Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36#include <linux/sched/mm.h>
37
38#include "xfs_format.h"
39#include "xfs_log_format.h"
40#include "xfs_trans_resv.h"
41#include "xfs_sb.h"
42#include "xfs_mount.h"
43#include "xfs_trace.h"
44#include "xfs_log.h"
45#include "xfs_errortag.h"
46#include "xfs_error.h"
47
48static kmem_zone_t *xfs_buf_zone;
49
50#ifdef XFS_BUF_LOCK_TRACKING
51# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
52# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
53# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
54#else
55# define XB_SET_OWNER(bp) do { } while (0)
56# define XB_CLEAR_OWNER(bp) do { } while (0)
57# define XB_GET_OWNER(bp) do { } while (0)
58#endif
59
60#define xb_to_gfp(flags) \
61 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
62
63
64static inline int
65xfs_buf_is_vmapped(
66 struct xfs_buf *bp)
67{
68 /*
69 * Return true if the buffer is vmapped.
70 *
71 * b_addr is null if the buffer is not mapped, but the code is clever
72 * enough to know it doesn't have to map a single page, so the check has
73 * to be both for b_addr and bp->b_page_count > 1.
74 */
75 return bp->b_addr && bp->b_page_count > 1;
76}
77
78static inline int
79xfs_buf_vmap_len(
80 struct xfs_buf *bp)
81{
82 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83}
84
85/*
86 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
87 * this buffer. The count is incremented once per buffer (per hold cycle)
88 * because the corresponding decrement is deferred to buffer release. Buffers
89 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
90 * tracking adds unnecessary overhead. This is used for sychronization purposes
91 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
92 * in-flight buffers.
93 *
94 * Buffers that are never released (e.g., superblock, iclog buffers) must set
95 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
96 * never reaches zero and unmount hangs indefinitely.
97 */
98static inline void
99xfs_buf_ioacct_inc(
100 struct xfs_buf *bp)
101{
102 if (bp->b_flags & XBF_NO_IOACCT)
103 return;
104
105 ASSERT(bp->b_flags & XBF_ASYNC);
106 spin_lock(&bp->b_lock);
107 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
108 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
109 percpu_counter_inc(&bp->b_target->bt_io_count);
110 }
111 spin_unlock(&bp->b_lock);
112}
113
114/*
115 * Clear the in-flight state on a buffer about to be released to the LRU or
116 * freed and unaccount from the buftarg.
117 */
118static inline void
119__xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 lockdep_assert_held(&bp->b_lock);
123
124 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
125 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
126 percpu_counter_dec(&bp->b_target->bt_io_count);
127 }
128}
129
130static inline void
131xfs_buf_ioacct_dec(
132 struct xfs_buf *bp)
133{
134 spin_lock(&bp->b_lock);
135 __xfs_buf_ioacct_dec(bp);
136 spin_unlock(&bp->b_lock);
137}
138
139/*
140 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
141 * b_lru_ref count so that the buffer is freed immediately when the buffer
142 * reference count falls to zero. If the buffer is already on the LRU, we need
143 * to remove the reference that LRU holds on the buffer.
144 *
145 * This prevents build-up of stale buffers on the LRU.
146 */
147void
148xfs_buf_stale(
149 struct xfs_buf *bp)
150{
151 ASSERT(xfs_buf_islocked(bp));
152
153 bp->b_flags |= XBF_STALE;
154
155 /*
156 * Clear the delwri status so that a delwri queue walker will not
157 * flush this buffer to disk now that it is stale. The delwri queue has
158 * a reference to the buffer, so this is safe to do.
159 */
160 bp->b_flags &= ~_XBF_DELWRI_Q;
161
162 /*
163 * Once the buffer is marked stale and unlocked, a subsequent lookup
164 * could reset b_flags. There is no guarantee that the buffer is
165 * unaccounted (released to LRU) before that occurs. Drop in-flight
166 * status now to preserve accounting consistency.
167 */
168 spin_lock(&bp->b_lock);
169 __xfs_buf_ioacct_dec(bp);
170
171 atomic_set(&bp->b_lru_ref, 0);
172 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
173 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
174 atomic_dec(&bp->b_hold);
175
176 ASSERT(atomic_read(&bp->b_hold) >= 1);
177 spin_unlock(&bp->b_lock);
178}
179
180static int
181xfs_buf_get_maps(
182 struct xfs_buf *bp,
183 int map_count)
184{
185 ASSERT(bp->b_maps == NULL);
186 bp->b_map_count = map_count;
187
188 if (map_count == 1) {
189 bp->b_maps = &bp->__b_map;
190 return 0;
191 }
192
193 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
194 KM_NOFS);
195 if (!bp->b_maps)
196 return -ENOMEM;
197 return 0;
198}
199
200/*
201 * Frees b_pages if it was allocated.
202 */
203static void
204xfs_buf_free_maps(
205 struct xfs_buf *bp)
206{
207 if (bp->b_maps != &bp->__b_map) {
208 kmem_free(bp->b_maps);
209 bp->b_maps = NULL;
210 }
211}
212
213struct xfs_buf *
214_xfs_buf_alloc(
215 struct xfs_buftarg *target,
216 struct xfs_buf_map *map,
217 int nmaps,
218 xfs_buf_flags_t flags)
219{
220 struct xfs_buf *bp;
221 int error;
222 int i;
223
224 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
225 if (unlikely(!bp))
226 return NULL;
227
228 /*
229 * We don't want certain flags to appear in b_flags unless they are
230 * specifically set by later operations on the buffer.
231 */
232 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
233
234 atomic_set(&bp->b_hold, 1);
235 atomic_set(&bp->b_lru_ref, 1);
236 init_completion(&bp->b_iowait);
237 INIT_LIST_HEAD(&bp->b_lru);
238 INIT_LIST_HEAD(&bp->b_list);
239 INIT_LIST_HEAD(&bp->b_li_list);
240 sema_init(&bp->b_sema, 0); /* held, no waiters */
241 spin_lock_init(&bp->b_lock);
242 XB_SET_OWNER(bp);
243 bp->b_target = target;
244 bp->b_flags = flags;
245
246 /*
247 * Set length and io_length to the same value initially.
248 * I/O routines should use io_length, which will be the same in
249 * most cases but may be reset (e.g. XFS recovery).
250 */
251 error = xfs_buf_get_maps(bp, nmaps);
252 if (error) {
253 kmem_zone_free(xfs_buf_zone, bp);
254 return NULL;
255 }
256
257 bp->b_bn = map[0].bm_bn;
258 bp->b_length = 0;
259 for (i = 0; i < nmaps; i++) {
260 bp->b_maps[i].bm_bn = map[i].bm_bn;
261 bp->b_maps[i].bm_len = map[i].bm_len;
262 bp->b_length += map[i].bm_len;
263 }
264 bp->b_io_length = bp->b_length;
265
266 atomic_set(&bp->b_pin_count, 0);
267 init_waitqueue_head(&bp->b_waiters);
268
269 XFS_STATS_INC(target->bt_mount, xb_create);
270 trace_xfs_buf_init(bp, _RET_IP_);
271
272 return bp;
273}
274
275/*
276 * Allocate a page array capable of holding a specified number
277 * of pages, and point the page buf at it.
278 */
279STATIC int
280_xfs_buf_get_pages(
281 xfs_buf_t *bp,
282 int page_count)
283{
284 /* Make sure that we have a page list */
285 if (bp->b_pages == NULL) {
286 bp->b_page_count = page_count;
287 if (page_count <= XB_PAGES) {
288 bp->b_pages = bp->b_page_array;
289 } else {
290 bp->b_pages = kmem_alloc(sizeof(struct page *) *
291 page_count, KM_NOFS);
292 if (bp->b_pages == NULL)
293 return -ENOMEM;
294 }
295 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
296 }
297 return 0;
298}
299
300/*
301 * Frees b_pages if it was allocated.
302 */
303STATIC void
304_xfs_buf_free_pages(
305 xfs_buf_t *bp)
306{
307 if (bp->b_pages != bp->b_page_array) {
308 kmem_free(bp->b_pages);
309 bp->b_pages = NULL;
310 }
311}
312
313/*
314 * Releases the specified buffer.
315 *
316 * The modification state of any associated pages is left unchanged.
317 * The buffer must not be on any hash - use xfs_buf_rele instead for
318 * hashed and refcounted buffers
319 */
320void
321xfs_buf_free(
322 xfs_buf_t *bp)
323{
324 trace_xfs_buf_free(bp, _RET_IP_);
325
326 ASSERT(list_empty(&bp->b_lru));
327
328 if (bp->b_flags & _XBF_PAGES) {
329 uint i;
330
331 if (xfs_buf_is_vmapped(bp))
332 vm_unmap_ram(bp->b_addr - bp->b_offset,
333 bp->b_page_count);
334
335 for (i = 0; i < bp->b_page_count; i++) {
336 struct page *page = bp->b_pages[i];
337
338 __free_page(page);
339 }
340 } else if (bp->b_flags & _XBF_KMEM)
341 kmem_free(bp->b_addr);
342 _xfs_buf_free_pages(bp);
343 xfs_buf_free_maps(bp);
344 kmem_zone_free(xfs_buf_zone, bp);
345}
346
347/*
348 * Allocates all the pages for buffer in question and builds it's page list.
349 */
350STATIC int
351xfs_buf_allocate_memory(
352 xfs_buf_t *bp,
353 uint flags)
354{
355 size_t size;
356 size_t nbytes, offset;
357 gfp_t gfp_mask = xb_to_gfp(flags);
358 unsigned short page_count, i;
359 xfs_off_t start, end;
360 int error;
361
362 /*
363 * for buffers that are contained within a single page, just allocate
364 * the memory from the heap - there's no need for the complexity of
365 * page arrays to keep allocation down to order 0.
366 */
367 size = BBTOB(bp->b_length);
368 if (size < PAGE_SIZE) {
369 bp->b_addr = kmem_alloc(size, KM_NOFS);
370 if (!bp->b_addr) {
371 /* low memory - use alloc_page loop instead */
372 goto use_alloc_page;
373 }
374
375 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
376 ((unsigned long)bp->b_addr & PAGE_MASK)) {
377 /* b_addr spans two pages - use alloc_page instead */
378 kmem_free(bp->b_addr);
379 bp->b_addr = NULL;
380 goto use_alloc_page;
381 }
382 bp->b_offset = offset_in_page(bp->b_addr);
383 bp->b_pages = bp->b_page_array;
384 bp->b_pages[0] = virt_to_page(bp->b_addr);
385 bp->b_page_count = 1;
386 bp->b_flags |= _XBF_KMEM;
387 return 0;
388 }
389
390use_alloc_page:
391 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
392 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
393 >> PAGE_SHIFT;
394 page_count = end - start;
395 error = _xfs_buf_get_pages(bp, page_count);
396 if (unlikely(error))
397 return error;
398
399 offset = bp->b_offset;
400 bp->b_flags |= _XBF_PAGES;
401
402 for (i = 0; i < bp->b_page_count; i++) {
403 struct page *page;
404 uint retries = 0;
405retry:
406 page = alloc_page(gfp_mask);
407 if (unlikely(page == NULL)) {
408 if (flags & XBF_READ_AHEAD) {
409 bp->b_page_count = i;
410 error = -ENOMEM;
411 goto out_free_pages;
412 }
413
414 /*
415 * This could deadlock.
416 *
417 * But until all the XFS lowlevel code is revamped to
418 * handle buffer allocation failures we can't do much.
419 */
420 if (!(++retries % 100))
421 xfs_err(NULL,
422 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
423 current->comm, current->pid,
424 __func__, gfp_mask);
425
426 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
427 congestion_wait(BLK_RW_ASYNC, HZ/50);
428 goto retry;
429 }
430
431 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
432
433 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
434 size -= nbytes;
435 bp->b_pages[i] = page;
436 offset = 0;
437 }
438 return 0;
439
440out_free_pages:
441 for (i = 0; i < bp->b_page_count; i++)
442 __free_page(bp->b_pages[i]);
443 bp->b_flags &= ~_XBF_PAGES;
444 return error;
445}
446
447/*
448 * Map buffer into kernel address-space if necessary.
449 */
450STATIC int
451_xfs_buf_map_pages(
452 xfs_buf_t *bp,
453 uint flags)
454{
455 ASSERT(bp->b_flags & _XBF_PAGES);
456 if (bp->b_page_count == 1) {
457 /* A single page buffer is always mappable */
458 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
459 } else if (flags & XBF_UNMAPPED) {
460 bp->b_addr = NULL;
461 } else {
462 int retried = 0;
463 unsigned nofs_flag;
464
465 /*
466 * vm_map_ram() will allocate auxillary structures (e.g.
467 * pagetables) with GFP_KERNEL, yet we are likely to be under
468 * GFP_NOFS context here. Hence we need to tell memory reclaim
469 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
470 * memory reclaim re-entering the filesystem here and
471 * potentially deadlocking.
472 */
473 nofs_flag = memalloc_nofs_save();
474 do {
475 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
476 -1, PAGE_KERNEL);
477 if (bp->b_addr)
478 break;
479 vm_unmap_aliases();
480 } while (retried++ <= 1);
481 memalloc_nofs_restore(nofs_flag);
482
483 if (!bp->b_addr)
484 return -ENOMEM;
485 bp->b_addr += bp->b_offset;
486 }
487
488 return 0;
489}
490
491/*
492 * Finding and Reading Buffers
493 */
494static int
495_xfs_buf_obj_cmp(
496 struct rhashtable_compare_arg *arg,
497 const void *obj)
498{
499 const struct xfs_buf_map *map = arg->key;
500 const struct xfs_buf *bp = obj;
501
502 /*
503 * The key hashing in the lookup path depends on the key being the
504 * first element of the compare_arg, make sure to assert this.
505 */
506 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
507
508 if (bp->b_bn != map->bm_bn)
509 return 1;
510
511 if (unlikely(bp->b_length != map->bm_len)) {
512 /*
513 * found a block number match. If the range doesn't
514 * match, the only way this is allowed is if the buffer
515 * in the cache is stale and the transaction that made
516 * it stale has not yet committed. i.e. we are
517 * reallocating a busy extent. Skip this buffer and
518 * continue searching for an exact match.
519 */
520 ASSERT(bp->b_flags & XBF_STALE);
521 return 1;
522 }
523 return 0;
524}
525
526static const struct rhashtable_params xfs_buf_hash_params = {
527 .min_size = 32, /* empty AGs have minimal footprint */
528 .nelem_hint = 16,
529 .key_len = sizeof(xfs_daddr_t),
530 .key_offset = offsetof(struct xfs_buf, b_bn),
531 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
532 .automatic_shrinking = true,
533 .obj_cmpfn = _xfs_buf_obj_cmp,
534};
535
536int
537xfs_buf_hash_init(
538 struct xfs_perag *pag)
539{
540 spin_lock_init(&pag->pag_buf_lock);
541 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
542}
543
544void
545xfs_buf_hash_destroy(
546 struct xfs_perag *pag)
547{
548 rhashtable_destroy(&pag->pag_buf_hash);
549}
550
551/*
552 * Look up, and creates if absent, a lockable buffer for
553 * a given range of an inode. The buffer is returned
554 * locked. No I/O is implied by this call.
555 */
556xfs_buf_t *
557_xfs_buf_find(
558 struct xfs_buftarg *btp,
559 struct xfs_buf_map *map,
560 int nmaps,
561 xfs_buf_flags_t flags,
562 xfs_buf_t *new_bp)
563{
564 struct xfs_perag *pag;
565 xfs_buf_t *bp;
566 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
567 xfs_daddr_t eofs;
568 int i;
569
570 for (i = 0; i < nmaps; i++)
571 cmap.bm_len += map[i].bm_len;
572
573 /* Check for IOs smaller than the sector size / not sector aligned */
574 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
575 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
576
577 /*
578 * Corrupted block numbers can get through to here, unfortunately, so we
579 * have to check that the buffer falls within the filesystem bounds.
580 */
581 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
582 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
583 /*
584 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
585 * but none of the higher level infrastructure supports
586 * returning a specific error on buffer lookup failures.
