Linux Audio

Check our new training course

Loading...
v4.17
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * Native page reclaim
  18 * Charge lifetime sanitation
  19 * Lockless page tracking & accounting
  20 * Unified hierarchy configuration model
  21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22 *
  23 * This program is free software; you can redistribute it and/or modify
  24 * it under the terms of the GNU General Public License as published by
  25 * the Free Software Foundation; either version 2 of the License, or
  26 * (at your option) any later version.
  27 *
  28 * This program is distributed in the hope that it will be useful,
  29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  31 * GNU General Public License for more details.
  32 */
  33
  34#include <linux/page_counter.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cgroup.h>
  37#include <linux/mm.h>
  38#include <linux/sched/mm.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/hugetlb.h>
  41#include <linux/pagemap.h>
  42#include <linux/smp.h>
  43#include <linux/page-flags.h>
  44#include <linux/backing-dev.h>
  45#include <linux/bit_spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/limits.h>
  48#include <linux/export.h>
  49#include <linux/mutex.h>
  50#include <linux/rbtree.h>
  51#include <linux/slab.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/spinlock.h>
  55#include <linux/eventfd.h>
  56#include <linux/poll.h>
  57#include <linux/sort.h>
  58#include <linux/fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/vmpressure.h>
  61#include <linux/mm_inline.h>
  62#include <linux/swap_cgroup.h>
  63#include <linux/cpu.h>
  64#include <linux/oom.h>
  65#include <linux/lockdep.h>
  66#include <linux/file.h>
  67#include <linux/tracehook.h>
  68#include "internal.h"
  69#include <net/sock.h>
  70#include <net/ip.h>
  71#include "slab.h"
  72
  73#include <linux/uaccess.h>
  74
  75#include <trace/events/vmscan.h>
  76
  77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  78EXPORT_SYMBOL(memory_cgrp_subsys);
  79
  80struct mem_cgroup *root_mem_cgroup __read_mostly;
  81
  82#define MEM_CGROUP_RECLAIM_RETRIES	5
  83
  84/* Socket memory accounting disabled? */
  85static bool cgroup_memory_nosocket;
  86
  87/* Kernel memory accounting disabled? */
  88static bool cgroup_memory_nokmem;
  89
  90/* Whether the swap controller is active */
  91#ifdef CONFIG_MEMCG_SWAP
  92int do_swap_account __read_mostly;
  93#else
  94#define do_swap_account		0
  95#endif
  96
  97/* Whether legacy memory+swap accounting is active */
  98static bool do_memsw_account(void)
  99{
 100	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
 101}
 102
 103static const char *const mem_cgroup_lru_names[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104	"inactive_anon",
 105	"active_anon",
 106	"inactive_file",
 107	"active_file",
 108	"unevictable",
 109};
 110
 111#define THRESHOLDS_EVENTS_TARGET 128
 112#define SOFTLIMIT_EVENTS_TARGET 1024
 113#define NUMAINFO_EVENTS_TARGET	1024
 114
 115/*
 116 * Cgroups above their limits are maintained in a RB-Tree, independent of
 117 * their hierarchy representation
 118 */
 119
 120struct mem_cgroup_tree_per_node {
 121	struct rb_root rb_root;
 122	struct rb_node *rb_rightmost;
 123	spinlock_t lock;
 124};
 125
 126struct mem_cgroup_tree {
 127	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 128};
 129
 130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 131
 132/* for OOM */
 133struct mem_cgroup_eventfd_list {
 134	struct list_head list;
 135	struct eventfd_ctx *eventfd;
 136};
 137
 138/*
 139 * cgroup_event represents events which userspace want to receive.
 140 */
 141struct mem_cgroup_event {
 142	/*
 143	 * memcg which the event belongs to.
 144	 */
 145	struct mem_cgroup *memcg;
 146	/*
 147	 * eventfd to signal userspace about the event.
 148	 */
 149	struct eventfd_ctx *eventfd;
 150	/*
 151	 * Each of these stored in a list by the cgroup.
 152	 */
 153	struct list_head list;
 154	/*
 155	 * register_event() callback will be used to add new userspace
 156	 * waiter for changes related to this event.  Use eventfd_signal()
 157	 * on eventfd to send notification to userspace.
 158	 */
 159	int (*register_event)(struct mem_cgroup *memcg,
 160			      struct eventfd_ctx *eventfd, const char *args);
 161	/*
 162	 * unregister_event() callback will be called when userspace closes
 163	 * the eventfd or on cgroup removing.  This callback must be set,
 164	 * if you want provide notification functionality.
 165	 */
 166	void (*unregister_event)(struct mem_cgroup *memcg,
 167				 struct eventfd_ctx *eventfd);
 168	/*
 169	 * All fields below needed to unregister event when
 170	 * userspace closes eventfd.
 171	 */
 172	poll_table pt;
 173	wait_queue_head_t *wqh;
 174	wait_queue_entry_t wait;
 175	struct work_struct remove;
 176};
 177
 178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 180
 181/* Stuffs for move charges at task migration. */
 182/*
 183 * Types of charges to be moved.
 184 */
 185#define MOVE_ANON	0x1U
 186#define MOVE_FILE	0x2U
 187#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 188
 189/* "mc" and its members are protected by cgroup_mutex */
 190static struct move_charge_struct {
 191	spinlock_t	  lock; /* for from, to */
 192	struct mm_struct  *mm;
 193	struct mem_cgroup *from;
 194	struct mem_cgroup *to;
 195	unsigned long flags;
 196	unsigned long precharge;
 197	unsigned long moved_charge;
 198	unsigned long moved_swap;
 199	struct task_struct *moving_task;	/* a task moving charges */
 200	wait_queue_head_t waitq;		/* a waitq for other context */
 201} mc = {
 202	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 203	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 204};
 205
 206/*
 207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 208 * limit reclaim to prevent infinite loops, if they ever occur.
 209 */
 210#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 211#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 212
 213enum charge_type {
 214	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 215	MEM_CGROUP_CHARGE_TYPE_ANON,
 216	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 217	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 218	NR_CHARGE_TYPE,
 219};
 220
 221/* for encoding cft->private value on file */
 222enum res_type {
 223	_MEM,
 224	_MEMSWAP,
 225	_OOM_TYPE,
 226	_KMEM,
 227	_TCP,
 228};
 229
 230#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 231#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 232#define MEMFILE_ATTR(val)	((val) & 0xffff)
 233/* Used for OOM nofiier */
 234#define OOM_CONTROL		(0)
 235
 236/* Some nice accessors for the vmpressure. */
 237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 238{
 239	if (!memcg)
 240		memcg = root_mem_cgroup;
 241	return &memcg->vmpressure;
 242}
 243
 244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 245{
 246	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 247}
 248
 249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 250{
 251	return (memcg == root_mem_cgroup);
 252}
 253
 254#ifndef CONFIG_SLOB
 255/*
 256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 257 * The main reason for not using cgroup id for this:
 258 *  this works better in sparse environments, where we have a lot of memcgs,
 259 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 260 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 261 *  200 entry array for that.
 262 *
 263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 264 * will double each time we have to increase it.
 265 */
 266static DEFINE_IDA(memcg_cache_ida);
 267int memcg_nr_cache_ids;
 268
 269/* Protects memcg_nr_cache_ids */
 270static DECLARE_RWSEM(memcg_cache_ids_sem);
 271
 272void memcg_get_cache_ids(void)
 273{
 274	down_read(&memcg_cache_ids_sem);
 275}
 276
 277void memcg_put_cache_ids(void)
 278{
 279	up_read(&memcg_cache_ids_sem);
 280}
 281
 282/*
 283 * MIN_SIZE is different than 1, because we would like to avoid going through
 284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 285 * cgroups is a reasonable guess. In the future, it could be a parameter or
 286 * tunable, but that is strictly not necessary.
 287 *
 288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 289 * this constant directly from cgroup, but it is understandable that this is
 290 * better kept as an internal representation in cgroup.c. In any case, the
 291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 292 * increase ours as well if it increases.
 293 */
 294#define MEMCG_CACHES_MIN_SIZE 4
 295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 296
 297/*
 298 * A lot of the calls to the cache allocation functions are expected to be
 299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 300 * conditional to this static branch, we'll have to allow modules that does
 301 * kmem_cache_alloc and the such to see this symbol as well
 302 */
 303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 304EXPORT_SYMBOL(memcg_kmem_enabled_key);
 305
 306struct workqueue_struct *memcg_kmem_cache_wq;
 307
 308#endif /* !CONFIG_SLOB */
 309
 310/**
 311 * mem_cgroup_css_from_page - css of the memcg associated with a page
 312 * @page: page of interest
 313 *
 314 * If memcg is bound to the default hierarchy, css of the memcg associated
 315 * with @page is returned.  The returned css remains associated with @page
 316 * until it is released.
 317 *
 318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 319 * is returned.
 320 */
 321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 322{
 323	struct mem_cgroup *memcg;
 324
 325	memcg = page->mem_cgroup;
 326
 327	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 328		memcg = root_mem_cgroup;
 329
 330	return &memcg->css;
 331}
 332
 333/**
 334 * page_cgroup_ino - return inode number of the memcg a page is charged to
 335 * @page: the page
 336 *
 337 * Look up the closest online ancestor of the memory cgroup @page is charged to
 338 * and return its inode number or 0 if @page is not charged to any cgroup. It
 339 * is safe to call this function without holding a reference to @page.
 340 *
 341 * Note, this function is inherently racy, because there is nothing to prevent
 342 * the cgroup inode from getting torn down and potentially reallocated a moment
 343 * after page_cgroup_ino() returns, so it only should be used by callers that
 344 * do not care (such as procfs interfaces).
 345 */
 346ino_t page_cgroup_ino(struct page *page)
 347{
 348	struct mem_cgroup *memcg;
 349	unsigned long ino = 0;
 350
 351	rcu_read_lock();
 352	memcg = READ_ONCE(page->mem_cgroup);
 353	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 354		memcg = parent_mem_cgroup(memcg);
 355	if (memcg)
 356		ino = cgroup_ino(memcg->css.cgroup);
 357	rcu_read_unlock();
 358	return ino;
 359}
 360
 361static struct mem_cgroup_per_node *
 362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 363{
 364	int nid = page_to_nid(page);
 365
 366	return memcg->nodeinfo[nid];
 367}
 368
 369static struct mem_cgroup_tree_per_node *
 370soft_limit_tree_node(int nid)
 371{
 372	return soft_limit_tree.rb_tree_per_node[nid];
 373}
 374
 375static struct mem_cgroup_tree_per_node *
 376soft_limit_tree_from_page(struct page *page)
 377{
 378	int nid = page_to_nid(page);
 379
 380	return soft_limit_tree.rb_tree_per_node[nid];
 381}
 382
 383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 384					 struct mem_cgroup_tree_per_node *mctz,
 385					 unsigned long new_usage_in_excess)
 386{
 387	struct rb_node **p = &mctz->rb_root.rb_node;
 388	struct rb_node *parent = NULL;
 389	struct mem_cgroup_per_node *mz_node;
 390	bool rightmost = true;
 391
 392	if (mz->on_tree)
 393		return;
 394
 395	mz->usage_in_excess = new_usage_in_excess;
 396	if (!mz->usage_in_excess)
 397		return;
 398	while (*p) {
 399		parent = *p;
 400		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 401					tree_node);
 402		if (mz->usage_in_excess < mz_node->usage_in_excess) {
 403			p = &(*p)->rb_left;
 404			rightmost = false;
 405		}
 406
 407		/*
 408		 * We can't avoid mem cgroups that are over their soft
 409		 * limit by the same amount
 410		 */
 411		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 412			p = &(*p)->rb_right;
 413	}
 414
 415	if (rightmost)
 416		mctz->rb_rightmost = &mz->tree_node;
 417
 418	rb_link_node(&mz->tree_node, parent, p);
 419	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 420	mz->on_tree = true;
 421}
 422
 423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 424					 struct mem_cgroup_tree_per_node *mctz)
 425{
 426	if (!mz->on_tree)
 427		return;
 428
 429	if (&mz->tree_node == mctz->rb_rightmost)
 430		mctz->rb_rightmost = rb_prev(&mz->tree_node);
 431
 432	rb_erase(&mz->tree_node, &mctz->rb_root);
 433	mz->on_tree = false;
 434}
 435
 436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 437				       struct mem_cgroup_tree_per_node *mctz)
 438{
 439	unsigned long flags;
 440
 441	spin_lock_irqsave(&mctz->lock, flags);
 442	__mem_cgroup_remove_exceeded(mz, mctz);
 443	spin_unlock_irqrestore(&mctz->lock, flags);
 444}
 445
 446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 447{
 448	unsigned long nr_pages = page_counter_read(&memcg->memory);
 449	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 450	unsigned long excess = 0;
 451
 452	if (nr_pages > soft_limit)
 453		excess = nr_pages - soft_limit;
 454
 455	return excess;
 456}
 457
 458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 459{
 460	unsigned long excess;
 461	struct mem_cgroup_per_node *mz;
 462	struct mem_cgroup_tree_per_node *mctz;
 463
 464	mctz = soft_limit_tree_from_page(page);
 465	if (!mctz)
 466		return;
 467	/*
 468	 * Necessary to update all ancestors when hierarchy is used.
 469	 * because their event counter is not touched.
 470	 */
 471	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 472		mz = mem_cgroup_page_nodeinfo(memcg, page);
 473		excess = soft_limit_excess(memcg);
 474		/*
 475		 * We have to update the tree if mz is on RB-tree or
 476		 * mem is over its softlimit.
 477		 */
 478		if (excess || mz->on_tree) {
 479			unsigned long flags;
 480
 481			spin_lock_irqsave(&mctz->lock, flags);
 482			/* if on-tree, remove it */
 483			if (mz->on_tree)
 484				__mem_cgroup_remove_exceeded(mz, mctz);
 485			/*
 486			 * Insert again. mz->usage_in_excess will be updated.
 487			 * If excess is 0, no tree ops.
 488			 */
 489			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 490			spin_unlock_irqrestore(&mctz->lock, flags);
 491		}
 492	}
 493}
 494
 495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 496{
 497	struct mem_cgroup_tree_per_node *mctz;
 498	struct mem_cgroup_per_node *mz;
 499	int nid;
 500
 501	for_each_node(nid) {
 502		mz = mem_cgroup_nodeinfo(memcg, nid);
 503		mctz = soft_limit_tree_node(nid);
 504		if (mctz)
 505			mem_cgroup_remove_exceeded(mz, mctz);
 506	}
 507}
 508
 509static struct mem_cgroup_per_node *
 510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 511{
 
 512	struct mem_cgroup_per_node *mz;
 513
 514retry:
 515	mz = NULL;
 516	if (!mctz->rb_rightmost)
 
 517		goto done;		/* Nothing to reclaim from */
 518
 519	mz = rb_entry(mctz->rb_rightmost,
 520		      struct mem_cgroup_per_node, tree_node);
 521	/*
 522	 * Remove the node now but someone else can add it back,
 523	 * we will to add it back at the end of reclaim to its correct
 524	 * position in the tree.
 525	 */
 526	__mem_cgroup_remove_exceeded(mz, mctz);
 527	if (!soft_limit_excess(mz->memcg) ||
 528	    !css_tryget_online(&mz->memcg->css))
 529		goto retry;
 530done:
 531	return mz;
 532}
 533
 534static struct mem_cgroup_per_node *
 535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 536{
 537	struct mem_cgroup_per_node *mz;
 538
 539	spin_lock_irq(&mctz->lock);
 540	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 541	spin_unlock_irq(&mctz->lock);
 542	return mz;
 543}
 544
 545static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
 546				      int event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547{
 548	return atomic_long_read(&memcg->events[event]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549}
 550
 551static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 552					 struct page *page,
 553					 bool compound, int nr_pages)
 554{
 555	/*
 556	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 557	 * counted as CACHE even if it's on ANON LRU.
 558	 */
 559	if (PageAnon(page))
 560		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
 561	else {
 562		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
 563		if (PageSwapBacked(page))
 564			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
 565	}
 566
 567	if (compound) {
 568		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 569		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
 
 570	}
 571
 572	/* pagein of a big page is an event. So, ignore page size */
 573	if (nr_pages > 0)
 574		__count_memcg_events(memcg, PGPGIN, 1);
 575	else {
 576		__count_memcg_events(memcg, PGPGOUT, 1);
 577		nr_pages = -nr_pages; /* for event */
 578	}
 579
 580	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
 581}
 582
 583unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 584					   int nid, unsigned int lru_mask)
 585{
 586	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
 587	unsigned long nr = 0;
 588	enum lru_list lru;
 589
 590	VM_BUG_ON((unsigned)nid >= nr_node_ids);
 591
 592	for_each_lru(lru) {
 593		if (!(BIT(lru) & lru_mask))
 594			continue;
 595		nr += mem_cgroup_get_lru_size(lruvec, lru);
 596	}
 597	return nr;
 598}
 599
 600static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 601			unsigned int lru_mask)
 602{
 603	unsigned long nr = 0;
 604	int nid;
 605
 606	for_each_node_state(nid, N_MEMORY)
 607		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 608	return nr;
 609}
 610
 611static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 612				       enum mem_cgroup_events_target target)
 613{
 614	unsigned long val, next;
 615
 616	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
 617	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
 618	/* from time_after() in jiffies.h */
 619	if ((long)(next - val) < 0) {
 620		switch (target) {
 621		case MEM_CGROUP_TARGET_THRESH:
 622			next = val + THRESHOLDS_EVENTS_TARGET;
 623			break;
 624		case MEM_CGROUP_TARGET_SOFTLIMIT:
 625			next = val + SOFTLIMIT_EVENTS_TARGET;
 626			break;
 627		case MEM_CGROUP_TARGET_NUMAINFO:
 628			next = val + NUMAINFO_EVENTS_TARGET;
 629			break;
 630		default:
 631			break;
 632		}
 633		__this_cpu_write(memcg->stat_cpu->targets[target], next);
 634		return true;
 635	}
 636	return false;
 637}
 638
 639/*
 640 * Check events in order.
 641 *
 642 */
 643static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 644{
 645	/* threshold event is triggered in finer grain than soft limit */
 646	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 647						MEM_CGROUP_TARGET_THRESH))) {
 648		bool do_softlimit;
 649		bool do_numainfo __maybe_unused;
 650
 651		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 652						MEM_CGROUP_TARGET_SOFTLIMIT);
 653#if MAX_NUMNODES > 1
 654		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 655						MEM_CGROUP_TARGET_NUMAINFO);
 656#endif
 657		mem_cgroup_threshold(memcg);
 658		if (unlikely(do_softlimit))
 659			mem_cgroup_update_tree(memcg, page);
 660#if MAX_NUMNODES > 1
 661		if (unlikely(do_numainfo))
 662			atomic_inc(&memcg->numainfo_events);
 663#endif
 664	}
 665}
 666
 667struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 668{
 669	/*
 670	 * mm_update_next_owner() may clear mm->owner to NULL
 671	 * if it races with swapoff, page migration, etc.
 672	 * So this can be called with p == NULL.
 673	 */
 674	if (unlikely(!p))
 675		return NULL;
 676
 677	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 678}
 679EXPORT_SYMBOL(mem_cgroup_from_task);
 680
 681static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 682{
 683	struct mem_cgroup *memcg = NULL;
 684
 685	rcu_read_lock();
 686	do {
 687		/*
 688		 * Page cache insertions can happen withou an
 689		 * actual mm context, e.g. during disk probing
 690		 * on boot, loopback IO, acct() writes etc.
 691		 */
 692		if (unlikely(!mm))
 693			memcg = root_mem_cgroup;
 694		else {
 695			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 696			if (unlikely(!memcg))
 697				memcg = root_mem_cgroup;
 698		}
 699	} while (!css_tryget_online(&memcg->css));
 700	rcu_read_unlock();
 701	return memcg;
 702}
 703
 704/**
 705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 706 * @root: hierarchy root
 707 * @prev: previously returned memcg, NULL on first invocation
 708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 709 *
 710 * Returns references to children of the hierarchy below @root, or
 711 * @root itself, or %NULL after a full round-trip.
 712 *
 713 * Caller must pass the return value in @prev on subsequent
 714 * invocations for reference counting, or use mem_cgroup_iter_break()
 715 * to cancel a hierarchy walk before the round-trip is complete.
 716 *
 717 * Reclaimers can specify a node and a priority level in @reclaim to
 718 * divide up the memcgs in the hierarchy among all concurrent
 719 * reclaimers operating on the same node and priority.
 720 */
 721struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 722				   struct mem_cgroup *prev,
 723				   struct mem_cgroup_reclaim_cookie *reclaim)
 724{
 725	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 726	struct cgroup_subsys_state *css = NULL;
 727	struct mem_cgroup *memcg = NULL;
 728	struct mem_cgroup *pos = NULL;
 729
 730	if (mem_cgroup_disabled())
 731		return NULL;
 732
 733	if (!root)
 734		root = root_mem_cgroup;
 735
 736	if (prev && !reclaim)
 737		pos = prev;
 738
 739	if (!root->use_hierarchy && root != root_mem_cgroup) {
 740		if (prev)
 741			goto out;
 742		return root;
 743	}
 744
 745	rcu_read_lock();
 746
 747	if (reclaim) {
 748		struct mem_cgroup_per_node *mz;
 749
 750		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
 751		iter = &mz->iter[reclaim->priority];
 752
 753		if (prev && reclaim->generation != iter->generation)
 754			goto out_unlock;
 755
 756		while (1) {
 757			pos = READ_ONCE(iter->position);
 758			if (!pos || css_tryget(&pos->css))
 759				break;
 760			/*
 761			 * css reference reached zero, so iter->position will
 762			 * be cleared by ->css_released. However, we should not
 763			 * rely on this happening soon, because ->css_released
 764			 * is called from a work queue, and by busy-waiting we
 765			 * might block it. So we clear iter->position right
 766			 * away.
 767			 */
 768			(void)cmpxchg(&iter->position, pos, NULL);
 769		}
 770	}
 771
 772	if (pos)
 773		css = &pos->css;
 774
 775	for (;;) {
 776		css = css_next_descendant_pre(css, &root->css);
 777		if (!css) {
 778			/*
 779			 * Reclaimers share the hierarchy walk, and a
 780			 * new one might jump in right at the end of
 781			 * the hierarchy - make sure they see at least
 782			 * one group and restart from the beginning.
 783			 */
 784			if (!prev)
 785				continue;
 786			break;
 787		}
 788
 789		/*
 790		 * Verify the css and acquire a reference.  The root
 791		 * is provided by the caller, so we know it's alive
 792		 * and kicking, and don't take an extra reference.
 793		 */
 794		memcg = mem_cgroup_from_css(css);
 795
 796		if (css == &root->css)
 797			break;
 798
 799		if (css_tryget(css))
 800			break;
 801
 802		memcg = NULL;
 803	}
 804
 805	if (reclaim) {
 806		/*
 807		 * The position could have already been updated by a competing
 808		 * thread, so check that the value hasn't changed since we read
 809		 * it to avoid reclaiming from the same cgroup twice.
 810		 */
 811		(void)cmpxchg(&iter->position, pos, memcg);
 812
 813		if (pos)
 814			css_put(&pos->css);
 815
 816		if (!memcg)
 817			iter->generation++;
 818		else if (!prev)
 819			reclaim->generation = iter->generation;
 820	}
 821
 822out_unlock:
 823	rcu_read_unlock();
 824out:
 825	if (prev && prev != root)
 826		css_put(&prev->css);
 827
 828	return memcg;
 829}
 830
 831/**
 832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 833 * @root: hierarchy root
 834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 835 */
 836void mem_cgroup_iter_break(struct mem_cgroup *root,
 837			   struct mem_cgroup *prev)
 838{
 839	if (!root)
 840		root = root_mem_cgroup;
 841	if (prev && prev != root)
 842		css_put(&prev->css);
 843}
 844
 845static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 846{
 847	struct mem_cgroup *memcg = dead_memcg;
 848	struct mem_cgroup_reclaim_iter *iter;
 849	struct mem_cgroup_per_node *mz;
 850	int nid;
 851	int i;
 852
 853	while ((memcg = parent_mem_cgroup(memcg))) {
 854		for_each_node(nid) {
 855			mz = mem_cgroup_nodeinfo(memcg, nid);
 856			for (i = 0; i <= DEF_PRIORITY; i++) {
 857				iter = &mz->iter[i];
 858				cmpxchg(&iter->position,
 859					dead_memcg, NULL);
 860			}
 861		}
 862	}
 863}
 864
 865/*
 866 * Iteration constructs for visiting all cgroups (under a tree).  If
 867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 868 * be used for reference counting.
 869 */
 870#define for_each_mem_cgroup_tree(iter, root)		\
 871	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 872	     iter != NULL;				\
 873	     iter = mem_cgroup_iter(root, iter, NULL))
 874
 875#define for_each_mem_cgroup(iter)			\
 876	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 877	     iter != NULL;				\
 878	     iter = mem_cgroup_iter(NULL, iter, NULL))
 879
 880/**
 881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 882 * @memcg: hierarchy root
 883 * @fn: function to call for each task
 884 * @arg: argument passed to @fn
 885 *
 886 * This function iterates over tasks attached to @memcg or to any of its
 887 * descendants and calls @fn for each task. If @fn returns a non-zero
 888 * value, the function breaks the iteration loop and returns the value.
 889 * Otherwise, it will iterate over all tasks and return 0.
 890 *
 891 * This function must not be called for the root memory cgroup.
 892 */
 893int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
 894			  int (*fn)(struct task_struct *, void *), void *arg)
 895{
 896	struct mem_cgroup *iter;
 897	int ret = 0;
 898
 899	BUG_ON(memcg == root_mem_cgroup);
 900
 901	for_each_mem_cgroup_tree(iter, memcg) {
 902		struct css_task_iter it;
 903		struct task_struct *task;
 904
 905		css_task_iter_start(&iter->css, 0, &it);
 906		while (!ret && (task = css_task_iter_next(&it)))
 907			ret = fn(task, arg);
 908		css_task_iter_end(&it);
 909		if (ret) {
 910			mem_cgroup_iter_break(memcg, iter);
 911			break;
 912		}
 913	}
 914	return ret;
 915}
 916
 917/**
 918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 919 * @page: the page
 920 * @pgdat: pgdat of the page
 921 *
 922 * This function is only safe when following the LRU page isolation
 923 * and putback protocol: the LRU lock must be held, and the page must
 924 * either be PageLRU() or the caller must have isolated/allocated it.
 925 */
 926struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
 927{
 928	struct mem_cgroup_per_node *mz;
 929	struct mem_cgroup *memcg;
 930	struct lruvec *lruvec;
 931
 932	if (mem_cgroup_disabled()) {
 933		lruvec = &pgdat->lruvec;
 934		goto out;
 935	}
 936
 937	memcg = page->mem_cgroup;
 938	/*
 939	 * Swapcache readahead pages are added to the LRU - and
 940	 * possibly migrated - before they are charged.
 941	 */
 942	if (!memcg)
 943		memcg = root_mem_cgroup;
 944
 945	mz = mem_cgroup_page_nodeinfo(memcg, page);
 946	lruvec = &mz->lruvec;
 947out:
 948	/*
 949	 * Since a node can be onlined after the mem_cgroup was created,
 950	 * we have to be prepared to initialize lruvec->zone here;
 951	 * and if offlined then reonlined, we need to reinitialize it.
 952	 */
 953	if (unlikely(lruvec->pgdat != pgdat))
 954		lruvec->pgdat = pgdat;
 955	return lruvec;
 956}
 957
 958/**
 959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 960 * @lruvec: mem_cgroup per zone lru vector
 961 * @lru: index of lru list the page is sitting on
 962 * @zid: zone id of the accounted pages
 963 * @nr_pages: positive when adding or negative when removing
 964 *
 965 * This function must be called under lru_lock, just before a page is added
 966 * to or just after a page is removed from an lru list (that ordering being
 967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
 968 */
 969void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 970				int zid, int nr_pages)
 971{
 972	struct mem_cgroup_per_node *mz;
 973	unsigned long *lru_size;
 974	long size;
 975
 976	if (mem_cgroup_disabled())
 977		return;
 978
 979	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 980	lru_size = &mz->lru_zone_size[zid][lru];
 981
 982	if (nr_pages < 0)
 983		*lru_size += nr_pages;
 984
 985	size = *lru_size;
 986	if (WARN_ONCE(size < 0,
 987		"%s(%p, %d, %d): lru_size %ld\n",
 988		__func__, lruvec, lru, nr_pages, size)) {
 989		VM_BUG_ON(1);
 990		*lru_size = 0;
 991	}
 992
 993	if (nr_pages > 0)
 994		*lru_size += nr_pages;
 995}
 996
 997bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
 998{
 999	struct mem_cgroup *task_memcg;
1000	struct task_struct *p;
1001	bool ret;
1002
1003	p = find_lock_task_mm(task);
1004	if (p) {
1005		task_memcg = get_mem_cgroup_from_mm(p->mm);
1006		task_unlock(p);
1007	} else {
1008		/*
1009		 * All threads may have already detached their mm's, but the oom
1010		 * killer still needs to detect if they have already been oom
1011		 * killed to prevent needlessly killing additional tasks.
1012		 */
1013		rcu_read_lock();
1014		task_memcg = mem_cgroup_from_task(task);
1015		css_get(&task_memcg->css);
1016		rcu_read_unlock();
1017	}
1018	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019	css_put(&task_memcg->css);
1020	return ret;
1021}
1022
1023/**
1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025 * @memcg: the memory cgroup
1026 *
1027 * Returns the maximum amount of memory @mem can be charged with, in
1028 * pages.
1029 */
1030static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1031{
1032	unsigned long margin = 0;
1033	unsigned long count;
1034	unsigned long limit;
1035
1036	count = page_counter_read(&memcg->memory);
1037	limit = READ_ONCE(memcg->memory.limit);
1038	if (count < limit)
1039		margin = limit - count;
1040
1041	if (do_memsw_account()) {
1042		count = page_counter_read(&memcg->memsw);
1043		limit = READ_ONCE(memcg->memsw.limit);
1044		if (count <= limit)
1045			margin = min(margin, limit - count);
1046		else
1047			margin = 0;
1048	}
1049
1050	return margin;
1051}
1052
1053/*
1054 * A routine for checking "mem" is under move_account() or not.
1055 *
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1058 * caused by "move".
1059 */
1060static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1061{
1062	struct mem_cgroup *from;
1063	struct mem_cgroup *to;
1064	bool ret = false;
1065	/*
1066	 * Unlike task_move routines, we access mc.to, mc.from not under
1067	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1068	 */
1069	spin_lock(&mc.lock);
1070	from = mc.from;
1071	to = mc.to;
1072	if (!from)
1073		goto unlock;
1074
1075	ret = mem_cgroup_is_descendant(from, memcg) ||
1076		mem_cgroup_is_descendant(to, memcg);
1077unlock:
1078	spin_unlock(&mc.lock);
1079	return ret;
1080}
1081
1082static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1083{
1084	if (mc.moving_task && current != mc.moving_task) {
1085		if (mem_cgroup_under_move(memcg)) {
1086			DEFINE_WAIT(wait);
1087			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088			/* moving charge context might have finished. */
1089			if (mc.moving_task)
1090				schedule();
1091			finish_wait(&mc.waitq, &wait);
1092			return true;
1093		}
1094	}
1095	return false;
1096}
1097
1098static const unsigned int memcg1_stats[] = {
1099	MEMCG_CACHE,
1100	MEMCG_RSS,
1101	MEMCG_RSS_HUGE,
1102	NR_SHMEM,
1103	NR_FILE_MAPPED,
1104	NR_FILE_DIRTY,
1105	NR_WRITEBACK,
1106	MEMCG_SWAP,
1107};
1108
1109static const char *const memcg1_stat_names[] = {
1110	"cache",
1111	"rss",
1112	"rss_huge",
1113	"shmem",
1114	"mapped_file",
1115	"dirty",
1116	"writeback",
1117	"swap",
1118};
1119
1120#define K(x) ((x) << (PAGE_SHIFT-10))
1121/**
1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1125 *
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1127 * enabled
1128 */
1129void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1130{
1131	struct mem_cgroup *iter;
1132	unsigned int i;
1133
1134	rcu_read_lock();
1135
1136	if (p) {
1137		pr_info("Task in ");
1138		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139		pr_cont(" killed as a result of limit of ");
1140	} else {
1141		pr_info("Memory limit reached of cgroup ");
1142	}
1143
1144	pr_cont_cgroup_path(memcg->css.cgroup);
1145	pr_cont("\n");
1146
1147	rcu_read_unlock();
1148
1149	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150		K((u64)page_counter_read(&memcg->memory)),
1151		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1152	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153		K((u64)page_counter_read(&memcg->memsw)),
1154		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1155	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156		K((u64)page_counter_read(&memcg->kmem)),
1157		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1158
1159	for_each_mem_cgroup_tree(iter, memcg) {
1160		pr_info("Memory cgroup stats for ");
1161		pr_cont_cgroup_path(iter->css.cgroup);
1162		pr_cont(":");
1163
1164		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166				continue;
1167			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168				K(memcg_page_state(iter, memcg1_stats[i])));
1169		}
1170
1171		for (i = 0; i < NR_LRU_LISTS; i++)
1172			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1174
1175		pr_cont("\n");
1176	}
1177}
1178
1179/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180 * Return the memory (and swap, if configured) limit for a memcg.
1181 */
1182unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1183{
1184	unsigned long limit;
1185
1186	limit = memcg->memory.limit;
1187	if (mem_cgroup_swappiness(memcg)) {
1188		unsigned long memsw_limit;
1189		unsigned long swap_limit;
1190
1191		memsw_limit = memcg->memsw.limit;
1192		swap_limit = memcg->swap.limit;
1193		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1194		limit = min(limit + swap_limit, memsw_limit);
1195	}
1196	return limit;
1197}
1198
1199static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200				     int order)
1201{
1202	struct oom_control oc = {
1203		.zonelist = NULL,
1204		.nodemask = NULL,
1205		.memcg = memcg,
1206		.gfp_mask = gfp_mask,
1207		.order = order,
1208	};
1209	bool ret;
1210
1211	mutex_lock(&oom_lock);
1212	ret = out_of_memory(&oc);
1213	mutex_unlock(&oom_lock);
1214	return ret;
1215}
1216
1217#if MAX_NUMNODES > 1
1218
1219/**
1220 * test_mem_cgroup_node_reclaimable
1221 * @memcg: the target memcg
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1224 *
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1228 */
1229static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230		int nid, bool noswap)
1231{
1232	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233		return true;
1234	if (noswap || !total_swap_pages)
1235		return false;
1236	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237		return true;
1238	return false;
1239
1240}
1241
1242/*
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1246 *
1247 */
1248static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1249{
1250	int nid;
1251	/*
1252	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253	 * pagein/pageout changes since the last update.
1254	 */
1255	if (!atomic_read(&memcg->numainfo_events))
1256		return;
1257	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258		return;
1259
1260	/* make a nodemask where this memcg uses memory from */
1261	memcg->scan_nodes = node_states[N_MEMORY];
1262
1263	for_each_node_mask(nid, node_states[N_MEMORY]) {
1264
1265		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266			node_clear(nid, memcg->scan_nodes);
1267	}
1268
1269	atomic_set(&memcg->numainfo_events, 0);
1270	atomic_set(&memcg->numainfo_updating, 0);
1271}
1272
1273/*
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1277 *
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1282 *
1283 * Now, we use round-robin. Better algorithm is welcomed.
1284 */
1285int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1286{
1287	int node;
1288
1289	mem_cgroup_may_update_nodemask(memcg);
1290	node = memcg->last_scanned_node;
1291
1292	node = next_node_in(node, memcg->scan_nodes);
1293	/*
1294	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295	 * last time it really checked all the LRUs due to rate limiting.
1296	 * Fallback to the current node in that case for simplicity.
1297	 */
1298	if (unlikely(node == MAX_NUMNODES))
1299		node = numa_node_id();
1300
1301	memcg->last_scanned_node = node;
1302	return node;
1303}
1304#else
1305int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1306{
1307	return 0;
1308}
1309#endif
1310
1311static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312				   pg_data_t *pgdat,
1313				   gfp_t gfp_mask,
1314				   unsigned long *total_scanned)
1315{
1316	struct mem_cgroup *victim = NULL;
1317	int total = 0;
1318	int loop = 0;
1319	unsigned long excess;
1320	unsigned long nr_scanned;
1321	struct mem_cgroup_reclaim_cookie reclaim = {
1322		.pgdat = pgdat,
1323		.priority = 0,
1324	};
1325
1326	excess = soft_limit_excess(root_memcg);
1327
1328	while (1) {
1329		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1330		if (!victim) {
1331			loop++;
1332			if (loop >= 2) {
1333				/*
1334				 * If we have not been able to reclaim
1335				 * anything, it might because there are
1336				 * no reclaimable pages under this hierarchy
1337				 */
1338				if (!total)
1339					break;
1340				/*
1341				 * We want to do more targeted reclaim.
1342				 * excess >> 2 is not to excessive so as to
1343				 * reclaim too much, nor too less that we keep
1344				 * coming back to reclaim from this cgroup
1345				 */
1346				if (total >= (excess >> 2) ||
1347					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1348					break;
1349			}
1350			continue;
1351		}
1352		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353					pgdat, &nr_scanned);
1354		*total_scanned += nr_scanned;
1355		if (!soft_limit_excess(root_memcg))
1356			break;
1357	}
1358	mem_cgroup_iter_break(root_memcg, victim);
1359	return total;
1360}
1361
1362#ifdef CONFIG_LOCKDEP
1363static struct lockdep_map memcg_oom_lock_dep_map = {
1364	.name = "memcg_oom_lock",
1365};
1366#endif
1367
1368static DEFINE_SPINLOCK(memcg_oom_lock);
1369
1370/*
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1373 */
1374static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1375{
1376	struct mem_cgroup *iter, *failed = NULL;
1377
1378	spin_lock(&memcg_oom_lock);
1379
1380	for_each_mem_cgroup_tree(iter, memcg) {
1381		if (iter->oom_lock) {
1382			/*
1383			 * this subtree of our hierarchy is already locked
1384			 * so we cannot give a lock.
1385			 */
1386			failed = iter;
1387			mem_cgroup_iter_break(memcg, iter);
1388			break;
1389		} else
1390			iter->oom_lock = true;
1391	}
1392
1393	if (failed) {
1394		/*
1395		 * OK, we failed to lock the whole subtree so we have
1396		 * to clean up what we set up to the failing subtree
1397		 */
1398		for_each_mem_cgroup_tree(iter, memcg) {
1399			if (iter == failed) {
1400				mem_cgroup_iter_break(memcg, iter);
1401				break;
1402			}
1403			iter->oom_lock = false;
1404		}
1405	} else
1406		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1407
1408	spin_unlock(&memcg_oom_lock);
1409
1410	return !failed;
1411}
1412
1413static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1414{
1415	struct mem_cgroup *iter;
1416
1417	spin_lock(&memcg_oom_lock);
1418	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419	for_each_mem_cgroup_tree(iter, memcg)
1420		iter->oom_lock = false;
1421	spin_unlock(&memcg_oom_lock);
1422}
1423
1424static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1425{
1426	struct mem_cgroup *iter;
1427
1428	spin_lock(&memcg_oom_lock);
1429	for_each_mem_cgroup_tree(iter, memcg)
1430		iter->under_oom++;
1431	spin_unlock(&memcg_oom_lock);
1432}
1433
1434static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1435{
1436	struct mem_cgroup *iter;
1437
1438	/*
1439	 * When a new child is created while the hierarchy is under oom,
1440	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1441	 */
1442	spin_lock(&memcg_oom_lock);
1443	for_each_mem_cgroup_tree(iter, memcg)
1444		if (iter->under_oom > 0)
1445			iter->under_oom--;
1446	spin_unlock(&memcg_oom_lock);
1447}
1448
1449static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1450
1451struct oom_wait_info {
1452	struct mem_cgroup *memcg;
1453	wait_queue_entry_t	wait;
1454};
1455
1456static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1457	unsigned mode, int sync, void *arg)
1458{
1459	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460	struct mem_cgroup *oom_wait_memcg;
1461	struct oom_wait_info *oom_wait_info;
1462
1463	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464	oom_wait_memcg = oom_wait_info->memcg;
1465
1466	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1468		return 0;
1469	return autoremove_wake_function(wait, mode, sync, arg);
1470}
1471
1472static void memcg_oom_recover(struct mem_cgroup *memcg)
1473{
1474	/*
1475	 * For the following lockless ->under_oom test, the only required
1476	 * guarantee is that it must see the state asserted by an OOM when
1477	 * this function is called as a result of userland actions
1478	 * triggered by the notification of the OOM.  This is trivially
1479	 * achieved by invoking mem_cgroup_mark_under_oom() before
1480	 * triggering notification.
1481	 */
1482	if (memcg && memcg->under_oom)
1483		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1484}
1485
1486static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1487{
1488	if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489		return;
1490	/*
1491	 * We are in the middle of the charge context here, so we
1492	 * don't want to block when potentially sitting on a callstack
1493	 * that holds all kinds of filesystem and mm locks.
1494	 *
1495	 * Also, the caller may handle a failed allocation gracefully
1496	 * (like optional page cache readahead) and so an OOM killer
1497	 * invocation might not even be necessary.
1498	 *
1499	 * That's why we don't do anything here except remember the
1500	 * OOM context and then deal with it at the end of the page
1501	 * fault when the stack is unwound, the locks are released,
1502	 * and when we know whether the fault was overall successful.
1503	 */
1504	css_get(&memcg->css);
1505	current->memcg_in_oom = memcg;
1506	current->memcg_oom_gfp_mask = mask;
1507	current->memcg_oom_order = order;
1508}
1509
1510/**
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512 * @handle: actually kill/wait or just clean up the OOM state
1513 *
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
1516 *
1517 * Memcg supports userspace OOM handling where failed allocations must
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation.  Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522 * the end of the page fault to complete the OOM handling.
1523 *
1524 * Returns %true if an ongoing memcg OOM situation was detected and
1525 * completed, %false otherwise.
1526 */
1527bool mem_cgroup_oom_synchronize(bool handle)
1528{
1529	struct mem_cgroup *memcg = current->memcg_in_oom;
1530	struct oom_wait_info owait;
1531	bool locked;
1532
1533	/* OOM is global, do not handle */
1534	if (!memcg)
1535		return false;
1536
1537	if (!handle)
1538		goto cleanup;
1539
1540	owait.memcg = memcg;
1541	owait.wait.flags = 0;
1542	owait.wait.func = memcg_oom_wake_function;
1543	owait.wait.private = current;
1544	INIT_LIST_HEAD(&owait.wait.entry);
1545
1546	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547	mem_cgroup_mark_under_oom(memcg);
1548
1549	locked = mem_cgroup_oom_trylock(memcg);
1550
1551	if (locked)
1552		mem_cgroup_oom_notify(memcg);
1553
1554	if (locked && !memcg->oom_kill_disable) {
1555		mem_cgroup_unmark_under_oom(memcg);
1556		finish_wait(&memcg_oom_waitq, &owait.wait);
1557		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558					 current->memcg_oom_order);
1559	} else {
1560		schedule();
1561		mem_cgroup_unmark_under_oom(memcg);
1562		finish_wait(&memcg_oom_waitq, &owait.wait);
1563	}
1564
1565	if (locked) {
1566		mem_cgroup_oom_unlock(memcg);
1567		/*
1568		 * There is no guarantee that an OOM-lock contender
1569		 * sees the wakeups triggered by the OOM kill
1570		 * uncharges.  Wake any sleepers explicitely.
1571		 */
1572		memcg_oom_recover(memcg);
1573	}
1574cleanup:
1575	current->memcg_in_oom = NULL;
1576	css_put(&memcg->css);
1577	return true;
1578}
1579
1580/**
1581 * lock_page_memcg - lock a page->mem_cgroup binding
1582 * @page: the page
1583 *
1584 * This function protects unlocked LRU pages from being moved to
1585 * another cgroup.
1586 *
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
1590 */
1591struct mem_cgroup *lock_page_memcg(struct page *page)
1592{
1593	struct mem_cgroup *memcg;
1594	unsigned long flags;
1595
1596	/*
1597	 * The RCU lock is held throughout the transaction.  The fast
1598	 * path can get away without acquiring the memcg->move_lock
1599	 * because page moving starts with an RCU grace period.
1600	 *
1601	 * The RCU lock also protects the memcg from being freed when
1602	 * the page state that is going to change is the only thing
1603	 * preventing the page itself from being freed. E.g. writeback
1604	 * doesn't hold a page reference and relies on PG_writeback to
1605	 * keep off truncation, migration and so forth.
1606         */
1607	rcu_read_lock();
1608
1609	if (mem_cgroup_disabled())
1610		return NULL;
1611again:
1612	memcg = page->mem_cgroup;
1613	if (unlikely(!memcg))
1614		return NULL;
1615
1616	if (atomic_read(&memcg->moving_account) <= 0)
1617		return memcg;
1618
1619	spin_lock_irqsave(&memcg->move_lock, flags);
1620	if (memcg != page->mem_cgroup) {
1621		spin_unlock_irqrestore(&memcg->move_lock, flags);
1622		goto again;
1623	}
1624
1625	/*
1626	 * When charge migration first begins, we can have locked and
1627	 * unlocked page stat updates happening concurrently.  Track
1628	 * the task who has the lock for unlock_page_memcg().
1629	 */
1630	memcg->move_lock_task = current;
1631	memcg->move_lock_flags = flags;
1632
1633	return memcg;
1634}
1635EXPORT_SYMBOL(lock_page_memcg);
1636
1637/**
1638 * __unlock_page_memcg - unlock and unpin a memcg
1639 * @memcg: the memcg
1640 *
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
1642 */
1643void __unlock_page_memcg(struct mem_cgroup *memcg)
1644{
 
