Loading...
1/*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/highmem.h>
23#include <linux/log2.h>
24#include <linux/mmc/pm.h>
25#include <linux/mmc/host.h>
26#include <linux/mmc/card.h>
27#include <linux/mmc/slot-gpio.h>
28#include <linux/amba/bus.h>
29#include <linux/clk.h>
30#include <linux/scatterlist.h>
31#include <linux/gpio.h>
32#include <linux/of_gpio.h>
33#include <linux/regulator/consumer.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/amba/mmci.h>
37#include <linux/pm_runtime.h>
38#include <linux/types.h>
39#include <linux/pinctrl/consumer.h>
40
41#include <asm/div64.h>
42#include <asm/io.h>
43
44#include "mmci.h"
45#include "mmci_qcom_dml.h"
46
47#define DRIVER_NAME "mmci-pl18x"
48
49static unsigned int fmax = 515633;
50
51/**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 * register
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if the variant supports busy detection on DAT0.
75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77 * indicating that the card is busy
78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79 * getting busy end detection interrupts
80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81 * @explicit_mclk_control: enable explicit mclk control in driver.
82 * @qcom_fifo: enables qcom specific fifo pio read logic.
83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
84 * @reversed_irq_handling: handle data irq before cmd irq.
85 * @mmcimask1: true if variant have a MMCIMASK1 register.
86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
87 * register.
88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
89 */
90struct variant_data {
91 unsigned int clkreg;
92 unsigned int clkreg_enable;
93 unsigned int clkreg_8bit_bus_enable;
94 unsigned int clkreg_neg_edge_enable;
95 unsigned int datalength_bits;
96 unsigned int fifosize;
97 unsigned int fifohalfsize;
98 unsigned int data_cmd_enable;
99 unsigned int datactrl_mask_ddrmode;
100 unsigned int datactrl_mask_sdio;
101 bool st_sdio;
102 bool st_clkdiv;
103 bool blksz_datactrl16;
104 bool blksz_datactrl4;
105 u32 pwrreg_powerup;
106 u32 f_max;
107 bool signal_direction;
108 bool pwrreg_clkgate;
109 bool busy_detect;
110 u32 busy_dpsm_flag;
111 u32 busy_detect_flag;
112 u32 busy_detect_mask;
113 bool pwrreg_nopower;
114 bool explicit_mclk_control;
115 bool qcom_fifo;
116 bool qcom_dml;
117 bool reversed_irq_handling;
118 bool mmcimask1;
119 u32 start_err;
120 u32 opendrain;
121};
122
123static struct variant_data variant_arm = {
124 .fifosize = 16 * 4,
125 .fifohalfsize = 8 * 4,
126 .datalength_bits = 16,
127 .pwrreg_powerup = MCI_PWR_UP,
128 .f_max = 100000000,
129 .reversed_irq_handling = true,
130 .mmcimask1 = true,
131 .start_err = MCI_STARTBITERR,
132 .opendrain = MCI_ROD,
133};
134
135static struct variant_data variant_arm_extended_fifo = {
136 .fifosize = 128 * 4,
137 .fifohalfsize = 64 * 4,
138 .datalength_bits = 16,
139 .pwrreg_powerup = MCI_PWR_UP,
140 .f_max = 100000000,
141 .mmcimask1 = true,
142 .start_err = MCI_STARTBITERR,
143 .opendrain = MCI_ROD,
144};
145
146static struct variant_data variant_arm_extended_fifo_hwfc = {
147 .fifosize = 128 * 4,
148 .fifohalfsize = 64 * 4,
149 .clkreg_enable = MCI_ARM_HWFCEN,
150 .datalength_bits = 16,
151 .pwrreg_powerup = MCI_PWR_UP,
152 .f_max = 100000000,
153 .mmcimask1 = true,
154 .start_err = MCI_STARTBITERR,
155 .opendrain = MCI_ROD,
156};
157
158static struct variant_data variant_u300 = {
159 .fifosize = 16 * 4,
160 .fifohalfsize = 8 * 4,
161 .clkreg_enable = MCI_ST_U300_HWFCEN,
162 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
163 .datalength_bits = 16,
164 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
165 .st_sdio = true,
166 .pwrreg_powerup = MCI_PWR_ON,
167 .f_max = 100000000,
168 .signal_direction = true,
169 .pwrreg_clkgate = true,
170 .pwrreg_nopower = true,
171 .mmcimask1 = true,
172 .start_err = MCI_STARTBITERR,
173 .opendrain = MCI_OD,
174};
175
176static struct variant_data variant_nomadik = {
177 .fifosize = 16 * 4,
178 .fifohalfsize = 8 * 4,
179 .clkreg = MCI_CLK_ENABLE,
180 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
181 .datalength_bits = 24,
182 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
183 .st_sdio = true,
184 .st_clkdiv = true,
185 .pwrreg_powerup = MCI_PWR_ON,
186 .f_max = 100000000,
187 .signal_direction = true,
188 .pwrreg_clkgate = true,
189 .pwrreg_nopower = true,
190 .mmcimask1 = true,
191 .start_err = MCI_STARTBITERR,
192 .opendrain = MCI_OD,
193};
194
195static struct variant_data variant_ux500 = {
196 .fifosize = 30 * 4,
197 .fifohalfsize = 8 * 4,
198 .clkreg = MCI_CLK_ENABLE,
199 .clkreg_enable = MCI_ST_UX500_HWFCEN,
200 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
202 .datalength_bits = 24,
203 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
204 .st_sdio = true,
205 .st_clkdiv = true,
206 .pwrreg_powerup = MCI_PWR_ON,
207 .f_max = 100000000,
208 .signal_direction = true,
209 .pwrreg_clkgate = true,
210 .busy_detect = true,
211 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
212 .busy_detect_flag = MCI_ST_CARDBUSY,
213 .busy_detect_mask = MCI_ST_BUSYENDMASK,
214 .pwrreg_nopower = true,
215 .mmcimask1 = true,
216 .start_err = MCI_STARTBITERR,
217 .opendrain = MCI_OD,
218};
219
220static struct variant_data variant_ux500v2 = {
221 .fifosize = 30 * 4,
222 .fifohalfsize = 8 * 4,
223 .clkreg = MCI_CLK_ENABLE,
224 .clkreg_enable = MCI_ST_UX500_HWFCEN,
225 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
226 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
227 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
228 .datalength_bits = 24,
229 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
230 .st_sdio = true,
231 .st_clkdiv = true,
232 .blksz_datactrl16 = true,
233 .pwrreg_powerup = MCI_PWR_ON,
234 .f_max = 100000000,
235 .signal_direction = true,
236 .pwrreg_clkgate = true,
237 .busy_detect = true,
238 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
239 .busy_detect_flag = MCI_ST_CARDBUSY,
240 .busy_detect_mask = MCI_ST_BUSYENDMASK,
241 .pwrreg_nopower = true,
242 .mmcimask1 = true,
243 .start_err = MCI_STARTBITERR,
244 .opendrain = MCI_OD,
245};
246
247static struct variant_data variant_stm32 = {
248 .fifosize = 32 * 4,
249 .fifohalfsize = 8 * 4,
250 .clkreg = MCI_CLK_ENABLE,
251 .clkreg_enable = MCI_ST_UX500_HWFCEN,
252 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
253 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
254 .datalength_bits = 24,
255 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
256 .st_sdio = true,
257 .st_clkdiv = true,
258 .pwrreg_powerup = MCI_PWR_ON,
259 .f_max = 48000000,
260 .pwrreg_clkgate = true,
261 .pwrreg_nopower = true,
262};
263
264static struct variant_data variant_qcom = {
265 .fifosize = 16 * 4,
266 .fifohalfsize = 8 * 4,
267 .clkreg = MCI_CLK_ENABLE,
268 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
269 MCI_QCOM_CLK_SELECT_IN_FBCLK,
270 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
271 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
272 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
273 .blksz_datactrl4 = true,
274 .datalength_bits = 24,
275 .pwrreg_powerup = MCI_PWR_UP,
276 .f_max = 208000000,
277 .explicit_mclk_control = true,
278 .qcom_fifo = true,
279 .qcom_dml = true,
280 .mmcimask1 = true,
281 .start_err = MCI_STARTBITERR,
282 .opendrain = MCI_ROD,
283};
284
285/* Busy detection for the ST Micro variant */
286static int mmci_card_busy(struct mmc_host *mmc)
287{
288 struct mmci_host *host = mmc_priv(mmc);
289 unsigned long flags;
290 int busy = 0;
291
292 spin_lock_irqsave(&host->lock, flags);
293 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
294 busy = 1;
295 spin_unlock_irqrestore(&host->lock, flags);
296
297 return busy;
298}
299
300/*
301 * Validate mmc prerequisites
302 */
303static int mmci_validate_data(struct mmci_host *host,
304 struct mmc_data *data)
305{
306 if (!data)
307 return 0;
308
309 if (!is_power_of_2(data->blksz)) {
310 dev_err(mmc_dev(host->mmc),
311 "unsupported block size (%d bytes)\n", data->blksz);
312 return -EINVAL;
313 }
314
315 return 0;
316}
317
318static void mmci_reg_delay(struct mmci_host *host)
319{
320 /*
321 * According to the spec, at least three feedback clock cycles
322 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
323 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
324 * Worst delay time during card init is at 100 kHz => 30 us.
325 * Worst delay time when up and running is at 25 MHz => 120 ns.
326 */
327 if (host->cclk < 25000000)
328 udelay(30);
329 else
330 ndelay(120);
331}
332
333/*
334 * This must be called with host->lock held
335 */
336static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
337{
338 if (host->clk_reg != clk) {
339 host->clk_reg = clk;
340 writel(clk, host->base + MMCICLOCK);
341 }
342}
343
344/*
345 * This must be called with host->lock held
346 */
347static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
348{
349 if (host->pwr_reg != pwr) {
350 host->pwr_reg = pwr;
351 writel(pwr, host->base + MMCIPOWER);
352 }
353}
354
355/*
356 * This must be called with host->lock held
357 */
358static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
359{
360 /* Keep busy mode in DPSM if enabled */
361 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
362
363 if (host->datactrl_reg != datactrl) {
364 host->datactrl_reg = datactrl;
365 writel(datactrl, host->base + MMCIDATACTRL);
366 }
367}
368
369/*
370 * This must be called with host->lock held
371 */
372static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
373{
374 struct variant_data *variant = host->variant;
375 u32 clk = variant->clkreg;
376
377 /* Make sure cclk reflects the current calculated clock */
378 host->cclk = 0;
379
380 if (desired) {
381 if (variant->explicit_mclk_control) {
382 host->cclk = host->mclk;
383 } else if (desired >= host->mclk) {
384 clk = MCI_CLK_BYPASS;
385 if (variant->st_clkdiv)
386 clk |= MCI_ST_UX500_NEG_EDGE;
387 host->cclk = host->mclk;
388 } else if (variant->st_clkdiv) {
389 /*
390 * DB8500 TRM says f = mclk / (clkdiv + 2)
391 * => clkdiv = (mclk / f) - 2
392 * Round the divider up so we don't exceed the max
393 * frequency
394 */
395 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
396 if (clk >= 256)
397 clk = 255;
398 host->cclk = host->mclk / (clk + 2);
399 } else {
400 /*
401 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
402 * => clkdiv = mclk / (2 * f) - 1
403 */
404 clk = host->mclk / (2 * desired) - 1;
405 if (clk >= 256)
406 clk = 255;
407 host->cclk = host->mclk / (2 * (clk + 1));
408 }
409
410 clk |= variant->clkreg_enable;
411 clk |= MCI_CLK_ENABLE;
412 /* This hasn't proven to be worthwhile */
413 /* clk |= MCI_CLK_PWRSAVE; */
414 }
415
416 /* Set actual clock for debug */
417 host->mmc->actual_clock = host->cclk;
418
419 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
420 clk |= MCI_4BIT_BUS;
421 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
422 clk |= variant->clkreg_8bit_bus_enable;
423
424 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
425 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
426 clk |= variant->clkreg_neg_edge_enable;
427
428 mmci_write_clkreg(host, clk);
429}
430
431static void
432mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
433{
434 writel(0, host->base + MMCICOMMAND);
435
436 BUG_ON(host->data);
437
438 host->mrq = NULL;
439 host->cmd = NULL;
440
441 mmc_request_done(host->mmc, mrq);
442}
443
444static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
445{
446 void __iomem *base = host->base;
447 struct variant_data *variant = host->variant;
448
449 if (host->singleirq) {
450 unsigned int mask0 = readl(base + MMCIMASK0);
451
452 mask0 &= ~MCI_IRQ1MASK;
453 mask0 |= mask;
454
455 writel(mask0, base + MMCIMASK0);
456 }
457
458 if (variant->mmcimask1)
459 writel(mask, base + MMCIMASK1);
460
461 host->mask1_reg = mask;
462}
463
464static void mmci_stop_data(struct mmci_host *host)
465{
466 mmci_write_datactrlreg(host, 0);
467 mmci_set_mask1(host, 0);
468 host->data = NULL;
469}
470
471static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
472{
473 unsigned int flags = SG_MITER_ATOMIC;
474
475 if (data->flags & MMC_DATA_READ)
476 flags |= SG_MITER_TO_SG;
477 else
478 flags |= SG_MITER_FROM_SG;
479
480 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
481}
482
483/*
484 * All the DMA operation mode stuff goes inside this ifdef.
485 * This assumes that you have a generic DMA device interface,
486 * no custom DMA interfaces are supported.
487 */
488#ifdef CONFIG_DMA_ENGINE
489static void mmci_dma_setup(struct mmci_host *host)
490{
491 const char *rxname, *txname;
492 struct variant_data *variant = host->variant;
493
494 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
495 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
496
497 /* initialize pre request cookie */
498 host->next_data.cookie = 1;
499
500 /*
501 * If only an RX channel is specified, the driver will
502 * attempt to use it bidirectionally, however if it is
503 * is specified but cannot be located, DMA will be disabled.
