Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v4.17
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *  Copyright (C) 2016 Mellanox Technologies
  21 *
  22 *	This program is free software; you can redistribute it and/or modify
  23 *	it under the terms of the GNU General Public License version 2,
  24 *	as published by the Free Software Foundation.
  25 */
  26
  27#include <linux/init.h>
  28#include <linux/kd.h>
  29#include <linux/kernel.h>
  30#include <linux/tracehook.h>
  31#include <linux/errno.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/task.h>
  34#include <linux/lsm_hooks.h>
  35#include <linux/xattr.h>
  36#include <linux/capability.h>
  37#include <linux/unistd.h>
  38#include <linux/mm.h>
  39#include <linux/mman.h>
  40#include <linux/slab.h>
  41#include <linux/pagemap.h>
  42#include <linux/proc_fs.h>
  43#include <linux/swap.h>
  44#include <linux/spinlock.h>
  45#include <linux/syscalls.h>
  46#include <linux/dcache.h>
  47#include <linux/file.h>
  48#include <linux/fdtable.h>
  49#include <linux/namei.h>
  50#include <linux/mount.h>
 
 
  51#include <linux/netfilter_ipv4.h>
  52#include <linux/netfilter_ipv6.h>
  53#include <linux/tty.h>
  54#include <net/icmp.h>
  55#include <net/ip.h>		/* for local_port_range[] */
  56#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  57#include <net/inet_connection_sock.h>
  58#include <net/net_namespace.h>
  59#include <net/netlabel.h>
  60#include <linux/uaccess.h>
  61#include <asm/ioctls.h>
  62#include <linux/atomic.h>
  63#include <linux/bitops.h>
  64#include <linux/interrupt.h>
  65#include <linux/netdevice.h>	/* for network interface checks */
  66#include <net/netlink.h>
  67#include <linux/tcp.h>
  68#include <linux/udp.h>
  69#include <linux/dccp.h>
  70#include <linux/sctp.h>
  71#include <net/sctp/structs.h>
  72#include <linux/quota.h>
  73#include <linux/un.h>		/* for Unix socket types */
  74#include <net/af_unix.h>	/* for Unix socket types */
  75#include <linux/parser.h>
  76#include <linux/nfs_mount.h>
  77#include <net/ipv6.h>
  78#include <linux/hugetlb.h>
  79#include <linux/personality.h>
  80#include <linux/audit.h>
  81#include <linux/string.h>
  82#include <linux/selinux.h>
  83#include <linux/mutex.h>
  84#include <linux/posix-timers.h>
  85#include <linux/syslog.h>
  86#include <linux/user_namespace.h>
  87#include <linux/export.h>
  88#include <linux/msg.h>
  89#include <linux/shm.h>
  90#include <linux/bpf.h>
 
 
 
 
 
  91
  92#include "avc.h"
  93#include "objsec.h"
  94#include "netif.h"
  95#include "netnode.h"
  96#include "netport.h"
  97#include "ibpkey.h"
  98#include "xfrm.h"
  99#include "netlabel.h"
 100#include "audit.h"
 101#include "avc_ss.h"
 102
 103struct selinux_state selinux_state;
 104
 105/* SECMARK reference count */
 106static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 107
 108#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 109static int selinux_enforcing_boot;
 110
 111static int __init enforcing_setup(char *str)
 112{
 113	unsigned long enforcing;
 114	if (!kstrtoul(str, 0, &enforcing))
 115		selinux_enforcing_boot = enforcing ? 1 : 0;
 116	return 1;
 117}
 118__setup("enforcing=", enforcing_setup);
 119#else
 120#define selinux_enforcing_boot 1
 121#endif
 122
 
 123#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 124int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 125
 126static int __init selinux_enabled_setup(char *str)
 127{
 128	unsigned long enabled;
 129	if (!kstrtoul(str, 0, &enabled))
 130		selinux_enabled = enabled ? 1 : 0;
 131	return 1;
 132}
 133__setup("selinux=", selinux_enabled_setup);
 134#else
 135int selinux_enabled = 1;
 136#endif
 137
 138static unsigned int selinux_checkreqprot_boot =
 139	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 140
 141static int __init checkreqprot_setup(char *str)
 142{
 143	unsigned long checkreqprot;
 144
 145	if (!kstrtoul(str, 0, &checkreqprot))
 146		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 147	return 1;
 148}
 149__setup("checkreqprot=", checkreqprot_setup);
 150
 151static struct kmem_cache *sel_inode_cache;
 152static struct kmem_cache *file_security_cache;
 153
 154/**
 155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 156 *
 157 * Description:
 158 * This function checks the SECMARK reference counter to see if any SECMARK
 159 * targets are currently configured, if the reference counter is greater than
 160 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 161 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 162 * policy capability is enabled, SECMARK is always considered enabled.
 163 *
 164 */
 165static int selinux_secmark_enabled(void)
 166{
 167	return (selinux_policycap_alwaysnetwork() ||
 168		atomic_read(&selinux_secmark_refcount));
 169}
 170
 171/**
 172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 173 *
 174 * Description:
 175 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 176 * (1) if any are enabled or false (0) if neither are enabled.  If the
 177 * always_check_network policy capability is enabled, peer labeling
 178 * is always considered enabled.
 179 *
 180 */
 181static int selinux_peerlbl_enabled(void)
 182{
 183	return (selinux_policycap_alwaysnetwork() ||
 184		netlbl_enabled() || selinux_xfrm_enabled());
 185}
 186
 187static int selinux_netcache_avc_callback(u32 event)
 188{
 189	if (event == AVC_CALLBACK_RESET) {
 190		sel_netif_flush();
 191		sel_netnode_flush();
 192		sel_netport_flush();
 193		synchronize_net();
 194	}
 195	return 0;
 196}
 197
 198static int selinux_lsm_notifier_avc_callback(u32 event)
 199{
 200	if (event == AVC_CALLBACK_RESET) {
 201		sel_ib_pkey_flush();
 202		call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 203	}
 204
 205	return 0;
 206}
 207
 208/*
 209 * initialise the security for the init task
 210 */
 211static void cred_init_security(void)
 212{
 213	struct cred *cred = (struct cred *) current->real_cred;
 214	struct task_security_struct *tsec;
 215
 216	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 217	if (!tsec)
 218		panic("SELinux:  Failed to initialize initial task.\n");
 219
 220	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 221	cred->security = tsec;
 222}
 223
 224/*
 225 * get the security ID of a set of credentials
 226 */
 227static inline u32 cred_sid(const struct cred *cred)
 228{
 229	const struct task_security_struct *tsec;
 230
 231	tsec = cred->security;
 232	return tsec->sid;
 233}
 234
 235/*
 236 * get the objective security ID of a task
 237 */
 238static inline u32 task_sid(const struct task_struct *task)
 239{
 240	u32 sid;
 241
 242	rcu_read_lock();
 243	sid = cred_sid(__task_cred(task));
 244	rcu_read_unlock();
 245	return sid;
 246}
 247
 248/* Allocate and free functions for each kind of security blob. */
 249
 250static int inode_alloc_security(struct inode *inode)
 251{
 252	struct inode_security_struct *isec;
 253	u32 sid = current_sid();
 254
 255	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 256	if (!isec)
 257		return -ENOMEM;
 258
 259	spin_lock_init(&isec->lock);
 260	INIT_LIST_HEAD(&isec->list);
 261	isec->inode = inode;
 262	isec->sid = SECINITSID_UNLABELED;
 263	isec->sclass = SECCLASS_FILE;
 264	isec->task_sid = sid;
 265	isec->initialized = LABEL_INVALID;
 266	inode->i_security = isec;
 267
 268	return 0;
 269}
 270
 271static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 272
 273/*
 274 * Try reloading inode security labels that have been marked as invalid.  The
 275 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 276 * allowed; when set to false, returns -ECHILD when the label is
 277 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 278 * when no dentry is available, set it to NULL instead.
 279 */
 280static int __inode_security_revalidate(struct inode *inode,
 281				       struct dentry *opt_dentry,
 282				       bool may_sleep)
 283{
 284	struct inode_security_struct *isec = inode->i_security;
 285
 286	might_sleep_if(may_sleep);
 287
 288	if (selinux_state.initialized &&
 289	    isec->initialized != LABEL_INITIALIZED) {
 290		if (!may_sleep)
 291			return -ECHILD;
 292
 293		/*
 294		 * Try reloading the inode security label.  This will fail if
 295		 * @opt_dentry is NULL and no dentry for this inode can be
 296		 * found; in that case, continue using the old label.
 297		 */
 298		inode_doinit_with_dentry(inode, opt_dentry);
 299	}
 300	return 0;
 301}
 302
 303static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 304{
 305	return inode->i_security;
 306}
 307
 308static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 309{
 310	int error;
 311
 312	error = __inode_security_revalidate(inode, NULL, !rcu);
 313	if (error)
 314		return ERR_PTR(error);
 315	return inode->i_security;
 316}
 317
 318/*
 319 * Get the security label of an inode.
 320 */
 321static struct inode_security_struct *inode_security(struct inode *inode)
 322{
 323	__inode_security_revalidate(inode, NULL, true);
 324	return inode->i_security;
 325}
 326
 327static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 328{
 329	struct inode *inode = d_backing_inode(dentry);
 330
 331	return inode->i_security;
 332}
 333
 334/*
 335 * Get the security label of a dentry's backing inode.
 336 */
 337static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 338{
 339	struct inode *inode = d_backing_inode(dentry);
 340
 341	__inode_security_revalidate(inode, dentry, true);
 342	return inode->i_security;
 343}
 344
 345static void inode_free_rcu(struct rcu_head *head)
 346{
 347	struct inode_security_struct *isec;
 348
 349	isec = container_of(head, struct inode_security_struct, rcu);
 350	kmem_cache_free(sel_inode_cache, isec);
 351}
 352
 353static void inode_free_security(struct inode *inode)
 354{
 355	struct inode_security_struct *isec = inode->i_security;
 356	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 357
 
 
 
 358	/*
 359	 * As not all inode security structures are in a list, we check for
 360	 * empty list outside of the lock to make sure that we won't waste
 361	 * time taking a lock doing nothing.
 362	 *
 363	 * The list_del_init() function can be safely called more than once.
 364	 * It should not be possible for this function to be called with
 365	 * concurrent list_add(), but for better safety against future changes
 366	 * in the code, we use list_empty_careful() here.
 367	 */
 368	if (!list_empty_careful(&isec->list)) {
 369		spin_lock(&sbsec->isec_lock);
 370		list_del_init(&isec->list);
 371		spin_unlock(&sbsec->isec_lock);
 372	}
 373
 374	/*
 375	 * The inode may still be referenced in a path walk and
 376	 * a call to selinux_inode_permission() can be made
 377	 * after inode_free_security() is called. Ideally, the VFS
 378	 * wouldn't do this, but fixing that is a much harder
 379	 * job. For now, simply free the i_security via RCU, and
 380	 * leave the current inode->i_security pointer intact.
 381	 * The inode will be freed after the RCU grace period too.
 382	 */
 383	call_rcu(&isec->rcu, inode_free_rcu);
 384}
 385
 386static int file_alloc_security(struct file *file)
 387{
 388	struct file_security_struct *fsec;
 389	u32 sid = current_sid();
 390
 391	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 392	if (!fsec)
 393		return -ENOMEM;
 394
 395	fsec->sid = sid;
 396	fsec->fown_sid = sid;
 397	file->f_security = fsec;
 398
 399	return 0;
 400}
 401
 402static void file_free_security(struct file *file)
 403{
 404	struct file_security_struct *fsec = file->f_security;
 405	file->f_security = NULL;
 406	kmem_cache_free(file_security_cache, fsec);
 407}
 408
 409static int superblock_alloc_security(struct super_block *sb)
 410{
 411	struct superblock_security_struct *sbsec;
 412
 413	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 414	if (!sbsec)
 415		return -ENOMEM;
 416
 417	mutex_init(&sbsec->lock);
 418	INIT_LIST_HEAD(&sbsec->isec_head);
 419	spin_lock_init(&sbsec->isec_lock);
 420	sbsec->sb = sb;
 421	sbsec->sid = SECINITSID_UNLABELED;
 422	sbsec->def_sid = SECINITSID_FILE;
 423	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 424	sb->s_security = sbsec;
 425
 426	return 0;
 427}
 428
 429static void superblock_free_security(struct super_block *sb)
 430{
 431	struct superblock_security_struct *sbsec = sb->s_security;
 432	sb->s_security = NULL;
 433	kfree(sbsec);
 434}
 435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436static inline int inode_doinit(struct inode *inode)
 437{
 438	return inode_doinit_with_dentry(inode, NULL);
 439}
 440
 441enum {
 442	Opt_error = -1,
 443	Opt_context = 1,
 
 444	Opt_fscontext = 2,
 445	Opt_defcontext = 3,
 446	Opt_rootcontext = 4,
 447	Opt_labelsupport = 5,
 448	Opt_nextmntopt = 6,
 449};
 450
 451#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 452
 453static const match_table_t tokens = {
 454	{Opt_context, CONTEXT_STR "%s"},
 455	{Opt_fscontext, FSCONTEXT_STR "%s"},
 456	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 457	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 458	{Opt_labelsupport, LABELSUPP_STR},
 459	{Opt_error, NULL},
 
 
 
 460};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461
 462#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 463
 464static int may_context_mount_sb_relabel(u32 sid,
 465			struct superblock_security_struct *sbsec,
 466			const struct cred *cred)
 467{
 468	const struct task_security_struct *tsec = cred->security;
 469	int rc;
 470
 471	rc = avc_has_perm(&selinux_state,
 472			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 473			  FILESYSTEM__RELABELFROM, NULL);
 474	if (rc)
 475		return rc;
 476
 477	rc = avc_has_perm(&selinux_state,
 478			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 479			  FILESYSTEM__RELABELTO, NULL);
 480	return rc;
 481}
 482
 483static int may_context_mount_inode_relabel(u32 sid,
 484			struct superblock_security_struct *sbsec,
 485			const struct cred *cred)
 486{
 487	const struct task_security_struct *tsec = cred->security;
 488	int rc;
 489	rc = avc_has_perm(&selinux_state,
 490			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 491			  FILESYSTEM__RELABELFROM, NULL);
 492	if (rc)
 493		return rc;
 494
 495	rc = avc_has_perm(&selinux_state,
 496			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 497			  FILESYSTEM__ASSOCIATE, NULL);
 498	return rc;
 499}
 500
 501static int selinux_is_sblabel_mnt(struct super_block *sb)
 502{
 503	struct superblock_security_struct *sbsec = sb->s_security;
 504
 505	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 506		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 507		sbsec->behavior == SECURITY_FS_USE_TASK ||
 508		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 509		/* Special handling. Genfs but also in-core setxattr handler */
 510		!strcmp(sb->s_type->name, "sysfs") ||
 511		!strcmp(sb->s_type->name, "pstore") ||
 512		!strcmp(sb->s_type->name, "debugfs") ||
 513		!strcmp(sb->s_type->name, "tracefs") ||
 514		!strcmp(sb->s_type->name, "rootfs") ||
 515		(selinux_policycap_cgroupseclabel() &&
 516		 (!strcmp(sb->s_type->name, "cgroup") ||
 517		  !strcmp(sb->s_type->name, "cgroup2")));
 518}
 519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520static int sb_finish_set_opts(struct super_block *sb)
 521{
 522	struct superblock_security_struct *sbsec = sb->s_security;
 523	struct dentry *root = sb->s_root;
 524	struct inode *root_inode = d_backing_inode(root);
 525	int rc = 0;
 526
 527	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 528		/* Make sure that the xattr handler exists and that no
 529		   error other than -ENODATA is returned by getxattr on
 530		   the root directory.  -ENODATA is ok, as this may be
 531		   the first boot of the SELinux kernel before we have
 532		   assigned xattr values to the filesystem. */
 533		if (!(root_inode->i_opflags & IOP_XATTR)) {
 534			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 535			       "xattr support\n", sb->s_id, sb->s_type->name);
 536			rc = -EOPNOTSUPP;
 537			goto out;
 538		}
 539
 540		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 541		if (rc < 0 && rc != -ENODATA) {
 542			if (rc == -EOPNOTSUPP)
 543				printk(KERN_WARNING "SELinux: (dev %s, type "
 544				       "%s) has no security xattr handler\n",
 545				       sb->s_id, sb->s_type->name);
 546			else
 547				printk(KERN_WARNING "SELinux: (dev %s, type "
 548				       "%s) getxattr errno %d\n", sb->s_id,
 549				       sb->s_type->name, -rc);
 550			goto out;
 551		}
 552	}
 553
 554	sbsec->flags |= SE_SBINITIALIZED;
 555
 556	/*
 557	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 558	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 559	 * us a superblock that needs the flag to be cleared.
 560	 */
 561	if (selinux_is_sblabel_mnt(sb))
 562		sbsec->flags |= SBLABEL_MNT;
 563	else
 564		sbsec->flags &= ~SBLABEL_MNT;
 565
 566	/* Initialize the root inode. */
 567	rc = inode_doinit_with_dentry(root_inode, root);
 568
 569	/* Initialize any other inodes associated with the superblock, e.g.
 570	   inodes created prior to initial policy load or inodes created
 571	   during get_sb by a pseudo filesystem that directly
 572	   populates itself. */
 573	spin_lock(&sbsec->isec_lock);
 574next_inode:
 575	if (!list_empty(&sbsec->isec_head)) {
 576		struct inode_security_struct *isec =
 577				list_entry(sbsec->isec_head.next,
 578					   struct inode_security_struct, list);
 579		struct inode *inode = isec->inode;
 580		list_del_init(&isec->list);
 581		spin_unlock(&sbsec->isec_lock);
 582		inode = igrab(inode);
 583		if (inode) {
 584			if (!IS_PRIVATE(inode))
 585				inode_doinit(inode);
 586			iput(inode);
 587		}
 588		spin_lock(&sbsec->isec_lock);
 589		goto next_inode;
 590	}
 591	spin_unlock(&sbsec->isec_lock);
 592out:
 593	return rc;
 594}
 595
 596/*
 597 * This function should allow an FS to ask what it's mount security
 598 * options were so it can use those later for submounts, displaying
 599 * mount options, or whatever.
 600 */
 601static int selinux_get_mnt_opts(const struct super_block *sb,
 602				struct security_mnt_opts *opts)
 603{
 604	int rc = 0, i;
 605	struct superblock_security_struct *sbsec = sb->s_security;
 606	char *context = NULL;
 607	u32 len;
 608	char tmp;
 609
 610	security_init_mnt_opts(opts);
 611
 612	if (!(sbsec->flags & SE_SBINITIALIZED))
 613		return -EINVAL;
 614
 615	if (!selinux_state.initialized)
 616		return -EINVAL;
 617
 618	/* make sure we always check enough bits to cover the mask */
 619	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 620
 621	tmp = sbsec->flags & SE_MNTMASK;
 622	/* count the number of mount options for this sb */
 623	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 624		if (tmp & 0x01)
 625			opts->num_mnt_opts++;
 626		tmp >>= 1;
 627	}
 628	/* Check if the Label support flag is set */
 629	if (sbsec->flags & SBLABEL_MNT)
 630		opts->num_mnt_opts++;
 631
 632	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 633	if (!opts->mnt_opts) {
 634		rc = -ENOMEM;
 635		goto out_free;
 636	}
 637
 638	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 639	if (!opts->mnt_opts_flags) {
 640		rc = -ENOMEM;
 641		goto out_free;
 642	}
 643
 644	i = 0;
 645	if (sbsec->flags & FSCONTEXT_MNT) {
 646		rc = security_sid_to_context(&selinux_state, sbsec->sid,
 647					     &context, &len);
 648		if (rc)
 649			goto out_free;
 650		opts->mnt_opts[i] = context;
 651		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 652	}
 653	if (sbsec->flags & CONTEXT_MNT) {
 654		rc = security_sid_to_context(&selinux_state,
 655					     sbsec->mntpoint_sid,
 656					     &context, &len);
 657		if (rc)
 658			goto out_free;
 659		opts->mnt_opts[i] = context;
 660		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 661	}
 662	if (sbsec->flags & DEFCONTEXT_MNT) {
 663		rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
 664					     &context, &len);
 665		if (rc)
 666			goto out_free;
 667		opts->mnt_opts[i] = context;
 668		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 669	}
 670	if (sbsec->flags & ROOTCONTEXT_MNT) {
 671		struct dentry *root = sbsec->sb->s_root;
 672		struct inode_security_struct *isec = backing_inode_security(root);
 673
 674		rc = security_sid_to_context(&selinux_state, isec->sid,
 675					     &context, &len);
 676		if (rc)
 677			goto out_free;
 678		opts->mnt_opts[i] = context;
 679		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 680	}
 681	if (sbsec->flags & SBLABEL_MNT) {
 682		opts->mnt_opts[i] = NULL;
 683		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 684	}
 685
 686	BUG_ON(i != opts->num_mnt_opts);
 687
 688	return 0;
 689
 690out_free:
 691	security_free_mnt_opts(opts);
 692	return rc;
 693}
 694
 695static int bad_option(struct superblock_security_struct *sbsec, char flag,
 696		      u32 old_sid, u32 new_sid)
 697{
 698	char mnt_flags = sbsec->flags & SE_MNTMASK;
 699
 700	/* check if the old mount command had the same options */
 701	if (sbsec->flags & SE_SBINITIALIZED)
 702		if (!(sbsec->flags & flag) ||
 703		    (old_sid != new_sid))
 704			return 1;
 705
 706	/* check if we were passed the same options twice,
 707	 * aka someone passed context=a,context=b
 708	 */
 709	if (!(sbsec->flags & SE_SBINITIALIZED))
 710		if (mnt_flags & flag)
 711			return 1;
 712	return 0;
 713}
 714
 
 
 
 
 
 
 
 
 
 
 
 715/*
 716 * Allow filesystems with binary mount data to explicitly set mount point
 717 * labeling information.
 718 */
 719static int selinux_set_mnt_opts(struct super_block *sb,
 720				struct security_mnt_opts *opts,
 721				unsigned long kern_flags,
 722				unsigned long *set_kern_flags)
 723{
 724	const struct cred *cred = current_cred();
 725	int rc = 0, i;
 726	struct superblock_security_struct *sbsec = sb->s_security;
 727	const char *name = sb->s_type->name;
 728	struct dentry *root = sbsec->sb->s_root;
 
 729	struct inode_security_struct *root_isec;
 730	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 731	u32 defcontext_sid = 0;
 732	char **mount_options = opts->mnt_opts;
 733	int *flags = opts->mnt_opts_flags;
 734	int num_opts = opts->num_mnt_opts;
 735
 736	mutex_lock(&sbsec->lock);
 737
 738	if (!selinux_state.initialized) {
 739		if (!num_opts) {
 740			/* Defer initialization until selinux_complete_init,
 741			   after the initial policy is loaded and the security
 742			   server is ready to handle calls. */
 743			goto out;
 744		}
 745		rc = -EINVAL;
 746		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 747			"before the security server is initialized\n");
 748		goto out;
 749	}
 750	if (kern_flags && !set_kern_flags) {
 751		/* Specifying internal flags without providing a place to
 752		 * place the results is not allowed */
 753		rc = -EINVAL;
 754		goto out;
 755	}
 756
 757	/*
 758	 * Binary mount data FS will come through this function twice.  Once
 759	 * from an explicit call and once from the generic calls from the vfs.
 760	 * Since the generic VFS calls will not contain any security mount data
 761	 * we need to skip the double mount verification.
 762	 *
 763	 * This does open a hole in which we will not notice if the first
 764	 * mount using this sb set explict options and a second mount using
 765	 * this sb does not set any security options.  (The first options
 766	 * will be used for both mounts)
 767	 */
 768	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 769	    && (num_opts == 0))
 770		goto out;
 771
 772	root_isec = backing_inode_security_novalidate(root);
 773
 774	/*
 775	 * parse the mount options, check if they are valid sids.
 776	 * also check if someone is trying to mount the same sb more
 777	 * than once with different security options.
 778	 */
 779	for (i = 0; i < num_opts; i++) {
 780		u32 sid;
 781
 782		if (flags[i] == SBLABEL_MNT)
 783			continue;
 784		rc = security_context_str_to_sid(&selinux_state,
 785						 mount_options[i], &sid,
 786						 GFP_KERNEL);
 787		if (rc) {
 788			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 789			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 790			       mount_options[i], sb->s_id, name, rc);
 791			goto out;
 792		}
 793		switch (flags[i]) {
 794		case FSCONTEXT_MNT:
 795			fscontext_sid = sid;
 796
 797			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 798					fscontext_sid))
 799				goto out_double_mount;
 800
 801			sbsec->flags |= FSCONTEXT_MNT;
 802			break;
 803		case CONTEXT_MNT:
 804			context_sid = sid;
 805
 
 806			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 807					context_sid))
 808				goto out_double_mount;
 809
 810			sbsec->flags |= CONTEXT_MNT;
 811			break;
 812		case ROOTCONTEXT_MNT:
 813			rootcontext_sid = sid;
 814
 
 815			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 816					rootcontext_sid))
 817				goto out_double_mount;
 818
 819			sbsec->flags |= ROOTCONTEXT_MNT;
 820
 821			break;
 822		case DEFCONTEXT_MNT:
 823			defcontext_sid = sid;
 824
 825			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 826					defcontext_sid))
 827				goto out_double_mount;
 828
 829			sbsec->flags |= DEFCONTEXT_MNT;
 830
 831			break;
 832		default:
 833			rc = -EINVAL;
 834			goto out;
 835		}
 836	}
 837
 838	if (sbsec->flags & SE_SBINITIALIZED) {
 839		/* previously mounted with options, but not on this attempt? */
 840		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 841			goto out_double_mount;
 842		rc = 0;
 843		goto out;
 844	}
 845
 846	if (strcmp(sb->s_type->name, "proc") == 0)
 847		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 848
 849	if (!strcmp(sb->s_type->name, "debugfs") ||
 850	    !strcmp(sb->s_type->name, "tracefs") ||
 851	    !strcmp(sb->s_type->name, "sysfs") ||
 852	    !strcmp(sb->s_type->name, "pstore") ||
 
 
 853	    !strcmp(sb->s_type->name, "cgroup") ||
 854	    !strcmp(sb->s_type->name, "cgroup2"))
 855		sbsec->flags |= SE_SBGENFS;
 856
 857	if (!sbsec->behavior) {
 858		/*
 859		 * Determine the labeling behavior to use for this
 860		 * filesystem type.
 861		 */
 862		rc = security_fs_use(&selinux_state, sb);
 863		if (rc) {
 864			printk(KERN_WARNING
 865				"%s: security_fs_use(%s) returned %d\n",
 866					__func__, sb->s_type->name, rc);
 867			goto out;
 868		}
 869	}
 870
 871	/*
 872	 * If this is a user namespace mount and the filesystem type is not
 873	 * explicitly whitelisted, then no contexts are allowed on the command
 874	 * line and security labels must be ignored.
 875	 */
 876	if (sb->s_user_ns != &init_user_ns &&
 877	    strcmp(sb->s_type->name, "tmpfs") &&
 878	    strcmp(sb->s_type->name, "ramfs") &&
 879	    strcmp(sb->s_type->name, "devpts")) {
 880		if (context_sid || fscontext_sid || rootcontext_sid ||
 881		    defcontext_sid) {
 882			rc = -EACCES;
 883			goto out;
 884		}
 885		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 886			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 887			rc = security_transition_sid(&selinux_state,
 888						     current_sid(),
 889						     current_sid(),
 890						     SECCLASS_FILE, NULL,
 891						     &sbsec->mntpoint_sid);
 892			if (rc)
 893				goto out;
 894		}
 895		goto out_set_opts;
 896	}
 897
 898	/* sets the context of the superblock for the fs being mounted. */
 899	if (fscontext_sid) {
 900		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 901		if (rc)
 902			goto out;
 903
 904		sbsec->sid = fscontext_sid;
 905	}
 906
 907	/*
 908	 * Switch to using mount point labeling behavior.
 909	 * sets the label used on all file below the mountpoint, and will set
 910	 * the superblock context if not already set.
 911	 */
 912	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 913		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 914		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 915	}
 916
 917	if (context_sid) {
 918		if (!fscontext_sid) {
 919			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 920							  cred);
 921			if (rc)
 922				goto out;
 923			sbsec->sid = context_sid;
 924		} else {
 925			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 926							     cred);
 927			if (rc)
 928				goto out;
 929		}
 930		if (!rootcontext_sid)
 931			rootcontext_sid = context_sid;
 932
 933		sbsec->mntpoint_sid = context_sid;
 934		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 935	}
 936
 937	if (rootcontext_sid) {
 938		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 939						     cred);
 940		if (rc)
 941			goto out;
 942
 943		root_isec->sid = rootcontext_sid;
 944		root_isec->initialized = LABEL_INITIALIZED;
 945	}
 946
 947	if (defcontext_sid) {
 948		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 949			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 950			rc = -EINVAL;
 951			printk(KERN_WARNING "SELinux: defcontext option is "
 952			       "invalid for this filesystem type\n");
 953			goto out;
 954		}
 955
 956		if (defcontext_sid != sbsec->def_sid) {
 957			rc = may_context_mount_inode_relabel(defcontext_sid,
 958							     sbsec, cred);
 959			if (rc)
 960				goto out;
 961		}
 962
 963		sbsec->def_sid = defcontext_sid;
 964	}
 965
 966out_set_opts:
 967	rc = sb_finish_set_opts(sb);
 968out:
 969	mutex_unlock(&sbsec->lock);
 970	return rc;
 971out_double_mount:
 972	rc = -EINVAL;
 973	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 974	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 975	goto out;
 976}
 977
 978static int selinux_cmp_sb_context(const struct super_block *oldsb,
 979				    const struct super_block *newsb)
 980{
 981	struct superblock_security_struct *old = oldsb->s_security;
 982	struct superblock_security_struct *new = newsb->s_security;
 983	char oldflags = old->flags & SE_MNTMASK;
 984	char newflags = new->flags & SE_MNTMASK;
 985
 986	if (oldflags != newflags)
 987		goto mismatch;
 988	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 989		goto mismatch;
 990	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 991		goto mismatch;
 992	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 993		goto mismatch;
 994	if (oldflags & ROOTCONTEXT_MNT) {
 995		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 996		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 997		if (oldroot->sid != newroot->sid)
 998			goto mismatch;
 999	}
1000	return 0;
1001mismatch:
1002	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
1003			    "different security settings for (dev %s, "
1004			    "type %s)\n", newsb->s_id, newsb->s_type->name);
1005	return -EBUSY;
1006}
1007
1008static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009					struct super_block *newsb,
1010					unsigned long kern_flags,
1011					unsigned long *set_kern_flags)
1012{
1013	int rc = 0;
1014	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015	struct superblock_security_struct *newsbsec = newsb->s_security;
1016
1017	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
1018	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
1019	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
1020
1021	/*
1022	 * if the parent was able to be mounted it clearly had no special lsm
1023	 * mount options.  thus we can safely deal with this superblock later
1024	 */
1025	if (!selinux_state.initialized)
1026		return 0;
1027
1028	/*
1029	 * Specifying internal flags without providing a place to
1030	 * place the results is not allowed.
1031	 */
1032	if (kern_flags && !set_kern_flags)
1033		return -EINVAL;
1034
1035	/* how can we clone if the old one wasn't set up?? */
1036	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037
1038	/* if fs is reusing a sb, make sure that the contexts match */
1039	if (newsbsec->flags & SE_SBINITIALIZED)
 
 
1040		return selinux_cmp_sb_context(oldsb, newsb);
 
1041
1042	mutex_lock(&newsbsec->lock);
1043
1044	newsbsec->flags = oldsbsec->flags;
1045
1046	newsbsec->sid = oldsbsec->sid;
1047	newsbsec->def_sid = oldsbsec->def_sid;
1048	newsbsec->behavior = oldsbsec->behavior;
1049
1050	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052		rc = security_fs_use(&selinux_state, newsb);
1053		if (rc)
1054			goto out;
1055	}
1056
1057	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060	}
1061
1062	if (set_context) {
1063		u32 sid = oldsbsec->mntpoint_sid;
1064
1065		if (!set_fscontext)
1066			newsbsec->sid = sid;
1067		if (!set_rootcontext) {
1068			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069			newisec->sid = sid;
1070		}
1071		newsbsec->mntpoint_sid = sid;
1072	}
1073	if (set_rootcontext) {
1074		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076
1077		newisec->sid = oldisec->sid;
1078	}
1079
1080	sb_finish_set_opts(newsb);
1081out:
1082	mutex_unlock(&newsbsec->lock);
1083	return rc;
1084}
1085
1086static int selinux_parse_opts_str(char *options,
1087				  struct security_mnt_opts *opts)
1088{
1089	char *p;
1090	char *context = NULL, *defcontext = NULL;
1091	char *fscontext = NULL, *rootcontext = NULL;
1092	int rc, num_mnt_opts = 0;
1093
1094	opts->num_mnt_opts = 0;
1095
1096	/* Standard string-based options. */
1097	while ((p = strsep(&options, "|")) != NULL) {
1098		int token;
1099		substring_t args[MAX_OPT_ARGS];
1100
1101		if (!*p)
1102			continue;
1103
1104		token = match_token(p, tokens, args);
1105
1106		switch (token) {
1107		case Opt_context:
1108			if (context || defcontext) {
1109				rc = -EINVAL;
1110				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111				goto out_err;
1112			}
1113			context = match_strdup(&args[0]);
1114			if (!context) {
1115				rc = -ENOMEM;
1116				goto out_err;
1117			}
1118			break;
1119
1120		case Opt_fscontext:
1121			if (fscontext) {
1122				rc = -EINVAL;
1123				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124				goto out_err;
1125			}
1126			fscontext = match_strdup(&args[0]);
1127			if (!fscontext) {
1128				rc = -ENOMEM;
1129				goto out_err;
1130			}
1131			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132
1133		case Opt_rootcontext:
1134			if (rootcontext) {
1135				rc = -EINVAL;
1136				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137				goto out_err;
1138			}
1139			rootcontext = match_strdup(&args[0]);
1140			if (!rootcontext) {
1141				rc = -ENOMEM;
1142				goto out_err;
1143			}
1144			break;
1145
1146		case Opt_defcontext:
1147			if (context || defcontext) {
1148				rc = -EINVAL;
1149				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150				goto out_err;
1151			}
1152			defcontext = match_strdup(&args[0]);
1153			if (!defcontext) {
1154				rc = -ENOMEM;
1155				goto out_err;
1156			}
1157			break;
1158		case Opt_labelsupport:
1159			break;
1160		default:
1161			rc = -EINVAL;
1162			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1163			goto out_err;
1164
1165		}
1166	}
1167
1168	rc = -ENOMEM;
1169	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170	if (!opts->mnt_opts)
1171		goto out_err;
1172
1173	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174				       GFP_KERNEL);
1175	if (!opts->mnt_opts_flags)
1176		goto out_err;
1177
1178	if (fscontext) {
1179		opts->mnt_opts[num_mnt_opts] = fscontext;
1180		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181	}
1182	if (context) {
1183		opts->mnt_opts[num_mnt_opts] = context;
1184		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185	}
1186	if (rootcontext) {
1187		opts->mnt_opts[num_mnt_opts] = rootcontext;
1188		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189	}
1190	if (defcontext) {
1191		opts->mnt_opts[num_mnt_opts] = defcontext;
1192		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
 
1193	}
1194
1195	opts->num_mnt_opts = num_mnt_opts;
1196	return 0;
1197
1198out_err:
1199	security_free_mnt_opts(opts);
1200	kfree(context);
1201	kfree(defcontext);
1202	kfree(fscontext);
1203	kfree(rootcontext);
1204	return rc;
1205}
1206/*
1207 * string mount options parsing and call set the sbsec
1208 */
1209static int superblock_doinit(struct super_block *sb, void *data)
1210{
1211	int rc = 0;
1212	char *options = data;
1213	struct security_mnt_opts opts;
1214
1215	security_init_mnt_opts(&opts);
1216
1217	if (!data)
1218		goto out;
1219
1220	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221
1222	rc = selinux_parse_opts_str(options, &opts);
1223	if (rc)
1224		goto out_err;
1225
1226out:
1227	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228
1229out_err:
1230	security_free_mnt_opts(&opts);
1231	return rc;
1232}
1233
1234static void selinux_write_opts(struct seq_file *m,
1235			       struct security_mnt_opts *opts)
1236{
1237	int i;
1238	char *prefix;
1239
1240	for (i = 0; i < opts->num_mnt_opts; i++) {
1241		char *has_comma;
1242
1243		if (opts->mnt_opts[i])
1244			has_comma = strchr(opts->mnt_opts[i], ',');
1245		else
1246			has_comma = NULL;
1247
1248		switch (opts->mnt_opts_flags[i]) {
1249		case CONTEXT_MNT:
1250			prefix = CONTEXT_STR;
1251			break;
1252		case FSCONTEXT_MNT:
1253			prefix = FSCONTEXT_STR;
1254			break;
1255		case ROOTCONTEXT_MNT:
1256			prefix = ROOTCONTEXT_STR;
1257			break;
1258		case DEFCONTEXT_MNT:
1259			prefix = DEFCONTEXT_STR;
1260			break;
1261		case SBLABEL_MNT:
1262			seq_putc(m, ',');
1263			seq_puts(m, LABELSUPP_STR);
1264			continue;
1265		default:
1266			BUG();
1267			return;
1268		};
1269		/* we need a comma before each option */
1270		seq_putc(m, ',');
1271		seq_puts(m, prefix);
1272		if (has_comma)
1273			seq_putc(m, '\"');
1274		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275		if (has_comma)
1276			seq_putc(m, '\"');
1277	}
 
 
1278}
1279
1280static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281{
1282	struct security_mnt_opts opts;
1283	int rc;
1284
1285	rc = selinux_get_mnt_opts(sb, &opts);
1286	if (rc) {
1287		/* before policy load we may get EINVAL, don't show anything */
1288		if (rc == -EINVAL)
1289			rc = 0;
1290		return rc;
1291	}
1292
1293	selinux_write_opts(m, &opts);
1294
1295	security_free_mnt_opts(&opts);
 
1296
1297	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298}
1299
1300static inline u16 inode_mode_to_security_class(umode_t mode)
1301{
1302	switch (mode & S_IFMT) {
1303	case S_IFSOCK:
1304		return SECCLASS_SOCK_FILE;
1305	case S_IFLNK:
1306		return SECCLASS_LNK_FILE;
1307	case S_IFREG:
1308		return SECCLASS_FILE;
1309	case S_IFBLK:
1310		return SECCLASS_BLK_FILE;
1311	case S_IFDIR:
1312		return SECCLASS_DIR;
1313	case S_IFCHR:
1314		return SECCLASS_CHR_FILE;
1315	case S_IFIFO:
1316		return SECCLASS_FIFO_FILE;
1317
1318	}
1319
1320	return SECCLASS_FILE;
1321}
1322
1323static inline int default_protocol_stream(int protocol)
1324{
1325	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326}
1327
1328static inline int default_protocol_dgram(int protocol)
1329{
1330	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331}
1332
1333static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334{
1335	int extsockclass = selinux_policycap_extsockclass();
1336
1337	switch (family) {
1338	case PF_UNIX:
1339		switch (type) {
1340		case SOCK_STREAM:
1341		case SOCK_SEQPACKET:
1342			return SECCLASS_UNIX_STREAM_SOCKET;
1343		case SOCK_DGRAM:
1344		case SOCK_RAW:
1345			return SECCLASS_UNIX_DGRAM_SOCKET;
1346		}
1347		break;
1348	case PF_INET:
1349	case PF_INET6:
1350		switch (type) {
1351		case SOCK_STREAM:
1352		case SOCK_SEQPACKET:
1353			if (default_protocol_stream(protocol))
1354				return SECCLASS_TCP_SOCKET;
1355			else if (extsockclass && protocol == IPPROTO_SCTP)
1356				return SECCLASS_SCTP_SOCKET;
1357			else
1358				return SECCLASS_RAWIP_SOCKET;
1359		case SOCK_DGRAM:
1360			if (default_protocol_dgram(protocol))
1361				return SECCLASS_UDP_SOCKET;
1362			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363						  protocol == IPPROTO_ICMPV6))
1364				return SECCLASS_ICMP_SOCKET;
1365			else
1366				return SECCLASS_RAWIP_SOCKET;
1367		case SOCK_DCCP:
1368			return SECCLASS_DCCP_SOCKET;
1369		default:
1370			return SECCLASS_RAWIP_SOCKET;
1371		}
1372		break;
1373	case PF_NETLINK:
1374		switch (protocol) {
1375		case NETLINK_ROUTE:
1376			return SECCLASS_NETLINK_ROUTE_SOCKET;
1377		case NETLINK_SOCK_DIAG:
1378			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379		case NETLINK_NFLOG:
1380			return SECCLASS_NETLINK_NFLOG_SOCKET;
1381		case NETLINK_XFRM:
1382			return SECCLASS_NETLINK_XFRM_SOCKET;
1383		case NETLINK_SELINUX:
1384			return SECCLASS_NETLINK_SELINUX_SOCKET;
1385		case NETLINK_ISCSI:
1386			return SECCLASS_NETLINK_ISCSI_SOCKET;
1387		case NETLINK_AUDIT:
1388			return SECCLASS_NETLINK_AUDIT_SOCKET;
1389		case NETLINK_FIB_LOOKUP:
1390			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391		case NETLINK_CONNECTOR:
1392			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393		case NETLINK_NETFILTER:
1394			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395		case NETLINK_DNRTMSG:
1396			return SECCLASS_NETLINK_DNRT_SOCKET;
1397		case NETLINK_KOBJECT_UEVENT:
1398			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399		case NETLINK_GENERIC:
1400			return SECCLASS_NETLINK_GENERIC_SOCKET;
1401		case NETLINK_SCSITRANSPORT:
1402			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403		case NETLINK_RDMA:
1404			return SECCLASS_NETLINK_RDMA_SOCKET;
1405		case NETLINK_CRYPTO:
1406			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407		default:
1408			return SECCLASS_NETLINK_SOCKET;
1409		}
1410	case PF_PACKET:
1411		return SECCLASS_PACKET_SOCKET;
1412	case PF_KEY:
1413		return SECCLASS_KEY_SOCKET;
1414	case PF_APPLETALK:
1415		return SECCLASS_APPLETALK_SOCKET;
1416	}
1417
1418	if (extsockclass) {
1419		switch (family) {
1420		case PF_AX25:
1421			return SECCLASS_AX25_SOCKET;
1422		case PF_IPX:
1423			return SECCLASS_IPX_SOCKET;
1424		case PF_NETROM:
1425			return SECCLASS_NETROM_SOCKET;
1426		case PF_ATMPVC:
1427			return SECCLASS_ATMPVC_SOCKET;
1428		case PF_X25:
1429			return SECCLASS_X25_SOCKET;
1430		case PF_ROSE:
1431			return SECCLASS_ROSE_SOCKET;
1432		case PF_DECnet:
1433			return SECCLASS_DECNET_SOCKET;
1434		case PF_ATMSVC:
1435			return SECCLASS_ATMSVC_SOCKET;
1436		case PF_RDS:
1437			return SECCLASS_RDS_SOCKET;
1438		case PF_IRDA:
1439			return SECCLASS_IRDA_SOCKET;
1440		case PF_PPPOX:
1441			return SECCLASS_PPPOX_SOCKET;
1442		case PF_LLC:
1443			return SECCLASS_LLC_SOCKET;
1444		case PF_CAN:
1445			return SECCLASS_CAN_SOCKET;
1446		case PF_TIPC:
1447			return SECCLASS_TIPC_SOCKET;
1448		case PF_BLUETOOTH:
1449			return SECCLASS_BLUETOOTH_SOCKET;
1450		case PF_IUCV:
1451			return SECCLASS_IUCV_SOCKET;
1452		case PF_RXRPC:
1453			return SECCLASS_RXRPC_SOCKET;
1454		case PF_ISDN:
1455			return SECCLASS_ISDN_SOCKET;
1456		case PF_PHONET:
1457			return SECCLASS_PHONET_SOCKET;
1458		case PF_IEEE802154:
1459			return SECCLASS_IEEE802154_SOCKET;
1460		case PF_CAIF:
1461			return SECCLASS_CAIF_SOCKET;
1462		case PF_ALG:
1463			return SECCLASS_ALG_SOCKET;
1464		case PF_NFC:
1465			return SECCLASS_NFC_SOCKET;
1466		case PF_VSOCK:
1467			return SECCLASS_VSOCK_SOCKET;
1468		case PF_KCM:
1469			return SECCLASS_KCM_SOCKET;
1470		case PF_QIPCRTR:
1471			return SECCLASS_QIPCRTR_SOCKET;
1472		case PF_SMC:
1473			return SECCLASS_SMC_SOCKET;
1474#if PF_MAX > 44
 
 
1475#error New address family defined, please update this function.
1476#endif
1477		}
1478	}
1479
1480	return SECCLASS_SOCKET;
1481}
1482
1483static int selinux_genfs_get_sid(struct dentry *dentry,
1484				 u16 tclass,
1485				 u16 flags,
1486				 u32 *sid)
1487{
1488	int rc;
1489	struct super_block *sb = dentry->d_sb;
1490	char *buffer, *path;
1491
1492	buffer = (char *)__get_free_page(GFP_KERNEL);
1493	if (!buffer)
1494		return -ENOMEM;
1495
1496	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1497	if (IS_ERR(path))
1498		rc = PTR_ERR(path);
1499	else {
1500		if (flags & SE_SBPROC) {
1501			/* each process gets a /proc/PID/ entry. Strip off the
1502			 * PID part to get a valid selinux labeling.
1503			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1504			while (path[1] >= '0' && path[1] <= '9') {
1505				path[1] = '/';
1506				path++;
1507			}
1508		}
1509		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1510					path, tclass, sid);
 
 
 
 
 
