Loading...
1/*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/highmem.h>
23#include <linux/log2.h>
24#include <linux/mmc/pm.h>
25#include <linux/mmc/host.h>
26#include <linux/mmc/card.h>
27#include <linux/mmc/slot-gpio.h>
28#include <linux/amba/bus.h>
29#include <linux/clk.h>
30#include <linux/scatterlist.h>
31#include <linux/gpio.h>
32#include <linux/of_gpio.h>
33#include <linux/regulator/consumer.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/amba/mmci.h>
37#include <linux/pm_runtime.h>
38#include <linux/types.h>
39#include <linux/pinctrl/consumer.h>
40
41#include <asm/div64.h>
42#include <asm/io.h>
43
44#include "mmci.h"
45#include "mmci_qcom_dml.h"
46
47#define DRIVER_NAME "mmci-pl18x"
48
49static unsigned int fmax = 515633;
50
51/**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 * register
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if the variant supports busy detection on DAT0.
75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77 * indicating that the card is busy
78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79 * getting busy end detection interrupts
80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81 * @explicit_mclk_control: enable explicit mclk control in driver.
82 * @qcom_fifo: enables qcom specific fifo pio read logic.
83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
84 * @reversed_irq_handling: handle data irq before cmd irq.
85 * @mmcimask1: true if variant have a MMCIMASK1 register.
86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
87 * register.
88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
89 */
90struct variant_data {
91 unsigned int clkreg;
92 unsigned int clkreg_enable;
93 unsigned int clkreg_8bit_bus_enable;
94 unsigned int clkreg_neg_edge_enable;
95 unsigned int datalength_bits;
96 unsigned int fifosize;
97 unsigned int fifohalfsize;
98 unsigned int data_cmd_enable;
99 unsigned int datactrl_mask_ddrmode;
100 unsigned int datactrl_mask_sdio;
101 bool st_sdio;
102 bool st_clkdiv;
103 bool blksz_datactrl16;
104 bool blksz_datactrl4;
105 u32 pwrreg_powerup;
106 u32 f_max;
107 bool signal_direction;
108 bool pwrreg_clkgate;
109 bool busy_detect;
110 u32 busy_dpsm_flag;
111 u32 busy_detect_flag;
112 u32 busy_detect_mask;
113 bool pwrreg_nopower;
114 bool explicit_mclk_control;
115 bool qcom_fifo;
116 bool qcom_dml;
117 bool reversed_irq_handling;
118 bool mmcimask1;
119 u32 start_err;
120 u32 opendrain;
121};
122
123static struct variant_data variant_arm = {
124 .fifosize = 16 * 4,
125 .fifohalfsize = 8 * 4,
126 .datalength_bits = 16,
127 .pwrreg_powerup = MCI_PWR_UP,
128 .f_max = 100000000,
129 .reversed_irq_handling = true,
130 .mmcimask1 = true,
131 .start_err = MCI_STARTBITERR,
132 .opendrain = MCI_ROD,
133};
134
135static struct variant_data variant_arm_extended_fifo = {
136 .fifosize = 128 * 4,
137 .fifohalfsize = 64 * 4,
138 .datalength_bits = 16,
139 .pwrreg_powerup = MCI_PWR_UP,
140 .f_max = 100000000,
141 .mmcimask1 = true,
142 .start_err = MCI_STARTBITERR,
143 .opendrain = MCI_ROD,
144};
145
146static struct variant_data variant_arm_extended_fifo_hwfc = {
147 .fifosize = 128 * 4,
148 .fifohalfsize = 64 * 4,
149 .clkreg_enable = MCI_ARM_HWFCEN,
150 .datalength_bits = 16,
151 .pwrreg_powerup = MCI_PWR_UP,
152 .f_max = 100000000,
153 .mmcimask1 = true,
154 .start_err = MCI_STARTBITERR,
155 .opendrain = MCI_ROD,
156};
157
158static struct variant_data variant_u300 = {
159 .fifosize = 16 * 4,
160 .fifohalfsize = 8 * 4,
161 .clkreg_enable = MCI_ST_U300_HWFCEN,
162 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
163 .datalength_bits = 16,
164 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
165 .st_sdio = true,
166 .pwrreg_powerup = MCI_PWR_ON,
167 .f_max = 100000000,
168 .signal_direction = true,
169 .pwrreg_clkgate = true,
170 .pwrreg_nopower = true,
171 .mmcimask1 = true,
172 .start_err = MCI_STARTBITERR,
173 .opendrain = MCI_OD,
174};
175
176static struct variant_data variant_nomadik = {
177 .fifosize = 16 * 4,
178 .fifohalfsize = 8 * 4,
179 .clkreg = MCI_CLK_ENABLE,
180 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
181 .datalength_bits = 24,
182 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
183 .st_sdio = true,
184 .st_clkdiv = true,
185 .pwrreg_powerup = MCI_PWR_ON,
186 .f_max = 100000000,
187 .signal_direction = true,
188 .pwrreg_clkgate = true,
189 .pwrreg_nopower = true,
190 .mmcimask1 = true,
191 .start_err = MCI_STARTBITERR,
192 .opendrain = MCI_OD,
193};
194
195static struct variant_data variant_ux500 = {
196 .fifosize = 30 * 4,
197 .fifohalfsize = 8 * 4,
198 .clkreg = MCI_CLK_ENABLE,
199 .clkreg_enable = MCI_ST_UX500_HWFCEN,
200 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
202 .datalength_bits = 24,
203 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
204 .st_sdio = true,
205 .st_clkdiv = true,
206 .pwrreg_powerup = MCI_PWR_ON,
207 .f_max = 100000000,
208 .signal_direction = true,
209 .pwrreg_clkgate = true,
210 .busy_detect = true,
211 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
212 .busy_detect_flag = MCI_ST_CARDBUSY,
213 .busy_detect_mask = MCI_ST_BUSYENDMASK,
214 .pwrreg_nopower = true,
215 .mmcimask1 = true,
216 .start_err = MCI_STARTBITERR,
217 .opendrain = MCI_OD,
218};
219
220static struct variant_data variant_ux500v2 = {
221 .fifosize = 30 * 4,
222 .fifohalfsize = 8 * 4,
223 .clkreg = MCI_CLK_ENABLE,
224 .clkreg_enable = MCI_ST_UX500_HWFCEN,
225 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
226 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
227 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
228 .datalength_bits = 24,
229 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
230 .st_sdio = true,
231 .st_clkdiv = true,
232 .blksz_datactrl16 = true,
233 .pwrreg_powerup = MCI_PWR_ON,
234 .f_max = 100000000,
235 .signal_direction = true,
236 .pwrreg_clkgate = true,
237 .busy_detect = true,
238 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
239 .busy_detect_flag = MCI_ST_CARDBUSY,
240 .busy_detect_mask = MCI_ST_BUSYENDMASK,
241 .pwrreg_nopower = true,
242 .mmcimask1 = true,
243 .start_err = MCI_STARTBITERR,
244 .opendrain = MCI_OD,
245};
246
247static struct variant_data variant_stm32 = {
248 .fifosize = 32 * 4,
249 .fifohalfsize = 8 * 4,
250 .clkreg = MCI_CLK_ENABLE,
251 .clkreg_enable = MCI_ST_UX500_HWFCEN,
252 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
253 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
254 .datalength_bits = 24,
255 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
256 .st_sdio = true,
257 .st_clkdiv = true,
258 .pwrreg_powerup = MCI_PWR_ON,
259 .f_max = 48000000,
260 .pwrreg_clkgate = true,
261 .pwrreg_nopower = true,
262};
263
264static struct variant_data variant_qcom = {
265 .fifosize = 16 * 4,
266 .fifohalfsize = 8 * 4,
267 .clkreg = MCI_CLK_ENABLE,
268 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
269 MCI_QCOM_CLK_SELECT_IN_FBCLK,
270 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
271 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
272 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
273 .blksz_datactrl4 = true,
274 .datalength_bits = 24,
275 .pwrreg_powerup = MCI_PWR_UP,
276 .f_max = 208000000,
277 .explicit_mclk_control = true,
278 .qcom_fifo = true,
279 .qcom_dml = true,
280 .mmcimask1 = true,
281 .start_err = MCI_STARTBITERR,
282 .opendrain = MCI_ROD,
283};
284
285/* Busy detection for the ST Micro variant */
286static int mmci_card_busy(struct mmc_host *mmc)
287{
288 struct mmci_host *host = mmc_priv(mmc);
289 unsigned long flags;
290 int busy = 0;
291
292 spin_lock_irqsave(&host->lock, flags);
293 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
294 busy = 1;
295 spin_unlock_irqrestore(&host->lock, flags);
296
297 return busy;
298}
299
300/*
301 * Validate mmc prerequisites
302 */
303static int mmci_validate_data(struct mmci_host *host,
304 struct mmc_data *data)
305{
306 if (!data)
307 return 0;
308
309 if (!is_power_of_2(data->blksz)) {
310 dev_err(mmc_dev(host->mmc),
311 "unsupported block size (%d bytes)\n", data->blksz);
312 return -EINVAL;
313 }
314
315 return 0;
316}
317
318static void mmci_reg_delay(struct mmci_host *host)
319{
320 /*
321 * According to the spec, at least three feedback clock cycles
322 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
323 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
324 * Worst delay time during card init is at 100 kHz => 30 us.
325 * Worst delay time when up and running is at 25 MHz => 120 ns.
326 */
327 if (host->cclk < 25000000)
328 udelay(30);
329 else
330 ndelay(120);
331}
332
333/*
334 * This must be called with host->lock held
335 */
336static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
337{
338 if (host->clk_reg != clk) {
339 host->clk_reg = clk;
340 writel(clk, host->base + MMCICLOCK);
341 }
342}
343
344/*
345 * This must be called with host->lock held
346 */
347static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
348{
349 if (host->pwr_reg != pwr) {
350 host->pwr_reg = pwr;
351 writel(pwr, host->base + MMCIPOWER);
352 }
353}
354
355/*
356 * This must be called with host->lock held
357 */
358static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
359{
360 /* Keep busy mode in DPSM if enabled */
361 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
362
363 if (host->datactrl_reg != datactrl) {
364 host->datactrl_reg = datactrl;
365 writel(datactrl, host->base + MMCIDATACTRL);
366 }
367}
368
369/*
370 * This must be called with host->lock held
371 */
372static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
373{
374 struct variant_data *variant = host->variant;
375 u32 clk = variant->clkreg;
376
377 /* Make sure cclk reflects the current calculated clock */
378 host->cclk = 0;
379
380 if (desired) {
381 if (variant->explicit_mclk_control) {
382 host->cclk = host->mclk;
383 } else if (desired >= host->mclk) {
384 clk = MCI_CLK_BYPASS;
385 if (variant->st_clkdiv)
386 clk |= MCI_ST_UX500_NEG_EDGE;
387 host->cclk = host->mclk;
388 } else if (variant->st_clkdiv) {
389 /*
390 * DB8500 TRM says f = mclk / (clkdiv + 2)
391 * => clkdiv = (mclk / f) - 2
392 * Round the divider up so we don't exceed the max
393 * frequency
394 */
395 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
396 if (clk >= 256)
397 clk = 255;
398 host->cclk = host->mclk / (clk + 2);
399 } else {
400 /*
401 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
402 * => clkdiv = mclk / (2 * f) - 1
403 */
404 clk = host->mclk / (2 * desired) - 1;
405 if (clk >= 256)
406 clk = 255;
407 host->cclk = host->mclk / (2 * (clk + 1));
408 }
409
410 clk |= variant->clkreg_enable;
411 clk |= MCI_CLK_ENABLE;
412 /* This hasn't proven to be worthwhile */
413 /* clk |= MCI_CLK_PWRSAVE; */
414 }
415
416 /* Set actual clock for debug */
417 host->mmc->actual_clock = host->cclk;
418
419 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
420 clk |= MCI_4BIT_BUS;
421 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
422 clk |= variant->clkreg_8bit_bus_enable;
423
424 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
425 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
426 clk |= variant->clkreg_neg_edge_enable;
427
428 mmci_write_clkreg(host, clk);
429}
430
431static void
432mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
433{
434 writel(0, host->base + MMCICOMMAND);
435
436 BUG_ON(host->data);
437
438 host->mrq = NULL;
439 host->cmd = NULL;
440
441 mmc_request_done(host->mmc, mrq);
442}
443
444static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
445{
446 void __iomem *base = host->base;
447 struct variant_data *variant = host->variant;
448
449 if (host->singleirq) {
450 unsigned int mask0 = readl(base + MMCIMASK0);
451
452 mask0 &= ~MCI_IRQ1MASK;
453 mask0 |= mask;
454
455 writel(mask0, base + MMCIMASK0);
456 }
457
458 if (variant->mmcimask1)
459 writel(mask, base + MMCIMASK1);
460
461 host->mask1_reg = mask;
462}
463
464static void mmci_stop_data(struct mmci_host *host)
465{
466 mmci_write_datactrlreg(host, 0);
467 mmci_set_mask1(host, 0);
468 host->data = NULL;
469}
470
471static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
472{
473 unsigned int flags = SG_MITER_ATOMIC;
474
475 if (data->flags & MMC_DATA_READ)
476 flags |= SG_MITER_TO_SG;
477 else
478 flags |= SG_MITER_FROM_SG;
479
480 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
481}
482
483/*
484 * All the DMA operation mode stuff goes inside this ifdef.
