
1396	struct lruvec *lruvec = folio_lruvec(folio);
1397
1398	spin_lock_irq(&lruvec->lru_lock);
1399	lruvec_memcg_debug(lruvec, folio);
1400
1401	return lruvec;
1402}
1403
1404/**
1405 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1406 * @folio: Pointer to the folio.
1407 * @flags: Pointer to irqsave flags.
1408 *
1409 * These functions are safe to use under any of the following conditions:
1410 * - folio locked
1411 * - folio_test_lru false
1412 * - folio_memcg_lock()
1413 * - folio frozen (refcount of 0)
1414 *
1415 * Return: The lruvec this folio is on with its lock held and interrupts
1416 * disabled.
1417 */
1418struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1419		unsigned long *flags)
1420{
1421	struct lruvec *lruvec = folio_lruvec(folio);
1422
1423	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1424	lruvec_memcg_debug(lruvec, folio);
1425
 
 
 
 
 
 
 
 
 
 
1426	return lruvec;
1427}
1428
1429/**
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @zid: zone id of the accounted pages
1434 * @nr_pages: positive when adding or negative when removing
1435 *
1436 * This function must be called under lru_lock, just before a page is added
1437 * to or just after a page is removed from an lru list.
 
1438 */
1439void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1440				int zid, int nr_pages)
1441{
1442	struct mem_cgroup_per_node *mz;
1443	unsigned long *lru_size;
1444	long size;
1445
1446	if (mem_cgroup_disabled())
1447		return;
1448
1449	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1450	lru_size = &mz->lru_zone_size[zid][lru];
1451
1452	if (nr_pages < 0)
1453		*lru_size += nr_pages;
1454
1455	size = *lru_size;
1456	if (WARN_ONCE(size < 0,
1457		"%s(%p, %d, %d): lru_size %ld\n",
1458		__func__, lruvec, lru, nr_pages, size)) {
1459		VM_BUG_ON(1);
1460		*lru_size = 0;
1461	}
1462
1463	if (nr_pages > 0)
1464		*lru_size += nr_pages;
1465}
1466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467/**
1468 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1469 * @memcg: the memory cgroup
1470 *
1471 * Returns the maximum amount of memory @mem can be charged with, in
1472 * pages.
1473 */
1474static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1475{
1476	unsigned long margin = 0;
1477	unsigned long count;
1478	unsigned long limit;
1479
1480	count = page_counter_read(&memcg->memory);
1481	limit = READ_ONCE(memcg->memory.max);
1482	if (count < limit)
1483		margin = limit - count;
1484
1485	if (do_memsw_account()) {
1486		count = page_counter_read(&memcg->memsw);
1487		limit = READ_ONCE(memcg->memsw.max);
1488		if (count < limit)
1489			margin = min(margin, limit - count);
1490		else
1491			margin = 0;
1492	}
1493
1494	return margin;
1495}
1496
1497/*
1498 * A routine for checking "mem" is under move_account() or not.
1499 *
1500 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1501 * moving cgroups. This is for waiting at high-memory pressure
1502 * caused by "move".
1503 */
1504static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1505{
1506	struct mem_cgroup *from;
1507	struct mem_cgroup *to;
1508	bool ret = false;
1509	/*
1510	 * Unlike task_move routines, we access mc.to, mc.from not under
1511	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1512	 */
1513	spin_lock(&mc.lock);
1514	from = mc.from;
1515	to = mc.to;
1516	if (!from)
1517		goto unlock;
1518
1519	ret = mem_cgroup_is_descendant(from, memcg) ||
1520		mem_cgroup_is_descendant(to, memcg);
1521unlock:
1522	spin_unlock(&mc.lock);
1523	return ret;
1524}
1525
1526static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1527{
1528	if (mc.moving_task && current != mc.moving_task) {
1529		if (mem_cgroup_under_move(memcg)) {
1530			DEFINE_WAIT(wait);
1531			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1532			/* moving charge context might have finished. */
1533			if (mc.moving_task)
1534				schedule();
1535			finish_wait(&mc.waitq, &wait);
1536			return true;
1537		}
1538	}
1539	return false;
1540}
1541
1542struct memory_stat {
1543	const char *name;
1544	unsigned int idx;
 
 
 
 
 
 
1545};
1546
1547static const struct memory_stat memory_stats[] = {
1548	{ "anon",			NR_ANON_MAPPED			},
1549	{ "file",			NR_FILE_PAGES			},
1550	{ "kernel",			MEMCG_KMEM			},
1551	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1552	{ "pagetables",			NR_PAGETABLE			},
1553	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1554	{ "percpu",			MEMCG_PERCPU_B			},
1555	{ "sock",			MEMCG_SOCK			},
1556	{ "vmalloc",			MEMCG_VMALLOC			},
1557	{ "shmem",			NR_SHMEM			},
1558#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1559	{ "zswap",			MEMCG_ZSWAP_B			},
1560	{ "zswapped",			MEMCG_ZSWAPPED			},
1561#endif
1562	{ "file_mapped",		NR_FILE_MAPPED			},
1563	{ "file_dirty",			NR_FILE_DIRTY			},
1564	{ "file_writeback",		NR_WRITEBACK			},
1565#ifdef CONFIG_SWAP
1566	{ "swapcached",			NR_SWAPCACHE			},
1567#endif
1568#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1569	{ "anon_thp",			NR_ANON_THPS			},
1570	{ "file_thp",			NR_FILE_THPS			},
1571	{ "shmem_thp",			NR_SHMEM_THPS			},
1572#endif
1573	{ "inactive_anon",		NR_INACTIVE_ANON		},
1574	{ "active_anon",		NR_ACTIVE_ANON			},
1575	{ "inactive_file",		NR_INACTIVE_FILE		},
1576	{ "active_file",		NR_ACTIVE_FILE			},
1577	{ "unevictable",		NR_UNEVICTABLE			},
1578	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1579	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1580
1581	/* The memory events */
1582	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1583	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1584	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1585	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1586	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1587	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1588	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1589};
1590
1591/* The actual unit of the state item, not the same as the output unit */
1592static int memcg_page_state_unit(int item)
1593{
1594	switch (item) {
1595	case MEMCG_PERCPU_B:
1596	case MEMCG_ZSWAP_B:
1597	case NR_SLAB_RECLAIMABLE_B:
1598	case NR_SLAB_UNRECLAIMABLE_B:
1599		return 1;
1600	case NR_KERNEL_STACK_KB:
1601		return SZ_1K;
1602	default:
1603		return PAGE_SIZE;
1604	}
1605}
1606
1607/* Translate stat items to the correct unit for memory.stat output */
1608static int memcg_page_state_output_unit(int item)
1609{
1610	/*
1611	 * Workingset state is actually in pages, but we export it to userspace
1612	 * as a scalar count of events, so special case it here.
1613	 */
1614	switch (item) {
1615	case WORKINGSET_REFAULT_ANON:
1616	case WORKINGSET_REFAULT_FILE:
1617	case WORKINGSET_ACTIVATE_ANON:
1618	case WORKINGSET_ACTIVATE_FILE:
1619	case WORKINGSET_RESTORE_ANON:
1620	case WORKINGSET_RESTORE_FILE:
1621	case WORKINGSET_NODERECLAIM:
1622		return 1;
1623	default:
1624		return memcg_page_state_unit(item);
1625	}
1626}
1627
1628static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1629						    int item)
1630{
1631	return memcg_page_state(memcg, item) *
1632		memcg_page_state_output_unit(item);
1633}
1634
1635static inline unsigned long memcg_page_state_local_output(
1636		struct mem_cgroup *memcg, int item)
1637{
1638	return memcg_page_state_local(memcg, item) *
1639		memcg_page_state_output_unit(item);
1640}
1641
1642static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1643{
1644	int i;
1645
1646	/*
1647	 * Provide statistics on the state of the memory subsystem as
1648	 * well as cumulative event counters that show past behavior.
1649	 *
1650	 * This list is ordered following a combination of these gradients:
1651	 * 1) generic big picture -> specifics and details
1652	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1653	 *
1654	 * Current memory state:
1655	 */
1656	mem_cgroup_flush_stats(memcg);
1657
1658	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1659		u64 size;
1660
1661		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1662		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1663
1664		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1665			size += memcg_page_state_output(memcg,
1666							NR_SLAB_RECLAIMABLE_B);
1667			seq_buf_printf(s, "slab %llu\n", size);
1668		}
1669	}
1670
1671	/* Accumulated memory events */
1672	seq_buf_printf(s, "pgscan %lu\n",
1673		       memcg_events(memcg, PGSCAN_KSWAPD) +
1674		       memcg_events(memcg, PGSCAN_DIRECT) +
1675		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1676	seq_buf_printf(s, "pgsteal %lu\n",
1677		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1678		       memcg_events(memcg, PGSTEAL_DIRECT) +
1679		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1680
1681	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1682		if (memcg_vm_event_stat[i] == PGPGIN ||
1683		    memcg_vm_event_stat[i] == PGPGOUT)
1684			continue;
1685
1686		seq_buf_printf(s, "%s %lu\n",
1687			       vm_event_name(memcg_vm_event_stat[i]),
1688			       memcg_events(memcg, memcg_vm_event_stat[i]));
1689	}
1690
1691	/* The above should easily fit into one page */
1692	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1693}
1694
1695static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1696
1697static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1698{
1699	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1700		memcg_stat_format(memcg, s);
1701	else
1702		memcg1_stat_format(memcg, s);
1703	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1704}
1705
1706/**
1707 * mem_cgroup_print_oom_context: Print OOM information relevant to
1708 * memory controller.
1709 * @memcg: The memory cgroup that went over limit
1710 * @p: Task that is going to be killed
1711 *
1712 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1713 * enabled
1714 */
1715void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1716{
 
 
 
1717	rcu_read_lock();
1718
1719	if (memcg) {
1720		pr_cont(",oom_memcg=");
1721		pr_cont_cgroup_path(memcg->css.cgroup);
1722	} else
1723		pr_cont(",global_oom");
1724	if (p) {
1725		pr_cont(",task_memcg=");
1726		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
 
 
 
1727	}
1728	rcu_read_unlock();
1729}
1730
1731/**
1732 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1733 * memory controller.
1734 * @memcg: The memory cgroup that went over limit
1735 */
1736void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1737{
1738	/* Use static buffer, for the caller is holding oom_lock. */
1739	static char buf[PAGE_SIZE];
1740	struct seq_buf s;
1741
1742	lockdep_assert_held(&oom_lock);
1743
1744	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1745		K((u64)page_counter_read(&memcg->memory)),
1746		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1747	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1748		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1749			K((u64)page_counter_read(&memcg->swap)),
1750			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1751	else {
1752		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1753			K((u64)page_counter_read(&memcg->memsw)),
1754			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1755		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1756			K((u64)page_counter_read(&memcg->kmem)),
1757			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
1758	}
1759
1760	pr_info("Memory cgroup stats for ");
1761	pr_cont_cgroup_path(memcg->css.cgroup);
1762	pr_cont(":");
1763	seq_buf_init(&s, buf, sizeof(buf));
1764	memory_stat_format(memcg, &s);
1765	seq_buf_do_printk(&s, KERN_INFO);
1766}
1767
1768/*
1769 * Return the memory (and swap, if configured) limit for a memcg.
1770 */
1771unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1772{
1773	unsigned long max = READ_ONCE(memcg->memory.max);
1774
1775	if (do_memsw_account()) {
1776		if (mem_cgroup_swappiness(memcg)) {
1777			/* Calculate swap excess capacity from memsw limit */
1778			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1779
1780			max += min(swap, (unsigned long)total_swap_pages);
1781		}
1782	} else {
1783		if (mem_cgroup_swappiness(memcg))
1784			max += min(READ_ONCE(memcg->swap.max),
1785				   (unsigned long)total_swap_pages);
1786	}
1787	return max;
1788}
1789
1790unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1791{
1792	return page_counter_read(&memcg->memory);
1793}
1794
1795static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1796				     int order)
1797{
1798	struct oom_control oc = {
1799		.zonelist = NULL,
1800		.nodemask = NULL,
1801		.memcg = memcg,
1802		.gfp_mask = gfp_mask,
1803		.order = order,
1804	};
1805	bool ret = true;
1806
1807	if (mutex_lock_killable(&oom_lock))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809
1810	if (mem_cgroup_margin(memcg) >= (1 << order))
1811		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812
 
1813	/*
1814	 * A few threads which were not waiting at mutex_lock_killable() can
1815	 * fail to bail out. Therefore, check again after holding oom_lock.
 
1816	 */
1817	ret = task_is_dying() || out_of_memory(&oc);
 
1818
1819unlock:
1820	mutex_unlock(&oom_lock);
1821	return ret;
 
 
 
 
1822}
 
1823
1824static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1825				   pg_data_t *pgdat,
1826				   gfp_t gfp_mask,
1827				   unsigned long *total_scanned)
1828{
1829	struct mem_cgroup *victim = NULL;
1830	int total = 0;
1831	int loop = 0;
1832	unsigned long excess;
1833	unsigned long nr_scanned;
1834	struct mem_cgroup_reclaim_cookie reclaim = {
1835		.pgdat = pgdat,
 
1836	};
1837
1838	excess = soft_limit_excess(root_memcg);
1839
1840	while (1) {
1841		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1842		if (!victim) {
1843			loop++;
1844			if (loop >= 2) {
1845				/*
1846				 * If we have not been able to reclaim
1847				 * anything, it might because there are
1848				 * no reclaimable pages under this hierarchy
1849				 */
1850				if (!total)
1851					break;
1852				/*
1853				 * We want to do more targeted reclaim.
1854				 * excess >> 2 is not to excessive so as to
1855				 * reclaim too much, nor too less that we keep
1856				 * coming back to reclaim from this cgroup
1857				 */
1858				if (total >= (excess >> 2) ||
1859					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1860					break;
1861			}
1862			continue;
1863		}
1864		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1865					pgdat, &nr_scanned);
1866		*total_scanned += nr_scanned;
1867		if (!soft_limit_excess(root_memcg))
1868			break;
1869	}
1870	mem_cgroup_iter_break(root_memcg, victim);
1871	return total;
1872}
1873
1874#ifdef CONFIG_LOCKDEP
1875static struct lockdep_map memcg_oom_lock_dep_map = {
1876	.name = "memcg_oom_lock",
1877};
1878#endif
1879
1880static DEFINE_SPINLOCK(memcg_oom_lock);
1881
1882/*
1883 * Check OOM-Killer is already running under our hierarchy.
1884 * If someone is running, return false.
1885 */
1886static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1887{
1888	struct mem_cgroup *iter, *failed = NULL;
1889
1890	spin_lock(&memcg_oom_lock);
1891
1892	for_each_mem_cgroup_tree(iter, memcg) {
1893		if (iter->oom_lock) {
1894			/*
1895			 * this subtree of our hierarchy is already locked
1896			 * so we cannot give a lock.
1897			 */
1898			failed = iter;
1899			mem_cgroup_iter_break(memcg, iter);
1900			break;
1901		} else
1902			iter->oom_lock = true;
1903	}
1904
1905	if (failed) {
1906		/*
1907		 * OK, we failed to lock the whole subtree so we have
1908		 * to clean up what we set up to the failing subtree
1909		 */
1910		for_each_mem_cgroup_tree(iter, memcg) {
1911			if (iter == failed) {
1912				mem_cgroup_iter_break(memcg, iter);
1913				break;
1914			}
1915			iter->oom_lock = false;
1916		}
1917	} else
1918		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1919
1920	spin_unlock(&memcg_oom_lock);
1921
1922	return !failed;
1923}
1924
1925static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1926{
1927	struct mem_cgroup *iter;
1928
1929	spin_lock(&memcg_oom_lock);
1930	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1931	for_each_mem_cgroup_tree(iter, memcg)
1932		iter->oom_lock = false;
1933	spin_unlock(&memcg_oom_lock);
1934}
1935
1936static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1937{
1938	struct mem_cgroup *iter;
1939
1940	spin_lock(&memcg_oom_lock);
1941	for_each_mem_cgroup_tree(iter, memcg)
1942		iter->under_oom++;
1943	spin_unlock(&memcg_oom_lock);
1944}
1945
1946static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1947{
1948	struct mem_cgroup *iter;
1949
1950	/*
1951	 * Be careful about under_oom underflows because a child memcg
1952	 * could have been added after mem_cgroup_mark_under_oom.
1953	 */
1954	spin_lock(&memcg_oom_lock);
1955	for_each_mem_cgroup_tree(iter, memcg)
1956		if (iter->under_oom > 0)
1957			iter->under_oom--;
1958	spin_unlock(&memcg_oom_lock);
1959}
1960
1961static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1962
1963struct oom_wait_info {
1964	struct mem_cgroup *memcg;
1965	wait_queue_entry_t	wait;
1966};
1967
1968static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1969	unsigned mode, int sync, void *arg)
1970{
1971	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1972	struct mem_cgroup *oom_wait_memcg;
1973	struct oom_wait_info *oom_wait_info;
1974
1975	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1976	oom_wait_memcg = oom_wait_info->memcg;
1977
1978	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1979	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1980		return 0;
1981	return autoremove_wake_function(wait, mode, sync, arg);
1982}
1983
1984static void memcg_oom_recover(struct mem_cgroup *memcg)
1985{
1986	/*
1987	 * For the following lockless ->under_oom test, the only required
1988	 * guarantee is that it must see the state asserted by an OOM when
1989	 * this function is called as a result of userland actions
1990	 * triggered by the notification of the OOM.  This is trivially
1991	 * achieved by invoking mem_cgroup_mark_under_oom() before
1992	 * triggering notification.
1993	 */
1994	if (memcg && memcg->under_oom)
1995		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1996}
1997
1998/*
1999 * Returns true if successfully killed one or more processes. Though in some
2000 * corner cases it can return true even without killing any process.
2001 */
2002static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2003{
2004	bool locked, ret;
2005
2006	if (order > PAGE_ALLOC_COSTLY_ORDER)
2007		return false;
2008
2009	memcg_memory_event(memcg, MEMCG_OOM);
2010
2011	/*
2012	 * We are in the middle of the charge context here, so we
2013	 * don't want to block when potentially sitting on a callstack
2014	 * that holds all kinds of filesystem and mm locks.
2015	 *
2016	 * cgroup1 allows disabling the OOM killer and waiting for outside
2017	 * handling until the charge can succeed; remember the context and put
2018	 * the task to sleep at the end of the page fault when all locks are
2019	 * released.
2020	 *
2021	 * On the other hand, in-kernel OOM killer allows for an async victim
2022	 * memory reclaim (oom_reaper) and that means that we are not solely
2023	 * relying on the oom victim to make a forward progress and we can
2024	 * invoke the oom killer here.
2025	 *
2026	 * Please note that mem_cgroup_out_of_memory might fail to find a
2027	 * victim and then we have to bail out from the charge path.
2028	 */
2029	if (READ_ONCE(memcg->oom_kill_disable)) {
2030		if (current->in_user_fault) {
2031			css_get(&memcg->css);
2032			current->memcg_in_oom = memcg;
2033			current->memcg_oom_gfp_mask = mask;
2034			current->memcg_oom_order = order;
2035		}
2036		return false;
2037	}
2038
2039	mem_cgroup_mark_under_oom(memcg);
2040
2041	locked = mem_cgroup_oom_trylock(memcg);
2042
2043	if (locked)
2044		mem_cgroup_oom_notify(memcg);
2045
2046	mem_cgroup_unmark_under_oom(memcg);
2047	ret = mem_cgroup_out_of_memory(memcg, mask, order);
2048
2049	if (locked)
2050		mem_cgroup_oom_unlock(memcg);
2051
2052	return ret;
2053}
2054
2055/**
2056 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2057 * @handle: actually kill/wait or just clean up the OOM state
2058 *
2059 * This has to be called at the end of a page fault if the memcg OOM
2060 * handler was enabled.
2061 *
2062 * Memcg supports userspace OOM handling where failed allocations must
2063 * sleep on a waitqueue until the userspace task resolves the
2064 * situation.  Sleeping directly in the charge context with all kinds
2065 * of locks held is not a good idea, instead we remember an OOM state
2066 * in the task and mem_cgroup_oom_synchronize() has to be called at
2067 * the end of the page fault to complete the OOM handling.
2068 *
2069 * Returns %true if an ongoing memcg OOM situation was detected and
2070 * completed, %false otherwise.
2071 */
2072bool mem_cgroup_oom_synchronize(bool handle)
2073{
2074	struct mem_cgroup *memcg = current->memcg_in_oom;
2075	struct oom_wait_info owait;
2076	bool locked;
2077
2078	/* OOM is global, do not handle */
2079	if (!memcg)
2080		return false;
2081
2082	if (!handle)
2083		goto cleanup;
2084
2085	owait.memcg = memcg;
2086	owait.wait.flags = 0;
2087	owait.wait.func = memcg_oom_wake_function;
2088	owait.wait.private = current;
2089	INIT_LIST_HEAD(&owait.wait.entry);
2090
2091	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2092	mem_cgroup_mark_under_oom(memcg);
2093
2094	locked = mem_cgroup_oom_trylock(memcg);
2095
2096	if (locked)
2097		mem_cgroup_oom_notify(memcg);
2098
2099	schedule();
2100	mem_cgroup_unmark_under_oom(memcg);
2101	finish_wait(&memcg_oom_waitq, &owait.wait);
 
 
 
 
 
 
 
2102
2103	if (locked)
2104		mem_cgroup_oom_unlock(memcg);
 
 
 
 
 
 
 
2105cleanup:
2106	current->memcg_in_oom = NULL;
2107	css_put(&memcg->css);
2108	return true;
2109}
2110
2111/**
2112 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2113 * @victim: task to be killed by the OOM killer
2114 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2115 *
2116 * Returns a pointer to a memory cgroup, which has to be cleaned up
2117 * by killing all belonging OOM-killable tasks.
2118 *
2119 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2120 */
2121struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2122					    struct mem_cgroup *oom_domain)
2123{
2124	struct mem_cgroup *oom_group = NULL;
2125	struct mem_cgroup *memcg;
2126
2127	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2128		return NULL;
2129
2130	if (!oom_domain)
2131		oom_domain = root_mem_cgroup;
2132
2133	rcu_read_lock();
2134
2135	memcg = mem_cgroup_from_task(victim);
2136	if (mem_cgroup_is_root(memcg))
2137		goto out;
2138
2139	/*
2140	 * If the victim task has been asynchronously moved to a different
2141	 * memory cgroup, we might end up killing tasks outside oom_domain.
2142	 * In this case it's better to ignore memory.group.oom.
2143	 */
2144	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2145		goto out;
2146
2147	/*
2148	 * Traverse the memory cgroup hierarchy from the victim task's
2149	 * cgroup up to the OOMing cgroup (or root) to find the
2150	 * highest-level memory cgroup with oom.group set.
2151	 */
2152	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2153		if (READ_ONCE(memcg->oom_group))
2154			oom_group = memcg;
2155
2156		if (memcg == oom_domain)
2157			break;
2158	}
2159
2160	if (oom_group)
2161		css_get(&oom_group->css);
2162out:
2163	rcu_read_unlock();
2164
2165	return oom_group;
2166}
2167
2168void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2169{
2170	pr_info("Tasks in ");
2171	pr_cont_cgroup_path(memcg->css.cgroup);
2172	pr_cont(" are going to be killed due to memory.oom.group set\n");
2173}
2174
2175/**
2176 * folio_memcg_lock - Bind a folio to its memcg.
2177 * @folio: The folio.
2178 *
2179 * This function prevents unlocked LRU folios from being moved to
2180 * another cgroup.
2181 *
2182 * It ensures lifetime of the bound memcg.  The caller is responsible
2183 * for the lifetime of the folio.
 
2184 */
2185void folio_memcg_lock(struct folio *folio)
2186{
2187	struct mem_cgroup *memcg;
2188	unsigned long flags;
2189
2190	/*
2191	 * The RCU lock is held throughout the transaction.  The fast
2192	 * path can get away without acquiring the memcg->move_lock
2193	 * because page moving starts with an RCU grace period.
 
