Loading...
1/*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/highmem.h>
23#include <linux/log2.h>
24#include <linux/mmc/pm.h>
25#include <linux/mmc/host.h>
26#include <linux/mmc/card.h>
27#include <linux/mmc/slot-gpio.h>
28#include <linux/amba/bus.h>
29#include <linux/clk.h>
30#include <linux/scatterlist.h>
31#include <linux/gpio.h>
32#include <linux/of_gpio.h>
33#include <linux/regulator/consumer.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/amba/mmci.h>
37#include <linux/pm_runtime.h>
38#include <linux/types.h>
39#include <linux/pinctrl/consumer.h>
40
41#include <asm/div64.h>
42#include <asm/io.h>
43
44#include "mmci.h"
45#include "mmci_qcom_dml.h"
46
47#define DRIVER_NAME "mmci-pl18x"
48
49static unsigned int fmax = 515633;
50
51/**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59 * is asserted (likewise for RX)
60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61 * is asserted (likewise for RX)
62 * @data_cmd_enable: enable value for data commands.
63 * @st_sdio: enable ST specific SDIO logic
64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68 * register
69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70 * @pwrreg_powerup: power up value for MMCIPOWER register
71 * @f_max: maximum clk frequency supported by the controller.
72 * @signal_direction: input/out direction of bus signals can be indicated
73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74 * @busy_detect: true if the variant supports busy detection on DAT0.
75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77 * indicating that the card is busy
78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79 * getting busy end detection interrupts
80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81 * @explicit_mclk_control: enable explicit mclk control in driver.
82 * @qcom_fifo: enables qcom specific fifo pio read logic.
83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
84 * @reversed_irq_handling: handle data irq before cmd irq.
85 * @mmcimask1: true if variant have a MMCIMASK1 register.
86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
87 * register.
88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
89 */
90struct variant_data {
91 unsigned int clkreg;
92 unsigned int clkreg_enable;
93 unsigned int clkreg_8bit_bus_enable;
94 unsigned int clkreg_neg_edge_enable;
95 unsigned int datalength_bits;
96 unsigned int fifosize;
97 unsigned int fifohalfsize;
98 unsigned int data_cmd_enable;
99 unsigned int datactrl_mask_ddrmode;
100 unsigned int datactrl_mask_sdio;
101 bool st_sdio;
102 bool st_clkdiv;
103 bool blksz_datactrl16;
104 bool blksz_datactrl4;
105 u32 pwrreg_powerup;
106 u32 f_max;
107 bool signal_direction;
108 bool pwrreg_clkgate;
109 bool busy_detect;
110 u32 busy_dpsm_flag;
111 u32 busy_detect_flag;
112 u32 busy_detect_mask;
113 bool pwrreg_nopower;
114 bool explicit_mclk_control;
115 bool qcom_fifo;
116 bool qcom_dml;
117 bool reversed_irq_handling;
118 bool mmcimask1;
119 u32 start_err;
120 u32 opendrain;
121};
122
123static struct variant_data variant_arm = {
124 .fifosize = 16 * 4,
125 .fifohalfsize = 8 * 4,
126 .datalength_bits = 16,
127 .pwrreg_powerup = MCI_PWR_UP,
128 .f_max = 100000000,
129 .reversed_irq_handling = true,
130 .mmcimask1 = true,
131 .start_err = MCI_STARTBITERR,
132 .opendrain = MCI_ROD,
133};
134
135static struct variant_data variant_arm_extended_fifo = {
136 .fifosize = 128 * 4,
137 .fifohalfsize = 64 * 4,
138 .datalength_bits = 16,
139 .pwrreg_powerup = MCI_PWR_UP,
140 .f_max = 100000000,
141 .mmcimask1 = true,
142 .start_err = MCI_STARTBITERR,
143 .opendrain = MCI_ROD,
144};
145
146static struct variant_data variant_arm_extended_fifo_hwfc = {
147 .fifosize = 128 * 4,
148 .fifohalfsize = 64 * 4,
149 .clkreg_enable = MCI_ARM_HWFCEN,
150 .datalength_bits = 16,
151 .pwrreg_powerup = MCI_PWR_UP,
152 .f_max = 100000000,
153 .mmcimask1 = true,
154 .start_err = MCI_STARTBITERR,
155 .opendrain = MCI_ROD,
156};
157
158static struct variant_data variant_u300 = {
159 .fifosize = 16 * 4,
160 .fifohalfsize = 8 * 4,
161 .clkreg_enable = MCI_ST_U300_HWFCEN,
162 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
163 .datalength_bits = 16,
164 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
165 .st_sdio = true,
166 .pwrreg_powerup = MCI_PWR_ON,
167 .f_max = 100000000,
168 .signal_direction = true,
169 .pwrreg_clkgate = true,
170 .pwrreg_nopower = true,
171 .mmcimask1 = true,
172 .start_err = MCI_STARTBITERR,
173 .opendrain = MCI_OD,
174};
175
176static struct variant_data variant_nomadik = {
177 .fifosize = 16 * 4,
178 .fifohalfsize = 8 * 4,
179 .clkreg = MCI_CLK_ENABLE,
180 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
181 .datalength_bits = 24,
182 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
183 .st_sdio = true,
184 .st_clkdiv = true,
185 .pwrreg_powerup = MCI_PWR_ON,
186 .f_max = 100000000,
187 .signal_direction = true,
188 .pwrreg_clkgate = true,
189 .pwrreg_nopower = true,
190 .mmcimask1 = true,
191 .start_err = MCI_STARTBITERR,
192 .opendrain = MCI_OD,
193};
194
195static struct variant_data variant_ux500 = {
196 .fifosize = 30 * 4,
197 .fifohalfsize = 8 * 4,
198 .clkreg = MCI_CLK_ENABLE,
199 .clkreg_enable = MCI_ST_UX500_HWFCEN,
200 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
202 .datalength_bits = 24,
203 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
204 .st_sdio = true,
205 .st_clkdiv = true,
206 .pwrreg_powerup = MCI_PWR_ON,
207 .f_max = 100000000,
208 .signal_direction = true,
209 .pwrreg_clkgate = true,
210 .busy_detect = true,
211 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
212 .busy_detect_flag = MCI_ST_CARDBUSY,
213 .busy_detect_mask = MCI_ST_BUSYENDMASK,
214 .pwrreg_nopower = true,
215 .mmcimask1 = true,
216 .start_err = MCI_STARTBITERR,
217 .opendrain = MCI_OD,
218};
219
220static struct variant_data variant_ux500v2 = {
221 .fifosize = 30 * 4,
222 .fifohalfsize = 8 * 4,
223 .clkreg = MCI_CLK_ENABLE,
224 .clkreg_enable = MCI_ST_UX500_HWFCEN,
225 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
226 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
227 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
228 .datalength_bits = 24,
229 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
230 .st_sdio = true,
231 .st_clkdiv = true,
232 .blksz_datactrl16 = true,
233 .pwrreg_powerup = MCI_PWR_ON,
234 .f_max = 100000000,
235 .signal_direction = true,
236 .pwrreg_clkgate = true,
237 .busy_detect = true,
238 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
239 .busy_detect_flag = MCI_ST_CARDBUSY,
240 .busy_detect_mask = MCI_ST_BUSYENDMASK,
241 .pwrreg_nopower = true,
242 .mmcimask1 = true,
243 .start_err = MCI_STARTBITERR,
244 .opendrain = MCI_OD,
245};
246
247static struct variant_data variant_stm32 = {
248 .fifosize = 32 * 4,
249 .fifohalfsize = 8 * 4,
250 .clkreg = MCI_CLK_ENABLE,
251 .clkreg_enable = MCI_ST_UX500_HWFCEN,
252 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
253 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
254 .datalength_bits = 24,
255 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
256 .st_sdio = true,
257 .st_clkdiv = true,
258 .pwrreg_powerup = MCI_PWR_ON,
259 .f_max = 48000000,
260 .pwrreg_clkgate = true,
261 .pwrreg_nopower = true,
262};
263
264static struct variant_data variant_qcom = {
265 .fifosize = 16 * 4,
266 .fifohalfsize = 8 * 4,
267 .clkreg = MCI_CLK_ENABLE,
268 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
269 MCI_QCOM_CLK_SELECT_IN_FBCLK,
270 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
271 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
272 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
273 .blksz_datactrl4 = true,
274 .datalength_bits = 24,
275 .pwrreg_powerup = MCI_PWR_UP,
276 .f_max = 208000000,
277 .explicit_mclk_control = true,
278 .qcom_fifo = true,
279 .qcom_dml = true,
280 .mmcimask1 = true,
281 .start_err = MCI_STARTBITERR,
282 .opendrain = MCI_ROD,
283};
284
285/* Busy detection for the ST Micro variant */
286static int mmci_card_busy(struct mmc_host *mmc)
287{
288 struct mmci_host *host = mmc_priv(mmc);
289 unsigned long flags;
290 int busy = 0;
291
292 spin_lock_irqsave(&host->lock, flags);
293 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
294 busy = 1;
295 spin_unlock_irqrestore(&host->lock, flags);
296
297 return busy;
298}
299
300/*
301 * Validate mmc prerequisites
302 */
303static int mmci_validate_data(struct mmci_host *host,
304 struct mmc_data *data)
305{
306 if (!data)
307 return 0;
308
309 if (!is_power_of_2(data->blksz)) {
310 dev_err(mmc_dev(host->mmc),
311 "unsupported block size (%d bytes)\n", data->blksz);
312 return -EINVAL;
313 }
314
315 return 0;
316}
317
318static void mmci_reg_delay(struct mmci_host *host)
319{
320 /*
321 * According to the spec, at least three feedback clock cycles
322 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
323 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
324 * Worst delay time during card init is at 100 kHz => 30 us.
325 * Worst delay time when up and running is at 25 MHz => 120 ns.
326 */
327 if (host->cclk < 25000000)
328 udelay(30);
329 else
330 ndelay(120);
331}
332
333/*
334 * This must be called with host->lock held
335 */
336static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
337{
338 if (host->clk_reg != clk) {
339 host->clk_reg = clk;
340 writel(clk, host->base + MMCICLOCK);
341 }
342}
343
344/*
345 * This must be called with host->lock held
346 */
347static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
348{
349 if (host->pwr_reg != pwr) {
350 host->pwr_reg = pwr;
351 writel(pwr, host->base + MMCIPOWER);
352 }
353}
354
355/*
356 * This must be called with host->lock held
357 */
358static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
359{
360 /* Keep busy mode in DPSM if enabled */
361 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
362
363 if (host->datactrl_reg != datactrl) {
364 host->datactrl_reg = datactrl;
365 writel(datactrl, host->base + MMCIDATACTRL);
366 }
367}
368
369/*
370 * This must be called with host->lock held
371 */
372static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
373{
374 struct variant_data *variant = host->variant;
375 u32 clk = variant->clkreg;
376
377 /* Make sure cclk reflects the current calculated clock */
378 host->cclk = 0;
379
380 if (desired) {
381 if (variant->explicit_mclk_control) {
382 host->cclk = host->mclk;
383 } else if (desired >= host->mclk) {
384 clk = MCI_CLK_BYPASS;
385 if (variant->st_clkdiv)
386 clk |= MCI_ST_UX500_NEG_EDGE;
387 host->cclk = host->mclk;
388 } else if (variant->st_clkdiv) {
389 /*
390 * DB8500 TRM says f = mclk / (clkdiv + 2)
391 * => clkdiv = (mclk / f) - 2
392 * Round the divider up so we don't exceed the max
393 * frequency
394 */
395 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
396 if (clk >= 256)
397 clk = 255;
398 host->cclk = host->mclk / (clk + 2);
399 } else {
400 /*
401 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
402 * => clkdiv = mclk / (2 * f) - 1
403 */
404 clk = host->mclk / (2 * desired) - 1;
405 if (clk >= 256)
406 clk = 255;
407 host->cclk = host->mclk / (2 * (clk + 1));
408 }
409
410 clk |= variant->clkreg_enable;
411 clk |= MCI_CLK_ENABLE;
412 /* This hasn't proven to be worthwhile */
413 /* clk |= MCI_CLK_PWRSAVE; */
414 }
415
416 /* Set actual clock for debug */
417 host->mmc->actual_clock = host->cclk;
418
419 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
420 clk |= MCI_4BIT_BUS;
421 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
422 clk |= variant->clkreg_8bit_bus_enable;
423
424 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
425 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
426 clk |= variant->clkreg_neg_edge_enable;
427
428 mmci_write_clkreg(host, clk);
429}
430
431static void
432mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
433{
434 writel(0, host->base + MMCICOMMAND);
435
436 BUG_ON(host->data);
437
438 host->mrq = NULL;
439 host->cmd = NULL;
440
441 mmc_request_done(host->mmc, mrq);
442}
443
444static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
445{
446 void __iomem *base = host->base;
447 struct variant_data *variant = host->variant;
448
449 if (host->singleirq) {
450 unsigned int mask0 = readl(base + MMCIMASK0);
451
452 mask0 &= ~MCI_IRQ1MASK;
453 mask0 |= mask;
454
455 writel(mask0, base + MMCIMASK0);
456 }
457
458 if (variant->mmcimask1)
459 writel(mask, base + MMCIMASK1);
460
461 host->mask1_reg = mask;
462}
463
464static void mmci_stop_data(struct mmci_host *host)
465{
466 mmci_write_datactrlreg(host, 0);
467 mmci_set_mask1(host, 0);
468 host->data = NULL;
469}
470
471static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
472{
473 unsigned int flags = SG_MITER_ATOMIC;
474
475 if (data->flags & MMC_DATA_READ)
476 flags |= SG_MITER_TO_SG;
477 else
478 flags |= SG_MITER_FROM_SG;
479
480 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
481}
482
483/*
484 * All the DMA operation mode stuff goes inside this ifdef.
485 * This assumes that you have a generic DMA device interface,
486 * no custom DMA interfaces are supported.
487 */
488#ifdef CONFIG_DMA_ENGINE
489static void mmci_dma_setup(struct mmci_host *host)
490{
491 const char *rxname, *txname;
492 struct variant_data *variant = host->variant;
493
494 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
495 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
496
497 /* initialize pre request cookie */
498 host->next_data.cookie = 1;
499
500 /*
501 * If only an RX channel is specified, the driver will
502 * attempt to use it bidirectionally, however if it is
503 * is specified but cannot be located, DMA will be disabled.
504 */
505 if (host->dma_rx_channel && !host->dma_tx_channel)
506 host->dma_tx_channel = host->dma_rx_channel;
507
508 if (host->dma_rx_channel)
509 rxname = dma_chan_name(host->dma_rx_channel);
510 else
511 rxname = "none";
512
513 if (host->dma_tx_channel)
514 txname = dma_chan_name(host->dma_tx_channel);
515 else
516 txname = "none";
517
518 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
519 rxname, txname);
520
521 /*
522 * Limit the maximum segment size in any SG entry according to
523 * the parameters of the DMA engine device.
524 */
525 if (host->dma_tx_channel) {
526 struct device *dev = host->dma_tx_channel->device->dev;
527 unsigned int max_seg_size = dma_get_max_seg_size(dev);
528
529 if (max_seg_size < host->mmc->max_seg_size)
530 host->mmc->max_seg_size = max_seg_size;
531 }
532 if (host->dma_rx_channel) {
533 struct device *dev = host->dma_rx_channel->device->dev;
534 unsigned int max_seg_size = dma_get_max_seg_size(dev);
535
536 if (max_seg_size < host->mmc->max_seg_size)
537 host->mmc->max_seg_size = max_seg_size;
538 }
539
540 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
541 if (dml_hw_init(host, host->mmc->parent->of_node))
542 variant->qcom_dml = false;
543}
544
545/*
546 * This is used in or so inline it
547 * so it can be discarded.