485 * This assumes that you have a generic DMA device interface,
486 * no custom DMA interfaces are supported.
487 */
488#ifdef CONFIG_DMA_ENGINE
489static void mmci_dma_setup(struct mmci_host *host)
490{
491 const char *rxname, *txname;
492 struct variant_data *variant = host->variant;
493
494 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
495 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
496
497 /* initialize pre request cookie */
498 host->next_data.cookie = 1;
499
500 /*
501 * If only an RX channel is specified, the driver will
502 * attempt to use it bidirectionally, however if it is
503 * is specified but cannot be located, DMA will be disabled.
504 */
505 if (host->dma_rx_channel && !host->dma_tx_channel)
506 host->dma_tx_channel = host->dma_rx_channel;
507
508 if (host->dma_rx_channel)
509 rxname = dma_chan_name(host->dma_rx_channel);
510 else
511 rxname = "none";
512
513 if (host->dma_tx_channel)
514 txname = dma_chan_name(host->dma_tx_channel);
515 else
516 txname = "none";
517
518 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
519 rxname, txname);
520
521 /*
522 * Limit the maximum segment size in any SG entry according to
523 * the parameters of the DMA engine device.
524 */
525 if (host->dma_tx_channel) {
526 struct device *dev = host->dma_tx_channel->device->dev;
527 unsigned int max_seg_size = dma_get_max_seg_size(dev);
528
529 if (max_seg_size < host->mmc->max_seg_size)
530 host->mmc->max_seg_size = max_seg_size;
531 }
532 if (host->dma_rx_channel) {
533 struct device *dev = host->dma_rx_channel->device->dev;
534 unsigned int max_seg_size = dma_get_max_seg_size(dev);
535
536 if (max_seg_size < host->mmc->max_seg_size)
537 host->mmc->max_seg_size = max_seg_size;
538 }
539
540 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
541 if (dml_hw_init(host, host->mmc->parent->of_node))
542 variant->qcom_dml = false;
543}
544
545/*
546 * This is used in or so inline it
547 * so it can be discarded.
548 */
549static inline void mmci_dma_release(struct mmci_host *host)
550{
551 if (host->dma_rx_channel)
552 dma_release_channel(host->dma_rx_channel);
553 if (host->dma_tx_channel)
554 dma_release_channel(host->dma_tx_channel);
555 host->dma_rx_channel = host->dma_tx_channel = NULL;
556}
557
558static void mmci_dma_data_error(struct mmci_host *host)
559{
560 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
561 dmaengine_terminate_all(host->dma_current);
562 host->dma_in_progress = false;
563 host->dma_current = NULL;
564 host->dma_desc_current = NULL;
565 host->data->host_cookie = 0;
566}
567
568static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
569{
570 struct dma_chan *chan;
571
572 if (data->flags & MMC_DATA_READ)
573 chan = host->dma_rx_channel;
574 else
575 chan = host->dma_tx_channel;
576
577 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
578 mmc_get_dma_dir(data));
579}
580
581static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
582{
583 u32 status;
584 int i;
585
586 /* Wait up to 1ms for the DMA to complete */
587 for (i = 0; ; i++) {
588 status = readl(host->base + MMCISTATUS);
589 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
590 break;
591 udelay(10);
592 }
593
594 /*
595 * Check to see whether we still have some data left in the FIFO -
596 * this catches DMA controllers which are unable to monitor the
597 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
598 * contiguous buffers. On TX, we'll get a FIFO underrun error.
599 */
600 if (status & MCI_RXDATAAVLBLMASK) {
601 mmci_dma_data_error(host);
602 if (!data->error)
603 data->error = -EIO;
604 }
605
606 if (!data->host_cookie)
607 mmci_dma_unmap(host, data);
608
609 /*
610 * Use of DMA with scatter-gather is impossible.
611 * Give up with DMA and switch back to PIO mode.
612 */
613 if (status & MCI_RXDATAAVLBLMASK) {
614 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
615 mmci_dma_release(host);
616 }
617
618 host->dma_in_progress = false;
619 host->dma_current = NULL;
620 host->dma_desc_current = NULL;
621}
622
623/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
624static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
625 struct dma_chan **dma_chan,
626 struct dma_async_tx_descriptor **dma_desc)
627{
628 struct variant_data *variant = host->variant;
629 struct dma_slave_config conf = {
630 .src_addr = host->phybase + MMCIFIFO,
631 .dst_addr = host->phybase + MMCIFIFO,
632 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
633 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
634 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
635 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
636 .device_fc = false,
637 };
638 struct dma_chan *chan;
639 struct dma_device *device;
640 struct dma_async_tx_descriptor *desc;
641 int nr_sg;
642 unsigned long flags = DMA_CTRL_ACK;
643
644 if (data->flags & MMC_DATA_READ) {
645 conf.direction = DMA_DEV_TO_MEM;
646 chan = host->dma_rx_channel;
647 } else {
648 conf.direction = DMA_MEM_TO_DEV;
649 chan = host->dma_tx_channel;
650 }
651
652 /* If there's no DMA channel, fall back to PIO */
653 if (!chan)
654 return -EINVAL;
655
656 /* If less than or equal to the fifo size, don't bother with DMA */
657 if (data->blksz * data->blocks <= variant->fifosize)
658 return -EINVAL;
659
660 device = chan->device;
661 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
662 mmc_get_dma_dir(data));
663 if (nr_sg == 0)
664 return -EINVAL;
665
666 if (host->variant->qcom_dml)
667 flags |= DMA_PREP_INTERRUPT;
668
669 dmaengine_slave_config(chan, &conf);
670 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
671 conf.direction, flags);
672 if (!desc)
673 goto unmap_exit;
674
675 *dma_chan = chan;
676 *dma_desc = desc;
677
678 return 0;
679
680 unmap_exit:
681 dma_unmap_sg(device->dev, data->sg, data->sg_len,
682 mmc_get_dma_dir(data));
683 return -ENOMEM;
684}
685
686static inline int mmci_dma_prep_data(struct mmci_host *host,
687 struct mmc_data *data)
688{
689 /* Check if next job is already prepared. */
690 if (host->dma_current && host->dma_desc_current)
691 return 0;
692
693 /* No job were prepared thus do it now. */
694 return __mmci_dma_prep_data(host, data, &host->dma_current,
695 &host->dma_desc_current);
696}
697
698static inline int mmci_dma_prep_next(struct mmci_host *host,
699 struct mmc_data *data)
700{
701 struct mmci_host_next *nd = &host->next_data;
702 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
703}
704
705static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
706{
707 int ret;
708 struct mmc_data *data = host->data;
709
710 ret = mmci_dma_prep_data(host, host->data);
711 if (ret)
712 return ret;
713
714 /* Okay, go for it. */
715 dev_vdbg(mmc_dev(host->mmc),
716 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
717 data->sg_len, data->blksz, data->blocks, data->flags);
718 host->dma_in_progress = true;
719 dmaengine_submit(host->dma_desc_current);
720 dma_async_issue_pending(host->dma_current);
721
722 if (host->variant->qcom_dml)
723 dml_start_xfer(host, data);
724
725 datactrl |= MCI_DPSM_DMAENABLE;
726
727 /* Trigger the DMA transfer */
728 mmci_write_datactrlreg(host, datactrl);
729
730 /*
731 * Let the MMCI say when the data is ended and it's time
732 * to fire next DMA request. When that happens, MMCI will
733 * call mmci_data_end()
734 */
735 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
736 host->base + MMCIMASK0);
737 return 0;
738}
739
740static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
741{
742 struct mmci_host_next *next = &host->next_data;
743
744 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
745 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
746
747 host->dma_desc_current = next->dma_desc;
748 host->dma_current = next->dma_chan;
749 next->dma_desc = NULL;
750 next->dma_chan = NULL;
751}
752
753static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
754{
755 struct mmci_host *host = mmc_priv(mmc);
756 struct mmc_data *data = mrq->data;
757 struct mmci_host_next *nd = &host->next_data;
758
759 if (!data)
760 return;
761
762 BUG_ON(data->host_cookie);
763
764 if (mmci_validate_data(host, data))
765 return;
766
767 if (!mmci_dma_prep_next(host, data))
768 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
769}
770
771static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
772 int err)
773{
774 struct mmci_host *host = mmc_priv(mmc);
775 struct mmc_data *data = mrq->data;
776
777 if (!data || !data->host_cookie)
778 return;
779
780 mmci_dma_unmap(host, data);
781
782 if (err) {
783 struct mmci_host_next *next = &host->next_data;
784 struct dma_chan *chan;
785 if (data->flags & MMC_DATA_READ)
786 chan = host->dma_rx_channel;
787 else
788 chan = host->dma_tx_channel;
789 dmaengine_terminate_all(chan);
790
791 if (host->dma_desc_current == next->dma_desc)
792 host->dma_desc_current = NULL;
793
794 if (host->dma_current == next->dma_chan) {
795 host->dma_in_progress = false;
796 host->dma_current = NULL;
797 }
798
799 next->dma_desc = NULL;
800 next->dma_chan = NULL;
801 data->host_cookie = 0;
802 }
803}
804
805#else
806/* Blank functions if the DMA engine is not available */
807static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
808{
809}
810static inline void mmci_dma_setup(struct mmci_host *host)
811{
812}
813
814static inline void mmci_dma_release(struct mmci_host *host)
815{
816}
817
818static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
819{
820}
821
822static inline void mmci_dma_finalize(struct mmci_host *host,
823 struct mmc_data *data)
824{
825}
826
827static inline void mmci_dma_data_error(struct mmci_host *host)
828{
829}
830
831static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
832{
833 return -ENOSYS;
834}
835
836#define mmci_pre_request NULL
837#define mmci_post_request NULL
838
839#endif
840
841static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
842{
843 struct variant_data *variant = host->variant;
844 unsigned int datactrl, timeout, irqmask;
845 unsigned long long clks;
846 void __iomem *base;
847 int blksz_bits;
848
849 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
850 data->blksz, data->blocks, data->flags);
851
852 host->data = data;
853 host->size = data->blksz * data->blocks;
854 data->bytes_xfered = 0;
855
856 clks = (unsigned long long)data->timeout_ns * host->cclk;
857 do_div(clks, NSEC_PER_SEC);
858
859 timeout = data->timeout_clks + (unsigned int)clks;
860
861 base = host->base;
862 writel(timeout, base + MMCIDATATIMER);
863 writel(host->size, base + MMCIDATALENGTH);
864
865 blksz_bits = ffs(data->blksz) - 1;
866 BUG_ON(1 << blksz_bits != data->blksz);
867
868 if (variant->blksz_datactrl16)
869 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
870 else if (variant->blksz_datactrl4)
871 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
872 else
873 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
874
875 if (data->flags & MMC_DATA_READ)
876 datactrl |= MCI_DPSM_DIRECTION;
877
878 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
879 u32 clk;
880
881 datactrl |= variant->datactrl_mask_sdio;
882
883 /*
884 * The ST Micro variant for SDIO small write transfers
885 * needs to have clock H/W flow control disabled,
886 * otherwise the transfer will not start. The threshold
887 * depends on the rate of MCLK.
888 */
889 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
890 (host->size < 8 ||
891 (host->size <= 8 && host->mclk > 50000000)))
892 clk = host->clk_reg & ~variant->clkreg_enable;
893 else
894 clk = host->clk_reg | variant->clkreg_enable;
895
896 mmci_write_clkreg(host, clk);
897 }
898
899 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
900 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
901 datactrl |= variant->datactrl_mask_ddrmode;
902
903 /*
904 * Attempt to use DMA operation mode, if this
905 * should fail, fall back to PIO mode
906 */
907 if (!mmci_dma_start_data(host, datactrl))
908 return;
909
910 /* IRQ mode, map the SG list for CPU reading/writing */
911 mmci_init_sg(host, data);
912
913 if (data->flags & MMC_DATA_READ) {
914 irqmask = MCI_RXFIFOHALFFULLMASK;
915
916 /*
917 * If we have less than the fifo 'half-full' threshold to
918 * transfer, trigger a PIO interrupt as soon as any data
919 * is available.
