Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/err.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
  24#include <linux/mmc/pm.h>
  25#include <linux/mmc/host.h>
  26#include <linux/mmc/card.h>
  27#include <linux/mmc/slot-gpio.h>
  28#include <linux/amba/bus.h>
  29#include <linux/clk.h>
  30#include <linux/scatterlist.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/amba/mmci.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/types.h>
  39#include <linux/pinctrl/consumer.h>
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
  43
  44#include "mmci.h"
  45#include "mmci_qcom_dml.h"
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
  49static unsigned int fmax = 515633;
  50
  51/**
  52 * struct variant_data - MMCI variant-specific quirks
  53 * @clkreg: default value for MCICLOCK register
  54 * @clkreg_enable: enable value for MMCICLOCK register
  55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
  56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
  57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  59 *	      is asserted (likewise for RX)
  60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  61 *		  is asserted (likewise for RX)
  62 * @data_cmd_enable: enable value for data commands.
  63 * @st_sdio: enable ST specific SDIO logic
  64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
  66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
  68 *		     register
  69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
  70 * @pwrreg_powerup: power up value for MMCIPOWER register
  71 * @f_max: maximum clk frequency supported by the controller.
  72 * @signal_direction: input/out direction of bus signals can be indicated
  73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  74 * @busy_detect: true if the variant supports busy detection on DAT0.
  75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
  76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
  77 *		      indicating that the card is busy
  78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
  79 *		      getting busy end detection interrupts
  80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  81 * @explicit_mclk_control: enable explicit mclk control in driver.
  82 * @qcom_fifo: enables qcom specific fifo pio read logic.
  83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
  84 * @reversed_irq_handling: handle data irq before cmd irq.
  85 * @mmcimask1: true if variant have a MMCIMASK1 register.
  86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
  87 *	       register.
  88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
  89 */
  90struct variant_data {
  91	unsigned int		clkreg;
  92	unsigned int		clkreg_enable;
  93	unsigned int		clkreg_8bit_bus_enable;
  94	unsigned int		clkreg_neg_edge_enable;
  95	unsigned int		datalength_bits;
  96	unsigned int		fifosize;
  97	unsigned int		fifohalfsize;
  98	unsigned int		data_cmd_enable;
  99	unsigned int		datactrl_mask_ddrmode;
 100	unsigned int		datactrl_mask_sdio;
 101	bool			st_sdio;
 102	bool			st_clkdiv;
 103	bool			blksz_datactrl16;
 104	bool			blksz_datactrl4;
 105	u32			pwrreg_powerup;
 106	u32			f_max;
 107	bool			signal_direction;
 108	bool			pwrreg_clkgate;
 109	bool			busy_detect;
 110	u32			busy_dpsm_flag;
 111	u32			busy_detect_flag;
 112	u32			busy_detect_mask;
 113	bool			pwrreg_nopower;
 114	bool			explicit_mclk_control;
 115	bool			qcom_fifo;
 116	bool			qcom_dml;
 117	bool			reversed_irq_handling;
 118	bool			mmcimask1;
 119	u32			start_err;
 120	u32			opendrain;
 121};
 122
 123static struct variant_data variant_arm = {
 124	.fifosize		= 16 * 4,
 125	.fifohalfsize		= 8 * 4,
 126	.datalength_bits	= 16,
 127	.pwrreg_powerup		= MCI_PWR_UP,
 128	.f_max			= 100000000,
 129	.reversed_irq_handling	= true,
 130	.mmcimask1		= true,
 131	.start_err		= MCI_STARTBITERR,
 132	.opendrain		= MCI_ROD,
 133};
 134
 135static struct variant_data variant_arm_extended_fifo = {
 136	.fifosize		= 128 * 4,
 137	.fifohalfsize		= 64 * 4,
 138	.datalength_bits	= 16,
 139	.pwrreg_powerup		= MCI_PWR_UP,
 140	.f_max			= 100000000,
 141	.mmcimask1		= true,
 142	.start_err		= MCI_STARTBITERR,
 143	.opendrain		= MCI_ROD,
 144};
 145
 146static struct variant_data variant_arm_extended_fifo_hwfc = {
 147	.fifosize		= 128 * 4,
 148	.fifohalfsize		= 64 * 4,
 149	.clkreg_enable		= MCI_ARM_HWFCEN,
 150	.datalength_bits	= 16,
 151	.pwrreg_powerup		= MCI_PWR_UP,
 152	.f_max			= 100000000,
 153	.mmcimask1		= true,
 154	.start_err		= MCI_STARTBITERR,
 155	.opendrain		= MCI_ROD,
 156};
 157
 158static struct variant_data variant_u300 = {
 159	.fifosize		= 16 * 4,
 160	.fifohalfsize		= 8 * 4,
 161	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 162	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 163	.datalength_bits	= 16,
 164	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 165	.st_sdio			= true,
 166	.pwrreg_powerup		= MCI_PWR_ON,
 167	.f_max			= 100000000,
 168	.signal_direction	= true,
 169	.pwrreg_clkgate		= true,
 170	.pwrreg_nopower		= true,
 171	.mmcimask1		= true,
 172	.start_err		= MCI_STARTBITERR,
 173	.opendrain		= MCI_OD,
 174};
 175
 176static struct variant_data variant_nomadik = {
 177	.fifosize		= 16 * 4,
 178	.fifohalfsize		= 8 * 4,
 179	.clkreg			= MCI_CLK_ENABLE,
 180	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 181	.datalength_bits	= 24,
 182	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 183	.st_sdio		= true,
 184	.st_clkdiv		= true,
 185	.pwrreg_powerup		= MCI_PWR_ON,
 186	.f_max			= 100000000,
 187	.signal_direction	= true,
 188	.pwrreg_clkgate		= true,
 189	.pwrreg_nopower		= true,
 190	.mmcimask1		= true,
 191	.start_err		= MCI_STARTBITERR,
 192	.opendrain		= MCI_OD,
 193};
 194
 195static struct variant_data variant_ux500 = {
 196	.fifosize		= 30 * 4,
 197	.fifohalfsize		= 8 * 4,
 198	.clkreg			= MCI_CLK_ENABLE,
 199	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 200	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 202	.datalength_bits	= 24,
 203	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 204	.st_sdio		= true,
 205	.st_clkdiv		= true,
 206	.pwrreg_powerup		= MCI_PWR_ON,
 207	.f_max			= 100000000,
 208	.signal_direction	= true,
 209	.pwrreg_clkgate		= true,
 210	.busy_detect		= true,
 211	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 212	.busy_detect_flag	= MCI_ST_CARDBUSY,
 213	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 214	.pwrreg_nopower		= true,
 215	.mmcimask1		= true,
 216	.start_err		= MCI_STARTBITERR,
 217	.opendrain		= MCI_OD,
 218};
 219
 220static struct variant_data variant_ux500v2 = {
 221	.fifosize		= 30 * 4,
 222	.fifohalfsize		= 8 * 4,
 223	.clkreg			= MCI_CLK_ENABLE,
 224	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 225	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 226	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 227	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 228	.datalength_bits	= 24,
 229	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 230	.st_sdio		= true,
 231	.st_clkdiv		= true,
 232	.blksz_datactrl16	= true,
 233	.pwrreg_powerup		= MCI_PWR_ON,
 234	.f_max			= 100000000,
 235	.signal_direction	= true,
 236	.pwrreg_clkgate		= true,
 237	.busy_detect		= true,
 238	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 239	.busy_detect_flag	= MCI_ST_CARDBUSY,
 240	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 241	.pwrreg_nopower		= true,
 242	.mmcimask1		= true,
 243	.start_err		= MCI_STARTBITERR,
 244	.opendrain		= MCI_OD,
 245};
 246
 247static struct variant_data variant_stm32 = {
 248	.fifosize		= 32 * 4,
 249	.fifohalfsize		= 8 * 4,
 250	.clkreg			= MCI_CLK_ENABLE,
 251	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 252	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 253	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 254	.datalength_bits	= 24,
 255	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 256	.st_sdio		= true,
 257	.st_clkdiv		= true,
 258	.pwrreg_powerup		= MCI_PWR_ON,
 259	.f_max			= 48000000,
 260	.pwrreg_clkgate		= true,
 261	.pwrreg_nopower		= true,
 262};
 263
 264static struct variant_data variant_qcom = {
 265	.fifosize		= 16 * 4,
 266	.fifohalfsize		= 8 * 4,
 267	.clkreg			= MCI_CLK_ENABLE,
 268	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 269				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 270	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 271	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 272	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 273	.blksz_datactrl4	= true,
 274	.datalength_bits	= 24,
 275	.pwrreg_powerup		= MCI_PWR_UP,
 276	.f_max			= 208000000,
 277	.explicit_mclk_control	= true,
 278	.qcom_fifo		= true,
 279	.qcom_dml		= true,
 280	.mmcimask1		= true,
 281	.start_err		= MCI_STARTBITERR,
 282	.opendrain		= MCI_ROD,
 283};
 284
 285/* Busy detection for the ST Micro variant */
 286static int mmci_card_busy(struct mmc_host *mmc)
 287{
 288	struct mmci_host *host = mmc_priv(mmc);
 289	unsigned long flags;
 290	int busy = 0;
 291
 292	spin_lock_irqsave(&host->lock, flags);
 293	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 294		busy = 1;
 295	spin_unlock_irqrestore(&host->lock, flags);
 296
 297	return busy;
 298}
 299
 300/*
 301 * Validate mmc prerequisites
 302 */
 303static int mmci_validate_data(struct mmci_host *host,
 304			      struct mmc_data *data)
 305{
 306	if (!data)
 307		return 0;
 308
 309	if (!is_power_of_2(data->blksz)) {
 310		dev_err(mmc_dev(host->mmc),
 311			"unsupported block size (%d bytes)\n", data->blksz);
 312		return -EINVAL;
 313	}
 314
 315	return 0;
 316}
 317
 318static void mmci_reg_delay(struct mmci_host *host)
 319{
 320	/*
 321	 * According to the spec, at least three feedback clock cycles
 322	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 323	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 324	 * Worst delay time during card init is at 100 kHz => 30 us.
 325	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 326	 */
 327	if (host->cclk < 25000000)
 328		udelay(30);
 329	else
 330		ndelay(120);
 331}
 332
 333/*
 334 * This must be called with host->lock held
 335 */
 336static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 337{
 338	if (host->clk_reg != clk) {
 339		host->clk_reg = clk;
 340		writel(clk, host->base + MMCICLOCK);
 341	}
 342}
 343
 344/*
 345 * This must be called with host->lock held
 346 */
 347static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 348{
 349	if (host->pwr_reg != pwr) {
 350		host->pwr_reg = pwr;
 351		writel(pwr, host->base + MMCIPOWER);
 352	}
 353}
 354
 355/*
 356 * This must be called with host->lock held
 357 */
 358static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 359{
 360	/* Keep busy mode in DPSM if enabled */
 361	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 362
 363	if (host->datactrl_reg != datactrl) {
 364		host->datactrl_reg = datactrl;
 365		writel(datactrl, host->base + MMCIDATACTRL);
 366	}
 367}
 368
 369/*
 370 * This must be called with host->lock held
 371 */
 372static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 373{
 374	struct variant_data *variant = host->variant;
 375	u32 clk = variant->clkreg;
 376
 377	/* Make sure cclk reflects the current calculated clock */
 378	host->cclk = 0;
 379
 380	if (desired) {
 381		if (variant->explicit_mclk_control) {
 382			host->cclk = host->mclk;
 383		} else if (desired >= host->mclk) {
 384			clk = MCI_CLK_BYPASS;
 385			if (variant->st_clkdiv)
 386				clk |= MCI_ST_UX500_NEG_EDGE;
 387			host->cclk = host->mclk;
 388		} else if (variant->st_clkdiv) {
 389			/*
 390			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 391			 * => clkdiv = (mclk / f) - 2
 392			 * Round the divider up so we don't exceed the max
 393			 * frequency
 394			 */
 395			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 396			if (clk >= 256)
 397				clk = 255;
 398			host->cclk = host->mclk / (clk + 2);
 399		} else {
 400			/*
 401			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 402			 * => clkdiv = mclk / (2 * f) - 1
 403			 */
 404			clk = host->mclk / (2 * desired) - 1;
 405			if (clk >= 256)
 406				clk = 255;
 407			host->cclk = host->mclk / (2 * (clk + 1));
 408		}
 409
 410		clk |= variant->clkreg_enable;
 411		clk |= MCI_CLK_ENABLE;
 412		/* This hasn't proven to be worthwhile */
 413		/* clk |= MCI_CLK_PWRSAVE; */
 414	}
 415
 416	/* Set actual clock for debug */
 417	host->mmc->actual_clock = host->cclk;
 418
 419	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 420		clk |= MCI_4BIT_BUS;
 421	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 422		clk |= variant->clkreg_8bit_bus_enable;
 423
 424	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 425	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 426		clk |= variant->clkreg_neg_edge_enable;
 427
 428	mmci_write_clkreg(host, clk);
 429}
 430
 431static void
 432mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 433{
 434	writel(0, host->base + MMCICOMMAND);
 435
 436	BUG_ON(host->data);
 437
 438	host->mrq = NULL;
 439	host->cmd = NULL;
 440
 441	mmc_request_done(host->mmc, mrq);
 442}
 443
 444static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 445{
 446	void __iomem *base = host->base;
 447	struct variant_data *variant = host->variant;
 448
 449	if (host->singleirq) {
 450		unsigned int mask0 = readl(base + MMCIMASK0);
 451
 452		mask0 &= ~MCI_IRQ1MASK;
 453		mask0 |= mask;
 454
 455		writel(mask0, base + MMCIMASK0);
 456	}
 457
 458	if (variant->mmcimask1)
 459		writel(mask, base + MMCIMASK1);
 460
 461	host->mask1_reg = mask;
 462}
 463
 464static void mmci_stop_data(struct mmci_host *host)
 465{
 466	mmci_write_datactrlreg(host, 0);
 467	mmci_set_mask1(host, 0);
 468	host->data = NULL;
 469}
 470
 471static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 472{
 473	unsigned int flags = SG_MITER_ATOMIC;
 474
 475	if (data->flags & MMC_DATA_READ)
 476		flags |= SG_MITER_TO_SG;
 477	else
 478		flags |= SG_MITER_FROM_SG;
 479
 480	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 481}
 482
 483/*
 484 * All the DMA operation mode stuff goes inside this ifdef.
 485 * This assumes that you have a generic DMA device interface,
 486 * no custom DMA interfaces are supported.
 487 */
 488#ifdef CONFIG_DMA_ENGINE
 489static void mmci_dma_setup(struct mmci_host *host)
 490{
 491	const char *rxname, *txname;
 492	struct variant_data *variant = host->variant;
 493
 494	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 495	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 496
 497	/* initialize pre request cookie */
 498	host->next_data.cookie = 1;
 499
 500	/*
 501	 * If only an RX channel is specified, the driver will
 502	 * attempt to use it bidirectionally, however if it is
 503	 * is specified but cannot be located, DMA will be disabled.
 504	 */
 505	if (host->dma_rx_channel && !host->dma_tx_channel)
 506		host->dma_tx_channel = host->dma_rx_channel;
 507
 508	if (host->dma_rx_channel)
 509		rxname = dma_chan_name(host->dma_rx_channel);
 510	else
 511		rxname = "none";
 512
 513	if (host->dma_tx_channel)
 514		txname = dma_chan_name(host->dma_tx_channel);
 515	else
 516		txname = "none";
 517
 518	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 519		 rxname, txname);
 520
 521	/*
 522	 * Limit the maximum segment size in any SG entry according to
 523	 * the parameters of the DMA engine device.
 524	 */
 525	if (host->dma_tx_channel) {
 526		struct device *dev = host->dma_tx_channel->device->dev;
 527		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 528
 529		if (max_seg_size < host->mmc->max_seg_size)
 530			host->mmc->max_seg_size = max_seg_size;
 531	}
 532	if (host->dma_rx_channel) {
 533		struct device *dev = host->dma_rx_channel->device->dev;
 534		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 535
 536		if (max_seg_size < host->mmc->max_seg_size)
 537			host->mmc->max_seg_size = max_seg_size;
 538	}
 539
 540	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
 541		if (dml_hw_init(host, host->mmc->parent->of_node))
 542			variant->qcom_dml = false;
 543}
 544
 545/*
 546 * This is used in or so inline it
 547 * so it can be discarded.
 548 */
 549static inline void mmci_dma_release(struct mmci_host *host)
 550{
 551	if (host->dma_rx_channel)
 552		dma_release_channel(host->dma_rx_channel);
 553	if (host->dma_tx_channel)
 554		dma_release_channel(host->dma_tx_channel);
 555	host->dma_rx_channel = host->dma_tx_channel = NULL;
 556}
 557
 558static void mmci_dma_data_error(struct mmci_host *host)
 559{
 560	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 561	dmaengine_terminate_all(host->dma_current);
 562	host->dma_in_progress = false;
 563	host->dma_current = NULL;
 564	host->dma_desc_current = NULL;
 565	host->data->host_cookie = 0;
 566}
 567
 568static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 569{
 570	struct dma_chan *chan;
 
