Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36#include <linux/sched/mm.h>
37
38#include "xfs_format.h"
39#include "xfs_log_format.h"
40#include "xfs_trans_resv.h"
41#include "xfs_sb.h"
42#include "xfs_mount.h"
43#include "xfs_trace.h"
44#include "xfs_log.h"
45#include "xfs_errortag.h"
46#include "xfs_error.h"
47
48static kmem_zone_t *xfs_buf_zone;
49
50#ifdef XFS_BUF_LOCK_TRACKING
51# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
52# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
53# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
54#else
55# define XB_SET_OWNER(bp) do { } while (0)
56# define XB_CLEAR_OWNER(bp) do { } while (0)
57# define XB_GET_OWNER(bp) do { } while (0)
58#endif
59
60#define xb_to_gfp(flags) \
61 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
62
63
64static inline int
65xfs_buf_is_vmapped(
66 struct xfs_buf *bp)
67{
68 /*
69 * Return true if the buffer is vmapped.
70 *
71 * b_addr is null if the buffer is not mapped, but the code is clever
72 * enough to know it doesn't have to map a single page, so the check has
73 * to be both for b_addr and bp->b_page_count > 1.
74 */
75 return bp->b_addr && bp->b_page_count > 1;
76}
77
78static inline int
79xfs_buf_vmap_len(
80 struct xfs_buf *bp)
81{
82 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83}
84
85/*
86 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
87 * this buffer. The count is incremented once per buffer (per hold cycle)
88 * because the corresponding decrement is deferred to buffer release. Buffers
89 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
90 * tracking adds unnecessary overhead. This is used for sychronization purposes
91 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
92 * in-flight buffers.
93 *
94 * Buffers that are never released (e.g., superblock, iclog buffers) must set
95 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
96 * never reaches zero and unmount hangs indefinitely.
97 */
98static inline void
99xfs_buf_ioacct_inc(
100 struct xfs_buf *bp)
101{
102 if (bp->b_flags & XBF_NO_IOACCT)
103 return;
104
105 ASSERT(bp->b_flags & XBF_ASYNC);
106 spin_lock(&bp->b_lock);
107 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
108 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
109 percpu_counter_inc(&bp->b_target->bt_io_count);
110 }
111 spin_unlock(&bp->b_lock);
112}
113
114/*
115 * Clear the in-flight state on a buffer about to be released to the LRU or
116 * freed and unaccount from the buftarg.
117 */
118static inline void
119__xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 lockdep_assert_held(&bp->b_lock);
123
124 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
125 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
126 percpu_counter_dec(&bp->b_target->bt_io_count);
127 }
128}
129
130static inline void
131xfs_buf_ioacct_dec(
132 struct xfs_buf *bp)
133{
134 spin_lock(&bp->b_lock);
135 __xfs_buf_ioacct_dec(bp);
136 spin_unlock(&bp->b_lock);
137}
138
139/*
140 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
141 * b_lru_ref count so that the buffer is freed immediately when the buffer
142 * reference count falls to zero. If the buffer is already on the LRU, we need
143 * to remove the reference that LRU holds on the buffer.
144 *
145 * This prevents build-up of stale buffers on the LRU.
146 */
147void
148xfs_buf_stale(
149 struct xfs_buf *bp)
150{
151 ASSERT(xfs_buf_islocked(bp));
152
153 bp->b_flags |= XBF_STALE;
154
155 /*
156 * Clear the delwri status so that a delwri queue walker will not
157 * flush this buffer to disk now that it is stale. The delwri queue has
158 * a reference to the buffer, so this is safe to do.
159 */
160 bp->b_flags &= ~_XBF_DELWRI_Q;
161
162 /*
163 * Once the buffer is marked stale and unlocked, a subsequent lookup
164 * could reset b_flags. There is no guarantee that the buffer is
165 * unaccounted (released to LRU) before that occurs. Drop in-flight
166 * status now to preserve accounting consistency.
167 */
168 spin_lock(&bp->b_lock);
169 __xfs_buf_ioacct_dec(bp);
170
171 atomic_set(&bp->b_lru_ref, 0);
172 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
173 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
174 atomic_dec(&bp->b_hold);
175
176 ASSERT(atomic_read(&bp->b_hold) >= 1);
177 spin_unlock(&bp->b_lock);
178}
179
180static int
181xfs_buf_get_maps(
182 struct xfs_buf *bp,
183 int map_count)
184{
185 ASSERT(bp->b_maps == NULL);
186 bp->b_map_count = map_count;
187
188 if (map_count == 1) {
189 bp->b_maps = &bp->__b_map;
190 return 0;
191 }
192
193 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
194 KM_NOFS);
195 if (!bp->b_maps)
196 return -ENOMEM;
197 return 0;
198}
199
200/*
201 * Frees b_pages if it was allocated.
202 */
203static void
204xfs_buf_free_maps(
205 struct xfs_buf *bp)
206{
207 if (bp->b_maps != &bp->__b_map) {
208 kmem_free(bp->b_maps);
209 bp->b_maps = NULL;
210 }
211}
212
213struct xfs_buf *
214_xfs_buf_alloc(
215 struct xfs_buftarg *target,
216 struct xfs_buf_map *map,
217 int nmaps,
218 xfs_buf_flags_t flags)
219{
220 struct xfs_buf *bp;
221 int error;
222 int i;
223
224 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
225 if (unlikely(!bp))
226 return NULL;
227
228 /*
229 * We don't want certain flags to appear in b_flags unless they are
230 * specifically set by later operations on the buffer.
231 */
232 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
233
234 atomic_set(&bp->b_hold, 1);
235 atomic_set(&bp->b_lru_ref, 1);
236 init_completion(&bp->b_iowait);
237 INIT_LIST_HEAD(&bp->b_lru);
238 INIT_LIST_HEAD(&bp->b_list);
239 INIT_LIST_HEAD(&bp->b_li_list);
240 sema_init(&bp->b_sema, 0); /* held, no waiters */
241 spin_lock_init(&bp->b_lock);
242 XB_SET_OWNER(bp);
243 bp->b_target = target;
244 bp->b_flags = flags;
245
246 /*
247 * Set length and io_length to the same value initially.
248 * I/O routines should use io_length, which will be the same in
249 * most cases but may be reset (e.g. XFS recovery).
250 */
251 error = xfs_buf_get_maps(bp, nmaps);
252 if (error) {
253 kmem_zone_free(xfs_buf_zone, bp);
254 return NULL;
255 }
256
257 bp->b_bn = map[0].bm_bn;
258 bp->b_length = 0;
259 for (i = 0; i < nmaps; i++) {
260 bp->b_maps[i].bm_bn = map[i].bm_bn;
261 bp->b_maps[i].bm_len = map[i].bm_len;
262 bp->b_length += map[i].bm_len;
263 }
264 bp->b_io_length = bp->b_length;
265
266 atomic_set(&bp->b_pin_count, 0);
267 init_waitqueue_head(&bp->b_waiters);
268
269 XFS_STATS_INC(target->bt_mount, xb_create);
270 trace_xfs_buf_init(bp, _RET_IP_);
271
272 return bp;
273}
274
275/*
276 * Allocate a page array capable of holding a specified number
277 * of pages, and point the page buf at it.
278 */
279STATIC int
280_xfs_buf_get_pages(
281 xfs_buf_t *bp,
282 int page_count)
283{
284 /* Make sure that we have a page list */
285 if (bp->b_pages == NULL) {
286 bp->b_page_count = page_count;
287 if (page_count <= XB_PAGES) {
288 bp->b_pages = bp->b_page_array;
289 } else {
290 bp->b_pages = kmem_alloc(sizeof(struct page *) *
291 page_count, KM_NOFS);
292 if (bp->b_pages == NULL)
293 return -ENOMEM;
294 }
295 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
296 }
297 return 0;
298}
299
300/*
301 * Frees b_pages if it was allocated.
302 */
303STATIC void
304_xfs_buf_free_pages(
305 xfs_buf_t *bp)
306{
307 if (bp->b_pages != bp->b_page_array) {
308 kmem_free(bp->b_pages);
309 bp->b_pages = NULL;
310 }
311}
312
313/*
314 * Releases the specified buffer.
315 *
316 * The modification state of any associated pages is left unchanged.
317 * The buffer must not be on any hash - use xfs_buf_rele instead for
318 * hashed and refcounted buffers
319 */
320void
321xfs_buf_free(
322 xfs_buf_t *bp)
323{
324 trace_xfs_buf_free(bp, _RET_IP_);
325
326 ASSERT(list_empty(&bp->b_lru));
327
328 if (bp->b_flags & _XBF_PAGES) {
329 uint i;
330
331 if (xfs_buf_is_vmapped(bp))
332 vm_unmap_ram(bp->b_addr - bp->b_offset,
333 bp->b_page_count);
334
335 for (i = 0; i < bp->b_page_count; i++) {
336 struct page *page = bp->b_pages[i];
337
338 __free_page(page);
339 }
340 } else if (bp->b_flags & _XBF_KMEM)
341 kmem_free(bp->b_addr);
342 _xfs_buf_free_pages(bp);
343 xfs_buf_free_maps(bp);
344 kmem_zone_free(xfs_buf_zone, bp);
345}
346
347/*
348 * Allocates all the pages for buffer in question and builds it's page list.
349 */
350STATIC int
351xfs_buf_allocate_memory(
352 xfs_buf_t *bp,
353 uint flags)
354{
355 size_t size;
356 size_t nbytes, offset;
357 gfp_t gfp_mask = xb_to_gfp(flags);
358 unsigned short page_count, i;
359 xfs_off_t start, end;
360 int error;
361
362 /*
363 * for buffers that are contained within a single page, just allocate
364 * the memory from the heap - there's no need for the complexity of
365 * page arrays to keep allocation down to order 0.
366 */
367 size = BBTOB(bp->b_length);
368 if (size < PAGE_SIZE) {
369 bp->b_addr = kmem_alloc(size, KM_NOFS);
370 if (!bp->b_addr) {
371 /* low memory - use alloc_page loop instead */
372 goto use_alloc_page;
373 }
374
375 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
376 ((unsigned long)bp->b_addr & PAGE_MASK)) {
377 /* b_addr spans two pages - use alloc_page instead */
378 kmem_free(bp->b_addr);
379 bp->b_addr = NULL;
380 goto use_alloc_page;
381 }
382 bp->b_offset = offset_in_page(bp->b_addr);
383 bp->b_pages = bp->b_page_array;
384 bp->b_pages[0] = virt_to_page(bp->b_addr);
385 bp->b_page_count = 1;
386 bp->b_flags |= _XBF_KMEM;
387 return 0;
388 }
389
390use_alloc_page:
391 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
392 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
393 >> PAGE_SHIFT;
394 page_count = end - start;
395 error = _xfs_buf_get_pages(bp, page_count);
396 if (unlikely(error))
397 return error;
398
399 offset = bp->b_offset;
400 bp->b_flags |= _XBF_PAGES;
401
402 for (i = 0; i < bp->b_page_count; i++) {
403 struct page *page;
404 uint retries = 0;
405retry:
406 page = alloc_page(gfp_mask);
407 if (unlikely(page == NULL)) {
408 if (flags & XBF_READ_AHEAD) {
409 bp->b_page_count = i;
410 error = -ENOMEM;
411 goto out_free_pages;
412 }
413
414 /*
415 * This could deadlock.
416 *
417 * But until all the XFS lowlevel code is revamped to
418 * handle buffer allocation failures we can't do much.
419 */
420 if (!(++retries % 100))
421 xfs_err(NULL,
422 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
423 current->comm, current->pid,
424 __func__, gfp_mask);
425
426 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
427 congestion_wait(BLK_RW_ASYNC, HZ/50);
428 goto retry;
429 }
430
431 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
432
433 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
434 size -= nbytes;
435 bp->b_pages[i] = page;
436 offset = 0;
437 }
438 return 0;
439
440out_free_pages:
441 for (i = 0; i < bp->b_page_count; i++)
442 __free_page(bp->b_pages[i]);
443 bp->b_flags &= ~_XBF_PAGES;
444 return error;
445}
446
447/*
448 * Map buffer into kernel address-space if necessary.
449 */
450STATIC int
451_xfs_buf_map_pages(
452 xfs_buf_t *bp,
453 uint flags)
454{
455 ASSERT(bp->b_flags & _XBF_PAGES);
456 if (bp->b_page_count == 1) {
457 /* A single page buffer is always mappable */
458 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
459 } else if (flags & XBF_UNMAPPED) {
460 bp->b_addr = NULL;
461 } else {
462 int retried = 0;
463 unsigned nofs_flag;
464
465 /*
466 * vm_map_ram() will allocate auxillary structures (e.g.
467 * pagetables) with GFP_KERNEL, yet we are likely to be under
468 * GFP_NOFS context here. Hence we need to tell memory reclaim
469 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
470 * memory reclaim re-entering the filesystem here and
471 * potentially deadlocking.
472 */
473 nofs_flag = memalloc_nofs_save();
474 do {
475 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
476 -1, PAGE_KERNEL);
477 if (bp->b_addr)
478 break;
479 vm_unmap_aliases();
480 } while (retried++ <= 1);
481 memalloc_nofs_restore(nofs_flag);
482
483 if (!bp->b_addr)
484 return -ENOMEM;
485 bp->b_addr += bp->b_offset;
486 }
487
488 return 0;
489}
490
491/*
492 * Finding and Reading Buffers
493 */
494static int
495_xfs_buf_obj_cmp(
496 struct rhashtable_compare_arg *arg,
497 const void *obj)
498{
499 const struct xfs_buf_map *map = arg->key;
500 const struct xfs_buf *bp = obj;
501
502 /*
503 * The key hashing in the lookup path depends on the key being the
504 * first element of the compare_arg, make sure to assert this.
505 */
506 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
507
508 if (bp->b_bn != map->bm_bn)
509 return 1;
510
511 if (unlikely(bp->b_length != map->bm_len)) {
512 /*
513 * found a block number match. If the range doesn't
514 * match, the only way this is allowed is if the buffer
515 * in the cache is stale and the transaction that made
516 * it stale has not yet committed. i.e. we are
517 * reallocating a busy extent. Skip this buffer and
518 * continue searching for an exact match.
