Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/err.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
 
  24#include <linux/mmc/pm.h>
  25#include <linux/mmc/host.h>
  26#include <linux/mmc/card.h>
 
  27#include <linux/mmc/slot-gpio.h>
  28#include <linux/amba/bus.h>
  29#include <linux/clk.h>
  30#include <linux/scatterlist.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/amba/mmci.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/types.h>
  39#include <linux/pinctrl/consumer.h>
 
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
  43
  44#include "mmci.h"
  45#include "mmci_qcom_dml.h"
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
  49static unsigned int fmax = 515633;
 
 
  50
  51/**
  52 * struct variant_data - MMCI variant-specific quirks
  53 * @clkreg: default value for MCICLOCK register
  54 * @clkreg_enable: enable value for MMCICLOCK register
  55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
  56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
  57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  59 *	      is asserted (likewise for RX)
  60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  61 *		  is asserted (likewise for RX)
  62 * @data_cmd_enable: enable value for data commands.
  63 * @st_sdio: enable ST specific SDIO logic
  64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
  66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
  68 *		     register
  69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
  70 * @pwrreg_powerup: power up value for MMCIPOWER register
  71 * @f_max: maximum clk frequency supported by the controller.
  72 * @signal_direction: input/out direction of bus signals can be indicated
  73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  74 * @busy_detect: true if the variant supports busy detection on DAT0.
  75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
  76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
  77 *		      indicating that the card is busy
  78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
  79 *		      getting busy end detection interrupts
  80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  81 * @explicit_mclk_control: enable explicit mclk control in driver.
  82 * @qcom_fifo: enables qcom specific fifo pio read logic.
  83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
  84 * @reversed_irq_handling: handle data irq before cmd irq.
  85 * @mmcimask1: true if variant have a MMCIMASK1 register.
  86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
  87 *	       register.
  88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
  89 */
  90struct variant_data {
  91	unsigned int		clkreg;
  92	unsigned int		clkreg_enable;
  93	unsigned int		clkreg_8bit_bus_enable;
  94	unsigned int		clkreg_neg_edge_enable;
  95	unsigned int		datalength_bits;
  96	unsigned int		fifosize;
  97	unsigned int		fifohalfsize;
  98	unsigned int		data_cmd_enable;
  99	unsigned int		datactrl_mask_ddrmode;
 100	unsigned int		datactrl_mask_sdio;
 101	bool			st_sdio;
 102	bool			st_clkdiv;
 103	bool			blksz_datactrl16;
 104	bool			blksz_datactrl4;
 105	u32			pwrreg_powerup;
 106	u32			f_max;
 107	bool			signal_direction;
 108	bool			pwrreg_clkgate;
 109	bool			busy_detect;
 110	u32			busy_dpsm_flag;
 111	u32			busy_detect_flag;
 112	u32			busy_detect_mask;
 113	bool			pwrreg_nopower;
 114	bool			explicit_mclk_control;
 115	bool			qcom_fifo;
 116	bool			qcom_dml;
 117	bool			reversed_irq_handling;
 118	bool			mmcimask1;
 119	u32			start_err;
 120	u32			opendrain;
 121};
 122
 123static struct variant_data variant_arm = {
 124	.fifosize		= 16 * 4,
 125	.fifohalfsize		= 8 * 4,
 
 
 
 
 126	.datalength_bits	= 16,
 
 127	.pwrreg_powerup		= MCI_PWR_UP,
 128	.f_max			= 100000000,
 129	.reversed_irq_handling	= true,
 130	.mmcimask1		= true,
 
 131	.start_err		= MCI_STARTBITERR,
 132	.opendrain		= MCI_ROD,
 
 133};
 134
 135static struct variant_data variant_arm_extended_fifo = {
 136	.fifosize		= 128 * 4,
 137	.fifohalfsize		= 64 * 4,
 
 
 
 
 138	.datalength_bits	= 16,
 
 139	.pwrreg_powerup		= MCI_PWR_UP,
 140	.f_max			= 100000000,
 141	.mmcimask1		= true,
 
 142	.start_err		= MCI_STARTBITERR,
 143	.opendrain		= MCI_ROD,
 
 144};
 145
 146static struct variant_data variant_arm_extended_fifo_hwfc = {
 147	.fifosize		= 128 * 4,
 148	.fifohalfsize		= 64 * 4,
 149	.clkreg_enable		= MCI_ARM_HWFCEN,
 
 
 
 
 150	.datalength_bits	= 16,
 
 151	.pwrreg_powerup		= MCI_PWR_UP,
 152	.f_max			= 100000000,
 153	.mmcimask1		= true,
 
 154	.start_err		= MCI_STARTBITERR,
 155	.opendrain		= MCI_ROD,
 
 156};
 157
 158static struct variant_data variant_u300 = {
 159	.fifosize		= 16 * 4,
 160	.fifohalfsize		= 8 * 4,
 161	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 162	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 
 
 
 
 163	.datalength_bits	= 16,
 
 164	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 165	.st_sdio			= true,
 166	.pwrreg_powerup		= MCI_PWR_ON,
 167	.f_max			= 100000000,
 168	.signal_direction	= true,
 169	.pwrreg_clkgate		= true,
 170	.pwrreg_nopower		= true,
 171	.mmcimask1		= true,
 
 172	.start_err		= MCI_STARTBITERR,
 173	.opendrain		= MCI_OD,
 
 174};
 175
 176static struct variant_data variant_nomadik = {
 177	.fifosize		= 16 * 4,
 178	.fifohalfsize		= 8 * 4,
 179	.clkreg			= MCI_CLK_ENABLE,
 180	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 
 
 
 
 181	.datalength_bits	= 24,
 
 182	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 183	.st_sdio		= true,
 184	.st_clkdiv		= true,
 185	.pwrreg_powerup		= MCI_PWR_ON,
 186	.f_max			= 100000000,
 187	.signal_direction	= true,
 188	.pwrreg_clkgate		= true,
 189	.pwrreg_nopower		= true,
 190	.mmcimask1		= true,
 
 191	.start_err		= MCI_STARTBITERR,
 192	.opendrain		= MCI_OD,
 
 193};
 194
 195static struct variant_data variant_ux500 = {
 196	.fifosize		= 30 * 4,
 197	.fifohalfsize		= 8 * 4,
 198	.clkreg			= MCI_CLK_ENABLE,
 199	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 200	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 
 
 
 
 202	.datalength_bits	= 24,
 
 
 
 203	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 204	.st_sdio		= true,
 205	.st_clkdiv		= true,
 206	.pwrreg_powerup		= MCI_PWR_ON,
 207	.f_max			= 100000000,
 208	.signal_direction	= true,
 209	.pwrreg_clkgate		= true,
 210	.busy_detect		= true,
 211	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 212	.busy_detect_flag	= MCI_ST_CARDBUSY,
 213	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 214	.pwrreg_nopower		= true,
 215	.mmcimask1		= true,
 
 216	.start_err		= MCI_STARTBITERR,
 217	.opendrain		= MCI_OD,
 
 218};
 219
 220static struct variant_data variant_ux500v2 = {
 221	.fifosize		= 30 * 4,
 222	.fifohalfsize		= 8 * 4,
 223	.clkreg			= MCI_CLK_ENABLE,
 224	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 225	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 226	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 
 
 
 
 227	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 228	.datalength_bits	= 24,
 
 
 
 229	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 230	.st_sdio		= true,
 231	.st_clkdiv		= true,
 232	.blksz_datactrl16	= true,
 233	.pwrreg_powerup		= MCI_PWR_ON,
 234	.f_max			= 100000000,
 235	.signal_direction	= true,
 236	.pwrreg_clkgate		= true,
 237	.busy_detect		= true,
 238	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 239	.busy_detect_flag	= MCI_ST_CARDBUSY,
 240	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 241	.pwrreg_nopower		= true,
 242	.mmcimask1		= true,
 
 243	.start_err		= MCI_STARTBITERR,
 244	.opendrain		= MCI_OD,
 
 245};
 246
 247static struct variant_data variant_stm32 = {
 248	.fifosize		= 32 * 4,
 249	.fifohalfsize		= 8 * 4,
 250	.clkreg			= MCI_CLK_ENABLE,
 251	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 252	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 253	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 
 
 
 
 
 254	.datalength_bits	= 24,
 
 255	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 256	.st_sdio		= true,
 257	.st_clkdiv		= true,
 258	.pwrreg_powerup		= MCI_PWR_ON,
 259	.f_max			= 48000000,
 260	.pwrreg_clkgate		= true,
 261	.pwrreg_nopower		= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262};
 263
 264static struct variant_data variant_qcom = {
 265	.fifosize		= 16 * 4,
 266	.fifohalfsize		= 8 * 4,
 267	.clkreg			= MCI_CLK_ENABLE,
 268	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 269				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 270	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 271	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 
 
 
 
 272	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 273	.blksz_datactrl4	= true,
 274	.datalength_bits	= 24,
 
 
 275	.pwrreg_powerup		= MCI_PWR_UP,
 276	.f_max			= 208000000,
 277	.explicit_mclk_control	= true,
 278	.qcom_fifo		= true,
 279	.qcom_dml		= true,
 280	.mmcimask1		= true,
 
 281	.start_err		= MCI_STARTBITERR,
 282	.opendrain		= MCI_ROD,
 
 283};
 284
 285/* Busy detection for the ST Micro variant */
 286static int mmci_card_busy(struct mmc_host *mmc)
 287{
 288	struct mmci_host *host = mmc_priv(mmc);
 289	unsigned long flags;
 290	int busy = 0;
 291
 292	spin_lock_irqsave(&host->lock, flags);
 293	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 294		busy = 1;
 295	spin_unlock_irqrestore(&host->lock, flags);
 296
 297	return busy;
 298}
 299
 300/*
 301 * Validate mmc prerequisites
 302 */
 303static int mmci_validate_data(struct mmci_host *host,
 304			      struct mmc_data *data)
 305{
 306	if (!data)
 307		return 0;
 308
 309	if (!is_power_of_2(data->blksz)) {
 310		dev_err(mmc_dev(host->mmc),
 311			"unsupported block size (%d bytes)\n", data->blksz);
 312		return -EINVAL;
 313	}
 314
 315	return 0;
 316}
 317
 318static void mmci_reg_delay(struct mmci_host *host)
 319{
 320	/*
 321	 * According to the spec, at least three feedback clock cycles
 322	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 323	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 324	 * Worst delay time during card init is at 100 kHz => 30 us.
 325	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 326	 */
 327	if (host->cclk < 25000000)
 328		udelay(30);
 329	else
 330		ndelay(120);
 331}
 332
 333/*
 334 * This must be called with host->lock held
 335 */
 336static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 337{
 338	if (host->clk_reg != clk) {
 339		host->clk_reg = clk;
 340		writel(clk, host->base + MMCICLOCK);
 341	}
 342}
 343
 344/*
 345 * This must be called with host->lock held
 346 */
 347static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 348{
 349	if (host->pwr_reg != pwr) {
 350		host->pwr_reg = pwr;
 351		writel(pwr, host->base + MMCIPOWER);
 352	}
 353}
 354
 355/*
 356 * This must be called with host->lock held
 357 */
 358static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 359{
 360	/* Keep busy mode in DPSM if enabled */
 361	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 362
 363	if (host->datactrl_reg != datactrl) {
 364		host->datactrl_reg = datactrl;
 365		writel(datactrl, host->base + MMCIDATACTRL);
 366	}
 367}
 368
 369/*
 370 * This must be called with host->lock held
 371 */
 372static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 373{
 374	struct variant_data *variant = host->variant;
 375	u32 clk = variant->clkreg;
 376
 377	/* Make sure cclk reflects the current calculated clock */
 378	host->cclk = 0;
 379
 380	if (desired) {
 381		if (variant->explicit_mclk_control) {
 382			host->cclk = host->mclk;
 383		} else if (desired >= host->mclk) {
 384			clk = MCI_CLK_BYPASS;
 385			if (variant->st_clkdiv)
 386				clk |= MCI_ST_UX500_NEG_EDGE;
 387			host->cclk = host->mclk;
 388		} else if (variant->st_clkdiv) {
 389			/*
 390			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 391			 * => clkdiv = (mclk / f) - 2
 392			 * Round the divider up so we don't exceed the max
 393			 * frequency
 394			 */
 395			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 396			if (clk >= 256)
 397				clk = 255;
 398			host->cclk = host->mclk / (clk + 2);
 399		} else {
 400			/*
 401			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 402			 * => clkdiv = mclk / (2 * f) - 1
 403			 */
 404			clk = host->mclk / (2 * desired) - 1;
 405			if (clk >= 256)
 406				clk = 255;
 407			host->cclk = host->mclk / (2 * (clk + 1));
 408		}
 409
 410		clk |= variant->clkreg_enable;
 411		clk |= MCI_CLK_ENABLE;
 412		/* This hasn't proven to be worthwhile */
 413		/* clk |= MCI_CLK_PWRSAVE; */
 414	}
 415
 416	/* Set actual clock for debug */
 417	host->mmc->actual_clock = host->cclk;
 418
 419	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 420		clk |= MCI_4BIT_BUS;
 421	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 422		clk |= variant->clkreg_8bit_bus_enable;
 423
 424	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 425	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 426		clk |= variant->clkreg_neg_edge_enable;
 427
 428	mmci_write_clkreg(host, clk);
 429}
 430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431static void
 432mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 433{
 434	writel(0, host->base + MMCICOMMAND);
 435
 436	BUG_ON(host->data);
 437
 438	host->mrq = NULL;
 439	host->cmd = NULL;
 440
 441	mmc_request_done(host->mmc, mrq);
 442}
 443
 444static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 445{
 446	void __iomem *base = host->base;
 447	struct variant_data *variant = host->variant;
 448
 449	if (host->singleirq) {
 450		unsigned int mask0 = readl(base + MMCIMASK0);
 451
 452		mask0 &= ~MCI_IRQ1MASK;
 453		mask0 |= mask;
 454
 455		writel(mask0, base + MMCIMASK0);
 456	}
 457
 458	if (variant->mmcimask1)
 459		writel(mask, base + MMCIMASK1);
 460
 461	host->mask1_reg = mask;
 462}
 463
 464static void mmci_stop_data(struct mmci_host *host)
 465{
 466	mmci_write_datactrlreg(host, 0);
 467	mmci_set_mask1(host, 0);
 468	host->data = NULL;
 469}
 470
 471static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 472{
 473	unsigned int flags = SG_MITER_ATOMIC;
 474
 475	if (data->flags & MMC_DATA_READ)
 476		flags |= SG_MITER_TO_SG;
 477	else
 478		flags |= SG_MITER_FROM_SG;
 479
 480	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 481}
 482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483/*
 484 * All the DMA operation mode stuff goes inside this ifdef.
 485 * This assumes that you have a generic DMA device interface,
 486 * no custom DMA interfaces are supported.
 487 */
 488#ifdef CONFIG_DMA_ENGINE
 489static void mmci_dma_setup(struct mmci_host *host)
 
 
 
 
 
 
 
 
 
 
 
 
 
 490{
 491	const char *rxname, *txname;
 492	struct variant_data *variant = host->variant;
 493
 494	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 495	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 
 496
 497	/* initialize pre request cookie */
 498	host->next_data.cookie = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499
 500	/*
 501	 * If only an RX channel is specified, the driver will
 502	 * attempt to use it bidirectionally, however if it is
 503	 * is specified but cannot be located, DMA will be disabled.
 504	 */
 505	if (host->dma_rx_channel && !host->dma_tx_channel)
 506		host->dma_tx_channel = host->dma_rx_channel;
 507
 508	if (host->dma_rx_channel)
 509		rxname = dma_chan_name(host->dma_rx_channel);
 510	else
 511		rxname = "none";
 512
 513	if (host->dma_tx_channel)
 514		txname = dma_chan_name(host->dma_tx_channel);
 515	else
 516		txname = "none";
 517
 518	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 519		 rxname, txname);
 520
 521	/*
 522	 * Limit the maximum segment size in any SG entry according to
 523	 * the parameters of the DMA engine device.
 524	 */
 525	if (host->dma_tx_channel) {
 526		struct device *dev = host->dma_tx_channel->device->dev;
 527		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 528
 529		if (max_seg_size < host->mmc->max_seg_size)
 530			host->mmc->max_seg_size = max_seg_size;
 531	}
 532	if (host->dma_rx_channel) {
 533		struct device *dev = host->dma_rx_channel->device->dev;
 534		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 535
 536		if (max_seg_size < host->mmc->max_seg_size)
 537			host->mmc->max_seg_size = max_seg_size;
 538	}
 539
 540	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
 541		if (dml_hw_init(host, host->mmc->parent->of_node))
 542			variant->qcom_dml = false;
 