587 */
588 xfs_alert(btp->bt_mount,
589 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
590 __func__, cmap.bm_bn, eofs);
591 WARN_ON(1);
592 return NULL;
593 }
594
595 pag = xfs_perag_get(btp->bt_mount,
596 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
597
598 spin_lock(&pag->pag_buf_lock);
599 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
600 xfs_buf_hash_params);
601 if (bp) {
602 atomic_inc(&bp->b_hold);
603 goto found;
604 }
605
606 /* No match found */
607 if (new_bp) {
608 /* the buffer keeps the perag reference until it is freed */
609 new_bp->b_pag = pag;
610 rhashtable_insert_fast(&pag->pag_buf_hash,
611 &new_bp->b_rhash_head,
612 xfs_buf_hash_params);
613 spin_unlock(&pag->pag_buf_lock);
614 } else {
615 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
616 spin_unlock(&pag->pag_buf_lock);
617 xfs_perag_put(pag);
618 }
619 return new_bp;
620
621found:
622 spin_unlock(&pag->pag_buf_lock);
623 xfs_perag_put(pag);
624
625 if (!xfs_buf_trylock(bp)) {
626 if (flags & XBF_TRYLOCK) {
627 xfs_buf_rele(bp);
628 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
629 return NULL;
630 }
631 xfs_buf_lock(bp);
632 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
633 }
634
635 /*
636 * if the buffer is stale, clear all the external state associated with
637 * it. We need to keep flags such as how we allocated the buffer memory
638 * intact here.
639 */
640 if (bp->b_flags & XBF_STALE) {
641 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
642 ASSERT(bp->b_iodone == NULL);
643 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
644 bp->b_ops = NULL;
645 }
646
647 trace_xfs_buf_find(bp, flags, _RET_IP_);
648 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
649 return bp;
650}
651
652/*
653 * Assembles a buffer covering the specified range. The code is optimised for
654 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
655 * more hits than misses.
656 */
657struct xfs_buf *
658xfs_buf_get_map(
659 struct xfs_buftarg *target,
660 struct xfs_buf_map *map,
661 int nmaps,
662 xfs_buf_flags_t flags)
663{
664 struct xfs_buf *bp;
665 struct xfs_buf *new_bp;
666 int error = 0;
667
668 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
669 if (likely(bp))
670 goto found;
671
672 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
673 if (unlikely(!new_bp))
674 return NULL;
675
676 error = xfs_buf_allocate_memory(new_bp, flags);
677 if (error) {
678 xfs_buf_free(new_bp);
679 return NULL;
680 }
681
682 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
683 if (!bp) {
684 xfs_buf_free(new_bp);
685 return NULL;
686 }
687
688 if (bp != new_bp)
689 xfs_buf_free(new_bp);
690
691found:
692 if (!bp->b_addr) {
693 error = _xfs_buf_map_pages(bp, flags);
694 if (unlikely(error)) {
695 xfs_warn(target->bt_mount,
696 "%s: failed to map pagesn", __func__);
697 xfs_buf_relse(bp);
698 return NULL;
699 }
700 }
701
702 /*
703 * Clear b_error if this is a lookup from a caller that doesn't expect
704 * valid data to be found in the buffer.
705 */
706 if (!(flags & XBF_READ))
707 xfs_buf_ioerror(bp, 0);
708
709 XFS_STATS_INC(target->bt_mount, xb_get);
710 trace_xfs_buf_get(bp, flags, _RET_IP_);
711 return bp;
712}
713
714STATIC int
715_xfs_buf_read(
716 xfs_buf_t *bp,
717 xfs_buf_flags_t flags)
718{
719 ASSERT(!(flags & XBF_WRITE));
720 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
721
722 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
723 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
724
725 if (flags & XBF_ASYNC) {
726 xfs_buf_submit(bp);
727 return 0;
728 }
729 return xfs_buf_submit_wait(bp);
730}
731
732xfs_buf_t *
733xfs_buf_read_map(
734 struct xfs_buftarg *target,
735 struct xfs_buf_map *map,
736 int nmaps,
737 xfs_buf_flags_t flags,
738 const struct xfs_buf_ops *ops)
739{
740 struct xfs_buf *bp;
741
742 flags |= XBF_READ;
743
744 bp = xfs_buf_get_map(target, map, nmaps, flags);
745 if (bp) {
746 trace_xfs_buf_read(bp, flags, _RET_IP_);
747
748 if (!(bp->b_flags & XBF_DONE)) {
749 XFS_STATS_INC(target->bt_mount, xb_get_read);
750 bp->b_ops = ops;
751 _xfs_buf_read(bp, flags);
752 } else if (flags & XBF_ASYNC) {
753 /*
754 * Read ahead call which is already satisfied,
755 * drop the buffer
756 */
757 xfs_buf_relse(bp);
758 return NULL;
759 } else {
760 /* We do not want read in the flags */
761 bp->b_flags &= ~XBF_READ;
762 }
763 }
764
765 return bp;
766}
767
768/*
769 * If we are not low on memory then do the readahead in a deadlock
770 * safe manner.
771 */
772void
773xfs_buf_readahead_map(
774 struct xfs_buftarg *target,
775 struct xfs_buf_map *map,
776 int nmaps,
777 const struct xfs_buf_ops *ops)
778{
779 if (bdi_read_congested(target->bt_bdev->bd_bdi))
780 return;
781
782 xfs_buf_read_map(target, map, nmaps,
783 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
784}
785
786/*
787 * Read an uncached buffer from disk. Allocates and returns a locked
788 * buffer containing the disk contents or nothing.
789 */
790int
791xfs_buf_read_uncached(
792 struct xfs_buftarg *target,
793 xfs_daddr_t daddr,
794 size_t numblks,
795 int flags,
796 struct xfs_buf **bpp,
797 const struct xfs_buf_ops *ops)
798{
799 struct xfs_buf *bp;
800
801 *bpp = NULL;
802
803 bp = xfs_buf_get_uncached(target, numblks, flags);
804 if (!bp)
805 return -ENOMEM;
806
807 /* set up the buffer for a read IO */
808 ASSERT(bp->b_map_count == 1);
809 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
810 bp->b_maps[0].bm_bn = daddr;
811 bp->b_flags |= XBF_READ;
812 bp->b_ops = ops;
813
814 xfs_buf_submit_wait(bp);
815 if (bp->b_error) {
816 int error = bp->b_error;
817 xfs_buf_relse(bp);
818 return error;
819 }
820
821 *bpp = bp;
822 return 0;
823}
824
825/*
826 * Return a buffer allocated as an empty buffer and associated to external
827 * memory via xfs_buf_associate_memory() back to it's empty state.
828 */
829void
830xfs_buf_set_empty(
831 struct xfs_buf *bp,
832 size_t numblks)
833{
834 if (bp->b_pages)
835 _xfs_buf_free_pages(bp);
836
837 bp->b_pages = NULL;
838 bp->b_page_count = 0;
839 bp->b_addr = NULL;
840 bp->b_length = numblks;
841 bp->b_io_length = numblks;
842
843 ASSERT(bp->b_map_count == 1);
844 bp->b_bn = XFS_BUF_DADDR_NULL;
845 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
846 bp->b_maps[0].bm_len = bp->b_length;
847}
848
849static inline struct page *
850mem_to_page(
851 void *addr)
852{
853 if ((!is_vmalloc_addr(addr))) {
854 return virt_to_page(addr);
855 } else {
856 return vmalloc_to_page(addr);
857 }
858}
859
860int
861xfs_buf_associate_memory(
862 xfs_buf_t *bp,
863 void *mem,
864 size_t len)
865{
866 int rval;
867 int i = 0;
868 unsigned long pageaddr;
869 unsigned long offset;
870 size_t buflen;
871 int page_count;
872
873 pageaddr = (unsigned long)mem & PAGE_MASK;
874 offset = (unsigned long)mem - pageaddr;
875 buflen = PAGE_ALIGN(len + offset);
876 page_count = buflen >> PAGE_SHIFT;
877
878 /* Free any previous set of page pointers */
879 if (bp->b_pages)
880 _xfs_buf_free_pages(bp);
881
882 bp->b_pages = NULL;
883 bp->b_addr = mem;
884
885 rval = _xfs_buf_get_pages(bp, page_count);
886 if (rval)
887 return rval;
888
889 bp->b_offset = offset;
890
891 for (i = 0; i < bp->b_page_count; i++) {
892 bp->b_pages[i] = mem_to_page((void *)pageaddr);
893 pageaddr += PAGE_SIZE;
894 }
895
896 bp->b_io_length = BTOBB(len);
897 bp->b_length = BTOBB(buflen);
898
899 return 0;
900}
901
902xfs_buf_t *
903xfs_buf_get_uncached(
904 struct xfs_buftarg *target,
905 size_t numblks,
906 int flags)
907{
908 unsigned long page_count;
909 int error, i;
910 struct xfs_buf *bp;
911 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
912
913 /* flags might contain irrelevant bits, pass only what we care about */
914 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
915 if (unlikely(bp == NULL))
916 goto fail;
917
918 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
919 error = _xfs_buf_get_pages(bp, page_count);
920 if (error)
921 goto fail_free_buf;
922
923 for (i = 0; i < page_count; i++) {
924 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
925 if (!bp->b_pages[i])
926 goto fail_free_mem;
927 }
928 bp->b_flags |= _XBF_PAGES;
929
930 error = _xfs_buf_map_pages(bp, 0);
931 if (unlikely(error)) {
932 xfs_warn(target->bt_mount,
933 "%s: failed to map pages", __func__);
934 goto fail_free_mem;
935 }
936
937 trace_xfs_buf_get_uncached(bp, _RET_IP_);
938 return bp;
939
940 fail_free_mem:
941 while (--i >= 0)
942 __free_page(bp->b_pages[i]);
943 _xfs_buf_free_pages(bp);
944 fail_free_buf:
945 xfs_buf_free_maps(bp);
946 kmem_zone_free(xfs_buf_zone, bp);
947 fail:
948 return NULL;
949}
950
951/*
952 * Increment reference count on buffer, to hold the buffer concurrently
953 * with another thread which may release (free) the buffer asynchronously.
954 * Must hold the buffer already to call this function.
955 */
956void
957xfs_buf_hold(
958 xfs_buf_t *bp)
959{
960 trace_xfs_buf_hold(bp, _RET_IP_);
961 atomic_inc(&bp->b_hold);
962}
963
964/*
965 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
966 * placed on LRU or freed (depending on b_lru_ref).
967 */
968void
969xfs_buf_rele(
970 xfs_buf_t *bp)
971{
972 struct xfs_perag *pag = bp->b_pag;
973 bool release;
974 bool freebuf = false;
975
976 trace_xfs_buf_rele(bp, _RET_IP_);
977
978 if (!pag) {
979 ASSERT(list_empty(&bp->b_lru));
980 if (atomic_dec_and_test(&bp->b_hold)) {
981 xfs_buf_ioacct_dec(bp);
982 xfs_buf_free(bp);
983 }
984 return;
985 }
986
987 ASSERT(atomic_read(&bp->b_hold) > 0);
988
989 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
990 spin_lock(&bp->b_lock);
991 if (!release) {
992 /*
993 * Drop the in-flight state if the buffer is already on the LRU
994 * and it holds the only reference. This is racy because we
995 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
996 * ensures the decrement occurs only once per-buf.
997 */
998 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
999 __xfs_buf_ioacct_dec(bp);
1000 goto out_unlock;
1001 }
1002
1003 /* the last reference has been dropped ... */
1004 __xfs_buf_ioacct_dec(bp);
1005 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1006 /*
1007 * If the buffer is added to the LRU take a new reference to the
1008 * buffer for the LRU and clear the (now stale) dispose list
1009 * state flag
1010 */
1011 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1012 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1013 atomic_inc(&bp->b_hold);
1014 }
1015 spin_unlock(&pag->pag_buf_lock);
1016 } else {
1017 /*
1018 * most of the time buffers will already be removed from the
1019 * LRU, so optimise that case by checking for the
1020 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1021 * was on was the disposal list
1022 */
1023 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1024 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1025 } else {
1026 ASSERT(list_empty(&bp->b_lru));
1027 }
1028
1029 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1030 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1031 xfs_buf_hash_params);
1032 spin_unlock(&pag->pag_buf_lock);
1033 xfs_perag_put(pag);
1034 freebuf = true;
1035 }
1036
1037out_unlock:
1038 spin_unlock(&bp->b_lock);
1039
1040 if (freebuf)
1041 xfs_buf_free(bp);
1042}
1043
1044
1045/*
1046 * Lock a buffer object, if it is not already locked.
1047 *
1048 * If we come across a stale, pinned, locked buffer, we know that we are
1049 * being asked to lock a buffer that has been reallocated. Because it is
1050 * pinned, we know that the log has not been pushed to disk and hence it
1051 * will still be locked. Rather than continuing to have trylock attempts
1052 * fail until someone else pushes the log, push it ourselves before
1053 * returning. This means that the xfsaild will not get stuck trying
1054 * to push on stale inode buffers.
1055 */
1056int
1057xfs_buf_trylock(
1058 struct xfs_buf *bp)
1059{
1060 int locked;
1061
1062 locked = down_trylock(&bp->b_sema) == 0;
1063 if (locked) {
1064 XB_SET_OWNER(bp);
1065 trace_xfs_buf_trylock(bp, _RET_IP_);
1066 } else {
1067 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1068 }
1069 return locked;
1070}
1071
1072/*
1073 * Lock a buffer object.
1074 *
1075 * If we come across a stale, pinned, locked buffer, we know that we
1076 * are being asked to lock a buffer that has been reallocated. Because
1077 * it is pinned, we know that the log has not been pushed to disk and
1078 * hence it will still be locked. Rather than sleeping until someone
1079 * else pushes the log, push it ourselves before trying to get the lock.
1080 */
1081void
1082xfs_buf_lock(
1083 struct xfs_buf *bp)
1084{
1085 trace_xfs_buf_lock(bp, _RET_IP_);
1086
1087 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1088 xfs_log_force(bp->b_target->bt_mount, 0);
1089 down(&bp->b_sema);
1090 XB_SET_OWNER(bp);
1091
1092 trace_xfs_buf_lock_done(bp, _RET_IP_);
1093}
1094
1095void
1096xfs_buf_unlock(
1097 struct xfs_buf *bp)
1098{
1099 ASSERT(xfs_buf_islocked(bp));
1100
1101 XB_CLEAR_OWNER(bp);
1102 up(&bp->b_sema);
1103
1104 trace_xfs_buf_unlock(bp, _RET_IP_);
1105}
1106
1107STATIC void
1108xfs_buf_wait_unpin(
1109 xfs_buf_t *bp)
1110{
1111 DECLARE_WAITQUEUE (wait, current);
1112
1113 if (atomic_read(&bp->b_pin_count) == 0)
1114 return;
1115
1116 add_wait_queue(&bp->b_waiters, &wait);
1117 for (;;) {
1118 set_current_state(TASK_UNINTERRUPTIBLE);
1119 if (atomic_read(&bp->b_pin_count) == 0)
1120 break;
1121 io_schedule();
1122 }
1123 remove_wait_queue(&bp->b_waiters, &wait);
1124 set_current_state(TASK_RUNNING);
1125}
1126
1127/*
1128 * Buffer Utility Routines
1129 */
1130
1131void
1132xfs_buf_ioend(
1133 struct xfs_buf *bp)
1134{
1135 bool read = bp->b_flags & XBF_READ;
1136
1137 trace_xfs_buf_iodone(bp, _RET_IP_);
1138
1139 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1140
1141 /*
1142 * Pull in IO completion errors now. We are guaranteed to be running
1143 * single threaded, so we don't need the lock to read b_io_error.