519 */
520 ASSERT(bp->b_flags & XBF_STALE);
521 return 1;
522 }
523 return 0;
524}
525
526static const struct rhashtable_params xfs_buf_hash_params = {
527 .min_size = 32, /* empty AGs have minimal footprint */
528 .nelem_hint = 16,
529 .key_len = sizeof(xfs_daddr_t),
530 .key_offset = offsetof(struct xfs_buf, b_bn),
531 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
532 .automatic_shrinking = true,
533 .obj_cmpfn = _xfs_buf_obj_cmp,
534};
535
536int
537xfs_buf_hash_init(
538 struct xfs_perag *pag)
539{
540 spin_lock_init(&pag->pag_buf_lock);
541 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
542}
543
544void
545xfs_buf_hash_destroy(
546 struct xfs_perag *pag)
547{
548 rhashtable_destroy(&pag->pag_buf_hash);
549}
550
551/*
552 * Look up, and creates if absent, a lockable buffer for
553 * a given range of an inode. The buffer is returned
554 * locked. No I/O is implied by this call.
555 */
556xfs_buf_t *
557_xfs_buf_find(
558 struct xfs_buftarg *btp,
559 struct xfs_buf_map *map,
560 int nmaps,
561 xfs_buf_flags_t flags,
562 xfs_buf_t *new_bp)
563{
564 struct xfs_perag *pag;
565 xfs_buf_t *bp;
566 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
567 xfs_daddr_t eofs;
568 int i;
569
570 for (i = 0; i < nmaps; i++)
571 cmap.bm_len += map[i].bm_len;
572
573 /* Check for IOs smaller than the sector size / not sector aligned */
574 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
575 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
576
577 /*
578 * Corrupted block numbers can get through to here, unfortunately, so we
579 * have to check that the buffer falls within the filesystem bounds.
580 */
581 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
582 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
583 /*
584 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
585 * but none of the higher level infrastructure supports
586 * returning a specific error on buffer lookup failures.
587 */
588 xfs_alert(btp->bt_mount,
589 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
590 __func__, cmap.bm_bn, eofs);
591 WARN_ON(1);
592 return NULL;
593 }
594
595 pag = xfs_perag_get(btp->bt_mount,
596 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
597
598 spin_lock(&pag->pag_buf_lock);
599 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
600 xfs_buf_hash_params);
601 if (bp) {
602 atomic_inc(&bp->b_hold);
603 goto found;
604 }
605
606 /* No match found */
607 if (new_bp) {
608 /* the buffer keeps the perag reference until it is freed */
609 new_bp->b_pag = pag;
610 rhashtable_insert_fast(&pag->pag_buf_hash,
611 &new_bp->b_rhash_head,
612 xfs_buf_hash_params);
613 spin_unlock(&pag->pag_buf_lock);
614 } else {
615 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
616 spin_unlock(&pag->pag_buf_lock);
617 xfs_perag_put(pag);
618 }
619 return new_bp;
620
621found:
622 spin_unlock(&pag->pag_buf_lock);
623 xfs_perag_put(pag);
624
625 if (!xfs_buf_trylock(bp)) {
626 if (flags & XBF_TRYLOCK) {
627 xfs_buf_rele(bp);
628 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
629 return NULL;
630 }
631 xfs_buf_lock(bp);
632 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
633 }
634
635 /*
636 * if the buffer is stale, clear all the external state associated with
637 * it. We need to keep flags such as how we allocated the buffer memory
638 * intact here.
639 */
640 if (bp->b_flags & XBF_STALE) {
641 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
642 ASSERT(bp->b_iodone == NULL);
643 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
644 bp->b_ops = NULL;
645 }
646
647 trace_xfs_buf_find(bp, flags, _RET_IP_);
648 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
649 return bp;
650}
651
652/*
653 * Assembles a buffer covering the specified range. The code is optimised for
654 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
655 * more hits than misses.
656 */
657struct xfs_buf *
658xfs_buf_get_map(
659 struct xfs_buftarg *target,
660 struct xfs_buf_map *map,
661 int nmaps,
662 xfs_buf_flags_t flags)
663{
664 struct xfs_buf *bp;
665 struct xfs_buf *new_bp;
666 int error = 0;
667
668 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
669 if (likely(bp))
670 goto found;
671
672 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
673 if (unlikely(!new_bp))
674 return NULL;
675
676 error = xfs_buf_allocate_memory(new_bp, flags);
677 if (error) {
678 xfs_buf_free(new_bp);
679 return NULL;
680 }
681
682 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
683 if (!bp) {
684 xfs_buf_free(new_bp);
685 return NULL;
686 }
687
688 if (bp != new_bp)
689 xfs_buf_free(new_bp);
690
691found:
692 if (!bp->b_addr) {
693 error = _xfs_buf_map_pages(bp, flags);
694 if (unlikely(error)) {
695 xfs_warn(target->bt_mount,
696 "%s: failed to map pagesn", __func__);
697 xfs_buf_relse(bp);
698 return NULL;
699 }
700 }
701
702 /*
703 * Clear b_error if this is a lookup from a caller that doesn't expect
704 * valid data to be found in the buffer.
705 */
706 if (!(flags & XBF_READ))
707 xfs_buf_ioerror(bp, 0);
708
709 XFS_STATS_INC(target->bt_mount, xb_get);
710 trace_xfs_buf_get(bp, flags, _RET_IP_);
711 return bp;
712}
713
714STATIC int
715_xfs_buf_read(
716 xfs_buf_t *bp,
717 xfs_buf_flags_t flags)
718{
719 ASSERT(!(flags & XBF_WRITE));
720 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
721
722 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
723 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
724
725 if (flags & XBF_ASYNC) {
726 xfs_buf_submit(bp);
727 return 0;
728 }
729 return xfs_buf_submit_wait(bp);
730}
731
732xfs_buf_t *
733xfs_buf_read_map(
734 struct xfs_buftarg *target,
735 struct xfs_buf_map *map,
736 int nmaps,
737 xfs_buf_flags_t flags,
738 const struct xfs_buf_ops *ops)
739{
740 struct xfs_buf *bp;
741
742 flags |= XBF_READ;
743
744 bp = xfs_buf_get_map(target, map, nmaps, flags);
745 if (bp) {
746 trace_xfs_buf_read(bp, flags, _RET_IP_);
747
748 if (!(bp->b_flags & XBF_DONE)) {
749 XFS_STATS_INC(target->bt_mount, xb_get_read);
750 bp->b_ops = ops;
751 _xfs_buf_read(bp, flags);
752 } else if (flags & XBF_ASYNC) {
753 /*
754 * Read ahead call which is already satisfied,
755 * drop the buffer
756 */
757 xfs_buf_relse(bp);
758 return NULL;
759 } else {
760 /* We do not want read in the flags */
761 bp->b_flags &= ~XBF_READ;
762 }
763 }
764
765 return bp;
766}
767
768/*
769 * If we are not low on memory then do the readahead in a deadlock
770 * safe manner.
771 */
772void
773xfs_buf_readahead_map(
774 struct xfs_buftarg *target,
775 struct xfs_buf_map *map,
776 int nmaps,
777 const struct xfs_buf_ops *ops)
778{
779 if (bdi_read_congested(target->bt_bdev->bd_bdi))
780 return;
781
782 xfs_buf_read_map(target, map, nmaps,
783 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
784}
785
786/*
787 * Read an uncached buffer from disk. Allocates and returns a locked
788 * buffer containing the disk contents or nothing.
789 */
790int
791xfs_buf_read_uncached(
792 struct xfs_buftarg *target,
793 xfs_daddr_t daddr,
794 size_t numblks,
795 int flags,
796 struct xfs_buf **bpp,
797 const struct xfs_buf_ops *ops)
798{
799 struct xfs_buf *bp;
800
801 *bpp = NULL;
802
803 bp = xfs_buf_get_uncached(target, numblks, flags);
804 if (!bp)
805 return -ENOMEM;
806
807 /* set up the buffer for a read IO */
808 ASSERT(bp->b_map_count == 1);
809 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
810 bp->b_maps[0].bm_bn = daddr;
811 bp->b_flags |= XBF_READ;
812 bp->b_ops = ops;
813
814 xfs_buf_submit_wait(bp);
815 if (bp->b_error) {
816 int error = bp->b_error;
817 xfs_buf_relse(bp);
818 return error;
819 }
820
821 *bpp = bp;
822 return 0;
823}
824
825/*
826 * Return a buffer allocated as an empty buffer and associated to external
827 * memory via xfs_buf_associate_memory() back to it's empty state.
828 */
829void
830xfs_buf_set_empty(
831 struct xfs_buf *bp,
832 size_t numblks)
833{
834 if (bp->b_pages)
835 _xfs_buf_free_pages(bp);
836
837 bp->b_pages = NULL;
838 bp->b_page_count = 0;
839 bp->b_addr = NULL;
840 bp->b_length = numblks;
841 bp->b_io_length = numblks;
842
843 ASSERT(bp->b_map_count == 1);
844 bp->b_bn = XFS_BUF_DADDR_NULL;
845 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
846 bp->b_maps[0].bm_len = bp->b_length;
847}
848
849static inline struct page *
850mem_to_page(
851 void *addr)
852{
853 if ((!is_vmalloc_addr(addr))) {
854 return virt_to_page(addr);
855 } else {
856 return vmalloc_to_page(addr);
857 }
858}
859
860int
861xfs_buf_associate_memory(
862 xfs_buf_t *bp,
863 void *mem,
864 size_t len)
865{
866 int rval;
867 int i = 0;
868 unsigned long pageaddr;
869 unsigned long offset;
870 size_t buflen;
871 int page_count;
872
873 pageaddr = (unsigned long)mem & PAGE_MASK;
874 offset = (unsigned long)mem - pageaddr;
875 buflen = PAGE_ALIGN(len + offset);
876 page_count = buflen >> PAGE_SHIFT;
877
878 /* Free any previous set of page pointers */
879 if (bp->b_pages)
880 _xfs_buf_free_pages(bp);
881
882 bp->b_pages = NULL;
883 bp->b_addr = mem;
884
885 rval = _xfs_buf_get_pages(bp, page_count);
886 if (rval)
887 return rval;
888
889 bp->b_offset = offset;
890
891 for (i = 0; i < bp->b_page_count; i++) {
892 bp->b_pages[i] = mem_to_page((void *)pageaddr);
893 pageaddr += PAGE_SIZE;
894 }
895
896 bp->b_io_length = BTOBB(len);
897 bp->b_length = BTOBB(buflen);
898
899 return 0;
900}
901
902xfs_buf_t *
903xfs_buf_get_uncached(
904 struct xfs_buftarg *target,
905 size_t numblks,
906 int flags)
907{
908 unsigned long page_count;
909 int error, i;
910 struct xfs_buf *bp;
911 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
912
913 /* flags might contain irrelevant bits, pass only what we care about */
914 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
915 if (unlikely(bp == NULL))
916 goto fail;
917
918 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
919 error = _xfs_buf_get_pages(bp, page_count);
920 if (error)
921 goto fail_free_buf;
922
923 for (i = 0; i < page_count; i++) {
924 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
925 if (!bp->b_pages[i])
926 goto fail_free_mem;
927 }
928 bp->b_flags |= _XBF_PAGES;
929
930 error = _xfs_buf_map_pages(bp, 0);
931 if (unlikely(error)) {
932 xfs_warn(target->bt_mount,
933 "%s: failed to map pages", __func__);
934 goto fail_free_mem;
935 }
936
937 trace_xfs_buf_get_uncached(bp, _RET_IP_);
938 return bp;
939
940 fail_free_mem:
941 while (--i >= 0)
942 __free_page(bp->b_pages[i]);
943 _xfs_buf_free_pages(bp);
944 fail_free_buf:
945 xfs_buf_free_maps(bp);
946 kmem_zone_free(xfs_buf_zone, bp);
947 fail:
948 return NULL;
949}
950
951/*
952 * Increment reference count on buffer, to hold the buffer concurrently
953 * with another thread which may release (free) the buffer asynchronously.
954 * Must hold the buffer already to call this function.
955 */
956void
957xfs_buf_hold(
958 xfs_buf_t *bp)
959{
960 trace_xfs_buf_hold(bp, _RET_IP_);
961 atomic_inc(&bp->b_hold);
962}
963
964/*
965 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
966 * placed on LRU or freed (depending on b_lru_ref).
967 */
968void
969xfs_buf_rele(
970 xfs_buf_t *bp)
971{
972 struct xfs_perag *pag = bp->b_pag;
973 bool release;
974 bool freebuf = false;
975
976 trace_xfs_buf_rele(bp, _RET_IP_);
977
978 if (!pag) {
979 ASSERT(list_empty(&bp->b_lru));
980 if (atomic_dec_and_test(&bp->b_hold)) {
981 xfs_buf_ioacct_dec(bp);
982 xfs_buf_free(bp);
983 }
984 return;
985 }
986
987 ASSERT(atomic_read(&bp->b_hold) > 0);
988
989 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
990 spin_lock(&bp->b_lock);
991 if (!release) {
992 /*
993 * Drop the in-flight state if the buffer is already on the LRU
994 * and it holds the only reference. This is racy because we
995 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
996 * ensures the decrement occurs only once per-buf.
997 */
998 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
999 __xfs_buf_ioacct_dec(bp);
1000 goto out_unlock;
1001 }
1002
1003 /* the last reference has been dropped ... */
1004 __xfs_buf_ioacct_dec(bp);
1005 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1006 /*
1007 * If the buffer is added to the LRU take a new reference to the
1008 * buffer for the LRU and clear the (now stale) dispose list
1009 * state flag
1010 */
1011 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1012 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1013 atomic_inc(&bp->b_hold);
1014 }
1015 spin_unlock(&pag->pag_buf_lock);
1016 } else {
1017 /*
1018 * most of the time buffers will already be removed from the
1019 * LRU, so optimise that case by checking for the
1020 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1021 * was on was the disposal list
1022 */
1023 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1024 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1025 } else {
1026 ASSERT(list_empty(&bp->b_lru));
1027 }
1028
1029 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1030 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1031 xfs_buf_hash_params);
1032 spin_unlock(&pag->pag_buf_lock);
1033 xfs_perag_put(pag);
1034 freebuf = true;
1035 }
1036
1037out_unlock:
1038 spin_unlock(&bp->b_lock);
1039
1040 if (freebuf)
1041 xfs_buf_free(bp);
1042}
1043
1044
1045/*
1046 * Lock a buffer object, if it is not already locked.
1047 *
1048 * If we come across a stale, pinned, locked buffer, we know that we are
1049 * being asked to lock a buffer that has been reallocated. Because it is
1050 * pinned, we know that the log has not been pushed to disk and hence it
1051 * will still be locked. Rather than continuing to have trylock attempts
1052 * fail until someone else pushes the log, push it ourselves before
1053 * returning. This means that the xfsaild will not get stuck trying
1054 * to push on stale inode buffers.