920 */
921 if (host->size < variant->fifohalfsize)
922 irqmask |= MCI_RXDATAAVLBLMASK;
923 } else {
924 /*
925 * We don't actually need to include "FIFO empty" here
926 * since its implicit in "FIFO half empty".
927 */
928 irqmask = MCI_TXFIFOHALFEMPTYMASK;
929 }
930
931 mmci_write_datactrlreg(host, datactrl);
932 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
933 mmci_set_mask1(host, irqmask);
934}
935
936static void
937mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
938{
939 void __iomem *base = host->base;
940
941 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
942 cmd->opcode, cmd->arg, cmd->flags);
943
944 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
945 writel(0, base + MMCICOMMAND);
946 mmci_reg_delay(host);
947 }
948
949 c |= cmd->opcode | MCI_CPSM_ENABLE;
950 if (cmd->flags & MMC_RSP_PRESENT) {
951 if (cmd->flags & MMC_RSP_136)
952 c |= MCI_CPSM_LONGRSP;
953 c |= MCI_CPSM_RESPONSE;
954 }
955 if (/*interrupt*/0)
956 c |= MCI_CPSM_INTERRUPT;
957
958 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
959 c |= host->variant->data_cmd_enable;
960
961 host->cmd = cmd;
962
963 writel(cmd->arg, base + MMCIARGUMENT);
964 writel(c, base + MMCICOMMAND);
965}
966
967static void
968mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
969 unsigned int status)
970{
971 /* Make sure we have data to handle */
972 if (!data)
973 return;
974
975 /* First check for errors */
976 if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
977 host->variant->start_err |
978 MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
979 u32 remain, success;
980
981 /* Terminate the DMA transfer */
982 if (dma_inprogress(host)) {
983 mmci_dma_data_error(host);
984 mmci_dma_unmap(host, data);
985 }
986
987 /*
988 * Calculate how far we are into the transfer. Note that
989 * the data counter gives the number of bytes transferred
990 * on the MMC bus, not on the host side. On reads, this
991 * can be as much as a FIFO-worth of data ahead. This
992 * matters for FIFO overruns only.
993 */
994 remain = readl(host->base + MMCIDATACNT);
995 success = data->blksz * data->blocks - remain;
996
997 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
998 status, success);
999 if (status & MCI_DATACRCFAIL) {
1000 /* Last block was not successful */
1001 success -= 1;
1002 data->error = -EILSEQ;
1003 } else if (status & MCI_DATATIMEOUT) {
1004 data->error = -ETIMEDOUT;
1005 } else if (status & MCI_STARTBITERR) {
1006 data->error = -ECOMM;
1007 } else if (status & MCI_TXUNDERRUN) {
1008 data->error = -EIO;
1009 } else if (status & MCI_RXOVERRUN) {
1010 if (success > host->variant->fifosize)
1011 success -= host->variant->fifosize;
1012 else
1013 success = 0;
1014 data->error = -EIO;
1015 }
1016 data->bytes_xfered = round_down(success, data->blksz);
1017 }
1018
1019 if (status & MCI_DATABLOCKEND)
1020 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022 if (status & MCI_DATAEND || data->error) {
1023 if (dma_inprogress(host))
1024 mmci_dma_finalize(host, data);
1025 mmci_stop_data(host);
1026
1027 if (!data->error)
1028 /* The error clause is handled above, success! */
1029 data->bytes_xfered = data->blksz * data->blocks;
1030
1031 if (!data->stop || host->mrq->sbc) {
1032 mmci_request_end(host, data->mrq);
1033 } else {
1034 mmci_start_command(host, data->stop, 0);
1035 }
1036 }
1037}
1038
1039static void
1040mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041 unsigned int status)
1042{
1043 void __iomem *base = host->base;
1044 bool sbc;
1045
1046 if (!cmd)
1047 return;
1048
1049 sbc = (cmd == host->mrq->sbc);
1050
1051 /*
1052 * We need to be one of these interrupts to be considered worth
1053 * handling. Note that we tag on any latent IRQs postponed
1054 * due to waiting for busy status.
1055 */
1056 if (!((status|host->busy_status) &
1057 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058 return;
1059
1060 /*
1061 * ST Micro variant: handle busy detection.
1062 */
1063 if (host->variant->busy_detect) {
1064 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066 /* We are busy with a command, return */
1067 if (host->busy_status &&
1068 (status & host->variant->busy_detect_flag))
1069 return;
1070
1071 /*
1072 * We were not busy, but we now got a busy response on
1073 * something that was not an error, and we double-check
1074 * that the special busy status bit is still set before
1075 * proceeding.
1076 */
1077 if (!host->busy_status && busy_resp &&
1078 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081 /* Clear the busy start IRQ */
1082 writel(host->variant->busy_detect_mask,
1083 host->base + MMCICLEAR);
1084
1085 /* Unmask the busy end IRQ */
1086 writel(readl(base + MMCIMASK0) |
1087 host->variant->busy_detect_mask,
1088 base + MMCIMASK0);
1089 /*
1090 * Now cache the last response status code (until
1091 * the busy bit goes low), and return.
1092 */
1093 host->busy_status =
1094 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095 return;
1096 }
1097
1098 /*
1099 * At this point we are not busy with a command, we have
1100 * not received a new busy request, clear and mask the busy
1101 * end IRQ and fall through to process the IRQ.
1102 */
1103 if (host->busy_status) {
1104
1105 writel(host->variant->busy_detect_mask,
1106 host->base + MMCICLEAR);
1107
1108 writel(readl(base + MMCIMASK0) &
1109 ~host->variant->busy_detect_mask,
1110 base + MMCIMASK0);
1111 host->busy_status = 0;
1112 }
1113 }
1114
1115 host->cmd = NULL;
1116
1117 if (status & MCI_CMDTIMEOUT) {
1118 cmd->error = -ETIMEDOUT;
1119 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120 cmd->error = -EILSEQ;
1121 } else {
1122 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126 }
1127
1128 if ((!sbc && !cmd->data) || cmd->error) {
1129 if (host->data) {
1130 /* Terminate the DMA transfer */
1131 if (dma_inprogress(host)) {
1132 mmci_dma_data_error(host);
1133 mmci_dma_unmap(host, host->data);
1134 }
1135 mmci_stop_data(host);
1136 }
1137 mmci_request_end(host, host->mrq);
1138 } else if (sbc) {
1139 mmci_start_command(host, host->mrq->cmd, 0);
1140 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141 mmci_start_data(host, cmd->data);
1142 }
1143}
1144
1145static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146{
1147 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148}
1149
1150static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151{
1152 /*
1153 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154 * from the fifo range should be used
1155 */
1156 if (status & MCI_RXFIFOHALFFULL)
1157 return host->variant->fifohalfsize;
1158 else if (status & MCI_RXDATAAVLBL)
1159 return 4;
1160
1161 return 0;
1162}
1163
1164static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165{
1166 void __iomem *base = host->base;
1167 char *ptr = buffer;
1168 u32 status = readl(host->base + MMCISTATUS);
1169 int host_remain = host->size;
1170
1171 do {
1172 int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174 if (count > remain)
1175 count = remain;
1176
1177 if (count <= 0)
1178 break;
1179
1180 /*
1181 * SDIO especially may want to send something that is
1182 * not divisible by 4 (as opposed to card sectors
1183 * etc). Therefore make sure to always read the last bytes
1184 * while only doing full 32-bit reads towards the FIFO.
1185 */
1186 if (unlikely(count & 0x3)) {
1187 if (count < 4) {
1188 unsigned char buf[4];
1189 ioread32_rep(base + MMCIFIFO, buf, 1);
1190 memcpy(ptr, buf, count);
1191 } else {
1192 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193 count &= ~0x3;
1194 }
1195 } else {
1196 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197 }
1198
1199 ptr += count;
1200 remain -= count;
1201 host_remain -= count;
1202
1203 if (remain == 0)
1204 break;
1205
1206 status = readl(base + MMCISTATUS);
1207 } while (status & MCI_RXDATAAVLBL);
1208
1209 return ptr - buffer;
1210}
1211
1212static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213{
1214 struct variant_data *variant = host->variant;
1215 void __iomem *base = host->base;
1216 char *ptr = buffer;
1217
1218 do {
1219 unsigned int count, maxcnt;
1220
1221 maxcnt = status & MCI_TXFIFOEMPTY ?
1222 variant->fifosize : variant->fifohalfsize;
1223 count = min(remain, maxcnt);
1224
1225 /*
1226 * SDIO especially may want to send something that is
1227 * not divisible by 4 (as opposed to card sectors
1228 * etc), and the FIFO only accept full 32-bit writes.
1229 * So compensate by adding +3 on the count, a single
1230 * byte become a 32bit write, 7 bytes will be two
1231 * 32bit writes etc.
1232 */
1233 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235 ptr += count;
1236 remain -= count;
1237
1238 if (remain == 0)
1239 break;
1240
1241 status = readl(base + MMCISTATUS);
1242 } while (status & MCI_TXFIFOHALFEMPTY);
1243
1244 return ptr - buffer;
1245}
1246
1247/*
1248 * PIO data transfer IRQ handler.
1249 */
1250static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251{
1252 struct mmci_host *host = dev_id;
1253 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254 struct variant_data *variant = host->variant;
1255 void __iomem *base = host->base;
1256 unsigned long flags;
1257 u32 status;
1258
1259 status = readl(base + MMCISTATUS);
1260
1261 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263 local_irq_save(flags);
1264
1265 do {
1266 unsigned int remain, len;
1267 char *buffer;
1268
1269 /*
1270 * For write, we only need to test the half-empty flag
1271 * here - if the FIFO is completely empty, then by
1272 * definition it is more than half empty.
1273 *
1274 * For read, check for data available.
1275 */
1276 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277 break;
1278
1279 if (!sg_miter_next(sg_miter))
1280 break;
1281
1282 buffer = sg_miter->addr;
1283 remain = sg_miter->length;
1284
1285 len = 0;
1286 if (status & MCI_RXACTIVE)
1287 len = mmci_pio_read(host, buffer, remain);
1288 if (status & MCI_TXACTIVE)
1289 len = mmci_pio_write(host, buffer, remain, status);
1290
1291 sg_miter->consumed = len;
1292
1293 host->size -= len;
1294 remain -= len;
1295
1296 if (remain)
1297 break;
1298
1299 status = readl(base + MMCISTATUS);
1300 } while (1);
1301
1302 sg_miter_stop(sg_miter);
1303
1304 local_irq_restore(flags);
1305
1306 /*
1307 * If we have less than the fifo 'half-full' threshold to transfer,
1308 * trigger a PIO interrupt as soon as any data is available.
1309 */
1310 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313 /*
1314 * If we run out of data, disable the data IRQs; this
1315 * prevents a race where the FIFO becomes empty before
1316 * the chip itself has disabled the data path, and
1317 * stops us racing with our data end IRQ.
1318 */
1319 if (host->size == 0) {
1320 mmci_set_mask1(host, 0);
1321 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322 }
1323
1324 return IRQ_HANDLED;
1325}
1326
1327/*
1328 * Handle completion of command and data transfers.
1329 */
1330static irqreturn_t mmci_irq(int irq, void *dev_id)
1331{
1332 struct mmci_host *host = dev_id;
1333 u32 status;
1334 int ret = 0;
1335
1336 spin_lock(&host->lock);
1337
1338 do {
1339 status = readl(host->base + MMCISTATUS);
1340
1341 if (host->singleirq) {
1342 if (status & host->mask1_reg)
1343 mmci_pio_irq(irq, dev_id);
1344
1345 status &= ~MCI_IRQ1MASK;
1346 }
1347
1348 /*
1349 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351 * detection variant is handled. Considering the HW seems to be
1352 * triggering the IRQ on both edges while monitoring DAT0 for
1353 * busy completion and that same status bit is used to monitor
1354 * start and end of busy detection, special care must be taken
1355 * to make sure that both start and end interrupts are always
1356 * cleared one after the other.
1357 */
1358 status &= readl(host->base + MMCIMASK0);
1359 if (host->variant->busy_detect)
1360 writel(status & ~host->variant->busy_detect_mask,
1361 host->base + MMCICLEAR);
1362 else
1363 writel(status, host->base + MMCICLEAR);
1364
1365 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367 if (host->variant->reversed_irq_handling) {
1368 mmci_data_irq(host, host->data, status);
1369 mmci_cmd_irq(host, host->cmd, status);
1370 } else {
1371 mmci_cmd_irq(host, host->cmd, status);
1372 mmci_data_irq(host, host->data, status);
1373 }
1374
1375 /*
1376 * Don't poll for busy completion in irq context.
