Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36#include <linux/sched/mm.h>
37
38#include "xfs_format.h"
39#include "xfs_log_format.h"
40#include "xfs_trans_resv.h"
41#include "xfs_sb.h"
42#include "xfs_mount.h"
43#include "xfs_trace.h"
44#include "xfs_log.h"
45#include "xfs_errortag.h"
46#include "xfs_error.h"
47
48static kmem_zone_t *xfs_buf_zone;
49
50#ifdef XFS_BUF_LOCK_TRACKING
51# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
52# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
53# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
54#else
55# define XB_SET_OWNER(bp) do { } while (0)
56# define XB_CLEAR_OWNER(bp) do { } while (0)
57# define XB_GET_OWNER(bp) do { } while (0)
58#endif
59
60#define xb_to_gfp(flags) \
61 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
62
63
64static inline int
65xfs_buf_is_vmapped(
66 struct xfs_buf *bp)
67{
68 /*
69 * Return true if the buffer is vmapped.
70 *
71 * b_addr is null if the buffer is not mapped, but the code is clever
72 * enough to know it doesn't have to map a single page, so the check has
73 * to be both for b_addr and bp->b_page_count > 1.
74 */
75 return bp->b_addr && bp->b_page_count > 1;
76}
77
78static inline int
79xfs_buf_vmap_len(
80 struct xfs_buf *bp)
81{
82 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83}
84
85/*
86 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
87 * this buffer. The count is incremented once per buffer (per hold cycle)
88 * because the corresponding decrement is deferred to buffer release. Buffers
89 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
90 * tracking adds unnecessary overhead. This is used for sychronization purposes
91 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
92 * in-flight buffers.
93 *
94 * Buffers that are never released (e.g., superblock, iclog buffers) must set
95 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
96 * never reaches zero and unmount hangs indefinitely.
97 */
98static inline void
99xfs_buf_ioacct_inc(
100 struct xfs_buf *bp)
101{
102 if (bp->b_flags & XBF_NO_IOACCT)
103 return;
104
105 ASSERT(bp->b_flags & XBF_ASYNC);
106 spin_lock(&bp->b_lock);
107 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
108 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
109 percpu_counter_inc(&bp->b_target->bt_io_count);
110 }
111 spin_unlock(&bp->b_lock);
112}
113
114/*
115 * Clear the in-flight state on a buffer about to be released to the LRU or
116 * freed and unaccount from the buftarg.
117 */
118static inline void
119__xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 lockdep_assert_held(&bp->b_lock);
123
124 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
125 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
126 percpu_counter_dec(&bp->b_target->bt_io_count);
127 }
128}
129
130static inline void
131xfs_buf_ioacct_dec(
132 struct xfs_buf *bp)
133{
134 spin_lock(&bp->b_lock);
135 __xfs_buf_ioacct_dec(bp);
136 spin_unlock(&bp->b_lock);
137}
138
139/*
140 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
141 * b_lru_ref count so that the buffer is freed immediately when the buffer
142 * reference count falls to zero. If the buffer is already on the LRU, we need
143 * to remove the reference that LRU holds on the buffer.
144 *
145 * This prevents build-up of stale buffers on the LRU.
146 */
147void
148xfs_buf_stale(
149 struct xfs_buf *bp)
150{
151 ASSERT(xfs_buf_islocked(bp));
152
153 bp->b_flags |= XBF_STALE;
154
155 /*
156 * Clear the delwri status so that a delwri queue walker will not
157 * flush this buffer to disk now that it is stale. The delwri queue has
158 * a reference to the buffer, so this is safe to do.
159 */
160 bp->b_flags &= ~_XBF_DELWRI_Q;
161
162 /*
163 * Once the buffer is marked stale and unlocked, a subsequent lookup
164 * could reset b_flags. There is no guarantee that the buffer is
165 * unaccounted (released to LRU) before that occurs. Drop in-flight
166 * status now to preserve accounting consistency.
167 */
168 spin_lock(&bp->b_lock);
169 __xfs_buf_ioacct_dec(bp);
170
171 atomic_set(&bp->b_lru_ref, 0);
172 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
173 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
174 atomic_dec(&bp->b_hold);
175
176 ASSERT(atomic_read(&bp->b_hold) >= 1);
177 spin_unlock(&bp->b_lock);
178}
179
180static int
181xfs_buf_get_maps(
182 struct xfs_buf *bp,
183 int map_count)
184{
185 ASSERT(bp->b_maps == NULL);
186 bp->b_map_count = map_count;
187
188 if (map_count == 1) {
189 bp->b_maps = &bp->__b_map;
190 return 0;
191 }
192
193 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
194 KM_NOFS);
195 if (!bp->b_maps)
196 return -ENOMEM;
197 return 0;
198}
199
200/*
201 * Frees b_pages if it was allocated.
202 */
203static void
204xfs_buf_free_maps(
205 struct xfs_buf *bp)
206{
207 if (bp->b_maps != &bp->__b_map) {
208 kmem_free(bp->b_maps);
209 bp->b_maps = NULL;
210 }
211}
212
213struct xfs_buf *
214_xfs_buf_alloc(
215 struct xfs_buftarg *target,
216 struct xfs_buf_map *map,
217 int nmaps,
218 xfs_buf_flags_t flags)
219{
220 struct xfs_buf *bp;
221 int error;
222 int i;
223
224 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
225 if (unlikely(!bp))
226 return NULL;
227
228 /*
229 * We don't want certain flags to appear in b_flags unless they are
230 * specifically set by later operations on the buffer.
231 */
232 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
233
234 atomic_set(&bp->b_hold, 1);
235 atomic_set(&bp->b_lru_ref, 1);
236 init_completion(&bp->b_iowait);
237 INIT_LIST_HEAD(&bp->b_lru);
238 INIT_LIST_HEAD(&bp->b_list);
239 INIT_LIST_HEAD(&bp->b_li_list);
240 sema_init(&bp->b_sema, 0); /* held, no waiters */
241 spin_lock_init(&bp->b_lock);
242 XB_SET_OWNER(bp);
243 bp->b_target = target;
244 bp->b_flags = flags;
245
246 /*
247 * Set length and io_length to the same value initially.
248 * I/O routines should use io_length, which will be the same in
249 * most cases but may be reset (e.g. XFS recovery).
250 */
251 error = xfs_buf_get_maps(bp, nmaps);
252 if (error) {
253 kmem_zone_free(xfs_buf_zone, bp);
254 return NULL;
255 }
256
257 bp->b_bn = map[0].bm_bn;
258 bp->b_length = 0;
259 for (i = 0; i < nmaps; i++) {
260 bp->b_maps[i].bm_bn = map[i].bm_bn;
261 bp->b_maps[i].bm_len = map[i].bm_len;
262 bp->b_length += map[i].bm_len;
263 }
264 bp->b_io_length = bp->b_length;
265
266 atomic_set(&bp->b_pin_count, 0);
267 init_waitqueue_head(&bp->b_waiters);
268
269 XFS_STATS_INC(target->bt_mount, xb_create);
270 trace_xfs_buf_init(bp, _RET_IP_);
271
272 return bp;
273}
274
275/*
276 * Allocate a page array capable of holding a specified number
277 * of pages, and point the page buf at it.
278 */
279STATIC int
280_xfs_buf_get_pages(
281 xfs_buf_t *bp,
282 int page_count)
283{
284 /* Make sure that we have a page list */
285 if (bp->b_pages == NULL) {
286 bp->b_page_count = page_count;
287 if (page_count <= XB_PAGES) {
288 bp->b_pages = bp->b_page_array;
289 } else {
290 bp->b_pages = kmem_alloc(sizeof(struct page *) *
291 page_count, KM_NOFS);
292 if (bp->b_pages == NULL)
293 return -ENOMEM;
294 }
295 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
296 }
297 return 0;
298}
299
300/*
301 * Frees b_pages if it was allocated.
302 */
303STATIC void
304_xfs_buf_free_pages(
305 xfs_buf_t *bp)
306{
307 if (bp->b_pages != bp->b_page_array) {
308 kmem_free(bp->b_pages);
309 bp->b_pages = NULL;
310 }
311}
312
313/*
314 * Releases the specified buffer.
315 *
316 * The modification state of any associated pages is left unchanged.
317 * The buffer must not be on any hash - use xfs_buf_rele instead for
318 * hashed and refcounted buffers
319 */
320void
321xfs_buf_free(
322 xfs_buf_t *bp)
323{
324 trace_xfs_buf_free(bp, _RET_IP_);
325
326 ASSERT(list_empty(&bp->b_lru));
327
328 if (bp->b_flags & _XBF_PAGES) {
329 uint i;
330
331 if (xfs_buf_is_vmapped(bp))
332 vm_unmap_ram(bp->b_addr - bp->b_offset,
333 bp->b_page_count);
334
335 for (i = 0; i < bp->b_page_count; i++) {
336 struct page *page = bp->b_pages[i];
337
338 __free_page(page);
339 }
340 } else if (bp->b_flags & _XBF_KMEM)
341 kmem_free(bp->b_addr);
342 _xfs_buf_free_pages(bp);
343 xfs_buf_free_maps(bp);
344 kmem_zone_free(xfs_buf_zone, bp);
345}
346
347/*
348 * Allocates all the pages for buffer in question and builds it's page list.
349 */
350STATIC int
351xfs_buf_allocate_memory(
352 xfs_buf_t *bp,
353 uint flags)
354{
355 size_t size;
356 size_t nbytes, offset;
357 gfp_t gfp_mask = xb_to_gfp(flags);
358 unsigned short page_count, i;
359 xfs_off_t start, end;
360 int error;
361
362 /*
363 * for buffers that are contained within a single page, just allocate
364 * the memory from the heap - there's no need for the complexity of
365 * page arrays to keep allocation down to order 0.
366 */
367 size = BBTOB(bp->b_length);
368 if (size < PAGE_SIZE) {
369 bp->b_addr = kmem_alloc(size, KM_NOFS);
370 if (!bp->b_addr) {
371 /* low memory - use alloc_page loop instead */
372 goto use_alloc_page;
373 }
374
375 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
376 ((unsigned long)bp->b_addr & PAGE_MASK)) {
377 /* b_addr spans two pages - use alloc_page instead */
378 kmem_free(bp->b_addr);
379 bp->b_addr = NULL;
380 goto use_alloc_page;
381 }
382 bp->b_offset = offset_in_page(bp->b_addr);
383 bp->b_pages = bp->b_page_array;
384 bp->b_pages[0] = virt_to_page(bp->b_addr);
385 bp->b_page_count = 1;
386 bp->b_flags |= _XBF_KMEM;
387 return 0;
388 }
389
390use_alloc_page:
391 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
392 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
393 >> PAGE_SHIFT;
394 page_count = end - start;
395 error = _xfs_buf_get_pages(bp, page_count);
396 if (unlikely(error))
397 return error;
398
399 offset = bp->b_offset;
400 bp->b_flags |= _XBF_PAGES;
401
402 for (i = 0; i < bp->b_page_count; i++) {
403 struct page *page;
404 uint retries = 0;
405retry:
406 page = alloc_page(gfp_mask);
407 if (unlikely(page == NULL)) {
408 if (flags & XBF_READ_AHEAD) {
409 bp->b_page_count = i;
410 error = -ENOMEM;
411 goto out_free_pages;
412 }
413
414 /*
415 * This could deadlock.
416 *
417 * But until all the XFS lowlevel code is revamped to
418 * handle buffer allocation failures we can't do much.
419 */
420 if (!(++retries % 100))
421 xfs_err(NULL,
422 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
423 current->comm, current->pid,
424 __func__, gfp_mask);
425
426 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
427 congestion_wait(BLK_RW_ASYNC, HZ/50);
428 goto retry;
429 }
430
431 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
432
433 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
434 size -= nbytes;
435 bp->b_pages[i] = page;
436 offset = 0;
437 }
438 return 0;
439
440out_free_pages:
441 for (i = 0; i < bp->b_page_count; i++)
442 __free_page(bp->b_pages[i]);
443 bp->b_flags &= ~_XBF_PAGES;
444 return error;
445}
446
447/*
448 * Map buffer into kernel address-space if necessary.
449 */
450STATIC int
451_xfs_buf_map_pages(
452 xfs_buf_t *bp,
453 uint flags)
454{
455 ASSERT(bp->b_flags & _XBF_PAGES);
456 if (bp->b_page_count == 1) {
457 /* A single page buffer is always mappable */
458 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
459 } else if (flags & XBF_UNMAPPED) {
460 bp->b_addr = NULL;
461 } else {
462 int retried = 0;
463 unsigned nofs_flag;
464
465 /*
466 * vm_map_ram() will allocate auxillary structures (e.g.
467 * pagetables) with GFP_KERNEL, yet we are likely to be under
468 * GFP_NOFS context here. Hence we need to tell memory reclaim
469 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
470 * memory reclaim re-entering the filesystem here and
471 * potentially deadlocking.
472 */
473 nofs_flag = memalloc_nofs_save();
474 do {
475 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
476 -1, PAGE_KERNEL);
477 if (bp->b_addr)
478 break;
479 vm_unmap_aliases();
480 } while (retried++ <= 1);
481 memalloc_nofs_restore(nofs_flag);
482
483 if (!bp->b_addr)
484 return -ENOMEM;
485 bp->b_addr += bp->b_offset;
486 }
487
488 return 0;
489}
490
491/*
492 * Finding and Reading Buffers
493 */
494static int
495_xfs_buf_obj_cmp(
496 struct rhashtable_compare_arg *arg,
497 const void *obj)
498{
499 const struct xfs_buf_map *map = arg->key;
500 const struct xfs_buf *bp = obj;
501
502 /*
503 * The key hashing in the lookup path depends on the key being the
504 * first element of the compare_arg, make sure to assert this.
505 */
506 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
507
508 if (bp->b_bn != map->bm_bn)
509 return 1;
510
511 if (unlikely(bp->b_length != map->bm_len)) {
512 /*
513 * found a block number match. If the range doesn't
514 * match, the only way this is allowed is if the buffer
515 * in the cache is stale and the transaction that made
516 * it stale has not yet committed. i.e. we are
517 * reallocating a busy extent. Skip this buffer and
518 * continue searching for an exact match.
519 */
520 ASSERT(bp->b_flags & XBF_STALE);
521 return 1;
522 }
523 return 0;
524}
525
526static const struct rhashtable_params xfs_buf_hash_params = {
527 .min_size = 32, /* empty AGs have minimal footprint */
528 .nelem_hint = 16,
529 .key_len = sizeof(xfs_daddr_t),
530 .key_offset = offsetof(struct xfs_buf, b_bn),
531 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
532 .automatic_shrinking = true,
533 .obj_cmpfn = _xfs_buf_obj_cmp,
534};
535
536int
537xfs_buf_hash_init(
538 struct xfs_perag *pag)
539{
540 spin_lock_init(&pag->pag_buf_lock);
541 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
542}
543
544void
545xfs_buf_hash_destroy(
546 struct xfs_perag *pag)
547{
548 rhashtable_destroy(&pag->pag_buf_hash);
549}
550
551/*
552 * Look up, and creates if absent, a lockable buffer for
553 * a given range of an inode. The buffer is returned
554 * locked. No I/O is implied by this call.