1055 */
1056int
1057xfs_buf_trylock(
1058 struct xfs_buf *bp)
1059{
1060 int locked;
1061
1062 locked = down_trylock(&bp->b_sema) == 0;
1063 if (locked) {
1064 XB_SET_OWNER(bp);
1065 trace_xfs_buf_trylock(bp, _RET_IP_);
1066 } else {
1067 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1068 }
1069 return locked;
1070}
1071
1072/*
1073 * Lock a buffer object.
1074 *
1075 * If we come across a stale, pinned, locked buffer, we know that we
1076 * are being asked to lock a buffer that has been reallocated. Because
1077 * it is pinned, we know that the log has not been pushed to disk and
1078 * hence it will still be locked. Rather than sleeping until someone
1079 * else pushes the log, push it ourselves before trying to get the lock.
1080 */
1081void
1082xfs_buf_lock(
1083 struct xfs_buf *bp)
1084{
1085 trace_xfs_buf_lock(bp, _RET_IP_);
1086
1087 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1088 xfs_log_force(bp->b_target->bt_mount, 0);
1089 down(&bp->b_sema);
1090 XB_SET_OWNER(bp);
1091
1092 trace_xfs_buf_lock_done(bp, _RET_IP_);
1093}
1094
1095void
1096xfs_buf_unlock(
1097 struct xfs_buf *bp)
1098{
1099 ASSERT(xfs_buf_islocked(bp));
1100
1101 XB_CLEAR_OWNER(bp);
1102 up(&bp->b_sema);
1103
1104 trace_xfs_buf_unlock(bp, _RET_IP_);
1105}
1106
1107STATIC void
1108xfs_buf_wait_unpin(
1109 xfs_buf_t *bp)
1110{
1111 DECLARE_WAITQUEUE (wait, current);
1112
1113 if (atomic_read(&bp->b_pin_count) == 0)
1114 return;
1115
1116 add_wait_queue(&bp->b_waiters, &wait);
1117 for (;;) {
1118 set_current_state(TASK_UNINTERRUPTIBLE);
1119 if (atomic_read(&bp->b_pin_count) == 0)
1120 break;
1121 io_schedule();
1122 }
1123 remove_wait_queue(&bp->b_waiters, &wait);
1124 set_current_state(TASK_RUNNING);
1125}
1126
1127/*
1128 * Buffer Utility Routines
1129 */
1130
1131void
1132xfs_buf_ioend(
1133 struct xfs_buf *bp)
1134{
1135 bool read = bp->b_flags & XBF_READ;
1136
1137 trace_xfs_buf_iodone(bp, _RET_IP_);
1138
1139 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1140
1141 /*
1142 * Pull in IO completion errors now. We are guaranteed to be running
1143 * single threaded, so we don't need the lock to read b_io_error.
1144 */
1145 if (!bp->b_error && bp->b_io_error)
1146 xfs_buf_ioerror(bp, bp->b_io_error);
1147
1148 /* Only validate buffers that were read without errors */
1149 if (read && !bp->b_error && bp->b_ops) {
1150 ASSERT(!bp->b_iodone);
1151 bp->b_ops->verify_read(bp);
1152 }
1153
1154 if (!bp->b_error)
1155 bp->b_flags |= XBF_DONE;
1156
1157 if (bp->b_iodone)
1158 (*(bp->b_iodone))(bp);
1159 else if (bp->b_flags & XBF_ASYNC)
1160 xfs_buf_relse(bp);
1161 else
1162 complete(&bp->b_iowait);
1163}
1164
1165static void
1166xfs_buf_ioend_work(
1167 struct work_struct *work)
1168{
1169 struct xfs_buf *bp =
1170 container_of(work, xfs_buf_t, b_ioend_work);
1171
1172 xfs_buf_ioend(bp);
1173}
1174
1175static void
1176xfs_buf_ioend_async(
1177 struct xfs_buf *bp)
1178{
1179 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1180 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1181}
1182
1183void
1184__xfs_buf_ioerror(
1185 xfs_buf_t *bp,
1186 int error,
1187 xfs_failaddr_t failaddr)
1188{
1189 ASSERT(error <= 0 && error >= -1000);
1190 bp->b_error = error;
1191 trace_xfs_buf_ioerror(bp, error, failaddr);
1192}
1193
1194void
1195xfs_buf_ioerror_alert(
1196 struct xfs_buf *bp,
1197 const char *func)
1198{
1199 xfs_alert(bp->b_target->bt_mount,
1200"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1201 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1202 -bp->b_error);
1203}
1204
1205int
1206xfs_bwrite(
1207 struct xfs_buf *bp)
1208{
1209 int error;
1210
1211 ASSERT(xfs_buf_islocked(bp));
1212
1213 bp->b_flags |= XBF_WRITE;
1214 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1215 XBF_WRITE_FAIL | XBF_DONE);
1216
1217 error = xfs_buf_submit_wait(bp);
1218 if (error) {
1219 xfs_force_shutdown(bp->b_target->bt_mount,
1220 SHUTDOWN_META_IO_ERROR);
1221 }
1222 return error;
1223}
1224
1225static void
1226xfs_buf_bio_end_io(
1227 struct bio *bio)
1228{
1229 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1230
1231 /*
1232 * don't overwrite existing errors - otherwise we can lose errors on
1233 * buffers that require multiple bios to complete.
1234 */
1235 if (bio->bi_status) {
1236 int error = blk_status_to_errno(bio->bi_status);
1237
1238 cmpxchg(&bp->b_io_error, 0, error);
1239 }
1240
1241 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1242 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1243
1244 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1245 xfs_buf_ioend_async(bp);
1246 bio_put(bio);
1247}
1248
1249static void
1250xfs_buf_ioapply_map(
1251 struct xfs_buf *bp,
1252 int map,
1253 int *buf_offset,
1254 int *count,
1255 int op,
1256 int op_flags)
1257{
1258 int page_index;
1259 int total_nr_pages = bp->b_page_count;
1260 int nr_pages;
1261 struct bio *bio;
1262 sector_t sector = bp->b_maps[map].bm_bn;
1263 int size;
1264 int offset;
1265
1266 /* skip the pages in the buffer before the start offset */
1267 page_index = 0;
1268 offset = *buf_offset;
1269 while (offset >= PAGE_SIZE) {
1270 page_index++;
1271 offset -= PAGE_SIZE;
1272 }
1273
1274 /*
1275 * Limit the IO size to the length of the current vector, and update the
1276 * remaining IO count for the next time around.
1277 */
1278 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1279 *count -= size;
1280 *buf_offset += size;
1281
1282next_chunk:
1283 atomic_inc(&bp->b_io_remaining);
1284 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1285
1286 bio = bio_alloc(GFP_NOIO, nr_pages);
1287 bio_set_dev(bio, bp->b_target->bt_bdev);
1288 bio->bi_iter.bi_sector = sector;
1289 bio->bi_end_io = xfs_buf_bio_end_io;
1290 bio->bi_private = bp;
1291 bio_set_op_attrs(bio, op, op_flags);
1292
1293 for (; size && nr_pages; nr_pages--, page_index++) {
1294 int rbytes, nbytes = PAGE_SIZE - offset;
1295
1296 if (nbytes > size)
1297 nbytes = size;
1298
1299 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1300 offset);
1301 if (rbytes < nbytes)
1302 break;
1303
1304 offset = 0;
1305 sector += BTOBB(nbytes);
1306 size -= nbytes;
1307 total_nr_pages--;
1308 }
1309
1310 if (likely(bio->bi_iter.bi_size)) {
1311 if (xfs_buf_is_vmapped(bp)) {
1312 flush_kernel_vmap_range(bp->b_addr,
1313 xfs_buf_vmap_len(bp));
1314 }
1315 submit_bio(bio);
1316 if (size)
1317 goto next_chunk;
1318 } else {
1319 /*
1320 * This is guaranteed not to be the last io reference count
1321 * because the caller (xfs_buf_submit) holds a count itself.
1322 */
1323 atomic_dec(&bp->b_io_remaining);
1324 xfs_buf_ioerror(bp, -EIO);
1325 bio_put(bio);
1326 }
1327
1328}
1329
1330STATIC void
1331_xfs_buf_ioapply(
1332 struct xfs_buf *bp)
1333{
1334 struct blk_plug plug;
1335 int op;
1336 int op_flags = 0;
1337 int offset;
1338 int size;
1339 int i;
1340
1341 /*
1342 * Make sure we capture only current IO errors rather than stale errors
1343 * left over from previous use of the buffer (e.g. failed readahead).
1344 */
1345 bp->b_error = 0;
1346
1347 /*
1348 * Initialize the I/O completion workqueue if we haven't yet or the
1349 * submitter has not opted to specify a custom one.
1350 */
1351 if (!bp->b_ioend_wq)
1352 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1353
1354 if (bp->b_flags & XBF_WRITE) {
1355 op = REQ_OP_WRITE;
1356 if (bp->b_flags & XBF_SYNCIO)
1357 op_flags = REQ_SYNC;
1358 if (bp->b_flags & XBF_FUA)
1359 op_flags |= REQ_FUA;
1360 if (bp->b_flags & XBF_FLUSH)
1361 op_flags |= REQ_PREFLUSH;
1362
1363 /*
1364 * Run the write verifier callback function if it exists. If
1365 * this function fails it will mark the buffer with an error and
1366 * the IO should not be dispatched.
1367 */
1368 if (bp->b_ops) {
1369 bp->b_ops->verify_write(bp);
1370 if (bp->b_error) {
1371 xfs_force_shutdown(bp->b_target->bt_mount,
1372 SHUTDOWN_CORRUPT_INCORE);
1373 return;
1374 }
1375 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1376 struct xfs_mount *mp = bp->b_target->bt_mount;
1377
1378 /*
1379 * non-crc filesystems don't attach verifiers during
1380 * log recovery, so don't warn for such filesystems.
1381 */
1382 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1383 xfs_warn(mp,
1384 "%s: no buf ops on daddr 0x%llx len %d",
1385 __func__, bp->b_bn, bp->b_length);
1386 xfs_hex_dump(bp->b_addr,
1387 XFS_CORRUPTION_DUMP_LEN);
1388 dump_stack();
1389 }
1390 }
1391 } else if (bp->b_flags & XBF_READ_AHEAD) {
1392 op = REQ_OP_READ;
1393 op_flags = REQ_RAHEAD;
1394 } else {
1395 op = REQ_OP_READ;
1396 }
1397
1398 /* we only use the buffer cache for meta-data */
1399 op_flags |= REQ_META;
1400
1401 /*
1402 * Walk all the vectors issuing IO on them. Set up the initial offset
1403 * into the buffer and the desired IO size before we start -
1404 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1405 * subsequent call.
1406 */
1407 offset = bp->b_offset;
1408 size = BBTOB(bp->b_io_length);
1409 blk_start_plug(&plug);
1410 for (i = 0; i < bp->b_map_count; i++) {
1411 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1412 if (bp->b_error)
1413 break;
1414 if (size <= 0)
1415 break; /* all done */
1416 }
1417 blk_finish_plug(&plug);
1418}
1419
1420/*
1421 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1422 * the current reference to the IO. It is not safe to reference the buffer after
1423 * a call to this function unless the caller holds an additional reference
1424 * itself.
1425 */
1426void
1427xfs_buf_submit(
1428 struct xfs_buf *bp)
1429{
1430 trace_xfs_buf_submit(bp, _RET_IP_);
1431
1432 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1433 ASSERT(bp->b_flags & XBF_ASYNC);
1434
1435 /* on shutdown we stale and complete the buffer immediately */
1436 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1437 xfs_buf_ioerror(bp, -EIO);
1438 bp->b_flags &= ~XBF_DONE;
1439 xfs_buf_stale(bp);
1440 xfs_buf_ioend(bp);
1441 return;
1442 }
1443
1444 if (bp->b_flags & XBF_WRITE)
1445 xfs_buf_wait_unpin(bp);
1446
1447 /* clear the internal error state to avoid spurious errors */
1448 bp->b_io_error = 0;
1449
1450 /*
1451 * The caller's reference is released during I/O completion.
1452 * This occurs some time after the last b_io_remaining reference is
1453 * released, so after we drop our Io reference we have to have some
1454 * other reference to ensure the buffer doesn't go away from underneath
1455 * us. Take a direct reference to ensure we have safe access to the
1456 * buffer until we are finished with it.
1457 */
1458 xfs_buf_hold(bp);
1459
1460 /*
1461 * Set the count to 1 initially, this will stop an I/O completion
1462 * callout which happens before we have started all the I/O from calling
1463 * xfs_buf_ioend too early.
1464 */
1465 atomic_set(&bp->b_io_remaining, 1);
1466 xfs_buf_ioacct_inc(bp);
1467 _xfs_buf_ioapply(bp);
1468
1469 /*
1470 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1471 * reference we took above. If we drop it to zero, run completion so
1472 * that we don't return to the caller with completion still pending.
1473 */
1474 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1475 if (bp->b_error)
1476 xfs_buf_ioend(bp);
1477 else
1478 xfs_buf_ioend_async(bp);
1479 }
1480
1481 xfs_buf_rele(bp);
1482 /* Note: it is not safe to reference bp now we've dropped our ref */
1483}
1484
1485/*
1486 * Synchronous buffer IO submission path, read or write.
1487 */
1488int
1489xfs_buf_submit_wait(
1490 struct xfs_buf *bp)
1491{
1492 int error;
1493
1494 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1495
1496 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1497
1498 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1499 xfs_buf_ioerror(bp, -EIO);
1500 xfs_buf_stale(bp);
1501 bp->b_flags &= ~XBF_DONE;
1502 return -EIO;
1503 }
1504
1505 if (bp->b_flags & XBF_WRITE)
1506 xfs_buf_wait_unpin(bp);
1507
1508 /* clear the internal error state to avoid spurious errors */
1509 bp->b_io_error = 0;
1510
1511 /*
1512 * For synchronous IO, the IO does not inherit the submitters reference
1513 * count, nor the buffer lock. Hence we cannot release the reference we
1514 * are about to take until we've waited for all IO completion to occur,
1515 * including any xfs_buf_ioend_async() work that may be pending.
1516 */
1517 xfs_buf_hold(bp);
1518
1519 /*
1520 * Set the count to 1 initially, this will stop an I/O completion
1521 * callout which happens before we have started all the I/O from calling
1522 * xfs_buf_ioend too early.
