Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/err.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
 
  24#include <linux/mmc/pm.h>
  25#include <linux/mmc/host.h>
  26#include <linux/mmc/card.h>
  27#include <linux/mmc/slot-gpio.h>
  28#include <linux/amba/bus.h>
  29#include <linux/clk.h>
  30#include <linux/scatterlist.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/amba/mmci.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/types.h>
  39#include <linux/pinctrl/consumer.h>
 
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
  43
  44#include "mmci.h"
  45#include "mmci_qcom_dml.h"
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
  49static unsigned int fmax = 515633;
 
  50
  51/**
  52 * struct variant_data - MMCI variant-specific quirks
  53 * @clkreg: default value for MCICLOCK register
  54 * @clkreg_enable: enable value for MMCICLOCK register
  55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
  56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
  57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  59 *	      is asserted (likewise for RX)
  60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  61 *		  is asserted (likewise for RX)
  62 * @data_cmd_enable: enable value for data commands.
  63 * @st_sdio: enable ST specific SDIO logic
  64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
  66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
  68 *		     register
  69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
  70 * @pwrreg_powerup: power up value for MMCIPOWER register
  71 * @f_max: maximum clk frequency supported by the controller.
  72 * @signal_direction: input/out direction of bus signals can be indicated
  73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  74 * @busy_detect: true if the variant supports busy detection on DAT0.
  75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
  76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
  77 *		      indicating that the card is busy
  78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
  79 *		      getting busy end detection interrupts
  80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  81 * @explicit_mclk_control: enable explicit mclk control in driver.
  82 * @qcom_fifo: enables qcom specific fifo pio read logic.
  83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
  84 * @reversed_irq_handling: handle data irq before cmd irq.
  85 * @mmcimask1: true if variant have a MMCIMASK1 register.
  86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
  87 *	       register.
  88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
  89 */
  90struct variant_data {
  91	unsigned int		clkreg;
  92	unsigned int		clkreg_enable;
  93	unsigned int		clkreg_8bit_bus_enable;
  94	unsigned int		clkreg_neg_edge_enable;
  95	unsigned int		datalength_bits;
  96	unsigned int		fifosize;
  97	unsigned int		fifohalfsize;
  98	unsigned int		data_cmd_enable;
  99	unsigned int		datactrl_mask_ddrmode;
 100	unsigned int		datactrl_mask_sdio;
 101	bool			st_sdio;
 102	bool			st_clkdiv;
 103	bool			blksz_datactrl16;
 104	bool			blksz_datactrl4;
 105	u32			pwrreg_powerup;
 106	u32			f_max;
 107	bool			signal_direction;
 108	bool			pwrreg_clkgate;
 109	bool			busy_detect;
 110	u32			busy_dpsm_flag;
 111	u32			busy_detect_flag;
 112	u32			busy_detect_mask;
 113	bool			pwrreg_nopower;
 114	bool			explicit_mclk_control;
 115	bool			qcom_fifo;
 116	bool			qcom_dml;
 117	bool			reversed_irq_handling;
 118	bool			mmcimask1;
 119	u32			start_err;
 120	u32			opendrain;
 121};
 122
 123static struct variant_data variant_arm = {
 124	.fifosize		= 16 * 4,
 125	.fifohalfsize		= 8 * 4,
 
 
 
 
 126	.datalength_bits	= 16,
 
 127	.pwrreg_powerup		= MCI_PWR_UP,
 128	.f_max			= 100000000,
 129	.reversed_irq_handling	= true,
 130	.mmcimask1		= true,
 
 131	.start_err		= MCI_STARTBITERR,
 132	.opendrain		= MCI_ROD,
 
 133};
 134
 135static struct variant_data variant_arm_extended_fifo = {
 136	.fifosize		= 128 * 4,
 137	.fifohalfsize		= 64 * 4,
 
 
 
 
 138	.datalength_bits	= 16,
 
 139	.pwrreg_powerup		= MCI_PWR_UP,
 140	.f_max			= 100000000,
 141	.mmcimask1		= true,
 
 142	.start_err		= MCI_STARTBITERR,
 143	.opendrain		= MCI_ROD,
 
 144};
 145
 146static struct variant_data variant_arm_extended_fifo_hwfc = {
 147	.fifosize		= 128 * 4,
 148	.fifohalfsize		= 64 * 4,
 149	.clkreg_enable		= MCI_ARM_HWFCEN,
 
 
 
 
 150	.datalength_bits	= 16,
 
 151	.pwrreg_powerup		= MCI_PWR_UP,
 152	.f_max			= 100000000,
 153	.mmcimask1		= true,
 
 154	.start_err		= MCI_STARTBITERR,
 155	.opendrain		= MCI_ROD,
 
 156};
 157
 158static struct variant_data variant_u300 = {
 159	.fifosize		= 16 * 4,
 160	.fifohalfsize		= 8 * 4,
 161	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 162	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 
 
 
 
 163	.datalength_bits	= 16,
 
 164	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 165	.st_sdio			= true,
 166	.pwrreg_powerup		= MCI_PWR_ON,
 167	.f_max			= 100000000,
 168	.signal_direction	= true,
 169	.pwrreg_clkgate		= true,
 170	.pwrreg_nopower		= true,
 171	.mmcimask1		= true,
 
 172	.start_err		= MCI_STARTBITERR,
 173	.opendrain		= MCI_OD,
 
 174};
 175
 176static struct variant_data variant_nomadik = {
 177	.fifosize		= 16 * 4,
 178	.fifohalfsize		= 8 * 4,
 179	.clkreg			= MCI_CLK_ENABLE,
 180	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 
 
 
 
 181	.datalength_bits	= 24,
 
 182	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 183	.st_sdio		= true,
 184	.st_clkdiv		= true,
 185	.pwrreg_powerup		= MCI_PWR_ON,
 186	.f_max			= 100000000,
 187	.signal_direction	= true,
 188	.pwrreg_clkgate		= true,
 189	.pwrreg_nopower		= true,
 190	.mmcimask1		= true,
 
 191	.start_err		= MCI_STARTBITERR,
 192	.opendrain		= MCI_OD,
 
 193};
 194
 195static struct variant_data variant_ux500 = {
 196	.fifosize		= 30 * 4,
 197	.fifohalfsize		= 8 * 4,
 198	.clkreg			= MCI_CLK_ENABLE,
 199	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 200	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 
 
 
 
 202	.datalength_bits	= 24,
 
 203	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 204	.st_sdio		= true,
 205	.st_clkdiv		= true,
 206	.pwrreg_powerup		= MCI_PWR_ON,
 207	.f_max			= 100000000,
 208	.signal_direction	= true,
 209	.pwrreg_clkgate		= true,
 210	.busy_detect		= true,
 211	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 212	.busy_detect_flag	= MCI_ST_CARDBUSY,
 213	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 214	.pwrreg_nopower		= true,
 215	.mmcimask1		= true,
 
 216	.start_err		= MCI_STARTBITERR,
 217	.opendrain		= MCI_OD,
 
 218};
 219
 220static struct variant_data variant_ux500v2 = {
 221	.fifosize		= 30 * 4,
 222	.fifohalfsize		= 8 * 4,
 223	.clkreg			= MCI_CLK_ENABLE,
 224	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 225	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 226	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 
 
 
 
 227	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 228	.datalength_bits	= 24,
 
 229	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 230	.st_sdio		= true,
 231	.st_clkdiv		= true,
 232	.blksz_datactrl16	= true,
 233	.pwrreg_powerup		= MCI_PWR_ON,
 234	.f_max			= 100000000,
 235	.signal_direction	= true,
 236	.pwrreg_clkgate		= true,
 237	.busy_detect		= true,
 238	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 239	.busy_detect_flag	= MCI_ST_CARDBUSY,
 240	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 241	.pwrreg_nopower		= true,
 242	.mmcimask1		= true,
 
 243	.start_err		= MCI_STARTBITERR,
 244	.opendrain		= MCI_OD,
 
 245};
 246
 247static struct variant_data variant_stm32 = {
 248	.fifosize		= 32 * 4,
 249	.fifohalfsize		= 8 * 4,
 250	.clkreg			= MCI_CLK_ENABLE,
 251	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 252	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 253	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 
 
 
 
 
 254	.datalength_bits	= 24,
 
 255	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 256	.st_sdio		= true,
 257	.st_clkdiv		= true,
 258	.pwrreg_powerup		= MCI_PWR_ON,
 259	.f_max			= 48000000,
 260	.pwrreg_clkgate		= true,
 261	.pwrreg_nopower		= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262};
 263
 264static struct variant_data variant_qcom = {
 265	.fifosize		= 16 * 4,
 266	.fifohalfsize		= 8 * 4,
 267	.clkreg			= MCI_CLK_ENABLE,
 268	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 269				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 270	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 271	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 
 
 
 
 272	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 273	.blksz_datactrl4	= true,
 274	.datalength_bits	= 24,
 
 275	.pwrreg_powerup		= MCI_PWR_UP,
 276	.f_max			= 208000000,
 277	.explicit_mclk_control	= true,
 278	.qcom_fifo		= true,
 279	.qcom_dml		= true,
 280	.mmcimask1		= true,
 
 281	.start_err		= MCI_STARTBITERR,
 282	.opendrain		= MCI_ROD,
 
 283};
 284
 285/* Busy detection for the ST Micro variant */
 286static int mmci_card_busy(struct mmc_host *mmc)
 287{
 288	struct mmci_host *host = mmc_priv(mmc);
 289	unsigned long flags;
 290	int busy = 0;
 291
 292	spin_lock_irqsave(&host->lock, flags);
 293	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 294		busy = 1;
 295	spin_unlock_irqrestore(&host->lock, flags);
 296
 297	return busy;
 298}
 299
 300/*
 301 * Validate mmc prerequisites
 302 */
 303static int mmci_validate_data(struct mmci_host *host,
 304			      struct mmc_data *data)
 305{
 306	if (!data)
 307		return 0;
 308
 309	if (!is_power_of_2(data->blksz)) {
 310		dev_err(mmc_dev(host->mmc),
 311			"unsupported block size (%d bytes)\n", data->blksz);
 312		return -EINVAL;
 313	}
 314
 315	return 0;
 316}
 317
 318static void mmci_reg_delay(struct mmci_host *host)
 319{
 320	/*
 321	 * According to the spec, at least three feedback clock cycles
 322	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 323	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 324	 * Worst delay time during card init is at 100 kHz => 30 us.
 325	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 326	 */
 327	if (host->cclk < 25000000)
 328		udelay(30);
 329	else
 330		ndelay(120);
 331}
 332
 333/*
 334 * This must be called with host->lock held
 335 */
 336static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 337{
 338	if (host->clk_reg != clk) {
 339		host->clk_reg = clk;
 340		writel(clk, host->base + MMCICLOCK);
 341	}
 342}
 343
 344/*
 345 * This must be called with host->lock held
 346 */
 347static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 348{
 349	if (host->pwr_reg != pwr) {
 350		host->pwr_reg = pwr;
 351		writel(pwr, host->base + MMCIPOWER);
 352	}
 353}
 354
 355/*
 356 * This must be called with host->lock held
 357 */
 358static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 359{
 360	/* Keep busy mode in DPSM if enabled */
 361	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 362
 363	if (host->datactrl_reg != datactrl) {
 364		host->datactrl_reg = datactrl;
 365		writel(datactrl, host->base + MMCIDATACTRL);
 366	}
 367}
 368
 369/*
 370 * This must be called with host->lock held
 371 */
 372static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 373{
 374	struct variant_data *variant = host->variant;
 375	u32 clk = variant->clkreg;
 376
 377	/* Make sure cclk reflects the current calculated clock */
 378	host->cclk = 0;
 379
 380	if (desired) {
 381		if (variant->explicit_mclk_control) {
 382			host->cclk = host->mclk;
 383		} else if (desired >= host->mclk) {
 384			clk = MCI_CLK_BYPASS;
 385			if (variant->st_clkdiv)
 386				clk |= MCI_ST_UX500_NEG_EDGE;
 387			host->cclk = host->mclk;
 388		} else if (variant->st_clkdiv) {
 389			/*
 390			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 391			 * => clkdiv = (mclk / f) - 2
 392			 * Round the divider up so we don't exceed the max
 393			 * frequency
 394			 */
 395			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 396			if (clk >= 256)
 397				clk = 255;
 398			host->cclk = host->mclk / (clk + 2);
 399		} else {
 400			/*
 401			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 402			 * => clkdiv = mclk / (2 * f) - 1
 403			 */
 404			clk = host->mclk / (2 * desired) - 1;
 405			if (clk >= 256)
 406				clk = 255;
 407			host->cclk = host->mclk / (2 * (clk + 1));
 408		}
 409
 410		clk |= variant->clkreg_enable;
 411		clk |= MCI_CLK_ENABLE;
 412		/* This hasn't proven to be worthwhile */
 413		/* clk |= MCI_CLK_PWRSAVE; */
 414	}
 415
 416	/* Set actual clock for debug */
 417	host->mmc->actual_clock = host->cclk;
 418
 419	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 420		clk |= MCI_4BIT_BUS;
 421	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 422		clk |= variant->clkreg_8bit_bus_enable;
 423
 424	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 425	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 426		clk |= variant->clkreg_neg_edge_enable;
 427
 428	mmci_write_clkreg(host, clk);
 429}
 430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431static void
 432mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 433{
 434	writel(0, host->base + MMCICOMMAND);
 435
 436	BUG_ON(host->data);
 437
 438	host->mrq = NULL;
 439	host->cmd = NULL;
 440
 441	mmc_request_done(host->mmc, mrq);
 442}
 443
 444static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 445{
 446	void __iomem *base = host->base;
 447	struct variant_data *variant = host->variant;
 448
 449	if (host->singleirq) {
 450		unsigned int mask0 = readl(base + MMCIMASK0);
 451
 452		mask0 &= ~MCI_IRQ1MASK;
 453		mask0 |= mask;
 454
 455		writel(mask0, base + MMCIMASK0);
 456	}
 457
 458	if (variant->mmcimask1)
 459		writel(mask, base + MMCIMASK1);
 460
 461	host->mask1_reg = mask;
 462}
 463
 464static void mmci_stop_data(struct mmci_host *host)
 465{
 466	mmci_write_datactrlreg(host, 0);
 467	mmci_set_mask1(host, 0);
 468	host->data = NULL;
 469}
 470
 471static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 472{
 473	unsigned int flags = SG_MITER_ATOMIC;
 474
 475	if (data->flags & MMC_DATA_READ)
 476		flags |= SG_MITER_TO_SG;
 477	else
 478		flags |= SG_MITER_FROM_SG;
 479
 480	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 481}
 482
 
 
 
 
 
 
 
 
 
 
 483/*
 484 * All the DMA operation mode stuff goes inside this ifdef.
 485 * This assumes that you have a generic DMA device interface,
 486 * no custom DMA interfaces are supported.
 487 */
 488#ifdef CONFIG_DMA_ENGINE
 489static void mmci_dma_setup(struct mmci_host *host)
 
 
 
 
 
 
 
 
 
 
 
 
 
 490{
 491	const char *rxname, *txname;
 492	struct variant_data *variant = host->variant;
 493
 494	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 495	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 
 496
 497	/* initialize pre request cookie */
 498	host->next_data.cookie = 1;
 
 
 