 
 
 
 
 
2194         */
2195	rcu_read_lock();
2196
2197	if (mem_cgroup_disabled())
2198		return;
2199again:
2200	memcg = folio_memcg(folio);
2201	if (unlikely(!memcg))
2202		return;
2203
2204#ifdef CONFIG_PROVE_LOCKING
2205	local_irq_save(flags);
2206	might_lock(&memcg->move_lock);
2207	local_irq_restore(flags);
2208#endif
2209
2210	if (atomic_read(&memcg->moving_account) <= 0)
2211		return;
2212
2213	spin_lock_irqsave(&memcg->move_lock, flags);
2214	if (memcg != folio_memcg(folio)) {
2215		spin_unlock_irqrestore(&memcg->move_lock, flags);
2216		goto again;
2217	}
2218
2219	/*
2220	 * When charge migration first begins, we can have multiple
2221	 * critical sections holding the fast-path RCU lock and one
2222	 * holding the slowpath move_lock. Track the task who has the
2223	 * move_lock for folio_memcg_unlock().
2224	 */
2225	memcg->move_lock_task = current;
2226	memcg->move_lock_flags = flags;
 
 
2227}
 
2228
2229static void __folio_memcg_unlock(struct mem_cgroup *memcg)
 
 
 
 
 
 
2230{
2231	if (memcg && memcg->move_lock_task == current) {
2232		unsigned long flags = memcg->move_lock_flags;
2233
2234		memcg->move_lock_task = NULL;
2235		memcg->move_lock_flags = 0;
2236
2237		spin_unlock_irqrestore(&memcg->move_lock, flags);
2238	}
2239
2240	rcu_read_unlock();
2241}
2242
2243/**
2244 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2245 * @folio: The folio.
2246 *
2247 * This releases the binding created by folio_memcg_lock().  This does
2248 * not change the accounting of this folio to its memcg, but it does
2249 * permit others to change it.
2250 */
2251void folio_memcg_unlock(struct folio *folio)
2252{
2253	__folio_memcg_unlock(folio_memcg(folio));
2254}
 
2255
2256struct memcg_stock_pcp {
2257	local_lock_t stock_lock;
2258	struct mem_cgroup *cached; /* this never be root cgroup */
2259	unsigned int nr_pages;
2260
2261#ifdef CONFIG_MEMCG_KMEM
2262	struct obj_cgroup *cached_objcg;
2263	struct pglist_data *cached_pgdat;
2264	unsigned int nr_bytes;
2265	int nr_slab_reclaimable_b;
2266	int nr_slab_unreclaimable_b;
2267#endif
2268
2269	struct work_struct work;
2270	unsigned long flags;
2271#define FLUSHING_CACHED_CHARGE	0
2272};
2273static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2274	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2275};
2276static DEFINE_MUTEX(percpu_charge_mutex);
2277
2278#ifdef CONFIG_MEMCG_KMEM
2279static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2280static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2281				     struct mem_cgroup *root_memcg);
2282static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2283
2284#else
2285static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2286{
2287	return NULL;
2288}
2289static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2290				     struct mem_cgroup *root_memcg)
2291{
2292	return false;
2293}
2294static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2295{
2296}
2297#endif
2298
2299/**
2300 * consume_stock: Try to consume stocked charge on this cpu.
2301 * @memcg: memcg to consume from.
2302 * @nr_pages: how many pages to charge.
2303 *
2304 * The charges will only happen if @memcg matches the current cpu's memcg
2305 * stock, and at least @nr_pages are available in that stock.  Failure to
2306 * service an allocation will refill the stock.
2307 *
2308 * returns true if successful, false otherwise.
2309 */
2310static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2311{
2312	struct memcg_stock_pcp *stock;
2313	unsigned long flags;
2314	bool ret = false;
2315
2316	if (nr_pages > MEMCG_CHARGE_BATCH)
2317		return ret;
2318
2319	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2320
2321	stock = this_cpu_ptr(&memcg_stock);
2322	if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2323		stock->nr_pages -= nr_pages;
2324		ret = true;
2325	}
2326
2327	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2328
2329	return ret;
2330}
2331
2332/*
2333 * Returns stocks cached in percpu and reset cached information.
2334 */
2335static void drain_stock(struct memcg_stock_pcp *stock)
2336{
2337	struct mem_cgroup *old = READ_ONCE(stock->cached);
2338
2339	if (!old)
2340		return;
2341
2342	if (stock->nr_pages) {
2343		page_counter_uncharge(&old->memory, stock->nr_pages);
2344		if (do_memsw_account())
2345			page_counter_uncharge(&old->memsw, stock->nr_pages);
 
2346		stock->nr_pages = 0;
2347	}
2348
2349	css_put(&old->css);
2350	WRITE_ONCE(stock->cached, NULL);
2351}
2352
2353static void drain_local_stock(struct work_struct *dummy)
2354{
2355	struct memcg_stock_pcp *stock;
2356	struct obj_cgroup *old = NULL;
2357	unsigned long flags;
2358
2359	/*
2360	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2361	 * drain_stock races is that we always operate on local CPU stock
2362	 * here with IRQ disabled
2363	 */
2364	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2365
2366	stock = this_cpu_ptr(&memcg_stock);
2367	old = drain_obj_stock(stock);
2368	drain_stock(stock);
2369	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2370
2371	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2372	if (old)
2373		obj_cgroup_put(old);
2374}
2375
2376/*
2377 * Cache charges(val) to local per_cpu area.
2378 * This will be consumed by consume_stock() function, later.
2379 */
2380static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2381{
2382	struct memcg_stock_pcp *stock;
 
 
 
2383
2384	stock = this_cpu_ptr(&memcg_stock);
2385	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2386		drain_stock(stock);
2387		css_get(&memcg->css);
2388		WRITE_ONCE(stock->cached, memcg);
2389	}
2390	stock->nr_pages += nr_pages;
2391
2392	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2393		drain_stock(stock);
2394}
2395
2396static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2397{
2398	unsigned long flags;
2399
2400	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2401	__refill_stock(memcg, nr_pages);
2402	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2403}
2404
2405/*
2406 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2407 * of the hierarchy under it.
2408 */
2409static void drain_all_stock(struct mem_cgroup *root_memcg)
2410{
2411	int cpu, curcpu;
2412
2413	/* If someone's already draining, avoid adding running more workers. */
2414	if (!mutex_trylock(&percpu_charge_mutex))
2415		return;
2416	/*
2417	 * Notify other cpus that system-wide "drain" is running
2418	 * We do not care about races with the cpu hotplug because cpu down
2419	 * as well as workers from this path always operate on the local
2420	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2421	 */
2422	migrate_disable();
2423	curcpu = smp_processor_id();
2424	for_each_online_cpu(cpu) {
2425		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2426		struct mem_cgroup *memcg;
2427		bool flush = false;
2428
2429		rcu_read_lock();
2430		memcg = READ_ONCE(stock->cached);
2431		if (memcg && stock->nr_pages &&
2432		    mem_cgroup_is_descendant(memcg, root_memcg))
2433			flush = true;
2434		else if (obj_stock_flush_required(stock, root_memcg))
2435			flush = true;
2436		rcu_read_unlock();
2437
2438		if (flush &&
2439		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2440			if (cpu == curcpu)
2441				drain_local_stock(&stock->work);
2442			else if (!cpu_is_isolated(cpu))
2443				schedule_work_on(cpu, &stock->work);
2444		}
 
2445	}
2446	migrate_enable();
2447	mutex_unlock(&percpu_charge_mutex);
2448}
2449
2450static int memcg_hotplug_cpu_dead(unsigned int cpu)
2451{
2452	struct memcg_stock_pcp *stock;
 
2453
2454	stock = &per_cpu(memcg_stock, cpu);
2455	drain_stock(stock);
2456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457	return 0;
2458}
2459
2460static unsigned long reclaim_high(struct mem_cgroup *memcg,
2461				  unsigned int nr_pages,
2462				  gfp_t gfp_mask)
2463{
2464	unsigned long nr_reclaimed = 0;
2465
2466	do {
2467		unsigned long pflags;
2468
2469		if (page_counter_read(&memcg->memory) <=
2470		    READ_ONCE(memcg->memory.high))
2471			continue;
2472
2473		memcg_memory_event(memcg, MEMCG_HIGH);
2474
2475		psi_memstall_enter(&pflags);
2476		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2477							gfp_mask,
2478							MEMCG_RECLAIM_MAY_SWAP);
2479		psi_memstall_leave(&pflags);
2480	} while ((memcg = parent_mem_cgroup(memcg)) &&
2481		 !mem_cgroup_is_root(memcg));
2482
2483	return nr_reclaimed;
2484}
2485
2486static void high_work_func(struct work_struct *work)
2487{
2488	struct mem_cgroup *memcg;
2489
2490	memcg = container_of(work, struct mem_cgroup, high_work);
2491	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2492}
2493
2494/*
2495 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2496 * enough to still cause a significant slowdown in most cases, while still
2497 * allowing diagnostics and tracing to proceed without becoming stuck.
2498 */
2499#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2500
2501/*
2502 * When calculating the delay, we use these either side of the exponentiation to
2503 * maintain precision and scale to a reasonable number of jiffies (see the table
2504 * below.
2505 *
2506 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2507 *   overage ratio to a delay.
2508 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2509 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2510 *   to produce a reasonable delay curve.
2511 *
2512 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2513 * reasonable delay curve compared to precision-adjusted overage, not
2514 * penalising heavily at first, but still making sure that growth beyond the
2515 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2516 * example, with a high of 100 megabytes:
2517 *
2518 *  +-------+------------------------+
2519 *  | usage | time to allocate in ms |
2520 *  +-------+------------------------+
2521 *  | 100M  |                      0 |
2522 *  | 101M  |                      6 |
2523 *  | 102M  |                     25 |
2524 *  | 103M  |                     57 |
2525 *  | 104M  |                    102 |
2526 *  | 105M  |                    159 |
2527 *  | 106M  |                    230 |
2528 *  | 107M  |                    313 |
2529 *  | 108M  |                    409 |
2530 *  | 109M  |                    518 |
2531 *  | 110M  |                    639 |
2532 *  | 111M  |                    774 |
2533 *  | 112M  |                    921 |
2534 *  | 113M  |                   1081 |
2535 *  | 114M  |                   1254 |
2536 *  | 115M  |                   1439 |
2537 *  | 116M  |                   1638 |
2538 *  | 117M  |                   1849 |
2539 *  | 118M  |                   2000 |
2540 *  | 119M  |                   2000 |
2541 *  | 120M  |                   2000 |
2542 *  +-------+------------------------+
2543 */
2544 #define MEMCG_DELAY_PRECISION_SHIFT 20
2545 #define MEMCG_DELAY_SCALING_SHIFT 14
2546
2547static u64 calculate_overage(unsigned long usage, unsigned long high)
2548{
2549	u64 overage;
2550
2551	if (usage <= high)
2552		return 0;
2553
2554	/*
2555	 * Prevent division by 0 in overage calculation by acting as if
2556	 * it was a threshold of 1 page
2557	 */
2558	high = max(high, 1UL);
2559
2560	overage = usage - high;
2561	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2562	return div64_u64(overage, high);
2563}
2564
2565static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2566{
2567	u64 overage, max_overage = 0;
2568
2569	do {
2570		overage = calculate_overage(page_counter_read(&memcg->memory),
2571					    READ_ONCE(memcg->memory.high));
2572		max_overage = max(overage, max_overage);
2573	} while ((memcg = parent_mem_cgroup(memcg)) &&
2574		 !mem_cgroup_is_root(memcg));
2575
2576	return max_overage;
2577}
2578
2579static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2580{
2581	u64 overage, max_overage = 0;
2582
2583	do {
2584		overage = calculate_overage(page_counter_read(&memcg->swap),
2585					    READ_ONCE(memcg->swap.high));
2586		if (overage)
2587			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2588		max_overage = max(overage, max_overage);
2589	} while ((memcg = parent_mem_cgroup(memcg)) &&
2590		 !mem_cgroup_is_root(memcg));
2591
2592	return max_overage;
2593}
2594
2595/*
2596 * Get the number of jiffies that we should penalise a mischievous cgroup which
2597 * is exceeding its memory.high by checking both it and its ancestors.
2598 */
2599static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2600					  unsigned int nr_pages,
2601					  u64 max_overage)
2602{
2603	unsigned long penalty_jiffies;
2604
2605	if (!max_overage)
2606		return 0;
2607
2608	/*
2609	 * We use overage compared to memory.high to calculate the number of
2610	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2611	 * fairly lenient on small overages, and increasingly harsh when the
2612	 * memcg in question makes it clear that it has no intention of stopping
2613	 * its crazy behaviour, so we exponentially increase the delay based on
2614	 * overage amount.
2615	 */
2616	penalty_jiffies = max_overage * max_overage * HZ;
2617	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2618	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2619
2620	/*
2621	 * Factor in the task's own contribution to the overage, such that four
2622	 * N-sized allocations are throttled approximately the same as one
2623	 * 4N-sized allocation.
2624	 *
2625	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2626	 * larger the current charge patch is than that.
2627	 */
2628	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2629}
2630
2631/*
2632 * Reclaims memory over the high limit. Called directly from
2633 * try_charge() (context permitting), as well as from the userland
2634 * return path where reclaim is always able to block.
2635 */
2636void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2637{
2638	unsigned long penalty_jiffies;
2639	unsigned long pflags;
2640	unsigned long nr_reclaimed;
2641	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2642	int nr_retries = MAX_RECLAIM_RETRIES;
2643	struct mem_cgroup *memcg;
2644	bool in_retry = false;
2645
2646	if (likely(!nr_pages))
2647		return;
2648
2649	memcg = get_mem_cgroup_from_mm(current->mm);
 
 
2650	current->memcg_nr_pages_over_high = 0;
2651
2652retry_reclaim:
2653	/*
2654	 * Bail if the task is already exiting. Unlike memory.max,
2655	 * memory.high enforcement isn't as strict, and there is no
2656	 * OOM killer involved, which means the excess could already
2657	 * be much bigger (and still growing) than it could for
2658	 * memory.max; the dying task could get stuck in fruitless
2659	 * reclaim for a long time, which isn't desirable.
2660	 */
2661	if (task_is_dying())
2662		goto out;
2663
2664	/*
2665	 * The allocating task should reclaim at least the batch size, but for
2666	 * subsequent retries we only want to do what's necessary to prevent oom
2667	 * or breaching resource isolation.
2668	 *
2669	 * This is distinct from memory.max or page allocator behaviour because
2670	 * memory.high is currently batched, whereas memory.max and the page
2671	 * allocator run every time an allocation is made.
2672	 */
2673	nr_reclaimed = reclaim_high(memcg,
2674				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2675				    gfp_mask);
2676
2677	/*
2678	 * memory.high is breached and reclaim is unable to keep up. Throttle
2679	 * allocators proactively to slow down excessive growth.
2680	 */
2681	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2682					       mem_find_max_overage(memcg));
2683
2684	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2685						swap_find_max_overage(memcg));
2686
2687	/*
2688	 * Clamp the max delay per usermode return so as to still keep the
2689	 * application moving forwards and also permit diagnostics, albeit
2690	 * extremely slowly.
2691	 */
2692	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2693
2694	/*
2695	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2696	 * that it's not even worth doing, in an attempt to be nice to those who
2697	 * go only a small amount over their memory.high value and maybe haven't
2698	 * been aggressively reclaimed enough yet.
2699	 */
2700	if (penalty_jiffies <= HZ / 100)
2701		goto out;
2702
2703	/*
2704	 * If reclaim is making forward progress but we're still over
2705	 * memory.high, we want to encourage that rather than doing allocator
2706	 * throttling.
2707	 */
2708	if (nr_reclaimed || nr_retries--) {
2709		in_retry = true;
2710		goto retry_reclaim;
2711	}
2712
2713	/*
2714	 * Reclaim didn't manage to push usage below the limit, slow
2715	 * this allocating task down.
2716	 *
2717	 * If we exit early, we're guaranteed to die (since
2718	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2719	 * need to account for any ill-begotten jiffies to pay them off later.
2720	 */
2721	psi_memstall_enter(&pflags);
2722	schedule_timeout_killable(penalty_jiffies);
2723	psi_memstall_leave(&pflags);
2724
2725out:
2726	css_put(&memcg->css);
2727}
2728
2729static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2730			unsigned int nr_pages)
2731{
2732	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2733	int nr_retries = MAX_RECLAIM_RETRIES;
2734	struct mem_cgroup *mem_over_limit;
2735	struct page_counter *counter;
2736	unsigned long nr_reclaimed;
2737	bool passed_oom = false;
2738	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2739	bool drained = false;
2740	bool raised_max_event = false;
2741	unsigned long pflags;
2742
 
 
2743retry:
2744	if (consume_stock(memcg, nr_pages))
2745		return 0;
2746
2747	if (!do_memsw_account() ||
2748	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2749		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2750			goto done_restock;
2751		if (do_memsw_account())
2752			page_counter_uncharge(&memcg->memsw, batch);
2753		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2754	} else {
2755		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2756		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2757	}
2758
2759	if (batch > nr_pages) {
2760		batch = nr_pages;
2761		goto retry;
2762	}
2763
2764	/*
 
 
 
 
 
 
 
 
 
 
 
2765	 * Prevent unbounded recursion when reclaim operations need to
2766	 * allocate memory. This might exceed the limits temporarily,
2767	 * but we prefer facilitating memory reclaim and getting back
2768	 * under the limit over triggering OOM kills in these cases.
2769	 */
2770	if (unlikely(current->flags & PF_MEMALLOC))
2771		goto force;
2772
2773	if (unlikely(task_in_memcg_oom(current)))
2774		goto nomem;
2775
2776	if (!gfpflags_allow_blocking(gfp_mask))
2777		goto nomem;
2778
2779	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2780	raised_max_event = true;
2781
2782	psi_memstall_enter(&pflags);
2783	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2784						    gfp_mask, reclaim_options);
2785	psi_memstall_leave(&pflags);
2786
2787	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2788		goto retry;
2789
2790	if (!drained) {
2791		drain_all_stock(mem_over_limit);
2792		drained = true;
2793		goto retry;
2794	}
2795
2796	if (gfp_mask & __GFP_NORETRY)
2797		goto nomem;
2798	/*
2799	 * Even though the limit is exceeded at this point, reclaim
2800	 * may have been able to free some pages.  Retry the charge
2801	 * before killing the task.
2802	 *
2803	 * Only for regular pages, though: huge pages are rather
2804	 * unlikely to succeed so close to the limit, and we fall back
2805	 * to regular pages anyway in case of failure.
2806	 */
2807	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2808		goto retry;
2809	/*
2810	 * At task move, charge accounts can be doubly counted. So, it's
2811	 * better to wait until the end of task_move if something is going on.
2812	 */
2813	if (mem_cgroup_wait_acct_move(mem_over_limit))
2814		goto retry;
2815
2816	if (nr_retries--)
2817		goto retry;
2818
2819	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2820		goto nomem;
 
 
 
2821
2822	/* Avoid endless loop for tasks bypassed by the oom killer */
2823	if (passed_oom && task_is_dying())
2824		goto nomem;
2825
2826	/*
2827	 * keep retrying as long as the memcg oom killer is able to make
2828	 * a forward progress or bypass the charge if the oom killer
2829	 * couldn't make any progress.
2830	 */
2831	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2832			   get_order(nr_pages * PAGE_SIZE))) {
2833		passed_oom = true;
2834		nr_retries = MAX_RECLAIM_RETRIES;
2835		goto retry;
2836	}
2837nomem:
2838	/*
2839	 * Memcg doesn't have a dedicated reserve for atomic
2840	 * allocations. But like the global atomic pool, we need to
2841	 * put the burden of reclaim on regular allocation requests
2842	 * and let these go through as privileged allocations.
2843	 */
2844	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2845		return -ENOMEM;
2846force:
2847	/*
2848	 * If the allocation has to be enforced, don't forget to raise
2849	 * a MEMCG_MAX event.
2850	 */
2851	if (!raised_max_event)
2852		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2853
2854	/*
2855	 * The allocation either can't fail or will lead to more memory
2856	 * being freed very soon.  Allow memory usage go over the limit
2857	 * temporarily by force charging it.
2858	 */
2859	page_counter_charge(&memcg->memory, nr_pages);
2860	if (do_memsw_account())
2861		page_counter_charge(&memcg->memsw, nr_pages);
 
2862
2863	return 0;
2864
2865done_restock:
 
2866	if (batch > nr_pages)
2867		refill_stock(memcg, batch - nr_pages);
2868
2869	/*
2870	 * If the hierarchy is above the normal consumption range, schedule
2871	 * reclaim on returning to userland.  We can perform reclaim here
2872	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2873	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2874	 * not recorded as it most likely matches current's and won't
2875	 * change in the meantime.  As high limit is checked again before
2876	 * reclaim, the cost of mismatch is negligible.
2877	 */
2878	do {
2879		bool mem_high, swap_high;
2880
2881		mem_high = page_counter_read(&memcg->memory) >
2882			READ_ONCE(memcg->memory.high);
2883		swap_high = page_counter_read(&memcg->swap) >
2884			READ_ONCE(memcg->swap.high);
2885
2886		/* Don't bother a random interrupted task */
2887		if (!in_task()) {
2888			if (mem_high) {
2889				schedule_work(&memcg->high_work);
2890				break;
2891			}
2892			continue;
2893		}
2894
2895		if (mem_high || swap_high) {
2896			/*
2897			 * The allocating tasks in this cgroup will need to do
2898			 * reclaim or be throttled to prevent further growth
2899			 * of the memory or swap footprints.
2900			 *
2901			 * Target some best-effort fairness between the tasks,
2902			 * and distribute reclaim work and delay penalties
2903			 * based on how much each task is actually allocating.
2904			 */
2905			current->memcg_nr_pages_over_high += batch;
2906			set_notify_resume(current);
2907			break;
2908		}
2909	} while ((memcg = parent_mem_cgroup(memcg)));
2910
2911	/*
2912	 * Reclaim is set up above to be called from the userland
2913	 * return path. But also attempt synchronous reclaim to avoid
2914	 * excessive overrun while the task is still inside the
2915	 * kernel. If this is successful, the return path will see it
2916	 * when it rechecks the overage and simply bail out.
2917	 */
2918	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2919	    !(current->flags & PF_MEMALLOC) &&
2920	    gfpflags_allow_blocking(gfp_mask))
2921		mem_cgroup_handle_over_high(gfp_mask);
2922	return 0;
2923}
2924
2925static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2926			     unsigned int nr_pages)
2927{
2928	if (mem_cgroup_is_root(memcg))
2929		return 0;
2930
2931	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2932}
2933
2934/**
2935 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2936 * @memcg: memcg previously charged.
2937 * @nr_pages: number of pages previously charged.
2938 */
2939void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2940{
2941	if (mem_cgroup_is_root(memcg))
2942		return;
2943
2944	page_counter_uncharge(&memcg->memory, nr_pages);
2945	if (do_memsw_account())
2946		page_counter_uncharge(&memcg->memsw, nr_pages);
 
 
2947}
2948
2949static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2950{
2951	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2952	/*
2953	 * Any of the following ensures page's memcg stability:
2954	 *
2955	 * - the page lock
2956	 * - LRU isolation
2957	 * - folio_memcg_lock()
2958	 * - exclusive reference
2959	 * - mem_cgroup_trylock_pages()
2960	 */
2961	folio->memcg_data = (unsigned long)memcg;
2962}
2963
2964/**
2965 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2966 * @folio: folio to commit the charge to.
2967 * @memcg: memcg previously charged.
2968 */
2969void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2970{
2971	css_get(&memcg->css);
2972	commit_charge(folio, memcg);
2973
2974	local_irq_disable();
2975	mem_cgroup_charge_statistics(memcg, folio_nr_pages(folio));
2976	memcg_check_events(memcg, folio_nid(folio));
2977	local_irq_enable();
 
 
2978}
2979
2980#ifdef CONFIG_MEMCG_KMEM
2981/*
2982 * The allocated objcg pointers array is not accounted directly.
2983 * Moreover, it should not come from DMA buffer and is not readily
2984 * reclaimable. So those GFP bits should be masked off.
2985 */
2986#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2987				 __GFP_ACCOUNT | __GFP_NOFAIL)
2988
2989/*
2990 * mod_objcg_mlstate() may be called with irq enabled, so
2991 * mod_memcg_lruvec_state() should be used.
2992 */
2993static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2994				     struct pglist_data *pgdat,
2995				     enum node_stat_item idx, int nr)
2996{
2997	struct mem_cgroup *memcg;
2998	struct lruvec *lruvec;
2999
3000	rcu_read_lock();
3001	memcg = obj_cgroup_memcg(objcg);
3002	lruvec = mem_cgroup_lruvec(memcg, pgdat);
3003	mod_memcg_lruvec_state(lruvec, idx, nr);
3004	rcu_read_unlock();
3005}
3006
3007int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
3008				 gfp_t gfp, bool new_slab)
3009{
3010	unsigned int objects = objs_per_slab(s, slab);
3011	unsigned long memcg_data;
3012	void *vec;
3013
3014	gfp &= ~OBJCGS_CLEAR_MASK;
3015	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
3016			   slab_nid(slab));
3017	if (!vec)
3018		return -ENOMEM;
3019
3020	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
3021	if (new_slab) {
3022		/*
3023		 * If the slab is brand new and nobody can yet access its
3024		 * memcg_data, no synchronization is required and memcg_data can
3025		 * be simply assigned.
3026		 */
3027		slab->memcg_data = memcg_data;
3028	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
3029		/*
3030		 * If the slab is already in use, somebody can allocate and
3031		 * assign obj_cgroups in parallel. In this case the existing
3032		 * objcg vector should be reused.
3033		 */
3034		kfree(vec);
3035		return 0;
3036	}
3037
3038	kmemleak_not_leak(vec);
3039	return 0;
3040}
3041
3042static __always_inline
3043struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
3044{
3045	/*
3046	 * Slab objects are accounted individually, not per-page.
3047	 * Memcg membership data for each individual object is saved in
3048	 * slab->memcg_data.
3049	 */
3050	if (folio_test_slab(folio)) {
3051		struct obj_cgroup **objcgs;
3052		struct slab *slab;
3053		unsigned int off;
3054
3055		slab = folio_slab(folio);
3056		objcgs = slab_objcgs(slab);
3057		if (!objcgs)
3058			return NULL;
3059
3060		off = obj_to_index(slab->slab_cache, slab, p);
3061		if (objcgs[off])
3062			return obj_cgroup_memcg(objcgs[off]);
3063
3064		return NULL;
3065	}
 
 
 
 
3066
3067	/*
3068	 * folio_memcg_check() is used here, because in theory we can encounter
3069	 * a folio where the slab flag has been cleared already, but
3070	 * slab->memcg_data has not been freed yet
3071	 * folio_memcg_check() will guarantee that a proper memory
3072	 * cgroup pointer or NULL will be returned.
 