1523 */
1524 atomic_set(&bp->b_io_remaining, 1);
1525 _xfs_buf_ioapply(bp);
1526
1527 /*
1528 * make sure we run completion synchronously if it raced with us and is
1529 * already complete.
1530 */
1531 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1532 xfs_buf_ioend(bp);
1533
1534 /* wait for completion before gathering the error from the buffer */
1535 trace_xfs_buf_iowait(bp, _RET_IP_);
1536 wait_for_completion(&bp->b_iowait);
1537 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1538 error = bp->b_error;
1539
1540 /*
1541 * all done now, we can release the hold that keeps the buffer
1542 * referenced for the entire IO.
1543 */
1544 xfs_buf_rele(bp);
1545 return error;
1546}
1547
1548void *
1549xfs_buf_offset(
1550 struct xfs_buf *bp,
1551 size_t offset)
1552{
1553 struct page *page;
1554
1555 if (bp->b_addr)
1556 return bp->b_addr + offset;
1557
1558 offset += bp->b_offset;
1559 page = bp->b_pages[offset >> PAGE_SHIFT];
1560 return page_address(page) + (offset & (PAGE_SIZE-1));
1561}
1562
1563/*
1564 * Move data into or out of a buffer.
1565 */
1566void
1567xfs_buf_iomove(
1568 xfs_buf_t *bp, /* buffer to process */
1569 size_t boff, /* starting buffer offset */
1570 size_t bsize, /* length to copy */
1571 void *data, /* data address */
1572 xfs_buf_rw_t mode) /* read/write/zero flag */
1573{
1574 size_t bend;
1575
1576 bend = boff + bsize;
1577 while (boff < bend) {
1578 struct page *page;
1579 int page_index, page_offset, csize;
1580
1581 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1582 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1583 page = bp->b_pages[page_index];
1584 csize = min_t(size_t, PAGE_SIZE - page_offset,
1585 BBTOB(bp->b_io_length) - boff);
1586
1587 ASSERT((csize + page_offset) <= PAGE_SIZE);
1588
1589 switch (mode) {
1590 case XBRW_ZERO:
1591 memset(page_address(page) + page_offset, 0, csize);
1592 break;
1593 case XBRW_READ:
1594 memcpy(data, page_address(page) + page_offset, csize);
1595 break;
1596 case XBRW_WRITE:
1597 memcpy(page_address(page) + page_offset, data, csize);
1598 }
1599
1600 boff += csize;
1601 data += csize;
1602 }
1603}
1604
1605/*
1606 * Handling of buffer targets (buftargs).
1607 */
1608
1609/*
1610 * Wait for any bufs with callbacks that have been submitted but have not yet
1611 * returned. These buffers will have an elevated hold count, so wait on those
1612 * while freeing all the buffers only held by the LRU.
1613 */
1614static enum lru_status
1615xfs_buftarg_wait_rele(
1616 struct list_head *item,
1617 struct list_lru_one *lru,
1618 spinlock_t *lru_lock,
1619 void *arg)
1620
1621{
1622 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1623 struct list_head *dispose = arg;
1624
1625 if (atomic_read(&bp->b_hold) > 1) {
1626 /* need to wait, so skip it this pass */
1627 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1628 return LRU_SKIP;
1629 }
1630 if (!spin_trylock(&bp->b_lock))
1631 return LRU_SKIP;
1632
1633 /*
1634 * clear the LRU reference count so the buffer doesn't get
1635 * ignored in xfs_buf_rele().
1636 */
1637 atomic_set(&bp->b_lru_ref, 0);
1638 bp->b_state |= XFS_BSTATE_DISPOSE;
1639 list_lru_isolate_move(lru, item, dispose);
1640 spin_unlock(&bp->b_lock);
1641 return LRU_REMOVED;
1642}
1643
1644void
1645xfs_wait_buftarg(
1646 struct xfs_buftarg *btp)
1647{
1648 LIST_HEAD(dispose);
1649 int loop = 0;
1650
1651 /*
1652 * First wait on the buftarg I/O count for all in-flight buffers to be
1653 * released. This is critical as new buffers do not make the LRU until
1654 * they are released.
1655 *
1656 * Next, flush the buffer workqueue to ensure all completion processing
1657 * has finished. Just waiting on buffer locks is not sufficient for
1658 * async IO as the reference count held over IO is not released until
1659 * after the buffer lock is dropped. Hence we need to ensure here that
1660 * all reference counts have been dropped before we start walking the
1661 * LRU list.
1662 */
1663 while (percpu_counter_sum(&btp->bt_io_count))
1664 delay(100);
1665 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1666
1667 /* loop until there is nothing left on the lru list. */
1668 while (list_lru_count(&btp->bt_lru)) {
1669 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1670 &dispose, LONG_MAX);
1671
1672 while (!list_empty(&dispose)) {
1673 struct xfs_buf *bp;
1674 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1675 list_del_init(&bp->b_lru);
1676 if (bp->b_flags & XBF_WRITE_FAIL) {
1677 xfs_alert(btp->bt_mount,
1678"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1679 (long long)bp->b_bn);
1680 xfs_alert(btp->bt_mount,
1681"Please run xfs_repair to determine the extent of the problem.");
1682 }
1683 xfs_buf_rele(bp);
1684 }
1685 if (loop++ != 0)
1686 delay(100);
1687 }
1688}
1689
1690static enum lru_status
1691xfs_buftarg_isolate(
1692 struct list_head *item,
1693 struct list_lru_one *lru,
1694 spinlock_t *lru_lock,
1695 void *arg)
1696{
1697 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1698 struct list_head *dispose = arg;
1699
1700 /*
1701 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1702 * If we fail to get the lock, just skip it.
1703 */
1704 if (!spin_trylock(&bp->b_lock))
1705 return LRU_SKIP;
1706 /*
1707 * Decrement the b_lru_ref count unless the value is already
1708 * zero. If the value is already zero, we need to reclaim the
1709 * buffer, otherwise it gets another trip through the LRU.
1710 */
1711 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1712 spin_unlock(&bp->b_lock);
1713 return LRU_ROTATE;
1714 }
1715
1716 bp->b_state |= XFS_BSTATE_DISPOSE;
1717 list_lru_isolate_move(lru, item, dispose);
1718 spin_unlock(&bp->b_lock);
1719 return LRU_REMOVED;
1720}
1721
1722static unsigned long
1723xfs_buftarg_shrink_scan(
1724 struct shrinker *shrink,
1725 struct shrink_control *sc)
1726{
1727 struct xfs_buftarg *btp = container_of(shrink,
1728 struct xfs_buftarg, bt_shrinker);
1729 LIST_HEAD(dispose);
1730 unsigned long freed;
1731
1732 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1733 xfs_buftarg_isolate, &dispose);
1734
1735 while (!list_empty(&dispose)) {
1736 struct xfs_buf *bp;
1737 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1738 list_del_init(&bp->b_lru);
1739 xfs_buf_rele(bp);
1740 }
1741
1742 return freed;
1743}
1744
1745static unsigned long
1746xfs_buftarg_shrink_count(
1747 struct shrinker *shrink,
1748 struct shrink_control *sc)
1749{
1750 struct xfs_buftarg *btp = container_of(shrink,
1751 struct xfs_buftarg, bt_shrinker);
1752 return list_lru_shrink_count(&btp->bt_lru, sc);
1753}
1754
1755void
1756xfs_free_buftarg(
1757 struct xfs_buftarg *btp)
1758{
1759 unregister_shrinker(&btp->bt_shrinker);
1760 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1761 percpu_counter_destroy(&btp->bt_io_count);
1762 list_lru_destroy(&btp->bt_lru);
1763
1764 xfs_blkdev_issue_flush(btp);
1765
1766 kmem_free(btp);
1767}
1768
1769int
1770xfs_setsize_buftarg(
1771 xfs_buftarg_t *btp,
1772 unsigned int sectorsize)
1773{
1774 /* Set up metadata sector size info */
1775 btp->bt_meta_sectorsize = sectorsize;
1776 btp->bt_meta_sectormask = sectorsize - 1;
1777
1778 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1779 xfs_warn(btp->bt_mount,
1780 "Cannot set_blocksize to %u on device %pg",
1781 sectorsize, btp->bt_bdev);
1782 return -EINVAL;
1783 }
1784
1785 /* Set up device logical sector size mask */
1786 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1787 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1788
1789 return 0;
1790}
1791
1792/*
1793 * When allocating the initial buffer target we have not yet
1794 * read in the superblock, so don't know what sized sectors
1795 * are being used at this early stage. Play safe.
1796 */
1797STATIC int
1798xfs_setsize_buftarg_early(
1799 xfs_buftarg_t *btp,
1800 struct block_device *bdev)
1801{
1802 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1803}
1804
1805xfs_buftarg_t *
1806xfs_alloc_buftarg(
1807 struct xfs_mount *mp,
1808 struct block_device *bdev,
1809 struct dax_device *dax_dev)
1810{
1811 xfs_buftarg_t *btp;
1812
1813 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1814
1815 btp->bt_mount = mp;
1816 btp->bt_dev = bdev->bd_dev;
1817 btp->bt_bdev = bdev;
1818 btp->bt_daxdev = dax_dev;
1819
1820 if (xfs_setsize_buftarg_early(btp, bdev))
1821 goto error_free;
1822
1823 if (list_lru_init(&btp->bt_lru))
1824 goto error_free;
1825
1826 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1827 goto error_lru;
1828
1829 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1830 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1831 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1832 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1833 if (register_shrinker(&btp->bt_shrinker))
1834 goto error_pcpu;
1835 return btp;
1836
1837error_pcpu:
1838 percpu_counter_destroy(&btp->bt_io_count);
1839error_lru:
1840 list_lru_destroy(&btp->bt_lru);
1841error_free:
1842 kmem_free(btp);
1843 return NULL;
1844}
1845
1846/*
1847 * Cancel a delayed write list.
1848 *
1849 * Remove each buffer from the list, clear the delwri queue flag and drop the
1850 * associated buffer reference.
1851 */
1852void
1853xfs_buf_delwri_cancel(
1854 struct list_head *list)
1855{
1856 struct xfs_buf *bp;
1857
1858 while (!list_empty(list)) {
1859 bp = list_first_entry(list, struct xfs_buf, b_list);
1860
1861 xfs_buf_lock(bp);
1862 bp->b_flags &= ~_XBF_DELWRI_Q;
1863 list_del_init(&bp->b_list);
1864 xfs_buf_relse(bp);
1865 }
1866}
1867
1868/*
1869 * Add a buffer to the delayed write list.
1870 *
1871 * This queues a buffer for writeout if it hasn't already been. Note that
1872 * neither this routine nor the buffer list submission functions perform
1873 * any internal synchronization. It is expected that the lists are thread-local
1874 * to the callers.
1875 *
1876 * Returns true if we queued up the buffer, or false if it already had
1877 * been on the buffer list.
1878 */
1879bool
1880xfs_buf_delwri_queue(
1881 struct xfs_buf *bp,
1882 struct list_head *list)
1883{
1884 ASSERT(xfs_buf_islocked(bp));
1885 ASSERT(!(bp->b_flags & XBF_READ));
1886
1887 /*
1888 * If the buffer is already marked delwri it already is queued up
1889 * by someone else for imediate writeout. Just ignore it in that
1890 * case.
1891 */
1892 if (bp->b_flags & _XBF_DELWRI_Q) {
1893 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1894 return false;
1895 }
1896
1897 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1898
1899 /*
1900 * If a buffer gets written out synchronously or marked stale while it
1901 * is on a delwri list we lazily remove it. To do this, the other party
1902 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1903 * It remains referenced and on the list. In a rare corner case it
1904 * might get readded to a delwri list after the synchronous writeout, in
1905 * which case we need just need to re-add the flag here.
1906 */
1907 bp->b_flags |= _XBF_DELWRI_Q;
1908 if (list_empty(&bp->b_list)) {
1909 atomic_inc(&bp->b_hold);
1910 list_add_tail(&bp->b_list, list);
1911 }
1912
1913 return true;
1914}
1915
1916/*
1917 * Compare function is more complex than it needs to be because
1918 * the return value is only 32 bits and we are doing comparisons
1919 * on 64 bit values
1920 */
1921static int
1922xfs_buf_cmp(
1923 void *priv,
1924 struct list_head *a,
1925 struct list_head *b)
1926{
1927 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1928 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1929 xfs_daddr_t diff;
1930
1931 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1932 if (diff < 0)
1933 return -1;
1934 if (diff > 0)
1935 return 1;
1936 return 0;
1937}
1938
1939/*
1940 * submit buffers for write.
1941 *
1942 * When we have a large buffer list, we do not want to hold all the buffers
1943 * locked while we block on the request queue waiting for IO dispatch. To avoid
1944 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1945 * the lock hold times for lists which may contain thousands of objects.
1946 *
1947 * To do this, we sort the buffer list before we walk the list to lock and
1948 * submit buffers, and we plug and unplug around each group of buffers we
1949 * submit.
1950 */
1951static int
1952xfs_buf_delwri_submit_buffers(
1953 struct list_head *buffer_list,
1954 struct list_head *wait_list)
1955{
1956 struct xfs_buf *bp, *n;
1957 LIST_HEAD (submit_list);
1958 int pinned = 0;
1959 struct blk_plug plug;
1960
1961 list_sort(NULL, buffer_list, xfs_buf_cmp);
1962
1963 blk_start_plug(&plug);
1964 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1965 if (!wait_list) {
1966 if (xfs_buf_ispinned(bp)) {
1967 pinned++;
1968 continue;
1969 }
1970 if (!xfs_buf_trylock(bp))
1971 continue;
1972 } else {
1973 xfs_buf_lock(bp);
1974 }
1975
1976 /*
1977 * Someone else might have written the buffer synchronously or
1978 * marked it stale in the meantime. In that case only the
1979 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1980 * reference and remove it from the list here.
1981 */
1982 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1983 list_del_init(&bp->b_list);
1984 xfs_buf_relse(bp);
1985 continue;
1986 }
1987
1988 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1989
1990 /*
1991 * We do all IO submission async. This means if we need
1992 * to wait for IO completion we need to take an extra
1993 * reference so the buffer is still valid on the other
1994 * side. We need to move the buffer onto the io_list
1995 * at this point so the caller can still access it.
