Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/err.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
  24#include <linux/mmc/pm.h>
  25#include <linux/mmc/host.h>
  26#include <linux/mmc/card.h>
  27#include <linux/mmc/slot-gpio.h>
  28#include <linux/amba/bus.h>
  29#include <linux/clk.h>
  30#include <linux/scatterlist.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/amba/mmci.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/types.h>
  39#include <linux/pinctrl/consumer.h>
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
 
  43
  44#include "mmci.h"
  45#include "mmci_qcom_dml.h"
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
  49static unsigned int fmax = 515633;
  50
  51/**
  52 * struct variant_data - MMCI variant-specific quirks
  53 * @clkreg: default value for MCICLOCK register
  54 * @clkreg_enable: enable value for MMCICLOCK register
  55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
  56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
  57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  59 *	      is asserted (likewise for RX)
  60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  61 *		  is asserted (likewise for RX)
  62 * @data_cmd_enable: enable value for data commands.
  63 * @st_sdio: enable ST specific SDIO logic
  64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
  66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
  68 *		     register
  69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
  70 * @pwrreg_powerup: power up value for MMCIPOWER register
  71 * @f_max: maximum clk frequency supported by the controller.
  72 * @signal_direction: input/out direction of bus signals can be indicated
  73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  74 * @busy_detect: true if the variant supports busy detection on DAT0.
  75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
  76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
  77 *		      indicating that the card is busy
  78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
  79 *		      getting busy end detection interrupts
  80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  81 * @explicit_mclk_control: enable explicit mclk control in driver.
  82 * @qcom_fifo: enables qcom specific fifo pio read logic.
  83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
  84 * @reversed_irq_handling: handle data irq before cmd irq.
  85 * @mmcimask1: true if variant have a MMCIMASK1 register.
  86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
  87 *	       register.
  88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
  89 */
  90struct variant_data {
  91	unsigned int		clkreg;
  92	unsigned int		clkreg_enable;
  93	unsigned int		clkreg_8bit_bus_enable;
  94	unsigned int		clkreg_neg_edge_enable;
  95	unsigned int		datalength_bits;
  96	unsigned int		fifosize;
  97	unsigned int		fifohalfsize;
  98	unsigned int		data_cmd_enable;
  99	unsigned int		datactrl_mask_ddrmode;
 100	unsigned int		datactrl_mask_sdio;
 101	bool			st_sdio;
 102	bool			st_clkdiv;
 103	bool			blksz_datactrl16;
 104	bool			blksz_datactrl4;
 105	u32			pwrreg_powerup;
 106	u32			f_max;
 107	bool			signal_direction;
 108	bool			pwrreg_clkgate;
 109	bool			busy_detect;
 110	u32			busy_dpsm_flag;
 111	u32			busy_detect_flag;
 112	u32			busy_detect_mask;
 113	bool			pwrreg_nopower;
 114	bool			explicit_mclk_control;
 115	bool			qcom_fifo;
 116	bool			qcom_dml;
 117	bool			reversed_irq_handling;
 118	bool			mmcimask1;
 119	u32			start_err;
 120	u32			opendrain;
 121};
 122
 123static struct variant_data variant_arm = {
 124	.fifosize		= 16 * 4,
 125	.fifohalfsize		= 8 * 4,
 126	.datalength_bits	= 16,
 127	.pwrreg_powerup		= MCI_PWR_UP,
 128	.f_max			= 100000000,
 129	.reversed_irq_handling	= true,
 130	.mmcimask1		= true,
 131	.start_err		= MCI_STARTBITERR,
 132	.opendrain		= MCI_ROD,
 133};
 134
 135static struct variant_data variant_arm_extended_fifo = {
 136	.fifosize		= 128 * 4,
 137	.fifohalfsize		= 64 * 4,
 138	.datalength_bits	= 16,
 139	.pwrreg_powerup		= MCI_PWR_UP,
 140	.f_max			= 100000000,
 141	.mmcimask1		= true,
 142	.start_err		= MCI_STARTBITERR,
 143	.opendrain		= MCI_ROD,
 144};
 145
 146static struct variant_data variant_arm_extended_fifo_hwfc = {
 147	.fifosize		= 128 * 4,
 148	.fifohalfsize		= 64 * 4,
 149	.clkreg_enable		= MCI_ARM_HWFCEN,
 150	.datalength_bits	= 16,
 151	.pwrreg_powerup		= MCI_PWR_UP,
 152	.f_max			= 100000000,
 153	.mmcimask1		= true,
 154	.start_err		= MCI_STARTBITERR,
 155	.opendrain		= MCI_ROD,
 156};
 157
 158static struct variant_data variant_u300 = {
 159	.fifosize		= 16 * 4,
 160	.fifohalfsize		= 8 * 4,
 161	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 162	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 163	.datalength_bits	= 16,
 164	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 165	.st_sdio			= true,
 166	.pwrreg_powerup		= MCI_PWR_ON,
 167	.f_max			= 100000000,
 168	.signal_direction	= true,
 169	.pwrreg_clkgate		= true,
 170	.pwrreg_nopower		= true,
 171	.mmcimask1		= true,
 172	.start_err		= MCI_STARTBITERR,
 173	.opendrain		= MCI_OD,
 174};
 175
 176static struct variant_data variant_nomadik = {
 177	.fifosize		= 16 * 4,
 178	.fifohalfsize		= 8 * 4,
 179	.clkreg			= MCI_CLK_ENABLE,
 180	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 181	.datalength_bits	= 24,
 182	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 183	.st_sdio		= true,
 184	.st_clkdiv		= true,
 185	.pwrreg_powerup		= MCI_PWR_ON,
 186	.f_max			= 100000000,
 187	.signal_direction	= true,
 188	.pwrreg_clkgate		= true,
 189	.pwrreg_nopower		= true,
 190	.mmcimask1		= true,
 191	.start_err		= MCI_STARTBITERR,
 192	.opendrain		= MCI_OD,
 193};
 194
 195static struct variant_data variant_ux500 = {
 196	.fifosize		= 30 * 4,
 197	.fifohalfsize		= 8 * 4,
 198	.clkreg			= MCI_CLK_ENABLE,
 199	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 200	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 202	.datalength_bits	= 24,
 203	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 204	.st_sdio		= true,
 205	.st_clkdiv		= true,
 206	.pwrreg_powerup		= MCI_PWR_ON,
 207	.f_max			= 100000000,
 208	.signal_direction	= true,
 209	.pwrreg_clkgate		= true,
 210	.busy_detect		= true,
 211	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 212	.busy_detect_flag	= MCI_ST_CARDBUSY,
 213	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 214	.pwrreg_nopower		= true,
 215	.mmcimask1		= true,
 216	.start_err		= MCI_STARTBITERR,
 217	.opendrain		= MCI_OD,
 218};
 219
 220static struct variant_data variant_ux500v2 = {
 221	.fifosize		= 30 * 4,
 222	.fifohalfsize		= 8 * 4,
 223	.clkreg			= MCI_CLK_ENABLE,
 224	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 225	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 226	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 227	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 228	.datalength_bits	= 24,
 229	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 230	.st_sdio		= true,
 231	.st_clkdiv		= true,
 232	.blksz_datactrl16	= true,
 233	.pwrreg_powerup		= MCI_PWR_ON,
 234	.f_max			= 100000000,
 235	.signal_direction	= true,
 236	.pwrreg_clkgate		= true,
 237	.busy_detect		= true,
 238	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 239	.busy_detect_flag	= MCI_ST_CARDBUSY,
 240	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 241	.pwrreg_nopower		= true,
 242	.mmcimask1		= true,
 243	.start_err		= MCI_STARTBITERR,
 244	.opendrain		= MCI_OD,
 245};
 246
 247static struct variant_data variant_stm32 = {
 248	.fifosize		= 32 * 4,
 249	.fifohalfsize		= 8 * 4,
 250	.clkreg			= MCI_CLK_ENABLE,
 251	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 252	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 253	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 254	.datalength_bits	= 24,
 255	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 256	.st_sdio		= true,
 257	.st_clkdiv		= true,
 258	.pwrreg_powerup		= MCI_PWR_ON,
 259	.f_max			= 48000000,
 260	.pwrreg_clkgate		= true,
 261	.pwrreg_nopower		= true,
 262};
 263
 264static struct variant_data variant_qcom = {
 265	.fifosize		= 16 * 4,
 266	.fifohalfsize		= 8 * 4,
 267	.clkreg			= MCI_CLK_ENABLE,
 268	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 269				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 270	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 271	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 272	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 273	.blksz_datactrl4	= true,
 274	.datalength_bits	= 24,
 275	.pwrreg_powerup		= MCI_PWR_UP,
 276	.f_max			= 208000000,
 277	.explicit_mclk_control	= true,
 278	.qcom_fifo		= true,
 279	.qcom_dml		= true,
 280	.mmcimask1		= true,
 281	.start_err		= MCI_STARTBITERR,
 282	.opendrain		= MCI_ROD,
 283};
 284
 285/* Busy detection for the ST Micro variant */
 286static int mmci_card_busy(struct mmc_host *mmc)
 287{
 288	struct mmci_host *host = mmc_priv(mmc);
 289	unsigned long flags;
 290	int busy = 0;
 291
 292	spin_lock_irqsave(&host->lock, flags);
 293	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 294		busy = 1;
 295	spin_unlock_irqrestore(&host->lock, flags);
 296
 297	return busy;
 298}
 299
 300/*
 301 * Validate mmc prerequisites
 302 */
 303static int mmci_validate_data(struct mmci_host *host,
 304			      struct mmc_data *data)
 305{
 306	if (!data)
 307		return 0;
 308
 309	if (!is_power_of_2(data->blksz)) {
 310		dev_err(mmc_dev(host->mmc),
 311			"unsupported block size (%d bytes)\n", data->blksz);
 312		return -EINVAL;
 313	}
 314
 315	return 0;
 316}
 317
 318static void mmci_reg_delay(struct mmci_host *host)
 319{
 320	/*
 321	 * According to the spec, at least three feedback clock cycles
 322	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 323	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 324	 * Worst delay time during card init is at 100 kHz => 30 us.
 325	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 326	 */
 327	if (host->cclk < 25000000)
 328		udelay(30);
 329	else
 330		ndelay(120);
 331}
 332
 333/*
 334 * This must be called with host->lock held
 335 */
 336static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 337{
 338	if (host->clk_reg != clk) {
 339		host->clk_reg = clk;
 340		writel(clk, host->base + MMCICLOCK);
 341	}
 342}
 343
 344/*
 345 * This must be called with host->lock held
 346 */
 347static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 348{
 349	if (host->pwr_reg != pwr) {
 350		host->pwr_reg = pwr;
 351		writel(pwr, host->base + MMCIPOWER);
 352	}
 353}
 354
 355/*
 356 * This must be called with host->lock held
 357 */
 358static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 359{
 360	/* Keep busy mode in DPSM if enabled */
 361	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 362
 363	if (host->datactrl_reg != datactrl) {
 364		host->datactrl_reg = datactrl;
 365		writel(datactrl, host->base + MMCIDATACTRL);
 366	}
 367}
 368
 369/*
 370 * This must be called with host->lock held
 371 */
 372static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 373{
 374	struct variant_data *variant = host->variant;
 375	u32 clk = variant->clkreg;
 376
 377	/* Make sure cclk reflects the current calculated clock */
 378	host->cclk = 0;
 379
 380	if (desired) {
 381		if (variant->explicit_mclk_control) {
 382			host->cclk = host->mclk;
 383		} else if (desired >= host->mclk) {
 384			clk = MCI_CLK_BYPASS;
 385			if (variant->st_clkdiv)
 386				clk |= MCI_ST_UX500_NEG_EDGE;
 387			host->cclk = host->mclk;
 388		} else if (variant->st_clkdiv) {
 389			/*
 390			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 391			 * => clkdiv = (mclk / f) - 2
 392			 * Round the divider up so we don't exceed the max
 393			 * frequency
 394			 */
 395			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 396			if (clk >= 256)
 397				clk = 255;
 398			host->cclk = host->mclk / (clk + 2);
 399		} else {
 400			/*
 401			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 402			 * => clkdiv = mclk / (2 * f) - 1
 403			 */
 404			clk = host->mclk / (2 * desired) - 1;
 405			if (clk >= 256)
 406				clk = 255;
 407			host->cclk = host->mclk / (2 * (clk + 1));
 408		}
 409
 410		clk |= variant->clkreg_enable;
 411		clk |= MCI_CLK_ENABLE;
 412		/* This hasn't proven to be worthwhile */
 413		/* clk |= MCI_CLK_PWRSAVE; */
 414	}
 415
 416	/* Set actual clock for debug */
 417	host->mmc->actual_clock = host->cclk;
 418
 419	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 420		clk |= MCI_4BIT_BUS;
 421	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 422		clk |= variant->clkreg_8bit_bus_enable;
 423
 424	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 425	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 426		clk |= variant->clkreg_neg_edge_enable;
 427
 428	mmci_write_clkreg(host, clk);
 429}
 430
 431static void
 432mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 433{
 434	writel(0, host->base + MMCICOMMAND);
 435
 436	BUG_ON(host->data);
 437
 438	host->mrq = NULL;
 439	host->cmd = NULL;
 440
 
 
 
 
 
 441	mmc_request_done(host->mmc, mrq);
 