 
 
 
 
 
 
3073	 */
3074	return folio_memcg_check(folio);
 
 
 
3075}
3076
3077/*
3078 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3079 *
3080 * A passed kernel object can be a slab object, vmalloc object or a generic
3081 * kernel page, so different mechanisms for getting the memory cgroup pointer
3082 * should be used.
3083 *
3084 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3085 * can not know for sure how the kernel object is implemented.
3086 * mem_cgroup_from_obj() can be safely used in such cases.
3087 *
3088 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3089 * cgroup_mutex, etc.
3090 */
3091struct mem_cgroup *mem_cgroup_from_obj(void *p)
3092{
3093	struct folio *folio;
 
3094
3095	if (mem_cgroup_disabled())
3096		return NULL;
 
 
3097
3098	if (unlikely(is_vmalloc_addr(p)))
3099		folio = page_folio(vmalloc_to_page(p));
3100	else
3101		folio = virt_to_folio(p);
3102
3103	return mem_cgroup_from_obj_folio(folio, p);
3104}
 
 
 
3105
3106/*
3107 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3108 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3109 * allocated using vmalloc().
3110 *
3111 * A passed kernel object must be a slab object or a generic kernel page.
3112 *
3113 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3114 * cgroup_mutex, etc.
3115 */
3116struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3117{
3118	if (mem_cgroup_disabled())
3119		return NULL;
3120
3121	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3122}
 
 
 
3123
3124static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3125{
3126	struct obj_cgroup *objcg = NULL;
3127
3128	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3129		objcg = rcu_dereference(memcg->objcg);
3130		if (likely(objcg && obj_cgroup_tryget(objcg)))
3131			break;
3132		objcg = NULL;
3133	}
3134	return objcg;
3135}
3136
3137static struct obj_cgroup *current_objcg_update(void)
3138{
 
 
 
 
3139	struct mem_cgroup *memcg;
3140	struct obj_cgroup *old, *objcg = NULL;
 
 
3141
3142	do {
3143		/* Atomically drop the update bit. */
3144		old = xchg(&current->objcg, NULL);
3145		if (old) {
3146			old = (struct obj_cgroup *)
3147				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3148			if (old)
3149				obj_cgroup_put(old);
3150
3151			old = NULL;
3152		}
3153
3154		/* If new objcg is NULL, no reason for the second atomic update. */
3155		if (!current->mm || (current->flags & PF_KTHREAD))
3156			return NULL;
3157
3158		/*
3159		 * Release the objcg pointer from the previous iteration,
3160		 * if try_cmpxcg() below fails.
3161		 */
3162		if (unlikely(objcg)) {
3163			obj_cgroup_put(objcg);
3164			objcg = NULL;
3165		}
3166
3167		/*
3168		 * Obtain the new objcg pointer. The current task can be
3169		 * asynchronously moved to another memcg and the previous
3170		 * memcg can be offlined. So let's get the memcg pointer
3171		 * and try get a reference to objcg under a rcu read lock.
3172		 */
3173
3174		rcu_read_lock();
3175		memcg = mem_cgroup_from_task(current);
3176		objcg = __get_obj_cgroup_from_memcg(memcg);
3177		rcu_read_unlock();
3178
3179		/*
3180		 * Try set up a new objcg pointer atomically. If it
3181		 * fails, it means the update flag was set concurrently, so
3182		 * the whole procedure should be repeated.
3183		 */
3184	} while (!try_cmpxchg(&current->objcg, &old, objcg));
3185
3186	return objcg;
3187}
3188
3189__always_inline struct obj_cgroup *current_obj_cgroup(void)
 
 
 
 
3190{
3191	struct mem_cgroup *memcg;
3192	struct obj_cgroup *objcg;
3193
3194	if (in_task()) {
3195		memcg = current->active_memcg;
3196		if (unlikely(memcg))
3197			goto from_memcg;
3198
3199		objcg = READ_ONCE(current->objcg);
3200		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3201			objcg = current_objcg_update();
3202		/*
3203		 * Objcg reference is kept by the task, so it's safe
3204		 * to use the objcg by the current task.
3205		 */
3206		return objcg;
3207	}
3208
3209	memcg = this_cpu_read(int_active_memcg);
3210	if (unlikely(memcg))
3211		goto from_memcg;
3212
3213	return NULL;
3214
3215from_memcg:
3216	objcg = NULL;
3217	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3218		/*
3219		 * Memcg pointer is protected by scope (see set_active_memcg())
3220		 * and is pinning the corresponding objcg, so objcg can't go
3221		 * away and can be used within the scope without any additional
3222		 * protection.
3223		 */
3224		objcg = rcu_dereference_check(memcg->objcg, 1);
3225		if (likely(objcg))
3226			break;
3227	}
3228
3229	return objcg;
3230}
3231
3232struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
 
3233{
3234	struct obj_cgroup *objcg;
3235
3236	if (!memcg_kmem_online())
3237		return NULL;
3238
3239	if (folio_memcg_kmem(folio)) {
3240		objcg = __folio_objcg(folio);
3241		obj_cgroup_get(objcg);
3242	} else {
3243		struct mem_cgroup *memcg;
3244
3245		rcu_read_lock();
3246		memcg = __folio_memcg(folio);
3247		if (memcg)
3248			objcg = __get_obj_cgroup_from_memcg(memcg);
3249		else
3250			objcg = NULL;
3251		rcu_read_unlock();
3252	}
3253	return objcg;
3254}
3255
3256static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3257{
3258	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3259	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3260		if (nr_pages > 0)
3261			page_counter_charge(&memcg->kmem, nr_pages);
3262		else
3263			page_counter_uncharge(&memcg->kmem, -nr_pages);
3264	}
3265}
3266
3267
3268/*
3269 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3270 * @objcg: object cgroup to uncharge
3271 * @nr_pages: number of pages to uncharge
 
 
 
 
 
 
 
 
 
 
3272 */
3273static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3274				      unsigned int nr_pages)
3275{
3276	struct mem_cgroup *memcg;
 
 
 
 
 
 
 
3277
3278	memcg = get_mem_cgroup_from_objcg(objcg);
 
3279
3280	memcg_account_kmem(memcg, -nr_pages);
3281	refill_stock(memcg, nr_pages);
 
 
 
 
 
 
3282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3283	css_put(&memcg->css);
 
3284}
3285
3286/*
3287 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3288 * @objcg: object cgroup to charge
 
 
 
 
 
 
 
 
 
 
3289 * @gfp: reclaim mode
3290 * @nr_pages: number of pages to charge
 
3291 *
3292 * Returns 0 on success, an error code on failure.
3293 */
3294static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3295				   unsigned int nr_pages)
3296{
3297	struct mem_cgroup *memcg;
 
3298	int ret;
3299
3300	memcg = get_mem_cgroup_from_objcg(objcg);
 
 
3301
3302	ret = try_charge_memcg(memcg, gfp, nr_pages);
3303	if (ret)
3304		goto out;
 
 
3305
3306	memcg_account_kmem(memcg, nr_pages);
3307out:
3308	css_put(&memcg->css);
3309
3310	return ret;
3311}
3312
3313/**
3314 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3315 * @page: page to charge
3316 * @gfp: reclaim mode
3317 * @order: allocation order
3318 *
3319 * Returns 0 on success, an error code on failure.
3320 */
3321int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3322{
3323	struct obj_cgroup *objcg;
3324	int ret = 0;
3325
3326	objcg = current_obj_cgroup();
3327	if (objcg) {
3328		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3329		if (!ret) {
3330			obj_cgroup_get(objcg);
3331			page->memcg_data = (unsigned long)objcg |
3332				MEMCG_DATA_KMEM;
3333			return 0;
3334		}
3335	}
 
3336	return ret;
3337}
3338
3339/**
3340 * __memcg_kmem_uncharge_page: uncharge a kmem page
3341 * @page: page to uncharge
3342 * @order: allocation order
3343 */
3344void __memcg_kmem_uncharge_page(struct page *page, int order)
3345{
3346	struct folio *folio = page_folio(page);
3347	struct obj_cgroup *objcg;
3348	unsigned int nr_pages = 1 << order;
3349
3350	if (!folio_memcg_kmem(folio))
3351		return;
3352
3353	objcg = __folio_objcg(folio);
3354	obj_cgroup_uncharge_pages(objcg, nr_pages);
3355	folio->memcg_data = 0;
3356	obj_cgroup_put(objcg);
3357}
3358
3359void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3360		     enum node_stat_item idx, int nr)
3361{
3362	struct memcg_stock_pcp *stock;
3363	struct obj_cgroup *old = NULL;
3364	unsigned long flags;
3365	int *bytes;
3366
3367	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3368	stock = this_cpu_ptr(&memcg_stock);
 
3369
3370	/*
3371	 * Save vmstat data in stock and skip vmstat array update unless
3372	 * accumulating over a page of vmstat data or when pgdat or idx
3373	 * changes.
3374	 */
3375	if (READ_ONCE(stock->cached_objcg) != objcg) {
3376		old = drain_obj_stock(stock);
3377		obj_cgroup_get(objcg);
3378		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3379				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3380		WRITE_ONCE(stock->cached_objcg, objcg);
3381		stock->cached_pgdat = pgdat;
3382	} else if (stock->cached_pgdat != pgdat) {
3383		/* Flush the existing cached vmstat data */
3384		struct pglist_data *oldpg = stock->cached_pgdat;
3385
3386		if (stock->nr_slab_reclaimable_b) {
3387			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3388					  stock->nr_slab_reclaimable_b);
3389			stock->nr_slab_reclaimable_b = 0;
3390		}
3391		if (stock->nr_slab_unreclaimable_b) {
3392			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3393					  stock->nr_slab_unreclaimable_b);
3394			stock->nr_slab_unreclaimable_b = 0;
3395		}
3396		stock->cached_pgdat = pgdat;
3397	}
3398
3399	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3400					       : &stock->nr_slab_unreclaimable_b;
3401	/*
3402	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3403	 * cached locally at least once before pushing it out.
3404	 */
3405	if (!*bytes) {
3406		*bytes = nr;
3407		nr = 0;
3408	} else {
3409		*bytes += nr;
3410		if (abs(*bytes) > PAGE_SIZE) {
3411			nr = *bytes;
3412			*bytes = 0;
3413		} else {
3414			nr = 0;
3415		}
3416	}
3417	if (nr)
3418		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3419
3420	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3421	if (old)
3422		obj_cgroup_put(old);
3423}
 
3424
3425static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3426{
3427	struct memcg_stock_pcp *stock;
3428	unsigned long flags;
3429	bool ret = false;
3430
3431	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3432
3433	stock = this_cpu_ptr(&memcg_stock);
3434	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3435		stock->nr_bytes -= nr_bytes;
3436		ret = true;
3437	}
3438
3439	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3440
3441	return ret;
3442}
3443
3444static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3445{
3446	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3447
3448	if (!old)
3449		return NULL;
3450
3451	if (stock->nr_bytes) {
3452		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3453		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3454
3455		if (nr_pages) {
3456			struct mem_cgroup *memcg;
3457
3458			memcg = get_mem_cgroup_from_objcg(old);
3459
3460			memcg_account_kmem(memcg, -nr_pages);
3461			__refill_stock(memcg, nr_pages);
3462
3463			css_put(&memcg->css);
3464		}
3465
3466		/*
3467		 * The leftover is flushed to the centralized per-memcg value.
3468		 * On the next attempt to refill obj stock it will be moved
3469		 * to a per-cpu stock (probably, on an other CPU), see
3470		 * refill_obj_stock().
3471		 *
3472		 * How often it's flushed is a trade-off between the memory
3473		 * limit enforcement accuracy and potential CPU contention,
3474		 * so it might be changed in the future.
3475		 */
3476		atomic_add(nr_bytes, &old->nr_charged_bytes);
3477		stock->nr_bytes = 0;
3478	}
3479
3480	/*
3481	 * Flush the vmstat data in current stock
3482	 */
3483	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3484		if (stock->nr_slab_reclaimable_b) {
3485			mod_objcg_mlstate(old, stock->cached_pgdat,
3486					  NR_SLAB_RECLAIMABLE_B,
3487					  stock->nr_slab_reclaimable_b);
3488			stock->nr_slab_reclaimable_b = 0;
3489		}
3490		if (stock->nr_slab_unreclaimable_b) {
3491			mod_objcg_mlstate(old, stock->cached_pgdat,
3492					  NR_SLAB_UNRECLAIMABLE_B,
3493					  stock->nr_slab_unreclaimable_b);
3494			stock->nr_slab_unreclaimable_b = 0;
3495		}
3496		stock->cached_pgdat = NULL;
3497	}
3498
3499	WRITE_ONCE(stock->cached_objcg, NULL);
3500	/*
3501	 * The `old' objects needs to be released by the caller via
3502	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3503	 */
3504	return old;
3505}
3506
3507static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3508				     struct mem_cgroup *root_memcg)
3509{
3510	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3511	struct mem_cgroup *memcg;
3512
3513	if (objcg) {
3514		memcg = obj_cgroup_memcg(objcg);
3515		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3516			return true;
3517	}
3518
3519	return false;
3520}
3521
3522static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3523			     bool allow_uncharge)
3524{
3525	struct memcg_stock_pcp *stock;
3526	struct obj_cgroup *old = NULL;
3527	unsigned long flags;
3528	unsigned int nr_pages = 0;
3529
3530	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3531
3532	stock = this_cpu_ptr(&memcg_stock);
3533	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3534		old = drain_obj_stock(stock);
3535		obj_cgroup_get(objcg);
3536		WRITE_ONCE(stock->cached_objcg, objcg);
3537		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3538				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3539		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3540	}
3541	stock->nr_bytes += nr_bytes;
3542
3543	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3544		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3545		stock->nr_bytes &= (PAGE_SIZE - 1);
3546	}
3547
3548	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3549	if (old)
3550		obj_cgroup_put(old);
3551
3552	if (nr_pages)
3553		obj_cgroup_uncharge_pages(objcg, nr_pages);
3554}
3555
3556int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3557{
3558	unsigned int nr_pages, nr_bytes;
3559	int ret;
3560
3561	if (consume_obj_stock(objcg, size))
3562		return 0;
3563
3564	/*
3565	 * In theory, objcg->nr_charged_bytes can have enough
3566	 * pre-charged bytes to satisfy the allocation. However,
3567	 * flushing objcg->nr_charged_bytes requires two atomic
3568	 * operations, and objcg->nr_charged_bytes can't be big.
3569	 * The shared objcg->nr_charged_bytes can also become a
3570	 * performance bottleneck if all tasks of the same memcg are
3571	 * trying to update it. So it's better to ignore it and try
3572	 * grab some new pages. The stock's nr_bytes will be flushed to
3573	 * objcg->nr_charged_bytes later on when objcg changes.
3574	 *
3575	 * The stock's nr_bytes may contain enough pre-charged bytes
3576	 * to allow one less page from being charged, but we can't rely
3577	 * on the pre-charged bytes not being changed outside of
3578	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3579	 * pre-charged bytes as well when charging pages. To avoid a
3580	 * page uncharge right after a page charge, we set the
3581	 * allow_uncharge flag to false when calling refill_obj_stock()
3582	 * to temporarily allow the pre-charged bytes to exceed the page
3583	 * size limit. The maximum reachable value of the pre-charged
3584	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3585	 * race.
3586	 */
3587	nr_pages = size >> PAGE_SHIFT;
3588	nr_bytes = size & (PAGE_SIZE - 1);
3589
3590	if (nr_bytes)
3591		nr_pages += 1;
3592
3593	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3594	if (!ret && nr_bytes)
3595		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3596
3597	return ret;
3598}
3599
3600void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3601{
3602	refill_obj_stock(objcg, size, true);
3603}
3604
3605#endif /* CONFIG_MEMCG_KMEM */
3606
3607/*
3608 * Because page_memcg(head) is not set on tails, set it now.
 
3609 */
3610void split_page_memcg(struct page *head, int old_order, int new_order)
3611{
3612	struct folio *folio = page_folio(head);
3613	struct mem_cgroup *memcg = folio_memcg(folio);
3614	int i;
3615	unsigned int old_nr = 1 << old_order;
3616	unsigned int new_nr = 1 << new_order;
3617
3618	if (mem_cgroup_disabled() || !memcg)
3619		return;
3620
3621	for (i = new_nr; i < old_nr; i += new_nr)
3622		folio_page(folio, i)->memcg_data = folio->memcg_data;
3623
3624	if (folio_memcg_kmem(folio))
3625		obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3626	else
3627		css_get_many(&memcg->css, old_nr / new_nr - 1);
3628}
 
3629
3630#ifdef CONFIG_SWAP
3631/**
3632 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3633 * @entry: swap entry to be moved
3634 * @from:  mem_cgroup which the entry is moved from
3635 * @to:  mem_cgroup which the entry is moved to
3636 *
3637 * It succeeds only when the swap_cgroup's record for this entry is the same
3638 * as the mem_cgroup's id of @from.
3639 *
3640 * Returns 0 on success, -EINVAL on failure.
3641 *
3642 * The caller must have charged to @to, IOW, called page_counter_charge() about
3643 * both res and memsw, and called css_get().
3644 */
3645static int mem_cgroup_move_swap_account(swp_entry_t entry,
3646				struct mem_cgroup *from, struct mem_cgroup *to)
3647{
3648	unsigned short old_id, new_id;
3649
3650	old_id = mem_cgroup_id(from);
3651	new_id = mem_cgroup_id(to);
3652
3653	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3654		mod_memcg_state(from, MEMCG_SWAP, -1);
3655		mod_memcg_state(to, MEMCG_SWAP, 1);
3656		return 0;
3657	}
3658	return -EINVAL;
3659}
3660#else
3661static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3662				struct mem_cgroup *from, struct mem_cgroup *to)
3663{
3664	return -EINVAL;
3665}
3666#endif
3667
3668static DEFINE_MUTEX(memcg_max_mutex);
3669
3670static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3671				 unsigned long max, bool memsw)
3672{
3673	bool enlarge = false;
3674	bool drained = false;
3675	int ret;
3676	bool limits_invariant;
3677	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3678
3679	do {
3680		if (signal_pending(current)) {
3681			ret = -EINTR;
3682			break;
3683		}
3684
3685		mutex_lock(&memcg_max_mutex);
3686		/*
3687		 * Make sure that the new limit (memsw or memory limit) doesn't
3688		 * break our basic invariant rule memory.max <= memsw.max.
3689		 */
3690		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3691					   max <= memcg->memsw.max;
3692		if (!limits_invariant) {
3693			mutex_unlock(&memcg_max_mutex);
3694			ret = -EINVAL;
3695			break;
3696		}
3697		if (max > counter->max)
3698			enlarge = true;
3699		ret = page_counter_set_max(counter, max);
3700		mutex_unlock(&memcg_max_mutex);
3701
3702		if (!ret)
3703			break;
3704
3705		if (!drained) {
3706			drain_all_stock(memcg);
3707			drained = true;
3708			continue;
3709		}
3710
3711		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3712					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3713			ret = -EBUSY;
3714			break;
3715		}
3716	} while (true);
3717
3718	if (!ret && enlarge)
3719		memcg_oom_recover(memcg);
3720
3721	return ret;
3722}
3723
3724unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3725					    gfp_t gfp_mask,
3726					    unsigned long *total_scanned)
3727{
3728	unsigned long nr_reclaimed = 0;
3729	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3730	unsigned long reclaimed;
3731	int loop = 0;
3732	struct mem_cgroup_tree_per_node *mctz;
3733	unsigned long excess;
3734
3735	if (lru_gen_enabled())
3736		return 0;
3737
3738	if (order > 0)
3739		return 0;
3740
3741	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3742
3743	/*
3744	 * Do not even bother to check the largest node if the root
3745	 * is empty. Do it lockless to prevent lock bouncing. Races
3746	 * are acceptable as soft limit is best effort anyway.
3747	 */
3748	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3749		return 0;
3750
3751	/*
3752	 * This loop can run a while, specially if mem_cgroup's continuously
3753	 * keep exceeding their soft limit and putting the system under
3754	 * pressure
3755	 */
3756	do {
3757		if (next_mz)
3758			mz = next_mz;
3759		else
3760			mz = mem_cgroup_largest_soft_limit_node(mctz);
3761		if (!mz)
3762			break;
3763
 
3764		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3765						    gfp_mask, total_scanned);
3766		nr_reclaimed += reclaimed;
 
3767		spin_lock_irq(&mctz->lock);
 
3768
3769		/*
3770		 * If we failed to reclaim anything from this memory cgroup
3771		 * it is time to move on to the next cgroup
3772		 */
3773		next_mz = NULL;
3774		if (!reclaimed)
3775			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3776
3777		excess = soft_limit_excess(mz->memcg);
3778		/*
3779		 * One school of thought says that we should not add
3780		 * back the node to the tree if reclaim returns 0.
3781		 * But our reclaim could return 0, simply because due
3782		 * to priority we are exposing a smaller subset of
3783		 * memory to reclaim from. Consider this as a longer
3784		 * term TODO.
3785		 */
3786		/* If excess == 0, no tree ops */
3787		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3788		spin_unlock_irq(&mctz->lock);
3789		css_put(&mz->memcg->css);
3790		loop++;
3791		/*
3792		 * Could not reclaim anything and there are no more
3793		 * mem cgroups to try or we seem to be looping without
3794		 * reclaiming anything.
3795		 */
3796		if (!nr_reclaimed &&
3797			(next_mz == NULL ||
3798			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3799			break;
3800	} while (!nr_reclaimed);
3801	if (next_mz)
3802		css_put(&next_mz->memcg->css);
3803	return nr_reclaimed;
3804}
3805
3806/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3807 * Reclaims as many pages from the given memcg as possible.
3808 *
3809 * Caller is responsible for holding css reference for memcg.
3810 */
3811static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3812{
3813	int nr_retries = MAX_RECLAIM_RETRIES;
3814
3815	/* we call try-to-free pages for make this cgroup empty */
3816	lru_add_drain_all();
3817
3818	drain_all_stock(memcg);
3819
3820	/* try to free all pages in this cgroup */
3821	while (nr_retries && page_counter_read(&memcg->memory)) {
 
 
3822		if (signal_pending(current))
3823			return -EINTR;
3824
3825		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3826						  MEMCG_RECLAIM_MAY_SWAP))
 
3827			nr_retries--;
 
 
 
 
3828	}
3829
3830	return 0;
3831}
3832
3833static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3834					    char *buf, size_t nbytes,
3835					    loff_t off)
3836{
3837	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3838
3839	if (mem_cgroup_is_root(memcg))
3840		return -EINVAL;
3841	return mem_cgroup_force_empty(memcg) ?: nbytes;
3842}
3843
3844static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3845				     struct cftype *cft)
3846{
3847	return 1;
3848}
3849
3850static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3851				      struct cftype *cft, u64 val)
3852{
3853	if (val == 1)
 
 
 
 
3854		return 0;
3855
3856	pr_warn_once("Non-hierarchical mode is deprecated. "
3857		     "Please report your usecase to linux-mm@kvack.org if you "
3858		     "depend on this functionality.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3859
3860	return -EINVAL;
 
 
 
 
 
3861}
3862
3863static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3864{
3865	unsigned long val;
3866
3867	if (mem_cgroup_is_root(memcg)) {
3868		/*
3869		 * Approximate root's usage from global state. This isn't
3870		 * perfect, but the root usage was always an approximation.
3871		 */
3872		val = global_node_page_state(NR_FILE_PAGES) +
3873			global_node_page_state(NR_ANON_MAPPED);
3874		if (swap)
3875			val += total_swap_pages - get_nr_swap_pages();
3876	} else {
3877		if (!swap)
3878			val = page_counter_read(&memcg->memory);
3879		else
3880			val = page_counter_read(&memcg->memsw);
3881	}
3882	return val;
3883}
3884
3885enum {
3886	RES_USAGE,
3887	RES_LIMIT,
3888	RES_MAX_USAGE,
3889	RES_FAILCNT,
3890	RES_SOFT_LIMIT,
3891};
3892
3893static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3894			       struct cftype *cft)
3895{
3896	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3897	struct page_counter *counter;
3898
3899	switch (MEMFILE_TYPE(cft->private)) {
3900	case _MEM:
3901		counter = &memcg->memory;
3902		break;
3903	case _MEMSWAP:
3904		counter = &memcg->memsw;
3905		break;
3906	case _KMEM:
3907		counter = &memcg->kmem;
3908		break;
3909	case _TCP:
3910		counter = &memcg->tcpmem;
3911		break;
3912	default:
3913		BUG();
3914	}
3915
3916	switch (MEMFILE_ATTR(cft->private)) {
3917	case RES_USAGE:
3918		if (counter == &memcg->memory)
3919			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3920		if (counter == &memcg->memsw)
3921			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3922		return (u64)page_counter_read(counter) * PAGE_SIZE;
3923	case RES_LIMIT:
3924		return (u64)counter->max * PAGE_SIZE;
3925	case RES_MAX_USAGE:
3926		return (u64)counter->watermark * PAGE_SIZE;
3927	case RES_FAILCNT:
3928		return counter->failcnt;
3929	case RES_SOFT_LIMIT:
3930		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3931	default:
3932		BUG();
3933	}
3934}
3935
3936/*
3937 * This function doesn't do anything useful. Its only job is to provide a read
3938 * handler for a file so that cgroup_file_mode() will add read permissions.
3939 */
3940static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3941				     __always_unused void *v)
3942{
3943	return -EINVAL;
3944}
3945
3946#ifdef CONFIG_MEMCG_KMEM
3947static int memcg_online_kmem(struct mem_cgroup *memcg)
3948{
3949	struct obj_cgroup *objcg;
3950
3951	if (mem_cgroup_kmem_disabled())
3952		return 0;
3953
3954	if (unlikely(mem_cgroup_is_root(memcg)))
3955		return 0;
3956
3957	objcg = obj_cgroup_alloc();
3958	if (!objcg)
3959		return -ENOMEM;
3960
3961	objcg->memcg = memcg;
3962	rcu_assign_pointer(memcg->objcg, objcg);
3963	obj_cgroup_get(objcg);
3964	memcg->orig_objcg = objcg;
3965
3966	static_branch_enable(&memcg_kmem_online_key);
3967
3968	memcg->kmemcg_id = memcg->id.id;
 