548 */
549static inline void mmci_dma_release(struct mmci_host *host)
550{
551 if (host->dma_rx_channel)
552 dma_release_channel(host->dma_rx_channel);
553 if (host->dma_tx_channel)
554 dma_release_channel(host->dma_tx_channel);
555 host->dma_rx_channel = host->dma_tx_channel = NULL;
556}
557
558static void mmci_dma_data_error(struct mmci_host *host)
559{
560 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
561 dmaengine_terminate_all(host->dma_current);
562 host->dma_in_progress = false;
563 host->dma_current = NULL;
564 host->dma_desc_current = NULL;
565 host->data->host_cookie = 0;
566}
567
568static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
569{
570 struct dma_chan *chan;
571
572 if (data->flags & MMC_DATA_READ)
573 chan = host->dma_rx_channel;
574 else
575 chan = host->dma_tx_channel;
576
577 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
578 mmc_get_dma_dir(data));
579}
580
581static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
582{
583 u32 status;
584 int i;
585
586 /* Wait up to 1ms for the DMA to complete */
587 for (i = 0; ; i++) {
588 status = readl(host->base + MMCISTATUS);
589 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
590 break;
591 udelay(10);
592 }
593
594 /*
595 * Check to see whether we still have some data left in the FIFO -
596 * this catches DMA controllers which are unable to monitor the
597 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
598 * contiguous buffers. On TX, we'll get a FIFO underrun error.
599 */
600 if (status & MCI_RXDATAAVLBLMASK) {
601 mmci_dma_data_error(host);
602 if (!data->error)
603 data->error = -EIO;
604 }
605
606 if (!data->host_cookie)
607 mmci_dma_unmap(host, data);
608
609 /*
610 * Use of DMA with scatter-gather is impossible.
611 * Give up with DMA and switch back to PIO mode.
612 */
613 if (status & MCI_RXDATAAVLBLMASK) {
614 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
615 mmci_dma_release(host);
616 }
617
618 host->dma_in_progress = false;
619 host->dma_current = NULL;
620 host->dma_desc_current = NULL;
621}
622
623/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
624static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
625 struct dma_chan **dma_chan,
626 struct dma_async_tx_descriptor **dma_desc)
627{
628 struct variant_data *variant = host->variant;
629 struct dma_slave_config conf = {
630 .src_addr = host->phybase + MMCIFIFO,
631 .dst_addr = host->phybase + MMCIFIFO,
632 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
633 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
634 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
635 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
636 .device_fc = false,
637 };
638 struct dma_chan *chan;
639 struct dma_device *device;
640 struct dma_async_tx_descriptor *desc;
641 int nr_sg;
642 unsigned long flags = DMA_CTRL_ACK;
643
644 if (data->flags & MMC_DATA_READ) {
645 conf.direction = DMA_DEV_TO_MEM;
646 chan = host->dma_rx_channel;
647 } else {
648 conf.direction = DMA_MEM_TO_DEV;
649 chan = host->dma_tx_channel;
650 }
651
652 /* If there's no DMA channel, fall back to PIO */
653 if (!chan)
654 return -EINVAL;
655
656 /* If less than or equal to the fifo size, don't bother with DMA */
657 if (data->blksz * data->blocks <= variant->fifosize)
658 return -EINVAL;
659
660 device = chan->device;
661 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
662 mmc_get_dma_dir(data));
663 if (nr_sg == 0)
664 return -EINVAL;
665
666 if (host->variant->qcom_dml)
667 flags |= DMA_PREP_INTERRUPT;
668
669 dmaengine_slave_config(chan, &conf);
670 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
671 conf.direction, flags);
672 if (!desc)
673 goto unmap_exit;
674
675 *dma_chan = chan;
676 *dma_desc = desc;
677
678 return 0;
679
680 unmap_exit:
681 dma_unmap_sg(device->dev, data->sg, data->sg_len,
682 mmc_get_dma_dir(data));
683 return -ENOMEM;
684}
685
686static inline int mmci_dma_prep_data(struct mmci_host *host,
687 struct mmc_data *data)
688{
689 /* Check if next job is already prepared. */
690 if (host->dma_current && host->dma_desc_current)
691 return 0;
692
693 /* No job were prepared thus do it now. */
694 return __mmci_dma_prep_data(host, data, &host->dma_current,
695 &host->dma_desc_current);
696}
697
698static inline int mmci_dma_prep_next(struct mmci_host *host,
699 struct mmc_data *data)
700{
701 struct mmci_host_next *nd = &host->next_data;
702 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
703}
704
705static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
706{
707 int ret;
708 struct mmc_data *data = host->data;
709
710 ret = mmci_dma_prep_data(host, host->data);
711 if (ret)
712 return ret;
713
714 /* Okay, go for it. */
715 dev_vdbg(mmc_dev(host->mmc),
716 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
717 data->sg_len, data->blksz, data->blocks, data->flags);
718 host->dma_in_progress = true;
719 dmaengine_submit(host->dma_desc_current);
720 dma_async_issue_pending(host->dma_current);
721
722 if (host->variant->qcom_dml)
723 dml_start_xfer(host, data);
724
725 datactrl |= MCI_DPSM_DMAENABLE;
726
727 /* Trigger the DMA transfer */
728 mmci_write_datactrlreg(host, datactrl);
729
730 /*
731 * Let the MMCI say when the data is ended and it's time
732 * to fire next DMA request. When that happens, MMCI will
733 * call mmci_data_end()
734 */
735 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
736 host->base + MMCIMASK0);
737 return 0;
738}
739
740static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
741{
742 struct mmci_host_next *next = &host->next_data;
743
744 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
745 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
746
747 host->dma_desc_current = next->dma_desc;
748 host->dma_current = next->dma_chan;
749 next->dma_desc = NULL;
750 next->dma_chan = NULL;
751}
752
753static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
754{
755 struct mmci_host *host = mmc_priv(mmc);
756 struct mmc_data *data = mrq->data;
757 struct mmci_host_next *nd = &host->next_data;
758
759 if (!data)
760 return;
761
762 BUG_ON(data->host_cookie);
763
764 if (mmci_validate_data(host, data))
765 return;
766
767 if (!mmci_dma_prep_next(host, data))
768 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
769}
770
771static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
772 int err)
773{
774 struct mmci_host *host = mmc_priv(mmc);
775 struct mmc_data *data = mrq->data;
776
777 if (!data || !data->host_cookie)
778 return;
779
780 mmci_dma_unmap(host, data);
781
782 if (err) {
783 struct mmci_host_next *next = &host->next_data;
784 struct dma_chan *chan;
785 if (data->flags & MMC_DATA_READ)
786 chan = host->dma_rx_channel;
787 else
788 chan = host->dma_tx_channel;
789 dmaengine_terminate_all(chan);
790
791 if (host->dma_desc_current == next->dma_desc)
792 host->dma_desc_current = NULL;
793
794 if (host->dma_current == next->dma_chan) {
795 host->dma_in_progress = false;
796 host->dma_current = NULL;
797 }
798
799 next->dma_desc = NULL;
800 next->dma_chan = NULL;
801 data->host_cookie = 0;
802 }
803}
804
805#else
806/* Blank functions if the DMA engine is not available */
807static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
808{
809}
810static inline void mmci_dma_setup(struct mmci_host *host)
811{
812}
813
814static inline void mmci_dma_release(struct mmci_host *host)
815{
816}
817
818static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
819{
820}
821
822static inline void mmci_dma_finalize(struct mmci_host *host,
823 struct mmc_data *data)
824{
825}
826
827static inline void mmci_dma_data_error(struct mmci_host *host)
828{
829}
830
831static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
832{
833 return -ENOSYS;
834}
835
836#define mmci_pre_request NULL
837#define mmci_post_request NULL
838
839#endif
840
841static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
842{
843 struct variant_data *variant = host->variant;
844 unsigned int datactrl, timeout, irqmask;
845 unsigned long long clks;
846 void __iomem *base;
847 int blksz_bits;
848
849 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
850 data->blksz, data->blocks, data->flags);
851
852 host->data = data;
853 host->size = data->blksz * data->blocks;
854 data->bytes_xfered = 0;
855
856 clks = (unsigned long long)data->timeout_ns * host->cclk;
857 do_div(clks, NSEC_PER_SEC);
858
859 timeout = data->timeout_clks + (unsigned int)clks;
860
861 base = host->base;
862 writel(timeout, base + MMCIDATATIMER);
863 writel(host->size, base + MMCIDATALENGTH);
864
865 blksz_bits = ffs(data->blksz) - 1;
866 BUG_ON(1 << blksz_bits != data->blksz);
867
868 if (variant->blksz_datactrl16)
869 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
870 else if (variant->blksz_datactrl4)
871 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
872 else
873 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
874
875 if (data->flags & MMC_DATA_READ)
876 datactrl |= MCI_DPSM_DIRECTION;
877
878 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
879 u32 clk;
880
881 datactrl |= variant->datactrl_mask_sdio;
882
883 /*
884 * The ST Micro variant for SDIO small write transfers
885 * needs to have clock H/W flow control disabled,
886 * otherwise the transfer will not start. The threshold
887 * depends on the rate of MCLK.
888 */
889 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
890 (host->size < 8 ||
891 (host->size <= 8 && host->mclk > 50000000)))
892 clk = host->clk_reg & ~variant->clkreg_enable;
893 else
894 clk = host->clk_reg | variant->clkreg_enable;
895
896 mmci_write_clkreg(host, clk);
897 }
898
899 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
900 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
901 datactrl |= variant->datactrl_mask_ddrmode;
902
903 /*
904 * Attempt to use DMA operation mode, if this
905 * should fail, fall back to PIO mode
906 */
907 if (!mmci_dma_start_data(host, datactrl))
908 return;
909
910 /* IRQ mode, map the SG list for CPU reading/writing */
911 mmci_init_sg(host, data);
912
913 if (data->flags & MMC_DATA_READ) {
914 irqmask = MCI_RXFIFOHALFFULLMASK;
915
916 /*
917 * If we have less than the fifo 'half-full' threshold to
918 * transfer, trigger a PIO interrupt as soon as any data
919 * is available.
920 */
921 if (host->size < variant->fifohalfsize)
922 irqmask |= MCI_RXDATAAVLBLMASK;
923 } else {
924 /*
925 * We don't actually need to include "FIFO empty" here
926 * since its implicit in "FIFO half empty".
927 */
928 irqmask = MCI_TXFIFOHALFEMPTYMASK;
929 }
930
931 mmci_write_datactrlreg(host, datactrl);
932 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
933 mmci_set_mask1(host, irqmask);
934}
935
936static void
937mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
938{
939 void __iomem *base = host->base;
940
941 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
942 cmd->opcode, cmd->arg, cmd->flags);
943
944 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
945 writel(0, base + MMCICOMMAND);
946 mmci_reg_delay(host);
947 }
948
949 c |= cmd->opcode | MCI_CPSM_ENABLE;
950 if (cmd->flags & MMC_RSP_PRESENT) {
951 if (cmd->flags & MMC_RSP_136)
952 c |= MCI_CPSM_LONGRSP;
953 c |= MCI_CPSM_RESPONSE;
954 }
955 if (/*interrupt*/0)
956 c |= MCI_CPSM_INTERRUPT;
957
958 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
959 c |= host->variant->data_cmd_enable;
960
961 host->cmd = cmd;
962
963 writel(cmd->arg, base + MMCIARGUMENT);
964 writel(c, base + MMCICOMMAND);
965}
966
967static void
968mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
969 unsigned int status)
970{
971 /* Make sure we have data to handle */
972 if (!data)
973 return;
974
975 /* First check for errors */
976 if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
977 host->variant->start_err |
978 MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
979 u32 remain, success;
980
981 /* Terminate the DMA transfer */
982 if (dma_inprogress(host)) {
983 mmci_dma_data_error(host);
984 mmci_dma_unmap(host, data);
985 }
986
987 /*
988 * Calculate how far we are into the transfer. Note that
989 * the data counter gives the number of bytes transferred
990 * on the MMC bus, not on the host side. On reads, this
991 * can be as much as a FIFO-worth of data ahead. This
992 * matters for FIFO overruns only.
993 */
994 remain = readl(host->base + MMCIDATACNT);
995 success = data->blksz * data->blocks - remain;
996
997 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
998 status, success);
999 if (status & MCI_DATACRCFAIL) {
1000 /* Last block was not successful */
1001 success -= 1;
1002 data->error = -EILSEQ;
1003 } else if (status & MCI_DATATIMEOUT) {
1004 data->error = -ETIMEDOUT;
1005 } else if (status & MCI_STARTBITERR) {
1006 data->error = -ECOMM;
1007 } else if (status & MCI_TXUNDERRUN) {
1008 data->error = -EIO;
1009 } else if (status & MCI_RXOVERRUN) {
1010 if (success > host->variant->fifosize)
1011 success -= host->variant->fifosize;
1012 else
1013 success = 0;
1014 data->error = -EIO;
1015 }
1016 data->bytes_xfered = round_down(success, data->blksz);
1017 }
1018
1019 if (status & MCI_DATABLOCKEND)
1020 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022 if (status & MCI_DATAEND || data->error) {
1023 if (dma_inprogress(host))
1024 mmci_dma_finalize(host, data);
1025 mmci_stop_data(host);
1026
1027 if (!data->error)
1028 /* The error clause is handled above, success! */
1029 data->bytes_xfered = data->blksz * data->blocks;
1030
1031 if (!data->stop || host->mrq->sbc) {
1032 mmci_request_end(host, data->mrq);
1033 } else {
1034 mmci_start_command(host, data->stop, 0);
1035 }
1036 }
1037}
1038
1039static void
1040mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041 unsigned int status)
1042{
1043 void __iomem *base = host->base;
1044 bool sbc;
1045
1046 if (!cmd)
1047 return;
1048
1049 sbc = (cmd == host->mrq->sbc);
1050
1051 /*
1052 * We need to be one of these interrupts to be considered worth
1053 * handling. Note that we tag on any latent IRQs postponed
1054 * due to waiting for busy status.
1055 */
1056 if (!((status|host->busy_status) &
1057 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058 return;
1059
1060 /*
1061 * ST Micro variant: handle busy detection.
1062 */
1063 if (host->variant->busy_detect) {
1064 bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066 /* We are busy with a command, return */
1067 if (host->busy_status &&
1068 (status & host->variant->busy_detect_flag))
1069 return;
1070
1071 /*
1072 * We were not busy, but we now got a busy response on
1073 * something that was not an error, and we double-check
1074 * that the special busy status bit is still set before
1075 * proceeding.
1076 */
1077 if (!host->busy_status && busy_resp &&
1078 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081 /* Clear the busy start IRQ */
1082 writel(host->variant->busy_detect_mask,
1083 host->base + MMCICLEAR);
1084
1085 /* Unmask the busy end IRQ */
1086 writel(readl(base + MMCIMASK0) |
1087 host->variant->busy_detect_mask,
1088 base + MMCIMASK0);
1089 /*
1090 * Now cache the last response status code (until
1091 * the busy bit goes low), and return.
1092 */
1093 host->busy_status =
1094 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095 return;
1096 }
1097
1098 /*
1099 * At this point we are not busy with a command, we have
1100 * not received a new busy request, clear and mask the busy
1101 * end IRQ and fall through to process the IRQ.
1102 */
1103 if (host->busy_status) {
1104
1105 writel(host->variant->busy_detect_mask,
1106 host->base + MMCICLEAR);
1107
1108 writel(readl(base + MMCIMASK0) &
1109 ~host->variant->busy_detect_mask,
1110 base + MMCIMASK0);
1111 host->busy_status = 0;
1112 }
1113 }
1114
1115 host->cmd = NULL;
1116
1117 if (status & MCI_CMDTIMEOUT) {
1118 cmd->error = -ETIMEDOUT;
1119 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120 cmd->error = -EILSEQ;
1121 } else {
1122 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126 }
1127
1128 if ((!sbc && !cmd->data) || cmd->error) {
1129 if (host->data) {
1130 /* Terminate the DMA transfer */
1131 if (dma_inprogress(host)) {
1132 mmci_dma_data_error(host);
1133 mmci_dma_unmap(host, host->data);
1134 }
1135 mmci_stop_data(host);
1136 }
1137 mmci_request_end(host, host->mrq);
1138 } else if (sbc) {
1139 mmci_start_command(host, host->mrq->cmd, 0);
1140 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141 mmci_start_data(host, cmd->data);
1142 }
1143}
1144
1145static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146{
1147 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148}
1149
1150static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151{
1152 /*
1153 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154 * from the fifo range should be used
1155 */
1156 if (status & MCI_RXFIFOHALFFULL)
1157 return host->variant->fifohalfsize;
1158 else if (status & MCI_RXDATAAVLBL)
1159 return 4;
1160
1161 return 0;
1162}
1163
1164static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165{
1166 void __iomem *base = host->base;
1167 char *ptr = buffer;
1168 u32 status = readl(host->base + MMCISTATUS);
1169 int host_remain = host->size;
1170
1171 do {
1172 int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174 if (count > remain)
1175 count = remain;
1176
1177 if (count <= 0)
1178 break;
1179
1180 /*
1181 * SDIO especially may want to send something that is
1182 * not divisible by 4 (as opposed to card sectors
1183 * etc). Therefore make sure to always read the last bytes
1184 * while only doing full 32-bit reads towards the FIFO.