1144 */
1145 if (!bp->b_error && bp->b_io_error)
1146 xfs_buf_ioerror(bp, bp->b_io_error);
1147
1148 /* Only validate buffers that were read without errors */
1149 if (read && !bp->b_error && bp->b_ops) {
1150 ASSERT(!bp->b_iodone);
1151 bp->b_ops->verify_read(bp);
1152 }
1153
1154 if (!bp->b_error)
1155 bp->b_flags |= XBF_DONE;
1156
1157 if (bp->b_iodone)
1158 (*(bp->b_iodone))(bp);
1159 else if (bp->b_flags & XBF_ASYNC)
1160 xfs_buf_relse(bp);
1161 else
1162 complete(&bp->b_iowait);
1163}
1164
1165static void
1166xfs_buf_ioend_work(
1167 struct work_struct *work)
1168{
1169 struct xfs_buf *bp =
1170 container_of(work, xfs_buf_t, b_ioend_work);
1171
1172 xfs_buf_ioend(bp);
1173}
1174
1175static void
1176xfs_buf_ioend_async(
1177 struct xfs_buf *bp)
1178{
1179 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1180 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1181}
1182
1183void
1184__xfs_buf_ioerror(
1185 xfs_buf_t *bp,
1186 int error,
1187 xfs_failaddr_t failaddr)
1188{
1189 ASSERT(error <= 0 && error >= -1000);
1190 bp->b_error = error;
1191 trace_xfs_buf_ioerror(bp, error, failaddr);
1192}
1193
1194void
1195xfs_buf_ioerror_alert(
1196 struct xfs_buf *bp,
1197 const char *func)
1198{
1199 xfs_alert(bp->b_target->bt_mount,
1200"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1201 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1202 -bp->b_error);
1203}
1204
1205int
1206xfs_bwrite(
1207 struct xfs_buf *bp)
1208{
1209 int error;
1210
1211 ASSERT(xfs_buf_islocked(bp));
1212
1213 bp->b_flags |= XBF_WRITE;
1214 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1215 XBF_WRITE_FAIL | XBF_DONE);
1216
1217 error = xfs_buf_submit_wait(bp);
1218 if (error) {
1219 xfs_force_shutdown(bp->b_target->bt_mount,
1220 SHUTDOWN_META_IO_ERROR);
1221 }
1222 return error;
1223}
1224
1225static void
1226xfs_buf_bio_end_io(
1227 struct bio *bio)
1228{
1229 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1230
1231 /*
1232 * don't overwrite existing errors - otherwise we can lose errors on
1233 * buffers that require multiple bios to complete.
1234 */
1235 if (bio->bi_status) {
1236 int error = blk_status_to_errno(bio->bi_status);
1237
1238 cmpxchg(&bp->b_io_error, 0, error);
1239 }
1240
1241 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1242 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1243
1244 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1245 xfs_buf_ioend_async(bp);
1246 bio_put(bio);
1247}
1248
1249static void
1250xfs_buf_ioapply_map(
1251 struct xfs_buf *bp,
1252 int map,
1253 int *buf_offset,
1254 int *count,
1255 int op,
1256 int op_flags)
1257{
1258 int page_index;
1259 int total_nr_pages = bp->b_page_count;
1260 int nr_pages;
1261 struct bio *bio;
1262 sector_t sector = bp->b_maps[map].bm_bn;
1263 int size;
1264 int offset;
1265
1266 /* skip the pages in the buffer before the start offset */
1267 page_index = 0;
1268 offset = *buf_offset;
1269 while (offset >= PAGE_SIZE) {
1270 page_index++;
1271 offset -= PAGE_SIZE;
1272 }
1273
1274 /*
1275 * Limit the IO size to the length of the current vector, and update the
1276 * remaining IO count for the next time around.
1277 */
1278 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1279 *count -= size;
1280 *buf_offset += size;
1281
1282next_chunk:
1283 atomic_inc(&bp->b_io_remaining);
1284 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1285
1286 bio = bio_alloc(GFP_NOIO, nr_pages);
1287 bio_set_dev(bio, bp->b_target->bt_bdev);
1288 bio->bi_iter.bi_sector = sector;
1289 bio->bi_end_io = xfs_buf_bio_end_io;
1290 bio->bi_private = bp;
1291 bio_set_op_attrs(bio, op, op_flags);
1292
1293 for (; size && nr_pages; nr_pages--, page_index++) {
1294 int rbytes, nbytes = PAGE_SIZE - offset;
1295
1296 if (nbytes > size)
1297 nbytes = size;
1298
1299 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1300 offset);
1301 if (rbytes < nbytes)
1302 break;
1303
1304 offset = 0;
1305 sector += BTOBB(nbytes);
1306 size -= nbytes;
1307 total_nr_pages--;
1308 }
1309
1310 if (likely(bio->bi_iter.bi_size)) {
1311 if (xfs_buf_is_vmapped(bp)) {
1312 flush_kernel_vmap_range(bp->b_addr,
1313 xfs_buf_vmap_len(bp));
1314 }
1315 submit_bio(bio);
1316 if (size)
1317 goto next_chunk;
1318 } else {
1319 /*
1320 * This is guaranteed not to be the last io reference count
1321 * because the caller (xfs_buf_submit) holds a count itself.
1322 */
1323 atomic_dec(&bp->b_io_remaining);
1324 xfs_buf_ioerror(bp, -EIO);
1325 bio_put(bio);
1326 }
1327
1328}
1329
1330STATIC void
1331_xfs_buf_ioapply(
1332 struct xfs_buf *bp)
1333{
1334 struct blk_plug plug;
1335 int op;
1336 int op_flags = 0;
1337 int offset;
1338 int size;
1339 int i;
1340
1341 /*
1342 * Make sure we capture only current IO errors rather than stale errors
1343 * left over from previous use of the buffer (e.g. failed readahead).
1344 */
1345 bp->b_error = 0;
1346
1347 /*
1348 * Initialize the I/O completion workqueue if we haven't yet or the
1349 * submitter has not opted to specify a custom one.
1350 */
1351 if (!bp->b_ioend_wq)
1352 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1353
1354 if (bp->b_flags & XBF_WRITE) {
1355 op = REQ_OP_WRITE;
1356 if (bp->b_flags & XBF_SYNCIO)
1357 op_flags = REQ_SYNC;
1358 if (bp->b_flags & XBF_FUA)
1359 op_flags |= REQ_FUA;
1360 if (bp->b_flags & XBF_FLUSH)
1361 op_flags |= REQ_PREFLUSH;
1362
1363 /*
1364 * Run the write verifier callback function if it exists. If
1365 * this function fails it will mark the buffer with an error and
1366 * the IO should not be dispatched.
1367 */
1368 if (bp->b_ops) {
1369 bp->b_ops->verify_write(bp);
1370 if (bp->b_error) {
1371 xfs_force_shutdown(bp->b_target->bt_mount,
1372 SHUTDOWN_CORRUPT_INCORE);
1373 return;
1374 }
1375 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1376 struct xfs_mount *mp = bp->b_target->bt_mount;
1377
1378 /*
1379 * non-crc filesystems don't attach verifiers during
1380 * log recovery, so don't warn for such filesystems.
1381 */
1382 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1383 xfs_warn(mp,
1384 "%s: no buf ops on daddr 0x%llx len %d",
1385 __func__, bp->b_bn, bp->b_length);
1386 xfs_hex_dump(bp->b_addr,
1387 XFS_CORRUPTION_DUMP_LEN);
1388 dump_stack();
1389 }
1390 }
1391 } else if (bp->b_flags & XBF_READ_AHEAD) {
1392 op = REQ_OP_READ;
1393 op_flags = REQ_RAHEAD;
1394 } else {
1395 op = REQ_OP_READ;
1396 }
1397
1398 /* we only use the buffer cache for meta-data */
1399 op_flags |= REQ_META;
1400
1401 /*
1402 * Walk all the vectors issuing IO on them. Set up the initial offset
1403 * into the buffer and the desired IO size before we start -
1404 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1405 * subsequent call.
1406 */
1407 offset = bp->b_offset;
1408 size = BBTOB(bp->b_io_length);
1409 blk_start_plug(&plug);
1410 for (i = 0; i < bp->b_map_count; i++) {
1411 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1412 if (bp->b_error)
1413 break;
1414 if (size <= 0)
1415 break; /* all done */
1416 }
1417 blk_finish_plug(&plug);
1418}
1419
1420/*
1421 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1422 * the current reference to the IO. It is not safe to reference the buffer after
1423 * a call to this function unless the caller holds an additional reference
1424 * itself.
1425 */
1426void
1427xfs_buf_submit(
1428 struct xfs_buf *bp)
1429{
1430 trace_xfs_buf_submit(bp, _RET_IP_);
1431
1432 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1433 ASSERT(bp->b_flags & XBF_ASYNC);
1434
1435 /* on shutdown we stale and complete the buffer immediately */
1436 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1437 xfs_buf_ioerror(bp, -EIO);
1438 bp->b_flags &= ~XBF_DONE;
1439 xfs_buf_stale(bp);
1440 xfs_buf_ioend(bp);
1441 return;
1442 }
1443
1444 if (bp->b_flags & XBF_WRITE)
1445 xfs_buf_wait_unpin(bp);
1446
1447 /* clear the internal error state to avoid spurious errors */
1448 bp->b_io_error = 0;
1449
1450 /*
1451 * The caller's reference is released during I/O completion.
1452 * This occurs some time after the last b_io_remaining reference is
1453 * released, so after we drop our Io reference we have to have some
1454 * other reference to ensure the buffer doesn't go away from underneath
1455 * us. Take a direct reference to ensure we have safe access to the
1456 * buffer until we are finished with it.
1457 */
1458 xfs_buf_hold(bp);
1459
1460 /*
1461 * Set the count to 1 initially, this will stop an I/O completion
1462 * callout which happens before we have started all the I/O from calling
1463 * xfs_buf_ioend too early.
1464 */
1465 atomic_set(&bp->b_io_remaining, 1);
1466 xfs_buf_ioacct_inc(bp);
1467 _xfs_buf_ioapply(bp);
1468
1469 /*
1470 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1471 * reference we took above. If we drop it to zero, run completion so
1472 * that we don't return to the caller with completion still pending.
1473 */
1474 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1475 if (bp->b_error)
1476 xfs_buf_ioend(bp);
1477 else
1478 xfs_buf_ioend_async(bp);
1479 }
1480
1481 xfs_buf_rele(bp);
1482 /* Note: it is not safe to reference bp now we've dropped our ref */
1483}
1484
1485/*
1486 * Synchronous buffer IO submission path, read or write.
1487 */
1488int
1489xfs_buf_submit_wait(
1490 struct xfs_buf *bp)
1491{
1492 int error;
1493
1494 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1495
1496 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1497
1498 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1499 xfs_buf_ioerror(bp, -EIO);
1500 xfs_buf_stale(bp);
1501 bp->b_flags &= ~XBF_DONE;
1502 return -EIO;
1503 }
1504
1505 if (bp->b_flags & XBF_WRITE)
1506 xfs_buf_wait_unpin(bp);
1507
1508 /* clear the internal error state to avoid spurious errors */
1509 bp->b_io_error = 0;
1510
1511 /*
1512 * For synchronous IO, the IO does not inherit the submitters reference
1513 * count, nor the buffer lock. Hence we cannot release the reference we
1514 * are about to take until we've waited for all IO completion to occur,
1515 * including any xfs_buf_ioend_async() work that may be pending.
1516 */
1517 xfs_buf_hold(bp);
1518
1519 /*
1520 * Set the count to 1 initially, this will stop an I/O completion
1521 * callout which happens before we have started all the I/O from calling
1522 * xfs_buf_ioend too early.
1523 */
1524 atomic_set(&bp->b_io_remaining, 1);
1525 _xfs_buf_ioapply(bp);
1526
1527 /*
1528 * make sure we run completion synchronously if it raced with us and is
1529 * already complete.
1530 */
1531 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1532 xfs_buf_ioend(bp);
1533
1534 /* wait for completion before gathering the error from the buffer */
1535 trace_xfs_buf_iowait(bp, _RET_IP_);
1536 wait_for_completion(&bp->b_iowait);
1537 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1538 error = bp->b_error;
1539
1540 /*
1541 * all done now, we can release the hold that keeps the buffer
1542 * referenced for the entire IO.
1543 */
1544 xfs_buf_rele(bp);
1545 return error;
1546}
1547
1548void *
1549xfs_buf_offset(
1550 struct xfs_buf *bp,
1551 size_t offset)
1552{
1553 struct page *page;
1554
1555 if (bp->b_addr)
1556 return bp->b_addr + offset;
1557
1558 offset += bp->b_offset;
1559 page = bp->b_pages[offset >> PAGE_SHIFT];
1560 return page_address(page) + (offset & (PAGE_SIZE-1));
1561}
1562
1563/*
1564 * Move data into or out of a buffer.
1565 */
1566void
1567xfs_buf_iomove(
1568 xfs_buf_t *bp, /* buffer to process */
1569 size_t boff, /* starting buffer offset */
1570 size_t bsize, /* length to copy */
1571 void *data, /* data address */
1572 xfs_buf_rw_t mode) /* read/write/zero flag */
1573{
1574 size_t bend;
1575
1576 bend = boff + bsize;
1577 while (boff < bend) {
1578 struct page *page;
1579 int page_index, page_offset, csize;
1580
1581 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1582 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1583 page = bp->b_pages[page_index];
1584 csize = min_t(size_t, PAGE_SIZE - page_offset,
1585 BBTOB(bp->b_io_length) - boff);
1586
1587 ASSERT((csize + page_offset) <= PAGE_SIZE);
1588
1589 switch (mode) {
1590 case XBRW_ZERO:
1591 memset(page_address(page) + page_offset, 0, csize);
1592 break;
1593 case XBRW_READ:
1594 memcpy(data, page_address(page) + page_offset, csize);
1595 break;
1596 case XBRW_WRITE:
1597 memcpy(page_address(page) + page_offset, data, csize);
1598 }
1599
1600 boff += csize;
1601 data += csize;
1602 }
1603}
1604
1605/*
1606 * Handling of buffer targets (buftargs).
1607 */
1608
1609/*
1610 * Wait for any bufs with callbacks that have been submitted but have not yet
1611 * returned. These buffers will have an elevated hold count, so wait on those
1612 * while freeing all the buffers only held by the LRU.
1613 */
1614static enum lru_status
1615xfs_buftarg_wait_rele(
1616 struct list_head *item,
1617 struct list_lru_one *lru,
1618 spinlock_t *lru_lock,
1619 void *arg)
1620
1621{
1622 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1623 struct list_head *dispose = arg;
1624
1625 if (atomic_read(&bp->b_hold) > 1) {
1626 /* need to wait, so skip it this pass */
1627 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1628 return LRU_SKIP;
1629 }
1630 if (!spin_trylock(&bp->b_lock))
1631 return LRU_SKIP;
1632
1633 /*
1634 * clear the LRU reference count so the buffer doesn't get
1635 * ignored in xfs_buf_rele().
1636 */
1637 atomic_set(&bp->b_lru_ref, 0);
1638 bp->b_state |= XFS_BSTATE_DISPOSE;
1639 list_lru_isolate_move(lru, item, dispose);
1640 spin_unlock(&bp->b_lock);
1641 return LRU_REMOVED;
1642}
1643
1644void
1645xfs_wait_buftarg(
1646 struct xfs_buftarg *btp)
1647{
1648 LIST_HEAD(dispose);
1649 int loop = 0;
1650
1651 /*
1652 * First wait on the buftarg I/O count for all in-flight buffers to be
1653 * released. This is critical as new buffers do not make the LRU until
1654 * they are released.
1655 *
1656 * Next, flush the buffer workqueue to ensure all completion processing
1657 * has finished. Just waiting on buffer locks is not sufficient for
1658 * async IO as the reference count held over IO is not released until
1659 * after the buffer lock is dropped. Hence we need to ensure here that
1660 * all reference counts have been dropped before we start walking the
1661 * LRU list.