 
1645	if (memcg && memcg->move_lock_task == current) {
1646		unsigned long flags = memcg->move_lock_flags;
1647
1648		memcg->move_lock_task = NULL;
1649		memcg->move_lock_flags = 0;
1650
1651		spin_unlock_irqrestore(&memcg->move_lock, flags);
1652	}
1653
1654	rcu_read_unlock();
1655}
1656
1657/**
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1659 * @page: the page
1660 */
1661void unlock_page_memcg(struct page *page)
1662{
1663	__unlock_page_memcg(page->mem_cgroup);
1664}
1665EXPORT_SYMBOL(unlock_page_memcg);
1666
 
 
 
 
 
1667struct memcg_stock_pcp {
1668	struct mem_cgroup *cached; /* this never be root cgroup */
1669	unsigned int nr_pages;
1670	struct work_struct work;
1671	unsigned long flags;
1672#define FLUSHING_CACHED_CHARGE	0
1673};
1674static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675static DEFINE_MUTEX(percpu_charge_mutex);
1676
1677/**
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1681 *
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock.  Failure to
1684 * service an allocation will refill the stock.
1685 *
1686 * returns true if successful, false otherwise.
1687 */
1688static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1689{
1690	struct memcg_stock_pcp *stock;
1691	unsigned long flags;
1692	bool ret = false;
1693
1694	if (nr_pages > MEMCG_CHARGE_BATCH)
1695		return ret;
1696
1697	local_irq_save(flags);
1698
1699	stock = this_cpu_ptr(&memcg_stock);
1700	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701		stock->nr_pages -= nr_pages;
1702		ret = true;
1703	}
1704
1705	local_irq_restore(flags);
1706
1707	return ret;
1708}
1709
1710/*
1711 * Returns stocks cached in percpu and reset cached information.
1712 */
1713static void drain_stock(struct memcg_stock_pcp *stock)
1714{
1715	struct mem_cgroup *old = stock->cached;
1716
1717	if (stock->nr_pages) {
1718		page_counter_uncharge(&old->memory, stock->nr_pages);
1719		if (do_memsw_account())
1720			page_counter_uncharge(&old->memsw, stock->nr_pages);
1721		css_put_many(&old->css, stock->nr_pages);
1722		stock->nr_pages = 0;
1723	}
1724	stock->cached = NULL;
1725}
1726
1727static void drain_local_stock(struct work_struct *dummy)
1728{
1729	struct memcg_stock_pcp *stock;
1730	unsigned long flags;
1731
1732	/*
1733	 * The only protection from memory hotplug vs. drain_stock races is
1734	 * that we always operate on local CPU stock here with IRQ disabled
1735	 */
1736	local_irq_save(flags);
1737
1738	stock = this_cpu_ptr(&memcg_stock);
1739	drain_stock(stock);
1740	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1741
1742	local_irq_restore(flags);
1743}
1744
1745/*
1746 * Cache charges(val) to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1748 */
1749static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1750{
1751	struct memcg_stock_pcp *stock;
1752	unsigned long flags;
1753
1754	local_irq_save(flags);
1755
1756	stock = this_cpu_ptr(&memcg_stock);
1757	if (stock->cached != memcg) { /* reset if necessary */
1758		drain_stock(stock);
1759		stock->cached = memcg;
1760	}
1761	stock->nr_pages += nr_pages;
1762
1763	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764		drain_stock(stock);
1765
1766	local_irq_restore(flags);
1767}
1768
1769/*
1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771 * of the hierarchy under it.
1772 */
1773static void drain_all_stock(struct mem_cgroup *root_memcg)
1774{
1775	int cpu, curcpu;
1776
1777	/* If someone's already draining, avoid adding running more workers. */
1778	if (!mutex_trylock(&percpu_charge_mutex))
1779		return;
1780	/*
1781	 * Notify other cpus that system-wide "drain" is running
1782	 * We do not care about races with the cpu hotplug because cpu down
1783	 * as well as workers from this path always operate on the local
1784	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1785	 */
1786	curcpu = get_cpu();
1787	for_each_online_cpu(cpu) {
1788		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789		struct mem_cgroup *memcg;
1790
1791		memcg = stock->cached;
1792		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793			continue;
1794		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795			css_put(&memcg->css);
1796			continue;
1797		}
1798		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1799			if (cpu == curcpu)
1800				drain_local_stock(&stock->work);
1801			else
1802				schedule_work_on(cpu, &stock->work);
1803		}
1804		css_put(&memcg->css);
1805	}
1806	put_cpu();
 
1807	mutex_unlock(&percpu_charge_mutex);
1808}
1809
1810static int memcg_hotplug_cpu_dead(unsigned int cpu)
1811{
1812	struct memcg_stock_pcp *stock;
1813	struct mem_cgroup *memcg;
1814
1815	stock = &per_cpu(memcg_stock, cpu);
1816	drain_stock(stock);
1817
1818	for_each_mem_cgroup(memcg) {
1819		int i;
1820
1821		for (i = 0; i < MEMCG_NR_STAT; i++) {
1822			int nid;
1823			long x;
1824
1825			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1826			if (x)
1827				atomic_long_add(x, &memcg->stat[i]);
1828
1829			if (i >= NR_VM_NODE_STAT_ITEMS)
1830				continue;
1831
1832			for_each_node(nid) {
1833				struct mem_cgroup_per_node *pn;
1834
1835				pn = mem_cgroup_nodeinfo(memcg, nid);
1836				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1837				if (x)
1838					atomic_long_add(x, &pn->lruvec_stat[i]);
1839			}
1840		}
1841
1842		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843			long x;
1844
1845			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1846			if (x)
1847				atomic_long_add(x, &memcg->events[i]);
1848		}
1849	}
1850
1851	return 0;
1852}
1853
1854static void reclaim_high(struct mem_cgroup *memcg,
1855			 unsigned int nr_pages,
1856			 gfp_t gfp_mask)
1857{
1858	do {
1859		if (page_counter_read(&memcg->memory) <= memcg->high)
1860			continue;
1861		memcg_memory_event(memcg, MEMCG_HIGH);
1862		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863	} while ((memcg = parent_mem_cgroup(memcg)));
1864}
1865
1866static void high_work_func(struct work_struct *work)
1867{
1868	struct mem_cgroup *memcg;
1869
1870	memcg = container_of(work, struct mem_cgroup, high_work);
1871	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1872}
1873
1874/*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878void mem_cgroup_handle_over_high(void)
1879{
1880	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881	struct mem_cgroup *memcg;
1882
1883	if (likely(!nr_pages))
1884		return;
1885
1886	memcg = get_mem_cgroup_from_mm(current->mm);
1887	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888	css_put(&memcg->css);
1889	current->memcg_nr_pages_over_high = 0;
1890}
1891
1892static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893		      unsigned int nr_pages)
1894{
1895	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897	struct mem_cgroup *mem_over_limit;
1898	struct page_counter *counter;
1899	unsigned long nr_reclaimed;
1900	bool may_swap = true;
1901	bool drained = false;
1902
1903	if (mem_cgroup_is_root(memcg))
1904		return 0;
1905retry:
1906	if (consume_stock(memcg, nr_pages))
1907		return 0;
1908
1909	if (!do_memsw_account() ||
1910	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912			goto done_restock;
1913		if (do_memsw_account())
1914			page_counter_uncharge(&memcg->memsw, batch);
1915		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916	} else {
1917		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918		may_swap = false;
1919	}
1920
1921	if (batch > nr_pages) {
1922		batch = nr_pages;
1923		goto retry;
1924	}
1925
1926	/*
1927	 * Unlike in global OOM situations, memcg is not in a physical
1928	 * memory shortage.  Allow dying and OOM-killed tasks to
1929	 * bypass the last charges so that they can exit quickly and
1930	 * free their memory.
1931	 */
1932	if (unlikely(tsk_is_oom_victim(current) ||
1933		     fatal_signal_pending(current) ||
1934		     current->flags & PF_EXITING))
1935		goto force;
1936
1937	/*
1938	 * Prevent unbounded recursion when reclaim operations need to
1939	 * allocate memory. This might exceed the limits temporarily,
1940	 * but we prefer facilitating memory reclaim and getting back
1941	 * under the limit over triggering OOM kills in these cases.
1942	 */
1943	if (unlikely(current->flags & PF_MEMALLOC))
1944		goto force;
1945
1946	if (unlikely(task_in_memcg_oom(current)))
1947		goto nomem;
1948
1949	if (!gfpflags_allow_blocking(gfp_mask))
1950		goto nomem;
1951
1952	memcg_memory_event(mem_over_limit, MEMCG_MAX);
1953
1954	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955						    gfp_mask, may_swap);
1956
1957	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958		goto retry;
1959
1960	if (!drained) {
1961		drain_all_stock(mem_over_limit);
1962		drained = true;
1963		goto retry;
1964	}
1965
1966	if (gfp_mask & __GFP_NORETRY)
1967		goto nomem;
1968	/*
1969	 * Even though the limit is exceeded at this point, reclaim
1970	 * may have been able to free some pages.  Retry the charge
1971	 * before killing the task.
1972	 *
1973	 * Only for regular pages, though: huge pages are rather
1974	 * unlikely to succeed so close to the limit, and we fall back
1975	 * to regular pages anyway in case of failure.
1976	 */
1977	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978		goto retry;
1979	/*
1980	 * At task move, charge accounts can be doubly counted. So, it's
1981	 * better to wait until the end of task_move if something is going on.
1982	 */
1983	if (mem_cgroup_wait_acct_move(mem_over_limit))
1984		goto retry;
1985
1986	if (nr_retries--)
1987		goto retry;
1988
1989	if (gfp_mask & __GFP_NOFAIL)
1990		goto force;
1991
1992	if (fatal_signal_pending(current))
1993		goto force;
1994
1995	memcg_memory_event(mem_over_limit, MEMCG_OOM);
1996
1997	mem_cgroup_oom(mem_over_limit, gfp_mask,
1998		       get_order(nr_pages * PAGE_SIZE));
1999nomem:
2000	if (!(gfp_mask & __GFP_NOFAIL))
2001		return -ENOMEM;
2002force:
2003	/*
2004	 * The allocation either can't fail or will lead to more memory
2005	 * being freed very soon.  Allow memory usage go over the limit
2006	 * temporarily by force charging it.
2007	 */
2008	page_counter_charge(&memcg->memory, nr_pages);
2009	if (do_memsw_account())
2010		page_counter_charge(&memcg->memsw, nr_pages);
2011	css_get_many(&memcg->css, nr_pages);
2012
2013	return 0;
2014
2015done_restock:
2016	css_get_many(&memcg->css, batch);
2017	if (batch > nr_pages)
2018		refill_stock(memcg, batch - nr_pages);
2019
2020	/*
2021	 * If the hierarchy is above the normal consumption range, schedule
2022	 * reclaim on returning to userland.  We can perform reclaim here
2023	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2025	 * not recorded as it most likely matches current's and won't
2026	 * change in the meantime.  As high limit is checked again before
2027	 * reclaim, the cost of mismatch is negligible.
2028	 */
2029	do {
2030		if (page_counter_read(&memcg->memory) > memcg->high) {
2031			/* Don't bother a random interrupted task */
2032			if (in_interrupt()) {
2033				schedule_work(&memcg->high_work);
2034				break;
2035			}
2036			current->memcg_nr_pages_over_high += batch;
2037			set_notify_resume(current);
2038			break;
2039		}
2040	} while ((memcg = parent_mem_cgroup(memcg)));
2041
2042	return 0;
2043}
2044
2045static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2046{
2047	if (mem_cgroup_is_root(memcg))
2048		return;
2049
2050	page_counter_uncharge(&memcg->memory, nr_pages);
2051	if (do_memsw_account())
2052		page_counter_uncharge(&memcg->memsw, nr_pages);
2053
2054	css_put_many(&memcg->css, nr_pages);
2055}
2056
2057static void lock_page_lru(struct page *page, int *isolated)
2058{
2059	struct zone *zone = page_zone(page);
2060
2061	spin_lock_irq(zone_lru_lock(zone));
2062	if (PageLRU(page)) {
2063		struct lruvec *lruvec;
2064
2065		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066		ClearPageLRU(page);
2067		del_page_from_lru_list(page, lruvec, page_lru(page));
2068		*isolated = 1;
2069	} else
2070		*isolated = 0;
2071}
2072
2073static void unlock_page_lru(struct page *page, int isolated)
2074{
2075	struct zone *zone = page_zone(page);
2076
2077	if (isolated) {
2078		struct lruvec *lruvec;
2079
2080		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081		VM_BUG_ON_PAGE(PageLRU(page), page);
2082		SetPageLRU(page);
2083		add_page_to_lru_list(page, lruvec, page_lru(page));
2084	}
2085	spin_unlock_irq(zone_lru_lock(zone));
2086}
2087
2088static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089			  bool lrucare)
2090{
2091	int isolated;
2092
2093	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2094
2095	/*
2096	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2098	 */
2099	if (lrucare)
2100		lock_page_lru(page, &isolated);
2101
2102	/*
2103	 * Nobody should be changing or seriously looking at
2104	 * page->mem_cgroup at this point:
2105	 *
2106	 * - the page is uncharged
2107	 *
2108	 * - the page is off-LRU
2109	 *
2110	 * - an anonymous fault has exclusive page access, except for
2111	 *   a locked page table
2112	 *
2113	 * - a page cache insertion, a swapin fault, or a migration
2114	 *   have the page locked
2115	 */
2116	page->mem_cgroup = memcg;
2117
2118	if (lrucare)
2119		unlock_page_lru(page, isolated);
2120}
2121
2122#ifndef CONFIG_SLOB
2123static int memcg_alloc_cache_id(void)
2124{
2125	int id, size;
2126	int err;
2127
2128	id = ida_simple_get(&memcg_cache_ida,
2129			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2130	if (id < 0)
2131		return id;
2132
2133	if (id < memcg_nr_cache_ids)
2134		return id;
2135
2136	/*
2137	 * There's no space for the new id in memcg_caches arrays,
2138	 * so we have to grow them.
2139	 */
2140	down_write(&memcg_cache_ids_sem);
2141
2142	size = 2 * (id + 1);
2143	if (size < MEMCG_CACHES_MIN_SIZE)
2144		size = MEMCG_CACHES_MIN_SIZE;
2145	else if (size > MEMCG_CACHES_MAX_SIZE)
2146		size = MEMCG_CACHES_MAX_SIZE;
2147
2148	err = memcg_update_all_caches(size);
2149	if (!err)
2150		err = memcg_update_all_list_lrus(size);
2151	if (!err)
2152		memcg_nr_cache_ids = size;
2153
2154	up_write(&memcg_cache_ids_sem);
2155
2156	if (err) {
2157		ida_simple_remove(&memcg_cache_ida, id);
2158		return err;
2159	}
2160	return id;
2161}
2162
2163static void memcg_free_cache_id(int id)
2164{
2165	ida_simple_remove(&memcg_cache_ida, id);
2166}
2167
2168struct memcg_kmem_cache_create_work {
2169	struct mem_cgroup *memcg;
2170	struct kmem_cache *cachep;
2171	struct work_struct work;
2172};
2173
 
 
2174static void memcg_kmem_cache_create_func(struct work_struct *w)
2175{
2176	struct memcg_kmem_cache_create_work *cw =
2177		container_of(w, struct memcg_kmem_cache_create_work, work);
2178	struct mem_cgroup *memcg = cw->memcg;
2179	struct kmem_cache *cachep = cw->cachep;
2180
2181	memcg_create_kmem_cache(memcg, cachep);
2182
2183	css_put(&memcg->css);
2184	kfree(cw);
2185}
2186
2187/*
2188 * Enqueue the creation of a per-memcg kmem_cache.
2189 */
2190static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191					       struct kmem_cache *cachep)
2192{
2193	struct memcg_kmem_cache_create_work *cw;
2194
2195	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196	if (!cw)
2197		return;
2198
2199	css_get(&memcg->css);
2200
2201	cw->memcg = memcg;
2202	cw->cachep = cachep;
2203	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2204
2205	queue_work(memcg_kmem_cache_wq, &cw->work);
2206}
2207
2208static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209					     struct kmem_cache *cachep)
2210{
2211	/*
2212	 * We need to stop accounting when we kmalloc, because if the
2213	 * corresponding kmalloc cache is not yet created, the first allocation
2214	 * in __memcg_schedule_kmem_cache_create will recurse.
2215	 *
2216	 * However, it is better to enclose the whole function. Depending on
2217	 * the debugging options enabled, INIT_WORK(), for instance, can
2218	 * trigger an allocation. This too, will make us recurse. Because at
2219	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220	 * the safest choice is to do it like this, wrapping the whole function.
2221	 */
2222	current->memcg_kmem_skip_account = 1;
2223	__memcg_schedule_kmem_cache_create(memcg, cachep);
2224	current->memcg_kmem_skip_account = 0;
2225}
2226
2227static inline bool memcg_kmem_bypass(void)
2228{
2229	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2230		return true;
2231	return false;
2232}
2233
2234/**
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2237 *
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2240 *
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
2244 *
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2248 * reference.
2249 */
2250struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2251{
2252	struct mem_cgroup *memcg;
2253	struct kmem_cache *memcg_cachep;
2254	int kmemcg_id;
2255
2256	VM_BUG_ON(!is_root_cache(cachep));
2257
2258	if (memcg_kmem_bypass())
2259		return cachep;
2260
2261	if (current->memcg_kmem_skip_account)
2262		return cachep;
2263
2264	memcg = get_mem_cgroup_from_mm(current->mm);
2265	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266	if (kmemcg_id < 0)
2267		goto out;
2268
2269	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270	if (likely(memcg_cachep))
2271		return memcg_cachep;
2272
2273	/*
2274	 * If we are in a safe context (can wait, and not in interrupt
2275	 * context), we could be be predictable and return right away.
2276	 * This would guarantee that the allocation being performed
2277	 * already belongs in the new cache.
2278	 *
2279	 * However, there are some clashes that can arrive from locking.
2280	 * For instance, because we acquire the slab_mutex while doing
2281	 * memcg_create_kmem_cache, this means no further allocation
2282	 * could happen with the slab_mutex held. So it's better to
2283	 * defer everything.
2284	 */
2285	memcg_schedule_kmem_cache_create(memcg, cachep);
2286out:
2287	css_put(&memcg->css);
2288	return cachep;
2289}
2290
2291/**
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2294 */
2295void memcg_kmem_put_cache(struct kmem_cache *cachep)
2296{
2297	if (!is_root_cache(cachep))
2298		css_put(&cachep->memcg_params.memcg->css);
2299}
2300
2301/**
2302 * memcg_kmem_charge_memcg: charge a kmem page
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2307 *
2308 * Returns 0 on success, an error code on failure.
2309 */
2310int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311			    struct mem_cgroup *memcg)
2312{
2313	unsigned int nr_pages = 1 << order;
2314	struct page_counter *counter;
2315	int ret;
2316
2317	ret = try_charge(memcg, gfp, nr_pages);
2318	if (ret)
2319		return ret;
2320
2321	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323		cancel_charge(memcg, nr_pages);
2324		return -ENOMEM;
2325	}
2326
2327	page->mem_cgroup = memcg;
2328
2329	return 0;
2330}
2331
2332/**
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2337 *
2338 * Returns 0 on success, an error code on failure.
2339 */
2340int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342	struct mem_cgroup *memcg;
2343	int ret = 0;
2344
2345	if (memcg_kmem_bypass())
2346		return 0;
2347
2348	memcg = get_mem_cgroup_from_mm(current->mm);
2349	if (!mem_cgroup_is_root(memcg)) {
2350		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351		if (!ret)
2352			__SetPageKmemcg(page);
2353	}
2354	css_put(&memcg->css);
2355	return ret;
2356}
2357/**
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2361 */
2362void memcg_kmem_uncharge(struct page *page, int order)
2363{
2364	struct mem_cgroup *memcg = page->mem_cgroup;
2365	unsigned int nr_pages = 1 << order;
2366
2367	if (!memcg)
2368		return;
2369
2370	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2371
2372	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373		page_counter_uncharge(&memcg->kmem, nr_pages);
2374
2375	page_counter_uncharge(&memcg->memory, nr_pages);
2376	if (do_memsw_account())
2377		page_counter_uncharge(&memcg->memsw, nr_pages);
2378
2379	page->mem_cgroup = NULL;
2380
2381	/* slab pages do not have PageKmemcg flag set */
2382	if (PageKmemcg(page))
2383		__ClearPageKmemcg(page);
2384
2385	css_put_many(&memcg->css, nr_pages);
2386}
2387#endif /* !CONFIG_SLOB */
2388
2389#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390
2391/*
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2394 */
2395void mem_cgroup_split_huge_fixup(struct page *head)
2396{
2397	int i;
2398
2399	if (mem_cgroup_disabled())
2400		return;
2401
2402	for (i = 1; i < HPAGE_PMD_NR; i++)
2403		head[i].mem_cgroup = head->mem_cgroup;
2404
2405	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
 
2406}
2407#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408
2409#ifdef CONFIG_MEMCG_SWAP
 
 
 
 
 
 
 
2410/**
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from:  mem_cgroup which the entry is moved from
2414 * @to:  mem_cgroup which the entry is moved to
2415 *
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2418 *
2419 * Returns 0 on success, -EINVAL on failure.
2420 *
2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 * both res and memsw, and called css_get().
2423 */
2424static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425				struct mem_cgroup *from, struct mem_cgroup *to)
2426{
2427	unsigned short old_id, new_id;
2428
2429	old_id = mem_cgroup_id(from);
2430	new_id = mem_cgroup_id(to);
2431
2432	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433		mod_memcg_state(from, MEMCG_SWAP, -1);
2434		mod_memcg_state(to, MEMCG_SWAP, 1);
2435		return 0;
2436	}
2437	return -EINVAL;
2438}
2439#else
2440static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441				struct mem_cgroup *from, struct mem_cgroup *to)
2442{
2443	return -EINVAL;
2444}
2445#endif
2446
2447static DEFINE_MUTEX(memcg_limit_mutex);
2448
2449static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2450				   unsigned long limit, bool memsw)
2451{
 
 
2452	bool enlarge = false;
 
2453	int ret;
2454	bool limits_invariant;
2455	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
 
 
 
 
 
 
 
 
2456
2457	do {
2458		if (signal_pending(current)) {
2459			ret = -EINTR;
2460			break;
2461		}
2462
2463		mutex_lock(&memcg_limit_mutex);
2464		/*
2465		 * Make sure that the new limit (memsw or memory limit) doesn't
2466		 * break our basic invariant rule memory.limit <= memsw.limit.
2467		 */
2468		limits_invariant = memsw ? limit >= memcg->memory.limit :
2469					   limit <= memcg->memsw.limit;
2470		if (!limits_invariant) {
2471			mutex_unlock(&memcg_limit_mutex);
2472			ret = -EINVAL;
2473			break;
2474		}
2475		if (limit > counter->limit)
2476			enlarge = true;
2477		ret = page_counter_limit(counter, limit);
2478		mutex_unlock(&memcg_limit_mutex);
2479
2480		if (!ret)
2481			break;
2482
2483		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2484					GFP_KERNEL, !memsw)) {
2485			ret = -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2486			break;
2487		}
2488	} while (true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2489
2490	if (!ret && enlarge)
2491		memcg_oom_recover(memcg);
2492
2493	return ret;
2494}
2495
2496unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2497					    gfp_t gfp_mask,
2498					    unsigned long *total_scanned)
2499{
2500	unsigned long nr_reclaimed = 0;
2501	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2502	unsigned long reclaimed;
2503	int loop = 0;
2504	struct mem_cgroup_tree_per_node *mctz;
2505	unsigned long excess;
2506	unsigned long nr_scanned;
2507
2508	if (order > 0)
2509		return 0;
2510
2511	mctz = soft_limit_tree_node(pgdat->node_id);
2512
2513	/*
2514	 * Do not even bother to check the largest node if the root
2515	 * is empty. Do it lockless to prevent lock bouncing. Races
2516	 * are acceptable as soft limit is best effort anyway.
2517	 */
2518	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2519		return 0;
2520
2521	/*
2522	 * This loop can run a while, specially if mem_cgroup's continuously
2523	 * keep exceeding their soft limit and putting the system under
2524	 * pressure
2525	 */
2526	do {
2527		if (next_mz)
2528			mz = next_mz;
2529		else
2530			mz = mem_cgroup_largest_soft_limit_node(mctz);
2531		if (!mz)
2532			break;
2533
2534		nr_scanned = 0;
2535		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2536						    gfp_mask, &nr_scanned);
2537		nr_reclaimed += reclaimed;
2538		*total_scanned += nr_scanned;
2539		spin_lock_irq(&mctz->lock);
2540		__mem_cgroup_remove_exceeded(mz, mctz);
2541
2542		/*
2543		 * If we failed to reclaim anything from this memory cgroup
2544		 * it is time to move on to the next cgroup
2545		 */
2546		next_mz = NULL;
2547		if (!reclaimed)
2548			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2549
2550		excess = soft_limit_excess(mz->memcg);
2551		/*
2552		 * One school of thought says that we should not add
2553		 * back the node to the tree if reclaim returns 0.
2554		 * But our reclaim could return 0, simply because due
2555		 * to priority we are exposing a smaller subset of
2556		 * memory to reclaim from. Consider this as a longer
2557		 * term TODO.
2558		 */
2559		/* If excess == 0, no tree ops */
2560		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2561		spin_unlock_irq(&mctz->lock);
2562		css_put(&mz->memcg->css);
2563		loop++;
2564		/*
2565		 * Could not reclaim anything and there are no more
2566		 * mem cgroups to try or we seem to be looping without
2567		 * reclaiming anything.
2568		 */
2569		if (!nr_reclaimed &&
2570			(next_mz == NULL ||
2571			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2572			break;
2573	} while (!nr_reclaimed);
2574	if (next_mz)
2575		css_put(&next_mz->memcg->css);
2576	return nr_reclaimed;
2577}
2578
2579/*
2580 * Test whether @memcg has children, dead or alive.  Note that this
2581 * function doesn't care whether @memcg has use_hierarchy enabled and
2582 * returns %true if there are child csses according to the cgroup
2583 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2584 */
2585static inline bool memcg_has_children(struct mem_cgroup *memcg)
2586{
2587	bool ret;
2588
2589	rcu_read_lock();
2590	ret = css_next_child(NULL, &memcg->css);
2591	rcu_read_unlock();
2592	return ret;
2593}
2594
2595/*
2596 * Reclaims as many pages from the given memcg as possible.
2597 *
2598 * Caller is responsible for holding css reference for memcg.
2599 */
2600static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2601{
2602	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2603
2604	/* we call try-to-free pages for make this cgroup empty */
2605	lru_add_drain_all();
2606	/* try to free all pages in this cgroup */
2607	while (nr_retries && page_counter_read(&memcg->memory)) {
2608		int progress;
2609
2610		if (signal_pending(current))
2611			return -EINTR;
2612
2613		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2614							GFP_KERNEL, true);
2615		if (!progress) {
2616			nr_retries--;
2617			/* maybe some writeback is necessary */
2618			congestion_wait(BLK_RW_ASYNC, HZ/10);
2619		}
2620
2621	}
2622
2623	return 0;
2624}
2625
2626static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2627					    char *buf, size_t nbytes,
2628					    loff_t off)
2629{
2630	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2631
2632	if (mem_cgroup_is_root(memcg))
2633		return -EINVAL;
2634	return mem_cgroup_force_empty(memcg) ?: nbytes;
2635}
2636
2637static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2638				     struct cftype *cft)
2639{
2640	return mem_cgroup_from_css(css)->use_hierarchy;
2641}
2642
2643static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2644				      struct cftype *cft, u64 val)
2645{
2646	int retval = 0;
2647	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2648	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2649
2650	if (memcg->use_hierarchy == val)
2651		return 0;
2652
2653	/*
2654	 * If parent's use_hierarchy is set, we can't make any modifications
2655	 * in the child subtrees. If it is unset, then the change can
2656	 * occur, provided the current cgroup has no children.
2657	 *
2658	 * For the root cgroup, parent_mem is NULL, we allow value to be
2659	 * set if there are no children.
2660	 */
2661	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2662				(val == 1 || val == 0)) {
2663		if (!memcg_has_children(memcg))
2664			memcg->use_hierarchy = val;
2665		else
2666			retval = -EBUSY;
2667	} else
2668		retval = -EINVAL;
2669
2670	return retval;
2671}
2672
2673static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2674{
2675	struct mem_cgroup *iter;
2676	int i;
2677
2678	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2679
2680	for_each_mem_cgroup_tree(iter, memcg) {
2681		for (i = 0; i < MEMCG_NR_STAT; i++)
2682			stat[i] += memcg_page_state(iter, i);
2683	}
2684}
2685
2686static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2687{
2688	struct mem_cgroup *iter;
2689	int i;
2690
2691	memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2692
2693	for_each_mem_cgroup_tree(iter, memcg) {
2694		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2695			events[i] += memcg_sum_events(iter, i);
2696	}
2697}
2698
2699static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2700{
2701	unsigned long val = 0;
2702
2703	if (mem_cgroup_is_root(memcg)) {
2704		struct mem_cgroup *iter;
2705
2706		for_each_mem_cgroup_tree(iter, memcg) {
2707			val += memcg_page_state(iter, MEMCG_CACHE);
2708			val += memcg_page_state(iter, MEMCG_RSS);
 
 
2709			if (swap)
2710				val += memcg_page_state(iter, MEMCG_SWAP);
 
2711		}
2712	} else {
2713		if (!swap)
2714			val = page_counter_read(&memcg->memory);
2715		else
2716			val = page_counter_read(&memcg->memsw);
2717	}
2718	return val;
2719}
2720
2721enum {
2722	RES_USAGE,
2723	RES_LIMIT,
2724	RES_MAX_USAGE,
2725	RES_FAILCNT,
2726	RES_SOFT_LIMIT,
2727};
2728
2729static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2730			       struct cftype *cft)
2731{
2732	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2733	struct page_counter *counter;
2734
2735	switch (MEMFILE_TYPE(cft->private)) {
2736	case _MEM:
2737		counter = &memcg->memory;
2738		break;
2739	case _MEMSWAP:
2740		counter = &memcg->memsw;
2741		break;
2742	case _KMEM:
2743		counter = &memcg->kmem;
2744		break;
2745	case _TCP:
2746		counter = &memcg->tcpmem;
2747		break;
2748	default:
2749		BUG();
2750	}
2751
2752	switch (MEMFILE_ATTR(cft->private)) {
2753	case RES_USAGE:
2754		if (counter == &memcg->memory)
2755			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2756		if (counter == &memcg->memsw)
2757			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2758		return (u64)page_counter_read(counter) * PAGE_SIZE;
2759	case RES_LIMIT:
2760		return (u64)counter->limit * PAGE_SIZE;
2761	case RES_MAX_USAGE:
2762		return (u64)counter->watermark * PAGE_SIZE;
2763	case RES_FAILCNT:
2764		return counter->failcnt;
2765	case RES_SOFT_LIMIT:
2766		return (u64)memcg->soft_limit * PAGE_SIZE;
2767	default:
2768		BUG();
2769	}
2770}
2771
2772#ifndef CONFIG_SLOB
2773static int memcg_online_kmem(struct mem_cgroup *memcg)
2774{
2775	int memcg_id;
2776
2777	if (cgroup_memory_nokmem)
2778		return 0;
2779
2780	BUG_ON(memcg->kmemcg_id >= 0);
2781	BUG_ON(memcg->kmem_state);
2782
2783	memcg_id = memcg_alloc_cache_id();
2784	if (memcg_id < 0)
2785		return memcg_id;
2786
2787	static_branch_inc(&memcg_kmem_enabled_key);
2788	/*
2789	 * A memory cgroup is considered kmem-online as soon as it gets
2790	 * kmemcg_id. Setting the id after enabling static branching will
2791	 * guarantee no one starts accounting before all call sites are
2792	 * patched.
2793	 */
2794	memcg->kmemcg_id = memcg_id;
2795	memcg->kmem_state = KMEM_ONLINE;
2796	INIT_LIST_HEAD(&memcg->kmem_caches);
2797
2798	return 0;
2799}
2800
2801static void memcg_offline_kmem(struct mem_cgroup *memcg)
2802{
2803	struct cgroup_subsys_state *css;
2804	struct mem_cgroup *parent, *child;
2805	int kmemcg_id;
2806
2807	if (memcg->kmem_state != KMEM_ONLINE)
2808		return;
2809	/*
2810	 * Clear the online state before clearing memcg_caches array
2811	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2812	 * guarantees that no cache will be created for this cgroup
2813	 * after we are done (see memcg_create_kmem_cache()).
2814	 */
2815	memcg->kmem_state = KMEM_ALLOCATED;
2816
2817	memcg_deactivate_kmem_caches(memcg);
2818
2819	kmemcg_id = memcg->kmemcg_id;
2820	BUG_ON(kmemcg_id < 0);
2821
2822	parent = parent_mem_cgroup(memcg);
2823	if (!parent)
2824		parent = root_mem_cgroup;
2825
2826	/*
2827	 * Change kmemcg_id of this cgroup and all its descendants to the
2828	 * parent's id, and then move all entries from this cgroup's list_lrus
2829	 * to ones of the parent. After we have finished, all list_lrus
2830	 * corresponding to this cgroup are guaranteed to remain empty. The
2831	 * ordering is imposed by list_lru_node->lock taken by
2832	 * memcg_drain_all_list_lrus().
2833	 */
2834	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2835	css_for_each_descendant_pre(css, &memcg->css) {
2836		child = mem_cgroup_from_css(css);
2837		BUG_ON(child->kmemcg_id != kmemcg_id);
2838		child->kmemcg_id = parent->kmemcg_id;
2839		if (!memcg->use_hierarchy)
2840			break;
2841	}
2842	rcu_read_unlock();
2843
2844	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2845
2846	memcg_free_cache_id(kmemcg_id);
2847}
2848
2849static void memcg_free_kmem(struct mem_cgroup *memcg)
2850{
2851	/* css_alloc() failed, offlining didn't happen */
2852	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2853		memcg_offline_kmem(memcg);
2854
2855	if (memcg->kmem_state == KMEM_ALLOCATED) {
2856		memcg_destroy_kmem_caches(memcg);
2857		static_branch_dec(&memcg_kmem_enabled_key);
2858		WARN_ON(page_counter_read(&memcg->kmem));
2859	}
2860}
2861#else
2862static int memcg_online_kmem(struct mem_cgroup *memcg)
2863{
2864	return 0;
2865}
2866static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867{
2868}
2869static void memcg_free_kmem(struct mem_cgroup *memcg)
2870{
2871}
2872#endif /* !CONFIG_SLOB */
2873
2874static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2875				   unsigned long limit)
2876{
2877	int ret;
2878
2879	mutex_lock(&memcg_limit_mutex);
2880	ret = page_counter_limit(&memcg->kmem, limit);
2881	mutex_unlock(&memcg_limit_mutex);
2882	return ret;
2883}
2884
2885static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2886{
2887	int ret;
2888
2889	mutex_lock(&memcg_limit_mutex);
2890
2891	ret = page_counter_limit(&memcg->tcpmem, limit);
2892	if (ret)
2893		goto out;
2894
2895	if (!memcg->tcpmem_active) {
2896		/*
2897		 * The active flag needs to be written after the static_key
2898		 * update. This is what guarantees that the socket activation
2899		 * function is the last one to run. See mem_cgroup_sk_alloc()
2900		 * for details, and note that we don't mark any socket as
2901		 * belonging to this memcg until that flag is up.
2902		 *
2903		 * We need to do this, because static_keys will span multiple
2904		 * sites, but we can't control their order. If we mark a socket
2905		 * as accounted, but the accounting functions are not patched in
2906		 * yet, we'll lose accounting.
2907		 *
2908		 * We never race with the readers in mem_cgroup_sk_alloc(),
2909		 * because when this value change, the code to process it is not
2910		 * patched in yet.
2911		 */
2912		static_branch_inc(&memcg_sockets_enabled_key);
2913		memcg->tcpmem_active = true;
2914	}
2915out:
2916	mutex_unlock(&memcg_limit_mutex);
2917	return ret;
2918}
2919
2920/*
2921 * The user of this function is...
2922 * RES_LIMIT.
2923 */
2924static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2925				char *buf, size_t nbytes, loff_t off)
2926{
2927	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2928	unsigned long nr_pages;
2929	int ret;
2930
2931	buf = strstrip(buf);
2932	ret = page_counter_memparse(buf, "-1", &nr_pages);
2933	if (ret)
2934		return ret;
2935
2936	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2937	case RES_LIMIT:
2938		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2939			ret = -EINVAL;
2940			break;
2941		}
2942		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2943		case _MEM:
2944			ret = mem_cgroup_resize_limit(memcg, nr_pages, false);
2945			break;
2946		case _MEMSWAP:
2947			ret = mem_cgroup_resize_limit(memcg, nr_pages, true);
2948			break;
2949		case _KMEM:
2950			ret = memcg_update_kmem_limit(memcg, nr_pages);
2951			break;
2952		case _TCP:
2953			ret = memcg_update_tcp_limit(memcg, nr_pages);
2954			break;
2955		}
2956		break;
2957	case RES_SOFT_LIMIT:
2958		memcg->soft_limit = nr_pages;
2959		ret = 0;
2960		break;
2961	}
2962	return ret ?: nbytes;
2963}
2964
2965static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2966				size_t nbytes, loff_t off)
2967{
2968	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2969	struct page_counter *counter;
2970
2971	switch (MEMFILE_TYPE(of_cft(of)->private)) {
2972	case _MEM:
2973		counter = &memcg->memory;
2974		break;
2975	case _MEMSWAP:
2976		counter = &memcg->memsw;
2977		break;
2978	case _KMEM:
2979		counter = &memcg->kmem;
2980		break;
2981	case _TCP:
2982		counter = &memcg->tcpmem;
2983		break;
2984	default:
2985		BUG();
2986	}
2987
2988	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989	case RES_MAX_USAGE:
2990		page_counter_reset_watermark(counter);
2991		break;
2992	case RES_FAILCNT:
2993		counter->failcnt = 0;
2994		break;
2995	default:
2996		BUG();
2997	}
2998
2999	return nbytes;
3000}
3001
3002static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3003					struct cftype *cft)
3004{
3005	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3006}
3007
3008#ifdef CONFIG_MMU
3009static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3010					struct cftype *cft, u64 val)
3011{
3012	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3013
3014	if (val & ~MOVE_MASK)
3015		return -EINVAL;
3016
3017	/*
3018	 * No kind of locking is needed in here, because ->can_attach() will
3019	 * check this value once in the beginning of the process, and then carry
3020	 * on with stale data. This means that changes to this value will only
3021	 * affect task migrations starting after the change.
3022	 */
3023	memcg->move_charge_at_immigrate = val;
3024	return 0;
3025}
3026#else
3027static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3028					struct cftype *cft, u64 val)
3029{
3030	return -ENOSYS;
3031}
3032#endif
3033
3034#ifdef CONFIG_NUMA
3035static int memcg_numa_stat_show(struct seq_file *m, void *v)
3036{
3037	struct numa_stat {
3038		const char *name;
3039		unsigned int lru_mask;
3040	};
3041
3042	static const struct numa_stat stats[] = {
3043		{ "total", LRU_ALL },
3044		{ "file", LRU_ALL_FILE },
3045		{ "anon", LRU_ALL_ANON },
3046		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3047	};
3048	const struct numa_stat *stat;
3049	int nid;
3050	unsigned long nr;
3051	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3052
3053	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3054		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3055		seq_printf(m, "%s=%lu", stat->name, nr);
3056		for_each_node_state(nid, N_MEMORY) {
3057			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3058							  stat->lru_mask);
3059			seq_printf(m, " N%d=%lu", nid, nr);
3060		}
3061		seq_putc(m, '\n');
3062	}
3063
3064	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3065		struct mem_cgroup *iter;
3066
3067		nr = 0;
3068		for_each_mem_cgroup_tree(iter, memcg)
3069			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3070		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3071		for_each_node_state(nid, N_MEMORY) {
3072			nr = 0;
3073			for_each_mem_cgroup_tree(iter, memcg)
3074				nr += mem_cgroup_node_nr_lru_pages(
3075					iter, nid, stat->lru_mask);
3076			seq_printf(m, " N%d=%lu", nid, nr);
3077		}
3078		seq_putc(m, '\n');
3079	}
3080
3081	return 0;
3082}
3083#endif /* CONFIG_NUMA */
3084
3085/* Universal VM events cgroup1 shows, original sort order */
3086unsigned int memcg1_events[] = {
3087	PGPGIN,
3088	PGPGOUT,
3089	PGFAULT,
3090	PGMAJFAULT,
3091};
3092
3093static const char *const memcg1_event_names[] = {
3094	"pgpgin",
3095	"pgpgout",
3096	"pgfault",
3097	"pgmajfault",
3098};
3099
3100static int memcg_stat_show(struct seq_file *m, void *v)
3101{
3102	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3103	unsigned long memory, memsw;
3104	struct mem_cgroup *mi;
3105	unsigned int i;
3106
3107	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
 
 
 
3108	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3109
3110	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3111		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3112			continue;
3113		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3114			   memcg_page_state(memcg, memcg1_stats[i]) *
3115			   PAGE_SIZE);
3116	}
3117
3118	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3119		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3120			   memcg_sum_events(memcg, memcg1_events[i]));
3121
3122	for (i = 0; i < NR_LRU_LISTS; i++)
3123		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3124			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3125
3126	/* Hierarchical information */
3127	memory = memsw = PAGE_COUNTER_MAX;
3128	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3129		memory = min(memory, mi->memory.limit);
3130		memsw = min(memsw, mi->memsw.limit);
3131	}
3132	seq_printf(m, "hierarchical_memory_limit %llu\n",
3133		   (u64)memory * PAGE_SIZE);
3134	if (do_memsw_account())
3135		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3136			   (u64)memsw * PAGE_SIZE);
3137
3138	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3139		unsigned long long val = 0;
3140
3141		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3142			continue;
3143		for_each_mem_cgroup_tree(mi, memcg)
3144			val += memcg_page_state(mi, memcg1_stats[i]) *
3145			PAGE_SIZE;
3146		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3147	}
3148
3149	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3150		unsigned long long val = 0;
3151
3152		for_each_mem_cgroup_tree(mi, memcg)
3153			val += memcg_sum_events(mi, memcg1_events[i]);
3154		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
 
