Linux Audio

Check our new training course

Loading...
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include <linux/stddef.h>
  20#include <linux/errno.h>
  21#include <linux/gfp.h>
  22#include <linux/pagemap.h>
  23#include <linux/init.h>
  24#include <linux/vmalloc.h>
  25#include <linux/bio.h>
  26#include <linux/sysctl.h>
  27#include <linux/proc_fs.h>
  28#include <linux/workqueue.h>
  29#include <linux/percpu.h>
  30#include <linux/blkdev.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/migrate.h>
  34#include <linux/backing-dev.h>
  35#include <linux/freezer.h>
  36
  37#include "xfs_sb.h"
  38#include "xfs_log.h"
  39#include "xfs_ag.h"
  40#include "xfs_mount.h"
  41#include "xfs_trace.h"
  42
  43static kmem_zone_t *xfs_buf_zone;
  44
  45static struct workqueue_struct *xfslogd_workqueue;
  46
  47#ifdef XFS_BUF_LOCK_TRACKING
  48# define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
  49# define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
  50# define XB_GET_OWNER(bp)	((bp)->b_last_holder)
  51#else
  52# define XB_SET_OWNER(bp)	do { } while (0)
  53# define XB_CLEAR_OWNER(bp)	do { } while (0)
  54# define XB_GET_OWNER(bp)	do { } while (0)
  55#endif
  56
  57#define xb_to_gfp(flags) \
  58	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  59
  60
  61static inline int
  62xfs_buf_is_vmapped(
  63	struct xfs_buf	*bp)
  64{
  65	/*
  66	 * Return true if the buffer is vmapped.
  67	 *
  68	 * b_addr is null if the buffer is not mapped, but the code is clever
  69	 * enough to know it doesn't have to map a single page, so the check has
  70	 * to be both for b_addr and bp->b_page_count > 1.
  71	 */
  72	return bp->b_addr && bp->b_page_count > 1;
  73}
  74
  75static inline int
  76xfs_buf_vmap_len(
  77	struct xfs_buf	*bp)
  78{
  79	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  80}
  81
  82/*
  83 * xfs_buf_lru_add - add a buffer to the LRU.
  84 *
  85 * The LRU takes a new reference to the buffer so that it will only be freed
  86 * once the shrinker takes the buffer off the LRU.
  87 */
  88STATIC void
  89xfs_buf_lru_add(
  90	struct xfs_buf	*bp)
  91{
  92	struct xfs_buftarg *btp = bp->b_target;
  93
  94	spin_lock(&btp->bt_lru_lock);
  95	if (list_empty(&bp->b_lru)) {
  96		atomic_inc(&bp->b_hold);
  97		list_add_tail(&bp->b_lru, &btp->bt_lru);
  98		btp->bt_lru_nr++;
  99	}
 100	spin_unlock(&btp->bt_lru_lock);
 101}
 102
 103/*
 104 * xfs_buf_lru_del - remove a buffer from the LRU
 105 *
 106 * The unlocked check is safe here because it only occurs when there are not
 107 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
 108 * to optimise the shrinker removing the buffer from the LRU and calling
 109 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
 110 * bt_lru_lock.
 111 */
 112STATIC void
 113xfs_buf_lru_del(
 114	struct xfs_buf	*bp)
 115{
 116	struct xfs_buftarg *btp = bp->b_target;
 117
 118	if (list_empty(&bp->b_lru))
 119		return;
 120
 121	spin_lock(&btp->bt_lru_lock);
 122	if (!list_empty(&bp->b_lru)) {
 123		list_del_init(&bp->b_lru);
 124		btp->bt_lru_nr--;
 125	}
 126	spin_unlock(&btp->bt_lru_lock);
 127}
 128
 129/*
 130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 131 * b_lru_ref count so that the buffer is freed immediately when the buffer
 132 * reference count falls to zero. If the buffer is already on the LRU, we need
 133 * to remove the reference that LRU holds on the buffer.
 134 *
 135 * This prevents build-up of stale buffers on the LRU.