504 */
505 if (host->dma_rx_channel && !host->dma_tx_channel)
506 host->dma_tx_channel = host->dma_rx_channel;
507
508 if (host->dma_rx_channel)
509 rxname = dma_chan_name(host->dma_rx_channel);
510 else
511 rxname = "none";
512
513 if (host->dma_tx_channel)
514 txname = dma_chan_name(host->dma_tx_channel);
515 else
516 txname = "none";
517
518 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
519 rxname, txname);
520
521 /*
522 * Limit the maximum segment size in any SG entry according to
523 * the parameters of the DMA engine device.
524 */
525 if (host->dma_tx_channel) {
526 struct device *dev = host->dma_tx_channel->device->dev;
527 unsigned int max_seg_size = dma_get_max_seg_size(dev);
528
529 if (max_seg_size < host->mmc->max_seg_size)
530 host->mmc->max_seg_size = max_seg_size;
531 }
532 if (host->dma_rx_channel) {
533 struct device *dev = host->dma_rx_channel->device->dev;
534 unsigned int max_seg_size = dma_get_max_seg_size(dev);
535
536 if (max_seg_size < host->mmc->max_seg_size)
537 host->mmc->max_seg_size = max_seg_size;
538 }
539
540 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
541 if (dml_hw_init(host, host->mmc->parent->of_node))
542 variant->qcom_dml = false;
543}
544
545/*
546 * This is used in or so inline it
547 * so it can be discarded.
548 */
549static inline void mmci_dma_release(struct mmci_host *host)
550{
551 if (host->dma_rx_channel)
552 dma_release_channel(host->dma_rx_channel);
553 if (host->dma_tx_channel)
554 dma_release_channel(host->dma_tx_channel);
555 host->dma_rx_channel = host->dma_tx_channel = NULL;
556}
557
558static void mmci_dma_data_error(struct mmci_host *host)
559{
560 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
561 dmaengine_terminate_all(host->dma_current);
562 host->dma_in_progress = false;
563 host->dma_current = NULL;
564 host->dma_desc_current = NULL;
565 host->data->host_cookie = 0;
566}
567
568static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
569{
570 struct dma_chan *chan;
571
572 if (data->flags & MMC_DATA_READ)
573 chan = host->dma_rx_channel;
574 else
575 chan = host->dma_tx_channel;
576
577 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
578 mmc_get_dma_dir(data));
579}
580
581static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
582{
583 u32 status;
584 int i;
585
586 /* Wait up to 1ms for the DMA to complete */
587 for (i = 0; ; i++) {
588 status = readl(host->base + MMCISTATUS);
589 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
590 break;
591 udelay(10);
592 }
593
594 /*
595 * Check to see whether we still have some data left in the FIFO -
596 * this catches DMA controllers which are unable to monitor the
597 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
598 * contiguous buffers. On TX, we'll get a FIFO underrun error.
599 */
600 if (status & MCI_RXDATAAVLBLMASK) {
601 mmci_dma_data_error(host);
602 if (!data->error)
603 data->error = -EIO;
604 }
605
606 if (!data->host_cookie)
607 mmci_dma_unmap(host, data);
608
609 /*
610 * Use of DMA with scatter-gather is impossible.
611 * Give up with DMA and switch back to PIO mode.
612 */
613 if (status & MCI_RXDATAAVLBLMASK) {
614 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
615 mmci_dma_release(host);
616 }
617
618 host->dma_in_progress = false;
619 host->dma_current = NULL;
620 host->dma_desc_current = NULL;
621}
622
623/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
624static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
625 struct dma_chan **dma_chan,
626 struct dma_async_tx_descriptor **dma_desc)
627{
628 struct variant_data *variant = host->variant;
629 struct dma_slave_config conf = {
630 .src_addr = host->phybase + MMCIFIFO,
631 .dst_addr = host->phybase + MMCIFIFO,
632 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
633 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
634 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
635 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
636 .device_fc = false,
637 };
638 struct dma_chan *chan;
639 struct dma_device *device;
640 struct dma_async_tx_descriptor *desc;
641 int nr_sg;
642 unsigned long flags = DMA_CTRL_ACK;
643
644 if (data->flags & MMC_DATA_READ) {
645 conf.direction = DMA_DEV_TO_MEM;
646 chan = host->dma_rx_channel;
647 } else {
648 conf.direction = DMA_MEM_TO_DEV;
649 chan = host->dma_tx_channel;
650 }
651
652 /* If there's no DMA channel, fall back to PIO */
653 if (!chan)
654 return -EINVAL;
655
656 /* If less than or equal to the fifo size, don't bother with DMA */
657 if (data->blksz * data->blocks <= variant->fifosize)
658 return -EINVAL;
659
660 device = chan->device;
661 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
662 mmc_get_dma_dir(data));
663 if (nr_sg == 0)
664 return -EINVAL;
665
666 if (host->variant->qcom_dml)
667 flags |= DMA_PREP_INTERRUPT;
668
669 dmaengine_slave_config(chan, &conf);
670 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
671 conf.direction, flags);
672 if (!desc)
673 goto unmap_exit;
674
675 *dma_chan = chan;
676 *dma_desc = desc;
677
678 return 0;
679
680 unmap_exit:
681 dma_unmap_sg(device->dev, data->sg, data->sg_len,
682 mmc_get_dma_dir(data));
683 return -ENOMEM;
684}
685
686static inline int mmci_dma_prep_data(struct mmci_host *host,
687 struct mmc_data *data)
688{
689 /* Check if next job is already prepared. */
690 if (host->dma_current && host->dma_desc_current)
691 return 0;
692
693 /* No job were prepared thus do it now. */
694 return __mmci_dma_prep_data(host, data, &host->dma_current,
695 &host->dma_desc_current);
696}
697
698static inline int mmci_dma_prep_next(struct mmci_host *host,
699 struct mmc_data *data)
700{
701 struct mmci_host_next *nd = &host->next_data;
702 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
703}
704
705static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
706{
707 int ret;
708 struct mmc_data *data = host->data;
709
710 ret = mmci_dma_prep_data(host, host->data);
711 if (ret)
712 return ret;
713
714 /* Okay, go for it. */
715 dev_vdbg(mmc_dev(host->mmc),
716 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
717 data->sg_len, data->blksz, data->blocks, data->flags);
718 host->dma_in_progress = true;
719 dmaengine_submit(host->dma_desc_current);
720 dma_async_issue_pending(host->dma_current);
721
722 if (host->variant->qcom_dml)
723 dml_start_xfer(host, data);
724
725 datactrl |= MCI_DPSM_DMAENABLE;
726
727 /* Trigger the DMA transfer */
728 mmci_write_datactrlreg(host, datactrl);
729
730 /*
731 * Let the MMCI say when the data is ended and it's time
732 * to fire next DMA request. When that happens, MMCI will
733 * call mmci_data_end()
734 */
735 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
736 host->base + MMCIMASK0);
737 return 0;
738}
739
740static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
741{
742 struct mmci_host_next *next = &host->next_data;
743
744 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
745 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
746
747 host->dma_desc_current = next->dma_desc;
748 host->dma_current = next->dma_chan;
749 next->dma_desc = NULL;
750 next->dma_chan = NULL;
751}
752
753static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
754{
755 struct mmci_host *host = mmc_priv(mmc);
756 struct mmc_data *data = mrq->data;
757 struct mmci_host_next *nd = &host->next_data;
758
759 if (!data)
760 return;
761
762 BUG_ON(data->host_cookie);
763
764 if (mmci_validate_data(host, data))
765 return;
766
767 if (!mmci_dma_prep_next(host, data))
768 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
769}
770
771static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
772 int err)
773{
774 struct mmci_host *host = mmc_priv(mmc);
775 struct mmc_data *data = mrq->data;
776
777 if (!data || !data->host_cookie)
778 return;
779
780 mmci_dma_unmap(host, data);
781
782 if (err) {
783 struct mmci_host_next *next = &host->next_data;
784 struct dma_chan *chan;
785 if (data->flags & MMC_DATA_READ)
786 chan = host->dma_rx_channel;
787 else
788 chan = host->dma_tx_channel;
789 dmaengine_terminate_all(chan);
790
791 if (host->dma_desc_current == next->dma_desc)
792 host->dma_desc_current = NULL;
793
794 if (host->dma_current == next->dma_chan) {
795 host->dma_in_progress = false;
796 host->dma_current = NULL;
797 }
798
799 next->dma_desc = NULL;
800 next->dma_chan = NULL;
801 data->host_cookie = 0;
802 }
803}
804
805#else
806/* Blank functions if the DMA engine is not available */
807static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
808{
809}
810static inline void mmci_dma_setup(struct mmci_host *host)
811{
812}
813
814static inline void mmci_dma_release(struct mmci_host *host)
815{
816}
817
818static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
819{
820}
821
822static inline void mmci_dma_finalize(struct mmci_host *host,
823 struct mmc_data *data)
824{
825}
826
827static inline void mmci_dma_data_error(struct mmci_host *host)
828{
829}
830
831static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
832{
833 return -ENOSYS;
834}
835
836#define mmci_pre_request NULL
837#define mmci_post_request NULL
838
839#endif
840
841static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
842{
843 struct variant_data *variant = host->variant;
844 unsigned int datactrl, timeout, irqmask;
845 unsigned long long clks;
846 void __iomem *base;
847 int blksz_bits;
848
849 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
850 data->blksz, data->blocks, data->flags);
851
852 host->data = data;
853 host->size = data->blksz * data->blocks;
854 data->bytes_xfered = 0;
855
856 clks = (unsigned long long)data->timeout_ns * host->cclk;
857 do_div(clks, NSEC_PER_SEC);
858
859 timeout = data->timeout_clks + (unsigned int)clks;
860
861 base = host->base;
862 writel(timeout, base + MMCIDATATIMER);
863 writel(host->size, base + MMCIDATALENGTH);
864
865 blksz_bits = ffs(data->blksz) - 1;
866 BUG_ON(1 << blksz_bits != data->blksz);
867
868 if (variant->blksz_datactrl16)
869 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
870 else if (variant->blksz_datactrl4)
871 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
872 else
873 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
874
875 if (data->flags & MMC_DATA_READ)
876 datactrl |= MCI_DPSM_DIRECTION;
877
878 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
879 u32 clk;
880
881 datactrl |= variant->datactrl_mask_sdio;
882
883 /*
884 * The ST Micro variant for SDIO small write transfers
885 * needs to have clock H/W flow control disabled,
886 * otherwise the transfer will not start. The threshold
887 * depends on the rate of MCLK.
888 */
889 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
890 (host->size < 8 ||
891 (host->size <= 8 && host->mclk > 50000000)))
892 clk = host->clk_reg & ~variant->clkreg_enable;
893 else
894 clk = host->clk_reg | variant->clkreg_enable;
895
896 mmci_write_clkreg(host, clk);
897 }
898
899 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
900 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
901 datactrl |= variant->datactrl_mask_ddrmode;
902
903 /*
904 * Attempt to use DMA operation mode, if this
905 * should fail, fall back to PIO mode
906 */
907 if (!mmci_dma_start_data(host, datactrl))
908 return;
909
910 /* IRQ mode, map the SG list for CPU reading/writing */
911 mmci_init_sg(host, data);
912
913 if (data->flags & MMC_DATA_READ) {
914 irqmask = MCI_RXFIFOHALFFULLMASK;
915
916 /*
917 * If we have less than the fifo 'half-full' threshold to
918 * transfer, trigger a PIO interrupt as soon as any data
919 * is available.
920 */
921 if (host->size < variant->fifohalfsize)
922 irqmask |= MCI_RXDATAAVLBLMASK;
923 } else {
924 /*
925 * We don't actually need to include "FIFO empty" here
926 * since its implicit in "FIFO half empty".
927 */
928 irqmask = MCI_TXFIFOHALFEMPTYMASK;
929 }
930
931 mmci_write_datactrlreg(host, datactrl);
932 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
933 mmci_set_mask1(host, irqmask);
934}
935
936static void
937mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
938{
939 void __iomem *base = host->base;
940
941 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
942 cmd->opcode, cmd->arg, cmd->flags);
943
944 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
945 writel(0, base + MMCICOMMAND);
946 mmci_reg_delay(host);
947 }
948
949 c |= cmd->opcode | MCI_CPSM_ENABLE;
950 if (cmd->flags & MMC_RSP_PRESENT) {
951 if (cmd->flags & MMC_RSP_136)
952 c |= MCI_CPSM_LONGRSP;
953 c |= MCI_CPSM_RESPONSE;
954 }
955 if (/*interrupt*/0)
956 c |= MCI_CPSM_INTERRUPT;
957
958 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
959 c |= host->variant->data_cmd_enable;
960
961 host->cmd = cmd;
962
963 writel(cmd->arg, base + MMCIARGUMENT);
964 writel(c, base + MMCICOMMAND);
965}
966
967static void
968mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
969 unsigned int status)
970{
971 /* Make sure we have data to handle */
972 if (!data)
973 return;
974
975 /* First check for errors */
976 if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
977 host->variant->start_err |
978 MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
979 u32 remain, success;
980
981 /* Terminate the DMA transfer */
982 if (dma_inprogress(host)) {
983 mmci_dma_data_error(host);
984 mmci_dma_unmap(host, data);
985 }
986
987 /*
988 * Calculate how far we are into the transfer. Note that
989 * the data counter gives the number of bytes transferred
990 * on the MMC bus, not on the host side. On reads, this
991 * can be as much as a FIFO-worth of data ahead. This
992 * matters for FIFO overruns only.