 
 499
 500	/*
 501	 * If only an RX channel is specified, the driver will
 502	 * attempt to use it bidirectionally, however if it is
 503	 * is specified but cannot be located, DMA will be disabled.
 504	 */
 505	if (host->dma_rx_channel && !host->dma_tx_channel)
 506		host->dma_tx_channel = host->dma_rx_channel;
 507
 508	if (host->dma_rx_channel)
 509		rxname = dma_chan_name(host->dma_rx_channel);
 510	else
 511		rxname = "none";
 512
 513	if (host->dma_tx_channel)
 514		txname = dma_chan_name(host->dma_tx_channel);
 515	else
 516		txname = "none";
 517
 518	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 519		 rxname, txname);
 520
 521	/*
 522	 * Limit the maximum segment size in any SG entry according to
 523	 * the parameters of the DMA engine device.
 524	 */
 525	if (host->dma_tx_channel) {
 526		struct device *dev = host->dma_tx_channel->device->dev;
 527		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 528
 529		if (max_seg_size < host->mmc->max_seg_size)
 530			host->mmc->max_seg_size = max_seg_size;
 531	}
 532	if (host->dma_rx_channel) {
 533		struct device *dev = host->dma_rx_channel->device->dev;
 534		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 535
 536		if (max_seg_size < host->mmc->max_seg_size)
 537			host->mmc->max_seg_size = max_seg_size;
 538	}
 539
 540	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
 541		if (dml_hw_init(host, host->mmc->parent->of_node))
 542			variant->qcom_dml = false;
 
 
 
 543}
 544
 545/*
 546 * This is used in or so inline it
 547 * so it can be discarded.
 548 */
 549static inline void mmci_dma_release(struct mmci_host *host)
 550{
 551	if (host->dma_rx_channel)
 552		dma_release_channel(host->dma_rx_channel);
 553	if (host->dma_tx_channel)
 554		dma_release_channel(host->dma_tx_channel);
 555	host->dma_rx_channel = host->dma_tx_channel = NULL;
 556}
 557
 558static void mmci_dma_data_error(struct mmci_host *host)
 559{
 560	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 561	dmaengine_terminate_all(host->dma_current);
 562	host->dma_in_progress = false;
 563	host->dma_current = NULL;
 564	host->dma_desc_current = NULL;
 565	host->data->host_cookie = 0;
 566}
 567
 568static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 569{
 
 570	struct dma_chan *chan;
 571
 572	if (data->flags & MMC_DATA_READ)
 573		chan = host->dma_rx_channel;
 574	else
 575		chan = host->dma_tx_channel;
 576
 577	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 578		     mmc_get_dma_dir(data));
 579}
 580
 581static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582{
 
 583	u32 status;
 584	int i;
 585
 
 
 
 586	/* Wait up to 1ms for the DMA to complete */
 587	for (i = 0; ; i++) {
 588		status = readl(host->base + MMCISTATUS);
 589		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 590			break;
 591		udelay(10);
 592	}
 593
 594	/*
 595	 * Check to see whether we still have some data left in the FIFO -
 596	 * this catches DMA controllers which are unable to monitor the
 597	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 598	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 599	 */
 600	if (status & MCI_RXDATAAVLBLMASK) {
 601		mmci_dma_data_error(host);
 602		if (!data->error)
 603			data->error = -EIO;
 604	}
 605
 606	if (!data->host_cookie)
 607		mmci_dma_unmap(host, data);
 
 608
 609	/*
 610	 * Use of DMA with scatter-gather is impossible.
 611	 * Give up with DMA and switch back to PIO mode.
 612	 */
 613	if (status & MCI_RXDATAAVLBLMASK) {
 614		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 615		mmci_dma_release(host);
 616	}
 617
 618	host->dma_in_progress = false;
 619	host->dma_current = NULL;
 620	host->dma_desc_current = NULL;
 621}
 622
 623/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 624static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 625				struct dma_chan **dma_chan,
 626				struct dma_async_tx_descriptor **dma_desc)
 627{
 
 628	struct variant_data *variant = host->variant;
 629	struct dma_slave_config conf = {
 630		.src_addr = host->phybase + MMCIFIFO,
 631		.dst_addr = host->phybase + MMCIFIFO,
 632		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 633		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 634		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 635		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 636		.device_fc = false,
 637	};
 638	struct dma_chan *chan;
 639	struct dma_device *device;
 640	struct dma_async_tx_descriptor *desc;
 641	int nr_sg;
 642	unsigned long flags = DMA_CTRL_ACK;
 643
 644	if (data->flags & MMC_DATA_READ) {
 645		conf.direction = DMA_DEV_TO_MEM;
 646		chan = host->dma_rx_channel;
 647	} else {
 648		conf.direction = DMA_MEM_TO_DEV;
 649		chan = host->dma_tx_channel;
 650	}
 651
 652	/* If there's no DMA channel, fall back to PIO */
 653	if (!chan)
 654		return -EINVAL;
 655
 656	/* If less than or equal to the fifo size, don't bother with DMA */
 657	if (data->blksz * data->blocks <= variant->fifosize)
 658		return -EINVAL;
 659
 660	device = chan->device;
 661	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 662			   mmc_get_dma_dir(data));
 663	if (nr_sg == 0)
 664		return -EINVAL;
 665
 666	if (host->variant->qcom_dml)
 667		flags |= DMA_PREP_INTERRUPT;
 668
 669	dmaengine_slave_config(chan, &conf);
 670	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 671					    conf.direction, flags);
 672	if (!desc)
 673		goto unmap_exit;
 674
 675	*dma_chan = chan;
 676	*dma_desc = desc;
 677
 678	return 0;
 679
 680 unmap_exit:
 681	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 682		     mmc_get_dma_dir(data));
 683	return -ENOMEM;
 684}
 685
 686static inline int mmci_dma_prep_data(struct mmci_host *host,
 687				     struct mmc_data *data)
 
 688{
 
 
 
 
 
 
 
 
 689	/* Check if next job is already prepared. */
 690	if (host->dma_current && host->dma_desc_current)
 691		return 0;
 692
 693	/* No job were prepared thus do it now. */
 694	return __mmci_dma_prep_data(host, data, &host->dma_current,
 695				    &host->dma_desc_current);
 696}
 697
 698static inline int mmci_dma_prep_next(struct mmci_host *host,
 699				     struct mmc_data *data)
 700{
 701	struct mmci_host_next *nd = &host->next_data;
 702	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 703}
 704
 705static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 706{
 707	int ret;
 708	struct mmc_data *data = host->data;
 709
 710	ret = mmci_dma_prep_data(host, host->data);
 711	if (ret)
 712		return ret;
 713
 714	/* Okay, go for it. */
 715	dev_vdbg(mmc_dev(host->mmc),
 716		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 717		 data->sg_len, data->blksz, data->blocks, data->flags);
 718	host->dma_in_progress = true;
 719	dmaengine_submit(host->dma_desc_current);
 720	dma_async_issue_pending(host->dma_current);
 721
 722	if (host->variant->qcom_dml)
 723		dml_start_xfer(host, data);
 724
 725	datactrl |= MCI_DPSM_DMAENABLE;
 726
 727	/* Trigger the DMA transfer */
 728	mmci_write_datactrlreg(host, datactrl);
 729
 730	/*
 731	 * Let the MMCI say when the data is ended and it's time
 732	 * to fire next DMA request. When that happens, MMCI will
 733	 * call mmci_data_end()
 734	 */
 735	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 736	       host->base + MMCIMASK0);
 737	return 0;
 738}
 739
 740static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 741{
 742	struct mmci_host_next *next = &host->next_data;
 743
 744	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 745	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 746
 747	host->dma_desc_current = next->dma_desc;
 748	host->dma_current = next->dma_chan;
 749	next->dma_desc = NULL;
 750	next->dma_chan = NULL;
 751}
 752
 753static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 754{
 755	struct mmci_host *host = mmc_priv(mmc);
 756	struct mmc_data *data = mrq->data;
 757	struct mmci_host_next *nd = &host->next_data;
 758
 759	if (!data)
 760		return;
 761
 762	BUG_ON(data->host_cookie);
 763
 764	if (mmci_validate_data(host, data))
 765		return;
 766
 767	if (!mmci_dma_prep_next(host, data))
 768		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 
 
 769}
 770
 771static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 772			      int err)
 
 773{
 774	struct mmci_host *host = mmc_priv(mmc);
 775	struct mmc_data *data = mrq->data;
 776
 777	if (!data || !data->host_cookie)
 778		return;
 779
 780	mmci_dma_unmap(host, data);
 781
 782	if (err) {
 783		struct mmci_host_next *next = &host->next_data;
 784		struct dma_chan *chan;
 785		if (data->flags & MMC_DATA_READ)
 786			chan = host->dma_rx_channel;
 787		else
 788			chan = host->dma_tx_channel;
 789		dmaengine_terminate_all(chan);
 790
 791		if (host->dma_desc_current == next->dma_desc)
 792			host->dma_desc_current = NULL;
 793
 794		if (host->dma_current == next->dma_chan) {
 795			host->dma_in_progress = false;
 796			host->dma_current = NULL;
 797		}
 798
 799		next->dma_desc = NULL;
 800		next->dma_chan = NULL;
 801		data->host_cookie = 0;
 802	}
 803}
 804
 
 
 
 
 
 
 
 
 
 
 
 805#else
 806/* Blank functions if the DMA engine is not available */
 807static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 808{
 809}
 810static inline void mmci_dma_setup(struct mmci_host *host)
 811{
 812}
 813
 814static inline void mmci_dma_release(struct mmci_host *host)
 815{
 
 816}
 817
 818static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 819{
 
 
 820}
 821
 822static inline void mmci_dma_finalize(struct mmci_host *host,
 823				     struct mmc_data *data)
 824{
 825}
 
 826
 827static inline void mmci_dma_data_error(struct mmci_host *host)
 828{
 
 
 
 
 
 
 
 829}
 830
 831static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 
 832{
 833	return -ENOSYS;
 834}
 835
 836#define mmci_pre_request NULL
 837#define mmci_post_request NULL
 838
 839#endif
 
 840
 841static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 842{
 843	struct variant_data *variant = host->variant;
 844	unsigned int datactrl, timeout, irqmask;
 845	unsigned long long clks;
 846	void __iomem *base;
 847	int blksz_bits;
 848
 849	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 850		data->blksz, data->blocks, data->flags);
 851
 852	host->data = data;
 853	host->size = data->blksz * data->blocks;
 854	data->bytes_xfered = 0;
 855
 856	clks = (unsigned long long)data->timeout_ns * host->cclk;
 857	do_div(clks, NSEC_PER_SEC);
 858
 859	timeout = data->timeout_clks + (unsigned int)clks;
 860
 861	base = host->base;
 862	writel(timeout, base + MMCIDATATIMER);
 863	writel(host->size, base + MMCIDATALENGTH);
 864
 865	blksz_bits = ffs(data->blksz) - 1;
 866	BUG_ON(1 << blksz_bits != data->blksz);
 867
 868	if (variant->blksz_datactrl16)
 869		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 870	else if (variant->blksz_datactrl4)
 871		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
 872	else
 873		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 874
 875	if (data->flags & MMC_DATA_READ)
 876		datactrl |= MCI_DPSM_DIRECTION;
 877
 878	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
 879		u32 clk;
 880
 881		datactrl |= variant->datactrl_mask_sdio;
 882
 883		/*
 884		 * The ST Micro variant for SDIO small write transfers
 885		 * needs to have clock H/W flow control disabled,
 886		 * otherwise the transfer will not start. The threshold
 887		 * depends on the rate of MCLK.
 888		 */
 889		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
 890		    (host->size < 8 ||
 891		     (host->size <= 8 && host->mclk > 50000000)))
 892			clk = host->clk_reg & ~variant->clkreg_enable;
 893		else
 894			clk = host->clk_reg | variant->clkreg_enable;
 895
 896		mmci_write_clkreg(host, clk);
 897	}
 898
 899	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 900	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 901		datactrl |= variant->datactrl_mask_ddrmode;
 902
 903	/*
 904	 * Attempt to use DMA operation mode, if this
 905	 * should fail, fall back to PIO mode
 906	 */
 907	if (!mmci_dma_start_data(host, datactrl))
 908		return;
 909
 910	/* IRQ mode, map the SG list for CPU reading/writing */
 911	mmci_init_sg(host, data);
 912
 913	if (data->flags & MMC_DATA_READ) {
 914		irqmask = MCI_RXFIFOHALFFULLMASK;
 915
 916		/*
 917		 * If we have less than the fifo 'half-full' threshold to
 918		 * transfer, trigger a PIO interrupt as soon as any data
 919		 * is available.
 920		 */
 921		if (host->size < variant->fifohalfsize)
 922			irqmask |= MCI_RXDATAAVLBLMASK;
 923	} else {
 924		/*
 925		 * We don't actually need to include "FIFO empty" here
 926		 * since its implicit in "FIFO half empty".
 927		 */
 928		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 929	}
 930
 931	mmci_write_datactrlreg(host, datactrl);
 932	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 933	mmci_set_mask1(host, irqmask);
 934}
 935
 936static void
 937mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 938{
 939	void __iomem *base = host->base;
 940
 941	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 942	    cmd->opcode, cmd->arg, cmd->flags);
 943
 944	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 945		writel(0, base + MMCICOMMAND);
 946		mmci_reg_delay(host);
 947	}
 948
 949	c |= cmd->opcode | MCI_CPSM_ENABLE;
 
 
 
 
 950	if (cmd->flags & MMC_RSP_PRESENT) {
 951		if (cmd->flags & MMC_RSP_136)
 952			c |= MCI_CPSM_LONGRSP;
 953		c |= MCI_CPSM_RESPONSE;
 
 
 
 954	}
 955	if (/*interrupt*/0)
 956		c |= MCI_CPSM_INTERRUPT;
 957
 958	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
 959		c |= host->variant->data_cmd_enable;
 960
 961	host->cmd = cmd;
 962
 963	writel(cmd->arg, base + MMCIARGUMENT);
 964	writel(c, base + MMCICOMMAND);
 965}
 966
 
 
 
 
 
 
 967static void
 968mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 969	      unsigned int status)
 970{
 
 
 971	/* Make sure we have data to handle */
 972	if (!data)
 973		return;
 974
 975	/* First check for errors */
 976	if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
 977		      host->variant->start_err |
 978		      MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
 
 
 979		u32 remain, success;
 980
 981		/* Terminate the DMA transfer */
 982		if (dma_inprogress(host)) {
 983			mmci_dma_data_error(host);
 984			mmci_dma_unmap(host, data);
 985		}
 986
 987		/*
 988		 * Calculate how far we are into the transfer.  Note that
 989		 * the data counter gives the number of bytes transferred
 990		 * on the MMC bus, not on the host side.  On reads, this
 991		 * can be as much as a FIFO-worth of data ahead.  This
 992		 * matters for FIFO overruns only.
 993		 */
 994		remain = readl(host->base + MMCIDATACNT);
 995		success = data->blksz * data->blocks - remain;
 
 
 
 
 996
 997		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 998			status, success);
 999		if (status & MCI_DATACRCFAIL) {
1000			/* Last block was not successful */
1001			success -= 1;
1002			data->error = -EILSEQ;
1003		} else if (status & MCI_DATATIMEOUT) {
1004			data->error = -ETIMEDOUT;
1005		} else if (status & MCI_STARTBITERR) {
1006			data->error = -ECOMM;
1007		} else if (status & MCI_TXUNDERRUN) {
1008			data->error = -EIO;
1009		} else if (status & MCI_RXOVERRUN) {
1010			if (success > host->variant->fifosize)
1011				success -= host->variant->fifosize;
1012			else
1013				success = 0;
1014			data->error = -EIO;
1015		}
1016		data->bytes_xfered = round_down(success, data->blksz);
1017	}
1018
1019	if (status & MCI_DATABLOCKEND)
1020		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022	if (status & MCI_DATAEND || data->error) {
1023		if (dma_inprogress(host))
1024			mmci_dma_finalize(host, data);
1025		mmci_stop_data(host);
1026
1027		if (!data->error)
1028			/* The error clause is handled above, success! */
1029			data->bytes_xfered = data->blksz * data->blocks;
1030
1031		if (!data->stop || host->mrq->sbc) {
 
 
 
 
 
1032			mmci_request_end(host, data->mrq);
1033		} else {
1034			mmci_start_command(host, data->stop, 0);
1035		}
1036	}
1037}
1038
1039static void
1040mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041	     unsigned int status)
1042{
1043	void __iomem *base = host->base;
1044	bool sbc;
1045
1046	if (!cmd)
1047		return;
1048
1049	sbc = (cmd == host->mrq->sbc);
 
1050
1051	/*
1052	 * We need to be one of these interrupts to be considered worth
1053	 * handling. Note that we tag on any latent IRQs postponed
1054	 * due to waiting for busy status.
1055	 */
1056	if (!((status|host->busy_status) &
1057	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058		return;
1059
1060	/*
1061	 * ST Micro variant: handle busy detection.
1062	 */
1063	if (host->variant->busy_detect) {
1064		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066		/* We are busy with a command, return */
1067		if (host->busy_status &&
1068		    (status & host->variant->busy_detect_flag))
1069			return;
1070
1071		/*
1072		 * We were not busy, but we now got a busy response on
1073		 * something that was not an error, and we double-check
1074		 * that the special busy status bit is still set before
1075		 * proceeding.
 