1185 */
1186 if (unlikely(count & 0x3)) {
1187 if (count < 4) {
1188 unsigned char buf[4];
1189 ioread32_rep(base + MMCIFIFO, buf, 1);
1190 memcpy(ptr, buf, count);
1191 } else {
1192 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193 count &= ~0x3;
1194 }
1195 } else {
1196 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197 }
1198
1199 ptr += count;
1200 remain -= count;
1201 host_remain -= count;
1202
1203 if (remain == 0)
1204 break;
1205
1206 status = readl(base + MMCISTATUS);
1207 } while (status & MCI_RXDATAAVLBL);
1208
1209 return ptr - buffer;
1210}
1211
1212static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213{
1214 struct variant_data *variant = host->variant;
1215 void __iomem *base = host->base;
1216 char *ptr = buffer;
1217
1218 do {
1219 unsigned int count, maxcnt;
1220
1221 maxcnt = status & MCI_TXFIFOEMPTY ?
1222 variant->fifosize : variant->fifohalfsize;
1223 count = min(remain, maxcnt);
1224
1225 /*
1226 * SDIO especially may want to send something that is
1227 * not divisible by 4 (as opposed to card sectors
1228 * etc), and the FIFO only accept full 32-bit writes.
1229 * So compensate by adding +3 on the count, a single
1230 * byte become a 32bit write, 7 bytes will be two
1231 * 32bit writes etc.
1232 */
1233 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235 ptr += count;
1236 remain -= count;
1237
1238 if (remain == 0)
1239 break;
1240
1241 status = readl(base + MMCISTATUS);
1242 } while (status & MCI_TXFIFOHALFEMPTY);
1243
1244 return ptr - buffer;
1245}
1246
1247/*
1248 * PIO data transfer IRQ handler.
1249 */
1250static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251{
1252 struct mmci_host *host = dev_id;
1253 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254 struct variant_data *variant = host->variant;
1255 void __iomem *base = host->base;
1256 unsigned long flags;
1257 u32 status;
1258
1259 status = readl(base + MMCISTATUS);
1260
1261 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263 local_irq_save(flags);
1264
1265 do {
1266 unsigned int remain, len;
1267 char *buffer;
1268
1269 /*
1270 * For write, we only need to test the half-empty flag
1271 * here - if the FIFO is completely empty, then by
1272 * definition it is more than half empty.
1273 *
1274 * For read, check for data available.
1275 */
1276 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277 break;
1278
1279 if (!sg_miter_next(sg_miter))
1280 break;
1281
1282 buffer = sg_miter->addr;
1283 remain = sg_miter->length;
1284
1285 len = 0;
1286 if (status & MCI_RXACTIVE)
1287 len = mmci_pio_read(host, buffer, remain);
1288 if (status & MCI_TXACTIVE)
1289 len = mmci_pio_write(host, buffer, remain, status);
1290
1291 sg_miter->consumed = len;
1292
1293 host->size -= len;
1294 remain -= len;
1295
1296 if (remain)
1297 break;
1298
1299 status = readl(base + MMCISTATUS);
1300 } while (1);
1301
1302 sg_miter_stop(sg_miter);
1303
1304 local_irq_restore(flags);
1305
1306 /*
1307 * If we have less than the fifo 'half-full' threshold to transfer,
1308 * trigger a PIO interrupt as soon as any data is available.
1309 */
1310 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313 /*
1314 * If we run out of data, disable the data IRQs; this
1315 * prevents a race where the FIFO becomes empty before
1316 * the chip itself has disabled the data path, and
1317 * stops us racing with our data end IRQ.
1318 */
1319 if (host->size == 0) {
1320 mmci_set_mask1(host, 0);
1321 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322 }
1323
1324 return IRQ_HANDLED;
1325}
1326
1327/*
1328 * Handle completion of command and data transfers.
1329 */
1330static irqreturn_t mmci_irq(int irq, void *dev_id)
1331{
1332 struct mmci_host *host = dev_id;
1333 u32 status;
1334 int ret = 0;
1335
1336 spin_lock(&host->lock);
1337
1338 do {
1339 status = readl(host->base + MMCISTATUS);
1340
1341 if (host->singleirq) {
1342 if (status & host->mask1_reg)
1343 mmci_pio_irq(irq, dev_id);
1344
1345 status &= ~MCI_IRQ1MASK;
1346 }
1347
1348 /*
1349 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351 * detection variant is handled. Considering the HW seems to be
1352 * triggering the IRQ on both edges while monitoring DAT0 for
1353 * busy completion and that same status bit is used to monitor
1354 * start and end of busy detection, special care must be taken
1355 * to make sure that both start and end interrupts are always
1356 * cleared one after the other.
1357 */
1358 status &= readl(host->base + MMCIMASK0);
1359 if (host->variant->busy_detect)
1360 writel(status & ~host->variant->busy_detect_mask,
1361 host->base + MMCICLEAR);
1362 else
1363 writel(status, host->base + MMCICLEAR);
1364
1365 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367 if (host->variant->reversed_irq_handling) {
1368 mmci_data_irq(host, host->data, status);
1369 mmci_cmd_irq(host, host->cmd, status);
1370 } else {
1371 mmci_cmd_irq(host, host->cmd, status);
1372 mmci_data_irq(host, host->data, status);
1373 }
1374
1375 /*
1376 * Don't poll for busy completion in irq context.
1377 */
1378 if (host->variant->busy_detect && host->busy_status)
1379 status &= ~host->variant->busy_detect_flag;
1380
1381 ret = 1;
1382 } while (status);
1383
1384 spin_unlock(&host->lock);
1385
1386 return IRQ_RETVAL(ret);
1387}
1388
1389static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390{
1391 struct mmci_host *host = mmc_priv(mmc);
1392 unsigned long flags;
1393
1394 WARN_ON(host->mrq != NULL);
1395
1396 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397 if (mrq->cmd->error) {
1398 mmc_request_done(mmc, mrq);
1399 return;
1400 }
1401
1402 spin_lock_irqsave(&host->lock, flags);
1403
1404 host->mrq = mrq;
1405
1406 if (mrq->data)
1407 mmci_get_next_data(host, mrq->data);
1408
1409 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1410 mmci_start_data(host, mrq->data);
1411
1412 if (mrq->sbc)
1413 mmci_start_command(host, mrq->sbc, 0);
1414 else
1415 mmci_start_command(host, mrq->cmd, 0);
1416
1417 spin_unlock_irqrestore(&host->lock, flags);
1418}
1419
1420static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421{
1422 struct mmci_host *host = mmc_priv(mmc);
1423 struct variant_data *variant = host->variant;
1424 u32 pwr = 0;
1425 unsigned long flags;
1426 int ret;
1427
1428 if (host->plat->ios_handler &&
1429 host->plat->ios_handler(mmc_dev(mmc), ios))
1430 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432 switch (ios->power_mode) {
1433 case MMC_POWER_OFF:
1434 if (!IS_ERR(mmc->supply.vmmc))
1435 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438 regulator_disable(mmc->supply.vqmmc);
1439 host->vqmmc_enabled = false;
1440 }
1441
1442 break;
1443 case MMC_POWER_UP:
1444 if (!IS_ERR(mmc->supply.vmmc))
1445 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
1447 /*
1448 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449 * and instead uses MCI_PWR_ON so apply whatever value is
1450 * configured in the variant data.
1451 */
1452 pwr |= variant->pwrreg_powerup;
1453
1454 break;
1455 case MMC_POWER_ON:
1456 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457 ret = regulator_enable(mmc->supply.vqmmc);
1458 if (ret < 0)
1459 dev_err(mmc_dev(mmc),
1460 "failed to enable vqmmc regulator\n");
1461 else
1462 host->vqmmc_enabled = true;
1463 }
1464
1465 pwr |= MCI_PWR_ON;
1466 break;
1467 }
1468
1469 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470 /*
1471 * The ST Micro variant has some additional bits
1472 * indicating signal direction for the signals in
1473 * the SD/MMC bus and feedback-clock usage.
1474 */
1475 pwr |= host->pwr_reg_add;
1476
1477 if (ios->bus_width == MMC_BUS_WIDTH_4)
1478 pwr &= ~MCI_ST_DATA74DIREN;
1479 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480 pwr &= (~MCI_ST_DATA74DIREN &
1481 ~MCI_ST_DATA31DIREN &
1482 ~MCI_ST_DATA2DIREN);
1483 }
1484
1485 if (variant->opendrain) {
1486 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487 pwr |= variant->opendrain;
1488 } else {
1489 /*
1490 * If the variant cannot configure the pads by its own, then we
1491 * expect the pinctrl to be able to do that for us
1492 */
1493 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495 else
1496 pinctrl_select_state(host->pinctrl, host->pins_default);
1497 }
1498
1499 /*
1500 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501 * gating the clock, the MCI_PWR_ON bit is cleared.
1502 */
1503 if (!ios->clock && variant->pwrreg_clkgate)
1504 pwr &= ~MCI_PWR_ON;
1505
1506 if (host->variant->explicit_mclk_control &&
1507 ios->clock != host->clock_cache) {
1508 ret = clk_set_rate(host->clk, ios->clock);
1509 if (ret < 0)
1510 dev_err(mmc_dev(host->mmc),
1511 "Error setting clock rate (%d)\n", ret);
1512 else
1513 host->mclk = clk_get_rate(host->clk);
1514 }
1515 host->clock_cache = ios->clock;
1516
1517 spin_lock_irqsave(&host->lock, flags);
1518
1519 mmci_set_clkreg(host, ios->clock);
1520 mmci_write_pwrreg(host, pwr);
1521 mmci_reg_delay(host);
1522
1523 spin_unlock_irqrestore(&host->lock, flags);
1524}
1525
1526static int mmci_get_cd(struct mmc_host *mmc)
1527{
1528 struct mmci_host *host = mmc_priv(mmc);
1529 struct mmci_platform_data *plat = host->plat;
1530 unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532 if (status == -ENOSYS) {
1533 if (!plat->status)
1534 return 1; /* Assume always present */
1535
1536 status = plat->status(mmc_dev(host->mmc));
1537 }
1538 return status;
1539}
1540
1541static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542{
1543 int ret = 0;
1544
1545 if (!IS_ERR(mmc->supply.vqmmc)) {
1546
1547 switch (ios->signal_voltage) {
1548 case MMC_SIGNAL_VOLTAGE_330:
1549 ret = regulator_set_voltage(mmc->supply.vqmmc,
1550 2700000, 3600000);
1551 break;
1552 case MMC_SIGNAL_VOLTAGE_180:
1553 ret = regulator_set_voltage(mmc->supply.vqmmc,
1554 1700000, 1950000);
1555 break;
1556 case MMC_SIGNAL_VOLTAGE_120:
1557 ret = regulator_set_voltage(mmc->supply.vqmmc,
1558 1100000, 1300000);
1559 break;
1560 }
1561
1562 if (ret)
1563 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1564 }
1565
1566 return ret;
1567}
1568
1569static struct mmc_host_ops mmci_ops = {
1570 .request = mmci_request,
1571 .pre_req = mmci_pre_request,
1572 .post_req = mmci_post_request,
1573 .set_ios = mmci_set_ios,
1574 .get_ro = mmc_gpio_get_ro,
1575 .get_cd = mmci_get_cd,
1576 .start_signal_voltage_switch = mmci_sig_volt_switch,
1577};
1578
1579static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1580{
1581 struct mmci_host *host = mmc_priv(mmc);
1582 int ret = mmc_of_parse(mmc);
1583
1584 if (ret)
1585 return ret;
1586
1587 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1599
1600 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605 return 0;
1606}
1607
1608static int mmci_probe(struct amba_device *dev,
1609 const struct amba_id *id)
1610{
1611 struct mmci_platform_data *plat = dev->dev.platform_data;
1612 struct device_node *np = dev->dev.of_node;
1613 struct variant_data *variant = id->data;
1614 struct mmci_host *host;
1615 struct mmc_host *mmc;
1616 int ret;
1617
1618 /* Must have platform data or Device Tree. */
1619 if (!plat && !np) {
1620 dev_err(&dev->dev, "No plat data or DT found\n");
1621 return -EINVAL;
1622 }
1623
1624 if (!plat) {
1625 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626 if (!plat)
1627 return -ENOMEM;
1628 }
1629
1630 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631 if (!mmc)
1632 return -ENOMEM;
1633
1634 ret = mmci_of_parse(np, mmc);
1635 if (ret)
1636 goto host_free;
1637
1638 host = mmc_priv(mmc);
1639 host->mmc = mmc;
1640
1641 /*
1642 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643 * pins can be set accordingly using pinctrl
1644 */
1645 if (!variant->opendrain) {
1646 host->pinctrl = devm_pinctrl_get(&dev->dev);
1647 if (IS_ERR(host->pinctrl)) {
1648 dev_err(&dev->dev, "failed to get pinctrl");
1649 ret = PTR_ERR(host->pinctrl);
1650 goto host_free;
1651 }
1652
1653 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1654 PINCTRL_STATE_DEFAULT);
1655 if (IS_ERR(host->pins_default)) {
1656 dev_err(mmc_dev(mmc), "Can't select default pins\n");
1657 ret = PTR_ERR(host->pins_default);
1658 goto host_free;
1659 }
1660
1661 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1662 MMCI_PINCTRL_STATE_OPENDRAIN);
1663 if (IS_ERR(host->pins_opendrain)) {
1664 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1665 ret = PTR_ERR(host->pins_opendrain);
1666 goto host_free;
1667 }
1668 }
1669
1670 host->hw_designer = amba_manf(dev);
1671 host->hw_revision = amba_rev(dev);
1672 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1673 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1674
1675 host->clk = devm_clk_get(&dev->dev, NULL);
1676 if (IS_ERR(host->clk)) {
1677 ret = PTR_ERR(host->clk);
1678 goto host_free;
1679 }
1680
1681 ret = clk_prepare_enable(host->clk);
1682 if (ret)
1683 goto host_free;
1684
1685 if (variant->qcom_fifo)
1686 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1687 else
1688 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1689
1690 host->plat = plat;
1691 host->variant = variant;
1692 host->mclk = clk_get_rate(host->clk);
1693 /*
1694 * According to the spec, mclk is max 100 MHz,
1695 * so we try to adjust the clock down to this,
1696 * (if possible).
1697 */
1698 if (host->mclk > variant->f_max) {
1699 ret = clk_set_rate(host->clk, variant->f_max);
1700 if (ret < 0)
1701 goto clk_disable;
1702 host->mclk = clk_get_rate(host->clk);
1703 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704 host->mclk);
1705 }
1706
1707 host->phybase = dev->res.start;
1708 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1709 if (IS_ERR(host->base)) {
1710 ret = PTR_ERR(host->base);
1711 goto clk_disable;
1712 }
1713
1714 /*
1715 * The ARM and ST versions of the block have slightly different
1716 * clock divider equations which means that the minimum divider
1717 * differs too.