1511	}
1512	free_page((unsigned long)buffer);
1513	return rc;
1514}
1515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516/* The inode's security attributes must be initialized before first use. */
1517static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1518{
1519	struct superblock_security_struct *sbsec = NULL;
1520	struct inode_security_struct *isec = inode->i_security;
1521	u32 task_sid, sid = 0;
1522	u16 sclass;
1523	struct dentry *dentry;
1524#define INITCONTEXTLEN 255
1525	char *context = NULL;
1526	unsigned len = 0;
1527	int rc = 0;
1528
1529	if (isec->initialized == LABEL_INITIALIZED)
1530		return 0;
1531
1532	spin_lock(&isec->lock);
1533	if (isec->initialized == LABEL_INITIALIZED)
1534		goto out_unlock;
1535
1536	if (isec->sclass == SECCLASS_FILE)
1537		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1538
1539	sbsec = inode->i_sb->s_security;
1540	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1541		/* Defer initialization until selinux_complete_init,
1542		   after the initial policy is loaded and the security
1543		   server is ready to handle calls. */
1544		spin_lock(&sbsec->isec_lock);
1545		if (list_empty(&isec->list))
1546			list_add(&isec->list, &sbsec->isec_head);
1547		spin_unlock(&sbsec->isec_lock);
1548		goto out_unlock;
1549	}
1550
1551	sclass = isec->sclass;
1552	task_sid = isec->task_sid;
1553	sid = isec->sid;
1554	isec->initialized = LABEL_PENDING;
1555	spin_unlock(&isec->lock);
1556
1557	switch (sbsec->behavior) {
1558	case SECURITY_FS_USE_NATIVE:
1559		break;
1560	case SECURITY_FS_USE_XATTR:
1561		if (!(inode->i_opflags & IOP_XATTR)) {
1562			sid = sbsec->def_sid;
1563			break;
1564		}
1565		/* Need a dentry, since the xattr API requires one.
1566		   Life would be simpler if we could just pass the inode. */
1567		if (opt_dentry) {
1568			/* Called from d_instantiate or d_splice_alias. */
1569			dentry = dget(opt_dentry);
1570		} else {
1571			/*
1572			 * Called from selinux_complete_init, try to find a dentry.
1573			 * Some filesystems really want a connected one, so try
1574			 * that first.  We could split SECURITY_FS_USE_XATTR in
1575			 * two, depending upon that...
1576			 */
1577			dentry = d_find_alias(inode);
1578			if (!dentry)
1579				dentry = d_find_any_alias(inode);
1580		}
1581		if (!dentry) {
1582			/*
1583			 * this is can be hit on boot when a file is accessed
1584			 * before the policy is loaded.  When we load policy we
1585			 * may find inodes that have no dentry on the
1586			 * sbsec->isec_head list.  No reason to complain as these
1587			 * will get fixed up the next time we go through
1588			 * inode_doinit with a dentry, before these inodes could
1589			 * be used again by userspace.
1590			 */
1591			goto out;
1592		}
1593
1594		len = INITCONTEXTLEN;
1595		context = kmalloc(len+1, GFP_NOFS);
1596		if (!context) {
1597			rc = -ENOMEM;
1598			dput(dentry);
1599			goto out;
1600		}
1601		context[len] = '\0';
1602		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1603		if (rc == -ERANGE) {
1604			kfree(context);
1605
1606			/* Need a larger buffer.  Query for the right size. */
1607			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1608			if (rc < 0) {
1609				dput(dentry);
1610				goto out;
1611			}
1612			len = rc;
1613			context = kmalloc(len+1, GFP_NOFS);
1614			if (!context) {
1615				rc = -ENOMEM;
1616				dput(dentry);
1617				goto out;
1618			}
1619			context[len] = '\0';
1620			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1621		}
1622		dput(dentry);
1623		if (rc < 0) {
1624			if (rc != -ENODATA) {
1625				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1626				       "%d for dev=%s ino=%ld\n", __func__,
1627				       -rc, inode->i_sb->s_id, inode->i_ino);
1628				kfree(context);
1629				goto out;
1630			}
1631			/* Map ENODATA to the default file SID */
1632			sid = sbsec->def_sid;
1633			rc = 0;
1634		} else {
1635			rc = security_context_to_sid_default(&selinux_state,
1636							     context, rc, &sid,
1637							     sbsec->def_sid,
1638							     GFP_NOFS);
1639			if (rc) {
1640				char *dev = inode->i_sb->s_id;
1641				unsigned long ino = inode->i_ino;
1642
1643				if (rc == -EINVAL) {
1644					if (printk_ratelimit())
1645						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1646							"context=%s.  This indicates you may need to relabel the inode or the "
1647							"filesystem in question.\n", ino, dev, context);
1648				} else {
1649					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1650					       "returned %d for dev=%s ino=%ld\n",
1651					       __func__, context, -rc, dev, ino);
1652				}
1653				kfree(context);
1654				/* Leave with the unlabeled SID */
1655				rc = 0;
1656				break;
1657			}
1658		}
1659		kfree(context);
1660		break;
1661	case SECURITY_FS_USE_TASK:
1662		sid = task_sid;
1663		break;
1664	case SECURITY_FS_USE_TRANS:
1665		/* Default to the fs SID. */
1666		sid = sbsec->sid;
1667
1668		/* Try to obtain a transition SID. */
1669		rc = security_transition_sid(&selinux_state, task_sid, sid,
1670					     sclass, NULL, &sid);
1671		if (rc)
1672			goto out;
1673		break;
1674	case SECURITY_FS_USE_MNTPOINT:
1675		sid = sbsec->mntpoint_sid;
1676		break;
1677	default:
1678		/* Default to the fs superblock SID. */
1679		sid = sbsec->sid;
1680
1681		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1682			/* We must have a dentry to determine the label on
1683			 * procfs inodes */
1684			if (opt_dentry) {
1685				/* Called from d_instantiate or
1686				 * d_splice_alias. */
1687				dentry = dget(opt_dentry);
1688			} else {
1689				/* Called from selinux_complete_init, try to
1690				 * find a dentry.  Some filesystems really want
1691				 * a connected one, so try that first.
1692				 */
1693				dentry = d_find_alias(inode);
1694				if (!dentry)
1695					dentry = d_find_any_alias(inode);
1696			}
1697			/*
1698			 * This can be hit on boot when a file is accessed
1699			 * before the policy is loaded.  When we load policy we
1700			 * may find inodes that have no dentry on the
1701			 * sbsec->isec_head list.  No reason to complain as
1702			 * these will get fixed up the next time we go through
1703			 * inode_doinit() with a dentry, before these inodes
1704			 * could be used again by userspace.
1705			 */
1706			if (!dentry)
1707				goto out;
1708			rc = selinux_genfs_get_sid(dentry, sclass,
1709						   sbsec->flags, &sid);
1710			dput(dentry);
1711			if (rc)
1712				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
1713		}
1714		break;
1715	}
1716
1717out:
1718	spin_lock(&isec->lock);
1719	if (isec->initialized == LABEL_PENDING) {
1720		if (!sid || rc) {
1721			isec->initialized = LABEL_INVALID;
1722			goto out_unlock;
1723		}
1724
1725		isec->initialized = LABEL_INITIALIZED;
1726		isec->sid = sid;
1727	}
1728
1729out_unlock:
1730	spin_unlock(&isec->lock);
1731	return rc;
1732}
1733
1734/* Convert a Linux signal to an access vector. */
1735static inline u32 signal_to_av(int sig)
1736{
1737	u32 perm = 0;
1738
1739	switch (sig) {
1740	case SIGCHLD:
1741		/* Commonly granted from child to parent. */
1742		perm = PROCESS__SIGCHLD;
1743		break;
1744	case SIGKILL:
1745		/* Cannot be caught or ignored */
1746		perm = PROCESS__SIGKILL;
1747		break;
1748	case SIGSTOP:
1749		/* Cannot be caught or ignored */
1750		perm = PROCESS__SIGSTOP;
1751		break;
1752	default:
1753		/* All other signals. */
1754		perm = PROCESS__SIGNAL;
1755		break;
1756	}
1757
1758	return perm;
1759}
1760
1761#if CAP_LAST_CAP > 63
1762#error Fix SELinux to handle capabilities > 63.
1763#endif
1764
1765/* Check whether a task is allowed to use a capability. */
1766static int cred_has_capability(const struct cred *cred,
1767			       int cap, int audit, bool initns)
1768{
1769	struct common_audit_data ad;
1770	struct av_decision avd;
1771	u16 sclass;
1772	u32 sid = cred_sid(cred);
1773	u32 av = CAP_TO_MASK(cap);
1774	int rc;
1775
1776	ad.type = LSM_AUDIT_DATA_CAP;
1777	ad.u.cap = cap;
1778
1779	switch (CAP_TO_INDEX(cap)) {
1780	case 0:
1781		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1782		break;
1783	case 1:
1784		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1785		break;
1786	default:
1787		printk(KERN_ERR
1788		       "SELinux:  out of range capability %d\n", cap);
1789		BUG();
1790		return -EINVAL;
1791	}
1792
1793	rc = avc_has_perm_noaudit(&selinux_state,
1794				  sid, sid, sclass, av, 0, &avd);
1795	if (audit == SECURITY_CAP_AUDIT) {
1796		int rc2 = avc_audit(&selinux_state,
1797				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1798		if (rc2)
1799			return rc2;
1800	}
1801	return rc;
1802}
1803
1804/* Check whether a task has a particular permission to an inode.
1805   The 'adp' parameter is optional and allows other audit
1806   data to be passed (e.g. the dentry). */
1807static int inode_has_perm(const struct cred *cred,
1808			  struct inode *inode,
1809			  u32 perms,
1810			  struct common_audit_data *adp)
1811{
1812	struct inode_security_struct *isec;
1813	u32 sid;
1814
1815	validate_creds(cred);
1816
1817	if (unlikely(IS_PRIVATE(inode)))
1818		return 0;
1819
1820	sid = cred_sid(cred);
1821	isec = inode->i_security;
1822
1823	return avc_has_perm(&selinux_state,
1824			    sid, isec->sid, isec->sclass, perms, adp);
1825}
1826
1827/* Same as inode_has_perm, but pass explicit audit data containing
1828   the dentry to help the auditing code to more easily generate the
1829   pathname if needed. */
1830static inline int dentry_has_perm(const struct cred *cred,
1831				  struct dentry *dentry,
1832				  u32 av)
1833{
1834	struct inode *inode = d_backing_inode(dentry);
1835	struct common_audit_data ad;
1836
1837	ad.type = LSM_AUDIT_DATA_DENTRY;
1838	ad.u.dentry = dentry;
1839	__inode_security_revalidate(inode, dentry, true);
1840	return inode_has_perm(cred, inode, av, &ad);
1841}
1842
1843/* Same as inode_has_perm, but pass explicit audit data containing
1844   the path to help the auditing code to more easily generate the
1845   pathname if needed. */
1846static inline int path_has_perm(const struct cred *cred,
1847				const struct path *path,
1848				u32 av)
1849{
1850	struct inode *inode = d_backing_inode(path->dentry);
1851	struct common_audit_data ad;
1852
1853	ad.type = LSM_AUDIT_DATA_PATH;
1854	ad.u.path = *path;
1855	__inode_security_revalidate(inode, path->dentry, true);
1856	return inode_has_perm(cred, inode, av, &ad);
1857}
1858
1859/* Same as path_has_perm, but uses the inode from the file struct. */
1860static inline int file_path_has_perm(const struct cred *cred,
1861				     struct file *file,
1862				     u32 av)
1863{
1864	struct common_audit_data ad;
1865
1866	ad.type = LSM_AUDIT_DATA_FILE;
1867	ad.u.file = file;
1868	return inode_has_perm(cred, file_inode(file), av, &ad);
1869}
1870
1871#ifdef CONFIG_BPF_SYSCALL
1872static int bpf_fd_pass(struct file *file, u32 sid);
1873#endif
1874
1875/* Check whether a task can use an open file descriptor to
1876   access an inode in a given way.  Check access to the
1877   descriptor itself, and then use dentry_has_perm to
1878   check a particular permission to the file.
1879   Access to the descriptor is implicitly granted if it
1880   has the same SID as the process.  If av is zero, then
1881   access to the file is not checked, e.g. for cases
1882   where only the descriptor is affected like seek. */
1883static int file_has_perm(const struct cred *cred,
1884			 struct file *file,
1885			 u32 av)
1886{
1887	struct file_security_struct *fsec = file->f_security;
1888	struct inode *inode = file_inode(file);
1889	struct common_audit_data ad;
1890	u32 sid = cred_sid(cred);
1891	int rc;
1892
1893	ad.type = LSM_AUDIT_DATA_FILE;
1894	ad.u.file = file;
1895
1896	if (sid != fsec->sid) {
1897		rc = avc_has_perm(&selinux_state,
1898				  sid, fsec->sid,
1899				  SECCLASS_FD,
1900				  FD__USE,
1901				  &ad);
1902		if (rc)
1903			goto out;
1904	}
1905
1906#ifdef CONFIG_BPF_SYSCALL
1907	rc = bpf_fd_pass(file, cred_sid(cred));
1908	if (rc)
1909		return rc;
1910#endif
1911
1912	/* av is zero if only checking access to the descriptor. */
1913	rc = 0;
1914	if (av)
1915		rc = inode_has_perm(cred, inode, av, &ad);
1916
1917out:
1918	return rc;
1919}
1920
1921/*
1922 * Determine the label for an inode that might be unioned.
1923 */
1924static int
1925selinux_determine_inode_label(const struct task_security_struct *tsec,
1926				 struct inode *dir,
1927				 const struct qstr *name, u16 tclass,
1928				 u32 *_new_isid)
1929{
1930	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1931
1932	if ((sbsec->flags & SE_SBINITIALIZED) &&
1933	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1934		*_new_isid = sbsec->mntpoint_sid;
1935	} else if ((sbsec->flags & SBLABEL_MNT) &&
1936		   tsec->create_sid) {
1937		*_new_isid = tsec->create_sid;
1938	} else {
1939		const struct inode_security_struct *dsec = inode_security(dir);
1940		return security_transition_sid(&selinux_state, tsec->sid,
1941					       dsec->sid, tclass,
1942					       name, _new_isid);
1943	}
1944
1945	return 0;
1946}
1947
1948/* Check whether a task can create a file. */
1949static int may_create(struct inode *dir,
1950		      struct dentry *dentry,
1951		      u16 tclass)
1952{
1953	const struct task_security_struct *tsec = current_security();
1954	struct inode_security_struct *dsec;
1955	struct superblock_security_struct *sbsec;
1956	u32 sid, newsid;
1957	struct common_audit_data ad;
1958	int rc;
1959
1960	dsec = inode_security(dir);
1961	sbsec = dir->i_sb->s_security;
1962
1963	sid = tsec->sid;
1964
1965	ad.type = LSM_AUDIT_DATA_DENTRY;
1966	ad.u.dentry = dentry;
1967
1968	rc = avc_has_perm(&selinux_state,
1969			  sid, dsec->sid, SECCLASS_DIR,
1970			  DIR__ADD_NAME | DIR__SEARCH,
1971			  &ad);
1972	if (rc)
1973		return rc;
1974
1975	rc = selinux_determine_inode_label(current_security(), dir,
1976					   &dentry->d_name, tclass, &newsid);
1977	if (rc)
1978		return rc;
1979
1980	rc = avc_has_perm(&selinux_state,
1981			  sid, newsid, tclass, FILE__CREATE, &ad);
1982	if (rc)
1983		return rc;
1984
1985	return avc_has_perm(&selinux_state,
1986			    newsid, sbsec->sid,
1987			    SECCLASS_FILESYSTEM,
1988			    FILESYSTEM__ASSOCIATE, &ad);
1989}
1990
1991#define MAY_LINK	0
1992#define MAY_UNLINK	1
1993#define MAY_RMDIR	2
1994
1995/* Check whether a task can link, unlink, or rmdir a file/directory. */
1996static int may_link(struct inode *dir,
1997		    struct dentry *dentry,
1998		    int kind)
1999
2000{
2001	struct inode_security_struct *dsec, *isec;
2002	struct common_audit_data ad;
2003	u32 sid = current_sid();
2004	u32 av;
2005	int rc;
2006
2007	dsec = inode_security(dir);
2008	isec = backing_inode_security(dentry);
2009
2010	ad.type = LSM_AUDIT_DATA_DENTRY;
2011	ad.u.dentry = dentry;
2012
2013	av = DIR__SEARCH;
2014	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2015	rc = avc_has_perm(&selinux_state,
2016			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
2017	if (rc)
2018		return rc;
2019
2020	switch (kind) {
2021	case MAY_LINK:
2022		av = FILE__LINK;
2023		break;
2024	case MAY_UNLINK:
2025		av = FILE__UNLINK;
2026		break;
2027	case MAY_RMDIR:
2028		av = DIR__RMDIR;
2029		break;
2030	default:
2031		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
2032			__func__, kind);
2033		return 0;
2034	}
2035
2036	rc = avc_has_perm(&selinux_state,
2037			  sid, isec->sid, isec->sclass, av, &ad);
2038	return rc;
2039}
2040
2041static inline int may_rename(struct inode *old_dir,
2042			     struct dentry *old_dentry,
2043			     struct inode *new_dir,
2044			     struct dentry *new_dentry)
2045{
2046	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2047	struct common_audit_data ad;
2048	u32 sid = current_sid();
2049	u32 av;
2050	int old_is_dir, new_is_dir;
2051	int rc;
2052
2053	old_dsec = inode_security(old_dir);
2054	old_isec = backing_inode_security(old_dentry);
2055	old_is_dir = d_is_dir(old_dentry);
2056	new_dsec = inode_security(new_dir);
2057
2058	ad.type = LSM_AUDIT_DATA_DENTRY;
2059
2060	ad.u.dentry = old_dentry;
2061	rc = avc_has_perm(&selinux_state,
2062			  sid, old_dsec->sid, SECCLASS_DIR,
2063			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2064	if (rc)
2065		return rc;
2066	rc = avc_has_perm(&selinux_state,
2067			  sid, old_isec->sid,
2068			  old_isec->sclass, FILE__RENAME, &ad);
2069	if (rc)
2070		return rc;
2071	if (old_is_dir && new_dir != old_dir) {
2072		rc = avc_has_perm(&selinux_state,
2073				  sid, old_isec->sid,
2074				  old_isec->sclass, DIR__REPARENT, &ad);
2075		if (rc)
2076			return rc;
2077	}
2078
2079	ad.u.dentry = new_dentry;
2080	av = DIR__ADD_NAME | DIR__SEARCH;
2081	if (d_is_positive(new_dentry))
2082		av |= DIR__REMOVE_NAME;
2083	rc = avc_has_perm(&selinux_state,
2084			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2085	if (rc)
2086		return rc;
2087	if (d_is_positive(new_dentry)) {
2088		new_isec = backing_inode_security(new_dentry);
2089		new_is_dir = d_is_dir(new_dentry);
2090		rc = avc_has_perm(&selinux_state,
2091				  sid, new_isec->sid,
2092				  new_isec->sclass,
2093				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2094		if (rc)
2095			return rc;
2096	}
2097
2098	return 0;
2099}
2100
2101/* Check whether a task can perform a filesystem operation. */
2102static int superblock_has_perm(const struct cred *cred,
2103			       struct super_block *sb,
2104			       u32 perms,
2105			       struct common_audit_data *ad)
2106{
2107	struct superblock_security_struct *sbsec;
2108	u32 sid = cred_sid(cred);
2109
2110	sbsec = sb->s_security;
2111	return avc_has_perm(&selinux_state,
2112			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2113}
2114
2115/* Convert a Linux mode and permission mask to an access vector. */
2116static inline u32 file_mask_to_av(int mode, int mask)
2117{
2118	u32 av = 0;
2119
2120	if (!S_ISDIR(mode)) {
2121		if (mask & MAY_EXEC)
2122			av |= FILE__EXECUTE;
2123		if (mask & MAY_READ)
2124			av |= FILE__READ;
2125
2126		if (mask & MAY_APPEND)
2127			av |= FILE__APPEND;
2128		else if (mask & MAY_WRITE)
2129			av |= FILE__WRITE;
2130
2131	} else {
2132		if (mask & MAY_EXEC)
2133			av |= DIR__SEARCH;
2134		if (mask & MAY_WRITE)
2135			av |= DIR__WRITE;
2136		if (mask & MAY_READ)
2137			av |= DIR__READ;
2138	}
2139
2140	return av;
2141}
2142
2143/* Convert a Linux file to an access vector. */
2144static inline u32 file_to_av(struct file *file)
2145{
2146	u32 av = 0;
2147
2148	if (file->f_mode & FMODE_READ)
2149		av |= FILE__READ;
2150	if (file->f_mode & FMODE_WRITE) {
2151		if (file->f_flags & O_APPEND)
2152			av |= FILE__APPEND;
2153		else
2154			av |= FILE__WRITE;
2155	}
2156	if (!av) {
2157		/*
2158		 * Special file opened with flags 3 for ioctl-only use.
2159		 */
2160		av = FILE__IOCTL;
2161	}
2162
2163	return av;
2164}
2165
2166/*
2167 * Convert a file to an access vector and include the correct open
2168 * open permission.
2169 */
2170static inline u32 open_file_to_av(struct file *file)
2171{
2172	u32 av = file_to_av(file);
2173	struct inode *inode = file_inode(file);
2174
2175	if (selinux_policycap_openperm() &&
2176	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2177		av |= FILE__OPEN;
2178
2179	return av;
2180}
2181
2182/* Hook functions begin here. */
2183
2184static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2185{
2186	u32 mysid = current_sid();
2187	u32 mgrsid = task_sid(mgr);
2188
2189	return avc_has_perm(&selinux_state,
2190			    mysid, mgrsid, SECCLASS_BINDER,
2191			    BINDER__SET_CONTEXT_MGR, NULL);
2192}
2193
2194static int selinux_binder_transaction(struct task_struct *from,
2195				      struct task_struct *to)
2196{
2197	u32 mysid = current_sid();
2198	u32 fromsid = task_sid(from);
2199	u32 tosid = task_sid(to);
2200	int rc;
2201
2202	if (mysid != fromsid) {
2203		rc = avc_has_perm(&selinux_state,
2204				  mysid, fromsid, SECCLASS_BINDER,
2205				  BINDER__IMPERSONATE, NULL);
2206		if (rc)
2207			return rc;
2208	}
2209
2210	return avc_has_perm(&selinux_state,
2211			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2212			    NULL);
2213}
2214
2215static int selinux_binder_transfer_binder(struct task_struct *from,
2216					  struct task_struct *to)
2217{
2218	u32 fromsid = task_sid(from);
2219	u32 tosid = task_sid(to);
2220
2221	return avc_has_perm(&selinux_state,
2222			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2223			    NULL);
2224}
2225
2226static int selinux_binder_transfer_file(struct task_struct *from,
2227					struct task_struct *to,
2228					struct file *file)
2229{
2230	u32 sid = task_sid(to);
2231	struct file_security_struct *fsec = file->f_security;
2232	struct dentry *dentry = file->f_path.dentry;
2233	struct inode_security_struct *isec;
2234	struct common_audit_data ad;
2235	int rc;
2236
2237	ad.type = LSM_AUDIT_DATA_PATH;
2238	ad.u.path = file->f_path;
2239
2240	if (sid != fsec->sid) {
2241		rc = avc_has_perm(&selinux_state,
2242				  sid, fsec->sid,
2243				  SECCLASS_FD,
2244				  FD__USE,
2245				  &ad);
2246		if (rc)
2247			return rc;
2248	}
2249
2250#ifdef CONFIG_BPF_SYSCALL
2251	rc = bpf_fd_pass(file, sid);
2252	if (rc)
2253		return rc;
2254#endif
2255
2256	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2257		return 0;
2258
2259	isec = backing_inode_security(dentry);
2260	return avc_has_perm(&selinux_state,
2261			    sid, isec->sid, isec->sclass, file_to_av(file),
2262			    &ad);
2263}
2264
2265static int selinux_ptrace_access_check(struct task_struct *child,
2266				     unsigned int mode)
2267{
2268	u32 sid = current_sid();
2269	u32 csid = task_sid(child);
2270
2271	if (mode & PTRACE_MODE_READ)
2272		return avc_has_perm(&selinux_state,
2273				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2274
2275	return avc_has_perm(&selinux_state,
2276			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2277}
2278
2279static int selinux_ptrace_traceme(struct task_struct *parent)
2280{
2281	return avc_has_perm(&selinux_state,
2282			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2283			    PROCESS__PTRACE, NULL);
2284}
2285
2286static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2287			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2288{
2289	return avc_has_perm(&selinux_state,
2290			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2291			    PROCESS__GETCAP, NULL);
2292}
2293
2294static int selinux_capset(struct cred *new, const struct cred *old,
2295			  const kernel_cap_t *effective,
2296			  const kernel_cap_t *inheritable,
2297			  const kernel_cap_t *permitted)
2298{
2299	return avc_has_perm(&selinux_state,
2300			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2301			    PROCESS__SETCAP, NULL);
2302}
2303
2304/*
2305 * (This comment used to live with the selinux_task_setuid hook,
2306 * which was removed).
2307 *
2308 * Since setuid only affects the current process, and since the SELinux
2309 * controls are not based on the Linux identity attributes, SELinux does not
2310 * need to control this operation.  However, SELinux does control the use of
2311 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2312 */
2313
2314static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2315			   int cap, int audit)
2316{
2317	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2318}
2319
2320static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2321{
2322	const struct cred *cred = current_cred();
2323	int rc = 0;
2324
2325	if (!sb)
2326		return 0;
2327
2328	switch (cmds) {
2329	case Q_SYNC:
2330	case Q_QUOTAON:
2331	case Q_QUOTAOFF:
2332	case Q_SETINFO:
2333	case Q_SETQUOTA:
2334		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2335		break;
2336	case Q_GETFMT:
2337	case Q_GETINFO:
2338	case Q_GETQUOTA:
2339		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2340		break;
2341	default:
2342		rc = 0;  /* let the kernel handle invalid cmds */
2343		break;
2344	}
2345	return rc;
2346}
2347
2348static int selinux_quota_on(struct dentry *dentry)
2349{
2350	const struct cred *cred = current_cred();
2351
2352	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2353}
2354
2355static int selinux_syslog(int type)
2356{
2357	switch (type) {
2358	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2359	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2360		return avc_has_perm(&selinux_state,
2361				    current_sid(), SECINITSID_KERNEL,
2362				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2363	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2364	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2365	/* Set level of messages printed to console */
2366	case SYSLOG_ACTION_CONSOLE_LEVEL:
2367		return avc_has_perm(&selinux_state,
2368				    current_sid(), SECINITSID_KERNEL,
2369				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2370				    NULL);
2371	}
2372	/* All other syslog types */
2373	return avc_has_perm(&selinux_state,
2374			    current_sid(), SECINITSID_KERNEL,
2375			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2376}
2377
2378/*
2379 * Check that a process has enough memory to allocate a new virtual
2380 * mapping. 0 means there is enough memory for the allocation to
2381 * succeed and -ENOMEM implies there is not.
2382 *
2383 * Do not audit the selinux permission check, as this is applied to all
2384 * processes that allocate mappings.
2385 */
2386static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2387{
2388	int rc, cap_sys_admin = 0;
2389
2390	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2391				 SECURITY_CAP_NOAUDIT, true);
2392	if (rc == 0)
2393		cap_sys_admin = 1;
2394
2395	return cap_sys_admin;
2396}
2397
2398/* binprm security operations */
2399
2400static u32 ptrace_parent_sid(void)
2401{
2402	u32 sid = 0;
2403	struct task_struct *tracer;
2404
2405	rcu_read_lock();
2406	tracer = ptrace_parent(current);
2407	if (tracer)
2408		sid = task_sid(tracer);
2409	rcu_read_unlock();
2410
2411	return sid;
2412}
2413
2414static int check_nnp_nosuid(const struct linux_binprm *bprm,
2415			    const struct task_security_struct *old_tsec,
2416			    const struct task_security_struct *new_tsec)
2417{
2418	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2419	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2420	int rc;
2421	u32 av;
2422
2423	if (!nnp && !nosuid)
2424		return 0; /* neither NNP nor nosuid */
2425
2426	if (new_tsec->sid == old_tsec->sid)
2427		return 0; /* No change in credentials */
2428
2429	/*
2430	 * If the policy enables the nnp_nosuid_transition policy capability,
2431	 * then we permit transitions under NNP or nosuid if the
2432	 * policy allows the corresponding permission between
2433	 * the old and new contexts.
2434	 */
2435	if (selinux_policycap_nnp_nosuid_transition()) {
2436		av = 0;
2437		if (nnp)
2438			av |= PROCESS2__NNP_TRANSITION;
2439		if (nosuid)
2440			av |= PROCESS2__NOSUID_TRANSITION;
2441		rc = avc_has_perm(&selinux_state,
2442				  old_tsec->sid, new_tsec->sid,
2443				  SECCLASS_PROCESS2, av, NULL);
2444		if (!rc)
2445			return 0;
2446	}
2447
2448	/*
2449	 * We also permit NNP or nosuid transitions to bounded SIDs,
2450	 * i.e. SIDs that are guaranteed to only be allowed a subset
2451	 * of the permissions of the current SID.
2452	 */
2453	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2454					 new_tsec->sid);
2455	if (!rc)
2456		return 0;
2457
2458	/*
2459	 * On failure, preserve the errno values for NNP vs nosuid.
2460	 * NNP:  Operation not permitted for caller.
2461	 * nosuid:  Permission denied to file.
2462	 */
2463	if (nnp)
2464		return -EPERM;
2465	return -EACCES;
2466}
2467
2468static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2469{
2470	const struct task_security_struct *old_tsec;
2471	struct task_security_struct *new_tsec;
2472	struct inode_security_struct *isec;
2473	struct common_audit_data ad;
2474	struct inode *inode = file_inode(bprm->file);
2475	int rc;
2476
2477	/* SELinux context only depends on initial program or script and not
2478	 * the script interpreter */
2479	if (bprm->called_set_creds)
2480		return 0;
2481
2482	old_tsec = current_security();
2483	new_tsec = bprm->cred->security;
2484	isec = inode_security(inode);
2485
2486	/* Default to the current task SID. */
2487	new_tsec->sid = old_tsec->sid;
2488	new_tsec->osid = old_tsec->sid;
2489
2490	/* Reset fs, key, and sock SIDs on execve. */
2491	new_tsec->create_sid = 0;
2492	new_tsec->keycreate_sid = 0;
2493	new_tsec->sockcreate_sid = 0;
2494
2495	if (old_tsec->exec_sid) {
2496		new_tsec->sid = old_tsec->exec_sid;
2497		/* Reset exec SID on execve. */
2498		new_tsec->exec_sid = 0;
2499
2500		/* Fail on NNP or nosuid if not an allowed transition. */
2501		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2502		if (rc)
2503			return rc;
2504	} else {
2505		/* Check for a default transition on this program. */
2506		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2507					     isec->sid, SECCLASS_PROCESS, NULL,
2508					     &new_tsec->sid);
2509		if (rc)
2510			return rc;
2511
2512		/*
2513		 * Fallback to old SID on NNP or nosuid if not an allowed
2514		 * transition.
2515		 */
2516		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2517		if (rc)
2518			new_tsec->sid = old_tsec->sid;
2519	}
2520
2521	ad.type = LSM_AUDIT_DATA_FILE;
2522	ad.u.file = bprm->file;
2523
2524	if (new_tsec->sid == old_tsec->sid) {
2525		rc = avc_has_perm(&selinux_state,
2526				  old_tsec->sid, isec->sid,
2527				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2528		if (rc)
2529			return rc;
2530	} else {
2531		/* Check permissions for the transition. */
2532		rc = avc_has_perm(&selinux_state,
2533				  old_tsec->sid, new_tsec->sid,
2534				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2535		if (rc)
2536			return rc;
2537
2538		rc = avc_has_perm(&selinux_state,
2539				  new_tsec->sid, isec->sid,
2540				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2541		if (rc)
2542			return rc;
2543
2544		/* Check for shared state */
2545		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2546			rc = avc_has_perm(&selinux_state,
2547					  old_tsec->sid, new_tsec->sid,
2548					  SECCLASS_PROCESS, PROCESS__SHARE,
2549					  NULL);
2550			if (rc)
2551				return -EPERM;
2552		}
2553
2554		/* Make sure that anyone attempting to ptrace over a task that
2555		 * changes its SID has the appropriate permit */
2556		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2557			u32 ptsid = ptrace_parent_sid();
2558			if (ptsid != 0) {
2559				rc = avc_has_perm(&selinux_state,
2560						  ptsid, new_tsec->sid,
2561						  SECCLASS_PROCESS,
2562						  PROCESS__PTRACE, NULL);
2563				if (rc)
2564					return -EPERM;
2565			}
2566		}
2567
2568		/* Clear any possibly unsafe personality bits on exec: */
2569		bprm->per_clear |= PER_CLEAR_ON_SETID;
2570
2571		/* Enable secure mode for SIDs transitions unless
2572		   the noatsecure permission is granted between
2573		   the two SIDs, i.e. ahp returns 0. */
2574		rc = avc_has_perm(&selinux_state,
2575				  old_tsec->sid, new_tsec->sid,
2576				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2577				  NULL);
2578		bprm->secureexec |= !!rc;
2579	}
2580
2581	return 0;
2582}
2583
2584static int match_file(const void *p, struct file *file, unsigned fd)
2585{
2586	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2587}
2588
2589/* Derived from fs/exec.c:flush_old_files. */
2590static inline void flush_unauthorized_files(const struct cred *cred,
2591					    struct files_struct *files)
2592{
2593	struct file *file, *devnull = NULL;
2594	struct tty_struct *tty;
2595	int drop_tty = 0;
2596	unsigned n;
2597
2598	tty = get_current_tty();
2599	if (tty) {
2600		spin_lock(&tty->files_lock);
2601		if (!list_empty(&tty->tty_files)) {
2602			struct tty_file_private *file_priv;
2603
2604			/* Revalidate access to controlling tty.
2605			   Use file_path_has_perm on the tty path directly
2606			   rather than using file_has_perm, as this particular
2607			   open file may belong to another process and we are
2608			   only interested in the inode-based check here. */
2609			file_priv = list_first_entry(&tty->tty_files,
2610						struct tty_file_private, list);
2611			file = file_priv->file;
2612			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2613				drop_tty = 1;
2614		}
2615		spin_unlock(&tty->files_lock);
2616		tty_kref_put(tty);
2617	}
2618	/* Reset controlling tty. */
2619	if (drop_tty)
2620		no_tty();
2621
2622	/* Revalidate access to inherited open files. */
2623	n = iterate_fd(files, 0, match_file, cred);
2624	if (!n) /* none found? */
2625		return;
2626
2627	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2628	if (IS_ERR(devnull))
2629		devnull = NULL;
2630	/* replace all the matching ones with this */
2631	do {
2632		replace_fd(n - 1, devnull, 0);
2633	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2634	if (devnull)
2635		fput(devnull);
2636}
2637
2638/*
2639 * Prepare a process for imminent new credential changes due to exec
2640 */
2641static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2642{
2643	struct task_security_struct *new_tsec;
2644	struct rlimit *rlim, *initrlim;
2645	int rc, i;
2646
2647	new_tsec = bprm->cred->security;
2648	if (new_tsec->sid == new_tsec->osid)
2649		return;
2650
2651	/* Close files for which the new task SID is not authorized. */
2652	flush_unauthorized_files(bprm->cred, current->files);
2653
2654	/* Always clear parent death signal on SID transitions. */
2655	current->pdeath_signal = 0;
2656
2657	/* Check whether the new SID can inherit resource limits from the old
2658	 * SID.  If not, reset all soft limits to the lower of the current
2659	 * task's hard limit and the init task's soft limit.
2660	 *
2661	 * Note that the setting of hard limits (even to lower them) can be
2662	 * controlled by the setrlimit check.  The inclusion of the init task's
2663	 * soft limit into the computation is to avoid resetting soft limits
2664	 * higher than the default soft limit for cases where the default is
2665	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2666	 */
2667	rc = avc_has_perm(&selinux_state,
2668			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2669			  PROCESS__RLIMITINH, NULL);
2670	if (rc) {
2671		/* protect against do_prlimit() */
2672		task_lock(current);
2673		for (i = 0; i < RLIM_NLIMITS; i++) {
2674			rlim = current->signal->rlim + i;
2675			initrlim = init_task.signal->rlim + i;
2676			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2677		}
2678		task_unlock(current);
2679		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2680			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2681	}
2682}
2683
2684/*
2685 * Clean up the process immediately after the installation of new credentials
2686 * due to exec
2687 */
2688static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2689{
2690	const struct task_security_struct *tsec = current_security();
2691	struct itimerval itimer;
2692	u32 osid, sid;
2693	int rc, i;
2694
2695	osid = tsec->osid;
2696	sid = tsec->sid;
2697
2698	if (sid == osid)
2699		return;
2700
2701	/* Check whether the new SID can inherit signal state from the old SID.
2702	 * If not, clear itimers to avoid subsequent signal generation and
2703	 * flush and unblock signals.
2704	 *
2705	 * This must occur _after_ the task SID has been updated so that any
2706	 * kill done after the flush will be checked against the new SID.
2707	 */
2708	rc = avc_has_perm(&selinux_state,
2709			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2710	if (rc) {
2711		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2712			memset(&itimer, 0, sizeof itimer);
2713			for (i = 0; i < 3; i++)
2714				do_setitimer(i, &itimer, NULL);
2715		}
2716		spin_lock_irq(&current->sighand->siglock);
2717		if (!fatal_signal_pending(current)) {
2718			flush_sigqueue(&current->pending);
2719			flush_sigqueue(&current->signal->shared_pending);
2720			flush_signal_handlers(current, 1);
2721			sigemptyset(&current->blocked);
2722			recalc_sigpending();
2723		}
2724		spin_unlock_irq(&current->sighand->siglock);
2725	}
2726
2727	/* Wake up the parent if it is waiting so that it can recheck
2728	 * wait permission to the new task SID. */
2729	read_lock(&tasklist_lock);
2730	__wake_up_parent(current, current->real_parent);
2731	read_unlock(&tasklist_lock);
2732}
2733
2734/* superblock security operations */
2735
2736static int selinux_sb_alloc_security(struct super_block *sb)
2737{
2738	return superblock_alloc_security(sb);
2739}
2740
2741static void selinux_sb_free_security(struct super_block *sb)
2742{
2743	superblock_free_security(sb);
2744}
2745
2746static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2747{
2748	if (plen > olen)
2749		return 0;
 
2750
2751	return !memcmp(prefix, option, plen);
 
 
 
 
 
 
2752}
2753
2754static inline int selinux_option(char *option, int len)
2755{
2756	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2757		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2758		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2759		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2760		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2761}
2762
2763static inline void take_option(char **to, char *from, int *first, int len)
2764{
2765	if (!*first) {
2766		**to = ',';
2767		*to += 1;
2768	} else
2769		*first = 0;
2770	memcpy(*to, from, len);
2771	*to += len;
2772}
2773
2774static inline void take_selinux_option(char **to, char *from, int *first,
2775				       int len)
2776{
2777	int current_size = 0;
2778
2779	if (!*first) {
2780		**to = '|';
2781		*to += 1;
2782	} else
2783		*first = 0;
2784
2785	while (current_size < len) {
2786		if (*from != '"') {
2787			**to = *from;
2788			*to += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2789		}
2790		from += 1;
2791		current_size += 1;
 
2792	}
2793}
2794
2795static int selinux_sb_copy_data(char *orig, char *copy)
2796{
2797	int fnosec, fsec, rc = 0;
2798	char *in_save, *in_curr, *in_end;
2799	char *sec_curr, *nosec_save, *nosec;
2800	int open_quote = 0;
2801
2802	in_curr = orig;
2803	sec_curr = copy;
2804
2805	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2806	if (!nosec) {
2807		rc = -ENOMEM;
2808		goto out;
2809	}
2810
2811	nosec_save = nosec;
2812	fnosec = fsec = 1;
2813	in_save = in_end = orig;
2814
2815	do {
2816		if (*in_end == '"')
2817			open_quote = !open_quote;
2818		if ((*in_end == ',' && open_quote == 0) ||
2819				*in_end == '\0') {
2820			int len = in_end - in_curr;
2821
2822			if (selinux_option(in_curr, len))
2823				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2824			else
2825				take_option(&nosec, in_curr, &fnosec, len);
2826
2827			in_curr = in_end + 1;
2828		}
2829	} while (*in_end++);
2830
2831	strcpy(in_save, nosec_save);
2832	free_page((unsigned long)nosec_save);
2833out:
2834	return rc;
2835}
2836
2837static int selinux_sb_remount(struct super_block *sb, void *data)
2838{
2839	int rc, i, *flags;
2840	struct security_mnt_opts opts;
2841	char *secdata, **mount_options;
2842	struct superblock_security_struct *sbsec = sb->s_security;
 
 
2843
2844	if (!(sbsec->flags & SE_SBINITIALIZED))
2845		return 0;
2846
2847	if (!data)
2848		return 0;
2849
2850	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2851		return 0;
2852
2853	security_init_mnt_opts(&opts);
2854	secdata = alloc_secdata();
2855	if (!secdata)
2856		return -ENOMEM;
2857	rc = selinux_sb_copy_data(data, secdata);
2858	if (rc)
2859		goto out_free_secdata;
2860
2861	rc = selinux_parse_opts_str(secdata, &opts);
2862	if (rc)
2863		goto out_free_secdata;
2864
2865	mount_options = opts.mnt_opts;
2866	flags = opts.mnt_opts_flags;
2867
2868	for (i = 0; i < opts.num_mnt_opts; i++) {
2869		u32 sid;
2870
2871		if (flags[i] == SBLABEL_MNT)
2872			continue;
2873		rc = security_context_str_to_sid(&selinux_state,
2874						 mount_options[i], &sid,
2875						 GFP_KERNEL);
2876		if (rc) {
2877			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2878			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2879			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2880			goto out_free_opts;
2881		}
2882		rc = -EINVAL;
2883		switch (flags[i]) {
2884		case FSCONTEXT_MNT:
2885			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2886				goto out_bad_option;
2887			break;
2888		case CONTEXT_MNT:
2889			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2890				goto out_bad_option;
2891			break;
2892		case ROOTCONTEXT_MNT: {
2893			struct inode_security_struct *root_isec;
2894			root_isec = backing_inode_security(sb->s_root);
2895
2896			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2897				goto out_bad_option;
2898			break;
2899		}
2900		case DEFCONTEXT_MNT:
2901			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2902				goto out_bad_option;
2903			break;
2904		default:
2905			goto out_free_opts;
2906		}
2907	}
 
2908
2909	rc = 0;
2910out_free_opts:
2911	security_free_mnt_opts(&opts);
2912out_free_secdata:
2913	free_secdata(secdata);
2914	return rc;
2915out_bad_option:
2916	printk(KERN_WARNING "SELinux: unable to change security options "
2917	       "during remount (dev %s, type=%s)\n", sb->s_id,
2918	       sb->s_type->name);
2919	goto out_free_opts;
2920}
2921
2922static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2923{
2924	const struct cred *cred = current_cred();
2925	struct common_audit_data ad;
2926	int rc;
2927
2928	rc = superblock_doinit(sb, data);
2929	if (rc)
2930		return rc;
2931
2932	/* Allow all mounts performed by the kernel */
2933	if (flags & MS_KERNMOUNT)
2934		return 0;
2935
2936	ad.type = LSM_AUDIT_DATA_DENTRY;
2937	ad.u.dentry = sb->s_root;
2938	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2939}
2940
2941static int selinux_sb_statfs(struct dentry *dentry)
2942{
2943	const struct cred *cred = current_cred();
2944	struct common_audit_data ad;
2945
2946	ad.type = LSM_AUDIT_DATA_DENTRY;
2947	ad.u.dentry = dentry->d_sb->s_root;
2948	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2949}
2950
2951static int selinux_mount(const char *dev_name,
2952			 const struct path *path,
2953			 const char *type,
2954			 unsigned long flags,
2955			 void *data)
2956{
2957	const struct cred *cred = current_cred();
2958
2959	if (flags & MS_REMOUNT)
2960		return superblock_has_perm(cred, path->dentry->d_sb,
2961					   FILESYSTEM__REMOUNT, NULL);
2962	else
2963		return path_has_perm(cred, path, FILE__MOUNTON);
2964}
2965
2966static int selinux_umount(struct vfsmount *mnt, int flags)
2967{
2968	const struct cred *cred = current_cred();
2969
2970	return superblock_has_perm(cred, mnt->mnt_sb,
2971				   FILESYSTEM__UNMOUNT, NULL);
2972}
2973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2974/* inode security operations */
2975
2976static int selinux_inode_alloc_security(struct inode *inode)
2977{
2978	return inode_alloc_security(inode);
2979}
2980
2981static void selinux_inode_free_security(struct inode *inode)
2982{
2983	inode_free_security(inode);
2984}
2985
2986static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2987					const struct qstr *name, void **ctx,
2988					u32 *ctxlen)
2989{
2990	u32 newsid;
2991	int rc;
2992
2993	rc = selinux_determine_inode_label(current_security(),
2994					   d_inode(dentry->d_parent), name,
2995					   inode_mode_to_security_class(mode),
2996					   &newsid);
2997	if (rc)
2998		return rc;
2999
3000	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
3001				       ctxlen);
3002}
3003
3004static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
3005					  struct qstr *name,
3006					  const struct cred *old,
3007					  struct cred *new)
3008{
3009	u32 newsid;
3010	int rc;
3011	struct task_security_struct *tsec;
3012
3013	rc = selinux_determine_inode_label(old->security,
3014					   d_inode(dentry->d_parent), name,
3015					   inode_mode_to_security_class(mode),
3016					   &newsid);
3017	if (rc)
3018		return rc;
3019
3020	tsec = new->security;
3021	tsec->create_sid = newsid;
3022	return 0;
3023}
3024
3025static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3026				       const struct qstr *qstr,
3027				       const char **name,
3028				       void **value, size_t *len)
3029{
3030	const struct task_security_struct *tsec = current_security();
3031	struct superblock_security_struct *sbsec;
3032	u32 newsid, clen;
3033	int rc;
3034	char *context;
3035
3036	sbsec = dir->i_sb->s_security;
3037
3038	newsid = tsec->create_sid;
3039
3040	rc = selinux_determine_inode_label(current_security(),
3041		dir, qstr,
3042		inode_mode_to_security_class(inode->i_mode),
3043		&newsid);
3044	if (rc)
3045		return rc;
3046
3047	/* Possibly defer initialization to selinux_complete_init. */
3048	if (sbsec->flags & SE_SBINITIALIZED) {
3049		struct inode_security_struct *isec = inode->i_security;
3050		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3051		isec->sid = newsid;
3052		isec->initialized = LABEL_INITIALIZED;
3053	}
3054
3055	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3056		return -EOPNOTSUPP;
3057
3058	if (name)
3059		*name = XATTR_SELINUX_SUFFIX;
3060
3061	if (value && len) {
3062		rc = security_sid_to_context_force(&selinux_state, newsid,
3063						   &context, &clen);
3064		if (rc)
3065			return rc;
3066		*value = context;
3067		*len = clen;
3068	}
3069
3070	return 0;
3071}
3072
3073static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3074{
3075	return may_create(dir, dentry, SECCLASS_FILE);
3076}
3077
3078static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3079{
3080	return may_link(dir, old_dentry, MAY_LINK);
3081}
3082
3083static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3084{
3085	return may_link(dir, dentry, MAY_UNLINK);
3086}
3087
3088static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3089{
3090	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3091}
3092
3093static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3094{
3095	return may_create(dir, dentry, SECCLASS_DIR);
3096}
3097
3098static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3099{
3100	return may_link(dir, dentry, MAY_RMDIR);
3101}
3102
3103static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3104{
3105	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3106}
3107
3108static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3109				struct inode *new_inode, struct dentry *new_dentry)
3110{
3111	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3112}
3113
3114static int selinux_inode_readlink(struct dentry *dentry)
3115{
3116	const struct cred *cred = current_cred();
3117
3118	return dentry_has_perm(cred, dentry, FILE__READ);
3119}
3120
3121static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3122				     bool rcu)
3123{
3124	const struct cred *cred = current_cred();
3125	struct common_audit_data ad;
3126	struct inode_security_struct *isec;
3127	u32 sid;
3128
3129	validate_creds(cred);
3130
3131	ad.type = LSM_AUDIT_DATA_DENTRY;
3132	ad.u.dentry = dentry;
3133	sid = cred_sid(cred);
3134	isec = inode_security_rcu(inode, rcu);
3135	if (IS_ERR(isec))
3136		return PTR_ERR(isec);
3137
3138	return avc_has_perm_flags(&selinux_state,
3139				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
3140				  rcu ? MAY_NOT_BLOCK : 0);
3141}
3142
3143static noinline int audit_inode_permission(struct inode *inode,
3144					   u32 perms, u32 audited, u32 denied,
3145					   int result,
3146					   unsigned flags)
3147{
3148	struct common_audit_data ad;
3149	struct inode_security_struct *isec = inode->i_security;
3150	int rc;
3151
3152	ad.type = LSM_AUDIT_DATA_INODE;
3153	ad.u.inode = inode;
3154
3155	rc = slow_avc_audit(&selinux_state,
3156			    current_sid(), isec->sid, isec->sclass, perms,
3157			    audited, denied, result, &ad, flags);
3158	if (rc)
3159		return rc;
3160	return 0;
3161}
3162
3163static int selinux_inode_permission(struct inode *inode, int mask)
3164{
3165	const struct cred *cred = current_cred();
3166	u32 perms;
3167	bool from_access;
3168	unsigned flags = mask & MAY_NOT_BLOCK;
3169	struct inode_security_struct *isec;
3170	u32 sid;
3171	struct av_decision avd;
3172	int rc, rc2;
3173	u32 audited, denied;
3174
3175	from_access = mask & MAY_ACCESS;
3176	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3177
3178	/* No permission to check.  Existence test. */
3179	if (!mask)
3180		return 0;
3181
3182	validate_creds(cred);
3183
3184	if (unlikely(IS_PRIVATE(inode)))
3185		return 0;
3186
3187	perms = file_mask_to_av(inode->i_mode, mask);
3188
3189	sid = cred_sid(cred);
3190	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3191	if (IS_ERR(isec))
3192		return PTR_ERR(isec);
3193
3194	rc = avc_has_perm_noaudit(&selinux_state,
3195				  sid, isec->sid, isec->sclass, perms, 0, &avd);
 
 
3196	audited = avc_audit_required(perms, &avd, rc,
3197				     from_access ? FILE__AUDIT_ACCESS : 0,
3198				     &denied);
3199	if (likely(!audited))
3200		return rc;
3201
3202	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3203	if (rc2)
3204		return rc2;
3205	return rc;
3206}
3207
3208static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3209{
3210	const struct cred *cred = current_cred();
3211	struct inode *inode = d_backing_inode(dentry);
3212	unsigned int ia_valid = iattr->ia_valid;
3213	__u32 av = FILE__WRITE;
3214
3215	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3216	if (ia_valid & ATTR_FORCE) {
3217		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3218			      ATTR_FORCE);
3219		if (!ia_valid)
3220			return 0;
3221	}
3222
3223	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3224			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3225		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3226
3227	if (selinux_policycap_openperm() &&
3228	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3229	    (ia_valid & ATTR_SIZE) &&
3230	    !(ia_valid & ATTR_FILE))
3231		av |= FILE__OPEN;
3232
3233	return dentry_has_perm(cred, dentry, av);
3234}
3235
3236static int selinux_inode_getattr(const struct path *path)
3237{
3238	return path_has_perm(current_cred(), path, FILE__GETATTR);
3239}
3240
3241static bool has_cap_mac_admin(bool audit)
3242{
3243	const struct cred *cred = current_cred();
3244	int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3245
3246	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3247		return false;
3248	if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3249		return false;
3250	return true;
3251}
3252
3253static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3254				  const void *value, size_t size, int flags)
3255{
3256	struct inode *inode = d_backing_inode(dentry);
3257	struct inode_security_struct *isec;
3258	struct superblock_security_struct *sbsec;
3259	struct common_audit_data ad;
3260	u32 newsid, sid = current_sid();
3261	int rc = 0;
3262
3263	if (strcmp(name, XATTR_NAME_SELINUX)) {
3264		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3265		if (rc)
3266			return rc;
3267
3268		/* Not an attribute we recognize, so just check the
3269		   ordinary setattr permission. */
3270		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3271	}
3272
3273	sbsec = inode->i_sb->s_security;
3274	if (!(sbsec->flags & SBLABEL_MNT))
3275		return -EOPNOTSUPP;
3276
3277	if (!inode_owner_or_capable(inode))
3278		return -EPERM;
3279
3280	ad.type = LSM_AUDIT_DATA_DENTRY;
3281	ad.u.dentry = dentry;
3282
3283	isec = backing_inode_security(dentry);
3284	rc = avc_has_perm(&selinux_state,
3285			  sid, isec->sid, isec->sclass,
3286			  FILE__RELABELFROM, &ad);
3287	if (rc)
3288		return rc;
3289
3290	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3291				     GFP_KERNEL);
3292	if (rc == -EINVAL) {
3293		if (!has_cap_mac_admin(true)) {
3294			struct audit_buffer *ab;
3295			size_t audit_size;
3296
3297			/* We strip a nul only if it is at the end, otherwise the
3298			 * context contains a nul and we should audit that */
3299			if (value) {
3300				const char *str = value;
3301
3302				if (str[size - 1] == '\0')
3303					audit_size = size - 1;
3304				else
3305					audit_size = size;
3306			} else {
3307				audit_size = 0;
3308			}
3309			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
3310			audit_log_format(ab, "op=setxattr invalid_context=");
3311			audit_log_n_untrustedstring(ab, value, audit_size);
3312			audit_log_end(ab);
3313
3314			return rc;
3315		}
3316		rc = security_context_to_sid_force(&selinux_state, value,
3317						   size, &newsid);
3318	}
3319	if (rc)
3320		return rc;
3321
3322	rc = avc_has_perm(&selinux_state,
3323			  sid, newsid, isec->sclass,
3324			  FILE__RELABELTO, &ad);
3325	if (rc)
3326		return rc;
3327
3328	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3329					  sid, isec->sclass);
3330	if (rc)
3331		return rc;
3332
3333	return avc_has_perm(&selinux_state,
3334			    newsid,
3335			    sbsec->sid,
3336			    SECCLASS_FILESYSTEM,
3337			    FILESYSTEM__ASSOCIATE,
3338			    &ad);
3339}
3340
3341static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3342					const void *value, size_t size,
3343					int flags)
3344{
3345	struct inode *inode = d_backing_inode(dentry);
3346	struct inode_security_struct *isec;
3347	u32 newsid;
3348	int rc;
3349
3350	if (strcmp(name, XATTR_NAME_SELINUX)) {
3351		/* Not an attribute we recognize, so nothing to do. */
3352		return;
3353	}
3354
3355	rc = security_context_to_sid_force(&selinux_state, value, size,
3356					   &newsid);
3357	if (rc) {
3358		printk(KERN_ERR "SELinux:  unable to map context to SID"
3359		       "for (%s, %lu), rc=%d\n",
3360		       inode->i_sb->s_id, inode->i_ino, -rc);
3361		return;
3362	}
3363
3364	isec = backing_inode_security(dentry);
3365	spin_lock(&isec->lock);
3366	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3367	isec->sid = newsid;
3368	isec->initialized = LABEL_INITIALIZED;
3369	spin_unlock(&isec->lock);
3370
3371	return;
3372}
3373
3374static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3375{
3376	const struct cred *cred = current_cred();
3377
3378	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3379}
3380
3381static int selinux_inode_listxattr(struct dentry *dentry)
3382{
3383	const struct cred *cred = current_cred();
3384
3385	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3386}
3387
3388static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3389{
3390	if (strcmp(name, XATTR_NAME_SELINUX)) {
3391		int rc = cap_inode_removexattr(dentry, name);
3392		if (rc)
3393			return rc;
3394
3395		/* Not an attribute we recognize, so just check the
3396		   ordinary setattr permission. */
3397		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3398	}
3399
3400	/* No one is allowed to remove a SELinux security label.
3401	   You can change the label, but all data must be labeled. */
3402	return -EACCES;
3403}
3404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3405/*
3406 * Copy the inode security context value to the user.
3407 *
3408 * Permission check is handled by selinux_inode_getxattr hook.
3409 */
3410static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3411{
3412	u32 size;
3413	int error;
3414	char *context = NULL;
3415	struct inode_security_struct *isec;
3416
3417	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3418		return -EOPNOTSUPP;
3419
3420	/*
3421	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3422	 * value even if it is not defined by current policy; otherwise,
3423	 * use the in-core value under current policy.
3424	 * Use the non-auditing forms of the permission checks since
3425	 * getxattr may be called by unprivileged processes commonly
3426	 * and lack of permission just means that we fall back to the
3427	 * in-core context value, not a denial.
3428	 */
3429	isec = inode_security(inode);
3430	if (has_cap_mac_admin(false))
3431		error = security_sid_to_context_force(&selinux_state,
3432						      isec->sid, &context,
3433						      &size);
3434	else
3435		error = security_sid_to_context(&selinux_state, isec->sid,
3436						&context, &size);
3437	if (error)
3438		return error;
3439	error = size;
3440	if (alloc) {
3441		*buffer = context;
3442		goto out_nofree;
3443	}
3444	kfree(context);
3445out_nofree:
3446	return error;
3447}
3448
3449static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3450				     const void *value, size_t size, int flags)
3451{
3452	struct inode_security_struct *isec = inode_security_novalidate(inode);
 
3453	u32 newsid;
3454	int rc;
3455
3456	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3457		return -EOPNOTSUPP;
3458
 
 
 