993 */
994 remain = readl(host->base + MMCIDATACNT);
995 success = data->blksz * data->blocks - remain;
996
997 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
998 status, success);
999 if (status & MCI_DATACRCFAIL) {
1000 /* Last block was not successful */
1001 success -= 1;
1002 data->error = -EILSEQ;
1003 } else if (status & MCI_DATATIMEOUT) {
1004 data->error = -ETIMEDOUT;
1005 } else if (status & MCI_STARTBITERR) {
1006 data->error = -ECOMM;
1007 } else if (status & MCI_TXUNDERRUN) {
1008 data->error = -EIO;
1009 } else if (status & MCI_RXOVERRUN) {
1010 if (success > host->variant->fifosize)
1011 success -= host->variant->fifosize;
1012 else
1013 success = 0;
1014 data->error = -EIO;
1015 }
1016 data->bytes_xfered = round_down(success, data->blksz);
1017 }
1018
1019 if (status & MCI_DATABLOCKEND)
1020 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022 if (status & MCI_DATAEND || data->error) {
1023 if (dma_inprogress(host))
1024 mmci_dma_finalize(host, data);
1025 mmci_stop_data(host);
1026
1027 if (!data->error)
1028 /* The error clause is handled above, success! */
1029 data->bytes_xfered = data->blksz * data->blocks;
1030
1031 if (!data->stop || host->mrq->sbc) {
1032 mmci_request_end(host, data->mrq);
1033 } else {
1034 mmci_start_command(host, data->stop, 0);
1035 }
1036 }
1037}
1038
1039static void
1040mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041 unsigned int status)
1042{
1043 void __iomem *base = host->base;
1044 bool sbc;
1045
1046 if (!cmd)
1047 return;
1048
1049 sbc = (cmd == host->mrq->sbc);
1050
1051 /*
1052 * We need to be one of these interrupts to be considered worth
1053 * handling. Note that we tag on any latent IRQs postponed
1054 * due to waiting for busy status.
1055 */
1056 if (!((status|host->busy_status) &
1057 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058 return;
1059
1060 /*
1061 * ST Micro variant: handle busy detection.
1062 */
1063 if (host->variant->busy_detect) {
1064 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066 /* We are busy with a command, return */
1067 if (host->busy_status &&
1068 (status & host->variant->busy_detect_flag))
1069 return;
1070
1071 /*
1072 * We were not busy, but we now got a busy response on
1073 * something that was not an error, and we double-check
1074 * that the special busy status bit is still set before
1075 * proceeding.
1076 */
1077 if (!host->busy_status && busy_resp &&
1078 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081 /* Clear the busy start IRQ */
1082 writel(host->variant->busy_detect_mask,
1083 host->base + MMCICLEAR);
1084
1085 /* Unmask the busy end IRQ */
1086 writel(readl(base + MMCIMASK0) |
1087 host->variant->busy_detect_mask,
1088 base + MMCIMASK0);
1089 /*
1090 * Now cache the last response status code (until
1091 * the busy bit goes low), and return.
1092 */
1093 host->busy_status =
1094 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095 return;
1096 }
1097
1098 /*
1099 * At this point we are not busy with a command, we have
1100 * not received a new busy request, clear and mask the busy
1101 * end IRQ and fall through to process the IRQ.
1102 */
1103 if (host->busy_status) {
1104
1105 writel(host->variant->busy_detect_mask,
1106 host->base + MMCICLEAR);
1107
1108 writel(readl(base + MMCIMASK0) &
1109 ~host->variant->busy_detect_mask,
1110 base + MMCIMASK0);
1111 host->busy_status = 0;
1112 }
1113 }
1114
1115 host->cmd = NULL;
1116
1117 if (status & MCI_CMDTIMEOUT) {
1118 cmd->error = -ETIMEDOUT;
1119 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120 cmd->error = -EILSEQ;
1121 } else {
1122 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126 }
1127
1128 if ((!sbc && !cmd->data) || cmd->error) {
1129 if (host->data) {
1130 /* Terminate the DMA transfer */
1131 if (dma_inprogress(host)) {
1132 mmci_dma_data_error(host);
1133 mmci_dma_unmap(host, host->data);
1134 }
1135 mmci_stop_data(host);
1136 }
1137 mmci_request_end(host, host->mrq);
1138 } else if (sbc) {
1139 mmci_start_command(host, host->mrq->cmd, 0);
1140 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141 mmci_start_data(host, cmd->data);
1142 }
1143}
1144
1145static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146{
1147 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148}
1149
1150static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151{
1152 /*
1153 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154 * from the fifo range should be used
1155 */
1156 if (status & MCI_RXFIFOHALFFULL)
1157 return host->variant->fifohalfsize;
1158 else if (status & MCI_RXDATAAVLBL)
1159 return 4;
1160
1161 return 0;
1162}
1163
1164static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165{
1166 void __iomem *base = host->base;
1167 char *ptr = buffer;
1168 u32 status = readl(host->base + MMCISTATUS);
1169 int host_remain = host->size;
1170
1171 do {
1172 int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174 if (count > remain)
1175 count = remain;
1176
1177 if (count <= 0)
1178 break;
1179
1180 /*
1181 * SDIO especially may want to send something that is
1182 * not divisible by 4 (as opposed to card sectors
1183 * etc). Therefore make sure to always read the last bytes
1184 * while only doing full 32-bit reads towards the FIFO.
1185 */
1186 if (unlikely(count & 0x3)) {
1187 if (count < 4) {
1188 unsigned char buf[4];
1189 ioread32_rep(base + MMCIFIFO, buf, 1);
1190 memcpy(ptr, buf, count);
1191 } else {
1192 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193 count &= ~0x3;
1194 }
1195 } else {
1196 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197 }
1198
1199 ptr += count;
1200 remain -= count;
1201 host_remain -= count;
1202
1203 if (remain == 0)
1204 break;
1205
1206 status = readl(base + MMCISTATUS);
1207 } while (status & MCI_RXDATAAVLBL);
1208
1209 return ptr - buffer;
1210}
1211
1212static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213{
1214 struct variant_data *variant = host->variant;
1215 void __iomem *base = host->base;
1216 char *ptr = buffer;
1217
1218 do {
1219 unsigned int count, maxcnt;
1220
1221 maxcnt = status & MCI_TXFIFOEMPTY ?
1222 variant->fifosize : variant->fifohalfsize;
1223 count = min(remain, maxcnt);
1224
1225 /*
1226 * SDIO especially may want to send something that is
1227 * not divisible by 4 (as opposed to card sectors
1228 * etc), and the FIFO only accept full 32-bit writes.
1229 * So compensate by adding +3 on the count, a single
1230 * byte become a 32bit write, 7 bytes will be two
1231 * 32bit writes etc.
1232 */
1233 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235 ptr += count;
1236 remain -= count;
1237
1238 if (remain == 0)
1239 break;
1240
1241 status = readl(base + MMCISTATUS);
1242 } while (status & MCI_TXFIFOHALFEMPTY);
1243
1244 return ptr - buffer;
1245}
1246
1247/*
1248 * PIO data transfer IRQ handler.
1249 */
1250static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251{
1252 struct mmci_host *host = dev_id;
1253 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254 struct variant_data *variant = host->variant;
1255 void __iomem *base = host->base;
1256 unsigned long flags;
1257 u32 status;
1258
1259 status = readl(base + MMCISTATUS);
1260
1261 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263 local_irq_save(flags);
1264
1265 do {
1266 unsigned int remain, len;
1267 char *buffer;
1268
1269 /*
1270 * For write, we only need to test the half-empty flag
1271 * here - if the FIFO is completely empty, then by
1272 * definition it is more than half empty.
1273 *
1274 * For read, check for data available.
1275 */
1276 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277 break;
1278
1279 if (!sg_miter_next(sg_miter))
1280 break;
1281
1282 buffer = sg_miter->addr;
1283 remain = sg_miter->length;
1284
1285 len = 0;
1286 if (status & MCI_RXACTIVE)
1287 len = mmci_pio_read(host, buffer, remain);
1288 if (status & MCI_TXACTIVE)
1289 len = mmci_pio_write(host, buffer, remain, status);
1290
1291 sg_miter->consumed = len;
1292
1293 host->size -= len;
1294 remain -= len;
1295
1296 if (remain)
1297 break;
1298
1299 status = readl(base + MMCISTATUS);
1300 } while (1);
1301
1302 sg_miter_stop(sg_miter);
1303
1304 local_irq_restore(flags);
1305
1306 /*
1307 * If we have less than the fifo 'half-full' threshold to transfer,
1308 * trigger a PIO interrupt as soon as any data is available.
1309 */
1310 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313 /*
1314 * If we run out of data, disable the data IRQs; this
1315 * prevents a race where the FIFO becomes empty before
1316 * the chip itself has disabled the data path, and
1317 * stops us racing with our data end IRQ.
1318 */
1319 if (host->size == 0) {
1320 mmci_set_mask1(host, 0);
1321 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322 }
1323
1324 return IRQ_HANDLED;
1325}
1326
1327/*
1328 * Handle completion of command and data transfers.
1329 */
1330static irqreturn_t mmci_irq(int irq, void *dev_id)
1331{
1332 struct mmci_host *host = dev_id;
1333 u32 status;
1334 int ret = 0;
1335
1336 spin_lock(&host->lock);
1337
1338 do {
1339 status = readl(host->base + MMCISTATUS);
1340
1341 if (host->singleirq) {
1342 if (status & host->mask1_reg)
1343 mmci_pio_irq(irq, dev_id);
1344
1345 status &= ~MCI_IRQ1MASK;
1346 }
1347
1348 /*
1349 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351 * detection variant is handled. Considering the HW seems to be
1352 * triggering the IRQ on both edges while monitoring DAT0 for
1353 * busy completion and that same status bit is used to monitor
1354 * start and end of busy detection, special care must be taken
1355 * to make sure that both start and end interrupts are always
1356 * cleared one after the other.
1357 */
1358 status &= readl(host->base + MMCIMASK0);
1359 if (host->variant->busy_detect)
1360 writel(status & ~host->variant->busy_detect_mask,
1361 host->base + MMCICLEAR);
1362 else
1363 writel(status, host->base + MMCICLEAR);
1364
1365 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367 if (host->variant->reversed_irq_handling) {
1368 mmci_data_irq(host, host->data, status);
1369 mmci_cmd_irq(host, host->cmd, status);
1370 } else {
1371 mmci_cmd_irq(host, host->cmd, status);
1372 mmci_data_irq(host, host->data, status);
1373 }
1374
1375 /*
1376 * Don't poll for busy completion in irq context.
1377 */
1378 if (host->variant->busy_detect && host->busy_status)
1379 status &= ~host->variant->busy_detect_flag;
1380
1381 ret = 1;
1382 } while (status);
1383
1384 spin_unlock(&host->lock);
1385
1386 return IRQ_RETVAL(ret);
1387}
1388
1389static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390{
1391 struct mmci_host *host = mmc_priv(mmc);
1392 unsigned long flags;
1393
1394 WARN_ON(host->mrq != NULL);
1395
1396 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397 if (mrq->cmd->error) {
1398 mmc_request_done(mmc, mrq);
1399 return;
1400 }
1401
1402 spin_lock_irqsave(&host->lock, flags);
1403
1404 host->mrq = mrq;
1405
1406 if (mrq->data)
1407 mmci_get_next_data(host, mrq->data);
1408
1409 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1410 mmci_start_data(host, mrq->data);
1411
1412 if (mrq->sbc)
1413 mmci_start_command(host, mrq->sbc, 0);
1414 else
1415 mmci_start_command(host, mrq->cmd, 0);
1416
1417 spin_unlock_irqrestore(&host->lock, flags);
1418}
1419
1420static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421{
1422 struct mmci_host *host = mmc_priv(mmc);
1423 struct variant_data *variant = host->variant;
1424 u32 pwr = 0;
1425 unsigned long flags;
1426 int ret;
1427
1428 if (host->plat->ios_handler &&
1429 host->plat->ios_handler(mmc_dev(mmc), ios))
1430 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432 switch (ios->power_mode) {
1433 case MMC_POWER_OFF:
1434 if (!IS_ERR(mmc->supply.vmmc))
1435 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438 regulator_disable(mmc->supply.vqmmc);
1439 host->vqmmc_enabled = false;
1440 }
1441
1442 break;
1443 case MMC_POWER_UP:
1444 if (!IS_ERR(mmc->supply.vmmc))
1445 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
1447 /*
1448 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449 * and instead uses MCI_PWR_ON so apply whatever value is
1450 * configured in the variant data.
1451 */
1452 pwr |= variant->pwrreg_powerup;
1453
1454 break;
1455 case MMC_POWER_ON:
1456 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457 ret = regulator_enable(mmc->supply.vqmmc);
1458 if (ret < 0)
1459 dev_err(mmc_dev(mmc),
1460 "failed to enable vqmmc regulator\n");
1461 else
1462 host->vqmmc_enabled = true;
1463 }
1464
1465 pwr |= MCI_PWR_ON;
1466 break;
1467 }
1468
1469 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470 /*
1471 * The ST Micro variant has some additional bits
1472 * indicating signal direction for the signals in
1473 * the SD/MMC bus and feedback-clock usage.
1474 */
1475 pwr |= host->pwr_reg_add;
1476
1477 if (ios->bus_width == MMC_BUS_WIDTH_4)
1478 pwr &= ~MCI_ST_DATA74DIREN;
1479 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480 pwr &= (~MCI_ST_DATA74DIREN &
1481 ~MCI_ST_DATA31DIREN &
1482 ~MCI_ST_DATA2DIREN);
1483 }
1484
1485 if (variant->opendrain) {
1486 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487 pwr |= variant->opendrain;
1488 } else {
1489 /*
1490 * If the variant cannot configure the pads by its own, then we
1491 * expect the pinctrl to be able to do that for us
1492 */
1493 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495 else
1496 pinctrl_select_state(host->pinctrl, host->pins_default);
1497 }
1498
1499 /*
1500 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501 * gating the clock, the MCI_PWR_ON bit is cleared.
