Loading...
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/sched/mm.h>
39#include <linux/shmem_fs.h>
40#include <linux/hugetlb.h>
41#include <linux/pagemap.h>
42#include <linux/smp.h>
43#include <linux/page-flags.h>
44#include <linux/backing-dev.h>
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/limits.h>
48#include <linux/export.h>
49#include <linux/mutex.h>
50#include <linux/rbtree.h>
51#include <linux/slab.h>
52#include <linux/swap.h>
53#include <linux/swapops.h>
54#include <linux/spinlock.h>
55#include <linux/eventfd.h>
56#include <linux/poll.h>
57#include <linux/sort.h>
58#include <linux/fs.h>
59#include <linux/seq_file.h>
60#include <linux/vmpressure.h>
61#include <linux/mm_inline.h>
62#include <linux/swap_cgroup.h>
63#include <linux/cpu.h>
64#include <linux/oom.h>
65#include <linux/lockdep.h>
66#include <linux/file.h>
67#include <linux/tracehook.h>
68#include "internal.h"
69#include <net/sock.h>
70#include <net/ip.h>
71#include "slab.h"
72
73#include <linux/uaccess.h>
74
75#include <trace/events/vmscan.h>
76
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
79
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82#define MEM_CGROUP_RECLAIM_RETRIES 5
83
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
90/* Whether the swap controller is active */
91#ifdef CONFIG_MEMCG_SWAP
92int do_swap_account __read_mostly;
93#else
94#define do_swap_account 0
95#endif
96
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
103static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
114
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
124};
125
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
137
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
141struct mem_cgroup_event {
142 /*
143 * memcg which the event belongs to.
144 */
145 struct mem_cgroup *memcg;
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
176};
177
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180
181/* Stuffs for move charges at task migration. */
182/*
183 * Types of charges to be moved.
184 */
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
205
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
212
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
219};
220
221/* for encoding cft->private value on file */
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
228};
229
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232#define MEMFILE_ATTR(val) ((val) & 0xffff)
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
235
236/* Some nice accessors for the vmpressure. */
237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238{
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242}
243
244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245{
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247}
248
249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250{
251 return (memcg == root_mem_cgroup);
252}
253
254#ifndef CONFIG_SLOB
255/*
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
262 *
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
265 */
266static DEFINE_IDA(memcg_cache_ida);
267int memcg_nr_cache_ids;
268
269/* Protects memcg_nr_cache_ids */
270static DECLARE_RWSEM(memcg_cache_ids_sem);
271
272void memcg_get_cache_ids(void)
273{
274 down_read(&memcg_cache_ids_sem);
275}
276
277void memcg_put_cache_ids(void)
278{
279 up_read(&memcg_cache_ids_sem);
280}
281
282/*
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
287 *
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
293 */
294#define MEMCG_CACHES_MIN_SIZE 4
295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296
297/*
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
302 */
303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304EXPORT_SYMBOL(memcg_kmem_enabled_key);
305
306struct workqueue_struct *memcg_kmem_cache_wq;
307
308#endif /* !CONFIG_SLOB */
309
310/**
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
313 *
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
317 *
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
320 */
321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322{
323 struct mem_cgroup *memcg;
324
325 memcg = page->mem_cgroup;
326
327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 memcg = root_mem_cgroup;
329
330 return &memcg->css;
331}
332
333/**
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
336 *
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
340 *
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
345 */
346ino_t page_cgroup_ino(struct page *page)
347{
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
350
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
359}
360
361static struct mem_cgroup_per_node *
362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363{
364 int nid = page_to_nid(page);
365
366 return memcg->nodeinfo[nid];
367}
368
369static struct mem_cgroup_tree_per_node *
370soft_limit_tree_node(int nid)
371{
372 return soft_limit_tree.rb_tree_per_node[nid];
373}
374
375static struct mem_cgroup_tree_per_node *
376soft_limit_tree_from_page(struct page *page)
377{
378 int nid = page_to_nid(page);
379
380 return soft_limit_tree.rb_tree_per_node[nid];
381}
382
383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
385 unsigned long new_usage_in_excess)
386{
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
389 struct mem_cgroup_per_node *mz_node;
390 bool rightmost = true;
391
392 if (mz->on_tree)
393 return;
394
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401 tree_node);
402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
403 p = &(*p)->rb_left;
404 rightmost = false;
405 }
406
407 /*
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
410 */
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
413 }
414
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
417
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
421}
422
423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
425{
426 if (!mz->on_tree)
427 return;
428
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
431
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438{
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444}
445
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 if (!mctz)
466 return;
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 mz = mem_cgroup_page_nodeinfo(memcg, page);
473 excess = soft_limit_excess(memcg);
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
482 /* if on-tree, remove it */
483 if (mz->on_tree)
484 __mem_cgroup_remove_exceeded(mz, mctz);
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
490 spin_unlock_irqrestore(&mctz->lock, flags);
491 }
492 }
493}
494
495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496{
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
500
501 for_each_node(nid) {
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
506 }
507}
508
509static struct mem_cgroup_per_node *
510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511{
512 struct mem_cgroup_per_node *mz;
513
514retry:
515 mz = NULL;
516 if (!mctz->rb_rightmost)
517 goto done; /* Nothing to reclaim from */
518
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
521 /*
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
525 */
526 __mem_cgroup_remove_exceeded(mz, mctz);
527 if (!soft_limit_excess(mz->memcg) ||
528 !css_tryget_online(&mz->memcg->css))
529 goto retry;
530done:
531 return mz;
532}
533
534static struct mem_cgroup_per_node *
535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536{
537 struct mem_cgroup_per_node *mz;
538
539 spin_lock_irq(&mctz->lock);
540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 spin_unlock_irq(&mctz->lock);
542 return mz;
543}
544
545static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
546 int event)
547{
548 return atomic_long_read(&memcg->events[event]);
549}
550
551static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
552 struct page *page,
553 bool compound, int nr_pages)
554{
555 /*
556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
557 * counted as CACHE even if it's on ANON LRU.
558 */
559 if (PageAnon(page))
560 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
561 else {
562 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
563 if (PageSwapBacked(page))
564 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
565 }
566
567 if (compound) {
568 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
569 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
570 }
571
572 /* pagein of a big page is an event. So, ignore page size */
573 if (nr_pages > 0)
574 __count_memcg_events(memcg, PGPGIN, 1);
575 else {
576 __count_memcg_events(memcg, PGPGOUT, 1);
577 nr_pages = -nr_pages; /* for event */
578 }
579
580 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
581}
582
583unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
584 int nid, unsigned int lru_mask)
585{
586 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
587 unsigned long nr = 0;
588 enum lru_list lru;
589
590 VM_BUG_ON((unsigned)nid >= nr_node_ids);
591
592 for_each_lru(lru) {
593 if (!(BIT(lru) & lru_mask))
594 continue;
595 nr += mem_cgroup_get_lru_size(lruvec, lru);
596 }
597 return nr;
598}
599
600static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
601 unsigned int lru_mask)
602{
603 unsigned long nr = 0;
604 int nid;
605
606 for_each_node_state(nid, N_MEMORY)
607 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
608 return nr;
609}
610
611static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
612 enum mem_cgroup_events_target target)
613{
614 unsigned long val, next;
615
616 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
617 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
618 /* from time_after() in jiffies.h */
619 if ((long)(next - val) < 0) {
620 switch (target) {
621 case MEM_CGROUP_TARGET_THRESH:
622 next = val + THRESHOLDS_EVENTS_TARGET;
623 break;
624 case MEM_CGROUP_TARGET_SOFTLIMIT:
625 next = val + SOFTLIMIT_EVENTS_TARGET;
626 break;
627 case MEM_CGROUP_TARGET_NUMAINFO:
628 next = val + NUMAINFO_EVENTS_TARGET;
629 break;
630 default:
631 break;
632 }
633 __this_cpu_write(memcg->stat_cpu->targets[target], next);
634 return true;
635 }
636 return false;
637}
638
639/*
640 * Check events in order.
641 *
642 */
643static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
644{
645 /* threshold event is triggered in finer grain than soft limit */
646 if (unlikely(mem_cgroup_event_ratelimit(memcg,
647 MEM_CGROUP_TARGET_THRESH))) {
648 bool do_softlimit;
649 bool do_numainfo __maybe_unused;
650
651 do_softlimit = mem_cgroup_event_ratelimit(memcg,
652 MEM_CGROUP_TARGET_SOFTLIMIT);
653#if MAX_NUMNODES > 1
654 do_numainfo = mem_cgroup_event_ratelimit(memcg,
655 MEM_CGROUP_TARGET_NUMAINFO);
656#endif
657 mem_cgroup_threshold(memcg);
658 if (unlikely(do_softlimit))
659 mem_cgroup_update_tree(memcg, page);
660#if MAX_NUMNODES > 1
661 if (unlikely(do_numainfo))
662 atomic_inc(&memcg->numainfo_events);
663#endif
664 }
665}
666
667struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
668{
669 /*
670 * mm_update_next_owner() may clear mm->owner to NULL
671 * if it races with swapoff, page migration, etc.
672 * So this can be called with p == NULL.
673 */
674 if (unlikely(!p))
675 return NULL;
676
677 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
678}
679EXPORT_SYMBOL(mem_cgroup_from_task);
680
681static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
682{
683 struct mem_cgroup *memcg = NULL;
684
685 rcu_read_lock();
686 do {
687 /*
688 * Page cache insertions can happen withou an
689 * actual mm context, e.g. during disk probing
690 * on boot, loopback IO, acct() writes etc.
691 */
692 if (unlikely(!mm))
693 memcg = root_mem_cgroup;
694 else {
695 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!memcg))
697 memcg = root_mem_cgroup;
698 }
699 } while (!css_tryget_online(&memcg->css));
700 rcu_read_unlock();
701 return memcg;
702}
703
704/**
705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
706 * @root: hierarchy root
707 * @prev: previously returned memcg, NULL on first invocation
708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
709 *
710 * Returns references to children of the hierarchy below @root, or
711 * @root itself, or %NULL after a full round-trip.
712 *
713 * Caller must pass the return value in @prev on subsequent
714 * invocations for reference counting, or use mem_cgroup_iter_break()
715 * to cancel a hierarchy walk before the round-trip is complete.
716 *
717 * Reclaimers can specify a node and a priority level in @reclaim to
718 * divide up the memcgs in the hierarchy among all concurrent
719 * reclaimers operating on the same node and priority.
720 */
721struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
722 struct mem_cgroup *prev,
723 struct mem_cgroup_reclaim_cookie *reclaim)
724{
725 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
726 struct cgroup_subsys_state *css = NULL;
727 struct mem_cgroup *memcg = NULL;
728 struct mem_cgroup *pos = NULL;
729
730 if (mem_cgroup_disabled())
731 return NULL;
732
733 if (!root)
734 root = root_mem_cgroup;
735
736 if (prev && !reclaim)
737 pos = prev;
738
739 if (!root->use_hierarchy && root != root_mem_cgroup) {
740 if (prev)
741 goto out;
742 return root;
743 }
744
745 rcu_read_lock();
746
747 if (reclaim) {
748 struct mem_cgroup_per_node *mz;
749
750 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
751 iter = &mz->iter[reclaim->priority];
752
753 if (prev && reclaim->generation != iter->generation)
754 goto out_unlock;
755
756 while (1) {
757 pos = READ_ONCE(iter->position);
758 if (!pos || css_tryget(&pos->css))
759 break;
760 /*
761 * css reference reached zero, so iter->position will
762 * be cleared by ->css_released. However, we should not
763 * rely on this happening soon, because ->css_released
764 * is called from a work queue, and by busy-waiting we
765 * might block it. So we clear iter->position right
766 * away.
767 */
768 (void)cmpxchg(&iter->position, pos, NULL);
769 }
770 }
771
772 if (pos)
773 css = &pos->css;
774
775 for (;;) {
776 css = css_next_descendant_pre(css, &root->css);
777 if (!css) {
778 /*
779 * Reclaimers share the hierarchy walk, and a
780 * new one might jump in right at the end of
781 * the hierarchy - make sure they see at least
782 * one group and restart from the beginning.
783 */
784 if (!prev)
785 continue;
786 break;
787 }
788
789 /*
790 * Verify the css and acquire a reference. The root
791 * is provided by the caller, so we know it's alive
792 * and kicking, and don't take an extra reference.
793 */
794 memcg = mem_cgroup_from_css(css);
795
796 if (css == &root->css)
797 break;
798
799 if (css_tryget(css))
800 break;
801
802 memcg = NULL;
803 }
804
805 if (reclaim) {
806 /*
807 * The position could have already been updated by a competing
808 * thread, so check that the value hasn't changed since we read
809 * it to avoid reclaiming from the same cgroup twice.
810 */
811 (void)cmpxchg(&iter->position, pos, memcg);
812
813 if (pos)
814 css_put(&pos->css);
815
816 if (!memcg)
817 iter->generation++;
818 else if (!prev)
819 reclaim->generation = iter->generation;
820 }
821
822out_unlock:
823 rcu_read_unlock();
824out:
825 if (prev && prev != root)
826 css_put(&prev->css);
827
828 return memcg;
829}
830
831/**
832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
833 * @root: hierarchy root
834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
835 */
836void mem_cgroup_iter_break(struct mem_cgroup *root,
837 struct mem_cgroup *prev)
838{
839 if (!root)
840 root = root_mem_cgroup;
841 if (prev && prev != root)
842 css_put(&prev->css);
843}
844
845static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
846{
847 struct mem_cgroup *memcg = dead_memcg;
848 struct mem_cgroup_reclaim_iter *iter;
849 struct mem_cgroup_per_node *mz;
850 int nid;
851 int i;
852
853 while ((memcg = parent_mem_cgroup(memcg))) {
854 for_each_node(nid) {
855 mz = mem_cgroup_nodeinfo(memcg, nid);
856 for (i = 0; i <= DEF_PRIORITY; i++) {
857 iter = &mz->iter[i];
858 cmpxchg(&iter->position,
859 dead_memcg, NULL);
860 }
861 }
862 }
863}
864
865/*
866 * Iteration constructs for visiting all cgroups (under a tree). If
867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
868 * be used for reference counting.
869 */
870#define for_each_mem_cgroup_tree(iter, root) \
871 for (iter = mem_cgroup_iter(root, NULL, NULL); \
872 iter != NULL; \
873 iter = mem_cgroup_iter(root, iter, NULL))
874
875#define for_each_mem_cgroup(iter) \
876 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
877 iter != NULL; \
878 iter = mem_cgroup_iter(NULL, iter, NULL))
879
880/**
881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
882 * @memcg: hierarchy root
883 * @fn: function to call for each task
884 * @arg: argument passed to @fn
885 *
886 * This function iterates over tasks attached to @memcg or to any of its
887 * descendants and calls @fn for each task. If @fn returns a non-zero
888 * value, the function breaks the iteration loop and returns the value.
889 * Otherwise, it will iterate over all tasks and return 0.
890 *
891 * This function must not be called for the root memory cgroup.
892 */
893int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
894 int (*fn)(struct task_struct *, void *), void *arg)
895{
896 struct mem_cgroup *iter;
897 int ret = 0;
898
899 BUG_ON(memcg == root_mem_cgroup);
900
901 for_each_mem_cgroup_tree(iter, memcg) {
902 struct css_task_iter it;
903 struct task_struct *task;
904
905 css_task_iter_start(&iter->css, 0, &it);
906 while (!ret && (task = css_task_iter_next(&it)))
907 ret = fn(task, arg);
908 css_task_iter_end(&it);
909 if (ret) {
910 mem_cgroup_iter_break(memcg, iter);
911 break;
912 }
913 }
914 return ret;
915}
916
917/**
918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
919 * @page: the page
920 * @pgdat: pgdat of the page
921 *
922 * This function is only safe when following the LRU page isolation
923 * and putback protocol: the LRU lock must be held, and the page must
924 * either be PageLRU() or the caller must have isolated/allocated it.
925 */
926struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
927{
928 struct mem_cgroup_per_node *mz;
929 struct mem_cgroup *memcg;
930 struct lruvec *lruvec;
931
932 if (mem_cgroup_disabled()) {
933 lruvec = &pgdat->lruvec;
934 goto out;
935 }
936
937 memcg = page->mem_cgroup;
938 /*
939 * Swapcache readahead pages are added to the LRU - and
940 * possibly migrated - before they are charged.
941 */
942 if (!memcg)
943 memcg = root_mem_cgroup;
944
945 mz = mem_cgroup_page_nodeinfo(memcg, page);
946 lruvec = &mz->lruvec;
947out:
948 /*
949 * Since a node can be onlined after the mem_cgroup was created,
950 * we have to be prepared to initialize lruvec->zone here;
951 * and if offlined then reonlined, we need to reinitialize it.
952 */
953 if (unlikely(lruvec->pgdat != pgdat))
954 lruvec->pgdat = pgdat;
955 return lruvec;
956}
957
958/**
959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
960 * @lruvec: mem_cgroup per zone lru vector
961 * @lru: index of lru list the page is sitting on
962 * @zid: zone id of the accounted pages
963 * @nr_pages: positive when adding or negative when removing
964 *
965 * This function must be called under lru_lock, just before a page is added
966 * to or just after a page is removed from an lru list (that ordering being
967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
968 */
969void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
970 int zid, int nr_pages)
971{
972 struct mem_cgroup_per_node *mz;
973 unsigned long *lru_size;
974 long size;
975
976 if (mem_cgroup_disabled())
977 return;
978
979 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
980 lru_size = &mz->lru_zone_size[zid][lru];
981
982 if (nr_pages < 0)
983 *lru_size += nr_pages;
984
985 size = *lru_size;
986 if (WARN_ONCE(size < 0,
987 "%s(%p, %d, %d): lru_size %ld\n",
988 __func__, lruvec, lru, nr_pages, size)) {
989 VM_BUG_ON(1);
990 *lru_size = 0;
991 }
992
993 if (nr_pages > 0)
994 *lru_size += nr_pages;
995}
996
997bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
998{
999 struct mem_cgroup *task_memcg;
1000 struct task_struct *p;
1001 bool ret;
1002
1003 p = find_lock_task_mm(task);
1004 if (p) {
1005 task_memcg = get_mem_cgroup_from_mm(p->mm);
1006 task_unlock(p);
1007 } else {
1008 /*
1009 * All threads may have already detached their mm's, but the oom
1010 * killer still needs to detect if they have already been oom
1011 * killed to prevent needlessly killing additional tasks.
1012 */
1013 rcu_read_lock();
1014 task_memcg = mem_cgroup_from_task(task);
1015 css_get(&task_memcg->css);
1016 rcu_read_unlock();
1017 }
1018 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019 css_put(&task_memcg->css);
1020 return ret;
1021}
1022
1023/**
1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025 * @memcg: the memory cgroup
1026 *
1027 * Returns the maximum amount of memory @mem can be charged with, in
1028 * pages.
1029 */
1030static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1031{
1032 unsigned long margin = 0;
1033 unsigned long count;
1034 unsigned long limit;
1035
1036 count = page_counter_read(&memcg->memory);
1037 limit = READ_ONCE(memcg->memory.limit);
1038 if (count < limit)
1039 margin = limit - count;
1040
1041 if (do_memsw_account()) {
1042 count = page_counter_read(&memcg->memsw);
1043 limit = READ_ONCE(memcg->memsw.limit);
1044 if (count <= limit)
1045 margin = min(margin, limit - count);
1046 else
1047 margin = 0;
1048 }
1049
1050 return margin;
1051}
1052
1053/*
1054 * A routine for checking "mem" is under move_account() or not.
1055 *
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1058 * caused by "move".
1059 */
1060static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1061{
1062 struct mem_cgroup *from;
1063 struct mem_cgroup *to;
1064 bool ret = false;
1065 /*
1066 * Unlike task_move routines, we access mc.to, mc.from not under
1067 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1068 */
1069 spin_lock(&mc.lock);
1070 from = mc.from;
1071 to = mc.to;
1072 if (!from)
1073 goto unlock;
1074
1075 ret = mem_cgroup_is_descendant(from, memcg) ||
1076 mem_cgroup_is_descendant(to, memcg);
1077unlock:
1078 spin_unlock(&mc.lock);
1079 return ret;
1080}
1081
1082static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1083{
1084 if (mc.moving_task && current != mc.moving_task) {
1085 if (mem_cgroup_under_move(memcg)) {
1086 DEFINE_WAIT(wait);
1087 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088 /* moving charge context might have finished. */
1089 if (mc.moving_task)
1090 schedule();
1091 finish_wait(&mc.waitq, &wait);
1092 return true;
1093 }
1094 }
1095 return false;
1096}
1097
1098static const unsigned int memcg1_stats[] = {
1099 MEMCG_CACHE,
1100 MEMCG_RSS,
1101 MEMCG_RSS_HUGE,
1102 NR_SHMEM,
1103 NR_FILE_MAPPED,
1104 NR_FILE_DIRTY,
1105 NR_WRITEBACK,
1106 MEMCG_SWAP,
1107};
1108
1109static const char *const memcg1_stat_names[] = {
1110 "cache",
1111 "rss",
1112 "rss_huge",
1113 "shmem",
1114 "mapped_file",
1115 "dirty",
1116 "writeback",
1117 "swap",
1118};
1119
1120#define K(x) ((x) << (PAGE_SHIFT-10))
1121/**
1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1125 *
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1127 * enabled
1128 */
1129void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1130{
1131 struct mem_cgroup *iter;
1132 unsigned int i;
1133
1134 rcu_read_lock();
1135
1136 if (p) {
1137 pr_info("Task in ");
1138 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139 pr_cont(" killed as a result of limit of ");
1140 } else {
1141 pr_info("Memory limit reached of cgroup ");
1142 }
1143
1144 pr_cont_cgroup_path(memcg->css.cgroup);
1145 pr_cont("\n");
1146
1147 rcu_read_unlock();
1148
1149 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150 K((u64)page_counter_read(&memcg->memory)),
1151 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1152 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153 K((u64)page_counter_read(&memcg->memsw)),
1154 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1155 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156 K((u64)page_counter_read(&memcg->kmem)),
1157 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1158
1159 for_each_mem_cgroup_tree(iter, memcg) {
1160 pr_info("Memory cgroup stats for ");
1161 pr_cont_cgroup_path(iter->css.cgroup);
1162 pr_cont(":");
1163
1164 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166 continue;
1167 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168 K(memcg_page_state(iter, memcg1_stats[i])));
1169 }
1170
1171 for (i = 0; i < NR_LRU_LISTS; i++)
1172 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1174
1175 pr_cont("\n");
1176 }
1177}
1178
1179/*
1180 * Return the memory (and swap, if configured) limit for a memcg.
1181 */
1182unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1183{
1184 unsigned long limit;
1185
1186 limit = memcg->memory.limit;
1187 if (mem_cgroup_swappiness(memcg)) {
1188 unsigned long memsw_limit;
1189 unsigned long swap_limit;
1190
1191 memsw_limit = memcg->memsw.limit;
1192 swap_limit = memcg->swap.limit;
1193 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1194 limit = min(limit + swap_limit, memsw_limit);
1195 }
1196 return limit;
1197}
1198
1199static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200 int order)
1201{
1202 struct oom_control oc = {
1203 .zonelist = NULL,
1204 .nodemask = NULL,
1205 .memcg = memcg,
1206 .gfp_mask = gfp_mask,
1207 .order = order,
1208 };
1209 bool ret;
1210
1211 mutex_lock(&oom_lock);
1212 ret = out_of_memory(&oc);
1213 mutex_unlock(&oom_lock);
1214 return ret;
1215}
1216
1217#if MAX_NUMNODES > 1
1218
1219/**
1220 * test_mem_cgroup_node_reclaimable
1221 * @memcg: the target memcg
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1224 *
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1228 */
1229static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230 int nid, bool noswap)
1231{
1232 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233 return true;
1234 if (noswap || !total_swap_pages)
1235 return false;
1236 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237 return true;
1238 return false;
1239
1240}
1241
1242/*
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1246 *
1247 */
1248static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1249{
1250 int nid;
1251 /*
1252 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253 * pagein/pageout changes since the last update.
1254 */
1255 if (!atomic_read(&memcg->numainfo_events))
1256 return;
1257 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258 return;
1259
1260 /* make a nodemask where this memcg uses memory from */
1261 memcg->scan_nodes = node_states[N_MEMORY];
1262
1263 for_each_node_mask(nid, node_states[N_MEMORY]) {
1264
1265 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266 node_clear(nid, memcg->scan_nodes);
1267 }
1268
1269 atomic_set(&memcg->numainfo_events, 0);
1270 atomic_set(&memcg->numainfo_updating, 0);
1271}
1272
1273/*
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1277 *
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1282 *
1283 * Now, we use round-robin. Better algorithm is welcomed.
1284 */
1285int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1286{
1287 int node;
1288
1289 mem_cgroup_may_update_nodemask(memcg);
1290 node = memcg->last_scanned_node;
1291
1292 node = next_node_in(node, memcg->scan_nodes);
1293 /*
1294 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295 * last time it really checked all the LRUs due to rate limiting.
1296 * Fallback to the current node in that case for simplicity.
1297 */
1298 if (unlikely(node == MAX_NUMNODES))
1299 node = numa_node_id();
1300
1301 memcg->last_scanned_node = node;
1302 return node;
1303}
1304#else
1305int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1306{
1307 return 0;
1308}
1309#endif
1310
1311static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312 pg_data_t *pgdat,
1313 gfp_t gfp_mask,
1314 unsigned long *total_scanned)
1315{
1316 struct mem_cgroup *victim = NULL;
1317 int total = 0;
1318 int loop = 0;
1319 unsigned long excess;
1320 unsigned long nr_scanned;
1321 struct mem_cgroup_reclaim_cookie reclaim = {
1322 .pgdat = pgdat,
1323 .priority = 0,
1324 };
1325
1326 excess = soft_limit_excess(root_memcg);
1327
1328 while (1) {
1329 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1330 if (!victim) {
1331 loop++;
1332 if (loop >= 2) {
1333 /*
1334 * If we have not been able to reclaim
1335 * anything, it might because there are
1336 * no reclaimable pages under this hierarchy
1337 */
1338 if (!total)
1339 break;
1340 /*
1341 * We want to do more targeted reclaim.
1342 * excess >> 2 is not to excessive so as to
1343 * reclaim too much, nor too less that we keep
1344 * coming back to reclaim from this cgroup
1345 */
1346 if (total >= (excess >> 2) ||
1347 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1348 break;
1349 }
1350 continue;
1351 }
1352 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353 pgdat, &nr_scanned);
1354 *total_scanned += nr_scanned;
1355 if (!soft_limit_excess(root_memcg))
1356 break;
1357 }
1358 mem_cgroup_iter_break(root_memcg, victim);
1359 return total;
1360}
1361
1362#ifdef CONFIG_LOCKDEP
1363static struct lockdep_map memcg_oom_lock_dep_map = {
1364 .name = "memcg_oom_lock",
1365};
1366#endif
1367
1368static DEFINE_SPINLOCK(memcg_oom_lock);
1369
1370/*
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1373 */
1374static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1375{
1376 struct mem_cgroup *iter, *failed = NULL;
1377
1378 spin_lock(&memcg_oom_lock);
1379
1380 for_each_mem_cgroup_tree(iter, memcg) {
1381 if (iter->oom_lock) {
1382 /*
1383 * this subtree of our hierarchy is already locked
1384 * so we cannot give a lock.
1385 */
1386 failed = iter;
1387 mem_cgroup_iter_break(memcg, iter);
1388 break;
1389 } else
1390 iter->oom_lock = true;
1391 }
1392
1393 if (failed) {
1394 /*
1395 * OK, we failed to lock the whole subtree so we have
1396 * to clean up what we set up to the failing subtree
1397 */
1398 for_each_mem_cgroup_tree(iter, memcg) {
1399 if (iter == failed) {
1400 mem_cgroup_iter_break(memcg, iter);
1401 break;
1402 }
1403 iter->oom_lock = false;
1404 }
1405 } else
1406 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1407
1408 spin_unlock(&memcg_oom_lock);
1409
1410 return !failed;
1411}
1412
1413static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1414{
1415 struct mem_cgroup *iter;
1416
1417 spin_lock(&memcg_oom_lock);
1418 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419 for_each_mem_cgroup_tree(iter, memcg)
1420 iter->oom_lock = false;
1421 spin_unlock(&memcg_oom_lock);
1422}
1423
1424static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1425{
1426 struct mem_cgroup *iter;
1427
1428 spin_lock(&memcg_oom_lock);
1429 for_each_mem_cgroup_tree(iter, memcg)
1430 iter->under_oom++;
1431 spin_unlock(&memcg_oom_lock);
1432}
1433
1434static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1435{
1436 struct mem_cgroup *iter;
1437
1438 /*
1439 * When a new child is created while the hierarchy is under oom,
1440 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1441 */
1442 spin_lock(&memcg_oom_lock);
1443 for_each_mem_cgroup_tree(iter, memcg)
1444 if (iter->under_oom > 0)
1445 iter->under_oom--;
1446 spin_unlock(&memcg_oom_lock);
1447}
1448
1449static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1450
1451struct oom_wait_info {
1452 struct mem_cgroup *memcg;
1453 wait_queue_entry_t wait;
1454};
1455
1456static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1457 unsigned mode, int sync, void *arg)
1458{
1459 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460 struct mem_cgroup *oom_wait_memcg;
1461 struct oom_wait_info *oom_wait_info;
1462
1463 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464 oom_wait_memcg = oom_wait_info->memcg;
1465
1466 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1468 return 0;
1469 return autoremove_wake_function(wait, mode, sync, arg);
1470}
1471
1472static void memcg_oom_recover(struct mem_cgroup *memcg)
1473{
1474 /*
1475 * For the following lockless ->under_oom test, the only required
1476 * guarantee is that it must see the state asserted by an OOM when
1477 * this function is called as a result of userland actions
1478 * triggered by the notification of the OOM. This is trivially
1479 * achieved by invoking mem_cgroup_mark_under_oom() before
1480 * triggering notification.
1481 */
1482 if (memcg && memcg->under_oom)
1483 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1484}
1485
1486static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1487{
1488 if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489 return;
1490 /*
1491 * We are in the middle of the charge context here, so we
1492 * don't want to block when potentially sitting on a callstack
1493 * that holds all kinds of filesystem and mm locks.
1494 *
1495 * Also, the caller may handle a failed allocation gracefully
1496 * (like optional page cache readahead) and so an OOM killer
1497 * invocation might not even be necessary.
1498 *
1499 * That's why we don't do anything here except remember the
1500 * OOM context and then deal with it at the end of the page
1501 * fault when the stack is unwound, the locks are released,
1502 * and when we know whether the fault was overall successful.
1503 */
1504 css_get(&memcg->css);
1505 current->memcg_in_oom = memcg;
1506 current->memcg_oom_gfp_mask = mask;
1507 current->memcg_oom_order = order;
1508}
1509
1510/**
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512 * @handle: actually kill/wait or just clean up the OOM state
1513 *
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
1516 *
1517 * Memcg supports userspace OOM handling where failed allocations must
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation. Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522 * the end of the page fault to complete the OOM handling.
1523 *
1524 * Returns %true if an ongoing memcg OOM situation was detected and
1525 * completed, %false otherwise.
1526 */
1527bool mem_cgroup_oom_synchronize(bool handle)
1528{
1529 struct mem_cgroup *memcg = current->memcg_in_oom;
1530 struct oom_wait_info owait;
1531 bool locked;
1532
1533 /* OOM is global, do not handle */
1534 if (!memcg)
1535 return false;
1536
1537 if (!handle)
1538 goto cleanup;
1539
1540 owait.memcg = memcg;
1541 owait.wait.flags = 0;
1542 owait.wait.func = memcg_oom_wake_function;
1543 owait.wait.private = current;
1544 INIT_LIST_HEAD(&owait.wait.entry);
1545
1546 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547 mem_cgroup_mark_under_oom(memcg);
1548
1549 locked = mem_cgroup_oom_trylock(memcg);
1550
1551 if (locked)
1552 mem_cgroup_oom_notify(memcg);
1553
1554 if (locked && !memcg->oom_kill_disable) {
1555 mem_cgroup_unmark_under_oom(memcg);
1556 finish_wait(&memcg_oom_waitq, &owait.wait);
1557 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558 current->memcg_oom_order);
1559 } else {
1560 schedule();
1561 mem_cgroup_unmark_under_oom(memcg);
1562 finish_wait(&memcg_oom_waitq, &owait.wait);
1563 }
1564
1565 if (locked) {
1566 mem_cgroup_oom_unlock(memcg);
1567 /*
1568 * There is no guarantee that an OOM-lock contender
1569 * sees the wakeups triggered by the OOM kill
1570 * uncharges. Wake any sleepers explicitely.
1571 */
1572 memcg_oom_recover(memcg);
1573 }
1574cleanup:
1575 current->memcg_in_oom = NULL;
1576 css_put(&memcg->css);
1577 return true;
1578}
1579
1580/**
1581 * lock_page_memcg - lock a page->mem_cgroup binding
1582 * @page: the page
1583 *
1584 * This function protects unlocked LRU pages from being moved to
1585 * another cgroup.
1586 *
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
1590 */
1591struct mem_cgroup *lock_page_memcg(struct page *page)
1592{
1593 struct mem_cgroup *memcg;
1594 unsigned long flags;
1595
1596 /*
1597 * The RCU lock is held throughout the transaction. The fast
1598 * path can get away without acquiring the memcg->move_lock
1599 * because page moving starts with an RCU grace period.
1600 *
1601 * The RCU lock also protects the memcg from being freed when
1602 * the page state that is going to change is the only thing
1603 * preventing the page itself from being freed. E.g. writeback
1604 * doesn't hold a page reference and relies on PG_writeback to
1605 * keep off truncation, migration and so forth.
1606 */
1607 rcu_read_lock();
1608
1609 if (mem_cgroup_disabled())
1610 return NULL;
1611again:
1612 memcg = page->mem_cgroup;
1613 if (unlikely(!memcg))
1614 return NULL;
1615
1616 if (atomic_read(&memcg->moving_account) <= 0)
1617 return memcg;
1618
1619 spin_lock_irqsave(&memcg->move_lock, flags);
1620 if (memcg != page->mem_cgroup) {
1621 spin_unlock_irqrestore(&memcg->move_lock, flags);
1622 goto again;
1623 }
1624
1625 /*
1626 * When charge migration first begins, we can have locked and
1627 * unlocked page stat updates happening concurrently. Track
1628 * the task who has the lock for unlock_page_memcg().
1629 */
1630 memcg->move_lock_task = current;
1631 memcg->move_lock_flags = flags;
1632
1633 return memcg;
1634}
1635EXPORT_SYMBOL(lock_page_memcg);
1636
1637/**
1638 * __unlock_page_memcg - unlock and unpin a memcg
1639 * @memcg: the memcg
1640 *
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
1642 */
1643void __unlock_page_memcg(struct mem_cgroup *memcg)
1644{
1645 if (memcg && memcg->move_lock_task == current) {
1646 unsigned long flags = memcg->move_lock_flags;
1647
1648 memcg->move_lock_task = NULL;
1649 memcg->move_lock_flags = 0;
1650
1651 spin_unlock_irqrestore(&memcg->move_lock, flags);
1652 }
1653
1654 rcu_read_unlock();
1655}
1656
1657/**
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1659 * @page: the page
1660 */
1661void unlock_page_memcg(struct page *page)
1662{
1663 __unlock_page_memcg(page->mem_cgroup);
1664}
1665EXPORT_SYMBOL(unlock_page_memcg);
1666
1667struct memcg_stock_pcp {
1668 struct mem_cgroup *cached; /* this never be root cgroup */
1669 unsigned int nr_pages;
1670 struct work_struct work;
1671 unsigned long flags;
1672#define FLUSHING_CACHED_CHARGE 0
1673};
1674static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675static DEFINE_MUTEX(percpu_charge_mutex);
1676
1677/**
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1681 *
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock. Failure to
1684 * service an allocation will refill the stock.
1685 *
1686 * returns true if successful, false otherwise.
1687 */
1688static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1689{
1690 struct memcg_stock_pcp *stock;
1691 unsigned long flags;
1692 bool ret = false;
1693
1694 if (nr_pages > MEMCG_CHARGE_BATCH)
1695 return ret;
1696
1697 local_irq_save(flags);
1698
1699 stock = this_cpu_ptr(&memcg_stock);
1700 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701 stock->nr_pages -= nr_pages;
1702 ret = true;
1703 }
1704
1705 local_irq_restore(flags);
1706
1707 return ret;
1708}
1709
1710/*
1711 * Returns stocks cached in percpu and reset cached information.
1712 */
1713static void drain_stock(struct memcg_stock_pcp *stock)
1714{
1715 struct mem_cgroup *old = stock->cached;
1716
1717 if (stock->nr_pages) {
1718 page_counter_uncharge(&old->memory, stock->nr_pages);
1719 if (do_memsw_account())
1720 page_counter_uncharge(&old->memsw, stock->nr_pages);
1721 css_put_many(&old->css, stock->nr_pages);
1722 stock->nr_pages = 0;
1723 }
1724 stock->cached = NULL;
1725}
1726
1727static void drain_local_stock(struct work_struct *dummy)
1728{
1729 struct memcg_stock_pcp *stock;
1730 unsigned long flags;
1731
1732 /*
1733 * The only protection from memory hotplug vs. drain_stock races is
1734 * that we always operate on local CPU stock here with IRQ disabled
1735 */
1736 local_irq_save(flags);
1737
1738 stock = this_cpu_ptr(&memcg_stock);
1739 drain_stock(stock);
1740 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1741
1742 local_irq_restore(flags);
1743}
1744
1745/*
1746 * Cache charges(val) to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1748 */
1749static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1750{
1751 struct memcg_stock_pcp *stock;
1752 unsigned long flags;
1753
1754 local_irq_save(flags);
1755
1756 stock = this_cpu_ptr(&memcg_stock);
1757 if (stock->cached != memcg) { /* reset if necessary */
1758 drain_stock(stock);
1759 stock->cached = memcg;
1760 }
1761 stock->nr_pages += nr_pages;
1762
1763 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764 drain_stock(stock);
1765
1766 local_irq_restore(flags);
1767}
1768
1769/*
1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771 * of the hierarchy under it.
1772 */
1773static void drain_all_stock(struct mem_cgroup *root_memcg)
1774{
1775 int cpu, curcpu;
1776
1777 /* If someone's already draining, avoid adding running more workers. */
1778 if (!mutex_trylock(&percpu_charge_mutex))
1779 return;
1780 /*
1781 * Notify other cpus that system-wide "drain" is running
1782 * We do not care about races with the cpu hotplug because cpu down
1783 * as well as workers from this path always operate on the local
1784 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1785 */
1786 curcpu = get_cpu();
1787 for_each_online_cpu(cpu) {
1788 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789 struct mem_cgroup *memcg;
1790
1791 memcg = stock->cached;
1792 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793 continue;
1794 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795 css_put(&memcg->css);
1796 continue;
1797 }
1798 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1799 if (cpu == curcpu)
1800 drain_local_stock(&stock->work);
1801 else
1802 schedule_work_on(cpu, &stock->work);
1803 }
1804 css_put(&memcg->css);
1805 }
1806 put_cpu();
1807 mutex_unlock(&percpu_charge_mutex);
1808}
1809
1810static int memcg_hotplug_cpu_dead(unsigned int cpu)
1811{
1812 struct memcg_stock_pcp *stock;
1813 struct mem_cgroup *memcg;
1814
1815 stock = &per_cpu(memcg_stock, cpu);
1816 drain_stock(stock);
1817
1818 for_each_mem_cgroup(memcg) {
1819 int i;
1820
1821 for (i = 0; i < MEMCG_NR_STAT; i++) {
1822 int nid;
1823 long x;
1824
1825 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1826 if (x)
1827 atomic_long_add(x, &memcg->stat[i]);
1828
1829 if (i >= NR_VM_NODE_STAT_ITEMS)
1830 continue;
1831
1832 for_each_node(nid) {
1833 struct mem_cgroup_per_node *pn;
1834
1835 pn = mem_cgroup_nodeinfo(memcg, nid);
1836 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1837 if (x)
1838 atomic_long_add(x, &pn->lruvec_stat[i]);
1839 }
1840 }
1841
1842 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843 long x;
1844
1845 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1846 if (x)
1847 atomic_long_add(x, &memcg->events[i]);
1848 }
1849 }
1850
1851 return 0;
1852}
1853
1854static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1856 gfp_t gfp_mask)
1857{
1858 do {
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1860 continue;
1861 memcg_memory_event(memcg, MEMCG_HIGH);
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1864}
1865
1866static void high_work_func(struct work_struct *work)
1867{
1868 struct mem_cgroup *memcg;
1869
1870 memcg = container_of(work, struct mem_cgroup, high_work);
1871 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1872}
1873
1874/*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878void mem_cgroup_handle_over_high(void)
1879{
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881 struct mem_cgroup *memcg;
1882
1883 if (likely(!nr_pages))
1884 return;
1885
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1890}
1891
1892static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
1894{
1895 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897 struct mem_cgroup *mem_over_limit;
1898 struct page_counter *counter;
1899 unsigned long nr_reclaimed;
1900 bool may_swap = true;
1901 bool drained = false;
1902
1903 if (mem_cgroup_is_root(memcg))
1904 return 0;
1905retry:
1906 if (consume_stock(memcg, nr_pages))
1907 return 0;
1908
1909 if (!do_memsw_account() ||
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912 goto done_restock;
1913 if (do_memsw_account())
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916 } else {
1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918 may_swap = false;
1919 }
1920
1921 if (batch > nr_pages) {
1922 batch = nr_pages;
1923 goto retry;
1924 }
1925
1926 /*
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1931 */
1932 if (unlikely(tsk_is_oom_victim(current) ||
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
1935 goto force;
1936
1937 /*
1938 * Prevent unbounded recursion when reclaim operations need to
1939 * allocate memory. This might exceed the limits temporarily,
1940 * but we prefer facilitating memory reclaim and getting back
1941 * under the limit over triggering OOM kills in these cases.
1942 */
1943 if (unlikely(current->flags & PF_MEMALLOC))
1944 goto force;
1945
1946 if (unlikely(task_in_memcg_oom(current)))
1947 goto nomem;
1948
1949 if (!gfpflags_allow_blocking(gfp_mask))
1950 goto nomem;
1951
1952 memcg_memory_event(mem_over_limit, MEMCG_MAX);
1953
1954 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955 gfp_mask, may_swap);
1956
1957 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958 goto retry;
1959
1960 if (!drained) {
1961 drain_all_stock(mem_over_limit);
1962 drained = true;
1963 goto retry;
1964 }
1965
1966 if (gfp_mask & __GFP_NORETRY)
1967 goto nomem;
1968 /*
1969 * Even though the limit is exceeded at this point, reclaim
1970 * may have been able to free some pages. Retry the charge
1971 * before killing the task.
1972 *
1973 * Only for regular pages, though: huge pages are rather
1974 * unlikely to succeed so close to the limit, and we fall back
1975 * to regular pages anyway in case of failure.
1976 */
1977 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978 goto retry;
1979 /*
1980 * At task move, charge accounts can be doubly counted. So, it's
1981 * better to wait until the end of task_move if something is going on.
1982 */
1983 if (mem_cgroup_wait_acct_move(mem_over_limit))
1984 goto retry;
1985
1986 if (nr_retries--)
1987 goto retry;
1988
1989 if (gfp_mask & __GFP_NOFAIL)
1990 goto force;
1991
1992 if (fatal_signal_pending(current))
1993 goto force;
1994
1995 memcg_memory_event(mem_over_limit, MEMCG_OOM);
1996
1997 mem_cgroup_oom(mem_over_limit, gfp_mask,
1998 get_order(nr_pages * PAGE_SIZE));
1999nomem:
2000 if (!(gfp_mask & __GFP_NOFAIL))
2001 return -ENOMEM;
2002force:
2003 /*
2004 * The allocation either can't fail or will lead to more memory
2005 * being freed very soon. Allow memory usage go over the limit
2006 * temporarily by force charging it.
2007 */
2008 page_counter_charge(&memcg->memory, nr_pages);
2009 if (do_memsw_account())
2010 page_counter_charge(&memcg->memsw, nr_pages);
2011 css_get_many(&memcg->css, nr_pages);
2012
2013 return 0;
2014
2015done_restock:
2016 css_get_many(&memcg->css, batch);
2017 if (batch > nr_pages)
2018 refill_stock(memcg, batch - nr_pages);
2019
2020 /*
2021 * If the hierarchy is above the normal consumption range, schedule
2022 * reclaim on returning to userland. We can perform reclaim here
2023 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2025 * not recorded as it most likely matches current's and won't
2026 * change in the meantime. As high limit is checked again before
2027 * reclaim, the cost of mismatch is negligible.
2028 */
2029 do {
2030 if (page_counter_read(&memcg->memory) > memcg->high) {
2031 /* Don't bother a random interrupted task */
2032 if (in_interrupt()) {
2033 schedule_work(&memcg->high_work);
2034 break;
2035 }
2036 current->memcg_nr_pages_over_high += batch;
2037 set_notify_resume(current);
2038 break;
2039 }
2040 } while ((memcg = parent_mem_cgroup(memcg)));
2041
2042 return 0;
2043}
2044
2045static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2046{
2047 if (mem_cgroup_is_root(memcg))
2048 return;
2049
2050 page_counter_uncharge(&memcg->memory, nr_pages);
2051 if (do_memsw_account())
2052 page_counter_uncharge(&memcg->memsw, nr_pages);
2053
2054 css_put_many(&memcg->css, nr_pages);
2055}
2056
2057static void lock_page_lru(struct page *page, int *isolated)
2058{
2059 struct zone *zone = page_zone(page);
2060
2061 spin_lock_irq(zone_lru_lock(zone));
2062 if (PageLRU(page)) {
2063 struct lruvec *lruvec;
2064
2065 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066 ClearPageLRU(page);
2067 del_page_from_lru_list(page, lruvec, page_lru(page));
2068 *isolated = 1;
2069 } else
2070 *isolated = 0;
2071}
2072
2073static void unlock_page_lru(struct page *page, int isolated)
2074{
2075 struct zone *zone = page_zone(page);
2076
2077 if (isolated) {
2078 struct lruvec *lruvec;
2079
2080 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081 VM_BUG_ON_PAGE(PageLRU(page), page);
2082 SetPageLRU(page);
2083 add_page_to_lru_list(page, lruvec, page_lru(page));
2084 }
2085 spin_unlock_irq(zone_lru_lock(zone));
2086}
2087
2088static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089 bool lrucare)
2090{
2091 int isolated;
2092
2093 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2094
2095 /*
2096 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097 * may already be on some other mem_cgroup's LRU. Take care of it.
2098 */
2099 if (lrucare)
2100 lock_page_lru(page, &isolated);
2101
2102 /*
2103 * Nobody should be changing or seriously looking at
2104 * page->mem_cgroup at this point:
2105 *
2106 * - the page is uncharged
2107 *
2108 * - the page is off-LRU
2109 *
2110 * - an anonymous fault has exclusive page access, except for
2111 * a locked page table
2112 *
2113 * - a page cache insertion, a swapin fault, or a migration
2114 * have the page locked
2115 */
2116 page->mem_cgroup = memcg;
2117
2118 if (lrucare)
2119 unlock_page_lru(page, isolated);
2120}
2121
2122#ifndef CONFIG_SLOB
2123static int memcg_alloc_cache_id(void)
2124{
2125 int id, size;
2126 int err;
2127
2128 id = ida_simple_get(&memcg_cache_ida,
2129 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2130 if (id < 0)
2131 return id;
2132
2133 if (id < memcg_nr_cache_ids)
2134 return id;
2135
2136 /*
2137 * There's no space for the new id in memcg_caches arrays,
2138 * so we have to grow them.
