Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v4.17
 
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * Native page reclaim
  18 * Charge lifetime sanitation
  19 * Lockless page tracking & accounting
  20 * Unified hierarchy configuration model
  21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22 *
  23 * This program is free software; you can redistribute it and/or modify
  24 * it under the terms of the GNU General Public License as published by
  25 * the Free Software Foundation; either version 2 of the License, or
  26 * (at your option) any later version.
  27 *
  28 * This program is distributed in the hope that it will be useful,
  29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  31 * GNU General Public License for more details.
  32 */
  33
  34#include <linux/page_counter.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cgroup.h>
  37#include <linux/mm.h>
  38#include <linux/sched/mm.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/hugetlb.h>
  41#include <linux/pagemap.h>
 
  42#include <linux/smp.h>
  43#include <linux/page-flags.h>
  44#include <linux/backing-dev.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/limits.h>
  48#include <linux/export.h>
  49#include <linux/mutex.h>
  50#include <linux/rbtree.h>
  51#include <linux/slab.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/spinlock.h>
  55#include <linux/eventfd.h>
  56#include <linux/poll.h>
  57#include <linux/sort.h>
  58#include <linux/fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/vmpressure.h>
  61#include <linux/mm_inline.h>
  62#include <linux/swap_cgroup.h>
  63#include <linux/cpu.h>
  64#include <linux/oom.h>
  65#include <linux/lockdep.h>
  66#include <linux/file.h>
  67#include <linux/tracehook.h>
 
 
  68#include "internal.h"
  69#include <net/sock.h>
  70#include <net/ip.h>
  71#include "slab.h"
  72
  73#include <linux/uaccess.h>
  74
  75#include <trace/events/vmscan.h>
  76
  77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  78EXPORT_SYMBOL(memory_cgrp_subsys);
  79
  80struct mem_cgroup *root_mem_cgroup __read_mostly;
  81
  82#define MEM_CGROUP_RECLAIM_RETRIES	5
 
 
  83
  84/* Socket memory accounting disabled? */
  85static bool cgroup_memory_nosocket;
  86
  87/* Kernel memory accounting disabled? */
  88static bool cgroup_memory_nokmem;
  89
  90/* Whether the swap controller is active */
  91#ifdef CONFIG_MEMCG_SWAP
  92int do_swap_account __read_mostly;
  93#else
  94#define do_swap_account		0
 
 
 
 
  95#endif
  96
  97/* Whether legacy memory+swap accounting is active */
  98static bool do_memsw_account(void)
  99{
 100	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
 101}
 102
 103static const char *const mem_cgroup_lru_names[] = {
 104	"inactive_anon",
 105	"active_anon",
 106	"inactive_file",
 107	"active_file",
 108	"unevictable",
 109};
 110
 111#define THRESHOLDS_EVENTS_TARGET 128
 112#define SOFTLIMIT_EVENTS_TARGET 1024
 113#define NUMAINFO_EVENTS_TARGET	1024
 114
 115/*
 116 * Cgroups above their limits are maintained in a RB-Tree, independent of
 117 * their hierarchy representation
 118 */
 119
 120struct mem_cgroup_tree_per_node {
 121	struct rb_root rb_root;
 122	struct rb_node *rb_rightmost;
 123	spinlock_t lock;
 124};
 125
 126struct mem_cgroup_tree {
 127	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 128};
 129
 130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 131
 132/* for OOM */
 133struct mem_cgroup_eventfd_list {
 134	struct list_head list;
 135	struct eventfd_ctx *eventfd;
 136};
 137
 138/*
 139 * cgroup_event represents events which userspace want to receive.
 140 */
 141struct mem_cgroup_event {
 142	/*
 143	 * memcg which the event belongs to.
 144	 */
 145	struct mem_cgroup *memcg;
 146	/*
 147	 * eventfd to signal userspace about the event.
 148	 */
 149	struct eventfd_ctx *eventfd;
 150	/*
 151	 * Each of these stored in a list by the cgroup.
 152	 */
 153	struct list_head list;
 154	/*
 155	 * register_event() callback will be used to add new userspace
 156	 * waiter for changes related to this event.  Use eventfd_signal()
 157	 * on eventfd to send notification to userspace.
 158	 */
 159	int (*register_event)(struct mem_cgroup *memcg,
 160			      struct eventfd_ctx *eventfd, const char *args);
 161	/*
 162	 * unregister_event() callback will be called when userspace closes
 163	 * the eventfd or on cgroup removing.  This callback must be set,
 164	 * if you want provide notification functionality.
 165	 */
 166	void (*unregister_event)(struct mem_cgroup *memcg,
 167				 struct eventfd_ctx *eventfd);
 168	/*
 169	 * All fields below needed to unregister event when
 170	 * userspace closes eventfd.
 171	 */
 172	poll_table pt;
 173	wait_queue_head_t *wqh;
 174	wait_queue_entry_t wait;
 175	struct work_struct remove;
 176};
 177
 178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 180
 181/* Stuffs for move charges at task migration. */
 182/*
 183 * Types of charges to be moved.
 184 */
 185#define MOVE_ANON	0x1U
 186#define MOVE_FILE	0x2U
 187#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 188
 189/* "mc" and its members are protected by cgroup_mutex */
 190static struct move_charge_struct {
 191	spinlock_t	  lock; /* for from, to */
 192	struct mm_struct  *mm;
 193	struct mem_cgroup *from;
 194	struct mem_cgroup *to;
 195	unsigned long flags;
 196	unsigned long precharge;
 197	unsigned long moved_charge;
 198	unsigned long moved_swap;
 199	struct task_struct *moving_task;	/* a task moving charges */
 200	wait_queue_head_t waitq;		/* a waitq for other context */
 201} mc = {
 202	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 203	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 204};
 205
 206/*
 207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 208 * limit reclaim to prevent infinite loops, if they ever occur.
 209 */
 210#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 211#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 212
 213enum charge_type {
 214	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 215	MEM_CGROUP_CHARGE_TYPE_ANON,
 216	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 217	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 218	NR_CHARGE_TYPE,
 219};
 220
 221/* for encoding cft->private value on file */
 222enum res_type {
 223	_MEM,
 224	_MEMSWAP,
 225	_OOM_TYPE,
 226	_KMEM,
 227	_TCP,
 228};
 229
 230#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 231#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 232#define MEMFILE_ATTR(val)	((val) & 0xffff)
 233/* Used for OOM nofiier */
 234#define OOM_CONTROL		(0)
 235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236/* Some nice accessors for the vmpressure. */
 237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 238{
 239	if (!memcg)
 240		memcg = root_mem_cgroup;
 241	return &memcg->vmpressure;
 242}
 243
 244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 245{
 246	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 247}
 248
 249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250{
 251	return (memcg == root_mem_cgroup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252}
 253
 254#ifndef CONFIG_SLOB
 255/*
 256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 257 * The main reason for not using cgroup id for this:
 258 *  this works better in sparse environments, where we have a lot of memcgs,
 259 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 260 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 261 *  200 entry array for that.
 262 *
 263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 264 * will double each time we have to increase it.
 265 */
 266static DEFINE_IDA(memcg_cache_ida);
 267int memcg_nr_cache_ids;
 268
 269/* Protects memcg_nr_cache_ids */
 270static DECLARE_RWSEM(memcg_cache_ids_sem);
 271
 272void memcg_get_cache_ids(void)
 273{
 274	down_read(&memcg_cache_ids_sem);
 275}
 276
 277void memcg_put_cache_ids(void)
 278{
 279	up_read(&memcg_cache_ids_sem);
 280}
 281
 282/*
 283 * MIN_SIZE is different than 1, because we would like to avoid going through
 284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 285 * cgroups is a reasonable guess. In the future, it could be a parameter or
 286 * tunable, but that is strictly not necessary.
 287 *
 288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 289 * this constant directly from cgroup, but it is understandable that this is
 290 * better kept as an internal representation in cgroup.c. In any case, the
 291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 292 * increase ours as well if it increases.
 293 */
 294#define MEMCG_CACHES_MIN_SIZE 4
 295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 296
 297/*
 298 * A lot of the calls to the cache allocation functions are expected to be
 299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 300 * conditional to this static branch, we'll have to allow modules that does
 301 * kmem_cache_alloc and the such to see this symbol as well
 302 */
 303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 304EXPORT_SYMBOL(memcg_kmem_enabled_key);
 305
 306struct workqueue_struct *memcg_kmem_cache_wq;
 307
 308#endif /* !CONFIG_SLOB */
 309
 310/**
 311 * mem_cgroup_css_from_page - css of the memcg associated with a page
 312 * @page: page of interest
 313 *
 314 * If memcg is bound to the default hierarchy, css of the memcg associated
 315 * with @page is returned.  The returned css remains associated with @page
 316 * until it is released.
 317 *
 318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 319 * is returned.
 320 */
 321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 322{
 323	struct mem_cgroup *memcg;
 324
 325	memcg = page->mem_cgroup;
 326
 327	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 328		memcg = root_mem_cgroup;
 329
 330	return &memcg->css;
 331}
 332
 333/**
 334 * page_cgroup_ino - return inode number of the memcg a page is charged to
 335 * @page: the page
 336 *
 337 * Look up the closest online ancestor of the memory cgroup @page is charged to
 338 * and return its inode number or 0 if @page is not charged to any cgroup. It
 339 * is safe to call this function without holding a reference to @page.
 340 *
 341 * Note, this function is inherently racy, because there is nothing to prevent
 342 * the cgroup inode from getting torn down and potentially reallocated a moment
 343 * after page_cgroup_ino() returns, so it only should be used by callers that
 344 * do not care (such as procfs interfaces).
 345 */
 346ino_t page_cgroup_ino(struct page *page)
 347{
 348	struct mem_cgroup *memcg;
 349	unsigned long ino = 0;
 350
 351	rcu_read_lock();
 352	memcg = READ_ONCE(page->mem_cgroup);
 
 353	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 354		memcg = parent_mem_cgroup(memcg);
 355	if (memcg)
 356		ino = cgroup_ino(memcg->css.cgroup);
 357	rcu_read_unlock();
 358	return ino;
 359}
 360
 361static struct mem_cgroup_per_node *
 362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 363{
 364	int nid = page_to_nid(page);
 365
 366	return memcg->nodeinfo[nid];
 367}
 368
 369static struct mem_cgroup_tree_per_node *
 370soft_limit_tree_node(int nid)
 371{
 372	return soft_limit_tree.rb_tree_per_node[nid];
 373}
 374
 375static struct mem_cgroup_tree_per_node *
 376soft_limit_tree_from_page(struct page *page)
 377{
 378	int nid = page_to_nid(page);
 379
 380	return soft_limit_tree.rb_tree_per_node[nid];
 381}
 382
 383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 384					 struct mem_cgroup_tree_per_node *mctz,
 385					 unsigned long new_usage_in_excess)
 386{
 387	struct rb_node **p = &mctz->rb_root.rb_node;
 388	struct rb_node *parent = NULL;
 389	struct mem_cgroup_per_node *mz_node;
 390	bool rightmost = true;
 391
 392	if (mz->on_tree)
 393		return;
 394
 395	mz->usage_in_excess = new_usage_in_excess;
 396	if (!mz->usage_in_excess)
 397		return;
 398	while (*p) {
 399		parent = *p;
 400		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 401					tree_node);
 402		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 403			p = &(*p)->rb_left;
 404			rightmost = false;
 405		}
 406
 407		/*
 408		 * We can't avoid mem cgroups that are over their soft
 409		 * limit by the same amount
 410		 */
 411		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 412			p = &(*p)->rb_right;
 
 413	}
 414
 415	if (rightmost)
 416		mctz->rb_rightmost = &mz->tree_node;
 417
 418	rb_link_node(&mz->tree_node, parent, p);
 419	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 420	mz->on_tree = true;
 421}
 422
 423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 424					 struct mem_cgroup_tree_per_node *mctz)
 425{
 426	if (!mz->on_tree)
 427		return;
 428
 429	if (&mz->tree_node == mctz->rb_rightmost)
 430		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 431
 432	rb_erase(&mz->tree_node, &mctz->rb_root);
 433	mz->on_tree = false;
 434}
 435
 436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 437				       struct mem_cgroup_tree_per_node *mctz)
 438{
 439	unsigned long flags;
 440
 441	spin_lock_irqsave(&mctz->lock, flags);
 442	__mem_cgroup_remove_exceeded(mz, mctz);
 443	spin_unlock_irqrestore(&mctz->lock, flags);
 444}
 445
 446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 447{
 448	unsigned long nr_pages = page_counter_read(&memcg->memory);
 449	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 450	unsigned long excess = 0;
 451
 452	if (nr_pages > soft_limit)
 453		excess = nr_pages - soft_limit;
 454
 455	return excess;
 456}
 457
 458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 459{
 460	unsigned long excess;
 461	struct mem_cgroup_per_node *mz;
 462	struct mem_cgroup_tree_per_node *mctz;
 463
 464	mctz = soft_limit_tree_from_page(page);
 465	if (!mctz)
 466		return;
 467	/*
 468	 * Necessary to update all ancestors when hierarchy is used.
 469	 * because their event counter is not touched.
 470	 */
 471	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 472		mz = mem_cgroup_page_nodeinfo(memcg, page);
 473		excess = soft_limit_excess(memcg);
 474		/*
 475		 * We have to update the tree if mz is on RB-tree or
 476		 * mem is over its softlimit.
 477		 */
 478		if (excess || mz->on_tree) {
 479			unsigned long flags;
 480
 481			spin_lock_irqsave(&mctz->lock, flags);
 482			/* if on-tree, remove it */
 483			if (mz->on_tree)
 484				__mem_cgroup_remove_exceeded(mz, mctz);
 485			/*
 486			 * Insert again. mz->usage_in_excess will be updated.
 487			 * If excess is 0, no tree ops.
 488			 */
 489			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 490			spin_unlock_irqrestore(&mctz->lock, flags);
 491		}
 492	}
 493}
 494
 495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 496{
 497	struct mem_cgroup_tree_per_node *mctz;
 498	struct mem_cgroup_per_node *mz;
 499	int nid;
 500
 501	for_each_node(nid) {
 502		mz = mem_cgroup_nodeinfo(memcg, nid);
 503		mctz = soft_limit_tree_node(nid);
 504		if (mctz)
 505			mem_cgroup_remove_exceeded(mz, mctz);
 506	}
 507}
 508
 509static struct mem_cgroup_per_node *
 510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 511{
 512	struct mem_cgroup_per_node *mz;
 513
 514retry:
 515	mz = NULL;
 516	if (!mctz->rb_rightmost)
 517		goto done;		/* Nothing to reclaim from */
 518
 519	mz = rb_entry(mctz->rb_rightmost,
 520		      struct mem_cgroup_per_node, tree_node);
 521	/*
 522	 * Remove the node now but someone else can add it back,
 523	 * we will to add it back at the end of reclaim to its correct
 524	 * position in the tree.
 525	 */
 526	__mem_cgroup_remove_exceeded(mz, mctz);
 527	if (!soft_limit_excess(mz->memcg) ||
 528	    !css_tryget_online(&mz->memcg->css))
 529		goto retry;
 530done:
 531	return mz;
 532}
 533
 534static struct mem_cgroup_per_node *
 535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 536{
 537	struct mem_cgroup_per_node *mz;
 538
 539	spin_lock_irq(&mctz->lock);
 540	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 541	spin_unlock_irq(&mctz->lock);
 542	return mz;
 543}
 544
 545static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
 546				      int event)
 
 
 
 
 
 547{
 548	return atomic_long_read(&memcg->events[event]);
 
 
 
 
 549}
 550
 551static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 552					 struct page *page,
 553					 bool compound, int nr_pages)
 554{
 555	/*
 556	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 557	 * counted as CACHE even if it's on ANON LRU.
 558	 */
 559	if (PageAnon(page))
 560		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
 561	else {
 562		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
 563		if (PageSwapBacked(page))
 564			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
 565	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	if (compound) {
 568		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 569		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570	}
 
 
 571
 572	/* pagein of a big page is an event. So, ignore page size */
 573	if (nr_pages > 0)
 574		__count_memcg_events(memcg, PGPGIN, 1);
 575	else {
 576		__count_memcg_events(memcg, PGPGOUT, 1);
 577		nr_pages = -nr_pages; /* for event */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	}
 579
 580	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
 
 
 581}
 
 582
 583unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 584					   int nid, unsigned int lru_mask)
 585{
 586	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
 587	unsigned long nr = 0;
 588	enum lru_list lru;
 589
 590	VM_BUG_ON((unsigned)nid >= nr_node_ids);
 
 591
 592	for_each_lru(lru) {
 593		if (!(BIT(lru) & lru_mask))
 594			continue;
 595		nr += mem_cgroup_get_lru_size(lruvec, lru);
 
 
 
 
 
 
 
 596	}
 597	return nr;
 598}
 599
 600static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 601			unsigned int lru_mask)
 
 
 
 
 
 602{
 603	unsigned long nr = 0;
 604	int nid;
 605
 606	for_each_node_state(nid, N_MEMORY)
 607		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 608	return nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609}
 610
 611static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 612				       enum mem_cgroup_events_target target)
 613{
 614	unsigned long val, next;
 615
 616	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
 617	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
 618	/* from time_after() in jiffies.h */
 619	if ((long)(next - val) < 0) {
 620		switch (target) {
 621		case MEM_CGROUP_TARGET_THRESH:
 622			next = val + THRESHOLDS_EVENTS_TARGET;
 623			break;
 624		case MEM_CGROUP_TARGET_SOFTLIMIT:
 625			next = val + SOFTLIMIT_EVENTS_TARGET;
 626			break;
 627		case MEM_CGROUP_TARGET_NUMAINFO:
 628			next = val + NUMAINFO_EVENTS_TARGET;
 629			break;
 630		default:
 631			break;
 632		}
 633		__this_cpu_write(memcg->stat_cpu->targets[target], next);
 634		return true;
 635	}
 636	return false;
 637}
 638
 639/*
 640 * Check events in order.
 641 *
 642 */
 643static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 644{
 645	/* threshold event is triggered in finer grain than soft limit */
 646	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 647						MEM_CGROUP_TARGET_THRESH))) {
 648		bool do_softlimit;
 649		bool do_numainfo __maybe_unused;
 650
 651		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 652						MEM_CGROUP_TARGET_SOFTLIMIT);
 653#if MAX_NUMNODES > 1
 654		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 655						MEM_CGROUP_TARGET_NUMAINFO);
 656#endif
 657		mem_cgroup_threshold(memcg);
 658		if (unlikely(do_softlimit))
 659			mem_cgroup_update_tree(memcg, page);
 660#if MAX_NUMNODES > 1
 661		if (unlikely(do_numainfo))
 662			atomic_inc(&memcg->numainfo_events);
 663#endif
 664	}
 665}
 666
 667struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 668{
 669	/*
 670	 * mm_update_next_owner() may clear mm->owner to NULL
 671	 * if it races with swapoff, page migration, etc.
 672	 * So this can be called with p == NULL.
 673	 */
 674	if (unlikely(!p))
 675		return NULL;
 676
 677	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 678}
 679EXPORT_SYMBOL(mem_cgroup_from_task);
 680
 681static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 682{
 683	struct mem_cgroup *memcg = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684
 685	rcu_read_lock();
 686	do {
 687		/*
 688		 * Page cache insertions can happen withou an
 689		 * actual mm context, e.g. during disk probing
 690		 * on boot, loopback IO, acct() writes etc.
 691		 */
 692		if (unlikely(!mm))
 693			memcg = root_mem_cgroup;
 694		else {
 695			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 696			if (unlikely(!memcg))
 697				memcg = root_mem_cgroup;
 698		}
 699	} while (!css_tryget_online(&memcg->css));
 700	rcu_read_unlock();
 701	return memcg;
 702}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703
 704/**
 705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 706 * @root: hierarchy root
 707 * @prev: previously returned memcg, NULL on first invocation
 708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 709 *
 710 * Returns references to children of the hierarchy below @root, or
 711 * @root itself, or %NULL after a full round-trip.
 712 *
 713 * Caller must pass the return value in @prev on subsequent
 714 * invocations for reference counting, or use mem_cgroup_iter_break()
 715 * to cancel a hierarchy walk before the round-trip is complete.
 716 *
 717 * Reclaimers can specify a node and a priority level in @reclaim to
 718 * divide up the memcgs in the hierarchy among all concurrent
 719 * reclaimers operating on the same node and priority.
 720 */
 721struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 722				   struct mem_cgroup *prev,
 723				   struct mem_cgroup_reclaim_cookie *reclaim)
 724{
 725	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 726	struct cgroup_subsys_state *css = NULL;
 727	struct mem_cgroup *memcg = NULL;
 728	struct mem_cgroup *pos = NULL;
 729
 730	if (mem_cgroup_disabled())
 731		return NULL;
 732
 733	if (!root)
 734		root = root_mem_cgroup;
 735
 736	if (prev && !reclaim)
 737		pos = prev;
 738
 739	if (!root->use_hierarchy && root != root_mem_cgroup) {
 740		if (prev)
 741			goto out;
 742		return root;
 743	}
 744
 745	rcu_read_lock();
 746
 747	if (reclaim) {
 748		struct mem_cgroup_per_node *mz;
 749
 750		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
 751		iter = &mz->iter[reclaim->priority];
 752
 753		if (prev && reclaim->generation != iter->generation)
 754			goto out_unlock;
 755
 756		while (1) {
 757			pos = READ_ONCE(iter->position);
 758			if (!pos || css_tryget(&pos->css))
 759				break;
 760			/*
 761			 * css reference reached zero, so iter->position will
 762			 * be cleared by ->css_released. However, we should not
 763			 * rely on this happening soon, because ->css_released
 764			 * is called from a work queue, and by busy-waiting we
 765			 * might block it. So we clear iter->position right
 766			 * away.
 767			 */
 768			(void)cmpxchg(&iter->position, pos, NULL);
 769		}
 770	}
 771
 772	if (pos)
 773		css = &pos->css;
 774
 775	for (;;) {
 776		css = css_next_descendant_pre(css, &root->css);
 777		if (!css) {
 778			/*
 779			 * Reclaimers share the hierarchy walk, and a
 780			 * new one might jump in right at the end of
 781			 * the hierarchy - make sure they see at least
 782			 * one group and restart from the beginning.
 783			 */
 784			if (!prev)
 785				continue;
 786			break;
 787		}
 788
 789		/*
 790		 * Verify the css and acquire a reference.  The root
 791		 * is provided by the caller, so we know it's alive
 792		 * and kicking, and don't take an extra reference.
 793		 */
 794		memcg = mem_cgroup_from_css(css);
 795
 796		if (css == &root->css)
 797			break;
 798
 799		if (css_tryget(css))
 800			break;
 801
 802		memcg = NULL;
 803	}
 804
 805	if (reclaim) {
 806		/*
 807		 * The position could have already been updated by a competing
 808		 * thread, so check that the value hasn't changed since we read
 809		 * it to avoid reclaiming from the same cgroup twice.
 810		 */
 811		(void)cmpxchg(&iter->position, pos, memcg);
 812
 813		if (pos)
 814			css_put(&pos->css);
 815
 816		if (!memcg)
 817			iter->generation++;
 818		else if (!prev)
 819			reclaim->generation = iter->generation;
 820	}
 821
 822out_unlock:
 823	rcu_read_unlock();
 824out:
 825	if (prev && prev != root)
 826		css_put(&prev->css);
 827
 828	return memcg;
 829}
 830
 831/**
 832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 833 * @root: hierarchy root
 834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 835 */
 836void mem_cgroup_iter_break(struct mem_cgroup *root,
 837			   struct mem_cgroup *prev)
 838{
 839	if (!root)
 840		root = root_mem_cgroup;
 841	if (prev && prev != root)
 842		css_put(&prev->css);
 843}
 844
 845static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 
 846{
 847	struct mem_cgroup *memcg = dead_memcg;
 848	struct mem_cgroup_reclaim_iter *iter;
 849	struct mem_cgroup_per_node *mz;
 850	int nid;
 851	int i;
 852
 853	while ((memcg = parent_mem_cgroup(memcg))) {
 854		for_each_node(nid) {
 855			mz = mem_cgroup_nodeinfo(memcg, nid);
 856			for (i = 0; i <= DEF_PRIORITY; i++) {
 857				iter = &mz->iter[i];
 858				cmpxchg(&iter->position,
 859					dead_memcg, NULL);
 860			}
 861		}
 862	}
 863}
 864
 865/*
 866 * Iteration constructs for visiting all cgroups (under a tree).  If
 867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 868 * be used for reference counting.
 869 */
 870#define for_each_mem_cgroup_tree(iter, root)		\
 871	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 872	     iter != NULL;				\
 873	     iter = mem_cgroup_iter(root, iter, NULL))
 874
 875#define for_each_mem_cgroup(iter)			\
 876	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 877	     iter != NULL;				\
 878	     iter = mem_cgroup_iter(NULL, iter, NULL))
 
 
 
 
 
 
 
 
 
 
 
 879
 880/**
 881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 882 * @memcg: hierarchy root
 883 * @fn: function to call for each task
 884 * @arg: argument passed to @fn
 885 *
 886 * This function iterates over tasks attached to @memcg or to any of its
 887 * descendants and calls @fn for each task. If @fn returns a non-zero
 888 * value, the function breaks the iteration loop and returns the value.
 889 * Otherwise, it will iterate over all tasks and return 0.
 890 *
 891 * This function must not be called for the root memory cgroup.
 892 */
 893int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
 894			  int (*fn)(struct task_struct *, void *), void *arg)
 895{
 896	struct mem_cgroup *iter;
 897	int ret = 0;
 898
 899	BUG_ON(memcg == root_mem_cgroup);
 900
 901	for_each_mem_cgroup_tree(iter, memcg) {
 902		struct css_task_iter it;
 903		struct task_struct *task;
 904
 905		css_task_iter_start(&iter->css, 0, &it);
 906		while (!ret && (task = css_task_iter_next(&it)))
 907			ret = fn(task, arg);
 908		css_task_iter_end(&it);
 909		if (ret) {
 910			mem_cgroup_iter_break(memcg, iter);
 911			break;
 912		}
 913	}
 914	return ret;
 915}
 916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917/**
 918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 919 * @page: the page
 920 * @pgdat: pgdat of the page
 921 *
 922 * This function is only safe when following the LRU page isolation
 923 * and putback protocol: the LRU lock must be held, and the page must
 924 * either be PageLRU() or the caller must have isolated/allocated it.
 
 
 925 */
 926struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
 927{
 928	struct mem_cgroup_per_node *mz;
 929	struct mem_cgroup *memcg;
 930	struct lruvec *lruvec;
 931
 932	if (mem_cgroup_disabled()) {
 933		lruvec = &pgdat->lruvec;
 934		goto out;
 935	}
 936
 937	memcg = page->mem_cgroup;
 938	/*
 939	 * Swapcache readahead pages are added to the LRU - and
 940	 * possibly migrated - before they are charged.
 941	 */
 942	if (!memcg)
 943		memcg = root_mem_cgroup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944
 945	mz = mem_cgroup_page_nodeinfo(memcg, page);
 946	lruvec = &mz->lruvec;
 947out:
 948	/*
 949	 * Since a node can be onlined after the mem_cgroup was created,
 950	 * we have to be prepared to initialize lruvec->zone here;
 951	 * and if offlined then reonlined, we need to reinitialize it.
 952	 */
 953	if (unlikely(lruvec->pgdat != pgdat))
 954		lruvec->pgdat = pgdat;
 955	return lruvec;
 956}
 957
 958/**
 959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 960 * @lruvec: mem_cgroup per zone lru vector
 961 * @lru: index of lru list the page is sitting on
 962 * @zid: zone id of the accounted pages
 963 * @nr_pages: positive when adding or negative when removing
 964 *
 965 * This function must be called under lru_lock, just before a page is added
 966 * to or just after a page is removed from an lru list (that ordering being
 967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
 968 */
 969void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 970				int zid, int nr_pages)
 971{
 972	struct mem_cgroup_per_node *mz;
 973	unsigned long *lru_size;
 974	long size;
 975
 976	if (mem_cgroup_disabled())
 977		return;
 978
 979	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 980	lru_size = &mz->lru_zone_size[zid][lru];
 981
 982	if (nr_pages < 0)
 983		*lru_size += nr_pages;
 984
 985	size = *lru_size;
 986	if (WARN_ONCE(size < 0,
 987		"%s(%p, %d, %d): lru_size %ld\n",
 988		__func__, lruvec, lru, nr_pages, size)) {
 989		VM_BUG_ON(1);
 990		*lru_size = 0;
 991	}
 992
 993	if (nr_pages > 0)
 994		*lru_size += nr_pages;
 995}
 996
 997bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
 998{
 999	struct mem_cgroup *task_memcg;
1000	struct task_struct *p;
1001	bool ret;
1002
1003	p = find_lock_task_mm(task);
1004	if (p) {
1005		task_memcg = get_mem_cgroup_from_mm(p->mm);
1006		task_unlock(p);
1007	} else {
1008		/*
1009		 * All threads may have already detached their mm's, but the oom
1010		 * killer still needs to detect if they have already been oom
1011		 * killed to prevent needlessly killing additional tasks.
1012		 */
1013		rcu_read_lock();
1014		task_memcg = mem_cgroup_from_task(task);
1015		css_get(&task_memcg->css);
1016		rcu_read_unlock();
1017	}
1018	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019	css_put(&task_memcg->css);
1020	return ret;
1021}
1022
1023/**
1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025 * @memcg: the memory cgroup
1026 *
1027 * Returns the maximum amount of memory @mem can be charged with, in
1028 * pages.
1029 */
1030static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1031{
1032	unsigned long margin = 0;
1033	unsigned long count;
1034	unsigned long limit;
1035
1036	count = page_counter_read(&memcg->memory);
1037	limit = READ_ONCE(memcg->memory.limit);
1038	if (count < limit)
1039		margin = limit - count;
1040
1041	if (do_memsw_account()) {
1042		count = page_counter_read(&memcg->memsw);
1043		limit = READ_ONCE(memcg->memsw.limit);
1044		if (count <= limit)
1045			margin = min(margin, limit - count);
1046		else
1047			margin = 0;
1048	}
1049
1050	return margin;
1051}
1052
1053/*
1054 * A routine for checking "mem" is under move_account() or not.
1055 *
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1058 * caused by "move".
1059 */
1060static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1061{
1062	struct mem_cgroup *from;
1063	struct mem_cgroup *to;
1064	bool ret = false;
1065	/*
1066	 * Unlike task_move routines, we access mc.to, mc.from not under
1067	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1068	 */
1069	spin_lock(&mc.lock);
1070	from = mc.from;
1071	to = mc.to;
1072	if (!from)
1073		goto unlock;
1074
1075	ret = mem_cgroup_is_descendant(from, memcg) ||
1076		mem_cgroup_is_descendant(to, memcg);
1077unlock:
1078	spin_unlock(&mc.lock);
1079	return ret;
1080}
1081
1082static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1083{
1084	if (mc.moving_task && current != mc.moving_task) {
1085		if (mem_cgroup_under_move(memcg)) {
1086			DEFINE_WAIT(wait);
1087			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088			/* moving charge context might have finished. */
1089			if (mc.moving_task)
1090				schedule();
1091			finish_wait(&mc.waitq, &wait);
1092			return true;
1093		}
1094	}
1095	return false;
1096}
1097
1098static const unsigned int memcg1_stats[] = {
1099	MEMCG_CACHE,
1100	MEMCG_RSS,
1101	MEMCG_RSS_HUGE,
1102	NR_SHMEM,
1103	NR_FILE_MAPPED,
1104	NR_FILE_DIRTY,
1105	NR_WRITEBACK,
1106	MEMCG_SWAP,
1107};
1108
1109static const char *const memcg1_stat_names[] = {
1110	"cache",
1111	"rss",
1112	"rss_huge",
1113	"shmem",
1114	"mapped_file",
1115	"dirty",
1116	"writeback",
1117	"swap",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118};
1119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120#define K(x) ((x) << (PAGE_SHIFT-10))
1121/**
1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
 
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1125 *
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1127 * enabled
1128 */
1129void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1130{
1131	struct mem_cgroup *iter;
1132	unsigned int i;
1133
1134	rcu_read_lock();
1135
 
 
 
 
 
1136	if (p) {
1137		pr_info("Task in ");
1138		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139		pr_cont(" killed as a result of limit of ");
1140	} else {
1141		pr_info("Memory limit reached of cgroup ");
1142	}
1143
1144	pr_cont_cgroup_path(memcg->css.cgroup);
1145	pr_cont("\n");
1146
1147	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
1148
1149	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150		K((u64)page_counter_read(&memcg->memory)),
1151		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1152	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153		K((u64)page_counter_read(&memcg->memsw)),
1154		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1155	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156		K((u64)page_counter_read(&memcg->kmem)),
1157		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1158
1159	for_each_mem_cgroup_tree(iter, memcg) {
1160		pr_info("Memory cgroup stats for ");
1161		pr_cont_cgroup_path(iter->css.cgroup);
1162		pr_cont(":");
1163
1164		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166				continue;
1167			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168				K(memcg_page_state(iter, memcg1_stats[i])));
1169		}
1170
1171		for (i = 0; i < NR_LRU_LISTS; i++)
1172			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1174
1175		pr_cont("\n");
1176	}
 
 
 
 
 
 
 
 
 
1177}
1178
1179/*
1180 * Return the memory (and swap, if configured) limit for a memcg.
1181 */
1182unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1183{
1184	unsigned long limit;
 
 
 
 
 
 
 
 
 
1185
1186	limit = memcg->memory.limit;
1187	if (mem_cgroup_swappiness(memcg)) {
1188		unsigned long memsw_limit;
1189		unsigned long swap_limit;
1190
1191		memsw_limit = memcg->memsw.limit;
1192		swap_limit = memcg->swap.limit;
1193		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1194		limit = min(limit + swap_limit, memsw_limit);
1195	}
1196	return limit;
 
 
 
 
 
1197}
1198
1199static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200				     int order)
1201{
1202	struct oom_control oc = {
1203		.zonelist = NULL,
1204		.nodemask = NULL,
1205		.memcg = memcg,
1206		.gfp_mask = gfp_mask,
1207		.order = order,
1208	};
1209	bool ret;
1210
1211	mutex_lock(&oom_lock);
1212	ret = out_of_memory(&oc);
1213	mutex_unlock(&oom_lock);
1214	return ret;
1215}
1216
1217#if MAX_NUMNODES > 1
1218
1219/**
1220 * test_mem_cgroup_node_reclaimable
1221 * @memcg: the target memcg
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1224 *
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1228 */
1229static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230		int nid, bool noswap)
1231{
1232	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233		return true;
1234	if (noswap || !total_swap_pages)
1235		return false;
1236	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237		return true;
1238	return false;
1239
1240}
1241
1242/*
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1246 *
1247 */
1248static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1249{
1250	int nid;
1251	/*
1252	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253	 * pagein/pageout changes since the last update.
1254	 */
1255	if (!atomic_read(&memcg->numainfo_events))
1256		return;
1257	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258		return;
1259
1260	/* make a nodemask where this memcg uses memory from */
1261	memcg->scan_nodes = node_states[N_MEMORY];
1262
1263	for_each_node_mask(nid, node_states[N_MEMORY]) {
1264
1265		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266			node_clear(nid, memcg->scan_nodes);
1267	}
1268
1269	atomic_set(&memcg->numainfo_events, 0);
1270	atomic_set(&memcg->numainfo_updating, 0);
1271}
1272
1273/*
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1277 *
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1282 *
1283 * Now, we use round-robin. Better algorithm is welcomed.
1284 */
1285int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1286{
1287	int node;
1288
1289	mem_cgroup_may_update_nodemask(memcg);
1290	node = memcg->last_scanned_node;
1291
1292	node = next_node_in(node, memcg->scan_nodes);
1293	/*
1294	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295	 * last time it really checked all the LRUs due to rate limiting.
1296	 * Fallback to the current node in that case for simplicity.
1297	 */
1298	if (unlikely(node == MAX_NUMNODES))
1299		node = numa_node_id();
1300
1301	memcg->last_scanned_node = node;
1302	return node;
1303}
1304#else
1305int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1306{
1307	return 0;
1308}
1309#endif
1310
1311static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312				   pg_data_t *pgdat,
1313				   gfp_t gfp_mask,
1314				   unsigned long *total_scanned)
1315{
1316	struct mem_cgroup *victim = NULL;
1317	int total = 0;
1318	int loop = 0;
1319	unsigned long excess;
1320	unsigned long nr_scanned;
1321	struct mem_cgroup_reclaim_cookie reclaim = {
1322		.pgdat = pgdat,
1323		.priority = 0,
1324	};
1325
1326	excess = soft_limit_excess(root_memcg);
1327
1328	while (1) {
1329		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1330		if (!victim) {
1331			loop++;
1332			if (loop >= 2) {
1333				/*
1334				 * If we have not been able to reclaim
1335				 * anything, it might because there are
1336				 * no reclaimable pages under this hierarchy
1337				 */
1338				if (!total)
1339					break;
1340				/*
1341				 * We want to do more targeted reclaim.
1342				 * excess >> 2 is not to excessive so as to
1343				 * reclaim too much, nor too less that we keep
1344				 * coming back to reclaim from this cgroup
1345				 */
1346				if (total >= (excess >> 2) ||
1347					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1348					break;
1349			}
1350			continue;
1351		}
1352		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353					pgdat, &nr_scanned);
1354		*total_scanned += nr_scanned;
1355		if (!soft_limit_excess(root_memcg))
1356			break;
1357	}
1358	mem_cgroup_iter_break(root_memcg, victim);
1359	return total;
1360}
1361
1362#ifdef CONFIG_LOCKDEP
1363static struct lockdep_map memcg_oom_lock_dep_map = {
1364	.name = "memcg_oom_lock",
1365};
1366#endif
1367
1368static DEFINE_SPINLOCK(memcg_oom_lock);
1369
1370/*
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1373 */
1374static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1375{
1376	struct mem_cgroup *iter, *failed = NULL;
1377
1378	spin_lock(&memcg_oom_lock);
1379
1380	for_each_mem_cgroup_tree(iter, memcg) {
1381		if (iter->oom_lock) {
1382			/*
1383			 * this subtree of our hierarchy is already locked
1384			 * so we cannot give a lock.
1385			 */
1386			failed = iter;
1387			mem_cgroup_iter_break(memcg, iter);
1388			break;
1389		} else
1390			iter->oom_lock = true;
1391	}
1392
1393	if (failed) {
1394		/*
1395		 * OK, we failed to lock the whole subtree so we have
1396		 * to clean up what we set up to the failing subtree
1397		 */
1398		for_each_mem_cgroup_tree(iter, memcg) {
1399			if (iter == failed) {
1400				mem_cgroup_iter_break(memcg, iter);
1401				break;
1402			}
1403			iter->oom_lock = false;
1404		}
1405	} else
1406		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1407
1408	spin_unlock(&memcg_oom_lock);
1409
1410	return !failed;
1411}
1412
1413static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1414{
1415	struct mem_cgroup *iter;
1416
1417	spin_lock(&memcg_oom_lock);
1418	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419	for_each_mem_cgroup_tree(iter, memcg)
1420		iter->oom_lock = false;
1421	spin_unlock(&memcg_oom_lock);
1422}
1423
1424static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1425{
1426	struct mem_cgroup *iter;
1427
1428	spin_lock(&memcg_oom_lock);
1429	for_each_mem_cgroup_tree(iter, memcg)
1430		iter->under_oom++;
1431	spin_unlock(&memcg_oom_lock);
1432}
1433
1434static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1435{
1436	struct mem_cgroup *iter;
1437
1438	/*
1439	 * When a new child is created while the hierarchy is under oom,
1440	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1441	 */
1442	spin_lock(&memcg_oom_lock);
1443	for_each_mem_cgroup_tree(iter, memcg)
1444		if (iter->under_oom > 0)
1445			iter->under_oom--;
1446	spin_unlock(&memcg_oom_lock);
1447}
1448
1449static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1450
1451struct oom_wait_info {
1452	struct mem_cgroup *memcg;
1453	wait_queue_entry_t	wait;
1454};
1455
1456static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1457	unsigned mode, int sync, void *arg)
1458{
1459	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460	struct mem_cgroup *oom_wait_memcg;
1461	struct oom_wait_info *oom_wait_info;
1462
1463	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464	oom_wait_memcg = oom_wait_info->memcg;
1465
1466	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1468		return 0;
1469	return autoremove_wake_function(wait, mode, sync, arg);
1470}
1471
1472static void memcg_oom_recover(struct mem_cgroup *memcg)
1473{
1474	/*
1475	 * For the following lockless ->under_oom test, the only required
1476	 * guarantee is that it must see the state asserted by an OOM when
1477	 * this function is called as a result of userland actions
1478	 * triggered by the notification of the OOM.  This is trivially
1479	 * achieved by invoking mem_cgroup_mark_under_oom() before
1480	 * triggering notification.
1481	 */
1482	if (memcg && memcg->under_oom)
1483		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1484}
1485
1486static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
 
 
 
 
 
 
 
1487{
1488	if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489		return;
 
 
 
 
 
 
1490	/*
1491	 * We are in the middle of the charge context here, so we
1492	 * don't want to block when potentially sitting on a callstack
1493	 * that holds all kinds of filesystem and mm locks.
1494	 *
1495	 * Also, the caller may handle a failed allocation gracefully
1496	 * (like optional page cache readahead) and so an OOM killer
1497	 * invocation might not even be necessary.
 
 
 
 
 
 
1498	 *
1499	 * That's why we don't do anything here except remember the
1500	 * OOM context and then deal with it at the end of the page
1501	 * fault when the stack is unwound, the locks are released,
1502	 * and when we know whether the fault was overall successful.
1503	 */
1504	css_get(&memcg->css);
1505	current->memcg_in_oom = memcg;
1506	current->memcg_oom_gfp_mask = mask;
1507	current->memcg_oom_order = order;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508}
1509
1510/**
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512 * @handle: actually kill/wait or just clean up the OOM state
1513 *
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
1516 *
1517 * Memcg supports userspace OOM handling where failed allocations must
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation.  Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522 * the end of the page fault to complete the OOM handling.
1523 *
1524 * Returns %true if an ongoing memcg OOM situation was detected and
1525 * completed, %false otherwise.
1526 */
1527bool mem_cgroup_oom_synchronize(bool handle)
1528{
1529	struct mem_cgroup *memcg = current->memcg_in_oom;
1530	struct oom_wait_info owait;
1531	bool locked;
1532
1533	/* OOM is global, do not handle */
1534	if (!memcg)
1535		return false;
1536
1537	if (!handle)
1538		goto cleanup;
1539
1540	owait.memcg = memcg;
1541	owait.wait.flags = 0;
1542	owait.wait.func = memcg_oom_wake_function;
1543	owait.wait.private = current;
1544	INIT_LIST_HEAD(&owait.wait.entry);
1545
1546	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547	mem_cgroup_mark_under_oom(memcg);
1548
1549	locked = mem_cgroup_oom_trylock(memcg);
1550
1551	if (locked)
1552		mem_cgroup_oom_notify(memcg);
1553
1554	if (locked && !memcg->oom_kill_disable) {
1555		mem_cgroup_unmark_under_oom(memcg);
1556		finish_wait(&memcg_oom_waitq, &owait.wait);
1557		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558					 current->memcg_oom_order);
1559	} else {
1560		schedule();
1561		mem_cgroup_unmark_under_oom(memcg);
1562		finish_wait(&memcg_oom_waitq, &owait.wait);
1563	}
1564
1565	if (locked) {
1566		mem_cgroup_oom_unlock(memcg);
1567		/*
1568		 * There is no guarantee that an OOM-lock contender
1569		 * sees the wakeups triggered by the OOM kill
1570		 * uncharges.  Wake any sleepers explicitely.
1571		 */
1572		memcg_oom_recover(memcg);
1573	}
1574cleanup:
1575	current->memcg_in_oom = NULL;
1576	css_put(&memcg->css);
1577	return true;
1578}
1579
1580/**
1581 * lock_page_memcg - lock a page->mem_cgroup binding
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582 * @page: the page
1583 *
1584 * This function protects unlocked LRU pages from being moved to
1585 * another cgroup.
1586 *
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
1590 */
1591struct mem_cgroup *lock_page_memcg(struct page *page)
1592{
 
1593	struct mem_cgroup *memcg;
1594	unsigned long flags;
1595
1596	/*
1597	 * The RCU lock is held throughout the transaction.  The fast
1598	 * path can get away without acquiring the memcg->move_lock
1599	 * because page moving starts with an RCU grace period.
1600	 *
1601	 * The RCU lock also protects the memcg from being freed when
1602	 * the page state that is going to change is the only thing
1603	 * preventing the page itself from being freed. E.g. writeback
1604	 * doesn't hold a page reference and relies on PG_writeback to
1605	 * keep off truncation, migration and so forth.
1606         */
1607	rcu_read_lock();
1608
1609	if (mem_cgroup_disabled())
1610		return NULL;
1611again:
1612	memcg = page->mem_cgroup;
1613	if (unlikely(!memcg))
1614		return NULL;
 
 
 
 
 
 
1615
1616	if (atomic_read(&memcg->moving_account) <= 0)
1617		return memcg;
1618
1619	spin_lock_irqsave(&memcg->move_lock, flags);
1620	if (memcg != page->mem_cgroup) {
1621		spin_unlock_irqrestore(&memcg->move_lock, flags);
1622		goto again;
1623	}
1624
1625	/*
1626	 * When charge migration first begins, we can have locked and
1627	 * unlocked page stat updates happening concurrently.  Track
1628	 * the task who has the lock for unlock_page_memcg().
 