1502 */
1503 if (!ios->clock && variant->pwrreg_clkgate)
1504 pwr &= ~MCI_PWR_ON;
1505
1506 if (host->variant->explicit_mclk_control &&
1507 ios->clock != host->clock_cache) {
1508 ret = clk_set_rate(host->clk, ios->clock);
1509 if (ret < 0)
1510 dev_err(mmc_dev(host->mmc),
1511 "Error setting clock rate (%d)\n", ret);
1512 else
1513 host->mclk = clk_get_rate(host->clk);
1514 }
1515 host->clock_cache = ios->clock;
1516
1517 spin_lock_irqsave(&host->lock, flags);
1518
1519 mmci_set_clkreg(host, ios->clock);
1520 mmci_write_pwrreg(host, pwr);
1521 mmci_reg_delay(host);
1522
1523 spin_unlock_irqrestore(&host->lock, flags);
1524}
1525
1526static int mmci_get_cd(struct mmc_host *mmc)
1527{
1528 struct mmci_host *host = mmc_priv(mmc);
1529 struct mmci_platform_data *plat = host->plat;
1530 unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532 if (status == -ENOSYS) {
1533 if (!plat->status)
1534 return 1; /* Assume always present */
1535
1536 status = plat->status(mmc_dev(host->mmc));
1537 }
1538 return status;
1539}
1540
1541static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542{
1543 int ret = 0;
1544
1545 if (!IS_ERR(mmc->supply.vqmmc)) {
1546
1547 switch (ios->signal_voltage) {
1548 case MMC_SIGNAL_VOLTAGE_330:
1549 ret = regulator_set_voltage(mmc->supply.vqmmc,
1550 2700000, 3600000);
1551 break;
1552 case MMC_SIGNAL_VOLTAGE_180:
1553 ret = regulator_set_voltage(mmc->supply.vqmmc,
1554 1700000, 1950000);
1555 break;
1556 case MMC_SIGNAL_VOLTAGE_120:
1557 ret = regulator_set_voltage(mmc->supply.vqmmc,
1558 1100000, 1300000);
1559 break;
1560 }
1561
1562 if (ret)
1563 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1564 }
1565
1566 return ret;
1567}
1568
1569static struct mmc_host_ops mmci_ops = {
1570 .request = mmci_request,
1571 .pre_req = mmci_pre_request,
1572 .post_req = mmci_post_request,
1573 .set_ios = mmci_set_ios,
1574 .get_ro = mmc_gpio_get_ro,
1575 .get_cd = mmci_get_cd,
1576 .start_signal_voltage_switch = mmci_sig_volt_switch,
1577};
1578
1579static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1580{
1581 struct mmci_host *host = mmc_priv(mmc);
1582 int ret = mmc_of_parse(mmc);
1583
1584 if (ret)
1585 return ret;
1586
1587 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1599
1600 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605 return 0;
1606}
1607
1608static int mmci_probe(struct amba_device *dev,
1609 const struct amba_id *id)
1610{
1611 struct mmci_platform_data *plat = dev->dev.platform_data;
1612 struct device_node *np = dev->dev.of_node;
1613 struct variant_data *variant = id->data;
1614 struct mmci_host *host;
1615 struct mmc_host *mmc;
1616 int ret;
1617
1618 /* Must have platform data or Device Tree. */
1619 if (!plat && !np) {
1620 dev_err(&dev->dev, "No plat data or DT found\n");
1621 return -EINVAL;
1622 }
1623
1624 if (!plat) {
1625 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626 if (!plat)
1627 return -ENOMEM;
1628 }
1629
1630 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631 if (!mmc)
1632 return -ENOMEM;
1633
1634 ret = mmci_of_parse(np, mmc);
1635 if (ret)
1636 goto host_free;
1637
1638 host = mmc_priv(mmc);
1639 host->mmc = mmc;
1640
1641 /*
1642 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643 * pins can be set accordingly using pinctrl
1644 */
1645 if (!variant->opendrain) {
1646 host->pinctrl = devm_pinctrl_get(&dev->dev);
1647 if (IS_ERR(host->pinctrl)) {
1648 dev_err(&dev->dev, "failed to get pinctrl");
1649 ret = PTR_ERR(host->pinctrl);
1650 goto host_free;
1651 }
1652
1653 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1654 PINCTRL_STATE_DEFAULT);
1655 if (IS_ERR(host->pins_default)) {
1656 dev_err(mmc_dev(mmc), "Can't select default pins\n");
1657 ret = PTR_ERR(host->pins_default);
1658 goto host_free;
1659 }
1660
1661 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1662 MMCI_PINCTRL_STATE_OPENDRAIN);
1663 if (IS_ERR(host->pins_opendrain)) {
1664 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1665 ret = PTR_ERR(host->pins_opendrain);
1666 goto host_free;
1667 }
1668 }
1669
1670 host->hw_designer = amba_manf(dev);
1671 host->hw_revision = amba_rev(dev);
1672 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1673 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1674
1675 host->clk = devm_clk_get(&dev->dev, NULL);
1676 if (IS_ERR(host->clk)) {
1677 ret = PTR_ERR(host->clk);
1678 goto host_free;
1679 }
1680
1681 ret = clk_prepare_enable(host->clk);
1682 if (ret)
1683 goto host_free;
1684
1685 if (variant->qcom_fifo)
1686 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1687 else
1688 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1689
1690 host->plat = plat;
1691 host->variant = variant;
1692 host->mclk = clk_get_rate(host->clk);
1693 /*
1694 * According to the spec, mclk is max 100 MHz,
1695 * so we try to adjust the clock down to this,
1696 * (if possible).
1697 */
1698 if (host->mclk > variant->f_max) {
1699 ret = clk_set_rate(host->clk, variant->f_max);
1700 if (ret < 0)
1701 goto clk_disable;
1702 host->mclk = clk_get_rate(host->clk);
1703 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704 host->mclk);
1705 }
1706
1707 host->phybase = dev->res.start;
1708 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1709 if (IS_ERR(host->base)) {
1710 ret = PTR_ERR(host->base);
1711 goto clk_disable;
1712 }
1713
1714 /*
1715 * The ARM and ST versions of the block have slightly different
1716 * clock divider equations which means that the minimum divider
1717 * differs too.
1718 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1719 */
1720 if (variant->st_clkdiv)
1721 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1722 else if (variant->explicit_mclk_control)
1723 mmc->f_min = clk_round_rate(host->clk, 100000);
1724 else
1725 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1726 /*
1727 * If no maximum operating frequency is supplied, fall back to use
1728 * the module parameter, which has a (low) default value in case it
1729 * is not specified. Either value must not exceed the clock rate into
1730 * the block, of course.
1731 */
1732 if (mmc->f_max)
1733 mmc->f_max = variant->explicit_mclk_control ?
1734 min(variant->f_max, mmc->f_max) :
1735 min(host->mclk, mmc->f_max);
1736 else
1737 mmc->f_max = variant->explicit_mclk_control ?
1738 fmax : min(host->mclk, fmax);
1739
1740
1741 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1742
1743 /* Get regulators and the supported OCR mask */
1744 ret = mmc_regulator_get_supply(mmc);
1745 if (ret)
1746 goto clk_disable;
1747
1748 if (!mmc->ocr_avail)
1749 mmc->ocr_avail = plat->ocr_mask;
1750 else if (plat->ocr_mask)
1751 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1752
1753 /* DT takes precedence over platform data. */
1754 if (!np) {
1755 if (!plat->cd_invert)
1756 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1757 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1758 }
1759
1760 /* We support these capabilities. */
1761 mmc->caps |= MMC_CAP_CMD23;
1762
1763 /*
1764 * Enable busy detection.
1765 */
1766 if (variant->busy_detect) {
1767 mmci_ops.card_busy = mmci_card_busy;
1768 /*
1769 * Not all variants have a flag to enable busy detection
1770 * in the DPSM, but if they do, set it here.
1771 */
1772 if (variant->busy_dpsm_flag)
1773 mmci_write_datactrlreg(host,
1774 host->variant->busy_dpsm_flag);
1775 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1776 mmc->max_busy_timeout = 0;
1777 }
1778
1779 mmc->ops = &mmci_ops;
1780
1781 /* We support these PM capabilities. */
1782 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1783
1784 /*
1785 * We can do SGIO
1786 */
1787 mmc->max_segs = NR_SG;
1788
1789 /*
1790 * Since only a certain number of bits are valid in the data length
1791 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1792 * single request.
1793 */
1794 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1795
1796 /*
1797 * Set the maximum segment size. Since we aren't doing DMA
1798 * (yet) we are only limited by the data length register.
1799 */
1800 mmc->max_seg_size = mmc->max_req_size;
1801
1802 /*
1803 * Block size can be up to 2048 bytes, but must be a power of two.
1804 */
1805 mmc->max_blk_size = 1 << 11;
1806
1807 /*
1808 * Limit the number of blocks transferred so that we don't overflow
1809 * the maximum request size.
1810 */
1811 mmc->max_blk_count = mmc->max_req_size >> 11;
1812
1813 spin_lock_init(&host->lock);
1814
1815 writel(0, host->base + MMCIMASK0);
1816
1817 if (variant->mmcimask1)
1818 writel(0, host->base + MMCIMASK1);
1819
1820 writel(0xfff, host->base + MMCICLEAR);
1821
1822 /*
1823 * If:
1824 * - not using DT but using a descriptor table, or
1825 * - using a table of descriptors ALONGSIDE DT, or
1826 * look up these descriptors named "cd" and "wp" right here, fail
1827 * silently of these do not exist and proceed to try platform data
1828 */
1829 if (!np) {
1830 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1831 if (ret < 0) {
1832 if (ret == -EPROBE_DEFER)
1833 goto clk_disable;
1834 else if (gpio_is_valid(plat->gpio_cd)) {
1835 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1836 if (ret)
1837 goto clk_disable;
1838 }
1839 }
1840
1841 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1842 if (ret < 0) {
1843 if (ret == -EPROBE_DEFER)
1844 goto clk_disable;
1845 else if (gpio_is_valid(plat->gpio_wp)) {
1846 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1847 if (ret)
1848 goto clk_disable;
1849 }
1850 }
1851 }
1852
1853 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1854 DRIVER_NAME " (cmd)", host);
1855 if (ret)
1856 goto clk_disable;
1857
1858 if (!dev->irq[1])
1859 host->singleirq = true;
1860 else {
1861 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1862 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1863 if (ret)
1864 goto clk_disable;
1865 }
1866
1867 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1868
1869 amba_set_drvdata(dev, mmc);
1870
1871 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1873 amba_rev(dev), (unsigned long long)dev->res.start,
1874 dev->irq[0], dev->irq[1]);
1875
1876 mmci_dma_setup(host);
1877
1878 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1879 pm_runtime_use_autosuspend(&dev->dev);
1880
1881 mmc_add_host(mmc);
1882
1883 pm_runtime_put(&dev->dev);
1884 return 0;
1885
1886 clk_disable:
1887 clk_disable_unprepare(host->clk);
1888 host_free:
1889 mmc_free_host(mmc);
1890 return ret;
1891}
1892
1893static int mmci_remove(struct amba_device *dev)
1894{
1895 struct mmc_host *mmc = amba_get_drvdata(dev);
1896
1897 if (mmc) {
1898 struct mmci_host *host = mmc_priv(mmc);
1899 struct variant_data *variant = host->variant;
1900
1901 /*
1902 * Undo pm_runtime_put() in probe. We use the _sync
1903 * version here so that we can access the primecell.