2139 */
2140 down_write(&memcg_cache_ids_sem);
2141
2142 size = 2 * (id + 1);
2143 if (size < MEMCG_CACHES_MIN_SIZE)
2144 size = MEMCG_CACHES_MIN_SIZE;
2145 else if (size > MEMCG_CACHES_MAX_SIZE)
2146 size = MEMCG_CACHES_MAX_SIZE;
2147
2148 err = memcg_update_all_caches(size);
2149 if (!err)
2150 err = memcg_update_all_list_lrus(size);
2151 if (!err)
2152 memcg_nr_cache_ids = size;
2153
2154 up_write(&memcg_cache_ids_sem);
2155
2156 if (err) {
2157 ida_simple_remove(&memcg_cache_ida, id);
2158 return err;
2159 }
2160 return id;
2161}
2162
2163static void memcg_free_cache_id(int id)
2164{
2165 ida_simple_remove(&memcg_cache_ida, id);
2166}
2167
2168struct memcg_kmem_cache_create_work {
2169 struct mem_cgroup *memcg;
2170 struct kmem_cache *cachep;
2171 struct work_struct work;
2172};
2173
2174static void memcg_kmem_cache_create_func(struct work_struct *w)
2175{
2176 struct memcg_kmem_cache_create_work *cw =
2177 container_of(w, struct memcg_kmem_cache_create_work, work);
2178 struct mem_cgroup *memcg = cw->memcg;
2179 struct kmem_cache *cachep = cw->cachep;
2180
2181 memcg_create_kmem_cache(memcg, cachep);
2182
2183 css_put(&memcg->css);
2184 kfree(cw);
2185}
2186
2187/*
2188 * Enqueue the creation of a per-memcg kmem_cache.
2189 */
2190static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191 struct kmem_cache *cachep)
2192{
2193 struct memcg_kmem_cache_create_work *cw;
2194
2195 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196 if (!cw)
2197 return;
2198
2199 css_get(&memcg->css);
2200
2201 cw->memcg = memcg;
2202 cw->cachep = cachep;
2203 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2204
2205 queue_work(memcg_kmem_cache_wq, &cw->work);
2206}
2207
2208static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209 struct kmem_cache *cachep)
2210{
2211 /*
2212 * We need to stop accounting when we kmalloc, because if the
2213 * corresponding kmalloc cache is not yet created, the first allocation
2214 * in __memcg_schedule_kmem_cache_create will recurse.
2215 *
2216 * However, it is better to enclose the whole function. Depending on
2217 * the debugging options enabled, INIT_WORK(), for instance, can
2218 * trigger an allocation. This too, will make us recurse. Because at
2219 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220 * the safest choice is to do it like this, wrapping the whole function.
2221 */
2222 current->memcg_kmem_skip_account = 1;
2223 __memcg_schedule_kmem_cache_create(memcg, cachep);
2224 current->memcg_kmem_skip_account = 0;
2225}
2226
2227static inline bool memcg_kmem_bypass(void)
2228{
2229 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2230 return true;
2231 return false;
2232}
2233
2234/**
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2237 *
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2240 *
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
2244 *
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2248 * reference.
2249 */
2250struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2251{
2252 struct mem_cgroup *memcg;
2253 struct kmem_cache *memcg_cachep;
2254 int kmemcg_id;
2255
2256 VM_BUG_ON(!is_root_cache(cachep));
2257
2258 if (memcg_kmem_bypass())
2259 return cachep;
2260
2261 if (current->memcg_kmem_skip_account)
2262 return cachep;
2263
2264 memcg = get_mem_cgroup_from_mm(current->mm);
2265 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266 if (kmemcg_id < 0)
2267 goto out;
2268
2269 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270 if (likely(memcg_cachep))
2271 return memcg_cachep;
2272
2273 /*
2274 * If we are in a safe context (can wait, and not in interrupt
2275 * context), we could be be predictable and return right away.
2276 * This would guarantee that the allocation being performed
2277 * already belongs in the new cache.
2278 *
2279 * However, there are some clashes that can arrive from locking.
2280 * For instance, because we acquire the slab_mutex while doing
2281 * memcg_create_kmem_cache, this means no further allocation
2282 * could happen with the slab_mutex held. So it's better to
2283 * defer everything.
2284 */
2285 memcg_schedule_kmem_cache_create(memcg, cachep);
2286out:
2287 css_put(&memcg->css);
2288 return cachep;
2289}
2290
2291/**
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2294 */
2295void memcg_kmem_put_cache(struct kmem_cache *cachep)
2296{
2297 if (!is_root_cache(cachep))
2298 css_put(&cachep->memcg_params.memcg->css);
2299}
2300
2301/**
2302 * memcg_kmem_charge_memcg: charge a kmem page
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2307 *
2308 * Returns 0 on success, an error code on failure.
2309 */
2310int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311 struct mem_cgroup *memcg)
2312{
2313 unsigned int nr_pages = 1 << order;
2314 struct page_counter *counter;
2315 int ret;
2316
2317 ret = try_charge(memcg, gfp, nr_pages);
2318 if (ret)
2319 return ret;
2320
2321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323 cancel_charge(memcg, nr_pages);
2324 return -ENOMEM;
2325 }
2326
2327 page->mem_cgroup = memcg;
2328
2329 return 0;
2330}
2331
2332/**
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2337 *
2338 * Returns 0 on success, an error code on failure.
2339 */
2340int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2344
2345 if (memcg_kmem_bypass())
2346 return 0;
2347
2348 memcg = get_mem_cgroup_from_mm(current->mm);
2349 if (!mem_cgroup_is_root(memcg)) {
2350 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351 if (!ret)
2352 __SetPageKmemcg(page);
2353 }
2354 css_put(&memcg->css);
2355 return ret;
2356}
2357/**
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2361 */
2362void memcg_kmem_uncharge(struct page *page, int order)
2363{
2364 struct mem_cgroup *memcg = page->mem_cgroup;
2365 unsigned int nr_pages = 1 << order;
2366
2367 if (!memcg)
2368 return;
2369
2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2371
2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373 page_counter_uncharge(&memcg->kmem, nr_pages);
2374
2375 page_counter_uncharge(&memcg->memory, nr_pages);
2376 if (do_memsw_account())
2377 page_counter_uncharge(&memcg->memsw, nr_pages);
2378
2379 page->mem_cgroup = NULL;
2380
2381 /* slab pages do not have PageKmemcg flag set */
2382 if (PageKmemcg(page))
2383 __ClearPageKmemcg(page);
2384
2385 css_put_many(&memcg->css, nr_pages);
2386}
2387#endif /* !CONFIG_SLOB */
2388
2389#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390
2391/*
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2394 */
2395void mem_cgroup_split_huge_fixup(struct page *head)
2396{
2397 int i;
2398
2399 if (mem_cgroup_disabled())
2400 return;
2401
2402 for (i = 1; i < HPAGE_PMD_NR; i++)
2403 head[i].mem_cgroup = head->mem_cgroup;
2404
2405 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2406}
2407#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408
2409#ifdef CONFIG_MEMCG_SWAP
2410/**
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from: mem_cgroup which the entry is moved from
2414 * @to: mem_cgroup which the entry is moved to
2415 *
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2418 *
2419 * Returns 0 on success, -EINVAL on failure.
2420 *
2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 * both res and memsw, and called css_get().
2423 */
2424static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425 struct mem_cgroup *from, struct mem_cgroup *to)
2426{
2427 unsigned short old_id, new_id;
2428
2429 old_id = mem_cgroup_id(from);
2430 new_id = mem_cgroup_id(to);
2431
2432 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433 mod_memcg_state(from, MEMCG_SWAP, -1);
2434 mod_memcg_state(to, MEMCG_SWAP, 1);
2435 return 0;
2436 }
2437 return -EINVAL;
2438}
2439#else
2440static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441 struct mem_cgroup *from, struct mem_cgroup *to)
2442{
2443 return -EINVAL;
2444}
2445#endif
2446
2447static DEFINE_MUTEX(memcg_limit_mutex);
2448
2449static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2450 unsigned long limit, bool memsw)
2451{
2452 bool enlarge = false;
2453 int ret;
2454 bool limits_invariant;
2455 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2456
2457 do {
2458 if (signal_pending(current)) {
2459 ret = -EINTR;
2460 break;
2461 }
2462
2463 mutex_lock(&memcg_limit_mutex);
2464 /*
2465 * Make sure that the new limit (memsw or memory limit) doesn't
2466 * break our basic invariant rule memory.limit <= memsw.limit.
2467 */
2468 limits_invariant = memsw ? limit >= memcg->memory.limit :
2469 limit <= memcg->memsw.limit;
2470 if (!limits_invariant) {
2471 mutex_unlock(&memcg_limit_mutex);
2472 ret = -EINVAL;
2473 break;
2474 }
2475 if (limit > counter->limit)
2476 enlarge = true;
2477 ret = page_counter_limit(counter, limit);
2478 mutex_unlock(&memcg_limit_mutex);
2479
2480 if (!ret)
2481 break;
2482
2483 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2484 GFP_KERNEL, !memsw)) {
2485 ret = -EBUSY;
2486 break;
2487 }
2488 } while (true);
2489
2490 if (!ret && enlarge)
2491 memcg_oom_recover(memcg);
2492
2493 return ret;
2494}
2495
2496unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2497 gfp_t gfp_mask,
2498 unsigned long *total_scanned)
2499{
2500 unsigned long nr_reclaimed = 0;
2501 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2502 unsigned long reclaimed;
2503 int loop = 0;
2504 struct mem_cgroup_tree_per_node *mctz;
2505 unsigned long excess;
2506 unsigned long nr_scanned;
2507
2508 if (order > 0)
2509 return 0;
2510
2511 mctz = soft_limit_tree_node(pgdat->node_id);
2512
2513 /*
2514 * Do not even bother to check the largest node if the root
2515 * is empty. Do it lockless to prevent lock bouncing. Races
2516 * are acceptable as soft limit is best effort anyway.
2517 */
2518 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2519 return 0;
2520
2521 /*
2522 * This loop can run a while, specially if mem_cgroup's continuously
2523 * keep exceeding their soft limit and putting the system under
2524 * pressure
2525 */
2526 do {
2527 if (next_mz)
2528 mz = next_mz;
2529 else
2530 mz = mem_cgroup_largest_soft_limit_node(mctz);
2531 if (!mz)
2532 break;
2533
2534 nr_scanned = 0;
2535 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2536 gfp_mask, &nr_scanned);
2537 nr_reclaimed += reclaimed;
2538 *total_scanned += nr_scanned;
2539 spin_lock_irq(&mctz->lock);
2540 __mem_cgroup_remove_exceeded(mz, mctz);
2541
2542 /*
2543 * If we failed to reclaim anything from this memory cgroup
2544 * it is time to move on to the next cgroup
2545 */
2546 next_mz = NULL;
2547 if (!reclaimed)
2548 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2549
2550 excess = soft_limit_excess(mz->memcg);
2551 /*
2552 * One school of thought says that we should not add
2553 * back the node to the tree if reclaim returns 0.
2554 * But our reclaim could return 0, simply because due
2555 * to priority we are exposing a smaller subset of
2556 * memory to reclaim from. Consider this as a longer
2557 * term TODO.
2558 */
2559 /* If excess == 0, no tree ops */
2560 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2561 spin_unlock_irq(&mctz->lock);
2562 css_put(&mz->memcg->css);
2563 loop++;
2564 /*
2565 * Could not reclaim anything and there are no more
2566 * mem cgroups to try or we seem to be looping without
2567 * reclaiming anything.
2568 */
2569 if (!nr_reclaimed &&
2570 (next_mz == NULL ||
2571 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2572 break;
2573 } while (!nr_reclaimed);
2574 if (next_mz)
2575 css_put(&next_mz->memcg->css);
2576 return nr_reclaimed;
2577}
2578
2579/*
2580 * Test whether @memcg has children, dead or alive. Note that this
2581 * function doesn't care whether @memcg has use_hierarchy enabled and
2582 * returns %true if there are child csses according to the cgroup
2583 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2584 */
2585static inline bool memcg_has_children(struct mem_cgroup *memcg)
2586{
2587 bool ret;
2588
2589 rcu_read_lock();
2590 ret = css_next_child(NULL, &memcg->css);
2591 rcu_read_unlock();
2592 return ret;
2593}
2594
2595/*
2596 * Reclaims as many pages from the given memcg as possible.
2597 *
2598 * Caller is responsible for holding css reference for memcg.
2599 */
2600static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2601{
2602 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2603
2604 /* we call try-to-free pages for make this cgroup empty */
2605 lru_add_drain_all();
2606 /* try to free all pages in this cgroup */
2607 while (nr_retries && page_counter_read(&memcg->memory)) {
2608 int progress;
2609
2610 if (signal_pending(current))
2611 return -EINTR;
2612
2613 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2614 GFP_KERNEL, true);
2615 if (!progress) {
2616 nr_retries--;
2617 /* maybe some writeback is necessary */
2618 congestion_wait(BLK_RW_ASYNC, HZ/10);
2619 }
2620
2621 }
2622
2623 return 0;
2624}
2625
2626static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2627 char *buf, size_t nbytes,
2628 loff_t off)
2629{
2630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2631
2632 if (mem_cgroup_is_root(memcg))
2633 return -EINVAL;
2634 return mem_cgroup_force_empty(memcg) ?: nbytes;
2635}
2636
2637static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2638 struct cftype *cft)
2639{
2640 return mem_cgroup_from_css(css)->use_hierarchy;
2641}
2642
2643static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2644 struct cftype *cft, u64 val)
2645{
2646 int retval = 0;
2647 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2648 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2649
2650 if (memcg->use_hierarchy == val)
2651 return 0;
2652
2653 /*
2654 * If parent's use_hierarchy is set, we can't make any modifications
2655 * in the child subtrees. If it is unset, then the change can
2656 * occur, provided the current cgroup has no children.
2657 *
2658 * For the root cgroup, parent_mem is NULL, we allow value to be
2659 * set if there are no children.
2660 */
2661 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2662 (val == 1 || val == 0)) {
2663 if (!memcg_has_children(memcg))
2664 memcg->use_hierarchy = val;
2665 else
2666 retval = -EBUSY;
2667 } else
2668 retval = -EINVAL;
2669
2670 return retval;
2671}
2672
2673static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2674{
2675 struct mem_cgroup *iter;
2676 int i;
2677
2678 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2679
2680 for_each_mem_cgroup_tree(iter, memcg) {
2681 for (i = 0; i < MEMCG_NR_STAT; i++)
2682 stat[i] += memcg_page_state(iter, i);
2683 }
2684}
2685
2686static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2687{
2688 struct mem_cgroup *iter;
2689 int i;
2690
2691 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2692
2693 for_each_mem_cgroup_tree(iter, memcg) {
2694 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2695 events[i] += memcg_sum_events(iter, i);
2696 }
2697}
2698
2699static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2700{
2701 unsigned long val = 0;
2702
2703 if (mem_cgroup_is_root(memcg)) {
2704 struct mem_cgroup *iter;
2705
2706 for_each_mem_cgroup_tree(iter, memcg) {
2707 val += memcg_page_state(iter, MEMCG_CACHE);
2708 val += memcg_page_state(iter, MEMCG_RSS);
2709 if (swap)
2710 val += memcg_page_state(iter, MEMCG_SWAP);
2711 }
2712 } else {
2713 if (!swap)
2714 val = page_counter_read(&memcg->memory);
2715 else
2716 val = page_counter_read(&memcg->memsw);
2717 }
2718 return val;
2719}
2720
2721enum {
2722 RES_USAGE,
2723 RES_LIMIT,
2724 RES_MAX_USAGE,
2725 RES_FAILCNT,
2726 RES_SOFT_LIMIT,
2727};
2728
2729static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2730 struct cftype *cft)
2731{
2732 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2733 struct page_counter *counter;
2734
2735 switch (MEMFILE_TYPE(cft->private)) {
2736 case _MEM:
2737 counter = &memcg->memory;
2738 break;
2739 case _MEMSWAP:
2740 counter = &memcg->memsw;
2741 break;
2742 case _KMEM:
2743 counter = &memcg->kmem;
2744 break;
2745 case _TCP:
2746 counter = &memcg->tcpmem;
2747 break;
2748 default:
2749 BUG();
2750 }
2751
2752 switch (MEMFILE_ATTR(cft->private)) {
2753 case RES_USAGE:
2754 if (counter == &memcg->memory)
2755 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2756 if (counter == &memcg->memsw)
2757 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2758 return (u64)page_counter_read(counter) * PAGE_SIZE;
2759 case RES_LIMIT:
2760 return (u64)counter->limit * PAGE_SIZE;
2761 case RES_MAX_USAGE:
2762 return (u64)counter->watermark * PAGE_SIZE;
2763 case RES_FAILCNT:
2764 return counter->failcnt;
2765 case RES_SOFT_LIMIT:
2766 return (u64)memcg->soft_limit * PAGE_SIZE;
2767 default:
2768 BUG();
2769 }
2770}
2771
2772#ifndef CONFIG_SLOB
2773static int memcg_online_kmem(struct mem_cgroup *memcg)
2774{
2775 int memcg_id;
2776
2777 if (cgroup_memory_nokmem)
2778 return 0;
2779
2780 BUG_ON(memcg->kmemcg_id >= 0);
2781 BUG_ON(memcg->kmem_state);
2782
2783 memcg_id = memcg_alloc_cache_id();
2784 if (memcg_id < 0)
2785 return memcg_id;
2786
2787 static_branch_inc(&memcg_kmem_enabled_key);
2788 /*
2789 * A memory cgroup is considered kmem-online as soon as it gets
2790 * kmemcg_id. Setting the id after enabling static branching will
2791 * guarantee no one starts accounting before all call sites are
2792 * patched.
2793 */
2794 memcg->kmemcg_id = memcg_id;
2795 memcg->kmem_state = KMEM_ONLINE;
2796 INIT_LIST_HEAD(&memcg->kmem_caches);
2797
2798 return 0;
2799}
2800
2801static void memcg_offline_kmem(struct mem_cgroup *memcg)
2802{
2803 struct cgroup_subsys_state *css;
2804 struct mem_cgroup *parent, *child;
2805 int kmemcg_id;
2806
2807 if (memcg->kmem_state != KMEM_ONLINE)
2808 return;
2809 /*
2810 * Clear the online state before clearing memcg_caches array
2811 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2812 * guarantees that no cache will be created for this cgroup
2813 * after we are done (see memcg_create_kmem_cache()).
2814 */
2815 memcg->kmem_state = KMEM_ALLOCATED;
2816
2817 memcg_deactivate_kmem_caches(memcg);
2818
2819 kmemcg_id = memcg->kmemcg_id;
2820 BUG_ON(kmemcg_id < 0);
2821
2822 parent = parent_mem_cgroup(memcg);
2823 if (!parent)
2824 parent = root_mem_cgroup;
2825
2826 /*
2827 * Change kmemcg_id of this cgroup and all its descendants to the
2828 * parent's id, and then move all entries from this cgroup's list_lrus
2829 * to ones of the parent. After we have finished, all list_lrus
2830 * corresponding to this cgroup are guaranteed to remain empty. The
2831 * ordering is imposed by list_lru_node->lock taken by
2832 * memcg_drain_all_list_lrus().
2833 */
2834 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2835 css_for_each_descendant_pre(css, &memcg->css) {
2836 child = mem_cgroup_from_css(css);
2837 BUG_ON(child->kmemcg_id != kmemcg_id);
2838 child->kmemcg_id = parent->kmemcg_id;
2839 if (!memcg->use_hierarchy)
2840 break;
2841 }
2842 rcu_read_unlock();
2843
2844 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2845
2846 memcg_free_cache_id(kmemcg_id);
2847}
2848
2849static void memcg_free_kmem(struct mem_cgroup *memcg)
2850{
2851 /* css_alloc() failed, offlining didn't happen */
2852 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2853 memcg_offline_kmem(memcg);
2854
2855 if (memcg->kmem_state == KMEM_ALLOCATED) {
2856 memcg_destroy_kmem_caches(memcg);
2857 static_branch_dec(&memcg_kmem_enabled_key);
2858 WARN_ON(page_counter_read(&memcg->kmem));
2859 }
2860}
2861#else
2862static int memcg_online_kmem(struct mem_cgroup *memcg)
2863{
2864 return 0;
2865}
2866static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867{
2868}
2869static void memcg_free_kmem(struct mem_cgroup *memcg)
2870{
2871}
2872#endif /* !CONFIG_SLOB */
2873
2874static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2875 unsigned long limit)
2876{
2877 int ret;
2878
2879 mutex_lock(&memcg_limit_mutex);
2880 ret = page_counter_limit(&memcg->kmem, limit);
2881 mutex_unlock(&memcg_limit_mutex);
2882 return ret;
2883}
2884
2885static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2886{
2887 int ret;
2888
2889 mutex_lock(&memcg_limit_mutex);
2890
2891 ret = page_counter_limit(&memcg->tcpmem, limit);
2892 if (ret)
2893 goto out;
2894
2895 if (!memcg->tcpmem_active) {
2896 /*
2897 * The active flag needs to be written after the static_key
2898 * update. This is what guarantees that the socket activation
2899 * function is the last one to run. See mem_cgroup_sk_alloc()
2900 * for details, and note that we don't mark any socket as
2901 * belonging to this memcg until that flag is up.
2902 *
2903 * We need to do this, because static_keys will span multiple
2904 * sites, but we can't control their order. If we mark a socket
2905 * as accounted, but the accounting functions are not patched in
2906 * yet, we'll lose accounting.
2907 *
2908 * We never race with the readers in mem_cgroup_sk_alloc(),
2909 * because when this value change, the code to process it is not
2910 * patched in yet.
2911 */
2912 static_branch_inc(&memcg_sockets_enabled_key);
2913 memcg->tcpmem_active = true;
2914 }
2915out:
2916 mutex_unlock(&memcg_limit_mutex);
2917 return ret;
2918}
2919
2920/*
2921 * The user of this function is...
2922 * RES_LIMIT.
2923 */
2924static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2925 char *buf, size_t nbytes, loff_t off)
2926{
2927 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2928 unsigned long nr_pages;
2929 int ret;
2930
2931 buf = strstrip(buf);
2932 ret = page_counter_memparse(buf, "-1", &nr_pages);
2933 if (ret)
2934 return ret;
2935
2936 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2937 case RES_LIMIT:
2938 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2939 ret = -EINVAL;
2940 break;
2941 }
2942 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2943 case _MEM:
2944 ret = mem_cgroup_resize_limit(memcg, nr_pages, false);
2945 break;
2946 case _MEMSWAP:
2947 ret = mem_cgroup_resize_limit(memcg, nr_pages, true);
2948 break;
2949 case _KMEM:
2950 ret = memcg_update_kmem_limit(memcg, nr_pages);
2951 break;
2952 case _TCP:
2953 ret = memcg_update_tcp_limit(memcg, nr_pages);
2954 break;
2955 }
2956 break;
2957 case RES_SOFT_LIMIT:
2958 memcg->soft_limit = nr_pages;
2959 ret = 0;
2960 break;
2961 }
2962 return ret ?: nbytes;
2963}
2964
2965static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2966 size_t nbytes, loff_t off)
2967{
2968 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2969 struct page_counter *counter;
2970
2971 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2972 case _MEM:
2973 counter = &memcg->memory;
2974 break;
2975 case _MEMSWAP:
2976 counter = &memcg->memsw;
2977 break;
2978 case _KMEM:
2979 counter = &memcg->kmem;
2980 break;
2981 case _TCP:
2982 counter = &memcg->tcpmem;
2983 break;
2984 default:
2985 BUG();
2986 }
2987
2988 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989 case RES_MAX_USAGE:
2990 page_counter_reset_watermark(counter);
2991 break;
2992 case RES_FAILCNT:
2993 counter->failcnt = 0;
2994 break;
2995 default:
2996 BUG();
2997 }
2998
2999 return nbytes;
3000}
3001
3002static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3003 struct cftype *cft)
3004{
3005 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3006}
3007
3008#ifdef CONFIG_MMU
3009static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3010 struct cftype *cft, u64 val)
3011{
3012 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3013
3014 if (val & ~MOVE_MASK)
3015 return -EINVAL;
3016
3017 /*
3018 * No kind of locking is needed in here, because ->can_attach() will
3019 * check this value once in the beginning of the process, and then carry
3020 * on with stale data. This means that changes to this value will only
3021 * affect task migrations starting after the change.
3022 */
3023 memcg->move_charge_at_immigrate = val;
3024 return 0;
3025}
3026#else
3027static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3028 struct cftype *cft, u64 val)
3029{
3030 return -ENOSYS;
3031}
3032#endif
3033
3034#ifdef CONFIG_NUMA
3035static int memcg_numa_stat_show(struct seq_file *m, void *v)
3036{
3037 struct numa_stat {
3038 const char *name;
3039 unsigned int lru_mask;
3040 };
3041
3042 static const struct numa_stat stats[] = {
3043 { "total", LRU_ALL },
3044 { "file", LRU_ALL_FILE },
3045 { "anon", LRU_ALL_ANON },
3046 { "unevictable", BIT(LRU_UNEVICTABLE) },
3047 };
3048 const struct numa_stat *stat;
3049 int nid;
3050 unsigned long nr;
3051 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3052
3053 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3054 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3055 seq_printf(m, "%s=%lu", stat->name, nr);
3056 for_each_node_state(nid, N_MEMORY) {
3057 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3058 stat->lru_mask);
3059 seq_printf(m, " N%d=%lu", nid, nr);
3060 }
3061 seq_putc(m, '\n');
3062 }
3063
3064 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3065 struct mem_cgroup *iter;
3066
3067 nr = 0;
3068 for_each_mem_cgroup_tree(iter, memcg)
3069 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3070 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3071 for_each_node_state(nid, N_MEMORY) {
3072 nr = 0;
3073 for_each_mem_cgroup_tree(iter, memcg)
3074 nr += mem_cgroup_node_nr_lru_pages(
3075 iter, nid, stat->lru_mask);
3076 seq_printf(m, " N%d=%lu", nid, nr);
3077 }
3078 seq_putc(m, '\n');
3079 }
3080
3081 return 0;
3082}
3083#endif /* CONFIG_NUMA */
3084
3085/* Universal VM events cgroup1 shows, original sort order */
3086unsigned int memcg1_events[] = {
3087 PGPGIN,
3088 PGPGOUT,
3089 PGFAULT,
3090 PGMAJFAULT,
3091};
3092
3093static const char *const memcg1_event_names[] = {
3094 "pgpgin",
3095 "pgpgout",
3096 "pgfault",
3097 "pgmajfault",
3098};
3099
3100static int memcg_stat_show(struct seq_file *m, void *v)
3101{
3102 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3103 unsigned long memory, memsw;
3104 struct mem_cgroup *mi;
3105 unsigned int i;
3106
3107 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3108 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3109
3110 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3111 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3112 continue;
3113 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3114 memcg_page_state(memcg, memcg1_stats[i]) *
3115 PAGE_SIZE);
3116 }
3117
3118 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3119 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3120 memcg_sum_events(memcg, memcg1_events[i]));
3121
3122 for (i = 0; i < NR_LRU_LISTS; i++)
3123 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3124 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3125
3126 /* Hierarchical information */
3127 memory = memsw = PAGE_COUNTER_MAX;
3128 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3129 memory = min(memory, mi->memory.limit);
3130 memsw = min(memsw, mi->memsw.limit);
3131 }
3132 seq_printf(m, "hierarchical_memory_limit %llu\n",
3133 (u64)memory * PAGE_SIZE);
3134 if (do_memsw_account())
3135 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3136 (u64)memsw * PAGE_SIZE);
3137
3138 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3139 unsigned long long val = 0;
3140
3141 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3142 continue;
3143 for_each_mem_cgroup_tree(mi, memcg)
3144 val += memcg_page_state(mi, memcg1_stats[i]) *
3145 PAGE_SIZE;
3146 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3147 }
3148
3149 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3150 unsigned long long val = 0;
3151
3152 for_each_mem_cgroup_tree(mi, memcg)
3153 val += memcg_sum_events(mi, memcg1_events[i]);
3154 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3155 }
3156
3157 for (i = 0; i < NR_LRU_LISTS; i++) {
3158 unsigned long long val = 0;
3159
3160 for_each_mem_cgroup_tree(mi, memcg)
3161 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3162 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3163 }
3164
3165#ifdef CONFIG_DEBUG_VM
3166 {
3167 pg_data_t *pgdat;
3168 struct mem_cgroup_per_node *mz;
3169 struct zone_reclaim_stat *rstat;
3170 unsigned long recent_rotated[2] = {0, 0};
3171 unsigned long recent_scanned[2] = {0, 0};
3172
3173 for_each_online_pgdat(pgdat) {
3174 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3175 rstat = &mz->lruvec.reclaim_stat;
3176
3177 recent_rotated[0] += rstat->recent_rotated[0];
3178 recent_rotated[1] += rstat->recent_rotated[1];
3179 recent_scanned[0] += rstat->recent_scanned[0];
3180 recent_scanned[1] += rstat->recent_scanned[1];
3181 }
3182 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3183 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3184 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3185 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3186 }
3187#endif
3188
3189 return 0;
3190}
3191
3192static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3193 struct cftype *cft)
3194{
3195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3196
3197 return mem_cgroup_swappiness(memcg);
3198}
3199
3200static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3201 struct cftype *cft, u64 val)
3202{
3203 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3204
3205 if (val > 100)
3206 return -EINVAL;
3207
3208 if (css->parent)
3209 memcg->swappiness = val;
3210 else
3211 vm_swappiness = val;
3212
3213 return 0;
3214}
3215
3216static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3217{
3218 struct mem_cgroup_threshold_ary *t;
3219 unsigned long usage;
3220 int i;
3221
3222 rcu_read_lock();
3223 if (!swap)
3224 t = rcu_dereference(memcg->thresholds.primary);
3225 else
3226 t = rcu_dereference(memcg->memsw_thresholds.primary);
3227
3228 if (!t)
3229 goto unlock;
3230
3231 usage = mem_cgroup_usage(memcg, swap);
3232
3233 /*
3234 * current_threshold points to threshold just below or equal to usage.
3235 * If it's not true, a threshold was crossed after last
3236 * call of __mem_cgroup_threshold().
3237 */
3238 i = t->current_threshold;
3239
3240 /*
3241 * Iterate backward over array of thresholds starting from
3242 * current_threshold and check if a threshold is crossed.
3243 * If none of thresholds below usage is crossed, we read
3244 * only one element of the array here.
3245 */
3246 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3247 eventfd_signal(t->entries[i].eventfd, 1);
3248
3249 /* i = current_threshold + 1 */
3250 i++;
3251
3252 /*
3253 * Iterate forward over array of thresholds starting from
3254 * current_threshold+1 and check if a threshold is crossed.
3255 * If none of thresholds above usage is crossed, we read
3256 * only one element of the array here.
3257 */
3258 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3259 eventfd_signal(t->entries[i].eventfd, 1);
3260
3261 /* Update current_threshold */
3262 t->current_threshold = i - 1;
3263unlock:
3264 rcu_read_unlock();
3265}
3266
3267static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3268{
3269 while (memcg) {
3270 __mem_cgroup_threshold(memcg, false);
3271 if (do_memsw_account())
3272 __mem_cgroup_threshold(memcg, true);
3273
3274 memcg = parent_mem_cgroup(memcg);
3275 }
3276}
3277
3278static int compare_thresholds(const void *a, const void *b)
3279{
3280 const struct mem_cgroup_threshold *_a = a;
3281 const struct mem_cgroup_threshold *_b = b;
3282
3283 if (_a->threshold > _b->threshold)
3284 return 1;
3285
3286 if (_a->threshold < _b->threshold)
3287 return -1;
3288
3289 return 0;
3290}
3291
3292static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3293{
3294 struct mem_cgroup_eventfd_list *ev;
3295
3296 spin_lock(&memcg_oom_lock);
3297
3298 list_for_each_entry(ev, &memcg->oom_notify, list)
3299 eventfd_signal(ev->eventfd, 1);
3300
3301 spin_unlock(&memcg_oom_lock);
3302 return 0;
3303}
3304
3305static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3306{
3307 struct mem_cgroup *iter;
3308
3309 for_each_mem_cgroup_tree(iter, memcg)
3310 mem_cgroup_oom_notify_cb(iter);
3311}
3312
3313static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3314 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3315{
3316 struct mem_cgroup_thresholds *thresholds;
3317 struct mem_cgroup_threshold_ary *new;
3318 unsigned long threshold;
3319 unsigned long usage;
3320 int i, size, ret;
3321
3322 ret = page_counter_memparse(args, "-1", &threshold);
3323 if (ret)
3324 return ret;
3325
3326 mutex_lock(&memcg->thresholds_lock);
3327
3328 if (type == _MEM) {
3329 thresholds = &memcg->thresholds;
3330 usage = mem_cgroup_usage(memcg, false);
3331 } else if (type == _MEMSWAP) {
3332 thresholds = &memcg->memsw_thresholds;
3333 usage = mem_cgroup_usage(memcg, true);
3334 } else
3335 BUG();
3336
3337 /* Check if a threshold crossed before adding a new one */
3338 if (thresholds->primary)
3339 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3340
3341 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3342
3343 /* Allocate memory for new array of thresholds */
3344 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3345 GFP_KERNEL);
3346 if (!new) {
3347 ret = -ENOMEM;
3348 goto unlock;
3349 }
3350 new->size = size;
3351
3352 /* Copy thresholds (if any) to new array */
3353 if (thresholds->primary) {
3354 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3355 sizeof(struct mem_cgroup_threshold));
3356 }
3357
3358 /* Add new threshold */
3359 new->entries[size - 1].eventfd = eventfd;
3360 new->entries[size - 1].threshold = threshold;
3361
3362 /* Sort thresholds. Registering of new threshold isn't time-critical */
3363 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3364 compare_thresholds, NULL);
3365
3366 /* Find current threshold */
3367 new->current_threshold = -1;
3368 for (i = 0; i < size; i++) {
3369 if (new->entries[i].threshold <= usage) {
3370 /*
3371 * new->current_threshold will not be used until
3372 * rcu_assign_pointer(), so it's safe to increment
3373 * it here.
3374 */
3375 ++new->current_threshold;
3376 } else
3377 break;
3378 }
3379
3380 /* Free old spare buffer and save old primary buffer as spare */
3381 kfree(thresholds->spare);
3382 thresholds->spare = thresholds->primary;
3383
3384 rcu_assign_pointer(thresholds->primary, new);
3385
3386 /* To be sure that nobody uses thresholds */
3387 synchronize_rcu();
3388
3389unlock:
3390 mutex_unlock(&memcg->thresholds_lock);
3391
3392 return ret;
3393}
3394
3395static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3396 struct eventfd_ctx *eventfd, const char *args)
3397{
3398 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3399}
3400
3401static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3402 struct eventfd_ctx *eventfd, const char *args)
3403{
3404 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3405}
3406
3407static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3408 struct eventfd_ctx *eventfd, enum res_type type)
3409{
3410 struct mem_cgroup_thresholds *thresholds;
3411 struct mem_cgroup_threshold_ary *new;
3412 unsigned long usage;
3413 int i, j, size;
3414
3415 mutex_lock(&memcg->thresholds_lock);
3416
3417 if (type == _MEM) {
3418 thresholds = &memcg->thresholds;
3419 usage = mem_cgroup_usage(memcg, false);
3420 } else if (type == _MEMSWAP) {
3421 thresholds = &memcg->memsw_thresholds;
3422 usage = mem_cgroup_usage(memcg, true);
3423 } else
3424 BUG();
3425
3426 if (!thresholds->primary)
3427 goto unlock;
3428
3429 /* Check if a threshold crossed before removing */
3430 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3431
3432 /* Calculate new number of threshold */
3433 size = 0;
3434 for (i = 0; i < thresholds->primary->size; i++) {
3435 if (thresholds->primary->entries[i].eventfd != eventfd)
3436 size++;
3437 }
3438
3439 new = thresholds->spare;
3440
3441 /* Set thresholds array to NULL if we don't have thresholds */
3442 if (!size) {
3443 kfree(new);
3444 new = NULL;
3445 goto swap_buffers;
3446 }
3447
3448 new->size = size;
3449
3450 /* Copy thresholds and find current threshold */
3451 new->current_threshold = -1;
3452 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3453 if (thresholds->primary->entries[i].eventfd == eventfd)
3454 continue;
3455
3456 new->entries[j] = thresholds->primary->entries[i];
3457 if (new->entries[j].threshold <= usage) {
3458 /*
3459 * new->current_threshold will not be used
3460 * until rcu_assign_pointer(), so it's safe to increment
3461 * it here.
3462 */
3463 ++new->current_threshold;
3464 }
3465 j++;
3466 }
3467
3468swap_buffers:
3469 /* Swap primary and spare array */
3470 thresholds->spare = thresholds->primary;
3471
3472 rcu_assign_pointer(thresholds->primary, new);
3473
3474 /* To be sure that nobody uses thresholds */
3475 synchronize_rcu();
3476
3477 /* If all events are unregistered, free the spare array */
3478 if (!new) {
3479 kfree(thresholds->spare);
3480 thresholds->spare = NULL;
3481 }
3482unlock:
3483 mutex_unlock(&memcg->thresholds_lock);
3484}
3485
3486static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3487 struct eventfd_ctx *eventfd)
3488{
3489 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3490}
3491
3492static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3493 struct eventfd_ctx *eventfd)
3494{
3495 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3496}
3497
3498static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3499 struct eventfd_ctx *eventfd, const char *args)
3500{
3501 struct mem_cgroup_eventfd_list *event;
3502
3503 event = kmalloc(sizeof(*event), GFP_KERNEL);
3504 if (!event)
3505 return -ENOMEM;
3506
3507 spin_lock(&memcg_oom_lock);
3508
3509 event->eventfd = eventfd;
3510 list_add(&event->list, &memcg->oom_notify);
3511
3512 /* already in OOM ? */
3513 if (memcg->under_oom)
3514 eventfd_signal(eventfd, 1);
3515 spin_unlock(&memcg_oom_lock);
3516
3517 return 0;
3518}
3519
3520static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3521 struct eventfd_ctx *eventfd)
3522{
3523 struct mem_cgroup_eventfd_list *ev, *tmp;
3524
3525 spin_lock(&memcg_oom_lock);
3526
3527 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3528 if (ev->eventfd == eventfd) {
3529 list_del(&ev->list);
3530 kfree(ev);
3531 }
3532 }
3533
3534 spin_unlock(&memcg_oom_lock);
3535}
3536
3537static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3538{
3539 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3540
3541 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3542 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3543 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3544 return 0;
3545}
3546
3547static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3548 struct cftype *cft, u64 val)
3549{
3550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551
3552 /* cannot set to root cgroup and only 0 and 1 are allowed */
3553 if (!css->parent || !((val == 0) || (val == 1)))
3554 return -EINVAL;
3555
3556 memcg->oom_kill_disable = val;
3557 if (!val)
3558 memcg_oom_recover(memcg);
3559
3560 return 0;
3561}
3562
3563#ifdef CONFIG_CGROUP_WRITEBACK
3564
3565struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3566{
3567 return &memcg->cgwb_list;
3568}
3569
3570static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3571{
3572 return wb_domain_init(&memcg->cgwb_domain, gfp);
3573}
3574
3575static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3576{
3577 wb_domain_exit(&memcg->cgwb_domain);
3578}
3579
3580static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3581{
3582 wb_domain_size_changed(&memcg->cgwb_domain);
3583}
3584
3585struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3586{
3587 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3588
3589 if (!memcg->css.parent)
3590 return NULL;
3591
3592 return &memcg->cgwb_domain;
3593}
3594
3595/**
3596 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3597 * @wb: bdi_writeback in question
3598 * @pfilepages: out parameter for number of file pages
3599 * @pheadroom: out parameter for number of allocatable pages according to memcg
3600 * @pdirty: out parameter for number of dirty pages
3601 * @pwriteback: out parameter for number of pages under writeback
3602 *
3603 * Determine the numbers of file, headroom, dirty, and writeback pages in
3604 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3605 * is a bit more involved.
3606 *
3607 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3608 * headroom is calculated as the lowest headroom of itself and the
3609 * ancestors. Note that this doesn't consider the actual amount of
3610 * available memory in the system. The caller should further cap
3611 * *@pheadroom accordingly.
3612 */
3613void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3614 unsigned long *pheadroom, unsigned long *pdirty,
3615 unsigned long *pwriteback)
3616{
3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618 struct mem_cgroup *parent;
3619
3620 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3621
3622 /* this should eventually include NR_UNSTABLE_NFS */
3623 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3624 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3625 (1 << LRU_ACTIVE_FILE));
3626 *pheadroom = PAGE_COUNTER_MAX;
3627
3628 while ((parent = parent_mem_cgroup(memcg))) {
3629 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3630 unsigned long used = page_counter_read(&memcg->memory);
3631
3632 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3633 memcg = parent;
3634 }
3635}
3636
3637#else /* CONFIG_CGROUP_WRITEBACK */
3638
3639static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3640{
3641 return 0;
3642}
3643
3644static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3645{
3646}
3647
3648static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3649{
3650}
3651
3652#endif /* CONFIG_CGROUP_WRITEBACK */
3653
3654/*
3655 * DO NOT USE IN NEW FILES.
3656 *
3657 * "cgroup.event_control" implementation.
3658 *
3659 * This is way over-engineered. It tries to support fully configurable
3660 * events for each user. Such level of flexibility is completely
3661 * unnecessary especially in the light of the planned unified hierarchy.
3662 *
3663 * Please deprecate this and replace with something simpler if at all
3664 * possible.
3665 */
3666
3667/*
3668 * Unregister event and free resources.
3669 *
3670 * Gets called from workqueue.
3671 */
3672static void memcg_event_remove(struct work_struct *work)
3673{
3674 struct mem_cgroup_event *event =
3675 container_of(work, struct mem_cgroup_event, remove);
3676 struct mem_cgroup *memcg = event->memcg;
3677
3678 remove_wait_queue(event->wqh, &event->wait);
3679
3680 event->unregister_event(memcg, event->eventfd);
3681
3682 /* Notify userspace the event is going away. */
3683 eventfd_signal(event->eventfd, 1);
3684
3685 eventfd_ctx_put(event->eventfd);
3686 kfree(event);
3687 css_put(&memcg->css);
3688}
3689
3690/*
3691 * Gets called on EPOLLHUP on eventfd when user closes it.
3692 *
3693 * Called with wqh->lock held and interrupts disabled.
3694 */
3695static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3696 int sync, void *key)
3697{
3698 struct mem_cgroup_event *event =
3699 container_of(wait, struct mem_cgroup_event, wait);
3700 struct mem_cgroup *memcg = event->memcg;
3701 __poll_t flags = key_to_poll(key);
3702
3703 if (flags & EPOLLHUP) {
3704 /*
3705 * If the event has been detached at cgroup removal, we
3706 * can simply return knowing the other side will cleanup
3707 * for us.
3708 *
3709 * We can't race against event freeing since the other
3710 * side will require wqh->lock via remove_wait_queue(),
3711 * which we hold.
3712 */
3713 spin_lock(&memcg->event_list_lock);
3714 if (!list_empty(&event->list)) {
3715 list_del_init(&event->list);
3716 /*
3717 * We are in atomic context, but cgroup_event_remove()
3718 * may sleep, so we have to call it in workqueue.
3719 */
3720 schedule_work(&event->remove);
3721 }
3722 spin_unlock(&memcg->event_list_lock);
3723 }
3724
3725 return 0;
3726}
3727
3728static void memcg_event_ptable_queue_proc(struct file *file,
3729 wait_queue_head_t *wqh, poll_table *pt)
3730{
3731 struct mem_cgroup_event *event =
3732 container_of(pt, struct mem_cgroup_event, pt);
3733
3734 event->wqh = wqh;
3735 add_wait_queue(wqh, &event->wait);
3736}
3737
3738/*
3739 * DO NOT USE IN NEW FILES.
3740 *
3741 * Parse input and register new cgroup event handler.
3742 *
3743 * Input must be in format '<event_fd> <control_fd> <args>'.
3744 * Interpretation of args is defined by control file implementation.
3745 */
3746static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3747 char *buf, size_t nbytes, loff_t off)
3748{
3749 struct cgroup_subsys_state *css = of_css(of);
3750 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3751 struct mem_cgroup_event *event;
3752 struct cgroup_subsys_state *cfile_css;
3753 unsigned int efd, cfd;
3754 struct fd efile;
3755 struct fd cfile;
3756 const char *name;
3757 char *endp;
3758 int ret;
3759
3760 buf = strstrip(buf);
3761
3762 efd = simple_strtoul(buf, &endp, 10);
3763 if (*endp != ' ')
3764 return -EINVAL;
3765 buf = endp + 1;
3766
3767 cfd = simple_strtoul(buf, &endp, 10);
3768 if ((*endp != ' ') && (*endp != '\0'))
3769 return -EINVAL;
3770 buf = endp + 1;
3771
3772 event = kzalloc(sizeof(*event), GFP_KERNEL);
3773 if (!event)
3774 return -ENOMEM;
3775
3776 event->memcg = memcg;
3777 INIT_LIST_HEAD(&event->list);
3778 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3779 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3780 INIT_WORK(&event->remove, memcg_event_remove);
3781
3782 efile = fdget(efd);
3783 if (!efile.file) {
3784 ret = -EBADF;
3785 goto out_kfree;
3786 }
3787
3788 event->eventfd = eventfd_ctx_fileget(efile.file);
3789 if (IS_ERR(event->eventfd)) {
3790 ret = PTR_ERR(event->eventfd);
3791 goto out_put_efile;
3792 }
3793
3794 cfile = fdget(cfd);
3795 if (!cfile.file) {
3796 ret = -EBADF;
3797 goto out_put_eventfd;
3798 }
3799
3800 /* the process need read permission on control file */
3801 /* AV: shouldn't we check that it's been opened for read instead? */
3802 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3803 if (ret < 0)
3804 goto out_put_cfile;
3805
3806 /*
3807 * Determine the event callbacks and set them in @event. This used
3808 * to be done via struct cftype but cgroup core no longer knows
3809 * about these events. The following is crude but the whole thing
3810 * is for compatibility anyway.
3811 *
3812 * DO NOT ADD NEW FILES.
3813 */
3814 name = cfile.file->f_path.dentry->d_name.name;
3815
3816 if (!strcmp(name, "memory.usage_in_bytes")) {
3817 event->register_event = mem_cgroup_usage_register_event;
3818 event->unregister_event = mem_cgroup_usage_unregister_event;
3819 } else if (!strcmp(name, "memory.oom_control")) {
3820 event->register_event = mem_cgroup_oom_register_event;
3821 event->unregister_event = mem_cgroup_oom_unregister_event;
3822 } else if (!strcmp(name, "memory.pressure_level")) {
3823 event->register_event = vmpressure_register_event;
3824 event->unregister_event = vmpressure_unregister_event;
3825 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3826 event->register_event = memsw_cgroup_usage_register_event;
3827 event->unregister_event = memsw_cgroup_usage_unregister_event;
3828 } else {
3829 ret = -EINVAL;
3830 goto out_put_cfile;
3831 }
3832
3833 /*
3834 * Verify @cfile should belong to @css. Also, remaining events are
3835 * automatically removed on cgroup destruction but the removal is
3836 * asynchronous, so take an extra ref on @css.