 571
 572	if (data->flags & MMC_DATA_READ)
 
 573		chan = host->dma_rx_channel;
 574	else
 
 575		chan = host->dma_tx_channel;
 
 576
 577	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 578		     mmc_get_dma_dir(data));
 579}
 580
 581static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 582{
 583	u32 status;
 584	int i;
 585
 586	/* Wait up to 1ms for the DMA to complete */
 587	for (i = 0; ; i++) {
 588		status = readl(host->base + MMCISTATUS);
 589		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 590			break;
 591		udelay(10);
 592	}
 593
 594	/*
 595	 * Check to see whether we still have some data left in the FIFO -
 596	 * this catches DMA controllers which are unable to monitor the
 597	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 598	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 599	 */
 600	if (status & MCI_RXDATAAVLBLMASK) {
 601		mmci_dma_data_error(host);
 602		if (!data->error)
 603			data->error = -EIO;
 604	}
 605
 606	if (!data->host_cookie)
 607		mmci_dma_unmap(host, data);
 608
 609	/*
 610	 * Use of DMA with scatter-gather is impossible.
 611	 * Give up with DMA and switch back to PIO mode.
 612	 */
 613	if (status & MCI_RXDATAAVLBLMASK) {
 614		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 615		mmci_dma_release(host);
 616	}
 617
 618	host->dma_in_progress = false;
 619	host->dma_current = NULL;
 620	host->dma_desc_current = NULL;
 621}
 622
 623/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 624static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 625				struct dma_chan **dma_chan,
 626				struct dma_async_tx_descriptor **dma_desc)
 627{
 628	struct variant_data *variant = host->variant;
 629	struct dma_slave_config conf = {
 630		.src_addr = host->phybase + MMCIFIFO,
 631		.dst_addr = host->phybase + MMCIFIFO,
 632		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 633		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 634		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 635		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 636		.device_fc = false,
 637	};
 638	struct dma_chan *chan;
 639	struct dma_device *device;
 640	struct dma_async_tx_descriptor *desc;
 
 641	int nr_sg;
 642	unsigned long flags = DMA_CTRL_ACK;
 643
 644	if (data->flags & MMC_DATA_READ) {
 645		conf.direction = DMA_DEV_TO_MEM;
 
 646		chan = host->dma_rx_channel;
 647	} else {
 648		conf.direction = DMA_MEM_TO_DEV;
 