1377 */
1378 if (host->variant->busy_detect && host->busy_status)
1379 status &= ~host->variant->busy_detect_flag;
1380
1381 ret = 1;
1382 } while (status);
1383
1384 spin_unlock(&host->lock);
1385
1386 return IRQ_RETVAL(ret);
1387}
1388
1389static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390{
1391 struct mmci_host *host = mmc_priv(mmc);
1392 unsigned long flags;
1393
1394 WARN_ON(host->mrq != NULL);
1395
1396 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397 if (mrq->cmd->error) {
1398 mmc_request_done(mmc, mrq);
1399 return;
1400 }
1401
1402 spin_lock_irqsave(&host->lock, flags);
1403
1404 host->mrq = mrq;
1405
1406 if (mrq->data)
1407 mmci_get_next_data(host, mrq->data);
1408
1409 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1410 mmci_start_data(host, mrq->data);
1411
1412 if (mrq->sbc)
1413 mmci_start_command(host, mrq->sbc, 0);
1414 else
1415 mmci_start_command(host, mrq->cmd, 0);
1416
1417 spin_unlock_irqrestore(&host->lock, flags);
1418}
1419
1420static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421{
1422 struct mmci_host *host = mmc_priv(mmc);
1423 struct variant_data *variant = host->variant;
1424 u32 pwr = 0;
1425 unsigned long flags;
1426 int ret;
1427
1428 if (host->plat->ios_handler &&
1429 host->plat->ios_handler(mmc_dev(mmc), ios))
1430 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432 switch (ios->power_mode) {
1433 case MMC_POWER_OFF:
1434 if (!IS_ERR(mmc->supply.vmmc))
1435 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438 regulator_disable(mmc->supply.vqmmc);
1439 host->vqmmc_enabled = false;
1440 }
1441
1442 break;
1443 case MMC_POWER_UP:
1444 if (!IS_ERR(mmc->supply.vmmc))
1445 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
1447 /*
1448 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449 * and instead uses MCI_PWR_ON so apply whatever value is
1450 * configured in the variant data.
1451 */
1452 pwr |= variant->pwrreg_powerup;
1453
1454 break;
1455 case MMC_POWER_ON:
1456 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457 ret = regulator_enable(mmc->supply.vqmmc);
1458 if (ret < 0)
1459 dev_err(mmc_dev(mmc),
1460 "failed to enable vqmmc regulator\n");
1461 else
1462 host->vqmmc_enabled = true;
1463 }
1464
1465 pwr |= MCI_PWR_ON;
1466 break;
1467 }
1468
1469 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470 /*
1471 * The ST Micro variant has some additional bits
1472 * indicating signal direction for the signals in
1473 * the SD/MMC bus and feedback-clock usage.
1474 */
1475 pwr |= host->pwr_reg_add;
1476
1477 if (ios->bus_width == MMC_BUS_WIDTH_4)
1478 pwr &= ~MCI_ST_DATA74DIREN;
1479 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480 pwr &= (~MCI_ST_DATA74DIREN &
1481 ~MCI_ST_DATA31DIREN &
1482 ~MCI_ST_DATA2DIREN);
1483 }
1484
1485 if (variant->opendrain) {
1486 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487 pwr |= variant->opendrain;
1488 } else {
1489 /*
1490 * If the variant cannot configure the pads by its own, then we
1491 * expect the pinctrl to be able to do that for us
1492 */
1493 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495 else
1496 pinctrl_select_state(host->pinctrl, host->pins_default);
1497 }
1498
1499 /*
1500 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501 * gating the clock, the MCI_PWR_ON bit is cleared.
1502 */
1503 if (!ios->clock && variant->pwrreg_clkgate)
1504 pwr &= ~MCI_PWR_ON;
1505
1506 if (host->variant->explicit_mclk_control &&
1507 ios->clock != host->clock_cache) {
1508 ret = clk_set_rate(host->clk, ios->clock);
1509 if (ret < 0)
1510 dev_err(mmc_dev(host->mmc),
1511 "Error setting clock rate (%d)\n", ret);
1512 else
1513 host->mclk = clk_get_rate(host->clk);
1514 }
1515 host->clock_cache = ios->clock;
1516
1517 spin_lock_irqsave(&host->lock, flags);
1518
1519 mmci_set_clkreg(host, ios->clock);
1520 mmci_write_pwrreg(host, pwr);
1521 mmci_reg_delay(host);
1522
1523 spin_unlock_irqrestore(&host->lock, flags);
1524}
1525
1526static int mmci_get_cd(struct mmc_host *mmc)
1527{
1528 struct mmci_host *host = mmc_priv(mmc);
1529 struct mmci_platform_data *plat = host->plat;
1530 unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532 if (status == -ENOSYS) {
1533 if (!plat->status)
1534 return 1; /* Assume always present */
1535
1536 status = plat->status(mmc_dev(host->mmc));
1537 }
1538 return status;
1539}
1540
1541static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542{
1543 int ret = 0;
1544
1545 if (!IS_ERR(mmc->supply.vqmmc)) {
1546
1547 switch (ios->signal_voltage) {
1548 case MMC_SIGNAL_VOLTAGE_330:
1549 ret = regulator_set_voltage(mmc->supply.vqmmc,
1550 2700000, 3600000);
1551 break;
1552 case MMC_SIGNAL_VOLTAGE_180:
1553 ret = regulator_set_voltage(mmc->supply.vqmmc,
1554 1700000, 1950000);
1555 break;
1556 case MMC_SIGNAL_VOLTAGE_120:
1557 ret = regulator_set_voltage(mmc->supply.vqmmc,
1558 1100000, 1300000);
1559 break;
1560 }
1561
1562 if (ret)
1563 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1564 }
1565
1566 return ret;
1567}
1568
1569static struct mmc_host_ops mmci_ops = {
1570 .request = mmci_request,
1571 .pre_req = mmci_pre_request,
1572 .post_req = mmci_post_request,
1573 .set_ios = mmci_set_ios,
1574 .get_ro = mmc_gpio_get_ro,
1575 .get_cd = mmci_get_cd,
1576 .start_signal_voltage_switch = mmci_sig_volt_switch,
1577};
1578
1579static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1580{
1581 struct mmci_host *host = mmc_priv(mmc);
1582 int ret = mmc_of_parse(mmc);
1583
1584 if (ret)
1585 return ret;
1586
1587 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1599
1600 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605 return 0;
1606}
1607
1608static int mmci_probe(struct amba_device *dev,
1609 const struct amba_id *id)
1610{
1611 struct mmci_platform_data *plat = dev->dev.platform_data;
1612 struct device_node *np = dev->dev.of_node;
1613 struct variant_data *variant = id->data;
1614 struct mmci_host *host;
1615 struct mmc_host *mmc;
1616 int ret;
1617
1618 /* Must have platform data or Device Tree. */
1619 if (!plat && !np) {
1620 dev_err(&dev->dev, "No plat data or DT found\n");
1621 return -EINVAL;
1622 }
1623
1624 if (!plat) {
1625 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626 if (!plat)
1627 return -ENOMEM;
1628 }
1629
1630 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631 if (!mmc)
1632 return -ENOMEM;
1633
1634 ret = mmci_of_parse(np, mmc);
1635 if (ret)
1636 goto host_free;
1637
1638 host = mmc_priv(mmc);
1639 host->mmc = mmc;
1640
1641 /*
1642 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643 * pins can be set accordingly using pinctrl
1644 */
1645 if (!variant->opendrain) {
1646 host->pinctrl = devm_pinctrl_get(&dev->dev);
1647 if (IS_ERR(host->pinctrl)) {
1648 dev_err(&dev->dev, "failed to get pinctrl");
1649 ret = PTR_ERR(host->pinctrl);
1650 goto host_free;
1651 }
1652
1653 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1654 PINCTRL_STATE_DEFAULT);
1655 if (IS_ERR(host->pins_default)) {
1656 dev_err(mmc_dev(mmc), "Can't select default pins\n");
1657 ret = PTR_ERR(host->pins_default);
1658 goto host_free;
1659 }
1660
1661 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1662 MMCI_PINCTRL_STATE_OPENDRAIN);
1663 if (IS_ERR(host->pins_opendrain)) {
1664 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1665 ret = PTR_ERR(host->pins_opendrain);
1666 goto host_free;
1667 }
1668 }
1669
1670 host->hw_designer = amba_manf(dev);
1671 host->hw_revision = amba_rev(dev);
1672 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1673 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1674
1675 host->clk = devm_clk_get(&dev->dev, NULL);
1676 if (IS_ERR(host->clk)) {
1677 ret = PTR_ERR(host->clk);
1678 goto host_free;
1679 }
1680
1681 ret = clk_prepare_enable(host->clk);
1682 if (ret)
1683 goto host_free;
1684
1685 if (variant->qcom_fifo)
1686 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1687 else
1688 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1689
1690 host->plat = plat;
1691 host->variant = variant;
1692 host->mclk = clk_get_rate(host->clk);
1693 /*
1694 * According to the spec, mclk is max 100 MHz,
1695 * so we try to adjust the clock down to this,
1696 * (if possible).
1697 */
1698 if (host->mclk > variant->f_max) {
1699 ret = clk_set_rate(host->clk, variant->f_max);
1700 if (ret < 0)
1701 goto clk_disable;
1702 host->mclk = clk_get_rate(host->clk);
1703 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704 host->mclk);
1705 }
1706
1707 host->phybase = dev->res.start;
1708 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1709 if (IS_ERR(host->base)) {
1710 ret = PTR_ERR(host->base);
1711 goto clk_disable;
1712 }
1713
1714 /*
1715 * The ARM and ST versions of the block have slightly different
1716 * clock divider equations which means that the minimum divider
1717 * differs too.
1718 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1719 */
1720 if (variant->st_clkdiv)
1721 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1722 else if (variant->explicit_mclk_control)
1723 mmc->f_min = clk_round_rate(host->clk, 100000);
1724 else
1725 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1726 /*
1727 * If no maximum operating frequency is supplied, fall back to use
1728 * the module parameter, which has a (low) default value in case it
1729 * is not specified. Either value must not exceed the clock rate into
1730 * the block, of course.
1731 */
1732 if (mmc->f_max)
1733 mmc->f_max = variant->explicit_mclk_control ?
1734 min(variant->f_max, mmc->f_max) :
1735 min(host->mclk, mmc->f_max);
1736 else
1737 mmc->f_max = variant->explicit_mclk_control ?
1738 fmax : min(host->mclk, fmax);
1739
1740
1741 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1742
1743 /* Get regulators and the supported OCR mask */
1744 ret = mmc_regulator_get_supply(mmc);
1745 if (ret)
1746 goto clk_disable;
1747
1748 if (!mmc->ocr_avail)
1749 mmc->ocr_avail = plat->ocr_mask;
1750 else if (plat->ocr_mask)
1751 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1752
1753 /* DT takes precedence over platform data. */
1754 if (!np) {
1755 if (!plat->cd_invert)
1756 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1757 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1758 }
1759
1760 /* We support these capabilities. */
1761 mmc->caps |= MMC_CAP_CMD23;
1762
1763 /*
1764 * Enable busy detection.
1765 */
1766 if (variant->busy_detect) {
1767 mmci_ops.card_busy = mmci_card_busy;
1768 /*
1769 * Not all variants have a flag to enable busy detection
1770 * in the DPSM, but if they do, set it here.
1771 */
1772 if (variant->busy_dpsm_flag)
1773 mmci_write_datactrlreg(host,
1774 host->variant->busy_dpsm_flag);
1775 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1776 mmc->max_busy_timeout = 0;
1777 }
1778
1779 mmc->ops = &mmci_ops;
1780
1781 /* We support these PM capabilities. */
1782 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1783
1784 /*
1785 * We can do SGIO
1786 */
1787 mmc->max_segs = NR_SG;
1788
1789 /*
1790 * Since only a certain number of bits are valid in the data length
1791 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1792 * single request.
1793 */
1794 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1795
1796 /*
1797 * Set the maximum segment size. Since we aren't doing DMA
1798 * (yet) we are only limited by the data length register.
1799 */
1800 mmc->max_seg_size = mmc->max_req_size;
1801
1802 /*
1803 * Block size can be up to 2048 bytes, but must be a power of two.
1804 */
1805 mmc->max_blk_size = 1 << 11;
1806
1807 /*
1808 * Limit the number of blocks transferred so that we don't overflow
1809 * the maximum request size.