555 */
556xfs_buf_t *
557_xfs_buf_find(
558 struct xfs_buftarg *btp,
559 struct xfs_buf_map *map,
560 int nmaps,
561 xfs_buf_flags_t flags,
562 xfs_buf_t *new_bp)
563{
564 struct xfs_perag *pag;
565 xfs_buf_t *bp;
566 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
567 xfs_daddr_t eofs;
568 int i;
569
570 for (i = 0; i < nmaps; i++)
571 cmap.bm_len += map[i].bm_len;
572
573 /* Check for IOs smaller than the sector size / not sector aligned */
574 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
575 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
576
577 /*
578 * Corrupted block numbers can get through to here, unfortunately, so we
579 * have to check that the buffer falls within the filesystem bounds.
580 */
581 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
582 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
583 /*
584 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
585 * but none of the higher level infrastructure supports
586 * returning a specific error on buffer lookup failures.
587 */
588 xfs_alert(btp->bt_mount,
589 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
590 __func__, cmap.bm_bn, eofs);
591 WARN_ON(1);
592 return NULL;
593 }
594
595 pag = xfs_perag_get(btp->bt_mount,
596 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
597
598 spin_lock(&pag->pag_buf_lock);
599 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
600 xfs_buf_hash_params);
601 if (bp) {
602 atomic_inc(&bp->b_hold);
603 goto found;
604 }
605
606 /* No match found */
607 if (new_bp) {
608 /* the buffer keeps the perag reference until it is freed */
609 new_bp->b_pag = pag;
610 rhashtable_insert_fast(&pag->pag_buf_hash,
611 &new_bp->b_rhash_head,
612 xfs_buf_hash_params);
613 spin_unlock(&pag->pag_buf_lock);
614 } else {
615 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
616 spin_unlock(&pag->pag_buf_lock);
617 xfs_perag_put(pag);
618 }
619 return new_bp;
620
621found:
622 spin_unlock(&pag->pag_buf_lock);
623 xfs_perag_put(pag);
624
625 if (!xfs_buf_trylock(bp)) {
626 if (flags & XBF_TRYLOCK) {
627 xfs_buf_rele(bp);
628 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
629 return NULL;
630 }
631 xfs_buf_lock(bp);
632 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
633 }
634
635 /*
636 * if the buffer is stale, clear all the external state associated with
637 * it. We need to keep flags such as how we allocated the buffer memory
638 * intact here.
639 */
640 if (bp->b_flags & XBF_STALE) {
641 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
642 ASSERT(bp->b_iodone == NULL);
643 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
644 bp->b_ops = NULL;
645 }
646
647 trace_xfs_buf_find(bp, flags, _RET_IP_);
648 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
649 return bp;
650}
651
652/*
653 * Assembles a buffer covering the specified range. The code is optimised for
654 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
655 * more hits than misses.
656 */
657struct xfs_buf *
658xfs_buf_get_map(
659 struct xfs_buftarg *target,
660 struct xfs_buf_map *map,
661 int nmaps,
662 xfs_buf_flags_t flags)
663{
664 struct xfs_buf *bp;
665 struct xfs_buf *new_bp;
666 int error = 0;
667
668 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
669 if (likely(bp))
670 goto found;
671
672 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
673 if (unlikely(!new_bp))
674 return NULL;
675
676 error = xfs_buf_allocate_memory(new_bp, flags);
677 if (error) {
678 xfs_buf_free(new_bp);
679 return NULL;
680 }
681
682 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
683 if (!bp) {
684 xfs_buf_free(new_bp);
685 return NULL;
686 }
687
688 if (bp != new_bp)
689 xfs_buf_free(new_bp);
690
691found:
692 if (!bp->b_addr) {
693 error = _xfs_buf_map_pages(bp, flags);
694 if (unlikely(error)) {
695 xfs_warn(target->bt_mount,
696 "%s: failed to map pagesn", __func__);
697 xfs_buf_relse(bp);
698 return NULL;
699 }
700 }
701
702 /*
703 * Clear b_error if this is a lookup from a caller that doesn't expect
704 * valid data to be found in the buffer.
705 */
706 if (!(flags & XBF_READ))
707 xfs_buf_ioerror(bp, 0);
708
709 XFS_STATS_INC(target->bt_mount, xb_get);
710 trace_xfs_buf_get(bp, flags, _RET_IP_);
711 return bp;
712}
713
714STATIC int
715_xfs_buf_read(
716 xfs_buf_t *bp,
717 xfs_buf_flags_t flags)
718{
719 ASSERT(!(flags & XBF_WRITE));
720 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
721
722 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
723 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
724
725 if (flags & XBF_ASYNC) {
726 xfs_buf_submit(bp);
727 return 0;
728 }
729 return xfs_buf_submit_wait(bp);
730}
731
732xfs_buf_t *
733xfs_buf_read_map(
734 struct xfs_buftarg *target,
735 struct xfs_buf_map *map,
736 int nmaps,
737 xfs_buf_flags_t flags,
738 const struct xfs_buf_ops *ops)
739{
740 struct xfs_buf *bp;
741
742 flags |= XBF_READ;
743
744 bp = xfs_buf_get_map(target, map, nmaps, flags);
745 if (bp) {
746 trace_xfs_buf_read(bp, flags, _RET_IP_);
747
748 if (!(bp->b_flags & XBF_DONE)) {
749 XFS_STATS_INC(target->bt_mount, xb_get_read);
750 bp->b_ops = ops;
751 _xfs_buf_read(bp, flags);
752 } else if (flags & XBF_ASYNC) {
753 /*
754 * Read ahead call which is already satisfied,
755 * drop the buffer
756 */
757 xfs_buf_relse(bp);
758 return NULL;
759 } else {
760 /* We do not want read in the flags */
761 bp->b_flags &= ~XBF_READ;
762 }
763 }
764
765 return bp;
766}
767
768/*
769 * If we are not low on memory then do the readahead in a deadlock
770 * safe manner.
771 */
772void
773xfs_buf_readahead_map(
774 struct xfs_buftarg *target,
775 struct xfs_buf_map *map,
776 int nmaps,
777 const struct xfs_buf_ops *ops)
778{
779 if (bdi_read_congested(target->bt_bdev->bd_bdi))
780 return;
781
782 xfs_buf_read_map(target, map, nmaps,
783 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
784}
785
786/*
787 * Read an uncached buffer from disk. Allocates and returns a locked
788 * buffer containing the disk contents or nothing.
789 */
790int
791xfs_buf_read_uncached(
792 struct xfs_buftarg *target,
793 xfs_daddr_t daddr,
794 size_t numblks,
795 int flags,
796 struct xfs_buf **bpp,
797 const struct xfs_buf_ops *ops)
798{
799 struct xfs_buf *bp;
800
801 *bpp = NULL;
802
803 bp = xfs_buf_get_uncached(target, numblks, flags);
804 if (!bp)
805 return -ENOMEM;
806
807 /* set up the buffer for a read IO */
808 ASSERT(bp->b_map_count == 1);
809 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
810 bp->b_maps[0].bm_bn = daddr;
811 bp->b_flags |= XBF_READ;
812 bp->b_ops = ops;
813
814 xfs_buf_submit_wait(bp);
815 if (bp->b_error) {
816 int error = bp->b_error;
817 xfs_buf_relse(bp);
818 return error;
819 }
820
821 *bpp = bp;
822 return 0;
823}
824
825/*
826 * Return a buffer allocated as an empty buffer and associated to external
827 * memory via xfs_buf_associate_memory() back to it's empty state.
828 */
829void
830xfs_buf_set_empty(
831 struct xfs_buf *bp,
832 size_t numblks)
833{
834 if (bp->b_pages)
835 _xfs_buf_free_pages(bp);
836
837 bp->b_pages = NULL;
838 bp->b_page_count = 0;
839 bp->b_addr = NULL;
840 bp->b_length = numblks;
841 bp->b_io_length = numblks;
842
843 ASSERT(bp->b_map_count == 1);
844 bp->b_bn = XFS_BUF_DADDR_NULL;
845 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
846 bp->b_maps[0].bm_len = bp->b_length;
847}
848
849static inline struct page *
850mem_to_page(
851 void *addr)
852{
853 if ((!is_vmalloc_addr(addr))) {
854 return virt_to_page(addr);
855 } else {
856 return vmalloc_to_page(addr);
857 }
858}
859
860int
861xfs_buf_associate_memory(
862 xfs_buf_t *bp,
863 void *mem,
864 size_t len)
865{
866 int rval;
867 int i = 0;
868 unsigned long pageaddr;
869 unsigned long offset;
870 size_t buflen;
871 int page_count;
872
873 pageaddr = (unsigned long)mem & PAGE_MASK;
874 offset = (unsigned long)mem - pageaddr;
875 buflen = PAGE_ALIGN(len + offset);
876 page_count = buflen >> PAGE_SHIFT;
877
878 /* Free any previous set of page pointers */
879 if (bp->b_pages)
880 _xfs_buf_free_pages(bp);
881
882 bp->b_pages = NULL;
883 bp->b_addr = mem;
884
885 rval = _xfs_buf_get_pages(bp, page_count);
886 if (rval)
887 return rval;
888
889 bp->b_offset = offset;
890
891 for (i = 0; i < bp->b_page_count; i++) {
892 bp->b_pages[i] = mem_to_page((void *)pageaddr);
893 pageaddr += PAGE_SIZE;
894 }
895
896 bp->b_io_length = BTOBB(len);
897 bp->b_length = BTOBB(buflen);
898
899 return 0;
900}
901
902xfs_buf_t *
903xfs_buf_get_uncached(
904 struct xfs_buftarg *target,
905 size_t numblks,
906 int flags)
907{
908 unsigned long page_count;
909 int error, i;
910 struct xfs_buf *bp;
911 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
912
913 /* flags might contain irrelevant bits, pass only what we care about */
914 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
915 if (unlikely(bp == NULL))
916 goto fail;
917
918 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
919 error = _xfs_buf_get_pages(bp, page_count);
920 if (error)
921 goto fail_free_buf;
922
923 for (i = 0; i < page_count; i++) {
924 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
925 if (!bp->b_pages[i])
926 goto fail_free_mem;
927 }
928 bp->b_flags |= _XBF_PAGES;
929
930 error = _xfs_buf_map_pages(bp, 0);
931 if (unlikely(error)) {
932 xfs_warn(target->bt_mount,
933 "%s: failed to map pages", __func__);
934 goto fail_free_mem;
935 }
936
937 trace_xfs_buf_get_uncached(bp, _RET_IP_);
938 return bp;
939
940 fail_free_mem:
941 while (--i >= 0)
942 __free_page(bp->b_pages[i]);
943 _xfs_buf_free_pages(bp);
944 fail_free_buf:
945 xfs_buf_free_maps(bp);
946 kmem_zone_free(xfs_buf_zone, bp);
947 fail:
948 return NULL;
949}
950
951/*
952 * Increment reference count on buffer, to hold the buffer concurrently
953 * with another thread which may release (free) the buffer asynchronously.
954 * Must hold the buffer already to call this function.
955 */
956void
957xfs_buf_hold(
958 xfs_buf_t *bp)
959{
960 trace_xfs_buf_hold(bp, _RET_IP_);
961 atomic_inc(&bp->b_hold);
962}
963
964/*
965 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
966 * placed on LRU or freed (depending on b_lru_ref).
967 */
968void
969xfs_buf_rele(
970 xfs_buf_t *bp)
971{
972 struct xfs_perag *pag = bp->b_pag;
973 bool release;
974 bool freebuf = false;
975
976 trace_xfs_buf_rele(bp, _RET_IP_);
977
978 if (!pag) {
979 ASSERT(list_empty(&bp->b_lru));
980 if (atomic_dec_and_test(&bp->b_hold)) {
981 xfs_buf_ioacct_dec(bp);
982 xfs_buf_free(bp);
983 }
984 return;
985 }
986
987 ASSERT(atomic_read(&bp->b_hold) > 0);
988
989 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
990 spin_lock(&bp->b_lock);
991 if (!release) {
992 /*
993 * Drop the in-flight state if the buffer is already on the LRU
994 * and it holds the only reference. This is racy because we
995 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
996 * ensures the decrement occurs only once per-buf.
997 */
998 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
999 __xfs_buf_ioacct_dec(bp);
1000 goto out_unlock;
1001 }
1002
1003 /* the last reference has been dropped ... */
1004 __xfs_buf_ioacct_dec(bp);
1005 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1006 /*
1007 * If the buffer is added to the LRU take a new reference to the
1008 * buffer for the LRU and clear the (now stale) dispose list
1009 * state flag
1010 */
1011 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1012 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1013 atomic_inc(&bp->b_hold);
1014 }
1015 spin_unlock(&pag->pag_buf_lock);
1016 } else {
1017 /*
1018 * most of the time buffers will already be removed from the
1019 * LRU, so optimise that case by checking for the
1020 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1021 * was on was the disposal list
1022 */
1023 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1024 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1025 } else {
1026 ASSERT(list_empty(&bp->b_lru));
1027 }
1028
1029 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1030 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1031 xfs_buf_hash_params);
1032 spin_unlock(&pag->pag_buf_lock);
1033 xfs_perag_put(pag);
1034 freebuf = true;
1035 }
1036
1037out_unlock:
1038 spin_unlock(&bp->b_lock);
1039
1040 if (freebuf)
1041 xfs_buf_free(bp);
1042}
1043
1044
1045/*
1046 * Lock a buffer object, if it is not already locked.
1047 *
1048 * If we come across a stale, pinned, locked buffer, we know that we are
1049 * being asked to lock a buffer that has been reallocated. Because it is
1050 * pinned, we know that the log has not been pushed to disk and hence it
1051 * will still be locked. Rather than continuing to have trylock attempts
1052 * fail until someone else pushes the log, push it ourselves before
1053 * returning. This means that the xfsaild will not get stuck trying
1054 * to push on stale inode buffers.
1055 */
1056int
1057xfs_buf_trylock(
1058 struct xfs_buf *bp)
1059{
1060 int locked;
1061
1062 locked = down_trylock(&bp->b_sema) == 0;
1063 if (locked) {
1064 XB_SET_OWNER(bp);
1065 trace_xfs_buf_trylock(bp, _RET_IP_);
1066 } else {
1067 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1068 }
1069 return locked;
1070}
1071
1072/*
1073 * Lock a buffer object.