3459	if (!value || !size)
3460		return -EACCES;
3461
3462	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3463				     GFP_KERNEL);
3464	if (rc)
3465		return rc;
3466
3467	spin_lock(&isec->lock);
3468	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3469	isec->sid = newsid;
3470	isec->initialized = LABEL_INITIALIZED;
3471	spin_unlock(&isec->lock);
3472	return 0;
3473}
3474
3475static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3476{
3477	const int len = sizeof(XATTR_NAME_SELINUX);
3478	if (buffer && len <= buffer_size)
3479		memcpy(buffer, XATTR_NAME_SELINUX, len);
3480	return len;
3481}
3482
3483static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3484{
3485	struct inode_security_struct *isec = inode_security_novalidate(inode);
3486	*secid = isec->sid;
3487}
3488
3489static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3490{
3491	u32 sid;
3492	struct task_security_struct *tsec;
3493	struct cred *new_creds = *new;
3494
3495	if (new_creds == NULL) {
3496		new_creds = prepare_creds();
3497		if (!new_creds)
3498			return -ENOMEM;
3499	}
3500
3501	tsec = new_creds->security;
3502	/* Get label from overlay inode and set it in create_sid */
3503	selinux_inode_getsecid(d_inode(src), &sid);
3504	tsec->create_sid = sid;
3505	*new = new_creds;
3506	return 0;
3507}
3508
3509static int selinux_inode_copy_up_xattr(const char *name)
3510{
3511	/* The copy_up hook above sets the initial context on an inode, but we
3512	 * don't then want to overwrite it by blindly copying all the lower
3513	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3514	 */
3515	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3516		return 1; /* Discard */
3517	/*
3518	 * Any other attribute apart from SELINUX is not claimed, supported
3519	 * by selinux.
3520	 */
3521	return -EOPNOTSUPP;
3522}
3523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3524/* file security operations */
3525
3526static int selinux_revalidate_file_permission(struct file *file, int mask)
3527{
3528	const struct cred *cred = current_cred();
3529	struct inode *inode = file_inode(file);
3530
3531	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3532	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3533		mask |= MAY_APPEND;
3534
3535	return file_has_perm(cred, file,
3536			     file_mask_to_av(inode->i_mode, mask));
3537}
3538
3539static int selinux_file_permission(struct file *file, int mask)
3540{
3541	struct inode *inode = file_inode(file);
3542	struct file_security_struct *fsec = file->f_security;
3543	struct inode_security_struct *isec;
3544	u32 sid = current_sid();
3545
3546	if (!mask)
3547		/* No permission to check.  Existence test. */
3548		return 0;
3549
3550	isec = inode_security(inode);
3551	if (sid == fsec->sid && fsec->isid == isec->sid &&
3552	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3553		/* No change since file_open check. */
3554		return 0;
3555
3556	return selinux_revalidate_file_permission(file, mask);
3557}
3558
3559static int selinux_file_alloc_security(struct file *file)
3560{
3561	return file_alloc_security(file);
3562}
3563
3564static void selinux_file_free_security(struct file *file)
3565{
3566	file_free_security(file);
3567}
3568
3569/*
3570 * Check whether a task has the ioctl permission and cmd
3571 * operation to an inode.
3572 */
3573static int ioctl_has_perm(const struct cred *cred, struct file *file,
3574		u32 requested, u16 cmd)
3575{
3576	struct common_audit_data ad;
3577	struct file_security_struct *fsec = file->f_security;
3578	struct inode *inode = file_inode(file);
3579	struct inode_security_struct *isec;
3580	struct lsm_ioctlop_audit ioctl;
3581	u32 ssid = cred_sid(cred);
3582	int rc;
3583	u8 driver = cmd >> 8;
3584	u8 xperm = cmd & 0xff;
3585
3586	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3587	ad.u.op = &ioctl;
3588	ad.u.op->cmd = cmd;
3589	ad.u.op->path = file->f_path;
3590
3591	if (ssid != fsec->sid) {
3592		rc = avc_has_perm(&selinux_state,
3593				  ssid, fsec->sid,
3594				SECCLASS_FD,
3595				FD__USE,
3596				&ad);
3597		if (rc)
3598			goto out;
3599	}
3600
3601	if (unlikely(IS_PRIVATE(inode)))
3602		return 0;
3603
3604	isec = inode_security(inode);
3605	rc = avc_has_extended_perms(&selinux_state,
3606				    ssid, isec->sid, isec->sclass,
3607				    requested, driver, xperm, &ad);
3608out:
3609	return rc;
3610}
3611
3612static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3613			      unsigned long arg)
3614{
3615	const struct cred *cred = current_cred();
3616	int error = 0;
3617
3618	switch (cmd) {
3619	case FIONREAD:
3620	/* fall through */
3621	case FIBMAP:
3622	/* fall through */
3623	case FIGETBSZ:
3624	/* fall through */
3625	case FS_IOC_GETFLAGS:
3626	/* fall through */
3627	case FS_IOC_GETVERSION:
3628		error = file_has_perm(cred, file, FILE__GETATTR);
3629		break;
3630
3631	case FS_IOC_SETFLAGS:
3632	/* fall through */
3633	case FS_IOC_SETVERSION:
3634		error = file_has_perm(cred, file, FILE__SETATTR);
3635		break;
3636
3637	/* sys_ioctl() checks */
3638	case FIONBIO:
3639	/* fall through */
3640	case FIOASYNC:
3641		error = file_has_perm(cred, file, 0);
3642		break;
3643
3644	case KDSKBENT:
3645	case KDSKBSENT:
3646		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3647					    SECURITY_CAP_AUDIT, true);
3648		break;
3649
3650	/* default case assumes that the command will go
3651	 * to the file's ioctl() function.
3652	 */
3653	default:
3654		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3655	}
3656	return error;
3657}
3658
3659static int default_noexec;
3660
3661static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3662{
3663	const struct cred *cred = current_cred();
3664	u32 sid = cred_sid(cred);
3665	int rc = 0;
3666
3667	if (default_noexec &&
3668	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3669				   (!shared && (prot & PROT_WRITE)))) {
3670		/*
3671		 * We are making executable an anonymous mapping or a
3672		 * private file mapping that will also be writable.
3673		 * This has an additional check.
3674		 */
3675		rc = avc_has_perm(&selinux_state,
3676				  sid, sid, SECCLASS_PROCESS,
3677				  PROCESS__EXECMEM, NULL);
3678		if (rc)
3679			goto error;
3680	}
3681
3682	if (file) {
3683		/* read access is always possible with a mapping */
3684		u32 av = FILE__READ;
3685
3686		/* write access only matters if the mapping is shared */
3687		if (shared && (prot & PROT_WRITE))
3688			av |= FILE__WRITE;
3689
3690		if (prot & PROT_EXEC)
3691			av |= FILE__EXECUTE;
3692
3693		return file_has_perm(cred, file, av);
3694	}
3695
3696error:
3697	return rc;
3698}
3699
3700static int selinux_mmap_addr(unsigned long addr)
3701{
3702	int rc = 0;
3703
3704	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3705		u32 sid = current_sid();
3706		rc = avc_has_perm(&selinux_state,
3707				  sid, sid, SECCLASS_MEMPROTECT,
3708				  MEMPROTECT__MMAP_ZERO, NULL);
3709	}
3710
3711	return rc;
3712}
3713
3714static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3715			     unsigned long prot, unsigned long flags)
3716{
3717	struct common_audit_data ad;
3718	int rc;
3719
3720	if (file) {
3721		ad.type = LSM_AUDIT_DATA_FILE;
3722		ad.u.file = file;
3723		rc = inode_has_perm(current_cred(), file_inode(file),
3724				    FILE__MAP, &ad);
3725		if (rc)
3726			return rc;
3727	}
3728
3729	if (selinux_state.checkreqprot)
3730		prot = reqprot;
3731
3732	return file_map_prot_check(file, prot,
3733				   (flags & MAP_TYPE) == MAP_SHARED);
3734}
3735
3736static int selinux_file_mprotect(struct vm_area_struct *vma,
3737				 unsigned long reqprot,
3738				 unsigned long prot)
3739{
3740	const struct cred *cred = current_cred();
3741	u32 sid = cred_sid(cred);
3742
3743	if (selinux_state.checkreqprot)
3744		prot = reqprot;
3745
3746	if (default_noexec &&
3747	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3748		int rc = 0;
3749		if (vma->vm_start >= vma->vm_mm->start_brk &&
3750		    vma->vm_end <= vma->vm_mm->brk) {
3751			rc = avc_has_perm(&selinux_state,
3752					  sid, sid, SECCLASS_PROCESS,
3753					  PROCESS__EXECHEAP, NULL);
3754		} else if (!vma->vm_file &&
3755			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3756			     vma->vm_end >= vma->vm_mm->start_stack) ||
3757			    vma_is_stack_for_current(vma))) {
3758			rc = avc_has_perm(&selinux_state,
3759					  sid, sid, SECCLASS_PROCESS,
3760					  PROCESS__EXECSTACK, NULL);
3761		} else if (vma->vm_file && vma->anon_vma) {
3762			/*
3763			 * We are making executable a file mapping that has
3764			 * had some COW done. Since pages might have been
3765			 * written, check ability to execute the possibly
3766			 * modified content.  This typically should only
3767			 * occur for text relocations.
3768			 */
3769			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3770		}
3771		if (rc)
3772			return rc;
3773	}
3774
3775	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3776}
3777
3778static int selinux_file_lock(struct file *file, unsigned int cmd)
3779{
3780	const struct cred *cred = current_cred();
3781
3782	return file_has_perm(cred, file, FILE__LOCK);
3783}
3784
3785static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3786			      unsigned long arg)
3787{
3788	const struct cred *cred = current_cred();
3789	int err = 0;
3790
3791	switch (cmd) {
3792	case F_SETFL:
3793		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3794			err = file_has_perm(cred, file, FILE__WRITE);
3795			break;
3796		}
3797		/* fall through */
3798	case F_SETOWN:
3799	case F_SETSIG:
3800	case F_GETFL:
3801	case F_GETOWN:
3802	case F_GETSIG:
3803	case F_GETOWNER_UIDS:
3804		/* Just check FD__USE permission */
3805		err = file_has_perm(cred, file, 0);
3806		break;
3807	case F_GETLK:
3808	case F_SETLK:
3809	case F_SETLKW:
3810	case F_OFD_GETLK:
3811	case F_OFD_SETLK:
3812	case F_OFD_SETLKW:
3813#if BITS_PER_LONG == 32
3814	case F_GETLK64:
3815	case F_SETLK64:
3816	case F_SETLKW64:
3817#endif
3818		err = file_has_perm(cred, file, FILE__LOCK);
3819		break;
3820	}
3821
3822	return err;
3823}
3824
3825static void selinux_file_set_fowner(struct file *file)
3826{
3827	struct file_security_struct *fsec;
3828
3829	fsec = file->f_security;
3830	fsec->fown_sid = current_sid();
3831}
3832
3833static int selinux_file_send_sigiotask(struct task_struct *tsk,
3834				       struct fown_struct *fown, int signum)
3835{
3836	struct file *file;
3837	u32 sid = task_sid(tsk);
3838	u32 perm;
3839	struct file_security_struct *fsec;
3840
3841	/* struct fown_struct is never outside the context of a struct file */
3842	file = container_of(fown, struct file, f_owner);
3843
3844	fsec = file->f_security;
3845
3846	if (!signum)
3847		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3848	else
3849		perm = signal_to_av(signum);
3850
3851	return avc_has_perm(&selinux_state,
3852			    fsec->fown_sid, sid,
3853			    SECCLASS_PROCESS, perm, NULL);
3854}
3855
3856static int selinux_file_receive(struct file *file)
3857{
3858	const struct cred *cred = current_cred();
3859
3860	return file_has_perm(cred, file, file_to_av(file));
3861}
3862
3863static int selinux_file_open(struct file *file, const struct cred *cred)
3864{
3865	struct file_security_struct *fsec;
3866	struct inode_security_struct *isec;
3867
3868	fsec = file->f_security;
3869	isec = inode_security(file_inode(file));
3870	/*
3871	 * Save inode label and policy sequence number
3872	 * at open-time so that selinux_file_permission
3873	 * can determine whether revalidation is necessary.
3874	 * Task label is already saved in the file security
3875	 * struct as its SID.
3876	 */
3877	fsec->isid = isec->sid;
3878	fsec->pseqno = avc_policy_seqno(&selinux_state);
3879	/*
3880	 * Since the inode label or policy seqno may have changed
3881	 * between the selinux_inode_permission check and the saving
3882	 * of state above, recheck that access is still permitted.
3883	 * Otherwise, access might never be revalidated against the
3884	 * new inode label or new policy.
3885	 * This check is not redundant - do not remove.
3886	 */
3887	return file_path_has_perm(cred, file, open_file_to_av(file));
3888}
3889
3890/* task security operations */
3891
3892static int selinux_task_alloc(struct task_struct *task,
3893			      unsigned long clone_flags)
3894{
3895	u32 sid = current_sid();
3896
3897	return avc_has_perm(&selinux_state,
3898			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3899}
3900
3901/*
3902 * allocate the SELinux part of blank credentials
3903 */
3904static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3905{
3906	struct task_security_struct *tsec;
3907
3908	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3909	if (!tsec)
3910		return -ENOMEM;
3911
3912	cred->security = tsec;
3913	return 0;
3914}
3915
3916/*
3917 * detach and free the LSM part of a set of credentials
3918 */
3919static void selinux_cred_free(struct cred *cred)
3920{
3921	struct task_security_struct *tsec = cred->security;
3922
3923	/*
3924	 * cred->security == NULL if security_cred_alloc_blank() or
3925	 * security_prepare_creds() returned an error.
3926	 */
3927	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3928	cred->security = (void *) 0x7UL;
3929	kfree(tsec);
3930}
3931
3932/*
3933 * prepare a new set of credentials for modification
3934 */
3935static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3936				gfp_t gfp)
3937{
3938	const struct task_security_struct *old_tsec;
3939	struct task_security_struct *tsec;
3940
3941	old_tsec = old->security;
3942
3943	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3944	if (!tsec)
3945		return -ENOMEM;
3946
3947	new->security = tsec;
3948	return 0;
3949}
3950
3951/*
3952 * transfer the SELinux data to a blank set of creds
3953 */
3954static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3955{
3956	const struct task_security_struct *old_tsec = old->security;
3957	struct task_security_struct *tsec = new->security;
3958
3959	*tsec = *old_tsec;
3960}
3961
3962static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3963{
3964	*secid = cred_sid(c);
3965}
3966
3967/*
3968 * set the security data for a kernel service
3969 * - all the creation contexts are set to unlabelled
3970 */
3971static int selinux_kernel_act_as(struct cred *new, u32 secid)
3972{
3973	struct task_security_struct *tsec = new->security;
3974	u32 sid = current_sid();
3975	int ret;
3976
3977	ret = avc_has_perm(&selinux_state,
3978			   sid, secid,
3979			   SECCLASS_KERNEL_SERVICE,
3980			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3981			   NULL);
3982	if (ret == 0) {
3983		tsec->sid = secid;
3984		tsec->create_sid = 0;
3985		tsec->keycreate_sid = 0;
3986		tsec->sockcreate_sid = 0;
3987	}
3988	return ret;
3989}
3990
3991/*
3992 * set the file creation context in a security record to the same as the
3993 * objective context of the specified inode
3994 */
3995static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3996{
3997	struct inode_security_struct *isec = inode_security(inode);
3998	struct task_security_struct *tsec = new->security;
3999	u32 sid = current_sid();
4000	int ret;
4001
4002	ret = avc_has_perm(&selinux_state,
4003			   sid, isec->sid,
4004			   SECCLASS_KERNEL_SERVICE,
4005			   KERNEL_SERVICE__CREATE_FILES_AS,
4006			   NULL);
4007
4008	if (ret == 0)
4009		tsec->create_sid = isec->sid;
4010	return ret;
4011}
4012
4013static int selinux_kernel_module_request(char *kmod_name)
4014{
4015	struct common_audit_data ad;
4016
4017	ad.type = LSM_AUDIT_DATA_KMOD;
4018	ad.u.kmod_name = kmod_name;
4019
4020	return avc_has_perm(&selinux_state,
4021			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4022			    SYSTEM__MODULE_REQUEST, &ad);
4023}
4024
4025static int selinux_kernel_module_from_file(struct file *file)
4026{
4027	struct common_audit_data ad;
4028	struct inode_security_struct *isec;
4029	struct file_security_struct *fsec;
4030	u32 sid = current_sid();
4031	int rc;
4032
4033	/* init_module */
4034	if (file == NULL)
4035		return avc_has_perm(&selinux_state,
4036				    sid, sid, SECCLASS_SYSTEM,
4037					SYSTEM__MODULE_LOAD, NULL);
4038
4039	/* finit_module */
4040
4041	ad.type = LSM_AUDIT_DATA_FILE;
4042	ad.u.file = file;
4043
4044	fsec = file->f_security;
4045	if (sid != fsec->sid) {
4046		rc = avc_has_perm(&selinux_state,
4047				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4048		if (rc)
4049			return rc;
4050	}
4051
4052	isec = inode_security(file_inode(file));
4053	return avc_has_perm(&selinux_state,
4054			    sid, isec->sid, SECCLASS_SYSTEM,
4055				SYSTEM__MODULE_LOAD, &ad);
4056}
4057
4058static int selinux_kernel_read_file(struct file *file,
4059				    enum kernel_read_file_id id)
4060{
4061	int rc = 0;
4062
4063	switch (id) {
4064	case READING_MODULE:
4065		rc = selinux_kernel_module_from_file(file);
4066		break;
4067	default:
4068		break;
4069	}
4070
4071	return rc;
4072}
4073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4074static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4075{
4076	return avc_has_perm(&selinux_state,
4077			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4078			    PROCESS__SETPGID, NULL);
4079}
4080
4081static int selinux_task_getpgid(struct task_struct *p)
4082{
4083	return avc_has_perm(&selinux_state,
4084			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4085			    PROCESS__GETPGID, NULL);
4086}
4087
4088static int selinux_task_getsid(struct task_struct *p)
4089{
4090	return avc_has_perm(&selinux_state,
4091			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4092			    PROCESS__GETSESSION, NULL);
4093}
4094
4095static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4096{
4097	*secid = task_sid(p);
4098}
4099
4100static int selinux_task_setnice(struct task_struct *p, int nice)
4101{
4102	return avc_has_perm(&selinux_state,
4103			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4104			    PROCESS__SETSCHED, NULL);
4105}
4106
4107static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4108{
4109	return avc_has_perm(&selinux_state,
4110			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4111			    PROCESS__SETSCHED, NULL);
4112}
4113
4114static int selinux_task_getioprio(struct task_struct *p)
4115{
4116	return avc_has_perm(&selinux_state,
4117			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4118			    PROCESS__GETSCHED, NULL);
4119}
4120
4121static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4122				unsigned int flags)
4123{
4124	u32 av = 0;
4125
4126	if (!flags)
4127		return 0;
4128	if (flags & LSM_PRLIMIT_WRITE)
4129		av |= PROCESS__SETRLIMIT;
4130	if (flags & LSM_PRLIMIT_READ)
4131		av |= PROCESS__GETRLIMIT;
4132	return avc_has_perm(&selinux_state,
4133			    cred_sid(cred), cred_sid(tcred),
4134			    SECCLASS_PROCESS, av, NULL);
4135}
4136
4137static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4138		struct rlimit *new_rlim)
4139{
4140	struct rlimit *old_rlim = p->signal->rlim + resource;
4141
4142	/* Control the ability to change the hard limit (whether
4143	   lowering or raising it), so that the hard limit can
4144	   later be used as a safe reset point for the soft limit
4145	   upon context transitions.  See selinux_bprm_committing_creds. */
4146	if (old_rlim->rlim_max != new_rlim->rlim_max)
4147		return avc_has_perm(&selinux_state,
4148				    current_sid(), task_sid(p),
4149				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4150
4151	return 0;
4152}
4153
4154static int selinux_task_setscheduler(struct task_struct *p)
4155{
4156	return avc_has_perm(&selinux_state,
4157			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4158			    PROCESS__SETSCHED, NULL);
4159}
4160
4161static int selinux_task_getscheduler(struct task_struct *p)
4162{
4163	return avc_has_perm(&selinux_state,
4164			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4165			    PROCESS__GETSCHED, NULL);
4166}
4167
4168static int selinux_task_movememory(struct task_struct *p)
4169{
4170	return avc_has_perm(&selinux_state,
4171			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4172			    PROCESS__SETSCHED, NULL);
4173}
4174
4175static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4176				int sig, const struct cred *cred)
4177{
4178	u32 secid;
4179	u32 perm;
4180
4181	if (!sig)
4182		perm = PROCESS__SIGNULL; /* null signal; existence test */
4183	else
4184		perm = signal_to_av(sig);
4185	if (!cred)
4186		secid = current_sid();
4187	else
4188		secid = cred_sid(cred);
4189	return avc_has_perm(&selinux_state,
4190			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4191}
4192
4193static void selinux_task_to_inode(struct task_struct *p,
4194				  struct inode *inode)
4195{
4196	struct inode_security_struct *isec = inode->i_security;
4197	u32 sid = task_sid(p);
4198
4199	spin_lock(&isec->lock);
4200	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4201	isec->sid = sid;
4202	isec->initialized = LABEL_INITIALIZED;
4203	spin_unlock(&isec->lock);
4204}
4205
4206/* Returns error only if unable to parse addresses */
4207static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4208			struct common_audit_data *ad, u8 *proto)
4209{
4210	int offset, ihlen, ret = -EINVAL;
4211	struct iphdr _iph, *ih;
4212
4213	offset = skb_network_offset(skb);
4214	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4215	if (ih == NULL)
4216		goto out;
4217
4218	ihlen = ih->ihl * 4;
4219	if (ihlen < sizeof(_iph))
4220		goto out;
4221
4222	ad->u.net->v4info.saddr = ih->saddr;
4223	ad->u.net->v4info.daddr = ih->daddr;
4224	ret = 0;
4225
4226	if (proto)
4227		*proto = ih->protocol;
4228
4229	switch (ih->protocol) {
4230	case IPPROTO_TCP: {
4231		struct tcphdr _tcph, *th;
4232
4233		if (ntohs(ih->frag_off) & IP_OFFSET)
4234			break;
4235
4236		offset += ihlen;
4237		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4238		if (th == NULL)
4239			break;
4240
4241		ad->u.net->sport = th->source;
4242		ad->u.net->dport = th->dest;
4243		break;
4244	}
4245
4246	case IPPROTO_UDP: {
4247		struct udphdr _udph, *uh;
4248
4249		if (ntohs(ih->frag_off) & IP_OFFSET)
4250			break;
4251
4252		offset += ihlen;
4253		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4254		if (uh == NULL)
4255			break;
4256
4257		ad->u.net->sport = uh->source;
4258		ad->u.net->dport = uh->dest;
4259		break;
4260	}
4261
4262	case IPPROTO_DCCP: {
4263		struct dccp_hdr _dccph, *dh;
4264
4265		if (ntohs(ih->frag_off) & IP_OFFSET)
4266			break;
4267
4268		offset += ihlen;
4269		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4270		if (dh == NULL)
4271			break;
4272
4273		ad->u.net->sport = dh->dccph_sport;
4274		ad->u.net->dport = dh->dccph_dport;
4275		break;
4276	}
4277
4278#if IS_ENABLED(CONFIG_IP_SCTP)
4279	case IPPROTO_SCTP: {
4280		struct sctphdr _sctph, *sh;
4281
4282		if (ntohs(ih->frag_off) & IP_OFFSET)
4283			break;
4284
4285		offset += ihlen;
4286		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4287		if (sh == NULL)
4288			break;
4289
4290		ad->u.net->sport = sh->source;
4291		ad->u.net->dport = sh->dest;
4292		break;
4293	}
4294#endif
4295	default:
4296		break;
4297	}
4298out:
4299	return ret;
4300}
4301
4302#if IS_ENABLED(CONFIG_IPV6)
4303
4304/* Returns error only if unable to parse addresses */
4305static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4306			struct common_audit_data *ad, u8 *proto)
4307{
4308	u8 nexthdr;
4309	int ret = -EINVAL, offset;
4310	struct ipv6hdr _ipv6h, *ip6;
4311	__be16 frag_off;
4312
4313	offset = skb_network_offset(skb);
4314	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4315	if (ip6 == NULL)
4316		goto out;
4317
4318	ad->u.net->v6info.saddr = ip6->saddr;
4319	ad->u.net->v6info.daddr = ip6->daddr;
4320	ret = 0;
4321
4322	nexthdr = ip6->nexthdr;
4323	offset += sizeof(_ipv6h);
4324	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4325	if (offset < 0)
4326		goto out;
4327
4328	if (proto)
4329		*proto = nexthdr;
4330
4331	switch (nexthdr) {
4332	case IPPROTO_TCP: {
4333		struct tcphdr _tcph, *th;
4334
4335		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4336		if (th == NULL)
4337			break;
4338
4339		ad->u.net->sport = th->source;
4340		ad->u.net->dport = th->dest;
4341		break;
4342	}
4343
4344	case IPPROTO_UDP: {
4345		struct udphdr _udph, *uh;
4346
4347		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4348		if (uh == NULL)
4349			break;
4350
4351		ad->u.net->sport = uh->source;
4352		ad->u.net->dport = uh->dest;
4353		break;
4354	}
4355
4356	case IPPROTO_DCCP: {
4357		struct dccp_hdr _dccph, *dh;
4358
4359		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4360		if (dh == NULL)
4361			break;
4362
4363		ad->u.net->sport = dh->dccph_sport;
4364		ad->u.net->dport = dh->dccph_dport;
4365		break;
4366	}
4367
4368#if IS_ENABLED(CONFIG_IP_SCTP)
4369	case IPPROTO_SCTP: {
4370		struct sctphdr _sctph, *sh;
4371
4372		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4373		if (sh == NULL)
4374			break;
4375
4376		ad->u.net->sport = sh->source;
4377		ad->u.net->dport = sh->dest;
4378		break;
4379	}
4380#endif
4381	/* includes fragments */
4382	default:
4383		break;
4384	}
4385out:
4386	return ret;
4387}
4388
4389#endif /* IPV6 */
4390
4391static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4392			     char **_addrp, int src, u8 *proto)
4393{
4394	char *addrp;
4395	int ret;
4396
4397	switch (ad->u.net->family) {
4398	case PF_INET:
4399		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4400		if (ret)
4401			goto parse_error;
4402		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4403				       &ad->u.net->v4info.daddr);
4404		goto okay;
4405
4406#if IS_ENABLED(CONFIG_IPV6)
4407	case PF_INET6:
4408		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4409		if (ret)
4410			goto parse_error;
4411		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4412				       &ad->u.net->v6info.daddr);
4413		goto okay;
4414#endif	/* IPV6 */
4415	default:
4416		addrp = NULL;
4417		goto okay;
4418	}
4419
4420parse_error:
4421	printk(KERN_WARNING
4422	       "SELinux: failure in selinux_parse_skb(),"
4423	       " unable to parse packet\n");
4424	return ret;
4425
4426okay:
4427	if (_addrp)
4428		*_addrp = addrp;
4429	return 0;
4430}
4431
4432/**
4433 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4434 * @skb: the packet
4435 * @family: protocol family
4436 * @sid: the packet's peer label SID
4437 *
4438 * Description:
4439 * Check the various different forms of network peer labeling and determine
4440 * the peer label/SID for the packet; most of the magic actually occurs in
4441 * the security server function security_net_peersid_cmp().  The function
4442 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4443 * or -EACCES if @sid is invalid due to inconsistencies with the different
4444 * peer labels.
4445 *
4446 */
4447static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4448{
4449	int err;
4450	u32 xfrm_sid;
4451	u32 nlbl_sid;
4452	u32 nlbl_type;
4453
4454	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4455	if (unlikely(err))
4456		return -EACCES;
4457	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4458	if (unlikely(err))
4459		return -EACCES;
4460
4461	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4462					   nlbl_type, xfrm_sid, sid);
4463	if (unlikely(err)) {
4464		printk(KERN_WARNING
4465		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4466		       " unable to determine packet's peer label\n");
4467		return -EACCES;
4468	}
4469
4470	return 0;
4471}
4472
4473/**
4474 * selinux_conn_sid - Determine the child socket label for a connection
4475 * @sk_sid: the parent socket's SID
4476 * @skb_sid: the packet's SID
4477 * @conn_sid: the resulting connection SID
4478 *
4479 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4480 * combined with the MLS information from @skb_sid in order to create
4481 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4482 * of @sk_sid.  Returns zero on success, negative values on failure.
4483 *
4484 */
4485static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4486{
4487	int err = 0;
4488
4489	if (skb_sid != SECSID_NULL)
4490		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4491					    conn_sid);
4492	else
4493		*conn_sid = sk_sid;
4494
4495	return err;
4496}
4497
4498/* socket security operations */
4499
4500static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4501				 u16 secclass, u32 *socksid)
4502{
4503	if (tsec->sockcreate_sid > SECSID_NULL) {
4504		*socksid = tsec->sockcreate_sid;
4505		return 0;
4506	}
4507
4508	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4509				       secclass, NULL, socksid);
4510}
4511
4512static int sock_has_perm(struct sock *sk, u32 perms)
4513{
4514	struct sk_security_struct *sksec = sk->sk_security;
4515	struct common_audit_data ad;
4516	struct lsm_network_audit net = {0,};
4517
4518	if (sksec->sid == SECINITSID_KERNEL)
4519		return 0;
4520
4521	ad.type = LSM_AUDIT_DATA_NET;
4522	ad.u.net = &net;
4523	ad.u.net->sk = sk;
4524
4525	return avc_has_perm(&selinux_state,
4526			    current_sid(), sksec->sid, sksec->sclass, perms,
4527			    &ad);
4528}
4529
4530static int selinux_socket_create(int family, int type,
4531				 int protocol, int kern)
4532{
4533	const struct task_security_struct *tsec = current_security();
4534	u32 newsid;
4535	u16 secclass;
4536	int rc;
4537
4538	if (kern)
4539		return 0;
4540
4541	secclass = socket_type_to_security_class(family, type, protocol);
4542	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4543	if (rc)
4544		return rc;
4545
4546	return avc_has_perm(&selinux_state,
4547			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4548}
4549
4550static int selinux_socket_post_create(struct socket *sock, int family,
4551				      int type, int protocol, int kern)
4552{
4553	const struct task_security_struct *tsec = current_security();
4554	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4555	struct sk_security_struct *sksec;
4556	u16 sclass = socket_type_to_security_class(family, type, protocol);
4557	u32 sid = SECINITSID_KERNEL;
4558	int err = 0;
4559
4560	if (!kern) {
4561		err = socket_sockcreate_sid(tsec, sclass, &sid);
4562		if (err)
4563			return err;
4564	}
4565
4566	isec->sclass = sclass;
4567	isec->sid = sid;
4568	isec->initialized = LABEL_INITIALIZED;
4569
4570	if (sock->sk) {
4571		sksec = sock->sk->sk_security;
4572		sksec->sclass = sclass;
4573		sksec->sid = sid;
4574		/* Allows detection of the first association on this socket */
4575		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4576			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4577
4578		err = selinux_netlbl_socket_post_create(sock->sk, family);
4579	}
4580
4581	return err;
4582}
4583
 
 
 
 
 
 
 
 
 
 
 
 
4584/* Range of port numbers used to automatically bind.
4585   Need to determine whether we should perform a name_bind
4586   permission check between the socket and the port number. */
4587
4588static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4589{
4590	struct sock *sk = sock->sk;
4591	struct sk_security_struct *sksec = sk->sk_security;
4592	u16 family;
4593	int err;
4594
4595	err = sock_has_perm(sk, SOCKET__BIND);
4596	if (err)
4597		goto out;
4598
4599	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4600	family = sk->sk_family;
4601	if (family == PF_INET || family == PF_INET6) {
4602		char *addrp;
4603		struct common_audit_data ad;
4604		struct lsm_network_audit net = {0,};
4605		struct sockaddr_in *addr4 = NULL;
4606		struct sockaddr_in6 *addr6 = NULL;
4607		u16 family_sa = address->sa_family;
4608		unsigned short snum;
4609		u32 sid, node_perm;
4610
4611		/*
4612		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4613		 * that validates multiple binding addresses. Because of this
4614		 * need to check address->sa_family as it is possible to have
4615		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4616		 */
 
 
 
4617		switch (family_sa) {
4618		case AF_UNSPEC:
4619		case AF_INET:
4620			if (addrlen < sizeof(struct sockaddr_in))
4621				return -EINVAL;
4622			addr4 = (struct sockaddr_in *)address;
4623			if (family_sa == AF_UNSPEC) {
4624				/* see __inet_bind(), we only want to allow
4625				 * AF_UNSPEC if the address is INADDR_ANY
4626				 */
4627				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4628					goto err_af;
4629				family_sa = AF_INET;
4630			}
4631			snum = ntohs(addr4->sin_port);
4632			addrp = (char *)&addr4->sin_addr.s_addr;
4633			break;
4634		case AF_INET6:
4635			if (addrlen < SIN6_LEN_RFC2133)
4636				return -EINVAL;
4637			addr6 = (struct sockaddr_in6 *)address;
4638			snum = ntohs(addr6->sin6_port);
4639			addrp = (char *)&addr6->sin6_addr.s6_addr;
4640			break;
4641		default:
4642			goto err_af;
4643		}
4644
4645		ad.type = LSM_AUDIT_DATA_NET;
4646		ad.u.net = &net;
4647		ad.u.net->sport = htons(snum);
4648		ad.u.net->family = family_sa;
4649
4650		if (snum) {
4651			int low, high;
4652
4653			inet_get_local_port_range(sock_net(sk), &low, &high);
4654
4655			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4656			    snum > high) {
4657				err = sel_netport_sid(sk->sk_protocol,
4658						      snum, &sid);
4659				if (err)
4660					goto out;
4661				err = avc_has_perm(&selinux_state,
4662						   sksec->sid, sid,
4663						   sksec->sclass,
4664						   SOCKET__NAME_BIND, &ad);
4665				if (err)
4666					goto out;
4667			}
4668		}
4669
4670		switch (sksec->sclass) {
4671		case SECCLASS_TCP_SOCKET:
4672			node_perm = TCP_SOCKET__NODE_BIND;
4673			break;
4674
4675		case SECCLASS_UDP_SOCKET:
4676			node_perm = UDP_SOCKET__NODE_BIND;
4677			break;
4678
4679		case SECCLASS_DCCP_SOCKET:
4680			node_perm = DCCP_SOCKET__NODE_BIND;
4681			break;
4682
4683		case SECCLASS_SCTP_SOCKET:
4684			node_perm = SCTP_SOCKET__NODE_BIND;
4685			break;
4686
4687		default:
4688			node_perm = RAWIP_SOCKET__NODE_BIND;
4689			break;
4690		}
4691
4692		err = sel_netnode_sid(addrp, family_sa, &sid);
4693		if (err)
4694			goto out;
4695
4696		if (family_sa == AF_INET)
4697			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4698		else
4699			ad.u.net->v6info.saddr = addr6->sin6_addr;
4700
4701		err = avc_has_perm(&selinux_state,
4702				   sksec->sid, sid,
4703				   sksec->sclass, node_perm, &ad);
4704		if (err)
4705			goto out;
4706	}
4707out:
4708	return err;
4709err_af:
4710	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4711	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4712		return -EINVAL;
4713	return -EAFNOSUPPORT;
4714}
4715
4716/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4717 * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4718 */
4719static int selinux_socket_connect_helper(struct socket *sock,
4720					 struct sockaddr *address, int addrlen)
4721{
4722	struct sock *sk = sock->sk;
4723	struct sk_security_struct *sksec = sk->sk_security;
4724	int err;
4725
4726	err = sock_has_perm(sk, SOCKET__CONNECT);
4727	if (err)
4728		return err;
 
 
 
 
 
 
 
 
4729
4730	/*
4731	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4732	 * for the port.
4733	 */
4734	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4735	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4736	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4737		struct common_audit_data ad;
4738		struct lsm_network_audit net = {0,};
4739		struct sockaddr_in *addr4 = NULL;
4740		struct sockaddr_in6 *addr6 = NULL;
4741		unsigned short snum;
4742		u32 sid, perm;
4743
4744		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4745		 * that validates multiple connect addresses. Because of this
4746		 * need to check address->sa_family as it is possible to have
4747		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4748		 */
4749		switch (address->sa_family) {
4750		case AF_INET:
4751			addr4 = (struct sockaddr_in *)address;
4752			if (addrlen < sizeof(struct sockaddr_in))
4753				return -EINVAL;
4754			snum = ntohs(addr4->sin_port);
4755			break;
4756		case AF_INET6:
4757			addr6 = (struct sockaddr_in6 *)address;
4758			if (addrlen < SIN6_LEN_RFC2133)
4759				return -EINVAL;
4760			snum = ntohs(addr6->sin6_port);
4761			break;
4762		default:
4763			/* Note that SCTP services expect -EINVAL, whereas
4764			 * others expect -EAFNOSUPPORT.
4765			 */
4766			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4767				return -EINVAL;
4768			else
4769				return -EAFNOSUPPORT;
4770		}
4771
4772		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4773		if (err)
4774			return err;
4775
4776		switch (sksec->sclass) {
4777		case SECCLASS_TCP_SOCKET:
4778			perm = TCP_SOCKET__NAME_CONNECT;
4779			break;
4780		case SECCLASS_DCCP_SOCKET:
4781			perm = DCCP_SOCKET__NAME_CONNECT;
4782			break;
4783		case SECCLASS_SCTP_SOCKET:
4784			perm = SCTP_SOCKET__NAME_CONNECT;
4785			break;
4786		}
4787
4788		ad.type = LSM_AUDIT_DATA_NET;
4789		ad.u.net = &net;
4790		ad.u.net->dport = htons(snum);
4791		ad.u.net->family = address->sa_family;
4792		err = avc_has_perm(&selinux_state,
4793				   sksec->sid, sid, sksec->sclass, perm, &ad);
4794		if (err)
4795			return err;
4796	}
4797
4798	return 0;
4799}
4800
4801/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4802static int selinux_socket_connect(struct socket *sock,
4803				  struct sockaddr *address, int addrlen)
4804{
4805	int err;
4806	struct sock *sk = sock->sk;
4807
4808	err = selinux_socket_connect_helper(sock, address, addrlen);
4809	if (err)
4810		return err;
4811
4812	return selinux_netlbl_socket_connect(sk, address);
4813}
4814
4815static int selinux_socket_listen(struct socket *sock, int backlog)
4816{
4817	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4818}
4819
4820static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4821{
4822	int err;
4823	struct inode_security_struct *isec;
4824	struct inode_security_struct *newisec;
4825	u16 sclass;
4826	u32 sid;
4827
4828	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4829	if (err)
4830		return err;
4831
4832	isec = inode_security_novalidate(SOCK_INODE(sock));
4833	spin_lock(&isec->lock);
4834	sclass = isec->sclass;
4835	sid = isec->sid;
4836	spin_unlock(&isec->lock);
4837
4838	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4839	newisec->sclass = sclass;
4840	newisec->sid = sid;
4841	newisec->initialized = LABEL_INITIALIZED;
4842
4843	return 0;
4844}
4845
4846static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4847				  int size)
4848{
4849	return sock_has_perm(sock->sk, SOCKET__WRITE);
4850}
4851
4852static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4853				  int size, int flags)
4854{
4855	return sock_has_perm(sock->sk, SOCKET__READ);
4856}
4857
4858static int selinux_socket_getsockname(struct socket *sock)
4859{
4860	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4861}
4862
4863static int selinux_socket_getpeername(struct socket *sock)
4864{
4865	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4866}
4867
4868static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4869{
4870	int err;
4871
4872	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4873	if (err)
4874		return err;
4875
4876	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4877}
4878
4879static int selinux_socket_getsockopt(struct socket *sock, int level,
4880				     int optname)
4881{
4882	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4883}
4884
4885static int selinux_socket_shutdown(struct socket *sock, int how)
4886{
4887	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4888}
4889
4890static int selinux_socket_unix_stream_connect(struct sock *sock,
4891					      struct sock *other,
4892					      struct sock *newsk)
4893{
4894	struct sk_security_struct *sksec_sock = sock->sk_security;
4895	struct sk_security_struct *sksec_other = other->sk_security;
4896	struct sk_security_struct *sksec_new = newsk->sk_security;
4897	struct common_audit_data ad;
4898	struct lsm_network_audit net = {0,};
4899	int err;
4900
4901	ad.type = LSM_AUDIT_DATA_NET;
4902	ad.u.net = &net;
4903	ad.u.net->sk = other;
4904
4905	err = avc_has_perm(&selinux_state,
4906			   sksec_sock->sid, sksec_other->sid,
4907			   sksec_other->sclass,
4908			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4909	if (err)
4910		return err;
4911
4912	/* server child socket */
4913	sksec_new->peer_sid = sksec_sock->sid;
4914	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4915				    sksec_sock->sid, &sksec_new->sid);
4916	if (err)
4917		return err;
4918
4919	/* connecting socket */
4920	sksec_sock->peer_sid = sksec_new->sid;
4921
4922	return 0;
4923}
4924
4925static int selinux_socket_unix_may_send(struct socket *sock,
4926					struct socket *other)
4927{
4928	struct sk_security_struct *ssec = sock->sk->sk_security;
4929	struct sk_security_struct *osec = other->sk->sk_security;
4930	struct common_audit_data ad;
4931	struct lsm_network_audit net = {0,};
4932
4933	ad.type = LSM_AUDIT_DATA_NET;
4934	ad.u.net = &net;
4935	ad.u.net->sk = other->sk;
4936
4937	return avc_has_perm(&selinux_state,
4938			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4939			    &ad);
4940}
4941
4942static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4943				    char *addrp, u16 family, u32 peer_sid,
4944				    struct common_audit_data *ad)
4945{
4946	int err;
4947	u32 if_sid;
4948	u32 node_sid;
4949
4950	err = sel_netif_sid(ns, ifindex, &if_sid);
4951	if (err)
4952		return err;
4953	err = avc_has_perm(&selinux_state,
4954			   peer_sid, if_sid,
4955			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4956	if (err)
4957		return err;
4958
4959	err = sel_netnode_sid(addrp, family, &node_sid);
4960	if (err)
4961		return err;
4962	return avc_has_perm(&selinux_state,
4963			    peer_sid, node_sid,
4964			    SECCLASS_NODE, NODE__RECVFROM, ad);
4965}
4966
4967static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4968				       u16 family)
4969{
4970	int err = 0;
4971	struct sk_security_struct *sksec = sk->sk_security;
4972	u32 sk_sid = sksec->sid;
4973	struct common_audit_data ad;
4974	struct lsm_network_audit net = {0,};
4975	char *addrp;
4976
4977	ad.type = LSM_AUDIT_DATA_NET;
4978	ad.u.net = &net;
4979	ad.u.net->netif = skb->skb_iif;
4980	ad.u.net->family = family;
4981	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4982	if (err)
4983		return err;
4984
4985	if (selinux_secmark_enabled()) {
4986		err = avc_has_perm(&selinux_state,
4987				   sk_sid, skb->secmark, SECCLASS_PACKET,
4988				   PACKET__RECV, &ad);
4989		if (err)
4990			return err;
4991	}
4992
4993	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4994	if (err)
4995		return err;
4996	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4997
4998	return err;
4999}
5000
5001static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5002{
5003	int err;
5004	struct sk_security_struct *sksec = sk->sk_security;
5005	u16 family = sk->sk_family;
5006	u32 sk_sid = sksec->sid;
5007	struct common_audit_data ad;
5008	struct lsm_network_audit net = {0,};
5009	char *addrp;
5010	u8 secmark_active;
5011	u8 peerlbl_active;
5012
5013	if (family != PF_INET && family != PF_INET6)
5014		return 0;
5015
5016	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5017	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5018		family = PF_INET;
5019
5020	/* If any sort of compatibility mode is enabled then handoff processing
5021	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5022	 * special handling.  We do this in an attempt to keep this function
5023	 * as fast and as clean as possible. */
5024	if (!selinux_policycap_netpeer())
5025		return selinux_sock_rcv_skb_compat(sk, skb, family);
5026
5027	secmark_active = selinux_secmark_enabled();
5028	peerlbl_active = selinux_peerlbl_enabled();
5029	if (!secmark_active && !peerlbl_active)
5030		return 0;
5031
5032	ad.type = LSM_AUDIT_DATA_NET;
5033	ad.u.net = &net;
5034	ad.u.net->netif = skb->skb_iif;
5035	ad.u.net->family = family;
5036	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5037	if (err)
5038		return err;
5039
5040	if (peerlbl_active) {
5041		u32 peer_sid;
5042
5043		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5044		if (err)
5045			return err;
5046		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5047					       addrp, family, peer_sid, &ad);
5048		if (err) {
5049			selinux_netlbl_err(skb, family, err, 0);
5050			return err;
5051		}
5052		err = avc_has_perm(&selinux_state,
5053				   sk_sid, peer_sid, SECCLASS_PEER,
5054				   PEER__RECV, &ad);
5055		if (err) {
5056			selinux_netlbl_err(skb, family, err, 0);
5057			return err;
5058		}
5059	}
5060
5061	if (secmark_active) {
5062		err = avc_has_perm(&selinux_state,
5063				   sk_sid, skb->secmark, SECCLASS_PACKET,
5064				   PACKET__RECV, &ad);
5065		if (err)
5066			return err;
5067	}
5068
5069	return err;
5070}
5071
5072static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5073					    int __user *optlen, unsigned len)
5074{
5075	int err = 0;
5076	char *scontext;
5077	u32 scontext_len;
5078	struct sk_security_struct *sksec = sock->sk->sk_security;
5079	u32 peer_sid = SECSID_NULL;
5080
5081	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5082	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5083	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5084		peer_sid = sksec->peer_sid;
5085	if (peer_sid == SECSID_NULL)
5086		return -ENOPROTOOPT;
5087
5088	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5089				      &scontext_len);
5090	if (err)
5091		return err;
5092
5093	if (scontext_len > len) {
5094		err = -ERANGE;
5095		goto out_len;
5096	}
5097
5098	if (copy_to_user(optval, scontext, scontext_len))
5099		err = -EFAULT;
5100
5101out_len:
5102	if (put_user(scontext_len, optlen))
5103		err = -EFAULT;
5104	kfree(scontext);
5105	return err;
5106}
5107
5108static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5109{
5110	u32 peer_secid = SECSID_NULL;
5111	u16 family;
5112	struct inode_security_struct *isec;
5113
5114	if (skb && skb->protocol == htons(ETH_P_IP))
5115		family = PF_INET;
5116	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5117		family = PF_INET6;
5118	else if (sock)
5119		family = sock->sk->sk_family;
5120	else
5121		goto out;
5122
5123	if (sock && family == PF_UNIX) {
5124		isec = inode_security_novalidate(SOCK_INODE(sock));
5125		peer_secid = isec->sid;
5126	} else if (skb)
5127		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5128
5129out:
5130	*secid = peer_secid;
5131	if (peer_secid == SECSID_NULL)
5132		return -EINVAL;
5133	return 0;
5134}
5135
5136static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5137{
5138	struct sk_security_struct *sksec;
5139
5140	sksec = kzalloc(sizeof(*sksec), priority);
5141	if (!sksec)
5142		return -ENOMEM;
5143
5144	sksec->peer_sid = SECINITSID_UNLABELED;
5145	sksec->sid = SECINITSID_UNLABELED;
5146	sksec->sclass = SECCLASS_SOCKET;
5147	selinux_netlbl_sk_security_reset(sksec);
5148	sk->sk_security = sksec;
5149
5150	return 0;
5151}
5152
5153static void selinux_sk_free_security(struct sock *sk)
5154{
5155	struct sk_security_struct *sksec = sk->sk_security;
5156
5157	sk->sk_security = NULL;
5158	selinux_netlbl_sk_security_free(sksec);
5159	kfree(sksec);
5160}
5161
5162static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5163{
5164	struct sk_security_struct *sksec = sk->sk_security;
5165	struct sk_security_struct *newsksec = newsk->sk_security;
5166
5167	newsksec->sid = sksec->sid;
5168	newsksec->peer_sid = sksec->peer_sid;
5169	newsksec->sclass = sksec->sclass;
5170
5171	selinux_netlbl_sk_security_reset(newsksec);
5172}
5173
5174static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5175{
5176	if (!sk)
5177		*secid = SECINITSID_ANY_SOCKET;
5178	else {
5179		struct sk_security_struct *sksec = sk->sk_security;
5180
5181		*secid = sksec->sid;
5182	}
5183}
5184
5185static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5186{
5187	struct inode_security_struct *isec =
5188		inode_security_novalidate(SOCK_INODE(parent));
5189	struct sk_security_struct *sksec = sk->sk_security;
5190
5191	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5192	    sk->sk_family == PF_UNIX)
5193		isec->sid = sksec->sid;
5194	sksec->sclass = isec->sclass;
5195}
5196
5197/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5198 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5199 * already present).
5200 */
5201static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5202				      struct sk_buff *skb)
5203{
5204	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5205	struct common_audit_data ad;
5206	struct lsm_network_audit net = {0,};
5207	u8 peerlbl_active;
5208	u32 peer_sid = SECINITSID_UNLABELED;
5209	u32 conn_sid;
5210	int err = 0;
5211
5212	if (!selinux_policycap_extsockclass())
5213		return 0;
5214
5215	peerlbl_active = selinux_peerlbl_enabled();
5216
5217	if (peerlbl_active) {
5218		/* This will return peer_sid = SECSID_NULL if there are
5219		 * no peer labels, see security_net_peersid_resolve().
5220		 */
5221		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5222					      &peer_sid);
5223		if (err)
5224			return err;
5225
5226		if (peer_sid == SECSID_NULL)
5227			peer_sid = SECINITSID_UNLABELED;
5228	}
5229
5230	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5231		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5232
5233		/* Here as first association on socket. As the peer SID
5234		 * was allowed by peer recv (and the netif/node checks),
5235		 * then it is approved by policy and used as the primary
5236		 * peer SID for getpeercon(3).
5237		 */
5238		sksec->peer_sid = peer_sid;
5239	} else if  (sksec->peer_sid != peer_sid) {
5240		/* Other association peer SIDs are checked to enforce
5241		 * consistency among the peer SIDs.
5242		 */
5243		ad.type = LSM_AUDIT_DATA_NET;
5244		ad.u.net = &net;
5245		ad.u.net->sk = ep->base.sk;
5246		err = avc_has_perm(&selinux_state,
5247				   sksec->peer_sid, peer_sid, sksec->sclass,
5248				   SCTP_SOCKET__ASSOCIATION, &ad);
5249		if (err)
5250			return err;
5251	}
5252
5253	/* Compute the MLS component for the connection and store
5254	 * the information in ep. This will be used by SCTP TCP type
5255	 * sockets and peeled off connections as they cause a new
5256	 * socket to be generated. selinux_sctp_sk_clone() will then
5257	 * plug this into the new socket.
5258	 */
5259	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5260	if (err)
5261		return err;
5262
5263	ep->secid = conn_sid;
5264	ep->peer_secid = peer_sid;
5265
5266	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5267	return selinux_netlbl_sctp_assoc_request(ep, skb);
5268}
5269
5270/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5271 * based on their @optname.
5272 */
5273static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5274				     struct sockaddr *address,
5275				     int addrlen)
5276{
5277	int len, err = 0, walk_size = 0;
5278	void *addr_buf;
5279	struct sockaddr *addr;
5280	struct socket *sock;
5281
5282	if (!selinux_policycap_extsockclass())
5283		return 0;
5284
5285	/* Process one or more addresses that may be IPv4 or IPv6 */
5286	sock = sk->sk_socket;
5287	addr_buf = address;
5288
5289	while (walk_size < addrlen) {
 
 
 
5290		addr = addr_buf;
5291		switch (addr->sa_family) {
5292		case AF_UNSPEC:
5293		case AF_INET:
5294			len = sizeof(struct sockaddr_in);
5295			break;
5296		case AF_INET6:
5297			len = sizeof(struct sockaddr_in6);
5298			break;
5299		default:
5300			return -EINVAL;
5301		}
5302
 
 
 