1810 */
1811 mmc->max_blk_count = mmc->max_req_size >> 11;
1812
1813 spin_lock_init(&host->lock);
1814
1815 writel(0, host->base + MMCIMASK0);
1816
1817 if (variant->mmcimask1)
1818 writel(0, host->base + MMCIMASK1);
1819
1820 writel(0xfff, host->base + MMCICLEAR);
1821
1822 /*
1823 * If:
1824 * - not using DT but using a descriptor table, or
1825 * - using a table of descriptors ALONGSIDE DT, or
1826 * look up these descriptors named "cd" and "wp" right here, fail
1827 * silently of these do not exist and proceed to try platform data
1828 */
1829 if (!np) {
1830 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1831 if (ret < 0) {
1832 if (ret == -EPROBE_DEFER)
1833 goto clk_disable;
1834 else if (gpio_is_valid(plat->gpio_cd)) {
1835 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1836 if (ret)
1837 goto clk_disable;
1838 }
1839 }
1840
1841 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1842 if (ret < 0) {
1843 if (ret == -EPROBE_DEFER)
1844 goto clk_disable;
1845 else if (gpio_is_valid(plat->gpio_wp)) {
1846 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1847 if (ret)
1848 goto clk_disable;
1849 }
1850 }
1851 }
1852
1853 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1854 DRIVER_NAME " (cmd)", host);
1855 if (ret)
1856 goto clk_disable;
1857
1858 if (!dev->irq[1])
1859 host->singleirq = true;
1860 else {
1861 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1862 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1863 if (ret)
1864 goto clk_disable;
1865 }
1866
1867 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1868
1869 amba_set_drvdata(dev, mmc);
1870
1871 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1873 amba_rev(dev), (unsigned long long)dev->res.start,
1874 dev->irq[0], dev->irq[1]);
1875
1876 mmci_dma_setup(host);
1877
1878 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1879 pm_runtime_use_autosuspend(&dev->dev);
1880
1881 mmc_add_host(mmc);
1882
1883 pm_runtime_put(&dev->dev);
1884 return 0;
1885
1886 clk_disable:
1887 clk_disable_unprepare(host->clk);
1888 host_free:
1889 mmc_free_host(mmc);
1890 return ret;
1891}
1892
1893static int mmci_remove(struct amba_device *dev)
1894{
1895 struct mmc_host *mmc = amba_get_drvdata(dev);
1896
1897 if (mmc) {
1898 struct mmci_host *host = mmc_priv(mmc);
1899 struct variant_data *variant = host->variant;
1900
1901 /*
1902 * Undo pm_runtime_put() in probe. We use the _sync
1903 * version here so that we can access the primecell.
1904 */
1905 pm_runtime_get_sync(&dev->dev);
1906
1907 mmc_remove_host(mmc);
1908
1909 writel(0, host->base + MMCIMASK0);
1910
1911 if (variant->mmcimask1)
1912 writel(0, host->base + MMCIMASK1);
1913
1914 writel(0, host->base + MMCICOMMAND);
1915 writel(0, host->base + MMCIDATACTRL);
1916
1917 mmci_dma_release(host);
1918 clk_disable_unprepare(host->clk);
1919 mmc_free_host(mmc);
1920 }
1921
1922 return 0;
1923}
1924
1925#ifdef CONFIG_PM
1926static void mmci_save(struct mmci_host *host)
1927{
1928 unsigned long flags;
1929
1930 spin_lock_irqsave(&host->lock, flags);
1931
1932 writel(0, host->base + MMCIMASK0);
1933 if (host->variant->pwrreg_nopower) {
1934 writel(0, host->base + MMCIDATACTRL);
1935 writel(0, host->base + MMCIPOWER);
1936 writel(0, host->base + MMCICLOCK);
1937 }
1938 mmci_reg_delay(host);
1939
1940 spin_unlock_irqrestore(&host->lock, flags);
1941}
1942
1943static void mmci_restore(struct mmci_host *host)
1944{
1945 unsigned long flags;
1946
1947 spin_lock_irqsave(&host->lock, flags);
1948
1949 if (host->variant->pwrreg_nopower) {
1950 writel(host->clk_reg, host->base + MMCICLOCK);
1951 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1952 writel(host->pwr_reg, host->base + MMCIPOWER);
1953 }
1954 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1955 mmci_reg_delay(host);
1956
1957 spin_unlock_irqrestore(&host->lock, flags);
1958}
1959
1960static int mmci_runtime_suspend(struct device *dev)
1961{
1962 struct amba_device *adev = to_amba_device(dev);
1963 struct mmc_host *mmc = amba_get_drvdata(adev);
1964
1965 if (mmc) {
1966 struct mmci_host *host = mmc_priv(mmc);
1967 pinctrl_pm_select_sleep_state(dev);
1968 mmci_save(host);
1969 clk_disable_unprepare(host->clk);
1970 }
1971
1972 return 0;
1973}
1974
1975static int mmci_runtime_resume(struct device *dev)
1976{
1977 struct amba_device *adev = to_amba_device(dev);
1978 struct mmc_host *mmc = amba_get_drvdata(adev);
1979
1980 if (mmc) {
1981 struct mmci_host *host = mmc_priv(mmc);
1982 clk_prepare_enable(host->clk);
1983 mmci_restore(host);
1984 pinctrl_pm_select_default_state(dev);
1985 }
1986
1987 return 0;
1988}
1989#endif
1990
1991static const struct dev_pm_ops mmci_dev_pm_ops = {
1992 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1993 pm_runtime_force_resume)
1994 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1995};
1996
1997static const struct amba_id mmci_ids[] = {
1998 {
1999 .id = 0x00041180,
2000 .mask = 0xff0fffff,
2001 .data = &variant_arm,
2002 },
2003 {
2004 .id = 0x01041180,
2005 .mask = 0xff0fffff,
2006 .data = &variant_arm_extended_fifo,
2007 },
2008 {
2009 .id = 0x02041180,
2010 .mask = 0xff0fffff,
2011 .data = &variant_arm_extended_fifo_hwfc,
2012 },
2013 {
2014 .id = 0x00041181,
2015 .mask = 0x000fffff,
2016 .data = &variant_arm,
2017 },
2018 /* ST Micro variants */
2019 {
2020 .id = 0x00180180,
2021 .mask = 0x00ffffff,
2022 .data = &variant_u300,
2023 },
2024 {
2025 .id = 0x10180180,
2026 .mask = 0xf0ffffff,
2027 .data = &variant_nomadik,
2028 },
2029 {
2030 .id = 0x00280180,
2031 .mask = 0x00ffffff,
2032 .data = &variant_nomadik,
2033 },
2034 {
2035 .id = 0x00480180,
2036 .mask = 0xf0ffffff,
2037 .data = &variant_ux500,
2038 },
2039 {
2040 .id = 0x10480180,
2041 .mask = 0xf0ffffff,
2042 .data = &variant_ux500v2,
2043 },
2044 {
2045 .id = 0x00880180,
2046 .mask = 0x00ffffff,
2047 .data = &variant_stm32,
2048 },
2049 /* Qualcomm variants */
2050 {
2051 .id = 0x00051180,
2052 .mask = 0x000fffff,
2053 .data = &variant_qcom,
2054 },
2055 { 0, 0 },
2056};
2057
2058MODULE_DEVICE_TABLE(amba, mmci_ids);
2059
2060static struct amba_driver mmci_driver = {
2061 .drv = {
2062 .name = DRIVER_NAME,
2063 .pm = &mmci_dev_pm_ops,
2064 },
2065 .probe = mmci_probe,
2066 .remove = mmci_remove,
2067 .id_table = mmci_ids,
2068};
2069
2070module_amba_driver(mmci_driver);
2071
2072module_param(fmax, uint, 0444);
2073
2074MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075MODULE_LICENSE("GPL");
1/*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/delay.h>
19#include <linux/err.h>
20#include <linux/highmem.h>
21#include <linux/log2.h>
22#include <linux/mmc/host.h>
23#include <linux/mmc/card.h>
24#include <linux/amba/bus.h>
25#include <linux/clk.h>
26#include <linux/scatterlist.h>
27#include <linux/gpio.h>
28#include <linux/regulator/consumer.h>
29#include <linux/dmaengine.h>
30#include <linux/dma-mapping.h>
31#include <linux/amba/mmci.h>
32
33#include <asm/div64.h>
34#include <asm/io.h>
35#include <asm/sizes.h>
36
37#include "mmci.h"
38
39#define DRIVER_NAME "mmci-pl18x"
40
41static unsigned int fmax = 515633;
42
43/**
44 * struct variant_data - MMCI variant-specific quirks
45 * @clkreg: default value for MCICLOCK register
46 * @clkreg_enable: enable value for MMCICLOCK register
47 * @datalength_bits: number of bits in the MMCIDATALENGTH register
48 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49 * is asserted (likewise for RX)
50 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51 * is asserted (likewise for RX)
52 * @sdio: variant supports SDIO
53 * @st_clkdiv: true if using a ST-specific clock divider algorithm
54 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
55 */
56struct variant_data {
57 unsigned int clkreg;
58 unsigned int clkreg_enable;
59 unsigned int datalength_bits;
60 unsigned int fifosize;
61 unsigned int fifohalfsize;
62 bool sdio;
63 bool st_clkdiv;
64 bool blksz_datactrl16;
65};
66
67static struct variant_data variant_arm = {
68 .fifosize = 16 * 4,
69 .fifohalfsize = 8 * 4,
70 .datalength_bits = 16,
71};
72
73static struct variant_data variant_arm_extended_fifo = {
74 .fifosize = 128 * 4,
75 .fifohalfsize = 64 * 4,
76 .datalength_bits = 16,
77};
78
79static struct variant_data variant_u300 = {
80 .fifosize = 16 * 4,
81 .fifohalfsize = 8 * 4,
82 .clkreg_enable = MCI_ST_U300_HWFCEN,
83 .datalength_bits = 16,
84 .sdio = true,
85};
86
87static struct variant_data variant_ux500 = {
88 .fifosize = 30 * 4,
89 .fifohalfsize = 8 * 4,
90 .clkreg = MCI_CLK_ENABLE,
91 .clkreg_enable = MCI_ST_UX500_HWFCEN,
92 .datalength_bits = 24,
93 .sdio = true,
94 .st_clkdiv = true,
95};
96
97static struct variant_data variant_ux500v2 = {
98 .fifosize = 30 * 4,
99 .fifohalfsize = 8 * 4,
100 .clkreg = MCI_CLK_ENABLE,
101 .clkreg_enable = MCI_ST_UX500_HWFCEN,
102 .datalength_bits = 24,
103 .sdio = true,
104 .st_clkdiv = true,
105 .blksz_datactrl16 = true,
106};
107
108/*
109 * This must be called with host->lock held
110 */
111static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
112{
113 struct variant_data *variant = host->variant;
114 u32 clk = variant->clkreg;
115
116 if (desired) {
117 if (desired >= host->mclk) {
118 clk = MCI_CLK_BYPASS;
119 if (variant->st_clkdiv)
120 clk |= MCI_ST_UX500_NEG_EDGE;
121 host->cclk = host->mclk;
122 } else if (variant->st_clkdiv) {
123 /*
124 * DB8500 TRM says f = mclk / (clkdiv + 2)
125 * => clkdiv = (mclk / f) - 2
126 * Round the divider up so we don't exceed the max
127 * frequency
128 */
129 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
130 if (clk >= 256)
131 clk = 255;
132 host->cclk = host->mclk / (clk + 2);
133 } else {
134 /*
135 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
136 * => clkdiv = mclk / (2 * f) - 1
137 */
138 clk = host->mclk / (2 * desired) - 1;
139 if (clk >= 256)
140 clk = 255;
141 host->cclk = host->mclk / (2 * (clk + 1));
142 }
143
144 clk |= variant->clkreg_enable;
145 clk |= MCI_CLK_ENABLE;
146 /* This hasn't proven to be worthwhile */
147 /* clk |= MCI_CLK_PWRSAVE; */
148 }
149
150 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
151 clk |= MCI_4BIT_BUS;
152 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
153 clk |= MCI_ST_8BIT_BUS;
154
155 writel(clk, host->base + MMCICLOCK);
156}
157
158static void
159mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
160{
161 writel(0, host->base + MMCICOMMAND);
162
163 BUG_ON(host->data);
164
165 host->mrq = NULL;
166 host->cmd = NULL;
167
168 /*
169 * Need to drop the host lock here; mmc_request_done may call
170 * back into the driver...