1074 *
1075 * If we come across a stale, pinned, locked buffer, we know that we
1076 * are being asked to lock a buffer that has been reallocated. Because
1077 * it is pinned, we know that the log has not been pushed to disk and
1078 * hence it will still be locked. Rather than sleeping until someone
1079 * else pushes the log, push it ourselves before trying to get the lock.
1080 */
1081void
1082xfs_buf_lock(
1083 struct xfs_buf *bp)
1084{
1085 trace_xfs_buf_lock(bp, _RET_IP_);
1086
1087 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1088 xfs_log_force(bp->b_target->bt_mount, 0);
1089 down(&bp->b_sema);
1090 XB_SET_OWNER(bp);
1091
1092 trace_xfs_buf_lock_done(bp, _RET_IP_);
1093}
1094
1095void
1096xfs_buf_unlock(
1097 struct xfs_buf *bp)
1098{
1099 ASSERT(xfs_buf_islocked(bp));
1100
1101 XB_CLEAR_OWNER(bp);
1102 up(&bp->b_sema);
1103
1104 trace_xfs_buf_unlock(bp, _RET_IP_);
1105}
1106
1107STATIC void
1108xfs_buf_wait_unpin(
1109 xfs_buf_t *bp)
1110{
1111 DECLARE_WAITQUEUE (wait, current);
1112
1113 if (atomic_read(&bp->b_pin_count) == 0)
1114 return;
1115
1116 add_wait_queue(&bp->b_waiters, &wait);
1117 for (;;) {
1118 set_current_state(TASK_UNINTERRUPTIBLE);
1119 if (atomic_read(&bp->b_pin_count) == 0)
1120 break;
1121 io_schedule();
1122 }
1123 remove_wait_queue(&bp->b_waiters, &wait);
1124 set_current_state(TASK_RUNNING);
1125}
1126
1127/*
1128 * Buffer Utility Routines
1129 */
1130
1131void
1132xfs_buf_ioend(
1133 struct xfs_buf *bp)
1134{
1135 bool read = bp->b_flags & XBF_READ;
1136
1137 trace_xfs_buf_iodone(bp, _RET_IP_);
1138
1139 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1140
1141 /*
1142 * Pull in IO completion errors now. We are guaranteed to be running
1143 * single threaded, so we don't need the lock to read b_io_error.
1144 */
1145 if (!bp->b_error && bp->b_io_error)
1146 xfs_buf_ioerror(bp, bp->b_io_error);
1147
1148 /* Only validate buffers that were read without errors */
1149 if (read && !bp->b_error && bp->b_ops) {
1150 ASSERT(!bp->b_iodone);
1151 bp->b_ops->verify_read(bp);
1152 }
1153
1154 if (!bp->b_error)
1155 bp->b_flags |= XBF_DONE;
1156
1157 if (bp->b_iodone)
1158 (*(bp->b_iodone))(bp);
1159 else if (bp->b_flags & XBF_ASYNC)
1160 xfs_buf_relse(bp);
1161 else
1162 complete(&bp->b_iowait);
1163}
1164
1165static void
1166xfs_buf_ioend_work(
1167 struct work_struct *work)
1168{
1169 struct xfs_buf *bp =
1170 container_of(work, xfs_buf_t, b_ioend_work);
1171
1172 xfs_buf_ioend(bp);
1173}
1174
1175static void
1176xfs_buf_ioend_async(
1177 struct xfs_buf *bp)
1178{
1179 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1180 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1181}
1182
1183void
1184__xfs_buf_ioerror(
1185 xfs_buf_t *bp,
1186 int error,
1187 xfs_failaddr_t failaddr)
1188{
1189 ASSERT(error <= 0 && error >= -1000);
1190 bp->b_error = error;
1191 trace_xfs_buf_ioerror(bp, error, failaddr);
1192}
1193
1194void
1195xfs_buf_ioerror_alert(
1196 struct xfs_buf *bp,
1197 const char *func)
1198{
1199 xfs_alert(bp->b_target->bt_mount,
1200"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1201 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1202 -bp->b_error);
1203}
1204
1205int
1206xfs_bwrite(
1207 struct xfs_buf *bp)
1208{
1209 int error;
1210
1211 ASSERT(xfs_buf_islocked(bp));
1212
1213 bp->b_flags |= XBF_WRITE;
1214 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1215 XBF_WRITE_FAIL | XBF_DONE);
1216
1217 error = xfs_buf_submit_wait(bp);
1218 if (error) {
1219 xfs_force_shutdown(bp->b_target->bt_mount,
1220 SHUTDOWN_META_IO_ERROR);
1221 }
1222 return error;
1223}
1224
1225static void
1226xfs_buf_bio_end_io(
1227 struct bio *bio)
1228{
1229 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1230
1231 /*
1232 * don't overwrite existing errors - otherwise we can lose errors on
1233 * buffers that require multiple bios to complete.
1234 */
1235 if (bio->bi_status) {
1236 int error = blk_status_to_errno(bio->bi_status);
1237
1238 cmpxchg(&bp->b_io_error, 0, error);
1239 }
1240
1241 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1242 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1243
1244 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1245 xfs_buf_ioend_async(bp);
1246 bio_put(bio);
1247}
1248
1249static void
1250xfs_buf_ioapply_map(
1251 struct xfs_buf *bp,
1252 int map,
1253 int *buf_offset,
1254 int *count,
1255 int op,
1256 int op_flags)
1257{
1258 int page_index;
1259 int total_nr_pages = bp->b_page_count;
1260 int nr_pages;
1261 struct bio *bio;
1262 sector_t sector = bp->b_maps[map].bm_bn;
1263 int size;
1264 int offset;
1265
1266 /* skip the pages in the buffer before the start offset */
1267 page_index = 0;
1268 offset = *buf_offset;
1269 while (offset >= PAGE_SIZE) {
1270 page_index++;
1271 offset -= PAGE_SIZE;
1272 }
1273
1274 /*
1275 * Limit the IO size to the length of the current vector, and update the
1276 * remaining IO count for the next time around.
1277 */
1278 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1279 *count -= size;
1280 *buf_offset += size;
1281
1282next_chunk:
1283 atomic_inc(&bp->b_io_remaining);
1284 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1285
1286 bio = bio_alloc(GFP_NOIO, nr_pages);
1287 bio_set_dev(bio, bp->b_target->bt_bdev);
1288 bio->bi_iter.bi_sector = sector;
1289 bio->bi_end_io = xfs_buf_bio_end_io;
1290 bio->bi_private = bp;
1291 bio_set_op_attrs(bio, op, op_flags);
1292
1293 for (; size && nr_pages; nr_pages--, page_index++) {
1294 int rbytes, nbytes = PAGE_SIZE - offset;
1295
1296 if (nbytes > size)
1297 nbytes = size;
1298
1299 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1300 offset);
1301 if (rbytes < nbytes)
1302 break;
1303
1304 offset = 0;
1305 sector += BTOBB(nbytes);
1306 size -= nbytes;
1307 total_nr_pages--;
1308 }
1309
1310 if (likely(bio->bi_iter.bi_size)) {
1311 if (xfs_buf_is_vmapped(bp)) {
1312 flush_kernel_vmap_range(bp->b_addr,
1313 xfs_buf_vmap_len(bp));
1314 }
1315 submit_bio(bio);
1316 if (size)
1317 goto next_chunk;
1318 } else {
1319 /*
1320 * This is guaranteed not to be the last io reference count
1321 * because the caller (xfs_buf_submit) holds a count itself.
1322 */
1323 atomic_dec(&bp->b_io_remaining);
1324 xfs_buf_ioerror(bp, -EIO);
1325 bio_put(bio);
1326 }
1327
1328}
1329
1330STATIC void
1331_xfs_buf_ioapply(
1332 struct xfs_buf *bp)
1333{
1334 struct blk_plug plug;
1335 int op;
1336 int op_flags = 0;
1337 int offset;
1338 int size;
1339 int i;
1340
1341 /*
1342 * Make sure we capture only current IO errors rather than stale errors
1343 * left over from previous use of the buffer (e.g. failed readahead).
1344 */
1345 bp->b_error = 0;
1346
1347 /*
1348 * Initialize the I/O completion workqueue if we haven't yet or the
1349 * submitter has not opted to specify a custom one.
1350 */
1351 if (!bp->b_ioend_wq)
1352 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1353
1354 if (bp->b_flags & XBF_WRITE) {
1355 op = REQ_OP_WRITE;
1356 if (bp->b_flags & XBF_SYNCIO)
1357 op_flags = REQ_SYNC;
1358 if (bp->b_flags & XBF_FUA)
1359 op_flags |= REQ_FUA;
1360 if (bp->b_flags & XBF_FLUSH)
1361 op_flags |= REQ_PREFLUSH;
1362
1363 /*
1364 * Run the write verifier callback function if it exists. If
1365 * this function fails it will mark the buffer with an error and
1366 * the IO should not be dispatched.
1367 */
1368 if (bp->b_ops) {
1369 bp->b_ops->verify_write(bp);
1370 if (bp->b_error) {
1371 xfs_force_shutdown(bp->b_target->bt_mount,
1372 SHUTDOWN_CORRUPT_INCORE);
1373 return;
1374 }
1375 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1376 struct xfs_mount *mp = bp->b_target->bt_mount;
1377
1378 /*
1379 * non-crc filesystems don't attach verifiers during
1380 * log recovery, so don't warn for such filesystems.
1381 */
1382 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1383 xfs_warn(mp,
1384 "%s: no buf ops on daddr 0x%llx len %d",
1385 __func__, bp->b_bn, bp->b_length);
1386 xfs_hex_dump(bp->b_addr,
1387 XFS_CORRUPTION_DUMP_LEN);
1388 dump_stack();
1389 }
1390 }
1391 } else if (bp->b_flags & XBF_READ_AHEAD) {
1392 op = REQ_OP_READ;
1393 op_flags = REQ_RAHEAD;
1394 } else {
1395 op = REQ_OP_READ;
1396 }
1397
1398 /* we only use the buffer cache for meta-data */
1399 op_flags |= REQ_META;
1400
1401 /*
1402 * Walk all the vectors issuing IO on them. Set up the initial offset
1403 * into the buffer and the desired IO size before we start -
1404 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1405 * subsequent call.
1406 */
1407 offset = bp->b_offset;
1408 size = BBTOB(bp->b_io_length);
1409 blk_start_plug(&plug);
1410 for (i = 0; i < bp->b_map_count; i++) {
1411 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1412 if (bp->b_error)
1413 break;
1414 if (size <= 0)
1415 break; /* all done */
1416 }
1417 blk_finish_plug(&plug);
1418}
1419
1420/*
1421 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1422 * the current reference to the IO. It is not safe to reference the buffer after
1423 * a call to this function unless the caller holds an additional reference
1424 * itself.
1425 */
1426void
1427xfs_buf_submit(
1428 struct xfs_buf *bp)
1429{
1430 trace_xfs_buf_submit(bp, _RET_IP_);
1431
1432 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1433 ASSERT(bp->b_flags & XBF_ASYNC);
1434
1435 /* on shutdown we stale and complete the buffer immediately */
1436 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1437 xfs_buf_ioerror(bp, -EIO);
1438 bp->b_flags &= ~XBF_DONE;
1439 xfs_buf_stale(bp);
1440 xfs_buf_ioend(bp);
1441 return;
1442 }
1443
1444 if (bp->b_flags & XBF_WRITE)
1445 xfs_buf_wait_unpin(bp);
1446
1447 /* clear the internal error state to avoid spurious errors */
1448 bp->b_io_error = 0;
1449
1450 /*
1451 * The caller's reference is released during I/O completion.
1452 * This occurs some time after the last b_io_remaining reference is
1453 * released, so after we drop our Io reference we have to have some
1454 * other reference to ensure the buffer doesn't go away from underneath
1455 * us. Take a direct reference to ensure we have safe access to the
1456 * buffer until we are finished with it.
1457 */
1458 xfs_buf_hold(bp);
1459
1460 /*
1461 * Set the count to 1 initially, this will stop an I/O completion
1462 * callout which happens before we have started all the I/O from calling
1463 * xfs_buf_ioend too early.
1464 */
1465 atomic_set(&bp->b_io_remaining, 1);
1466 xfs_buf_ioacct_inc(bp);
1467 _xfs_buf_ioapply(bp);
1468
1469 /*
1470 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1471 * reference we took above. If we drop it to zero, run completion so
1472 * that we don't return to the caller with completion still pending.
1473 */
1474 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1475 if (bp->b_error)
1476 xfs_buf_ioend(bp);
1477 else
1478 xfs_buf_ioend_async(bp);
1479 }
1480
1481 xfs_buf_rele(bp);
1482 /* Note: it is not safe to reference bp now we've dropped our ref */
1483}
1484
1485/*
1486 * Synchronous buffer IO submission path, read or write.
1487 */
1488int
1489xfs_buf_submit_wait(
1490 struct xfs_buf *bp)
1491{
1492 int error;
1493
1494 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1495
1496 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1497
1498 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1499 xfs_buf_ioerror(bp, -EIO);
1500 xfs_buf_stale(bp);
1501 bp->b_flags &= ~XBF_DONE;
1502 return -EIO;
1503 }
1504
1505 if (bp->b_flags & XBF_WRITE)
1506 xfs_buf_wait_unpin(bp);
1507
1508 /* clear the internal error state to avoid spurious errors */
1509 bp->b_io_error = 0;
1510
1511 /*
1512 * For synchronous IO, the IO does not inherit the submitters reference
1513 * count, nor the buffer lock. Hence we cannot release the reference we
1514 * are about to take until we've waited for all IO completion to occur,
1515 * including any xfs_buf_ioend_async() work that may be pending.
1516 */
1517 xfs_buf_hold(bp);
1518
1519 /*
1520 * Set the count to 1 initially, this will stop an I/O completion
1521 * callout which happens before we have started all the I/O from calling
1522 * xfs_buf_ioend too early.
1523 */
1524 atomic_set(&bp->b_io_remaining, 1);
1525 _xfs_buf_ioapply(bp);
1526
1527 /*
1528 * make sure we run completion synchronously if it raced with us and is
1529 * already complete.
1530 */
1531 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1532 xfs_buf_ioend(bp);
1533
1534 /* wait for completion before gathering the error from the buffer */
1535 trace_xfs_buf_iowait(bp, _RET_IP_);
1536 wait_for_completion(&bp->b_iowait);
1537 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1538 error = bp->b_error;
1539
1540 /*
1541 * all done now, we can release the hold that keeps the buffer
1542 * referenced for the entire IO.
1543 */
1544 xfs_buf_rele(bp);
1545 return error;
1546}
1547
1548void *
1549xfs_buf_offset(
1550 struct xfs_buf *bp,
1551 size_t offset)
1552{
1553 struct page *page;
1554
1555 if (bp->b_addr)
1556 return bp->b_addr + offset;
1557
1558 offset += bp->b_offset;
1559 page = bp->b_pages[offset >> PAGE_SHIFT];
1560 return page_address(page) + (offset & (PAGE_SIZE-1));
1561}
1562
1563/*
1564 * Move data into or out of a buffer.