 136 */
 137void
 138xfs_buf_stale(
 139	struct xfs_buf	*bp)
 140{
 141	ASSERT(xfs_buf_islocked(bp));
 142
 143	bp->b_flags |= XBF_STALE;
 144
 145	/*
 146	 * Clear the delwri status so that a delwri queue walker will not
 147	 * flush this buffer to disk now that it is stale. The delwri queue has
 148	 * a reference to the buffer, so this is safe to do.
 149	 */
 150	bp->b_flags &= ~_XBF_DELWRI_Q;
 151
 152	atomic_set(&(bp)->b_lru_ref, 0);
 153	if (!list_empty(&bp->b_lru)) {
 154		struct xfs_buftarg *btp = bp->b_target;
 155
 156		spin_lock(&btp->bt_lru_lock);
 157		if (!list_empty(&bp->b_lru)) {
 158			list_del_init(&bp->b_lru);
 159			btp->bt_lru_nr--;
 160			atomic_dec(&bp->b_hold);
 161		}
 162		spin_unlock(&btp->bt_lru_lock);
 163	}
 164	ASSERT(atomic_read(&bp->b_hold) >= 1);
 165}
 166
 167struct xfs_buf *
 168xfs_buf_alloc(
 169	struct xfs_buftarg	*target,
 170	xfs_daddr_t		blkno,
 171	size_t			numblks,
 172	xfs_buf_flags_t		flags)
 173{
 174	struct xfs_buf		*bp;
 175
 176	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
 177	if (unlikely(!bp))
 178		return NULL;
 179
 180	/*
 181	 * We don't want certain flags to appear in b_flags unless they are
 182	 * specifically set by later operations on the buffer.
 183	 */
 184	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 185
 186	atomic_set(&bp->b_hold, 1);
 187	atomic_set(&bp->b_lru_ref, 1);
 188	init_completion(&bp->b_iowait);
 189	INIT_LIST_HEAD(&bp->b_lru);
 190	INIT_LIST_HEAD(&bp->b_list);
 191	RB_CLEAR_NODE(&bp->b_rbnode);
 192	sema_init(&bp->b_sema, 0); /* held, no waiters */
 193	XB_SET_OWNER(bp);
 194	bp->b_target = target;
 195
 196	/*
 197	 * Set length and io_length to the same value initially.
 198	 * I/O routines should use io_length, which will be the same in
 199	 * most cases but may be reset (e.g. XFS recovery).
 200	 */
 201	bp->b_length = numblks;
 202	bp->b_io_length = numblks;
 203	bp->b_flags = flags;
 204	bp->b_bn = blkno;
 205	atomic_set(&bp->b_pin_count, 0);
 206	init_waitqueue_head(&bp->b_waiters);
 207
 208	XFS_STATS_INC(xb_create);
 209	trace_xfs_buf_init(bp, _RET_IP_);
 210
 211	return bp;
 212}
 213
 214/*
 215 *	Allocate a page array capable of holding a specified number
 216 *	of pages, and point the page buf at it.
 217 */
 218STATIC int
 219_xfs_buf_get_pages(
 220	xfs_buf_t		*bp,
 221	int			page_count,
 222	xfs_buf_flags_t		flags)
 223{
 224	/* Make sure that we have a page list */
 225	if (bp->b_pages == NULL) {
 226		bp->b_page_count = page_count;
 227		if (page_count <= XB_PAGES) {
 228			bp->b_pages = bp->b_page_array;
 229		} else {
 230			bp->b_pages = kmem_alloc(sizeof(struct page *) *
 231						 page_count, KM_NOFS);
 232			if (bp->b_pages == NULL)
 233				return -ENOMEM;
 234		}
 235		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 236	}
 237	return 0;
 238}
 239
 240/*
 241 *	Frees b_pages if it was allocated.
 242 */
 243STATIC void
 244_xfs_buf_free_pages(
 245	xfs_buf_t	*bp)
 246{
 247	if (bp->b_pages != bp->b_page_array) {
 248		kmem_free(bp->b_pages);
 249		bp->b_pages = NULL;
 250	}
 251}
 252
 253/*
 254 *	Releases the specified buffer.
 255 *
 256 * 	The modification state of any associated pages is left unchanged.