 649		chan = host->dma_tx_channel;
 650	}
 651
 652	/* If there's no DMA channel, fall back to PIO */
 653	if (!chan)
 654		return -EINVAL;
 655
 656	/* If less than or equal to the fifo size, don't bother with DMA */
 657	if (data->blksz * data->blocks <= variant->fifosize)
 658		return -EINVAL;
 659
 660	device = chan->device;
 661	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 662			   mmc_get_dma_dir(data));
 663	if (nr_sg == 0)
 664		return -EINVAL;
 665
 666	if (host->variant->qcom_dml)
 667		flags |= DMA_PREP_INTERRUPT;
 668
 669	dmaengine_slave_config(chan, &conf);
 670	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 671					    conf.direction, flags);
 672	if (!desc)
 673		goto unmap_exit;
 674
 675	*dma_chan = chan;
 676	*dma_desc = desc;
 677
 678	return 0;
 679
 680 unmap_exit:
 681	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 682		     mmc_get_dma_dir(data));
 683	return -ENOMEM;
 684}
 685
 686static inline int mmci_dma_prep_data(struct mmci_host *host,
 687				     struct mmc_data *data)
 688{
 689	/* Check if next job is already prepared. */
 690	if (host->dma_current && host->dma_desc_current)
 691		return 0;
 692
 693	/* No job were prepared thus do it now. */
 694	return __mmci_dma_prep_data(host, data, &host->dma_current,
 695				    &host->dma_desc_current);
 696}
 697
 698static inline int mmci_dma_prep_next(struct mmci_host *host,
 699				     struct mmc_data *data)
 700{
 701	struct mmci_host_next *nd = &host->next_data;
 702	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 703}
 704
 705static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 706{
 707	int ret;
 708	struct mmc_data *data = host->data;
 709
 710	ret = mmci_dma_prep_data(host, host->data);
 711	if (ret)
 712		return ret;
 713
 714	/* Okay, go for it. */
 715	dev_vdbg(mmc_dev(host->mmc),
 716		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 717		 data->sg_len, data->blksz, data->blocks, data->flags);
 718	host->dma_in_progress = true;
 719	dmaengine_submit(host->dma_desc_current);
 720	dma_async_issue_pending(host->dma_current);
 721
 722	if (host->variant->qcom_dml)
 723		dml_start_xfer(host, data);
 724
 725	datactrl |= MCI_DPSM_DMAENABLE;
 726
 727	/* Trigger the DMA transfer */
 728	mmci_write_datactrlreg(host, datactrl);
 729
 730	/*
 731	 * Let the MMCI say when the data is ended and it's time
 732	 * to fire next DMA request. When that happens, MMCI will
 733	 * call mmci_data_end()
 734	 */
 735	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 736	       host->base + MMCIMASK0);
 737	return 0;
 738}
 739
 740static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 741{
 742	struct mmci_host_next *next = &host->next_data;
 743
 744	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 745	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 746
 747	host->dma_desc_current = next->dma_desc;
 748	host->dma_current = next->dma_chan;
 749	next->dma_desc = NULL;
 750	next->dma_chan = NULL;
 751}
 752
 753static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 754{
 755	struct mmci_host *host = mmc_priv(mmc);
 756	struct mmc_data *data = mrq->data;
 757	struct mmci_host_next *nd = &host->next_data;
 758
 759	if (!data)
 760		return;
 761
 762	BUG_ON(data->host_cookie);
 763
 764	if (mmci_validate_data(host, data))
 765		return;
 766
 767	if (!mmci_dma_prep_next(host, data))
 768		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 769}
 770
 771static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 772			      int err)
 773{
 774	struct mmci_host *host = mmc_priv(mmc);
 775	struct mmc_data *data = mrq->data;
 776
 777	if (!data || !data->host_cookie)
 778		return;
 779
 780	mmci_dma_unmap(host, data);
 781
 782	if (err) {
 783		struct mmci_host_next *next = &host->next_data;
 784		struct dma_chan *chan;
 785		if (data->flags & MMC_DATA_READ)
 786			chan = host->dma_rx_channel;
 787		else
 788			chan = host->dma_tx_channel;
 789		dmaengine_terminate_all(chan);
 790
 791		if (host->dma_desc_current == next->dma_desc)
 792			host->dma_desc_current = NULL;
 793
 794		if (host->dma_current == next->dma_chan) {
 795			host->dma_in_progress = false;
 796			host->dma_current = NULL;
 797		}
 798
 799		next->dma_desc = NULL;
 800		next->dma_chan = NULL;
 801		data->host_cookie = 0;
 802	}
 803}
 804
 805#else
 806/* Blank functions if the DMA engine is not available */
 807static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 808{
 809}
 810static inline void mmci_dma_setup(struct mmci_host *host)
 811{
 812}
 813
 814static inline void mmci_dma_release(struct mmci_host *host)
 815{
 816}
 817
 818static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 819{
 820}
 821
 822static inline void mmci_dma_finalize(struct mmci_host *host,
 823				     struct mmc_data *data)
 824{
 825}
 826
 827static inline void mmci_dma_data_error(struct mmci_host *host)
 828{
 829}
 830
 831static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 832{
 833	return -ENOSYS;
 834}
 835
 836#define mmci_pre_request NULL
 837#define mmci_post_request NULL
 838
 839#endif
 840
 841static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 842{
 843	struct variant_data *variant = host->variant;
 844	unsigned int datactrl, timeout, irqmask;
 845	unsigned long long clks;
 846	void __iomem *base;
 847	int blksz_bits;
 848
 849	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 850		data->blksz, data->blocks, data->flags);
 851
 852	host->data = data;
 853	host->size = data->blksz * data->blocks;
 854	data->bytes_xfered = 0;
 855
 856	clks = (unsigned long long)data->timeout_ns * host->cclk;
 857	do_div(clks, NSEC_PER_SEC);
 858
 859	timeout = data->timeout_clks + (unsigned int)clks;
 860
 861	base = host->base;
 862	writel(timeout, base + MMCIDATATIMER);
 863	writel(host->size, base + MMCIDATALENGTH);
 864
 865	blksz_bits = ffs(data->blksz) - 1;
 866	BUG_ON(1 << blksz_bits != data->blksz);
 867
 868	if (variant->blksz_datactrl16)
 869		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 870	else if (variant->blksz_datactrl4)
 871		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
 872	else
 873		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 874
 875	if (data->flags & MMC_DATA_READ)
 876		datactrl |= MCI_DPSM_DIRECTION;
 877
 878	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
 879		u32 clk;
 880
 881		datactrl |= variant->datactrl_mask_sdio;
 882
 883		/*
 884		 * The ST Micro variant for SDIO small write transfers
 885		 * needs to have clock H/W flow control disabled,
 886		 * otherwise the transfer will not start. The threshold
 887		 * depends on the rate of MCLK.
 888		 */
 889		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
 890		    (host->size < 8 ||
 891		     (host->size <= 8 && host->mclk > 50000000)))
 892			clk = host->clk_reg & ~variant->clkreg_enable;
 893		else
 894			clk = host->clk_reg | variant->clkreg_enable;
 895
 896		mmci_write_clkreg(host, clk);
 897	}
 898
 899	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 900	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 901		datactrl |= variant->datactrl_mask_ddrmode;
 902
 903	/*
 904	 * Attempt to use DMA operation mode, if this
 905	 * should fail, fall back to PIO mode
 906	 */
 907	if (!mmci_dma_start_data(host, datactrl))
 908		return;
 909
 910	/* IRQ mode, map the SG list for CPU reading/writing */
 911	mmci_init_sg(host, data);
 912
 913	if (data->flags & MMC_DATA_READ) {
 914		irqmask = MCI_RXFIFOHALFFULLMASK;
 915
 916		/*
 917		 * If we have less than the fifo 'half-full' threshold to
 918		 * transfer, trigger a PIO interrupt as soon as any data
 919		 * is available.
 920		 */
 921		if (host->size < variant->fifohalfsize)
 922			irqmask |= MCI_RXDATAAVLBLMASK;
 923	} else {
 924		/*
 925		 * We don't actually need to include "FIFO empty" here
 926		 * since its implicit in "FIFO half empty".
 927		 */
 928		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 929	}
 930
 931	mmci_write_datactrlreg(host, datactrl);
 932	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 933	mmci_set_mask1(host, irqmask);
 934}
 935
 936static void
 937mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 938{
 939	void __iomem *base = host->base;
 940
 941	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 942	    cmd->opcode, cmd->arg, cmd->flags);
 943
 944	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 945		writel(0, base + MMCICOMMAND);
 946		mmci_reg_delay(host);
 947	}
 948
 949	c |= cmd->opcode | MCI_CPSM_ENABLE;
 950	if (cmd->flags & MMC_RSP_PRESENT) {
 951		if (cmd->flags & MMC_RSP_136)
 952			c |= MCI_CPSM_LONGRSP;
 953		c |= MCI_CPSM_RESPONSE;
 954	}
 955	if (/*interrupt*/0)
 956		c |= MCI_CPSM_INTERRUPT;
 957
 958	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
 959		c |= host->variant->data_cmd_enable;
 960
 961	host->cmd = cmd;
 962
 963	writel(cmd->arg, base + MMCIARGUMENT);
 964	writel(c, base + MMCICOMMAND);
 965}
 966
 967static void
 968mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 969	      unsigned int status)
 970{
 971	/* Make sure we have data to handle */
 972	if (!data)
 973		return;
 974
 975	/* First check for errors */
 976	if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
 977		      host->variant->start_err |
 978		      MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
 979		u32 remain, success;
 980
 981		/* Terminate the DMA transfer */
 982		if (dma_inprogress(host)) {
 983			mmci_dma_data_error(host);
 984			mmci_dma_unmap(host, data);
 985		}
 986
 987		/*
 988		 * Calculate how far we are into the transfer.  Note that
 989		 * the data counter gives the number of bytes transferred
 990		 * on the MMC bus, not on the host side.  On reads, this
 991		 * can be as much as a FIFO-worth of data ahead.  This
 992		 * matters for FIFO overruns only.
 993		 */
 994		remain = readl(host->base + MMCIDATACNT);
 995		success = data->blksz * data->blocks - remain;
 996
 997		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 998			status, success);
 999		if (status & MCI_DATACRCFAIL) {
1000			/* Last block was not successful */
1001			success -= 1;
1002			data->error = -EILSEQ;
1003		} else if (status & MCI_DATATIMEOUT) {
1004			data->error = -ETIMEDOUT;
1005		} else if (status & MCI_STARTBITERR) {
1006			data->error = -ECOMM;
1007		} else if (status & MCI_TXUNDERRUN) {
1008			data->error = -EIO;
1009		} else if (status & MCI_RXOVERRUN) {
1010			if (success > host->variant->fifosize)
1011				success -= host->variant->fifosize;
1012			else
1013				success = 0;
1014			data->error = -EIO;
1015		}
1016		data->bytes_xfered = round_down(success, data->blksz);
1017	}
1018
1019	if (status & MCI_DATABLOCKEND)
1020		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022	if (status & MCI_DATAEND || data->error) {
1023		if (dma_inprogress(host))
1024			mmci_dma_finalize(host, data);
1025		mmci_stop_data(host);
1026
1027		if (!data->error)
1028			/* The error clause is handled above, success! */
1029			data->bytes_xfered = data->blksz * data->blocks;
1030
1031		if (!data->stop || host->mrq->sbc) {
1032			mmci_request_end(host, data->mrq);
1033		} else {
1034			mmci_start_command(host, data->stop, 0);
1035		}
1036	}
1037}
1038
1039static void
1040mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041	     unsigned int status)
1042{
1043	void __iomem *base = host->base;
1044	bool sbc;
1045
1046	if (!cmd)
1047		return;
1048
1049	sbc = (cmd == host->mrq->sbc);
1050
1051	/*
1052	 * We need to be one of these interrupts to be considered worth
1053	 * handling. Note that we tag on any latent IRQs postponed
1054	 * due to waiting for busy status.
1055	 */
1056	if (!((status|host->busy_status) &
1057	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058		return;
1059
1060	/*
1061	 * ST Micro variant: handle busy detection.
1062	 */
1063	if (host->variant->busy_detect) {
1064		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066		/* We are busy with a command, return */
1067		if (host->busy_status &&
1068		    (status & host->variant->busy_detect_flag))
1069			return;
1070
1071		/*
1072		 * We were not busy, but we now got a busy response on
1073		 * something that was not an error, and we double-check
1074		 * that the special busy status bit is still set before
1075		 * proceeding.
1076		 */
1077		if (!host->busy_status && busy_resp &&
1078		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081			/* Clear the busy start IRQ */
1082			writel(host->variant->busy_detect_mask,
1083			       host->base + MMCICLEAR);
1084
1085			/* Unmask the busy end IRQ */
1086			writel(readl(base + MMCIMASK0) |
1087			       host->variant->busy_detect_mask,
1088			       base + MMCIMASK0);
1089			/*
1090			 * Now cache the last response status code (until
1091			 * the busy bit goes low), and return.
1092			 */
1093			host->busy_status =
1094				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095			return;
1096		}
1097
1098		/*
1099		 * At this point we are not busy with a command, we have
1100		 * not received a new busy request, clear and mask the busy
1101		 * end IRQ and fall through to process the IRQ.
1102		 */
1103		if (host->busy_status) {
1104
1105			writel(host->variant->busy_detect_mask,
1106			       host->base + MMCICLEAR);
1107
1108			writel(readl(base + MMCIMASK0) &
1109			       ~host->variant->busy_detect_mask,
1110			       base + MMCIMASK0);
1111			host->busy_status = 0;
1112		}
1113	}
1114
1115	host->cmd = NULL;
1116
1117	if (status & MCI_CMDTIMEOUT) {
1118		cmd->error = -ETIMEDOUT;
1119	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120		cmd->error = -EILSEQ;
1121	} else {
1122		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126	}
1127
1128	if ((!sbc && !cmd->data) || cmd->error) {
1129		if (host->data) {
1130			/* Terminate the DMA transfer */
1131			if (dma_inprogress(host)) {
1132				mmci_dma_data_error(host);
1133				mmci_dma_unmap(host, host->data);
1134			}
1135			mmci_stop_data(host);
1136		}
1137		mmci_request_end(host, host->mrq);
1138	} else if (sbc) {
1139		mmci_start_command(host, host->mrq->cmd, 0);
1140	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141		mmci_start_data(host, cmd->data);
1142	}
1143}
1144
1145static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146{
1147	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148}
1149
1150static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151{
1152	/*
1153	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154	 * from the fifo range should be used
1155	 */
1156	if (status & MCI_RXFIFOHALFFULL)
1157		return host->variant->fifohalfsize;
1158	else if (status & MCI_RXDATAAVLBL)
1159		return 4;
1160
1161	return 0;
1162}
1163
1164static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165{
1166	void __iomem *base = host->base;
1167	char *ptr = buffer;
1168	u32 status = readl(host->base + MMCISTATUS);
1169	int host_remain = host->size;
1170
1171	do {
1172		int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174		if (count > remain)
1175			count = remain;
1176
1177		if (count <= 0)
1178			break;
1179
1180		/*
1181		 * SDIO especially may want to send something that is
1182		 * not divisible by 4 (as opposed to card sectors
1183		 * etc). Therefore make sure to always read the last bytes
1184		 * while only doing full 32-bit reads towards the FIFO.
1185		 */
1186		if (unlikely(count & 0x3)) {
1187			if (count < 4) {
1188				unsigned char buf[4];
1189				ioread32_rep(base + MMCIFIFO, buf, 1);
1190				memcpy(ptr, buf, count);
1191			} else {
1192				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193				count &= ~0x3;
1194			}
1195		} else {
1196			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197		}
1198
1199		ptr += count;
1200		remain -= count;
1201		host_remain -= count;
1202
1203		if (remain == 0)
1204			break;
1205
1206		status = readl(base + MMCISTATUS);
1207	} while (status & MCI_RXDATAAVLBL);
1208
1209	return ptr - buffer;
1210}
1211
1212static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213{
1214	struct variant_data *variant = host->variant;
1215	void __iomem *base = host->base;
1216	char *ptr = buffer;
1217
1218	do {
1219		unsigned int count, maxcnt;
1220
1221		maxcnt = status & MCI_TXFIFOEMPTY ?
1222			 variant->fifosize : variant->fifohalfsize;
1223		count = min(remain, maxcnt);
1224
1225		/*
1226		 * SDIO especially may want to send something that is
1227		 * not divisible by 4 (as opposed to card sectors
1228		 * etc), and the FIFO only accept full 32-bit writes.
1229		 * So compensate by adding +3 on the count, a single
1230		 * byte become a 32bit write, 7 bytes will be two
1231		 * 32bit writes etc.
1232		 */
1233		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235		ptr += count;
1236		remain -= count;
1237
1238		if (remain == 0)
1239			break;
1240
1241		status = readl(base + MMCISTATUS);
1242	} while (status & MCI_TXFIFOHALFEMPTY);
1243
1244	return ptr - buffer;
1245}
1246
1247/*
1248 * PIO data transfer IRQ handler.
1249 */
1250static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251{
1252	struct mmci_host *host = dev_id;
1253	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254	struct variant_data *variant = host->variant;
1255	void __iomem *base = host->base;
1256	unsigned long flags;
1257	u32 status;
1258
1259	status = readl(base + MMCISTATUS);
1260
1261	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263	local_irq_save(flags);
1264
1265	do {
1266		unsigned int remain, len;
1267		char *buffer;
1268
1269		/*
1270		 * For write, we only need to test the half-empty flag
1271		 * here - if the FIFO is completely empty, then by
1272		 * definition it is more than half empty.
1273		 *
1274		 * For read, check for data available.
1275		 */
1276		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277			break;
1278
1279		if (!sg_miter_next(sg_miter))
1280			break;
1281
1282		buffer = sg_miter->addr;
1283		remain = sg_miter->length;
1284
1285		len = 0;
1286		if (status & MCI_RXACTIVE)
1287			len = mmci_pio_read(host, buffer, remain);
1288		if (status & MCI_TXACTIVE)
1289			len = mmci_pio_write(host, buffer, remain, status);
1290
1291		sg_miter->consumed = len;
1292
1293		host->size -= len;
1294		remain -= len;
1295
1296		if (remain)
1297			break;
1298
1299		status = readl(base + MMCISTATUS);
1300	} while (1);
1301
1302	sg_miter_stop(sg_miter);
1303
1304	local_irq_restore(flags);
1305
1306	/*
1307	 * If we have less than the fifo 'half-full' threshold to transfer,
1308	 * trigger a PIO interrupt as soon as any data is available.
1309	 */
1310	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313	/*
1314	 * If we run out of data, disable the data IRQs; this
1315	 * prevents a race where the FIFO becomes empty before
1316	 * the chip itself has disabled the data path, and
1317	 * stops us racing with our data end IRQ.
1318	 */
1319	if (host->size == 0) {
1320		mmci_set_mask1(host, 0);
1321		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322	}
1323
1324	return IRQ_HANDLED;
1325}
1326
1327/*
1328 * Handle completion of command and data transfers.
1329 */
1330static irqreturn_t mmci_irq(int irq, void *dev_id)
1331{
1332	struct mmci_host *host = dev_id;
1333	u32 status;
1334	int ret = 0;
1335
1336	spin_lock(&host->lock);
1337
1338	do {
1339		status = readl(host->base + MMCISTATUS);
1340
1341		if (host->singleirq) {
1342			if (status & host->mask1_reg)
1343				mmci_pio_irq(irq, dev_id);
1344
1345			status &= ~MCI_IRQ1MASK;
1346		}
1347
1348		/*
1349		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351		 * detection variant is handled. Considering the HW seems to be
1352		 * triggering the IRQ on both edges while monitoring DAT0 for
1353		 * busy completion and that same status bit is used to monitor
1354		 * start and end of busy detection, special care must be taken
1355		 * to make sure that both start and end interrupts are always
1356		 * cleared one after the other.
1357		 */
1358		status &= readl(host->base + MMCIMASK0);
1359		if (host->variant->busy_detect)
1360			writel(status & ~host->variant->busy_detect_mask,
1361			       host->base + MMCICLEAR);
1362		else
1363			writel(status, host->base + MMCICLEAR);
1364
1365		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367		if (host->variant->reversed_irq_handling) {
1368			mmci_data_irq(host, host->data, status);
1369			mmci_cmd_irq(host, host->cmd, status);
1370		} else {
1371			mmci_cmd_irq(host, host->cmd, status);
1372			mmci_data_irq(host, host->data, status);
1373		}
1374
1375		/*
1376		 * Don't poll for busy completion in irq context.
1377		 */
1378		if (host->variant->busy_detect && host->busy_status)
1379			status &= ~host->variant->busy_detect_flag;
1380
1381		ret = 1;
1382	} while (status);
1383
1384	spin_unlock(&host->lock);
1385