 442}
 443
 444static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 445{
 446	void __iomem *base = host->base;
 447	struct variant_data *variant = host->variant;
 448
 449	if (host->singleirq) {
 450		unsigned int mask0 = readl(base + MMCIMASK0);
 451
 452		mask0 &= ~MCI_IRQ1MASK;
 453		mask0 |= mask;
 454
 455		writel(mask0, base + MMCIMASK0);
 456	}
 457
 458	if (variant->mmcimask1)
 459		writel(mask, base + MMCIMASK1);
 460
 461	host->mask1_reg = mask;
 462}
 463
 464static void mmci_stop_data(struct mmci_host *host)
 465{
 466	mmci_write_datactrlreg(host, 0);
 467	mmci_set_mask1(host, 0);
 468	host->data = NULL;
 469}
 470
 471static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 472{
 473	unsigned int flags = SG_MITER_ATOMIC;
 474
 475	if (data->flags & MMC_DATA_READ)
 476		flags |= SG_MITER_TO_SG;
 477	else
 478		flags |= SG_MITER_FROM_SG;
 479
 480	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 481}
 482
 483/*
 484 * All the DMA operation mode stuff goes inside this ifdef.
 485 * This assumes that you have a generic DMA device interface,
 486 * no custom DMA interfaces are supported.
 487 */
 488#ifdef CONFIG_DMA_ENGINE
 489static void mmci_dma_setup(struct mmci_host *host)
 490{
 
 491	const char *rxname, *txname;
 492	struct variant_data *variant = host->variant;
 493
 494	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 495	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 
 
 496
 497	/* initialize pre request cookie */
 498	host->next_data.cookie = 1;
 499
 
 
 
 
 500	/*
 501	 * If only an RX channel is specified, the driver will
 502	 * attempt to use it bidirectionally, however if it is
 503	 * is specified but cannot be located, DMA will be disabled.
 504	 */
 505	if (host->dma_rx_channel && !host->dma_tx_channel)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506		host->dma_tx_channel = host->dma_rx_channel;
 
 507
 508	if (host->dma_rx_channel)
 509		rxname = dma_chan_name(host->dma_rx_channel);
 510	else
 511		rxname = "none";
 512
 513	if (host->dma_tx_channel)
 514		txname = dma_chan_name(host->dma_tx_channel);
 515	else
 516		txname = "none";
 517
 518	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 519		 rxname, txname);
 520
 521	/*
 522	 * Limit the maximum segment size in any SG entry according to
 523	 * the parameters of the DMA engine device.
 524	 */
 525	if (host->dma_tx_channel) {
 526		struct device *dev = host->dma_tx_channel->device->dev;
 527		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 528
 529		if (max_seg_size < host->mmc->max_seg_size)
 530			host->mmc->max_seg_size = max_seg_size;
 531	}
 532	if (host->dma_rx_channel) {
 533		struct device *dev = host->dma_rx_channel->device->dev;
 534		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 535
 536		if (max_seg_size < host->mmc->max_seg_size)
 537			host->mmc->max_seg_size = max_seg_size;
 538	}
 539
 540	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
 541		if (dml_hw_init(host, host->mmc->parent->of_node))
 542			variant->qcom_dml = false;
 543}
 544
 545/*
 546 * This is used in or so inline it
 547 * so it can be discarded.
 548 */
 549static inline void mmci_dma_release(struct mmci_host *host)
 550{
 
 
 551	if (host->dma_rx_channel)
 552		dma_release_channel(host->dma_rx_channel);
 553	if (host->dma_tx_channel)
 554		dma_release_channel(host->dma_tx_channel);
 555	host->dma_rx_channel = host->dma_tx_channel = NULL;
 556}
 557
 558static void mmci_dma_data_error(struct mmci_host *host)
 559{
 560	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 561	dmaengine_terminate_all(host->dma_current);
 562	host->dma_in_progress = false;
 563	host->dma_current = NULL;
 564	host->dma_desc_current = NULL;
 565	host->data->host_cookie = 0;
 566}
 567
 568static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 569{
 570	struct dma_chan *chan;
 571
 572	if (data->flags & MMC_DATA_READ)
 573		chan = host->dma_rx_channel;
 574	else
 575		chan = host->dma_tx_channel;
 576
 577	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 578		     mmc_get_dma_dir(data));
 579}
 580
 581static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 582{
 583	u32 status;
 584	int i;
 585
 586	/* Wait up to 1ms for the DMA to complete */
 587	for (i = 0; ; i++) {
 588		status = readl(host->base + MMCISTATUS);
 589		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 590			break;
 591		udelay(10);
 592	}
 593
 594	/*
 595	 * Check to see whether we still have some data left in the FIFO -
 596	 * this catches DMA controllers which are unable to monitor the
 597	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 598	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 599	 */
 600	if (status & MCI_RXDATAAVLBLMASK) {
 601		mmci_dma_data_error(host);
 602		if (!data->error)
 603			data->error = -EIO;
 604	}
 605
 
 
 
 
 
 
 606	if (!data->host_cookie)
 607		mmci_dma_unmap(host, data);
 608
 609	/*
 610	 * Use of DMA with scatter-gather is impossible.
 611	 * Give up with DMA and switch back to PIO mode.
 612	 */
 613	if (status & MCI_RXDATAAVLBLMASK) {
 614		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 615		mmci_dma_release(host);
 616	}
 
 617
 618	host->dma_in_progress = false;
 619	host->dma_current = NULL;
 620	host->dma_desc_current = NULL;
 
 621}
 622
 623/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 624static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 625				struct dma_chan **dma_chan,
 626				struct dma_async_tx_descriptor **dma_desc)
 627{
 628	struct variant_data *variant = host->variant;
 629	struct dma_slave_config conf = {
 630		.src_addr = host->phybase + MMCIFIFO,
 631		.dst_addr = host->phybase + MMCIFIFO,
 632		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 633		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 634		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 635		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 636		.device_fc = false,
 637	};
 638	struct dma_chan *chan;
 639	struct dma_device *device;
 640	struct dma_async_tx_descriptor *desc;
 641	int nr_sg;
 642	unsigned long flags = DMA_CTRL_ACK;
 
 
 
 
 
 
 
 
 
 643
 644	if (data->flags & MMC_DATA_READ) {
 645		conf.direction = DMA_DEV_TO_MEM;
 646		chan = host->dma_rx_channel;
 647	} else {
 648		conf.direction = DMA_MEM_TO_DEV;
 649		chan = host->dma_tx_channel;
 650	}
 651
 652	/* If there's no DMA channel, fall back to PIO */
 653	if (!chan)
 654		return -EINVAL;
 655
 656	/* If less than or equal to the fifo size, don't bother with DMA */
 657	if (data->blksz * data->blocks <= variant->fifosize)
 658		return -EINVAL;
 659
 660	device = chan->device;
 661	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 662			   mmc_get_dma_dir(data));
 663	if (nr_sg == 0)
 664		return -EINVAL;
 665
 666	if (host->variant->qcom_dml)
 667		flags |= DMA_PREP_INTERRUPT;
 668
 669	dmaengine_slave_config(chan, &conf);
 670	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 671					    conf.direction, flags);
 672	if (!desc)
 673		goto unmap_exit;
 674
 675	*dma_chan = chan;
 676	*dma_desc = desc;
 
 
 
 
 
 677
 678	return 0;
 679
 680 unmap_exit:
 681	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 682		     mmc_get_dma_dir(data));
 
 683	return -ENOMEM;
 684}
 685
 686static inline int mmci_dma_prep_data(struct mmci_host *host,
 687				     struct mmc_data *data)
 688{
 689	/* Check if next job is already prepared. */
 690	if (host->dma_current && host->dma_desc_current)
 691		return 0;
 692
 693	/* No job were prepared thus do it now. */
 694	return __mmci_dma_prep_data(host, data, &host->dma_current,
 695				    &host->dma_desc_current);
 696}
 697
 698static inline int mmci_dma_prep_next(struct mmci_host *host,
 699				     struct mmc_data *data)
 700{
 701	struct mmci_host_next *nd = &host->next_data;
 702	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 703}
 704
 705static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 706{
 707	int ret;
 708	struct mmc_data *data = host->data;
 709
 710	ret = mmci_dma_prep_data(host, host->data);
 711	if (ret)
 712		return ret;
 713
 714	/* Okay, go for it. */
 715	dev_vdbg(mmc_dev(host->mmc),
 716		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 717		 data->sg_len, data->blksz, data->blocks, data->flags);
 718	host->dma_in_progress = true;
 719	dmaengine_submit(host->dma_desc_current);
 720	dma_async_issue_pending(host->dma_current);
 721
 722	if (host->variant->qcom_dml)
 723		dml_start_xfer(host, data);
 724
 725	datactrl |= MCI_DPSM_DMAENABLE;
 726
 727	/* Trigger the DMA transfer */
 728	mmci_write_datactrlreg(host, datactrl);
 729
 730	/*
 731	 * Let the MMCI say when the data is ended and it's time
 732	 * to fire next DMA request. When that happens, MMCI will
 733	 * call mmci_data_end()
 734	 */
 735	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 736	       host->base + MMCIMASK0);
 737	return 0;
 738}
 739
 740static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 741{
 742	struct mmci_host_next *next = &host->next_data;
 743
 744	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 745	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 
 
 
 
 
 
 
 746
 747	host->dma_desc_current = next->dma_desc;
 748	host->dma_current = next->dma_chan;
 
 749	next->dma_desc = NULL;
 750	next->dma_chan = NULL;
 751}
 752
 753static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 
 754{
 755	struct mmci_host *host = mmc_priv(mmc);
 756	struct mmc_data *data = mrq->data;
 757	struct mmci_host_next *nd = &host->next_data;
 758
 759	if (!data)
 760		return;
 761
 762	BUG_ON(data->host_cookie);
 763
 764	if (mmci_validate_data(host, data))
 765		return;
 
 766
 767	if (!mmci_dma_prep_next(host, data))
 768		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 
 
 
 
 
 
 769}
 770
 771static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 772			      int err)
 773{
 774	struct mmci_host *host = mmc_priv(mmc);
 775	struct mmc_data *data = mrq->data;
 
 
 776
 777	if (!data || !data->host_cookie)
 778		return;
 779
 780	mmci_dma_unmap(host, data);
 781
 782	if (err) {
 783		struct mmci_host_next *next = &host->next_data;
 784		struct dma_chan *chan;
 785		if (data->flags & MMC_DATA_READ)
 786			chan = host->dma_rx_channel;
 787		else
 788			chan = host->dma_tx_channel;
 789		dmaengine_terminate_all(chan);
 790
 791		if (host->dma_desc_current == next->dma_desc)
 792			host->dma_desc_current = NULL;
 793
 794		if (host->dma_current == next->dma_chan) {
 795			host->dma_in_progress = false;
 796			host->dma_current = NULL;
 797		}
 798
 799		next->dma_desc = NULL;
 800		next->dma_chan = NULL;
 801		data->host_cookie = 0;
 
 
 
 
 
 802	}
 803}
 804
 805#else
 806/* Blank functions if the DMA engine is not available */
 807static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 808{
 809}
 810static inline void mmci_dma_setup(struct mmci_host *host)
 811{
 812}
 813
 814static inline void mmci_dma_release(struct mmci_host *host)
 815{
 816}
 817
 818static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 819{
 820}
 821
 822static inline void mmci_dma_finalize(struct mmci_host *host,
 823				     struct mmc_data *data)
 824{
 825}
 826
 827static inline void mmci_dma_data_error(struct mmci_host *host)
 828{
 829}
 830
 831static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 832{
 833	return -ENOSYS;
 834}
 835
 836#define mmci_pre_request NULL
 837#define mmci_post_request NULL
 838
 839#endif
 840
 841static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 842{
 843	struct variant_data *variant = host->variant;
 844	unsigned int datactrl, timeout, irqmask;
 845	unsigned long long clks;
 846	void __iomem *base;
 847	int blksz_bits;
 848
 849	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 850		data->blksz, data->blocks, data->flags);
 851
 852	host->data = data;
 853	host->size = data->blksz * data->blocks;
 854	data->bytes_xfered = 0;
 855
 856	clks = (unsigned long long)data->timeout_ns * host->cclk;
 857	do_div(clks, NSEC_PER_SEC);
 858
 859	timeout = data->timeout_clks + (unsigned int)clks;
 860
 861	base = host->base;
 862	writel(timeout, base + MMCIDATATIMER);
 863	writel(host->size, base + MMCIDATALENGTH);
 864
 865	blksz_bits = ffs(data->blksz) - 1;
 866	BUG_ON(1 << blksz_bits != data->blksz);
 867
 868	if (variant->blksz_datactrl16)
 869		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 870	else if (variant->blksz_datactrl4)
 871		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
 872	else
 873		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 874
 875	if (data->flags & MMC_DATA_READ)
 876		datactrl |= MCI_DPSM_DIRECTION;
 877
 878	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
 879		u32 clk;
 880
 881		datactrl |= variant->datactrl_mask_sdio;
 882
 883		/*
 884		 * The ST Micro variant for SDIO small write transfers
 885		 * needs to have clock H/W flow control disabled,
 886		 * otherwise the transfer will not start. The threshold
 887		 * depends on the rate of MCLK.
 888		 */
 889		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
 890		    (host->size < 8 ||
 891		     (host->size <= 8 && host->mclk > 50000000)))
 892			clk = host->clk_reg & ~variant->clkreg_enable;
 893		else
 894			clk = host->clk_reg | variant->clkreg_enable;
 895
 896		mmci_write_clkreg(host, clk);
 897	}
 898
 899	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 900	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 901		datactrl |= variant->datactrl_mask_ddrmode;
 902
 903	/*
 904	 * Attempt to use DMA operation mode, if this
 905	 * should fail, fall back to PIO mode
 906	 */
 907	if (!mmci_dma_start_data(host, datactrl))
 908		return;
 909
 910	/* IRQ mode, map the SG list for CPU reading/writing */
 911	mmci_init_sg(host, data);
 912
 913	if (data->flags & MMC_DATA_READ) {
 914		irqmask = MCI_RXFIFOHALFFULLMASK;
 915
 916		/*
 917		 * If we have less than the fifo 'half-full' threshold to
 918		 * transfer, trigger a PIO interrupt as soon as any data
 919		 * is available.
 920		 */
 921		if (host->size < variant->fifohalfsize)
 922			irqmask |= MCI_RXDATAAVLBLMASK;
 923	} else {
 924		/*
 925		 * We don't actually need to include "FIFO empty" here
 926		 * since its implicit in "FIFO half empty".
 927		 */
 928		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 929	}
 930
 931	mmci_write_datactrlreg(host, datactrl);
 