1565 */
1566void
1567xfs_buf_iomove(
1568 xfs_buf_t *bp, /* buffer to process */
1569 size_t boff, /* starting buffer offset */
1570 size_t bsize, /* length to copy */
1571 void *data, /* data address */
1572 xfs_buf_rw_t mode) /* read/write/zero flag */
1573{
1574 size_t bend;
1575
1576 bend = boff + bsize;
1577 while (boff < bend) {
1578 struct page *page;
1579 int page_index, page_offset, csize;
1580
1581 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1582 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1583 page = bp->b_pages[page_index];
1584 csize = min_t(size_t, PAGE_SIZE - page_offset,
1585 BBTOB(bp->b_io_length) - boff);
1586
1587 ASSERT((csize + page_offset) <= PAGE_SIZE);
1588
1589 switch (mode) {
1590 case XBRW_ZERO:
1591 memset(page_address(page) + page_offset, 0, csize);
1592 break;
1593 case XBRW_READ:
1594 memcpy(data, page_address(page) + page_offset, csize);
1595 break;
1596 case XBRW_WRITE:
1597 memcpy(page_address(page) + page_offset, data, csize);
1598 }
1599
1600 boff += csize;
1601 data += csize;
1602 }
1603}
1604
1605/*
1606 * Handling of buffer targets (buftargs).
1607 */
1608
1609/*
1610 * Wait for any bufs with callbacks that have been submitted but have not yet
1611 * returned. These buffers will have an elevated hold count, so wait on those
1612 * while freeing all the buffers only held by the LRU.
1613 */
1614static enum lru_status
1615xfs_buftarg_wait_rele(
1616 struct list_head *item,
1617 struct list_lru_one *lru,
1618 spinlock_t *lru_lock,
1619 void *arg)
1620
1621{
1622 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1623 struct list_head *dispose = arg;
1624
1625 if (atomic_read(&bp->b_hold) > 1) {
1626 /* need to wait, so skip it this pass */
1627 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1628 return LRU_SKIP;
1629 }
1630 if (!spin_trylock(&bp->b_lock))
1631 return LRU_SKIP;
1632
1633 /*
1634 * clear the LRU reference count so the buffer doesn't get
1635 * ignored in xfs_buf_rele().
1636 */
1637 atomic_set(&bp->b_lru_ref, 0);
1638 bp->b_state |= XFS_BSTATE_DISPOSE;
1639 list_lru_isolate_move(lru, item, dispose);
1640 spin_unlock(&bp->b_lock);
1641 return LRU_REMOVED;
1642}
1643
1644void
1645xfs_wait_buftarg(
1646 struct xfs_buftarg *btp)
1647{
1648 LIST_HEAD(dispose);
1649 int loop = 0;
1650
1651 /*
1652 * First wait on the buftarg I/O count for all in-flight buffers to be
1653 * released. This is critical as new buffers do not make the LRU until
1654 * they are released.
1655 *
1656 * Next, flush the buffer workqueue to ensure all completion processing
1657 * has finished. Just waiting on buffer locks is not sufficient for
1658 * async IO as the reference count held over IO is not released until
1659 * after the buffer lock is dropped. Hence we need to ensure here that
1660 * all reference counts have been dropped before we start walking the
1661 * LRU list.
1662 */
1663 while (percpu_counter_sum(&btp->bt_io_count))
1664 delay(100);
1665 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1666
1667 /* loop until there is nothing left on the lru list. */
1668 while (list_lru_count(&btp->bt_lru)) {
1669 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1670 &dispose, LONG_MAX);
1671
1672 while (!list_empty(&dispose)) {
1673 struct xfs_buf *bp;
1674 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1675 list_del_init(&bp->b_lru);
1676 if (bp->b_flags & XBF_WRITE_FAIL) {
1677 xfs_alert(btp->bt_mount,
1678"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1679 (long long)bp->b_bn);
1680 xfs_alert(btp->bt_mount,
1681"Please run xfs_repair to determine the extent of the problem.");
1682 }
1683 xfs_buf_rele(bp);
1684 }
1685 if (loop++ != 0)
1686 delay(100);
1687 }
1688}
1689
1690static enum lru_status
1691xfs_buftarg_isolate(
1692 struct list_head *item,
1693 struct list_lru_one *lru,
1694 spinlock_t *lru_lock,
1695 void *arg)
1696{
1697 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1698 struct list_head *dispose = arg;
1699
1700 /*
1701 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1702 * If we fail to get the lock, just skip it.
1703 */
1704 if (!spin_trylock(&bp->b_lock))
1705 return LRU_SKIP;
1706 /*
1707 * Decrement the b_lru_ref count unless the value is already
1708 * zero. If the value is already zero, we need to reclaim the
1709 * buffer, otherwise it gets another trip through the LRU.
1710 */
1711 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1712 spin_unlock(&bp->b_lock);
1713 return LRU_ROTATE;
1714 }
1715
1716 bp->b_state |= XFS_BSTATE_DISPOSE;
1717 list_lru_isolate_move(lru, item, dispose);
1718 spin_unlock(&bp->b_lock);
1719 return LRU_REMOVED;
1720}
1721
1722static unsigned long
1723xfs_buftarg_shrink_scan(
1724 struct shrinker *shrink,
1725 struct shrink_control *sc)
1726{
1727 struct xfs_buftarg *btp = container_of(shrink,
1728 struct xfs_buftarg, bt_shrinker);
1729 LIST_HEAD(dispose);
1730 unsigned long freed;
1731
1732 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1733 xfs_buftarg_isolate, &dispose);
1734
1735 while (!list_empty(&dispose)) {
1736 struct xfs_buf *bp;
1737 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1738 list_del_init(&bp->b_lru);
1739 xfs_buf_rele(bp);
1740 }
1741
1742 return freed;
1743}
1744
1745static unsigned long
1746xfs_buftarg_shrink_count(
1747 struct shrinker *shrink,
1748 struct shrink_control *sc)
1749{
1750 struct xfs_buftarg *btp = container_of(shrink,
1751 struct xfs_buftarg, bt_shrinker);
1752 return list_lru_shrink_count(&btp->bt_lru, sc);
1753}
1754
1755void
1756xfs_free_buftarg(
1757 struct xfs_buftarg *btp)
1758{
1759 unregister_shrinker(&btp->bt_shrinker);
1760 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1761 percpu_counter_destroy(&btp->bt_io_count);
1762 list_lru_destroy(&btp->bt_lru);
1763
1764 xfs_blkdev_issue_flush(btp);
1765
1766 kmem_free(btp);
1767}
1768
1769int
1770xfs_setsize_buftarg(
1771 xfs_buftarg_t *btp,
1772 unsigned int sectorsize)
1773{
1774 /* Set up metadata sector size info */
1775 btp->bt_meta_sectorsize = sectorsize;
1776 btp->bt_meta_sectormask = sectorsize - 1;
1777
1778 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1779 xfs_warn(btp->bt_mount,
1780 "Cannot set_blocksize to %u on device %pg",
1781 sectorsize, btp->bt_bdev);
1782 return -EINVAL;
1783 }
1784
1785 /* Set up device logical sector size mask */
1786 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1787 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1788
1789 return 0;
1790}
1791
1792/*
1793 * When allocating the initial buffer target we have not yet
1794 * read in the superblock, so don't know what sized sectors
1795 * are being used at this early stage. Play safe.
1796 */
1797STATIC int
1798xfs_setsize_buftarg_early(
1799 xfs_buftarg_t *btp,
1800 struct block_device *bdev)
1801{
1802 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1803}
1804
1805xfs_buftarg_t *
1806xfs_alloc_buftarg(
1807 struct xfs_mount *mp,
1808 struct block_device *bdev,
1809 struct dax_device *dax_dev)
1810{
1811 xfs_buftarg_t *btp;
1812
1813 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1814
1815 btp->bt_mount = mp;
1816 btp->bt_dev = bdev->bd_dev;
1817 btp->bt_bdev = bdev;
1818 btp->bt_daxdev = dax_dev;
1819
1820 if (xfs_setsize_buftarg_early(btp, bdev))
1821 goto error_free;
1822
1823 if (list_lru_init(&btp->bt_lru))
1824 goto error_free;
1825
1826 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1827 goto error_lru;
1828
1829 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1830 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1831 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1832 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1833 if (register_shrinker(&btp->bt_shrinker))
1834 goto error_pcpu;
1835 return btp;
1836
1837error_pcpu:
1838 percpu_counter_destroy(&btp->bt_io_count);
1839error_lru:
1840 list_lru_destroy(&btp->bt_lru);
1841error_free:
1842 kmem_free(btp);
1843 return NULL;
1844}
1845
1846/*
1847 * Cancel a delayed write list.
1848 *
1849 * Remove each buffer from the list, clear the delwri queue flag and drop the
1850 * associated buffer reference.
1851 */
1852void
1853xfs_buf_delwri_cancel(
1854 struct list_head *list)
1855{
1856 struct xfs_buf *bp;
1857
1858 while (!list_empty(list)) {
1859 bp = list_first_entry(list, struct xfs_buf, b_list);
1860
1861 xfs_buf_lock(bp);
1862 bp->b_flags &= ~_XBF_DELWRI_Q;
1863 list_del_init(&bp->b_list);
1864 xfs_buf_relse(bp);
1865 }
1866}
1867
1868/*
1869 * Add a buffer to the delayed write list.
1870 *
1871 * This queues a buffer for writeout if it hasn't already been. Note that
1872 * neither this routine nor the buffer list submission functions perform
1873 * any internal synchronization. It is expected that the lists are thread-local
1874 * to the callers.
1875 *
1876 * Returns true if we queued up the buffer, or false if it already had
1877 * been on the buffer list.
1878 */
1879bool
1880xfs_buf_delwri_queue(
1881 struct xfs_buf *bp,
1882 struct list_head *list)
1883{
1884 ASSERT(xfs_buf_islocked(bp));
1885 ASSERT(!(bp->b_flags & XBF_READ));
1886
1887 /*
1888 * If the buffer is already marked delwri it already is queued up
1889 * by someone else for imediate writeout. Just ignore it in that
1890 * case.
1891 */
1892 if (bp->b_flags & _XBF_DELWRI_Q) {
1893 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1894 return false;
1895 }
1896
1897 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1898
1899 /*
1900 * If a buffer gets written out synchronously or marked stale while it
1901 * is on a delwri list we lazily remove it. To do this, the other party
1902 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1903 * It remains referenced and on the list. In a rare corner case it
1904 * might get readded to a delwri list after the synchronous writeout, in
1905 * which case we need just need to re-add the flag here.
1906 */
1907 bp->b_flags |= _XBF_DELWRI_Q;
1908 if (list_empty(&bp->b_list)) {
1909 atomic_inc(&bp->b_hold);
1910 list_add_tail(&bp->b_list, list);
1911 }
1912
1913 return true;
1914}
1915
1916/*
1917 * Compare function is more complex than it needs to be because
1918 * the return value is only 32 bits and we are doing comparisons
1919 * on 64 bit values
1920 */
1921static int
1922xfs_buf_cmp(
1923 void *priv,
1924 struct list_head *a,
1925 struct list_head *b)
1926{
1927 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1928 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1929 xfs_daddr_t diff;
1930
1931 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1932 if (diff < 0)
1933 return -1;
1934 if (diff > 0)
1935 return 1;
1936 return 0;
1937}
1938
1939/*
1940 * submit buffers for write.
1941 *
1942 * When we have a large buffer list, we do not want to hold all the buffers
1943 * locked while we block on the request queue waiting for IO dispatch. To avoid
1944 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1945 * the lock hold times for lists which may contain thousands of objects.
1946 *
1947 * To do this, we sort the buffer list before we walk the list to lock and
1948 * submit buffers, and we plug and unplug around each group of buffers we
1949 * submit.
1950 */
1951static int
1952xfs_buf_delwri_submit_buffers(
1953 struct list_head *buffer_list,
1954 struct list_head *wait_list)
1955{
1956 struct xfs_buf *bp, *n;
1957 LIST_HEAD (submit_list);
1958 int pinned = 0;
1959 struct blk_plug plug;
1960
1961 list_sort(NULL, buffer_list, xfs_buf_cmp);
1962
1963 blk_start_plug(&plug);
1964 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1965 if (!wait_list) {
1966 if (xfs_buf_ispinned(bp)) {
1967 pinned++;
1968 continue;
1969 }
1970 if (!xfs_buf_trylock(bp))
1971 continue;
1972 } else {
1973 xfs_buf_lock(bp);
1974 }
1975
1976 /*
1977 * Someone else might have written the buffer synchronously or
1978 * marked it stale in the meantime. In that case only the
1979 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1980 * reference and remove it from the list here.
1981 */
1982 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1983 list_del_init(&bp->b_list);
1984 xfs_buf_relse(bp);
1985 continue;
1986 }
1987
1988 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1989
1990 /*
1991 * We do all IO submission async. This means if we need
1992 * to wait for IO completion we need to take an extra
1993 * reference so the buffer is still valid on the other
1994 * side. We need to move the buffer onto the io_list
1995 * at this point so the caller can still access it.
1996 */
1997 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1998 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1999 if (wait_list) {
2000 xfs_buf_hold(bp);
2001 list_move_tail(&bp->b_list, wait_list);
2002 } else
2003 list_del_init(&bp->b_list);
2004
2005 xfs_buf_submit(bp);
2006 }
2007 blk_finish_plug(&plug);
2008
2009 return pinned;
2010}
2011
2012/*
2013 * Write out a buffer list asynchronously.
2014 *
2015 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2016 * out and not wait for I/O completion on any of the buffers. This interface
2017 * is only safely useable for callers that can track I/O completion by higher
2018 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2019 * function.
2020 */
2021int
2022xfs_buf_delwri_submit_nowait(
2023 struct list_head *buffer_list)
2024{
2025 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2026}
2027
2028/*
2029 * Write out a buffer list synchronously.
2030 *
2031 * This will take the @buffer_list, write all buffers out and wait for I/O
2032 * completion on all of the buffers. @buffer_list is consumed by the function,
2033 * so callers must have some other way of tracking buffers if they require such
2034 * functionality.
2035 */
2036int
2037xfs_buf_delwri_submit(
2038 struct list_head *buffer_list)
2039{
2040 LIST_HEAD (wait_list);
2041 int error = 0, error2;
2042 struct xfs_buf *bp;
2043
2044 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2045
2046 /* Wait for IO to complete. */
2047 while (!list_empty(&wait_list)) {
2048 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2049
2050 list_del_init(&bp->b_list);
2051
2052 /* locking the buffer will wait for async IO completion. */
2053 xfs_buf_lock(bp);
2054 error2 = bp->b_error;
2055 xfs_buf_relse(bp);
2056 if (!error)
2057 error = error2;
2058 }
2059
2060 return error;
2061}
2062
2063/*
2064 * Push a single buffer on a delwri queue.