5303		err = -EINVAL;
5304		switch (optname) {
5305		/* Bind checks */
5306		case SCTP_PRIMARY_ADDR:
5307		case SCTP_SET_PEER_PRIMARY_ADDR:
5308		case SCTP_SOCKOPT_BINDX_ADD:
5309			err = selinux_socket_bind(sock, addr, len);
5310			break;
5311		/* Connect checks */
5312		case SCTP_SOCKOPT_CONNECTX:
5313		case SCTP_PARAM_SET_PRIMARY:
5314		case SCTP_PARAM_ADD_IP:
5315		case SCTP_SENDMSG_CONNECT:
5316			err = selinux_socket_connect_helper(sock, addr, len);
5317			if (err)
5318				return err;
5319
5320			/* As selinux_sctp_bind_connect() is called by the
5321			 * SCTP protocol layer, the socket is already locked,
5322			 * therefore selinux_netlbl_socket_connect_locked() is
5323			 * is called here. The situations handled are:
5324			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5325			 * whenever a new IP address is added or when a new
5326			 * primary address is selected.
5327			 * Note that an SCTP connect(2) call happens before
5328			 * the SCTP protocol layer and is handled via
5329			 * selinux_socket_connect().
5330			 */
5331			err = selinux_netlbl_socket_connect_locked(sk, addr);
5332			break;
5333		}
5334
5335		if (err)
5336			return err;
5337
5338		addr_buf += len;
5339		walk_size += len;
5340	}
5341
5342	return 0;
5343}
5344
5345/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5346static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5347				  struct sock *newsk)
5348{
5349	struct sk_security_struct *sksec = sk->sk_security;
5350	struct sk_security_struct *newsksec = newsk->sk_security;
5351
5352	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5353	 * the non-sctp clone version.
5354	 */
5355	if (!selinux_policycap_extsockclass())
5356		return selinux_sk_clone_security(sk, newsk);
5357
5358	newsksec->sid = ep->secid;
5359	newsksec->peer_sid = ep->peer_secid;
5360	newsksec->sclass = sksec->sclass;
5361	selinux_netlbl_sctp_sk_clone(sk, newsk);
5362}
5363
5364static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5365				     struct request_sock *req)
5366{
5367	struct sk_security_struct *sksec = sk->sk_security;
5368	int err;
5369	u16 family = req->rsk_ops->family;
5370	u32 connsid;
5371	u32 peersid;
5372
5373	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5374	if (err)
5375		return err;
5376	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5377	if (err)
5378		return err;
5379	req->secid = connsid;
5380	req->peer_secid = peersid;
5381
5382	return selinux_netlbl_inet_conn_request(req, family);
5383}
5384
5385static void selinux_inet_csk_clone(struct sock *newsk,
5386				   const struct request_sock *req)
5387{
5388	struct sk_security_struct *newsksec = newsk->sk_security;
5389
5390	newsksec->sid = req->secid;
5391	newsksec->peer_sid = req->peer_secid;
5392	/* NOTE: Ideally, we should also get the isec->sid for the
5393	   new socket in sync, but we don't have the isec available yet.
5394	   So we will wait until sock_graft to do it, by which
5395	   time it will have been created and available. */
5396
5397	/* We don't need to take any sort of lock here as we are the only
5398	 * thread with access to newsksec */
5399	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5400}
5401
5402static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5403{
5404	u16 family = sk->sk_family;
5405	struct sk_security_struct *sksec = sk->sk_security;
5406
5407	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5408	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5409		family = PF_INET;
5410
5411	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5412}
5413
5414static int selinux_secmark_relabel_packet(u32 sid)
5415{
5416	const struct task_security_struct *__tsec;
5417	u32 tsid;
5418
5419	__tsec = current_security();
5420	tsid = __tsec->sid;
5421
5422	return avc_has_perm(&selinux_state,
5423			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5424			    NULL);
5425}
5426
5427static void selinux_secmark_refcount_inc(void)
5428{
5429	atomic_inc(&selinux_secmark_refcount);
5430}
5431
5432static void selinux_secmark_refcount_dec(void)
5433{
5434	atomic_dec(&selinux_secmark_refcount);
5435}
5436
5437static void selinux_req_classify_flow(const struct request_sock *req,
5438				      struct flowi *fl)
5439{
5440	fl->flowi_secid = req->secid;
5441}
5442
5443static int selinux_tun_dev_alloc_security(void **security)
5444{
5445	struct tun_security_struct *tunsec;
5446
5447	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5448	if (!tunsec)
5449		return -ENOMEM;
5450	tunsec->sid = current_sid();
5451
5452	*security = tunsec;
5453	return 0;
5454}
5455
5456static void selinux_tun_dev_free_security(void *security)
5457{
5458	kfree(security);
5459}
5460
5461static int selinux_tun_dev_create(void)
5462{
5463	u32 sid = current_sid();
5464
5465	/* we aren't taking into account the "sockcreate" SID since the socket
5466	 * that is being created here is not a socket in the traditional sense,
5467	 * instead it is a private sock, accessible only to the kernel, and
5468	 * representing a wide range of network traffic spanning multiple
5469	 * connections unlike traditional sockets - check the TUN driver to
5470	 * get a better understanding of why this socket is special */
5471
5472	return avc_has_perm(&selinux_state,
5473			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5474			    NULL);
5475}
5476
5477static int selinux_tun_dev_attach_queue(void *security)
5478{
5479	struct tun_security_struct *tunsec = security;
5480
5481	return avc_has_perm(&selinux_state,
5482			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5483			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5484}
5485
5486static int selinux_tun_dev_attach(struct sock *sk, void *security)
5487{
5488	struct tun_security_struct *tunsec = security;
5489	struct sk_security_struct *sksec = sk->sk_security;
5490
5491	/* we don't currently perform any NetLabel based labeling here and it
5492	 * isn't clear that we would want to do so anyway; while we could apply
5493	 * labeling without the support of the TUN user the resulting labeled
5494	 * traffic from the other end of the connection would almost certainly
5495	 * cause confusion to the TUN user that had no idea network labeling
5496	 * protocols were being used */
5497
5498	sksec->sid = tunsec->sid;
5499	sksec->sclass = SECCLASS_TUN_SOCKET;
5500
5501	return 0;
5502}
5503
5504static int selinux_tun_dev_open(void *security)
5505{
5506	struct tun_security_struct *tunsec = security;
5507	u32 sid = current_sid();
5508	int err;
5509
5510	err = avc_has_perm(&selinux_state,
5511			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5512			   TUN_SOCKET__RELABELFROM, NULL);
5513	if (err)
5514		return err;
5515	err = avc_has_perm(&selinux_state,
5516			   sid, sid, SECCLASS_TUN_SOCKET,
5517			   TUN_SOCKET__RELABELTO, NULL);
5518	if (err)
5519		return err;
5520	tunsec->sid = sid;
5521
5522	return 0;
5523}
5524
5525static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5526{
5527	int err = 0;
5528	u32 perm;
5529	struct nlmsghdr *nlh;
5530	struct sk_security_struct *sksec = sk->sk_security;
5531
5532	if (skb->len < NLMSG_HDRLEN) {
5533		err = -EINVAL;
5534		goto out;
5535	}
5536	nlh = nlmsg_hdr(skb);
5537
5538	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5539	if (err) {
5540		if (err == -EINVAL) {
5541			pr_warn_ratelimited("SELinux: unrecognized netlink"
5542			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5543			       " pig=%d comm=%s\n",
5544			       sk->sk_protocol, nlh->nlmsg_type,
5545			       secclass_map[sksec->sclass - 1].name,
5546			       task_pid_nr(current), current->comm);
5547			if (!enforcing_enabled(&selinux_state) ||
5548			    security_get_allow_unknown(&selinux_state))
5549				err = 0;
5550		}
5551
5552		/* Ignore */
5553		if (err == -ENOENT)
5554			err = 0;
5555		goto out;
5556	}
5557
5558	err = sock_has_perm(sk, perm);
5559out:
5560	return err;
5561}
5562
5563#ifdef CONFIG_NETFILTER
5564
5565static unsigned int selinux_ip_forward(struct sk_buff *skb,
5566				       const struct net_device *indev,
5567				       u16 family)
5568{
5569	int err;
5570	char *addrp;
5571	u32 peer_sid;
5572	struct common_audit_data ad;
5573	struct lsm_network_audit net = {0,};
5574	u8 secmark_active;
5575	u8 netlbl_active;
5576	u8 peerlbl_active;
5577
5578	if (!selinux_policycap_netpeer())
5579		return NF_ACCEPT;
5580
5581	secmark_active = selinux_secmark_enabled();
5582	netlbl_active = netlbl_enabled();
5583	peerlbl_active = selinux_peerlbl_enabled();
5584	if (!secmark_active && !peerlbl_active)
5585		return NF_ACCEPT;
5586
5587	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5588		return NF_DROP;
5589
5590	ad.type = LSM_AUDIT_DATA_NET;
5591	ad.u.net = &net;
5592	ad.u.net->netif = indev->ifindex;
5593	ad.u.net->family = family;
5594	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5595		return NF_DROP;
5596
5597	if (peerlbl_active) {
5598		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5599					       addrp, family, peer_sid, &ad);
5600		if (err) {
5601			selinux_netlbl_err(skb, family, err, 1);
5602			return NF_DROP;
5603		}
5604	}
5605
5606	if (secmark_active)
5607		if (avc_has_perm(&selinux_state,
5608				 peer_sid, skb->secmark,
5609				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5610			return NF_DROP;
5611
5612	if (netlbl_active)
5613		/* we do this in the FORWARD path and not the POST_ROUTING
5614		 * path because we want to make sure we apply the necessary
5615		 * labeling before IPsec is applied so we can leverage AH
5616		 * protection */
5617		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5618			return NF_DROP;
5619
5620	return NF_ACCEPT;
5621}
5622
5623static unsigned int selinux_ipv4_forward(void *priv,
5624					 struct sk_buff *skb,
5625					 const struct nf_hook_state *state)
5626{
5627	return selinux_ip_forward(skb, state->in, PF_INET);
5628}
5629
5630#if IS_ENABLED(CONFIG_IPV6)
5631static unsigned int selinux_ipv6_forward(void *priv,
5632					 struct sk_buff *skb,
5633					 const struct nf_hook_state *state)
5634{
5635	return selinux_ip_forward(skb, state->in, PF_INET6);
5636}
5637#endif	/* IPV6 */
5638
5639static unsigned int selinux_ip_output(struct sk_buff *skb,
5640				      u16 family)
5641{
5642	struct sock *sk;
5643	u32 sid;
5644
5645	if (!netlbl_enabled())
5646		return NF_ACCEPT;
5647
5648	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5649	 * because we want to make sure we apply the necessary labeling
5650	 * before IPsec is applied so we can leverage AH protection */
5651	sk = skb->sk;
5652	if (sk) {
5653		struct sk_security_struct *sksec;
5654
5655		if (sk_listener(sk))
5656			/* if the socket is the listening state then this
5657			 * packet is a SYN-ACK packet which means it needs to
5658			 * be labeled based on the connection/request_sock and
5659			 * not the parent socket.  unfortunately, we can't
5660			 * lookup the request_sock yet as it isn't queued on
5661			 * the parent socket until after the SYN-ACK is sent.
5662			 * the "solution" is to simply pass the packet as-is
5663			 * as any IP option based labeling should be copied
5664			 * from the initial connection request (in the IP
5665			 * layer).  it is far from ideal, but until we get a
5666			 * security label in the packet itself this is the
5667			 * best we can do. */
5668			return NF_ACCEPT;
5669
5670		/* standard practice, label using the parent socket */
5671		sksec = sk->sk_security;
5672		sid = sksec->sid;
5673	} else
5674		sid = SECINITSID_KERNEL;
5675	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5676		return NF_DROP;
5677
5678	return NF_ACCEPT;
5679}
5680
5681static unsigned int selinux_ipv4_output(void *priv,
5682					struct sk_buff *skb,
5683					const struct nf_hook_state *state)
5684{
5685	return selinux_ip_output(skb, PF_INET);
5686}
5687
5688#if IS_ENABLED(CONFIG_IPV6)
5689static unsigned int selinux_ipv6_output(void *priv,
5690					struct sk_buff *skb,
5691					const struct nf_hook_state *state)
5692{
5693	return selinux_ip_output(skb, PF_INET6);
5694}
5695#endif	/* IPV6 */
5696
5697static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5698						int ifindex,
5699						u16 family)
5700{
5701	struct sock *sk = skb_to_full_sk(skb);
5702	struct sk_security_struct *sksec;
5703	struct common_audit_data ad;
5704	struct lsm_network_audit net = {0,};
5705	char *addrp;
5706	u8 proto;
5707
5708	if (sk == NULL)
5709		return NF_ACCEPT;
5710	sksec = sk->sk_security;
5711
5712	ad.type = LSM_AUDIT_DATA_NET;
5713	ad.u.net = &net;
5714	ad.u.net->netif = ifindex;
5715	ad.u.net->family = family;
5716	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5717		return NF_DROP;
5718
5719	if (selinux_secmark_enabled())
5720		if (avc_has_perm(&selinux_state,
5721				 sksec->sid, skb->secmark,
5722				 SECCLASS_PACKET, PACKET__SEND, &ad))
5723			return NF_DROP_ERR(-ECONNREFUSED);
5724
5725	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5726		return NF_DROP_ERR(-ECONNREFUSED);
5727
5728	return NF_ACCEPT;
5729}
5730
5731static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5732					 const struct net_device *outdev,
5733					 u16 family)
5734{
5735	u32 secmark_perm;
5736	u32 peer_sid;
5737	int ifindex = outdev->ifindex;
5738	struct sock *sk;
5739	struct common_audit_data ad;
5740	struct lsm_network_audit net = {0,};
5741	char *addrp;
5742	u8 secmark_active;
5743	u8 peerlbl_active;
5744
5745	/* If any sort of compatibility mode is enabled then handoff processing
5746	 * to the selinux_ip_postroute_compat() function to deal with the
5747	 * special handling.  We do this in an attempt to keep this function
5748	 * as fast and as clean as possible. */
5749	if (!selinux_policycap_netpeer())
5750		return selinux_ip_postroute_compat(skb, ifindex, family);
5751
5752	secmark_active = selinux_secmark_enabled();
5753	peerlbl_active = selinux_peerlbl_enabled();
5754	if (!secmark_active && !peerlbl_active)
5755		return NF_ACCEPT;
5756
5757	sk = skb_to_full_sk(skb);
5758
5759#ifdef CONFIG_XFRM
5760	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5761	 * packet transformation so allow the packet to pass without any checks
5762	 * since we'll have another chance to perform access control checks
5763	 * when the packet is on it's final way out.
5764	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5765	 *       is NULL, in this case go ahead and apply access control.
5766	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5767	 *       TCP listening state we cannot wait until the XFRM processing
5768	 *       is done as we will miss out on the SA label if we do;
5769	 *       unfortunately, this means more work, but it is only once per
5770	 *       connection. */
5771	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5772	    !(sk && sk_listener(sk)))
5773		return NF_ACCEPT;
5774#endif
5775
5776	if (sk == NULL) {
5777		/* Without an associated socket the packet is either coming
5778		 * from the kernel or it is being forwarded; check the packet
5779		 * to determine which and if the packet is being forwarded
5780		 * query the packet directly to determine the security label. */
5781		if (skb->skb_iif) {
5782			secmark_perm = PACKET__FORWARD_OUT;
5783			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5784				return NF_DROP;
5785		} else {
5786			secmark_perm = PACKET__SEND;
5787			peer_sid = SECINITSID_KERNEL;
5788		}
5789	} else if (sk_listener(sk)) {
5790		/* Locally generated packet but the associated socket is in the
5791		 * listening state which means this is a SYN-ACK packet.  In
5792		 * this particular case the correct security label is assigned
5793		 * to the connection/request_sock but unfortunately we can't
5794		 * query the request_sock as it isn't queued on the parent
5795		 * socket until after the SYN-ACK packet is sent; the only
5796		 * viable choice is to regenerate the label like we do in
5797		 * selinux_inet_conn_request().  See also selinux_ip_output()
5798		 * for similar problems. */
5799		u32 skb_sid;
5800		struct sk_security_struct *sksec;
5801
5802		sksec = sk->sk_security;
5803		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5804			return NF_DROP;
5805		/* At this point, if the returned skb peerlbl is SECSID_NULL
5806		 * and the packet has been through at least one XFRM
5807		 * transformation then we must be dealing with the "final"
5808		 * form of labeled IPsec packet; since we've already applied
5809		 * all of our access controls on this packet we can safely
5810		 * pass the packet. */
5811		if (skb_sid == SECSID_NULL) {
5812			switch (family) {
5813			case PF_INET:
5814				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5815					return NF_ACCEPT;
5816				break;
5817			case PF_INET6:
5818				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5819					return NF_ACCEPT;
5820				break;
5821			default:
5822				return NF_DROP_ERR(-ECONNREFUSED);
5823			}
5824		}
5825		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5826			return NF_DROP;
5827		secmark_perm = PACKET__SEND;
5828	} else {
5829		/* Locally generated packet, fetch the security label from the
5830		 * associated socket. */
5831		struct sk_security_struct *sksec = sk->sk_security;
5832		peer_sid = sksec->sid;
5833		secmark_perm = PACKET__SEND;
5834	}
5835
5836	ad.type = LSM_AUDIT_DATA_NET;
5837	ad.u.net = &net;
5838	ad.u.net->netif = ifindex;
5839	ad.u.net->family = family;
5840	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5841		return NF_DROP;
5842
5843	if (secmark_active)
5844		if (avc_has_perm(&selinux_state,
5845				 peer_sid, skb->secmark,
5846				 SECCLASS_PACKET, secmark_perm, &ad))
5847			return NF_DROP_ERR(-ECONNREFUSED);
5848
5849	if (peerlbl_active) {
5850		u32 if_sid;
5851		u32 node_sid;
5852
5853		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5854			return NF_DROP;
5855		if (avc_has_perm(&selinux_state,
5856				 peer_sid, if_sid,
5857				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5858			return NF_DROP_ERR(-ECONNREFUSED);
5859
5860		if (sel_netnode_sid(addrp, family, &node_sid))
5861			return NF_DROP;
5862		if (avc_has_perm(&selinux_state,
5863				 peer_sid, node_sid,
5864				 SECCLASS_NODE, NODE__SENDTO, &ad))
5865			return NF_DROP_ERR(-ECONNREFUSED);
5866	}
5867
5868	return NF_ACCEPT;
5869}
5870
5871static unsigned int selinux_ipv4_postroute(void *priv,
5872					   struct sk_buff *skb,
5873					   const struct nf_hook_state *state)
5874{
5875	return selinux_ip_postroute(skb, state->out, PF_INET);
5876}
5877
5878#if IS_ENABLED(CONFIG_IPV6)
5879static unsigned int selinux_ipv6_postroute(void *priv,
5880					   struct sk_buff *skb,
5881					   const struct nf_hook_state *state)
5882{
5883	return selinux_ip_postroute(skb, state->out, PF_INET6);
5884}
5885#endif	/* IPV6 */
5886
5887#endif	/* CONFIG_NETFILTER */
5888
5889static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5890{
5891	return selinux_nlmsg_perm(sk, skb);
5892}
5893
5894static int ipc_alloc_security(struct kern_ipc_perm *perm,
5895			      u16 sclass)
5896{
5897	struct ipc_security_struct *isec;
5898
5899	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5900	if (!isec)
5901		return -ENOMEM;
5902
5903	isec->sclass = sclass;
5904	isec->sid = current_sid();
5905	perm->security = isec;
5906
5907	return 0;
5908}
5909
5910static void ipc_free_security(struct kern_ipc_perm *perm)
5911{
5912	struct ipc_security_struct *isec = perm->security;
5913	perm->security = NULL;
5914	kfree(isec);
5915}
5916
5917static int msg_msg_alloc_security(struct msg_msg *msg)
5918{
5919	struct msg_security_struct *msec;
5920
5921	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5922	if (!msec)
5923		return -ENOMEM;
5924
5925	msec->sid = SECINITSID_UNLABELED;
5926	msg->security = msec;
5927
5928	return 0;
5929}
5930
5931static void msg_msg_free_security(struct msg_msg *msg)
5932{
5933	struct msg_security_struct *msec = msg->security;
5934
5935	msg->security = NULL;
5936	kfree(msec);
5937}
5938
5939static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5940			u32 perms)
5941{
5942	struct ipc_security_struct *isec;
5943	struct common_audit_data ad;
5944	u32 sid = current_sid();
5945
5946	isec = ipc_perms->security;
5947
5948	ad.type = LSM_AUDIT_DATA_IPC;
5949	ad.u.ipc_id = ipc_perms->key;
5950
5951	return avc_has_perm(&selinux_state,
5952			    sid, isec->sid, isec->sclass, perms, &ad);
5953}
5954
5955static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5956{
5957	return msg_msg_alloc_security(msg);
5958}
5959
5960static void selinux_msg_msg_free_security(struct msg_msg *msg)
5961{
5962	msg_msg_free_security(msg);
5963}
5964
5965/* message queue security operations */
5966static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5967{
5968	struct ipc_security_struct *isec;
5969	struct common_audit_data ad;
5970	u32 sid = current_sid();
5971	int rc;
5972
5973	rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5974	if (rc)
5975		return rc;
5976
5977	isec = msq->security;
5978
5979	ad.type = LSM_AUDIT_DATA_IPC;
5980	ad.u.ipc_id = msq->key;
5981
5982	rc = avc_has_perm(&selinux_state,
5983			  sid, isec->sid, SECCLASS_MSGQ,
5984			  MSGQ__CREATE, &ad);
5985	if (rc) {
5986		ipc_free_security(msq);
5987		return rc;
5988	}
5989	return 0;
5990}
5991
5992static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5993{
5994	ipc_free_security(msq);
5995}
5996
5997static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5998{
5999	struct ipc_security_struct *isec;
6000	struct common_audit_data ad;
6001	u32 sid = current_sid();
6002
6003	isec = msq->security;
6004
6005	ad.type = LSM_AUDIT_DATA_IPC;
6006	ad.u.ipc_id = msq->key;
6007
6008	return avc_has_perm(&selinux_state,
6009			    sid, isec->sid, SECCLASS_MSGQ,
6010			    MSGQ__ASSOCIATE, &ad);
6011}
6012
6013static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6014{
6015	int err;
6016	int perms;
6017
6018	switch (cmd) {
6019	case IPC_INFO:
6020	case MSG_INFO:
6021		/* No specific object, just general system-wide information. */
6022		return avc_has_perm(&selinux_state,
6023				    current_sid(), SECINITSID_KERNEL,
6024				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6025	case IPC_STAT:
6026	case MSG_STAT:
6027	case MSG_STAT_ANY:
6028		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6029		break;
6030	case IPC_SET:
6031		perms = MSGQ__SETATTR;
6032		break;
6033	case IPC_RMID:
6034		perms = MSGQ__DESTROY;
6035		break;
6036	default:
6037		return 0;
6038	}
6039
6040	err = ipc_has_perm(msq, perms);
6041	return err;
6042}
6043
6044static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6045{
6046	struct ipc_security_struct *isec;
6047	struct msg_security_struct *msec;
6048	struct common_audit_data ad;
6049	u32 sid = current_sid();
6050	int rc;
6051
6052	isec = msq->security;
6053	msec = msg->security;
6054
6055	/*
6056	 * First time through, need to assign label to the message
6057	 */
6058	if (msec->sid == SECINITSID_UNLABELED) {
6059		/*
6060		 * Compute new sid based on current process and
6061		 * message queue this message will be stored in
6062		 */
6063		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6064					     SECCLASS_MSG, NULL, &msec->sid);
6065		if (rc)
6066			return rc;
6067	}
6068
6069	ad.type = LSM_AUDIT_DATA_IPC;
6070	ad.u.ipc_id = msq->key;
6071
6072	/* Can this process write to the queue? */
6073	rc = avc_has_perm(&selinux_state,
6074			  sid, isec->sid, SECCLASS_MSGQ,
6075			  MSGQ__WRITE, &ad);
6076	if (!rc)
6077		/* Can this process send the message */
6078		rc = avc_has_perm(&selinux_state,
6079				  sid, msec->sid, SECCLASS_MSG,
6080				  MSG__SEND, &ad);
6081	if (!rc)
6082		/* Can the message be put in the queue? */
6083		rc = avc_has_perm(&selinux_state,
6084				  msec->sid, isec->sid, SECCLASS_MSGQ,
6085				  MSGQ__ENQUEUE, &ad);
6086
6087	return rc;
6088}
6089
6090static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6091				    struct task_struct *target,
6092				    long type, int mode)
6093{
6094	struct ipc_security_struct *isec;
6095	struct msg_security_struct *msec;
6096	struct common_audit_data ad;
6097	u32 sid = task_sid(target);
6098	int rc;
6099
6100	isec = msq->security;
6101	msec = msg->security;
6102
6103	ad.type = LSM_AUDIT_DATA_IPC;
6104	ad.u.ipc_id = msq->key;
6105
6106	rc = avc_has_perm(&selinux_state,
6107			  sid, isec->sid,
6108			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6109	if (!rc)
6110		rc = avc_has_perm(&selinux_state,
6111				  sid, msec->sid,
6112				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6113	return rc;
6114}
6115
6116/* Shared Memory security operations */
6117static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6118{
6119	struct ipc_security_struct *isec;
6120	struct common_audit_data ad;
6121	u32 sid = current_sid();
6122	int rc;
6123
6124	rc = ipc_alloc_security(shp, SECCLASS_SHM);
6125	if (rc)
6126		return rc;
6127
6128	isec = shp->security;
6129
6130	ad.type = LSM_AUDIT_DATA_IPC;
6131	ad.u.ipc_id = shp->key;
6132
6133	rc = avc_has_perm(&selinux_state,
6134			  sid, isec->sid, SECCLASS_SHM,
6135			  SHM__CREATE, &ad);
6136	if (rc) {
6137		ipc_free_security(shp);
6138		return rc;
6139	}
6140	return 0;
6141}
6142
6143static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6144{
6145	ipc_free_security(shp);
6146}
6147
6148static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6149{
6150	struct ipc_security_struct *isec;
6151	struct common_audit_data ad;
6152	u32 sid = current_sid();
6153
6154	isec = shp->security;
6155
6156	ad.type = LSM_AUDIT_DATA_IPC;
6157	ad.u.ipc_id = shp->key;
6158
6159	return avc_has_perm(&selinux_state,
6160			    sid, isec->sid, SECCLASS_SHM,
6161			    SHM__ASSOCIATE, &ad);
6162}
6163
6164/* Note, at this point, shp is locked down */
6165static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6166{
6167	int perms;
6168	int err;
6169
6170	switch (cmd) {
6171	case IPC_INFO:
6172	case SHM_INFO:
6173		/* No specific object, just general system-wide information. */
6174		return avc_has_perm(&selinux_state,
6175				    current_sid(), SECINITSID_KERNEL,
6176				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6177	case IPC_STAT:
6178	case SHM_STAT:
6179	case SHM_STAT_ANY:
6180		perms = SHM__GETATTR | SHM__ASSOCIATE;
6181		break;
6182	case IPC_SET:
6183		perms = SHM__SETATTR;
6184		break;
6185	case SHM_LOCK:
6186	case SHM_UNLOCK:
6187		perms = SHM__LOCK;
6188		break;
6189	case IPC_RMID:
6190		perms = SHM__DESTROY;
6191		break;
6192	default:
6193		return 0;
6194	}
6195
6196	err = ipc_has_perm(shp, perms);
6197	return err;
6198}
6199
6200static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6201			     char __user *shmaddr, int shmflg)
6202{
6203	u32 perms;
6204
6205	if (shmflg & SHM_RDONLY)
6206		perms = SHM__READ;
6207	else
6208		perms = SHM__READ | SHM__WRITE;
6209
6210	return ipc_has_perm(shp, perms);
6211}
6212
6213/* Semaphore security operations */
6214static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6215{
6216	struct ipc_security_struct *isec;
6217	struct common_audit_data ad;
6218	u32 sid = current_sid();
6219	int rc;
6220
6221	rc = ipc_alloc_security(sma, SECCLASS_SEM);
6222	if (rc)
6223		return rc;
6224
6225	isec = sma->security;
6226
6227	ad.type = LSM_AUDIT_DATA_IPC;
6228	ad.u.ipc_id = sma->key;
6229
6230	rc = avc_has_perm(&selinux_state,
6231			  sid, isec->sid, SECCLASS_SEM,
6232			  SEM__CREATE, &ad);
6233	if (rc) {
6234		ipc_free_security(sma);
6235		return rc;
6236	}
6237	return 0;
6238}
6239
6240static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6241{
6242	ipc_free_security(sma);
6243}
6244
6245static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6246{
6247	struct ipc_security_struct *isec;
6248	struct common_audit_data ad;
6249	u32 sid = current_sid();
6250
6251	isec = sma->security;
6252
6253	ad.type = LSM_AUDIT_DATA_IPC;
6254	ad.u.ipc_id = sma->key;
6255
6256	return avc_has_perm(&selinux_state,
6257			    sid, isec->sid, SECCLASS_SEM,
6258			    SEM__ASSOCIATE, &ad);
6259}
6260
6261/* Note, at this point, sma is locked down */
6262static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6263{
6264	int err;
6265	u32 perms;
6266
6267	switch (cmd) {
6268	case IPC_INFO:
6269	case SEM_INFO:
6270		/* No specific object, just general system-wide information. */
6271		return avc_has_perm(&selinux_state,
6272				    current_sid(), SECINITSID_KERNEL,
6273				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6274	case GETPID:
6275	case GETNCNT:
6276	case GETZCNT:
6277		perms = SEM__GETATTR;
6278		break;
6279	case GETVAL:
6280	case GETALL:
6281		perms = SEM__READ;
6282		break;
6283	case SETVAL:
6284	case SETALL:
6285		perms = SEM__WRITE;
6286		break;
6287	case IPC_RMID:
6288		perms = SEM__DESTROY;
6289		break;
6290	case IPC_SET:
6291		perms = SEM__SETATTR;
6292		break;
6293	case IPC_STAT:
6294	case SEM_STAT:
6295	case SEM_STAT_ANY:
6296		perms = SEM__GETATTR | SEM__ASSOCIATE;
6297		break;
6298	default:
6299		return 0;
6300	}
6301
6302	err = ipc_has_perm(sma, perms);
6303	return err;
6304}
6305
6306static int selinux_sem_semop(struct kern_ipc_perm *sma,
6307			     struct sembuf *sops, unsigned nsops, int alter)
6308{
6309	u32 perms;
6310
6311	if (alter)
6312		perms = SEM__READ | SEM__WRITE;
6313	else
6314		perms = SEM__READ;
6315
6316	return ipc_has_perm(sma, perms);
6317}
6318
6319static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6320{
6321	u32 av = 0;
6322
6323	av = 0;
6324	if (flag & S_IRUGO)
6325		av |= IPC__UNIX_READ;
6326	if (flag & S_IWUGO)
6327		av |= IPC__UNIX_WRITE;
6328
6329	if (av == 0)
6330		return 0;
6331
6332	return ipc_has_perm(ipcp, av);
6333}
6334
6335static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6336{
6337	struct ipc_security_struct *isec = ipcp->security;
6338	*secid = isec->sid;
6339}
6340
6341static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6342{
6343	if (inode)
6344		inode_doinit_with_dentry(inode, dentry);
6345}
6346
6347static int selinux_getprocattr(struct task_struct *p,
6348			       char *name, char **value)
6349{
6350	const struct task_security_struct *__tsec;
6351	u32 sid;
6352	int error;
6353	unsigned len;
6354
6355	rcu_read_lock();
6356	__tsec = __task_cred(p)->security;
6357
6358	if (current != p) {
6359		error = avc_has_perm(&selinux_state,
6360				     current_sid(), __tsec->sid,
6361				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362		if (error)
6363			goto bad;
6364	}
6365
6366	if (!strcmp(name, "current"))
6367		sid = __tsec->sid;
6368	else if (!strcmp(name, "prev"))
6369		sid = __tsec->osid;
6370	else if (!strcmp(name, "exec"))
6371		sid = __tsec->exec_sid;
6372	else if (!strcmp(name, "fscreate"))
6373		sid = __tsec->create_sid;
6374	else if (!strcmp(name, "keycreate"))
6375		sid = __tsec->keycreate_sid;
6376	else if (!strcmp(name, "sockcreate"))
6377		sid = __tsec->sockcreate_sid;
6378	else {
6379		error = -EINVAL;
6380		goto bad;
6381	}
6382	rcu_read_unlock();
6383
6384	if (!sid)
6385		return 0;
6386
6387	error = security_sid_to_context(&selinux_state, sid, value, &len);
6388	if (error)
6389		return error;
6390	return len;
6391
6392bad:
6393	rcu_read_unlock();
6394	return error;
6395}
6396
6397static int selinux_setprocattr(const char *name, void *value, size_t size)
6398{
6399	struct task_security_struct *tsec;
6400	struct cred *new;
6401	u32 mysid = current_sid(), sid = 0, ptsid;
6402	int error;
6403	char *str = value;
6404
6405	/*
6406	 * Basic control over ability to set these attributes at all.
6407	 */
6408	if (!strcmp(name, "exec"))
6409		error = avc_has_perm(&selinux_state,
6410				     mysid, mysid, SECCLASS_PROCESS,
6411				     PROCESS__SETEXEC, NULL);
6412	else if (!strcmp(name, "fscreate"))
6413		error = avc_has_perm(&selinux_state,
6414				     mysid, mysid, SECCLASS_PROCESS,
6415				     PROCESS__SETFSCREATE, NULL);
6416	else if (!strcmp(name, "keycreate"))
6417		error = avc_has_perm(&selinux_state,
6418				     mysid, mysid, SECCLASS_PROCESS,
6419				     PROCESS__SETKEYCREATE, NULL);
6420	else if (!strcmp(name, "sockcreate"))
6421		error = avc_has_perm(&selinux_state,
6422				     mysid, mysid, SECCLASS_PROCESS,
6423				     PROCESS__SETSOCKCREATE, NULL);
6424	else if (!strcmp(name, "current"))
6425		error = avc_has_perm(&selinux_state,
6426				     mysid, mysid, SECCLASS_PROCESS,
6427				     PROCESS__SETCURRENT, NULL);
6428	else
6429		error = -EINVAL;
6430	if (error)
6431		return error;
6432
6433	/* Obtain a SID for the context, if one was specified. */
6434	if (size && str[0] && str[0] != '\n') {
6435		if (str[size-1] == '\n') {
6436			str[size-1] = 0;
6437			size--;
6438		}
6439		error = security_context_to_sid(&selinux_state, value, size,
6440						&sid, GFP_KERNEL);
6441		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6442			if (!has_cap_mac_admin(true)) {
6443				struct audit_buffer *ab;
6444				size_t audit_size;
6445
6446				/* We strip a nul only if it is at the end, otherwise the
6447				 * context contains a nul and we should audit that */
6448				if (str[size - 1] == '\0')
6449					audit_size = size - 1;
6450				else
6451					audit_size = size;
6452				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
6453				audit_log_format(ab, "op=fscreate invalid_context=");
6454				audit_log_n_untrustedstring(ab, value, audit_size);
6455				audit_log_end(ab);
6456
6457				return error;
6458			}
6459			error = security_context_to_sid_force(
6460						      &selinux_state,
6461						      value, size, &sid);
6462		}
6463		if (error)
6464			return error;
6465	}
6466
6467	new = prepare_creds();
6468	if (!new)
6469		return -ENOMEM;
6470
6471	/* Permission checking based on the specified context is
6472	   performed during the actual operation (execve,
6473	   open/mkdir/...), when we know the full context of the
6474	   operation.  See selinux_bprm_set_creds for the execve
6475	   checks and may_create for the file creation checks. The
6476	   operation will then fail if the context is not permitted. */
6477	tsec = new->security;
6478	if (!strcmp(name, "exec")) {
6479		tsec->exec_sid = sid;
6480	} else if (!strcmp(name, "fscreate")) {
6481		tsec->create_sid = sid;
6482	} else if (!strcmp(name, "keycreate")) {
6483		error = avc_has_perm(&selinux_state,
6484				     mysid, sid, SECCLASS_KEY, KEY__CREATE,
6485				     NULL);
6486		if (error)
6487			goto abort_change;
 
6488		tsec->keycreate_sid = sid;
6489	} else if (!strcmp(name, "sockcreate")) {
6490		tsec->sockcreate_sid = sid;
6491	} else if (!strcmp(name, "current")) {
6492		error = -EINVAL;
6493		if (sid == 0)
6494			goto abort_change;
6495
6496		/* Only allow single threaded processes to change context */
6497		error = -EPERM;
6498		if (!current_is_single_threaded()) {
6499			error = security_bounded_transition(&selinux_state,
6500							    tsec->sid, sid);
6501			if (error)
6502				goto abort_change;
6503		}
6504
6505		/* Check permissions for the transition. */
6506		error = avc_has_perm(&selinux_state,
6507				     tsec->sid, sid, SECCLASS_PROCESS,
6508				     PROCESS__DYNTRANSITION, NULL);
6509		if (error)
6510			goto abort_change;
6511
6512		/* Check for ptracing, and update the task SID if ok.
6513		   Otherwise, leave SID unchanged and fail. */
6514		ptsid = ptrace_parent_sid();
6515		if (ptsid != 0) {
6516			error = avc_has_perm(&selinux_state,
6517					     ptsid, sid, SECCLASS_PROCESS,
6518					     PROCESS__PTRACE, NULL);
6519			if (error)
6520				goto abort_change;
6521		}
6522
6523		tsec->sid = sid;
6524	} else {
6525		error = -EINVAL;
6526		goto abort_change;
6527	}
6528
6529	commit_creds(new);
6530	return size;
6531
6532abort_change:
6533	abort_creds(new);
6534	return error;
6535}
6536
6537static int selinux_ismaclabel(const char *name)
6538{
6539	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6540}
6541
6542static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6543{
6544	return security_sid_to_context(&selinux_state, secid,
6545				       secdata, seclen);
6546}
6547
6548static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6549{
6550	return security_context_to_sid(&selinux_state, secdata, seclen,
6551				       secid, GFP_KERNEL);
6552}
6553
6554static void selinux_release_secctx(char *secdata, u32 seclen)
6555{
6556	kfree(secdata);
6557}
6558
6559static void selinux_inode_invalidate_secctx(struct inode *inode)
6560{
6561	struct inode_security_struct *isec = inode->i_security;
6562
6563	spin_lock(&isec->lock);
6564	isec->initialized = LABEL_INVALID;
6565	spin_unlock(&isec->lock);
6566}
6567
6568/*
6569 *	called with inode->i_mutex locked
6570 */
6571static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6572{
6573	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
6574}
6575
6576/*
6577 *	called with inode->i_mutex locked
6578 */
6579static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6580{
6581	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6582}
6583
6584static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6585{
6586	int len = 0;
6587	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6588						ctx, true);
6589	if (len < 0)
6590		return len;
6591	*ctxlen = len;
6592	return 0;
6593}
6594#ifdef CONFIG_KEYS
6595
6596static int selinux_key_alloc(struct key *k, const struct cred *cred,
6597			     unsigned long flags)
6598{
6599	const struct task_security_struct *tsec;
6600	struct key_security_struct *ksec;
6601
6602	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6603	if (!ksec)
6604		return -ENOMEM;
6605
6606	tsec = cred->security;
6607	if (tsec->keycreate_sid)
6608		ksec->sid = tsec->keycreate_sid;
6609	else
6610		ksec->sid = tsec->sid;
6611
6612	k->security = ksec;
6613	return 0;
6614}
6615
6616static void selinux_key_free(struct key *k)
6617{
6618	struct key_security_struct *ksec = k->security;
6619
6620	k->security = NULL;
6621	kfree(ksec);
6622}
6623
6624static int selinux_key_permission(key_ref_t key_ref,
6625				  const struct cred *cred,
6626				  unsigned perm)
6627{
6628	struct key *key;
6629	struct key_security_struct *ksec;
6630	u32 sid;
6631
6632	/* if no specific permissions are requested, we skip the
6633	   permission check. No serious, additional covert channels
6634	   appear to be created. */
6635	if (perm == 0)
6636		return 0;
6637
6638	sid = cred_sid(cred);
6639
6640	key = key_ref_to_ptr(key_ref);
6641	ksec = key->security;
6642
6643	return avc_has_perm(&selinux_state,
6644			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6645}
6646
6647static int selinux_key_getsecurity(struct key *key, char **_buffer)
6648{
6649	struct key_security_struct *ksec = key->security;
6650	char *context = NULL;
6651	unsigned len;
6652	int rc;
6653
6654	rc = security_sid_to_context(&selinux_state, ksec->sid,
6655				     &context, &len);
6656	if (!rc)
6657		rc = len;
6658	*_buffer = context;
6659	return rc;
6660}
6661#endif
6662
6663#ifdef CONFIG_SECURITY_INFINIBAND
6664static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6665{
6666	struct common_audit_data ad;
6667	int err;
6668	u32 sid = 0;
6669	struct ib_security_struct *sec = ib_sec;
6670	struct lsm_ibpkey_audit ibpkey;
6671
6672	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6673	if (err)
6674		return err;
6675
6676	ad.type = LSM_AUDIT_DATA_IBPKEY;
6677	ibpkey.subnet_prefix = subnet_prefix;
6678	ibpkey.pkey = pkey_val;
6679	ad.u.ibpkey = &ibpkey;
6680	return avc_has_perm(&selinux_state,
6681			    sec->sid, sid,
6682			    SECCLASS_INFINIBAND_PKEY,
6683			    INFINIBAND_PKEY__ACCESS, &ad);
6684}
6685
6686static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6687					    u8 port_num)
6688{
6689	struct common_audit_data ad;
6690	int err;
6691	u32 sid = 0;
6692	struct ib_security_struct *sec = ib_sec;
6693	struct lsm_ibendport_audit ibendport;
6694
6695	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6696				      &sid);
6697
6698	if (err)
6699		return err;
6700
6701	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6702	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6703	ibendport.port = port_num;
6704	ad.u.ibendport = &ibendport;
6705	return avc_has_perm(&selinux_state,
6706			    sec->sid, sid,
6707			    SECCLASS_INFINIBAND_ENDPORT,
6708			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6709}
6710
6711static int selinux_ib_alloc_security(void **ib_sec)
6712{
6713	struct ib_security_struct *sec;
6714
6715	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6716	if (!sec)
6717		return -ENOMEM;
6718	sec->sid = current_sid();
6719
6720	*ib_sec = sec;
6721	return 0;
6722}
6723
6724static void selinux_ib_free_security(void *ib_sec)
6725{
6726	kfree(ib_sec);
6727}
6728#endif
6729
6730#ifdef CONFIG_BPF_SYSCALL
6731static int selinux_bpf(int cmd, union bpf_attr *attr,
6732				     unsigned int size)
6733{
6734	u32 sid = current_sid();
6735	int ret;
6736
6737	switch (cmd) {
6738	case BPF_MAP_CREATE:
6739		ret = avc_has_perm(&selinux_state,
6740				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6741				   NULL);
6742		break;
6743	case BPF_PROG_LOAD:
6744		ret = avc_has_perm(&selinux_state,
6745				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6746				   NULL);
6747		break;
6748	default:
6749		ret = 0;
6750		break;
6751	}
6752
6753	return ret;
6754}
6755
6756static u32 bpf_map_fmode_to_av(fmode_t fmode)
6757{
6758	u32 av = 0;
6759
6760	if (fmode & FMODE_READ)
6761		av |= BPF__MAP_READ;
6762	if (fmode & FMODE_WRITE)
6763		av |= BPF__MAP_WRITE;
6764	return av;
6765}
6766
6767/* This function will check the file pass through unix socket or binder to see
6768 * if it is a bpf related object. And apply correspinding checks on the bpf
6769 * object based on the type. The bpf maps and programs, not like other files and
6770 * socket, are using a shared anonymous inode inside the kernel as their inode.
6771 * So checking that inode cannot identify if the process have privilege to
6772 * access the bpf object and that's why we have to add this additional check in
6773 * selinux_file_receive and selinux_binder_transfer_files.
6774 */
6775static int bpf_fd_pass(struct file *file, u32 sid)
6776{
6777	struct bpf_security_struct *bpfsec;
6778	struct bpf_prog *prog;
6779	struct bpf_map *map;
6780	int ret;
6781
6782	if (file->f_op == &bpf_map_fops) {
6783		map = file->private_data;
6784		bpfsec = map->security;
6785		ret = avc_has_perm(&selinux_state,
6786				   sid, bpfsec->sid, SECCLASS_BPF,
6787				   bpf_map_fmode_to_av(file->f_mode), NULL);
6788		if (ret)
6789			return ret;
6790	} else if (file->f_op == &bpf_prog_fops) {
6791		prog = file->private_data;
6792		bpfsec = prog->aux->security;
6793		ret = avc_has_perm(&selinux_state,
6794				   sid, bpfsec->sid, SECCLASS_BPF,
6795				   BPF__PROG_RUN, NULL);
6796		if (ret)
6797			return ret;
6798	}
6799	return 0;
6800}
6801
6802static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6803{
6804	u32 sid = current_sid();
6805	struct bpf_security_struct *bpfsec;
6806
6807	bpfsec = map->security;
6808	return avc_has_perm(&selinux_state,
6809			    sid, bpfsec->sid, SECCLASS_BPF,
6810			    bpf_map_fmode_to_av(fmode), NULL);
6811}
6812
6813static int selinux_bpf_prog(struct bpf_prog *prog)
6814{
6815	u32 sid = current_sid();
6816	struct bpf_security_struct *bpfsec;
6817
6818	bpfsec = prog->aux->security;
6819	return avc_has_perm(&selinux_state,
6820			    sid, bpfsec->sid, SECCLASS_BPF,
6821			    BPF__PROG_RUN, NULL);
6822}
6823
6824static int selinux_bpf_map_alloc(struct bpf_map *map)
6825{
6826	struct bpf_security_struct *bpfsec;
6827
6828	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6829	if (!bpfsec)
6830		return -ENOMEM;
6831
6832	bpfsec->sid = current_sid();
6833	map->security = bpfsec;
6834
6835	return 0;
6836}
6837
6838static void selinux_bpf_map_free(struct bpf_map *map)
6839{
6840	struct bpf_security_struct *bpfsec = map->security;
6841
6842	map->security = NULL;
6843	kfree(bpfsec);
6844}
6845
6846static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6847{
6848	struct bpf_security_struct *bpfsec;
6849
6850	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6851	if (!bpfsec)
6852		return -ENOMEM;
6853
6854	bpfsec->sid = current_sid();
6855	aux->security = bpfsec;
6856
6857	return 0;
6858}
6859
6860static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6861{
6862	struct bpf_security_struct *bpfsec = aux->security;
6863
6864	aux->security = NULL;
6865	kfree(bpfsec);
6866}
6867#endif
6868
 
 
 
 
 
 
 
 
6869static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6870	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6871	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6872	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6873	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6874
6875	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6876	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6877	LSM_HOOK_INIT(capget, selinux_capget),
6878	LSM_HOOK_INIT(capset, selinux_capset),
6879	LSM_HOOK_INIT(capable, selinux_capable),
6880	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6881	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6882	LSM_HOOK_INIT(syslog, selinux_syslog),
6883	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6884
6885	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6886
6887	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6888	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6889	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6890
 
 
 
6891	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6892	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6893	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
 
6894	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6895	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6896	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6897	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6898	LSM_HOOK_INIT(sb_mount, selinux_mount),
6899	LSM_HOOK_INIT(sb_umount, selinux_umount),
6900	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6901	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6902	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6903
6904	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6905	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6906
6907	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6908	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6909	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6910	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6911	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6912	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6913	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6914	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6915	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6916	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6917	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6918	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6919	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6920	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6921	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6922	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6923	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6924	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6925	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6926	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6927	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6928	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6929	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6930	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6931	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6932	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6933	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
 
 
 
6934
6935	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6936	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6937	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6938	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6939	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6940	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6941	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6942	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6943	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6944	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6945	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6946	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6947
6948	LSM_HOOK_INIT(file_open, selinux_file_open),
6949
6950	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6951	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6952	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6953	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6954	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6955	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6956	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6957	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6958	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
 
6959	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6960	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6961	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6962	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6963	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6964	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6965	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6966	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6967	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6968	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6969	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6970	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6971	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6972	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6973	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6974
6975	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6976	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6977
6978	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6979	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6980
6981	LSM_HOOK_INIT(msg_queue_alloc_security,
6982			selinux_msg_queue_alloc_security),
6983	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6984	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6985	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6986	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6987	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6988
6989	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6990	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6991	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6992	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6993	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6994
6995	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6996	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6997	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6998	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6999	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7000
7001	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7002
7003	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7004	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7005
7006	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7007	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7008	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7009	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7010	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7011	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7012	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7013	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7014
7015	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7016	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7017
7018	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7019	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
 
7020	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7021	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7022	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7023	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7024	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7025	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7026	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7027	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7028	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7029	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7030	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7031	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7032	LSM_HOOK_INIT(socket_getpeersec_stream,
7033			selinux_socket_getpeersec_stream),
7034	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7035	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7036	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7037	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7038	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7039	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7040	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7041	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7042	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7043	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7044	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7045	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7046	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7047	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7048	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7049	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7050	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7051	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7052	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7053	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7054	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7055	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7056#ifdef CONFIG_SECURITY_INFINIBAND
7057	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7058	LSM_HOOK_INIT(ib_endport_manage_subnet,
7059		      selinux_ib_endport_manage_subnet),
7060	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7061	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7062#endif
7063#ifdef CONFIG_SECURITY_NETWORK_XFRM
7064	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7065	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7066	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7067	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7068	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7069	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7070			selinux_xfrm_state_alloc_acquire),
7071	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7072	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7073	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7074	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7075			selinux_xfrm_state_pol_flow_match),
7076	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7077#endif
7078
7079#ifdef CONFIG_KEYS
7080	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7081	LSM_HOOK_INIT(key_free, selinux_key_free),
7082	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7083	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7084#endif
7085
7086#ifdef CONFIG_AUDIT
7087	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7088	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7089	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7090	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7091#endif
7092
7093#ifdef CONFIG_BPF_SYSCALL
7094	LSM_HOOK_INIT(bpf, selinux_bpf),
7095	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7096	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7097	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7098	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7099	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7100	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7101#endif
7102};
7103
7104static __init int selinux_init(void)
7105{
7106	if (!security_module_enable("selinux")) {
7107		selinux_enabled = 0;
7108		return 0;
7109	}
7110
7111	if (!selinux_enabled) {
7112		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
7113		return 0;
7114	}
7115
7116	printk(KERN_INFO "SELinux:  Initializing.\n");
7117
7118	memset(&selinux_state, 0, sizeof(selinux_state));
7119	enforcing_set(&selinux_state, selinux_enforcing_boot);
7120	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7121	selinux_ss_init(&selinux_state.ss);
7122	selinux_avc_init(&selinux_state.avc);
7123
7124	/* Set the security state for the initial task. */
7125	cred_init_security();
7126
7127	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7128
7129	sel_inode_cache = kmem_cache_create("selinux_inode_security",
7130					    sizeof(struct inode_security_struct),
7131					    0, SLAB_PANIC, NULL);
7132	file_security_cache = kmem_cache_create("selinux_file_security",
7133					    sizeof(struct file_security_struct),
7134					    0, SLAB_PANIC, NULL);
7135	avc_init();
7136
7137	avtab_cache_init();
7138
7139	ebitmap_cache_init();
7140
7141	hashtab_cache_init();
7142
7143	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7144
7145	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7146		panic("SELinux: Unable to register AVC netcache callback\n");
7147
7148	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7149		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7150
7151	if (selinux_enforcing_boot)
7152		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
7153	else
7154		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
7155
7156	return 0;
7157}
7158
7159static void delayed_superblock_init(struct super_block *sb, void *unused)
7160{
7161	superblock_doinit(sb, NULL);
7162}
7163
7164void selinux_complete_init(void)
7165{
7166	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
7167
7168	/* Set up any superblocks initialized prior to the policy load. */
7169	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
7170	iterate_supers(delayed_superblock_init, NULL);
7171}
7172
7173/* SELinux requires early initialization in order to label
7174   all processes and objects when they are created. */
7175security_initcall(selinux_init);
 
 
 
 
 
 
7176
7177#if defined(CONFIG_NETFILTER)
7178
7179static const struct nf_hook_ops selinux_nf_ops[] = {
7180	{
7181		.hook =		selinux_ipv4_postroute,
7182		.pf =		NFPROTO_IPV4,
7183		.hooknum =	NF_INET_POST_ROUTING,
7184		.priority =	NF_IP_PRI_SELINUX_LAST,
7185	},
7186	{
7187		.hook =		selinux_ipv4_forward,
7188		.pf =		NFPROTO_IPV4,
7189		.hooknum =	NF_INET_FORWARD,
7190		.priority =	NF_IP_PRI_SELINUX_FIRST,
7191	},
7192	{
7193		.hook =		selinux_ipv4_output,
7194		.pf =		NFPROTO_IPV4,
7195		.hooknum =	NF_INET_LOCAL_OUT,
7196		.priority =	NF_IP_PRI_SELINUX_FIRST,
7197	},
7198#if IS_ENABLED(CONFIG_IPV6)
7199	{
7200		.hook =		selinux_ipv6_postroute,
7201		.pf =		NFPROTO_IPV6,
7202		.hooknum =	NF_INET_POST_ROUTING,
7203		.priority =	NF_IP6_PRI_SELINUX_LAST,
7204	},
7205	{
7206		.hook =		selinux_ipv6_forward,
7207		.pf =		NFPROTO_IPV6,
7208		.hooknum =	NF_INET_FORWARD,
7209		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7210	},
7211	{
7212		.hook =		selinux_ipv6_output,
7213		.pf =		NFPROTO_IPV6,
7214		.hooknum =	NF_INET_LOCAL_OUT,
7215		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7216	},
7217#endif	/* IPV6 */
7218};
7219
7220static int __net_init selinux_nf_register(struct net *net)
7221{
7222	return nf_register_net_hooks(net, selinux_nf_ops,
7223				     ARRAY_SIZE(selinux_nf_ops));
7224}
7225
7226static void __net_exit selinux_nf_unregister(struct net *net)
7227{
7228	nf_unregister_net_hooks(net, selinux_nf_ops,
7229				ARRAY_SIZE(selinux_nf_ops));
7230}
7231
7232static struct pernet_operations selinux_net_ops = {
7233	.init = selinux_nf_register,
7234	.exit = selinux_nf_unregister,
7235};
7236
7237static int __init selinux_nf_ip_init(void)
7238{
7239	int err;
7240
7241	if (!selinux_enabled)
7242		return 0;
7243
7244	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
7245
7246	err = register_pernet_subsys(&selinux_net_ops);
7247	if (err)
7248		panic("SELinux: register_pernet_subsys: error %d\n", err);
7249
7250	return 0;
7251}
7252__initcall(selinux_nf_ip_init);
7253
7254#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7255static void selinux_nf_ip_exit(void)
7256{
7257	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
7258
7259	unregister_pernet_subsys(&selinux_net_ops);
7260}
7261#endif
7262
7263#else /* CONFIG_NETFILTER */
7264
7265#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7266#define selinux_nf_ip_exit()
7267#endif
7268
7269#endif /* CONFIG_NETFILTER */
7270
7271#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7272int selinux_disable(struct selinux_state *state)
7273{
7274	if (state->initialized) {
7275		/* Not permitted after initial policy load. */
7276		return -EINVAL;
7277	}
7278
7279	if (state->disabled) {
7280		/* Only do this once. */
7281		return -EINVAL;
7282	}
7283
7284	state->disabled = 1;
7285
7286	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
7287
7288	selinux_enabled = 0;
7289
7290	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7291
7292	/* Try to destroy the avc node cache */
7293	avc_disable();
7294
7295	/* Unregister netfilter hooks. */
7296	selinux_nf_ip_exit();
7297
7298	/* Unregister selinuxfs. */
7299	exit_sel_fs();
7300
7301	return 0;
7302}
7303#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/tracehook.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
 