 
 
 
 
 932	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 933	mmci_set_mask1(host, irqmask);
 934}
 935
 936static void
 937mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 938{
 939	void __iomem *base = host->base;
 940
 941	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 942	    cmd->opcode, cmd->arg, cmd->flags);
 943
 944	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 945		writel(0, base + MMCICOMMAND);
 946		mmci_reg_delay(host);
 947	}
 948
 949	c |= cmd->opcode | MCI_CPSM_ENABLE;
 950	if (cmd->flags & MMC_RSP_PRESENT) {
 951		if (cmd->flags & MMC_RSP_136)
 952			c |= MCI_CPSM_LONGRSP;
 953		c |= MCI_CPSM_RESPONSE;
 954	}
 955	if (/*interrupt*/0)
 956		c |= MCI_CPSM_INTERRUPT;
 957
 958	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
 959		c |= host->variant->data_cmd_enable;
 960
 961	host->cmd = cmd;
 962
 963	writel(cmd->arg, base + MMCIARGUMENT);
 964	writel(c, base + MMCICOMMAND);
 965}
 966
 967static void
 968mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 969	      unsigned int status)
 970{
 971	/* Make sure we have data to handle */
 972	if (!data)
 973		return;
 974
 975	/* First check for errors */
 976	if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
 977		      host->variant->start_err |
 978		      MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
 979		u32 remain, success;
 980
 981		/* Terminate the DMA transfer */
 982		if (dma_inprogress(host)) {
 983			mmci_dma_data_error(host);
 984			mmci_dma_unmap(host, data);
 985		}
 986
 987		/*
 988		 * Calculate how far we are into the transfer.  Note that
 989		 * the data counter gives the number of bytes transferred
 990		 * on the MMC bus, not on the host side.  On reads, this
 991		 * can be as much as a FIFO-worth of data ahead.  This
 992		 * matters for FIFO overruns only.
 993		 */
 994		remain = readl(host->base + MMCIDATACNT);
 995		success = data->blksz * data->blocks - remain;
 996
 997		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 998			status, success);
 999		if (status & MCI_DATACRCFAIL) {
1000			/* Last block was not successful */
1001			success -= 1;
1002			data->error = -EILSEQ;
1003		} else if (status & MCI_DATATIMEOUT) {
1004			data->error = -ETIMEDOUT;
1005		} else if (status & MCI_STARTBITERR) {
1006			data->error = -ECOMM;
1007		} else if (status & MCI_TXUNDERRUN) {
1008			data->error = -EIO;
1009		} else if (status & MCI_RXOVERRUN) {
1010			if (success > host->variant->fifosize)
1011				success -= host->variant->fifosize;
1012			else
1013				success = 0;
1014			data->error = -EIO;
1015		}
1016		data->bytes_xfered = round_down(success, data->blksz);
1017	}
1018
1019	if (status & MCI_DATABLOCKEND)
1020		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022	if (status & MCI_DATAEND || data->error) {
1023		if (dma_inprogress(host))
1024			mmci_dma_finalize(host, data);
1025		mmci_stop_data(host);
1026
1027		if (!data->error)
1028			/* The error clause is handled above, success! */
1029			data->bytes_xfered = data->blksz * data->blocks;
1030
1031		if (!data->stop || host->mrq->sbc) {
1032			mmci_request_end(host, data->mrq);
1033		} else {
1034			mmci_start_command(host, data->stop, 0);
1035		}
1036	}
1037}
1038
1039static void
1040mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041	     unsigned int status)
1042{
1043	void __iomem *base = host->base;
1044	bool sbc;
1045
1046	if (!cmd)
1047		return;
1048
1049	sbc = (cmd == host->mrq->sbc);
1050
1051	/*
1052	 * We need to be one of these interrupts to be considered worth
1053	 * handling. Note that we tag on any latent IRQs postponed
1054	 * due to waiting for busy status.
1055	 */
1056	if (!((status|host->busy_status) &
1057	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058		return;
1059
1060	/*
1061	 * ST Micro variant: handle busy detection.
1062	 */
1063	if (host->variant->busy_detect) {
1064		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066		/* We are busy with a command, return */
1067		if (host->busy_status &&
1068		    (status & host->variant->busy_detect_flag))
1069			return;
1070
1071		/*
1072		 * We were not busy, but we now got a busy response on
1073		 * something that was not an error, and we double-check
1074		 * that the special busy status bit is still set before
1075		 * proceeding.
1076		 */
1077		if (!host->busy_status && busy_resp &&
1078		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081			/* Clear the busy start IRQ */
1082			writel(host->variant->busy_detect_mask,
1083			       host->base + MMCICLEAR);
1084
1085			/* Unmask the busy end IRQ */
1086			writel(readl(base + MMCIMASK0) |
1087			       host->variant->busy_detect_mask,
1088			       base + MMCIMASK0);
1089			/*
1090			 * Now cache the last response status code (until
1091			 * the busy bit goes low), and return.
1092			 */
1093			host->busy_status =
1094				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095			return;
1096		}
1097
1098		/*
1099		 * At this point we are not busy with a command, we have
1100		 * not received a new busy request, clear and mask the busy
1101		 * end IRQ and fall through to process the IRQ.
1102		 */
1103		if (host->busy_status) {
1104
1105			writel(host->variant->busy_detect_mask,
1106			       host->base + MMCICLEAR);
1107
1108			writel(readl(base + MMCIMASK0) &
1109			       ~host->variant->busy_detect_mask,
1110			       base + MMCIMASK0);
1111			host->busy_status = 0;
1112		}
1113	}
1114
1115	host->cmd = NULL;
1116
1117	if (status & MCI_CMDTIMEOUT) {
1118		cmd->error = -ETIMEDOUT;
1119	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120		cmd->error = -EILSEQ;
1121	} else {
1122		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126	}
1127
1128	if ((!sbc && !cmd->data) || cmd->error) {
1129		if (host->data) {
1130			/* Terminate the DMA transfer */
1131			if (dma_inprogress(host)) {
1132				mmci_dma_data_error(host);
1133				mmci_dma_unmap(host, host->data);
1134			}
1135			mmci_stop_data(host);
1136		}
1137		mmci_request_end(host, host->mrq);
1138	} else if (sbc) {
1139		mmci_start_command(host, host->mrq->cmd, 0);
1140	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141		mmci_start_data(host, cmd->data);
1142	}
1143}
1144
1145static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146{
1147	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148}
1149
1150static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151{
1152	/*
1153	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154	 * from the fifo range should be used
1155	 */
1156	if (status & MCI_RXFIFOHALFFULL)
1157		return host->variant->fifohalfsize;
1158	else if (status & MCI_RXDATAAVLBL)
1159		return 4;
1160
1161	return 0;
1162}
1163
1164static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165{
1166	void __iomem *base = host->base;
1167	char *ptr = buffer;
1168	u32 status = readl(host->base + MMCISTATUS);
1169	int host_remain = host->size;
1170
1171	do {
1172		int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174		if (count > remain)
1175			count = remain;
1176
1177		if (count <= 0)
1178			break;
1179
1180		/*
1181		 * SDIO especially may want to send something that is
1182		 * not divisible by 4 (as opposed to card sectors
1183		 * etc). Therefore make sure to always read the last bytes
1184		 * while only doing full 32-bit reads towards the FIFO.
1185		 */
1186		if (unlikely(count & 0x3)) {
1187			if (count < 4) {
1188				unsigned char buf[4];
1189				ioread32_rep(base + MMCIFIFO, buf, 1);
1190				memcpy(ptr, buf, count);
1191			} else {
1192				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193				count &= ~0x3;
1194			}
1195		} else {
1196			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197		}
1198
1199		ptr += count;
1200		remain -= count;
1201		host_remain -= count;
1202
1203		if (remain == 0)
1204			break;
1205
1206		status = readl(base + MMCISTATUS);
1207	} while (status & MCI_RXDATAAVLBL);
1208
1209	return ptr - buffer;
1210}
1211
1212static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213{
1214	struct variant_data *variant = host->variant;
1215	void __iomem *base = host->base;
1216	char *ptr = buffer;
1217
1218	do {
1219		unsigned int count, maxcnt;
1220
1221		maxcnt = status & MCI_TXFIFOEMPTY ?
1222			 variant->fifosize : variant->fifohalfsize;
1223		count = min(remain, maxcnt);
1224
1225		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226		 * SDIO especially may want to send something that is
1227		 * not divisible by 4 (as opposed to card sectors
1228		 * etc), and the FIFO only accept full 32-bit writes.
1229		 * So compensate by adding +3 on the count, a single
1230		 * byte become a 32bit write, 7 bytes will be two
1231		 * 32bit writes etc.
1232		 */
1233		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235		ptr += count;
1236		remain -= count;
1237
1238		if (remain == 0)
1239			break;
1240
1241		status = readl(base + MMCISTATUS);
1242	} while (status & MCI_TXFIFOHALFEMPTY);
1243
1244	return ptr - buffer;
1245}
1246
1247/*
1248 * PIO data transfer IRQ handler.
1249 */
1250static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251{
1252	struct mmci_host *host = dev_id;
1253	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254	struct variant_data *variant = host->variant;
1255	void __iomem *base = host->base;
1256	unsigned long flags;
1257	u32 status;
1258
1259	status = readl(base + MMCISTATUS);
1260
1261	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263	local_irq_save(flags);
1264
1265	do {
1266		unsigned int remain, len;
1267		char *buffer;
1268
1269		/*
1270		 * For write, we only need to test the half-empty flag
1271		 * here - if the FIFO is completely empty, then by
1272		 * definition it is more than half empty.
1273		 *
1274		 * For read, check for data available.
1275		 */
1276		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277			break;
1278
1279		if (!sg_miter_next(sg_miter))
1280			break;
1281
1282		buffer = sg_miter->addr;
1283		remain = sg_miter->length;
1284
1285		len = 0;
1286		if (status & MCI_RXACTIVE)
1287			len = mmci_pio_read(host, buffer, remain);
1288		if (status & MCI_TXACTIVE)
1289			len = mmci_pio_write(host, buffer, remain, status);
1290
1291		sg_miter->consumed = len;
1292
1293		host->size -= len;
1294		remain -= len;
1295
1296		if (remain)
1297			break;
1298
1299		status = readl(base + MMCISTATUS);
1300	} while (1);
1301
1302	sg_miter_stop(sg_miter);
1303
1304	local_irq_restore(flags);
1305
1306	/*
1307	 * If we have less than the fifo 'half-full' threshold to transfer,
1308	 * trigger a PIO interrupt as soon as any data is available.
1309	 */
1310	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313	/*
1314	 * If we run out of data, disable the data IRQs; this
1315	 * prevents a race where the FIFO becomes empty before
1316	 * the chip itself has disabled the data path, and
1317	 * stops us racing with our data end IRQ.
1318	 */
1319	if (host->size == 0) {
1320		mmci_set_mask1(host, 0);
1321		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322	}
1323
1324	return IRQ_HANDLED;
1325}
1326
1327/*
1328 * Handle completion of command and data transfers.
1329 */
1330static irqreturn_t mmci_irq(int irq, void *dev_id)
1331{
1332	struct mmci_host *host = dev_id;
1333	u32 status;
1334	int ret = 0;
1335
1336	spin_lock(&host->lock);
1337
1338	do {
 
 
 