1386	return IRQ_RETVAL(ret);
1387}
1388
1389static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390{
1391	struct mmci_host *host = mmc_priv(mmc);
1392	unsigned long flags;
1393
1394	WARN_ON(host->mrq != NULL);
1395
1396	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397	if (mrq->cmd->error) {
1398		mmc_request_done(mmc, mrq);
1399		return;
1400	}
1401
1402	spin_lock_irqsave(&host->lock, flags);
1403
1404	host->mrq = mrq;
1405
1406	if (mrq->data)
1407		mmci_get_next_data(host, mrq->data);
1408
1409	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1410		mmci_start_data(host, mrq->data);
1411
1412	if (mrq->sbc)
1413		mmci_start_command(host, mrq->sbc, 0);
1414	else
1415		mmci_start_command(host, mrq->cmd, 0);
1416
1417	spin_unlock_irqrestore(&host->lock, flags);
1418}
1419
1420static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421{
1422	struct mmci_host *host = mmc_priv(mmc);
1423	struct variant_data *variant = host->variant;
1424	u32 pwr = 0;
1425	unsigned long flags;
1426	int ret;
1427
1428	if (host->plat->ios_handler &&
1429		host->plat->ios_handler(mmc_dev(mmc), ios))
1430			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432	switch (ios->power_mode) {
1433	case MMC_POWER_OFF:
1434		if (!IS_ERR(mmc->supply.vmmc))
1435			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438			regulator_disable(mmc->supply.vqmmc);
1439			host->vqmmc_enabled = false;
1440		}
1441
1442		break;
1443	case MMC_POWER_UP:
1444		if (!IS_ERR(mmc->supply.vmmc))
1445			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
1447		/*
1448		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449		 * and instead uses MCI_PWR_ON so apply whatever value is
1450		 * configured in the variant data.
1451		 */
1452		pwr |= variant->pwrreg_powerup;
1453
1454		break;
1455	case MMC_POWER_ON:
1456		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457			ret = regulator_enable(mmc->supply.vqmmc);
1458			if (ret < 0)
1459				dev_err(mmc_dev(mmc),
1460					"failed to enable vqmmc regulator\n");
1461			else
1462				host->vqmmc_enabled = true;
1463		}
1464
1465		pwr |= MCI_PWR_ON;
1466		break;
1467	}
1468
1469	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470		/*
1471		 * The ST Micro variant has some additional bits
1472		 * indicating signal direction for the signals in
1473		 * the SD/MMC bus and feedback-clock usage.
1474		 */
1475		pwr |= host->pwr_reg_add;
1476
1477		if (ios->bus_width == MMC_BUS_WIDTH_4)
1478			pwr &= ~MCI_ST_DATA74DIREN;
1479		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480			pwr &= (~MCI_ST_DATA74DIREN &
1481				~MCI_ST_DATA31DIREN &
1482				~MCI_ST_DATA2DIREN);
1483	}
1484
1485	if (variant->opendrain) {
1486		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487			pwr |= variant->opendrain;
1488	} else {
1489		/*
1490		 * If the variant cannot configure the pads by its own, then we
1491		 * expect the pinctrl to be able to do that for us
1492		 */
1493		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495		else
1496			pinctrl_select_state(host->pinctrl, host->pins_default);
1497	}
1498
1499	/*
1500	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501	 * gating the clock, the MCI_PWR_ON bit is cleared.
1502	 */
1503	if (!ios->clock && variant->pwrreg_clkgate)
1504		pwr &= ~MCI_PWR_ON;
1505
1506	if (host->variant->explicit_mclk_control &&
1507	    ios->clock != host->clock_cache) {
1508		ret = clk_set_rate(host->clk, ios->clock);
1509		if (ret < 0)
1510			dev_err(mmc_dev(host->mmc),
1511				"Error setting clock rate (%d)\n", ret);
1512		else
1513			host->mclk = clk_get_rate(host->clk);
1514	}
1515	host->clock_cache = ios->clock;
1516
1517	spin_lock_irqsave(&host->lock, flags);
1518
1519	mmci_set_clkreg(host, ios->clock);
1520	mmci_write_pwrreg(host, pwr);
1521	mmci_reg_delay(host);
1522
1523	spin_unlock_irqrestore(&host->lock, flags);
1524}
1525
1526static int mmci_get_cd(struct mmc_host *mmc)
1527{
1528	struct mmci_host *host = mmc_priv(mmc);
1529	struct mmci_platform_data *plat = host->plat;
1530	unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532	if (status == -ENOSYS) {
1533		if (!plat->status)
1534			return 1; /* Assume always present */
1535
1536		status = plat->status(mmc_dev(host->mmc));
1537	}
1538	return status;
1539}
1540
1541static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542{
1543	int ret = 0;
1544
1545	if (!IS_ERR(mmc->supply.vqmmc)) {
1546
1547		switch (ios->signal_voltage) {
1548		case MMC_SIGNAL_VOLTAGE_330:
1549			ret = regulator_set_voltage(mmc->supply.vqmmc,
1550						2700000, 3600000);
1551			break;
1552		case MMC_SIGNAL_VOLTAGE_180:
1553			ret = regulator_set_voltage(mmc->supply.vqmmc,
1554						1700000, 1950000);
1555			break;
1556		case MMC_SIGNAL_VOLTAGE_120:
1557			ret = regulator_set_voltage(mmc->supply.vqmmc,
1558						1100000, 1300000);
1559			break;
1560		}
1561
1562		if (ret)
1563			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1564	}
1565
1566	return ret;
1567}
1568
1569static struct mmc_host_ops mmci_ops = {
1570	.request	= mmci_request,
1571	.pre_req	= mmci_pre_request,
1572	.post_req	= mmci_post_request,
1573	.set_ios	= mmci_set_ios,
1574	.get_ro		= mmc_gpio_get_ro,
1575	.get_cd		= mmci_get_cd,
1576	.start_signal_voltage_switch = mmci_sig_volt_switch,
1577};
1578
1579static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1580{
1581	struct mmci_host *host = mmc_priv(mmc);
1582	int ret = mmc_of_parse(mmc);
1583
1584	if (ret)
1585		return ret;
1586
1587	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1599
1600	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605	return 0;
1606}
1607
1608static int mmci_probe(struct amba_device *dev,
1609	const struct amba_id *id)
1610{
1611	struct mmci_platform_data *plat = dev->dev.platform_data;
1612	struct device_node *np = dev->dev.of_node;
1613	struct variant_data *variant = id->data;
1614	struct mmci_host *host;
1615	struct mmc_host *mmc;
1616	int ret;
1617
1618	/* Must have platform data or Device Tree. */
1619	if (!plat && !np) {
1620		dev_err(&dev->dev, "No plat data or DT found\n");
1621		return -EINVAL;
1622	}
1623
1624	if (!plat) {
1625		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626		if (!plat)
1627			return -ENOMEM;
1628	}
1629
1630	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631	if (!mmc)
1632		return -ENOMEM;
1633
1634	ret = mmci_of_parse(np, mmc);
1635	if (ret)
1636		goto host_free;
1637
1638	host = mmc_priv(mmc);
1639	host->mmc = mmc;
1640
1641	/*
1642	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643	 * pins can be set accordingly using pinctrl
1644	 */
1645	if (!variant->opendrain) {
1646		host->pinctrl = devm_pinctrl_get(&dev->dev);
1647		if (IS_ERR(host->pinctrl)) {
1648			dev_err(&dev->dev, "failed to get pinctrl");
1649			ret = PTR_ERR(host->pinctrl);
1650			goto host_free;
1651		}
1652
1653		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1654							  PINCTRL_STATE_DEFAULT);
1655		if (IS_ERR(host->pins_default)) {
1656			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1657			ret = PTR_ERR(host->pins_default);
1658			goto host_free;
1659		}
1660
1661		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1662							    MMCI_PINCTRL_STATE_OPENDRAIN);
1663		if (IS_ERR(host->pins_opendrain)) {
1664			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1665			ret = PTR_ERR(host->pins_opendrain);
1666			goto host_free;
1667		}
1668	}
1669
1670	host->hw_designer = amba_manf(dev);
1671	host->hw_revision = amba_rev(dev);
1672	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1673	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1674
1675	host->clk = devm_clk_get(&dev->dev, NULL);
1676	if (IS_ERR(host->clk)) {
1677		ret = PTR_ERR(host->clk);
1678		goto host_free;
1679	}
1680
1681	ret = clk_prepare_enable(host->clk);
1682	if (ret)
1683		goto host_free;
1684
1685	if (variant->qcom_fifo)
1686		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1687	else
1688		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1689
1690	host->plat = plat;
1691	host->variant = variant;
1692	host->mclk = clk_get_rate(host->clk);
1693	/*
1694	 * According to the spec, mclk is max 100 MHz,
1695	 * so we try to adjust the clock down to this,
1696	 * (if possible).
1697	 */
1698	if (host->mclk > variant->f_max) {
1699		ret = clk_set_rate(host->clk, variant->f_max);
1700		if (ret < 0)
1701			goto clk_disable;
1702		host->mclk = clk_get_rate(host->clk);
1703		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704			host->mclk);
1705	}
1706
1707	host->phybase = dev->res.start;
1708	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1709	if (IS_ERR(host->base)) {
1710		ret = PTR_ERR(host->base);
1711		goto clk_disable;
1712	}
1713
1714	/*
1715	 * The ARM and ST versions of the block have slightly different
1716	 * clock divider equations which means that the minimum divider
1717	 * differs too.
1718	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1719	 */
1720	if (variant->st_clkdiv)
1721		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1722	else if (variant->explicit_mclk_control)
1723		mmc->f_min = clk_round_rate(host->clk, 100000);
1724	else
1725		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1726	/*
1727	 * If no maximum operating frequency is supplied, fall back to use
1728	 * the module parameter, which has a (low) default value in case it
1729	 * is not specified. Either value must not exceed the clock rate into
1730	 * the block, of course.
1731	 */
1732	if (mmc->f_max)
1733		mmc->f_max = variant->explicit_mclk_control ?
1734				min(variant->f_max, mmc->f_max) :
1735				min(host->mclk, mmc->f_max);
1736	else
1737		mmc->f_max = variant->explicit_mclk_control ?
1738				fmax : min(host->mclk, fmax);
1739
1740
1741	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1742
1743	/* Get regulators and the supported OCR mask */
1744	ret = mmc_regulator_get_supply(mmc);
1745	if (ret)
1746		goto clk_disable;
1747
1748	if (!mmc->ocr_avail)
1749		mmc->ocr_avail = plat->ocr_mask;
1750	else if (plat->ocr_mask)
1751		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1752
1753	/* DT takes precedence over platform data. */
1754	if (!np) {
1755		if (!plat->cd_invert)
1756			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1757		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1758	}
1759
1760	/* We support these capabilities. */
1761	mmc->caps |= MMC_CAP_CMD23;
1762
1763	/*
1764	 * Enable busy detection.
1765	 */
1766	if (variant->busy_detect) {
1767		mmci_ops.card_busy = mmci_card_busy;
1768		/*
1769		 * Not all variants have a flag to enable busy detection
1770		 * in the DPSM, but if they do, set it here.
1771		 */
1772		if (variant->busy_dpsm_flag)
1773			mmci_write_datactrlreg(host,
1774					       host->variant->busy_dpsm_flag);
1775		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1776		mmc->max_busy_timeout = 0;
1777	}
1778
1779	mmc->ops = &mmci_ops;
1780
1781	/* We support these PM capabilities. */
1782	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1783
1784	/*
1785	 * We can do SGIO
1786	 */
1787	mmc->max_segs = NR_SG;
1788
1789	/*
1790	 * Since only a certain number of bits are valid in the data length
1791	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1792	 * single request.
1793	 */
1794	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1795
1796	/*
1797	 * Set the maximum segment size.  Since we aren't doing DMA
1798	 * (yet) we are only limited by the data length register.
1799	 */
1800	mmc->max_seg_size = mmc->max_req_size;
1801
1802	/*
1803	 * Block size can be up to 2048 bytes, but must be a power of two.
1804	 */
1805	mmc->max_blk_size = 1 << 11;
1806
1807	/*
1808	 * Limit the number of blocks transferred so that we don't overflow
1809	 * the maximum request size.
1810	 */
1811	mmc->max_blk_count = mmc->max_req_size >> 11;
1812
1813	spin_lock_init(&host->lock);
1814
1815	writel(0, host->base + MMCIMASK0);
1816
1817	if (variant->mmcimask1)
1818		writel(0, host->base + MMCIMASK1);
1819
1820	writel(0xfff, host->base + MMCICLEAR);
1821
1822	/*
1823	 * If:
1824	 * - not using DT but using a descriptor table, or
1825	 * - using a table of descriptors ALONGSIDE DT, or
1826	 * look up these descriptors named "cd" and "wp" right here, fail
1827	 * silently of these do not exist and proceed to try platform data
1828	 */
1829	if (!np) {
1830		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1831		if (ret < 0) {
1832			if (ret == -EPROBE_DEFER)
1833				goto clk_disable;
1834			else if (gpio_is_valid(plat->gpio_cd)) {
1835				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1836				if (ret)
1837					goto clk_disable;
1838			}
1839		}
1840
1841		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1842		if (ret < 0) {
1843			if (ret == -EPROBE_DEFER)
1844				goto clk_disable;
1845			else if (gpio_is_valid(plat->gpio_wp)) {
1846				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1847				if (ret)
1848					goto clk_disable;
1849			}
1850		}
1851	}
1852
1853	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1854			DRIVER_NAME " (cmd)", host);
1855	if (ret)
1856		goto clk_disable;
1857
1858	if (!dev->irq[1])
1859		host->singleirq = true;
1860	else {
1861		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1862				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1863		if (ret)
1864			goto clk_disable;
1865	}
1866
1867	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1868
1869	amba_set_drvdata(dev, mmc);
1870
1871	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1873		 amba_rev(dev), (unsigned long long)dev->res.start,
1874		 dev->irq[0], dev->irq[1]);
1875
1876	mmci_dma_setup(host);
1877
1878	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1879	pm_runtime_use_autosuspend(&dev->dev);
1880
1881	mmc_add_host(mmc);
1882
1883	pm_runtime_put(&dev->dev);
1884	return 0;
1885
1886 clk_disable:
1887	clk_disable_unprepare(host->clk);
1888 host_free:
1889	mmc_free_host(mmc);
1890	return ret;
1891}
1892
1893static int mmci_remove(struct amba_device *dev)
1894{
1895	struct mmc_host *mmc = amba_get_drvdata(dev);
1896
1897	if (mmc) {
1898		struct mmci_host *host = mmc_priv(mmc);
1899		struct variant_data *variant = host->variant;
1900
1901		/*
1902		 * Undo pm_runtime_put() in probe.  We use the _sync
1903		 * version here so that we can access the primecell.
1904		 */
1905		pm_runtime_get_sync(&dev->dev);
1906
1907		mmc_remove_host(mmc);
1908
1909		writel(0, host->base + MMCIMASK0);
1910
1911		if (variant->mmcimask1)
1912			writel(0, host->base + MMCIMASK1);
1913
1914		writel(0, host->base + MMCICOMMAND);
1915		writel(0, host->base + MMCIDATACTRL);
1916
1917		mmci_dma_release(host);
1918		clk_disable_unprepare(host->clk);
1919		mmc_free_host(mmc);
1920	}
1921
1922	return 0;
1923}
1924
1925#ifdef CONFIG_PM
1926static void mmci_save(struct mmci_host *host)
1927{
1928	unsigned long flags;
1929
1930	spin_lock_irqsave(&host->lock, flags);
1931
1932	writel(0, host->base + MMCIMASK0);
1933	if (host->variant->pwrreg_nopower) {
1934		writel(0, host->base + MMCIDATACTRL);
1935		writel(0, host->base + MMCIPOWER);
1936		writel(0, host->base + MMCICLOCK);
1937	}
1938	mmci_reg_delay(host);
1939
1940	spin_unlock_irqrestore(&host->lock, flags);
1941}
1942
1943static void mmci_restore(struct mmci_host *host)
1944{
1945	unsigned long flags;
1946
1947	spin_lock_irqsave(&host->lock, flags);
1948
1949	if (host->variant->pwrreg_nopower) {
1950		writel(host->clk_reg, host->base + MMCICLOCK);
1951		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1952		writel(host->pwr_reg, host->base + MMCIPOWER);
1953	}
1954	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1955	mmci_reg_delay(host);
1956
1957	spin_unlock_irqrestore(&host->lock, flags);
1958}
1959
1960static int mmci_runtime_suspend(struct device *dev)
1961{
1962	struct amba_device *adev = to_amba_device(dev);
1963	struct mmc_host *mmc = amba_get_drvdata(adev);
1964
1965	if (mmc) {
1966		struct mmci_host *host = mmc_priv(mmc);
1967		pinctrl_pm_select_sleep_state(dev);
1968		mmci_save(host);
1969		clk_disable_unprepare(host->clk);
1970	}
1971
1972	return 0;
1973}
1974
1975static int mmci_runtime_resume(struct device *dev)
1976{
1977	struct amba_device *adev = to_amba_device(dev);
1978	struct mmc_host *mmc = amba_get_drvdata(adev);
1979
1980	if (mmc) {
1981		struct mmci_host *host = mmc_priv(mmc);
1982		clk_prepare_enable(host->clk);
1983		mmci_restore(host);
1984		pinctrl_pm_select_default_state(dev);
1985	}
1986
1987	return 0;
1988}
1989#endif
1990
1991static const struct dev_pm_ops mmci_dev_pm_ops = {
1992	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1993				pm_runtime_force_resume)
1994	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1995};
1996
1997static const struct amba_id mmci_ids[] = {
1998	{
1999		.id	= 0x00041180,
2000		.mask	= 0xff0fffff,
2001		.data	= &variant_arm,
2002	},
2003	{
2004		.id	= 0x01041180,
2005		.mask	= 0xff0fffff,
2006		.data	= &variant_arm_extended_fifo,
2007	},
2008	{
2009		.id	= 0x02041180,
2010		.mask	= 0xff0fffff,
2011		.data	= &variant_arm_extended_fifo_hwfc,
2012	},
2013	{
2014		.id	= 0x00041181,
2015		.mask	= 0x000fffff,
2016		.data	= &variant_arm,
2017	},
2018	/* ST Micro variants */
2019	{
2020		.id     = 0x00180180,
2021		.mask   = 0x00ffffff,
2022		.data	= &variant_u300,
2023	},
2024	{
2025		.id     = 0x10180180,
2026		.mask   = 0xf0ffffff,
2027		.data	= &variant_nomadik,
2028	},
2029	{
2030		.id     = 0x00280180,
2031		.mask   = 0x00ffffff,
2032		.data	= &variant_nomadik,
2033	},
2034	{
2035		.id     = 0x00480180,
2036		.mask   = 0xf0ffffff,
2037		.data	= &variant_ux500,
2038	},
2039	{
2040		.id     = 0x10480180,
2041		.mask   = 0xf0ffffff,
2042		.data	= &variant_ux500v2,
2043	},
2044	{
2045		.id     = 0x00880180,
2046		.mask   = 0x00ffffff,
2047		.data	= &variant_stm32,
2048	},
2049	/* Qualcomm variants */
2050	{
2051		.id     = 0x00051180,
2052		.mask	= 0x000fffff,
2053		.data	= &variant_qcom,
2054	},
2055	{ 0, 0 },
2056};
2057
2058MODULE_DEVICE_TABLE(amba, mmci_ids);
2059
2060static struct amba_driver mmci_driver = {
2061	.drv		= {
2062		.name	= DRIVER_NAME,
2063		.pm	= &mmci_dev_pm_ops,
2064	},
2065	.probe		= mmci_probe,
2066	.remove		= mmci_remove,
2067	.id_table	= mmci_ids,
2068};
2069
2070module_amba_driver(mmci_driver);
2071
2072module_param(fmax, uint, 0444);
2073
2074MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075MODULE_LICENSE("GPL");
v4.10.11
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/err.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
  24#include <linux/mmc/pm.h>
  25#include <linux/mmc/host.h>
  26#include <linux/mmc/card.h>
  27#include <linux/mmc/slot-gpio.h>
  28#include <linux/amba/bus.h>
  29#include <linux/clk.h>
  30#include <linux/scatterlist.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/amba/mmci.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/types.h>
  39#include <linux/pinctrl/consumer.h>
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
  43
  44#include "mmci.h"
  45#include "mmci_qcom_dml.h"
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
  49static unsigned int fmax = 515633;
  50
  51/**
  52 * struct variant_data - MMCI variant-specific quirks
  53 * @clkreg: default value for MCICLOCK register
  54 * @clkreg_enable: enable value for MMCICLOCK register
  55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
  56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
  57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  59 *	      is asserted (likewise for RX)
  60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  61 *		  is asserted (likewise for RX)
  62 * @data_cmd_enable: enable value for data commands.
  63 * @st_sdio: enable ST specific SDIO logic
  64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
  66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
  68 *		     register
  69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
  70 * @pwrreg_powerup: power up value for MMCIPOWER register
  71 * @f_max: maximum clk frequency supported by the controller.
  72 * @signal_direction: input/out direction of bus signals can be indicated
  73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  74 * @busy_detect: true if the variant supports busy detection on DAT0.
  75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
  76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
  77 *		      indicating that the card is busy
  78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
  79 *		      getting busy end detection interrupts
  80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  81 * @explicit_mclk_control: enable explicit mclk control in driver.
  82 * @qcom_fifo: enables qcom specific fifo pio read logic.
  83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
  84 * @reversed_irq_handling: handle data irq before cmd irq.
 