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
  94
  95#include "avc.h"
  96#include "objsec.h"
  97#include "netif.h"
  98#include "netnode.h"
  99#include "netport.h"
 100#include "ibpkey.h"
 101#include "xfrm.h"
 102#include "netlabel.h"
 103#include "audit.h"
 104#include "avc_ss.h"
 105
 106struct selinux_state selinux_state;
 107
 108/* SECMARK reference count */
 109static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 110
 111#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 112static int selinux_enforcing_boot;
 113
 114static int __init enforcing_setup(char *str)
 115{
 116	unsigned long enforcing;
 117	if (!kstrtoul(str, 0, &enforcing))
 118		selinux_enforcing_boot = enforcing ? 1 : 0;
 119	return 1;
 120}
 121__setup("enforcing=", enforcing_setup);
 122#else
 123#define selinux_enforcing_boot 1
 124#endif
 125
 126int selinux_enabled __lsm_ro_after_init = 1;
 127#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 128static int __init selinux_enabled_setup(char *str)
 129{
 130	unsigned long enabled;
 131	if (!kstrtoul(str, 0, &enabled))
 132		selinux_enabled = enabled ? 1 : 0;
 133	return 1;
 134}
 135__setup("selinux=", selinux_enabled_setup);
 
 
 136#endif
 137
 138static unsigned int selinux_checkreqprot_boot =
 139	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 140
 141static int __init checkreqprot_setup(char *str)
 142{
 143	unsigned long checkreqprot;
 144
 145	if (!kstrtoul(str, 0, &checkreqprot))
 146		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 147	return 1;
 148}
 149__setup("checkreqprot=", checkreqprot_setup);
 150
 
 
 
 151/**
 152 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 153 *
 154 * Description:
 155 * This function checks the SECMARK reference counter to see if any SECMARK
 156 * targets are currently configured, if the reference counter is greater than
 157 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 158 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 159 * policy capability is enabled, SECMARK is always considered enabled.
 160 *
 161 */
 162static int selinux_secmark_enabled(void)
 163{
 164	return (selinux_policycap_alwaysnetwork() ||
 165		atomic_read(&selinux_secmark_refcount));
 166}
 167
 168/**
 169 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 170 *
 171 * Description:
 172 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 173 * (1) if any are enabled or false (0) if neither are enabled.  If the
 174 * always_check_network policy capability is enabled, peer labeling
 175 * is always considered enabled.
 176 *
 177 */
 178static int selinux_peerlbl_enabled(void)
 179{
 180	return (selinux_policycap_alwaysnetwork() ||
 181		netlbl_enabled() || selinux_xfrm_enabled());
 182}
 183
 184static int selinux_netcache_avc_callback(u32 event)
 185{
 186	if (event == AVC_CALLBACK_RESET) {
 187		sel_netif_flush();
 188		sel_netnode_flush();
 189		sel_netport_flush();
 190		synchronize_net();
 191	}
 192	return 0;
 193}
 194
 195static int selinux_lsm_notifier_avc_callback(u32 event)
 196{
 197	if (event == AVC_CALLBACK_RESET) {
 198		sel_ib_pkey_flush();
 199		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 200	}
 201
 202	return 0;
 203}
 204
 205/*
 206 * initialise the security for the init task
 207 */
 208static void cred_init_security(void)
 209{
 210	struct cred *cred = (struct cred *) current->real_cred;
 211	struct task_security_struct *tsec;
 212
 213	tsec = selinux_cred(cred);
 
 
 
 214	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 215}
 216
 217/*
 218 * get the security ID of a set of credentials
 219 */
 220static inline u32 cred_sid(const struct cred *cred)
 221{
 222	const struct task_security_struct *tsec;
 223
 224	tsec = selinux_cred(cred);
 225	return tsec->sid;
 226}
 227
 228/*
 229 * get the objective security ID of a task
 230 */
 231static inline u32 task_sid(const struct task_struct *task)
 232{
 233	u32 sid;
 234
 235	rcu_read_lock();
 236	sid = cred_sid(__task_cred(task));
 237	rcu_read_unlock();
 238	return sid;
 239}
 240
 241/* Allocate and free functions for each kind of security blob. */
 242
 243static int inode_alloc_security(struct inode *inode)
 244{
 245	struct inode_security_struct *isec = selinux_inode(inode);
 246	u32 sid = current_sid();
 247
 
 
 
 
 248	spin_lock_init(&isec->lock);
 249	INIT_LIST_HEAD(&isec->list);
 250	isec->inode = inode;
 251	isec->sid = SECINITSID_UNLABELED;
 252	isec->sclass = SECCLASS_FILE;
 253	isec->task_sid = sid;
 254	isec->initialized = LABEL_INVALID;
 
 255
 256	return 0;
 257}
 258
 259static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 260
 261/*
 262 * Try reloading inode security labels that have been marked as invalid.  The
 263 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 264 * allowed; when set to false, returns -ECHILD when the label is
 265 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 
 266 */
 267static int __inode_security_revalidate(struct inode *inode,
 268				       struct dentry *dentry,
 269				       bool may_sleep)
 270{
 271	struct inode_security_struct *isec = selinux_inode(inode);
 272
 273	might_sleep_if(may_sleep);
 274
 275	if (selinux_state.initialized &&
 276	    isec->initialized != LABEL_INITIALIZED) {
 277		if (!may_sleep)
 278			return -ECHILD;
 279
 280		/*
 281		 * Try reloading the inode security label.  This will fail if
 282		 * @opt_dentry is NULL and no dentry for this inode can be
 283		 * found; in that case, continue using the old label.
 284		 */
 285		inode_doinit_with_dentry(inode, dentry);
 286	}
 287	return 0;
 288}
 289
 290static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 291{
 292	return selinux_inode(inode);
 293}
 294
 295static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 296{
 297	int error;
 298
 299	error = __inode_security_revalidate(inode, NULL, !rcu);
 300	if (error)
 301		return ERR_PTR(error);
 302	return selinux_inode(inode);
 303}
 304
 305/*
 306 * Get the security label of an inode.
 307 */
 308static struct inode_security_struct *inode_security(struct inode *inode)
 309{
 310	__inode_security_revalidate(inode, NULL, true);
 311	return selinux_inode(inode);
 312}
 313
 314static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 315{
 316	struct inode *inode = d_backing_inode(dentry);
 317
 318	return selinux_inode(inode);
 319}
 320
 321/*
 322 * Get the security label of a dentry's backing inode.
 323 */
 324static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 325{
 326	struct inode *inode = d_backing_inode(dentry);
 327
 328	__inode_security_revalidate(inode, dentry, true);
 329	return selinux_inode(inode);
 
 
 
 
 
 
 
 
 330}
 331
 332static void inode_free_security(struct inode *inode)
 333{
 334	struct inode_security_struct *isec = selinux_inode(inode);
 335	struct superblock_security_struct *sbsec;
 336
 337	if (!isec)
 338		return;
 339	sbsec = inode->i_sb->s_security;
 340	/*
 341	 * As not all inode security structures are in a list, we check for
 342	 * empty list outside of the lock to make sure that we won't waste
 343	 * time taking a lock doing nothing.
 344	 *
 345	 * The list_del_init() function can be safely called more than once.
 346	 * It should not be possible for this function to be called with
 347	 * concurrent list_add(), but for better safety against future changes
 348	 * in the code, we use list_empty_careful() here.
 349	 */
 350	if (!list_empty_careful(&isec->list)) {
 351		spin_lock(&sbsec->isec_lock);
 352		list_del_init(&isec->list);
 353		spin_unlock(&sbsec->isec_lock);
 354	}
 
 
 
 
 
 
 
 
 
 
 
 355}
 356
 357static int file_alloc_security(struct file *file)
 358{
 359	struct file_security_struct *fsec = selinux_file(file);
 360	u32 sid = current_sid();
 361
 
 
 
 
 362	fsec->sid = sid;
 363	fsec->fown_sid = sid;
 
 364
 365	return 0;
 366}
 367
 
 
 
 
 
 
 
 368static int superblock_alloc_security(struct super_block *sb)
 369{
 370	struct superblock_security_struct *sbsec;
 371
 372	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 373	if (!sbsec)
 374		return -ENOMEM;
 375
 376	mutex_init(&sbsec->lock);
 377	INIT_LIST_HEAD(&sbsec->isec_head);
 378	spin_lock_init(&sbsec->isec_lock);
 379	sbsec->sb = sb;
 380	sbsec->sid = SECINITSID_UNLABELED;
 381	sbsec->def_sid = SECINITSID_FILE;
 382	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 383	sb->s_security = sbsec;
 384
 385	return 0;
 386}
 387
 388static void superblock_free_security(struct super_block *sb)
 389{
 390	struct superblock_security_struct *sbsec = sb->s_security;
 391	sb->s_security = NULL;
 392	kfree(sbsec);
 393}
 394
 395struct selinux_mnt_opts {
 396	const char *fscontext, *context, *rootcontext, *defcontext;
 397};
 398
 399static void selinux_free_mnt_opts(void *mnt_opts)
 400{
 401	struct selinux_mnt_opts *opts = mnt_opts;
 402	kfree(opts->fscontext);
 403	kfree(opts->context);
 404	kfree(opts->rootcontext);
 405	kfree(opts->defcontext);
 406	kfree(opts);
 407}
 408
 409static inline int inode_doinit(struct inode *inode)
 410{
 411	return inode_doinit_with_dentry(inode, NULL);
 412}
 413
 414enum {
 415	Opt_error = -1,
 416	Opt_context = 0,
 417	Opt_defcontext = 1,
 418	Opt_fscontext = 2,
 419	Opt_rootcontext = 3,
 420	Opt_seclabel = 4,
 
 
 421};
 422
 423#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 424static struct {
 425	const char *name;
 426	int len;
 427	int opt;
 428	bool has_arg;
 429} tokens[] = {
 430	A(context, true),
 431	A(fscontext, true),
 432	A(defcontext, true),
 433	A(rootcontext, true),
 434	A(seclabel, false),
 435};
 436#undef A
 437
 438static int match_opt_prefix(char *s, int l, char **arg)
 439{
 440	int i;
 441
 442	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 443		size_t len = tokens[i].len;
 444		if (len > l || memcmp(s, tokens[i].name, len))
 445			continue;
 446		if (tokens[i].has_arg) {
 447			if (len == l || s[len] != '=')
 448				continue;
 449			*arg = s + len + 1;
 450		} else if (len != l)
 451			continue;
 452		return tokens[i].opt;
 453	}
 454	return Opt_error;
 455}
 456
 457#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 458
 459static int may_context_mount_sb_relabel(u32 sid,
 460			struct superblock_security_struct *sbsec,
 461			const struct cred *cred)
 462{
 463	const struct task_security_struct *tsec = selinux_cred(cred);
 464	int rc;
 465
 466	rc = avc_has_perm(&selinux_state,
 467			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 468			  FILESYSTEM__RELABELFROM, NULL);
 469	if (rc)
 470		return rc;
 471
 472	rc = avc_has_perm(&selinux_state,
 473			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 474			  FILESYSTEM__RELABELTO, NULL);
 475	return rc;
 476}
 477
 478static int may_context_mount_inode_relabel(u32 sid,
 479			struct superblock_security_struct *sbsec,
 480			const struct cred *cred)
 481{
 482	const struct task_security_struct *tsec = selinux_cred(cred);
 483	int rc;
 484	rc = avc_has_perm(&selinux_state,
 485			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 486			  FILESYSTEM__RELABELFROM, NULL);
 487	if (rc)
 488		return rc;
 489
 490	rc = avc_has_perm(&selinux_state,
 491			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 492			  FILESYSTEM__ASSOCIATE, NULL);
 493	return rc;
 494}
 495
 496static int selinux_is_genfs_special_handling(struct super_block *sb)
 497{
 498	/* Special handling. Genfs but also in-core setxattr handler */
 499	return	!strcmp(sb->s_type->name, "sysfs") ||
 
 
 
 
 
 
 500		!strcmp(sb->s_type->name, "pstore") ||
 501		!strcmp(sb->s_type->name, "debugfs") ||
 502		!strcmp(sb->s_type->name, "tracefs") ||
 503		!strcmp(sb->s_type->name, "rootfs") ||
 504		(selinux_policycap_cgroupseclabel() &&
 505		 (!strcmp(sb->s_type->name, "cgroup") ||
 506		  !strcmp(sb->s_type->name, "cgroup2")));
 507}
 508
 509static int selinux_is_sblabel_mnt(struct super_block *sb)
 510{
 511	struct superblock_security_struct *sbsec = sb->s_security;
 512
 513	/*
 514	 * IMPORTANT: Double-check logic in this function when adding a new
 515	 * SECURITY_FS_USE_* definition!
 516	 */
 517	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 518
 519	switch (sbsec->behavior) {
 520	case SECURITY_FS_USE_XATTR:
 521	case SECURITY_FS_USE_TRANS:
 522	case SECURITY_FS_USE_TASK:
 523	case SECURITY_FS_USE_NATIVE:
 524		return 1;
 525
 526	case SECURITY_FS_USE_GENFS:
 527		return selinux_is_genfs_special_handling(sb);
 528
 529	/* Never allow relabeling on context mounts */
 530	case SECURITY_FS_USE_MNTPOINT:
 531	case SECURITY_FS_USE_NONE:
 532	default:
 533		return 0;
 534	}
 535}
 536
 537static int sb_finish_set_opts(struct super_block *sb)
 538{
 539	struct superblock_security_struct *sbsec = sb->s_security;
 540	struct dentry *root = sb->s_root;
 541	struct inode *root_inode = d_backing_inode(root);
 542	int rc = 0;
 543
 544	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 545		/* Make sure that the xattr handler exists and that no
 546		   error other than -ENODATA is returned by getxattr on
 547		   the root directory.  -ENODATA is ok, as this may be
 548		   the first boot of the SELinux kernel before we have
 549		   assigned xattr values to the filesystem. */
 550		if (!(root_inode->i_opflags & IOP_XATTR)) {
 551			pr_warn("SELinux: (dev %s, type %s) has no "
 552			       "xattr support\n", sb->s_id, sb->s_type->name);
 553			rc = -EOPNOTSUPP;
 554			goto out;
 555		}
 556
 557		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 558		if (rc < 0 && rc != -ENODATA) {
 559			if (rc == -EOPNOTSUPP)
 560				pr_warn("SELinux: (dev %s, type "
 561				       "%s) has no security xattr handler\n",
 562				       sb->s_id, sb->s_type->name);
 563			else
 564				pr_warn("SELinux: (dev %s, type "
 565				       "%s) getxattr errno %d\n", sb->s_id,
 566				       sb->s_type->name, -rc);
 567			goto out;
 568		}
 569	}
 570
 571	sbsec->flags |= SE_SBINITIALIZED;
 572
 573	/*
 574	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 575	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 576	 * us a superblock that needs the flag to be cleared.
 577	 */
 578	if (selinux_is_sblabel_mnt(sb))
 579		sbsec->flags |= SBLABEL_MNT;
 580	else
 581		sbsec->flags &= ~SBLABEL_MNT;
 582
 583	/* Initialize the root inode. */
 584	rc = inode_doinit_with_dentry(root_inode, root);
 585
 586	/* Initialize any other inodes associated with the superblock, e.g.
 587	   inodes created prior to initial policy load or inodes created
 588	   during get_sb by a pseudo filesystem that directly
 589	   populates itself. */
 590	spin_lock(&sbsec->isec_lock);
 591	while (!list_empty(&sbsec->isec_head)) {
 
 592		struct inode_security_struct *isec =
 593				list_first_entry(&sbsec->isec_head,
 594					   struct inode_security_struct, list);
 595		struct inode *inode = isec->inode;
 596		list_del_init(&isec->list);
 597		spin_unlock(&sbsec->isec_lock);
 598		inode = igrab(inode);
 599		if (inode) {
 600			if (!IS_PRIVATE(inode))
 601				inode_doinit(inode);
 602			iput(inode);
 603		}
 604		spin_lock(&sbsec->isec_lock);
 
 605	}
 606	spin_unlock(&sbsec->isec_lock);
 607out:
 608	return rc;
 609}
 610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611static int bad_option(struct superblock_security_struct *sbsec, char flag,
 612		      u32 old_sid, u32 new_sid)
 613{
 614	char mnt_flags = sbsec->flags & SE_MNTMASK;
 615
 616	/* check if the old mount command had the same options */
 617	if (sbsec->flags & SE_SBINITIALIZED)
 618		if (!(sbsec->flags & flag) ||
 619		    (old_sid != new_sid))
 620			return 1;
 621
 622	/* check if we were passed the same options twice,
 623	 * aka someone passed context=a,context=b
 624	 */
 625	if (!(sbsec->flags & SE_SBINITIALIZED))
 626		if (mnt_flags & flag)
 627			return 1;
 628	return 0;
 629}
 630
 631static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 632{
 633	int rc = security_context_str_to_sid(&selinux_state, s,
 634					     sid, GFP_KERNEL);
 635	if (rc)
 636		pr_warn("SELinux: security_context_str_to_sid"
 637		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 638		       s, sb->s_id, sb->s_type->name, rc);
 639	return rc;
 640}
 641
 642/*
 643 * Allow filesystems with binary mount data to explicitly set mount point
 644 * labeling information.
 645 */
 646static int selinux_set_mnt_opts(struct super_block *sb,
 647				void *mnt_opts,
 648				unsigned long kern_flags,
 649				unsigned long *set_kern_flags)
 650{
 651	const struct cred *cred = current_cred();
 
 652	struct superblock_security_struct *sbsec = sb->s_security;
 
 653	struct dentry *root = sbsec->sb->s_root;
 654	struct selinux_mnt_opts *opts = mnt_opts;
 655	struct inode_security_struct *root_isec;
 656	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 657	u32 defcontext_sid = 0;
 658	int rc = 0;
 
 
 659
 660	mutex_lock(&sbsec->lock);
 661
 662	if (!selinux_state.initialized) {
 663		if (!opts) {
 664			/* Defer initialization until selinux_complete_init,
 665			   after the initial policy is loaded and the security
 666			   server is ready to handle calls. */
 667			goto out;
 668		}
 669		rc = -EINVAL;
 670		pr_warn("SELinux: Unable to set superblock options "
 671			"before the security server is initialized\n");
 672		goto out;
 673	}
 674	if (kern_flags && !set_kern_flags) {
 675		/* Specifying internal flags without providing a place to
 676		 * place the results is not allowed */
 677		rc = -EINVAL;
 678		goto out;
 679	}
 680
 681	/*
 682	 * Binary mount data FS will come through this function twice.  Once
 683	 * from an explicit call and once from the generic calls from the vfs.
 684	 * Since the generic VFS calls will not contain any security mount data
 685	 * we need to skip the double mount verification.
 686	 *
 687	 * This does open a hole in which we will not notice if the first
 688	 * mount using this sb set explict options and a second mount using
 689	 * this sb does not set any security options.  (The first options
 690	 * will be used for both mounts)
 691	 */
 692	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 693	    && !opts)
 694		goto out;
 695
 696	root_isec = backing_inode_security_novalidate(root);
 697
 698	/*
 699	 * parse the mount options, check if they are valid sids.
 700	 * also check if someone is trying to mount the same sb more
 701	 * than once with different security options.
 702	 */
 703	if (opts) {
 704		if (opts->fscontext) {
 705			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 706			if (rc)
 707				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 708			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 709					fscontext_sid))
 710				goto out_double_mount;
 
 711			sbsec->flags |= FSCONTEXT_MNT;
 712		}
 713		if (opts->context) {
 714			rc = parse_sid(sb, opts->context, &context_sid);
 715			if (rc)
 716				goto out;
 717			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 718					context_sid))
 719				goto out_double_mount;
 
 720			sbsec->flags |= CONTEXT_MNT;
 721		}
 722		if (opts->rootcontext) {
 723			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 724			if (rc)
 725				goto out;
 726			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 727					rootcontext_sid))
 728				goto out_double_mount;
 
 729			sbsec->flags |= ROOTCONTEXT_MNT;
 730		}
 731		if (opts->defcontext) {
 732			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 733			if (rc)
 734				goto out;
 735			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 736					defcontext_sid))
 737				goto out_double_mount;
 
 738			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 739		}
 740	}
 741
 742	if (sbsec->flags & SE_SBINITIALIZED) {
 743		/* previously mounted with options, but not on this attempt? */
 744		if ((sbsec->flags & SE_MNTMASK) && !opts)
 745			goto out_double_mount;
 746		rc = 0;
 747		goto out;
 748	}
 749
 750	if (strcmp(sb->s_type->name, "proc") == 0)
 751		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 752
 753	if (!strcmp(sb->s_type->name, "debugfs") ||
 754	    !strcmp(sb->s_type->name, "tracefs") ||
 755	    !strcmp(sb->s_type->name, "pstore"))
 756		sbsec->flags |= SE_SBGENFS;
 757
 758	if (!strcmp(sb->s_type->name, "sysfs") ||
 759	    !strcmp(sb->s_type->name, "cgroup") ||
 760	    !strcmp(sb->s_type->name, "cgroup2"))
 761		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 762
 763	if (!sbsec->behavior) {
 764		/*
 765		 * Determine the labeling behavior to use for this
 766		 * filesystem type.
 767		 */
 768		rc = security_fs_use(&selinux_state, sb);
 769		if (rc) {
 770			pr_warn("%s: security_fs_use(%s) returned %d\n",
 
 771					__func__, sb->s_type->name, rc);
 772			goto out;
 773		}
 774	}
 775
 776	/*
 777	 * If this is a user namespace mount and the filesystem type is not
 778	 * explicitly whitelisted, then no contexts are allowed on the command
 779	 * line and security labels must be ignored.
 780	 */
 781	if (sb->s_user_ns != &init_user_ns &&
 782	    strcmp(sb->s_type->name, "tmpfs") &&
 783	    strcmp(sb->s_type->name, "ramfs") &&
 784	    strcmp(sb->s_type->name, "devpts")) {
 785		if (context_sid || fscontext_sid || rootcontext_sid ||
 786		    defcontext_sid) {
 787			rc = -EACCES;
 788			goto out;
 789		}
 790		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 791			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 792			rc = security_transition_sid(&selinux_state,
 793						     current_sid(),
 794						     current_sid(),
 795						     SECCLASS_FILE, NULL,
 796						     &sbsec->mntpoint_sid);
 797			if (rc)
 798				goto out;
 799		}
 800		goto out_set_opts;
 801	}
 802
 803	/* sets the context of the superblock for the fs being mounted. */
 804	if (fscontext_sid) {
 805		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 806		if (rc)
 807			goto out;
 808
 809		sbsec->sid = fscontext_sid;
 810	}
 811
 812	/*
 813	 * Switch to using mount point labeling behavior.
 814	 * sets the label used on all file below the mountpoint, and will set
 815	 * the superblock context if not already set.
 816	 */
 817	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 818		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 819		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 820	}
 821
 822	if (context_sid) {
 823		if (!fscontext_sid) {
 824			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 825							  cred);
 826			if (rc)
 827				goto out;
 828			sbsec->sid = context_sid;
 829		} else {
 830			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 831							     cred);
 832			if (rc)
 833				goto out;
 834		}
 835		if (!rootcontext_sid)
 836			rootcontext_sid = context_sid;
 837
 838		sbsec->mntpoint_sid = context_sid;
 839		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 840	}
 841
 842	if (rootcontext_sid) {
 843		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 844						     cred);
 845		if (rc)
 846			goto out;
 847
 848		root_isec->sid = rootcontext_sid;
 849		root_isec->initialized = LABEL_INITIALIZED;
 850	}
 851
 852	if (defcontext_sid) {
 853		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 854			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 855			rc = -EINVAL;
 856			pr_warn("SELinux: defcontext option is "
 857			       "invalid for this filesystem type\n");
 858			goto out;
 859		}
 860
 861		if (defcontext_sid != sbsec->def_sid) {
 862			rc = may_context_mount_inode_relabel(defcontext_sid,
 863							     sbsec, cred);
 864			if (rc)
 865				goto out;
 866		}
 867
 868		sbsec->def_sid = defcontext_sid;
 869	}
 870
 871out_set_opts:
 872	rc = sb_finish_set_opts(sb);
 873out:
 874	mutex_unlock(&sbsec->lock);
 875	return rc;
 876out_double_mount:
 877	rc = -EINVAL;
 878	pr_warn("SELinux: mount invalid.  Same superblock, different "
 879	       "security settings for (dev %s, type %s)\n", sb->s_id,
 880	       sb->s_type->name);
 881	goto out;
 882}
 883
 884static int selinux_cmp_sb_context(const struct super_block *oldsb,
 885				    const struct super_block *newsb)
 886{
 887	struct superblock_security_struct *old = oldsb->s_security;
 888	struct superblock_security_struct *new = newsb->s_security;
 889	char oldflags = old->flags & SE_MNTMASK;
 890	char newflags = new->flags & SE_MNTMASK;
 891
 892	if (oldflags != newflags)
 893		goto mismatch;
 894	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 895		goto mismatch;
 896	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 897		goto mismatch;
 898	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 899		goto mismatch;
 900	if (oldflags & ROOTCONTEXT_MNT) {
 901		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 902		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 903		if (oldroot->sid != newroot->sid)
 904			goto mismatch;
 905	}
 906	return 0;
 907mismatch:
 908	pr_warn("SELinux: mount invalid.  Same superblock, "
 909			    "different security settings for (dev %s, "
 910			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 911	return -EBUSY;
 912}
 913
 914static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 915					struct super_block *newsb,
 916					unsigned long kern_flags,
 917					unsigned long *set_kern_flags)
 918{
 919	int rc = 0;
 920	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 921	struct superblock_security_struct *newsbsec = newsb->s_security;
 922
 923	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 924	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 925	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 926
 927	/*
 928	 * if the parent was able to be mounted it clearly had no special lsm
 929	 * mount options.  thus we can safely deal with this superblock later
 930	 */
 931	if (!selinux_state.initialized)
 932		return 0;
 933
 934	/*
 935	 * Specifying internal flags without providing a place to
 936	 * place the results is not allowed.
 937	 */
 938	if (kern_flags && !set_kern_flags)
 939		return -EINVAL;
 940
 941	/* how can we clone if the old one wasn't set up?? */
 942	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 943
 944	/* if fs is reusing a sb, make sure that the contexts match */
 945	if (newsbsec->flags & SE_SBINITIALIZED) {
 946		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 947			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 948		return selinux_cmp_sb_context(oldsb, newsb);
 949	}
 950
 951	mutex_lock(&newsbsec->lock);
 952
 953	newsbsec->flags = oldsbsec->flags;
 954
 955	newsbsec->sid = oldsbsec->sid;
 956	newsbsec->def_sid = oldsbsec->def_sid;
 957	newsbsec->behavior = oldsbsec->behavior;
 958
 959	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 960		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 961		rc = security_fs_use(&selinux_state, newsb);
 962		if (rc)
 963			goto out;
 964	}
 965
 966	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 967		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 968		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 969	}
 970
 971	if (set_context) {
 972		u32 sid = oldsbsec->mntpoint_sid;
 973
 974		if (!set_fscontext)
 975			newsbsec->sid = sid;
 976		if (!set_rootcontext) {
 977			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 978			newisec->sid = sid;
 979		}
 980		newsbsec->mntpoint_sid = sid;
 981	}
 982	if (set_rootcontext) {
 983		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 984		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 985
 986		newisec->sid = oldisec->sid;
 987	}
 988
 989	sb_finish_set_opts(newsb);
 990out:
 991	mutex_unlock(&newsbsec->lock);
 992	return rc;
 993}
 994
 995static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 
 996{
 997	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998
 999	if (token == Opt_seclabel)	/* eaten and completely ignored */
1000		return 0;
 
 
 
 
 
 
 
 
 
 
 
1001
1002	if (!opts) {
1003		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1004		if (!opts)
1005			return -ENOMEM;
1006		*mnt_opts = opts;
1007	}
1008	if (!s)
1009		return -ENOMEM;
1010	switch (token) {
1011	case Opt_context:
1012		if (opts->context || opts->defcontext)
1013			goto Einval;
1014		opts->context = s;
1015		break;
1016	case Opt_fscontext:
1017		if (opts->fscontext)
1018			goto Einval;
1019		opts->fscontext = s;
1020		break;
1021	case Opt_rootcontext:
1022		if (opts->rootcontext)
1023			goto Einval;
1024		opts->rootcontext = s;
1025		break;
1026	case Opt_defcontext:
1027		if (opts->context || opts->defcontext)
1028			goto Einval;
1029		opts->defcontext = s;
1030		break;
1031	}
1032	return 0;
1033Einval:
1034	pr_warn(SEL_MOUNT_FAIL_MSG);
1035	return -EINVAL;
1036}
1037
1038static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1039			       void **mnt_opts)
1040{
1041	int token = Opt_error;
1042	int rc, i;
 
 
 
 
 
 
 
1043
1044	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1045		if (strcmp(option, tokens[i].name) == 0) {
1046			token = tokens[i].opt;
 
 
 
 
 
 
 
 
 
 
1047			break;
 
 
 
 
 
1048		}
1049	}
1050
1051	if (token == Opt_error)
1052		return -EINVAL;
 
 
 
 
 
 
 
1053
1054	if (token != Opt_seclabel) {
1055		val = kmemdup_nul(val, len, GFP_KERNEL);
1056		if (!val) {
1057			rc = -ENOMEM;
1058			goto free_opt;
1059		}
 
 
 
 
 
1060	}
1061	rc = selinux_add_opt(token, val, mnt_opts);
1062	if (unlikely(rc)) {
1063		kfree(val);
1064		goto free_opt;
1065	}
 
 
 
 
 
 
 
 
 
 
1066	return rc;
 
 
 
 
 
 
 
 
 
1067
1068free_opt:
1069	if (*mnt_opts) {
1070		selinux_free_mnt_opts(*mnt_opts);
1071		*mnt_opts = NULL;
1072	}
 
 
 
 
 
 
 
 
 
 
 
1073	return rc;
1074}
1075
1076static int show_sid(struct seq_file *m, u32 sid)
 
1077{
1078	char *context = NULL;
1079	u32 len;
1080	int rc;
 
 
1081
1082	rc = security_sid_to_context(&selinux_state, sid,
1083					     &context, &len);
1084	if (!rc) {
1085		bool has_comma = context && strchr(context, ',');
1086
1087		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088		if (has_comma)
1089			seq_putc(m, '\"');
1090		seq_escape(m, context, "\"\n\\");
1091		if (has_comma)
1092			seq_putc(m, '\"');
1093	}
1094	kfree(context);
1095	return rc;
1096}
1097
1098static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1099{
1100	struct superblock_security_struct *sbsec = sb->s_security;
1101	int rc;
1102
1103	if (!(sbsec->flags & SE_SBINITIALIZED))
1104		return 0;
 
 
 
 
 
 
 
1105
1106	if (!selinux_state.initialized)
1107		return 0;
1108
1109	if (sbsec->flags & FSCONTEXT_MNT) {
1110		seq_putc(m, ',');
1111		seq_puts(m, FSCONTEXT_STR);
1112		rc = show_sid(m, sbsec->sid);
1113		if (rc)
1114			return rc;
1115	}
1116	if (sbsec->flags & CONTEXT_MNT) {
1117		seq_putc(m, ',');
1118		seq_puts(m, CONTEXT_STR);
1119		rc = show_sid(m, sbsec->mntpoint_sid);
1120		if (rc)
1121			return rc;
1122	}
1123	if (sbsec->flags & DEFCONTEXT_MNT) {
1124		seq_putc(m, ',');
1125		seq_puts(m, DEFCONTEXT_STR);
1126		rc = show_sid(m, sbsec->def_sid);
1127		if (rc)
1128			return rc;
1129	}
1130	if (sbsec->flags & ROOTCONTEXT_MNT) {
1131		struct dentry *root = sbsec->sb->s_root;
1132		struct inode_security_struct *isec = backing_inode_security(root);
1133		seq_putc(m, ',');
1134		seq_puts(m, ROOTCONTEXT_STR);
1135		rc = show_sid(m, isec->sid);
1136		if (rc)
1137			return rc;
1138	}
1139	if (sbsec->flags & SBLABEL_MNT) {
1140		seq_putc(m, ',');
1141		seq_puts(m, SECLABEL_STR);
1142	}
1143	return 0;
1144}
1145
1146static inline u16 inode_mode_to_security_class(umode_t mode)
1147{
1148	switch (mode & S_IFMT) {
1149	case S_IFSOCK:
1150		return SECCLASS_SOCK_FILE;
1151	case S_IFLNK:
1152		return SECCLASS_LNK_FILE;
1153	case S_IFREG:
1154		return SECCLASS_FILE;
1155	case S_IFBLK:
1156		return SECCLASS_BLK_FILE;
1157	case S_IFDIR:
1158		return SECCLASS_DIR;
1159	case S_IFCHR:
1160		return SECCLASS_CHR_FILE;
1161	case S_IFIFO:
1162		return SECCLASS_FIFO_FILE;
1163
1164	}
1165
1166	return SECCLASS_FILE;
1167}
1168
1169static inline int default_protocol_stream(int protocol)
1170{
1171	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1172}
1173
1174static inline int default_protocol_dgram(int protocol)
1175{
1176	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1177}
1178
1179static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1180{
1181	int extsockclass = selinux_policycap_extsockclass();
1182
1183	switch (family) {
1184	case PF_UNIX:
1185		switch (type) {
1186		case SOCK_STREAM:
1187		case SOCK_SEQPACKET:
1188			return SECCLASS_UNIX_STREAM_SOCKET;
1189		case SOCK_DGRAM:
1190		case SOCK_RAW:
1191			return SECCLASS_UNIX_DGRAM_SOCKET;
1192		}
1193		break;
1194	case PF_INET:
1195	case PF_INET6:
1196		switch (type) {
1197		case SOCK_STREAM:
1198		case SOCK_SEQPACKET:
1199			if (default_protocol_stream(protocol))
1200				return SECCLASS_TCP_SOCKET;
1201			else if (extsockclass && protocol == IPPROTO_SCTP)
1202				return SECCLASS_SCTP_SOCKET;
1203			else
1204				return SECCLASS_RAWIP_SOCKET;
1205		case SOCK_DGRAM:
1206			if (default_protocol_dgram(protocol))
1207				return SECCLASS_UDP_SOCKET;
1208			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1209						  protocol == IPPROTO_ICMPV6))
1210				return SECCLASS_ICMP_SOCKET;
1211			else
1212				return SECCLASS_RAWIP_SOCKET;
1213		case SOCK_DCCP:
1214			return SECCLASS_DCCP_SOCKET;
1215		default:
1216			return SECCLASS_RAWIP_SOCKET;
1217		}
1218		break;
1219	case PF_NETLINK:
1220		switch (protocol) {
1221		case NETLINK_ROUTE:
1222			return SECCLASS_NETLINK_ROUTE_SOCKET;
1223		case NETLINK_SOCK_DIAG:
1224			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1225		case NETLINK_NFLOG:
1226			return SECCLASS_NETLINK_NFLOG_SOCKET;
1227		case NETLINK_XFRM:
1228			return SECCLASS_NETLINK_XFRM_SOCKET;
1229		case NETLINK_SELINUX:
1230			return SECCLASS_NETLINK_SELINUX_SOCKET;
1231		case NETLINK_ISCSI:
1232			return SECCLASS_NETLINK_ISCSI_SOCKET;
1233		case NETLINK_AUDIT:
1234			return SECCLASS_NETLINK_AUDIT_SOCKET;
1235		case NETLINK_FIB_LOOKUP:
1236			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1237		case NETLINK_CONNECTOR:
1238			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1239		case NETLINK_NETFILTER:
1240			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1241		case NETLINK_DNRTMSG:
1242			return SECCLASS_NETLINK_DNRT_SOCKET;
1243		case NETLINK_KOBJECT_UEVENT:
1244			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1245		case NETLINK_GENERIC:
1246			return SECCLASS_NETLINK_GENERIC_SOCKET;
1247		case NETLINK_SCSITRANSPORT:
1248			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1249		case NETLINK_RDMA:
1250			return SECCLASS_NETLINK_RDMA_SOCKET;
1251		case NETLINK_CRYPTO:
1252			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1253		default:
1254			return SECCLASS_NETLINK_SOCKET;
1255		}
1256	case PF_PACKET:
1257		return SECCLASS_PACKET_SOCKET;
1258	case PF_KEY:
1259		return SECCLASS_KEY_SOCKET;
1260	case PF_APPLETALK:
1261		return SECCLASS_APPLETALK_SOCKET;
1262	}
1263
1264	if (extsockclass) {
1265		switch (family) {
1266		case PF_AX25:
1267			return SECCLASS_AX25_SOCKET;
1268		case PF_IPX:
1269			return SECCLASS_IPX_SOCKET;
1270		case PF_NETROM:
1271			return SECCLASS_NETROM_SOCKET;
1272		case PF_ATMPVC:
1273			return SECCLASS_ATMPVC_SOCKET;
1274		case PF_X25:
1275			return SECCLASS_X25_SOCKET;
1276		case PF_ROSE:
1277			return SECCLASS_ROSE_SOCKET;
1278		case PF_DECnet:
1279			return SECCLASS_DECNET_SOCKET;
1280		case PF_ATMSVC:
1281			return SECCLASS_ATMSVC_SOCKET;
1282		case PF_RDS:
1283			return SECCLASS_RDS_SOCKET;
1284		case PF_IRDA:
1285			return SECCLASS_IRDA_SOCKET;
1286		case PF_PPPOX:
1287			return SECCLASS_PPPOX_SOCKET;
1288		case PF_LLC:
1289			return SECCLASS_LLC_SOCKET;
1290		case PF_CAN:
1291			return SECCLASS_CAN_SOCKET;
1292		case PF_TIPC:
1293			return SECCLASS_TIPC_SOCKET;
1294		case PF_BLUETOOTH:
1295			return SECCLASS_BLUETOOTH_SOCKET;
1296		case PF_IUCV:
1297			return SECCLASS_IUCV_SOCKET;
1298		case PF_RXRPC:
1299			return SECCLASS_RXRPC_SOCKET;
1300		case PF_ISDN:
1301			return SECCLASS_ISDN_SOCKET;
1302		case PF_PHONET:
1303			return SECCLASS_PHONET_SOCKET;
1304		case PF_IEEE802154:
1305			return SECCLASS_IEEE802154_SOCKET;
1306		case PF_CAIF:
1307			return SECCLASS_CAIF_SOCKET;
1308		case PF_ALG:
1309			return SECCLASS_ALG_SOCKET;
1310		case PF_NFC:
1311			return SECCLASS_NFC_SOCKET;
1312		case PF_VSOCK:
1313			return SECCLASS_VSOCK_SOCKET;
1314		case PF_KCM:
1315			return SECCLASS_KCM_SOCKET;
1316		case PF_QIPCRTR:
1317			return SECCLASS_QIPCRTR_SOCKET;
1318		case PF_SMC:
1319			return SECCLASS_SMC_SOCKET;
1320		case PF_XDP:
1321			return SECCLASS_XDP_SOCKET;
1322#if PF_MAX > 45
1323#error New address family defined, please update this function.
1324#endif
1325		}
1326	}
1327
1328	return SECCLASS_SOCKET;
1329}
1330
1331static int selinux_genfs_get_sid(struct dentry *dentry,
1332				 u16 tclass,
1333				 u16 flags,
1334				 u32 *sid)
1335{
1336	int rc;
1337	struct super_block *sb = dentry->d_sb;
1338	char *buffer, *path;
1339
1340	buffer = (char *)__get_free_page(GFP_KERNEL);
1341	if (!buffer)
1342		return -ENOMEM;
1343
1344	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1345	if (IS_ERR(path))
1346		rc = PTR_ERR(path);
1347	else {
1348		if (flags & SE_SBPROC) {
1349			/* each process gets a /proc/PID/ entry. Strip off the
1350			 * PID part to get a valid selinux labeling.
1351			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1352			while (path[1] >= '0' && path[1] <= '9') {
1353				path[1] = '/';
1354				path++;
1355			}
1356		}
1357		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1358					path, tclass, sid);
1359		if (rc == -ENOENT) {
1360			/* No match in policy, mark as unlabeled. */
1361			*sid = SECINITSID_UNLABELED;
1362			rc = 0;
1363		}
1364	}
1365	free_page((unsigned long)buffer);
1366	return rc;
1367}
1368
1369static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1370				  u32 def_sid, u32 *sid)
1371{
1372#define INITCONTEXTLEN 255
1373	char *context;
1374	unsigned int len;
1375	int rc;
1376
1377	len = INITCONTEXTLEN;
1378	context = kmalloc(len + 1, GFP_NOFS);
1379	if (!context)
1380		return -ENOMEM;
1381
1382	context[len] = '\0';
1383	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1384	if (rc == -ERANGE) {
1385		kfree(context);
1386
1387		/* Need a larger buffer.  Query for the right size. */
1388		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1389		if (rc < 0)
1390			return rc;
1391
1392		len = rc;
1393		context = kmalloc(len + 1, GFP_NOFS);
1394		if (!context)
1395			return -ENOMEM;
1396
1397		context[len] = '\0';
1398		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1399				    context, len);
1400	}
1401	if (rc < 0) {
1402		kfree(context);
1403		if (rc != -ENODATA) {
1404			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1405				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1406			return rc;
1407		}
1408		*sid = def_sid;
1409		return 0;
1410	}
1411
1412	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1413					     def_sid, GFP_NOFS);
1414	if (rc) {
1415		char *dev = inode->i_sb->s_id;
1416		unsigned long ino = inode->i_ino;
1417
1418		if (rc == -EINVAL) {
1419			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1420					      ino, dev, context);
1421		} else {
1422			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1423				__func__, context, -rc, dev, ino);
1424		}
1425	}
1426	kfree(context);
1427	return 0;
1428}
1429
1430/* The inode's security attributes must be initialized before first use. */
1431static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1432{
1433	struct superblock_security_struct *sbsec = NULL;
1434	struct inode_security_struct *isec = selinux_inode(inode);
1435	u32 task_sid, sid = 0;
1436	u16 sclass;
1437	struct dentry *dentry;
 
 
 
1438	int rc = 0;
1439
1440	if (isec->initialized == LABEL_INITIALIZED)
1441		return 0;
1442
1443	spin_lock(&isec->lock);
1444	if (isec->initialized == LABEL_INITIALIZED)
1445		goto out_unlock;
1446
1447	if (isec->sclass == SECCLASS_FILE)
1448		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1449
1450	sbsec = inode->i_sb->s_security;
1451	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1452		/* Defer initialization until selinux_complete_init,
1453		   after the initial policy is loaded and the security
1454		   server is ready to handle calls. */
1455		spin_lock(&sbsec->isec_lock);
1456		if (list_empty(&isec->list))
1457			list_add(&isec->list, &sbsec->isec_head);
1458		spin_unlock(&sbsec->isec_lock);
1459		goto out_unlock;
1460	}
1461
1462	sclass = isec->sclass;
1463	task_sid = isec->task_sid;
1464	sid = isec->sid;
1465	isec->initialized = LABEL_PENDING;
1466	spin_unlock(&isec->lock);
1467
1468	switch (sbsec->behavior) {
1469	case SECURITY_FS_USE_NATIVE:
1470		break;
1471	case SECURITY_FS_USE_XATTR:
1472		if (!(inode->i_opflags & IOP_XATTR)) {
1473			sid = sbsec->def_sid;
1474			break;
1475		}
1476		/* Need a dentry, since the xattr API requires one.
1477		   Life would be simpler if we could just pass the inode. */
1478		if (opt_dentry) {
1479			/* Called from d_instantiate or d_splice_alias. */
1480			dentry = dget(opt_dentry);
1481		} else {
1482			/*
1483			 * Called from selinux_complete_init, try to find a dentry.
1484			 * Some filesystems really want a connected one, so try
1485			 * that first.  We could split SECURITY_FS_USE_XATTR in
1486			 * two, depending upon that...
1487			 */
1488			dentry = d_find_alias(inode);
1489			if (!dentry)
1490				dentry = d_find_any_alias(inode);
1491		}
1492		if (!dentry) {
1493			/*
1494			 * this is can be hit on boot when a file is accessed
1495			 * before the policy is loaded.  When we load policy we
1496			 * may find inodes that have no dentry on the
1497			 * sbsec->isec_head list.  No reason to complain as these
1498			 * will get fixed up the next time we go through
1499			 * inode_doinit with a dentry, before these inodes could
1500			 * be used again by userspace.
1501			 */
1502			goto out;
1503		}
1504
1505		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1506					    &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507		dput(dentry);
1508		if (rc)
1509			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510		break;
1511	case SECURITY_FS_USE_TASK:
1512		sid = task_sid;
1513		break;
1514	case SECURITY_FS_USE_TRANS:
1515		/* Default to the fs SID. */
1516		sid = sbsec->sid;
1517
1518		/* Try to obtain a transition SID. */
1519		rc = security_transition_sid(&selinux_state, task_sid, sid,
1520					     sclass, NULL, &sid);
1521		if (rc)
1522			goto out;
1523		break;
1524	case SECURITY_FS_USE_MNTPOINT:
1525		sid = sbsec->mntpoint_sid;
1526		break;
1527	default:
1528		/* Default to the fs superblock SID. */
1529		sid = sbsec->sid;
1530
1531		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1532			/* We must have a dentry to determine the label on
1533			 * procfs inodes */
1534			if (opt_dentry) {
1535				/* Called from d_instantiate or
1536				 * d_splice_alias. */
1537				dentry = dget(opt_dentry);
1538			} else {
1539				/* Called from selinux_complete_init, try to
1540				 * find a dentry.  Some filesystems really want
1541				 * a connected one, so try that first.
1542				 */
1543				dentry = d_find_alias(inode);
1544				if (!dentry)
1545					dentry = d_find_any_alias(inode);
1546			}
1547			/*
1548			 * This can be hit on boot when a file is accessed
1549			 * before the policy is loaded.  When we load policy we
1550			 * may find inodes that have no dentry on the
1551			 * sbsec->isec_head list.  No reason to complain as
1552			 * these will get fixed up the next time we go through
1553			 * inode_doinit() with a dentry, before these inodes
1554			 * could be used again by userspace.
1555			 */
1556			if (!dentry)
1557				goto out;
1558			rc = selinux_genfs_get_sid(dentry, sclass,
1559						   sbsec->flags, &sid);
1560			if (rc) {
1561				dput(dentry);
1562				goto out;
1563			}
1564
1565			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1566			    (inode->i_opflags & IOP_XATTR)) {
1567				rc = inode_doinit_use_xattr(inode, dentry,
1568							    sid, &sid);
1569				if (rc) {
1570					dput(dentry);
1571					goto out;
1572				}
1573			}
1574			dput(dentry);
1575		}
1576		break;
1577	}
1578
1579out:
1580	spin_lock(&isec->lock);
1581	if (isec->initialized == LABEL_PENDING) {
1582		if (!sid || rc) {
1583			isec->initialized = LABEL_INVALID;
1584			goto out_unlock;
1585		}
1586
1587		isec->initialized = LABEL_INITIALIZED;
1588		isec->sid = sid;
1589	}
1590
1591out_unlock:
1592	spin_unlock(&isec->lock);
1593	return rc;
1594}
1595
1596/* Convert a Linux signal to an access vector. */
1597static inline u32 signal_to_av(int sig)
1598{
1599	u32 perm = 0;
1600
1601	switch (sig) {
1602	case SIGCHLD:
1603		/* Commonly granted from child to parent. */
1604		perm = PROCESS__SIGCHLD;
1605		break;
1606	case SIGKILL:
1607		/* Cannot be caught or ignored */
1608		perm = PROCESS__SIGKILL;
1609		break;
1610	case SIGSTOP:
1611		/* Cannot be caught or ignored */
1612		perm = PROCESS__SIGSTOP;
1613		break;
1614	default:
1615		/* All other signals. */
1616		perm = PROCESS__SIGNAL;
1617		break;
1618	}
1619
1620	return perm;
1621}
1622
1623#if CAP_LAST_CAP > 63
1624#error Fix SELinux to handle capabilities > 63.
1625#endif
1626
1627/* Check whether a task is allowed to use a capability. */
1628static int cred_has_capability(const struct cred *cred,
1629			       int cap, unsigned int opts, bool initns)
1630{
1631	struct common_audit_data ad;
1632	struct av_decision avd;
1633	u16 sclass;
1634	u32 sid = cred_sid(cred);
1635	u32 av = CAP_TO_MASK(cap);
1636	int rc;
1637
1638	ad.type = LSM_AUDIT_DATA_CAP;
1639	ad.u.cap = cap;
1640
1641	switch (CAP_TO_INDEX(cap)) {
1642	case 0:
1643		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1644		break;
1645	case 1:
1646		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1647		break;
1648	default:
1649		pr_err("SELinux:  out of range capability %d\n", cap);
 