171 */
172 spin_unlock(&host->lock);
173 mmc_request_done(host->mmc, mrq);
174 spin_lock(&host->lock);
175}
176
177static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
178{
179 void __iomem *base = host->base;
180
181 if (host->singleirq) {
182 unsigned int mask0 = readl(base + MMCIMASK0);
183
184 mask0 &= ~MCI_IRQ1MASK;
185 mask0 |= mask;
186
187 writel(mask0, base + MMCIMASK0);
188 }
189
190 writel(mask, base + MMCIMASK1);
191}
192
193static void mmci_stop_data(struct mmci_host *host)
194{
195 writel(0, host->base + MMCIDATACTRL);
196 mmci_set_mask1(host, 0);
197 host->data = NULL;
198}
199
200static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
201{
202 unsigned int flags = SG_MITER_ATOMIC;
203
204 if (data->flags & MMC_DATA_READ)
205 flags |= SG_MITER_TO_SG;
206 else
207 flags |= SG_MITER_FROM_SG;
208
209 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
210}
211
212/*
213 * All the DMA operation mode stuff goes inside this ifdef.
214 * This assumes that you have a generic DMA device interface,
215 * no custom DMA interfaces are supported.
216 */
217#ifdef CONFIG_DMA_ENGINE
218static void __devinit mmci_dma_setup(struct mmci_host *host)
219{
220 struct mmci_platform_data *plat = host->plat;
221 const char *rxname, *txname;
222 dma_cap_mask_t mask;
223
224 if (!plat || !plat->dma_filter) {
225 dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
226 return;
227 }
228
229 /* initialize pre request cookie */
230 host->next_data.cookie = 1;
231
232 /* Try to acquire a generic DMA engine slave channel */
233 dma_cap_zero(mask);
234 dma_cap_set(DMA_SLAVE, mask);
235
236 /*
237 * If only an RX channel is specified, the driver will
238 * attempt to use it bidirectionally, however if it is
239 * is specified but cannot be located, DMA will be disabled.
240 */
241 if (plat->dma_rx_param) {
242 host->dma_rx_channel = dma_request_channel(mask,
243 plat->dma_filter,
244 plat->dma_rx_param);
245 /* E.g if no DMA hardware is present */
246 if (!host->dma_rx_channel)
247 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
248 }
249
250 if (plat->dma_tx_param) {
251 host->dma_tx_channel = dma_request_channel(mask,
252 plat->dma_filter,
253 plat->dma_tx_param);
254 if (!host->dma_tx_channel)
255 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
256 } else {
257 host->dma_tx_channel = host->dma_rx_channel;
258 }
259
260 if (host->dma_rx_channel)
261 rxname = dma_chan_name(host->dma_rx_channel);
262 else
263 rxname = "none";
264
265 if (host->dma_tx_channel)
266 txname = dma_chan_name(host->dma_tx_channel);
267 else
268 txname = "none";
269
270 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
271 rxname, txname);
272
273 /*
274 * Limit the maximum segment size in any SG entry according to
275 * the parameters of the DMA engine device.
276 */
277 if (host->dma_tx_channel) {
278 struct device *dev = host->dma_tx_channel->device->dev;
279 unsigned int max_seg_size = dma_get_max_seg_size(dev);
280
281 if (max_seg_size < host->mmc->max_seg_size)
282 host->mmc->max_seg_size = max_seg_size;
283 }
284 if (host->dma_rx_channel) {
285 struct device *dev = host->dma_rx_channel->device->dev;
286 unsigned int max_seg_size = dma_get_max_seg_size(dev);
287
288 if (max_seg_size < host->mmc->max_seg_size)
289 host->mmc->max_seg_size = max_seg_size;
290 }
291}
292
293/*
294 * This is used in __devinit or __devexit so inline it
295 * so it can be discarded.
296 */
297static inline void mmci_dma_release(struct mmci_host *host)
298{
299 struct mmci_platform_data *plat = host->plat;
300
301 if (host->dma_rx_channel)
302 dma_release_channel(host->dma_rx_channel);
303 if (host->dma_tx_channel && plat->dma_tx_param)
304 dma_release_channel(host->dma_tx_channel);
305 host->dma_rx_channel = host->dma_tx_channel = NULL;
306}
307
308static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
309{
310 struct dma_chan *chan = host->dma_current;
311 enum dma_data_direction dir;
312 u32 status;
313 int i;
314
315 /* Wait up to 1ms for the DMA to complete */
316 for (i = 0; ; i++) {
317 status = readl(host->base + MMCISTATUS);
318 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
319 break;
320 udelay(10);
321 }
322
323 /*
324 * Check to see whether we still have some data left in the FIFO -
325 * this catches DMA controllers which are unable to monitor the
326 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
327 * contiguous buffers. On TX, we'll get a FIFO underrun error.
328 */
329 if (status & MCI_RXDATAAVLBLMASK) {
330 dmaengine_terminate_all(chan);
331 if (!data->error)
332 data->error = -EIO;
333 }
334
335 if (data->flags & MMC_DATA_WRITE) {
336 dir = DMA_TO_DEVICE;
337 } else {
338 dir = DMA_FROM_DEVICE;
339 }
340
341 if (!data->host_cookie)
342 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
343
344 /*
345 * Use of DMA with scatter-gather is impossible.
346 * Give up with DMA and switch back to PIO mode.
347 */
348 if (status & MCI_RXDATAAVLBLMASK) {
349 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
350 mmci_dma_release(host);
351 }
352}
353
354static void mmci_dma_data_error(struct mmci_host *host)
355{
356 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
357 dmaengine_terminate_all(host->dma_current);
358}
359
360static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
361 struct mmci_host_next *next)
362{
363 struct variant_data *variant = host->variant;
364 struct dma_slave_config conf = {
365 .src_addr = host->phybase + MMCIFIFO,
366 .dst_addr = host->phybase + MMCIFIFO,
367 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
368 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
369 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
370 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
371 };
372 struct dma_chan *chan;
373 struct dma_device *device;
374 struct dma_async_tx_descriptor *desc;
375 int nr_sg;
376
377 /* Check if next job is already prepared */
378 if (data->host_cookie && !next &&
379 host->dma_current && host->dma_desc_current)
380 return 0;
381
382 if (!next) {
383 host->dma_current = NULL;
384 host->dma_desc_current = NULL;
385 }
386
387 if (data->flags & MMC_DATA_READ) {
388 conf.direction = DMA_FROM_DEVICE;
389 chan = host->dma_rx_channel;
390 } else {
391 conf.direction = DMA_TO_DEVICE;
392 chan = host->dma_tx_channel;
393 }
394
395 /* If there's no DMA channel, fall back to PIO */
396 if (!chan)
397 return -EINVAL;
398
399 /* If less than or equal to the fifo size, don't bother with DMA */
400 if (data->blksz * data->blocks <= variant->fifosize)
401 return -EINVAL;
402
403 device = chan->device;
404 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
405 if (nr_sg == 0)
406 return -EINVAL;
407
408 dmaengine_slave_config(chan, &conf);
409 desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
410 conf.direction, DMA_CTRL_ACK);
411 if (!desc)
412 goto unmap_exit;
413
414 if (next) {
415 next->dma_chan = chan;
416 next->dma_desc = desc;
417 } else {
418 host->dma_current = chan;
419 host->dma_desc_current = desc;
420 }
421
422 return 0;
423
424 unmap_exit:
425 if (!next)
426 dmaengine_terminate_all(chan);
427 dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
428 return -ENOMEM;
429}
430
431static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
432{
433 int ret;
434 struct mmc_data *data = host->data;
435
436 ret = mmci_dma_prep_data(host, host->data, NULL);
437 if (ret)
438 return ret;
439
440 /* Okay, go for it. */
441 dev_vdbg(mmc_dev(host->mmc),
442 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
443 data->sg_len, data->blksz, data->blocks, data->flags);
444 dmaengine_submit(host->dma_desc_current);
445 dma_async_issue_pending(host->dma_current);
446
447 datactrl |= MCI_DPSM_DMAENABLE;
448
449 /* Trigger the DMA transfer */
450 writel(datactrl, host->base + MMCIDATACTRL);
451
452 /*
453 * Let the MMCI say when the data is ended and it's time
454 * to fire next DMA request. When that happens, MMCI will
455 * call mmci_data_end()
456 */
457 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
458 host->base + MMCIMASK0);
459 return 0;
460}
461
462static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
463{
464 struct mmci_host_next *next = &host->next_data;
465
466 if (data->host_cookie && data->host_cookie != next->cookie) {
467 printk(KERN_WARNING "[%s] invalid cookie: data->host_cookie %d"
468 " host->next_data.cookie %d\n",
469 __func__, data->host_cookie, host->next_data.cookie);
470 data->host_cookie = 0;
471 }
472
473 if (!data->host_cookie)
474 return;
475
476 host->dma_desc_current = next->dma_desc;
477 host->dma_current = next->dma_chan;
478
479 next->dma_desc = NULL;
480 next->dma_chan = NULL;
481}
482
483static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
484 bool is_first_req)
485{
486 struct mmci_host *host = mmc_priv(mmc);
487 struct mmc_data *data = mrq->data;
488 struct mmci_host_next *nd = &host->next_data;
489
490 if (!data)
491 return;
492
493 if (data->host_cookie) {
494 data->host_cookie = 0;
495 return;
496 }
497
498 /* if config for dma */
499 if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
500 ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
501 if (mmci_dma_prep_data(host, data, nd))
502 data->host_cookie = 0;
503 else
504 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
505 }
506}
507
508static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
509 int err)
510{
511 struct mmci_host *host = mmc_priv(mmc);
512 struct mmc_data *data = mrq->data;
513 struct dma_chan *chan;
514 enum dma_data_direction dir;
515
516 if (!data)
517 return;
518
519 if (data->flags & MMC_DATA_READ) {
520 dir = DMA_FROM_DEVICE;
521 chan = host->dma_rx_channel;
522 } else {
523 dir = DMA_TO_DEVICE;
524 chan = host->dma_tx_channel;
525 }
526
527
528 /* if config for dma */
529 if (chan) {
530 if (err)
531 dmaengine_terminate_all(chan);
532 if (err || data->host_cookie)
533 dma_unmap_sg(mmc_dev(host->mmc), data->sg,
534 data->sg_len, dir);
535 mrq->data->host_cookie = 0;
536 }
537}
538
539#else
540/* Blank functions if the DMA engine is not available */
541static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
542{
543}
544static inline void mmci_dma_setup(struct mmci_host *host)
545{
546}
547
548static inline void mmci_dma_release(struct mmci_host *host)
549{
550}
551
552static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
553{
554}
555
556static inline void mmci_dma_data_error(struct mmci_host *host)
557{
558}
559
560static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
561{
562 return -ENOSYS;
563}
564
565#define mmci_pre_request NULL
566#define mmci_post_request NULL
567
568#endif
569
570static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
571{
572 struct variant_data *variant = host->variant;
573 unsigned int datactrl, timeout, irqmask;
574 unsigned long long clks;
575 void __iomem *base;
576 int blksz_bits;
577
578 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
579 data->blksz, data->blocks, data->flags);
580
581 host->data = data;
582 host->size = data->blksz * data->blocks;
583 data->bytes_xfered = 0;
584
585 clks = (unsigned long long)data->timeout_ns * host->cclk;
586 do_div(clks, 1000000000UL);
587
588 timeout = data->timeout_clks + (unsigned int)clks;
589
590 base = host->base;
591 writel(timeout, base + MMCIDATATIMER);
592 writel(host->size, base + MMCIDATALENGTH);
593
594 blksz_bits = ffs(data->blksz) - 1;
595 BUG_ON(1 << blksz_bits != data->blksz);
596
597 if (variant->blksz_datactrl16)
598 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
599 else
600 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
601
602 if (data->flags & MMC_DATA_READ)
603 datactrl |= MCI_DPSM_DIRECTION;
604
605 /*
606 * Attempt to use DMA operation mode, if this
607 * should fail, fall back to PIO mode
608 */
609 if (!mmci_dma_start_data(host, datactrl))
610 return;
611
612 /* IRQ mode, map the SG list for CPU reading/writing */
613 mmci_init_sg(host, data);
614
615 if (data->flags & MMC_DATA_READ) {
616 irqmask = MCI_RXFIFOHALFFULLMASK;
617
618 /*
619 * If we have less than the fifo 'half-full' threshold to
620 * transfer, trigger a PIO interrupt as soon as any data
621 * is available.
622 */
623 if (host->size < variant->fifohalfsize)
624 irqmask |= MCI_RXDATAAVLBLMASK;
625 } else {
626 /*
627 * We don't actually need to include "FIFO empty" here
628 * since its implicit in "FIFO half empty".