1662 */
1663 while (percpu_counter_sum(&btp->bt_io_count))
1664 delay(100);
1665 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1666
1667 /* loop until there is nothing left on the lru list. */
1668 while (list_lru_count(&btp->bt_lru)) {
1669 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1670 &dispose, LONG_MAX);
1671
1672 while (!list_empty(&dispose)) {
1673 struct xfs_buf *bp;
1674 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1675 list_del_init(&bp->b_lru);
1676 if (bp->b_flags & XBF_WRITE_FAIL) {
1677 xfs_alert(btp->bt_mount,
1678"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1679 (long long)bp->b_bn);
1680 xfs_alert(btp->bt_mount,
1681"Please run xfs_repair to determine the extent of the problem.");
1682 }
1683 xfs_buf_rele(bp);
1684 }
1685 if (loop++ != 0)
1686 delay(100);
1687 }
1688}
1689
1690static enum lru_status
1691xfs_buftarg_isolate(
1692 struct list_head *item,
1693 struct list_lru_one *lru,
1694 spinlock_t *lru_lock,
1695 void *arg)
1696{
1697 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1698 struct list_head *dispose = arg;
1699
1700 /*
1701 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1702 * If we fail to get the lock, just skip it.
1703 */
1704 if (!spin_trylock(&bp->b_lock))
1705 return LRU_SKIP;
1706 /*
1707 * Decrement the b_lru_ref count unless the value is already
1708 * zero. If the value is already zero, we need to reclaim the
1709 * buffer, otherwise it gets another trip through the LRU.
1710 */
1711 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1712 spin_unlock(&bp->b_lock);
1713 return LRU_ROTATE;
1714 }
1715
1716 bp->b_state |= XFS_BSTATE_DISPOSE;
1717 list_lru_isolate_move(lru, item, dispose);
1718 spin_unlock(&bp->b_lock);
1719 return LRU_REMOVED;
1720}
1721
1722static unsigned long
1723xfs_buftarg_shrink_scan(
1724 struct shrinker *shrink,
1725 struct shrink_control *sc)
1726{
1727 struct xfs_buftarg *btp = container_of(shrink,
1728 struct xfs_buftarg, bt_shrinker);
1729 LIST_HEAD(dispose);
1730 unsigned long freed;
1731
1732 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1733 xfs_buftarg_isolate, &dispose);
1734
1735 while (!list_empty(&dispose)) {
1736 struct xfs_buf *bp;
1737 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1738 list_del_init(&bp->b_lru);
1739 xfs_buf_rele(bp);
1740 }
1741
1742 return freed;
1743}
1744
1745static unsigned long
1746xfs_buftarg_shrink_count(
1747 struct shrinker *shrink,
1748 struct shrink_control *sc)
1749{
1750 struct xfs_buftarg *btp = container_of(shrink,
1751 struct xfs_buftarg, bt_shrinker);
1752 return list_lru_shrink_count(&btp->bt_lru, sc);
1753}
1754
1755void
1756xfs_free_buftarg(
1757 struct xfs_buftarg *btp)
1758{
1759 unregister_shrinker(&btp->bt_shrinker);
1760 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1761 percpu_counter_destroy(&btp->bt_io_count);
1762 list_lru_destroy(&btp->bt_lru);
1763
1764 xfs_blkdev_issue_flush(btp);
1765
1766 kmem_free(btp);
1767}
1768
1769int
1770xfs_setsize_buftarg(
1771 xfs_buftarg_t *btp,
1772 unsigned int sectorsize)
1773{
1774 /* Set up metadata sector size info */
1775 btp->bt_meta_sectorsize = sectorsize;
1776 btp->bt_meta_sectormask = sectorsize - 1;
1777
1778 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1779 xfs_warn(btp->bt_mount,
1780 "Cannot set_blocksize to %u on device %pg",
1781 sectorsize, btp->bt_bdev);
1782 return -EINVAL;
1783 }
1784
1785 /* Set up device logical sector size mask */
1786 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1787 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1788
1789 return 0;
1790}
1791
1792/*
1793 * When allocating the initial buffer target we have not yet
1794 * read in the superblock, so don't know what sized sectors
1795 * are being used at this early stage. Play safe.
1796 */
1797STATIC int
1798xfs_setsize_buftarg_early(
1799 xfs_buftarg_t *btp,
1800 struct block_device *bdev)
1801{
1802 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1803}
1804
1805xfs_buftarg_t *
1806xfs_alloc_buftarg(
1807 struct xfs_mount *mp,
1808 struct block_device *bdev,
1809 struct dax_device *dax_dev)
1810{
1811 xfs_buftarg_t *btp;
1812
1813 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1814
1815 btp->bt_mount = mp;
1816 btp->bt_dev = bdev->bd_dev;
1817 btp->bt_bdev = bdev;
1818 btp->bt_daxdev = dax_dev;
1819
1820 if (xfs_setsize_buftarg_early(btp, bdev))
1821 goto error_free;
1822
1823 if (list_lru_init(&btp->bt_lru))
1824 goto error_free;
1825
1826 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1827 goto error_lru;
1828
1829 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1830 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1831 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1832 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1833 if (register_shrinker(&btp->bt_shrinker))
1834 goto error_pcpu;
1835 return btp;
1836
1837error_pcpu:
1838 percpu_counter_destroy(&btp->bt_io_count);
1839error_lru:
1840 list_lru_destroy(&btp->bt_lru);
1841error_free:
1842 kmem_free(btp);
1843 return NULL;
1844}
1845
1846/*
1847 * Cancel a delayed write list.
1848 *
1849 * Remove each buffer from the list, clear the delwri queue flag and drop the
1850 * associated buffer reference.
1851 */
1852void
1853xfs_buf_delwri_cancel(
1854 struct list_head *list)
1855{
1856 struct xfs_buf *bp;
1857
1858 while (!list_empty(list)) {
1859 bp = list_first_entry(list, struct xfs_buf, b_list);
1860
1861 xfs_buf_lock(bp);
1862 bp->b_flags &= ~_XBF_DELWRI_Q;
1863 list_del_init(&bp->b_list);
1864 xfs_buf_relse(bp);
1865 }
1866}
1867
1868/*
1869 * Add a buffer to the delayed write list.
1870 *
1871 * This queues a buffer for writeout if it hasn't already been. Note that
1872 * neither this routine nor the buffer list submission functions perform
1873 * any internal synchronization. It is expected that the lists are thread-local
1874 * to the callers.
1875 *
1876 * Returns true if we queued up the buffer, or false if it already had
1877 * been on the buffer list.
1878 */
1879bool
1880xfs_buf_delwri_queue(
1881 struct xfs_buf *bp,
1882 struct list_head *list)
1883{
1884 ASSERT(xfs_buf_islocked(bp));
1885 ASSERT(!(bp->b_flags & XBF_READ));
1886
1887 /*
1888 * If the buffer is already marked delwri it already is queued up
1889 * by someone else for imediate writeout. Just ignore it in that
1890 * case.
1891 */
1892 if (bp->b_flags & _XBF_DELWRI_Q) {
1893 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1894 return false;
1895 }
1896
1897 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1898
1899 /*
1900 * If a buffer gets written out synchronously or marked stale while it
1901 * is on a delwri list we lazily remove it. To do this, the other party
1902 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1903 * It remains referenced and on the list. In a rare corner case it
1904 * might get readded to a delwri list after the synchronous writeout, in
1905 * which case we need just need to re-add the flag here.
1906 */
1907 bp->b_flags |= _XBF_DELWRI_Q;
1908 if (list_empty(&bp->b_list)) {
1909 atomic_inc(&bp->b_hold);
1910 list_add_tail(&bp->b_list, list);
1911 }
1912
1913 return true;
1914}
1915
1916/*
1917 * Compare function is more complex than it needs to be because
1918 * the return value is only 32 bits and we are doing comparisons
1919 * on 64 bit values
1920 */
1921static int
1922xfs_buf_cmp(
1923 void *priv,
1924 struct list_head *a,
1925 struct list_head *b)
1926{
1927 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1928 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1929 xfs_daddr_t diff;
1930
1931 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1932 if (diff < 0)
1933 return -1;
1934 if (diff > 0)
1935 return 1;
1936 return 0;
1937}
1938
1939/*
1940 * submit buffers for write.
1941 *
1942 * When we have a large buffer list, we do not want to hold all the buffers
1943 * locked while we block on the request queue waiting for IO dispatch. To avoid
1944 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1945 * the lock hold times for lists which may contain thousands of objects.
1946 *
1947 * To do this, we sort the buffer list before we walk the list to lock and
1948 * submit buffers, and we plug and unplug around each group of buffers we
1949 * submit.
1950 */
1951static int
1952xfs_buf_delwri_submit_buffers(
1953 struct list_head *buffer_list,
1954 struct list_head *wait_list)
1955{
1956 struct xfs_buf *bp, *n;
1957 LIST_HEAD (submit_list);
1958 int pinned = 0;
1959 struct blk_plug plug;
1960
1961 list_sort(NULL, buffer_list, xfs_buf_cmp);
1962
1963 blk_start_plug(&plug);
1964 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1965 if (!wait_list) {
1966 if (xfs_buf_ispinned(bp)) {
1967 pinned++;
1968 continue;
1969 }
1970 if (!xfs_buf_trylock(bp))
1971 continue;
1972 } else {
1973 xfs_buf_lock(bp);
1974 }
1975
1976 /*
1977 * Someone else might have written the buffer synchronously or
1978 * marked it stale in the meantime. In that case only the
1979 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1980 * reference and remove it from the list here.
1981 */
1982 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1983 list_del_init(&bp->b_list);
1984 xfs_buf_relse(bp);
1985 continue;
1986 }
1987
1988 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1989
1990 /*
1991 * We do all IO submission async. This means if we need
1992 * to wait for IO completion we need to take an extra
1993 * reference so the buffer is still valid on the other
1994 * side. We need to move the buffer onto the io_list
1995 * at this point so the caller can still access it.
1996 */
1997 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1998 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1999 if (wait_list) {
2000 xfs_buf_hold(bp);
2001 list_move_tail(&bp->b_list, wait_list);
2002 } else
2003 list_del_init(&bp->b_list);
2004
2005 xfs_buf_submit(bp);
2006 }
2007 blk_finish_plug(&plug);
2008
2009 return pinned;
2010}
2011
2012/*
2013 * Write out a buffer list asynchronously.
2014 *
2015 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2016 * out and not wait for I/O completion on any of the buffers. This interface
2017 * is only safely useable for callers that can track I/O completion by higher
2018 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2019 * function.
2020 */
2021int
2022xfs_buf_delwri_submit_nowait(
2023 struct list_head *buffer_list)
2024{
2025 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2026}
2027
2028/*
2029 * Write out a buffer list synchronously.
2030 *
2031 * This will take the @buffer_list, write all buffers out and wait for I/O
2032 * completion on all of the buffers. @buffer_list is consumed by the function,
2033 * so callers must have some other way of tracking buffers if they require such
2034 * functionality.
2035 */
2036int
2037xfs_buf_delwri_submit(
2038 struct list_head *buffer_list)
2039{
2040 LIST_HEAD (wait_list);
2041 int error = 0, error2;
2042 struct xfs_buf *bp;
2043
2044 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2045
2046 /* Wait for IO to complete. */
2047 while (!list_empty(&wait_list)) {
2048 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2049
2050 list_del_init(&bp->b_list);
2051
2052 /* locking the buffer will wait for async IO completion. */
2053 xfs_buf_lock(bp);
2054 error2 = bp->b_error;
2055 xfs_buf_relse(bp);
2056 if (!error)
2057 error = error2;
2058 }
2059
2060 return error;
2061}
2062
2063/*
2064 * Push a single buffer on a delwri queue.
2065 *
2066 * The purpose of this function is to submit a single buffer of a delwri queue
2067 * and return with the buffer still on the original queue. The waiting delwri
2068 * buffer submission infrastructure guarantees transfer of the delwri queue
2069 * buffer reference to a temporary wait list. We reuse this infrastructure to
2070 * transfer the buffer back to the original queue.
2071 *
2072 * Note the buffer transitions from the queued state, to the submitted and wait
2073 * listed state and back to the queued state during this call. The buffer
2074 * locking and queue management logic between _delwri_pushbuf() and
2075 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2076 * before returning.
2077 */
2078int
2079xfs_buf_delwri_pushbuf(
2080 struct xfs_buf *bp,
2081 struct list_head *buffer_list)
2082{
2083 LIST_HEAD (submit_list);
2084 int error;
2085
2086 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2087
2088 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2089
2090 /*
2091 * Isolate the buffer to a new local list so we can submit it for I/O
2092 * independently from the rest of the original list.
2093 */
2094 xfs_buf_lock(bp);
2095 list_move(&bp->b_list, &submit_list);
2096 xfs_buf_unlock(bp);
2097
2098 /*
2099 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2100 * the buffer on the wait list with an associated reference. Rather than
2101 * bounce the buffer from a local wait list back to the original list
2102 * after I/O completion, reuse the original list as the wait list.
2103 */
2104 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2105
2106 /*
2107 * The buffer is now under I/O and wait listed as during typical delwri
2108 * submission. Lock the buffer to wait for I/O completion. Rather than
2109 * remove the buffer from the wait list and release the reference, we
2110 * want to return with the buffer queued to the original list. The
2111 * buffer already sits on the original list with a wait list reference,
2112 * however. If we let the queue inherit that wait list reference, all we
2113 * need to do is reset the DELWRI_Q flag.
2114 */
2115 xfs_buf_lock(bp);
2116 error = bp->b_error;
2117 bp->b_flags |= _XBF_DELWRI_Q;
2118 xfs_buf_unlock(bp);
2119
2120 return error;
2121}
2122
2123int __init
2124xfs_buf_init(void)
2125{
2126 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2127 KM_ZONE_HWALIGN, NULL);
2128 if (!xfs_buf_zone)
2129 goto out;
2130
2131 return 0;
2132
2133 out:
2134 return -ENOMEM;
2135}
2136
2137void
2138xfs_buf_terminate(void)
2139{
2140 kmem_zone_destroy(xfs_buf_zone);
2141}
2142
2143void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2144{
2145 /*
2146 * Set the lru reference count to 0 based on the error injection tag.
2147 * This allows userspace to disrupt buffer caching for debug/testing
2148 * purposes.
2149 */
2150 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2151 XFS_ERRTAG_BUF_LRU_REF))
2152 lru_ref = 0;
2153
2154 atomic_set(&bp->b_lru_ref, lru_ref);
2155}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_trace.h"
15#include "xfs_log.h"
16#include "xfs_log_recover.h"
17#include "xfs_trans.h"
18#include "xfs_buf_item.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_ag.h"
22
23static kmem_zone_t *xfs_buf_zone;
24
25/*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
43 * xfs_buftarg_drain_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
51
52static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
53
54static inline int
55xfs_buf_submit(
56 struct xfs_buf *bp)
57{
58 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
59}
60
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE);
80}
81
82/*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95static inline void
96xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98{
99 if (bp->b_flags & XBF_NO_IOACCT)
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 spin_lock(&bp->b_lock);
104 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 percpu_counter_inc(&bp->b_target->bt_io_count);
107 }
108 spin_unlock(&bp->b_lock);
109}
110
111/*
112 * Clear the in-flight state on a buffer about to be released to the LRU or
113 * freed and unaccount from the buftarg.
114 */
115static inline void
116__xfs_buf_ioacct_dec(
117 struct xfs_buf *bp)
118{
119 lockdep_assert_held(&bp->b_lock);
120
121 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 percpu_counter_dec(&bp->b_target->bt_io_count);
124 }
125}
126
127static inline void
128xfs_buf_ioacct_dec(
129 struct xfs_buf *bp)
130{
131 spin_lock(&bp->b_lock);
132 __xfs_buf_ioacct_dec(bp);
133 spin_unlock(&bp->b_lock);
134}
135
136/*
137 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138 * b_lru_ref count so that the buffer is freed immediately when the buffer
139 * reference count falls to zero. If the buffer is already on the LRU, we need
140 * to remove the reference that LRU holds on the buffer.
141 *
142 * This prevents build-up of stale buffers on the LRU.
143 */
144void
145xfs_buf_stale(
146 struct xfs_buf *bp)
147{
148 ASSERT(xfs_buf_islocked(bp));
149
150 bp->b_flags |= XBF_STALE;
151
152 /*
153 * Clear the delwri status so that a delwri queue walker will not
154 * flush this buffer to disk now that it is stale. The delwri queue has
155 * a reference to the buffer, so this is safe to do.