1629	 */
1630	memcg->move_lock_task = current;
1631	memcg->move_lock_flags = flags;
1632
1633	return memcg;
1634}
1635EXPORT_SYMBOL(lock_page_memcg);
1636
1637/**
1638 * __unlock_page_memcg - unlock and unpin a memcg
1639 * @memcg: the memcg
1640 *
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
1642 */
1643void __unlock_page_memcg(struct mem_cgroup *memcg)
1644{
1645	if (memcg && memcg->move_lock_task == current) {
1646		unsigned long flags = memcg->move_lock_flags;
1647
1648		memcg->move_lock_task = NULL;
1649		memcg->move_lock_flags = 0;
1650
1651		spin_unlock_irqrestore(&memcg->move_lock, flags);
1652	}
1653
1654	rcu_read_unlock();
1655}
1656
1657/**
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1659 * @page: the page
1660 */
1661void unlock_page_memcg(struct page *page)
1662{
1663	__unlock_page_memcg(page->mem_cgroup);
 
 
1664}
1665EXPORT_SYMBOL(unlock_page_memcg);
1666
 
 
 
 
 
 
 
 
 
 
 
 
1667struct memcg_stock_pcp {
1668	struct mem_cgroup *cached; /* this never be root cgroup */
1669	unsigned int nr_pages;
 
 
 
1670	struct work_struct work;
1671	unsigned long flags;
1672#define FLUSHING_CACHED_CHARGE	0
1673};
1674static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675static DEFINE_MUTEX(percpu_charge_mutex);
1676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1677/**
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1681 *
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock.  Failure to
1684 * service an allocation will refill the stock.
1685 *
1686 * returns true if successful, false otherwise.
1687 */
1688static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1689{
1690	struct memcg_stock_pcp *stock;
1691	unsigned long flags;
1692	bool ret = false;
1693
1694	if (nr_pages > MEMCG_CHARGE_BATCH)
1695		return ret;
1696
1697	local_irq_save(flags);
1698
1699	stock = this_cpu_ptr(&memcg_stock);
1700	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701		stock->nr_pages -= nr_pages;
1702		ret = true;
1703	}
1704
1705	local_irq_restore(flags);
1706
1707	return ret;
1708}
1709
1710/*
1711 * Returns stocks cached in percpu and reset cached information.
1712 */
1713static void drain_stock(struct memcg_stock_pcp *stock)
1714{
1715	struct mem_cgroup *old = stock->cached;
1716
 
 
 
1717	if (stock->nr_pages) {
1718		page_counter_uncharge(&old->memory, stock->nr_pages);
1719		if (do_memsw_account())
1720			page_counter_uncharge(&old->memsw, stock->nr_pages);
1721		css_put_many(&old->css, stock->nr_pages);
1722		stock->nr_pages = 0;
1723	}
 
 
1724	stock->cached = NULL;
1725}
1726
1727static void drain_local_stock(struct work_struct *dummy)
1728{
1729	struct memcg_stock_pcp *stock;
1730	unsigned long flags;
1731
1732	/*
1733	 * The only protection from memory hotplug vs. drain_stock races is
1734	 * that we always operate on local CPU stock here with IRQ disabled
1735	 */
1736	local_irq_save(flags);
1737
1738	stock = this_cpu_ptr(&memcg_stock);
 
 
 
1739	drain_stock(stock);
1740	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1741
1742	local_irq_restore(flags);
1743}
1744
1745/*
1746 * Cache charges(val) to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1748 */
1749static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1750{
1751	struct memcg_stock_pcp *stock;
1752	unsigned long flags;
1753
1754	local_irq_save(flags);
1755
1756	stock = this_cpu_ptr(&memcg_stock);
1757	if (stock->cached != memcg) { /* reset if necessary */
1758		drain_stock(stock);
 
1759		stock->cached = memcg;
1760	}
1761	stock->nr_pages += nr_pages;
1762
1763	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764		drain_stock(stock);
1765
1766	local_irq_restore(flags);
1767}
1768
1769/*
1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771 * of the hierarchy under it.
1772 */
1773static void drain_all_stock(struct mem_cgroup *root_memcg)
1774{
1775	int cpu, curcpu;
1776
1777	/* If someone's already draining, avoid adding running more workers. */
1778	if (!mutex_trylock(&percpu_charge_mutex))
1779		return;
1780	/*
1781	 * Notify other cpus that system-wide "drain" is running
1782	 * We do not care about races with the cpu hotplug because cpu down
1783	 * as well as workers from this path always operate on the local
1784	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1785	 */
1786	curcpu = get_cpu();
1787	for_each_online_cpu(cpu) {
1788		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789		struct mem_cgroup *memcg;
 
1790
 
1791		memcg = stock->cached;
1792		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793			continue;
1794		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795			css_put(&memcg->css);
1796			continue;
1797		}
1798		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
 
 
1799			if (cpu == curcpu)
1800				drain_local_stock(&stock->work);
1801			else
1802				schedule_work_on(cpu, &stock->work);
1803		}
1804		css_put(&memcg->css);
1805	}
1806	put_cpu();
1807	mutex_unlock(&percpu_charge_mutex);
1808}
1809
1810static int memcg_hotplug_cpu_dead(unsigned int cpu)
1811{
1812	struct memcg_stock_pcp *stock;
1813	struct mem_cgroup *memcg;
1814
1815	stock = &per_cpu(memcg_stock, cpu);
1816	drain_stock(stock);
1817
1818	for_each_mem_cgroup(memcg) {
 
 
 
1819		int i;
1820
1821		for (i = 0; i < MEMCG_NR_STAT; i++) {
1822			int nid;
1823			long x;
1824
1825			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1826			if (x)
1827				atomic_long_add(x, &memcg->stat[i]);
1828
1829			if (i >= NR_VM_NODE_STAT_ITEMS)
1830				continue;
1831
1832			for_each_node(nid) {
1833				struct mem_cgroup_per_node *pn;
 
 
 
 
1834
1835				pn = mem_cgroup_nodeinfo(memcg, nid);
1836				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1837				if (x)
1838					atomic_long_add(x, &pn->lruvec_stat[i]);
1839			}
1840		}
1841
1842		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843			long x;
1844
1845			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1846			if (x)
1847				atomic_long_add(x, &memcg->events[i]);
1848		}
1849	}
1850
1851	return 0;
1852}
1853
1854static void reclaim_high(struct mem_cgroup *memcg,
1855			 unsigned int nr_pages,
1856			 gfp_t gfp_mask)
1857{
 
 
1858	do {
1859		if (page_counter_read(&memcg->memory) <= memcg->high)
 
 
 
1860			continue;
 
1861		memcg_memory_event(memcg, MEMCG_HIGH);
1862		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863	} while ((memcg = parent_mem_cgroup(memcg)));
 
 
 
 
 
 
 
1864}
1865
1866static void high_work_func(struct work_struct *work)
1867{
1868	struct mem_cgroup *memcg;
1869
1870	memcg = container_of(work, struct mem_cgroup, high_work);
1871	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1872}
1873
1874/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878void mem_cgroup_handle_over_high(void)
1879{
 
 
 
1880	unsigned int nr_pages = current->memcg_nr_pages_over_high;
 
1881	struct mem_cgroup *memcg;
 
1882
1883	if (likely(!nr_pages))
1884		return;
1885
1886	memcg = get_mem_cgroup_from_mm(current->mm);
1887	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888	css_put(&memcg->css);
1889	current->memcg_nr_pages_over_high = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890}
1891
1892static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893		      unsigned int nr_pages)
1894{
1895	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897	struct mem_cgroup *mem_over_limit;
1898	struct page_counter *counter;
 
1899	unsigned long nr_reclaimed;
1900	bool may_swap = true;
1901	bool drained = false;
 
1902
1903	if (mem_cgroup_is_root(memcg))
1904		return 0;
1905retry:
1906	if (consume_stock(memcg, nr_pages))
1907		return 0;
1908
1909	if (!do_memsw_account() ||
1910	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912			goto done_restock;
1913		if (do_memsw_account())
1914			page_counter_uncharge(&memcg->memsw, batch);
1915		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916	} else {
1917		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918		may_swap = false;
1919	}
1920
1921	if (batch > nr_pages) {
1922		batch = nr_pages;
1923		goto retry;
1924	}
1925
1926	/*
 
 
 
 
 
 
 
 
 
1927	 * Unlike in global OOM situations, memcg is not in a physical
1928	 * memory shortage.  Allow dying and OOM-killed tasks to
1929	 * bypass the last charges so that they can exit quickly and
1930	 * free their memory.
1931	 */
1932	if (unlikely(tsk_is_oom_victim(current) ||
1933		     fatal_signal_pending(current) ||
1934		     current->flags & PF_EXITING))
1935		goto force;
1936
1937	/*
1938	 * Prevent unbounded recursion when reclaim operations need to
1939	 * allocate memory. This might exceed the limits temporarily,
1940	 * but we prefer facilitating memory reclaim and getting back
1941	 * under the limit over triggering OOM kills in these cases.
1942	 */
1943	if (unlikely(current->flags & PF_MEMALLOC))
1944		goto force;
1945
1946	if (unlikely(task_in_memcg_oom(current)))
1947		goto nomem;
1948
1949	if (!gfpflags_allow_blocking(gfp_mask))
1950		goto nomem;
1951
1952	memcg_memory_event(mem_over_limit, MEMCG_MAX);
1953
 
1954	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955						    gfp_mask, may_swap);
 
1956
1957	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958		goto retry;
1959
1960	if (!drained) {
1961		drain_all_stock(mem_over_limit);
1962		drained = true;
1963		goto retry;
1964	}
1965
1966	if (gfp_mask & __GFP_NORETRY)
1967		goto nomem;
1968	/*
1969	 * Even though the limit is exceeded at this point, reclaim
1970	 * may have been able to free some pages.  Retry the charge
1971	 * before killing the task.
1972	 *
1973	 * Only for regular pages, though: huge pages are rather
1974	 * unlikely to succeed so close to the limit, and we fall back
1975	 * to regular pages anyway in case of failure.
1976	 */
1977	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978		goto retry;
1979	/*
1980	 * At task move, charge accounts can be doubly counted. So, it's
1981	 * better to wait until the end of task_move if something is going on.
1982	 */
1983	if (mem_cgroup_wait_acct_move(mem_over_limit))
1984		goto retry;
1985
1986	if (nr_retries--)
1987		goto retry;
1988
1989	if (gfp_mask & __GFP_NOFAIL)
1990		goto force;
1991
1992	if (fatal_signal_pending(current))
1993		goto force;
1994
1995	memcg_memory_event(mem_over_limit, MEMCG_OOM);
1996
1997	mem_cgroup_oom(mem_over_limit, gfp_mask,
 
 
 
1998		       get_order(nr_pages * PAGE_SIZE));
 
 
 
 
 
 
 
 
 
1999nomem:
2000	if (!(gfp_mask & __GFP_NOFAIL))
2001		return -ENOMEM;
2002force:
2003	/*
2004	 * The allocation either can't fail or will lead to more memory
2005	 * being freed very soon.  Allow memory usage go over the limit
2006	 * temporarily by force charging it.
2007	 */
2008	page_counter_charge(&memcg->memory, nr_pages);
2009	if (do_memsw_account())
2010		page_counter_charge(&memcg->memsw, nr_pages);
2011	css_get_many(&memcg->css, nr_pages);
2012
2013	return 0;
2014
2015done_restock:
2016	css_get_many(&memcg->css, batch);
2017	if (batch > nr_pages)
2018		refill_stock(memcg, batch - nr_pages);
2019
2020	/*
2021	 * If the hierarchy is above the normal consumption range, schedule
2022	 * reclaim on returning to userland.  We can perform reclaim here
2023	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2025	 * not recorded as it most likely matches current's and won't
2026	 * change in the meantime.  As high limit is checked again before
2027	 * reclaim, the cost of mismatch is negligible.
2028	 */
2029	do {
2030		if (page_counter_read(&memcg->memory) > memcg->high) {
2031			/* Don't bother a random interrupted task */
2032			if (in_interrupt()) {
 
 
 
 
 
 
 
2033				schedule_work(&memcg->high_work);
2034				break;
2035			}
 
 
 
 
 
 
 
 
 
 
 
 
 
2036			current->memcg_nr_pages_over_high += batch;
2037			set_notify_resume(current);
2038			break;
2039		}
2040	} while ((memcg = parent_mem_cgroup(memcg)));
2041
2042	return 0;
2043}
2044
 
 
 
 
 
 
 
 
 
 
2045static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2046{
2047	if (mem_cgroup_is_root(memcg))
2048		return;
2049
2050	page_counter_uncharge(&memcg->memory, nr_pages);
2051	if (do_memsw_account())
2052		page_counter_uncharge(&memcg->memsw, nr_pages);
 
 
2053
2054	css_put_many(&memcg->css, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
2055}
2056
2057static void lock_page_lru(struct page *page, int *isolated)
2058{
2059	struct zone *zone = page_zone(page);
2060
2061	spin_lock_irq(zone_lru_lock(zone));
2062	if (PageLRU(page)) {
2063		struct lruvec *lruvec;
 
 
 
2064
2065		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066		ClearPageLRU(page);
2067		del_page_from_lru_list(page, lruvec, page_lru(page));
2068		*isolated = 1;
2069	} else
2070		*isolated = 0;
2071}
2072
2073static void unlock_page_lru(struct page *page, int isolated)
2074{
2075	struct zone *zone = page_zone(page);
2076
2077	if (isolated) {
2078		struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2079
2080		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081		VM_BUG_ON_PAGE(PageLRU(page), page);
2082		SetPageLRU(page);
2083		add_page_to_lru_list(page, lruvec, page_lru(page));
 
 
 
 
 
 
 
 
 
 
 
 
2084	}
2085	spin_unlock_irq(zone_lru_lock(zone));
 
 
2086}
2087
2088static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089			  bool lrucare)
 
 
 
 
 
 
 
 
 
 
 
2090{
2091	int isolated;
2092
2093	VM_BUG_ON_PAGE(page->mem_cgroup, page);
 
 
 
2094
2095	/*
2096	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097	 * may already be on some other mem_cgroup's LRU.  Take care of it.
 
2098	 */
2099	if (lrucare)
2100		lock_page_lru(page, &isolated);
 
 
 
 
 
 
 
 
 
2101
2102	/*
2103	 * Nobody should be changing or seriously looking at
2104	 * page->mem_cgroup at this point:
2105	 *
2106	 * - the page is uncharged
2107	 *
2108	 * - the page is off-LRU
2109	 *
2110	 * - an anonymous fault has exclusive page access, except for
2111	 *   a locked page table
2112	 *
2113	 * - a page cache insertion, a swapin fault, or a migration
2114	 *   have the page locked
2115	 */
2116	page->mem_cgroup = memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2117
2118	if (lrucare)
2119		unlock_page_lru(page, isolated);
2120}
2121
2122#ifndef CONFIG_SLOB
2123static int memcg_alloc_cache_id(void)
2124{
2125	int id, size;
2126	int err;
2127
2128	id = ida_simple_get(&memcg_cache_ida,
2129			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2130	if (id < 0)
2131		return id;
2132
2133	if (id < memcg_nr_cache_ids)
2134		return id;
2135
2136	/*
2137	 * There's no space for the new id in memcg_caches arrays,
2138	 * so we have to grow them.
2139	 */
2140	down_write(&memcg_cache_ids_sem);
2141
2142	size = 2 * (id + 1);
2143	if (size < MEMCG_CACHES_MIN_SIZE)
2144		size = MEMCG_CACHES_MIN_SIZE;
2145	else if (size > MEMCG_CACHES_MAX_SIZE)
2146		size = MEMCG_CACHES_MAX_SIZE;
2147
2148	err = memcg_update_all_caches(size);
2149	if (!err)
2150		err = memcg_update_all_list_lrus(size);
2151	if (!err)
2152		memcg_nr_cache_ids = size;
2153
2154	up_write(&memcg_cache_ids_sem);
2155
2156	if (err) {
2157		ida_simple_remove(&memcg_cache_ida, id);
2158		return err;
2159	}
2160	return id;
2161}
2162
2163static void memcg_free_cache_id(int id)
2164{
2165	ida_simple_remove(&memcg_cache_ida, id);
2166}
2167
2168struct memcg_kmem_cache_create_work {
 
 
 
 
 
 
 
2169	struct mem_cgroup *memcg;
2170	struct kmem_cache *cachep;
2171	struct work_struct work;
2172};
2173
2174static void memcg_kmem_cache_create_func(struct work_struct *w)
2175{
2176	struct memcg_kmem_cache_create_work *cw =
2177		container_of(w, struct memcg_kmem_cache_create_work, work);
2178	struct mem_cgroup *memcg = cw->memcg;
2179	struct kmem_cache *cachep = cw->cachep;
2180
2181	memcg_create_kmem_cache(memcg, cachep);
 
 
2182
2183	css_put(&memcg->css);
2184	kfree(cw);
2185}
2186
2187/*
2188 * Enqueue the creation of a per-memcg kmem_cache.
 
 
 
 
 
2189 */
2190static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191					       struct kmem_cache *cachep)
2192{
2193	struct memcg_kmem_cache_create_work *cw;
 
 
2194
2195	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196	if (!cw)
2197		return;
2198
2199	css_get(&memcg->css);
 
 
2200
2201	cw->memcg = memcg;
2202	cw->cachep = cachep;
2203	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2204
2205	queue_work(memcg_kmem_cache_wq, &cw->work);
2206}
 
 
 
 
 
 
 
 
 
 
 
 
2207
2208static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209					     struct kmem_cache *cachep)
2210{
2211	/*
2212	 * We need to stop accounting when we kmalloc, because if the
2213	 * corresponding kmalloc cache is not yet created, the first allocation
2214	 * in __memcg_schedule_kmem_cache_create will recurse.
2215	 *
2216	 * However, it is better to enclose the whole function. Depending on
2217	 * the debugging options enabled, INIT_WORK(), for instance, can
2218	 * trigger an allocation. This too, will make us recurse. Because at
2219	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220	 * the safest choice is to do it like this, wrapping the whole function.
2221	 */
2222	current->memcg_kmem_skip_account = 1;
2223	__memcg_schedule_kmem_cache_create(memcg, cachep);
2224	current->memcg_kmem_skip_account = 0;
2225}
2226
2227static inline bool memcg_kmem_bypass(void)
 
 
 
 
 
 
 
 
2228{
2229	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2230		return true;
2231	return false;
 
 
 
 
 
 
 
 
 
 
 
2232}
2233
2234/**
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2237 *
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2240 *
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
2244 *
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2248 * reference.
2249 */
2250struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2251{
2252	struct mem_cgroup *memcg;
2253	struct kmem_cache *memcg_cachep;
2254	int kmemcg_id;
2255
2256	VM_BUG_ON(!is_root_cache(cachep));
2257
2258	if (memcg_kmem_bypass())
2259		return cachep;
2260
2261	if (current->memcg_kmem_skip_account)
2262		return cachep;
 
 
 
2263
2264	memcg = get_mem_cgroup_from_mm(current->mm);
2265	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266	if (kmemcg_id < 0)
2267		goto out;
 
 
2268
2269	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270	if (likely(memcg_cachep))
2271		return memcg_cachep;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2272
 
 
2273	/*
2274	 * If we are in a safe context (can wait, and not in interrupt
2275	 * context), we could be be predictable and return right away.
2276	 * This would guarantee that the allocation being performed
2277	 * already belongs in the new cache.
2278	 *
2279	 * However, there are some clashes that can arrive from locking.
2280	 * For instance, because we acquire the slab_mutex while doing
2281	 * memcg_create_kmem_cache, this means no further allocation
2282	 * could happen with the slab_mutex held. So it's better to
2283	 * defer everything.
2284	 */
2285	memcg_schedule_kmem_cache_create(memcg, cachep);
2286out:
2287	css_put(&memcg->css);
2288	return cachep;
 
 
 
 
 
 
 
 
 
 
 
 
2289}
2290
2291/**
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2294 */
2295void memcg_kmem_put_cache(struct kmem_cache *cachep)
2296{
2297	if (!is_root_cache(cachep))
2298		css_put(&cachep->memcg_params.memcg->css);
 
 
 
 
 
 
 
 
 
 
2299}
2300
2301/**
2302 * memcg_kmem_charge_memcg: charge a kmem page
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2307 *
2308 * Returns 0 on success, an error code on failure.
2309 */
2310int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311			    struct mem_cgroup *memcg)
2312{
2313	unsigned int nr_pages = 1 << order;
2314	struct page_counter *counter;
2315	int ret;
2316
2317	ret = try_charge(memcg, gfp, nr_pages);
2318	if (ret)
2319		return ret;
2320
2321	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323		cancel_charge(memcg, nr_pages);
2324		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325	}
2326
2327	page->mem_cgroup = memcg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2328
2329	return 0;
 
2330}
2331
2332/**
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2337 *
2338 * Returns 0 on success, an error code on failure.
2339 */
2340int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342	struct mem_cgroup *memcg;
2343	int ret = 0;
2344
2345	if (memcg_kmem_bypass())
2346		return 0;
2347
2348	memcg = get_mem_cgroup_from_mm(current->mm);
2349	if (!mem_cgroup_is_root(memcg)) {
2350		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351		if (!ret)
2352			__SetPageKmemcg(page);
2353	}
2354	css_put(&memcg->css);
2355	return ret;
 
 
 
 
 
2356}
2357/**
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2361 */
2362void memcg_kmem_uncharge(struct page *page, int order)
2363{
2364	struct mem_cgroup *memcg = page->mem_cgroup;
2365	unsigned int nr_pages = 1 << order;
 
2366
2367	if (!memcg)
2368		return;
 
 
 
 
 
 
 
2369
2370	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
 
 
 
2371
2372	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373		page_counter_uncharge(&memcg->kmem, nr_pages);
2374
2375	page_counter_uncharge(&memcg->memory, nr_pages);
2376	if (do_memsw_account())
2377		page_counter_uncharge(&memcg->memsw, nr_pages);
2378
2379	page->mem_cgroup = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2380
2381	/* slab pages do not have PageKmemcg flag set */
2382	if (PageKmemcg(page))
2383		__ClearPageKmemcg(page);
2384
2385	css_put_many(&memcg->css, nr_pages);
 
 
2386}
2387#endif /* !CONFIG_SLOB */
2388
2389#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390
2391/*
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2394 */
2395void mem_cgroup_split_huge_fixup(struct page *head)
2396{
 
2397	int i;
2398
2399	if (mem_cgroup_disabled())
2400		return;
2401
2402	for (i = 1; i < HPAGE_PMD_NR; i++)
2403		head[i].mem_cgroup = head->mem_cgroup;
2404
2405	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
 
 
 
2406}
2407#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408
2409#ifdef CONFIG_MEMCG_SWAP
2410/**
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from:  mem_cgroup which the entry is moved from
2414 * @to:  mem_cgroup which the entry is moved to
2415 *
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2418 *
2419 * Returns 0 on success, -EINVAL on failure.
2420 *
2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 * both res and memsw, and called css_get().
2423 */
2424static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425				struct mem_cgroup *from, struct mem_cgroup *to)
2426{
2427	unsigned short old_id, new_id;
2428
2429	old_id = mem_cgroup_id(from);
2430	new_id = mem_cgroup_id(to);
2431
2432	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433		mod_memcg_state(from, MEMCG_SWAP, -1);
2434		mod_memcg_state(to, MEMCG_SWAP, 1);
2435		return 0;
2436	}
2437	return -EINVAL;
2438}
2439#else
2440static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441				struct mem_cgroup *from, struct mem_cgroup *to)
2442{
2443	return -EINVAL;
2444}
2445#endif
2446
2447static DEFINE_MUTEX(memcg_limit_mutex);
2448
2449static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2450				   unsigned long limit, bool memsw)
2451{
2452	bool enlarge = false;
 
2453	int ret;
2454	bool limits_invariant;
2455	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2456
2457	do {
2458		if (signal_pending(current)) {
2459			ret = -EINTR;
2460			break;
2461		}
2462
2463		mutex_lock(&memcg_limit_mutex);
2464		/*
2465		 * Make sure that the new limit (memsw or memory limit) doesn't
2466		 * break our basic invariant rule memory.limit <= memsw.limit.
2467		 */
2468		limits_invariant = memsw ? limit >= memcg->memory.limit :
2469					   limit <= memcg->memsw.limit;
2470		if (!limits_invariant) {
2471			mutex_unlock(&memcg_limit_mutex);
2472			ret = -EINVAL;
2473			break;
2474		}
2475		if (limit > counter->limit)
2476			enlarge = true;
2477		ret = page_counter_limit(counter, limit);
2478		mutex_unlock(&memcg_limit_mutex);
2479
2480		if (!ret)
2481			break;
2482
 
 
 
 
 
 
2483		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2484					GFP_KERNEL, !memsw)) {
2485			ret = -EBUSY;
2486			break;
2487		}
2488	} while (true);
2489
2490	if (!ret && enlarge)
2491		memcg_oom_recover(memcg);
2492
2493	return ret;
2494}
2495
2496unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2497					    gfp_t gfp_mask,
2498					    unsigned long *total_scanned)
2499{
2500	unsigned long nr_reclaimed = 0;
2501	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2502	unsigned long reclaimed;
2503	int loop = 0;
2504	struct mem_cgroup_tree_per_node *mctz;
2505	unsigned long excess;
2506	unsigned long nr_scanned;
2507
2508	if (order > 0)
2509		return 0;
2510
2511	mctz = soft_limit_tree_node(pgdat->node_id);
2512
2513	/*
2514	 * Do not even bother to check the largest node if the root
2515	 * is empty. Do it lockless to prevent lock bouncing. Races
2516	 * are acceptable as soft limit is best effort anyway.
2517	 */
2518	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2519		return 0;
2520
2521	/*
2522	 * This loop can run a while, specially if mem_cgroup's continuously
2523	 * keep exceeding their soft limit and putting the system under
2524	 * pressure
2525	 */
2526	do {
2527		if (next_mz)
2528			mz = next_mz;
2529		else
2530			mz = mem_cgroup_largest_soft_limit_node(mctz);
2531		if (!mz)
2532			break;
2533
2534		nr_scanned = 0;
2535		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2536						    gfp_mask, &nr_scanned);
2537		nr_reclaimed += reclaimed;
2538		*total_scanned += nr_scanned;
2539		spin_lock_irq(&mctz->lock);
2540		__mem_cgroup_remove_exceeded(mz, mctz);
2541
2542		/*
2543		 * If we failed to reclaim anything from this memory cgroup
2544		 * it is time to move on to the next cgroup
2545		 */
2546		next_mz = NULL;
2547		if (!reclaimed)
2548			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2549
2550		excess = soft_limit_excess(mz->memcg);
2551		/*
2552		 * One school of thought says that we should not add
2553		 * back the node to the tree if reclaim returns 0.
2554		 * But our reclaim could return 0, simply because due
2555		 * to priority we are exposing a smaller subset of
2556		 * memory to reclaim from. Consider this as a longer
2557		 * term TODO.
2558		 */
2559		/* If excess == 0, no tree ops */
2560		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2561		spin_unlock_irq(&mctz->lock);
2562		css_put(&mz->memcg->css);
2563		loop++;
2564		/*
2565		 * Could not reclaim anything and there are no more
2566		 * mem cgroups to try or we seem to be looping without
2567		 * reclaiming anything.
2568		 */
2569		if (!nr_reclaimed &&
2570			(next_mz == NULL ||
2571			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2572			break;
2573	} while (!nr_reclaimed);
2574	if (next_mz)
2575		css_put(&next_mz->memcg->css);
2576	return nr_reclaimed;
2577}
2578
2579/*
2580 * Test whether @memcg has children, dead or alive.  Note that this
2581 * function doesn't care whether @memcg has use_hierarchy enabled and
2582 * returns %true if there are child csses according to the cgroup
2583 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2584 */
2585static inline bool memcg_has_children(struct mem_cgroup *memcg)
2586{
2587	bool ret;
2588
2589	rcu_read_lock();
2590	ret = css_next_child(NULL, &memcg->css);
2591	rcu_read_unlock();
2592	return ret;
2593}
2594
2595/*
2596 * Reclaims as many pages from the given memcg as possible.
2597 *
2598 * Caller is responsible for holding css reference for memcg.
2599 */
2600static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2601{
2602	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2603
2604	/* we call try-to-free pages for make this cgroup empty */
2605	lru_add_drain_all();
 
 
 
2606	/* try to free all pages in this cgroup */
2607	while (nr_retries && page_counter_read(&memcg->memory)) {
2608		int progress;
2609
2610		if (signal_pending(current))
2611			return -EINTR;
2612
2613		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2614							GFP_KERNEL, true);
2615		if (!progress) {
2616			nr_retries--;
2617			/* maybe some writeback is necessary */
2618			congestion_wait(BLK_RW_ASYNC, HZ/10);
2619		}
2620
2621	}
2622
2623	return 0;
2624}
2625
2626static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2627					    char *buf, size_t nbytes,
2628					    loff_t off)
2629{
2630	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2631
2632	if (mem_cgroup_is_root(memcg))
2633		return -EINVAL;
2634	return mem_cgroup_force_empty(memcg) ?: nbytes;
2635}
2636
2637static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2638				     struct cftype *cft)
2639{
2640	return mem_cgroup_from_css(css)->use_hierarchy;
2641}
2642
2643static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2644				      struct cftype *cft, u64 val)
2645{
2646	int retval = 0;
2647	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2648	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2649
2650	if (memcg->use_hierarchy == val)
2651		return 0;
2652
2653	/*
2654	 * If parent's use_hierarchy is set, we can't make any modifications
2655	 * in the child subtrees. If it is unset, then the change can
2656	 * occur, provided the current cgroup has no children.
2657	 *
2658	 * For the root cgroup, parent_mem is NULL, we allow value to be
2659	 * set if there are no children.
2660	 */
2661	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2662				(val == 1 || val == 0)) {
2663		if (!memcg_has_children(memcg))
2664			memcg->use_hierarchy = val;
2665		else
2666			retval = -EBUSY;
2667	} else
2668		retval = -EINVAL;
2669
2670	return retval;
2671}
2672
2673static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2674{
2675	struct mem_cgroup *iter;
2676	int i;
2677
2678	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2679
2680	for_each_mem_cgroup_tree(iter, memcg) {
2681		for (i = 0; i < MEMCG_NR_STAT; i++)
2682			stat[i] += memcg_page_state(iter, i);
2683	}
2684}
2685
2686static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2687{
2688	struct mem_cgroup *iter;
2689	int i;
2690
2691	memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2692
2693	for_each_mem_cgroup_tree(iter, memcg) {
2694		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2695			events[i] += memcg_sum_events(iter, i);
2696	}
2697}
2698
2699static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2700{
2701	unsigned long val = 0;
2702
2703	if (mem_cgroup_is_root(memcg)) {
2704		struct mem_cgroup *iter;
2705
2706		for_each_mem_cgroup_tree(iter, memcg) {
2707			val += memcg_page_state(iter, MEMCG_CACHE);
2708			val += memcg_page_state(iter, MEMCG_RSS);
2709			if (swap)
2710				val += memcg_page_state(iter, MEMCG_SWAP);
2711		}
2712	} else {
2713		if (!swap)
2714			val = page_counter_read(&memcg->memory);
2715		else
2716			val = page_counter_read(&memcg->memsw);
2717	}
2718	return val;
2719}
2720
2721enum {
2722	RES_USAGE,
2723	RES_LIMIT,
2724	RES_MAX_USAGE,
2725	RES_FAILCNT,
2726	RES_SOFT_LIMIT,
2727};
2728
2729static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2730			       struct cftype *cft)
2731{
2732	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2733	struct page_counter *counter;
2734
2735	switch (MEMFILE_TYPE(cft->private)) {
2736	case _MEM:
2737		counter = &memcg->memory;
2738		break;
2739	case _MEMSWAP:
2740		counter = &memcg->memsw;
2741		break;
2742	case _KMEM:
2743		counter = &memcg->kmem;
2744		break;
2745	case _TCP:
2746		counter = &memcg->tcpmem;
2747		break;
2748	default:
2749		BUG();
2750	}
2751
2752	switch (MEMFILE_ATTR(cft->private)) {
2753	case RES_USAGE:
2754		if (counter == &memcg->memory)
2755			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2756		if (counter == &memcg->memsw)
2757			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2758		return (u64)page_counter_read(counter) * PAGE_SIZE;
2759	case RES_LIMIT:
2760		return (u64)counter->limit * PAGE_SIZE;
2761	case RES_MAX_USAGE:
2762		return (u64)counter->watermark * PAGE_SIZE;
2763	case RES_FAILCNT:
2764		return counter->failcnt;
2765	case RES_SOFT_LIMIT:
2766		return (u64)memcg->soft_limit * PAGE_SIZE;
2767	default:
2768		BUG();
2769	}
2770}
2771
2772#ifndef CONFIG_SLOB
2773static int memcg_online_kmem(struct mem_cgroup *memcg)
2774{
 
2775	int memcg_id;
2776
2777	if (cgroup_memory_nokmem)
2778		return 0;
2779
2780	BUG_ON(memcg->kmemcg_id >= 0);
2781	BUG_ON(memcg->kmem_state);
2782
2783	memcg_id = memcg_alloc_cache_id();
2784	if (memcg_id < 0)
2785		return memcg_id;
2786
2787	static_branch_inc(&memcg_kmem_enabled_key);
2788	/*
2789	 * A memory cgroup is considered kmem-online as soon as it gets
2790	 * kmemcg_id. Setting the id after enabling static branching will
2791	 * guarantee no one starts accounting before all call sites are
2792	 * patched.
2793	 */
 
 
 
2794	memcg->kmemcg_id = memcg_id;
2795	memcg->kmem_state = KMEM_ONLINE;
2796	INIT_LIST_HEAD(&memcg->kmem_caches);
2797
2798	return 0;
2799}
2800
2801static void memcg_offline_kmem(struct mem_cgroup *memcg)
2802{
2803	struct cgroup_subsys_state *css;
2804	struct mem_cgroup *parent, *child;
2805	int kmemcg_id;
2806
2807	if (memcg->kmem_state != KMEM_ONLINE)
2808		return;
2809	/*
2810	 * Clear the online state before clearing memcg_caches array
2811	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2812	 * guarantees that no cache will be created for this cgroup
2813	 * after we are done (see memcg_create_kmem_cache()).
2814	 */
2815	memcg->kmem_state = KMEM_ALLOCATED;
2816
2817	memcg_deactivate_kmem_caches(memcg);
2818
2819	kmemcg_id = memcg->kmemcg_id;
2820	BUG_ON(kmemcg_id < 0);
2821
2822	parent = parent_mem_cgroup(memcg);
2823	if (!parent)
2824		parent = root_mem_cgroup;
2825
 
 
 
 
 
2826	/*
2827	 * Change kmemcg_id of this cgroup and all its descendants to the
2828	 * parent's id, and then move all entries from this cgroup's list_lrus
2829	 * to ones of the parent. After we have finished, all list_lrus
2830	 * corresponding to this cgroup are guaranteed to remain empty. The
2831	 * ordering is imposed by list_lru_node->lock taken by
2832	 * memcg_drain_all_list_lrus().
2833	 */
2834	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2835	css_for_each_descendant_pre(css, &memcg->css) {
2836		child = mem_cgroup_from_css(css);
2837		BUG_ON(child->kmemcg_id != kmemcg_id);
2838		child->kmemcg_id = parent->kmemcg_id;
2839		if (!memcg->use_hierarchy)
2840			break;
2841	}
2842	rcu_read_unlock();
2843
2844	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2845
2846	memcg_free_cache_id(kmemcg_id);
2847}
2848
2849static void memcg_free_kmem(struct mem_cgroup *memcg)
2850{
2851	/* css_alloc() failed, offlining didn't happen */
2852	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2853		memcg_offline_kmem(memcg);
2854
2855	if (memcg->kmem_state == KMEM_ALLOCATED) {
2856		memcg_destroy_kmem_caches(memcg);
2857		static_branch_dec(&memcg_kmem_enabled_key);
2858		WARN_ON(page_counter_read(&memcg->kmem));
2859	}
2860}
2861#else
2862static int memcg_online_kmem(struct mem_cgroup *memcg)
2863{
2864	return 0;
2865}
2866static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867{
2868}
2869static void memcg_free_kmem(struct mem_cgroup *memcg)
2870{
2871}
2872#endif /* !CONFIG_SLOB */
2873
2874static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2875				   unsigned long limit)
2876{
2877	int ret;
2878
2879	mutex_lock(&memcg_limit_mutex);
2880	ret = page_counter_limit(&memcg->kmem, limit);
2881	mutex_unlock(&memcg_limit_mutex);
2882	return ret;
2883}
2884
2885static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2886{
2887	int ret;
2888
2889	mutex_lock(&memcg_limit_mutex);
2890
2891	ret = page_counter_limit(&memcg->tcpmem, limit);
2892	if (ret)
2893		goto out;
2894
2895	if (!memcg->tcpmem_active) {
2896		/*
2897		 * The active flag needs to be written after the static_key
2898		 * update. This is what guarantees that the socket activation
2899		 * function is the last one to run. See mem_cgroup_sk_alloc()
2900		 * for details, and note that we don't mark any socket as
2901		 * belonging to this memcg until that flag is up.
2902		 *
2903		 * We need to do this, because static_keys will span multiple
2904		 * sites, but we can't control their order. If we mark a socket
2905		 * as accounted, but the accounting functions are not patched in
2906		 * yet, we'll lose accounting.
2907		 *
2908		 * We never race with the readers in mem_cgroup_sk_alloc(),
2909		 * because when this value change, the code to process it is not
2910		 * patched in yet.
2911		 */
2912		static_branch_inc(&memcg_sockets_enabled_key);
2913		memcg->tcpmem_active = true;
2914	}
2915out:
2916	mutex_unlock(&memcg_limit_mutex);
2917	return ret;
2918}
2919
2920/*
2921 * The user of this function is...
2922 * RES_LIMIT.
2923 */
2924static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2925				char *buf, size_t nbytes, loff_t off)
2926{
2927	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2928	unsigned long nr_pages;
2929	int ret;
2930
2931	buf = strstrip(buf);
2932	ret = page_counter_memparse(buf, "-1", &nr_pages);
2933	if (ret)
2934		return ret;
2935
2936	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2937	case RES_LIMIT:
2938		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2939			ret = -EINVAL;
2940			break;
2941		}
2942		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2943		case _MEM:
2944			ret = mem_cgroup_resize_limit(memcg, nr_pages, false);
2945			break;
2946		case _MEMSWAP:
2947			ret = mem_cgroup_resize_limit(memcg, nr_pages, true);
2948			break;
2949		case _KMEM:
2950			ret = memcg_update_kmem_limit(memcg, nr_pages);
 
 
 
2951			break;
2952		case _TCP:
2953			ret = memcg_update_tcp_limit(memcg, nr_pages);
2954			break;
2955		}
2956		break;
2957	case RES_SOFT_LIMIT:
2958		memcg->soft_limit = nr_pages;
2959		ret = 0;
2960		break;
2961	}
2962	return ret ?: nbytes;
2963}
2964
2965static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2966				size_t nbytes, loff_t off)
2967{
2968	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2969	struct page_counter *counter;
2970
2971	switch (MEMFILE_TYPE(of_cft(of)->private)) {
2972	case _MEM:
2973		counter = &memcg->memory;
2974		break;
2975	case _MEMSWAP:
2976		counter = &memcg->memsw;
2977		break;
2978	case _KMEM:
2979		counter = &memcg->kmem;
2980		break;
2981	case _TCP:
2982		counter = &memcg->tcpmem;
2983		break;
2984	default:
2985		BUG();
2986	}
2987
2988	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989	case RES_MAX_USAGE:
2990		page_counter_reset_watermark(counter);
2991		break;
2992	case RES_FAILCNT:
2993		counter->failcnt = 0;
2994		break;
2995	default:
2996		BUG();
2997	}
2998
2999	return nbytes;
3000}
3001
3002static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3003					struct cftype *cft)
3004{
3005	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3006}
3007
3008#ifdef CONFIG_MMU
3009static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3010					struct cftype *cft, u64 val)
3011{
3012	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3013
3014	if (val & ~MOVE_MASK)
3015		return -EINVAL;
3016
3017	/*
3018	 * No kind of locking is needed in here, because ->can_attach() will
3019	 * check this value once in the beginning of the process, and then carry
3020	 * on with stale data. This means that changes to this value will only
3021	 * affect task migrations starting after the change.
3022	 */
3023	memcg->move_charge_at_immigrate = val;
3024	return 0;
3025}
3026#else
3027static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3028					struct cftype *cft, u64 val)
3029{
3030	return -ENOSYS;
3031}
3032#endif
3033
3034#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035static int memcg_numa_stat_show(struct seq_file *m, void *v)
3036{
3037	struct numa_stat {
3038		const char *name;
3039		unsigned int lru_mask;
3040	};
3041
3042	static const struct numa_stat stats[] = {
3043		{ "total", LRU_ALL },
3044		{ "file", LRU_ALL_FILE },
3045		{ "anon", LRU_ALL_ANON },
3046		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3047	};
3048	const struct numa_stat *stat;
3049	int nid;
3050	unsigned long nr;
3051	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
 
3052
3053	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3054		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3055		seq_printf(m, "%s=%lu", stat->name, nr);
3056		for_each_node_state(nid, N_MEMORY) {
3057			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3058							  stat->lru_mask);
3059			seq_printf(m, " N%d=%lu", nid, nr);
3060		}
3061		seq_putc(m, '\n');
3062	}
3063
3064	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3065		struct mem_cgroup *iter;
3066
3067		nr = 0;
3068		for_each_mem_cgroup_tree(iter, memcg)
3069			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3070		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3071		for_each_node_state(nid, N_MEMORY) {
3072			nr = 0;
3073			for_each_mem_cgroup_tree(iter, memcg)
3074				nr += mem_cgroup_node_nr_lru_pages(
3075					iter, nid, stat->lru_mask);
3076			seq_printf(m, " N%d=%lu", nid, nr);
3077		}
3078		seq_putc(m, '\n');
3079	}
3080
3081	return 0;
3082}
3083#endif /* CONFIG_NUMA */
3084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3085/* Universal VM events cgroup1 shows, original sort order */
3086unsigned int memcg1_events[] = {
3087	PGPGIN,
3088	PGPGOUT,
3089	PGFAULT,
3090	PGMAJFAULT,
3091};
3092
3093static const char *const memcg1_event_names[] = {
3094	"pgpgin",
3095	"pgpgout",
3096	"pgfault",
3097	"pgmajfault",
3098};
3099
3100static int memcg_stat_show(struct seq_file *m, void *v)
3101{
3102	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3103	unsigned long memory, memsw;
3104	struct mem_cgroup *mi;
3105	unsigned int i;
3106
3107	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3108	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
 
3109
3110	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
 
 
3111		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3112			continue;
3113		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3114			   memcg_page_state(memcg, memcg1_stats[i]) *
3115			   PAGE_SIZE);
3116	}
3117
3118	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3119		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3120			   memcg_sum_events(memcg, memcg1_events[i]));
3121
3122	for (i = 0; i < NR_LRU_LISTS; i++)
3123		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3124			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
 
3125
3126	/* Hierarchical information */
3127	memory = memsw = PAGE_COUNTER_MAX;
3128	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3129		memory = min(memory, mi->memory.limit);
3130		memsw = min(memsw, mi->memsw.limit);
3131	}
3132	seq_printf(m, "hierarchical_memory_limit %llu\n",
3133		   (u64)memory * PAGE_SIZE);
3134	if (do_memsw_account())
3135		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3136			   (u64)memsw * PAGE_SIZE);
3137
3138	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3139		unsigned long long val = 0;
3140
3141		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3142			continue;
3143		for_each_mem_cgroup_tree(mi, memcg)
3144			val += memcg_page_state(mi, memcg1_stats[i]) *
3145			PAGE_SIZE;
3146		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3147	}
3148
3149	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3150		unsigned long long val = 0;
3151
3152		for_each_mem_cgroup_tree(mi, memcg)
3153			val += memcg_sum_events(mi, memcg1_events[i]);
3154		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3155	}
3156
3157	for (i = 0; i < NR_LRU_LISTS; i++) {
3158		unsigned long long val = 0;
 
 
3159
3160		for_each_mem_cgroup_tree(mi, memcg)
3161			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3162		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3163	}
3164
3165#ifdef CONFIG_DEBUG_VM
3166	{
3167		pg_data_t *pgdat;
3168		struct mem_cgroup_per_node *mz;
3169		struct zone_reclaim_stat *rstat;
3170		unsigned long recent_rotated[2] = {0, 0};
3171		unsigned long recent_scanned[2] = {0, 0};
3172
3173		for_each_online_pgdat(pgdat) {
3174			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3175			rstat = &mz->lruvec.reclaim_stat;
3176
3177			recent_rotated[0] += rstat->recent_rotated[0];
3178			recent_rotated[1] += rstat->recent_rotated[1];
3179			recent_scanned[0] += rstat->recent_scanned[0];
3180			recent_scanned[1] += rstat->recent_scanned[1];
3181		}
3182		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3183		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3184		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3185		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3186	}
3187#endif
3188
3189	return 0;
3190}
3191
3192static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3193				      struct cftype *cft)
3194{
3195	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3196
3197	return mem_cgroup_swappiness(memcg);
3198}
3199
3200static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3201				       struct cftype *cft, u64 val)
3202{
3203	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3204
3205	if (val > 100)
3206		return -EINVAL;
3207
3208	if (css->parent)
3209		memcg->swappiness = val;
3210	else
3211		vm_swappiness = val;
3212
3213	return 0;
3214}
3215
3216static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3217{
3218	struct mem_cgroup_threshold_ary *t;
3219	unsigned long usage;
3220	int i;
3221
3222	rcu_read_lock();
3223	if (!swap)
3224		t = rcu_dereference(memcg->thresholds.primary);
3225	else
3226		t = rcu_dereference(memcg->memsw_thresholds.primary);
3227
3228	if (!t)
3229		goto unlock;
3230
3231	usage = mem_cgroup_usage(memcg, swap);
3232
3233	/*
3234	 * current_threshold points to threshold just below or equal to usage.
3235	 * If it's not true, a threshold was crossed after last
3236	 * call of __mem_cgroup_threshold().
3237	 */
3238	i = t->current_threshold;
3239
3240	/*
3241	 * Iterate backward over array of thresholds starting from
3242	 * current_threshold and check if a threshold is crossed.
3243	 * If none of thresholds below usage is crossed, we read
3244	 * only one element of the array here.
3245	 */
3246	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3247		eventfd_signal(t->entries[i].eventfd, 1);
3248
3249	/* i = current_threshold + 1 */
3250	i++;
3251
3252	/*
3253	 * Iterate forward over array of thresholds starting from
3254	 * current_threshold+1 and check if a threshold is crossed.
3255	 * If none of thresholds above usage is crossed, we read
3256	 * only one element of the array here.
3257	 */
3258	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3259		eventfd_signal(t->entries[i].eventfd, 1);
3260
3261	/* Update current_threshold */
3262	t->current_threshold = i - 1;
3263unlock:
3264	rcu_read_unlock();
3265}
3266
3267static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3268{
3269	while (memcg) {
3270		__mem_cgroup_threshold(memcg, false);
3271		if (do_memsw_account())
3272			__mem_cgroup_threshold(memcg, true);
3273
3274		memcg = parent_mem_cgroup(memcg);
3275	}
3276}
3277
3278static int compare_thresholds(const void *a, const void *b)
3279{
3280	const struct mem_cgroup_threshold *_a = a;
3281	const struct mem_cgroup_threshold *_b = b;
3282
3283	if (_a->threshold > _b->threshold)
3284		return 1;
3285
3286	if (_a->threshold < _b->threshold)
3287		return -1;
3288
3289	return 0;
3290}
3291
3292static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3293{
3294	struct mem_cgroup_eventfd_list *ev;
3295
3296	spin_lock(&memcg_oom_lock);
3297
3298	list_for_each_entry(ev, &memcg->oom_notify, list)
3299		eventfd_signal(ev->eventfd, 1);
3300
3301	spin_unlock(&memcg_oom_lock);
3302	return 0;
3303}
3304
3305static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3306{
3307	struct mem_cgroup *iter;
3308
3309	for_each_mem_cgroup_tree(iter, memcg)
3310		mem_cgroup_oom_notify_cb(iter);
3311}
3312
3313static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3314	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3315{
3316	struct mem_cgroup_thresholds *thresholds;
3317	struct mem_cgroup_threshold_ary *new;
3318	unsigned long threshold;
3319	unsigned long usage;
3320	int i, size, ret;
3321
3322	ret = page_counter_memparse(args, "-1", &threshold);
3323	if (ret)
3324		return ret;
3325
3326	mutex_lock(&memcg->thresholds_lock);
3327
3328	if (type == _MEM) {
3329		thresholds = &memcg->thresholds;
3330		usage = mem_cgroup_usage(memcg, false);
3331	} else if (type == _MEMSWAP) {
3332		thresholds = &memcg->memsw_thresholds;
3333		usage = mem_cgroup_usage(memcg, true);
3334	} else
3335		BUG();
3336
3337	/* Check if a threshold crossed before adding a new one */
3338	if (thresholds->primary)
3339		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3340
3341	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3342
3343	/* Allocate memory for new array of thresholds */
3344	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3345			GFP_KERNEL);
3346	if (!new) {
3347		ret = -ENOMEM;
3348		goto unlock;
3349	}
3350	new->size = size;
3351
3352	/* Copy thresholds (if any) to new array */
3353	if (thresholds->primary) {
3354		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3355				sizeof(struct mem_cgroup_threshold));
3356	}
3357
3358	/* Add new threshold */
3359	new->entries[size - 1].eventfd = eventfd;
3360	new->entries[size - 1].threshold = threshold;
3361
3362	/* Sort thresholds. Registering of new threshold isn't time-critical */
3363	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3364			compare_thresholds, NULL);
3365
3366	/* Find current threshold */
3367	new->current_threshold = -1;
3368	for (i = 0; i < size; i++) {
3369		if (new->entries[i].threshold <= usage) {
3370			/*
3371			 * new->current_threshold will not be used until
3372			 * rcu_assign_pointer(), so it's safe to increment
3373			 * it here.
3374			 */
3375			++new->current_threshold;
3376		} else
3377			break;
3378	}
3379
3380	/* Free old spare buffer and save old primary buffer as spare */
3381	kfree(thresholds->spare);
3382	thresholds->spare = thresholds->primary;
3383
3384	rcu_assign_pointer(thresholds->primary, new);
3385
3386	/* To be sure that nobody uses thresholds */
3387	synchronize_rcu();
3388
3389unlock:
3390	mutex_unlock(&memcg->thresholds_lock);
3391
3392	return ret;
3393}
3394
3395static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3396	struct eventfd_ctx *eventfd, const char *args)
3397{
3398	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3399}
3400
3401static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3402	struct eventfd_ctx *eventfd, const char *args)
3403{
3404	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3405}
3406
3407static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3408	struct eventfd_ctx *eventfd, enum res_type type)
3409{
3410	struct mem_cgroup_thresholds *thresholds;
3411	struct mem_cgroup_threshold_ary *new;
3412	unsigned long usage;
3413	int i, j, size;
3414
3415	mutex_lock(&memcg->thresholds_lock);
3416
3417	if (type == _MEM) {
3418		thresholds = &memcg->thresholds;
3419		usage = mem_cgroup_usage(memcg, false);
3420	} else if (type == _MEMSWAP) {
3421		thresholds = &memcg->memsw_thresholds;
3422		usage = mem_cgroup_usage(memcg, true);
3423	} else
3424		BUG();
3425
3426	if (!thresholds->primary)
3427		goto unlock;
3428
3429	/* Check if a threshold crossed before removing */
3430	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3431
3432	/* Calculate new number of threshold */
3433	size = 0;
3434	for (i = 0; i < thresholds->primary->size; i++) {
3435		if (thresholds->primary->entries[i].eventfd != eventfd)
3436			size++;
 
 
3437	}
3438
3439	new = thresholds->spare;
3440
 
 
 
 
3441	/* Set thresholds array to NULL if we don't have thresholds */
3442	if (!size) {
3443		kfree(new);
3444		new = NULL;
3445		goto swap_buffers;
3446	}
3447
3448	new->size = size;
3449
3450	/* Copy thresholds and find current threshold */
3451	new->current_threshold = -1;
3452	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3453		if (thresholds->primary->entries[i].eventfd == eventfd)
3454			continue;
3455
3456		new->entries[j] = thresholds->primary->entries[i];
3457		if (new->entries[j].threshold <= usage) {
3458			/*
3459			 * new->current_threshold will not be used
3460			 * until rcu_assign_pointer(), so it's safe to increment
3461			 * it here.
3462			 */
3463			++new->current_threshold;
3464		}
3465		j++;
3466	}
3467
3468swap_buffers:
3469	/* Swap primary and spare array */
3470	thresholds->spare = thresholds->primary;
3471
3472	rcu_assign_pointer(thresholds->primary, new);
3473
3474	/* To be sure that nobody uses thresholds */
3475	synchronize_rcu();
3476
3477	/* If all events are unregistered, free the spare array */
3478	if (!new) {
3479		kfree(thresholds->spare);
3480		thresholds->spare = NULL;
3481	}
3482unlock:
3483	mutex_unlock(&memcg->thresholds_lock);
3484}
3485
3486static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3487	struct eventfd_ctx *eventfd)
3488{
3489	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3490}
3491
3492static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3493	struct eventfd_ctx *eventfd)
3494{
3495	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3496}
3497
3498static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3499	struct eventfd_ctx *eventfd, const char *args)
3500{
3501	struct mem_cgroup_eventfd_list *event;
3502
3503	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3504	if (!event)
3505		return -ENOMEM;
3506
3507	spin_lock(&memcg_oom_lock);
3508
3509	event->eventfd = eventfd;
3510	list_add(&event->list, &memcg->oom_notify);
3511
3512	/* already in OOM ? */
3513	if (memcg->under_oom)
3514		eventfd_signal(eventfd, 1);
3515	spin_unlock(&memcg_oom_lock);
3516
3517	return 0;
3518}
3519
3520static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3521	struct eventfd_ctx *eventfd)
3522{
3523	struct mem_cgroup_eventfd_list *ev, *tmp;
3524
3525	spin_lock(&memcg_oom_lock);
3526
3527	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3528		if (ev->eventfd == eventfd) {
3529			list_del(&ev->list);
3530			kfree(ev);
3531		}
3532	}
3533
3534	spin_unlock(&memcg_oom_lock);
3535}
3536
3537static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3538{
3539	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3540
3541	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3542	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3543	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
 