 257 * 	The buffer most not be on any hash - use xfs_buf_rele instead for
 258 * 	hashed and refcounted buffers
 259 */
 260void
 261xfs_buf_free(
 262	xfs_buf_t		*bp)
 263{
 264	trace_xfs_buf_free(bp, _RET_IP_);
 265
 266	ASSERT(list_empty(&bp->b_lru));
 267
 268	if (bp->b_flags & _XBF_PAGES) {
 269		uint		i;
 270
 271		if (xfs_buf_is_vmapped(bp))
 272			vm_unmap_ram(bp->b_addr - bp->b_offset,
 273					bp->b_page_count);
 274
 275		for (i = 0; i < bp->b_page_count; i++) {
 276			struct page	*page = bp->b_pages[i];
 277
 278			__free_page(page);
 279		}
 280	} else if (bp->b_flags & _XBF_KMEM)
 281		kmem_free(bp->b_addr);
 282	_xfs_buf_free_pages(bp);
 283	kmem_zone_free(xfs_buf_zone, bp);
 284}
 285
 286/*
 287 * Allocates all the pages for buffer in question and builds it's page list.
 288 */
 289STATIC int
 290xfs_buf_allocate_memory(
 291	xfs_buf_t		*bp,
 292	uint			flags)
 293{
 294	size_t			size;
 295	size_t			nbytes, offset;
 296	gfp_t			gfp_mask = xb_to_gfp(flags);
 297	unsigned short		page_count, i;
 298	xfs_off_t		start, end;
 299	int			error;
 300
 301	/*
 302	 * for buffers that are contained within a single page, just allocate
 303	 * the memory from the heap - there's no need for the complexity of
 304	 * page arrays to keep allocation down to order 0.
 305	 */
 306	size = BBTOB(bp->b_length);
 307	if (size < PAGE_SIZE) {
 308		bp->b_addr = kmem_alloc(size, KM_NOFS);
 309		if (!bp->b_addr) {
 310			/* low memory - use alloc_page loop instead */
 311			goto use_alloc_page;
 312		}
 313
 314		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 315		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 316			/* b_addr spans two pages - use alloc_page instead */
 317			kmem_free(bp->b_addr);
 318			bp->b_addr = NULL;
 319			goto use_alloc_page;
 320		}
 321		bp->b_offset = offset_in_page(bp->b_addr);
 322		bp->b_pages = bp->b_page_array;
 323		bp->b_pages[0] = virt_to_page(bp->b_addr);
 324		bp->b_page_count = 1;
 325		bp->b_flags |= _XBF_KMEM;
 326		return 0;
 327	}
 328
 329use_alloc_page:
 330	start = BBTOB(bp->b_bn) >> PAGE_SHIFT;
 331	end = (BBTOB(bp->b_bn + bp->b_length) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 332	page_count = end - start;
 333	error = _xfs_buf_get_pages(bp, page_count, flags);
 334	if (unlikely(error))
 335		return error;
 336
 337	offset = bp->b_offset;
 338	bp->b_flags |= _XBF_PAGES;
 339
 340	for (i = 0; i < bp->b_page_count; i++) {
 341		struct page	*page;
 342		uint		retries = 0;
 343retry:
 344		page = alloc_page(gfp_mask);
 345		if (unlikely(page == NULL)) {
 346			if (flags & XBF_READ_AHEAD) {
 347				bp->b_page_count = i;
 348				error = ENOMEM;
 349				goto out_free_pages;
 350			}
 351
 352			/*
 353			 * This could deadlock.
 354			 *
 355			 * But until all the XFS lowlevel code is revamped to
 356			 * handle buffer allocation failures we can't do much.
 357			 */
 358			if (!(++retries % 100))
 359				xfs_err(NULL,
 360		"possible memory allocation deadlock in %s (mode:0x%x)",
 361					__func__, gfp_mask);
 362
 363			XFS_STATS_INC(xb_page_retries);
 364			congestion_wait(BLK_RW_ASYNC, HZ/50);
 365			goto retry;
 366		}
 367
 368		XFS_STATS_INC(xb_page_found);
 369
 370		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 371		size -= nbytes;
 372		bp->b_pages[i] = page;
 373		offset = 0;
 374	}
 375	return 0;
 376
 377out_free_pages:
 378	for (i = 0; i < bp->b_page_count; i++)
 379		__free_page(bp->b_pages[i]);
 380	return error;
 381}
 382
 383/*
 384 *	Map buffer into kernel address-space if necessary.