 
 
 
 
 
 
1076		 */
1077		if (!host->busy_status && busy_resp &&
1078		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081			/* Clear the busy start IRQ */
1082			writel(host->variant->busy_detect_mask,
1083			       host->base + MMCICLEAR);
1084
1085			/* Unmask the busy end IRQ */
1086			writel(readl(base + MMCIMASK0) |
1087			       host->variant->busy_detect_mask,
1088			       base + MMCIMASK0);
1089			/*
1090			 * Now cache the last response status code (until
1091			 * the busy bit goes low), and return.
1092			 */
1093			host->busy_status =
1094				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095			return;
1096		}
1097
1098		/*
1099		 * At this point we are not busy with a command, we have
1100		 * not received a new busy request, clear and mask the busy
1101		 * end IRQ and fall through to process the IRQ.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1102		 */
1103		if (host->busy_status) {
1104
1105			writel(host->variant->busy_detect_mask,
1106			       host->base + MMCICLEAR);
1107
1108			writel(readl(base + MMCIMASK0) &
1109			       ~host->variant->busy_detect_mask,
1110			       base + MMCIMASK0);
1111			host->busy_status = 0;
1112		}
1113	}
1114
1115	host->cmd = NULL;
1116
1117	if (status & MCI_CMDTIMEOUT) {
1118		cmd->error = -ETIMEDOUT;
1119	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120		cmd->error = -EILSEQ;
1121	} else {
1122		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126	}
1127
1128	if ((!sbc && !cmd->data) || cmd->error) {
1129		if (host->data) {
1130			/* Terminate the DMA transfer */
1131			if (dma_inprogress(host)) {
1132				mmci_dma_data_error(host);
1133				mmci_dma_unmap(host, host->data);
1134			}
1135			mmci_stop_data(host);
 
 
 
 
1136		}
1137		mmci_request_end(host, host->mrq);
1138	} else if (sbc) {
1139		mmci_start_command(host, host->mrq->cmd, 0);
1140	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 
1141		mmci_start_data(host, cmd->data);
1142	}
1143}
1144
1145static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146{
1147	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148}
1149
1150static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151{
1152	/*
1153	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154	 * from the fifo range should be used
1155	 */
1156	if (status & MCI_RXFIFOHALFFULL)
1157		return host->variant->fifohalfsize;
1158	else if (status & MCI_RXDATAAVLBL)
1159		return 4;
1160
1161	return 0;
1162}
1163
1164static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165{
1166	void __iomem *base = host->base;
1167	char *ptr = buffer;
1168	u32 status = readl(host->base + MMCISTATUS);
1169	int host_remain = host->size;
1170
1171	do {
1172		int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174		if (count > remain)
1175			count = remain;
1176
1177		if (count <= 0)
1178			break;
1179
1180		/*
1181		 * SDIO especially may want to send something that is
1182		 * not divisible by 4 (as opposed to card sectors
1183		 * etc). Therefore make sure to always read the last bytes
1184		 * while only doing full 32-bit reads towards the FIFO.
1185		 */
1186		if (unlikely(count & 0x3)) {
1187			if (count < 4) {
1188				unsigned char buf[4];
1189				ioread32_rep(base + MMCIFIFO, buf, 1);
1190				memcpy(ptr, buf, count);
1191			} else {
1192				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193				count &= ~0x3;
1194			}
1195		} else {
1196			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197		}
1198
1199		ptr += count;
1200		remain -= count;
1201		host_remain -= count;
1202
1203		if (remain == 0)
1204			break;
1205
1206		status = readl(base + MMCISTATUS);
1207	} while (status & MCI_RXDATAAVLBL);
1208
1209	return ptr - buffer;
1210}
1211
1212static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213{
1214	struct variant_data *variant = host->variant;
1215	void __iomem *base = host->base;
1216	char *ptr = buffer;
1217
1218	do {
1219		unsigned int count, maxcnt;
1220
1221		maxcnt = status & MCI_TXFIFOEMPTY ?
1222			 variant->fifosize : variant->fifohalfsize;
1223		count = min(remain, maxcnt);
1224
1225		/*
1226		 * SDIO especially may want to send something that is
1227		 * not divisible by 4 (as opposed to card sectors
1228		 * etc), and the FIFO only accept full 32-bit writes.
1229		 * So compensate by adding +3 on the count, a single
1230		 * byte become a 32bit write, 7 bytes will be two
1231		 * 32bit writes etc.
1232		 */
1233		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235		ptr += count;
1236		remain -= count;
1237
1238		if (remain == 0)
1239			break;
1240
1241		status = readl(base + MMCISTATUS);
1242	} while (status & MCI_TXFIFOHALFEMPTY);
1243
1244	return ptr - buffer;
1245}
1246
1247/*
1248 * PIO data transfer IRQ handler.
1249 */
1250static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251{
1252	struct mmci_host *host = dev_id;
1253	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254	struct variant_data *variant = host->variant;
1255	void __iomem *base = host->base;
1256	unsigned long flags;
1257	u32 status;
1258
1259	status = readl(base + MMCISTATUS);
1260
1261	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263	local_irq_save(flags);
1264
1265	do {
1266		unsigned int remain, len;
1267		char *buffer;
1268
1269		/*
1270		 * For write, we only need to test the half-empty flag
1271		 * here - if the FIFO is completely empty, then by
1272		 * definition it is more than half empty.
1273		 *
1274		 * For read, check for data available.
1275		 */
1276		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277			break;
1278
1279		if (!sg_miter_next(sg_miter))
1280			break;
1281
1282		buffer = sg_miter->addr;
1283		remain = sg_miter->length;
1284
1285		len = 0;
1286		if (status & MCI_RXACTIVE)
1287			len = mmci_pio_read(host, buffer, remain);
1288		if (status & MCI_TXACTIVE)
1289			len = mmci_pio_write(host, buffer, remain, status);
1290
1291		sg_miter->consumed = len;
1292
1293		host->size -= len;
1294		remain -= len;
1295
1296		if (remain)
1297			break;
1298
1299		status = readl(base + MMCISTATUS);
1300	} while (1);
1301
1302	sg_miter_stop(sg_miter);
1303
1304	local_irq_restore(flags);
1305
1306	/*
1307	 * If we have less than the fifo 'half-full' threshold to transfer,
1308	 * trigger a PIO interrupt as soon as any data is available.
1309	 */
1310	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313	/*
1314	 * If we run out of data, disable the data IRQs; this
1315	 * prevents a race where the FIFO becomes empty before
1316	 * the chip itself has disabled the data path, and
1317	 * stops us racing with our data end IRQ.
1318	 */
1319	if (host->size == 0) {
1320		mmci_set_mask1(host, 0);
1321		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322	}
1323
1324	return IRQ_HANDLED;
1325}
1326
1327/*
1328 * Handle completion of command and data transfers.
1329 */
1330static irqreturn_t mmci_irq(int irq, void *dev_id)
1331{
1332	struct mmci_host *host = dev_id;
1333	u32 status;
1334	int ret = 0;
1335
1336	spin_lock(&host->lock);
1337
1338	do {
1339		status = readl(host->base + MMCISTATUS);
1340
1341		if (host->singleirq) {
1342			if (status & host->mask1_reg)
1343				mmci_pio_irq(irq, dev_id);
1344
1345			status &= ~MCI_IRQ1MASK;
1346		}
1347
1348		/*
1349		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351		 * detection variant is handled. Considering the HW seems to be
1352		 * triggering the IRQ on both edges while monitoring DAT0 for
1353		 * busy completion and that same status bit is used to monitor
1354		 * start and end of busy detection, special care must be taken
1355		 * to make sure that both start and end interrupts are always
1356		 * cleared one after the other.
1357		 */
1358		status &= readl(host->base + MMCIMASK0);
1359		if (host->variant->busy_detect)
1360			writel(status & ~host->variant->busy_detect_mask,
1361			       host->base + MMCICLEAR);
1362		else
1363			writel(status, host->base + MMCICLEAR);
1364
1365		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367		if (host->variant->reversed_irq_handling) {
1368			mmci_data_irq(host, host->data, status);
1369			mmci_cmd_irq(host, host->cmd, status);
1370		} else {
1371			mmci_cmd_irq(host, host->cmd, status);
1372			mmci_data_irq(host, host->data, status);
1373		}
1374
1375		/*
1376		 * Don't poll for busy completion in irq context.
 
1377		 */
1378		if (host->variant->busy_detect && host->busy_status)
1379			status &= ~host->variant->busy_detect_flag;
1380
1381		ret = 1;
1382	} while (status);
1383
1384	spin_unlock(&host->lock);
1385
1386	return IRQ_RETVAL(ret);
1387}
1388
1389static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390{
1391	struct mmci_host *host = mmc_priv(mmc);
1392	unsigned long flags;
1393
1394	WARN_ON(host->mrq != NULL);
1395
1396	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397	if (mrq->cmd->error) {
1398		mmc_request_done(mmc, mrq);
1399		return;
1400	}
1401
1402	spin_lock_irqsave(&host->lock, flags);
1403
1404	host->mrq = mrq;
1405
1406	if (mrq->data)
1407		mmci_get_next_data(host, mrq->data);
1408
1409	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
 
1410		mmci_start_data(host, mrq->data);
1411
1412	if (mrq->sbc)
1413		mmci_start_command(host, mrq->sbc, 0);
1414	else
1415		mmci_start_command(host, mrq->cmd, 0);
1416
1417	spin_unlock_irqrestore(&host->lock, flags);
1418}
1419
1420static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421{
1422	struct mmci_host *host = mmc_priv(mmc);
1423	struct variant_data *variant = host->variant;
1424	u32 pwr = 0;
1425	unsigned long flags;
1426	int ret;
1427
1428	if (host->plat->ios_handler &&
1429		host->plat->ios_handler(mmc_dev(mmc), ios))
1430			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432	switch (ios->power_mode) {
1433	case MMC_POWER_OFF:
1434		if (!IS_ERR(mmc->supply.vmmc))
1435			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438			regulator_disable(mmc->supply.vqmmc);
1439			host->vqmmc_enabled = false;
1440		}
1441
1442		break;
1443	case MMC_POWER_UP:
1444		if (!IS_ERR(mmc->supply.vmmc))
1445			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
1447		/*
1448		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449		 * and instead uses MCI_PWR_ON so apply whatever value is
1450		 * configured in the variant data.
1451		 */
1452		pwr |= variant->pwrreg_powerup;
1453
1454		break;
1455	case MMC_POWER_ON:
1456		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457			ret = regulator_enable(mmc->supply.vqmmc);
1458			if (ret < 0)
1459				dev_err(mmc_dev(mmc),
1460					"failed to enable vqmmc regulator\n");
1461			else
1462				host->vqmmc_enabled = true;
1463		}
1464
1465		pwr |= MCI_PWR_ON;
1466		break;
1467	}
1468
1469	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470		/*
1471		 * The ST Micro variant has some additional bits
1472		 * indicating signal direction for the signals in
1473		 * the SD/MMC bus and feedback-clock usage.
1474		 */
1475		pwr |= host->pwr_reg_add;
1476
1477		if (ios->bus_width == MMC_BUS_WIDTH_4)
1478			pwr &= ~MCI_ST_DATA74DIREN;
1479		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480			pwr &= (~MCI_ST_DATA74DIREN &
1481				~MCI_ST_DATA31DIREN &
1482				~MCI_ST_DATA2DIREN);
1483	}
1484
1485	if (variant->opendrain) {
1486		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487			pwr |= variant->opendrain;
1488	} else {
1489		/*
1490		 * If the variant cannot configure the pads by its own, then we
1491		 * expect the pinctrl to be able to do that for us
1492		 */
1493		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495		else
1496			pinctrl_select_state(host->pinctrl, host->pins_default);
1497	}
1498
1499	/*
1500	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501	 * gating the clock, the MCI_PWR_ON bit is cleared.
1502	 */
1503	if (!ios->clock && variant->pwrreg_clkgate)
1504		pwr &= ~MCI_PWR_ON;
1505
1506	if (host->variant->explicit_mclk_control &&
1507	    ios->clock != host->clock_cache) {
1508		ret = clk_set_rate(host->clk, ios->clock);
1509		if (ret < 0)
1510			dev_err(mmc_dev(host->mmc),
1511				"Error setting clock rate (%d)\n", ret);
1512		else
1513			host->mclk = clk_get_rate(host->clk);
1514	}
1515	host->clock_cache = ios->clock;
1516
1517	spin_lock_irqsave(&host->lock, flags);
1518
1519	mmci_set_clkreg(host, ios->clock);
1520	mmci_write_pwrreg(host, pwr);
 
 
 
 
 
 
 
 
1521	mmci_reg_delay(host);
1522
1523	spin_unlock_irqrestore(&host->lock, flags);
1524}
1525
1526static int mmci_get_cd(struct mmc_host *mmc)
1527{
1528	struct mmci_host *host = mmc_priv(mmc);
1529	struct mmci_platform_data *plat = host->plat;
1530	unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532	if (status == -ENOSYS) {
1533		if (!plat->status)
1534			return 1; /* Assume always present */
1535
1536		status = plat->status(mmc_dev(host->mmc));
1537	}
1538	return status;
1539}
1540
1541static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542{
1543	int ret = 0;
1544
1545	if (!IS_ERR(mmc->supply.vqmmc)) {
1546
1547		switch (ios->signal_voltage) {
1548		case MMC_SIGNAL_VOLTAGE_330:
1549			ret = regulator_set_voltage(mmc->supply.vqmmc,
1550						2700000, 3600000);
1551			break;
1552		case MMC_SIGNAL_VOLTAGE_180:
1553			ret = regulator_set_voltage(mmc->supply.vqmmc,
1554						1700000, 1950000);
1555			break;
1556		case MMC_SIGNAL_VOLTAGE_120:
1557			ret = regulator_set_voltage(mmc->supply.vqmmc,
1558						1100000, 1300000);
1559			break;
1560		}
1561
1562		if (ret)
1563			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1564	}
1565
1566	return ret;
1567}
1568
1569static struct mmc_host_ops mmci_ops = {
1570	.request	= mmci_request,
1571	.pre_req	= mmci_pre_request,
1572	.post_req	= mmci_post_request,
1573	.set_ios	= mmci_set_ios,
1574	.get_ro		= mmc_gpio_get_ro,
1575	.get_cd		= mmci_get_cd,
1576	.start_signal_voltage_switch = mmci_sig_volt_switch,
1577};
1578
1579static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1580{
1581	struct mmci_host *host = mmc_priv(mmc);
1582	int ret = mmc_of_parse(mmc);
1583
1584	if (ret)
1585		return ret;
1586
1587	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598		host->pwr_reg_add |= MCI_ST_FBCLKEN;
 
 
 
 
 