2065 *
2066 * The purpose of this function is to submit a single buffer of a delwri queue
2067 * and return with the buffer still on the original queue. The waiting delwri
2068 * buffer submission infrastructure guarantees transfer of the delwri queue
2069 * buffer reference to a temporary wait list. We reuse this infrastructure to
2070 * transfer the buffer back to the original queue.
2071 *
2072 * Note the buffer transitions from the queued state, to the submitted and wait
2073 * listed state and back to the queued state during this call. The buffer
2074 * locking and queue management logic between _delwri_pushbuf() and
2075 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2076 * before returning.
2077 */
2078int
2079xfs_buf_delwri_pushbuf(
2080 struct xfs_buf *bp,
2081 struct list_head *buffer_list)
2082{
2083 LIST_HEAD (submit_list);
2084 int error;
2085
2086 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2087
2088 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2089
2090 /*
2091 * Isolate the buffer to a new local list so we can submit it for I/O
2092 * independently from the rest of the original list.
2093 */
2094 xfs_buf_lock(bp);
2095 list_move(&bp->b_list, &submit_list);
2096 xfs_buf_unlock(bp);
2097
2098 /*
2099 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2100 * the buffer on the wait list with an associated reference. Rather than
2101 * bounce the buffer from a local wait list back to the original list
2102 * after I/O completion, reuse the original list as the wait list.
2103 */
2104 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2105
2106 /*
2107 * The buffer is now under I/O and wait listed as during typical delwri
2108 * submission. Lock the buffer to wait for I/O completion. Rather than
2109 * remove the buffer from the wait list and release the reference, we
2110 * want to return with the buffer queued to the original list. The
2111 * buffer already sits on the original list with a wait list reference,
2112 * however. If we let the queue inherit that wait list reference, all we
2113 * need to do is reset the DELWRI_Q flag.
2114 */
2115 xfs_buf_lock(bp);
2116 error = bp->b_error;
2117 bp->b_flags |= _XBF_DELWRI_Q;
2118 xfs_buf_unlock(bp);
2119
2120 return error;
2121}
2122
2123int __init
2124xfs_buf_init(void)
2125{
2126 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2127 KM_ZONE_HWALIGN, NULL);
2128 if (!xfs_buf_zone)
2129 goto out;
2130
2131 return 0;
2132
2133 out:
2134 return -ENOMEM;
2135}
2136
2137void
2138xfs_buf_terminate(void)
2139{
2140 kmem_zone_destroy(xfs_buf_zone);
2141}
2142
2143void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2144{
2145 /*
2146 * Set the lru reference count to 0 based on the error injection tag.
2147 * This allows userspace to disrupt buffer caching for debug/testing
2148 * purposes.
2149 */
2150 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2151 XFS_ERRTAG_BUF_LRU_REF))
2152 lru_ref = 0;
2153
2154 atomic_set(&bp->b_lru_ref, lru_ref);
2155}
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37#include "xfs_format.h"
38#include "xfs_log_format.h"
39#include "xfs_trans_resv.h"
40#include "xfs_sb.h"
41#include "xfs_mount.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44
45static kmem_zone_t *xfs_buf_zone;
46
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51#else
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
55#endif
56
57#define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
82/*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95static inline void
96xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98{
99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 bp->b_flags |= _XBF_IN_FLIGHT;
104 percpu_counter_inc(&bp->b_target->bt_io_count);
105}
106
107/*
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
110 */
111static inline void
112xfs_buf_ioacct_dec(
113 struct xfs_buf *bp)
114{
115 if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 return;
117
118 bp->b_flags &= ~_XBF_IN_FLIGHT;
119 percpu_counter_dec(&bp->b_target->bt_io_count);
120}
121
122/*
123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124 * b_lru_ref count so that the buffer is freed immediately when the buffer
125 * reference count falls to zero. If the buffer is already on the LRU, we need
126 * to remove the reference that LRU holds on the buffer.
127 *
128 * This prevents build-up of stale buffers on the LRU.
129 */
130void
131xfs_buf_stale(
132 struct xfs_buf *bp)
133{
134 ASSERT(xfs_buf_islocked(bp));
135
136 bp->b_flags |= XBF_STALE;
137
138 /*
139 * Clear the delwri status so that a delwri queue walker will not
140 * flush this buffer to disk now that it is stale. The delwri queue has
141 * a reference to the buffer, so this is safe to do.
142 */
143 bp->b_flags &= ~_XBF_DELWRI_Q;
144
145 /*
146 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 * could reset b_flags. There is no guarantee that the buffer is
148 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 * status now to preserve accounting consistency.
150 */
151 xfs_buf_ioacct_dec(bp);
152
153 spin_lock(&bp->b_lock);
154 atomic_set(&bp->b_lru_ref, 0);
155 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
156 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
157 atomic_dec(&bp->b_hold);
158
159 ASSERT(atomic_read(&bp->b_hold) >= 1);
160 spin_unlock(&bp->b_lock);
161}
162
163static int
164xfs_buf_get_maps(
165 struct xfs_buf *bp,
166 int map_count)
167{
168 ASSERT(bp->b_maps == NULL);
169 bp->b_map_count = map_count;
170
171 if (map_count == 1) {
172 bp->b_maps = &bp->__b_map;
173 return 0;
174 }
175
176 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
177 KM_NOFS);
178 if (!bp->b_maps)
179 return -ENOMEM;
180 return 0;
181}
182
183/*
184 * Frees b_pages if it was allocated.
185 */
186static void
187xfs_buf_free_maps(
188 struct xfs_buf *bp)
189{
190 if (bp->b_maps != &bp->__b_map) {
191 kmem_free(bp->b_maps);
192 bp->b_maps = NULL;
193 }
194}
195
196struct xfs_buf *
197_xfs_buf_alloc(
198 struct xfs_buftarg *target,
199 struct xfs_buf_map *map,
200 int nmaps,
201 xfs_buf_flags_t flags)
202{
203 struct xfs_buf *bp;
204 int error;
205 int i;
206
207 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
208 if (unlikely(!bp))
209 return NULL;
210
211 /*
212 * We don't want certain flags to appear in b_flags unless they are
213 * specifically set by later operations on the buffer.
214 */
215 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
216
217 atomic_set(&bp->b_hold, 1);
218 atomic_set(&bp->b_lru_ref, 1);
219 init_completion(&bp->b_iowait);
220 INIT_LIST_HEAD(&bp->b_lru);
221 INIT_LIST_HEAD(&bp->b_list);
222 sema_init(&bp->b_sema, 0); /* held, no waiters */
223 spin_lock_init(&bp->b_lock);
224 XB_SET_OWNER(bp);
225 bp->b_target = target;
226 bp->b_flags = flags;
227
228 /*
229 * Set length and io_length to the same value initially.
230 * I/O routines should use io_length, which will be the same in
231 * most cases but may be reset (e.g. XFS recovery).
232 */
233 error = xfs_buf_get_maps(bp, nmaps);
234 if (error) {
235 kmem_zone_free(xfs_buf_zone, bp);
236 return NULL;
237 }
238
239 bp->b_bn = map[0].bm_bn;
240 bp->b_length = 0;
241 for (i = 0; i < nmaps; i++) {
242 bp->b_maps[i].bm_bn = map[i].bm_bn;
243 bp->b_maps[i].bm_len = map[i].bm_len;
244 bp->b_length += map[i].bm_len;
245 }
246 bp->b_io_length = bp->b_length;
247
248 atomic_set(&bp->b_pin_count, 0);
249 init_waitqueue_head(&bp->b_waiters);
250
251 XFS_STATS_INC(target->bt_mount, xb_create);
252 trace_xfs_buf_init(bp, _RET_IP_);
253
254 return bp;
255}
256
257/*
258 * Allocate a page array capable of holding a specified number
259 * of pages, and point the page buf at it.
260 */
261STATIC int
262_xfs_buf_get_pages(
263 xfs_buf_t *bp,
264 int page_count)
265{
266 /* Make sure that we have a page list */
267 if (bp->b_pages == NULL) {
268 bp->b_page_count = page_count;
269 if (page_count <= XB_PAGES) {
270 bp->b_pages = bp->b_page_array;
271 } else {
272 bp->b_pages = kmem_alloc(sizeof(struct page *) *
273 page_count, KM_NOFS);
274 if (bp->b_pages == NULL)
275 return -ENOMEM;
276 }
277 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
278 }
279 return 0;
280}
281
282/*
283 * Frees b_pages if it was allocated.
284 */
285STATIC void
286_xfs_buf_free_pages(
287 xfs_buf_t *bp)
288{
289 if (bp->b_pages != bp->b_page_array) {
290 kmem_free(bp->b_pages);
291 bp->b_pages = NULL;
292 }
293}
294
295/*
296 * Releases the specified buffer.
297 *
298 * The modification state of any associated pages is left unchanged.
299 * The buffer must not be on any hash - use xfs_buf_rele instead for
300 * hashed and refcounted buffers
301 */
302void
303xfs_buf_free(
304 xfs_buf_t *bp)
305{
306 trace_xfs_buf_free(bp, _RET_IP_);
307
308 ASSERT(list_empty(&bp->b_lru));
309
310 if (bp->b_flags & _XBF_PAGES) {
311 uint i;
312
313 if (xfs_buf_is_vmapped(bp))
314 vm_unmap_ram(bp->b_addr - bp->b_offset,
315 bp->b_page_count);
316
317 for (i = 0; i < bp->b_page_count; i++) {
318 struct page *page = bp->b_pages[i];
319
320 __free_page(page);
321 }
322 } else if (bp->b_flags & _XBF_KMEM)
323 kmem_free(bp->b_addr);
324 _xfs_buf_free_pages(bp);
325 xfs_buf_free_maps(bp);
326 kmem_zone_free(xfs_buf_zone, bp);
327}
328
329/*
330 * Allocates all the pages for buffer in question and builds it's page list.
331 */
332STATIC int
333xfs_buf_allocate_memory(
334 xfs_buf_t *bp,
335 uint flags)
336{
337 size_t size;
338 size_t nbytes, offset;
339 gfp_t gfp_mask = xb_to_gfp(flags);
340 unsigned short page_count, i;
341 xfs_off_t start, end;
342 int error;
343
344 /*
345 * for buffers that are contained within a single page, just allocate
346 * the memory from the heap - there's no need for the complexity of
347 * page arrays to keep allocation down to order 0.
348 */
349 size = BBTOB(bp->b_length);
350 if (size < PAGE_SIZE) {
351 bp->b_addr = kmem_alloc(size, KM_NOFS);
352 if (!bp->b_addr) {
353 /* low memory - use alloc_page loop instead */
354 goto use_alloc_page;
355 }
356
357 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
358 ((unsigned long)bp->b_addr & PAGE_MASK)) {
359 /* b_addr spans two pages - use alloc_page instead */
360 kmem_free(bp->b_addr);
361 bp->b_addr = NULL;
362 goto use_alloc_page;
363 }
364 bp->b_offset = offset_in_page(bp->b_addr);
365 bp->b_pages = bp->b_page_array;
366 bp->b_pages[0] = virt_to_page(bp->b_addr);
367 bp->b_page_count = 1;
368 bp->b_flags |= _XBF_KMEM;
369 return 0;
370 }
371
372use_alloc_page:
373 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
374 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
375 >> PAGE_SHIFT;
376 page_count = end - start;
377 error = _xfs_buf_get_pages(bp, page_count);
378 if (unlikely(error))
379 return error;
380
381 offset = bp->b_offset;
382 bp->b_flags |= _XBF_PAGES;
383
384 for (i = 0; i < bp->b_page_count; i++) {
385 struct page *page;
386 uint retries = 0;
387retry:
388 page = alloc_page(gfp_mask);
389 if (unlikely(page == NULL)) {
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
392 error = -ENOMEM;
393 goto out_free_pages;
394 }
395
396 /*
397 * This could deadlock.
398 *
399 * But until all the XFS lowlevel code is revamped to
400 * handle buffer allocation failures we can't do much.
401 */
402 if (!(++retries % 100))
403 xfs_err(NULL,
404 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
405 current->comm, current->pid,
406 __func__, gfp_mask);
407
408 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
409 congestion_wait(BLK_RW_ASYNC, HZ/50);
410 goto retry;
411 }
412
413 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
414
415 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
416 size -= nbytes;
417 bp->b_pages[i] = page;
418 offset = 0;
419 }
420 return 0;
421
422out_free_pages:
423 for (i = 0; i < bp->b_page_count; i++)
424 __free_page(bp->b_pages[i]);
425 bp->b_flags &= ~_XBF_PAGES;
426 return error;
427}
428
429/*
430 * Map buffer into kernel address-space if necessary.
431 */
432STATIC int
433_xfs_buf_map_pages(
434 xfs_buf_t *bp,
435 uint flags)
436{
437 ASSERT(bp->b_flags & _XBF_PAGES);
438 if (bp->b_page_count == 1) {
439 /* A single page buffer is always mappable */
440 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
441 } else if (flags & XBF_UNMAPPED) {
442 bp->b_addr = NULL;
443 } else {
444 int retried = 0;
445 unsigned noio_flag;
446
447 /*
448 * vm_map_ram() will allocate auxillary structures (e.g.
449 * pagetables) with GFP_KERNEL, yet we are likely to be under
450 * GFP_NOFS context here. Hence we need to tell memory reclaim
451 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
452 * memory reclaim re-entering the filesystem here and
453 * potentially deadlocking.
454 */
455 noio_flag = memalloc_noio_save();
456 do {
457 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
458 -1, PAGE_KERNEL);
459 if (bp->b_addr)
460 break;
461 vm_unmap_aliases();
462 } while (retried++ <= 1);
463 memalloc_noio_restore(noio_flag);
464
465 if (!bp->b_addr)
466 return -ENOMEM;
467 bp->b_addr += bp->b_offset;
468 }
469
470 return 0;
471}
472
473/*
474 * Finding and Reading Buffers
475 */
476static int
477_xfs_buf_obj_cmp(
478 struct rhashtable_compare_arg *arg,
479 const void *obj)
480{
481 const struct xfs_buf_map *map = arg->key;
482 const struct xfs_buf *bp = obj;
483
484 /*
485 * The key hashing in the lookup path depends on the key being the
486 * first element of the compare_arg, make sure to assert this.
487 */
488 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
489
490 if (bp->b_bn != map->bm_bn)
491 return 1;
492
493 if (unlikely(bp->b_length != map->bm_len)) {
494 /*
495 * found a block number match. If the range doesn't
496 * match, the only way this is allowed is if the buffer
497 * in the cache is stale and the transaction that made
498 * it stale has not yet committed. i.e. we are
499 * reallocating a busy extent. Skip this buffer and
500 * continue searching for an exact match.