 385 */
 386STATIC int
 387_xfs_buf_map_pages(
 388	xfs_buf_t		*bp,
 389	uint			flags)
 390{
 391	ASSERT(bp->b_flags & _XBF_PAGES);
 392	if (bp->b_page_count == 1) {
 393		/* A single page buffer is always mappable */
 394		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 395	} else if (flags & XBF_UNMAPPED) {
 396		bp->b_addr = NULL;
 397	} else {
 398		int retried = 0;
 399
 400		do {
 401			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 402						-1, PAGE_KERNEL);
 403			if (bp->b_addr)
 404				break;
 405			vm_unmap_aliases();
 406		} while (retried++ <= 1);
 407
 408		if (!bp->b_addr)
 409			return -ENOMEM;
 410		bp->b_addr += bp->b_offset;
 411	}
 412
 413	return 0;
 414}
 415
 416/*
 417 *	Finding and Reading Buffers
 418 */
 419
 420/*
 421 *	Look up, and creates if absent, a lockable buffer for
 422 *	a given range of an inode.  The buffer is returned
 423 *	locked.	No I/O is implied by this call.
 424 */
 425xfs_buf_t *
 426_xfs_buf_find(
 427	struct xfs_buftarg	*btp,
 428	xfs_daddr_t		blkno,
 429	size_t			numblks,
 430	xfs_buf_flags_t		flags,
 431	xfs_buf_t		*new_bp)
 432{
 433	size_t			numbytes;
 434	struct xfs_perag	*pag;
 435	struct rb_node		**rbp;
 436	struct rb_node		*parent;
 437	xfs_buf_t		*bp;
 438
 439	numbytes = BBTOB(numblks);
 440
 441	/* Check for IOs smaller than the sector size / not sector aligned */
 442	ASSERT(!(numbytes < (1 << btp->bt_sshift)));
 443	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
 444
 445	/* get tree root */
 446	pag = xfs_perag_get(btp->bt_mount,
 447				xfs_daddr_to_agno(btp->bt_mount, blkno));
 448
 449	/* walk tree */
 450	spin_lock(&pag->pag_buf_lock);
 451	rbp = &pag->pag_buf_tree.rb_node;
 452	parent = NULL;
 453	bp = NULL;
 454	while (*rbp) {
 455		parent = *rbp;
 456		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
 457
 458		if (blkno < bp->b_bn)
 459			rbp = &(*rbp)->rb_left;
 460		else if (blkno > bp->b_bn)
 461			rbp = &(*rbp)->rb_right;
 462		else {
 463			/*
 464			 * found a block number match. If the range doesn't
 465			 * match, the only way this is allowed is if the buffer
 466			 * in the cache is stale and the transaction that made
 467			 * it stale has not yet committed. i.e. we are
 468			 * reallocating a busy extent. Skip this buffer and
 469			 * continue searching to the right for an exact match.
 470			 */
 471			if (bp->b_length != numblks) {
 472				ASSERT(bp->b_flags & XBF_STALE);
 473				rbp = &(*rbp)->rb_right;
 474				continue;
 475			}
 476			atomic_inc(&bp->b_hold);
 477			goto found;
 478		}
 479	}
 480
 481	/* No match found */
 482	if (new_bp) {
 483		rb_link_node(&new_bp->b_rbnode, parent, rbp);
 484		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
 485		/* the buffer keeps the perag reference until it is freed */
 486		new_bp->b_pag = pag;
 487		spin_unlock(&pag->pag_buf_lock);
 488	} else {
 489		XFS_STATS_INC(xb_miss_locked);
 490		spin_unlock(&pag->pag_buf_lock);
 491		xfs_perag_put(pag);
 492	}
 493	return new_bp;
 494
 495found:
 496	spin_unlock(&pag->pag_buf_lock);
 497	xfs_perag_put(pag);
 498
 499	if (!xfs_buf_trylock(bp)) {
 500		if (flags & XBF_TRYLOCK) {
 501			xfs_buf_rele(bp);
 502			XFS_STATS_INC(xb_busy_locked);
 503			return NULL;
 504		}
 505		xfs_buf_lock(bp);
 506		XFS_STATS_INC(xb_get_locked_waited);
 507	}
 508
 509	/*
 510	 * if the buffer is stale, clear all the external state associated with
 511	 * it. We need to keep flags such as how we allocated the buffer memory
 512	 * intact here.