1904 */
1905 pm_runtime_get_sync(&dev->dev);
1906
1907 mmc_remove_host(mmc);
1908
1909 writel(0, host->base + MMCIMASK0);
1910
1911 if (variant->mmcimask1)
1912 writel(0, host->base + MMCIMASK1);
1913
1914 writel(0, host->base + MMCICOMMAND);
1915 writel(0, host->base + MMCIDATACTRL);
1916
1917 mmci_dma_release(host);
1918 clk_disable_unprepare(host->clk);
1919 mmc_free_host(mmc);
1920 }
1921
1922 return 0;
1923}
1924
1925#ifdef CONFIG_PM
1926static void mmci_save(struct mmci_host *host)
1927{
1928 unsigned long flags;
1929
1930 spin_lock_irqsave(&host->lock, flags);
1931
1932 writel(0, host->base + MMCIMASK0);
1933 if (host->variant->pwrreg_nopower) {
1934 writel(0, host->base + MMCIDATACTRL);
1935 writel(0, host->base + MMCIPOWER);
1936 writel(0, host->base + MMCICLOCK);
1937 }
1938 mmci_reg_delay(host);
1939
1940 spin_unlock_irqrestore(&host->lock, flags);
1941}
1942
1943static void mmci_restore(struct mmci_host *host)
1944{
1945 unsigned long flags;
1946
1947 spin_lock_irqsave(&host->lock, flags);
1948
1949 if (host->variant->pwrreg_nopower) {
1950 writel(host->clk_reg, host->base + MMCICLOCK);
1951 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1952 writel(host->pwr_reg, host->base + MMCIPOWER);
1953 }
1954 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1955 mmci_reg_delay(host);
1956
1957 spin_unlock_irqrestore(&host->lock, flags);
1958}
1959
1960static int mmci_runtime_suspend(struct device *dev)
1961{
1962 struct amba_device *adev = to_amba_device(dev);
1963 struct mmc_host *mmc = amba_get_drvdata(adev);
1964
1965 if (mmc) {
1966 struct mmci_host *host = mmc_priv(mmc);
1967 pinctrl_pm_select_sleep_state(dev);
1968 mmci_save(host);
1969 clk_disable_unprepare(host->clk);
1970 }
1971
1972 return 0;
1973}
1974
1975static int mmci_runtime_resume(struct device *dev)
1976{
1977 struct amba_device *adev = to_amba_device(dev);
1978 struct mmc_host *mmc = amba_get_drvdata(adev);
1979
1980 if (mmc) {
1981 struct mmci_host *host = mmc_priv(mmc);
1982 clk_prepare_enable(host->clk);
1983 mmci_restore(host);
1984 pinctrl_pm_select_default_state(dev);
1985 }
1986
1987 return 0;
1988}
1989#endif
1990
1991static const struct dev_pm_ops mmci_dev_pm_ops = {
1992 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1993 pm_runtime_force_resume)
1994 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1995};
1996
1997static const struct amba_id mmci_ids[] = {
1998 {
1999 .id = 0x00041180,
2000 .mask = 0xff0fffff,
2001 .data = &variant_arm,
2002 },
2003 {
2004 .id = 0x01041180,
2005 .mask = 0xff0fffff,
2006 .data = &variant_arm_extended_fifo,
2007 },
2008 {
2009 .id = 0x02041180,
2010 .mask = 0xff0fffff,
2011 .data = &variant_arm_extended_fifo_hwfc,
2012 },
2013 {
2014 .id = 0x00041181,
2015 .mask = 0x000fffff,
2016 .data = &variant_arm,
2017 },
2018 /* ST Micro variants */
2019 {
2020 .id = 0x00180180,
2021 .mask = 0x00ffffff,
2022 .data = &variant_u300,
2023 },
2024 {
2025 .id = 0x10180180,
2026 .mask = 0xf0ffffff,
2027 .data = &variant_nomadik,
2028 },
2029 {
2030 .id = 0x00280180,
2031 .mask = 0x00ffffff,
2032 .data = &variant_nomadik,
2033 },
2034 {
2035 .id = 0x00480180,
2036 .mask = 0xf0ffffff,
2037 .data = &variant_ux500,
2038 },
2039 {
2040 .id = 0x10480180,
2041 .mask = 0xf0ffffff,
2042 .data = &variant_ux500v2,
2043 },
2044 {
2045 .id = 0x00880180,
2046 .mask = 0x00ffffff,
2047 .data = &variant_stm32,
2048 },
2049 /* Qualcomm variants */
2050 {
2051 .id = 0x00051180,
2052 .mask = 0x000fffff,
2053 .data = &variant_qcom,
2054 },
2055 { 0, 0 },
2056};
2057
2058MODULE_DEVICE_TABLE(amba, mmci_ids);
2059
2060static struct amba_driver mmci_driver = {
2061 .drv = {
2062 .name = DRIVER_NAME,
2063 .pm = &mmci_dev_pm_ops,
2064 },
2065 .probe = mmci_probe,
2066 .remove = mmci_remove,
2067 .id_table = mmci_ids,
2068};
2069
2070module_amba_driver(mmci_driver);
2071
2072module_param(fmax, uint, 0444);
2073
2074MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075MODULE_LICENSE("GPL");
1/*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/highmem.h>
23#include <linux/log2.h>
24#include <linux/mmc/pm.h>
25#include <linux/mmc/host.h>
26#include <linux/mmc/card.h>
27#include <linux/mmc/slot-gpio.h>
28#include <linux/amba/bus.h>
29#include <linux/clk.h>
30#include <linux/scatterlist.h>
31#include <linux/gpio.h>
32#include <linux/of_gpio.h>
33#include <linux/regulator/consumer.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/amba/mmci.h>
37#include <linux/pm_runtime.h>
38#include <linux/types.h>
39#include <linux/pinctrl/consumer.h>
40
41#include <asm/div64.h>
42#include <asm/io.h>
43
44#include "mmci.h"
45#include "mmci_qcom_dml.h"
46
47#define DRIVER_NAME "mmci-pl18x"
48
49static unsigned int fmax = 515633;
50
51/**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 * register
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if busy detection on dat0 is supported
75 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
76 * @explicit_mclk_control: enable explicit mclk control in driver.
77 * @qcom_fifo: enables qcom specific fifo pio read logic.
78 * @qcom_dml: enables qcom specific dma glue for dma transfers.
79 * @reversed_irq_handling: handle data irq before cmd irq.
80 */
81struct variant_data {
82 unsigned int clkreg;
83 unsigned int clkreg_enable;
84 unsigned int clkreg_8bit_bus_enable;
85 unsigned int clkreg_neg_edge_enable;
86 unsigned int datalength_bits;
87 unsigned int fifosize;
88 unsigned int fifohalfsize;
89 unsigned int data_cmd_enable;
90 unsigned int datactrl_mask_ddrmode;
91 unsigned int datactrl_mask_sdio;
92 bool st_sdio;
93 bool st_clkdiv;
94 bool blksz_datactrl16;
95 bool blksz_datactrl4;
96 u32 pwrreg_powerup;
97 u32 f_max;
98 bool signal_direction;
99 bool pwrreg_clkgate;
100 bool busy_detect;
101 bool pwrreg_nopower;
102 bool explicit_mclk_control;
103 bool qcom_fifo;
104 bool qcom_dml;
105 bool reversed_irq_handling;
106};
107
108static struct variant_data variant_arm = {
109 .fifosize = 16 * 4,
110 .fifohalfsize = 8 * 4,
111 .datalength_bits = 16,
112 .pwrreg_powerup = MCI_PWR_UP,
113 .f_max = 100000000,
114 .reversed_irq_handling = true,
115};
116
117static struct variant_data variant_arm_extended_fifo = {
118 .fifosize = 128 * 4,
119 .fifohalfsize = 64 * 4,
120 .datalength_bits = 16,
121 .pwrreg_powerup = MCI_PWR_UP,
122 .f_max = 100000000,
123};
124
125static struct variant_data variant_arm_extended_fifo_hwfc = {
126 .fifosize = 128 * 4,
127 .fifohalfsize = 64 * 4,
128 .clkreg_enable = MCI_ARM_HWFCEN,
129 .datalength_bits = 16,
130 .pwrreg_powerup = MCI_PWR_UP,
131 .f_max = 100000000,
132};
133
134static struct variant_data variant_u300 = {
135 .fifosize = 16 * 4,
136 .fifohalfsize = 8 * 4,
137 .clkreg_enable = MCI_ST_U300_HWFCEN,
138 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
139 .datalength_bits = 16,
140 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
141 .st_sdio = true,
142 .pwrreg_powerup = MCI_PWR_ON,
143 .f_max = 100000000,
144 .signal_direction = true,
145 .pwrreg_clkgate = true,
146 .pwrreg_nopower = true,
147};
148
149static struct variant_data variant_nomadik = {
150 .fifosize = 16 * 4,
151 .fifohalfsize = 8 * 4,
152 .clkreg = MCI_CLK_ENABLE,
153 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
154 .datalength_bits = 24,
155 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
156 .st_sdio = true,
157 .st_clkdiv = true,
158 .pwrreg_powerup = MCI_PWR_ON,
159 .f_max = 100000000,
160 .signal_direction = true,
161 .pwrreg_clkgate = true,
162 .pwrreg_nopower = true,
163};
164
165static struct variant_data variant_ux500 = {
166 .fifosize = 30 * 4,
167 .fifohalfsize = 8 * 4,
168 .clkreg = MCI_CLK_ENABLE,
169 .clkreg_enable = MCI_ST_UX500_HWFCEN,
170 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
171 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
172 .datalength_bits = 24,
173 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
174 .st_sdio = true,
175 .st_clkdiv = true,
176 .pwrreg_powerup = MCI_PWR_ON,
177 .f_max = 100000000,
178 .signal_direction = true,
179 .pwrreg_clkgate = true,
180 .busy_detect = true,
181 .pwrreg_nopower = true,
182};
183
184static struct variant_data variant_ux500v2 = {
185 .fifosize = 30 * 4,
186 .fifohalfsize = 8 * 4,
187 .clkreg = MCI_CLK_ENABLE,
188 .clkreg_enable = MCI_ST_UX500_HWFCEN,
189 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
190 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
191 .datactrl_mask_ddrmode = MCI_ST_DPSM_DDRMODE,
192 .datalength_bits = 24,
193 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
194 .st_sdio = true,
195 .st_clkdiv = true,
196 .blksz_datactrl16 = true,
197 .pwrreg_powerup = MCI_PWR_ON,
198 .f_max = 100000000,
199 .signal_direction = true,
200 .pwrreg_clkgate = true,
201 .busy_detect = true,
202 .pwrreg_nopower = true,
203};
204
205static struct variant_data variant_qcom = {
206 .fifosize = 16 * 4,
207 .fifohalfsize = 8 * 4,
208 .clkreg = MCI_CLK_ENABLE,
209 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
210 MCI_QCOM_CLK_SELECT_IN_FBCLK,
211 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
212 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
213 .data_cmd_enable = MCI_QCOM_CSPM_DATCMD,
214 .blksz_datactrl4 = true,
215 .datalength_bits = 24,
216 .pwrreg_powerup = MCI_PWR_UP,
217 .f_max = 208000000,
218 .explicit_mclk_control = true,
219 .qcom_fifo = true,
220 .qcom_dml = true,
221};
222
223static int mmci_card_busy(struct mmc_host *mmc)
224{
225 struct mmci_host *host = mmc_priv(mmc);
226 unsigned long flags;
227 int busy = 0;
228
229 pm_runtime_get_sync(mmc_dev(mmc));
230
231 spin_lock_irqsave(&host->lock, flags);
232 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
233 busy = 1;
234 spin_unlock_irqrestore(&host->lock, flags);
235
236 pm_runtime_mark_last_busy(mmc_dev(mmc));
237 pm_runtime_put_autosuspend(mmc_dev(mmc));
238
239 return busy;
240}
241
242/*
243 * Validate mmc prerequisites
244 */
245static int mmci_validate_data(struct mmci_host *host,
246 struct mmc_data *data)
247{
248 if (!data)
249 return 0;
250
251 if (!is_power_of_2(data->blksz)) {
252 dev_err(mmc_dev(host->mmc),
253 "unsupported block size (%d bytes)\n", data->blksz);
254 return -EINVAL;
255 }
256
257 return 0;
258}
259
260static void mmci_reg_delay(struct mmci_host *host)
261{
262 /*
263 * According to the spec, at least three feedback clock cycles
264 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
265 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
266 * Worst delay time during card init is at 100 kHz => 30 us.
267 * Worst delay time when up and running is at 25 MHz => 120 ns.
268 */
269 if (host->cclk < 25000000)
270 udelay(30);
271 else
272 ndelay(120);
273}
274
275/*
276 * This must be called with host->lock held
277 */
278static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
279{
280 if (host->clk_reg != clk) {
281 host->clk_reg = clk;
282 writel(clk, host->base + MMCICLOCK);
283 }
284}
285
286/*
287 * This must be called with host->lock held
288 */
289static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
290{
291 if (host->pwr_reg != pwr) {
292 host->pwr_reg = pwr;
293 writel(pwr, host->base + MMCIPOWER);
294 }
295}
296
297/*
298 * This must be called with host->lock held
299 */
300static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
301{
302 /* Keep ST Micro busy mode if enabled */
303 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
304
305 if (host->datactrl_reg != datactrl) {
306 host->datactrl_reg = datactrl;
307 writel(datactrl, host->base + MMCIDATACTRL);
308 }
309}
310
311/*
312 * This must be called with host->lock held
313 */
314static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
315{
316 struct variant_data *variant = host->variant;
317 u32 clk = variant->clkreg;
318
319 /* Make sure cclk reflects the current calculated clock */
320 host->cclk = 0;
321
322 if (desired) {
323 if (variant->explicit_mclk_control) {
324 host->cclk = host->mclk;
325 } else if (desired >= host->mclk) {
326 clk = MCI_CLK_BYPASS;
327 if (variant->st_clkdiv)
328 clk |= MCI_ST_UX500_NEG_EDGE;
329 host->cclk = host->mclk;
330 } else if (variant->st_clkdiv) {
331 /*
332 * DB8500 TRM says f = mclk / (clkdiv + 2)
333 * => clkdiv = (mclk / f) - 2
334 * Round the divider up so we don't exceed the max
335 * frequency
336 */
337 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
338 if (clk >= 256)
339 clk = 255;
340 host->cclk = host->mclk / (clk + 2);
341 } else {
342 /*
343 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
344 * => clkdiv = mclk / (2 * f) - 1
345 */
346 clk = host->mclk / (2 * desired) - 1;
347 if (clk >= 256)
348 clk = 255;
349 host->cclk = host->mclk / (2 * (clk + 1));
350 }
351
352 clk |= variant->clkreg_enable;
353 clk |= MCI_CLK_ENABLE;
354 /* This hasn't proven to be worthwhile */
355 /* clk |= MCI_CLK_PWRSAVE; */
356 }
357
358 /* Set actual clock for debug */
359 host->mmc->actual_clock = host->cclk;
360
361 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
362 clk |= MCI_4BIT_BUS;
363 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
364 clk |= variant->clkreg_8bit_bus_enable;
365
366 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
367 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
368 clk |= variant->clkreg_neg_edge_enable;
369
370 mmci_write_clkreg(host, clk);
371}
372
373static void
374mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
375{
376 writel(0, host->base + MMCICOMMAND);
377
378 BUG_ON(host->data);
379
380 host->mrq = NULL;
381 host->cmd = NULL;
382
383 mmc_request_done(host->mmc, mrq);
384
385 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
386 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
387}
388
389static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
390{
391 void __iomem *base = host->base;
392
393 if (host->singleirq) {
394 unsigned int mask0 = readl(base + MMCIMASK0);
395
396 mask0 &= ~MCI_IRQ1MASK;
397 mask0 |= mask;
398
399 writel(mask0, base + MMCIMASK0);
400 }
401
402 writel(mask, base + MMCIMASK1);
403}
404
405static void mmci_stop_data(struct mmci_host *host)
406{
407 mmci_write_datactrlreg(host, 0);
408 mmci_set_mask1(host, 0);
409 host->data = NULL;
410}
411
412static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
413{
414 unsigned int flags = SG_MITER_ATOMIC;
415
416 if (data->flags & MMC_DATA_READ)
417 flags |= SG_MITER_TO_SG;
418 else
419 flags |= SG_MITER_FROM_SG;
420
421 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
422}
423
424/*
425 * All the DMA operation mode stuff goes inside this ifdef.
426 * This assumes that you have a generic DMA device interface,
427 * no custom DMA interfaces are supported.
428 */
429#ifdef CONFIG_DMA_ENGINE
430static void mmci_dma_setup(struct mmci_host *host)
431{
432 const char *rxname, *txname;
433 struct variant_data *variant = host->variant;
434
435 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
436 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
437
438 /* initialize pre request cookie */
439 host->next_data.cookie = 1;
440
441 /*
442 * If only an RX channel is specified, the driver will
443 * attempt to use it bidirectionally, however if it is
444 * is specified but cannot be located, DMA will be disabled.