 
1599
1600	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605	return 0;
1606}
1607
1608static int mmci_probe(struct amba_device *dev,
1609	const struct amba_id *id)
1610{
1611	struct mmci_platform_data *plat = dev->dev.platform_data;
1612	struct device_node *np = dev->dev.of_node;
1613	struct variant_data *variant = id->data;
1614	struct mmci_host *host;
1615	struct mmc_host *mmc;
1616	int ret;
1617
1618	/* Must have platform data or Device Tree. */
1619	if (!plat && !np) {
1620		dev_err(&dev->dev, "No plat data or DT found\n");
1621		return -EINVAL;
1622	}
1623
1624	if (!plat) {
1625		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626		if (!plat)
1627			return -ENOMEM;
1628	}
1629
1630	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631	if (!mmc)
1632		return -ENOMEM;
1633
1634	ret = mmci_of_parse(np, mmc);
1635	if (ret)
1636		goto host_free;
1637
1638	host = mmc_priv(mmc);
1639	host->mmc = mmc;
1640
1641	/*
1642	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643	 * pins can be set accordingly using pinctrl
1644	 */
1645	if (!variant->opendrain) {
1646		host->pinctrl = devm_pinctrl_get(&dev->dev);
1647		if (IS_ERR(host->pinctrl)) {
1648			dev_err(&dev->dev, "failed to get pinctrl");
1649			ret = PTR_ERR(host->pinctrl);
1650			goto host_free;
1651		}
1652
1653		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1654							  PINCTRL_STATE_DEFAULT);
1655		if (IS_ERR(host->pins_default)) {
1656			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1657			ret = PTR_ERR(host->pins_default);
1658			goto host_free;
1659		}
1660
1661		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1662							    MMCI_PINCTRL_STATE_OPENDRAIN);
1663		if (IS_ERR(host->pins_opendrain)) {
1664			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1665			ret = PTR_ERR(host->pins_opendrain);
1666			goto host_free;
1667		}
1668	}
1669
1670	host->hw_designer = amba_manf(dev);
1671	host->hw_revision = amba_rev(dev);
1672	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1673	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1674
1675	host->clk = devm_clk_get(&dev->dev, NULL);
1676	if (IS_ERR(host->clk)) {
1677		ret = PTR_ERR(host->clk);
1678		goto host_free;
1679	}
1680
1681	ret = clk_prepare_enable(host->clk);
1682	if (ret)
1683		goto host_free;
1684
1685	if (variant->qcom_fifo)
1686		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1687	else
1688		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1689
1690	host->plat = plat;
1691	host->variant = variant;
1692	host->mclk = clk_get_rate(host->clk);
1693	/*
1694	 * According to the spec, mclk is max 100 MHz,
1695	 * so we try to adjust the clock down to this,
1696	 * (if possible).
1697	 */
1698	if (host->mclk > variant->f_max) {
1699		ret = clk_set_rate(host->clk, variant->f_max);
1700		if (ret < 0)
1701			goto clk_disable;
1702		host->mclk = clk_get_rate(host->clk);
1703		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704			host->mclk);
1705	}
1706
1707	host->phybase = dev->res.start;
1708	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1709	if (IS_ERR(host->base)) {
1710		ret = PTR_ERR(host->base);
1711		goto clk_disable;
1712	}
1713
 
 
 
1714	/*
1715	 * The ARM and ST versions of the block have slightly different
1716	 * clock divider equations which means that the minimum divider
1717	 * differs too.
1718	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1719	 */
1720	if (variant->st_clkdiv)
1721		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
 
 
1722	else if (variant->explicit_mclk_control)
1723		mmc->f_min = clk_round_rate(host->clk, 100000);
1724	else
1725		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1726	/*
1727	 * If no maximum operating frequency is supplied, fall back to use
1728	 * the module parameter, which has a (low) default value in case it
1729	 * is not specified. Either value must not exceed the clock rate into
1730	 * the block, of course.
1731	 */
1732	if (mmc->f_max)
1733		mmc->f_max = variant->explicit_mclk_control ?
1734				min(variant->f_max, mmc->f_max) :
1735				min(host->mclk, mmc->f_max);
1736	else
1737		mmc->f_max = variant->explicit_mclk_control ?
1738				fmax : min(host->mclk, fmax);
1739
1740
1741	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1742
 
 
 
 
 
 
1743	/* Get regulators and the supported OCR mask */
1744	ret = mmc_regulator_get_supply(mmc);
1745	if (ret)
1746		goto clk_disable;
1747
1748	if (!mmc->ocr_avail)
1749		mmc->ocr_avail = plat->ocr_mask;
1750	else if (plat->ocr_mask)
1751		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1752
1753	/* DT takes precedence over platform data. */
1754	if (!np) {
1755		if (!plat->cd_invert)
1756			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1757		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1758	}
1759
1760	/* We support these capabilities. */
1761	mmc->caps |= MMC_CAP_CMD23;
1762
1763	/*
1764	 * Enable busy detection.
1765	 */
1766	if (variant->busy_detect) {
1767		mmci_ops.card_busy = mmci_card_busy;
1768		/*
1769		 * Not all variants have a flag to enable busy detection
1770		 * in the DPSM, but if they do, set it here.
1771		 */
1772		if (variant->busy_dpsm_flag)
1773			mmci_write_datactrlreg(host,
1774					       host->variant->busy_dpsm_flag);
1775		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1776		mmc->max_busy_timeout = 0;
1777	}
1778
 
 
 
 
 
1779	mmc->ops = &mmci_ops;
1780
1781	/* We support these PM capabilities. */
1782	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1783
1784	/*
1785	 * We can do SGIO
1786	 */
1787	mmc->max_segs = NR_SG;
1788
1789	/*
1790	 * Since only a certain number of bits are valid in the data length
1791	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1792	 * single request.
1793	 */
1794	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1795
1796	/*
1797	 * Set the maximum segment size.  Since we aren't doing DMA
1798	 * (yet) we are only limited by the data length register.
1799	 */
1800	mmc->max_seg_size = mmc->max_req_size;
1801
1802	/*
1803	 * Block size can be up to 2048 bytes, but must be a power of two.
1804	 */
1805	mmc->max_blk_size = 1 << 11;
1806
1807	/*
1808	 * Limit the number of blocks transferred so that we don't overflow
1809	 * the maximum request size.
1810	 */
1811	mmc->max_blk_count = mmc->max_req_size >> 11;
1812
1813	spin_lock_init(&host->lock);
1814
1815	writel(0, host->base + MMCIMASK0);
1816
1817	if (variant->mmcimask1)
1818		writel(0, host->base + MMCIMASK1);
1819
1820	writel(0xfff, host->base + MMCICLEAR);
1821
1822	/*
1823	 * If:
1824	 * - not using DT but using a descriptor table, or
1825	 * - using a table of descriptors ALONGSIDE DT, or
1826	 * look up these descriptors named "cd" and "wp" right here, fail
1827	 * silently of these do not exist and proceed to try platform data
1828	 */
1829	if (!np) {
1830		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1831		if (ret < 0) {
1832			if (ret == -EPROBE_DEFER)
1833				goto clk_disable;
1834			else if (gpio_is_valid(plat->gpio_cd)) {
1835				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1836				if (ret)
1837					goto clk_disable;
1838			}
1839		}
1840
1841		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1842		if (ret < 0) {
1843			if (ret == -EPROBE_DEFER)
1844				goto clk_disable;
1845			else if (gpio_is_valid(plat->gpio_wp)) {
1846				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1847				if (ret)
1848					goto clk_disable;
1849			}
1850		}
1851	}
1852
1853	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1854			DRIVER_NAME " (cmd)", host);
1855	if (ret)
1856		goto clk_disable;
1857
1858	if (!dev->irq[1])
1859		host->singleirq = true;
1860	else {
1861		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1862				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1863		if (ret)
1864			goto clk_disable;
1865	}
1866
1867	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1868
1869	amba_set_drvdata(dev, mmc);
1870
1871	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1873		 amba_rev(dev), (unsigned long long)dev->res.start,
1874		 dev->irq[0], dev->irq[1]);
1875
1876	mmci_dma_setup(host);
1877
1878	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1879	pm_runtime_use_autosuspend(&dev->dev);
1880
1881	mmc_add_host(mmc);
1882
1883	pm_runtime_put(&dev->dev);
1884	return 0;
1885
1886 clk_disable:
1887	clk_disable_unprepare(host->clk);
1888 host_free:
1889	mmc_free_host(mmc);
1890	return ret;
1891}
1892
1893static int mmci_remove(struct amba_device *dev)
1894{
1895	struct mmc_host *mmc = amba_get_drvdata(dev);
1896
1897	if (mmc) {
1898		struct mmci_host *host = mmc_priv(mmc);
1899		struct variant_data *variant = host->variant;
1900
1901		/*
1902		 * Undo pm_runtime_put() in probe.  We use the _sync
1903		 * version here so that we can access the primecell.
1904		 */
1905		pm_runtime_get_sync(&dev->dev);
1906
1907		mmc_remove_host(mmc);
1908
1909		writel(0, host->base + MMCIMASK0);
1910
1911		if (variant->mmcimask1)
1912			writel(0, host->base + MMCIMASK1);
1913
1914		writel(0, host->base + MMCICOMMAND);
1915		writel(0, host->base + MMCIDATACTRL);
1916
1917		mmci_dma_release(host);
1918		clk_disable_unprepare(host->clk);
1919		mmc_free_host(mmc);
1920	}
1921
1922	return 0;
1923}
1924
1925#ifdef CONFIG_PM
1926static void mmci_save(struct mmci_host *host)
1927{
1928	unsigned long flags;
1929
1930	spin_lock_irqsave(&host->lock, flags);
1931
1932	writel(0, host->base + MMCIMASK0);
1933	if (host->variant->pwrreg_nopower) {
1934		writel(0, host->base + MMCIDATACTRL);
1935		writel(0, host->base + MMCIPOWER);
1936		writel(0, host->base + MMCICLOCK);
1937	}
1938	mmci_reg_delay(host);
1939
1940	spin_unlock_irqrestore(&host->lock, flags);
1941}
1942
1943static void mmci_restore(struct mmci_host *host)
1944{
1945	unsigned long flags;
1946
1947	spin_lock_irqsave(&host->lock, flags);
1948
1949	if (host->variant->pwrreg_nopower) {
1950		writel(host->clk_reg, host->base + MMCICLOCK);
1951		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1952		writel(host->pwr_reg, host->base + MMCIPOWER);
1953	}
1954	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
 
1955	mmci_reg_delay(host);
1956
1957	spin_unlock_irqrestore(&host->lock, flags);
1958}
1959
1960static int mmci_runtime_suspend(struct device *dev)
1961{
1962	struct amba_device *adev = to_amba_device(dev);
1963	struct mmc_host *mmc = amba_get_drvdata(adev);
1964
1965	if (mmc) {
1966		struct mmci_host *host = mmc_priv(mmc);
1967		pinctrl_pm_select_sleep_state(dev);
1968		mmci_save(host);
1969		clk_disable_unprepare(host->clk);
1970	}
1971
1972	return 0;
1973}
1974
1975static int mmci_runtime_resume(struct device *dev)
1976{
1977	struct amba_device *adev = to_amba_device(dev);
1978	struct mmc_host *mmc = amba_get_drvdata(adev);
1979
1980	if (mmc) {
1981		struct mmci_host *host = mmc_priv(mmc);
1982		clk_prepare_enable(host->clk);
1983		mmci_restore(host);
1984		pinctrl_pm_select_default_state(dev);
1985	}
1986
1987	return 0;
1988}
1989#endif
1990
1991static const struct dev_pm_ops mmci_dev_pm_ops = {
1992	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1993				pm_runtime_force_resume)
1994	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1995};
1996
1997static const struct amba_id mmci_ids[] = {
1998	{
1999		.id	= 0x00041180,
2000		.mask	= 0xff0fffff,
2001		.data	= &variant_arm,
2002	},
2003	{
2004		.id	= 0x01041180,
2005		.mask	= 0xff0fffff,
2006		.data	= &variant_arm_extended_fifo,
2007	},
2008	{
2009		.id	= 0x02041180,
2010		.mask	= 0xff0fffff,
2011		.data	= &variant_arm_extended_fifo_hwfc,
2012	},
2013	{
2014		.id	= 0x00041181,
2015		.mask	= 0x000fffff,
2016		.data	= &variant_arm,
2017	},
2018	/* ST Micro variants */
2019	{
2020		.id     = 0x00180180,
2021		.mask   = 0x00ffffff,
2022		.data	= &variant_u300,
2023	},
2024	{
2025		.id     = 0x10180180,
2026		.mask   = 0xf0ffffff,
2027		.data	= &variant_nomadik,
2028	},
2029	{
2030		.id     = 0x00280180,
2031		.mask   = 0x00ffffff,
2032		.data	= &variant_nomadik,
2033	},
2034	{
2035		.id     = 0x00480180,
2036		.mask   = 0xf0ffffff,
2037		.data	= &variant_ux500,
2038	},
2039	{
2040		.id     = 0x10480180,
2041		.mask   = 0xf0ffffff,
2042		.data	= &variant_ux500v2,
2043	},
2044	{
2045		.id     = 0x00880180,
2046		.mask   = 0x00ffffff,
2047		.data	= &variant_stm32,
 
 
 
 
 
2048	},
2049	/* Qualcomm variants */
2050	{
2051		.id     = 0x00051180,
2052		.mask	= 0x000fffff,
2053		.data	= &variant_qcom,
2054	},
2055	{ 0, 0 },
2056};
2057
2058MODULE_DEVICE_TABLE(amba, mmci_ids);
2059
2060static struct amba_driver mmci_driver = {
2061	.drv		= {
2062		.name	= DRIVER_NAME,
2063		.pm	= &mmci_dev_pm_ops,
2064	},
2065	.probe		= mmci_probe,
2066	.remove		= mmci_remove,
2067	.id_table	= mmci_ids,
2068};
2069
2070module_amba_driver(mmci_driver);
2071
2072module_param(fmax, uint, 0444);
2073
2074MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
 
 
 
 
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/slot-gpio.h>
  26#include <linux/amba/bus.h>
  27#include <linux/clk.h>
  28#include <linux/scatterlist.h>
  29#include <linux/of.h>
 
  30#include <linux/regulator/consumer.h>
  31#include <linux/dmaengine.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/amba/mmci.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/types.h>
  36#include <linux/pinctrl/consumer.h>
  37#include <linux/reset.h>
  38
  39#include <asm/div64.h>
  40#include <asm/io.h>
  41
  42#include "mmci.h"
 