3837 */
3838 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3839 &memory_cgrp_subsys);
3840 ret = -EINVAL;
3841 if (IS_ERR(cfile_css))
3842 goto out_put_cfile;
3843 if (cfile_css != css) {
3844 css_put(cfile_css);
3845 goto out_put_cfile;
3846 }
3847
3848 ret = event->register_event(memcg, event->eventfd, buf);
3849 if (ret)
3850 goto out_put_css;
3851
3852 efile.file->f_op->poll(efile.file, &event->pt);
3853
3854 spin_lock(&memcg->event_list_lock);
3855 list_add(&event->list, &memcg->event_list);
3856 spin_unlock(&memcg->event_list_lock);
3857
3858 fdput(cfile);
3859 fdput(efile);
3860
3861 return nbytes;
3862
3863out_put_css:
3864 css_put(css);
3865out_put_cfile:
3866 fdput(cfile);
3867out_put_eventfd:
3868 eventfd_ctx_put(event->eventfd);
3869out_put_efile:
3870 fdput(efile);
3871out_kfree:
3872 kfree(event);
3873
3874 return ret;
3875}
3876
3877static struct cftype mem_cgroup_legacy_files[] = {
3878 {
3879 .name = "usage_in_bytes",
3880 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3881 .read_u64 = mem_cgroup_read_u64,
3882 },
3883 {
3884 .name = "max_usage_in_bytes",
3885 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3886 .write = mem_cgroup_reset,
3887 .read_u64 = mem_cgroup_read_u64,
3888 },
3889 {
3890 .name = "limit_in_bytes",
3891 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3892 .write = mem_cgroup_write,
3893 .read_u64 = mem_cgroup_read_u64,
3894 },
3895 {
3896 .name = "soft_limit_in_bytes",
3897 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3898 .write = mem_cgroup_write,
3899 .read_u64 = mem_cgroup_read_u64,
3900 },
3901 {
3902 .name = "failcnt",
3903 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3904 .write = mem_cgroup_reset,
3905 .read_u64 = mem_cgroup_read_u64,
3906 },
3907 {
3908 .name = "stat",
3909 .seq_show = memcg_stat_show,
3910 },
3911 {
3912 .name = "force_empty",
3913 .write = mem_cgroup_force_empty_write,
3914 },
3915 {
3916 .name = "use_hierarchy",
3917 .write_u64 = mem_cgroup_hierarchy_write,
3918 .read_u64 = mem_cgroup_hierarchy_read,
3919 },
3920 {
3921 .name = "cgroup.event_control", /* XXX: for compat */
3922 .write = memcg_write_event_control,
3923 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3924 },
3925 {
3926 .name = "swappiness",
3927 .read_u64 = mem_cgroup_swappiness_read,
3928 .write_u64 = mem_cgroup_swappiness_write,
3929 },
3930 {
3931 .name = "move_charge_at_immigrate",
3932 .read_u64 = mem_cgroup_move_charge_read,
3933 .write_u64 = mem_cgroup_move_charge_write,
3934 },
3935 {
3936 .name = "oom_control",
3937 .seq_show = mem_cgroup_oom_control_read,
3938 .write_u64 = mem_cgroup_oom_control_write,
3939 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3940 },
3941 {
3942 .name = "pressure_level",
3943 },
3944#ifdef CONFIG_NUMA
3945 {
3946 .name = "numa_stat",
3947 .seq_show = memcg_numa_stat_show,
3948 },
3949#endif
3950 {
3951 .name = "kmem.limit_in_bytes",
3952 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3953 .write = mem_cgroup_write,
3954 .read_u64 = mem_cgroup_read_u64,
3955 },
3956 {
3957 .name = "kmem.usage_in_bytes",
3958 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3959 .read_u64 = mem_cgroup_read_u64,
3960 },
3961 {
3962 .name = "kmem.failcnt",
3963 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3964 .write = mem_cgroup_reset,
3965 .read_u64 = mem_cgroup_read_u64,
3966 },
3967 {
3968 .name = "kmem.max_usage_in_bytes",
3969 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3970 .write = mem_cgroup_reset,
3971 .read_u64 = mem_cgroup_read_u64,
3972 },
3973#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3974 {
3975 .name = "kmem.slabinfo",
3976 .seq_start = memcg_slab_start,
3977 .seq_next = memcg_slab_next,
3978 .seq_stop = memcg_slab_stop,
3979 .seq_show = memcg_slab_show,
3980 },
3981#endif
3982 {
3983 .name = "kmem.tcp.limit_in_bytes",
3984 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3985 .write = mem_cgroup_write,
3986 .read_u64 = mem_cgroup_read_u64,
3987 },
3988 {
3989 .name = "kmem.tcp.usage_in_bytes",
3990 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3991 .read_u64 = mem_cgroup_read_u64,
3992 },
3993 {
3994 .name = "kmem.tcp.failcnt",
3995 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
3996 .write = mem_cgroup_reset,
3997 .read_u64 = mem_cgroup_read_u64,
3998 },
3999 {
4000 .name = "kmem.tcp.max_usage_in_bytes",
4001 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4002 .write = mem_cgroup_reset,
4003 .read_u64 = mem_cgroup_read_u64,
4004 },
4005 { }, /* terminate */
4006};
4007
4008/*
4009 * Private memory cgroup IDR
4010 *
4011 * Swap-out records and page cache shadow entries need to store memcg
4012 * references in constrained space, so we maintain an ID space that is
4013 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4014 * memory-controlled cgroups to 64k.
4015 *
4016 * However, there usually are many references to the oflline CSS after
4017 * the cgroup has been destroyed, such as page cache or reclaimable
4018 * slab objects, that don't need to hang on to the ID. We want to keep
4019 * those dead CSS from occupying IDs, or we might quickly exhaust the
4020 * relatively small ID space and prevent the creation of new cgroups
4021 * even when there are much fewer than 64k cgroups - possibly none.
4022 *
4023 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4024 * be freed and recycled when it's no longer needed, which is usually
4025 * when the CSS is offlined.
4026 *
4027 * The only exception to that are records of swapped out tmpfs/shmem
4028 * pages that need to be attributed to live ancestors on swapin. But
4029 * those references are manageable from userspace.
4030 */
4031
4032static DEFINE_IDR(mem_cgroup_idr);
4033
4034static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4035{
4036 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4037 atomic_add(n, &memcg->id.ref);
4038}
4039
4040static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4041{
4042 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4043 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4044 idr_remove(&mem_cgroup_idr, memcg->id.id);
4045 memcg->id.id = 0;
4046
4047 /* Memcg ID pins CSS */
4048 css_put(&memcg->css);
4049 }
4050}
4051
4052static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4053{
4054 mem_cgroup_id_get_many(memcg, 1);
4055}
4056
4057static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4058{
4059 mem_cgroup_id_put_many(memcg, 1);
4060}
4061
4062/**
4063 * mem_cgroup_from_id - look up a memcg from a memcg id
4064 * @id: the memcg id to look up
4065 *
4066 * Caller must hold rcu_read_lock().
4067 */
4068struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4069{
4070 WARN_ON_ONCE(!rcu_read_lock_held());
4071 return idr_find(&mem_cgroup_idr, id);
4072}
4073
4074static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4075{
4076 struct mem_cgroup_per_node *pn;
4077 int tmp = node;
4078 /*
4079 * This routine is called against possible nodes.
4080 * But it's BUG to call kmalloc() against offline node.
4081 *
4082 * TODO: this routine can waste much memory for nodes which will
4083 * never be onlined. It's better to use memory hotplug callback
4084 * function.
4085 */
4086 if (!node_state(node, N_NORMAL_MEMORY))
4087 tmp = -1;
4088 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4089 if (!pn)
4090 return 1;
4091
4092 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4093 if (!pn->lruvec_stat_cpu) {
4094 kfree(pn);
4095 return 1;
4096 }
4097
4098 lruvec_init(&pn->lruvec);
4099 pn->usage_in_excess = 0;
4100 pn->on_tree = false;
4101 pn->memcg = memcg;
4102
4103 memcg->nodeinfo[node] = pn;
4104 return 0;
4105}
4106
4107static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4108{
4109 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4110
4111 if (!pn)
4112 return;
4113
4114 free_percpu(pn->lruvec_stat_cpu);
4115 kfree(pn);
4116}
4117
4118static void __mem_cgroup_free(struct mem_cgroup *memcg)
4119{
4120 int node;
4121
4122 for_each_node(node)
4123 free_mem_cgroup_per_node_info(memcg, node);
4124 free_percpu(memcg->stat_cpu);
4125 kfree(memcg);
4126}
4127
4128static void mem_cgroup_free(struct mem_cgroup *memcg)
4129{
4130 memcg_wb_domain_exit(memcg);
4131 __mem_cgroup_free(memcg);
4132}
4133
4134static struct mem_cgroup *mem_cgroup_alloc(void)
4135{
4136 struct mem_cgroup *memcg;
4137 size_t size;
4138 int node;
4139
4140 size = sizeof(struct mem_cgroup);
4141 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4142
4143 memcg = kzalloc(size, GFP_KERNEL);
4144 if (!memcg)
4145 return NULL;
4146
4147 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4148 1, MEM_CGROUP_ID_MAX,
4149 GFP_KERNEL);
4150 if (memcg->id.id < 0)
4151 goto fail;
4152
4153 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4154 if (!memcg->stat_cpu)
4155 goto fail;
4156
4157 for_each_node(node)
4158 if (alloc_mem_cgroup_per_node_info(memcg, node))
4159 goto fail;
4160
4161 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4162 goto fail;
4163
4164 INIT_WORK(&memcg->high_work, high_work_func);
4165 memcg->last_scanned_node = MAX_NUMNODES;
4166 INIT_LIST_HEAD(&memcg->oom_notify);
4167 mutex_init(&memcg->thresholds_lock);
4168 spin_lock_init(&memcg->move_lock);
4169 vmpressure_init(&memcg->vmpressure);
4170 INIT_LIST_HEAD(&memcg->event_list);
4171 spin_lock_init(&memcg->event_list_lock);
4172 memcg->socket_pressure = jiffies;
4173#ifndef CONFIG_SLOB
4174 memcg->kmemcg_id = -1;
4175#endif
4176#ifdef CONFIG_CGROUP_WRITEBACK
4177 INIT_LIST_HEAD(&memcg->cgwb_list);
4178#endif
4179 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4180 return memcg;
4181fail:
4182 if (memcg->id.id > 0)
4183 idr_remove(&mem_cgroup_idr, memcg->id.id);
4184 __mem_cgroup_free(memcg);
4185 return NULL;
4186}
4187
4188static struct cgroup_subsys_state * __ref
4189mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4190{
4191 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4192 struct mem_cgroup *memcg;
4193 long error = -ENOMEM;
4194
4195 memcg = mem_cgroup_alloc();
4196 if (!memcg)
4197 return ERR_PTR(error);
4198
4199 memcg->high = PAGE_COUNTER_MAX;
4200 memcg->soft_limit = PAGE_COUNTER_MAX;
4201 if (parent) {
4202 memcg->swappiness = mem_cgroup_swappiness(parent);
4203 memcg->oom_kill_disable = parent->oom_kill_disable;
4204 }
4205 if (parent && parent->use_hierarchy) {
4206 memcg->use_hierarchy = true;
4207 page_counter_init(&memcg->memory, &parent->memory);
4208 page_counter_init(&memcg->swap, &parent->swap);
4209 page_counter_init(&memcg->memsw, &parent->memsw);
4210 page_counter_init(&memcg->kmem, &parent->kmem);
4211 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4212 } else {
4213 page_counter_init(&memcg->memory, NULL);
4214 page_counter_init(&memcg->swap, NULL);
4215 page_counter_init(&memcg->memsw, NULL);
4216 page_counter_init(&memcg->kmem, NULL);
4217 page_counter_init(&memcg->tcpmem, NULL);
4218 /*
4219 * Deeper hierachy with use_hierarchy == false doesn't make
4220 * much sense so let cgroup subsystem know about this
4221 * unfortunate state in our controller.
4222 */
4223 if (parent != root_mem_cgroup)
4224 memory_cgrp_subsys.broken_hierarchy = true;
4225 }
4226
4227 /* The following stuff does not apply to the root */
4228 if (!parent) {
4229 root_mem_cgroup = memcg;
4230 return &memcg->css;
4231 }
4232
4233 error = memcg_online_kmem(memcg);
4234 if (error)
4235 goto fail;
4236
4237 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4238 static_branch_inc(&memcg_sockets_enabled_key);
4239
4240 return &memcg->css;
4241fail:
4242 mem_cgroup_free(memcg);
4243 return ERR_PTR(-ENOMEM);
4244}
4245
4246static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4247{
4248 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4249
4250 /* Online state pins memcg ID, memcg ID pins CSS */
4251 atomic_set(&memcg->id.ref, 1);
4252 css_get(css);
4253 return 0;
4254}
4255
4256static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4257{
4258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259 struct mem_cgroup_event *event, *tmp;
4260
4261 /*
4262 * Unregister events and notify userspace.
4263 * Notify userspace about cgroup removing only after rmdir of cgroup
4264 * directory to avoid race between userspace and kernelspace.
4265 */
4266 spin_lock(&memcg->event_list_lock);
4267 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4268 list_del_init(&event->list);
4269 schedule_work(&event->remove);
4270 }
4271 spin_unlock(&memcg->event_list_lock);
4272
4273 memcg->low = 0;
4274
4275 memcg_offline_kmem(memcg);
4276 wb_memcg_offline(memcg);
4277
4278 mem_cgroup_id_put(memcg);
4279}
4280
4281static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4282{
4283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284
4285 invalidate_reclaim_iterators(memcg);
4286}
4287
4288static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4289{
4290 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4291
4292 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4293 static_branch_dec(&memcg_sockets_enabled_key);
4294
4295 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4296 static_branch_dec(&memcg_sockets_enabled_key);
4297
4298 vmpressure_cleanup(&memcg->vmpressure);
4299 cancel_work_sync(&memcg->high_work);
4300 mem_cgroup_remove_from_trees(memcg);
4301 memcg_free_kmem(memcg);
4302 mem_cgroup_free(memcg);
4303}
4304
4305/**
4306 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4307 * @css: the target css
4308 *
4309 * Reset the states of the mem_cgroup associated with @css. This is
4310 * invoked when the userland requests disabling on the default hierarchy
4311 * but the memcg is pinned through dependency. The memcg should stop
4312 * applying policies and should revert to the vanilla state as it may be
4313 * made visible again.
4314 *
4315 * The current implementation only resets the essential configurations.
4316 * This needs to be expanded to cover all the visible parts.
4317 */
4318static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4319{
4320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4321
4322 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4323 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4324 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4325 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4326 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4327 memcg->low = 0;
4328 memcg->high = PAGE_COUNTER_MAX;
4329 memcg->soft_limit = PAGE_COUNTER_MAX;
4330 memcg_wb_domain_size_changed(memcg);
4331}
4332
4333#ifdef CONFIG_MMU
4334/* Handlers for move charge at task migration. */
4335static int mem_cgroup_do_precharge(unsigned long count)
4336{
4337 int ret;
4338
4339 /* Try a single bulk charge without reclaim first, kswapd may wake */
4340 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4341 if (!ret) {
4342 mc.precharge += count;
4343 return ret;
4344 }
4345
4346 /* Try charges one by one with reclaim, but do not retry */
4347 while (count--) {
4348 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4349 if (ret)
4350 return ret;
4351 mc.precharge++;
4352 cond_resched();
4353 }
4354 return 0;
4355}
4356
4357union mc_target {
4358 struct page *page;
4359 swp_entry_t ent;
4360};
4361
4362enum mc_target_type {
4363 MC_TARGET_NONE = 0,
4364 MC_TARGET_PAGE,
4365 MC_TARGET_SWAP,
4366 MC_TARGET_DEVICE,
4367};
4368
4369static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4370 unsigned long addr, pte_t ptent)
4371{
4372 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4373
4374 if (!page || !page_mapped(page))
4375 return NULL;
4376 if (PageAnon(page)) {
4377 if (!(mc.flags & MOVE_ANON))
4378 return NULL;
4379 } else {
4380 if (!(mc.flags & MOVE_FILE))
4381 return NULL;
4382 }
4383 if (!get_page_unless_zero(page))
4384 return NULL;
4385
4386 return page;
4387}
4388
4389#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4390static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4391 pte_t ptent, swp_entry_t *entry)
4392{
4393 struct page *page = NULL;
4394 swp_entry_t ent = pte_to_swp_entry(ptent);
4395
4396 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4397 return NULL;
4398
4399 /*
4400 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4401 * a device and because they are not accessible by CPU they are store
4402 * as special swap entry in the CPU page table.
4403 */
4404 if (is_device_private_entry(ent)) {
4405 page = device_private_entry_to_page(ent);
4406 /*
4407 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4408 * a refcount of 1 when free (unlike normal page)
4409 */
4410 if (!page_ref_add_unless(page, 1, 1))
4411 return NULL;
4412 return page;
4413 }
4414
4415 /*
4416 * Because lookup_swap_cache() updates some statistics counter,
4417 * we call find_get_page() with swapper_space directly.
4418 */
4419 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4420 if (do_memsw_account())
4421 entry->val = ent.val;
4422
4423 return page;
4424}
4425#else
4426static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4427 pte_t ptent, swp_entry_t *entry)
4428{
4429 return NULL;
4430}
4431#endif
4432
4433static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4434 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4435{
4436 struct page *page = NULL;
4437 struct address_space *mapping;
4438 pgoff_t pgoff;
4439
4440 if (!vma->vm_file) /* anonymous vma */
4441 return NULL;
4442 if (!(mc.flags & MOVE_FILE))
4443 return NULL;
4444
4445 mapping = vma->vm_file->f_mapping;
4446 pgoff = linear_page_index(vma, addr);
4447
4448 /* page is moved even if it's not RSS of this task(page-faulted). */
4449#ifdef CONFIG_SWAP
4450 /* shmem/tmpfs may report page out on swap: account for that too. */
4451 if (shmem_mapping(mapping)) {
4452 page = find_get_entry(mapping, pgoff);
4453 if (radix_tree_exceptional_entry(page)) {
4454 swp_entry_t swp = radix_to_swp_entry(page);
4455 if (do_memsw_account())
4456 *entry = swp;
4457 page = find_get_page(swap_address_space(swp),
4458 swp_offset(swp));
4459 }
4460 } else
4461 page = find_get_page(mapping, pgoff);
4462#else
4463 page = find_get_page(mapping, pgoff);
4464#endif
4465 return page;
4466}
4467
4468/**
4469 * mem_cgroup_move_account - move account of the page
4470 * @page: the page
4471 * @compound: charge the page as compound or small page
4472 * @from: mem_cgroup which the page is moved from.
4473 * @to: mem_cgroup which the page is moved to. @from != @to.
4474 *
4475 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4476 *
4477 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4478 * from old cgroup.
4479 */
4480static int mem_cgroup_move_account(struct page *page,
4481 bool compound,
4482 struct mem_cgroup *from,
4483 struct mem_cgroup *to)
4484{
4485 unsigned long flags;
4486 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4487 int ret;
4488 bool anon;
4489
4490 VM_BUG_ON(from == to);
4491 VM_BUG_ON_PAGE(PageLRU(page), page);
4492 VM_BUG_ON(compound && !PageTransHuge(page));
4493
4494 /*
4495 * Prevent mem_cgroup_migrate() from looking at
4496 * page->mem_cgroup of its source page while we change it.
4497 */
4498 ret = -EBUSY;
4499 if (!trylock_page(page))
4500 goto out;
4501
4502 ret = -EINVAL;
4503 if (page->mem_cgroup != from)
4504 goto out_unlock;
4505
4506 anon = PageAnon(page);
4507
4508 spin_lock_irqsave(&from->move_lock, flags);
4509
4510 if (!anon && page_mapped(page)) {
4511 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4512 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4513 }
4514
4515 /*
4516 * move_lock grabbed above and caller set from->moving_account, so
4517 * mod_memcg_page_state will serialize updates to PageDirty.
4518 * So mapping should be stable for dirty pages.
4519 */
4520 if (!anon && PageDirty(page)) {
4521 struct address_space *mapping = page_mapping(page);
4522
4523 if (mapping_cap_account_dirty(mapping)) {
4524 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4525 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4526 }
4527 }
4528
4529 if (PageWriteback(page)) {
4530 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4531 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4532 }
4533
4534 /*
4535 * It is safe to change page->mem_cgroup here because the page
4536 * is referenced, charged, and isolated - we can't race with
4537 * uncharging, charging, migration, or LRU putback.
4538 */
4539
4540 /* caller should have done css_get */
4541 page->mem_cgroup = to;
4542 spin_unlock_irqrestore(&from->move_lock, flags);
4543
4544 ret = 0;
4545
4546 local_irq_disable();
4547 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548 memcg_check_events(to, page);
4549 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550 memcg_check_events(from, page);
4551 local_irq_enable();
4552out_unlock:
4553 unlock_page(page);
4554out:
4555 return ret;
4556}
4557
4558/**
4559 * get_mctgt_type - get target type of moving charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 *
4565 * Returns
4566 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 * move charge. if @target is not NULL, the page is stored in target->page
4569 * with extra refcnt got(Callers should handle it).
4570 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 * target for charge migration. if @target is not NULL, the entry is stored
4572 * in target->ent.
4573 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4574 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4575 * For now we such page is charge like a regular page would be as for all
4576 * intent and purposes it is just special memory taking the place of a
4577 * regular page.
4578 *
4579 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4580 *
4581 * Called with pte lock held.
4582 */
4583
4584static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4585 unsigned long addr, pte_t ptent, union mc_target *target)
4586{
4587 struct page *page = NULL;
4588 enum mc_target_type ret = MC_TARGET_NONE;
4589 swp_entry_t ent = { .val = 0 };
4590
4591 if (pte_present(ptent))
4592 page = mc_handle_present_pte(vma, addr, ptent);
4593 else if (is_swap_pte(ptent))
4594 page = mc_handle_swap_pte(vma, ptent, &ent);
4595 else if (pte_none(ptent))
4596 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4597
4598 if (!page && !ent.val)
4599 return ret;
4600 if (page) {
4601 /*
4602 * Do only loose check w/o serialization.
4603 * mem_cgroup_move_account() checks the page is valid or
4604 * not under LRU exclusion.
4605 */
4606 if (page->mem_cgroup == mc.from) {
4607 ret = MC_TARGET_PAGE;
4608 if (is_device_private_page(page) ||
4609 is_device_public_page(page))
4610 ret = MC_TARGET_DEVICE;
4611 if (target)
4612 target->page = page;
4613 }
4614 if (!ret || !target)
4615 put_page(page);
4616 }
4617 /*
4618 * There is a swap entry and a page doesn't exist or isn't charged.
4619 * But we cannot move a tail-page in a THP.
4620 */
4621 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4622 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4623 ret = MC_TARGET_SWAP;
4624 if (target)
4625 target->ent = ent;
4626 }
4627 return ret;
4628}
4629
4630#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4631/*
4632 * We don't consider PMD mapped swapping or file mapped pages because THP does
4633 * not support them for now.
4634 * Caller should make sure that pmd_trans_huge(pmd) is true.
4635 */
4636static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4637 unsigned long addr, pmd_t pmd, union mc_target *target)
4638{
4639 struct page *page = NULL;
4640 enum mc_target_type ret = MC_TARGET_NONE;
4641
4642 if (unlikely(is_swap_pmd(pmd))) {
4643 VM_BUG_ON(thp_migration_supported() &&
4644 !is_pmd_migration_entry(pmd));
4645 return ret;
4646 }
4647 page = pmd_page(pmd);
4648 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4649 if (!(mc.flags & MOVE_ANON))
4650 return ret;
4651 if (page->mem_cgroup == mc.from) {
4652 ret = MC_TARGET_PAGE;
4653 if (target) {
4654 get_page(page);
4655 target->page = page;
4656 }
4657 }
4658 return ret;
4659}
4660#else
4661static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4662 unsigned long addr, pmd_t pmd, union mc_target *target)
4663{
4664 return MC_TARGET_NONE;
4665}
4666#endif
4667
4668static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4669 unsigned long addr, unsigned long end,
4670 struct mm_walk *walk)
4671{
4672 struct vm_area_struct *vma = walk->vma;
4673 pte_t *pte;
4674 spinlock_t *ptl;
4675
4676 ptl = pmd_trans_huge_lock(pmd, vma);
4677 if (ptl) {
4678 /*
4679 * Note their can not be MC_TARGET_DEVICE for now as we do not
4680 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4681 * MEMORY_DEVICE_PRIVATE but this might change.
4682 */
4683 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684 mc.precharge += HPAGE_PMD_NR;
4685 spin_unlock(ptl);
4686 return 0;
4687 }
4688
4689 if (pmd_trans_unstable(pmd))
4690 return 0;
4691 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692 for (; addr != end; pte++, addr += PAGE_SIZE)
4693 if (get_mctgt_type(vma, addr, *pte, NULL))
4694 mc.precharge++; /* increment precharge temporarily */
4695 pte_unmap_unlock(pte - 1, ptl);
4696 cond_resched();
4697
4698 return 0;
4699}
4700
4701static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702{
4703 unsigned long precharge;
4704
4705 struct mm_walk mem_cgroup_count_precharge_walk = {
4706 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4707 .mm = mm,
4708 };
4709 down_read(&mm->mmap_sem);
4710 walk_page_range(0, mm->highest_vm_end,
4711 &mem_cgroup_count_precharge_walk);
4712 up_read(&mm->mmap_sem);
4713
4714 precharge = mc.precharge;
4715 mc.precharge = 0;
4716
4717 return precharge;
4718}
4719
4720static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4721{
4722 unsigned long precharge = mem_cgroup_count_precharge(mm);
4723
4724 VM_BUG_ON(mc.moving_task);
4725 mc.moving_task = current;
4726 return mem_cgroup_do_precharge(precharge);
4727}
4728
4729/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4730static void __mem_cgroup_clear_mc(void)
4731{
4732 struct mem_cgroup *from = mc.from;
4733 struct mem_cgroup *to = mc.to;
4734
4735 /* we must uncharge all the leftover precharges from mc.to */
4736 if (mc.precharge) {
4737 cancel_charge(mc.to, mc.precharge);
4738 mc.precharge = 0;
4739 }
4740 /*
4741 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4742 * we must uncharge here.
4743 */
4744 if (mc.moved_charge) {
4745 cancel_charge(mc.from, mc.moved_charge);
4746 mc.moved_charge = 0;
4747 }
4748 /* we must fixup refcnts and charges */
4749 if (mc.moved_swap) {
4750 /* uncharge swap account from the old cgroup */
4751 if (!mem_cgroup_is_root(mc.from))
4752 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4753
4754 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4755
4756 /*
4757 * we charged both to->memory and to->memsw, so we
4758 * should uncharge to->memory.
4759 */
4760 if (!mem_cgroup_is_root(mc.to))
4761 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4762
4763 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4764 css_put_many(&mc.to->css, mc.moved_swap);
4765
4766 mc.moved_swap = 0;
4767 }
4768 memcg_oom_recover(from);
4769 memcg_oom_recover(to);
4770 wake_up_all(&mc.waitq);
4771}
4772
4773static void mem_cgroup_clear_mc(void)
4774{
4775 struct mm_struct *mm = mc.mm;
4776
4777 /*
4778 * we must clear moving_task before waking up waiters at the end of
4779 * task migration.
4780 */
4781 mc.moving_task = NULL;
4782 __mem_cgroup_clear_mc();
4783 spin_lock(&mc.lock);
4784 mc.from = NULL;
4785 mc.to = NULL;
4786 mc.mm = NULL;
4787 spin_unlock(&mc.lock);
4788
4789 mmput(mm);
4790}
4791
4792static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4793{
4794 struct cgroup_subsys_state *css;
4795 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4796 struct mem_cgroup *from;
4797 struct task_struct *leader, *p;
4798 struct mm_struct *mm;
4799 unsigned long move_flags;
4800 int ret = 0;
4801
4802 /* charge immigration isn't supported on the default hierarchy */
4803 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4804 return 0;
4805
4806 /*
4807 * Multi-process migrations only happen on the default hierarchy
4808 * where charge immigration is not used. Perform charge
4809 * immigration if @tset contains a leader and whine if there are
4810 * multiple.
4811 */
4812 p = NULL;
4813 cgroup_taskset_for_each_leader(leader, css, tset) {
4814 WARN_ON_ONCE(p);
4815 p = leader;
4816 memcg = mem_cgroup_from_css(css);
4817 }
4818 if (!p)
4819 return 0;
4820
4821 /*
4822 * We are now commited to this value whatever it is. Changes in this
4823 * tunable will only affect upcoming migrations, not the current one.
4824 * So we need to save it, and keep it going.
4825 */
4826 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4827 if (!move_flags)
4828 return 0;
4829
4830 from = mem_cgroup_from_task(p);
4831
4832 VM_BUG_ON(from == memcg);
4833
4834 mm = get_task_mm(p);
4835 if (!mm)
4836 return 0;
4837 /* We move charges only when we move a owner of the mm */
4838 if (mm->owner == p) {
4839 VM_BUG_ON(mc.from);
4840 VM_BUG_ON(mc.to);
4841 VM_BUG_ON(mc.precharge);
4842 VM_BUG_ON(mc.moved_charge);
4843 VM_BUG_ON(mc.moved_swap);
4844
4845 spin_lock(&mc.lock);
4846 mc.mm = mm;
4847 mc.from = from;
4848 mc.to = memcg;
4849 mc.flags = move_flags;
4850 spin_unlock(&mc.lock);
4851 /* We set mc.moving_task later */
4852
4853 ret = mem_cgroup_precharge_mc(mm);
4854 if (ret)
4855 mem_cgroup_clear_mc();
4856 } else {
4857 mmput(mm);
4858 }
4859 return ret;
4860}
4861
4862static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4863{
4864 if (mc.to)
4865 mem_cgroup_clear_mc();
4866}
4867
4868static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4869 unsigned long addr, unsigned long end,
4870 struct mm_walk *walk)
4871{
4872 int ret = 0;
4873 struct vm_area_struct *vma = walk->vma;
4874 pte_t *pte;
4875 spinlock_t *ptl;
4876 enum mc_target_type target_type;
4877 union mc_target target;
4878 struct page *page;
4879
4880 ptl = pmd_trans_huge_lock(pmd, vma);
4881 if (ptl) {
4882 if (mc.precharge < HPAGE_PMD_NR) {
4883 spin_unlock(ptl);
4884 return 0;
4885 }
4886 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4887 if (target_type == MC_TARGET_PAGE) {
4888 page = target.page;
4889 if (!isolate_lru_page(page)) {
4890 if (!mem_cgroup_move_account(page, true,
4891 mc.from, mc.to)) {
4892 mc.precharge -= HPAGE_PMD_NR;
4893 mc.moved_charge += HPAGE_PMD_NR;
4894 }
4895 putback_lru_page(page);
4896 }
4897 put_page(page);
4898 } else if (target_type == MC_TARGET_DEVICE) {
4899 page = target.page;
4900 if (!mem_cgroup_move_account(page, true,
4901 mc.from, mc.to)) {
4902 mc.precharge -= HPAGE_PMD_NR;
4903 mc.moved_charge += HPAGE_PMD_NR;
4904 }
4905 put_page(page);
4906 }
4907 spin_unlock(ptl);
4908 return 0;
4909 }
4910
4911 if (pmd_trans_unstable(pmd))
4912 return 0;
4913retry:
4914 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4915 for (; addr != end; addr += PAGE_SIZE) {
4916 pte_t ptent = *(pte++);
4917 bool device = false;
4918 swp_entry_t ent;
4919
4920 if (!mc.precharge)
4921 break;
4922
4923 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4924 case MC_TARGET_DEVICE:
4925 device = true;
4926 /* fall through */
4927 case MC_TARGET_PAGE:
4928 page = target.page;
4929 /*
4930 * We can have a part of the split pmd here. Moving it
4931 * can be done but it would be too convoluted so simply
4932 * ignore such a partial THP and keep it in original
4933 * memcg. There should be somebody mapping the head.
4934 */
4935 if (PageTransCompound(page))
4936 goto put;
4937 if (!device && isolate_lru_page(page))
4938 goto put;
4939 if (!mem_cgroup_move_account(page, false,
4940 mc.from, mc.to)) {
4941 mc.precharge--;
4942 /* we uncharge from mc.from later. */
4943 mc.moved_charge++;
4944 }
4945 if (!device)
4946 putback_lru_page(page);
4947put: /* get_mctgt_type() gets the page */
4948 put_page(page);
4949 break;
4950 case MC_TARGET_SWAP:
4951 ent = target.ent;
4952 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4953 mc.precharge--;
4954 /* we fixup refcnts and charges later. */
4955 mc.moved_swap++;
4956 }
4957 break;
4958 default:
4959 break;
4960 }
4961 }
4962 pte_unmap_unlock(pte - 1, ptl);
4963 cond_resched();
4964
4965 if (addr != end) {
4966 /*
4967 * We have consumed all precharges we got in can_attach().
4968 * We try charge one by one, but don't do any additional
4969 * charges to mc.to if we have failed in charge once in attach()
4970 * phase.
4971 */
4972 ret = mem_cgroup_do_precharge(1);
4973 if (!ret)
4974 goto retry;
4975 }
4976
4977 return ret;
4978}
4979
4980static void mem_cgroup_move_charge(void)
4981{
4982 struct mm_walk mem_cgroup_move_charge_walk = {
4983 .pmd_entry = mem_cgroup_move_charge_pte_range,
4984 .mm = mc.mm,
4985 };
4986
4987 lru_add_drain_all();
4988 /*
4989 * Signal lock_page_memcg() to take the memcg's move_lock
4990 * while we're moving its pages to another memcg. Then wait
4991 * for already started RCU-only updates to finish.
4992 */
4993 atomic_inc(&mc.from->moving_account);
4994 synchronize_rcu();
4995retry:
4996 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4997 /*
4998 * Someone who are holding the mmap_sem might be waiting in
4999 * waitq. So we cancel all extra charges, wake up all waiters,
5000 * and retry. Because we cancel precharges, we might not be able
5001 * to move enough charges, but moving charge is a best-effort
5002 * feature anyway, so it wouldn't be a big problem.
5003 */
5004 __mem_cgroup_clear_mc();
5005 cond_resched();
5006 goto retry;
5007 }
5008 /*
5009 * When we have consumed all precharges and failed in doing
5010 * additional charge, the page walk just aborts.
5011 */
5012 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5013
5014 up_read(&mc.mm->mmap_sem);
5015 atomic_dec(&mc.from->moving_account);
5016}
5017
5018static void mem_cgroup_move_task(void)
5019{
5020 if (mc.to) {
5021 mem_cgroup_move_charge();
5022 mem_cgroup_clear_mc();
5023 }
5024}
5025#else /* !CONFIG_MMU */
5026static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5027{
5028 return 0;
5029}
5030static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5031{
5032}
5033static void mem_cgroup_move_task(void)
5034{
5035}
5036#endif
5037
5038/*
5039 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5040 * to verify whether we're attached to the default hierarchy on each mount
5041 * attempt.
5042 */
5043static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5044{
5045 /*
5046 * use_hierarchy is forced on the default hierarchy. cgroup core
5047 * guarantees that @root doesn't have any children, so turning it
5048 * on for the root memcg is enough.
5049 */
5050 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5051 root_mem_cgroup->use_hierarchy = true;
5052 else
5053 root_mem_cgroup->use_hierarchy = false;
5054}
5055
5056static u64 memory_current_read(struct cgroup_subsys_state *css,
5057 struct cftype *cft)
5058{
5059 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5060
5061 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5062}
5063
5064static int memory_low_show(struct seq_file *m, void *v)
5065{
5066 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5067 unsigned long low = READ_ONCE(memcg->low);
5068
5069 if (low == PAGE_COUNTER_MAX)
5070 seq_puts(m, "max\n");
5071 else
5072 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5073
5074 return 0;
5075}
5076
5077static ssize_t memory_low_write(struct kernfs_open_file *of,
5078 char *buf, size_t nbytes, loff_t off)
5079{
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5081 unsigned long low;
5082 int err;
5083
5084 buf = strstrip(buf);
5085 err = page_counter_memparse(buf, "max", &low);
5086 if (err)
5087 return err;
5088
5089 memcg->low = low;
5090
5091 return nbytes;
5092}
5093
5094static int memory_high_show(struct seq_file *m, void *v)
5095{
5096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097 unsigned long high = READ_ONCE(memcg->high);
5098
5099 if (high == PAGE_COUNTER_MAX)
5100 seq_puts(m, "max\n");
5101 else
5102 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5103
5104 return 0;
5105}
5106
5107static ssize_t memory_high_write(struct kernfs_open_file *of,
5108 char *buf, size_t nbytes, loff_t off)
5109{
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5111 unsigned long nr_pages;
5112 unsigned long high;
5113 int err;
5114
5115 buf = strstrip(buf);
5116 err = page_counter_memparse(buf, "max", &high);
5117 if (err)
5118 return err;
5119
5120 memcg->high = high;
5121
5122 nr_pages = page_counter_read(&memcg->memory);
5123 if (nr_pages > high)
5124 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5125 GFP_KERNEL, true);
5126
5127 memcg_wb_domain_size_changed(memcg);
5128 return nbytes;
5129}
5130
5131static int memory_max_show(struct seq_file *m, void *v)
5132{
5133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5134 unsigned long max = READ_ONCE(memcg->memory.limit);
5135
5136 if (max == PAGE_COUNTER_MAX)
5137 seq_puts(m, "max\n");
5138 else
5139 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5140
5141 return 0;
5142}
5143
5144static ssize_t memory_max_write(struct kernfs_open_file *of,
5145 char *buf, size_t nbytes, loff_t off)
5146{
5147 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5148 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5149 bool drained = false;
5150 unsigned long max;
5151 int err;
5152
5153 buf = strstrip(buf);
5154 err = page_counter_memparse(buf, "max", &max);
5155 if (err)
5156 return err;
5157
5158 xchg(&memcg->memory.limit, max);
5159
5160 for (;;) {
5161 unsigned long nr_pages = page_counter_read(&memcg->memory);
5162
5163 if (nr_pages <= max)
5164 break;
5165
5166 if (signal_pending(current)) {
5167 err = -EINTR;
5168 break;
5169 }
5170
5171 if (!drained) {
5172 drain_all_stock(memcg);
5173 drained = true;
5174 continue;
5175 }
5176
5177 if (nr_reclaims) {
5178 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5179 GFP_KERNEL, true))
5180 nr_reclaims--;
5181 continue;
5182 }
5183
5184 memcg_memory_event(memcg, MEMCG_OOM);
5185 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5186 break;
5187 }
5188
5189 memcg_wb_domain_size_changed(memcg);
5190 return nbytes;
5191}
5192
5193static int memory_events_show(struct seq_file *m, void *v)
5194{
5195 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5196
5197 seq_printf(m, "low %lu\n",
5198 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5199 seq_printf(m, "high %lu\n",
5200 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5201 seq_printf(m, "max %lu\n",
5202 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5203 seq_printf(m, "oom %lu\n",
5204 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5205 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5206
5207 return 0;
5208}
5209
5210static int memory_stat_show(struct seq_file *m, void *v)
5211{
5212 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5213 unsigned long stat[MEMCG_NR_STAT];
5214 unsigned long events[NR_VM_EVENT_ITEMS];
5215 int i;
5216
5217 /*
5218 * Provide statistics on the state of the memory subsystem as
5219 * well as cumulative event counters that show past behavior.
5220 *
5221 * This list is ordered following a combination of these gradients:
5222 * 1) generic big picture -> specifics and details
5223 * 2) reflecting userspace activity -> reflecting kernel heuristics
5224 *
5225 * Current memory state:
5226 */
5227
5228 tree_stat(memcg, stat);
5229 tree_events(memcg, events);
5230
5231 seq_printf(m, "anon %llu\n",
5232 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5233 seq_printf(m, "file %llu\n",
5234 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5235 seq_printf(m, "kernel_stack %llu\n",
5236 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5237 seq_printf(m, "slab %llu\n",
5238 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5239 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5240 seq_printf(m, "sock %llu\n",
5241 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5242
5243 seq_printf(m, "shmem %llu\n",
5244 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5245 seq_printf(m, "file_mapped %llu\n",
5246 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5247 seq_printf(m, "file_dirty %llu\n",
5248 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5249 seq_printf(m, "file_writeback %llu\n",
5250 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5251
5252 for (i = 0; i < NR_LRU_LISTS; i++) {
5253 struct mem_cgroup *mi;
5254 unsigned long val = 0;
5255
5256 for_each_mem_cgroup_tree(mi, memcg)
5257 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5258 seq_printf(m, "%s %llu\n",
5259 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5260 }
5261
5262 seq_printf(m, "slab_reclaimable %llu\n",
5263 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5264 seq_printf(m, "slab_unreclaimable %llu\n",
5265 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5266
5267 /* Accumulated memory events */
5268
5269 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5270 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5271
5272 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5273 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5274 events[PGSCAN_DIRECT]);
5275 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5276 events[PGSTEAL_DIRECT]);
5277 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5278 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5279 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5280 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5281
5282 seq_printf(m, "workingset_refault %lu\n",
5283 stat[WORKINGSET_REFAULT]);
5284 seq_printf(m, "workingset_activate %lu\n",
5285 stat[WORKINGSET_ACTIVATE]);
5286 seq_printf(m, "workingset_nodereclaim %lu\n",
5287 stat[WORKINGSET_NODERECLAIM]);
5288
5289 return 0;
5290}
5291
5292static struct cftype memory_files[] = {
5293 {
5294 .name = "current",
5295 .flags = CFTYPE_NOT_ON_ROOT,
5296 .read_u64 = memory_current_read,
5297 },
5298 {
5299 .name = "low",
5300 .flags = CFTYPE_NOT_ON_ROOT,
5301 .seq_show = memory_low_show,
5302 .write = memory_low_write,
5303 },
5304 {
5305 .name = "high",
5306 .flags = CFTYPE_NOT_ON_ROOT,
5307 .seq_show = memory_high_show,
5308 .write = memory_high_write,
5309 },
5310 {
5311 .name = "max",
5312 .flags = CFTYPE_NOT_ON_ROOT,
5313 .seq_show = memory_max_show,
5314 .write = memory_max_write,
5315 },
5316 {
5317 .name = "events",
5318 .flags = CFTYPE_NOT_ON_ROOT,
5319 .file_offset = offsetof(struct mem_cgroup, events_file),
5320 .seq_show = memory_events_show,
5321 },
5322 {
5323 .name = "stat",
5324 .flags = CFTYPE_NOT_ON_ROOT,
5325 .seq_show = memory_stat_show,
5326 },
5327 { } /* terminate */
5328};
5329
5330struct cgroup_subsys memory_cgrp_subsys = {
5331 .css_alloc = mem_cgroup_css_alloc,
5332 .css_online = mem_cgroup_css_online,
5333 .css_offline = mem_cgroup_css_offline,
5334 .css_released = mem_cgroup_css_released,
5335 .css_free = mem_cgroup_css_free,
5336 .css_reset = mem_cgroup_css_reset,
5337 .can_attach = mem_cgroup_can_attach,
5338 .cancel_attach = mem_cgroup_cancel_attach,
5339 .post_attach = mem_cgroup_move_task,
5340 .bind = mem_cgroup_bind,
5341 .dfl_cftypes = memory_files,
5342 .legacy_cftypes = mem_cgroup_legacy_files,
5343 .early_init = 0,
5344};
5345
5346/**
5347 * mem_cgroup_low - check if memory consumption is below the normal range
5348 * @root: the top ancestor of the sub-tree being checked
5349 * @memcg: the memory cgroup to check
5350 *
5351 * Returns %true if memory consumption of @memcg, and that of all
5352 * ancestors up to (but not including) @root, is below the normal range.
5353 *
5354 * @root is exclusive; it is never low when looked at directly and isn't
5355 * checked when traversing the hierarchy.
5356 *
5357 * Excluding @root enables using memory.low to prioritize memory usage
5358 * between cgroups within a subtree of the hierarchy that is limited by
5359 * memory.high or memory.max.
5360 *
5361 * For example, given cgroup A with children B and C:
5362 *
5363 * A
5364 * / \
5365 * B C
5366 *
5367 * and
5368 *
5369 * 1. A/memory.current > A/memory.high
5370 * 2. A/B/memory.current < A/B/memory.low
5371 * 3. A/C/memory.current >= A/C/memory.low
5372 *
5373 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5374 * should reclaim from 'C' until 'A' is no longer high or until we can
5375 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5376 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5377 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5378 */
5379bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5380{
5381 if (mem_cgroup_disabled())
5382 return false;
5383
5384 if (!root)
5385 root = root_mem_cgroup;
5386 if (memcg == root)
5387 return false;
5388
5389 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5390 if (page_counter_read(&memcg->memory) >= memcg->low)
5391 return false;
5392 }
5393
5394 return true;
5395}
5396
5397/**
5398 * mem_cgroup_try_charge - try charging a page
5399 * @page: page to charge
5400 * @mm: mm context of the victim
5401 * @gfp_mask: reclaim mode
5402 * @memcgp: charged memcg return
5403 * @compound: charge the page as compound or small page
5404 *
5405 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5406 * pages according to @gfp_mask if necessary.
5407 *
5408 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5409 * Otherwise, an error code is returned.
5410 *
5411 * After page->mapping has been set up, the caller must finalize the
5412 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5413 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5414 */
5415int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5416 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5417 bool compound)
5418{
5419 struct mem_cgroup *memcg = NULL;
5420 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5421 int ret = 0;
5422
5423 if (mem_cgroup_disabled())
5424 goto out;
5425
5426 if (PageSwapCache(page)) {
5427 /*
5428 * Every swap fault against a single page tries to charge the
5429 * page, bail as early as possible. shmem_unuse() encounters
5430 * already charged pages, too. The USED bit is protected by
5431 * the page lock, which serializes swap cache removal, which
5432 * in turn serializes uncharging.
5433 */
5434 VM_BUG_ON_PAGE(!PageLocked(page), page);
5435 if (compound_head(page)->mem_cgroup)
5436 goto out;
5437
5438 if (do_swap_account) {
5439 swp_entry_t ent = { .val = page_private(page), };
5440 unsigned short id = lookup_swap_cgroup_id(ent);
5441
5442 rcu_read_lock();
5443 memcg = mem_cgroup_from_id(id);
5444 if (memcg && !css_tryget_online(&memcg->css))
5445 memcg = NULL;
5446 rcu_read_unlock();
5447 }
5448 }
5449
5450 if (!memcg)
5451 memcg = get_mem_cgroup_from_mm(mm);
5452
5453 ret = try_charge(memcg, gfp_mask, nr_pages);
5454
5455 css_put(&memcg->css);
5456out:
5457 *memcgp = memcg;
5458 return ret;
5459}
5460
5461/**
5462 * mem_cgroup_commit_charge - commit a page charge
5463 * @page: page to charge
5464 * @memcg: memcg to charge the page to
5465 * @lrucare: page might be on LRU already
5466 * @compound: charge the page as compound or small page
5467 *
5468 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5469 * after page->mapping has been set up. This must happen atomically
5470 * as part of the page instantiation, i.e. under the page table lock
5471 * for anonymous pages, under the page lock for page and swap cache.
5472 *
5473 * In addition, the page must not be on the LRU during the commit, to
5474 * prevent racing with task migration. If it might be, use @lrucare.