3544	return 0;
3545}
3546
3547static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3548	struct cftype *cft, u64 val)
3549{
3550	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551
3552	/* cannot set to root cgroup and only 0 and 1 are allowed */
3553	if (!css->parent || !((val == 0) || (val == 1)))
3554		return -EINVAL;
3555
3556	memcg->oom_kill_disable = val;
3557	if (!val)
3558		memcg_oom_recover(memcg);
3559
3560	return 0;
3561}
3562
3563#ifdef CONFIG_CGROUP_WRITEBACK
3564
3565struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3566{
3567	return &memcg->cgwb_list;
3568}
3569
3570static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3571{
3572	return wb_domain_init(&memcg->cgwb_domain, gfp);
3573}
3574
3575static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3576{
3577	wb_domain_exit(&memcg->cgwb_domain);
3578}
3579
3580static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3581{
3582	wb_domain_size_changed(&memcg->cgwb_domain);
3583}
3584
3585struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3586{
3587	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3588
3589	if (!memcg->css.parent)
3590		return NULL;
3591
3592	return &memcg->cgwb_domain;
3593}
3594
3595/**
3596 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3597 * @wb: bdi_writeback in question
3598 * @pfilepages: out parameter for number of file pages
3599 * @pheadroom: out parameter for number of allocatable pages according to memcg
3600 * @pdirty: out parameter for number of dirty pages
3601 * @pwriteback: out parameter for number of pages under writeback
3602 *
3603 * Determine the numbers of file, headroom, dirty, and writeback pages in
3604 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3605 * is a bit more involved.
3606 *
3607 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3608 * headroom is calculated as the lowest headroom of itself and the
3609 * ancestors.  Note that this doesn't consider the actual amount of
3610 * available memory in the system.  The caller should further cap
3611 * *@pheadroom accordingly.
3612 */
3613void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3614			 unsigned long *pheadroom, unsigned long *pdirty,
3615			 unsigned long *pwriteback)
3616{
3617	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618	struct mem_cgroup *parent;
3619
3620	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3621
3622	/* this should eventually include NR_UNSTABLE_NFS */
3623	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3624	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3625						     (1 << LRU_ACTIVE_FILE));
3626	*pheadroom = PAGE_COUNTER_MAX;
3627
 
3628	while ((parent = parent_mem_cgroup(memcg))) {
3629		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
 
3630		unsigned long used = page_counter_read(&memcg->memory);
3631
3632		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3633		memcg = parent;
3634	}
3635}
3636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3637#else	/* CONFIG_CGROUP_WRITEBACK */
3638
3639static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3640{
3641	return 0;
3642}
3643
3644static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3645{
3646}
3647
3648static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3649{
3650}
3651
3652#endif	/* CONFIG_CGROUP_WRITEBACK */
3653
3654/*
3655 * DO NOT USE IN NEW FILES.
3656 *
3657 * "cgroup.event_control" implementation.
3658 *
3659 * This is way over-engineered.  It tries to support fully configurable
3660 * events for each user.  Such level of flexibility is completely
3661 * unnecessary especially in the light of the planned unified hierarchy.
3662 *
3663 * Please deprecate this and replace with something simpler if at all
3664 * possible.
3665 */
3666
3667/*
3668 * Unregister event and free resources.
3669 *
3670 * Gets called from workqueue.
3671 */
3672static void memcg_event_remove(struct work_struct *work)
3673{
3674	struct mem_cgroup_event *event =
3675		container_of(work, struct mem_cgroup_event, remove);
3676	struct mem_cgroup *memcg = event->memcg;
3677
3678	remove_wait_queue(event->wqh, &event->wait);
3679
3680	event->unregister_event(memcg, event->eventfd);
3681
3682	/* Notify userspace the event is going away. */
3683	eventfd_signal(event->eventfd, 1);
3684
3685	eventfd_ctx_put(event->eventfd);
3686	kfree(event);
3687	css_put(&memcg->css);
3688}
3689
3690/*
3691 * Gets called on EPOLLHUP on eventfd when user closes it.
3692 *
3693 * Called with wqh->lock held and interrupts disabled.
3694 */
3695static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3696			    int sync, void *key)
3697{
3698	struct mem_cgroup_event *event =
3699		container_of(wait, struct mem_cgroup_event, wait);
3700	struct mem_cgroup *memcg = event->memcg;
3701	__poll_t flags = key_to_poll(key);
3702
3703	if (flags & EPOLLHUP) {
3704		/*
3705		 * If the event has been detached at cgroup removal, we
3706		 * can simply return knowing the other side will cleanup
3707		 * for us.
3708		 *
3709		 * We can't race against event freeing since the other
3710		 * side will require wqh->lock via remove_wait_queue(),
3711		 * which we hold.
3712		 */
3713		spin_lock(&memcg->event_list_lock);
3714		if (!list_empty(&event->list)) {
3715			list_del_init(&event->list);
3716			/*
3717			 * We are in atomic context, but cgroup_event_remove()
3718			 * may sleep, so we have to call it in workqueue.
3719			 */
3720			schedule_work(&event->remove);
3721		}
3722		spin_unlock(&memcg->event_list_lock);
3723	}
3724
3725	return 0;
3726}
3727
3728static void memcg_event_ptable_queue_proc(struct file *file,
3729		wait_queue_head_t *wqh, poll_table *pt)
3730{
3731	struct mem_cgroup_event *event =
3732		container_of(pt, struct mem_cgroup_event, pt);
3733
3734	event->wqh = wqh;
3735	add_wait_queue(wqh, &event->wait);
3736}
3737
3738/*
3739 * DO NOT USE IN NEW FILES.
3740 *
3741 * Parse input and register new cgroup event handler.
3742 *
3743 * Input must be in format '<event_fd> <control_fd> <args>'.
3744 * Interpretation of args is defined by control file implementation.
3745 */
3746static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3747					 char *buf, size_t nbytes, loff_t off)
3748{
3749	struct cgroup_subsys_state *css = of_css(of);
3750	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3751	struct mem_cgroup_event *event;
3752	struct cgroup_subsys_state *cfile_css;
3753	unsigned int efd, cfd;
3754	struct fd efile;
3755	struct fd cfile;
3756	const char *name;
3757	char *endp;
3758	int ret;
3759
3760	buf = strstrip(buf);
3761
3762	efd = simple_strtoul(buf, &endp, 10);
3763	if (*endp != ' ')
3764		return -EINVAL;
3765	buf = endp + 1;
3766
3767	cfd = simple_strtoul(buf, &endp, 10);
3768	if ((*endp != ' ') && (*endp != '\0'))
3769		return -EINVAL;
3770	buf = endp + 1;
3771
3772	event = kzalloc(sizeof(*event), GFP_KERNEL);
3773	if (!event)
3774		return -ENOMEM;
3775
3776	event->memcg = memcg;
3777	INIT_LIST_HEAD(&event->list);
3778	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3779	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3780	INIT_WORK(&event->remove, memcg_event_remove);
3781
3782	efile = fdget(efd);
3783	if (!efile.file) {
3784		ret = -EBADF;
3785		goto out_kfree;
3786	}
3787
3788	event->eventfd = eventfd_ctx_fileget(efile.file);
3789	if (IS_ERR(event->eventfd)) {
3790		ret = PTR_ERR(event->eventfd);
3791		goto out_put_efile;
3792	}
3793
3794	cfile = fdget(cfd);
3795	if (!cfile.file) {
3796		ret = -EBADF;
3797		goto out_put_eventfd;
3798	}
3799
3800	/* the process need read permission on control file */
3801	/* AV: shouldn't we check that it's been opened for read instead? */
3802	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3803	if (ret < 0)
3804		goto out_put_cfile;
3805
3806	/*
3807	 * Determine the event callbacks and set them in @event.  This used
3808	 * to be done via struct cftype but cgroup core no longer knows
3809	 * about these events.  The following is crude but the whole thing
3810	 * is for compatibility anyway.
3811	 *
3812	 * DO NOT ADD NEW FILES.
3813	 */
3814	name = cfile.file->f_path.dentry->d_name.name;
3815
3816	if (!strcmp(name, "memory.usage_in_bytes")) {
3817		event->register_event = mem_cgroup_usage_register_event;
3818		event->unregister_event = mem_cgroup_usage_unregister_event;
3819	} else if (!strcmp(name, "memory.oom_control")) {
3820		event->register_event = mem_cgroup_oom_register_event;
3821		event->unregister_event = mem_cgroup_oom_unregister_event;
3822	} else if (!strcmp(name, "memory.pressure_level")) {
3823		event->register_event = vmpressure_register_event;
3824		event->unregister_event = vmpressure_unregister_event;
3825	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3826		event->register_event = memsw_cgroup_usage_register_event;
3827		event->unregister_event = memsw_cgroup_usage_unregister_event;
3828	} else {
3829		ret = -EINVAL;
3830		goto out_put_cfile;
3831	}
3832
3833	/*
3834	 * Verify @cfile should belong to @css.  Also, remaining events are
3835	 * automatically removed on cgroup destruction but the removal is
3836	 * asynchronous, so take an extra ref on @css.
3837	 */
3838	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3839					       &memory_cgrp_subsys);
3840	ret = -EINVAL;
3841	if (IS_ERR(cfile_css))
3842		goto out_put_cfile;
3843	if (cfile_css != css) {
3844		css_put(cfile_css);
3845		goto out_put_cfile;
3846	}
3847
3848	ret = event->register_event(memcg, event->eventfd, buf);
3849	if (ret)
3850		goto out_put_css;
3851
3852	efile.file->f_op->poll(efile.file, &event->pt);
3853
3854	spin_lock(&memcg->event_list_lock);
3855	list_add(&event->list, &memcg->event_list);
3856	spin_unlock(&memcg->event_list_lock);
3857
3858	fdput(cfile);
3859	fdput(efile);
3860
3861	return nbytes;
3862
3863out_put_css:
3864	css_put(css);
3865out_put_cfile:
3866	fdput(cfile);
3867out_put_eventfd:
3868	eventfd_ctx_put(event->eventfd);
3869out_put_efile:
3870	fdput(efile);
3871out_kfree:
3872	kfree(event);
3873
3874	return ret;
3875}
3876
3877static struct cftype mem_cgroup_legacy_files[] = {
3878	{
3879		.name = "usage_in_bytes",
3880		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3881		.read_u64 = mem_cgroup_read_u64,
3882	},
3883	{
3884		.name = "max_usage_in_bytes",
3885		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3886		.write = mem_cgroup_reset,
3887		.read_u64 = mem_cgroup_read_u64,
3888	},
3889	{
3890		.name = "limit_in_bytes",
3891		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3892		.write = mem_cgroup_write,
3893		.read_u64 = mem_cgroup_read_u64,
3894	},
3895	{
3896		.name = "soft_limit_in_bytes",
3897		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3898		.write = mem_cgroup_write,
3899		.read_u64 = mem_cgroup_read_u64,
3900	},
3901	{
3902		.name = "failcnt",
3903		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3904		.write = mem_cgroup_reset,
3905		.read_u64 = mem_cgroup_read_u64,
3906	},
3907	{
3908		.name = "stat",
3909		.seq_show = memcg_stat_show,
3910	},
3911	{
3912		.name = "force_empty",
3913		.write = mem_cgroup_force_empty_write,
3914	},
3915	{
3916		.name = "use_hierarchy",
3917		.write_u64 = mem_cgroup_hierarchy_write,
3918		.read_u64 = mem_cgroup_hierarchy_read,
3919	},
3920	{
3921		.name = "cgroup.event_control",		/* XXX: for compat */
3922		.write = memcg_write_event_control,
3923		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3924	},
3925	{
3926		.name = "swappiness",
3927		.read_u64 = mem_cgroup_swappiness_read,
3928		.write_u64 = mem_cgroup_swappiness_write,
3929	},
3930	{
3931		.name = "move_charge_at_immigrate",
3932		.read_u64 = mem_cgroup_move_charge_read,
3933		.write_u64 = mem_cgroup_move_charge_write,
3934	},
3935	{
3936		.name = "oom_control",
3937		.seq_show = mem_cgroup_oom_control_read,
3938		.write_u64 = mem_cgroup_oom_control_write,
3939		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3940	},
3941	{
3942		.name = "pressure_level",
3943	},
3944#ifdef CONFIG_NUMA
3945	{
3946		.name = "numa_stat",
3947		.seq_show = memcg_numa_stat_show,
3948	},
3949#endif
3950	{
3951		.name = "kmem.limit_in_bytes",
3952		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3953		.write = mem_cgroup_write,
3954		.read_u64 = mem_cgroup_read_u64,
3955	},
3956	{
3957		.name = "kmem.usage_in_bytes",
3958		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3959		.read_u64 = mem_cgroup_read_u64,
3960	},
3961	{
3962		.name = "kmem.failcnt",
3963		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3964		.write = mem_cgroup_reset,
3965		.read_u64 = mem_cgroup_read_u64,
3966	},
3967	{
3968		.name = "kmem.max_usage_in_bytes",
3969		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3970		.write = mem_cgroup_reset,
3971		.read_u64 = mem_cgroup_read_u64,
3972	},
3973#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
 
3974	{
3975		.name = "kmem.slabinfo",
3976		.seq_start = memcg_slab_start,
3977		.seq_next = memcg_slab_next,
3978		.seq_stop = memcg_slab_stop,
3979		.seq_show = memcg_slab_show,
3980	},
3981#endif
3982	{
3983		.name = "kmem.tcp.limit_in_bytes",
3984		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3985		.write = mem_cgroup_write,
3986		.read_u64 = mem_cgroup_read_u64,
3987	},
3988	{
3989		.name = "kmem.tcp.usage_in_bytes",
3990		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3991		.read_u64 = mem_cgroup_read_u64,
3992	},
3993	{
3994		.name = "kmem.tcp.failcnt",
3995		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
3996		.write = mem_cgroup_reset,
3997		.read_u64 = mem_cgroup_read_u64,
3998	},
3999	{
4000		.name = "kmem.tcp.max_usage_in_bytes",
4001		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4002		.write = mem_cgroup_reset,
4003		.read_u64 = mem_cgroup_read_u64,
4004	},
4005	{ },	/* terminate */
4006};
4007
4008/*
4009 * Private memory cgroup IDR
4010 *
4011 * Swap-out records and page cache shadow entries need to store memcg
4012 * references in constrained space, so we maintain an ID space that is
4013 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4014 * memory-controlled cgroups to 64k.
4015 *
4016 * However, there usually are many references to the oflline CSS after
4017 * the cgroup has been destroyed, such as page cache or reclaimable
4018 * slab objects, that don't need to hang on to the ID. We want to keep
4019 * those dead CSS from occupying IDs, or we might quickly exhaust the
4020 * relatively small ID space and prevent the creation of new cgroups
4021 * even when there are much fewer than 64k cgroups - possibly none.
4022 *
4023 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4024 * be freed and recycled when it's no longer needed, which is usually
4025 * when the CSS is offlined.
4026 *
4027 * The only exception to that are records of swapped out tmpfs/shmem
4028 * pages that need to be attributed to live ancestors on swapin. But
4029 * those references are manageable from userspace.
4030 */
4031
4032static DEFINE_IDR(mem_cgroup_idr);
4033
4034static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4035{
4036	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4037	atomic_add(n, &memcg->id.ref);
 
 
 
 
 
 
 
 
4038}
4039
4040static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4041{
4042	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4043	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4044		idr_remove(&mem_cgroup_idr, memcg->id.id);
4045		memcg->id.id = 0;
4046
4047		/* Memcg ID pins CSS */
4048		css_put(&memcg->css);
4049	}
4050}
4051
4052static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4053{
4054	mem_cgroup_id_get_many(memcg, 1);
4055}
4056
4057static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4058{
4059	mem_cgroup_id_put_many(memcg, 1);
4060}
4061
4062/**
4063 * mem_cgroup_from_id - look up a memcg from a memcg id
4064 * @id: the memcg id to look up
4065 *
4066 * Caller must hold rcu_read_lock().
4067 */
4068struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4069{
4070	WARN_ON_ONCE(!rcu_read_lock_held());
4071	return idr_find(&mem_cgroup_idr, id);
4072}
4073
4074static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4075{
4076	struct mem_cgroup_per_node *pn;
4077	int tmp = node;
4078	/*
4079	 * This routine is called against possible nodes.
4080	 * But it's BUG to call kmalloc() against offline node.
4081	 *
4082	 * TODO: this routine can waste much memory for nodes which will
4083	 *       never be onlined. It's better to use memory hotplug callback
4084	 *       function.
4085	 */
4086	if (!node_state(node, N_NORMAL_MEMORY))
4087		tmp = -1;
4088	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4089	if (!pn)
4090		return 1;
4091
4092	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
 
 
 
 
 
 
 
 
4093	if (!pn->lruvec_stat_cpu) {
 
4094		kfree(pn);
4095		return 1;
4096	}
4097
4098	lruvec_init(&pn->lruvec);
4099	pn->usage_in_excess = 0;
4100	pn->on_tree = false;
4101	pn->memcg = memcg;
4102
4103	memcg->nodeinfo[node] = pn;
4104	return 0;
4105}
4106
4107static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4108{
4109	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4110
4111	if (!pn)
4112		return;
4113
4114	free_percpu(pn->lruvec_stat_cpu);
 
4115	kfree(pn);
4116}
4117
4118static void __mem_cgroup_free(struct mem_cgroup *memcg)
4119{
4120	int node;
4121
4122	for_each_node(node)
4123		free_mem_cgroup_per_node_info(memcg, node);
4124	free_percpu(memcg->stat_cpu);
4125	kfree(memcg);
4126}
4127
4128static void mem_cgroup_free(struct mem_cgroup *memcg)
4129{
 
 
4130	memcg_wb_domain_exit(memcg);
 
 
 
 
 
 
4131	__mem_cgroup_free(memcg);
4132}
4133
4134static struct mem_cgroup *mem_cgroup_alloc(void)
4135{
4136	struct mem_cgroup *memcg;
4137	size_t size;
4138	int node;
 
 
4139
4140	size = sizeof(struct mem_cgroup);
4141	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4142
4143	memcg = kzalloc(size, GFP_KERNEL);
4144	if (!memcg)
4145		return NULL;
4146
4147	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4148				 1, MEM_CGROUP_ID_MAX,
4149				 GFP_KERNEL);
4150	if (memcg->id.id < 0)
 
4151		goto fail;
 
4152
4153	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4154	if (!memcg->stat_cpu)
 
4155		goto fail;
4156
4157	for_each_node(node)
4158		if (alloc_mem_cgroup_per_node_info(memcg, node))
4159			goto fail;
4160
4161	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4162		goto fail;
4163
4164	INIT_WORK(&memcg->high_work, high_work_func);
4165	memcg->last_scanned_node = MAX_NUMNODES;
4166	INIT_LIST_HEAD(&memcg->oom_notify);
4167	mutex_init(&memcg->thresholds_lock);
4168	spin_lock_init(&memcg->move_lock);
4169	vmpressure_init(&memcg->vmpressure);
4170	INIT_LIST_HEAD(&memcg->event_list);
4171	spin_lock_init(&memcg->event_list_lock);
4172	memcg->socket_pressure = jiffies;
4173#ifndef CONFIG_SLOB
4174	memcg->kmemcg_id = -1;
 
4175#endif
4176#ifdef CONFIG_CGROUP_WRITEBACK
4177	INIT_LIST_HEAD(&memcg->cgwb_list);
 
 
 
 
 
 
 
 
4178#endif
4179	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4180	return memcg;
4181fail:
4182	if (memcg->id.id > 0)
4183		idr_remove(&mem_cgroup_idr, memcg->id.id);
4184	__mem_cgroup_free(memcg);
4185	return NULL;
4186}
4187
4188static struct cgroup_subsys_state * __ref
4189mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4190{
4191	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4192	struct mem_cgroup *memcg;
4193	long error = -ENOMEM;
4194
 
4195	memcg = mem_cgroup_alloc();
4196	if (!memcg)
4197		return ERR_PTR(error);
 
4198
4199	memcg->high = PAGE_COUNTER_MAX;
4200	memcg->soft_limit = PAGE_COUNTER_MAX;
 
4201	if (parent) {
4202		memcg->swappiness = mem_cgroup_swappiness(parent);
4203		memcg->oom_kill_disable = parent->oom_kill_disable;
4204	}
4205	if (parent && parent->use_hierarchy) {
4206		memcg->use_hierarchy = true;
4207		page_counter_init(&memcg->memory, &parent->memory);
4208		page_counter_init(&memcg->swap, &parent->swap);
4209		page_counter_init(&memcg->memsw, &parent->memsw);
4210		page_counter_init(&memcg->kmem, &parent->kmem);
4211		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4212	} else {
4213		page_counter_init(&memcg->memory, NULL);
4214		page_counter_init(&memcg->swap, NULL);
4215		page_counter_init(&memcg->memsw, NULL);
4216		page_counter_init(&memcg->kmem, NULL);
4217		page_counter_init(&memcg->tcpmem, NULL);
4218		/*
4219		 * Deeper hierachy with use_hierarchy == false doesn't make
4220		 * much sense so let cgroup subsystem know about this
4221		 * unfortunate state in our controller.
4222		 */
4223		if (parent != root_mem_cgroup)
4224			memory_cgrp_subsys.broken_hierarchy = true;
4225	}
4226
4227	/* The following stuff does not apply to the root */
4228	if (!parent) {
4229		root_mem_cgroup = memcg;
4230		return &memcg->css;
4231	}
4232
 
4233	error = memcg_online_kmem(memcg);
4234	if (error)
4235		goto fail;
4236
4237	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4238		static_branch_inc(&memcg_sockets_enabled_key);
4239
4240	return &memcg->css;
4241fail:
 
4242	mem_cgroup_free(memcg);
4243	return ERR_PTR(-ENOMEM);
4244}
4245
4246static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4247{
4248	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4249
 
 
 
 
 
 
 
 
 
 
4250	/* Online state pins memcg ID, memcg ID pins CSS */
4251	atomic_set(&memcg->id.ref, 1);
4252	css_get(css);
4253	return 0;
4254}
4255
4256static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4257{
4258	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259	struct mem_cgroup_event *event, *tmp;
4260
4261	/*
4262	 * Unregister events and notify userspace.
4263	 * Notify userspace about cgroup removing only after rmdir of cgroup
4264	 * directory to avoid race between userspace and kernelspace.
4265	 */
4266	spin_lock(&memcg->event_list_lock);
4267	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4268		list_del_init(&event->list);
4269		schedule_work(&event->remove);
4270	}
4271	spin_unlock(&memcg->event_list_lock);
4272
4273	memcg->low = 0;
 
4274
4275	memcg_offline_kmem(memcg);
 
4276	wb_memcg_offline(memcg);
4277
 
 
4278	mem_cgroup_id_put(memcg);
4279}
4280
4281static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4282{
4283	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284
4285	invalidate_reclaim_iterators(memcg);
4286}
4287
4288static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4289{
4290	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
 
4291
 
 
 
 
4292	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4293		static_branch_dec(&memcg_sockets_enabled_key);
4294
4295	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4296		static_branch_dec(&memcg_sockets_enabled_key);
4297
4298	vmpressure_cleanup(&memcg->vmpressure);
4299	cancel_work_sync(&memcg->high_work);
4300	mem_cgroup_remove_from_trees(memcg);
 
4301	memcg_free_kmem(memcg);
4302	mem_cgroup_free(memcg);
4303}
4304
4305/**
4306 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4307 * @css: the target css
4308 *
4309 * Reset the states of the mem_cgroup associated with @css.  This is
4310 * invoked when the userland requests disabling on the default hierarchy
4311 * but the memcg is pinned through dependency.  The memcg should stop
4312 * applying policies and should revert to the vanilla state as it may be
4313 * made visible again.
4314 *
4315 * The current implementation only resets the essential configurations.
4316 * This needs to be expanded to cover all the visible parts.
4317 */
4318static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4319{
4320	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4321
4322	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4323	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4324	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4325	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4326	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4327	memcg->low = 0;
4328	memcg->high = PAGE_COUNTER_MAX;
4329	memcg->soft_limit = PAGE_COUNTER_MAX;
 
4330	memcg_wb_domain_size_changed(memcg);
4331}
4332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4333#ifdef CONFIG_MMU
4334/* Handlers for move charge at task migration. */
4335static int mem_cgroup_do_precharge(unsigned long count)
4336{
4337	int ret;
4338
4339	/* Try a single bulk charge without reclaim first, kswapd may wake */
4340	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4341	if (!ret) {
4342		mc.precharge += count;
4343		return ret;
4344	}
4345
4346	/* Try charges one by one with reclaim, but do not retry */
4347	while (count--) {
4348		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4349		if (ret)
4350			return ret;
4351		mc.precharge++;
4352		cond_resched();
4353	}
4354	return 0;
4355}
4356
4357union mc_target {
4358	struct page	*page;
4359	swp_entry_t	ent;
4360};
4361
4362enum mc_target_type {
4363	MC_TARGET_NONE = 0,
4364	MC_TARGET_PAGE,
4365	MC_TARGET_SWAP,
4366	MC_TARGET_DEVICE,
4367};
4368
4369static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4370						unsigned long addr, pte_t ptent)
4371{
4372	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4373
4374	if (!page || !page_mapped(page))
4375		return NULL;
4376	if (PageAnon(page)) {
4377		if (!(mc.flags & MOVE_ANON))
4378			return NULL;
4379	} else {
4380		if (!(mc.flags & MOVE_FILE))
4381			return NULL;
4382	}
4383	if (!get_page_unless_zero(page))
4384		return NULL;
4385
4386	return page;
4387}
4388
4389#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4390static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4391			pte_t ptent, swp_entry_t *entry)
4392{
4393	struct page *page = NULL;
4394	swp_entry_t ent = pte_to_swp_entry(ptent);
4395
4396	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4397		return NULL;
4398
4399	/*
4400	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4401	 * a device and because they are not accessible by CPU they are store
4402	 * as special swap entry in the CPU page table.
4403	 */
4404	if (is_device_private_entry(ent)) {
4405		page = device_private_entry_to_page(ent);
4406		/*
4407		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4408		 * a refcount of 1 when free (unlike normal page)
4409		 */
4410		if (!page_ref_add_unless(page, 1, 1))
4411			return NULL;
4412		return page;
4413	}
4414
 
 
 
4415	/*
4416	 * Because lookup_swap_cache() updates some statistics counter,
4417	 * we call find_get_page() with swapper_space directly.
4418	 */
4419	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4420	if (do_memsw_account())
4421		entry->val = ent.val;
4422
4423	return page;
4424}
4425#else
4426static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4427			pte_t ptent, swp_entry_t *entry)
4428{
4429	return NULL;
4430}
4431#endif
4432
4433static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4434			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4435{
4436	struct page *page = NULL;
4437	struct address_space *mapping;
4438	pgoff_t pgoff;
4439
4440	if (!vma->vm_file) /* anonymous vma */
4441		return NULL;
4442	if (!(mc.flags & MOVE_FILE))
4443		return NULL;
4444
4445	mapping = vma->vm_file->f_mapping;
4446	pgoff = linear_page_index(vma, addr);
4447
4448	/* page is moved even if it's not RSS of this task(page-faulted). */
4449#ifdef CONFIG_SWAP
4450	/* shmem/tmpfs may report page out on swap: account for that too. */
4451	if (shmem_mapping(mapping)) {
4452		page = find_get_entry(mapping, pgoff);
4453		if (radix_tree_exceptional_entry(page)) {
4454			swp_entry_t swp = radix_to_swp_entry(page);
4455			if (do_memsw_account())
4456				*entry = swp;
4457			page = find_get_page(swap_address_space(swp),
4458					     swp_offset(swp));
4459		}
4460	} else
4461		page = find_get_page(mapping, pgoff);
4462#else
4463	page = find_get_page(mapping, pgoff);
4464#endif
4465	return page;
4466}
4467
4468/**
4469 * mem_cgroup_move_account - move account of the page
4470 * @page: the page
4471 * @compound: charge the page as compound or small page
4472 * @from: mem_cgroup which the page is moved from.
4473 * @to:	mem_cgroup which the page is moved to. @from != @to.
4474 *
4475 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4476 *
4477 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4478 * from old cgroup.
4479 */
4480static int mem_cgroup_move_account(struct page *page,
4481				   bool compound,
4482				   struct mem_cgroup *from,
4483				   struct mem_cgroup *to)
4484{
4485	unsigned long flags;
4486	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
 
4487	int ret;
4488	bool anon;
4489
4490	VM_BUG_ON(from == to);
4491	VM_BUG_ON_PAGE(PageLRU(page), page);
4492	VM_BUG_ON(compound && !PageTransHuge(page));
4493
4494	/*
4495	 * Prevent mem_cgroup_migrate() from looking at
4496	 * page->mem_cgroup of its source page while we change it.
4497	 */
4498	ret = -EBUSY;
4499	if (!trylock_page(page))
4500		goto out;
4501
4502	ret = -EINVAL;
4503	if (page->mem_cgroup != from)
4504		goto out_unlock;
4505
4506	anon = PageAnon(page);
 
 
4507
4508	spin_lock_irqsave(&from->move_lock, flags);
4509
4510	if (!anon && page_mapped(page)) {
4511		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4512		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4513	}
 
 
 
 
 
 
 
 
 
 
4514
4515	/*
4516	 * move_lock grabbed above and caller set from->moving_account, so
4517	 * mod_memcg_page_state will serialize updates to PageDirty.
4518	 * So mapping should be stable for dirty pages.
4519	 */
4520	if (!anon && PageDirty(page)) {
4521		struct address_space *mapping = page_mapping(page);
4522
4523		if (mapping_cap_account_dirty(mapping)) {
4524			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4525			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
4526		}
4527	}
4528
4529	if (PageWriteback(page)) {
4530		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4531		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4532	}
4533
4534	/*
4535	 * It is safe to change page->mem_cgroup here because the page
4536	 * is referenced, charged, and isolated - we can't race with
4537	 * uncharging, charging, migration, or LRU putback.
 
 
 
 
 
 
 
 
4538	 */
 
 
 
 
 
 
4539
4540	/* caller should have done css_get */
4541	page->mem_cgroup = to;
4542	spin_unlock_irqrestore(&from->move_lock, flags);
4543
4544	ret = 0;
4545
4546	local_irq_disable();
4547	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548	memcg_check_events(to, page);
4549	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550	memcg_check_events(from, page);
4551	local_irq_enable();
4552out_unlock:
4553	unlock_page(page);
4554out:
4555	return ret;
4556}
4557
4558/**
4559 * get_mctgt_type - get target type of moving charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 *
4565 * Returns
4566 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 *     move charge. if @target is not NULL, the page is stored in target->page
4569 *     with extra refcnt got(Callers should handle it).
4570 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 *     target for charge migration. if @target is not NULL, the entry is stored
4572 *     in target->ent.
4573 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4574 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4575 *     For now we such page is charge like a regular page would be as for all
4576 *     intent and purposes it is just special memory taking the place of a
4577 *     regular page.
4578 *
4579 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4580 *
4581 * Called with pte lock held.
4582 */
4583
4584static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4585		unsigned long addr, pte_t ptent, union mc_target *target)
4586{
4587	struct page *page = NULL;
4588	enum mc_target_type ret = MC_TARGET_NONE;
4589	swp_entry_t ent = { .val = 0 };
4590
4591	if (pte_present(ptent))
4592		page = mc_handle_present_pte(vma, addr, ptent);
4593	else if (is_swap_pte(ptent))
4594		page = mc_handle_swap_pte(vma, ptent, &ent);
4595	else if (pte_none(ptent))
4596		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4597
4598	if (!page && !ent.val)
4599		return ret;
4600	if (page) {
4601		/*
4602		 * Do only loose check w/o serialization.
4603		 * mem_cgroup_move_account() checks the page is valid or
4604		 * not under LRU exclusion.
4605		 */
4606		if (page->mem_cgroup == mc.from) {
4607			ret = MC_TARGET_PAGE;
4608			if (is_device_private_page(page) ||
4609			    is_device_public_page(page))
4610				ret = MC_TARGET_DEVICE;
4611			if (target)
4612				target->page = page;
4613		}
4614		if (!ret || !target)
4615			put_page(page);
4616	}
4617	/*
4618	 * There is a swap entry and a page doesn't exist or isn't charged.
4619	 * But we cannot move a tail-page in a THP.
4620	 */
4621	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4622	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4623		ret = MC_TARGET_SWAP;
4624		if (target)
4625			target->ent = ent;
4626	}
4627	return ret;
4628}
4629
4630#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4631/*
4632 * We don't consider PMD mapped swapping or file mapped pages because THP does
4633 * not support them for now.
4634 * Caller should make sure that pmd_trans_huge(pmd) is true.
4635 */
4636static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4637		unsigned long addr, pmd_t pmd, union mc_target *target)
4638{
4639	struct page *page = NULL;
4640	enum mc_target_type ret = MC_TARGET_NONE;
4641
4642	if (unlikely(is_swap_pmd(pmd))) {
4643		VM_BUG_ON(thp_migration_supported() &&
4644				  !is_pmd_migration_entry(pmd));
4645		return ret;
4646	}
4647	page = pmd_page(pmd);
4648	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4649	if (!(mc.flags & MOVE_ANON))
4650		return ret;
4651	if (page->mem_cgroup == mc.from) {
4652		ret = MC_TARGET_PAGE;
4653		if (target) {
4654			get_page(page);
4655			target->page = page;
4656		}
4657	}
4658	return ret;
4659}
4660#else
4661static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4662		unsigned long addr, pmd_t pmd, union mc_target *target)
4663{
4664	return MC_TARGET_NONE;
4665}
4666#endif
4667
4668static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4669					unsigned long addr, unsigned long end,
4670					struct mm_walk *walk)
4671{
4672	struct vm_area_struct *vma = walk->vma;
4673	pte_t *pte;
4674	spinlock_t *ptl;
4675
4676	ptl = pmd_trans_huge_lock(pmd, vma);
4677	if (ptl) {
4678		/*
4679		 * Note their can not be MC_TARGET_DEVICE for now as we do not
4680		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4681		 * MEMORY_DEVICE_PRIVATE but this might change.
4682		 */
4683		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684			mc.precharge += HPAGE_PMD_NR;
4685		spin_unlock(ptl);
4686		return 0;
4687	}
4688
4689	if (pmd_trans_unstable(pmd))
4690		return 0;
4691	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692	for (; addr != end; pte++, addr += PAGE_SIZE)
4693		if (get_mctgt_type(vma, addr, *pte, NULL))
4694			mc.precharge++;	/* increment precharge temporarily */
4695	pte_unmap_unlock(pte - 1, ptl);
4696	cond_resched();
4697
4698	return 0;
4699}
4700
 
 
 
 
4701static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702{
4703	unsigned long precharge;
4704
4705	struct mm_walk mem_cgroup_count_precharge_walk = {
4706		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4707		.mm = mm,
4708	};
4709	down_read(&mm->mmap_sem);
4710	walk_page_range(0, mm->highest_vm_end,
4711			&mem_cgroup_count_precharge_walk);
4712	up_read(&mm->mmap_sem);
4713
4714	precharge = mc.precharge;
4715	mc.precharge = 0;
4716
4717	return precharge;
4718}
4719
4720static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4721{
4722	unsigned long precharge = mem_cgroup_count_precharge(mm);
4723
4724	VM_BUG_ON(mc.moving_task);
4725	mc.moving_task = current;
4726	return mem_cgroup_do_precharge(precharge);
4727}
4728
4729/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4730static void __mem_cgroup_clear_mc(void)
4731{
4732	struct mem_cgroup *from = mc.from;
4733	struct mem_cgroup *to = mc.to;
4734
4735	/* we must uncharge all the leftover precharges from mc.to */
4736	if (mc.precharge) {
4737		cancel_charge(mc.to, mc.precharge);
4738		mc.precharge = 0;
4739	}
4740	/*
4741	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4742	 * we must uncharge here.
4743	 */
4744	if (mc.moved_charge) {
4745		cancel_charge(mc.from, mc.moved_charge);
4746		mc.moved_charge = 0;
4747	}
4748	/* we must fixup refcnts and charges */
4749	if (mc.moved_swap) {
4750		/* uncharge swap account from the old cgroup */
4751		if (!mem_cgroup_is_root(mc.from))
4752			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4753
4754		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4755
4756		/*
4757		 * we charged both to->memory and to->memsw, so we
4758		 * should uncharge to->memory.
4759		 */
4760		if (!mem_cgroup_is_root(mc.to))
4761			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4762
4763		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4764		css_put_many(&mc.to->css, mc.moved_swap);
4765
4766		mc.moved_swap = 0;
4767	}
4768	memcg_oom_recover(from);
4769	memcg_oom_recover(to);
4770	wake_up_all(&mc.waitq);
4771}
4772
4773static void mem_cgroup_clear_mc(void)
4774{
4775	struct mm_struct *mm = mc.mm;
4776
4777	/*
4778	 * we must clear moving_task before waking up waiters at the end of
4779	 * task migration.
4780	 */
4781	mc.moving_task = NULL;
4782	__mem_cgroup_clear_mc();
4783	spin_lock(&mc.lock);
4784	mc.from = NULL;
4785	mc.to = NULL;
4786	mc.mm = NULL;
4787	spin_unlock(&mc.lock);
4788
4789	mmput(mm);
4790}
4791
4792static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4793{
4794	struct cgroup_subsys_state *css;
4795	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4796	struct mem_cgroup *from;
4797	struct task_struct *leader, *p;
4798	struct mm_struct *mm;
4799	unsigned long move_flags;
4800	int ret = 0;
4801
4802	/* charge immigration isn't supported on the default hierarchy */
4803	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4804		return 0;
4805
4806	/*
4807	 * Multi-process migrations only happen on the default hierarchy
4808	 * where charge immigration is not used.  Perform charge
4809	 * immigration if @tset contains a leader and whine if there are
4810	 * multiple.
4811	 */
4812	p = NULL;
4813	cgroup_taskset_for_each_leader(leader, css, tset) {
4814		WARN_ON_ONCE(p);
4815		p = leader;
4816		memcg = mem_cgroup_from_css(css);
4817	}
4818	if (!p)
4819		return 0;
4820
4821	/*
4822	 * We are now commited to this value whatever it is. Changes in this
4823	 * tunable will only affect upcoming migrations, not the current one.
4824	 * So we need to save it, and keep it going.
4825	 */
4826	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4827	if (!move_flags)
4828		return 0;
4829
4830	from = mem_cgroup_from_task(p);
4831
4832	VM_BUG_ON(from == memcg);
4833
4834	mm = get_task_mm(p);
4835	if (!mm)
4836		return 0;
4837	/* We move charges only when we move a owner of the mm */
4838	if (mm->owner == p) {
4839		VM_BUG_ON(mc.from);
4840		VM_BUG_ON(mc.to);
4841		VM_BUG_ON(mc.precharge);
4842		VM_BUG_ON(mc.moved_charge);
4843		VM_BUG_ON(mc.moved_swap);
4844
4845		spin_lock(&mc.lock);
4846		mc.mm = mm;
4847		mc.from = from;
4848		mc.to = memcg;
4849		mc.flags = move_flags;
4850		spin_unlock(&mc.lock);
4851		/* We set mc.moving_task later */
4852
4853		ret = mem_cgroup_precharge_mc(mm);
4854		if (ret)
4855			mem_cgroup_clear_mc();
4856	} else {
4857		mmput(mm);
4858	}
4859	return ret;
4860}
4861
4862static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4863{
4864	if (mc.to)
4865		mem_cgroup_clear_mc();
4866}
4867
4868static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4869				unsigned long addr, unsigned long end,
4870				struct mm_walk *walk)
4871{
4872	int ret = 0;
4873	struct vm_area_struct *vma = walk->vma;
4874	pte_t *pte;
4875	spinlock_t *ptl;
4876	enum mc_target_type target_type;
4877	union mc_target target;
4878	struct page *page;
4879
4880	ptl = pmd_trans_huge_lock(pmd, vma);
4881	if (ptl) {
4882		if (mc.precharge < HPAGE_PMD_NR) {
4883			spin_unlock(ptl);
4884			return 0;
4885		}
4886		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4887		if (target_type == MC_TARGET_PAGE) {
4888			page = target.page;
4889			if (!isolate_lru_page(page)) {
4890				if (!mem_cgroup_move_account(page, true,
4891							     mc.from, mc.to)) {
4892					mc.precharge -= HPAGE_PMD_NR;
4893					mc.moved_charge += HPAGE_PMD_NR;
4894				}
4895				putback_lru_page(page);
4896			}
4897			put_page(page);
4898		} else if (target_type == MC_TARGET_DEVICE) {
4899			page = target.page;
4900			if (!mem_cgroup_move_account(page, true,
4901						     mc.from, mc.to)) {
4902				mc.precharge -= HPAGE_PMD_NR;
4903				mc.moved_charge += HPAGE_PMD_NR;
4904			}
4905			put_page(page);
4906		}
4907		spin_unlock(ptl);
4908		return 0;
4909	}
4910
4911	if (pmd_trans_unstable(pmd))
4912		return 0;
4913retry:
4914	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4915	for (; addr != end; addr += PAGE_SIZE) {
4916		pte_t ptent = *(pte++);
4917		bool device = false;
4918		swp_entry_t ent;
4919
4920		if (!mc.precharge)
4921			break;
4922
4923		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4924		case MC_TARGET_DEVICE:
4925			device = true;
4926			/* fall through */
4927		case MC_TARGET_PAGE:
4928			page = target.page;
4929			/*
4930			 * We can have a part of the split pmd here. Moving it
4931			 * can be done but it would be too convoluted so simply
4932			 * ignore such a partial THP and keep it in original
4933			 * memcg. There should be somebody mapping the head.
4934			 */
4935			if (PageTransCompound(page))
4936				goto put;
4937			if (!device && isolate_lru_page(page))
4938				goto put;
4939			if (!mem_cgroup_move_account(page, false,
4940						mc.from, mc.to)) {
4941				mc.precharge--;
4942				/* we uncharge from mc.from later. */
4943				mc.moved_charge++;
4944			}
4945			if (!device)
4946				putback_lru_page(page);
4947put:			/* get_mctgt_type() gets the page */
4948			put_page(page);
4949			break;
4950		case MC_TARGET_SWAP:
4951			ent = target.ent;
4952			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4953				mc.precharge--;
4954				/* we fixup refcnts and charges later. */
 
4955				mc.moved_swap++;
4956			}
4957			break;
4958		default:
4959			break;
4960		}
4961	}
4962	pte_unmap_unlock(pte - 1, ptl);
4963	cond_resched();
4964
4965	if (addr != end) {
4966		/*
4967		 * We have consumed all precharges we got in can_attach().
4968		 * We try charge one by one, but don't do any additional
4969		 * charges to mc.to if we have failed in charge once in attach()
4970		 * phase.
4971		 */
4972		ret = mem_cgroup_do_precharge(1);
4973		if (!ret)
4974			goto retry;
4975	}
4976
4977	return ret;
4978}
4979
 
 
 
 
4980static void mem_cgroup_move_charge(void)
4981{
4982	struct mm_walk mem_cgroup_move_charge_walk = {
4983		.pmd_entry = mem_cgroup_move_charge_pte_range,
4984		.mm = mc.mm,
4985	};
4986
4987	lru_add_drain_all();
4988	/*
4989	 * Signal lock_page_memcg() to take the memcg's move_lock
4990	 * while we're moving its pages to another memcg. Then wait
4991	 * for already started RCU-only updates to finish.
4992	 */
4993	atomic_inc(&mc.from->moving_account);
4994	synchronize_rcu();
4995retry:
4996	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4997		/*
4998		 * Someone who are holding the mmap_sem might be waiting in
4999		 * waitq. So we cancel all extra charges, wake up all waiters,
5000		 * and retry. Because we cancel precharges, we might not be able
5001		 * to move enough charges, but moving charge is a best-effort
5002		 * feature anyway, so it wouldn't be a big problem.
5003		 */
5004		__mem_cgroup_clear_mc();
5005		cond_resched();
5006		goto retry;
5007	}
5008	/*
5009	 * When we have consumed all precharges and failed in doing
5010	 * additional charge, the page walk just aborts.
5011	 */
5012	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
 
5013
5014	up_read(&mc.mm->mmap_sem);
5015	atomic_dec(&mc.from->moving_account);
5016}
5017
5018static void mem_cgroup_move_task(void)
5019{
5020	if (mc.to) {
5021		mem_cgroup_move_charge();
5022		mem_cgroup_clear_mc();
5023	}
5024}
5025#else	/* !CONFIG_MMU */
5026static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5027{
5028	return 0;
5029}
5030static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5031{
5032}
5033static void mem_cgroup_move_task(void)
5034{
5035}
5036#endif
5037
5038/*
5039 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5040 * to verify whether we're attached to the default hierarchy on each mount
5041 * attempt.
5042 */
5043static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5044{
5045	/*
5046	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5047	 * guarantees that @root doesn't have any children, so turning it
5048	 * on for the root memcg is enough.
5049	 */
5050	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5051		root_mem_cgroup->use_hierarchy = true;
5052	else
5053		root_mem_cgroup->use_hierarchy = false;
 
 
5054}
5055
5056static u64 memory_current_read(struct cgroup_subsys_state *css,
5057			       struct cftype *cft)
5058{
5059	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5060
5061	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5062}
5063
5064static int memory_low_show(struct seq_file *m, void *v)
5065{
5066	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5067	unsigned long low = READ_ONCE(memcg->low);
 
5068
5069	if (low == PAGE_COUNTER_MAX)
5070		seq_puts(m, "max\n");
5071	else
5072		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
 
 
5073
5074	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
5075}
5076
5077static ssize_t memory_low_write(struct kernfs_open_file *of,
5078				char *buf, size_t nbytes, loff_t off)
5079{
5080	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5081	unsigned long low;
5082	int err;
5083
5084	buf = strstrip(buf);
5085	err = page_counter_memparse(buf, "max", &low);
5086	if (err)
5087		return err;
5088
5089	memcg->low = low;
5090
5091	return nbytes;
5092}
5093
5094static int memory_high_show(struct seq_file *m, void *v)
5095{
5096	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097	unsigned long high = READ_ONCE(memcg->high);
5098
5099	if (high == PAGE_COUNTER_MAX)
5100		seq_puts(m, "max\n");
5101	else
5102		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5103
5104	return 0;
5105}
5106
5107static ssize_t memory_high_write(struct kernfs_open_file *of,
5108				 char *buf, size_t nbytes, loff_t off)
5109{
5110	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5111	unsigned long nr_pages;
 
5112	unsigned long high;
5113	int err;
5114
5115	buf = strstrip(buf);
5116	err = page_counter_memparse(buf, "max", &high);
5117	if (err)
5118		return err;
5119
5120	memcg->high = high;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5121
5122	nr_pages = page_counter_read(&memcg->memory);
5123	if (nr_pages > high)
5124		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5125					     GFP_KERNEL, true);
5126
5127	memcg_wb_domain_size_changed(memcg);
5128	return nbytes;
5129}
5130
5131static int memory_max_show(struct seq_file *m, void *v)
5132{
5133	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5134	unsigned long max = READ_ONCE(memcg->memory.limit);
5135
5136	if (max == PAGE_COUNTER_MAX)
5137		seq_puts(m, "max\n");
5138	else
5139		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5140
5141	return 0;
5142}
5143
5144static ssize_t memory_max_write(struct kernfs_open_file *of,
5145				char *buf, size_t nbytes, loff_t off)
5146{
5147	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5148	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5149	bool drained = false;
5150	unsigned long max;
5151	int err;
5152
5153	buf = strstrip(buf);
5154	err = page_counter_memparse(buf, "max", &max);
5155	if (err)
5156		return err;
5157
5158	xchg(&memcg->memory.limit, max);
5159
5160	for (;;) {
5161		unsigned long nr_pages = page_counter_read(&memcg->memory);
5162
5163		if (nr_pages <= max)
5164			break;
5165
5166		if (signal_pending(current)) {
5167			err = -EINTR;
5168			break;
5169		}
5170
5171		if (!drained) {
5172			drain_all_stock(memcg);
5173			drained = true;
5174			continue;
5175		}
5176
5177		if (nr_reclaims) {
5178			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5179							  GFP_KERNEL, true))
5180				nr_reclaims--;
5181			continue;
5182		}
5183
5184		memcg_memory_event(memcg, MEMCG_OOM);
5185		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5186			break;
5187	}
5188
5189	memcg_wb_domain_size_changed(memcg);
5190	return nbytes;
5191}
5192
 
 
 
 
 
 
 
 
 
 
5193static int memory_events_show(struct seq_file *m, void *v)
5194{
5195	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5196
5197	seq_printf(m, "low %lu\n",
5198		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5199	seq_printf(m, "high %lu\n",
5200		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5201	seq_printf(m, "max %lu\n",
5202		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5203	seq_printf(m, "oom %lu\n",
5204		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5205	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5206
 
5207	return 0;
5208}
5209
5210static int memory_stat_show(struct seq_file *m, void *v)
5211{
5212	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5213	unsigned long stat[MEMCG_NR_STAT];
5214	unsigned long events[NR_VM_EVENT_ITEMS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5215	int i;
 
5216
5217	/*
5218	 * Provide statistics on the state of the memory subsystem as
5219	 * well as cumulative event counters that show past behavior.
5220	 *
5221	 * This list is ordered following a combination of these gradients:
5222	 * 1) generic big picture -> specifics and details
5223	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5224	 *
5225	 * Current memory state:
5226	 */
5227
5228	tree_stat(memcg, stat);
5229	tree_events(memcg, events);
5230
5231	seq_printf(m, "anon %llu\n",
5232		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5233	seq_printf(m, "file %llu\n",
5234		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5235	seq_printf(m, "kernel_stack %llu\n",
5236		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5237	seq_printf(m, "slab %llu\n",
5238		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
5239			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5240	seq_printf(m, "sock %llu\n",
5241		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5242
5243	seq_printf(m, "shmem %llu\n",
5244		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5245	seq_printf(m, "file_mapped %llu\n",
5246		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5247	seq_printf(m, "file_dirty %llu\n",
5248		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5249	seq_printf(m, "file_writeback %llu\n",
5250		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5251
5252	for (i = 0; i < NR_LRU_LISTS; i++) {
5253		struct mem_cgroup *mi;
5254		unsigned long val = 0;
5255
5256		for_each_mem_cgroup_tree(mi, memcg)
5257			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5258		seq_printf(m, "%s %llu\n",
5259			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5260	}
5261
5262	seq_printf(m, "slab_reclaimable %llu\n",
5263		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5264	seq_printf(m, "slab_unreclaimable %llu\n",
5265		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5266
5267	/* Accumulated memory events */
 
 
 
 
 
 
 
 
 
 
5268
5269	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5270	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
 
5271
5272	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5273	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5274		   events[PGSCAN_DIRECT]);
5275	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5276		   events[PGSTEAL_DIRECT]);
5277	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5278	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5279	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5280	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5281
5282	seq_printf(m, "workingset_refault %lu\n",
5283		   stat[WORKINGSET_REFAULT]);
5284	seq_printf(m, "workingset_activate %lu\n",
5285		   stat[WORKINGSET_ACTIVATE]);
5286	seq_printf(m, "workingset_nodereclaim %lu\n",
5287		   stat[WORKINGSET_NODERECLAIM]);
5288
5289	return 0;
5290}
5291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5292static struct cftype memory_files[] = {
5293	{
5294		.name = "current",
5295		.flags = CFTYPE_NOT_ON_ROOT,
5296		.read_u64 = memory_current_read,
5297	},
5298	{
 
 
 
 
 
 
5299		.name = "low",
5300		.flags = CFTYPE_NOT_ON_ROOT,
5301		.seq_show = memory_low_show,
5302		.write = memory_low_write,
5303	},
5304	{
5305		.name = "high",
5306		.flags = CFTYPE_NOT_ON_ROOT,
5307		.seq_show = memory_high_show,
5308		.write = memory_high_write,
5309	},
5310	{
5311		.name = "max",
5312		.flags = CFTYPE_NOT_ON_ROOT,
5313		.seq_show = memory_max_show,
5314		.write = memory_max_write,
5315	},
5316	{
5317		.name = "events",
5318		.flags = CFTYPE_NOT_ON_ROOT,
5319		.file_offset = offsetof(struct mem_cgroup, events_file),
5320		.seq_show = memory_events_show,
5321	},
5322	{
5323		.name = "stat",
5324		.flags = CFTYPE_NOT_ON_ROOT,
 
 
 
 
 
5325		.seq_show = memory_stat_show,
5326	},
 
 
 
 
 
 
 
 
 
 
 
 
5327	{ }	/* terminate */
5328};
5329
5330struct cgroup_subsys memory_cgrp_subsys = {
5331	.css_alloc = mem_cgroup_css_alloc,
5332	.css_online = mem_cgroup_css_online,
5333	.css_offline = mem_cgroup_css_offline,
5334	.css_released = mem_cgroup_css_released,
5335	.css_free = mem_cgroup_css_free,
5336	.css_reset = mem_cgroup_css_reset,
 
5337	.can_attach = mem_cgroup_can_attach,
5338	.cancel_attach = mem_cgroup_cancel_attach,
5339	.post_attach = mem_cgroup_move_task,
5340	.bind = mem_cgroup_bind,
5341	.dfl_cftypes = memory_files,
5342	.legacy_cftypes = mem_cgroup_legacy_files,
5343	.early_init = 0,
5344};
5345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5346/**
5347 * mem_cgroup_low - check if memory consumption is below the normal range
5348 * @root: the top ancestor of the sub-tree being checked
5349 * @memcg: the memory cgroup to check
5350 *
5351 * Returns %true if memory consumption of @memcg, and that of all
5352 * ancestors up to (but not including) @root, is below the normal range.
5353 *
5354 * @root is exclusive; it is never low when looked at directly and isn't
5355 * checked when traversing the hierarchy.
5356 *
5357 * Excluding @root enables using memory.low to prioritize memory usage
5358 * between cgroups within a subtree of the hierarchy that is limited by
5359 * memory.high or memory.max.
5360 *
5361 * For example, given cgroup A with children B and C:
5362 *
5363 *    A
5364 *   / \
5365 *  B   C
5366 *
5367 * and
5368 *
5369 *  1. A/memory.current > A/memory.high
5370 *  2. A/B/memory.current < A/B/memory.low
5371 *  3. A/C/memory.current >= A/C/memory.low
5372 *
5373 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5374 * should reclaim from 'C' until 'A' is no longer high or until we can
5375 * no longer reclaim from 'C'.  If 'A', i.e. @root, isn't excluded by
5376 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5377 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5378 */
5379bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
 
5380{
 
 
 
5381	if (mem_cgroup_disabled())
5382		return false;
5383
5384	if (!root)
5385		root = root_mem_cgroup;
 
 
 
 
 
 
 
 
5386	if (memcg == root)
5387		return false;
 
 
 
 
 
 
 
 
 
5388
5389	for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5390		if (page_counter_read(&memcg->memory) >= memcg->low)
5391			return false;
 
5392	}
5393
5394	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5395}
5396
5397/**
5398 * mem_cgroup_try_charge - try charging a page
5399 * @page: page to charge
5400 * @mm: mm context of the victim
5401 * @gfp_mask: reclaim mode
5402 * @memcgp: charged memcg return
5403 * @compound: charge the page as compound or small page
5404 *
5405 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5406 * pages according to @gfp_mask if necessary.
 