  43
  44#define DRIVER_NAME "mmci-pl18x"
  45
  46static void mmci_variant_init(struct mmci_host *host);
  47static void ux500v2_variant_init(struct mmci_host *host);
  48
  49static unsigned int fmax = 515633;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51static struct variant_data variant_arm = {
  52	.fifosize		= 16 * 4,
  53	.fifohalfsize		= 8 * 4,
  54	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  55	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  56	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  57	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  58	.datalength_bits	= 16,
  59	.datactrl_blocksz	= 11,
  60	.pwrreg_powerup		= MCI_PWR_UP,
  61	.f_max			= 100000000,
  62	.reversed_irq_handling	= true,
  63	.mmcimask1		= true,
  64	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  65	.start_err		= MCI_STARTBITERR,
  66	.opendrain		= MCI_ROD,
  67	.init			= mmci_variant_init,
  68};
  69
  70static struct variant_data variant_arm_extended_fifo = {
  71	.fifosize		= 128 * 4,
  72	.fifohalfsize		= 64 * 4,
  73	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  74	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  75	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  76	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  77	.datalength_bits	= 16,
  78	.datactrl_blocksz	= 11,
  79	.pwrreg_powerup		= MCI_PWR_UP,
  80	.f_max			= 100000000,
  81	.mmcimask1		= true,
  82	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  83	.start_err		= MCI_STARTBITERR,
  84	.opendrain		= MCI_ROD,
  85	.init			= mmci_variant_init,
  86};
  87
  88static struct variant_data variant_arm_extended_fifo_hwfc = {
  89	.fifosize		= 128 * 4,
  90	.fifohalfsize		= 64 * 4,
  91	.clkreg_enable		= MCI_ARM_HWFCEN,
  92	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  93	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  94	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  95	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  96	.datalength_bits	= 16,
  97	.datactrl_blocksz	= 11,
  98	.pwrreg_powerup		= MCI_PWR_UP,
  99	.f_max			= 100000000,
 100	.mmcimask1		= true,
 101	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 102	.start_err		= MCI_STARTBITERR,
 103	.opendrain		= MCI_ROD,
 104	.init			= mmci_variant_init,
 105};
 106
 107static struct variant_data variant_u300 = {
 108	.fifosize		= 16 * 4,
 109	.fifohalfsize		= 8 * 4,
 110	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 111	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 112	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 113	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 114	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 115	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 116	.datalength_bits	= 16,
 117	.datactrl_blocksz	= 11,
 118	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 119	.st_sdio			= true,
 120	.pwrreg_powerup		= MCI_PWR_ON,
 121	.f_max			= 100000000,
 122	.signal_direction	= true,
 123	.pwrreg_clkgate		= true,
 124	.pwrreg_nopower		= true,
 125	.mmcimask1		= true,
 126	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 127	.start_err		= MCI_STARTBITERR,
 128	.opendrain		= MCI_OD,
 129	.init			= mmci_variant_init,
 130};
 131
 132static struct variant_data variant_nomadik = {
 133	.fifosize		= 16 * 4,
 134	.fifohalfsize		= 8 * 4,
 135	.clkreg			= MCI_CLK_ENABLE,
 136	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 137	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 138	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 139	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 140	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 141	.datalength_bits	= 24,
 142	.datactrl_blocksz	= 11,
 143	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 144	.st_sdio		= true,
 145	.st_clkdiv		= true,
 146	.pwrreg_powerup		= MCI_PWR_ON,
 147	.f_max			= 100000000,
 148	.signal_direction	= true,
 149	.pwrreg_clkgate		= true,
 150	.pwrreg_nopower		= true,
 151	.mmcimask1		= true,
 152	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 153	.start_err		= MCI_STARTBITERR,
 154	.opendrain		= MCI_OD,
 155	.init			= mmci_variant_init,
 156};
 157
 158static struct variant_data variant_ux500 = {
 159	.fifosize		= 30 * 4,
 160	.fifohalfsize		= 8 * 4,
 161	.clkreg			= MCI_CLK_ENABLE,
 162	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 163	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 164	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 165	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 166	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 167	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 168	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 169	.datalength_bits	= 24,
 170	.datactrl_blocksz	= 11,
 171	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 172	.st_sdio		= true,
 173	.st_clkdiv		= true,
 174	.pwrreg_powerup		= MCI_PWR_ON,
 175	.f_max			= 100000000,
 176	.signal_direction	= true,
 177	.pwrreg_clkgate		= true,
 178	.busy_detect		= true,
 179	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 180	.busy_detect_flag	= MCI_ST_CARDBUSY,
 181	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 182	.pwrreg_nopower		= true,
 183	.mmcimask1		= true,
 184	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 185	.start_err		= MCI_STARTBITERR,
 186	.opendrain		= MCI_OD,
 187	.init			= mmci_variant_init,
 188};
 189
 190static struct variant_data variant_ux500v2 = {
 191	.fifosize		= 30 * 4,
 192	.fifohalfsize		= 8 * 4,
 193	.clkreg			= MCI_CLK_ENABLE,
 194	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 195	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 196	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 197	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 198	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 199	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 200	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 201	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 202	.datalength_bits	= 24,
 203	.datactrl_blocksz	= 11,
 204	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 205	.st_sdio		= true,
 206	.st_clkdiv		= true,
 
 207	.pwrreg_powerup		= MCI_PWR_ON,
 208	.f_max			= 100000000,
 209	.signal_direction	= true,
 210	.pwrreg_clkgate		= true,
 211	.busy_detect		= true,
 212	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 213	.busy_detect_flag	= MCI_ST_CARDBUSY,
 214	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 215	.pwrreg_nopower		= true,
 216	.mmcimask1		= true,
 217	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 218	.start_err		= MCI_STARTBITERR,
 219	.opendrain		= MCI_OD,
 220	.init			= ux500v2_variant_init,
 221};
 222
 223static struct variant_data variant_stm32 = {
 224	.fifosize		= 32 * 4,
 225	.fifohalfsize		= 8 * 4,
 226	.clkreg			= MCI_CLK_ENABLE,
 227	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 228	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 229	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 230	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 231	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 232	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 233	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 234	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 235	.datalength_bits	= 24,
 236	.datactrl_blocksz	= 11,
 237	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 238	.st_sdio		= true,
 239	.st_clkdiv		= true,
 240	.pwrreg_powerup		= MCI_PWR_ON,
 241	.f_max			= 48000000,
 242	.pwrreg_clkgate		= true,
 243	.pwrreg_nopower		= true,
 244	.init			= mmci_variant_init,
 245};
 246
 247static struct variant_data variant_stm32_sdmmc = {
 248	.fifosize		= 16 * 4,
 249	.fifohalfsize		= 8 * 4,
 250	.f_max			= 208000000,
 251	.stm32_clkdiv		= true,
 252	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 253	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 254	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 255	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 256	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 257	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 258	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 259	.datactrl_first		= true,
 260	.datacnt_useless	= true,
 261	.datalength_bits	= 25,
 262	.datactrl_blocksz	= 14,
 263	.stm32_idmabsize_mask	= GENMASK(12, 5),
 264	.init			= sdmmc_variant_init,
 265};
 266
 267static struct variant_data variant_qcom = {
 268	.fifosize		= 16 * 4,
 269	.fifohalfsize		= 8 * 4,
 270	.clkreg			= MCI_CLK_ENABLE,
 271	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 272				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 273	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 274	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 275	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 276	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 277	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 278	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 279	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 
 280	.datalength_bits	= 24,
 281	.datactrl_blocksz	= 11,
 282	.pwrreg_powerup		= MCI_PWR_UP,
 283	.f_max			= 208000000,
 284	.explicit_mclk_control	= true,
 285	.qcom_fifo		= true,
 286	.qcom_dml		= true,
 287	.mmcimask1		= true,
 288	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 289	.start_err		= MCI_STARTBITERR,
 290	.opendrain		= MCI_ROD,
 291	.init			= qcom_variant_init,
 292};
 293
 294/* Busy detection for the ST Micro variant */
 295static int mmci_card_busy(struct mmc_host *mmc)
 296{
 297	struct mmci_host *host = mmc_priv(mmc);
 298	unsigned long flags;
 299	int busy = 0;
 300
 301	spin_lock_irqsave(&host->lock, flags);
 302	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 303		busy = 1;
 304	spin_unlock_irqrestore(&host->lock, flags);
 305
 306	return busy;
 307}
 308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309static void mmci_reg_delay(struct mmci_host *host)
 310{
 311	/*
 312	 * According to the spec, at least three feedback clock cycles
 313	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 314	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 315	 * Worst delay time during card init is at 100 kHz => 30 us.
 316	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 317	 */
 318	if (host->cclk < 25000000)
 319		udelay(30);
 320	else
 321		ndelay(120);
 322}
 323
 324/*
 325 * This must be called with host->lock held
 326 */
 327void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 328{
 329	if (host->clk_reg != clk) {
 330		host->clk_reg = clk;
 331		writel(clk, host->base + MMCICLOCK);
 332	}
 333}
 334
 335/*
 336 * This must be called with host->lock held
 337 */
 338void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 339{
 340	if (host->pwr_reg != pwr) {
 341		host->pwr_reg = pwr;
 342		writel(pwr, host->base + MMCIPOWER);
 343	}
 344}
 345
 346/*
 347 * This must be called with host->lock held
 348 */
 349static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 350{
 351	/* Keep busy mode in DPSM if enabled */
 352	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 353
 354	if (host->datactrl_reg != datactrl) {
 355		host->datactrl_reg = datactrl;
 356		writel(datactrl, host->base + MMCIDATACTRL);
 357	}
 358}
 359
 360/*
 361 * This must be called with host->lock held
 362 */
 363static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 364{
 365	struct variant_data *variant = host->variant;
 366	u32 clk = variant->clkreg;
 367
 368	/* Make sure cclk reflects the current calculated clock */
 369	host->cclk = 0;
 370
 371	if (desired) {
 372		if (variant->explicit_mclk_control) {
 373			host->cclk = host->mclk;
 374		} else if (desired >= host->mclk) {
 375			clk = MCI_CLK_BYPASS;
 376			if (variant->st_clkdiv)
 377				clk |= MCI_ST_UX500_NEG_EDGE;
 378			host->cclk = host->mclk;
 379		} else if (variant->st_clkdiv) {
 380			/*
 381			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 382			 * => clkdiv = (mclk / f) - 2
 383			 * Round the divider up so we don't exceed the max
 384			 * frequency
 385			 */
 386			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 387			if (clk >= 256)
 388				clk = 255;
 389			host->cclk = host->mclk / (clk + 2);
 390		} else {
 391			/*
 392			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 393			 * => clkdiv = mclk / (2 * f) - 1
 394			 */
 395			clk = host->mclk / (2 * desired) - 1;
 396			if (clk >= 256)
 397				clk = 255;
 398			host->cclk = host->mclk / (2 * (clk + 1));
 399		}
 400
 401		clk |= variant->clkreg_enable;
 402		clk |= MCI_CLK_ENABLE;
 403		/* This hasn't proven to be worthwhile */
 404		/* clk |= MCI_CLK_PWRSAVE; */
 405	}
 406
 407	/* Set actual clock for debug */
 408	host->mmc->actual_clock = host->cclk;
 409
 410	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 411		clk |= MCI_4BIT_BUS;
 412	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 413		clk |= variant->clkreg_8bit_bus_enable;
 414
 415	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 416	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 417		clk |= variant->clkreg_neg_edge_enable;
 418
 419	mmci_write_clkreg(host, clk);
 420}
 421
 422void mmci_dma_release(struct mmci_host *host)
 423{
 424	if (host->ops && host->ops->dma_release)
 425		host->ops->dma_release(host);
 426
 427	host->use_dma = false;
 428}
 429
 430void mmci_dma_setup(struct mmci_host *host)
 431{
 432	if (!host->ops || !host->ops->dma_setup)
 433		return;
 434
 435	if (host->ops->dma_setup(host))
 436		return;
 437
 438	/* initialize pre request cookie */
 439	host->next_cookie = 1;
 440
 441	host->use_dma = true;
 442}
 443
 444/*
 445 * Validate mmc prerequisites
 446 */
 447static int mmci_validate_data(struct mmci_host *host,
 448			      struct mmc_data *data)
 449{
 450	if (!data)
 451		return 0;
 452
 453	if (!is_power_of_2(data->blksz)) {
 454		dev_err(mmc_dev(host->mmc),
 455			"unsupported block size (%d bytes)\n", data->blksz);
 456		return -EINVAL;
 457	}
 458
 459	if (host->ops && host->ops->validate_data)
 460		return host->ops->validate_data(host, data);
 461
 462	return 0;
 463}
 464
 465int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 466{
 467	int err;
 468
 469	if (!host->ops || !host->ops->prep_data)
 470		return 0;
 471
 472	err = host->ops->prep_data(host, data, next);
 473
 474	if (next && !err)
 475		data->host_cookie = ++host->next_cookie < 0 ?
 476			1 : host->next_cookie;
 477
 478	return err;
 479}
 480
 481void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 482		      int err)
 483{
 484	if (host->ops && host->ops->unprep_data)
 485		host->ops->unprep_data(host, data, err);
 486
 487	data->host_cookie = 0;
 488}
 489
 490void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 491{
 492	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 493
 494	if (host->ops && host->ops->get_next_data)
 495		host->ops->get_next_data(host, data);
 496}
 497
 498int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 499{
 500	struct mmc_data *data = host->data;
 501	int ret;
 502
 503	if (!host->use_dma)
 504		return -EINVAL;
 505
 506	ret = mmci_prep_data(host, data, false);
 507	if (ret)
 508		return ret;
 509
 510	if (!host->ops || !host->ops->dma_start)
 511		return -EINVAL;
 512
 513	/* Okay, go for it. */
 514	dev_vdbg(mmc_dev(host->mmc),
 515		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 516		 data->sg_len, data->blksz, data->blocks, data->flags);
 517
 518	host->ops->dma_start(host, &datactrl);
 519
 520	/* Trigger the DMA transfer */
 521	mmci_write_datactrlreg(host, datactrl);
 522
 523	/*
 524	 * Let the MMCI say when the data is ended and it's time
 525	 * to fire next DMA request. When that happens, MMCI will
 526	 * call mmci_data_end()
 527	 */
 528	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 529	       host->base + MMCIMASK0);
 530	return 0;
 531}
 532
 533void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 534{
 535	if (!host->use_dma)
 536		return;
 537
 538	if (host->ops && host->ops->dma_finalize)
 539		host->ops->dma_finalize(host, data);
 540}
 541
 542void mmci_dma_error(struct mmci_host *host)
 543{
 544	if (!host->use_dma)
 545		return;
 546
 547	if (host->ops && host->ops->dma_error)
 548		host->ops->dma_error(host);
 549}
 550
 551static void
 552mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 553{
 554	writel(0, host->base + MMCICOMMAND);
 555
 556	BUG_ON(host->data);
 557
 558	host->mrq = NULL;
 559	host->cmd = NULL;
 560
 561	mmc_request_done(host->mmc, mrq);
 562}
 563
 564static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 565{
 566	void __iomem *base = host->base;
 567	struct variant_data *variant = host->variant;
 568
 569	if (host->singleirq) {
 570		unsigned int mask0 = readl(base + MMCIMASK0);
 571
 572		mask0 &= ~variant->irq_pio_mask;
 573		mask0 |= mask;
 574
 575		writel(mask0, base + MMCIMASK0);
 576	}
 577
 578	if (variant->mmcimask1)
 579		writel(mask, base + MMCIMASK1);
 580
 581	host->mask1_reg = mask;
 582}
 583
 584static void mmci_stop_data(struct mmci_host *host)
 585{
 586	mmci_write_datactrlreg(host, 0);
 587	mmci_set_mask1(host, 0);
 588	host->data = NULL;
 589}
 590
 591static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 592{
 593	unsigned int flags = SG_MITER_ATOMIC;
 594
 595	if (data->flags & MMC_DATA_READ)
 596		flags |= SG_MITER_TO_SG;
 597	else
 598		flags |= SG_MITER_FROM_SG;
 599
 600	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 601}
 602
 603static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 604{
 605	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 606}
 607
 608static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 609{
 610	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 611}
 612
 613/*
 614 * All the DMA operation mode stuff goes inside this ifdef.
 615 * This assumes that you have a generic DMA device interface,
 616 * no custom DMA interfaces are supported.
 617 */
 618#ifdef CONFIG_DMA_ENGINE
 619struct mmci_dmae_next {
 620	struct dma_async_tx_descriptor *desc;
 621	struct dma_chan	*chan;
 622};
 623
 624struct mmci_dmae_priv {
 625	struct dma_chan	*cur;
 626	struct dma_chan	*rx_channel;
 627	struct dma_chan	*tx_channel;
 628	struct dma_async_tx_descriptor	*desc_current;
 629	struct mmci_dmae_next next_data;
 630};
 631
 632int mmci_dmae_setup(struct mmci_host *host)
 633{
 634	const char *rxname, *txname;
 635	struct mmci_dmae_priv *dmae;
 636
 637	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 638	if (!dmae)
 639		return -ENOMEM;
 640
 641	host->dma_priv = dmae;
 642
 643	dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
 644						     "rx");
 645	dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
 646						     "tx");
 647
 648	/*
 649	 * If only an RX channel is specified, the driver will
 650	 * attempt to use it bidirectionally, however if it is
 651	 * is specified but cannot be located, DMA will be disabled.
 652	 */
 653	if (dmae->rx_channel && !dmae->tx_channel)
 654		dmae->tx_channel = dmae->rx_channel;
 655
 656	if (dmae->rx_channel)
 657		rxname = dma_chan_name(dmae->rx_channel);
 658	else
 659		rxname = "none";
 660
 661	if (dmae->tx_channel)
 662		txname = dma_chan_name(dmae->tx_channel);
 663	else
 664		txname = "none";
 665
 666	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 667		 rxname, txname);
 668
 669	/*
 670	 * Limit the maximum segment size in any SG entry according to
 671	 * the parameters of the DMA engine device.
 672	 */
 673	if (dmae->tx_channel) {
 674		struct device *dev = dmae->tx_channel->device->dev;
 675		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 676
 677		if (max_seg_size < host->mmc->max_seg_size)
 678			host->mmc->max_seg_size = max_seg_size;
 679	}
 680	if (dmae->rx_channel) {
 681		struct device *dev = dmae->rx_channel->device->dev;
 682		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 683
 684		if (max_seg_size < host->mmc->max_seg_size)
 685			host->mmc->max_seg_size = max_seg_size;
 686	}
 687
 688	if (!dmae->tx_channel || !dmae->rx_channel) {
 689		mmci_dmae_release(host);
 690		return -EINVAL;
 691	}
 692
 693	return 0;
 694}
 695
 696/*
 697 * This is used in or so inline it
 698 * so it can be discarded.
 699 */
 700void mmci_dmae_release(struct mmci_host *host)
 701{
 702	struct mmci_dmae_priv *dmae = host->dma_priv;
 