1339		status = readl(host->base + MMCISTATUS);
1340
1341		if (host->singleirq) {
1342			if (status & host->mask1_reg)
1343				mmci_pio_irq(irq, dev_id);
1344
1345			status &= ~MCI_IRQ1MASK;
1346		}
1347
1348		/*
1349		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351		 * detection variant is handled. Considering the HW seems to be
1352		 * triggering the IRQ on both edges while monitoring DAT0 for
1353		 * busy completion and that same status bit is used to monitor
1354		 * start and end of busy detection, special care must be taken
1355		 * to make sure that both start and end interrupts are always
1356		 * cleared one after the other.
1357		 */
1358		status &= readl(host->base + MMCIMASK0);
1359		if (host->variant->busy_detect)
1360			writel(status & ~host->variant->busy_detect_mask,
1361			       host->base + MMCICLEAR);
1362		else
1363			writel(status, host->base + MMCICLEAR);
1364
1365		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367		if (host->variant->reversed_irq_handling) {
1368			mmci_data_irq(host, host->data, status);
1369			mmci_cmd_irq(host, host->cmd, status);
1370		} else {
1371			mmci_cmd_irq(host, host->cmd, status);
1372			mmci_data_irq(host, host->data, status);
1373		}
1374
1375		/*
1376		 * Don't poll for busy completion in irq context.
1377		 */
1378		if (host->variant->busy_detect && host->busy_status)
1379			status &= ~host->variant->busy_detect_flag;
1380
1381		ret = 1;
1382	} while (status);
1383
1384	spin_unlock(&host->lock);
1385
1386	return IRQ_RETVAL(ret);
1387}
1388
1389static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390{
1391	struct mmci_host *host = mmc_priv(mmc);
1392	unsigned long flags;
1393
1394	WARN_ON(host->mrq != NULL);
1395
1396	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397	if (mrq->cmd->error) {
 
 
1398		mmc_request_done(mmc, mrq);
1399		return;
1400	}
1401
1402	spin_lock_irqsave(&host->lock, flags);
1403
1404	host->mrq = mrq;
1405
1406	if (mrq->data)
1407		mmci_get_next_data(host, mrq->data);
1408
1409	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1410		mmci_start_data(host, mrq->data);
1411
1412	if (mrq->sbc)
1413		mmci_start_command(host, mrq->sbc, 0);
1414	else
1415		mmci_start_command(host, mrq->cmd, 0);
1416
1417	spin_unlock_irqrestore(&host->lock, flags);
1418}
1419
1420static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421{
1422	struct mmci_host *host = mmc_priv(mmc);
1423	struct variant_data *variant = host->variant;
1424	u32 pwr = 0;
1425	unsigned long flags;
1426	int ret;
1427
1428	if (host->plat->ios_handler &&
1429		host->plat->ios_handler(mmc_dev(mmc), ios))
1430			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432	switch (ios->power_mode) {
1433	case MMC_POWER_OFF:
1434		if (!IS_ERR(mmc->supply.vmmc))
1435			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438			regulator_disable(mmc->supply.vqmmc);
1439			host->vqmmc_enabled = false;
1440		}
1441
1442		break;
1443	case MMC_POWER_UP:
1444		if (!IS_ERR(mmc->supply.vmmc))
1445			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
1447		/*
1448		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449		 * and instead uses MCI_PWR_ON so apply whatever value is
1450		 * configured in the variant data.
1451		 */
1452		pwr |= variant->pwrreg_powerup;
1453
1454		break;
1455	case MMC_POWER_ON:
1456		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457			ret = regulator_enable(mmc->supply.vqmmc);
1458			if (ret < 0)
1459				dev_err(mmc_dev(mmc),
1460					"failed to enable vqmmc regulator\n");
1461			else
1462				host->vqmmc_enabled = true;
1463		}
1464
 
 
 
 
 
 
 
 
1465		pwr |= MCI_PWR_ON;
1466		break;
1467	}
1468
1469	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470		/*
1471		 * The ST Micro variant has some additional bits
1472		 * indicating signal direction for the signals in
1473		 * the SD/MMC bus and feedback-clock usage.
1474		 */
1475		pwr |= host->pwr_reg_add;
1476
1477		if (ios->bus_width == MMC_BUS_WIDTH_4)
1478			pwr &= ~MCI_ST_DATA74DIREN;
1479		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480			pwr &= (~MCI_ST_DATA74DIREN &
1481				~MCI_ST_DATA31DIREN &
1482				~MCI_ST_DATA2DIREN);
1483	}
1484
1485	if (variant->opendrain) {
1486		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487			pwr |= variant->opendrain;
1488	} else {
1489		/*
1490		 * If the variant cannot configure the pads by its own, then we
1491		 * expect the pinctrl to be able to do that for us
1492		 */
1493		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495		else
1496			pinctrl_select_state(host->pinctrl, host->pins_default);
1497	}
1498
1499	/*
1500	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501	 * gating the clock, the MCI_PWR_ON bit is cleared.
1502	 */
1503	if (!ios->clock && variant->pwrreg_clkgate)
1504		pwr &= ~MCI_PWR_ON;
1505
1506	if (host->variant->explicit_mclk_control &&
1507	    ios->clock != host->clock_cache) {
1508		ret = clk_set_rate(host->clk, ios->clock);
1509		if (ret < 0)
1510			dev_err(mmc_dev(host->mmc),
1511				"Error setting clock rate (%d)\n", ret);
1512		else
1513			host->mclk = clk_get_rate(host->clk);
1514	}
1515	host->clock_cache = ios->clock;
1516
1517	spin_lock_irqsave(&host->lock, flags);
 
1518
1519	mmci_set_clkreg(host, ios->clock);
1520	mmci_write_pwrreg(host, pwr);
1521	mmci_reg_delay(host);
1522
1523	spin_unlock_irqrestore(&host->lock, flags);
 
 
 
1524}
1525
1526static int mmci_get_cd(struct mmc_host *mmc)
1527{
1528	struct mmci_host *host = mmc_priv(mmc);
1529	struct mmci_platform_data *plat = host->plat;
1530	unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532	if (status == -ENOSYS) {
1533		if (!plat->status)
1534			return 1; /* Assume always present */
1535
1536		status = plat->status(mmc_dev(host->mmc));
1537	}
 
 
 
 
 
 
 
1538	return status;
1539}
1540
1541static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542{
1543	int ret = 0;
1544
1545	if (!IS_ERR(mmc->supply.vqmmc)) {
1546
1547		switch (ios->signal_voltage) {
1548		case MMC_SIGNAL_VOLTAGE_330:
1549			ret = regulator_set_voltage(mmc->supply.vqmmc,
1550						2700000, 3600000);
1551			break;
1552		case MMC_SIGNAL_VOLTAGE_180:
1553			ret = regulator_set_voltage(mmc->supply.vqmmc,
1554						1700000, 1950000);
1555			break;
1556		case MMC_SIGNAL_VOLTAGE_120:
1557			ret = regulator_set_voltage(mmc->supply.vqmmc,
1558						1100000, 1300000);
1559			break;
1560		}
1561
1562		if (ret)
1563			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1564	}
1565
1566	return ret;
1567}
1568
1569static struct mmc_host_ops mmci_ops = {
1570	.request	= mmci_request,
1571	.pre_req	= mmci_pre_request,
1572	.post_req	= mmci_post_request,
1573	.set_ios	= mmci_set_ios,
1574	.get_ro		= mmc_gpio_get_ro,
1575	.get_cd		= mmci_get_cd,
1576	.start_signal_voltage_switch = mmci_sig_volt_switch,
1577};
1578
1579static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1580{
1581	struct mmci_host *host = mmc_priv(mmc);
1582	int ret = mmc_of_parse(mmc);
1583
1584	if (ret)
1585		return ret;
1586
1587	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1599
1600	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605	return 0;
1606}
1607
1608static int mmci_probe(struct amba_device *dev,
1609	const struct amba_id *id)
1610{
1611	struct mmci_platform_data *plat = dev->dev.platform_data;
1612	struct device_node *np = dev->dev.of_node;
1613	struct variant_data *variant = id->data;
1614	struct mmci_host *host;
1615	struct mmc_host *mmc;
1616	int ret;
1617
1618	/* Must have platform data or Device Tree. */
1619	if (!plat && !np) {
1620		dev_err(&dev->dev, "No plat data or DT found\n");
1621		return -EINVAL;
1622	}
1623
1624	if (!plat) {
1625		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626		if (!plat)
1627			return -ENOMEM;
1628	}
1629
1630	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631	if (!mmc)
1632		return -ENOMEM;
1633
1634	ret = mmci_of_parse(np, mmc);
1635	if (ret)
1636		goto host_free;
 
 
 
 
 
 
1637
1638	host = mmc_priv(mmc);
1639	host->mmc = mmc;
1640
1641	/*
1642	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643	 * pins can be set accordingly using pinctrl
1644	 */
1645	if (!variant->opendrain) {
1646		host->pinctrl = devm_pinctrl_get(&dev->dev);
1647		if (IS_ERR(host->pinctrl)) {
1648			dev_err(&dev->dev, "failed to get pinctrl");
1649			ret = PTR_ERR(host->pinctrl);
1650			goto host_free;
1651		}
1652
1653		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1654							  PINCTRL_STATE_DEFAULT);
1655		if (IS_ERR(host->pins_default)) {
1656			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1657			ret = PTR_ERR(host->pins_default);
1658			goto host_free;
1659		}
1660
1661		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1662							    MMCI_PINCTRL_STATE_OPENDRAIN);
1663		if (IS_ERR(host->pins_opendrain)) {
1664			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1665			ret = PTR_ERR(host->pins_opendrain);
1666			goto host_free;
1667		}
1668	}
1669
1670	host->hw_designer = amba_manf(dev);
1671	host->hw_revision = amba_rev(dev);
1672	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1673	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1674
1675	host->clk = devm_clk_get(&dev->dev, NULL);
1676	if (IS_ERR(host->clk)) {
1677		ret = PTR_ERR(host->clk);
 
1678		goto host_free;
1679	}
1680
1681	ret = clk_prepare_enable(host->clk);
1682	if (ret)
1683		goto host_free;
1684
1685	if (variant->qcom_fifo)
1686		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1687	else
1688		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1689
1690	host->plat = plat;
1691	host->variant = variant;
1692	host->mclk = clk_get_rate(host->clk);
1693	/*
1694	 * According to the spec, mclk is max 100 MHz,
1695	 * so we try to adjust the clock down to this,
1696	 * (if possible).
1697	 */
1698	if (host->mclk > variant->f_max) {
1699		ret = clk_set_rate(host->clk, variant->f_max);
1700		if (ret < 0)
1701			goto clk_disable;
1702		host->mclk = clk_get_rate(host->clk);
1703		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704			host->mclk);
1705	}
1706
1707	host->phybase = dev->res.start;
1708	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1709	if (IS_ERR(host->base)) {
1710		ret = PTR_ERR(host->base);
1711		goto clk_disable;
1712	}
1713
 
1714	/*
1715	 * The ARM and ST versions of the block have slightly different
1716	 * clock divider equations which means that the minimum divider
1717	 * differs too.
1718	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1719	 */
1720	if (variant->st_clkdiv)
1721		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1722	else if (variant->explicit_mclk_control)
1723		mmc->f_min = clk_round_rate(host->clk, 100000);
1724	else
1725		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1726	/*
1727	 * If no maximum operating frequency is supplied, fall back to use
1728	 * the module parameter, which has a (low) default value in case it
1729	 * is not specified. Either value must not exceed the clock rate into
1730	 * the block, of course.
 
 
1731	 */
1732	if (mmc->f_max)
1733		mmc->f_max = variant->explicit_mclk_control ?
1734				min(variant->f_max, mmc->f_max) :
1735				min(host->mclk, mmc->f_max);
1736	else
1737		mmc->f_max = variant->explicit_mclk_control ?
1738				fmax : min(host->mclk, fmax);
1739
1740
1741	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1742
1743	/* Get regulators and the supported OCR mask */
1744	ret = mmc_regulator_get_supply(mmc);
1745	if (ret)
1746		goto clk_disable;
1747
1748	if (!mmc->ocr_avail)
1749		mmc->ocr_avail = plat->ocr_mask;
1750	else if (plat->ocr_mask)
1751		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1752
1753	/* DT takes precedence over platform data. */
1754	if (!np) {
1755		if (!plat->cd_invert)
1756			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1757		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1758	}
1759
1760	/* We support these capabilities. */
1761	mmc->caps |= MMC_CAP_CMD23;
1762
1763	/*
1764	 * Enable busy detection.
1765	 */
1766	if (variant->busy_detect) {
1767		mmci_ops.card_busy = mmci_card_busy;
1768		/*
1769		 * Not all variants have a flag to enable busy detection
1770		 * in the DPSM, but if they do, set it here.
1771		 */
1772		if (variant->busy_dpsm_flag)
1773			mmci_write_datactrlreg(host,
1774					       host->variant->busy_dpsm_flag);
1775		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1776		mmc->max_busy_timeout = 0;
1777	}
1778
1779	mmc->ops = &mmci_ops;
1780
1781	/* We support these PM capabilities. */
1782	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1783
1784	/*
1785	 * We can do SGIO
1786	 */
1787	mmc->max_segs = NR_SG;
1788
1789	/*
1790	 * Since only a certain number of bits are valid in the data length
1791	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1792	 * single request.
1793	 */
1794	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1795
1796	/*
1797	 * Set the maximum segment size.  Since we aren't doing DMA
1798	 * (yet) we are only limited by the data length register.
1799	 */
1800	mmc->max_seg_size = mmc->max_req_size;
1801
1802	/*
1803	 * Block size can be up to 2048 bytes, but must be a power of two.
1804	 */
1805	mmc->max_blk_size = 1 << 11;
1806
1807	/*
1808	 * Limit the number of blocks transferred so that we don't overflow
1809	 * the maximum request size.
1810	 */
1811	mmc->max_blk_count = mmc->max_req_size >> 11;
1812
1813	spin_lock_init(&host->lock);
1814
1815	writel(0, host->base + MMCIMASK0);
1816
1817	if (variant->mmcimask1)
1818		writel(0, host->base + MMCIMASK1);
1819
1820	writel(0xfff, host->base + MMCICLEAR);
1821
1822	/*
1823	 * If:
1824	 * - not using DT but using a descriptor table, or
1825	 * - using a table of descriptors ALONGSIDE DT, or
1826	 * look up these descriptors named "cd" and "wp" right here, fail
1827	 * silently of these do not exist and proceed to try platform data
1828	 */
1829	if (!np) {
1830		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1831		if (ret < 0) {
1832			if (ret == -EPROBE_DEFER)
1833				goto clk_disable;
1834			else if (gpio_is_valid(plat->gpio_cd)) {
1835				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1836				if (ret)
1837					goto clk_disable;
1838			}
1839		}
1840
1841		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1842		if (ret < 0) {
1843			if (ret == -EPROBE_DEFER)
1844				goto clk_disable;
1845			else if (gpio_is_valid(plat->gpio_wp)) {
1846				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1847				if (ret)
1848					goto clk_disable;
1849			}
1850		}
1851	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852
1853	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1854			DRIVER_NAME " (cmd)", host);
1855	if (ret)
1856		goto clk_disable;
1857
1858	if (!dev->irq[1])
1859		host->singleirq = true;
1860	else {
1861		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1862				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1863		if (ret)
1864			goto clk_disable;
1865	}
1866
1867	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1868
1869	amba_set_drvdata(dev, mmc);
1870
1871	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1873		 amba_rev(dev), (unsigned long long)dev->res.start,
1874		 dev->irq[0], dev->irq[1]);
1875
1876	mmci_dma_setup(host);
1877
1878	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1879	pm_runtime_use_autosuspend(&dev->dev);
1880
1881	mmc_add_host(mmc);
1882
1883	pm_runtime_put(&dev->dev);
1884	return 0;
1885
 