156 */
157 bp->b_flags &= ~_XBF_DELWRI_Q;
158
159 /*
160 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 * could reset b_flags. There is no guarantee that the buffer is
162 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 * status now to preserve accounting consistency.
164 */
165 spin_lock(&bp->b_lock);
166 __xfs_buf_ioacct_dec(bp);
167
168 atomic_set(&bp->b_lru_ref, 0);
169 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
170 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 atomic_dec(&bp->b_hold);
172
173 ASSERT(atomic_read(&bp->b_hold) >= 1);
174 spin_unlock(&bp->b_lock);
175}
176
177static int
178xfs_buf_get_maps(
179 struct xfs_buf *bp,
180 int map_count)
181{
182 ASSERT(bp->b_maps == NULL);
183 bp->b_map_count = map_count;
184
185 if (map_count == 1) {
186 bp->b_maps = &bp->__b_map;
187 return 0;
188 }
189
190 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
191 KM_NOFS);
192 if (!bp->b_maps)
193 return -ENOMEM;
194 return 0;
195}
196
197/*
198 * Frees b_pages if it was allocated.
199 */
200static void
201xfs_buf_free_maps(
202 struct xfs_buf *bp)
203{
204 if (bp->b_maps != &bp->__b_map) {
205 kmem_free(bp->b_maps);
206 bp->b_maps = NULL;
207 }
208}
209
210static int
211_xfs_buf_alloc(
212 struct xfs_buftarg *target,
213 struct xfs_buf_map *map,
214 int nmaps,
215 xfs_buf_flags_t flags,
216 struct xfs_buf **bpp)
217{
218 struct xfs_buf *bp;
219 int error;
220 int i;
221
222 *bpp = NULL;
223 bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
224
225 /*
226 * We don't want certain flags to appear in b_flags unless they are
227 * specifically set by later operations on the buffer.
228 */
229 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
230
231 atomic_set(&bp->b_hold, 1);
232 atomic_set(&bp->b_lru_ref, 1);
233 init_completion(&bp->b_iowait);
234 INIT_LIST_HEAD(&bp->b_lru);
235 INIT_LIST_HEAD(&bp->b_list);
236 INIT_LIST_HEAD(&bp->b_li_list);
237 sema_init(&bp->b_sema, 0); /* held, no waiters */
238 spin_lock_init(&bp->b_lock);
239 bp->b_target = target;
240 bp->b_mount = target->bt_mount;
241 bp->b_flags = flags;
242
243 /*
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
247 */
248 error = xfs_buf_get_maps(bp, nmaps);
249 if (error) {
250 kmem_cache_free(xfs_buf_zone, bp);
251 return error;
252 }
253
254 bp->b_bn = map[0].bm_bn;
255 bp->b_length = 0;
256 for (i = 0; i < nmaps; i++) {
257 bp->b_maps[i].bm_bn = map[i].bm_bn;
258 bp->b_maps[i].bm_len = map[i].bm_len;
259 bp->b_length += map[i].bm_len;
260 }
261
262 atomic_set(&bp->b_pin_count, 0);
263 init_waitqueue_head(&bp->b_waiters);
264
265 XFS_STATS_INC(bp->b_mount, xb_create);
266 trace_xfs_buf_init(bp, _RET_IP_);
267
268 *bpp = bp;
269 return 0;
270}
271
272static void
273xfs_buf_free_pages(
274 struct xfs_buf *bp)
275{
276 uint i;
277
278 ASSERT(bp->b_flags & _XBF_PAGES);
279
280 if (xfs_buf_is_vmapped(bp))
281 vm_unmap_ram(bp->b_addr, bp->b_page_count);
282
283 for (i = 0; i < bp->b_page_count; i++) {
284 if (bp->b_pages[i])
285 __free_page(bp->b_pages[i]);
286 }
287 if (current->reclaim_state)
288 current->reclaim_state->reclaimed_slab += bp->b_page_count;
289
290 if (bp->b_pages != bp->b_page_array)
291 kmem_free(bp->b_pages);
292 bp->b_pages = NULL;
293 bp->b_flags &= ~_XBF_PAGES;
294}
295
296static void
297xfs_buf_free(
298 struct xfs_buf *bp)
299{
300 trace_xfs_buf_free(bp, _RET_IP_);
301
302 ASSERT(list_empty(&bp->b_lru));
303
304 if (bp->b_flags & _XBF_PAGES)
305 xfs_buf_free_pages(bp);
306 else if (bp->b_flags & _XBF_KMEM)
307 kmem_free(bp->b_addr);
308
309 xfs_buf_free_maps(bp);
310 kmem_cache_free(xfs_buf_zone, bp);
311}
312
313static int
314xfs_buf_alloc_kmem(
315 struct xfs_buf *bp,
316 xfs_buf_flags_t flags)
317{
318 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
319 xfs_km_flags_t kmflag_mask = KM_NOFS;
320 size_t size = BBTOB(bp->b_length);
321
322 /* Assure zeroed buffer for non-read cases. */
323 if (!(flags & XBF_READ))
324 kmflag_mask |= KM_ZERO;
325
326 bp->b_addr = kmem_alloc_io(size, align_mask, kmflag_mask);
327 if (!bp->b_addr)
328 return -ENOMEM;
329
330 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
331 ((unsigned long)bp->b_addr & PAGE_MASK)) {
332 /* b_addr spans two pages - use alloc_page instead */
333 kmem_free(bp->b_addr);
334 bp->b_addr = NULL;
335 return -ENOMEM;
336 }
337 bp->b_offset = offset_in_page(bp->b_addr);
338 bp->b_pages = bp->b_page_array;
339 bp->b_pages[0] = kmem_to_page(bp->b_addr);
340 bp->b_page_count = 1;
341 bp->b_flags |= _XBF_KMEM;
342 return 0;
343}
344
345static int
346xfs_buf_alloc_pages(
347 struct xfs_buf *bp,
348 xfs_buf_flags_t flags)
349{
350 gfp_t gfp_mask = __GFP_NOWARN;
351 long filled = 0;
352
353 if (flags & XBF_READ_AHEAD)
354 gfp_mask |= __GFP_NORETRY;
355 else
356 gfp_mask |= GFP_NOFS;
357
358 /* Make sure that we have a page list */
359 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
360 if (bp->b_page_count <= XB_PAGES) {
361 bp->b_pages = bp->b_page_array;
362 } else {
363 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
364 gfp_mask);
365 if (!bp->b_pages)
366 return -ENOMEM;
367 }
368 bp->b_flags |= _XBF_PAGES;
369
370 /* Assure zeroed buffer for non-read cases. */
371 if (!(flags & XBF_READ))
372 gfp_mask |= __GFP_ZERO;
373
374 /*
375 * Bulk filling of pages can take multiple calls. Not filling the entire
376 * array is not an allocation failure, so don't back off if we get at
377 * least one extra page.
378 */
379 for (;;) {
380 long last = filled;
381
382 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
383 bp->b_pages);
384 if (filled == bp->b_page_count) {
385 XFS_STATS_INC(bp->b_mount, xb_page_found);
386 break;
387 }
388
389 if (filled != last)
390 continue;
391
392 if (flags & XBF_READ_AHEAD) {
393 xfs_buf_free_pages(bp);
394 return -ENOMEM;
395 }
396
397 XFS_STATS_INC(bp->b_mount, xb_page_retries);
398 congestion_wait(BLK_RW_ASYNC, HZ / 50);
399 }
400 return 0;
401}
402
403/*
404 * Map buffer into kernel address-space if necessary.
405 */
406STATIC int
407_xfs_buf_map_pages(
408 struct xfs_buf *bp,
409 uint flags)
410{
411 ASSERT(bp->b_flags & _XBF_PAGES);
412 if (bp->b_page_count == 1) {
413 /* A single page buffer is always mappable */
414 bp->b_addr = page_address(bp->b_pages[0]);
415 } else if (flags & XBF_UNMAPPED) {
416 bp->b_addr = NULL;
417 } else {
418 int retried = 0;
419 unsigned nofs_flag;
420
421 /*
422 * vm_map_ram() will allocate auxiliary structures (e.g.
423 * pagetables) with GFP_KERNEL, yet we are likely to be under
424 * GFP_NOFS context here. Hence we need to tell memory reclaim
425 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
426 * memory reclaim re-entering the filesystem here and
427 * potentially deadlocking.
428 */
429 nofs_flag = memalloc_nofs_save();
430 do {
431 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
432 -1);
433 if (bp->b_addr)
434 break;
435 vm_unmap_aliases();
436 } while (retried++ <= 1);
437 memalloc_nofs_restore(nofs_flag);
438
439 if (!bp->b_addr)
440 return -ENOMEM;
441 }
442
443 return 0;
444}
445
446/*
447 * Finding and Reading Buffers
448 */
449static int
450_xfs_buf_obj_cmp(
451 struct rhashtable_compare_arg *arg,
452 const void *obj)
453{
454 const struct xfs_buf_map *map = arg->key;
455 const struct xfs_buf *bp = obj;
456
457 /*
458 * The key hashing in the lookup path depends on the key being the
459 * first element of the compare_arg, make sure to assert this.
460 */
461 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
462
463 if (bp->b_bn != map->bm_bn)
464 return 1;
465
466 if (unlikely(bp->b_length != map->bm_len)) {
467 /*
468 * found a block number match. If the range doesn't
469 * match, the only way this is allowed is if the buffer
470 * in the cache is stale and the transaction that made
471 * it stale has not yet committed. i.e. we are
472 * reallocating a busy extent. Skip this buffer and
473 * continue searching for an exact match.
474 */
475 ASSERT(bp->b_flags & XBF_STALE);
476 return 1;
477 }
478 return 0;
479}
480
481static const struct rhashtable_params xfs_buf_hash_params = {
482 .min_size = 32, /* empty AGs have minimal footprint */
483 .nelem_hint = 16,
484 .key_len = sizeof(xfs_daddr_t),
485 .key_offset = offsetof(struct xfs_buf, b_bn),
486 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
487 .automatic_shrinking = true,
488 .obj_cmpfn = _xfs_buf_obj_cmp,
489};
490
491int
492xfs_buf_hash_init(
493 struct xfs_perag *pag)
494{
495 spin_lock_init(&pag->pag_buf_lock);
496 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
497}
498
499void
500xfs_buf_hash_destroy(
501 struct xfs_perag *pag)
502{
503 rhashtable_destroy(&pag->pag_buf_hash);
504}
505
506/*
507 * Look up a buffer in the buffer cache and return it referenced and locked
508 * in @found_bp.
509 *
510 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
511 * cache.
512 *
513 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
514 * -EAGAIN if we fail to lock it.
515 *
516 * Return values are:
517 * -EFSCORRUPTED if have been supplied with an invalid address
518 * -EAGAIN on trylock failure
519 * -ENOENT if we fail to find a match and @new_bp was NULL
520 * 0, with @found_bp:
521 * - @new_bp if we inserted it into the cache
522 * - the buffer we found and locked.
523 */
524static int
525xfs_buf_find(
526 struct xfs_buftarg *btp,
527 struct xfs_buf_map *map,
528 int nmaps,
529 xfs_buf_flags_t flags,
530 struct xfs_buf *new_bp,
531 struct xfs_buf **found_bp)
532{
533 struct xfs_perag *pag;
534 struct xfs_buf *bp;
535 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
536 xfs_daddr_t eofs;
537 int i;
538
539 *found_bp = NULL;
540
541 for (i = 0; i < nmaps; i++)
542 cmap.bm_len += map[i].bm_len;
543
544 /* Check for IOs smaller than the sector size / not sector aligned */
545 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
546 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
547
548 /*
549 * Corrupted block numbers can get through to here, unfortunately, so we
550 * have to check that the buffer falls within the filesystem bounds.
551 */
552 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
553 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
554 xfs_alert(btp->bt_mount,
555 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
556 __func__, cmap.bm_bn, eofs);
557 WARN_ON(1);
558 return -EFSCORRUPTED;
559 }
560
561 pag = xfs_perag_get(btp->bt_mount,
562 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
563
564 spin_lock(&pag->pag_buf_lock);
565 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
566 xfs_buf_hash_params);
567 if (bp) {
568 atomic_inc(&bp->b_hold);
569 goto found;
570 }
571
572 /* No match found */
573 if (!new_bp) {
574 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
575 spin_unlock(&pag->pag_buf_lock);
576 xfs_perag_put(pag);
577 return -ENOENT;
578 }
579
580 /* the buffer keeps the perag reference until it is freed */
581 new_bp->b_pag = pag;
582 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
583 xfs_buf_hash_params);
584 spin_unlock(&pag->pag_buf_lock);
585 *found_bp = new_bp;
586 return 0;
587
588found:
589 spin_unlock(&pag->pag_buf_lock);
590 xfs_perag_put(pag);
591
592 if (!xfs_buf_trylock(bp)) {
593 if (flags & XBF_TRYLOCK) {
594 xfs_buf_rele(bp);
595 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
596 return -EAGAIN;
597 }
598 xfs_buf_lock(bp);
599 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
600 }
601
602 /*
603 * if the buffer is stale, clear all the external state associated with
604 * it. We need to keep flags such as how we allocated the buffer memory
605 * intact here.
606 */
607 if (bp->b_flags & XBF_STALE) {
608 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
609 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
610 bp->b_ops = NULL;
611 }
612
613 trace_xfs_buf_find(bp, flags, _RET_IP_);
614 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
615 *found_bp = bp;
616 return 0;
617}
618
619struct xfs_buf *
620xfs_buf_incore(
621 struct xfs_buftarg *target,
622 xfs_daddr_t blkno,
623 size_t numblks,
624 xfs_buf_flags_t flags)
625{
626 struct xfs_buf *bp;
627 int error;
628 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
629
630 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
631 if (error)
632 return NULL;
633 return bp;
634}
635
636/*
637 * Assembles a buffer covering the specified range. The code is optimised for
638 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
639 * more hits than misses.
640 */
641int
642xfs_buf_get_map(
643 struct xfs_buftarg *target,
644 struct xfs_buf_map *map,
645 int nmaps,
646 xfs_buf_flags_t flags,
647 struct xfs_buf **bpp)
648{
649 struct xfs_buf *bp;
650 struct xfs_buf *new_bp;
651 int error;
652
653 *bpp = NULL;
654 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
655 if (!error)
656 goto found;
657 if (error != -ENOENT)
658 return error;
659
660 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
661 if (error)
662 return error;
663
664 /*
665 * For buffers that fit entirely within a single page, first attempt to
666 * allocate the memory from the heap to minimise memory usage. If we
667 * can't get heap memory for these small buffers, we fall back to using
668 * the page allocator.
669 */
670 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
671 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
672 error = xfs_buf_alloc_pages(new_bp, flags);
673 if (error)
674 goto out_free_buf;
675 }
676
677 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
678 if (error)
679 goto out_free_buf;
680
681 if (bp != new_bp)
682 xfs_buf_free(new_bp);
683
684found:
685 if (!bp->b_addr) {
686 error = _xfs_buf_map_pages(bp, flags);
687 if (unlikely(error)) {
688 xfs_warn_ratelimited(target->bt_mount,
689 "%s: failed to map %u pages", __func__,
690 bp->b_page_count);
691 xfs_buf_relse(bp);
692 return error;
693 }
694 }
695
696 /*
697 * Clear b_error if this is a lookup from a caller that doesn't expect
698 * valid data to be found in the buffer.
699 */
700 if (!(flags & XBF_READ))
701 xfs_buf_ioerror(bp, 0);
702
703 XFS_STATS_INC(target->bt_mount, xb_get);
704 trace_xfs_buf_get(bp, flags, _RET_IP_);
705 *bpp = bp;
706 return 0;
707out_free_buf:
708 xfs_buf_free(new_bp);
709 return error;
710}
711
712int
713_xfs_buf_read(
714 struct xfs_buf *bp,
715 xfs_buf_flags_t flags)
716{
717 ASSERT(!(flags & XBF_WRITE));
718 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
719
720 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
721 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
722
723 return xfs_buf_submit(bp);
724}
725
726/*
727 * Reverify a buffer found in cache without an attached ->b_ops.