1650		BUG();
1651		return -EINVAL;
1652	}
1653
1654	rc = avc_has_perm_noaudit(&selinux_state,
1655				  sid, sid, sclass, av, 0, &avd);
1656	if (!(opts & CAP_OPT_NOAUDIT)) {
1657		int rc2 = avc_audit(&selinux_state,
1658				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1659		if (rc2)
1660			return rc2;
1661	}
1662	return rc;
1663}
1664
1665/* Check whether a task has a particular permission to an inode.
1666   The 'adp' parameter is optional and allows other audit
1667   data to be passed (e.g. the dentry). */
1668static int inode_has_perm(const struct cred *cred,
1669			  struct inode *inode,
1670			  u32 perms,
1671			  struct common_audit_data *adp)
1672{
1673	struct inode_security_struct *isec;
1674	u32 sid;
1675
1676	validate_creds(cred);
1677
1678	if (unlikely(IS_PRIVATE(inode)))
1679		return 0;
1680
1681	sid = cred_sid(cred);
1682	isec = selinux_inode(inode);
1683
1684	return avc_has_perm(&selinux_state,
1685			    sid, isec->sid, isec->sclass, perms, adp);
1686}
1687
1688/* Same as inode_has_perm, but pass explicit audit data containing
1689   the dentry to help the auditing code to more easily generate the
1690   pathname if needed. */
1691static inline int dentry_has_perm(const struct cred *cred,
1692				  struct dentry *dentry,
1693				  u32 av)
1694{
1695	struct inode *inode = d_backing_inode(dentry);
1696	struct common_audit_data ad;
1697
1698	ad.type = LSM_AUDIT_DATA_DENTRY;
1699	ad.u.dentry = dentry;
1700	__inode_security_revalidate(inode, dentry, true);
1701	return inode_has_perm(cred, inode, av, &ad);
1702}
1703
1704/* Same as inode_has_perm, but pass explicit audit data containing
1705   the path to help the auditing code to more easily generate the
1706   pathname if needed. */
1707static inline int path_has_perm(const struct cred *cred,
1708				const struct path *path,
1709				u32 av)
1710{
1711	struct inode *inode = d_backing_inode(path->dentry);
1712	struct common_audit_data ad;
1713
1714	ad.type = LSM_AUDIT_DATA_PATH;
1715	ad.u.path = *path;
1716	__inode_security_revalidate(inode, path->dentry, true);
1717	return inode_has_perm(cred, inode, av, &ad);
1718}
1719
1720/* Same as path_has_perm, but uses the inode from the file struct. */
1721static inline int file_path_has_perm(const struct cred *cred,
1722				     struct file *file,
1723				     u32 av)
1724{
1725	struct common_audit_data ad;
1726
1727	ad.type = LSM_AUDIT_DATA_FILE;
1728	ad.u.file = file;
1729	return inode_has_perm(cred, file_inode(file), av, &ad);
1730}
1731
1732#ifdef CONFIG_BPF_SYSCALL
1733static int bpf_fd_pass(struct file *file, u32 sid);
1734#endif
1735
1736/* Check whether a task can use an open file descriptor to
1737   access an inode in a given way.  Check access to the
1738   descriptor itself, and then use dentry_has_perm to
1739   check a particular permission to the file.
1740   Access to the descriptor is implicitly granted if it
1741   has the same SID as the process.  If av is zero, then
1742   access to the file is not checked, e.g. for cases
1743   where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745			 struct file *file,
1746			 u32 av)
1747{
1748	struct file_security_struct *fsec = selinux_file(file);
1749	struct inode *inode = file_inode(file);
1750	struct common_audit_data ad;
1751	u32 sid = cred_sid(cred);
1752	int rc;
1753
1754	ad.type = LSM_AUDIT_DATA_FILE;
1755	ad.u.file = file;
1756
1757	if (sid != fsec->sid) {
1758		rc = avc_has_perm(&selinux_state,
1759				  sid, fsec->sid,
1760				  SECCLASS_FD,
1761				  FD__USE,
1762				  &ad);
1763		if (rc)
1764			goto out;
1765	}
1766
1767#ifdef CONFIG_BPF_SYSCALL
1768	rc = bpf_fd_pass(file, cred_sid(cred));
1769	if (rc)
1770		return rc;
1771#endif
1772
1773	/* av is zero if only checking access to the descriptor. */
1774	rc = 0;
1775	if (av)
1776		rc = inode_has_perm(cred, inode, av, &ad);
1777
1778out:
1779	return rc;
1780}
1781
1782/*
1783 * Determine the label for an inode that might be unioned.
1784 */
1785static int
1786selinux_determine_inode_label(const struct task_security_struct *tsec,
1787				 struct inode *dir,
1788				 const struct qstr *name, u16 tclass,
1789				 u32 *_new_isid)
1790{
1791	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1792
1793	if ((sbsec->flags & SE_SBINITIALIZED) &&
1794	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1795		*_new_isid = sbsec->mntpoint_sid;
1796	} else if ((sbsec->flags & SBLABEL_MNT) &&
1797		   tsec->create_sid) {
1798		*_new_isid = tsec->create_sid;
1799	} else {
1800		const struct inode_security_struct *dsec = inode_security(dir);
1801		return security_transition_sid(&selinux_state, tsec->sid,
1802					       dsec->sid, tclass,
1803					       name, _new_isid);
1804	}
1805
1806	return 0;
1807}
1808
1809/* Check whether a task can create a file. */
1810static int may_create(struct inode *dir,
1811		      struct dentry *dentry,
1812		      u16 tclass)
1813{
1814	const struct task_security_struct *tsec = selinux_cred(current_cred());
1815	struct inode_security_struct *dsec;
1816	struct superblock_security_struct *sbsec;
1817	u32 sid, newsid;
1818	struct common_audit_data ad;
1819	int rc;
1820
1821	dsec = inode_security(dir);
1822	sbsec = dir->i_sb->s_security;
1823
1824	sid = tsec->sid;
1825
1826	ad.type = LSM_AUDIT_DATA_DENTRY;
1827	ad.u.dentry = dentry;
1828
1829	rc = avc_has_perm(&selinux_state,
1830			  sid, dsec->sid, SECCLASS_DIR,
1831			  DIR__ADD_NAME | DIR__SEARCH,
1832			  &ad);
1833	if (rc)
1834		return rc;
1835
1836	rc = selinux_determine_inode_label(selinux_cred(current_cred()), dir,
1837					   &dentry->d_name, tclass, &newsid);
1838	if (rc)
1839		return rc;
1840
1841	rc = avc_has_perm(&selinux_state,
1842			  sid, newsid, tclass, FILE__CREATE, &ad);
1843	if (rc)
1844		return rc;
1845
1846	return avc_has_perm(&selinux_state,
1847			    newsid, sbsec->sid,
1848			    SECCLASS_FILESYSTEM,
1849			    FILESYSTEM__ASSOCIATE, &ad);
1850}
1851
1852#define MAY_LINK	0
1853#define MAY_UNLINK	1
1854#define MAY_RMDIR	2
1855
1856/* Check whether a task can link, unlink, or rmdir a file/directory. */
1857static int may_link(struct inode *dir,
1858		    struct dentry *dentry,
1859		    int kind)
1860
1861{
1862	struct inode_security_struct *dsec, *isec;
1863	struct common_audit_data ad;
1864	u32 sid = current_sid();
1865	u32 av;
1866	int rc;
1867
1868	dsec = inode_security(dir);
1869	isec = backing_inode_security(dentry);
1870
1871	ad.type = LSM_AUDIT_DATA_DENTRY;
1872	ad.u.dentry = dentry;
1873
1874	av = DIR__SEARCH;
1875	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1876	rc = avc_has_perm(&selinux_state,
1877			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1878	if (rc)
1879		return rc;
1880
1881	switch (kind) {
1882	case MAY_LINK:
1883		av = FILE__LINK;
1884		break;
1885	case MAY_UNLINK:
1886		av = FILE__UNLINK;
1887		break;
1888	case MAY_RMDIR:
1889		av = DIR__RMDIR;
1890		break;
1891	default:
1892		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1893			__func__, kind);
1894		return 0;
1895	}
1896
1897	rc = avc_has_perm(&selinux_state,
1898			  sid, isec->sid, isec->sclass, av, &ad);
1899	return rc;
1900}
1901
1902static inline int may_rename(struct inode *old_dir,
1903			     struct dentry *old_dentry,
1904			     struct inode *new_dir,
1905			     struct dentry *new_dentry)
1906{
1907	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1908	struct common_audit_data ad;
1909	u32 sid = current_sid();
1910	u32 av;
1911	int old_is_dir, new_is_dir;
1912	int rc;
1913
1914	old_dsec = inode_security(old_dir);
1915	old_isec = backing_inode_security(old_dentry);
1916	old_is_dir = d_is_dir(old_dentry);
1917	new_dsec = inode_security(new_dir);
1918
1919	ad.type = LSM_AUDIT_DATA_DENTRY;
1920
1921	ad.u.dentry = old_dentry;
1922	rc = avc_has_perm(&selinux_state,
1923			  sid, old_dsec->sid, SECCLASS_DIR,
1924			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1925	if (rc)
1926		return rc;
1927	rc = avc_has_perm(&selinux_state,
1928			  sid, old_isec->sid,
1929			  old_isec->sclass, FILE__RENAME, &ad);
1930	if (rc)
1931		return rc;
1932	if (old_is_dir && new_dir != old_dir) {
1933		rc = avc_has_perm(&selinux_state,
1934				  sid, old_isec->sid,
1935				  old_isec->sclass, DIR__REPARENT, &ad);
1936		if (rc)
1937			return rc;
1938	}
1939
1940	ad.u.dentry = new_dentry;
1941	av = DIR__ADD_NAME | DIR__SEARCH;
1942	if (d_is_positive(new_dentry))
1943		av |= DIR__REMOVE_NAME;
1944	rc = avc_has_perm(&selinux_state,
1945			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1946	if (rc)
1947		return rc;
1948	if (d_is_positive(new_dentry)) {
1949		new_isec = backing_inode_security(new_dentry);
1950		new_is_dir = d_is_dir(new_dentry);
1951		rc = avc_has_perm(&selinux_state,
1952				  sid, new_isec->sid,
1953				  new_isec->sclass,
1954				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1955		if (rc)
1956			return rc;
1957	}
1958
1959	return 0;
1960}
1961
1962/* Check whether a task can perform a filesystem operation. */
1963static int superblock_has_perm(const struct cred *cred,
1964			       struct super_block *sb,
1965			       u32 perms,
1966			       struct common_audit_data *ad)
1967{
1968	struct superblock_security_struct *sbsec;
1969	u32 sid = cred_sid(cred);
1970
1971	sbsec = sb->s_security;
1972	return avc_has_perm(&selinux_state,
1973			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1974}
1975
1976/* Convert a Linux mode and permission mask to an access vector. */
1977static inline u32 file_mask_to_av(int mode, int mask)
1978{
1979	u32 av = 0;
1980
1981	if (!S_ISDIR(mode)) {
1982		if (mask & MAY_EXEC)
1983			av |= FILE__EXECUTE;
1984		if (mask & MAY_READ)
1985			av |= FILE__READ;
1986
1987		if (mask & MAY_APPEND)
1988			av |= FILE__APPEND;
1989		else if (mask & MAY_WRITE)
1990			av |= FILE__WRITE;
1991
1992	} else {
1993		if (mask & MAY_EXEC)
1994			av |= DIR__SEARCH;
1995		if (mask & MAY_WRITE)
1996			av |= DIR__WRITE;
1997		if (mask & MAY_READ)
1998			av |= DIR__READ;
1999	}
2000
2001	return av;
2002}
2003
2004/* Convert a Linux file to an access vector. */
2005static inline u32 file_to_av(struct file *file)
2006{
2007	u32 av = 0;
2008
2009	if (file->f_mode & FMODE_READ)
2010		av |= FILE__READ;
2011	if (file->f_mode & FMODE_WRITE) {
2012		if (file->f_flags & O_APPEND)
2013			av |= FILE__APPEND;
2014		else
2015			av |= FILE__WRITE;
2016	}
2017	if (!av) {
2018		/*
2019		 * Special file opened with flags 3 for ioctl-only use.
2020		 */
2021		av = FILE__IOCTL;
2022	}
2023
2024	return av;
2025}
2026
2027/*
2028 * Convert a file to an access vector and include the correct open
2029 * open permission.
2030 */
2031static inline u32 open_file_to_av(struct file *file)
2032{
2033	u32 av = file_to_av(file);
2034	struct inode *inode = file_inode(file);
2035
2036	if (selinux_policycap_openperm() &&
2037	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2038		av |= FILE__OPEN;
2039
2040	return av;
2041}
2042
2043/* Hook functions begin here. */
2044
2045static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2046{
2047	u32 mysid = current_sid();
2048	u32 mgrsid = task_sid(mgr);
2049
2050	return avc_has_perm(&selinux_state,
2051			    mysid, mgrsid, SECCLASS_BINDER,
2052			    BINDER__SET_CONTEXT_MGR, NULL);
2053}
2054
2055static int selinux_binder_transaction(struct task_struct *from,
2056				      struct task_struct *to)
2057{
2058	u32 mysid = current_sid();
2059	u32 fromsid = task_sid(from);
2060	u32 tosid = task_sid(to);
2061	int rc;
2062
2063	if (mysid != fromsid) {
2064		rc = avc_has_perm(&selinux_state,
2065				  mysid, fromsid, SECCLASS_BINDER,
2066				  BINDER__IMPERSONATE, NULL);
2067		if (rc)
2068			return rc;
2069	}
2070
2071	return avc_has_perm(&selinux_state,
2072			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2073			    NULL);
2074}
2075
2076static int selinux_binder_transfer_binder(struct task_struct *from,
2077					  struct task_struct *to)
2078{
2079	u32 fromsid = task_sid(from);
2080	u32 tosid = task_sid(to);
2081
2082	return avc_has_perm(&selinux_state,
2083			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2084			    NULL);
2085}
2086
2087static int selinux_binder_transfer_file(struct task_struct *from,
2088					struct task_struct *to,
2089					struct file *file)
2090{
2091	u32 sid = task_sid(to);
2092	struct file_security_struct *fsec = selinux_file(file);
2093	struct dentry *dentry = file->f_path.dentry;
2094	struct inode_security_struct *isec;
2095	struct common_audit_data ad;
2096	int rc;
2097
2098	ad.type = LSM_AUDIT_DATA_PATH;
2099	ad.u.path = file->f_path;
2100
2101	if (sid != fsec->sid) {
2102		rc = avc_has_perm(&selinux_state,
2103				  sid, fsec->sid,
2104				  SECCLASS_FD,
2105				  FD__USE,
2106				  &ad);
2107		if (rc)
2108			return rc;
2109	}
2110
2111#ifdef CONFIG_BPF_SYSCALL
2112	rc = bpf_fd_pass(file, sid);
2113	if (rc)
2114		return rc;
2115#endif
2116
2117	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2118		return 0;
2119
2120	isec = backing_inode_security(dentry);
2121	return avc_has_perm(&selinux_state,
2122			    sid, isec->sid, isec->sclass, file_to_av(file),
2123			    &ad);
2124}
2125
2126static int selinux_ptrace_access_check(struct task_struct *child,
2127				     unsigned int mode)
2128{
2129	u32 sid = current_sid();
2130	u32 csid = task_sid(child);
2131
2132	if (mode & PTRACE_MODE_READ)
2133		return avc_has_perm(&selinux_state,
2134				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2135
2136	return avc_has_perm(&selinux_state,
2137			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2138}
2139
2140static int selinux_ptrace_traceme(struct task_struct *parent)
2141{
2142	return avc_has_perm(&selinux_state,
2143			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2144			    PROCESS__PTRACE, NULL);
2145}
2146
2147static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2148			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2149{
2150	return avc_has_perm(&selinux_state,
2151			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2152			    PROCESS__GETCAP, NULL);
2153}
2154
2155static int selinux_capset(struct cred *new, const struct cred *old,
2156			  const kernel_cap_t *effective,
2157			  const kernel_cap_t *inheritable,
2158			  const kernel_cap_t *permitted)
2159{
2160	return avc_has_perm(&selinux_state,
2161			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2162			    PROCESS__SETCAP, NULL);
2163}
2164
2165/*
2166 * (This comment used to live with the selinux_task_setuid hook,
2167 * which was removed).
2168 *
2169 * Since setuid only affects the current process, and since the SELinux
2170 * controls are not based on the Linux identity attributes, SELinux does not
2171 * need to control this operation.  However, SELinux does control the use of
2172 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2173 */
2174
2175static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2176			   int cap, unsigned int opts)
2177{
2178	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2179}
2180
2181static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2182{
2183	const struct cred *cred = current_cred();
2184	int rc = 0;
2185
2186	if (!sb)
2187		return 0;
2188
2189	switch (cmds) {
2190	case Q_SYNC:
2191	case Q_QUOTAON:
2192	case Q_QUOTAOFF:
2193	case Q_SETINFO:
2194	case Q_SETQUOTA:
2195		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2196		break;
2197	case Q_GETFMT:
2198	case Q_GETINFO:
2199	case Q_GETQUOTA:
2200		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2201		break;
2202	default:
2203		rc = 0;  /* let the kernel handle invalid cmds */
2204		break;
2205	}
2206	return rc;
2207}
2208
2209static int selinux_quota_on(struct dentry *dentry)
2210{
2211	const struct cred *cred = current_cred();
2212
2213	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2214}
2215
2216static int selinux_syslog(int type)
2217{
2218	switch (type) {
2219	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2220	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2221		return avc_has_perm(&selinux_state,
2222				    current_sid(), SECINITSID_KERNEL,
2223				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2224	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2225	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2226	/* Set level of messages printed to console */
2227	case SYSLOG_ACTION_CONSOLE_LEVEL:
2228		return avc_has_perm(&selinux_state,
2229				    current_sid(), SECINITSID_KERNEL,
2230				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2231				    NULL);
2232	}
2233	/* All other syslog types */
2234	return avc_has_perm(&selinux_state,
2235			    current_sid(), SECINITSID_KERNEL,
2236			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2237}
2238
2239/*
2240 * Check that a process has enough memory to allocate a new virtual
2241 * mapping. 0 means there is enough memory for the allocation to
2242 * succeed and -ENOMEM implies there is not.
2243 *
2244 * Do not audit the selinux permission check, as this is applied to all
2245 * processes that allocate mappings.
2246 */
2247static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2248{
2249	int rc, cap_sys_admin = 0;
2250
2251	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2252				 CAP_OPT_NOAUDIT, true);
2253	if (rc == 0)
2254		cap_sys_admin = 1;
2255
2256	return cap_sys_admin;
2257}
2258
2259/* binprm security operations */
2260
2261static u32 ptrace_parent_sid(void)
2262{
2263	u32 sid = 0;
2264	struct task_struct *tracer;
2265
2266	rcu_read_lock();
2267	tracer = ptrace_parent(current);
2268	if (tracer)
2269		sid = task_sid(tracer);
2270	rcu_read_unlock();
2271
2272	return sid;
2273}
2274
2275static int check_nnp_nosuid(const struct linux_binprm *bprm,
2276			    const struct task_security_struct *old_tsec,
2277			    const struct task_security_struct *new_tsec)
2278{
2279	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2280	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2281	int rc;
2282	u32 av;
2283
2284	if (!nnp && !nosuid)
2285		return 0; /* neither NNP nor nosuid */
2286
2287	if (new_tsec->sid == old_tsec->sid)
2288		return 0; /* No change in credentials */
2289
2290	/*
2291	 * If the policy enables the nnp_nosuid_transition policy capability,
2292	 * then we permit transitions under NNP or nosuid if the
2293	 * policy allows the corresponding permission between
2294	 * the old and new contexts.
2295	 */
2296	if (selinux_policycap_nnp_nosuid_transition()) {
2297		av = 0;
2298		if (nnp)
2299			av |= PROCESS2__NNP_TRANSITION;
2300		if (nosuid)
2301			av |= PROCESS2__NOSUID_TRANSITION;
2302		rc = avc_has_perm(&selinux_state,
2303				  old_tsec->sid, new_tsec->sid,
2304				  SECCLASS_PROCESS2, av, NULL);
2305		if (!rc)
2306			return 0;
2307	}
2308
2309	/*
2310	 * We also permit NNP or nosuid transitions to bounded SIDs,
2311	 * i.e. SIDs that are guaranteed to only be allowed a subset
2312	 * of the permissions of the current SID.
2313	 */
2314	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2315					 new_tsec->sid);
2316	if (!rc)
2317		return 0;
2318
2319	/*
2320	 * On failure, preserve the errno values for NNP vs nosuid.
2321	 * NNP:  Operation not permitted for caller.
2322	 * nosuid:  Permission denied to file.
2323	 */
2324	if (nnp)
2325		return -EPERM;
2326	return -EACCES;
2327}
2328
2329static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2330{
2331	const struct task_security_struct *old_tsec;
2332	struct task_security_struct *new_tsec;
2333	struct inode_security_struct *isec;
2334	struct common_audit_data ad;
2335	struct inode *inode = file_inode(bprm->file);
2336	int rc;
2337
2338	/* SELinux context only depends on initial program or script and not
2339	 * the script interpreter */
2340	if (bprm->called_set_creds)
2341		return 0;
2342
2343	old_tsec = selinux_cred(current_cred());
2344	new_tsec = selinux_cred(bprm->cred);
2345	isec = inode_security(inode);
2346
2347	/* Default to the current task SID. */
2348	new_tsec->sid = old_tsec->sid;
2349	new_tsec->osid = old_tsec->sid;
2350
2351	/* Reset fs, key, and sock SIDs on execve. */
2352	new_tsec->create_sid = 0;
2353	new_tsec->keycreate_sid = 0;
2354	new_tsec->sockcreate_sid = 0;
2355
2356	if (old_tsec->exec_sid) {
2357		new_tsec->sid = old_tsec->exec_sid;
2358		/* Reset exec SID on execve. */
2359		new_tsec->exec_sid = 0;
2360
2361		/* Fail on NNP or nosuid if not an allowed transition. */
2362		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2363		if (rc)
2364			return rc;
2365	} else {
2366		/* Check for a default transition on this program. */
2367		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2368					     isec->sid, SECCLASS_PROCESS, NULL,
2369					     &new_tsec->sid);
2370		if (rc)
2371			return rc;
2372
2373		/*
2374		 * Fallback to old SID on NNP or nosuid if not an allowed
2375		 * transition.
2376		 */
2377		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2378		if (rc)
2379			new_tsec->sid = old_tsec->sid;
2380	}
2381
2382	ad.type = LSM_AUDIT_DATA_FILE;
2383	ad.u.file = bprm->file;
2384
2385	if (new_tsec->sid == old_tsec->sid) {
2386		rc = avc_has_perm(&selinux_state,
2387				  old_tsec->sid, isec->sid,
2388				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2389		if (rc)
2390			return rc;
2391	} else {
2392		/* Check permissions for the transition. */
2393		rc = avc_has_perm(&selinux_state,
2394				  old_tsec->sid, new_tsec->sid,
2395				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2396		if (rc)
2397			return rc;
2398
2399		rc = avc_has_perm(&selinux_state,
2400				  new_tsec->sid, isec->sid,
2401				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2402		if (rc)
2403			return rc;
2404
2405		/* Check for shared state */
2406		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2407			rc = avc_has_perm(&selinux_state,
2408					  old_tsec->sid, new_tsec->sid,
2409					  SECCLASS_PROCESS, PROCESS__SHARE,
2410					  NULL);
2411			if (rc)
2412				return -EPERM;
2413		}
2414
2415		/* Make sure that anyone attempting to ptrace over a task that
2416		 * changes its SID has the appropriate permit */
2417		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2418			u32 ptsid = ptrace_parent_sid();
2419			if (ptsid != 0) {
2420				rc = avc_has_perm(&selinux_state,
2421						  ptsid, new_tsec->sid,
2422						  SECCLASS_PROCESS,
2423						  PROCESS__PTRACE, NULL);
2424				if (rc)
2425					return -EPERM;
2426			}
2427		}
2428
2429		/* Clear any possibly unsafe personality bits on exec: */
2430		bprm->per_clear |= PER_CLEAR_ON_SETID;
2431
2432		/* Enable secure mode for SIDs transitions unless
2433		   the noatsecure permission is granted between
2434		   the two SIDs, i.e. ahp returns 0. */
2435		rc = avc_has_perm(&selinux_state,
2436				  old_tsec->sid, new_tsec->sid,
2437				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2438				  NULL);
2439		bprm->secureexec |= !!rc;
2440	}
2441
2442	return 0;
2443}
2444
2445static int match_file(const void *p, struct file *file, unsigned fd)
2446{
2447	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2448}
2449
2450/* Derived from fs/exec.c:flush_old_files. */
2451static inline void flush_unauthorized_files(const struct cred *cred,
2452					    struct files_struct *files)
2453{
2454	struct file *file, *devnull = NULL;
2455	struct tty_struct *tty;
2456	int drop_tty = 0;
2457	unsigned n;
2458
2459	tty = get_current_tty();
2460	if (tty) {
2461		spin_lock(&tty->files_lock);
2462		if (!list_empty(&tty->tty_files)) {
2463			struct tty_file_private *file_priv;
2464
2465			/* Revalidate access to controlling tty.
2466			   Use file_path_has_perm on the tty path directly
2467			   rather than using file_has_perm, as this particular
2468			   open file may belong to another process and we are
2469			   only interested in the inode-based check here. */
2470			file_priv = list_first_entry(&tty->tty_files,
2471						struct tty_file_private, list);
2472			file = file_priv->file;
2473			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2474				drop_tty = 1;
2475		}
2476		spin_unlock(&tty->files_lock);
2477		tty_kref_put(tty);
2478	}
2479	/* Reset controlling tty. */
2480	if (drop_tty)
2481		no_tty();
2482
2483	/* Revalidate access to inherited open files. */
2484	n = iterate_fd(files, 0, match_file, cred);
2485	if (!n) /* none found? */
2486		return;
2487
2488	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2489	if (IS_ERR(devnull))
2490		devnull = NULL;
2491	/* replace all the matching ones with this */
2492	do {
2493		replace_fd(n - 1, devnull, 0);
2494	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2495	if (devnull)
2496		fput(devnull);
2497}
2498
2499/*
2500 * Prepare a process for imminent new credential changes due to exec
2501 */
2502static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2503{
2504	struct task_security_struct *new_tsec;
2505	struct rlimit *rlim, *initrlim;
2506	int rc, i;
2507
2508	new_tsec = selinux_cred(bprm->cred);
2509	if (new_tsec->sid == new_tsec->osid)
2510		return;
2511
2512	/* Close files for which the new task SID is not authorized. */
2513	flush_unauthorized_files(bprm->cred, current->files);
2514
2515	/* Always clear parent death signal on SID transitions. */
2516	current->pdeath_signal = 0;
2517
2518	/* Check whether the new SID can inherit resource limits from the old
2519	 * SID.  If not, reset all soft limits to the lower of the current
2520	 * task's hard limit and the init task's soft limit.
2521	 *
2522	 * Note that the setting of hard limits (even to lower them) can be
2523	 * controlled by the setrlimit check.  The inclusion of the init task's
2524	 * soft limit into the computation is to avoid resetting soft limits
2525	 * higher than the default soft limit for cases where the default is
2526	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2527	 */
2528	rc = avc_has_perm(&selinux_state,
2529			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2530			  PROCESS__RLIMITINH, NULL);
2531	if (rc) {
2532		/* protect against do_prlimit() */
2533		task_lock(current);
2534		for (i = 0; i < RLIM_NLIMITS; i++) {
2535			rlim = current->signal->rlim + i;
2536			initrlim = init_task.signal->rlim + i;
2537			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2538		}
2539		task_unlock(current);
2540		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2541			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2542	}
2543}
2544
2545/*
2546 * Clean up the process immediately after the installation of new credentials
2547 * due to exec
2548 */
2549static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2550{
2551	const struct task_security_struct *tsec = selinux_cred(current_cred());
2552	struct itimerval itimer;
2553	u32 osid, sid;
2554	int rc, i;
2555
2556	osid = tsec->osid;
2557	sid = tsec->sid;
2558
2559	if (sid == osid)
2560		return;
2561
2562	/* Check whether the new SID can inherit signal state from the old SID.
2563	 * If not, clear itimers to avoid subsequent signal generation and
2564	 * flush and unblock signals.
2565	 *
2566	 * This must occur _after_ the task SID has been updated so that any
2567	 * kill done after the flush will be checked against the new SID.
2568	 */
2569	rc = avc_has_perm(&selinux_state,
2570			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571	if (rc) {
2572		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573			memset(&itimer, 0, sizeof itimer);
2574			for (i = 0; i < 3; i++)
2575				do_setitimer(i, &itimer, NULL);
2576		}
2577		spin_lock_irq(&current->sighand->siglock);
2578		if (!fatal_signal_pending(current)) {
2579			flush_sigqueue(&current->pending);
2580			flush_sigqueue(&current->signal->shared_pending);
2581			flush_signal_handlers(current, 1);
2582			sigemptyset(&current->blocked);
2583			recalc_sigpending();
2584		}
2585		spin_unlock_irq(&current->sighand->siglock);
2586	}
2587
2588	/* Wake up the parent if it is waiting so that it can recheck
2589	 * wait permission to the new task SID. */
2590	read_lock(&tasklist_lock);
2591	__wake_up_parent(current, current->real_parent);
2592	read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599	return superblock_alloc_security(sb);
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604	superblock_free_security(sb);
2605}
2606
2607static inline int opt_len(const char *s)
2608{
2609	bool open_quote = false;
2610	int len;
2611	char c;
2612
2613	for (len = 0; (c = s[len]) != '\0'; len++) {
2614		if (c == '"')
2615			open_quote = !open_quote;
2616		if (c == ',' && !open_quote)
2617			break;
2618	}
2619	return len;
2620}
2621
2622static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2623{
2624	char *from = options;
2625	char *to = options;
2626	bool first = true;
2627	int rc;
 
 
2628
2629	while (1) {
2630		int len = opt_len(from);
2631		int token;
2632		char *arg = NULL;
 
 
 
 
 
 
2633
2634		token = match_opt_prefix(from, len, &arg);
 
 
 
2635
2636		if (token != Opt_error) {
2637			char *p, *q;
 
 
 
2638
2639			/* strip quotes */
2640			if (arg) {
2641				for (p = q = arg; p < from + len; p++) {
2642					char c = *p;
2643					if (c != '"')
2644						*q++ = c;
2645				}
2646				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2647				if (!arg) {
2648					rc = -ENOMEM;
2649					goto free_opt;
2650				}
2651			}
2652			rc = selinux_add_opt(token, arg, mnt_opts);
2653			if (unlikely(rc)) {
2654				kfree(arg);
2655				goto free_opt;
2656			}
2657		} else {
2658			if (!first) {	// copy with preceding comma
2659				from--;
2660				len++;
2661			}
2662			if (to != from)
2663				memmove(to, from, len);
2664			to += len;
2665			first = false;
2666		}
2667		if (!from[len])
2668			break;
2669		from += len + 1;
2670	}
2671	*to = '\0';
2672	return 0;
 
 
 
 
 
 
 
 
 
2673
2674free_opt:
2675	if (*mnt_opts) {
2676		selinux_free_mnt_opts(*mnt_opts);
2677		*mnt_opts = NULL;
2678	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679	return rc;
2680}
2681
2682static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2683{
2684	struct selinux_mnt_opts *opts = mnt_opts;
 
 
2685	struct superblock_security_struct *sbsec = sb->s_security;
2686	u32 sid;
2687	int rc;
2688
2689	if (!(sbsec->flags & SE_SBINITIALIZED))
2690		return 0;
2691
2692	if (!opts)
2693		return 0;
2694
2695	if (opts->fscontext) {
2696		rc = parse_sid(sb, opts->fscontext, &sid);
2697		if (rc)
2698			return rc;
2699		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2700			goto out_bad_option;
2701	}
2702	if (opts->context) {
2703		rc = parse_sid(sb, opts->context, &sid);
2704		if (rc)
2705			return rc;
2706		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2707			goto out_bad_option;
2708	}
2709	if (opts->rootcontext) {
2710		struct inode_security_struct *root_isec;
2711		root_isec = backing_inode_security(sb->s_root);
2712		rc = parse_sid(sb, opts->rootcontext, &sid);
2713		if (rc)
2714			return rc;
2715		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2716			goto out_bad_option;
2717	}
2718	if (opts->defcontext) {
2719		rc = parse_sid(sb, opts->defcontext, &sid);
2720		if (rc)
2721			return rc;
2722		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2723			goto out_bad_option;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2724	}
2725	return 0;
2726
 
 
 
 
 
 
2727out_bad_option:
2728	pr_warn("SELinux: unable to change security options "
2729	       "during remount (dev %s, type=%s)\n", sb->s_id,
2730	       sb->s_type->name);
2731	return -EINVAL;
2732}
2733
2734static int selinux_sb_kern_mount(struct super_block *sb)
2735{
2736	const struct cred *cred = current_cred();
2737	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2738
2739	ad.type = LSM_AUDIT_DATA_DENTRY;
2740	ad.u.dentry = sb->s_root;
2741	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2742}
2743
2744static int selinux_sb_statfs(struct dentry *dentry)
2745{
2746	const struct cred *cred = current_cred();
2747	struct common_audit_data ad;
2748
2749	ad.type = LSM_AUDIT_DATA_DENTRY;
2750	ad.u.dentry = dentry->d_sb->s_root;
2751	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2752}
2753
2754static int selinux_mount(const char *dev_name,
2755			 const struct path *path,
2756			 const char *type,
2757			 unsigned long flags,
2758			 void *data)
2759{
2760	const struct cred *cred = current_cred();
2761
2762	if (flags & MS_REMOUNT)
2763		return superblock_has_perm(cred, path->dentry->d_sb,
2764					   FILESYSTEM__REMOUNT, NULL);
2765	else
2766		return path_has_perm(cred, path, FILE__MOUNTON);
2767}
2768
2769static int selinux_umount(struct vfsmount *mnt, int flags)
2770{
2771	const struct cred *cred = current_cred();
2772
2773	return superblock_has_perm(cred, mnt->mnt_sb,
2774				   FILESYSTEM__UNMOUNT, NULL);
2775}
2776
2777static int selinux_fs_context_dup(struct fs_context *fc,
2778				  struct fs_context *src_fc)
2779{
2780	const struct selinux_mnt_opts *src = src_fc->security;
2781	struct selinux_mnt_opts *opts;
2782
2783	if (!src)
2784		return 0;
2785
2786	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2787	if (!fc->security)
2788		return -ENOMEM;
2789
2790	opts = fc->security;
2791
2792	if (src->fscontext) {
2793		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2794		if (!opts->fscontext)
2795			return -ENOMEM;
2796	}
2797	if (src->context) {
2798		opts->context = kstrdup(src->context, GFP_KERNEL);
2799		if (!opts->context)
2800			return -ENOMEM;
2801	}
2802	if (src->rootcontext) {
2803		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2804		if (!opts->rootcontext)
2805			return -ENOMEM;
2806	}
2807	if (src->defcontext) {
2808		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2809		if (!opts->defcontext)
2810			return -ENOMEM;
2811	}
2812	return 0;
2813}
2814
2815static const struct fs_parameter_spec selinux_param_specs[] = {
2816	fsparam_string(CONTEXT_STR,	Opt_context),
2817	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2818	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2819	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2820	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2821	{}
2822};
2823
2824static const struct fs_parameter_description selinux_fs_parameters = {
2825	.name		= "SELinux",
2826	.specs		= selinux_param_specs,
2827};
2828
2829static int selinux_fs_context_parse_param(struct fs_context *fc,
2830					  struct fs_parameter *param)
2831{
2832	struct fs_parse_result result;
2833	int opt, rc;
2834
2835	opt = fs_parse(fc, &selinux_fs_parameters, param, &result);
2836	if (opt < 0)
2837		return opt;
2838
2839	rc = selinux_add_opt(opt, param->string, &fc->security);
2840	if (!rc) {
2841		param->string = NULL;
2842		rc = 1;
2843	}
2844	return rc;
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851	return inode_alloc_security(inode);
2852}
2853
2854static void selinux_inode_free_security(struct inode *inode)
2855{
2856	inode_free_security(inode);
2857}
2858
2859static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2860					const struct qstr *name, void **ctx,
2861					u32 *ctxlen)
2862{
2863	u32 newsid;
2864	int rc;
2865
2866	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2867					   d_inode(dentry->d_parent), name,
2868					   inode_mode_to_security_class(mode),
2869					   &newsid);
2870	if (rc)
2871		return rc;
2872
2873	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2874				       ctxlen);
2875}
2876
2877static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2878					  struct qstr *name,
2879					  const struct cred *old,
2880					  struct cred *new)
2881{
2882	u32 newsid;
2883	int rc;
2884	struct task_security_struct *tsec;
2885
2886	rc = selinux_determine_inode_label(selinux_cred(old),
2887					   d_inode(dentry->d_parent), name,
2888					   inode_mode_to_security_class(mode),
2889					   &newsid);
2890	if (rc)
2891		return rc;
2892
2893	tsec = selinux_cred(new);
2894	tsec->create_sid = newsid;
2895	return 0;
2896}
2897
2898static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2899				       const struct qstr *qstr,
2900				       const char **name,
2901				       void **value, size_t *len)
2902{
2903	const struct task_security_struct *tsec = selinux_cred(current_cred());
2904	struct superblock_security_struct *sbsec;
2905	u32 newsid, clen;
2906	int rc;
2907	char *context;
2908
2909	sbsec = dir->i_sb->s_security;
2910
2911	newsid = tsec->create_sid;
2912
2913	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2914		dir, qstr,
2915		inode_mode_to_security_class(inode->i_mode),
2916		&newsid);
2917	if (rc)
2918		return rc;
2919
2920	/* Possibly defer initialization to selinux_complete_init. */
2921	if (sbsec->flags & SE_SBINITIALIZED) {
2922		struct inode_security_struct *isec = selinux_inode(inode);
2923		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2924		isec->sid = newsid;
2925		isec->initialized = LABEL_INITIALIZED;
2926	}
2927
2928	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
2929		return -EOPNOTSUPP;
2930
2931	if (name)
2932		*name = XATTR_SELINUX_SUFFIX;
2933
2934	if (value && len) {
2935		rc = security_sid_to_context_force(&selinux_state, newsid,
2936						   &context, &clen);
2937		if (rc)
2938			return rc;
2939		*value = context;
2940		*len = clen;
2941	}
2942
2943	return 0;
2944}
2945
2946static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2947{
2948	return may_create(dir, dentry, SECCLASS_FILE);
2949}
2950
2951static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2952{
2953	return may_link(dir, old_dentry, MAY_LINK);
2954}
2955
2956static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2957{
2958	return may_link(dir, dentry, MAY_UNLINK);
2959}
2960
2961static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2962{
2963	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2964}
2965
2966static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2967{
2968	return may_create(dir, dentry, SECCLASS_DIR);
2969}
2970
2971static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2972{
2973	return may_link(dir, dentry, MAY_RMDIR);
2974}
2975
2976static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2977{
2978	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2979}
2980
2981static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2982				struct inode *new_inode, struct dentry *new_dentry)
2983{
2984	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2985}
2986
2987static int selinux_inode_readlink(struct dentry *dentry)
2988{
2989	const struct cred *cred = current_cred();
2990
2991	return dentry_has_perm(cred, dentry, FILE__READ);
2992}
2993
2994static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2995				     bool rcu)
2996{
2997	const struct cred *cred = current_cred();
2998	struct common_audit_data ad;
2999	struct inode_security_struct *isec;
3000	u32 sid;
3001
3002	validate_creds(cred);
3003
3004	ad.type = LSM_AUDIT_DATA_DENTRY;
3005	ad.u.dentry = dentry;
3006	sid = cred_sid(cred);
3007	isec = inode_security_rcu(inode, rcu);
3008	if (IS_ERR(isec))
3009		return PTR_ERR(isec);
3010
3011	return avc_has_perm(&selinux_state,
3012			    sid, isec->sid, isec->sclass, FILE__READ, &ad);
 
3013}
3014
3015static noinline int audit_inode_permission(struct inode *inode,
3016					   u32 perms, u32 audited, u32 denied,
3017					   int result,
3018					   unsigned flags)
3019{
3020	struct common_audit_data ad;
3021	struct inode_security_struct *isec = selinux_inode(inode);
3022	int rc;
3023
3024	ad.type = LSM_AUDIT_DATA_INODE;
3025	ad.u.inode = inode;
3026
3027	rc = slow_avc_audit(&selinux_state,
3028			    current_sid(), isec->sid, isec->sclass, perms,
3029			    audited, denied, result, &ad, flags);
3030	if (rc)
3031		return rc;
3032	return 0;
3033}
3034
3035static int selinux_inode_permission(struct inode *inode, int mask)
3036{
3037	const struct cred *cred = current_cred();
3038	u32 perms;
3039	bool from_access;
3040	unsigned flags = mask & MAY_NOT_BLOCK;
3041	struct inode_security_struct *isec;
3042	u32 sid;
3043	struct av_decision avd;
3044	int rc, rc2;
3045	u32 audited, denied;
3046
3047	from_access = mask & MAY_ACCESS;
3048	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3049
3050	/* No permission to check.  Existence test. */
3051	if (!mask)
3052		return 0;
3053
3054	validate_creds(cred);
3055
3056	if (unlikely(IS_PRIVATE(inode)))
3057		return 0;
3058
3059	perms = file_mask_to_av(inode->i_mode, mask);
3060
3061	sid = cred_sid(cred);
3062	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3063	if (IS_ERR(isec))
3064		return PTR_ERR(isec);
3065
3066	rc = avc_has_perm_noaudit(&selinux_state,
3067				  sid, isec->sid, isec->sclass, perms,
3068				  (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
3069				  &avd);
3070	audited = avc_audit_required(perms, &avd, rc,
3071				     from_access ? FILE__AUDIT_ACCESS : 0,
3072				     &denied);
3073	if (likely(!audited))
3074		return rc;
3075
3076	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3077	if (rc2)
3078		return rc2;
3079	return rc;
3080}
3081
3082static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3083{
3084	const struct cred *cred = current_cred();
3085	struct inode *inode = d_backing_inode(dentry);
3086	unsigned int ia_valid = iattr->ia_valid;
3087	__u32 av = FILE__WRITE;
3088
3089	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3090	if (ia_valid & ATTR_FORCE) {
3091		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3092			      ATTR_FORCE);
3093		if (!ia_valid)
3094			return 0;
3095	}
3096
3097	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3098			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3099		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3100
3101	if (selinux_policycap_openperm() &&
3102	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3103	    (ia_valid & ATTR_SIZE) &&
3104	    !(ia_valid & ATTR_FILE))
3105		av |= FILE__OPEN;
3106
3107	return dentry_has_perm(cred, dentry, av);
3108}
3109
3110static int selinux_inode_getattr(const struct path *path)
3111{
3112	return path_has_perm(current_cred(), path, FILE__GETATTR);
3113}
3114
3115static bool has_cap_mac_admin(bool audit)
3116{
3117	const struct cred *cred = current_cred();
3118	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3119
3120	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3121		return false;
3122	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3123		return false;
3124	return true;
3125}
3126
3127static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3128				  const void *value, size_t size, int flags)
3129{
3130	struct inode *inode = d_backing_inode(dentry);
3131	struct inode_security_struct *isec;
3132	struct superblock_security_struct *sbsec;
3133	struct common_audit_data ad;
3134	u32 newsid, sid = current_sid();
3135	int rc = 0;
3136
3137	if (strcmp(name, XATTR_NAME_SELINUX)) {
3138		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3139		if (rc)
3140			return rc;
3141
3142		/* Not an attribute we recognize, so just check the
3143		   ordinary setattr permission. */
3144		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3145	}
3146
3147	sbsec = inode->i_sb->s_security;
3148	if (!(sbsec->flags & SBLABEL_MNT))
3149		return -EOPNOTSUPP;
3150
3151	if (!inode_owner_or_capable(inode))
3152		return -EPERM;
3153
3154	ad.type = LSM_AUDIT_DATA_DENTRY;
3155	ad.u.dentry = dentry;
3156
3157	isec = backing_inode_security(dentry);
3158	rc = avc_has_perm(&selinux_state,
3159			  sid, isec->sid, isec->sclass,
3160			  FILE__RELABELFROM, &ad);
3161	if (rc)
3162		return rc;
3163
3164	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3165				     GFP_KERNEL);
3166	if (rc == -EINVAL) {
3167		if (!has_cap_mac_admin(true)) {
3168			struct audit_buffer *ab;
3169			size_t audit_size;
3170
3171			/* We strip a nul only if it is at the end, otherwise the
3172			 * context contains a nul and we should audit that */
3173			if (value) {
3174				const char *str = value;
3175
3176				if (str[size - 1] == '\0')
3177					audit_size = size - 1;
3178				else
3179					audit_size = size;
3180			} else {
3181				audit_size = 0;
3182			}
3183			ab = audit_log_start(audit_context(),
3184					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3185			audit_log_format(ab, "op=setxattr invalid_context=");
3186			audit_log_n_untrustedstring(ab, value, audit_size);
3187			audit_log_end(ab);
3188
3189			return rc;
3190		}
3191		rc = security_context_to_sid_force(&selinux_state, value,
3192						   size, &newsid);
3193	}
3194	if (rc)
3195		return rc;
3196
3197	rc = avc_has_perm(&selinux_state,
3198			  sid, newsid, isec->sclass,
3199			  FILE__RELABELTO, &ad);
3200	if (rc)
3201		return rc;
3202
3203	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3204					  sid, isec->sclass);
3205	if (rc)
3206		return rc;
3207
3208	return avc_has_perm(&selinux_state,
3209			    newsid,
3210			    sbsec->sid,
3211			    SECCLASS_FILESYSTEM,
3212			    FILESYSTEM__ASSOCIATE,
3213			    &ad);
3214}
3215
3216static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3217					const void *value, size_t size,
3218					int flags)
3219{
3220	struct inode *inode = d_backing_inode(dentry);
3221	struct inode_security_struct *isec;
3222	u32 newsid;
3223	int rc;
3224
3225	if (strcmp(name, XATTR_NAME_SELINUX)) {
3226		/* Not an attribute we recognize, so nothing to do. */
3227		return;
3228	}
3229
3230	rc = security_context_to_sid_force(&selinux_state, value, size,
3231					   &newsid);
3232	if (rc) {
3233		pr_err("SELinux:  unable to map context to SID"
3234		       "for (%s, %lu), rc=%d\n",
3235		       inode->i_sb->s_id, inode->i_ino, -rc);
3236		return;
3237	}
3238
3239	isec = backing_inode_security(dentry);
3240	spin_lock(&isec->lock);
3241	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3242	isec->sid = newsid;
3243	isec->initialized = LABEL_INITIALIZED;
3244	spin_unlock(&isec->lock);
3245
3246	return;
3247}
3248
3249static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3250{
3251	const struct cred *cred = current_cred();
3252
3253	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_listxattr(struct dentry *dentry)
3257{
3258	const struct cred *cred = current_cred();
3259
3260	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3261}
3262
3263static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3264{
3265	if (strcmp(name, XATTR_NAME_SELINUX)) {
3266		int rc = cap_inode_removexattr(dentry, name);
3267		if (rc)
3268			return rc;
3269
3270		/* Not an attribute we recognize, so just check the
3271		   ordinary setattr permission. */
3272		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3273	}
3274
3275	/* No one is allowed to remove a SELinux security label.
3276	   You can change the label, but all data must be labeled. */
3277	return -EACCES;
3278}
3279
3280static int selinux_path_notify(const struct path *path, u64 mask,
3281						unsigned int obj_type)
3282{
3283	int ret;
3284	u32 perm;
3285
3286	struct common_audit_data ad;
3287
3288	ad.type = LSM_AUDIT_DATA_PATH;
3289	ad.u.path = *path;
3290
3291	/*
3292	 * Set permission needed based on the type of mark being set.
3293	 * Performs an additional check for sb watches.
3294	 */
3295	switch (obj_type) {
3296	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3297		perm = FILE__WATCH_MOUNT;
3298		break;
3299	case FSNOTIFY_OBJ_TYPE_SB:
3300		perm = FILE__WATCH_SB;
3301		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3302						FILESYSTEM__WATCH, &ad);
3303		if (ret)
3304			return ret;
3305		break;
3306	case FSNOTIFY_OBJ_TYPE_INODE:
3307		perm = FILE__WATCH;
3308		break;
3309	default:
3310		return -EINVAL;
3311	}
3312
3313	/* blocking watches require the file:watch_with_perm permission */
3314	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3315		perm |= FILE__WATCH_WITH_PERM;
3316
3317	/* watches on read-like events need the file:watch_reads permission */
3318	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3319		perm |= FILE__WATCH_READS;
3320
3321	return path_has_perm(current_cred(), path, perm);
3322}
3323
3324/*
3325 * Copy the inode security context value to the user.
3326 *
3327 * Permission check is handled by selinux_inode_getxattr hook.
3328 */
3329static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3330{
3331	u32 size;
3332	int error;
3333	char *context = NULL;
3334	struct inode_security_struct *isec;
3335
3336	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3337		return -EOPNOTSUPP;
3338
3339	/*
3340	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3341	 * value even if it is not defined by current policy; otherwise,
3342	 * use the in-core value under current policy.
3343	 * Use the non-auditing forms of the permission checks since
3344	 * getxattr may be called by unprivileged processes commonly
3345	 * and lack of permission just means that we fall back to the
3346	 * in-core context value, not a denial.
3347	 */
3348	isec = inode_security(inode);
3349	if (has_cap_mac_admin(false))
3350		error = security_sid_to_context_force(&selinux_state,
3351						      isec->sid, &context,
3352						      &size);
3353	else
3354		error = security_sid_to_context(&selinux_state, isec->sid,
3355						&context, &size);
3356	if (error)
3357		return error;
3358	error = size;
3359	if (alloc) {
3360		*buffer = context;
3361		goto out_nofree;
3362	}
3363	kfree(context);
3364out_nofree:
3365	return error;
3366}
3367
3368static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3369				     const void *value, size_t size, int flags)
3370{
3371	struct inode_security_struct *isec = inode_security_novalidate(inode);
3372	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3373	u32 newsid;
3374	int rc;
3375
3376	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3377		return -EOPNOTSUPP;
3378
3379	if (!(sbsec->flags & SBLABEL_MNT))
3380		return -EOPNOTSUPP;
3381
3382	if (!value || !size)
3383		return -EACCES;
3384
3385	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3386				     GFP_KERNEL);
3387	if (rc)
3388		return rc;
3389
3390	spin_lock(&isec->lock);
3391	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3392	isec->sid = newsid;
3393	isec->initialized = LABEL_INITIALIZED;
3394	spin_unlock(&isec->lock);
3395	return 0;
3396}
3397
3398static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3399{
3400	const int len = sizeof(XATTR_NAME_SELINUX);
3401	if (buffer && len <= buffer_size)
3402		memcpy(buffer, XATTR_NAME_SELINUX, len);
3403	return len;
3404}
3405
3406static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3407{
3408	struct inode_security_struct *isec = inode_security_novalidate(inode);
3409	*secid = isec->sid;
3410}
3411
3412static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3413{
3414	u32 sid;
3415	struct task_security_struct *tsec;
3416	struct cred *new_creds = *new;
3417
3418	if (new_creds == NULL) {
3419		new_creds = prepare_creds();
3420		if (!new_creds)
3421			return -ENOMEM;
3422	}
3423
3424	tsec = selinux_cred(new_creds);
3425	/* Get label from overlay inode and set it in create_sid */
3426	selinux_inode_getsecid(d_inode(src), &sid);
3427	tsec->create_sid = sid;
3428	*new = new_creds;
3429	return 0;
3430}
3431
3432static int selinux_inode_copy_up_xattr(const char *name)
3433{
3434	/* The copy_up hook above sets the initial context on an inode, but we
3435	 * don't then want to overwrite it by blindly copying all the lower
3436	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3437	 */
3438	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3439		return 1; /* Discard */
3440	/*
3441	 * Any other attribute apart from SELINUX is not claimed, supported
3442	 * by selinux.
3443	 */
3444	return -EOPNOTSUPP;
3445}
3446
3447/* kernfs node operations */
3448
3449static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3450					struct kernfs_node *kn)
3451{
3452	const struct task_security_struct *tsec = selinux_cred(current_cred());
3453	u32 parent_sid, newsid, clen;
3454	int rc;
3455	char *context;
3456
3457	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3458	if (rc == -ENODATA)
3459		return 0;
3460	else if (rc < 0)
3461		return rc;
3462
3463	clen = (u32)rc;
3464	context = kmalloc(clen, GFP_KERNEL);
3465	if (!context)
3466		return -ENOMEM;
3467
3468	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3469	if (rc < 0) {
3470		kfree(context);
3471		return rc;
3472	}
3473
3474	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3475				     GFP_KERNEL);
3476	kfree(context);
3477	if (rc)
3478		return rc;
3479
3480	if (tsec->create_sid) {
3481		newsid = tsec->create_sid;
3482	} else {
3483		u16 secclass = inode_mode_to_security_class(kn->mode);
3484		struct qstr q;
3485
3486		q.name = kn->name;
3487		q.hash_len = hashlen_string(kn_dir, kn->name);
3488
3489		rc = security_transition_sid(&selinux_state, tsec->sid,
3490					     parent_sid, secclass, &q,
3491					     &newsid);
3492		if (rc)
3493			return rc;
3494	}
3495
3496	rc = security_sid_to_context_force(&selinux_state, newsid,
3497					   &context, &clen);
3498	if (rc)
3499		return rc;
3500
3501	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3502			      XATTR_CREATE);
3503	kfree(context);
3504	return rc;
3505}
3506
3507
3508/* file security operations */
3509
3510static int selinux_revalidate_file_permission(struct file *file, int mask)
3511{
3512	const struct cred *cred = current_cred();
3513	struct inode *inode = file_inode(file);
3514
3515	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3516	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3517		mask |= MAY_APPEND;
3518
3519	return file_has_perm(cred, file,
3520			     file_mask_to_av(inode->i_mode, mask));
3521}
3522
3523static int selinux_file_permission(struct file *file, int mask)
3524{
3525	struct inode *inode = file_inode(file);
3526	struct file_security_struct *fsec = selinux_file(file);
3527	struct inode_security_struct *isec;
3528	u32 sid = current_sid();
3529
3530	if (!mask)
3531		/* No permission to check.  Existence test. */
3532		return 0;
3533
3534	isec = inode_security(inode);
3535	if (sid == fsec->sid && fsec->isid == isec->sid &&
3536	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3537		/* No change since file_open check. */
3538		return 0;
3539
3540	return selinux_revalidate_file_permission(file, mask);
3541}
3542
3543static int selinux_file_alloc_security(struct file *file)
3544{
3545	return file_alloc_security(file);
3546}
3547
 
 
 
 
 