 
 
 
 
 
 
 
 
 
 
 
1886 clk_disable:
1887	clk_disable_unprepare(host->clk);
 
 
1888 host_free:
1889	mmc_free_host(mmc);
 
 
 
1890	return ret;
1891}
1892
1893static int mmci_remove(struct amba_device *dev)
1894{
1895	struct mmc_host *mmc = amba_get_drvdata(dev);
1896
 
 
1897	if (mmc) {
1898		struct mmci_host *host = mmc_priv(mmc);
1899		struct variant_data *variant = host->variant;
1900
1901		/*
1902		 * Undo pm_runtime_put() in probe.  We use the _sync
1903		 * version here so that we can access the primecell.
1904		 */
1905		pm_runtime_get_sync(&dev->dev);
1906
1907		mmc_remove_host(mmc);
1908
1909		writel(0, host->base + MMCIMASK0);
1910
1911		if (variant->mmcimask1)
1912			writel(0, host->base + MMCIMASK1);
1913
1914		writel(0, host->base + MMCICOMMAND);
1915		writel(0, host->base + MMCIDATACTRL);
1916
1917		mmci_dma_release(host);
1918		clk_disable_unprepare(host->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919		mmc_free_host(mmc);
 
 
1920	}
1921
1922	return 0;
1923}
1924
1925#ifdef CONFIG_PM
1926static void mmci_save(struct mmci_host *host)
1927{
1928	unsigned long flags;
1929
1930	spin_lock_irqsave(&host->lock, flags);
1931
1932	writel(0, host->base + MMCIMASK0);
1933	if (host->variant->pwrreg_nopower) {
1934		writel(0, host->base + MMCIDATACTRL);
1935		writel(0, host->base + MMCIPOWER);
1936		writel(0, host->base + MMCICLOCK);
1937	}
1938	mmci_reg_delay(host);
1939
1940	spin_unlock_irqrestore(&host->lock, flags);
1941}
1942
1943static void mmci_restore(struct mmci_host *host)
1944{
1945	unsigned long flags;
1946
1947	spin_lock_irqsave(&host->lock, flags);
 
1948
1949	if (host->variant->pwrreg_nopower) {
1950		writel(host->clk_reg, host->base + MMCICLOCK);
1951		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1952		writel(host->pwr_reg, host->base + MMCIPOWER);
1953	}
1954	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1955	mmci_reg_delay(host);
1956
1957	spin_unlock_irqrestore(&host->lock, flags);
1958}
1959
1960static int mmci_runtime_suspend(struct device *dev)
1961{
1962	struct amba_device *adev = to_amba_device(dev);
1963	struct mmc_host *mmc = amba_get_drvdata(adev);
1964
1965	if (mmc) {
1966		struct mmci_host *host = mmc_priv(mmc);
1967		pinctrl_pm_select_sleep_state(dev);
1968		mmci_save(host);
1969		clk_disable_unprepare(host->clk);
1970	}
1971
1972	return 0;
1973}
1974
1975static int mmci_runtime_resume(struct device *dev)
1976{
1977	struct amba_device *adev = to_amba_device(dev);
1978	struct mmc_host *mmc = amba_get_drvdata(adev);
1979
1980	if (mmc) {
1981		struct mmci_host *host = mmc_priv(mmc);
1982		clk_prepare_enable(host->clk);
1983		mmci_restore(host);
1984		pinctrl_pm_select_default_state(dev);
1985	}
1986
1987	return 0;
1988}
 
 
 
1989#endif
1990
1991static const struct dev_pm_ops mmci_dev_pm_ops = {
1992	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1993				pm_runtime_force_resume)
1994	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1995};
1996
1997static const struct amba_id mmci_ids[] = {
1998	{
1999		.id	= 0x00041180,
2000		.mask	= 0xff0fffff,
2001		.data	= &variant_arm,
2002	},
2003	{
2004		.id	= 0x01041180,
2005		.mask	= 0xff0fffff,
2006		.data	= &variant_arm_extended_fifo,
2007	},
2008	{
2009		.id	= 0x02041180,
2010		.mask	= 0xff0fffff,
2011		.data	= &variant_arm_extended_fifo_hwfc,
2012	},
2013	{
2014		.id	= 0x00041181,
2015		.mask	= 0x000fffff,
2016		.data	= &variant_arm,
2017	},
2018	/* ST Micro variants */
2019	{
2020		.id     = 0x00180180,
2021		.mask   = 0x00ffffff,
2022		.data	= &variant_u300,
2023	},
2024	{
2025		.id     = 0x10180180,
2026		.mask   = 0xf0ffffff,
2027		.data	= &variant_nomadik,
2028	},
2029	{
2030		.id     = 0x00280180,
2031		.mask   = 0x00ffffff,
2032		.data	= &variant_nomadik,
2033	},
2034	{
2035		.id     = 0x00480180,
2036		.mask   = 0xf0ffffff,
2037		.data	= &variant_ux500,
2038	},
2039	{
2040		.id     = 0x10480180,
2041		.mask   = 0xf0ffffff,
2042		.data	= &variant_ux500v2,
2043	},
2044	{
2045		.id     = 0x00880180,
2046		.mask   = 0x00ffffff,
2047		.data	= &variant_stm32,
2048	},
2049	/* Qualcomm variants */
2050	{
2051		.id     = 0x00051180,
2052		.mask	= 0x000fffff,
2053		.data	= &variant_qcom,
2054	},
2055	{ 0, 0 },
2056};
2057
2058MODULE_DEVICE_TABLE(amba, mmci_ids);
2059
2060static struct amba_driver mmci_driver = {
2061	.drv		= {
2062		.name	= DRIVER_NAME,
2063		.pm	= &mmci_dev_pm_ops,
2064	},
2065	.probe		= mmci_probe,
2066	.remove		= mmci_remove,
 
 
2067	.id_table	= mmci_ids,
2068};
2069
2070module_amba_driver(mmci_driver);
 
 
 
 
 
 
 
 
2071
 
 
2072module_param(fmax, uint, 0444);
2073
2074MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075MODULE_LICENSE("GPL");
v3.1
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
 
  16#include <linux/interrupt.h>
  17#include <linux/kernel.h>
 
  18#include <linux/delay.h>
  19#include <linux/err.h>
  20#include <linux/highmem.h>
  21#include <linux/log2.h>
 
  22#include <linux/mmc/host.h>
  23#include <linux/mmc/card.h>
 
  24#include <linux/amba/bus.h>
  25#include <linux/clk.h>
  26#include <linux/scatterlist.h>
  27#include <linux/gpio.h>
 
  28#include <linux/regulator/consumer.h>
  29#include <linux/dmaengine.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/amba/mmci.h>
 
 
 
  32
  33#include <asm/div64.h>
  34#include <asm/io.h>
  35#include <asm/sizes.h>
  36
  37#include "mmci.h"
 
  38
  39#define DRIVER_NAME "mmci-pl18x"
  40
  41static unsigned int fmax = 515633;
  42
  43/**
  44 * struct variant_data - MMCI variant-specific quirks
  45 * @clkreg: default value for MCICLOCK register
  46 * @clkreg_enable: enable value for MMCICLOCK register
 
 
  47 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  48 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  49 *	      is asserted (likewise for RX)
  50 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  51 *		  is asserted (likewise for RX)
  52 * @sdio: variant supports SDIO
 
  53 * @st_clkdiv: true if using a ST-specific clock divider algorithm
 
  54 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55 */
  56struct variant_data {
  57	unsigned int		clkreg;
  58	unsigned int		clkreg_enable;
 
 
  59	unsigned int		datalength_bits;
  60	unsigned int		fifosize;
  61	unsigned int		fifohalfsize;
  62	bool			sdio;
 
 
 
  63	bool			st_clkdiv;
  64	bool			blksz_datactrl16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65};
  66
  67static struct variant_data variant_arm = {
  68	.fifosize		= 16 * 4,
  69	.fifohalfsize		= 8 * 4,
  70	.datalength_bits	= 16,
 
 
 
 
 
 
  71};
  72
  73static struct variant_data variant_arm_extended_fifo = {
  74	.fifosize		= 128 * 4,
  75	.fifohalfsize		= 64 * 4,
  76	.datalength_bits	= 16,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77};
  78
  79static struct variant_data variant_u300 = {
  80	.fifosize		= 16 * 4,
  81	.fifohalfsize		= 8 * 4,
  82	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 
  83	.datalength_bits	= 16,
  84	.sdio			= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85};
  86
  87static struct variant_data variant_ux500 = {
  88	.fifosize		= 30 * 4,
  89	.fifohalfsize		= 8 * 4,
  90	.clkreg			= MCI_CLK_ENABLE,
  91	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
  92	.datalength_bits	= 24,
  93	.sdio			= true,
 
  94	.st_clkdiv		= true,
 
 
 
 
 
 
 
 
 
 
 
 
  95};
  96
  97static struct variant_data variant_ux500v2 = {
  98	.fifosize		= 30 * 4,
  99	.fifohalfsize		= 8 * 4,
 100	.clkreg			= MCI_CLK_ENABLE,
 101	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
 
 102	.datalength_bits	= 24,
 103	.sdio			= true,
 
 104	.st_clkdiv		= true,
 105	.blksz_datactrl16	= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106};
 107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108/*
 109 * This must be called with host->lock held
 110 */
 111static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 112{
 113	struct variant_data *variant = host->variant;
 114	u32 clk = variant->clkreg;
 115
 
 
 
 116	if (desired) {
 117		if (desired >= host->mclk) {
 
 
 118			clk = MCI_CLK_BYPASS;
 119			if (variant->st_clkdiv)
 120				clk |= MCI_ST_UX500_NEG_EDGE;
 121			host->cclk = host->mclk;
 122		} else if (variant->st_clkdiv) {
 123			/*
 124			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 125			 * => clkdiv = (mclk / f) - 2
 126			 * Round the divider up so we don't exceed the max
 127			 * frequency
 128			 */
 129			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 130			if (clk >= 256)
 131				clk = 255;
 132			host->cclk = host->mclk / (clk + 2);
 133		} else {
 134			/*
 135			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 136			 * => clkdiv = mclk / (2 * f) - 1
 137			 */
 138			clk = host->mclk / (2 * desired) - 1;
 139			if (clk >= 256)
 140				clk = 255;
 141			host->cclk = host->mclk / (2 * (clk + 1));
 142		}
 143
 144		clk |= variant->clkreg_enable;
 145		clk |= MCI_CLK_ENABLE;
 146		/* This hasn't proven to be worthwhile */
 147		/* clk |= MCI_CLK_PWRSAVE; */
 148	}
 149
 
 
 
 150	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 151		clk |= MCI_4BIT_BUS;
 152	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 153		clk |= MCI_ST_8BIT_BUS;
 
 
 
 
 154
 155	writel(clk, host->base + MMCICLOCK);
 156}
 157
 158static void
 159mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 160{
 161	writel(0, host->base + MMCICOMMAND);
 162
 163	BUG_ON(host->data);
 164
 165	host->mrq = NULL;
 166	host->cmd = NULL;
 167
 168	/*
 169	 * Need to drop the host lock here; mmc_request_done may call
 170	 * back into the driver...
 171	 */
 172	spin_unlock(&host->lock);
 173	mmc_request_done(host->mmc, mrq);
 174	spin_lock(&host->lock);
 175}
 176
 177static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 178{
 179	void __iomem *base = host->base;
 
 180
 181	if (host->singleirq) {
 182		unsigned int mask0 = readl(base + MMCIMASK0);
 183
 184		mask0 &= ~MCI_IRQ1MASK;
 185		mask0 |= mask;
 186
 187		writel(mask0, base + MMCIMASK0);
 188	}
 189
 190	writel(mask, base + MMCIMASK1);
 