 
 
 543}
 544
 545/*
 546 * This is used in or so inline it
 547 * so it can be discarded.
 548 */
 549static inline void mmci_dma_release(struct mmci_host *host)
 550{
 551	if (host->dma_rx_channel)
 552		dma_release_channel(host->dma_rx_channel);
 553	if (host->dma_tx_channel)
 554		dma_release_channel(host->dma_tx_channel);
 555	host->dma_rx_channel = host->dma_tx_channel = NULL;
 556}
 557
 558static void mmci_dma_data_error(struct mmci_host *host)
 559{
 560	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 561	dmaengine_terminate_all(host->dma_current);
 562	host->dma_in_progress = false;
 563	host->dma_current = NULL;
 564	host->dma_desc_current = NULL;
 565	host->data->host_cookie = 0;
 566}
 567
 568static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 569{
 
 570	struct dma_chan *chan;
 571
 572	if (data->flags & MMC_DATA_READ)
 573		chan = host->dma_rx_channel;
 574	else
 575		chan = host->dma_tx_channel;
 576
 577	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 578		     mmc_get_dma_dir(data));
 579}
 580
 581static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 582{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583	u32 status;
 584	int i;
 585
 
 
 
 586	/* Wait up to 1ms for the DMA to complete */
 587	for (i = 0; ; i++) {
 588		status = readl(host->base + MMCISTATUS);
 589		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 590			break;
 591		udelay(10);
 592	}
 593
 594	/*
 595	 * Check to see whether we still have some data left in the FIFO -
 596	 * this catches DMA controllers which are unable to monitor the
 597	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 598	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 599	 */
 600	if (status & MCI_RXDATAAVLBLMASK) {
 601		mmci_dma_data_error(host);
 602		if (!data->error)
 603			data->error = -EIO;
 604	}
 605
 606	if (!data->host_cookie)
 607		mmci_dma_unmap(host, data);
 
 608
 609	/*
 610	 * Use of DMA with scatter-gather is impossible.
 611	 * Give up with DMA and switch back to PIO mode.
 612	 */
 613	if (status & MCI_RXDATAAVLBLMASK) {
 614		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 615		mmci_dma_release(host);
 616	}
 617
 618	host->dma_in_progress = false;
 619	host->dma_current = NULL;
 620	host->dma_desc_current = NULL;
 621}
 622
 623/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 624static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 625				struct dma_chan **dma_chan,
 626				struct dma_async_tx_descriptor **dma_desc)
 627{
 
 628	struct variant_data *variant = host->variant;
 629	struct dma_slave_config conf = {
 630		.src_addr = host->phybase + MMCIFIFO,
 631		.dst_addr = host->phybase + MMCIFIFO,
 632		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 633		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 634		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 635		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 636		.device_fc = false,
 637	};
 638	struct dma_chan *chan;
 639	struct dma_device *device;
 640	struct dma_async_tx_descriptor *desc;
 641	int nr_sg;
 642	unsigned long flags = DMA_CTRL_ACK;
 643
 644	if (data->flags & MMC_DATA_READ) {
 645		conf.direction = DMA_DEV_TO_MEM;
 646		chan = host->dma_rx_channel;
 647	} else {
 648		conf.direction = DMA_MEM_TO_DEV;
 649		chan = host->dma_tx_channel;
 650	}
 651
 652	/* If there's no DMA channel, fall back to PIO */
 653	if (!chan)
 654		return -EINVAL;
 655
 656	/* If less than or equal to the fifo size, don't bother with DMA */
 657	if (data->blksz * data->blocks <= variant->fifosize)
 658		return -EINVAL;
 659
 
 
 
 
 
 
 
 
 
 
 
 
 660	device = chan->device;
 661	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 662			   mmc_get_dma_dir(data));
 663	if (nr_sg == 0)
 664		return -EINVAL;
 665
 666	if (host->variant->qcom_dml)
 667		flags |= DMA_PREP_INTERRUPT;
 668
 669	dmaengine_slave_config(chan, &conf);
 670	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 671					    conf.direction, flags);
 672	if (!desc)
 673		goto unmap_exit;
 674
 675	*dma_chan = chan;
 676	*dma_desc = desc;
 677
 678	return 0;
 679
 680 unmap_exit:
 681	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 682		     mmc_get_dma_dir(data));
 683	return -ENOMEM;
 684}
 685
 686static inline int mmci_dma_prep_data(struct mmci_host *host,
 687				     struct mmc_data *data)
 
 688{
 
 
 
 
 
 
 
 
 689	/* Check if next job is already prepared. */
 690	if (host->dma_current && host->dma_desc_current)
 691		return 0;
 692
 693	/* No job were prepared thus do it now. */
 694	return __mmci_dma_prep_data(host, data, &host->dma_current,
 695				    &host->dma_desc_current);
 696}
 697
 698static inline int mmci_dma_prep_next(struct mmci_host *host,
 699				     struct mmc_data *data)
 700{
 701	struct mmci_host_next *nd = &host->next_data;
 702	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 703}
 704
 705static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 706{
 
 707	int ret;
 708	struct mmc_data *data = host->data;
 709
 710	ret = mmci_dma_prep_data(host, host->data);
 711	if (ret)
 712		return ret;
 713
 714	/* Okay, go for it. */
 715	dev_vdbg(mmc_dev(host->mmc),
 716		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 717		 data->sg_len, data->blksz, data->blocks, data->flags);
 718	host->dma_in_progress = true;
 719	dmaengine_submit(host->dma_desc_current);
 720	dma_async_issue_pending(host->dma_current);
 721
 722	if (host->variant->qcom_dml)
 723		dml_start_xfer(host, data);
 724
 725	datactrl |= MCI_DPSM_DMAENABLE;
 726
 727	/* Trigger the DMA transfer */
 728	mmci_write_datactrlreg(host, datactrl);
 729
 730	/*
 731	 * Let the MMCI say when the data is ended and it's time
 732	 * to fire next DMA request. When that happens, MMCI will
 733	 * call mmci_data_end()
 734	 */
 735	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 736	       host->base + MMCIMASK0);
 737	return 0;
 738}
 739
 740static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 741{
 742	struct mmci_host_next *next = &host->next_data;
 743
 744	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 745	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 746
 747	host->dma_desc_current = next->dma_desc;
 748	host->dma_current = next->dma_chan;
 749	next->dma_desc = NULL;
 750	next->dma_chan = NULL;
 751}
 752
 753static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 754{
 755	struct mmci_host *host = mmc_priv(mmc);
 756	struct mmc_data *data = mrq->data;
 757	struct mmci_host_next *nd = &host->next_data;
 758
 759	if (!data)
 760		return;
 761
 762	BUG_ON(data->host_cookie);
 763
 764	if (mmci_validate_data(host, data))
 765		return;
 766
 767	if (!mmci_dma_prep_next(host, data))
 768		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 
 
 769}
 770
 771static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 772			      int err)
 
 773{
 774	struct mmci_host *host = mmc_priv(mmc);
 775	struct mmc_data *data = mrq->data;
 776
 777	if (!data || !data->host_cookie)
 778		return;
 779
 780	mmci_dma_unmap(host, data);
 781
 782	if (err) {
 783		struct mmci_host_next *next = &host->next_data;
 784		struct dma_chan *chan;
 785		if (data->flags & MMC_DATA_READ)
 786			chan = host->dma_rx_channel;
 787		else
 788			chan = host->dma_tx_channel;
 789		dmaengine_terminate_all(chan);
 790
 791		if (host->dma_desc_current == next->dma_desc)
 792			host->dma_desc_current = NULL;
 793
 794		if (host->dma_current == next->dma_chan) {
 795			host->dma_in_progress = false;
 796			host->dma_current = NULL;
 797		}
 798
 799		next->dma_desc = NULL;
 800		next->dma_chan = NULL;
 801		data->host_cookie = 0;
 802	}
 803}
 804
 
 
 
 
 
 
 
 
 
 
 
 805#else
 806/* Blank functions if the DMA engine is not available */
 807static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 808{
 809}
 810static inline void mmci_dma_setup(struct mmci_host *host)
 811{
 812}
 813
 814static inline void mmci_dma_release(struct mmci_host *host)
 815{
 
 816}
 817
 818static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 819{
 
 
 820}
 821
 822static inline void mmci_dma_finalize(struct mmci_host *host,
 823				     struct mmc_data *data)
 824{
 
 
 
 825}
 826
 827static inline void mmci_dma_data_error(struct mmci_host *host)
 828{
 
 
 
 
 
 
 
 
 
 
 
 
 829}
 830
 831static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 
 832{
 833	return -ENOSYS;
 834}
 835
 836#define mmci_pre_request NULL
 837#define mmci_post_request NULL
 838
 839#endif
 
 840
 841static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 842{
 843	struct variant_data *variant = host->variant;
 844	unsigned int datactrl, timeout, irqmask;
 845	unsigned long long clks;
 846	void __iomem *base;
 847	int blksz_bits;
 848
 849	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 850		data->blksz, data->blocks, data->flags);
 851
 852	host->data = data;
 853	host->size = data->blksz * data->blocks;
 854	data->bytes_xfered = 0;
 855
 856	clks = (unsigned long long)data->timeout_ns * host->cclk;
 857	do_div(clks, NSEC_PER_SEC);
 858
 859	timeout = data->timeout_clks + (unsigned int)clks;
 860
 861	base = host->base;
 862	writel(timeout, base + MMCIDATATIMER);
 863	writel(host->size, base + MMCIDATALENGTH);
 864
 865	blksz_bits = ffs(data->blksz) - 1;
 866	BUG_ON(1 << blksz_bits != data->blksz);
 867
 868	if (variant->blksz_datactrl16)
 869		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 870	else if (variant->blksz_datactrl4)
 871		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
 872	else
 873		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 874
 875	if (data->flags & MMC_DATA_READ)
 876		datactrl |= MCI_DPSM_DIRECTION;
 877
 878	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
 879		u32 clk;
 880
 881		datactrl |= variant->datactrl_mask_sdio;
 882
 883		/*
 884		 * The ST Micro variant for SDIO small write transfers
 885		 * needs to have clock H/W flow control disabled,
 886		 * otherwise the transfer will not start. The threshold
 887		 * depends on the rate of MCLK.
 888		 */
 889		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
 890		    (host->size < 8 ||
 891		     (host->size <= 8 && host->mclk > 50000000)))
 892			clk = host->clk_reg & ~variant->clkreg_enable;
 893		else
 894			clk = host->clk_reg | variant->clkreg_enable;
 895
 896		mmci_write_clkreg(host, clk);
 897	}
 898
 899	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 900	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 901		datactrl |= variant->datactrl_mask_ddrmode;
 902
 903	/*
 904	 * Attempt to use DMA operation mode, if this
 905	 * should fail, fall back to PIO mode
 906	 */
 907	if (!mmci_dma_start_data(host, datactrl))
 908		return;
 909
 910	/* IRQ mode, map the SG list for CPU reading/writing */
 911	mmci_init_sg(host, data);
 912
 913	if (data->flags & MMC_DATA_READ) {
 914		irqmask = MCI_RXFIFOHALFFULLMASK;
 915
 916		/*
 917		 * If we have less than the fifo 'half-full' threshold to
 918		 * transfer, trigger a PIO interrupt as soon as any data
 919		 * is available.
 920		 */
 921		if (host->size < variant->fifohalfsize)
 922			irqmask |= MCI_RXDATAAVLBLMASK;
 923	} else {
 924		/*
 925		 * We don't actually need to include "FIFO empty" here
 926		 * since its implicit in "FIFO half empty".
 927		 */
 928		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 929	}
 930
 931	mmci_write_datactrlreg(host, datactrl);
 932	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 933	mmci_set_mask1(host, irqmask);
 934}
 935
 936static void
 937mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 938{
 939	void __iomem *base = host->base;
 
 940
 941	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 942	    cmd->opcode, cmd->arg, cmd->flags);
 943
 944	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 945		writel(0, base + MMCICOMMAND);
 946		mmci_reg_delay(host);
 947	}
 948
 949	c |= cmd->opcode | MCI_CPSM_ENABLE;
 
 
 
 
 950	if (cmd->flags & MMC_RSP_PRESENT) {
 951		if (cmd->flags & MMC_RSP_136)
 952			c |= MCI_CPSM_LONGRSP;
 953		c |= MCI_CPSM_RESPONSE;
 
 
 
 954	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 955	if (/*interrupt*/0)
 956		c |= MCI_CPSM_INTERRUPT;
 957
 958	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
 959		c |= host->variant->data_cmd_enable;
 960
 961	host->cmd = cmd;
 962
 963	writel(cmd->arg, base + MMCIARGUMENT);
 964	writel(c, base + MMCICOMMAND);
 965}
 966
 
 
 
 
 
 
 967static void
 968mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 969	      unsigned int status)
 970{
 
 
 971	/* Make sure we have data to handle */
 972	if (!data)
 973		return;
 974
 975	/* First check for errors */
 976	if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
 977		      host->variant->start_err |
 978		      MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
 
 
 979		u32 remain, success;
 980
 981		/* Terminate the DMA transfer */
 982		if (dma_inprogress(host)) {
 983			mmci_dma_data_error(host);
 984			mmci_dma_unmap(host, data);
 985		}
 986
 987		/*
 988		 * Calculate how far we are into the transfer.  Note that
 989		 * the data counter gives the number of bytes transferred
 990		 * on the MMC bus, not on the host side.  On reads, this
 991		 * can be as much as a FIFO-worth of data ahead.  This
 992		 * matters for FIFO overruns only.
 993		 */
 994		remain = readl(host->base + MMCIDATACNT);
 995		success = data->blksz * data->blocks - remain;
 
 
 
 
 996
 997		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 998			status, success);
 999		if (status & MCI_DATACRCFAIL) {
1000			/* Last block was not successful */
1001			success -= 1;
1002			data->error = -EILSEQ;
1003		} else if (status & MCI_DATATIMEOUT) {
1004			data->error = -ETIMEDOUT;
1005		} else if (status & MCI_STARTBITERR) {
1006			data->error = -ECOMM;
1007		} else if (status & MCI_TXUNDERRUN) {
1008			data->error = -EIO;
1009		} else if (status & MCI_RXOVERRUN) {
1010			if (success > host->variant->fifosize)
1011				success -= host->variant->fifosize;
1012			else
1013				success = 0;
1014			data->error = -EIO;
1015		}
1016		data->bytes_xfered = round_down(success, data->blksz);
1017	}
1018
1019	if (status & MCI_DATABLOCKEND)
1020		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022	if (status & MCI_DATAEND || data->error) {
1023		if (dma_inprogress(host))
1024			mmci_dma_finalize(host, data);
1025		mmci_stop_data(host);
1026
1027		if (!data->error)
1028			/* The error clause is handled above, success! */
1029			data->bytes_xfered = data->blksz * data->blocks;
1030
1031		if (!data->stop || host->mrq->sbc) {
 
 
 
 
 
1032			mmci_request_end(host, data->mrq);
1033		} else {
1034			mmci_start_command(host, data->stop, 0);
1035		}
1036	}
1037}
1038
1039static void
1040mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041	     unsigned int status)
1042{
 
1043	void __iomem *base = host->base;
1044	bool sbc;
1045
1046	if (!cmd)
1047		return;
1048
1049	sbc = (cmd == host->mrq->sbc);
 