728 *
729 * If the caller passed an ops structure and the buffer doesn't have ops
730 * assigned, set the ops and use it to verify the contents. If verification
731 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
732 * already in XBF_DONE state on entry.
733 *
734 * Under normal operations, every in-core buffer is verified on read I/O
735 * completion. There are two scenarios that can lead to in-core buffers without
736 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
737 * filesystem, though these buffers are purged at the end of recovery. The
738 * other is online repair, which intentionally reads with a NULL buffer ops to
739 * run several verifiers across an in-core buffer in order to establish buffer
740 * type. If repair can't establish that, the buffer will be left in memory
741 * with NULL buffer ops.
742 */
743int
744xfs_buf_reverify(
745 struct xfs_buf *bp,
746 const struct xfs_buf_ops *ops)
747{
748 ASSERT(bp->b_flags & XBF_DONE);
749 ASSERT(bp->b_error == 0);
750
751 if (!ops || bp->b_ops)
752 return 0;
753
754 bp->b_ops = ops;
755 bp->b_ops->verify_read(bp);
756 if (bp->b_error)
757 bp->b_flags &= ~XBF_DONE;
758 return bp->b_error;
759}
760
761int
762xfs_buf_read_map(
763 struct xfs_buftarg *target,
764 struct xfs_buf_map *map,
765 int nmaps,
766 xfs_buf_flags_t flags,
767 struct xfs_buf **bpp,
768 const struct xfs_buf_ops *ops,
769 xfs_failaddr_t fa)
770{
771 struct xfs_buf *bp;
772 int error;
773
774 flags |= XBF_READ;
775 *bpp = NULL;
776
777 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
778 if (error)
779 return error;
780
781 trace_xfs_buf_read(bp, flags, _RET_IP_);
782
783 if (!(bp->b_flags & XBF_DONE)) {
784 /* Initiate the buffer read and wait. */
785 XFS_STATS_INC(target->bt_mount, xb_get_read);
786 bp->b_ops = ops;
787 error = _xfs_buf_read(bp, flags);
788
789 /* Readahead iodone already dropped the buffer, so exit. */
790 if (flags & XBF_ASYNC)
791 return 0;
792 } else {
793 /* Buffer already read; all we need to do is check it. */
794 error = xfs_buf_reverify(bp, ops);
795
796 /* Readahead already finished; drop the buffer and exit. */
797 if (flags & XBF_ASYNC) {
798 xfs_buf_relse(bp);
799 return 0;
800 }
801
802 /* We do not want read in the flags */
803 bp->b_flags &= ~XBF_READ;
804 ASSERT(bp->b_ops != NULL || ops == NULL);
805 }
806
807 /*
808 * If we've had a read error, then the contents of the buffer are
809 * invalid and should not be used. To ensure that a followup read tries
810 * to pull the buffer from disk again, we clear the XBF_DONE flag and
811 * mark the buffer stale. This ensures that anyone who has a current
812 * reference to the buffer will interpret it's contents correctly and
813 * future cache lookups will also treat it as an empty, uninitialised
814 * buffer.
815 */
816 if (error) {
817 if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
818 xfs_buf_ioerror_alert(bp, fa);
819
820 bp->b_flags &= ~XBF_DONE;
821 xfs_buf_stale(bp);
822 xfs_buf_relse(bp);
823
824 /* bad CRC means corrupted metadata */
825 if (error == -EFSBADCRC)
826 error = -EFSCORRUPTED;
827 return error;
828 }
829
830 *bpp = bp;
831 return 0;
832}
833
834/*
835 * If we are not low on memory then do the readahead in a deadlock
836 * safe manner.
837 */
838void
839xfs_buf_readahead_map(
840 struct xfs_buftarg *target,
841 struct xfs_buf_map *map,
842 int nmaps,
843 const struct xfs_buf_ops *ops)
844{
845 struct xfs_buf *bp;
846
847 if (bdi_read_congested(target->bt_bdev->bd_bdi))
848 return;
849
850 xfs_buf_read_map(target, map, nmaps,
851 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
852 __this_address);
853}
854
855/*
856 * Read an uncached buffer from disk. Allocates and returns a locked
857 * buffer containing the disk contents or nothing.
858 */
859int
860xfs_buf_read_uncached(
861 struct xfs_buftarg *target,
862 xfs_daddr_t daddr,
863 size_t numblks,
864 int flags,
865 struct xfs_buf **bpp,
866 const struct xfs_buf_ops *ops)
867{
868 struct xfs_buf *bp;
869 int error;
870
871 *bpp = NULL;
872
873 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
874 if (error)
875 return error;
876
877 /* set up the buffer for a read IO */
878 ASSERT(bp->b_map_count == 1);
879 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
880 bp->b_maps[0].bm_bn = daddr;
881 bp->b_flags |= XBF_READ;
882 bp->b_ops = ops;
883
884 xfs_buf_submit(bp);
885 if (bp->b_error) {
886 error = bp->b_error;
887 xfs_buf_relse(bp);
888 return error;
889 }
890
891 *bpp = bp;
892 return 0;
893}
894
895int
896xfs_buf_get_uncached(
897 struct xfs_buftarg *target,
898 size_t numblks,
899 int flags,
900 struct xfs_buf **bpp)
901{
902 int error;
903 struct xfs_buf *bp;
904 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
905
906 *bpp = NULL;
907
908 /* flags might contain irrelevant bits, pass only what we care about */
909 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
910 if (error)
911 return error;
912
913 error = xfs_buf_alloc_pages(bp, flags);
914 if (error)
915 goto fail_free_buf;
916
917 error = _xfs_buf_map_pages(bp, 0);
918 if (unlikely(error)) {
919 xfs_warn(target->bt_mount,
920 "%s: failed to map pages", __func__);
921 goto fail_free_buf;
922 }
923
924 trace_xfs_buf_get_uncached(bp, _RET_IP_);
925 *bpp = bp;
926 return 0;
927
928fail_free_buf:
929 xfs_buf_free(bp);
930 return error;
931}
932
933/*
934 * Increment reference count on buffer, to hold the buffer concurrently
935 * with another thread which may release (free) the buffer asynchronously.
936 * Must hold the buffer already to call this function.
937 */
938void
939xfs_buf_hold(
940 struct xfs_buf *bp)
941{
942 trace_xfs_buf_hold(bp, _RET_IP_);
943 atomic_inc(&bp->b_hold);
944}
945
946/*
947 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
948 * placed on LRU or freed (depending on b_lru_ref).
949 */
950void
951xfs_buf_rele(
952 struct xfs_buf *bp)
953{
954 struct xfs_perag *pag = bp->b_pag;
955 bool release;
956 bool freebuf = false;
957
958 trace_xfs_buf_rele(bp, _RET_IP_);
959
960 if (!pag) {
961 ASSERT(list_empty(&bp->b_lru));
962 if (atomic_dec_and_test(&bp->b_hold)) {
963 xfs_buf_ioacct_dec(bp);
964 xfs_buf_free(bp);
965 }
966 return;
967 }
968
969 ASSERT(atomic_read(&bp->b_hold) > 0);
970
971 /*
972 * We grab the b_lock here first to serialise racing xfs_buf_rele()
973 * calls. The pag_buf_lock being taken on the last reference only
974 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
975 * to last reference we drop here is not serialised against the last
976 * reference until we take bp->b_lock. Hence if we don't grab b_lock
977 * first, the last "release" reference can win the race to the lock and
978 * free the buffer before the second-to-last reference is processed,
979 * leading to a use-after-free scenario.
980 */
981 spin_lock(&bp->b_lock);
982 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
983 if (!release) {
984 /*
985 * Drop the in-flight state if the buffer is already on the LRU
986 * and it holds the only reference. This is racy because we
987 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
988 * ensures the decrement occurs only once per-buf.
989 */
990 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
991 __xfs_buf_ioacct_dec(bp);
992 goto out_unlock;
993 }
994
995 /* the last reference has been dropped ... */
996 __xfs_buf_ioacct_dec(bp);
997 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
998 /*
999 * If the buffer is added to the LRU take a new reference to the
1000 * buffer for the LRU and clear the (now stale) dispose list
1001 * state flag
1002 */
1003 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1004 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1005 atomic_inc(&bp->b_hold);
1006 }
1007 spin_unlock(&pag->pag_buf_lock);
1008 } else {
1009 /*
1010 * most of the time buffers will already be removed from the
1011 * LRU, so optimise that case by checking for the
1012 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1013 * was on was the disposal list
1014 */
1015 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1016 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1017 } else {
1018 ASSERT(list_empty(&bp->b_lru));
1019 }
1020
1021 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1022 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1023 xfs_buf_hash_params);
1024 spin_unlock(&pag->pag_buf_lock);
1025 xfs_perag_put(pag);
1026 freebuf = true;
1027 }
1028
1029out_unlock:
1030 spin_unlock(&bp->b_lock);
1031
1032 if (freebuf)
1033 xfs_buf_free(bp);
1034}
1035
1036
1037/*
1038 * Lock a buffer object, if it is not already locked.
1039 *
1040 * If we come across a stale, pinned, locked buffer, we know that we are
1041 * being asked to lock a buffer that has been reallocated. Because it is
1042 * pinned, we know that the log has not been pushed to disk and hence it
1043 * will still be locked. Rather than continuing to have trylock attempts
1044 * fail until someone else pushes the log, push it ourselves before
1045 * returning. This means that the xfsaild will not get stuck trying
1046 * to push on stale inode buffers.
1047 */
1048int
1049xfs_buf_trylock(
1050 struct xfs_buf *bp)
1051{
1052 int locked;
1053
1054 locked = down_trylock(&bp->b_sema) == 0;
1055 if (locked)
1056 trace_xfs_buf_trylock(bp, _RET_IP_);
1057 else
1058 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1059 return locked;
1060}
1061
1062/*
1063 * Lock a buffer object.
1064 *
1065 * If we come across a stale, pinned, locked buffer, we know that we
1066 * are being asked to lock a buffer that has been reallocated. Because
1067 * it is pinned, we know that the log has not been pushed to disk and
1068 * hence it will still be locked. Rather than sleeping until someone
1069 * else pushes the log, push it ourselves before trying to get the lock.
1070 */
1071void
1072xfs_buf_lock(
1073 struct xfs_buf *bp)
1074{
1075 trace_xfs_buf_lock(bp, _RET_IP_);
1076
1077 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1078 xfs_log_force(bp->b_mount, 0);
1079 down(&bp->b_sema);
1080
1081 trace_xfs_buf_lock_done(bp, _RET_IP_);
1082}
1083
1084void
1085xfs_buf_unlock(
1086 struct xfs_buf *bp)
1087{
1088 ASSERT(xfs_buf_islocked(bp));
1089
1090 up(&bp->b_sema);
1091 trace_xfs_buf_unlock(bp, _RET_IP_);
1092}
1093
1094STATIC void
1095xfs_buf_wait_unpin(
1096 struct xfs_buf *bp)
1097{
1098 DECLARE_WAITQUEUE (wait, current);
1099
1100 if (atomic_read(&bp->b_pin_count) == 0)
1101 return;
1102
1103 add_wait_queue(&bp->b_waiters, &wait);
1104 for (;;) {
1105 set_current_state(TASK_UNINTERRUPTIBLE);
1106 if (atomic_read(&bp->b_pin_count) == 0)
1107 break;
1108 io_schedule();
1109 }
1110 remove_wait_queue(&bp->b_waiters, &wait);
1111 set_current_state(TASK_RUNNING);
1112}
1113
1114static void
1115xfs_buf_ioerror_alert_ratelimited(
1116 struct xfs_buf *bp)
1117{
1118 static unsigned long lasttime;
1119 static struct xfs_buftarg *lasttarg;
1120
1121 if (bp->b_target != lasttarg ||
1122 time_after(jiffies, (lasttime + 5*HZ))) {
1123 lasttime = jiffies;
1124 xfs_buf_ioerror_alert(bp, __this_address);
1125 }
1126 lasttarg = bp->b_target;
1127}
1128
1129/*
1130 * Account for this latest trip around the retry handler, and decide if
1131 * we've failed enough times to constitute a permanent failure.
1132 */
1133static bool
1134xfs_buf_ioerror_permanent(
1135 struct xfs_buf *bp,
1136 struct xfs_error_cfg *cfg)
1137{
1138 struct xfs_mount *mp = bp->b_mount;
1139
1140 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1141 ++bp->b_retries > cfg->max_retries)
1142 return true;
1143 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1144 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1145 return true;
1146
1147 /* At unmount we may treat errors differently */
1148 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1149 return true;
1150
1151 return false;
1152}
1153
1154/*
1155 * On a sync write or shutdown we just want to stale the buffer and let the
1156 * caller handle the error in bp->b_error appropriately.
1157 *
1158 * If the write was asynchronous then no one will be looking for the error. If
1159 * this is the first failure of this type, clear the error state and write the
1160 * buffer out again. This means we always retry an async write failure at least
1161 * once, but we also need to set the buffer up to behave correctly now for
1162 * repeated failures.
1163 *
1164 * If we get repeated async write failures, then we take action according to the
1165 * error configuration we have been set up to use.
1166 *
1167 * Returns true if this function took care of error handling and the caller must
1168 * not touch the buffer again. Return false if the caller should proceed with
1169 * normal I/O completion handling.
1170 */
1171static bool
1172xfs_buf_ioend_handle_error(
1173 struct xfs_buf *bp)
1174{
1175 struct xfs_mount *mp = bp->b_mount;
1176 struct xfs_error_cfg *cfg;
1177
1178 /*
1179 * If we've already decided to shutdown the filesystem because of I/O
1180 * errors, there's no point in giving this a retry.
1181 */
1182 if (XFS_FORCED_SHUTDOWN(mp))
1183 goto out_stale;
1184
1185 xfs_buf_ioerror_alert_ratelimited(bp);
1186
1187 /*
1188 * We're not going to bother about retrying this during recovery.
1189 * One strike!
1190 */
1191 if (bp->b_flags & _XBF_LOGRECOVERY) {
1192 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1193 return false;
1194 }
1195
1196 /*
1197 * Synchronous writes will have callers process the error.
1198 */
1199 if (!(bp->b_flags & XBF_ASYNC))
1200 goto out_stale;
1201
1202 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1203
1204 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1205 if (bp->b_last_error != bp->b_error ||
1206 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1207 bp->b_last_error = bp->b_error;
1208 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1209 !bp->b_first_retry_time)
1210 bp->b_first_retry_time = jiffies;
1211 goto resubmit;
1212 }
1213
1214 /*
1215 * Permanent error - we need to trigger a shutdown if we haven't already
1216 * to indicate that inconsistency will result from this action.
1217 */
1218 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1219 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1220 goto out_stale;
1221 }
1222
1223 /* Still considered a transient error. Caller will schedule retries. */
1224 if (bp->b_flags & _XBF_INODES)
1225 xfs_buf_inode_io_fail(bp);
1226 else if (bp->b_flags & _XBF_DQUOTS)
1227 xfs_buf_dquot_io_fail(bp);
1228 else
1229 ASSERT(list_empty(&bp->b_li_list));
1230 xfs_buf_ioerror(bp, 0);
1231 xfs_buf_relse(bp);
1232 return true;
1233
1234resubmit:
1235 xfs_buf_ioerror(bp, 0);
1236 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1237 xfs_buf_submit(bp);
1238 return true;
1239out_stale:
1240 xfs_buf_stale(bp);
1241 bp->b_flags |= XBF_DONE;
1242 bp->b_flags &= ~XBF_WRITE;
1243 trace_xfs_buf_error_relse(bp, _RET_IP_);
1244 return false;
1245}
1246
1247static void
1248xfs_buf_ioend(
1249 struct xfs_buf *bp)
1250{
1251 trace_xfs_buf_iodone(bp, _RET_IP_);
1252
1253 /*
1254 * Pull in IO completion errors now. We are guaranteed to be running
1255 * single threaded, so we don't need the lock to read b_io_error.