 
 
 191}
 192
 193static void mmci_stop_data(struct mmci_host *host)
 194{
 195	writel(0, host->base + MMCIDATACTRL);
 196	mmci_set_mask1(host, 0);
 197	host->data = NULL;
 198}
 199
 200static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 201{
 202	unsigned int flags = SG_MITER_ATOMIC;
 203
 204	if (data->flags & MMC_DATA_READ)
 205		flags |= SG_MITER_TO_SG;
 206	else
 207		flags |= SG_MITER_FROM_SG;
 208
 209	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 210}
 211
 212/*
 213 * All the DMA operation mode stuff goes inside this ifdef.
 214 * This assumes that you have a generic DMA device interface,
 215 * no custom DMA interfaces are supported.
 216 */
 217#ifdef CONFIG_DMA_ENGINE
 218static void __devinit mmci_dma_setup(struct mmci_host *host)
 219{
 220	struct mmci_platform_data *plat = host->plat;
 221	const char *rxname, *txname;
 222	dma_cap_mask_t mask;
 223
 224	if (!plat || !plat->dma_filter) {
 225		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
 226		return;
 227	}
 228
 229	/* initialize pre request cookie */
 230	host->next_data.cookie = 1;
 231
 232	/* Try to acquire a generic DMA engine slave channel */
 233	dma_cap_zero(mask);
 234	dma_cap_set(DMA_SLAVE, mask);
 235
 236	/*
 237	 * If only an RX channel is specified, the driver will
 238	 * attempt to use it bidirectionally, however if it is
 239	 * is specified but cannot be located, DMA will be disabled.
 240	 */
 241	if (plat->dma_rx_param) {
 242		host->dma_rx_channel = dma_request_channel(mask,
 243							   plat->dma_filter,
 244							   plat->dma_rx_param);
 245		/* E.g if no DMA hardware is present */
 246		if (!host->dma_rx_channel)
 247			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
 248	}
 249
 250	if (plat->dma_tx_param) {
 251		host->dma_tx_channel = dma_request_channel(mask,
 252							   plat->dma_filter,
 253							   plat->dma_tx_param);
 254		if (!host->dma_tx_channel)
 255			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
 256	} else {
 257		host->dma_tx_channel = host->dma_rx_channel;
 258	}
 259
 260	if (host->dma_rx_channel)
 261		rxname = dma_chan_name(host->dma_rx_channel);
 262	else
 263		rxname = "none";
 264
 265	if (host->dma_tx_channel)
 266		txname = dma_chan_name(host->dma_tx_channel);
 267	else
 268		txname = "none";
 269
 270	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 271		 rxname, txname);
 272
 273	/*
 274	 * Limit the maximum segment size in any SG entry according to
 275	 * the parameters of the DMA engine device.
 276	 */
 277	if (host->dma_tx_channel) {
 278		struct device *dev = host->dma_tx_channel->device->dev;
 279		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 280
 281		if (max_seg_size < host->mmc->max_seg_size)
 282			host->mmc->max_seg_size = max_seg_size;
 283	}
 284	if (host->dma_rx_channel) {
 285		struct device *dev = host->dma_rx_channel->device->dev;
 286		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 287
 288		if (max_seg_size < host->mmc->max_seg_size)
 289			host->mmc->max_seg_size = max_seg_size;
 290	}
 
 
 
 
 291}
 292
 293/*
 294 * This is used in __devinit or __devexit so inline it
 295 * so it can be discarded.
 296 */
 297static inline void mmci_dma_release(struct mmci_host *host)
 298{
 299	struct mmci_platform_data *plat = host->plat;
 300
 301	if (host->dma_rx_channel)
 302		dma_release_channel(host->dma_rx_channel);
 303	if (host->dma_tx_channel && plat->dma_tx_param)
 304		dma_release_channel(host->dma_tx_channel);
 305	host->dma_rx_channel = host->dma_tx_channel = NULL;
 306}
 307
 
 
 
 
 
 
 
 
 
 
 308static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 309{
 310	struct dma_chan *chan = host->dma_current;
 311	enum dma_data_direction dir;
 
 
 
 
 
 
 
 
 
 
 
 312	u32 status;
 313	int i;
 314
 315	/* Wait up to 1ms for the DMA to complete */
 316	for (i = 0; ; i++) {
 317		status = readl(host->base + MMCISTATUS);
 318		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 319			break;
 320		udelay(10);
 321	}
 322
 323	/*
 324	 * Check to see whether we still have some data left in the FIFO -
 325	 * this catches DMA controllers which are unable to monitor the
 326	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 327	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 328	 */
 329	if (status & MCI_RXDATAAVLBLMASK) {
 330		dmaengine_terminate_all(chan);
 331		if (!data->error)
 332			data->error = -EIO;
 333	}
 334
 335	if (data->flags & MMC_DATA_WRITE) {
 336		dir = DMA_TO_DEVICE;
 337	} else {
 338		dir = DMA_FROM_DEVICE;
 339	}
 340
 341	if (!data->host_cookie)
 342		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 343
 344	/*
 345	 * Use of DMA with scatter-gather is impossible.
 346	 * Give up with DMA and switch back to PIO mode.
 347	 */
 348	if (status & MCI_RXDATAAVLBLMASK) {
 349		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 350		mmci_dma_release(host);
 351	}
 352}
 353
 354static void mmci_dma_data_error(struct mmci_host *host)
 355{
 356	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 357	dmaengine_terminate_all(host->dma_current);
 358}
 359
 360static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 361			      struct mmci_host_next *next)
 
 
 362{
 363	struct variant_data *variant = host->variant;
 364	struct dma_slave_config conf = {
 365		.src_addr = host->phybase + MMCIFIFO,
 366		.dst_addr = host->phybase + MMCIFIFO,
 367		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 368		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 369		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 370		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 
 371	};
 372	struct dma_chan *chan;
 373	struct dma_device *device;
 374	struct dma_async_tx_descriptor *desc;
 375	int nr_sg;
 376
 377	/* Check if next job is already prepared */
 378	if (data->host_cookie && !next &&
 379	    host->dma_current && host->dma_desc_current)
 380		return 0;
 381
 382	if (!next) {
 383		host->dma_current = NULL;
 384		host->dma_desc_current = NULL;
 385	}
 386
 387	if (data->flags & MMC_DATA_READ) {
 388		conf.direction = DMA_FROM_DEVICE;
 389		chan = host->dma_rx_channel;
 390	} else {
 391		conf.direction = DMA_TO_DEVICE;
 392		chan = host->dma_tx_channel;
 393	}
 394
 395	/* If there's no DMA channel, fall back to PIO */
 396	if (!chan)
 397		return -EINVAL;
 398
 399	/* If less than or equal to the fifo size, don't bother with DMA */
 400	if (data->blksz * data->blocks <= variant->fifosize)
 401		return -EINVAL;
 402
 403	device = chan->device;
 404	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
 
 405	if (nr_sg == 0)
 406		return -EINVAL;
 407
 
 
 
 408	dmaengine_slave_config(chan, &conf);
 409	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
 410					    conf.direction, DMA_CTRL_ACK);
 411	if (!desc)
 412		goto unmap_exit;
 413
 414	if (next) {
 415		next->dma_chan = chan;
 416		next->dma_desc = desc;
 417	} else {
 418		host->dma_current = chan;
 419		host->dma_desc_current = desc;
 420	}
 421
 422	return 0;
 423
 424 unmap_exit:
 425	if (!next)
 426		dmaengine_terminate_all(chan);
 427	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
 428	return -ENOMEM;
 429}
 430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 432{
 433	int ret;
 434	struct mmc_data *data = host->data;
 435
 436	ret = mmci_dma_prep_data(host, host->data, NULL);
 437	if (ret)
 438		return ret;
 439
 440	/* Okay, go for it. */
 441	dev_vdbg(mmc_dev(host->mmc),
 442		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 443		 data->sg_len, data->blksz, data->blocks, data->flags);
 
 444	dmaengine_submit(host->dma_desc_current);
 445	dma_async_issue_pending(host->dma_current);
 446
 
 
 
 447	datactrl |= MCI_DPSM_DMAENABLE;
 448
 449	/* Trigger the DMA transfer */
 450	writel(datactrl, host->base + MMCIDATACTRL);
 451
 452	/*
 453	 * Let the MMCI say when the data is ended and it's time
 454	 * to fire next DMA request. When that happens, MMCI will
 455	 * call mmci_data_end()
 456	 */
 457	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 458	       host->base + MMCIMASK0);
 459	return 0;
 460}
 461
 462static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 463{
 464	struct mmci_host_next *next = &host->next_data;
 465
 466	if (data->host_cookie && data->host_cookie != next->cookie) {
 467		printk(KERN_WARNING "[%s] invalid cookie: data->host_cookie %d"
 468		       " host->next_data.cookie %d\n",
 469		       __func__, data->host_cookie, host->next_data.cookie);
 470		data->host_cookie = 0;
 471	}
 472
 473	if (!data->host_cookie)
 474		return;
 475
 476	host->dma_desc_current = next->dma_desc;
 477	host->dma_current = next->dma_chan;
 478
 479	next->dma_desc = NULL;
 480	next->dma_chan = NULL;
 481}
 482
 483static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
 484			     bool is_first_req)
 485{
 486	struct mmci_host *host = mmc_priv(mmc);
 487	struct mmc_data *data = mrq->data;
 488	struct mmci_host_next *nd = &host->next_data;
 489
 490	if (!data)
 491		return;
 492
 493	if (data->host_cookie) {
 494		data->host_cookie = 0;
 
 495		return;
 496	}
 497
 498	/* if config for dma */
 499	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
 500	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
 501		if (mmci_dma_prep_data(host, data, nd))
 502			data->host_cookie = 0;
 503		else
 504			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 505	}
 506}
 507
 508static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 509			      int err)
 510{
 511	struct mmci_host *host = mmc_priv(mmc);
 512	struct mmc_data *data = mrq->data;
 513	struct dma_chan *chan;
 514	enum dma_data_direction dir;
 515
 516	if (!data)
 517		return;
 518
 519	if (data->flags & MMC_DATA_READ) {
 520		dir = DMA_FROM_DEVICE;
 521		chan = host->dma_rx_channel;
 522	} else {
 523		dir = DMA_TO_DEVICE;
 524		chan = host->dma_tx_channel;
 525	}
 
 
 
 
 
 
 526
 
 
 
 
 527
 528	/* if config for dma */
 529	if (chan) {
 530		if (err)
 531			dmaengine_terminate_all(chan);
 532		if (err || data->host_cookie)
 533			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
 534				     data->sg_len, dir);
 535		mrq->data->host_cookie = 0;
 536	}
 537}
 538
 539#else
 540/* Blank functions if the DMA engine is not available */
 541static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 542{
 543}
 544static inline void mmci_dma_setup(struct mmci_host *host)
 545{
 546}
 547
 548static inline void mmci_dma_release(struct mmci_host *host)
 549{
 550}
 551
 552static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 553{
 554}
 555
 
 
 
 
 
 556static inline void mmci_dma_data_error(struct mmci_host *host)
 557{
 558}
 559
 560static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 561{
 562	return -ENOSYS;
 563}
 564
 565#define mmci_pre_request NULL
 566#define mmci_post_request NULL
 567
 568#endif
 569
 570static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 571{
 572	struct variant_data *variant = host->variant;
 573	unsigned int datactrl, timeout, irqmask;
 574	unsigned long long clks;
 575	void __iomem *base;
 576	int blksz_bits;
 577
 578	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 579		data->blksz, data->blocks, data->flags);
 580
 581	host->data = data;
 582	host->size = data->blksz * data->blocks;
 583	data->bytes_xfered = 0;
 584
 585	clks = (unsigned long long)data->timeout_ns * host->cclk;
 586	do_div(clks, 1000000000UL);
 587
 588	timeout = data->timeout_clks + (unsigned int)clks;
 589
 590	base = host->base;
 591	writel(timeout, base + MMCIDATATIMER);
 592	writel(host->size, base + MMCIDATALENGTH);
 593
 594	blksz_bits = ffs(data->blksz) - 1;
 595	BUG_ON(1 << blksz_bits != data->blksz);
 596
 597	if (variant->blksz_datactrl16)
 598		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 
 
 599	else
 600		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 601
 602	if (data->flags & MMC_DATA_READ)
 603		datactrl |= MCI_DPSM_DIRECTION;
 604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605	/*
 606	 * Attempt to use DMA operation mode, if this
 607	 * should fail, fall back to PIO mode
 608	 */
 609	if (!mmci_dma_start_data(host, datactrl))
 610		return;
 611
 612	/* IRQ mode, map the SG list for CPU reading/writing */
 613	mmci_init_sg(host, data);
 614
 615	if (data->flags & MMC_DATA_READ) {
 616		irqmask = MCI_RXFIFOHALFFULLMASK;
 617
 618		/*
 619		 * If we have less than the fifo 'half-full' threshold to
 620		 * transfer, trigger a PIO interrupt as soon as any data
 621		 * is available.
 622		 */
 623		if (host->size < variant->fifohalfsize)
 624			irqmask |= MCI_RXDATAAVLBLMASK;
 625	} else {
 626		/*
 627		 * We don't actually need to include "FIFO empty" here
 628		 * since its implicit in "FIFO half empty".
 629		 */
 630		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 631	}
 632
 633	/* The ST Micro variants has a special bit to enable SDIO */
 634	if (variant->sdio && host->mmc->card)
 635		if (mmc_card_sdio(host->mmc->card))
 636			datactrl |= MCI_ST_DPSM_SDIOEN;
 637
 638	writel(datactrl, base + MMCIDATACTRL);
 639	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 640	mmci_set_mask1(host, irqmask);
 641}
 642
 643static void
 644mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 645{
 646	void __iomem *base = host->base;
 647
 648	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 649	    cmd->opcode, cmd->arg, cmd->flags);
 650
 651	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 652		writel(0, base + MMCICOMMAND);
 653		udelay(1);
 654	}
 655
 656	c |= cmd->opcode | MCI_CPSM_ENABLE;
 657	if (cmd->flags & MMC_RSP_PRESENT) {
 658		if (cmd->flags & MMC_RSP_136)
 659			c |= MCI_CPSM_LONGRSP;
 660		c |= MCI_CPSM_RESPONSE;
 661	}
 662	if (/*interrupt*/0)
 663		c |= MCI_CPSM_INTERRUPT;
 664
 