3548/*
3549 * Check whether a task has the ioctl permission and cmd
3550 * operation to an inode.
3551 */
3552static int ioctl_has_perm(const struct cred *cred, struct file *file,
3553		u32 requested, u16 cmd)
3554{
3555	struct common_audit_data ad;
3556	struct file_security_struct *fsec = selinux_file(file);
3557	struct inode *inode = file_inode(file);
3558	struct inode_security_struct *isec;
3559	struct lsm_ioctlop_audit ioctl;
3560	u32 ssid = cred_sid(cred);
3561	int rc;
3562	u8 driver = cmd >> 8;
3563	u8 xperm = cmd & 0xff;
3564
3565	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3566	ad.u.op = &ioctl;
3567	ad.u.op->cmd = cmd;
3568	ad.u.op->path = file->f_path;
3569
3570	if (ssid != fsec->sid) {
3571		rc = avc_has_perm(&selinux_state,
3572				  ssid, fsec->sid,
3573				SECCLASS_FD,
3574				FD__USE,
3575				&ad);
3576		if (rc)
3577			goto out;
3578	}
3579
3580	if (unlikely(IS_PRIVATE(inode)))
3581		return 0;
3582
3583	isec = inode_security(inode);
3584	rc = avc_has_extended_perms(&selinux_state,
3585				    ssid, isec->sid, isec->sclass,
3586				    requested, driver, xperm, &ad);
3587out:
3588	return rc;
3589}
3590
3591static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3592			      unsigned long arg)
3593{
3594	const struct cred *cred = current_cred();
3595	int error = 0;
3596
3597	switch (cmd) {
3598	case FIONREAD:
3599	/* fall through */
3600	case FIBMAP:
3601	/* fall through */
3602	case FIGETBSZ:
3603	/* fall through */
3604	case FS_IOC_GETFLAGS:
3605	/* fall through */
3606	case FS_IOC_GETVERSION:
3607		error = file_has_perm(cred, file, FILE__GETATTR);
3608		break;
3609
3610	case FS_IOC_SETFLAGS:
3611	/* fall through */
3612	case FS_IOC_SETVERSION:
3613		error = file_has_perm(cred, file, FILE__SETATTR);
3614		break;
3615
3616	/* sys_ioctl() checks */
3617	case FIONBIO:
3618	/* fall through */
3619	case FIOASYNC:
3620		error = file_has_perm(cred, file, 0);
3621		break;
3622
3623	case KDSKBENT:
3624	case KDSKBSENT:
3625		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3626					    CAP_OPT_NONE, true);
3627		break;
3628
3629	/* default case assumes that the command will go
3630	 * to the file's ioctl() function.
3631	 */
3632	default:
3633		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3634	}
3635	return error;
3636}
3637
3638static int default_noexec;
3639
3640static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3641{
3642	const struct cred *cred = current_cred();
3643	u32 sid = cred_sid(cred);
3644	int rc = 0;
3645
3646	if (default_noexec &&
3647	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3648				   (!shared && (prot & PROT_WRITE)))) {
3649		/*
3650		 * We are making executable an anonymous mapping or a
3651		 * private file mapping that will also be writable.
3652		 * This has an additional check.
3653		 */
3654		rc = avc_has_perm(&selinux_state,
3655				  sid, sid, SECCLASS_PROCESS,
3656				  PROCESS__EXECMEM, NULL);
3657		if (rc)
3658			goto error;
3659	}
3660
3661	if (file) {
3662		/* read access is always possible with a mapping */
3663		u32 av = FILE__READ;
3664
3665		/* write access only matters if the mapping is shared */
3666		if (shared && (prot & PROT_WRITE))
3667			av |= FILE__WRITE;
3668
3669		if (prot & PROT_EXEC)
3670			av |= FILE__EXECUTE;
3671
3672		return file_has_perm(cred, file, av);
3673	}
3674
3675error:
3676	return rc;
3677}
3678
3679static int selinux_mmap_addr(unsigned long addr)
3680{
3681	int rc = 0;
3682
3683	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3684		u32 sid = current_sid();
3685		rc = avc_has_perm(&selinux_state,
3686				  sid, sid, SECCLASS_MEMPROTECT,
3687				  MEMPROTECT__MMAP_ZERO, NULL);
3688	}
3689
3690	return rc;
3691}
3692
3693static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3694			     unsigned long prot, unsigned long flags)
3695{
3696	struct common_audit_data ad;
3697	int rc;
3698
3699	if (file) {
3700		ad.type = LSM_AUDIT_DATA_FILE;
3701		ad.u.file = file;
3702		rc = inode_has_perm(current_cred(), file_inode(file),
3703				    FILE__MAP, &ad);
3704		if (rc)
3705			return rc;
3706	}
3707
3708	if (selinux_state.checkreqprot)
3709		prot = reqprot;
3710
3711	return file_map_prot_check(file, prot,
3712				   (flags & MAP_TYPE) == MAP_SHARED);
3713}
3714
3715static int selinux_file_mprotect(struct vm_area_struct *vma,
3716				 unsigned long reqprot,
3717				 unsigned long prot)
3718{
3719	const struct cred *cred = current_cred();
3720	u32 sid = cred_sid(cred);
3721
3722	if (selinux_state.checkreqprot)
3723		prot = reqprot;
3724
3725	if (default_noexec &&
3726	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3727		int rc = 0;
3728		if (vma->vm_start >= vma->vm_mm->start_brk &&
3729		    vma->vm_end <= vma->vm_mm->brk) {
3730			rc = avc_has_perm(&selinux_state,
3731					  sid, sid, SECCLASS_PROCESS,
3732					  PROCESS__EXECHEAP, NULL);
3733		} else if (!vma->vm_file &&
3734			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3735			     vma->vm_end >= vma->vm_mm->start_stack) ||
3736			    vma_is_stack_for_current(vma))) {
3737			rc = avc_has_perm(&selinux_state,
3738					  sid, sid, SECCLASS_PROCESS,
3739					  PROCESS__EXECSTACK, NULL);
3740		} else if (vma->vm_file && vma->anon_vma) {
3741			/*
3742			 * We are making executable a file mapping that has
3743			 * had some COW done. Since pages might have been
3744			 * written, check ability to execute the possibly
3745			 * modified content.  This typically should only
3746			 * occur for text relocations.
3747			 */
3748			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3749		}
3750		if (rc)
3751			return rc;
3752	}
3753
3754	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3755}
3756
3757static int selinux_file_lock(struct file *file, unsigned int cmd)
3758{
3759	const struct cred *cred = current_cred();
3760
3761	return file_has_perm(cred, file, FILE__LOCK);
3762}
3763
3764static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3765			      unsigned long arg)
3766{
3767	const struct cred *cred = current_cred();
3768	int err = 0;
3769
3770	switch (cmd) {
3771	case F_SETFL:
3772		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3773			err = file_has_perm(cred, file, FILE__WRITE);
3774			break;
3775		}
3776		/* fall through */
3777	case F_SETOWN:
3778	case F_SETSIG:
3779	case F_GETFL:
3780	case F_GETOWN:
3781	case F_GETSIG:
3782	case F_GETOWNER_UIDS:
3783		/* Just check FD__USE permission */
3784		err = file_has_perm(cred, file, 0);
3785		break;
3786	case F_GETLK:
3787	case F_SETLK:
3788	case F_SETLKW:
3789	case F_OFD_GETLK:
3790	case F_OFD_SETLK:
3791	case F_OFD_SETLKW:
3792#if BITS_PER_LONG == 32
3793	case F_GETLK64:
3794	case F_SETLK64:
3795	case F_SETLKW64:
3796#endif
3797		err = file_has_perm(cred, file, FILE__LOCK);
3798		break;
3799	}
3800
3801	return err;
3802}
3803
3804static void selinux_file_set_fowner(struct file *file)
3805{
3806	struct file_security_struct *fsec;
3807
3808	fsec = selinux_file(file);
3809	fsec->fown_sid = current_sid();
3810}
3811
3812static int selinux_file_send_sigiotask(struct task_struct *tsk,
3813				       struct fown_struct *fown, int signum)
3814{
3815	struct file *file;
3816	u32 sid = task_sid(tsk);
3817	u32 perm;
3818	struct file_security_struct *fsec;
3819
3820	/* struct fown_struct is never outside the context of a struct file */
3821	file = container_of(fown, struct file, f_owner);
3822
3823	fsec = selinux_file(file);
3824
3825	if (!signum)
3826		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3827	else
3828		perm = signal_to_av(signum);
3829
3830	return avc_has_perm(&selinux_state,
3831			    fsec->fown_sid, sid,
3832			    SECCLASS_PROCESS, perm, NULL);
3833}
3834
3835static int selinux_file_receive(struct file *file)
3836{
3837	const struct cred *cred = current_cred();
3838
3839	return file_has_perm(cred, file, file_to_av(file));
3840}
3841
3842static int selinux_file_open(struct file *file)
3843{
3844	struct file_security_struct *fsec;
3845	struct inode_security_struct *isec;
3846
3847	fsec = selinux_file(file);
3848	isec = inode_security(file_inode(file));
3849	/*
3850	 * Save inode label and policy sequence number
3851	 * at open-time so that selinux_file_permission
3852	 * can determine whether revalidation is necessary.
3853	 * Task label is already saved in the file security
3854	 * struct as its SID.
3855	 */
3856	fsec->isid = isec->sid;
3857	fsec->pseqno = avc_policy_seqno(&selinux_state);
3858	/*
3859	 * Since the inode label or policy seqno may have changed
3860	 * between the selinux_inode_permission check and the saving
3861	 * of state above, recheck that access is still permitted.
3862	 * Otherwise, access might never be revalidated against the
3863	 * new inode label or new policy.
3864	 * This check is not redundant - do not remove.
3865	 */
3866	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3867}
3868
3869/* task security operations */
3870
3871static int selinux_task_alloc(struct task_struct *task,
3872			      unsigned long clone_flags)
3873{
3874	u32 sid = current_sid();
3875
3876	return avc_has_perm(&selinux_state,
3877			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3878}
3879
3880/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3881 * prepare a new set of credentials for modification
3882 */
3883static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3884				gfp_t gfp)
3885{
3886	const struct task_security_struct *old_tsec = selinux_cred(old);
3887	struct task_security_struct *tsec = selinux_cred(new);
 
 
 
 
 
 
3888
3889	*tsec = *old_tsec;
3890	return 0;
3891}
3892
3893/*
3894 * transfer the SELinux data to a blank set of creds
3895 */
3896static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3897{
3898	const struct task_security_struct *old_tsec = selinux_cred(old);
3899	struct task_security_struct *tsec = selinux_cred(new);
3900
3901	*tsec = *old_tsec;
3902}
3903
3904static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3905{
3906	*secid = cred_sid(c);
3907}
3908
3909/*
3910 * set the security data for a kernel service
3911 * - all the creation contexts are set to unlabelled
3912 */
3913static int selinux_kernel_act_as(struct cred *new, u32 secid)
3914{
3915	struct task_security_struct *tsec = selinux_cred(new);
3916	u32 sid = current_sid();
3917	int ret;
3918
3919	ret = avc_has_perm(&selinux_state,
3920			   sid, secid,
3921			   SECCLASS_KERNEL_SERVICE,
3922			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3923			   NULL);
3924	if (ret == 0) {
3925		tsec->sid = secid;
3926		tsec->create_sid = 0;
3927		tsec->keycreate_sid = 0;
3928		tsec->sockcreate_sid = 0;
3929	}
3930	return ret;
3931}
3932
3933/*
3934 * set the file creation context in a security record to the same as the
3935 * objective context of the specified inode
3936 */
3937static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3938{
3939	struct inode_security_struct *isec = inode_security(inode);
3940	struct task_security_struct *tsec = selinux_cred(new);
3941	u32 sid = current_sid();
3942	int ret;
3943
3944	ret = avc_has_perm(&selinux_state,
3945			   sid, isec->sid,
3946			   SECCLASS_KERNEL_SERVICE,
3947			   KERNEL_SERVICE__CREATE_FILES_AS,
3948			   NULL);
3949
3950	if (ret == 0)
3951		tsec->create_sid = isec->sid;
3952	return ret;
3953}
3954
3955static int selinux_kernel_module_request(char *kmod_name)
3956{
3957	struct common_audit_data ad;
3958
3959	ad.type = LSM_AUDIT_DATA_KMOD;
3960	ad.u.kmod_name = kmod_name;
3961
3962	return avc_has_perm(&selinux_state,
3963			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3964			    SYSTEM__MODULE_REQUEST, &ad);
3965}
3966
3967static int selinux_kernel_module_from_file(struct file *file)
3968{
3969	struct common_audit_data ad;
3970	struct inode_security_struct *isec;
3971	struct file_security_struct *fsec;
3972	u32 sid = current_sid();
3973	int rc;
3974
3975	/* init_module */
3976	if (file == NULL)
3977		return avc_has_perm(&selinux_state,
3978				    sid, sid, SECCLASS_SYSTEM,
3979					SYSTEM__MODULE_LOAD, NULL);
3980
3981	/* finit_module */
3982
3983	ad.type = LSM_AUDIT_DATA_FILE;
3984	ad.u.file = file;
3985
3986	fsec = selinux_file(file);
3987	if (sid != fsec->sid) {
3988		rc = avc_has_perm(&selinux_state,
3989				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3990		if (rc)
3991			return rc;
3992	}
3993
3994	isec = inode_security(file_inode(file));
3995	return avc_has_perm(&selinux_state,
3996			    sid, isec->sid, SECCLASS_SYSTEM,
3997				SYSTEM__MODULE_LOAD, &ad);
3998}
3999
4000static int selinux_kernel_read_file(struct file *file,
4001				    enum kernel_read_file_id id)
4002{
4003	int rc = 0;
4004
4005	switch (id) {
4006	case READING_MODULE:
4007		rc = selinux_kernel_module_from_file(file);
4008		break;
4009	default:
4010		break;
4011	}
4012
4013	return rc;
4014}
4015
4016static int selinux_kernel_load_data(enum kernel_load_data_id id)
4017{
4018	int rc = 0;
4019
4020	switch (id) {
4021	case LOADING_MODULE:
4022		rc = selinux_kernel_module_from_file(NULL);
4023	default:
4024		break;
4025	}
4026
4027	return rc;
4028}
4029
4030static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4031{
4032	return avc_has_perm(&selinux_state,
4033			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4034			    PROCESS__SETPGID, NULL);
4035}
4036
4037static int selinux_task_getpgid(struct task_struct *p)
4038{
4039	return avc_has_perm(&selinux_state,
4040			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4041			    PROCESS__GETPGID, NULL);
4042}
4043
4044static int selinux_task_getsid(struct task_struct *p)
4045{
4046	return avc_has_perm(&selinux_state,
4047			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4048			    PROCESS__GETSESSION, NULL);
4049}
4050
4051static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4052{
4053	*secid = task_sid(p);
4054}
4055
4056static int selinux_task_setnice(struct task_struct *p, int nice)
4057{
4058	return avc_has_perm(&selinux_state,
4059			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4060			    PROCESS__SETSCHED, NULL);
4061}
4062
4063static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4064{
4065	return avc_has_perm(&selinux_state,
4066			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4067			    PROCESS__SETSCHED, NULL);
4068}
4069
4070static int selinux_task_getioprio(struct task_struct *p)
4071{
4072	return avc_has_perm(&selinux_state,
4073			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4074			    PROCESS__GETSCHED, NULL);
4075}
4076
4077static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4078				unsigned int flags)
4079{
4080	u32 av = 0;
4081
4082	if (!flags)
4083		return 0;
4084	if (flags & LSM_PRLIMIT_WRITE)
4085		av |= PROCESS__SETRLIMIT;
4086	if (flags & LSM_PRLIMIT_READ)
4087		av |= PROCESS__GETRLIMIT;
4088	return avc_has_perm(&selinux_state,
4089			    cred_sid(cred), cred_sid(tcred),
4090			    SECCLASS_PROCESS, av, NULL);
4091}
4092
4093static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4094		struct rlimit *new_rlim)
4095{
4096	struct rlimit *old_rlim = p->signal->rlim + resource;
4097
4098	/* Control the ability to change the hard limit (whether
4099	   lowering or raising it), so that the hard limit can
4100	   later be used as a safe reset point for the soft limit
4101	   upon context transitions.  See selinux_bprm_committing_creds. */
4102	if (old_rlim->rlim_max != new_rlim->rlim_max)
4103		return avc_has_perm(&selinux_state,
4104				    current_sid(), task_sid(p),
4105				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4106
4107	return 0;
4108}
4109
4110static int selinux_task_setscheduler(struct task_struct *p)
4111{
4112	return avc_has_perm(&selinux_state,
4113			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4114			    PROCESS__SETSCHED, NULL);
4115}
4116
4117static int selinux_task_getscheduler(struct task_struct *p)
4118{
4119	return avc_has_perm(&selinux_state,
4120			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4121			    PROCESS__GETSCHED, NULL);
4122}
4123
4124static int selinux_task_movememory(struct task_struct *p)
4125{
4126	return avc_has_perm(&selinux_state,
4127			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4128			    PROCESS__SETSCHED, NULL);
4129}
4130
4131static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4132				int sig, const struct cred *cred)
4133{
4134	u32 secid;
4135	u32 perm;
4136
4137	if (!sig)
4138		perm = PROCESS__SIGNULL; /* null signal; existence test */
4139	else
4140		perm = signal_to_av(sig);
4141	if (!cred)
4142		secid = current_sid();
4143	else
4144		secid = cred_sid(cred);
4145	return avc_has_perm(&selinux_state,
4146			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4147}
4148
4149static void selinux_task_to_inode(struct task_struct *p,
4150				  struct inode *inode)
4151{
4152	struct inode_security_struct *isec = selinux_inode(inode);
4153	u32 sid = task_sid(p);
4154
4155	spin_lock(&isec->lock);
4156	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4157	isec->sid = sid;
4158	isec->initialized = LABEL_INITIALIZED;
4159	spin_unlock(&isec->lock);
4160}
4161
4162/* Returns error only if unable to parse addresses */
4163static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4164			struct common_audit_data *ad, u8 *proto)
4165{
4166	int offset, ihlen, ret = -EINVAL;
4167	struct iphdr _iph, *ih;
4168
4169	offset = skb_network_offset(skb);
4170	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4171	if (ih == NULL)
4172		goto out;
4173
4174	ihlen = ih->ihl * 4;
4175	if (ihlen < sizeof(_iph))
4176		goto out;
4177
4178	ad->u.net->v4info.saddr = ih->saddr;
4179	ad->u.net->v4info.daddr = ih->daddr;
4180	ret = 0;
4181
4182	if (proto)
4183		*proto = ih->protocol;
4184
4185	switch (ih->protocol) {
4186	case IPPROTO_TCP: {
4187		struct tcphdr _tcph, *th;
4188
4189		if (ntohs(ih->frag_off) & IP_OFFSET)
4190			break;
4191
4192		offset += ihlen;
4193		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4194		if (th == NULL)
4195			break;
4196
4197		ad->u.net->sport = th->source;
4198		ad->u.net->dport = th->dest;
4199		break;
4200	}
4201
4202	case IPPROTO_UDP: {
4203		struct udphdr _udph, *uh;
4204
4205		if (ntohs(ih->frag_off) & IP_OFFSET)
4206			break;
4207
4208		offset += ihlen;
4209		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4210		if (uh == NULL)
4211			break;
4212
4213		ad->u.net->sport = uh->source;
4214		ad->u.net->dport = uh->dest;
4215		break;
4216	}
4217
4218	case IPPROTO_DCCP: {
4219		struct dccp_hdr _dccph, *dh;
4220
4221		if (ntohs(ih->frag_off) & IP_OFFSET)
4222			break;
4223
4224		offset += ihlen;
4225		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4226		if (dh == NULL)
4227			break;
4228
4229		ad->u.net->sport = dh->dccph_sport;
4230		ad->u.net->dport = dh->dccph_dport;
4231		break;
4232	}
4233
4234#if IS_ENABLED(CONFIG_IP_SCTP)
4235	case IPPROTO_SCTP: {
4236		struct sctphdr _sctph, *sh;
4237
4238		if (ntohs(ih->frag_off) & IP_OFFSET)
4239			break;
4240
4241		offset += ihlen;
4242		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4243		if (sh == NULL)
4244			break;
4245
4246		ad->u.net->sport = sh->source;
4247		ad->u.net->dport = sh->dest;
4248		break;
4249	}
4250#endif
4251	default:
4252		break;
4253	}
4254out:
4255	return ret;
4256}
4257
4258#if IS_ENABLED(CONFIG_IPV6)
4259
4260/* Returns error only if unable to parse addresses */
4261static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4262			struct common_audit_data *ad, u8 *proto)
4263{
4264	u8 nexthdr;
4265	int ret = -EINVAL, offset;
4266	struct ipv6hdr _ipv6h, *ip6;
4267	__be16 frag_off;
4268
4269	offset = skb_network_offset(skb);
4270	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4271	if (ip6 == NULL)
4272		goto out;
4273
4274	ad->u.net->v6info.saddr = ip6->saddr;
4275	ad->u.net->v6info.daddr = ip6->daddr;
4276	ret = 0;
4277
4278	nexthdr = ip6->nexthdr;
4279	offset += sizeof(_ipv6h);
4280	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4281	if (offset < 0)
4282		goto out;
4283
4284	if (proto)
4285		*proto = nexthdr;
4286
4287	switch (nexthdr) {
4288	case IPPROTO_TCP: {
4289		struct tcphdr _tcph, *th;
4290
4291		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4292		if (th == NULL)
4293			break;
4294
4295		ad->u.net->sport = th->source;
4296		ad->u.net->dport = th->dest;
4297		break;
4298	}
4299
4300	case IPPROTO_UDP: {
4301		struct udphdr _udph, *uh;
4302
4303		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4304		if (uh == NULL)
4305			break;
4306
4307		ad->u.net->sport = uh->source;
4308		ad->u.net->dport = uh->dest;
4309		break;
4310	}
4311
4312	case IPPROTO_DCCP: {
4313		struct dccp_hdr _dccph, *dh;
4314
4315		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316		if (dh == NULL)
4317			break;
4318
4319		ad->u.net->sport = dh->dccph_sport;
4320		ad->u.net->dport = dh->dccph_dport;
4321		break;
4322	}
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325	case IPPROTO_SCTP: {
4326		struct sctphdr _sctph, *sh;
4327
4328		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4329		if (sh == NULL)
4330			break;
4331
4332		ad->u.net->sport = sh->source;
4333		ad->u.net->dport = sh->dest;
4334		break;
4335	}
4336#endif
4337	/* includes fragments */
4338	default:
4339		break;
4340	}
4341out:
4342	return ret;
4343}
4344
4345#endif /* IPV6 */
4346
4347static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4348			     char **_addrp, int src, u8 *proto)
4349{
4350	char *addrp;
4351	int ret;
4352
4353	switch (ad->u.net->family) {
4354	case PF_INET:
4355		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4356		if (ret)
4357			goto parse_error;
4358		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4359				       &ad->u.net->v4info.daddr);
4360		goto okay;
4361
4362#if IS_ENABLED(CONFIG_IPV6)
4363	case PF_INET6:
4364		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4365		if (ret)
4366			goto parse_error;
4367		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4368				       &ad->u.net->v6info.daddr);
4369		goto okay;
4370#endif	/* IPV6 */
4371	default:
4372		addrp = NULL;
4373		goto okay;
4374	}
4375
4376parse_error:
4377	pr_warn(
4378	       "SELinux: failure in selinux_parse_skb(),"
4379	       " unable to parse packet\n");
4380	return ret;
4381
4382okay:
4383	if (_addrp)
4384		*_addrp = addrp;
4385	return 0;
4386}
4387
4388/**
4389 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4390 * @skb: the packet
4391 * @family: protocol family
4392 * @sid: the packet's peer label SID
4393 *
4394 * Description:
4395 * Check the various different forms of network peer labeling and determine
4396 * the peer label/SID for the packet; most of the magic actually occurs in
4397 * the security server function security_net_peersid_cmp().  The function
4398 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4399 * or -EACCES if @sid is invalid due to inconsistencies with the different
4400 * peer labels.
4401 *
4402 */
4403static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4404{
4405	int err;
4406	u32 xfrm_sid;
4407	u32 nlbl_sid;
4408	u32 nlbl_type;
4409
4410	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4411	if (unlikely(err))
4412		return -EACCES;
4413	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4414	if (unlikely(err))
4415		return -EACCES;
4416
4417	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4418					   nlbl_type, xfrm_sid, sid);
4419	if (unlikely(err)) {
4420		pr_warn(
4421		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4422		       " unable to determine packet's peer label\n");
4423		return -EACCES;
4424	}
4425
4426	return 0;
4427}
4428
4429/**
4430 * selinux_conn_sid - Determine the child socket label for a connection
4431 * @sk_sid: the parent socket's SID
4432 * @skb_sid: the packet's SID
4433 * @conn_sid: the resulting connection SID
4434 *
4435 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4436 * combined with the MLS information from @skb_sid in order to create
4437 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4438 * of @sk_sid.  Returns zero on success, negative values on failure.
4439 *
4440 */
4441static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4442{
4443	int err = 0;
4444
4445	if (skb_sid != SECSID_NULL)
4446		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4447					    conn_sid);
4448	else
4449		*conn_sid = sk_sid;
4450
4451	return err;
4452}
4453
4454/* socket security operations */
4455
4456static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4457				 u16 secclass, u32 *socksid)
4458{
4459	if (tsec->sockcreate_sid > SECSID_NULL) {
4460		*socksid = tsec->sockcreate_sid;
4461		return 0;
4462	}
4463
4464	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4465				       secclass, NULL, socksid);
4466}
4467
4468static int sock_has_perm(struct sock *sk, u32 perms)
4469{
4470	struct sk_security_struct *sksec = sk->sk_security;
4471	struct common_audit_data ad;
4472	struct lsm_network_audit net = {0,};
4473
4474	if (sksec->sid == SECINITSID_KERNEL)
4475		return 0;
4476
4477	ad.type = LSM_AUDIT_DATA_NET;
4478	ad.u.net = &net;
4479	ad.u.net->sk = sk;
4480
4481	return avc_has_perm(&selinux_state,
4482			    current_sid(), sksec->sid, sksec->sclass, perms,
4483			    &ad);
4484}
4485
4486static int selinux_socket_create(int family, int type,
4487				 int protocol, int kern)
4488{
4489	const struct task_security_struct *tsec = selinux_cred(current_cred());
4490	u32 newsid;
4491	u16 secclass;
4492	int rc;
4493
4494	if (kern)
4495		return 0;
4496
4497	secclass = socket_type_to_security_class(family, type, protocol);
4498	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4499	if (rc)
4500		return rc;
4501
4502	return avc_has_perm(&selinux_state,
4503			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4504}
4505
4506static int selinux_socket_post_create(struct socket *sock, int family,
4507				      int type, int protocol, int kern)
4508{
4509	const struct task_security_struct *tsec = selinux_cred(current_cred());
4510	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4511	struct sk_security_struct *sksec;
4512	u16 sclass = socket_type_to_security_class(family, type, protocol);
4513	u32 sid = SECINITSID_KERNEL;
4514	int err = 0;
4515
4516	if (!kern) {
4517		err = socket_sockcreate_sid(tsec, sclass, &sid);
4518		if (err)
4519			return err;
4520	}
4521
4522	isec->sclass = sclass;
4523	isec->sid = sid;
4524	isec->initialized = LABEL_INITIALIZED;
4525
4526	if (sock->sk) {
4527		sksec = sock->sk->sk_security;
4528		sksec->sclass = sclass;
4529		sksec->sid = sid;
4530		/* Allows detection of the first association on this socket */
4531		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4532			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4533
4534		err = selinux_netlbl_socket_post_create(sock->sk, family);
4535	}
4536
4537	return err;
4538}
4539
4540static int selinux_socket_socketpair(struct socket *socka,
4541				     struct socket *sockb)
4542{
4543	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4544	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4545
4546	sksec_a->peer_sid = sksec_b->sid;
4547	sksec_b->peer_sid = sksec_a->sid;
4548
4549	return 0;
4550}
4551
4552/* Range of port numbers used to automatically bind.
4553   Need to determine whether we should perform a name_bind
4554   permission check between the socket and the port number. */
4555
4556static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4557{
4558	struct sock *sk = sock->sk;
4559	struct sk_security_struct *sksec = sk->sk_security;
4560	u16 family;
4561	int err;
4562
4563	err = sock_has_perm(sk, SOCKET__BIND);
4564	if (err)
4565		goto out;
4566
4567	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4568	family = sk->sk_family;
4569	if (family == PF_INET || family == PF_INET6) {
4570		char *addrp;
4571		struct common_audit_data ad;
4572		struct lsm_network_audit net = {0,};
4573		struct sockaddr_in *addr4 = NULL;
4574		struct sockaddr_in6 *addr6 = NULL;
4575		u16 family_sa;
4576		unsigned short snum;
4577		u32 sid, node_perm;
4578
4579		/*
4580		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4581		 * that validates multiple binding addresses. Because of this
4582		 * need to check address->sa_family as it is possible to have
4583		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4584		 */
4585		if (addrlen < offsetofend(struct sockaddr, sa_family))
4586			return -EINVAL;
4587		family_sa = address->sa_family;
4588		switch (family_sa) {
4589		case AF_UNSPEC:
4590		case AF_INET:
4591			if (addrlen < sizeof(struct sockaddr_in))
4592				return -EINVAL;
4593			addr4 = (struct sockaddr_in *)address;
4594			if (family_sa == AF_UNSPEC) {
4595				/* see __inet_bind(), we only want to allow
4596				 * AF_UNSPEC if the address is INADDR_ANY
4597				 */
4598				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4599					goto err_af;
4600				family_sa = AF_INET;
4601			}
4602			snum = ntohs(addr4->sin_port);
4603			addrp = (char *)&addr4->sin_addr.s_addr;
4604			break;
4605		case AF_INET6:
4606			if (addrlen < SIN6_LEN_RFC2133)
4607				return -EINVAL;
4608			addr6 = (struct sockaddr_in6 *)address;
4609			snum = ntohs(addr6->sin6_port);
4610			addrp = (char *)&addr6->sin6_addr.s6_addr;
4611			break;
4612		default:
4613			goto err_af;
4614		}
4615
4616		ad.type = LSM_AUDIT_DATA_NET;
4617		ad.u.net = &net;
4618		ad.u.net->sport = htons(snum);
4619		ad.u.net->family = family_sa;
4620
4621		if (snum) {
4622			int low, high;
4623
4624			inet_get_local_port_range(sock_net(sk), &low, &high);
4625
4626			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4627			    snum > high) {
4628				err = sel_netport_sid(sk->sk_protocol,
4629						      snum, &sid);
4630				if (err)
4631					goto out;
4632				err = avc_has_perm(&selinux_state,
4633						   sksec->sid, sid,
4634						   sksec->sclass,
4635						   SOCKET__NAME_BIND, &ad);
4636				if (err)
4637					goto out;
4638			}
4639		}
4640
4641		switch (sksec->sclass) {
4642		case SECCLASS_TCP_SOCKET:
4643			node_perm = TCP_SOCKET__NODE_BIND;
4644			break;
4645
4646		case SECCLASS_UDP_SOCKET:
4647			node_perm = UDP_SOCKET__NODE_BIND;
4648			break;
4649
4650		case SECCLASS_DCCP_SOCKET:
4651			node_perm = DCCP_SOCKET__NODE_BIND;
4652			break;
4653
4654		case SECCLASS_SCTP_SOCKET:
4655			node_perm = SCTP_SOCKET__NODE_BIND;
4656			break;
4657
4658		default:
4659			node_perm = RAWIP_SOCKET__NODE_BIND;
4660			break;
4661		}
4662
4663		err = sel_netnode_sid(addrp, family_sa, &sid);
4664		if (err)
4665			goto out;
4666
4667		if (family_sa == AF_INET)
4668			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4669		else
4670			ad.u.net->v6info.saddr = addr6->sin6_addr;
4671
4672		err = avc_has_perm(&selinux_state,
4673				   sksec->sid, sid,
4674				   sksec->sclass, node_perm, &ad);
4675		if (err)
4676			goto out;
4677	}
4678out:
4679	return err;
4680err_af:
4681	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4682	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683		return -EINVAL;
4684	return -EAFNOSUPPORT;
4685}
4686
4687/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4688 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4689 */
4690static int selinux_socket_connect_helper(struct socket *sock,
4691					 struct sockaddr *address, int addrlen)
4692{
4693	struct sock *sk = sock->sk;
4694	struct sk_security_struct *sksec = sk->sk_security;
4695	int err;
4696
4697	err = sock_has_perm(sk, SOCKET__CONNECT);
4698	if (err)
4699		return err;
4700	if (addrlen < offsetofend(struct sockaddr, sa_family))
4701		return -EINVAL;
4702
4703	/* connect(AF_UNSPEC) has special handling, as it is a documented
4704	 * way to disconnect the socket
4705	 */
4706	if (address->sa_family == AF_UNSPEC)
4707		return 0;
4708
4709	/*
4710	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4711	 * for the port.
4712	 */
4713	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4714	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4715	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4716		struct common_audit_data ad;
4717		struct lsm_network_audit net = {0,};
4718		struct sockaddr_in *addr4 = NULL;
4719		struct sockaddr_in6 *addr6 = NULL;
4720		unsigned short snum;
4721		u32 sid, perm;
4722
4723		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4724		 * that validates multiple connect addresses. Because of this
4725		 * need to check address->sa_family as it is possible to have
4726		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4727		 */
4728		switch (address->sa_family) {
4729		case AF_INET:
4730			addr4 = (struct sockaddr_in *)address;
4731			if (addrlen < sizeof(struct sockaddr_in))
4732				return -EINVAL;
4733			snum = ntohs(addr4->sin_port);
4734			break;
4735		case AF_INET6:
4736			addr6 = (struct sockaddr_in6 *)address;
4737			if (addrlen < SIN6_LEN_RFC2133)
4738				return -EINVAL;
4739			snum = ntohs(addr6->sin6_port);
4740			break;
4741		default:
4742			/* Note that SCTP services expect -EINVAL, whereas
4743			 * others expect -EAFNOSUPPORT.
4744			 */
4745			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4746				return -EINVAL;
4747			else
4748				return -EAFNOSUPPORT;
4749		}
4750
4751		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4752		if (err)
4753			return err;
4754
4755		switch (sksec->sclass) {
4756		case SECCLASS_TCP_SOCKET:
4757			perm = TCP_SOCKET__NAME_CONNECT;
4758			break;
4759		case SECCLASS_DCCP_SOCKET:
4760			perm = DCCP_SOCKET__NAME_CONNECT;
4761			break;
4762		case SECCLASS_SCTP_SOCKET:
4763			perm = SCTP_SOCKET__NAME_CONNECT;
4764			break;
4765		}
4766
4767		ad.type = LSM_AUDIT_DATA_NET;
4768		ad.u.net = &net;
4769		ad.u.net->dport = htons(snum);
4770		ad.u.net->family = address->sa_family;
4771		err = avc_has_perm(&selinux_state,
4772				   sksec->sid, sid, sksec->sclass, perm, &ad);
4773		if (err)
4774			return err;
4775	}
4776
4777	return 0;
4778}
4779
4780/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4781static int selinux_socket_connect(struct socket *sock,
4782				  struct sockaddr *address, int addrlen)
4783{
4784	int err;
4785	struct sock *sk = sock->sk;
4786
4787	err = selinux_socket_connect_helper(sock, address, addrlen);
4788	if (err)
4789		return err;
4790
4791	return selinux_netlbl_socket_connect(sk, address);
4792}
4793
4794static int selinux_socket_listen(struct socket *sock, int backlog)
4795{
4796	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4797}
4798
4799static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4800{
4801	int err;
4802	struct inode_security_struct *isec;
4803	struct inode_security_struct *newisec;
4804	u16 sclass;
4805	u32 sid;
4806
4807	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4808	if (err)
4809		return err;
4810
4811	isec = inode_security_novalidate(SOCK_INODE(sock));
4812	spin_lock(&isec->lock);
4813	sclass = isec->sclass;
4814	sid = isec->sid;
4815	spin_unlock(&isec->lock);
4816
4817	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4818	newisec->sclass = sclass;
4819	newisec->sid = sid;
4820	newisec->initialized = LABEL_INITIALIZED;
4821
4822	return 0;
4823}
4824
4825static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4826				  int size)
4827{
4828	return sock_has_perm(sock->sk, SOCKET__WRITE);
4829}
4830
4831static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4832				  int size, int flags)
4833{
4834	return sock_has_perm(sock->sk, SOCKET__READ);
4835}
4836
4837static int selinux_socket_getsockname(struct socket *sock)
4838{
4839	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4840}
4841
4842static int selinux_socket_getpeername(struct socket *sock)
4843{
4844	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4845}
4846
4847static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4848{
4849	int err;
4850
4851	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4852	if (err)
4853		return err;
4854
4855	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4856}
4857
4858static int selinux_socket_getsockopt(struct socket *sock, int level,
4859				     int optname)
4860{
4861	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4862}
4863
4864static int selinux_socket_shutdown(struct socket *sock, int how)
4865{
4866	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4867}
4868
4869static int selinux_socket_unix_stream_connect(struct sock *sock,
4870					      struct sock *other,
4871					      struct sock *newsk)
4872{
4873	struct sk_security_struct *sksec_sock = sock->sk_security;
4874	struct sk_security_struct *sksec_other = other->sk_security;
4875	struct sk_security_struct *sksec_new = newsk->sk_security;
4876	struct common_audit_data ad;
4877	struct lsm_network_audit net = {0,};
4878	int err;
4879
4880	ad.type = LSM_AUDIT_DATA_NET;
4881	ad.u.net = &net;
4882	ad.u.net->sk = other;
4883
4884	err = avc_has_perm(&selinux_state,
4885			   sksec_sock->sid, sksec_other->sid,
4886			   sksec_other->sclass,
4887			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4888	if (err)
4889		return err;
4890
4891	/* server child socket */
4892	sksec_new->peer_sid = sksec_sock->sid;
4893	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4894				    sksec_sock->sid, &sksec_new->sid);
4895	if (err)
4896		return err;
4897
4898	/* connecting socket */
4899	sksec_sock->peer_sid = sksec_new->sid;
4900
4901	return 0;
4902}
4903
4904static int selinux_socket_unix_may_send(struct socket *sock,
4905					struct socket *other)
4906{
4907	struct sk_security_struct *ssec = sock->sk->sk_security;
4908	struct sk_security_struct *osec = other->sk->sk_security;
4909	struct common_audit_data ad;
4910	struct lsm_network_audit net = {0,};
4911
4912	ad.type = LSM_AUDIT_DATA_NET;
4913	ad.u.net = &net;
4914	ad.u.net->sk = other->sk;
4915
4916	return avc_has_perm(&selinux_state,
4917			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4918			    &ad);
4919}
4920
4921static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4922				    char *addrp, u16 family, u32 peer_sid,
4923				    struct common_audit_data *ad)
4924{
4925	int err;
4926	u32 if_sid;
4927	u32 node_sid;
4928
4929	err = sel_netif_sid(ns, ifindex, &if_sid);
4930	if (err)
4931		return err;
4932	err = avc_has_perm(&selinux_state,
4933			   peer_sid, if_sid,
4934			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4935	if (err)
4936		return err;
4937
4938	err = sel_netnode_sid(addrp, family, &node_sid);
4939	if (err)
4940		return err;
4941	return avc_has_perm(&selinux_state,
4942			    peer_sid, node_sid,
4943			    SECCLASS_NODE, NODE__RECVFROM, ad);
4944}
4945
4946static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4947				       u16 family)
4948{
4949	int err = 0;
4950	struct sk_security_struct *sksec = sk->sk_security;
4951	u32 sk_sid = sksec->sid;
4952	struct common_audit_data ad;
4953	struct lsm_network_audit net = {0,};
4954	char *addrp;
4955
4956	ad.type = LSM_AUDIT_DATA_NET;
4957	ad.u.net = &net;
4958	ad.u.net->netif = skb->skb_iif;
4959	ad.u.net->family = family;
4960	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4961	if (err)
4962		return err;
4963
4964	if (selinux_secmark_enabled()) {
4965		err = avc_has_perm(&selinux_state,
4966				   sk_sid, skb->secmark, SECCLASS_PACKET,
4967				   PACKET__RECV, &ad);
4968		if (err)
4969			return err;
4970	}
4971
4972	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4973	if (err)
4974		return err;
4975	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4976
4977	return err;
4978}
4979
4980static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4981{
4982	int err;
4983	struct sk_security_struct *sksec = sk->sk_security;
4984	u16 family = sk->sk_family;
4985	u32 sk_sid = sksec->sid;
4986	struct common_audit_data ad;
4987	struct lsm_network_audit net = {0,};
4988	char *addrp;
4989	u8 secmark_active;
4990	u8 peerlbl_active;
4991
4992	if (family != PF_INET && family != PF_INET6)
4993		return 0;
4994
4995	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4996	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4997		family = PF_INET;
4998
4999	/* If any sort of compatibility mode is enabled then handoff processing
5000	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5001	 * special handling.  We do this in an attempt to keep this function
5002	 * as fast and as clean as possible. */
5003	if (!selinux_policycap_netpeer())
5004		return selinux_sock_rcv_skb_compat(sk, skb, family);
5005
5006	secmark_active = selinux_secmark_enabled();
5007	peerlbl_active = selinux_peerlbl_enabled();
5008	if (!secmark_active && !peerlbl_active)
5009		return 0;
5010
5011	ad.type = LSM_AUDIT_DATA_NET;
5012	ad.u.net = &net;
5013	ad.u.net->netif = skb->skb_iif;
5014	ad.u.net->family = family;
5015	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5016	if (err)
5017		return err;
5018
5019	if (peerlbl_active) {
5020		u32 peer_sid;
5021
5022		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5023		if (err)
5024			return err;
5025		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5026					       addrp, family, peer_sid, &ad);
5027		if (err) {
5028			selinux_netlbl_err(skb, family, err, 0);
5029			return err;
5030		}
5031		err = avc_has_perm(&selinux_state,
5032				   sk_sid, peer_sid, SECCLASS_PEER,
5033				   PEER__RECV, &ad);
5034		if (err) {
5035			selinux_netlbl_err(skb, family, err, 0);
5036			return err;
5037		}
5038	}
5039
5040	if (secmark_active) {
5041		err = avc_has_perm(&selinux_state,
5042				   sk_sid, skb->secmark, SECCLASS_PACKET,
5043				   PACKET__RECV, &ad);
5044		if (err)
5045			return err;
5046	}
5047
5048	return err;
5049}
5050
5051static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5052					    int __user *optlen, unsigned len)
5053{
5054	int err = 0;
5055	char *scontext;
5056	u32 scontext_len;
5057	struct sk_security_struct *sksec = sock->sk->sk_security;
5058	u32 peer_sid = SECSID_NULL;
5059
5060	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5061	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5062	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5063		peer_sid = sksec->peer_sid;
5064	if (peer_sid == SECSID_NULL)
5065		return -ENOPROTOOPT;
5066
5067	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5068				      &scontext_len);
5069	if (err)
5070		return err;
5071
5072	if (scontext_len > len) {
5073		err = -ERANGE;
5074		goto out_len;
5075	}
5076
5077	if (copy_to_user(optval, scontext, scontext_len))
5078		err = -EFAULT;
5079
5080out_len:
5081	if (put_user(scontext_len, optlen))
5082		err = -EFAULT;
5083	kfree(scontext);
5084	return err;
5085}
5086
5087static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5088{
5089	u32 peer_secid = SECSID_NULL;
5090	u16 family;
5091	struct inode_security_struct *isec;
5092
5093	if (skb && skb->protocol == htons(ETH_P_IP))
5094		family = PF_INET;
5095	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5096		family = PF_INET6;
5097	else if (sock)
5098		family = sock->sk->sk_family;
5099	else
5100		goto out;
5101
5102	if (sock && family == PF_UNIX) {
5103		isec = inode_security_novalidate(SOCK_INODE(sock));
5104		peer_secid = isec->sid;
5105	} else if (skb)
5106		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5107
5108out:
5109	*secid = peer_secid;
5110	if (peer_secid == SECSID_NULL)
5111		return -EINVAL;
5112	return 0;
5113}
5114
5115static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5116{
5117	struct sk_security_struct *sksec;
5118
5119	sksec = kzalloc(sizeof(*sksec), priority);
5120	if (!sksec)
5121		return -ENOMEM;
5122
5123	sksec->peer_sid = SECINITSID_UNLABELED;
5124	sksec->sid = SECINITSID_UNLABELED;
5125	sksec->sclass = SECCLASS_SOCKET;
5126	selinux_netlbl_sk_security_reset(sksec);
5127	sk->sk_security = sksec;
5128
5129	return 0;
5130}
5131
5132static void selinux_sk_free_security(struct sock *sk)
5133{
5134	struct sk_security_struct *sksec = sk->sk_security;
5135
5136	sk->sk_security = NULL;
5137	selinux_netlbl_sk_security_free(sksec);
5138	kfree(sksec);
5139}
5140
5141static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5142{
5143	struct sk_security_struct *sksec = sk->sk_security;
5144	struct sk_security_struct *newsksec = newsk->sk_security;
5145
5146	newsksec->sid = sksec->sid;
5147	newsksec->peer_sid = sksec->peer_sid;
5148	newsksec->sclass = sksec->sclass;
5149
5150	selinux_netlbl_sk_security_reset(newsksec);
5151}
5152
5153static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5154{
5155	if (!sk)
5156		*secid = SECINITSID_ANY_SOCKET;
5157	else {
5158		struct sk_security_struct *sksec = sk->sk_security;
5159
5160		*secid = sksec->sid;
5161	}
5162}
5163
5164static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5165{
5166	struct inode_security_struct *isec =
5167		inode_security_novalidate(SOCK_INODE(parent));
5168	struct sk_security_struct *sksec = sk->sk_security;
5169
5170	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5171	    sk->sk_family == PF_UNIX)
5172		isec->sid = sksec->sid;
5173	sksec->sclass = isec->sclass;
5174}
5175
5176/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5177 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5178 * already present).
5179 */
5180static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5181				      struct sk_buff *skb)
5182{
5183	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5184	struct common_audit_data ad;
5185	struct lsm_network_audit net = {0,};
5186	u8 peerlbl_active;
5187	u32 peer_sid = SECINITSID_UNLABELED;
5188	u32 conn_sid;
5189	int err = 0;
5190
5191	if (!selinux_policycap_extsockclass())
5192		return 0;
5193
5194	peerlbl_active = selinux_peerlbl_enabled();
5195
5196	if (peerlbl_active) {
5197		/* This will return peer_sid = SECSID_NULL if there are
5198		 * no peer labels, see security_net_peersid_resolve().
5199		 */
5200		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5201					      &peer_sid);
5202		if (err)
5203			return err;
5204
5205		if (peer_sid == SECSID_NULL)
5206			peer_sid = SECINITSID_UNLABELED;
5207	}
5208
5209	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5210		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5211
5212		/* Here as first association on socket. As the peer SID
5213		 * was allowed by peer recv (and the netif/node checks),
5214		 * then it is approved by policy and used as the primary
5215		 * peer SID for getpeercon(3).
5216		 */
5217		sksec->peer_sid = peer_sid;
5218	} else if  (sksec->peer_sid != peer_sid) {
5219		/* Other association peer SIDs are checked to enforce
5220		 * consistency among the peer SIDs.
5221		 */
5222		ad.type = LSM_AUDIT_DATA_NET;
5223		ad.u.net = &net;
5224		ad.u.net->sk = ep->base.sk;
5225		err = avc_has_perm(&selinux_state,
5226				   sksec->peer_sid, peer_sid, sksec->sclass,
5227				   SCTP_SOCKET__ASSOCIATION, &ad);
5228		if (err)
5229			return err;
5230	}
5231
5232	/* Compute the MLS component for the connection and store
5233	 * the information in ep. This will be used by SCTP TCP type
5234	 * sockets and peeled off connections as they cause a new
5235	 * socket to be generated. selinux_sctp_sk_clone() will then
5236	 * plug this into the new socket.
5237	 */
5238	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5239	if (err)
5240		return err;
5241
5242	ep->secid = conn_sid;
5243	ep->peer_secid = peer_sid;
5244
5245	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5246	return selinux_netlbl_sctp_assoc_request(ep, skb);
5247}
5248
5249/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5250 * based on their @optname.
5251 */
5252static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5253				     struct sockaddr *address,
5254				     int addrlen)
5255{
5256	int len, err = 0, walk_size = 0;
5257	void *addr_buf;
5258	struct sockaddr *addr;
5259	struct socket *sock;
5260
5261	if (!selinux_policycap_extsockclass())
5262		return 0;
5263
5264	/* Process one or more addresses that may be IPv4 or IPv6 */
5265	sock = sk->sk_socket;
5266	addr_buf = address;
5267
5268	while (walk_size < addrlen) {
5269		if (walk_size + sizeof(sa_family_t) > addrlen)
5270			return -EINVAL;
5271
5272		addr = addr_buf;
5273		switch (addr->sa_family) {
5274		case AF_UNSPEC:
5275		case AF_INET:
5276			len = sizeof(struct sockaddr_in);
5277			break;
5278		case AF_INET6:
5279			len = sizeof(struct sockaddr_in6);
5280			break;
5281		default:
5282			return -EINVAL;
5283		}
5284
5285		if (walk_size + len > addrlen)
5286			return -EINVAL;
5287
5288		err = -EINVAL;
5289		switch (optname) {
5290		/* Bind checks */
5291		case SCTP_PRIMARY_ADDR:
5292		case SCTP_SET_PEER_PRIMARY_ADDR:
5293		case SCTP_SOCKOPT_BINDX_ADD:
5294			err = selinux_socket_bind(sock, addr, len);
5295			break;
5296		/* Connect checks */
5297		case SCTP_SOCKOPT_CONNECTX:
5298		case SCTP_PARAM_SET_PRIMARY:
5299		case SCTP_PARAM_ADD_IP:
5300		case SCTP_SENDMSG_CONNECT:
5301			err = selinux_socket_connect_helper(sock, addr, len);
5302			if (err)
5303				return err;
5304
5305			/* As selinux_sctp_bind_connect() is called by the
5306			 * SCTP protocol layer, the socket is already locked,
5307			 * therefore selinux_netlbl_socket_connect_locked() is
5308			 * is called here. The situations handled are:
5309			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5310			 * whenever a new IP address is added or when a new
5311			 * primary address is selected.
5312			 * Note that an SCTP connect(2) call happens before
5313			 * the SCTP protocol layer and is handled via
5314			 * selinux_socket_connect().
5315			 */
5316			err = selinux_netlbl_socket_connect_locked(sk, addr);
5317			break;
5318		}
5319
5320		if (err)
5321			return err;
5322
5323		addr_buf += len;
5324		walk_size += len;
5325	}
5326
5327	return 0;
5328}
5329
5330/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5331static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5332				  struct sock *newsk)
5333{
5334	struct sk_security_struct *sksec = sk->sk_security;
5335	struct sk_security_struct *newsksec = newsk->sk_security;
5336
5337	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5338	 * the non-sctp clone version.
5339	 */
5340	if (!selinux_policycap_extsockclass())
5341		return selinux_sk_clone_security(sk, newsk);
5342
5343	newsksec->sid = ep->secid;
5344	newsksec->peer_sid = ep->peer_secid;
5345	newsksec->sclass = sksec->sclass;
5346	selinux_netlbl_sctp_sk_clone(sk, newsk);
5347}
5348
5349static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5350				     struct request_sock *req)
5351{
5352	struct sk_security_struct *sksec = sk->sk_security;
5353	int err;
5354	u16 family = req->rsk_ops->family;
5355	u32 connsid;
5356	u32 peersid;
5357
5358	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5359	if (err)
5360		return err;
5361	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5362	if (err)
5363		return err;
5364	req->secid = connsid;
5365	req->peer_secid = peersid;
5366
5367	return selinux_netlbl_inet_conn_request(req, family);
5368}
5369
5370static void selinux_inet_csk_clone(struct sock *newsk,
5371				   const struct request_sock *req)
5372{
5373	struct sk_security_struct *newsksec = newsk->sk_security;
5374
5375	newsksec->sid = req->secid;
5376	newsksec->peer_sid = req->peer_secid;
5377	/* NOTE: Ideally, we should also get the isec->sid for the
5378	   new socket in sync, but we don't have the isec available yet.
5379	   So we will wait until sock_graft to do it, by which
5380	   time it will have been created and available. */
5381
5382	/* We don't need to take any sort of lock here as we are the only
5383	 * thread with access to newsksec */
5384	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5385}
5386
5387static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5388{
5389	u16 family = sk->sk_family;
5390	struct sk_security_struct *sksec = sk->sk_security;
5391
5392	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5393	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5394		family = PF_INET;
5395
5396	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5397}
5398
5399static int selinux_secmark_relabel_packet(u32 sid)
5400{
5401	const struct task_security_struct *__tsec;
5402	u32 tsid;
5403
5404	__tsec = selinux_cred(current_cred());
5405	tsid = __tsec->sid;
5406
5407	return avc_has_perm(&selinux_state,
5408			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5409			    NULL);
5410}
5411
5412static void selinux_secmark_refcount_inc(void)
5413{
5414	atomic_inc(&selinux_secmark_refcount);
5415}
5416
5417static void selinux_secmark_refcount_dec(void)
5418{
5419	atomic_dec(&selinux_secmark_refcount);
5420}
5421
5422static void selinux_req_classify_flow(const struct request_sock *req,
5423				      struct flowi *fl)
5424{
5425	fl->flowi_secid = req->secid;
5426}
5427
5428static int selinux_tun_dev_alloc_security(void **security)
5429{
5430	struct tun_security_struct *tunsec;
5431
5432	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5433	if (!tunsec)
5434		return -ENOMEM;
5435	tunsec->sid = current_sid();
5436
5437	*security = tunsec;
5438	return 0;
5439}
5440
5441static void selinux_tun_dev_free_security(void *security)
5442{
5443	kfree(security);
5444}
5445
5446static int selinux_tun_dev_create(void)
5447{
5448	u32 sid = current_sid();
5449
5450	/* we aren't taking into account the "sockcreate" SID since the socket
5451	 * that is being created here is not a socket in the traditional sense,
5452	 * instead it is a private sock, accessible only to the kernel, and
5453	 * representing a wide range of network traffic spanning multiple
5454	 * connections unlike traditional sockets - check the TUN driver to
5455	 * get a better understanding of why this socket is special */
5456
5457	return avc_has_perm(&selinux_state,
5458			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5459			    NULL);
5460}
5461
5462static int selinux_tun_dev_attach_queue(void *security)
5463{
5464	struct tun_security_struct *tunsec = security;
5465
5466	return avc_has_perm(&selinux_state,
5467			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5468			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5469}
5470
5471static int selinux_tun_dev_attach(struct sock *sk, void *security)
5472{
5473	struct tun_security_struct *tunsec = security;
5474	struct sk_security_struct *sksec = sk->sk_security;
5475
5476	/* we don't currently perform any NetLabel based labeling here and it
5477	 * isn't clear that we would want to do so anyway; while we could apply
5478	 * labeling without the support of the TUN user the resulting labeled
5479	 * traffic from the other end of the connection would almost certainly
5480	 * cause confusion to the TUN user that had no idea network labeling
5481	 * protocols were being used */
5482
5483	sksec->sid = tunsec->sid;
5484	sksec->sclass = SECCLASS_TUN_SOCKET;
5485
5486	return 0;
5487}
5488
5489static int selinux_tun_dev_open(void *security)
5490{
5491	struct tun_security_struct *tunsec = security;
5492	u32 sid = current_sid();
5493	int err;
5494
5495	err = avc_has_perm(&selinux_state,
5496			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5497			   TUN_SOCKET__RELABELFROM, NULL);
5498	if (err)
5499		return err;
5500	err = avc_has_perm(&selinux_state,
5501			   sid, sid, SECCLASS_TUN_SOCKET,
5502			   TUN_SOCKET__RELABELTO, NULL);
5503	if (err)
5504		return err;
5505	tunsec->sid = sid;
5506
5507	return 0;
5508}
5509
5510static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5511{
5512	int err = 0;
5513	u32 perm;
5514	struct nlmsghdr *nlh;
5515	struct sk_security_struct *sksec = sk->sk_security;
5516
5517	if (skb->len < NLMSG_HDRLEN) {
5518		err = -EINVAL;
5519		goto out;
5520	}
5521	nlh = nlmsg_hdr(skb);
5522
5523	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5524	if (err) {
5525		if (err == -EINVAL) {
5526			pr_warn_ratelimited("SELinux: unrecognized netlink"
5527			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5528			       " pig=%d comm=%s\n",
5529			       sk->sk_protocol, nlh->nlmsg_type,
5530			       secclass_map[sksec->sclass - 1].name,
5531			       task_pid_nr(current), current->comm);
5532			if (!enforcing_enabled(&selinux_state) ||
5533			    security_get_allow_unknown(&selinux_state))
5534				err = 0;
5535		}
5536
5537		/* Ignore */
5538		if (err == -ENOENT)
5539			err = 0;
5540		goto out;
5541	}
5542
5543	err = sock_has_perm(sk, perm);
5544out:
5545	return err;
5546}
5547
5548#ifdef CONFIG_NETFILTER
5549
5550static unsigned int selinux_ip_forward(struct sk_buff *skb,
5551				       const struct net_device *indev,
5552				       u16 family)
5553{
5554	int err;
5555	char *addrp;
5556	u32 peer_sid;
5557	struct common_audit_data ad;
5558	struct lsm_network_audit net = {0,};
5559	u8 secmark_active;
5560	u8 netlbl_active;
5561	u8 peerlbl_active;
5562
5563	if (!selinux_policycap_netpeer())
5564		return NF_ACCEPT;
5565
5566	secmark_active = selinux_secmark_enabled();
5567	netlbl_active = netlbl_enabled();
5568	peerlbl_active = selinux_peerlbl_enabled();
5569	if (!secmark_active && !peerlbl_active)
5570		return NF_ACCEPT;
5571
5572	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5573		return NF_DROP;
5574
5575	ad.type = LSM_AUDIT_DATA_NET;
5576	ad.u.net = &net;
5577	ad.u.net->netif = indev->ifindex;
5578	ad.u.net->family = family;
5579	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5580		return NF_DROP;
5581
5582	if (peerlbl_active) {
5583		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5584					       addrp, family, peer_sid, &ad);
5585		if (err) {
5586			selinux_netlbl_err(skb, family, err, 1);
5587			return NF_DROP;
5588		}
5589	}
5590
5591	if (secmark_active)
5592		if (avc_has_perm(&selinux_state,
5593				 peer_sid, skb->secmark,
5594				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5595			return NF_DROP;
5596
5597	if (netlbl_active)
5598		/* we do this in the FORWARD path and not the POST_ROUTING
5599		 * path because we want to make sure we apply the necessary
5600		 * labeling before IPsec is applied so we can leverage AH
5601		 * protection */
5602		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5603			return NF_DROP;
5604
5605	return NF_ACCEPT;
5606}
5607
5608static unsigned int selinux_ipv4_forward(void *priv,
5609					 struct sk_buff *skb,
5610					 const struct nf_hook_state *state)
5611{
5612	return selinux_ip_forward(skb, state->in, PF_INET);
5613}
5614
5615#if IS_ENABLED(CONFIG_IPV6)
5616static unsigned int selinux_ipv6_forward(void *priv,
5617					 struct sk_buff *skb,
5618					 const struct nf_hook_state *state)
5619{
5620	return selinux_ip_forward(skb, state->in, PF_INET6);
5621}
5622#endif	/* IPV6 */
5623
5624static unsigned int selinux_ip_output(struct sk_buff *skb,
5625				      u16 family)
5626{
5627	struct sock *sk;
5628	u32 sid;
5629
5630	if (!netlbl_enabled())
5631		return NF_ACCEPT;
5632
5633	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5634	 * because we want to make sure we apply the necessary labeling
5635	 * before IPsec is applied so we can leverage AH protection */
5636	sk = skb->sk;
5637	if (sk) {
5638		struct sk_security_struct *sksec;
5639
5640		if (sk_listener(sk))
5641			/* if the socket is the listening state then this
5642			 * packet is a SYN-ACK packet which means it needs to
5643			 * be labeled based on the connection/request_sock and
5644			 * not the parent socket.  unfortunately, we can't
5645			 * lookup the request_sock yet as it isn't queued on
5646			 * the parent socket until after the SYN-ACK is sent.
5647			 * the "solution" is to simply pass the packet as-is
5648			 * as any IP option based labeling should be copied
5649			 * from the initial connection request (in the IP
5650			 * layer).  it is far from ideal, but until we get a
5651			 * security label in the packet itself this is the
5652			 * best we can do. */
5653			return NF_ACCEPT;
5654
5655		/* standard practice, label using the parent socket */
5656		sksec = sk->sk_security;
5657		sid = sksec->sid;
5658	} else
5659		sid = SECINITSID_KERNEL;
5660	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5661		return NF_DROP;
5662
5663	return NF_ACCEPT;
5664}
5665
5666static unsigned int selinux_ipv4_output(void *priv,
5667					struct sk_buff *skb,
5668					const struct nf_hook_state *state)
5669{
5670	return selinux_ip_output(skb, PF_INET);
5671}
5672
5673#if IS_ENABLED(CONFIG_IPV6)
5674static unsigned int selinux_ipv6_output(void *priv,
5675					struct sk_buff *skb,
5676					const struct nf_hook_state *state)
5677{
5678	return selinux_ip_output(skb, PF_INET6);
5679}
5680#endif	/* IPV6 */
5681
5682static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5683						int ifindex,
5684						u16 family)
5685{
5686	struct sock *sk = skb_to_full_sk(skb);
5687	struct sk_security_struct *sksec;
5688	struct common_audit_data ad;
5689	struct lsm_network_audit net = {0,};
5690	char *addrp;
5691	u8 proto;
5692
5693	if (sk == NULL)
5694		return NF_ACCEPT;
5695	sksec = sk->sk_security;
5696
5697	ad.type = LSM_AUDIT_DATA_NET;
5698	ad.u.net = &net;
5699	ad.u.net->netif = ifindex;
5700	ad.u.net->family = family;
5701	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5702		return NF_DROP;
5703
5704	if (selinux_secmark_enabled())
5705		if (avc_has_perm(&selinux_state,
5706				 sksec->sid, skb->secmark,
5707				 SECCLASS_PACKET, PACKET__SEND, &ad))
5708			return NF_DROP_ERR(-ECONNREFUSED);
5709
5710	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5711		return NF_DROP_ERR(-ECONNREFUSED);
5712
5713	return NF_ACCEPT;
5714}
5715
5716static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5717					 const struct net_device *outdev,
5718					 u16 family)
5719{
5720	u32 secmark_perm;
5721	u32 peer_sid;
5722	int ifindex = outdev->ifindex;
5723	struct sock *sk;
5724	struct common_audit_data ad;
5725	struct lsm_network_audit net = {0,};
5726	char *addrp;
5727	u8 secmark_active;
5728	u8 peerlbl_active;
5729
5730	/* If any sort of compatibility mode is enabled then handoff processing
5731	 * to the selinux_ip_postroute_compat() function to deal with the
5732	 * special handling.  We do this in an attempt to keep this function
5733	 * as fast and as clean as possible. */
5734	if (!selinux_policycap_netpeer())
5735		return selinux_ip_postroute_compat(skb, ifindex, family);
5736
5737	secmark_active = selinux_secmark_enabled();
5738	peerlbl_active = selinux_peerlbl_enabled();
5739	if (!secmark_active && !peerlbl_active)
5740		return NF_ACCEPT;
5741
5742	sk = skb_to_full_sk(skb);
5743
5744#ifdef CONFIG_XFRM
5745	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5746	 * packet transformation so allow the packet to pass without any checks
5747	 * since we'll have another chance to perform access control checks
5748	 * when the packet is on it's final way out.
5749	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5750	 *       is NULL, in this case go ahead and apply access control.
5751	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5752	 *       TCP listening state we cannot wait until the XFRM processing
5753	 *       is done as we will miss out on the SA label if we do;
5754	 *       unfortunately, this means more work, but it is only once per
5755	 *       connection. */
5756	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5757	    !(sk && sk_listener(sk)))
5758		return NF_ACCEPT;
5759#endif
5760
5761	if (sk == NULL) {
5762		/* Without an associated socket the packet is either coming
5763		 * from the kernel or it is being forwarded; check the packet
5764		 * to determine which and if the packet is being forwarded
5765		 * query the packet directly to determine the security label. */
5766		if (skb->skb_iif) {
5767			secmark_perm = PACKET__FORWARD_OUT;
5768			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5769				return NF_DROP;
5770		} else {
5771			secmark_perm = PACKET__SEND;
5772			peer_sid = SECINITSID_KERNEL;
5773		}
5774	} else if (sk_listener(sk)) {
5775		/* Locally generated packet but the associated socket is in the
5776		 * listening state which means this is a SYN-ACK packet.  In
5777		 * this particular case the correct security label is assigned
5778		 * to the connection/request_sock but unfortunately we can't
5779		 * query the request_sock as it isn't queued on the parent
5780		 * socket until after the SYN-ACK packet is sent; the only
5781		 * viable choice is to regenerate the label like we do in
5782		 * selinux_inet_conn_request().  See also selinux_ip_output()
5783		 * for similar problems. */
5784		u32 skb_sid;
5785		struct sk_security_struct *sksec;
5786
5787		sksec = sk->sk_security;
5788		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5789			return NF_DROP;
5790		/* At this point, if the returned skb peerlbl is SECSID_NULL
5791		 * and the packet has been through at least one XFRM
5792		 * transformation then we must be dealing with the "final"
5793		 * form of labeled IPsec packet; since we've already applied
5794		 * all of our access controls on this packet we can safely
5795		 * pass the packet. */
5796		if (skb_sid == SECSID_NULL) {
5797			switch (family) {
5798			case PF_INET:
5799				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5800					return NF_ACCEPT;
5801				break;
5802			case PF_INET6:
5803				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5804					return NF_ACCEPT;
5805				break;
5806			default:
5807				return NF_DROP_ERR(-ECONNREFUSED);
5808			}
5809		}
5810		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5811			return NF_DROP;
5812		secmark_perm = PACKET__SEND;
5813	} else {
5814		/* Locally generated packet, fetch the security label from the
5815		 * associated socket. */
5816		struct sk_security_struct *sksec = sk->sk_security;
5817		peer_sid = sksec->sid;
5818		secmark_perm = PACKET__SEND;
5819	}
5820
5821	ad.type = LSM_AUDIT_DATA_NET;
5822	ad.u.net = &net;
5823	ad.u.net->netif = ifindex;
5824	ad.u.net->family = family;
5825	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5826		return NF_DROP;
5827
5828	if (secmark_active)
5829		if (avc_has_perm(&selinux_state,
5830				 peer_sid, skb->secmark,
5831				 SECCLASS_PACKET, secmark_perm, &ad))
5832			return NF_DROP_ERR(-ECONNREFUSED);
5833
5834	if (peerlbl_active) {
5835		u32 if_sid;
5836		u32 node_sid;
5837
5838		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5839			return NF_DROP;
5840		if (avc_has_perm(&selinux_state,
5841				 peer_sid, if_sid,
5842				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5843			return NF_DROP_ERR(-ECONNREFUSED);
5844
5845		if (sel_netnode_sid(addrp, family, &node_sid))
5846			return NF_DROP;
5847		if (avc_has_perm(&selinux_state,
5848				 peer_sid, node_sid,
5849				 SECCLASS_NODE, NODE__SENDTO, &ad))
5850			return NF_DROP_ERR(-ECONNREFUSED);
5851	}
5852
5853	return NF_ACCEPT;
5854}
5855
5856static unsigned int selinux_ipv4_postroute(void *priv,
5857					   struct sk_buff *skb,
5858					   const struct nf_hook_state *state)
5859{
5860	return selinux_ip_postroute(skb, state->out, PF_INET);
5861}
5862
5863#if IS_ENABLED(CONFIG_IPV6)
5864static unsigned int selinux_ipv6_postroute(void *priv,
5865					   struct sk_buff *skb,
5866					   const struct nf_hook_state *state)
5867{
5868	return selinux_ip_postroute(skb, state->out, PF_INET6);
5869}
5870#endif	/* IPV6 */
5871
5872#endif	/* CONFIG_NETFILTER */
5873
5874static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5875{
5876	return selinux_nlmsg_perm(sk, skb);
5877}
5878
5879static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
 