 513	 */
 514	if (bp->b_flags & XBF_STALE) {
 515		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 516		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 517	}
 518
 519	trace_xfs_buf_find(bp, flags, _RET_IP_);
 520	XFS_STATS_INC(xb_get_locked);
 521	return bp;
 522}
 523
 524/*
 525 * Assembles a buffer covering the specified range. The code is optimised for
 526 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 527 * more hits than misses.
 528 */
 529struct xfs_buf *
 530xfs_buf_get(
 531	xfs_buftarg_t		*target,
 532	xfs_daddr_t		blkno,
 533	size_t			numblks,
 534	xfs_buf_flags_t		flags)
 535{
 536	struct xfs_buf		*bp;
 537	struct xfs_buf		*new_bp;
 538	int			error = 0;
 539
 540	bp = _xfs_buf_find(target, blkno, numblks, flags, NULL);
 541	if (likely(bp))
 542		goto found;
 543
 544	new_bp = xfs_buf_alloc(target, blkno, numblks, flags);
 545	if (unlikely(!new_bp))
 546		return NULL;
 547
 548	error = xfs_buf_allocate_memory(new_bp, flags);
 549	if (error) {
 550		kmem_zone_free(xfs_buf_zone, new_bp);
 551		return NULL;
 552	}
 553
 554	bp = _xfs_buf_find(target, blkno, numblks, flags, new_bp);
 555	if (!bp) {
 556		xfs_buf_free(new_bp);
 557		return NULL;
 558	}
 559
 560	if (bp != new_bp)
 561		xfs_buf_free(new_bp);
 562
 563	bp->b_io_length = bp->b_length;
 564
 565found:
 566	if (!bp->b_addr) {
 567		error = _xfs_buf_map_pages(bp, flags);
 568		if (unlikely(error)) {
 569			xfs_warn(target->bt_mount,
 570				"%s: failed to map pages\n", __func__);
 571			xfs_buf_relse(bp);
 572			return NULL;
 573		}
 574	}
 575
 576	XFS_STATS_INC(xb_get);
 577	trace_xfs_buf_get(bp, flags, _RET_IP_);
 578	return bp;
 579}
 580
 581STATIC int
 582_xfs_buf_read(
 583	xfs_buf_t		*bp,
 584	xfs_buf_flags_t		flags)
 585{
 586	ASSERT(!(flags & XBF_WRITE));
 587	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
 588
 589	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
 590	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 591
 592	xfs_buf_iorequest(bp);
 593	if (flags & XBF_ASYNC)
 594		return 0;
 595	return xfs_buf_iowait(bp);
 596}
 597
 598xfs_buf_t *
 599xfs_buf_read(
 600	xfs_buftarg_t		*target,
 601	xfs_daddr_t		blkno,
 602	size_t			numblks,
 603	xfs_buf_flags_t		flags)
 604{
 605	xfs_buf_t		*bp;
 606
 607	flags |= XBF_READ;
 608
 609	bp = xfs_buf_get(target, blkno, numblks, flags);
 610	if (bp) {
 611		trace_xfs_buf_read(bp, flags, _RET_IP_);
 612
 613		if (!XFS_BUF_ISDONE(bp)) {
 614			XFS_STATS_INC(xb_get_read);
 615			_xfs_buf_read(bp, flags);
 616		} else if (flags & XBF_ASYNC) {
 617			/*
 618			 * Read ahead call which is already satisfied,
 619			 * drop the buffer
 620			 */
 621			xfs_buf_relse(bp);
 622			return NULL;
 623		} else {
 624			/* We do not want read in the flags */
 625			bp->b_flags &= ~XBF_READ;
 626		}
 627	}
 628
 629	return bp;
 630}
 631
 632/*
 633 *	If we are not low on memory then do the readahead in a deadlock
 634 *	safe manner.