 
 
 
 
 
 
 
 
 
 
 
 
3969
3970	return 0;
3971}
3972
3973static void memcg_offline_kmem(struct mem_cgroup *memcg)
3974{
3975	struct mem_cgroup *parent;
 
 
3976
3977	if (mem_cgroup_kmem_disabled())
3978		return;
 
 
 
 
 
 
 
3979
3980	if (unlikely(mem_cgroup_is_root(memcg)))
3981		return;
 
 
3982
3983	parent = parent_mem_cgroup(memcg);
3984	if (!parent)
3985		parent = root_mem_cgroup;
3986
3987	memcg_reparent_objcgs(memcg, parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3988
3989	/*
3990	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3991	 * corresponding to this cgroup are guaranteed to remain empty.
3992	 * The ordering is imposed by list_lru_node->lock taken by
3993	 * memcg_reparent_list_lrus().
3994	 */
3995	memcg_reparent_list_lrus(memcg, parent);
 
 
 
 
 
 
 
3996}
3997#else
3998static int memcg_online_kmem(struct mem_cgroup *memcg)
3999{
4000	return 0;
4001}
4002static void memcg_offline_kmem(struct mem_cgroup *memcg)
4003{
4004}
4005#endif /* CONFIG_MEMCG_KMEM */
 
 
 
4006
4007static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
 
4008{
4009	int ret;
4010
4011	mutex_lock(&memcg_max_mutex);
 
 
 
 
 
 
 
 
4012
4013	ret = page_counter_set_max(&memcg->tcpmem, max);
 
 
4014	if (ret)
4015		goto out;
4016
4017	if (!memcg->tcpmem_active) {
4018		/*
4019		 * The active flag needs to be written after the static_key
4020		 * update. This is what guarantees that the socket activation
4021		 * function is the last one to run. See mem_cgroup_sk_alloc()
4022		 * for details, and note that we don't mark any socket as
4023		 * belonging to this memcg until that flag is up.
4024		 *
4025		 * We need to do this, because static_keys will span multiple
4026		 * sites, but we can't control their order. If we mark a socket
4027		 * as accounted, but the accounting functions are not patched in
4028		 * yet, we'll lose accounting.
4029		 *
4030		 * We never race with the readers in mem_cgroup_sk_alloc(),
4031		 * because when this value change, the code to process it is not
4032		 * patched in yet.
4033		 */
4034		static_branch_inc(&memcg_sockets_enabled_key);
4035		memcg->tcpmem_active = true;
4036	}
4037out:
4038	mutex_unlock(&memcg_max_mutex);
4039	return ret;
4040}
4041
4042/*
4043 * The user of this function is...
4044 * RES_LIMIT.
4045 */
4046static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4047				char *buf, size_t nbytes, loff_t off)
4048{
4049	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4050	unsigned long nr_pages;
4051	int ret;
4052
4053	buf = strstrip(buf);
4054	ret = page_counter_memparse(buf, "-1", &nr_pages);
4055	if (ret)
4056		return ret;
4057
4058	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4059	case RES_LIMIT:
4060		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4061			ret = -EINVAL;
4062			break;
4063		}
4064		switch (MEMFILE_TYPE(of_cft(of)->private)) {
4065		case _MEM:
4066			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
4067			break;
4068		case _MEMSWAP:
4069			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
4070			break;
4071		case _KMEM:
4072			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4073				     "Writing any value to this file has no effect. "
4074				     "Please report your usecase to linux-mm@kvack.org if you "
4075				     "depend on this functionality.\n");
4076			ret = 0;
4077			break;
4078		case _TCP:
4079			ret = memcg_update_tcp_max(memcg, nr_pages);
4080			break;
4081		}
4082		break;
4083	case RES_SOFT_LIMIT:
4084		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4085			ret = -EOPNOTSUPP;
4086		} else {
4087			WRITE_ONCE(memcg->soft_limit, nr_pages);
4088			ret = 0;
4089		}
4090		break;
4091	}
4092	return ret ?: nbytes;
4093}
4094
4095static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4096				size_t nbytes, loff_t off)
4097{
4098	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4099	struct page_counter *counter;
4100
4101	switch (MEMFILE_TYPE(of_cft(of)->private)) {
4102	case _MEM:
4103		counter = &memcg->memory;
4104		break;
4105	case _MEMSWAP:
4106		counter = &memcg->memsw;
4107		break;
4108	case _KMEM:
4109		counter = &memcg->kmem;
4110		break;
4111	case _TCP:
4112		counter = &memcg->tcpmem;
4113		break;
4114	default:
4115		BUG();
4116	}
4117
4118	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4119	case RES_MAX_USAGE:
4120		page_counter_reset_watermark(counter);
4121		break;
4122	case RES_FAILCNT:
4123		counter->failcnt = 0;
4124		break;
4125	default:
4126		BUG();
4127	}
4128
4129	return nbytes;
4130}
4131
4132static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4133					struct cftype *cft)
4134{
4135	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4136}
4137
4138#ifdef CONFIG_MMU
4139static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4140					struct cftype *cft, u64 val)
4141{
4142	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4143
4144	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4145		     "Please report your usecase to linux-mm@kvack.org if you "
4146		     "depend on this functionality.\n");
4147
4148	if (val & ~MOVE_MASK)
4149		return -EINVAL;
4150
4151	/*
4152	 * No kind of locking is needed in here, because ->can_attach() will
4153	 * check this value once in the beginning of the process, and then carry
4154	 * on with stale data. This means that changes to this value will only
4155	 * affect task migrations starting after the change.
4156	 */
4157	memcg->move_charge_at_immigrate = val;
4158	return 0;
4159}
4160#else
4161static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4162					struct cftype *cft, u64 val)
4163{
4164	return -ENOSYS;
4165}
4166#endif
4167
4168#ifdef CONFIG_NUMA
4169
4170#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4171#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4172#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
4173
4174static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4175				int nid, unsigned int lru_mask, bool tree)
4176{
4177	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4178	unsigned long nr = 0;
4179	enum lru_list lru;
4180
4181	VM_BUG_ON((unsigned)nid >= nr_node_ids);
4182
4183	for_each_lru(lru) {
4184		if (!(BIT(lru) & lru_mask))
4185			continue;
4186		if (tree)
4187			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4188		else
4189			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4190	}
4191	return nr;
4192}
4193
4194static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4195					     unsigned int lru_mask,
4196					     bool tree)
4197{
4198	unsigned long nr = 0;
4199	enum lru_list lru;
4200
4201	for_each_lru(lru) {
4202		if (!(BIT(lru) & lru_mask))
4203			continue;
4204		if (tree)
4205			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4206		else
4207			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4208	}
4209	return nr;
4210}
4211
4212static int memcg_numa_stat_show(struct seq_file *m, void *v)
4213{
4214	struct numa_stat {
4215		const char *name;
4216		unsigned int lru_mask;
4217	};
4218
4219	static const struct numa_stat stats[] = {
4220		{ "total", LRU_ALL },
4221		{ "file", LRU_ALL_FILE },
4222		{ "anon", LRU_ALL_ANON },
4223		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4224	};
4225	const struct numa_stat *stat;
4226	int nid;
4227	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4228
4229	mem_cgroup_flush_stats(memcg);
4230
4231	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4232		seq_printf(m, "%s=%lu", stat->name,
4233			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4234						   false));
4235		for_each_node_state(nid, N_MEMORY)
4236			seq_printf(m, " N%d=%lu", nid,
4237				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4238							stat->lru_mask, false));
4239		seq_putc(m, '\n');
4240	}
4241
4242	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
 
4243
4244		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4245			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4246						   true));
4247		for_each_node_state(nid, N_MEMORY)
4248			seq_printf(m, " N%d=%lu", nid,
4249				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4250							stat->lru_mask, true));
 
 
 
 
4251		seq_putc(m, '\n');
4252	}
4253
4254	return 0;
4255}
4256#endif /* CONFIG_NUMA */
4257
4258static const unsigned int memcg1_stats[] = {
4259	NR_FILE_PAGES,
4260	NR_ANON_MAPPED,
4261#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4262	NR_ANON_THPS,
4263#endif
4264	NR_SHMEM,
4265	NR_FILE_MAPPED,
4266	NR_FILE_DIRTY,
4267	NR_WRITEBACK,
4268	WORKINGSET_REFAULT_ANON,
4269	WORKINGSET_REFAULT_FILE,
4270#ifdef CONFIG_SWAP
4271	MEMCG_SWAP,
4272	NR_SWAPCACHE,
4273#endif
4274};
4275
4276static const char *const memcg1_stat_names[] = {
4277	"cache",
4278	"rss",
4279#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4280	"rss_huge",
4281#endif
4282	"shmem",
4283	"mapped_file",
4284	"dirty",
4285	"writeback",
4286	"workingset_refault_anon",
4287	"workingset_refault_file",
4288#ifdef CONFIG_SWAP
4289	"swap",
4290	"swapcached",
4291#endif
4292};
4293
4294/* Universal VM events cgroup1 shows, original sort order */
4295static const unsigned int memcg1_events[] = {
4296	PGPGIN,
4297	PGPGOUT,
4298	PGFAULT,
4299	PGMAJFAULT,
4300};
4301
4302static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
 
 
 
 
 
 
 
4303{
 
4304	unsigned long memory, memsw;
4305	struct mem_cgroup *mi;
4306	unsigned int i;
4307
4308	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4309
4310	mem_cgroup_flush_stats(memcg);
4311
4312	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4313		unsigned long nr;
4314
4315		nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
4316		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
 
4317	}
4318
4319	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4320		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4321			       memcg_events_local(memcg, memcg1_events[i]));
4322
4323	for (i = 0; i < NR_LRU_LISTS; i++)
4324		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4325			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4326			       PAGE_SIZE);
4327
4328	/* Hierarchical information */
4329	memory = memsw = PAGE_COUNTER_MAX;
4330	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4331		memory = min(memory, READ_ONCE(mi->memory.max));
4332		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4333	}
4334	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4335		       (u64)memory * PAGE_SIZE);
4336	seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4337		       (u64)memsw * PAGE_SIZE);
 
4338
4339	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4340		unsigned long nr;
 
 
 
 
 
 
 
 
4341
4342		nr = memcg_page_state_output(memcg, memcg1_stats[i]);
4343		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4344			       (u64)nr);
 
 
 
4345	}
4346
4347	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4348		seq_buf_printf(s, "total_%s %llu\n",
4349			       vm_event_name(memcg1_events[i]),
4350			       (u64)memcg_events(memcg, memcg1_events[i]));
4351
4352	for (i = 0; i < NR_LRU_LISTS; i++)
4353		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4354			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4355			       PAGE_SIZE);
4356
4357#ifdef CONFIG_DEBUG_VM
4358	{
4359		pg_data_t *pgdat;
4360		struct mem_cgroup_per_node *mz;
4361		unsigned long anon_cost = 0;
4362		unsigned long file_cost = 0;
 
4363
4364		for_each_online_pgdat(pgdat) {
4365			mz = memcg->nodeinfo[pgdat->node_id];
 
4366
4367			anon_cost += mz->lruvec.anon_cost;
4368			file_cost += mz->lruvec.file_cost;
4369		}
4370		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4371		seq_buf_printf(s, "file_cost %lu\n", file_cost);
 
 
 
 
4372	}
4373#endif
 
 
4374}
4375
4376static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4377				      struct cftype *cft)
4378{
4379	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4380
4381	return mem_cgroup_swappiness(memcg);
4382}
4383
4384static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4385				       struct cftype *cft, u64 val)
4386{
4387	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388
4389	if (val > 200)
4390		return -EINVAL;
4391
4392	if (!mem_cgroup_is_root(memcg))
4393		WRITE_ONCE(memcg->swappiness, val);
4394	else
4395		WRITE_ONCE(vm_swappiness, val);
4396
4397	return 0;
4398}
4399
4400static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4401{
4402	struct mem_cgroup_threshold_ary *t;
4403	unsigned long usage;
4404	int i;
4405
4406	rcu_read_lock();
4407	if (!swap)
4408		t = rcu_dereference(memcg->thresholds.primary);
4409	else
4410		t = rcu_dereference(memcg->memsw_thresholds.primary);
4411
4412	if (!t)
4413		goto unlock;
4414
4415	usage = mem_cgroup_usage(memcg, swap);
4416
4417	/*
4418	 * current_threshold points to threshold just below or equal to usage.
4419	 * If it's not true, a threshold was crossed after last
4420	 * call of __mem_cgroup_threshold().
4421	 */
4422	i = t->current_threshold;
4423
4424	/*
4425	 * Iterate backward over array of thresholds starting from
4426	 * current_threshold and check if a threshold is crossed.
4427	 * If none of thresholds below usage is crossed, we read
4428	 * only one element of the array here.
4429	 */
4430	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4431		eventfd_signal(t->entries[i].eventfd);
4432
4433	/* i = current_threshold + 1 */
4434	i++;
4435
4436	/*
4437	 * Iterate forward over array of thresholds starting from
4438	 * current_threshold+1 and check if a threshold is crossed.
4439	 * If none of thresholds above usage is crossed, we read
4440	 * only one element of the array here.
4441	 */
4442	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4443		eventfd_signal(t->entries[i].eventfd);
4444
4445	/* Update current_threshold */
4446	t->current_threshold = i - 1;
4447unlock:
4448	rcu_read_unlock();
4449}
4450
4451static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4452{
4453	while (memcg) {
4454		__mem_cgroup_threshold(memcg, false);
4455		if (do_memsw_account())
4456			__mem_cgroup_threshold(memcg, true);
4457
4458		memcg = parent_mem_cgroup(memcg);
4459	}
4460}
4461
4462static int compare_thresholds(const void *a, const void *b)
4463{
4464	const struct mem_cgroup_threshold *_a = a;
4465	const struct mem_cgroup_threshold *_b = b;
4466
4467	if (_a->threshold > _b->threshold)
4468		return 1;
4469
4470	if (_a->threshold < _b->threshold)
4471		return -1;
4472
4473	return 0;
4474}
4475
4476static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4477{
4478	struct mem_cgroup_eventfd_list *ev;
4479
4480	spin_lock(&memcg_oom_lock);
4481
4482	list_for_each_entry(ev, &memcg->oom_notify, list)
4483		eventfd_signal(ev->eventfd);
4484
4485	spin_unlock(&memcg_oom_lock);
4486	return 0;
4487}
4488
4489static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4490{
4491	struct mem_cgroup *iter;
4492
4493	for_each_mem_cgroup_tree(iter, memcg)
4494		mem_cgroup_oom_notify_cb(iter);
4495}
4496
4497static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4498	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4499{
4500	struct mem_cgroup_thresholds *thresholds;
4501	struct mem_cgroup_threshold_ary *new;
4502	unsigned long threshold;
4503	unsigned long usage;
4504	int i, size, ret;
4505
4506	ret = page_counter_memparse(args, "-1", &threshold);
4507	if (ret)
4508		return ret;
4509
4510	mutex_lock(&memcg->thresholds_lock);
4511
4512	if (type == _MEM) {
4513		thresholds = &memcg->thresholds;
4514		usage = mem_cgroup_usage(memcg, false);
4515	} else if (type == _MEMSWAP) {
4516		thresholds = &memcg->memsw_thresholds;
4517		usage = mem_cgroup_usage(memcg, true);
4518	} else
4519		BUG();
4520
4521	/* Check if a threshold crossed before adding a new one */
4522	if (thresholds->primary)
4523		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4524
4525	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4526
4527	/* Allocate memory for new array of thresholds */
4528	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
 
4529	if (!new) {
4530		ret = -ENOMEM;
4531		goto unlock;
4532	}
4533	new->size = size;
4534
4535	/* Copy thresholds (if any) to new array */
4536	if (thresholds->primary)
4537		memcpy(new->entries, thresholds->primary->entries,
4538		       flex_array_size(new, entries, size - 1));
 
4539
4540	/* Add new threshold */
4541	new->entries[size - 1].eventfd = eventfd;
4542	new->entries[size - 1].threshold = threshold;
4543
4544	/* Sort thresholds. Registering of new threshold isn't time-critical */
4545	sort(new->entries, size, sizeof(*new->entries),
4546			compare_thresholds, NULL);
4547
4548	/* Find current threshold */
4549	new->current_threshold = -1;
4550	for (i = 0; i < size; i++) {
4551		if (new->entries[i].threshold <= usage) {
4552			/*
4553			 * new->current_threshold will not be used until
4554			 * rcu_assign_pointer(), so it's safe to increment
4555			 * it here.
4556			 */
4557			++new->current_threshold;
4558		} else
4559			break;
4560	}
4561
4562	/* Free old spare buffer and save old primary buffer as spare */
4563	kfree(thresholds->spare);
4564	thresholds->spare = thresholds->primary;
4565
4566	rcu_assign_pointer(thresholds->primary, new);
4567
4568	/* To be sure that nobody uses thresholds */
4569	synchronize_rcu();
4570
4571unlock:
4572	mutex_unlock(&memcg->thresholds_lock);
4573
4574	return ret;
4575}
4576
4577static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4578	struct eventfd_ctx *eventfd, const char *args)
4579{
4580	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4581}
4582
4583static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4584	struct eventfd_ctx *eventfd, const char *args)
4585{
4586	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4587}
4588
4589static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4590	struct eventfd_ctx *eventfd, enum res_type type)
4591{
4592	struct mem_cgroup_thresholds *thresholds;
4593	struct mem_cgroup_threshold_ary *new;
4594	unsigned long usage;
4595	int i, j, size, entries;
4596
4597	mutex_lock(&memcg->thresholds_lock);
4598
4599	if (type == _MEM) {
4600		thresholds = &memcg->thresholds;
4601		usage = mem_cgroup_usage(memcg, false);
4602	} else if (type == _MEMSWAP) {
4603		thresholds = &memcg->memsw_thresholds;
4604		usage = mem_cgroup_usage(memcg, true);
4605	} else
4606		BUG();
4607
4608	if (!thresholds->primary)
4609		goto unlock;
4610
4611	/* Check if a threshold crossed before removing */
4612	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4613
4614	/* Calculate new number of threshold */
4615	size = entries = 0;
4616	for (i = 0; i < thresholds->primary->size; i++) {
4617		if (thresholds->primary->entries[i].eventfd != eventfd)
4618			size++;
4619		else
4620			entries++;
4621	}
4622
4623	new = thresholds->spare;
4624
4625	/* If no items related to eventfd have been cleared, nothing to do */
4626	if (!entries)
4627		goto unlock;
4628
4629	/* Set thresholds array to NULL if we don't have thresholds */
4630	if (!size) {
4631		kfree(new);
4632		new = NULL;
4633		goto swap_buffers;
4634	}
4635
4636	new->size = size;
4637
4638	/* Copy thresholds and find current threshold */
4639	new->current_threshold = -1;
4640	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4641		if (thresholds->primary->entries[i].eventfd == eventfd)
4642			continue;
4643
4644		new->entries[j] = thresholds->primary->entries[i];
4645		if (new->entries[j].threshold <= usage) {
4646			/*
4647			 * new->current_threshold will not be used
4648			 * until rcu_assign_pointer(), so it's safe to increment
4649			 * it here.
4650			 */
4651			++new->current_threshold;
4652		}
4653		j++;
4654	}
4655
4656swap_buffers:
4657	/* Swap primary and spare array */
4658	thresholds->spare = thresholds->primary;
4659
4660	rcu_assign_pointer(thresholds->primary, new);
4661
4662	/* To be sure that nobody uses thresholds */
4663	synchronize_rcu();
4664
4665	/* If all events are unregistered, free the spare array */
4666	if (!new) {
4667		kfree(thresholds->spare);
4668		thresholds->spare = NULL;
4669	}
4670unlock:
4671	mutex_unlock(&memcg->thresholds_lock);
4672}
4673
4674static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4675	struct eventfd_ctx *eventfd)
4676{
4677	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4678}
4679
4680static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4681	struct eventfd_ctx *eventfd)
4682{
4683	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4684}
4685
4686static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4687	struct eventfd_ctx *eventfd, const char *args)
4688{
4689	struct mem_cgroup_eventfd_list *event;
4690
4691	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4692	if (!event)
4693		return -ENOMEM;
4694
4695	spin_lock(&memcg_oom_lock);
4696
4697	event->eventfd = eventfd;
4698	list_add(&event->list, &memcg->oom_notify);
4699
4700	/* already in OOM ? */
4701	if (memcg->under_oom)
4702		eventfd_signal(eventfd);
4703	spin_unlock(&memcg_oom_lock);
4704
4705	return 0;
4706}
4707
4708static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4709	struct eventfd_ctx *eventfd)
4710{
4711	struct mem_cgroup_eventfd_list *ev, *tmp;
4712
4713	spin_lock(&memcg_oom_lock);
4714
4715	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4716		if (ev->eventfd == eventfd) {
4717			list_del(&ev->list);
4718			kfree(ev);
4719		}
4720	}
4721
4722	spin_unlock(&memcg_oom_lock);
4723}
4724
4725static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4726{
4727	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4728
4729	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4730	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4731	seq_printf(sf, "oom_kill %lu\n",
4732		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4733	return 0;
4734}
4735
4736static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4737	struct cftype *cft, u64 val)
4738{
4739	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4740
4741	/* cannot set to root cgroup and only 0 and 1 are allowed */
4742	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4743		return -EINVAL;
4744
4745	WRITE_ONCE(memcg->oom_kill_disable, val);
4746	if (!val)
4747		memcg_oom_recover(memcg);
4748
4749	return 0;
4750}
4751
4752#ifdef CONFIG_CGROUP_WRITEBACK
4753
4754#include <trace/events/writeback.h>
 
 
 
4755
4756static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4757{
4758	return wb_domain_init(&memcg->cgwb_domain, gfp);
4759}
4760
4761static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4762{
4763	wb_domain_exit(&memcg->cgwb_domain);
4764}
4765
4766static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4767{
4768	wb_domain_size_changed(&memcg->cgwb_domain);
4769}
4770
4771struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4772{
4773	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4774
4775	if (!memcg->css.parent)
4776		return NULL;
4777
4778	return &memcg->cgwb_domain;
4779}
4780
4781/**
4782 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4783 * @wb: bdi_writeback in question
4784 * @pfilepages: out parameter for number of file pages
4785 * @pheadroom: out parameter for number of allocatable pages according to memcg
4786 * @pdirty: out parameter for number of dirty pages
4787 * @pwriteback: out parameter for number of pages under writeback
4788 *
4789 * Determine the numbers of file, headroom, dirty, and writeback pages in
4790 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4791 * is a bit more involved.
4792 *
4793 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4794 * headroom is calculated as the lowest headroom of itself and the
4795 * ancestors.  Note that this doesn't consider the actual amount of
4796 * available memory in the system.  The caller should further cap
4797 * *@pheadroom accordingly.
4798 */
4799void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4800			 unsigned long *pheadroom, unsigned long *pdirty,
4801			 unsigned long *pwriteback)
4802{
4803	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4804	struct mem_cgroup *parent;
4805
4806	mem_cgroup_flush_stats_ratelimited(memcg);
4807
4808	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4809	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4810	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4811			memcg_page_state(memcg, NR_ACTIVE_FILE);
 