501 */
502 ASSERT(bp->b_flags & XBF_STALE);
503 return 1;
504 }
505 return 0;
506}
507
508static const struct rhashtable_params xfs_buf_hash_params = {
509 .min_size = 32, /* empty AGs have minimal footprint */
510 .nelem_hint = 16,
511 .key_len = sizeof(xfs_daddr_t),
512 .key_offset = offsetof(struct xfs_buf, b_bn),
513 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
514 .automatic_shrinking = true,
515 .obj_cmpfn = _xfs_buf_obj_cmp,
516};
517
518int
519xfs_buf_hash_init(
520 struct xfs_perag *pag)
521{
522 spin_lock_init(&pag->pag_buf_lock);
523 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
524}
525
526void
527xfs_buf_hash_destroy(
528 struct xfs_perag *pag)
529{
530 rhashtable_destroy(&pag->pag_buf_hash);
531}
532
533/*
534 * Look up, and creates if absent, a lockable buffer for
535 * a given range of an inode. The buffer is returned
536 * locked. No I/O is implied by this call.
537 */
538xfs_buf_t *
539_xfs_buf_find(
540 struct xfs_buftarg *btp,
541 struct xfs_buf_map *map,
542 int nmaps,
543 xfs_buf_flags_t flags,
544 xfs_buf_t *new_bp)
545{
546 struct xfs_perag *pag;
547 xfs_buf_t *bp;
548 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
549 xfs_daddr_t eofs;
550 int i;
551
552 for (i = 0; i < nmaps; i++)
553 cmap.bm_len += map[i].bm_len;
554
555 /* Check for IOs smaller than the sector size / not sector aligned */
556 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
557 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
558
559 /*
560 * Corrupted block numbers can get through to here, unfortunately, so we
561 * have to check that the buffer falls within the filesystem bounds.
562 */
563 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
564 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
565 /*
566 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
567 * but none of the higher level infrastructure supports
568 * returning a specific error on buffer lookup failures.
569 */
570 xfs_alert(btp->bt_mount,
571 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
572 __func__, cmap.bm_bn, eofs);
573 WARN_ON(1);
574 return NULL;
575 }
576
577 pag = xfs_perag_get(btp->bt_mount,
578 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
579
580 spin_lock(&pag->pag_buf_lock);
581 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
582 xfs_buf_hash_params);
583 if (bp) {
584 atomic_inc(&bp->b_hold);
585 goto found;
586 }
587
588 /* No match found */
589 if (new_bp) {
590 /* the buffer keeps the perag reference until it is freed */
591 new_bp->b_pag = pag;
592 rhashtable_insert_fast(&pag->pag_buf_hash,
593 &new_bp->b_rhash_head,
594 xfs_buf_hash_params);
595 spin_unlock(&pag->pag_buf_lock);
596 } else {
597 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
598 spin_unlock(&pag->pag_buf_lock);
599 xfs_perag_put(pag);
600 }
601 return new_bp;
602
603found:
604 spin_unlock(&pag->pag_buf_lock);
605 xfs_perag_put(pag);
606
607 if (!xfs_buf_trylock(bp)) {
608 if (flags & XBF_TRYLOCK) {
609 xfs_buf_rele(bp);
610 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
611 return NULL;
612 }
613 xfs_buf_lock(bp);
614 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
615 }
616
617 /*
618 * if the buffer is stale, clear all the external state associated with
619 * it. We need to keep flags such as how we allocated the buffer memory
620 * intact here.
621 */
622 if (bp->b_flags & XBF_STALE) {
623 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
624 ASSERT(bp->b_iodone == NULL);
625 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
626 bp->b_ops = NULL;
627 }
628
629 trace_xfs_buf_find(bp, flags, _RET_IP_);
630 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
631 return bp;
632}
633
634/*
635 * Assembles a buffer covering the specified range. The code is optimised for
636 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
637 * more hits than misses.
638 */
639struct xfs_buf *
640xfs_buf_get_map(
641 struct xfs_buftarg *target,
642 struct xfs_buf_map *map,
643 int nmaps,
644 xfs_buf_flags_t flags)
645{
646 struct xfs_buf *bp;
647 struct xfs_buf *new_bp;
648 int error = 0;
649
650 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
651 if (likely(bp))
652 goto found;
653
654 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
655 if (unlikely(!new_bp))
656 return NULL;
657
658 error = xfs_buf_allocate_memory(new_bp, flags);
659 if (error) {
660 xfs_buf_free(new_bp);
661 return NULL;
662 }
663
664 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
665 if (!bp) {
666 xfs_buf_free(new_bp);
667 return NULL;
668 }
669
670 if (bp != new_bp)
671 xfs_buf_free(new_bp);
672
673found:
674 if (!bp->b_addr) {
675 error = _xfs_buf_map_pages(bp, flags);
676 if (unlikely(error)) {
677 xfs_warn(target->bt_mount,
678 "%s: failed to map pagesn", __func__);
679 xfs_buf_relse(bp);
680 return NULL;
681 }
682 }
683
684 /*
685 * Clear b_error if this is a lookup from a caller that doesn't expect
686 * valid data to be found in the buffer.
687 */
688 if (!(flags & XBF_READ))
689 xfs_buf_ioerror(bp, 0);
690
691 XFS_STATS_INC(target->bt_mount, xb_get);
692 trace_xfs_buf_get(bp, flags, _RET_IP_);
693 return bp;
694}
695
696STATIC int
697_xfs_buf_read(
698 xfs_buf_t *bp,
699 xfs_buf_flags_t flags)
700{
701 ASSERT(!(flags & XBF_WRITE));
702 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
703
704 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
705 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
706
707 if (flags & XBF_ASYNC) {
708 xfs_buf_submit(bp);
709 return 0;
710 }
711 return xfs_buf_submit_wait(bp);
712}
713
714xfs_buf_t *
715xfs_buf_read_map(
716 struct xfs_buftarg *target,
717 struct xfs_buf_map *map,
718 int nmaps,
719 xfs_buf_flags_t flags,
720 const struct xfs_buf_ops *ops)
721{
722 struct xfs_buf *bp;
723
724 flags |= XBF_READ;
725
726 bp = xfs_buf_get_map(target, map, nmaps, flags);
727 if (bp) {
728 trace_xfs_buf_read(bp, flags, _RET_IP_);
729
730 if (!(bp->b_flags & XBF_DONE)) {
731 XFS_STATS_INC(target->bt_mount, xb_get_read);
732 bp->b_ops = ops;
733 _xfs_buf_read(bp, flags);
734 } else if (flags & XBF_ASYNC) {
735 /*
736 * Read ahead call which is already satisfied,
737 * drop the buffer
738 */
739 xfs_buf_relse(bp);
740 return NULL;
741 } else {
742 /* We do not want read in the flags */
743 bp->b_flags &= ~XBF_READ;
744 }
745 }
746
747 return bp;
748}
749
750/*
751 * If we are not low on memory then do the readahead in a deadlock
752 * safe manner.
753 */
754void
755xfs_buf_readahead_map(
756 struct xfs_buftarg *target,
757 struct xfs_buf_map *map,
758 int nmaps,
759 const struct xfs_buf_ops *ops)
760{
761 if (bdi_read_congested(target->bt_bdi))
762 return;
763
764 xfs_buf_read_map(target, map, nmaps,
765 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
766}
767
768/*
769 * Read an uncached buffer from disk. Allocates and returns a locked
770 * buffer containing the disk contents or nothing.
771 */
772int
773xfs_buf_read_uncached(
774 struct xfs_buftarg *target,
775 xfs_daddr_t daddr,
776 size_t numblks,
777 int flags,
778 struct xfs_buf **bpp,
779 const struct xfs_buf_ops *ops)
780{
781 struct xfs_buf *bp;
782
783 *bpp = NULL;
784
785 bp = xfs_buf_get_uncached(target, numblks, flags);
786 if (!bp)
787 return -ENOMEM;
788
789 /* set up the buffer for a read IO */
790 ASSERT(bp->b_map_count == 1);
791 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
792 bp->b_maps[0].bm_bn = daddr;
793 bp->b_flags |= XBF_READ;
794 bp->b_ops = ops;
795
796 xfs_buf_submit_wait(bp);
797 if (bp->b_error) {
798 int error = bp->b_error;
799 xfs_buf_relse(bp);
800 return error;
801 }
802
803 *bpp = bp;
804 return 0;
805}
806
807/*
808 * Return a buffer allocated as an empty buffer and associated to external
809 * memory via xfs_buf_associate_memory() back to it's empty state.
810 */
811void
812xfs_buf_set_empty(
813 struct xfs_buf *bp,
814 size_t numblks)
815{
816 if (bp->b_pages)
817 _xfs_buf_free_pages(bp);
818
819 bp->b_pages = NULL;
820 bp->b_page_count = 0;
821 bp->b_addr = NULL;
822 bp->b_length = numblks;
823 bp->b_io_length = numblks;
824
825 ASSERT(bp->b_map_count == 1);
826 bp->b_bn = XFS_BUF_DADDR_NULL;
827 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
828 bp->b_maps[0].bm_len = bp->b_length;
829}
830
831static inline struct page *
832mem_to_page(
833 void *addr)
834{
835 if ((!is_vmalloc_addr(addr))) {
836 return virt_to_page(addr);
837 } else {
838 return vmalloc_to_page(addr);
839 }
840}
841
842int
843xfs_buf_associate_memory(
844 xfs_buf_t *bp,
845 void *mem,
846 size_t len)
847{
848 int rval;
849 int i = 0;
850 unsigned long pageaddr;
851 unsigned long offset;
852 size_t buflen;
853 int page_count;
854
855 pageaddr = (unsigned long)mem & PAGE_MASK;
856 offset = (unsigned long)mem - pageaddr;
857 buflen = PAGE_ALIGN(len + offset);
858 page_count = buflen >> PAGE_SHIFT;
859
860 /* Free any previous set of page pointers */
861 if (bp->b_pages)
862 _xfs_buf_free_pages(bp);
863
864 bp->b_pages = NULL;
865 bp->b_addr = mem;
866
867 rval = _xfs_buf_get_pages(bp, page_count);
868 if (rval)
869 return rval;
870
871 bp->b_offset = offset;
872
873 for (i = 0; i < bp->b_page_count; i++) {
874 bp->b_pages[i] = mem_to_page((void *)pageaddr);
875 pageaddr += PAGE_SIZE;
876 }
877
878 bp->b_io_length = BTOBB(len);
879 bp->b_length = BTOBB(buflen);
880
881 return 0;
882}
883
884xfs_buf_t *
885xfs_buf_get_uncached(
886 struct xfs_buftarg *target,
887 size_t numblks,
888 int flags)
889{
890 unsigned long page_count;
891 int error, i;
892 struct xfs_buf *bp;
893 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
894
895 /* flags might contain irrelevant bits, pass only what we care about */
896 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
897 if (unlikely(bp == NULL))
898 goto fail;
899
900 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
901 error = _xfs_buf_get_pages(bp, page_count);
902 if (error)
903 goto fail_free_buf;
904
905 for (i = 0; i < page_count; i++) {
906 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
907 if (!bp->b_pages[i])
908 goto fail_free_mem;
909 }
910 bp->b_flags |= _XBF_PAGES;
911
912 error = _xfs_buf_map_pages(bp, 0);
913 if (unlikely(error)) {
914 xfs_warn(target->bt_mount,
915 "%s: failed to map pages", __func__);
916 goto fail_free_mem;
917 }
918
919 trace_xfs_buf_get_uncached(bp, _RET_IP_);
920 return bp;
921
922 fail_free_mem:
923 while (--i >= 0)
924 __free_page(bp->b_pages[i]);
925 _xfs_buf_free_pages(bp);
926 fail_free_buf:
927 xfs_buf_free_maps(bp);
928 kmem_zone_free(xfs_buf_zone, bp);
929 fail:
930 return NULL;
931}
932
933/*
934 * Increment reference count on buffer, to hold the buffer concurrently
935 * with another thread which may release (free) the buffer asynchronously.
936 * Must hold the buffer already to call this function.
937 */
938void
939xfs_buf_hold(
940 xfs_buf_t *bp)
941{
942 trace_xfs_buf_hold(bp, _RET_IP_);
943 atomic_inc(&bp->b_hold);
944}
945
946/*
947 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
948 * placed on LRU or freed (depending on b_lru_ref).
949 */
950void
951xfs_buf_rele(
952 xfs_buf_t *bp)
953{
954 struct xfs_perag *pag = bp->b_pag;
955 bool release;
956 bool freebuf = false;
957
958 trace_xfs_buf_rele(bp, _RET_IP_);
959
960 if (!pag) {
961 ASSERT(list_empty(&bp->b_lru));
962 if (atomic_dec_and_test(&bp->b_hold)) {
963 xfs_buf_ioacct_dec(bp);
964 xfs_buf_free(bp);
965 }
966 return;
967 }
968
969 ASSERT(atomic_read(&bp->b_hold) > 0);
970
971 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
972 spin_lock(&bp->b_lock);
973 if (!release) {
974 /*
975 * Drop the in-flight state if the buffer is already on the LRU
976 * and it holds the only reference. This is racy because we
977 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
978 * ensures the decrement occurs only once per-buf.
979 */
980 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
981 xfs_buf_ioacct_dec(bp);
982 goto out_unlock;
983 }
984
985 /* the last reference has been dropped ... */
986 xfs_buf_ioacct_dec(bp);
987 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
988 /*
989 * If the buffer is added to the LRU take a new reference to the
990 * buffer for the LRU and clear the (now stale) dispose list
991 * state flag
992 */
993 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
994 bp->b_state &= ~XFS_BSTATE_DISPOSE;
995 atomic_inc(&bp->b_hold);
996 }
997 spin_unlock(&pag->pag_buf_lock);
998 } else {
999 /*
1000 * most of the time buffers will already be removed from the
1001 * LRU, so optimise that case by checking for the
1002 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1003 * was on was the disposal list
1004 */
1005 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1006 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1007 } else {
1008 ASSERT(list_empty(&bp->b_lru));
1009 }
1010
1011 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1012 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1013 xfs_buf_hash_params);
1014 spin_unlock(&pag->pag_buf_lock);
1015 xfs_perag_put(pag);
1016 freebuf = true;
1017 }
1018
1019out_unlock:
1020 spin_unlock(&bp->b_lock);
1021
1022 if (freebuf)
1023 xfs_buf_free(bp);
1024}
1025
1026
1027/*
1028 * Lock a buffer object, if it is not already locked.
1029 *
1030 * If we come across a stale, pinned, locked buffer, we know that we are
1031 * being asked to lock a buffer that has been reallocated. Because it is
1032 * pinned, we know that the log has not been pushed to disk and hence it
1033 * will still be locked. Rather than continuing to have trylock attempts
1034 * fail until someone else pushes the log, push it ourselves before
1035 * returning. This means that the xfsaild will not get stuck trying
1036 * to push on stale inode buffers.