 635 */
 636void
 637xfs_buf_readahead(
 638	xfs_buftarg_t		*target,
 639	xfs_daddr_t		blkno,
 640	size_t			numblks)
 641{
 642	if (bdi_read_congested(target->bt_bdi))
 643		return;
 644
 645	xfs_buf_read(target, blkno, numblks,
 646		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
 647}
 648
 649/*
 650 * Read an uncached buffer from disk. Allocates and returns a locked
 651 * buffer containing the disk contents or nothing.
 652 */
 653struct xfs_buf *
 654xfs_buf_read_uncached(
 655	struct xfs_buftarg	*target,
 656	xfs_daddr_t		daddr,
 657	size_t			numblks,
 658	int			flags)
 659{
 660	xfs_buf_t		*bp;
 661	int			error;
 662
 663	bp = xfs_buf_get_uncached(target, numblks, flags);
 664	if (!bp)
 665		return NULL;
 666
 667	/* set up the buffer for a read IO */
 668	XFS_BUF_SET_ADDR(bp, daddr);
 669	XFS_BUF_READ(bp);
 670
 671	xfsbdstrat(target->bt_mount, bp);
 672	error = xfs_buf_iowait(bp);
 673	if (error) {
 674		xfs_buf_relse(bp);
 675		return NULL;
 676	}
 677	return bp;
 678}
 679
 680/*
 681 * Return a buffer allocated as an empty buffer and associated to external
 682 * memory via xfs_buf_associate_memory() back to it's empty state.
 683 */
 684void
 685xfs_buf_set_empty(
 686	struct xfs_buf		*bp,
 687	size_t			numblks)
 688{
 689	if (bp->b_pages)
 690		_xfs_buf_free_pages(bp);
 691
 692	bp->b_pages = NULL;
 693	bp->b_page_count = 0;
 694	bp->b_addr = NULL;
 695	bp->b_length = numblks;
 696	bp->b_io_length = numblks;
 697	bp->b_bn = XFS_BUF_DADDR_NULL;
 698}
 699
 700static inline struct page *
 701mem_to_page(
 702	void			*addr)
 703{
 704	if ((!is_vmalloc_addr(addr))) {
 705		return virt_to_page(addr);
 706	} else {
 707		return vmalloc_to_page(addr);
 708	}
 709}
 710
 711int
 712xfs_buf_associate_memory(
 713	xfs_buf_t		*bp,
 714	void			*mem,
 715	size_t			len)
 716{
 717	int			rval;
 718	int			i = 0;
 719	unsigned long		pageaddr;
 720	unsigned long		offset;
 721	size_t			buflen;
 722	int			page_count;
 723
 724	pageaddr = (unsigned long)mem & PAGE_MASK;
 725	offset = (unsigned long)mem - pageaddr;
 726	buflen = PAGE_ALIGN(len + offset);
 727	page_count = buflen >> PAGE_SHIFT;
 728
 729	/* Free any previous set of page pointers */
 730	if (bp->b_pages)
 731		_xfs_buf_free_pages(bp);
 732
 733	bp->b_pages = NULL;
 734	bp->b_addr = mem;
 735
 736	rval = _xfs_buf_get_pages(bp, page_count, 0);
 737	if (rval)
 738		return rval;
 739
 740	bp->b_offset = offset;
 741
 742	for (i = 0; i < bp->b_page_count; i++) {
 743		bp->b_pages[i] = mem_to_page((void *)pageaddr);
 744		pageaddr += PAGE_SIZE;
 745	}
 746
 747	bp->b_io_length = BTOBB(len);
 748	bp->b_length = BTOBB(buflen);
 749
 750	return 0;
 751}
 752
 753xfs_buf_t *
 754xfs_buf_get_uncached(
 755	struct xfs_buftarg	*target,
 756	size_t			numblks,
 757	int			flags)
 758{
 759	unsigned long		page_count;
 760	int			error, i;
 761	xfs_buf_t		*bp;
 762
 763	bp = xfs_buf_alloc(target, XFS_BUF_DADDR_NULL, numblks, 0);
 764	if (unlikely(bp == NULL))
 765		goto fail;
 766
 767	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 768	error = _xfs_buf_get_pages(bp, page_count, 0);
 769	if (error)
 770		goto fail_free_buf;
 771
 772	for (i = 0; i < page_count; i++) {
 773		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 774		if (!bp->b_pages[i])
 775			goto fail_free_mem;
 776	}
 777	bp->b_flags |= _XBF_PAGES;
 778
 779	error = _xfs_buf_map_pages(bp, 0);
 780	if (unlikely(error)) {
 781		xfs_warn(target->bt_mount,
 782			"%s: failed to map pages\n", __func__);
 783		goto fail_free_mem;
 784	}
 785
 786	trace_xfs_buf_get_uncached(bp, _RET_IP_);
 787	return bp;
 788
 789 fail_free_mem:
 790	while (--i >= 0)
 791		__free_page(bp->b_pages[i]);
 792	_xfs_buf_free_pages(bp);
 793 fail_free_buf:
 794	kmem_zone_free(xfs_buf_zone, bp);
 795 fail:
 796	return NULL;
 797}
 798
 799/*
 800 *	Increment reference count on buffer, to hold the buffer concurrently
 801 *	with another thread which may release (free) the buffer asynchronously.