5475 *
5476 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5477 */
5478void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5479 bool lrucare, bool compound)
5480{
5481 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5482
5483 VM_BUG_ON_PAGE(!page->mapping, page);
5484 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5485
5486 if (mem_cgroup_disabled())
5487 return;
5488 /*
5489 * Swap faults will attempt to charge the same page multiple
5490 * times. But reuse_swap_page() might have removed the page
5491 * from swapcache already, so we can't check PageSwapCache().
5492 */
5493 if (!memcg)
5494 return;
5495
5496 commit_charge(page, memcg, lrucare);
5497
5498 local_irq_disable();
5499 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5500 memcg_check_events(memcg, page);
5501 local_irq_enable();
5502
5503 if (do_memsw_account() && PageSwapCache(page)) {
5504 swp_entry_t entry = { .val = page_private(page) };
5505 /*
5506 * The swap entry might not get freed for a long time,
5507 * let's not wait for it. The page already received a
5508 * memory+swap charge, drop the swap entry duplicate.
5509 */
5510 mem_cgroup_uncharge_swap(entry, nr_pages);
5511 }
5512}
5513
5514/**
5515 * mem_cgroup_cancel_charge - cancel a page charge
5516 * @page: page to charge
5517 * @memcg: memcg to charge the page to
5518 * @compound: charge the page as compound or small page
5519 *
5520 * Cancel a charge transaction started by mem_cgroup_try_charge().
5521 */
5522void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5523 bool compound)
5524{
5525 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5526
5527 if (mem_cgroup_disabled())
5528 return;
5529 /*
5530 * Swap faults will attempt to charge the same page multiple
5531 * times. But reuse_swap_page() might have removed the page
5532 * from swapcache already, so we can't check PageSwapCache().
5533 */
5534 if (!memcg)
5535 return;
5536
5537 cancel_charge(memcg, nr_pages);
5538}
5539
5540struct uncharge_gather {
5541 struct mem_cgroup *memcg;
5542 unsigned long pgpgout;
5543 unsigned long nr_anon;
5544 unsigned long nr_file;
5545 unsigned long nr_kmem;
5546 unsigned long nr_huge;
5547 unsigned long nr_shmem;
5548 struct page *dummy_page;
5549};
5550
5551static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5552{
5553 memset(ug, 0, sizeof(*ug));
5554}
5555
5556static void uncharge_batch(const struct uncharge_gather *ug)
5557{
5558 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5559 unsigned long flags;
5560
5561 if (!mem_cgroup_is_root(ug->memcg)) {
5562 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5563 if (do_memsw_account())
5564 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5565 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5566 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5567 memcg_oom_recover(ug->memcg);
5568 }
5569
5570 local_irq_save(flags);
5571 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5572 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5573 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5574 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5575 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5576 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5577 memcg_check_events(ug->memcg, ug->dummy_page);
5578 local_irq_restore(flags);
5579
5580 if (!mem_cgroup_is_root(ug->memcg))
5581 css_put_many(&ug->memcg->css, nr_pages);
5582}
5583
5584static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5585{
5586 VM_BUG_ON_PAGE(PageLRU(page), page);
5587 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5588 !PageHWPoison(page) , page);
5589
5590 if (!page->mem_cgroup)
5591 return;
5592
5593 /*
5594 * Nobody should be changing or seriously looking at
5595 * page->mem_cgroup at this point, we have fully
5596 * exclusive access to the page.
5597 */
5598
5599 if (ug->memcg != page->mem_cgroup) {
5600 if (ug->memcg) {
5601 uncharge_batch(ug);
5602 uncharge_gather_clear(ug);
5603 }
5604 ug->memcg = page->mem_cgroup;
5605 }
5606
5607 if (!PageKmemcg(page)) {
5608 unsigned int nr_pages = 1;
5609
5610 if (PageTransHuge(page)) {
5611 nr_pages <<= compound_order(page);
5612 ug->nr_huge += nr_pages;
5613 }
5614 if (PageAnon(page))
5615 ug->nr_anon += nr_pages;
5616 else {
5617 ug->nr_file += nr_pages;
5618 if (PageSwapBacked(page))
5619 ug->nr_shmem += nr_pages;
5620 }
5621 ug->pgpgout++;
5622 } else {
5623 ug->nr_kmem += 1 << compound_order(page);
5624 __ClearPageKmemcg(page);
5625 }
5626
5627 ug->dummy_page = page;
5628 page->mem_cgroup = NULL;
5629}
5630
5631static void uncharge_list(struct list_head *page_list)
5632{
5633 struct uncharge_gather ug;
5634 struct list_head *next;
5635
5636 uncharge_gather_clear(&ug);
5637
5638 /*
5639 * Note that the list can be a single page->lru; hence the
5640 * do-while loop instead of a simple list_for_each_entry().
5641 */
5642 next = page_list->next;
5643 do {
5644 struct page *page;
5645
5646 page = list_entry(next, struct page, lru);
5647 next = page->lru.next;
5648
5649 uncharge_page(page, &ug);
5650 } while (next != page_list);
5651
5652 if (ug.memcg)
5653 uncharge_batch(&ug);
5654}
5655
5656/**
5657 * mem_cgroup_uncharge - uncharge a page
5658 * @page: page to uncharge
5659 *
5660 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5661 * mem_cgroup_commit_charge().
5662 */
5663void mem_cgroup_uncharge(struct page *page)
5664{
5665 struct uncharge_gather ug;
5666
5667 if (mem_cgroup_disabled())
5668 return;
5669
5670 /* Don't touch page->lru of any random page, pre-check: */
5671 if (!page->mem_cgroup)
5672 return;
5673
5674 uncharge_gather_clear(&ug);
5675 uncharge_page(page, &ug);
5676 uncharge_batch(&ug);
5677}
5678
5679/**
5680 * mem_cgroup_uncharge_list - uncharge a list of page
5681 * @page_list: list of pages to uncharge
5682 *
5683 * Uncharge a list of pages previously charged with
5684 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5685 */
5686void mem_cgroup_uncharge_list(struct list_head *page_list)
5687{
5688 if (mem_cgroup_disabled())
5689 return;
5690
5691 if (!list_empty(page_list))
5692 uncharge_list(page_list);
5693}
5694
5695/**
5696 * mem_cgroup_migrate - charge a page's replacement
5697 * @oldpage: currently circulating page
5698 * @newpage: replacement page
5699 *
5700 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5701 * be uncharged upon free.
5702 *
5703 * Both pages must be locked, @newpage->mapping must be set up.
5704 */
5705void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5706{
5707 struct mem_cgroup *memcg;
5708 unsigned int nr_pages;
5709 bool compound;
5710 unsigned long flags;
5711
5712 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5713 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5714 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5715 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5716 newpage);
5717
5718 if (mem_cgroup_disabled())
5719 return;
5720
5721 /* Page cache replacement: new page already charged? */
5722 if (newpage->mem_cgroup)
5723 return;
5724
5725 /* Swapcache readahead pages can get replaced before being charged */
5726 memcg = oldpage->mem_cgroup;
5727 if (!memcg)
5728 return;
5729
5730 /* Force-charge the new page. The old one will be freed soon */
5731 compound = PageTransHuge(newpage);
5732 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5733
5734 page_counter_charge(&memcg->memory, nr_pages);
5735 if (do_memsw_account())
5736 page_counter_charge(&memcg->memsw, nr_pages);
5737 css_get_many(&memcg->css, nr_pages);
5738
5739 commit_charge(newpage, memcg, false);
5740
5741 local_irq_save(flags);
5742 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5743 memcg_check_events(memcg, newpage);
5744 local_irq_restore(flags);
5745}
5746
5747DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5748EXPORT_SYMBOL(memcg_sockets_enabled_key);
5749
5750void mem_cgroup_sk_alloc(struct sock *sk)
5751{
5752 struct mem_cgroup *memcg;
5753
5754 if (!mem_cgroup_sockets_enabled)
5755 return;
5756
5757 /*
5758 * Socket cloning can throw us here with sk_memcg already
5759 * filled. It won't however, necessarily happen from
5760 * process context. So the test for root memcg given
5761 * the current task's memcg won't help us in this case.
5762 *
5763 * Respecting the original socket's memcg is a better
5764 * decision in this case.
5765 */
5766 if (sk->sk_memcg) {
5767 css_get(&sk->sk_memcg->css);
5768 return;
5769 }
5770
5771 rcu_read_lock();
5772 memcg = mem_cgroup_from_task(current);
5773 if (memcg == root_mem_cgroup)
5774 goto out;
5775 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5776 goto out;
5777 if (css_tryget_online(&memcg->css))
5778 sk->sk_memcg = memcg;
5779out:
5780 rcu_read_unlock();
5781}
5782
5783void mem_cgroup_sk_free(struct sock *sk)
5784{
5785 if (sk->sk_memcg)
5786 css_put(&sk->sk_memcg->css);
5787}
5788
5789/**
5790 * mem_cgroup_charge_skmem - charge socket memory
5791 * @memcg: memcg to charge
5792 * @nr_pages: number of pages to charge
5793 *
5794 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5795 * @memcg's configured limit, %false if the charge had to be forced.
5796 */
5797bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5798{
5799 gfp_t gfp_mask = GFP_KERNEL;
5800
5801 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5802 struct page_counter *fail;
5803
5804 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5805 memcg->tcpmem_pressure = 0;
5806 return true;
5807 }
5808 page_counter_charge(&memcg->tcpmem, nr_pages);
5809 memcg->tcpmem_pressure = 1;
5810 return false;
5811 }
5812
5813 /* Don't block in the packet receive path */
5814 if (in_softirq())
5815 gfp_mask = GFP_NOWAIT;
5816
5817 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5818
5819 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5820 return true;
5821
5822 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5823 return false;
5824}
5825
5826/**
5827 * mem_cgroup_uncharge_skmem - uncharge socket memory
5828 * @memcg: memcg to uncharge
5829 * @nr_pages: number of pages to uncharge
5830 */
5831void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5832{
5833 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5834 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5835 return;
5836 }
5837
5838 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5839
5840 refill_stock(memcg, nr_pages);
5841}
5842
5843static int __init cgroup_memory(char *s)
5844{
5845 char *token;
5846
5847 while ((token = strsep(&s, ",")) != NULL) {
5848 if (!*token)
5849 continue;
5850 if (!strcmp(token, "nosocket"))
5851 cgroup_memory_nosocket = true;
5852 if (!strcmp(token, "nokmem"))
5853 cgroup_memory_nokmem = true;
5854 }
5855 return 0;
5856}
5857__setup("cgroup.memory=", cgroup_memory);
5858
5859/*
5860 * subsys_initcall() for memory controller.
5861 *
5862 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5863 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5864 * basically everything that doesn't depend on a specific mem_cgroup structure
5865 * should be initialized from here.
5866 */
5867static int __init mem_cgroup_init(void)
5868{
5869 int cpu, node;
5870
5871#ifndef CONFIG_SLOB
5872 /*
5873 * Kmem cache creation is mostly done with the slab_mutex held,
5874 * so use a workqueue with limited concurrency to avoid stalling
5875 * all worker threads in case lots of cgroups are created and
5876 * destroyed simultaneously.
5877 */
5878 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5879 BUG_ON(!memcg_kmem_cache_wq);
5880#endif
5881
5882 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5883 memcg_hotplug_cpu_dead);
5884
5885 for_each_possible_cpu(cpu)
5886 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5887 drain_local_stock);
5888
5889 for_each_node(node) {
5890 struct mem_cgroup_tree_per_node *rtpn;
5891
5892 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5893 node_online(node) ? node : NUMA_NO_NODE);
5894
5895 rtpn->rb_root = RB_ROOT;
5896 rtpn->rb_rightmost = NULL;
5897 spin_lock_init(&rtpn->lock);
5898 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5899 }
5900
5901 return 0;
5902}
5903subsys_initcall(mem_cgroup_init);
5904
5905#ifdef CONFIG_MEMCG_SWAP
5906static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5907{
5908 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5909 /*
5910 * The root cgroup cannot be destroyed, so it's refcount must
5911 * always be >= 1.
5912 */
5913 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5914 VM_BUG_ON(1);
5915 break;
5916 }
5917 memcg = parent_mem_cgroup(memcg);
5918 if (!memcg)
5919 memcg = root_mem_cgroup;
5920 }
5921 return memcg;
5922}
5923
5924/**
5925 * mem_cgroup_swapout - transfer a memsw charge to swap
5926 * @page: page whose memsw charge to transfer
5927 * @entry: swap entry to move the charge to
5928 *
5929 * Transfer the memsw charge of @page to @entry.
5930 */
5931void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5932{
5933 struct mem_cgroup *memcg, *swap_memcg;
5934 unsigned int nr_entries;
5935 unsigned short oldid;
5936
5937 VM_BUG_ON_PAGE(PageLRU(page), page);
5938 VM_BUG_ON_PAGE(page_count(page), page);
5939
5940 if (!do_memsw_account())
5941 return;
5942
5943 memcg = page->mem_cgroup;
5944
5945 /* Readahead page, never charged */
5946 if (!memcg)
5947 return;
5948
5949 /*
5950 * In case the memcg owning these pages has been offlined and doesn't
5951 * have an ID allocated to it anymore, charge the closest online
5952 * ancestor for the swap instead and transfer the memory+swap charge.
5953 */
5954 swap_memcg = mem_cgroup_id_get_online(memcg);
5955 nr_entries = hpage_nr_pages(page);
5956 /* Get references for the tail pages, too */
5957 if (nr_entries > 1)
5958 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5959 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5960 nr_entries);
5961 VM_BUG_ON_PAGE(oldid, page);
5962 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5963
5964 page->mem_cgroup = NULL;
5965
5966 if (!mem_cgroup_is_root(memcg))
5967 page_counter_uncharge(&memcg->memory, nr_entries);
5968
5969 if (memcg != swap_memcg) {
5970 if (!mem_cgroup_is_root(swap_memcg))
5971 page_counter_charge(&swap_memcg->memsw, nr_entries);
5972 page_counter_uncharge(&memcg->memsw, nr_entries);
5973 }
5974
5975 /*
5976 * Interrupts should be disabled here because the caller holds the
5977 * i_pages lock which is taken with interrupts-off. It is
5978 * important here to have the interrupts disabled because it is the
5979 * only synchronisation we have for updating the per-CPU variables.
5980 */
5981 VM_BUG_ON(!irqs_disabled());
5982 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
5983 -nr_entries);
5984 memcg_check_events(memcg, page);
5985
5986 if (!mem_cgroup_is_root(memcg))
5987 css_put_many(&memcg->css, nr_entries);
5988}
5989
5990/**
5991 * mem_cgroup_try_charge_swap - try charging swap space for a page
5992 * @page: page being added to swap
5993 * @entry: swap entry to charge
5994 *
5995 * Try to charge @page's memcg for the swap space at @entry.
5996 *
5997 * Returns 0 on success, -ENOMEM on failure.
5998 */
5999int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6000{
6001 unsigned int nr_pages = hpage_nr_pages(page);
6002 struct page_counter *counter;
6003 struct mem_cgroup *memcg;
6004 unsigned short oldid;
6005
6006 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6007 return 0;
6008
6009 memcg = page->mem_cgroup;
6010
6011 /* Readahead page, never charged */
6012 if (!memcg)
6013 return 0;
6014
6015 memcg = mem_cgroup_id_get_online(memcg);
6016
6017 if (!mem_cgroup_is_root(memcg) &&
6018 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6019 mem_cgroup_id_put(memcg);
6020 return -ENOMEM;
6021 }
6022
6023 /* Get references for the tail pages, too */
6024 if (nr_pages > 1)
6025 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6026 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6027 VM_BUG_ON_PAGE(oldid, page);
6028 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6029
6030 return 0;
6031}
6032
6033/**
6034 * mem_cgroup_uncharge_swap - uncharge swap space
6035 * @entry: swap entry to uncharge
6036 * @nr_pages: the amount of swap space to uncharge
6037 */
6038void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6039{
6040 struct mem_cgroup *memcg;
6041 unsigned short id;
6042
6043 if (!do_swap_account)
6044 return;
6045
6046 id = swap_cgroup_record(entry, 0, nr_pages);
6047 rcu_read_lock();
6048 memcg = mem_cgroup_from_id(id);
6049 if (memcg) {
6050 if (!mem_cgroup_is_root(memcg)) {
6051 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6052 page_counter_uncharge(&memcg->swap, nr_pages);
6053 else
6054 page_counter_uncharge(&memcg->memsw, nr_pages);
6055 }
6056 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6057 mem_cgroup_id_put_many(memcg, nr_pages);
6058 }
6059 rcu_read_unlock();
6060}
6061
6062long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6063{
6064 long nr_swap_pages = get_nr_swap_pages();
6065
6066 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6067 return nr_swap_pages;
6068 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6069 nr_swap_pages = min_t(long, nr_swap_pages,
6070 READ_ONCE(memcg->swap.limit) -
6071 page_counter_read(&memcg->swap));
6072 return nr_swap_pages;
6073}
6074
6075bool mem_cgroup_swap_full(struct page *page)
6076{
6077 struct mem_cgroup *memcg;
6078
6079 VM_BUG_ON_PAGE(!PageLocked(page), page);
6080
6081 if (vm_swap_full())
6082 return true;
6083 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6084 return false;
6085
6086 memcg = page->mem_cgroup;
6087 if (!memcg)
6088 return false;
6089
6090 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6091 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6092 return true;
6093
6094 return false;
6095}
6096
6097/* for remember boot option*/
6098#ifdef CONFIG_MEMCG_SWAP_ENABLED
6099static int really_do_swap_account __initdata = 1;
6100#else
6101static int really_do_swap_account __initdata;
6102#endif
6103
6104static int __init enable_swap_account(char *s)
6105{
6106 if (!strcmp(s, "1"))
6107 really_do_swap_account = 1;
6108 else if (!strcmp(s, "0"))
6109 really_do_swap_account = 0;
6110 return 1;
6111}
6112__setup("swapaccount=", enable_swap_account);
6113
6114static u64 swap_current_read(struct cgroup_subsys_state *css,
6115 struct cftype *cft)
6116{
6117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6118
6119 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6120}
6121
6122static int swap_max_show(struct seq_file *m, void *v)
6123{
6124 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6125 unsigned long max = READ_ONCE(memcg->swap.limit);
6126
6127 if (max == PAGE_COUNTER_MAX)
6128 seq_puts(m, "max\n");
6129 else
6130 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6131
6132 return 0;
6133}
6134
6135static ssize_t swap_max_write(struct kernfs_open_file *of,
6136 char *buf, size_t nbytes, loff_t off)
6137{
6138 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6139 unsigned long max;
6140 int err;
6141
6142 buf = strstrip(buf);
6143 err = page_counter_memparse(buf, "max", &max);
6144 if (err)
6145 return err;
6146
6147 mutex_lock(&memcg_limit_mutex);
6148 err = page_counter_limit(&memcg->swap, max);
6149 mutex_unlock(&memcg_limit_mutex);
6150 if (err)
6151 return err;
6152
6153 return nbytes;
6154}
6155
6156static struct cftype swap_files[] = {
6157 {
6158 .name = "swap.current",
6159 .flags = CFTYPE_NOT_ON_ROOT,
6160 .read_u64 = swap_current_read,
6161 },
6162 {
6163 .name = "swap.max",
6164 .flags = CFTYPE_NOT_ON_ROOT,
6165 .seq_show = swap_max_show,
6166 .write = swap_max_write,
6167 },
6168 { } /* terminate */
6169};
6170
6171static struct cftype memsw_cgroup_files[] = {
6172 {
6173 .name = "memsw.usage_in_bytes",
6174 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6175 .read_u64 = mem_cgroup_read_u64,
6176 },
6177 {
6178 .name = "memsw.max_usage_in_bytes",
6179 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6180 .write = mem_cgroup_reset,
6181 .read_u64 = mem_cgroup_read_u64,
6182 },
6183 {
6184 .name = "memsw.limit_in_bytes",
6185 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6186 .write = mem_cgroup_write,
6187 .read_u64 = mem_cgroup_read_u64,
6188 },
6189 {
6190 .name = "memsw.failcnt",
6191 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6192 .write = mem_cgroup_reset,
6193 .read_u64 = mem_cgroup_read_u64,
6194 },
6195 { }, /* terminate */
6196};
6197
6198static int __init mem_cgroup_swap_init(void)
6199{
6200 if (!mem_cgroup_disabled() && really_do_swap_account) {
6201 do_swap_account = 1;
6202 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6203 swap_files));
6204 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6205 memsw_cgroup_files));
6206 }
6207 return 0;
6208}
6209subsys_initcall(mem_cgroup_swap_init);
6210
6211#endif /* CONFIG_MEMCG_SWAP */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/memremap.h>
57#include <linux/mm_inline.h>
58#include <linux/swap_cgroup.h>
59#include <linux/cpu.h>
60#include <linux/oom.h>
61#include <linux/lockdep.h>
62#include <linux/file.h>
63#include <linux/resume_user_mode.h>
64#include <linux/psi.h>
65#include <linux/seq_buf.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70#include "swap.h"
71
72#include <linux/uaccess.h>
73
74#include <trace/events/vmscan.h>
75
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
78
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81/* Active memory cgroup to use from an interrupt context */
82DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85/* Socket memory accounting disabled? */
86static bool cgroup_memory_nosocket __ro_after_init;
87
88/* Kernel memory accounting disabled? */
89static bool cgroup_memory_nokmem __ro_after_init;
90
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
99}
100
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
103
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113};
114
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
126
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
130struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165};
166
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170/* Stuffs for move charges at task migration. */
171/*
172 * Types of charges to be moved.
173 */
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
194
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202/* for encoding cft->private value on file */
203enum res_type {
204 _MEM,
205 _MEMSWAP,
206 _KMEM,
207 _TCP,
208};
209
210#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
211#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
212#define MEMFILE_ATTR(val) ((val) & 0xffff)
213
214/*
215 * Iteration constructs for visiting all cgroups (under a tree). If
216 * loops are exited prematurely (break), mem_cgroup_iter_break() must
217 * be used for reference counting.
218 */
219#define for_each_mem_cgroup_tree(iter, root) \
220 for (iter = mem_cgroup_iter(root, NULL, NULL); \
221 iter != NULL; \
222 iter = mem_cgroup_iter(root, iter, NULL))
223
224#define for_each_mem_cgroup(iter) \
225 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(NULL, iter, NULL))
228
229static inline bool task_is_dying(void)
230{
231 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
232 (current->flags & PF_EXITING);
233}
234
235/* Some nice accessors for the vmpressure. */
236struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237{
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241}
242
243struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
244{
245 return container_of(vmpr, struct mem_cgroup, vmpressure);
246}
247
248#ifdef CONFIG_MEMCG_KMEM
249static DEFINE_SPINLOCK(objcg_lock);
250
251bool mem_cgroup_kmem_disabled(void)
252{
253 return cgroup_memory_nokmem;
254}
255
256static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
257 unsigned int nr_pages);
258
259static void obj_cgroup_release(struct percpu_ref *ref)
260{
261 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
290 if (nr_pages)
291 obj_cgroup_uncharge_pages(objcg, nr_pages);
292
293 spin_lock_irqsave(&objcg_lock, flags);
294 list_del(&objcg->list);
295 spin_unlock_irqrestore(&objcg_lock, flags);
296
297 percpu_ref_exit(ref);
298 kfree_rcu(objcg, rcu);
299}
300
301static struct obj_cgroup *obj_cgroup_alloc(void)
302{
303 struct obj_cgroup *objcg;
304 int ret;
305
306 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
307 if (!objcg)
308 return NULL;
309
310 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
311 GFP_KERNEL);
312 if (ret) {
313 kfree(objcg);
314 return NULL;
315 }
316 INIT_LIST_HEAD(&objcg->list);
317 return objcg;
318}
319
320static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
321 struct mem_cgroup *parent)
322{
323 struct obj_cgroup *objcg, *iter;
324
325 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
326
327 spin_lock_irq(&objcg_lock);
328
329 /* 1) Ready to reparent active objcg. */
330 list_add(&objcg->list, &memcg->objcg_list);
331 /* 2) Reparent active objcg and already reparented objcgs to parent. */
332 list_for_each_entry(iter, &memcg->objcg_list, list)
333 WRITE_ONCE(iter->memcg, parent);
334 /* 3) Move already reparented objcgs to the parent's list */
335 list_splice(&memcg->objcg_list, &parent->objcg_list);
336
337 spin_unlock_irq(&objcg_lock);
338
339 percpu_ref_kill(&objcg->refcnt);
340}
341
342/*
343 * A lot of the calls to the cache allocation functions are expected to be
344 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
345 * conditional to this static branch, we'll have to allow modules that does
346 * kmem_cache_alloc and the such to see this symbol as well
347 */
348DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
349EXPORT_SYMBOL(memcg_kmem_enabled_key);
350#endif
351
352/**
353 * mem_cgroup_css_from_page - css of the memcg associated with a page
354 * @page: page of interest
355 *
356 * If memcg is bound to the default hierarchy, css of the memcg associated
357 * with @page is returned. The returned css remains associated with @page
358 * until it is released.
359 *
360 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
361 * is returned.
362 */
363struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
364{
365 struct mem_cgroup *memcg;
366
367 memcg = page_memcg(page);
368
369 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
370 memcg = root_mem_cgroup;
371
372 return &memcg->css;
373}
374
375/**
376 * page_cgroup_ino - return inode number of the memcg a page is charged to
377 * @page: the page
378 *
379 * Look up the closest online ancestor of the memory cgroup @page is charged to
380 * and return its inode number or 0 if @page is not charged to any cgroup. It
381 * is safe to call this function without holding a reference to @page.
382 *
383 * Note, this function is inherently racy, because there is nothing to prevent
384 * the cgroup inode from getting torn down and potentially reallocated a moment
385 * after page_cgroup_ino() returns, so it only should be used by callers that
386 * do not care (such as procfs interfaces).
387 */
388ino_t page_cgroup_ino(struct page *page)
389{
390 struct mem_cgroup *memcg;
391 unsigned long ino = 0;
392
393 rcu_read_lock();
394 memcg = page_memcg_check(page);
395
396 while (memcg && !(memcg->css.flags & CSS_ONLINE))
397 memcg = parent_mem_cgroup(memcg);
398 if (memcg)
399 ino = cgroup_ino(memcg->css.cgroup);
400 rcu_read_unlock();
401 return ino;
402}
403
404static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
405 struct mem_cgroup_tree_per_node *mctz,
406 unsigned long new_usage_in_excess)
407{
408 struct rb_node **p = &mctz->rb_root.rb_node;
409 struct rb_node *parent = NULL;
410 struct mem_cgroup_per_node *mz_node;
411 bool rightmost = true;
412
413 if (mz->on_tree)
414 return;
415
416 mz->usage_in_excess = new_usage_in_excess;
417 if (!mz->usage_in_excess)
418 return;
419 while (*p) {
420 parent = *p;
421 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
422 tree_node);
423 if (mz->usage_in_excess < mz_node->usage_in_excess) {
424 p = &(*p)->rb_left;
425 rightmost = false;
426 } else {
427 p = &(*p)->rb_right;
428 }
429 }
430
431 if (rightmost)
432 mctz->rb_rightmost = &mz->tree_node;
433
434 rb_link_node(&mz->tree_node, parent, p);
435 rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = true;
437}
438
439static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440 struct mem_cgroup_tree_per_node *mctz)
441{
442 if (!mz->on_tree)
443 return;
444
445 if (&mz->tree_node == mctz->rb_rightmost)
446 mctz->rb_rightmost = rb_prev(&mz->tree_node);
447
448 rb_erase(&mz->tree_node, &mctz->rb_root);
449 mz->on_tree = false;
450}
451
452static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
453 struct mem_cgroup_tree_per_node *mctz)
454{
455 unsigned long flags;
456
457 spin_lock_irqsave(&mctz->lock, flags);
458 __mem_cgroup_remove_exceeded(mz, mctz);
459 spin_unlock_irqrestore(&mctz->lock, flags);
460}
461
462static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
463{
464 unsigned long nr_pages = page_counter_read(&memcg->memory);
465 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
466 unsigned long excess = 0;
467
468 if (nr_pages > soft_limit)
469 excess = nr_pages - soft_limit;
470
471 return excess;
472}
473
474static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
475{
476 unsigned long excess;
477 struct mem_cgroup_per_node *mz;
478 struct mem_cgroup_tree_per_node *mctz;
479
480 mctz = soft_limit_tree.rb_tree_per_node[nid];
481 if (!mctz)
482 return;
483 /*
484 * Necessary to update all ancestors when hierarchy is used.
485 * because their event counter is not touched.
486 */
487 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
488 mz = memcg->nodeinfo[nid];
489 excess = soft_limit_excess(memcg);
490 /*
491 * We have to update the tree if mz is on RB-tree or
492 * mem is over its softlimit.
493 */
494 if (excess || mz->on_tree) {
495 unsigned long flags;
496
497 spin_lock_irqsave(&mctz->lock, flags);
498 /* if on-tree, remove it */
499 if (mz->on_tree)
500 __mem_cgroup_remove_exceeded(mz, mctz);
501 /*
502 * Insert again. mz->usage_in_excess will be updated.
503 * If excess is 0, no tree ops.
504 */
505 __mem_cgroup_insert_exceeded(mz, mctz, excess);
506 spin_unlock_irqrestore(&mctz->lock, flags);
507 }
508 }
509}
510
511static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
512{
513 struct mem_cgroup_tree_per_node *mctz;
514 struct mem_cgroup_per_node *mz;
515 int nid;
516
517 for_each_node(nid) {
518 mz = memcg->nodeinfo[nid];
519 mctz = soft_limit_tree.rb_tree_per_node[nid];
520 if (mctz)
521 mem_cgroup_remove_exceeded(mz, mctz);
522 }
523}
524
525static struct mem_cgroup_per_node *
526__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
527{
528 struct mem_cgroup_per_node *mz;
529
530retry:
531 mz = NULL;
532 if (!mctz->rb_rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(mctz->rb_rightmost,
536 struct mem_cgroup_per_node, tree_node);
537 /*
538 * Remove the node now but someone else can add it back,
539 * we will to add it back at the end of reclaim to its correct
540 * position in the tree.
541 */
542 __mem_cgroup_remove_exceeded(mz, mctz);
543 if (!soft_limit_excess(mz->memcg) ||
544 !css_tryget(&mz->memcg->css))
545 goto retry;
546done:
547 return mz;
548}
549
550static struct mem_cgroup_per_node *
551mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
552{
553 struct mem_cgroup_per_node *mz;
554
555 spin_lock_irq(&mctz->lock);
556 mz = __mem_cgroup_largest_soft_limit_node(mctz);
557 spin_unlock_irq(&mctz->lock);
558 return mz;
559}
560
561/*
562 * memcg and lruvec stats flushing
563 *
564 * Many codepaths leading to stats update or read are performance sensitive and
565 * adding stats flushing in such codepaths is not desirable. So, to optimize the
566 * flushing the kernel does:
567 *
568 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
569 * rstat update tree grow unbounded.
570 *
571 * 2) Flush the stats synchronously on reader side only when there are more than
572 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
573 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
574 * only for 2 seconds due to (1).
575 */
576static void flush_memcg_stats_dwork(struct work_struct *w);
577static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
578static DEFINE_SPINLOCK(stats_flush_lock);
579static DEFINE_PER_CPU(unsigned int, stats_updates);
580static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
581static u64 flush_next_time;
582
583#define FLUSH_TIME (2UL*HZ)
584
585/*
586 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
587 * not rely on this as part of an acquired spinlock_t lock. These functions are
588 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
589 * is sufficient.
590 */
591static void memcg_stats_lock(void)
592{
593 preempt_disable_nested();
594 VM_WARN_ON_IRQS_ENABLED();
595}
596
597static void __memcg_stats_lock(void)
598{
599 preempt_disable_nested();
600}
601
602static void memcg_stats_unlock(void)
603{
604 preempt_enable_nested();
605}
606
607static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
608{
609 unsigned int x;
610
611 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
612
613 x = __this_cpu_add_return(stats_updates, abs(val));
614 if (x > MEMCG_CHARGE_BATCH) {
615 /*
616 * If stats_flush_threshold exceeds the threshold
617 * (>num_online_cpus()), cgroup stats update will be triggered
618 * in __mem_cgroup_flush_stats(). Increasing this var further
619 * is redundant and simply adds overhead in atomic update.
620 */
621 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
622 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
623 __this_cpu_write(stats_updates, 0);
624 }
625}
626
627static void __mem_cgroup_flush_stats(void)
628{
629 unsigned long flag;
630
631 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
632 return;
633
634 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
635 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
636 atomic_set(&stats_flush_threshold, 0);
637 spin_unlock_irqrestore(&stats_flush_lock, flag);
638}
639
640void mem_cgroup_flush_stats(void)
641{
642 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
643 __mem_cgroup_flush_stats();
644}
645
646void mem_cgroup_flush_stats_delayed(void)
647{
648 if (time_after64(jiffies_64, flush_next_time))
649 mem_cgroup_flush_stats();
650}
651
652static void flush_memcg_stats_dwork(struct work_struct *w)
653{
654 __mem_cgroup_flush_stats();
655 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
656}
657
658/* Subset of vm_event_item to report for memcg event stats */
659static const unsigned int memcg_vm_event_stat[] = {
660 PGPGIN,
661 PGPGOUT,
662 PGSCAN_KSWAPD,
663 PGSCAN_DIRECT,
664 PGSCAN_KHUGEPAGED,
665 PGSTEAL_KSWAPD,
666 PGSTEAL_DIRECT,
667 PGSTEAL_KHUGEPAGED,
668 PGFAULT,
669 PGMAJFAULT,
670 PGREFILL,
671 PGACTIVATE,
672 PGDEACTIVATE,
673 PGLAZYFREE,
674 PGLAZYFREED,
675#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
676 ZSWPIN,
677 ZSWPOUT,
678#endif
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 THP_FAULT_ALLOC,
681 THP_COLLAPSE_ALLOC,
682#endif
683};
684
685#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
686static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
687
688static void init_memcg_events(void)
689{
690 int i;
691
692 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
693 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
694}
695
696static inline int memcg_events_index(enum vm_event_item idx)
697{
698 return mem_cgroup_events_index[idx] - 1;
699}
700
701struct memcg_vmstats_percpu {
702 /* Local (CPU and cgroup) page state & events */
703 long state[MEMCG_NR_STAT];
704 unsigned long events[NR_MEMCG_EVENTS];
705
706 /* Delta calculation for lockless upward propagation */
707 long state_prev[MEMCG_NR_STAT];
708 unsigned long events_prev[NR_MEMCG_EVENTS];
709
710 /* Cgroup1: threshold notifications & softlimit tree updates */
711 unsigned long nr_page_events;
712 unsigned long targets[MEM_CGROUP_NTARGETS];
713};
714
715struct memcg_vmstats {
716 /* Aggregated (CPU and subtree) page state & events */
717 long state[MEMCG_NR_STAT];
718 unsigned long events[NR_MEMCG_EVENTS];
719
720 /* Pending child counts during tree propagation */
721 long state_pending[MEMCG_NR_STAT];
722 unsigned long events_pending[NR_MEMCG_EVENTS];
723};
724
725unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
726{
727 long x = READ_ONCE(memcg->vmstats->state[idx]);
728#ifdef CONFIG_SMP
729 if (x < 0)
730 x = 0;
731#endif
732 return x;
733}
734
735/**
736 * __mod_memcg_state - update cgroup memory statistics
737 * @memcg: the memory cgroup
738 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
739 * @val: delta to add to the counter, can be negative
740 */
741void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
742{
743 if (mem_cgroup_disabled())
744 return;
745
746 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
747 memcg_rstat_updated(memcg, val);
748}
749
750/* idx can be of type enum memcg_stat_item or node_stat_item. */
751static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
752{
753 long x = 0;
754 int cpu;
755
756 for_each_possible_cpu(cpu)
757 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
758#ifdef CONFIG_SMP
759 if (x < 0)
760 x = 0;
761#endif
762 return x;
763}
764
765void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
766 int val)
767{
768 struct mem_cgroup_per_node *pn;
769 struct mem_cgroup *memcg;
770
771 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
772 memcg = pn->memcg;
773
774 /*
775 * The caller from rmap relay on disabled preemption becase they never
776 * update their counter from in-interrupt context. For these two
777 * counters we check that the update is never performed from an
778 * interrupt context while other caller need to have disabled interrupt.
779 */
780 __memcg_stats_lock();
781 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
782 switch (idx) {
783 case NR_ANON_MAPPED:
784 case NR_FILE_MAPPED:
785 case NR_ANON_THPS:
786 case NR_SHMEM_PMDMAPPED:
787 case NR_FILE_PMDMAPPED:
788 WARN_ON_ONCE(!in_task());
789 break;
790 default:
791 VM_WARN_ON_IRQS_ENABLED();
792 }
793 }
794
795 /* Update memcg */
796 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
797
798 /* Update lruvec */
799 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
800
801 memcg_rstat_updated(memcg, val);
802 memcg_stats_unlock();
803}
804
805/**
806 * __mod_lruvec_state - update lruvec memory statistics
807 * @lruvec: the lruvec
808 * @idx: the stat item
809 * @val: delta to add to the counter, can be negative
810 *
811 * The lruvec is the intersection of the NUMA node and a cgroup. This
812 * function updates the all three counters that are affected by a
813 * change of state at this level: per-node, per-cgroup, per-lruvec.
814 */
815void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
816 int val)
817{
818 /* Update node */
819 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
820
821 /* Update memcg and lruvec */
822 if (!mem_cgroup_disabled())
823 __mod_memcg_lruvec_state(lruvec, idx, val);
824}
825
826void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
827 int val)
828{
829 struct page *head = compound_head(page); /* rmap on tail pages */
830 struct mem_cgroup *memcg;
831 pg_data_t *pgdat = page_pgdat(page);
832 struct lruvec *lruvec;
833
834 rcu_read_lock();
835 memcg = page_memcg(head);
836 /* Untracked pages have no memcg, no lruvec. Update only the node */
837 if (!memcg) {
838 rcu_read_unlock();
839 __mod_node_page_state(pgdat, idx, val);
840 return;
841 }
842
843 lruvec = mem_cgroup_lruvec(memcg, pgdat);
844 __mod_lruvec_state(lruvec, idx, val);
845 rcu_read_unlock();
846}
847EXPORT_SYMBOL(__mod_lruvec_page_state);
848
849void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
850{
851 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
852 struct mem_cgroup *memcg;
853 struct lruvec *lruvec;
854
855 rcu_read_lock();
856 memcg = mem_cgroup_from_slab_obj(p);
857
858 /*
859 * Untracked pages have no memcg, no lruvec. Update only the
860 * node. If we reparent the slab objects to the root memcg,
861 * when we free the slab object, we need to update the per-memcg
862 * vmstats to keep it correct for the root memcg.
863 */
864 if (!memcg) {
865 __mod_node_page_state(pgdat, idx, val);
866 } else {
867 lruvec = mem_cgroup_lruvec(memcg, pgdat);
868 __mod_lruvec_state(lruvec, idx, val);
869 }
870 rcu_read_unlock();
871}
872
873/**
874 * __count_memcg_events - account VM events in a cgroup
875 * @memcg: the memory cgroup
876 * @idx: the event item
877 * @count: the number of events that occurred
878 */
879void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
880 unsigned long count)
881{
882 int index = memcg_events_index(idx);
883
884 if (mem_cgroup_disabled() || index < 0)
885 return;
886
887 memcg_stats_lock();
888 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
889 memcg_rstat_updated(memcg, count);
890 memcg_stats_unlock();
891}
892
893static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
894{
895 int index = memcg_events_index(event);
896
897 if (index < 0)
898 return 0;
899 return READ_ONCE(memcg->vmstats->events[index]);
900}
901
902static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
903{
904 long x = 0;
905 int cpu;
906 int index = memcg_events_index(event);
907
908 if (index < 0)
909 return 0;
910
911 for_each_possible_cpu(cpu)
912 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
913 return x;
914}
915
916static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
917 int nr_pages)
918{
919 /* pagein of a big page is an event. So, ignore page size */
920 if (nr_pages > 0)
921 __count_memcg_events(memcg, PGPGIN, 1);
922 else {
923 __count_memcg_events(memcg, PGPGOUT, 1);
924 nr_pages = -nr_pages; /* for event */
925 }
926
927 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
928}
929
930static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
931 enum mem_cgroup_events_target target)
932{
933 unsigned long val, next;
934
935 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
936 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
937 /* from time_after() in jiffies.h */
938 if ((long)(next - val) < 0) {
939 switch (target) {
940 case MEM_CGROUP_TARGET_THRESH:
941 next = val + THRESHOLDS_EVENTS_TARGET;
942 break;
943 case MEM_CGROUP_TARGET_SOFTLIMIT:
944 next = val + SOFTLIMIT_EVENTS_TARGET;
945 break;
946 default:
947 break;
948 }
949 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
950 return true;
951 }
952 return false;
953}
954
955/*
956 * Check events in order.
957 *
958 */
959static void memcg_check_events(struct mem_cgroup *memcg, int nid)
960{
961 if (IS_ENABLED(CONFIG_PREEMPT_RT))
962 return;
963
964 /* threshold event is triggered in finer grain than soft limit */
965 if (unlikely(mem_cgroup_event_ratelimit(memcg,
966 MEM_CGROUP_TARGET_THRESH))) {
967 bool do_softlimit;
968
969 do_softlimit = mem_cgroup_event_ratelimit(memcg,
970 MEM_CGROUP_TARGET_SOFTLIMIT);
971 mem_cgroup_threshold(memcg);
972 if (unlikely(do_softlimit))
973 mem_cgroup_update_tree(memcg, nid);
974 }
975}
976
977struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
978{
979 /*
980 * mm_update_next_owner() may clear mm->owner to NULL
981 * if it races with swapoff, page migration, etc.
982 * So this can be called with p == NULL.
983 */
984 if (unlikely(!p))
985 return NULL;
986
987 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
988}
989EXPORT_SYMBOL(mem_cgroup_from_task);
990
991static __always_inline struct mem_cgroup *active_memcg(void)
992{
993 if (!in_task())
994 return this_cpu_read(int_active_memcg);
995 else
996 return current->active_memcg;
997}
998
999/**
1000 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1001 * @mm: mm from which memcg should be extracted. It can be NULL.
1002 *
1003 * Obtain a reference on mm->memcg and returns it if successful. If mm
1004 * is NULL, then the memcg is chosen as follows:
1005 * 1) The active memcg, if set.
1006 * 2) current->mm->memcg, if available
1007 * 3) root memcg
1008 * If mem_cgroup is disabled, NULL is returned.
1009 */
1010struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1011{
1012 struct mem_cgroup *memcg;
1013
1014 if (mem_cgroup_disabled())
1015 return NULL;
1016
1017 /*
1018 * Page cache insertions can happen without an
1019 * actual mm context, e.g. during disk probing
1020 * on boot, loopback IO, acct() writes etc.
1021 *
1022 * No need to css_get on root memcg as the reference
1023 * counting is disabled on the root level in the
1024 * cgroup core. See CSS_NO_REF.
1025 */
1026 if (unlikely(!mm)) {
1027 memcg = active_memcg();
1028 if (unlikely(memcg)) {
1029 /* remote memcg must hold a ref */
1030 css_get(&memcg->css);
1031 return memcg;
1032 }
1033 mm = current->mm;
1034 if (unlikely(!mm))
1035 return root_mem_cgroup;
1036 }
1037
1038 rcu_read_lock();
1039 do {
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
1042 memcg = root_mem_cgroup;
1043 } while (!css_tryget(&memcg->css));
1044 rcu_read_unlock();
1045 return memcg;
1046}
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049static __always_inline bool memcg_kmem_bypass(void)
1050{
1051 /* Allow remote memcg charging from any context. */
1052 if (unlikely(active_memcg()))
1053 return false;
1054
1055 /* Memcg to charge can't be determined. */
1056 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1057 return true;
1058
1059 return false;
1060}
1061
1062/**
1063 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1064 * @root: hierarchy root
1065 * @prev: previously returned memcg, NULL on first invocation
1066 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1067 *
1068 * Returns references to children of the hierarchy below @root, or
1069 * @root itself, or %NULL after a full round-trip.
1070 *
1071 * Caller must pass the return value in @prev on subsequent
1072 * invocations for reference counting, or use mem_cgroup_iter_break()
1073 * to cancel a hierarchy walk before the round-trip is complete.
1074 *
1075 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1076 * in the hierarchy among all concurrent reclaimers operating on the
1077 * same node.
1078 */
1079struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1080 struct mem_cgroup *prev,
1081 struct mem_cgroup_reclaim_cookie *reclaim)
1082{
1083 struct mem_cgroup_reclaim_iter *iter;
1084 struct cgroup_subsys_state *css = NULL;
1085 struct mem_cgroup *memcg = NULL;
1086 struct mem_cgroup *pos = NULL;
1087
1088 if (mem_cgroup_disabled())
1089 return NULL;
1090
1091 if (!root)
1092 root = root_mem_cgroup;
1093
1094 rcu_read_lock();
1095
1096 if (reclaim) {
1097 struct mem_cgroup_per_node *mz;
1098
1099 mz = root->nodeinfo[reclaim->pgdat->node_id];
1100 iter = &mz->iter;
1101
1102 /*
1103 * On start, join the current reclaim iteration cycle.
1104 * Exit when a concurrent walker completes it.
1105 */
1106 if (!prev)
1107 reclaim->generation = iter->generation;
1108 else if (reclaim->generation != iter->generation)
1109 goto out_unlock;
1110
1111 while (1) {
1112 pos = READ_ONCE(iter->position);
1113 if (!pos || css_tryget(&pos->css))
1114 break;
1115 /*
1116 * css reference reached zero, so iter->position will
1117 * be cleared by ->css_released. However, we should not
1118 * rely on this happening soon, because ->css_released
1119 * is called from a work queue, and by busy-waiting we
1120 * might block it. So we clear iter->position right
1121 * away.
1122 */
1123 (void)cmpxchg(&iter->position, pos, NULL);
1124 }
1125 } else if (prev) {
1126 pos = prev;
1127 }
1128
1129 if (pos)
1130 css = &pos->css;
1131
1132 for (;;) {
1133 css = css_next_descendant_pre(css, &root->css);
1134 if (!css) {
1135 /*
1136 * Reclaimers share the hierarchy walk, and a
1137 * new one might jump in right at the end of
1138 * the hierarchy - make sure they see at least
1139 * one group and restart from the beginning.
1140 */
1141 if (!prev)
1142 continue;
1143 break;
1144 }
1145
1146 /*
1147 * Verify the css and acquire a reference. The root
1148 * is provided by the caller, so we know it's alive
1149 * and kicking, and don't take an extra reference.
1150 */
1151 if (css == &root->css || css_tryget(css)) {
1152 memcg = mem_cgroup_from_css(css);
1153 break;
1154 }
1155 }
1156
1157 if (reclaim) {
1158 /*
1159 * The position could have already been updated by a competing
1160 * thread, so check that the value hasn't changed since we read
1161 * it to avoid reclaiming from the same cgroup twice.