1037 */
1038int
1039xfs_buf_trylock(
1040 struct xfs_buf *bp)
1041{
1042 int locked;
1043
1044 locked = down_trylock(&bp->b_sema) == 0;
1045 if (locked) {
1046 XB_SET_OWNER(bp);
1047 trace_xfs_buf_trylock(bp, _RET_IP_);
1048 } else {
1049 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1050 }
1051 return locked;
1052}
1053
1054/*
1055 * Lock a buffer object.
1056 *
1057 * If we come across a stale, pinned, locked buffer, we know that we
1058 * are being asked to lock a buffer that has been reallocated. Because
1059 * it is pinned, we know that the log has not been pushed to disk and
1060 * hence it will still be locked. Rather than sleeping until someone
1061 * else pushes the log, push it ourselves before trying to get the lock.
1062 */
1063void
1064xfs_buf_lock(
1065 struct xfs_buf *bp)
1066{
1067 trace_xfs_buf_lock(bp, _RET_IP_);
1068
1069 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1070 xfs_log_force(bp->b_target->bt_mount, 0);
1071 down(&bp->b_sema);
1072 XB_SET_OWNER(bp);
1073
1074 trace_xfs_buf_lock_done(bp, _RET_IP_);
1075}
1076
1077void
1078xfs_buf_unlock(
1079 struct xfs_buf *bp)
1080{
1081 XB_CLEAR_OWNER(bp);
1082 up(&bp->b_sema);
1083
1084 trace_xfs_buf_unlock(bp, _RET_IP_);
1085}
1086
1087STATIC void
1088xfs_buf_wait_unpin(
1089 xfs_buf_t *bp)
1090{
1091 DECLARE_WAITQUEUE (wait, current);
1092
1093 if (atomic_read(&bp->b_pin_count) == 0)
1094 return;
1095
1096 add_wait_queue(&bp->b_waiters, &wait);
1097 for (;;) {
1098 set_current_state(TASK_UNINTERRUPTIBLE);
1099 if (atomic_read(&bp->b_pin_count) == 0)
1100 break;
1101 io_schedule();
1102 }
1103 remove_wait_queue(&bp->b_waiters, &wait);
1104 set_current_state(TASK_RUNNING);
1105}
1106
1107/*
1108 * Buffer Utility Routines
1109 */
1110
1111void
1112xfs_buf_ioend(
1113 struct xfs_buf *bp)
1114{
1115 bool read = bp->b_flags & XBF_READ;
1116
1117 trace_xfs_buf_iodone(bp, _RET_IP_);
1118
1119 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1120
1121 /*
1122 * Pull in IO completion errors now. We are guaranteed to be running
1123 * single threaded, so we don't need the lock to read b_io_error.
1124 */
1125 if (!bp->b_error && bp->b_io_error)
1126 xfs_buf_ioerror(bp, bp->b_io_error);
1127
1128 /* Only validate buffers that were read without errors */
1129 if (read && !bp->b_error && bp->b_ops) {
1130 ASSERT(!bp->b_iodone);
1131 bp->b_ops->verify_read(bp);
1132 }
1133
1134 if (!bp->b_error)
1135 bp->b_flags |= XBF_DONE;
1136
1137 if (bp->b_iodone)
1138 (*(bp->b_iodone))(bp);
1139 else if (bp->b_flags & XBF_ASYNC)
1140 xfs_buf_relse(bp);
1141 else
1142 complete(&bp->b_iowait);
1143}
1144
1145static void
1146xfs_buf_ioend_work(
1147 struct work_struct *work)
1148{
1149 struct xfs_buf *bp =
1150 container_of(work, xfs_buf_t, b_ioend_work);
1151
1152 xfs_buf_ioend(bp);
1153}
1154
1155static void
1156xfs_buf_ioend_async(
1157 struct xfs_buf *bp)
1158{
1159 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1160 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1161}
1162
1163void
1164xfs_buf_ioerror(
1165 xfs_buf_t *bp,
1166 int error)
1167{
1168 ASSERT(error <= 0 && error >= -1000);
1169 bp->b_error = error;
1170 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1171}
1172
1173void
1174xfs_buf_ioerror_alert(
1175 struct xfs_buf *bp,
1176 const char *func)
1177{
1178 xfs_alert(bp->b_target->bt_mount,
1179"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1180 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1181}
1182
1183int
1184xfs_bwrite(
1185 struct xfs_buf *bp)
1186{
1187 int error;
1188
1189 ASSERT(xfs_buf_islocked(bp));
1190
1191 bp->b_flags |= XBF_WRITE;
1192 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1193 XBF_WRITE_FAIL | XBF_DONE);
1194
1195 error = xfs_buf_submit_wait(bp);
1196 if (error) {
1197 xfs_force_shutdown(bp->b_target->bt_mount,
1198 SHUTDOWN_META_IO_ERROR);
1199 }
1200 return error;
1201}
1202
1203static void
1204xfs_buf_bio_end_io(
1205 struct bio *bio)
1206{
1207 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1208
1209 /*
1210 * don't overwrite existing errors - otherwise we can lose errors on
1211 * buffers that require multiple bios to complete.
1212 */
1213 if (bio->bi_error)
1214 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1215
1216 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1217 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1218
1219 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1220 xfs_buf_ioend_async(bp);
1221 bio_put(bio);
1222}
1223
1224static void
1225xfs_buf_ioapply_map(
1226 struct xfs_buf *bp,
1227 int map,
1228 int *buf_offset,
1229 int *count,
1230 int op,
1231 int op_flags)
1232{
1233 int page_index;
1234 int total_nr_pages = bp->b_page_count;
1235 int nr_pages;
1236 struct bio *bio;
1237 sector_t sector = bp->b_maps[map].bm_bn;
1238 int size;
1239 int offset;
1240
1241 total_nr_pages = bp->b_page_count;
1242
1243 /* skip the pages in the buffer before the start offset */
1244 page_index = 0;
1245 offset = *buf_offset;
1246 while (offset >= PAGE_SIZE) {
1247 page_index++;
1248 offset -= PAGE_SIZE;
1249 }
1250
1251 /*
1252 * Limit the IO size to the length of the current vector, and update the
1253 * remaining IO count for the next time around.
1254 */
1255 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1256 *count -= size;
1257 *buf_offset += size;
1258
1259next_chunk:
1260 atomic_inc(&bp->b_io_remaining);
1261 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1262
1263 bio = bio_alloc(GFP_NOIO, nr_pages);
1264 bio->bi_bdev = bp->b_target->bt_bdev;
1265 bio->bi_iter.bi_sector = sector;
1266 bio->bi_end_io = xfs_buf_bio_end_io;
1267 bio->bi_private = bp;
1268 bio_set_op_attrs(bio, op, op_flags);
1269
1270 for (; size && nr_pages; nr_pages--, page_index++) {
1271 int rbytes, nbytes = PAGE_SIZE - offset;
1272
1273 if (nbytes > size)
1274 nbytes = size;
1275
1276 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1277 offset);
1278 if (rbytes < nbytes)
1279 break;
1280
1281 offset = 0;
1282 sector += BTOBB(nbytes);
1283 size -= nbytes;
1284 total_nr_pages--;
1285 }
1286
1287 if (likely(bio->bi_iter.bi_size)) {
1288 if (xfs_buf_is_vmapped(bp)) {
1289 flush_kernel_vmap_range(bp->b_addr,
1290 xfs_buf_vmap_len(bp));
1291 }
1292 submit_bio(bio);
1293 if (size)
1294 goto next_chunk;
1295 } else {
1296 /*
1297 * This is guaranteed not to be the last io reference count
1298 * because the caller (xfs_buf_submit) holds a count itself.
1299 */
1300 atomic_dec(&bp->b_io_remaining);
1301 xfs_buf_ioerror(bp, -EIO);
1302 bio_put(bio);
1303 }
1304
1305}
1306
1307STATIC void
1308_xfs_buf_ioapply(
1309 struct xfs_buf *bp)
1310{
1311 struct blk_plug plug;
1312 int op;
1313 int op_flags = 0;
1314 int offset;
1315 int size;
1316 int i;
1317
1318 /*
1319 * Make sure we capture only current IO errors rather than stale errors
1320 * left over from previous use of the buffer (e.g. failed readahead).
1321 */
1322 bp->b_error = 0;
1323
1324 /*
1325 * Initialize the I/O completion workqueue if we haven't yet or the
1326 * submitter has not opted to specify a custom one.
1327 */
1328 if (!bp->b_ioend_wq)
1329 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1330
1331 if (bp->b_flags & XBF_WRITE) {
1332 op = REQ_OP_WRITE;
1333 if (bp->b_flags & XBF_SYNCIO)
1334 op_flags = REQ_SYNC;
1335 if (bp->b_flags & XBF_FUA)
1336 op_flags |= REQ_FUA;
1337 if (bp->b_flags & XBF_FLUSH)
1338 op_flags |= REQ_PREFLUSH;
1339
1340 /*
1341 * Run the write verifier callback function if it exists. If
1342 * this function fails it will mark the buffer with an error and
1343 * the IO should not be dispatched.
1344 */
1345 if (bp->b_ops) {
1346 bp->b_ops->verify_write(bp);
1347 if (bp->b_error) {
1348 xfs_force_shutdown(bp->b_target->bt_mount,
1349 SHUTDOWN_CORRUPT_INCORE);
1350 return;
1351 }
1352 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1353 struct xfs_mount *mp = bp->b_target->bt_mount;
1354
1355 /*
1356 * non-crc filesystems don't attach verifiers during
1357 * log recovery, so don't warn for such filesystems.
1358 */
1359 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1360 xfs_warn(mp,
1361 "%s: no ops on block 0x%llx/0x%x",
1362 __func__, bp->b_bn, bp->b_length);
1363 xfs_hex_dump(bp->b_addr, 64);
1364 dump_stack();
1365 }
1366 }
1367 } else if (bp->b_flags & XBF_READ_AHEAD) {
1368 op = REQ_OP_READ;
1369 op_flags = REQ_RAHEAD;
1370 } else {
1371 op = REQ_OP_READ;
1372 }
1373
1374 /* we only use the buffer cache for meta-data */
1375 op_flags |= REQ_META;
1376
1377 /*
1378 * Walk all the vectors issuing IO on them. Set up the initial offset
1379 * into the buffer and the desired IO size before we start -
1380 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1381 * subsequent call.
1382 */
1383 offset = bp->b_offset;
1384 size = BBTOB(bp->b_io_length);
1385 blk_start_plug(&plug);
1386 for (i = 0; i < bp->b_map_count; i++) {
1387 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1388 if (bp->b_error)
1389 break;
1390 if (size <= 0)
1391 break; /* all done */
1392 }
1393 blk_finish_plug(&plug);
1394}
1395
1396/*
1397 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1398 * the current reference to the IO. It is not safe to reference the buffer after
1399 * a call to this function unless the caller holds an additional reference
1400 * itself.
1401 */
1402void
1403xfs_buf_submit(
1404 struct xfs_buf *bp)
1405{
1406 trace_xfs_buf_submit(bp, _RET_IP_);
1407
1408 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1409 ASSERT(bp->b_flags & XBF_ASYNC);
1410
1411 /* on shutdown we stale and complete the buffer immediately */
1412 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1413 xfs_buf_ioerror(bp, -EIO);
1414 bp->b_flags &= ~XBF_DONE;
1415 xfs_buf_stale(bp);
1416 xfs_buf_ioend(bp);
1417 return;
1418 }
1419
1420 if (bp->b_flags & XBF_WRITE)
1421 xfs_buf_wait_unpin(bp);
1422
1423 /* clear the internal error state to avoid spurious errors */
1424 bp->b_io_error = 0;
1425
1426 /*
1427 * The caller's reference is released during I/O completion.
1428 * This occurs some time after the last b_io_remaining reference is
1429 * released, so after we drop our Io reference we have to have some
1430 * other reference to ensure the buffer doesn't go away from underneath
1431 * us. Take a direct reference to ensure we have safe access to the
1432 * buffer until we are finished with it.
1433 */
1434 xfs_buf_hold(bp);
1435
1436 /*
1437 * Set the count to 1 initially, this will stop an I/O completion
1438 * callout which happens before we have started all the I/O from calling
1439 * xfs_buf_ioend too early.
1440 */
1441 atomic_set(&bp->b_io_remaining, 1);
1442 xfs_buf_ioacct_inc(bp);
1443 _xfs_buf_ioapply(bp);
1444
1445 /*
1446 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1447 * reference we took above. If we drop it to zero, run completion so
1448 * that we don't return to the caller with completion still pending.
1449 */
1450 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1451 if (bp->b_error)
1452 xfs_buf_ioend(bp);
1453 else
1454 xfs_buf_ioend_async(bp);
1455 }
1456
1457 xfs_buf_rele(bp);
1458 /* Note: it is not safe to reference bp now we've dropped our ref */
1459}
1460
1461/*
1462 * Synchronous buffer IO submission path, read or write.
1463 */
1464int
1465xfs_buf_submit_wait(
1466 struct xfs_buf *bp)
1467{
1468 int error;
1469
1470 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1471
1472 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1473
1474 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1475 xfs_buf_ioerror(bp, -EIO);
1476 xfs_buf_stale(bp);
1477 bp->b_flags &= ~XBF_DONE;
1478 return -EIO;
1479 }
1480
1481 if (bp->b_flags & XBF_WRITE)
1482 xfs_buf_wait_unpin(bp);
1483
1484 /* clear the internal error state to avoid spurious errors */
1485 bp->b_io_error = 0;
1486
1487 /*
1488 * For synchronous IO, the IO does not inherit the submitters reference
1489 * count, nor the buffer lock. Hence we cannot release the reference we
1490 * are about to take until we've waited for all IO completion to occur,
1491 * including any xfs_buf_ioend_async() work that may be pending.
1492 */
1493 xfs_buf_hold(bp);
1494
1495 /*
1496 * Set the count to 1 initially, this will stop an I/O completion
1497 * callout which happens before we have started all the I/O from calling
1498 * xfs_buf_ioend too early.
1499 */
1500 atomic_set(&bp->b_io_remaining, 1);
1501 _xfs_buf_ioapply(bp);
1502
1503 /*
1504 * make sure we run completion synchronously if it raced with us and is
1505 * already complete.
1506 */
1507 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1508 xfs_buf_ioend(bp);
1509
1510 /* wait for completion before gathering the error from the buffer */
1511 trace_xfs_buf_iowait(bp, _RET_IP_);
1512 wait_for_completion(&bp->b_iowait);
1513 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1514 error = bp->b_error;
1515
1516 /*
1517 * all done now, we can release the hold that keeps the buffer
1518 * referenced for the entire IO.