 
 
 665	host->cmd = cmd;
 666
 667	writel(cmd->arg, base + MMCIARGUMENT);
 668	writel(c, base + MMCICOMMAND);
 669}
 670
 671static void
 672mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 673	      unsigned int status)
 674{
 
 
 
 
 675	/* First check for errors */
 676	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 
 
 677		u32 remain, success;
 678
 679		/* Terminate the DMA transfer */
 680		if (dma_inprogress(host))
 681			mmci_dma_data_error(host);
 
 
 682
 683		/*
 684		 * Calculate how far we are into the transfer.  Note that
 685		 * the data counter gives the number of bytes transferred
 686		 * on the MMC bus, not on the host side.  On reads, this
 687		 * can be as much as a FIFO-worth of data ahead.  This
 688		 * matters for FIFO overruns only.
 689		 */
 690		remain = readl(host->base + MMCIDATACNT);
 691		success = data->blksz * data->blocks - remain;
 692
 693		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 694			status, success);
 695		if (status & MCI_DATACRCFAIL) {
 696			/* Last block was not successful */
 697			success -= 1;
 698			data->error = -EILSEQ;
 699		} else if (status & MCI_DATATIMEOUT) {
 700			data->error = -ETIMEDOUT;
 701		} else if (status & MCI_STARTBITERR) {
 702			data->error = -ECOMM;
 703		} else if (status & MCI_TXUNDERRUN) {
 704			data->error = -EIO;
 705		} else if (status & MCI_RXOVERRUN) {
 706			if (success > host->variant->fifosize)
 707				success -= host->variant->fifosize;
 708			else
 709				success = 0;
 710			data->error = -EIO;
 711		}
 712		data->bytes_xfered = round_down(success, data->blksz);
 713	}
 714
 715	if (status & MCI_DATABLOCKEND)
 716		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 717
 718	if (status & MCI_DATAEND || data->error) {
 719		if (dma_inprogress(host))
 720			mmci_dma_unmap(host, data);
 721		mmci_stop_data(host);
 722
 723		if (!data->error)
 724			/* The error clause is handled above, success! */
 725			data->bytes_xfered = data->blksz * data->blocks;
 726
 727		if (!data->stop) {
 728			mmci_request_end(host, data->mrq);
 729		} else {
 730			mmci_start_command(host, data->stop, 0);
 731		}
 732	}
 733}
 734
 735static void
 736mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 737	     unsigned int status)
 738{
 739	void __iomem *base = host->base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740
 741	host->cmd = NULL;
 742
 743	if (status & MCI_CMDTIMEOUT) {
 744		cmd->error = -ETIMEDOUT;
 745	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
 746		cmd->error = -EILSEQ;
 747	} else {
 748		cmd->resp[0] = readl(base + MMCIRESPONSE0);
 749		cmd->resp[1] = readl(base + MMCIRESPONSE1);
 750		cmd->resp[2] = readl(base + MMCIRESPONSE2);
 751		cmd->resp[3] = readl(base + MMCIRESPONSE3);
 752	}
 753
 754	if (!cmd->data || cmd->error) {
 755		if (host->data)
 
 
 
 
 
 756			mmci_stop_data(host);
 757		mmci_request_end(host, cmd->mrq);
 
 
 
 758	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 759		mmci_start_data(host, cmd->data);
 760	}
 761}
 762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
 764{
 765	void __iomem *base = host->base;
 766	char *ptr = buffer;
 767	u32 status;
 768	int host_remain = host->size;
 769
 770	do {
 771		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
 772
 773		if (count > remain)
 774			count = remain;
 775
 776		if (count <= 0)
 777			break;
 778
 779		readsl(base + MMCIFIFO, ptr, count >> 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780
 781		ptr += count;
 782		remain -= count;
 783		host_remain -= count;
 784
 785		if (remain == 0)
 786			break;
 787
 788		status = readl(base + MMCISTATUS);
 789	} while (status & MCI_RXDATAAVLBL);
 790
 791	return ptr - buffer;
 792}
 793
 794static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
 795{
 796	struct variant_data *variant = host->variant;
 797	void __iomem *base = host->base;
 798	char *ptr = buffer;
 799
 800	do {
 801		unsigned int count, maxcnt;
 802
 803		maxcnt = status & MCI_TXFIFOEMPTY ?
 804			 variant->fifosize : variant->fifohalfsize;
 805		count = min(remain, maxcnt);
 806
 807		/*
 808		 * The ST Micro variant for SDIO transfer sizes
 809		 * less then 8 bytes should have clock H/W flow
 810		 * control disabled.
 811		 */
 812		if (variant->sdio &&
 813		    mmc_card_sdio(host->mmc->card)) {
 814			if (count < 8)
 815				writel(readl(host->base + MMCICLOCK) &
 816					~variant->clkreg_enable,
 817					host->base + MMCICLOCK);
 818			else
 819				writel(readl(host->base + MMCICLOCK) |
 820					variant->clkreg_enable,
 821					host->base + MMCICLOCK);
 822		}
 823
 824		/*
 825		 * SDIO especially may want to send something that is
 826		 * not divisible by 4 (as opposed to card sectors
 827		 * etc), and the FIFO only accept full 32-bit writes.
 828		 * So compensate by adding +3 on the count, a single
 829		 * byte become a 32bit write, 7 bytes will be two
 830		 * 32bit writes etc.
 831		 */
 832		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
 833
 834		ptr += count;
 835		remain -= count;
 836
 837		if (remain == 0)
 838			break;
 839
 840		status = readl(base + MMCISTATUS);
 841	} while (status & MCI_TXFIFOHALFEMPTY);
 842
 843	return ptr - buffer;
 844}
 845
 846/*
 847 * PIO data transfer IRQ handler.
 848 */
 849static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
 850{
 851	struct mmci_host *host = dev_id;
 852	struct sg_mapping_iter *sg_miter = &host->sg_miter;
 853	struct variant_data *variant = host->variant;
 854	void __iomem *base = host->base;
 855	unsigned long flags;
 856	u32 status;
 857
 858	status = readl(base + MMCISTATUS);
 859
 860	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
 861
 862	local_irq_save(flags);
 863
 864	do {
 865		unsigned int remain, len;
 866		char *buffer;
 867
 868		/*
 869		 * For write, we only need to test the half-empty flag
 870		 * here - if the FIFO is completely empty, then by
 871		 * definition it is more than half empty.
 872		 *
 873		 * For read, check for data available.
 874		 */
 875		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
 876			break;
 877
 878		if (!sg_miter_next(sg_miter))
 879			break;
 880
 881		buffer = sg_miter->addr;
 882		remain = sg_miter->length;
 883
 884		len = 0;
 885		if (status & MCI_RXACTIVE)
 886			len = mmci_pio_read(host, buffer, remain);
 887		if (status & MCI_TXACTIVE)
 888			len = mmci_pio_write(host, buffer, remain, status);
 889
 890		sg_miter->consumed = len;
 891
 892		host->size -= len;
 893		remain -= len;
 894
 895		if (remain)
 896			break;
 897
 898		status = readl(base + MMCISTATUS);
 899	} while (1);
 900
 901	sg_miter_stop(sg_miter);
 902
 903	local_irq_restore(flags);
 904
 905	/*
 906	 * If we have less than the fifo 'half-full' threshold to transfer,
 907	 * trigger a PIO interrupt as soon as any data is available.
 908	 */
 909	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
 910		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
 911
 912	/*
 913	 * If we run out of data, disable the data IRQs; this
 914	 * prevents a race where the FIFO becomes empty before
 915	 * the chip itself has disabled the data path, and
 916	 * stops us racing with our data end IRQ.
 917	 */
 918	if (host->size == 0) {
 919		mmci_set_mask1(host, 0);
 920		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
 921	}
 922
 923	return IRQ_HANDLED;
 924}
 925
 926/*
 927 * Handle completion of command and data transfers.
 928 */
 929static irqreturn_t mmci_irq(int irq, void *dev_id)
 930{
 931	struct mmci_host *host = dev_id;
 932	u32 status;
 933	int ret = 0;
 934
 935	spin_lock(&host->lock);
 936
 937	do {
 938		struct mmc_command *cmd;
 939		struct mmc_data *data;
 940
 941		status = readl(host->base + MMCISTATUS);
 942
 943		if (host->singleirq) {
 944			if (status & readl(host->base + MMCIMASK1))
 945				mmci_pio_irq(irq, dev_id);
 946
 947			status &= ~MCI_IRQ1MASK;
 948		}
 949
 
 
 
 
 
 
 
 
 
 
 950		status &= readl(host->base + MMCIMASK0);
 951		writel(status, host->base + MMCICLEAR);
 
 
 
 
 952
 953		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
 954
 955		data = host->data;
 956		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
 957			      MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
 958			mmci_data_irq(host, data, status);
 959
 960		cmd = host->cmd;
 961		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
 962			mmci_cmd_irq(host, cmd, status);
 
 
 
 
 
 963
 964		ret = 1;
 965	} while (status);
 966
 967	spin_unlock(&host->lock);
 968
 969	return IRQ_RETVAL(ret);
 970}
 971
 972static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
 973{
 974	struct mmci_host *host = mmc_priv(mmc);
 975	unsigned long flags;
 976
 977	WARN_ON(host->mrq != NULL);
 978
 979	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
 980		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
 981			mrq->data->blksz);
 982		mrq->cmd->error = -EINVAL;
 983		mmc_request_done(mmc, mrq);
 984		return;
 985	}
 986
 987	spin_lock_irqsave(&host->lock, flags);
 988
 989	host->mrq = mrq;
 990
 991	if (mrq->data)
 992		mmci_get_next_data(host, mrq->data);
 993
 994	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
 995		mmci_start_data(host, mrq->data);
 996
 997	mmci_start_command(host, mrq->cmd, 0);
 
 
 
 998
 999	spin_unlock_irqrestore(&host->lock, flags);
1000}
1001
1002static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1003{
1004	struct mmci_host *host = mmc_priv(mmc);
 
1005	u32 pwr = 0;
1006	unsigned long flags;
1007	int ret;
1008
 
 
 
 
1009	switch (ios->power_mode) {
1010	case MMC_POWER_OFF:
1011		if (host->vcc)
1012			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
 
 
 
 
 
 
1013		break;
1014	case MMC_POWER_UP:
1015		if (host->vcc) {
1016			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1017			if (ret) {
1018				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1019				/*
1020				 * The .set_ios() function in the mmc_host_ops
1021				 * struct return void, and failing to set the
1022				 * power should be rare so we print an error
1023				 * and return here.
1024				 */
1025				return;
1026			}
 
 
 
 
 
 
 
1027		}
1028		if (host->plat->vdd_handler)
1029			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1030						       ios->power_mode);
1031		/* The ST version does not have this, fall through to POWER_ON */
1032		if (host->hw_designer != AMBA_VENDOR_ST) {
1033			pwr |= MCI_PWR_UP;
1034			break;
1035		}
1036	case MMC_POWER_ON:
1037		pwr |= MCI_PWR_ON;
1038		break;
1039	}
1040
1041	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1042		if (host->hw_designer != AMBA_VENDOR_ST)
1043			pwr |= MCI_ROD;
1044		else {
1045			/*
1046			 * The ST Micro variant use the ROD bit for something
1047			 * else and only has OD (Open Drain).
1048			 */
1049			pwr |= MCI_OD;
1050		}
 
 
 
 
1051	}
1052
1053	spin_lock_irqsave(&host->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
1054
1055	mmci_set_clkreg(host, ios->clock);
 
 
 
 
 
1056
1057	if (host->pwr != pwr) {
1058		host->pwr = pwr;
1059		writel(pwr, host->base + MMCIPOWER);
 
 
 
 
 