 
 
 
  85 */
  86struct variant_data {
  87	unsigned int		clkreg;
  88	unsigned int		clkreg_enable;
  89	unsigned int		clkreg_8bit_bus_enable;
  90	unsigned int		clkreg_neg_edge_enable;
  91	unsigned int		datalength_bits;
  92	unsigned int		fifosize;
  93	unsigned int		fifohalfsize;
  94	unsigned int		data_cmd_enable;
  95	unsigned int		datactrl_mask_ddrmode;
  96	unsigned int		datactrl_mask_sdio;
  97	bool			st_sdio;
  98	bool			st_clkdiv;
  99	bool			blksz_datactrl16;
 100	bool			blksz_datactrl4;
 101	u32			pwrreg_powerup;
 102	u32			f_max;
 103	bool			signal_direction;
 104	bool			pwrreg_clkgate;
 105	bool			busy_detect;
 106	u32			busy_dpsm_flag;
 107	u32			busy_detect_flag;
 108	u32			busy_detect_mask;
 109	bool			pwrreg_nopower;
 110	bool			explicit_mclk_control;
 111	bool			qcom_fifo;
 112	bool			qcom_dml;
 113	bool			reversed_irq_handling;
 
 
 
 114};
 115
 116static struct variant_data variant_arm = {
 117	.fifosize		= 16 * 4,
 118	.fifohalfsize		= 8 * 4,
 119	.datalength_bits	= 16,
 120	.pwrreg_powerup		= MCI_PWR_UP,
 121	.f_max			= 100000000,
 122	.reversed_irq_handling	= true,
 
 
 
 123};
 124
 125static struct variant_data variant_arm_extended_fifo = {
 126	.fifosize		= 128 * 4,
 127	.fifohalfsize		= 64 * 4,
 128	.datalength_bits	= 16,
 129	.pwrreg_powerup		= MCI_PWR_UP,
 130	.f_max			= 100000000,
 
 
 
 131};
 132
 133static struct variant_data variant_arm_extended_fifo_hwfc = {
 134	.fifosize		= 128 * 4,
 135	.fifohalfsize		= 64 * 4,
 136	.clkreg_enable		= MCI_ARM_HWFCEN,
 137	.datalength_bits	= 16,
 138	.pwrreg_powerup		= MCI_PWR_UP,
 139	.f_max			= 100000000,
 
 
 
 140};
 141
 142static struct variant_data variant_u300 = {
 143	.fifosize		= 16 * 4,
 144	.fifohalfsize		= 8 * 4,
 145	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 146	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 147	.datalength_bits	= 16,
 148	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 149	.st_sdio			= true,
 150	.pwrreg_powerup		= MCI_PWR_ON,
 151	.f_max			= 100000000,
 152	.signal_direction	= true,
 153	.pwrreg_clkgate		= true,
 154	.pwrreg_nopower		= true,
 
 
 
 155};
 156
 157static struct variant_data variant_nomadik = {
 158	.fifosize		= 16 * 4,
 159	.fifohalfsize		= 8 * 4,
 160	.clkreg			= MCI_CLK_ENABLE,
 161	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 162	.datalength_bits	= 24,
 163	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 164	.st_sdio		= true,
 165	.st_clkdiv		= true,
 166	.pwrreg_powerup		= MCI_PWR_ON,
 167	.f_max			= 100000000,
 168	.signal_direction	= true,
 169	.pwrreg_clkgate		= true,
 170	.pwrreg_nopower		= true,
 
 
 
 171};
 172
 173static struct variant_data variant_ux500 = {
 174	.fifosize		= 30 * 4,
 175	.fifohalfsize		= 8 * 4,
 176	.clkreg			= MCI_CLK_ENABLE,
 177	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 178	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 179	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 180	.datalength_bits	= 24,
 181	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 182	.st_sdio		= true,
 183	.st_clkdiv		= true,
 184	.pwrreg_powerup		= MCI_PWR_ON,
 185	.f_max			= 100000000,
 186	.signal_direction	= true,
 187	.pwrreg_clkgate		= true,
 188	.busy_detect		= true,
 189	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 190	.busy_detect_flag	= MCI_ST_CARDBUSY,
 191	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 192	.pwrreg_nopower		= true,
 
 
 
 193};
 194
 195static struct variant_data variant_ux500v2 = {
 196	.fifosize		= 30 * 4,
 197	.fifohalfsize		= 8 * 4,
 198	.clkreg			= MCI_CLK_ENABLE,
 199	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 200	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 202	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 203	.datalength_bits	= 24,
 204	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 205	.st_sdio		= true,
 206	.st_clkdiv		= true,
 207	.blksz_datactrl16	= true,
 208	.pwrreg_powerup		= MCI_PWR_ON,
 209	.f_max			= 100000000,
 210	.signal_direction	= true,
 211	.pwrreg_clkgate		= true,
 212	.busy_detect		= true,
 213	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 214	.busy_detect_flag	= MCI_ST_CARDBUSY,
 215	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 216	.pwrreg_nopower		= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217};
 218
 219static struct variant_data variant_qcom = {
 220	.fifosize		= 16 * 4,
 221	.fifohalfsize		= 8 * 4,
 222	.clkreg			= MCI_CLK_ENABLE,
 223	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 224				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 225	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 226	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 227	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 228	.blksz_datactrl4	= true,
 229	.datalength_bits	= 24,
 230	.pwrreg_powerup		= MCI_PWR_UP,
 231	.f_max			= 208000000,
 232	.explicit_mclk_control	= true,
 233	.qcom_fifo		= true,
 234	.qcom_dml		= true,
 
 
 
 235};
 236
 237/* Busy detection for the ST Micro variant */
 238static int mmci_card_busy(struct mmc_host *mmc)
 239{
 240	struct mmci_host *host = mmc_priv(mmc);
 241	unsigned long flags;
 242	int busy = 0;
 243
 244	spin_lock_irqsave(&host->lock, flags);
 245	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 246		busy = 1;
 247	spin_unlock_irqrestore(&host->lock, flags);
 248
 249	return busy;
 250}
 251
 252/*
 253 * Validate mmc prerequisites
 254 */
 255static int mmci_validate_data(struct mmci_host *host,
 256			      struct mmc_data *data)
 257{
 258	if (!data)
 259		return 0;
 260
 261	if (!is_power_of_2(data->blksz)) {
 262		dev_err(mmc_dev(host->mmc),
 263			"unsupported block size (%d bytes)\n", data->blksz);
 264		return -EINVAL;
 265	}
 266
 267	return 0;
 268}
 269
 270static void mmci_reg_delay(struct mmci_host *host)
 271{
 272	/*
 273	 * According to the spec, at least three feedback clock cycles
 274	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 275	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 276	 * Worst delay time during card init is at 100 kHz => 30 us.
 277	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 278	 */
 279	if (host->cclk < 25000000)
 280		udelay(30);
 281	else
 282		ndelay(120);
 283}
 284
 285/*
 286 * This must be called with host->lock held
 287 */
 288static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 289{
 290	if (host->clk_reg != clk) {
 291		host->clk_reg = clk;
 292		writel(clk, host->base + MMCICLOCK);
 293	}
 294}
 295
 296/*
 297 * This must be called with host->lock held
 298 */
 299static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 300{
 301	if (host->pwr_reg != pwr) {
 302		host->pwr_reg = pwr;
 303		writel(pwr, host->base + MMCIPOWER);
 304	}
 305}
 306
 307/*
 308 * This must be called with host->lock held
 309 */
 310static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 311{
 312	/* Keep busy mode in DPSM if enabled */
 313	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 314
 315	if (host->datactrl_reg != datactrl) {
 316		host->datactrl_reg = datactrl;
 317		writel(datactrl, host->base + MMCIDATACTRL);
 318	}
 319}
 320
 321/*
 322 * This must be called with host->lock held
 323 */
 324static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 325{
 326	struct variant_data *variant = host->variant;
 327	u32 clk = variant->clkreg;
 328
 329	/* Make sure cclk reflects the current calculated clock */
 330	host->cclk = 0;
 331
 332	if (desired) {
 333		if (variant->explicit_mclk_control) {
 334			host->cclk = host->mclk;
 335		} else if (desired >= host->mclk) {
 336			clk = MCI_CLK_BYPASS;
 337			if (variant->st_clkdiv)
 338				clk |= MCI_ST_UX500_NEG_EDGE;
 339			host->cclk = host->mclk;
 340		} else if (variant->st_clkdiv) {
 341			/*
 342			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 343			 * => clkdiv = (mclk / f) - 2
 344			 * Round the divider up so we don't exceed the max
 345			 * frequency
 346			 */
 347			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 348			if (clk >= 256)
 349				clk = 255;
 350			host->cclk = host->mclk / (clk + 2);
 351		} else {
 352			/*
 353			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 354			 * => clkdiv = mclk / (2 * f) - 1
 355			 */
 356			clk = host->mclk / (2 * desired) - 1;
 357			if (clk >= 256)
 358				clk = 255;
 359			host->cclk = host->mclk / (2 * (clk + 1));
 360		}
 361
 362		clk |= variant->clkreg_enable;
 363		clk |= MCI_CLK_ENABLE;
 364		/* This hasn't proven to be worthwhile */
 365		/* clk |= MCI_CLK_PWRSAVE; */
 366	}
 367
 368	/* Set actual clock for debug */
 369	host->mmc->actual_clock = host->cclk;
 370
 371	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 372		clk |= MCI_4BIT_BUS;
 373	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 374		clk |= variant->clkreg_8bit_bus_enable;
 375
 376	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 377	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 378		clk |= variant->clkreg_neg_edge_enable;
 379
 380	mmci_write_clkreg(host, clk);
 381}
 382
 383static void
 384mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 385{
 386	writel(0, host->base + MMCICOMMAND);
 387
 388	BUG_ON(host->data);
 389
 390	host->mrq = NULL;
 391	host->cmd = NULL;
 392
 393	mmc_request_done(host->mmc, mrq);
 394}
 395
 396static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 397{
 398	void __iomem *base = host->base;
 
 399
 400	if (host->singleirq) {
 401		unsigned int mask0 = readl(base + MMCIMASK0);
 402
 403		mask0 &= ~MCI_IRQ1MASK;
 404		mask0 |= mask;
 405
 406		writel(mask0, base + MMCIMASK0);
 407	}
 408
 409	writel(mask, base + MMCIMASK1);
 
 
 
 410}
 411
 412static void mmci_stop_data(struct mmci_host *host)
 413{
 414	mmci_write_datactrlreg(host, 0);
 415	mmci_set_mask1(host, 0);
 416	host->data = NULL;
 417}
 418
 419static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 420{
 421	unsigned int flags = SG_MITER_ATOMIC;
 422
 423	if (data->flags & MMC_DATA_READ)
 424		flags |= SG_MITER_TO_SG;
 425	else
 426		flags |= SG_MITER_FROM_SG;
 427
 428	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 429}
 430
 431/*
 432 * All the DMA operation mode stuff goes inside this ifdef.
 433 * This assumes that you have a generic DMA device interface,
 434 * no custom DMA interfaces are supported.
 435 */
 436#ifdef CONFIG_DMA_ENGINE
 437static void mmci_dma_setup(struct mmci_host *host)
 438{
 439	const char *rxname, *txname;
 440	struct variant_data *variant = host->variant;
 441
 442	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 443	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 444
 445	/* initialize pre request cookie */
 446	host->next_data.cookie = 1;
 447
 448	/*
 449	 * If only an RX channel is specified, the driver will
 450	 * attempt to use it bidirectionally, however if it is
 451	 * is specified but cannot be located, DMA will be disabled.
 452	 */
 453	if (host->dma_rx_channel && !host->dma_tx_channel)
 454		host->dma_tx_channel = host->dma_rx_channel;
 455
 456	if (host->dma_rx_channel)
 457		rxname = dma_chan_name(host->dma_rx_channel);
 458	else
 459		rxname = "none";
 460
 461	if (host->dma_tx_channel)
 462		txname = dma_chan_name(host->dma_tx_channel);
 463	else
 464		txname = "none";
 465
 466	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 467		 rxname, txname);
 468
 469	/*
 470	 * Limit the maximum segment size in any SG entry according to
 471	 * the parameters of the DMA engine device.
 472	 */
 473	if (host->dma_tx_channel) {
 474		struct device *dev = host->dma_tx_channel->device->dev;
 475		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 476
 477		if (max_seg_size < host->mmc->max_seg_size)
 478			host->mmc->max_seg_size = max_seg_size;
 479	}
 480	if (host->dma_rx_channel) {
 481		struct device *dev = host->dma_rx_channel->device->dev;
 482		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 483
 484		if (max_seg_size < host->mmc->max_seg_size)
 485			host->mmc->max_seg_size = max_seg_size;
 486	}
 487
 488	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
 489		if (dml_hw_init(host, host->mmc->parent->of_node))
 490			variant->qcom_dml = false;
 491}
 492
 493/*
 494 * This is used in or so inline it
 495 * so it can be discarded.
 496 */
 497static inline void mmci_dma_release(struct mmci_host *host)
 498{
 499	if (host->dma_rx_channel)
 500		dma_release_channel(host->dma_rx_channel);
 501	if (host->dma_tx_channel)
 502		dma_release_channel(host->dma_tx_channel);
 503	host->dma_rx_channel = host->dma_tx_channel = NULL;
 504}
 505
 506static void mmci_dma_data_error(struct mmci_host *host)
 507{
 508	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 509	dmaengine_terminate_all(host->dma_current);
 