 802 *	Must hold the buffer already to call this function.
 803 */
 804void
 805xfs_buf_hold(
 806	xfs_buf_t		*bp)
 807{
 808	trace_xfs_buf_hold(bp, _RET_IP_);
 809	atomic_inc(&bp->b_hold);
 810}
 811
 812/*
 813 *	Releases a hold on the specified buffer.  If the
 814 *	the hold count is 1, calls xfs_buf_free.
 815 */
 816void
 817xfs_buf_rele(
 818	xfs_buf_t		*bp)
 819{
 820	struct xfs_perag	*pag = bp->b_pag;
 821
 822	trace_xfs_buf_rele(bp, _RET_IP_);
 823
 824	if (!pag) {
 825		ASSERT(list_empty(&bp->b_lru));
 826		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
 827		if (atomic_dec_and_test(&bp->b_hold))
 828			xfs_buf_free(bp);
 829		return;
 830	}
 831
 832	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
 833
 834	ASSERT(atomic_read(&bp->b_hold) > 0);
 835	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
 836		if (!(bp->b_flags & XBF_STALE) &&
 837			   atomic_read(&bp->b_lru_ref)) {
 838			xfs_buf_lru_add(bp);
 839			spin_unlock(&pag->pag_buf_lock);
 840		} else {
 841			xfs_buf_lru_del(bp);
 842			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
 843			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
 844			spin_unlock(&pag->pag_buf_lock);
 845			xfs_perag_put(pag);
 846			xfs_buf_free(bp);
 847		}
 848	}
 849}
 850
 851
 852/*
 853 *	Lock a buffer object, if it is not already locked.
 854 *
 855 *	If we come across a stale, pinned, locked buffer, we know that we are
 856 *	being asked to lock a buffer that has been reallocated. Because it is
 857 *	pinned, we know that the log has not been pushed to disk and hence it
 858 *	will still be locked.  Rather than continuing to have trylock attempts
 859 *	fail until someone else pushes the log, push it ourselves before
 860 *	returning.  This means that the xfsaild will not get stuck trying
 861 *	to push on stale inode buffers.
 862 */
 863int
 864xfs_buf_trylock(
 865	struct xfs_buf		*bp)
 866{
 867	int			locked;
 868
 869	locked = down_trylock(&bp->b_sema) == 0;
 870	if (locked)
 871		XB_SET_OWNER(bp);
 872	else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 873		xfs_log_force(bp->b_target->bt_mount, 0);
 874
 875	trace_xfs_buf_trylock(bp, _RET_IP_);
 876	return locked;
 877}
 878
 879/*
 880 *	Lock a buffer object.
 881 *
 882 *	If we come across a stale, pinned, locked buffer, we know that we
 883 *	are being asked to lock a buffer that has been reallocated. Because
 884 *	it is pinned, we know that the log has not been pushed to disk and
 885 *	hence it will still be locked. Rather than sleeping until someone
 886 *	else pushes the log, push it ourselves before trying to get the lock.