1718 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1719 */
1720 if (variant->st_clkdiv)
1721 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1722 else if (variant->explicit_mclk_control)
1723 mmc->f_min = clk_round_rate(host->clk, 100000);
1724 else
1725 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1726 /*
1727 * If no maximum operating frequency is supplied, fall back to use
1728 * the module parameter, which has a (low) default value in case it
1729 * is not specified. Either value must not exceed the clock rate into
1730 * the block, of course.
1731 */
1732 if (mmc->f_max)
1733 mmc->f_max = variant->explicit_mclk_control ?
1734 min(variant->f_max, mmc->f_max) :
1735 min(host->mclk, mmc->f_max);
1736 else
1737 mmc->f_max = variant->explicit_mclk_control ?
1738 fmax : min(host->mclk, fmax);
1739
1740
1741 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1742
1743 /* Get regulators and the supported OCR mask */
1744 ret = mmc_regulator_get_supply(mmc);
1745 if (ret)
1746 goto clk_disable;
1747
1748 if (!mmc->ocr_avail)
1749 mmc->ocr_avail = plat->ocr_mask;
1750 else if (plat->ocr_mask)
1751 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1752
1753 /* DT takes precedence over platform data. */
1754 if (!np) {
1755 if (!plat->cd_invert)
1756 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1757 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1758 }
1759
1760 /* We support these capabilities. */
1761 mmc->caps |= MMC_CAP_CMD23;
1762
1763 /*
1764 * Enable busy detection.
1765 */
1766 if (variant->busy_detect) {
1767 mmci_ops.card_busy = mmci_card_busy;
1768 /*
1769 * Not all variants have a flag to enable busy detection
1770 * in the DPSM, but if they do, set it here.
1771 */
1772 if (variant->busy_dpsm_flag)
1773 mmci_write_datactrlreg(host,
1774 host->variant->busy_dpsm_flag);
1775 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1776 mmc->max_busy_timeout = 0;
1777 }
1778
1779 mmc->ops = &mmci_ops;
1780
1781 /* We support these PM capabilities. */
1782 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1783
1784 /*
1785 * We can do SGIO
1786 */
1787 mmc->max_segs = NR_SG;
1788
1789 /*
1790 * Since only a certain number of bits are valid in the data length
1791 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1792 * single request.
1793 */
1794 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1795
1796 /*
1797 * Set the maximum segment size. Since we aren't doing DMA
1798 * (yet) we are only limited by the data length register.
1799 */
1800 mmc->max_seg_size = mmc->max_req_size;
1801
1802 /*
1803 * Block size can be up to 2048 bytes, but must be a power of two.
1804 */
1805 mmc->max_blk_size = 1 << 11;
1806
1807 /*
1808 * Limit the number of blocks transferred so that we don't overflow
1809 * the maximum request size.
1810 */
1811 mmc->max_blk_count = mmc->max_req_size >> 11;
1812
1813 spin_lock_init(&host->lock);
1814
1815 writel(0, host->base + MMCIMASK0);
1816
1817 if (variant->mmcimask1)
1818 writel(0, host->base + MMCIMASK1);
1819
1820 writel(0xfff, host->base + MMCICLEAR);
1821
1822 /*
1823 * If:
1824 * - not using DT but using a descriptor table, or
1825 * - using a table of descriptors ALONGSIDE DT, or
1826 * look up these descriptors named "cd" and "wp" right here, fail
1827 * silently of these do not exist and proceed to try platform data
1828 */
1829 if (!np) {
1830 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1831 if (ret < 0) {
1832 if (ret == -EPROBE_DEFER)
1833 goto clk_disable;
1834 else if (gpio_is_valid(plat->gpio_cd)) {
1835 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1836 if (ret)
1837 goto clk_disable;
1838 }
1839 }
1840
1841 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1842 if (ret < 0) {
1843 if (ret == -EPROBE_DEFER)
1844 goto clk_disable;
1845 else if (gpio_is_valid(plat->gpio_wp)) {
1846 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1847 if (ret)
1848 goto clk_disable;
1849 }
1850 }
1851 }
1852
1853 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1854 DRIVER_NAME " (cmd)", host);
1855 if (ret)
1856 goto clk_disable;
1857
1858 if (!dev->irq[1])
1859 host->singleirq = true;
1860 else {
1861 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1862 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1863 if (ret)
1864 goto clk_disable;
1865 }
1866
1867 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1868
1869 amba_set_drvdata(dev, mmc);
1870
1871 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1873 amba_rev(dev), (unsigned long long)dev->res.start,
1874 dev->irq[0], dev->irq[1]);
1875
1876 mmci_dma_setup(host);
1877
1878 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1879 pm_runtime_use_autosuspend(&dev->dev);
1880
1881 mmc_add_host(mmc);
1882
1883 pm_runtime_put(&dev->dev);
1884 return 0;
1885
1886 clk_disable:
1887 clk_disable_unprepare(host->clk);
1888 host_free:
1889 mmc_free_host(mmc);
1890 return ret;
1891}
1892
1893static int mmci_remove(struct amba_device *dev)
1894{
1895 struct mmc_host *mmc = amba_get_drvdata(dev);
1896
1897 if (mmc) {
1898 struct mmci_host *host = mmc_priv(mmc);
1899 struct variant_data *variant = host->variant;
1900
1901 /*
1902 * Undo pm_runtime_put() in probe. We use the _sync
1903 * version here so that we can access the primecell.
1904 */
1905 pm_runtime_get_sync(&dev->dev);
1906
1907 mmc_remove_host(mmc);
1908
1909 writel(0, host->base + MMCIMASK0);
1910
1911 if (variant->mmcimask1)
1912 writel(0, host->base + MMCIMASK1);
1913
1914 writel(0, host->base + MMCICOMMAND);
1915 writel(0, host->base + MMCIDATACTRL);
1916
1917 mmci_dma_release(host);
1918 clk_disable_unprepare(host->clk);
1919 mmc_free_host(mmc);
1920 }
1921
1922 return 0;
1923}
1924
1925#ifdef CONFIG_PM
1926static void mmci_save(struct mmci_host *host)
1927{
1928 unsigned long flags;
1929
1930 spin_lock_irqsave(&host->lock, flags);
1931
1932 writel(0, host->base + MMCIMASK0);
1933 if (host->variant->pwrreg_nopower) {
1934 writel(0, host->base + MMCIDATACTRL);
1935 writel(0, host->base + MMCIPOWER);
1936 writel(0, host->base + MMCICLOCK);
1937 }
1938 mmci_reg_delay(host);
1939
1940 spin_unlock_irqrestore(&host->lock, flags);
1941}
1942
1943static void mmci_restore(struct mmci_host *host)
1944{
1945 unsigned long flags;
1946
1947 spin_lock_irqsave(&host->lock, flags);
1948
1949 if (host->variant->pwrreg_nopower) {
1950 writel(host->clk_reg, host->base + MMCICLOCK);
1951 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1952 writel(host->pwr_reg, host->base + MMCIPOWER);
1953 }
1954 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1955 mmci_reg_delay(host);
1956
1957 spin_unlock_irqrestore(&host->lock, flags);
1958}
1959
1960static int mmci_runtime_suspend(struct device *dev)
1961{
1962 struct amba_device *adev = to_amba_device(dev);
1963 struct mmc_host *mmc = amba_get_drvdata(adev);
1964
1965 if (mmc) {
1966 struct mmci_host *host = mmc_priv(mmc);
1967 pinctrl_pm_select_sleep_state(dev);
1968 mmci_save(host);
1969 clk_disable_unprepare(host->clk);
1970 }
1971
1972 return 0;
1973}
1974
1975static int mmci_runtime_resume(struct device *dev)
1976{
1977 struct amba_device *adev = to_amba_device(dev);
1978 struct mmc_host *mmc = amba_get_drvdata(adev);
1979
1980 if (mmc) {
1981 struct mmci_host *host = mmc_priv(mmc);
1982 clk_prepare_enable(host->clk);
1983 mmci_restore(host);
1984 pinctrl_pm_select_default_state(dev);
1985 }
1986
1987 return 0;
1988}
1989#endif
1990
1991static const struct dev_pm_ops mmci_dev_pm_ops = {
1992 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1993 pm_runtime_force_resume)
1994 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1995};
1996
1997static const struct amba_id mmci_ids[] = {
1998 {
1999 .id = 0x00041180,
2000 .mask = 0xff0fffff,
2001 .data = &variant_arm,
2002 },
2003 {
2004 .id = 0x01041180,
2005 .mask = 0xff0fffff,
2006 .data = &variant_arm_extended_fifo,
2007 },
2008 {
2009 .id = 0x02041180,
2010 .mask = 0xff0fffff,
2011 .data = &variant_arm_extended_fifo_hwfc,
2012 },
2013 {
2014 .id = 0x00041181,
2015 .mask = 0x000fffff,
2016 .data = &variant_arm,
2017 },
2018 /* ST Micro variants */
2019 {
2020 .id = 0x00180180,
2021 .mask = 0x00ffffff,
2022 .data = &variant_u300,
2023 },
2024 {
2025 .id = 0x10180180,
2026 .mask = 0xf0ffffff,
2027 .data = &variant_nomadik,
2028 },
2029 {
2030 .id = 0x00280180,
2031 .mask = 0x00ffffff,
2032 .data = &variant_nomadik,
2033 },
2034 {
2035 .id = 0x00480180,
2036 .mask = 0xf0ffffff,
2037 .data = &variant_ux500,
2038 },
2039 {
2040 .id = 0x10480180,
2041 .mask = 0xf0ffffff,
2042 .data = &variant_ux500v2,
2043 },
2044 {
2045 .id = 0x00880180,
2046 .mask = 0x00ffffff,
2047 .data = &variant_stm32,
2048 },
2049 /* Qualcomm variants */
2050 {
2051 .id = 0x00051180,
2052 .mask = 0x000fffff,
2053 .data = &variant_qcom,
2054 },
2055 { 0, 0 },
2056};
2057
2058MODULE_DEVICE_TABLE(amba, mmci_ids);
2059
2060static struct amba_driver mmci_driver = {
2061 .drv = {
2062 .name = DRIVER_NAME,
2063 .pm = &mmci_dev_pm_ops,
2064 },
2065 .probe = mmci_probe,
2066 .remove = mmci_remove,
2067 .id_table = mmci_ids,
2068};
2069
2070module_amba_driver(mmci_driver);
2071
2072module_param(fmax, uint, 0444);
2073
2074MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 *
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
7 */
8#include <linux/module.h>
9#include <linux/moduleparam.h>
10#include <linux/init.h>
11#include <linux/ioport.h>
12#include <linux/device.h>
13#include <linux/io.h>
14#include <linux/interrupt.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/delay.h>
18#include <linux/err.h>
19#include <linux/highmem.h>
20#include <linux/log2.h>
21#include <linux/mmc/mmc.h>
22#include <linux/mmc/pm.h>
23#include <linux/mmc/host.h>
24#include <linux/mmc/card.h>
25#include <linux/mmc/sd.h>
26#include <linux/mmc/slot-gpio.h>
27#include <linux/amba/bus.h>
28#include <linux/clk.h>
29#include <linux/scatterlist.h>
30#include <linux/of.h>
31#include <linux/regulator/consumer.h>
32#include <linux/dmaengine.h>
33#include <linux/dma-mapping.h>
34#include <linux/amba/mmci.h>
35#include <linux/pm_runtime.h>
36#include <linux/types.h>
37#include <linux/pinctrl/consumer.h>
38#include <linux/reset.h>
39
40#include <asm/div64.h>
41#include <asm/io.h>
42
43#include "mmci.h"
44
45#define DRIVER_NAME "mmci-pl18x"
46
47static void mmci_variant_init(struct mmci_host *host);
48static void ux500_variant_init(struct mmci_host *host);
49static void ux500v2_variant_init(struct mmci_host *host);
50
51static unsigned int fmax = 515633;
52
53static struct variant_data variant_arm = {
54 .fifosize = 16 * 4,
55 .fifohalfsize = 8 * 4,
56 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
57 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
58 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
59 .cmdreg_srsp = MCI_CPSM_RESPONSE,
60 .datalength_bits = 16,
61 .datactrl_blocksz = 11,
62 .pwrreg_powerup = MCI_PWR_UP,
63 .f_max = 100000000,
64 .reversed_irq_handling = true,
65 .mmcimask1 = true,
66 .irq_pio_mask = MCI_IRQ_PIO_MASK,
67 .start_err = MCI_STARTBITERR,
68 .opendrain = MCI_ROD,
69 .init = mmci_variant_init,
70};
71
72static struct variant_data variant_arm_extended_fifo = {
73 .fifosize = 128 * 4,
74 .fifohalfsize = 64 * 4,
75 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
76 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
77 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
78 .cmdreg_srsp = MCI_CPSM_RESPONSE,
79 .datalength_bits = 16,
80 .datactrl_blocksz = 11,
81 .pwrreg_powerup = MCI_PWR_UP,
82 .f_max = 100000000,
83 .mmcimask1 = true,
84 .irq_pio_mask = MCI_IRQ_PIO_MASK,
85 .start_err = MCI_STARTBITERR,
86 .opendrain = MCI_ROD,
87 .init = mmci_variant_init,
88};
89
90static struct variant_data variant_arm_extended_fifo_hwfc = {
91 .fifosize = 128 * 4,
92 .fifohalfsize = 64 * 4,
93 .clkreg_enable = MCI_ARM_HWFCEN,
94 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
95 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
96 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
97 .cmdreg_srsp = MCI_CPSM_RESPONSE,
98 .datalength_bits = 16,
99 .datactrl_blocksz = 11,
100 .pwrreg_powerup = MCI_PWR_UP,
101 .f_max = 100000000,
102 .mmcimask1 = true,
103 .irq_pio_mask = MCI_IRQ_PIO_MASK,
104 .start_err = MCI_STARTBITERR,
105 .opendrain = MCI_ROD,
106 .init = mmci_variant_init,
107};
108
109static struct variant_data variant_u300 = {
110 .fifosize = 16 * 4,
111 .fifohalfsize = 8 * 4,
112 .clkreg_enable = MCI_ST_U300_HWFCEN,
113 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
114 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
115 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
116 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
117 .cmdreg_srsp = MCI_CPSM_RESPONSE,
118 .datalength_bits = 16,
119 .datactrl_blocksz = 11,
120 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
121 .st_sdio = true,
122 .pwrreg_powerup = MCI_PWR_ON,
123 .f_max = 100000000,
124 .signal_direction = true,
125 .pwrreg_clkgate = true,
126 .pwrreg_nopower = true,
127 .mmcimask1 = true,
128 .irq_pio_mask = MCI_IRQ_PIO_MASK,
129 .start_err = MCI_STARTBITERR,
130 .opendrain = MCI_OD,
131 .init = mmci_variant_init,
132};
133
134static struct variant_data variant_nomadik = {
135 .fifosize = 16 * 4,
136 .fifohalfsize = 8 * 4,
137 .clkreg = MCI_CLK_ENABLE,
138 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
139 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
140 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
141 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
142 .cmdreg_srsp = MCI_CPSM_RESPONSE,
143 .datalength_bits = 24,
144 .datactrl_blocksz = 11,
145 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
146 .st_sdio = true,
147 .st_clkdiv = true,
148 .pwrreg_powerup = MCI_PWR_ON,
149 .f_max = 100000000,
150 .signal_direction = true,
151 .pwrreg_clkgate = true,
152 .pwrreg_nopower = true,
153 .mmcimask1 = true,
154 .irq_pio_mask = MCI_IRQ_PIO_MASK,
155 .start_err = MCI_STARTBITERR,
156 .opendrain = MCI_OD,
157 .init = mmci_variant_init,
158};
159
160static struct variant_data variant_ux500 = {
161 .fifosize = 30 * 4,
162 .fifohalfsize = 8 * 4,
163 .clkreg = MCI_CLK_ENABLE,
164 .clkreg_enable = MCI_ST_UX500_HWFCEN,
165 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
166 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
167 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
168 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
169 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
170 .cmdreg_srsp = MCI_CPSM_RESPONSE,
171 .datalength_bits = 24,
172 .datactrl_blocksz = 11,
173 .datactrl_any_blocksz = true,
174 .dma_power_of_2 = true,
175 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
176 .st_sdio = true,
177 .st_clkdiv = true,
178 .pwrreg_powerup = MCI_PWR_ON,
179 .f_max = 100000000,
180 .signal_direction = true,
181 .pwrreg_clkgate = true,
182 .busy_detect = true,
183 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
184 .busy_detect_flag = MCI_ST_CARDBUSY,
185 .busy_detect_mask = MCI_ST_BUSYENDMASK,
186 .pwrreg_nopower = true,
187 .mmcimask1 = true,
188 .irq_pio_mask = MCI_IRQ_PIO_MASK,
189 .start_err = MCI_STARTBITERR,
190 .opendrain = MCI_OD,
191 .init = ux500_variant_init,
192};
193
194static struct variant_data variant_ux500v2 = {
195 .fifosize = 30 * 4,
196 .fifohalfsize = 8 * 4,
197 .clkreg = MCI_CLK_ENABLE,
198 .clkreg_enable = MCI_ST_UX500_HWFCEN,
199 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
200 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
201 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
202 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
203 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
204 .cmdreg_srsp = MCI_CPSM_RESPONSE,
205 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
206 .datalength_bits = 24,
207 .datactrl_blocksz = 11,
208 .datactrl_any_blocksz = true,
209 .dma_power_of_2 = true,
210 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