1996 */
1997 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1998 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1999 if (wait_list) {
2000 xfs_buf_hold(bp);
2001 list_move_tail(&bp->b_list, wait_list);
2002 } else
2003 list_del_init(&bp->b_list);
2004
2005 xfs_buf_submit(bp);
2006 }
2007 blk_finish_plug(&plug);
2008
2009 return pinned;
2010}
2011
2012/*
2013 * Write out a buffer list asynchronously.
2014 *
2015 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2016 * out and not wait for I/O completion on any of the buffers. This interface
2017 * is only safely useable for callers that can track I/O completion by higher
2018 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2019 * function.
2020 */
2021int
2022xfs_buf_delwri_submit_nowait(
2023 struct list_head *buffer_list)
2024{
2025 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2026}
2027
2028/*
2029 * Write out a buffer list synchronously.
2030 *
2031 * This will take the @buffer_list, write all buffers out and wait for I/O
2032 * completion on all of the buffers. @buffer_list is consumed by the function,
2033 * so callers must have some other way of tracking buffers if they require such
2034 * functionality.
2035 */
2036int
2037xfs_buf_delwri_submit(
2038 struct list_head *buffer_list)
2039{
2040 LIST_HEAD (wait_list);
2041 int error = 0, error2;
2042 struct xfs_buf *bp;
2043
2044 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2045
2046 /* Wait for IO to complete. */
2047 while (!list_empty(&wait_list)) {
2048 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2049
2050 list_del_init(&bp->b_list);
2051
2052 /* locking the buffer will wait for async IO completion. */
2053 xfs_buf_lock(bp);
2054 error2 = bp->b_error;
2055 xfs_buf_relse(bp);
2056 if (!error)
2057 error = error2;
2058 }
2059
2060 return error;
2061}
2062
2063/*
2064 * Push a single buffer on a delwri queue.
2065 *
2066 * The purpose of this function is to submit a single buffer of a delwri queue
2067 * and return with the buffer still on the original queue. The waiting delwri
2068 * buffer submission infrastructure guarantees transfer of the delwri queue
2069 * buffer reference to a temporary wait list. We reuse this infrastructure to
2070 * transfer the buffer back to the original queue.
2071 *
2072 * Note the buffer transitions from the queued state, to the submitted and wait
2073 * listed state and back to the queued state during this call. The buffer
2074 * locking and queue management logic between _delwri_pushbuf() and
2075 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2076 * before returning.
2077 */
2078int
2079xfs_buf_delwri_pushbuf(
2080 struct xfs_buf *bp,
2081 struct list_head *buffer_list)
2082{
2083 LIST_HEAD (submit_list);
2084 int error;
2085
2086 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2087
2088 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2089
2090 /*
2091 * Isolate the buffer to a new local list so we can submit it for I/O
2092 * independently from the rest of the original list.
2093 */
2094 xfs_buf_lock(bp);
2095 list_move(&bp->b_list, &submit_list);
2096 xfs_buf_unlock(bp);
2097
2098 /*
2099 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2100 * the buffer on the wait list with an associated reference. Rather than
2101 * bounce the buffer from a local wait list back to the original list
2102 * after I/O completion, reuse the original list as the wait list.
2103 */
2104 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2105
2106 /*
2107 * The buffer is now under I/O and wait listed as during typical delwri
2108 * submission. Lock the buffer to wait for I/O completion. Rather than
2109 * remove the buffer from the wait list and release the reference, we
2110 * want to return with the buffer queued to the original list. The
2111 * buffer already sits on the original list with a wait list reference,
2112 * however. If we let the queue inherit that wait list reference, all we
2113 * need to do is reset the DELWRI_Q flag.
2114 */
2115 xfs_buf_lock(bp);
2116 error = bp->b_error;
2117 bp->b_flags |= _XBF_DELWRI_Q;
2118 xfs_buf_unlock(bp);
2119
2120 return error;
2121}
2122
2123int __init
2124xfs_buf_init(void)
2125{
2126 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2127 KM_ZONE_HWALIGN, NULL);
2128 if (!xfs_buf_zone)
2129 goto out;
2130
2131 return 0;
2132
2133 out:
2134 return -ENOMEM;
2135}
2136
2137void
2138xfs_buf_terminate(void)
2139{
2140 kmem_zone_destroy(xfs_buf_zone);
2141}
2142
2143void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2144{
2145 /*
2146 * Set the lru reference count to 0 based on the error injection tag.
2147 * This allows userspace to disrupt buffer caching for debug/testing
2148 * purposes.
2149 */
2150 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2151 XFS_ERRTAG_BUF_LRU_REF))
2152 lru_ref = 0;
2153
2154 atomic_set(&bp->b_lru_ref, lru_ref);
2155}
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37#include "xfs_log_format.h"
38#include "xfs_trans_resv.h"
39#include "xfs_sb.h"
40#include "xfs_ag.h"
41#include "xfs_mount.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44
45static kmem_zone_t *xfs_buf_zone;
46
47static struct workqueue_struct *xfslogd_workqueue;
48
49#ifdef XFS_BUF_LOCK_TRACKING
50# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
51# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
52# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
53#else
54# define XB_SET_OWNER(bp) do { } while (0)
55# define XB_CLEAR_OWNER(bp) do { } while (0)
56# define XB_GET_OWNER(bp) do { } while (0)
57#endif
58
59#define xb_to_gfp(flags) \
60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
61
62
63static inline int
64xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66{
67 /*
68 * Return true if the buffer is vmapped.
69 *
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73 */
74 return bp->b_addr && bp->b_page_count > 1;
75}
76
77static inline int
78xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80{
81 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
82}
83
84/*
85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86 * b_lru_ref count so that the buffer is freed immediately when the buffer
87 * reference count falls to zero. If the buffer is already on the LRU, we need
88 * to remove the reference that LRU holds on the buffer.
89 *
90 * This prevents build-up of stale buffers on the LRU.
91 */
92void
93xfs_buf_stale(
94 struct xfs_buf *bp)
95{
96 ASSERT(xfs_buf_islocked(bp));
97
98 bp->b_flags |= XBF_STALE;
99
100 /*
101 * Clear the delwri status so that a delwri queue walker will not
102 * flush this buffer to disk now that it is stale. The delwri queue has
103 * a reference to the buffer, so this is safe to do.
104 */
105 bp->b_flags &= ~_XBF_DELWRI_Q;
106
107 spin_lock(&bp->b_lock);
108 atomic_set(&bp->b_lru_ref, 0);
109 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
110 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 atomic_dec(&bp->b_hold);
112
113 ASSERT(atomic_read(&bp->b_hold) >= 1);
114 spin_unlock(&bp->b_lock);
115}
116
117static int
118xfs_buf_get_maps(
119 struct xfs_buf *bp,
120 int map_count)
121{
122 ASSERT(bp->b_maps == NULL);
123 bp->b_map_count = map_count;
124
125 if (map_count == 1) {
126 bp->b_maps = &bp->__b_map;
127 return 0;
128 }
129
130 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 KM_NOFS);
132 if (!bp->b_maps)
133 return ENOMEM;
134 return 0;
135}
136
137/*
138 * Frees b_pages if it was allocated.
139 */
140static void
141xfs_buf_free_maps(
142 struct xfs_buf *bp)
143{
144 if (bp->b_maps != &bp->__b_map) {
145 kmem_free(bp->b_maps);
146 bp->b_maps = NULL;
147 }
148}
149
150struct xfs_buf *
151_xfs_buf_alloc(
152 struct xfs_buftarg *target,
153 struct xfs_buf_map *map,
154 int nmaps,
155 xfs_buf_flags_t flags)
156{
157 struct xfs_buf *bp;
158 int error;
159 int i;
160
161 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
162 if (unlikely(!bp))
163 return NULL;
164
165 /*
166 * We don't want certain flags to appear in b_flags unless they are
167 * specifically set by later operations on the buffer.
168 */
169 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
170
171 atomic_set(&bp->b_hold, 1);
172 atomic_set(&bp->b_lru_ref, 1);
173 init_completion(&bp->b_iowait);
174 INIT_LIST_HEAD(&bp->b_lru);
175 INIT_LIST_HEAD(&bp->b_list);
176 RB_CLEAR_NODE(&bp->b_rbnode);
177 sema_init(&bp->b_sema, 0); /* held, no waiters */
178 spin_lock_init(&bp->b_lock);
179 XB_SET_OWNER(bp);
180 bp->b_target = target;
181 bp->b_flags = flags;
182
183 /*
184 * Set length and io_length to the same value initially.
185 * I/O routines should use io_length, which will be the same in
186 * most cases but may be reset (e.g. XFS recovery).
187 */
188 error = xfs_buf_get_maps(bp, nmaps);
189 if (error) {
190 kmem_zone_free(xfs_buf_zone, bp);
191 return NULL;
192 }
193
194 bp->b_bn = map[0].bm_bn;
195 bp->b_length = 0;
196 for (i = 0; i < nmaps; i++) {
197 bp->b_maps[i].bm_bn = map[i].bm_bn;
198 bp->b_maps[i].bm_len = map[i].bm_len;
199 bp->b_length += map[i].bm_len;
200 }
201 bp->b_io_length = bp->b_length;
202
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
205
206 XFS_STATS_INC(xb_create);
207 trace_xfs_buf_init(bp, _RET_IP_);
208
209 return bp;
210}
211
212/*
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
215 */
216STATIC int
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count,
220 xfs_buf_flags_t flags)
221{
222 /* Make sure that we have a page list */
223 if (bp->b_pages == NULL) {
224 bp->b_page_count = page_count;
225 if (page_count <= XB_PAGES) {
226 bp->b_pages = bp->b_page_array;
227 } else {
228 bp->b_pages = kmem_alloc(sizeof(struct page *) *
229 page_count, KM_NOFS);
230 if (bp->b_pages == NULL)
231 return -ENOMEM;
232 }
233 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
234 }
235 return 0;
236}
237
238/*
239 * Frees b_pages if it was allocated.
240 */
241STATIC void
242_xfs_buf_free_pages(
243 xfs_buf_t *bp)
244{
245 if (bp->b_pages != bp->b_page_array) {
246 kmem_free(bp->b_pages);
247 bp->b_pages = NULL;
248 }
249}
250
251/*
252 * Releases the specified buffer.
253 *
254 * The modification state of any associated pages is left unchanged.
255 * The buffer must not be on any hash - use xfs_buf_rele instead for
256 * hashed and refcounted buffers
257 */
258void
259xfs_buf_free(
260 xfs_buf_t *bp)
261{
262 trace_xfs_buf_free(bp, _RET_IP_);
263
264 ASSERT(list_empty(&bp->b_lru));
265
266 if (bp->b_flags & _XBF_PAGES) {
267 uint i;
268
269 if (xfs_buf_is_vmapped(bp))
270 vm_unmap_ram(bp->b_addr - bp->b_offset,
271 bp->b_page_count);
272
273 for (i = 0; i < bp->b_page_count; i++) {
274 struct page *page = bp->b_pages[i];
275
276 __free_page(page);
277 }
278 } else if (bp->b_flags & _XBF_KMEM)
279 kmem_free(bp->b_addr);
280 _xfs_buf_free_pages(bp);
281 xfs_buf_free_maps(bp);
282 kmem_zone_free(xfs_buf_zone, bp);
283}
284
285/*
286 * Allocates all the pages for buffer in question and builds it's page list.
287 */
288STATIC int
289xfs_buf_allocate_memory(
290 xfs_buf_t *bp,
291 uint flags)
292{
293 size_t size;
294 size_t nbytes, offset;
295 gfp_t gfp_mask = xb_to_gfp(flags);
296 unsigned short page_count, i;
297 xfs_off_t start, end;
298 int error;
299
300 /*
301 * for buffers that are contained within a single page, just allocate
302 * the memory from the heap - there's no need for the complexity of
303 * page arrays to keep allocation down to order 0.
304 */
305 size = BBTOB(bp->b_length);
306 if (size < PAGE_SIZE) {
307 bp->b_addr = kmem_alloc(size, KM_NOFS);
308 if (!bp->b_addr) {
309 /* low memory - use alloc_page loop instead */
310 goto use_alloc_page;
311 }
312
313 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
314 ((unsigned long)bp->b_addr & PAGE_MASK)) {
315 /* b_addr spans two pages - use alloc_page instead */
316 kmem_free(bp->b_addr);
317 bp->b_addr = NULL;
318 goto use_alloc_page;
319 }
320 bp->b_offset = offset_in_page(bp->b_addr);
321 bp->b_pages = bp->b_page_array;
322 bp->b_pages[0] = virt_to_page(bp->b_addr);
323 bp->b_page_count = 1;
324 bp->b_flags |= _XBF_KMEM;
325 return 0;
326 }
327
328use_alloc_page:
329 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
330 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
331 >> PAGE_SHIFT;
332 page_count = end - start;
333 error = _xfs_buf_get_pages(bp, page_count, flags);
334 if (unlikely(error))
335 return error;
336
337 offset = bp->b_offset;
338 bp->b_flags |= _XBF_PAGES;
339
340 for (i = 0; i < bp->b_page_count; i++) {
341 struct page *page;
342 uint retries = 0;
343retry:
344 page = alloc_page(gfp_mask);
345 if (unlikely(page == NULL)) {
346 if (flags & XBF_READ_AHEAD) {
347 bp->b_page_count = i;
348 error = ENOMEM;
349 goto out_free_pages;
350 }
351
352 /*
353 * This could deadlock.
354 *
355 * But until all the XFS lowlevel code is revamped to
356 * handle buffer allocation failures we can't do much.
357 */
358 if (!(++retries % 100))
359 xfs_err(NULL,
360 "possible memory allocation deadlock in %s (mode:0x%x)",
361 __func__, gfp_mask);
362
363 XFS_STATS_INC(xb_page_retries);
364 congestion_wait(BLK_RW_ASYNC, HZ/50);
365 goto retry;
366 }
367
368 XFS_STATS_INC(xb_page_found);
369
370 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
371 size -= nbytes;
372 bp->b_pages[i] = page;
373 offset = 0;
374 }
375 return 0;
376
377out_free_pages:
378 for (i = 0; i < bp->b_page_count; i++)
379 __free_page(bp->b_pages[i]);
380 return error;
381}
382
383/*
384 * Map buffer into kernel address-space if necessary.
385 */
386STATIC int
387_xfs_buf_map_pages(
388 xfs_buf_t *bp,
389 uint flags)
390{
391 ASSERT(bp->b_flags & _XBF_PAGES);
392 if (bp->b_page_count == 1) {
393 /* A single page buffer is always mappable */
394 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
395 } else if (flags & XBF_UNMAPPED) {
396 bp->b_addr = NULL;
397 } else {
398 int retried = 0;
399 unsigned noio_flag;
400
401 /*
402 * vm_map_ram() will allocate auxillary structures (e.g.