1050
1051	/*
1052	 * We need to be one of these interrupts to be considered worth
1053	 * handling. Note that we tag on any latent IRQs postponed
1054	 * due to waiting for busy status.
1055	 */
1056	if (!((status|host->busy_status) &
1057	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058		return;
1059
1060	/*
1061	 * ST Micro variant: handle busy detection.
1062	 */
1063	if (host->variant->busy_detect) {
1064		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066		/* We are busy with a command, return */
1067		if (host->busy_status &&
1068		    (status & host->variant->busy_detect_flag))
1069			return;
1070
1071		/*
1072		 * We were not busy, but we now got a busy response on
1073		 * something that was not an error, and we double-check
1074		 * that the special busy status bit is still set before
1075		 * proceeding.
1076		 */
1077		if (!host->busy_status && busy_resp &&
1078		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081			/* Clear the busy start IRQ */
1082			writel(host->variant->busy_detect_mask,
1083			       host->base + MMCICLEAR);
1084
1085			/* Unmask the busy end IRQ */
1086			writel(readl(base + MMCIMASK0) |
1087			       host->variant->busy_detect_mask,
1088			       base + MMCIMASK0);
1089			/*
1090			 * Now cache the last response status code (until
1091			 * the busy bit goes low), and return.
1092			 */
1093			host->busy_status =
1094				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095			return;
1096		}
1097
1098		/*
1099		 * At this point we are not busy with a command, we have
1100		 * not received a new busy request, clear and mask the busy
1101		 * end IRQ and fall through to process the IRQ.
1102		 */
1103		if (host->busy_status) {
1104
1105			writel(host->variant->busy_detect_mask,
1106			       host->base + MMCICLEAR);
1107
1108			writel(readl(base + MMCIMASK0) &
1109			       ~host->variant->busy_detect_mask,
1110			       base + MMCIMASK0);
1111			host->busy_status = 0;
1112		}
1113	}
1114
1115	host->cmd = NULL;
1116
1117	if (status & MCI_CMDTIMEOUT) {
1118		cmd->error = -ETIMEDOUT;
1119	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120		cmd->error = -EILSEQ;
 
 
 
 
1121	} else {
1122		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126	}
1127
1128	if ((!sbc && !cmd->data) || cmd->error) {
1129		if (host->data) {
1130			/* Terminate the DMA transfer */
1131			if (dma_inprogress(host)) {
1132				mmci_dma_data_error(host);
1133				mmci_dma_unmap(host, host->data);
1134			}
1135			mmci_stop_data(host);
 
 
 
 
1136		}
1137		mmci_request_end(host, host->mrq);
 
 
 
1138	} else if (sbc) {
1139		mmci_start_command(host, host->mrq->cmd, 0);
1140	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 
1141		mmci_start_data(host, cmd->data);
1142	}
1143}
1144
1145static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146{
1147	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148}
1149
1150static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151{
1152	/*
1153	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154	 * from the fifo range should be used
1155	 */
1156	if (status & MCI_RXFIFOHALFFULL)
1157		return host->variant->fifohalfsize;
1158	else if (status & MCI_RXDATAAVLBL)
1159		return 4;
1160
1161	return 0;
1162}
1163
1164static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165{
1166	void __iomem *base = host->base;
1167	char *ptr = buffer;
1168	u32 status = readl(host->base + MMCISTATUS);
1169	int host_remain = host->size;
1170
1171	do {
1172		int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174		if (count > remain)
1175			count = remain;
1176
1177		if (count <= 0)
1178			break;
1179
1180		/*
1181		 * SDIO especially may want to send something that is
1182		 * not divisible by 4 (as opposed to card sectors
1183		 * etc). Therefore make sure to always read the last bytes
1184		 * while only doing full 32-bit reads towards the FIFO.
1185		 */
1186		if (unlikely(count & 0x3)) {
1187			if (count < 4) {
1188				unsigned char buf[4];
1189				ioread32_rep(base + MMCIFIFO, buf, 1);
1190				memcpy(ptr, buf, count);
1191			} else {
1192				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193				count &= ~0x3;
1194			}
1195		} else {
1196			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197		}
1198
1199		ptr += count;
1200		remain -= count;
1201		host_remain -= count;
1202
1203		if (remain == 0)
1204			break;
1205
1206		status = readl(base + MMCISTATUS);
1207	} while (status & MCI_RXDATAAVLBL);
1208
1209	return ptr - buffer;
1210}
1211
1212static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213{
1214	struct variant_data *variant = host->variant;
1215	void __iomem *base = host->base;
1216	char *ptr = buffer;
1217
1218	do {
1219		unsigned int count, maxcnt;
1220
1221		maxcnt = status & MCI_TXFIFOEMPTY ?
1222			 variant->fifosize : variant->fifohalfsize;
1223		count = min(remain, maxcnt);
1224
1225		/*
1226		 * SDIO especially may want to send something that is
1227		 * not divisible by 4 (as opposed to card sectors
1228		 * etc), and the FIFO only accept full 32-bit writes.
1229		 * So compensate by adding +3 on the count, a single
1230		 * byte become a 32bit write, 7 bytes will be two
1231		 * 32bit writes etc.
1232		 */
1233		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235		ptr += count;
1236		remain -= count;
1237
1238		if (remain == 0)
1239			break;
1240
1241		status = readl(base + MMCISTATUS);
1242	} while (status & MCI_TXFIFOHALFEMPTY);
1243
1244	return ptr - buffer;
1245}
1246
1247/*
1248 * PIO data transfer IRQ handler.
1249 */
1250static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251{
1252	struct mmci_host *host = dev_id;
1253	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254	struct variant_data *variant = host->variant;
1255	void __iomem *base = host->base;
1256	unsigned long flags;
1257	u32 status;
1258
1259	status = readl(base + MMCISTATUS);
1260
1261	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263	local_irq_save(flags);
1264
1265	do {
1266		unsigned int remain, len;
1267		char *buffer;
1268
1269		/*
1270		 * For write, we only need to test the half-empty flag
1271		 * here - if the FIFO is completely empty, then by
1272		 * definition it is more than half empty.
1273		 *
1274		 * For read, check for data available.
1275		 */
1276		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277			break;
1278
1279		if (!sg_miter_next(sg_miter))
1280			break;
1281
1282		buffer = sg_miter->addr;
1283		remain = sg_miter->length;
1284
1285		len = 0;
1286		if (status & MCI_RXACTIVE)
1287			len = mmci_pio_read(host, buffer, remain);
1288		if (status & MCI_TXACTIVE)
1289			len = mmci_pio_write(host, buffer, remain, status);
1290
1291		sg_miter->consumed = len;
1292
1293		host->size -= len;
1294		remain -= len;
1295
1296		if (remain)
1297			break;
1298
1299		status = readl(base + MMCISTATUS);
1300	} while (1);
1301
1302	sg_miter_stop(sg_miter);
1303
1304	local_irq_restore(flags);
1305
1306	/*
1307	 * If we have less than the fifo 'half-full' threshold to transfer,
1308	 * trigger a PIO interrupt as soon as any data is available.
1309	 */
1310	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313	/*
1314	 * If we run out of data, disable the data IRQs; this
1315	 * prevents a race where the FIFO becomes empty before
1316	 * the chip itself has disabled the data path, and
1317	 * stops us racing with our data end IRQ.
1318	 */
1319	if (host->size == 0) {
1320		mmci_set_mask1(host, 0);
1321		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322	}
1323
1324	return IRQ_HANDLED;
1325}
1326
1327/*
1328 * Handle completion of command and data transfers.
1329 */
1330static irqreturn_t mmci_irq(int irq, void *dev_id)
1331{
1332	struct mmci_host *host = dev_id;
1333	u32 status;
1334	int ret = 0;
1335
1336	spin_lock(&host->lock);
 
1337
1338	do {
1339		status = readl(host->base + MMCISTATUS);
1340
1341		if (host->singleirq) {
1342			if (status & host->mask1_reg)
1343				mmci_pio_irq(irq, dev_id);
1344
1345			status &= ~MCI_IRQ1MASK;
1346		}
1347
1348		/*
1349		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351		 * detection variant is handled. Considering the HW seems to be
1352		 * triggering the IRQ on both edges while monitoring DAT0 for
1353		 * busy completion and that same status bit is used to monitor
1354		 * start and end of busy detection, special care must be taken
1355		 * to make sure that both start and end interrupts are always
1356		 * cleared one after the other.
1357		 */
1358		status &= readl(host->base + MMCIMASK0);
1359		if (host->variant->busy_detect)
1360			writel(status & ~host->variant->busy_detect_mask,
1361			       host->base + MMCICLEAR);
1362		else
1363			writel(status, host->base + MMCICLEAR);
1364
1365		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367		if (host->variant->reversed_irq_handling) {
1368			mmci_data_irq(host, host->data, status);
1369			mmci_cmd_irq(host, host->cmd, status);
1370		} else {
1371			mmci_cmd_irq(host, host->cmd, status);
1372			mmci_data_irq(host, host->data, status);
1373		}
1374
1375		/*
1376		 * Don't poll for busy completion in irq context.
 
1377		 */
1378		if (host->variant->busy_detect && host->busy_status)
1379			status &= ~host->variant->busy_detect_flag;
1380
1381		ret = 1;
1382	} while (status);
1383
1384	spin_unlock(&host->lock);
1385
1386	return IRQ_RETVAL(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387}
1388
1389static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390{
1391	struct mmci_host *host = mmc_priv(mmc);
1392	unsigned long flags;
1393
1394	WARN_ON(host->mrq != NULL);
1395
1396	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397	if (mrq->cmd->error) {
1398		mmc_request_done(mmc, mrq);
1399		return;
1400	}
1401
1402	spin_lock_irqsave(&host->lock, flags);
1403
1404	host->mrq = mrq;
1405
1406	if (mrq->data)
1407		mmci_get_next_data(host, mrq->data);
1408
1409	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
 
1410		mmci_start_data(host, mrq->data);
1411
1412	if (mrq->sbc)
1413		mmci_start_command(host, mrq->sbc, 0);
1414	else
1415		mmci_start_command(host, mrq->cmd, 0);
1416
1417	spin_unlock_irqrestore(&host->lock, flags);
1418}
1419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421{
1422	struct mmci_host *host = mmc_priv(mmc);
1423	struct variant_data *variant = host->variant;
1424	u32 pwr = 0;
1425	unsigned long flags;
1426	int ret;
1427
1428	if (host->plat->ios_handler &&
1429		host->plat->ios_handler(mmc_dev(mmc), ios))
1430			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432	switch (ios->power_mode) {
1433	case MMC_POWER_OFF:
1434		if (!IS_ERR(mmc->supply.vmmc))
1435			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438			regulator_disable(mmc->supply.vqmmc);
1439			host->vqmmc_enabled = false;
1440		}
1441
1442		break;
1443	case MMC_POWER_UP:
1444		if (!IS_ERR(mmc->supply.vmmc))
1445			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
1447		/*
1448		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449		 * and instead uses MCI_PWR_ON so apply whatever value is
1450		 * configured in the variant data.
1451		 */
1452		pwr |= variant->pwrreg_powerup;
1453
1454		break;
1455	case MMC_POWER_ON:
1456		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457			ret = regulator_enable(mmc->supply.vqmmc);
1458			if (ret < 0)
1459				dev_err(mmc_dev(mmc),
1460					"failed to enable vqmmc regulator\n");
1461			else
1462				host->vqmmc_enabled = true;
1463		}
1464
1465		pwr |= MCI_PWR_ON;
1466		break;
1467	}
1468
1469	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470		/*
1471		 * The ST Micro variant has some additional bits
1472		 * indicating signal direction for the signals in
1473		 * the SD/MMC bus and feedback-clock usage.
1474		 */
1475		pwr |= host->pwr_reg_add;
1476
1477		if (ios->bus_width == MMC_BUS_WIDTH_4)
1478			pwr &= ~MCI_ST_DATA74DIREN;
1479		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480			pwr &= (~MCI_ST_DATA74DIREN &
1481				~MCI_ST_DATA31DIREN &
1482				~MCI_ST_DATA2DIREN);
1483	}
1484
1485	if (variant->opendrain) {
1486		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487			pwr |= variant->opendrain;
1488	} else {
1489		/*
1490		 * If the variant cannot configure the pads by its own, then we
1491		 * expect the pinctrl to be able to do that for us
1492		 */
1493		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495		else
1496			pinctrl_select_state(host->pinctrl, host->pins_default);
1497	}
1498
1499	/*
1500	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501	 * gating the clock, the MCI_PWR_ON bit is cleared.
1502	 */
1503	if (!ios->clock && variant->pwrreg_clkgate)
1504		pwr &= ~MCI_PWR_ON;
1505
1506	if (host->variant->explicit_mclk_control &&
1507	    ios->clock != host->clock_cache) {
1508		ret = clk_set_rate(host->clk, ios->clock);
1509		if (ret < 0)
1510			dev_err(mmc_dev(host->mmc),
1511				"Error setting clock rate (%d)\n", ret);
1512		else
1513			host->mclk = clk_get_rate(host->clk);
1514	}
1515	host->clock_cache = ios->clock;
1516
1517	spin_lock_irqsave(&host->lock, flags);
1518
1519	mmci_set_clkreg(host, ios->clock);
1520	mmci_write_pwrreg(host, pwr);
 
 
 
 
 
 
 
 
 
 
1521	mmci_reg_delay(host);
1522
1523	spin_unlock_irqrestore(&host->lock, flags);
1524}
1525
1526static int mmci_get_cd(struct mmc_host *mmc)
1527{
1528	struct mmci_host *host = mmc_priv(mmc);
1529	struct mmci_platform_data *plat = host->plat;
1530	unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532	if (status == -ENOSYS) {
1533		if (!plat->status)
1534			return 1; /* Assume always present */
1535
1536		status = plat->status(mmc_dev(host->mmc));
1537	}
1538	return status;
1539}
1540
1541static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542{
1543	int ret = 0;
 
1544
1545	if (!IS_ERR(mmc->supply.vqmmc)) {
1546
1547		switch (ios->signal_voltage) {
1548		case MMC_SIGNAL_VOLTAGE_330:
1549			ret = regulator_set_voltage(mmc->supply.vqmmc,
1550						2700000, 3600000);
1551			break;
1552		case MMC_SIGNAL_VOLTAGE_180:
1553			ret = regulator_set_voltage(mmc->supply.vqmmc,
1554						1700000, 1950000);
1555			break;
1556		case MMC_SIGNAL_VOLTAGE_120:
1557			ret = regulator_set_voltage(mmc->supply.vqmmc,
1558						1100000, 1300000);
1559			break;
1560		}
1561
1562		if (ret)
1563			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1564	}
1565
1566	return ret;
1567}
1568
1569static struct mmc_host_ops mmci_ops = {
1570	.request	= mmci_request,
1571	.pre_req	= mmci_pre_request,
1572	.post_req	= mmci_post_request,
1573	.set_ios	= mmci_set_ios,
1574	.get_ro		= mmc_gpio_get_ro,
1575	.get_cd		= mmci_get_cd,
1576	.start_signal_voltage_switch = mmci_sig_volt_switch,
1577};
1578
1579static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1580{
1581	struct mmci_host *host = mmc_priv(mmc);
1582	int ret = mmc_of_parse(mmc);
1583
1584	if (ret)
1585		return ret;
1586
1587	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598		host->pwr_reg_add |= MCI_ST_FBCLKEN;
 
 
 
 
 
 
1599
1600	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605	return 0;
1606}
1607
1608static int mmci_probe(struct amba_device *dev,
1609	const struct amba_id *id)
1610{
1611	struct mmci_platform_data *plat = dev->dev.platform_data;
1612	struct device_node *np = dev->dev.of_node;
1613	struct variant_data *variant = id->data;
1614	struct mmci_host *host;
1615	struct mmc_host *mmc;
1616	int ret;
1617
1618	/* Must have platform data or Device Tree. */
1619	if (!plat && !np) {
1620		dev_err(&dev->dev, "No plat data or DT found\n");
1621		return -EINVAL;
1622	}
1623
1624	if (!plat) {
1625		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626		if (!plat)
1627			return -ENOMEM;
1628	}
1629
1630	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631	if (!mmc)
1632		return -ENOMEM;
1633
1634	ret = mmci_of_parse(np, mmc);
1635	if (ret)
1636		goto host_free;
1637
1638	host = mmc_priv(mmc);
1639	host->mmc = mmc;
 
 
1640
1641	/*
1642	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643	 * pins can be set accordingly using pinctrl
1644	 */
1645	if (!variant->opendrain) {
1646		host->pinctrl = devm_pinctrl_get(&dev->dev);
1647		if (IS_ERR(host->pinctrl)) {
1648			dev_err(&dev->dev, "failed to get pinctrl");
1649			ret = PTR_ERR(host->pinctrl);
1650			goto host_free;
1651		}
1652
1653		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1654							  PINCTRL_STATE_DEFAULT);
1655		if (IS_ERR(host->pins_default)) {
1656			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1657			ret = PTR_ERR(host->pins_default);
1658			goto host_free;
1659		}
1660
1661		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1662							    MMCI_PINCTRL_STATE_OPENDRAIN);
1663		if (IS_ERR(host->pins_opendrain)) {
1664			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1665			ret = PTR_ERR(host->pins_opendrain);
1666			goto host_free;
1667		}
1668	}
1669
1670	host->hw_designer = amba_manf(dev);
1671	host->hw_revision = amba_rev(dev);
1672	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1673	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1674
1675	host->clk = devm_clk_get(&dev->dev, NULL);
1676	if (IS_ERR(host->clk)) {
1677		ret = PTR_ERR(host->clk);
1678		goto host_free;
1679	}
1680
1681	ret = clk_prepare_enable(host->clk);
1682	if (ret)
1683		goto host_free;
1684
1685	if (variant->qcom_fifo)
1686		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1687	else
1688		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1689
1690	host->plat = plat;
1691	host->variant = variant;
1692	host->mclk = clk_get_rate(host->clk);
1693	/*
1694	 * According to the spec, mclk is max 100 MHz,
1695	 * so we try to adjust the clock down to this,
1696	 * (if possible).
1697	 */
1698	if (host->mclk > variant->f_max) {
1699		ret = clk_set_rate(host->clk, variant->f_max);
1700		if (ret < 0)
1701			goto clk_disable;
1702		host->mclk = clk_get_rate(host->clk);
1703		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704			host->mclk);
1705	}
1706
1707	host->phybase = dev->res.start;
1708	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1709	if (IS_ERR(host->base)) {
1710		ret = PTR_ERR(host->base);
1711		goto clk_disable;
1712	}
1713
 