211 .st_sdio = true,
212 .st_clkdiv = true,
213 .pwrreg_powerup = MCI_PWR_ON,
214 .f_max = 100000000,
215 .signal_direction = true,
216 .pwrreg_clkgate = true,
217 .busy_detect = true,
218 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
219 .busy_detect_flag = MCI_ST_CARDBUSY,
220 .busy_detect_mask = MCI_ST_BUSYENDMASK,
221 .pwrreg_nopower = true,
222 .mmcimask1 = true,
223 .irq_pio_mask = MCI_IRQ_PIO_MASK,
224 .start_err = MCI_STARTBITERR,
225 .opendrain = MCI_OD,
226 .init = ux500v2_variant_init,
227};
228
229static struct variant_data variant_stm32 = {
230 .fifosize = 32 * 4,
231 .fifohalfsize = 8 * 4,
232 .clkreg = MCI_CLK_ENABLE,
233 .clkreg_enable = MCI_ST_UX500_HWFCEN,
234 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
235 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
236 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
237 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
238 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
239 .cmdreg_srsp = MCI_CPSM_RESPONSE,
240 .irq_pio_mask = MCI_IRQ_PIO_MASK,
241 .datalength_bits = 24,
242 .datactrl_blocksz = 11,
243 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
244 .st_sdio = true,
245 .st_clkdiv = true,
246 .pwrreg_powerup = MCI_PWR_ON,
247 .f_max = 48000000,
248 .pwrreg_clkgate = true,
249 .pwrreg_nopower = true,
250 .init = mmci_variant_init,
251};
252
253static struct variant_data variant_stm32_sdmmc = {
254 .fifosize = 16 * 4,
255 .fifohalfsize = 8 * 4,
256 .f_max = 208000000,
257 .stm32_clkdiv = true,
258 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
259 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
260 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
261 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
262 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
263 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
264 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
265 .datactrl_first = true,
266 .datacnt_useless = true,
267 .datalength_bits = 25,
268 .datactrl_blocksz = 14,
269 .datactrl_any_blocksz = true,
270 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
271 .stm32_idmabsize_mask = GENMASK(12, 5),
272 .busy_timeout = true,
273 .busy_detect = true,
274 .busy_detect_flag = MCI_STM32_BUSYD0,
275 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
276 .init = sdmmc_variant_init,
277};
278
279static struct variant_data variant_stm32_sdmmcv2 = {
280 .fifosize = 16 * 4,
281 .fifohalfsize = 8 * 4,
282 .f_max = 208000000,
283 .stm32_clkdiv = true,
284 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
285 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
286 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
287 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
288 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
289 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
290 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
291 .datactrl_first = true,
292 .datacnt_useless = true,
293 .datalength_bits = 25,
294 .datactrl_blocksz = 14,
295 .datactrl_any_blocksz = true,
296 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
297 .stm32_idmabsize_mask = GENMASK(16, 5),
298 .dma_lli = true,
299 .busy_timeout = true,
300 .busy_detect = true,
301 .busy_detect_flag = MCI_STM32_BUSYD0,
302 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
303 .init = sdmmc_variant_init,
304};
305
306static struct variant_data variant_qcom = {
307 .fifosize = 16 * 4,
308 .fifohalfsize = 8 * 4,
309 .clkreg = MCI_CLK_ENABLE,
310 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
311 MCI_QCOM_CLK_SELECT_IN_FBCLK,
312 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
313 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
314 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
315 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
316 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
317 .cmdreg_srsp = MCI_CPSM_RESPONSE,
318 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
319 .datalength_bits = 24,
320 .datactrl_blocksz = 11,
321 .datactrl_any_blocksz = true,
322 .pwrreg_powerup = MCI_PWR_UP,
323 .f_max = 208000000,
324 .explicit_mclk_control = true,
325 .qcom_fifo = true,
326 .qcom_dml = true,
327 .mmcimask1 = true,
328 .irq_pio_mask = MCI_IRQ_PIO_MASK,
329 .start_err = MCI_STARTBITERR,
330 .opendrain = MCI_ROD,
331 .init = qcom_variant_init,
332};
333
334/* Busy detection for the ST Micro variant */
335static int mmci_card_busy(struct mmc_host *mmc)
336{
337 struct mmci_host *host = mmc_priv(mmc);
338 unsigned long flags;
339 int busy = 0;
340
341 spin_lock_irqsave(&host->lock, flags);
342 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
343 busy = 1;
344 spin_unlock_irqrestore(&host->lock, flags);
345
346 return busy;
347}
348
349static void mmci_reg_delay(struct mmci_host *host)
350{
351 /*
352 * According to the spec, at least three feedback clock cycles
353 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
354 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
355 * Worst delay time during card init is at 100 kHz => 30 us.
356 * Worst delay time when up and running is at 25 MHz => 120 ns.
357 */
358 if (host->cclk < 25000000)
359 udelay(30);
360 else
361 ndelay(120);
362}
363
364/*
365 * This must be called with host->lock held
366 */
367void mmci_write_clkreg(struct mmci_host *host, u32 clk)
368{
369 if (host->clk_reg != clk) {
370 host->clk_reg = clk;
371 writel(clk, host->base + MMCICLOCK);
372 }
373}
374
375/*
376 * This must be called with host->lock held
377 */
378void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
379{
380 if (host->pwr_reg != pwr) {
381 host->pwr_reg = pwr;
382 writel(pwr, host->base + MMCIPOWER);
383 }
384}
385
386/*
387 * This must be called with host->lock held
388 */
389static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
390{
391 /* Keep busy mode in DPSM if enabled */
392 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
393
394 if (host->datactrl_reg != datactrl) {
395 host->datactrl_reg = datactrl;
396 writel(datactrl, host->base + MMCIDATACTRL);
397 }
398}
399
400/*
401 * This must be called with host->lock held
402 */
403static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
404{
405 struct variant_data *variant = host->variant;
406 u32 clk = variant->clkreg;
407
408 /* Make sure cclk reflects the current calculated clock */
409 host->cclk = 0;
410
411 if (desired) {
412 if (variant->explicit_mclk_control) {
413 host->cclk = host->mclk;
414 } else if (desired >= host->mclk) {
415 clk = MCI_CLK_BYPASS;
416 if (variant->st_clkdiv)
417 clk |= MCI_ST_UX500_NEG_EDGE;
418 host->cclk = host->mclk;
419 } else if (variant->st_clkdiv) {
420 /*
421 * DB8500 TRM says f = mclk / (clkdiv + 2)
422 * => clkdiv = (mclk / f) - 2
423 * Round the divider up so we don't exceed the max
424 * frequency
425 */
426 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
427 if (clk >= 256)
428 clk = 255;
429 host->cclk = host->mclk / (clk + 2);
430 } else {
431 /*
432 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
433 * => clkdiv = mclk / (2 * f) - 1
434 */
435 clk = host->mclk / (2 * desired) - 1;
436 if (clk >= 256)
437 clk = 255;
438 host->cclk = host->mclk / (2 * (clk + 1));
439 }
440
441 clk |= variant->clkreg_enable;
442 clk |= MCI_CLK_ENABLE;
443 /* This hasn't proven to be worthwhile */
444 /* clk |= MCI_CLK_PWRSAVE; */
445 }
446
447 /* Set actual clock for debug */
448 host->mmc->actual_clock = host->cclk;
449
450 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
451 clk |= MCI_4BIT_BUS;
452 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
453 clk |= variant->clkreg_8bit_bus_enable;
454
455 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
456 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
457 clk |= variant->clkreg_neg_edge_enable;
458
459 mmci_write_clkreg(host, clk);
460}
461
462static void mmci_dma_release(struct mmci_host *host)
463{
464 if (host->ops && host->ops->dma_release)
465 host->ops->dma_release(host);
466
467 host->use_dma = false;
468}
469
470static void mmci_dma_setup(struct mmci_host *host)
471{
472 if (!host->ops || !host->ops->dma_setup)
473 return;
474
475 if (host->ops->dma_setup(host))
476 return;
477
478 /* initialize pre request cookie */
479 host->next_cookie = 1;
480
481 host->use_dma = true;
482}
483
484/*
485 * Validate mmc prerequisites
486 */
487static int mmci_validate_data(struct mmci_host *host,
488 struct mmc_data *data)
489{
490 struct variant_data *variant = host->variant;
491
492 if (!data)
493 return 0;
494 if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
495 dev_err(mmc_dev(host->mmc),
496 "unsupported block size (%d bytes)\n", data->blksz);
497 return -EINVAL;
498 }
499
500 if (host->ops && host->ops->validate_data)
501 return host->ops->validate_data(host, data);
502
503 return 0;
504}
505
506static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
507{
508 int err;
509
510 if (!host->ops || !host->ops->prep_data)
511 return 0;
512
513 err = host->ops->prep_data(host, data, next);
514
515 if (next && !err)
516 data->host_cookie = ++host->next_cookie < 0 ?
517 1 : host->next_cookie;
518
519 return err;
520}
521
522static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
523 int err)
524{
525 if (host->ops && host->ops->unprep_data)
526 host->ops->unprep_data(host, data, err);
527
528 data->host_cookie = 0;
529}
530
531static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
532{
533 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
534
535 if (host->ops && host->ops->get_next_data)
536 host->ops->get_next_data(host, data);
537}
538
539static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
540{
541 struct mmc_data *data = host->data;
542 int ret;
543
544 if (!host->use_dma)
545 return -EINVAL;
546
547 ret = mmci_prep_data(host, data, false);
548 if (ret)
549 return ret;
550
551 if (!host->ops || !host->ops->dma_start)
552 return -EINVAL;
553
554 /* Okay, go for it. */
555 dev_vdbg(mmc_dev(host->mmc),
556 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
557 data->sg_len, data->blksz, data->blocks, data->flags);
558
559 ret = host->ops->dma_start(host, &datactrl);
560 if (ret)
561 return ret;
562
563 /* Trigger the DMA transfer */
564 mmci_write_datactrlreg(host, datactrl);
565
566 /*
567 * Let the MMCI say when the data is ended and it's time
568 * to fire next DMA request. When that happens, MMCI will
569 * call mmci_data_end()
570 */
571 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
572 host->base + MMCIMASK0);
573 return 0;
574}
575
576static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
577{
578 if (!host->use_dma)
579 return;
580
581 if (host->ops && host->ops->dma_finalize)
582 host->ops->dma_finalize(host, data);
583}
584
585static void mmci_dma_error(struct mmci_host *host)
586{
587 if (!host->use_dma)
588 return;
589
590 if (host->ops && host->ops->dma_error)
591 host->ops->dma_error(host);
592}
593
594static void
595mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
596{
597 writel(0, host->base + MMCICOMMAND);
598
599 BUG_ON(host->data);
600
601 host->mrq = NULL;
602 host->cmd = NULL;
603
604 mmc_request_done(host->mmc, mrq);
605}
606
607static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
608{
609 void __iomem *base = host->base;
610 struct variant_data *variant = host->variant;
611
612 if (host->singleirq) {
613 unsigned int mask0 = readl(base + MMCIMASK0);
614
615 mask0 &= ~variant->irq_pio_mask;
616 mask0 |= mask;
617
618 writel(mask0, base + MMCIMASK0);
619 }
620
621 if (variant->mmcimask1)
622 writel(mask, base + MMCIMASK1);
623
624 host->mask1_reg = mask;
625}
626
627static void mmci_stop_data(struct mmci_host *host)
628{
629 mmci_write_datactrlreg(host, 0);
630 mmci_set_mask1(host, 0);
631 host->data = NULL;
632}
633
634static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
635{
636 unsigned int flags = SG_MITER_ATOMIC;
637
638 if (data->flags & MMC_DATA_READ)
639 flags |= SG_MITER_TO_SG;
640 else
641 flags |= SG_MITER_FROM_SG;
642
643 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
644}
645
646static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
647{
648 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
649}
650
651static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
652{
653 return MCI_DPSM_ENABLE | (host->data->blksz << 16);
654}
655
656static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
657{
658 void __iomem *base = host->base;
659
660 /*
661 * Before unmasking for the busy end IRQ, confirm that the
662 * command was sent successfully. To keep track of having a
663 * command in-progress, waiting for busy signaling to end,
664 * store the status in host->busy_status.
665 *
666 * Note that, the card may need a couple of clock cycles before
667 * it starts signaling busy on DAT0, hence re-read the
668 * MMCISTATUS register here, to allow the busy bit to be set.
669 * Potentially we may even need to poll the register for a
670 * while, to allow it to be set, but tests indicates that it
671 * isn't needed.
672 */
673 if (!host->busy_status && !(status & err_msk) &&
674 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
675 writel(readl(base + MMCIMASK0) |
676 host->variant->busy_detect_mask,
677 base + MMCIMASK0);
678
679 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
680 return false;
681 }
682
683 /*
684 * If there is a command in-progress that has been successfully
685 * sent, then bail out if busy status is set and wait for the
686 * busy end IRQ.
687 *
688 * Note that, the HW triggers an IRQ on both edges while
689 * monitoring DAT0 for busy completion, but there is only one
690 * status bit in MMCISTATUS for the busy state. Therefore
691 * both the start and the end interrupts needs to be cleared,
692 * one after the other. So, clear the busy start IRQ here.
693 */
694 if (host->busy_status &&
695 (status & host->variant->busy_detect_flag)) {
696 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
697 return false;
698 }
699
700 /*
701 * If there is a command in-progress that has been successfully
702 * sent and the busy bit isn't set, it means we have received
703 * the busy end IRQ. Clear and mask the IRQ, then continue to
704 * process the command.
705 */
706 if (host->busy_status) {
707 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
708
709 writel(readl(base + MMCIMASK0) &
710 ~host->variant->busy_detect_mask, base + MMCIMASK0);
711 host->busy_status = 0;
712 }
713
714 return true;
715}
716
717/*
718 * All the DMA operation mode stuff goes inside this ifdef.
719 * This assumes that you have a generic DMA device interface,
720 * no custom DMA interfaces are supported.
721 */
722#ifdef CONFIG_DMA_ENGINE
723struct mmci_dmae_next {
724 struct dma_async_tx_descriptor *desc;
725 struct dma_chan *chan;
726};
727
728struct mmci_dmae_priv {
729 struct dma_chan *cur;
730 struct dma_chan *rx_channel;
731 struct dma_chan *tx_channel;
732 struct dma_async_tx_descriptor *desc_current;
733 struct mmci_dmae_next next_data;
734};
735
736int mmci_dmae_setup(struct mmci_host *host)
737{
738 const char *rxname, *txname;
739 struct mmci_dmae_priv *dmae;
740
741 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
742 if (!dmae)
743 return -ENOMEM;
744
745 host->dma_priv = dmae;
746
747 dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
748 if (IS_ERR(dmae->rx_channel)) {
749 int ret = PTR_ERR(dmae->rx_channel);
750 dmae->rx_channel = NULL;
751 return ret;
752 }
753
754 dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
755 if (IS_ERR(dmae->tx_channel)) {
756 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
757 dev_warn(mmc_dev(host->mmc),
758 "Deferred probe for TX channel ignored\n");
759 dmae->tx_channel = NULL;
760 }
761
762 /*
763 * If only an RX channel is specified, the driver will
764 * attempt to use it bidirectionally, however if it is
765 * is specified but cannot be located, DMA will be disabled.