629 */
630 irqmask = MCI_TXFIFOHALFEMPTYMASK;
631 }
632
633 /* The ST Micro variants has a special bit to enable SDIO */
634 if (variant->sdio && host->mmc->card)
635 if (mmc_card_sdio(host->mmc->card))
636 datactrl |= MCI_ST_DPSM_SDIOEN;
637
638 writel(datactrl, base + MMCIDATACTRL);
639 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
640 mmci_set_mask1(host, irqmask);
641}
642
643static void
644mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
645{
646 void __iomem *base = host->base;
647
648 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
649 cmd->opcode, cmd->arg, cmd->flags);
650
651 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
652 writel(0, base + MMCICOMMAND);
653 udelay(1);
654 }
655
656 c |= cmd->opcode | MCI_CPSM_ENABLE;
657 if (cmd->flags & MMC_RSP_PRESENT) {
658 if (cmd->flags & MMC_RSP_136)
659 c |= MCI_CPSM_LONGRSP;
660 c |= MCI_CPSM_RESPONSE;
661 }
662 if (/*interrupt*/0)
663 c |= MCI_CPSM_INTERRUPT;
664
665 host->cmd = cmd;
666
667 writel(cmd->arg, base + MMCIARGUMENT);
668 writel(c, base + MMCICOMMAND);
669}
670
671static void
672mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
673 unsigned int status)
674{
675 /* First check for errors */
676 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
677 u32 remain, success;
678
679 /* Terminate the DMA transfer */
680 if (dma_inprogress(host))
681 mmci_dma_data_error(host);
682
683 /*
684 * Calculate how far we are into the transfer. Note that
685 * the data counter gives the number of bytes transferred
686 * on the MMC bus, not on the host side. On reads, this
687 * can be as much as a FIFO-worth of data ahead. This
688 * matters for FIFO overruns only.
689 */
690 remain = readl(host->base + MMCIDATACNT);
691 success = data->blksz * data->blocks - remain;
692
693 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
694 status, success);
695 if (status & MCI_DATACRCFAIL) {
696 /* Last block was not successful */
697 success -= 1;
698 data->error = -EILSEQ;
699 } else if (status & MCI_DATATIMEOUT) {
700 data->error = -ETIMEDOUT;
701 } else if (status & MCI_STARTBITERR) {
702 data->error = -ECOMM;
703 } else if (status & MCI_TXUNDERRUN) {
704 data->error = -EIO;
705 } else if (status & MCI_RXOVERRUN) {
706 if (success > host->variant->fifosize)
707 success -= host->variant->fifosize;
708 else
709 success = 0;
710 data->error = -EIO;
711 }
712 data->bytes_xfered = round_down(success, data->blksz);
713 }
714
715 if (status & MCI_DATABLOCKEND)
716 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
717
718 if (status & MCI_DATAEND || data->error) {
719 if (dma_inprogress(host))
720 mmci_dma_unmap(host, data);
721 mmci_stop_data(host);
722
723 if (!data->error)
724 /* The error clause is handled above, success! */
725 data->bytes_xfered = data->blksz * data->blocks;
726
727 if (!data->stop) {
728 mmci_request_end(host, data->mrq);
729 } else {
730 mmci_start_command(host, data->stop, 0);
731 }
732 }
733}
734
735static void
736mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
737 unsigned int status)
738{
739 void __iomem *base = host->base;
740
741 host->cmd = NULL;
742
743 if (status & MCI_CMDTIMEOUT) {
744 cmd->error = -ETIMEDOUT;
745 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
746 cmd->error = -EILSEQ;
747 } else {
748 cmd->resp[0] = readl(base + MMCIRESPONSE0);
749 cmd->resp[1] = readl(base + MMCIRESPONSE1);
750 cmd->resp[2] = readl(base + MMCIRESPONSE2);
751 cmd->resp[3] = readl(base + MMCIRESPONSE3);
752 }
753
754 if (!cmd->data || cmd->error) {
755 if (host->data)
756 mmci_stop_data(host);
757 mmci_request_end(host, cmd->mrq);
758 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
759 mmci_start_data(host, cmd->data);
760 }
761}
762
763static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
764{
765 void __iomem *base = host->base;
766 char *ptr = buffer;
767 u32 status;
768 int host_remain = host->size;
769
770 do {
771 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
772
773 if (count > remain)
774 count = remain;
775
776 if (count <= 0)
777 break;
778
779 readsl(base + MMCIFIFO, ptr, count >> 2);
780
781 ptr += count;
782 remain -= count;
783 host_remain -= count;
784
785 if (remain == 0)
786 break;
787
788 status = readl(base + MMCISTATUS);
789 } while (status & MCI_RXDATAAVLBL);
790
791 return ptr - buffer;
792}
793
794static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
795{
796 struct variant_data *variant = host->variant;
797 void __iomem *base = host->base;
798 char *ptr = buffer;
799
800 do {
801 unsigned int count, maxcnt;
802
803 maxcnt = status & MCI_TXFIFOEMPTY ?
804 variant->fifosize : variant->fifohalfsize;
805 count = min(remain, maxcnt);
806
807 /*
808 * The ST Micro variant for SDIO transfer sizes
809 * less then 8 bytes should have clock H/W flow
810 * control disabled.
811 */
812 if (variant->sdio &&
813 mmc_card_sdio(host->mmc->card)) {
814 if (count < 8)
815 writel(readl(host->base + MMCICLOCK) &
816 ~variant->clkreg_enable,
817 host->base + MMCICLOCK);
818 else
819 writel(readl(host->base + MMCICLOCK) |
820 variant->clkreg_enable,
821 host->base + MMCICLOCK);
822 }
823
824 /*
825 * SDIO especially may want to send something that is
826 * not divisible by 4 (as opposed to card sectors
827 * etc), and the FIFO only accept full 32-bit writes.
828 * So compensate by adding +3 on the count, a single
829 * byte become a 32bit write, 7 bytes will be two
830 * 32bit writes etc.
831 */
832 writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
833
834 ptr += count;
835 remain -= count;
836
837 if (remain == 0)
838 break;
839
840 status = readl(base + MMCISTATUS);
841 } while (status & MCI_TXFIFOHALFEMPTY);
842
843 return ptr - buffer;
844}
845
846/*
847 * PIO data transfer IRQ handler.
848 */
849static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
850{
851 struct mmci_host *host = dev_id;
852 struct sg_mapping_iter *sg_miter = &host->sg_miter;
853 struct variant_data *variant = host->variant;
854 void __iomem *base = host->base;
855 unsigned long flags;
856 u32 status;
857
858 status = readl(base + MMCISTATUS);
859
860 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
861
862 local_irq_save(flags);
863
864 do {
865 unsigned int remain, len;
866 char *buffer;
867
868 /*
869 * For write, we only need to test the half-empty flag
870 * here - if the FIFO is completely empty, then by
871 * definition it is more than half empty.
872 *
873 * For read, check for data available.
874 */
875 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
876 break;
877
878 if (!sg_miter_next(sg_miter))
879 break;
880
881 buffer = sg_miter->addr;
882 remain = sg_miter->length;
883
884 len = 0;
885 if (status & MCI_RXACTIVE)
886 len = mmci_pio_read(host, buffer, remain);
887 if (status & MCI_TXACTIVE)
888 len = mmci_pio_write(host, buffer, remain, status);
889
890 sg_miter->consumed = len;
891
892 host->size -= len;
893 remain -= len;
894
895 if (remain)
896 break;
897
898 status = readl(base + MMCISTATUS);
899 } while (1);
900
901 sg_miter_stop(sg_miter);
902
903 local_irq_restore(flags);
904
905 /*
906 * If we have less than the fifo 'half-full' threshold to transfer,
907 * trigger a PIO interrupt as soon as any data is available.
908 */
909 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
910 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
911
912 /*
913 * If we run out of data, disable the data IRQs; this
914 * prevents a race where the FIFO becomes empty before
915 * the chip itself has disabled the data path, and
916 * stops us racing with our data end IRQ.
917 */
918 if (host->size == 0) {
919 mmci_set_mask1(host, 0);
920 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
921 }
922
923 return IRQ_HANDLED;
924}
925
926/*
927 * Handle completion of command and data transfers.
928 */
929static irqreturn_t mmci_irq(int irq, void *dev_id)
930{
931 struct mmci_host *host = dev_id;
932 u32 status;
933 int ret = 0;
934
935 spin_lock(&host->lock);
936
937 do {
938 struct mmc_command *cmd;
939 struct mmc_data *data;
940
941 status = readl(host->base + MMCISTATUS);
942
943 if (host->singleirq) {
944 if (status & readl(host->base + MMCIMASK1))
945 mmci_pio_irq(irq, dev_id);
946
947 status &= ~MCI_IRQ1MASK;
948 }
949
950 status &= readl(host->base + MMCIMASK0);
951 writel(status, host->base + MMCICLEAR);
952
953 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
954
955 data = host->data;
956 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
957 MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
958 mmci_data_irq(host, data, status);
959
960 cmd = host->cmd;
961 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
962 mmci_cmd_irq(host, cmd, status);
963
964 ret = 1;
965 } while (status);
966
967 spin_unlock(&host->lock);
968
969 return IRQ_RETVAL(ret);
970}
971
972static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
973{
974 struct mmci_host *host = mmc_priv(mmc);
975 unsigned long flags;
976
977 WARN_ON(host->mrq != NULL);
978
979 if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
980 dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
981 mrq->data->blksz);
982 mrq->cmd->error = -EINVAL;
983 mmc_request_done(mmc, mrq);
984 return;
985 }
986
987 spin_lock_irqsave(&host->lock, flags);
988
989 host->mrq = mrq;
990
991 if (mrq->data)
992 mmci_get_next_data(host, mrq->data);
993
994 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
995 mmci_start_data(host, mrq->data);
996
997 mmci_start_command(host, mrq->cmd, 0);
998
999 spin_unlock_irqrestore(&host->lock, flags);
1000}
1001
1002static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1003{
1004 struct mmci_host *host = mmc_priv(mmc);
1005 u32 pwr = 0;
1006 unsigned long flags;
1007 int ret;
1008
1009 switch (ios->power_mode) {
1010 case MMC_POWER_OFF:
1011 if (host->vcc)
1012 ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1013 break;
1014 case MMC_POWER_UP:
1015 if (host->vcc) {
1016 ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1017 if (ret) {
1018 dev_err(mmc_dev(mmc), "unable to set OCR\n");
1019 /*
1020 * The .set_ios() function in the mmc_host_ops
1021 * struct return void, and failing to set the
1022 * power should be rare so we print an error
1023 * and return here.
1024 */
1025 return;
1026 }
1027 }
1028 if (host->plat->vdd_handler)
1029 pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1030 ios->power_mode);
1031 /* The ST version does not have this, fall through to POWER_ON */
1032 if (host->hw_designer != AMBA_VENDOR_ST) {
1033 pwr |= MCI_PWR_UP;
1034 break;
1035 }
1036 case MMC_POWER_ON:
1037 pwr |= MCI_PWR_ON;
1038 break;
1039 }
1040
1041 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1042 if (host->hw_designer != AMBA_VENDOR_ST)
1043 pwr |= MCI_ROD;
1044 else {
1045 /*
1046 * The ST Micro variant use the ROD bit for something
1047 * else and only has OD (Open Drain).
1048 */
1049 pwr |= MCI_OD;
1050 }
1051 }
1052
1053 spin_lock_irqsave(&host->lock, flags);
1054
1055 mmci_set_clkreg(host, ios->clock);
1056
1057 if (host->pwr != pwr) {
1058 host->pwr = pwr;
1059 writel(pwr, host->base + MMCIPOWER);
1060 }
1061
1062 spin_unlock_irqrestore(&host->lock, flags);
1063}
1064
1065static int mmci_get_ro(struct mmc_host *mmc)
1066{
1067 struct mmci_host *host = mmc_priv(mmc);
1068
1069 if (host->gpio_wp == -ENOSYS)
1070 return -ENOSYS;
1071
1072 return gpio_get_value_cansleep(host->gpio_wp);
1073}
1074
1075static int mmci_get_cd(struct mmc_host *mmc)
1076{
1077 struct mmci_host *host = mmc_priv(mmc);
1078 struct mmci_platform_data *plat = host->plat;
1079 unsigned int status;
1080
1081 if (host->gpio_cd == -ENOSYS) {
1082 if (!plat->status)
1083 return 1; /* Assume always present */
1084
1085 status = plat->status(mmc_dev(host->mmc));
1086 } else
1087 status = !!gpio_get_value_cansleep(host->gpio_cd)
1088 ^ plat->cd_invert;
1089
1090 /*
1091 * Use positive logic throughout - status is zero for no card,
1092 * non-zero for card inserted.