1162 */
1163 (void)cmpxchg(&iter->position, pos, memcg);
1164
1165 if (pos)
1166 css_put(&pos->css);
1167
1168 if (!memcg)
1169 iter->generation++;
1170 }
1171
1172out_unlock:
1173 rcu_read_unlock();
1174 if (prev && prev != root)
1175 css_put(&prev->css);
1176
1177 return memcg;
1178}
1179
1180/**
1181 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1182 * @root: hierarchy root
1183 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1184 */
1185void mem_cgroup_iter_break(struct mem_cgroup *root,
1186 struct mem_cgroup *prev)
1187{
1188 if (!root)
1189 root = root_mem_cgroup;
1190 if (prev && prev != root)
1191 css_put(&prev->css);
1192}
1193
1194static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1195 struct mem_cgroup *dead_memcg)
1196{
1197 struct mem_cgroup_reclaim_iter *iter;
1198 struct mem_cgroup_per_node *mz;
1199 int nid;
1200
1201 for_each_node(nid) {
1202 mz = from->nodeinfo[nid];
1203 iter = &mz->iter;
1204 cmpxchg(&iter->position, dead_memcg, NULL);
1205 }
1206}
1207
1208static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1209{
1210 struct mem_cgroup *memcg = dead_memcg;
1211 struct mem_cgroup *last;
1212
1213 do {
1214 __invalidate_reclaim_iterators(memcg, dead_memcg);
1215 last = memcg;
1216 } while ((memcg = parent_mem_cgroup(memcg)));
1217
1218 /*
1219 * When cgroup1 non-hierarchy mode is used,
1220 * parent_mem_cgroup() does not walk all the way up to the
1221 * cgroup root (root_mem_cgroup). So we have to handle
1222 * dead_memcg from cgroup root separately.
1223 */
1224 if (!mem_cgroup_is_root(last))
1225 __invalidate_reclaim_iterators(root_mem_cgroup,
1226 dead_memcg);
1227}
1228
1229/**
1230 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1231 * @memcg: hierarchy root
1232 * @fn: function to call for each task
1233 * @arg: argument passed to @fn
1234 *
1235 * This function iterates over tasks attached to @memcg or to any of its
1236 * descendants and calls @fn for each task. If @fn returns a non-zero
1237 * value, the function breaks the iteration loop and returns the value.
1238 * Otherwise, it will iterate over all tasks and return 0.
1239 *
1240 * This function must not be called for the root memory cgroup.
1241 */
1242int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1243 int (*fn)(struct task_struct *, void *), void *arg)
1244{
1245 struct mem_cgroup *iter;
1246 int ret = 0;
1247
1248 BUG_ON(mem_cgroup_is_root(memcg));
1249
1250 for_each_mem_cgroup_tree(iter, memcg) {
1251 struct css_task_iter it;
1252 struct task_struct *task;
1253
1254 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1255 while (!ret && (task = css_task_iter_next(&it)))
1256 ret = fn(task, arg);
1257 css_task_iter_end(&it);
1258 if (ret) {
1259 mem_cgroup_iter_break(memcg, iter);
1260 break;
1261 }
1262 }
1263 return ret;
1264}
1265
1266#ifdef CONFIG_DEBUG_VM
1267void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1268{
1269 struct mem_cgroup *memcg;
1270
1271 if (mem_cgroup_disabled())
1272 return;
1273
1274 memcg = folio_memcg(folio);
1275
1276 if (!memcg)
1277 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1278 else
1279 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1280}
1281#endif
1282
1283/**
1284 * folio_lruvec_lock - Lock the lruvec for a folio.
1285 * @folio: Pointer to the folio.
1286 *
1287 * These functions are safe to use under any of the following conditions:
1288 * - folio locked
1289 * - folio_test_lru false
1290 * - folio_memcg_lock()
1291 * - folio frozen (refcount of 0)
1292 *
1293 * Return: The lruvec this folio is on with its lock held.
1294 */
1295struct lruvec *folio_lruvec_lock(struct folio *folio)
1296{
1297 struct lruvec *lruvec = folio_lruvec(folio);
1298
1299 spin_lock(&lruvec->lru_lock);
1300 lruvec_memcg_debug(lruvec, folio);
1301
1302 return lruvec;
1303}
1304
1305/**
1306 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1307 * @folio: Pointer to the folio.
1308 *
1309 * These functions are safe to use under any of the following conditions:
1310 * - folio locked
1311 * - folio_test_lru false
1312 * - folio_memcg_lock()
1313 * - folio frozen (refcount of 0)
1314 *
1315 * Return: The lruvec this folio is on with its lock held and interrupts
1316 * disabled.
1317 */
1318struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1319{
1320 struct lruvec *lruvec = folio_lruvec(folio);
1321
1322 spin_lock_irq(&lruvec->lru_lock);
1323 lruvec_memcg_debug(lruvec, folio);
1324
1325 return lruvec;
1326}
1327
1328/**
1329 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1330 * @folio: Pointer to the folio.
1331 * @flags: Pointer to irqsave flags.
1332 *
1333 * These functions are safe to use under any of the following conditions:
1334 * - folio locked
1335 * - folio_test_lru false
1336 * - folio_memcg_lock()
1337 * - folio frozen (refcount of 0)
1338 *
1339 * Return: The lruvec this folio is on with its lock held and interrupts
1340 * disabled.
1341 */
1342struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1343 unsigned long *flags)
1344{
1345 struct lruvec *lruvec = folio_lruvec(folio);
1346
1347 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1348 lruvec_memcg_debug(lruvec, folio);
1349
1350 return lruvec;
1351}
1352
1353/**
1354 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1355 * @lruvec: mem_cgroup per zone lru vector
1356 * @lru: index of lru list the page is sitting on
1357 * @zid: zone id of the accounted pages
1358 * @nr_pages: positive when adding or negative when removing
1359 *
1360 * This function must be called under lru_lock, just before a page is added
1361 * to or just after a page is removed from an lru list.
1362 */
1363void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1364 int zid, int nr_pages)
1365{
1366 struct mem_cgroup_per_node *mz;
1367 unsigned long *lru_size;
1368 long size;
1369
1370 if (mem_cgroup_disabled())
1371 return;
1372
1373 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1374 lru_size = &mz->lru_zone_size[zid][lru];
1375
1376 if (nr_pages < 0)
1377 *lru_size += nr_pages;
1378
1379 size = *lru_size;
1380 if (WARN_ONCE(size < 0,
1381 "%s(%p, %d, %d): lru_size %ld\n",
1382 __func__, lruvec, lru, nr_pages, size)) {
1383 VM_BUG_ON(1);
1384 *lru_size = 0;
1385 }
1386
1387 if (nr_pages > 0)
1388 *lru_size += nr_pages;
1389}
1390
1391/**
1392 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1393 * @memcg: the memory cgroup
1394 *
1395 * Returns the maximum amount of memory @mem can be charged with, in
1396 * pages.
1397 */
1398static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1399{
1400 unsigned long margin = 0;
1401 unsigned long count;
1402 unsigned long limit;
1403
1404 count = page_counter_read(&memcg->memory);
1405 limit = READ_ONCE(memcg->memory.max);
1406 if (count < limit)
1407 margin = limit - count;
1408
1409 if (do_memsw_account()) {
1410 count = page_counter_read(&memcg->memsw);
1411 limit = READ_ONCE(memcg->memsw.max);
1412 if (count < limit)
1413 margin = min(margin, limit - count);
1414 else
1415 margin = 0;
1416 }
1417
1418 return margin;
1419}
1420
1421/*
1422 * A routine for checking "mem" is under move_account() or not.
1423 *
1424 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1425 * moving cgroups. This is for waiting at high-memory pressure
1426 * caused by "move".
1427 */
1428static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1429{
1430 struct mem_cgroup *from;
1431 struct mem_cgroup *to;
1432 bool ret = false;
1433 /*
1434 * Unlike task_move routines, we access mc.to, mc.from not under
1435 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1436 */
1437 spin_lock(&mc.lock);
1438 from = mc.from;
1439 to = mc.to;
1440 if (!from)
1441 goto unlock;
1442
1443 ret = mem_cgroup_is_descendant(from, memcg) ||
1444 mem_cgroup_is_descendant(to, memcg);
1445unlock:
1446 spin_unlock(&mc.lock);
1447 return ret;
1448}
1449
1450static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1451{
1452 if (mc.moving_task && current != mc.moving_task) {
1453 if (mem_cgroup_under_move(memcg)) {
1454 DEFINE_WAIT(wait);
1455 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1456 /* moving charge context might have finished. */
1457 if (mc.moving_task)
1458 schedule();
1459 finish_wait(&mc.waitq, &wait);
1460 return true;
1461 }
1462 }
1463 return false;
1464}
1465
1466struct memory_stat {
1467 const char *name;
1468 unsigned int idx;
1469};
1470
1471static const struct memory_stat memory_stats[] = {
1472 { "anon", NR_ANON_MAPPED },
1473 { "file", NR_FILE_PAGES },
1474 { "kernel", MEMCG_KMEM },
1475 { "kernel_stack", NR_KERNEL_STACK_KB },
1476 { "pagetables", NR_PAGETABLE },
1477 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1478 { "percpu", MEMCG_PERCPU_B },
1479 { "sock", MEMCG_SOCK },
1480 { "vmalloc", MEMCG_VMALLOC },
1481 { "shmem", NR_SHMEM },
1482#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1483 { "zswap", MEMCG_ZSWAP_B },
1484 { "zswapped", MEMCG_ZSWAPPED },
1485#endif
1486 { "file_mapped", NR_FILE_MAPPED },
1487 { "file_dirty", NR_FILE_DIRTY },
1488 { "file_writeback", NR_WRITEBACK },
1489#ifdef CONFIG_SWAP
1490 { "swapcached", NR_SWAPCACHE },
1491#endif
1492#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1493 { "anon_thp", NR_ANON_THPS },
1494 { "file_thp", NR_FILE_THPS },
1495 { "shmem_thp", NR_SHMEM_THPS },
1496#endif
1497 { "inactive_anon", NR_INACTIVE_ANON },
1498 { "active_anon", NR_ACTIVE_ANON },
1499 { "inactive_file", NR_INACTIVE_FILE },
1500 { "active_file", NR_ACTIVE_FILE },
1501 { "unevictable", NR_UNEVICTABLE },
1502 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1503 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1504
1505 /* The memory events */
1506 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1507 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1508 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1509 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1510 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1511 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1512 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1513};
1514
1515/* Translate stat items to the correct unit for memory.stat output */
1516static int memcg_page_state_unit(int item)
1517{
1518 switch (item) {
1519 case MEMCG_PERCPU_B:
1520 case MEMCG_ZSWAP_B:
1521 case NR_SLAB_RECLAIMABLE_B:
1522 case NR_SLAB_UNRECLAIMABLE_B:
1523 case WORKINGSET_REFAULT_ANON:
1524 case WORKINGSET_REFAULT_FILE:
1525 case WORKINGSET_ACTIVATE_ANON:
1526 case WORKINGSET_ACTIVATE_FILE:
1527 case WORKINGSET_RESTORE_ANON:
1528 case WORKINGSET_RESTORE_FILE:
1529 case WORKINGSET_NODERECLAIM:
1530 return 1;
1531 case NR_KERNEL_STACK_KB:
1532 return SZ_1K;
1533 default:
1534 return PAGE_SIZE;
1535 }
1536}
1537
1538static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1539 int item)
1540{
1541 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1542}
1543
1544static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1545{
1546 struct seq_buf s;
1547 int i;
1548
1549 seq_buf_init(&s, buf, bufsize);
1550
1551 /*
1552 * Provide statistics on the state of the memory subsystem as
1553 * well as cumulative event counters that show past behavior.
1554 *
1555 * This list is ordered following a combination of these gradients:
1556 * 1) generic big picture -> specifics and details
1557 * 2) reflecting userspace activity -> reflecting kernel heuristics
1558 *
1559 * Current memory state:
1560 */
1561 mem_cgroup_flush_stats();
1562
1563 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1564 u64 size;
1565
1566 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1567 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1568
1569 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1570 size += memcg_page_state_output(memcg,
1571 NR_SLAB_RECLAIMABLE_B);
1572 seq_buf_printf(&s, "slab %llu\n", size);
1573 }
1574 }
1575
1576 /* Accumulated memory events */
1577 seq_buf_printf(&s, "pgscan %lu\n",
1578 memcg_events(memcg, PGSCAN_KSWAPD) +
1579 memcg_events(memcg, PGSCAN_DIRECT) +
1580 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1581 seq_buf_printf(&s, "pgsteal %lu\n",
1582 memcg_events(memcg, PGSTEAL_KSWAPD) +
1583 memcg_events(memcg, PGSTEAL_DIRECT) +
1584 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1585
1586 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1587 if (memcg_vm_event_stat[i] == PGPGIN ||
1588 memcg_vm_event_stat[i] == PGPGOUT)
1589 continue;
1590
1591 seq_buf_printf(&s, "%s %lu\n",
1592 vm_event_name(memcg_vm_event_stat[i]),
1593 memcg_events(memcg, memcg_vm_event_stat[i]));
1594 }
1595
1596 /* The above should easily fit into one page */
1597 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1598}
1599
1600#define K(x) ((x) << (PAGE_SHIFT-10))
1601/**
1602 * mem_cgroup_print_oom_context: Print OOM information relevant to
1603 * memory controller.
1604 * @memcg: The memory cgroup that went over limit
1605 * @p: Task that is going to be killed
1606 *
1607 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1608 * enabled
1609 */
1610void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1611{
1612 rcu_read_lock();
1613
1614 if (memcg) {
1615 pr_cont(",oom_memcg=");
1616 pr_cont_cgroup_path(memcg->css.cgroup);
1617 } else
1618 pr_cont(",global_oom");
1619 if (p) {
1620 pr_cont(",task_memcg=");
1621 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1622 }
1623 rcu_read_unlock();
1624}
1625
1626/**
1627 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1628 * memory controller.
1629 * @memcg: The memory cgroup that went over limit
1630 */
1631void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1632{
1633 /* Use static buffer, for the caller is holding oom_lock. */
1634 static char buf[PAGE_SIZE];
1635
1636 lockdep_assert_held(&oom_lock);
1637
1638 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1639 K((u64)page_counter_read(&memcg->memory)),
1640 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1641 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1642 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1643 K((u64)page_counter_read(&memcg->swap)),
1644 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1645 else {
1646 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1647 K((u64)page_counter_read(&memcg->memsw)),
1648 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1649 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1650 K((u64)page_counter_read(&memcg->kmem)),
1651 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1652 }
1653
1654 pr_info("Memory cgroup stats for ");
1655 pr_cont_cgroup_path(memcg->css.cgroup);
1656 pr_cont(":");
1657 memory_stat_format(memcg, buf, sizeof(buf));
1658 pr_info("%s", buf);
1659}
1660
1661/*
1662 * Return the memory (and swap, if configured) limit for a memcg.
1663 */
1664unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1665{
1666 unsigned long max = READ_ONCE(memcg->memory.max);
1667
1668 if (do_memsw_account()) {
1669 if (mem_cgroup_swappiness(memcg)) {
1670 /* Calculate swap excess capacity from memsw limit */
1671 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1672
1673 max += min(swap, (unsigned long)total_swap_pages);
1674 }
1675 } else {
1676 if (mem_cgroup_swappiness(memcg))
1677 max += min(READ_ONCE(memcg->swap.max),
1678 (unsigned long)total_swap_pages);
1679 }
1680 return max;
1681}
1682
1683unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1684{
1685 return page_counter_read(&memcg->memory);
1686}
1687
1688static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1689 int order)
1690{
1691 struct oom_control oc = {
1692 .zonelist = NULL,
1693 .nodemask = NULL,
1694 .memcg = memcg,
1695 .gfp_mask = gfp_mask,
1696 .order = order,
1697 };
1698 bool ret = true;
1699
1700 if (mutex_lock_killable(&oom_lock))
1701 return true;
1702
1703 if (mem_cgroup_margin(memcg) >= (1 << order))
1704 goto unlock;
1705
1706 /*
1707 * A few threads which were not waiting at mutex_lock_killable() can
1708 * fail to bail out. Therefore, check again after holding oom_lock.
1709 */
1710 ret = task_is_dying() || out_of_memory(&oc);
1711
1712unlock:
1713 mutex_unlock(&oom_lock);
1714 return ret;
1715}
1716
1717static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1718 pg_data_t *pgdat,
1719 gfp_t gfp_mask,
1720 unsigned long *total_scanned)
1721{
1722 struct mem_cgroup *victim = NULL;
1723 int total = 0;
1724 int loop = 0;
1725 unsigned long excess;
1726 unsigned long nr_scanned;
1727 struct mem_cgroup_reclaim_cookie reclaim = {
1728 .pgdat = pgdat,
1729 };
1730
1731 excess = soft_limit_excess(root_memcg);
1732
1733 while (1) {
1734 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1735 if (!victim) {
1736 loop++;
1737 if (loop >= 2) {
1738 /*
1739 * If we have not been able to reclaim
1740 * anything, it might because there are
1741 * no reclaimable pages under this hierarchy
1742 */
1743 if (!total)
1744 break;
1745 /*
1746 * We want to do more targeted reclaim.
1747 * excess >> 2 is not to excessive so as to
1748 * reclaim too much, nor too less that we keep
1749 * coming back to reclaim from this cgroup
1750 */
1751 if (total >= (excess >> 2) ||
1752 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1753 break;
1754 }
1755 continue;
1756 }
1757 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1758 pgdat, &nr_scanned);
1759 *total_scanned += nr_scanned;
1760 if (!soft_limit_excess(root_memcg))
1761 break;
1762 }
1763 mem_cgroup_iter_break(root_memcg, victim);
1764 return total;
1765}
1766
1767#ifdef CONFIG_LOCKDEP
1768static struct lockdep_map memcg_oom_lock_dep_map = {
1769 .name = "memcg_oom_lock",
1770};
1771#endif
1772
1773static DEFINE_SPINLOCK(memcg_oom_lock);
1774
1775/*
1776 * Check OOM-Killer is already running under our hierarchy.
1777 * If someone is running, return false.
1778 */
1779static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1780{
1781 struct mem_cgroup *iter, *failed = NULL;
1782
1783 spin_lock(&memcg_oom_lock);
1784
1785 for_each_mem_cgroup_tree(iter, memcg) {
1786 if (iter->oom_lock) {
1787 /*
1788 * this subtree of our hierarchy is already locked
1789 * so we cannot give a lock.
1790 */
1791 failed = iter;
1792 mem_cgroup_iter_break(memcg, iter);
1793 break;
1794 } else
1795 iter->oom_lock = true;
1796 }
1797
1798 if (failed) {
1799 /*
1800 * OK, we failed to lock the whole subtree so we have
1801 * to clean up what we set up to the failing subtree
1802 */
1803 for_each_mem_cgroup_tree(iter, memcg) {
1804 if (iter == failed) {
1805 mem_cgroup_iter_break(memcg, iter);
1806 break;
1807 }
1808 iter->oom_lock = false;
1809 }
1810 } else
1811 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1812
1813 spin_unlock(&memcg_oom_lock);
1814
1815 return !failed;
1816}
1817
1818static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1819{
1820 struct mem_cgroup *iter;
1821
1822 spin_lock(&memcg_oom_lock);
1823 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1824 for_each_mem_cgroup_tree(iter, memcg)
1825 iter->oom_lock = false;
1826 spin_unlock(&memcg_oom_lock);
1827}
1828
1829static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1830{
1831 struct mem_cgroup *iter;
1832
1833 spin_lock(&memcg_oom_lock);
1834 for_each_mem_cgroup_tree(iter, memcg)
1835 iter->under_oom++;
1836 spin_unlock(&memcg_oom_lock);
1837}
1838
1839static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1840{
1841 struct mem_cgroup *iter;
1842
1843 /*
1844 * Be careful about under_oom underflows because a child memcg
1845 * could have been added after mem_cgroup_mark_under_oom.
1846 */
1847 spin_lock(&memcg_oom_lock);
1848 for_each_mem_cgroup_tree(iter, memcg)
1849 if (iter->under_oom > 0)
1850 iter->under_oom--;
1851 spin_unlock(&memcg_oom_lock);
1852}
1853
1854static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1855
1856struct oom_wait_info {
1857 struct mem_cgroup *memcg;
1858 wait_queue_entry_t wait;
1859};
1860
1861static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1862 unsigned mode, int sync, void *arg)
1863{
1864 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1865 struct mem_cgroup *oom_wait_memcg;
1866 struct oom_wait_info *oom_wait_info;
1867
1868 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1869 oom_wait_memcg = oom_wait_info->memcg;
1870
1871 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1872 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1873 return 0;
1874 return autoremove_wake_function(wait, mode, sync, arg);
1875}
1876
1877static void memcg_oom_recover(struct mem_cgroup *memcg)
1878{
1879 /*
1880 * For the following lockless ->under_oom test, the only required
1881 * guarantee is that it must see the state asserted by an OOM when
1882 * this function is called as a result of userland actions
1883 * triggered by the notification of the OOM. This is trivially
1884 * achieved by invoking mem_cgroup_mark_under_oom() before
1885 * triggering notification.
1886 */
1887 if (memcg && memcg->under_oom)
1888 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1889}
1890
1891/*
1892 * Returns true if successfully killed one or more processes. Though in some
1893 * corner cases it can return true even without killing any process.
1894 */
1895static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1896{
1897 bool locked, ret;
1898
1899 if (order > PAGE_ALLOC_COSTLY_ORDER)
1900 return false;
1901
1902 memcg_memory_event(memcg, MEMCG_OOM);
1903
1904 /*
1905 * We are in the middle of the charge context here, so we
1906 * don't want to block when potentially sitting on a callstack
1907 * that holds all kinds of filesystem and mm locks.
1908 *
1909 * cgroup1 allows disabling the OOM killer and waiting for outside
1910 * handling until the charge can succeed; remember the context and put
1911 * the task to sleep at the end of the page fault when all locks are
1912 * released.
1913 *
1914 * On the other hand, in-kernel OOM killer allows for an async victim
1915 * memory reclaim (oom_reaper) and that means that we are not solely
1916 * relying on the oom victim to make a forward progress and we can
1917 * invoke the oom killer here.
1918 *
1919 * Please note that mem_cgroup_out_of_memory might fail to find a
1920 * victim and then we have to bail out from the charge path.
1921 */
1922 if (memcg->oom_kill_disable) {
1923 if (current->in_user_fault) {
1924 css_get(&memcg->css);
1925 current->memcg_in_oom = memcg;
1926 current->memcg_oom_gfp_mask = mask;
1927 current->memcg_oom_order = order;
1928 }
1929 return false;
1930 }
1931
1932 mem_cgroup_mark_under_oom(memcg);
1933
1934 locked = mem_cgroup_oom_trylock(memcg);
1935
1936 if (locked)
1937 mem_cgroup_oom_notify(memcg);
1938
1939 mem_cgroup_unmark_under_oom(memcg);
1940 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1941
1942 if (locked)
1943 mem_cgroup_oom_unlock(memcg);
1944
1945 return ret;
1946}
1947
1948/**
1949 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1950 * @handle: actually kill/wait or just clean up the OOM state
1951 *
1952 * This has to be called at the end of a page fault if the memcg OOM
1953 * handler was enabled.
1954 *
1955 * Memcg supports userspace OOM handling where failed allocations must
1956 * sleep on a waitqueue until the userspace task resolves the
1957 * situation. Sleeping directly in the charge context with all kinds
1958 * of locks held is not a good idea, instead we remember an OOM state
1959 * in the task and mem_cgroup_oom_synchronize() has to be called at
1960 * the end of the page fault to complete the OOM handling.
1961 *
1962 * Returns %true if an ongoing memcg OOM situation was detected and
1963 * completed, %false otherwise.
1964 */
1965bool mem_cgroup_oom_synchronize(bool handle)
1966{
1967 struct mem_cgroup *memcg = current->memcg_in_oom;
1968 struct oom_wait_info owait;
1969 bool locked;
1970
1971 /* OOM is global, do not handle */
1972 if (!memcg)
1973 return false;
1974
1975 if (!handle)
1976 goto cleanup;
1977
1978 owait.memcg = memcg;
1979 owait.wait.flags = 0;
1980 owait.wait.func = memcg_oom_wake_function;
1981 owait.wait.private = current;
1982 INIT_LIST_HEAD(&owait.wait.entry);
1983
1984 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1985 mem_cgroup_mark_under_oom(memcg);
1986
1987 locked = mem_cgroup_oom_trylock(memcg);
1988
1989 if (locked)
1990 mem_cgroup_oom_notify(memcg);
1991
1992 if (locked && !memcg->oom_kill_disable) {
1993 mem_cgroup_unmark_under_oom(memcg);
1994 finish_wait(&memcg_oom_waitq, &owait.wait);
1995 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1996 current->memcg_oom_order);
1997 } else {
1998 schedule();
1999 mem_cgroup_unmark_under_oom(memcg);
2000 finish_wait(&memcg_oom_waitq, &owait.wait);
2001 }
2002
2003 if (locked) {
2004 mem_cgroup_oom_unlock(memcg);
2005 /*
2006 * There is no guarantee that an OOM-lock contender
2007 * sees the wakeups triggered by the OOM kill
2008 * uncharges. Wake any sleepers explicitly.
2009 */
2010 memcg_oom_recover(memcg);
2011 }
2012cleanup:
2013 current->memcg_in_oom = NULL;
2014 css_put(&memcg->css);
2015 return true;
2016}
2017
2018/**
2019 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2020 * @victim: task to be killed by the OOM killer
2021 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2022 *
2023 * Returns a pointer to a memory cgroup, which has to be cleaned up
2024 * by killing all belonging OOM-killable tasks.
2025 *
2026 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2027 */
2028struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2029 struct mem_cgroup *oom_domain)
2030{
2031 struct mem_cgroup *oom_group = NULL;
2032 struct mem_cgroup *memcg;
2033
2034 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2035 return NULL;
2036
2037 if (!oom_domain)
2038 oom_domain = root_mem_cgroup;
2039
2040 rcu_read_lock();
2041
2042 memcg = mem_cgroup_from_task(victim);
2043 if (mem_cgroup_is_root(memcg))
2044 goto out;
2045
2046 /*
2047 * If the victim task has been asynchronously moved to a different
2048 * memory cgroup, we might end up killing tasks outside oom_domain.
2049 * In this case it's better to ignore memory.group.oom.
2050 */
2051 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2052 goto out;
2053
2054 /*
2055 * Traverse the memory cgroup hierarchy from the victim task's
2056 * cgroup up to the OOMing cgroup (or root) to find the
2057 * highest-level memory cgroup with oom.group set.
2058 */
2059 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2060 if (memcg->oom_group)
2061 oom_group = memcg;
2062
2063 if (memcg == oom_domain)
2064 break;
2065 }
2066
2067 if (oom_group)
2068 css_get(&oom_group->css);
2069out:
2070 rcu_read_unlock();
2071
2072 return oom_group;
2073}
2074
2075void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2076{
2077 pr_info("Tasks in ");
2078 pr_cont_cgroup_path(memcg->css.cgroup);
2079 pr_cont(" are going to be killed due to memory.oom.group set\n");
2080}
2081
2082/**
2083 * folio_memcg_lock - Bind a folio to its memcg.
2084 * @folio: The folio.
2085 *
2086 * This function prevents unlocked LRU folios from being moved to
2087 * another cgroup.
2088 *
2089 * It ensures lifetime of the bound memcg. The caller is responsible
2090 * for the lifetime of the folio.
2091 */
2092void folio_memcg_lock(struct folio *folio)
2093{
2094 struct mem_cgroup *memcg;
2095 unsigned long flags;
2096
2097 /*
2098 * The RCU lock is held throughout the transaction. The fast
2099 * path can get away without acquiring the memcg->move_lock
2100 * because page moving starts with an RCU grace period.
2101 */
2102 rcu_read_lock();
2103
2104 if (mem_cgroup_disabled())
2105 return;
2106again:
2107 memcg = folio_memcg(folio);
2108 if (unlikely(!memcg))
2109 return;
2110
2111#ifdef CONFIG_PROVE_LOCKING
2112 local_irq_save(flags);
2113 might_lock(&memcg->move_lock);
2114 local_irq_restore(flags);
2115#endif
2116
2117 if (atomic_read(&memcg->moving_account) <= 0)
2118 return;
2119
2120 spin_lock_irqsave(&memcg->move_lock, flags);
2121 if (memcg != folio_memcg(folio)) {
2122 spin_unlock_irqrestore(&memcg->move_lock, flags);
2123 goto again;
2124 }
2125
2126 /*
2127 * When charge migration first begins, we can have multiple
2128 * critical sections holding the fast-path RCU lock and one
2129 * holding the slowpath move_lock. Track the task who has the
2130 * move_lock for unlock_page_memcg().
2131 */
2132 memcg->move_lock_task = current;
2133 memcg->move_lock_flags = flags;
2134}
2135
2136void lock_page_memcg(struct page *page)
2137{
2138 folio_memcg_lock(page_folio(page));
2139}
2140
2141static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2142{
2143 if (memcg && memcg->move_lock_task == current) {
2144 unsigned long flags = memcg->move_lock_flags;
2145
2146 memcg->move_lock_task = NULL;
2147 memcg->move_lock_flags = 0;
2148
2149 spin_unlock_irqrestore(&memcg->move_lock, flags);
2150 }
2151
2152 rcu_read_unlock();
2153}
2154
2155/**
2156 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2157 * @folio: The folio.
2158 *
2159 * This releases the binding created by folio_memcg_lock(). This does
2160 * not change the accounting of this folio to its memcg, but it does
2161 * permit others to change it.
2162 */
2163void folio_memcg_unlock(struct folio *folio)
2164{
2165 __folio_memcg_unlock(folio_memcg(folio));
2166}
2167
2168void unlock_page_memcg(struct page *page)
2169{
2170 folio_memcg_unlock(page_folio(page));
2171}
2172
2173struct memcg_stock_pcp {
2174 local_lock_t stock_lock;
2175 struct mem_cgroup *cached; /* this never be root cgroup */
2176 unsigned int nr_pages;
2177
2178#ifdef CONFIG_MEMCG_KMEM
2179 struct obj_cgroup *cached_objcg;
2180 struct pglist_data *cached_pgdat;
2181 unsigned int nr_bytes;
2182 int nr_slab_reclaimable_b;
2183 int nr_slab_unreclaimable_b;
2184#endif
2185
2186 struct work_struct work;
2187 unsigned long flags;
2188#define FLUSHING_CACHED_CHARGE 0
2189};
2190static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2191 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2192};
2193static DEFINE_MUTEX(percpu_charge_mutex);
2194
2195#ifdef CONFIG_MEMCG_KMEM
2196static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2197static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2198 struct mem_cgroup *root_memcg);
2199static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2200
2201#else
2202static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2203{
2204 return NULL;
2205}
2206static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2207 struct mem_cgroup *root_memcg)
2208{
2209 return false;
2210}
2211static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2212{
2213}
2214#endif
2215
2216/**
2217 * consume_stock: Try to consume stocked charge on this cpu.
2218 * @memcg: memcg to consume from.
2219 * @nr_pages: how many pages to charge.
2220 *
2221 * The charges will only happen if @memcg matches the current cpu's memcg
2222 * stock, and at least @nr_pages are available in that stock. Failure to
2223 * service an allocation will refill the stock.
2224 *
2225 * returns true if successful, false otherwise.
2226 */
2227static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229 struct memcg_stock_pcp *stock;
2230 unsigned long flags;
2231 bool ret = false;
2232
2233 if (nr_pages > MEMCG_CHARGE_BATCH)
2234 return ret;
2235
2236 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2237
2238 stock = this_cpu_ptr(&memcg_stock);
2239 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2240 stock->nr_pages -= nr_pages;
2241 ret = true;
2242 }
2243
2244 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2245
2246 return ret;
2247}
2248
2249/*
2250 * Returns stocks cached in percpu and reset cached information.
2251 */
2252static void drain_stock(struct memcg_stock_pcp *stock)
2253{
2254 struct mem_cgroup *old = stock->cached;
2255
2256 if (!old)
2257 return;
2258
2259 if (stock->nr_pages) {
2260 page_counter_uncharge(&old->memory, stock->nr_pages);
2261 if (do_memsw_account())
2262 page_counter_uncharge(&old->memsw, stock->nr_pages);
2263 stock->nr_pages = 0;
2264 }
2265
2266 css_put(&old->css);
2267 stock->cached = NULL;
2268}
2269
2270static void drain_local_stock(struct work_struct *dummy)
2271{
2272 struct memcg_stock_pcp *stock;
2273 struct obj_cgroup *old = NULL;
2274 unsigned long flags;
2275
2276 /*
2277 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2278 * drain_stock races is that we always operate on local CPU stock
2279 * here with IRQ disabled
2280 */
2281 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2282
2283 stock = this_cpu_ptr(&memcg_stock);
2284 old = drain_obj_stock(stock);
2285 drain_stock(stock);
2286 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2287
2288 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2289 if (old)
2290 obj_cgroup_put(old);
2291}
2292
2293/*
2294 * Cache charges(val) to local per_cpu area.
2295 * This will be consumed by consume_stock() function, later.
2296 */
2297static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2298{
2299 struct memcg_stock_pcp *stock;
2300
2301 stock = this_cpu_ptr(&memcg_stock);
2302 if (stock->cached != memcg) { /* reset if necessary */
2303 drain_stock(stock);
2304 css_get(&memcg->css);
2305 stock->cached = memcg;
2306 }
2307 stock->nr_pages += nr_pages;
2308
2309 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2310 drain_stock(stock);
2311}
2312
2313static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2314{
2315 unsigned long flags;
2316
2317 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2318 __refill_stock(memcg, nr_pages);
2319 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2320}
2321
2322/*
2323 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2324 * of the hierarchy under it.
2325 */
2326static void drain_all_stock(struct mem_cgroup *root_memcg)
2327{
2328 int cpu, curcpu;
2329
2330 /* If someone's already draining, avoid adding running more workers. */
2331 if (!mutex_trylock(&percpu_charge_mutex))
2332 return;
2333 /*
2334 * Notify other cpus that system-wide "drain" is running
2335 * We do not care about races with the cpu hotplug because cpu down
2336 * as well as workers from this path always operate on the local
2337 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2338 */
2339 migrate_disable();
2340 curcpu = smp_processor_id();
2341 for_each_online_cpu(cpu) {
2342 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2343 struct mem_cgroup *memcg;
2344 bool flush = false;
2345
2346 rcu_read_lock();
2347 memcg = stock->cached;
2348 if (memcg && stock->nr_pages &&
2349 mem_cgroup_is_descendant(memcg, root_memcg))
2350 flush = true;
2351 else if (obj_stock_flush_required(stock, root_memcg))
2352 flush = true;
2353 rcu_read_unlock();
2354
2355 if (flush &&
2356 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2357 if (cpu == curcpu)
2358 drain_local_stock(&stock->work);
2359 else
2360 schedule_work_on(cpu, &stock->work);
2361 }
2362 }
2363 migrate_enable();
2364 mutex_unlock(&percpu_charge_mutex);
2365}
2366
2367static int memcg_hotplug_cpu_dead(unsigned int cpu)
2368{
2369 struct memcg_stock_pcp *stock;
2370
2371 stock = &per_cpu(memcg_stock, cpu);
2372 drain_stock(stock);
2373
2374 return 0;
2375}
2376
2377static unsigned long reclaim_high(struct mem_cgroup *memcg,
2378 unsigned int nr_pages,
2379 gfp_t gfp_mask)
2380{
2381 unsigned long nr_reclaimed = 0;
2382
2383 do {
2384 unsigned long pflags;
2385
2386 if (page_counter_read(&memcg->memory) <=
2387 READ_ONCE(memcg->memory.high))
2388 continue;
2389
2390 memcg_memory_event(memcg, MEMCG_HIGH);
2391
2392 psi_memstall_enter(&pflags);
2393 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2394 gfp_mask,
2395 MEMCG_RECLAIM_MAY_SWAP);
2396 psi_memstall_leave(&pflags);
2397 } while ((memcg = parent_mem_cgroup(memcg)) &&
2398 !mem_cgroup_is_root(memcg));
2399
2400 return nr_reclaimed;
2401}
2402
2403static void high_work_func(struct work_struct *work)
2404{
2405 struct mem_cgroup *memcg;
2406
2407 memcg = container_of(work, struct mem_cgroup, high_work);
2408 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409}
2410
2411/*
2412 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413 * enough to still cause a significant slowdown in most cases, while still
2414 * allowing diagnostics and tracing to proceed without becoming stuck.
2415 */
2416#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417
2418/*
2419 * When calculating the delay, we use these either side of the exponentiation to
2420 * maintain precision and scale to a reasonable number of jiffies (see the table
2421 * below.
2422 *
2423 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424 * overage ratio to a delay.
2425 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2426 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2427 * to produce a reasonable delay curve.
2428 *
2429 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430 * reasonable delay curve compared to precision-adjusted overage, not
2431 * penalising heavily at first, but still making sure that growth beyond the
2432 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433 * example, with a high of 100 megabytes:
2434 *
2435 * +-------+------------------------+
2436 * | usage | time to allocate in ms |
2437 * +-------+------------------------+
2438 * | 100M | 0 |
2439 * | 101M | 6 |
2440 * | 102M | 25 |
2441 * | 103M | 57 |
2442 * | 104M | 102 |
2443 * | 105M | 159 |
2444 * | 106M | 230 |
2445 * | 107M | 313 |
2446 * | 108M | 409 |
2447 * | 109M | 518 |
2448 * | 110M | 639 |
2449 * | 111M | 774 |
2450 * | 112M | 921 |
2451 * | 113M | 1081 |
2452 * | 114M | 1254 |
2453 * | 115M | 1439 |
2454 * | 116M | 1638 |
2455 * | 117M | 1849 |
2456 * | 118M | 2000 |
2457 * | 119M | 2000 |
2458 * | 120M | 2000 |
2459 * +-------+------------------------+
2460 */
2461 #define MEMCG_DELAY_PRECISION_SHIFT 20
2462 #define MEMCG_DELAY_SCALING_SHIFT 14
2463
2464static u64 calculate_overage(unsigned long usage, unsigned long high)
2465{
2466 u64 overage;
2467
2468 if (usage <= high)
2469 return 0;
2470
2471 /*
2472 * Prevent division by 0 in overage calculation by acting as if
2473 * it was a threshold of 1 page
2474 */
2475 high = max(high, 1UL);
2476
2477 overage = usage - high;
2478 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479 return div64_u64(overage, high);
2480}
2481
2482static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2483{
2484 u64 overage, max_overage = 0;
2485
2486 do {
2487 overage = calculate_overage(page_counter_read(&memcg->memory),
2488 READ_ONCE(memcg->memory.high));
2489 max_overage = max(overage, max_overage);
2490 } while ((memcg = parent_mem_cgroup(memcg)) &&
2491 !mem_cgroup_is_root(memcg));
2492
2493 return max_overage;
2494}
2495
2496static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497{
2498 u64 overage, max_overage = 0;
2499
2500 do {
2501 overage = calculate_overage(page_counter_read(&memcg->swap),
2502 READ_ONCE(memcg->swap.high));
2503 if (overage)
2504 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505 max_overage = max(overage, max_overage);
2506 } while ((memcg = parent_mem_cgroup(memcg)) &&
2507 !mem_cgroup_is_root(memcg));
2508
2509 return max_overage;
2510}
2511
2512/*
2513 * Get the number of jiffies that we should penalise a mischievous cgroup which
2514 * is exceeding its memory.high by checking both it and its ancestors.
2515 */
2516static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517 unsigned int nr_pages,
2518 u64 max_overage)
2519{
2520 unsigned long penalty_jiffies;
2521
2522 if (!max_overage)
2523 return 0;
2524
2525 /*
2526 * We use overage compared to memory.high to calculate the number of
2527 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528 * fairly lenient on small overages, and increasingly harsh when the
2529 * memcg in question makes it clear that it has no intention of stopping
2530 * its crazy behaviour, so we exponentially increase the delay based on
2531 * overage amount.
2532 */
2533 penalty_jiffies = max_overage * max_overage * HZ;
2534 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536
2537 /*
2538 * Factor in the task's own contribution to the overage, such that four
2539 * N-sized allocations are throttled approximately the same as one
2540 * 4N-sized allocation.
2541 *
2542 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543 * larger the current charge patch is than that.
2544 */
2545 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546}
2547
2548/*
2549 * Scheduled by try_charge() to be executed from the userland return path
2550 * and reclaims memory over the high limit.
2551 */
2552void mem_cgroup_handle_over_high(void)
2553{
2554 unsigned long penalty_jiffies;
2555 unsigned long pflags;
2556 unsigned long nr_reclaimed;
2557 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558 int nr_retries = MAX_RECLAIM_RETRIES;
2559 struct mem_cgroup *memcg;
2560 bool in_retry = false;
2561
2562 if (likely(!nr_pages))
2563 return;
2564
2565 memcg = get_mem_cgroup_from_mm(current->mm);
2566 current->memcg_nr_pages_over_high = 0;
2567
2568retry_reclaim:
2569 /*
2570 * The allocating task should reclaim at least the batch size, but for
2571 * subsequent retries we only want to do what's necessary to prevent oom
2572 * or breaching resource isolation.
2573 *
2574 * This is distinct from memory.max or page allocator behaviour because
2575 * memory.high is currently batched, whereas memory.max and the page
2576 * allocator run every time an allocation is made.
2577 */
2578 nr_reclaimed = reclaim_high(memcg,
2579 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580 GFP_KERNEL);
2581
2582 /*
2583 * memory.high is breached and reclaim is unable to keep up. Throttle
2584 * allocators proactively to slow down excessive growth.
2585 */
2586 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587 mem_find_max_overage(memcg));
2588
2589 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590 swap_find_max_overage(memcg));
2591
2592 /*
2593 * Clamp the max delay per usermode return so as to still keep the
2594 * application moving forwards and also permit diagnostics, albeit
2595 * extremely slowly.
2596 */
2597 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598
2599 /*
2600 * Don't sleep if the amount of jiffies this memcg owes us is so low
2601 * that it's not even worth doing, in an attempt to be nice to those who
2602 * go only a small amount over their memory.high value and maybe haven't
2603 * been aggressively reclaimed enough yet.
2604 */
2605 if (penalty_jiffies <= HZ / 100)
2606 goto out;
2607
2608 /*
2609 * If reclaim is making forward progress but we're still over
2610 * memory.high, we want to encourage that rather than doing allocator
2611 * throttling.
2612 */
2613 if (nr_reclaimed || nr_retries--) {
2614 in_retry = true;
2615 goto retry_reclaim;
2616 }
2617
2618 /*
2619 * If we exit early, we're guaranteed to die (since
2620 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621 * need to account for any ill-begotten jiffies to pay them off later.
2622 */
2623 psi_memstall_enter(&pflags);
2624 schedule_timeout_killable(penalty_jiffies);
2625 psi_memstall_leave(&pflags);
2626
2627out:
2628 css_put(&memcg->css);
2629}
2630
2631static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632 unsigned int nr_pages)
2633{
2634 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635 int nr_retries = MAX_RECLAIM_RETRIES;
2636 struct mem_cgroup *mem_over_limit;
2637 struct page_counter *counter;
2638 unsigned long nr_reclaimed;
2639 bool passed_oom = false;
2640 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2641 bool drained = false;
2642 bool raised_max_event = false;
2643 unsigned long pflags;
2644
2645retry:
2646 if (consume_stock(memcg, nr_pages))
2647 return 0;
2648
2649 if (!do_memsw_account() ||
2650 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2651 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2652 goto done_restock;
2653 if (do_memsw_account())
2654 page_counter_uncharge(&memcg->memsw, batch);
2655 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2656 } else {
2657 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2658 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2659 }
2660
2661 if (batch > nr_pages) {
2662 batch = nr_pages;
2663 goto retry;
2664 }
2665
2666 /*
2667 * Prevent unbounded recursion when reclaim operations need to
2668 * allocate memory. This might exceed the limits temporarily,
2669 * but we prefer facilitating memory reclaim and getting back
2670 * under the limit over triggering OOM kills in these cases.
2671 */
2672 if (unlikely(current->flags & PF_MEMALLOC))
2673 goto force;
2674
2675 if (unlikely(task_in_memcg_oom(current)))
2676 goto nomem;
2677
2678 if (!gfpflags_allow_blocking(gfp_mask))
2679 goto nomem;
2680
2681 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2682 raised_max_event = true;
2683
2684 psi_memstall_enter(&pflags);
2685 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2686 gfp_mask, reclaim_options);
2687 psi_memstall_leave(&pflags);
2688
2689 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2690 goto retry;
2691
2692 if (!drained) {
2693 drain_all_stock(mem_over_limit);
2694 drained = true;
2695 goto retry;
2696 }
2697
2698 if (gfp_mask & __GFP_NORETRY)
2699 goto nomem;
2700 /*
2701 * Even though the limit is exceeded at this point, reclaim
2702 * may have been able to free some pages. Retry the charge
2703 * before killing the task.
2704 *
2705 * Only for regular pages, though: huge pages are rather
2706 * unlikely to succeed so close to the limit, and we fall back
2707 * to regular pages anyway in case of failure.
2708 */
2709 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2710 goto retry;
2711 /*
2712 * At task move, charge accounts can be doubly counted. So, it's
2713 * better to wait until the end of task_move if something is going on.
2714 */
2715 if (mem_cgroup_wait_acct_move(mem_over_limit))
2716 goto retry;
2717
2718 if (nr_retries--)
2719 goto retry;
2720
2721 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2722 goto nomem;
2723
2724 /* Avoid endless loop for tasks bypassed by the oom killer */
2725 if (passed_oom && task_is_dying())
2726 goto nomem;
2727
2728 /*
2729 * keep retrying as long as the memcg oom killer is able to make
2730 * a forward progress or bypass the charge if the oom killer
2731 * couldn't make any progress.
2732 */
2733 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2734 get_order(nr_pages * PAGE_SIZE))) {
2735 passed_oom = true;
2736 nr_retries = MAX_RECLAIM_RETRIES;
2737 goto retry;
2738 }
2739nomem:
2740 /*
2741 * Memcg doesn't have a dedicated reserve for atomic
2742 * allocations. But like the global atomic pool, we need to
2743 * put the burden of reclaim on regular allocation requests
2744 * and let these go through as privileged allocations.
2745 */
2746 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2747 return -ENOMEM;
2748force:
2749 /*
2750 * If the allocation has to be enforced, don't forget to raise
2751 * a MEMCG_MAX event.
2752 */
2753 if (!raised_max_event)
2754 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2755
2756 /*
2757 * The allocation either can't fail or will lead to more memory
2758 * being freed very soon. Allow memory usage go over the limit
2759 * temporarily by force charging it.
2760 */
2761 page_counter_charge(&memcg->memory, nr_pages);
2762 if (do_memsw_account())
2763 page_counter_charge(&memcg->memsw, nr_pages);
2764
2765 return 0;
2766
2767done_restock:
2768 if (batch > nr_pages)
2769 refill_stock(memcg, batch - nr_pages);
2770
2771 /*
2772 * If the hierarchy is above the normal consumption range, schedule
2773 * reclaim on returning to userland. We can perform reclaim here
2774 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2775 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2776 * not recorded as it most likely matches current's and won't
2777 * change in the meantime. As high limit is checked again before
2778 * reclaim, the cost of mismatch is negligible.
2779 */
2780 do {
2781 bool mem_high, swap_high;
2782
2783 mem_high = page_counter_read(&memcg->memory) >
2784 READ_ONCE(memcg->memory.high);
2785 swap_high = page_counter_read(&memcg->swap) >
2786 READ_ONCE(memcg->swap.high);
2787
2788 /* Don't bother a random interrupted task */
2789 if (!in_task()) {
2790 if (mem_high) {
2791 schedule_work(&memcg->high_work);
2792 break;
2793 }
2794 continue;
2795 }
2796
2797 if (mem_high || swap_high) {
2798 /*
2799 * The allocating tasks in this cgroup will need to do
2800 * reclaim or be throttled to prevent further growth
2801 * of the memory or swap footprints.
2802 *
2803 * Target some best-effort fairness between the tasks,
2804 * and distribute reclaim work and delay penalties
2805 * based on how much each task is actually allocating.