 
 
1714	/*
1715	 * The ARM and ST versions of the block have slightly different
1716	 * clock divider equations which means that the minimum divider
1717	 * differs too.
1718	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1719	 */
1720	if (variant->st_clkdiv)
1721		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
 
 
1722	else if (variant->explicit_mclk_control)
1723		mmc->f_min = clk_round_rate(host->clk, 100000);
1724	else
1725		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1726	/*
1727	 * If no maximum operating frequency is supplied, fall back to use
1728	 * the module parameter, which has a (low) default value in case it
1729	 * is not specified. Either value must not exceed the clock rate into
1730	 * the block, of course.
1731	 */
1732	if (mmc->f_max)
1733		mmc->f_max = variant->explicit_mclk_control ?
1734				min(variant->f_max, mmc->f_max) :
1735				min(host->mclk, mmc->f_max);
1736	else
1737		mmc->f_max = variant->explicit_mclk_control ?
1738				fmax : min(host->mclk, fmax);
1739
1740
1741	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1742
 
 
 
 
 
 
1743	/* Get regulators and the supported OCR mask */
1744	ret = mmc_regulator_get_supply(mmc);
1745	if (ret)
1746		goto clk_disable;
1747
1748	if (!mmc->ocr_avail)
1749		mmc->ocr_avail = plat->ocr_mask;
1750	else if (plat->ocr_mask)
1751		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1752
1753	/* DT takes precedence over platform data. */
1754	if (!np) {
1755		if (!plat->cd_invert)
1756			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1757		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1758	}
1759
1760	/* We support these capabilities. */
1761	mmc->caps |= MMC_CAP_CMD23;
1762
1763	/*
1764	 * Enable busy detection.
1765	 */
1766	if (variant->busy_detect) {
1767		mmci_ops.card_busy = mmci_card_busy;
1768		/*
1769		 * Not all variants have a flag to enable busy detection
1770		 * in the DPSM, but if they do, set it here.
1771		 */
1772		if (variant->busy_dpsm_flag)
1773			mmci_write_datactrlreg(host,
1774					       host->variant->busy_dpsm_flag);
1775		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1776		mmc->max_busy_timeout = 0;
1777	}
1778
1779	mmc->ops = &mmci_ops;
 
 
 
1780
1781	/* We support these PM capabilities. */
1782	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1783
1784	/*
1785	 * We can do SGIO
1786	 */
1787	mmc->max_segs = NR_SG;
1788
1789	/*
1790	 * Since only a certain number of bits are valid in the data length
1791	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1792	 * single request.
1793	 */
1794	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1795
1796	/*
1797	 * Set the maximum segment size.  Since we aren't doing DMA
1798	 * (yet) we are only limited by the data length register.
1799	 */
1800	mmc->max_seg_size = mmc->max_req_size;
1801
1802	/*
1803	 * Block size can be up to 2048 bytes, but must be a power of two.
1804	 */
1805	mmc->max_blk_size = 1 << 11;
1806
1807	/*
1808	 * Limit the number of blocks transferred so that we don't overflow
1809	 * the maximum request size.
1810	 */
1811	mmc->max_blk_count = mmc->max_req_size >> 11;
1812
1813	spin_lock_init(&host->lock);
1814
1815	writel(0, host->base + MMCIMASK0);
1816
1817	if (variant->mmcimask1)
1818		writel(0, host->base + MMCIMASK1);
1819
1820	writel(0xfff, host->base + MMCICLEAR);
1821
1822	/*
1823	 * If:
1824	 * - not using DT but using a descriptor table, or
1825	 * - using a table of descriptors ALONGSIDE DT, or
1826	 * look up these descriptors named "cd" and "wp" right here, fail
1827	 * silently of these do not exist and proceed to try platform data
1828	 */
1829	if (!np) {
1830		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1831		if (ret < 0) {
1832			if (ret == -EPROBE_DEFER)
1833				goto clk_disable;
1834			else if (gpio_is_valid(plat->gpio_cd)) {
1835				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1836				if (ret)
1837					goto clk_disable;
1838			}
1839		}
1840
1841		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1842		if (ret < 0) {
1843			if (ret == -EPROBE_DEFER)
1844				goto clk_disable;
1845			else if (gpio_is_valid(plat->gpio_wp)) {
1846				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1847				if (ret)
1848					goto clk_disable;
1849			}
1850		}
1851	}
1852
1853	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1854			DRIVER_NAME " (cmd)", host);
 
1855	if (ret)
1856		goto clk_disable;
1857
1858	if (!dev->irq[1])
1859		host->singleirq = true;
1860	else {
1861		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1862				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1863		if (ret)
1864			goto clk_disable;
1865	}
1866
1867	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1868
1869	amba_set_drvdata(dev, mmc);
1870
1871	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1873		 amba_rev(dev), (unsigned long long)dev->res.start,
1874		 dev->irq[0], dev->irq[1]);
1875
1876	mmci_dma_setup(host);
1877
1878	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1879	pm_runtime_use_autosuspend(&dev->dev);
1880
1881	mmc_add_host(mmc);
1882
1883	pm_runtime_put(&dev->dev);
1884	return 0;
1885
1886 clk_disable:
1887	clk_disable_unprepare(host->clk);
1888 host_free:
1889	mmc_free_host(mmc);
1890	return ret;
1891}
1892
1893static int mmci_remove(struct amba_device *dev)
1894{
1895	struct mmc_host *mmc = amba_get_drvdata(dev);
1896
1897	if (mmc) {
1898		struct mmci_host *host = mmc_priv(mmc);
1899		struct variant_data *variant = host->variant;
1900
1901		/*
1902		 * Undo pm_runtime_put() in probe.  We use the _sync
1903		 * version here so that we can access the primecell.
1904		 */
1905		pm_runtime_get_sync(&dev->dev);
1906
1907		mmc_remove_host(mmc);
1908
1909		writel(0, host->base + MMCIMASK0);
1910
1911		if (variant->mmcimask1)
1912			writel(0, host->base + MMCIMASK1);
1913
1914		writel(0, host->base + MMCICOMMAND);
1915		writel(0, host->base + MMCIDATACTRL);
1916
1917		mmci_dma_release(host);
1918		clk_disable_unprepare(host->clk);
1919		mmc_free_host(mmc);
1920	}
1921
1922	return 0;
1923}
1924
1925#ifdef CONFIG_PM
1926static void mmci_save(struct mmci_host *host)
1927{
1928	unsigned long flags;
1929
1930	spin_lock_irqsave(&host->lock, flags);
1931
1932	writel(0, host->base + MMCIMASK0);
1933	if (host->variant->pwrreg_nopower) {
1934		writel(0, host->base + MMCIDATACTRL);
1935		writel(0, host->base + MMCIPOWER);
1936		writel(0, host->base + MMCICLOCK);
1937	}
1938	mmci_reg_delay(host);
1939
1940	spin_unlock_irqrestore(&host->lock, flags);
1941}
1942
1943static void mmci_restore(struct mmci_host *host)
1944{
1945	unsigned long flags;
1946
1947	spin_lock_irqsave(&host->lock, flags);
1948
1949	if (host->variant->pwrreg_nopower) {
1950		writel(host->clk_reg, host->base + MMCICLOCK);
1951		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1952		writel(host->pwr_reg, host->base + MMCIPOWER);
1953	}
1954	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
 
1955	mmci_reg_delay(host);
1956
1957	spin_unlock_irqrestore(&host->lock, flags);
1958}
1959
1960static int mmci_runtime_suspend(struct device *dev)
1961{
1962	struct amba_device *adev = to_amba_device(dev);
1963	struct mmc_host *mmc = amba_get_drvdata(adev);
1964
1965	if (mmc) {
1966		struct mmci_host *host = mmc_priv(mmc);
1967		pinctrl_pm_select_sleep_state(dev);
1968		mmci_save(host);
1969		clk_disable_unprepare(host->clk);
1970	}
1971
1972	return 0;
1973}
1974
1975static int mmci_runtime_resume(struct device *dev)
1976{
1977	struct amba_device *adev = to_amba_device(dev);
1978	struct mmc_host *mmc = amba_get_drvdata(adev);
1979
1980	if (mmc) {
1981		struct mmci_host *host = mmc_priv(mmc);
1982		clk_prepare_enable(host->clk);
1983		mmci_restore(host);
1984		pinctrl_pm_select_default_state(dev);
1985	}
1986
1987	return 0;
1988}
1989#endif
1990
1991static const struct dev_pm_ops mmci_dev_pm_ops = {
1992	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1993				pm_runtime_force_resume)
1994	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1995};
1996
1997static const struct amba_id mmci_ids[] = {
1998	{
1999		.id	= 0x00041180,
2000		.mask	= 0xff0fffff,
2001		.data	= &variant_arm,
2002	},
2003	{
2004		.id	= 0x01041180,
2005		.mask	= 0xff0fffff,
2006		.data	= &variant_arm_extended_fifo,
2007	},
2008	{
2009		.id	= 0x02041180,
2010		.mask	= 0xff0fffff,
2011		.data	= &variant_arm_extended_fifo_hwfc,
2012	},
2013	{
2014		.id	= 0x00041181,
2015		.mask	= 0x000fffff,
2016		.data	= &variant_arm,
2017	},
2018	/* ST Micro variants */
2019	{
2020		.id     = 0x00180180,
2021		.mask   = 0x00ffffff,
2022		.data	= &variant_u300,
2023	},
2024	{
2025		.id     = 0x10180180,
2026		.mask   = 0xf0ffffff,
2027		.data	= &variant_nomadik,
2028	},
2029	{
2030		.id     = 0x00280180,
2031		.mask   = 0x00ffffff,
2032		.data	= &variant_nomadik,
2033	},
2034	{
2035		.id     = 0x00480180,
2036		.mask   = 0xf0ffffff,
2037		.data	= &variant_ux500,
2038	},
2039	{
2040		.id     = 0x10480180,
2041		.mask   = 0xf0ffffff,
2042		.data	= &variant_ux500v2,
2043	},
2044	{
2045		.id     = 0x00880180,
2046		.mask   = 0x00ffffff,
2047		.data	= &variant_stm32,
 
 
 
 
 
 
 
 
 
 
2048	},
2049	/* Qualcomm variants */
2050	{
2051		.id     = 0x00051180,
2052		.mask	= 0x000fffff,
2053		.data	= &variant_qcom,
2054	},
2055	{ 0, 0 },
2056};
2057
2058MODULE_DEVICE_TABLE(amba, mmci_ids);
2059
2060static struct amba_driver mmci_driver = {
2061	.drv		= {
2062		.name	= DRIVER_NAME,
2063		.pm	= &mmci_dev_pm_ops,
2064	},
2065	.probe		= mmci_probe,
2066	.remove		= mmci_remove,
2067	.id_table	= mmci_ids,
2068};
2069
2070module_amba_driver(mmci_driver);
2071
2072module_param(fmax, uint, 0444);
2073
2074MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
 
 
 
 
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/sd.h>
  26#include <linux/mmc/slot-gpio.h>
  27#include <linux/amba/bus.h>
  28#include <linux/clk.h>
  29#include <linux/scatterlist.h>
  30#include <linux/of.h>
 
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
  38#include <linux/reset.h>
  39
  40#include <asm/div64.h>
  41#include <asm/io.h>
  42
  43#include "mmci.h"
 
  44
  45#define DRIVER_NAME "mmci-pl18x"
  46
  47static void mmci_variant_init(struct mmci_host *host);
  48static void ux500_variant_init(struct mmci_host *host);
  49static void ux500v2_variant_init(struct mmci_host *host);
  50
  51static unsigned int fmax = 515633;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52
  53static struct variant_data variant_arm = {
  54	.fifosize		= 16 * 4,
  55	.fifohalfsize		= 8 * 4,
  56	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  57	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  58	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  59	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  60	.datalength_bits	= 16,
  61	.datactrl_blocksz	= 11,
  62	.pwrreg_powerup		= MCI_PWR_UP,
  63	.f_max			= 100000000,
  64	.reversed_irq_handling	= true,
  65	.mmcimask1		= true,
  66	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  67	.start_err		= MCI_STARTBITERR,
  68	.opendrain		= MCI_ROD,
  69	.init			= mmci_variant_init,
  70};
  71
  72static struct variant_data variant_arm_extended_fifo = {
  73	.fifosize		= 128 * 4,
  74	.fifohalfsize		= 64 * 4,
  75	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  76	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  77	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  78	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  79	.datalength_bits	= 16,
  80	.datactrl_blocksz	= 11,
  81	.pwrreg_powerup		= MCI_PWR_UP,
  82	.f_max			= 100000000,
  83	.mmcimask1		= true,
  84	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  85	.start_err		= MCI_STARTBITERR,
  86	.opendrain		= MCI_ROD,
  87	.init			= mmci_variant_init,
  88};
  89
  90static struct variant_data variant_arm_extended_fifo_hwfc = {
  91	.fifosize		= 128 * 4,
  92	.fifohalfsize		= 64 * 4,
  93	.clkreg_enable		= MCI_ARM_HWFCEN,
  94	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  95	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  96	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  97	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  98	.datalength_bits	= 16,
  99	.datactrl_blocksz	= 11,
 100	.pwrreg_powerup		= MCI_PWR_UP,
 101	.f_max			= 100000000,
 102	.mmcimask1		= true,
 103	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 104	.start_err		= MCI_STARTBITERR,
 105	.opendrain		= MCI_ROD,
 106	.init			= mmci_variant_init,
 107};
 108
 109static struct variant_data variant_u300 = {
 110	.fifosize		= 16 * 4,
 111	.fifohalfsize		= 8 * 4,
 112	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 113	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 114	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 115	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 116	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 117	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 118	.datalength_bits	= 16,
 119	.datactrl_blocksz	= 11,
 120	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 121	.st_sdio			= true,
 122	.pwrreg_powerup		= MCI_PWR_ON,
 123	.f_max			= 100000000,
 124	.signal_direction	= true,
 125	.pwrreg_clkgate		= true,
 126	.pwrreg_nopower		= true,
 127	.mmcimask1		= true,
 128	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 129	.start_err		= MCI_STARTBITERR,
 130	.opendrain		= MCI_OD,
 131	.init			= mmci_variant_init,
 132};
 133
 134static struct variant_data variant_nomadik = {
 135	.fifosize		= 16 * 4,
 136	.fifohalfsize		= 8 * 4,
 137	.clkreg			= MCI_CLK_ENABLE,
 138	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 139	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 140	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 141	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 142	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 143	.datalength_bits	= 24,
 144	.datactrl_blocksz	= 11,
 145	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 146	.st_sdio		= true,
 147	.st_clkdiv		= true,
 148	.pwrreg_powerup		= MCI_PWR_ON,
 149	.f_max			= 100000000,
 150	.signal_direction	= true,
 151	.pwrreg_clkgate		= true,
 152	.pwrreg_nopower		= true,
 153	.mmcimask1		= true,
 154	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 155	.start_err		= MCI_STARTBITERR,
 156	.opendrain		= MCI_OD,
 157	.init			= mmci_variant_init,
 158};
 159
 160static struct variant_data variant_ux500 = {
 161	.fifosize		= 30 * 4,
 162	.fifohalfsize		= 8 * 4,
 163	.clkreg			= MCI_CLK_ENABLE,
 164	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 165	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 166	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 167	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 168	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 169	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 170	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 171	.datalength_bits	= 24,
 172	.datactrl_blocksz	= 11,
 173	.datactrl_any_blocksz	= true,
 174	.dma_power_of_2		= true,
 175	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 176	.st_sdio		= true,
 177	.st_clkdiv		= true,
 178	.pwrreg_powerup		= MCI_PWR_ON,
 179	.f_max			= 100000000,
 180	.signal_direction	= true,
 181	.pwrreg_clkgate		= true,
 182	.busy_detect		= true,
 183	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 184	.busy_detect_flag	= MCI_ST_CARDBUSY,
 185	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 186	.pwrreg_nopower		= true,
 187	.mmcimask1		= true,
 188	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 189	.start_err		= MCI_STARTBITERR,
 190	.opendrain		= MCI_OD,
 191	.init			= ux500_variant_init,
 192};
 193
 194static struct variant_data variant_ux500v2 = {
 195	.fifosize		= 30 * 4,
 196	.fifohalfsize		= 8 * 4,
 197	.clkreg			= MCI_CLK_ENABLE,
 198	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 199	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 200	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 201	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 202	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 203	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 204	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 205	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 206	.datalength_bits	= 24,
 207	.datactrl_blocksz	= 11,
 208	.datactrl_any_blocksz	= true,
 209	.dma_power_of_2		= true,
 210	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 211	.st_sdio		= true,
 212	.st_clkdiv		= true,
 