1256 */
1257 if (!bp->b_error && bp->b_io_error)
1258 xfs_buf_ioerror(bp, bp->b_io_error);
1259
1260 if (bp->b_flags & XBF_READ) {
1261 if (!bp->b_error && bp->b_ops)
1262 bp->b_ops->verify_read(bp);
1263 if (!bp->b_error)
1264 bp->b_flags |= XBF_DONE;
1265 } else {
1266 if (!bp->b_error) {
1267 bp->b_flags &= ~XBF_WRITE_FAIL;
1268 bp->b_flags |= XBF_DONE;
1269 }
1270
1271 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1272 return;
1273
1274 /* clear the retry state */
1275 bp->b_last_error = 0;
1276 bp->b_retries = 0;
1277 bp->b_first_retry_time = 0;
1278
1279 /*
1280 * Note that for things like remote attribute buffers, there may
1281 * not be a buffer log item here, so processing the buffer log
1282 * item must remain optional.
1283 */
1284 if (bp->b_log_item)
1285 xfs_buf_item_done(bp);
1286
1287 if (bp->b_flags & _XBF_INODES)
1288 xfs_buf_inode_iodone(bp);
1289 else if (bp->b_flags & _XBF_DQUOTS)
1290 xfs_buf_dquot_iodone(bp);
1291
1292 }
1293
1294 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1295 _XBF_LOGRECOVERY);
1296
1297 if (bp->b_flags & XBF_ASYNC)
1298 xfs_buf_relse(bp);
1299 else
1300 complete(&bp->b_iowait);
1301}
1302
1303static void
1304xfs_buf_ioend_work(
1305 struct work_struct *work)
1306{
1307 struct xfs_buf *bp =
1308 container_of(work, struct xfs_buf, b_ioend_work);
1309
1310 xfs_buf_ioend(bp);
1311}
1312
1313static void
1314xfs_buf_ioend_async(
1315 struct xfs_buf *bp)
1316{
1317 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1318 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1319}
1320
1321void
1322__xfs_buf_ioerror(
1323 struct xfs_buf *bp,
1324 int error,
1325 xfs_failaddr_t failaddr)
1326{
1327 ASSERT(error <= 0 && error >= -1000);
1328 bp->b_error = error;
1329 trace_xfs_buf_ioerror(bp, error, failaddr);
1330}
1331
1332void
1333xfs_buf_ioerror_alert(
1334 struct xfs_buf *bp,
1335 xfs_failaddr_t func)
1336{
1337 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1338 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1339 func, (uint64_t)XFS_BUF_ADDR(bp),
1340 bp->b_length, -bp->b_error);
1341}
1342
1343/*
1344 * To simulate an I/O failure, the buffer must be locked and held with at least
1345 * three references. The LRU reference is dropped by the stale call. The buf
1346 * item reference is dropped via ioend processing. The third reference is owned
1347 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1348 */
1349void
1350xfs_buf_ioend_fail(
1351 struct xfs_buf *bp)
1352{
1353 bp->b_flags &= ~XBF_DONE;
1354 xfs_buf_stale(bp);
1355 xfs_buf_ioerror(bp, -EIO);
1356 xfs_buf_ioend(bp);
1357}
1358
1359int
1360xfs_bwrite(
1361 struct xfs_buf *bp)
1362{
1363 int error;
1364
1365 ASSERT(xfs_buf_islocked(bp));
1366
1367 bp->b_flags |= XBF_WRITE;
1368 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1369 XBF_DONE);
1370
1371 error = xfs_buf_submit(bp);
1372 if (error)
1373 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1374 return error;
1375}
1376
1377static void
1378xfs_buf_bio_end_io(
1379 struct bio *bio)
1380{
1381 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1382
1383 if (!bio->bi_status &&
1384 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1385 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1386 bio->bi_status = BLK_STS_IOERR;
1387
1388 /*
1389 * don't overwrite existing errors - otherwise we can lose errors on
1390 * buffers that require multiple bios to complete.
1391 */
1392 if (bio->bi_status) {
1393 int error = blk_status_to_errno(bio->bi_status);
1394
1395 cmpxchg(&bp->b_io_error, 0, error);
1396 }
1397
1398 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1399 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1400
1401 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1402 xfs_buf_ioend_async(bp);
1403 bio_put(bio);
1404}
1405
1406static void
1407xfs_buf_ioapply_map(
1408 struct xfs_buf *bp,
1409 int map,
1410 int *buf_offset,
1411 int *count,
1412 int op)
1413{
1414 int page_index;
1415 unsigned int total_nr_pages = bp->b_page_count;
1416 int nr_pages;
1417 struct bio *bio;
1418 sector_t sector = bp->b_maps[map].bm_bn;
1419 int size;
1420 int offset;
1421
1422 /* skip the pages in the buffer before the start offset */
1423 page_index = 0;
1424 offset = *buf_offset;
1425 while (offset >= PAGE_SIZE) {
1426 page_index++;
1427 offset -= PAGE_SIZE;
1428 }
1429
1430 /*
1431 * Limit the IO size to the length of the current vector, and update the
1432 * remaining IO count for the next time around.
1433 */
1434 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1435 *count -= size;
1436 *buf_offset += size;
1437
1438next_chunk:
1439 atomic_inc(&bp->b_io_remaining);
1440 nr_pages = bio_max_segs(total_nr_pages);
1441
1442 bio = bio_alloc(GFP_NOIO, nr_pages);
1443 bio_set_dev(bio, bp->b_target->bt_bdev);
1444 bio->bi_iter.bi_sector = sector;
1445 bio->bi_end_io = xfs_buf_bio_end_io;
1446 bio->bi_private = bp;
1447 bio->bi_opf = op;
1448
1449 for (; size && nr_pages; nr_pages--, page_index++) {
1450 int rbytes, nbytes = PAGE_SIZE - offset;
1451
1452 if (nbytes > size)
1453 nbytes = size;
1454
1455 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1456 offset);
1457 if (rbytes < nbytes)
1458 break;
1459
1460 offset = 0;
1461 sector += BTOBB(nbytes);
1462 size -= nbytes;
1463 total_nr_pages--;
1464 }
1465
1466 if (likely(bio->bi_iter.bi_size)) {
1467 if (xfs_buf_is_vmapped(bp)) {
1468 flush_kernel_vmap_range(bp->b_addr,
1469 xfs_buf_vmap_len(bp));
1470 }
1471 submit_bio(bio);
1472 if (size)
1473 goto next_chunk;
1474 } else {
1475 /*
1476 * This is guaranteed not to be the last io reference count
1477 * because the caller (xfs_buf_submit) holds a count itself.
1478 */
1479 atomic_dec(&bp->b_io_remaining);
1480 xfs_buf_ioerror(bp, -EIO);
1481 bio_put(bio);
1482 }
1483
1484}
1485
1486STATIC void
1487_xfs_buf_ioapply(
1488 struct xfs_buf *bp)
1489{
1490 struct blk_plug plug;
1491 int op;
1492 int offset;
1493 int size;
1494 int i;
1495
1496 /*
1497 * Make sure we capture only current IO errors rather than stale errors
1498 * left over from previous use of the buffer (e.g. failed readahead).
1499 */
1500 bp->b_error = 0;
1501
1502 if (bp->b_flags & XBF_WRITE) {
1503 op = REQ_OP_WRITE;
1504
1505 /*
1506 * Run the write verifier callback function if it exists. If
1507 * this function fails it will mark the buffer with an error and
1508 * the IO should not be dispatched.
1509 */
1510 if (bp->b_ops) {
1511 bp->b_ops->verify_write(bp);
1512 if (bp->b_error) {
1513 xfs_force_shutdown(bp->b_mount,
1514 SHUTDOWN_CORRUPT_INCORE);
1515 return;
1516 }
1517 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1518 struct xfs_mount *mp = bp->b_mount;
1519
1520 /*
1521 * non-crc filesystems don't attach verifiers during
1522 * log recovery, so don't warn for such filesystems.
1523 */
1524 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1525 xfs_warn(mp,
1526 "%s: no buf ops on daddr 0x%llx len %d",
1527 __func__, bp->b_bn, bp->b_length);
1528 xfs_hex_dump(bp->b_addr,
1529 XFS_CORRUPTION_DUMP_LEN);
1530 dump_stack();
1531 }
1532 }
1533 } else {
1534 op = REQ_OP_READ;
1535 if (bp->b_flags & XBF_READ_AHEAD)
1536 op |= REQ_RAHEAD;
1537 }
1538
1539 /* we only use the buffer cache for meta-data */
1540 op |= REQ_META;
1541
1542 /*
1543 * Walk all the vectors issuing IO on them. Set up the initial offset
1544 * into the buffer and the desired IO size before we start -
1545 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1546 * subsequent call.
1547 */
1548 offset = bp->b_offset;
1549 size = BBTOB(bp->b_length);
1550 blk_start_plug(&plug);
1551 for (i = 0; i < bp->b_map_count; i++) {
1552 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1553 if (bp->b_error)
1554 break;
1555 if (size <= 0)
1556 break; /* all done */
1557 }
1558 blk_finish_plug(&plug);
1559}
1560
1561/*
1562 * Wait for I/O completion of a sync buffer and return the I/O error code.
1563 */
1564static int
1565xfs_buf_iowait(
1566 struct xfs_buf *bp)
1567{
1568 ASSERT(!(bp->b_flags & XBF_ASYNC));
1569
1570 trace_xfs_buf_iowait(bp, _RET_IP_);
1571 wait_for_completion(&bp->b_iowait);
1572 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1573
1574 return bp->b_error;
1575}
1576
1577/*
1578 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1579 * the buffer lock ownership and the current reference to the IO. It is not
1580 * safe to reference the buffer after a call to this function unless the caller
1581 * holds an additional reference itself.
1582 */
1583static int
1584__xfs_buf_submit(
1585 struct xfs_buf *bp,
1586 bool wait)
1587{
1588 int error = 0;
1589
1590 trace_xfs_buf_submit(bp, _RET_IP_);
1591
1592 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1593
1594 /* on shutdown we stale and complete the buffer immediately */
1595 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1596 xfs_buf_ioend_fail(bp);
1597 return -EIO;
1598 }
1599
1600 /*
1601 * Grab a reference so the buffer does not go away underneath us. For
1602 * async buffers, I/O completion drops the callers reference, which
1603 * could occur before submission returns.
1604 */
1605 xfs_buf_hold(bp);
1606
1607 if (bp->b_flags & XBF_WRITE)
1608 xfs_buf_wait_unpin(bp);
1609
1610 /* clear the internal error state to avoid spurious errors */
1611 bp->b_io_error = 0;
1612
1613 /*
1614 * Set the count to 1 initially, this will stop an I/O completion
1615 * callout which happens before we have started all the I/O from calling
1616 * xfs_buf_ioend too early.
1617 */
1618 atomic_set(&bp->b_io_remaining, 1);
1619 if (bp->b_flags & XBF_ASYNC)
1620 xfs_buf_ioacct_inc(bp);
1621 _xfs_buf_ioapply(bp);
1622
1623 /*
1624 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1625 * reference we took above. If we drop it to zero, run completion so
1626 * that we don't return to the caller with completion still pending.
1627 */
1628 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1629 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1630 xfs_buf_ioend(bp);
1631 else
1632 xfs_buf_ioend_async(bp);
1633 }
1634
1635 if (wait)
1636 error = xfs_buf_iowait(bp);
1637
1638 /*
1639 * Release the hold that keeps the buffer referenced for the entire
1640 * I/O. Note that if the buffer is async, it is not safe to reference
1641 * after this release.
1642 */
1643 xfs_buf_rele(bp);
1644 return error;
1645}
1646
1647void *
1648xfs_buf_offset(
1649 struct xfs_buf *bp,
1650 size_t offset)
1651{
1652 struct page *page;
1653
1654 if (bp->b_addr)
1655 return bp->b_addr + offset;
1656
1657 page = bp->b_pages[offset >> PAGE_SHIFT];
1658 return page_address(page) + (offset & (PAGE_SIZE-1));
1659}
1660
1661void
1662xfs_buf_zero(
1663 struct xfs_buf *bp,
1664 size_t boff,
1665 size_t bsize)
1666{
1667 size_t bend;
1668
1669 bend = boff + bsize;
1670 while (boff < bend) {
1671 struct page *page;
1672 int page_index, page_offset, csize;
1673
1674 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1675 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1676 page = bp->b_pages[page_index];
1677 csize = min_t(size_t, PAGE_SIZE - page_offset,
1678 BBTOB(bp->b_length) - boff);
1679
1680 ASSERT((csize + page_offset) <= PAGE_SIZE);
1681
1682 memset(page_address(page) + page_offset, 0, csize);
1683
1684 boff += csize;
1685 }
1686}
1687
1688/*
1689 * Log a message about and stale a buffer that a caller has decided is corrupt.
1690 *
1691 * This function should be called for the kinds of metadata corruption that
1692 * cannot be detect from a verifier, such as incorrect inter-block relationship
1693 * data. Do /not/ call this function from a verifier function.
1694 *
1695 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1696 * be marked stale, but b_error will not be set. The caller is responsible for
1697 * releasing the buffer or fixing it.
1698 */
1699void
1700__xfs_buf_mark_corrupt(
1701 struct xfs_buf *bp,
1702 xfs_failaddr_t fa)
1703{
1704 ASSERT(bp->b_flags & XBF_DONE);
1705
1706 xfs_buf_corruption_error(bp, fa);
1707 xfs_buf_stale(bp);
1708}
1709
1710/*
1711 * Handling of buffer targets (buftargs).
1712 */
1713
1714/*
1715 * Wait for any bufs with callbacks that have been submitted but have not yet
1716 * returned. These buffers will have an elevated hold count, so wait on those
1717 * while freeing all the buffers only held by the LRU.
1718 */
1719static enum lru_status
1720xfs_buftarg_drain_rele(
1721 struct list_head *item,
1722 struct list_lru_one *lru,
1723 spinlock_t *lru_lock,
1724 void *arg)
1725
1726{
1727 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1728 struct list_head *dispose = arg;
1729
1730 if (atomic_read(&bp->b_hold) > 1) {
1731 /* need to wait, so skip it this pass */
1732 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1733 return LRU_SKIP;
1734 }
1735 if (!spin_trylock(&bp->b_lock))
1736 return LRU_SKIP;
1737
1738 /*
1739 * clear the LRU reference count so the buffer doesn't get
1740 * ignored in xfs_buf_rele().
1741 */
1742 atomic_set(&bp->b_lru_ref, 0);
1743 bp->b_state |= XFS_BSTATE_DISPOSE;
1744 list_lru_isolate_move(lru, item, dispose);
1745 spin_unlock(&bp->b_lock);
1746 return LRU_REMOVED;
1747}
1748
1749/*
1750 * Wait for outstanding I/O on the buftarg to complete.
1751 */
1752void
1753xfs_buftarg_wait(
1754 struct xfs_buftarg *btp)
1755{
1756 /*
1757 * First wait on the buftarg I/O count for all in-flight buffers to be
1758 * released. This is critical as new buffers do not make the LRU until
1759 * they are released.
1760 *
1761 * Next, flush the buffer workqueue to ensure all completion processing
1762 * has finished. Just waiting on buffer locks is not sufficient for
1763 * async IO as the reference count held over IO is not released until
1764 * after the buffer lock is dropped. Hence we need to ensure here that
1765 * all reference counts have been dropped before we start walking the
1766 * LRU list.