2806 */
2807 current->memcg_nr_pages_over_high += batch;
2808 set_notify_resume(current);
2809 break;
2810 }
2811 } while ((memcg = parent_mem_cgroup(memcg)));
2812
2813 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2814 !(current->flags & PF_MEMALLOC) &&
2815 gfpflags_allow_blocking(gfp_mask)) {
2816 mem_cgroup_handle_over_high();
2817 }
2818 return 0;
2819}
2820
2821static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2822 unsigned int nr_pages)
2823{
2824 if (mem_cgroup_is_root(memcg))
2825 return 0;
2826
2827 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2828}
2829
2830static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2831{
2832 if (mem_cgroup_is_root(memcg))
2833 return;
2834
2835 page_counter_uncharge(&memcg->memory, nr_pages);
2836 if (do_memsw_account())
2837 page_counter_uncharge(&memcg->memsw, nr_pages);
2838}
2839
2840static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2841{
2842 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2843 /*
2844 * Any of the following ensures page's memcg stability:
2845 *
2846 * - the page lock
2847 * - LRU isolation
2848 * - lock_page_memcg()
2849 * - exclusive reference
2850 * - mem_cgroup_trylock_pages()
2851 */
2852 folio->memcg_data = (unsigned long)memcg;
2853}
2854
2855#ifdef CONFIG_MEMCG_KMEM
2856/*
2857 * The allocated objcg pointers array is not accounted directly.
2858 * Moreover, it should not come from DMA buffer and is not readily
2859 * reclaimable. So those GFP bits should be masked off.
2860 */
2861#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2862
2863/*
2864 * mod_objcg_mlstate() may be called with irq enabled, so
2865 * mod_memcg_lruvec_state() should be used.
2866 */
2867static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2868 struct pglist_data *pgdat,
2869 enum node_stat_item idx, int nr)
2870{
2871 struct mem_cgroup *memcg;
2872 struct lruvec *lruvec;
2873
2874 rcu_read_lock();
2875 memcg = obj_cgroup_memcg(objcg);
2876 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2877 mod_memcg_lruvec_state(lruvec, idx, nr);
2878 rcu_read_unlock();
2879}
2880
2881int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2882 gfp_t gfp, bool new_slab)
2883{
2884 unsigned int objects = objs_per_slab(s, slab);
2885 unsigned long memcg_data;
2886 void *vec;
2887
2888 gfp &= ~OBJCGS_CLEAR_MASK;
2889 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2890 slab_nid(slab));
2891 if (!vec)
2892 return -ENOMEM;
2893
2894 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2895 if (new_slab) {
2896 /*
2897 * If the slab is brand new and nobody can yet access its
2898 * memcg_data, no synchronization is required and memcg_data can
2899 * be simply assigned.
2900 */
2901 slab->memcg_data = memcg_data;
2902 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2903 /*
2904 * If the slab is already in use, somebody can allocate and
2905 * assign obj_cgroups in parallel. In this case the existing
2906 * objcg vector should be reused.
2907 */
2908 kfree(vec);
2909 return 0;
2910 }
2911
2912 kmemleak_not_leak(vec);
2913 return 0;
2914}
2915
2916static __always_inline
2917struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2918{
2919 /*
2920 * Slab objects are accounted individually, not per-page.
2921 * Memcg membership data for each individual object is saved in
2922 * slab->memcg_data.
2923 */
2924 if (folio_test_slab(folio)) {
2925 struct obj_cgroup **objcgs;
2926 struct slab *slab;
2927 unsigned int off;
2928
2929 slab = folio_slab(folio);
2930 objcgs = slab_objcgs(slab);
2931 if (!objcgs)
2932 return NULL;
2933
2934 off = obj_to_index(slab->slab_cache, slab, p);
2935 if (objcgs[off])
2936 return obj_cgroup_memcg(objcgs[off]);
2937
2938 return NULL;
2939 }
2940
2941 /*
2942 * page_memcg_check() is used here, because in theory we can encounter
2943 * a folio where the slab flag has been cleared already, but
2944 * slab->memcg_data has not been freed yet
2945 * page_memcg_check(page) will guarantee that a proper memory
2946 * cgroup pointer or NULL will be returned.
2947 */
2948 return page_memcg_check(folio_page(folio, 0));
2949}
2950
2951/*
2952 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2953 *
2954 * A passed kernel object can be a slab object, vmalloc object or a generic
2955 * kernel page, so different mechanisms for getting the memory cgroup pointer
2956 * should be used.
2957 *
2958 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2959 * can not know for sure how the kernel object is implemented.
2960 * mem_cgroup_from_obj() can be safely used in such cases.
2961 *
2962 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2963 * cgroup_mutex, etc.
2964 */
2965struct mem_cgroup *mem_cgroup_from_obj(void *p)
2966{
2967 struct folio *folio;
2968
2969 if (mem_cgroup_disabled())
2970 return NULL;
2971
2972 if (unlikely(is_vmalloc_addr(p)))
2973 folio = page_folio(vmalloc_to_page(p));
2974 else
2975 folio = virt_to_folio(p);
2976
2977 return mem_cgroup_from_obj_folio(folio, p);
2978}
2979
2980/*
2981 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2982 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2983 * allocated using vmalloc().
2984 *
2985 * A passed kernel object must be a slab object or a generic kernel page.
2986 *
2987 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2988 * cgroup_mutex, etc.
2989 */
2990struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2991{
2992 if (mem_cgroup_disabled())
2993 return NULL;
2994
2995 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2996}
2997
2998static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2999{
3000 struct obj_cgroup *objcg = NULL;
3001
3002 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3003 objcg = rcu_dereference(memcg->objcg);
3004 if (objcg && obj_cgroup_tryget(objcg))
3005 break;
3006 objcg = NULL;
3007 }
3008 return objcg;
3009}
3010
3011__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3012{
3013 struct obj_cgroup *objcg = NULL;
3014 struct mem_cgroup *memcg;
3015
3016 if (memcg_kmem_bypass())
3017 return NULL;
3018
3019 rcu_read_lock();
3020 if (unlikely(active_memcg()))
3021 memcg = active_memcg();
3022 else
3023 memcg = mem_cgroup_from_task(current);
3024 objcg = __get_obj_cgroup_from_memcg(memcg);
3025 rcu_read_unlock();
3026 return objcg;
3027}
3028
3029struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3030{
3031 struct obj_cgroup *objcg;
3032
3033 if (!memcg_kmem_enabled())
3034 return NULL;
3035
3036 if (PageMemcgKmem(page)) {
3037 objcg = __folio_objcg(page_folio(page));
3038 obj_cgroup_get(objcg);
3039 } else {
3040 struct mem_cgroup *memcg;
3041
3042 rcu_read_lock();
3043 memcg = __folio_memcg(page_folio(page));
3044 if (memcg)
3045 objcg = __get_obj_cgroup_from_memcg(memcg);
3046 else
3047 objcg = NULL;
3048 rcu_read_unlock();
3049 }
3050 return objcg;
3051}
3052
3053static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3054{
3055 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3057 if (nr_pages > 0)
3058 page_counter_charge(&memcg->kmem, nr_pages);
3059 else
3060 page_counter_uncharge(&memcg->kmem, -nr_pages);
3061 }
3062}
3063
3064
3065/*
3066 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3067 * @objcg: object cgroup to uncharge
3068 * @nr_pages: number of pages to uncharge
3069 */
3070static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3071 unsigned int nr_pages)
3072{
3073 struct mem_cgroup *memcg;
3074
3075 memcg = get_mem_cgroup_from_objcg(objcg);
3076
3077 memcg_account_kmem(memcg, -nr_pages);
3078 refill_stock(memcg, nr_pages);
3079
3080 css_put(&memcg->css);
3081}
3082
3083/*
3084 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3085 * @objcg: object cgroup to charge
3086 * @gfp: reclaim mode
3087 * @nr_pages: number of pages to charge
3088 *
3089 * Returns 0 on success, an error code on failure.
3090 */
3091static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3092 unsigned int nr_pages)
3093{
3094 struct mem_cgroup *memcg;
3095 int ret;
3096
3097 memcg = get_mem_cgroup_from_objcg(objcg);
3098
3099 ret = try_charge_memcg(memcg, gfp, nr_pages);
3100 if (ret)
3101 goto out;
3102
3103 memcg_account_kmem(memcg, nr_pages);
3104out:
3105 css_put(&memcg->css);
3106
3107 return ret;
3108}
3109
3110/**
3111 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3112 * @page: page to charge
3113 * @gfp: reclaim mode
3114 * @order: allocation order
3115 *
3116 * Returns 0 on success, an error code on failure.
3117 */
3118int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3119{
3120 struct obj_cgroup *objcg;
3121 int ret = 0;
3122
3123 objcg = get_obj_cgroup_from_current();
3124 if (objcg) {
3125 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3126 if (!ret) {
3127 page->memcg_data = (unsigned long)objcg |
3128 MEMCG_DATA_KMEM;
3129 return 0;
3130 }
3131 obj_cgroup_put(objcg);
3132 }
3133 return ret;
3134}
3135
3136/**
3137 * __memcg_kmem_uncharge_page: uncharge a kmem page
3138 * @page: page to uncharge
3139 * @order: allocation order
3140 */
3141void __memcg_kmem_uncharge_page(struct page *page, int order)
3142{
3143 struct folio *folio = page_folio(page);
3144 struct obj_cgroup *objcg;
3145 unsigned int nr_pages = 1 << order;
3146
3147 if (!folio_memcg_kmem(folio))
3148 return;
3149
3150 objcg = __folio_objcg(folio);
3151 obj_cgroup_uncharge_pages(objcg, nr_pages);
3152 folio->memcg_data = 0;
3153 obj_cgroup_put(objcg);
3154}
3155
3156void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3157 enum node_stat_item idx, int nr)
3158{
3159 struct memcg_stock_pcp *stock;
3160 struct obj_cgroup *old = NULL;
3161 unsigned long flags;
3162 int *bytes;
3163
3164 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3165 stock = this_cpu_ptr(&memcg_stock);
3166
3167 /*
3168 * Save vmstat data in stock and skip vmstat array update unless
3169 * accumulating over a page of vmstat data or when pgdat or idx
3170 * changes.
3171 */
3172 if (stock->cached_objcg != objcg) {
3173 old = drain_obj_stock(stock);
3174 obj_cgroup_get(objcg);
3175 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3176 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3177 stock->cached_objcg = objcg;
3178 stock->cached_pgdat = pgdat;
3179 } else if (stock->cached_pgdat != pgdat) {
3180 /* Flush the existing cached vmstat data */
3181 struct pglist_data *oldpg = stock->cached_pgdat;
3182
3183 if (stock->nr_slab_reclaimable_b) {
3184 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3185 stock->nr_slab_reclaimable_b);
3186 stock->nr_slab_reclaimable_b = 0;
3187 }
3188 if (stock->nr_slab_unreclaimable_b) {
3189 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3190 stock->nr_slab_unreclaimable_b);
3191 stock->nr_slab_unreclaimable_b = 0;
3192 }
3193 stock->cached_pgdat = pgdat;
3194 }
3195
3196 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3197 : &stock->nr_slab_unreclaimable_b;
3198 /*
3199 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3200 * cached locally at least once before pushing it out.
3201 */
3202 if (!*bytes) {
3203 *bytes = nr;
3204 nr = 0;
3205 } else {
3206 *bytes += nr;
3207 if (abs(*bytes) > PAGE_SIZE) {
3208 nr = *bytes;
3209 *bytes = 0;
3210 } else {
3211 nr = 0;
3212 }
3213 }
3214 if (nr)
3215 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3216
3217 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3218 if (old)
3219 obj_cgroup_put(old);
3220}
3221
3222static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3223{
3224 struct memcg_stock_pcp *stock;
3225 unsigned long flags;
3226 bool ret = false;
3227
3228 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3229
3230 stock = this_cpu_ptr(&memcg_stock);
3231 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3232 stock->nr_bytes -= nr_bytes;
3233 ret = true;
3234 }
3235
3236 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3237
3238 return ret;
3239}
3240
3241static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3242{
3243 struct obj_cgroup *old = stock->cached_objcg;
3244
3245 if (!old)
3246 return NULL;
3247
3248 if (stock->nr_bytes) {
3249 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3250 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3251
3252 if (nr_pages) {
3253 struct mem_cgroup *memcg;
3254
3255 memcg = get_mem_cgroup_from_objcg(old);
3256
3257 memcg_account_kmem(memcg, -nr_pages);
3258 __refill_stock(memcg, nr_pages);
3259
3260 css_put(&memcg->css);
3261 }
3262
3263 /*
3264 * The leftover is flushed to the centralized per-memcg value.
3265 * On the next attempt to refill obj stock it will be moved
3266 * to a per-cpu stock (probably, on an other CPU), see
3267 * refill_obj_stock().
3268 *
3269 * How often it's flushed is a trade-off between the memory
3270 * limit enforcement accuracy and potential CPU contention,
3271 * so it might be changed in the future.
3272 */
3273 atomic_add(nr_bytes, &old->nr_charged_bytes);
3274 stock->nr_bytes = 0;
3275 }
3276
3277 /*
3278 * Flush the vmstat data in current stock
3279 */
3280 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3281 if (stock->nr_slab_reclaimable_b) {
3282 mod_objcg_mlstate(old, stock->cached_pgdat,
3283 NR_SLAB_RECLAIMABLE_B,
3284 stock->nr_slab_reclaimable_b);
3285 stock->nr_slab_reclaimable_b = 0;
3286 }
3287 if (stock->nr_slab_unreclaimable_b) {
3288 mod_objcg_mlstate(old, stock->cached_pgdat,
3289 NR_SLAB_UNRECLAIMABLE_B,
3290 stock->nr_slab_unreclaimable_b);
3291 stock->nr_slab_unreclaimable_b = 0;
3292 }
3293 stock->cached_pgdat = NULL;
3294 }
3295
3296 stock->cached_objcg = NULL;
3297 /*
3298 * The `old' objects needs to be released by the caller via
3299 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3300 */
3301 return old;
3302}
3303
3304static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3305 struct mem_cgroup *root_memcg)
3306{
3307 struct mem_cgroup *memcg;
3308
3309 if (stock->cached_objcg) {
3310 memcg = obj_cgroup_memcg(stock->cached_objcg);
3311 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3312 return true;
3313 }
3314
3315 return false;
3316}
3317
3318static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3319 bool allow_uncharge)
3320{
3321 struct memcg_stock_pcp *stock;
3322 struct obj_cgroup *old = NULL;
3323 unsigned long flags;
3324 unsigned int nr_pages = 0;
3325
3326 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3327
3328 stock = this_cpu_ptr(&memcg_stock);
3329 if (stock->cached_objcg != objcg) { /* reset if necessary */
3330 old = drain_obj_stock(stock);
3331 obj_cgroup_get(objcg);
3332 stock->cached_objcg = objcg;
3333 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3334 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3335 allow_uncharge = true; /* Allow uncharge when objcg changes */
3336 }
3337 stock->nr_bytes += nr_bytes;
3338
3339 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3340 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3341 stock->nr_bytes &= (PAGE_SIZE - 1);
3342 }
3343
3344 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3345 if (old)
3346 obj_cgroup_put(old);
3347
3348 if (nr_pages)
3349 obj_cgroup_uncharge_pages(objcg, nr_pages);
3350}
3351
3352int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3353{
3354 unsigned int nr_pages, nr_bytes;
3355 int ret;
3356
3357 if (consume_obj_stock(objcg, size))
3358 return 0;
3359
3360 /*
3361 * In theory, objcg->nr_charged_bytes can have enough
3362 * pre-charged bytes to satisfy the allocation. However,
3363 * flushing objcg->nr_charged_bytes requires two atomic
3364 * operations, and objcg->nr_charged_bytes can't be big.
3365 * The shared objcg->nr_charged_bytes can also become a
3366 * performance bottleneck if all tasks of the same memcg are
3367 * trying to update it. So it's better to ignore it and try
3368 * grab some new pages. The stock's nr_bytes will be flushed to
3369 * objcg->nr_charged_bytes later on when objcg changes.
3370 *
3371 * The stock's nr_bytes may contain enough pre-charged bytes
3372 * to allow one less page from being charged, but we can't rely
3373 * on the pre-charged bytes not being changed outside of
3374 * consume_obj_stock() or refill_obj_stock(). So ignore those
3375 * pre-charged bytes as well when charging pages. To avoid a
3376 * page uncharge right after a page charge, we set the
3377 * allow_uncharge flag to false when calling refill_obj_stock()
3378 * to temporarily allow the pre-charged bytes to exceed the page
3379 * size limit. The maximum reachable value of the pre-charged
3380 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3381 * race.
3382 */
3383 nr_pages = size >> PAGE_SHIFT;
3384 nr_bytes = size & (PAGE_SIZE - 1);
3385
3386 if (nr_bytes)
3387 nr_pages += 1;
3388
3389 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3390 if (!ret && nr_bytes)
3391 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3392
3393 return ret;
3394}
3395
3396void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3397{
3398 refill_obj_stock(objcg, size, true);
3399}
3400
3401#endif /* CONFIG_MEMCG_KMEM */
3402
3403/*
3404 * Because page_memcg(head) is not set on tails, set it now.
3405 */
3406void split_page_memcg(struct page *head, unsigned int nr)
3407{
3408 struct folio *folio = page_folio(head);
3409 struct mem_cgroup *memcg = folio_memcg(folio);
3410 int i;
3411
3412 if (mem_cgroup_disabled() || !memcg)
3413 return;
3414
3415 for (i = 1; i < nr; i++)
3416 folio_page(folio, i)->memcg_data = folio->memcg_data;
3417
3418 if (folio_memcg_kmem(folio))
3419 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3420 else
3421 css_get_many(&memcg->css, nr - 1);
3422}
3423
3424#ifdef CONFIG_SWAP
3425/**
3426 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3427 * @entry: swap entry to be moved
3428 * @from: mem_cgroup which the entry is moved from
3429 * @to: mem_cgroup which the entry is moved to
3430 *
3431 * It succeeds only when the swap_cgroup's record for this entry is the same
3432 * as the mem_cgroup's id of @from.
3433 *
3434 * Returns 0 on success, -EINVAL on failure.
3435 *
3436 * The caller must have charged to @to, IOW, called page_counter_charge() about
3437 * both res and memsw, and called css_get().
3438 */
3439static int mem_cgroup_move_swap_account(swp_entry_t entry,
3440 struct mem_cgroup *from, struct mem_cgroup *to)
3441{
3442 unsigned short old_id, new_id;
3443
3444 old_id = mem_cgroup_id(from);
3445 new_id = mem_cgroup_id(to);
3446
3447 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3448 mod_memcg_state(from, MEMCG_SWAP, -1);
3449 mod_memcg_state(to, MEMCG_SWAP, 1);
3450 return 0;
3451 }
3452 return -EINVAL;
3453}
3454#else
3455static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3456 struct mem_cgroup *from, struct mem_cgroup *to)
3457{
3458 return -EINVAL;
3459}
3460#endif
3461
3462static DEFINE_MUTEX(memcg_max_mutex);
3463
3464static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3465 unsigned long max, bool memsw)
3466{
3467 bool enlarge = false;
3468 bool drained = false;
3469 int ret;
3470 bool limits_invariant;
3471 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3472
3473 do {
3474 if (signal_pending(current)) {
3475 ret = -EINTR;
3476 break;
3477 }
3478
3479 mutex_lock(&memcg_max_mutex);
3480 /*
3481 * Make sure that the new limit (memsw or memory limit) doesn't
3482 * break our basic invariant rule memory.max <= memsw.max.
3483 */
3484 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3485 max <= memcg->memsw.max;
3486 if (!limits_invariant) {
3487 mutex_unlock(&memcg_max_mutex);
3488 ret = -EINVAL;
3489 break;
3490 }
3491 if (max > counter->max)
3492 enlarge = true;
3493 ret = page_counter_set_max(counter, max);
3494 mutex_unlock(&memcg_max_mutex);
3495
3496 if (!ret)
3497 break;
3498
3499 if (!drained) {
3500 drain_all_stock(memcg);
3501 drained = true;
3502 continue;
3503 }
3504
3505 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3506 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3507 ret = -EBUSY;
3508 break;
3509 }
3510 } while (true);
3511
3512 if (!ret && enlarge)
3513 memcg_oom_recover(memcg);
3514
3515 return ret;
3516}
3517
3518unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3519 gfp_t gfp_mask,
3520 unsigned long *total_scanned)
3521{
3522 unsigned long nr_reclaimed = 0;
3523 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3524 unsigned long reclaimed;
3525 int loop = 0;
3526 struct mem_cgroup_tree_per_node *mctz;
3527 unsigned long excess;
3528
3529 if (order > 0)
3530 return 0;
3531
3532 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3533
3534 /*
3535 * Do not even bother to check the largest node if the root
3536 * is empty. Do it lockless to prevent lock bouncing. Races
3537 * are acceptable as soft limit is best effort anyway.
3538 */
3539 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3540 return 0;
3541
3542 /*
3543 * This loop can run a while, specially if mem_cgroup's continuously
3544 * keep exceeding their soft limit and putting the system under
3545 * pressure
3546 */
3547 do {
3548 if (next_mz)
3549 mz = next_mz;
3550 else
3551 mz = mem_cgroup_largest_soft_limit_node(mctz);
3552 if (!mz)
3553 break;
3554
3555 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3556 gfp_mask, total_scanned);
3557 nr_reclaimed += reclaimed;
3558 spin_lock_irq(&mctz->lock);
3559
3560 /*
3561 * If we failed to reclaim anything from this memory cgroup
3562 * it is time to move on to the next cgroup
3563 */
3564 next_mz = NULL;
3565 if (!reclaimed)
3566 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3567
3568 excess = soft_limit_excess(mz->memcg);
3569 /*
3570 * One school of thought says that we should not add
3571 * back the node to the tree if reclaim returns 0.
3572 * But our reclaim could return 0, simply because due
3573 * to priority we are exposing a smaller subset of
3574 * memory to reclaim from. Consider this as a longer
3575 * term TODO.
3576 */
3577 /* If excess == 0, no tree ops */
3578 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3579 spin_unlock_irq(&mctz->lock);
3580 css_put(&mz->memcg->css);
3581 loop++;
3582 /*
3583 * Could not reclaim anything and there are no more
3584 * mem cgroups to try or we seem to be looping without
3585 * reclaiming anything.
3586 */
3587 if (!nr_reclaimed &&
3588 (next_mz == NULL ||
3589 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3590 break;
3591 } while (!nr_reclaimed);
3592 if (next_mz)
3593 css_put(&next_mz->memcg->css);
3594 return nr_reclaimed;
3595}
3596
3597/*
3598 * Reclaims as many pages from the given memcg as possible.
3599 *
3600 * Caller is responsible for holding css reference for memcg.
3601 */
3602static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3603{
3604 int nr_retries = MAX_RECLAIM_RETRIES;
3605
3606 /* we call try-to-free pages for make this cgroup empty */
3607 lru_add_drain_all();
3608
3609 drain_all_stock(memcg);
3610
3611 /* try to free all pages in this cgroup */
3612 while (nr_retries && page_counter_read(&memcg->memory)) {
3613 if (signal_pending(current))
3614 return -EINTR;
3615
3616 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3617 MEMCG_RECLAIM_MAY_SWAP))
3618 nr_retries--;
3619 }
3620
3621 return 0;
3622}
3623
3624static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3625 char *buf, size_t nbytes,
3626 loff_t off)
3627{
3628 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3629
3630 if (mem_cgroup_is_root(memcg))
3631 return -EINVAL;
3632 return mem_cgroup_force_empty(memcg) ?: nbytes;
3633}
3634
3635static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3636 struct cftype *cft)
3637{
3638 return 1;
3639}
3640
3641static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3642 struct cftype *cft, u64 val)
3643{
3644 if (val == 1)
3645 return 0;
3646
3647 pr_warn_once("Non-hierarchical mode is deprecated. "
3648 "Please report your usecase to linux-mm@kvack.org if you "
3649 "depend on this functionality.\n");
3650
3651 return -EINVAL;
3652}
3653
3654static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3655{
3656 unsigned long val;
3657
3658 if (mem_cgroup_is_root(memcg)) {
3659 mem_cgroup_flush_stats();
3660 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3661 memcg_page_state(memcg, NR_ANON_MAPPED);
3662 if (swap)
3663 val += memcg_page_state(memcg, MEMCG_SWAP);
3664 } else {
3665 if (!swap)
3666 val = page_counter_read(&memcg->memory);
3667 else
3668 val = page_counter_read(&memcg->memsw);
3669 }
3670 return val;
3671}
3672
3673enum {
3674 RES_USAGE,
3675 RES_LIMIT,
3676 RES_MAX_USAGE,
3677 RES_FAILCNT,
3678 RES_SOFT_LIMIT,
3679};
3680
3681static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3682 struct cftype *cft)
3683{
3684 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3685 struct page_counter *counter;
3686
3687 switch (MEMFILE_TYPE(cft->private)) {
3688 case _MEM:
3689 counter = &memcg->memory;
3690 break;
3691 case _MEMSWAP:
3692 counter = &memcg->memsw;
3693 break;
3694 case _KMEM:
3695 counter = &memcg->kmem;
3696 break;
3697 case _TCP:
3698 counter = &memcg->tcpmem;
3699 break;
3700 default:
3701 BUG();
3702 }
3703
3704 switch (MEMFILE_ATTR(cft->private)) {
3705 case RES_USAGE:
3706 if (counter == &memcg->memory)
3707 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3708 if (counter == &memcg->memsw)
3709 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3710 return (u64)page_counter_read(counter) * PAGE_SIZE;
3711 case RES_LIMIT:
3712 return (u64)counter->max * PAGE_SIZE;
3713 case RES_MAX_USAGE:
3714 return (u64)counter->watermark * PAGE_SIZE;
3715 case RES_FAILCNT:
3716 return counter->failcnt;
3717 case RES_SOFT_LIMIT:
3718 return (u64)memcg->soft_limit * PAGE_SIZE;
3719 default:
3720 BUG();
3721 }
3722}
3723
3724#ifdef CONFIG_MEMCG_KMEM
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727 struct obj_cgroup *objcg;
3728
3729 if (mem_cgroup_kmem_disabled())
3730 return 0;
3731
3732 if (unlikely(mem_cgroup_is_root(memcg)))
3733 return 0;
3734
3735 objcg = obj_cgroup_alloc();
3736 if (!objcg)
3737 return -ENOMEM;
3738
3739 objcg->memcg = memcg;
3740 rcu_assign_pointer(memcg->objcg, objcg);
3741
3742 static_branch_enable(&memcg_kmem_enabled_key);
3743
3744 memcg->kmemcg_id = memcg->id.id;
3745
3746 return 0;
3747}
3748
3749static void memcg_offline_kmem(struct mem_cgroup *memcg)
3750{
3751 struct mem_cgroup *parent;
3752
3753 if (mem_cgroup_kmem_disabled())
3754 return;
3755
3756 if (unlikely(mem_cgroup_is_root(memcg)))
3757 return;
3758
3759 parent = parent_mem_cgroup(memcg);
3760 if (!parent)
3761 parent = root_mem_cgroup;
3762
3763 memcg_reparent_objcgs(memcg, parent);
3764
3765 /*
3766 * After we have finished memcg_reparent_objcgs(), all list_lrus
3767 * corresponding to this cgroup are guaranteed to remain empty.
3768 * The ordering is imposed by list_lru_node->lock taken by
3769 * memcg_reparent_list_lrus().
3770 */
3771 memcg_reparent_list_lrus(memcg, parent);
3772}
3773#else
3774static int memcg_online_kmem(struct mem_cgroup *memcg)
3775{
3776 return 0;
3777}
3778static void memcg_offline_kmem(struct mem_cgroup *memcg)
3779{
3780}
3781#endif /* CONFIG_MEMCG_KMEM */
3782
3783static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3784{
3785 int ret;
3786
3787 mutex_lock(&memcg_max_mutex);
3788
3789 ret = page_counter_set_max(&memcg->tcpmem, max);
3790 if (ret)
3791 goto out;
3792
3793 if (!memcg->tcpmem_active) {
3794 /*
3795 * The active flag needs to be written after the static_key
3796 * update. This is what guarantees that the socket activation
3797 * function is the last one to run. See mem_cgroup_sk_alloc()
3798 * for details, and note that we don't mark any socket as
3799 * belonging to this memcg until that flag is up.
3800 *
3801 * We need to do this, because static_keys will span multiple
3802 * sites, but we can't control their order. If we mark a socket
3803 * as accounted, but the accounting functions are not patched in
3804 * yet, we'll lose accounting.
3805 *
3806 * We never race with the readers in mem_cgroup_sk_alloc(),
3807 * because when this value change, the code to process it is not
3808 * patched in yet.
3809 */
3810 static_branch_inc(&memcg_sockets_enabled_key);
3811 memcg->tcpmem_active = true;
3812 }
3813out:
3814 mutex_unlock(&memcg_max_mutex);
3815 return ret;
3816}
3817
3818/*
3819 * The user of this function is...
3820 * RES_LIMIT.
3821 */
3822static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3823 char *buf, size_t nbytes, loff_t off)
3824{
3825 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3826 unsigned long nr_pages;
3827 int ret;
3828
3829 buf = strstrip(buf);
3830 ret = page_counter_memparse(buf, "-1", &nr_pages);
3831 if (ret)
3832 return ret;
3833
3834 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3835 case RES_LIMIT:
3836 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3837 ret = -EINVAL;
3838 break;
3839 }
3840 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3841 case _MEM:
3842 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3843 break;
3844 case _MEMSWAP:
3845 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3846 break;
3847 case _KMEM:
3848 /* kmem.limit_in_bytes is deprecated. */
3849 ret = -EOPNOTSUPP;
3850 break;
3851 case _TCP:
3852 ret = memcg_update_tcp_max(memcg, nr_pages);
3853 break;
3854 }
3855 break;
3856 case RES_SOFT_LIMIT:
3857 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3858 ret = -EOPNOTSUPP;
3859 } else {
3860 memcg->soft_limit = nr_pages;
3861 ret = 0;
3862 }
3863 break;
3864 }
3865 return ret ?: nbytes;
3866}
3867
3868static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3869 size_t nbytes, loff_t off)
3870{
3871 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3872 struct page_counter *counter;
3873
3874 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3875 case _MEM:
3876 counter = &memcg->memory;
3877 break;
3878 case _MEMSWAP:
3879 counter = &memcg->memsw;
3880 break;
3881 case _KMEM:
3882 counter = &memcg->kmem;
3883 break;
3884 case _TCP:
3885 counter = &memcg->tcpmem;
3886 break;
3887 default:
3888 BUG();
3889 }
3890
3891 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3892 case RES_MAX_USAGE:
3893 page_counter_reset_watermark(counter);
3894 break;
3895 case RES_FAILCNT:
3896 counter->failcnt = 0;
3897 break;
3898 default:
3899 BUG();
3900 }
3901
3902 return nbytes;
3903}
3904
3905static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3906 struct cftype *cft)
3907{
3908 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3909}
3910
3911#ifdef CONFIG_MMU
3912static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3913 struct cftype *cft, u64 val)
3914{
3915 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3916
3917 if (val & ~MOVE_MASK)
3918 return -EINVAL;
3919
3920 /*
3921 * No kind of locking is needed in here, because ->can_attach() will
3922 * check this value once in the beginning of the process, and then carry
3923 * on with stale data. This means that changes to this value will only
3924 * affect task migrations starting after the change.
3925 */
3926 memcg->move_charge_at_immigrate = val;
3927 return 0;
3928}
3929#else
3930static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3931 struct cftype *cft, u64 val)
3932{
3933 return -ENOSYS;
3934}
3935#endif
3936
3937#ifdef CONFIG_NUMA
3938
3939#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3940#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3941#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3942
3943static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3944 int nid, unsigned int lru_mask, bool tree)
3945{
3946 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3947 unsigned long nr = 0;
3948 enum lru_list lru;
3949
3950 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3951
3952 for_each_lru(lru) {
3953 if (!(BIT(lru) & lru_mask))
3954 continue;
3955 if (tree)
3956 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3957 else
3958 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3959 }
3960 return nr;
3961}
3962
3963static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3964 unsigned int lru_mask,
3965 bool tree)
3966{
3967 unsigned long nr = 0;
3968 enum lru_list lru;
3969
3970 for_each_lru(lru) {
3971 if (!(BIT(lru) & lru_mask))
3972 continue;
3973 if (tree)
3974 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3975 else
3976 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3977 }
3978 return nr;
3979}
3980
3981static int memcg_numa_stat_show(struct seq_file *m, void *v)
3982{
3983 struct numa_stat {
3984 const char *name;
3985 unsigned int lru_mask;
3986 };
3987
3988 static const struct numa_stat stats[] = {
3989 { "total", LRU_ALL },
3990 { "file", LRU_ALL_FILE },
3991 { "anon", LRU_ALL_ANON },
3992 { "unevictable", BIT(LRU_UNEVICTABLE) },
3993 };
3994 const struct numa_stat *stat;
3995 int nid;
3996 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3997
3998 mem_cgroup_flush_stats();
3999
4000 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4001 seq_printf(m, "%s=%lu", stat->name,
4002 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4003 false));
4004 for_each_node_state(nid, N_MEMORY)
4005 seq_printf(m, " N%d=%lu", nid,
4006 mem_cgroup_node_nr_lru_pages(memcg, nid,
4007 stat->lru_mask, false));
4008 seq_putc(m, '\n');
4009 }
4010
4011 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4012
4013 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4014 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4015 true));
4016 for_each_node_state(nid, N_MEMORY)
4017 seq_printf(m, " N%d=%lu", nid,
4018 mem_cgroup_node_nr_lru_pages(memcg, nid,
4019 stat->lru_mask, true));
4020 seq_putc(m, '\n');
4021 }
4022
4023 return 0;
4024}
4025#endif /* CONFIG_NUMA */
4026
4027static const unsigned int memcg1_stats[] = {
4028 NR_FILE_PAGES,
4029 NR_ANON_MAPPED,
4030#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4031 NR_ANON_THPS,
4032#endif
4033 NR_SHMEM,
4034 NR_FILE_MAPPED,
4035 NR_FILE_DIRTY,
4036 NR_WRITEBACK,
4037 WORKINGSET_REFAULT_ANON,
4038 WORKINGSET_REFAULT_FILE,
4039 MEMCG_SWAP,
4040};
4041
4042static const char *const memcg1_stat_names[] = {
4043 "cache",
4044 "rss",
4045#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4046 "rss_huge",
4047#endif
4048 "shmem",
4049 "mapped_file",
4050 "dirty",
4051 "writeback",
4052 "workingset_refault_anon",
4053 "workingset_refault_file",
4054 "swap",
4055};
4056
4057/* Universal VM events cgroup1 shows, original sort order */
4058static const unsigned int memcg1_events[] = {
4059 PGPGIN,
4060 PGPGOUT,
4061 PGFAULT,
4062 PGMAJFAULT,
4063};
4064
4065static int memcg_stat_show(struct seq_file *m, void *v)
4066{
4067 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4068 unsigned long memory, memsw;
4069 struct mem_cgroup *mi;
4070 unsigned int i;
4071
4072 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4073
4074 mem_cgroup_flush_stats();
4075
4076 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4077 unsigned long nr;
4078
4079 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4080 continue;
4081 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4082 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4083 nr * memcg_page_state_unit(memcg1_stats[i]));
4084 }
4085
4086 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4087 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4088 memcg_events_local(memcg, memcg1_events[i]));
4089
4090 for (i = 0; i < NR_LRU_LISTS; i++)
4091 seq_printf(m, "%s %lu\n", lru_list_name(i),
4092 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4093 PAGE_SIZE);
4094
4095 /* Hierarchical information */
4096 memory = memsw = PAGE_COUNTER_MAX;
4097 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4098 memory = min(memory, READ_ONCE(mi->memory.max));
4099 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4100 }
4101 seq_printf(m, "hierarchical_memory_limit %llu\n",
4102 (u64)memory * PAGE_SIZE);
4103 if (do_memsw_account())
4104 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4105 (u64)memsw * PAGE_SIZE);
4106
4107 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4108 unsigned long nr;
4109
4110 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4111 continue;
4112 nr = memcg_page_state(memcg, memcg1_stats[i]);
4113 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4114 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4115 }
4116
4117 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4118 seq_printf(m, "total_%s %llu\n",
4119 vm_event_name(memcg1_events[i]),
4120 (u64)memcg_events(memcg, memcg1_events[i]));
4121
4122 for (i = 0; i < NR_LRU_LISTS; i++)
4123 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4124 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4125 PAGE_SIZE);
4126
4127#ifdef CONFIG_DEBUG_VM
4128 {
4129 pg_data_t *pgdat;
4130 struct mem_cgroup_per_node *mz;
4131 unsigned long anon_cost = 0;
4132 unsigned long file_cost = 0;
4133
4134 for_each_online_pgdat(pgdat) {
4135 mz = memcg->nodeinfo[pgdat->node_id];
4136
4137 anon_cost += mz->lruvec.anon_cost;
4138 file_cost += mz->lruvec.file_cost;
4139 }
4140 seq_printf(m, "anon_cost %lu\n", anon_cost);
4141 seq_printf(m, "file_cost %lu\n", file_cost);
4142 }
4143#endif
4144
4145 return 0;
4146}
4147
4148static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4149 struct cftype *cft)
4150{
4151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4152
4153 return mem_cgroup_swappiness(memcg);
4154}
4155
4156static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4157 struct cftype *cft, u64 val)
4158{
4159 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4160
4161 if (val > 200)
4162 return -EINVAL;
4163
4164 if (!mem_cgroup_is_root(memcg))
4165 memcg->swappiness = val;
4166 else
4167 vm_swappiness = val;
4168
4169 return 0;
4170}
4171
4172static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4173{
4174 struct mem_cgroup_threshold_ary *t;
4175 unsigned long usage;
4176 int i;
4177
4178 rcu_read_lock();
4179 if (!swap)
4180 t = rcu_dereference(memcg->thresholds.primary);
4181 else
4182 t = rcu_dereference(memcg->memsw_thresholds.primary);
4183
4184 if (!t)
4185 goto unlock;
4186
4187 usage = mem_cgroup_usage(memcg, swap);
4188
4189 /*
4190 * current_threshold points to threshold just below or equal to usage.
4191 * If it's not true, a threshold was crossed after last
4192 * call of __mem_cgroup_threshold().
4193 */
4194 i = t->current_threshold;
4195
4196 /*
4197 * Iterate backward over array of thresholds starting from
4198 * current_threshold and check if a threshold is crossed.
4199 * If none of thresholds below usage is crossed, we read
4200 * only one element of the array here.
4201 */
4202 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4203 eventfd_signal(t->entries[i].eventfd, 1);
4204
4205 /* i = current_threshold + 1 */
4206 i++;
4207
4208 /*
4209 * Iterate forward over array of thresholds starting from
4210 * current_threshold+1 and check if a threshold is crossed.
4211 * If none of thresholds above usage is crossed, we read
4212 * only one element of the array here.
4213 */
4214 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4215 eventfd_signal(t->entries[i].eventfd, 1);
4216
4217 /* Update current_threshold */
4218 t->current_threshold = i - 1;
4219unlock:
4220 rcu_read_unlock();
4221}
4222
4223static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4224{
4225 while (memcg) {
4226 __mem_cgroup_threshold(memcg, false);
4227 if (do_memsw_account())
4228 __mem_cgroup_threshold(memcg, true);
4229
4230 memcg = parent_mem_cgroup(memcg);
4231 }
4232}
4233
4234static int compare_thresholds(const void *a, const void *b)
4235{
4236 const struct mem_cgroup_threshold *_a = a;
4237 const struct mem_cgroup_threshold *_b = b;
4238
4239 if (_a->threshold > _b->threshold)
4240 return 1;
4241
4242 if (_a->threshold < _b->threshold)
4243 return -1;
4244
4245 return 0;
4246}
4247
4248static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4249{
4250 struct mem_cgroup_eventfd_list *ev;
4251
4252 spin_lock(&memcg_oom_lock);
4253
4254 list_for_each_entry(ev, &memcg->oom_notify, list)
4255 eventfd_signal(ev->eventfd, 1);
4256
4257 spin_unlock(&memcg_oom_lock);
4258 return 0;
4259}
4260
4261static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4262{
4263 struct mem_cgroup *iter;
4264
4265 for_each_mem_cgroup_tree(iter, memcg)
4266 mem_cgroup_oom_notify_cb(iter);
4267}
4268
4269static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4270 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4271{
4272 struct mem_cgroup_thresholds *thresholds;
4273 struct mem_cgroup_threshold_ary *new;
4274 unsigned long threshold;
4275 unsigned long usage;
4276 int i, size, ret;
4277
4278 ret = page_counter_memparse(args, "-1", &threshold);
4279 if (ret)
4280 return ret;
4281
4282 mutex_lock(&memcg->thresholds_lock);
4283
4284 if (type == _MEM) {
4285 thresholds = &memcg->thresholds;
4286 usage = mem_cgroup_usage(memcg, false);
4287 } else if (type == _MEMSWAP) {
4288 thresholds = &memcg->memsw_thresholds;
4289 usage = mem_cgroup_usage(memcg, true);
4290 } else
4291 BUG();
4292
4293 /* Check if a threshold crossed before adding a new one */
4294 if (thresholds->primary)
4295 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4296
4297 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4298
4299 /* Allocate memory for new array of thresholds */
4300 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4301 if (!new) {
4302 ret = -ENOMEM;
4303 goto unlock;
4304 }
4305 new->size = size;
4306
4307 /* Copy thresholds (if any) to new array */
4308 if (thresholds->primary)
4309 memcpy(new->entries, thresholds->primary->entries,
4310 flex_array_size(new, entries, size - 1));
4311
4312 /* Add new threshold */
4313 new->entries[size - 1].eventfd = eventfd;
4314 new->entries[size - 1].threshold = threshold;
4315
4316 /* Sort thresholds. Registering of new threshold isn't time-critical */
4317 sort(new->entries, size, sizeof(*new->entries),
4318 compare_thresholds, NULL);
4319
4320 /* Find current threshold */
4321 new->current_threshold = -1;
4322 for (i = 0; i < size; i++) {
4323 if (new->entries[i].threshold <= usage) {
4324 /*
4325 * new->current_threshold will not be used until
4326 * rcu_assign_pointer(), so it's safe to increment
4327 * it here.
4328 */
4329 ++new->current_threshold;
4330 } else
4331 break;
4332 }
4333
4334 /* Free old spare buffer and save old primary buffer as spare */
4335 kfree(thresholds->spare);
4336 thresholds->spare = thresholds->primary;
4337
4338 rcu_assign_pointer(thresholds->primary, new);
4339
4340 /* To be sure that nobody uses thresholds */
4341 synchronize_rcu();
4342
4343unlock:
4344 mutex_unlock(&memcg->thresholds_lock);
4345
4346 return ret;
4347}
4348
4349static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4350 struct eventfd_ctx *eventfd, const char *args)
4351{
4352 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4353}
4354
4355static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4356 struct eventfd_ctx *eventfd, const char *args)
4357{
4358 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4359}
4360
4361static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4362 struct eventfd_ctx *eventfd, enum res_type type)
4363{
4364 struct mem_cgroup_thresholds *thresholds;
4365 struct mem_cgroup_threshold_ary *new;
4366 unsigned long usage;
4367 int i, j, size, entries;
4368
4369 mutex_lock(&memcg->thresholds_lock);
4370
4371 if (type == _MEM) {
4372 thresholds = &memcg->thresholds;
4373 usage = mem_cgroup_usage(memcg, false);
4374 } else if (type == _MEMSWAP) {
4375 thresholds = &memcg->memsw_thresholds;
4376 usage = mem_cgroup_usage(memcg, true);
4377 } else
4378 BUG();
4379
4380 if (!thresholds->primary)
4381 goto unlock;
4382
4383 /* Check if a threshold crossed before removing */
4384 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4385
4386 /* Calculate new number of threshold */
4387 size = entries = 0;
4388 for (i = 0; i < thresholds->primary->size; i++) {
4389 if (thresholds->primary->entries[i].eventfd != eventfd)
4390 size++;
4391 else
4392 entries++;
4393 }
4394
4395 new = thresholds->spare;
4396
4397 /* If no items related to eventfd have been cleared, nothing to do */
4398 if (!entries)
4399 goto unlock;
4400
4401 /* Set thresholds array to NULL if we don't have thresholds */
4402 if (!size) {
4403 kfree(new);
4404 new = NULL;
4405 goto swap_buffers;
4406 }
4407
4408 new->size = size;
4409
4410 /* Copy thresholds and find current threshold */
4411 new->current_threshold = -1;
4412 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4413 if (thresholds->primary->entries[i].eventfd == eventfd)
4414 continue;
4415
4416 new->entries[j] = thresholds->primary->entries[i];
4417 if (new->entries[j].threshold <= usage) {
4418 /*
4419 * new->current_threshold will not be used
4420 * until rcu_assign_pointer(), so it's safe to increment
4421 * it here.
4422 */
4423 ++new->current_threshold;
4424 }
4425 j++;
4426 }
4427
4428swap_buffers:
4429 /* Swap primary and spare array */
4430 thresholds->spare = thresholds->primary;
4431
4432 rcu_assign_pointer(thresholds->primary, new);
4433
4434 /* To be sure that nobody uses thresholds */
4435 synchronize_rcu();
4436
4437 /* If all events are unregistered, free the spare array */
4438 if (!new) {
4439 kfree(thresholds->spare);
4440 thresholds->spare = NULL;
4441 }
4442unlock:
4443 mutex_unlock(&memcg->thresholds_lock);
4444}
4445
4446static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4447 struct eventfd_ctx *eventfd)
4448{
4449 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4450}
4451
4452static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4453 struct eventfd_ctx *eventfd)
4454{
4455 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4456}
4457
4458static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4459 struct eventfd_ctx *eventfd, const char *args)
4460{
4461 struct mem_cgroup_eventfd_list *event;
4462
4463 event = kmalloc(sizeof(*event), GFP_KERNEL);
4464 if (!event)
4465 return -ENOMEM;
4466
4467 spin_lock(&memcg_oom_lock);
4468
4469 event->eventfd = eventfd;
4470 list_add(&event->list, &memcg->oom_notify);
4471
4472 /* already in OOM ? */
4473 if (memcg->under_oom)
4474 eventfd_signal(eventfd, 1);
4475 spin_unlock(&memcg_oom_lock);
4476
4477 return 0;
4478}
4479
4480static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4481 struct eventfd_ctx *eventfd)
4482{
4483 struct mem_cgroup_eventfd_list *ev, *tmp;
4484
4485 spin_lock(&memcg_oom_lock);
4486
4487 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4488 if (ev->eventfd == eventfd) {
4489 list_del(&ev->list);
4490 kfree(ev);
4491 }
4492 }
4493
4494 spin_unlock(&memcg_oom_lock);
4495}
4496
4497static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4498{
4499 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4500
4501 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4502 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4503 seq_printf(sf, "oom_kill %lu\n",
4504 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4505 return 0;
4506}
4507
4508static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4509 struct cftype *cft, u64 val)
4510{
4511 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4512
4513 /* cannot set to root cgroup and only 0 and 1 are allowed */
4514 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4515 return -EINVAL;
4516
4517 memcg->oom_kill_disable = val;
4518 if (!val)
4519 memcg_oom_recover(memcg);
4520
4521 return 0;
4522}
4523
4524#ifdef CONFIG_CGROUP_WRITEBACK
4525
4526#include <trace/events/writeback.h>
4527
4528static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4529{
4530 return wb_domain_init(&memcg->cgwb_domain, gfp);
4531}
4532
4533static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4534{
4535 wb_domain_exit(&memcg->cgwb_domain);
4536}
4537
4538static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4539{
4540 wb_domain_size_changed(&memcg->cgwb_domain);
4541}
4542
4543struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4544{
4545 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4546
4547 if (!memcg->css.parent)
4548 return NULL;
4549
4550 return &memcg->cgwb_domain;
4551}
4552
4553/**
4554 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4555 * @wb: bdi_writeback in question
4556 * @pfilepages: out parameter for number of file pages
4557 * @pheadroom: out parameter for number of allocatable pages according to memcg
4558 * @pdirty: out parameter for number of dirty pages
4559 * @pwriteback: out parameter for number of pages under writeback
4560 *
4561 * Determine the numbers of file, headroom, dirty, and writeback pages in
4562 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4563 * is a bit more involved.