 
 
 
 
 703
 704	if (dmae->rx_channel)
 705		dma_release_channel(dmae->rx_channel);
 706	if (dmae->tx_channel)
 707		dma_release_channel(dmae->tx_channel);
 708	dmae->rx_channel = dmae->tx_channel = NULL;
 
 
 
 709}
 710
 711static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 712{
 713	struct mmci_dmae_priv *dmae = host->dma_priv;
 714	struct dma_chan *chan;
 715
 716	if (data->flags & MMC_DATA_READ)
 717		chan = dmae->rx_channel;
 718	else
 719		chan = dmae->tx_channel;
 720
 721	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 722		     mmc_get_dma_dir(data));
 723}
 724
 725void mmci_dmae_error(struct mmci_host *host)
 726{
 727	struct mmci_dmae_priv *dmae = host->dma_priv;
 728
 729	if (!dma_inprogress(host))
 730		return;
 731
 732	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 733	dmaengine_terminate_all(dmae->cur);
 734	host->dma_in_progress = false;
 735	dmae->cur = NULL;
 736	dmae->desc_current = NULL;
 737	host->data->host_cookie = 0;
 738
 739	mmci_dma_unmap(host, host->data);
 740}
 741
 742void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 743{
 744	struct mmci_dmae_priv *dmae = host->dma_priv;
 745	u32 status;
 746	int i;
 747
 748	if (!dma_inprogress(host))
 749		return;
 750
 751	/* Wait up to 1ms for the DMA to complete */
 752	for (i = 0; ; i++) {
 753		status = readl(host->base + MMCISTATUS);
 754		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 755			break;
 756		udelay(10);
 757	}
 758
 759	/*
 760	 * Check to see whether we still have some data left in the FIFO -
 761	 * this catches DMA controllers which are unable to monitor the
 762	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 763	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 764	 */
 765	if (status & MCI_RXDATAAVLBLMASK) {
 766		mmci_dma_error(host);
 767		if (!data->error)
 768			data->error = -EIO;
 769	} else if (!data->host_cookie) {
 
 
 770		mmci_dma_unmap(host, data);
 771	}
 772
 773	/*
 774	 * Use of DMA with scatter-gather is impossible.
 775	 * Give up with DMA and switch back to PIO mode.
 776	 */
 777	if (status & MCI_RXDATAAVLBLMASK) {
 778		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 779		mmci_dma_release(host);
 780	}
 781
 782	host->dma_in_progress = false;
 783	dmae->cur = NULL;
 784	dmae->desc_current = NULL;
 785}
 786
 787/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 788static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
 789				struct dma_chan **dma_chan,
 790				struct dma_async_tx_descriptor **dma_desc)
 791{
 792	struct mmci_dmae_priv *dmae = host->dma_priv;
 793	struct variant_data *variant = host->variant;
 794	struct dma_slave_config conf = {
 795		.src_addr = host->phybase + MMCIFIFO,
 796		.dst_addr = host->phybase + MMCIFIFO,
 797		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 798		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 799		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 800		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 801		.device_fc = false,
 802	};
 803	struct dma_chan *chan;
 804	struct dma_device *device;
 805	struct dma_async_tx_descriptor *desc;
 806	int nr_sg;
 807	unsigned long flags = DMA_CTRL_ACK;
 808
 809	if (data->flags & MMC_DATA_READ) {
 810		conf.direction = DMA_DEV_TO_MEM;
 811		chan = dmae->rx_channel;
 812	} else {
 813		conf.direction = DMA_MEM_TO_DEV;
 814		chan = dmae->tx_channel;
 815	}
 816
 817	/* If there's no DMA channel, fall back to PIO */
 818	if (!chan)
 819		return -EINVAL;
 820
 821	/* If less than or equal to the fifo size, don't bother with DMA */
 822	if (data->blksz * data->blocks <= variant->fifosize)
 823		return -EINVAL;
 824
 825	device = chan->device;
 826	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 827			   mmc_get_dma_dir(data));
 828	if (nr_sg == 0)
 829		return -EINVAL;
 830
 831	if (host->variant->qcom_dml)
 832		flags |= DMA_PREP_INTERRUPT;
 833
 834	dmaengine_slave_config(chan, &conf);
 835	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 836					    conf.direction, flags);
 837	if (!desc)
 838		goto unmap_exit;
 839
 840	*dma_chan = chan;
 841	*dma_desc = desc;
 842
 843	return 0;
 844
 845 unmap_exit:
 846	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 847		     mmc_get_dma_dir(data));
 848	return -ENOMEM;
 849}
 850
 851int mmci_dmae_prep_data(struct mmci_host *host,
 852			struct mmc_data *data,
 853			bool next)
 854{
 855	struct mmci_dmae_priv *dmae = host->dma_priv;
 856	struct mmci_dmae_next *nd = &dmae->next_data;
 857
 858	if (!host->use_dma)
 859		return -EINVAL;
 860
 861	if (next)
 862		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
 863	/* Check if next job is already prepared. */
 864	if (dmae->cur && dmae->desc_current)
 865		return 0;
 866
 867	/* No job were prepared thus do it now. */
 868	return _mmci_dmae_prep_data(host, data, &dmae->cur,
 869				    &dmae->desc_current);
 870}
 871
 872int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
 
 873{
 874	struct mmci_dmae_priv *dmae = host->dma_priv;
 
 
 875
 
 
 
 
 
 
 
 
 
 
 
 
 
 876	host->dma_in_progress = true;
 877	dmaengine_submit(dmae->desc_current);
 878	dma_async_issue_pending(dmae->cur);
 879
 880	*datactrl |= MCI_DPSM_DMAENABLE;
 
 
 
 
 
 
 881
 
 
 
 
 
 
 
 882	return 0;
 883}
 884
 885void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
 886{
 887	struct mmci_dmae_priv *dmae = host->dma_priv;
 888	struct mmci_dmae_next *next = &dmae->next_data;
 
 
 889
 890	if (!host->use_dma)
 
 
 
 
 
 
 
 
 
 
 
 
 891		return;
 892
 893	WARN_ON(!data->host_cookie && (next->desc || next->chan));
 
 
 
 894
 895	dmae->desc_current = next->desc;
 896	dmae->cur = next->chan;
 897	next->desc = NULL;
 898	next->chan = NULL;
 899}
 900
 901void mmci_dmae_unprep_data(struct mmci_host *host,
 902			   struct mmc_data *data, int err)
 903
 904{
 905	struct mmci_dmae_priv *dmae = host->dma_priv;
 
 906
 907	if (!host->use_dma)
 908		return;
 909
 910	mmci_dma_unmap(host, data);
 911
 912	if (err) {
 913		struct mmci_dmae_next *next = &dmae->next_data;
 914		struct dma_chan *chan;
 915		if (data->flags & MMC_DATA_READ)
 916			chan = dmae->rx_channel;
 917		else
 918			chan = dmae->tx_channel;
 919		dmaengine_terminate_all(chan);
 920
 921		if (dmae->desc_current == next->desc)
 922			dmae->desc_current = NULL;
 923
 924		if (dmae->cur == next->chan) {
 925			host->dma_in_progress = false;
 926			dmae->cur = NULL;
 927		}
 928
 929		next->desc = NULL;
 930		next->chan = NULL;
 
 931	}
 932}
 933
 934static struct mmci_host_ops mmci_variant_ops = {
 935	.prep_data = mmci_dmae_prep_data,
 936	.unprep_data = mmci_dmae_unprep_data,
 937	.get_datactrl_cfg = mmci_get_dctrl_cfg,
 938	.get_next_data = mmci_dmae_get_next_data,
 939	.dma_setup = mmci_dmae_setup,
 940	.dma_release = mmci_dmae_release,
 941	.dma_start = mmci_dmae_start,
 942	.dma_finalize = mmci_dmae_finalize,
 943	.dma_error = mmci_dmae_error,
 944};
 945#else
 946static struct mmci_host_ops mmci_variant_ops = {
 947	.get_datactrl_cfg = mmci_get_dctrl_cfg,
 948};
 949#endif
 
 
 
 950
 951void mmci_variant_init(struct mmci_host *host)
 952{
 953	host->ops = &mmci_variant_ops;
 954}
 955
 956void ux500v2_variant_init(struct mmci_host *host)
 957{
 958	host->ops = &mmci_variant_ops;
 959	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
 960}
 961
 962static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 
 963{
 964	struct mmci_host *host = mmc_priv(mmc);
 965	struct mmc_data *data = mrq->data;
 966
 967	if (!data)
 968		return;
 969
 970	WARN_ON(data->host_cookie);
 971
 972	if (mmci_validate_data(host, data))
 973		return;
 974
 975	mmci_prep_data(host, data, true);
 976}
 977
 978static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 979			      int err)
 980{
 981	struct mmci_host *host = mmc_priv(mmc);
 982	struct mmc_data *data = mrq->data;
 983
 984	if (!data || !data->host_cookie)
 985		return;
 986
 987	mmci_unprep_data(host, data, err);
 988}
 989
 990static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 991{
 992	struct variant_data *variant = host->variant;
 993	unsigned int datactrl, timeout, irqmask;
 994	unsigned long long clks;
 995	void __iomem *base;
 
 996
 997	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 998		data->blksz, data->blocks, data->flags);
 999
1000	host->data = data;
1001	host->size = data->blksz * data->blocks;
1002	data->bytes_xfered = 0;
1003
1004	clks = (unsigned long long)data->timeout_ns * host->cclk;
1005	do_div(clks, NSEC_PER_SEC);
1006
1007	timeout = data->timeout_clks + (unsigned int)clks;
1008
1009	base = host->base;
1010	writel(timeout, base + MMCIDATATIMER);
1011	writel(host->size, base + MMCIDATALENGTH);
1012
1013	datactrl = host->ops->get_datactrl_cfg(host);
1014	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
 
 
 
 
 
 
 
 
 
 
1015
1016	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1017		u32 clk;
1018
1019		datactrl |= variant->datactrl_mask_sdio;
1020
1021		/*
1022		 * The ST Micro variant for SDIO small write transfers
1023		 * needs to have clock H/W flow control disabled,
1024		 * otherwise the transfer will not start. The threshold
1025		 * depends on the rate of MCLK.
1026		 */
1027		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1028		    (host->size < 8 ||
1029		     (host->size <= 8 && host->mclk > 50000000)))
1030			clk = host->clk_reg & ~variant->clkreg_enable;
1031		else
1032			clk = host->clk_reg | variant->clkreg_enable;
1033
1034		mmci_write_clkreg(host, clk);
1035	}
1036
1037	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1038	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1039		datactrl |= variant->datactrl_mask_ddrmode;
1040
1041	/*
1042	 * Attempt to use DMA operation mode, if this
1043	 * should fail, fall back to PIO mode
1044	 */
1045	if (!mmci_dma_start(host, datactrl))
1046		return;
1047
1048	/* IRQ mode, map the SG list for CPU reading/writing */
1049	mmci_init_sg(host, data);
1050
1051	if (data->flags & MMC_DATA_READ) {
1052		irqmask = MCI_RXFIFOHALFFULLMASK;
1053
1054		/*
1055		 * If we have less than the fifo 'half-full' threshold to
1056		 * transfer, trigger a PIO interrupt as soon as any data
1057		 * is available.
1058		 */
1059		if (host->size < variant->fifohalfsize)
1060			irqmask |= MCI_RXDATAAVLBLMASK;
1061	} else {
1062		/*
1063		 * We don't actually need to include "FIFO empty" here
1064		 * since its implicit in "FIFO half empty".
1065		 */
1066		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1067	}
1068
1069	mmci_write_datactrlreg(host, datactrl);
1070	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1071	mmci_set_mask1(host, irqmask);
1072}
1073
1074static void
1075mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1076{
1077	void __iomem *base = host->base;
1078
1079	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1080	    cmd->opcode, cmd->arg, cmd->flags);
1081
1082	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1083		writel(0, base + MMCICOMMAND);
1084		mmci_reg_delay(host);
1085	}
1086
1087	if (host->variant->cmdreg_stop &&
1088	    cmd->opcode == MMC_STOP_TRANSMISSION)
1089		c |= host->variant->cmdreg_stop;
1090
1091	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1092	if (cmd->flags & MMC_RSP_PRESENT) {
1093		if (cmd->flags & MMC_RSP_136)
1094			c |= host->variant->cmdreg_lrsp_crc;
1095		else if (cmd->flags & MMC_RSP_CRC)
1096			c |= host->variant->cmdreg_srsp_crc;
1097		else
1098			c |= host->variant->cmdreg_srsp;
1099	}
1100	if (/*interrupt*/0)
1101		c |= MCI_CPSM_INTERRUPT;
1102
1103	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1104		c |= host->variant->data_cmd_enable;
1105
1106	host->cmd = cmd;
1107
1108	writel(cmd->arg, base + MMCIARGUMENT);
1109	writel(c, base + MMCICOMMAND);
1110}
1111
1112static void mmci_stop_command(struct mmci_host *host)
1113{
1114	host->stop_abort.error = 0;
1115	mmci_start_command(host, &host->stop_abort, 0);
1116}
1117
1118static void
1119mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1120	      unsigned int status)
1121{
1122	unsigned int status_err;
1123
1124	/* Make sure we have data to handle */
1125	if (!data)
1126		return;
1127
1128	/* First check for errors */
1129	status_err = status & (host->variant->start_err |
1130			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1131			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1132
1133	if (status_err) {
1134		u32 remain, success;
1135
1136		/* Terminate the DMA transfer */
1137		mmci_dma_error(host);
 
 
 
1138
1139		/*
1140		 * Calculate how far we are into the transfer.  Note that
1141		 * the data counter gives the number of bytes transferred
1142		 * on the MMC bus, not on the host side.  On reads, this
1143		 * can be as much as a FIFO-worth of data ahead.  This
1144		 * matters for FIFO overruns only.
1145		 */
1146		if (!host->variant->datacnt_useless) {
1147			remain = readl(host->base + MMCIDATACNT);
1148			success = data->blksz * data->blocks - remain;
1149		} else {
1150			success = 0;
1151		}
1152
1153		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1154			status_err, success);
1155		if (status_err & MCI_DATACRCFAIL) {
1156			/* Last block was not successful */
1157			success -= 1;
1158			data->error = -EILSEQ;
1159		} else if (status_err & MCI_DATATIMEOUT) {
1160			data->error = -ETIMEDOUT;
1161		} else if (status_err & MCI_STARTBITERR) {
1162			data->error = -ECOMM;
1163		} else if (status_err & MCI_TXUNDERRUN) {
1164			data->error = -EIO;
1165		} else if (status_err & MCI_RXOVERRUN) {
1166			if (success > host->variant->fifosize)
1167				success -= host->variant->fifosize;
1168			else
1169				success = 0;
1170			data->error = -EIO;
1171		}
1172		data->bytes_xfered = round_down(success, data->blksz);
1173	}
1174
1175	if (status & MCI_DATABLOCKEND)
1176		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1177
1178	if (status & MCI_DATAEND || data->error) {
1179		mmci_dma_finalize(host, data);
1180
1181		mmci_stop_data(host);
1182
1183		if (!data->error)
1184			/* The error clause is handled above, success! */
1185			data->bytes_xfered = data->blksz * data->blocks;
1186
1187		if (!data->stop) {
1188			if (host->variant->cmdreg_stop && data->error)
1189				mmci_stop_command(host);
1190			else
1191				mmci_request_end(host, data->mrq);
1192		} else if (host->mrq->sbc && !data->error) {
1193			mmci_request_end(host, data->mrq);
1194		} else {
1195			mmci_start_command(host, data->stop, 0);
1196		}
1197	}
1198}
1199
1200static void
1201mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1202	     unsigned int status)
1203{
1204	void __iomem *base = host->base;
1205	bool sbc, busy_resp;
1206
1207	if (!cmd)
1208		return;
1209
1210	sbc = (cmd == host->mrq->sbc);
1211	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1212
1213	/*
1214	 * We need to be one of these interrupts to be considered worth
1215	 * handling. Note that we tag on any latent IRQs postponed
1216	 * due to waiting for busy status.
1217	 */
1218	if (!((status|host->busy_status) &
1219	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1220		return;
1221
1222	/* Handle busy detection on DAT0 if the variant supports it. */
1223	if (busy_resp && host->variant->busy_detect) {
 