3155	}
3156
3157	for (i = 0; i < NR_LRU_LISTS; i++) {
3158		unsigned long long val = 0;
3159
3160		for_each_mem_cgroup_tree(mi, memcg)
3161			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3162		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3163	}
3164
3165#ifdef CONFIG_DEBUG_VM
3166	{
3167		pg_data_t *pgdat;
3168		struct mem_cgroup_per_node *mz;
3169		struct zone_reclaim_stat *rstat;
3170		unsigned long recent_rotated[2] = {0, 0};
3171		unsigned long recent_scanned[2] = {0, 0};
3172
3173		for_each_online_pgdat(pgdat) {
3174			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3175			rstat = &mz->lruvec.reclaim_stat;
3176
3177			recent_rotated[0] += rstat->recent_rotated[0];
3178			recent_rotated[1] += rstat->recent_rotated[1];
3179			recent_scanned[0] += rstat->recent_scanned[0];
3180			recent_scanned[1] += rstat->recent_scanned[1];
3181		}
3182		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3183		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3184		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3185		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3186	}
3187#endif
3188
3189	return 0;
3190}
3191
3192static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3193				      struct cftype *cft)
3194{
3195	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3196
3197	return mem_cgroup_swappiness(memcg);
3198}
3199
3200static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3201				       struct cftype *cft, u64 val)
3202{
3203	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3204
3205	if (val > 100)
3206		return -EINVAL;
3207
3208	if (css->parent)
3209		memcg->swappiness = val;
3210	else
3211		vm_swappiness = val;
3212
3213	return 0;
3214}
3215
3216static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3217{
3218	struct mem_cgroup_threshold_ary *t;
3219	unsigned long usage;
3220	int i;
3221
3222	rcu_read_lock();
3223	if (!swap)
3224		t = rcu_dereference(memcg->thresholds.primary);
3225	else
3226		t = rcu_dereference(memcg->memsw_thresholds.primary);
3227
3228	if (!t)
3229		goto unlock;
3230
3231	usage = mem_cgroup_usage(memcg, swap);
3232
3233	/*
3234	 * current_threshold points to threshold just below or equal to usage.
3235	 * If it's not true, a threshold was crossed after last
3236	 * call of __mem_cgroup_threshold().
3237	 */
3238	i = t->current_threshold;
3239
3240	/*
3241	 * Iterate backward over array of thresholds starting from
3242	 * current_threshold and check if a threshold is crossed.
3243	 * If none of thresholds below usage is crossed, we read
3244	 * only one element of the array here.
3245	 */
3246	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3247		eventfd_signal(t->entries[i].eventfd, 1);
3248
3249	/* i = current_threshold + 1 */
3250	i++;
3251
3252	/*
3253	 * Iterate forward over array of thresholds starting from
3254	 * current_threshold+1 and check if a threshold is crossed.
3255	 * If none of thresholds above usage is crossed, we read
3256	 * only one element of the array here.
3257	 */
3258	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3259		eventfd_signal(t->entries[i].eventfd, 1);
3260
3261	/* Update current_threshold */
3262	t->current_threshold = i - 1;
3263unlock:
3264	rcu_read_unlock();
3265}
3266
3267static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3268{
3269	while (memcg) {
3270		__mem_cgroup_threshold(memcg, false);
3271		if (do_memsw_account())
3272			__mem_cgroup_threshold(memcg, true);
3273
3274		memcg = parent_mem_cgroup(memcg);
3275	}
3276}
3277
3278static int compare_thresholds(const void *a, const void *b)
3279{
3280	const struct mem_cgroup_threshold *_a = a;
3281	const struct mem_cgroup_threshold *_b = b;
3282
3283	if (_a->threshold > _b->threshold)
3284		return 1;
3285
3286	if (_a->threshold < _b->threshold)
3287		return -1;
3288
3289	return 0;
3290}
3291
3292static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3293{
3294	struct mem_cgroup_eventfd_list *ev;
3295
3296	spin_lock(&memcg_oom_lock);
3297
3298	list_for_each_entry(ev, &memcg->oom_notify, list)
3299		eventfd_signal(ev->eventfd, 1);
3300
3301	spin_unlock(&memcg_oom_lock);
3302	return 0;
3303}
3304
3305static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3306{
3307	struct mem_cgroup *iter;
3308
3309	for_each_mem_cgroup_tree(iter, memcg)
3310		mem_cgroup_oom_notify_cb(iter);
3311}
3312
3313static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3314	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3315{
3316	struct mem_cgroup_thresholds *thresholds;
3317	struct mem_cgroup_threshold_ary *new;
3318	unsigned long threshold;
3319	unsigned long usage;
3320	int i, size, ret;
3321
3322	ret = page_counter_memparse(args, "-1", &threshold);
3323	if (ret)
3324		return ret;
3325
3326	mutex_lock(&memcg->thresholds_lock);
3327
3328	if (type == _MEM) {
3329		thresholds = &memcg->thresholds;
3330		usage = mem_cgroup_usage(memcg, false);
3331	} else if (type == _MEMSWAP) {
3332		thresholds = &memcg->memsw_thresholds;
3333		usage = mem_cgroup_usage(memcg, true);
3334	} else
3335		BUG();
3336
3337	/* Check if a threshold crossed before adding a new one */
3338	if (thresholds->primary)
3339		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3340
3341	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3342
3343	/* Allocate memory for new array of thresholds */
3344	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3345			GFP_KERNEL);
3346	if (!new) {
3347		ret = -ENOMEM;
3348		goto unlock;
3349	}
3350	new->size = size;
3351
3352	/* Copy thresholds (if any) to new array */
3353	if (thresholds->primary) {
3354		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3355				sizeof(struct mem_cgroup_threshold));
3356	}
3357
3358	/* Add new threshold */
3359	new->entries[size - 1].eventfd = eventfd;
3360	new->entries[size - 1].threshold = threshold;
3361
3362	/* Sort thresholds. Registering of new threshold isn't time-critical */
3363	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3364			compare_thresholds, NULL);
3365
3366	/* Find current threshold */
3367	new->current_threshold = -1;
3368	for (i = 0; i < size; i++) {
3369		if (new->entries[i].threshold <= usage) {
3370			/*
3371			 * new->current_threshold will not be used until
3372			 * rcu_assign_pointer(), so it's safe to increment
3373			 * it here.
3374			 */
3375			++new->current_threshold;
3376		} else
3377			break;
3378	}
3379
3380	/* Free old spare buffer and save old primary buffer as spare */
3381	kfree(thresholds->spare);
3382	thresholds->spare = thresholds->primary;
3383
3384	rcu_assign_pointer(thresholds->primary, new);
3385
3386	/* To be sure that nobody uses thresholds */
3387	synchronize_rcu();
3388
3389unlock:
3390	mutex_unlock(&memcg->thresholds_lock);
3391
3392	return ret;
3393}
3394
3395static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3396	struct eventfd_ctx *eventfd, const char *args)
3397{
3398	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3399}
3400
3401static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3402	struct eventfd_ctx *eventfd, const char *args)
3403{
3404	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3405}
3406
3407static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3408	struct eventfd_ctx *eventfd, enum res_type type)
3409{
3410	struct mem_cgroup_thresholds *thresholds;
3411	struct mem_cgroup_threshold_ary *new;
3412	unsigned long usage;
3413	int i, j, size;
3414
3415	mutex_lock(&memcg->thresholds_lock);
3416
3417	if (type == _MEM) {
3418		thresholds = &memcg->thresholds;
3419		usage = mem_cgroup_usage(memcg, false);
3420	} else if (type == _MEMSWAP) {
3421		thresholds = &memcg->memsw_thresholds;
3422		usage = mem_cgroup_usage(memcg, true);
3423	} else
3424		BUG();
3425
3426	if (!thresholds->primary)
3427		goto unlock;
3428
3429	/* Check if a threshold crossed before removing */
3430	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3431
3432	/* Calculate new number of threshold */
3433	size = 0;
3434	for (i = 0; i < thresholds->primary->size; i++) {
3435		if (thresholds->primary->entries[i].eventfd != eventfd)
3436			size++;
3437	}
3438
3439	new = thresholds->spare;
3440
3441	/* Set thresholds array to NULL if we don't have thresholds */
3442	if (!size) {
3443		kfree(new);
3444		new = NULL;
3445		goto swap_buffers;
3446	}
3447
3448	new->size = size;
3449
3450	/* Copy thresholds and find current threshold */
3451	new->current_threshold = -1;
3452	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3453		if (thresholds->primary->entries[i].eventfd == eventfd)
3454			continue;
3455
3456		new->entries[j] = thresholds->primary->entries[i];
3457		if (new->entries[j].threshold <= usage) {
3458			/*
3459			 * new->current_threshold will not be used
3460			 * until rcu_assign_pointer(), so it's safe to increment
3461			 * it here.
3462			 */
3463			++new->current_threshold;
3464		}
3465		j++;
3466	}
3467
3468swap_buffers:
3469	/* Swap primary and spare array */
3470	thresholds->spare = thresholds->primary;
3471
3472	rcu_assign_pointer(thresholds->primary, new);
3473
3474	/* To be sure that nobody uses thresholds */
3475	synchronize_rcu();
3476
3477	/* If all events are unregistered, free the spare array */
3478	if (!new) {
3479		kfree(thresholds->spare);
3480		thresholds->spare = NULL;
3481	}
3482unlock:
3483	mutex_unlock(&memcg->thresholds_lock);
3484}
3485
3486static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3487	struct eventfd_ctx *eventfd)
3488{
3489	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3490}
3491
3492static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3493	struct eventfd_ctx *eventfd)
3494{
3495	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3496}
3497
3498static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3499	struct eventfd_ctx *eventfd, const char *args)
3500{
3501	struct mem_cgroup_eventfd_list *event;
3502
3503	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3504	if (!event)
3505		return -ENOMEM;
3506
3507	spin_lock(&memcg_oom_lock);
3508
3509	event->eventfd = eventfd;
3510	list_add(&event->list, &memcg->oom_notify);
3511
3512	/* already in OOM ? */
3513	if (memcg->under_oom)
3514		eventfd_signal(eventfd, 1);
3515	spin_unlock(&memcg_oom_lock);
3516
3517	return 0;
3518}
3519
3520static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3521	struct eventfd_ctx *eventfd)
3522{
3523	struct mem_cgroup_eventfd_list *ev, *tmp;
3524
3525	spin_lock(&memcg_oom_lock);
3526
3527	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3528		if (ev->eventfd == eventfd) {
3529			list_del(&ev->list);
3530			kfree(ev);
3531		}
3532	}
3533
3534	spin_unlock(&memcg_oom_lock);
3535}
3536
3537static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3538{
3539	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3540
3541	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3542	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3543	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3544	return 0;
3545}
3546
3547static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3548	struct cftype *cft, u64 val)
3549{
3550	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551
3552	/* cannot set to root cgroup and only 0 and 1 are allowed */
3553	if (!css->parent || !((val == 0) || (val == 1)))
3554		return -EINVAL;
3555
3556	memcg->oom_kill_disable = val;
3557	if (!val)
3558		memcg_oom_recover(memcg);
3559
3560	return 0;
3561}
3562
3563#ifdef CONFIG_CGROUP_WRITEBACK
3564
3565struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3566{
3567	return &memcg->cgwb_list;
3568}
3569
3570static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3571{
3572	return wb_domain_init(&memcg->cgwb_domain, gfp);
3573}
3574
3575static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3576{
3577	wb_domain_exit(&memcg->cgwb_domain);
3578}
3579
3580static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3581{
3582	wb_domain_size_changed(&memcg->cgwb_domain);
3583}
3584
3585struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3586{
3587	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3588
3589	if (!memcg->css.parent)
3590		return NULL;
3591
3592	return &memcg->cgwb_domain;
3593}
3594
3595/**
3596 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3597 * @wb: bdi_writeback in question
3598 * @pfilepages: out parameter for number of file pages
3599 * @pheadroom: out parameter for number of allocatable pages according to memcg
3600 * @pdirty: out parameter for number of dirty pages
3601 * @pwriteback: out parameter for number of pages under writeback
3602 *
3603 * Determine the numbers of file, headroom, dirty, and writeback pages in
3604 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3605 * is a bit more involved.
3606 *
3607 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3608 * headroom is calculated as the lowest headroom of itself and the
3609 * ancestors.  Note that this doesn't consider the actual amount of
3610 * available memory in the system.  The caller should further cap
3611 * *@pheadroom accordingly.
3612 */
3613void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3614			 unsigned long *pheadroom, unsigned long *pdirty,
3615			 unsigned long *pwriteback)
3616{
3617	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618	struct mem_cgroup *parent;
3619
3620	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3621
3622	/* this should eventually include NR_UNSTABLE_NFS */
3623	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3624	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3625						     (1 << LRU_ACTIVE_FILE));
3626	*pheadroom = PAGE_COUNTER_MAX;
3627
3628	while ((parent = parent_mem_cgroup(memcg))) {
3629		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3630		unsigned long used = page_counter_read(&memcg->memory);
3631
3632		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3633		memcg = parent;
3634	}
3635}
3636
3637#else	/* CONFIG_CGROUP_WRITEBACK */
3638
3639static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3640{
3641	return 0;
3642}
3643
3644static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3645{
3646}
3647
3648static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3649{
3650}
3651
3652#endif	/* CONFIG_CGROUP_WRITEBACK */
3653
3654/*
3655 * DO NOT USE IN NEW FILES.
3656 *
3657 * "cgroup.event_control" implementation.
3658 *
3659 * This is way over-engineered.  It tries to support fully configurable
3660 * events for each user.  Such level of flexibility is completely
3661 * unnecessary especially in the light of the planned unified hierarchy.
3662 *
3663 * Please deprecate this and replace with something simpler if at all
3664 * possible.
3665 */
3666
3667/*
3668 * Unregister event and free resources.
3669 *
3670 * Gets called from workqueue.
3671 */
3672static void memcg_event_remove(struct work_struct *work)
3673{
3674	struct mem_cgroup_event *event =
3675		container_of(work, struct mem_cgroup_event, remove);
3676	struct mem_cgroup *memcg = event->memcg;
3677
3678	remove_wait_queue(event->wqh, &event->wait);
3679
3680	event->unregister_event(memcg, event->eventfd);
3681
3682	/* Notify userspace the event is going away. */
3683	eventfd_signal(event->eventfd, 1);
3684
3685	eventfd_ctx_put(event->eventfd);
3686	kfree(event);
3687	css_put(&memcg->css);
3688}
3689
3690/*
3691 * Gets called on EPOLLHUP on eventfd when user closes it.
3692 *
3693 * Called with wqh->lock held and interrupts disabled.
3694 */
3695static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3696			    int sync, void *key)
3697{
3698	struct mem_cgroup_event *event =
3699		container_of(wait, struct mem_cgroup_event, wait);
3700	struct mem_cgroup *memcg = event->memcg;
3701	__poll_t flags = key_to_poll(key);
3702
3703	if (flags & EPOLLHUP) {
3704		/*
3705		 * If the event has been detached at cgroup removal, we
3706		 * can simply return knowing the other side will cleanup
3707		 * for us.
3708		 *
3709		 * We can't race against event freeing since the other
3710		 * side will require wqh->lock via remove_wait_queue(),
3711		 * which we hold.
3712		 */
3713		spin_lock(&memcg->event_list_lock);
3714		if (!list_empty(&event->list)) {
3715			list_del_init(&event->list);
3716			/*
3717			 * We are in atomic context, but cgroup_event_remove()
3718			 * may sleep, so we have to call it in workqueue.
3719			 */
3720			schedule_work(&event->remove);
3721		}
3722		spin_unlock(&memcg->event_list_lock);
3723	}
3724
3725	return 0;
3726}
3727
3728static void memcg_event_ptable_queue_proc(struct file *file,
3729		wait_queue_head_t *wqh, poll_table *pt)
3730{
3731	struct mem_cgroup_event *event =
3732		container_of(pt, struct mem_cgroup_event, pt);
3733
3734	event->wqh = wqh;
3735	add_wait_queue(wqh, &event->wait);
3736}
3737
3738/*
3739 * DO NOT USE IN NEW FILES.
3740 *
3741 * Parse input and register new cgroup event handler.
3742 *
3743 * Input must be in format '<event_fd> <control_fd> <args>'.
3744 * Interpretation of args is defined by control file implementation.
3745 */
3746static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3747					 char *buf, size_t nbytes, loff_t off)
3748{
3749	struct cgroup_subsys_state *css = of_css(of);
3750	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3751	struct mem_cgroup_event *event;
3752	struct cgroup_subsys_state *cfile_css;
3753	unsigned int efd, cfd;
3754	struct fd efile;
3755	struct fd cfile;
3756	const char *name;
3757	char *endp;
3758	int ret;
3759
3760	buf = strstrip(buf);
3761
3762	efd = simple_strtoul(buf, &endp, 10);
3763	if (*endp != ' ')
3764		return -EINVAL;
3765	buf = endp + 1;
3766
3767	cfd = simple_strtoul(buf, &endp, 10);
3768	if ((*endp != ' ') && (*endp != '\0'))
3769		return -EINVAL;
3770	buf = endp + 1;
3771
3772	event = kzalloc(sizeof(*event), GFP_KERNEL);
3773	if (!event)
3774		return -ENOMEM;
3775
3776	event->memcg = memcg;
3777	INIT_LIST_HEAD(&event->list);
3778	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3779	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3780	INIT_WORK(&event->remove, memcg_event_remove);
3781
3782	efile = fdget(efd);
3783	if (!efile.file) {
3784		ret = -EBADF;
3785		goto out_kfree;
3786	}
3787
3788	event->eventfd = eventfd_ctx_fileget(efile.file);
3789	if (IS_ERR(event->eventfd)) {
3790		ret = PTR_ERR(event->eventfd);
3791		goto out_put_efile;
3792	}
3793
3794	cfile = fdget(cfd);
3795	if (!cfile.file) {
3796		ret = -EBADF;
3797		goto out_put_eventfd;
3798	}
3799
3800	/* the process need read permission on control file */
3801	/* AV: shouldn't we check that it's been opened for read instead? */
3802	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3803	if (ret < 0)
3804		goto out_put_cfile;
3805
3806	/*
3807	 * Determine the event callbacks and set them in @event.  This used
3808	 * to be done via struct cftype but cgroup core no longer knows
3809	 * about these events.  The following is crude but the whole thing
3810	 * is for compatibility anyway.
3811	 *
3812	 * DO NOT ADD NEW FILES.
3813	 */
3814	name = cfile.file->f_path.dentry->d_name.name;
3815
3816	if (!strcmp(name, "memory.usage_in_bytes")) {
3817		event->register_event = mem_cgroup_usage_register_event;
3818		event->unregister_event = mem_cgroup_usage_unregister_event;
3819	} else if (!strcmp(name, "memory.oom_control")) {
3820		event->register_event = mem_cgroup_oom_register_event;
3821		event->unregister_event = mem_cgroup_oom_unregister_event;
3822	} else if (!strcmp(name, "memory.pressure_level")) {
3823		event->register_event = vmpressure_register_event;
3824		event->unregister_event = vmpressure_unregister_event;
3825	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3826		event->register_event = memsw_cgroup_usage_register_event;
3827		event->unregister_event = memsw_cgroup_usage_unregister_event;
3828	} else {
3829		ret = -EINVAL;
3830		goto out_put_cfile;
3831	}
3832
3833	/*
3834	 * Verify @cfile should belong to @css.  Also, remaining events are
3835	 * automatically removed on cgroup destruction but the removal is
3836	 * asynchronous, so take an extra ref on @css.
3837	 */
3838	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3839					       &memory_cgrp_subsys);
3840	ret = -EINVAL;
3841	if (IS_ERR(cfile_css))
3842		goto out_put_cfile;
3843	if (cfile_css != css) {
3844		css_put(cfile_css);
3845		goto out_put_cfile;
3846	}
3847
3848	ret = event->register_event(memcg, event->eventfd, buf);
3849	if (ret)
3850		goto out_put_css;
3851
3852	efile.file->f_op->poll(efile.file, &event->pt);
3853
3854	spin_lock(&memcg->event_list_lock);
3855	list_add(&event->list, &memcg->event_list);
3856	spin_unlock(&memcg->event_list_lock);
3857
3858	fdput(cfile);
3859	fdput(efile);
3860
3861	return nbytes;
3862
3863out_put_css:
3864	css_put(css);
3865out_put_cfile:
3866	fdput(cfile);
3867out_put_eventfd:
3868	eventfd_ctx_put(event->eventfd);
3869out_put_efile:
3870	fdput(efile);
3871out_kfree:
3872	kfree(event);
3873
3874	return ret;
3875}
3876
3877static struct cftype mem_cgroup_legacy_files[] = {
3878	{
3879		.name = "usage_in_bytes",
3880		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3881		.read_u64 = mem_cgroup_read_u64,
3882	},
3883	{
3884		.name = "max_usage_in_bytes",
3885		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3886		.write = mem_cgroup_reset,
3887		.read_u64 = mem_cgroup_read_u64,
3888	},
3889	{
3890		.name = "limit_in_bytes",
3891		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3892		.write = mem_cgroup_write,
3893		.read_u64 = mem_cgroup_read_u64,
3894	},
3895	{
3896		.name = "soft_limit_in_bytes",
3897		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3898		.write = mem_cgroup_write,
3899		.read_u64 = mem_cgroup_read_u64,
3900	},
3901	{
3902		.name = "failcnt",
3903		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3904		.write = mem_cgroup_reset,
3905		.read_u64 = mem_cgroup_read_u64,
3906	},
3907	{
3908		.name = "stat",
3909		.seq_show = memcg_stat_show,
3910	},
3911	{
3912		.name = "force_empty",
3913		.write = mem_cgroup_force_empty_write,
3914	},
3915	{
3916		.name = "use_hierarchy",
3917		.write_u64 = mem_cgroup_hierarchy_write,
3918		.read_u64 = mem_cgroup_hierarchy_read,
3919	},
3920	{
3921		.name = "cgroup.event_control",		/* XXX: for compat */
3922		.write = memcg_write_event_control,
3923		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3924	},
3925	{
3926		.name = "swappiness",
3927		.read_u64 = mem_cgroup_swappiness_read,
3928		.write_u64 = mem_cgroup_swappiness_write,
3929	},
3930	{
3931		.name = "move_charge_at_immigrate",
3932		.read_u64 = mem_cgroup_move_charge_read,
3933		.write_u64 = mem_cgroup_move_charge_write,
3934	},
3935	{
3936		.name = "oom_control",
3937		.seq_show = mem_cgroup_oom_control_read,
3938		.write_u64 = mem_cgroup_oom_control_write,
3939		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3940	},
3941	{
3942		.name = "pressure_level",
3943	},
3944#ifdef CONFIG_NUMA
3945	{
3946		.name = "numa_stat",
3947		.seq_show = memcg_numa_stat_show,
3948	},
3949#endif
3950	{
3951		.name = "kmem.limit_in_bytes",
3952		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3953		.write = mem_cgroup_write,
3954		.read_u64 = mem_cgroup_read_u64,
3955	},
3956	{
3957		.name = "kmem.usage_in_bytes",
3958		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3959		.read_u64 = mem_cgroup_read_u64,
3960	},
3961	{
3962		.name = "kmem.failcnt",
3963		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3964		.write = mem_cgroup_reset,
3965		.read_u64 = mem_cgroup_read_u64,
3966	},
3967	{
3968		.name = "kmem.max_usage_in_bytes",
3969		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3970		.write = mem_cgroup_reset,
3971		.read_u64 = mem_cgroup_read_u64,
3972	},
3973#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3974	{
3975		.name = "kmem.slabinfo",
3976		.seq_start = memcg_slab_start,
3977		.seq_next = memcg_slab_next,
3978		.seq_stop = memcg_slab_stop,
3979		.seq_show = memcg_slab_show,
3980	},
3981#endif
3982	{
3983		.name = "kmem.tcp.limit_in_bytes",
3984		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3985		.write = mem_cgroup_write,
3986		.read_u64 = mem_cgroup_read_u64,
3987	},
3988	{
3989		.name = "kmem.tcp.usage_in_bytes",
3990		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3991		.read_u64 = mem_cgroup_read_u64,
3992	},
3993	{
3994		.name = "kmem.tcp.failcnt",
3995		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
3996		.write = mem_cgroup_reset,
3997		.read_u64 = mem_cgroup_read_u64,
3998	},
3999	{
4000		.name = "kmem.tcp.max_usage_in_bytes",
4001		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4002		.write = mem_cgroup_reset,
4003		.read_u64 = mem_cgroup_read_u64,
4004	},
4005	{ },	/* terminate */
4006};
4007
4008/*
4009 * Private memory cgroup IDR
4010 *
4011 * Swap-out records and page cache shadow entries need to store memcg
4012 * references in constrained space, so we maintain an ID space that is
4013 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4014 * memory-controlled cgroups to 64k.
4015 *
4016 * However, there usually are many references to the oflline CSS after
4017 * the cgroup has been destroyed, such as page cache or reclaimable
4018 * slab objects, that don't need to hang on to the ID. We want to keep
4019 * those dead CSS from occupying IDs, or we might quickly exhaust the
4020 * relatively small ID space and prevent the creation of new cgroups
4021 * even when there are much fewer than 64k cgroups - possibly none.
4022 *
4023 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4024 * be freed and recycled when it's no longer needed, which is usually
4025 * when the CSS is offlined.
4026 *
4027 * The only exception to that are records of swapped out tmpfs/shmem
4028 * pages that need to be attributed to live ancestors on swapin. But
4029 * those references are manageable from userspace.
4030 */
4031
4032static DEFINE_IDR(mem_cgroup_idr);
4033
4034static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4035{
4036	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4037	atomic_add(n, &memcg->id.ref);
4038}
4039
4040static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4041{
4042	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4043	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4044		idr_remove(&mem_cgroup_idr, memcg->id.id);
4045		memcg->id.id = 0;
4046
4047		/* Memcg ID pins CSS */
4048		css_put(&memcg->css);
4049	}
4050}
4051
4052static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4053{
4054	mem_cgroup_id_get_many(memcg, 1);
4055}
4056
4057static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4058{
4059	mem_cgroup_id_put_many(memcg, 1);
4060}
4061
4062/**
4063 * mem_cgroup_from_id - look up a memcg from a memcg id
4064 * @id: the memcg id to look up
4065 *
4066 * Caller must hold rcu_read_lock().
4067 */
4068struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4069{
4070	WARN_ON_ONCE(!rcu_read_lock_held());
4071	return idr_find(&mem_cgroup_idr, id);
4072}
4073
4074static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4075{
4076	struct mem_cgroup_per_node *pn;
4077	int tmp = node;
4078	/*
4079	 * This routine is called against possible nodes.
4080	 * But it's BUG to call kmalloc() against offline node.
4081	 *
4082	 * TODO: this routine can waste much memory for nodes which will
4083	 *       never be onlined. It's better to use memory hotplug callback
4084	 *       function.
4085	 */
4086	if (!node_state(node, N_NORMAL_MEMORY))
4087		tmp = -1;
4088	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4089	if (!pn)
4090		return 1;
4091
4092	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4093	if (!pn->lruvec_stat_cpu) {
4094		kfree(pn);
4095		return 1;
4096	}
4097
4098	lruvec_init(&pn->lruvec);
4099	pn->usage_in_excess = 0;
4100	pn->on_tree = false;
4101	pn->memcg = memcg;
4102
4103	memcg->nodeinfo[node] = pn;
4104	return 0;
4105}
4106
4107static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4108{
4109	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4110
4111	if (!pn)
4112		return;
4113
4114	free_percpu(pn->lruvec_stat_cpu);
4115	kfree(pn);
4116}
4117
4118static void __mem_cgroup_free(struct mem_cgroup *memcg)
4119{
4120	int node;
4121
4122	for_each_node(node)
4123		free_mem_cgroup_per_node_info(memcg, node);
4124	free_percpu(memcg->stat_cpu);
4125	kfree(memcg);
4126}
4127
4128static void mem_cgroup_free(struct mem_cgroup *memcg)
4129{
4130	memcg_wb_domain_exit(memcg);
4131	__mem_cgroup_free(memcg);
4132}
4133
4134static struct mem_cgroup *mem_cgroup_alloc(void)
4135{
4136	struct mem_cgroup *memcg;
4137	size_t size;
4138	int node;
4139
4140	size = sizeof(struct mem_cgroup);
4141	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4142
4143	memcg = kzalloc(size, GFP_KERNEL);
4144	if (!memcg)
4145		return NULL;
4146
4147	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4148				 1, MEM_CGROUP_ID_MAX,
4149				 GFP_KERNEL);
4150	if (memcg->id.id < 0)
4151		goto fail;
4152
4153	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4154	if (!memcg->stat_cpu)
4155		goto fail;
4156
4157	for_each_node(node)
4158		if (alloc_mem_cgroup_per_node_info(memcg, node))
4159			goto fail;
4160
4161	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4162		goto fail;
4163
4164	INIT_WORK(&memcg->high_work, high_work_func);
4165	memcg->last_scanned_node = MAX_NUMNODES;
4166	INIT_LIST_HEAD(&memcg->oom_notify);
4167	mutex_init(&memcg->thresholds_lock);
4168	spin_lock_init(&memcg->move_lock);
4169	vmpressure_init(&memcg->vmpressure);
4170	INIT_LIST_HEAD(&memcg->event_list);
4171	spin_lock_init(&memcg->event_list_lock);
4172	memcg->socket_pressure = jiffies;
4173#ifndef CONFIG_SLOB
4174	memcg->kmemcg_id = -1;
4175#endif
4176#ifdef CONFIG_CGROUP_WRITEBACK
4177	INIT_LIST_HEAD(&memcg->cgwb_list);
4178#endif
4179	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4180	return memcg;
4181fail:
4182	if (memcg->id.id > 0)
4183		idr_remove(&mem_cgroup_idr, memcg->id.id);
4184	__mem_cgroup_free(memcg);
4185	return NULL;
4186}
4187
4188static struct cgroup_subsys_state * __ref
4189mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4190{
4191	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4192	struct mem_cgroup *memcg;
4193	long error = -ENOMEM;
4194
4195	memcg = mem_cgroup_alloc();
4196	if (!memcg)
4197		return ERR_PTR(error);
4198
4199	memcg->high = PAGE_COUNTER_MAX;
4200	memcg->soft_limit = PAGE_COUNTER_MAX;
4201	if (parent) {
4202		memcg->swappiness = mem_cgroup_swappiness(parent);
4203		memcg->oom_kill_disable = parent->oom_kill_disable;
4204	}
4205	if (parent && parent->use_hierarchy) {
4206		memcg->use_hierarchy = true;
4207		page_counter_init(&memcg->memory, &parent->memory);
4208		page_counter_init(&memcg->swap, &parent->swap);
4209		page_counter_init(&memcg->memsw, &parent->memsw);
4210		page_counter_init(&memcg->kmem, &parent->kmem);
4211		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4212	} else {
4213		page_counter_init(&memcg->memory, NULL);
4214		page_counter_init(&memcg->swap, NULL);
4215		page_counter_init(&memcg->memsw, NULL);
4216		page_counter_init(&memcg->kmem, NULL);
4217		page_counter_init(&memcg->tcpmem, NULL);
4218		/*
4219		 * Deeper hierachy with use_hierarchy == false doesn't make
4220		 * much sense so let cgroup subsystem know about this
4221		 * unfortunate state in our controller.
4222		 */
4223		if (parent != root_mem_cgroup)
4224			memory_cgrp_subsys.broken_hierarchy = true;
4225	}
4226
4227	/* The following stuff does not apply to the root */
4228	if (!parent) {
4229		root_mem_cgroup = memcg;
4230		return &memcg->css;
4231	}
4232
4233	error = memcg_online_kmem(memcg);
4234	if (error)
4235		goto fail;
4236
4237	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4238		static_branch_inc(&memcg_sockets_enabled_key);
4239
4240	return &memcg->css;
4241fail:
4242	mem_cgroup_free(memcg);
4243	return ERR_PTR(-ENOMEM);
4244}
4245
4246static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4247{
4248	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4249
4250	/* Online state pins memcg ID, memcg ID pins CSS */
4251	atomic_set(&memcg->id.ref, 1);
4252	css_get(css);
4253	return 0;
4254}
4255
4256static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4257{
4258	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259	struct mem_cgroup_event *event, *tmp;
4260
4261	/*
4262	 * Unregister events and notify userspace.
4263	 * Notify userspace about cgroup removing only after rmdir of cgroup
4264	 * directory to avoid race between userspace and kernelspace.
4265	 */
4266	spin_lock(&memcg->event_list_lock);
4267	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4268		list_del_init(&event->list);
4269		schedule_work(&event->remove);
4270	}
4271	spin_unlock(&memcg->event_list_lock);
4272
4273	memcg->low = 0;
4274
4275	memcg_offline_kmem(memcg);
4276	wb_memcg_offline(memcg);
4277
4278	mem_cgroup_id_put(memcg);
4279}
4280
4281static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4282{
4283	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284
4285	invalidate_reclaim_iterators(memcg);
4286}
4287
4288static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4289{
4290	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4291
4292	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4293		static_branch_dec(&memcg_sockets_enabled_key);
4294
4295	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4296		static_branch_dec(&memcg_sockets_enabled_key);
4297
4298	vmpressure_cleanup(&memcg->vmpressure);
4299	cancel_work_sync(&memcg->high_work);
4300	mem_cgroup_remove_from_trees(memcg);
4301	memcg_free_kmem(memcg);
4302	mem_cgroup_free(memcg);
4303}
4304
4305/**
4306 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4307 * @css: the target css
4308 *
4309 * Reset the states of the mem_cgroup associated with @css.  This is
4310 * invoked when the userland requests disabling on the default hierarchy
4311 * but the memcg is pinned through dependency.  The memcg should stop
4312 * applying policies and should revert to the vanilla state as it may be
4313 * made visible again.
4314 *
4315 * The current implementation only resets the essential configurations.
4316 * This needs to be expanded to cover all the visible parts.
4317 */
4318static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4319{
4320	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4321
4322	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4323	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4324	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4325	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4326	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4327	memcg->low = 0;
4328	memcg->high = PAGE_COUNTER_MAX;
4329	memcg->soft_limit = PAGE_COUNTER_MAX;
4330	memcg_wb_domain_size_changed(memcg);
4331}
4332
4333#ifdef CONFIG_MMU
4334/* Handlers for move charge at task migration. */
4335static int mem_cgroup_do_precharge(unsigned long count)
4336{
4337	int ret;
4338
4339	/* Try a single bulk charge without reclaim first, kswapd may wake */
4340	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4341	if (!ret) {
4342		mc.precharge += count;
4343		return ret;
4344	}
4345
4346	/* Try charges one by one with reclaim, but do not retry */
4347	while (count--) {
4348		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4349		if (ret)
4350			return ret;
4351		mc.precharge++;
4352		cond_resched();
4353	}
4354	return 0;
4355}
4356
4357union mc_target {
4358	struct page	*page;
4359	swp_entry_t	ent;
4360};
4361
4362enum mc_target_type {
4363	MC_TARGET_NONE = 0,
4364	MC_TARGET_PAGE,
4365	MC_TARGET_SWAP,
4366	MC_TARGET_DEVICE,
4367};
4368
4369static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4370						unsigned long addr, pte_t ptent)
4371{
4372	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4373
4374	if (!page || !page_mapped(page))
4375		return NULL;
4376	if (PageAnon(page)) {
4377		if (!(mc.flags & MOVE_ANON))
4378			return NULL;
4379	} else {
4380		if (!(mc.flags & MOVE_FILE))
4381			return NULL;
4382	}
4383	if (!get_page_unless_zero(page))
4384		return NULL;
4385
4386	return page;
4387}
4388
4389#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4390static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4391			pte_t ptent, swp_entry_t *entry)
4392{
4393	struct page *page = NULL;
4394	swp_entry_t ent = pte_to_swp_entry(ptent);
4395
4396	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4397		return NULL;
4398
4399	/*
4400	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4401	 * a device and because they are not accessible by CPU they are store
4402	 * as special swap entry in the CPU page table.
4403	 */
4404	if (is_device_private_entry(ent)) {
4405		page = device_private_entry_to_page(ent);
4406		/*
4407		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4408		 * a refcount of 1 when free (unlike normal page)
4409		 */
4410		if (!page_ref_add_unless(page, 1, 1))
4411			return NULL;
4412		return page;
4413	}
4414
4415	/*
4416	 * Because lookup_swap_cache() updates some statistics counter,
4417	 * we call find_get_page() with swapper_space directly.
4418	 */
4419	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4420	if (do_memsw_account())
4421		entry->val = ent.val;
4422
4423	return page;
4424}
4425#else
4426static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4427			pte_t ptent, swp_entry_t *entry)
4428{
4429	return NULL;
4430}
4431#endif
4432
4433static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4434			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4435{
4436	struct page *page = NULL;
4437	struct address_space *mapping;
4438	pgoff_t pgoff;
4439
4440	if (!vma->vm_file) /* anonymous vma */
4441		return NULL;
4442	if (!(mc.flags & MOVE_FILE))
4443		return NULL;
4444
4445	mapping = vma->vm_file->f_mapping;
4446	pgoff = linear_page_index(vma, addr);
4447
4448	/* page is moved even if it's not RSS of this task(page-faulted). */
4449#ifdef CONFIG_SWAP
4450	/* shmem/tmpfs may report page out on swap: account for that too. */
4451	if (shmem_mapping(mapping)) {
4452		page = find_get_entry(mapping, pgoff);
4453		if (radix_tree_exceptional_entry(page)) {
4454			swp_entry_t swp = radix_to_swp_entry(page);
4455			if (do_memsw_account())
4456				*entry = swp;
4457			page = find_get_page(swap_address_space(swp),
4458					     swp_offset(swp));
4459		}
4460	} else
4461		page = find_get_page(mapping, pgoff);
4462#else
4463	page = find_get_page(mapping, pgoff);
4464#endif
4465	return page;
4466}
4467
4468/**
4469 * mem_cgroup_move_account - move account of the page
4470 * @page: the page
4471 * @compound: charge the page as compound or small page
4472 * @from: mem_cgroup which the page is moved from.
4473 * @to:	mem_cgroup which the page is moved to. @from != @to.
4474 *
4475 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4476 *
4477 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4478 * from old cgroup.
4479 */
4480static int mem_cgroup_move_account(struct page *page,
4481				   bool compound,
4482				   struct mem_cgroup *from,
4483				   struct mem_cgroup *to)
4484{
4485	unsigned long flags;
4486	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4487	int ret;
4488	bool anon;
4489
4490	VM_BUG_ON(from == to);
4491	VM_BUG_ON_PAGE(PageLRU(page), page);
4492	VM_BUG_ON(compound && !PageTransHuge(page));
4493
4494	/*
4495	 * Prevent mem_cgroup_migrate() from looking at
4496	 * page->mem_cgroup of its source page while we change it.
4497	 */
4498	ret = -EBUSY;
4499	if (!trylock_page(page))
4500		goto out;
4501
4502	ret = -EINVAL;
4503	if (page->mem_cgroup != from)
4504		goto out_unlock;
4505
4506	anon = PageAnon(page);
4507
4508	spin_lock_irqsave(&from->move_lock, flags);
4509
4510	if (!anon && page_mapped(page)) {
4511		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4512		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
 
 
4513	}
4514
4515	/*
4516	 * move_lock grabbed above and caller set from->moving_account, so
4517	 * mod_memcg_page_state will serialize updates to PageDirty.
4518	 * So mapping should be stable for dirty pages.
4519	 */
4520	if (!anon && PageDirty(page)) {
4521		struct address_space *mapping = page_mapping(page);
4522
4523		if (mapping_cap_account_dirty(mapping)) {
4524			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4525			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
 
 
4526		}
4527	}
4528
4529	if (PageWriteback(page)) {
4530		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4531		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
 