4812
4813	*pheadroom = PAGE_COUNTER_MAX;
4814	while ((parent = parent_mem_cgroup(memcg))) {
4815		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4816					    READ_ONCE(memcg->memory.high));
4817		unsigned long used = page_counter_read(&memcg->memory);
4818
4819		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4820		memcg = parent;
4821	}
4822}
4823
4824/*
4825 * Foreign dirty flushing
4826 *
4827 * There's an inherent mismatch between memcg and writeback.  The former
4828 * tracks ownership per-page while the latter per-inode.  This was a
4829 * deliberate design decision because honoring per-page ownership in the
4830 * writeback path is complicated, may lead to higher CPU and IO overheads
4831 * and deemed unnecessary given that write-sharing an inode across
4832 * different cgroups isn't a common use-case.
4833 *
4834 * Combined with inode majority-writer ownership switching, this works well
4835 * enough in most cases but there are some pathological cases.  For
4836 * example, let's say there are two cgroups A and B which keep writing to
4837 * different but confined parts of the same inode.  B owns the inode and
4838 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4839 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4840 * triggering background writeback.  A will be slowed down without a way to
4841 * make writeback of the dirty pages happen.
4842 *
4843 * Conditions like the above can lead to a cgroup getting repeatedly and
4844 * severely throttled after making some progress after each
4845 * dirty_expire_interval while the underlying IO device is almost
4846 * completely idle.
4847 *
4848 * Solving this problem completely requires matching the ownership tracking
4849 * granularities between memcg and writeback in either direction.  However,
4850 * the more egregious behaviors can be avoided by simply remembering the
4851 * most recent foreign dirtying events and initiating remote flushes on
4852 * them when local writeback isn't enough to keep the memory clean enough.
4853 *
4854 * The following two functions implement such mechanism.  When a foreign
4855 * page - a page whose memcg and writeback ownerships don't match - is
4856 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4857 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4858 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4859 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4860 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4861 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4862 * limited to MEMCG_CGWB_FRN_CNT.
4863 *
4864 * The mechanism only remembers IDs and doesn't hold any object references.
4865 * As being wrong occasionally doesn't matter, updates and accesses to the
4866 * records are lockless and racy.
4867 */
4868void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4869					     struct bdi_writeback *wb)
4870{
4871	struct mem_cgroup *memcg = folio_memcg(folio);
4872	struct memcg_cgwb_frn *frn;
4873	u64 now = get_jiffies_64();
4874	u64 oldest_at = now;
4875	int oldest = -1;
4876	int i;
4877
4878	trace_track_foreign_dirty(folio, wb);
4879
4880	/*
4881	 * Pick the slot to use.  If there is already a slot for @wb, keep
4882	 * using it.  If not replace the oldest one which isn't being
4883	 * written out.
4884	 */
4885	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4886		frn = &memcg->cgwb_frn[i];
4887		if (frn->bdi_id == wb->bdi->id &&
4888		    frn->memcg_id == wb->memcg_css->id)
4889			break;
4890		if (time_before64(frn->at, oldest_at) &&
4891		    atomic_read(&frn->done.cnt) == 1) {
4892			oldest = i;
4893			oldest_at = frn->at;
4894		}
4895	}
4896
4897	if (i < MEMCG_CGWB_FRN_CNT) {
4898		/*
4899		 * Re-using an existing one.  Update timestamp lazily to
4900		 * avoid making the cacheline hot.  We want them to be
4901		 * reasonably up-to-date and significantly shorter than
4902		 * dirty_expire_interval as that's what expires the record.
4903		 * Use the shorter of 1s and dirty_expire_interval / 8.
4904		 */
4905		unsigned long update_intv =
4906			min_t(unsigned long, HZ,
4907			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4908
4909		if (time_before64(frn->at, now - update_intv))
4910			frn->at = now;
4911	} else if (oldest >= 0) {
4912		/* replace the oldest free one */
4913		frn = &memcg->cgwb_frn[oldest];
4914		frn->bdi_id = wb->bdi->id;
4915		frn->memcg_id = wb->memcg_css->id;
4916		frn->at = now;
4917	}
4918}
4919
4920/* issue foreign writeback flushes for recorded foreign dirtying events */
4921void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4922{
4923	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4924	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4925	u64 now = jiffies_64;
4926	int i;
4927
4928	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4929		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4930
4931		/*
4932		 * If the record is older than dirty_expire_interval,
4933		 * writeback on it has already started.  No need to kick it
4934		 * off again.  Also, don't start a new one if there's
4935		 * already one in flight.
4936		 */
4937		if (time_after64(frn->at, now - intv) &&
4938		    atomic_read(&frn->done.cnt) == 1) {
4939			frn->at = 0;
4940			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4941			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4942					       WB_REASON_FOREIGN_FLUSH,
4943					       &frn->done);
4944		}
4945	}
4946}
4947
4948#else	/* CONFIG_CGROUP_WRITEBACK */
4949
4950static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4951{
4952	return 0;
4953}
4954
4955static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4956{
4957}
4958
4959static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4960{
4961}
4962
4963#endif	/* CONFIG_CGROUP_WRITEBACK */
4964
4965/*
4966 * DO NOT USE IN NEW FILES.
4967 *
4968 * "cgroup.event_control" implementation.
4969 *
4970 * This is way over-engineered.  It tries to support fully configurable
4971 * events for each user.  Such level of flexibility is completely
4972 * unnecessary especially in the light of the planned unified hierarchy.
4973 *
4974 * Please deprecate this and replace with something simpler if at all
4975 * possible.
4976 */
4977
4978/*
4979 * Unregister event and free resources.
4980 *
4981 * Gets called from workqueue.
4982 */
4983static void memcg_event_remove(struct work_struct *work)
4984{
4985	struct mem_cgroup_event *event =
4986		container_of(work, struct mem_cgroup_event, remove);
4987	struct mem_cgroup *memcg = event->memcg;
4988
4989	remove_wait_queue(event->wqh, &event->wait);
4990
4991	event->unregister_event(memcg, event->eventfd);
4992
4993	/* Notify userspace the event is going away. */
4994	eventfd_signal(event->eventfd);
4995
4996	eventfd_ctx_put(event->eventfd);
4997	kfree(event);
4998	css_put(&memcg->css);
4999}
5000
5001/*
5002 * Gets called on EPOLLHUP on eventfd when user closes it.
5003 *
5004 * Called with wqh->lock held and interrupts disabled.
5005 */
5006static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
5007			    int sync, void *key)
5008{
5009	struct mem_cgroup_event *event =
5010		container_of(wait, struct mem_cgroup_event, wait);
5011	struct mem_cgroup *memcg = event->memcg;
5012	__poll_t flags = key_to_poll(key);
5013
5014	if (flags & EPOLLHUP) {
5015		/*
5016		 * If the event has been detached at cgroup removal, we
5017		 * can simply return knowing the other side will cleanup
5018		 * for us.
5019		 *
5020		 * We can't race against event freeing since the other
5021		 * side will require wqh->lock via remove_wait_queue(),
5022		 * which we hold.
5023		 */
5024		spin_lock(&memcg->event_list_lock);
5025		if (!list_empty(&event->list)) {
5026			list_del_init(&event->list);
5027			/*
5028			 * We are in atomic context, but cgroup_event_remove()
5029			 * may sleep, so we have to call it in workqueue.
5030			 */
5031			schedule_work(&event->remove);
5032		}
5033		spin_unlock(&memcg->event_list_lock);
5034	}
5035
5036	return 0;
5037}
5038
5039static void memcg_event_ptable_queue_proc(struct file *file,
5040		wait_queue_head_t *wqh, poll_table *pt)
5041{
5042	struct mem_cgroup_event *event =
5043		container_of(pt, struct mem_cgroup_event, pt);
5044
5045	event->wqh = wqh;
5046	add_wait_queue(wqh, &event->wait);
5047}
5048
5049/*
5050 * DO NOT USE IN NEW FILES.
5051 *
5052 * Parse input and register new cgroup event handler.
5053 *
5054 * Input must be in format '<event_fd> <control_fd> <args>'.
5055 * Interpretation of args is defined by control file implementation.
5056 */
5057static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5058					 char *buf, size_t nbytes, loff_t off)
5059{
5060	struct cgroup_subsys_state *css = of_css(of);
5061	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5062	struct mem_cgroup_event *event;
5063	struct cgroup_subsys_state *cfile_css;
5064	unsigned int efd, cfd;
5065	struct fd efile;
5066	struct fd cfile;
5067	struct dentry *cdentry;
5068	const char *name;
5069	char *endp;
5070	int ret;
5071
5072	if (IS_ENABLED(CONFIG_PREEMPT_RT))
5073		return -EOPNOTSUPP;
5074
5075	buf = strstrip(buf);
5076
5077	efd = simple_strtoul(buf, &endp, 10);
5078	if (*endp != ' ')
5079		return -EINVAL;
5080	buf = endp + 1;
5081
5082	cfd = simple_strtoul(buf, &endp, 10);
5083	if ((*endp != ' ') && (*endp != '\0'))
5084		return -EINVAL;
5085	buf = endp + 1;
5086
5087	event = kzalloc(sizeof(*event), GFP_KERNEL);
5088	if (!event)
5089		return -ENOMEM;
5090
5091	event->memcg = memcg;
5092	INIT_LIST_HEAD(&event->list);
5093	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5094	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5095	INIT_WORK(&event->remove, memcg_event_remove);
5096
5097	efile = fdget(efd);
5098	if (!efile.file) {
5099		ret = -EBADF;
5100		goto out_kfree;
5101	}
5102
5103	event->eventfd = eventfd_ctx_fileget(efile.file);
5104	if (IS_ERR(event->eventfd)) {
5105		ret = PTR_ERR(event->eventfd);
5106		goto out_put_efile;
5107	}
5108
5109	cfile = fdget(cfd);
5110	if (!cfile.file) {
5111		ret = -EBADF;
5112		goto out_put_eventfd;
5113	}
5114
5115	/* the process need read permission on control file */
5116	/* AV: shouldn't we check that it's been opened for read instead? */
5117	ret = file_permission(cfile.file, MAY_READ);
5118	if (ret < 0)
5119		goto out_put_cfile;
5120
5121	/*
5122	 * The control file must be a regular cgroup1 file. As a regular cgroup
5123	 * file can't be renamed, it's safe to access its name afterwards.
5124	 */
5125	cdentry = cfile.file->f_path.dentry;
5126	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
5127		ret = -EINVAL;
5128		goto out_put_cfile;
5129	}
5130
5131	/*
5132	 * Determine the event callbacks and set them in @event.  This used
5133	 * to be done via struct cftype but cgroup core no longer knows
5134	 * about these events.  The following is crude but the whole thing
5135	 * is for compatibility anyway.
5136	 *
5137	 * DO NOT ADD NEW FILES.
5138	 */
5139	name = cdentry->d_name.name;
5140
5141	if (!strcmp(name, "memory.usage_in_bytes")) {
5142		event->register_event = mem_cgroup_usage_register_event;
5143		event->unregister_event = mem_cgroup_usage_unregister_event;
5144	} else if (!strcmp(name, "memory.oom_control")) {
5145		event->register_event = mem_cgroup_oom_register_event;
5146		event->unregister_event = mem_cgroup_oom_unregister_event;
5147	} else if (!strcmp(name, "memory.pressure_level")) {
5148		event->register_event = vmpressure_register_event;
5149		event->unregister_event = vmpressure_unregister_event;
5150	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5151		event->register_event = memsw_cgroup_usage_register_event;
5152		event->unregister_event = memsw_cgroup_usage_unregister_event;
5153	} else {
5154		ret = -EINVAL;
5155		goto out_put_cfile;
5156	}
5157
5158	/*
5159	 * Verify @cfile should belong to @css.  Also, remaining events are
5160	 * automatically removed on cgroup destruction but the removal is
5161	 * asynchronous, so take an extra ref on @css.
5162	 */
5163	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5164					       &memory_cgrp_subsys);
5165	ret = -EINVAL;
5166	if (IS_ERR(cfile_css))
5167		goto out_put_cfile;
5168	if (cfile_css != css) {
5169		css_put(cfile_css);
5170		goto out_put_cfile;
5171	}
5172
5173	ret = event->register_event(memcg, event->eventfd, buf);
5174	if (ret)
5175		goto out_put_css;
5176
5177	vfs_poll(efile.file, &event->pt);
5178
5179	spin_lock_irq(&memcg->event_list_lock);
5180	list_add(&event->list, &memcg->event_list);
5181	spin_unlock_irq(&memcg->event_list_lock);
5182
5183	fdput(cfile);
5184	fdput(efile);
5185
5186	return nbytes;
5187
5188out_put_css:
5189	css_put(css);
5190out_put_cfile:
5191	fdput(cfile);
5192out_put_eventfd:
5193	eventfd_ctx_put(event->eventfd);
5194out_put_efile:
5195	fdput(efile);
5196out_kfree:
5197	kfree(event);
5198
5199	return ret;
5200}
5201
5202#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5203static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5204{
5205	/*
5206	 * Deprecated.
5207	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5208	 */
5209	return 0;
5210}
5211#endif
5212
5213static int memory_stat_show(struct seq_file *m, void *v);
5214
5215static struct cftype mem_cgroup_legacy_files[] = {
5216	{
5217		.name = "usage_in_bytes",
5218		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5219		.read_u64 = mem_cgroup_read_u64,
5220	},
5221	{
5222		.name = "max_usage_in_bytes",
5223		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5224		.write = mem_cgroup_reset,
5225		.read_u64 = mem_cgroup_read_u64,
5226	},
5227	{
5228		.name = "limit_in_bytes",
5229		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5230		.write = mem_cgroup_write,
5231		.read_u64 = mem_cgroup_read_u64,
5232	},
5233	{
5234		.name = "soft_limit_in_bytes",
5235		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5236		.write = mem_cgroup_write,
5237		.read_u64 = mem_cgroup_read_u64,
5238	},
5239	{
5240		.name = "failcnt",
5241		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5242		.write = mem_cgroup_reset,
5243		.read_u64 = mem_cgroup_read_u64,
5244	},
5245	{
5246		.name = "stat",
5247		.seq_show = memory_stat_show,
5248	},
5249	{
5250		.name = "force_empty",
5251		.write = mem_cgroup_force_empty_write,
5252	},
5253	{
5254		.name = "use_hierarchy",
5255		.write_u64 = mem_cgroup_hierarchy_write,
5256		.read_u64 = mem_cgroup_hierarchy_read,
5257	},
5258	{
5259		.name = "cgroup.event_control",		/* XXX: for compat */
5260		.write = memcg_write_event_control,
5261		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5262	},
5263	{
5264		.name = "swappiness",
5265		.read_u64 = mem_cgroup_swappiness_read,
5266		.write_u64 = mem_cgroup_swappiness_write,
5267	},
5268	{
5269		.name = "move_charge_at_immigrate",
5270		.read_u64 = mem_cgroup_move_charge_read,
5271		.write_u64 = mem_cgroup_move_charge_write,
5272	},
5273	{
5274		.name = "oom_control",
5275		.seq_show = mem_cgroup_oom_control_read,
5276		.write_u64 = mem_cgroup_oom_control_write,
 
5277	},
5278	{
5279		.name = "pressure_level",
5280		.seq_show = mem_cgroup_dummy_seq_show,
5281	},
5282#ifdef CONFIG_NUMA
5283	{
5284		.name = "numa_stat",
5285		.seq_show = memcg_numa_stat_show,
5286	},
5287#endif
5288	{
5289		.name = "kmem.limit_in_bytes",
5290		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5291		.write = mem_cgroup_write,
5292		.read_u64 = mem_cgroup_read_u64,
5293	},
5294	{
5295		.name = "kmem.usage_in_bytes",
5296		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5297		.read_u64 = mem_cgroup_read_u64,
5298	},
5299	{
5300		.name = "kmem.failcnt",
5301		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5302		.write = mem_cgroup_reset,
5303		.read_u64 = mem_cgroup_read_u64,
5304	},
5305	{
5306		.name = "kmem.max_usage_in_bytes",
5307		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5308		.write = mem_cgroup_reset,
5309		.read_u64 = mem_cgroup_read_u64,
5310	},
5311#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_SLUB_DEBUG)
5312	{
5313		.name = "kmem.slabinfo",
5314		.seq_show = mem_cgroup_slab_show,
 
 
 
5315	},
5316#endif
5317	{
5318		.name = "kmem.tcp.limit_in_bytes",
5319		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5320		.write = mem_cgroup_write,
5321		.read_u64 = mem_cgroup_read_u64,
5322	},
5323	{
5324		.name = "kmem.tcp.usage_in_bytes",
5325		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5326		.read_u64 = mem_cgroup_read_u64,
5327	},
5328	{
5329		.name = "kmem.tcp.failcnt",
5330		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5331		.write = mem_cgroup_reset,
5332		.read_u64 = mem_cgroup_read_u64,
5333	},
5334	{
5335		.name = "kmem.tcp.max_usage_in_bytes",
5336		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5337		.write = mem_cgroup_reset,
5338		.read_u64 = mem_cgroup_read_u64,
5339	},
5340	{ },	/* terminate */
5341};
5342
5343/*
5344 * Private memory cgroup IDR
5345 *
5346 * Swap-out records and page cache shadow entries need to store memcg
5347 * references in constrained space, so we maintain an ID space that is
5348 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5349 * memory-controlled cgroups to 64k.
5350 *
5351 * However, there usually are many references to the offline CSS after
5352 * the cgroup has been destroyed, such as page cache or reclaimable
5353 * slab objects, that don't need to hang on to the ID. We want to keep
5354 * those dead CSS from occupying IDs, or we might quickly exhaust the
5355 * relatively small ID space and prevent the creation of new cgroups
5356 * even when there are much fewer than 64k cgroups - possibly none.
5357 *
5358 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5359 * be freed and recycled when it's no longer needed, which is usually
5360 * when the CSS is offlined.
5361 *
5362 * The only exception to that are records of swapped out tmpfs/shmem
5363 * pages that need to be attributed to live ancestors on swapin. But
5364 * those references are manageable from userspace.
5365 */
5366
5367#define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5368static DEFINE_IDR(mem_cgroup_idr);
5369
5370static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5371{
5372	if (memcg->id.id > 0) {
5373		idr_remove(&mem_cgroup_idr, memcg->id.id);
5374		memcg->id.id = 0;
5375	}
5376}
5377
5378static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5379						  unsigned int n)
5380{
5381	refcount_add(n, &memcg->id.ref);
 
5382}
5383
5384static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5385{
5386	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5387		mem_cgroup_id_remove(memcg);
 
 
5388
5389		/* Memcg ID pins CSS */
5390		css_put(&memcg->css);
5391	}
5392}
5393
 
 
 
 
 
5394static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5395{
5396	mem_cgroup_id_put_many(memcg, 1);
5397}
5398
5399/**
5400 * mem_cgroup_from_id - look up a memcg from a memcg id
5401 * @id: the memcg id to look up
5402 *
5403 * Caller must hold rcu_read_lock().
5404 */
5405struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5406{
5407	WARN_ON_ONCE(!rcu_read_lock_held());
5408	return idr_find(&mem_cgroup_idr, id);
5409}
5410
5411#ifdef CONFIG_SHRINKER_DEBUG
5412struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5413{
5414	struct cgroup *cgrp;
5415	struct cgroup_subsys_state *css;
5416	struct mem_cgroup *memcg;
5417
5418	cgrp = cgroup_get_from_id(ino);
5419	if (IS_ERR(cgrp))
5420		return ERR_CAST(cgrp);
5421
5422	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5423	if (css)
5424		memcg = container_of(css, struct mem_cgroup, css);
5425	else
5426		memcg = ERR_PTR(-ENOENT);
5427
5428	cgroup_put(cgrp);
5429
5430	return memcg;
5431}
5432#endif
5433
5434static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5435{
5436	struct mem_cgroup_per_node *pn;
5437
5438	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
 
 
 
 
 
 
 
 
 
 
5439	if (!pn)
5440		return 1;
5441
5442	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5443						   GFP_KERNEL_ACCOUNT);
5444	if (!pn->lruvec_stats_percpu) {
5445		kfree(pn);
5446		return 1;
5447	}
5448
5449	lruvec_init(&pn->lruvec);
 
 
5450	pn->memcg = memcg;
5451
5452	memcg->nodeinfo[node] = pn;
5453	return 0;
5454}
5455
5456static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5457{
5458	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5459
5460	if (!pn)
5461		return;
5462
5463	free_percpu(pn->lruvec_stats_percpu);
5464	kfree(pn);
5465}
5466
5467static void __mem_cgroup_free(struct mem_cgroup *memcg)
5468{
5469	int node;
5470
5471	if (memcg->orig_objcg)
5472		obj_cgroup_put(memcg->orig_objcg);
5473
5474	for_each_node(node)
5475		free_mem_cgroup_per_node_info(memcg, node);
5476	kfree(memcg->vmstats);
5477	free_percpu(memcg->vmstats_percpu);
5478	kfree(memcg);
5479}
5480
5481static void mem_cgroup_free(struct mem_cgroup *memcg)
5482{
5483	lru_gen_exit_memcg(memcg);
5484	memcg_wb_domain_exit(memcg);
5485	__mem_cgroup_free(memcg);
5486}
5487
5488static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
5489{
5490	struct memcg_vmstats_percpu *statc, *pstatc;
5491	struct mem_cgroup *memcg;
5492	int node, cpu;
5493	int __maybe_unused i;
5494	long error = -ENOMEM;
 
 
5495
5496	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5497	if (!memcg)
5498		return ERR_PTR(error);
5499
5500	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5501				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5502	if (memcg->id.id < 0) {
5503		error = memcg->id.id;
5504		goto fail;
5505	}
5506
5507	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5508	if (!memcg->vmstats)
5509		goto fail;
5510
5511	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5512						 GFP_KERNEL_ACCOUNT);
5513	if (!memcg->vmstats_percpu)
5514		goto fail;
5515
5516	for_each_possible_cpu(cpu) {
5517		if (parent)
5518			pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
5519		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5520		statc->parent = parent ? pstatc : NULL;
5521		statc->vmstats = memcg->vmstats;
5522	}
5523
5524	for_each_node(node)
5525		if (alloc_mem_cgroup_per_node_info(memcg, node))
5526			goto fail;
5527
5528	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5529		goto fail;
5530
5531	INIT_WORK(&memcg->high_work, high_work_func);
 
5532	INIT_LIST_HEAD(&memcg->oom_notify);
5533	mutex_init(&memcg->thresholds_lock);
5534	spin_lock_init(&memcg->move_lock);
5535	vmpressure_init(&memcg->vmpressure);
5536	INIT_LIST_HEAD(&memcg->event_list);
5537	spin_lock_init(&memcg->event_list_lock);
5538	memcg->socket_pressure = jiffies;
5539#ifdef CONFIG_MEMCG_KMEM
5540	memcg->kmemcg_id = -1;
5541	INIT_LIST_HEAD(&memcg->objcg_list);
5542#endif
5543#ifdef CONFIG_CGROUP_WRITEBACK
5544	INIT_LIST_HEAD(&memcg->cgwb_list);
5545	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5546		memcg->cgwb_frn[i].done =
5547			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5548#endif
5549#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5550	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5551	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5552	memcg->deferred_split_queue.split_queue_len = 0;
5553#endif
5554	lru_gen_init_memcg(memcg);
5555	return memcg;
5556fail:
5557	mem_cgroup_id_remove(memcg);
 
5558	__mem_cgroup_free(memcg);
5559	return ERR_PTR(error);
5560}
5561
5562static struct cgroup_subsys_state * __ref
5563mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5564{
5565	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5566	struct mem_cgroup *memcg, *old_memcg;
 
 
 
 
 
5567
5568	old_memcg = set_active_memcg(parent);
5569	memcg = mem_cgroup_alloc(parent);
5570	set_active_memcg(old_memcg);
5571	if (IS_ERR(memcg))
5572		return ERR_CAST(memcg);
5573
5574	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5575	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5576#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5577	memcg->zswap_max = PAGE_COUNTER_MAX;
5578	WRITE_ONCE(memcg->zswap_writeback,
5579		!parent || READ_ONCE(parent->zswap_writeback));
5580#endif
5581	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5582	if (parent) {
5583		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5584		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5585
 
 
5586		page_counter_init(&memcg->memory, &parent->memory);
5587		page_counter_init(&memcg->swap, &parent->swap);
 
5588		page_counter_init(&memcg->kmem, &parent->kmem);
5589		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5590	} else {
5591		init_memcg_events();
5592		page_counter_init(&memcg->memory, NULL);
5593		page_counter_init(&memcg->swap, NULL);
 
5594		page_counter_init(&memcg->kmem, NULL);
5595		page_counter_init(&memcg->tcpmem, NULL);
 
 
 
 
 
 
 
 
5596
 
 
5597		root_mem_cgroup = memcg;
5598		return &memcg->css;
5599	}
5600
 
 
 
 
5601	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5602		static_branch_inc(&memcg_sockets_enabled_key);
5603
5604#if defined(CONFIG_MEMCG_KMEM)
5605	if (!cgroup_memory_nobpf)
5606		static_branch_inc(&memcg_bpf_enabled_key);
5607#endif
5608
5609	return &memcg->css;
 
 
 