403 * pagetables) with GFP_KERNEL, yet we are likely to be under
404 * GFP_NOFS context here. Hence we need to tell memory reclaim
405 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
406 * memory reclaim re-entering the filesystem here and
407 * potentially deadlocking.
408 */
409 noio_flag = memalloc_noio_save();
410 do {
411 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
412 -1, PAGE_KERNEL);
413 if (bp->b_addr)
414 break;
415 vm_unmap_aliases();
416 } while (retried++ <= 1);
417 memalloc_noio_restore(noio_flag);
418
419 if (!bp->b_addr)
420 return -ENOMEM;
421 bp->b_addr += bp->b_offset;
422 }
423
424 return 0;
425}
426
427/*
428 * Finding and Reading Buffers
429 */
430
431/*
432 * Look up, and creates if absent, a lockable buffer for
433 * a given range of an inode. The buffer is returned
434 * locked. No I/O is implied by this call.
435 */
436xfs_buf_t *
437_xfs_buf_find(
438 struct xfs_buftarg *btp,
439 struct xfs_buf_map *map,
440 int nmaps,
441 xfs_buf_flags_t flags,
442 xfs_buf_t *new_bp)
443{
444 size_t numbytes;
445 struct xfs_perag *pag;
446 struct rb_node **rbp;
447 struct rb_node *parent;
448 xfs_buf_t *bp;
449 xfs_daddr_t blkno = map[0].bm_bn;
450 xfs_daddr_t eofs;
451 int numblks = 0;
452 int i;
453
454 for (i = 0; i < nmaps; i++)
455 numblks += map[i].bm_len;
456 numbytes = BBTOB(numblks);
457
458 /* Check for IOs smaller than the sector size / not sector aligned */
459 ASSERT(!(numbytes < btp->bt_meta_sectorsize));
460 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
461
462 /*
463 * Corrupted block numbers can get through to here, unfortunately, so we
464 * have to check that the buffer falls within the filesystem bounds.
465 */
466 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
467 if (blkno >= eofs) {
468 /*
469 * XXX (dgc): we should really be returning EFSCORRUPTED here,
470 * but none of the higher level infrastructure supports
471 * returning a specific error on buffer lookup failures.
472 */
473 xfs_alert(btp->bt_mount,
474 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
475 __func__, blkno, eofs);
476 WARN_ON(1);
477 return NULL;
478 }
479
480 /* get tree root */
481 pag = xfs_perag_get(btp->bt_mount,
482 xfs_daddr_to_agno(btp->bt_mount, blkno));
483
484 /* walk tree */
485 spin_lock(&pag->pag_buf_lock);
486 rbp = &pag->pag_buf_tree.rb_node;
487 parent = NULL;
488 bp = NULL;
489 while (*rbp) {
490 parent = *rbp;
491 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
492
493 if (blkno < bp->b_bn)
494 rbp = &(*rbp)->rb_left;
495 else if (blkno > bp->b_bn)
496 rbp = &(*rbp)->rb_right;
497 else {
498 /*
499 * found a block number match. If the range doesn't
500 * match, the only way this is allowed is if the buffer
501 * in the cache is stale and the transaction that made
502 * it stale has not yet committed. i.e. we are
503 * reallocating a busy extent. Skip this buffer and
504 * continue searching to the right for an exact match.
505 */
506 if (bp->b_length != numblks) {
507 ASSERT(bp->b_flags & XBF_STALE);
508 rbp = &(*rbp)->rb_right;
509 continue;
510 }
511 atomic_inc(&bp->b_hold);
512 goto found;
513 }
514 }
515
516 /* No match found */
517 if (new_bp) {
518 rb_link_node(&new_bp->b_rbnode, parent, rbp);
519 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
520 /* the buffer keeps the perag reference until it is freed */
521 new_bp->b_pag = pag;
522 spin_unlock(&pag->pag_buf_lock);
523 } else {
524 XFS_STATS_INC(xb_miss_locked);
525 spin_unlock(&pag->pag_buf_lock);
526 xfs_perag_put(pag);
527 }
528 return new_bp;
529
530found:
531 spin_unlock(&pag->pag_buf_lock);
532 xfs_perag_put(pag);
533
534 if (!xfs_buf_trylock(bp)) {
535 if (flags & XBF_TRYLOCK) {
536 xfs_buf_rele(bp);
537 XFS_STATS_INC(xb_busy_locked);
538 return NULL;
539 }
540 xfs_buf_lock(bp);
541 XFS_STATS_INC(xb_get_locked_waited);
542 }
543
544 /*
545 * if the buffer is stale, clear all the external state associated with
546 * it. We need to keep flags such as how we allocated the buffer memory
547 * intact here.
548 */
549 if (bp->b_flags & XBF_STALE) {
550 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
551 ASSERT(bp->b_iodone == NULL);
552 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
553 bp->b_ops = NULL;
554 }
555
556 trace_xfs_buf_find(bp, flags, _RET_IP_);
557 XFS_STATS_INC(xb_get_locked);
558 return bp;
559}
560
561/*
562 * Assembles a buffer covering the specified range. The code is optimised for
563 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
564 * more hits than misses.
565 */
566struct xfs_buf *
567xfs_buf_get_map(
568 struct xfs_buftarg *target,
569 struct xfs_buf_map *map,
570 int nmaps,
571 xfs_buf_flags_t flags)
572{
573 struct xfs_buf *bp;
574 struct xfs_buf *new_bp;
575 int error = 0;
576
577 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
578 if (likely(bp))
579 goto found;
580
581 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
582 if (unlikely(!new_bp))
583 return NULL;
584
585 error = xfs_buf_allocate_memory(new_bp, flags);
586 if (error) {
587 xfs_buf_free(new_bp);
588 return NULL;
589 }
590
591 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
592 if (!bp) {
593 xfs_buf_free(new_bp);
594 return NULL;
595 }
596
597 if (bp != new_bp)
598 xfs_buf_free(new_bp);
599
600found:
601 if (!bp->b_addr) {
602 error = _xfs_buf_map_pages(bp, flags);
603 if (unlikely(error)) {
604 xfs_warn(target->bt_mount,
605 "%s: failed to map pagesn", __func__);
606 xfs_buf_relse(bp);
607 return NULL;
608 }
609 }
610
611 XFS_STATS_INC(xb_get);
612 trace_xfs_buf_get(bp, flags, _RET_IP_);
613 return bp;
614}
615
616STATIC int
617_xfs_buf_read(
618 xfs_buf_t *bp,
619 xfs_buf_flags_t flags)
620{
621 ASSERT(!(flags & XBF_WRITE));
622 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
623
624 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
625 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
626
627 xfs_buf_iorequest(bp);
628 if (flags & XBF_ASYNC)
629 return 0;
630 return xfs_buf_iowait(bp);
631}
632
633xfs_buf_t *
634xfs_buf_read_map(
635 struct xfs_buftarg *target,
636 struct xfs_buf_map *map,
637 int nmaps,
638 xfs_buf_flags_t flags,
639 const struct xfs_buf_ops *ops)
640{
641 struct xfs_buf *bp;
642
643 flags |= XBF_READ;
644
645 bp = xfs_buf_get_map(target, map, nmaps, flags);
646 if (bp) {
647 trace_xfs_buf_read(bp, flags, _RET_IP_);
648
649 if (!XFS_BUF_ISDONE(bp)) {
650 XFS_STATS_INC(xb_get_read);
651 bp->b_ops = ops;
652 _xfs_buf_read(bp, flags);
653 } else if (flags & XBF_ASYNC) {
654 /*
655 * Read ahead call which is already satisfied,
656 * drop the buffer
657 */
658 xfs_buf_relse(bp);
659 return NULL;
660 } else {
661 /* We do not want read in the flags */
662 bp->b_flags &= ~XBF_READ;
663 }
664 }
665
666 return bp;
667}
668
669/*
670 * If we are not low on memory then do the readahead in a deadlock
671 * safe manner.
672 */
673void
674xfs_buf_readahead_map(
675 struct xfs_buftarg *target,
676 struct xfs_buf_map *map,
677 int nmaps,
678 const struct xfs_buf_ops *ops)
679{
680 if (bdi_read_congested(target->bt_bdi))
681 return;
682
683 xfs_buf_read_map(target, map, nmaps,
684 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
685}
686
687/*
688 * Read an uncached buffer from disk. Allocates and returns a locked
689 * buffer containing the disk contents or nothing.
690 */
691struct xfs_buf *
692xfs_buf_read_uncached(
693 struct xfs_buftarg *target,
694 xfs_daddr_t daddr,
695 size_t numblks,
696 int flags,
697 const struct xfs_buf_ops *ops)
698{
699 struct xfs_buf *bp;
700
701 bp = xfs_buf_get_uncached(target, numblks, flags);
702 if (!bp)
703 return NULL;
704
705 /* set up the buffer for a read IO */
706 ASSERT(bp->b_map_count == 1);
707 bp->b_bn = daddr;
708 bp->b_maps[0].bm_bn = daddr;
709 bp->b_flags |= XBF_READ;
710 bp->b_ops = ops;
711
712 if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
713 xfs_buf_relse(bp);
714 return NULL;
715 }
716 xfs_buf_iorequest(bp);
717 xfs_buf_iowait(bp);
718 return bp;
719}
720
721/*
722 * Return a buffer allocated as an empty buffer and associated to external
723 * memory via xfs_buf_associate_memory() back to it's empty state.
724 */
725void
726xfs_buf_set_empty(
727 struct xfs_buf *bp,
728 size_t numblks)
729{
730 if (bp->b_pages)
731 _xfs_buf_free_pages(bp);
732
733 bp->b_pages = NULL;
734 bp->b_page_count = 0;
735 bp->b_addr = NULL;
736 bp->b_length = numblks;
737 bp->b_io_length = numblks;
738
739 ASSERT(bp->b_map_count == 1);
740 bp->b_bn = XFS_BUF_DADDR_NULL;
741 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
742 bp->b_maps[0].bm_len = bp->b_length;
743}
744
745static inline struct page *
746mem_to_page(
747 void *addr)
748{
749 if ((!is_vmalloc_addr(addr))) {
750 return virt_to_page(addr);
751 } else {
752 return vmalloc_to_page(addr);
753 }
754}
755
756int
757xfs_buf_associate_memory(
758 xfs_buf_t *bp,
759 void *mem,
760 size_t len)
761{
762 int rval;
763 int i = 0;
764 unsigned long pageaddr;
765 unsigned long offset;
766 size_t buflen;
767 int page_count;
768
769 pageaddr = (unsigned long)mem & PAGE_MASK;
770 offset = (unsigned long)mem - pageaddr;
771 buflen = PAGE_ALIGN(len + offset);
772 page_count = buflen >> PAGE_SHIFT;
773
774 /* Free any previous set of page pointers */
775 if (bp->b_pages)
776 _xfs_buf_free_pages(bp);
777
778 bp->b_pages = NULL;
779 bp->b_addr = mem;
780
781 rval = _xfs_buf_get_pages(bp, page_count, 0);
782 if (rval)
783 return rval;
784
785 bp->b_offset = offset;
786
787 for (i = 0; i < bp->b_page_count; i++) {
788 bp->b_pages[i] = mem_to_page((void *)pageaddr);
789 pageaddr += PAGE_SIZE;
790 }
791
792 bp->b_io_length = BTOBB(len);
793 bp->b_length = BTOBB(buflen);
794
795 return 0;
796}
797
798xfs_buf_t *
799xfs_buf_get_uncached(
800 struct xfs_buftarg *target,
801 size_t numblks,
802 int flags)
803{
804 unsigned long page_count;
805 int error, i;
806 struct xfs_buf *bp;
807 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
808
809 bp = _xfs_buf_alloc(target, &map, 1, 0);
810 if (unlikely(bp == NULL))
811 goto fail;
812
813 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
814 error = _xfs_buf_get_pages(bp, page_count, 0);
815 if (error)
816 goto fail_free_buf;
817
818 for (i = 0; i < page_count; i++) {
819 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
820 if (!bp->b_pages[i])
821 goto fail_free_mem;
822 }
823 bp->b_flags |= _XBF_PAGES;
824
825 error = _xfs_buf_map_pages(bp, 0);
826 if (unlikely(error)) {
827 xfs_warn(target->bt_mount,
828 "%s: failed to map pages", __func__);
829 goto fail_free_mem;
830 }
831
832 trace_xfs_buf_get_uncached(bp, _RET_IP_);
833 return bp;
834
835 fail_free_mem:
836 while (--i >= 0)
837 __free_page(bp->b_pages[i]);
838 _xfs_buf_free_pages(bp);
839 fail_free_buf:
840 xfs_buf_free_maps(bp);
841 kmem_zone_free(xfs_buf_zone, bp);
842 fail:
843 return NULL;
844}
845
846/*
847 * Increment reference count on buffer, to hold the buffer concurrently
848 * with another thread which may release (free) the buffer asynchronously.
849 * Must hold the buffer already to call this function.
850 */
851void
852xfs_buf_hold(
853 xfs_buf_t *bp)
854{
855 trace_xfs_buf_hold(bp, _RET_IP_);
856 atomic_inc(&bp->b_hold);
857}
858
859/*
860 * Releases a hold on the specified buffer. If the
861 * the hold count is 1, calls xfs_buf_free.
862 */
863void
864xfs_buf_rele(
865 xfs_buf_t *bp)
866{
867 struct xfs_perag *pag = bp->b_pag;
868
869 trace_xfs_buf_rele(bp, _RET_IP_);
870
871 if (!pag) {
872 ASSERT(list_empty(&bp->b_lru));
873 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
874 if (atomic_dec_and_test(&bp->b_hold))
875 xfs_buf_free(bp);
876 return;
877 }
878
879 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
880
881 ASSERT(atomic_read(&bp->b_hold) > 0);
882 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
883 spin_lock(&bp->b_lock);
884 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
885 /*
886 * If the buffer is added to the LRU take a new
887 * reference to the buffer for the LRU and clear the
888 * (now stale) dispose list state flag
889 */
890 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
891 bp->b_state &= ~XFS_BSTATE_DISPOSE;
892 atomic_inc(&bp->b_hold);
893 }
894 spin_unlock(&bp->b_lock);
895 spin_unlock(&pag->pag_buf_lock);
896 } else {
897 /*
898 * most of the time buffers will already be removed from
899 * the LRU, so optimise that case by checking for the
900 * XFS_BSTATE_DISPOSE flag indicating the last list the
901 * buffer was on was the disposal list
902 */
903 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
904 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
905 } else {
906 ASSERT(list_empty(&bp->b_lru));
907 }
908 spin_unlock(&bp->b_lock);
909
910 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
911 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
912 spin_unlock(&pag->pag_buf_lock);
913 xfs_perag_put(pag);
914 xfs_buf_free(bp);
915 }
916 }
917}
918
919
920/*
921 * Lock a buffer object, if it is not already locked.