5407 *
5408 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5409 * Otherwise, an error code is returned.
5410 *
5411 * After page->mapping has been set up, the caller must finalize the
5412 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5413 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5414 */
5415int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5416			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5417			  bool compound)
5418{
5419	struct mem_cgroup *memcg = NULL;
5420	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5421	int ret = 0;
5422
5423	if (mem_cgroup_disabled())
5424		goto out;
5425
5426	if (PageSwapCache(page)) {
5427		/*
5428		 * Every swap fault against a single page tries to charge the
5429		 * page, bail as early as possible.  shmem_unuse() encounters
5430		 * already charged pages, too.  The USED bit is protected by
5431		 * the page lock, which serializes swap cache removal, which
5432		 * in turn serializes uncharging.
5433		 */
5434		VM_BUG_ON_PAGE(!PageLocked(page), page);
5435		if (compound_head(page)->mem_cgroup)
5436			goto out;
5437
5438		if (do_swap_account) {
5439			swp_entry_t ent = { .val = page_private(page), };
5440			unsigned short id = lookup_swap_cgroup_id(ent);
5441
5442			rcu_read_lock();
5443			memcg = mem_cgroup_from_id(id);
5444			if (memcg && !css_tryget_online(&memcg->css))
5445				memcg = NULL;
5446			rcu_read_unlock();
5447		}
5448	}
5449
5450	if (!memcg)
5451		memcg = get_mem_cgroup_from_mm(mm);
5452
5453	ret = try_charge(memcg, gfp_mask, nr_pages);
5454
 
 
5455	css_put(&memcg->css);
5456out:
5457	*memcgp = memcg;
5458	return ret;
5459}
5460
5461/**
5462 * mem_cgroup_commit_charge - commit a page charge
5463 * @page: page to charge
5464 * @memcg: memcg to charge the page to
5465 * @lrucare: page might be on LRU already
5466 * @compound: charge the page as compound or small page
5467 *
5468 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5469 * after page->mapping has been set up.  This must happen atomically
5470 * as part of the page instantiation, i.e. under the page table lock
5471 * for anonymous pages, under the page lock for page and swap cache.
5472 *
5473 * In addition, the page must not be on the LRU during the commit, to
5474 * prevent racing with task migration.  If it might be, use @lrucare.
5475 *
5476 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5477 */
5478void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5479			      bool lrucare, bool compound)
5480{
5481	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5482
5483	VM_BUG_ON_PAGE(!page->mapping, page);
5484	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5485
5486	if (mem_cgroup_disabled())
5487		return;
5488	/*
5489	 * Swap faults will attempt to charge the same page multiple
5490	 * times.  But reuse_swap_page() might have removed the page
5491	 * from swapcache already, so we can't check PageSwapCache().
5492	 */
5493	if (!memcg)
5494		return;
5495
5496	commit_charge(page, memcg, lrucare);
 
 
 
 
 
5497
5498	local_irq_disable();
5499	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5500	memcg_check_events(memcg, page);
5501	local_irq_enable();
5502
5503	if (do_memsw_account() && PageSwapCache(page)) {
5504		swp_entry_t entry = { .val = page_private(page) };
5505		/*
5506		 * The swap entry might not get freed for a long time,
5507		 * let's not wait for it.  The page already received a
5508		 * memory+swap charge, drop the swap entry duplicate.
5509		 */
5510		mem_cgroup_uncharge_swap(entry, nr_pages);
5511	}
5512}
5513
5514/**
5515 * mem_cgroup_cancel_charge - cancel a page charge
5516 * @page: page to charge
5517 * @memcg: memcg to charge the page to
5518 * @compound: charge the page as compound or small page
5519 *
5520 * Cancel a charge transaction started by mem_cgroup_try_charge().
 
5521 */
5522void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5523		bool compound)
5524{
5525	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5526
5527	if (mem_cgroup_disabled())
5528		return;
5529	/*
5530	 * Swap faults will attempt to charge the same page multiple
5531	 * times.  But reuse_swap_page() might have removed the page
5532	 * from swapcache already, so we can't check PageSwapCache().
 
 
 
 
 
 
 
5533	 */
5534	if (!memcg)
5535		return;
5536
5537	cancel_charge(memcg, nr_pages);
 
 
 
 
5538}
5539
5540struct uncharge_gather {
5541	struct mem_cgroup *memcg;
 
5542	unsigned long pgpgout;
5543	unsigned long nr_anon;
5544	unsigned long nr_file;
5545	unsigned long nr_kmem;
5546	unsigned long nr_huge;
5547	unsigned long nr_shmem;
5548	struct page *dummy_page;
5549};
5550
5551static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5552{
5553	memset(ug, 0, sizeof(*ug));
5554}
5555
5556static void uncharge_batch(const struct uncharge_gather *ug)
5557{
5558	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5559	unsigned long flags;
5560
5561	if (!mem_cgroup_is_root(ug->memcg)) {
5562		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5563		if (do_memsw_account())
5564			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5565		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5566			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5567		memcg_oom_recover(ug->memcg);
5568	}
5569
5570	local_irq_save(flags);
5571	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5572	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5573	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5574	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5575	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5576	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5577	memcg_check_events(ug->memcg, ug->dummy_page);
5578	local_irq_restore(flags);
5579
5580	if (!mem_cgroup_is_root(ug->memcg))
5581		css_put_many(&ug->memcg->css, nr_pages);
5582}
5583
5584static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5585{
5586	VM_BUG_ON_PAGE(PageLRU(page), page);
5587	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5588			!PageHWPoison(page) , page);
 
5589
5590	if (!page->mem_cgroup)
5591		return;
5592
5593	/*
5594	 * Nobody should be changing or seriously looking at
5595	 * page->mem_cgroup at this point, we have fully
5596	 * exclusive access to the page.
5597	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
5598
5599	if (ug->memcg != page->mem_cgroup) {
5600		if (ug->memcg) {
5601			uncharge_batch(ug);
5602			uncharge_gather_clear(ug);
5603		}
5604		ug->memcg = page->mem_cgroup;
5605	}
5606
5607	if (!PageKmemcg(page)) {
5608		unsigned int nr_pages = 1;
5609
5610		if (PageTransHuge(page)) {
5611			nr_pages <<= compound_order(page);
5612			ug->nr_huge += nr_pages;
5613		}
5614		if (PageAnon(page))
5615			ug->nr_anon += nr_pages;
5616		else {
5617			ug->nr_file += nr_pages;
5618			if (PageSwapBacked(page))
5619				ug->nr_shmem += nr_pages;
5620		}
5621		ug->pgpgout++;
5622	} else {
5623		ug->nr_kmem += 1 << compound_order(page);
5624		__ClearPageKmemcg(page);
5625	}
5626
5627	ug->dummy_page = page;
5628	page->mem_cgroup = NULL;
5629}
5630
5631static void uncharge_list(struct list_head *page_list)
5632{
5633	struct uncharge_gather ug;
5634	struct list_head *next;
5635
5636	uncharge_gather_clear(&ug);
5637
5638	/*
5639	 * Note that the list can be a single page->lru; hence the
5640	 * do-while loop instead of a simple list_for_each_entry().
5641	 */
5642	next = page_list->next;
5643	do {
5644		struct page *page;
5645
5646		page = list_entry(next, struct page, lru);
5647		next = page->lru.next;
 
 
 
 
 
5648
5649		uncharge_page(page, &ug);
5650	} while (next != page_list);
5651
5652	if (ug.memcg)
5653		uncharge_batch(&ug);
5654}
5655
5656/**
5657 * mem_cgroup_uncharge - uncharge a page
5658 * @page: page to uncharge
5659 *
5660 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5661 * mem_cgroup_commit_charge().
5662 */
5663void mem_cgroup_uncharge(struct page *page)
5664{
5665	struct uncharge_gather ug;
5666
5667	if (mem_cgroup_disabled())
5668		return;
5669
5670	/* Don't touch page->lru of any random page, pre-check: */
5671	if (!page->mem_cgroup)
5672		return;
5673
5674	uncharge_gather_clear(&ug);
5675	uncharge_page(page, &ug);
5676	uncharge_batch(&ug);
5677}
5678
5679/**
5680 * mem_cgroup_uncharge_list - uncharge a list of page
5681 * @page_list: list of pages to uncharge
5682 *
5683 * Uncharge a list of pages previously charged with
5684 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5685 */
5686void mem_cgroup_uncharge_list(struct list_head *page_list)
5687{
 
 
 
5688	if (mem_cgroup_disabled())
5689		return;
5690
5691	if (!list_empty(page_list))
5692		uncharge_list(page_list);
 
 
 
5693}
5694
5695/**
5696 * mem_cgroup_migrate - charge a page's replacement
5697 * @oldpage: currently circulating page
5698 * @newpage: replacement page
5699 *
5700 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5701 * be uncharged upon free.
5702 *
5703 * Both pages must be locked, @newpage->mapping must be set up.
5704 */
5705void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5706{
5707	struct mem_cgroup *memcg;
5708	unsigned int nr_pages;
5709	bool compound;
5710	unsigned long flags;
5711
5712	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5713	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5714	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5715	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5716		       newpage);
5717
5718	if (mem_cgroup_disabled())
5719		return;
5720
5721	/* Page cache replacement: new page already charged? */
5722	if (newpage->mem_cgroup)
5723		return;
5724
5725	/* Swapcache readahead pages can get replaced before being charged */
5726	memcg = oldpage->mem_cgroup;
5727	if (!memcg)
5728		return;
5729
5730	/* Force-charge the new page. The old one will be freed soon */
5731	compound = PageTransHuge(newpage);
5732	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5733
5734	page_counter_charge(&memcg->memory, nr_pages);
5735	if (do_memsw_account())
5736		page_counter_charge(&memcg->memsw, nr_pages);
5737	css_get_many(&memcg->css, nr_pages);
 
5738
5739	commit_charge(newpage, memcg, false);
 
5740
5741	local_irq_save(flags);
5742	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5743	memcg_check_events(memcg, newpage);
5744	local_irq_restore(flags);
5745}
5746
5747DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5748EXPORT_SYMBOL(memcg_sockets_enabled_key);
5749
5750void mem_cgroup_sk_alloc(struct sock *sk)
5751{
5752	struct mem_cgroup *memcg;
5753
5754	if (!mem_cgroup_sockets_enabled)
5755		return;
5756
5757	/*
5758	 * Socket cloning can throw us here with sk_memcg already
5759	 * filled. It won't however, necessarily happen from
5760	 * process context. So the test for root memcg given
5761	 * the current task's memcg won't help us in this case.
5762	 *
5763	 * Respecting the original socket's memcg is a better
5764	 * decision in this case.
5765	 */
5766	if (sk->sk_memcg) {
5767		css_get(&sk->sk_memcg->css);
5768		return;
5769	}
5770
5771	rcu_read_lock();
5772	memcg = mem_cgroup_from_task(current);
5773	if (memcg == root_mem_cgroup)
5774		goto out;
5775	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5776		goto out;
5777	if (css_tryget_online(&memcg->css))
5778		sk->sk_memcg = memcg;
5779out:
5780	rcu_read_unlock();
5781}
5782
5783void mem_cgroup_sk_free(struct sock *sk)
5784{
5785	if (sk->sk_memcg)
5786		css_put(&sk->sk_memcg->css);
5787}
5788
5789/**
5790 * mem_cgroup_charge_skmem - charge socket memory
5791 * @memcg: memcg to charge
5792 * @nr_pages: number of pages to charge
5793 *
5794 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5795 * @memcg's configured limit, %false if the charge had to be forced.
5796 */
5797bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5798{
5799	gfp_t gfp_mask = GFP_KERNEL;
5800
5801	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5802		struct page_counter *fail;
5803
5804		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5805			memcg->tcpmem_pressure = 0;
5806			return true;
5807		}
5808		page_counter_charge(&memcg->tcpmem, nr_pages);
5809		memcg->tcpmem_pressure = 1;
5810		return false;
5811	}
5812
5813	/* Don't block in the packet receive path */
5814	if (in_softirq())
5815		gfp_mask = GFP_NOWAIT;
5816
5817	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5818
5819	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5820		return true;
5821
5822	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5823	return false;
5824}
5825
5826/**
5827 * mem_cgroup_uncharge_skmem - uncharge socket memory
5828 * @memcg: memcg to uncharge
5829 * @nr_pages: number of pages to uncharge
5830 */
5831void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5832{
5833	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5834		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5835		return;
5836	}
5837
5838	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5839
5840	refill_stock(memcg, nr_pages);
5841}
5842
5843static int __init cgroup_memory(char *s)
5844{
5845	char *token;
5846
5847	while ((token = strsep(&s, ",")) != NULL) {
5848		if (!*token)
5849			continue;
5850		if (!strcmp(token, "nosocket"))
5851			cgroup_memory_nosocket = true;
5852		if (!strcmp(token, "nokmem"))
5853			cgroup_memory_nokmem = true;
5854	}
5855	return 0;
5856}
5857__setup("cgroup.memory=", cgroup_memory);
5858
5859/*
5860 * subsys_initcall() for memory controller.
5861 *
5862 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5863 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5864 * basically everything that doesn't depend on a specific mem_cgroup structure
5865 * should be initialized from here.
5866 */
5867static int __init mem_cgroup_init(void)
5868{
5869	int cpu, node;
5870
5871#ifndef CONFIG_SLOB
5872	/*
5873	 * Kmem cache creation is mostly done with the slab_mutex held,
5874	 * so use a workqueue with limited concurrency to avoid stalling
5875	 * all worker threads in case lots of cgroups are created and
5876	 * destroyed simultaneously.
5877	 */
5878	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5879	BUG_ON(!memcg_kmem_cache_wq);
5880#endif
5881
5882	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5883				  memcg_hotplug_cpu_dead);
5884
5885	for_each_possible_cpu(cpu)
5886		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5887			  drain_local_stock);
5888
5889	for_each_node(node) {
5890		struct mem_cgroup_tree_per_node *rtpn;
5891
5892		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5893				    node_online(node) ? node : NUMA_NO_NODE);
5894
5895		rtpn->rb_root = RB_ROOT;
5896		rtpn->rb_rightmost = NULL;
5897		spin_lock_init(&rtpn->lock);
5898		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5899	}
5900
5901	return 0;
5902}
5903subsys_initcall(mem_cgroup_init);
5904
5905#ifdef CONFIG_MEMCG_SWAP
5906static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5907{
5908	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5909		/*
5910		 * The root cgroup cannot be destroyed, so it's refcount must
5911		 * always be >= 1.
5912		 */
5913		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5914			VM_BUG_ON(1);
5915			break;
5916		}
5917		memcg = parent_mem_cgroup(memcg);
5918		if (!memcg)
5919			memcg = root_mem_cgroup;
5920	}
5921	return memcg;
5922}
5923
5924/**
5925 * mem_cgroup_swapout - transfer a memsw charge to swap
5926 * @page: page whose memsw charge to transfer
5927 * @entry: swap entry to move the charge to
5928 *
5929 * Transfer the memsw charge of @page to @entry.
5930 */
5931void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5932{
5933	struct mem_cgroup *memcg, *swap_memcg;
5934	unsigned int nr_entries;
5935	unsigned short oldid;
5936
5937	VM_BUG_ON_PAGE(PageLRU(page), page);
5938	VM_BUG_ON_PAGE(page_count(page), page);
5939
5940	if (!do_memsw_account())
 
 
 
5941		return;
5942
5943	memcg = page->mem_cgroup;
5944
5945	/* Readahead page, never charged */
5946	if (!memcg)
5947		return;
5948
5949	/*
5950	 * In case the memcg owning these pages has been offlined and doesn't
5951	 * have an ID allocated to it anymore, charge the closest online
5952	 * ancestor for the swap instead and transfer the memory+swap charge.
5953	 */
5954	swap_memcg = mem_cgroup_id_get_online(memcg);
5955	nr_entries = hpage_nr_pages(page);
5956	/* Get references for the tail pages, too */
5957	if (nr_entries > 1)
5958		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5959	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5960				   nr_entries);
5961	VM_BUG_ON_PAGE(oldid, page);
5962	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5963
5964	page->mem_cgroup = NULL;
5965
5966	if (!mem_cgroup_is_root(memcg))
5967		page_counter_uncharge(&memcg->memory, nr_entries);
5968
5969	if (memcg != swap_memcg) {
5970		if (!mem_cgroup_is_root(swap_memcg))
5971			page_counter_charge(&swap_memcg->memsw, nr_entries);
5972		page_counter_uncharge(&memcg->memsw, nr_entries);
5973	}
5974
5975	/*
5976	 * Interrupts should be disabled here because the caller holds the
5977	 * i_pages lock which is taken with interrupts-off. It is
5978	 * important here to have the interrupts disabled because it is the
5979	 * only synchronisation we have for updating the per-CPU variables.
5980	 */
5981	VM_BUG_ON(!irqs_disabled());
5982	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
5983				     -nr_entries);
5984	memcg_check_events(memcg, page);
5985
5986	if (!mem_cgroup_is_root(memcg))
5987		css_put_many(&memcg->css, nr_entries);
5988}
5989
5990/**
5991 * mem_cgroup_try_charge_swap - try charging swap space for a page
5992 * @page: page being added to swap
5993 * @entry: swap entry to charge
5994 *
5995 * Try to charge @page's memcg for the swap space at @entry.
5996 *
5997 * Returns 0 on success, -ENOMEM on failure.
5998 */
5999int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6000{
6001	unsigned int nr_pages = hpage_nr_pages(page);
6002	struct page_counter *counter;
6003	struct mem_cgroup *memcg;
6004	unsigned short oldid;
6005
6006	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
 
 
 
6007		return 0;
6008
6009	memcg = page->mem_cgroup;
6010
6011	/* Readahead page, never charged */
6012	if (!memcg)
6013		return 0;
6014
 
 
 
 
 
6015	memcg = mem_cgroup_id_get_online(memcg);
6016
6017	if (!mem_cgroup_is_root(memcg) &&
6018	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
 
 
6019		mem_cgroup_id_put(memcg);
6020		return -ENOMEM;
6021	}
6022
6023	/* Get references for the tail pages, too */
6024	if (nr_pages > 1)
6025		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6026	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6027	VM_BUG_ON_PAGE(oldid, page);
6028	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6029
6030	return 0;
6031}
6032
6033/**
6034 * mem_cgroup_uncharge_swap - uncharge swap space
6035 * @entry: swap entry to uncharge
6036 * @nr_pages: the amount of swap space to uncharge
6037 */
6038void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6039{
6040	struct mem_cgroup *memcg;
6041	unsigned short id;
6042
6043	if (!do_swap_account)
6044		return;
6045
6046	id = swap_cgroup_record(entry, 0, nr_pages);
6047	rcu_read_lock();
6048	memcg = mem_cgroup_from_id(id);
6049	if (memcg) {
6050		if (!mem_cgroup_is_root(memcg)) {
6051			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6052				page_counter_uncharge(&memcg->swap, nr_pages);
6053			else
6054				page_counter_uncharge(&memcg->memsw, nr_pages);
6055		}
6056		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6057		mem_cgroup_id_put_many(memcg, nr_pages);
6058	}
6059	rcu_read_unlock();
6060}
6061
6062long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6063{
6064	long nr_swap_pages = get_nr_swap_pages();
6065
6066	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6067		return nr_swap_pages;
6068	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6069		nr_swap_pages = min_t(long, nr_swap_pages,
6070				      READ_ONCE(memcg->swap.limit) -
6071				      page_counter_read(&memcg->swap));
6072	return nr_swap_pages;
6073}
6074
6075bool mem_cgroup_swap_full(struct page *page)
6076{
6077	struct mem_cgroup *memcg;
6078
6079	VM_BUG_ON_PAGE(!PageLocked(page), page);
6080
6081	if (vm_swap_full())
6082		return true;
6083	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6084		return false;
6085
6086	memcg = page->mem_cgroup;
6087	if (!memcg)
6088		return false;
6089
6090	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6091		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
 
 
 
6092			return true;
 
6093
6094	return false;
6095}
6096
6097/* for remember boot option*/
6098#ifdef CONFIG_MEMCG_SWAP_ENABLED
6099static int really_do_swap_account __initdata = 1;
6100#else
6101static int really_do_swap_account __initdata;
6102#endif
6103
6104static int __init enable_swap_account(char *s)
6105{
6106	if (!strcmp(s, "1"))
6107		really_do_swap_account = 1;
6108	else if (!strcmp(s, "0"))
6109		really_do_swap_account = 0;
6110	return 1;
6111}
6112__setup("swapaccount=", enable_swap_account);
6113
6114static u64 swap_current_read(struct cgroup_subsys_state *css,
6115			     struct cftype *cft)
6116{
6117	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6118
6119	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6120}
6121
6122static int swap_max_show(struct seq_file *m, void *v)
6123{
6124	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6125	unsigned long max = READ_ONCE(memcg->swap.limit);
 
6126
6127	if (max == PAGE_COUNTER_MAX)
6128		seq_puts(m, "max\n");
6129	else
6130		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
 
 
6131
6132	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
6133}
6134
6135static ssize_t swap_max_write(struct kernfs_open_file *of,
6136			      char *buf, size_t nbytes, loff_t off)
6137{
6138	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6139	unsigned long max;
6140	int err;
6141
6142	buf = strstrip(buf);
6143	err = page_counter_memparse(buf, "max", &max);
6144	if (err)
6145		return err;
6146
6147	mutex_lock(&memcg_limit_mutex);
6148	err = page_counter_limit(&memcg->swap, max);
6149	mutex_unlock(&memcg_limit_mutex);
6150	if (err)
6151		return err;
6152
6153	return nbytes;
6154}
6155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6156static struct cftype swap_files[] = {
6157	{
6158		.name = "swap.current",
6159		.flags = CFTYPE_NOT_ON_ROOT,
6160		.read_u64 = swap_current_read,
6161	},
6162	{
 
 
 
 
 
 
6163		.name = "swap.max",
6164		.flags = CFTYPE_NOT_ON_ROOT,
6165		.seq_show = swap_max_show,
6166		.write = swap_max_write,
6167	},
 
 
 
 
 
 
6168	{ }	/* terminate */
6169};
6170
6171static struct cftype memsw_cgroup_files[] = {
6172	{
6173		.name = "memsw.usage_in_bytes",
6174		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6175		.read_u64 = mem_cgroup_read_u64,
6176	},
6177	{
6178		.name = "memsw.max_usage_in_bytes",
6179		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6180		.write = mem_cgroup_reset,
6181		.read_u64 = mem_cgroup_read_u64,
6182	},
6183	{
6184		.name = "memsw.limit_in_bytes",
6185		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6186		.write = mem_cgroup_write,
6187		.read_u64 = mem_cgroup_read_u64,
6188	},
6189	{
6190		.name = "memsw.failcnt",
6191		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6192		.write = mem_cgroup_reset,
6193		.read_u64 = mem_cgroup_read_u64,
6194	},
6195	{ },	/* terminate */
6196};
6197
 
 
 
 
 
 
 
6198static int __init mem_cgroup_swap_init(void)
6199{
6200	if (!mem_cgroup_disabled() && really_do_swap_account) {
6201		do_swap_account = 1;
6202		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6203					       swap_files));
6204		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6205						  memsw_cgroup_files));
6206	}
 
 
 
6207	return 0;
6208}
6209subsys_initcall(mem_cgroup_swap_init);
6210
6211#endif /* CONFIG_MEMCG_SWAP */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 *
  24 * Per memcg lru locking
  25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
 
 
 
 
 
 
 
  26 */
  27
  28#include <linux/page_counter.h>
  29#include <linux/memcontrol.h>
  30#include <linux/cgroup.h>
  31#include <linux/pagewalk.h>
  32#include <linux/sched/mm.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/hugetlb.h>
  35#include <linux/pagemap.h>
  36#include <linux/vm_event_item.h>
  37#include <linux/smp.h>
  38#include <linux/page-flags.h>
  39#include <linux/backing-dev.h>
  40#include <linux/bit_spinlock.h>
  41#include <linux/rcupdate.h>
  42#include <linux/limits.h>
  43#include <linux/export.h>
  44#include <linux/mutex.h>
  45#include <linux/rbtree.h>
  46#include <linux/slab.h>
  47#include <linux/swap.h>
  48#include <linux/swapops.h>
  49#include <linux/spinlock.h>
  50#include <linux/eventfd.h>
  51#include <linux/poll.h>
  52#include <linux/sort.h>
  53#include <linux/fs.h>
  54#include <linux/seq_file.h>
  55#include <linux/vmpressure.h>
  56#include <linux/mm_inline.h>
  57#include <linux/swap_cgroup.h>
  58#include <linux/cpu.h>
  59#include <linux/oom.h>
  60#include <linux/lockdep.h>
  61#include <linux/file.h>
  62#include <linux/tracehook.h>
  63#include <linux/psi.h>
  64#include <linux/seq_buf.h>
  65#include "internal.h"
  66#include <net/sock.h>
  67#include <net/ip.h>
  68#include "slab.h"
  69
  70#include <linux/uaccess.h>
  71
  72#include <trace/events/vmscan.h>
  73
  74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  75EXPORT_SYMBOL(memory_cgrp_subsys);
  76
  77struct mem_cgroup *root_mem_cgroup __read_mostly;
  78
  79/* Active memory cgroup to use from an interrupt context */
  80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
  81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
  82
  83/* Socket memory accounting disabled? */
  84static bool cgroup_memory_nosocket __ro_after_init;
  85
  86/* Kernel memory accounting disabled? */
  87bool cgroup_memory_nokmem __ro_after_init;
  88
  89/* Whether the swap controller is active */
  90#ifdef CONFIG_MEMCG_SWAP
  91bool cgroup_memory_noswap __ro_after_init;
  92#else
  93#define cgroup_memory_noswap		1
  94#endif
  95
  96#ifdef CONFIG_CGROUP_WRITEBACK
  97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
  98#endif
  99
 100/* Whether legacy memory+swap accounting is active */
 101static bool do_memsw_account(void)
 102{
 103	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
 104}
 105
 
 
 
 
 
 
 
 
 106#define THRESHOLDS_EVENTS_TARGET 128
 107#define SOFTLIMIT_EVENTS_TARGET 1024
 
 108
 109/*
 110 * Cgroups above their limits are maintained in a RB-Tree, independent of
 111 * their hierarchy representation
 112 */
 113
 114struct mem_cgroup_tree_per_node {
 115	struct rb_root rb_root;
 116	struct rb_node *rb_rightmost;
 117	spinlock_t lock;
 118};
 119
 120struct mem_cgroup_tree {
 121	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 122};
 123
 124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 125
 126/* for OOM */
 127struct mem_cgroup_eventfd_list {
 128	struct list_head list;
 129	struct eventfd_ctx *eventfd;
 130};
 131
 132/*
 133 * cgroup_event represents events which userspace want to receive.
 134 */
 135struct mem_cgroup_event {
 136	/*
 137	 * memcg which the event belongs to.
 138	 */
 139	struct mem_cgroup *memcg;
 140	/*
 141	 * eventfd to signal userspace about the event.
 142	 */
 143	struct eventfd_ctx *eventfd;
 144	/*
 145	 * Each of these stored in a list by the cgroup.
 146	 */
 147	struct list_head list;
 148	/*
 149	 * register_event() callback will be used to add new userspace
 150	 * waiter for changes related to this event.  Use eventfd_signal()
 151	 * on eventfd to send notification to userspace.
 152	 */
 153	int (*register_event)(struct mem_cgroup *memcg,
 154			      struct eventfd_ctx *eventfd, const char *args);
 155	/*
 156	 * unregister_event() callback will be called when userspace closes
 157	 * the eventfd or on cgroup removing.  This callback must be set,
 158	 * if you want provide notification functionality.
 159	 */
 160	void (*unregister_event)(struct mem_cgroup *memcg,
 161				 struct eventfd_ctx *eventfd);
 162	/*
 163	 * All fields below needed to unregister event when
 164	 * userspace closes eventfd.
 165	 */
 166	poll_table pt;
 167	wait_queue_head_t *wqh;
 168	wait_queue_entry_t wait;
 169	struct work_struct remove;
 170};
 171
 172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 174
 175/* Stuffs for move charges at task migration. */
 176/*
 177 * Types of charges to be moved.
 178 */
 179#define MOVE_ANON	0x1U
 180#define MOVE_FILE	0x2U
 181#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 182
 183/* "mc" and its members are protected by cgroup_mutex */
 184static struct move_charge_struct {
 185	spinlock_t	  lock; /* for from, to */
 186	struct mm_struct  *mm;
 187	struct mem_cgroup *from;
 188	struct mem_cgroup *to;
 189	unsigned long flags;
 190	unsigned long precharge;
 191	unsigned long moved_charge;
 192	unsigned long moved_swap;
 193	struct task_struct *moving_task;	/* a task moving charges */
 194	wait_queue_head_t waitq;		/* a waitq for other context */
 195} mc = {
 196	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 197	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 198};
 199
 200/*
 201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 202 * limit reclaim to prevent infinite loops, if they ever occur.
 203 */
 204#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 205#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 206
 
 
 
 
 
 
 
 
 207/* for encoding cft->private value on file */
 208enum res_type {
 209	_MEM,
 210	_MEMSWAP,
 211	_OOM_TYPE,
 212	_KMEM,
 213	_TCP,
 214};
 215
 216#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 217#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 218#define MEMFILE_ATTR(val)	((val) & 0xffff)
 219/* Used for OOM notifier */
 220#define OOM_CONTROL		(0)
 221
 222/*
 223 * Iteration constructs for visiting all cgroups (under a tree).  If
 224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 225 * be used for reference counting.
 226 */
 227#define for_each_mem_cgroup_tree(iter, root)		\
 228	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 229	     iter != NULL;				\
 230	     iter = mem_cgroup_iter(root, iter, NULL))
 231
 232#define for_each_mem_cgroup(iter)			\
 233	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 234	     iter != NULL;				\
 235	     iter = mem_cgroup_iter(NULL, iter, NULL))
 236
 237static inline bool should_force_charge(void)
 238{
 239	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 240		(current->flags & PF_EXITING);
 241}
 242
 243/* Some nice accessors for the vmpressure. */
 244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 245{
 246	if (!memcg)
 247		memcg = root_mem_cgroup;
 248	return &memcg->vmpressure;
 249}
 250
 251struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 252{
 253	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 254}
 255
 256#ifdef CONFIG_MEMCG_KMEM
 257extern spinlock_t css_set_lock;
 258
 259bool mem_cgroup_kmem_disabled(void)
 260{
 261	return cgroup_memory_nokmem;
 262}
 263
 264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
 265				      unsigned int nr_pages);
 266
 267static void obj_cgroup_release(struct percpu_ref *ref)
 268{
 269	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
 270	unsigned int nr_bytes;
 271	unsigned int nr_pages;
 272	unsigned long flags;
 273
 274	/*
 275	 * At this point all allocated objects are freed, and
 276	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
 277	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
 278	 *
 279	 * The following sequence can lead to it:
 280	 * 1) CPU0: objcg == stock->cached_objcg
 281	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
 282	 *          PAGE_SIZE bytes are charged
 283	 * 3) CPU1: a process from another memcg is allocating something,
 284	 *          the stock if flushed,
 285	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
 286	 * 5) CPU0: we do release this object,
 287	 *          92 bytes are added to stock->nr_bytes
 288	 * 6) CPU0: stock is flushed,
 289	 *          92 bytes are added to objcg->nr_charged_bytes
 290	 *
 291	 * In the result, nr_charged_bytes == PAGE_SIZE.
 292	 * This page will be uncharged in obj_cgroup_release().
 293	 */
 294	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
 295	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
 296	nr_pages = nr_bytes >> PAGE_SHIFT;
 297
 298	if (nr_pages)
 299		obj_cgroup_uncharge_pages(objcg, nr_pages);
 300
 301	spin_lock_irqsave(&css_set_lock, flags);
 302	list_del(&objcg->list);
 303	spin_unlock_irqrestore(&css_set_lock, flags);
 304
 305	percpu_ref_exit(ref);
 306	kfree_rcu(objcg, rcu);
 307}
 308
 309static struct obj_cgroup *obj_cgroup_alloc(void)
 310{
 311	struct obj_cgroup *objcg;
 312	int ret;
 313
 314	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
 315	if (!objcg)
 316		return NULL;
 317
 318	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
 319			      GFP_KERNEL);
 320	if (ret) {
 321		kfree(objcg);
 322		return NULL;
 323	}
 324	INIT_LIST_HEAD(&objcg->list);
 325	return objcg;
 326}
 327
 328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
 329				  struct mem_cgroup *parent)
 330{
 331	struct obj_cgroup *objcg, *iter;
 332
 333	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
 334
 335	spin_lock_irq(&css_set_lock);
 336
 337	/* 1) Ready to reparent active objcg. */
 338	list_add(&objcg->list, &memcg->objcg_list);
 339	/* 2) Reparent active objcg and already reparented objcgs to parent. */
 340	list_for_each_entry(iter, &memcg->objcg_list, list)
 341		WRITE_ONCE(iter->memcg, parent);
 342	/* 3) Move already reparented objcgs to the parent's list */
 343	list_splice(&memcg->objcg_list, &parent->objcg_list);
 344
 345	spin_unlock_irq(&css_set_lock);
 346
 347	percpu_ref_kill(&objcg->refcnt);
 348}
 349
 
 350/*
 351 * This will be used as a shrinker list's index.
 352 * The main reason for not using cgroup id for this:
 353 *  this works better in sparse environments, where we have a lot of memcgs,
 354 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 355 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 356 *  200 entry array for that.
 357 *
 358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 359 * will double each time we have to increase it.
 360 */
 361static DEFINE_IDA(memcg_cache_ida);
 362int memcg_nr_cache_ids;
 363
 364/* Protects memcg_nr_cache_ids */
 365static DECLARE_RWSEM(memcg_cache_ids_sem);
 366
 367void memcg_get_cache_ids(void)
 368{
 369	down_read(&memcg_cache_ids_sem);
 370}
 371
 372void memcg_put_cache_ids(void)
 373{
 374	up_read(&memcg_cache_ids_sem);
 375}
 376
 377/*
 378 * MIN_SIZE is different than 1, because we would like to avoid going through
 379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 380 * cgroups is a reasonable guess. In the future, it could be a parameter or
 381 * tunable, but that is strictly not necessary.
 382 *
 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 384 * this constant directly from cgroup, but it is understandable that this is
 385 * better kept as an internal representation in cgroup.c. In any case, the
 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 387 * increase ours as well if it increases.
 388 */
 389#define MEMCG_CACHES_MIN_SIZE 4
 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 391
 392/*
 393 * A lot of the calls to the cache allocation functions are expected to be
 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
 395 * conditional to this static branch, we'll have to allow modules that does
 396 * kmem_cache_alloc and the such to see this symbol as well
 397 */
 398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
 400#endif
 
 
 
 401
 402/**
 403 * mem_cgroup_css_from_page - css of the memcg associated with a page
 404 * @page: page of interest
 405 *
 406 * If memcg is bound to the default hierarchy, css of the memcg associated
 407 * with @page is returned.  The returned css remains associated with @page
 408 * until it is released.
 409 *
 410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 411 * is returned.
 412 */
 413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 414{
 415	struct mem_cgroup *memcg;
 416
 417	memcg = page_memcg(page);
 418
 419	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 420		memcg = root_mem_cgroup;
 421
 422	return &memcg->css;
 423}
 424
 425/**
 426 * page_cgroup_ino - return inode number of the memcg a page is charged to
 427 * @page: the page
 428 *
 429 * Look up the closest online ancestor of the memory cgroup @page is charged to
 430 * and return its inode number or 0 if @page is not charged to any cgroup. It
 431 * is safe to call this function without holding a reference to @page.
 432 *
 433 * Note, this function is inherently racy, because there is nothing to prevent
 434 * the cgroup inode from getting torn down and potentially reallocated a moment
 435 * after page_cgroup_ino() returns, so it only should be used by callers that
 436 * do not care (such as procfs interfaces).
 437 */
 438ino_t page_cgroup_ino(struct page *page)
 439{
 440	struct mem_cgroup *memcg;
 441	unsigned long ino = 0;
 442
 443	rcu_read_lock();
 444	memcg = page_memcg_check(page);
 445
 446	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 447		memcg = parent_mem_cgroup(memcg);
 448	if (memcg)
 449		ino = cgroup_ino(memcg->css.cgroup);
 450	rcu_read_unlock();
 451	return ino;
 452}
 453
 454static struct mem_cgroup_per_node *
 455mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 456{
 457	int nid = page_to_nid(page);
 458
 459	return memcg->nodeinfo[nid];
 460}
 461
 462static struct mem_cgroup_tree_per_node *
 463soft_limit_tree_node(int nid)
 464{
 465	return soft_limit_tree.rb_tree_per_node[nid];
 466}
 467
 468static struct mem_cgroup_tree_per_node *
 469soft_limit_tree_from_page(struct page *page)
 470{
 471	int nid = page_to_nid(page);
 472
 473	return soft_limit_tree.rb_tree_per_node[nid];
 474}
 475
 476static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 477					 struct mem_cgroup_tree_per_node *mctz,
 478					 unsigned long new_usage_in_excess)
 479{
 480	struct rb_node **p = &mctz->rb_root.rb_node;
 481	struct rb_node *parent = NULL;
 482	struct mem_cgroup_per_node *mz_node;
 483	bool rightmost = true;
 484
 485	if (mz->on_tree)
 486		return;
 487
 488	mz->usage_in_excess = new_usage_in_excess;
 489	if (!mz->usage_in_excess)
 490		return;
 491	while (*p) {
 492		parent = *p;
 493		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 494					tree_node);
 495		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 496			p = &(*p)->rb_left;
 497			rightmost = false;
 498		} else {
 
 
 
 
 
 
 499			p = &(*p)->rb_right;
 500		}
 501	}
 502
 503	if (rightmost)
 504		mctz->rb_rightmost = &mz->tree_node;
 505
 506	rb_link_node(&mz->tree_node, parent, p);
 507	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 508	mz->on_tree = true;
 509}
 510
 511static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 512					 struct mem_cgroup_tree_per_node *mctz)
 513{
 514	if (!mz->on_tree)
 515		return;
 516
 517	if (&mz->tree_node == mctz->rb_rightmost)
 518		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 519
 520	rb_erase(&mz->tree_node, &mctz->rb_root);
 521	mz->on_tree = false;
 522}
 523
 524static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 525				       struct mem_cgroup_tree_per_node *mctz)
 526{
 527	unsigned long flags;
 528
 529	spin_lock_irqsave(&mctz->lock, flags);
 530	__mem_cgroup_remove_exceeded(mz, mctz);
 531	spin_unlock_irqrestore(&mctz->lock, flags);
 532}
 533
 534static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 535{
 536	unsigned long nr_pages = page_counter_read(&memcg->memory);
 537	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 538	unsigned long excess = 0;
 539
 540	if (nr_pages > soft_limit)
 541		excess = nr_pages - soft_limit;
 542
 543	return excess;
 544}
 545
 546static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 547{
 548	unsigned long excess;
 549	struct mem_cgroup_per_node *mz;
 550	struct mem_cgroup_tree_per_node *mctz;
 551
 552	mctz = soft_limit_tree_from_page(page);
 553	if (!mctz)
 554		return;
 555	/*
 556	 * Necessary to update all ancestors when hierarchy is used.
 557	 * because their event counter is not touched.
 558	 */
 559	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 560		mz = mem_cgroup_page_nodeinfo(memcg, page);
 561		excess = soft_limit_excess(memcg);
 562		/*
 563		 * We have to update the tree if mz is on RB-tree or
 564		 * mem is over its softlimit.
 565		 */
 566		if (excess || mz->on_tree) {
 567			unsigned long flags;
 568
 569			spin_lock_irqsave(&mctz->lock, flags);
 570			/* if on-tree, remove it */
 571			if (mz->on_tree)
 572				__mem_cgroup_remove_exceeded(mz, mctz);
 573			/*
 574			 * Insert again. mz->usage_in_excess will be updated.
 575			 * If excess is 0, no tree ops.
 576			 */
 577			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 578			spin_unlock_irqrestore(&mctz->lock, flags);
 579		}
 580	}
 581}
 582
 583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 584{
 585	struct mem_cgroup_tree_per_node *mctz;
 586	struct mem_cgroup_per_node *mz;
 587	int nid;
 588
 589	for_each_node(nid) {
 590		mz = memcg->nodeinfo[nid];
 591		mctz = soft_limit_tree_node(nid);
 592		if (mctz)
 593			mem_cgroup_remove_exceeded(mz, mctz);
 594	}
 595}
 596
 597static struct mem_cgroup_per_node *
 598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 599{
 600	struct mem_cgroup_per_node *mz;
 601
 602retry:
 603	mz = NULL;
 604	if (!mctz->rb_rightmost)
 605		goto done;		/* Nothing to reclaim from */
 606
 607	mz = rb_entry(mctz->rb_rightmost,
 608		      struct mem_cgroup_per_node, tree_node);
 609	/*
 610	 * Remove the node now but someone else can add it back,
 611	 * we will to add it back at the end of reclaim to its correct
 612	 * position in the tree.
 613	 */
 614	__mem_cgroup_remove_exceeded(mz, mctz);
 615	if (!soft_limit_excess(mz->memcg) ||
 616	    !css_tryget(&mz->memcg->css))
 617		goto retry;
 618done:
 619	return mz;
 620}
 621
 622static struct mem_cgroup_per_node *
 623mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 624{
 625	struct mem_cgroup_per_node *mz;
 626
 627	spin_lock_irq(&mctz->lock);
 628	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 629	spin_unlock_irq(&mctz->lock);
 630	return mz;
 631}
 632
 633/**
 634 * __mod_memcg_state - update cgroup memory statistics
 635 * @memcg: the memory cgroup
 636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 637 * @val: delta to add to the counter, can be negative
 638 */
 639void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 640{
 641	if (mem_cgroup_disabled())
 642		return;
 643
 644	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
 645	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 646}
 647
 648/* idx can be of type enum memcg_stat_item or node_stat_item. */
 649static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 
 650{
 651	long x = READ_ONCE(memcg->vmstats.state[idx]);
 652#ifdef CONFIG_SMP
 653	if (x < 0)
 654		x = 0;
 655#endif
 656	return x;
 657}
 658
 659/* idx can be of type enum memcg_stat_item or node_stat_item. */
 660static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
 661{
 662	long x = 0;
 663	int cpu;
 664
 665	for_each_possible_cpu(cpu)
 666		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
 667#ifdef CONFIG_SMP
 668	if (x < 0)
 669		x = 0;
 670#endif
 671	return x;
 672}
 673
 674static struct mem_cgroup_per_node *
 675parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
 676{
 677	struct mem_cgroup *parent;
 678
 679	parent = parent_mem_cgroup(pn->memcg);
 680	if (!parent)
 681		return NULL;
 682	return parent->nodeinfo[nid];
 683}
 684
 685void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 686			      int val)
 687{
 688	struct mem_cgroup_per_node *pn;
 689	struct mem_cgroup *memcg;
 690	long x, threshold = MEMCG_CHARGE_BATCH;
 691
 692	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 693	memcg = pn->memcg;
 694
 695	/* Update memcg */
 696	__mod_memcg_state(memcg, idx, val);
 697
 698	/* Update lruvec */
 699	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
 700
 701	if (vmstat_item_in_bytes(idx))
 702		threshold <<= PAGE_SHIFT;
 703
 704	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 705	if (unlikely(abs(x) > threshold)) {
 706		pg_data_t *pgdat = lruvec_pgdat(lruvec);
 707		struct mem_cgroup_per_node *pi;
 708
 709		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
 710			atomic_long_add(x, &pi->lruvec_stat[idx]);
 711		x = 0;
 712	}
 713	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 714}
 715
 716/**
 717 * __mod_lruvec_state - update lruvec memory statistics
 718 * @lruvec: the lruvec
 719 * @idx: the stat item
 720 * @val: delta to add to the counter, can be negative
 721 *
 722 * The lruvec is the intersection of the NUMA node and a cgroup. This
 723 * function updates the all three counters that are affected by a
 724 * change of state at this level: per-node, per-cgroup, per-lruvec.
 725 */
 726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 727			int val)
 728{
 729	/* Update node */
 730	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
 731
 732	/* Update memcg and lruvec */
 733	if (!mem_cgroup_disabled())
 734		__mod_memcg_lruvec_state(lruvec, idx, val);
 735}
 736
 737void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
 738			     int val)
 739{
 740	struct page *head = compound_head(page); /* rmap on tail pages */
 741	struct mem_cgroup *memcg;
 742	pg_data_t *pgdat = page_pgdat(page);
 743	struct lruvec *lruvec;
 744
 745	rcu_read_lock();
 746	memcg = page_memcg(head);
 747	/* Untracked pages have no memcg, no lruvec. Update only the node */
 748	if (!memcg) {
 749		rcu_read_unlock();
 750		__mod_node_page_state(pgdat, idx, val);
 751		return;
 752	}
 753
 754	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 755	__mod_lruvec_state(lruvec, idx, val);
 756	rcu_read_unlock();
 757}
 758EXPORT_SYMBOL(__mod_lruvec_page_state);
 759
 760void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
 