 
4532	}
4533
4534	/*
4535	 * It is safe to change page->mem_cgroup here because the page
4536	 * is referenced, charged, and isolated - we can't race with
4537	 * uncharging, charging, migration, or LRU putback.
4538	 */
4539
4540	/* caller should have done css_get */
4541	page->mem_cgroup = to;
4542	spin_unlock_irqrestore(&from->move_lock, flags);
4543
4544	ret = 0;
4545
4546	local_irq_disable();
4547	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548	memcg_check_events(to, page);
4549	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550	memcg_check_events(from, page);
4551	local_irq_enable();
4552out_unlock:
4553	unlock_page(page);
4554out:
4555	return ret;
4556}
4557
4558/**
4559 * get_mctgt_type - get target type of moving charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 *
4565 * Returns
4566 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 *     move charge. if @target is not NULL, the page is stored in target->page
4569 *     with extra refcnt got(Callers should handle it).
4570 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 *     target for charge migration. if @target is not NULL, the entry is stored
4572 *     in target->ent.
4573 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4574 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4575 *     For now we such page is charge like a regular page would be as for all
4576 *     intent and purposes it is just special memory taking the place of a
4577 *     regular page.
4578 *
4579 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4580 *
4581 * Called with pte lock held.
4582 */
4583
4584static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4585		unsigned long addr, pte_t ptent, union mc_target *target)
4586{
4587	struct page *page = NULL;
4588	enum mc_target_type ret = MC_TARGET_NONE;
4589	swp_entry_t ent = { .val = 0 };
4590
4591	if (pte_present(ptent))
4592		page = mc_handle_present_pte(vma, addr, ptent);
4593	else if (is_swap_pte(ptent))
4594		page = mc_handle_swap_pte(vma, ptent, &ent);
4595	else if (pte_none(ptent))
4596		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4597
4598	if (!page && !ent.val)
4599		return ret;
4600	if (page) {
4601		/*
4602		 * Do only loose check w/o serialization.
4603		 * mem_cgroup_move_account() checks the page is valid or
4604		 * not under LRU exclusion.
4605		 */
4606		if (page->mem_cgroup == mc.from) {
4607			ret = MC_TARGET_PAGE;
4608			if (is_device_private_page(page) ||
4609			    is_device_public_page(page))
4610				ret = MC_TARGET_DEVICE;
4611			if (target)
4612				target->page = page;
4613		}
4614		if (!ret || !target)
4615			put_page(page);
4616	}
4617	/*
4618	 * There is a swap entry and a page doesn't exist or isn't charged.
4619	 * But we cannot move a tail-page in a THP.
4620	 */
4621	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4622	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4623		ret = MC_TARGET_SWAP;
4624		if (target)
4625			target->ent = ent;
4626	}
4627	return ret;
4628}
4629
4630#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4631/*
4632 * We don't consider PMD mapped swapping or file mapped pages because THP does
4633 * not support them for now.
4634 * Caller should make sure that pmd_trans_huge(pmd) is true.
4635 */
4636static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4637		unsigned long addr, pmd_t pmd, union mc_target *target)
4638{
4639	struct page *page = NULL;
4640	enum mc_target_type ret = MC_TARGET_NONE;
4641
4642	if (unlikely(is_swap_pmd(pmd))) {
4643		VM_BUG_ON(thp_migration_supported() &&
4644				  !is_pmd_migration_entry(pmd));
4645		return ret;
4646	}
4647	page = pmd_page(pmd);
4648	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4649	if (!(mc.flags & MOVE_ANON))
4650		return ret;
4651	if (page->mem_cgroup == mc.from) {
4652		ret = MC_TARGET_PAGE;
4653		if (target) {
4654			get_page(page);
4655			target->page = page;
4656		}
4657	}
4658	return ret;
4659}
4660#else
4661static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4662		unsigned long addr, pmd_t pmd, union mc_target *target)
4663{
4664	return MC_TARGET_NONE;
4665}
4666#endif
4667
4668static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4669					unsigned long addr, unsigned long end,
4670					struct mm_walk *walk)
4671{
4672	struct vm_area_struct *vma = walk->vma;
4673	pte_t *pte;
4674	spinlock_t *ptl;
4675
4676	ptl = pmd_trans_huge_lock(pmd, vma);
4677	if (ptl) {
4678		/*
4679		 * Note their can not be MC_TARGET_DEVICE for now as we do not
4680		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4681		 * MEMORY_DEVICE_PRIVATE but this might change.
4682		 */
4683		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684			mc.precharge += HPAGE_PMD_NR;
4685		spin_unlock(ptl);
4686		return 0;
4687	}
4688
4689	if (pmd_trans_unstable(pmd))
4690		return 0;
4691	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692	for (; addr != end; pte++, addr += PAGE_SIZE)
4693		if (get_mctgt_type(vma, addr, *pte, NULL))
4694			mc.precharge++;	/* increment precharge temporarily */
4695	pte_unmap_unlock(pte - 1, ptl);
4696	cond_resched();
4697
4698	return 0;
4699}
4700
4701static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702{
4703	unsigned long precharge;
4704
4705	struct mm_walk mem_cgroup_count_precharge_walk = {
4706		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4707		.mm = mm,
4708	};
4709	down_read(&mm->mmap_sem);
4710	walk_page_range(0, mm->highest_vm_end,
4711			&mem_cgroup_count_precharge_walk);
4712	up_read(&mm->mmap_sem);
4713
4714	precharge = mc.precharge;
4715	mc.precharge = 0;
4716
4717	return precharge;
4718}
4719
4720static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4721{
4722	unsigned long precharge = mem_cgroup_count_precharge(mm);
4723
4724	VM_BUG_ON(mc.moving_task);
4725	mc.moving_task = current;
4726	return mem_cgroup_do_precharge(precharge);
4727}
4728
4729/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4730static void __mem_cgroup_clear_mc(void)
4731{
4732	struct mem_cgroup *from = mc.from;
4733	struct mem_cgroup *to = mc.to;
4734
4735	/* we must uncharge all the leftover precharges from mc.to */
4736	if (mc.precharge) {
4737		cancel_charge(mc.to, mc.precharge);
4738		mc.precharge = 0;
4739	}
4740	/*
4741	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4742	 * we must uncharge here.
4743	 */
4744	if (mc.moved_charge) {
4745		cancel_charge(mc.from, mc.moved_charge);
4746		mc.moved_charge = 0;
4747	}
4748	/* we must fixup refcnts and charges */
4749	if (mc.moved_swap) {
4750		/* uncharge swap account from the old cgroup */
4751		if (!mem_cgroup_is_root(mc.from))
4752			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4753
4754		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4755
4756		/*
4757		 * we charged both to->memory and to->memsw, so we
4758		 * should uncharge to->memory.
4759		 */
4760		if (!mem_cgroup_is_root(mc.to))
4761			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4762
4763		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4764		css_put_many(&mc.to->css, mc.moved_swap);
4765
4766		mc.moved_swap = 0;
4767	}
4768	memcg_oom_recover(from);
4769	memcg_oom_recover(to);
4770	wake_up_all(&mc.waitq);
4771}
4772
4773static void mem_cgroup_clear_mc(void)
4774{
4775	struct mm_struct *mm = mc.mm;
4776
4777	/*
4778	 * we must clear moving_task before waking up waiters at the end of
4779	 * task migration.
4780	 */
4781	mc.moving_task = NULL;
4782	__mem_cgroup_clear_mc();
4783	spin_lock(&mc.lock);
4784	mc.from = NULL;
4785	mc.to = NULL;
4786	mc.mm = NULL;
4787	spin_unlock(&mc.lock);
4788
4789	mmput(mm);
4790}
4791
4792static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4793{
4794	struct cgroup_subsys_state *css;
4795	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4796	struct mem_cgroup *from;
4797	struct task_struct *leader, *p;
4798	struct mm_struct *mm;
4799	unsigned long move_flags;
4800	int ret = 0;
4801
4802	/* charge immigration isn't supported on the default hierarchy */
4803	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4804		return 0;
4805
4806	/*
4807	 * Multi-process migrations only happen on the default hierarchy
4808	 * where charge immigration is not used.  Perform charge
4809	 * immigration if @tset contains a leader and whine if there are
4810	 * multiple.
4811	 */
4812	p = NULL;
4813	cgroup_taskset_for_each_leader(leader, css, tset) {
4814		WARN_ON_ONCE(p);
4815		p = leader;
4816		memcg = mem_cgroup_from_css(css);
4817	}
4818	if (!p)
4819		return 0;
4820
4821	/*
4822	 * We are now commited to this value whatever it is. Changes in this
4823	 * tunable will only affect upcoming migrations, not the current one.
4824	 * So we need to save it, and keep it going.
4825	 */
4826	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4827	if (!move_flags)
4828		return 0;
4829
4830	from = mem_cgroup_from_task(p);
4831
4832	VM_BUG_ON(from == memcg);
4833
4834	mm = get_task_mm(p);
4835	if (!mm)
4836		return 0;
4837	/* We move charges only when we move a owner of the mm */
4838	if (mm->owner == p) {
4839		VM_BUG_ON(mc.from);
4840		VM_BUG_ON(mc.to);
4841		VM_BUG_ON(mc.precharge);
4842		VM_BUG_ON(mc.moved_charge);
4843		VM_BUG_ON(mc.moved_swap);
4844
4845		spin_lock(&mc.lock);
4846		mc.mm = mm;
4847		mc.from = from;
4848		mc.to = memcg;
4849		mc.flags = move_flags;
4850		spin_unlock(&mc.lock);
4851		/* We set mc.moving_task later */
4852
4853		ret = mem_cgroup_precharge_mc(mm);
4854		if (ret)
4855			mem_cgroup_clear_mc();
4856	} else {
4857		mmput(mm);
4858	}
4859	return ret;
4860}
4861
4862static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4863{
4864	if (mc.to)
4865		mem_cgroup_clear_mc();
4866}
4867
4868static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4869				unsigned long addr, unsigned long end,
4870				struct mm_walk *walk)
4871{
4872	int ret = 0;
4873	struct vm_area_struct *vma = walk->vma;
4874	pte_t *pte;
4875	spinlock_t *ptl;
4876	enum mc_target_type target_type;
4877	union mc_target target;
4878	struct page *page;
4879
4880	ptl = pmd_trans_huge_lock(pmd, vma);
4881	if (ptl) {
4882		if (mc.precharge < HPAGE_PMD_NR) {
4883			spin_unlock(ptl);
4884			return 0;
4885		}
4886		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4887		if (target_type == MC_TARGET_PAGE) {
4888			page = target.page;
4889			if (!isolate_lru_page(page)) {
4890				if (!mem_cgroup_move_account(page, true,
4891							     mc.from, mc.to)) {
4892					mc.precharge -= HPAGE_PMD_NR;
4893					mc.moved_charge += HPAGE_PMD_NR;
4894				}
4895				putback_lru_page(page);
4896			}
4897			put_page(page);
4898		} else if (target_type == MC_TARGET_DEVICE) {
4899			page = target.page;
4900			if (!mem_cgroup_move_account(page, true,
4901						     mc.from, mc.to)) {
4902				mc.precharge -= HPAGE_PMD_NR;
4903				mc.moved_charge += HPAGE_PMD_NR;
4904			}
4905			put_page(page);
4906		}
4907		spin_unlock(ptl);
4908		return 0;
4909	}
4910
4911	if (pmd_trans_unstable(pmd))
4912		return 0;
4913retry:
4914	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4915	for (; addr != end; addr += PAGE_SIZE) {
4916		pte_t ptent = *(pte++);
4917		bool device = false;
4918		swp_entry_t ent;
4919
4920		if (!mc.precharge)
4921			break;
4922
4923		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4924		case MC_TARGET_DEVICE:
4925			device = true;
4926			/* fall through */
4927		case MC_TARGET_PAGE:
4928			page = target.page;
4929			/*
4930			 * We can have a part of the split pmd here. Moving it
4931			 * can be done but it would be too convoluted so simply
4932			 * ignore such a partial THP and keep it in original
4933			 * memcg. There should be somebody mapping the head.
4934			 */
4935			if (PageTransCompound(page))
4936				goto put;
4937			if (!device && isolate_lru_page(page))
4938				goto put;
4939			if (!mem_cgroup_move_account(page, false,
4940						mc.from, mc.to)) {
4941				mc.precharge--;
4942				/* we uncharge from mc.from later. */
4943				mc.moved_charge++;
4944			}
4945			if (!device)
4946				putback_lru_page(page);
4947put:			/* get_mctgt_type() gets the page */
4948			put_page(page);
4949			break;
4950		case MC_TARGET_SWAP:
4951			ent = target.ent;
4952			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4953				mc.precharge--;
4954				/* we fixup refcnts and charges later. */
4955				mc.moved_swap++;
4956			}
4957			break;
4958		default:
4959			break;
4960		}
4961	}
4962	pte_unmap_unlock(pte - 1, ptl);
4963	cond_resched();
4964
4965	if (addr != end) {
4966		/*
4967		 * We have consumed all precharges we got in can_attach().
4968		 * We try charge one by one, but don't do any additional
4969		 * charges to mc.to if we have failed in charge once in attach()
4970		 * phase.
4971		 */
4972		ret = mem_cgroup_do_precharge(1);
4973		if (!ret)
4974			goto retry;
4975	}
4976
4977	return ret;
4978}
4979
4980static void mem_cgroup_move_charge(void)
4981{
4982	struct mm_walk mem_cgroup_move_charge_walk = {
4983		.pmd_entry = mem_cgroup_move_charge_pte_range,
4984		.mm = mc.mm,
4985	};
4986
4987	lru_add_drain_all();
4988	/*
4989	 * Signal lock_page_memcg() to take the memcg's move_lock
4990	 * while we're moving its pages to another memcg. Then wait
4991	 * for already started RCU-only updates to finish.
4992	 */
4993	atomic_inc(&mc.from->moving_account);
4994	synchronize_rcu();
4995retry:
4996	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4997		/*
4998		 * Someone who are holding the mmap_sem might be waiting in
4999		 * waitq. So we cancel all extra charges, wake up all waiters,
5000		 * and retry. Because we cancel precharges, we might not be able
5001		 * to move enough charges, but moving charge is a best-effort
5002		 * feature anyway, so it wouldn't be a big problem.
5003		 */
5004		__mem_cgroup_clear_mc();
5005		cond_resched();
5006		goto retry;
5007	}
5008	/*
5009	 * When we have consumed all precharges and failed in doing
5010	 * additional charge, the page walk just aborts.
5011	 */
5012	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5013
5014	up_read(&mc.mm->mmap_sem);
5015	atomic_dec(&mc.from->moving_account);
5016}
5017
5018static void mem_cgroup_move_task(void)
5019{
5020	if (mc.to) {
5021		mem_cgroup_move_charge();
5022		mem_cgroup_clear_mc();
5023	}
5024}
5025#else	/* !CONFIG_MMU */
5026static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5027{
5028	return 0;
5029}
5030static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5031{
5032}
5033static void mem_cgroup_move_task(void)
5034{
5035}
5036#endif
5037
5038/*
5039 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5040 * to verify whether we're attached to the default hierarchy on each mount
5041 * attempt.
5042 */
5043static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5044{
5045	/*
5046	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5047	 * guarantees that @root doesn't have any children, so turning it
5048	 * on for the root memcg is enough.
5049	 */
5050	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5051		root_mem_cgroup->use_hierarchy = true;
5052	else
5053		root_mem_cgroup->use_hierarchy = false;
5054}
5055
5056static u64 memory_current_read(struct cgroup_subsys_state *css,
5057			       struct cftype *cft)
5058{
5059	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5060
5061	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5062}
5063
5064static int memory_low_show(struct seq_file *m, void *v)
5065{
5066	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5067	unsigned long low = READ_ONCE(memcg->low);
5068
5069	if (low == PAGE_COUNTER_MAX)
5070		seq_puts(m, "max\n");
5071	else
5072		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5073
5074	return 0;
5075}
5076
5077static ssize_t memory_low_write(struct kernfs_open_file *of,
5078				char *buf, size_t nbytes, loff_t off)
5079{
5080	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5081	unsigned long low;
5082	int err;
5083
5084	buf = strstrip(buf);
5085	err = page_counter_memparse(buf, "max", &low);
5086	if (err)
5087		return err;
5088
5089	memcg->low = low;
5090
5091	return nbytes;
5092}
5093
5094static int memory_high_show(struct seq_file *m, void *v)
5095{
5096	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097	unsigned long high = READ_ONCE(memcg->high);
5098
5099	if (high == PAGE_COUNTER_MAX)
5100		seq_puts(m, "max\n");
5101	else
5102		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5103
5104	return 0;
5105}
5106
5107static ssize_t memory_high_write(struct kernfs_open_file *of,
5108				 char *buf, size_t nbytes, loff_t off)
5109{
5110	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5111	unsigned long nr_pages;
5112	unsigned long high;
5113	int err;
5114
5115	buf = strstrip(buf);
5116	err = page_counter_memparse(buf, "max", &high);
5117	if (err)
5118		return err;
5119
5120	memcg->high = high;
5121
5122	nr_pages = page_counter_read(&memcg->memory);
5123	if (nr_pages > high)
5124		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5125					     GFP_KERNEL, true);
5126
5127	memcg_wb_domain_size_changed(memcg);
5128	return nbytes;
5129}
5130
5131static int memory_max_show(struct seq_file *m, void *v)
5132{
5133	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5134	unsigned long max = READ_ONCE(memcg->memory.limit);
5135
5136	if (max == PAGE_COUNTER_MAX)
5137		seq_puts(m, "max\n");
5138	else
5139		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5140
5141	return 0;
5142}
5143
5144static ssize_t memory_max_write(struct kernfs_open_file *of,
5145				char *buf, size_t nbytes, loff_t off)
5146{
5147	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5148	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5149	bool drained = false;
5150	unsigned long max;
5151	int err;
5152
5153	buf = strstrip(buf);
5154	err = page_counter_memparse(buf, "max", &max);
5155	if (err)
5156		return err;
5157
5158	xchg(&memcg->memory.limit, max);
5159
5160	for (;;) {
5161		unsigned long nr_pages = page_counter_read(&memcg->memory);
5162
5163		if (nr_pages <= max)
5164			break;
5165
5166		if (signal_pending(current)) {
5167			err = -EINTR;
5168			break;
5169		}
5170
5171		if (!drained) {
5172			drain_all_stock(memcg);
5173			drained = true;
5174			continue;
5175		}
5176
5177		if (nr_reclaims) {
5178			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5179							  GFP_KERNEL, true))
5180				nr_reclaims--;
5181			continue;
5182		}
5183
5184		memcg_memory_event(memcg, MEMCG_OOM);
5185		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5186			break;
5187	}
5188
5189	memcg_wb_domain_size_changed(memcg);
5190	return nbytes;
5191}
5192
5193static int memory_events_show(struct seq_file *m, void *v)
5194{
5195	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5196
5197	seq_printf(m, "low %lu\n",
5198		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5199	seq_printf(m, "high %lu\n",
5200		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5201	seq_printf(m, "max %lu\n",
5202		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5203	seq_printf(m, "oom %lu\n",
5204		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5205	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5206
5207	return 0;
5208}
5209
5210static int memory_stat_show(struct seq_file *m, void *v)
5211{
5212	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5213	unsigned long stat[MEMCG_NR_STAT];
5214	unsigned long events[NR_VM_EVENT_ITEMS];
5215	int i;
5216
5217	/*
5218	 * Provide statistics on the state of the memory subsystem as
5219	 * well as cumulative event counters that show past behavior.
5220	 *
5221	 * This list is ordered following a combination of these gradients:
5222	 * 1) generic big picture -> specifics and details
5223	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5224	 *
5225	 * Current memory state:
5226	 */
5227
5228	tree_stat(memcg, stat);
5229	tree_events(memcg, events);
5230
5231	seq_printf(m, "anon %llu\n",
5232		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5233	seq_printf(m, "file %llu\n",
5234		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5235	seq_printf(m, "kernel_stack %llu\n",
5236		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5237	seq_printf(m, "slab %llu\n",
5238		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
5239			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5240	seq_printf(m, "sock %llu\n",
5241		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5242
5243	seq_printf(m, "shmem %llu\n",
5244		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5245	seq_printf(m, "file_mapped %llu\n",
5246		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5247	seq_printf(m, "file_dirty %llu\n",
5248		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5249	seq_printf(m, "file_writeback %llu\n",
5250		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5251
5252	for (i = 0; i < NR_LRU_LISTS; i++) {
5253		struct mem_cgroup *mi;
5254		unsigned long val = 0;
5255
5256		for_each_mem_cgroup_tree(mi, memcg)
5257			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5258		seq_printf(m, "%s %llu\n",
5259			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5260	}
5261
5262	seq_printf(m, "slab_reclaimable %llu\n",
5263		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5264	seq_printf(m, "slab_unreclaimable %llu\n",
5265		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5266
5267	/* Accumulated memory events */
5268
5269	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5270	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5271
5272	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5273	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5274		   events[PGSCAN_DIRECT]);
5275	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5276		   events[PGSTEAL_DIRECT]);
5277	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5278	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5279	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5280	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5281
5282	seq_printf(m, "workingset_refault %lu\n",
5283		   stat[WORKINGSET_REFAULT]);
5284	seq_printf(m, "workingset_activate %lu\n",
5285		   stat[WORKINGSET_ACTIVATE]);
5286	seq_printf(m, "workingset_nodereclaim %lu\n",
5287		   stat[WORKINGSET_NODERECLAIM]);
5288
5289	return 0;
5290}
5291
5292static struct cftype memory_files[] = {
5293	{
5294		.name = "current",
5295		.flags = CFTYPE_NOT_ON_ROOT,
5296		.read_u64 = memory_current_read,
5297	},
5298	{
5299		.name = "low",
5300		.flags = CFTYPE_NOT_ON_ROOT,
5301		.seq_show = memory_low_show,
5302		.write = memory_low_write,
5303	},
5304	{
5305		.name = "high",
5306		.flags = CFTYPE_NOT_ON_ROOT,
5307		.seq_show = memory_high_show,
5308		.write = memory_high_write,
5309	},
5310	{
5311		.name = "max",
5312		.flags = CFTYPE_NOT_ON_ROOT,
5313		.seq_show = memory_max_show,
5314		.write = memory_max_write,
5315	},
5316	{
5317		.name = "events",
5318		.flags = CFTYPE_NOT_ON_ROOT,
5319		.file_offset = offsetof(struct mem_cgroup, events_file),
5320		.seq_show = memory_events_show,
5321	},
5322	{
5323		.name = "stat",
5324		.flags = CFTYPE_NOT_ON_ROOT,
5325		.seq_show = memory_stat_show,
5326	},
5327	{ }	/* terminate */
5328};
5329
5330struct cgroup_subsys memory_cgrp_subsys = {
5331	.css_alloc = mem_cgroup_css_alloc,
5332	.css_online = mem_cgroup_css_online,
5333	.css_offline = mem_cgroup_css_offline,
5334	.css_released = mem_cgroup_css_released,
5335	.css_free = mem_cgroup_css_free,
5336	.css_reset = mem_cgroup_css_reset,
5337	.can_attach = mem_cgroup_can_attach,
5338	.cancel_attach = mem_cgroup_cancel_attach,
5339	.post_attach = mem_cgroup_move_task,
5340	.bind = mem_cgroup_bind,
5341	.dfl_cftypes = memory_files,
5342	.legacy_cftypes = mem_cgroup_legacy_files,
5343	.early_init = 0,
5344};
5345
5346/**
5347 * mem_cgroup_low - check if memory consumption is below the normal range
5348 * @root: the top ancestor of the sub-tree being checked
5349 * @memcg: the memory cgroup to check
5350 *
5351 * Returns %true if memory consumption of @memcg, and that of all
5352 * ancestors up to (but not including) @root, is below the normal range.
5353 *
5354 * @root is exclusive; it is never low when looked at directly and isn't
5355 * checked when traversing the hierarchy.
5356 *
5357 * Excluding @root enables using memory.low to prioritize memory usage
5358 * between cgroups within a subtree of the hierarchy that is limited by
5359 * memory.high or memory.max.
5360 *
5361 * For example, given cgroup A with children B and C:
5362 *
5363 *    A
5364 *   / \
5365 *  B   C
5366 *
5367 * and
5368 *
5369 *  1. A/memory.current > A/memory.high
5370 *  2. A/B/memory.current < A/B/memory.low
5371 *  3. A/C/memory.current >= A/C/memory.low
5372 *
5373 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5374 * should reclaim from 'C' until 'A' is no longer high or until we can
5375 * no longer reclaim from 'C'.  If 'A', i.e. @root, isn't excluded by
5376 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5377 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5378 */
5379bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5380{
5381	if (mem_cgroup_disabled())
5382		return false;
5383
5384	if (!root)
5385		root = root_mem_cgroup;
5386	if (memcg == root)
 
 
 
 
 
 
 
5387		return false;
5388
5389	for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
 
 
 
 
 
5390		if (page_counter_read(&memcg->memory) >= memcg->low)
5391			return false;
5392	}
5393
5394	return true;
5395}
5396
5397/**
5398 * mem_cgroup_try_charge - try charging a page
5399 * @page: page to charge
5400 * @mm: mm context of the victim
5401 * @gfp_mask: reclaim mode
5402 * @memcgp: charged memcg return
5403 * @compound: charge the page as compound or small page
5404 *
5405 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5406 * pages according to @gfp_mask if necessary.
5407 *
5408 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5409 * Otherwise, an error code is returned.
5410 *
5411 * After page->mapping has been set up, the caller must finalize the
5412 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5413 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5414 */
5415int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5416			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5417			  bool compound)
5418{
5419	struct mem_cgroup *memcg = NULL;
5420	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5421	int ret = 0;
5422
5423	if (mem_cgroup_disabled())
5424		goto out;
5425
5426	if (PageSwapCache(page)) {
5427		/*
5428		 * Every swap fault against a single page tries to charge the
5429		 * page, bail as early as possible.  shmem_unuse() encounters
5430		 * already charged pages, too.  The USED bit is protected by
5431		 * the page lock, which serializes swap cache removal, which
5432		 * in turn serializes uncharging.
5433		 */
5434		VM_BUG_ON_PAGE(!PageLocked(page), page);
5435		if (compound_head(page)->mem_cgroup)
5436			goto out;
5437
5438		if (do_swap_account) {
5439			swp_entry_t ent = { .val = page_private(page), };
5440			unsigned short id = lookup_swap_cgroup_id(ent);
5441
5442			rcu_read_lock();
5443			memcg = mem_cgroup_from_id(id);
5444			if (memcg && !css_tryget_online(&memcg->css))
5445				memcg = NULL;
5446			rcu_read_unlock();
5447		}
5448	}
5449
5450	if (!memcg)
5451		memcg = get_mem_cgroup_from_mm(mm);
5452
5453	ret = try_charge(memcg, gfp_mask, nr_pages);
5454
5455	css_put(&memcg->css);
5456out:
5457	*memcgp = memcg;
5458	return ret;
5459}
5460
5461/**
5462 * mem_cgroup_commit_charge - commit a page charge
5463 * @page: page to charge
5464 * @memcg: memcg to charge the page to
5465 * @lrucare: page might be on LRU already
5466 * @compound: charge the page as compound or small page
5467 *
5468 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5469 * after page->mapping has been set up.  This must happen atomically
5470 * as part of the page instantiation, i.e. under the page table lock
5471 * for anonymous pages, under the page lock for page and swap cache.
5472 *
5473 * In addition, the page must not be on the LRU during the commit, to
5474 * prevent racing with task migration.  If it might be, use @lrucare.
5475 *
5476 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5477 */
5478void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5479			      bool lrucare, bool compound)
5480{
5481	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5482
5483	VM_BUG_ON_PAGE(!page->mapping, page);
5484	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5485
5486	if (mem_cgroup_disabled())
5487		return;
5488	/*
5489	 * Swap faults will attempt to charge the same page multiple
5490	 * times.  But reuse_swap_page() might have removed the page
5491	 * from swapcache already, so we can't check PageSwapCache().
5492	 */
5493	if (!memcg)
5494		return;
5495
5496	commit_charge(page, memcg, lrucare);
5497
5498	local_irq_disable();
5499	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5500	memcg_check_events(memcg, page);
5501	local_irq_enable();
5502
5503	if (do_memsw_account() && PageSwapCache(page)) {
5504		swp_entry_t entry = { .val = page_private(page) };
5505		/*
5506		 * The swap entry might not get freed for a long time,
5507		 * let's not wait for it.  The page already received a
5508		 * memory+swap charge, drop the swap entry duplicate.
5509		 */
5510		mem_cgroup_uncharge_swap(entry, nr_pages);
5511	}
5512}
5513
5514/**
5515 * mem_cgroup_cancel_charge - cancel a page charge
5516 * @page: page to charge
5517 * @memcg: memcg to charge the page to
5518 * @compound: charge the page as compound or small page
5519 *
5520 * Cancel a charge transaction started by mem_cgroup_try_charge().
5521 */
5522void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5523		bool compound)
5524{
5525	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5526
5527	if (mem_cgroup_disabled())
5528		return;
5529	/*
5530	 * Swap faults will attempt to charge the same page multiple
5531	 * times.  But reuse_swap_page() might have removed the page
5532	 * from swapcache already, so we can't check PageSwapCache().
5533	 */
5534	if (!memcg)
5535		return;
5536
5537	cancel_charge(memcg, nr_pages);
5538}
5539
5540struct uncharge_gather {
5541	struct mem_cgroup *memcg;
5542	unsigned long pgpgout;
5543	unsigned long nr_anon;
5544	unsigned long nr_file;
5545	unsigned long nr_kmem;
5546	unsigned long nr_huge;
5547	unsigned long nr_shmem;
5548	struct page *dummy_page;
5549};
5550
5551static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5552{
5553	memset(ug, 0, sizeof(*ug));
5554}
5555
5556static void uncharge_batch(const struct uncharge_gather *ug)
5557{
5558	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5559	unsigned long flags;
5560
5561	if (!mem_cgroup_is_root(ug->memcg)) {
5562		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5563		if (do_memsw_account())
5564			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5565		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5566			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5567		memcg_oom_recover(ug->memcg);
5568	}
5569
5570	local_irq_save(flags);
5571	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5572	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5573	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5574	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5575	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5576	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5577	memcg_check_events(ug->memcg, ug->dummy_page);
5578	local_irq_restore(flags);
5579
5580	if (!mem_cgroup_is_root(ug->memcg))
5581		css_put_many(&ug->memcg->css, nr_pages);
5582}
5583
5584static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5585{
5586	VM_BUG_ON_PAGE(PageLRU(page), page);
5587	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5588			!PageHWPoison(page) , page);
5589
5590	if (!page->mem_cgroup)
5591		return;
5592
5593	/*
5594	 * Nobody should be changing or seriously looking at
5595	 * page->mem_cgroup at this point, we have fully
5596	 * exclusive access to the page.
5597	 */
5598
5599	if (ug->memcg != page->mem_cgroup) {
5600		if (ug->memcg) {
5601			uncharge_batch(ug);
5602			uncharge_gather_clear(ug);
5603		}
5604		ug->memcg = page->mem_cgroup;
5605	}
5606
5607	if (!PageKmemcg(page)) {
5608		unsigned int nr_pages = 1;
5609
5610		if (PageTransHuge(page)) {
5611			nr_pages <<= compound_order(page);
5612			ug->nr_huge += nr_pages;
5613		}
5614		if (PageAnon(page))
5615			ug->nr_anon += nr_pages;
5616		else {
5617			ug->nr_file += nr_pages;
5618			if (PageSwapBacked(page))
5619				ug->nr_shmem += nr_pages;
5620		}
5621		ug->pgpgout++;
5622	} else {
5623		ug->nr_kmem += 1 << compound_order(page);
5624		__ClearPageKmemcg(page);
5625	}
5626
5627	ug->dummy_page = page;
5628	page->mem_cgroup = NULL;
5629}
5630
5631static void uncharge_list(struct list_head *page_list)
5632{
5633	struct uncharge_gather ug;
 
 
 
 
 
5634	struct list_head *next;
5635
5636	uncharge_gather_clear(&ug);
5637
5638	/*
5639	 * Note that the list can be a single page->lru; hence the
5640	 * do-while loop instead of a simple list_for_each_entry().
5641	 */
5642	next = page_list->next;
5643	do {
5644		struct page *page;
5645
5646		page = list_entry(next, struct page, lru);
5647		next = page->lru.next;
5648
5649		uncharge_page(page, &ug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5650	} while (next != page_list);
5651
5652	if (ug.memcg)
5653		uncharge_batch(&ug);
 
5654}
5655
5656/**
5657 * mem_cgroup_uncharge - uncharge a page
5658 * @page: page to uncharge
5659 *
5660 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5661 * mem_cgroup_commit_charge().
5662 */
5663void mem_cgroup_uncharge(struct page *page)
5664{
5665	struct uncharge_gather ug;
5666
5667	if (mem_cgroup_disabled())
5668		return;
5669
5670	/* Don't touch page->lru of any random page, pre-check: */
5671	if (!page->mem_cgroup)
5672		return;
5673
5674	uncharge_gather_clear(&ug);
5675	uncharge_page(page, &ug);
5676	uncharge_batch(&ug);
5677}
5678
5679/**
5680 * mem_cgroup_uncharge_list - uncharge a list of page
5681 * @page_list: list of pages to uncharge
5682 *
5683 * Uncharge a list of pages previously charged with
5684 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5685 */
5686void mem_cgroup_uncharge_list(struct list_head *page_list)
5687{
5688	if (mem_cgroup_disabled())
5689		return;
5690
5691	if (!list_empty(page_list))
5692		uncharge_list(page_list);
5693}
5694
5695/**
5696 * mem_cgroup_migrate - charge a page's replacement
5697 * @oldpage: currently circulating page
5698 * @newpage: replacement page
5699 *
5700 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5701 * be uncharged upon free.
5702 *
5703 * Both pages must be locked, @newpage->mapping must be set up.
5704 */
5705void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5706{
5707	struct mem_cgroup *memcg;
5708	unsigned int nr_pages;
5709	bool compound;
5710	unsigned long flags;
5711
5712	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5713	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5714	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5715	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5716		       newpage);
5717
5718	if (mem_cgroup_disabled())
5719		return;
5720
5721	/* Page cache replacement: new page already charged? */
5722	if (newpage->mem_cgroup)
5723		return;
5724
5725	/* Swapcache readahead pages can get replaced before being charged */
5726	memcg = oldpage->mem_cgroup;
5727	if (!memcg)
5728		return;
5729
5730	/* Force-charge the new page. The old one will be freed soon */
5731	compound = PageTransHuge(newpage);
5732	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5733
5734	page_counter_charge(&memcg->memory, nr_pages);
5735	if (do_memsw_account())
5736		page_counter_charge(&memcg->memsw, nr_pages);
5737	css_get_many(&memcg->css, nr_pages);
5738
5739	commit_charge(newpage, memcg, false);
5740
5741	local_irq_save(flags);
5742	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5743	memcg_check_events(memcg, newpage);
5744	local_irq_restore(flags);
5745}
5746
5747DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5748EXPORT_SYMBOL(memcg_sockets_enabled_key);
5749
5750void mem_cgroup_sk_alloc(struct sock *sk)
5751{
5752	struct mem_cgroup *memcg;
5753
5754	if (!mem_cgroup_sockets_enabled)
5755		return;
5756
5757	/*
5758	 * Socket cloning can throw us here with sk_memcg already
5759	 * filled. It won't however, necessarily happen from
5760	 * process context. So the test for root memcg given
5761	 * the current task's memcg won't help us in this case.
5762	 *
5763	 * Respecting the original socket's memcg is a better
5764	 * decision in this case.
5765	 */
5766	if (sk->sk_memcg) {
 
5767		css_get(&sk->sk_memcg->css);
5768		return;
5769	}
5770
5771	rcu_read_lock();
5772	memcg = mem_cgroup_from_task(current);
5773	if (memcg == root_mem_cgroup)
5774		goto out;
5775	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5776		goto out;
5777	if (css_tryget_online(&memcg->css))
5778		sk->sk_memcg = memcg;
5779out:
5780	rcu_read_unlock();
5781}
5782
5783void mem_cgroup_sk_free(struct sock *sk)
5784{
5785	if (sk->sk_memcg)
5786		css_put(&sk->sk_memcg->css);
5787}
5788
5789/**
5790 * mem_cgroup_charge_skmem - charge socket memory
5791 * @memcg: memcg to charge
5792 * @nr_pages: number of pages to charge
5793 *
5794 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5795 * @memcg's configured limit, %false if the charge had to be forced.
5796 */
5797bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5798{
5799	gfp_t gfp_mask = GFP_KERNEL;
5800
5801	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5802		struct page_counter *fail;
5803
5804		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5805			memcg->tcpmem_pressure = 0;
5806			return true;
5807		}
5808		page_counter_charge(&memcg->tcpmem, nr_pages);
5809		memcg->tcpmem_pressure = 1;
5810		return false;
5811	}
5812
5813	/* Don't block in the packet receive path */
5814	if (in_softirq())
5815		gfp_mask = GFP_NOWAIT;
5816
5817	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5818
5819	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5820		return true;
5821
5822	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5823	return false;
5824}
5825
5826/**
5827 * mem_cgroup_uncharge_skmem - uncharge socket memory
5828 * @memcg: memcg to uncharge
5829 * @nr_pages: number of pages to uncharge
5830 */
5831void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5832{
5833	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5834		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5835		return;
5836	}
5837
5838	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5839
5840	refill_stock(memcg, nr_pages);
 
5841}
5842
5843static int __init cgroup_memory(char *s)
5844{
5845	char *token;
5846
5847	while ((token = strsep(&s, ",")) != NULL) {
5848		if (!*token)
5849			continue;
5850		if (!strcmp(token, "nosocket"))
5851			cgroup_memory_nosocket = true;
5852		if (!strcmp(token, "nokmem"))
5853			cgroup_memory_nokmem = true;
5854	}
5855	return 0;
5856}
5857__setup("cgroup.memory=", cgroup_memory);
5858
5859/*
5860 * subsys_initcall() for memory controller.
5861 *
5862 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5863 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5864 * basically everything that doesn't depend on a specific mem_cgroup structure
5865 * should be initialized from here.
5866 */
5867static int __init mem_cgroup_init(void)
5868{
5869	int cpu, node;
5870
5871#ifndef CONFIG_SLOB
5872	/*
5873	 * Kmem cache creation is mostly done with the slab_mutex held,
5874	 * so use a workqueue with limited concurrency to avoid stalling
5875	 * all worker threads in case lots of cgroups are created and
5876	 * destroyed simultaneously.
5877	 */
5878	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5879	BUG_ON(!memcg_kmem_cache_wq);
 
5880#endif
5881
5882	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5883				  memcg_hotplug_cpu_dead);
5884
5885	for_each_possible_cpu(cpu)
5886		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5887			  drain_local_stock);
5888
5889	for_each_node(node) {
5890		struct mem_cgroup_tree_per_node *rtpn;
5891
5892		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5893				    node_online(node) ? node : NUMA_NO_NODE);
5894
5895		rtpn->rb_root = RB_ROOT;
5896		rtpn->rb_rightmost = NULL;
5897		spin_lock_init(&rtpn->lock);
5898		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5899	}
5900
5901	return 0;
5902}
5903subsys_initcall(mem_cgroup_init);
5904
5905#ifdef CONFIG_MEMCG_SWAP
5906static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5907{
5908	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5909		/*
5910		 * The root cgroup cannot be destroyed, so it's refcount must
5911		 * always be >= 1.
5912		 */
5913		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5914			VM_BUG_ON(1);
5915			break;
5916		}
5917		memcg = parent_mem_cgroup(memcg);
5918		if (!memcg)
5919			memcg = root_mem_cgroup;
5920	}
5921	return memcg;
5922}
5923
5924/**
5925 * mem_cgroup_swapout - transfer a memsw charge to swap
5926 * @page: page whose memsw charge to transfer
5927 * @entry: swap entry to move the charge to
5928 *
5929 * Transfer the memsw charge of @page to @entry.
5930 */
5931void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5932{
5933	struct mem_cgroup *memcg, *swap_memcg;
5934	unsigned int nr_entries;
5935	unsigned short oldid;
5936
5937	VM_BUG_ON_PAGE(PageLRU(page), page);
5938	VM_BUG_ON_PAGE(page_count(page), page);
5939
5940	if (!do_memsw_account())
5941		return;
5942
5943	memcg = page->mem_cgroup;
5944
5945	/* Readahead page, never charged */
5946	if (!memcg)
5947		return;
5948
5949	/*
5950	 * In case the memcg owning these pages has been offlined and doesn't
5951	 * have an ID allocated to it anymore, charge the closest online
5952	 * ancestor for the swap instead and transfer the memory+swap charge.
5953	 */
5954	swap_memcg = mem_cgroup_id_get_online(memcg);
5955	nr_entries = hpage_nr_pages(page);
5956	/* Get references for the tail pages, too */
5957	if (nr_entries > 1)
5958		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5959	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
5960				   nr_entries);
5961	VM_BUG_ON_PAGE(oldid, page);
5962	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5963
5964	page->mem_cgroup = NULL;
5965
5966	if (!mem_cgroup_is_root(memcg))
5967		page_counter_uncharge(&memcg->memory, nr_entries);
5968
5969	if (memcg != swap_memcg) {
5970		if (!mem_cgroup_is_root(swap_memcg))
5971			page_counter_charge(&swap_memcg->memsw, nr_entries);
5972		page_counter_uncharge(&memcg->memsw, nr_entries);
5973	}
5974
5975	/*
5976	 * Interrupts should be disabled here because the caller holds the
5977	 * i_pages lock which is taken with interrupts-off. It is
5978	 * important here to have the interrupts disabled because it is the
5979	 * only synchronisation we have for updating the per-CPU variables.
5980	 */
5981	VM_BUG_ON(!irqs_disabled());
5982	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
5983				     -nr_entries);
5984	memcg_check_events(memcg, page);
5985
5986	if (!mem_cgroup_is_root(memcg))
5987		css_put_many(&memcg->css, nr_entries);
5988}
5989
5990/**
5991 * mem_cgroup_try_charge_swap - try charging swap space for a page
5992 * @page: page being added to swap
5993 * @entry: swap entry to charge
5994 *
5995 * Try to charge @page's memcg for the swap space at @entry.
5996 *
5997 * Returns 0 on success, -ENOMEM on failure.
5998 */
5999int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6000{
6001	unsigned int nr_pages = hpage_nr_pages(page);
6002	struct page_counter *counter;
6003	struct mem_cgroup *memcg;
 
6004	unsigned short oldid;
6005
6006	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6007		return 0;
6008
6009	memcg = page->mem_cgroup;
6010
6011	/* Readahead page, never charged */
6012	if (!memcg)
6013		return 0;
6014
6015	memcg = mem_cgroup_id_get_online(memcg);
6016
6017	if (!mem_cgroup_is_root(memcg) &&
6018	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6019		mem_cgroup_id_put(memcg);
6020		return -ENOMEM;
6021	}
6022
6023	/* Get references for the tail pages, too */
6024	if (nr_pages > 1)
6025		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6026	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6027	VM_BUG_ON_PAGE(oldid, page);
6028	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6029
6030	return 0;
6031}
6032
6033/**
6034 * mem_cgroup_uncharge_swap - uncharge swap space
6035 * @entry: swap entry to uncharge
6036 * @nr_pages: the amount of swap space to uncharge
 
6037 */
6038void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6039{
6040	struct mem_cgroup *memcg;
6041	unsigned short id;
6042
6043	if (!do_swap_account)
6044		return;
6045
6046	id = swap_cgroup_record(entry, 0, nr_pages);
6047	rcu_read_lock();
6048	memcg = mem_cgroup_from_id(id);
6049	if (memcg) {
6050		if (!mem_cgroup_is_root(memcg)) {
6051			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6052				page_counter_uncharge(&memcg->swap, nr_pages);
6053			else
6054				page_counter_uncharge(&memcg->memsw, nr_pages);
6055		}
6056		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6057		mem_cgroup_id_put_many(memcg, nr_pages);
6058	}
6059	rcu_read_unlock();
6060}
6061
6062long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6063{
6064	long nr_swap_pages = get_nr_swap_pages();
6065
6066	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6067		return nr_swap_pages;
6068	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6069		nr_swap_pages = min_t(long, nr_swap_pages,
6070				      READ_ONCE(memcg->swap.limit) -
6071				      page_counter_read(&memcg->swap));
6072	return nr_swap_pages;
6073}
6074
6075bool mem_cgroup_swap_full(struct page *page)
6076{
6077	struct mem_cgroup *memcg;
6078
6079	VM_BUG_ON_PAGE(!PageLocked(page), page);
6080
6081	if (vm_swap_full())
6082		return true;
6083	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6084		return false;
6085
6086	memcg = page->mem_cgroup;
6087	if (!memcg)
6088		return false;
6089
6090	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6091		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6092			return true;
6093
6094	return false;
6095}
6096
6097/* for remember boot option*/
6098#ifdef CONFIG_MEMCG_SWAP_ENABLED
6099static int really_do_swap_account __initdata = 1;
6100#else
6101static int really_do_swap_account __initdata;
6102#endif
6103
6104static int __init enable_swap_account(char *s)
6105{
6106	if (!strcmp(s, "1"))
6107		really_do_swap_account = 1;
6108	else if (!strcmp(s, "0"))
6109		really_do_swap_account = 0;
6110	return 1;
6111}
6112__setup("swapaccount=", enable_swap_account);
6113
6114static u64 swap_current_read(struct cgroup_subsys_state *css,
6115			     struct cftype *cft)
6116{
6117	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6118
6119	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6120}
6121
6122static int swap_max_show(struct seq_file *m, void *v)
6123{
6124	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6125	unsigned long max = READ_ONCE(memcg->swap.limit);
6126
6127	if (max == PAGE_COUNTER_MAX)
6128		seq_puts(m, "max\n");
6129	else
6130		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6131
6132	return 0;
6133}
6134
6135static ssize_t swap_max_write(struct kernfs_open_file *of,
6136			      char *buf, size_t nbytes, loff_t off)
6137{
6138	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6139	unsigned long max;
6140	int err;
6141
6142	buf = strstrip(buf);
6143	err = page_counter_memparse(buf, "max", &max);
6144	if (err)
6145		return err;
6146
6147	mutex_lock(&memcg_limit_mutex);
6148	err = page_counter_limit(&memcg->swap, max);
6149	mutex_unlock(&memcg_limit_mutex);
6150	if (err)
6151		return err;
6152
6153	return nbytes;
6154}
6155
6156static struct cftype swap_files[] = {
6157	{
6158		.name = "swap.current",
6159		.flags = CFTYPE_NOT_ON_ROOT,
6160		.read_u64 = swap_current_read,
6161	},
6162	{
6163		.name = "swap.max",
6164		.flags = CFTYPE_NOT_ON_ROOT,
6165		.seq_show = swap_max_show,
6166		.write = swap_max_write,
6167	},
6168	{ }	/* terminate */
6169};
6170
6171static struct cftype memsw_cgroup_files[] = {
6172	{
6173		.name = "memsw.usage_in_bytes",
6174		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6175		.read_u64 = mem_cgroup_read_u64,
6176	},
6177	{
6178		.name = "memsw.max_usage_in_bytes",
6179		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6180		.write = mem_cgroup_reset,
6181		.read_u64 = mem_cgroup_read_u64,
6182	},
6183	{
6184		.name = "memsw.limit_in_bytes",
6185		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6186		.write = mem_cgroup_write,
6187		.read_u64 = mem_cgroup_read_u64,
6188	},
6189	{
6190		.name = "memsw.failcnt",
6191		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6192		.write = mem_cgroup_reset,
6193		.read_u64 = mem_cgroup_read_u64,
6194	},
6195	{ },	/* terminate */
6196};
6197
6198static int __init mem_cgroup_swap_init(void)
6199{
6200	if (!mem_cgroup_disabled() && really_do_swap_account) {
6201		do_swap_account = 1;
6202		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6203					       swap_files));
6204		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6205						  memsw_cgroup_files));
6206	}
6207	return 0;
6208}
6209subsys_initcall(mem_cgroup_swap_init);
6210
6211#endif /* CONFIG_MEMCG_SWAP */
v4.10.11
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * Native page reclaim
  18 * Charge lifetime sanitation
  19 * Lockless page tracking & accounting
  20 * Unified hierarchy configuration model
  21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22 *
  23 * This program is free software; you can redistribute it and/or modify
  24 * it under the terms of the GNU General Public License as published by
  25 * the Free Software Foundation; either version 2 of the License, or
  26 * (at your option) any later version.
  27 *
  28 * This program is distributed in the hope that it will be useful,
  29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  31 * GNU General Public License for more details.
  32 */
  33
  34#include <linux/page_counter.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cgroup.h>
  37#include <linux/mm.h>
 