 213	.pwrreg_powerup		= MCI_PWR_ON,
 214	.f_max			= 100000000,
 215	.signal_direction	= true,
 216	.pwrreg_clkgate		= true,
 217	.busy_detect		= true,
 218	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 219	.busy_detect_flag	= MCI_ST_CARDBUSY,
 220	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 221	.pwrreg_nopower		= true,
 222	.mmcimask1		= true,
 223	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 224	.start_err		= MCI_STARTBITERR,
 225	.opendrain		= MCI_OD,
 226	.init			= ux500v2_variant_init,
 227};
 228
 229static struct variant_data variant_stm32 = {
 230	.fifosize		= 32 * 4,
 231	.fifohalfsize		= 8 * 4,
 232	.clkreg			= MCI_CLK_ENABLE,
 233	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 234	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 235	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 236	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 237	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 238	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 239	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 240	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 241	.datalength_bits	= 24,
 242	.datactrl_blocksz	= 11,
 243	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 244	.st_sdio		= true,
 245	.st_clkdiv		= true,
 246	.pwrreg_powerup		= MCI_PWR_ON,
 247	.f_max			= 48000000,
 248	.pwrreg_clkgate		= true,
 249	.pwrreg_nopower		= true,
 250	.init			= mmci_variant_init,
 251};
 252
 253static struct variant_data variant_stm32_sdmmc = {
 254	.fifosize		= 16 * 4,
 255	.fifohalfsize		= 8 * 4,
 256	.f_max			= 208000000,
 257	.stm32_clkdiv		= true,
 258	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 259	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 260	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 261	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 262	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 263	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 264	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 265	.datactrl_first		= true,
 266	.datacnt_useless	= true,
 267	.datalength_bits	= 25,
 268	.datactrl_blocksz	= 14,
 269	.datactrl_any_blocksz	= true,
 270	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 271	.stm32_idmabsize_mask	= GENMASK(12, 5),
 272	.busy_timeout		= true,
 273	.busy_detect		= true,
 274	.busy_detect_flag	= MCI_STM32_BUSYD0,
 275	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 276	.init			= sdmmc_variant_init,
 277};
 278
 279static struct variant_data variant_stm32_sdmmcv2 = {
 280	.fifosize		= 16 * 4,
 281	.fifohalfsize		= 8 * 4,
 282	.f_max			= 208000000,
 283	.stm32_clkdiv		= true,
 284	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 285	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 286	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 287	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 288	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 289	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 290	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 291	.datactrl_first		= true,
 292	.datacnt_useless	= true,
 293	.datalength_bits	= 25,
 294	.datactrl_blocksz	= 14,
 295	.datactrl_any_blocksz	= true,
 296	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 297	.stm32_idmabsize_mask	= GENMASK(16, 5),
 298	.dma_lli		= true,
 299	.busy_timeout		= true,
 300	.busy_detect		= true,
 301	.busy_detect_flag	= MCI_STM32_BUSYD0,
 302	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 303	.init			= sdmmc_variant_init,
 304};
 305
 306static struct variant_data variant_qcom = {
 307	.fifosize		= 16 * 4,
 308	.fifohalfsize		= 8 * 4,
 309	.clkreg			= MCI_CLK_ENABLE,
 310	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 311				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 312	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 313	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 314	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 315	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 316	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 317	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 318	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 
 319	.datalength_bits	= 24,
 320	.datactrl_blocksz	= 11,
 321	.datactrl_any_blocksz	= true,
 322	.pwrreg_powerup		= MCI_PWR_UP,
 323	.f_max			= 208000000,
 324	.explicit_mclk_control	= true,
 325	.qcom_fifo		= true,
 326	.qcom_dml		= true,
 327	.mmcimask1		= true,
 328	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 329	.start_err		= MCI_STARTBITERR,
 330	.opendrain		= MCI_ROD,
 331	.init			= qcom_variant_init,
 332};
 333
 334/* Busy detection for the ST Micro variant */
 335static int mmci_card_busy(struct mmc_host *mmc)
 336{
 337	struct mmci_host *host = mmc_priv(mmc);
 338	unsigned long flags;
 339	int busy = 0;
 340
 341	spin_lock_irqsave(&host->lock, flags);
 342	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 343		busy = 1;
 344	spin_unlock_irqrestore(&host->lock, flags);
 345
 346	return busy;
 347}
 348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349static void mmci_reg_delay(struct mmci_host *host)
 350{
 351	/*
 352	 * According to the spec, at least three feedback clock cycles
 353	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 354	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 355	 * Worst delay time during card init is at 100 kHz => 30 us.
 356	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 357	 */
 358	if (host->cclk < 25000000)
 359		udelay(30);
 360	else
 361		ndelay(120);
 362}
 363
 364/*
 365 * This must be called with host->lock held
 366 */
 367void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 368{
 369	if (host->clk_reg != clk) {
 370		host->clk_reg = clk;
 371		writel(clk, host->base + MMCICLOCK);
 372	}
 373}
 374
 375/*
 376 * This must be called with host->lock held
 377 */
 378void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 379{
 380	if (host->pwr_reg != pwr) {
 381		host->pwr_reg = pwr;
 382		writel(pwr, host->base + MMCIPOWER);
 383	}
 384}
 385
 386/*
 387 * This must be called with host->lock held
 388 */
 389static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 390{
 391	/* Keep busy mode in DPSM if enabled */
 392	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 393
 394	if (host->datactrl_reg != datactrl) {
 395		host->datactrl_reg = datactrl;
 396		writel(datactrl, host->base + MMCIDATACTRL);
 397	}
 398}
 399
 400/*
 401 * This must be called with host->lock held
 402 */
 403static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 404{
 405	struct variant_data *variant = host->variant;
 406	u32 clk = variant->clkreg;
 407
 408	/* Make sure cclk reflects the current calculated clock */
 409	host->cclk = 0;
 410
 411	if (desired) {
 412		if (variant->explicit_mclk_control) {
 413			host->cclk = host->mclk;
 414		} else if (desired >= host->mclk) {
 415			clk = MCI_CLK_BYPASS;
 416			if (variant->st_clkdiv)
 417				clk |= MCI_ST_UX500_NEG_EDGE;
 418			host->cclk = host->mclk;
 419		} else if (variant->st_clkdiv) {
 420			/*
 421			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 422			 * => clkdiv = (mclk / f) - 2
 423			 * Round the divider up so we don't exceed the max
 424			 * frequency
 425			 */
 426			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 427			if (clk >= 256)
 428				clk = 255;
 429			host->cclk = host->mclk / (clk + 2);
 430		} else {
 431			/*
 432			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 433			 * => clkdiv = mclk / (2 * f) - 1
 434			 */
 435			clk = host->mclk / (2 * desired) - 1;
 436			if (clk >= 256)
 437				clk = 255;
 438			host->cclk = host->mclk / (2 * (clk + 1));
 439		}
 440
 441		clk |= variant->clkreg_enable;
 442		clk |= MCI_CLK_ENABLE;
 443		/* This hasn't proven to be worthwhile */
 444		/* clk |= MCI_CLK_PWRSAVE; */
 445	}
 446
 447	/* Set actual clock for debug */
 448	host->mmc->actual_clock = host->cclk;
 449
 450	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 451		clk |= MCI_4BIT_BUS;
 452	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 453		clk |= variant->clkreg_8bit_bus_enable;
 454
 455	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 456	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 457		clk |= variant->clkreg_neg_edge_enable;
 458
 459	mmci_write_clkreg(host, clk);
 460}
 461
 462static void mmci_dma_release(struct mmci_host *host)
 463{
 464	if (host->ops && host->ops->dma_release)
 465		host->ops->dma_release(host);
 466
 467	host->use_dma = false;
 468}
 469
 470static void mmci_dma_setup(struct mmci_host *host)
 471{
 472	if (!host->ops || !host->ops->dma_setup)
 473		return;
 474
 475	if (host->ops->dma_setup(host))
 476		return;
 477
 478	/* initialize pre request cookie */
 479	host->next_cookie = 1;
 480
 481	host->use_dma = true;
 482}
 483
 484/*
 485 * Validate mmc prerequisites
 486 */
 487static int mmci_validate_data(struct mmci_host *host,
 488			      struct mmc_data *data)
 489{
 490	struct variant_data *variant = host->variant;
 491
 492	if (!data)
 493		return 0;
 494	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
 495		dev_err(mmc_dev(host->mmc),
 496			"unsupported block size (%d bytes)\n", data->blksz);
 497		return -EINVAL;
 498	}
 499
 500	if (host->ops && host->ops->validate_data)
 501		return host->ops->validate_data(host, data);
 502
 503	return 0;
 504}
 505
 506static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 507{
 508	int err;
 509
 510	if (!host->ops || !host->ops->prep_data)
 511		return 0;
 512
 513	err = host->ops->prep_data(host, data, next);
 514
 515	if (next && !err)
 516		data->host_cookie = ++host->next_cookie < 0 ?
 517			1 : host->next_cookie;
 518
 519	return err;
 520}
 521
 522static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 523		      int err)
 524{
 525	if (host->ops && host->ops->unprep_data)
 526		host->ops->unprep_data(host, data, err);
 527
 528	data->host_cookie = 0;
 529}
 530
 531static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 532{
 533	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 534
 535	if (host->ops && host->ops->get_next_data)
 536		host->ops->get_next_data(host, data);
 537}
 538
 539static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 540{
 541	struct mmc_data *data = host->data;
 542	int ret;
 543
 544	if (!host->use_dma)
 545		return -EINVAL;
 546
 547	ret = mmci_prep_data(host, data, false);
 548	if (ret)
 549		return ret;
 550
 551	if (!host->ops || !host->ops->dma_start)
 552		return -EINVAL;
 553
 554	/* Okay, go for it. */
 555	dev_vdbg(mmc_dev(host->mmc),
 556		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 557		 data->sg_len, data->blksz, data->blocks, data->flags);
 558
 559	ret = host->ops->dma_start(host, &datactrl);
 560	if (ret)
 561		return ret;
 562
 563	/* Trigger the DMA transfer */
 564	mmci_write_datactrlreg(host, datactrl);
 565
 566	/*
 567	 * Let the MMCI say when the data is ended and it's time
 568	 * to fire next DMA request. When that happens, MMCI will
 569	 * call mmci_data_end()
 570	 */
 571	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 572	       host->base + MMCIMASK0);
 573	return 0;
 574}
 575
 576static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 577{
 578	if (!host->use_dma)
 579		return;
 580
 581	if (host->ops && host->ops->dma_finalize)
 582		host->ops->dma_finalize(host, data);
 583}
 584
 585static void mmci_dma_error(struct mmci_host *host)
 586{
 587	if (!host->use_dma)
 588		return;
 589
 590	if (host->ops && host->ops->dma_error)
 591		host->ops->dma_error(host);
 592}
 593
 594static void
 595mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 596{
 597	writel(0, host->base + MMCICOMMAND);
 598
 599	BUG_ON(host->data);
 600
 601	host->mrq = NULL;
 602	host->cmd = NULL;
 603
 604	mmc_request_done(host->mmc, mrq);
 605}
 606
 607static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 608{
 609	void __iomem *base = host->base;
 610	struct variant_data *variant = host->variant;
 611
 612	if (host->singleirq) {
 613		unsigned int mask0 = readl(base + MMCIMASK0);
 614
 615		mask0 &= ~variant->irq_pio_mask;
 616		mask0 |= mask;
 617
 618		writel(mask0, base + MMCIMASK0);
 619	}
 620
 621	if (variant->mmcimask1)
 622		writel(mask, base + MMCIMASK1);
 623
 624	host->mask1_reg = mask;
 625}
 626
 627static void mmci_stop_data(struct mmci_host *host)
 628{
 629	mmci_write_datactrlreg(host, 0);
 630	mmci_set_mask1(host, 0);
 631	host->data = NULL;
 632}
 633
 634static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 635{
 636	unsigned int flags = SG_MITER_ATOMIC;
 637
 638	if (data->flags & MMC_DATA_READ)
 639		flags |= SG_MITER_TO_SG;
 640	else
 641		flags |= SG_MITER_FROM_SG;
 642
 643	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 644}
 645
 646static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 647{
 648	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 649}
 650
 651static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 652{
 653	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 654}
 655
 656static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
 657{
 658	void __iomem *base = host->base;
 659
 660	/*
 661	 * Before unmasking for the busy end IRQ, confirm that the
 662	 * command was sent successfully. To keep track of having a
 663	 * command in-progress, waiting for busy signaling to end,
 664	 * store the status in host->busy_status.
 665	 *
 666	 * Note that, the card may need a couple of clock cycles before
 667	 * it starts signaling busy on DAT0, hence re-read the
 668	 * MMCISTATUS register here, to allow the busy bit to be set.
 669	 * Potentially we may even need to poll the register for a
 670	 * while, to allow it to be set, but tests indicates that it
 671	 * isn't needed.
 672	 */
 673	if (!host->busy_status && !(status & err_msk) &&
 674	    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
 675		writel(readl(base + MMCIMASK0) |
 676		       host->variant->busy_detect_mask,
 677		       base + MMCIMASK0);
 678
 679		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
 680		return false;
 681	}
 682
 683	/*
 684	 * If there is a command in-progress that has been successfully
 685	 * sent, then bail out if busy status is set and wait for the
 686	 * busy end IRQ.
 687	 *
 688	 * Note that, the HW triggers an IRQ on both edges while
 689	 * monitoring DAT0 for busy completion, but there is only one
 690	 * status bit in MMCISTATUS for the busy state. Therefore
 691	 * both the start and the end interrupts needs to be cleared,
 692	 * one after the other. So, clear the busy start IRQ here.
 693	 */
 694	if (host->busy_status &&
 695	    (status & host->variant->busy_detect_flag)) {
 696		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 697		return false;
 698	}
 699
 700	/*
 701	 * If there is a command in-progress that has been successfully
 702	 * sent and the busy bit isn't set, it means we have received
 703	 * the busy end IRQ. Clear and mask the IRQ, then continue to
 704	 * process the command.
 705	 */
 706	if (host->busy_status) {
 707		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 708
 709		writel(readl(base + MMCIMASK0) &
 710		       ~host->variant->busy_detect_mask, base + MMCIMASK0);
 711		host->busy_status = 0;
 712	}
 713
 714	return true;
 715}
 716
 717/*
 718 * All the DMA operation mode stuff goes inside this ifdef.
 719 * This assumes that you have a generic DMA device interface,
 720 * no custom DMA interfaces are supported.
 721 */
 722#ifdef CONFIG_DMA_ENGINE
 723struct mmci_dmae_next {
 724	struct dma_async_tx_descriptor *desc;
 725	struct dma_chan	*chan;
 726};
 727
 728struct mmci_dmae_priv {
 729	struct dma_chan	*cur;
 730	struct dma_chan	*rx_channel;
 731	struct dma_chan	*tx_channel;
 732	struct dma_async_tx_descriptor	*desc_current;
 733	struct mmci_dmae_next next_data;
 734};
 735
 736int mmci_dmae_setup(struct mmci_host *host)
 737{
 738	const char *rxname, *txname;
 739	struct mmci_dmae_priv *dmae;
 740
 741	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 742	if (!dmae)
 743		return -ENOMEM;
 744
 745	host->dma_priv = dmae;
 746
 747	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
 748	if (IS_ERR(dmae->rx_channel)) {
 749		int ret = PTR_ERR(dmae->rx_channel);
 750		dmae->rx_channel = NULL;
 751		return ret;
 752	}
 753
 754	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
 755	if (IS_ERR(dmae->tx_channel)) {
 756		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
 757			dev_warn(mmc_dev(host->mmc),
 758				 "Deferred probe for TX channel ignored\n");
 759		dmae->tx_channel = NULL;
 760	}
 761
 762	/*
 763	 * If only an RX channel is specified, the driver will
 764	 * attempt to use it bidirectionally, however if it is
 765	 * is specified but cannot be located, DMA will be disabled.
 766	 */
 767	if (dmae->rx_channel && !dmae->tx_channel)
 768		dmae->tx_channel = dmae->rx_channel;
 769
 770	if (dmae->rx_channel)
 771		rxname = dma_chan_name(dmae->rx_channel);
 772	else
 773		rxname = "none";
 774
 775	if (dmae->tx_channel)
 776		txname = dma_chan_name(dmae->tx_channel);
 777	else
 778		txname = "none";
 779
 780	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 781		 rxname, txname);
 782
 783	/*
 784	 * Limit the maximum segment size in any SG entry according to
 785	 * the parameters of the DMA engine device.
 786	 */
 787	if (dmae->tx_channel) {
 788		struct device *dev = dmae->tx_channel->device->dev;
 789		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 790
 791		if (max_seg_size < host->mmc->max_seg_size)
 792			host->mmc->max_seg_size = max_seg_size;
 793	}
 794	if (dmae->rx_channel) {
 795		struct device *dev = dmae->rx_channel->device->dev;
 796		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 797
 798		if (max_seg_size < host->mmc->max_seg_size)
 799			host->mmc->max_seg_size = max_seg_size;
 800	}
 801
 802	if (!dmae->tx_channel || !dmae->rx_channel) {
 803		mmci_dmae_release(host);
 804		return -EINVAL;
 805	}
 806
 807	return 0;
 808}
 809
 810/*
 811 * This is used in or so inline it
 812 * so it can be discarded.
 813 */
 814void mmci_dmae_release(struct mmci_host *host)
 815{
 816	struct mmci_dmae_priv *dmae = host->dma_priv;
 