 
 
 
 
 
 
 
1224
1225		/*
1226		 * Before unmasking for the busy end IRQ, confirm that the
1227		 * command was sent successfully. To keep track of having a
1228		 * command in-progress, waiting for busy signaling to end,
1229		 * store the status in host->busy_status.
1230		 *
1231		 * Note that, the card may need a couple of clock cycles before
1232		 * it starts signaling busy on DAT0, hence re-read the
1233		 * MMCISTATUS register here, to allow the busy bit to be set.
1234		 * Potentially we may even need to poll the register for a
1235		 * while, to allow it to be set, but tests indicates that it
1236		 * isn't needed.
1237		 */
1238		if (!host->busy_status &&
1239		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1240		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1241
 
 
 
 
 
1242			writel(readl(base + MMCIMASK0) |
1243			       host->variant->busy_detect_mask,
1244			       base + MMCIMASK0);
1245
 
 
 
1246			host->busy_status =
1247				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1248			return;
1249		}
1250
1251		/*
1252		 * If there is a command in-progress that has been successfully
1253		 * sent, then bail out if busy status is set and wait for the
1254		 * busy end IRQ.
1255		 *
1256		 * Note that, the HW triggers an IRQ on both edges while
1257		 * monitoring DAT0 for busy completion, but there is only one
1258		 * status bit in MMCISTATUS for the busy state. Therefore
1259		 * both the start and the end interrupts needs to be cleared,
1260		 * one after the other. So, clear the busy start IRQ here.
1261		 */
1262		if (host->busy_status &&
1263		    (status & host->variant->busy_detect_flag)) {
1264			writel(host->variant->busy_detect_mask,
1265			       host->base + MMCICLEAR);
1266			return;
1267		}
1268
1269		/*
1270		 * If there is a command in-progress that has been successfully
1271		 * sent and the busy bit isn't set, it means we have received
1272		 * the busy end IRQ. Clear and mask the IRQ, then continue to
1273		 * process the command.
1274		 */
1275		if (host->busy_status) {
1276
1277			writel(host->variant->busy_detect_mask,
1278			       host->base + MMCICLEAR);
1279
1280			writel(readl(base + MMCIMASK0) &
1281			       ~host->variant->busy_detect_mask,
1282			       base + MMCIMASK0);
1283			host->busy_status = 0;
1284		}
1285	}
1286
1287	host->cmd = NULL;
1288
1289	if (status & MCI_CMDTIMEOUT) {
1290		cmd->error = -ETIMEDOUT;
1291	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1292		cmd->error = -EILSEQ;
1293	} else {
1294		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1295		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1296		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1297		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1298	}
1299
1300	if ((!sbc && !cmd->data) || cmd->error) {
1301		if (host->data) {
1302			/* Terminate the DMA transfer */
1303			mmci_dma_error(host);
1304
 
 
1305			mmci_stop_data(host);
1306			if (host->variant->cmdreg_stop && cmd->error) {
1307				mmci_stop_command(host);
1308				return;
1309			}
1310		}
1311		mmci_request_end(host, host->mrq);
1312	} else if (sbc) {
1313		mmci_start_command(host, host->mrq->cmd, 0);
1314	} else if (!host->variant->datactrl_first &&
1315		   !(cmd->data->flags & MMC_DATA_READ)) {
1316		mmci_start_data(host, cmd->data);
1317	}
1318}
1319
1320static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1321{
1322	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1323}
1324
1325static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1326{
1327	/*
1328	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1329	 * from the fifo range should be used
1330	 */
1331	if (status & MCI_RXFIFOHALFFULL)
1332		return host->variant->fifohalfsize;
1333	else if (status & MCI_RXDATAAVLBL)
1334		return 4;
1335
1336	return 0;
1337}
1338
1339static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1340{
1341	void __iomem *base = host->base;
1342	char *ptr = buffer;
1343	u32 status = readl(host->base + MMCISTATUS);
1344	int host_remain = host->size;
1345
1346	do {
1347		int count = host->get_rx_fifocnt(host, status, host_remain);
1348
1349		if (count > remain)
1350			count = remain;
1351
1352		if (count <= 0)
1353			break;
1354
1355		/*
1356		 * SDIO especially may want to send something that is
1357		 * not divisible by 4 (as opposed to card sectors
1358		 * etc). Therefore make sure to always read the last bytes
1359		 * while only doing full 32-bit reads towards the FIFO.
1360		 */
1361		if (unlikely(count & 0x3)) {
1362			if (count < 4) {
1363				unsigned char buf[4];
1364				ioread32_rep(base + MMCIFIFO, buf, 1);
1365				memcpy(ptr, buf, count);
1366			} else {
1367				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1368				count &= ~0x3;
1369			}
1370		} else {
1371			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1372		}
1373
1374		ptr += count;
1375		remain -= count;
1376		host_remain -= count;
1377
1378		if (remain == 0)
1379			break;
1380
1381		status = readl(base + MMCISTATUS);
1382	} while (status & MCI_RXDATAAVLBL);
1383
1384	return ptr - buffer;
1385}
1386
1387static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1388{
1389	struct variant_data *variant = host->variant;
1390	void __iomem *base = host->base;
1391	char *ptr = buffer;
1392
1393	do {
1394		unsigned int count, maxcnt;
1395
1396		maxcnt = status & MCI_TXFIFOEMPTY ?
1397			 variant->fifosize : variant->fifohalfsize;
1398		count = min(remain, maxcnt);
1399
1400		/*
1401		 * SDIO especially may want to send something that is
1402		 * not divisible by 4 (as opposed to card sectors
1403		 * etc), and the FIFO only accept full 32-bit writes.
1404		 * So compensate by adding +3 on the count, a single
1405		 * byte become a 32bit write, 7 bytes will be two
1406		 * 32bit writes etc.
1407		 */
1408		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1409
1410		ptr += count;
1411		remain -= count;
1412
1413		if (remain == 0)
1414			break;
1415
1416		status = readl(base + MMCISTATUS);
1417	} while (status & MCI_TXFIFOHALFEMPTY);
1418
1419	return ptr - buffer;
1420}
1421
1422/*
1423 * PIO data transfer IRQ handler.
1424 */
1425static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1426{
1427	struct mmci_host *host = dev_id;
1428	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1429	struct variant_data *variant = host->variant;
1430	void __iomem *base = host->base;
 
1431	u32 status;
1432
1433	status = readl(base + MMCISTATUS);
1434
1435	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1436
 
 
1437	do {
1438		unsigned int remain, len;
1439		char *buffer;
1440
1441		/*
1442		 * For write, we only need to test the half-empty flag
1443		 * here - if the FIFO is completely empty, then by
1444		 * definition it is more than half empty.
1445		 *
1446		 * For read, check for data available.
1447		 */
1448		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1449			break;
1450
1451		if (!sg_miter_next(sg_miter))
1452			break;
1453
1454		buffer = sg_miter->addr;
1455		remain = sg_miter->length;
1456
1457		len = 0;
1458		if (status & MCI_RXACTIVE)
1459			len = mmci_pio_read(host, buffer, remain);
1460		if (status & MCI_TXACTIVE)
1461			len = mmci_pio_write(host, buffer, remain, status);
1462
1463		sg_miter->consumed = len;
1464
1465		host->size -= len;
1466		remain -= len;
1467
1468		if (remain)
1469			break;
1470
1471		status = readl(base + MMCISTATUS);
1472	} while (1);
1473
1474	sg_miter_stop(sg_miter);
1475
 
 
1476	/*
1477	 * If we have less than the fifo 'half-full' threshold to transfer,
1478	 * trigger a PIO interrupt as soon as any data is available.
1479	 */
1480	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1481		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1482
1483	/*
1484	 * If we run out of data, disable the data IRQs; this
1485	 * prevents a race where the FIFO becomes empty before
1486	 * the chip itself has disabled the data path, and
1487	 * stops us racing with our data end IRQ.
1488	 */
1489	if (host->size == 0) {
1490		mmci_set_mask1(host, 0);
1491		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1492	}
1493
1494	return IRQ_HANDLED;
1495}
1496
1497/*
1498 * Handle completion of command and data transfers.
1499 */
1500static irqreturn_t mmci_irq(int irq, void *dev_id)
1501{
1502	struct mmci_host *host = dev_id;
1503	u32 status;
1504	int ret = 0;
1505
1506	spin_lock(&host->lock);
1507
1508	do {
1509		status = readl(host->base + MMCISTATUS);
1510
1511		if (host->singleirq) {
1512			if (status & host->mask1_reg)
1513				mmci_pio_irq(irq, dev_id);
1514
1515			status &= ~host->variant->irq_pio_mask;
1516		}
1517
1518		/*
1519		 * Busy detection is managed by mmci_cmd_irq(), including to
1520		 * clear the corresponding IRQ.
 
 
 
 
 