5610}
5611
5612static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5613{
5614	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5615
5616	if (memcg_online_kmem(memcg))
5617		goto remove_id;
5618
5619	/*
5620	 * A memcg must be visible for expand_shrinker_info()
5621	 * by the time the maps are allocated. So, we allocate maps
5622	 * here, when for_each_mem_cgroup() can't skip it.
5623	 */
5624	if (alloc_shrinker_info(memcg))
5625		goto offline_kmem;
5626
5627	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
5628		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5629				   FLUSH_TIME);
5630	lru_gen_online_memcg(memcg);
5631
5632	/* Online state pins memcg ID, memcg ID pins CSS */
5633	refcount_set(&memcg->id.ref, 1);
5634	css_get(css);
5635
5636	/*
5637	 * Ensure mem_cgroup_from_id() works once we're fully online.
5638	 *
5639	 * We could do this earlier and require callers to filter with
5640	 * css_tryget_online(). But right now there are no users that
5641	 * need earlier access, and the workingset code relies on the
5642	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5643	 * publish it here at the end of onlining. This matches the
5644	 * regular ID destruction during offlining.
5645	 */
5646	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5647
5648	return 0;
5649offline_kmem:
5650	memcg_offline_kmem(memcg);
5651remove_id:
5652	mem_cgroup_id_remove(memcg);
5653	return -ENOMEM;
5654}
5655
5656static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5657{
5658	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5659	struct mem_cgroup_event *event, *tmp;
5660
5661	/*
5662	 * Unregister events and notify userspace.
5663	 * Notify userspace about cgroup removing only after rmdir of cgroup
5664	 * directory to avoid race between userspace and kernelspace.
5665	 */
5666	spin_lock_irq(&memcg->event_list_lock);
5667	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5668		list_del_init(&event->list);
5669		schedule_work(&event->remove);
5670	}
5671	spin_unlock_irq(&memcg->event_list_lock);
5672
5673	page_counter_set_min(&memcg->memory, 0);
5674	page_counter_set_low(&memcg->memory, 0);
5675
5676	zswap_memcg_offline_cleanup(memcg);
5677
5678	memcg_offline_kmem(memcg);
5679	reparent_shrinker_deferred(memcg);
5680	wb_memcg_offline(memcg);
5681	lru_gen_offline_memcg(memcg);
5682
5683	drain_all_stock(memcg);
5684
5685	mem_cgroup_id_put(memcg);
5686}
5687
5688static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5689{
5690	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5691
5692	invalidate_reclaim_iterators(memcg);
5693	lru_gen_release_memcg(memcg);
5694}
5695
5696static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5697{
5698	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5699	int __maybe_unused i;
5700
5701#ifdef CONFIG_CGROUP_WRITEBACK
5702	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5703		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5704#endif
5705	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5706		static_branch_dec(&memcg_sockets_enabled_key);
5707
5708	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5709		static_branch_dec(&memcg_sockets_enabled_key);
5710
5711#if defined(CONFIG_MEMCG_KMEM)
5712	if (!cgroup_memory_nobpf)
5713		static_branch_dec(&memcg_bpf_enabled_key);
5714#endif
5715
5716	vmpressure_cleanup(&memcg->vmpressure);
5717	cancel_work_sync(&memcg->high_work);
5718	mem_cgroup_remove_from_trees(memcg);
5719	free_shrinker_info(memcg);
5720	mem_cgroup_free(memcg);
5721}
5722
5723/**
5724 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5725 * @css: the target css
5726 *
5727 * Reset the states of the mem_cgroup associated with @css.  This is
5728 * invoked when the userland requests disabling on the default hierarchy
5729 * but the memcg is pinned through dependency.  The memcg should stop
5730 * applying policies and should revert to the vanilla state as it may be
5731 * made visible again.
5732 *
5733 * The current implementation only resets the essential configurations.
5734 * This needs to be expanded to cover all the visible parts.
5735 */
5736static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5737{
5738	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5739
5740	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5741	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5742	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5743	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5744	page_counter_set_min(&memcg->memory, 0);
5745	page_counter_set_low(&memcg->memory, 0);
5746	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5747	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5748	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5749	memcg_wb_domain_size_changed(memcg);
5750}
5751
5752static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5753{
5754	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5755	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5756	struct memcg_vmstats_percpu *statc;
5757	long delta, delta_cpu, v;
5758	int i, nid;
5759
5760	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5761
5762	for (i = 0; i < MEMCG_NR_STAT; i++) {
5763		/*
5764		 * Collect the aggregated propagation counts of groups
5765		 * below us. We're in a per-cpu loop here and this is
5766		 * a global counter, so the first cycle will get them.
5767		 */
5768		delta = memcg->vmstats->state_pending[i];
5769		if (delta)
5770			memcg->vmstats->state_pending[i] = 0;
5771
5772		/* Add CPU changes on this level since the last flush */
5773		delta_cpu = 0;
5774		v = READ_ONCE(statc->state[i]);
5775		if (v != statc->state_prev[i]) {
5776			delta_cpu = v - statc->state_prev[i];
5777			delta += delta_cpu;
5778			statc->state_prev[i] = v;
5779		}
5780
5781		/* Aggregate counts on this level and propagate upwards */
5782		if (delta_cpu)
5783			memcg->vmstats->state_local[i] += delta_cpu;
5784
5785		if (delta) {
5786			memcg->vmstats->state[i] += delta;
5787			if (parent)
5788				parent->vmstats->state_pending[i] += delta;
5789		}
5790	}
5791
5792	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5793		delta = memcg->vmstats->events_pending[i];
5794		if (delta)
5795			memcg->vmstats->events_pending[i] = 0;
5796
5797		delta_cpu = 0;
5798		v = READ_ONCE(statc->events[i]);
5799		if (v != statc->events_prev[i]) {
5800			delta_cpu = v - statc->events_prev[i];
5801			delta += delta_cpu;
5802			statc->events_prev[i] = v;
5803		}
5804
5805		if (delta_cpu)
5806			memcg->vmstats->events_local[i] += delta_cpu;
5807
5808		if (delta) {
5809			memcg->vmstats->events[i] += delta;
5810			if (parent)
5811				parent->vmstats->events_pending[i] += delta;
5812		}
5813	}
5814
5815	for_each_node_state(nid, N_MEMORY) {
5816		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5817		struct mem_cgroup_per_node *ppn = NULL;
5818		struct lruvec_stats_percpu *lstatc;
5819
5820		if (parent)
5821			ppn = parent->nodeinfo[nid];
5822
5823		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5824
5825		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5826			delta = pn->lruvec_stats.state_pending[i];
5827			if (delta)
5828				pn->lruvec_stats.state_pending[i] = 0;
5829
5830			delta_cpu = 0;
5831			v = READ_ONCE(lstatc->state[i]);
5832			if (v != lstatc->state_prev[i]) {
5833				delta_cpu = v - lstatc->state_prev[i];
5834				delta += delta_cpu;
5835				lstatc->state_prev[i] = v;
5836			}
5837
5838			if (delta_cpu)
5839				pn->lruvec_stats.state_local[i] += delta_cpu;
5840
5841			if (delta) {
5842				pn->lruvec_stats.state[i] += delta;
5843				if (ppn)
5844					ppn->lruvec_stats.state_pending[i] += delta;
5845			}
5846		}
5847	}
5848	statc->stats_updates = 0;
5849	/* We are in a per-cpu loop here, only do the atomic write once */
5850	if (atomic64_read(&memcg->vmstats->stats_updates))
5851		atomic64_set(&memcg->vmstats->stats_updates, 0);
5852}
5853
5854#ifdef CONFIG_MMU
5855/* Handlers for move charge at task migration. */
5856static int mem_cgroup_do_precharge(unsigned long count)
5857{
5858	int ret;
5859
5860	/* Try a single bulk charge without reclaim first, kswapd may wake */
5861	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5862	if (!ret) {
5863		mc.precharge += count;
5864		return ret;
5865	}
5866
5867	/* Try charges one by one with reclaim, but do not retry */
5868	while (count--) {
5869		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5870		if (ret)
5871			return ret;
5872		mc.precharge++;
5873		cond_resched();
5874	}
5875	return 0;
5876}
5877
5878union mc_target {
5879	struct folio	*folio;
5880	swp_entry_t	ent;
5881};
5882
5883enum mc_target_type {
5884	MC_TARGET_NONE = 0,
5885	MC_TARGET_PAGE,
5886	MC_TARGET_SWAP,
5887	MC_TARGET_DEVICE,
5888};
5889
5890static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5891						unsigned long addr, pte_t ptent)
5892{
5893	struct page *page = vm_normal_page(vma, addr, ptent);
5894
5895	if (!page)
5896		return NULL;
5897	if (PageAnon(page)) {
5898		if (!(mc.flags & MOVE_ANON))
5899			return NULL;
5900	} else {
5901		if (!(mc.flags & MOVE_FILE))
5902			return NULL;
5903	}
5904	get_page(page);
 
5905
5906	return page;
5907}
5908
5909#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5910static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5911			pte_t ptent, swp_entry_t *entry)
5912{
5913	struct page *page = NULL;
5914	swp_entry_t ent = pte_to_swp_entry(ptent);
5915
5916	if (!(mc.flags & MOVE_ANON))
5917		return NULL;
5918
5919	/*
5920	 * Handle device private pages that are not accessible by the CPU, but
5921	 * stored as special swap entries in the page table.
 
5922	 */
5923	if (is_device_private_entry(ent)) {
5924		page = pfn_swap_entry_to_page(ent);
5925		if (!get_page_unless_zero(page))
 
 
 
 
5926			return NULL;
5927		return page;
5928	}
5929
5930	if (non_swap_entry(ent))
5931		return NULL;
5932
5933	/*
5934	 * Because swap_cache_get_folio() updates some statistics counter,
5935	 * we call find_get_page() with swapper_space directly.
5936	 */
5937	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5938	entry->val = ent.val;
 
5939
5940	return page;
5941}
5942#else
5943static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5944			pte_t ptent, swp_entry_t *entry)
5945{
5946	return NULL;
5947}
5948#endif
5949
5950static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5951			unsigned long addr, pte_t ptent)
5952{
5953	unsigned long index;
5954	struct folio *folio;
 
5955
5956	if (!vma->vm_file) /* anonymous vma */
5957		return NULL;
5958	if (!(mc.flags & MOVE_FILE))
5959		return NULL;
5960
5961	/* folio is moved even if it's not RSS of this task(page-faulted). */
 
 
 
 
5962	/* shmem/tmpfs may report page out on swap: account for that too. */
5963	index = linear_page_index(vma, addr);
5964	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5965	if (IS_ERR(folio))
5966		return NULL;
5967	return folio_file_page(folio, index);
 
 
 
 
 
 
 
 
 
 
5968}
5969
5970/**
5971 * mem_cgroup_move_account - move account of the folio
5972 * @folio: The folio.
5973 * @compound: charge the page as compound or small page
5974 * @from: mem_cgroup which the folio is moved from.
5975 * @to:	mem_cgroup which the folio is moved to. @from != @to.
5976 *
5977 * The folio must be locked and not on the LRU.
5978 *
5979 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5980 * from old cgroup.
5981 */
5982static int mem_cgroup_move_account(struct folio *folio,
5983				   bool compound,
5984				   struct mem_cgroup *from,
5985				   struct mem_cgroup *to)
5986{
5987	struct lruvec *from_vec, *to_vec;
5988	struct pglist_data *pgdat;
5989	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5990	int nid, ret;
5991
5992	VM_BUG_ON(from == to);
5993	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5994	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5995	VM_BUG_ON(compound && !folio_test_large(folio));
 
 
 
 
 
 
 
5996
5997	ret = -EINVAL;
5998	if (folio_memcg(folio) != from)
5999		goto out;
6000
6001	pgdat = folio_pgdat(folio);
6002	from_vec = mem_cgroup_lruvec(from, pgdat);
6003	to_vec = mem_cgroup_lruvec(to, pgdat);
6004
6005	folio_memcg_lock(folio);
6006
6007	if (folio_test_anon(folio)) {
6008		if (folio_mapped(folio)) {
6009			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
6010			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
6011			if (folio_test_pmd_mappable(folio)) {
6012				__mod_lruvec_state(from_vec, NR_ANON_THPS,
6013						   -nr_pages);
6014				__mod_lruvec_state(to_vec, NR_ANON_THPS,
6015						   nr_pages);
6016			}
6017		}
6018	} else {
6019		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
6020		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
6021
6022		if (folio_test_swapbacked(folio)) {
6023			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
6024			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
6025		}
6026
6027		if (folio_mapped(folio)) {
6028			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
6029			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
6030		}
6031
6032		if (folio_test_dirty(folio)) {
6033			struct address_space *mapping = folio_mapping(folio);
 
 
 
 
 
6034
6035			if (mapping_can_writeback(mapping)) {
6036				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
6037						   -nr_pages);
6038				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
6039						   nr_pages);
6040			}
6041		}
6042	}
6043
6044#ifdef CONFIG_SWAP
6045	if (folio_test_swapcache(folio)) {
6046		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
6047		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
6048	}
6049#endif
6050	if (folio_test_writeback(folio)) {
6051		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
6052		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
6053	}
6054
6055	/*
6056	 * All state has been migrated, let's switch to the new memcg.
6057	 *
6058	 * It is safe to change page's memcg here because the page
6059	 * is referenced, charged, isolated, and locked: we can't race
6060	 * with (un)charging, migration, LRU putback, or anything else
6061	 * that would rely on a stable page's memory cgroup.
6062	 *
6063	 * Note that folio_memcg_lock is a memcg lock, not a page lock,
6064	 * to save space. As soon as we switch page's memory cgroup to a
6065	 * new memcg that isn't locked, the above state can change
6066	 * concurrently again. Make sure we're truly done with it.
6067	 */
6068	smp_mb();
6069
6070	css_get(&to->css);
6071	css_put(&from->css);
6072
6073	folio->memcg_data = (unsigned long)to;
6074
6075	__folio_memcg_unlock(from);
6076
6077	ret = 0;
6078	nid = folio_nid(folio);
6079
6080	local_irq_disable();
6081	mem_cgroup_charge_statistics(to, nr_pages);
6082	memcg_check_events(to, nid);
6083	mem_cgroup_charge_statistics(from, -nr_pages);
6084	memcg_check_events(from, nid);
6085	local_irq_enable();
 
 
6086out:
6087	return ret;
6088}
6089
6090/**
6091 * get_mctgt_type - get target type of moving charge
6092 * @vma: the vma the pte to be checked belongs
6093 * @addr: the address corresponding to the pte to be checked
6094 * @ptent: the pte to be checked
6095 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6096 *
6097 * Context: Called with pte lock held.
6098 * Return:
6099 * * MC_TARGET_NONE - If the pte is not a target for move charge.
6100 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6101 *   move charge. If @target is not NULL, the folio is stored in target->folio
6102 *   with extra refcnt taken (Caller should release it).
6103 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6104 *   target for charge migration.  If @target is not NULL, the entry is
6105 *   stored in target->ent.
6106 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6107 *   thus not on the lru.  For now such page is charged like a regular page
6108 *   would be as it is just special memory taking the place of a regular page.
6109 *   See Documentations/vm/hmm.txt and include/linux/hmm.h
 
 
 
 
6110 */
 
6111static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6112		unsigned long addr, pte_t ptent, union mc_target *target)
6113{
6114	struct page *page = NULL;
6115	struct folio *folio;
6116	enum mc_target_type ret = MC_TARGET_NONE;
6117	swp_entry_t ent = { .val = 0 };
6118
6119	if (pte_present(ptent))
6120		page = mc_handle_present_pte(vma, addr, ptent);
6121	else if (pte_none_mostly(ptent))
6122		/*
6123		 * PTE markers should be treated as a none pte here, separated
6124		 * from other swap handling below.
6125		 */
6126		page = mc_handle_file_pte(vma, addr, ptent);
6127	else if (is_swap_pte(ptent))
6128		page = mc_handle_swap_pte(vma, ptent, &ent);
6129
6130	if (page)
6131		folio = page_folio(page);
6132	if (target && page) {
6133		if (!folio_trylock(folio)) {
6134			folio_put(folio);
6135			return ret;
6136		}
6137		/*
6138		 * page_mapped() must be stable during the move. This
6139		 * pte is locked, so if it's present, the page cannot
6140		 * become unmapped. If it isn't, we have only partial
6141		 * control over the mapped state: the page lock will
6142		 * prevent new faults against pagecache and swapcache,
6143		 * so an unmapped page cannot become mapped. However,
6144		 * if the page is already mapped elsewhere, it can
6145		 * unmap, and there is nothing we can do about it.
6146		 * Alas, skip moving the page in this case.
6147		 */
6148		if (!pte_present(ptent) && page_mapped(page)) {
6149			folio_unlock(folio);
6150			folio_put(folio);
6151			return ret;
6152		}
6153	}
6154
6155	if (!page && !ent.val)
6156		return ret;
6157	if (page) {
6158		/*
6159		 * Do only loose check w/o serialization.
6160		 * mem_cgroup_move_account() checks the page is valid or
6161		 * not under LRU exclusion.
6162		 */
6163		if (folio_memcg(folio) == mc.from) {
6164			ret = MC_TARGET_PAGE;
6165			if (folio_is_device_private(folio) ||
6166			    folio_is_device_coherent(folio))
6167				ret = MC_TARGET_DEVICE;
6168			if (target)
6169				target->folio = folio;
6170		}
6171		if (!ret || !target) {
6172			if (target)
6173				folio_unlock(folio);
6174			folio_put(folio);
6175		}
 
 
6176	}
6177	/*
6178	 * There is a swap entry and a page doesn't exist or isn't charged.
6179	 * But we cannot move a tail-page in a THP.
6180	 */
6181	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6182	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6183		ret = MC_TARGET_SWAP;
6184		if (target)
6185			target->ent = ent;
6186	}
6187	return ret;
6188}
6189
6190#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6191/*
6192 * We don't consider PMD mapped swapping or file mapped pages because THP does
6193 * not support them for now.
6194 * Caller should make sure that pmd_trans_huge(pmd) is true.
6195 */
6196static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6197		unsigned long addr, pmd_t pmd, union mc_target *target)
6198{
6199	struct page *page = NULL;
6200	struct folio *folio;
6201	enum mc_target_type ret = MC_TARGET_NONE;
6202
6203	if (unlikely(is_swap_pmd(pmd))) {
6204		VM_BUG_ON(thp_migration_supported() &&
6205				  !is_pmd_migration_entry(pmd));
6206		return ret;
6207	}
6208	page = pmd_page(pmd);
6209	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6210	folio = page_folio(page);
6211	if (!(mc.flags & MOVE_ANON))
6212		return ret;
6213	if (folio_memcg(folio) == mc.from) {
6214		ret = MC_TARGET_PAGE;
6215		if (target) {
6216			folio_get(folio);
6217			if (!folio_trylock(folio)) {
6218				folio_put(folio);
6219				return MC_TARGET_NONE;
6220			}
6221			target->folio = folio;
6222		}
6223	}
6224	return ret;
6225}
6226#else
6227static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6228		unsigned long addr, pmd_t pmd, union mc_target *target)
6229{
6230	return MC_TARGET_NONE;
6231}
6232#endif
6233
6234static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6235					unsigned long addr, unsigned long end,
6236					struct mm_walk *walk)
6237{
6238	struct vm_area_struct *vma = walk->vma;
6239	pte_t *pte;
6240	spinlock_t *ptl;
6241
6242	ptl = pmd_trans_huge_lock(pmd, vma);
6243	if (ptl) {
6244		/*
6245		 * Note their can not be MC_TARGET_DEVICE for now as we do not
6246		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6247		 * this might change.
6248		 */
6249		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6250			mc.precharge += HPAGE_PMD_NR;
6251		spin_unlock(ptl);
6252		return 0;
6253	}
6254
 
 
6255	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6256	if (!pte)
6257		return 0;
6258	for (; addr != end; pte++, addr += PAGE_SIZE)
6259		if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6260			mc.precharge++;	/* increment precharge temporarily */
6261	pte_unmap_unlock(pte - 1, ptl);
6262	cond_resched();
6263
6264	return 0;
6265}
6266
6267static const struct mm_walk_ops precharge_walk_ops = {
6268	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
6269	.walk_lock	= PGWALK_RDLOCK,
6270};
6271
6272static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6273{
6274	unsigned long precharge;
6275
6276	mmap_read_lock(mm);
6277	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6278	mmap_read_unlock(mm);
 
 
 
 
 
6279
6280	precharge = mc.precharge;
6281	mc.precharge = 0;
6282
6283	return precharge;
6284}
6285
6286static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6287{
6288	unsigned long precharge = mem_cgroup_count_precharge(mm);
6289
6290	VM_BUG_ON(mc.moving_task);
6291	mc.moving_task = current;
6292	return mem_cgroup_do_precharge(precharge);
6293}
6294
6295/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6296static void __mem_cgroup_clear_mc(void)
6297{
6298	struct mem_cgroup *from = mc.from;
6299	struct mem_cgroup *to = mc.to;
6300
6301	/* we must uncharge all the leftover precharges from mc.to */
6302	if (mc.precharge) {
6303		mem_cgroup_cancel_charge(mc.to, mc.precharge);
6304		mc.precharge = 0;
6305	}
6306	/*
6307	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6308	 * we must uncharge here.
6309	 */
6310	if (mc.moved_charge) {
6311		mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6312		mc.moved_charge = 0;
6313	}
6314	/* we must fixup refcnts and charges */
6315	if (mc.moved_swap) {
6316		/* uncharge swap account from the old cgroup */
6317		if (!mem_cgroup_is_root(mc.from))
6318			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6319
6320		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6321
6322		/*
6323		 * we charged both to->memory and to->memsw, so we
6324		 * should uncharge to->memory.
6325		 */
6326		if (!mem_cgroup_is_root(mc.to))
6327			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6328
 
 
 
6329		mc.moved_swap = 0;
6330	}
6331	memcg_oom_recover(from);
6332	memcg_oom_recover(to);
6333	wake_up_all(&mc.waitq);
6334}
6335
6336static void mem_cgroup_clear_mc(void)
6337{
6338	struct mm_struct *mm = mc.mm;
6339
6340	/*
6341	 * we must clear moving_task before waking up waiters at the end of
6342	 * task migration.
6343	 */
6344	mc.moving_task = NULL;
6345	__mem_cgroup_clear_mc();
6346	spin_lock(&mc.lock);
6347	mc.from = NULL;
6348	mc.to = NULL;
6349	mc.mm = NULL;
6350	spin_unlock(&mc.lock);
6351
6352	mmput(mm);
6353}
6354
6355static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6356{
6357	struct cgroup_subsys_state *css;
6358	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6359	struct mem_cgroup *from;
6360	struct task_struct *leader, *p;
6361	struct mm_struct *mm;
6362	unsigned long move_flags;
6363	int ret = 0;
6364
6365	/* charge immigration isn't supported on the default hierarchy */
6366	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6367		return 0;
6368
6369	/*
6370	 * Multi-process migrations only happen on the default hierarchy
6371	 * where charge immigration is not used.  Perform charge
6372	 * immigration if @tset contains a leader and whine if there are
6373	 * multiple.
6374	 */
6375	p = NULL;
6376	cgroup_taskset_for_each_leader(leader, css, tset) {
6377		WARN_ON_ONCE(p);
6378		p = leader;
6379		memcg = mem_cgroup_from_css(css);
6380	}
6381	if (!p)
6382		return 0;
6383
6384	/*
6385	 * We are now committed to this value whatever it is. Changes in this
6386	 * tunable will only affect upcoming migrations, not the current one.
6387	 * So we need to save it, and keep it going.
6388	 */
6389	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6390	if (!move_flags)
6391		return 0;
6392
6393	from = mem_cgroup_from_task(p);
6394
6395	VM_BUG_ON(from == memcg);
6396
6397	mm = get_task_mm(p);
6398	if (!mm)
6399		return 0;
6400	/* We move charges only when we move a owner of the mm */
6401	if (mm->owner == p) {
6402		VM_BUG_ON(mc.from);
6403		VM_BUG_ON(mc.to);
6404		VM_BUG_ON(mc.precharge);
6405		VM_BUG_ON(mc.moved_charge);
6406		VM_BUG_ON(mc.moved_swap);
6407
6408		spin_lock(&mc.lock);
6409		mc.mm = mm;
6410		mc.from = from;
6411		mc.to = memcg;
6412		mc.flags = move_flags;
6413		spin_unlock(&mc.lock);
6414		/* We set mc.moving_task later */
6415
6416		ret = mem_cgroup_precharge_mc(mm);
6417		if (ret)
6418			mem_cgroup_clear_mc();
6419	} else {
6420		mmput(mm);
6421	}
6422	return ret;
6423}
6424
6425static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6426{
6427	if (mc.to)
6428		mem_cgroup_clear_mc();
6429}
6430
6431static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6432				unsigned long addr, unsigned long end,
6433				struct mm_walk *walk)
6434{
6435	int ret = 0;
6436	struct vm_area_struct *vma = walk->vma;
6437	pte_t *pte;
6438	spinlock_t *ptl;
6439	enum mc_target_type target_type;
6440	union mc_target target;
6441	struct folio *folio;
6442
6443	ptl = pmd_trans_huge_lock(pmd, vma);
6444	if (ptl) {
6445		if (mc.precharge < HPAGE_PMD_NR) {
6446			spin_unlock(ptl);
6447			return 0;
6448		}
6449		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6450		if (target_type == MC_TARGET_PAGE) {
6451			folio = target.folio;
6452			if (folio_isolate_lru(folio)) {
6453				if (!mem_cgroup_move_account(folio, true,
6454							     mc.from, mc.to)) {
6455					mc.precharge -= HPAGE_PMD_NR;
6456					mc.moved_charge += HPAGE_PMD_NR;
6457				}
6458				folio_putback_lru(folio);
6459			}
6460			folio_unlock(folio);
6461			folio_put(folio);
6462		} else if (target_type == MC_TARGET_DEVICE) {
6463			folio = target.folio;
6464			if (!mem_cgroup_move_account(folio, true,
6465						     mc.from, mc.to)) {
6466				mc.precharge -= HPAGE_PMD_NR;
6467				mc.moved_charge += HPAGE_PMD_NR;
6468			}
6469			folio_unlock(folio);
6470			folio_put(folio);
6471		}
6472		spin_unlock(ptl);
6473		return 0;
6474	}
6475
 
 
6476retry:
6477	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6478	if (!pte)
6479		return 0;
6480	for (; addr != end; addr += PAGE_SIZE) {
6481		pte_t ptent = ptep_get(pte++);
6482		bool device = false;
6483		swp_entry_t ent;
6484
6485		if (!mc.precharge)
6486			break;
6487
6488		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6489		case MC_TARGET_DEVICE:
6490			device = true;
6491			fallthrough;
6492		case MC_TARGET_PAGE:
6493			folio = target.folio;
6494			/*
6495			 * We can have a part of the split pmd here. Moving it
6496			 * can be done but it would be too convoluted so simply
6497			 * ignore such a partial THP and keep it in original
6498			 * memcg. There should be somebody mapping the head.
6499			 */
6500			if (folio_test_large(folio))
6501				goto put;
6502			if (!device && !folio_isolate_lru(folio))
6503				goto put;
6504			if (!mem_cgroup_move_account(folio, false,
6505						mc.from, mc.to)) {
6506				mc.precharge--;
6507				/* we uncharge from mc.from later. */
6508				mc.moved_charge++;
6509			}
6510			if (!device)
6511				folio_putback_lru(folio);
6512put:			/* get_mctgt_type() gets & locks the page */
6513			folio_unlock(folio);
6514			folio_put(folio);
6515			break;
6516		case MC_TARGET_SWAP:
6517			ent = target.ent;
6518			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6519				mc.precharge--;
6520				mem_cgroup_id_get_many(mc.to, 1);
6521				/* we fixup other refcnts and charges later. */
6522				mc.moved_swap++;
6523			}
6524			break;
6525		default:
6526			break;
6527		}
6528	}
6529	pte_unmap_unlock(pte - 1, ptl);
6530	cond_resched();
6531
6532	if (addr != end) {
6533		/*
6534		 * We have consumed all precharges we got in can_attach().
6535		 * We try charge one by one, but don't do any additional
6536		 * charges to mc.to if we have failed in charge once in attach()
6537		 * phase.
6538		 */
6539		ret = mem_cgroup_do_precharge(1);
6540		if (!ret)
6541			goto retry;
6542	}
6543
6544	return ret;
6545}
6546
6547static const struct mm_walk_ops charge_walk_ops = {
6548	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6549	.walk_lock	= PGWALK_RDLOCK,
6550};
6551
6552static void mem_cgroup_move_charge(void)
6553{
 