445 */
446 if (host->dma_rx_channel && !host->dma_tx_channel)
447 host->dma_tx_channel = host->dma_rx_channel;
448
449 if (host->dma_rx_channel)
450 rxname = dma_chan_name(host->dma_rx_channel);
451 else
452 rxname = "none";
453
454 if (host->dma_tx_channel)
455 txname = dma_chan_name(host->dma_tx_channel);
456 else
457 txname = "none";
458
459 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
460 rxname, txname);
461
462 /*
463 * Limit the maximum segment size in any SG entry according to
464 * the parameters of the DMA engine device.
465 */
466 if (host->dma_tx_channel) {
467 struct device *dev = host->dma_tx_channel->device->dev;
468 unsigned int max_seg_size = dma_get_max_seg_size(dev);
469
470 if (max_seg_size < host->mmc->max_seg_size)
471 host->mmc->max_seg_size = max_seg_size;
472 }
473 if (host->dma_rx_channel) {
474 struct device *dev = host->dma_rx_channel->device->dev;
475 unsigned int max_seg_size = dma_get_max_seg_size(dev);
476
477 if (max_seg_size < host->mmc->max_seg_size)
478 host->mmc->max_seg_size = max_seg_size;
479 }
480
481 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
482 if (dml_hw_init(host, host->mmc->parent->of_node))
483 variant->qcom_dml = false;
484}
485
486/*
487 * This is used in or so inline it
488 * so it can be discarded.
489 */
490static inline void mmci_dma_release(struct mmci_host *host)
491{
492 if (host->dma_rx_channel)
493 dma_release_channel(host->dma_rx_channel);
494 if (host->dma_tx_channel)
495 dma_release_channel(host->dma_tx_channel);
496 host->dma_rx_channel = host->dma_tx_channel = NULL;
497}
498
499static void mmci_dma_data_error(struct mmci_host *host)
500{
501 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
502 dmaengine_terminate_all(host->dma_current);
503 host->dma_current = NULL;
504 host->dma_desc_current = NULL;
505 host->data->host_cookie = 0;
506}
507
508static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
509{
510 struct dma_chan *chan;
511 enum dma_data_direction dir;
512
513 if (data->flags & MMC_DATA_READ) {
514 dir = DMA_FROM_DEVICE;
515 chan = host->dma_rx_channel;
516 } else {
517 dir = DMA_TO_DEVICE;
518 chan = host->dma_tx_channel;
519 }
520
521 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
522}
523
524static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
525{
526 u32 status;
527 int i;
528
529 /* Wait up to 1ms for the DMA to complete */
530 for (i = 0; ; i++) {
531 status = readl(host->base + MMCISTATUS);
532 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
533 break;
534 udelay(10);
535 }
536
537 /*
538 * Check to see whether we still have some data left in the FIFO -
539 * this catches DMA controllers which are unable to monitor the
540 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
541 * contiguous buffers. On TX, we'll get a FIFO underrun error.
542 */
543 if (status & MCI_RXDATAAVLBLMASK) {
544 mmci_dma_data_error(host);
545 if (!data->error)
546 data->error = -EIO;
547 }
548
549 if (!data->host_cookie)
550 mmci_dma_unmap(host, data);
551
552 /*
553 * Use of DMA with scatter-gather is impossible.
554 * Give up with DMA and switch back to PIO mode.
555 */
556 if (status & MCI_RXDATAAVLBLMASK) {
557 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
558 mmci_dma_release(host);
559 }
560
561 host->dma_current = NULL;
562 host->dma_desc_current = NULL;
563}
564
565/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
566static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
567 struct dma_chan **dma_chan,
568 struct dma_async_tx_descriptor **dma_desc)
569{
570 struct variant_data *variant = host->variant;
571 struct dma_slave_config conf = {
572 .src_addr = host->phybase + MMCIFIFO,
573 .dst_addr = host->phybase + MMCIFIFO,
574 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
575 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
576 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
577 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
578 .device_fc = false,
579 };
580 struct dma_chan *chan;
581 struct dma_device *device;
582 struct dma_async_tx_descriptor *desc;
583 enum dma_data_direction buffer_dirn;
584 int nr_sg;
585 unsigned long flags = DMA_CTRL_ACK;
586
587 if (data->flags & MMC_DATA_READ) {
588 conf.direction = DMA_DEV_TO_MEM;
589 buffer_dirn = DMA_FROM_DEVICE;
590 chan = host->dma_rx_channel;
591 } else {
592 conf.direction = DMA_MEM_TO_DEV;
593 buffer_dirn = DMA_TO_DEVICE;
594 chan = host->dma_tx_channel;
595 }
596
597 /* If there's no DMA channel, fall back to PIO */
598 if (!chan)
599 return -EINVAL;
600
601 /* If less than or equal to the fifo size, don't bother with DMA */
602 if (data->blksz * data->blocks <= variant->fifosize)
603 return -EINVAL;
604
605 device = chan->device;
606 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
607 if (nr_sg == 0)
608 return -EINVAL;
609
610 if (host->variant->qcom_dml)
611 flags |= DMA_PREP_INTERRUPT;
612
613 dmaengine_slave_config(chan, &conf);
614 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
615 conf.direction, flags);
616 if (!desc)
617 goto unmap_exit;
618
619 *dma_chan = chan;
620 *dma_desc = desc;
621
622 return 0;
623
624 unmap_exit:
625 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
626 return -ENOMEM;
627}
628
629static inline int mmci_dma_prep_data(struct mmci_host *host,
630 struct mmc_data *data)
631{
632 /* Check if next job is already prepared. */
633 if (host->dma_current && host->dma_desc_current)
634 return 0;
635
636 /* No job were prepared thus do it now. */
637 return __mmci_dma_prep_data(host, data, &host->dma_current,
638 &host->dma_desc_current);
639}
640
641static inline int mmci_dma_prep_next(struct mmci_host *host,
642 struct mmc_data *data)
643{
644 struct mmci_host_next *nd = &host->next_data;
645 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
646}
647
648static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
649{
650 int ret;
651 struct mmc_data *data = host->data;
652
653 ret = mmci_dma_prep_data(host, host->data);
654 if (ret)
655 return ret;
656
657 /* Okay, go for it. */
658 dev_vdbg(mmc_dev(host->mmc),
659 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
660 data->sg_len, data->blksz, data->blocks, data->flags);
661 dmaengine_submit(host->dma_desc_current);
662 dma_async_issue_pending(host->dma_current);
663
664 if (host->variant->qcom_dml)
665 dml_start_xfer(host, data);
666
667 datactrl |= MCI_DPSM_DMAENABLE;
668
669 /* Trigger the DMA transfer */
670 mmci_write_datactrlreg(host, datactrl);
671
672 /*
673 * Let the MMCI say when the data is ended and it's time
674 * to fire next DMA request. When that happens, MMCI will
675 * call mmci_data_end()
676 */
677 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
678 host->base + MMCIMASK0);
679 return 0;
680}
681
682static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
683{
684 struct mmci_host_next *next = &host->next_data;
685
686 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
687 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
688
689 host->dma_desc_current = next->dma_desc;
690 host->dma_current = next->dma_chan;
691 next->dma_desc = NULL;
692 next->dma_chan = NULL;
693}
694
695static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
696 bool is_first_req)
697{
698 struct mmci_host *host = mmc_priv(mmc);
699 struct mmc_data *data = mrq->data;
700 struct mmci_host_next *nd = &host->next_data;
701
702 if (!data)
703 return;
704
705 BUG_ON(data->host_cookie);
706
707 if (mmci_validate_data(host, data))
708 return;
709
710 if (!mmci_dma_prep_next(host, data))
711 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
712}
713
714static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
715 int err)
716{
717 struct mmci_host *host = mmc_priv(mmc);
718 struct mmc_data *data = mrq->data;
719
720 if (!data || !data->host_cookie)
721 return;
722
723 mmci_dma_unmap(host, data);
724
725 if (err) {
726 struct mmci_host_next *next = &host->next_data;
727 struct dma_chan *chan;
728 if (data->flags & MMC_DATA_READ)
729 chan = host->dma_rx_channel;
730 else
731 chan = host->dma_tx_channel;
732 dmaengine_terminate_all(chan);
733
734 if (host->dma_desc_current == next->dma_desc)
735 host->dma_desc_current = NULL;
736
737 if (host->dma_current == next->dma_chan)
738 host->dma_current = NULL;
739
740 next->dma_desc = NULL;
741 next->dma_chan = NULL;
742 data->host_cookie = 0;
743 }
744}
745
746#else
747/* Blank functions if the DMA engine is not available */
748static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
749{
750}
751static inline void mmci_dma_setup(struct mmci_host *host)
752{
753}
754
755static inline void mmci_dma_release(struct mmci_host *host)
756{
757}
758
759static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
760{
761}
762
763static inline void mmci_dma_finalize(struct mmci_host *host,
764 struct mmc_data *data)
765{
766}
767
768static inline void mmci_dma_data_error(struct mmci_host *host)
769{
770}
771
772static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
773{
774 return -ENOSYS;
775}
776
777#define mmci_pre_request NULL
778#define mmci_post_request NULL
779
780#endif
781
782static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
783{
784 struct variant_data *variant = host->variant;
785 unsigned int datactrl, timeout, irqmask;
786 unsigned long long clks;
787 void __iomem *base;
788 int blksz_bits;
789
790 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
791 data->blksz, data->blocks, data->flags);
792
793 host->data = data;
794 host->size = data->blksz * data->blocks;
795 data->bytes_xfered = 0;
796
797 clks = (unsigned long long)data->timeout_ns * host->cclk;
798 do_div(clks, NSEC_PER_SEC);
799
800 timeout = data->timeout_clks + (unsigned int)clks;
801
802 base = host->base;
803 writel(timeout, base + MMCIDATATIMER);
804 writel(host->size, base + MMCIDATALENGTH);
805
806 blksz_bits = ffs(data->blksz) - 1;
807 BUG_ON(1 << blksz_bits != data->blksz);
808
809 if (variant->blksz_datactrl16)
810 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
811 else if (variant->blksz_datactrl4)
812 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
813 else
814 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
815
816 if (data->flags & MMC_DATA_READ)
817 datactrl |= MCI_DPSM_DIRECTION;
818
819 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
820 u32 clk;
821
822 datactrl |= variant->datactrl_mask_sdio;
823
824 /*
825 * The ST Micro variant for SDIO small write transfers
826 * needs to have clock H/W flow control disabled,
827 * otherwise the transfer will not start. The threshold
828 * depends on the rate of MCLK.
829 */
830 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
831 (host->size < 8 ||
832 (host->size <= 8 && host->mclk > 50000000)))
833 clk = host->clk_reg & ~variant->clkreg_enable;
834 else
835 clk = host->clk_reg | variant->clkreg_enable;
836
837 mmci_write_clkreg(host, clk);
838 }
839
840 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
841 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
842 datactrl |= variant->datactrl_mask_ddrmode;
843
844 /*
845 * Attempt to use DMA operation mode, if this
846 * should fail, fall back to PIO mode
847 */
848 if (!mmci_dma_start_data(host, datactrl))
849 return;
850
851 /* IRQ mode, map the SG list for CPU reading/writing */
852 mmci_init_sg(host, data);
853
854 if (data->flags & MMC_DATA_READ) {
855 irqmask = MCI_RXFIFOHALFFULLMASK;
856
857 /*
858 * If we have less than the fifo 'half-full' threshold to
859 * transfer, trigger a PIO interrupt as soon as any data
860 * is available.
861 */
862 if (host->size < variant->fifohalfsize)
863 irqmask |= MCI_RXDATAAVLBLMASK;
864 } else {
865 /*
866 * We don't actually need to include "FIFO empty" here
867 * since its implicit in "FIFO half empty".
868 */
869 irqmask = MCI_TXFIFOHALFEMPTYMASK;
870 }
871
872 mmci_write_datactrlreg(host, datactrl);
873 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
874 mmci_set_mask1(host, irqmask);
875}
876
877static void
878mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
879{
880 void __iomem *base = host->base;
881
882 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
883 cmd->opcode, cmd->arg, cmd->flags);
884
885 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
886 writel(0, base + MMCICOMMAND);
887 mmci_reg_delay(host);
888 }
889
890 c |= cmd->opcode | MCI_CPSM_ENABLE;
891 if (cmd->flags & MMC_RSP_PRESENT) {
892 if (cmd->flags & MMC_RSP_136)
893 c |= MCI_CPSM_LONGRSP;
894 c |= MCI_CPSM_RESPONSE;
895 }
896 if (/*interrupt*/0)
897 c |= MCI_CPSM_INTERRUPT;
898
899 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
900 c |= host->variant->data_cmd_enable;
901
902 host->cmd = cmd;
903
904 writel(cmd->arg, base + MMCIARGUMENT);
905 writel(c, base + MMCICOMMAND);
906}
907
908static void
909mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
910 unsigned int status)
911{
912 /* Make sure we have data to handle */
913 if (!data)
914 return;
915
916 /* First check for errors */
917 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
918 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
919 u32 remain, success;
920
921 /* Terminate the DMA transfer */
922 if (dma_inprogress(host)) {
923 mmci_dma_data_error(host);
924 mmci_dma_unmap(host, data);
925 }
926
927 /*
928 * Calculate how far we are into the transfer. Note that
929 * the data counter gives the number of bytes transferred
930 * on the MMC bus, not on the host side. On reads, this
931 * can be as much as a FIFO-worth of data ahead. This
932 * matters for FIFO overruns only.