1093 */
1094 return status;
1095}
1096
1097static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1098{
1099 struct mmci_host *host = dev_id;
1100
1101 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1102
1103 return IRQ_HANDLED;
1104}
1105
1106static const struct mmc_host_ops mmci_ops = {
1107 .request = mmci_request,
1108 .pre_req = mmci_pre_request,
1109 .post_req = mmci_post_request,
1110 .set_ios = mmci_set_ios,
1111 .get_ro = mmci_get_ro,
1112 .get_cd = mmci_get_cd,
1113};
1114
1115static int __devinit mmci_probe(struct amba_device *dev,
1116 const struct amba_id *id)
1117{
1118 struct mmci_platform_data *plat = dev->dev.platform_data;
1119 struct variant_data *variant = id->data;
1120 struct mmci_host *host;
1121 struct mmc_host *mmc;
1122 int ret;
1123
1124 /* must have platform data */
1125 if (!plat) {
1126 ret = -EINVAL;
1127 goto out;
1128 }
1129
1130 ret = amba_request_regions(dev, DRIVER_NAME);
1131 if (ret)
1132 goto out;
1133
1134 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1135 if (!mmc) {
1136 ret = -ENOMEM;
1137 goto rel_regions;
1138 }
1139
1140 host = mmc_priv(mmc);
1141 host->mmc = mmc;
1142
1143 host->gpio_wp = -ENOSYS;
1144 host->gpio_cd = -ENOSYS;
1145 host->gpio_cd_irq = -1;
1146
1147 host->hw_designer = amba_manf(dev);
1148 host->hw_revision = amba_rev(dev);
1149 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1150 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1151
1152 host->clk = clk_get(&dev->dev, NULL);
1153 if (IS_ERR(host->clk)) {
1154 ret = PTR_ERR(host->clk);
1155 host->clk = NULL;
1156 goto host_free;
1157 }
1158
1159 ret = clk_enable(host->clk);
1160 if (ret)
1161 goto clk_free;
1162
1163 host->plat = plat;
1164 host->variant = variant;
1165 host->mclk = clk_get_rate(host->clk);
1166 /*
1167 * According to the spec, mclk is max 100 MHz,
1168 * so we try to adjust the clock down to this,
1169 * (if possible).
1170 */
1171 if (host->mclk > 100000000) {
1172 ret = clk_set_rate(host->clk, 100000000);
1173 if (ret < 0)
1174 goto clk_disable;
1175 host->mclk = clk_get_rate(host->clk);
1176 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1177 host->mclk);
1178 }
1179 host->phybase = dev->res.start;
1180 host->base = ioremap(dev->res.start, resource_size(&dev->res));
1181 if (!host->base) {
1182 ret = -ENOMEM;
1183 goto clk_disable;
1184 }
1185
1186 mmc->ops = &mmci_ops;
1187 /*
1188 * The ARM and ST versions of the block have slightly different
1189 * clock divider equations which means that the minimum divider
1190 * differs too.
1191 */
1192 if (variant->st_clkdiv)
1193 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1194 else
1195 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1196 /*
1197 * If the platform data supplies a maximum operating
1198 * frequency, this takes precedence. Else, we fall back
1199 * to using the module parameter, which has a (low)
1200 * default value in case it is not specified. Either
1201 * value must not exceed the clock rate into the block,
1202 * of course.
1203 */
1204 if (plat->f_max)
1205 mmc->f_max = min(host->mclk, plat->f_max);
1206 else
1207 mmc->f_max = min(host->mclk, fmax);
1208 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1209
1210#ifdef CONFIG_REGULATOR
1211 /* If we're using the regulator framework, try to fetch a regulator */
1212 host->vcc = regulator_get(&dev->dev, "vmmc");
1213 if (IS_ERR(host->vcc))
1214 host->vcc = NULL;
1215 else {
1216 int mask = mmc_regulator_get_ocrmask(host->vcc);
1217
1218 if (mask < 0)
1219 dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1220 mask);
1221 else {
1222 host->mmc->ocr_avail = (u32) mask;
1223 if (plat->ocr_mask)
1224 dev_warn(&dev->dev,
1225 "Provided ocr_mask/setpower will not be used "
1226 "(using regulator instead)\n");
1227 }
1228 }
1229#endif
1230 /* Fall back to platform data if no regulator is found */
1231 if (host->vcc == NULL)
1232 mmc->ocr_avail = plat->ocr_mask;
1233 mmc->caps = plat->capabilities;
1234
1235 /*
1236 * We can do SGIO
1237 */
1238 mmc->max_segs = NR_SG;
1239
1240 /*
1241 * Since only a certain number of bits are valid in the data length
1242 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1243 * single request.
1244 */
1245 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1246
1247 /*
1248 * Set the maximum segment size. Since we aren't doing DMA
1249 * (yet) we are only limited by the data length register.
1250 */
1251 mmc->max_seg_size = mmc->max_req_size;
1252
1253 /*
1254 * Block size can be up to 2048 bytes, but must be a power of two.
1255 */
1256 mmc->max_blk_size = 2048;
1257
1258 /*
1259 * No limit on the number of blocks transferred.
1260 */
1261 mmc->max_blk_count = mmc->max_req_size;
1262
1263 spin_lock_init(&host->lock);
1264
1265 writel(0, host->base + MMCIMASK0);
1266 writel(0, host->base + MMCIMASK1);
1267 writel(0xfff, host->base + MMCICLEAR);
1268
1269 if (gpio_is_valid(plat->gpio_cd)) {
1270 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1271 if (ret == 0)
1272 ret = gpio_direction_input(plat->gpio_cd);
1273 if (ret == 0)
1274 host->gpio_cd = plat->gpio_cd;
1275 else if (ret != -ENOSYS)
1276 goto err_gpio_cd;
1277
1278 /*
1279 * A gpio pin that will detect cards when inserted and removed
1280 * will most likely want to trigger on the edges if it is
1281 * 0 when ejected and 1 when inserted (or mutatis mutandis
1282 * for the inverted case) so we request triggers on both
1283 * edges.
1284 */
1285 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1286 mmci_cd_irq,
1287 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1288 DRIVER_NAME " (cd)", host);
1289 if (ret >= 0)
1290 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1291 }
1292 if (gpio_is_valid(plat->gpio_wp)) {
1293 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1294 if (ret == 0)
1295 ret = gpio_direction_input(plat->gpio_wp);
1296 if (ret == 0)
1297 host->gpio_wp = plat->gpio_wp;
1298 else if (ret != -ENOSYS)
1299 goto err_gpio_wp;
1300 }
1301
1302 if ((host->plat->status || host->gpio_cd != -ENOSYS)
1303 && host->gpio_cd_irq < 0)
1304 mmc->caps |= MMC_CAP_NEEDS_POLL;
1305
1306 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1307 if (ret)
1308 goto unmap;
1309
1310 if (dev->irq[1] == NO_IRQ)
1311 host->singleirq = true;
1312 else {
1313 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1314 DRIVER_NAME " (pio)", host);
1315 if (ret)
1316 goto irq0_free;
1317 }
1318
1319 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1320
1321 amba_set_drvdata(dev, mmc);
1322
1323 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1324 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1325 amba_rev(dev), (unsigned long long)dev->res.start,
1326 dev->irq[0], dev->irq[1]);
1327
1328 mmci_dma_setup(host);
1329
1330 mmc_add_host(mmc);
1331
1332 return 0;
1333
1334 irq0_free:
1335 free_irq(dev->irq[0], host);
1336 unmap:
1337 if (host->gpio_wp != -ENOSYS)
1338 gpio_free(host->gpio_wp);
1339 err_gpio_wp:
1340 if (host->gpio_cd_irq >= 0)
1341 free_irq(host->gpio_cd_irq, host);
1342 if (host->gpio_cd != -ENOSYS)
1343 gpio_free(host->gpio_cd);
1344 err_gpio_cd:
1345 iounmap(host->base);
1346 clk_disable:
1347 clk_disable(host->clk);
1348 clk_free:
1349 clk_put(host->clk);
1350 host_free:
1351 mmc_free_host(mmc);
1352 rel_regions:
1353 amba_release_regions(dev);
1354 out:
1355 return ret;
1356}
1357
1358static int __devexit mmci_remove(struct amba_device *dev)
1359{
1360 struct mmc_host *mmc = amba_get_drvdata(dev);
1361
1362 amba_set_drvdata(dev, NULL);
1363
1364 if (mmc) {
1365 struct mmci_host *host = mmc_priv(mmc);
1366
1367 mmc_remove_host(mmc);
1368
1369 writel(0, host->base + MMCIMASK0);
1370 writel(0, host->base + MMCIMASK1);
1371
1372 writel(0, host->base + MMCICOMMAND);
1373 writel(0, host->base + MMCIDATACTRL);
1374
1375 mmci_dma_release(host);
1376 free_irq(dev->irq[0], host);
1377 if (!host->singleirq)
1378 free_irq(dev->irq[1], host);
1379
1380 if (host->gpio_wp != -ENOSYS)
1381 gpio_free(host->gpio_wp);
1382 if (host->gpio_cd_irq >= 0)
1383 free_irq(host->gpio_cd_irq, host);
1384 if (host->gpio_cd != -ENOSYS)
1385 gpio_free(host->gpio_cd);
1386
1387 iounmap(host->base);
1388 clk_disable(host->clk);
1389 clk_put(host->clk);
1390
1391 if (host->vcc)
1392 mmc_regulator_set_ocr(mmc, host->vcc, 0);
1393 regulator_put(host->vcc);
1394
1395 mmc_free_host(mmc);
1396
1397 amba_release_regions(dev);
1398 }
1399
1400 return 0;
1401}
1402
1403#ifdef CONFIG_PM
1404static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1405{
1406 struct mmc_host *mmc = amba_get_drvdata(dev);
1407 int ret = 0;
1408
1409 if (mmc) {
1410 struct mmci_host *host = mmc_priv(mmc);
1411
1412 ret = mmc_suspend_host(mmc);
1413 if (ret == 0)
1414 writel(0, host->base + MMCIMASK0);
1415 }
1416
1417 return ret;
1418}
1419
1420static int mmci_resume(struct amba_device *dev)
1421{
1422 struct mmc_host *mmc = amba_get_drvdata(dev);
1423 int ret = 0;
1424
1425 if (mmc) {
1426 struct mmci_host *host = mmc_priv(mmc);
1427
1428 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1429
1430 ret = mmc_resume_host(mmc);
1431 }
1432
1433 return ret;
1434}
1435#else
1436#define mmci_suspend NULL
1437#define mmci_resume NULL
1438#endif
1439
1440static struct amba_id mmci_ids[] = {
1441 {
1442 .id = 0x00041180,
1443 .mask = 0xff0fffff,
1444 .data = &variant_arm,
1445 },
1446 {
1447 .id = 0x01041180,
1448 .mask = 0xff0fffff,
1449 .data = &variant_arm_extended_fifo,
1450 },
1451 {
1452 .id = 0x00041181,
1453 .mask = 0x000fffff,
1454 .data = &variant_arm,
1455 },
1456 /* ST Micro variants */
1457 {
1458 .id = 0x00180180,
1459 .mask = 0x00ffffff,
1460 .data = &variant_u300,
1461 },
1462 {
1463 .id = 0x00280180,
1464 .mask = 0x00ffffff,
1465 .data = &variant_u300,
1466 },
1467 {
1468 .id = 0x00480180,
1469 .mask = 0xf0ffffff,
1470 .data = &variant_ux500,
1471 },
1472 {
1473 .id = 0x10480180,
1474 .mask = 0xf0ffffff,
1475 .data = &variant_ux500v2,
1476 },
1477 { 0, 0 },
1478};
1479
1480static struct amba_driver mmci_driver = {
1481 .drv = {
1482 .name = DRIVER_NAME,
1483 },
1484 .probe = mmci_probe,
1485 .remove = __devexit_p(mmci_remove),
1486 .suspend = mmci_suspend,
1487 .resume = mmci_resume,
1488 .id_table = mmci_ids,
1489};
1490
1491static int __init mmci_init(void)
1492{
1493 return amba_driver_register(&mmci_driver);
1494}
1495
1496static void __exit mmci_exit(void)
1497{
1498 amba_driver_unregister(&mmci_driver);
1499}
1500
1501module_init(mmci_init);
1502module_exit(mmci_exit);
1503module_param(fmax, uint, 0444);
1504
1505MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1506MODULE_LICENSE("GPL");