 
 
 
 
 817
 818	if (dmae->rx_channel)
 819		dma_release_channel(dmae->rx_channel);
 820	if (dmae->tx_channel)
 821		dma_release_channel(dmae->tx_channel);
 822	dmae->rx_channel = dmae->tx_channel = NULL;
 
 
 
 823}
 824
 825static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 826{
 827	struct mmci_dmae_priv *dmae = host->dma_priv;
 828	struct dma_chan *chan;
 829
 830	if (data->flags & MMC_DATA_READ)
 831		chan = dmae->rx_channel;
 832	else
 833		chan = dmae->tx_channel;
 834
 835	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 836		     mmc_get_dma_dir(data));
 837}
 838
 839void mmci_dmae_error(struct mmci_host *host)
 840{
 841	struct mmci_dmae_priv *dmae = host->dma_priv;
 842
 843	if (!dma_inprogress(host))
 844		return;
 845
 846	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 847	dmaengine_terminate_all(dmae->cur);
 848	host->dma_in_progress = false;
 849	dmae->cur = NULL;
 850	dmae->desc_current = NULL;
 851	host->data->host_cookie = 0;
 852
 853	mmci_dma_unmap(host, host->data);
 854}
 855
 856void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 857{
 858	struct mmci_dmae_priv *dmae = host->dma_priv;
 859	u32 status;
 860	int i;
 861
 862	if (!dma_inprogress(host))
 863		return;
 864
 865	/* Wait up to 1ms for the DMA to complete */
 866	for (i = 0; ; i++) {
 867		status = readl(host->base + MMCISTATUS);
 868		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 869			break;
 870		udelay(10);
 871	}
 872
 873	/*
 874	 * Check to see whether we still have some data left in the FIFO -
 875	 * this catches DMA controllers which are unable to monitor the
 876	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 877	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 878	 */
 879	if (status & MCI_RXDATAAVLBLMASK) {
 880		mmci_dma_error(host);
 881		if (!data->error)
 882			data->error = -EIO;
 883	} else if (!data->host_cookie) {
 
 
 884		mmci_dma_unmap(host, data);
 885	}
 886
 887	/*
 888	 * Use of DMA with scatter-gather is impossible.
 889	 * Give up with DMA and switch back to PIO mode.
 890	 */
 891	if (status & MCI_RXDATAAVLBLMASK) {
 892		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 893		mmci_dma_release(host);
 894	}
 895
 896	host->dma_in_progress = false;
 897	dmae->cur = NULL;
 898	dmae->desc_current = NULL;
 899}
 900
 901/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 902static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
 903				struct dma_chan **dma_chan,
 904				struct dma_async_tx_descriptor **dma_desc)
 905{
 906	struct mmci_dmae_priv *dmae = host->dma_priv;
 907	struct variant_data *variant = host->variant;
 908	struct dma_slave_config conf = {
 909		.src_addr = host->phybase + MMCIFIFO,
 910		.dst_addr = host->phybase + MMCIFIFO,
 911		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 912		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 913		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 914		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 915		.device_fc = false,
 916	};
 917	struct dma_chan *chan;
 918	struct dma_device *device;
 919	struct dma_async_tx_descriptor *desc;
 920	int nr_sg;
 921	unsigned long flags = DMA_CTRL_ACK;
 922
 923	if (data->flags & MMC_DATA_READ) {
 924		conf.direction = DMA_DEV_TO_MEM;
 925		chan = dmae->rx_channel;
 926	} else {
 927		conf.direction = DMA_MEM_TO_DEV;
 928		chan = dmae->tx_channel;
 929	}
 930
 931	/* If there's no DMA channel, fall back to PIO */
 932	if (!chan)
 933		return -EINVAL;
 934
 935	/* If less than or equal to the fifo size, don't bother with DMA */
 936	if (data->blksz * data->blocks <= variant->fifosize)
 937		return -EINVAL;
 938
 939	/*
 940	 * This is necessary to get SDIO working on the Ux500. We do not yet
 941	 * know if this is a bug in:
 942	 * - The Ux500 DMA controller (DMA40)
 943	 * - The MMCI DMA interface on the Ux500
 944	 * some power of two blocks (such as 64 bytes) are sent regularly
 945	 * during SDIO traffic and those work fine so for these we enable DMA
 946	 * transfers.
 947	 */
 948	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
 949		return -EINVAL;
 950
 951	device = chan->device;
 952	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 953			   mmc_get_dma_dir(data));
 954	if (nr_sg == 0)
 955		return -EINVAL;
 956
 957	if (host->variant->qcom_dml)
 958		flags |= DMA_PREP_INTERRUPT;
 959
 960	dmaengine_slave_config(chan, &conf);
 961	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 962					    conf.direction, flags);
 963	if (!desc)
 964		goto unmap_exit;
 965
 966	*dma_chan = chan;
 967	*dma_desc = desc;
 968
 969	return 0;
 970
 971 unmap_exit:
 972	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 973		     mmc_get_dma_dir(data));
 974	return -ENOMEM;
 975}
 976
 977int mmci_dmae_prep_data(struct mmci_host *host,
 978			struct mmc_data *data,
 979			bool next)
 980{
 981	struct mmci_dmae_priv *dmae = host->dma_priv;
 982	struct mmci_dmae_next *nd = &dmae->next_data;
 983
 984	if (!host->use_dma)
 985		return -EINVAL;
 986
 987	if (next)
 988		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
 989	/* Check if next job is already prepared. */
 990	if (dmae->cur && dmae->desc_current)
 991		return 0;
 992
 993	/* No job were prepared thus do it now. */
 994	return _mmci_dmae_prep_data(host, data, &dmae->cur,
 995				    &dmae->desc_current);
 
 
 
 
 
 
 
 996}
 997
 998int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
 999{
1000	struct mmci_dmae_priv *dmae = host->dma_priv;
1001	int ret;
 
 
 
 
 
1002
 
 
 
 
1003	host->dma_in_progress = true;
1004	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1005	if (ret < 0) {
1006		host->dma_in_progress = false;
1007		return ret;
1008	}
1009	dma_async_issue_pending(dmae->cur);
 
1010
1011	*datactrl |= MCI_DPSM_DMAENABLE;
 
1012
 
 
 
 
 
 
 
1013	return 0;
1014}
1015
1016void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
1017{
1018	struct mmci_dmae_priv *dmae = host->dma_priv;
1019	struct mmci_dmae_next *next = &dmae->next_data;
 
1020
1021	if (!host->use_dma)
1022		return;
1023
1024	WARN_ON(!data->host_cookie && (next->desc || next->chan));
 
 
 
1025
1026	dmae->desc_current = next->desc;
1027	dmae->cur = next->chan;
1028	next->desc = NULL;
1029	next->chan = NULL;
1030}
1031
1032void mmci_dmae_unprep_data(struct mmci_host *host,
1033			   struct mmc_data *data, int err)
1034
1035{
1036	struct mmci_dmae_priv *dmae = host->dma_priv;
 
1037
1038	if (!host->use_dma)
1039		return;
1040
1041	mmci_dma_unmap(host, data);
1042
1043	if (err) {
1044		struct mmci_dmae_next *next = &dmae->next_data;
1045		struct dma_chan *chan;
1046		if (data->flags & MMC_DATA_READ)
1047			chan = dmae->rx_channel;
1048		else
1049			chan = dmae->tx_channel;
1050		dmaengine_terminate_all(chan);
1051
1052		if (dmae->desc_current == next->desc)
1053			dmae->desc_current = NULL;
1054
1055		if (dmae->cur == next->chan) {
1056			host->dma_in_progress = false;
1057			dmae->cur = NULL;
1058		}
1059
1060		next->desc = NULL;
1061		next->chan = NULL;
 
1062	}
1063}
1064
1065static struct mmci_host_ops mmci_variant_ops = {
1066	.prep_data = mmci_dmae_prep_data,
1067	.unprep_data = mmci_dmae_unprep_data,
1068	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1069	.get_next_data = mmci_dmae_get_next_data,
1070	.dma_setup = mmci_dmae_setup,
1071	.dma_release = mmci_dmae_release,
1072	.dma_start = mmci_dmae_start,
1073	.dma_finalize = mmci_dmae_finalize,
1074	.dma_error = mmci_dmae_error,
1075};
1076#else
1077static struct mmci_host_ops mmci_variant_ops = {
1078	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1079};
1080#endif
 
 
 
1081
1082static void mmci_variant_init(struct mmci_host *host)
1083{
1084	host->ops = &mmci_variant_ops;
1085}
1086
1087static void ux500_variant_init(struct mmci_host *host)
1088{
1089	host->ops = &mmci_variant_ops;
1090	host->ops->busy_complete = ux500_busy_complete;
1091}
1092
1093static void ux500v2_variant_init(struct mmci_host *host)
 
1094{
1095	host->ops = &mmci_variant_ops;
1096	host->ops->busy_complete = ux500_busy_complete;
1097	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1098}
1099
1100static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1101{
1102	struct mmci_host *host = mmc_priv(mmc);
1103	struct mmc_data *data = mrq->data;
1104
1105	if (!data)
1106		return;
1107
1108	WARN_ON(data->host_cookie);
1109
1110	if (mmci_validate_data(host, data))
1111		return;
1112
1113	mmci_prep_data(host, data, true);
1114}
1115
1116static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1117			      int err)
1118{
1119	struct mmci_host *host = mmc_priv(mmc);
1120	struct mmc_data *data = mrq->data;
1121
1122	if (!data || !data->host_cookie)
1123		return;
1124
1125	mmci_unprep_data(host, data, err);
1126}
1127
1128static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1129{
1130	struct variant_data *variant = host->variant;
1131	unsigned int datactrl, timeout, irqmask;
1132	unsigned long long clks;
1133	void __iomem *base;
 
1134
1135	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1136		data->blksz, data->blocks, data->flags);
1137
1138	host->data = data;
1139	host->size = data->blksz * data->blocks;
1140	data->bytes_xfered = 0;
1141
1142	clks = (unsigned long long)data->timeout_ns * host->cclk;
1143	do_div(clks, NSEC_PER_SEC);
1144
1145	timeout = data->timeout_clks + (unsigned int)clks;
1146
1147	base = host->base;
1148	writel(timeout, base + MMCIDATATIMER);
1149	writel(host->size, base + MMCIDATALENGTH);
1150
1151	datactrl = host->ops->get_datactrl_cfg(host);
1152	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
 
 
 
 
 
 
 
 
 
 
1153
1154	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1155		u32 clk;
1156
1157		datactrl |= variant->datactrl_mask_sdio;
1158
1159		/*
1160		 * The ST Micro variant for SDIO small write transfers
1161		 * needs to have clock H/W flow control disabled,
1162		 * otherwise the transfer will not start. The threshold
1163		 * depends on the rate of MCLK.
1164		 */
1165		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1166		    (host->size < 8 ||
1167		     (host->size <= 8 && host->mclk > 50000000)))
1168			clk = host->clk_reg & ~variant->clkreg_enable;
1169		else
1170			clk = host->clk_reg | variant->clkreg_enable;
1171
1172		mmci_write_clkreg(host, clk);
1173	}
1174
1175	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1176	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1177		datactrl |= variant->datactrl_mask_ddrmode;
1178
1179	/*
1180	 * Attempt to use DMA operation mode, if this
1181	 * should fail, fall back to PIO mode
1182	 */
1183	if (!mmci_dma_start(host, datactrl))
1184		return;
1185
1186	/* IRQ mode, map the SG list for CPU reading/writing */
1187	mmci_init_sg(host, data);
1188
1189	if (data->flags & MMC_DATA_READ) {
1190		irqmask = MCI_RXFIFOHALFFULLMASK;
1191
1192		/*
1193		 * If we have less than the fifo 'half-full' threshold to
1194		 * transfer, trigger a PIO interrupt as soon as any data
1195		 * is available.
1196		 */
1197		if (host->size < variant->fifohalfsize)
1198			irqmask |= MCI_RXDATAAVLBLMASK;
1199	} else {
1200		/*
1201		 * We don't actually need to include "FIFO empty" here
1202		 * since its implicit in "FIFO half empty".
1203		 */
1204		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1205	}
1206
1207	mmci_write_datactrlreg(host, datactrl);
1208	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1209	mmci_set_mask1(host, irqmask);
1210}
1211
1212static void
1213mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1214{
1215	void __iomem *base = host->base;
1216	unsigned long long clks;
1217
1218	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1219	    cmd->opcode, cmd->arg, cmd->flags);
1220
1221	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1222		writel(0, base + MMCICOMMAND);
1223		mmci_reg_delay(host);
1224	}
1225
1226	if (host->variant->cmdreg_stop &&
1227	    cmd->opcode == MMC_STOP_TRANSMISSION)
1228		c |= host->variant->cmdreg_stop;
1229
1230	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1231	if (cmd->flags & MMC_RSP_PRESENT) {
1232		if (cmd->flags & MMC_RSP_136)
1233			c |= host->variant->cmdreg_lrsp_crc;
1234		else if (cmd->flags & MMC_RSP_CRC)
1235			c |= host->variant->cmdreg_srsp_crc;
1236		else
1237			c |= host->variant->cmdreg_srsp;
1238	}
1239
1240	if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1241		if (!cmd->busy_timeout)
1242			cmd->busy_timeout = 10 * MSEC_PER_SEC;
1243
1244		clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1245		do_div(clks, MSEC_PER_SEC);
1246		writel_relaxed(clks, host->base + MMCIDATATIMER);
1247	}
1248
1249	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1250		host->ops->pre_sig_volt_switch(host);
1251
1252	if (/*interrupt*/0)
1253		c |= MCI_CPSM_INTERRUPT;
1254
1255	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1256		c |= host->variant->data_cmd_enable;
1257
1258	host->cmd = cmd;
1259
1260	writel(cmd->arg, base + MMCIARGUMENT);
1261	writel(c, base + MMCICOMMAND);
1262}
1263
1264static void mmci_stop_command(struct mmci_host *host)
1265{
1266	host->stop_abort.error = 0;
1267	mmci_start_command(host, &host->stop_abort, 0);
1268}
1269
1270static void
1271mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1272	      unsigned int status)
1273{
1274	unsigned int status_err;
1275
1276	/* Make sure we have data to handle */
1277	if (!data)
1278		return;
1279
1280	/* First check for errors */
1281	status_err = status & (host->variant->start_err |
1282			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1283			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1284
1285	if (status_err) {
1286		u32 remain, success;
1287
1288		/* Terminate the DMA transfer */
1289		mmci_dma_error(host);
 