 761{
 762	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
 763	struct mem_cgroup *memcg;
 764	struct lruvec *lruvec;
 765
 766	rcu_read_lock();
 767	memcg = mem_cgroup_from_obj(p);
 768
 769	/*
 770	 * Untracked pages have no memcg, no lruvec. Update only the
 771	 * node. If we reparent the slab objects to the root memcg,
 772	 * when we free the slab object, we need to update the per-memcg
 773	 * vmstats to keep it correct for the root memcg.
 774	 */
 775	if (!memcg) {
 776		__mod_node_page_state(pgdat, idx, val);
 777	} else {
 778		lruvec = mem_cgroup_lruvec(memcg, pgdat);
 779		__mod_lruvec_state(lruvec, idx, val);
 780	}
 781	rcu_read_unlock();
 782}
 783
 784/*
 785 * mod_objcg_mlstate() may be called with irq enabled, so
 786 * mod_memcg_lruvec_state() should be used.
 787 */
 788static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
 789				     struct pglist_data *pgdat,
 790				     enum node_stat_item idx, int nr)
 791{
 792	struct mem_cgroup *memcg;
 793	struct lruvec *lruvec;
 794
 795	rcu_read_lock();
 796	memcg = obj_cgroup_memcg(objcg);
 797	lruvec = mem_cgroup_lruvec(memcg, pgdat);
 798	mod_memcg_lruvec_state(lruvec, idx, nr);
 799	rcu_read_unlock();
 800}
 801
 802/**
 803 * __count_memcg_events - account VM events in a cgroup
 804 * @memcg: the memory cgroup
 805 * @idx: the event item
 806 * @count: the number of events that occurred
 807 */
 808void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 809			  unsigned long count)
 810{
 811	if (mem_cgroup_disabled())
 812		return;
 813
 814	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
 815	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
 816}
 817
 818static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 819{
 820	return READ_ONCE(memcg->vmstats.events[event]);
 821}
 822
 823static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 824{
 825	long x = 0;
 826	int cpu;
 827
 828	for_each_possible_cpu(cpu)
 829		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
 830	return x;
 831}
 832
 833static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 834					 struct page *page,
 835					 int nr_pages)
 836{
 837	/* pagein of a big page is an event. So, ignore page size */
 838	if (nr_pages > 0)
 839		__count_memcg_events(memcg, PGPGIN, 1);
 840	else {
 841		__count_memcg_events(memcg, PGPGOUT, 1);
 842		nr_pages = -nr_pages; /* for event */
 843	}
 844
 845	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 846}
 847
 848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 849				       enum mem_cgroup_events_target target)
 850{
 851	unsigned long val, next;
 852
 853	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 854	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 855	/* from time_after() in jiffies.h */
 856	if ((long)(next - val) < 0) {
 857		switch (target) {
 858		case MEM_CGROUP_TARGET_THRESH:
 859			next = val + THRESHOLDS_EVENTS_TARGET;
 860			break;
 861		case MEM_CGROUP_TARGET_SOFTLIMIT:
 862			next = val + SOFTLIMIT_EVENTS_TARGET;
 863			break;
 
 
 
 864		default:
 865			break;
 866		}
 867		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 868		return true;
 869	}
 870	return false;
 871}
 872
 873/*
 874 * Check events in order.
 875 *
 876 */
 877static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 878{
 879	/* threshold event is triggered in finer grain than soft limit */
 880	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 881						MEM_CGROUP_TARGET_THRESH))) {
 882		bool do_softlimit;
 
 883
 884		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 885						MEM_CGROUP_TARGET_SOFTLIMIT);
 
 
 
 
 886		mem_cgroup_threshold(memcg);
 887		if (unlikely(do_softlimit))
 888			mem_cgroup_update_tree(memcg, page);
 
 
 
 
 889	}
 890}
 891
 892struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 893{
 894	/*
 895	 * mm_update_next_owner() may clear mm->owner to NULL
 896	 * if it races with swapoff, page migration, etc.
 897	 * So this can be called with p == NULL.
 898	 */
 899	if (unlikely(!p))
 900		return NULL;
 901
 902	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 903}
 904EXPORT_SYMBOL(mem_cgroup_from_task);
 905
 906static __always_inline struct mem_cgroup *active_memcg(void)
 907{
 908	if (in_interrupt())
 909		return this_cpu_read(int_active_memcg);
 910	else
 911		return current->active_memcg;
 912}
 913
 914/**
 915 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 916 * @mm: mm from which memcg should be extracted. It can be NULL.
 917 *
 918 * Obtain a reference on mm->memcg and returns it if successful. If mm
 919 * is NULL, then the memcg is chosen as follows:
 920 * 1) The active memcg, if set.
 921 * 2) current->mm->memcg, if available
 922 * 3) root memcg
 923 * If mem_cgroup is disabled, NULL is returned.
 924 */
 925struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 926{
 927	struct mem_cgroup *memcg;
 928
 929	if (mem_cgroup_disabled())
 930		return NULL;
 931
 932	/*
 933	 * Page cache insertions can happen without an
 934	 * actual mm context, e.g. during disk probing
 935	 * on boot, loopback IO, acct() writes etc.
 936	 *
 937	 * No need to css_get on root memcg as the reference
 938	 * counting is disabled on the root level in the
 939	 * cgroup core. See CSS_NO_REF.
 940	 */
 941	if (unlikely(!mm)) {
 942		memcg = active_memcg();
 943		if (unlikely(memcg)) {
 944			/* remote memcg must hold a ref */
 945			css_get(&memcg->css);
 946			return memcg;
 947		}
 948		mm = current->mm;
 949		if (unlikely(!mm))
 950			return root_mem_cgroup;
 951	}
 952
 953	rcu_read_lock();
 954	do {
 955		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 956		if (unlikely(!memcg))
 
 
 
 
 957			memcg = root_mem_cgroup;
 958	} while (!css_tryget(&memcg->css));
 
 
 
 
 
 959	rcu_read_unlock();
 960	return memcg;
 961}
 962EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 963
 964static __always_inline bool memcg_kmem_bypass(void)
 965{
 966	/* Allow remote memcg charging from any context. */
 967	if (unlikely(active_memcg()))
 968		return false;
 969
 970	/* Memcg to charge can't be determined. */
 971	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
 972		return true;
 973
 974	return false;
 975}
 976
 977/**
 978 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 979 * @root: hierarchy root
 980 * @prev: previously returned memcg, NULL on first invocation
 981 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 982 *
 983 * Returns references to children of the hierarchy below @root, or
 984 * @root itself, or %NULL after a full round-trip.
 985 *
 986 * Caller must pass the return value in @prev on subsequent
 987 * invocations for reference counting, or use mem_cgroup_iter_break()
 988 * to cancel a hierarchy walk before the round-trip is complete.
 989 *
 990 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 991 * in the hierarchy among all concurrent reclaimers operating on the
 992 * same node.
 993 */
 994struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 995				   struct mem_cgroup *prev,
 996				   struct mem_cgroup_reclaim_cookie *reclaim)
 997{
 998	struct mem_cgroup_reclaim_iter *iter;
 999	struct cgroup_subsys_state *css = NULL;
1000	struct mem_cgroup *memcg = NULL;
1001	struct mem_cgroup *pos = NULL;
1002
1003	if (mem_cgroup_disabled())
1004		return NULL;
1005
1006	if (!root)
1007		root = root_mem_cgroup;
1008
1009	if (prev && !reclaim)
1010		pos = prev;
1011
 
 
 
 
 
 
1012	rcu_read_lock();
1013
1014	if (reclaim) {
1015		struct mem_cgroup_per_node *mz;
1016
1017		mz = root->nodeinfo[reclaim->pgdat->node_id];
1018		iter = &mz->iter;
1019
1020		if (prev && reclaim->generation != iter->generation)
1021			goto out_unlock;
1022
1023		while (1) {
1024			pos = READ_ONCE(iter->position);
1025			if (!pos || css_tryget(&pos->css))
1026				break;
1027			/*
1028			 * css reference reached zero, so iter->position will
1029			 * be cleared by ->css_released. However, we should not
1030			 * rely on this happening soon, because ->css_released
1031			 * is called from a work queue, and by busy-waiting we
1032			 * might block it. So we clear iter->position right
1033			 * away.
1034			 */
1035			(void)cmpxchg(&iter->position, pos, NULL);
1036		}
1037	}
1038
1039	if (pos)
1040		css = &pos->css;
1041
1042	for (;;) {
1043		css = css_next_descendant_pre(css, &root->css);
1044		if (!css) {
1045			/*
1046			 * Reclaimers share the hierarchy walk, and a
1047			 * new one might jump in right at the end of
1048			 * the hierarchy - make sure they see at least
1049			 * one group and restart from the beginning.
1050			 */
1051			if (!prev)
1052				continue;
1053			break;
1054		}
1055
1056		/*
1057		 * Verify the css and acquire a reference.  The root
1058		 * is provided by the caller, so we know it's alive
1059		 * and kicking, and don't take an extra reference.
1060		 */
1061		memcg = mem_cgroup_from_css(css);
1062
1063		if (css == &root->css)
1064			break;
1065
1066		if (css_tryget(css))
1067			break;
1068
1069		memcg = NULL;
1070	}
1071
1072	if (reclaim) {
1073		/*
1074		 * The position could have already been updated by a competing
1075		 * thread, so check that the value hasn't changed since we read
1076		 * it to avoid reclaiming from the same cgroup twice.
1077		 */
1078		(void)cmpxchg(&iter->position, pos, memcg);
1079
1080		if (pos)
1081			css_put(&pos->css);
1082
1083		if (!memcg)
1084			iter->generation++;
1085		else if (!prev)
1086			reclaim->generation = iter->generation;
1087	}
1088
1089out_unlock:
1090	rcu_read_unlock();
 
1091	if (prev && prev != root)
1092		css_put(&prev->css);
1093
1094	return memcg;
1095}
1096
1097/**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
1102void mem_cgroup_iter_break(struct mem_cgroup *root,
1103			   struct mem_cgroup *prev)
1104{
1105	if (!root)
1106		root = root_mem_cgroup;
1107	if (prev && prev != root)
1108		css_put(&prev->css);
1109}
1110
1111static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112					struct mem_cgroup *dead_memcg)
1113{
 
1114	struct mem_cgroup_reclaim_iter *iter;
1115	struct mem_cgroup_per_node *mz;
1116	int nid;
 
1117
1118	for_each_node(nid) {
1119		mz = from->nodeinfo[nid];
1120		iter = &mz->iter;
1121		cmpxchg(&iter->position, dead_memcg, NULL);
 
 
 
 
 
1122	}
1123}
1124
1125static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126{
1127	struct mem_cgroup *memcg = dead_memcg;
1128	struct mem_cgroup *last;
 
 
 
 
 
1129
1130	do {
1131		__invalidate_reclaim_iterators(memcg, dead_memcg);
1132		last = memcg;
1133	} while ((memcg = parent_mem_cgroup(memcg)));
1134
1135	/*
1136	 * When cgruop1 non-hierarchy mode is used,
1137	 * parent_mem_cgroup() does not walk all the way up to the
1138	 * cgroup root (root_mem_cgroup). So we have to handle
1139	 * dead_memcg from cgroup root separately.
1140	 */
1141	if (last != root_mem_cgroup)
1142		__invalidate_reclaim_iterators(root_mem_cgroup,
1143						dead_memcg);
1144}
1145
1146/**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop and returns the value.
1155 * Otherwise, it will iterate over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
1159int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160			  int (*fn)(struct task_struct *, void *), void *arg)
1161{
1162	struct mem_cgroup *iter;
1163	int ret = 0;
1164
1165	BUG_ON(memcg == root_mem_cgroup);
1166
1167	for_each_mem_cgroup_tree(iter, memcg) {
1168		struct css_task_iter it;
1169		struct task_struct *task;
1170
1171		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172		while (!ret && (task = css_task_iter_next(&it)))
1173			ret = fn(task, arg);
1174		css_task_iter_end(&it);
1175		if (ret) {
1176			mem_cgroup_iter_break(memcg, iter);
1177			break;
1178		}
1179	}
1180	return ret;
1181}
1182
1183#ifdef CONFIG_DEBUG_VM
1184void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1185{
1186	struct mem_cgroup *memcg;
1187
1188	if (mem_cgroup_disabled())
1189		return;
1190
1191	memcg = page_memcg(page);
1192
1193	if (!memcg)
1194		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195	else
1196		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197}
1198#endif
1199
1200/**
1201 * lock_page_lruvec - lock and return lruvec for a given page.
1202 * @page: the page
 
1203 *
1204 * These functions are safe to use under any of the following conditions:
1205 * - page locked
1206 * - PageLRU cleared
1207 * - lock_page_memcg()
1208 * - page->_refcount is zero
1209 */
1210struct lruvec *lock_page_lruvec(struct page *page)
1211{
 
 
1212	struct lruvec *lruvec;
1213
1214	lruvec = mem_cgroup_page_lruvec(page);
1215	spin_lock(&lruvec->lru_lock);
 
 
1216
1217	lruvec_memcg_debug(lruvec, page);
1218
1219	return lruvec;
1220}
1221
1222struct lruvec *lock_page_lruvec_irq(struct page *page)
1223{
1224	struct lruvec *lruvec;
1225
1226	lruvec = mem_cgroup_page_lruvec(page);
1227	spin_lock_irq(&lruvec->lru_lock);
1228
1229	lruvec_memcg_debug(lruvec, page);
1230
1231	return lruvec;
1232}
1233
1234struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1235{
1236	struct lruvec *lruvec;
1237
1238	lruvec = mem_cgroup_page_lruvec(page);
1239	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1240
1241	lruvec_memcg_debug(lruvec, page);
1242
 
 
 
 
 
 
 
 
 
 
1243	return lruvec;
1244}
1245
1246/**
1247 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248 * @lruvec: mem_cgroup per zone lru vector
1249 * @lru: index of lru list the page is sitting on
1250 * @zid: zone id of the accounted pages
1251 * @nr_pages: positive when adding or negative when removing
1252 *
1253 * This function must be called under lru_lock, just before a page is added
1254 * to or just after a page is removed from an lru list (that ordering being
1255 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256 */
1257void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258				int zid, int nr_pages)
1259{
1260	struct mem_cgroup_per_node *mz;
1261	unsigned long *lru_size;
1262	long size;
1263
1264	if (mem_cgroup_disabled())
1265		return;
1266
1267	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268	lru_size = &mz->lru_zone_size[zid][lru];
1269
1270	if (nr_pages < 0)
1271		*lru_size += nr_pages;
1272
1273	size = *lru_size;
1274	if (WARN_ONCE(size < 0,
1275		"%s(%p, %d, %d): lru_size %ld\n",
1276		__func__, lruvec, lru, nr_pages, size)) {
1277		VM_BUG_ON(1);
1278		*lru_size = 0;
1279	}
1280
1281	if (nr_pages > 0)
1282		*lru_size += nr_pages;
1283}
1284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285/**
1286 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287 * @memcg: the memory cgroup
1288 *
1289 * Returns the maximum amount of memory @mem can be charged with, in
1290 * pages.
1291 */
1292static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293{
1294	unsigned long margin = 0;
1295	unsigned long count;
1296	unsigned long limit;
1297
1298	count = page_counter_read(&memcg->memory);
1299	limit = READ_ONCE(memcg->memory.max);
1300	if (count < limit)
1301		margin = limit - count;
1302
1303	if (do_memsw_account()) {
1304		count = page_counter_read(&memcg->memsw);
1305		limit = READ_ONCE(memcg->memsw.max);
1306		if (count < limit)
1307			margin = min(margin, limit - count);
1308		else
1309			margin = 0;
1310	}
1311
1312	return margin;
1313}
1314
1315/*
1316 * A routine for checking "mem" is under move_account() or not.
1317 *
1318 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319 * moving cgroups. This is for waiting at high-memory pressure
1320 * caused by "move".
1321 */
1322static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323{
1324	struct mem_cgroup *from;
1325	struct mem_cgroup *to;
1326	bool ret = false;
1327	/*
1328	 * Unlike task_move routines, we access mc.to, mc.from not under
1329	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330	 */
1331	spin_lock(&mc.lock);
1332	from = mc.from;
1333	to = mc.to;
1334	if (!from)
1335		goto unlock;
1336
1337	ret = mem_cgroup_is_descendant(from, memcg) ||
1338		mem_cgroup_is_descendant(to, memcg);
1339unlock:
1340	spin_unlock(&mc.lock);
1341	return ret;
1342}
1343
1344static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345{
1346	if (mc.moving_task && current != mc.moving_task) {
1347		if (mem_cgroup_under_move(memcg)) {
1348			DEFINE_WAIT(wait);
1349			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350			/* moving charge context might have finished. */
1351			if (mc.moving_task)
1352				schedule();
1353			finish_wait(&mc.waitq, &wait);
1354			return true;
1355		}
1356	}
1357	return false;
1358}
1359
1360struct memory_stat {
1361	const char *name;
1362	unsigned int idx;
 
 
 
 
 
 
1363};
1364
1365static const struct memory_stat memory_stats[] = {
1366	{ "anon",			NR_ANON_MAPPED			},
1367	{ "file",			NR_FILE_PAGES			},
1368	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1369	{ "pagetables",			NR_PAGETABLE			},
1370	{ "percpu",			MEMCG_PERCPU_B			},
1371	{ "sock",			MEMCG_SOCK			},
1372	{ "shmem",			NR_SHMEM			},
1373	{ "file_mapped",		NR_FILE_MAPPED			},
1374	{ "file_dirty",			NR_FILE_DIRTY			},
1375	{ "file_writeback",		NR_WRITEBACK			},
1376#ifdef CONFIG_SWAP
1377	{ "swapcached",			NR_SWAPCACHE			},
1378#endif
1379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380	{ "anon_thp",			NR_ANON_THPS			},
1381	{ "file_thp",			NR_FILE_THPS			},
1382	{ "shmem_thp",			NR_SHMEM_THPS			},
1383#endif
1384	{ "inactive_anon",		NR_INACTIVE_ANON		},
1385	{ "active_anon",		NR_ACTIVE_ANON			},
1386	{ "inactive_file",		NR_INACTIVE_FILE		},
1387	{ "active_file",		NR_ACTIVE_FILE			},
1388	{ "unevictable",		NR_UNEVICTABLE			},
1389	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1390	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1391
1392	/* The memory events */
1393	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1394	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1395	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1396	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1397	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1398	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1399	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1400};
1401
1402/* Translate stat items to the correct unit for memory.stat output */
1403static int memcg_page_state_unit(int item)
1404{
1405	switch (item) {
1406	case MEMCG_PERCPU_B:
1407	case NR_SLAB_RECLAIMABLE_B:
1408	case NR_SLAB_UNRECLAIMABLE_B:
1409	case WORKINGSET_REFAULT_ANON:
1410	case WORKINGSET_REFAULT_FILE:
1411	case WORKINGSET_ACTIVATE_ANON:
1412	case WORKINGSET_ACTIVATE_FILE:
1413	case WORKINGSET_RESTORE_ANON:
1414	case WORKINGSET_RESTORE_FILE:
1415	case WORKINGSET_NODERECLAIM:
1416		return 1;
1417	case NR_KERNEL_STACK_KB:
1418		return SZ_1K;
1419	default:
1420		return PAGE_SIZE;
1421	}
1422}
1423
1424static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425						    int item)
1426{
1427	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428}
1429
1430static char *memory_stat_format(struct mem_cgroup *memcg)
1431{
1432	struct seq_buf s;
1433	int i;
1434
1435	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436	if (!s.buffer)
1437		return NULL;
1438
1439	/*
1440	 * Provide statistics on the state of the memory subsystem as
1441	 * well as cumulative event counters that show past behavior.
1442	 *
1443	 * This list is ordered following a combination of these gradients:
1444	 * 1) generic big picture -> specifics and details
1445	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446	 *
1447	 * Current memory state:
1448	 */
1449	cgroup_rstat_flush(memcg->css.cgroup);
1450
1451	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452		u64 size;
1453
1454		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456
1457		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458			size += memcg_page_state_output(memcg,
1459							NR_SLAB_RECLAIMABLE_B);
1460			seq_buf_printf(&s, "slab %llu\n", size);
1461		}
1462	}
1463
1464	/* Accumulated memory events */
1465
1466	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467		       memcg_events(memcg, PGFAULT));
1468	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469		       memcg_events(memcg, PGMAJFAULT));
1470	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1471		       memcg_events(memcg, PGREFILL));
1472	seq_buf_printf(&s, "pgscan %lu\n",
1473		       memcg_events(memcg, PGSCAN_KSWAPD) +
1474		       memcg_events(memcg, PGSCAN_DIRECT));
1475	seq_buf_printf(&s, "pgsteal %lu\n",
1476		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1477		       memcg_events(memcg, PGSTEAL_DIRECT));
1478	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479		       memcg_events(memcg, PGACTIVATE));
1480	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481		       memcg_events(memcg, PGDEACTIVATE));
1482	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483		       memcg_events(memcg, PGLAZYFREE));
1484	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485		       memcg_events(memcg, PGLAZYFREED));
1486
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489		       memcg_events(memcg, THP_FAULT_ALLOC));
1490	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493
1494	/* The above should easily fit into one page */
1495	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496
1497	return s.buffer;
1498}
1499
1500#define K(x) ((x) << (PAGE_SHIFT-10))
1501/**
1502 * mem_cgroup_print_oom_context: Print OOM information relevant to
1503 * memory controller.
1504 * @memcg: The memory cgroup that went over limit
1505 * @p: Task that is going to be killed
1506 *
1507 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508 * enabled
1509 */
1510void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511{
 
 
 
1512	rcu_read_lock();
1513
1514	if (memcg) {
1515		pr_cont(",oom_memcg=");
1516		pr_cont_cgroup_path(memcg->css.cgroup);
1517	} else
1518		pr_cont(",global_oom");
1519	if (p) {
1520		pr_cont(",task_memcg=");
1521		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
 
 
 
1522	}
 
 
 
 
1523	rcu_read_unlock();
1524}
1525
1526/**
1527 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528 * memory controller.
1529 * @memcg: The memory cgroup that went over limit
1530 */
1531void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532{
1533	char *buf;
1534
1535	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536		K((u64)page_counter_read(&memcg->memory)),
1537		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540			K((u64)page_counter_read(&memcg->swap)),
1541			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542	else {
1543		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544			K((u64)page_counter_read(&memcg->memsw)),
1545			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547			K((u64)page_counter_read(&memcg->kmem)),
1548			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
1549	}
1550
1551	pr_info("Memory cgroup stats for ");
1552	pr_cont_cgroup_path(memcg->css.cgroup);
1553	pr_cont(":");
1554	buf = memory_stat_format(memcg);
1555	if (!buf)
1556		return;
1557	pr_info("%s", buf);
1558	kfree(buf);
1559}
1560
1561/*
1562 * Return the memory (and swap, if configured) limit for a memcg.
1563 */
1564unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565{
1566	unsigned long max = READ_ONCE(memcg->memory.max);
1567
1568	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569		if (mem_cgroup_swappiness(memcg))
1570			max += min(READ_ONCE(memcg->swap.max),
1571				   (unsigned long)total_swap_pages);
1572	} else { /* v1 */
1573		if (mem_cgroup_swappiness(memcg)) {
1574			/* Calculate swap excess capacity from memsw limit */
1575			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576
1577			max += min(swap, (unsigned long)total_swap_pages);
1578		}
 
 
 
 
 
 
 
1579	}
1580	return max;
1581}
1582
1583unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584{
1585	return page_counter_read(&memcg->memory);
1586}
1587
1588static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589				     int order)
1590{
1591	struct oom_control oc = {
1592		.zonelist = NULL,
1593		.nodemask = NULL,
1594		.memcg = memcg,
1595		.gfp_mask = gfp_mask,
1596		.order = order,
1597	};
1598	bool ret = true;
1599
1600	if (mutex_lock_killable(&oom_lock))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602
1603	if (mem_cgroup_margin(memcg) >= (1 << order))
1604		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605
 
1606	/*
1607	 * A few threads which were not waiting at mutex_lock_killable() can
1608	 * fail to bail out. Therefore, check again after holding oom_lock.
 
1609	 */
1610	ret = should_force_charge() || out_of_memory(&oc);
 
1611
1612unlock:
1613	mutex_unlock(&oom_lock);
1614	return ret;
 
 
 
 
1615}
 
1616
1617static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618				   pg_data_t *pgdat,
1619				   gfp_t gfp_mask,
1620				   unsigned long *total_scanned)
1621{
1622	struct mem_cgroup *victim = NULL;
1623	int total = 0;
1624	int loop = 0;
1625	unsigned long excess;
1626	unsigned long nr_scanned;
1627	struct mem_cgroup_reclaim_cookie reclaim = {
1628		.pgdat = pgdat,
 
1629	};
1630
1631	excess = soft_limit_excess(root_memcg);
1632
1633	while (1) {
1634		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635		if (!victim) {
1636			loop++;
1637			if (loop >= 2) {
1638				/*
1639				 * If we have not been able to reclaim
1640				 * anything, it might because there are
1641				 * no reclaimable pages under this hierarchy
1642				 */
1643				if (!total)
1644					break;
1645				/*
1646				 * We want to do more targeted reclaim.
1647				 * excess >> 2 is not to excessive so as to
1648				 * reclaim too much, nor too less that we keep
1649				 * coming back to reclaim from this cgroup
1650				 */
1651				if (total >= (excess >> 2) ||
1652					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653					break;
1654			}
1655			continue;
1656		}
1657		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658					pgdat, &nr_scanned);
1659		*total_scanned += nr_scanned;
1660		if (!soft_limit_excess(root_memcg))
1661			break;
1662	}
1663	mem_cgroup_iter_break(root_memcg, victim);
1664	return total;
1665}
1666
1667#ifdef CONFIG_LOCKDEP
1668static struct lockdep_map memcg_oom_lock_dep_map = {
1669	.name = "memcg_oom_lock",
1670};
1671#endif
1672
1673static DEFINE_SPINLOCK(memcg_oom_lock);
1674
1675/*
1676 * Check OOM-Killer is already running under our hierarchy.
1677 * If someone is running, return false.
1678 */
1679static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680{
1681	struct mem_cgroup *iter, *failed = NULL;
1682
1683	spin_lock(&memcg_oom_lock);
1684
1685	for_each_mem_cgroup_tree(iter, memcg) {
1686		if (iter->oom_lock) {
1687			/*
1688			 * this subtree of our hierarchy is already locked
1689			 * so we cannot give a lock.
1690			 */
1691			failed = iter;
1692			mem_cgroup_iter_break(memcg, iter);
1693			break;
1694		} else
1695			iter->oom_lock = true;
1696	}
1697
1698	if (failed) {
1699		/*
1700		 * OK, we failed to lock the whole subtree so we have
1701		 * to clean up what we set up to the failing subtree
1702		 */
1703		for_each_mem_cgroup_tree(iter, memcg) {
1704			if (iter == failed) {
1705				mem_cgroup_iter_break(memcg, iter);
1706				break;
1707			}
1708			iter->oom_lock = false;
1709		}
1710	} else
1711		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712
1713	spin_unlock(&memcg_oom_lock);
1714
1715	return !failed;
1716}
1717
1718static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719{
1720	struct mem_cgroup *iter;
1721
1722	spin_lock(&memcg_oom_lock);
1723	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724	for_each_mem_cgroup_tree(iter, memcg)
1725		iter->oom_lock = false;
1726	spin_unlock(&memcg_oom_lock);
1727}
1728
1729static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730{
1731	struct mem_cgroup *iter;
1732
1733	spin_lock(&memcg_oom_lock);
1734	for_each_mem_cgroup_tree(iter, memcg)
1735		iter->under_oom++;
1736	spin_unlock(&memcg_oom_lock);
1737}
1738
1739static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740{
1741	struct mem_cgroup *iter;
1742
1743	/*
1744	 * Be careful about under_oom underflows because a child memcg
1745	 * could have been added after mem_cgroup_mark_under_oom.
1746	 */
1747	spin_lock(&memcg_oom_lock);
1748	for_each_mem_cgroup_tree(iter, memcg)
1749		if (iter->under_oom > 0)
1750			iter->under_oom--;
1751	spin_unlock(&memcg_oom_lock);
1752}
1753
1754static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755
1756struct oom_wait_info {
1757	struct mem_cgroup *memcg;
1758	wait_queue_entry_t	wait;
1759};
1760
1761static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762	unsigned mode, int sync, void *arg)
1763{
1764	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765	struct mem_cgroup *oom_wait_memcg;
1766	struct oom_wait_info *oom_wait_info;
1767
1768	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769	oom_wait_memcg = oom_wait_info->memcg;
1770
1771	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773		return 0;
1774	return autoremove_wake_function(wait, mode, sync, arg);
1775}
1776
1777static void memcg_oom_recover(struct mem_cgroup *memcg)
1778{
1779	/*
1780	 * For the following lockless ->under_oom test, the only required
1781	 * guarantee is that it must see the state asserted by an OOM when
1782	 * this function is called as a result of userland actions
1783	 * triggered by the notification of the OOM.  This is trivially
1784	 * achieved by invoking mem_cgroup_mark_under_oom() before
1785	 * triggering notification.
1786	 */
1787	if (memcg && memcg->under_oom)
1788		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789}
1790
1791enum oom_status {
1792	OOM_SUCCESS,
1793	OOM_FAILED,
1794	OOM_ASYNC,
1795	OOM_SKIPPED
1796};
1797
1798static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799{
1800	enum oom_status ret;
1801	bool locked;
1802
1803	if (order > PAGE_ALLOC_COSTLY_ORDER)
1804		return OOM_SKIPPED;
1805
1806	memcg_memory_event(memcg, MEMCG_OOM);
1807
1808	/*
1809	 * We are in the middle of the charge context here, so we
1810	 * don't want to block when potentially sitting on a callstack
1811	 * that holds all kinds of filesystem and mm locks.
1812	 *
1813	 * cgroup1 allows disabling the OOM killer and waiting for outside
1814	 * handling until the charge can succeed; remember the context and put
1815	 * the task to sleep at the end of the page fault when all locks are
1816	 * released.
1817	 *
1818	 * On the other hand, in-kernel OOM killer allows for an async victim
1819	 * memory reclaim (oom_reaper) and that means that we are not solely
1820	 * relying on the oom victim to make a forward progress and we can
1821	 * invoke the oom killer here.
1822	 *
1823	 * Please note that mem_cgroup_out_of_memory might fail to find a
1824	 * victim and then we have to bail out from the charge path.
 
 
1825	 */
1826	if (memcg->oom_kill_disable) {
1827		if (!current->in_user_fault)
1828			return OOM_SKIPPED;
1829		css_get(&memcg->css);
1830		current->memcg_in_oom = memcg;
1831		current->memcg_oom_gfp_mask = mask;
1832		current->memcg_oom_order = order;
1833
1834		return OOM_ASYNC;
1835	}
1836
1837	mem_cgroup_mark_under_oom(memcg);
1838
1839	locked = mem_cgroup_oom_trylock(memcg);
1840
1841	if (locked)
1842		mem_cgroup_oom_notify(memcg);
1843
1844	mem_cgroup_unmark_under_oom(memcg);
1845	if (mem_cgroup_out_of_memory(memcg, mask, order))
1846		ret = OOM_SUCCESS;
1847	else
1848		ret = OOM_FAILED;
1849
1850	if (locked)
1851		mem_cgroup_oom_unlock(memcg);
1852
1853	return ret;
1854}
1855
1856/**
1857 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858 * @handle: actually kill/wait or just clean up the OOM state
1859 *
1860 * This has to be called at the end of a page fault if the memcg OOM
1861 * handler was enabled.
1862 *
1863 * Memcg supports userspace OOM handling where failed allocations must
1864 * sleep on a waitqueue until the userspace task resolves the
1865 * situation.  Sleeping directly in the charge context with all kinds
1866 * of locks held is not a good idea, instead we remember an OOM state
1867 * in the task and mem_cgroup_oom_synchronize() has to be called at
1868 * the end of the page fault to complete the OOM handling.
1869 *
1870 * Returns %true if an ongoing memcg OOM situation was detected and
1871 * completed, %false otherwise.
1872 */
1873bool mem_cgroup_oom_synchronize(bool handle)
1874{
1875	struct mem_cgroup *memcg = current->memcg_in_oom;
1876	struct oom_wait_info owait;
1877	bool locked;
1878
1879	/* OOM is global, do not handle */
1880	if (!memcg)
1881		return false;
1882
1883	if (!handle)
1884		goto cleanup;
1885
1886	owait.memcg = memcg;
1887	owait.wait.flags = 0;
1888	owait.wait.func = memcg_oom_wake_function;
1889	owait.wait.private = current;
1890	INIT_LIST_HEAD(&owait.wait.entry);
1891
1892	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893	mem_cgroup_mark_under_oom(memcg);
1894
1895	locked = mem_cgroup_oom_trylock(memcg);
1896
1897	if (locked)
1898		mem_cgroup_oom_notify(memcg);
1899
1900	if (locked && !memcg->oom_kill_disable) {
1901		mem_cgroup_unmark_under_oom(memcg);
1902		finish_wait(&memcg_oom_waitq, &owait.wait);
1903		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904					 current->memcg_oom_order);
1905	} else {
1906		schedule();
1907		mem_cgroup_unmark_under_oom(memcg);
1908		finish_wait(&memcg_oom_waitq, &owait.wait);
1909	}
1910
1911	if (locked) {
1912		mem_cgroup_oom_unlock(memcg);
1913		/*
1914		 * There is no guarantee that an OOM-lock contender
1915		 * sees the wakeups triggered by the OOM kill
1916		 * uncharges.  Wake any sleepers explicitly.
1917		 */
1918		memcg_oom_recover(memcg);
1919	}
1920cleanup:
1921	current->memcg_in_oom = NULL;
1922	css_put(&memcg->css);
1923	return true;
1924}
1925
1926/**
1927 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928 * @victim: task to be killed by the OOM killer
1929 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930 *
1931 * Returns a pointer to a memory cgroup, which has to be cleaned up
1932 * by killing all belonging OOM-killable tasks.
1933 *
1934 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935 */
1936struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937					    struct mem_cgroup *oom_domain)
1938{
1939	struct mem_cgroup *oom_group = NULL;
1940	struct mem_cgroup *memcg;
1941
1942	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943		return NULL;
1944
1945	if (!oom_domain)
1946		oom_domain = root_mem_cgroup;
1947
1948	rcu_read_lock();
1949
1950	memcg = mem_cgroup_from_task(victim);
1951	if (memcg == root_mem_cgroup)
1952		goto out;
1953
1954	/*
1955	 * If the victim task has been asynchronously moved to a different
1956	 * memory cgroup, we might end up killing tasks outside oom_domain.
1957	 * In this case it's better to ignore memory.group.oom.
1958	 */
1959	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960		goto out;
1961
1962	/*
1963	 * Traverse the memory cgroup hierarchy from the victim task's
1964	 * cgroup up to the OOMing cgroup (or root) to find the
1965	 * highest-level memory cgroup with oom.group set.
1966	 */
1967	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968		if (memcg->oom_group)
1969			oom_group = memcg;
1970
1971		if (memcg == oom_domain)
1972			break;
1973	}
1974
1975	if (oom_group)
1976		css_get(&oom_group->css);
1977out:
1978	rcu_read_unlock();
1979
1980	return oom_group;
1981}
1982
1983void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984{
1985	pr_info("Tasks in ");
1986	pr_cont_cgroup_path(memcg->css.cgroup);
1987	pr_cont(" are going to be killed due to memory.oom.group set\n");
1988}
1989
1990/**
1991 * lock_page_memcg - lock a page and memcg binding
1992 * @page: the page
1993 *
1994 * This function protects unlocked LRU pages from being moved to
1995 * another cgroup.
1996 *
1997 * It ensures lifetime of the locked memcg. Caller is responsible
1998 * for the lifetime of the page.
 
1999 */
2000void lock_page_memcg(struct page *page)
2001{
2002	struct page *head = compound_head(page); /* rmap on tail pages */
2003	struct mem_cgroup *memcg;
2004	unsigned long flags;
2005
2006	/*
2007	 * The RCU lock is held throughout the transaction.  The fast
2008	 * path can get away without acquiring the memcg->move_lock
2009	 * because page moving starts with an RCU grace period.
 
 
 
 
 
 
2010         */
2011	rcu_read_lock();
2012
2013	if (mem_cgroup_disabled())
2014		return;
2015again:
2016	memcg = page_memcg(head);
2017	if (unlikely(!memcg))
2018		return;
2019
2020#ifdef CONFIG_PROVE_LOCKING
2021	local_irq_save(flags);
2022	might_lock(&memcg->move_lock);
2023	local_irq_restore(flags);
2024#endif
2025
2026	if (atomic_read(&memcg->moving_account) <= 0)
2027		return;
2028
2029	spin_lock_irqsave(&memcg->move_lock, flags);
2030	if (memcg != page_memcg(head)) {
2031		spin_unlock_irqrestore(&memcg->move_lock, flags);
2032		goto again;
2033	}
2034
2035	/*
2036	 * When charge migration first begins, we can have multiple
2037	 * critical sections holding the fast-path RCU lock and one
2038	 * holding the slowpath move_lock. Track the task who has the
2039	 * move_lock for unlock_page_memcg().
2040	 */
2041	memcg->move_lock_task = current;
2042	memcg->move_lock_flags = flags;
 
 
2043}
2044EXPORT_SYMBOL(lock_page_memcg);
2045
2046static void __unlock_page_memcg(struct mem_cgroup *memcg)
 
 
 
 
 
 
2047{
2048	if (memcg && memcg->move_lock_task == current) {
2049		unsigned long flags = memcg->move_lock_flags;
2050
2051		memcg->move_lock_task = NULL;
2052		memcg->move_lock_flags = 0;
2053
2054		spin_unlock_irqrestore(&memcg->move_lock, flags);
2055	}
2056
2057	rcu_read_unlock();
2058}
2059
2060/**
2061 * unlock_page_memcg - unlock a page and memcg binding
2062 * @page: the page
2063 */
2064void unlock_page_memcg(struct page *page)
2065{
2066	struct page *head = compound_head(page);
2067
2068	__unlock_page_memcg(page_memcg(head));
2069}
2070EXPORT_SYMBOL(unlock_page_memcg);
2071
2072struct obj_stock {
2073#ifdef CONFIG_MEMCG_KMEM
2074	struct obj_cgroup *cached_objcg;
2075	struct pglist_data *cached_pgdat;
2076	unsigned int nr_bytes;
2077	int nr_slab_reclaimable_b;
2078	int nr_slab_unreclaimable_b;
2079#else
2080	int dummy[0];
2081#endif
2082};
2083
2084struct memcg_stock_pcp {
2085	struct mem_cgroup *cached; /* this never be root cgroup */
2086	unsigned int nr_pages;
2087	struct obj_stock task_obj;
2088	struct obj_stock irq_obj;
2089
2090	struct work_struct work;
2091	unsigned long flags;
2092#define FLUSHING_CACHED_CHARGE	0
2093};
2094static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097#ifdef CONFIG_MEMCG_KMEM
2098static void drain_obj_stock(struct obj_stock *stock);
2099static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100				     struct mem_cgroup *root_memcg);
2101
2102#else
2103static inline void drain_obj_stock(struct obj_stock *stock)
2104{
2105}
2106static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107				     struct mem_cgroup *root_memcg)
2108{
2109	return false;
2110}
2111#endif
2112
2113/*
2114 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115 * sequence used in this case to access content from object stock is slow.
2116 * To optimize for user context access, there are now two object stocks for
2117 * task context and interrupt context access respectively.
2118 *
2119 * The task context object stock can be accessed by disabling preemption only
2120 * which is cheap in non-preempt kernel. The interrupt context object stock
2121 * can only be accessed after disabling interrupt. User context code can
2122 * access interrupt object stock, but not vice versa.
2123 */
2124static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125{
2126	struct memcg_stock_pcp *stock;
2127
2128	if (likely(in_task())) {
2129		*pflags = 0UL;
2130		preempt_disable();
2131		stock = this_cpu_ptr(&memcg_stock);
2132		return &stock->task_obj;
2133	}
2134
2135	local_irq_save(*pflags);
2136	stock = this_cpu_ptr(&memcg_stock);
2137	return &stock->irq_obj;
2138}
2139
2140static inline void put_obj_stock(unsigned long flags)
2141{
2142	if (likely(in_task()))
2143		preempt_enable();
2144	else
2145		local_irq_restore(flags);
2146}
2147
2148/**
2149 * consume_stock: Try to consume stocked charge on this cpu.
2150 * @memcg: memcg to consume from.
2151 * @nr_pages: how many pages to charge.
2152 *
2153 * The charges will only happen if @memcg matches the current cpu's memcg
2154 * stock, and at least @nr_pages are available in that stock.  Failure to
2155 * service an allocation will refill the stock.
2156 *
2157 * returns true if successful, false otherwise.
2158 */
2159static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160{
2161	struct memcg_stock_pcp *stock;
2162	unsigned long flags;
2163	bool ret = false;
2164
2165	if (nr_pages > MEMCG_CHARGE_BATCH)
2166		return ret;
2167
2168	local_irq_save(flags);
2169
2170	stock = this_cpu_ptr(&memcg_stock);
2171	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172		stock->nr_pages -= nr_pages;
2173		ret = true;
2174	}
2175
2176	local_irq_restore(flags);
2177
2178	return ret;
2179}
2180
2181/*
2182 * Returns stocks cached in percpu and reset cached information.
2183 */
2184static void drain_stock(struct memcg_stock_pcp *stock)
2185{
2186	struct mem_cgroup *old = stock->cached;
2187
2188	if (!old)
2189		return;
2190
2191	if (stock->nr_pages) {
2192		page_counter_uncharge(&old->memory, stock->nr_pages);
2193		if (do_memsw_account())
2194			page_counter_uncharge(&old->memsw, stock->nr_pages);
 
2195		stock->nr_pages = 0;
2196	}
2197
2198	css_put(&old->css);
2199	stock->cached = NULL;
2200}
2201
2202static void drain_local_stock(struct work_struct *dummy)
2203{
2204	struct memcg_stock_pcp *stock;
2205	unsigned long flags;
2206
2207	/*
2208	 * The only protection from memory hotplug vs. drain_stock races is
2209	 * that we always operate on local CPU stock here with IRQ disabled
2210	 */
2211	local_irq_save(flags);
2212
2213	stock = this_cpu_ptr(&memcg_stock);
2214	drain_obj_stock(&stock->irq_obj);
2215	if (in_task())
2216		drain_obj_stock(&stock->task_obj);
2217	drain_stock(stock);
2218	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219
2220	local_irq_restore(flags);
2221}
2222
2223/*
2224 * Cache charges(val) to local per_cpu area.
2225 * This will be consumed by consume_stock() function, later.
2226 */
2227static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228{
2229	struct memcg_stock_pcp *stock;
2230	unsigned long flags;
2231
2232	local_irq_save(flags);
2233
2234	stock = this_cpu_ptr(&memcg_stock);
2235	if (stock->cached != memcg) { /* reset if necessary */
2236		drain_stock(stock);
2237		css_get(&memcg->css);
2238		stock->cached = memcg;
2239	}
2240	stock->nr_pages += nr_pages;
2241
2242	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243		drain_stock(stock);
2244
2245	local_irq_restore(flags);
2246}
2247
2248/*
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
2251 */
2252static void drain_all_stock(struct mem_cgroup *root_memcg)
2253{
2254	int cpu, curcpu;
2255
2256	/* If someone's already draining, avoid adding running more workers. */
2257	if (!mutex_trylock(&percpu_charge_mutex))
2258		return;
2259	/*
2260	 * Notify other cpus that system-wide "drain" is running
2261	 * We do not care about races with the cpu hotplug because cpu down
2262	 * as well as workers from this path always operate on the local
2263	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264	 */
2265	curcpu = get_cpu();
2266	for_each_online_cpu(cpu) {
2267		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268		struct mem_cgroup *memcg;
2269		bool flush = false;
2270
2271		rcu_read_lock();
2272		memcg = stock->cached;
2273		if (memcg && stock->nr_pages &&
2274		    mem_cgroup_is_descendant(memcg, root_memcg))
2275			flush = true;
2276		if (obj_stock_flush_required(stock, root_memcg))
2277			flush = true;
2278		rcu_read_unlock();
2279
2280		if (flush &&
2281		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282			if (cpu == curcpu)
2283				drain_local_stock(&stock->work);
2284			else
2285				schedule_work_on(cpu, &stock->work);
2286		}
 
2287	}
2288	put_cpu();
2289	mutex_unlock(&percpu_charge_mutex);
2290}
2291
2292static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293{
2294	int nid;
 
 
 
 
2295
2296	for_each_node(nid) {
2297		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299		struct batched_lruvec_stat *lstatc;
2300		int i;
2301
2302		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304			stat[i] = lstatc->count[i];
2305			lstatc->count[i] = 0;
2306		}
 
 
 
 
 
2307
2308		do {
2309			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311		} while ((pn = parent_nodeinfo(pn, nid)));
2312	}
2313}
2314
2315static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316{
2317	struct memcg_stock_pcp *stock;
2318	struct mem_cgroup *memcg;
 
 
2319
2320	stock = &per_cpu(memcg_stock, cpu);
2321	drain_stock(stock);
2322
2323	for_each_mem_cgroup(memcg)
2324		memcg_flush_lruvec_page_state(memcg, cpu);
 
 
 