 
  38#include <linux/hugetlb.h>
  39#include <linux/pagemap.h>
  40#include <linux/smp.h>
  41#include <linux/page-flags.h>
  42#include <linux/backing-dev.h>
  43#include <linux/bit_spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/limits.h>
  46#include <linux/export.h>
  47#include <linux/mutex.h>
  48#include <linux/rbtree.h>
  49#include <linux/slab.h>
  50#include <linux/swap.h>
  51#include <linux/swapops.h>
  52#include <linux/spinlock.h>
  53#include <linux/eventfd.h>
  54#include <linux/poll.h>
  55#include <linux/sort.h>
  56#include <linux/fs.h>
  57#include <linux/seq_file.h>
  58#include <linux/vmpressure.h>
  59#include <linux/mm_inline.h>
  60#include <linux/swap_cgroup.h>
  61#include <linux/cpu.h>
  62#include <linux/oom.h>
  63#include <linux/lockdep.h>
  64#include <linux/file.h>
  65#include <linux/tracehook.h>
  66#include "internal.h"
  67#include <net/sock.h>
  68#include <net/ip.h>
  69#include "slab.h"
  70
  71#include <linux/uaccess.h>
  72
  73#include <trace/events/vmscan.h>
  74
  75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  76EXPORT_SYMBOL(memory_cgrp_subsys);
  77
  78struct mem_cgroup *root_mem_cgroup __read_mostly;
  79
  80#define MEM_CGROUP_RECLAIM_RETRIES	5
  81
  82/* Socket memory accounting disabled? */
  83static bool cgroup_memory_nosocket;
  84
  85/* Kernel memory accounting disabled? */
  86static bool cgroup_memory_nokmem;
  87
  88/* Whether the swap controller is active */
  89#ifdef CONFIG_MEMCG_SWAP
  90int do_swap_account __read_mostly;
  91#else
  92#define do_swap_account		0
  93#endif
  94
  95/* Whether legacy memory+swap accounting is active */
  96static bool do_memsw_account(void)
  97{
  98	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
  99}
 100
 101static const char * const mem_cgroup_stat_names[] = {
 102	"cache",
 103	"rss",
 104	"rss_huge",
 105	"mapped_file",
 106	"dirty",
 107	"writeback",
 108	"swap",
 109};
 110
 111static const char * const mem_cgroup_events_names[] = {
 112	"pgpgin",
 113	"pgpgout",
 114	"pgfault",
 115	"pgmajfault",
 116};
 117
 118static const char * const mem_cgroup_lru_names[] = {
 119	"inactive_anon",
 120	"active_anon",
 121	"inactive_file",
 122	"active_file",
 123	"unevictable",
 124};
 125
 126#define THRESHOLDS_EVENTS_TARGET 128
 127#define SOFTLIMIT_EVENTS_TARGET 1024
 128#define NUMAINFO_EVENTS_TARGET	1024
 129
 130/*
 131 * Cgroups above their limits are maintained in a RB-Tree, independent of
 132 * their hierarchy representation
 133 */
 134
 135struct mem_cgroup_tree_per_node {
 136	struct rb_root rb_root;
 
 137	spinlock_t lock;
 138};
 139
 140struct mem_cgroup_tree {
 141	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 142};
 143
 144static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 145
 146/* for OOM */
 147struct mem_cgroup_eventfd_list {
 148	struct list_head list;
 149	struct eventfd_ctx *eventfd;
 150};
 151
 152/*
 153 * cgroup_event represents events which userspace want to receive.
 154 */
 155struct mem_cgroup_event {
 156	/*
 157	 * memcg which the event belongs to.
 158	 */
 159	struct mem_cgroup *memcg;
 160	/*
 161	 * eventfd to signal userspace about the event.
 162	 */
 163	struct eventfd_ctx *eventfd;
 164	/*
 165	 * Each of these stored in a list by the cgroup.
 166	 */
 167	struct list_head list;
 168	/*
 169	 * register_event() callback will be used to add new userspace
 170	 * waiter for changes related to this event.  Use eventfd_signal()
 171	 * on eventfd to send notification to userspace.
 172	 */
 173	int (*register_event)(struct mem_cgroup *memcg,
 174			      struct eventfd_ctx *eventfd, const char *args);
 175	/*
 176	 * unregister_event() callback will be called when userspace closes
 177	 * the eventfd or on cgroup removing.  This callback must be set,
 178	 * if you want provide notification functionality.
 179	 */
 180	void (*unregister_event)(struct mem_cgroup *memcg,
 181				 struct eventfd_ctx *eventfd);
 182	/*
 183	 * All fields below needed to unregister event when
 184	 * userspace closes eventfd.
 185	 */
 186	poll_table pt;
 187	wait_queue_head_t *wqh;
 188	wait_queue_t wait;
 189	struct work_struct remove;
 190};
 191
 192static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 193static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 194
 195/* Stuffs for move charges at task migration. */
 196/*
 197 * Types of charges to be moved.
 198 */
 199#define MOVE_ANON	0x1U
 200#define MOVE_FILE	0x2U
 201#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
 202
 203/* "mc" and its members are protected by cgroup_mutex */
 204static struct move_charge_struct {
 205	spinlock_t	  lock; /* for from, to */
 206	struct mm_struct  *mm;
 207	struct mem_cgroup *from;
 208	struct mem_cgroup *to;
 209	unsigned long flags;
 210	unsigned long precharge;
 211	unsigned long moved_charge;
 212	unsigned long moved_swap;
 213	struct task_struct *moving_task;	/* a task moving charges */
 214	wait_queue_head_t waitq;		/* a waitq for other context */
 215} mc = {
 216	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 217	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 218};
 219
 220/*
 221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 222 * limit reclaim to prevent infinite loops, if they ever occur.
 223 */
 224#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
 225#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
 226
 227enum charge_type {
 228	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 229	MEM_CGROUP_CHARGE_TYPE_ANON,
 230	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
 231	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
 232	NR_CHARGE_TYPE,
 233};
 234
 235/* for encoding cft->private value on file */
 236enum res_type {
 237	_MEM,
 238	_MEMSWAP,
 239	_OOM_TYPE,
 240	_KMEM,
 241	_TCP,
 242};
 243
 244#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
 245#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
 246#define MEMFILE_ATTR(val)	((val) & 0xffff)
 247/* Used for OOM nofiier */
 248#define OOM_CONTROL		(0)
 249
 250/* Some nice accessors for the vmpressure. */
 251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 252{
 253	if (!memcg)
 254		memcg = root_mem_cgroup;
 255	return &memcg->vmpressure;
 256}
 257
 258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 259{
 260	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 261}
 262
 263static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 264{
 265	return (memcg == root_mem_cgroup);
 266}
 267
 268#ifndef CONFIG_SLOB
 269/*
 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 271 * The main reason for not using cgroup id for this:
 272 *  this works better in sparse environments, where we have a lot of memcgs,
 273 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 274 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 275 *  200 entry array for that.
 276 *
 277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 278 * will double each time we have to increase it.
 279 */
 280static DEFINE_IDA(memcg_cache_ida);
 281int memcg_nr_cache_ids;
 282
 283/* Protects memcg_nr_cache_ids */
 284static DECLARE_RWSEM(memcg_cache_ids_sem);
 285
 286void memcg_get_cache_ids(void)
 287{
 288	down_read(&memcg_cache_ids_sem);
 289}
 290
 291void memcg_put_cache_ids(void)
 292{
 293	up_read(&memcg_cache_ids_sem);
 294}
 295
 296/*
 297 * MIN_SIZE is different than 1, because we would like to avoid going through
 298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 299 * cgroups is a reasonable guess. In the future, it could be a parameter or
 300 * tunable, but that is strictly not necessary.
 301 *
 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 303 * this constant directly from cgroup, but it is understandable that this is
 304 * better kept as an internal representation in cgroup.c. In any case, the
 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 306 * increase ours as well if it increases.
 307 */
 308#define MEMCG_CACHES_MIN_SIZE 4
 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 310
 311/*
 312 * A lot of the calls to the cache allocation functions are expected to be
 313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 314 * conditional to this static branch, we'll have to allow modules that does
 315 * kmem_cache_alloc and the such to see this symbol as well
 316 */
 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
 319
 
 
 320#endif /* !CONFIG_SLOB */
 321
 322/**
 323 * mem_cgroup_css_from_page - css of the memcg associated with a page
 324 * @page: page of interest
 325 *
 326 * If memcg is bound to the default hierarchy, css of the memcg associated
 327 * with @page is returned.  The returned css remains associated with @page
 328 * until it is released.
 329 *
 330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 331 * is returned.
 332 */
 333struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 334{
 335	struct mem_cgroup *memcg;
 336
 337	memcg = page->mem_cgroup;
 338
 339	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 340		memcg = root_mem_cgroup;
 341
 342	return &memcg->css;
 343}
 344
 345/**
 346 * page_cgroup_ino - return inode number of the memcg a page is charged to
 347 * @page: the page
 348 *
 349 * Look up the closest online ancestor of the memory cgroup @page is charged to
 350 * and return its inode number or 0 if @page is not charged to any cgroup. It
 351 * is safe to call this function without holding a reference to @page.
 352 *
 353 * Note, this function is inherently racy, because there is nothing to prevent
 354 * the cgroup inode from getting torn down and potentially reallocated a moment
 355 * after page_cgroup_ino() returns, so it only should be used by callers that
 356 * do not care (such as procfs interfaces).
 357 */
 358ino_t page_cgroup_ino(struct page *page)
 359{
 360	struct mem_cgroup *memcg;
 361	unsigned long ino = 0;
 362
 363	rcu_read_lock();
 364	memcg = READ_ONCE(page->mem_cgroup);
 365	while (memcg && !(memcg->css.flags & CSS_ONLINE))
 366		memcg = parent_mem_cgroup(memcg);
 367	if (memcg)
 368		ino = cgroup_ino(memcg->css.cgroup);
 369	rcu_read_unlock();
 370	return ino;
 371}
 372
 373static struct mem_cgroup_per_node *
 374mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 375{
 376	int nid = page_to_nid(page);
 377
 378	return memcg->nodeinfo[nid];
 379}
 380
 381static struct mem_cgroup_tree_per_node *
 382soft_limit_tree_node(int nid)
 383{
 384	return soft_limit_tree.rb_tree_per_node[nid];
 385}
 386
 387static struct mem_cgroup_tree_per_node *
 388soft_limit_tree_from_page(struct page *page)
 389{
 390	int nid = page_to_nid(page);
 391
 392	return soft_limit_tree.rb_tree_per_node[nid];
 393}
 394
 395static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 396					 struct mem_cgroup_tree_per_node *mctz,
 397					 unsigned long new_usage_in_excess)
 398{
 399	struct rb_node **p = &mctz->rb_root.rb_node;
 400	struct rb_node *parent = NULL;
 401	struct mem_cgroup_per_node *mz_node;
 
 402
 403	if (mz->on_tree)
 404		return;
 405
 406	mz->usage_in_excess = new_usage_in_excess;
 407	if (!mz->usage_in_excess)
 408		return;
 409	while (*p) {
 410		parent = *p;
 411		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 412					tree_node);
 413		if (mz->usage_in_excess < mz_node->usage_in_excess)
 414			p = &(*p)->rb_left;
 
 
 
 415		/*
 416		 * We can't avoid mem cgroups that are over their soft
 417		 * limit by the same amount
 418		 */
 419		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 420			p = &(*p)->rb_right;
 421	}
 
 
 
 
 422	rb_link_node(&mz->tree_node, parent, p);
 423	rb_insert_color(&mz->tree_node, &mctz->rb_root);
 424	mz->on_tree = true;
 425}
 426
 427static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 428					 struct mem_cgroup_tree_per_node *mctz)
 429{
 430	if (!mz->on_tree)
 431		return;
 
 
 
 
 432	rb_erase(&mz->tree_node, &mctz->rb_root);
 433	mz->on_tree = false;
 434}
 435
 436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 437				       struct mem_cgroup_tree_per_node *mctz)
 438{
 439	unsigned long flags;
 440
 441	spin_lock_irqsave(&mctz->lock, flags);
 442	__mem_cgroup_remove_exceeded(mz, mctz);
 443	spin_unlock_irqrestore(&mctz->lock, flags);
 444}
 445
 446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 447{
 448	unsigned long nr_pages = page_counter_read(&memcg->memory);
 449	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 450	unsigned long excess = 0;
 451
 452	if (nr_pages > soft_limit)
 453		excess = nr_pages - soft_limit;
 454
 455	return excess;
 456}
 457
 458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 459{
 460	unsigned long excess;
 461	struct mem_cgroup_per_node *mz;
 462	struct mem_cgroup_tree_per_node *mctz;
 463
 464	mctz = soft_limit_tree_from_page(page);
 
 
 465	/*
 466	 * Necessary to update all ancestors when hierarchy is used.
 467	 * because their event counter is not touched.
 468	 */
 469	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 470		mz = mem_cgroup_page_nodeinfo(memcg, page);
 471		excess = soft_limit_excess(memcg);
 472		/*
 473		 * We have to update the tree if mz is on RB-tree or
 474		 * mem is over its softlimit.
 475		 */
 476		if (excess || mz->on_tree) {
 477			unsigned long flags;
 478
 479			spin_lock_irqsave(&mctz->lock, flags);
 480			/* if on-tree, remove it */
 481			if (mz->on_tree)
 482				__mem_cgroup_remove_exceeded(mz, mctz);
 483			/*
 484			 * Insert again. mz->usage_in_excess will be updated.
 485			 * If excess is 0, no tree ops.
 486			 */
 487			__mem_cgroup_insert_exceeded(mz, mctz, excess);
 488			spin_unlock_irqrestore(&mctz->lock, flags);
 489		}
 490	}
 491}
 492
 493static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 494{
 495	struct mem_cgroup_tree_per_node *mctz;
 496	struct mem_cgroup_per_node *mz;
 497	int nid;
 498
 499	for_each_node(nid) {
 500		mz = mem_cgroup_nodeinfo(memcg, nid);
 501		mctz = soft_limit_tree_node(nid);
 502		mem_cgroup_remove_exceeded(mz, mctz);
 
 503	}
 504}
 505
 506static struct mem_cgroup_per_node *
 507__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 508{
 509	struct rb_node *rightmost = NULL;
 510	struct mem_cgroup_per_node *mz;
 511
 512retry:
 513	mz = NULL;
 514	rightmost = rb_last(&mctz->rb_root);
 515	if (!rightmost)
 516		goto done;		/* Nothing to reclaim from */
 517
 518	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
 
 519	/*
 520	 * Remove the node now but someone else can add it back,
 521	 * we will to add it back at the end of reclaim to its correct
 522	 * position in the tree.
 523	 */
 524	__mem_cgroup_remove_exceeded(mz, mctz);
 525	if (!soft_limit_excess(mz->memcg) ||
 526	    !css_tryget_online(&mz->memcg->css))
 527		goto retry;
 528done:
 529	return mz;
 530}
 531
 532static struct mem_cgroup_per_node *
 533mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 534{
 535	struct mem_cgroup_per_node *mz;
 536
 537	spin_lock_irq(&mctz->lock);
 538	mz = __mem_cgroup_largest_soft_limit_node(mctz);
 539	spin_unlock_irq(&mctz->lock);
 540	return mz;
 541}
 542
 543/*
 544 * Return page count for single (non recursive) @memcg.
 545 *
 546 * Implementation Note: reading percpu statistics for memcg.
 547 *
 548 * Both of vmstat[] and percpu_counter has threshold and do periodic
 549 * synchronization to implement "quick" read. There are trade-off between
 550 * reading cost and precision of value. Then, we may have a chance to implement
 551 * a periodic synchronization of counter in memcg's counter.
 552 *
 553 * But this _read() function is used for user interface now. The user accounts
 554 * memory usage by memory cgroup and he _always_ requires exact value because
 555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 556 * have to visit all online cpus and make sum. So, for now, unnecessary
 557 * synchronization is not implemented. (just implemented for cpu hotplug)
 558 *
 559 * If there are kernel internal actions which can make use of some not-exact
 560 * value, and reading all cpu value can be performance bottleneck in some
 561 * common workload, threshold and synchronization as vmstat[] should be
 562 * implemented.
 563 */
 564static unsigned long
 565mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
 566{
 567	long val = 0;
 568	int cpu;
 569
 570	/* Per-cpu values can be negative, use a signed accumulator */
 571	for_each_possible_cpu(cpu)
 572		val += per_cpu(memcg->stat->count[idx], cpu);
 573	/*
 574	 * Summing races with updates, so val may be negative.  Avoid exposing
 575	 * transient negative values.
 576	 */
 577	if (val < 0)
 578		val = 0;
 579	return val;
 580}
 581
 582static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 583					    enum mem_cgroup_events_index idx)
 584{
 585	unsigned long val = 0;
 586	int cpu;
 587
 588	for_each_possible_cpu(cpu)
 589		val += per_cpu(memcg->stat->events[idx], cpu);
 590	return val;
 591}
 592
 593static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 594					 struct page *page,
 595					 bool compound, int nr_pages)
 596{
 597	/*
 598	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 599	 * counted as CACHE even if it's on ANON LRU.
 600	 */
 601	if (PageAnon(page))
 602		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 603				nr_pages);
 604	else
 605		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 606				nr_pages);
 
 607
 608	if (compound) {
 609		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 610		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 611				nr_pages);
 612	}
 613
 614	/* pagein of a big page is an event. So, ignore page size */
 615	if (nr_pages > 0)
 616		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 617	else {
 618		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 619		nr_pages = -nr_pages; /* for event */
 620	}
 621
 622	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 623}
 624
 625unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 626					   int nid, unsigned int lru_mask)
 627{
 628	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
 629	unsigned long nr = 0;
 630	enum lru_list lru;
 631
 632	VM_BUG_ON((unsigned)nid >= nr_node_ids);
 633
 634	for_each_lru(lru) {
 635		if (!(BIT(lru) & lru_mask))
 636			continue;
 637		nr += mem_cgroup_get_lru_size(lruvec, lru);
 638	}
 639	return nr;
 640}
 641
 642static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 643			unsigned int lru_mask)
 644{
 645	unsigned long nr = 0;
 646	int nid;
 647
 648	for_each_node_state(nid, N_MEMORY)
 649		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 650	return nr;
 651}
 652
 653static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 654				       enum mem_cgroup_events_target target)
 655{
 656	unsigned long val, next;
 657
 658	val = __this_cpu_read(memcg->stat->nr_page_events);
 659	next = __this_cpu_read(memcg->stat->targets[target]);
 660	/* from time_after() in jiffies.h */
 661	if ((long)next - (long)val < 0) {
 662		switch (target) {
 663		case MEM_CGROUP_TARGET_THRESH:
 664			next = val + THRESHOLDS_EVENTS_TARGET;
 665			break;
 666		case MEM_CGROUP_TARGET_SOFTLIMIT:
 667			next = val + SOFTLIMIT_EVENTS_TARGET;
 668			break;
 669		case MEM_CGROUP_TARGET_NUMAINFO:
 670			next = val + NUMAINFO_EVENTS_TARGET;
 671			break;
 672		default:
 673			break;
 674		}
 675		__this_cpu_write(memcg->stat->targets[target], next);
 676		return true;
 677	}
 678	return false;
 679}
 680
 681/*
 682 * Check events in order.
 683 *
 684 */
 685static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 686{
 687	/* threshold event is triggered in finer grain than soft limit */
 688	if (unlikely(mem_cgroup_event_ratelimit(memcg,
 689						MEM_CGROUP_TARGET_THRESH))) {
 690		bool do_softlimit;
 691		bool do_numainfo __maybe_unused;
 692
 693		do_softlimit = mem_cgroup_event_ratelimit(memcg,
 694						MEM_CGROUP_TARGET_SOFTLIMIT);
 695#if MAX_NUMNODES > 1
 696		do_numainfo = mem_cgroup_event_ratelimit(memcg,
 697						MEM_CGROUP_TARGET_NUMAINFO);
 698#endif
 699		mem_cgroup_threshold(memcg);
 700		if (unlikely(do_softlimit))
 701			mem_cgroup_update_tree(memcg, page);
 702#if MAX_NUMNODES > 1
 703		if (unlikely(do_numainfo))
 704			atomic_inc(&memcg->numainfo_events);
 705#endif
 706	}
 707}
 708
 709struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 710{
 711	/*
 712	 * mm_update_next_owner() may clear mm->owner to NULL
 713	 * if it races with swapoff, page migration, etc.
 714	 * So this can be called with p == NULL.
 715	 */
 716	if (unlikely(!p))
 717		return NULL;
 718
 719	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 720}
 721EXPORT_SYMBOL(mem_cgroup_from_task);
 722
 723static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 724{
 725	struct mem_cgroup *memcg = NULL;
 726
 727	rcu_read_lock();
 728	do {
 729		/*
 730		 * Page cache insertions can happen withou an
 731		 * actual mm context, e.g. during disk probing
 732		 * on boot, loopback IO, acct() writes etc.
 733		 */
 734		if (unlikely(!mm))
 735			memcg = root_mem_cgroup;
 736		else {
 737			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 738			if (unlikely(!memcg))
 739				memcg = root_mem_cgroup;
 740		}
 741	} while (!css_tryget_online(&memcg->css));
 742	rcu_read_unlock();
 743	return memcg;
 744}
 745
 746/**
 747 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 748 * @root: hierarchy root
 749 * @prev: previously returned memcg, NULL on first invocation
 750 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 751 *
 752 * Returns references to children of the hierarchy below @root, or
 753 * @root itself, or %NULL after a full round-trip.
 754 *
 755 * Caller must pass the return value in @prev on subsequent
 756 * invocations for reference counting, or use mem_cgroup_iter_break()
 757 * to cancel a hierarchy walk before the round-trip is complete.
 758 *
 759 * Reclaimers can specify a zone and a priority level in @reclaim to
 760 * divide up the memcgs in the hierarchy among all concurrent
 761 * reclaimers operating on the same zone and priority.
 762 */
 763struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
 764				   struct mem_cgroup *prev,
 765				   struct mem_cgroup_reclaim_cookie *reclaim)
 766{
 767	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
 768	struct cgroup_subsys_state *css = NULL;
 769	struct mem_cgroup *memcg = NULL;
 770	struct mem_cgroup *pos = NULL;
 771
 772	if (mem_cgroup_disabled())
 773		return NULL;
 774
 775	if (!root)
 776		root = root_mem_cgroup;
 777
 778	if (prev && !reclaim)
 779		pos = prev;
 780
 781	if (!root->use_hierarchy && root != root_mem_cgroup) {
 782		if (prev)
 783			goto out;
 784		return root;
 785	}
 786
 787	rcu_read_lock();
 788
 789	if (reclaim) {
 790		struct mem_cgroup_per_node *mz;
 791
 792		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
 793		iter = &mz->iter[reclaim->priority];
 794
 795		if (prev && reclaim->generation != iter->generation)
 796			goto out_unlock;
 797
 798		while (1) {
 799			pos = READ_ONCE(iter->position);
 800			if (!pos || css_tryget(&pos->css))
 801				break;
 802			/*
 803			 * css reference reached zero, so iter->position will
 804			 * be cleared by ->css_released. However, we should not
 805			 * rely on this happening soon, because ->css_released
 806			 * is called from a work queue, and by busy-waiting we
 807			 * might block it. So we clear iter->position right
 808			 * away.
 809			 */
 810			(void)cmpxchg(&iter->position, pos, NULL);
 811		}
 812	}
 813
 814	if (pos)
 815		css = &pos->css;
 816
 817	for (;;) {
 818		css = css_next_descendant_pre(css, &root->css);
 819		if (!css) {
 820			/*
 821			 * Reclaimers share the hierarchy walk, and a
 822			 * new one might jump in right at the end of
 823			 * the hierarchy - make sure they see at least
 824			 * one group and restart from the beginning.
 825			 */
 826			if (!prev)
 827				continue;
 828			break;
 829		}
 830
 831		/*
 832		 * Verify the css and acquire a reference.  The root
 833		 * is provided by the caller, so we know it's alive
 834		 * and kicking, and don't take an extra reference.
 835		 */
 836		memcg = mem_cgroup_from_css(css);
 837
 838		if (css == &root->css)
 839			break;
 840
 841		if (css_tryget(css))
 842			break;
 843
 844		memcg = NULL;
 845	}
 846
 847	if (reclaim) {
 848		/*
 849		 * The position could have already been updated by a competing
 850		 * thread, so check that the value hasn't changed since we read
 851		 * it to avoid reclaiming from the same cgroup twice.
 852		 */
 853		(void)cmpxchg(&iter->position, pos, memcg);
 854
 855		if (pos)
 856			css_put(&pos->css);
 857
 858		if (!memcg)
 859			iter->generation++;
 860		else if (!prev)
 861			reclaim->generation = iter->generation;
 862	}
 863
 864out_unlock:
 865	rcu_read_unlock();
 866out:
 867	if (prev && prev != root)
 868		css_put(&prev->css);
 869
 870	return memcg;
 871}
 872
 873/**
 874 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 875 * @root: hierarchy root
 876 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 877 */
 878void mem_cgroup_iter_break(struct mem_cgroup *root,
 879			   struct mem_cgroup *prev)
 880{
 881	if (!root)
 882		root = root_mem_cgroup;
 883	if (prev && prev != root)
 884		css_put(&prev->css);
 885}
 886
 887static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
 888{
 889	struct mem_cgroup *memcg = dead_memcg;
 890	struct mem_cgroup_reclaim_iter *iter;
 891	struct mem_cgroup_per_node *mz;
 892	int nid;
 893	int i;
 894
 895	while ((memcg = parent_mem_cgroup(memcg))) {
 896		for_each_node(nid) {
 897			mz = mem_cgroup_nodeinfo(memcg, nid);
 898			for (i = 0; i <= DEF_PRIORITY; i++) {
 899				iter = &mz->iter[i];
 900				cmpxchg(&iter->position,
 901					dead_memcg, NULL);
 902			}
 903		}
 904	}
 905}
 906
 907/*
 908 * Iteration constructs for visiting all cgroups (under a tree).  If
 909 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 910 * be used for reference counting.
 911 */
 912#define for_each_mem_cgroup_tree(iter, root)		\
 913	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
 914	     iter != NULL;				\
 915	     iter = mem_cgroup_iter(root, iter, NULL))
 916
 917#define for_each_mem_cgroup(iter)			\
 918	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
 919	     iter != NULL;				\
 920	     iter = mem_cgroup_iter(NULL, iter, NULL))
 921
 922/**
 923 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 924 * @memcg: hierarchy root
 925 * @fn: function to call for each task
 926 * @arg: argument passed to @fn
 927 *
 928 * This function iterates over tasks attached to @memcg or to any of its
 929 * descendants and calls @fn for each task. If @fn returns a non-zero
 930 * value, the function breaks the iteration loop and returns the value.
 931 * Otherwise, it will iterate over all tasks and return 0.
 932 *
 933 * This function must not be called for the root memory cgroup.
 934 */
 935int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
 936			  int (*fn)(struct task_struct *, void *), void *arg)
 937{
 938	struct mem_cgroup *iter;
 939	int ret = 0;
 940
 941	BUG_ON(memcg == root_mem_cgroup);
 942
 943	for_each_mem_cgroup_tree(iter, memcg) {
 944		struct css_task_iter it;
 945		struct task_struct *task;
 946
 947		css_task_iter_start(&iter->css, &it);
 948		while (!ret && (task = css_task_iter_next(&it)))
 949			ret = fn(task, arg);
 950		css_task_iter_end(&it);
 951		if (ret) {
 952			mem_cgroup_iter_break(memcg, iter);
 953			break;
 954		}
 955	}
 956	return ret;
 957}
 958
 959/**
 960 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 961 * @page: the page
 962 * @zone: zone of the page
 963 *
 964 * This function is only safe when following the LRU page isolation
 965 * and putback protocol: the LRU lock must be held, and the page must
 966 * either be PageLRU() or the caller must have isolated/allocated it.
 967 */
 968struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
 969{
 970	struct mem_cgroup_per_node *mz;
 971	struct mem_cgroup *memcg;
 972	struct lruvec *lruvec;
 973
 974	if (mem_cgroup_disabled()) {
 975		lruvec = &pgdat->lruvec;
 976		goto out;
 977	}
 978
 979	memcg = page->mem_cgroup;
 980	/*
 981	 * Swapcache readahead pages are added to the LRU - and
 982	 * possibly migrated - before they are charged.
 983	 */
 984	if (!memcg)
 985		memcg = root_mem_cgroup;
 986
 987	mz = mem_cgroup_page_nodeinfo(memcg, page);
 988	lruvec = &mz->lruvec;
 989out:
 990	/*
 991	 * Since a node can be onlined after the mem_cgroup was created,
 992	 * we have to be prepared to initialize lruvec->zone here;
 993	 * and if offlined then reonlined, we need to reinitialize it.
 994	 */
 995	if (unlikely(lruvec->pgdat != pgdat))
 996		lruvec->pgdat = pgdat;
 997	return lruvec;
 998}
 999
1000/**
1001 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1002 * @lruvec: mem_cgroup per zone lru vector
1003 * @lru: index of lru list the page is sitting on
1004 * @zid: zone id of the accounted pages
1005 * @nr_pages: positive when adding or negative when removing
1006 *
1007 * This function must be called under lru_lock, just before a page is added
1008 * to or just after a page is removed from an lru list (that ordering being
1009 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1010 */
1011void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1012				int zid, int nr_pages)
1013{
1014	struct mem_cgroup_per_node *mz;
1015	unsigned long *lru_size;
1016	long size;
1017
1018	if (mem_cgroup_disabled())
1019		return;
1020
1021	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1022	lru_size = &mz->lru_zone_size[zid][lru];
1023
1024	if (nr_pages < 0)
1025		*lru_size += nr_pages;
1026
1027	size = *lru_size;
1028	if (WARN_ONCE(size < 0,
1029		"%s(%p, %d, %d): lru_size %ld\n",
1030		__func__, lruvec, lru, nr_pages, size)) {
1031		VM_BUG_ON(1);
1032		*lru_size = 0;
1033	}
1034
1035	if (nr_pages > 0)
1036		*lru_size += nr_pages;
1037}
1038
1039bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1040{
1041	struct mem_cgroup *task_memcg;
1042	struct task_struct *p;
1043	bool ret;
1044
1045	p = find_lock_task_mm(task);
1046	if (p) {
1047		task_memcg = get_mem_cgroup_from_mm(p->mm);
1048		task_unlock(p);
1049	} else {
1050		/*
1051		 * All threads may have already detached their mm's, but the oom
1052		 * killer still needs to detect if they have already been oom
1053		 * killed to prevent needlessly killing additional tasks.
1054		 */
1055		rcu_read_lock();
1056		task_memcg = mem_cgroup_from_task(task);
1057		css_get(&task_memcg->css);
1058		rcu_read_unlock();
1059	}
1060	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1061	css_put(&task_memcg->css);
1062	return ret;
1063}
1064
1065/**
1066 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1067 * @memcg: the memory cgroup
1068 *
1069 * Returns the maximum amount of memory @mem can be charged with, in
1070 * pages.
1071 */
1072static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1073{
1074	unsigned long margin = 0;
1075	unsigned long count;
1076	unsigned long limit;
1077
1078	count = page_counter_read(&memcg->memory);
1079	limit = READ_ONCE(memcg->memory.limit);
1080	if (count < limit)
1081		margin = limit - count;
1082
1083	if (do_memsw_account()) {
1084		count = page_counter_read(&memcg->memsw);
1085		limit = READ_ONCE(memcg->memsw.limit);
1086		if (count <= limit)
1087			margin = min(margin, limit - count);
1088		else
1089			margin = 0;
1090	}
1091
1092	return margin;
1093}
1094
1095/*
1096 * A routine for checking "mem" is under move_account() or not.
1097 *
1098 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1099 * moving cgroups. This is for waiting at high-memory pressure
1100 * caused by "move".
1101 */
1102static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1103{
1104	struct mem_cgroup *from;
1105	struct mem_cgroup *to;
1106	bool ret = false;
1107	/*
1108	 * Unlike task_move routines, we access mc.to, mc.from not under
1109	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1110	 */
1111	spin_lock(&mc.lock);
1112	from = mc.from;
1113	to = mc.to;
1114	if (!from)
1115		goto unlock;
1116
1117	ret = mem_cgroup_is_descendant(from, memcg) ||
1118		mem_cgroup_is_descendant(to, memcg);
1119unlock:
1120	spin_unlock(&mc.lock);
1121	return ret;
1122}
1123
1124static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1125{
1126	if (mc.moving_task && current != mc.moving_task) {
1127		if (mem_cgroup_under_move(memcg)) {
1128			DEFINE_WAIT(wait);
1129			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1130			/* moving charge context might have finished. */
1131			if (mc.moving_task)
1132				schedule();
1133			finish_wait(&mc.waitq, &wait);
1134			return true;
1135		}
1136	}
1137	return false;
1138}
1139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140#define K(x) ((x) << (PAGE_SHIFT-10))
1141/**
1142 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1143 * @memcg: The memory cgroup that went over limit
1144 * @p: Task that is going to be killed
1145 *
1146 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1147 * enabled
1148 */
1149void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1150{
1151	struct mem_cgroup *iter;
1152	unsigned int i;
1153
1154	rcu_read_lock();
1155
1156	if (p) {
1157		pr_info("Task in ");
1158		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1159		pr_cont(" killed as a result of limit of ");
1160	} else {
1161		pr_info("Memory limit reached of cgroup ");
1162	}
1163
1164	pr_cont_cgroup_path(memcg->css.cgroup);
1165	pr_cont("\n");
1166
1167	rcu_read_unlock();
1168
1169	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1170		K((u64)page_counter_read(&memcg->memory)),
1171		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1172	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1173		K((u64)page_counter_read(&memcg->memsw)),
1174		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1175	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1176		K((u64)page_counter_read(&memcg->kmem)),
1177		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1178
1179	for_each_mem_cgroup_tree(iter, memcg) {
1180		pr_info("Memory cgroup stats for ");
1181		pr_cont_cgroup_path(iter->css.cgroup);
1182		pr_cont(":");
1183
1184		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1185			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1186				continue;
1187			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1188				K(mem_cgroup_read_stat(iter, i)));
1189		}
1190
1191		for (i = 0; i < NR_LRU_LISTS; i++)
1192			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1193				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1194
1195		pr_cont("\n");
1196	}
1197}
1198
1199/*
1200 * This function returns the number of memcg under hierarchy tree. Returns
1201 * 1(self count) if no children.
1202 */
1203static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1204{
1205	int num = 0;
1206	struct mem_cgroup *iter;
1207
1208	for_each_mem_cgroup_tree(iter, memcg)
1209		num++;
1210	return num;
1211}
1212
1213/*
1214 * Return the memory (and swap, if configured) limit for a memcg.
1215 */
1216unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1217{
1218	unsigned long limit;
1219
1220	limit = memcg->memory.limit;
1221	if (mem_cgroup_swappiness(memcg)) {
1222		unsigned long memsw_limit;
1223		unsigned long swap_limit;
1224
1225		memsw_limit = memcg->memsw.limit;
1226		swap_limit = memcg->swap.limit;
1227		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1228		limit = min(limit + swap_limit, memsw_limit);
1229	}
1230	return limit;
1231}
1232
1233static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1234				     int order)
1235{
1236	struct oom_control oc = {
1237		.zonelist = NULL,
1238		.nodemask = NULL,
1239		.memcg = memcg,
1240		.gfp_mask = gfp_mask,
1241		.order = order,
1242	};
1243	bool ret;
1244
1245	mutex_lock(&oom_lock);
1246	ret = out_of_memory(&oc);
1247	mutex_unlock(&oom_lock);
1248	return ret;
1249}
1250
1251#if MAX_NUMNODES > 1
1252
1253/**
1254 * test_mem_cgroup_node_reclaimable
1255 * @memcg: the target memcg
1256 * @nid: the node ID to be checked.
1257 * @noswap : specify true here if the user wants flle only information.
1258 *
1259 * This function returns whether the specified memcg contains any
1260 * reclaimable pages on a node. Returns true if there are any reclaimable
1261 * pages in the node.
1262 */
1263static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1264		int nid, bool noswap)
1265{
1266	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1267		return true;
1268	if (noswap || !total_swap_pages)
1269		return false;
1270	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1271		return true;
1272	return false;
1273
1274}
1275
1276/*
1277 * Always updating the nodemask is not very good - even if we have an empty
1278 * list or the wrong list here, we can start from some node and traverse all
1279 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1280 *
1281 */
1282static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1283{
1284	int nid;
1285	/*
1286	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1287	 * pagein/pageout changes since the last update.
1288	 */
1289	if (!atomic_read(&memcg->numainfo_events))
1290		return;
1291	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1292		return;
1293
1294	/* make a nodemask where this memcg uses memory from */
1295	memcg->scan_nodes = node_states[N_MEMORY];
1296
1297	for_each_node_mask(nid, node_states[N_MEMORY]) {
1298
1299		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1300			node_clear(nid, memcg->scan_nodes);
1301	}
1302
1303	atomic_set(&memcg->numainfo_events, 0);
1304	atomic_set(&memcg->numainfo_updating, 0);
1305}
1306
1307/*
1308 * Selecting a node where we start reclaim from. Because what we need is just
1309 * reducing usage counter, start from anywhere is O,K. Considering
1310 * memory reclaim from current node, there are pros. and cons.
1311 *
1312 * Freeing memory from current node means freeing memory from a node which
1313 * we'll use or we've used. So, it may make LRU bad. And if several threads
1314 * hit limits, it will see a contention on a node. But freeing from remote
1315 * node means more costs for memory reclaim because of memory latency.
1316 *
1317 * Now, we use round-robin. Better algorithm is welcomed.
1318 */
1319int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1320{
1321	int node;
1322
1323	mem_cgroup_may_update_nodemask(memcg);
1324	node = memcg->last_scanned_node;
1325
1326	node = next_node_in(node, memcg->scan_nodes);
1327	/*
1328	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1329	 * last time it really checked all the LRUs due to rate limiting.
1330	 * Fallback to the current node in that case for simplicity.
1331	 */
1332	if (unlikely(node == MAX_NUMNODES))
1333		node = numa_node_id();
1334
1335	memcg->last_scanned_node = node;
1336	return node;
1337}
1338#else
1339int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1340{
1341	return 0;
1342}
1343#endif
1344
1345static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1346				   pg_data_t *pgdat,
1347				   gfp_t gfp_mask,
1348				   unsigned long *total_scanned)
1349{
1350	struct mem_cgroup *victim = NULL;
1351	int total = 0;
1352	int loop = 0;
1353	unsigned long excess;
1354	unsigned long nr_scanned;
1355	struct mem_cgroup_reclaim_cookie reclaim = {
1356		.pgdat = pgdat,
1357		.priority = 0,
1358	};
1359
1360	excess = soft_limit_excess(root_memcg);
1361
1362	while (1) {
1363		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1364		if (!victim) {
1365			loop++;
1366			if (loop >= 2) {
1367				/*
1368				 * If we have not been able to reclaim
1369				 * anything, it might because there are
1370				 * no reclaimable pages under this hierarchy
1371				 */
1372				if (!total)
1373					break;
1374				/*
1375				 * We want to do more targeted reclaim.
1376				 * excess >> 2 is not to excessive so as to
1377				 * reclaim too much, nor too less that we keep
1378				 * coming back to reclaim from this cgroup
1379				 */
1380				if (total >= (excess >> 2) ||
1381					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1382					break;
1383			}
1384			continue;
1385		}
1386		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1387					pgdat, &nr_scanned);
1388		*total_scanned += nr_scanned;
1389		if (!soft_limit_excess(root_memcg))
1390			break;
1391	}
1392	mem_cgroup_iter_break(root_memcg, victim);
1393	return total;
1394}
1395
1396#ifdef CONFIG_LOCKDEP
1397static struct lockdep_map memcg_oom_lock_dep_map = {
1398	.name = "memcg_oom_lock",
1399};
1400#endif
1401
1402static DEFINE_SPINLOCK(memcg_oom_lock);
1403
1404/*
1405 * Check OOM-Killer is already running under our hierarchy.
1406 * If someone is running, return false.
1407 */
1408static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1409{
1410	struct mem_cgroup *iter, *failed = NULL;
1411
1412	spin_lock(&memcg_oom_lock);
1413
1414	for_each_mem_cgroup_tree(iter, memcg) {
1415		if (iter->oom_lock) {
1416			/*
1417			 * this subtree of our hierarchy is already locked
1418			 * so we cannot give a lock.
1419			 */
1420			failed = iter;
1421			mem_cgroup_iter_break(memcg, iter);
1422			break;
1423		} else
1424			iter->oom_lock = true;
1425	}
1426
1427	if (failed) {
1428		/*
1429		 * OK, we failed to lock the whole subtree so we have
1430		 * to clean up what we set up to the failing subtree
1431		 */
1432		for_each_mem_cgroup_tree(iter, memcg) {
1433			if (iter == failed) {
1434				mem_cgroup_iter_break(memcg, iter);
1435				break;
1436			}
1437			iter->oom_lock = false;
1438		}
1439	} else
1440		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1441
1442	spin_unlock(&memcg_oom_lock);
1443
1444	return !failed;
1445}
1446
1447static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1448{
1449	struct mem_cgroup *iter;
1450
1451	spin_lock(&memcg_oom_lock);
1452	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1453	for_each_mem_cgroup_tree(iter, memcg)
1454		iter->oom_lock = false;
1455	spin_unlock(&memcg_oom_lock);
1456}
1457
1458static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1459{
1460	struct mem_cgroup *iter;
1461
1462	spin_lock(&memcg_oom_lock);
1463	for_each_mem_cgroup_tree(iter, memcg)
1464		iter->under_oom++;
1465	spin_unlock(&memcg_oom_lock);
1466}
1467
1468static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1469{
1470	struct mem_cgroup *iter;
1471
1472	/*
1473	 * When a new child is created while the hierarchy is under oom,
1474	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1475	 */
1476	spin_lock(&memcg_oom_lock);
1477	for_each_mem_cgroup_tree(iter, memcg)
1478		if (iter->under_oom > 0)
1479			iter->under_oom--;
1480	spin_unlock(&memcg_oom_lock);
1481}
1482
1483static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1484
1485struct oom_wait_info {
1486	struct mem_cgroup *memcg;
1487	wait_queue_t	wait;
1488};
1489
1490static int memcg_oom_wake_function(wait_queue_t *wait,
1491	unsigned mode, int sync, void *arg)
1492{
1493	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1494	struct mem_cgroup *oom_wait_memcg;
1495	struct oom_wait_info *oom_wait_info;
1496
1497	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1498	oom_wait_memcg = oom_wait_info->memcg;
1499
1500	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1501	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1502		return 0;
1503	return autoremove_wake_function(wait, mode, sync, arg);
1504}
1505
1506static void memcg_oom_recover(struct mem_cgroup *memcg)
1507{
1508	/*
1509	 * For the following lockless ->under_oom test, the only required
1510	 * guarantee is that it must see the state asserted by an OOM when
1511	 * this function is called as a result of userland actions
1512	 * triggered by the notification of the OOM.  This is trivially
1513	 * achieved by invoking mem_cgroup_mark_under_oom() before
1514	 * triggering notification.
1515	 */
1516	if (memcg && memcg->under_oom)
1517		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1518}
1519
1520static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1521{
1522	if (!current->memcg_may_oom)
1523		return;
1524	/*
1525	 * We are in the middle of the charge context here, so we
1526	 * don't want to block when potentially sitting on a callstack
1527	 * that holds all kinds of filesystem and mm locks.
1528	 *
1529	 * Also, the caller may handle a failed allocation gracefully
1530	 * (like optional page cache readahead) and so an OOM killer
1531	 * invocation might not even be necessary.
1532	 *
1533	 * That's why we don't do anything here except remember the
1534	 * OOM context and then deal with it at the end of the page
1535	 * fault when the stack is unwound, the locks are released,
1536	 * and when we know whether the fault was overall successful.
1537	 */
1538	css_get(&memcg->css);
1539	current->memcg_in_oom = memcg;
1540	current->memcg_oom_gfp_mask = mask;
1541	current->memcg_oom_order = order;
1542}
1543
1544/**
1545 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1546 * @handle: actually kill/wait or just clean up the OOM state
1547 *
1548 * This has to be called at the end of a page fault if the memcg OOM
1549 * handler was enabled.
1550 *
1551 * Memcg supports userspace OOM handling where failed allocations must
1552 * sleep on a waitqueue until the userspace task resolves the
1553 * situation.  Sleeping directly in the charge context with all kinds
1554 * of locks held is not a good idea, instead we remember an OOM state
1555 * in the task and mem_cgroup_oom_synchronize() has to be called at
1556 * the end of the page fault to complete the OOM handling.
1557 *
1558 * Returns %true if an ongoing memcg OOM situation was detected and
1559 * completed, %false otherwise.
1560 */
1561bool mem_cgroup_oom_synchronize(bool handle)
1562{
1563	struct mem_cgroup *memcg = current->memcg_in_oom;
1564	struct oom_wait_info owait;
1565	bool locked;
1566
1567	/* OOM is global, do not handle */
1568	if (!memcg)
1569		return false;
1570
1571	if (!handle)
1572		goto cleanup;
1573
1574	owait.memcg = memcg;
1575	owait.wait.flags = 0;
1576	owait.wait.func = memcg_oom_wake_function;
1577	owait.wait.private = current;
1578	INIT_LIST_HEAD(&owait.wait.task_list);
1579
1580	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1581	mem_cgroup_mark_under_oom(memcg);
1582
1583	locked = mem_cgroup_oom_trylock(memcg);
1584
1585	if (locked)
1586		mem_cgroup_oom_notify(memcg);
1587
1588	if (locked && !memcg->oom_kill_disable) {
1589		mem_cgroup_unmark_under_oom(memcg);
1590		finish_wait(&memcg_oom_waitq, &owait.wait);
1591		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1592					 current->memcg_oom_order);
1593	} else {
1594		schedule();
1595		mem_cgroup_unmark_under_oom(memcg);
1596		finish_wait(&memcg_oom_waitq, &owait.wait);
1597	}
1598
1599	if (locked) {
1600		mem_cgroup_oom_unlock(memcg);
1601		/*
1602		 * There is no guarantee that an OOM-lock contender
1603		 * sees the wakeups triggered by the OOM kill
1604		 * uncharges.  Wake any sleepers explicitely.
1605		 */
1606		memcg_oom_recover(memcg);
1607	}
1608cleanup:
1609	current->memcg_in_oom = NULL;
1610	css_put(&memcg->css);
1611	return true;
1612}
1613
1614/**
1615 * lock_page_memcg - lock a page->mem_cgroup binding
1616 * @page: the page
1617 *
1618 * This function protects unlocked LRU pages from being moved to
1619 * another cgroup and stabilizes their page->mem_cgroup binding.
 