4564 *
4565 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4566 * headroom is calculated as the lowest headroom of itself and the
4567 * ancestors. Note that this doesn't consider the actual amount of
4568 * available memory in the system. The caller should further cap
4569 * *@pheadroom accordingly.
4570 */
4571void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4572 unsigned long *pheadroom, unsigned long *pdirty,
4573 unsigned long *pwriteback)
4574{
4575 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4576 struct mem_cgroup *parent;
4577
4578 mem_cgroup_flush_stats();
4579
4580 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4581 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4582 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4583 memcg_page_state(memcg, NR_ACTIVE_FILE);
4584
4585 *pheadroom = PAGE_COUNTER_MAX;
4586 while ((parent = parent_mem_cgroup(memcg))) {
4587 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4588 READ_ONCE(memcg->memory.high));
4589 unsigned long used = page_counter_read(&memcg->memory);
4590
4591 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4592 memcg = parent;
4593 }
4594}
4595
4596/*
4597 * Foreign dirty flushing
4598 *
4599 * There's an inherent mismatch between memcg and writeback. The former
4600 * tracks ownership per-page while the latter per-inode. This was a
4601 * deliberate design decision because honoring per-page ownership in the
4602 * writeback path is complicated, may lead to higher CPU and IO overheads
4603 * and deemed unnecessary given that write-sharing an inode across
4604 * different cgroups isn't a common use-case.
4605 *
4606 * Combined with inode majority-writer ownership switching, this works well
4607 * enough in most cases but there are some pathological cases. For
4608 * example, let's say there are two cgroups A and B which keep writing to
4609 * different but confined parts of the same inode. B owns the inode and
4610 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4611 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4612 * triggering background writeback. A will be slowed down without a way to
4613 * make writeback of the dirty pages happen.
4614 *
4615 * Conditions like the above can lead to a cgroup getting repeatedly and
4616 * severely throttled after making some progress after each
4617 * dirty_expire_interval while the underlying IO device is almost
4618 * completely idle.
4619 *
4620 * Solving this problem completely requires matching the ownership tracking
4621 * granularities between memcg and writeback in either direction. However,
4622 * the more egregious behaviors can be avoided by simply remembering the
4623 * most recent foreign dirtying events and initiating remote flushes on
4624 * them when local writeback isn't enough to keep the memory clean enough.
4625 *
4626 * The following two functions implement such mechanism. When a foreign
4627 * page - a page whose memcg and writeback ownerships don't match - is
4628 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4629 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4630 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4631 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4632 * foreign bdi_writebacks which haven't expired. Both the numbers of
4633 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4634 * limited to MEMCG_CGWB_FRN_CNT.
4635 *
4636 * The mechanism only remembers IDs and doesn't hold any object references.
4637 * As being wrong occasionally doesn't matter, updates and accesses to the
4638 * records are lockless and racy.
4639 */
4640void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4641 struct bdi_writeback *wb)
4642{
4643 struct mem_cgroup *memcg = folio_memcg(folio);
4644 struct memcg_cgwb_frn *frn;
4645 u64 now = get_jiffies_64();
4646 u64 oldest_at = now;
4647 int oldest = -1;
4648 int i;
4649
4650 trace_track_foreign_dirty(folio, wb);
4651
4652 /*
4653 * Pick the slot to use. If there is already a slot for @wb, keep
4654 * using it. If not replace the oldest one which isn't being
4655 * written out.
4656 */
4657 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4658 frn = &memcg->cgwb_frn[i];
4659 if (frn->bdi_id == wb->bdi->id &&
4660 frn->memcg_id == wb->memcg_css->id)
4661 break;
4662 if (time_before64(frn->at, oldest_at) &&
4663 atomic_read(&frn->done.cnt) == 1) {
4664 oldest = i;
4665 oldest_at = frn->at;
4666 }
4667 }
4668
4669 if (i < MEMCG_CGWB_FRN_CNT) {
4670 /*
4671 * Re-using an existing one. Update timestamp lazily to
4672 * avoid making the cacheline hot. We want them to be
4673 * reasonably up-to-date and significantly shorter than
4674 * dirty_expire_interval as that's what expires the record.
4675 * Use the shorter of 1s and dirty_expire_interval / 8.
4676 */
4677 unsigned long update_intv =
4678 min_t(unsigned long, HZ,
4679 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4680
4681 if (time_before64(frn->at, now - update_intv))
4682 frn->at = now;
4683 } else if (oldest >= 0) {
4684 /* replace the oldest free one */
4685 frn = &memcg->cgwb_frn[oldest];
4686 frn->bdi_id = wb->bdi->id;
4687 frn->memcg_id = wb->memcg_css->id;
4688 frn->at = now;
4689 }
4690}
4691
4692/* issue foreign writeback flushes for recorded foreign dirtying events */
4693void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4694{
4695 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4696 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4697 u64 now = jiffies_64;
4698 int i;
4699
4700 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4701 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4702
4703 /*
4704 * If the record is older than dirty_expire_interval,
4705 * writeback on it has already started. No need to kick it
4706 * off again. Also, don't start a new one if there's
4707 * already one in flight.
4708 */
4709 if (time_after64(frn->at, now - intv) &&
4710 atomic_read(&frn->done.cnt) == 1) {
4711 frn->at = 0;
4712 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4713 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4714 WB_REASON_FOREIGN_FLUSH,
4715 &frn->done);
4716 }
4717 }
4718}
4719
4720#else /* CONFIG_CGROUP_WRITEBACK */
4721
4722static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4723{
4724 return 0;
4725}
4726
4727static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4728{
4729}
4730
4731static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4732{
4733}
4734
4735#endif /* CONFIG_CGROUP_WRITEBACK */
4736
4737/*
4738 * DO NOT USE IN NEW FILES.
4739 *
4740 * "cgroup.event_control" implementation.
4741 *
4742 * This is way over-engineered. It tries to support fully configurable
4743 * events for each user. Such level of flexibility is completely
4744 * unnecessary especially in the light of the planned unified hierarchy.
4745 *
4746 * Please deprecate this and replace with something simpler if at all
4747 * possible.
4748 */
4749
4750/*
4751 * Unregister event and free resources.
4752 *
4753 * Gets called from workqueue.
4754 */
4755static void memcg_event_remove(struct work_struct *work)
4756{
4757 struct mem_cgroup_event *event =
4758 container_of(work, struct mem_cgroup_event, remove);
4759 struct mem_cgroup *memcg = event->memcg;
4760
4761 remove_wait_queue(event->wqh, &event->wait);
4762
4763 event->unregister_event(memcg, event->eventfd);
4764
4765 /* Notify userspace the event is going away. */
4766 eventfd_signal(event->eventfd, 1);
4767
4768 eventfd_ctx_put(event->eventfd);
4769 kfree(event);
4770 css_put(&memcg->css);
4771}
4772
4773/*
4774 * Gets called on EPOLLHUP on eventfd when user closes it.
4775 *
4776 * Called with wqh->lock held and interrupts disabled.
4777 */
4778static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4779 int sync, void *key)
4780{
4781 struct mem_cgroup_event *event =
4782 container_of(wait, struct mem_cgroup_event, wait);
4783 struct mem_cgroup *memcg = event->memcg;
4784 __poll_t flags = key_to_poll(key);
4785
4786 if (flags & EPOLLHUP) {
4787 /*
4788 * If the event has been detached at cgroup removal, we
4789 * can simply return knowing the other side will cleanup
4790 * for us.
4791 *
4792 * We can't race against event freeing since the other
4793 * side will require wqh->lock via remove_wait_queue(),
4794 * which we hold.
4795 */
4796 spin_lock(&memcg->event_list_lock);
4797 if (!list_empty(&event->list)) {
4798 list_del_init(&event->list);
4799 /*
4800 * We are in atomic context, but cgroup_event_remove()
4801 * may sleep, so we have to call it in workqueue.
4802 */
4803 schedule_work(&event->remove);
4804 }
4805 spin_unlock(&memcg->event_list_lock);
4806 }
4807
4808 return 0;
4809}
4810
4811static void memcg_event_ptable_queue_proc(struct file *file,
4812 wait_queue_head_t *wqh, poll_table *pt)
4813{
4814 struct mem_cgroup_event *event =
4815 container_of(pt, struct mem_cgroup_event, pt);
4816
4817 event->wqh = wqh;
4818 add_wait_queue(wqh, &event->wait);
4819}
4820
4821/*
4822 * DO NOT USE IN NEW FILES.
4823 *
4824 * Parse input and register new cgroup event handler.
4825 *
4826 * Input must be in format '<event_fd> <control_fd> <args>'.
4827 * Interpretation of args is defined by control file implementation.
4828 */
4829static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4830 char *buf, size_t nbytes, loff_t off)
4831{
4832 struct cgroup_subsys_state *css = of_css(of);
4833 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4834 struct mem_cgroup_event *event;
4835 struct cgroup_subsys_state *cfile_css;
4836 unsigned int efd, cfd;
4837 struct fd efile;
4838 struct fd cfile;
4839 struct dentry *cdentry;
4840 const char *name;
4841 char *endp;
4842 int ret;
4843
4844 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4845 return -EOPNOTSUPP;
4846
4847 buf = strstrip(buf);
4848
4849 efd = simple_strtoul(buf, &endp, 10);
4850 if (*endp != ' ')
4851 return -EINVAL;
4852 buf = endp + 1;
4853
4854 cfd = simple_strtoul(buf, &endp, 10);
4855 if ((*endp != ' ') && (*endp != '\0'))
4856 return -EINVAL;
4857 buf = endp + 1;
4858
4859 event = kzalloc(sizeof(*event), GFP_KERNEL);
4860 if (!event)
4861 return -ENOMEM;
4862
4863 event->memcg = memcg;
4864 INIT_LIST_HEAD(&event->list);
4865 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4866 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4867 INIT_WORK(&event->remove, memcg_event_remove);
4868
4869 efile = fdget(efd);
4870 if (!efile.file) {
4871 ret = -EBADF;
4872 goto out_kfree;
4873 }
4874
4875 event->eventfd = eventfd_ctx_fileget(efile.file);
4876 if (IS_ERR(event->eventfd)) {
4877 ret = PTR_ERR(event->eventfd);
4878 goto out_put_efile;
4879 }
4880
4881 cfile = fdget(cfd);
4882 if (!cfile.file) {
4883 ret = -EBADF;
4884 goto out_put_eventfd;
4885 }
4886
4887 /* the process need read permission on control file */
4888 /* AV: shouldn't we check that it's been opened for read instead? */
4889 ret = file_permission(cfile.file, MAY_READ);
4890 if (ret < 0)
4891 goto out_put_cfile;
4892
4893 /*
4894 * The control file must be a regular cgroup1 file. As a regular cgroup
4895 * file can't be renamed, it's safe to access its name afterwards.
4896 */
4897 cdentry = cfile.file->f_path.dentry;
4898 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4899 ret = -EINVAL;
4900 goto out_put_cfile;
4901 }
4902
4903 /*
4904 * Determine the event callbacks and set them in @event. This used
4905 * to be done via struct cftype but cgroup core no longer knows
4906 * about these events. The following is crude but the whole thing
4907 * is for compatibility anyway.
4908 *
4909 * DO NOT ADD NEW FILES.
4910 */
4911 name = cdentry->d_name.name;
4912
4913 if (!strcmp(name, "memory.usage_in_bytes")) {
4914 event->register_event = mem_cgroup_usage_register_event;
4915 event->unregister_event = mem_cgroup_usage_unregister_event;
4916 } else if (!strcmp(name, "memory.oom_control")) {
4917 event->register_event = mem_cgroup_oom_register_event;
4918 event->unregister_event = mem_cgroup_oom_unregister_event;
4919 } else if (!strcmp(name, "memory.pressure_level")) {
4920 event->register_event = vmpressure_register_event;
4921 event->unregister_event = vmpressure_unregister_event;
4922 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4923 event->register_event = memsw_cgroup_usage_register_event;
4924 event->unregister_event = memsw_cgroup_usage_unregister_event;
4925 } else {
4926 ret = -EINVAL;
4927 goto out_put_cfile;
4928 }
4929
4930 /*
4931 * Verify @cfile should belong to @css. Also, remaining events are
4932 * automatically removed on cgroup destruction but the removal is
4933 * asynchronous, so take an extra ref on @css.
4934 */
4935 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4936 &memory_cgrp_subsys);
4937 ret = -EINVAL;
4938 if (IS_ERR(cfile_css))
4939 goto out_put_cfile;
4940 if (cfile_css != css) {
4941 css_put(cfile_css);
4942 goto out_put_cfile;
4943 }
4944
4945 ret = event->register_event(memcg, event->eventfd, buf);
4946 if (ret)
4947 goto out_put_css;
4948
4949 vfs_poll(efile.file, &event->pt);
4950
4951 spin_lock_irq(&memcg->event_list_lock);
4952 list_add(&event->list, &memcg->event_list);
4953 spin_unlock_irq(&memcg->event_list_lock);
4954
4955 fdput(cfile);
4956 fdput(efile);
4957
4958 return nbytes;
4959
4960out_put_css:
4961 css_put(css);
4962out_put_cfile:
4963 fdput(cfile);
4964out_put_eventfd:
4965 eventfd_ctx_put(event->eventfd);
4966out_put_efile:
4967 fdput(efile);
4968out_kfree:
4969 kfree(event);
4970
4971 return ret;
4972}
4973
4974#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4975static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4976{
4977 /*
4978 * Deprecated.
4979 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4980 */
4981 return 0;
4982}
4983#endif
4984
4985static struct cftype mem_cgroup_legacy_files[] = {
4986 {
4987 .name = "usage_in_bytes",
4988 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4989 .read_u64 = mem_cgroup_read_u64,
4990 },
4991 {
4992 .name = "max_usage_in_bytes",
4993 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4994 .write = mem_cgroup_reset,
4995 .read_u64 = mem_cgroup_read_u64,
4996 },
4997 {
4998 .name = "limit_in_bytes",
4999 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5000 .write = mem_cgroup_write,
5001 .read_u64 = mem_cgroup_read_u64,
5002 },
5003 {
5004 .name = "soft_limit_in_bytes",
5005 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5006 .write = mem_cgroup_write,
5007 .read_u64 = mem_cgroup_read_u64,
5008 },
5009 {
5010 .name = "failcnt",
5011 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5012 .write = mem_cgroup_reset,
5013 .read_u64 = mem_cgroup_read_u64,
5014 },
5015 {
5016 .name = "stat",
5017 .seq_show = memcg_stat_show,
5018 },
5019 {
5020 .name = "force_empty",
5021 .write = mem_cgroup_force_empty_write,
5022 },
5023 {
5024 .name = "use_hierarchy",
5025 .write_u64 = mem_cgroup_hierarchy_write,
5026 .read_u64 = mem_cgroup_hierarchy_read,
5027 },
5028 {
5029 .name = "cgroup.event_control", /* XXX: for compat */
5030 .write = memcg_write_event_control,
5031 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5032 },
5033 {
5034 .name = "swappiness",
5035 .read_u64 = mem_cgroup_swappiness_read,
5036 .write_u64 = mem_cgroup_swappiness_write,
5037 },
5038 {
5039 .name = "move_charge_at_immigrate",
5040 .read_u64 = mem_cgroup_move_charge_read,
5041 .write_u64 = mem_cgroup_move_charge_write,
5042 },
5043 {
5044 .name = "oom_control",
5045 .seq_show = mem_cgroup_oom_control_read,
5046 .write_u64 = mem_cgroup_oom_control_write,
5047 },
5048 {
5049 .name = "pressure_level",
5050 },
5051#ifdef CONFIG_NUMA
5052 {
5053 .name = "numa_stat",
5054 .seq_show = memcg_numa_stat_show,
5055 },
5056#endif
5057 {
5058 .name = "kmem.limit_in_bytes",
5059 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5060 .write = mem_cgroup_write,
5061 .read_u64 = mem_cgroup_read_u64,
5062 },
5063 {
5064 .name = "kmem.usage_in_bytes",
5065 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5066 .read_u64 = mem_cgroup_read_u64,
5067 },
5068 {
5069 .name = "kmem.failcnt",
5070 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5071 .write = mem_cgroup_reset,
5072 .read_u64 = mem_cgroup_read_u64,
5073 },
5074 {
5075 .name = "kmem.max_usage_in_bytes",
5076 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5077 .write = mem_cgroup_reset,
5078 .read_u64 = mem_cgroup_read_u64,
5079 },
5080#if defined(CONFIG_MEMCG_KMEM) && \
5081 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5082 {
5083 .name = "kmem.slabinfo",
5084 .seq_show = mem_cgroup_slab_show,
5085 },
5086#endif
5087 {
5088 .name = "kmem.tcp.limit_in_bytes",
5089 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5090 .write = mem_cgroup_write,
5091 .read_u64 = mem_cgroup_read_u64,
5092 },
5093 {
5094 .name = "kmem.tcp.usage_in_bytes",
5095 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5096 .read_u64 = mem_cgroup_read_u64,
5097 },
5098 {
5099 .name = "kmem.tcp.failcnt",
5100 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5101 .write = mem_cgroup_reset,
5102 .read_u64 = mem_cgroup_read_u64,
5103 },
5104 {
5105 .name = "kmem.tcp.max_usage_in_bytes",
5106 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5107 .write = mem_cgroup_reset,
5108 .read_u64 = mem_cgroup_read_u64,
5109 },
5110 { }, /* terminate */
5111};
5112
5113/*
5114 * Private memory cgroup IDR
5115 *
5116 * Swap-out records and page cache shadow entries need to store memcg
5117 * references in constrained space, so we maintain an ID space that is
5118 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5119 * memory-controlled cgroups to 64k.
5120 *
5121 * However, there usually are many references to the offline CSS after
5122 * the cgroup has been destroyed, such as page cache or reclaimable
5123 * slab objects, that don't need to hang on to the ID. We want to keep
5124 * those dead CSS from occupying IDs, or we might quickly exhaust the
5125 * relatively small ID space and prevent the creation of new cgroups
5126 * even when there are much fewer than 64k cgroups - possibly none.
5127 *
5128 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5129 * be freed and recycled when it's no longer needed, which is usually
5130 * when the CSS is offlined.
5131 *
5132 * The only exception to that are records of swapped out tmpfs/shmem
5133 * pages that need to be attributed to live ancestors on swapin. But
5134 * those references are manageable from userspace.
5135 */
5136
5137static DEFINE_IDR(mem_cgroup_idr);
5138
5139static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5140{
5141 if (memcg->id.id > 0) {
5142 idr_remove(&mem_cgroup_idr, memcg->id.id);
5143 memcg->id.id = 0;
5144 }
5145}
5146
5147static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5148 unsigned int n)
5149{
5150 refcount_add(n, &memcg->id.ref);
5151}
5152
5153static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5154{
5155 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5156 mem_cgroup_id_remove(memcg);
5157
5158 /* Memcg ID pins CSS */
5159 css_put(&memcg->css);
5160 }
5161}
5162
5163static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5164{
5165 mem_cgroup_id_put_many(memcg, 1);
5166}
5167
5168/**
5169 * mem_cgroup_from_id - look up a memcg from a memcg id
5170 * @id: the memcg id to look up
5171 *
5172 * Caller must hold rcu_read_lock().
5173 */
5174struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5175{
5176 WARN_ON_ONCE(!rcu_read_lock_held());
5177 return idr_find(&mem_cgroup_idr, id);
5178}
5179
5180#ifdef CONFIG_SHRINKER_DEBUG
5181struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5182{
5183 struct cgroup *cgrp;
5184 struct cgroup_subsys_state *css;
5185 struct mem_cgroup *memcg;
5186
5187 cgrp = cgroup_get_from_id(ino);
5188 if (IS_ERR(cgrp))
5189 return ERR_CAST(cgrp);
5190
5191 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5192 if (css)
5193 memcg = container_of(css, struct mem_cgroup, css);
5194 else
5195 memcg = ERR_PTR(-ENOENT);
5196
5197 cgroup_put(cgrp);
5198
5199 return memcg;
5200}
5201#endif
5202
5203static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5204{
5205 struct mem_cgroup_per_node *pn;
5206
5207 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5208 if (!pn)
5209 return 1;
5210
5211 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5212 GFP_KERNEL_ACCOUNT);
5213 if (!pn->lruvec_stats_percpu) {
5214 kfree(pn);
5215 return 1;
5216 }
5217
5218 lruvec_init(&pn->lruvec);
5219 pn->memcg = memcg;
5220
5221 memcg->nodeinfo[node] = pn;
5222 return 0;
5223}
5224
5225static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5226{
5227 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5228
5229 if (!pn)
5230 return;
5231
5232 free_percpu(pn->lruvec_stats_percpu);
5233 kfree(pn);
5234}
5235
5236static void __mem_cgroup_free(struct mem_cgroup *memcg)
5237{
5238 int node;
5239
5240 for_each_node(node)
5241 free_mem_cgroup_per_node_info(memcg, node);
5242 kfree(memcg->vmstats);
5243 free_percpu(memcg->vmstats_percpu);
5244 kfree(memcg);
5245}
5246
5247static void mem_cgroup_free(struct mem_cgroup *memcg)
5248{
5249 lru_gen_exit_memcg(memcg);
5250 memcg_wb_domain_exit(memcg);
5251 __mem_cgroup_free(memcg);
5252}
5253
5254static struct mem_cgroup *mem_cgroup_alloc(void)
5255{
5256 struct mem_cgroup *memcg;
5257 int node;
5258 int __maybe_unused i;
5259 long error = -ENOMEM;
5260
5261 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5262 if (!memcg)
5263 return ERR_PTR(error);
5264
5265 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5266 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5267 if (memcg->id.id < 0) {
5268 error = memcg->id.id;
5269 goto fail;
5270 }
5271
5272 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5273 if (!memcg->vmstats)
5274 goto fail;
5275
5276 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5277 GFP_KERNEL_ACCOUNT);
5278 if (!memcg->vmstats_percpu)
5279 goto fail;
5280
5281 for_each_node(node)
5282 if (alloc_mem_cgroup_per_node_info(memcg, node))
5283 goto fail;
5284
5285 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5286 goto fail;
5287
5288 INIT_WORK(&memcg->high_work, high_work_func);
5289 INIT_LIST_HEAD(&memcg->oom_notify);
5290 mutex_init(&memcg->thresholds_lock);
5291 spin_lock_init(&memcg->move_lock);
5292 vmpressure_init(&memcg->vmpressure);
5293 INIT_LIST_HEAD(&memcg->event_list);
5294 spin_lock_init(&memcg->event_list_lock);
5295 memcg->socket_pressure = jiffies;
5296#ifdef CONFIG_MEMCG_KMEM
5297 memcg->kmemcg_id = -1;
5298 INIT_LIST_HEAD(&memcg->objcg_list);
5299#endif
5300#ifdef CONFIG_CGROUP_WRITEBACK
5301 INIT_LIST_HEAD(&memcg->cgwb_list);
5302 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5303 memcg->cgwb_frn[i].done =
5304 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5305#endif
5306#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5307 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5308 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5309 memcg->deferred_split_queue.split_queue_len = 0;
5310#endif
5311 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5312 lru_gen_init_memcg(memcg);
5313 return memcg;
5314fail:
5315 mem_cgroup_id_remove(memcg);
5316 __mem_cgroup_free(memcg);
5317 return ERR_PTR(error);
5318}
5319
5320static struct cgroup_subsys_state * __ref
5321mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5322{
5323 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5324 struct mem_cgroup *memcg, *old_memcg;
5325
5326 old_memcg = set_active_memcg(parent);
5327 memcg = mem_cgroup_alloc();
5328 set_active_memcg(old_memcg);
5329 if (IS_ERR(memcg))
5330 return ERR_CAST(memcg);
5331
5332 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5333 memcg->soft_limit = PAGE_COUNTER_MAX;
5334#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5335 memcg->zswap_max = PAGE_COUNTER_MAX;
5336#endif
5337 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5338 if (parent) {
5339 memcg->swappiness = mem_cgroup_swappiness(parent);
5340 memcg->oom_kill_disable = parent->oom_kill_disable;
5341
5342 page_counter_init(&memcg->memory, &parent->memory);
5343 page_counter_init(&memcg->swap, &parent->swap);
5344 page_counter_init(&memcg->kmem, &parent->kmem);
5345 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5346 } else {
5347 init_memcg_events();
5348 page_counter_init(&memcg->memory, NULL);
5349 page_counter_init(&memcg->swap, NULL);
5350 page_counter_init(&memcg->kmem, NULL);
5351 page_counter_init(&memcg->tcpmem, NULL);
5352
5353 root_mem_cgroup = memcg;
5354 return &memcg->css;
5355 }
5356
5357 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5358 static_branch_inc(&memcg_sockets_enabled_key);
5359
5360 return &memcg->css;
5361}
5362
5363static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5364{
5365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366
5367 if (memcg_online_kmem(memcg))
5368 goto remove_id;
5369
5370 /*
5371 * A memcg must be visible for expand_shrinker_info()
5372 * by the time the maps are allocated. So, we allocate maps
5373 * here, when for_each_mem_cgroup() can't skip it.
5374 */
5375 if (alloc_shrinker_info(memcg))
5376 goto offline_kmem;
5377
5378 /* Online state pins memcg ID, memcg ID pins CSS */
5379 refcount_set(&memcg->id.ref, 1);
5380 css_get(css);
5381
5382 if (unlikely(mem_cgroup_is_root(memcg)))
5383 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5384 2UL*HZ);
5385 return 0;
5386offline_kmem:
5387 memcg_offline_kmem(memcg);
5388remove_id:
5389 mem_cgroup_id_remove(memcg);
5390 return -ENOMEM;
5391}
5392
5393static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5394{
5395 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5396 struct mem_cgroup_event *event, *tmp;
5397
5398 /*
5399 * Unregister events and notify userspace.
5400 * Notify userspace about cgroup removing only after rmdir of cgroup
5401 * directory to avoid race between userspace and kernelspace.
5402 */
5403 spin_lock_irq(&memcg->event_list_lock);
5404 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5405 list_del_init(&event->list);
5406 schedule_work(&event->remove);
5407 }
5408 spin_unlock_irq(&memcg->event_list_lock);
5409
5410 page_counter_set_min(&memcg->memory, 0);
5411 page_counter_set_low(&memcg->memory, 0);
5412
5413 memcg_offline_kmem(memcg);
5414 reparent_shrinker_deferred(memcg);
5415 wb_memcg_offline(memcg);
5416
5417 drain_all_stock(memcg);
5418
5419 mem_cgroup_id_put(memcg);
5420}
5421
5422static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5423{
5424 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5425
5426 invalidate_reclaim_iterators(memcg);
5427}
5428
5429static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5430{
5431 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5432 int __maybe_unused i;
5433
5434#ifdef CONFIG_CGROUP_WRITEBACK
5435 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5436 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5437#endif
5438 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5439 static_branch_dec(&memcg_sockets_enabled_key);
5440
5441 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5442 static_branch_dec(&memcg_sockets_enabled_key);
5443
5444 vmpressure_cleanup(&memcg->vmpressure);
5445 cancel_work_sync(&memcg->high_work);
5446 mem_cgroup_remove_from_trees(memcg);
5447 free_shrinker_info(memcg);
5448 mem_cgroup_free(memcg);
5449}
5450
5451/**
5452 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5453 * @css: the target css
5454 *
5455 * Reset the states of the mem_cgroup associated with @css. This is
5456 * invoked when the userland requests disabling on the default hierarchy
5457 * but the memcg is pinned through dependency. The memcg should stop
5458 * applying policies and should revert to the vanilla state as it may be
5459 * made visible again.
5460 *
5461 * The current implementation only resets the essential configurations.
5462 * This needs to be expanded to cover all the visible parts.
5463 */
5464static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5465{
5466 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5467
5468 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5469 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5470 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5471 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5472 page_counter_set_min(&memcg->memory, 0);
5473 page_counter_set_low(&memcg->memory, 0);
5474 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5475 memcg->soft_limit = PAGE_COUNTER_MAX;
5476 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5477 memcg_wb_domain_size_changed(memcg);
5478}
5479
5480static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5481{
5482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5484 struct memcg_vmstats_percpu *statc;
5485 long delta, v;
5486 int i, nid;
5487
5488 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5489
5490 for (i = 0; i < MEMCG_NR_STAT; i++) {
5491 /*
5492 * Collect the aggregated propagation counts of groups
5493 * below us. We're in a per-cpu loop here and this is
5494 * a global counter, so the first cycle will get them.
5495 */
5496 delta = memcg->vmstats->state_pending[i];
5497 if (delta)
5498 memcg->vmstats->state_pending[i] = 0;
5499
5500 /* Add CPU changes on this level since the last flush */
5501 v = READ_ONCE(statc->state[i]);
5502 if (v != statc->state_prev[i]) {
5503 delta += v - statc->state_prev[i];
5504 statc->state_prev[i] = v;
5505 }
5506
5507 if (!delta)
5508 continue;
5509
5510 /* Aggregate counts on this level and propagate upwards */
5511 memcg->vmstats->state[i] += delta;
5512 if (parent)
5513 parent->vmstats->state_pending[i] += delta;
5514 }
5515
5516 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5517 delta = memcg->vmstats->events_pending[i];
5518 if (delta)
5519 memcg->vmstats->events_pending[i] = 0;
5520
5521 v = READ_ONCE(statc->events[i]);
5522 if (v != statc->events_prev[i]) {
5523 delta += v - statc->events_prev[i];
5524 statc->events_prev[i] = v;
5525 }
5526
5527 if (!delta)
5528 continue;
5529
5530 memcg->vmstats->events[i] += delta;
5531 if (parent)
5532 parent->vmstats->events_pending[i] += delta;
5533 }
5534
5535 for_each_node_state(nid, N_MEMORY) {
5536 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5537 struct mem_cgroup_per_node *ppn = NULL;
5538 struct lruvec_stats_percpu *lstatc;
5539
5540 if (parent)
5541 ppn = parent->nodeinfo[nid];
5542
5543 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5544
5545 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5546 delta = pn->lruvec_stats.state_pending[i];
5547 if (delta)
5548 pn->lruvec_stats.state_pending[i] = 0;
5549
5550 v = READ_ONCE(lstatc->state[i]);
5551 if (v != lstatc->state_prev[i]) {
5552 delta += v - lstatc->state_prev[i];
5553 lstatc->state_prev[i] = v;
5554 }
5555
5556 if (!delta)
5557 continue;
5558
5559 pn->lruvec_stats.state[i] += delta;
5560 if (ppn)
5561 ppn->lruvec_stats.state_pending[i] += delta;
5562 }
5563 }
5564}
5565
5566#ifdef CONFIG_MMU
5567/* Handlers for move charge at task migration. */
5568static int mem_cgroup_do_precharge(unsigned long count)
5569{
5570 int ret;
5571
5572 /* Try a single bulk charge without reclaim first, kswapd may wake */
5573 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5574 if (!ret) {
5575 mc.precharge += count;
5576 return ret;
5577 }
5578
5579 /* Try charges one by one with reclaim, but do not retry */
5580 while (count--) {
5581 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5582 if (ret)
5583 return ret;
5584 mc.precharge++;
5585 cond_resched();
5586 }
5587 return 0;
5588}
5589
5590union mc_target {
5591 struct page *page;
5592 swp_entry_t ent;
5593};
5594
5595enum mc_target_type {
5596 MC_TARGET_NONE = 0,
5597 MC_TARGET_PAGE,
5598 MC_TARGET_SWAP,
5599 MC_TARGET_DEVICE,
5600};
5601
5602static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5603 unsigned long addr, pte_t ptent)
5604{
5605 struct page *page = vm_normal_page(vma, addr, ptent);
5606
5607 if (!page || !page_mapped(page))
5608 return NULL;
5609 if (PageAnon(page)) {
5610 if (!(mc.flags & MOVE_ANON))
5611 return NULL;
5612 } else {
5613 if (!(mc.flags & MOVE_FILE))
5614 return NULL;
5615 }
5616 if (!get_page_unless_zero(page))
5617 return NULL;
5618
5619 return page;
5620}
5621
5622#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5623static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5624 pte_t ptent, swp_entry_t *entry)
5625{
5626 struct page *page = NULL;
5627 swp_entry_t ent = pte_to_swp_entry(ptent);
5628
5629 if (!(mc.flags & MOVE_ANON))
5630 return NULL;
5631
5632 /*
5633 * Handle device private pages that are not accessible by the CPU, but
5634 * stored as special swap entries in the page table.
5635 */
5636 if (is_device_private_entry(ent)) {
5637 page = pfn_swap_entry_to_page(ent);
5638 if (!get_page_unless_zero(page))
5639 return NULL;
5640 return page;
5641 }
5642
5643 if (non_swap_entry(ent))
5644 return NULL;
5645
5646 /*
5647 * Because swap_cache_get_folio() updates some statistics counter,
5648 * we call find_get_page() with swapper_space directly.
5649 */
5650 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5651 entry->val = ent.val;
5652
5653 return page;
5654}
5655#else
5656static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5657 pte_t ptent, swp_entry_t *entry)
5658{
5659 return NULL;
5660}
5661#endif
5662
5663static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5664 unsigned long addr, pte_t ptent)
5665{
5666 unsigned long index;
5667 struct folio *folio;
5668
5669 if (!vma->vm_file) /* anonymous vma */
5670 return NULL;
5671 if (!(mc.flags & MOVE_FILE))
5672 return NULL;
5673
5674 /* folio is moved even if it's not RSS of this task(page-faulted). */
5675 /* shmem/tmpfs may report page out on swap: account for that too. */
5676 index = linear_page_index(vma, addr);
5677 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5678 if (!folio)
5679 return NULL;
5680 return folio_file_page(folio, index);
5681}
5682
5683/**
5684 * mem_cgroup_move_account - move account of the page
5685 * @page: the page
5686 * @compound: charge the page as compound or small page
5687 * @from: mem_cgroup which the page is moved from.
5688 * @to: mem_cgroup which the page is moved to. @from != @to.
5689 *
5690 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5691 *
5692 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5693 * from old cgroup.
5694 */
5695static int mem_cgroup_move_account(struct page *page,
5696 bool compound,
5697 struct mem_cgroup *from,
5698 struct mem_cgroup *to)
5699{
5700 struct folio *folio = page_folio(page);
5701 struct lruvec *from_vec, *to_vec;
5702 struct pglist_data *pgdat;
5703 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5704 int nid, ret;
5705
5706 VM_BUG_ON(from == to);
5707 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5708 VM_BUG_ON(compound && !folio_test_large(folio));
5709
5710 /*
5711 * Prevent mem_cgroup_migrate() from looking at
5712 * page's memory cgroup of its source page while we change it.
5713 */
5714 ret = -EBUSY;
5715 if (!folio_trylock(folio))
5716 goto out;
5717
5718 ret = -EINVAL;
5719 if (folio_memcg(folio) != from)
5720 goto out_unlock;
5721
5722 pgdat = folio_pgdat(folio);
5723 from_vec = mem_cgroup_lruvec(from, pgdat);
5724 to_vec = mem_cgroup_lruvec(to, pgdat);
5725
5726 folio_memcg_lock(folio);
5727
5728 if (folio_test_anon(folio)) {
5729 if (folio_mapped(folio)) {
5730 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5731 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5732 if (folio_test_transhuge(folio)) {
5733 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5734 -nr_pages);
5735 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5736 nr_pages);
5737 }
5738 }
5739 } else {
5740 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5741 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5742
5743 if (folio_test_swapbacked(folio)) {
5744 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5745 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5746 }
5747
5748 if (folio_mapped(folio)) {
5749 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5750 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5751 }
5752
5753 if (folio_test_dirty(folio)) {
5754 struct address_space *mapping = folio_mapping(folio);
5755
5756 if (mapping_can_writeback(mapping)) {
5757 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5758 -nr_pages);
5759 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5760 nr_pages);
5761 }
5762 }
5763 }
5764
5765#ifdef CONFIG_SWAP
5766 if (folio_test_swapcache(folio)) {
5767 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5768 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5769 }
5770#endif
5771 if (folio_test_writeback(folio)) {
5772 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5773 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5774 }
5775
5776 /*
5777 * All state has been migrated, let's switch to the new memcg.
5778 *
5779 * It is safe to change page's memcg here because the page
5780 * is referenced, charged, isolated, and locked: we can't race
5781 * with (un)charging, migration, LRU putback, or anything else
5782 * that would rely on a stable page's memory cgroup.
5783 *
5784 * Note that lock_page_memcg is a memcg lock, not a page lock,
5785 * to save space. As soon as we switch page's memory cgroup to a
5786 * new memcg that isn't locked, the above state can change
5787 * concurrently again. Make sure we're truly done with it.
5788 */
5789 smp_mb();
5790
5791 css_get(&to->css);
5792 css_put(&from->css);
5793
5794 folio->memcg_data = (unsigned long)to;
5795
5796 __folio_memcg_unlock(from);
5797
5798 ret = 0;
5799 nid = folio_nid(folio);
5800
5801 local_irq_disable();
5802 mem_cgroup_charge_statistics(to, nr_pages);
5803 memcg_check_events(to, nid);
5804 mem_cgroup_charge_statistics(from, -nr_pages);
5805 memcg_check_events(from, nid);
5806 local_irq_enable();
5807out_unlock:
5808 folio_unlock(folio);
5809out:
5810 return ret;
5811}
5812
5813/**
5814 * get_mctgt_type - get target type of moving charge
5815 * @vma: the vma the pte to be checked belongs
5816 * @addr: the address corresponding to the pte to be checked
5817 * @ptent: the pte to be checked
5818 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5819 *
5820 * Returns
5821 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5822 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5823 * move charge. if @target is not NULL, the page is stored in target->page
5824 * with extra refcnt got(Callers should handle it).
5825 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5826 * target for charge migration. if @target is not NULL, the entry is stored
5827 * in target->ent.
5828 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5829 * thus not on the lru.
5830 * For now we such page is charge like a regular page would be as for all
5831 * intent and purposes it is just special memory taking the place of a
5832 * regular page.
5833 *
5834 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5835 *
5836 * Called with pte lock held.
5837 */
5838
5839static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5840 unsigned long addr, pte_t ptent, union mc_target *target)
5841{
5842 struct page *page = NULL;
5843 enum mc_target_type ret = MC_TARGET_NONE;
5844 swp_entry_t ent = { .val = 0 };
5845
5846 if (pte_present(ptent))
5847 page = mc_handle_present_pte(vma, addr, ptent);
5848 else if (pte_none_mostly(ptent))
5849 /*
5850 * PTE markers should be treated as a none pte here, separated
5851 * from other swap handling below.
5852 */
5853 page = mc_handle_file_pte(vma, addr, ptent);
5854 else if (is_swap_pte(ptent))
5855 page = mc_handle_swap_pte(vma, ptent, &ent);
5856
5857 if (!page && !ent.val)
5858 return ret;
5859 if (page) {
5860 /*
5861 * Do only loose check w/o serialization.
5862 * mem_cgroup_move_account() checks the page is valid or
5863 * not under LRU exclusion.
5864 */
5865 if (page_memcg(page) == mc.from) {
5866 ret = MC_TARGET_PAGE;
5867 if (is_device_private_page(page) ||
5868 is_device_coherent_page(page))
5869 ret = MC_TARGET_DEVICE;
5870 if (target)
5871 target->page = page;
5872 }
5873 if (!ret || !target)
5874 put_page(page);
5875 }
5876 /*
5877 * There is a swap entry and a page doesn't exist or isn't charged.
5878 * But we cannot move a tail-page in a THP.
5879 */
5880 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5881 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5882 ret = MC_TARGET_SWAP;
5883 if (target)
5884 target->ent = ent;
5885 }
5886 return ret;
5887}
5888
5889#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5890/*
5891 * We don't consider PMD mapped swapping or file mapped pages because THP does
5892 * not support them for now.
5893 * Caller should make sure that pmd_trans_huge(pmd) is true.
5894 */
5895static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5896 unsigned long addr, pmd_t pmd, union mc_target *target)
5897{
5898 struct page *page = NULL;
5899 enum mc_target_type ret = MC_TARGET_NONE;
5900
5901 if (unlikely(is_swap_pmd(pmd))) {
5902 VM_BUG_ON(thp_migration_supported() &&
5903 !is_pmd_migration_entry(pmd));
5904 return ret;
5905 }
5906 page = pmd_page(pmd);
5907 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5908 if (!(mc.flags & MOVE_ANON))
5909 return ret;
5910 if (page_memcg(page) == mc.from) {
5911 ret = MC_TARGET_PAGE;
5912 if (target) {
5913 get_page(page);
5914 target->page = page;
5915 }
5916 }
5917 return ret;
5918}
5919#else
5920static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5921 unsigned long addr, pmd_t pmd, union mc_target *target)
5922{
5923 return MC_TARGET_NONE;
5924}
5925#endif
5926
5927static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5928 unsigned long addr, unsigned long end,
5929 struct mm_walk *walk)
5930{
5931 struct vm_area_struct *vma = walk->vma;
5932 pte_t *pte;
5933 spinlock_t *ptl;
5934
5935 ptl = pmd_trans_huge_lock(pmd, vma);
5936 if (ptl) {
5937 /*
5938 * Note their can not be MC_TARGET_DEVICE for now as we do not
5939 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5940 * this might change.
5941 */
5942 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5943 mc.precharge += HPAGE_PMD_NR;
5944 spin_unlock(ptl);
5945 return 0;
5946 }
5947
5948 if (pmd_trans_unstable(pmd))
5949 return 0;
5950 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5951 for (; addr != end; pte++, addr += PAGE_SIZE)
5952 if (get_mctgt_type(vma, addr, *pte, NULL))
5953 mc.precharge++; /* increment precharge temporarily */
5954 pte_unmap_unlock(pte - 1, ptl);
5955 cond_resched();
5956
5957 return 0;
5958}
5959
5960static const struct mm_walk_ops precharge_walk_ops = {
5961 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5962};
5963
5964static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5965{
5966 unsigned long precharge;
5967
5968 mmap_read_lock(mm);
5969 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
5970 mmap_read_unlock(mm);
5971
5972 precharge = mc.precharge;
5973 mc.precharge = 0;
5974
5975 return precharge;
5976}
5977
5978static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5979{
5980 unsigned long precharge = mem_cgroup_count_precharge(mm);
5981
5982 VM_BUG_ON(mc.moving_task);
5983 mc.moving_task = current;
5984 return mem_cgroup_do_precharge(precharge);
5985}
5986
5987/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5988static void __mem_cgroup_clear_mc(void)
5989{
5990 struct mem_cgroup *from = mc.from;
5991 struct mem_cgroup *to = mc.to;
5992
5993 /* we must uncharge all the leftover precharges from mc.to */
5994 if (mc.precharge) {
5995 cancel_charge(mc.to, mc.precharge);
5996 mc.precharge = 0;
5997 }
5998 /*
5999 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6000 * we must uncharge here.
6001 */
6002 if (mc.moved_charge) {
6003 cancel_charge(mc.from, mc.moved_charge);
6004 mc.moved_charge = 0;
6005 }
6006 /* we must fixup refcnts and charges */
6007 if (mc.moved_swap) {
6008 /* uncharge swap account from the old cgroup */
6009 if (!mem_cgroup_is_root(mc.from))
6010 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6011
6012 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6013
6014 /*
6015 * we charged both to->memory and to->memsw, so we
6016 * should uncharge to->memory.
6017 */
6018 if (!mem_cgroup_is_root(mc.to))
6019 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6020
6021 mc.moved_swap = 0;
6022 }
6023 memcg_oom_recover(from);
6024 memcg_oom_recover(to);
6025 wake_up_all(&mc.waitq);
6026}
6027
6028static void mem_cgroup_clear_mc(void)
6029{
6030 struct mm_struct *mm = mc.mm;
6031
6032 /*
6033 * we must clear moving_task before waking up waiters at the end of
6034 * task migration.
6035 */
6036 mc.moving_task = NULL;
6037 __mem_cgroup_clear_mc();
6038 spin_lock(&mc.lock);
6039 mc.from = NULL;
6040 mc.to = NULL;
6041 mc.mm = NULL;
6042 spin_unlock(&mc.lock);
6043
6044 mmput(mm);
6045}
6046
6047static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6048{
6049 struct cgroup_subsys_state *css;
6050 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6051 struct mem_cgroup *from;
6052 struct task_struct *leader, *p;
6053 struct mm_struct *mm;
6054 unsigned long move_flags;
6055 int ret = 0;
6056
6057 /* charge immigration isn't supported on the default hierarchy */
6058 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6059 return 0;
6060
6061 /*
6062 * Multi-process migrations only happen on the default hierarchy
6063 * where charge immigration is not used. Perform charge
6064 * immigration if @tset contains a leader and whine if there are
6065 * multiple.
6066 */
6067 p = NULL;
6068 cgroup_taskset_for_each_leader(leader, css, tset) {
6069 WARN_ON_ONCE(p);
6070 p = leader;
6071 memcg = mem_cgroup_from_css(css);
6072 }
6073 if (!p)
6074 return 0;
6075
6076 /*
6077 * We are now committed to this value whatever it is. Changes in this
6078 * tunable will only affect upcoming migrations, not the current one.
6079 * So we need to save it, and keep it going.