2325
2326	return 0;
2327}
2328
2329static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330				  unsigned int nr_pages,
2331				  gfp_t gfp_mask)
2332{
2333	unsigned long nr_reclaimed = 0;
2334
2335	do {
2336		unsigned long pflags;
2337
2338		if (page_counter_read(&memcg->memory) <=
2339		    READ_ONCE(memcg->memory.high))
2340			continue;
2341
2342		memcg_memory_event(memcg, MEMCG_HIGH);
2343
2344		psi_memstall_enter(&pflags);
2345		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346							     gfp_mask, true);
2347		psi_memstall_leave(&pflags);
2348	} while ((memcg = parent_mem_cgroup(memcg)) &&
2349		 !mem_cgroup_is_root(memcg));
2350
2351	return nr_reclaimed;
2352}
2353
2354static void high_work_func(struct work_struct *work)
2355{
2356	struct mem_cgroup *memcg;
2357
2358	memcg = container_of(work, struct mem_cgroup, high_work);
2359	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360}
2361
2362/*
2363 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364 * enough to still cause a significant slowdown in most cases, while still
2365 * allowing diagnostics and tracing to proceed without becoming stuck.
2366 */
2367#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368
2369/*
2370 * When calculating the delay, we use these either side of the exponentiation to
2371 * maintain precision and scale to a reasonable number of jiffies (see the table
2372 * below.
2373 *
2374 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375 *   overage ratio to a delay.
2376 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2378 *   to produce a reasonable delay curve.
2379 *
2380 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381 * reasonable delay curve compared to precision-adjusted overage, not
2382 * penalising heavily at first, but still making sure that growth beyond the
2383 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384 * example, with a high of 100 megabytes:
2385 *
2386 *  +-------+------------------------+
2387 *  | usage | time to allocate in ms |
2388 *  +-------+------------------------+
2389 *  | 100M  |                      0 |
2390 *  | 101M  |                      6 |
2391 *  | 102M  |                     25 |
2392 *  | 103M  |                     57 |
2393 *  | 104M  |                    102 |
2394 *  | 105M  |                    159 |
2395 *  | 106M  |                    230 |
2396 *  | 107M  |                    313 |
2397 *  | 108M  |                    409 |
2398 *  | 109M  |                    518 |
2399 *  | 110M  |                    639 |
2400 *  | 111M  |                    774 |
2401 *  | 112M  |                    921 |
2402 *  | 113M  |                   1081 |
2403 *  | 114M  |                   1254 |
2404 *  | 115M  |                   1439 |
2405 *  | 116M  |                   1638 |
2406 *  | 117M  |                   1849 |
2407 *  | 118M  |                   2000 |
2408 *  | 119M  |                   2000 |
2409 *  | 120M  |                   2000 |
2410 *  +-------+------------------------+
2411 */
2412 #define MEMCG_DELAY_PRECISION_SHIFT 20
2413 #define MEMCG_DELAY_SCALING_SHIFT 14
2414
2415static u64 calculate_overage(unsigned long usage, unsigned long high)
2416{
2417	u64 overage;
2418
2419	if (usage <= high)
2420		return 0;
2421
2422	/*
2423	 * Prevent division by 0 in overage calculation by acting as if
2424	 * it was a threshold of 1 page
2425	 */
2426	high = max(high, 1UL);
2427
2428	overage = usage - high;
2429	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430	return div64_u64(overage, high);
2431}
2432
2433static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434{
2435	u64 overage, max_overage = 0;
2436
2437	do {
2438		overage = calculate_overage(page_counter_read(&memcg->memory),
2439					    READ_ONCE(memcg->memory.high));
2440		max_overage = max(overage, max_overage);
2441	} while ((memcg = parent_mem_cgroup(memcg)) &&
2442		 !mem_cgroup_is_root(memcg));
2443
2444	return max_overage;
2445}
2446
2447static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2448{
2449	u64 overage, max_overage = 0;
2450
2451	do {
2452		overage = calculate_overage(page_counter_read(&memcg->swap),
2453					    READ_ONCE(memcg->swap.high));
2454		if (overage)
2455			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456		max_overage = max(overage, max_overage);
2457	} while ((memcg = parent_mem_cgroup(memcg)) &&
2458		 !mem_cgroup_is_root(memcg));
2459
2460	return max_overage;
2461}
2462
2463/*
2464 * Get the number of jiffies that we should penalise a mischievous cgroup which
2465 * is exceeding its memory.high by checking both it and its ancestors.
2466 */
2467static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468					  unsigned int nr_pages,
2469					  u64 max_overage)
2470{
2471	unsigned long penalty_jiffies;
2472
2473	if (!max_overage)
2474		return 0;
2475
2476	/*
2477	 * We use overage compared to memory.high to calculate the number of
2478	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479	 * fairly lenient on small overages, and increasingly harsh when the
2480	 * memcg in question makes it clear that it has no intention of stopping
2481	 * its crazy behaviour, so we exponentially increase the delay based on
2482	 * overage amount.
2483	 */
2484	penalty_jiffies = max_overage * max_overage * HZ;
2485	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487
2488	/*
2489	 * Factor in the task's own contribution to the overage, such that four
2490	 * N-sized allocations are throttled approximately the same as one
2491	 * 4N-sized allocation.
2492	 *
2493	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494	 * larger the current charge patch is than that.
2495	 */
2496	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497}
2498
2499/*
2500 * Scheduled by try_charge() to be executed from the userland return path
2501 * and reclaims memory over the high limit.
2502 */
2503void mem_cgroup_handle_over_high(void)
2504{
2505	unsigned long penalty_jiffies;
2506	unsigned long pflags;
2507	unsigned long nr_reclaimed;
2508	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509	int nr_retries = MAX_RECLAIM_RETRIES;
2510	struct mem_cgroup *memcg;
2511	bool in_retry = false;
2512
2513	if (likely(!nr_pages))
2514		return;
2515
2516	memcg = get_mem_cgroup_from_mm(current->mm);
 
 
2517	current->memcg_nr_pages_over_high = 0;
2518
2519retry_reclaim:
2520	/*
2521	 * The allocating task should reclaim at least the batch size, but for
2522	 * subsequent retries we only want to do what's necessary to prevent oom
2523	 * or breaching resource isolation.
2524	 *
2525	 * This is distinct from memory.max or page allocator behaviour because
2526	 * memory.high is currently batched, whereas memory.max and the page
2527	 * allocator run every time an allocation is made.
2528	 */
2529	nr_reclaimed = reclaim_high(memcg,
2530				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531				    GFP_KERNEL);
2532
2533	/*
2534	 * memory.high is breached and reclaim is unable to keep up. Throttle
2535	 * allocators proactively to slow down excessive growth.
2536	 */
2537	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538					       mem_find_max_overage(memcg));
2539
2540	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541						swap_find_max_overage(memcg));
2542
2543	/*
2544	 * Clamp the max delay per usermode return so as to still keep the
2545	 * application moving forwards and also permit diagnostics, albeit
2546	 * extremely slowly.
2547	 */
2548	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549
2550	/*
2551	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552	 * that it's not even worth doing, in an attempt to be nice to those who
2553	 * go only a small amount over their memory.high value and maybe haven't
2554	 * been aggressively reclaimed enough yet.
2555	 */
2556	if (penalty_jiffies <= HZ / 100)
2557		goto out;
2558
2559	/*
2560	 * If reclaim is making forward progress but we're still over
2561	 * memory.high, we want to encourage that rather than doing allocator
2562	 * throttling.
2563	 */
2564	if (nr_reclaimed || nr_retries--) {
2565		in_retry = true;
2566		goto retry_reclaim;
2567	}
2568
2569	/*
2570	 * If we exit early, we're guaranteed to die (since
2571	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572	 * need to account for any ill-begotten jiffies to pay them off later.
2573	 */
2574	psi_memstall_enter(&pflags);
2575	schedule_timeout_killable(penalty_jiffies);
2576	psi_memstall_leave(&pflags);
2577
2578out:
2579	css_put(&memcg->css);
2580}
2581
2582static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583			unsigned int nr_pages)
2584{
2585	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586	int nr_retries = MAX_RECLAIM_RETRIES;
2587	struct mem_cgroup *mem_over_limit;
2588	struct page_counter *counter;
2589	enum oom_status oom_status;
2590	unsigned long nr_reclaimed;
2591	bool may_swap = true;
2592	bool drained = false;
2593	unsigned long pflags;
2594
 
 
2595retry:
2596	if (consume_stock(memcg, nr_pages))
2597		return 0;
2598
2599	if (!do_memsw_account() ||
2600	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602			goto done_restock;
2603		if (do_memsw_account())
2604			page_counter_uncharge(&memcg->memsw, batch);
2605		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606	} else {
2607		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608		may_swap = false;
2609	}
2610
2611	if (batch > nr_pages) {
2612		batch = nr_pages;
2613		goto retry;
2614	}
2615
2616	/*
2617	 * Memcg doesn't have a dedicated reserve for atomic
2618	 * allocations. But like the global atomic pool, we need to
2619	 * put the burden of reclaim on regular allocation requests
2620	 * and let these go through as privileged allocations.
2621	 */
2622	if (gfp_mask & __GFP_ATOMIC)
2623		goto force;
2624
2625	/*
2626	 * Unlike in global OOM situations, memcg is not in a physical
2627	 * memory shortage.  Allow dying and OOM-killed tasks to
2628	 * bypass the last charges so that they can exit quickly and
2629	 * free their memory.
2630	 */
2631	if (unlikely(should_force_charge()))
 
 
2632		goto force;
2633
2634	/*
2635	 * Prevent unbounded recursion when reclaim operations need to
2636	 * allocate memory. This might exceed the limits temporarily,
2637	 * but we prefer facilitating memory reclaim and getting back
2638	 * under the limit over triggering OOM kills in these cases.
2639	 */
2640	if (unlikely(current->flags & PF_MEMALLOC))
2641		goto force;
2642
2643	if (unlikely(task_in_memcg_oom(current)))
2644		goto nomem;
2645
2646	if (!gfpflags_allow_blocking(gfp_mask))
2647		goto nomem;
2648
2649	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2650
2651	psi_memstall_enter(&pflags);
2652	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653						    gfp_mask, may_swap);
2654	psi_memstall_leave(&pflags);
2655
2656	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657		goto retry;
2658
2659	if (!drained) {
2660		drain_all_stock(mem_over_limit);
2661		drained = true;
2662		goto retry;
2663	}
2664
2665	if (gfp_mask & __GFP_NORETRY)
2666		goto nomem;
2667	/*
2668	 * Even though the limit is exceeded at this point, reclaim
2669	 * may have been able to free some pages.  Retry the charge
2670	 * before killing the task.
2671	 *
2672	 * Only for regular pages, though: huge pages are rather
2673	 * unlikely to succeed so close to the limit, and we fall back
2674	 * to regular pages anyway in case of failure.
2675	 */
2676	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677		goto retry;
2678	/*
2679	 * At task move, charge accounts can be doubly counted. So, it's
2680	 * better to wait until the end of task_move if something is going on.
2681	 */
2682	if (mem_cgroup_wait_acct_move(mem_over_limit))
2683		goto retry;
2684
2685	if (nr_retries--)
2686		goto retry;
2687
2688	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689		goto nomem;
2690
2691	if (fatal_signal_pending(current))
2692		goto force;
2693
2694	/*
2695	 * keep retrying as long as the memcg oom killer is able to make
2696	 * a forward progress or bypass the charge if the oom killer
2697	 * couldn't make any progress.
2698	 */
2699	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700		       get_order(nr_pages * PAGE_SIZE));
2701	switch (oom_status) {
2702	case OOM_SUCCESS:
2703		nr_retries = MAX_RECLAIM_RETRIES;
2704		goto retry;
2705	case OOM_FAILED:
2706		goto force;
2707	default:
2708		goto nomem;
2709	}
2710nomem:
2711	if (!(gfp_mask & __GFP_NOFAIL))
2712		return -ENOMEM;
2713force:
2714	/*
2715	 * The allocation either can't fail or will lead to more memory
2716	 * being freed very soon.  Allow memory usage go over the limit
2717	 * temporarily by force charging it.
2718	 */
2719	page_counter_charge(&memcg->memory, nr_pages);
2720	if (do_memsw_account())
2721		page_counter_charge(&memcg->memsw, nr_pages);
 
2722
2723	return 0;
2724
2725done_restock:
 
2726	if (batch > nr_pages)
2727		refill_stock(memcg, batch - nr_pages);
2728
2729	/*
2730	 * If the hierarchy is above the normal consumption range, schedule
2731	 * reclaim on returning to userland.  We can perform reclaim here
2732	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2734	 * not recorded as it most likely matches current's and won't
2735	 * change in the meantime.  As high limit is checked again before
2736	 * reclaim, the cost of mismatch is negligible.
2737	 */
2738	do {
2739		bool mem_high, swap_high;
2740
2741		mem_high = page_counter_read(&memcg->memory) >
2742			READ_ONCE(memcg->memory.high);
2743		swap_high = page_counter_read(&memcg->swap) >
2744			READ_ONCE(memcg->swap.high);
2745
2746		/* Don't bother a random interrupted task */
2747		if (in_interrupt()) {
2748			if (mem_high) {
2749				schedule_work(&memcg->high_work);
2750				break;
2751			}
2752			continue;
2753		}
2754
2755		if (mem_high || swap_high) {
2756			/*
2757			 * The allocating tasks in this cgroup will need to do
2758			 * reclaim or be throttled to prevent further growth
2759			 * of the memory or swap footprints.
2760			 *
2761			 * Target some best-effort fairness between the tasks,
2762			 * and distribute reclaim work and delay penalties
2763			 * based on how much each task is actually allocating.
2764			 */
2765			current->memcg_nr_pages_over_high += batch;
2766			set_notify_resume(current);
2767			break;
2768		}
2769	} while ((memcg = parent_mem_cgroup(memcg)));
2770
2771	return 0;
2772}
2773
2774static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775			     unsigned int nr_pages)
2776{
2777	if (mem_cgroup_is_root(memcg))
2778		return 0;
2779
2780	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2781}
2782
2783#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2785{
2786	if (mem_cgroup_is_root(memcg))
2787		return;
2788
2789	page_counter_uncharge(&memcg->memory, nr_pages);
2790	if (do_memsw_account())
2791		page_counter_uncharge(&memcg->memsw, nr_pages);
2792}
2793#endif
2794
2795static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2796{
2797	VM_BUG_ON_PAGE(page_memcg(page), page);
2798	/*
2799	 * Any of the following ensures page's memcg stability:
2800	 *
2801	 * - the page lock
2802	 * - LRU isolation
2803	 * - lock_page_memcg()
2804	 * - exclusive reference
2805	 */
2806	page->memcg_data = (unsigned long)memcg;
2807}
2808
2809static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810{
2811	struct mem_cgroup *memcg;
2812
2813	rcu_read_lock();
2814retry:
2815	memcg = obj_cgroup_memcg(objcg);
2816	if (unlikely(!css_tryget(&memcg->css)))
2817		goto retry;
2818	rcu_read_unlock();
2819
2820	return memcg;
 
 
 
 
 
2821}
2822
2823#ifdef CONFIG_MEMCG_KMEM
2824/*
2825 * The allocated objcg pointers array is not accounted directly.
2826 * Moreover, it should not come from DMA buffer and is not readily
2827 * reclaimable. So those GFP bits should be masked off.
2828 */
2829#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830
2831int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832				 gfp_t gfp, bool new_page)
2833{
2834	unsigned int objects = objs_per_slab_page(s, page);
2835	unsigned long memcg_data;
2836	void *vec;
2837
2838	gfp &= ~OBJCGS_CLEAR_MASK;
2839	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840			   page_to_nid(page));
2841	if (!vec)
2842		return -ENOMEM;
2843
2844	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845	if (new_page) {
2846		/*
2847		 * If the slab page is brand new and nobody can yet access
2848		 * it's memcg_data, no synchronization is required and
2849		 * memcg_data can be simply assigned.
2850		 */
2851		page->memcg_data = memcg_data;
2852	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853		/*
2854		 * If the slab page is already in use, somebody can allocate
2855		 * and assign obj_cgroups in parallel. In this case the existing
2856		 * objcg vector should be reused.
2857		 */
2858		kfree(vec);
2859		return 0;
2860	}
2861
2862	kmemleak_not_leak(vec);
2863	return 0;
2864}
2865
2866/*
2867 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868 *
2869 * A passed kernel object can be a slab object or a generic kernel page, so
2870 * different mechanisms for getting the memory cgroup pointer should be used.
2871 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872 * can not know for sure how the kernel object is implemented.
2873 * mem_cgroup_from_obj() can be safely used in such cases.
2874 *
2875 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876 * cgroup_mutex, etc.
2877 */
2878struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879{
2880	struct page *page;
2881
2882	if (mem_cgroup_disabled())
2883		return NULL;
2884
2885	page = virt_to_head_page(p);
2886
2887	/*
2888	 * Slab objects are accounted individually, not per-page.
2889	 * Memcg membership data for each individual object is saved in
2890	 * the page->obj_cgroups.
2891	 */
2892	if (page_objcgs_check(page)) {
2893		struct obj_cgroup *objcg;
2894		unsigned int off;
2895
2896		off = obj_to_index(page->slab_cache, page, p);
2897		objcg = page_objcgs(page)[off];
2898		if (objcg)
2899			return obj_cgroup_memcg(objcg);
2900
2901		return NULL;
2902	}
2903
2904	/*
2905	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906	 * check above could fail because the object cgroups vector wasn't set
2907	 * at that moment, but it can be set concurrently.
2908	 * page_memcg_check(page) will guarantee that a proper memory
2909	 * cgroup pointer or NULL will be returned.
 
 
 
 
 
 
 
2910	 */
2911	return page_memcg_check(page);
2912}
2913
2914__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915{
2916	struct obj_cgroup *objcg = NULL;
2917	struct mem_cgroup *memcg;
2918
2919	if (memcg_kmem_bypass())
2920		return NULL;
2921
2922	rcu_read_lock();
2923	if (unlikely(active_memcg()))
2924		memcg = active_memcg();
2925	else
2926		memcg = mem_cgroup_from_task(current);
2927
2928	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929		objcg = rcu_dereference(memcg->objcg);
2930		if (objcg && obj_cgroup_tryget(objcg))
2931			break;
2932		objcg = NULL;
2933	}
2934	rcu_read_unlock();
2935
2936	return objcg;
 
2937}
2938
 
2939static int memcg_alloc_cache_id(void)
2940{
2941	int id, size;
2942	int err;
2943
2944	id = ida_simple_get(&memcg_cache_ida,
2945			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946	if (id < 0)
2947		return id;
2948
2949	if (id < memcg_nr_cache_ids)
2950		return id;
2951
2952	/*
2953	 * There's no space for the new id in memcg_caches arrays,
2954	 * so we have to grow them.
2955	 */
2956	down_write(&memcg_cache_ids_sem);
2957
2958	size = 2 * (id + 1);
2959	if (size < MEMCG_CACHES_MIN_SIZE)
2960		size = MEMCG_CACHES_MIN_SIZE;
2961	else if (size > MEMCG_CACHES_MAX_SIZE)
2962		size = MEMCG_CACHES_MAX_SIZE;
2963
2964	err = memcg_update_all_list_lrus(size);
 
 
2965	if (!err)
2966		memcg_nr_cache_ids = size;
2967
2968	up_write(&memcg_cache_ids_sem);
2969
2970	if (err) {
2971		ida_simple_remove(&memcg_cache_ida, id);
2972		return err;
2973	}
2974	return id;
2975}
2976
2977static void memcg_free_cache_id(int id)
2978{
2979	ida_simple_remove(&memcg_cache_ida, id);
2980}
2981
2982/*
2983 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984 * @objcg: object cgroup to uncharge
2985 * @nr_pages: number of pages to uncharge
2986 */
2987static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988				      unsigned int nr_pages)
2989{
2990	struct mem_cgroup *memcg;
 
 
 
2991
2992	memcg = get_mem_cgroup_from_objcg(objcg);
 
 
 
 
 
2993
2994	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995		page_counter_uncharge(&memcg->kmem, nr_pages);
2996	refill_stock(memcg, nr_pages);
2997
2998	css_put(&memcg->css);
 
2999}
3000
3001/*
3002 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003 * @objcg: object cgroup to charge
3004 * @gfp: reclaim mode
3005 * @nr_pages: number of pages to charge
3006 *
3007 * Returns 0 on success, an error code on failure.
3008 */
3009static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010				   unsigned int nr_pages)
3011{
3012	struct page_counter *counter;
3013	struct mem_cgroup *memcg;
3014	int ret;
3015
3016	memcg = get_mem_cgroup_from_objcg(objcg);
 
 
3017
3018	ret = try_charge_memcg(memcg, gfp, nr_pages);
3019	if (ret)
3020		goto out;
3021
3022	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
 
3024
3025		/*
3026		 * Enforce __GFP_NOFAIL allocation because callers are not
3027		 * prepared to see failures and likely do not have any failure
3028		 * handling code.
3029		 */
3030		if (gfp & __GFP_NOFAIL) {
3031			page_counter_charge(&memcg->kmem, nr_pages);
3032			goto out;
3033		}
3034		cancel_charge(memcg, nr_pages);
3035		ret = -ENOMEM;
3036	}
3037out:
3038	css_put(&memcg->css);
3039
3040	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3041}
3042
3043/**
3044 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045 * @page: page to charge
3046 * @gfp: reclaim mode
3047 * @order: allocation order
3048 *
3049 * Returns 0 on success, an error code on failure.
3050 */
3051int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052{
3053	struct obj_cgroup *objcg;
3054	int ret = 0;
3055
3056	objcg = get_obj_cgroup_from_current();
3057	if (objcg) {
3058		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3059		if (!ret) {
3060			page->memcg_data = (unsigned long)objcg |
3061				MEMCG_DATA_KMEM;
3062			return 0;
3063		}
3064		obj_cgroup_put(objcg);
3065	}
3066	return ret;
3067}
3068
3069/**
3070 * __memcg_kmem_uncharge_page: uncharge a kmem page
3071 * @page: page to uncharge
3072 * @order: allocation order
 
 
 
 
 
 
 
 
 
 
 
3073 */
3074void __memcg_kmem_uncharge_page(struct page *page, int order)
3075{
3076	struct obj_cgroup *objcg;
3077	unsigned int nr_pages = 1 << order;
 
 
 
3078
3079	if (!PageMemcgKmem(page))
3080		return;
3081
3082	objcg = __page_objcg(page);
3083	obj_cgroup_uncharge_pages(objcg, nr_pages);
3084	page->memcg_data = 0;
3085	obj_cgroup_put(objcg);
3086}
3087
3088void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089		     enum node_stat_item idx, int nr)
3090{
3091	unsigned long flags;
3092	struct obj_stock *stock = get_obj_stock(&flags);
3093	int *bytes;
3094
3095	/*
3096	 * Save vmstat data in stock and skip vmstat array update unless
3097	 * accumulating over a page of vmstat data or when pgdat or idx
3098	 * changes.
3099	 */
3100	if (stock->cached_objcg != objcg) {
3101		drain_obj_stock(stock);
3102		obj_cgroup_get(objcg);
3103		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105		stock->cached_objcg = objcg;
3106		stock->cached_pgdat = pgdat;
3107	} else if (stock->cached_pgdat != pgdat) {
3108		/* Flush the existing cached vmstat data */
3109		struct pglist_data *oldpg = stock->cached_pgdat;
3110
3111		if (stock->nr_slab_reclaimable_b) {
3112			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3113					  stock->nr_slab_reclaimable_b);
3114			stock->nr_slab_reclaimable_b = 0;
3115		}
3116		if (stock->nr_slab_unreclaimable_b) {
3117			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3118					  stock->nr_slab_unreclaimable_b);
3119			stock->nr_slab_unreclaimable_b = 0;
3120		}
3121		stock->cached_pgdat = pgdat;
3122	}
3123
3124	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3125					       : &stock->nr_slab_unreclaimable_b;
3126	/*
3127	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3128	 * cached locally at least once before pushing it out.
 
 
 
 
 
 
 
 
3129	 */
3130	if (!*bytes) {
3131		*bytes = nr;
3132		nr = 0;
3133	} else {
3134		*bytes += nr;
3135		if (abs(*bytes) > PAGE_SIZE) {
3136			nr = *bytes;
3137			*bytes = 0;
3138		} else {
3139			nr = 0;
3140		}
3141	}
3142	if (nr)
3143		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3144
3145	put_obj_stock(flags);
3146}
3147
3148static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
 
 
 
 
3149{
3150	unsigned long flags;
3151	struct obj_stock *stock = get_obj_stock(&flags);
3152	bool ret = false;
3153
3154	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3155		stock->nr_bytes -= nr_bytes;
3156		ret = true;
3157	}
3158
3159	put_obj_stock(flags);
3160
3161	return ret;
3162}
3163
3164static void drain_obj_stock(struct obj_stock *stock)
 
 
 
 
 
 
 
 
 
 
3165{
3166	struct obj_cgroup *old = stock->cached_objcg;
 
 
3167
3168	if (!old)
3169		return;
 
3170
3171	if (stock->nr_bytes) {
3172		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3173		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3174
3175		if (nr_pages)
3176			obj_cgroup_uncharge_pages(old, nr_pages);
3177
3178		/*
3179		 * The leftover is flushed to the centralized per-memcg value.
3180		 * On the next attempt to refill obj stock it will be moved
3181		 * to a per-cpu stock (probably, on an other CPU), see
3182		 * refill_obj_stock().
3183		 *
3184		 * How often it's flushed is a trade-off between the memory
3185		 * limit enforcement accuracy and potential CPU contention,
3186		 * so it might be changed in the future.
3187		 */
3188		atomic_add(nr_bytes, &old->nr_charged_bytes);
3189		stock->nr_bytes = 0;
3190	}
3191
3192	/*
3193	 * Flush the vmstat data in current stock
3194	 */
3195	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3196		if (stock->nr_slab_reclaimable_b) {
3197			mod_objcg_mlstate(old, stock->cached_pgdat,
3198					  NR_SLAB_RECLAIMABLE_B,
3199					  stock->nr_slab_reclaimable_b);
3200			stock->nr_slab_reclaimable_b = 0;
3201		}
3202		if (stock->nr_slab_unreclaimable_b) {
3203			mod_objcg_mlstate(old, stock->cached_pgdat,
3204					  NR_SLAB_UNRECLAIMABLE_B,
3205					  stock->nr_slab_unreclaimable_b);
3206			stock->nr_slab_unreclaimable_b = 0;
3207		}
3208		stock->cached_pgdat = NULL;
3209	}
3210
3211	obj_cgroup_put(old);
3212	stock->cached_objcg = NULL;
3213}
3214
3215static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3216				     struct mem_cgroup *root_memcg)
 
 
 
 
 
 
 
3217{
3218	struct mem_cgroup *memcg;
 
3219
3220	if (in_task() && stock->task_obj.cached_objcg) {
3221		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3222		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3223			return true;
 
 
 
 
3224	}
3225	if (stock->irq_obj.cached_objcg) {
3226		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3227		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3228			return true;
3229	}
3230
3231	return false;
3232}
3233
3234static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3235			     bool allow_uncharge)
 
 
 
3236{
3237	unsigned long flags;
3238	struct obj_stock *stock = get_obj_stock(&flags);
3239	unsigned int nr_pages = 0;
3240
3241	if (stock->cached_objcg != objcg) { /* reset if necessary */
3242		drain_obj_stock(stock);
3243		obj_cgroup_get(objcg);
3244		stock->cached_objcg = objcg;
3245		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3246				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3247		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3248	}
3249	stock->nr_bytes += nr_bytes;
3250
3251	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3252		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3253		stock->nr_bytes &= (PAGE_SIZE - 1);
3254	}
3255
3256	put_obj_stock(flags);
 
3257
3258	if (nr_pages)
3259		obj_cgroup_uncharge_pages(objcg, nr_pages);
3260}
3261
3262int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3263{
3264	unsigned int nr_pages, nr_bytes;
3265	int ret;
3266
3267	if (consume_obj_stock(objcg, size))
3268		return 0;
3269
3270	/*
3271	 * In theory, objcg->nr_charged_bytes can have enough
3272	 * pre-charged bytes to satisfy the allocation. However,
3273	 * flushing objcg->nr_charged_bytes requires two atomic
3274	 * operations, and objcg->nr_charged_bytes can't be big.
3275	 * The shared objcg->nr_charged_bytes can also become a
3276	 * performance bottleneck if all tasks of the same memcg are
3277	 * trying to update it. So it's better to ignore it and try
3278	 * grab some new pages. The stock's nr_bytes will be flushed to
3279	 * objcg->nr_charged_bytes later on when objcg changes.
3280	 *
3281	 * The stock's nr_bytes may contain enough pre-charged bytes
3282	 * to allow one less page from being charged, but we can't rely
3283	 * on the pre-charged bytes not being changed outside of
3284	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3285	 * pre-charged bytes as well when charging pages. To avoid a
3286	 * page uncharge right after a page charge, we set the
3287	 * allow_uncharge flag to false when calling refill_obj_stock()
3288	 * to temporarily allow the pre-charged bytes to exceed the page
3289	 * size limit. The maximum reachable value of the pre-charged
3290	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3291	 * race.
3292	 */
3293	nr_pages = size >> PAGE_SHIFT;
3294	nr_bytes = size & (PAGE_SIZE - 1);
3295
3296	if (nr_bytes)
3297		nr_pages += 1;
3298
3299	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3300	if (!ret && nr_bytes)
3301		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3302
3303	return ret;
3304}
 
3305
3306void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3307{
3308	refill_obj_stock(objcg, size, true);
3309}
 
3310
3311#endif /* CONFIG_MEMCG_KMEM */
3312
3313/*
3314 * Because page_memcg(head) is not set on tails, set it now.
 
3315 */
3316void split_page_memcg(struct page *head, unsigned int nr)
3317{
3318	struct mem_cgroup *memcg = page_memcg(head);
3319	int i;
3320
3321	if (mem_cgroup_disabled() || !memcg)
3322		return;
3323
3324	for (i = 1; i < nr; i++)
3325		head[i].memcg_data = head->memcg_data;
3326
3327	if (PageMemcgKmem(head))
3328		obj_cgroup_get_many(__page_objcg(head), nr - 1);
3329	else
3330		css_get_many(&memcg->css, nr - 1);
3331}
 
3332
3333#ifdef CONFIG_MEMCG_SWAP
3334/**
3335 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3336 * @entry: swap entry to be moved
3337 * @from:  mem_cgroup which the entry is moved from
3338 * @to:  mem_cgroup which the entry is moved to
3339 *
3340 * It succeeds only when the swap_cgroup's record for this entry is the same
3341 * as the mem_cgroup's id of @from.
3342 *
3343 * Returns 0 on success, -EINVAL on failure.
3344 *
3345 * The caller must have charged to @to, IOW, called page_counter_charge() about
3346 * both res and memsw, and called css_get().
3347 */
3348static int mem_cgroup_move_swap_account(swp_entry_t entry,
3349				struct mem_cgroup *from, struct mem_cgroup *to)
3350{
3351	unsigned short old_id, new_id;
3352
3353	old_id = mem_cgroup_id(from);
3354	new_id = mem_cgroup_id(to);
3355
3356	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3357		mod_memcg_state(from, MEMCG_SWAP, -1);
3358		mod_memcg_state(to, MEMCG_SWAP, 1);
3359		return 0;
3360	}
3361	return -EINVAL;
3362}
3363#else
3364static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3365				struct mem_cgroup *from, struct mem_cgroup *to)
3366{
3367	return -EINVAL;
3368}
3369#endif
3370
3371static DEFINE_MUTEX(memcg_max_mutex);
3372
3373static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3374				 unsigned long max, bool memsw)
3375{
3376	bool enlarge = false;
3377	bool drained = false;
3378	int ret;
3379	bool limits_invariant;
3380	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3381
3382	do {
3383		if (signal_pending(current)) {
3384			ret = -EINTR;
3385			break;
3386		}
3387
3388		mutex_lock(&memcg_max_mutex);
3389		/*
3390		 * Make sure that the new limit (memsw or memory limit) doesn't
3391		 * break our basic invariant rule memory.max <= memsw.max.
3392		 */
3393		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3394					   max <= memcg->memsw.max;
3395		if (!limits_invariant) {
3396			mutex_unlock(&memcg_max_mutex);
3397			ret = -EINVAL;
3398			break;
3399		}
3400		if (max > counter->max)
3401			enlarge = true;
3402		ret = page_counter_set_max(counter, max);
3403		mutex_unlock(&memcg_max_mutex);
3404
3405		if (!ret)
3406			break;
3407
3408		if (!drained) {
3409			drain_all_stock(memcg);
3410			drained = true;
3411			continue;
3412		}
3413
3414		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3415					GFP_KERNEL, !memsw)) {
3416			ret = -EBUSY;
3417			break;
3418		}
3419	} while (true);
3420
3421	if (!ret && enlarge)
3422		memcg_oom_recover(memcg);
3423
3424	return ret;
3425}
3426
3427unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3428					    gfp_t gfp_mask,
3429					    unsigned long *total_scanned)
3430{
3431	unsigned long nr_reclaimed = 0;
3432	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3433	unsigned long reclaimed;
3434	int loop = 0;
3435	struct mem_cgroup_tree_per_node *mctz;
3436	unsigned long excess;
3437	unsigned long nr_scanned;
3438
3439	if (order > 0)
3440		return 0;
3441
3442	mctz = soft_limit_tree_node(pgdat->node_id);
3443
3444	/*
3445	 * Do not even bother to check the largest node if the root
3446	 * is empty. Do it lockless to prevent lock bouncing. Races
3447	 * are acceptable as soft limit is best effort anyway.
3448	 */
3449	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3450		return 0;
3451
3452	/*
3453	 * This loop can run a while, specially if mem_cgroup's continuously
3454	 * keep exceeding their soft limit and putting the system under
3455	 * pressure
3456	 */
3457	do {
3458		if (next_mz)
3459			mz = next_mz;
3460		else
3461			mz = mem_cgroup_largest_soft_limit_node(mctz);
3462		if (!mz)
3463			break;
3464
3465		nr_scanned = 0;
3466		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3467						    gfp_mask, &nr_scanned);
3468		nr_reclaimed += reclaimed;
3469		*total_scanned += nr_scanned;
3470		spin_lock_irq(&mctz->lock);
3471		__mem_cgroup_remove_exceeded(mz, mctz);
3472
3473		/*
3474		 * If we failed to reclaim anything from this memory cgroup
3475		 * it is time to move on to the next cgroup
3476		 */
3477		next_mz = NULL;
3478		if (!reclaimed)
3479			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3480
3481		excess = soft_limit_excess(mz->memcg);
3482		/*
3483		 * One school of thought says that we should not add
3484		 * back the node to the tree if reclaim returns 0.
3485		 * But our reclaim could return 0, simply because due
3486		 * to priority we are exposing a smaller subset of
3487		 * memory to reclaim from. Consider this as a longer
3488		 * term TODO.
3489		 */
3490		/* If excess == 0, no tree ops */
3491		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3492		spin_unlock_irq(&mctz->lock);
3493		css_put(&mz->memcg->css);
3494		loop++;
3495		/*
3496		 * Could not reclaim anything and there are no more
3497		 * mem cgroups to try or we seem to be looping without
3498		 * reclaiming anything.
3499		 */
3500		if (!nr_reclaimed &&
3501			(next_mz == NULL ||
3502			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3503			break;
3504	} while (!nr_reclaimed);
3505	if (next_mz)
3506		css_put(&next_mz->memcg->css);
3507	return nr_reclaimed;
3508}
3509
3510/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3511 * Reclaims as many pages from the given memcg as possible.
3512 *
3513 * Caller is responsible for holding css reference for memcg.
3514 */
3515static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3516{
3517	int nr_retries = MAX_RECLAIM_RETRIES;
3518
3519	/* we call try-to-free pages for make this cgroup empty */
3520	lru_add_drain_all();
3521
3522	drain_all_stock(memcg);
3523
3524	/* try to free all pages in this cgroup */
3525	while (nr_retries && page_counter_read(&memcg->memory)) {
3526		int progress;
3527
3528		if (signal_pending(current))
3529			return -EINTR;
3530
3531		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3532							GFP_KERNEL, true);
3533		if (!progress) {
3534			nr_retries--;
3535			/* maybe some writeback is necessary */
3536			congestion_wait(BLK_RW_ASYNC, HZ/10);
3537		}
3538
3539	}
3540
3541	return 0;
3542}
3543
3544static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3545					    char *buf, size_t nbytes,
3546					    loff_t off)
3547{
3548	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3549
3550	if (mem_cgroup_is_root(memcg))
3551		return -EINVAL;
3552	return mem_cgroup_force_empty(memcg) ?: nbytes;
3553}
3554
3555static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3556				     struct cftype *cft)
3557{
3558	return 1;
3559}
3560
3561static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3562				      struct cftype *cft, u64 val)
3563{
3564	if (val == 1)
 
 
 
 
3565		return 0;
3566
3567	pr_warn_once("Non-hierarchical mode is deprecated. "
3568		     "Please report your usecase to linux-mm@kvack.org if you "
3569		     "depend on this functionality.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3570
3571	return -EINVAL;
 
 
 
 
 
3572}
3573
3574static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3575{
3576	unsigned long val;
3577
3578	if (mem_cgroup_is_root(memcg)) {
3579		/* mem_cgroup_threshold() calls here from irqsafe context */
3580		cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3581		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3582			memcg_page_state(memcg, NR_ANON_MAPPED);
3583		if (swap)
3584			val += memcg_page_state(memcg, MEMCG_SWAP);
 
 
3585	} else {
3586		if (!swap)
3587			val = page_counter_read(&memcg->memory);
3588		else
3589			val = page_counter_read(&memcg->memsw);
3590	}
3591	return val;
3592}
3593
3594enum {
3595	RES_USAGE,
3596	RES_LIMIT,
3597	RES_MAX_USAGE,
3598	RES_FAILCNT,
3599	RES_SOFT_LIMIT,
3600};
3601
3602static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3603			       struct cftype *cft)
3604{
3605	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3606	struct page_counter *counter;
3607
3608	switch (MEMFILE_TYPE(cft->private)) {
3609	case _MEM:
3610		counter = &memcg->memory;
3611		break;
3612	case _MEMSWAP:
3613		counter = &memcg->memsw;
3614		break;
3615	case _KMEM:
3616		counter = &memcg->kmem;
3617		break;
3618	case _TCP:
3619		counter = &memcg->tcpmem;
3620		break;
3621	default:
3622		BUG();
3623	}
3624
3625	switch (MEMFILE_ATTR(cft->private)) {
3626	case RES_USAGE:
3627		if (counter == &memcg->memory)
3628			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3629		if (counter == &memcg->memsw)
3630			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3631		return (u64)page_counter_read(counter) * PAGE_SIZE;
3632	case RES_LIMIT:
3633		return (u64)counter->max * PAGE_SIZE;
3634	case RES_MAX_USAGE:
3635		return (u64)counter->watermark * PAGE_SIZE;
3636	case RES_FAILCNT:
3637		return counter->failcnt;
3638	case RES_SOFT_LIMIT:
3639		return (u64)memcg->soft_limit * PAGE_SIZE;
3640	default:
3641		BUG();
3642	}
3643}
3644
3645#ifdef CONFIG_MEMCG_KMEM
3646static int memcg_online_kmem(struct mem_cgroup *memcg)
3647{
3648	struct obj_cgroup *objcg;
3649	int memcg_id;
3650
3651	if (cgroup_memory_nokmem)
3652		return 0;
3653
3654	BUG_ON(memcg->kmemcg_id >= 0);
3655	BUG_ON(memcg->kmem_state);
3656
3657	memcg_id = memcg_alloc_cache_id();
3658	if (memcg_id < 0)
3659		return memcg_id;
3660
3661	objcg = obj_cgroup_alloc();
3662	if (!objcg) {
3663		memcg_free_cache_id(memcg_id);
3664		return -ENOMEM;
3665	}
3666	objcg->memcg = memcg;
3667	rcu_assign_pointer(memcg->objcg, objcg);
3668
3669	static_branch_enable(&memcg_kmem_enabled_key);
3670
3671	memcg->kmemcg_id = memcg_id;
3672	memcg->kmem_state = KMEM_ONLINE;
 
3673
3674	return 0;
3675}
3676
3677static void memcg_offline_kmem(struct mem_cgroup *memcg)
3678{
3679	struct cgroup_subsys_state *css;
3680	struct mem_cgroup *parent, *child;
3681	int kmemcg_id;
3682
3683	if (memcg->kmem_state != KMEM_ONLINE)
3684		return;
 
 
 
 
 
 
 
 
 
3685
3686	memcg->kmem_state = KMEM_ALLOCATED;
 
3687
3688	parent = parent_mem_cgroup(memcg);
3689	if (!parent)
3690		parent = root_mem_cgroup;
3691
3692	memcg_reparent_objcgs(memcg, parent);
3693
3694	kmemcg_id = memcg->kmemcg_id;
3695	BUG_ON(kmemcg_id < 0);
3696
3697	/*
3698	 * Change kmemcg_id of this cgroup and all its descendants to the
3699	 * parent's id, and then move all entries from this cgroup's list_lrus
3700	 * to ones of the parent. After we have finished, all list_lrus
3701	 * corresponding to this cgroup are guaranteed to remain empty. The
3702	 * ordering is imposed by list_lru_node->lock taken by
3703	 * memcg_drain_all_list_lrus().
3704	 */
3705	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3706	css_for_each_descendant_pre(css, &memcg->css) {
3707		child = mem_cgroup_from_css(css);
3708		BUG_ON(child->kmemcg_id != kmemcg_id);
3709		child->kmemcg_id = parent->kmemcg_id;
 
 
3710	}
3711	rcu_read_unlock();
3712
3713	memcg_drain_all_list_lrus(kmemcg_id, parent);
3714
3715	memcg_free_cache_id(kmemcg_id);
3716}
3717
3718static void memcg_free_kmem(struct mem_cgroup *memcg)
3719{
3720	/* css_alloc() failed, offlining didn't happen */
3721	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3722		memcg_offline_kmem(memcg);
 
 
 
 
 
 
3723}
3724#else
3725static int memcg_online_kmem(struct mem_cgroup *memcg)
3726{
3727	return 0;
3728}
3729static void memcg_offline_kmem(struct mem_cgroup *memcg)
3730{
3731}
3732static void memcg_free_kmem(struct mem_cgroup *memcg)
3733{
3734}
3735#endif /* CONFIG_MEMCG_KMEM */
3736
3737static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3738				 unsigned long max)
3739{
3740	int ret;
3741
3742	mutex_lock(&memcg_max_mutex);
3743	ret = page_counter_set_max(&memcg->kmem, max);
3744	mutex_unlock(&memcg_max_mutex);
3745	return ret;
3746}
3747
3748static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3749{
3750	int ret;
3751
3752	mutex_lock(&memcg_max_mutex);
3753
3754	ret = page_counter_set_max(&memcg->tcpmem, max);
3755	if (ret)
3756		goto out;
3757
3758	if (!memcg->tcpmem_active) {
3759		/*
3760		 * The active flag needs to be written after the static_key
3761		 * update. This is what guarantees that the socket activation
3762		 * function is the last one to run. See mem_cgroup_sk_alloc()
3763		 * for details, and note that we don't mark any socket as
3764		 * belonging to this memcg until that flag is up.
3765		 *
3766		 * We need to do this, because static_keys will span multiple
3767		 * sites, but we can't control their order. If we mark a socket
3768		 * as accounted, but the accounting functions are not patched in
3769		 * yet, we'll lose accounting.
3770		 *
3771		 * We never race with the readers in mem_cgroup_sk_alloc(),
3772		 * because when this value change, the code to process it is not
3773		 * patched in yet.
3774		 */
3775		static_branch_inc(&memcg_sockets_enabled_key);
3776		memcg->tcpmem_active = true;
3777	}
3778out:
3779	mutex_unlock(&memcg_max_mutex);
3780	return ret;
3781}
3782
3783/*
3784 * The user of this function is...
3785 * RES_LIMIT.
3786 */
3787static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3788				char *buf, size_t nbytes, loff_t off)
3789{
3790	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3791	unsigned long nr_pages;
3792	int ret;
3793
3794	buf = strstrip(buf);
3795	ret = page_counter_memparse(buf, "-1", &nr_pages);
3796	if (ret)
3797		return ret;
3798
3799	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3800	case RES_LIMIT:
3801		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3802			ret = -EINVAL;
3803			break;
3804		}
3805		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3806		case _MEM:
3807			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3808			break;
3809		case _MEMSWAP:
3810			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3811			break;
3812		case _KMEM:
3813			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3814				     "Please report your usecase to linux-mm@kvack.org if you "
3815				     "depend on this functionality.\n");
3816			ret = memcg_update_kmem_max(memcg, nr_pages);
3817			break;
3818		case _TCP:
3819			ret = memcg_update_tcp_max(memcg, nr_pages);
3820			break;
3821		}
3822		break;
3823	case RES_SOFT_LIMIT:
3824		memcg->soft_limit = nr_pages;
3825		ret = 0;
3826		break;
3827	}
3828	return ret ?: nbytes;
3829}
3830
3831static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3832				size_t nbytes, loff_t off)
3833{
3834	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3835	struct page_counter *counter;
3836
3837	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3838	case _MEM:
3839		counter = &memcg->memory;
3840		break;
3841	case _MEMSWAP:
3842		counter = &memcg->memsw;
3843		break;
3844	case _KMEM:
3845		counter = &memcg->kmem;
3846		break;
3847	case _TCP:
3848		counter = &memcg->tcpmem;
3849		break;
3850	default:
3851		BUG();
3852	}
3853
3854	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3855	case RES_MAX_USAGE:
3856		page_counter_reset_watermark(counter);
3857		break;
3858	case RES_FAILCNT:
3859		counter->failcnt = 0;
3860		break;
3861	default:
3862		BUG();
3863	}
3864
3865	return nbytes;
3866}
3867
3868static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3869					struct cftype *cft)
3870{
3871	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3872}
3873
3874#ifdef CONFIG_MMU
3875static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3876					struct cftype *cft, u64 val)
3877{
3878	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880	if (val & ~MOVE_MASK)
3881		return -EINVAL;
3882
3883	/*
3884	 * No kind of locking is needed in here, because ->can_attach() will
3885	 * check this value once in the beginning of the process, and then carry
3886	 * on with stale data. This means that changes to this value will only
3887	 * affect task migrations starting after the change.
3888	 */
3889	memcg->move_charge_at_immigrate = val;
3890	return 0;
3891}
3892#else
3893static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3894					struct cftype *cft, u64 val)
3895{
3896	return -ENOSYS;
3897}
3898#endif
3899
3900#ifdef CONFIG_NUMA
3901
3902#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3903#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3904#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3905
3906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3907				int nid, unsigned int lru_mask, bool tree)
3908{
3909	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3910	unsigned long nr = 0;
3911	enum lru_list lru;
3912
3913	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3914
3915	for_each_lru(lru) {
3916		if (!(BIT(lru) & lru_mask))
3917			continue;
3918		if (tree)
3919			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3920		else
3921			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3922	}
3923	return nr;
3924}
3925
3926static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3927					     unsigned int lru_mask,
3928					     bool tree)
3929{
3930	unsigned long nr = 0;
3931	enum lru_list lru;
3932
3933	for_each_lru(lru) {
3934		if (!(BIT(lru) & lru_mask))
3935			continue;
3936		if (tree)
3937			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3938		else
3939			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3940	}
3941	return nr;
3942}
3943
3944static int memcg_numa_stat_show(struct seq_file *m, void *v)
3945{
3946	struct numa_stat {
3947		const char *name;
3948		unsigned int lru_mask;
3949	};
3950
3951	static const struct numa_stat stats[] = {
3952		{ "total", LRU_ALL },
3953		{ "file", LRU_ALL_FILE },
3954		{ "anon", LRU_ALL_ANON },
3955		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3956	};
3957	const struct numa_stat *stat;
3958	int nid;
3959	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3960
3961	cgroup_rstat_flush(memcg->css.cgroup);
3962
3963	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3964		seq_printf(m, "%s=%lu", stat->name,
3965			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3966						   false));
3967		for_each_node_state(nid, N_MEMORY)
3968			seq_printf(m, " N%d=%lu", nid,
3969				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3970							stat->lru_mask, false));
3971		seq_putc(m, '\n');
3972	}
3973
3974	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
 
3975
3976		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3977			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3978						   true));
3979		for_each_node_state(nid, N_MEMORY)
3980			seq_printf(m, " N%d=%lu", nid,
3981				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3982							stat->lru_mask, true));
 
 
 
 
3983		seq_putc(m, '\n');
3984	}
3985
3986	return 0;
3987}
3988#endif /* CONFIG_NUMA */
3989
3990static const unsigned int memcg1_stats[] = {
3991	NR_FILE_PAGES,
3992	NR_ANON_MAPPED,
3993#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3994	NR_ANON_THPS,
3995#endif
3996	NR_SHMEM,
3997	NR_FILE_MAPPED,
3998	NR_FILE_DIRTY,
3999	NR_WRITEBACK,
4000	MEMCG_SWAP,
4001};
4002
4003static const char *const memcg1_stat_names[] = {
4004	"cache",
4005	"rss",
4006#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4007	"rss_huge",
4008#endif
4009	"shmem",
4010	"mapped_file",
4011	"dirty",
4012	"writeback",
4013	"swap",
4014};
4015
4016/* Universal VM events cgroup1 shows, original sort order */
4017static const unsigned int memcg1_events[] = {
4018	PGPGIN,
4019	PGPGOUT,
4020	PGFAULT,
4021	PGMAJFAULT,
4022};
4023
 
 
 
 
 
 
 
4024static int memcg_stat_show(struct seq_file *m, void *v)
4025{
4026	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4027	unsigned long memory, memsw;
4028	struct mem_cgroup *mi;
4029	unsigned int i;
4030
4031	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4032
4033	cgroup_rstat_flush(memcg->css.cgroup);
4034
4035	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4036		unsigned long nr;
4037
4038		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4039			continue;
4040		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4041		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
 
4042	}
4043
4044	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4045		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4046			   memcg_events_local(memcg, memcg1_events[i]));
4047
4048	for (i = 0; i < NR_LRU_LISTS; i++)
4049		seq_printf(m, "%s %lu\n", lru_list_name(i),
4050			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4051			   PAGE_SIZE);
4052
4053	/* Hierarchical information */
4054	memory = memsw = PAGE_COUNTER_MAX;
4055	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4056		memory = min(memory, READ_ONCE(mi->memory.max));
4057		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4058	}
4059	seq_printf(m, "hierarchical_memory_limit %llu\n",
4060		   (u64)memory * PAGE_SIZE);
4061	if (do_memsw_account())
4062		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4063			   (u64)memsw * PAGE_SIZE);
4064
4065	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4066		unsigned long nr;
4067
4068		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4069			continue;
4070		nr = memcg_page_state(memcg, memcg1_stats[i]);
4071		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4072						(u64)nr * PAGE_SIZE);
 
 
 
 
 
 
 
 
 
4073	}
4074
4075	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4076		seq_printf(m, "total_%s %llu\n",
4077			   vm_event_name(memcg1_events[i]),
4078			   (u64)memcg_events(memcg, memcg1_events[i]));
4079
4080	for (i = 0; i < NR_LRU_LISTS; i++)
4081		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4082			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4083			   PAGE_SIZE);
4084
4085#ifdef CONFIG_DEBUG_VM
4086	{
4087		pg_data_t *pgdat;
4088		struct mem_cgroup_per_node *mz;
4089		unsigned long anon_cost = 0;
4090		unsigned long file_cost = 0;
 
4091
4092		for_each_online_pgdat(pgdat) {
4093			mz = memcg->nodeinfo[pgdat->node_id];
 
4094
4095			anon_cost += mz->lruvec.anon_cost;
4096			file_cost += mz->lruvec.file_cost;
4097		}
4098		seq_printf(m, "anon_cost %lu\n", anon_cost);
4099		seq_printf(m, "file_cost %lu\n", file_cost);
 
 
 