933 */
934 remain = readl(host->base + MMCIDATACNT);
935 success = data->blksz * data->blocks - remain;
936
937 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
938 status, success);
939 if (status & MCI_DATACRCFAIL) {
940 /* Last block was not successful */
941 success -= 1;
942 data->error = -EILSEQ;
943 } else if (status & MCI_DATATIMEOUT) {
944 data->error = -ETIMEDOUT;
945 } else if (status & MCI_STARTBITERR) {
946 data->error = -ECOMM;
947 } else if (status & MCI_TXUNDERRUN) {
948 data->error = -EIO;
949 } else if (status & MCI_RXOVERRUN) {
950 if (success > host->variant->fifosize)
951 success -= host->variant->fifosize;
952 else
953 success = 0;
954 data->error = -EIO;
955 }
956 data->bytes_xfered = round_down(success, data->blksz);
957 }
958
959 if (status & MCI_DATABLOCKEND)
960 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
961
962 if (status & MCI_DATAEND || data->error) {
963 if (dma_inprogress(host))
964 mmci_dma_finalize(host, data);
965 mmci_stop_data(host);
966
967 if (!data->error)
968 /* The error clause is handled above, success! */
969 data->bytes_xfered = data->blksz * data->blocks;
970
971 if (!data->stop || host->mrq->sbc) {
972 mmci_request_end(host, data->mrq);
973 } else {
974 mmci_start_command(host, data->stop, 0);
975 }
976 }
977}
978
979static void
980mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
981 unsigned int status)
982{
983 void __iomem *base = host->base;
984 bool sbc, busy_resp;
985
986 if (!cmd)
987 return;
988
989 sbc = (cmd == host->mrq->sbc);
990 busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
991
992 if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
993 MCI_CMDSENT|MCI_CMDRESPEND)))
994 return;
995
996 /* Check if we need to wait for busy completion. */
997 if (host->busy_status && (status & MCI_ST_CARDBUSY))
998 return;
999
1000 /* Enable busy completion if needed and supported. */
1001 if (!host->busy_status && busy_resp &&
1002 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1003 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
1004 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
1005 base + MMCIMASK0);
1006 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
1007 return;
1008 }
1009
1010 /* At busy completion, mask the IRQ and complete the request. */
1011 if (host->busy_status) {
1012 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1013 base + MMCIMASK0);
1014 host->busy_status = 0;
1015 }
1016
1017 host->cmd = NULL;
1018
1019 if (status & MCI_CMDTIMEOUT) {
1020 cmd->error = -ETIMEDOUT;
1021 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1022 cmd->error = -EILSEQ;
1023 } else {
1024 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1025 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1026 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1027 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1028 }
1029
1030 if ((!sbc && !cmd->data) || cmd->error) {
1031 if (host->data) {
1032 /* Terminate the DMA transfer */
1033 if (dma_inprogress(host)) {
1034 mmci_dma_data_error(host);
1035 mmci_dma_unmap(host, host->data);
1036 }
1037 mmci_stop_data(host);
1038 }
1039 mmci_request_end(host, host->mrq);
1040 } else if (sbc) {
1041 mmci_start_command(host, host->mrq->cmd, 0);
1042 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1043 mmci_start_data(host, cmd->data);
1044 }
1045}
1046
1047static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1048{
1049 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1050}
1051
1052static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1053{
1054 /*
1055 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1056 * from the fifo range should be used
1057 */
1058 if (status & MCI_RXFIFOHALFFULL)
1059 return host->variant->fifohalfsize;
1060 else if (status & MCI_RXDATAAVLBL)
1061 return 4;
1062
1063 return 0;
1064}
1065
1066static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1067{
1068 void __iomem *base = host->base;
1069 char *ptr = buffer;
1070 u32 status = readl(host->base + MMCISTATUS);
1071 int host_remain = host->size;
1072
1073 do {
1074 int count = host->get_rx_fifocnt(host, status, host_remain);
1075
1076 if (count > remain)
1077 count = remain;
1078
1079 if (count <= 0)
1080 break;
1081
1082 /*
1083 * SDIO especially may want to send something that is
1084 * not divisible by 4 (as opposed to card sectors
1085 * etc). Therefore make sure to always read the last bytes
1086 * while only doing full 32-bit reads towards the FIFO.
1087 */
1088 if (unlikely(count & 0x3)) {
1089 if (count < 4) {
1090 unsigned char buf[4];
1091 ioread32_rep(base + MMCIFIFO, buf, 1);
1092 memcpy(ptr, buf, count);
1093 } else {
1094 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1095 count &= ~0x3;
1096 }
1097 } else {
1098 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1099 }
1100
1101 ptr += count;
1102 remain -= count;
1103 host_remain -= count;
1104
1105 if (remain == 0)
1106 break;
1107
1108 status = readl(base + MMCISTATUS);
1109 } while (status & MCI_RXDATAAVLBL);
1110
1111 return ptr - buffer;
1112}
1113
1114static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1115{
1116 struct variant_data *variant = host->variant;
1117 void __iomem *base = host->base;
1118 char *ptr = buffer;
1119
1120 do {
1121 unsigned int count, maxcnt;
1122
1123 maxcnt = status & MCI_TXFIFOEMPTY ?
1124 variant->fifosize : variant->fifohalfsize;
1125 count = min(remain, maxcnt);
1126
1127 /*
1128 * SDIO especially may want to send something that is
1129 * not divisible by 4 (as opposed to card sectors
1130 * etc), and the FIFO only accept full 32-bit writes.
1131 * So compensate by adding +3 on the count, a single
1132 * byte become a 32bit write, 7 bytes will be two
1133 * 32bit writes etc.
1134 */
1135 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1136
1137 ptr += count;
1138 remain -= count;
1139
1140 if (remain == 0)
1141 break;
1142
1143 status = readl(base + MMCISTATUS);
1144 } while (status & MCI_TXFIFOHALFEMPTY);
1145
1146 return ptr - buffer;
1147}
1148
1149/*
1150 * PIO data transfer IRQ handler.
1151 */
1152static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1153{
1154 struct mmci_host *host = dev_id;
1155 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1156 struct variant_data *variant = host->variant;
1157 void __iomem *base = host->base;
1158 unsigned long flags;
1159 u32 status;
1160
1161 status = readl(base + MMCISTATUS);
1162
1163 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1164
1165 local_irq_save(flags);
1166
1167 do {
1168 unsigned int remain, len;
1169 char *buffer;
1170
1171 /*
1172 * For write, we only need to test the half-empty flag
1173 * here - if the FIFO is completely empty, then by
1174 * definition it is more than half empty.
1175 *
1176 * For read, check for data available.
1177 */
1178 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1179 break;
1180
1181 if (!sg_miter_next(sg_miter))
1182 break;
1183
1184 buffer = sg_miter->addr;
1185 remain = sg_miter->length;
1186
1187 len = 0;
1188 if (status & MCI_RXACTIVE)
1189 len = mmci_pio_read(host, buffer, remain);
1190 if (status & MCI_TXACTIVE)
1191 len = mmci_pio_write(host, buffer, remain, status);
1192
1193 sg_miter->consumed = len;
1194
1195 host->size -= len;
1196 remain -= len;
1197
1198 if (remain)
1199 break;
1200
1201 status = readl(base + MMCISTATUS);
1202 } while (1);
1203
1204 sg_miter_stop(sg_miter);
1205
1206 local_irq_restore(flags);
1207
1208 /*
1209 * If we have less than the fifo 'half-full' threshold to transfer,
1210 * trigger a PIO interrupt as soon as any data is available.
1211 */
1212 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1213 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1214
1215 /*
1216 * If we run out of data, disable the data IRQs; this
1217 * prevents a race where the FIFO becomes empty before
1218 * the chip itself has disabled the data path, and
1219 * stops us racing with our data end IRQ.
1220 */
1221 if (host->size == 0) {
1222 mmci_set_mask1(host, 0);
1223 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1224 }
1225
1226 return IRQ_HANDLED;
1227}
1228
1229/*
1230 * Handle completion of command and data transfers.
1231 */
1232static irqreturn_t mmci_irq(int irq, void *dev_id)
1233{
1234 struct mmci_host *host = dev_id;
1235 u32 status;
1236 int ret = 0;
1237
1238 spin_lock(&host->lock);
1239
1240 do {
1241 status = readl(host->base + MMCISTATUS);
1242
1243 if (host->singleirq) {
1244 if (status & readl(host->base + MMCIMASK1))
1245 mmci_pio_irq(irq, dev_id);
1246
1247 status &= ~MCI_IRQ1MASK;
1248 }
1249
1250 /*
1251 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1252 * enabled) since the HW seems to be triggering the IRQ on both
1253 * edges while monitoring DAT0 for busy completion.
1254 */
1255 status &= readl(host->base + MMCIMASK0);
1256 writel(status, host->base + MMCICLEAR);
1257
1258 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1259
1260 if (host->variant->reversed_irq_handling) {
1261 mmci_data_irq(host, host->data, status);
1262 mmci_cmd_irq(host, host->cmd, status);
1263 } else {
1264 mmci_cmd_irq(host, host->cmd, status);
1265 mmci_data_irq(host, host->data, status);
1266 }
1267
1268 /* Don't poll for busy completion in irq context. */
1269 if (host->busy_status)
1270 status &= ~MCI_ST_CARDBUSY;
1271
1272 ret = 1;
1273 } while (status);
1274
1275 spin_unlock(&host->lock);
1276
1277 return IRQ_RETVAL(ret);
1278}
1279
1280static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1281{
1282 struct mmci_host *host = mmc_priv(mmc);
1283 unsigned long flags;
1284
1285 WARN_ON(host->mrq != NULL);
1286
1287 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1288 if (mrq->cmd->error) {
1289 mmc_request_done(mmc, mrq);
1290 return;
1291 }
1292
1293 pm_runtime_get_sync(mmc_dev(mmc));
1294
1295 spin_lock_irqsave(&host->lock, flags);
1296
1297 host->mrq = mrq;
1298
1299 if (mrq->data)
1300 mmci_get_next_data(host, mrq->data);
1301
1302 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1303 mmci_start_data(host, mrq->data);
1304
1305 if (mrq->sbc)
1306 mmci_start_command(host, mrq->sbc, 0);
1307 else
1308 mmci_start_command(host, mrq->cmd, 0);
1309
1310 spin_unlock_irqrestore(&host->lock, flags);
1311}
1312
1313static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1314{
1315 struct mmci_host *host = mmc_priv(mmc);
1316 struct variant_data *variant = host->variant;
1317 u32 pwr = 0;
1318 unsigned long flags;
1319 int ret;
1320
1321 pm_runtime_get_sync(mmc_dev(mmc));
1322
1323 if (host->plat->ios_handler &&
1324 host->plat->ios_handler(mmc_dev(mmc), ios))
1325 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1326
1327 switch (ios->power_mode) {
1328 case MMC_POWER_OFF:
1329 if (!IS_ERR(mmc->supply.vmmc))
1330 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1331
1332 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1333 regulator_disable(mmc->supply.vqmmc);
1334 host->vqmmc_enabled = false;
1335 }
1336
1337 break;
1338 case MMC_POWER_UP:
1339 if (!IS_ERR(mmc->supply.vmmc))
1340 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1341
1342 /*
1343 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1344 * and instead uses MCI_PWR_ON so apply whatever value is
1345 * configured in the variant data.
1346 */
1347 pwr |= variant->pwrreg_powerup;
1348
1349 break;
1350 case MMC_POWER_ON:
1351 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1352 ret = regulator_enable(mmc->supply.vqmmc);
1353 if (ret < 0)
1354 dev_err(mmc_dev(mmc),
1355 "failed to enable vqmmc regulator\n");
1356 else
1357 host->vqmmc_enabled = true;
1358 }
1359
1360 pwr |= MCI_PWR_ON;
1361 break;
1362 }
1363
1364 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1365 /*
1366 * The ST Micro variant has some additional bits
1367 * indicating signal direction for the signals in
1368 * the SD/MMC bus and feedback-clock usage.
1369 */
1370 pwr |= host->pwr_reg_add;
1371
1372 if (ios->bus_width == MMC_BUS_WIDTH_4)
1373 pwr &= ~MCI_ST_DATA74DIREN;
1374 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1375 pwr &= (~MCI_ST_DATA74DIREN &
1376 ~MCI_ST_DATA31DIREN &
1377 ~MCI_ST_DATA2DIREN);
1378 }
1379
1380 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1381 if (host->hw_designer != AMBA_VENDOR_ST)
1382 pwr |= MCI_ROD;
1383 else {
1384 /*
1385 * The ST Micro variant use the ROD bit for something
1386 * else and only has OD (Open Drain).
1387 */
1388 pwr |= MCI_OD;
1389 }
1390 }
1391
1392 /*
1393 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1394 * gating the clock, the MCI_PWR_ON bit is cleared.