 
1521		 */
1522		status &= readl(host->base + MMCIMASK0);
1523		if (host->variant->busy_detect)
1524			writel(status & ~host->variant->busy_detect_mask,
1525			       host->base + MMCICLEAR);
1526		else
1527			writel(status, host->base + MMCICLEAR);
1528
1529		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1530
1531		if (host->variant->reversed_irq_handling) {
1532			mmci_data_irq(host, host->data, status);
1533			mmci_cmd_irq(host, host->cmd, status);
1534		} else {
1535			mmci_cmd_irq(host, host->cmd, status);
1536			mmci_data_irq(host, host->data, status);
1537		}
1538
1539		/*
1540		 * Busy detection has been handled by mmci_cmd_irq() above.
1541		 * Clear the status bit to prevent polling in IRQ context.
1542		 */
1543		if (host->variant->busy_detect_flag)
1544			status &= ~host->variant->busy_detect_flag;
1545
1546		ret = 1;
1547	} while (status);
1548
1549	spin_unlock(&host->lock);
1550
1551	return IRQ_RETVAL(ret);
1552}
1553
1554static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1555{
1556	struct mmci_host *host = mmc_priv(mmc);
1557	unsigned long flags;
1558
1559	WARN_ON(host->mrq != NULL);
1560
1561	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1562	if (mrq->cmd->error) {
1563		mmc_request_done(mmc, mrq);
1564		return;
1565	}
1566
1567	spin_lock_irqsave(&host->lock, flags);
1568
1569	host->mrq = mrq;
1570
1571	if (mrq->data)
1572		mmci_get_next_data(host, mrq->data);
1573
1574	if (mrq->data &&
1575	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1576		mmci_start_data(host, mrq->data);
1577
1578	if (mrq->sbc)
1579		mmci_start_command(host, mrq->sbc, 0);
1580	else
1581		mmci_start_command(host, mrq->cmd, 0);
1582
1583	spin_unlock_irqrestore(&host->lock, flags);
1584}
1585
1586static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1587{
1588	struct mmci_host *host = mmc_priv(mmc);
1589	struct variant_data *variant = host->variant;
1590	u32 pwr = 0;
1591	unsigned long flags;
1592	int ret;
1593
1594	if (host->plat->ios_handler &&
1595		host->plat->ios_handler(mmc_dev(mmc), ios))
1596			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1597
1598	switch (ios->power_mode) {
1599	case MMC_POWER_OFF:
1600		if (!IS_ERR(mmc->supply.vmmc))
1601			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1602
1603		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1604			regulator_disable(mmc->supply.vqmmc);
1605			host->vqmmc_enabled = false;
1606		}
1607
1608		break;
1609	case MMC_POWER_UP:
1610		if (!IS_ERR(mmc->supply.vmmc))
1611			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1612
1613		/*
1614		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1615		 * and instead uses MCI_PWR_ON so apply whatever value is
1616		 * configured in the variant data.
1617		 */
1618		pwr |= variant->pwrreg_powerup;
1619
1620		break;
1621	case MMC_POWER_ON:
1622		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1623			ret = regulator_enable(mmc->supply.vqmmc);
1624			if (ret < 0)
1625				dev_err(mmc_dev(mmc),
1626					"failed to enable vqmmc regulator\n");
1627			else
1628				host->vqmmc_enabled = true;
1629		}
1630
1631		pwr |= MCI_PWR_ON;
1632		break;
1633	}
1634
1635	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1636		/*
1637		 * The ST Micro variant has some additional bits
1638		 * indicating signal direction for the signals in
1639		 * the SD/MMC bus and feedback-clock usage.
1640		 */
1641		pwr |= host->pwr_reg_add;
1642
1643		if (ios->bus_width == MMC_BUS_WIDTH_4)
1644			pwr &= ~MCI_ST_DATA74DIREN;
1645		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1646			pwr &= (~MCI_ST_DATA74DIREN &
1647				~MCI_ST_DATA31DIREN &
1648				~MCI_ST_DATA2DIREN);
1649	}
1650
1651	if (variant->opendrain) {
1652		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1653			pwr |= variant->opendrain;
1654	} else {
1655		/*
1656		 * If the variant cannot configure the pads by its own, then we
1657		 * expect the pinctrl to be able to do that for us
1658		 */
1659		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1660			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1661		else
1662			pinctrl_select_state(host->pinctrl, host->pins_default);
1663	}
1664
1665	/*
1666	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1667	 * gating the clock, the MCI_PWR_ON bit is cleared.
1668	 */
1669	if (!ios->clock && variant->pwrreg_clkgate)
1670		pwr &= ~MCI_PWR_ON;
1671
1672	if (host->variant->explicit_mclk_control &&
1673	    ios->clock != host->clock_cache) {
1674		ret = clk_set_rate(host->clk, ios->clock);
1675		if (ret < 0)
1676			dev_err(mmc_dev(host->mmc),
1677				"Error setting clock rate (%d)\n", ret);
1678		else
1679			host->mclk = clk_get_rate(host->clk);
1680	}
1681	host->clock_cache = ios->clock;
1682
1683	spin_lock_irqsave(&host->lock, flags);
1684
1685	if (host->ops && host->ops->set_clkreg)
1686		host->ops->set_clkreg(host, ios->clock);
1687	else
1688		mmci_set_clkreg(host, ios->clock);
1689
1690	if (host->ops && host->ops->set_pwrreg)
1691		host->ops->set_pwrreg(host, pwr);
1692	else
1693		mmci_write_pwrreg(host, pwr);
1694
1695	mmci_reg_delay(host);
1696
1697	spin_unlock_irqrestore(&host->lock, flags);
1698}
1699
1700static int mmci_get_cd(struct mmc_host *mmc)
1701{
1702	struct mmci_host *host = mmc_priv(mmc);
1703	struct mmci_platform_data *plat = host->plat;
1704	unsigned int status = mmc_gpio_get_cd(mmc);
1705
1706	if (status == -ENOSYS) {
1707		if (!plat->status)
1708			return 1; /* Assume always present */
1709
1710		status = plat->status(mmc_dev(host->mmc));
1711	}
1712	return status;
1713}
1714
1715static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1716{
1717	int ret = 0;
1718
1719	if (!IS_ERR(mmc->supply.vqmmc)) {
1720
1721		switch (ios->signal_voltage) {
1722		case MMC_SIGNAL_VOLTAGE_330:
1723			ret = regulator_set_voltage(mmc->supply.vqmmc,
1724						2700000, 3600000);
1725			break;
1726		case MMC_SIGNAL_VOLTAGE_180:
1727			ret = regulator_set_voltage(mmc->supply.vqmmc,
1728						1700000, 1950000);
1729			break;
1730		case MMC_SIGNAL_VOLTAGE_120:
1731			ret = regulator_set_voltage(mmc->supply.vqmmc,
1732						1100000, 1300000);
1733			break;
1734		}
1735
1736		if (ret)
1737			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1738	}
1739
1740	return ret;
1741}
1742
1743static struct mmc_host_ops mmci_ops = {
1744	.request	= mmci_request,
1745	.pre_req	= mmci_pre_request,
1746	.post_req	= mmci_post_request,
1747	.set_ios	= mmci_set_ios,
1748	.get_ro		= mmc_gpio_get_ro,
1749	.get_cd		= mmci_get_cd,
1750	.start_signal_voltage_switch = mmci_sig_volt_switch,
1751};
1752
1753static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1754{
1755	struct mmci_host *host = mmc_priv(mmc);
1756	int ret = mmc_of_parse(mmc);
1757
1758	if (ret)
1759		return ret;
1760
1761	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1762		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1763	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1764		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1765	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1766		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1767	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1768		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1769	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1770		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1771	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1772		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1773	if (of_get_property(np, "st,sig-dir", NULL))
1774		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1775	if (of_get_property(np, "st,neg-edge", NULL))
1776		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1777	if (of_get_property(np, "st,use-ckin", NULL))
1778		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1779
1780	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1781		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1782	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1783		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1784
1785	return 0;
1786}
1787
1788static int mmci_probe(struct amba_device *dev,
1789	const struct amba_id *id)
1790{
1791	struct mmci_platform_data *plat = dev->dev.platform_data;
1792	struct device_node *np = dev->dev.of_node;
1793	struct variant_data *variant = id->data;
1794	struct mmci_host *host;
1795	struct mmc_host *mmc;
1796	int ret;
1797
1798	/* Must have platform data or Device Tree. */
1799	if (!plat && !np) {
1800		dev_err(&dev->dev, "No plat data or DT found\n");
1801		return -EINVAL;
1802	}
1803
1804	if (!plat) {
1805		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1806		if (!plat)
1807			return -ENOMEM;
1808	}
1809
1810	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1811	if (!mmc)
1812		return -ENOMEM;
1813
1814	ret = mmci_of_parse(np, mmc);
1815	if (ret)
1816		goto host_free;
1817
1818	host = mmc_priv(mmc);
1819	host->mmc = mmc;
1820
1821	/*
1822	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1823	 * pins can be set accordingly using pinctrl
1824	 */
1825	if (!variant->opendrain) {
1826		host->pinctrl = devm_pinctrl_get(&dev->dev);
1827		if (IS_ERR(host->pinctrl)) {
1828			dev_err(&dev->dev, "failed to get pinctrl");
1829			ret = PTR_ERR(host->pinctrl);
1830			goto host_free;
1831		}
1832
1833		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1834							  PINCTRL_STATE_DEFAULT);
1835		if (IS_ERR(host->pins_default)) {
1836			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1837			ret = PTR_ERR(host->pins_default);
1838			goto host_free;
1839		}
1840
1841		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1842							    MMCI_PINCTRL_STATE_OPENDRAIN);
1843		if (IS_ERR(host->pins_opendrain)) {
1844			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1845			ret = PTR_ERR(host->pins_opendrain);
1846			goto host_free;
1847		}
1848	}
1849
1850	host->hw_designer = amba_manf(dev);
1851	host->hw_revision = amba_rev(dev);
1852	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1853	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1854
1855	host->clk = devm_clk_get(&dev->dev, NULL);
1856	if (IS_ERR(host->clk)) {
1857		ret = PTR_ERR(host->clk);
1858		goto host_free;
1859	}
1860
1861	ret = clk_prepare_enable(host->clk);
1862	if (ret)
1863		goto host_free;
1864
1865	if (variant->qcom_fifo)
1866		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1867	else
1868		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1869
1870	host->plat = plat;
1871	host->variant = variant;
1872	host->mclk = clk_get_rate(host->clk);
1873	/*
1874	 * According to the spec, mclk is max 100 MHz,
1875	 * so we try to adjust the clock down to this,
1876	 * (if possible).
1877	 */
1878	if (host->mclk > variant->f_max) {
1879		ret = clk_set_rate(host->clk, variant->f_max);
1880		if (ret < 0)
1881			goto clk_disable;
1882		host->mclk = clk_get_rate(host->clk);
1883		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1884			host->mclk);
1885	}
1886
1887	host->phybase = dev->res.start;
1888	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1889	if (IS_ERR(host->base)) {
1890		ret = PTR_ERR(host->base);
1891		goto clk_disable;
1892	}
1893
1894	if (variant->init)
1895		variant->init(host);
1896
1897	/*
1898	 * The ARM and ST versions of the block have slightly different
1899	 * clock divider equations which means that the minimum divider
1900	 * differs too.
1901	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1902	 */
1903	if (variant->st_clkdiv)
1904		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1905	else if (variant->stm32_clkdiv)
1906		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1907	else if (variant->explicit_mclk_control)
1908		mmc->f_min = clk_round_rate(host->clk, 100000);
1909	else
1910		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1911	/*
1912	 * If no maximum operating frequency is supplied, fall back to use
1913	 * the module parameter, which has a (low) default value in case it
1914	 * is not specified. Either value must not exceed the clock rate into
1915	 * the block, of course.
1916	 */
1917	if (mmc->f_max)
1918		mmc->f_max = variant->explicit_mclk_control ?
1919				min(variant->f_max, mmc->f_max) :
1920				min(host->mclk, mmc->f_max);
1921	else
1922		mmc->f_max = variant->explicit_mclk_control ?
1923				fmax : min(host->mclk, fmax);
1924
1925
1926	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1927
1928	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1929	if (IS_ERR(host->rst)) {
1930		ret = PTR_ERR(host->rst);
1931		goto clk_disable;
1932	}
1933
1934	/* Get regulators and the supported OCR mask */
1935	ret = mmc_regulator_get_supply(mmc);
1936	if (ret)
1937		goto clk_disable;
1938
1939	if (!mmc->ocr_avail)
1940		mmc->ocr_avail = plat->ocr_mask;
1941	else if (plat->ocr_mask)
1942		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1943
 
 
 
 
 
 
 
1944	/* We support these capabilities. */
1945	mmc->caps |= MMC_CAP_CMD23;
1946
1947	/*
1948	 * Enable busy detection.
1949	 */
1950	if (variant->busy_detect) {
1951		mmci_ops.card_busy = mmci_card_busy;
1952		/*
1953		 * Not all variants have a flag to enable busy detection
1954		 * in the DPSM, but if they do, set it here.
1955		 */
1956		if (variant->busy_dpsm_flag)
1957			mmci_write_datactrlreg(host,
1958					       host->variant->busy_dpsm_flag);
1959		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1960		mmc->max_busy_timeout = 0;
1961	}
1962
1963	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1964	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1965	host->stop_abort.arg = 0;
1966	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1967
1968	mmc->ops = &mmci_ops;
1969
1970	/* We support these PM capabilities. */
1971	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1972
1973	/*
1974	 * We can do SGIO
1975	 */
1976	mmc->max_segs = NR_SG;
1977
1978	/*
1979	 * Since only a certain number of bits are valid in the data length
1980	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1981	 * single request.
1982	 */
1983	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1984
1985	/*
1986	 * Set the maximum segment size.  Since we aren't doing DMA
1987	 * (yet) we are only limited by the data length register.
1988	 */
1989	mmc->max_seg_size = mmc->max_req_size;
1990
1991	/*
1992	 * Block size can be up to 2048 bytes, but must be a power of two.
1993	 */
1994	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1995
1996	/*
1997	 * Limit the number of blocks transferred so that we don't overflow
1998	 * the maximum request size.
1999	 */
2000	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2001
2002	spin_lock_init(&host->lock);
2003
2004	writel(0, host->base + MMCIMASK0);
2005
2006	if (variant->mmcimask1)
2007		writel(0, host->base + MMCIMASK1);
2008
2009	writel(0xfff, host->base + MMCICLEAR);
2010
2011	/*
2012	 * If:
2013	 * - not using DT but using a descriptor table, or
2014	 * - using a table of descriptors ALONGSIDE DT, or
2015	 * look up these descriptors named "cd" and "wp" right here, fail
2016	 * silently of these do not exist
2017	 */
2018	if (!np) {
2019		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2020		if (ret == -EPROBE_DEFER)
2021			goto clk_disable;
 
 
 
 
 
 
 
2022
2023		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2024		if (ret == -EPROBE_DEFER)
2025			goto clk_disable;
 
 
 
 
 
 
 
2026	}
2027
2028	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2029			DRIVER_NAME " (cmd)", host);
2030	if (ret)
2031		goto clk_disable;
2032
2033	if (!dev->irq[1])
2034		host->singleirq = true;
2035	else {
2036		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2037				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2038		if (ret)
2039			goto clk_disable;
2040	}
2041
2042	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2043
2044	amba_set_drvdata(dev, mmc);
2045
2046	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2047		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2048		 amba_rev(dev), (unsigned long long)dev->res.start,
2049		 dev->irq[0], dev->irq[1]);
2050
2051	mmci_dma_setup(host);
2052
2053	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2054	pm_runtime_use_autosuspend(&dev->dev);
2055
2056	mmc_add_host(mmc);
2057
2058	pm_runtime_put(&dev->dev);
2059	return 0;
2060
2061 clk_disable:
2062	clk_disable_unprepare(host->clk);
2063 host_free:
2064	mmc_free_host(mmc);
2065	return ret;
2066}
2067
2068static int mmci_remove(struct amba_device *dev)
2069{
2070	struct mmc_host *mmc = amba_get_drvdata(dev);
2071
2072	if (mmc) {
2073		struct mmci_host *host = mmc_priv(mmc);
2074		struct variant_data *variant = host->variant;
2075
2076		/*
2077		 * Undo pm_runtime_put() in probe.  We use the _sync
2078		 * version here so that we can access the primecell.
2079		 */
2080		pm_runtime_get_sync(&dev->dev);
2081
2082		mmc_remove_host(mmc);
2083
2084		writel(0, host->base + MMCIMASK0);
2085
2086		if (variant->mmcimask1)
2087			writel(0, host->base + MMCIMASK1);
2088
2089		writel(0, host->base + MMCICOMMAND);
2090		writel(0, host->base + MMCIDATACTRL);
2091
2092		mmci_dma_release(host);
2093		clk_disable_unprepare(host->clk);
2094		mmc_free_host(mmc);
2095	}
2096
2097	return 0;
2098}
2099
2100#ifdef CONFIG_PM
2101static void mmci_save(struct mmci_host *host)
2102{
2103	unsigned long flags;
2104
2105	spin_lock_irqsave(&host->lock, flags);
2106
2107	writel(0, host->base + MMCIMASK0);
2108	if (host->variant->pwrreg_nopower) {
2109		writel(0, host->base + MMCIDATACTRL);
2110		writel(0, host->base + MMCIPOWER);
2111		writel(0, host->base + MMCICLOCK);
2112	}
2113	mmci_reg_delay(host);
2114
2115	spin_unlock_irqrestore(&host->lock, flags);
2116}
2117
2118static void mmci_restore(struct mmci_host *host)
2119{
2120	unsigned long flags;
2121
2122	spin_lock_irqsave(&host->lock, flags);
2123
2124	if (host->variant->pwrreg_nopower) {
2125		writel(host->clk_reg, host->base + MMCICLOCK);
2126		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2127		writel(host->pwr_reg, host->base + MMCIPOWER);
2128	}
2129	writel(MCI_IRQENABLE | host->variant->start_err,
2130	       host->base + MMCIMASK0);
2131	mmci_reg_delay(host);
2132
2133	spin_unlock_irqrestore(&host->lock, flags);
2134}
2135
2136static int mmci_runtime_suspend(struct device *dev)
2137{
2138	struct amba_device *adev = to_amba_device(dev);
2139	struct mmc_host *mmc = amba_get_drvdata(adev);
2140
2141	if (mmc) {
2142		struct mmci_host *host = mmc_priv(mmc);
2143		pinctrl_pm_select_sleep_state(dev);
2144		mmci_save(host);
2145		clk_disable_unprepare(host->clk);
2146	}
2147
2148	return 0;
2149}
2150
2151static int mmci_runtime_resume(struct device *dev)
2152{
2153	struct amba_device *adev = to_amba_device(dev);
2154	struct mmc_host *mmc = amba_get_drvdata(adev);
2155
2156	if (mmc) {
2157		struct mmci_host *host = mmc_priv(mmc);
2158		clk_prepare_enable(host->clk);
2159		mmci_restore(host);
2160		pinctrl_pm_select_default_state(dev);
2161	}
2162
2163	return 0;
2164}
2165#endif
2166
2167static const struct dev_pm_ops mmci_dev_pm_ops = {
2168	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2169				pm_runtime_force_resume)
2170	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2171};
2172
2173static const struct amba_id mmci_ids[] = {
2174	{
2175		.id	= 0x00041180,
2176		.mask	= 0xff0fffff,
2177		.data	= &variant_arm,
2178	},
2179	{
2180		.id	= 0x01041180,
2181		.mask	= 0xff0fffff,
2182		.data	= &variant_arm_extended_fifo,
2183	},
2184	{
2185		.id	= 0x02041180,
2186		.mask	= 0xff0fffff,
2187		.data	= &variant_arm_extended_fifo_hwfc,
2188	},
2189	{
2190		.id	= 0x00041181,
2191		.mask	= 0x000fffff,
2192		.data	= &variant_arm,
2193	},
2194	/* ST Micro variants */
2195	{
2196		.id     = 0x00180180,
2197		.mask   = 0x00ffffff,
2198		.data	= &variant_u300,
2199	},
2200	{
2201		.id     = 0x10180180,
2202		.mask   = 0xf0ffffff,
2203		.data	= &variant_nomadik,
2204	},
2205	{
2206		.id     = 0x00280180,
2207		.mask   = 0x00ffffff,
2208		.data	= &variant_nomadik,
2209	},
2210	{
2211		.id     = 0x00480180,
2212		.mask   = 0xf0ffffff,
2213		.data	= &variant_ux500,
2214	},
2215	{
2216		.id     = 0x10480180,
2217		.mask   = 0xf0ffffff,
2218		.data	= &variant_ux500v2,
2219	},
2220	{
2221		.id     = 0x00880180,
2222		.mask   = 0x00ffffff,
2223		.data	= &variant_stm32,
2224	},
2225	{
2226		.id     = 0x10153180,
2227		.mask	= 0xf0ffffff,
2228		.data	= &variant_stm32_sdmmc,
2229	},
2230	/* Qualcomm variants */
2231	{
2232		.id     = 0x00051180,
2233		.mask	= 0x000fffff,
2234		.data	= &variant_qcom,
2235	},
2236	{ 0, 0 },
2237};
2238
2239MODULE_DEVICE_TABLE(amba, mmci_ids);
2240
2241static struct amba_driver mmci_driver = {
2242	.drv		= {
2243		.name	= DRIVER_NAME,
2244		.pm	= &mmci_dev_pm_ops,
2245	},
2246	.probe		= mmci_probe,
2247	.remove		= mmci_remove,
2248	.id_table	= mmci_ids,
2249};
2250
2251module_amba_driver(mmci_driver);
2252
2253module_param(fmax, uint, 0444);
2254
2255MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2256MODULE_LICENSE("GPL");