 510	host->dma_current = NULL;
 511	host->dma_desc_current = NULL;
 512	host->data->host_cookie = 0;
 513}
 514
 515static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 516{
 517	struct dma_chan *chan;
 518	enum dma_data_direction dir;
 519
 520	if (data->flags & MMC_DATA_READ) {
 521		dir = DMA_FROM_DEVICE;
 522		chan = host->dma_rx_channel;
 523	} else {
 524		dir = DMA_TO_DEVICE;
 525		chan = host->dma_tx_channel;
 526	}
 527
 528	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 
 529}
 530
 531static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 532{
 533	u32 status;
 534	int i;
 535
 536	/* Wait up to 1ms for the DMA to complete */
 537	for (i = 0; ; i++) {
 538		status = readl(host->base + MMCISTATUS);
 539		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 540			break;
 541		udelay(10);
 542	}
 543
 544	/*
 545	 * Check to see whether we still have some data left in the FIFO -
 546	 * this catches DMA controllers which are unable to monitor the
 547	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 548	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 549	 */
 550	if (status & MCI_RXDATAAVLBLMASK) {
 551		mmci_dma_data_error(host);
 552		if (!data->error)
 553			data->error = -EIO;
 554	}
 555
 556	if (!data->host_cookie)
 557		mmci_dma_unmap(host, data);
 558
 559	/*
 560	 * Use of DMA with scatter-gather is impossible.
 561	 * Give up with DMA and switch back to PIO mode.
 562	 */
 563	if (status & MCI_RXDATAAVLBLMASK) {
 564		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 565		mmci_dma_release(host);
 566	}
 567
 
 568	host->dma_current = NULL;
 569	host->dma_desc_current = NULL;
 570}
 571
 572/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 573static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 574				struct dma_chan **dma_chan,
 575				struct dma_async_tx_descriptor **dma_desc)
 576{
 577	struct variant_data *variant = host->variant;
 578	struct dma_slave_config conf = {
 579		.src_addr = host->phybase + MMCIFIFO,
 580		.dst_addr = host->phybase + MMCIFIFO,
 581		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 582		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 583		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 584		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 585		.device_fc = false,
 586	};
 587	struct dma_chan *chan;
 588	struct dma_device *device;
 589	struct dma_async_tx_descriptor *desc;
 590	enum dma_data_direction buffer_dirn;
 591	int nr_sg;
 592	unsigned long flags = DMA_CTRL_ACK;
 593
 594	if (data->flags & MMC_DATA_READ) {
 595		conf.direction = DMA_DEV_TO_MEM;
 596		buffer_dirn = DMA_FROM_DEVICE;
 597		chan = host->dma_rx_channel;
 598	} else {
 599		conf.direction = DMA_MEM_TO_DEV;
 600		buffer_dirn = DMA_TO_DEVICE;
 601		chan = host->dma_tx_channel;
 602	}
 603
 604	/* If there's no DMA channel, fall back to PIO */
 605	if (!chan)
 606		return -EINVAL;
 607
 608	/* If less than or equal to the fifo size, don't bother with DMA */
 609	if (data->blksz * data->blocks <= variant->fifosize)
 610		return -EINVAL;
 611
 612	device = chan->device;
 613	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 
 614	if (nr_sg == 0)
 615		return -EINVAL;
 616
 617	if (host->variant->qcom_dml)
 618		flags |= DMA_PREP_INTERRUPT;
 619
 620	dmaengine_slave_config(chan, &conf);
 621	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 622					    conf.direction, flags);
 623	if (!desc)
 624		goto unmap_exit;
 625
 626	*dma_chan = chan;
 627	*dma_desc = desc;
 628
 629	return 0;
 630
 631 unmap_exit:
 632	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
 
 633	return -ENOMEM;
 634}
 635
 636static inline int mmci_dma_prep_data(struct mmci_host *host,
 637				     struct mmc_data *data)
 638{
 639	/* Check if next job is already prepared. */
 640	if (host->dma_current && host->dma_desc_current)
 641		return 0;
 642
 643	/* No job were prepared thus do it now. */
 644	return __mmci_dma_prep_data(host, data, &host->dma_current,
 645				    &host->dma_desc_current);
 646}
 647
 648static inline int mmci_dma_prep_next(struct mmci_host *host,
 649				     struct mmc_data *data)
 650{
 651	struct mmci_host_next *nd = &host->next_data;
 652	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 653}
 654
 655static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 656{
 657	int ret;
 658	struct mmc_data *data = host->data;
 659
 660	ret = mmci_dma_prep_data(host, host->data);
 661	if (ret)
 662		return ret;
 663
 664	/* Okay, go for it. */
 665	dev_vdbg(mmc_dev(host->mmc),
 666		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 667		 data->sg_len, data->blksz, data->blocks, data->flags);
 
 668	dmaengine_submit(host->dma_desc_current);
 669	dma_async_issue_pending(host->dma_current);
 670
 671	if (host->variant->qcom_dml)
 672		dml_start_xfer(host, data);
 673
 674	datactrl |= MCI_DPSM_DMAENABLE;
 675
 676	/* Trigger the DMA transfer */
 677	mmci_write_datactrlreg(host, datactrl);
 678
 679	/*
 680	 * Let the MMCI say when the data is ended and it's time
 681	 * to fire next DMA request. When that happens, MMCI will
 682	 * call mmci_data_end()
 683	 */
 684	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 685	       host->base + MMCIMASK0);
 686	return 0;
 687}
 688
 689static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 690{
 691	struct mmci_host_next *next = &host->next_data;
 692
 693	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 694	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 695
 696	host->dma_desc_current = next->dma_desc;
 697	host->dma_current = next->dma_chan;
 698	next->dma_desc = NULL;
 699	next->dma_chan = NULL;
 700}
 701
 702static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 703{
 704	struct mmci_host *host = mmc_priv(mmc);
 705	struct mmc_data *data = mrq->data;
 706	struct mmci_host_next *nd = &host->next_data;
 707
 708	if (!data)
 709		return;
 710
 711	BUG_ON(data->host_cookie);
 712
 713	if (mmci_validate_data(host, data))
 714		return;
 715
 716	if (!mmci_dma_prep_next(host, data))
 717		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 718}
 719
 720static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 721			      int err)
 722{
 723	struct mmci_host *host = mmc_priv(mmc);
 724	struct mmc_data *data = mrq->data;
 725
 726	if (!data || !data->host_cookie)
 727		return;
 728
 729	mmci_dma_unmap(host, data);
 730
 731	if (err) {
 732		struct mmci_host_next *next = &host->next_data;
 733		struct dma_chan *chan;
 734		if (data->flags & MMC_DATA_READ)
 735			chan = host->dma_rx_channel;
 736		else
 737			chan = host->dma_tx_channel;
 738		dmaengine_terminate_all(chan);
 739
 740		if (host->dma_desc_current == next->dma_desc)
 741			host->dma_desc_current = NULL;
 742
 743		if (host->dma_current == next->dma_chan)
 
 744			host->dma_current = NULL;
 