 
 
1290
1291		/*
1292		 * Calculate how far we are into the transfer.  Note that
1293		 * the data counter gives the number of bytes transferred
1294		 * on the MMC bus, not on the host side.  On reads, this
1295		 * can be as much as a FIFO-worth of data ahead.  This
1296		 * matters for FIFO overruns only.
1297		 */
1298		if (!host->variant->datacnt_useless) {
1299			remain = readl(host->base + MMCIDATACNT);
1300			success = data->blksz * data->blocks - remain;
1301		} else {
1302			success = 0;
1303		}
1304
1305		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1306			status_err, success);
1307		if (status_err & MCI_DATACRCFAIL) {
1308			/* Last block was not successful */
1309			success -= 1;
1310			data->error = -EILSEQ;
1311		} else if (status_err & MCI_DATATIMEOUT) {
1312			data->error = -ETIMEDOUT;
1313		} else if (status_err & MCI_STARTBITERR) {
1314			data->error = -ECOMM;
1315		} else if (status_err & MCI_TXUNDERRUN) {
1316			data->error = -EIO;
1317		} else if (status_err & MCI_RXOVERRUN) {
1318			if (success > host->variant->fifosize)
1319				success -= host->variant->fifosize;
1320			else
1321				success = 0;
1322			data->error = -EIO;
1323		}
1324		data->bytes_xfered = round_down(success, data->blksz);
1325	}
1326
1327	if (status & MCI_DATABLOCKEND)
1328		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1329
1330	if (status & MCI_DATAEND || data->error) {
1331		mmci_dma_finalize(host, data);
1332
1333		mmci_stop_data(host);
1334
1335		if (!data->error)
1336			/* The error clause is handled above, success! */
1337			data->bytes_xfered = data->blksz * data->blocks;
1338
1339		if (!data->stop) {
1340			if (host->variant->cmdreg_stop && data->error)
1341				mmci_stop_command(host);
1342			else
1343				mmci_request_end(host, data->mrq);
1344		} else if (host->mrq->sbc && !data->error) {
1345			mmci_request_end(host, data->mrq);
1346		} else {
1347			mmci_start_command(host, data->stop, 0);
1348		}
1349	}
1350}
1351
1352static void
1353mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1354	     unsigned int status)
1355{
1356	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1357	void __iomem *base = host->base;
1358	bool sbc, busy_resp;
1359
1360	if (!cmd)
1361		return;
1362
1363	sbc = (cmd == host->mrq->sbc);
1364	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1365
1366	/*
1367	 * We need to be one of these interrupts to be considered worth
1368	 * handling. Note that we tag on any latent IRQs postponed
1369	 * due to waiting for busy status.
1370	 */
1371	if (host->variant->busy_timeout && busy_resp)
1372		err_msk |= MCI_DATATIMEOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373
1374	if (!((status | host->busy_status) &
1375	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1376		return;
1377
1378	/* Handle busy detection on DAT0 if the variant supports it. */
1379	if (busy_resp && host->variant->busy_detect)
1380		if (!host->ops->busy_complete(host, status, err_msk))
 
 
 
 
 
 
 
1381			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382
1383	host->cmd = NULL;
1384
1385	if (status & MCI_CMDTIMEOUT) {
1386		cmd->error = -ETIMEDOUT;
1387	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1388		cmd->error = -EILSEQ;
1389	} else if (host->variant->busy_timeout && busy_resp &&
1390		   status & MCI_DATATIMEOUT) {
1391		cmd->error = -ETIMEDOUT;
1392		host->irq_action = IRQ_WAKE_THREAD;
1393	} else {
1394		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1395		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1396		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1397		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1398	}
1399
1400	if ((!sbc && !cmd->data) || cmd->error) {
1401		if (host->data) {
1402			/* Terminate the DMA transfer */
1403			mmci_dma_error(host);
1404
 
 
1405			mmci_stop_data(host);
1406			if (host->variant->cmdreg_stop && cmd->error) {
1407				mmci_stop_command(host);
1408				return;
1409			}
1410		}
1411
1412		if (host->irq_action != IRQ_WAKE_THREAD)
1413			mmci_request_end(host, host->mrq);
1414
1415	} else if (sbc) {
1416		mmci_start_command(host, host->mrq->cmd, 0);
1417	} else if (!host->variant->datactrl_first &&
1418		   !(cmd->data->flags & MMC_DATA_READ)) {
1419		mmci_start_data(host, cmd->data);
1420	}
1421}
1422
1423static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1424{
1425	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1426}
1427
1428static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1429{
1430	/*
1431	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1432	 * from the fifo range should be used
1433	 */
1434	if (status & MCI_RXFIFOHALFFULL)
1435		return host->variant->fifohalfsize;
1436	else if (status & MCI_RXDATAAVLBL)
1437		return 4;
1438
1439	return 0;
1440}
1441
1442static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1443{
1444	void __iomem *base = host->base;
1445	char *ptr = buffer;
1446	u32 status = readl(host->base + MMCISTATUS);
1447	int host_remain = host->size;
1448
1449	do {
1450		int count = host->get_rx_fifocnt(host, status, host_remain);
1451
1452		if (count > remain)
1453			count = remain;
1454
1455		if (count <= 0)
1456			break;
1457
1458		/*
1459		 * SDIO especially may want to send something that is
1460		 * not divisible by 4 (as opposed to card sectors
1461		 * etc). Therefore make sure to always read the last bytes
1462		 * while only doing full 32-bit reads towards the FIFO.
1463		 */
1464		if (unlikely(count & 0x3)) {
1465			if (count < 4) {
1466				unsigned char buf[4];
1467				ioread32_rep(base + MMCIFIFO, buf, 1);
1468				memcpy(ptr, buf, count);
1469			} else {
1470				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1471				count &= ~0x3;
1472			}
1473		} else {
1474			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1475		}
1476
1477		ptr += count;
1478		remain -= count;
1479		host_remain -= count;
1480
1481		if (remain == 0)
1482			break;
1483
1484		status = readl(base + MMCISTATUS);
1485	} while (status & MCI_RXDATAAVLBL);
1486
1487	return ptr - buffer;
1488}
1489
1490static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1491{
1492	struct variant_data *variant = host->variant;
1493	void __iomem *base = host->base;
1494	char *ptr = buffer;
1495
1496	do {
1497		unsigned int count, maxcnt;
1498
1499		maxcnt = status & MCI_TXFIFOEMPTY ?
1500			 variant->fifosize : variant->fifohalfsize;
1501		count = min(remain, maxcnt);
1502
1503		/*
1504		 * SDIO especially may want to send something that is
1505		 * not divisible by 4 (as opposed to card sectors
1506		 * etc), and the FIFO only accept full 32-bit writes.
1507		 * So compensate by adding +3 on the count, a single
1508		 * byte become a 32bit write, 7 bytes will be two
1509		 * 32bit writes etc.
1510		 */
1511		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1512
1513		ptr += count;
1514		remain -= count;
1515
1516		if (remain == 0)
1517			break;
1518
1519		status = readl(base + MMCISTATUS);
1520	} while (status & MCI_TXFIFOHALFEMPTY);
1521
1522	return ptr - buffer;
1523}
1524
1525/*
1526 * PIO data transfer IRQ handler.
1527 */
1528static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1529{
1530	struct mmci_host *host = dev_id;
1531	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1532	struct variant_data *variant = host->variant;
1533	void __iomem *base = host->base;
 
1534	u32 status;
1535
1536	status = readl(base + MMCISTATUS);
1537
1538	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1539
 
 
1540	do {
1541		unsigned int remain, len;
1542		char *buffer;
1543
1544		/*
1545		 * For write, we only need to test the half-empty flag
1546		 * here - if the FIFO is completely empty, then by
1547		 * definition it is more than half empty.
1548		 *
1549		 * For read, check for data available.
1550		 */
1551		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1552			break;
1553
1554		if (!sg_miter_next(sg_miter))
1555			break;
1556
1557		buffer = sg_miter->addr;
1558		remain = sg_miter->length;
1559
1560		len = 0;
1561		if (status & MCI_RXACTIVE)
1562			len = mmci_pio_read(host, buffer, remain);
1563		if (status & MCI_TXACTIVE)
1564			len = mmci_pio_write(host, buffer, remain, status);
1565
1566		sg_miter->consumed = len;
1567
1568		host->size -= len;
1569		remain -= len;
1570
1571		if (remain)
1572			break;
1573
1574		status = readl(base + MMCISTATUS);
1575	} while (1);
1576
1577	sg_miter_stop(sg_miter);
1578
 
 
1579	/*
1580	 * If we have less than the fifo 'half-full' threshold to transfer,
1581	 * trigger a PIO interrupt as soon as any data is available.
1582	 */
1583	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1584		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1585
1586	/*
1587	 * If we run out of data, disable the data IRQs; this
1588	 * prevents a race where the FIFO becomes empty before
1589	 * the chip itself has disabled the data path, and
1590	 * stops us racing with our data end IRQ.
1591	 */
1592	if (host->size == 0) {
1593		mmci_set_mask1(host, 0);
1594		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1595	}
1596
1597	return IRQ_HANDLED;
1598}
1599
1600/*
1601 * Handle completion of command and data transfers.
1602 */
1603static irqreturn_t mmci_irq(int irq, void *dev_id)
1604{
1605	struct mmci_host *host = dev_id;
1606	u32 status;
 
1607
1608	spin_lock(&host->lock);
1609	host->irq_action = IRQ_HANDLED;
1610
1611	do {
1612		status = readl(host->base + MMCISTATUS);
1613
1614		if (host->singleirq) {
1615			if (status & host->mask1_reg)
1616				mmci_pio_irq(irq, dev_id);
1617
1618			status &= ~host->variant->irq_pio_mask;
1619		}
1620
1621		/*
1622		 * Busy detection is managed by mmci_cmd_irq(), including to
1623		 * clear the corresponding IRQ.
 
 
 
 
 
 
1624		 */
1625		status &= readl(host->base + MMCIMASK0);
1626		if (host->variant->busy_detect)
1627			writel(status & ~host->variant->busy_detect_mask,
1628			       host->base + MMCICLEAR);
1629		else
1630			writel(status, host->base + MMCICLEAR);
1631
1632		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1633
1634		if (host->variant->reversed_irq_handling) {
1635			mmci_data_irq(host, host->data, status);
1636			mmci_cmd_irq(host, host->cmd, status);
1637		} else {
1638			mmci_cmd_irq(host, host->cmd, status);
1639			mmci_data_irq(host, host->data, status);
1640		}
1641
1642		/*
1643		 * Busy detection has been handled by mmci_cmd_irq() above.
1644		 * Clear the status bit to prevent polling in IRQ context.
1645		 */
1646		if (host->variant->busy_detect_flag)
1647			status &= ~host->variant->busy_detect_flag;
1648
 
1649	} while (status);
1650
1651	spin_unlock(&host->lock);
1652
1653	return host->irq_action;
1654}
1655
1656/*
1657 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1658 *
1659 * A reset is needed for some variants, where a datatimeout for a R1B request
1660 * causes the DPSM to stay busy (non-functional).
1661 */
1662static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1663{
1664	struct mmci_host *host = dev_id;
1665	unsigned long flags;
1666
1667	if (host->rst) {
1668		reset_control_assert(host->rst);
1669		udelay(2);
1670		reset_control_deassert(host->rst);
1671	}
1672
1673	spin_lock_irqsave(&host->lock, flags);
1674	writel(host->clk_reg, host->base + MMCICLOCK);
1675	writel(host->pwr_reg, host->base + MMCIPOWER);
1676	writel(MCI_IRQENABLE | host->variant->start_err,
1677	       host->base + MMCIMASK0);
1678
1679	host->irq_action = IRQ_HANDLED;
1680	mmci_request_end(host, host->mrq);
1681	spin_unlock_irqrestore(&host->lock, flags);
1682
1683	return host->irq_action;
1684}
1685
1686static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1687{
1688	struct mmci_host *host = mmc_priv(mmc);
1689	unsigned long flags;
1690
1691	WARN_ON(host->mrq != NULL);
1692
1693	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1694	if (mrq->cmd->error) {
1695		mmc_request_done(mmc, mrq);
1696		return;
1697	}
1698
1699	spin_lock_irqsave(&host->lock, flags);
1700
1701	host->mrq = mrq;
1702
1703	if (mrq->data)
1704		mmci_get_next_data(host, mrq->data);
1705
1706	if (mrq->data &&
1707	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1708		mmci_start_data(host, mrq->data);
1709
1710	if (mrq->sbc)
1711		mmci_start_command(host, mrq->sbc, 0);
1712	else
1713		mmci_start_command(host, mrq->cmd, 0);
1714
1715	spin_unlock_irqrestore(&host->lock, flags);
1716}
1717
1718static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1719{
1720	struct mmci_host *host = mmc_priv(mmc);
1721	u32 max_busy_timeout = 0;
1722
1723	if (!host->variant->busy_detect)
1724		return;
1725
1726	if (host->variant->busy_timeout && mmc->actual_clock)
1727		max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1728
1729	mmc->max_busy_timeout = max_busy_timeout;
1730}
1731
1732static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1733{
1734	struct mmci_host *host = mmc_priv(mmc);
1735	struct variant_data *variant = host->variant;
1736	u32 pwr = 0;
1737	unsigned long flags;
1738	int ret;
1739
1740	if (host->plat->ios_handler &&
1741		host->plat->ios_handler(mmc_dev(mmc), ios))
1742			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1743
1744	switch (ios->power_mode) {
1745	case MMC_POWER_OFF:
1746		if (!IS_ERR(mmc->supply.vmmc))
1747			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1748
1749		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1750			regulator_disable(mmc->supply.vqmmc);
1751			host->vqmmc_enabled = false;
1752		}
1753
1754		break;
1755	case MMC_POWER_UP:
1756		if (!IS_ERR(mmc->supply.vmmc))
1757			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1758
1759		/*
1760		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1761		 * and instead uses MCI_PWR_ON so apply whatever value is
1762		 * configured in the variant data.
1763		 */
1764		pwr |= variant->pwrreg_powerup;
1765
1766		break;
1767	case MMC_POWER_ON:
1768		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1769			ret = regulator_enable(mmc->supply.vqmmc);
1770			if (ret < 0)
1771				dev_err(mmc_dev(mmc),
1772					"failed to enable vqmmc regulator\n");
1773			else
1774				host->vqmmc_enabled = true;
1775		}
1776
1777		pwr |= MCI_PWR_ON;
1778		break;
1779	}
1780
1781	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1782		/*
1783		 * The ST Micro variant has some additional bits
1784		 * indicating signal direction for the signals in
1785		 * the SD/MMC bus and feedback-clock usage.
1786		 */
1787		pwr |= host->pwr_reg_add;
1788
1789		if (ios->bus_width == MMC_BUS_WIDTH_4)
1790			pwr &= ~MCI_ST_DATA74DIREN;
1791		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1792			pwr &= (~MCI_ST_DATA74DIREN &
1793				~MCI_ST_DATA31DIREN &
1794				~MCI_ST_DATA2DIREN);
1795	}
1796
1797	if (variant->opendrain) {
1798		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1799			pwr |= variant->opendrain;
1800	} else {
1801		/*
1802		 * If the variant cannot configure the pads by its own, then we
1803		 * expect the pinctrl to be able to do that for us
1804		 */
1805		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1806			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1807		else
1808			pinctrl_select_default_state(mmc_dev(mmc));
1809	}
1810
1811	/*
1812	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1813	 * gating the clock, the MCI_PWR_ON bit is cleared.
1814	 */
1815	if (!ios->clock && variant->pwrreg_clkgate)
1816		pwr &= ~MCI_PWR_ON;
1817
1818	if (host->variant->explicit_mclk_control &&
1819	    ios->clock != host->clock_cache) {
1820		ret = clk_set_rate(host->clk, ios->clock);
1821		if (ret < 0)
1822			dev_err(mmc_dev(host->mmc),
1823				"Error setting clock rate (%d)\n", ret);
1824		else
1825			host->mclk = clk_get_rate(host->clk);
1826	}
1827	host->clock_cache = ios->clock;
1828
1829	spin_lock_irqsave(&host->lock, flags);
1830
1831	if (host->ops && host->ops->set_clkreg)
1832		host->ops->set_clkreg(host, ios->clock);
1833	else
1834		mmci_set_clkreg(host, ios->clock);
1835
1836	mmci_set_max_busy_timeout(mmc);
1837
1838	if (host->ops && host->ops->set_pwrreg)
1839		host->ops->set_pwrreg(host, pwr);
1840	else
1841		mmci_write_pwrreg(host, pwr);
1842
1843	mmci_reg_delay(host);
1844
1845	spin_unlock_irqrestore(&host->lock, flags);
1846}
1847
1848static int mmci_get_cd(struct mmc_host *mmc)
1849{
1850	struct mmci_host *host = mmc_priv(mmc);
1851	struct mmci_platform_data *plat = host->plat;
1852	unsigned int status = mmc_gpio_get_cd(mmc);
1853
1854	if (status == -ENOSYS) {
1855		if (!plat->status)
1856			return 1; /* Assume always present */
1857
1858		status = plat->status(mmc_dev(host->mmc));
1859	}
1860	return status;
1861}
1862
1863static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1864{
1865	struct mmci_host *host = mmc_priv(mmc);
1866	int ret;
1867
1868	ret = mmc_regulator_set_vqmmc(mmc, ios);
1869
1870	if (!ret && host->ops && host->ops->post_sig_volt_switch)
1871		ret = host->ops->post_sig_volt_switch(host, ios);
1872	else if (ret)
1873		ret = 0;
 