 
 
 
1620 */
1621void lock_page_memcg(struct page *page)
1622{
1623	struct mem_cgroup *memcg;
1624	unsigned long flags;
1625
1626	/*
1627	 * The RCU lock is held throughout the transaction.  The fast
1628	 * path can get away without acquiring the memcg->move_lock
1629	 * because page moving starts with an RCU grace period.
1630	 */
 
 
 
 
 
 
1631	rcu_read_lock();
1632
1633	if (mem_cgroup_disabled())
1634		return;
1635again:
1636	memcg = page->mem_cgroup;
1637	if (unlikely(!memcg))
1638		return;
1639
1640	if (atomic_read(&memcg->moving_account) <= 0)
1641		return;
1642
1643	spin_lock_irqsave(&memcg->move_lock, flags);
1644	if (memcg != page->mem_cgroup) {
1645		spin_unlock_irqrestore(&memcg->move_lock, flags);
1646		goto again;
1647	}
1648
1649	/*
1650	 * When charge migration first begins, we can have locked and
1651	 * unlocked page stat updates happening concurrently.  Track
1652	 * the task who has the lock for unlock_page_memcg().
1653	 */
1654	memcg->move_lock_task = current;
1655	memcg->move_lock_flags = flags;
1656
1657	return;
1658}
1659EXPORT_SYMBOL(lock_page_memcg);
1660
1661/**
1662 * unlock_page_memcg - unlock a page->mem_cgroup binding
1663 * @page: the page
 
 
1664 */
1665void unlock_page_memcg(struct page *page)
1666{
1667	struct mem_cgroup *memcg = page->mem_cgroup;
1668
1669	if (memcg && memcg->move_lock_task == current) {
1670		unsigned long flags = memcg->move_lock_flags;
1671
1672		memcg->move_lock_task = NULL;
1673		memcg->move_lock_flags = 0;
1674
1675		spin_unlock_irqrestore(&memcg->move_lock, flags);
1676	}
1677
1678	rcu_read_unlock();
1679}
 
 
 
 
 
 
 
 
 
1680EXPORT_SYMBOL(unlock_page_memcg);
1681
1682/*
1683 * size of first charge trial. "32" comes from vmscan.c's magic value.
1684 * TODO: maybe necessary to use big numbers in big irons.
1685 */
1686#define CHARGE_BATCH	32U
1687struct memcg_stock_pcp {
1688	struct mem_cgroup *cached; /* this never be root cgroup */
1689	unsigned int nr_pages;
1690	struct work_struct work;
1691	unsigned long flags;
1692#define FLUSHING_CACHED_CHARGE	0
1693};
1694static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1695static DEFINE_MUTEX(percpu_charge_mutex);
1696
1697/**
1698 * consume_stock: Try to consume stocked charge on this cpu.
1699 * @memcg: memcg to consume from.
1700 * @nr_pages: how many pages to charge.
1701 *
1702 * The charges will only happen if @memcg matches the current cpu's memcg
1703 * stock, and at least @nr_pages are available in that stock.  Failure to
1704 * service an allocation will refill the stock.
1705 *
1706 * returns true if successful, false otherwise.
1707 */
1708static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1709{
1710	struct memcg_stock_pcp *stock;
1711	unsigned long flags;
1712	bool ret = false;
1713
1714	if (nr_pages > CHARGE_BATCH)
1715		return ret;
1716
1717	local_irq_save(flags);
1718
1719	stock = this_cpu_ptr(&memcg_stock);
1720	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1721		stock->nr_pages -= nr_pages;
1722		ret = true;
1723	}
1724
1725	local_irq_restore(flags);
1726
1727	return ret;
1728}
1729
1730/*
1731 * Returns stocks cached in percpu and reset cached information.
1732 */
1733static void drain_stock(struct memcg_stock_pcp *stock)
1734{
1735	struct mem_cgroup *old = stock->cached;
1736
1737	if (stock->nr_pages) {
1738		page_counter_uncharge(&old->memory, stock->nr_pages);
1739		if (do_memsw_account())
1740			page_counter_uncharge(&old->memsw, stock->nr_pages);
1741		css_put_many(&old->css, stock->nr_pages);
1742		stock->nr_pages = 0;
1743	}
1744	stock->cached = NULL;
1745}
1746
1747static void drain_local_stock(struct work_struct *dummy)
1748{
1749	struct memcg_stock_pcp *stock;
1750	unsigned long flags;
1751
 
 
 
 
1752	local_irq_save(flags);
1753
1754	stock = this_cpu_ptr(&memcg_stock);
1755	drain_stock(stock);
1756	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1757
1758	local_irq_restore(flags);
1759}
1760
1761/*
1762 * Cache charges(val) to local per_cpu area.
1763 * This will be consumed by consume_stock() function, later.
1764 */
1765static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1766{
1767	struct memcg_stock_pcp *stock;
1768	unsigned long flags;
1769
1770	local_irq_save(flags);
1771
1772	stock = this_cpu_ptr(&memcg_stock);
1773	if (stock->cached != memcg) { /* reset if necessary */
1774		drain_stock(stock);
1775		stock->cached = memcg;
1776	}
1777	stock->nr_pages += nr_pages;
1778
 
 
 
1779	local_irq_restore(flags);
1780}
1781
1782/*
1783 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1784 * of the hierarchy under it.
1785 */
1786static void drain_all_stock(struct mem_cgroup *root_memcg)
1787{
1788	int cpu, curcpu;
1789
1790	/* If someone's already draining, avoid adding running more workers. */
1791	if (!mutex_trylock(&percpu_charge_mutex))
1792		return;
1793	/* Notify other cpus that system-wide "drain" is running */
1794	get_online_cpus();
 
 
 
 
1795	curcpu = get_cpu();
1796	for_each_online_cpu(cpu) {
1797		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1798		struct mem_cgroup *memcg;
1799
1800		memcg = stock->cached;
1801		if (!memcg || !stock->nr_pages)
1802			continue;
1803		if (!mem_cgroup_is_descendant(memcg, root_memcg))
 
1804			continue;
 
1805		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1806			if (cpu == curcpu)
1807				drain_local_stock(&stock->work);
1808			else
1809				schedule_work_on(cpu, &stock->work);
1810		}
 
1811	}
1812	put_cpu();
1813	put_online_cpus();
1814	mutex_unlock(&percpu_charge_mutex);
1815}
1816
1817static int memcg_hotplug_cpu_dead(unsigned int cpu)
1818{
1819	struct memcg_stock_pcp *stock;
 
1820
1821	stock = &per_cpu(memcg_stock, cpu);
1822	drain_stock(stock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823	return 0;
1824}
1825
1826static void reclaim_high(struct mem_cgroup *memcg,
1827			 unsigned int nr_pages,
1828			 gfp_t gfp_mask)
1829{
1830	do {
1831		if (page_counter_read(&memcg->memory) <= memcg->high)
1832			continue;
1833		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1834		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1835	} while ((memcg = parent_mem_cgroup(memcg)));
1836}
1837
1838static void high_work_func(struct work_struct *work)
1839{
1840	struct mem_cgroup *memcg;
1841
1842	memcg = container_of(work, struct mem_cgroup, high_work);
1843	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1844}
1845
1846/*
1847 * Scheduled by try_charge() to be executed from the userland return path
1848 * and reclaims memory over the high limit.
1849 */
1850void mem_cgroup_handle_over_high(void)
1851{
1852	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1853	struct mem_cgroup *memcg;
1854
1855	if (likely(!nr_pages))
1856		return;
1857
1858	memcg = get_mem_cgroup_from_mm(current->mm);
1859	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1860	css_put(&memcg->css);
1861	current->memcg_nr_pages_over_high = 0;
1862}
1863
1864static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1865		      unsigned int nr_pages)
1866{
1867	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1868	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1869	struct mem_cgroup *mem_over_limit;
1870	struct page_counter *counter;
1871	unsigned long nr_reclaimed;
1872	bool may_swap = true;
1873	bool drained = false;
1874
1875	if (mem_cgroup_is_root(memcg))
1876		return 0;
1877retry:
1878	if (consume_stock(memcg, nr_pages))
1879		return 0;
1880
1881	if (!do_memsw_account() ||
1882	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1883		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1884			goto done_restock;
1885		if (do_memsw_account())
1886			page_counter_uncharge(&memcg->memsw, batch);
1887		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1888	} else {
1889		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1890		may_swap = false;
1891	}
1892
1893	if (batch > nr_pages) {
1894		batch = nr_pages;
1895		goto retry;
1896	}
1897
1898	/*
1899	 * Unlike in global OOM situations, memcg is not in a physical
1900	 * memory shortage.  Allow dying and OOM-killed tasks to
1901	 * bypass the last charges so that they can exit quickly and
1902	 * free their memory.
1903	 */
1904	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1905		     fatal_signal_pending(current) ||
1906		     current->flags & PF_EXITING))
1907		goto force;
1908
1909	/*
1910	 * Prevent unbounded recursion when reclaim operations need to
1911	 * allocate memory. This might exceed the limits temporarily,
1912	 * but we prefer facilitating memory reclaim and getting back
1913	 * under the limit over triggering OOM kills in these cases.
1914	 */
1915	if (unlikely(current->flags & PF_MEMALLOC))
1916		goto force;
1917
1918	if (unlikely(task_in_memcg_oom(current)))
1919		goto nomem;
1920
1921	if (!gfpflags_allow_blocking(gfp_mask))
1922		goto nomem;
1923
1924	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1925
1926	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1927						    gfp_mask, may_swap);
1928
1929	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1930		goto retry;
1931
1932	if (!drained) {
1933		drain_all_stock(mem_over_limit);
1934		drained = true;
1935		goto retry;
1936	}
1937
1938	if (gfp_mask & __GFP_NORETRY)
1939		goto nomem;
1940	/*
1941	 * Even though the limit is exceeded at this point, reclaim
1942	 * may have been able to free some pages.  Retry the charge
1943	 * before killing the task.
1944	 *
1945	 * Only for regular pages, though: huge pages are rather
1946	 * unlikely to succeed so close to the limit, and we fall back
1947	 * to regular pages anyway in case of failure.
1948	 */
1949	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1950		goto retry;
1951	/*
1952	 * At task move, charge accounts can be doubly counted. So, it's
1953	 * better to wait until the end of task_move if something is going on.
1954	 */
1955	if (mem_cgroup_wait_acct_move(mem_over_limit))
1956		goto retry;
1957
1958	if (nr_retries--)
1959		goto retry;
1960
1961	if (gfp_mask & __GFP_NOFAIL)
1962		goto force;
1963
1964	if (fatal_signal_pending(current))
1965		goto force;
1966
1967	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1968
1969	mem_cgroup_oom(mem_over_limit, gfp_mask,
1970		       get_order(nr_pages * PAGE_SIZE));
1971nomem:
1972	if (!(gfp_mask & __GFP_NOFAIL))
1973		return -ENOMEM;
1974force:
1975	/*
1976	 * The allocation either can't fail or will lead to more memory
1977	 * being freed very soon.  Allow memory usage go over the limit
1978	 * temporarily by force charging it.
1979	 */
1980	page_counter_charge(&memcg->memory, nr_pages);
1981	if (do_memsw_account())
1982		page_counter_charge(&memcg->memsw, nr_pages);
1983	css_get_many(&memcg->css, nr_pages);
1984
1985	return 0;
1986
1987done_restock:
1988	css_get_many(&memcg->css, batch);
1989	if (batch > nr_pages)
1990		refill_stock(memcg, batch - nr_pages);
1991
1992	/*
1993	 * If the hierarchy is above the normal consumption range, schedule
1994	 * reclaim on returning to userland.  We can perform reclaim here
1995	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1996	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
1997	 * not recorded as it most likely matches current's and won't
1998	 * change in the meantime.  As high limit is checked again before
1999	 * reclaim, the cost of mismatch is negligible.
2000	 */
2001	do {
2002		if (page_counter_read(&memcg->memory) > memcg->high) {
2003			/* Don't bother a random interrupted task */
2004			if (in_interrupt()) {
2005				schedule_work(&memcg->high_work);
2006				break;
2007			}
2008			current->memcg_nr_pages_over_high += batch;
2009			set_notify_resume(current);
2010			break;
2011		}
2012	} while ((memcg = parent_mem_cgroup(memcg)));
2013
2014	return 0;
2015}
2016
2017static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2018{
2019	if (mem_cgroup_is_root(memcg))
2020		return;
2021
2022	page_counter_uncharge(&memcg->memory, nr_pages);
2023	if (do_memsw_account())
2024		page_counter_uncharge(&memcg->memsw, nr_pages);
2025
2026	css_put_many(&memcg->css, nr_pages);
2027}
2028
2029static void lock_page_lru(struct page *page, int *isolated)
2030{
2031	struct zone *zone = page_zone(page);
2032
2033	spin_lock_irq(zone_lru_lock(zone));
2034	if (PageLRU(page)) {
2035		struct lruvec *lruvec;
2036
2037		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2038		ClearPageLRU(page);
2039		del_page_from_lru_list(page, lruvec, page_lru(page));
2040		*isolated = 1;
2041	} else
2042		*isolated = 0;
2043}
2044
2045static void unlock_page_lru(struct page *page, int isolated)
2046{
2047	struct zone *zone = page_zone(page);
2048
2049	if (isolated) {
2050		struct lruvec *lruvec;
2051
2052		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2053		VM_BUG_ON_PAGE(PageLRU(page), page);
2054		SetPageLRU(page);
2055		add_page_to_lru_list(page, lruvec, page_lru(page));
2056	}
2057	spin_unlock_irq(zone_lru_lock(zone));
2058}
2059
2060static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2061			  bool lrucare)
2062{
2063	int isolated;
2064
2065	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2066
2067	/*
2068	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2069	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2070	 */
2071	if (lrucare)
2072		lock_page_lru(page, &isolated);
2073
2074	/*
2075	 * Nobody should be changing or seriously looking at
2076	 * page->mem_cgroup at this point:
2077	 *
2078	 * - the page is uncharged
2079	 *
2080	 * - the page is off-LRU
2081	 *
2082	 * - an anonymous fault has exclusive page access, except for
2083	 *   a locked page table
2084	 *
2085	 * - a page cache insertion, a swapin fault, or a migration
2086	 *   have the page locked
2087	 */
2088	page->mem_cgroup = memcg;
2089
2090	if (lrucare)
2091		unlock_page_lru(page, isolated);
2092}
2093
2094#ifndef CONFIG_SLOB
2095static int memcg_alloc_cache_id(void)
2096{
2097	int id, size;
2098	int err;
2099
2100	id = ida_simple_get(&memcg_cache_ida,
2101			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2102	if (id < 0)
2103		return id;
2104
2105	if (id < memcg_nr_cache_ids)
2106		return id;
2107
2108	/*
2109	 * There's no space for the new id in memcg_caches arrays,
2110	 * so we have to grow them.
2111	 */
2112	down_write(&memcg_cache_ids_sem);
2113
2114	size = 2 * (id + 1);
2115	if (size < MEMCG_CACHES_MIN_SIZE)
2116		size = MEMCG_CACHES_MIN_SIZE;
2117	else if (size > MEMCG_CACHES_MAX_SIZE)
2118		size = MEMCG_CACHES_MAX_SIZE;
2119
2120	err = memcg_update_all_caches(size);
2121	if (!err)
2122		err = memcg_update_all_list_lrus(size);
2123	if (!err)
2124		memcg_nr_cache_ids = size;
2125
2126	up_write(&memcg_cache_ids_sem);
2127
2128	if (err) {
2129		ida_simple_remove(&memcg_cache_ida, id);
2130		return err;
2131	}
2132	return id;
2133}
2134
2135static void memcg_free_cache_id(int id)
2136{
2137	ida_simple_remove(&memcg_cache_ida, id);
2138}
2139
2140struct memcg_kmem_cache_create_work {
2141	struct mem_cgroup *memcg;
2142	struct kmem_cache *cachep;
2143	struct work_struct work;
2144};
2145
2146static struct workqueue_struct *memcg_kmem_cache_create_wq;
2147
2148static void memcg_kmem_cache_create_func(struct work_struct *w)
2149{
2150	struct memcg_kmem_cache_create_work *cw =
2151		container_of(w, struct memcg_kmem_cache_create_work, work);
2152	struct mem_cgroup *memcg = cw->memcg;
2153	struct kmem_cache *cachep = cw->cachep;
2154
2155	memcg_create_kmem_cache(memcg, cachep);
2156
2157	css_put(&memcg->css);
2158	kfree(cw);
2159}
2160
2161/*
2162 * Enqueue the creation of a per-memcg kmem_cache.
2163 */
2164static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2165					       struct kmem_cache *cachep)
2166{
2167	struct memcg_kmem_cache_create_work *cw;
2168
2169	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2170	if (!cw)
2171		return;
2172
2173	css_get(&memcg->css);
2174
2175	cw->memcg = memcg;
2176	cw->cachep = cachep;
2177	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2178
2179	queue_work(memcg_kmem_cache_create_wq, &cw->work);
2180}
2181
2182static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2183					     struct kmem_cache *cachep)
2184{
2185	/*
2186	 * We need to stop accounting when we kmalloc, because if the
2187	 * corresponding kmalloc cache is not yet created, the first allocation
2188	 * in __memcg_schedule_kmem_cache_create will recurse.
2189	 *
2190	 * However, it is better to enclose the whole function. Depending on
2191	 * the debugging options enabled, INIT_WORK(), for instance, can
2192	 * trigger an allocation. This too, will make us recurse. Because at
2193	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2194	 * the safest choice is to do it like this, wrapping the whole function.
2195	 */
2196	current->memcg_kmem_skip_account = 1;
2197	__memcg_schedule_kmem_cache_create(memcg, cachep);
2198	current->memcg_kmem_skip_account = 0;
2199}
2200
2201static inline bool memcg_kmem_bypass(void)
2202{
2203	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2204		return true;
2205	return false;
2206}
2207
2208/**
2209 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2210 * @cachep: the original global kmem cache
2211 *
2212 * Return the kmem_cache we're supposed to use for a slab allocation.
2213 * We try to use the current memcg's version of the cache.
2214 *
2215 * If the cache does not exist yet, if we are the first user of it, we
2216 * create it asynchronously in a workqueue and let the current allocation
2217 * go through with the original cache.
2218 *
2219 * This function takes a reference to the cache it returns to assure it
2220 * won't get destroyed while we are working with it. Once the caller is
2221 * done with it, memcg_kmem_put_cache() must be called to release the
2222 * reference.
2223 */
2224struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2225{
2226	struct mem_cgroup *memcg;
2227	struct kmem_cache *memcg_cachep;
2228	int kmemcg_id;
2229
2230	VM_BUG_ON(!is_root_cache(cachep));
2231
2232	if (memcg_kmem_bypass())
2233		return cachep;
2234
2235	if (current->memcg_kmem_skip_account)
2236		return cachep;
2237
2238	memcg = get_mem_cgroup_from_mm(current->mm);
2239	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2240	if (kmemcg_id < 0)
2241		goto out;
2242
2243	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2244	if (likely(memcg_cachep))
2245		return memcg_cachep;
2246
2247	/*
2248	 * If we are in a safe context (can wait, and not in interrupt
2249	 * context), we could be be predictable and return right away.
2250	 * This would guarantee that the allocation being performed
2251	 * already belongs in the new cache.
2252	 *
2253	 * However, there are some clashes that can arrive from locking.
2254	 * For instance, because we acquire the slab_mutex while doing
2255	 * memcg_create_kmem_cache, this means no further allocation
2256	 * could happen with the slab_mutex held. So it's better to
2257	 * defer everything.
2258	 */
2259	memcg_schedule_kmem_cache_create(memcg, cachep);
2260out:
2261	css_put(&memcg->css);
2262	return cachep;
2263}
2264
2265/**
2266 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2267 * @cachep: the cache returned by memcg_kmem_get_cache
2268 */
2269void memcg_kmem_put_cache(struct kmem_cache *cachep)
2270{
2271	if (!is_root_cache(cachep))
2272		css_put(&cachep->memcg_params.memcg->css);
2273}
2274
2275/**
2276 * memcg_kmem_charge: charge a kmem page
2277 * @page: page to charge
2278 * @gfp: reclaim mode
2279 * @order: allocation order
2280 * @memcg: memory cgroup to charge
2281 *
2282 * Returns 0 on success, an error code on failure.
2283 */
2284int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2285			    struct mem_cgroup *memcg)
2286{
2287	unsigned int nr_pages = 1 << order;
2288	struct page_counter *counter;
2289	int ret;
2290
2291	ret = try_charge(memcg, gfp, nr_pages);
2292	if (ret)
2293		return ret;
2294
2295	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2296	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2297		cancel_charge(memcg, nr_pages);
2298		return -ENOMEM;
2299	}
2300
2301	page->mem_cgroup = memcg;
2302
2303	return 0;
2304}
2305
2306/**
2307 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2308 * @page: page to charge
2309 * @gfp: reclaim mode
2310 * @order: allocation order
2311 *
2312 * Returns 0 on success, an error code on failure.
2313 */
2314int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2315{
2316	struct mem_cgroup *memcg;
2317	int ret = 0;
2318
2319	if (memcg_kmem_bypass())
2320		return 0;
2321
2322	memcg = get_mem_cgroup_from_mm(current->mm);
2323	if (!mem_cgroup_is_root(memcg)) {
2324		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2325		if (!ret)
2326			__SetPageKmemcg(page);
2327	}
2328	css_put(&memcg->css);
2329	return ret;
2330}
2331/**
2332 * memcg_kmem_uncharge: uncharge a kmem page
2333 * @page: page to uncharge
2334 * @order: allocation order
2335 */
2336void memcg_kmem_uncharge(struct page *page, int order)
2337{
2338	struct mem_cgroup *memcg = page->mem_cgroup;
2339	unsigned int nr_pages = 1 << order;
2340
2341	if (!memcg)
2342		return;
2343
2344	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2345
2346	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2347		page_counter_uncharge(&memcg->kmem, nr_pages);
2348
2349	page_counter_uncharge(&memcg->memory, nr_pages);
2350	if (do_memsw_account())
2351		page_counter_uncharge(&memcg->memsw, nr_pages);
2352
2353	page->mem_cgroup = NULL;
2354
2355	/* slab pages do not have PageKmemcg flag set */
2356	if (PageKmemcg(page))
2357		__ClearPageKmemcg(page);
2358
2359	css_put_many(&memcg->css, nr_pages);
2360}
2361#endif /* !CONFIG_SLOB */
2362
2363#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2364
2365/*
2366 * Because tail pages are not marked as "used", set it. We're under
2367 * zone_lru_lock and migration entries setup in all page mappings.
2368 */
2369void mem_cgroup_split_huge_fixup(struct page *head)
2370{
2371	int i;
2372
2373	if (mem_cgroup_disabled())
2374		return;
2375
2376	for (i = 1; i < HPAGE_PMD_NR; i++)
2377		head[i].mem_cgroup = head->mem_cgroup;
2378
2379	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2380		       HPAGE_PMD_NR);
2381}
2382#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2383
2384#ifdef CONFIG_MEMCG_SWAP
2385static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2386					 bool charge)
2387{
2388	int val = (charge) ? 1 : -1;
2389	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2390}
2391
2392/**
2393 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2394 * @entry: swap entry to be moved
2395 * @from:  mem_cgroup which the entry is moved from
2396 * @to:  mem_cgroup which the entry is moved to
2397 *
2398 * It succeeds only when the swap_cgroup's record for this entry is the same
2399 * as the mem_cgroup's id of @from.
2400 *
2401 * Returns 0 on success, -EINVAL on failure.
2402 *
2403 * The caller must have charged to @to, IOW, called page_counter_charge() about
2404 * both res and memsw, and called css_get().
2405 */
2406static int mem_cgroup_move_swap_account(swp_entry_t entry,
2407				struct mem_cgroup *from, struct mem_cgroup *to)
2408{
2409	unsigned short old_id, new_id;
2410
2411	old_id = mem_cgroup_id(from);
2412	new_id = mem_cgroup_id(to);
2413
2414	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2415		mem_cgroup_swap_statistics(from, false);
2416		mem_cgroup_swap_statistics(to, true);
2417		return 0;
2418	}
2419	return -EINVAL;
2420}
2421#else
2422static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2423				struct mem_cgroup *from, struct mem_cgroup *to)
2424{
2425	return -EINVAL;
2426}
2427#endif
2428
2429static DEFINE_MUTEX(memcg_limit_mutex);
2430
2431static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2432				   unsigned long limit)
2433{
2434	unsigned long curusage;
2435	unsigned long oldusage;
2436	bool enlarge = false;
2437	int retry_count;
2438	int ret;
2439
2440	/*
2441	 * For keeping hierarchical_reclaim simple, how long we should retry
2442	 * is depends on callers. We set our retry-count to be function
2443	 * of # of children which we should visit in this loop.
2444	 */
2445	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2446		      mem_cgroup_count_children(memcg);
2447
2448	oldusage = page_counter_read(&memcg->memory);
2449
2450	do {
2451		if (signal_pending(current)) {
2452			ret = -EINTR;
2453			break;
2454		}
2455
2456		mutex_lock(&memcg_limit_mutex);
2457		if (limit > memcg->memsw.limit) {
 
 
 
 
 
 
2458			mutex_unlock(&memcg_limit_mutex);
2459			ret = -EINVAL;
2460			break;
2461		}
2462		if (limit > memcg->memory.limit)
2463			enlarge = true;
2464		ret = page_counter_limit(&memcg->memory, limit);
2465		mutex_unlock(&memcg_limit_mutex);
2466
2467		if (!ret)
2468			break;
2469
2470		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2471
2472		curusage = page_counter_read(&memcg->memory);
2473		/* Usage is reduced ? */
2474		if (curusage >= oldusage)
2475			retry_count--;
2476		else
2477			oldusage = curusage;
2478	} while (retry_count);
2479
2480	if (!ret && enlarge)
2481		memcg_oom_recover(memcg);
2482
2483	return ret;
2484}
2485
2486static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2487					 unsigned long limit)
2488{
2489	unsigned long curusage;
2490	unsigned long oldusage;
2491	bool enlarge = false;
2492	int retry_count;
2493	int ret;
2494
2495	/* see mem_cgroup_resize_res_limit */
2496	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2497		      mem_cgroup_count_children(memcg);
2498
2499	oldusage = page_counter_read(&memcg->memsw);
2500
2501	do {
2502		if (signal_pending(current)) {
2503			ret = -EINTR;
2504			break;
2505		}
2506
2507		mutex_lock(&memcg_limit_mutex);
2508		if (limit < memcg->memory.limit) {
2509			mutex_unlock(&memcg_limit_mutex);
2510			ret = -EINVAL;
2511			break;
2512		}
2513		if (limit > memcg->memsw.limit)
2514			enlarge = true;
2515		ret = page_counter_limit(&memcg->memsw, limit);
2516		mutex_unlock(&memcg_limit_mutex);
2517
2518		if (!ret)
2519			break;
2520
2521		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2522
2523		curusage = page_counter_read(&memcg->memsw);
2524		/* Usage is reduced ? */
2525		if (curusage >= oldusage)
2526			retry_count--;
2527		else
2528			oldusage = curusage;
2529	} while (retry_count);
2530
2531	if (!ret && enlarge)
2532		memcg_oom_recover(memcg);
2533
2534	return ret;
2535}
2536
2537unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2538					    gfp_t gfp_mask,
2539					    unsigned long *total_scanned)
2540{
2541	unsigned long nr_reclaimed = 0;
2542	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2543	unsigned long reclaimed;
2544	int loop = 0;
2545	struct mem_cgroup_tree_per_node *mctz;
2546	unsigned long excess;
2547	unsigned long nr_scanned;
2548
2549	if (order > 0)
2550		return 0;
2551
2552	mctz = soft_limit_tree_node(pgdat->node_id);
2553
2554	/*
2555	 * Do not even bother to check the largest node if the root
2556	 * is empty. Do it lockless to prevent lock bouncing. Races
2557	 * are acceptable as soft limit is best effort anyway.
2558	 */
2559	if (RB_EMPTY_ROOT(&mctz->rb_root))
2560		return 0;
2561
2562	/*
2563	 * This loop can run a while, specially if mem_cgroup's continuously
2564	 * keep exceeding their soft limit and putting the system under
2565	 * pressure
2566	 */
2567	do {
2568		if (next_mz)
2569			mz = next_mz;
2570		else
2571			mz = mem_cgroup_largest_soft_limit_node(mctz);
2572		if (!mz)
2573			break;
2574
2575		nr_scanned = 0;
2576		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2577						    gfp_mask, &nr_scanned);
2578		nr_reclaimed += reclaimed;
2579		*total_scanned += nr_scanned;
2580		spin_lock_irq(&mctz->lock);
2581		__mem_cgroup_remove_exceeded(mz, mctz);
2582
2583		/*
2584		 * If we failed to reclaim anything from this memory cgroup
2585		 * it is time to move on to the next cgroup
2586		 */
2587		next_mz = NULL;
2588		if (!reclaimed)
2589			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2590
2591		excess = soft_limit_excess(mz->memcg);
2592		/*
2593		 * One school of thought says that we should not add
2594		 * back the node to the tree if reclaim returns 0.
2595		 * But our reclaim could return 0, simply because due
2596		 * to priority we are exposing a smaller subset of
2597		 * memory to reclaim from. Consider this as a longer
2598		 * term TODO.
2599		 */
2600		/* If excess == 0, no tree ops */
2601		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2602		spin_unlock_irq(&mctz->lock);
2603		css_put(&mz->memcg->css);
2604		loop++;
2605		/*
2606		 * Could not reclaim anything and there are no more
2607		 * mem cgroups to try or we seem to be looping without
2608		 * reclaiming anything.
2609		 */
2610		if (!nr_reclaimed &&
2611			(next_mz == NULL ||
2612			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2613			break;
2614	} while (!nr_reclaimed);
2615	if (next_mz)
2616		css_put(&next_mz->memcg->css);
2617	return nr_reclaimed;
2618}
2619
2620/*
2621 * Test whether @memcg has children, dead or alive.  Note that this
2622 * function doesn't care whether @memcg has use_hierarchy enabled and
2623 * returns %true if there are child csses according to the cgroup
2624 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2625 */
2626static inline bool memcg_has_children(struct mem_cgroup *memcg)
2627{
2628	bool ret;
2629
2630	rcu_read_lock();
2631	ret = css_next_child(NULL, &memcg->css);
2632	rcu_read_unlock();
2633	return ret;
2634}
2635
2636/*
2637 * Reclaims as many pages from the given memcg as possible.
2638 *
2639 * Caller is responsible for holding css reference for memcg.
2640 */
2641static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2642{
2643	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2644
2645	/* we call try-to-free pages for make this cgroup empty */
2646	lru_add_drain_all();
2647	/* try to free all pages in this cgroup */
2648	while (nr_retries && page_counter_read(&memcg->memory)) {
2649		int progress;
2650
2651		if (signal_pending(current))
2652			return -EINTR;
2653
2654		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2655							GFP_KERNEL, true);
2656		if (!progress) {
2657			nr_retries--;
2658			/* maybe some writeback is necessary */
2659			congestion_wait(BLK_RW_ASYNC, HZ/10);
2660		}
2661
2662	}
2663
2664	return 0;
2665}
2666
2667static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2668					    char *buf, size_t nbytes,
2669					    loff_t off)
2670{
2671	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2672
2673	if (mem_cgroup_is_root(memcg))
2674		return -EINVAL;
2675	return mem_cgroup_force_empty(memcg) ?: nbytes;
2676}
2677
2678static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2679				     struct cftype *cft)
2680{
2681	return mem_cgroup_from_css(css)->use_hierarchy;
2682}
2683
2684static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2685				      struct cftype *cft, u64 val)
2686{
2687	int retval = 0;
2688	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2689	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2690
2691	if (memcg->use_hierarchy == val)
2692		return 0;
2693
2694	/*
2695	 * If parent's use_hierarchy is set, we can't make any modifications
2696	 * in the child subtrees. If it is unset, then the change can
2697	 * occur, provided the current cgroup has no children.
2698	 *
2699	 * For the root cgroup, parent_mem is NULL, we allow value to be
2700	 * set if there are no children.
2701	 */
2702	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2703				(val == 1 || val == 0)) {
2704		if (!memcg_has_children(memcg))
2705			memcg->use_hierarchy = val;
2706		else
2707			retval = -EBUSY;
2708	} else
2709		retval = -EINVAL;
2710
2711	return retval;
2712}
2713
2714static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2715{
2716	struct mem_cgroup *iter;
2717	int i;
2718
2719	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2720
2721	for_each_mem_cgroup_tree(iter, memcg) {
2722		for (i = 0; i < MEMCG_NR_STAT; i++)
2723			stat[i] += mem_cgroup_read_stat(iter, i);
2724	}
2725}
2726
2727static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2728{
2729	struct mem_cgroup *iter;
2730	int i;
2731
2732	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2733
2734	for_each_mem_cgroup_tree(iter, memcg) {
2735		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2736			events[i] += mem_cgroup_read_events(iter, i);
2737	}
2738}
2739
2740static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2741{
2742	unsigned long val = 0;
2743
2744	if (mem_cgroup_is_root(memcg)) {
2745		struct mem_cgroup *iter;
2746
2747		for_each_mem_cgroup_tree(iter, memcg) {
2748			val += mem_cgroup_read_stat(iter,
2749					MEM_CGROUP_STAT_CACHE);
2750			val += mem_cgroup_read_stat(iter,
2751					MEM_CGROUP_STAT_RSS);
2752			if (swap)
2753				val += mem_cgroup_read_stat(iter,
2754						MEM_CGROUP_STAT_SWAP);
2755		}
2756	} else {
2757		if (!swap)
2758			val = page_counter_read(&memcg->memory);
2759		else
2760			val = page_counter_read(&memcg->memsw);
2761	}
2762	return val;
2763}
2764
2765enum {
2766	RES_USAGE,
2767	RES_LIMIT,
2768	RES_MAX_USAGE,
2769	RES_FAILCNT,
2770	RES_SOFT_LIMIT,
2771};
2772
2773static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2774			       struct cftype *cft)
2775{
2776	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2777	struct page_counter *counter;
2778
2779	switch (MEMFILE_TYPE(cft->private)) {
2780	case _MEM:
2781		counter = &memcg->memory;
2782		break;
2783	case _MEMSWAP:
2784		counter = &memcg->memsw;
2785		break;
2786	case _KMEM:
2787		counter = &memcg->kmem;
2788		break;
2789	case _TCP:
2790		counter = &memcg->tcpmem;
2791		break;
2792	default:
2793		BUG();
2794	}
2795
2796	switch (MEMFILE_ATTR(cft->private)) {
2797	case RES_USAGE:
2798		if (counter == &memcg->memory)
2799			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2800		if (counter == &memcg->memsw)
2801			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2802		return (u64)page_counter_read(counter) * PAGE_SIZE;
2803	case RES_LIMIT:
2804		return (u64)counter->limit * PAGE_SIZE;
2805	case RES_MAX_USAGE:
2806		return (u64)counter->watermark * PAGE_SIZE;
2807	case RES_FAILCNT:
2808		return counter->failcnt;
2809	case RES_SOFT_LIMIT:
2810		return (u64)memcg->soft_limit * PAGE_SIZE;
2811	default:
2812		BUG();
2813	}
2814}
2815
2816#ifndef CONFIG_SLOB
2817static int memcg_online_kmem(struct mem_cgroup *memcg)
2818{
2819	int memcg_id;
2820
2821	if (cgroup_memory_nokmem)
2822		return 0;
2823
2824	BUG_ON(memcg->kmemcg_id >= 0);
2825	BUG_ON(memcg->kmem_state);
2826
2827	memcg_id = memcg_alloc_cache_id();
2828	if (memcg_id < 0)
2829		return memcg_id;
2830
2831	static_branch_inc(&memcg_kmem_enabled_key);
2832	/*
2833	 * A memory cgroup is considered kmem-online as soon as it gets
2834	 * kmemcg_id. Setting the id after enabling static branching will
2835	 * guarantee no one starts accounting before all call sites are
2836	 * patched.
2837	 */
2838	memcg->kmemcg_id = memcg_id;
2839	memcg->kmem_state = KMEM_ONLINE;
 
2840
2841	return 0;
2842}
2843
2844static void memcg_offline_kmem(struct mem_cgroup *memcg)
2845{
2846	struct cgroup_subsys_state *css;
2847	struct mem_cgroup *parent, *child;
2848	int kmemcg_id;
2849
2850	if (memcg->kmem_state != KMEM_ONLINE)
2851		return;
2852	/*
2853	 * Clear the online state before clearing memcg_caches array
2854	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2855	 * guarantees that no cache will be created for this cgroup
2856	 * after we are done (see memcg_create_kmem_cache()).
2857	 */
2858	memcg->kmem_state = KMEM_ALLOCATED;
2859
2860	memcg_deactivate_kmem_caches(memcg);
2861
2862	kmemcg_id = memcg->kmemcg_id;
2863	BUG_ON(kmemcg_id < 0);
2864
2865	parent = parent_mem_cgroup(memcg);
2866	if (!parent)
2867		parent = root_mem_cgroup;
2868
2869	/*
2870	 * Change kmemcg_id of this cgroup and all its descendants to the
2871	 * parent's id, and then move all entries from this cgroup's list_lrus
2872	 * to ones of the parent. After we have finished, all list_lrus
2873	 * corresponding to this cgroup are guaranteed to remain empty. The
2874	 * ordering is imposed by list_lru_node->lock taken by
2875	 * memcg_drain_all_list_lrus().
2876	 */
2877	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2878	css_for_each_descendant_pre(css, &memcg->css) {
2879		child = mem_cgroup_from_css(css);
2880		BUG_ON(child->kmemcg_id != kmemcg_id);
2881		child->kmemcg_id = parent->kmemcg_id;
2882		if (!memcg->use_hierarchy)
2883			break;
2884	}
2885	rcu_read_unlock();
2886
2887	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889	memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
2893{
2894	/* css_alloc() failed, offlining didn't happen */
2895	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896		memcg_offline_kmem(memcg);
2897
2898	if (memcg->kmem_state == KMEM_ALLOCATED) {
2899		memcg_destroy_kmem_caches(memcg);
2900		static_branch_dec(&memcg_kmem_enabled_key);
2901		WARN_ON(page_counter_read(&memcg->kmem));
2902	}
2903}
2904#else
2905static int memcg_online_kmem(struct mem_cgroup *memcg)
2906{
2907	return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918				   unsigned long limit)
2919{
2920	int ret;
2921
2922	mutex_lock(&memcg_limit_mutex);
2923	ret = page_counter_limit(&memcg->kmem, limit);
2924	mutex_unlock(&memcg_limit_mutex);
2925	return ret;
2926}
2927
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929{
2930	int ret;
2931
2932	mutex_lock(&memcg_limit_mutex);
2933
2934	ret = page_counter_limit(&memcg->tcpmem, limit);
2935	if (ret)
2936		goto out;
2937
2938	if (!memcg->tcpmem_active) {
2939		/*
2940		 * The active flag needs to be written after the static_key
2941		 * update. This is what guarantees that the socket activation
2942		 * function is the last one to run. See mem_cgroup_sk_alloc()
2943		 * for details, and note that we don't mark any socket as
2944		 * belonging to this memcg until that flag is up.
2945		 *
2946		 * We need to do this, because static_keys will span multiple
2947		 * sites, but we can't control their order. If we mark a socket
2948		 * as accounted, but the accounting functions are not patched in
2949		 * yet, we'll lose accounting.
2950		 *
2951		 * We never race with the readers in mem_cgroup_sk_alloc(),
2952		 * because when this value change, the code to process it is not
2953		 * patched in yet.
2954		 */
2955		static_branch_inc(&memcg_sockets_enabled_key);
2956		memcg->tcpmem_active = true;
2957	}
2958out:
2959	mutex_unlock(&memcg_limit_mutex);
2960	return ret;
2961}
2962
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968				char *buf, size_t nbytes, loff_t off)
2969{
2970	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971	unsigned long nr_pages;
2972	int ret;
2973
2974	buf = strstrip(buf);
2975	ret = page_counter_memparse(buf, "-1", &nr_pages);
2976	if (ret)
2977		return ret;
2978
2979	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980	case RES_LIMIT:
2981		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982			ret = -EINVAL;
2983			break;
2984		}
2985		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986		case _MEM:
2987			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988			break;
2989		case _MEMSWAP:
2990			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991			break;
2992		case _KMEM:
2993			ret = memcg_update_kmem_limit(memcg, nr_pages);
2994			break;
2995		case _TCP:
2996			ret = memcg_update_tcp_limit(memcg, nr_pages);
2997			break;
2998		}
2999		break;
3000	case RES_SOFT_LIMIT:
3001		memcg->soft_limit = nr_pages;
3002		ret = 0;
3003		break;
3004	}
3005	return ret ?: nbytes;
3006}
3007
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009				size_t nbytes, loff_t off)
3010{
3011	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012	struct page_counter *counter;
3013
3014	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015	case _MEM:
3016		counter = &memcg->memory;
3017		break;
3018	case _MEMSWAP:
3019		counter = &memcg->memsw;
3020		break;
3021	case _KMEM:
3022		counter = &memcg->kmem;
3023		break;
3024	case _TCP:
3025		counter = &memcg->tcpmem;
3026		break;
3027	default:
3028		BUG();
3029	}
3030
3031	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032	case RES_MAX_USAGE:
3033		page_counter_reset_watermark(counter);
3034		break;
3035	case RES_FAILCNT:
3036		counter->failcnt = 0;
3037		break;
3038	default:
3039		BUG();
3040	}
3041
3042	return nbytes;
3043}
3044
3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046					struct cftype *cft)
3047{
3048	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049}
3050
3051#ifdef CONFIG_MMU
3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053					struct cftype *cft, u64 val)
3054{
3055	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057	if (val & ~MOVE_MASK)
3058		return -EINVAL;
3059
3060	/*
3061	 * No kind of locking is needed in here, because ->can_attach() will
3062	 * check this value once in the beginning of the process, and then carry
3063	 * on with stale data. This means that changes to this value will only
3064	 * affect task migrations starting after the change.
3065	 */
3066	memcg->move_charge_at_immigrate = val;
3067	return 0;
3068}
3069#else
3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071					struct cftype *cft, u64 val)
3072{
3073	return -ENOSYS;
3074}
3075#endif
3076
3077#ifdef CONFIG_NUMA
3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079{
3080	struct numa_stat {
3081		const char *name;
3082		unsigned int lru_mask;
3083	};
3084
3085	static const struct numa_stat stats[] = {
3086		{ "total", LRU_ALL },
3087		{ "file", LRU_ALL_FILE },
3088		{ "anon", LRU_ALL_ANON },
3089		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3090	};
3091	const struct numa_stat *stat;
3092	int nid;
3093	unsigned long nr;
3094	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098		seq_printf(m, "%s=%lu", stat->name, nr);
3099		for_each_node_state(nid, N_MEMORY) {
3100			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101							  stat->lru_mask);
3102			seq_printf(m, " N%d=%lu", nid, nr);
3103		}
3104		seq_putc(m, '\n');
3105	}
3106
3107	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108		struct mem_cgroup *iter;
3109
3110		nr = 0;
3111		for_each_mem_cgroup_tree(iter, memcg)
3112			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114		for_each_node_state(nid, N_MEMORY) {
3115			nr = 0;
3116			for_each_mem_cgroup_tree(iter, memcg)
3117				nr += mem_cgroup_node_nr_lru_pages(
3118					iter, nid, stat->lru_mask);
3119			seq_printf(m, " N%d=%lu", nid, nr);
3120		}
3121		seq_putc(m, '\n');
3122	}
3123
3124	return 0;
3125}
3126#endif /* CONFIG_NUMA */
3127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3128static int memcg_stat_show(struct seq_file *m, void *v)
3129{
3130	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131	unsigned long memory, memsw;
3132	struct mem_cgroup *mi;
3133	unsigned int i;
3134
3135	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136		     MEM_CGROUP_STAT_NSTATS);
3137	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138		     MEM_CGROUP_EVENTS_NSTATS);
3139	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143			continue;
3144		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
 