 745
 746		next->dma_desc = NULL;
 747		next->dma_chan = NULL;
 748		data->host_cookie = 0;
 749	}
 750}
 751
 752#else
 753/* Blank functions if the DMA engine is not available */
 754static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 755{
 756}
 757static inline void mmci_dma_setup(struct mmci_host *host)
 758{
 759}
 760
 761static inline void mmci_dma_release(struct mmci_host *host)
 762{
 763}
 764
 765static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 766{
 767}
 768
 769static inline void mmci_dma_finalize(struct mmci_host *host,
 770				     struct mmc_data *data)
 771{
 772}
 773
 774static inline void mmci_dma_data_error(struct mmci_host *host)
 775{
 776}
 777
 778static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 779{
 780	return -ENOSYS;
 781}
 782
 783#define mmci_pre_request NULL
 784#define mmci_post_request NULL
 785
 786#endif
 787
 788static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 789{
 790	struct variant_data *variant = host->variant;
 791	unsigned int datactrl, timeout, irqmask;
 792	unsigned long long clks;
 793	void __iomem *base;
 794	int blksz_bits;
 795
 796	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 797		data->blksz, data->blocks, data->flags);
 798
 799	host->data = data;
 800	host->size = data->blksz * data->blocks;
 801	data->bytes_xfered = 0;
 802
 803	clks = (unsigned long long)data->timeout_ns * host->cclk;
 804	do_div(clks, NSEC_PER_SEC);
 805
 806	timeout = data->timeout_clks + (unsigned int)clks;
 807
 808	base = host->base;
 809	writel(timeout, base + MMCIDATATIMER);
 810	writel(host->size, base + MMCIDATALENGTH);
 811
 812	blksz_bits = ffs(data->blksz) - 1;
 813	BUG_ON(1 << blksz_bits != data->blksz);
 814
 815	if (variant->blksz_datactrl16)
 816		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 817	else if (variant->blksz_datactrl4)
 818		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
 819	else
 820		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 821
 822	if (data->flags & MMC_DATA_READ)
 823		datactrl |= MCI_DPSM_DIRECTION;
 824
 825	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
 826		u32 clk;
 827
 828		datactrl |= variant->datactrl_mask_sdio;
 829
 830		/*
 831		 * The ST Micro variant for SDIO small write transfers
 832		 * needs to have clock H/W flow control disabled,
 833		 * otherwise the transfer will not start. The threshold
 834		 * depends on the rate of MCLK.
 835		 */
 836		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
 837		    (host->size < 8 ||
 838		     (host->size <= 8 && host->mclk > 50000000)))
 839			clk = host->clk_reg & ~variant->clkreg_enable;
 840		else
 841			clk = host->clk_reg | variant->clkreg_enable;
 842
 843		mmci_write_clkreg(host, clk);
 844	}
 845
 846	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 847	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 848		datactrl |= variant->datactrl_mask_ddrmode;
 849
 850	/*
 851	 * Attempt to use DMA operation mode, if this
 852	 * should fail, fall back to PIO mode
 853	 */
 854	if (!mmci_dma_start_data(host, datactrl))
 855		return;
 856
 857	/* IRQ mode, map the SG list for CPU reading/writing */
 858	mmci_init_sg(host, data);
 859
 860	if (data->flags & MMC_DATA_READ) {
 861		irqmask = MCI_RXFIFOHALFFULLMASK;
 862
 863		/*
 864		 * If we have less than the fifo 'half-full' threshold to
 865		 * transfer, trigger a PIO interrupt as soon as any data
 866		 * is available.
 867		 */
 868		if (host->size < variant->fifohalfsize)
 869			irqmask |= MCI_RXDATAAVLBLMASK;
 870	} else {
 871		/*
 872		 * We don't actually need to include "FIFO empty" here
 873		 * since its implicit in "FIFO half empty".
 874		 */
 875		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 876	}
 877
 878	mmci_write_datactrlreg(host, datactrl);
 879	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 880	mmci_set_mask1(host, irqmask);
 881}
 882
 883static void
 884mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 885{
 886	void __iomem *base = host->base;
 887
 888	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 889	    cmd->opcode, cmd->arg, cmd->flags);
 890
 891	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 892		writel(0, base + MMCICOMMAND);
 893		mmci_reg_delay(host);
 894	}
 895
 896	c |= cmd->opcode | MCI_CPSM_ENABLE;
 897	if (cmd->flags & MMC_RSP_PRESENT) {
 898		if (cmd->flags & MMC_RSP_136)
 899			c |= MCI_CPSM_LONGRSP;
 900		c |= MCI_CPSM_RESPONSE;
 901	}
 902	if (/*interrupt*/0)
 903		c |= MCI_CPSM_INTERRUPT;
 904
 905	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
 906		c |= host->variant->data_cmd_enable;
 907
 908	host->cmd = cmd;
 909
 910	writel(cmd->arg, base + MMCIARGUMENT);
 911	writel(c, base + MMCICOMMAND);
 912}
 913
 914static void
 915mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 916	      unsigned int status)
 917{
 918	/* Make sure we have data to handle */
 919	if (!data)
 920		return;
 921
 922	/* First check for errors */
 923	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
 924		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 
 925		u32 remain, success;
 926
 927		/* Terminate the DMA transfer */
 928		if (dma_inprogress(host)) {
 929			mmci_dma_data_error(host);
 930			mmci_dma_unmap(host, data);
 931		}
 932
 933		/*
 934		 * Calculate how far we are into the transfer.  Note that
 935		 * the data counter gives the number of bytes transferred
 936		 * on the MMC bus, not on the host side.  On reads, this
 937		 * can be as much as a FIFO-worth of data ahead.  This
 938		 * matters for FIFO overruns only.
 939		 */
 940		remain = readl(host->base + MMCIDATACNT);
 941		success = data->blksz * data->blocks - remain;
 942
 943		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 944			status, success);
 945		if (status & MCI_DATACRCFAIL) {
 946			/* Last block was not successful */
 947			success -= 1;
 948			data->error = -EILSEQ;
 949		} else if (status & MCI_DATATIMEOUT) {
 950			data->error = -ETIMEDOUT;
 951		} else if (status & MCI_STARTBITERR) {
 952			data->error = -ECOMM;
 953		} else if (status & MCI_TXUNDERRUN) {
 954			data->error = -EIO;
 955		} else if (status & MCI_RXOVERRUN) {
 956			if (success > host->variant->fifosize)
 957				success -= host->variant->fifosize;
 958			else
 959				success = 0;
 960			data->error = -EIO;
 961		}
 962		data->bytes_xfered = round_down(success, data->blksz);
 963	}
 964
 965	if (status & MCI_DATABLOCKEND)
 966		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 967
 968	if (status & MCI_DATAEND || data->error) {
 969		if (dma_inprogress(host))
 970			mmci_dma_finalize(host, data);
 971		mmci_stop_data(host);
 972
 973		if (!data->error)
 974			/* The error clause is handled above, success! */
 975			data->bytes_xfered = data->blksz * data->blocks;
 976
 977		if (!data->stop || host->mrq->sbc) {
 978			mmci_request_end(host, data->mrq);
 979		} else {
 980			mmci_start_command(host, data->stop, 0);
 981		}
 982	}
 983}
 984
 985static void
 986mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 987	     unsigned int status)
 988{
 989	void __iomem *base = host->base;
 990	bool sbc;
 991
 992	if (!cmd)
 993		return;
 994
 995	sbc = (cmd == host->mrq->sbc);
 996
 997	/*
 998	 * We need to be one of these interrupts to be considered worth
 999	 * handling. Note that we tag on any latent IRQs postponed
1000	 * due to waiting for busy status.
1001	 */
1002	if (!((status|host->busy_status) &
1003	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1004		return;
1005
1006	/*
1007	 * ST Micro variant: handle busy detection.
1008	 */
1009	if (host->variant->busy_detect) {
1010		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1011
1012		/* We are busy with a command, return */
1013		if (host->busy_status &&
1014		    (status & host->variant->busy_detect_flag))
1015			return;
1016
1017		/*
1018		 * We were not busy, but we now got a busy response on
1019		 * something that was not an error, and we double-check
1020		 * that the special busy status bit is still set before
1021		 * proceeding.
1022		 */
1023		if (!host->busy_status && busy_resp &&
1024		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1025		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1026
1027			/* Clear the busy start IRQ */
1028			writel(host->variant->busy_detect_mask,
1029			       host->base + MMCICLEAR);
1030
1031			/* Unmask the busy end IRQ */
1032			writel(readl(base + MMCIMASK0) |
1033			       host->variant->busy_detect_mask,
1034			       base + MMCIMASK0);
1035			/*
1036			 * Now cache the last response status code (until
1037			 * the busy bit goes low), and return.
1038			 */
1039			host->busy_status =
1040				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1041			return;
1042		}
1043
1044		/*
1045		 * At this point we are not busy with a command, we have
1046		 * not received a new busy request, clear and mask the busy
1047		 * end IRQ and fall through to process the IRQ.
1048		 */
1049		if (host->busy_status) {
1050
1051			writel(host->variant->busy_detect_mask,
1052			       host->base + MMCICLEAR);
1053
1054			writel(readl(base + MMCIMASK0) &
1055			       ~host->variant->busy_detect_mask,
1056			       base + MMCIMASK0);
1057			host->busy_status = 0;
1058		}
1059	}
1060
1061	host->cmd = NULL;
1062
1063	if (status & MCI_CMDTIMEOUT) {
1064		cmd->error = -ETIMEDOUT;
1065	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1066		cmd->error = -EILSEQ;
1067	} else {
1068		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1069		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1070		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1071		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1072	}
1073
1074	if ((!sbc && !cmd->data) || cmd->error) {
1075		if (host->data) {
1076			/* Terminate the DMA transfer */
1077			if (dma_inprogress(host)) {
1078				mmci_dma_data_error(host);
1079				mmci_dma_unmap(host, host->data);
1080			}
1081			mmci_stop_data(host);
1082		}
1083		mmci_request_end(host, host->mrq);
1084	} else if (sbc) {
1085		mmci_start_command(host, host->mrq->cmd, 0);
1086	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1087		mmci_start_data(host, cmd->data);
1088	}
1089}
1090
1091static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1092{
1093	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1094}
1095
1096static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1097{
1098	/*
1099	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1100	 * from the fifo range should be used
1101	 */
1102	if (status & MCI_RXFIFOHALFFULL)
1103		return host->variant->fifohalfsize;
1104	else if (status & MCI_RXDATAAVLBL)
1105		return 4;
1106
1107	return 0;
1108}
1109
1110static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1111{
1112	void __iomem *base = host->base;
1113	char *ptr = buffer;
1114	u32 status = readl(host->base + MMCISTATUS);
1115	int host_remain = host->size;
1116
1117	do {
1118		int count = host->get_rx_fifocnt(host, status, host_remain);
1119
1120		if (count > remain)
1121			count = remain;
1122
1123		if (count <= 0)
1124			break;
1125
1126		/*
1127		 * SDIO especially may want to send something that is
1128		 * not divisible by 4 (as opposed to card sectors
1129		 * etc). Therefore make sure to always read the last bytes
1130		 * while only doing full 32-bit reads towards the FIFO.
1131		 */
1132		if (unlikely(count & 0x3)) {
1133			if (count < 4) {
1134				unsigned char buf[4];
1135				ioread32_rep(base + MMCIFIFO, buf, 1);
1136				memcpy(ptr, buf, count);
1137			} else {
1138				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1139				count &= ~0x3;
1140			}
1141		} else {
1142			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1143		}
1144
1145		ptr += count;
1146		remain -= count;
1147		host_remain -= count;
1148
1149		if (remain == 0)
1150			break;
1151
1152		status = readl(base + MMCISTATUS);
1153	} while (status & MCI_RXDATAAVLBL);
1154
1155	return ptr - buffer;
1156}
1157
1158static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1159{
1160	struct variant_data *variant = host->variant;
1161	void __iomem *base = host->base;
1162	char *ptr = buffer;
1163
1164	do {
1165		unsigned int count, maxcnt;
1166
1167		maxcnt = status & MCI_TXFIFOEMPTY ?
1168			 variant->fifosize : variant->fifohalfsize;
1169		count = min(remain, maxcnt);
1170
1171		/*
1172		 * SDIO especially may want to send something that is
1173		 * not divisible by 4 (as opposed to card sectors
1174		 * etc), and the FIFO only accept full 32-bit writes.
1175		 * So compensate by adding +3 on the count, a single
1176		 * byte become a 32bit write, 7 bytes will be two
1177		 * 32bit writes etc.
1178		 */
1179		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1180
1181		ptr += count;
1182		remain -= count;
1183
1184		if (remain == 0)
1185			break;
1186
1187		status = readl(base + MMCISTATUS);
1188	} while (status & MCI_TXFIFOHALFEMPTY);
1189
1190	return ptr - buffer;
1191}
1192
1193/*
1194 * PIO data transfer IRQ handler.
1195 */
1196static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1197{
1198	struct mmci_host *host = dev_id;
1199	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1200	struct variant_data *variant = host->variant;
1201	void __iomem *base = host->base;
1202	unsigned long flags;
1203	u32 status;
1204
1205	status = readl(base + MMCISTATUS);
1206
1207	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1208
1209	local_irq_save(flags);
1210
1211	do {
1212		unsigned int remain, len;
1213		char *buffer;
1214
1215		/*
1216		 * For write, we only need to test the half-empty flag
1217		 * here - if the FIFO is completely empty, then by
1218		 * definition it is more than half empty.
1219		 *
1220		 * For read, check for data available.
1221		 */
1222		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1223			break;
1224
1225		if (!sg_miter_next(sg_miter))
1226			break;
1227
1228		buffer = sg_miter->addr;
1229		remain = sg_miter->length;
1230
1231		len = 0;
1232		if (status & MCI_RXACTIVE)
1233			len = mmci_pio_read(host, buffer, remain);
1234		if (status & MCI_TXACTIVE)
1235			len = mmci_pio_write(host, buffer, remain, status);
1236
1237		sg_miter->consumed = len;
1238
1239		host->size -= len;
1240		remain -= len;
1241
1242		if (remain)
1243			break;
1244
1245		status = readl(base + MMCISTATUS);
1246	} while (1);
1247
1248	sg_miter_stop(sg_miter);
1249
1250	local_irq_restore(flags);
1251
1252	/*
1253	 * If we have less than the fifo 'half-full' threshold to transfer,
1254	 * trigger a PIO interrupt as soon as any data is available.
1255	 */
1256	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1257		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1258
1259	/*
1260	 * If we run out of data, disable the data IRQs; this
1261	 * prevents a race where the FIFO becomes empty before
1262	 * the chip itself has disabled the data path, and
1263	 * stops us racing with our data end IRQ.
1264	 */
1265	if (host->size == 0) {
1266		mmci_set_mask1(host, 0);
1267		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1268	}
1269
1270	return IRQ_HANDLED;
1271}
1272
1273/*
1274 * Handle completion of command and data transfers.
1275 */
1276static irqreturn_t mmci_irq(int irq, void *dev_id)
1277{
1278	struct mmci_host *host = dev_id;
1279	u32 status;
1280	int ret = 0;
1281
1282	spin_lock(&host->lock);
1283
1284	do {
1285		status = readl(host->base + MMCISTATUS);
1286
1287		if (host->singleirq) {
1288			if (status & readl(host->base + MMCIMASK1))
1289				mmci_pio_irq(irq, dev_id);
1290
1291			status &= ~MCI_IRQ1MASK;
1292		}
1293
1294		/*
1295		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1296		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1297		 * detection variant is handled. Considering the HW seems to be
1298		 * triggering the IRQ on both edges while monitoring DAT0 for
1299		 * busy completion and that same status bit is used to monitor
1300		 * start and end of busy detection, special care must be taken
1301		 * to make sure that both start and end interrupts are always
1302		 * cleared one after the other.
1303		 */
1304		status &= readl(host->base + MMCIMASK0);
1305		if (host->variant->busy_detect)
1306			writel(status & ~host->variant->busy_detect_mask,
1307			       host->base + MMCICLEAR);
1308		else
1309			writel(status, host->base + MMCICLEAR);
1310
1311		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1312
1313		if (host->variant->reversed_irq_handling) {
1314			mmci_data_irq(host, host->data, status);
1315			mmci_cmd_irq(host, host->cmd, status);
1316		} else {
1317			mmci_cmd_irq(host, host->cmd, status);
1318			mmci_data_irq(host, host->data, status);
1319		}
1320
1321		/*
1322		 * Don't poll for busy completion in irq context.
1323		 */
1324		if (host->variant->busy_detect && host->busy_status)
1325			status &= ~host->variant->busy_detect_flag;
1326
1327		ret = 1;
1328	} while (status);
1329
1330	spin_unlock(&host->lock);
1331
1332	return IRQ_RETVAL(ret);
1333}
1334
1335static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1336{
1337	struct mmci_host *host = mmc_priv(mmc);
1338	unsigned long flags;
1339
1340	WARN_ON(host->mrq != NULL);
1341
1342	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1343	if (mrq->cmd->error) {
1344		mmc_request_done(mmc, mrq);
1345		return;
1346	}
1347
1348	spin_lock_irqsave(&host->lock, flags);
1349
1350	host->mrq = mrq;
1351
1352	if (mrq->data)
1353		mmci_get_next_data(host, mrq->data);
1354
1355	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1356		mmci_start_data(host, mrq->data);
1357
1358	if (mrq->sbc)
1359		mmci_start_command(host, mrq->sbc, 0);
1360	else
1361		mmci_start_command(host, mrq->cmd, 0);
1362
1363	spin_unlock_irqrestore(&host->lock, flags);
1364}
1365
1366static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1367{
1368	struct mmci_host *host = mmc_priv(mmc);
1369	struct variant_data *variant = host->variant;
1370	u32 pwr = 0;
1371	unsigned long flags;
1372	int ret;
1373
1374	if (host->plat->ios_handler &&
1375		host->plat->ios_handler(mmc_dev(mmc), ios))
1376			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1377
1378	switch (ios->power_mode) {
1379	case MMC_POWER_OFF:
1380		if (!IS_ERR(mmc->supply.vmmc))
1381			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1382
1383		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1384			regulator_disable(mmc->supply.vqmmc);
1385			host->vqmmc_enabled = false;
1386		}
1387
1388		break;
1389	case MMC_POWER_UP:
1390		if (!IS_ERR(mmc->supply.vmmc))
1391			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1392
1393		/*
1394		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1395		 * and instead uses MCI_PWR_ON so apply whatever value is
1396		 * configured in the variant data.
1397		 */
1398		pwr |= variant->pwrreg_powerup;
1399
1400		break;
1401	case MMC_POWER_ON:
1402		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1403			ret = regulator_enable(mmc->supply.vqmmc);
1404			if (ret < 0)
1405				dev_err(mmc_dev(mmc),
1406					"failed to enable vqmmc regulator\n");
1407			else
1408				host->vqmmc_enabled = true;
1409		}
1410
1411		pwr |= MCI_PWR_ON;
1412		break;
1413	}
1414
1415	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1416		/*
1417		 * The ST Micro variant has some additional bits
1418		 * indicating signal direction for the signals in
1419		 * the SD/MMC bus and feedback-clock usage.
1420		 */
1421		pwr |= host->pwr_reg_add;
1422
1423		if (ios->bus_width == MMC_BUS_WIDTH_4)
1424			pwr &= ~MCI_ST_DATA74DIREN;
1425		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1426			pwr &= (~MCI_ST_DATA74DIREN &
1427				~MCI_ST_DATA31DIREN &
1428				~MCI_ST_DATA2DIREN);
1429	}
1430
1431	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1432		if (host->hw_designer != AMBA_VENDOR_ST)
1433			pwr |= MCI_ROD;
1434		else {
1435			/*
1436			 * The ST Micro variant use the ROD bit for something
1437			 * else and only has OD (Open Drain).
1438			 */
1439			pwr |= MCI_OD;
1440		}
 