 
 
 
 
6554	lru_add_drain_all();
6555	/*
6556	 * Signal folio_memcg_lock() to take the memcg's move_lock
6557	 * while we're moving its pages to another memcg. Then wait
6558	 * for already started RCU-only updates to finish.
6559	 */
6560	atomic_inc(&mc.from->moving_account);
6561	synchronize_rcu();
6562retry:
6563	if (unlikely(!mmap_read_trylock(mc.mm))) {
6564		/*
6565		 * Someone who are holding the mmap_lock might be waiting in
6566		 * waitq. So we cancel all extra charges, wake up all waiters,
6567		 * and retry. Because we cancel precharges, we might not be able
6568		 * to move enough charges, but moving charge is a best-effort
6569		 * feature anyway, so it wouldn't be a big problem.
6570		 */
6571		__mem_cgroup_clear_mc();
6572		cond_resched();
6573		goto retry;
6574	}
6575	/*
6576	 * When we have consumed all precharges and failed in doing
6577	 * additional charge, the page walk just aborts.
6578	 */
6579	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6580	mmap_read_unlock(mc.mm);
 
6581	atomic_dec(&mc.from->moving_account);
6582}
6583
6584static void mem_cgroup_move_task(void)
6585{
6586	if (mc.to) {
6587		mem_cgroup_move_charge();
6588		mem_cgroup_clear_mc();
6589	}
6590}
6591
6592#else	/* !CONFIG_MMU */
6593static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6594{
6595	return 0;
6596}
6597static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6598{
6599}
6600static void mem_cgroup_move_task(void)
6601{
6602}
6603#endif
6604
6605#ifdef CONFIG_MEMCG_KMEM
6606static void mem_cgroup_fork(struct task_struct *task)
 
 
 
 
6607{
6608	/*
6609	 * Set the update flag to cause task->objcg to be initialized lazily
6610	 * on the first allocation. It can be done without any synchronization
6611	 * because it's always performed on the current task, so does
6612	 * current_objcg_update().
6613	 */
6614	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6615}
6616
6617static void mem_cgroup_exit(struct task_struct *task)
6618{
6619	struct obj_cgroup *objcg = task->objcg;
6620
6621	objcg = (struct obj_cgroup *)
6622		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6623	if (objcg)
6624		obj_cgroup_put(objcg);
6625
6626	/*
6627	 * Some kernel allocations can happen after this point,
6628	 * but let's ignore them. It can be done without any synchronization
6629	 * because it's always performed on the current task, so does
6630	 * current_objcg_update().
6631	 */
6632	task->objcg = NULL;
6633}
6634#endif
6635
6636#ifdef CONFIG_LRU_GEN
6637static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
6638{
6639	struct task_struct *task;
6640	struct cgroup_subsys_state *css;
6641
6642	/* find the first leader if there is any */
6643	cgroup_taskset_for_each_leader(task, css, tset)
6644		break;
6645
6646	if (!task)
6647		return;
6648
6649	task_lock(task);
6650	if (task->mm && READ_ONCE(task->mm->owner) == task)
6651		lru_gen_migrate_mm(task->mm);
6652	task_unlock(task);
6653}
6654#else
6655static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6656#endif /* CONFIG_LRU_GEN */
6657
6658#ifdef CONFIG_MEMCG_KMEM
6659static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6660{
6661	struct task_struct *task;
6662	struct cgroup_subsys_state *css;
6663
6664	cgroup_taskset_for_each(task, css, tset) {
6665		/* atomically set the update bit */
6666		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
6667	}
6668}
6669#else
6670static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6671#endif /* CONFIG_MEMCG_KMEM */
6672
6673#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
6674static void mem_cgroup_attach(struct cgroup_taskset *tset)
6675{
6676	mem_cgroup_lru_gen_attach(tset);
6677	mem_cgroup_kmem_attach(tset);
6678}
6679#endif
6680
6681static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6682{
6683	if (value == PAGE_COUNTER_MAX)
6684		seq_puts(m, "max\n");
6685	else
6686		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6687
6688	return 0;
6689}
6690
6691static u64 memory_current_read(struct cgroup_subsys_state *css,
6692			       struct cftype *cft)
6693{
6694	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6695
6696	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6697}
6698
6699static u64 memory_peak_read(struct cgroup_subsys_state *css,
6700			    struct cftype *cft)
6701{
6702	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
6703
6704	return (u64)memcg->memory.watermark * PAGE_SIZE;
6705}
 
 
6706
6707static int memory_min_show(struct seq_file *m, void *v)
6708{
6709	return seq_puts_memcg_tunable(m,
6710		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6711}
6712
6713static ssize_t memory_min_write(struct kernfs_open_file *of,
6714				char *buf, size_t nbytes, loff_t off)
6715{
6716	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6717	unsigned long min;
6718	int err;
6719
6720	buf = strstrip(buf);
6721	err = page_counter_memparse(buf, "max", &min);
6722	if (err)
6723		return err;
6724
6725	page_counter_set_min(&memcg->memory, min);
6726
6727	return nbytes;
6728}
6729
6730static int memory_low_show(struct seq_file *m, void *v)
6731{
6732	return seq_puts_memcg_tunable(m,
6733		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6734}
6735
6736static ssize_t memory_low_write(struct kernfs_open_file *of,
6737				char *buf, size_t nbytes, loff_t off)
6738{
6739	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6740	unsigned long low;
6741	int err;
6742
6743	buf = strstrip(buf);
6744	err = page_counter_memparse(buf, "max", &low);
6745	if (err)
6746		return err;
6747
6748	page_counter_set_low(&memcg->memory, low);
6749
6750	return nbytes;
6751}
6752
6753static int memory_high_show(struct seq_file *m, void *v)
6754{
6755	return seq_puts_memcg_tunable(m,
6756		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
 
 
 
 
 
 
 
6757}
6758
6759static ssize_t memory_high_write(struct kernfs_open_file *of,
6760				 char *buf, size_t nbytes, loff_t off)
6761{
6762	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6763	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6764	bool drained = false;
6765	unsigned long high;
6766	int err;
6767
6768	buf = strstrip(buf);
6769	err = page_counter_memparse(buf, "max", &high);
6770	if (err)
6771		return err;
6772
6773	page_counter_set_high(&memcg->memory, high);
6774
6775	for (;;) {
6776		unsigned long nr_pages = page_counter_read(&memcg->memory);
6777		unsigned long reclaimed;
6778
6779		if (nr_pages <= high)
6780			break;
6781
6782		if (signal_pending(current))
6783			break;
6784
6785		if (!drained) {
6786			drain_all_stock(memcg);
6787			drained = true;
6788			continue;
6789		}
6790
6791		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6792					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6793
6794		if (!reclaimed && !nr_retries--)
6795			break;
6796	}
6797
6798	memcg_wb_domain_size_changed(memcg);
6799	return nbytes;
6800}
6801
6802static int memory_max_show(struct seq_file *m, void *v)
6803{
6804	return seq_puts_memcg_tunable(m,
6805		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
 
 
 
 
 
 
 
6806}
6807
6808static ssize_t memory_max_write(struct kernfs_open_file *of,
6809				char *buf, size_t nbytes, loff_t off)
6810{
6811	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6812	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6813	bool drained = false;
6814	unsigned long max;
6815	int err;
6816
6817	buf = strstrip(buf);
6818	err = page_counter_memparse(buf, "max", &max);
6819	if (err)
6820		return err;
6821
6822	xchg(&memcg->memory.max, max);
6823
6824	for (;;) {
6825		unsigned long nr_pages = page_counter_read(&memcg->memory);
6826
6827		if (nr_pages <= max)
6828			break;
6829
6830		if (signal_pending(current))
 
6831			break;
 
6832
6833		if (!drained) {
6834			drain_all_stock(memcg);
6835			drained = true;
6836			continue;
6837		}
6838
6839		if (nr_reclaims) {
6840			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6841					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6842				nr_reclaims--;
6843			continue;
6844		}
6845
6846		memcg_memory_event(memcg, MEMCG_OOM);
6847		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6848			break;
6849	}
6850
6851	memcg_wb_domain_size_changed(memcg);
6852	return nbytes;
6853}
6854
6855/*
6856 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
6857 * if any new events become available.
6858 */
6859static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6860{
6861	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6862	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6863	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6864	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6865	seq_printf(m, "oom_kill %lu\n",
6866		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6867	seq_printf(m, "oom_group_kill %lu\n",
6868		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6869}
6870
6871static int memory_events_show(struct seq_file *m, void *v)
6872{
6873	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6874
6875	__memory_events_show(m, memcg->memory_events);
6876	return 0;
6877}
6878
6879static int memory_events_local_show(struct seq_file *m, void *v)
6880{
6881	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 
 
6882
6883	__memory_events_show(m, memcg->memory_events_local);
6884	return 0;
6885}
6886
6887static int memory_stat_show(struct seq_file *m, void *v)
6888{
6889	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6890	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6891	struct seq_buf s;
6892
6893	if (!buf)
6894		return -ENOMEM;
6895	seq_buf_init(&s, buf, PAGE_SIZE);
6896	memory_stat_format(memcg, &s);
6897	seq_puts(m, buf);
6898	kfree(buf);
6899	return 0;
6900}
6901
6902#ifdef CONFIG_NUMA
6903static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6904						     int item)
6905{
6906	return lruvec_page_state(lruvec, item) *
6907		memcg_page_state_output_unit(item);
6908}
6909
6910static int memory_numa_stat_show(struct seq_file *m, void *v)
6911{
6912	int i;
6913	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6914
6915	mem_cgroup_flush_stats(memcg);
 
 
 
 
 
 
 
 
 
6916
6917	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6918		int nid;
6919
6920		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6921			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6922
6923		seq_printf(m, "%s", memory_stats[i].name);
6924		for_each_node_state(nid, N_MEMORY) {
6925			u64 size;
6926			struct lruvec *lruvec;
6927
6928			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6929			size = lruvec_page_state_output(lruvec,
6930							memory_stats[i].idx);
6931			seq_printf(m, " N%d=%llu", nid, size);
6932		}
6933		seq_putc(m, '\n');
6934	}
6935
6936	return 0;
6937}
6938#endif
6939
6940static int memory_oom_group_show(struct seq_file *m, void *v)
6941{
6942	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6943
6944	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
 
 
 
 
 
 
 
6945
6946	return 0;
6947}
6948
6949static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6950				      char *buf, size_t nbytes, loff_t off)
6951{
6952	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6953	int ret, oom_group;
6954
6955	buf = strstrip(buf);
6956	if (!buf)
6957		return -EINVAL;
6958
6959	ret = kstrtoint(buf, 0, &oom_group);
6960	if (ret)
6961		return ret;
6962
6963	if (oom_group != 0 && oom_group != 1)
6964		return -EINVAL;
6965
6966	WRITE_ONCE(memcg->oom_group, oom_group);
6967
6968	return nbytes;
6969}
6970
6971static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6972			      size_t nbytes, loff_t off)
6973{
6974	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6975	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6976	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6977	unsigned int reclaim_options;
6978	int err;
6979
6980	buf = strstrip(buf);
6981	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6982	if (err)
6983		return err;
6984
6985	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6986	while (nr_reclaimed < nr_to_reclaim) {
6987		/* Will converge on zero, but reclaim enforces a minimum */
6988		unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
6989		unsigned long reclaimed;
6990
6991		if (signal_pending(current))
6992			return -EINTR;
6993
6994		/*
6995		 * This is the final attempt, drain percpu lru caches in the
6996		 * hope of introducing more evictable pages for
6997		 * try_to_free_mem_cgroup_pages().
6998		 */
6999		if (!nr_retries)
7000			lru_add_drain_all();
7001
7002		reclaimed = try_to_free_mem_cgroup_pages(memcg,
7003					batch_size, GFP_KERNEL, reclaim_options);
7004
7005		if (!reclaimed && !nr_retries--)
7006			return -EAGAIN;
7007
7008		nr_reclaimed += reclaimed;
7009	}
7010
7011	return nbytes;
7012}
7013
7014static struct cftype memory_files[] = {
7015	{
7016		.name = "current",
7017		.flags = CFTYPE_NOT_ON_ROOT,
7018		.read_u64 = memory_current_read,
7019	},
7020	{
7021		.name = "peak",
7022		.flags = CFTYPE_NOT_ON_ROOT,
7023		.read_u64 = memory_peak_read,
7024	},
7025	{
7026		.name = "min",
7027		.flags = CFTYPE_NOT_ON_ROOT,
7028		.seq_show = memory_min_show,
7029		.write = memory_min_write,
7030	},
7031	{
7032		.name = "low",
7033		.flags = CFTYPE_NOT_ON_ROOT,
7034		.seq_show = memory_low_show,
7035		.write = memory_low_write,
7036	},
7037	{
7038		.name = "high",
7039		.flags = CFTYPE_NOT_ON_ROOT,
7040		.seq_show = memory_high_show,
7041		.write = memory_high_write,
7042	},
7043	{
7044		.name = "max",
7045		.flags = CFTYPE_NOT_ON_ROOT,
7046		.seq_show = memory_max_show,
7047		.write = memory_max_write,
7048	},
7049	{
7050		.name = "events",
7051		.flags = CFTYPE_NOT_ON_ROOT,
7052		.file_offset = offsetof(struct mem_cgroup, events_file),
7053		.seq_show = memory_events_show,
7054	},
7055	{
7056		.name = "events.local",
7057		.flags = CFTYPE_NOT_ON_ROOT,
7058		.file_offset = offsetof(struct mem_cgroup, events_local_file),
7059		.seq_show = memory_events_local_show,
7060	},
7061	{
7062		.name = "stat",
7063		.seq_show = memory_stat_show,
7064	},
7065#ifdef CONFIG_NUMA
7066	{
7067		.name = "numa_stat",
7068		.seq_show = memory_numa_stat_show,
7069	},
7070#endif
7071	{
7072		.name = "oom.group",
7073		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
7074		.seq_show = memory_oom_group_show,
7075		.write = memory_oom_group_write,
7076	},
7077	{
7078		.name = "reclaim",
7079		.flags = CFTYPE_NS_DELEGATABLE,
7080		.write = memory_reclaim,
7081	},
7082	{ }	/* terminate */
7083};
7084
7085struct cgroup_subsys memory_cgrp_subsys = {
7086	.css_alloc = mem_cgroup_css_alloc,
7087	.css_online = mem_cgroup_css_online,
7088	.css_offline = mem_cgroup_css_offline,
7089	.css_released = mem_cgroup_css_released,
7090	.css_free = mem_cgroup_css_free,
7091	.css_reset = mem_cgroup_css_reset,
7092	.css_rstat_flush = mem_cgroup_css_rstat_flush,
7093	.can_attach = mem_cgroup_can_attach,
7094#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
7095	.attach = mem_cgroup_attach,
7096#endif
7097	.cancel_attach = mem_cgroup_cancel_attach,
7098	.post_attach = mem_cgroup_move_task,
7099#ifdef CONFIG_MEMCG_KMEM
7100	.fork = mem_cgroup_fork,
7101	.exit = mem_cgroup_exit,
7102#endif
7103	.dfl_cftypes = memory_files,
7104	.legacy_cftypes = mem_cgroup_legacy_files,
7105	.early_init = 0,
7106};
7107
7108/*
7109 * This function calculates an individual cgroup's effective
7110 * protection which is derived from its own memory.min/low, its
7111 * parent's and siblings' settings, as well as the actual memory
7112 * distribution in the tree.
7113 *
7114 * The following rules apply to the effective protection values:
7115 *
7116 * 1. At the first level of reclaim, effective protection is equal to
7117 *    the declared protection in memory.min and memory.low.
7118 *
7119 * 2. To enable safe delegation of the protection configuration, at
7120 *    subsequent levels the effective protection is capped to the
7121 *    parent's effective protection.
7122 *
7123 * 3. To make complex and dynamic subtrees easier to configure, the
7124 *    user is allowed to overcommit the declared protection at a given
7125 *    level. If that is the case, the parent's effective protection is
7126 *    distributed to the children in proportion to how much protection
7127 *    they have declared and how much of it they are utilizing.
7128 *
7129 *    This makes distribution proportional, but also work-conserving:
7130 *    if one cgroup claims much more protection than it uses memory,
7131 *    the unused remainder is available to its siblings.
7132 *
7133 * 4. Conversely, when the declared protection is undercommitted at a
7134 *    given level, the distribution of the larger parental protection
7135 *    budget is NOT proportional. A cgroup's protection from a sibling
7136 *    is capped to its own memory.min/low setting.
7137 *
7138 * 5. However, to allow protecting recursive subtrees from each other
7139 *    without having to declare each individual cgroup's fixed share
7140 *    of the ancestor's claim to protection, any unutilized -
7141 *    "floating" - protection from up the tree is distributed in
7142 *    proportion to each cgroup's *usage*. This makes the protection
7143 *    neutral wrt sibling cgroups and lets them compete freely over
7144 *    the shared parental protection budget, but it protects the
7145 *    subtree as a whole from neighboring subtrees.
7146 *
7147 * Note that 4. and 5. are not in conflict: 4. is about protecting
7148 * against immediate siblings whereas 5. is about protecting against
7149 * neighboring subtrees.
7150 */
7151static unsigned long effective_protection(unsigned long usage,
7152					  unsigned long parent_usage,
7153					  unsigned long setting,
7154					  unsigned long parent_effective,
7155					  unsigned long siblings_protected)
7156{
7157	unsigned long protected;
7158	unsigned long ep;
7159
7160	protected = min(usage, setting);
7161	/*
7162	 * If all cgroups at this level combined claim and use more
7163	 * protection than what the parent affords them, distribute
7164	 * shares in proportion to utilization.
7165	 *
7166	 * We are using actual utilization rather than the statically
7167	 * claimed protection in order to be work-conserving: claimed
7168	 * but unused protection is available to siblings that would
7169	 * otherwise get a smaller chunk than what they claimed.
7170	 */
7171	if (siblings_protected > parent_effective)
7172		return protected * parent_effective / siblings_protected;
7173
7174	/*
7175	 * Ok, utilized protection of all children is within what the
7176	 * parent affords them, so we know whatever this child claims
7177	 * and utilizes is effectively protected.
7178	 *
7179	 * If there is unprotected usage beyond this value, reclaim
7180	 * will apply pressure in proportion to that amount.
7181	 *
7182	 * If there is unutilized protection, the cgroup will be fully
7183	 * shielded from reclaim, but we do return a smaller value for
7184	 * protection than what the group could enjoy in theory. This
7185	 * is okay. With the overcommit distribution above, effective
7186	 * protection is always dependent on how memory is actually
7187	 * consumed among the siblings anyway.
7188	 */
7189	ep = protected;
7190
7191	/*
7192	 * If the children aren't claiming (all of) the protection
7193	 * afforded to them by the parent, distribute the remainder in
7194	 * proportion to the (unprotected) memory of each cgroup. That
7195	 * way, cgroups that aren't explicitly prioritized wrt each
7196	 * other compete freely over the allowance, but they are
7197	 * collectively protected from neighboring trees.
7198	 *
7199	 * We're using unprotected memory for the weight so that if
7200	 * some cgroups DO claim explicit protection, we don't protect
7201	 * the same bytes twice.
7202	 *
7203	 * Check both usage and parent_usage against the respective
7204	 * protected values. One should imply the other, but they
7205	 * aren't read atomically - make sure the division is sane.
7206	 */
7207	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7208		return ep;
7209	if (parent_effective > siblings_protected &&
7210	    parent_usage > siblings_protected &&
7211	    usage > protected) {
7212		unsigned long unclaimed;
7213
7214		unclaimed = parent_effective - siblings_protected;
7215		unclaimed *= usage - protected;
7216		unclaimed /= parent_usage - siblings_protected;
7217
7218		ep += unclaimed;
7219	}
7220
7221	return ep;
7222}
7223
7224/**
7225 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7226 * @root: the top ancestor of the sub-tree being checked
7227 * @memcg: the memory cgroup to check
7228 *
7229 * WARNING: This function is not stateless! It can only be used as part
7230 *          of a top-down tree iteration, not for isolated queries.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7231 */
7232void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7233				     struct mem_cgroup *memcg)
7234{
7235	unsigned long usage, parent_usage;
7236	struct mem_cgroup *parent;
7237
7238	if (mem_cgroup_disabled())
7239		return;
7240
7241	if (!root)
7242		root = root_mem_cgroup;
7243
7244	/*
7245	 * Effective values of the reclaim targets are ignored so they
7246	 * can be stale. Have a look at mem_cgroup_protection for more
7247	 * details.
7248	 * TODO: calculation should be more robust so that we do not need
7249	 * that special casing.
7250	 */
7251	if (memcg == root)
7252		return;
7253
7254	usage = page_counter_read(&memcg->memory);
7255	if (!usage)
7256		return;
7257
7258	parent = parent_mem_cgroup(memcg);
7259
7260	if (parent == root) {
7261		memcg->memory.emin = READ_ONCE(memcg->memory.min);
7262		memcg->memory.elow = READ_ONCE(memcg->memory.low);
7263		return;
7264	}
7265
7266	parent_usage = page_counter_read(&parent->memory);
7267
7268	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7269			READ_ONCE(memcg->memory.min),
7270			READ_ONCE(parent->memory.emin),
7271			atomic_long_read(&parent->memory.children_min_usage)));
7272
7273	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7274			READ_ONCE(memcg->memory.low),
7275			READ_ONCE(parent->memory.elow),
7276			atomic_long_read(&parent->memory.children_low_usage)));
7277}
7278
7279static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7280			gfp_t gfp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7281{
7282	int ret;
 
 
7283
7284	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
7285	if (ret)
7286		goto out;
7287
7288	mem_cgroup_commit_charge(folio, memcg);
7289out:
7290	return ret;
7291}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7292
7293int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7294{
7295	struct mem_cgroup *memcg;
7296	int ret;
7297
7298	memcg = get_mem_cgroup_from_mm(mm);
7299	ret = charge_memcg(folio, memcg, gfp);
7300	css_put(&memcg->css);
7301
 
7302	return ret;
7303}
7304
7305/**
7306 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7307 * @memcg: memcg to charge.
7308 * @gfp: reclaim mode.
7309 * @nr_pages: number of pages to charge.
 
7310 *
7311 * This function is called when allocating a huge page folio to determine if
7312 * the memcg has the capacity for it. It does not commit the charge yet,
7313 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
 
7314 *
7315 * Once we have obtained the hugetlb folio, we can call
7316 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7317 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7318 * of try_charge().
7319 *
7320 * Returns 0 on success. Otherwise, an error code is returned.
7321 */
7322int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7323			long nr_pages)
7324{
 
 
 
 
 
 
 
7325	/*
7326	 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7327	 * but do not attempt to commit charge later (or cancel on error) either.
 