3146	}
3147
3148	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150			   mem_cgroup_read_events(memcg, i));
3151
3152	for (i = 0; i < NR_LRU_LISTS; i++)
3153		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156	/* Hierarchical information */
3157	memory = memsw = PAGE_COUNTER_MAX;
3158	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159		memory = min(memory, mi->memory.limit);
3160		memsw = min(memsw, mi->memsw.limit);
3161	}
3162	seq_printf(m, "hierarchical_memory_limit %llu\n",
3163		   (u64)memory * PAGE_SIZE);
3164	if (do_memsw_account())
3165		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166			   (u64)memsw * PAGE_SIZE);
3167
3168	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169		unsigned long long val = 0;
3170
3171		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172			continue;
3173		for_each_mem_cgroup_tree(mi, memcg)
3174			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
 
3176	}
3177
3178	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179		unsigned long long val = 0;
3180
3181		for_each_mem_cgroup_tree(mi, memcg)
3182			val += mem_cgroup_read_events(mi, i);
3183		seq_printf(m, "total_%s %llu\n",
3184			   mem_cgroup_events_names[i], val);
3185	}
3186
3187	for (i = 0; i < NR_LRU_LISTS; i++) {
3188		unsigned long long val = 0;
3189
3190		for_each_mem_cgroup_tree(mi, memcg)
3191			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193	}
3194
3195#ifdef CONFIG_DEBUG_VM
3196	{
3197		pg_data_t *pgdat;
3198		struct mem_cgroup_per_node *mz;
3199		struct zone_reclaim_stat *rstat;
3200		unsigned long recent_rotated[2] = {0, 0};
3201		unsigned long recent_scanned[2] = {0, 0};
3202
3203		for_each_online_pgdat(pgdat) {
3204			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3205			rstat = &mz->lruvec.reclaim_stat;
3206
3207			recent_rotated[0] += rstat->recent_rotated[0];
3208			recent_rotated[1] += rstat->recent_rotated[1];
3209			recent_scanned[0] += rstat->recent_scanned[0];
3210			recent_scanned[1] += rstat->recent_scanned[1];
3211		}
3212		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3213		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3214		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3215		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3216	}
3217#endif
3218
3219	return 0;
3220}
3221
3222static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3223				      struct cftype *cft)
3224{
3225	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3226
3227	return mem_cgroup_swappiness(memcg);
3228}
3229
3230static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3231				       struct cftype *cft, u64 val)
3232{
3233	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3234
3235	if (val > 100)
3236		return -EINVAL;
3237
3238	if (css->parent)
3239		memcg->swappiness = val;
3240	else
3241		vm_swappiness = val;
3242
3243	return 0;
3244}
3245
3246static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3247{
3248	struct mem_cgroup_threshold_ary *t;
3249	unsigned long usage;
3250	int i;
3251
3252	rcu_read_lock();
3253	if (!swap)
3254		t = rcu_dereference(memcg->thresholds.primary);
3255	else
3256		t = rcu_dereference(memcg->memsw_thresholds.primary);
3257
3258	if (!t)
3259		goto unlock;
3260
3261	usage = mem_cgroup_usage(memcg, swap);
3262
3263	/*
3264	 * current_threshold points to threshold just below or equal to usage.
3265	 * If it's not true, a threshold was crossed after last
3266	 * call of __mem_cgroup_threshold().
3267	 */
3268	i = t->current_threshold;
3269
3270	/*
3271	 * Iterate backward over array of thresholds starting from
3272	 * current_threshold and check if a threshold is crossed.
3273	 * If none of thresholds below usage is crossed, we read
3274	 * only one element of the array here.
3275	 */
3276	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3277		eventfd_signal(t->entries[i].eventfd, 1);
3278
3279	/* i = current_threshold + 1 */
3280	i++;
3281
3282	/*
3283	 * Iterate forward over array of thresholds starting from
3284	 * current_threshold+1 and check if a threshold is crossed.
3285	 * If none of thresholds above usage is crossed, we read
3286	 * only one element of the array here.
3287	 */
3288	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3289		eventfd_signal(t->entries[i].eventfd, 1);
3290
3291	/* Update current_threshold */
3292	t->current_threshold = i - 1;
3293unlock:
3294	rcu_read_unlock();
3295}
3296
3297static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3298{
3299	while (memcg) {
3300		__mem_cgroup_threshold(memcg, false);
3301		if (do_memsw_account())
3302			__mem_cgroup_threshold(memcg, true);
3303
3304		memcg = parent_mem_cgroup(memcg);
3305	}
3306}
3307
3308static int compare_thresholds(const void *a, const void *b)
3309{
3310	const struct mem_cgroup_threshold *_a = a;
3311	const struct mem_cgroup_threshold *_b = b;
3312
3313	if (_a->threshold > _b->threshold)
3314		return 1;
3315
3316	if (_a->threshold < _b->threshold)
3317		return -1;
3318
3319	return 0;
3320}
3321
3322static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3323{
3324	struct mem_cgroup_eventfd_list *ev;
3325
3326	spin_lock(&memcg_oom_lock);
3327
3328	list_for_each_entry(ev, &memcg->oom_notify, list)
3329		eventfd_signal(ev->eventfd, 1);
3330
3331	spin_unlock(&memcg_oom_lock);
3332	return 0;
3333}
3334
3335static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3336{
3337	struct mem_cgroup *iter;
3338
3339	for_each_mem_cgroup_tree(iter, memcg)
3340		mem_cgroup_oom_notify_cb(iter);
3341}
3342
3343static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3344	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3345{
3346	struct mem_cgroup_thresholds *thresholds;
3347	struct mem_cgroup_threshold_ary *new;
3348	unsigned long threshold;
3349	unsigned long usage;
3350	int i, size, ret;
3351
3352	ret = page_counter_memparse(args, "-1", &threshold);
3353	if (ret)
3354		return ret;
3355
3356	mutex_lock(&memcg->thresholds_lock);
3357
3358	if (type == _MEM) {
3359		thresholds = &memcg->thresholds;
3360		usage = mem_cgroup_usage(memcg, false);
3361	} else if (type == _MEMSWAP) {
3362		thresholds = &memcg->memsw_thresholds;
3363		usage = mem_cgroup_usage(memcg, true);
3364	} else
3365		BUG();
3366
3367	/* Check if a threshold crossed before adding a new one */
3368	if (thresholds->primary)
3369		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3370
3371	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3372
3373	/* Allocate memory for new array of thresholds */
3374	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3375			GFP_KERNEL);
3376	if (!new) {
3377		ret = -ENOMEM;
3378		goto unlock;
3379	}
3380	new->size = size;
3381
3382	/* Copy thresholds (if any) to new array */
3383	if (thresholds->primary) {
3384		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3385				sizeof(struct mem_cgroup_threshold));
3386	}
3387
3388	/* Add new threshold */
3389	new->entries[size - 1].eventfd = eventfd;
3390	new->entries[size - 1].threshold = threshold;
3391
3392	/* Sort thresholds. Registering of new threshold isn't time-critical */
3393	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3394			compare_thresholds, NULL);
3395
3396	/* Find current threshold */
3397	new->current_threshold = -1;
3398	for (i = 0; i < size; i++) {
3399		if (new->entries[i].threshold <= usage) {
3400			/*
3401			 * new->current_threshold will not be used until
3402			 * rcu_assign_pointer(), so it's safe to increment
3403			 * it here.
3404			 */
3405			++new->current_threshold;
3406		} else
3407			break;
3408	}
3409
3410	/* Free old spare buffer and save old primary buffer as spare */
3411	kfree(thresholds->spare);
3412	thresholds->spare = thresholds->primary;
3413
3414	rcu_assign_pointer(thresholds->primary, new);
3415
3416	/* To be sure that nobody uses thresholds */
3417	synchronize_rcu();
3418
3419unlock:
3420	mutex_unlock(&memcg->thresholds_lock);
3421
3422	return ret;
3423}
3424
3425static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3426	struct eventfd_ctx *eventfd, const char *args)
3427{
3428	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3429}
3430
3431static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3432	struct eventfd_ctx *eventfd, const char *args)
3433{
3434	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3435}
3436
3437static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3438	struct eventfd_ctx *eventfd, enum res_type type)
3439{
3440	struct mem_cgroup_thresholds *thresholds;
3441	struct mem_cgroup_threshold_ary *new;
3442	unsigned long usage;
3443	int i, j, size;
3444
3445	mutex_lock(&memcg->thresholds_lock);
3446
3447	if (type == _MEM) {
3448		thresholds = &memcg->thresholds;
3449		usage = mem_cgroup_usage(memcg, false);
3450	} else if (type == _MEMSWAP) {
3451		thresholds = &memcg->memsw_thresholds;
3452		usage = mem_cgroup_usage(memcg, true);
3453	} else
3454		BUG();
3455
3456	if (!thresholds->primary)
3457		goto unlock;
3458
3459	/* Check if a threshold crossed before removing */
3460	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3461
3462	/* Calculate new number of threshold */
3463	size = 0;
3464	for (i = 0; i < thresholds->primary->size; i++) {
3465		if (thresholds->primary->entries[i].eventfd != eventfd)
3466			size++;
3467	}
3468
3469	new = thresholds->spare;
3470
3471	/* Set thresholds array to NULL if we don't have thresholds */
3472	if (!size) {
3473		kfree(new);
3474		new = NULL;
3475		goto swap_buffers;
3476	}
3477
3478	new->size = size;
3479
3480	/* Copy thresholds and find current threshold */
3481	new->current_threshold = -1;
3482	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3483		if (thresholds->primary->entries[i].eventfd == eventfd)
3484			continue;
3485
3486		new->entries[j] = thresholds->primary->entries[i];
3487		if (new->entries[j].threshold <= usage) {
3488			/*
3489			 * new->current_threshold will not be used
3490			 * until rcu_assign_pointer(), so it's safe to increment
3491			 * it here.
3492			 */
3493			++new->current_threshold;
3494		}
3495		j++;
3496	}
3497
3498swap_buffers:
3499	/* Swap primary and spare array */
3500	thresholds->spare = thresholds->primary;
3501
3502	rcu_assign_pointer(thresholds->primary, new);
3503
3504	/* To be sure that nobody uses thresholds */
3505	synchronize_rcu();
3506
3507	/* If all events are unregistered, free the spare array */
3508	if (!new) {
3509		kfree(thresholds->spare);
3510		thresholds->spare = NULL;
3511	}
3512unlock:
3513	mutex_unlock(&memcg->thresholds_lock);
3514}
3515
3516static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3517	struct eventfd_ctx *eventfd)
3518{
3519	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3520}
3521
3522static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3523	struct eventfd_ctx *eventfd)
3524{
3525	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3526}
3527
3528static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3529	struct eventfd_ctx *eventfd, const char *args)
3530{
3531	struct mem_cgroup_eventfd_list *event;
3532
3533	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3534	if (!event)
3535		return -ENOMEM;
3536
3537	spin_lock(&memcg_oom_lock);
3538
3539	event->eventfd = eventfd;
3540	list_add(&event->list, &memcg->oom_notify);
3541
3542	/* already in OOM ? */
3543	if (memcg->under_oom)
3544		eventfd_signal(eventfd, 1);
3545	spin_unlock(&memcg_oom_lock);
3546
3547	return 0;
3548}
3549
3550static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3551	struct eventfd_ctx *eventfd)
3552{
3553	struct mem_cgroup_eventfd_list *ev, *tmp;
3554
3555	spin_lock(&memcg_oom_lock);
3556
3557	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3558		if (ev->eventfd == eventfd) {
3559			list_del(&ev->list);
3560			kfree(ev);
3561		}
3562	}
3563
3564	spin_unlock(&memcg_oom_lock);
3565}
3566
3567static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3568{
3569	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3570
3571	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3572	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
 
3573	return 0;
3574}
3575
3576static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3577	struct cftype *cft, u64 val)
3578{
3579	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3580
3581	/* cannot set to root cgroup and only 0 and 1 are allowed */
3582	if (!css->parent || !((val == 0) || (val == 1)))
3583		return -EINVAL;
3584
3585	memcg->oom_kill_disable = val;
3586	if (!val)
3587		memcg_oom_recover(memcg);
3588
3589	return 0;
3590}
3591
3592#ifdef CONFIG_CGROUP_WRITEBACK
3593
3594struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3595{
3596	return &memcg->cgwb_list;
3597}
3598
3599static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3600{
3601	return wb_domain_init(&memcg->cgwb_domain, gfp);
3602}
3603
3604static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3605{
3606	wb_domain_exit(&memcg->cgwb_domain);
3607}
3608
3609static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3610{
3611	wb_domain_size_changed(&memcg->cgwb_domain);
3612}
3613
3614struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3615{
3616	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3617
3618	if (!memcg->css.parent)
3619		return NULL;
3620
3621	return &memcg->cgwb_domain;
3622}
3623
3624/**
3625 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626 * @wb: bdi_writeback in question
3627 * @pfilepages: out parameter for number of file pages
3628 * @pheadroom: out parameter for number of allocatable pages according to memcg
3629 * @pdirty: out parameter for number of dirty pages
3630 * @pwriteback: out parameter for number of pages under writeback
3631 *
3632 * Determine the numbers of file, headroom, dirty, and writeback pages in
3633 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3634 * is a bit more involved.
3635 *
3636 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3637 * headroom is calculated as the lowest headroom of itself and the
3638 * ancestors.  Note that this doesn't consider the actual amount of
3639 * available memory in the system.  The caller should further cap
3640 * *@pheadroom accordingly.
3641 */
3642void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3643			 unsigned long *pheadroom, unsigned long *pdirty,
3644			 unsigned long *pwriteback)
3645{
3646	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647	struct mem_cgroup *parent;
3648
3649	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3650
3651	/* this should eventually include NR_UNSTABLE_NFS */
3652	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3653	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3654						     (1 << LRU_ACTIVE_FILE));
3655	*pheadroom = PAGE_COUNTER_MAX;
3656
3657	while ((parent = parent_mem_cgroup(memcg))) {
3658		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3659		unsigned long used = page_counter_read(&memcg->memory);
3660
3661		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3662		memcg = parent;
3663	}
3664}
3665
3666#else	/* CONFIG_CGROUP_WRITEBACK */
3667
3668static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3669{
3670	return 0;
3671}
3672
3673static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3674{
3675}
3676
3677static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3678{
3679}
3680
3681#endif	/* CONFIG_CGROUP_WRITEBACK */
3682
3683/*
3684 * DO NOT USE IN NEW FILES.
3685 *
3686 * "cgroup.event_control" implementation.
3687 *
3688 * This is way over-engineered.  It tries to support fully configurable
3689 * events for each user.  Such level of flexibility is completely
3690 * unnecessary especially in the light of the planned unified hierarchy.
3691 *
3692 * Please deprecate this and replace with something simpler if at all
3693 * possible.
3694 */
3695
3696/*
3697 * Unregister event and free resources.
3698 *
3699 * Gets called from workqueue.
3700 */
3701static void memcg_event_remove(struct work_struct *work)
3702{
3703	struct mem_cgroup_event *event =
3704		container_of(work, struct mem_cgroup_event, remove);
3705	struct mem_cgroup *memcg = event->memcg;
3706
3707	remove_wait_queue(event->wqh, &event->wait);
3708
3709	event->unregister_event(memcg, event->eventfd);
3710
3711	/* Notify userspace the event is going away. */
3712	eventfd_signal(event->eventfd, 1);
3713
3714	eventfd_ctx_put(event->eventfd);
3715	kfree(event);
3716	css_put(&memcg->css);
3717}
3718
3719/*
3720 * Gets called on POLLHUP on eventfd when user closes it.
3721 *
3722 * Called with wqh->lock held and interrupts disabled.
3723 */
3724static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3725			    int sync, void *key)
3726{
3727	struct mem_cgroup_event *event =
3728		container_of(wait, struct mem_cgroup_event, wait);
3729	struct mem_cgroup *memcg = event->memcg;
3730	unsigned long flags = (unsigned long)key;
3731
3732	if (flags & POLLHUP) {
3733		/*
3734		 * If the event has been detached at cgroup removal, we
3735		 * can simply return knowing the other side will cleanup
3736		 * for us.
3737		 *
3738		 * We can't race against event freeing since the other
3739		 * side will require wqh->lock via remove_wait_queue(),
3740		 * which we hold.
3741		 */
3742		spin_lock(&memcg->event_list_lock);
3743		if (!list_empty(&event->list)) {
3744			list_del_init(&event->list);
3745			/*
3746			 * We are in atomic context, but cgroup_event_remove()
3747			 * may sleep, so we have to call it in workqueue.
3748			 */
3749			schedule_work(&event->remove);
3750		}
3751		spin_unlock(&memcg->event_list_lock);
3752	}
3753
3754	return 0;
3755}
3756
3757static void memcg_event_ptable_queue_proc(struct file *file,
3758		wait_queue_head_t *wqh, poll_table *pt)
3759{
3760	struct mem_cgroup_event *event =
3761		container_of(pt, struct mem_cgroup_event, pt);
3762
3763	event->wqh = wqh;
3764	add_wait_queue(wqh, &event->wait);
3765}
3766
3767/*
3768 * DO NOT USE IN NEW FILES.
3769 *
3770 * Parse input and register new cgroup event handler.
3771 *
3772 * Input must be in format '<event_fd> <control_fd> <args>'.
3773 * Interpretation of args is defined by control file implementation.
3774 */
3775static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3776					 char *buf, size_t nbytes, loff_t off)
3777{
3778	struct cgroup_subsys_state *css = of_css(of);
3779	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3780	struct mem_cgroup_event *event;
3781	struct cgroup_subsys_state *cfile_css;
3782	unsigned int efd, cfd;
3783	struct fd efile;
3784	struct fd cfile;
3785	const char *name;
3786	char *endp;
3787	int ret;
3788
3789	buf = strstrip(buf);
3790
3791	efd = simple_strtoul(buf, &endp, 10);
3792	if (*endp != ' ')
3793		return -EINVAL;
3794	buf = endp + 1;
3795
3796	cfd = simple_strtoul(buf, &endp, 10);
3797	if ((*endp != ' ') && (*endp != '\0'))
3798		return -EINVAL;
3799	buf = endp + 1;
3800
3801	event = kzalloc(sizeof(*event), GFP_KERNEL);
3802	if (!event)
3803		return -ENOMEM;
3804
3805	event->memcg = memcg;
3806	INIT_LIST_HEAD(&event->list);
3807	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3808	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3809	INIT_WORK(&event->remove, memcg_event_remove);
3810
3811	efile = fdget(efd);
3812	if (!efile.file) {
3813		ret = -EBADF;
3814		goto out_kfree;
3815	}
3816
3817	event->eventfd = eventfd_ctx_fileget(efile.file);
3818	if (IS_ERR(event->eventfd)) {
3819		ret = PTR_ERR(event->eventfd);
3820		goto out_put_efile;
3821	}
3822
3823	cfile = fdget(cfd);
3824	if (!cfile.file) {
3825		ret = -EBADF;
3826		goto out_put_eventfd;
3827	}
3828
3829	/* the process need read permission on control file */
3830	/* AV: shouldn't we check that it's been opened for read instead? */
3831	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3832	if (ret < 0)
3833		goto out_put_cfile;
3834
3835	/*
3836	 * Determine the event callbacks and set them in @event.  This used
3837	 * to be done via struct cftype but cgroup core no longer knows
3838	 * about these events.  The following is crude but the whole thing
3839	 * is for compatibility anyway.
3840	 *
3841	 * DO NOT ADD NEW FILES.
3842	 */
3843	name = cfile.file->f_path.dentry->d_name.name;
3844
3845	if (!strcmp(name, "memory.usage_in_bytes")) {
3846		event->register_event = mem_cgroup_usage_register_event;
3847		event->unregister_event = mem_cgroup_usage_unregister_event;
3848	} else if (!strcmp(name, "memory.oom_control")) {
3849		event->register_event = mem_cgroup_oom_register_event;
3850		event->unregister_event = mem_cgroup_oom_unregister_event;
3851	} else if (!strcmp(name, "memory.pressure_level")) {
3852		event->register_event = vmpressure_register_event;
3853		event->unregister_event = vmpressure_unregister_event;
3854	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3855		event->register_event = memsw_cgroup_usage_register_event;
3856		event->unregister_event = memsw_cgroup_usage_unregister_event;
3857	} else {
3858		ret = -EINVAL;
3859		goto out_put_cfile;
3860	}
3861
3862	/*
3863	 * Verify @cfile should belong to @css.  Also, remaining events are
3864	 * automatically removed on cgroup destruction but the removal is
3865	 * asynchronous, so take an extra ref on @css.
3866	 */
3867	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3868					       &memory_cgrp_subsys);
3869	ret = -EINVAL;
3870	if (IS_ERR(cfile_css))
3871		goto out_put_cfile;
3872	if (cfile_css != css) {
3873		css_put(cfile_css);
3874		goto out_put_cfile;
3875	}
3876
3877	ret = event->register_event(memcg, event->eventfd, buf);
3878	if (ret)
3879		goto out_put_css;
3880
3881	efile.file->f_op->poll(efile.file, &event->pt);
3882
3883	spin_lock(&memcg->event_list_lock);
3884	list_add(&event->list, &memcg->event_list);
3885	spin_unlock(&memcg->event_list_lock);
3886
3887	fdput(cfile);
3888	fdput(efile);
3889
3890	return nbytes;
3891
3892out_put_css:
3893	css_put(css);
3894out_put_cfile:
3895	fdput(cfile);
3896out_put_eventfd:
3897	eventfd_ctx_put(event->eventfd);
3898out_put_efile:
3899	fdput(efile);
3900out_kfree:
3901	kfree(event);
3902
3903	return ret;
3904}
3905
3906static struct cftype mem_cgroup_legacy_files[] = {
3907	{
3908		.name = "usage_in_bytes",
3909		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3910		.read_u64 = mem_cgroup_read_u64,
3911	},
3912	{
3913		.name = "max_usage_in_bytes",
3914		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3915		.write = mem_cgroup_reset,
3916		.read_u64 = mem_cgroup_read_u64,
3917	},
3918	{
3919		.name = "limit_in_bytes",
3920		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3921		.write = mem_cgroup_write,
3922		.read_u64 = mem_cgroup_read_u64,
3923	},
3924	{
3925		.name = "soft_limit_in_bytes",
3926		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3927		.write = mem_cgroup_write,
3928		.read_u64 = mem_cgroup_read_u64,
3929	},
3930	{
3931		.name = "failcnt",
3932		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3933		.write = mem_cgroup_reset,
3934		.read_u64 = mem_cgroup_read_u64,
3935	},
3936	{
3937		.name = "stat",
3938		.seq_show = memcg_stat_show,
3939	},
3940	{
3941		.name = "force_empty",
3942		.write = mem_cgroup_force_empty_write,
3943	},
3944	{
3945		.name = "use_hierarchy",
3946		.write_u64 = mem_cgroup_hierarchy_write,
3947		.read_u64 = mem_cgroup_hierarchy_read,
3948	},
3949	{
3950		.name = "cgroup.event_control",		/* XXX: for compat */
3951		.write = memcg_write_event_control,
3952		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3953	},
3954	{
3955		.name = "swappiness",
3956		.read_u64 = mem_cgroup_swappiness_read,
3957		.write_u64 = mem_cgroup_swappiness_write,
3958	},
3959	{
3960		.name = "move_charge_at_immigrate",
3961		.read_u64 = mem_cgroup_move_charge_read,
3962		.write_u64 = mem_cgroup_move_charge_write,
3963	},
3964	{
3965		.name = "oom_control",
3966		.seq_show = mem_cgroup_oom_control_read,
3967		.write_u64 = mem_cgroup_oom_control_write,
3968		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3969	},
3970	{
3971		.name = "pressure_level",
3972	},
3973#ifdef CONFIG_NUMA
3974	{
3975		.name = "numa_stat",
3976		.seq_show = memcg_numa_stat_show,
3977	},
3978#endif
3979	{
3980		.name = "kmem.limit_in_bytes",
3981		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3982		.write = mem_cgroup_write,
3983		.read_u64 = mem_cgroup_read_u64,
3984	},
3985	{
3986		.name = "kmem.usage_in_bytes",
3987		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3988		.read_u64 = mem_cgroup_read_u64,
3989	},
3990	{
3991		.name = "kmem.failcnt",
3992		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3993		.write = mem_cgroup_reset,
3994		.read_u64 = mem_cgroup_read_u64,
3995	},
3996	{
3997		.name = "kmem.max_usage_in_bytes",
3998		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3999		.write = mem_cgroup_reset,
4000		.read_u64 = mem_cgroup_read_u64,
4001	},
4002#ifdef CONFIG_SLABINFO
4003	{
4004		.name = "kmem.slabinfo",
4005		.seq_start = slab_start,
4006		.seq_next = slab_next,
4007		.seq_stop = slab_stop,
4008		.seq_show = memcg_slab_show,
4009	},
4010#endif
4011	{
4012		.name = "kmem.tcp.limit_in_bytes",
4013		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4014		.write = mem_cgroup_write,
4015		.read_u64 = mem_cgroup_read_u64,
4016	},
4017	{
4018		.name = "kmem.tcp.usage_in_bytes",
4019		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4020		.read_u64 = mem_cgroup_read_u64,
4021	},
4022	{
4023		.name = "kmem.tcp.failcnt",
4024		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4025		.write = mem_cgroup_reset,
4026		.read_u64 = mem_cgroup_read_u64,
4027	},
4028	{
4029		.name = "kmem.tcp.max_usage_in_bytes",
4030		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4031		.write = mem_cgroup_reset,
4032		.read_u64 = mem_cgroup_read_u64,
4033	},
4034	{ },	/* terminate */
4035};
4036
4037/*
4038 * Private memory cgroup IDR
4039 *
4040 * Swap-out records and page cache shadow entries need to store memcg
4041 * references in constrained space, so we maintain an ID space that is
4042 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4043 * memory-controlled cgroups to 64k.
4044 *
4045 * However, there usually are many references to the oflline CSS after
4046 * the cgroup has been destroyed, such as page cache or reclaimable
4047 * slab objects, that don't need to hang on to the ID. We want to keep
4048 * those dead CSS from occupying IDs, or we might quickly exhaust the
4049 * relatively small ID space and prevent the creation of new cgroups
4050 * even when there are much fewer than 64k cgroups - possibly none.
4051 *
4052 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4053 * be freed and recycled when it's no longer needed, which is usually
4054 * when the CSS is offlined.
4055 *
4056 * The only exception to that are records of swapped out tmpfs/shmem
4057 * pages that need to be attributed to live ancestors on swapin. But
4058 * those references are manageable from userspace.
4059 */
4060
4061static DEFINE_IDR(mem_cgroup_idr);
4062
4063static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4064{
4065	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4066	atomic_add(n, &memcg->id.ref);
4067}
4068
4069static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4070{
4071	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4072	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4073		idr_remove(&mem_cgroup_idr, memcg->id.id);
4074		memcg->id.id = 0;
4075
4076		/* Memcg ID pins CSS */
4077		css_put(&memcg->css);
4078	}
4079}
4080
4081static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4082{
4083	mem_cgroup_id_get_many(memcg, 1);
4084}
4085
4086static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4087{
4088	mem_cgroup_id_put_many(memcg, 1);
4089}
4090
4091/**
4092 * mem_cgroup_from_id - look up a memcg from a memcg id
4093 * @id: the memcg id to look up
4094 *
4095 * Caller must hold rcu_read_lock().
4096 */
4097struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4098{
4099	WARN_ON_ONCE(!rcu_read_lock_held());
4100	return idr_find(&mem_cgroup_idr, id);
4101}
4102
4103static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4104{
4105	struct mem_cgroup_per_node *pn;
4106	int tmp = node;
4107	/*
4108	 * This routine is called against possible nodes.
4109	 * But it's BUG to call kmalloc() against offline node.
4110	 *
4111	 * TODO: this routine can waste much memory for nodes which will
4112	 *       never be onlined. It's better to use memory hotplug callback
4113	 *       function.
4114	 */
4115	if (!node_state(node, N_NORMAL_MEMORY))
4116		tmp = -1;
4117	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4118	if (!pn)
4119		return 1;
4120
 
 
 
 
 
 
4121	lruvec_init(&pn->lruvec);
4122	pn->usage_in_excess = 0;
4123	pn->on_tree = false;
4124	pn->memcg = memcg;
4125
4126	memcg->nodeinfo[node] = pn;
4127	return 0;
4128}
4129
4130static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4131{
4132	kfree(memcg->nodeinfo[node]);
 
 
 
 
 
 
4133}
4134
4135static void __mem_cgroup_free(struct mem_cgroup *memcg)
4136{
4137	int node;
4138
4139	for_each_node(node)
4140		free_mem_cgroup_per_node_info(memcg, node);
4141	free_percpu(memcg->stat);
4142	kfree(memcg);
4143}
4144
4145static void mem_cgroup_free(struct mem_cgroup *memcg)
4146{
4147	memcg_wb_domain_exit(memcg);
4148	__mem_cgroup_free(memcg);
4149}
4150
4151static struct mem_cgroup *mem_cgroup_alloc(void)
4152{
4153	struct mem_cgroup *memcg;
4154	size_t size;
4155	int node;
4156
4157	size = sizeof(struct mem_cgroup);
4158	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4159
4160	memcg = kzalloc(size, GFP_KERNEL);
4161	if (!memcg)
4162		return NULL;
4163
4164	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4165				 1, MEM_CGROUP_ID_MAX,
4166				 GFP_KERNEL);
4167	if (memcg->id.id < 0)
4168		goto fail;
4169
4170	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4171	if (!memcg->stat)
4172		goto fail;
4173
4174	for_each_node(node)
4175		if (alloc_mem_cgroup_per_node_info(memcg, node))
4176			goto fail;
4177
4178	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4179		goto fail;
4180
4181	INIT_WORK(&memcg->high_work, high_work_func);
4182	memcg->last_scanned_node = MAX_NUMNODES;
4183	INIT_LIST_HEAD(&memcg->oom_notify);
4184	mutex_init(&memcg->thresholds_lock);
4185	spin_lock_init(&memcg->move_lock);
4186	vmpressure_init(&memcg->vmpressure);
4187	INIT_LIST_HEAD(&memcg->event_list);
4188	spin_lock_init(&memcg->event_list_lock);
4189	memcg->socket_pressure = jiffies;
4190#ifndef CONFIG_SLOB
4191	memcg->kmemcg_id = -1;
4192#endif
4193#ifdef CONFIG_CGROUP_WRITEBACK
4194	INIT_LIST_HEAD(&memcg->cgwb_list);
4195#endif
4196	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4197	return memcg;
4198fail:
4199	if (memcg->id.id > 0)
4200		idr_remove(&mem_cgroup_idr, memcg->id.id);
4201	__mem_cgroup_free(memcg);
4202	return NULL;
4203}
4204
4205static struct cgroup_subsys_state * __ref
4206mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4207{
4208	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4209	struct mem_cgroup *memcg;
4210	long error = -ENOMEM;
4211
4212	memcg = mem_cgroup_alloc();
4213	if (!memcg)
4214		return ERR_PTR(error);
4215
4216	memcg->high = PAGE_COUNTER_MAX;
4217	memcg->soft_limit = PAGE_COUNTER_MAX;
4218	if (parent) {
4219		memcg->swappiness = mem_cgroup_swappiness(parent);
4220		memcg->oom_kill_disable = parent->oom_kill_disable;
4221	}
4222	if (parent && parent->use_hierarchy) {
4223		memcg->use_hierarchy = true;
4224		page_counter_init(&memcg->memory, &parent->memory);
4225		page_counter_init(&memcg->swap, &parent->swap);
4226		page_counter_init(&memcg->memsw, &parent->memsw);
4227		page_counter_init(&memcg->kmem, &parent->kmem);
4228		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4229	} else {
4230		page_counter_init(&memcg->memory, NULL);
4231		page_counter_init(&memcg->swap, NULL);
4232		page_counter_init(&memcg->memsw, NULL);
4233		page_counter_init(&memcg->kmem, NULL);
4234		page_counter_init(&memcg->tcpmem, NULL);
4235		/*
4236		 * Deeper hierachy with use_hierarchy == false doesn't make
4237		 * much sense so let cgroup subsystem know about this
4238		 * unfortunate state in our controller.
4239		 */
4240		if (parent != root_mem_cgroup)
4241			memory_cgrp_subsys.broken_hierarchy = true;
4242	}
4243
4244	/* The following stuff does not apply to the root */
4245	if (!parent) {
4246		root_mem_cgroup = memcg;
4247		return &memcg->css;
4248	}
4249
4250	error = memcg_online_kmem(memcg);
4251	if (error)
4252		goto fail;
4253
4254	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4255		static_branch_inc(&memcg_sockets_enabled_key);
4256
4257	return &memcg->css;
4258fail:
4259	mem_cgroup_free(memcg);
4260	return ERR_PTR(-ENOMEM);
4261}
4262
4263static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4264{
4265	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4266
4267	/* Online state pins memcg ID, memcg ID pins CSS */
4268	atomic_set(&memcg->id.ref, 1);
4269	css_get(css);
4270	return 0;
4271}
4272
4273static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4274{
4275	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4276	struct mem_cgroup_event *event, *tmp;
4277
4278	/*
4279	 * Unregister events and notify userspace.
4280	 * Notify userspace about cgroup removing only after rmdir of cgroup
4281	 * directory to avoid race between userspace and kernelspace.
4282	 */
4283	spin_lock(&memcg->event_list_lock);
4284	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4285		list_del_init(&event->list);
4286		schedule_work(&event->remove);
4287	}
4288	spin_unlock(&memcg->event_list_lock);
4289
 
 
4290	memcg_offline_kmem(memcg);
4291	wb_memcg_offline(memcg);
4292
4293	mem_cgroup_id_put(memcg);
4294}
4295
4296static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4297{
4298	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4299
4300	invalidate_reclaim_iterators(memcg);
4301}
4302
4303static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4304{
4305	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4306
4307	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4308		static_branch_dec(&memcg_sockets_enabled_key);
4309
4310	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4311		static_branch_dec(&memcg_sockets_enabled_key);
4312
4313	vmpressure_cleanup(&memcg->vmpressure);
4314	cancel_work_sync(&memcg->high_work);
4315	mem_cgroup_remove_from_trees(memcg);
4316	memcg_free_kmem(memcg);
4317	mem_cgroup_free(memcg);
4318}
4319
4320/**
4321 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4322 * @css: the target css
4323 *
4324 * Reset the states of the mem_cgroup associated with @css.  This is
4325 * invoked when the userland requests disabling on the default hierarchy
4326 * but the memcg is pinned through dependency.  The memcg should stop
4327 * applying policies and should revert to the vanilla state as it may be
4328 * made visible again.
4329 *
4330 * The current implementation only resets the essential configurations.
4331 * This needs to be expanded to cover all the visible parts.
4332 */
4333static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4334{
4335	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4336
4337	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4338	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4339	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4340	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4341	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4342	memcg->low = 0;
4343	memcg->high = PAGE_COUNTER_MAX;
4344	memcg->soft_limit = PAGE_COUNTER_MAX;
4345	memcg_wb_domain_size_changed(memcg);
4346}
4347
4348#ifdef CONFIG_MMU
4349/* Handlers for move charge at task migration. */
4350static int mem_cgroup_do_precharge(unsigned long count)
4351{
4352	int ret;
4353
4354	/* Try a single bulk charge without reclaim first, kswapd may wake */
4355	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4356	if (!ret) {
4357		mc.precharge += count;
4358		return ret;
4359	}
4360
4361	/* Try charges one by one with reclaim, but do not retry */
4362	while (count--) {
4363		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4364		if (ret)
4365			return ret;
4366		mc.precharge++;
4367		cond_resched();
4368	}
4369	return 0;
4370}
4371
4372union mc_target {
4373	struct page	*page;
4374	swp_entry_t	ent;
4375};
4376
4377enum mc_target_type {
4378	MC_TARGET_NONE = 0,
4379	MC_TARGET_PAGE,
4380	MC_TARGET_SWAP,
 
4381};
4382
4383static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4384						unsigned long addr, pte_t ptent)
4385{
4386	struct page *page = vm_normal_page(vma, addr, ptent);
4387
4388	if (!page || !page_mapped(page))
4389		return NULL;
4390	if (PageAnon(page)) {
4391		if (!(mc.flags & MOVE_ANON))
4392			return NULL;
4393	} else {
4394		if (!(mc.flags & MOVE_FILE))
4395			return NULL;
4396	}
4397	if (!get_page_unless_zero(page))
4398		return NULL;
4399
4400	return page;
4401}
4402
4403#ifdef CONFIG_SWAP
4404static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4405			pte_t ptent, swp_entry_t *entry)
4406{
4407	struct page *page = NULL;
4408	swp_entry_t ent = pte_to_swp_entry(ptent);
4409
4410	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4411		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4412	/*
4413	 * Because lookup_swap_cache() updates some statistics counter,
4414	 * we call find_get_page() with swapper_space directly.
4415	 */
4416	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4417	if (do_memsw_account())
4418		entry->val = ent.val;
4419
4420	return page;
4421}
4422#else
4423static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4424			pte_t ptent, swp_entry_t *entry)
4425{
4426	return NULL;
4427}
4428#endif
4429
4430static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4431			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4432{
4433	struct page *page = NULL;
4434	struct address_space *mapping;
4435	pgoff_t pgoff;
4436
4437	if (!vma->vm_file) /* anonymous vma */
4438		return NULL;
4439	if (!(mc.flags & MOVE_FILE))
4440		return NULL;
4441
4442	mapping = vma->vm_file->f_mapping;
4443	pgoff = linear_page_index(vma, addr);
4444
4445	/* page is moved even if it's not RSS of this task(page-faulted). */
4446#ifdef CONFIG_SWAP
4447	/* shmem/tmpfs may report page out on swap: account for that too. */
4448	if (shmem_mapping(mapping)) {
4449		page = find_get_entry(mapping, pgoff);
4450		if (radix_tree_exceptional_entry(page)) {
4451			swp_entry_t swp = radix_to_swp_entry(page);
4452			if (do_memsw_account())
4453				*entry = swp;
4454			page = find_get_page(swap_address_space(swp),
4455					     swp_offset(swp));
4456		}
4457	} else
4458		page = find_get_page(mapping, pgoff);
4459#else
4460	page = find_get_page(mapping, pgoff);
4461#endif
4462	return page;
4463}
4464
4465/**
4466 * mem_cgroup_move_account - move account of the page
4467 * @page: the page
4468 * @compound: charge the page as compound or small page
4469 * @from: mem_cgroup which the page is moved from.
4470 * @to:	mem_cgroup which the page is moved to. @from != @to.
4471 *
4472 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4473 *
4474 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4475 * from old cgroup.
4476 */
4477static int mem_cgroup_move_account(struct page *page,
4478				   bool compound,
4479				   struct mem_cgroup *from,
4480				   struct mem_cgroup *to)
4481{
4482	unsigned long flags;
4483	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4484	int ret;
4485	bool anon;
4486
4487	VM_BUG_ON(from == to);
4488	VM_BUG_ON_PAGE(PageLRU(page), page);
4489	VM_BUG_ON(compound && !PageTransHuge(page));
4490
4491	/*
4492	 * Prevent mem_cgroup_migrate() from looking at
4493	 * page->mem_cgroup of its source page while we change it.
4494	 */
4495	ret = -EBUSY;
4496	if (!trylock_page(page))
4497		goto out;
4498
4499	ret = -EINVAL;
4500	if (page->mem_cgroup != from)
4501		goto out_unlock;
4502
4503	anon = PageAnon(page);
4504
4505	spin_lock_irqsave(&from->move_lock, flags);
4506
4507	if (!anon && page_mapped(page)) {
4508		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4509			       nr_pages);
4510		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4511			       nr_pages);
4512	}
4513
4514	/*
4515	 * move_lock grabbed above and caller set from->moving_account, so
4516	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4517	 * So mapping should be stable for dirty pages.
4518	 */
4519	if (!anon && PageDirty(page)) {
4520		struct address_space *mapping = page_mapping(page);
4521
4522		if (mapping_cap_account_dirty(mapping)) {
4523			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4524				       nr_pages);
4525			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4526				       nr_pages);
4527		}
4528	}
4529
4530	if (PageWriteback(page)) {
4531		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4532			       nr_pages);
4533		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4534			       nr_pages);
4535	}
4536
4537	/*
4538	 * It is safe to change page->mem_cgroup here because the page
4539	 * is referenced, charged, and isolated - we can't race with
4540	 * uncharging, charging, migration, or LRU putback.
4541	 */
4542
4543	/* caller should have done css_get */
4544	page->mem_cgroup = to;
4545	spin_unlock_irqrestore(&from->move_lock, flags);
4546
4547	ret = 0;
4548
4549	local_irq_disable();
4550	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4551	memcg_check_events(to, page);
4552	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4553	memcg_check_events(from, page);
4554	local_irq_enable();
4555out_unlock:
4556	unlock_page(page);
4557out:
4558	return ret;
4559}
4560
4561/**
4562 * get_mctgt_type - get target type of moving charge
4563 * @vma: the vma the pte to be checked belongs
4564 * @addr: the address corresponding to the pte to be checked
4565 * @ptent: the pte to be checked
4566 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4567 *
4568 * Returns
4569 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4570 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4571 *     move charge. if @target is not NULL, the page is stored in target->page
4572 *     with extra refcnt got(Callers should handle it).
4573 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4574 *     target for charge migration. if @target is not NULL, the entry is stored
4575 *     in target->ent.
 