766 */
767 if (dmae->rx_channel && !dmae->tx_channel)
768 dmae->tx_channel = dmae->rx_channel;
769
770 if (dmae->rx_channel)
771 rxname = dma_chan_name(dmae->rx_channel);
772 else
773 rxname = "none";
774
775 if (dmae->tx_channel)
776 txname = dma_chan_name(dmae->tx_channel);
777 else
778 txname = "none";
779
780 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
781 rxname, txname);
782
783 /*
784 * Limit the maximum segment size in any SG entry according to
785 * the parameters of the DMA engine device.
786 */
787 if (dmae->tx_channel) {
788 struct device *dev = dmae->tx_channel->device->dev;
789 unsigned int max_seg_size = dma_get_max_seg_size(dev);
790
791 if (max_seg_size < host->mmc->max_seg_size)
792 host->mmc->max_seg_size = max_seg_size;
793 }
794 if (dmae->rx_channel) {
795 struct device *dev = dmae->rx_channel->device->dev;
796 unsigned int max_seg_size = dma_get_max_seg_size(dev);
797
798 if (max_seg_size < host->mmc->max_seg_size)
799 host->mmc->max_seg_size = max_seg_size;
800 }
801
802 if (!dmae->tx_channel || !dmae->rx_channel) {
803 mmci_dmae_release(host);
804 return -EINVAL;
805 }
806
807 return 0;
808}
809
810/*
811 * This is used in or so inline it
812 * so it can be discarded.
813 */
814void mmci_dmae_release(struct mmci_host *host)
815{
816 struct mmci_dmae_priv *dmae = host->dma_priv;
817
818 if (dmae->rx_channel)
819 dma_release_channel(dmae->rx_channel);
820 if (dmae->tx_channel)
821 dma_release_channel(dmae->tx_channel);
822 dmae->rx_channel = dmae->tx_channel = NULL;
823}
824
825static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
826{
827 struct mmci_dmae_priv *dmae = host->dma_priv;
828 struct dma_chan *chan;
829
830 if (data->flags & MMC_DATA_READ)
831 chan = dmae->rx_channel;
832 else
833 chan = dmae->tx_channel;
834
835 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
836 mmc_get_dma_dir(data));
837}
838
839void mmci_dmae_error(struct mmci_host *host)
840{
841 struct mmci_dmae_priv *dmae = host->dma_priv;
842
843 if (!dma_inprogress(host))
844 return;
845
846 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
847 dmaengine_terminate_all(dmae->cur);
848 host->dma_in_progress = false;
849 dmae->cur = NULL;
850 dmae->desc_current = NULL;
851 host->data->host_cookie = 0;
852
853 mmci_dma_unmap(host, host->data);
854}
855
856void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
857{
858 struct mmci_dmae_priv *dmae = host->dma_priv;
859 u32 status;
860 int i;
861
862 if (!dma_inprogress(host))
863 return;
864
865 /* Wait up to 1ms for the DMA to complete */
866 for (i = 0; ; i++) {
867 status = readl(host->base + MMCISTATUS);
868 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
869 break;
870 udelay(10);
871 }
872
873 /*
874 * Check to see whether we still have some data left in the FIFO -
875 * this catches DMA controllers which are unable to monitor the
876 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
877 * contiguous buffers. On TX, we'll get a FIFO underrun error.
878 */
879 if (status & MCI_RXDATAAVLBLMASK) {
880 mmci_dma_error(host);
881 if (!data->error)
882 data->error = -EIO;
883 } else if (!data->host_cookie) {
884 mmci_dma_unmap(host, data);
885 }
886
887 /*
888 * Use of DMA with scatter-gather is impossible.
889 * Give up with DMA and switch back to PIO mode.
890 */
891 if (status & MCI_RXDATAAVLBLMASK) {
892 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
893 mmci_dma_release(host);
894 }
895
896 host->dma_in_progress = false;
897 dmae->cur = NULL;
898 dmae->desc_current = NULL;
899}
900
901/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
902static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
903 struct dma_chan **dma_chan,
904 struct dma_async_tx_descriptor **dma_desc)
905{
906 struct mmci_dmae_priv *dmae = host->dma_priv;
907 struct variant_data *variant = host->variant;
908 struct dma_slave_config conf = {
909 .src_addr = host->phybase + MMCIFIFO,
910 .dst_addr = host->phybase + MMCIFIFO,
911 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
912 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
913 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
914 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
915 .device_fc = false,
916 };
917 struct dma_chan *chan;
918 struct dma_device *device;
919 struct dma_async_tx_descriptor *desc;
920 int nr_sg;
921 unsigned long flags = DMA_CTRL_ACK;
922
923 if (data->flags & MMC_DATA_READ) {
924 conf.direction = DMA_DEV_TO_MEM;
925 chan = dmae->rx_channel;
926 } else {
927 conf.direction = DMA_MEM_TO_DEV;
928 chan = dmae->tx_channel;
929 }
930
931 /* If there's no DMA channel, fall back to PIO */
932 if (!chan)
933 return -EINVAL;
934
935 /* If less than or equal to the fifo size, don't bother with DMA */
936 if (data->blksz * data->blocks <= variant->fifosize)
937 return -EINVAL;
938
939 /*
940 * This is necessary to get SDIO working on the Ux500. We do not yet
941 * know if this is a bug in:
942 * - The Ux500 DMA controller (DMA40)
943 * - The MMCI DMA interface on the Ux500
944 * some power of two blocks (such as 64 bytes) are sent regularly
945 * during SDIO traffic and those work fine so for these we enable DMA
946 * transfers.
947 */
948 if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
949 return -EINVAL;
950
951 device = chan->device;
952 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
953 mmc_get_dma_dir(data));
954 if (nr_sg == 0)
955 return -EINVAL;
956
957 if (host->variant->qcom_dml)
958 flags |= DMA_PREP_INTERRUPT;
959
960 dmaengine_slave_config(chan, &conf);
961 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
962 conf.direction, flags);
963 if (!desc)
964 goto unmap_exit;
965
966 *dma_chan = chan;
967 *dma_desc = desc;
968
969 return 0;
970
971 unmap_exit:
972 dma_unmap_sg(device->dev, data->sg, data->sg_len,
973 mmc_get_dma_dir(data));
974 return -ENOMEM;
975}
976
977int mmci_dmae_prep_data(struct mmci_host *host,
978 struct mmc_data *data,
979 bool next)
980{
981 struct mmci_dmae_priv *dmae = host->dma_priv;
982 struct mmci_dmae_next *nd = &dmae->next_data;
983
984 if (!host->use_dma)
985 return -EINVAL;
986
987 if (next)
988 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
989 /* Check if next job is already prepared. */
990 if (dmae->cur && dmae->desc_current)
991 return 0;
992
993 /* No job were prepared thus do it now. */
994 return _mmci_dmae_prep_data(host, data, &dmae->cur,
995 &dmae->desc_current);
996}
997
998int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
999{
1000 struct mmci_dmae_priv *dmae = host->dma_priv;
1001 int ret;
1002
1003 host->dma_in_progress = true;
1004 ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1005 if (ret < 0) {
1006 host->dma_in_progress = false;
1007 return ret;
1008 }
1009 dma_async_issue_pending(dmae->cur);
1010
1011 *datactrl |= MCI_DPSM_DMAENABLE;
1012
1013 return 0;
1014}
1015
1016void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1017{
1018 struct mmci_dmae_priv *dmae = host->dma_priv;
1019 struct mmci_dmae_next *next = &dmae->next_data;
1020
1021 if (!host->use_dma)
1022 return;
1023
1024 WARN_ON(!data->host_cookie && (next->desc || next->chan));
1025
1026 dmae->desc_current = next->desc;
1027 dmae->cur = next->chan;
1028 next->desc = NULL;
1029 next->chan = NULL;
1030}
1031
1032void mmci_dmae_unprep_data(struct mmci_host *host,
1033 struct mmc_data *data, int err)
1034
1035{
1036 struct mmci_dmae_priv *dmae = host->dma_priv;
1037
1038 if (!host->use_dma)
1039 return;
1040
1041 mmci_dma_unmap(host, data);
1042
1043 if (err) {
1044 struct mmci_dmae_next *next = &dmae->next_data;
1045 struct dma_chan *chan;
1046 if (data->flags & MMC_DATA_READ)
1047 chan = dmae->rx_channel;
1048 else
1049 chan = dmae->tx_channel;
1050 dmaengine_terminate_all(chan);
1051
1052 if (dmae->desc_current == next->desc)
1053 dmae->desc_current = NULL;
1054
1055 if (dmae->cur == next->chan) {
1056 host->dma_in_progress = false;
1057 dmae->cur = NULL;
1058 }
1059
1060 next->desc = NULL;
1061 next->chan = NULL;
1062 }
1063}
1064
1065static struct mmci_host_ops mmci_variant_ops = {
1066 .prep_data = mmci_dmae_prep_data,
1067 .unprep_data = mmci_dmae_unprep_data,
1068 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1069 .get_next_data = mmci_dmae_get_next_data,
1070 .dma_setup = mmci_dmae_setup,
1071 .dma_release = mmci_dmae_release,
1072 .dma_start = mmci_dmae_start,
1073 .dma_finalize = mmci_dmae_finalize,
1074 .dma_error = mmci_dmae_error,
1075};
1076#else
1077static struct mmci_host_ops mmci_variant_ops = {
1078 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1079};
1080#endif
1081
1082static void mmci_variant_init(struct mmci_host *host)
1083{
1084 host->ops = &mmci_variant_ops;
1085}
1086
1087static void ux500_variant_init(struct mmci_host *host)
1088{
1089 host->ops = &mmci_variant_ops;
1090 host->ops->busy_complete = ux500_busy_complete;
1091}
1092
1093static void ux500v2_variant_init(struct mmci_host *host)
1094{
1095 host->ops = &mmci_variant_ops;
1096 host->ops->busy_complete = ux500_busy_complete;
1097 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1098}
1099
1100static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1101{
1102 struct mmci_host *host = mmc_priv(mmc);
1103 struct mmc_data *data = mrq->data;
1104
1105 if (!data)
1106 return;
1107
1108 WARN_ON(data->host_cookie);
1109
1110 if (mmci_validate_data(host, data))
1111 return;
1112
1113 mmci_prep_data(host, data, true);
1114}
1115
1116static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1117 int err)
1118{
1119 struct mmci_host *host = mmc_priv(mmc);
1120 struct mmc_data *data = mrq->data;
1121
1122 if (!data || !data->host_cookie)
1123 return;
1124
1125 mmci_unprep_data(host, data, err);
1126}
1127
1128static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1129{
1130 struct variant_data *variant = host->variant;
1131 unsigned int datactrl, timeout, irqmask;
1132 unsigned long long clks;
1133 void __iomem *base;
1134
1135 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1136 data->blksz, data->blocks, data->flags);
1137
1138 host->data = data;
1139 host->size = data->blksz * data->blocks;
1140 data->bytes_xfered = 0;
1141
1142 clks = (unsigned long long)data->timeout_ns * host->cclk;
1143 do_div(clks, NSEC_PER_SEC);
1144
1145 timeout = data->timeout_clks + (unsigned int)clks;
1146
1147 base = host->base;
1148 writel(timeout, base + MMCIDATATIMER);
1149 writel(host->size, base + MMCIDATALENGTH);
1150
1151 datactrl = host->ops->get_datactrl_cfg(host);
1152 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1153
1154 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1155 u32 clk;
1156
1157 datactrl |= variant->datactrl_mask_sdio;
1158
1159 /*
1160 * The ST Micro variant for SDIO small write transfers
1161 * needs to have clock H/W flow control disabled,
1162 * otherwise the transfer will not start. The threshold
1163 * depends on the rate of MCLK.
1164 */
1165 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1166 (host->size < 8 ||
1167 (host->size <= 8 && host->mclk > 50000000)))
1168 clk = host->clk_reg & ~variant->clkreg_enable;
1169 else
1170 clk = host->clk_reg | variant->clkreg_enable;
1171
1172 mmci_write_clkreg(host, clk);
1173 }
1174
1175 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1176 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1177 datactrl |= variant->datactrl_mask_ddrmode;
1178
1179 /*
1180 * Attempt to use DMA operation mode, if this
1181 * should fail, fall back to PIO mode
1182 */
1183 if (!mmci_dma_start(host, datactrl))
1184 return;
1185
1186 /* IRQ mode, map the SG list for CPU reading/writing */
1187 mmci_init_sg(host, data);
1188
1189 if (data->flags & MMC_DATA_READ) {
1190 irqmask = MCI_RXFIFOHALFFULLMASK;
1191
1192 /*
1193 * If we have less than the fifo 'half-full' threshold to
1194 * transfer, trigger a PIO interrupt as soon as any data
1195 * is available.
1196 */
1197 if (host->size < variant->fifohalfsize)
1198 irqmask |= MCI_RXDATAAVLBLMASK;
1199 } else {
1200 /*
1201 * We don't actually need to include "FIFO empty" here
1202 * since its implicit in "FIFO half empty".
1203 */
1204 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1205 }
1206
1207 mmci_write_datactrlreg(host, datactrl);
1208 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1209 mmci_set_mask1(host, irqmask);
1210}
1211
1212static void
1213mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1214{
1215 void __iomem *base = host->base;
1216 unsigned long long clks;
1217
1218 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1219 cmd->opcode, cmd->arg, cmd->flags);
1220
1221 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1222 writel(0, base + MMCICOMMAND);
1223 mmci_reg_delay(host);
1224 }
1225
1226 if (host->variant->cmdreg_stop &&
1227 cmd->opcode == MMC_STOP_TRANSMISSION)
1228 c |= host->variant->cmdreg_stop;
1229
1230 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1231 if (cmd->flags & MMC_RSP_PRESENT) {
1232 if (cmd->flags & MMC_RSP_136)
1233 c |= host->variant->cmdreg_lrsp_crc;
1234 else if (cmd->flags & MMC_RSP_CRC)
1235 c |= host->variant->cmdreg_srsp_crc;
1236 else
1237 c |= host->variant->cmdreg_srsp;
1238 }
1239
1240 if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1241 if (!cmd->busy_timeout)
1242 cmd->busy_timeout = 10 * MSEC_PER_SEC;
1243
1244 clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1245 do_div(clks, MSEC_PER_SEC);
1246 writel_relaxed(clks, host->base + MMCIDATATIMER);
1247 }
1248
1249 if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1250 host->ops->pre_sig_volt_switch(host);
1251
1252 if (/*interrupt*/0)
1253 c |= MCI_CPSM_INTERRUPT;
1254
1255 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1256 c |= host->variant->data_cmd_enable;
1257
1258 host->cmd = cmd;
1259
1260 writel(cmd->arg, base + MMCIARGUMENT);
1261 writel(c, base + MMCICOMMAND);
1262}
1263
1264static void mmci_stop_command(struct mmci_host *host)
1265{
1266 host->stop_abort.error = 0;
1267 mmci_start_command(host, &host->stop_abort, 0);
1268}
1269
1270static void
1271mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1272 unsigned int status)
1273{
1274 unsigned int status_err;
1275
1276 /* Make sure we have data to handle */
1277 if (!data)
1278 return;
1279
1280 /* First check for errors */
1281 status_err = status & (host->variant->start_err |
1282 MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1283 MCI_TXUNDERRUN | MCI_RXOVERRUN);
1284
1285 if (status_err) {
1286 u32 remain, success;
1287
1288 /* Terminate the DMA transfer */
1289 mmci_dma_error(host);
1290
1291 /*
1292 * Calculate how far we are into the transfer. Note that
1293 * the data counter gives the number of bytes transferred
1294 * on the MMC bus, not on the host side. On reads, this
1295 * can be as much as a FIFO-worth of data ahead. This
1296 * matters for FIFO overruns only.