6080 */
6081 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6082 if (!move_flags)
6083 return 0;
6084
6085 from = mem_cgroup_from_task(p);
6086
6087 VM_BUG_ON(from == memcg);
6088
6089 mm = get_task_mm(p);
6090 if (!mm)
6091 return 0;
6092 /* We move charges only when we move a owner of the mm */
6093 if (mm->owner == p) {
6094 VM_BUG_ON(mc.from);
6095 VM_BUG_ON(mc.to);
6096 VM_BUG_ON(mc.precharge);
6097 VM_BUG_ON(mc.moved_charge);
6098 VM_BUG_ON(mc.moved_swap);
6099
6100 spin_lock(&mc.lock);
6101 mc.mm = mm;
6102 mc.from = from;
6103 mc.to = memcg;
6104 mc.flags = move_flags;
6105 spin_unlock(&mc.lock);
6106 /* We set mc.moving_task later */
6107
6108 ret = mem_cgroup_precharge_mc(mm);
6109 if (ret)
6110 mem_cgroup_clear_mc();
6111 } else {
6112 mmput(mm);
6113 }
6114 return ret;
6115}
6116
6117static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6118{
6119 if (mc.to)
6120 mem_cgroup_clear_mc();
6121}
6122
6123static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6124 unsigned long addr, unsigned long end,
6125 struct mm_walk *walk)
6126{
6127 int ret = 0;
6128 struct vm_area_struct *vma = walk->vma;
6129 pte_t *pte;
6130 spinlock_t *ptl;
6131 enum mc_target_type target_type;
6132 union mc_target target;
6133 struct page *page;
6134
6135 ptl = pmd_trans_huge_lock(pmd, vma);
6136 if (ptl) {
6137 if (mc.precharge < HPAGE_PMD_NR) {
6138 spin_unlock(ptl);
6139 return 0;
6140 }
6141 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6142 if (target_type == MC_TARGET_PAGE) {
6143 page = target.page;
6144 if (!isolate_lru_page(page)) {
6145 if (!mem_cgroup_move_account(page, true,
6146 mc.from, mc.to)) {
6147 mc.precharge -= HPAGE_PMD_NR;
6148 mc.moved_charge += HPAGE_PMD_NR;
6149 }
6150 putback_lru_page(page);
6151 }
6152 put_page(page);
6153 } else if (target_type == MC_TARGET_DEVICE) {
6154 page = target.page;
6155 if (!mem_cgroup_move_account(page, true,
6156 mc.from, mc.to)) {
6157 mc.precharge -= HPAGE_PMD_NR;
6158 mc.moved_charge += HPAGE_PMD_NR;
6159 }
6160 put_page(page);
6161 }
6162 spin_unlock(ptl);
6163 return 0;
6164 }
6165
6166 if (pmd_trans_unstable(pmd))
6167 return 0;
6168retry:
6169 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6170 for (; addr != end; addr += PAGE_SIZE) {
6171 pte_t ptent = *(pte++);
6172 bool device = false;
6173 swp_entry_t ent;
6174
6175 if (!mc.precharge)
6176 break;
6177
6178 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6179 case MC_TARGET_DEVICE:
6180 device = true;
6181 fallthrough;
6182 case MC_TARGET_PAGE:
6183 page = target.page;
6184 /*
6185 * We can have a part of the split pmd here. Moving it
6186 * can be done but it would be too convoluted so simply
6187 * ignore such a partial THP and keep it in original
6188 * memcg. There should be somebody mapping the head.
6189 */
6190 if (PageTransCompound(page))
6191 goto put;
6192 if (!device && isolate_lru_page(page))
6193 goto put;
6194 if (!mem_cgroup_move_account(page, false,
6195 mc.from, mc.to)) {
6196 mc.precharge--;
6197 /* we uncharge from mc.from later. */
6198 mc.moved_charge++;
6199 }
6200 if (!device)
6201 putback_lru_page(page);
6202put: /* get_mctgt_type() gets the page */
6203 put_page(page);
6204 break;
6205 case MC_TARGET_SWAP:
6206 ent = target.ent;
6207 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6208 mc.precharge--;
6209 mem_cgroup_id_get_many(mc.to, 1);
6210 /* we fixup other refcnts and charges later. */
6211 mc.moved_swap++;
6212 }
6213 break;
6214 default:
6215 break;
6216 }
6217 }
6218 pte_unmap_unlock(pte - 1, ptl);
6219 cond_resched();
6220
6221 if (addr != end) {
6222 /*
6223 * We have consumed all precharges we got in can_attach().
6224 * We try charge one by one, but don't do any additional
6225 * charges to mc.to if we have failed in charge once in attach()
6226 * phase.
6227 */
6228 ret = mem_cgroup_do_precharge(1);
6229 if (!ret)
6230 goto retry;
6231 }
6232
6233 return ret;
6234}
6235
6236static const struct mm_walk_ops charge_walk_ops = {
6237 .pmd_entry = mem_cgroup_move_charge_pte_range,
6238};
6239
6240static void mem_cgroup_move_charge(void)
6241{
6242 lru_add_drain_all();
6243 /*
6244 * Signal lock_page_memcg() to take the memcg's move_lock
6245 * while we're moving its pages to another memcg. Then wait
6246 * for already started RCU-only updates to finish.
6247 */
6248 atomic_inc(&mc.from->moving_account);
6249 synchronize_rcu();
6250retry:
6251 if (unlikely(!mmap_read_trylock(mc.mm))) {
6252 /*
6253 * Someone who are holding the mmap_lock might be waiting in
6254 * waitq. So we cancel all extra charges, wake up all waiters,
6255 * and retry. Because we cancel precharges, we might not be able
6256 * to move enough charges, but moving charge is a best-effort
6257 * feature anyway, so it wouldn't be a big problem.
6258 */
6259 __mem_cgroup_clear_mc();
6260 cond_resched();
6261 goto retry;
6262 }
6263 /*
6264 * When we have consumed all precharges and failed in doing
6265 * additional charge, the page walk just aborts.
6266 */
6267 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6268 mmap_read_unlock(mc.mm);
6269 atomic_dec(&mc.from->moving_account);
6270}
6271
6272static void mem_cgroup_move_task(void)
6273{
6274 if (mc.to) {
6275 mem_cgroup_move_charge();
6276 mem_cgroup_clear_mc();
6277 }
6278}
6279#else /* !CONFIG_MMU */
6280static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6281{
6282 return 0;
6283}
6284static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6285{
6286}
6287static void mem_cgroup_move_task(void)
6288{
6289}
6290#endif
6291
6292#ifdef CONFIG_LRU_GEN
6293static void mem_cgroup_attach(struct cgroup_taskset *tset)
6294{
6295 struct task_struct *task;
6296 struct cgroup_subsys_state *css;
6297
6298 /* find the first leader if there is any */
6299 cgroup_taskset_for_each_leader(task, css, tset)
6300 break;
6301
6302 if (!task)
6303 return;
6304
6305 task_lock(task);
6306 if (task->mm && READ_ONCE(task->mm->owner) == task)
6307 lru_gen_migrate_mm(task->mm);
6308 task_unlock(task);
6309}
6310#else
6311static void mem_cgroup_attach(struct cgroup_taskset *tset)
6312{
6313}
6314#endif /* CONFIG_LRU_GEN */
6315
6316static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6317{
6318 if (value == PAGE_COUNTER_MAX)
6319 seq_puts(m, "max\n");
6320 else
6321 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6322
6323 return 0;
6324}
6325
6326static u64 memory_current_read(struct cgroup_subsys_state *css,
6327 struct cftype *cft)
6328{
6329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6330
6331 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6332}
6333
6334static u64 memory_peak_read(struct cgroup_subsys_state *css,
6335 struct cftype *cft)
6336{
6337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6338
6339 return (u64)memcg->memory.watermark * PAGE_SIZE;
6340}
6341
6342static int memory_min_show(struct seq_file *m, void *v)
6343{
6344 return seq_puts_memcg_tunable(m,
6345 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6346}
6347
6348static ssize_t memory_min_write(struct kernfs_open_file *of,
6349 char *buf, size_t nbytes, loff_t off)
6350{
6351 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6352 unsigned long min;
6353 int err;
6354
6355 buf = strstrip(buf);
6356 err = page_counter_memparse(buf, "max", &min);
6357 if (err)
6358 return err;
6359
6360 page_counter_set_min(&memcg->memory, min);
6361
6362 return nbytes;
6363}
6364
6365static int memory_low_show(struct seq_file *m, void *v)
6366{
6367 return seq_puts_memcg_tunable(m,
6368 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6369}
6370
6371static ssize_t memory_low_write(struct kernfs_open_file *of,
6372 char *buf, size_t nbytes, loff_t off)
6373{
6374 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6375 unsigned long low;
6376 int err;
6377
6378 buf = strstrip(buf);
6379 err = page_counter_memparse(buf, "max", &low);
6380 if (err)
6381 return err;
6382
6383 page_counter_set_low(&memcg->memory, low);
6384
6385 return nbytes;
6386}
6387
6388static int memory_high_show(struct seq_file *m, void *v)
6389{
6390 return seq_puts_memcg_tunable(m,
6391 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6392}
6393
6394static ssize_t memory_high_write(struct kernfs_open_file *of,
6395 char *buf, size_t nbytes, loff_t off)
6396{
6397 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6398 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6399 bool drained = false;
6400 unsigned long high;
6401 int err;
6402
6403 buf = strstrip(buf);
6404 err = page_counter_memparse(buf, "max", &high);
6405 if (err)
6406 return err;
6407
6408 page_counter_set_high(&memcg->memory, high);
6409
6410 for (;;) {
6411 unsigned long nr_pages = page_counter_read(&memcg->memory);
6412 unsigned long reclaimed;
6413
6414 if (nr_pages <= high)
6415 break;
6416
6417 if (signal_pending(current))
6418 break;
6419
6420 if (!drained) {
6421 drain_all_stock(memcg);
6422 drained = true;
6423 continue;
6424 }
6425
6426 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6427 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6428
6429 if (!reclaimed && !nr_retries--)
6430 break;
6431 }
6432
6433 memcg_wb_domain_size_changed(memcg);
6434 return nbytes;
6435}
6436
6437static int memory_max_show(struct seq_file *m, void *v)
6438{
6439 return seq_puts_memcg_tunable(m,
6440 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6441}
6442
6443static ssize_t memory_max_write(struct kernfs_open_file *of,
6444 char *buf, size_t nbytes, loff_t off)
6445{
6446 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6447 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6448 bool drained = false;
6449 unsigned long max;
6450 int err;
6451
6452 buf = strstrip(buf);
6453 err = page_counter_memparse(buf, "max", &max);
6454 if (err)
6455 return err;
6456
6457 xchg(&memcg->memory.max, max);
6458
6459 for (;;) {
6460 unsigned long nr_pages = page_counter_read(&memcg->memory);
6461
6462 if (nr_pages <= max)
6463 break;
6464
6465 if (signal_pending(current))
6466 break;
6467
6468 if (!drained) {
6469 drain_all_stock(memcg);
6470 drained = true;
6471 continue;
6472 }
6473
6474 if (nr_reclaims) {
6475 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6476 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6477 nr_reclaims--;
6478 continue;
6479 }
6480
6481 memcg_memory_event(memcg, MEMCG_OOM);
6482 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6483 break;
6484 }
6485
6486 memcg_wb_domain_size_changed(memcg);
6487 return nbytes;
6488}
6489
6490static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6491{
6492 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6493 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6494 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6495 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6496 seq_printf(m, "oom_kill %lu\n",
6497 atomic_long_read(&events[MEMCG_OOM_KILL]));
6498 seq_printf(m, "oom_group_kill %lu\n",
6499 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6500}
6501
6502static int memory_events_show(struct seq_file *m, void *v)
6503{
6504 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6505
6506 __memory_events_show(m, memcg->memory_events);
6507 return 0;
6508}
6509
6510static int memory_events_local_show(struct seq_file *m, void *v)
6511{
6512 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6513
6514 __memory_events_show(m, memcg->memory_events_local);
6515 return 0;
6516}
6517
6518static int memory_stat_show(struct seq_file *m, void *v)
6519{
6520 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6521 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6522
6523 if (!buf)
6524 return -ENOMEM;
6525 memory_stat_format(memcg, buf, PAGE_SIZE);
6526 seq_puts(m, buf);
6527 kfree(buf);
6528 return 0;
6529}
6530
6531#ifdef CONFIG_NUMA
6532static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6533 int item)
6534{
6535 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6536}
6537
6538static int memory_numa_stat_show(struct seq_file *m, void *v)
6539{
6540 int i;
6541 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6542
6543 mem_cgroup_flush_stats();
6544
6545 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6546 int nid;
6547
6548 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6549 continue;
6550
6551 seq_printf(m, "%s", memory_stats[i].name);
6552 for_each_node_state(nid, N_MEMORY) {
6553 u64 size;
6554 struct lruvec *lruvec;
6555
6556 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6557 size = lruvec_page_state_output(lruvec,
6558 memory_stats[i].idx);
6559 seq_printf(m, " N%d=%llu", nid, size);
6560 }
6561 seq_putc(m, '\n');
6562 }
6563
6564 return 0;
6565}
6566#endif
6567
6568static int memory_oom_group_show(struct seq_file *m, void *v)
6569{
6570 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6571
6572 seq_printf(m, "%d\n", memcg->oom_group);
6573
6574 return 0;
6575}
6576
6577static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6578 char *buf, size_t nbytes, loff_t off)
6579{
6580 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6581 int ret, oom_group;
6582
6583 buf = strstrip(buf);
6584 if (!buf)
6585 return -EINVAL;
6586
6587 ret = kstrtoint(buf, 0, &oom_group);
6588 if (ret)
6589 return ret;
6590
6591 if (oom_group != 0 && oom_group != 1)
6592 return -EINVAL;
6593
6594 memcg->oom_group = oom_group;
6595
6596 return nbytes;
6597}
6598
6599static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6600 size_t nbytes, loff_t off)
6601{
6602 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6603 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6604 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6605 unsigned int reclaim_options;
6606 int err;
6607
6608 buf = strstrip(buf);
6609 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6610 if (err)
6611 return err;
6612
6613 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6614 while (nr_reclaimed < nr_to_reclaim) {
6615 unsigned long reclaimed;
6616
6617 if (signal_pending(current))
6618 return -EINTR;
6619
6620 /*
6621 * This is the final attempt, drain percpu lru caches in the
6622 * hope of introducing more evictable pages for
6623 * try_to_free_mem_cgroup_pages().
6624 */
6625 if (!nr_retries)
6626 lru_add_drain_all();
6627
6628 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6629 nr_to_reclaim - nr_reclaimed,
6630 GFP_KERNEL, reclaim_options);
6631
6632 if (!reclaimed && !nr_retries--)
6633 return -EAGAIN;
6634
6635 nr_reclaimed += reclaimed;
6636 }
6637
6638 return nbytes;
6639}
6640
6641static struct cftype memory_files[] = {
6642 {
6643 .name = "current",
6644 .flags = CFTYPE_NOT_ON_ROOT,
6645 .read_u64 = memory_current_read,
6646 },
6647 {
6648 .name = "peak",
6649 .flags = CFTYPE_NOT_ON_ROOT,
6650 .read_u64 = memory_peak_read,
6651 },
6652 {
6653 .name = "min",
6654 .flags = CFTYPE_NOT_ON_ROOT,
6655 .seq_show = memory_min_show,
6656 .write = memory_min_write,
6657 },
6658 {
6659 .name = "low",
6660 .flags = CFTYPE_NOT_ON_ROOT,
6661 .seq_show = memory_low_show,
6662 .write = memory_low_write,
6663 },
6664 {
6665 .name = "high",
6666 .flags = CFTYPE_NOT_ON_ROOT,
6667 .seq_show = memory_high_show,
6668 .write = memory_high_write,
6669 },
6670 {
6671 .name = "max",
6672 .flags = CFTYPE_NOT_ON_ROOT,
6673 .seq_show = memory_max_show,
6674 .write = memory_max_write,
6675 },
6676 {
6677 .name = "events",
6678 .flags = CFTYPE_NOT_ON_ROOT,
6679 .file_offset = offsetof(struct mem_cgroup, events_file),
6680 .seq_show = memory_events_show,
6681 },
6682 {
6683 .name = "events.local",
6684 .flags = CFTYPE_NOT_ON_ROOT,
6685 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6686 .seq_show = memory_events_local_show,
6687 },
6688 {
6689 .name = "stat",
6690 .seq_show = memory_stat_show,
6691 },
6692#ifdef CONFIG_NUMA
6693 {
6694 .name = "numa_stat",
6695 .seq_show = memory_numa_stat_show,
6696 },
6697#endif
6698 {
6699 .name = "oom.group",
6700 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6701 .seq_show = memory_oom_group_show,
6702 .write = memory_oom_group_write,
6703 },
6704 {
6705 .name = "reclaim",
6706 .flags = CFTYPE_NS_DELEGATABLE,
6707 .write = memory_reclaim,
6708 },
6709 { } /* terminate */
6710};
6711
6712struct cgroup_subsys memory_cgrp_subsys = {
6713 .css_alloc = mem_cgroup_css_alloc,
6714 .css_online = mem_cgroup_css_online,
6715 .css_offline = mem_cgroup_css_offline,
6716 .css_released = mem_cgroup_css_released,
6717 .css_free = mem_cgroup_css_free,
6718 .css_reset = mem_cgroup_css_reset,
6719 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6720 .can_attach = mem_cgroup_can_attach,
6721 .attach = mem_cgroup_attach,
6722 .cancel_attach = mem_cgroup_cancel_attach,
6723 .post_attach = mem_cgroup_move_task,
6724 .dfl_cftypes = memory_files,
6725 .legacy_cftypes = mem_cgroup_legacy_files,
6726 .early_init = 0,
6727};
6728
6729/*
6730 * This function calculates an individual cgroup's effective
6731 * protection which is derived from its own memory.min/low, its
6732 * parent's and siblings' settings, as well as the actual memory
6733 * distribution in the tree.
6734 *
6735 * The following rules apply to the effective protection values:
6736 *
6737 * 1. At the first level of reclaim, effective protection is equal to
6738 * the declared protection in memory.min and memory.low.
6739 *
6740 * 2. To enable safe delegation of the protection configuration, at
6741 * subsequent levels the effective protection is capped to the
6742 * parent's effective protection.
6743 *
6744 * 3. To make complex and dynamic subtrees easier to configure, the
6745 * user is allowed to overcommit the declared protection at a given
6746 * level. If that is the case, the parent's effective protection is
6747 * distributed to the children in proportion to how much protection
6748 * they have declared and how much of it they are utilizing.
6749 *
6750 * This makes distribution proportional, but also work-conserving:
6751 * if one cgroup claims much more protection than it uses memory,
6752 * the unused remainder is available to its siblings.
6753 *
6754 * 4. Conversely, when the declared protection is undercommitted at a
6755 * given level, the distribution of the larger parental protection
6756 * budget is NOT proportional. A cgroup's protection from a sibling
6757 * is capped to its own memory.min/low setting.
6758 *
6759 * 5. However, to allow protecting recursive subtrees from each other
6760 * without having to declare each individual cgroup's fixed share
6761 * of the ancestor's claim to protection, any unutilized -
6762 * "floating" - protection from up the tree is distributed in
6763 * proportion to each cgroup's *usage*. This makes the protection
6764 * neutral wrt sibling cgroups and lets them compete freely over
6765 * the shared parental protection budget, but it protects the
6766 * subtree as a whole from neighboring subtrees.
6767 *
6768 * Note that 4. and 5. are not in conflict: 4. is about protecting
6769 * against immediate siblings whereas 5. is about protecting against
6770 * neighboring subtrees.
6771 */
6772static unsigned long effective_protection(unsigned long usage,
6773 unsigned long parent_usage,
6774 unsigned long setting,
6775 unsigned long parent_effective,
6776 unsigned long siblings_protected)
6777{
6778 unsigned long protected;
6779 unsigned long ep;
6780
6781 protected = min(usage, setting);
6782 /*
6783 * If all cgroups at this level combined claim and use more
6784 * protection then what the parent affords them, distribute
6785 * shares in proportion to utilization.
6786 *
6787 * We are using actual utilization rather than the statically
6788 * claimed protection in order to be work-conserving: claimed
6789 * but unused protection is available to siblings that would
6790 * otherwise get a smaller chunk than what they claimed.
6791 */
6792 if (siblings_protected > parent_effective)
6793 return protected * parent_effective / siblings_protected;
6794
6795 /*
6796 * Ok, utilized protection of all children is within what the
6797 * parent affords them, so we know whatever this child claims
6798 * and utilizes is effectively protected.
6799 *
6800 * If there is unprotected usage beyond this value, reclaim
6801 * will apply pressure in proportion to that amount.
6802 *
6803 * If there is unutilized protection, the cgroup will be fully
6804 * shielded from reclaim, but we do return a smaller value for
6805 * protection than what the group could enjoy in theory. This
6806 * is okay. With the overcommit distribution above, effective
6807 * protection is always dependent on how memory is actually
6808 * consumed among the siblings anyway.
6809 */
6810 ep = protected;
6811
6812 /*
6813 * If the children aren't claiming (all of) the protection
6814 * afforded to them by the parent, distribute the remainder in
6815 * proportion to the (unprotected) memory of each cgroup. That
6816 * way, cgroups that aren't explicitly prioritized wrt each
6817 * other compete freely over the allowance, but they are
6818 * collectively protected from neighboring trees.
6819 *
6820 * We're using unprotected memory for the weight so that if
6821 * some cgroups DO claim explicit protection, we don't protect
6822 * the same bytes twice.
6823 *
6824 * Check both usage and parent_usage against the respective
6825 * protected values. One should imply the other, but they
6826 * aren't read atomically - make sure the division is sane.
6827 */
6828 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6829 return ep;
6830 if (parent_effective > siblings_protected &&
6831 parent_usage > siblings_protected &&
6832 usage > protected) {
6833 unsigned long unclaimed;
6834
6835 unclaimed = parent_effective - siblings_protected;
6836 unclaimed *= usage - protected;
6837 unclaimed /= parent_usage - siblings_protected;
6838
6839 ep += unclaimed;
6840 }
6841
6842 return ep;
6843}
6844
6845/**
6846 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6847 * @root: the top ancestor of the sub-tree being checked
6848 * @memcg: the memory cgroup to check
6849 *
6850 * WARNING: This function is not stateless! It can only be used as part
6851 * of a top-down tree iteration, not for isolated queries.
6852 */
6853void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6854 struct mem_cgroup *memcg)
6855{
6856 unsigned long usage, parent_usage;
6857 struct mem_cgroup *parent;
6858
6859 if (mem_cgroup_disabled())
6860 return;
6861
6862 if (!root)
6863 root = root_mem_cgroup;
6864
6865 /*
6866 * Effective values of the reclaim targets are ignored so they
6867 * can be stale. Have a look at mem_cgroup_protection for more
6868 * details.
6869 * TODO: calculation should be more robust so that we do not need
6870 * that special casing.
6871 */
6872 if (memcg == root)
6873 return;
6874
6875 usage = page_counter_read(&memcg->memory);
6876 if (!usage)
6877 return;
6878
6879 parent = parent_mem_cgroup(memcg);
6880
6881 if (parent == root) {
6882 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6883 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6884 return;
6885 }
6886
6887 parent_usage = page_counter_read(&parent->memory);
6888
6889 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6890 READ_ONCE(memcg->memory.min),
6891 READ_ONCE(parent->memory.emin),
6892 atomic_long_read(&parent->memory.children_min_usage)));
6893
6894 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6895 READ_ONCE(memcg->memory.low),
6896 READ_ONCE(parent->memory.elow),
6897 atomic_long_read(&parent->memory.children_low_usage)));
6898}
6899
6900static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6901 gfp_t gfp)
6902{
6903 long nr_pages = folio_nr_pages(folio);
6904 int ret;
6905
6906 ret = try_charge(memcg, gfp, nr_pages);
6907 if (ret)
6908 goto out;
6909
6910 css_get(&memcg->css);
6911 commit_charge(folio, memcg);
6912
6913 local_irq_disable();
6914 mem_cgroup_charge_statistics(memcg, nr_pages);
6915 memcg_check_events(memcg, folio_nid(folio));
6916 local_irq_enable();
6917out:
6918 return ret;
6919}
6920
6921int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6922{
6923 struct mem_cgroup *memcg;
6924 int ret;
6925
6926 memcg = get_mem_cgroup_from_mm(mm);
6927 ret = charge_memcg(folio, memcg, gfp);
6928 css_put(&memcg->css);
6929
6930 return ret;
6931}
6932
6933/**
6934 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6935 * @folio: folio to charge.
6936 * @mm: mm context of the victim
6937 * @gfp: reclaim mode
6938 * @entry: swap entry for which the folio is allocated
6939 *
6940 * This function charges a folio allocated for swapin. Please call this before
6941 * adding the folio to the swapcache.
6942 *
6943 * Returns 0 on success. Otherwise, an error code is returned.
6944 */
6945int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
6946 gfp_t gfp, swp_entry_t entry)
6947{
6948 struct mem_cgroup *memcg;
6949 unsigned short id;
6950 int ret;
6951
6952 if (mem_cgroup_disabled())
6953 return 0;
6954
6955 id = lookup_swap_cgroup_id(entry);
6956 rcu_read_lock();
6957 memcg = mem_cgroup_from_id(id);
6958 if (!memcg || !css_tryget_online(&memcg->css))
6959 memcg = get_mem_cgroup_from_mm(mm);
6960 rcu_read_unlock();
6961
6962 ret = charge_memcg(folio, memcg, gfp);
6963
6964 css_put(&memcg->css);
6965 return ret;
6966}
6967
6968/*
6969 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6970 * @entry: swap entry for which the page is charged
6971 *
6972 * Call this function after successfully adding the charged page to swapcache.
6973 *
6974 * Note: This function assumes the page for which swap slot is being uncharged
6975 * is order 0 page.
6976 */
6977void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6978{
6979 /*
6980 * Cgroup1's unified memory+swap counter has been charged with the
6981 * new swapcache page, finish the transfer by uncharging the swap
6982 * slot. The swap slot would also get uncharged when it dies, but
6983 * it can stick around indefinitely and we'd count the page twice
6984 * the entire time.
6985 *
6986 * Cgroup2 has separate resource counters for memory and swap,
6987 * so this is a non-issue here. Memory and swap charge lifetimes
6988 * correspond 1:1 to page and swap slot lifetimes: we charge the
6989 * page to memory here, and uncharge swap when the slot is freed.
6990 */
6991 if (!mem_cgroup_disabled() && do_memsw_account()) {
6992 /*
6993 * The swap entry might not get freed for a long time,
6994 * let's not wait for it. The page already received a
6995 * memory+swap charge, drop the swap entry duplicate.
6996 */
6997 mem_cgroup_uncharge_swap(entry, 1);
6998 }
6999}
7000
7001struct uncharge_gather {
7002 struct mem_cgroup *memcg;
7003 unsigned long nr_memory;
7004 unsigned long pgpgout;
7005 unsigned long nr_kmem;
7006 int nid;
7007};
7008
7009static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7010{
7011 memset(ug, 0, sizeof(*ug));
7012}
7013
7014static void uncharge_batch(const struct uncharge_gather *ug)
7015{
7016 unsigned long flags;
7017
7018 if (ug->nr_memory) {
7019 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7020 if (do_memsw_account())
7021 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7022 if (ug->nr_kmem)
7023 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7024 memcg_oom_recover(ug->memcg);
7025 }
7026
7027 local_irq_save(flags);
7028 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7029 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7030 memcg_check_events(ug->memcg, ug->nid);
7031 local_irq_restore(flags);
7032
7033 /* drop reference from uncharge_folio */
7034 css_put(&ug->memcg->css);
7035}
7036
7037static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7038{
7039 long nr_pages;
7040 struct mem_cgroup *memcg;
7041 struct obj_cgroup *objcg;
7042
7043 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7044
7045 /*
7046 * Nobody should be changing or seriously looking at
7047 * folio memcg or objcg at this point, we have fully
7048 * exclusive access to the folio.
7049 */
7050 if (folio_memcg_kmem(folio)) {
7051 objcg = __folio_objcg(folio);
7052 /*
7053 * This get matches the put at the end of the function and
7054 * kmem pages do not hold memcg references anymore.
7055 */
7056 memcg = get_mem_cgroup_from_objcg(objcg);
7057 } else {
7058 memcg = __folio_memcg(folio);
7059 }
7060
7061 if (!memcg)
7062 return;
7063
7064 if (ug->memcg != memcg) {
7065 if (ug->memcg) {
7066 uncharge_batch(ug);
7067 uncharge_gather_clear(ug);
7068 }
7069 ug->memcg = memcg;
7070 ug->nid = folio_nid(folio);
7071
7072 /* pairs with css_put in uncharge_batch */
7073 css_get(&memcg->css);
7074 }
7075
7076 nr_pages = folio_nr_pages(folio);
7077
7078 if (folio_memcg_kmem(folio)) {
7079 ug->nr_memory += nr_pages;
7080 ug->nr_kmem += nr_pages;
7081
7082 folio->memcg_data = 0;
7083 obj_cgroup_put(objcg);
7084 } else {
7085 /* LRU pages aren't accounted at the root level */
7086 if (!mem_cgroup_is_root(memcg))
7087 ug->nr_memory += nr_pages;
7088 ug->pgpgout++;
7089
7090 folio->memcg_data = 0;
7091 }
7092
7093 css_put(&memcg->css);
7094}
7095
7096void __mem_cgroup_uncharge(struct folio *folio)
7097{
7098 struct uncharge_gather ug;
7099
7100 /* Don't touch folio->lru of any random page, pre-check: */
7101 if (!folio_memcg(folio))
7102 return;
7103
7104 uncharge_gather_clear(&ug);
7105 uncharge_folio(folio, &ug);
7106 uncharge_batch(&ug);
7107}
7108
7109/**
7110 * __mem_cgroup_uncharge_list - uncharge a list of page
7111 * @page_list: list of pages to uncharge
7112 *
7113 * Uncharge a list of pages previously charged with
7114 * __mem_cgroup_charge().
7115 */
7116void __mem_cgroup_uncharge_list(struct list_head *page_list)
7117{
7118 struct uncharge_gather ug;
7119 struct folio *folio;
7120
7121 uncharge_gather_clear(&ug);
7122 list_for_each_entry(folio, page_list, lru)
7123 uncharge_folio(folio, &ug);
7124 if (ug.memcg)
7125 uncharge_batch(&ug);
7126}
7127
7128/**
7129 * mem_cgroup_migrate - Charge a folio's replacement.
7130 * @old: Currently circulating folio.
7131 * @new: Replacement folio.
7132 *
7133 * Charge @new as a replacement folio for @old. @old will
7134 * be uncharged upon free.
7135 *
7136 * Both folios must be locked, @new->mapping must be set up.
7137 */
7138void mem_cgroup_migrate(struct folio *old, struct folio *new)
7139{
7140 struct mem_cgroup *memcg;
7141 long nr_pages = folio_nr_pages(new);
7142 unsigned long flags;
7143
7144 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7145 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7146 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7147 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7148
7149 if (mem_cgroup_disabled())
7150 return;
7151
7152 /* Page cache replacement: new folio already charged? */
7153 if (folio_memcg(new))
7154 return;
7155
7156 memcg = folio_memcg(old);
7157 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7158 if (!memcg)
7159 return;
7160
7161 /* Force-charge the new page. The old one will be freed soon */
7162 if (!mem_cgroup_is_root(memcg)) {
7163 page_counter_charge(&memcg->memory, nr_pages);
7164 if (do_memsw_account())
7165 page_counter_charge(&memcg->memsw, nr_pages);
7166 }
7167
7168 css_get(&memcg->css);
7169 commit_charge(new, memcg);
7170
7171 local_irq_save(flags);
7172 mem_cgroup_charge_statistics(memcg, nr_pages);
7173 memcg_check_events(memcg, folio_nid(new));
7174 local_irq_restore(flags);
7175}
7176
7177DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7178EXPORT_SYMBOL(memcg_sockets_enabled_key);
7179
7180void mem_cgroup_sk_alloc(struct sock *sk)
7181{
7182 struct mem_cgroup *memcg;
7183
7184 if (!mem_cgroup_sockets_enabled)
7185 return;
7186
7187 /* Do not associate the sock with unrelated interrupted task's memcg. */
7188 if (!in_task())
7189 return;
7190
7191 rcu_read_lock();
7192 memcg = mem_cgroup_from_task(current);
7193 if (mem_cgroup_is_root(memcg))
7194 goto out;
7195 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7196 goto out;
7197 if (css_tryget(&memcg->css))
7198 sk->sk_memcg = memcg;
7199out:
7200 rcu_read_unlock();
7201}
7202
7203void mem_cgroup_sk_free(struct sock *sk)
7204{
7205 if (sk->sk_memcg)
7206 css_put(&sk->sk_memcg->css);
7207}
7208
7209/**
7210 * mem_cgroup_charge_skmem - charge socket memory
7211 * @memcg: memcg to charge
7212 * @nr_pages: number of pages to charge
7213 * @gfp_mask: reclaim mode
7214 *
7215 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7216 * @memcg's configured limit, %false if it doesn't.
7217 */
7218bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7219 gfp_t gfp_mask)
7220{
7221 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7222 struct page_counter *fail;
7223
7224 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7225 memcg->tcpmem_pressure = 0;
7226 return true;
7227 }
7228 memcg->tcpmem_pressure = 1;
7229 if (gfp_mask & __GFP_NOFAIL) {
7230 page_counter_charge(&memcg->tcpmem, nr_pages);
7231 return true;
7232 }
7233 return false;
7234 }
7235
7236 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7237 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7238 return true;
7239 }
7240
7241 return false;
7242}
7243
7244/**
7245 * mem_cgroup_uncharge_skmem - uncharge socket memory
7246 * @memcg: memcg to uncharge
7247 * @nr_pages: number of pages to uncharge
7248 */
7249void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7250{
7251 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7252 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7253 return;
7254 }
7255
7256 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7257
7258 refill_stock(memcg, nr_pages);
7259}
7260
7261static int __init cgroup_memory(char *s)
7262{
7263 char *token;
7264
7265 while ((token = strsep(&s, ",")) != NULL) {
7266 if (!*token)
7267 continue;
7268 if (!strcmp(token, "nosocket"))
7269 cgroup_memory_nosocket = true;
7270 if (!strcmp(token, "nokmem"))
7271 cgroup_memory_nokmem = true;
7272 }
7273 return 1;
7274}
7275__setup("cgroup.memory=", cgroup_memory);
7276
7277/*
7278 * subsys_initcall() for memory controller.
7279 *
7280 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7281 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7282 * basically everything that doesn't depend on a specific mem_cgroup structure
7283 * should be initialized from here.
7284 */
7285static int __init mem_cgroup_init(void)
7286{
7287 int cpu, node;
7288
7289 /*
7290 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7291 * used for per-memcg-per-cpu caching of per-node statistics. In order
7292 * to work fine, we should make sure that the overfill threshold can't
7293 * exceed S32_MAX / PAGE_SIZE.
7294 */
7295 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7296
7297 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7298 memcg_hotplug_cpu_dead);
7299
7300 for_each_possible_cpu(cpu)
7301 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7302 drain_local_stock);
7303
7304 for_each_node(node) {
7305 struct mem_cgroup_tree_per_node *rtpn;
7306
7307 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7308 node_online(node) ? node : NUMA_NO_NODE);
7309
7310 rtpn->rb_root = RB_ROOT;
7311 rtpn->rb_rightmost = NULL;
7312 spin_lock_init(&rtpn->lock);
7313 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7314 }
7315
7316 return 0;
7317}
7318subsys_initcall(mem_cgroup_init);
7319
7320#ifdef CONFIG_SWAP
7321static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7322{
7323 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7324 /*
7325 * The root cgroup cannot be destroyed, so it's refcount must
7326 * always be >= 1.
7327 */
7328 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7329 VM_BUG_ON(1);
7330 break;
7331 }
7332 memcg = parent_mem_cgroup(memcg);
7333 if (!memcg)
7334 memcg = root_mem_cgroup;
7335 }
7336 return memcg;
7337}
7338
7339/**
7340 * mem_cgroup_swapout - transfer a memsw charge to swap
7341 * @folio: folio whose memsw charge to transfer
7342 * @entry: swap entry to move the charge to
7343 *
7344 * Transfer the memsw charge of @folio to @entry.
7345 */
7346void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7347{
7348 struct mem_cgroup *memcg, *swap_memcg;
7349 unsigned int nr_entries;
7350 unsigned short oldid;
7351
7352 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7353 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7354
7355 if (mem_cgroup_disabled())
7356 return;
7357
7358 if (!do_memsw_account())
7359 return;
7360
7361 memcg = folio_memcg(folio);
7362
7363 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7364 if (!memcg)
7365 return;
7366
7367 /*
7368 * In case the memcg owning these pages has been offlined and doesn't
7369 * have an ID allocated to it anymore, charge the closest online
7370 * ancestor for the swap instead and transfer the memory+swap charge.
7371 */
7372 swap_memcg = mem_cgroup_id_get_online(memcg);
7373 nr_entries = folio_nr_pages(folio);
7374 /* Get references for the tail pages, too */
7375 if (nr_entries > 1)
7376 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7377 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7378 nr_entries);
7379 VM_BUG_ON_FOLIO(oldid, folio);
7380 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7381
7382 folio->memcg_data = 0;
7383
7384 if (!mem_cgroup_is_root(memcg))
7385 page_counter_uncharge(&memcg->memory, nr_entries);
7386
7387 if (memcg != swap_memcg) {
7388 if (!mem_cgroup_is_root(swap_memcg))
7389 page_counter_charge(&swap_memcg->memsw, nr_entries);
7390 page_counter_uncharge(&memcg->memsw, nr_entries);
7391 }
7392
7393 /*
7394 * Interrupts should be disabled here because the caller holds the
7395 * i_pages lock which is taken with interrupts-off. It is
7396 * important here to have the interrupts disabled because it is the
7397 * only synchronisation we have for updating the per-CPU variables.
7398 */
7399 memcg_stats_lock();
7400 mem_cgroup_charge_statistics(memcg, -nr_entries);
7401 memcg_stats_unlock();
7402 memcg_check_events(memcg, folio_nid(folio));
7403
7404 css_put(&memcg->css);
7405}
7406
7407/**
7408 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7409 * @folio: folio being added to swap
7410 * @entry: swap entry to charge
7411 *
7412 * Try to charge @folio's memcg for the swap space at @entry.
7413 *
7414 * Returns 0 on success, -ENOMEM on failure.
7415 */
7416int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7417{
7418 unsigned int nr_pages = folio_nr_pages(folio);
7419 struct page_counter *counter;
7420 struct mem_cgroup *memcg;
7421 unsigned short oldid;
7422
7423 if (do_memsw_account())
7424 return 0;
7425
7426 memcg = folio_memcg(folio);
7427
7428 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7429 if (!memcg)
7430 return 0;
7431
7432 if (!entry.val) {
7433 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7434 return 0;
7435 }
7436
7437 memcg = mem_cgroup_id_get_online(memcg);
7438
7439 if (!mem_cgroup_is_root(memcg) &&
7440 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7441 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7442 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7443 mem_cgroup_id_put(memcg);
7444 return -ENOMEM;
7445 }
7446
7447 /* Get references for the tail pages, too */
7448 if (nr_pages > 1)
7449 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7450 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7451 VM_BUG_ON_FOLIO(oldid, folio);
7452 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7453
7454 return 0;
7455}
7456
7457/**
7458 * __mem_cgroup_uncharge_swap - uncharge swap space
7459 * @entry: swap entry to uncharge
7460 * @nr_pages: the amount of swap space to uncharge
7461 */
7462void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7463{
7464 struct mem_cgroup *memcg;
7465 unsigned short id;
7466
7467 if (mem_cgroup_disabled())
7468 return;
7469
7470 id = swap_cgroup_record(entry, 0, nr_pages);
7471 rcu_read_lock();
7472 memcg = mem_cgroup_from_id(id);
7473 if (memcg) {
7474 if (!mem_cgroup_is_root(memcg)) {
7475 if (do_memsw_account())
7476 page_counter_uncharge(&memcg->memsw, nr_pages);
7477 else
7478 page_counter_uncharge(&memcg->swap, nr_pages);
7479 }
7480 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7481 mem_cgroup_id_put_many(memcg, nr_pages);
7482 }
7483 rcu_read_unlock();
7484}
7485
7486long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7487{
7488 long nr_swap_pages = get_nr_swap_pages();
7489
7490 if (mem_cgroup_disabled() || do_memsw_account())
7491 return nr_swap_pages;
7492 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7493 nr_swap_pages = min_t(long, nr_swap_pages,
7494 READ_ONCE(memcg->swap.max) -
7495 page_counter_read(&memcg->swap));
7496 return nr_swap_pages;
7497}
7498
7499bool mem_cgroup_swap_full(struct folio *folio)
7500{
7501 struct mem_cgroup *memcg;
7502
7503 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7504
7505 if (vm_swap_full())
7506 return true;
7507 if (do_memsw_account())
7508 return false;
7509
7510 memcg = folio_memcg(folio);
7511 if (!memcg)
7512 return false;
7513
7514 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7515 unsigned long usage = page_counter_read(&memcg->swap);
7516
7517 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7518 usage * 2 >= READ_ONCE(memcg->swap.max))
7519 return true;
7520 }
7521
7522 return false;
7523}
7524
7525static int __init setup_swap_account(char *s)
7526{
7527 pr_warn_once("The swapaccount= commandline option is deprecated. "
7528 "Please report your usecase to linux-mm@kvack.org if you "
7529 "depend on this functionality.\n");
7530 return 1;
7531}
7532__setup("swapaccount=", setup_swap_account);
7533
7534static u64 swap_current_read(struct cgroup_subsys_state *css,
7535 struct cftype *cft)
7536{
7537 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7538
7539 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7540}
7541
7542static int swap_high_show(struct seq_file *m, void *v)
7543{
7544 return seq_puts_memcg_tunable(m,
7545 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7546}
7547
7548static ssize_t swap_high_write(struct kernfs_open_file *of,
7549 char *buf, size_t nbytes, loff_t off)
7550{
7551 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7552 unsigned long high;
7553 int err;
7554
7555 buf = strstrip(buf);
7556 err = page_counter_memparse(buf, "max", &high);
7557 if (err)
7558 return err;
7559
7560 page_counter_set_high(&memcg->swap, high);
7561
7562 return nbytes;
7563}
7564
7565static int swap_max_show(struct seq_file *m, void *v)
7566{
7567 return seq_puts_memcg_tunable(m,
7568 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7569}
7570
7571static ssize_t swap_max_write(struct kernfs_open_file *of,
7572 char *buf, size_t nbytes, loff_t off)
7573{
7574 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7575 unsigned long max;
7576 int err;
7577
7578 buf = strstrip(buf);
7579 err = page_counter_memparse(buf, "max", &max);
7580 if (err)
7581 return err;
7582
7583 xchg(&memcg->swap.max, max);
7584
7585 return nbytes;
7586}
7587
7588static int swap_events_show(struct seq_file *m, void *v)
7589{
7590 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7591
7592 seq_printf(m, "high %lu\n",
7593 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7594 seq_printf(m, "max %lu\n",
7595 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7596 seq_printf(m, "fail %lu\n",
7597 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7598
7599 return 0;
7600}
7601
7602static struct cftype swap_files[] = {
7603 {
7604 .name = "swap.current",
7605 .flags = CFTYPE_NOT_ON_ROOT,
7606 .read_u64 = swap_current_read,
7607 },
7608 {
7609 .name = "swap.high",
7610 .flags = CFTYPE_NOT_ON_ROOT,
7611 .seq_show = swap_high_show,
7612 .write = swap_high_write,
7613 },
7614 {
7615 .name = "swap.max",
7616 .flags = CFTYPE_NOT_ON_ROOT,
7617 .seq_show = swap_max_show,
7618 .write = swap_max_write,
7619 },
7620 {
7621 .name = "swap.events",
7622 .flags = CFTYPE_NOT_ON_ROOT,
7623 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7624 .seq_show = swap_events_show,
7625 },
7626 { } /* terminate */
7627};
7628
7629static struct cftype memsw_files[] = {
7630 {
7631 .name = "memsw.usage_in_bytes",
7632 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7633 .read_u64 = mem_cgroup_read_u64,
7634 },
7635 {
7636 .name = "memsw.max_usage_in_bytes",
7637 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7638 .write = mem_cgroup_reset,
7639 .read_u64 = mem_cgroup_read_u64,
7640 },
7641 {
7642 .name = "memsw.limit_in_bytes",
7643 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7644 .write = mem_cgroup_write,
7645 .read_u64 = mem_cgroup_read_u64,
7646 },
7647 {
7648 .name = "memsw.failcnt",
7649 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7650 .write = mem_cgroup_reset,
7651 .read_u64 = mem_cgroup_read_u64,
7652 },
7653 { }, /* terminate */
7654};
7655
7656#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7657/**
7658 * obj_cgroup_may_zswap - check if this cgroup can zswap
7659 * @objcg: the object cgroup
7660 *
7661 * Check if the hierarchical zswap limit has been reached.
7662 *
7663 * This doesn't check for specific headroom, and it is not atomic
7664 * either. But with zswap, the size of the allocation is only known
7665 * once compression has occured, and this optimistic pre-check avoids
7666 * spending cycles on compression when there is already no room left
7667 * or zswap is disabled altogether somewhere in the hierarchy.
7668 */
7669bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7670{
7671 struct mem_cgroup *memcg, *original_memcg;
7672 bool ret = true;
7673
7674 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7675 return true;
7676
7677 original_memcg = get_mem_cgroup_from_objcg(objcg);
7678 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7679 memcg = parent_mem_cgroup(memcg)) {
7680 unsigned long max = READ_ONCE(memcg->zswap_max);
7681 unsigned long pages;
7682
7683 if (max == PAGE_COUNTER_MAX)
7684 continue;
7685 if (max == 0) {
7686 ret = false;
7687 break;
7688 }
7689
7690 cgroup_rstat_flush(memcg->css.cgroup);
7691 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7692 if (pages < max)
7693 continue;
7694 ret = false;
7695 break;
7696 }
7697 mem_cgroup_put(original_memcg);
7698 return ret;
7699}
7700
7701/**
7702 * obj_cgroup_charge_zswap - charge compression backend memory
7703 * @objcg: the object cgroup
7704 * @size: size of compressed object
7705 *
7706 * This forces the charge after obj_cgroup_may_swap() allowed
7707 * compression and storage in zwap for this cgroup to go ahead.
7708 */
7709void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7710{
7711 struct mem_cgroup *memcg;
7712
7713 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7714 return;
7715
7716 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7717
7718 /* PF_MEMALLOC context, charging must succeed */
7719 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7720 VM_WARN_ON_ONCE(1);
7721
7722 rcu_read_lock();
7723 memcg = obj_cgroup_memcg(objcg);
7724 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7725 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7726 rcu_read_unlock();
7727}
7728
7729/**
7730 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7731 * @objcg: the object cgroup
7732 * @size: size of compressed object
7733 *
7734 * Uncharges zswap memory on page in.
7735 */
7736void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7737{
7738 struct mem_cgroup *memcg;
7739
7740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7741 return;
7742
7743 obj_cgroup_uncharge(objcg, size);
7744
7745 rcu_read_lock();
7746 memcg = obj_cgroup_memcg(objcg);
7747 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7748 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7749 rcu_read_unlock();
7750}
7751
7752static u64 zswap_current_read(struct cgroup_subsys_state *css,
7753 struct cftype *cft)
7754{
7755 cgroup_rstat_flush(css->cgroup);
7756 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7757}
7758
7759static int zswap_max_show(struct seq_file *m, void *v)
7760{
7761 return seq_puts_memcg_tunable(m,
7762 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7763}
7764
7765static ssize_t zswap_max_write(struct kernfs_open_file *of,
7766 char *buf, size_t nbytes, loff_t off)
7767{
7768 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7769 unsigned long max;
7770 int err;
7771
7772 buf = strstrip(buf);
7773 err = page_counter_memparse(buf, "max", &max);
7774 if (err)
7775 return err;
7776
7777 xchg(&memcg->zswap_max, max);
7778
7779 return nbytes;
7780}
7781
7782static struct cftype zswap_files[] = {
7783 {
7784 .name = "zswap.current",
7785 .flags = CFTYPE_NOT_ON_ROOT,
7786 .read_u64 = zswap_current_read,
7787 },
7788 {
7789 .name = "zswap.max",
7790 .flags = CFTYPE_NOT_ON_ROOT,
7791 .seq_show = zswap_max_show,
7792 .write = zswap_max_write,
7793 },
7794 { } /* terminate */
7795};
7796#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7797
7798static int __init mem_cgroup_swap_init(void)
7799{
7800 if (mem_cgroup_disabled())
7801 return 0;
7802
7803 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7804 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7805#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7806 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7807#endif
7808 return 0;
7809}
7810subsys_initcall(mem_cgroup_swap_init);
7811
7812#endif /* CONFIG_SWAP */