 
 
 
 
 
 
 
 
 
1874
1875	if (ret < 0)
1876		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
 
1877
1878	return ret;
1879}
1880
1881static struct mmc_host_ops mmci_ops = {
1882	.request	= mmci_request,
1883	.pre_req	= mmci_pre_request,
1884	.post_req	= mmci_post_request,
1885	.set_ios	= mmci_set_ios,
1886	.get_ro		= mmc_gpio_get_ro,
1887	.get_cd		= mmci_get_cd,
1888	.start_signal_voltage_switch = mmci_sig_volt_switch,
1889};
1890
1891static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1892{
1893	struct mmci_host *host = mmc_priv(mmc);
1894	int ret = mmc_of_parse(mmc);
1895
1896	if (ret)
1897		return ret;
1898
1899	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1900		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1901	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1902		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1903	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1904		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1905	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1906		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1907	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1908		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1909	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1910		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1911	if (of_get_property(np, "st,sig-dir", NULL))
1912		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1913	if (of_get_property(np, "st,neg-edge", NULL))
1914		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1915	if (of_get_property(np, "st,use-ckin", NULL))
1916		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1917
1918	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1919		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1920	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1921		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1922
1923	return 0;
1924}
1925
1926static int mmci_probe(struct amba_device *dev,
1927	const struct amba_id *id)
1928{
1929	struct mmci_platform_data *plat = dev->dev.platform_data;
1930	struct device_node *np = dev->dev.of_node;
1931	struct variant_data *variant = id->data;
1932	struct mmci_host *host;
1933	struct mmc_host *mmc;
1934	int ret;
1935
1936	/* Must have platform data or Device Tree. */
1937	if (!plat && !np) {
1938		dev_err(&dev->dev, "No plat data or DT found\n");
1939		return -EINVAL;
1940	}
1941
1942	if (!plat) {
1943		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1944		if (!plat)
1945			return -ENOMEM;
1946	}
1947
1948	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1949	if (!mmc)
1950		return -ENOMEM;
1951
1952	ret = mmci_of_parse(np, mmc);
1953	if (ret)
1954		goto host_free;
1955
1956	host = mmc_priv(mmc);
1957	host->mmc = mmc;
1958	host->mmc_ops = &mmci_ops;
1959	mmc->ops = &mmci_ops;
1960
1961	/*
1962	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1963	 * pins can be set accordingly using pinctrl
1964	 */
1965	if (!variant->opendrain) {
1966		host->pinctrl = devm_pinctrl_get(&dev->dev);
1967		if (IS_ERR(host->pinctrl)) {
1968			dev_err(&dev->dev, "failed to get pinctrl");
1969			ret = PTR_ERR(host->pinctrl);
1970			goto host_free;
1971		}
1972
 
 
 
 
 
 
 
 
1973		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1974							    MMCI_PINCTRL_STATE_OPENDRAIN);
1975		if (IS_ERR(host->pins_opendrain)) {
1976			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1977			ret = PTR_ERR(host->pins_opendrain);
1978			goto host_free;
1979		}
1980	}
1981
1982	host->hw_designer = amba_manf(dev);
1983	host->hw_revision = amba_rev(dev);
1984	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1985	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1986
1987	host->clk = devm_clk_get(&dev->dev, NULL);
1988	if (IS_ERR(host->clk)) {
1989		ret = PTR_ERR(host->clk);
1990		goto host_free;
1991	}
1992
1993	ret = clk_prepare_enable(host->clk);
1994	if (ret)
1995		goto host_free;
1996
1997	if (variant->qcom_fifo)
1998		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1999	else
2000		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2001
2002	host->plat = plat;
2003	host->variant = variant;
2004	host->mclk = clk_get_rate(host->clk);
2005	/*
2006	 * According to the spec, mclk is max 100 MHz,
2007	 * so we try to adjust the clock down to this,
2008	 * (if possible).
2009	 */
2010	if (host->mclk > variant->f_max) {
2011		ret = clk_set_rate(host->clk, variant->f_max);
2012		if (ret < 0)
2013			goto clk_disable;
2014		host->mclk = clk_get_rate(host->clk);
2015		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2016			host->mclk);
2017	}
2018
2019	host->phybase = dev->res.start;
2020	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2021	if (IS_ERR(host->base)) {
2022		ret = PTR_ERR(host->base);
2023		goto clk_disable;
2024	}
2025
2026	if (variant->init)
2027		variant->init(host);
2028
2029	/*
2030	 * The ARM and ST versions of the block have slightly different
2031	 * clock divider equations which means that the minimum divider
2032	 * differs too.
2033	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2034	 */
2035	if (variant->st_clkdiv)
2036		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2037	else if (variant->stm32_clkdiv)
2038		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2039	else if (variant->explicit_mclk_control)
2040		mmc->f_min = clk_round_rate(host->clk, 100000);
2041	else
2042		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2043	/*
2044	 * If no maximum operating frequency is supplied, fall back to use
2045	 * the module parameter, which has a (low) default value in case it
2046	 * is not specified. Either value must not exceed the clock rate into
2047	 * the block, of course.
2048	 */
2049	if (mmc->f_max)
2050		mmc->f_max = variant->explicit_mclk_control ?
2051				min(variant->f_max, mmc->f_max) :
2052				min(host->mclk, mmc->f_max);
2053	else
2054		mmc->f_max = variant->explicit_mclk_control ?
2055				fmax : min(host->mclk, fmax);
2056
2057
2058	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2059
2060	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2061	if (IS_ERR(host->rst)) {
2062		ret = PTR_ERR(host->rst);
2063		goto clk_disable;
2064	}
2065
2066	/* Get regulators and the supported OCR mask */
2067	ret = mmc_regulator_get_supply(mmc);
2068	if (ret)
2069		goto clk_disable;
2070
2071	if (!mmc->ocr_avail)
2072		mmc->ocr_avail = plat->ocr_mask;
2073	else if (plat->ocr_mask)
2074		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2075
 
 
 
 
 
 
 
2076	/* We support these capabilities. */
2077	mmc->caps |= MMC_CAP_CMD23;
2078
2079	/*
2080	 * Enable busy detection.
2081	 */
2082	if (variant->busy_detect) {
2083		mmci_ops.card_busy = mmci_card_busy;
2084		/*
2085		 * Not all variants have a flag to enable busy detection
2086		 * in the DPSM, but if they do, set it here.
2087		 */
2088		if (variant->busy_dpsm_flag)
2089			mmci_write_datactrlreg(host,
2090					       host->variant->busy_dpsm_flag);
2091		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
 
2092	}
2093
2094	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2095	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2096	host->stop_abort.arg = 0;
2097	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2098
2099	/* We support these PM capabilities. */
2100	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2101
2102	/*
2103	 * We can do SGIO
2104	 */
2105	mmc->max_segs = NR_SG;
2106
2107	/*
2108	 * Since only a certain number of bits are valid in the data length
2109	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2110	 * single request.
2111	 */
2112	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2113
2114	/*
2115	 * Set the maximum segment size.  Since we aren't doing DMA
2116	 * (yet) we are only limited by the data length register.
2117	 */
2118	mmc->max_seg_size = mmc->max_req_size;
2119
2120	/*
2121	 * Block size can be up to 2048 bytes, but must be a power of two.
2122	 */
2123	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2124
2125	/*
2126	 * Limit the number of blocks transferred so that we don't overflow
2127	 * the maximum request size.
2128	 */
2129	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2130
2131	spin_lock_init(&host->lock);
2132
2133	writel(0, host->base + MMCIMASK0);
2134
2135	if (variant->mmcimask1)
2136		writel(0, host->base + MMCIMASK1);
2137
2138	writel(0xfff, host->base + MMCICLEAR);
2139
2140	/*
2141	 * If:
2142	 * - not using DT but using a descriptor table, or
2143	 * - using a table of descriptors ALONGSIDE DT, or
2144	 * look up these descriptors named "cd" and "wp" right here, fail
2145	 * silently of these do not exist
2146	 */
2147	if (!np) {
2148		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2149		if (ret == -EPROBE_DEFER)
2150			goto clk_disable;
 
 
 
 
 
 
 
2151
2152		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2153		if (ret == -EPROBE_DEFER)
2154			goto clk_disable;
 
 
 
 
 
 
 
2155	}
2156
2157	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2158					mmci_irq_thread, IRQF_SHARED,
2159					DRIVER_NAME " (cmd)", host);
2160	if (ret)
2161		goto clk_disable;
2162
2163	if (!dev->irq[1])
2164		host->singleirq = true;
2165	else {
2166		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2167				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2168		if (ret)
2169			goto clk_disable;
2170	}
2171
2172	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2173
2174	amba_set_drvdata(dev, mmc);
2175
2176	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2177		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2178		 amba_rev(dev), (unsigned long long)dev->res.start,
2179		 dev->irq[0], dev->irq[1]);
2180
2181	mmci_dma_setup(host);
2182
2183	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2184	pm_runtime_use_autosuspend(&dev->dev);
2185
2186	mmc_add_host(mmc);
2187
2188	pm_runtime_put(&dev->dev);
2189	return 0;
2190
2191 clk_disable:
2192	clk_disable_unprepare(host->clk);
2193 host_free:
2194	mmc_free_host(mmc);
2195	return ret;
2196}
2197
2198static int mmci_remove(struct amba_device *dev)
2199{
2200	struct mmc_host *mmc = amba_get_drvdata(dev);
2201
2202	if (mmc) {
2203		struct mmci_host *host = mmc_priv(mmc);
2204		struct variant_data *variant = host->variant;
2205
2206		/*
2207		 * Undo pm_runtime_put() in probe.  We use the _sync
2208		 * version here so that we can access the primecell.
2209		 */
2210		pm_runtime_get_sync(&dev->dev);
2211
2212		mmc_remove_host(mmc);
2213
2214		writel(0, host->base + MMCIMASK0);
2215
2216		if (variant->mmcimask1)
2217			writel(0, host->base + MMCIMASK1);
2218
2219		writel(0, host->base + MMCICOMMAND);
2220		writel(0, host->base + MMCIDATACTRL);
2221
2222		mmci_dma_release(host);
2223		clk_disable_unprepare(host->clk);
2224		mmc_free_host(mmc);
2225	}
2226
2227	return 0;
2228}
2229
2230#ifdef CONFIG_PM
2231static void mmci_save(struct mmci_host *host)
2232{
2233	unsigned long flags;
2234
2235	spin_lock_irqsave(&host->lock, flags);
2236
2237	writel(0, host->base + MMCIMASK0);
2238	if (host->variant->pwrreg_nopower) {
2239		writel(0, host->base + MMCIDATACTRL);
2240		writel(0, host->base + MMCIPOWER);
2241		writel(0, host->base + MMCICLOCK);
2242	}
2243	mmci_reg_delay(host);
2244
2245	spin_unlock_irqrestore(&host->lock, flags);
2246}
2247
2248static void mmci_restore(struct mmci_host *host)
2249{
2250	unsigned long flags;
2251
2252	spin_lock_irqsave(&host->lock, flags);
2253
2254	if (host->variant->pwrreg_nopower) {
2255		writel(host->clk_reg, host->base + MMCICLOCK);
2256		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2257		writel(host->pwr_reg, host->base + MMCIPOWER);
2258	}
2259	writel(MCI_IRQENABLE | host->variant->start_err,
2260	       host->base + MMCIMASK0);
2261	mmci_reg_delay(host);
2262
2263	spin_unlock_irqrestore(&host->lock, flags);
2264}
2265
2266static int mmci_runtime_suspend(struct device *dev)
2267{
2268	struct amba_device *adev = to_amba_device(dev);
2269	struct mmc_host *mmc = amba_get_drvdata(adev);
2270
2271	if (mmc) {
2272		struct mmci_host *host = mmc_priv(mmc);
2273		pinctrl_pm_select_sleep_state(dev);
2274		mmci_save(host);
2275		clk_disable_unprepare(host->clk);
2276	}
2277
2278	return 0;
2279}
2280
2281static int mmci_runtime_resume(struct device *dev)
2282{
2283	struct amba_device *adev = to_amba_device(dev);
2284	struct mmc_host *mmc = amba_get_drvdata(adev);
2285
2286	if (mmc) {
2287		struct mmci_host *host = mmc_priv(mmc);
2288		clk_prepare_enable(host->clk);
2289		mmci_restore(host);
2290		pinctrl_select_default_state(dev);
2291	}
2292
2293	return 0;
2294}
2295#endif
2296
2297static const struct dev_pm_ops mmci_dev_pm_ops = {
2298	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2299				pm_runtime_force_resume)
2300	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2301};
2302
2303static const struct amba_id mmci_ids[] = {
2304	{
2305		.id	= 0x00041180,
2306		.mask	= 0xff0fffff,
2307		.data	= &variant_arm,
2308	},
2309	{
2310		.id	= 0x01041180,
2311		.mask	= 0xff0fffff,
2312		.data	= &variant_arm_extended_fifo,
2313	},
2314	{
2315		.id	= 0x02041180,
2316		.mask	= 0xff0fffff,
2317		.data	= &variant_arm_extended_fifo_hwfc,
2318	},
2319	{
2320		.id	= 0x00041181,
2321		.mask	= 0x000fffff,
2322		.data	= &variant_arm,
2323	},
2324	/* ST Micro variants */
2325	{
2326		.id     = 0x00180180,
2327		.mask   = 0x00ffffff,
2328		.data	= &variant_u300,
2329	},
2330	{
2331		.id     = 0x10180180,
2332		.mask   = 0xf0ffffff,
2333		.data	= &variant_nomadik,
2334	},
2335	{
2336		.id     = 0x00280180,
2337		.mask   = 0x00ffffff,
2338		.data	= &variant_nomadik,
2339	},
2340	{
2341		.id     = 0x00480180,
2342		.mask   = 0xf0ffffff,
2343		.data	= &variant_ux500,
2344	},
2345	{
2346		.id     = 0x10480180,
2347		.mask   = 0xf0ffffff,
2348		.data	= &variant_ux500v2,
2349	},
2350	{
2351		.id     = 0x00880180,
2352		.mask   = 0x00ffffff,
2353		.data	= &variant_stm32,
2354	},
2355	{
2356		.id     = 0x10153180,
2357		.mask	= 0xf0ffffff,
2358		.data	= &variant_stm32_sdmmc,
2359	},
2360	{
2361		.id     = 0x00253180,
2362		.mask	= 0xf0ffffff,
2363		.data	= &variant_stm32_sdmmcv2,
2364	},
2365	/* Qualcomm variants */
2366	{
2367		.id     = 0x00051180,
2368		.mask	= 0x000fffff,
2369		.data	= &variant_qcom,
2370	},
2371	{ 0, 0 },
2372};
2373
2374MODULE_DEVICE_TABLE(amba, mmci_ids);
2375
2376static struct amba_driver mmci_driver = {
2377	.drv		= {
2378		.name	= DRIVER_NAME,
2379		.pm	= &mmci_dev_pm_ops,
2380	},
2381	.probe		= mmci_probe,
2382	.remove		= mmci_remove,
2383	.id_table	= mmci_ids,
2384};
2385
2386module_amba_driver(mmci_driver);
2387
2388module_param(fmax, uint, 0444);
2389
2390MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2391MODULE_LICENSE("GPL");