 
1441	}
1442
1443	/*
1444	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1445	 * gating the clock, the MCI_PWR_ON bit is cleared.
1446	 */
1447	if (!ios->clock && variant->pwrreg_clkgate)
1448		pwr &= ~MCI_PWR_ON;
1449
1450	if (host->variant->explicit_mclk_control &&
1451	    ios->clock != host->clock_cache) {
1452		ret = clk_set_rate(host->clk, ios->clock);
1453		if (ret < 0)
1454			dev_err(mmc_dev(host->mmc),
1455				"Error setting clock rate (%d)\n", ret);
1456		else
1457			host->mclk = clk_get_rate(host->clk);
1458	}
1459	host->clock_cache = ios->clock;
1460
1461	spin_lock_irqsave(&host->lock, flags);
1462
1463	mmci_set_clkreg(host, ios->clock);
1464	mmci_write_pwrreg(host, pwr);
1465	mmci_reg_delay(host);
1466
1467	spin_unlock_irqrestore(&host->lock, flags);
1468}
1469
1470static int mmci_get_cd(struct mmc_host *mmc)
1471{
1472	struct mmci_host *host = mmc_priv(mmc);
1473	struct mmci_platform_data *plat = host->plat;
1474	unsigned int status = mmc_gpio_get_cd(mmc);
1475
1476	if (status == -ENOSYS) {
1477		if (!plat->status)
1478			return 1; /* Assume always present */
1479
1480		status = plat->status(mmc_dev(host->mmc));
1481	}
1482	return status;
1483}
1484
1485static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1486{
1487	int ret = 0;
1488
1489	if (!IS_ERR(mmc->supply.vqmmc)) {
1490
1491		switch (ios->signal_voltage) {
1492		case MMC_SIGNAL_VOLTAGE_330:
1493			ret = regulator_set_voltage(mmc->supply.vqmmc,
1494						2700000, 3600000);
1495			break;
1496		case MMC_SIGNAL_VOLTAGE_180:
1497			ret = regulator_set_voltage(mmc->supply.vqmmc,
1498						1700000, 1950000);
1499			break;
1500		case MMC_SIGNAL_VOLTAGE_120:
1501			ret = regulator_set_voltage(mmc->supply.vqmmc,
1502						1100000, 1300000);
1503			break;
1504		}
1505
1506		if (ret)
1507			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1508	}
1509
1510	return ret;
1511}
1512
1513static struct mmc_host_ops mmci_ops = {
1514	.request	= mmci_request,
1515	.pre_req	= mmci_pre_request,
1516	.post_req	= mmci_post_request,
1517	.set_ios	= mmci_set_ios,
1518	.get_ro		= mmc_gpio_get_ro,
1519	.get_cd		= mmci_get_cd,
1520	.start_signal_voltage_switch = mmci_sig_volt_switch,
1521};
1522
1523static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1524{
1525	struct mmci_host *host = mmc_priv(mmc);
1526	int ret = mmc_of_parse(mmc);
1527
1528	if (ret)
1529		return ret;
1530
1531	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1532		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1533	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1534		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1535	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1536		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1537	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1538		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1539	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1540		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1541	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1542		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1543
1544	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1545		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1546	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1547		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1548
1549	return 0;
1550}
1551
1552static int mmci_probe(struct amba_device *dev,
1553	const struct amba_id *id)
1554{
1555	struct mmci_platform_data *plat = dev->dev.platform_data;
1556	struct device_node *np = dev->dev.of_node;
1557	struct variant_data *variant = id->data;
1558	struct mmci_host *host;
1559	struct mmc_host *mmc;
1560	int ret;
1561
1562	/* Must have platform data or Device Tree. */
1563	if (!plat && !np) {
1564		dev_err(&dev->dev, "No plat data or DT found\n");
1565		return -EINVAL;
1566	}
1567
1568	if (!plat) {
1569		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1570		if (!plat)
1571			return -ENOMEM;
1572	}
1573
1574	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1575	if (!mmc)
1576		return -ENOMEM;
1577
1578	ret = mmci_of_parse(np, mmc);
1579	if (ret)
1580		goto host_free;
1581
1582	host = mmc_priv(mmc);
1583	host->mmc = mmc;
1584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585	host->hw_designer = amba_manf(dev);
1586	host->hw_revision = amba_rev(dev);
1587	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1588	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1589
1590	host->clk = devm_clk_get(&dev->dev, NULL);
1591	if (IS_ERR(host->clk)) {
1592		ret = PTR_ERR(host->clk);
1593		goto host_free;
1594	}
1595
1596	ret = clk_prepare_enable(host->clk);
1597	if (ret)
1598		goto host_free;
1599
1600	if (variant->qcom_fifo)
1601		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1602	else
1603		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1604
1605	host->plat = plat;
1606	host->variant = variant;
1607	host->mclk = clk_get_rate(host->clk);
1608	/*
1609	 * According to the spec, mclk is max 100 MHz,
1610	 * so we try to adjust the clock down to this,
1611	 * (if possible).
1612	 */
1613	if (host->mclk > variant->f_max) {
1614		ret = clk_set_rate(host->clk, variant->f_max);
1615		if (ret < 0)
1616			goto clk_disable;
1617		host->mclk = clk_get_rate(host->clk);
1618		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1619			host->mclk);
1620	}
1621
1622	host->phybase = dev->res.start;
1623	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1624	if (IS_ERR(host->base)) {
1625		ret = PTR_ERR(host->base);
1626		goto clk_disable;
1627	}
1628
1629	/*
1630	 * The ARM and ST versions of the block have slightly different
1631	 * clock divider equations which means that the minimum divider
1632	 * differs too.
1633	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1634	 */
1635	if (variant->st_clkdiv)
1636		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1637	else if (variant->explicit_mclk_control)
1638		mmc->f_min = clk_round_rate(host->clk, 100000);
1639	else
1640		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1641	/*
1642	 * If no maximum operating frequency is supplied, fall back to use
1643	 * the module parameter, which has a (low) default value in case it
1644	 * is not specified. Either value must not exceed the clock rate into
1645	 * the block, of course.
1646	 */
1647	if (mmc->f_max)
1648		mmc->f_max = variant->explicit_mclk_control ?
1649				min(variant->f_max, mmc->f_max) :
1650				min(host->mclk, mmc->f_max);
1651	else
1652		mmc->f_max = variant->explicit_mclk_control ?
1653				fmax : min(host->mclk, fmax);
1654
1655
1656	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1657
1658	/* Get regulators and the supported OCR mask */
1659	ret = mmc_regulator_get_supply(mmc);
1660	if (ret == -EPROBE_DEFER)
1661		goto clk_disable;
1662
1663	if (!mmc->ocr_avail)
1664		mmc->ocr_avail = plat->ocr_mask;
1665	else if (plat->ocr_mask)
1666		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1667
1668	/* DT takes precedence over platform data. */
1669	if (!np) {
1670		if (!plat->cd_invert)
1671			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1672		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1673	}
1674
1675	/* We support these capabilities. */
1676	mmc->caps |= MMC_CAP_CMD23;
1677
1678	/*
1679	 * Enable busy detection.
1680	 */
1681	if (variant->busy_detect) {
1682		mmci_ops.card_busy = mmci_card_busy;
1683		/*
1684		 * Not all variants have a flag to enable busy detection
1685		 * in the DPSM, but if they do, set it here.
1686		 */
1687		if (variant->busy_dpsm_flag)
1688			mmci_write_datactrlreg(host,
1689					       host->variant->busy_dpsm_flag);
1690		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1691		mmc->max_busy_timeout = 0;
1692	}
1693
1694	mmc->ops = &mmci_ops;
1695
1696	/* We support these PM capabilities. */
1697	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1698
1699	/*
1700	 * We can do SGIO
1701	 */
1702	mmc->max_segs = NR_SG;
1703
1704	/*
1705	 * Since only a certain number of bits are valid in the data length
1706	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1707	 * single request.
1708	 */
1709	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1710
1711	/*
1712	 * Set the maximum segment size.  Since we aren't doing DMA
1713	 * (yet) we are only limited by the data length register.
1714	 */
1715	mmc->max_seg_size = mmc->max_req_size;
1716
1717	/*
1718	 * Block size can be up to 2048 bytes, but must be a power of two.
1719	 */
1720	mmc->max_blk_size = 1 << 11;
1721
1722	/*
1723	 * Limit the number of blocks transferred so that we don't overflow
1724	 * the maximum request size.
1725	 */
1726	mmc->max_blk_count = mmc->max_req_size >> 11;
1727
1728	spin_lock_init(&host->lock);
1729
1730	writel(0, host->base + MMCIMASK0);
1731	writel(0, host->base + MMCIMASK1);
 
 
 
1732	writel(0xfff, host->base + MMCICLEAR);
1733
1734	/*
1735	 * If:
1736	 * - not using DT but using a descriptor table, or
1737	 * - using a table of descriptors ALONGSIDE DT, or
1738	 * look up these descriptors named "cd" and "wp" right here, fail
1739	 * silently of these do not exist and proceed to try platform data
1740	 */
1741	if (!np) {
1742		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1743		if (ret < 0) {
1744			if (ret == -EPROBE_DEFER)
1745				goto clk_disable;
1746			else if (gpio_is_valid(plat->gpio_cd)) {
1747				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1748				if (ret)
1749					goto clk_disable;
1750			}
1751		}
1752
1753		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1754		if (ret < 0) {
1755			if (ret == -EPROBE_DEFER)
1756				goto clk_disable;
1757			else if (gpio_is_valid(plat->gpio_wp)) {
1758				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1759				if (ret)
1760					goto clk_disable;
1761			}
1762		}
1763	}
1764
1765	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1766			DRIVER_NAME " (cmd)", host);
1767	if (ret)
1768		goto clk_disable;
1769
1770	if (!dev->irq[1])
1771		host->singleirq = true;
1772	else {
1773		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1774				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1775		if (ret)
1776			goto clk_disable;
1777	}
1778
1779	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1780
1781	amba_set_drvdata(dev, mmc);
1782
1783	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1784		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1785		 amba_rev(dev), (unsigned long long)dev->res.start,
1786		 dev->irq[0], dev->irq[1]);
1787
1788	mmci_dma_setup(host);
1789
1790	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1791	pm_runtime_use_autosuspend(&dev->dev);
1792
1793	mmc_add_host(mmc);
1794
1795	pm_runtime_put(&dev->dev);
1796	return 0;
1797
1798 clk_disable:
1799	clk_disable_unprepare(host->clk);
1800 host_free:
1801	mmc_free_host(mmc);
1802	return ret;
1803}
1804
1805static int mmci_remove(struct amba_device *dev)
1806{
1807	struct mmc_host *mmc = amba_get_drvdata(dev);
1808
1809	if (mmc) {
1810		struct mmci_host *host = mmc_priv(mmc);
 
1811
1812		/*
1813		 * Undo pm_runtime_put() in probe.  We use the _sync
1814		 * version here so that we can access the primecell.
1815		 */
1816		pm_runtime_get_sync(&dev->dev);
1817
1818		mmc_remove_host(mmc);
1819
1820		writel(0, host->base + MMCIMASK0);
1821		writel(0, host->base + MMCIMASK1);
 
 
1822
1823		writel(0, host->base + MMCICOMMAND);
1824		writel(0, host->base + MMCIDATACTRL);
1825
1826		mmci_dma_release(host);
1827		clk_disable_unprepare(host->clk);
1828		mmc_free_host(mmc);
1829	}
1830
1831	return 0;
1832}
1833
1834#ifdef CONFIG_PM
1835static void mmci_save(struct mmci_host *host)
1836{
1837	unsigned long flags;
1838
1839	spin_lock_irqsave(&host->lock, flags);
1840
1841	writel(0, host->base + MMCIMASK0);
1842	if (host->variant->pwrreg_nopower) {
1843		writel(0, host->base + MMCIDATACTRL);
1844		writel(0, host->base + MMCIPOWER);
1845		writel(0, host->base + MMCICLOCK);
1846	}
1847	mmci_reg_delay(host);
1848
1849	spin_unlock_irqrestore(&host->lock, flags);
1850}
1851
1852static void mmci_restore(struct mmci_host *host)
1853{
1854	unsigned long flags;
1855
1856	spin_lock_irqsave(&host->lock, flags);
1857
1858	if (host->variant->pwrreg_nopower) {
1859		writel(host->clk_reg, host->base + MMCICLOCK);
1860		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1861		writel(host->pwr_reg, host->base + MMCIPOWER);
1862	}
1863	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1864	mmci_reg_delay(host);
1865
1866	spin_unlock_irqrestore(&host->lock, flags);
1867}
1868
1869static int mmci_runtime_suspend(struct device *dev)
1870{
1871	struct amba_device *adev = to_amba_device(dev);
1872	struct mmc_host *mmc = amba_get_drvdata(adev);
1873
1874	if (mmc) {
1875		struct mmci_host *host = mmc_priv(mmc);
1876		pinctrl_pm_select_sleep_state(dev);
1877		mmci_save(host);
1878		clk_disable_unprepare(host->clk);
1879	}
1880
1881	return 0;
1882}
1883
1884static int mmci_runtime_resume(struct device *dev)
1885{
1886	struct amba_device *adev = to_amba_device(dev);
1887	struct mmc_host *mmc = amba_get_drvdata(adev);
1888
1889	if (mmc) {
1890		struct mmci_host *host = mmc_priv(mmc);
1891		clk_prepare_enable(host->clk);
1892		mmci_restore(host);
1893		pinctrl_pm_select_default_state(dev);
1894	}
1895
1896	return 0;
1897}
1898#endif
1899
1900static const struct dev_pm_ops mmci_dev_pm_ops = {
1901	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1902				pm_runtime_force_resume)
1903	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1904};
1905
1906static struct amba_id mmci_ids[] = {
1907	{
1908		.id	= 0x00041180,
1909		.mask	= 0xff0fffff,
1910		.data	= &variant_arm,
1911	},
1912	{
1913		.id	= 0x01041180,
1914		.mask	= 0xff0fffff,
1915		.data	= &variant_arm_extended_fifo,
1916	},
1917	{
1918		.id	= 0x02041180,
1919		.mask	= 0xff0fffff,
1920		.data	= &variant_arm_extended_fifo_hwfc,
1921	},
1922	{
1923		.id	= 0x00041181,
1924		.mask	= 0x000fffff,
1925		.data	= &variant_arm,
1926	},
1927	/* ST Micro variants */
1928	{
1929		.id     = 0x00180180,
1930		.mask   = 0x00ffffff,
1931		.data	= &variant_u300,
1932	},
1933	{
1934		.id     = 0x10180180,
1935		.mask   = 0xf0ffffff,
1936		.data	= &variant_nomadik,
1937	},
1938	{
1939		.id     = 0x00280180,
1940		.mask   = 0x00ffffff,
1941		.data	= &variant_nomadik,
1942	},
1943	{
1944		.id     = 0x00480180,
1945		.mask   = 0xf0ffffff,
1946		.data	= &variant_ux500,
1947	},
1948	{
1949		.id     = 0x10480180,
1950		.mask   = 0xf0ffffff,
1951		.data	= &variant_ux500v2,
 
 
 
 
 
1952	},
1953	/* Qualcomm variants */
1954	{
1955		.id     = 0x00051180,
1956		.mask	= 0x000fffff,
1957		.data	= &variant_qcom,
1958	},
1959	{ 0, 0 },
1960};
1961
1962MODULE_DEVICE_TABLE(amba, mmci_ids);
1963
1964static struct amba_driver mmci_driver = {
1965	.drv		= {
1966		.name	= DRIVER_NAME,
1967		.pm	= &mmci_dev_pm_ops,
1968	},
1969	.probe		= mmci_probe,
1970	.remove		= mmci_remove,
1971	.id_table	= mmci_ids,
1972};
1973
1974module_amba_driver(mmci_driver);
1975
1976module_param(fmax, uint, 0444);
1977
1978MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1979MODULE_LICENSE("GPL");