5880{
 
 
 
 
 
 
5881	isec->sclass = sclass;
5882	isec->sid = current_sid();
 
 
 
 
 
 
 
 
 
 
5883}
5884
5885static int msg_msg_alloc_security(struct msg_msg *msg)
5886{
5887	struct msg_security_struct *msec;
5888
5889	msec = selinux_msg_msg(msg);
 
 
 
5890	msec->sid = SECINITSID_UNLABELED;
 
5891
5892	return 0;
5893}
5894
 
 
 
 
 
 
 
 
5895static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5896			u32 perms)
5897{
5898	struct ipc_security_struct *isec;
5899	struct common_audit_data ad;
5900	u32 sid = current_sid();
5901
5902	isec = selinux_ipc(ipc_perms);
5903
5904	ad.type = LSM_AUDIT_DATA_IPC;
5905	ad.u.ipc_id = ipc_perms->key;
5906
5907	return avc_has_perm(&selinux_state,
5908			    sid, isec->sid, isec->sclass, perms, &ad);
5909}
5910
5911static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5912{
5913	return msg_msg_alloc_security(msg);
5914}
5915
 
 
 
 
 
5916/* message queue security operations */
5917static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5918{
5919	struct ipc_security_struct *isec;
5920	struct common_audit_data ad;
5921	u32 sid = current_sid();
5922	int rc;
5923
5924	isec = selinux_ipc(msq);
5925	ipc_init_security(isec, SECCLASS_MSGQ);
 
 
 
5926
5927	ad.type = LSM_AUDIT_DATA_IPC;
5928	ad.u.ipc_id = msq->key;
5929
5930	rc = avc_has_perm(&selinux_state,
5931			  sid, isec->sid, SECCLASS_MSGQ,
5932			  MSGQ__CREATE, &ad);
5933	return rc;
 
 
 
 
 
 
 
 
 
5934}
5935
5936static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5937{
5938	struct ipc_security_struct *isec;
5939	struct common_audit_data ad;
5940	u32 sid = current_sid();
5941
5942	isec = selinux_ipc(msq);
5943
5944	ad.type = LSM_AUDIT_DATA_IPC;
5945	ad.u.ipc_id = msq->key;
5946
5947	return avc_has_perm(&selinux_state,
5948			    sid, isec->sid, SECCLASS_MSGQ,
5949			    MSGQ__ASSOCIATE, &ad);
5950}
5951
5952static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5953{
5954	int err;
5955	int perms;
5956
5957	switch (cmd) {
5958	case IPC_INFO:
5959	case MSG_INFO:
5960		/* No specific object, just general system-wide information. */
5961		return avc_has_perm(&selinux_state,
5962				    current_sid(), SECINITSID_KERNEL,
5963				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5964	case IPC_STAT:
5965	case MSG_STAT:
5966	case MSG_STAT_ANY:
5967		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5968		break;
5969	case IPC_SET:
5970		perms = MSGQ__SETATTR;
5971		break;
5972	case IPC_RMID:
5973		perms = MSGQ__DESTROY;
5974		break;
5975	default:
5976		return 0;
5977	}
5978
5979	err = ipc_has_perm(msq, perms);
5980	return err;
5981}
5982
5983static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5984{
5985	struct ipc_security_struct *isec;
5986	struct msg_security_struct *msec;
5987	struct common_audit_data ad;
5988	u32 sid = current_sid();
5989	int rc;
5990
5991	isec = selinux_ipc(msq);
5992	msec = selinux_msg_msg(msg);
5993
5994	/*
5995	 * First time through, need to assign label to the message
5996	 */
5997	if (msec->sid == SECINITSID_UNLABELED) {
5998		/*
5999		 * Compute new sid based on current process and
6000		 * message queue this message will be stored in
6001		 */
6002		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6003					     SECCLASS_MSG, NULL, &msec->sid);
6004		if (rc)
6005			return rc;
6006	}
6007
6008	ad.type = LSM_AUDIT_DATA_IPC;
6009	ad.u.ipc_id = msq->key;
6010
6011	/* Can this process write to the queue? */
6012	rc = avc_has_perm(&selinux_state,
6013			  sid, isec->sid, SECCLASS_MSGQ,
6014			  MSGQ__WRITE, &ad);
6015	if (!rc)
6016		/* Can this process send the message */
6017		rc = avc_has_perm(&selinux_state,
6018				  sid, msec->sid, SECCLASS_MSG,
6019				  MSG__SEND, &ad);
6020	if (!rc)
6021		/* Can the message be put in the queue? */
6022		rc = avc_has_perm(&selinux_state,
6023				  msec->sid, isec->sid, SECCLASS_MSGQ,
6024				  MSGQ__ENQUEUE, &ad);
6025
6026	return rc;
6027}
6028
6029static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6030				    struct task_struct *target,
6031				    long type, int mode)
6032{
6033	struct ipc_security_struct *isec;
6034	struct msg_security_struct *msec;
6035	struct common_audit_data ad;
6036	u32 sid = task_sid(target);
6037	int rc;
6038
6039	isec = selinux_ipc(msq);
6040	msec = selinux_msg_msg(msg);
6041
6042	ad.type = LSM_AUDIT_DATA_IPC;
6043	ad.u.ipc_id = msq->key;
6044
6045	rc = avc_has_perm(&selinux_state,
6046			  sid, isec->sid,
6047			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6048	if (!rc)
6049		rc = avc_has_perm(&selinux_state,
6050				  sid, msec->sid,
6051				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6052	return rc;
6053}
6054
6055/* Shared Memory security operations */
6056static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6057{
6058	struct ipc_security_struct *isec;
6059	struct common_audit_data ad;
6060	u32 sid = current_sid();
6061	int rc;
6062
6063	isec = selinux_ipc(shp);
6064	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6065
6066	ad.type = LSM_AUDIT_DATA_IPC;
6067	ad.u.ipc_id = shp->key;
6068
6069	rc = avc_has_perm(&selinux_state,
6070			  sid, isec->sid, SECCLASS_SHM,
6071			  SHM__CREATE, &ad);
6072	return rc;
 
 
 
 
 
 
 
 
 
6073}
6074
6075static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6076{
6077	struct ipc_security_struct *isec;
6078	struct common_audit_data ad;
6079	u32 sid = current_sid();
6080
6081	isec = selinux_ipc(shp);
6082
6083	ad.type = LSM_AUDIT_DATA_IPC;
6084	ad.u.ipc_id = shp->key;
6085
6086	return avc_has_perm(&selinux_state,
6087			    sid, isec->sid, SECCLASS_SHM,
6088			    SHM__ASSOCIATE, &ad);
6089}
6090
6091/* Note, at this point, shp is locked down */
6092static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6093{
6094	int perms;
6095	int err;
6096
6097	switch (cmd) {
6098	case IPC_INFO:
6099	case SHM_INFO:
6100		/* No specific object, just general system-wide information. */
6101		return avc_has_perm(&selinux_state,
6102				    current_sid(), SECINITSID_KERNEL,
6103				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6104	case IPC_STAT:
6105	case SHM_STAT:
6106	case SHM_STAT_ANY:
6107		perms = SHM__GETATTR | SHM__ASSOCIATE;
6108		break;
6109	case IPC_SET:
6110		perms = SHM__SETATTR;
6111		break;
6112	case SHM_LOCK:
6113	case SHM_UNLOCK:
6114		perms = SHM__LOCK;
6115		break;
6116	case IPC_RMID:
6117		perms = SHM__DESTROY;
6118		break;
6119	default:
6120		return 0;
6121	}
6122
6123	err = ipc_has_perm(shp, perms);
6124	return err;
6125}
6126
6127static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6128			     char __user *shmaddr, int shmflg)
6129{
6130	u32 perms;
6131
6132	if (shmflg & SHM_RDONLY)
6133		perms = SHM__READ;
6134	else
6135		perms = SHM__READ | SHM__WRITE;
6136
6137	return ipc_has_perm(shp, perms);
6138}
6139
6140/* Semaphore security operations */
6141static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6142{
6143	struct ipc_security_struct *isec;
6144	struct common_audit_data ad;
6145	u32 sid = current_sid();
6146	int rc;
6147
6148	isec = selinux_ipc(sma);
6149	ipc_init_security(isec, SECCLASS_SEM);
 
 
 
6150
6151	ad.type = LSM_AUDIT_DATA_IPC;
6152	ad.u.ipc_id = sma->key;
6153
6154	rc = avc_has_perm(&selinux_state,
6155			  sid, isec->sid, SECCLASS_SEM,
6156			  SEM__CREATE, &ad);
6157	return rc;
 
 
 
 
 
 
 
 
 
6158}
6159
6160static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6161{
6162	struct ipc_security_struct *isec;
6163	struct common_audit_data ad;
6164	u32 sid = current_sid();
6165
6166	isec = selinux_ipc(sma);
6167
6168	ad.type = LSM_AUDIT_DATA_IPC;
6169	ad.u.ipc_id = sma->key;
6170
6171	return avc_has_perm(&selinux_state,
6172			    sid, isec->sid, SECCLASS_SEM,
6173			    SEM__ASSOCIATE, &ad);
6174}
6175
6176/* Note, at this point, sma is locked down */
6177static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6178{
6179	int err;
6180	u32 perms;
6181
6182	switch (cmd) {
6183	case IPC_INFO:
6184	case SEM_INFO:
6185		/* No specific object, just general system-wide information. */
6186		return avc_has_perm(&selinux_state,
6187				    current_sid(), SECINITSID_KERNEL,
6188				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6189	case GETPID:
6190	case GETNCNT:
6191	case GETZCNT:
6192		perms = SEM__GETATTR;
6193		break;
6194	case GETVAL:
6195	case GETALL:
6196		perms = SEM__READ;
6197		break;
6198	case SETVAL:
6199	case SETALL:
6200		perms = SEM__WRITE;
6201		break;
6202	case IPC_RMID:
6203		perms = SEM__DESTROY;
6204		break;
6205	case IPC_SET:
6206		perms = SEM__SETATTR;
6207		break;
6208	case IPC_STAT:
6209	case SEM_STAT:
6210	case SEM_STAT_ANY:
6211		perms = SEM__GETATTR | SEM__ASSOCIATE;
6212		break;
6213	default:
6214		return 0;
6215	}
6216
6217	err = ipc_has_perm(sma, perms);
6218	return err;
6219}
6220
6221static int selinux_sem_semop(struct kern_ipc_perm *sma,
6222			     struct sembuf *sops, unsigned nsops, int alter)
6223{
6224	u32 perms;
6225
6226	if (alter)
6227		perms = SEM__READ | SEM__WRITE;
6228	else
6229		perms = SEM__READ;
6230
6231	return ipc_has_perm(sma, perms);
6232}
6233
6234static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6235{
6236	u32 av = 0;
6237
6238	av = 0;
6239	if (flag & S_IRUGO)
6240		av |= IPC__UNIX_READ;
6241	if (flag & S_IWUGO)
6242		av |= IPC__UNIX_WRITE;
6243
6244	if (av == 0)
6245		return 0;
6246
6247	return ipc_has_perm(ipcp, av);
6248}
6249
6250static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6251{
6252	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6253	*secid = isec->sid;
6254}
6255
6256static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6257{
6258	if (inode)
6259		inode_doinit_with_dentry(inode, dentry);
6260}
6261
6262static int selinux_getprocattr(struct task_struct *p,
6263			       char *name, char **value)
6264{
6265	const struct task_security_struct *__tsec;
6266	u32 sid;
6267	int error;
6268	unsigned len;
6269
6270	rcu_read_lock();
6271	__tsec = selinux_cred(__task_cred(p));
6272
6273	if (current != p) {
6274		error = avc_has_perm(&selinux_state,
6275				     current_sid(), __tsec->sid,
6276				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6277		if (error)
6278			goto bad;
6279	}
6280
6281	if (!strcmp(name, "current"))
6282		sid = __tsec->sid;
6283	else if (!strcmp(name, "prev"))
6284		sid = __tsec->osid;
6285	else if (!strcmp(name, "exec"))
6286		sid = __tsec->exec_sid;
6287	else if (!strcmp(name, "fscreate"))
6288		sid = __tsec->create_sid;
6289	else if (!strcmp(name, "keycreate"))
6290		sid = __tsec->keycreate_sid;
6291	else if (!strcmp(name, "sockcreate"))
6292		sid = __tsec->sockcreate_sid;
6293	else {
6294		error = -EINVAL;
6295		goto bad;
6296	}
6297	rcu_read_unlock();
6298
6299	if (!sid)
6300		return 0;
6301
6302	error = security_sid_to_context(&selinux_state, sid, value, &len);
6303	if (error)
6304		return error;
6305	return len;
6306
6307bad:
6308	rcu_read_unlock();
6309	return error;
6310}
6311
6312static int selinux_setprocattr(const char *name, void *value, size_t size)
6313{
6314	struct task_security_struct *tsec;
6315	struct cred *new;
6316	u32 mysid = current_sid(), sid = 0, ptsid;
6317	int error;
6318	char *str = value;
6319
6320	/*
6321	 * Basic control over ability to set these attributes at all.
6322	 */
6323	if (!strcmp(name, "exec"))
6324		error = avc_has_perm(&selinux_state,
6325				     mysid, mysid, SECCLASS_PROCESS,
6326				     PROCESS__SETEXEC, NULL);
6327	else if (!strcmp(name, "fscreate"))
6328		error = avc_has_perm(&selinux_state,
6329				     mysid, mysid, SECCLASS_PROCESS,
6330				     PROCESS__SETFSCREATE, NULL);
6331	else if (!strcmp(name, "keycreate"))
6332		error = avc_has_perm(&selinux_state,
6333				     mysid, mysid, SECCLASS_PROCESS,
6334				     PROCESS__SETKEYCREATE, NULL);
6335	else if (!strcmp(name, "sockcreate"))
6336		error = avc_has_perm(&selinux_state,
6337				     mysid, mysid, SECCLASS_PROCESS,
6338				     PROCESS__SETSOCKCREATE, NULL);
6339	else if (!strcmp(name, "current"))
6340		error = avc_has_perm(&selinux_state,
6341				     mysid, mysid, SECCLASS_PROCESS,
6342				     PROCESS__SETCURRENT, NULL);
6343	else
6344		error = -EINVAL;
6345	if (error)
6346		return error;
6347
6348	/* Obtain a SID for the context, if one was specified. */
6349	if (size && str[0] && str[0] != '\n') {
6350		if (str[size-1] == '\n') {
6351			str[size-1] = 0;
6352			size--;
6353		}
6354		error = security_context_to_sid(&selinux_state, value, size,
6355						&sid, GFP_KERNEL);
6356		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6357			if (!has_cap_mac_admin(true)) {
6358				struct audit_buffer *ab;
6359				size_t audit_size;
6360
6361				/* We strip a nul only if it is at the end, otherwise the
6362				 * context contains a nul and we should audit that */
6363				if (str[size - 1] == '\0')
6364					audit_size = size - 1;
6365				else
6366					audit_size = size;
6367				ab = audit_log_start(audit_context(),
6368						     GFP_ATOMIC,
6369						     AUDIT_SELINUX_ERR);
6370				audit_log_format(ab, "op=fscreate invalid_context=");
6371				audit_log_n_untrustedstring(ab, value, audit_size);
6372				audit_log_end(ab);
6373
6374				return error;
6375			}
6376			error = security_context_to_sid_force(
6377						      &selinux_state,
6378						      value, size, &sid);
6379		}
6380		if (error)
6381			return error;
6382	}
6383
6384	new = prepare_creds();
6385	if (!new)
6386		return -ENOMEM;
6387
6388	/* Permission checking based on the specified context is
6389	   performed during the actual operation (execve,
6390	   open/mkdir/...), when we know the full context of the
6391	   operation.  See selinux_bprm_set_creds for the execve
6392	   checks and may_create for the file creation checks. The
6393	   operation will then fail if the context is not permitted. */
6394	tsec = selinux_cred(new);
6395	if (!strcmp(name, "exec")) {
6396		tsec->exec_sid = sid;
6397	} else if (!strcmp(name, "fscreate")) {
6398		tsec->create_sid = sid;
6399	} else if (!strcmp(name, "keycreate")) {
6400		if (sid) {
6401			error = avc_has_perm(&selinux_state, mysid, sid,
6402					     SECCLASS_KEY, KEY__CREATE, NULL);
6403			if (error)
6404				goto abort_change;
6405		}
6406		tsec->keycreate_sid = sid;
6407	} else if (!strcmp(name, "sockcreate")) {
6408		tsec->sockcreate_sid = sid;
6409	} else if (!strcmp(name, "current")) {
6410		error = -EINVAL;
6411		if (sid == 0)
6412			goto abort_change;
6413
6414		/* Only allow single threaded processes to change context */
6415		error = -EPERM;
6416		if (!current_is_single_threaded()) {
6417			error = security_bounded_transition(&selinux_state,
6418							    tsec->sid, sid);
6419			if (error)
6420				goto abort_change;
6421		}
6422
6423		/* Check permissions for the transition. */
6424		error = avc_has_perm(&selinux_state,
6425				     tsec->sid, sid, SECCLASS_PROCESS,
6426				     PROCESS__DYNTRANSITION, NULL);
6427		if (error)
6428			goto abort_change;
6429
6430		/* Check for ptracing, and update the task SID if ok.
6431		   Otherwise, leave SID unchanged and fail. */
6432		ptsid = ptrace_parent_sid();
6433		if (ptsid != 0) {
6434			error = avc_has_perm(&selinux_state,
6435					     ptsid, sid, SECCLASS_PROCESS,
6436					     PROCESS__PTRACE, NULL);
6437			if (error)
6438				goto abort_change;
6439		}
6440
6441		tsec->sid = sid;
6442	} else {
6443		error = -EINVAL;
6444		goto abort_change;
6445	}
6446
6447	commit_creds(new);
6448	return size;
6449
6450abort_change:
6451	abort_creds(new);
6452	return error;
6453}
6454
6455static int selinux_ismaclabel(const char *name)
6456{
6457	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6458}
6459
6460static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6461{
6462	return security_sid_to_context(&selinux_state, secid,
6463				       secdata, seclen);
6464}
6465
6466static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6467{
6468	return security_context_to_sid(&selinux_state, secdata, seclen,
6469				       secid, GFP_KERNEL);
6470}
6471
6472static void selinux_release_secctx(char *secdata, u32 seclen)
6473{
6474	kfree(secdata);
6475}
6476
6477static void selinux_inode_invalidate_secctx(struct inode *inode)
6478{
6479	struct inode_security_struct *isec = selinux_inode(inode);
6480
6481	spin_lock(&isec->lock);
6482	isec->initialized = LABEL_INVALID;
6483	spin_unlock(&isec->lock);
6484}
6485
6486/*
6487 *	called with inode->i_mutex locked
6488 */
6489static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6490{
6491	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6492					   ctx, ctxlen, 0);
6493	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6494	return rc == -EOPNOTSUPP ? 0 : rc;
6495}
6496
6497/*
6498 *	called with inode->i_mutex locked
6499 */
6500static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6501{
6502	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6503}
6504
6505static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6506{
6507	int len = 0;
6508	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6509						ctx, true);
6510	if (len < 0)
6511		return len;
6512	*ctxlen = len;
6513	return 0;
6514}
6515#ifdef CONFIG_KEYS
6516
6517static int selinux_key_alloc(struct key *k, const struct cred *cred,
6518			     unsigned long flags)
6519{
6520	const struct task_security_struct *tsec;
6521	struct key_security_struct *ksec;
6522
6523	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6524	if (!ksec)
6525		return -ENOMEM;
6526
6527	tsec = selinux_cred(cred);
6528	if (tsec->keycreate_sid)
6529		ksec->sid = tsec->keycreate_sid;
6530	else
6531		ksec->sid = tsec->sid;
6532
6533	k->security = ksec;
6534	return 0;
6535}
6536
6537static void selinux_key_free(struct key *k)
6538{
6539	struct key_security_struct *ksec = k->security;
6540
6541	k->security = NULL;
6542	kfree(ksec);
6543}
6544
6545static int selinux_key_permission(key_ref_t key_ref,
6546				  const struct cred *cred,
6547				  unsigned perm)
6548{
6549	struct key *key;
6550	struct key_security_struct *ksec;
6551	u32 sid;
6552
6553	/* if no specific permissions are requested, we skip the
6554	   permission check. No serious, additional covert channels
6555	   appear to be created. */
6556	if (perm == 0)
6557		return 0;
6558
6559	sid = cred_sid(cred);
6560
6561	key = key_ref_to_ptr(key_ref);
6562	ksec = key->security;
6563
6564	return avc_has_perm(&selinux_state,
6565			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6566}
6567
6568static int selinux_key_getsecurity(struct key *key, char **_buffer)
6569{
6570	struct key_security_struct *ksec = key->security;
6571	char *context = NULL;
6572	unsigned len;
6573	int rc;
6574
6575	rc = security_sid_to_context(&selinux_state, ksec->sid,
6576				     &context, &len);
6577	if (!rc)
6578		rc = len;
6579	*_buffer = context;
6580	return rc;
6581}
6582#endif
6583
6584#ifdef CONFIG_SECURITY_INFINIBAND
6585static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6586{
6587	struct common_audit_data ad;
6588	int err;
6589	u32 sid = 0;
6590	struct ib_security_struct *sec = ib_sec;
6591	struct lsm_ibpkey_audit ibpkey;
6592
6593	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6594	if (err)
6595		return err;
6596
6597	ad.type = LSM_AUDIT_DATA_IBPKEY;
6598	ibpkey.subnet_prefix = subnet_prefix;
6599	ibpkey.pkey = pkey_val;
6600	ad.u.ibpkey = &ibpkey;
6601	return avc_has_perm(&selinux_state,
6602			    sec->sid, sid,
6603			    SECCLASS_INFINIBAND_PKEY,
6604			    INFINIBAND_PKEY__ACCESS, &ad);
6605}
6606
6607static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6608					    u8 port_num)
6609{
6610	struct common_audit_data ad;
6611	int err;
6612	u32 sid = 0;
6613	struct ib_security_struct *sec = ib_sec;
6614	struct lsm_ibendport_audit ibendport;
6615
6616	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6617				      &sid);
6618
6619	if (err)
6620		return err;
6621
6622	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6623	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6624	ibendport.port = port_num;
6625	ad.u.ibendport = &ibendport;
6626	return avc_has_perm(&selinux_state,
6627			    sec->sid, sid,
6628			    SECCLASS_INFINIBAND_ENDPORT,
6629			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6630}
6631
6632static int selinux_ib_alloc_security(void **ib_sec)
6633{
6634	struct ib_security_struct *sec;
6635
6636	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6637	if (!sec)
6638		return -ENOMEM;
6639	sec->sid = current_sid();
6640
6641	*ib_sec = sec;
6642	return 0;
6643}
6644
6645static void selinux_ib_free_security(void *ib_sec)
6646{
6647	kfree(ib_sec);
6648}
6649#endif
6650
6651#ifdef CONFIG_BPF_SYSCALL
6652static int selinux_bpf(int cmd, union bpf_attr *attr,
6653				     unsigned int size)
6654{
6655	u32 sid = current_sid();
6656	int ret;
6657
6658	switch (cmd) {
6659	case BPF_MAP_CREATE:
6660		ret = avc_has_perm(&selinux_state,
6661				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6662				   NULL);
6663		break;
6664	case BPF_PROG_LOAD:
6665		ret = avc_has_perm(&selinux_state,
6666				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6667				   NULL);
6668		break;
6669	default:
6670		ret = 0;
6671		break;
6672	}
6673
6674	return ret;
6675}
6676
6677static u32 bpf_map_fmode_to_av(fmode_t fmode)
6678{
6679	u32 av = 0;
6680
6681	if (fmode & FMODE_READ)
6682		av |= BPF__MAP_READ;
6683	if (fmode & FMODE_WRITE)
6684		av |= BPF__MAP_WRITE;
6685	return av;
6686}
6687
6688/* This function will check the file pass through unix socket or binder to see
6689 * if it is a bpf related object. And apply correspinding checks on the bpf
6690 * object based on the type. The bpf maps and programs, not like other files and
6691 * socket, are using a shared anonymous inode inside the kernel as their inode.
6692 * So checking that inode cannot identify if the process have privilege to
6693 * access the bpf object and that's why we have to add this additional check in
6694 * selinux_file_receive and selinux_binder_transfer_files.
6695 */
6696static int bpf_fd_pass(struct file *file, u32 sid)
6697{
6698	struct bpf_security_struct *bpfsec;
6699	struct bpf_prog *prog;
6700	struct bpf_map *map;
6701	int ret;
6702
6703	if (file->f_op == &bpf_map_fops) {
6704		map = file->private_data;
6705		bpfsec = map->security;
6706		ret = avc_has_perm(&selinux_state,
6707				   sid, bpfsec->sid, SECCLASS_BPF,
6708				   bpf_map_fmode_to_av(file->f_mode), NULL);
6709		if (ret)
6710			return ret;
6711	} else if (file->f_op == &bpf_prog_fops) {
6712		prog = file->private_data;
6713		bpfsec = prog->aux->security;
6714		ret = avc_has_perm(&selinux_state,
6715				   sid, bpfsec->sid, SECCLASS_BPF,
6716				   BPF__PROG_RUN, NULL);
6717		if (ret)
6718			return ret;
6719	}
6720	return 0;
6721}
6722
6723static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6724{
6725	u32 sid = current_sid();
6726	struct bpf_security_struct *bpfsec;
6727
6728	bpfsec = map->security;
6729	return avc_has_perm(&selinux_state,
6730			    sid, bpfsec->sid, SECCLASS_BPF,
6731			    bpf_map_fmode_to_av(fmode), NULL);
6732}
6733
6734static int selinux_bpf_prog(struct bpf_prog *prog)
6735{
6736	u32 sid = current_sid();
6737	struct bpf_security_struct *bpfsec;
6738
6739	bpfsec = prog->aux->security;
6740	return avc_has_perm(&selinux_state,
6741			    sid, bpfsec->sid, SECCLASS_BPF,
6742			    BPF__PROG_RUN, NULL);
6743}
6744
6745static int selinux_bpf_map_alloc(struct bpf_map *map)
6746{
6747	struct bpf_security_struct *bpfsec;
6748
6749	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6750	if (!bpfsec)
6751		return -ENOMEM;
6752
6753	bpfsec->sid = current_sid();
6754	map->security = bpfsec;
6755
6756	return 0;
6757}
6758
6759static void selinux_bpf_map_free(struct bpf_map *map)
6760{
6761	struct bpf_security_struct *bpfsec = map->security;
6762
6763	map->security = NULL;
6764	kfree(bpfsec);
6765}
6766
6767static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6768{
6769	struct bpf_security_struct *bpfsec;
6770
6771	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6772	if (!bpfsec)
6773		return -ENOMEM;
6774
6775	bpfsec->sid = current_sid();
6776	aux->security = bpfsec;
6777
6778	return 0;
6779}
6780
6781static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6782{
6783	struct bpf_security_struct *bpfsec = aux->security;
6784
6785	aux->security = NULL;
6786	kfree(bpfsec);
6787}
6788#endif
6789
6790struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6791	.lbs_cred = sizeof(struct task_security_struct),
6792	.lbs_file = sizeof(struct file_security_struct),
6793	.lbs_inode = sizeof(struct inode_security_struct),
6794	.lbs_ipc = sizeof(struct ipc_security_struct),
6795	.lbs_msg_msg = sizeof(struct msg_security_struct),
6796};
6797
6798static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6799	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6800	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6801	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6802	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6803
6804	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6805	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6806	LSM_HOOK_INIT(capget, selinux_capget),
6807	LSM_HOOK_INIT(capset, selinux_capset),
6808	LSM_HOOK_INIT(capable, selinux_capable),
6809	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6810	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6811	LSM_HOOK_INIT(syslog, selinux_syslog),
6812	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6813
6814	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6815
6816	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6817	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6818	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6819
6820	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
6821	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
6822
6823	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6824	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6825	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
6826	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6827	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6828	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6829	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6830	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6831	LSM_HOOK_INIT(sb_mount, selinux_mount),
6832	LSM_HOOK_INIT(sb_umount, selinux_umount),
6833	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6834	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6835	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
6836
6837	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6838	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6839
6840	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6841	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6842	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6843	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6844	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6845	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6846	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6847	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6848	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6849	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6850	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6851	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6852	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6853	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6854	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6855	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6856	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6857	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6858	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6859	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6860	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6861	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6862	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6863	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6864	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6865	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6866	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6867	LSM_HOOK_INIT(path_notify, selinux_path_notify),
6868
6869	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6870
6871	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6872	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
 
6873	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6874	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6875	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6876	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6877	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6878	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6879	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6880	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6881	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6882
6883	LSM_HOOK_INIT(file_open, selinux_file_open),
6884
6885	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
 
 
6886	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6887	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6888	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6889	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6890	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6891	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6892	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
6893	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6894	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6895	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6896	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6897	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6898	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6899	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6900	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6901	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6902	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6903	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6904	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6905	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6906	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6907	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6908
6909	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6910	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6911
6912	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
 
6913
6914	LSM_HOOK_INIT(msg_queue_alloc_security,
6915			selinux_msg_queue_alloc_security),
 
6916	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6917	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6918	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6919	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6920
6921	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
 
6922	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6923	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6924	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6925
6926	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
 
6927	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6928	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6929	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6930
6931	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6932
6933	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6934	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6935
6936	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6937	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6938	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6939	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6940	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6941	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6942	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6943	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6944
6945	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6946	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6947
6948	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6949	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6950	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
6951	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6952	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6953	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6954	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6955	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6956	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6957	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6958	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6959	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6960	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6961	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6962	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6963	LSM_HOOK_INIT(socket_getpeersec_stream,
6964			selinux_socket_getpeersec_stream),
6965	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6966	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6967	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6968	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6969	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6970	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6971	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
6972	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
6973	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
6974	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6975	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6976	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6977	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6978	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6979	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6980	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6981	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6982	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6983	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6984	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6985	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6986	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6987#ifdef CONFIG_SECURITY_INFINIBAND
6988	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
6989	LSM_HOOK_INIT(ib_endport_manage_subnet,
6990		      selinux_ib_endport_manage_subnet),
6991	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
6992	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
6993#endif
6994#ifdef CONFIG_SECURITY_NETWORK_XFRM
6995	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6996	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6997	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6998	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6999	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7000	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7001			selinux_xfrm_state_alloc_acquire),
7002	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7003	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7004	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7005	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7006			selinux_xfrm_state_pol_flow_match),
7007	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7008#endif
7009
7010#ifdef CONFIG_KEYS
7011	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7012	LSM_HOOK_INIT(key_free, selinux_key_free),
7013	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7014	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7015#endif
7016
7017#ifdef CONFIG_AUDIT
7018	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7019	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7020	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7021	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7022#endif
7023
7024#ifdef CONFIG_BPF_SYSCALL
7025	LSM_HOOK_INIT(bpf, selinux_bpf),
7026	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7027	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7028	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7029	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7030	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7031	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7032#endif
7033};
7034
7035static __init int selinux_init(void)
7036{
7037	pr_info("SELinux:  Initializing.\n");
 
 
 
 
 
 
 
 
 
 
7038
7039	memset(&selinux_state, 0, sizeof(selinux_state));
7040	enforcing_set(&selinux_state, selinux_enforcing_boot);
7041	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7042	selinux_ss_init(&selinux_state.ss);
7043	selinux_avc_init(&selinux_state.avc);
7044
7045	/* Set the security state for the initial task. */
7046	cred_init_security();
7047
7048	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7049
 
 
 
 
 
 
7050	avc_init();
7051
7052	avtab_cache_init();
7053
7054	ebitmap_cache_init();
7055
7056	hashtab_cache_init();
7057
7058	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7059
7060	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7061		panic("SELinux: Unable to register AVC netcache callback\n");
7062
7063	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7064		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7065
7066	if (selinux_enforcing_boot)
7067		pr_debug("SELinux:  Starting in enforcing mode\n");
7068	else
7069		pr_debug("SELinux:  Starting in permissive mode\n");
7070
7071	fs_validate_description(&selinux_fs_parameters);
7072
7073	return 0;
7074}
7075
7076static void delayed_superblock_init(struct super_block *sb, void *unused)
7077{
7078	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7079}
7080
7081void selinux_complete_init(void)
7082{
7083	pr_debug("SELinux:  Completing initialization.\n");
7084
7085	/* Set up any superblocks initialized prior to the policy load. */
7086	pr_debug("SELinux:  Setting up existing superblocks.\n");
7087	iterate_supers(delayed_superblock_init, NULL);
7088}
7089
7090/* SELinux requires early initialization in order to label
7091   all processes and objects when they are created. */
7092DEFINE_LSM(selinux) = {
7093	.name = "selinux",
7094	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7095	.enabled = &selinux_enabled,
7096	.blobs = &selinux_blob_sizes,
7097	.init = selinux_init,
7098};
7099
7100#if defined(CONFIG_NETFILTER)
7101
7102static const struct nf_hook_ops selinux_nf_ops[] = {
7103	{
7104		.hook =		selinux_ipv4_postroute,
7105		.pf =		NFPROTO_IPV4,
7106		.hooknum =	NF_INET_POST_ROUTING,
7107		.priority =	NF_IP_PRI_SELINUX_LAST,
7108	},
7109	{
7110		.hook =		selinux_ipv4_forward,
7111		.pf =		NFPROTO_IPV4,
7112		.hooknum =	NF_INET_FORWARD,
7113		.priority =	NF_IP_PRI_SELINUX_FIRST,
7114	},
7115	{
7116		.hook =		selinux_ipv4_output,
7117		.pf =		NFPROTO_IPV4,
7118		.hooknum =	NF_INET_LOCAL_OUT,
7119		.priority =	NF_IP_PRI_SELINUX_FIRST,
7120	},
7121#if IS_ENABLED(CONFIG_IPV6)
7122	{
7123		.hook =		selinux_ipv6_postroute,
7124		.pf =		NFPROTO_IPV6,
7125		.hooknum =	NF_INET_POST_ROUTING,
7126		.priority =	NF_IP6_PRI_SELINUX_LAST,
7127	},
7128	{
7129		.hook =		selinux_ipv6_forward,
7130		.pf =		NFPROTO_IPV6,
7131		.hooknum =	NF_INET_FORWARD,
7132		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7133	},
7134	{
7135		.hook =		selinux_ipv6_output,
7136		.pf =		NFPROTO_IPV6,
7137		.hooknum =	NF_INET_LOCAL_OUT,
7138		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7139	},
7140#endif	/* IPV6 */
7141};
7142
7143static int __net_init selinux_nf_register(struct net *net)
7144{
7145	return nf_register_net_hooks(net, selinux_nf_ops,
7146				     ARRAY_SIZE(selinux_nf_ops));
7147}
7148
7149static void __net_exit selinux_nf_unregister(struct net *net)
7150{
7151	nf_unregister_net_hooks(net, selinux_nf_ops,
7152				ARRAY_SIZE(selinux_nf_ops));
7153}
7154
7155static struct pernet_operations selinux_net_ops = {
7156	.init = selinux_nf_register,
7157	.exit = selinux_nf_unregister,
7158};
7159
7160static int __init selinux_nf_ip_init(void)
7161{
7162	int err;
7163
7164	if (!selinux_enabled)
7165		return 0;
7166
7167	pr_debug("SELinux:  Registering netfilter hooks\n");
7168
7169	err = register_pernet_subsys(&selinux_net_ops);
7170	if (err)
7171		panic("SELinux: register_pernet_subsys: error %d\n", err);
7172
7173	return 0;
7174}
7175__initcall(selinux_nf_ip_init);
7176
7177#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7178static void selinux_nf_ip_exit(void)
7179{
7180	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7181
7182	unregister_pernet_subsys(&selinux_net_ops);
7183}
7184#endif
7185
7186#else /* CONFIG_NETFILTER */
7187
7188#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7189#define selinux_nf_ip_exit()
7190#endif
7191
7192#endif /* CONFIG_NETFILTER */
7193
7194#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7195int selinux_disable(struct selinux_state *state)
7196{
7197	if (state->initialized) {
7198		/* Not permitted after initial policy load. */
7199		return -EINVAL;
7200	}
7201
7202	if (state->disabled) {
7203		/* Only do this once. */
7204		return -EINVAL;
7205	}
7206
7207	state->disabled = 1;
7208
7209	pr_info("SELinux:  Disabled at runtime.\n");
7210
7211	selinux_enabled = 0;
7212
7213	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7214
7215	/* Try to destroy the avc node cache */
7216	avc_disable();
7217
7218	/* Unregister netfilter hooks. */
7219	selinux_nf_ip_exit();
7220
7221	/* Unregister selinuxfs. */
7222	exit_sel_fs();
7223
7224	return 0;
7225}
7226#endif