1297 */
1298 if (!host->variant->datacnt_useless) {
1299 remain = readl(host->base + MMCIDATACNT);
1300 success = data->blksz * data->blocks - remain;
1301 } else {
1302 success = 0;
1303 }
1304
1305 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1306 status_err, success);
1307 if (status_err & MCI_DATACRCFAIL) {
1308 /* Last block was not successful */
1309 success -= 1;
1310 data->error = -EILSEQ;
1311 } else if (status_err & MCI_DATATIMEOUT) {
1312 data->error = -ETIMEDOUT;
1313 } else if (status_err & MCI_STARTBITERR) {
1314 data->error = -ECOMM;
1315 } else if (status_err & MCI_TXUNDERRUN) {
1316 data->error = -EIO;
1317 } else if (status_err & MCI_RXOVERRUN) {
1318 if (success > host->variant->fifosize)
1319 success -= host->variant->fifosize;
1320 else
1321 success = 0;
1322 data->error = -EIO;
1323 }
1324 data->bytes_xfered = round_down(success, data->blksz);
1325 }
1326
1327 if (status & MCI_DATABLOCKEND)
1328 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1329
1330 if (status & MCI_DATAEND || data->error) {
1331 mmci_dma_finalize(host, data);
1332
1333 mmci_stop_data(host);
1334
1335 if (!data->error)
1336 /* The error clause is handled above, success! */
1337 data->bytes_xfered = data->blksz * data->blocks;
1338
1339 if (!data->stop) {
1340 if (host->variant->cmdreg_stop && data->error)
1341 mmci_stop_command(host);
1342 else
1343 mmci_request_end(host, data->mrq);
1344 } else if (host->mrq->sbc && !data->error) {
1345 mmci_request_end(host, data->mrq);
1346 } else {
1347 mmci_start_command(host, data->stop, 0);
1348 }
1349 }
1350}
1351
1352static void
1353mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1354 unsigned int status)
1355{
1356 u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1357 void __iomem *base = host->base;
1358 bool sbc, busy_resp;
1359
1360 if (!cmd)
1361 return;
1362
1363 sbc = (cmd == host->mrq->sbc);
1364 busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1365
1366 /*
1367 * We need to be one of these interrupts to be considered worth
1368 * handling. Note that we tag on any latent IRQs postponed
1369 * due to waiting for busy status.
1370 */
1371 if (host->variant->busy_timeout && busy_resp)
1372 err_msk |= MCI_DATATIMEOUT;
1373
1374 if (!((status | host->busy_status) &
1375 (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1376 return;
1377
1378 /* Handle busy detection on DAT0 if the variant supports it. */
1379 if (busy_resp && host->variant->busy_detect)
1380 if (!host->ops->busy_complete(host, status, err_msk))
1381 return;
1382
1383 host->cmd = NULL;
1384
1385 if (status & MCI_CMDTIMEOUT) {
1386 cmd->error = -ETIMEDOUT;
1387 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1388 cmd->error = -EILSEQ;
1389 } else if (host->variant->busy_timeout && busy_resp &&
1390 status & MCI_DATATIMEOUT) {
1391 cmd->error = -ETIMEDOUT;
1392 host->irq_action = IRQ_WAKE_THREAD;
1393 } else {
1394 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1395 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1396 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1397 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1398 }
1399
1400 if ((!sbc && !cmd->data) || cmd->error) {
1401 if (host->data) {
1402 /* Terminate the DMA transfer */
1403 mmci_dma_error(host);
1404
1405 mmci_stop_data(host);
1406 if (host->variant->cmdreg_stop && cmd->error) {
1407 mmci_stop_command(host);
1408 return;
1409 }
1410 }
1411
1412 if (host->irq_action != IRQ_WAKE_THREAD)
1413 mmci_request_end(host, host->mrq);
1414
1415 } else if (sbc) {
1416 mmci_start_command(host, host->mrq->cmd, 0);
1417 } else if (!host->variant->datactrl_first &&
1418 !(cmd->data->flags & MMC_DATA_READ)) {
1419 mmci_start_data(host, cmd->data);
1420 }
1421}
1422
1423static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1424{
1425 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1426}
1427
1428static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1429{
1430 /*
1431 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1432 * from the fifo range should be used
1433 */
1434 if (status & MCI_RXFIFOHALFFULL)
1435 return host->variant->fifohalfsize;
1436 else if (status & MCI_RXDATAAVLBL)
1437 return 4;
1438
1439 return 0;
1440}
1441
1442static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1443{
1444 void __iomem *base = host->base;
1445 char *ptr = buffer;
1446 u32 status = readl(host->base + MMCISTATUS);
1447 int host_remain = host->size;
1448
1449 do {
1450 int count = host->get_rx_fifocnt(host, status, host_remain);
1451
1452 if (count > remain)
1453 count = remain;
1454
1455 if (count <= 0)
1456 break;
1457
1458 /*
1459 * SDIO especially may want to send something that is
1460 * not divisible by 4 (as opposed to card sectors
1461 * etc). Therefore make sure to always read the last bytes
1462 * while only doing full 32-bit reads towards the FIFO.
1463 */
1464 if (unlikely(count & 0x3)) {
1465 if (count < 4) {
1466 unsigned char buf[4];
1467 ioread32_rep(base + MMCIFIFO, buf, 1);
1468 memcpy(ptr, buf, count);
1469 } else {
1470 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1471 count &= ~0x3;
1472 }
1473 } else {
1474 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1475 }
1476
1477 ptr += count;
1478 remain -= count;
1479 host_remain -= count;
1480
1481 if (remain == 0)
1482 break;
1483
1484 status = readl(base + MMCISTATUS);
1485 } while (status & MCI_RXDATAAVLBL);
1486
1487 return ptr - buffer;
1488}
1489
1490static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1491{
1492 struct variant_data *variant = host->variant;
1493 void __iomem *base = host->base;
1494 char *ptr = buffer;
1495
1496 do {
1497 unsigned int count, maxcnt;
1498
1499 maxcnt = status & MCI_TXFIFOEMPTY ?
1500 variant->fifosize : variant->fifohalfsize;
1501 count = min(remain, maxcnt);
1502
1503 /*
1504 * SDIO especially may want to send something that is
1505 * not divisible by 4 (as opposed to card sectors
1506 * etc), and the FIFO only accept full 32-bit writes.
1507 * So compensate by adding +3 on the count, a single
1508 * byte become a 32bit write, 7 bytes will be two
1509 * 32bit writes etc.
1510 */
1511 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1512
1513 ptr += count;
1514 remain -= count;
1515
1516 if (remain == 0)
1517 break;
1518
1519 status = readl(base + MMCISTATUS);
1520 } while (status & MCI_TXFIFOHALFEMPTY);
1521
1522 return ptr - buffer;
1523}
1524
1525/*
1526 * PIO data transfer IRQ handler.
1527 */
1528static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1529{
1530 struct mmci_host *host = dev_id;
1531 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1532 struct variant_data *variant = host->variant;
1533 void __iomem *base = host->base;
1534 u32 status;
1535
1536 status = readl(base + MMCISTATUS);
1537
1538 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1539
1540 do {
1541 unsigned int remain, len;
1542 char *buffer;
1543
1544 /*
1545 * For write, we only need to test the half-empty flag
1546 * here - if the FIFO is completely empty, then by
1547 * definition it is more than half empty.
1548 *
1549 * For read, check for data available.
1550 */
1551 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1552 break;
1553
1554 if (!sg_miter_next(sg_miter))
1555 break;
1556
1557 buffer = sg_miter->addr;
1558 remain = sg_miter->length;
1559
1560 len = 0;
1561 if (status & MCI_RXACTIVE)
1562 len = mmci_pio_read(host, buffer, remain);
1563 if (status & MCI_TXACTIVE)
1564 len = mmci_pio_write(host, buffer, remain, status);
1565
1566 sg_miter->consumed = len;
1567
1568 host->size -= len;
1569 remain -= len;
1570
1571 if (remain)
1572 break;
1573
1574 status = readl(base + MMCISTATUS);
1575 } while (1);
1576
1577 sg_miter_stop(sg_miter);
1578
1579 /*
1580 * If we have less than the fifo 'half-full' threshold to transfer,
1581 * trigger a PIO interrupt as soon as any data is available.
1582 */
1583 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1584 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1585
1586 /*
1587 * If we run out of data, disable the data IRQs; this
1588 * prevents a race where the FIFO becomes empty before
1589 * the chip itself has disabled the data path, and
1590 * stops us racing with our data end IRQ.
1591 */
1592 if (host->size == 0) {
1593 mmci_set_mask1(host, 0);
1594 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1595 }
1596
1597 return IRQ_HANDLED;
1598}
1599
1600/*
1601 * Handle completion of command and data transfers.
1602 */
1603static irqreturn_t mmci_irq(int irq, void *dev_id)
1604{
1605 struct mmci_host *host = dev_id;
1606 u32 status;
1607
1608 spin_lock(&host->lock);
1609 host->irq_action = IRQ_HANDLED;
1610
1611 do {
1612 status = readl(host->base + MMCISTATUS);
1613
1614 if (host->singleirq) {
1615 if (status & host->mask1_reg)
1616 mmci_pio_irq(irq, dev_id);
1617
1618 status &= ~host->variant->irq_pio_mask;
1619 }
1620
1621 /*
1622 * Busy detection is managed by mmci_cmd_irq(), including to
1623 * clear the corresponding IRQ.
1624 */
1625 status &= readl(host->base + MMCIMASK0);
1626 if (host->variant->busy_detect)
1627 writel(status & ~host->variant->busy_detect_mask,
1628 host->base + MMCICLEAR);
1629 else
1630 writel(status, host->base + MMCICLEAR);
1631
1632 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1633
1634 if (host->variant->reversed_irq_handling) {
1635 mmci_data_irq(host, host->data, status);
1636 mmci_cmd_irq(host, host->cmd, status);
1637 } else {
1638 mmci_cmd_irq(host, host->cmd, status);
1639 mmci_data_irq(host, host->data, status);
1640 }
1641
1642 /*
1643 * Busy detection has been handled by mmci_cmd_irq() above.
1644 * Clear the status bit to prevent polling in IRQ context.
1645 */
1646 if (host->variant->busy_detect_flag)
1647 status &= ~host->variant->busy_detect_flag;
1648
1649 } while (status);
1650
1651 spin_unlock(&host->lock);
1652
1653 return host->irq_action;
1654}
1655
1656/*
1657 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1658 *
1659 * A reset is needed for some variants, where a datatimeout for a R1B request
1660 * causes the DPSM to stay busy (non-functional).
1661 */
1662static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1663{
1664 struct mmci_host *host = dev_id;
1665 unsigned long flags;
1666
1667 if (host->rst) {
1668 reset_control_assert(host->rst);
1669 udelay(2);
1670 reset_control_deassert(host->rst);
1671 }
1672
1673 spin_lock_irqsave(&host->lock, flags);
1674 writel(host->clk_reg, host->base + MMCICLOCK);
1675 writel(host->pwr_reg, host->base + MMCIPOWER);
1676 writel(MCI_IRQENABLE | host->variant->start_err,
1677 host->base + MMCIMASK0);
1678
1679 host->irq_action = IRQ_HANDLED;
1680 mmci_request_end(host, host->mrq);
1681 spin_unlock_irqrestore(&host->lock, flags);
1682
1683 return host->irq_action;
1684}
1685
1686static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1687{
1688 struct mmci_host *host = mmc_priv(mmc);
1689 unsigned long flags;
1690
1691 WARN_ON(host->mrq != NULL);
1692
1693 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1694 if (mrq->cmd->error) {
1695 mmc_request_done(mmc, mrq);
1696 return;
1697 }
1698
1699 spin_lock_irqsave(&host->lock, flags);
1700
1701 host->mrq = mrq;
1702
1703 if (mrq->data)
1704 mmci_get_next_data(host, mrq->data);
1705
1706 if (mrq->data &&
1707 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1708 mmci_start_data(host, mrq->data);
1709
1710 if (mrq->sbc)
1711 mmci_start_command(host, mrq->sbc, 0);
1712 else
1713 mmci_start_command(host, mrq->cmd, 0);
1714
1715 spin_unlock_irqrestore(&host->lock, flags);
1716}
1717
1718static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1719{
1720 struct mmci_host *host = mmc_priv(mmc);
1721 u32 max_busy_timeout = 0;
1722
1723 if (!host->variant->busy_detect)
1724 return;
1725
1726 if (host->variant->busy_timeout && mmc->actual_clock)
1727 max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1728
1729 mmc->max_busy_timeout = max_busy_timeout;
1730}
1731
1732static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1733{
1734 struct mmci_host *host = mmc_priv(mmc);
1735 struct variant_data *variant = host->variant;
1736 u32 pwr = 0;
1737 unsigned long flags;
1738 int ret;
1739
1740 if (host->plat->ios_handler &&
1741 host->plat->ios_handler(mmc_dev(mmc), ios))
1742 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1743
1744 switch (ios->power_mode) {
1745 case MMC_POWER_OFF:
1746 if (!IS_ERR(mmc->supply.vmmc))
1747 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1748
1749 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1750 regulator_disable(mmc->supply.vqmmc);
1751 host->vqmmc_enabled = false;
1752 }
1753
1754 break;
1755 case MMC_POWER_UP:
1756 if (!IS_ERR(mmc->supply.vmmc))
1757 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1758
1759 /*
1760 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1761 * and instead uses MCI_PWR_ON so apply whatever value is
1762 * configured in the variant data.
1763 */
1764 pwr |= variant->pwrreg_powerup;
1765
1766 break;
1767 case MMC_POWER_ON:
1768 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1769 ret = regulator_enable(mmc->supply.vqmmc);
1770 if (ret < 0)
1771 dev_err(mmc_dev(mmc),
1772 "failed to enable vqmmc regulator\n");
1773 else
1774 host->vqmmc_enabled = true;
1775 }
1776
1777 pwr |= MCI_PWR_ON;
1778 break;
1779 }
1780
1781 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1782 /*
1783 * The ST Micro variant has some additional bits
1784 * indicating signal direction for the signals in
1785 * the SD/MMC bus and feedback-clock usage.
1786 */
1787 pwr |= host->pwr_reg_add;
1788
1789 if (ios->bus_width == MMC_BUS_WIDTH_4)
1790 pwr &= ~MCI_ST_DATA74DIREN;
1791 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1792 pwr &= (~MCI_ST_DATA74DIREN &
1793 ~MCI_ST_DATA31DIREN &
1794 ~MCI_ST_DATA2DIREN);
1795 }
1796
1797 if (variant->opendrain) {
1798 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1799 pwr |= variant->opendrain;
1800 } else {
1801 /*
1802 * If the variant cannot configure the pads by its own, then we
1803 * expect the pinctrl to be able to do that for us
1804 */
1805 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1806 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1807 else
1808 pinctrl_select_default_state(mmc_dev(mmc));
1809 }
1810
1811 /*
1812 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1813 * gating the clock, the MCI_PWR_ON bit is cleared.