922 *
923 * If we come across a stale, pinned, locked buffer, we know that we are
924 * being asked to lock a buffer that has been reallocated. Because it is
925 * pinned, we know that the log has not been pushed to disk and hence it
926 * will still be locked. Rather than continuing to have trylock attempts
927 * fail until someone else pushes the log, push it ourselves before
928 * returning. This means that the xfsaild will not get stuck trying
929 * to push on stale inode buffers.
930 */
931int
932xfs_buf_trylock(
933 struct xfs_buf *bp)
934{
935 int locked;
936
937 locked = down_trylock(&bp->b_sema) == 0;
938 if (locked)
939 XB_SET_OWNER(bp);
940
941 trace_xfs_buf_trylock(bp, _RET_IP_);
942 return locked;
943}
944
945/*
946 * Lock a buffer object.
947 *
948 * If we come across a stale, pinned, locked buffer, we know that we
949 * are being asked to lock a buffer that has been reallocated. Because
950 * it is pinned, we know that the log has not been pushed to disk and
951 * hence it will still be locked. Rather than sleeping until someone
952 * else pushes the log, push it ourselves before trying to get the lock.
953 */
954void
955xfs_buf_lock(
956 struct xfs_buf *bp)
957{
958 trace_xfs_buf_lock(bp, _RET_IP_);
959
960 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
961 xfs_log_force(bp->b_target->bt_mount, 0);
962 down(&bp->b_sema);
963 XB_SET_OWNER(bp);
964
965 trace_xfs_buf_lock_done(bp, _RET_IP_);
966}
967
968void
969xfs_buf_unlock(
970 struct xfs_buf *bp)
971{
972 XB_CLEAR_OWNER(bp);
973 up(&bp->b_sema);
974
975 trace_xfs_buf_unlock(bp, _RET_IP_);
976}
977
978STATIC void
979xfs_buf_wait_unpin(
980 xfs_buf_t *bp)
981{
982 DECLARE_WAITQUEUE (wait, current);
983
984 if (atomic_read(&bp->b_pin_count) == 0)
985 return;
986
987 add_wait_queue(&bp->b_waiters, &wait);
988 for (;;) {
989 set_current_state(TASK_UNINTERRUPTIBLE);
990 if (atomic_read(&bp->b_pin_count) == 0)
991 break;
992 io_schedule();
993 }
994 remove_wait_queue(&bp->b_waiters, &wait);
995 set_current_state(TASK_RUNNING);
996}
997
998/*
999 * Buffer Utility Routines
1000 */
1001
1002STATIC void
1003xfs_buf_iodone_work(
1004 struct work_struct *work)
1005{
1006 struct xfs_buf *bp =
1007 container_of(work, xfs_buf_t, b_iodone_work);
1008 bool read = !!(bp->b_flags & XBF_READ);
1009
1010 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1011
1012 /* only validate buffers that were read without errors */
1013 if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1014 bp->b_ops->verify_read(bp);
1015
1016 if (bp->b_iodone)
1017 (*(bp->b_iodone))(bp);
1018 else if (bp->b_flags & XBF_ASYNC)
1019 xfs_buf_relse(bp);
1020 else {
1021 ASSERT(read && bp->b_ops);
1022 complete(&bp->b_iowait);
1023 }
1024}
1025
1026void
1027xfs_buf_ioend(
1028 struct xfs_buf *bp,
1029 int schedule)
1030{
1031 bool read = !!(bp->b_flags & XBF_READ);
1032
1033 trace_xfs_buf_iodone(bp, _RET_IP_);
1034
1035 if (bp->b_error == 0)
1036 bp->b_flags |= XBF_DONE;
1037
1038 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1039 if (schedule) {
1040 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1041 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1042 } else {
1043 xfs_buf_iodone_work(&bp->b_iodone_work);
1044 }
1045 } else {
1046 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1047 complete(&bp->b_iowait);
1048 }
1049}
1050
1051void
1052xfs_buf_ioerror(
1053 xfs_buf_t *bp,
1054 int error)
1055{
1056 ASSERT(error >= 0 && error <= 0xffff);
1057 bp->b_error = (unsigned short)error;
1058 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1059}
1060
1061void
1062xfs_buf_ioerror_alert(
1063 struct xfs_buf *bp,
1064 const char *func)
1065{
1066 xfs_alert(bp->b_target->bt_mount,
1067"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1068 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1069}
1070
1071/*
1072 * Called when we want to stop a buffer from getting written or read.
1073 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1074 * so that the proper iodone callbacks get called.
1075 */
1076STATIC int
1077xfs_bioerror(
1078 xfs_buf_t *bp)
1079{
1080#ifdef XFSERRORDEBUG
1081 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1082#endif
1083
1084 /*
1085 * No need to wait until the buffer is unpinned, we aren't flushing it.
1086 */
1087 xfs_buf_ioerror(bp, EIO);
1088
1089 /*
1090 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1091 */
1092 XFS_BUF_UNREAD(bp);
1093 XFS_BUF_UNDONE(bp);
1094 xfs_buf_stale(bp);
1095
1096 xfs_buf_ioend(bp, 0);
1097
1098 return EIO;
1099}
1100
1101/*
1102 * Same as xfs_bioerror, except that we are releasing the buffer
1103 * here ourselves, and avoiding the xfs_buf_ioend call.
1104 * This is meant for userdata errors; metadata bufs come with
1105 * iodone functions attached, so that we can track down errors.
1106 */
1107int
1108xfs_bioerror_relse(
1109 struct xfs_buf *bp)
1110{
1111 int64_t fl = bp->b_flags;
1112 /*
1113 * No need to wait until the buffer is unpinned.
1114 * We aren't flushing it.
1115 *
1116 * chunkhold expects B_DONE to be set, whether
1117 * we actually finish the I/O or not. We don't want to
1118 * change that interface.
1119 */
1120 XFS_BUF_UNREAD(bp);
1121 XFS_BUF_DONE(bp);
1122 xfs_buf_stale(bp);
1123 bp->b_iodone = NULL;
1124 if (!(fl & XBF_ASYNC)) {
1125 /*
1126 * Mark b_error and B_ERROR _both_.
1127 * Lot's of chunkcache code assumes that.
1128 * There's no reason to mark error for
1129 * ASYNC buffers.
1130 */
1131 xfs_buf_ioerror(bp, EIO);
1132 complete(&bp->b_iowait);
1133 } else {
1134 xfs_buf_relse(bp);
1135 }
1136
1137 return EIO;
1138}
1139
1140STATIC int
1141xfs_bdstrat_cb(
1142 struct xfs_buf *bp)
1143{
1144 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1145 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1146 /*
1147 * Metadata write that didn't get logged but
1148 * written delayed anyway. These aren't associated
1149 * with a transaction, and can be ignored.
1150 */
1151 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1152 return xfs_bioerror_relse(bp);
1153 else
1154 return xfs_bioerror(bp);
1155 }
1156
1157 xfs_buf_iorequest(bp);
1158 return 0;
1159}
1160
1161int
1162xfs_bwrite(
1163 struct xfs_buf *bp)
1164{
1165 int error;
1166
1167 ASSERT(xfs_buf_islocked(bp));
1168
1169 bp->b_flags |= XBF_WRITE;
1170 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
1171
1172 xfs_bdstrat_cb(bp);
1173
1174 error = xfs_buf_iowait(bp);
1175 if (error) {
1176 xfs_force_shutdown(bp->b_target->bt_mount,
1177 SHUTDOWN_META_IO_ERROR);
1178 }
1179 return error;
1180}
1181
1182STATIC void
1183_xfs_buf_ioend(
1184 xfs_buf_t *bp,
1185 int schedule)
1186{
1187 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1188 xfs_buf_ioend(bp, schedule);
1189}
1190
1191STATIC void
1192xfs_buf_bio_end_io(
1193 struct bio *bio,
1194 int error)
1195{
1196 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1197
1198 /*
1199 * don't overwrite existing errors - otherwise we can lose errors on
1200 * buffers that require multiple bios to complete.
1201 */
1202 if (!bp->b_error)
1203 xfs_buf_ioerror(bp, -error);
1204
1205 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1206 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1207
1208 _xfs_buf_ioend(bp, 1);
1209 bio_put(bio);
1210}
1211
1212static void
1213xfs_buf_ioapply_map(
1214 struct xfs_buf *bp,
1215 int map,
1216 int *buf_offset,
1217 int *count,
1218 int rw)
1219{
1220 int page_index;
1221 int total_nr_pages = bp->b_page_count;
1222 int nr_pages;
1223 struct bio *bio;
1224 sector_t sector = bp->b_maps[map].bm_bn;
1225 int size;
1226 int offset;
1227
1228 total_nr_pages = bp->b_page_count;
1229
1230 /* skip the pages in the buffer before the start offset */
1231 page_index = 0;
1232 offset = *buf_offset;
1233 while (offset >= PAGE_SIZE) {
1234 page_index++;
1235 offset -= PAGE_SIZE;
1236 }
1237
1238 /*
1239 * Limit the IO size to the length of the current vector, and update the
1240 * remaining IO count for the next time around.
1241 */
1242 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1243 *count -= size;
1244 *buf_offset += size;
1245
1246next_chunk:
1247 atomic_inc(&bp->b_io_remaining);
1248 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1249 if (nr_pages > total_nr_pages)
1250 nr_pages = total_nr_pages;
1251
1252 bio = bio_alloc(GFP_NOIO, nr_pages);
1253 bio->bi_bdev = bp->b_target->bt_bdev;
1254 bio->bi_iter.bi_sector = sector;
1255 bio->bi_end_io = xfs_buf_bio_end_io;
1256 bio->bi_private = bp;
1257
1258
1259 for (; size && nr_pages; nr_pages--, page_index++) {
1260 int rbytes, nbytes = PAGE_SIZE - offset;
1261
1262 if (nbytes > size)
1263 nbytes = size;
1264
1265 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1266 offset);
1267 if (rbytes < nbytes)
1268 break;
1269
1270 offset = 0;
1271 sector += BTOBB(nbytes);
1272 size -= nbytes;
1273 total_nr_pages--;
1274 }
1275
1276 if (likely(bio->bi_iter.bi_size)) {
1277 if (xfs_buf_is_vmapped(bp)) {
1278 flush_kernel_vmap_range(bp->b_addr,
1279 xfs_buf_vmap_len(bp));
1280 }
1281 submit_bio(rw, bio);
1282 if (size)
1283 goto next_chunk;
1284 } else {
1285 /*
1286 * This is guaranteed not to be the last io reference count
1287 * because the caller (xfs_buf_iorequest) holds a count itself.
1288 */
1289 atomic_dec(&bp->b_io_remaining);
1290 xfs_buf_ioerror(bp, EIO);
1291 bio_put(bio);
1292 }
1293
1294}
1295
1296STATIC void
1297_xfs_buf_ioapply(
1298 struct xfs_buf *bp)
1299{
1300 struct blk_plug plug;
1301 int rw;
1302 int offset;
1303 int size;
1304 int i;
1305
1306 /*
1307 * Make sure we capture only current IO errors rather than stale errors
1308 * left over from previous use of the buffer (e.g. failed readahead).
1309 */
1310 bp->b_error = 0;
1311
1312 if (bp->b_flags & XBF_WRITE) {
1313 if (bp->b_flags & XBF_SYNCIO)
1314 rw = WRITE_SYNC;
1315 else
1316 rw = WRITE;
1317 if (bp->b_flags & XBF_FUA)
1318 rw |= REQ_FUA;
1319 if (bp->b_flags & XBF_FLUSH)
1320 rw |= REQ_FLUSH;
1321
1322 /*
1323 * Run the write verifier callback function if it exists. If
1324 * this function fails it will mark the buffer with an error and
1325 * the IO should not be dispatched.
1326 */
1327 if (bp->b_ops) {
1328 bp->b_ops->verify_write(bp);
1329 if (bp->b_error) {
1330 xfs_force_shutdown(bp->b_target->bt_mount,
1331 SHUTDOWN_CORRUPT_INCORE);
1332 return;
1333 }
1334 }
1335 } else if (bp->b_flags & XBF_READ_AHEAD) {
1336 rw = READA;
1337 } else {
1338 rw = READ;
1339 }
1340
1341 /* we only use the buffer cache for meta-data */
1342 rw |= REQ_META;
1343
1344 /*
1345 * Walk all the vectors issuing IO on them. Set up the initial offset
1346 * into the buffer and the desired IO size before we start -
1347 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1348 * subsequent call.
1349 */
1350 offset = bp->b_offset;
1351 size = BBTOB(bp->b_io_length);
1352 blk_start_plug(&plug);
1353 for (i = 0; i < bp->b_map_count; i++) {
1354 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1355 if (bp->b_error)
1356 break;
1357 if (size <= 0)
1358 break; /* all done */
1359 }
1360 blk_finish_plug(&plug);
1361}
1362
1363void
1364xfs_buf_iorequest(
1365 xfs_buf_t *bp)
1366{
1367 trace_xfs_buf_iorequest(bp, _RET_IP_);
1368
1369 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1370
1371 if (bp->b_flags & XBF_WRITE)
1372 xfs_buf_wait_unpin(bp);
1373 xfs_buf_hold(bp);
1374
1375 /*
1376 * Set the count to 1 initially, this will stop an I/O
1377 * completion callout which happens before we have started
1378 * all the I/O from calling xfs_buf_ioend too early.
1379 */
1380 atomic_set(&bp->b_io_remaining, 1);
1381 _xfs_buf_ioapply(bp);
1382 /*
1383 * If _xfs_buf_ioapply failed, we'll get back here with
1384 * only the reference we took above. _xfs_buf_ioend will
1385 * drop it to zero, so we'd better not queue it for later,
1386 * or we'll free it before it's done.