1519 */
1520 xfs_buf_rele(bp);
1521 return error;
1522}
1523
1524void *
1525xfs_buf_offset(
1526 struct xfs_buf *bp,
1527 size_t offset)
1528{
1529 struct page *page;
1530
1531 if (bp->b_addr)
1532 return bp->b_addr + offset;
1533
1534 offset += bp->b_offset;
1535 page = bp->b_pages[offset >> PAGE_SHIFT];
1536 return page_address(page) + (offset & (PAGE_SIZE-1));
1537}
1538
1539/*
1540 * Move data into or out of a buffer.
1541 */
1542void
1543xfs_buf_iomove(
1544 xfs_buf_t *bp, /* buffer to process */
1545 size_t boff, /* starting buffer offset */
1546 size_t bsize, /* length to copy */
1547 void *data, /* data address */
1548 xfs_buf_rw_t mode) /* read/write/zero flag */
1549{
1550 size_t bend;
1551
1552 bend = boff + bsize;
1553 while (boff < bend) {
1554 struct page *page;
1555 int page_index, page_offset, csize;
1556
1557 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1558 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1559 page = bp->b_pages[page_index];
1560 csize = min_t(size_t, PAGE_SIZE - page_offset,
1561 BBTOB(bp->b_io_length) - boff);
1562
1563 ASSERT((csize + page_offset) <= PAGE_SIZE);
1564
1565 switch (mode) {
1566 case XBRW_ZERO:
1567 memset(page_address(page) + page_offset, 0, csize);
1568 break;
1569 case XBRW_READ:
1570 memcpy(data, page_address(page) + page_offset, csize);
1571 break;
1572 case XBRW_WRITE:
1573 memcpy(page_address(page) + page_offset, data, csize);
1574 }
1575
1576 boff += csize;
1577 data += csize;
1578 }
1579}
1580
1581/*
1582 * Handling of buffer targets (buftargs).
1583 */
1584
1585/*
1586 * Wait for any bufs with callbacks that have been submitted but have not yet
1587 * returned. These buffers will have an elevated hold count, so wait on those
1588 * while freeing all the buffers only held by the LRU.
1589 */
1590static enum lru_status
1591xfs_buftarg_wait_rele(
1592 struct list_head *item,
1593 struct list_lru_one *lru,
1594 spinlock_t *lru_lock,
1595 void *arg)
1596
1597{
1598 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1599 struct list_head *dispose = arg;
1600
1601 if (atomic_read(&bp->b_hold) > 1) {
1602 /* need to wait, so skip it this pass */
1603 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1604 return LRU_SKIP;
1605 }
1606 if (!spin_trylock(&bp->b_lock))
1607 return LRU_SKIP;
1608
1609 /*
1610 * clear the LRU reference count so the buffer doesn't get
1611 * ignored in xfs_buf_rele().
1612 */
1613 atomic_set(&bp->b_lru_ref, 0);
1614 bp->b_state |= XFS_BSTATE_DISPOSE;
1615 list_lru_isolate_move(lru, item, dispose);
1616 spin_unlock(&bp->b_lock);
1617 return LRU_REMOVED;
1618}
1619
1620void
1621xfs_wait_buftarg(
1622 struct xfs_buftarg *btp)
1623{
1624 LIST_HEAD(dispose);
1625 int loop = 0;
1626
1627 /*
1628 * First wait on the buftarg I/O count for all in-flight buffers to be
1629 * released. This is critical as new buffers do not make the LRU until
1630 * they are released.
1631 *
1632 * Next, flush the buffer workqueue to ensure all completion processing
1633 * has finished. Just waiting on buffer locks is not sufficient for
1634 * async IO as the reference count held over IO is not released until
1635 * after the buffer lock is dropped. Hence we need to ensure here that
1636 * all reference counts have been dropped before we start walking the
1637 * LRU list.
1638 */
1639 while (percpu_counter_sum(&btp->bt_io_count))
1640 delay(100);
1641 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1642
1643 /* loop until there is nothing left on the lru list. */
1644 while (list_lru_count(&btp->bt_lru)) {
1645 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1646 &dispose, LONG_MAX);
1647
1648 while (!list_empty(&dispose)) {
1649 struct xfs_buf *bp;
1650 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1651 list_del_init(&bp->b_lru);
1652 if (bp->b_flags & XBF_WRITE_FAIL) {
1653 xfs_alert(btp->bt_mount,
1654"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1655 (long long)bp->b_bn);
1656 xfs_alert(btp->bt_mount,
1657"Please run xfs_repair to determine the extent of the problem.");
1658 }
1659 xfs_buf_rele(bp);
1660 }
1661 if (loop++ != 0)
1662 delay(100);
1663 }
1664}
1665
1666static enum lru_status
1667xfs_buftarg_isolate(
1668 struct list_head *item,
1669 struct list_lru_one *lru,
1670 spinlock_t *lru_lock,
1671 void *arg)
1672{
1673 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1674 struct list_head *dispose = arg;
1675
1676 /*
1677 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1678 * If we fail to get the lock, just skip it.
1679 */
1680 if (!spin_trylock(&bp->b_lock))
1681 return LRU_SKIP;
1682 /*
1683 * Decrement the b_lru_ref count unless the value is already
1684 * zero. If the value is already zero, we need to reclaim the
1685 * buffer, otherwise it gets another trip through the LRU.
1686 */
1687 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1688 spin_unlock(&bp->b_lock);
1689 return LRU_ROTATE;
1690 }
1691
1692 bp->b_state |= XFS_BSTATE_DISPOSE;
1693 list_lru_isolate_move(lru, item, dispose);
1694 spin_unlock(&bp->b_lock);
1695 return LRU_REMOVED;
1696}
1697
1698static unsigned long
1699xfs_buftarg_shrink_scan(
1700 struct shrinker *shrink,
1701 struct shrink_control *sc)
1702{
1703 struct xfs_buftarg *btp = container_of(shrink,
1704 struct xfs_buftarg, bt_shrinker);
1705 LIST_HEAD(dispose);
1706 unsigned long freed;
1707
1708 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1709 xfs_buftarg_isolate, &dispose);
1710
1711 while (!list_empty(&dispose)) {
1712 struct xfs_buf *bp;
1713 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1714 list_del_init(&bp->b_lru);
1715 xfs_buf_rele(bp);
1716 }
1717
1718 return freed;
1719}
1720
1721static unsigned long
1722xfs_buftarg_shrink_count(
1723 struct shrinker *shrink,
1724 struct shrink_control *sc)
1725{
1726 struct xfs_buftarg *btp = container_of(shrink,
1727 struct xfs_buftarg, bt_shrinker);
1728 return list_lru_shrink_count(&btp->bt_lru, sc);
1729}
1730
1731void
1732xfs_free_buftarg(
1733 struct xfs_mount *mp,
1734 struct xfs_buftarg *btp)
1735{
1736 unregister_shrinker(&btp->bt_shrinker);
1737 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1738 percpu_counter_destroy(&btp->bt_io_count);
1739 list_lru_destroy(&btp->bt_lru);
1740
1741 xfs_blkdev_issue_flush(btp);
1742
1743 kmem_free(btp);
1744}
1745
1746int
1747xfs_setsize_buftarg(
1748 xfs_buftarg_t *btp,
1749 unsigned int sectorsize)
1750{
1751 /* Set up metadata sector size info */
1752 btp->bt_meta_sectorsize = sectorsize;
1753 btp->bt_meta_sectormask = sectorsize - 1;
1754
1755 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1756 xfs_warn(btp->bt_mount,
1757 "Cannot set_blocksize to %u on device %pg",
1758 sectorsize, btp->bt_bdev);
1759 return -EINVAL;
1760 }
1761
1762 /* Set up device logical sector size mask */
1763 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1764 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1765
1766 return 0;
1767}
1768
1769/*
1770 * When allocating the initial buffer target we have not yet
1771 * read in the superblock, so don't know what sized sectors
1772 * are being used at this early stage. Play safe.
1773 */
1774STATIC int
1775xfs_setsize_buftarg_early(
1776 xfs_buftarg_t *btp,
1777 struct block_device *bdev)
1778{
1779 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1780}
1781
1782xfs_buftarg_t *
1783xfs_alloc_buftarg(
1784 struct xfs_mount *mp,
1785 struct block_device *bdev)
1786{
1787 xfs_buftarg_t *btp;
1788
1789 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1790
1791 btp->bt_mount = mp;
1792 btp->bt_dev = bdev->bd_dev;
1793 btp->bt_bdev = bdev;
1794 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1795
1796 if (xfs_setsize_buftarg_early(btp, bdev))
1797 goto error;
1798
1799 if (list_lru_init(&btp->bt_lru))
1800 goto error;
1801
1802 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1803 goto error;
1804
1805 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1806 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1807 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1808 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1809 register_shrinker(&btp->bt_shrinker);
1810 return btp;
1811
1812error:
1813 kmem_free(btp);
1814 return NULL;
1815}
1816
1817/*
1818 * Add a buffer to the delayed write list.
1819 *
1820 * This queues a buffer for writeout if it hasn't already been. Note that
1821 * neither this routine nor the buffer list submission functions perform
1822 * any internal synchronization. It is expected that the lists are thread-local
1823 * to the callers.
1824 *
1825 * Returns true if we queued up the buffer, or false if it already had
1826 * been on the buffer list.
1827 */
1828bool
1829xfs_buf_delwri_queue(
1830 struct xfs_buf *bp,
1831 struct list_head *list)
1832{
1833 ASSERT(xfs_buf_islocked(bp));
1834 ASSERT(!(bp->b_flags & XBF_READ));
1835
1836 /*
1837 * If the buffer is already marked delwri it already is queued up
1838 * by someone else for imediate writeout. Just ignore it in that
1839 * case.
1840 */
1841 if (bp->b_flags & _XBF_DELWRI_Q) {
1842 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1843 return false;
1844 }
1845
1846 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1847
1848 /*
1849 * If a buffer gets written out synchronously or marked stale while it
1850 * is on a delwri list we lazily remove it. To do this, the other party
1851 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1852 * It remains referenced and on the list. In a rare corner case it
1853 * might get readded to a delwri list after the synchronous writeout, in
1854 * which case we need just need to re-add the flag here.
1855 */
1856 bp->b_flags |= _XBF_DELWRI_Q;
1857 if (list_empty(&bp->b_list)) {
1858 atomic_inc(&bp->b_hold);
1859 list_add_tail(&bp->b_list, list);
1860 }
1861
1862 return true;
1863}
1864
1865/*
1866 * Compare function is more complex than it needs to be because
1867 * the return value is only 32 bits and we are doing comparisons
1868 * on 64 bit values
1869 */
1870static int
1871xfs_buf_cmp(
1872 void *priv,
1873 struct list_head *a,
1874 struct list_head *b)
1875{
1876 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1877 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1878 xfs_daddr_t diff;
1879
1880 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1881 if (diff < 0)
1882 return -1;
1883 if (diff > 0)
1884 return 1;
1885 return 0;
1886}
1887
1888/*
1889 * submit buffers for write.
1890 *
1891 * When we have a large buffer list, we do not want to hold all the buffers
1892 * locked while we block on the request queue waiting for IO dispatch. To avoid
1893 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1894 * the lock hold times for lists which may contain thousands of objects.
1895 *
1896 * To do this, we sort the buffer list before we walk the list to lock and
1897 * submit buffers, and we plug and unplug around each group of buffers we
1898 * submit.
1899 */
1900static int
1901xfs_buf_delwri_submit_buffers(
1902 struct list_head *buffer_list,
1903 struct list_head *wait_list)
1904{
1905 struct xfs_buf *bp, *n;
1906 LIST_HEAD (submit_list);
1907 int pinned = 0;
1908 struct blk_plug plug;
1909
1910 list_sort(NULL, buffer_list, xfs_buf_cmp);
1911
1912 blk_start_plug(&plug);
1913 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1914 if (!wait_list) {
1915 if (xfs_buf_ispinned(bp)) {
1916 pinned++;
1917 continue;
1918 }
1919 if (!xfs_buf_trylock(bp))
1920 continue;
1921 } else {
1922 xfs_buf_lock(bp);
1923 }
1924
1925 /*
1926 * Someone else might have written the buffer synchronously or
1927 * marked it stale in the meantime. In that case only the
1928 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1929 * reference and remove it from the list here.
1930 */
1931 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1932 list_del_init(&bp->b_list);
1933 xfs_buf_relse(bp);
1934 continue;
1935 }
1936
1937 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1938
1939 /*
1940 * We do all IO submission async. This means if we need
1941 * to wait for IO completion we need to take an extra
1942 * reference so the buffer is still valid on the other
1943 * side. We need to move the buffer onto the io_list
1944 * at this point so the caller can still access it.
1945 */
1946 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1947 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1948 if (wait_list) {
1949 xfs_buf_hold(bp);
1950 list_move_tail(&bp->b_list, wait_list);
1951 } else
1952 list_del_init(&bp->b_list);
1953
1954 xfs_buf_submit(bp);
1955 }
1956 blk_finish_plug(&plug);
1957
1958 return pinned;
1959}
1960
1961/*
1962 * Write out a buffer list asynchronously.
1963 *
1964 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1965 * out and not wait for I/O completion on any of the buffers. This interface
1966 * is only safely useable for callers that can track I/O completion by higher
1967 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1968 * function.
1969 */
1970int
1971xfs_buf_delwri_submit_nowait(
1972 struct list_head *buffer_list)
1973{
1974 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1975}
1976
1977/*
1978 * Write out a buffer list synchronously.
1979 *
1980 * This will take the @buffer_list, write all buffers out and wait for I/O
1981 * completion on all of the buffers. @buffer_list is consumed by the function,
1982 * so callers must have some other way of tracking buffers if they require such
1983 * functionality.
1984 */
1985int
1986xfs_buf_delwri_submit(
1987 struct list_head *buffer_list)
1988{
1989 LIST_HEAD (wait_list);
1990 int error = 0, error2;
1991 struct xfs_buf *bp;
1992
1993 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1994
1995 /* Wait for IO to complete. */
1996 while (!list_empty(&wait_list)) {
1997 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1998
1999 list_del_init(&bp->b_list);
2000
2001 /* locking the buffer will wait for async IO completion. */
2002 xfs_buf_lock(bp);
2003 error2 = bp->b_error;
2004 xfs_buf_relse(bp);
2005 if (!error)
2006 error = error2;
2007 }
2008
2009 return error;
2010}
2011
2012int __init
2013xfs_buf_init(void)
2014{
2015 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2016 KM_ZONE_HWALIGN, NULL);
2017 if (!xfs_buf_zone)
2018 goto out;
2019
2020 return 0;
2021
2022 out:
2023 return -ENOMEM;
2024}
2025
2026void
2027xfs_buf_terminate(void)
2028{
2029 kmem_zone_destroy(xfs_buf_zone);
2030}