1814 */
1815 if (!ios->clock && variant->pwrreg_clkgate)
1816 pwr &= ~MCI_PWR_ON;
1817
1818 if (host->variant->explicit_mclk_control &&
1819 ios->clock != host->clock_cache) {
1820 ret = clk_set_rate(host->clk, ios->clock);
1821 if (ret < 0)
1822 dev_err(mmc_dev(host->mmc),
1823 "Error setting clock rate (%d)\n", ret);
1824 else
1825 host->mclk = clk_get_rate(host->clk);
1826 }
1827 host->clock_cache = ios->clock;
1828
1829 spin_lock_irqsave(&host->lock, flags);
1830
1831 if (host->ops && host->ops->set_clkreg)
1832 host->ops->set_clkreg(host, ios->clock);
1833 else
1834 mmci_set_clkreg(host, ios->clock);
1835
1836 mmci_set_max_busy_timeout(mmc);
1837
1838 if (host->ops && host->ops->set_pwrreg)
1839 host->ops->set_pwrreg(host, pwr);
1840 else
1841 mmci_write_pwrreg(host, pwr);
1842
1843 mmci_reg_delay(host);
1844
1845 spin_unlock_irqrestore(&host->lock, flags);
1846}
1847
1848static int mmci_get_cd(struct mmc_host *mmc)
1849{
1850 struct mmci_host *host = mmc_priv(mmc);
1851 struct mmci_platform_data *plat = host->plat;
1852 unsigned int status = mmc_gpio_get_cd(mmc);
1853
1854 if (status == -ENOSYS) {
1855 if (!plat->status)
1856 return 1; /* Assume always present */
1857
1858 status = plat->status(mmc_dev(host->mmc));
1859 }
1860 return status;
1861}
1862
1863static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1864{
1865 struct mmci_host *host = mmc_priv(mmc);
1866 int ret;
1867
1868 ret = mmc_regulator_set_vqmmc(mmc, ios);
1869
1870 if (!ret && host->ops && host->ops->post_sig_volt_switch)
1871 ret = host->ops->post_sig_volt_switch(host, ios);
1872 else if (ret)
1873 ret = 0;
1874
1875 if (ret < 0)
1876 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1877
1878 return ret;
1879}
1880
1881static struct mmc_host_ops mmci_ops = {
1882 .request = mmci_request,
1883 .pre_req = mmci_pre_request,
1884 .post_req = mmci_post_request,
1885 .set_ios = mmci_set_ios,
1886 .get_ro = mmc_gpio_get_ro,
1887 .get_cd = mmci_get_cd,
1888 .start_signal_voltage_switch = mmci_sig_volt_switch,
1889};
1890
1891static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1892{
1893 struct mmci_host *host = mmc_priv(mmc);
1894 int ret = mmc_of_parse(mmc);
1895
1896 if (ret)
1897 return ret;
1898
1899 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1900 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1901 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1902 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1903 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1904 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1905 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1906 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1907 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1908 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1909 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1910 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1911 if (of_get_property(np, "st,sig-dir", NULL))
1912 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1913 if (of_get_property(np, "st,neg-edge", NULL))
1914 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1915 if (of_get_property(np, "st,use-ckin", NULL))
1916 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1917
1918 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1919 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1920 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1921 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1922
1923 return 0;
1924}
1925
1926static int mmci_probe(struct amba_device *dev,
1927 const struct amba_id *id)
1928{
1929 struct mmci_platform_data *plat = dev->dev.platform_data;
1930 struct device_node *np = dev->dev.of_node;
1931 struct variant_data *variant = id->data;
1932 struct mmci_host *host;
1933 struct mmc_host *mmc;
1934 int ret;
1935
1936 /* Must have platform data or Device Tree. */
1937 if (!plat && !np) {
1938 dev_err(&dev->dev, "No plat data or DT found\n");
1939 return -EINVAL;
1940 }
1941
1942 if (!plat) {
1943 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1944 if (!plat)
1945 return -ENOMEM;
1946 }
1947
1948 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1949 if (!mmc)
1950 return -ENOMEM;
1951
1952 ret = mmci_of_parse(np, mmc);
1953 if (ret)
1954 goto host_free;
1955
1956 host = mmc_priv(mmc);
1957 host->mmc = mmc;
1958 host->mmc_ops = &mmci_ops;
1959 mmc->ops = &mmci_ops;
1960
1961 /*
1962 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1963 * pins can be set accordingly using pinctrl
1964 */
1965 if (!variant->opendrain) {
1966 host->pinctrl = devm_pinctrl_get(&dev->dev);
1967 if (IS_ERR(host->pinctrl)) {
1968 dev_err(&dev->dev, "failed to get pinctrl");
1969 ret = PTR_ERR(host->pinctrl);
1970 goto host_free;
1971 }
1972
1973 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1974 MMCI_PINCTRL_STATE_OPENDRAIN);
1975 if (IS_ERR(host->pins_opendrain)) {
1976 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1977 ret = PTR_ERR(host->pins_opendrain);
1978 goto host_free;
1979 }
1980 }
1981
1982 host->hw_designer = amba_manf(dev);
1983 host->hw_revision = amba_rev(dev);
1984 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1985 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1986
1987 host->clk = devm_clk_get(&dev->dev, NULL);
1988 if (IS_ERR(host->clk)) {
1989 ret = PTR_ERR(host->clk);
1990 goto host_free;
1991 }
1992
1993 ret = clk_prepare_enable(host->clk);
1994 if (ret)
1995 goto host_free;
1996
1997 if (variant->qcom_fifo)
1998 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1999 else
2000 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2001
2002 host->plat = plat;
2003 host->variant = variant;
2004 host->mclk = clk_get_rate(host->clk);
2005 /*
2006 * According to the spec, mclk is max 100 MHz,
2007 * so we try to adjust the clock down to this,
2008 * (if possible).
2009 */
2010 if (host->mclk > variant->f_max) {
2011 ret = clk_set_rate(host->clk, variant->f_max);
2012 if (ret < 0)
2013 goto clk_disable;
2014 host->mclk = clk_get_rate(host->clk);
2015 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2016 host->mclk);
2017 }
2018
2019 host->phybase = dev->res.start;
2020 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2021 if (IS_ERR(host->base)) {
2022 ret = PTR_ERR(host->base);
2023 goto clk_disable;
2024 }
2025
2026 if (variant->init)
2027 variant->init(host);
2028
2029 /*
2030 * The ARM and ST versions of the block have slightly different
2031 * clock divider equations which means that the minimum divider
2032 * differs too.
2033 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2034 */
2035 if (variant->st_clkdiv)
2036 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2037 else if (variant->stm32_clkdiv)
2038 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2039 else if (variant->explicit_mclk_control)
2040 mmc->f_min = clk_round_rate(host->clk, 100000);
2041 else
2042 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2043 /*
2044 * If no maximum operating frequency is supplied, fall back to use
2045 * the module parameter, which has a (low) default value in case it
2046 * is not specified. Either value must not exceed the clock rate into
2047 * the block, of course.
2048 */
2049 if (mmc->f_max)
2050 mmc->f_max = variant->explicit_mclk_control ?
2051 min(variant->f_max, mmc->f_max) :
2052 min(host->mclk, mmc->f_max);
2053 else
2054 mmc->f_max = variant->explicit_mclk_control ?
2055 fmax : min(host->mclk, fmax);
2056
2057
2058 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2059
2060 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2061 if (IS_ERR(host->rst)) {
2062 ret = PTR_ERR(host->rst);
2063 goto clk_disable;
2064 }
2065
2066 /* Get regulators and the supported OCR mask */
2067 ret = mmc_regulator_get_supply(mmc);
2068 if (ret)
2069 goto clk_disable;
2070
2071 if (!mmc->ocr_avail)
2072 mmc->ocr_avail = plat->ocr_mask;
2073 else if (plat->ocr_mask)
2074 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2075
2076 /* We support these capabilities. */
2077 mmc->caps |= MMC_CAP_CMD23;
2078
2079 /*
2080 * Enable busy detection.
2081 */
2082 if (variant->busy_detect) {
2083 mmci_ops.card_busy = mmci_card_busy;
2084 /*
2085 * Not all variants have a flag to enable busy detection
2086 * in the DPSM, but if they do, set it here.
2087 */
2088 if (variant->busy_dpsm_flag)
2089 mmci_write_datactrlreg(host,
2090 host->variant->busy_dpsm_flag);
2091 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2092 }
2093
2094 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2095 host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2096 host->stop_abort.arg = 0;
2097 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2098
2099 /* We support these PM capabilities. */
2100 mmc->pm_caps |= MMC_PM_KEEP_POWER;
2101
2102 /*
2103 * We can do SGIO
2104 */
2105 mmc->max_segs = NR_SG;
2106
2107 /*
2108 * Since only a certain number of bits are valid in the data length
2109 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2110 * single request.
2111 */
2112 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2113
2114 /*
2115 * Set the maximum segment size. Since we aren't doing DMA
2116 * (yet) we are only limited by the data length register.
2117 */
2118 mmc->max_seg_size = mmc->max_req_size;
2119
2120 /*
2121 * Block size can be up to 2048 bytes, but must be a power of two.
2122 */
2123 mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2124
2125 /*
2126 * Limit the number of blocks transferred so that we don't overflow
2127 * the maximum request size.
2128 */
2129 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2130
2131 spin_lock_init(&host->lock);
2132
2133 writel(0, host->base + MMCIMASK0);
2134
2135 if (variant->mmcimask1)
2136 writel(0, host->base + MMCIMASK1);
2137
2138 writel(0xfff, host->base + MMCICLEAR);
2139
2140 /*
2141 * If:
2142 * - not using DT but using a descriptor table, or
2143 * - using a table of descriptors ALONGSIDE DT, or
2144 * look up these descriptors named "cd" and "wp" right here, fail
2145 * silently of these do not exist
2146 */
2147 if (!np) {
2148 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2149 if (ret == -EPROBE_DEFER)
2150 goto clk_disable;
2151
2152 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2153 if (ret == -EPROBE_DEFER)
2154 goto clk_disable;
2155 }
2156
2157 ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2158 mmci_irq_thread, IRQF_SHARED,
2159 DRIVER_NAME " (cmd)", host);
2160 if (ret)
2161 goto clk_disable;
2162
2163 if (!dev->irq[1])
2164 host->singleirq = true;
2165 else {
2166 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2167 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2168 if (ret)
2169 goto clk_disable;
2170 }
2171
2172 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2173
2174 amba_set_drvdata(dev, mmc);
2175
2176 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2177 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2178 amba_rev(dev), (unsigned long long)dev->res.start,
2179 dev->irq[0], dev->irq[1]);
2180
2181 mmci_dma_setup(host);
2182
2183 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2184 pm_runtime_use_autosuspend(&dev->dev);
2185
2186 mmc_add_host(mmc);
2187
2188 pm_runtime_put(&dev->dev);
2189 return 0;
2190
2191 clk_disable:
2192 clk_disable_unprepare(host->clk);
2193 host_free:
2194 mmc_free_host(mmc);
2195 return ret;
2196}
2197
2198static int mmci_remove(struct amba_device *dev)
2199{
2200 struct mmc_host *mmc = amba_get_drvdata(dev);
2201
2202 if (mmc) {
2203 struct mmci_host *host = mmc_priv(mmc);
2204 struct variant_data *variant = host->variant;
2205
2206 /*
2207 * Undo pm_runtime_put() in probe. We use the _sync
2208 * version here so that we can access the primecell.
2209 */
2210 pm_runtime_get_sync(&dev->dev);
2211
2212 mmc_remove_host(mmc);
2213
2214 writel(0, host->base + MMCIMASK0);
2215
2216 if (variant->mmcimask1)
2217 writel(0, host->base + MMCIMASK1);
2218
2219 writel(0, host->base + MMCICOMMAND);
2220 writel(0, host->base + MMCIDATACTRL);
2221
2222 mmci_dma_release(host);
2223 clk_disable_unprepare(host->clk);
2224 mmc_free_host(mmc);
2225 }
2226
2227 return 0;
2228}
2229
2230#ifdef CONFIG_PM
2231static void mmci_save(struct mmci_host *host)
2232{
2233 unsigned long flags;
2234
2235 spin_lock_irqsave(&host->lock, flags);
2236
2237 writel(0, host->base + MMCIMASK0);
2238 if (host->variant->pwrreg_nopower) {
2239 writel(0, host->base + MMCIDATACTRL);
2240 writel(0, host->base + MMCIPOWER);
2241 writel(0, host->base + MMCICLOCK);
2242 }
2243 mmci_reg_delay(host);
2244
2245 spin_unlock_irqrestore(&host->lock, flags);
2246}
2247
2248static void mmci_restore(struct mmci_host *host)
2249{
2250 unsigned long flags;
2251
2252 spin_lock_irqsave(&host->lock, flags);
2253
2254 if (host->variant->pwrreg_nopower) {
2255 writel(host->clk_reg, host->base + MMCICLOCK);
2256 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2257 writel(host->pwr_reg, host->base + MMCIPOWER);
2258 }
2259 writel(MCI_IRQENABLE | host->variant->start_err,
2260 host->base + MMCIMASK0);
2261 mmci_reg_delay(host);
2262
2263 spin_unlock_irqrestore(&host->lock, flags);
2264}
2265
2266static int mmci_runtime_suspend(struct device *dev)
2267{
2268 struct amba_device *adev = to_amba_device(dev);
2269 struct mmc_host *mmc = amba_get_drvdata(adev);
2270
2271 if (mmc) {
2272 struct mmci_host *host = mmc_priv(mmc);
2273 pinctrl_pm_select_sleep_state(dev);
2274 mmci_save(host);
2275 clk_disable_unprepare(host->clk);
2276 }
2277
2278 return 0;
2279}
2280
2281static int mmci_runtime_resume(struct device *dev)
2282{
2283 struct amba_device *adev = to_amba_device(dev);
2284 struct mmc_host *mmc = amba_get_drvdata(adev);
2285
2286 if (mmc) {
2287 struct mmci_host *host = mmc_priv(mmc);
2288 clk_prepare_enable(host->clk);
2289 mmci_restore(host);
2290 pinctrl_select_default_state(dev);
2291 }
2292
2293 return 0;
2294}
2295#endif
2296
2297static const struct dev_pm_ops mmci_dev_pm_ops = {
2298 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2299 pm_runtime_force_resume)
2300 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2301};
2302
2303static const struct amba_id mmci_ids[] = {
2304 {
2305 .id = 0x00041180,
2306 .mask = 0xff0fffff,
2307 .data = &variant_arm,
2308 },
2309 {
2310 .id = 0x01041180,
2311 .mask = 0xff0fffff,
2312 .data = &variant_arm_extended_fifo,
2313 },
2314 {
2315 .id = 0x02041180,
2316 .mask = 0xff0fffff,
2317 .data = &variant_arm_extended_fifo_hwfc,
2318 },
2319 {
2320 .id = 0x00041181,
2321 .mask = 0x000fffff,
2322 .data = &variant_arm,
2323 },
2324 /* ST Micro variants */
2325 {
2326 .id = 0x00180180,
2327 .mask = 0x00ffffff,
2328 .data = &variant_u300,
2329 },
2330 {
2331 .id = 0x10180180,
2332 .mask = 0xf0ffffff,
2333 .data = &variant_nomadik,
2334 },
2335 {
2336 .id = 0x00280180,
2337 .mask = 0x00ffffff,
2338 .data = &variant_nomadik,
2339 },
2340 {
2341 .id = 0x00480180,
2342 .mask = 0xf0ffffff,
2343 .data = &variant_ux500,
2344 },
2345 {
2346 .id = 0x10480180,
2347 .mask = 0xf0ffffff,
2348 .data = &variant_ux500v2,
2349 },
2350 {
2351 .id = 0x00880180,
2352 .mask = 0x00ffffff,
2353 .data = &variant_stm32,
2354 },
2355 {
2356 .id = 0x10153180,
2357 .mask = 0xf0ffffff,
2358 .data = &variant_stm32_sdmmc,
2359 },
2360 {
2361 .id = 0x00253180,
2362 .mask = 0xf0ffffff,
2363 .data = &variant_stm32_sdmmcv2,
2364 },
2365 /* Qualcomm variants */
2366 {
2367 .id = 0x00051180,
2368 .mask = 0x000fffff,
2369 .data = &variant_qcom,
2370 },
2371 { 0, 0 },
2372};
2373
2374MODULE_DEVICE_TABLE(amba, mmci_ids);
2375
2376static struct amba_driver mmci_driver = {
2377 .drv = {
2378 .name = DRIVER_NAME,
2379 .pm = &mmci_dev_pm_ops,
2380 },
2381 .probe = mmci_probe,
2382 .remove = mmci_remove,
2383 .id_table = mmci_ids,
2384};
2385
2386module_amba_driver(mmci_driver);
2387
2388module_param(fmax, uint, 0444);
2389
2390MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2391MODULE_LICENSE("GPL");