 
4100	}
4101#endif
4102
4103	return 0;
4104}
4105
4106static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4107				      struct cftype *cft)
4108{
4109	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111	return mem_cgroup_swappiness(memcg);
4112}
4113
4114static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4115				       struct cftype *cft, u64 val)
4116{
4117	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4118
4119	if (val > 100)
4120		return -EINVAL;
4121
4122	if (!mem_cgroup_is_root(memcg))
4123		memcg->swappiness = val;
4124	else
4125		vm_swappiness = val;
4126
4127	return 0;
4128}
4129
4130static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4131{
4132	struct mem_cgroup_threshold_ary *t;
4133	unsigned long usage;
4134	int i;
4135
4136	rcu_read_lock();
4137	if (!swap)
4138		t = rcu_dereference(memcg->thresholds.primary);
4139	else
4140		t = rcu_dereference(memcg->memsw_thresholds.primary);
4141
4142	if (!t)
4143		goto unlock;
4144
4145	usage = mem_cgroup_usage(memcg, swap);
4146
4147	/*
4148	 * current_threshold points to threshold just below or equal to usage.
4149	 * If it's not true, a threshold was crossed after last
4150	 * call of __mem_cgroup_threshold().
4151	 */
4152	i = t->current_threshold;
4153
4154	/*
4155	 * Iterate backward over array of thresholds starting from
4156	 * current_threshold and check if a threshold is crossed.
4157	 * If none of thresholds below usage is crossed, we read
4158	 * only one element of the array here.
4159	 */
4160	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4161		eventfd_signal(t->entries[i].eventfd, 1);
4162
4163	/* i = current_threshold + 1 */
4164	i++;
4165
4166	/*
4167	 * Iterate forward over array of thresholds starting from
4168	 * current_threshold+1 and check if a threshold is crossed.
4169	 * If none of thresholds above usage is crossed, we read
4170	 * only one element of the array here.
4171	 */
4172	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4173		eventfd_signal(t->entries[i].eventfd, 1);
4174
4175	/* Update current_threshold */
4176	t->current_threshold = i - 1;
4177unlock:
4178	rcu_read_unlock();
4179}
4180
4181static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4182{
4183	while (memcg) {
4184		__mem_cgroup_threshold(memcg, false);
4185		if (do_memsw_account())
4186			__mem_cgroup_threshold(memcg, true);
4187
4188		memcg = parent_mem_cgroup(memcg);
4189	}
4190}
4191
4192static int compare_thresholds(const void *a, const void *b)
4193{
4194	const struct mem_cgroup_threshold *_a = a;
4195	const struct mem_cgroup_threshold *_b = b;
4196
4197	if (_a->threshold > _b->threshold)
4198		return 1;
4199
4200	if (_a->threshold < _b->threshold)
4201		return -1;
4202
4203	return 0;
4204}
4205
4206static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4207{
4208	struct mem_cgroup_eventfd_list *ev;
4209
4210	spin_lock(&memcg_oom_lock);
4211
4212	list_for_each_entry(ev, &memcg->oom_notify, list)
4213		eventfd_signal(ev->eventfd, 1);
4214
4215	spin_unlock(&memcg_oom_lock);
4216	return 0;
4217}
4218
4219static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4220{
4221	struct mem_cgroup *iter;
4222
4223	for_each_mem_cgroup_tree(iter, memcg)
4224		mem_cgroup_oom_notify_cb(iter);
4225}
4226
4227static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4228	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4229{
4230	struct mem_cgroup_thresholds *thresholds;
4231	struct mem_cgroup_threshold_ary *new;
4232	unsigned long threshold;
4233	unsigned long usage;
4234	int i, size, ret;
4235
4236	ret = page_counter_memparse(args, "-1", &threshold);
4237	if (ret)
4238		return ret;
4239
4240	mutex_lock(&memcg->thresholds_lock);
4241
4242	if (type == _MEM) {
4243		thresholds = &memcg->thresholds;
4244		usage = mem_cgroup_usage(memcg, false);
4245	} else if (type == _MEMSWAP) {
4246		thresholds = &memcg->memsw_thresholds;
4247		usage = mem_cgroup_usage(memcg, true);
4248	} else
4249		BUG();
4250
4251	/* Check if a threshold crossed before adding a new one */
4252	if (thresholds->primary)
4253		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4254
4255	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4256
4257	/* Allocate memory for new array of thresholds */
4258	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
 
4259	if (!new) {
4260		ret = -ENOMEM;
4261		goto unlock;
4262	}
4263	new->size = size;
4264
4265	/* Copy thresholds (if any) to new array */
4266	if (thresholds->primary)
4267		memcpy(new->entries, thresholds->primary->entries,
4268		       flex_array_size(new, entries, size - 1));
 
4269
4270	/* Add new threshold */
4271	new->entries[size - 1].eventfd = eventfd;
4272	new->entries[size - 1].threshold = threshold;
4273
4274	/* Sort thresholds. Registering of new threshold isn't time-critical */
4275	sort(new->entries, size, sizeof(*new->entries),
4276			compare_thresholds, NULL);
4277
4278	/* Find current threshold */
4279	new->current_threshold = -1;
4280	for (i = 0; i < size; i++) {
4281		if (new->entries[i].threshold <= usage) {
4282			/*
4283			 * new->current_threshold will not be used until
4284			 * rcu_assign_pointer(), so it's safe to increment
4285			 * it here.
4286			 */
4287			++new->current_threshold;
4288		} else
4289			break;
4290	}
4291
4292	/* Free old spare buffer and save old primary buffer as spare */
4293	kfree(thresholds->spare);
4294	thresholds->spare = thresholds->primary;
4295
4296	rcu_assign_pointer(thresholds->primary, new);
4297
4298	/* To be sure that nobody uses thresholds */
4299	synchronize_rcu();
4300
4301unlock:
4302	mutex_unlock(&memcg->thresholds_lock);
4303
4304	return ret;
4305}
4306
4307static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4308	struct eventfd_ctx *eventfd, const char *args)
4309{
4310	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4311}
4312
4313static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4314	struct eventfd_ctx *eventfd, const char *args)
4315{
4316	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4317}
4318
4319static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4320	struct eventfd_ctx *eventfd, enum res_type type)
4321{
4322	struct mem_cgroup_thresholds *thresholds;
4323	struct mem_cgroup_threshold_ary *new;
4324	unsigned long usage;
4325	int i, j, size, entries;
4326
4327	mutex_lock(&memcg->thresholds_lock);
4328
4329	if (type == _MEM) {
4330		thresholds = &memcg->thresholds;
4331		usage = mem_cgroup_usage(memcg, false);
4332	} else if (type == _MEMSWAP) {
4333		thresholds = &memcg->memsw_thresholds;
4334		usage = mem_cgroup_usage(memcg, true);
4335	} else
4336		BUG();
4337
4338	if (!thresholds->primary)
4339		goto unlock;
4340
4341	/* Check if a threshold crossed before removing */
4342	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344	/* Calculate new number of threshold */
4345	size = entries = 0;
4346	for (i = 0; i < thresholds->primary->size; i++) {
4347		if (thresholds->primary->entries[i].eventfd != eventfd)
4348			size++;
4349		else
4350			entries++;
4351	}
4352
4353	new = thresholds->spare;
4354
4355	/* If no items related to eventfd have been cleared, nothing to do */
4356	if (!entries)
4357		goto unlock;
4358
4359	/* Set thresholds array to NULL if we don't have thresholds */
4360	if (!size) {
4361		kfree(new);
4362		new = NULL;
4363		goto swap_buffers;
4364	}
4365
4366	new->size = size;
4367
4368	/* Copy thresholds and find current threshold */
4369	new->current_threshold = -1;
4370	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4371		if (thresholds->primary->entries[i].eventfd == eventfd)
4372			continue;
4373
4374		new->entries[j] = thresholds->primary->entries[i];
4375		if (new->entries[j].threshold <= usage) {
4376			/*
4377			 * new->current_threshold will not be used
4378			 * until rcu_assign_pointer(), so it's safe to increment
4379			 * it here.
4380			 */
4381			++new->current_threshold;
4382		}
4383		j++;
4384	}
4385
4386swap_buffers:
4387	/* Swap primary and spare array */
4388	thresholds->spare = thresholds->primary;
4389
4390	rcu_assign_pointer(thresholds->primary, new);
4391
4392	/* To be sure that nobody uses thresholds */
4393	synchronize_rcu();
4394
4395	/* If all events are unregistered, free the spare array */
4396	if (!new) {
4397		kfree(thresholds->spare);
4398		thresholds->spare = NULL;
4399	}
4400unlock:
4401	mutex_unlock(&memcg->thresholds_lock);
4402}
4403
4404static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4405	struct eventfd_ctx *eventfd)
4406{
4407	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4408}
4409
4410static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4411	struct eventfd_ctx *eventfd)
4412{
4413	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4414}
4415
4416static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4417	struct eventfd_ctx *eventfd, const char *args)
4418{
4419	struct mem_cgroup_eventfd_list *event;
4420
4421	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4422	if (!event)
4423		return -ENOMEM;
4424
4425	spin_lock(&memcg_oom_lock);
4426
4427	event->eventfd = eventfd;
4428	list_add(&event->list, &memcg->oom_notify);
4429
4430	/* already in OOM ? */
4431	if (memcg->under_oom)
4432		eventfd_signal(eventfd, 1);
4433	spin_unlock(&memcg_oom_lock);
4434
4435	return 0;
4436}
4437
4438static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4439	struct eventfd_ctx *eventfd)
4440{
4441	struct mem_cgroup_eventfd_list *ev, *tmp;
4442
4443	spin_lock(&memcg_oom_lock);
4444
4445	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4446		if (ev->eventfd == eventfd) {
4447			list_del(&ev->list);
4448			kfree(ev);
4449		}
4450	}
4451
4452	spin_unlock(&memcg_oom_lock);
4453}
4454
4455static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4456{
4457	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4458
4459	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4460	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4461	seq_printf(sf, "oom_kill %lu\n",
4462		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4463	return 0;
4464}
4465
4466static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4467	struct cftype *cft, u64 val)
4468{
4469	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4470
4471	/* cannot set to root cgroup and only 0 and 1 are allowed */
4472	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4473		return -EINVAL;
4474
4475	memcg->oom_kill_disable = val;
4476	if (!val)
4477		memcg_oom_recover(memcg);
4478
4479	return 0;
4480}
4481
4482#ifdef CONFIG_CGROUP_WRITEBACK
4483
4484#include <trace/events/writeback.h>
 
 
 
4485
4486static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4487{
4488	return wb_domain_init(&memcg->cgwb_domain, gfp);
4489}
4490
4491static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4492{
4493	wb_domain_exit(&memcg->cgwb_domain);
4494}
4495
4496static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4497{
4498	wb_domain_size_changed(&memcg->cgwb_domain);
4499}
4500
4501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4502{
4503	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4504
4505	if (!memcg->css.parent)
4506		return NULL;
4507
4508	return &memcg->cgwb_domain;
4509}
4510
4511/**
4512 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4513 * @wb: bdi_writeback in question
4514 * @pfilepages: out parameter for number of file pages
4515 * @pheadroom: out parameter for number of allocatable pages according to memcg
4516 * @pdirty: out parameter for number of dirty pages
4517 * @pwriteback: out parameter for number of pages under writeback
4518 *
4519 * Determine the numbers of file, headroom, dirty, and writeback pages in
4520 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4521 * is a bit more involved.
4522 *
4523 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4524 * headroom is calculated as the lowest headroom of itself and the
4525 * ancestors.  Note that this doesn't consider the actual amount of
4526 * available memory in the system.  The caller should further cap
4527 * *@pheadroom accordingly.
4528 */
4529void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4530			 unsigned long *pheadroom, unsigned long *pdirty,
4531			 unsigned long *pwriteback)
4532{
4533	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4534	struct mem_cgroup *parent;
4535
4536	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4537
4538	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4539	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4540	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4541			memcg_page_state(memcg, NR_ACTIVE_FILE);
 
4542
4543	*pheadroom = PAGE_COUNTER_MAX;
4544	while ((parent = parent_mem_cgroup(memcg))) {
4545		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4546					    READ_ONCE(memcg->memory.high));
4547		unsigned long used = page_counter_read(&memcg->memory);
4548
4549		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4550		memcg = parent;
4551	}
4552}
4553
4554/*
4555 * Foreign dirty flushing
4556 *
4557 * There's an inherent mismatch between memcg and writeback.  The former
4558 * tracks ownership per-page while the latter per-inode.  This was a
4559 * deliberate design decision because honoring per-page ownership in the
4560 * writeback path is complicated, may lead to higher CPU and IO overheads
4561 * and deemed unnecessary given that write-sharing an inode across
4562 * different cgroups isn't a common use-case.
4563 *
4564 * Combined with inode majority-writer ownership switching, this works well
4565 * enough in most cases but there are some pathological cases.  For
4566 * example, let's say there are two cgroups A and B which keep writing to
4567 * different but confined parts of the same inode.  B owns the inode and
4568 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4569 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4570 * triggering background writeback.  A will be slowed down without a way to
4571 * make writeback of the dirty pages happen.
4572 *
4573 * Conditions like the above can lead to a cgroup getting repeatedly and
4574 * severely throttled after making some progress after each
4575 * dirty_expire_interval while the underlying IO device is almost
4576 * completely idle.
4577 *
4578 * Solving this problem completely requires matching the ownership tracking
4579 * granularities between memcg and writeback in either direction.  However,
4580 * the more egregious behaviors can be avoided by simply remembering the
4581 * most recent foreign dirtying events and initiating remote flushes on
4582 * them when local writeback isn't enough to keep the memory clean enough.
4583 *
4584 * The following two functions implement such mechanism.  When a foreign
4585 * page - a page whose memcg and writeback ownerships don't match - is
4586 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4587 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4588 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4589 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4590 * foreign bdi_writebacks which haven't expired.  Both the numbers of
4591 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4592 * limited to MEMCG_CGWB_FRN_CNT.
4593 *
4594 * The mechanism only remembers IDs and doesn't hold any object references.
4595 * As being wrong occasionally doesn't matter, updates and accesses to the
4596 * records are lockless and racy.
4597 */
4598void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4599					     struct bdi_writeback *wb)
4600{
4601	struct mem_cgroup *memcg = page_memcg(page);
4602	struct memcg_cgwb_frn *frn;
4603	u64 now = get_jiffies_64();
4604	u64 oldest_at = now;
4605	int oldest = -1;
4606	int i;
4607
4608	trace_track_foreign_dirty(page, wb);
4609
4610	/*
4611	 * Pick the slot to use.  If there is already a slot for @wb, keep
4612	 * using it.  If not replace the oldest one which isn't being
4613	 * written out.
4614	 */
4615	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4616		frn = &memcg->cgwb_frn[i];
4617		if (frn->bdi_id == wb->bdi->id &&
4618		    frn->memcg_id == wb->memcg_css->id)
4619			break;
4620		if (time_before64(frn->at, oldest_at) &&
4621		    atomic_read(&frn->done.cnt) == 1) {
4622			oldest = i;
4623			oldest_at = frn->at;
4624		}
4625	}
4626
4627	if (i < MEMCG_CGWB_FRN_CNT) {
4628		/*
4629		 * Re-using an existing one.  Update timestamp lazily to
4630		 * avoid making the cacheline hot.  We want them to be
4631		 * reasonably up-to-date and significantly shorter than
4632		 * dirty_expire_interval as that's what expires the record.
4633		 * Use the shorter of 1s and dirty_expire_interval / 8.
4634		 */
4635		unsigned long update_intv =
4636			min_t(unsigned long, HZ,
4637			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4638
4639		if (time_before64(frn->at, now - update_intv))
4640			frn->at = now;
4641	} else if (oldest >= 0) {
4642		/* replace the oldest free one */
4643		frn = &memcg->cgwb_frn[oldest];
4644		frn->bdi_id = wb->bdi->id;
4645		frn->memcg_id = wb->memcg_css->id;
4646		frn->at = now;
4647	}
4648}
4649
4650/* issue foreign writeback flushes for recorded foreign dirtying events */
4651void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4652{
4653	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4654	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4655	u64 now = jiffies_64;
4656	int i;
4657
4658	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4659		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4660
4661		/*
4662		 * If the record is older than dirty_expire_interval,
4663		 * writeback on it has already started.  No need to kick it
4664		 * off again.  Also, don't start a new one if there's
4665		 * already one in flight.
4666		 */
4667		if (time_after64(frn->at, now - intv) &&
4668		    atomic_read(&frn->done.cnt) == 1) {
4669			frn->at = 0;
4670			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4671			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4672					       WB_REASON_FOREIGN_FLUSH,
4673					       &frn->done);
4674		}
4675	}
4676}
4677
4678#else	/* CONFIG_CGROUP_WRITEBACK */
4679
4680static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4681{
4682	return 0;
4683}
4684
4685static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4686{
4687}
4688
4689static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4690{
4691}
4692
4693#endif	/* CONFIG_CGROUP_WRITEBACK */
4694
4695/*
4696 * DO NOT USE IN NEW FILES.
4697 *
4698 * "cgroup.event_control" implementation.
4699 *
4700 * This is way over-engineered.  It tries to support fully configurable
4701 * events for each user.  Such level of flexibility is completely
4702 * unnecessary especially in the light of the planned unified hierarchy.
4703 *
4704 * Please deprecate this and replace with something simpler if at all
4705 * possible.
4706 */
4707
4708/*
4709 * Unregister event and free resources.
4710 *
4711 * Gets called from workqueue.
4712 */
4713static void memcg_event_remove(struct work_struct *work)
4714{
4715	struct mem_cgroup_event *event =
4716		container_of(work, struct mem_cgroup_event, remove);
4717	struct mem_cgroup *memcg = event->memcg;
4718
4719	remove_wait_queue(event->wqh, &event->wait);
4720
4721	event->unregister_event(memcg, event->eventfd);
4722
4723	/* Notify userspace the event is going away. */
4724	eventfd_signal(event->eventfd, 1);
4725
4726	eventfd_ctx_put(event->eventfd);
4727	kfree(event);
4728	css_put(&memcg->css);
4729}
4730
4731/*
4732 * Gets called on EPOLLHUP on eventfd when user closes it.
4733 *
4734 * Called with wqh->lock held and interrupts disabled.
4735 */
4736static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4737			    int sync, void *key)
4738{
4739	struct mem_cgroup_event *event =
4740		container_of(wait, struct mem_cgroup_event, wait);
4741	struct mem_cgroup *memcg = event->memcg;
4742	__poll_t flags = key_to_poll(key);
4743
4744	if (flags & EPOLLHUP) {
4745		/*
4746		 * If the event has been detached at cgroup removal, we
4747		 * can simply return knowing the other side will cleanup
4748		 * for us.
4749		 *
4750		 * We can't race against event freeing since the other
4751		 * side will require wqh->lock via remove_wait_queue(),
4752		 * which we hold.
4753		 */
4754		spin_lock(&memcg->event_list_lock);
4755		if (!list_empty(&event->list)) {
4756			list_del_init(&event->list);
4757			/*
4758			 * We are in atomic context, but cgroup_event_remove()
4759			 * may sleep, so we have to call it in workqueue.
4760			 */
4761			schedule_work(&event->remove);
4762		}
4763		spin_unlock(&memcg->event_list_lock);
4764	}
4765
4766	return 0;
4767}
4768
4769static void memcg_event_ptable_queue_proc(struct file *file,
4770		wait_queue_head_t *wqh, poll_table *pt)
4771{
4772	struct mem_cgroup_event *event =
4773		container_of(pt, struct mem_cgroup_event, pt);
4774
4775	event->wqh = wqh;
4776	add_wait_queue(wqh, &event->wait);
4777}
4778
4779/*
4780 * DO NOT USE IN NEW FILES.
4781 *
4782 * Parse input and register new cgroup event handler.
4783 *
4784 * Input must be in format '<event_fd> <control_fd> <args>'.
4785 * Interpretation of args is defined by control file implementation.
4786 */
4787static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4788					 char *buf, size_t nbytes, loff_t off)
4789{
4790	struct cgroup_subsys_state *css = of_css(of);
4791	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4792	struct mem_cgroup_event *event;
4793	struct cgroup_subsys_state *cfile_css;
4794	unsigned int efd, cfd;
4795	struct fd efile;
4796	struct fd cfile;
4797	const char *name;
4798	char *endp;
4799	int ret;
4800
4801	buf = strstrip(buf);
4802
4803	efd = simple_strtoul(buf, &endp, 10);
4804	if (*endp != ' ')
4805		return -EINVAL;
4806	buf = endp + 1;
4807
4808	cfd = simple_strtoul(buf, &endp, 10);
4809	if ((*endp != ' ') && (*endp != '\0'))
4810		return -EINVAL;
4811	buf = endp + 1;
4812
4813	event = kzalloc(sizeof(*event), GFP_KERNEL);
4814	if (!event)
4815		return -ENOMEM;
4816
4817	event->memcg = memcg;
4818	INIT_LIST_HEAD(&event->list);
4819	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4820	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4821	INIT_WORK(&event->remove, memcg_event_remove);
4822
4823	efile = fdget(efd);
4824	if (!efile.file) {
4825		ret = -EBADF;
4826		goto out_kfree;
4827	}
4828
4829	event->eventfd = eventfd_ctx_fileget(efile.file);
4830	if (IS_ERR(event->eventfd)) {
4831		ret = PTR_ERR(event->eventfd);
4832		goto out_put_efile;
4833	}
4834
4835	cfile = fdget(cfd);
4836	if (!cfile.file) {
4837		ret = -EBADF;
4838		goto out_put_eventfd;
4839	}
4840
4841	/* the process need read permission on control file */
4842	/* AV: shouldn't we check that it's been opened for read instead? */
4843	ret = file_permission(cfile.file, MAY_READ);
4844	if (ret < 0)
4845		goto out_put_cfile;
4846
4847	/*
4848	 * Determine the event callbacks and set them in @event.  This used
4849	 * to be done via struct cftype but cgroup core no longer knows
4850	 * about these events.  The following is crude but the whole thing
4851	 * is for compatibility anyway.
4852	 *
4853	 * DO NOT ADD NEW FILES.
4854	 */
4855	name = cfile.file->f_path.dentry->d_name.name;
4856
4857	if (!strcmp(name, "memory.usage_in_bytes")) {
4858		event->register_event = mem_cgroup_usage_register_event;
4859		event->unregister_event = mem_cgroup_usage_unregister_event;
4860	} else if (!strcmp(name, "memory.oom_control")) {
4861		event->register_event = mem_cgroup_oom_register_event;
4862		event->unregister_event = mem_cgroup_oom_unregister_event;
4863	} else if (!strcmp(name, "memory.pressure_level")) {
4864		event->register_event = vmpressure_register_event;
4865		event->unregister_event = vmpressure_unregister_event;
4866	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4867		event->register_event = memsw_cgroup_usage_register_event;
4868		event->unregister_event = memsw_cgroup_usage_unregister_event;
4869	} else {
4870		ret = -EINVAL;
4871		goto out_put_cfile;
4872	}
4873
4874	/*
4875	 * Verify @cfile should belong to @css.  Also, remaining events are
4876	 * automatically removed on cgroup destruction but the removal is
4877	 * asynchronous, so take an extra ref on @css.
4878	 */
4879	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4880					       &memory_cgrp_subsys);
4881	ret = -EINVAL;
4882	if (IS_ERR(cfile_css))
4883		goto out_put_cfile;
4884	if (cfile_css != css) {
4885		css_put(cfile_css);
4886		goto out_put_cfile;
4887	}
4888
4889	ret = event->register_event(memcg, event->eventfd, buf);
4890	if (ret)
4891		goto out_put_css;
4892
4893	vfs_poll(efile.file, &event->pt);
4894
4895	spin_lock(&memcg->event_list_lock);
4896	list_add(&event->list, &memcg->event_list);
4897	spin_unlock(&memcg->event_list_lock);
4898
4899	fdput(cfile);
4900	fdput(efile);
4901
4902	return nbytes;
4903
4904out_put_css:
4905	css_put(css);
4906out_put_cfile:
4907	fdput(cfile);
4908out_put_eventfd:
4909	eventfd_ctx_put(event->eventfd);
4910out_put_efile:
4911	fdput(efile);
4912out_kfree:
4913	kfree(event);
4914
4915	return ret;
4916}
4917
4918static struct cftype mem_cgroup_legacy_files[] = {
4919	{
4920		.name = "usage_in_bytes",
4921		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4922		.read_u64 = mem_cgroup_read_u64,
4923	},
4924	{
4925		.name = "max_usage_in_bytes",
4926		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4927		.write = mem_cgroup_reset,
4928		.read_u64 = mem_cgroup_read_u64,
4929	},
4930	{
4931		.name = "limit_in_bytes",
4932		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4933		.write = mem_cgroup_write,
4934		.read_u64 = mem_cgroup_read_u64,
4935	},
4936	{
4937		.name = "soft_limit_in_bytes",
4938		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4939		.write = mem_cgroup_write,
4940		.read_u64 = mem_cgroup_read_u64,
4941	},
4942	{
4943		.name = "failcnt",
4944		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4945		.write = mem_cgroup_reset,
4946		.read_u64 = mem_cgroup_read_u64,
4947	},
4948	{
4949		.name = "stat",
4950		.seq_show = memcg_stat_show,
4951	},
4952	{
4953		.name = "force_empty",
4954		.write = mem_cgroup_force_empty_write,
4955	},
4956	{
4957		.name = "use_hierarchy",
4958		.write_u64 = mem_cgroup_hierarchy_write,
4959		.read_u64 = mem_cgroup_hierarchy_read,
4960	},
4961	{
4962		.name = "cgroup.event_control",		/* XXX: for compat */
4963		.write = memcg_write_event_control,
4964		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4965	},
4966	{
4967		.name = "swappiness",
4968		.read_u64 = mem_cgroup_swappiness_read,
4969		.write_u64 = mem_cgroup_swappiness_write,
4970	},
4971	{
4972		.name = "move_charge_at_immigrate",
4973		.read_u64 = mem_cgroup_move_charge_read,
4974		.write_u64 = mem_cgroup_move_charge_write,
4975	},
4976	{
4977		.name = "oom_control",
4978		.seq_show = mem_cgroup_oom_control_read,
4979		.write_u64 = mem_cgroup_oom_control_write,
4980		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4981	},
4982	{
4983		.name = "pressure_level",
4984	},
4985#ifdef CONFIG_NUMA
4986	{
4987		.name = "numa_stat",
4988		.seq_show = memcg_numa_stat_show,
4989	},
4990#endif
4991	{
4992		.name = "kmem.limit_in_bytes",
4993		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4994		.write = mem_cgroup_write,
4995		.read_u64 = mem_cgroup_read_u64,
4996	},
4997	{
4998		.name = "kmem.usage_in_bytes",
4999		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5000		.read_u64 = mem_cgroup_read_u64,
5001	},
5002	{
5003		.name = "kmem.failcnt",
5004		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5005		.write = mem_cgroup_reset,
5006		.read_u64 = mem_cgroup_read_u64,
5007	},
5008	{
5009		.name = "kmem.max_usage_in_bytes",
5010		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5011		.write = mem_cgroup_reset,
5012		.read_u64 = mem_cgroup_read_u64,
5013	},
5014#if defined(CONFIG_MEMCG_KMEM) && \
5015	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5016	{
5017		.name = "kmem.slabinfo",
 
 
 
5018		.seq_show = memcg_slab_show,
5019	},
5020#endif
5021	{
5022		.name = "kmem.tcp.limit_in_bytes",
5023		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5024		.write = mem_cgroup_write,
5025		.read_u64 = mem_cgroup_read_u64,
5026	},
5027	{
5028		.name = "kmem.tcp.usage_in_bytes",
5029		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5030		.read_u64 = mem_cgroup_read_u64,
5031	},
5032	{
5033		.name = "kmem.tcp.failcnt",
5034		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5035		.write = mem_cgroup_reset,
5036		.read_u64 = mem_cgroup_read_u64,
5037	},
5038	{
5039		.name = "kmem.tcp.max_usage_in_bytes",
5040		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5041		.write = mem_cgroup_reset,
5042		.read_u64 = mem_cgroup_read_u64,
5043	},
5044	{ },	/* terminate */
5045};
5046
5047/*
5048 * Private memory cgroup IDR
5049 *
5050 * Swap-out records and page cache shadow entries need to store memcg
5051 * references in constrained space, so we maintain an ID space that is
5052 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5053 * memory-controlled cgroups to 64k.
5054 *
5055 * However, there usually are many references to the offline CSS after
5056 * the cgroup has been destroyed, such as page cache or reclaimable
5057 * slab objects, that don't need to hang on to the ID. We want to keep
5058 * those dead CSS from occupying IDs, or we might quickly exhaust the
5059 * relatively small ID space and prevent the creation of new cgroups
5060 * even when there are much fewer than 64k cgroups - possibly none.
5061 *
5062 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5063 * be freed and recycled when it's no longer needed, which is usually
5064 * when the CSS is offlined.
5065 *
5066 * The only exception to that are records of swapped out tmpfs/shmem
5067 * pages that need to be attributed to live ancestors on swapin. But
5068 * those references are manageable from userspace.
5069 */
5070
5071static DEFINE_IDR(mem_cgroup_idr);
5072
5073static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5074{
5075	if (memcg->id.id > 0) {
5076		idr_remove(&mem_cgroup_idr, memcg->id.id);
5077		memcg->id.id = 0;
5078	}
5079}
5080
5081static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5082						  unsigned int n)
5083{
5084	refcount_add(n, &memcg->id.ref);
5085}
5086
5087static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5088{
5089	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5090		mem_cgroup_id_remove(memcg);
 
 
5091
5092		/* Memcg ID pins CSS */
5093		css_put(&memcg->css);
5094	}
5095}
5096
 
 
 
 
 
5097static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5098{
5099	mem_cgroup_id_put_many(memcg, 1);
5100}
5101
5102/**
5103 * mem_cgroup_from_id - look up a memcg from a memcg id
5104 * @id: the memcg id to look up
5105 *
5106 * Caller must hold rcu_read_lock().
5107 */
5108struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5109{
5110	WARN_ON_ONCE(!rcu_read_lock_held());
5111	return idr_find(&mem_cgroup_idr, id);
5112}
5113
5114static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115{
5116	struct mem_cgroup_per_node *pn;
5117	int tmp = node;
5118	/*
5119	 * This routine is called against possible nodes.
5120	 * But it's BUG to call kmalloc() against offline node.
5121	 *
5122	 * TODO: this routine can waste much memory for nodes which will
5123	 *       never be onlined. It's better to use memory hotplug callback
5124	 *       function.
5125	 */
5126	if (!node_state(node, N_NORMAL_MEMORY))
5127		tmp = -1;
5128	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5129	if (!pn)
5130		return 1;
5131
5132	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5133						 GFP_KERNEL_ACCOUNT);
5134	if (!pn->lruvec_stat_local) {
5135		kfree(pn);
5136		return 1;
5137	}
5138
5139	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5140					       GFP_KERNEL_ACCOUNT);
5141	if (!pn->lruvec_stat_cpu) {
5142		free_percpu(pn->lruvec_stat_local);
5143		kfree(pn);
5144		return 1;
5145	}
5146
5147	lruvec_init(&pn->lruvec);
5148	pn->usage_in_excess = 0;
5149	pn->on_tree = false;
5150	pn->memcg = memcg;
5151
5152	memcg->nodeinfo[node] = pn;
5153	return 0;
5154}
5155
5156static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5157{
5158	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5159
5160	if (!pn)
5161		return;
5162
5163	free_percpu(pn->lruvec_stat_cpu);
5164	free_percpu(pn->lruvec_stat_local);
5165	kfree(pn);
5166}
5167
5168static void __mem_cgroup_free(struct mem_cgroup *memcg)
5169{
5170	int node;
5171
5172	for_each_node(node)
5173		free_mem_cgroup_per_node_info(memcg, node);
5174	free_percpu(memcg->vmstats_percpu);
5175	kfree(memcg);
5176}
5177
5178static void mem_cgroup_free(struct mem_cgroup *memcg)
5179{
5180	int cpu;
5181
5182	memcg_wb_domain_exit(memcg);
5183	/*
5184	 * Flush percpu lruvec stats to guarantee the value
5185	 * correctness on parent's and all ancestor levels.
5186	 */
5187	for_each_online_cpu(cpu)
5188		memcg_flush_lruvec_page_state(memcg, cpu);
5189	__mem_cgroup_free(memcg);
5190}
5191
5192static struct mem_cgroup *mem_cgroup_alloc(void)
5193{
5194	struct mem_cgroup *memcg;
5195	unsigned int size;
5196	int node;
5197	int __maybe_unused i;
5198	long error = -ENOMEM;
5199
5200	size = sizeof(struct mem_cgroup);
5201	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5202
5203	memcg = kzalloc(size, GFP_KERNEL);
5204	if (!memcg)
5205		return ERR_PTR(error);
5206
5207	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5208				 1, MEM_CGROUP_ID_MAX,
5209				 GFP_KERNEL);
5210	if (memcg->id.id < 0) {
5211		error = memcg->id.id;
5212		goto fail;
5213	}
5214
5215	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5216						 GFP_KERNEL_ACCOUNT);
5217	if (!memcg->vmstats_percpu)
5218		goto fail;
5219
5220	for_each_node(node)
5221		if (alloc_mem_cgroup_per_node_info(memcg, node))
5222			goto fail;
5223
5224	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5225		goto fail;
5226
5227	INIT_WORK(&memcg->high_work, high_work_func);
 
5228	INIT_LIST_HEAD(&memcg->oom_notify);
5229	mutex_init(&memcg->thresholds_lock);
5230	spin_lock_init(&memcg->move_lock);
5231	vmpressure_init(&memcg->vmpressure);
5232	INIT_LIST_HEAD(&memcg->event_list);
5233	spin_lock_init(&memcg->event_list_lock);
5234	memcg->socket_pressure = jiffies;
5235#ifdef CONFIG_MEMCG_KMEM
5236	memcg->kmemcg_id = -1;
5237	INIT_LIST_HEAD(&memcg->objcg_list);
5238#endif
5239#ifdef CONFIG_CGROUP_WRITEBACK
5240	INIT_LIST_HEAD(&memcg->cgwb_list);
5241	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242		memcg->cgwb_frn[i].done =
5243			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5244#endif
5245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5246	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5247	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5248	memcg->deferred_split_queue.split_queue_len = 0;
5249#endif
5250	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5251	return memcg;
5252fail:
5253	mem_cgroup_id_remove(memcg);
 
5254	__mem_cgroup_free(memcg);
5255	return ERR_PTR(error);
5256}
5257
5258static struct cgroup_subsys_state * __ref
5259mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5260{
5261	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5262	struct mem_cgroup *memcg, *old_memcg;
5263	long error = -ENOMEM;
5264
5265	old_memcg = set_active_memcg(parent);
5266	memcg = mem_cgroup_alloc();
5267	set_active_memcg(old_memcg);
5268	if (IS_ERR(memcg))
5269		return ERR_CAST(memcg);
5270
5271	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5272	memcg->soft_limit = PAGE_COUNTER_MAX;
5273	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5274	if (parent) {
5275		memcg->swappiness = mem_cgroup_swappiness(parent);
5276		memcg->oom_kill_disable = parent->oom_kill_disable;
5277
 
 
5278		page_counter_init(&memcg->memory, &parent->memory);
5279		page_counter_init(&memcg->swap, &parent->swap);
 
5280		page_counter_init(&memcg->kmem, &parent->kmem);
5281		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5282	} else {
5283		page_counter_init(&memcg->memory, NULL);
5284		page_counter_init(&memcg->swap, NULL);
 
5285		page_counter_init(&memcg->kmem, NULL);
5286		page_counter_init(&memcg->tcpmem, NULL);
 
 
 
 
 
 
 
 
5287
 
 
5288		root_mem_cgroup = memcg;
5289		return &memcg->css;
5290	}
5291
5292	/* The following stuff does not apply to the root */
5293	error = memcg_online_kmem(memcg);
5294	if (error)
5295		goto fail;
5296
5297	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5298		static_branch_inc(&memcg_sockets_enabled_key);
5299
5300	return &memcg->css;
5301fail:
5302	mem_cgroup_id_remove(memcg);
5303	mem_cgroup_free(memcg);
5304	return ERR_PTR(error);
5305}
5306
5307static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5308{
5309	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5310
5311	/*
5312	 * A memcg must be visible for expand_shrinker_info()
5313	 * by the time the maps are allocated. So, we allocate maps
5314	 * here, when for_each_mem_cgroup() can't skip it.
5315	 */
5316	if (alloc_shrinker_info(memcg)) {
5317		mem_cgroup_id_remove(memcg);
5318		return -ENOMEM;
5319	}
5320
5321	/* Online state pins memcg ID, memcg ID pins CSS */
5322	refcount_set(&memcg->id.ref, 1);
5323	css_get(css);
5324	return 0;
5325}
5326
5327static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5328{
5329	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5330	struct mem_cgroup_event *event, *tmp;
5331
5332	/*
5333	 * Unregister events and notify userspace.
5334	 * Notify userspace about cgroup removing only after rmdir of cgroup
5335	 * directory to avoid race between userspace and kernelspace.
5336	 */
5337	spin_lock(&memcg->event_list_lock);
5338	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5339		list_del_init(&event->list);
5340		schedule_work(&event->remove);
5341	}
5342	spin_unlock(&memcg->event_list_lock);
5343
5344	page_counter_set_min(&memcg->memory, 0);
5345	page_counter_set_low(&memcg->memory, 0);
5346
5347	memcg_offline_kmem(memcg);
5348	reparent_shrinker_deferred(memcg);
5349	wb_memcg_offline(memcg);
5350
5351	drain_all_stock(memcg);
5352
5353	mem_cgroup_id_put(memcg);
5354}
5355
5356static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5357{
5358	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5359
5360	invalidate_reclaim_iterators(memcg);
5361}
5362
5363static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5364{
5365	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366	int __maybe_unused i;
5367
5368#ifdef CONFIG_CGROUP_WRITEBACK
5369	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5370		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5371#endif
5372	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5373		static_branch_dec(&memcg_sockets_enabled_key);
5374
5375	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5376		static_branch_dec(&memcg_sockets_enabled_key);
5377
5378	vmpressure_cleanup(&memcg->vmpressure);
5379	cancel_work_sync(&memcg->high_work);
5380	mem_cgroup_remove_from_trees(memcg);
5381	free_shrinker_info(memcg);
5382	memcg_free_kmem(memcg);
5383	mem_cgroup_free(memcg);
5384}
5385
5386/**
5387 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5388 * @css: the target css
5389 *
5390 * Reset the states of the mem_cgroup associated with @css.  This is
5391 * invoked when the userland requests disabling on the default hierarchy
5392 * but the memcg is pinned through dependency.  The memcg should stop
5393 * applying policies and should revert to the vanilla state as it may be
5394 * made visible again.
5395 *
5396 * The current implementation only resets the essential configurations.
5397 * This needs to be expanded to cover all the visible parts.
5398 */
5399static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5400{
5401	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5404	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5405	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5406	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5407	page_counter_set_min(&memcg->memory, 0);
5408	page_counter_set_low(&memcg->memory, 0);
5409	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5410	memcg->soft_limit = PAGE_COUNTER_MAX;
5411	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5412	memcg_wb_domain_size_changed(memcg);
5413}
5414
5415static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5416{
5417	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5418	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5419	struct memcg_vmstats_percpu *statc;
5420	long delta, v;
5421	int i;
5422
5423	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5424
5425	for (i = 0; i < MEMCG_NR_STAT; i++) {
5426		/*
5427		 * Collect the aggregated propagation counts of groups
5428		 * below us. We're in a per-cpu loop here and this is
5429		 * a global counter, so the first cycle will get them.
5430		 */
5431		delta = memcg->vmstats.state_pending[i];
5432		if (delta)
5433			memcg->vmstats.state_pending[i] = 0;
5434
5435		/* Add CPU changes on this level since the last flush */
5436		v = READ_ONCE(statc->state[i]);
5437		if (v != statc->state_prev[i]) {
5438			delta += v - statc->state_prev[i];
5439			statc->state_prev[i] = v;
5440		}
5441
5442		if (!delta)
5443			continue;
5444
5445		/* Aggregate counts on this level and propagate upwards */
5446		memcg->vmstats.state[i] += delta;
5447		if (parent)
5448			parent->vmstats.state_pending[i] += delta;
5449	}
5450
5451	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5452		delta = memcg->vmstats.events_pending[i];
5453		if (delta)
5454			memcg->vmstats.events_pending[i] = 0;
5455
5456		v = READ_ONCE(statc->events[i]);
5457		if (v != statc->events_prev[i]) {
5458			delta += v - statc->events_prev[i];
5459			statc->events_prev[i] = v;
5460		}
5461
5462		if (!delta)
5463			continue;
5464
5465		memcg->vmstats.events[i] += delta;
5466		if (parent)
5467			parent->vmstats.events_pending[i] += delta;
5468	}
5469}
5470
5471#ifdef CONFIG_MMU
5472/* Handlers for move charge at task migration. */
5473static int mem_cgroup_do_precharge(unsigned long count)
5474{
5475	int ret;
5476
5477	/* Try a single bulk charge without reclaim first, kswapd may wake */
5478	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5479	if (!ret) {
5480		mc.precharge += count;
5481		return ret;
5482	}
5483
5484	/* Try charges one by one with reclaim, but do not retry */
5485	while (count--) {
5486		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5487		if (ret)
5488			return ret;
5489		mc.precharge++;
5490		cond_resched();
5491	}
5492	return 0;
5493}
5494
5495union mc_target {
5496	struct page	*page;
5497	swp_entry_t	ent;
5498};
5499
5500enum mc_target_type {
5501	MC_TARGET_NONE = 0,
5502	MC_TARGET_PAGE,
5503	MC_TARGET_SWAP,
5504	MC_TARGET_DEVICE,
5505};
5506
5507static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5508						unsigned long addr, pte_t ptent)
5509{
5510	struct page *page = vm_normal_page(vma, addr, ptent);
5511
5512	if (!page || !page_mapped(page))
5513		return NULL;
5514	if (PageAnon(page)) {
5515		if (!(mc.flags & MOVE_ANON))
5516			return NULL;
5517	} else {
5518		if (!(mc.flags & MOVE_FILE))
5519			return NULL;
5520	}
5521	if (!get_page_unless_zero(page))
5522		return NULL;
5523
5524	return page;
5525}
5526
5527#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5528static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5529			pte_t ptent, swp_entry_t *entry)
5530{
5531	struct page *page = NULL;
5532	swp_entry_t ent = pte_to_swp_entry(ptent);
5533
5534	if (!(mc.flags & MOVE_ANON))
5535		return NULL;
5536
5537	/*
5538	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5539	 * a device and because they are not accessible by CPU they are store
5540	 * as special swap entry in the CPU page table.
5541	 */
5542	if (is_device_private_entry(ent)) {
5543		page = pfn_swap_entry_to_page(ent);
5544		/*
5545		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5546		 * a refcount of 1 when free (unlike normal page)
5547		 */
5548		if (!page_ref_add_unless(page, 1, 1))
5549			return NULL;
5550		return page;
5551	}
5552
5553	if (non_swap_entry(ent))
5554		return NULL;
5555
5556	/*
5557	 * Because lookup_swap_cache() updates some statistics counter,
5558	 * we call find_get_page() with swapper_space directly.
5559	 */
5560	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5561	entry->val = ent.val;
 
5562
5563	return page;
5564}
5565#else
5566static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5567			pte_t ptent, swp_entry_t *entry)
5568{
5569	return NULL;
5570}
5571#endif
5572
5573static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5574			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5575{
 
 
 
 
5576	if (!vma->vm_file) /* anonymous vma */
5577		return NULL;
5578	if (!(mc.flags & MOVE_FILE))
5579		return NULL;
5580
 
 
 
5581	/* page is moved even if it's not RSS of this task(page-faulted). */
 
5582	/* shmem/tmpfs may report page out on swap: account for that too. */
5583	return find_get_incore_page(vma->vm_file->f_mapping,
5584			linear_page_index(vma, addr));
 
 
 
 
 
 
 
 
 
 
 
 
 
5585}
5586
5587/**
5588 * mem_cgroup_move_account - move account of the page
5589 * @page: the page
5590 * @compound: charge the page as compound or small page
5591 * @from: mem_cgroup which the page is moved from.
5592 * @to:	mem_cgroup which the page is moved to. @from != @to.
5593 *
5594 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5595 *
5596 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5597 * from old cgroup.
5598 */
5599static int mem_cgroup_move_account(struct page *page,
5600				   bool compound,
5601				   struct mem_cgroup *from,
5602				   struct mem_cgroup *to)
5603{
5604	struct lruvec *from_vec, *to_vec;
5605	struct pglist_data *pgdat;
5606	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5607	int ret;
 
5608
5609	VM_BUG_ON(from == to);
5610	VM_BUG_ON_PAGE(PageLRU(page), page);
5611	VM_BUG_ON(compound && !PageTransHuge(page));
5612
5613	/*
5614	 * Prevent mem_cgroup_migrate() from looking at
5615	 * page's memory cgroup of its source page while we change it.
5616	 */
5617	ret = -EBUSY;
5618	if (!trylock_page(page))
5619		goto out;
5620
5621	ret = -EINVAL;
5622	if (page_memcg(page) != from)
5623		goto out_unlock;
5624
5625	pgdat = page_pgdat(page);
5626	from_vec = mem_cgroup_lruvec(from, pgdat);
5627	to_vec = mem_cgroup_lruvec(to, pgdat);
5628
5629	lock_page_memcg(page);
5630
5631	if (PageAnon(page)) {
5632		if (page_mapped(page)) {
5633			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5634			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5635			if (PageTransHuge(page)) {
5636				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5637						   -nr_pages);
5638				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5639						   nr_pages);
5640			}
5641		}
5642	} else {
5643		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5644		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5645
5646		if (PageSwapBacked(page)) {
5647			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5648			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5649		}
 
 
 
5650
5651		if (page_mapped(page)) {
5652			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5653			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5654		}
5655
5656		if (PageDirty(page)) {
5657			struct address_space *mapping = page_mapping(page);
5658
5659			if (mapping_can_writeback(mapping)) {
5660				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5661						   -nr_pages);
5662				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5663						   nr_pages);
5664			}
5665		}
5666	}
5667
5668	if (PageWriteback(page)) {
5669		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5670		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5671	}
5672
5673	/*
5674	 * All state has been migrated, let's switch to the new memcg.
5675	 *
5676	 * It is safe to change page's memcg here because the page
5677	 * is referenced, charged, isolated, and locked: we can't race
5678	 * with (un)charging, migration, LRU putback, or anything else
5679	 * that would rely on a stable page's memory cgroup.
5680	 *
5681	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5682	 * to save space. As soon as we switch page's memory cgroup to a
5683	 * new memcg that isn't locked, the above state can change
5684	 * concurrently again. Make sure we're truly done with it.
5685	 */
5686	smp_mb();
5687
5688	css_get(&to->css);
5689	css_put(&from->css);
5690
5691	page->memcg_data = (unsigned long)to;
5692
5693	__unlock_page_memcg(from);
 
 
5694
5695	ret = 0;
5696
5697	local_irq_disable();
5698	mem_cgroup_charge_statistics(to, page, nr_pages);
5699	memcg_check_events(to, page);
5700	mem_cgroup_charge_statistics(from, page, -nr_pages);
5701	memcg_check_events(from, page);
5702	local_irq_enable();
5703out_unlock:
5704	unlock_page(page);
5705out:
5706	return ret;
5707}
5708
5709/**
5710 * get_mctgt_type - get target type of moving charge
5711 * @vma: the vma the pte to be checked belongs
5712 * @addr: the address corresponding to the pte to be checked
5713 * @ptent: the pte to be checked
5714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5715 *
5716 * Returns
5717 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5718 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5719 *     move charge. if @target is not NULL, the page is stored in target->page
5720 *     with extra refcnt got(Callers should handle it).
5721 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5722 *     target for charge migration. if @target is not NULL, the entry is stored
5723 *     in target->ent.
5724 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5725 *     (so ZONE_DEVICE page and thus not on the lru).
5726 *     For now we such page is charge like a regular page would be as for all
5727 *     intent and purposes it is just special memory taking the place of a
5728 *     regular page.
5729 *
5730 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5731 *
5732 * Called with pte lock held.
5733 */
5734
5735static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5736		unsigned long addr, pte_t ptent, union mc_target *target)
5737{
5738	struct page *page = NULL;
5739	enum mc_target_type ret = MC_TARGET_NONE;
5740	swp_entry_t ent = { .val = 0 };
5741
5742	if (pte_present(ptent))
5743		page = mc_handle_present_pte(vma, addr, ptent);
5744	else if (is_swap_pte(ptent))
5745		page = mc_handle_swap_pte(vma, ptent, &ent);
5746	else if (pte_none(ptent))
5747		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5748
5749	if (!page && !ent.val)
5750		return ret;
5751	if (page) {
5752		/*
5753		 * Do only loose check w/o serialization.
5754		 * mem_cgroup_move_account() checks the page is valid or
5755		 * not under LRU exclusion.
5756		 */
5757		if (page_memcg(page) == mc.from) {
5758			ret = MC_TARGET_PAGE;
5759			if (is_device_private_page(page))
 