7328	 */
7329	if (mem_cgroup_disabled() || !memcg ||
7330		!cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7331		!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7332		return -EOPNOTSUPP;
7333
7334	if (try_charge(memcg, gfp, nr_pages))
7335		return -ENOMEM;
 
 
 
 
7336
7337	return 0;
 
 
 
 
 
 
 
 
7338}
7339
7340/**
7341 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7342 * @folio: folio to charge.
7343 * @mm: mm context of the victim
7344 * @gfp: reclaim mode
7345 * @entry: swap entry for which the folio is allocated
7346 *
7347 * This function charges a folio allocated for swapin. Please call this before
7348 * adding the folio to the swapcache.
7349 *
7350 * Returns 0 on success. Otherwise, an error code is returned.
7351 */
7352int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7353				  gfp_t gfp, swp_entry_t entry)
7354{
7355	struct mem_cgroup *memcg;
7356	unsigned short id;
7357	int ret;
7358
7359	if (mem_cgroup_disabled())
7360		return 0;
7361
7362	id = lookup_swap_cgroup_id(entry);
7363	rcu_read_lock();
7364	memcg = mem_cgroup_from_id(id);
7365	if (!memcg || !css_tryget_online(&memcg->css))
7366		memcg = get_mem_cgroup_from_mm(mm);
7367	rcu_read_unlock();
7368
7369	ret = charge_memcg(folio, memcg, gfp);
7370
7371	css_put(&memcg->css);
7372	return ret;
7373}
7374
7375/*
7376 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7377 * @entry: swap entry for which the page is charged
7378 *
7379 * Call this function after successfully adding the charged page to swapcache.
7380 *
7381 * Note: This function assumes the page for which swap slot is being uncharged
7382 * is order 0 page.
7383 */
7384void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7385{
7386	/*
7387	 * Cgroup1's unified memory+swap counter has been charged with the
7388	 * new swapcache page, finish the transfer by uncharging the swap
7389	 * slot. The swap slot would also get uncharged when it dies, but
7390	 * it can stick around indefinitely and we'd count the page twice
7391	 * the entire time.
7392	 *
7393	 * Cgroup2 has separate resource counters for memory and swap,
7394	 * so this is a non-issue here. Memory and swap charge lifetimes
7395	 * correspond 1:1 to page and swap slot lifetimes: we charge the
7396	 * page to memory here, and uncharge swap when the slot is freed.
7397	 */
7398	if (!mem_cgroup_disabled() && do_memsw_account()) {
7399		/*
7400		 * The swap entry might not get freed for a long time,
7401		 * let's not wait for it.  The page already received a
7402		 * memory+swap charge, drop the swap entry duplicate.
7403		 */
7404		mem_cgroup_uncharge_swap(entry, 1);
7405	}
7406}
7407
7408struct uncharge_gather {
7409	struct mem_cgroup *memcg;
7410	unsigned long nr_memory;
7411	unsigned long pgpgout;
 
 
7412	unsigned long nr_kmem;
7413	int nid;
 
 
7414};
7415
7416static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7417{
7418	memset(ug, 0, sizeof(*ug));
7419}
7420
7421static void uncharge_batch(const struct uncharge_gather *ug)
7422{
 
7423	unsigned long flags;
7424
7425	if (ug->nr_memory) {
7426		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7427		if (do_memsw_account())
7428			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7429		if (ug->nr_kmem)
7430			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7431		memcg_oom_recover(ug->memcg);
7432	}
7433
7434	local_irq_save(flags);
 
 
 
 
7435	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7436	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7437	memcg_check_events(ug->memcg, ug->nid);
7438	local_irq_restore(flags);
7439
7440	/* drop reference from uncharge_folio */
7441	css_put(&ug->memcg->css);
7442}
7443
7444static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7445{
7446	long nr_pages;
7447	struct mem_cgroup *memcg;
7448	struct obj_cgroup *objcg;
7449
7450	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 
7451
7452	/*
7453	 * Nobody should be changing or seriously looking at
7454	 * folio memcg or objcg at this point, we have fully
7455	 * exclusive access to the folio.
7456	 */
7457	if (folio_memcg_kmem(folio)) {
7458		objcg = __folio_objcg(folio);
7459		/*
7460		 * This get matches the put at the end of the function and
7461		 * kmem pages do not hold memcg references anymore.
7462		 */
7463		memcg = get_mem_cgroup_from_objcg(objcg);
7464	} else {
7465		memcg = __folio_memcg(folio);
7466	}
7467
7468	if (!memcg)
7469		return;
7470
7471	if (ug->memcg != memcg) {
7472		if (ug->memcg) {
7473			uncharge_batch(ug);
7474			uncharge_gather_clear(ug);
7475		}
7476		ug->memcg = memcg;
7477		ug->nid = folio_nid(folio);
7478
7479		/* pairs with css_put in uncharge_batch */
7480		css_get(&memcg->css);
7481	}
7482
7483	nr_pages = folio_nr_pages(folio);
 
7484
7485	if (folio_memcg_kmem(folio)) {
7486		ug->nr_memory += nr_pages;
7487		ug->nr_kmem += nr_pages;
7488
7489		folio->memcg_data = 0;
7490		obj_cgroup_put(objcg);
 
 
 
 
 
 
7491	} else {
7492		/* LRU pages aren't accounted at the root level */
7493		if (!mem_cgroup_is_root(memcg))
7494			ug->nr_memory += nr_pages;
7495		ug->pgpgout++;
7496
7497		folio->memcg_data = 0;
7498	}
7499
7500	css_put(&memcg->css);
 
7501}
7502
7503void __mem_cgroup_uncharge(struct folio *folio)
7504{
7505	struct uncharge_gather ug;
 
 
 
7506
7507	/* Don't touch folio->lru of any random page, pre-check: */
7508	if (!folio_memcg(folio))
7509		return;
 
 
 
 
7510
7511	uncharge_gather_clear(&ug);
7512	uncharge_folio(folio, &ug);
7513	uncharge_batch(&ug);
7514}
7515
7516void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
7517{
7518	struct uncharge_gather ug;
7519	unsigned int i;
7520
7521	uncharge_gather_clear(&ug);
7522	for (i = 0; i < folios->nr; i++)
7523		uncharge_folio(folios->folios[i], &ug);
7524	if (ug.memcg)
7525		uncharge_batch(&ug);
7526}
7527
7528/**
7529 * mem_cgroup_replace_folio - Charge a folio's replacement.
7530 * @old: Currently circulating folio.
7531 * @new: Replacement folio.
7532 *
7533 * Charge @new as a replacement folio for @old. @old will
7534 * be uncharged upon free. This is only used by the page cache
7535 * (in replace_page_cache_folio()).
7536 *
7537 * Both folios must be locked, @new->mapping must be set up.
 
7538 */
7539void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
7540{
7541	struct mem_cgroup *memcg;
7542	long nr_pages = folio_nr_pages(new);
7543	unsigned long flags;
7544
7545	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7546	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7547	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7548	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7549
7550	if (mem_cgroup_disabled())
7551		return;
7552
7553	/* Page cache replacement: new folio already charged? */
7554	if (folio_memcg(new))
7555		return;
7556
7557	memcg = folio_memcg(old);
7558	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7559	if (!memcg)
 
 
 
 
 
 
 
 
 
 
 
 
7560		return;
7561
7562	/* Force-charge the new page. The old one will be freed soon */
7563	if (!mem_cgroup_is_root(memcg)) {
7564		page_counter_charge(&memcg->memory, nr_pages);
7565		if (do_memsw_account())
7566			page_counter_charge(&memcg->memsw, nr_pages);
7567	}
7568
7569	css_get(&memcg->css);
7570	commit_charge(new, memcg);
7571
7572	local_irq_save(flags);
7573	mem_cgroup_charge_statistics(memcg, nr_pages);
7574	memcg_check_events(memcg, folio_nid(new));
7575	local_irq_restore(flags);
7576}
7577
7578/**
7579 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7580 * @old: Currently circulating folio.
7581 * @new: Replacement folio.
7582 *
7583 * Transfer the memcg data from the old folio to the new folio for migration.
7584 * The old folio's data info will be cleared. Note that the memory counters
7585 * will remain unchanged throughout the process.
7586 *
7587 * Both folios must be locked, @new->mapping must be set up.
7588 */
7589void mem_cgroup_migrate(struct folio *old, struct folio *new)
7590{
7591	struct mem_cgroup *memcg;
 
 
 
7592
7593	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7594	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7595	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7596	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
 
7597
7598	if (mem_cgroup_disabled())
7599		return;
7600
7601	memcg = folio_memcg(old);
7602	/*
7603	 * Note that it is normal to see !memcg for a hugetlb folio.
7604	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7605	 * was not selected.
7606	 */
7607	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
7608	if (!memcg)
7609		return;
7610
7611	/* Transfer the charge and the css ref */
7612	commit_charge(new, memcg);
7613	/*
7614	 * If the old folio is a large folio and is in the split queue, it needs
7615	 * to be removed from the split queue now, in case getting an incorrect
7616	 * split queue in destroy_large_folio() after the memcg of the old folio
7617	 * is cleared.
7618	 *
7619	 * In addition, the old folio is about to be freed after migration, so
7620	 * removing from the split queue a bit earlier seems reasonable.
7621	 */
7622	if (folio_test_large(old) && folio_test_large_rmappable(old))
7623		folio_undo_large_rmappable(old);
7624	old->memcg_data = 0;
 
7625}
7626
7627DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7628EXPORT_SYMBOL(memcg_sockets_enabled_key);
7629
7630void mem_cgroup_sk_alloc(struct sock *sk)
7631{
7632	struct mem_cgroup *memcg;
7633
7634	if (!mem_cgroup_sockets_enabled)
7635		return;
7636
7637	/* Do not associate the sock with unrelated interrupted task's memcg. */
7638	if (!in_task())
 
 
 
 
 
 
 
 
 
7639		return;
 
7640
7641	rcu_read_lock();
7642	memcg = mem_cgroup_from_task(current);
7643	if (mem_cgroup_is_root(memcg))
7644		goto out;
7645	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7646		goto out;
7647	if (css_tryget(&memcg->css))
7648		sk->sk_memcg = memcg;
7649out:
7650	rcu_read_unlock();
7651}
7652
7653void mem_cgroup_sk_free(struct sock *sk)
7654{
7655	if (sk->sk_memcg)
7656		css_put(&sk->sk_memcg->css);
7657}
7658
7659/**
7660 * mem_cgroup_charge_skmem - charge socket memory
7661 * @memcg: memcg to charge
7662 * @nr_pages: number of pages to charge
7663 * @gfp_mask: reclaim mode
7664 *
7665 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7666 * @memcg's configured limit, %false if it doesn't.
7667 */
7668bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7669			     gfp_t gfp_mask)
7670{
 
 
7671	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7672		struct page_counter *fail;
7673
7674		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7675			memcg->tcpmem_pressure = 0;
7676			return true;
7677		}
 
7678		memcg->tcpmem_pressure = 1;
7679		if (gfp_mask & __GFP_NOFAIL) {
7680			page_counter_charge(&memcg->tcpmem, nr_pages);
7681			return true;
7682		}
7683		return false;
7684	}
7685
7686	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7687		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
 
 
 
 
 
7688		return true;
7689	}
7690
 
7691	return false;
7692}
7693
7694/**
7695 * mem_cgroup_uncharge_skmem - uncharge socket memory
7696 * @memcg: memcg to uncharge
7697 * @nr_pages: number of pages to uncharge
7698 */
7699void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7700{
7701	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7702		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7703		return;
7704	}
7705
7706	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7707
7708	refill_stock(memcg, nr_pages);
7709}
7710
7711static int __init cgroup_memory(char *s)
7712{
7713	char *token;
7714
7715	while ((token = strsep(&s, ",")) != NULL) {
7716		if (!*token)
7717			continue;
7718		if (!strcmp(token, "nosocket"))
7719			cgroup_memory_nosocket = true;
7720		if (!strcmp(token, "nokmem"))
7721			cgroup_memory_nokmem = true;
7722		if (!strcmp(token, "nobpf"))
7723			cgroup_memory_nobpf = true;
7724	}
7725	return 1;
7726}
7727__setup("cgroup.memory=", cgroup_memory);
7728
7729/*
7730 * subsys_initcall() for memory controller.
7731 *
7732 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7733 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7734 * basically everything that doesn't depend on a specific mem_cgroup structure
7735 * should be initialized from here.
7736 */
7737static int __init mem_cgroup_init(void)
7738{
7739	int cpu, node;
7740
 
7741	/*
7742	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7743	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7744	 * to work fine, we should make sure that the overfill threshold can't
7745	 * exceed S32_MAX / PAGE_SIZE.
7746	 */
7747	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
 
 
7748
7749	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7750				  memcg_hotplug_cpu_dead);
7751
7752	for_each_possible_cpu(cpu)
7753		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7754			  drain_local_stock);
7755
7756	for_each_node(node) {
7757		struct mem_cgroup_tree_per_node *rtpn;
7758
7759		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
 
7760
7761		rtpn->rb_root = RB_ROOT;
7762		rtpn->rb_rightmost = NULL;
7763		spin_lock_init(&rtpn->lock);
7764		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7765	}
7766
7767	return 0;
7768}
7769subsys_initcall(mem_cgroup_init);
7770
7771#ifdef CONFIG_SWAP
7772static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7773{
7774	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7775		/*
7776		 * The root cgroup cannot be destroyed, so it's refcount must
7777		 * always be >= 1.
7778		 */
7779		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7780			VM_BUG_ON(1);
7781			break;
7782		}
7783		memcg = parent_mem_cgroup(memcg);
7784		if (!memcg)
7785			memcg = root_mem_cgroup;
7786	}
7787	return memcg;
7788}
7789
7790/**
7791 * mem_cgroup_swapout - transfer a memsw charge to swap
7792 * @folio: folio whose memsw charge to transfer
7793 * @entry: swap entry to move the charge to
7794 *
7795 * Transfer the memsw charge of @folio to @entry.
7796 */
7797void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7798{
7799	struct mem_cgroup *memcg, *swap_memcg;
7800	unsigned int nr_entries;
7801	unsigned short oldid;
7802
7803	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7804	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7805
7806	if (mem_cgroup_disabled())
7807		return;
7808
7809	if (!do_memsw_account())
7810		return;
7811
7812	memcg = folio_memcg(folio);
7813
7814	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7815	if (!memcg)
7816		return;
7817
7818	/*
7819	 * In case the memcg owning these pages has been offlined and doesn't
7820	 * have an ID allocated to it anymore, charge the closest online
7821	 * ancestor for the swap instead and transfer the memory+swap charge.
7822	 */
7823	swap_memcg = mem_cgroup_id_get_online(memcg);
7824	nr_entries = folio_nr_pages(folio);
7825	/* Get references for the tail pages, too */
7826	if (nr_entries > 1)
7827		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7828	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7829				   nr_entries);
7830	VM_BUG_ON_FOLIO(oldid, folio);
7831	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7832
7833	folio->memcg_data = 0;
7834
7835	if (!mem_cgroup_is_root(memcg))
7836		page_counter_uncharge(&memcg->memory, nr_entries);
7837
7838	if (memcg != swap_memcg) {
7839		if (!mem_cgroup_is_root(swap_memcg))
7840			page_counter_charge(&swap_memcg->memsw, nr_entries);
7841		page_counter_uncharge(&memcg->memsw, nr_entries);
7842	}
7843
7844	/*
7845	 * Interrupts should be disabled here because the caller holds the
7846	 * i_pages lock which is taken with interrupts-off. It is
7847	 * important here to have the interrupts disabled because it is the
7848	 * only synchronisation we have for updating the per-CPU variables.
7849	 */
7850	memcg_stats_lock();
7851	mem_cgroup_charge_statistics(memcg, -nr_entries);
7852	memcg_stats_unlock();
7853	memcg_check_events(memcg, folio_nid(folio));
7854
7855	css_put(&memcg->css);
 
7856}
7857
7858/**
7859 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7860 * @folio: folio being added to swap
7861 * @entry: swap entry to charge
7862 *
7863 * Try to charge @folio's memcg for the swap space at @entry.
7864 *
7865 * Returns 0 on success, -ENOMEM on failure.
7866 */
7867int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7868{
7869	unsigned int nr_pages = folio_nr_pages(folio);
7870	struct page_counter *counter;
7871	struct mem_cgroup *memcg;
7872	unsigned short oldid;
7873
7874	if (do_memsw_account())
7875		return 0;
7876
7877	memcg = folio_memcg(folio);
7878
7879	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7880	if (!memcg)
7881		return 0;
7882
7883	if (!entry.val) {
7884		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7885		return 0;
7886	}
7887
7888	memcg = mem_cgroup_id_get_online(memcg);
7889
7890	if (!mem_cgroup_is_root(memcg) &&
7891	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7892		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7893		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7894		mem_cgroup_id_put(memcg);
7895		return -ENOMEM;
7896	}
7897
7898	/* Get references for the tail pages, too */
7899	if (nr_pages > 1)
7900		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7901	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7902	VM_BUG_ON_FOLIO(oldid, folio);
7903	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7904
7905	return 0;
7906}
7907
7908/**
7909 * __mem_cgroup_uncharge_swap - uncharge swap space
7910 * @entry: swap entry to uncharge
7911 * @nr_pages: the amount of swap space to uncharge
7912 */
7913void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7914{
7915	struct mem_cgroup *memcg;
7916	unsigned short id;
7917
 
 
 
7918	id = swap_cgroup_record(entry, 0, nr_pages);
7919	rcu_read_lock();
7920	memcg = mem_cgroup_from_id(id);
7921	if (memcg) {
7922		if (!mem_cgroup_is_root(memcg)) {
7923			if (do_memsw_account())
 
 
7924				page_counter_uncharge(&memcg->memsw, nr_pages);
7925			else
7926				page_counter_uncharge(&memcg->swap, nr_pages);
7927		}
7928		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7929		mem_cgroup_id_put_many(memcg, nr_pages);
7930	}
7931	rcu_read_unlock();
7932}
7933
7934long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7935{
7936	long nr_swap_pages = get_nr_swap_pages();
7937
7938	if (mem_cgroup_disabled() || do_memsw_account())
7939		return nr_swap_pages;
7940	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7941		nr_swap_pages = min_t(long, nr_swap_pages,
7942				      READ_ONCE(memcg->swap.max) -
7943				      page_counter_read(&memcg->swap));
7944	return nr_swap_pages;
7945}
7946
7947bool mem_cgroup_swap_full(struct folio *folio)
7948{
7949	struct mem_cgroup *memcg;
7950
7951	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7952
7953	if (vm_swap_full())
7954		return true;
7955	if (do_memsw_account())
7956		return false;
7957
7958	memcg = folio_memcg(folio);
7959	if (!memcg)
7960		return false;
7961
7962	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7963		unsigned long usage = page_counter_read(&memcg->swap);
7964
7965		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7966		    usage * 2 >= READ_ONCE(memcg->swap.max))
7967			return true;
7968	}
7969
7970	return false;
7971}
7972
7973static int __init setup_swap_account(char *s)
 
 
 
 
 
 
 
7974{
7975	bool res;
7976
7977	if (!kstrtobool(s, &res) && !res)
7978		pr_warn_once("The swapaccount=0 commandline option is deprecated "
7979			     "in favor of configuring swap control via cgroupfs. "
7980			     "Please report your usecase to linux-mm@kvack.org if you "
7981			     "depend on this functionality.\n");
7982	return 1;
7983}
7984__setup("swapaccount=", setup_swap_account);
7985
7986static u64 swap_current_read(struct cgroup_subsys_state *css,
7987			     struct cftype *cft)
7988{
7989	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7990
7991	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7992}
7993
7994static u64 swap_peak_read(struct cgroup_subsys_state *css,
7995			  struct cftype *cft)
7996{
7997	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
7998
7999	return (u64)memcg->swap.watermark * PAGE_SIZE;
8000}
 
 
8001
8002static int swap_high_show(struct seq_file *m, void *v)
8003{
8004	return seq_puts_memcg_tunable(m,
8005		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
8006}
8007
8008static ssize_t swap_high_write(struct kernfs_open_file *of,
8009			       char *buf, size_t nbytes, loff_t off)
8010{
8011	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8012	unsigned long high;
8013	int err;
8014
8015	buf = strstrip(buf);
8016	err = page_counter_memparse(buf, "max", &high);
8017	if (err)
8018		return err;
8019
8020	page_counter_set_high(&memcg->swap, high);
8021
8022	return nbytes;
8023}
8024
8025static int swap_max_show(struct seq_file *m, void *v)
8026{
8027	return seq_puts_memcg_tunable(m,
8028		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
8029}
8030
8031static ssize_t swap_max_write(struct kernfs_open_file *of,
8032			      char *buf, size_t nbytes, loff_t off)
8033{
8034	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8035	unsigned long max;
8036	int err;
8037
8038	buf = strstrip(buf);
8039	err = page_counter_memparse(buf, "max", &max);
8040	if (err)
8041		return err;
8042
8043	xchg(&memcg->swap.max, max);
 
 
 
 
8044
8045	return nbytes;
8046}
8047
8048static int swap_events_show(struct seq_file *m, void *v)
8049{
8050	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8051
8052	seq_printf(m, "high %lu\n",
8053		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
8054	seq_printf(m, "max %lu\n",
8055		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
8056	seq_printf(m, "fail %lu\n",
8057		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
8058
8059	return 0;
8060}
8061
8062static struct cftype swap_files[] = {
8063	{
8064		.name = "swap.current",
8065		.flags = CFTYPE_NOT_ON_ROOT,
8066		.read_u64 = swap_current_read,
8067	},
8068	{
8069		.name = "swap.high",
8070		.flags = CFTYPE_NOT_ON_ROOT,
8071		.seq_show = swap_high_show,
8072		.write = swap_high_write,
8073	},
8074	{
8075		.name = "swap.max",
8076		.flags = CFTYPE_NOT_ON_ROOT,
8077		.seq_show = swap_max_show,
8078		.write = swap_max_write,
8079	},
8080	{
8081		.name = "swap.peak",
8082		.flags = CFTYPE_NOT_ON_ROOT,
8083		.read_u64 = swap_peak_read,
8084	},
8085	{
8086		.name = "swap.events",
8087		.flags = CFTYPE_NOT_ON_ROOT,
8088		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
8089		.seq_show = swap_events_show,
8090	},
8091	{ }	/* terminate */
8092};
8093
8094static struct cftype memsw_files[] = {
8095	{
8096		.name = "memsw.usage_in_bytes",
8097		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8098		.read_u64 = mem_cgroup_read_u64,
8099	},
8100	{
8101		.name = "memsw.max_usage_in_bytes",
8102		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8103		.write = mem_cgroup_reset,
8104		.read_u64 = mem_cgroup_read_u64,
8105	},
8106	{
8107		.name = "memsw.limit_in_bytes",
8108		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8109		.write = mem_cgroup_write,
8110		.read_u64 = mem_cgroup_read_u64,
8111	},
8112	{
8113		.name = "memsw.failcnt",
8114		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8115		.write = mem_cgroup_reset,
8116		.read_u64 = mem_cgroup_read_u64,
8117	},
8118	{ },	/* terminate */
8119};
8120
8121#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8122/**
8123 * obj_cgroup_may_zswap - check if this cgroup can zswap
8124 * @objcg: the object cgroup
8125 *
8126 * Check if the hierarchical zswap limit has been reached.
8127 *
8128 * This doesn't check for specific headroom, and it is not atomic
8129 * either. But with zswap, the size of the allocation is only known
8130 * once compression has occurred, and this optimistic pre-check avoids
8131 * spending cycles on compression when there is already no room left
8132 * or zswap is disabled altogether somewhere in the hierarchy.
8133 */
8134bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8135{
8136	struct mem_cgroup *memcg, *original_memcg;
8137	bool ret = true;
8138
8139	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8140		return true;
8141
8142	original_memcg = get_mem_cgroup_from_objcg(objcg);
8143	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
8144	     memcg = parent_mem_cgroup(memcg)) {
8145		unsigned long max = READ_ONCE(memcg->zswap_max);
8146		unsigned long pages;
8147
8148		if (max == PAGE_COUNTER_MAX)
8149			continue;
8150		if (max == 0) {
8151			ret = false;
8152			break;
8153		}
8154
8155		/*
8156		 * mem_cgroup_flush_stats() ignores small changes. Use
8157		 * do_flush_stats() directly to get accurate stats for charging.
8158		 */
8159		do_flush_stats(memcg);
8160		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
8161		if (pages < max)
8162			continue;
8163		ret = false;
8164		break;
8165	}
8166	mem_cgroup_put(original_memcg);
8167	return ret;
8168}
8169
8170/**
8171 * obj_cgroup_charge_zswap - charge compression backend memory
8172 * @objcg: the object cgroup
8173 * @size: size of compressed object
8174 *
8175 * This forces the charge after obj_cgroup_may_zswap() allowed
8176 * compression and storage in zwap for this cgroup to go ahead.
8177 */
8178void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8179{
8180	struct mem_cgroup *memcg;
8181
8182	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8183		return;
8184
8185	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8186
8187	/* PF_MEMALLOC context, charging must succeed */
8188	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8189		VM_WARN_ON_ONCE(1);
8190
8191	rcu_read_lock();
8192	memcg = obj_cgroup_memcg(objcg);
8193	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
8194	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
8195	rcu_read_unlock();
8196}
8197
8198/**
8199 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8200 * @objcg: the object cgroup
8201 * @size: size of compressed object
8202 *
8203 * Uncharges zswap memory on page in.
8204 */
8205void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8206{
8207	struct mem_cgroup *memcg;
8208
8209	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8210		return;
8211
8212	obj_cgroup_uncharge(objcg, size);
8213
8214	rcu_read_lock();
8215	memcg = obj_cgroup_memcg(objcg);
8216	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
8217	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
8218	rcu_read_unlock();
8219}
8220
8221bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
8222{
8223	/* if zswap is disabled, do not block pages going to the swapping device */
8224	return !is_zswap_enabled() || !memcg || READ_ONCE(memcg->zswap_writeback);
8225}
8226
8227static u64 zswap_current_read(struct cgroup_subsys_state *css,
8228			      struct cftype *cft)
8229{
8230	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
8231
8232	mem_cgroup_flush_stats(memcg);
8233	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
8234}
8235
8236static int zswap_max_show(struct seq_file *m, void *v)
8237{
8238	return seq_puts_memcg_tunable(m,
8239		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8240}
8241
8242static ssize_t zswap_max_write(struct kernfs_open_file *of,
8243			       char *buf, size_t nbytes, loff_t off)
8244{
8245	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8246	unsigned long max;
8247	int err;
8248
8249	buf = strstrip(buf);
8250	err = page_counter_memparse(buf, "max", &max);
8251	if (err)
8252		return err;
8253
8254	xchg(&memcg->zswap_max, max);
8255
8256	return nbytes;
8257}
8258
8259static int zswap_writeback_show(struct seq_file *m, void *v)
8260{
8261	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8262
8263	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
8264	return 0;
8265}
8266
8267static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
8268				char *buf, size_t nbytes, loff_t off)
8269{
8270	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8271	int zswap_writeback;
8272	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
8273
8274	if (parse_ret)
8275		return parse_ret;
8276
8277	if (zswap_writeback != 0 && zswap_writeback != 1)
8278		return -EINVAL;
8279
8280	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
8281	return nbytes;
8282}
8283
8284static struct cftype zswap_files[] = {
8285	{
8286		.name = "zswap.current",
8287		.flags = CFTYPE_NOT_ON_ROOT,
8288		.read_u64 = zswap_current_read,
8289	},
8290	{
8291		.name = "zswap.max",
8292		.flags = CFTYPE_NOT_ON_ROOT,
8293		.seq_show = zswap_max_show,
8294		.write = zswap_max_write,
8295	},
8296	{
8297		.name = "zswap.writeback",
8298		.seq_show = zswap_writeback_show,
8299		.write = zswap_writeback_write,
8300	},
8301	{ }	/* terminate */
8302};
8303#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8304
8305static int __init mem_cgroup_swap_init(void)
8306{
8307	if (mem_cgroup_disabled())
8308		return 0;
8309
8310	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8311	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8312#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8313	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8314#endif
8315	return 0;
8316}
8317subsys_initcall(mem_cgroup_swap_init);
8318
8319#endif /* CONFIG_SWAP */