1767 */
1768 while (percpu_counter_sum(&btp->bt_io_count))
1769 delay(100);
1770 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1771}
1772
1773void
1774xfs_buftarg_drain(
1775 struct xfs_buftarg *btp)
1776{
1777 LIST_HEAD(dispose);
1778 int loop = 0;
1779 bool write_fail = false;
1780
1781 xfs_buftarg_wait(btp);
1782
1783 /* loop until there is nothing left on the lru list. */
1784 while (list_lru_count(&btp->bt_lru)) {
1785 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1786 &dispose, LONG_MAX);
1787
1788 while (!list_empty(&dispose)) {
1789 struct xfs_buf *bp;
1790 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1791 list_del_init(&bp->b_lru);
1792 if (bp->b_flags & XBF_WRITE_FAIL) {
1793 write_fail = true;
1794 xfs_buf_alert_ratelimited(bp,
1795 "XFS: Corruption Alert",
1796"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1797 (long long)bp->b_bn);
1798 }
1799 xfs_buf_rele(bp);
1800 }
1801 if (loop++ != 0)
1802 delay(100);
1803 }
1804
1805 /*
1806 * If one or more failed buffers were freed, that means dirty metadata
1807 * was thrown away. This should only ever happen after I/O completion
1808 * handling has elevated I/O error(s) to permanent failures and shuts
1809 * down the fs.
1810 */
1811 if (write_fail) {
1812 ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount));
1813 xfs_alert(btp->bt_mount,
1814 "Please run xfs_repair to determine the extent of the problem.");
1815 }
1816}
1817
1818static enum lru_status
1819xfs_buftarg_isolate(
1820 struct list_head *item,
1821 struct list_lru_one *lru,
1822 spinlock_t *lru_lock,
1823 void *arg)
1824{
1825 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1826 struct list_head *dispose = arg;
1827
1828 /*
1829 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1830 * If we fail to get the lock, just skip it.
1831 */
1832 if (!spin_trylock(&bp->b_lock))
1833 return LRU_SKIP;
1834 /*
1835 * Decrement the b_lru_ref count unless the value is already
1836 * zero. If the value is already zero, we need to reclaim the
1837 * buffer, otherwise it gets another trip through the LRU.
1838 */
1839 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1840 spin_unlock(&bp->b_lock);
1841 return LRU_ROTATE;
1842 }
1843
1844 bp->b_state |= XFS_BSTATE_DISPOSE;
1845 list_lru_isolate_move(lru, item, dispose);
1846 spin_unlock(&bp->b_lock);
1847 return LRU_REMOVED;
1848}
1849
1850static unsigned long
1851xfs_buftarg_shrink_scan(
1852 struct shrinker *shrink,
1853 struct shrink_control *sc)
1854{
1855 struct xfs_buftarg *btp = container_of(shrink,
1856 struct xfs_buftarg, bt_shrinker);
1857 LIST_HEAD(dispose);
1858 unsigned long freed;
1859
1860 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1861 xfs_buftarg_isolate, &dispose);
1862
1863 while (!list_empty(&dispose)) {
1864 struct xfs_buf *bp;
1865 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1866 list_del_init(&bp->b_lru);
1867 xfs_buf_rele(bp);
1868 }
1869
1870 return freed;
1871}
1872
1873static unsigned long
1874xfs_buftarg_shrink_count(
1875 struct shrinker *shrink,
1876 struct shrink_control *sc)
1877{
1878 struct xfs_buftarg *btp = container_of(shrink,
1879 struct xfs_buftarg, bt_shrinker);
1880 return list_lru_shrink_count(&btp->bt_lru, sc);
1881}
1882
1883void
1884xfs_free_buftarg(
1885 struct xfs_buftarg *btp)
1886{
1887 unregister_shrinker(&btp->bt_shrinker);
1888 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1889 percpu_counter_destroy(&btp->bt_io_count);
1890 list_lru_destroy(&btp->bt_lru);
1891
1892 blkdev_issue_flush(btp->bt_bdev);
1893
1894 kmem_free(btp);
1895}
1896
1897int
1898xfs_setsize_buftarg(
1899 xfs_buftarg_t *btp,
1900 unsigned int sectorsize)
1901{
1902 /* Set up metadata sector size info */
1903 btp->bt_meta_sectorsize = sectorsize;
1904 btp->bt_meta_sectormask = sectorsize - 1;
1905
1906 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1907 xfs_warn(btp->bt_mount,
1908 "Cannot set_blocksize to %u on device %pg",
1909 sectorsize, btp->bt_bdev);
1910 return -EINVAL;
1911 }
1912
1913 /* Set up device logical sector size mask */
1914 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1915 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1916
1917 return 0;
1918}
1919
1920/*
1921 * When allocating the initial buffer target we have not yet
1922 * read in the superblock, so don't know what sized sectors
1923 * are being used at this early stage. Play safe.
1924 */
1925STATIC int
1926xfs_setsize_buftarg_early(
1927 xfs_buftarg_t *btp,
1928 struct block_device *bdev)
1929{
1930 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1931}
1932
1933xfs_buftarg_t *
1934xfs_alloc_buftarg(
1935 struct xfs_mount *mp,
1936 struct block_device *bdev,
1937 struct dax_device *dax_dev)
1938{
1939 xfs_buftarg_t *btp;
1940
1941 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1942
1943 btp->bt_mount = mp;
1944 btp->bt_dev = bdev->bd_dev;
1945 btp->bt_bdev = bdev;
1946 btp->bt_daxdev = dax_dev;
1947
1948 /*
1949 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1950 * per 30 seconds so as to not spam logs too much on repeated errors.
1951 */
1952 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1953 DEFAULT_RATELIMIT_BURST);
1954
1955 if (xfs_setsize_buftarg_early(btp, bdev))
1956 goto error_free;
1957
1958 if (list_lru_init(&btp->bt_lru))
1959 goto error_free;
1960
1961 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1962 goto error_lru;
1963
1964 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1965 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1966 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1967 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1968 if (register_shrinker(&btp->bt_shrinker))
1969 goto error_pcpu;
1970 return btp;
1971
1972error_pcpu:
1973 percpu_counter_destroy(&btp->bt_io_count);
1974error_lru:
1975 list_lru_destroy(&btp->bt_lru);
1976error_free:
1977 kmem_free(btp);
1978 return NULL;
1979}
1980
1981/*
1982 * Cancel a delayed write list.
1983 *
1984 * Remove each buffer from the list, clear the delwri queue flag and drop the
1985 * associated buffer reference.
1986 */
1987void
1988xfs_buf_delwri_cancel(
1989 struct list_head *list)
1990{
1991 struct xfs_buf *bp;
1992
1993 while (!list_empty(list)) {
1994 bp = list_first_entry(list, struct xfs_buf, b_list);
1995
1996 xfs_buf_lock(bp);
1997 bp->b_flags &= ~_XBF_DELWRI_Q;
1998 list_del_init(&bp->b_list);
1999 xfs_buf_relse(bp);
2000 }
2001}
2002
2003/*
2004 * Add a buffer to the delayed write list.
2005 *
2006 * This queues a buffer for writeout if it hasn't already been. Note that
2007 * neither this routine nor the buffer list submission functions perform
2008 * any internal synchronization. It is expected that the lists are thread-local
2009 * to the callers.
2010 *
2011 * Returns true if we queued up the buffer, or false if it already had
2012 * been on the buffer list.
2013 */
2014bool
2015xfs_buf_delwri_queue(
2016 struct xfs_buf *bp,
2017 struct list_head *list)
2018{
2019 ASSERT(xfs_buf_islocked(bp));
2020 ASSERT(!(bp->b_flags & XBF_READ));
2021
2022 /*
2023 * If the buffer is already marked delwri it already is queued up
2024 * by someone else for imediate writeout. Just ignore it in that
2025 * case.
2026 */
2027 if (bp->b_flags & _XBF_DELWRI_Q) {
2028 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2029 return false;
2030 }
2031
2032 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2033
2034 /*
2035 * If a buffer gets written out synchronously or marked stale while it
2036 * is on a delwri list we lazily remove it. To do this, the other party
2037 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2038 * It remains referenced and on the list. In a rare corner case it
2039 * might get readded to a delwri list after the synchronous writeout, in
2040 * which case we need just need to re-add the flag here.
2041 */
2042 bp->b_flags |= _XBF_DELWRI_Q;
2043 if (list_empty(&bp->b_list)) {
2044 atomic_inc(&bp->b_hold);
2045 list_add_tail(&bp->b_list, list);
2046 }
2047
2048 return true;
2049}
2050
2051/*
2052 * Compare function is more complex than it needs to be because
2053 * the return value is only 32 bits and we are doing comparisons
2054 * on 64 bit values
2055 */
2056static int
2057xfs_buf_cmp(
2058 void *priv,
2059 const struct list_head *a,
2060 const struct list_head *b)
2061{
2062 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2063 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2064 xfs_daddr_t diff;
2065
2066 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2067 if (diff < 0)
2068 return -1;
2069 if (diff > 0)
2070 return 1;
2071 return 0;
2072}
2073
2074/*
2075 * Submit buffers for write. If wait_list is specified, the buffers are
2076 * submitted using sync I/O and placed on the wait list such that the caller can
2077 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2078 * at I/O completion time. In either case, buffers remain locked until I/O
2079 * completes and the buffer is released from the queue.
2080 */
2081static int
2082xfs_buf_delwri_submit_buffers(
2083 struct list_head *buffer_list,
2084 struct list_head *wait_list)
2085{
2086 struct xfs_buf *bp, *n;
2087 int pinned = 0;
2088 struct blk_plug plug;
2089
2090 list_sort(NULL, buffer_list, xfs_buf_cmp);
2091
2092 blk_start_plug(&plug);
2093 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2094 if (!wait_list) {
2095 if (xfs_buf_ispinned(bp)) {
2096 pinned++;
2097 continue;
2098 }
2099 if (!xfs_buf_trylock(bp))
2100 continue;
2101 } else {
2102 xfs_buf_lock(bp);
2103 }
2104
2105 /*
2106 * Someone else might have written the buffer synchronously or
2107 * marked it stale in the meantime. In that case only the
2108 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2109 * reference and remove it from the list here.
2110 */
2111 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2112 list_del_init(&bp->b_list);
2113 xfs_buf_relse(bp);
2114 continue;
2115 }
2116
2117 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2118
2119 /*
2120 * If we have a wait list, each buffer (and associated delwri
2121 * queue reference) transfers to it and is submitted
2122 * synchronously. Otherwise, drop the buffer from the delwri
2123 * queue and submit async.
2124 */
2125 bp->b_flags &= ~_XBF_DELWRI_Q;
2126 bp->b_flags |= XBF_WRITE;
2127 if (wait_list) {
2128 bp->b_flags &= ~XBF_ASYNC;
2129 list_move_tail(&bp->b_list, wait_list);
2130 } else {
2131 bp->b_flags |= XBF_ASYNC;
2132 list_del_init(&bp->b_list);
2133 }
2134 __xfs_buf_submit(bp, false);
2135 }
2136 blk_finish_plug(&plug);
2137
2138 return pinned;
2139}
2140
2141/*
2142 * Write out a buffer list asynchronously.
2143 *
2144 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2145 * out and not wait for I/O completion on any of the buffers. This interface
2146 * is only safely useable for callers that can track I/O completion by higher
2147 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2148 * function.
2149 *
2150 * Note: this function will skip buffers it would block on, and in doing so
2151 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2152 * it is up to the caller to ensure that the buffer list is fully submitted or
2153 * cancelled appropriately when they are finished with the list. Failure to
2154 * cancel or resubmit the list until it is empty will result in leaked buffers
2155 * at unmount time.
2156 */
2157int
2158xfs_buf_delwri_submit_nowait(
2159 struct list_head *buffer_list)
2160{
2161 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2162}
2163
2164/*
2165 * Write out a buffer list synchronously.
2166 *
2167 * This will take the @buffer_list, write all buffers out and wait for I/O
2168 * completion on all of the buffers. @buffer_list is consumed by the function,
2169 * so callers must have some other way of tracking buffers if they require such
2170 * functionality.
2171 */
2172int
2173xfs_buf_delwri_submit(
2174 struct list_head *buffer_list)
2175{
2176 LIST_HEAD (wait_list);
2177 int error = 0, error2;
2178 struct xfs_buf *bp;
2179
2180 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2181
2182 /* Wait for IO to complete. */
2183 while (!list_empty(&wait_list)) {
2184 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2185
2186 list_del_init(&bp->b_list);
2187
2188 /*
2189 * Wait on the locked buffer, check for errors and unlock and
2190 * release the delwri queue reference.
2191 */
2192 error2 = xfs_buf_iowait(bp);
2193 xfs_buf_relse(bp);
2194 if (!error)
2195 error = error2;
2196 }
2197
2198 return error;
2199}
2200
2201/*
2202 * Push a single buffer on a delwri queue.
2203 *
2204 * The purpose of this function is to submit a single buffer of a delwri queue
2205 * and return with the buffer still on the original queue. The waiting delwri
2206 * buffer submission infrastructure guarantees transfer of the delwri queue
2207 * buffer reference to a temporary wait list. We reuse this infrastructure to
2208 * transfer the buffer back to the original queue.
2209 *
2210 * Note the buffer transitions from the queued state, to the submitted and wait
2211 * listed state and back to the queued state during this call. The buffer
2212 * locking and queue management logic between _delwri_pushbuf() and
2213 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2214 * before returning.
2215 */
2216int
2217xfs_buf_delwri_pushbuf(
2218 struct xfs_buf *bp,
2219 struct list_head *buffer_list)
2220{
2221 LIST_HEAD (submit_list);
2222 int error;
2223
2224 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2225
2226 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2227
2228 /*
2229 * Isolate the buffer to a new local list so we can submit it for I/O
2230 * independently from the rest of the original list.
2231 */
2232 xfs_buf_lock(bp);
2233 list_move(&bp->b_list, &submit_list);
2234 xfs_buf_unlock(bp);
2235
2236 /*
2237 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2238 * the buffer on the wait list with the original reference. Rather than
2239 * bounce the buffer from a local wait list back to the original list
2240 * after I/O completion, reuse the original list as the wait list.
2241 */
2242 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2243
2244 /*
2245 * The buffer is now locked, under I/O and wait listed on the original
2246 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2247 * return with the buffer unlocked and on the original queue.
2248 */
2249 error = xfs_buf_iowait(bp);
2250 bp->b_flags |= _XBF_DELWRI_Q;
2251 xfs_buf_unlock(bp);
2252
2253 return error;
2254}
2255
2256int __init
2257xfs_buf_init(void)
2258{
2259 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2260 SLAB_HWCACHE_ALIGN |
2261 SLAB_RECLAIM_ACCOUNT |
2262 SLAB_MEM_SPREAD,
2263 NULL);
2264 if (!xfs_buf_zone)
2265 goto out;
2266
2267 return 0;
2268
2269 out:
2270 return -ENOMEM;
2271}
2272
2273void
2274xfs_buf_terminate(void)
2275{
2276 kmem_cache_destroy(xfs_buf_zone);
2277}
2278
2279void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2280{
2281 /*
2282 * Set the lru reference count to 0 based on the error injection tag.
2283 * This allows userspace to disrupt buffer caching for debug/testing
2284 * purposes.
2285 */
2286 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2287 lru_ref = 0;
2288
2289 atomic_set(&bp->b_lru_ref, lru_ref);
2290}
2291
2292/*
2293 * Verify an on-disk magic value against the magic value specified in the
2294 * verifier structure. The verifier magic is in disk byte order so the caller is
2295 * expected to pass the value directly from disk.
2296 */
2297bool
2298xfs_verify_magic(
2299 struct xfs_buf *bp,
2300 __be32 dmagic)
2301{
2302 struct xfs_mount *mp = bp->b_mount;
2303 int idx;
2304
2305 idx = xfs_sb_version_hascrc(&mp->m_sb);
2306 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2307 return false;
2308 return dmagic == bp->b_ops->magic[idx];
2309}
2310/*
2311 * Verify an on-disk magic value against the magic value specified in the
2312 * verifier structure. The verifier magic is in disk byte order so the caller is
2313 * expected to pass the value directly from disk.
2314 */
2315bool
2316xfs_verify_magic16(
2317 struct xfs_buf *bp,
2318 __be16 dmagic)
2319{
2320 struct xfs_mount *mp = bp->b_mount;
2321 int idx;
2322
2323 idx = xfs_sb_version_hascrc(&mp->m_sb);
2324 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2325 return false;
2326 return dmagic == bp->b_ops->magic16[idx];
2327}