5760				ret = MC_TARGET_DEVICE;
5761			if (target)
5762				target->page = page;
5763		}
5764		if (!ret || !target)
5765			put_page(page);
5766	}
5767	/*
5768	 * There is a swap entry and a page doesn't exist or isn't charged.
5769	 * But we cannot move a tail-page in a THP.
5770	 */
5771	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5772	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5773		ret = MC_TARGET_SWAP;
5774		if (target)
5775			target->ent = ent;
5776	}
5777	return ret;
5778}
5779
5780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781/*
5782 * We don't consider PMD mapped swapping or file mapped pages because THP does
5783 * not support them for now.
5784 * Caller should make sure that pmd_trans_huge(pmd) is true.
5785 */
5786static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5787		unsigned long addr, pmd_t pmd, union mc_target *target)
5788{
5789	struct page *page = NULL;
5790	enum mc_target_type ret = MC_TARGET_NONE;
5791
5792	if (unlikely(is_swap_pmd(pmd))) {
5793		VM_BUG_ON(thp_migration_supported() &&
5794				  !is_pmd_migration_entry(pmd));
5795		return ret;
5796	}
5797	page = pmd_page(pmd);
5798	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5799	if (!(mc.flags & MOVE_ANON))
5800		return ret;
5801	if (page_memcg(page) == mc.from) {
5802		ret = MC_TARGET_PAGE;
5803		if (target) {
5804			get_page(page);
5805			target->page = page;
5806		}
5807	}
5808	return ret;
5809}
5810#else
5811static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5812		unsigned long addr, pmd_t pmd, union mc_target *target)
5813{
5814	return MC_TARGET_NONE;
5815}
5816#endif
5817
5818static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5819					unsigned long addr, unsigned long end,
5820					struct mm_walk *walk)
5821{
5822	struct vm_area_struct *vma = walk->vma;
5823	pte_t *pte;
5824	spinlock_t *ptl;
5825
5826	ptl = pmd_trans_huge_lock(pmd, vma);
5827	if (ptl) {
5828		/*
5829		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5830		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5831		 * this might change.
5832		 */
5833		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5834			mc.precharge += HPAGE_PMD_NR;
5835		spin_unlock(ptl);
5836		return 0;
5837	}
5838
5839	if (pmd_trans_unstable(pmd))
5840		return 0;
5841	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5842	for (; addr != end; pte++, addr += PAGE_SIZE)
5843		if (get_mctgt_type(vma, addr, *pte, NULL))
5844			mc.precharge++;	/* increment precharge temporarily */
5845	pte_unmap_unlock(pte - 1, ptl);
5846	cond_resched();
5847
5848	return 0;
5849}
5850
5851static const struct mm_walk_ops precharge_walk_ops = {
5852	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5853};
5854
5855static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5856{
5857	unsigned long precharge;
5858
5859	mmap_read_lock(mm);
5860	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5861	mmap_read_unlock(mm);
 
 
 
 
 
5862
5863	precharge = mc.precharge;
5864	mc.precharge = 0;
5865
5866	return precharge;
5867}
5868
5869static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5870{
5871	unsigned long precharge = mem_cgroup_count_precharge(mm);
5872
5873	VM_BUG_ON(mc.moving_task);
5874	mc.moving_task = current;
5875	return mem_cgroup_do_precharge(precharge);
5876}
5877
5878/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5879static void __mem_cgroup_clear_mc(void)
5880{
5881	struct mem_cgroup *from = mc.from;
5882	struct mem_cgroup *to = mc.to;
5883
5884	/* we must uncharge all the leftover precharges from mc.to */
5885	if (mc.precharge) {
5886		cancel_charge(mc.to, mc.precharge);
5887		mc.precharge = 0;
5888	}
5889	/*
5890	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5891	 * we must uncharge here.
5892	 */
5893	if (mc.moved_charge) {
5894		cancel_charge(mc.from, mc.moved_charge);
5895		mc.moved_charge = 0;
5896	}
5897	/* we must fixup refcnts and charges */
5898	if (mc.moved_swap) {
5899		/* uncharge swap account from the old cgroup */
5900		if (!mem_cgroup_is_root(mc.from))
5901			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5902
5903		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5904
5905		/*
5906		 * we charged both to->memory and to->memsw, so we
5907		 * should uncharge to->memory.
5908		 */
5909		if (!mem_cgroup_is_root(mc.to))
5910			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5911
 
 
 
5912		mc.moved_swap = 0;
5913	}
5914	memcg_oom_recover(from);
5915	memcg_oom_recover(to);
5916	wake_up_all(&mc.waitq);
5917}
5918
5919static void mem_cgroup_clear_mc(void)
5920{
5921	struct mm_struct *mm = mc.mm;
5922
5923	/*
5924	 * we must clear moving_task before waking up waiters at the end of
5925	 * task migration.
5926	 */
5927	mc.moving_task = NULL;
5928	__mem_cgroup_clear_mc();
5929	spin_lock(&mc.lock);
5930	mc.from = NULL;
5931	mc.to = NULL;
5932	mc.mm = NULL;
5933	spin_unlock(&mc.lock);
5934
5935	mmput(mm);
5936}
5937
5938static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5939{
5940	struct cgroup_subsys_state *css;
5941	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5942	struct mem_cgroup *from;
5943	struct task_struct *leader, *p;
5944	struct mm_struct *mm;
5945	unsigned long move_flags;
5946	int ret = 0;
5947
5948	/* charge immigration isn't supported on the default hierarchy */
5949	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950		return 0;
5951
5952	/*
5953	 * Multi-process migrations only happen on the default hierarchy
5954	 * where charge immigration is not used.  Perform charge
5955	 * immigration if @tset contains a leader and whine if there are
5956	 * multiple.
5957	 */
5958	p = NULL;
5959	cgroup_taskset_for_each_leader(leader, css, tset) {
5960		WARN_ON_ONCE(p);
5961		p = leader;
5962		memcg = mem_cgroup_from_css(css);
5963	}
5964	if (!p)
5965		return 0;
5966
5967	/*
5968	 * We are now committed to this value whatever it is. Changes in this
5969	 * tunable will only affect upcoming migrations, not the current one.
5970	 * So we need to save it, and keep it going.
5971	 */
5972	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5973	if (!move_flags)
5974		return 0;
5975
5976	from = mem_cgroup_from_task(p);
5977
5978	VM_BUG_ON(from == memcg);
5979
5980	mm = get_task_mm(p);
5981	if (!mm)
5982		return 0;
5983	/* We move charges only when we move a owner of the mm */
5984	if (mm->owner == p) {
5985		VM_BUG_ON(mc.from);
5986		VM_BUG_ON(mc.to);
5987		VM_BUG_ON(mc.precharge);
5988		VM_BUG_ON(mc.moved_charge);
5989		VM_BUG_ON(mc.moved_swap);
5990
5991		spin_lock(&mc.lock);
5992		mc.mm = mm;
5993		mc.from = from;
5994		mc.to = memcg;
5995		mc.flags = move_flags;
5996		spin_unlock(&mc.lock);
5997		/* We set mc.moving_task later */
5998
5999		ret = mem_cgroup_precharge_mc(mm);
6000		if (ret)
6001			mem_cgroup_clear_mc();
6002	} else {
6003		mmput(mm);
6004	}
6005	return ret;
6006}
6007
6008static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6009{
6010	if (mc.to)
6011		mem_cgroup_clear_mc();
6012}
6013
6014static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6015				unsigned long addr, unsigned long end,
6016				struct mm_walk *walk)
6017{
6018	int ret = 0;
6019	struct vm_area_struct *vma = walk->vma;
6020	pte_t *pte;
6021	spinlock_t *ptl;
6022	enum mc_target_type target_type;
6023	union mc_target target;
6024	struct page *page;
6025
6026	ptl = pmd_trans_huge_lock(pmd, vma);
6027	if (ptl) {
6028		if (mc.precharge < HPAGE_PMD_NR) {
6029			spin_unlock(ptl);
6030			return 0;
6031		}
6032		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6033		if (target_type == MC_TARGET_PAGE) {
6034			page = target.page;
6035			if (!isolate_lru_page(page)) {
6036				if (!mem_cgroup_move_account(page, true,
6037							     mc.from, mc.to)) {
6038					mc.precharge -= HPAGE_PMD_NR;
6039					mc.moved_charge += HPAGE_PMD_NR;
6040				}
6041				putback_lru_page(page);
6042			}
6043			put_page(page);
6044		} else if (target_type == MC_TARGET_DEVICE) {
6045			page = target.page;
6046			if (!mem_cgroup_move_account(page, true,
6047						     mc.from, mc.to)) {
6048				mc.precharge -= HPAGE_PMD_NR;
6049				mc.moved_charge += HPAGE_PMD_NR;
6050			}
6051			put_page(page);
6052		}
6053		spin_unlock(ptl);
6054		return 0;
6055	}
6056
6057	if (pmd_trans_unstable(pmd))
6058		return 0;
6059retry:
6060	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6061	for (; addr != end; addr += PAGE_SIZE) {
6062		pte_t ptent = *(pte++);
6063		bool device = false;
6064		swp_entry_t ent;
6065
6066		if (!mc.precharge)
6067			break;
6068
6069		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6070		case MC_TARGET_DEVICE:
6071			device = true;
6072			fallthrough;
6073		case MC_TARGET_PAGE:
6074			page = target.page;
6075			/*
6076			 * We can have a part of the split pmd here. Moving it
6077			 * can be done but it would be too convoluted so simply
6078			 * ignore such a partial THP and keep it in original
6079			 * memcg. There should be somebody mapping the head.
6080			 */
6081			if (PageTransCompound(page))
6082				goto put;
6083			if (!device && isolate_lru_page(page))
6084				goto put;
6085			if (!mem_cgroup_move_account(page, false,
6086						mc.from, mc.to)) {
6087				mc.precharge--;
6088				/* we uncharge from mc.from later. */
6089				mc.moved_charge++;
6090			}
6091			if (!device)
6092				putback_lru_page(page);
6093put:			/* get_mctgt_type() gets the page */
6094			put_page(page);
6095			break;
6096		case MC_TARGET_SWAP:
6097			ent = target.ent;
6098			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6099				mc.precharge--;
6100				mem_cgroup_id_get_many(mc.to, 1);
6101				/* we fixup other refcnts and charges later. */
6102				mc.moved_swap++;
6103			}
6104			break;
6105		default:
6106			break;
6107		}
6108	}
6109	pte_unmap_unlock(pte - 1, ptl);
6110	cond_resched();
6111
6112	if (addr != end) {
6113		/*
6114		 * We have consumed all precharges we got in can_attach().
6115		 * We try charge one by one, but don't do any additional
6116		 * charges to mc.to if we have failed in charge once in attach()
6117		 * phase.
6118		 */
6119		ret = mem_cgroup_do_precharge(1);
6120		if (!ret)
6121			goto retry;
6122	}
6123
6124	return ret;
6125}
6126
6127static const struct mm_walk_ops charge_walk_ops = {
6128	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6129};
6130
6131static void mem_cgroup_move_charge(void)
6132{
 
 
 
 
 
6133	lru_add_drain_all();
6134	/*
6135	 * Signal lock_page_memcg() to take the memcg's move_lock
6136	 * while we're moving its pages to another memcg. Then wait
6137	 * for already started RCU-only updates to finish.
6138	 */
6139	atomic_inc(&mc.from->moving_account);
6140	synchronize_rcu();
6141retry:
6142	if (unlikely(!mmap_read_trylock(mc.mm))) {
6143		/*
6144		 * Someone who are holding the mmap_lock might be waiting in
6145		 * waitq. So we cancel all extra charges, wake up all waiters,
6146		 * and retry. Because we cancel precharges, we might not be able
6147		 * to move enough charges, but moving charge is a best-effort
6148		 * feature anyway, so it wouldn't be a big problem.
6149		 */
6150		__mem_cgroup_clear_mc();
6151		cond_resched();
6152		goto retry;
6153	}
6154	/*
6155	 * When we have consumed all precharges and failed in doing
6156	 * additional charge, the page walk just aborts.
6157	 */
6158	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6159			NULL);
6160
6161	mmap_read_unlock(mc.mm);
6162	atomic_dec(&mc.from->moving_account);
6163}
6164
6165static void mem_cgroup_move_task(void)
6166{
6167	if (mc.to) {
6168		mem_cgroup_move_charge();
6169		mem_cgroup_clear_mc();
6170	}
6171}
6172#else	/* !CONFIG_MMU */
6173static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6174{
6175	return 0;
6176}
6177static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6178{
6179}
6180static void mem_cgroup_move_task(void)
6181{
6182}
6183#endif
6184
6185static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
 
 
 
 
 
6186{
6187	if (value == PAGE_COUNTER_MAX)
6188		seq_puts(m, "max\n");
 
 
 
 
 
6189	else
6190		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6191
6192	return 0;
6193}
6194
6195static u64 memory_current_read(struct cgroup_subsys_state *css,
6196			       struct cftype *cft)
6197{
6198	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6199
6200	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6201}
6202
6203static int memory_min_show(struct seq_file *m, void *v)
6204{
6205	return seq_puts_memcg_tunable(m,
6206		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6207}
6208
6209static ssize_t memory_min_write(struct kernfs_open_file *of,
6210				char *buf, size_t nbytes, loff_t off)
6211{
6212	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6213	unsigned long min;
6214	int err;
6215
6216	buf = strstrip(buf);
6217	err = page_counter_memparse(buf, "max", &min);
6218	if (err)
6219		return err;
6220
6221	page_counter_set_min(&memcg->memory, min);
6222
6223	return nbytes;
6224}
6225
6226static int memory_low_show(struct seq_file *m, void *v)
6227{
6228	return seq_puts_memcg_tunable(m,
6229		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6230}
6231
6232static ssize_t memory_low_write(struct kernfs_open_file *of,
6233				char *buf, size_t nbytes, loff_t off)
6234{
6235	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6236	unsigned long low;
6237	int err;
6238
6239	buf = strstrip(buf);
6240	err = page_counter_memparse(buf, "max", &low);
6241	if (err)
6242		return err;
6243
6244	page_counter_set_low(&memcg->memory, low);
6245
6246	return nbytes;
6247}
6248
6249static int memory_high_show(struct seq_file *m, void *v)
6250{
6251	return seq_puts_memcg_tunable(m,
6252		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
 
 
 
 
 
 
 
6253}
6254
6255static ssize_t memory_high_write(struct kernfs_open_file *of,
6256				 char *buf, size_t nbytes, loff_t off)
6257{
6258	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6260	bool drained = false;
6261	unsigned long high;
6262	int err;
6263
6264	buf = strstrip(buf);
6265	err = page_counter_memparse(buf, "max", &high);
6266	if (err)
6267		return err;
6268
6269	page_counter_set_high(&memcg->memory, high);
6270
6271	for (;;) {
6272		unsigned long nr_pages = page_counter_read(&memcg->memory);
6273		unsigned long reclaimed;
6274
6275		if (nr_pages <= high)
6276			break;
6277
6278		if (signal_pending(current))
6279			break;
6280
6281		if (!drained) {
6282			drain_all_stock(memcg);
6283			drained = true;
6284			continue;
6285		}
6286
6287		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6288							 GFP_KERNEL, true);
6289
6290		if (!reclaimed && !nr_retries--)
6291			break;
6292	}
 
6293
6294	memcg_wb_domain_size_changed(memcg);
6295	return nbytes;
6296}
6297
6298static int memory_max_show(struct seq_file *m, void *v)
6299{
6300	return seq_puts_memcg_tunable(m,
6301		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
 
 
 
 
 
 
 
6302}
6303
6304static ssize_t memory_max_write(struct kernfs_open_file *of,
6305				char *buf, size_t nbytes, loff_t off)
6306{
6307	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6308	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6309	bool drained = false;
6310	unsigned long max;
6311	int err;
6312
6313	buf = strstrip(buf);
6314	err = page_counter_memparse(buf, "max", &max);
6315	if (err)
6316		return err;
6317
6318	xchg(&memcg->memory.max, max);
6319
6320	for (;;) {
6321		unsigned long nr_pages = page_counter_read(&memcg->memory);
6322
6323		if (nr_pages <= max)
6324			break;
6325
6326		if (signal_pending(current))
 
6327			break;
 
6328
6329		if (!drained) {
6330			drain_all_stock(memcg);
6331			drained = true;
6332			continue;
6333		}
6334
6335		if (nr_reclaims) {
6336			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6337							  GFP_KERNEL, true))
6338				nr_reclaims--;
6339			continue;
6340		}
6341
6342		memcg_memory_event(memcg, MEMCG_OOM);
6343		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6344			break;
6345	}
6346
6347	memcg_wb_domain_size_changed(memcg);
6348	return nbytes;
6349}
6350
6351static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6352{
6353	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6354	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6355	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6356	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6357	seq_printf(m, "oom_kill %lu\n",
6358		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6359}
6360
6361static int memory_events_show(struct seq_file *m, void *v)
6362{
6363	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6364
6365	__memory_events_show(m, memcg->memory_events);
6366	return 0;
6367}
6368
6369static int memory_events_local_show(struct seq_file *m, void *v)
6370{
6371	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
 
 
6372
6373	__memory_events_show(m, memcg->memory_events_local);
6374	return 0;
6375}
6376
6377static int memory_stat_show(struct seq_file *m, void *v)
6378{
6379	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380	char *buf;
6381
6382	buf = memory_stat_format(memcg);
6383	if (!buf)
6384		return -ENOMEM;
6385	seq_puts(m, buf);
6386	kfree(buf);
6387	return 0;
6388}
6389
6390#ifdef CONFIG_NUMA
6391static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6392						     int item)
6393{
6394	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6395}
6396
6397static int memory_numa_stat_show(struct seq_file *m, void *v)
6398{
6399	int i;
6400	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6401
6402	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6403		int nid;
 
 
 
 
 
 
 
 
6404
6405		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6406			continue;
6407
6408		seq_printf(m, "%s", memory_stats[i].name);
6409		for_each_node_state(nid, N_MEMORY) {
6410			u64 size;
6411			struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6412
6413			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6414			size = lruvec_page_state_output(lruvec,
6415							memory_stats[i].idx);
6416			seq_printf(m, " N%d=%llu", nid, size);
6417		}
6418		seq_putc(m, '\n');
6419	}
6420
6421	return 0;
6422}
6423#endif
6424
6425static int memory_oom_group_show(struct seq_file *m, void *v)
6426{
6427	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6428
6429	seq_printf(m, "%d\n", memcg->oom_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6430
6431	return 0;
6432}
6433
6434static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6435				      char *buf, size_t nbytes, loff_t off)
6436{
6437	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6438	int ret, oom_group;
6439
6440	buf = strstrip(buf);
6441	if (!buf)
6442		return -EINVAL;
6443
6444	ret = kstrtoint(buf, 0, &oom_group);
6445	if (ret)
6446		return ret;
6447
6448	if (oom_group != 0 && oom_group != 1)
6449		return -EINVAL;
6450
6451	memcg->oom_group = oom_group;
6452
6453	return nbytes;
6454}
6455
6456static struct cftype memory_files[] = {
6457	{
6458		.name = "current",
6459		.flags = CFTYPE_NOT_ON_ROOT,
6460		.read_u64 = memory_current_read,
6461	},
6462	{
6463		.name = "min",
6464		.flags = CFTYPE_NOT_ON_ROOT,
6465		.seq_show = memory_min_show,
6466		.write = memory_min_write,
6467	},
6468	{
6469		.name = "low",
6470		.flags = CFTYPE_NOT_ON_ROOT,
6471		.seq_show = memory_low_show,
6472		.write = memory_low_write,
6473	},
6474	{
6475		.name = "high",
6476		.flags = CFTYPE_NOT_ON_ROOT,
6477		.seq_show = memory_high_show,
6478		.write = memory_high_write,
6479	},
6480	{
6481		.name = "max",
6482		.flags = CFTYPE_NOT_ON_ROOT,
6483		.seq_show = memory_max_show,
6484		.write = memory_max_write,
6485	},
6486	{
6487		.name = "events",
6488		.flags = CFTYPE_NOT_ON_ROOT,
6489		.file_offset = offsetof(struct mem_cgroup, events_file),
6490		.seq_show = memory_events_show,
6491	},
6492	{
6493		.name = "events.local",
6494		.flags = CFTYPE_NOT_ON_ROOT,
6495		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6496		.seq_show = memory_events_local_show,
6497	},
6498	{
6499		.name = "stat",
6500		.seq_show = memory_stat_show,
6501	},
6502#ifdef CONFIG_NUMA
6503	{
6504		.name = "numa_stat",
6505		.seq_show = memory_numa_stat_show,
6506	},
6507#endif
6508	{
6509		.name = "oom.group",
6510		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6511		.seq_show = memory_oom_group_show,
6512		.write = memory_oom_group_write,
6513	},
6514	{ }	/* terminate */
6515};
6516
6517struct cgroup_subsys memory_cgrp_subsys = {
6518	.css_alloc = mem_cgroup_css_alloc,
6519	.css_online = mem_cgroup_css_online,
6520	.css_offline = mem_cgroup_css_offline,
6521	.css_released = mem_cgroup_css_released,
6522	.css_free = mem_cgroup_css_free,
6523	.css_reset = mem_cgroup_css_reset,
6524	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6525	.can_attach = mem_cgroup_can_attach,
6526	.cancel_attach = mem_cgroup_cancel_attach,
6527	.post_attach = mem_cgroup_move_task,
 
6528	.dfl_cftypes = memory_files,
6529	.legacy_cftypes = mem_cgroup_legacy_files,
6530	.early_init = 0,
6531};
6532
6533/*
6534 * This function calculates an individual cgroup's effective
6535 * protection which is derived from its own memory.min/low, its
6536 * parent's and siblings' settings, as well as the actual memory
6537 * distribution in the tree.
6538 *
6539 * The following rules apply to the effective protection values:
6540 *
6541 * 1. At the first level of reclaim, effective protection is equal to
6542 *    the declared protection in memory.min and memory.low.
6543 *
6544 * 2. To enable safe delegation of the protection configuration, at
6545 *    subsequent levels the effective protection is capped to the
6546 *    parent's effective protection.
6547 *
6548 * 3. To make complex and dynamic subtrees easier to configure, the
6549 *    user is allowed to overcommit the declared protection at a given
6550 *    level. If that is the case, the parent's effective protection is
6551 *    distributed to the children in proportion to how much protection
6552 *    they have declared and how much of it they are utilizing.
6553 *
6554 *    This makes distribution proportional, but also work-conserving:
6555 *    if one cgroup claims much more protection than it uses memory,
6556 *    the unused remainder is available to its siblings.
6557 *
6558 * 4. Conversely, when the declared protection is undercommitted at a
6559 *    given level, the distribution of the larger parental protection
6560 *    budget is NOT proportional. A cgroup's protection from a sibling
6561 *    is capped to its own memory.min/low setting.
6562 *
6563 * 5. However, to allow protecting recursive subtrees from each other
6564 *    without having to declare each individual cgroup's fixed share
6565 *    of the ancestor's claim to protection, any unutilized -
6566 *    "floating" - protection from up the tree is distributed in
6567 *    proportion to each cgroup's *usage*. This makes the protection
6568 *    neutral wrt sibling cgroups and lets them compete freely over
6569 *    the shared parental protection budget, but it protects the
6570 *    subtree as a whole from neighboring subtrees.
6571 *
6572 * Note that 4. and 5. are not in conflict: 4. is about protecting
6573 * against immediate siblings whereas 5. is about protecting against
6574 * neighboring subtrees.
6575 */
6576static unsigned long effective_protection(unsigned long usage,
6577					  unsigned long parent_usage,
6578					  unsigned long setting,
6579					  unsigned long parent_effective,
6580					  unsigned long siblings_protected)
6581{
6582	unsigned long protected;
6583	unsigned long ep;
6584
6585	protected = min(usage, setting);
6586	/*
6587	 * If all cgroups at this level combined claim and use more
6588	 * protection then what the parent affords them, distribute
6589	 * shares in proportion to utilization.
6590	 *
6591	 * We are using actual utilization rather than the statically
6592	 * claimed protection in order to be work-conserving: claimed
6593	 * but unused protection is available to siblings that would
6594	 * otherwise get a smaller chunk than what they claimed.
6595	 */
6596	if (siblings_protected > parent_effective)
6597		return protected * parent_effective / siblings_protected;
6598
6599	/*
6600	 * Ok, utilized protection of all children is within what the
6601	 * parent affords them, so we know whatever this child claims
6602	 * and utilizes is effectively protected.
6603	 *
6604	 * If there is unprotected usage beyond this value, reclaim
6605	 * will apply pressure in proportion to that amount.
6606	 *
6607	 * If there is unutilized protection, the cgroup will be fully
6608	 * shielded from reclaim, but we do return a smaller value for
6609	 * protection than what the group could enjoy in theory. This
6610	 * is okay. With the overcommit distribution above, effective
6611	 * protection is always dependent on how memory is actually
6612	 * consumed among the siblings anyway.
6613	 */
6614	ep = protected;
6615
6616	/*
6617	 * If the children aren't claiming (all of) the protection
6618	 * afforded to them by the parent, distribute the remainder in
6619	 * proportion to the (unprotected) memory of each cgroup. That
6620	 * way, cgroups that aren't explicitly prioritized wrt each
6621	 * other compete freely over the allowance, but they are
6622	 * collectively protected from neighboring trees.
6623	 *
6624	 * We're using unprotected memory for the weight so that if
6625	 * some cgroups DO claim explicit protection, we don't protect
6626	 * the same bytes twice.
6627	 *
6628	 * Check both usage and parent_usage against the respective
6629	 * protected values. One should imply the other, but they
6630	 * aren't read atomically - make sure the division is sane.
6631	 */
6632	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6633		return ep;
6634	if (parent_effective > siblings_protected &&
6635	    parent_usage > siblings_protected &&
6636	    usage > protected) {
6637		unsigned long unclaimed;
6638
6639		unclaimed = parent_effective - siblings_protected;
6640		unclaimed *= usage - protected;
6641		unclaimed /= parent_usage - siblings_protected;
6642
6643		ep += unclaimed;
6644	}
6645
6646	return ep;
6647}
6648
6649/**
6650 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6651 * @root: the top ancestor of the sub-tree being checked
6652 * @memcg: the memory cgroup to check
6653 *
6654 * WARNING: This function is not stateless! It can only be used as part
6655 *          of a top-down tree iteration, not for isolated queries.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6656 */
6657void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6658				     struct mem_cgroup *memcg)
6659{
6660	unsigned long usage, parent_usage;
6661	struct mem_cgroup *parent;
6662
6663	if (mem_cgroup_disabled())
6664		return;
6665
6666	if (!root)
6667		root = root_mem_cgroup;
6668
6669	/*
6670	 * Effective values of the reclaim targets are ignored so they
6671	 * can be stale. Have a look at mem_cgroup_protection for more
6672	 * details.
6673	 * TODO: calculation should be more robust so that we do not need
6674	 * that special casing.
6675	 */
6676	if (memcg == root)
6677		return;
6678
6679	usage = page_counter_read(&memcg->memory);
6680	if (!usage)
6681		return;
6682
6683	parent = parent_mem_cgroup(memcg);
6684	/* No parent means a non-hierarchical mode on v1 memcg */
6685	if (!parent)
6686		return;
6687
6688	if (parent == root) {
6689		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6690		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6691		return;
6692	}
6693
6694	parent_usage = page_counter_read(&parent->memory);
6695
6696	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6697			READ_ONCE(memcg->memory.min),
6698			READ_ONCE(parent->memory.emin),
6699			atomic_long_read(&parent->memory.children_min_usage)));
6700
6701	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6702			READ_ONCE(memcg->memory.low),
6703			READ_ONCE(parent->memory.elow),
6704			atomic_long_read(&parent->memory.children_low_usage)));
6705}
6706
6707static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6708			       gfp_t gfp)
6709{
6710	unsigned int nr_pages = thp_nr_pages(page);
6711	int ret;
6712
6713	ret = try_charge(memcg, gfp, nr_pages);
6714	if (ret)
6715		goto out;
6716
6717	css_get(&memcg->css);
6718	commit_charge(page, memcg);
6719
6720	local_irq_disable();
6721	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6722	memcg_check_events(memcg, page);
6723	local_irq_enable();
6724out:
6725	return ret;
6726}
6727
6728/**
6729 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6730 * @page: page to charge
6731 * @mm: mm context of the victim
6732 * @gfp_mask: reclaim mode
 
 
6733 *
6734 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6735 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6736 * charge to the active memcg.
6737 *
6738 * Do not use this for pages allocated for swapin.
 
6739 *
6740 * Returns 0 on success. Otherwise, an error code is returned.
6741 */
6742int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
 
 
 
 
6743{
6744	struct mem_cgroup *memcg;
6745	int ret;
 
6746
6747	if (mem_cgroup_disabled())
6748		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6749
6750	memcg = get_mem_cgroup_from_mm(mm);
6751	ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6752	css_put(&memcg->css);
6753
 
6754	return ret;
6755}
6756
6757/**
6758 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6759 * @page: page to charge
6760 * @mm: mm context of the victim
6761 * @gfp: reclaim mode
6762 * @entry: swap entry for which the page is allocated
 
 
 
 
 
6763 *
6764 * This function charges a page allocated for swapin. Please call this before
6765 * adding the page to the swapcache.
6766 *
6767 * Returns 0 on success. Otherwise, an error code is returned.
6768 */
6769int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6770				  gfp_t gfp, swp_entry_t entry)
6771{
6772	struct mem_cgroup *memcg;
6773	unsigned short id;
6774	int ret;
 
6775
6776	if (mem_cgroup_disabled())
6777		return 0;
 
 
 
 
 
 
 
6778
6779	id = lookup_swap_cgroup_id(entry);
6780	rcu_read_lock();
6781	memcg = mem_cgroup_from_id(id);
6782	if (!memcg || !css_tryget_online(&memcg->css))
6783		memcg = get_mem_cgroup_from_mm(mm);
6784	rcu_read_unlock();
6785
6786	ret = __mem_cgroup_charge(page, memcg, gfp);
 
 
 
6787
6788	css_put(&memcg->css);
6789	return ret;
 
 
 
 
 
 
 
6790}
6791
6792/*
6793 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6794 * @entry: swap entry for which the page is charged
6795 *
6796 * Call this function after successfully adding the charged page to swapcache.
6797 *
6798 * Note: This function assumes the page for which swap slot is being uncharged
6799 * is order 0 page.
6800 */
6801void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
 
6802{
 
 
 
 
6803	/*
6804	 * Cgroup1's unified memory+swap counter has been charged with the
6805	 * new swapcache page, finish the transfer by uncharging the swap
6806	 * slot. The swap slot would also get uncharged when it dies, but
6807	 * it can stick around indefinitely and we'd count the page twice
6808	 * the entire time.
6809	 *
6810	 * Cgroup2 has separate resource counters for memory and swap,
6811	 * so this is a non-issue here. Memory and swap charge lifetimes
6812	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6813	 * page to memory here, and uncharge swap when the slot is freed.
6814	 */
6815	if (!mem_cgroup_disabled() && do_memsw_account()) {
6816		/*
6817		 * The swap entry might not get freed for a long time,
6818		 * let's not wait for it.  The page already received a
6819		 * memory+swap charge, drop the swap entry duplicate.
6820		 */
6821		mem_cgroup_uncharge_swap(entry, 1);
6822	}
6823}
6824
6825struct uncharge_gather {
6826	struct mem_cgroup *memcg;
6827	unsigned long nr_memory;
6828	unsigned long pgpgout;
 
 
6829	unsigned long nr_kmem;
 
 
6830	struct page *dummy_page;
6831};
6832
6833static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6834{
6835	memset(ug, 0, sizeof(*ug));
6836}
6837
6838static void uncharge_batch(const struct uncharge_gather *ug)
6839{
 
6840	unsigned long flags;
6841
6842	if (ug->nr_memory) {
6843		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6844		if (do_memsw_account())
6845			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6846		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6847			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6848		memcg_oom_recover(ug->memcg);
6849	}
6850
6851	local_irq_save(flags);
 
 
 
 
6852	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6853	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6854	memcg_check_events(ug->memcg, ug->dummy_page);
6855	local_irq_restore(flags);
6856
6857	/* drop reference from uncharge_page */
6858	css_put(&ug->memcg->css);
6859}
6860
6861static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6862{
6863	unsigned long nr_pages;
6864	struct mem_cgroup *memcg;
6865	struct obj_cgroup *objcg;
6866	bool use_objcg = PageMemcgKmem(page);
6867
6868	VM_BUG_ON_PAGE(PageLRU(page), page);
 
6869
6870	/*
6871	 * Nobody should be changing or seriously looking at
6872	 * page memcg or objcg at this point, we have fully
6873	 * exclusive access to the page.
6874	 */
6875	if (use_objcg) {
6876		objcg = __page_objcg(page);
6877		/*
6878		 * This get matches the put at the end of the function and
6879		 * kmem pages do not hold memcg references anymore.
6880		 */
6881		memcg = get_mem_cgroup_from_objcg(objcg);
6882	} else {
6883		memcg = __page_memcg(page);
6884	}
6885
6886	if (!memcg)
6887		return;
6888
6889	if (ug->memcg != memcg) {
6890		if (ug->memcg) {
6891			uncharge_batch(ug);
6892			uncharge_gather_clear(ug);
6893		}
6894		ug->memcg = memcg;
6895		ug->dummy_page = page;
 
 
 
6896
6897		/* pairs with css_put in uncharge_batch */
6898		css_get(&memcg->css);
 
 
 
 
 
 
 
 
 
 
 
 
 
6899	}
6900
6901	nr_pages = compound_nr(page);
 
 
 
 
 
 
 
 
 
6902
6903	if (use_objcg) {
6904		ug->nr_memory += nr_pages;
6905		ug->nr_kmem += nr_pages;
 
 
 
 
6906
6907		page->memcg_data = 0;
6908		obj_cgroup_put(objcg);
6909	} else {
6910		/* LRU pages aren't accounted at the root level */
6911		if (!mem_cgroup_is_root(memcg))
6912			ug->nr_memory += nr_pages;
6913		ug->pgpgout++;
6914
6915		page->memcg_data = 0;
6916	}
6917
6918	css_put(&memcg->css);
 
6919}
6920
6921/**
6922 * mem_cgroup_uncharge - uncharge a page
6923 * @page: page to uncharge
6924 *
6925 * Uncharge a page previously charged with mem_cgroup_charge().
 
6926 */
6927void mem_cgroup_uncharge(struct page *page)
6928{
6929	struct uncharge_gather ug;
6930
6931	if (mem_cgroup_disabled())
6932		return;
6933
6934	/* Don't touch page->lru of any random page, pre-check: */
6935	if (!page_memcg(page))
6936		return;
6937
6938	uncharge_gather_clear(&ug);
6939	uncharge_page(page, &ug);
6940	uncharge_batch(&ug);
6941}
6942
6943/**
6944 * mem_cgroup_uncharge_list - uncharge a list of page
6945 * @page_list: list of pages to uncharge
6946 *
6947 * Uncharge a list of pages previously charged with
6948 * mem_cgroup_charge().
6949 */
6950void mem_cgroup_uncharge_list(struct list_head *page_list)
6951{
6952	struct uncharge_gather ug;
6953	struct page *page;
6954
6955	if (mem_cgroup_disabled())
6956		return;
6957
6958	uncharge_gather_clear(&ug);
6959	list_for_each_entry(page, page_list, lru)
6960		uncharge_page(page, &ug);
6961	if (ug.memcg)
6962		uncharge_batch(&ug);
6963}
6964
6965/**
6966 * mem_cgroup_migrate - charge a page's replacement
6967 * @oldpage: currently circulating page
6968 * @newpage: replacement page
6969 *
6970 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6971 * be uncharged upon free.
6972 *
6973 * Both pages must be locked, @newpage->mapping must be set up.
6974 */
6975void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6976{
6977	struct mem_cgroup *memcg;
6978	unsigned int nr_pages;
 
6979	unsigned long flags;
6980
6981	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6982	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6983	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6984	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6985		       newpage);
6986
6987	if (mem_cgroup_disabled())
6988		return;
6989
6990	/* Page cache replacement: new page already charged? */
6991	if (page_memcg(newpage))
6992		return;
6993
6994	memcg = page_memcg(oldpage);
6995	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6996	if (!memcg)
6997		return;
6998
6999	/* Force-charge the new page. The old one will be freed soon */
7000	nr_pages = thp_nr_pages(newpage);
 
7001
7002	if (!mem_cgroup_is_root(memcg)) {
7003		page_counter_charge(&memcg->memory, nr_pages);
7004		if (do_memsw_account())
7005			page_counter_charge(&memcg->memsw, nr_pages);
7006	}
7007
7008	css_get(&memcg->css);
7009	commit_charge(newpage, memcg);
7010
7011	local_irq_save(flags);
7012	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7013	memcg_check_events(memcg, newpage);
7014	local_irq_restore(flags);
7015}
7016
7017DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7018EXPORT_SYMBOL(memcg_sockets_enabled_key);
7019
7020void mem_cgroup_sk_alloc(struct sock *sk)
7021{
7022	struct mem_cgroup *memcg;
7023
7024	if (!mem_cgroup_sockets_enabled)
7025		return;
7026
7027	/* Do not associate the sock with unrelated interrupted task's memcg. */
7028	if (in_interrupt())
 
 
 
 
 
 
 
 
 
7029		return;
 
7030
7031	rcu_read_lock();
7032	memcg = mem_cgroup_from_task(current);
7033	if (memcg == root_mem_cgroup)
7034		goto out;
7035	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7036		goto out;
7037	if (css_tryget(&memcg->css))
7038		sk->sk_memcg = memcg;
7039out:
7040	rcu_read_unlock();
7041}
7042
7043void mem_cgroup_sk_free(struct sock *sk)
7044{
7045	if (sk->sk_memcg)
7046		css_put(&sk->sk_memcg->css);
7047}
7048
7049/**
7050 * mem_cgroup_charge_skmem - charge socket memory
7051 * @memcg: memcg to charge
7052 * @nr_pages: number of pages to charge
7053 *
7054 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7055 * @memcg's configured limit, %false if the charge had to be forced.
7056 */
7057bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7058{
7059	gfp_t gfp_mask = GFP_KERNEL;
7060
7061	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7062		struct page_counter *fail;
7063
7064		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7065			memcg->tcpmem_pressure = 0;
7066			return true;
7067		}
7068		page_counter_charge(&memcg->tcpmem, nr_pages);
7069		memcg->tcpmem_pressure = 1;
7070		return false;
7071	}
7072
7073	/* Don't block in the packet receive path */
7074	if (in_softirq())
7075		gfp_mask = GFP_NOWAIT;
7076
7077	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7078
7079	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7080		return true;
7081
7082	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7083	return false;
7084}
7085
7086/**
7087 * mem_cgroup_uncharge_skmem - uncharge socket memory
7088 * @memcg: memcg to uncharge
7089 * @nr_pages: number of pages to uncharge
7090 */
7091void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7092{
7093	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7094		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7095		return;
7096	}
7097
7098	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7099
7100	refill_stock(memcg, nr_pages);
7101}
7102
7103static int __init cgroup_memory(char *s)
7104{
7105	char *token;
7106
7107	while ((token = strsep(&s, ",")) != NULL) {
7108		if (!*token)
7109			continue;
7110		if (!strcmp(token, "nosocket"))
7111			cgroup_memory_nosocket = true;
7112		if (!strcmp(token, "nokmem"))
7113			cgroup_memory_nokmem = true;
7114	}
7115	return 0;
7116}
7117__setup("cgroup.memory=", cgroup_memory);
7118
7119/*
7120 * subsys_initcall() for memory controller.
7121 *
7122 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7123 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7124 * basically everything that doesn't depend on a specific mem_cgroup structure
7125 * should be initialized from here.
7126 */
7127static int __init mem_cgroup_init(void)
7128{
7129	int cpu, node;
7130
 
7131	/*
7132	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7133	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7134	 * to work fine, we should make sure that the overfill threshold can't
7135	 * exceed S32_MAX / PAGE_SIZE.
7136	 */
7137	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
 
 
7138
7139	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7140				  memcg_hotplug_cpu_dead);
7141
7142	for_each_possible_cpu(cpu)
7143		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7144			  drain_local_stock);
7145
7146	for_each_node(node) {
7147		struct mem_cgroup_tree_per_node *rtpn;
7148
7149		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7150				    node_online(node) ? node : NUMA_NO_NODE);
7151
7152		rtpn->rb_root = RB_ROOT;
7153		rtpn->rb_rightmost = NULL;
7154		spin_lock_init(&rtpn->lock);
7155		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7156	}
7157
7158	return 0;
7159}
7160subsys_initcall(mem_cgroup_init);
7161
7162#ifdef CONFIG_MEMCG_SWAP
7163static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7164{
7165	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7166		/*
7167		 * The root cgroup cannot be destroyed, so it's refcount must
7168		 * always be >= 1.
7169		 */
7170		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7171			VM_BUG_ON(1);
7172			break;
7173		}
7174		memcg = parent_mem_cgroup(memcg);
7175		if (!memcg)
7176			memcg = root_mem_cgroup;
7177	}
7178	return memcg;
7179}
7180
7181/**
7182 * mem_cgroup_swapout - transfer a memsw charge to swap
7183 * @page: page whose memsw charge to transfer
7184 * @entry: swap entry to move the charge to
7185 *
7186 * Transfer the memsw charge of @page to @entry.
7187 */
7188void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7189{
7190	struct mem_cgroup *memcg, *swap_memcg;
7191	unsigned int nr_entries;
7192	unsigned short oldid;
7193
7194	VM_BUG_ON_PAGE(PageLRU(page), page);
7195	VM_BUG_ON_PAGE(page_count(page), page);
7196
7197	if (mem_cgroup_disabled())
7198		return;
7199
7200	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201		return;
7202
7203	memcg = page_memcg(page);
7204
7205	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7206	if (!memcg)
7207		return;
7208
7209	/*
7210	 * In case the memcg owning these pages has been offlined and doesn't
7211	 * have an ID allocated to it anymore, charge the closest online
7212	 * ancestor for the swap instead and transfer the memory+swap charge.
7213	 */
7214	swap_memcg = mem_cgroup_id_get_online(memcg);
7215	nr_entries = thp_nr_pages(page);
7216	/* Get references for the tail pages, too */
7217	if (nr_entries > 1)
7218		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7219	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7220				   nr_entries);
7221	VM_BUG_ON_PAGE(oldid, page);
7222	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7223
7224	page->memcg_data = 0;
7225
7226	if (!mem_cgroup_is_root(memcg))
7227		page_counter_uncharge(&memcg->memory, nr_entries);
7228
7229	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7230		if (!mem_cgroup_is_root(swap_memcg))
7231			page_counter_charge(&swap_memcg->memsw, nr_entries);
7232		page_counter_uncharge(&memcg->memsw, nr_entries);
7233	}
7234
7235	/*
7236	 * Interrupts should be disabled here because the caller holds the
7237	 * i_pages lock which is taken with interrupts-off. It is
7238	 * important here to have the interrupts disabled because it is the
7239	 * only synchronisation we have for updating the per-CPU variables.
7240	 */
7241	VM_BUG_ON(!irqs_disabled());
7242	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
 
7243	memcg_check_events(memcg, page);
7244
7245	css_put(&memcg->css);
 
7246}
7247
7248/**
7249 * mem_cgroup_try_charge_swap - try charging swap space for a page
7250 * @page: page being added to swap
7251 * @entry: swap entry to charge
7252 *
7253 * Try to charge @page's memcg for the swap space at @entry.
7254 *
7255 * Returns 0 on success, -ENOMEM on failure.
7256 */
7257int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7258{
7259	unsigned int nr_pages = thp_nr_pages(page);
7260	struct page_counter *counter;
7261	struct mem_cgroup *memcg;
7262	unsigned short oldid;
7263
7264	if (mem_cgroup_disabled())
7265		return 0;
7266
7267	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7268		return 0;
7269
7270	memcg = page_memcg(page);
7271
7272	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7273	if (!memcg)
7274		return 0;
7275
7276	if (!entry.val) {
7277		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278		return 0;
7279	}
7280
7281	memcg = mem_cgroup_id_get_online(memcg);
7282
7283	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7284	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7285		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7286		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7287		mem_cgroup_id_put(memcg);
7288		return -ENOMEM;
7289	}
7290
7291	/* Get references for the tail pages, too */
7292	if (nr_pages > 1)
7293		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7294	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7295	VM_BUG_ON_PAGE(oldid, page);
7296	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7297
7298	return 0;
7299}
7300
7301/**
7302 * mem_cgroup_uncharge_swap - uncharge swap space
7303 * @entry: swap entry to uncharge
7304 * @nr_pages: the amount of swap space to uncharge
7305 */
7306void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7307{
7308	struct mem_cgroup *memcg;
7309	unsigned short id;
7310
 
 
 
7311	id = swap_cgroup_record(entry, 0, nr_pages);
7312	rcu_read_lock();
7313	memcg = mem_cgroup_from_id(id);
7314	if (memcg) {
7315		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7316			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7317				page_counter_uncharge(&memcg->swap, nr_pages);
7318			else
7319				page_counter_uncharge(&memcg->memsw, nr_pages);
7320		}
7321		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7322		mem_cgroup_id_put_many(memcg, nr_pages);
7323	}
7324	rcu_read_unlock();
7325}
7326
7327long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7328{
7329	long nr_swap_pages = get_nr_swap_pages();
7330
7331	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7332		return nr_swap_pages;
7333	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7334		nr_swap_pages = min_t(long, nr_swap_pages,
7335				      READ_ONCE(memcg->swap.max) -
7336				      page_counter_read(&memcg->swap));
7337	return nr_swap_pages;
7338}
7339
7340bool mem_cgroup_swap_full(struct page *page)
7341{
7342	struct mem_cgroup *memcg;
7343
7344	VM_BUG_ON_PAGE(!PageLocked(page), page);
7345
7346	if (vm_swap_full())
7347		return true;
7348	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7349		return false;
7350
7351	memcg = page_memcg(page);
7352	if (!memcg)
7353		return false;
7354
7355	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7356		unsigned long usage = page_counter_read(&memcg->swap);
7357
7358		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7359		    usage * 2 >= READ_ONCE(memcg->swap.max))
7360			return true;
7361	}
7362
7363	return false;
7364}
7365
7366static int __init setup_swap_account(char *s)
 
 
 
 
 
 
 
7367{
7368	if (!strcmp(s, "1"))
7369		cgroup_memory_noswap = false;
7370	else if (!strcmp(s, "0"))
7371		cgroup_memory_noswap = true;
7372	return 1;
7373}
7374__setup("swapaccount=", setup_swap_account);
7375
7376static u64 swap_current_read(struct cgroup_subsys_state *css,
7377			     struct cftype *cft)
7378{
7379	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7380
7381	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7382}
7383
7384static int swap_high_show(struct seq_file *m, void *v)
7385{
7386	return seq_puts_memcg_tunable(m,
7387		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7388}
7389
7390static ssize_t swap_high_write(struct kernfs_open_file *of,
7391			       char *buf, size_t nbytes, loff_t off)
7392{
7393	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7394	unsigned long high;
7395	int err;
7396
7397	buf = strstrip(buf);
7398	err = page_counter_memparse(buf, "max", &high);
7399	if (err)
7400		return err;
7401
7402	page_counter_set_high(&memcg->swap, high);
7403
7404	return nbytes;
7405}
7406
7407static int swap_max_show(struct seq_file *m, void *v)
7408{
7409	return seq_puts_memcg_tunable(m,
7410		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7411}
7412
7413static ssize_t swap_max_write(struct kernfs_open_file *of,
7414			      char *buf, size_t nbytes, loff_t off)
7415{
7416	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7417	unsigned long max;
7418	int err;
7419
7420	buf = strstrip(buf);
7421	err = page_counter_memparse(buf, "max", &max);
7422	if (err)
7423		return err;
7424
7425	xchg(&memcg->swap.max, max);
 
 
 
 
7426
7427	return nbytes;
7428}
7429
7430static int swap_events_show(struct seq_file *m, void *v)
7431{
7432	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7433
7434	seq_printf(m, "high %lu\n",
7435		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7436	seq_printf(m, "max %lu\n",
7437		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7438	seq_printf(m, "fail %lu\n",
7439		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7440
7441	return 0;
7442}
7443
7444static struct cftype swap_files[] = {
7445	{
7446		.name = "swap.current",
7447		.flags = CFTYPE_NOT_ON_ROOT,
7448		.read_u64 = swap_current_read,
7449	},
7450	{
7451		.name = "swap.high",
7452		.flags = CFTYPE_NOT_ON_ROOT,
7453		.seq_show = swap_high_show,
7454		.write = swap_high_write,
7455	},
7456	{
7457		.name = "swap.max",
7458		.flags = CFTYPE_NOT_ON_ROOT,
7459		.seq_show = swap_max_show,
7460		.write = swap_max_write,
7461	},
7462	{
7463		.name = "swap.events",
7464		.flags = CFTYPE_NOT_ON_ROOT,
7465		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7466		.seq_show = swap_events_show,
7467	},
7468	{ }	/* terminate */
7469};
7470
7471static struct cftype memsw_files[] = {
7472	{
7473		.name = "memsw.usage_in_bytes",
7474		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7475		.read_u64 = mem_cgroup_read_u64,
7476	},
7477	{
7478		.name = "memsw.max_usage_in_bytes",
7479		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7480		.write = mem_cgroup_reset,
7481		.read_u64 = mem_cgroup_read_u64,
7482	},
7483	{
7484		.name = "memsw.limit_in_bytes",
7485		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7486		.write = mem_cgroup_write,
7487		.read_u64 = mem_cgroup_read_u64,
7488	},
7489	{
7490		.name = "memsw.failcnt",
7491		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7492		.write = mem_cgroup_reset,
7493		.read_u64 = mem_cgroup_read_u64,
7494	},
7495	{ },	/* terminate */
7496};
7497
7498/*
7499 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7500 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7501 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7502 * boot parameter. This may result in premature OOPS inside
7503 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7504 */
7505static int __init mem_cgroup_swap_init(void)
7506{
7507	/* No memory control -> no swap control */
7508	if (mem_cgroup_disabled())
7509		cgroup_memory_noswap = true;
7510
7511	if (cgroup_memory_noswap)
7512		return 0;
7513
7514	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7515	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7516
7517	return 0;
7518}
7519core_initcall(mem_cgroup_swap_init);
7520
7521#endif /* CONFIG_MEMCG_SWAP */