 
 
 
 
 
 
4576 *
4577 * Called with pte lock held.
4578 */
4579
4580static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4581		unsigned long addr, pte_t ptent, union mc_target *target)
4582{
4583	struct page *page = NULL;
4584	enum mc_target_type ret = MC_TARGET_NONE;
4585	swp_entry_t ent = { .val = 0 };
4586
4587	if (pte_present(ptent))
4588		page = mc_handle_present_pte(vma, addr, ptent);
4589	else if (is_swap_pte(ptent))
4590		page = mc_handle_swap_pte(vma, ptent, &ent);
4591	else if (pte_none(ptent))
4592		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4593
4594	if (!page && !ent.val)
4595		return ret;
4596	if (page) {
4597		/*
4598		 * Do only loose check w/o serialization.
4599		 * mem_cgroup_move_account() checks the page is valid or
4600		 * not under LRU exclusion.
4601		 */
4602		if (page->mem_cgroup == mc.from) {
4603			ret = MC_TARGET_PAGE;
 
 
 
4604			if (target)
4605				target->page = page;
4606		}
4607		if (!ret || !target)
4608			put_page(page);
4609	}
4610	/* There is a swap entry and a page doesn't exist or isn't charged */
4611	if (ent.val && !ret &&
 
 
 
4612	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4613		ret = MC_TARGET_SWAP;
4614		if (target)
4615			target->ent = ent;
4616	}
4617	return ret;
4618}
4619
4620#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4621/*
4622 * We don't consider swapping or file mapped pages because THP does not
4623 * support them for now.
4624 * Caller should make sure that pmd_trans_huge(pmd) is true.
4625 */
4626static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4627		unsigned long addr, pmd_t pmd, union mc_target *target)
4628{
4629	struct page *page = NULL;
4630	enum mc_target_type ret = MC_TARGET_NONE;
4631
 
 
 
 
 
4632	page = pmd_page(pmd);
4633	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4634	if (!(mc.flags & MOVE_ANON))
4635		return ret;
4636	if (page->mem_cgroup == mc.from) {
4637		ret = MC_TARGET_PAGE;
4638		if (target) {
4639			get_page(page);
4640			target->page = page;
4641		}
4642	}
4643	return ret;
4644}
4645#else
4646static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4647		unsigned long addr, pmd_t pmd, union mc_target *target)
4648{
4649	return MC_TARGET_NONE;
4650}
4651#endif
4652
4653static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4654					unsigned long addr, unsigned long end,
4655					struct mm_walk *walk)
4656{
4657	struct vm_area_struct *vma = walk->vma;
4658	pte_t *pte;
4659	spinlock_t *ptl;
4660
4661	ptl = pmd_trans_huge_lock(pmd, vma);
4662	if (ptl) {
 
 
 
 
 
4663		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4664			mc.precharge += HPAGE_PMD_NR;
4665		spin_unlock(ptl);
4666		return 0;
4667	}
4668
4669	if (pmd_trans_unstable(pmd))
4670		return 0;
4671	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4672	for (; addr != end; pte++, addr += PAGE_SIZE)
4673		if (get_mctgt_type(vma, addr, *pte, NULL))
4674			mc.precharge++;	/* increment precharge temporarily */
4675	pte_unmap_unlock(pte - 1, ptl);
4676	cond_resched();
4677
4678	return 0;
4679}
4680
4681static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4682{
4683	unsigned long precharge;
4684
4685	struct mm_walk mem_cgroup_count_precharge_walk = {
4686		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4687		.mm = mm,
4688	};
4689	down_read(&mm->mmap_sem);
4690	walk_page_range(0, mm->highest_vm_end,
4691			&mem_cgroup_count_precharge_walk);
4692	up_read(&mm->mmap_sem);
4693
4694	precharge = mc.precharge;
4695	mc.precharge = 0;
4696
4697	return precharge;
4698}
4699
4700static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4701{
4702	unsigned long precharge = mem_cgroup_count_precharge(mm);
4703
4704	VM_BUG_ON(mc.moving_task);
4705	mc.moving_task = current;
4706	return mem_cgroup_do_precharge(precharge);
4707}
4708
4709/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4710static void __mem_cgroup_clear_mc(void)
4711{
4712	struct mem_cgroup *from = mc.from;
4713	struct mem_cgroup *to = mc.to;
4714
4715	/* we must uncharge all the leftover precharges from mc.to */
4716	if (mc.precharge) {
4717		cancel_charge(mc.to, mc.precharge);
4718		mc.precharge = 0;
4719	}
4720	/*
4721	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4722	 * we must uncharge here.
4723	 */
4724	if (mc.moved_charge) {
4725		cancel_charge(mc.from, mc.moved_charge);
4726		mc.moved_charge = 0;
4727	}
4728	/* we must fixup refcnts and charges */
4729	if (mc.moved_swap) {
4730		/* uncharge swap account from the old cgroup */
4731		if (!mem_cgroup_is_root(mc.from))
4732			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4733
4734		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4735
4736		/*
4737		 * we charged both to->memory and to->memsw, so we
4738		 * should uncharge to->memory.
4739		 */
4740		if (!mem_cgroup_is_root(mc.to))
4741			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4742
4743		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4744		css_put_many(&mc.to->css, mc.moved_swap);
4745
4746		mc.moved_swap = 0;
4747	}
4748	memcg_oom_recover(from);
4749	memcg_oom_recover(to);
4750	wake_up_all(&mc.waitq);
4751}
4752
4753static void mem_cgroup_clear_mc(void)
4754{
4755	struct mm_struct *mm = mc.mm;
4756
4757	/*
4758	 * we must clear moving_task before waking up waiters at the end of
4759	 * task migration.
4760	 */
4761	mc.moving_task = NULL;
4762	__mem_cgroup_clear_mc();
4763	spin_lock(&mc.lock);
4764	mc.from = NULL;
4765	mc.to = NULL;
4766	mc.mm = NULL;
4767	spin_unlock(&mc.lock);
4768
4769	mmput(mm);
4770}
4771
4772static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4773{
4774	struct cgroup_subsys_state *css;
4775	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4776	struct mem_cgroup *from;
4777	struct task_struct *leader, *p;
4778	struct mm_struct *mm;
4779	unsigned long move_flags;
4780	int ret = 0;
4781
4782	/* charge immigration isn't supported on the default hierarchy */
4783	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4784		return 0;
4785
4786	/*
4787	 * Multi-process migrations only happen on the default hierarchy
4788	 * where charge immigration is not used.  Perform charge
4789	 * immigration if @tset contains a leader and whine if there are
4790	 * multiple.
4791	 */
4792	p = NULL;
4793	cgroup_taskset_for_each_leader(leader, css, tset) {
4794		WARN_ON_ONCE(p);
4795		p = leader;
4796		memcg = mem_cgroup_from_css(css);
4797	}
4798	if (!p)
4799		return 0;
4800
4801	/*
4802	 * We are now commited to this value whatever it is. Changes in this
4803	 * tunable will only affect upcoming migrations, not the current one.
4804	 * So we need to save it, and keep it going.
4805	 */
4806	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4807	if (!move_flags)
4808		return 0;
4809
4810	from = mem_cgroup_from_task(p);
4811
4812	VM_BUG_ON(from == memcg);
4813
4814	mm = get_task_mm(p);
4815	if (!mm)
4816		return 0;
4817	/* We move charges only when we move a owner of the mm */
4818	if (mm->owner == p) {
4819		VM_BUG_ON(mc.from);
4820		VM_BUG_ON(mc.to);
4821		VM_BUG_ON(mc.precharge);
4822		VM_BUG_ON(mc.moved_charge);
4823		VM_BUG_ON(mc.moved_swap);
4824
4825		spin_lock(&mc.lock);
4826		mc.mm = mm;
4827		mc.from = from;
4828		mc.to = memcg;
4829		mc.flags = move_flags;
4830		spin_unlock(&mc.lock);
4831		/* We set mc.moving_task later */
4832
4833		ret = mem_cgroup_precharge_mc(mm);
4834		if (ret)
4835			mem_cgroup_clear_mc();
4836	} else {
4837		mmput(mm);
4838	}
4839	return ret;
4840}
4841
4842static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4843{
4844	if (mc.to)
4845		mem_cgroup_clear_mc();
4846}
4847
4848static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4849				unsigned long addr, unsigned long end,
4850				struct mm_walk *walk)
4851{
4852	int ret = 0;
4853	struct vm_area_struct *vma = walk->vma;
4854	pte_t *pte;
4855	spinlock_t *ptl;
4856	enum mc_target_type target_type;
4857	union mc_target target;
4858	struct page *page;
4859
4860	ptl = pmd_trans_huge_lock(pmd, vma);
4861	if (ptl) {
4862		if (mc.precharge < HPAGE_PMD_NR) {
4863			spin_unlock(ptl);
4864			return 0;
4865		}
4866		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4867		if (target_type == MC_TARGET_PAGE) {
4868			page = target.page;
4869			if (!isolate_lru_page(page)) {
4870				if (!mem_cgroup_move_account(page, true,
4871							     mc.from, mc.to)) {
4872					mc.precharge -= HPAGE_PMD_NR;
4873					mc.moved_charge += HPAGE_PMD_NR;
4874				}
4875				putback_lru_page(page);
4876			}
4877			put_page(page);
 
 
 
 
 
 
 
 
4878		}
4879		spin_unlock(ptl);
4880		return 0;
4881	}
4882
4883	if (pmd_trans_unstable(pmd))
4884		return 0;
4885retry:
4886	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4887	for (; addr != end; addr += PAGE_SIZE) {
4888		pte_t ptent = *(pte++);
 
4889		swp_entry_t ent;
4890
4891		if (!mc.precharge)
4892			break;
4893
4894		switch (get_mctgt_type(vma, addr, ptent, &target)) {
 
 
 
4895		case MC_TARGET_PAGE:
4896			page = target.page;
4897			/*
4898			 * We can have a part of the split pmd here. Moving it
4899			 * can be done but it would be too convoluted so simply
4900			 * ignore such a partial THP and keep it in original
4901			 * memcg. There should be somebody mapping the head.
4902			 */
4903			if (PageTransCompound(page))
4904				goto put;
4905			if (isolate_lru_page(page))
4906				goto put;
4907			if (!mem_cgroup_move_account(page, false,
4908						mc.from, mc.to)) {
4909				mc.precharge--;
4910				/* we uncharge from mc.from later. */
4911				mc.moved_charge++;
4912			}
4913			putback_lru_page(page);
 
4914put:			/* get_mctgt_type() gets the page */
4915			put_page(page);
4916			break;
4917		case MC_TARGET_SWAP:
4918			ent = target.ent;
4919			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4920				mc.precharge--;
4921				/* we fixup refcnts and charges later. */
4922				mc.moved_swap++;
4923			}
4924			break;
4925		default:
4926			break;
4927		}
4928	}
4929	pte_unmap_unlock(pte - 1, ptl);
4930	cond_resched();
4931
4932	if (addr != end) {
4933		/*
4934		 * We have consumed all precharges we got in can_attach().
4935		 * We try charge one by one, but don't do any additional
4936		 * charges to mc.to if we have failed in charge once in attach()
4937		 * phase.
4938		 */
4939		ret = mem_cgroup_do_precharge(1);
4940		if (!ret)
4941			goto retry;
4942	}
4943
4944	return ret;
4945}
4946
4947static void mem_cgroup_move_charge(void)
4948{
4949	struct mm_walk mem_cgroup_move_charge_walk = {
4950		.pmd_entry = mem_cgroup_move_charge_pte_range,
4951		.mm = mc.mm,
4952	};
4953
4954	lru_add_drain_all();
4955	/*
4956	 * Signal lock_page_memcg() to take the memcg's move_lock
4957	 * while we're moving its pages to another memcg. Then wait
4958	 * for already started RCU-only updates to finish.
4959	 */
4960	atomic_inc(&mc.from->moving_account);
4961	synchronize_rcu();
4962retry:
4963	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4964		/*
4965		 * Someone who are holding the mmap_sem might be waiting in
4966		 * waitq. So we cancel all extra charges, wake up all waiters,
4967		 * and retry. Because we cancel precharges, we might not be able
4968		 * to move enough charges, but moving charge is a best-effort
4969		 * feature anyway, so it wouldn't be a big problem.
4970		 */
4971		__mem_cgroup_clear_mc();
4972		cond_resched();
4973		goto retry;
4974	}
4975	/*
4976	 * When we have consumed all precharges and failed in doing
4977	 * additional charge, the page walk just aborts.
4978	 */
4979	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4980
4981	up_read(&mc.mm->mmap_sem);
4982	atomic_dec(&mc.from->moving_account);
4983}
4984
4985static void mem_cgroup_move_task(void)
4986{
4987	if (mc.to) {
4988		mem_cgroup_move_charge();
4989		mem_cgroup_clear_mc();
4990	}
4991}
4992#else	/* !CONFIG_MMU */
4993static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4994{
4995	return 0;
4996}
4997static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4998{
4999}
5000static void mem_cgroup_move_task(void)
5001{
5002}
5003#endif
5004
5005/*
5006 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5007 * to verify whether we're attached to the default hierarchy on each mount
5008 * attempt.
5009 */
5010static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5011{
5012	/*
5013	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5014	 * guarantees that @root doesn't have any children, so turning it
5015	 * on for the root memcg is enough.
5016	 */
5017	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5018		root_mem_cgroup->use_hierarchy = true;
5019	else
5020		root_mem_cgroup->use_hierarchy = false;
5021}
5022
5023static u64 memory_current_read(struct cgroup_subsys_state *css,
5024			       struct cftype *cft)
5025{
5026	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5027
5028	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5029}
5030
5031static int memory_low_show(struct seq_file *m, void *v)
5032{
5033	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5034	unsigned long low = READ_ONCE(memcg->low);
5035
5036	if (low == PAGE_COUNTER_MAX)
5037		seq_puts(m, "max\n");
5038	else
5039		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5040
5041	return 0;
5042}
5043
5044static ssize_t memory_low_write(struct kernfs_open_file *of,
5045				char *buf, size_t nbytes, loff_t off)
5046{
5047	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5048	unsigned long low;
5049	int err;
5050
5051	buf = strstrip(buf);
5052	err = page_counter_memparse(buf, "max", &low);
5053	if (err)
5054		return err;
5055
5056	memcg->low = low;
5057
5058	return nbytes;
5059}
5060
5061static int memory_high_show(struct seq_file *m, void *v)
5062{
5063	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5064	unsigned long high = READ_ONCE(memcg->high);
5065
5066	if (high == PAGE_COUNTER_MAX)
5067		seq_puts(m, "max\n");
5068	else
5069		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5070
5071	return 0;
5072}
5073
5074static ssize_t memory_high_write(struct kernfs_open_file *of,
5075				 char *buf, size_t nbytes, loff_t off)
5076{
5077	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5078	unsigned long nr_pages;
5079	unsigned long high;
5080	int err;
5081
5082	buf = strstrip(buf);
5083	err = page_counter_memparse(buf, "max", &high);
5084	if (err)
5085		return err;
5086
5087	memcg->high = high;
5088
5089	nr_pages = page_counter_read(&memcg->memory);
5090	if (nr_pages > high)
5091		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5092					     GFP_KERNEL, true);
5093
5094	memcg_wb_domain_size_changed(memcg);
5095	return nbytes;
5096}
5097
5098static int memory_max_show(struct seq_file *m, void *v)
5099{
5100	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5101	unsigned long max = READ_ONCE(memcg->memory.limit);
5102
5103	if (max == PAGE_COUNTER_MAX)
5104		seq_puts(m, "max\n");
5105	else
5106		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5107
5108	return 0;
5109}
5110
5111static ssize_t memory_max_write(struct kernfs_open_file *of,
5112				char *buf, size_t nbytes, loff_t off)
5113{
5114	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5115	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5116	bool drained = false;
5117	unsigned long max;
5118	int err;
5119
5120	buf = strstrip(buf);
5121	err = page_counter_memparse(buf, "max", &max);
5122	if (err)
5123		return err;
5124
5125	xchg(&memcg->memory.limit, max);
5126
5127	for (;;) {
5128		unsigned long nr_pages = page_counter_read(&memcg->memory);
5129
5130		if (nr_pages <= max)
5131			break;
5132
5133		if (signal_pending(current)) {
5134			err = -EINTR;
5135			break;
5136		}
5137
5138		if (!drained) {
5139			drain_all_stock(memcg);
5140			drained = true;
5141			continue;
5142		}
5143
5144		if (nr_reclaims) {
5145			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5146							  GFP_KERNEL, true))
5147				nr_reclaims--;
5148			continue;
5149		}
5150
5151		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5152		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5153			break;
5154	}
5155
5156	memcg_wb_domain_size_changed(memcg);
5157	return nbytes;
5158}
5159
5160static int memory_events_show(struct seq_file *m, void *v)
5161{
5162	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5163
5164	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5165	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5166	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5167	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
 
 
 
 
 
5168
5169	return 0;
5170}
5171
5172static int memory_stat_show(struct seq_file *m, void *v)
5173{
5174	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5175	unsigned long stat[MEMCG_NR_STAT];
5176	unsigned long events[MEMCG_NR_EVENTS];
5177	int i;
5178
5179	/*
5180	 * Provide statistics on the state of the memory subsystem as
5181	 * well as cumulative event counters that show past behavior.
5182	 *
5183	 * This list is ordered following a combination of these gradients:
5184	 * 1) generic big picture -> specifics and details
5185	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5186	 *
5187	 * Current memory state:
5188	 */
5189
5190	tree_stat(memcg, stat);
5191	tree_events(memcg, events);
5192
5193	seq_printf(m, "anon %llu\n",
5194		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5195	seq_printf(m, "file %llu\n",
5196		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5197	seq_printf(m, "kernel_stack %llu\n",
5198		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5199	seq_printf(m, "slab %llu\n",
5200		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5201			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5202	seq_printf(m, "sock %llu\n",
5203		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5204
 
 
5205	seq_printf(m, "file_mapped %llu\n",
5206		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5207	seq_printf(m, "file_dirty %llu\n",
5208		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5209	seq_printf(m, "file_writeback %llu\n",
5210		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5211
5212	for (i = 0; i < NR_LRU_LISTS; i++) {
5213		struct mem_cgroup *mi;
5214		unsigned long val = 0;
5215
5216		for_each_mem_cgroup_tree(mi, memcg)
5217			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5218		seq_printf(m, "%s %llu\n",
5219			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5220	}
5221
5222	seq_printf(m, "slab_reclaimable %llu\n",
5223		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5224	seq_printf(m, "slab_unreclaimable %llu\n",
5225		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5226
5227	/* Accumulated memory events */
5228
5229	seq_printf(m, "pgfault %lu\n",
5230		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5231	seq_printf(m, "pgmajfault %lu\n",
5232		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5233
5234	return 0;
5235}
5236
5237static struct cftype memory_files[] = {
5238	{
5239		.name = "current",
5240		.flags = CFTYPE_NOT_ON_ROOT,
5241		.read_u64 = memory_current_read,
5242	},
5243	{
5244		.name = "low",
5245		.flags = CFTYPE_NOT_ON_ROOT,
5246		.seq_show = memory_low_show,
5247		.write = memory_low_write,
5248	},
5249	{
5250		.name = "high",
5251		.flags = CFTYPE_NOT_ON_ROOT,
5252		.seq_show = memory_high_show,
5253		.write = memory_high_write,
5254	},
5255	{
5256		.name = "max",
5257		.flags = CFTYPE_NOT_ON_ROOT,
5258		.seq_show = memory_max_show,
5259		.write = memory_max_write,
5260	},
5261	{
5262		.name = "events",
5263		.flags = CFTYPE_NOT_ON_ROOT,
5264		.file_offset = offsetof(struct mem_cgroup, events_file),
5265		.seq_show = memory_events_show,
5266	},
5267	{
5268		.name = "stat",
5269		.flags = CFTYPE_NOT_ON_ROOT,
5270		.seq_show = memory_stat_show,
5271	},
5272	{ }	/* terminate */
5273};
5274
5275struct cgroup_subsys memory_cgrp_subsys = {
5276	.css_alloc = mem_cgroup_css_alloc,
5277	.css_online = mem_cgroup_css_online,
5278	.css_offline = mem_cgroup_css_offline,
5279	.css_released = mem_cgroup_css_released,
5280	.css_free = mem_cgroup_css_free,
5281	.css_reset = mem_cgroup_css_reset,
5282	.can_attach = mem_cgroup_can_attach,
5283	.cancel_attach = mem_cgroup_cancel_attach,
5284	.post_attach = mem_cgroup_move_task,
5285	.bind = mem_cgroup_bind,
5286	.dfl_cftypes = memory_files,
5287	.legacy_cftypes = mem_cgroup_legacy_files,
5288	.early_init = 0,
5289};
5290
5291/**
5292 * mem_cgroup_low - check if memory consumption is below the normal range
5293 * @root: the highest ancestor to consider
5294 * @memcg: the memory cgroup to check
5295 *
5296 * Returns %true if memory consumption of @memcg, and that of all
5297 * configurable ancestors up to @root, is below the normal range.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5298 */
5299bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5300{
5301	if (mem_cgroup_disabled())
5302		return false;
5303
5304	/*
5305	 * The toplevel group doesn't have a configurable range, so
5306	 * it's never low when looked at directly, and it is not
5307	 * considered an ancestor when assessing the hierarchy.
5308	 */
5309
5310	if (memcg == root_mem_cgroup)
5311		return false;
5312
5313	if (page_counter_read(&memcg->memory) >= memcg->low)
5314		return false;
5315
5316	while (memcg != root) {
5317		memcg = parent_mem_cgroup(memcg);
5318
5319		if (memcg == root_mem_cgroup)
5320			break;
5321
5322		if (page_counter_read(&memcg->memory) >= memcg->low)
5323			return false;
5324	}
 
5325	return true;
5326}
5327
5328/**
5329 * mem_cgroup_try_charge - try charging a page
5330 * @page: page to charge
5331 * @mm: mm context of the victim
5332 * @gfp_mask: reclaim mode
5333 * @memcgp: charged memcg return
5334 * @compound: charge the page as compound or small page
5335 *
5336 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5337 * pages according to @gfp_mask if necessary.
5338 *
5339 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5340 * Otherwise, an error code is returned.
5341 *
5342 * After page->mapping has been set up, the caller must finalize the
5343 * charge with mem_cgroup_commit_charge().  Or abort the transaction
5344 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5345 */
5346int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5347			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5348			  bool compound)
5349{
5350	struct mem_cgroup *memcg = NULL;
5351	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5352	int ret = 0;
5353
5354	if (mem_cgroup_disabled())
5355		goto out;
5356
5357	if (PageSwapCache(page)) {
5358		/*
5359		 * Every swap fault against a single page tries to charge the
5360		 * page, bail as early as possible.  shmem_unuse() encounters
5361		 * already charged pages, too.  The USED bit is protected by
5362		 * the page lock, which serializes swap cache removal, which
5363		 * in turn serializes uncharging.
5364		 */
5365		VM_BUG_ON_PAGE(!PageLocked(page), page);
5366		if (page->mem_cgroup)
5367			goto out;
5368
5369		if (do_swap_account) {
5370			swp_entry_t ent = { .val = page_private(page), };
5371			unsigned short id = lookup_swap_cgroup_id(ent);
5372
5373			rcu_read_lock();
5374			memcg = mem_cgroup_from_id(id);
5375			if (memcg && !css_tryget_online(&memcg->css))
5376				memcg = NULL;
5377			rcu_read_unlock();
5378		}
5379	}
5380
5381	if (!memcg)
5382		memcg = get_mem_cgroup_from_mm(mm);
5383
5384	ret = try_charge(memcg, gfp_mask, nr_pages);
5385
5386	css_put(&memcg->css);
5387out:
5388	*memcgp = memcg;
5389	return ret;
5390}
5391
5392/**
5393 * mem_cgroup_commit_charge - commit a page charge
5394 * @page: page to charge
5395 * @memcg: memcg to charge the page to
5396 * @lrucare: page might be on LRU already
5397 * @compound: charge the page as compound or small page
5398 *
5399 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5400 * after page->mapping has been set up.  This must happen atomically
5401 * as part of the page instantiation, i.e. under the page table lock
5402 * for anonymous pages, under the page lock for page and swap cache.
5403 *
5404 * In addition, the page must not be on the LRU during the commit, to
5405 * prevent racing with task migration.  If it might be, use @lrucare.
5406 *
5407 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5408 */
5409void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5410			      bool lrucare, bool compound)
5411{
5412	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5413
5414	VM_BUG_ON_PAGE(!page->mapping, page);
5415	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5416
5417	if (mem_cgroup_disabled())
5418		return;
5419	/*
5420	 * Swap faults will attempt to charge the same page multiple
5421	 * times.  But reuse_swap_page() might have removed the page
5422	 * from swapcache already, so we can't check PageSwapCache().
5423	 */
5424	if (!memcg)
5425		return;
5426
5427	commit_charge(page, memcg, lrucare);
5428
5429	local_irq_disable();
5430	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5431	memcg_check_events(memcg, page);
5432	local_irq_enable();
5433
5434	if (do_memsw_account() && PageSwapCache(page)) {
5435		swp_entry_t entry = { .val = page_private(page) };
5436		/*
5437		 * The swap entry might not get freed for a long time,
5438		 * let's not wait for it.  The page already received a
5439		 * memory+swap charge, drop the swap entry duplicate.
5440		 */
5441		mem_cgroup_uncharge_swap(entry);
5442	}
5443}
5444
5445/**
5446 * mem_cgroup_cancel_charge - cancel a page charge
5447 * @page: page to charge
5448 * @memcg: memcg to charge the page to
5449 * @compound: charge the page as compound or small page
5450 *
5451 * Cancel a charge transaction started by mem_cgroup_try_charge().
5452 */
5453void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5454		bool compound)
5455{
5456	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5457
5458	if (mem_cgroup_disabled())
5459		return;
5460	/*
5461	 * Swap faults will attempt to charge the same page multiple
5462	 * times.  But reuse_swap_page() might have removed the page
5463	 * from swapcache already, so we can't check PageSwapCache().
5464	 */
5465	if (!memcg)
5466		return;
5467
5468	cancel_charge(memcg, nr_pages);
5469}
5470
5471static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5472			   unsigned long nr_anon, unsigned long nr_file,
5473			   unsigned long nr_huge, unsigned long nr_kmem,
5474			   struct page *dummy_page)
 
 
 
 
 
 
 
 
5475{
5476	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
 
 
 
 
 
5477	unsigned long flags;
5478
5479	if (!mem_cgroup_is_root(memcg)) {
5480		page_counter_uncharge(&memcg->memory, nr_pages);
5481		if (do_memsw_account())
5482			page_counter_uncharge(&memcg->memsw, nr_pages);
5483		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5484			page_counter_uncharge(&memcg->kmem, nr_kmem);
5485		memcg_oom_recover(memcg);
5486	}
5487
5488	local_irq_save(flags);
5489	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5490	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5491	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5492	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5493	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5494	memcg_check_events(memcg, dummy_page);
 
5495	local_irq_restore(flags);
5496
5497	if (!mem_cgroup_is_root(memcg))
5498		css_put_many(&memcg->css, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5499}
5500
5501static void uncharge_list(struct list_head *page_list)
5502{
5503	struct mem_cgroup *memcg = NULL;
5504	unsigned long nr_anon = 0;
5505	unsigned long nr_file = 0;
5506	unsigned long nr_huge = 0;
5507	unsigned long nr_kmem = 0;
5508	unsigned long pgpgout = 0;
5509	struct list_head *next;
5510	struct page *page;
 
5511
5512	/*
5513	 * Note that the list can be a single page->lru; hence the
5514	 * do-while loop instead of a simple list_for_each_entry().
5515	 */
5516	next = page_list->next;
5517	do {
 
 
5518		page = list_entry(next, struct page, lru);
5519		next = page->lru.next;
5520
5521		VM_BUG_ON_PAGE(PageLRU(page), page);
5522		VM_BUG_ON_PAGE(page_count(page), page);
5523
5524		if (!page->mem_cgroup)
5525			continue;
5526
5527		/*
5528		 * Nobody should be changing or seriously looking at
5529		 * page->mem_cgroup at this point, we have fully
5530		 * exclusive access to the page.
5531		 */
5532
5533		if (memcg != page->mem_cgroup) {
5534			if (memcg) {
5535				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5536					       nr_huge, nr_kmem, page);
5537				pgpgout = nr_anon = nr_file =
5538					nr_huge = nr_kmem = 0;
5539			}
5540			memcg = page->mem_cgroup;
5541		}
5542
5543		if (!PageKmemcg(page)) {
5544			unsigned int nr_pages = 1;
5545
5546			if (PageTransHuge(page)) {
5547				nr_pages <<= compound_order(page);
5548				nr_huge += nr_pages;
5549			}
5550			if (PageAnon(page))
5551				nr_anon += nr_pages;
5552			else
5553				nr_file += nr_pages;
5554			pgpgout++;
5555		} else {
5556			nr_kmem += 1 << compound_order(page);
5557			__ClearPageKmemcg(page);
5558		}
5559
5560		page->mem_cgroup = NULL;
5561	} while (next != page_list);
5562
5563	if (memcg)
5564		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5565			       nr_huge, nr_kmem, page);
5566}
5567
5568/**
5569 * mem_cgroup_uncharge - uncharge a page
5570 * @page: page to uncharge
5571 *
5572 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5573 * mem_cgroup_commit_charge().
5574 */
5575void mem_cgroup_uncharge(struct page *page)
5576{
 
 
5577	if (mem_cgroup_disabled())
5578		return;
5579
5580	/* Don't touch page->lru of any random page, pre-check: */
5581	if (!page->mem_cgroup)
5582		return;
5583
5584	INIT_LIST_HEAD(&page->lru);
5585	uncharge_list(&page->lru);
 
5586}
5587
5588/**
5589 * mem_cgroup_uncharge_list - uncharge a list of page
5590 * @page_list: list of pages to uncharge
5591 *
5592 * Uncharge a list of pages previously charged with
5593 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5594 */
5595void mem_cgroup_uncharge_list(struct list_head *page_list)
5596{
5597	if (mem_cgroup_disabled())
5598		return;
5599
5600	if (!list_empty(page_list))
5601		uncharge_list(page_list);
5602}
5603
5604/**
5605 * mem_cgroup_migrate - charge a page's replacement
5606 * @oldpage: currently circulating page
5607 * @newpage: replacement page
5608 *
5609 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5610 * be uncharged upon free.
5611 *
5612 * Both pages must be locked, @newpage->mapping must be set up.
5613 */
5614void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5615{
5616	struct mem_cgroup *memcg;
5617	unsigned int nr_pages;
5618	bool compound;
5619	unsigned long flags;
5620
5621	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5622	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5623	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5624	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5625		       newpage);
5626
5627	if (mem_cgroup_disabled())
5628		return;
5629
5630	/* Page cache replacement: new page already charged? */
5631	if (newpage->mem_cgroup)
5632		return;
5633
5634	/* Swapcache readahead pages can get replaced before being charged */
5635	memcg = oldpage->mem_cgroup;
5636	if (!memcg)
5637		return;
5638
5639	/* Force-charge the new page. The old one will be freed soon */
5640	compound = PageTransHuge(newpage);
5641	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5642
5643	page_counter_charge(&memcg->memory, nr_pages);
5644	if (do_memsw_account())
5645		page_counter_charge(&memcg->memsw, nr_pages);
5646	css_get_many(&memcg->css, nr_pages);
5647
5648	commit_charge(newpage, memcg, false);
5649
5650	local_irq_save(flags);
5651	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5652	memcg_check_events(memcg, newpage);
5653	local_irq_restore(flags);
5654}
5655
5656DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5657EXPORT_SYMBOL(memcg_sockets_enabled_key);
5658
5659void mem_cgroup_sk_alloc(struct sock *sk)
5660{
5661	struct mem_cgroup *memcg;
5662
5663	if (!mem_cgroup_sockets_enabled)
5664		return;
5665
5666	/*
5667	 * Socket cloning can throw us here with sk_memcg already
5668	 * filled. It won't however, necessarily happen from
5669	 * process context. So the test for root memcg given
5670	 * the current task's memcg won't help us in this case.
5671	 *
5672	 * Respecting the original socket's memcg is a better
5673	 * decision in this case.
5674	 */
5675	if (sk->sk_memcg) {
5676		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5677		css_get(&sk->sk_memcg->css);
5678		return;
5679	}
5680
5681	rcu_read_lock();
5682	memcg = mem_cgroup_from_task(current);
5683	if (memcg == root_mem_cgroup)
5684		goto out;
5685	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5686		goto out;
5687	if (css_tryget_online(&memcg->css))
5688		sk->sk_memcg = memcg;
5689out:
5690	rcu_read_unlock();
5691}
5692
5693void mem_cgroup_sk_free(struct sock *sk)
5694{
5695	if (sk->sk_memcg)
5696		css_put(&sk->sk_memcg->css);
5697}
5698
5699/**
5700 * mem_cgroup_charge_skmem - charge socket memory
5701 * @memcg: memcg to charge
5702 * @nr_pages: number of pages to charge
5703 *
5704 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5705 * @memcg's configured limit, %false if the charge had to be forced.
5706 */
5707bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5708{
5709	gfp_t gfp_mask = GFP_KERNEL;
5710
5711	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5712		struct page_counter *fail;
5713
5714		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5715			memcg->tcpmem_pressure = 0;
5716			return true;
5717		}
5718		page_counter_charge(&memcg->tcpmem, nr_pages);
5719		memcg->tcpmem_pressure = 1;
5720		return false;
5721	}
5722
5723	/* Don't block in the packet receive path */
5724	if (in_softirq())
5725		gfp_mask = GFP_NOWAIT;
5726
5727	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5728
5729	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5730		return true;
5731
5732	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5733	return false;
5734}
5735
5736/**
5737 * mem_cgroup_uncharge_skmem - uncharge socket memory
5738 * @memcg - memcg to uncharge
5739 * @nr_pages - number of pages to uncharge
5740 */
5741void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5742{
5743	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5744		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5745		return;
5746	}
5747
5748	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5749
5750	page_counter_uncharge(&memcg->memory, nr_pages);
5751	css_put_many(&memcg->css, nr_pages);
5752}
5753
5754static int __init cgroup_memory(char *s)
5755{
5756	char *token;
5757
5758	while ((token = strsep(&s, ",")) != NULL) {
5759		if (!*token)
5760			continue;
5761		if (!strcmp(token, "nosocket"))
5762			cgroup_memory_nosocket = true;
5763		if (!strcmp(token, "nokmem"))
5764			cgroup_memory_nokmem = true;
5765	}
5766	return 0;
5767}
5768__setup("cgroup.memory=", cgroup_memory);
5769
5770/*
5771 * subsys_initcall() for memory controller.
5772 *
5773 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5774 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5775 * basically everything that doesn't depend on a specific mem_cgroup structure
5776 * should be initialized from here.
5777 */
5778static int __init mem_cgroup_init(void)
5779{
5780	int cpu, node;
5781
5782#ifndef CONFIG_SLOB
5783	/*
5784	 * Kmem cache creation is mostly done with the slab_mutex held,
5785	 * so use a special workqueue to avoid stalling all worker
5786	 * threads in case lots of cgroups are created simultaneously.
 
5787	 */
5788	memcg_kmem_cache_create_wq =
5789		alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5790	BUG_ON(!memcg_kmem_cache_create_wq);
5791#endif
5792
5793	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5794				  memcg_hotplug_cpu_dead);
5795
5796	for_each_possible_cpu(cpu)
5797		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5798			  drain_local_stock);
5799
5800	for_each_node(node) {
5801		struct mem_cgroup_tree_per_node *rtpn;
5802
5803		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5804				    node_online(node) ? node : NUMA_NO_NODE);
5805
5806		rtpn->rb_root = RB_ROOT;
 
5807		spin_lock_init(&rtpn->lock);
5808		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5809	}
5810
5811	return 0;
5812}
5813subsys_initcall(mem_cgroup_init);
5814
5815#ifdef CONFIG_MEMCG_SWAP
5816static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5817{
5818	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5819		/*
5820		 * The root cgroup cannot be destroyed, so it's refcount must
5821		 * always be >= 1.
5822		 */
5823		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5824			VM_BUG_ON(1);
5825			break;
5826		}
5827		memcg = parent_mem_cgroup(memcg);
5828		if (!memcg)
5829			memcg = root_mem_cgroup;
5830	}
5831	return memcg;
5832}
5833
5834/**
5835 * mem_cgroup_swapout - transfer a memsw charge to swap
5836 * @page: page whose memsw charge to transfer
5837 * @entry: swap entry to move the charge to
5838 *
5839 * Transfer the memsw charge of @page to @entry.
5840 */
5841void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5842{
5843	struct mem_cgroup *memcg, *swap_memcg;
 
5844	unsigned short oldid;
5845
5846	VM_BUG_ON_PAGE(PageLRU(page), page);
5847	VM_BUG_ON_PAGE(page_count(page), page);
5848
5849	if (!do_memsw_account())
5850		return;
5851
5852	memcg = page->mem_cgroup;
5853
5854	/* Readahead page, never charged */
5855	if (!memcg)
5856		return;
5857
5858	/*
5859	 * In case the memcg owning these pages has been offlined and doesn't
5860	 * have an ID allocated to it anymore, charge the closest online
5861	 * ancestor for the swap instead and transfer the memory+swap charge.
5862	 */
5863	swap_memcg = mem_cgroup_id_get_online(memcg);
5864	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
 
 
 
 
 
5865	VM_BUG_ON_PAGE(oldid, page);
5866	mem_cgroup_swap_statistics(swap_memcg, true);
5867
5868	page->mem_cgroup = NULL;
5869
5870	if (!mem_cgroup_is_root(memcg))
5871		page_counter_uncharge(&memcg->memory, 1);
5872
5873	if (memcg != swap_memcg) {
5874		if (!mem_cgroup_is_root(swap_memcg))
5875			page_counter_charge(&swap_memcg->memsw, 1);
5876		page_counter_uncharge(&memcg->memsw, 1);
5877	}
5878
5879	/*
5880	 * Interrupts should be disabled here because the caller holds the
5881	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5882	 * important here to have the interrupts disabled because it is the
5883	 * only synchronisation we have for udpating the per-CPU variables.
5884	 */
5885	VM_BUG_ON(!irqs_disabled());
5886	mem_cgroup_charge_statistics(memcg, page, false, -1);
 
5887	memcg_check_events(memcg, page);
5888
5889	if (!mem_cgroup_is_root(memcg))
5890		css_put(&memcg->css);
5891}
5892
5893/*
5894 * mem_cgroup_try_charge_swap - try charging a swap entry
5895 * @page: page being added to swap
5896 * @entry: swap entry to charge
5897 *
5898 * Try to charge @entry to the memcg that @page belongs to.
5899 *
5900 * Returns 0 on success, -ENOMEM on failure.
5901 */
5902int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5903{
 
 
5904	struct mem_cgroup *memcg;
5905	struct page_counter *counter;
5906	unsigned short oldid;
5907
5908	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5909		return 0;
5910
5911	memcg = page->mem_cgroup;
5912
5913	/* Readahead page, never charged */
5914	if (!memcg)
5915		return 0;
5916
5917	memcg = mem_cgroup_id_get_online(memcg);
5918
5919	if (!mem_cgroup_is_root(memcg) &&
5920	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5921		mem_cgroup_id_put(memcg);
5922		return -ENOMEM;
5923	}
5924
5925	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
 
 
 
5926	VM_BUG_ON_PAGE(oldid, page);
5927	mem_cgroup_swap_statistics(memcg, true);
5928
5929	return 0;
5930}
5931
5932/**
5933 * mem_cgroup_uncharge_swap - uncharge a swap entry
5934 * @entry: swap entry to uncharge
5935 *
5936 * Drop the swap charge associated with @entry.
5937 */
5938void mem_cgroup_uncharge_swap(swp_entry_t entry)
5939{
5940	struct mem_cgroup *memcg;
5941	unsigned short id;
5942
5943	if (!do_swap_account)
5944		return;
5945
5946	id = swap_cgroup_record(entry, 0);
5947	rcu_read_lock();
5948	memcg = mem_cgroup_from_id(id);
5949	if (memcg) {
5950		if (!mem_cgroup_is_root(memcg)) {
5951			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5952				page_counter_uncharge(&memcg->swap, 1);
5953			else
5954				page_counter_uncharge(&memcg->memsw, 1);
5955		}
5956		mem_cgroup_swap_statistics(memcg, false);
5957		mem_cgroup_id_put(memcg);
5958	}
5959	rcu_read_unlock();
5960}
5961
5962long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5963{
5964	long nr_swap_pages = get_nr_swap_pages();
5965
5966	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5967		return nr_swap_pages;
5968	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5969		nr_swap_pages = min_t(long, nr_swap_pages,
5970				      READ_ONCE(memcg->swap.limit) -
5971				      page_counter_read(&memcg->swap));
5972	return nr_swap_pages;
5973}
5974
5975bool mem_cgroup_swap_full(struct page *page)
5976{
5977	struct mem_cgroup *memcg;
5978
5979	VM_BUG_ON_PAGE(!PageLocked(page), page);
5980
5981	if (vm_swap_full())
5982		return true;
5983	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5984		return false;
5985
5986	memcg = page->mem_cgroup;
5987	if (!memcg)
5988		return false;
5989
5990	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5991		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5992			return true;
5993
5994	return false;
5995}
5996
5997/* for remember boot option*/
5998#ifdef CONFIG_MEMCG_SWAP_ENABLED
5999static int really_do_swap_account __initdata = 1;
6000#else
6001static int really_do_swap_account __initdata;
6002#endif
6003
6004static int __init enable_swap_account(char *s)
6005{
6006	if (!strcmp(s, "1"))
6007		really_do_swap_account = 1;
6008	else if (!strcmp(s, "0"))
6009		really_do_swap_account = 0;
6010	return 1;
6011}
6012__setup("swapaccount=", enable_swap_account);
6013
6014static u64 swap_current_read(struct cgroup_subsys_state *css,
6015			     struct cftype *cft)
6016{
6017	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6018
6019	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6020}
6021
6022static int swap_max_show(struct seq_file *m, void *v)
6023{
6024	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6025	unsigned long max = READ_ONCE(memcg->swap.limit);
6026
6027	if (max == PAGE_COUNTER_MAX)
6028		seq_puts(m, "max\n");
6029	else
6030		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6031
6032	return 0;
6033}
6034
6035static ssize_t swap_max_write(struct kernfs_open_file *of,
6036			      char *buf, size_t nbytes, loff_t off)
6037{
6038	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6039	unsigned long max;
6040	int err;
6041
6042	buf = strstrip(buf);
6043	err = page_counter_memparse(buf, "max", &max);
6044	if (err)
6045		return err;
6046
6047	mutex_lock(&memcg_limit_mutex);
6048	err = page_counter_limit(&memcg->swap, max);
6049	mutex_unlock(&memcg_limit_mutex);
6050	if (err)
6051		return err;
6052
6053	return nbytes;
6054}
6055
6056static struct cftype swap_files[] = {
6057	{
6058		.name = "swap.current",
6059		.flags = CFTYPE_NOT_ON_ROOT,
6060		.read_u64 = swap_current_read,
6061	},
6062	{
6063		.name = "swap.max",
6064		.flags = CFTYPE_NOT_ON_ROOT,
6065		.seq_show = swap_max_show,
6066		.write = swap_max_write,
6067	},
6068	{ }	/* terminate */
6069};
6070
6071static struct cftype memsw_cgroup_files[] = {
6072	{
6073		.name = "memsw.usage_in_bytes",
6074		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6075		.read_u64 = mem_cgroup_read_u64,
6076	},
6077	{
6078		.name = "memsw.max_usage_in_bytes",
6079		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6080		.write = mem_cgroup_reset,
6081		.read_u64 = mem_cgroup_read_u64,
6082	},
6083	{
6084		.name = "memsw.limit_in_bytes",
6085		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6086		.write = mem_cgroup_write,
6087		.read_u64 = mem_cgroup_read_u64,
6088	},
6089	{
6090		.name = "memsw.failcnt",
6091		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6092		.write = mem_cgroup_reset,
6093		.read_u64 = mem_cgroup_read_u64,
6094	},
6095	{ },	/* terminate */
6096};
6097
6098static int __init mem_cgroup_swap_init(void)
6099{
6100	if (!mem_cgroup_disabled() && really_do_swap_account) {
6101		do_swap_account = 1;
6102		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6103					       swap_files));
6104		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6105						  memsw_cgroup_files));
6106	}
6107	return 0;
6108}
6109subsys_initcall(mem_cgroup_swap_init);
6110
6111#endif /* CONFIG_MEMCG_SWAP */