1060	}
 
1061
1062	spin_unlock_irqrestore(&host->lock, flags);
1063}
1064
1065static int mmci_get_ro(struct mmc_host *mmc)
1066{
1067	struct mmci_host *host = mmc_priv(mmc);
1068
1069	if (host->gpio_wp == -ENOSYS)
1070		return -ENOSYS;
1071
1072	return gpio_get_value_cansleep(host->gpio_wp);
1073}
1074
1075static int mmci_get_cd(struct mmc_host *mmc)
1076{
1077	struct mmci_host *host = mmc_priv(mmc);
1078	struct mmci_platform_data *plat = host->plat;
1079	unsigned int status;
1080
1081	if (host->gpio_cd == -ENOSYS) {
1082		if (!plat->status)
1083			return 1; /* Assume always present */
1084
1085		status = plat->status(mmc_dev(host->mmc));
1086	} else
1087		status = !!gpio_get_value_cansleep(host->gpio_cd)
1088			^ plat->cd_invert;
1089
1090	/*
1091	 * Use positive logic throughout - status is zero for no card,
1092	 * non-zero for card inserted.
1093	 */
1094	return status;
1095}
1096
1097static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1098{
1099	struct mmci_host *host = dev_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1100
1101	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
 
 
1102
1103	return IRQ_HANDLED;
1104}
1105
1106static const struct mmc_host_ops mmci_ops = {
1107	.request	= mmci_request,
1108	.pre_req	= mmci_pre_request,
1109	.post_req	= mmci_post_request,
1110	.set_ios	= mmci_set_ios,
1111	.get_ro		= mmci_get_ro,
1112	.get_cd		= mmci_get_cd,
 
1113};
1114
1115static int __devinit mmci_probe(struct amba_device *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116	const struct amba_id *id)
1117{
1118	struct mmci_platform_data *plat = dev->dev.platform_data;
 
1119	struct variant_data *variant = id->data;
1120	struct mmci_host *host;
1121	struct mmc_host *mmc;
1122	int ret;
1123
1124	/* must have platform data */
 
 
 
 
 
1125	if (!plat) {
1126		ret = -EINVAL;
1127		goto out;
 
1128	}
1129
1130	ret = amba_request_regions(dev, DRIVER_NAME);
 
 
 
 
1131	if (ret)
1132		goto out;
1133
1134	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1135	if (!mmc) {
1136		ret = -ENOMEM;
1137		goto rel_regions;
1138	}
1139
1140	host = mmc_priv(mmc);
1141	host->mmc = mmc;
1142
1143	host->gpio_wp = -ENOSYS;
1144	host->gpio_cd = -ENOSYS;
1145	host->gpio_cd_irq = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146
1147	host->hw_designer = amba_manf(dev);
1148	host->hw_revision = amba_rev(dev);
1149	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1150	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1151
1152	host->clk = clk_get(&dev->dev, NULL);
1153	if (IS_ERR(host->clk)) {
1154		ret = PTR_ERR(host->clk);
1155		host->clk = NULL;
1156		goto host_free;
1157	}
1158
1159	ret = clk_enable(host->clk);
1160	if (ret)
1161		goto clk_free;
 
 
 
 
 
1162
1163	host->plat = plat;
1164	host->variant = variant;
1165	host->mclk = clk_get_rate(host->clk);
1166	/*
1167	 * According to the spec, mclk is max 100 MHz,
1168	 * so we try to adjust the clock down to this,
1169	 * (if possible).
1170	 */
1171	if (host->mclk > 100000000) {
1172		ret = clk_set_rate(host->clk, 100000000);
1173		if (ret < 0)
1174			goto clk_disable;
1175		host->mclk = clk_get_rate(host->clk);
1176		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1177			host->mclk);
1178	}
 
1179	host->phybase = dev->res.start;
1180	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1181	if (!host->base) {
1182		ret = -ENOMEM;
1183		goto clk_disable;
1184	}
1185
1186	mmc->ops = &mmci_ops;
1187	/*
1188	 * The ARM and ST versions of the block have slightly different
1189	 * clock divider equations which means that the minimum divider
1190	 * differs too.
 
1191	 */
1192	if (variant->st_clkdiv)
1193		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
 
 
1194	else
1195		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1196	/*
1197	 * If the platform data supplies a maximum operating
1198	 * frequency, this takes precedence. Else, we fall back
1199	 * to using the module parameter, which has a (low)
1200	 * default value in case it is not specified. Either
1201	 * value must not exceed the clock rate into the block,
1202	 * of course.
1203	 */
1204	if (plat->f_max)
1205		mmc->f_max = min(host->mclk, plat->f_max);
 
 
1206	else
1207		mmc->f_max = min(host->mclk, fmax);
 
 
 
1208	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1209
1210#ifdef CONFIG_REGULATOR
1211	/* If we're using the regulator framework, try to fetch a regulator */
1212	host->vcc = regulator_get(&dev->dev, "vmmc");
1213	if (IS_ERR(host->vcc))
1214		host->vcc = NULL;
1215	else {
1216		int mask = mmc_regulator_get_ocrmask(host->vcc);
 
 
 
 
 
 
 
 
 
 
 
 
1217
1218		if (mask < 0)
1219			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1220				mask);
1221		else {
1222			host->mmc->ocr_avail = (u32) mask;
1223			if (plat->ocr_mask)
1224				dev_warn(&dev->dev,
1225				 "Provided ocr_mask/setpower will not be used "
1226				 "(using regulator instead)\n");
1227		}
 
 
 
 
1228	}
1229#endif
1230	/* Fall back to platform data if no regulator is found */
1231	if (host->vcc == NULL)
1232		mmc->ocr_avail = plat->ocr_mask;
1233	mmc->caps = plat->capabilities;
1234
1235	/*
1236	 * We can do SGIO
1237	 */
1238	mmc->max_segs = NR_SG;
1239
1240	/*
1241	 * Since only a certain number of bits are valid in the data length
1242	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1243	 * single request.
1244	 */
1245	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1246
1247	/*
1248	 * Set the maximum segment size.  Since we aren't doing DMA
1249	 * (yet) we are only limited by the data length register.
1250	 */
1251	mmc->max_seg_size = mmc->max_req_size;
1252
1253	/*
1254	 * Block size can be up to 2048 bytes, but must be a power of two.
1255	 */
1256	mmc->max_blk_size = 2048;
1257
1258	/*
1259	 * No limit on the number of blocks transferred.
 
1260	 */
1261	mmc->max_blk_count = mmc->max_req_size;
1262
1263	spin_lock_init(&host->lock);
1264
1265	writel(0, host->base + MMCIMASK0);
1266	writel(0, host->base + MMCIMASK1);
 
 
 
1267	writel(0xfff, host->base + MMCICLEAR);
1268
1269	if (gpio_is_valid(plat->gpio_cd)) {
1270		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1271		if (ret == 0)
1272			ret = gpio_direction_input(plat->gpio_cd);
1273		if (ret == 0)
1274			host->gpio_cd = plat->gpio_cd;
1275		else if (ret != -ENOSYS)
1276			goto err_gpio_cd;
 
 
 
 
 
 
 
 
 
 
1277
1278		/*
1279		 * A gpio pin that will detect cards when inserted and removed
1280		 * will most likely want to trigger on the edges if it is
1281		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1282		 * for the inverted case) so we request triggers on both
1283		 * edges.
1284		 */
1285		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1286				mmci_cd_irq,
1287				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1288				DRIVER_NAME " (cd)", host);
1289		if (ret >= 0)
1290			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1291	}
1292	if (gpio_is_valid(plat->gpio_wp)) {
1293		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1294		if (ret == 0)
1295			ret = gpio_direction_input(plat->gpio_wp);
1296		if (ret == 0)
1297			host->gpio_wp = plat->gpio_wp;
1298		else if (ret != -ENOSYS)
1299			goto err_gpio_wp;
1300	}
1301
1302	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1303	    && host->gpio_cd_irq < 0)
1304		mmc->caps |= MMC_CAP_NEEDS_POLL;
1305
1306	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
 
1307	if (ret)
1308		goto unmap;
1309
1310	if (dev->irq[1] == NO_IRQ)
1311		host->singleirq = true;
1312	else {
1313		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1314				  DRIVER_NAME " (pio)", host);
1315		if (ret)
1316			goto irq0_free;
1317	}
1318
1319	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1320
1321	amba_set_drvdata(dev, mmc);
1322
1323	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1324		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1325		 amba_rev(dev), (unsigned long long)dev->res.start,
1326		 dev->irq[0], dev->irq[1]);
1327
1328	mmci_dma_setup(host);
1329
 
 
 
1330	mmc_add_host(mmc);
1331
 
1332	return 0;
1333
1334 irq0_free:
1335	free_irq(dev->irq[0], host);
1336 unmap:
1337	if (host->gpio_wp != -ENOSYS)
1338		gpio_free(host->gpio_wp);
1339 err_gpio_wp:
1340	if (host->gpio_cd_irq >= 0)
1341		free_irq(host->gpio_cd_irq, host);
1342	if (host->gpio_cd != -ENOSYS)
1343		gpio_free(host->gpio_cd);
1344 err_gpio_cd:
1345	iounmap(host->base);
1346 clk_disable:
1347	clk_disable(host->clk);
1348 clk_free:
1349	clk_put(host->clk);
1350 host_free:
1351	mmc_free_host(mmc);
1352 rel_regions:
1353	amba_release_regions(dev);
1354 out:
1355	return ret;
1356}
1357
1358static int __devexit mmci_remove(struct amba_device *dev)
1359{
1360	struct mmc_host *mmc = amba_get_drvdata(dev);
1361
1362	amba_set_drvdata(dev, NULL);
1363
1364	if (mmc) {
1365		struct mmci_host *host = mmc_priv(mmc);
 
 
 
 
 
 
 
1366
1367		mmc_remove_host(mmc);
1368
1369		writel(0, host->base + MMCIMASK0);
1370		writel(0, host->base + MMCIMASK1);
 
 
1371
1372		writel(0, host->base + MMCICOMMAND);
1373		writel(0, host->base + MMCIDATACTRL);
1374
1375		mmci_dma_release(host);
1376		free_irq(dev->irq[0], host);
1377		if (!host->singleirq)
1378			free_irq(dev->irq[1], host);
1379
1380		if (host->gpio_wp != -ENOSYS)
1381			gpio_free(host->gpio_wp);
1382		if (host->gpio_cd_irq >= 0)
1383			free_irq(host->gpio_cd_irq, host);
1384		if (host->gpio_cd != -ENOSYS)
1385			gpio_free(host->gpio_cd);
1386
1387		iounmap(host->base);
1388		clk_disable(host->clk);
1389		clk_put(host->clk);
1390
1391		if (host->vcc)
1392			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1393		regulator_put(host->vcc);
1394
1395		mmc_free_host(mmc);
1396
1397		amba_release_regions(dev);
1398	}
1399
1400	return 0;
1401}
1402
1403#ifdef CONFIG_PM
1404static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1405{
1406	struct mmc_host *mmc = amba_get_drvdata(dev);
1407	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408
1409	if (mmc) {
1410		struct mmci_host *host = mmc_priv(mmc);
1411
1412		ret = mmc_suspend_host(mmc);
1413		if (ret == 0)
1414			writel(0, host->base + MMCIMASK0);
 
1415	}
 
 
1416
1417	return ret;
1418}
1419
1420static int mmci_resume(struct amba_device *dev)
1421{
1422	struct mmc_host *mmc = amba_get_drvdata(dev);
1423	int ret = 0;
1424
1425	if (mmc) {
1426		struct mmci_host *host = mmc_priv(mmc);
 
 
 
 
 
 
 
1427
1428		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
 
 
 
1429
1430		ret = mmc_resume_host(mmc);
 
 
 
 
1431	}
1432
1433	return ret;
1434}
1435#else
1436#define mmci_suspend	NULL
1437#define mmci_resume	NULL
1438#endif
1439
1440static struct amba_id mmci_ids[] = {
 
 
 
 
 
 
1441	{
1442		.id	= 0x00041180,
1443		.mask	= 0xff0fffff,
1444		.data	= &variant_arm,
1445	},
1446	{
1447		.id	= 0x01041180,
1448		.mask	= 0xff0fffff,
1449		.data	= &variant_arm_extended_fifo,
1450	},
1451	{
 
 
 
 
 
1452		.id	= 0x00041181,
1453		.mask	= 0x000fffff,
1454		.data	= &variant_arm,
1455	},
1456	/* ST Micro variants */
1457	{
1458		.id     = 0x00180180,
1459		.mask   = 0x00ffffff,
1460		.data	= &variant_u300,
1461	},
1462	{
 
 
 
 
 
1463		.id     = 0x00280180,
1464		.mask   = 0x00ffffff,
1465		.data	= &variant_u300,
1466	},
1467	{
1468		.id     = 0x00480180,
1469		.mask   = 0xf0ffffff,
1470		.data	= &variant_ux500,
1471	},
1472	{
1473		.id     = 0x10480180,
1474		.mask   = 0xf0ffffff,
1475		.data	= &variant_ux500v2,
1476	},
 
 
 
 
 
 
 
 
 
 
 
1477	{ 0, 0 },
1478};
1479
 
 
1480static struct amba_driver mmci_driver = {
1481	.drv		= {
1482		.name	= DRIVER_NAME,
 
1483	},
1484	.probe		= mmci_probe,
1485	.remove		= __devexit_p(mmci_remove),
1486	.suspend	= mmci_suspend,
1487	.resume		= mmci_resume,
1488	.id_table	= mmci_ids,
1489};
1490
1491static int __init mmci_init(void)
1492{
1493	return amba_driver_register(&mmci_driver);
1494}
1495
1496static void __exit mmci_exit(void)
1497{
1498	amba_driver_unregister(&mmci_driver);
1499}
1500
1501module_init(mmci_init);
1502module_exit(mmci_exit);
1503module_param(fmax, uint, 0444);
1504
1505MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1506MODULE_LICENSE("GPL");