1387 */
1388 _xfs_buf_ioend(bp, bp->b_error ? 0 : 1);
1389
1390 xfs_buf_rele(bp);
1391}
1392
1393/*
1394 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1395 * no I/O is pending or there is already a pending error on the buffer, in which
1396 * case nothing will ever complete. It returns the I/O error code, if any, or
1397 * 0 if there was no error.
1398 */
1399int
1400xfs_buf_iowait(
1401 xfs_buf_t *bp)
1402{
1403 trace_xfs_buf_iowait(bp, _RET_IP_);
1404
1405 if (!bp->b_error)
1406 wait_for_completion(&bp->b_iowait);
1407
1408 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1409 return bp->b_error;
1410}
1411
1412xfs_caddr_t
1413xfs_buf_offset(
1414 xfs_buf_t *bp,
1415 size_t offset)
1416{
1417 struct page *page;
1418
1419 if (bp->b_addr)
1420 return bp->b_addr + offset;
1421
1422 offset += bp->b_offset;
1423 page = bp->b_pages[offset >> PAGE_SHIFT];
1424 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1425}
1426
1427/*
1428 * Move data into or out of a buffer.
1429 */
1430void
1431xfs_buf_iomove(
1432 xfs_buf_t *bp, /* buffer to process */
1433 size_t boff, /* starting buffer offset */
1434 size_t bsize, /* length to copy */
1435 void *data, /* data address */
1436 xfs_buf_rw_t mode) /* read/write/zero flag */
1437{
1438 size_t bend;
1439
1440 bend = boff + bsize;
1441 while (boff < bend) {
1442 struct page *page;
1443 int page_index, page_offset, csize;
1444
1445 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1446 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1447 page = bp->b_pages[page_index];
1448 csize = min_t(size_t, PAGE_SIZE - page_offset,
1449 BBTOB(bp->b_io_length) - boff);
1450
1451 ASSERT((csize + page_offset) <= PAGE_SIZE);
1452
1453 switch (mode) {
1454 case XBRW_ZERO:
1455 memset(page_address(page) + page_offset, 0, csize);
1456 break;
1457 case XBRW_READ:
1458 memcpy(data, page_address(page) + page_offset, csize);
1459 break;
1460 case XBRW_WRITE:
1461 memcpy(page_address(page) + page_offset, data, csize);
1462 }
1463
1464 boff += csize;
1465 data += csize;
1466 }
1467}
1468
1469/*
1470 * Handling of buffer targets (buftargs).
1471 */
1472
1473/*
1474 * Wait for any bufs with callbacks that have been submitted but have not yet
1475 * returned. These buffers will have an elevated hold count, so wait on those
1476 * while freeing all the buffers only held by the LRU.
1477 */
1478static enum lru_status
1479xfs_buftarg_wait_rele(
1480 struct list_head *item,
1481 spinlock_t *lru_lock,
1482 void *arg)
1483
1484{
1485 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1486 struct list_head *dispose = arg;
1487
1488 if (atomic_read(&bp->b_hold) > 1) {
1489 /* need to wait, so skip it this pass */
1490 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1491 return LRU_SKIP;
1492 }
1493 if (!spin_trylock(&bp->b_lock))
1494 return LRU_SKIP;
1495
1496 /*
1497 * clear the LRU reference count so the buffer doesn't get
1498 * ignored in xfs_buf_rele().
1499 */
1500 atomic_set(&bp->b_lru_ref, 0);
1501 bp->b_state |= XFS_BSTATE_DISPOSE;
1502 list_move(item, dispose);
1503 spin_unlock(&bp->b_lock);
1504 return LRU_REMOVED;
1505}
1506
1507void
1508xfs_wait_buftarg(
1509 struct xfs_buftarg *btp)
1510{
1511 LIST_HEAD(dispose);
1512 int loop = 0;
1513
1514 /* loop until there is nothing left on the lru list. */
1515 while (list_lru_count(&btp->bt_lru)) {
1516 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1517 &dispose, LONG_MAX);
1518
1519 while (!list_empty(&dispose)) {
1520 struct xfs_buf *bp;
1521 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1522 list_del_init(&bp->b_lru);
1523 if (bp->b_flags & XBF_WRITE_FAIL) {
1524 xfs_alert(btp->bt_mount,
1525"Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1526"Please run xfs_repair to determine the extent of the problem.",
1527 (long long)bp->b_bn);
1528 }
1529 xfs_buf_rele(bp);
1530 }
1531 if (loop++ != 0)
1532 delay(100);
1533 }
1534}
1535
1536static enum lru_status
1537xfs_buftarg_isolate(
1538 struct list_head *item,
1539 spinlock_t *lru_lock,
1540 void *arg)
1541{
1542 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1543 struct list_head *dispose = arg;
1544
1545 /*
1546 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1547 * If we fail to get the lock, just skip it.
1548 */
1549 if (!spin_trylock(&bp->b_lock))
1550 return LRU_SKIP;
1551 /*
1552 * Decrement the b_lru_ref count unless the value is already
1553 * zero. If the value is already zero, we need to reclaim the
1554 * buffer, otherwise it gets another trip through the LRU.
1555 */
1556 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1557 spin_unlock(&bp->b_lock);
1558 return LRU_ROTATE;
1559 }
1560
1561 bp->b_state |= XFS_BSTATE_DISPOSE;
1562 list_move(item, dispose);
1563 spin_unlock(&bp->b_lock);
1564 return LRU_REMOVED;
1565}
1566
1567static unsigned long
1568xfs_buftarg_shrink_scan(
1569 struct shrinker *shrink,
1570 struct shrink_control *sc)
1571{
1572 struct xfs_buftarg *btp = container_of(shrink,
1573 struct xfs_buftarg, bt_shrinker);
1574 LIST_HEAD(dispose);
1575 unsigned long freed;
1576 unsigned long nr_to_scan = sc->nr_to_scan;
1577
1578 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1579 &dispose, &nr_to_scan);
1580
1581 while (!list_empty(&dispose)) {
1582 struct xfs_buf *bp;
1583 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1584 list_del_init(&bp->b_lru);
1585 xfs_buf_rele(bp);
1586 }
1587
1588 return freed;
1589}
1590
1591static unsigned long
1592xfs_buftarg_shrink_count(
1593 struct shrinker *shrink,
1594 struct shrink_control *sc)
1595{
1596 struct xfs_buftarg *btp = container_of(shrink,
1597 struct xfs_buftarg, bt_shrinker);
1598 return list_lru_count_node(&btp->bt_lru, sc->nid);
1599}
1600
1601void
1602xfs_free_buftarg(
1603 struct xfs_mount *mp,
1604 struct xfs_buftarg *btp)
1605{
1606 unregister_shrinker(&btp->bt_shrinker);
1607 list_lru_destroy(&btp->bt_lru);
1608
1609 if (mp->m_flags & XFS_MOUNT_BARRIER)
1610 xfs_blkdev_issue_flush(btp);
1611
1612 kmem_free(btp);
1613}
1614
1615int
1616xfs_setsize_buftarg(
1617 xfs_buftarg_t *btp,
1618 unsigned int blocksize,
1619 unsigned int sectorsize)
1620{
1621 /* Set up metadata sector size info */
1622 btp->bt_meta_sectorsize = sectorsize;
1623 btp->bt_meta_sectormask = sectorsize - 1;
1624
1625 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1626 char name[BDEVNAME_SIZE];
1627
1628 bdevname(btp->bt_bdev, name);
1629
1630 xfs_warn(btp->bt_mount,
1631 "Cannot set_blocksize to %u on device %s",
1632 sectorsize, name);
1633 return EINVAL;
1634 }
1635
1636 /* Set up device logical sector size mask */
1637 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1638 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1639
1640 return 0;
1641}
1642
1643/*
1644 * When allocating the initial buffer target we have not yet
1645 * read in the superblock, so don't know what sized sectors
1646 * are being used at this early stage. Play safe.
1647 */
1648STATIC int
1649xfs_setsize_buftarg_early(
1650 xfs_buftarg_t *btp,
1651 struct block_device *bdev)
1652{
1653 return xfs_setsize_buftarg(btp, PAGE_SIZE,
1654 bdev_logical_block_size(bdev));
1655}
1656
1657xfs_buftarg_t *
1658xfs_alloc_buftarg(
1659 struct xfs_mount *mp,
1660 struct block_device *bdev,
1661 int external,
1662 const char *fsname)
1663{
1664 xfs_buftarg_t *btp;
1665
1666 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1667
1668 btp->bt_mount = mp;
1669 btp->bt_dev = bdev->bd_dev;
1670 btp->bt_bdev = bdev;
1671 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1672 if (!btp->bt_bdi)
1673 goto error;
1674
1675 if (xfs_setsize_buftarg_early(btp, bdev))
1676 goto error;
1677
1678 if (list_lru_init(&btp->bt_lru))
1679 goto error;
1680
1681 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1682 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1683 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1684 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1685 register_shrinker(&btp->bt_shrinker);
1686 return btp;
1687
1688error:
1689 kmem_free(btp);
1690 return NULL;
1691}
1692
1693/*
1694 * Add a buffer to the delayed write list.
1695 *
1696 * This queues a buffer for writeout if it hasn't already been. Note that
1697 * neither this routine nor the buffer list submission functions perform
1698 * any internal synchronization. It is expected that the lists are thread-local
1699 * to the callers.
1700 *
1701 * Returns true if we queued up the buffer, or false if it already had
1702 * been on the buffer list.
1703 */
1704bool
1705xfs_buf_delwri_queue(
1706 struct xfs_buf *bp,
1707 struct list_head *list)
1708{
1709 ASSERT(xfs_buf_islocked(bp));
1710 ASSERT(!(bp->b_flags & XBF_READ));
1711
1712 /*
1713 * If the buffer is already marked delwri it already is queued up
1714 * by someone else for imediate writeout. Just ignore it in that
1715 * case.
1716 */
1717 if (bp->b_flags & _XBF_DELWRI_Q) {
1718 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1719 return false;
1720 }
1721
1722 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1723
1724 /*
1725 * If a buffer gets written out synchronously or marked stale while it
1726 * is on a delwri list we lazily remove it. To do this, the other party
1727 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1728 * It remains referenced and on the list. In a rare corner case it
1729 * might get readded to a delwri list after the synchronous writeout, in
1730 * which case we need just need to re-add the flag here.
1731 */
1732 bp->b_flags |= _XBF_DELWRI_Q;
1733 if (list_empty(&bp->b_list)) {
1734 atomic_inc(&bp->b_hold);
1735 list_add_tail(&bp->b_list, list);
1736 }
1737
1738 return true;
1739}
1740
1741/*
1742 * Compare function is more complex than it needs to be because
1743 * the return value is only 32 bits and we are doing comparisons
1744 * on 64 bit values
1745 */
1746static int
1747xfs_buf_cmp(
1748 void *priv,
1749 struct list_head *a,
1750 struct list_head *b)
1751{
1752 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1753 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1754 xfs_daddr_t diff;
1755
1756 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1757 if (diff < 0)
1758 return -1;
1759 if (diff > 0)
1760 return 1;
1761 return 0;
1762}
1763
1764static int
1765__xfs_buf_delwri_submit(
1766 struct list_head *buffer_list,
1767 struct list_head *io_list,
1768 bool wait)
1769{
1770 struct blk_plug plug;
1771 struct xfs_buf *bp, *n;
1772 int pinned = 0;
1773
1774 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1775 if (!wait) {
1776 if (xfs_buf_ispinned(bp)) {
1777 pinned++;
1778 continue;
1779 }
1780 if (!xfs_buf_trylock(bp))
1781 continue;
1782 } else {
1783 xfs_buf_lock(bp);
1784 }
1785
1786 /*
1787 * Someone else might have written the buffer synchronously or
1788 * marked it stale in the meantime. In that case only the
1789 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1790 * reference and remove it from the list here.
1791 */
1792 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1793 list_del_init(&bp->b_list);
1794 xfs_buf_relse(bp);
1795 continue;
1796 }
1797
1798 list_move_tail(&bp->b_list, io_list);
1799 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1800 }
1801
1802 list_sort(NULL, io_list, xfs_buf_cmp);
1803
1804 blk_start_plug(&plug);
1805 list_for_each_entry_safe(bp, n, io_list, b_list) {
1806 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1807 bp->b_flags |= XBF_WRITE;
1808
1809 if (!wait) {
1810 bp->b_flags |= XBF_ASYNC;
1811 list_del_init(&bp->b_list);
1812 }
1813 xfs_bdstrat_cb(bp);
1814 }
1815 blk_finish_plug(&plug);
1816
1817 return pinned;
1818}
1819
1820/*
1821 * Write out a buffer list asynchronously.
1822 *
1823 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1824 * out and not wait for I/O completion on any of the buffers. This interface
1825 * is only safely useable for callers that can track I/O completion by higher
1826 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1827 * function.
1828 */
1829int
1830xfs_buf_delwri_submit_nowait(
1831 struct list_head *buffer_list)
1832{
1833 LIST_HEAD (io_list);
1834 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1835}
1836
1837/*
1838 * Write out a buffer list synchronously.
1839 *
1840 * This will take the @buffer_list, write all buffers out and wait for I/O
1841 * completion on all of the buffers. @buffer_list is consumed by the function,
1842 * so callers must have some other way of tracking buffers if they require such
1843 * functionality.
1844 */
1845int
1846xfs_buf_delwri_submit(
1847 struct list_head *buffer_list)
1848{
1849 LIST_HEAD (io_list);
1850 int error = 0, error2;
1851 struct xfs_buf *bp;
1852
1853 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1854
1855 /* Wait for IO to complete. */
1856 while (!list_empty(&io_list)) {
1857 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1858
1859 list_del_init(&bp->b_list);
1860 error2 = xfs_buf_iowait(bp);
1861 xfs_buf_relse(bp);
1862 if (!error)
1863 error = error2;
1864 }
1865
1866 return error;
1867}
1868
1869int __init
1870xfs_buf_init(void)
1871{
1872 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1873 KM_ZONE_HWALIGN, NULL);
1874 if (!xfs_buf_zone)
1875 goto out;
1876
1877 xfslogd_workqueue = alloc_workqueue("xfslogd",
1878 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1879 if (!xfslogd_workqueue)
1880 goto out_free_buf_zone;
1881
1882 return 0;
1883
1884 out_free_buf_zone:
1885 kmem_zone_destroy(xfs_buf_zone);
1886 out:
1887 return -ENOMEM;
1888}
1889
1890void
1891xfs_buf_terminate(void)
1892{
1893 destroy_workqueue(xfslogd_workqueue);
1894 kmem_zone_destroy(xfs_buf_zone);
1895}