1395 */
1396 if (!ios->clock && variant->pwrreg_clkgate)
1397 pwr &= ~MCI_PWR_ON;
1398
1399 if (host->variant->explicit_mclk_control &&
1400 ios->clock != host->clock_cache) {
1401 ret = clk_set_rate(host->clk, ios->clock);
1402 if (ret < 0)
1403 dev_err(mmc_dev(host->mmc),
1404 "Error setting clock rate (%d)\n", ret);
1405 else
1406 host->mclk = clk_get_rate(host->clk);
1407 }
1408 host->clock_cache = ios->clock;
1409
1410 spin_lock_irqsave(&host->lock, flags);
1411
1412 mmci_set_clkreg(host, ios->clock);
1413 mmci_write_pwrreg(host, pwr);
1414 mmci_reg_delay(host);
1415
1416 spin_unlock_irqrestore(&host->lock, flags);
1417
1418 pm_runtime_mark_last_busy(mmc_dev(mmc));
1419 pm_runtime_put_autosuspend(mmc_dev(mmc));
1420}
1421
1422static int mmci_get_cd(struct mmc_host *mmc)
1423{
1424 struct mmci_host *host = mmc_priv(mmc);
1425 struct mmci_platform_data *plat = host->plat;
1426 unsigned int status = mmc_gpio_get_cd(mmc);
1427
1428 if (status == -ENOSYS) {
1429 if (!plat->status)
1430 return 1; /* Assume always present */
1431
1432 status = plat->status(mmc_dev(host->mmc));
1433 }
1434 return status;
1435}
1436
1437static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1438{
1439 int ret = 0;
1440
1441 if (!IS_ERR(mmc->supply.vqmmc)) {
1442
1443 pm_runtime_get_sync(mmc_dev(mmc));
1444
1445 switch (ios->signal_voltage) {
1446 case MMC_SIGNAL_VOLTAGE_330:
1447 ret = regulator_set_voltage(mmc->supply.vqmmc,
1448 2700000, 3600000);
1449 break;
1450 case MMC_SIGNAL_VOLTAGE_180:
1451 ret = regulator_set_voltage(mmc->supply.vqmmc,
1452 1700000, 1950000);
1453 break;
1454 case MMC_SIGNAL_VOLTAGE_120:
1455 ret = regulator_set_voltage(mmc->supply.vqmmc,
1456 1100000, 1300000);
1457 break;
1458 }
1459
1460 if (ret)
1461 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1462
1463 pm_runtime_mark_last_busy(mmc_dev(mmc));
1464 pm_runtime_put_autosuspend(mmc_dev(mmc));
1465 }
1466
1467 return ret;
1468}
1469
1470static struct mmc_host_ops mmci_ops = {
1471 .request = mmci_request,
1472 .pre_req = mmci_pre_request,
1473 .post_req = mmci_post_request,
1474 .set_ios = mmci_set_ios,
1475 .get_ro = mmc_gpio_get_ro,
1476 .get_cd = mmci_get_cd,
1477 .start_signal_voltage_switch = mmci_sig_volt_switch,
1478};
1479
1480static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1481{
1482 struct mmci_host *host = mmc_priv(mmc);
1483 int ret = mmc_of_parse(mmc);
1484
1485 if (ret)
1486 return ret;
1487
1488 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1489 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1490 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1491 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1492 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1493 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1494 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1495 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1496 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1497 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1498 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1499 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1500
1501 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1502 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1503 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1504 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1505
1506 return 0;
1507}
1508
1509static int mmci_probe(struct amba_device *dev,
1510 const struct amba_id *id)
1511{
1512 struct mmci_platform_data *plat = dev->dev.platform_data;
1513 struct device_node *np = dev->dev.of_node;
1514 struct variant_data *variant = id->data;
1515 struct mmci_host *host;
1516 struct mmc_host *mmc;
1517 int ret;
1518
1519 /* Must have platform data or Device Tree. */
1520 if (!plat && !np) {
1521 dev_err(&dev->dev, "No plat data or DT found\n");
1522 return -EINVAL;
1523 }
1524
1525 if (!plat) {
1526 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1527 if (!plat)
1528 return -ENOMEM;
1529 }
1530
1531 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1532 if (!mmc)
1533 return -ENOMEM;
1534
1535 ret = mmci_of_parse(np, mmc);
1536 if (ret)
1537 goto host_free;
1538
1539 host = mmc_priv(mmc);
1540 host->mmc = mmc;
1541
1542 host->hw_designer = amba_manf(dev);
1543 host->hw_revision = amba_rev(dev);
1544 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1545 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1546
1547 host->clk = devm_clk_get(&dev->dev, NULL);
1548 if (IS_ERR(host->clk)) {
1549 ret = PTR_ERR(host->clk);
1550 goto host_free;
1551 }
1552
1553 ret = clk_prepare_enable(host->clk);
1554 if (ret)
1555 goto host_free;
1556
1557 if (variant->qcom_fifo)
1558 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1559 else
1560 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1561
1562 host->plat = plat;
1563 host->variant = variant;
1564 host->mclk = clk_get_rate(host->clk);
1565 /*
1566 * According to the spec, mclk is max 100 MHz,
1567 * so we try to adjust the clock down to this,
1568 * (if possible).
1569 */
1570 if (host->mclk > variant->f_max) {
1571 ret = clk_set_rate(host->clk, variant->f_max);
1572 if (ret < 0)
1573 goto clk_disable;
1574 host->mclk = clk_get_rate(host->clk);
1575 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1576 host->mclk);
1577 }
1578
1579 host->phybase = dev->res.start;
1580 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1581 if (IS_ERR(host->base)) {
1582 ret = PTR_ERR(host->base);
1583 goto clk_disable;
1584 }
1585
1586 /*
1587 * The ARM and ST versions of the block have slightly different
1588 * clock divider equations which means that the minimum divider
1589 * differs too.
1590 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1591 */
1592 if (variant->st_clkdiv)
1593 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1594 else if (variant->explicit_mclk_control)
1595 mmc->f_min = clk_round_rate(host->clk, 100000);
1596 else
1597 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1598 /*
1599 * If no maximum operating frequency is supplied, fall back to use
1600 * the module parameter, which has a (low) default value in case it
1601 * is not specified. Either value must not exceed the clock rate into
1602 * the block, of course.
1603 */
1604 if (mmc->f_max)
1605 mmc->f_max = variant->explicit_mclk_control ?
1606 min(variant->f_max, mmc->f_max) :
1607 min(host->mclk, mmc->f_max);
1608 else
1609 mmc->f_max = variant->explicit_mclk_control ?
1610 fmax : min(host->mclk, fmax);
1611
1612
1613 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1614
1615 /* Get regulators and the supported OCR mask */
1616 ret = mmc_regulator_get_supply(mmc);
1617 if (ret == -EPROBE_DEFER)
1618 goto clk_disable;
1619
1620 if (!mmc->ocr_avail)
1621 mmc->ocr_avail = plat->ocr_mask;
1622 else if (plat->ocr_mask)
1623 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1624
1625 /* DT takes precedence over platform data. */
1626 if (!np) {
1627 if (!plat->cd_invert)
1628 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1629 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1630 }
1631
1632 /* We support these capabilities. */
1633 mmc->caps |= MMC_CAP_CMD23;
1634
1635 if (variant->busy_detect) {
1636 mmci_ops.card_busy = mmci_card_busy;
1637 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1638 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1639 mmc->max_busy_timeout = 0;
1640 }
1641
1642 mmc->ops = &mmci_ops;
1643
1644 /* We support these PM capabilities. */
1645 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1646
1647 /*
1648 * We can do SGIO
1649 */
1650 mmc->max_segs = NR_SG;
1651
1652 /*
1653 * Since only a certain number of bits are valid in the data length
1654 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1655 * single request.
1656 */
1657 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1658
1659 /*
1660 * Set the maximum segment size. Since we aren't doing DMA
1661 * (yet) we are only limited by the data length register.
1662 */
1663 mmc->max_seg_size = mmc->max_req_size;
1664
1665 /*
1666 * Block size can be up to 2048 bytes, but must be a power of two.
1667 */
1668 mmc->max_blk_size = 1 << 11;
1669
1670 /*
1671 * Limit the number of blocks transferred so that we don't overflow
1672 * the maximum request size.
1673 */
1674 mmc->max_blk_count = mmc->max_req_size >> 11;
1675
1676 spin_lock_init(&host->lock);
1677
1678 writel(0, host->base + MMCIMASK0);
1679 writel(0, host->base + MMCIMASK1);
1680 writel(0xfff, host->base + MMCICLEAR);
1681
1682 /*
1683 * If:
1684 * - not using DT but using a descriptor table, or
1685 * - using a table of descriptors ALONGSIDE DT, or
1686 * look up these descriptors named "cd" and "wp" right here, fail
1687 * silently of these do not exist and proceed to try platform data
1688 */
1689 if (!np) {
1690 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1691 if (ret < 0) {
1692 if (ret == -EPROBE_DEFER)
1693 goto clk_disable;
1694 else if (gpio_is_valid(plat->gpio_cd)) {
1695 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1696 if (ret)
1697 goto clk_disable;
1698 }
1699 }
1700
1701 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1702 if (ret < 0) {
1703 if (ret == -EPROBE_DEFER)
1704 goto clk_disable;
1705 else if (gpio_is_valid(plat->gpio_wp)) {
1706 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1707 if (ret)
1708 goto clk_disable;
1709 }
1710 }
1711 }
1712
1713 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1714 DRIVER_NAME " (cmd)", host);
1715 if (ret)
1716 goto clk_disable;
1717
1718 if (!dev->irq[1])
1719 host->singleirq = true;
1720 else {
1721 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1722 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1723 if (ret)
1724 goto clk_disable;
1725 }
1726
1727 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1728
1729 amba_set_drvdata(dev, mmc);
1730
1731 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1732 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1733 amba_rev(dev), (unsigned long long)dev->res.start,
1734 dev->irq[0], dev->irq[1]);
1735
1736 mmci_dma_setup(host);
1737
1738 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1739 pm_runtime_use_autosuspend(&dev->dev);
1740
1741 mmc_add_host(mmc);
1742
1743 pm_runtime_put(&dev->dev);
1744 return 0;
1745
1746 clk_disable:
1747 clk_disable_unprepare(host->clk);
1748 host_free:
1749 mmc_free_host(mmc);
1750 return ret;
1751}
1752
1753static int mmci_remove(struct amba_device *dev)
1754{
1755 struct mmc_host *mmc = amba_get_drvdata(dev);
1756
1757 if (mmc) {
1758 struct mmci_host *host = mmc_priv(mmc);
1759
1760 /*
1761 * Undo pm_runtime_put() in probe. We use the _sync
1762 * version here so that we can access the primecell.
1763 */
1764 pm_runtime_get_sync(&dev->dev);
1765
1766 mmc_remove_host(mmc);
1767
1768 writel(0, host->base + MMCIMASK0);
1769 writel(0, host->base + MMCIMASK1);
1770
1771 writel(0, host->base + MMCICOMMAND);
1772 writel(0, host->base + MMCIDATACTRL);
1773
1774 mmci_dma_release(host);
1775 clk_disable_unprepare(host->clk);
1776 mmc_free_host(mmc);
1777 }
1778
1779 return 0;
1780}
1781
1782#ifdef CONFIG_PM
1783static void mmci_save(struct mmci_host *host)
1784{
1785 unsigned long flags;
1786
1787 spin_lock_irqsave(&host->lock, flags);
1788
1789 writel(0, host->base + MMCIMASK0);
1790 if (host->variant->pwrreg_nopower) {
1791 writel(0, host->base + MMCIDATACTRL);
1792 writel(0, host->base + MMCIPOWER);
1793 writel(0, host->base + MMCICLOCK);
1794 }
1795 mmci_reg_delay(host);
1796
1797 spin_unlock_irqrestore(&host->lock, flags);
1798}
1799
1800static void mmci_restore(struct mmci_host *host)
1801{
1802 unsigned long flags;
1803
1804 spin_lock_irqsave(&host->lock, flags);
1805
1806 if (host->variant->pwrreg_nopower) {
1807 writel(host->clk_reg, host->base + MMCICLOCK);
1808 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1809 writel(host->pwr_reg, host->base + MMCIPOWER);
1810 }
1811 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1812 mmci_reg_delay(host);
1813
1814 spin_unlock_irqrestore(&host->lock, flags);
1815}
1816
1817static int mmci_runtime_suspend(struct device *dev)
1818{
1819 struct amba_device *adev = to_amba_device(dev);
1820 struct mmc_host *mmc = amba_get_drvdata(adev);
1821
1822 if (mmc) {
1823 struct mmci_host *host = mmc_priv(mmc);
1824 pinctrl_pm_select_sleep_state(dev);
1825 mmci_save(host);
1826 clk_disable_unprepare(host->clk);
1827 }
1828
1829 return 0;
1830}
1831
1832static int mmci_runtime_resume(struct device *dev)
1833{
1834 struct amba_device *adev = to_amba_device(dev);
1835 struct mmc_host *mmc = amba_get_drvdata(adev);
1836
1837 if (mmc) {
1838 struct mmci_host *host = mmc_priv(mmc);
1839 clk_prepare_enable(host->clk);
1840 mmci_restore(host);
1841 pinctrl_pm_select_default_state(dev);
1842 }
1843
1844 return 0;
1845}
1846#endif
1847
1848static const struct dev_pm_ops mmci_dev_pm_ops = {
1849 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1850 pm_runtime_force_resume)
1851 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1852};
1853
1854static struct amba_id mmci_ids[] = {
1855 {
1856 .id = 0x00041180,
1857 .mask = 0xff0fffff,
1858 .data = &variant_arm,
1859 },
1860 {
1861 .id = 0x01041180,
1862 .mask = 0xff0fffff,
1863 .data = &variant_arm_extended_fifo,
1864 },
1865 {
1866 .id = 0x02041180,
1867 .mask = 0xff0fffff,
1868 .data = &variant_arm_extended_fifo_hwfc,
1869 },
1870 {
1871 .id = 0x00041181,
1872 .mask = 0x000fffff,
1873 .data = &variant_arm,
1874 },
1875 /* ST Micro variants */
1876 {
1877 .id = 0x00180180,
1878 .mask = 0x00ffffff,
1879 .data = &variant_u300,
1880 },
1881 {
1882 .id = 0x10180180,
1883 .mask = 0xf0ffffff,
1884 .data = &variant_nomadik,
1885 },
1886 {
1887 .id = 0x00280180,
1888 .mask = 0x00ffffff,
1889 .data = &variant_nomadik,
1890 },
1891 {
1892 .id = 0x00480180,
1893 .mask = 0xf0ffffff,
1894 .data = &variant_ux500,
1895 },
1896 {
1897 .id = 0x10480180,
1898 .mask = 0xf0ffffff,
1899 .data = &variant_ux500v2,
1900 },
1901 /* Qualcomm variants */
1902 {
1903 .id = 0x00051180,
1904 .mask = 0x000fffff,
1905 .data = &variant_qcom,
1906 },
1907 { 0, 0 },
1908};
1909
1910MODULE_DEVICE_TABLE(amba, mmci_ids);
1911
1912static struct amba_driver mmci_driver = {
1913 .drv = {
1914 .name = DRIVER_NAME,
1915 .pm = &mmci_dev_pm_ops,
1916 },
1917 .probe = mmci_probe,
1918 .remove = mmci_remove,
1919 .id_table = mmci_ids,
1920};
1921
1922module_amba_driver(mmci_driver);
1923
1924module_param(fmax, uint, 0444);
1925
1926MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1927MODULE_LICENSE("GPL");