 887 */
 888void
 889xfs_buf_lock(
 890	struct xfs_buf		*bp)
 891{
 892	trace_xfs_buf_lock(bp, _RET_IP_);
 893
 894	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 895		xfs_log_force(bp->b_target->bt_mount, 0);
 896	down(&bp->b_sema);
 897	XB_SET_OWNER(bp);
 898
 899	trace_xfs_buf_lock_done(bp, _RET_IP_);
 900}
 901
 902void
 903xfs_buf_unlock(
 904	struct xfs_buf		*bp)
 905{
 906	XB_CLEAR_OWNER(bp);
 907	up(&bp->b_sema);
 908
 909	trace_xfs_buf_unlock(bp, _RET_IP_);
 910}
 911
 912STATIC void
 913xfs_buf_wait_unpin(
 914	xfs_buf_t		*bp)
 915{
 916	DECLARE_WAITQUEUE	(wait, current);
 917
 918	if (atomic_read(&bp->b_pin_count) == 0)
 919		return;
 920
 921	add_wait_queue(&bp->b_waiters, &wait);
 922	for (;;) {
 923		set_current_state(TASK_UNINTERRUPTIBLE);
 924		if (atomic_read(&bp->b_pin_count) == 0)
 925			break;
 926		io_schedule();
 927	}
 928	remove_wait_queue(&bp->b_waiters, &wait);
 929	set_current_state(TASK_RUNNING);
 930}
 931
 932/*
 933 *	Buffer Utility Routines
 934 */
 935
 936STATIC void
 937xfs_buf_iodone_work(
 938	struct work_struct	*work)
 939{
 940	xfs_buf_t		*bp =
 941		container_of(work, xfs_buf_t, b_iodone_work);
 942
 943	if (bp->b_iodone)
 944		(*(bp->b_iodone))(bp);
 945	else if (bp->b_flags & XBF_ASYNC)
 946		xfs_buf_relse(bp);
 947}
 948
 949void
 950xfs_buf_ioend(
 951	xfs_buf_t		*bp,
 952	int			schedule)
 953{
 954	trace_xfs_buf_iodone(bp, _RET_IP_);
 955
 956	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
 957	if (bp->b_error == 0)
 958		bp->b_flags |= XBF_DONE;
 959
 960	if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
 961		if (schedule) {
 962			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
 963			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
 964		} else {
 965			xfs_buf_iodone_work(&bp->b_iodone_work);
 966		}
 967	} else {
 968		complete(&bp->b_iowait);
 969	}
 970}
 971
 972void
 973xfs_buf_ioerror(
 974	xfs_buf_t		*bp,
 975	int			error)
 976{
 977	ASSERT(error >= 0 && error <= 0xffff);
 978	bp->b_error = (unsigned short)error;
 979	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
 980}
 981
 982void
 983xfs_buf_ioerror_alert(
 984	struct xfs_buf		*bp,
 985	const char		*func)
 986{
 987	xfs_alert(bp->b_target->bt_mount,
 988"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
 989		(__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
 990}
 991
 992/*
 993 * Called when we want to stop a buffer from getting written or read.
 994 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
 995 * so that the proper iodone callbacks get called.
 996 */
 997STATIC int
 998xfs_bioerror(
 999	xfs_buf_t *bp)
1000{
1001#ifdef XFSERRORDEBUG
1002	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1003#endif
1004
1005	/*
1006	 * No need to wait until the buffer is unpinned, we aren't flushing it.
1007	 */
1008	xfs_buf_ioerror(bp, EIO);
1009
1010	/*
1011	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1012	 */
1013	XFS_BUF_UNREAD(bp);
1014	XFS_BUF_UNDONE(bp);
1015	xfs_buf_stale(bp);
1016
1017	xfs_buf_ioend(bp, 0);
1018
1019	return EIO;
1020}
1021
1022/*
1023 * Same as xfs_bioerror, except that we are releasing the buffer
1024 * here ourselves, and avoiding the xfs_buf_ioend call.
1025 * This is meant for userdata errors; metadata bufs come with
1026 * iodone functions attached, so that we can track down errors.
1027 */
1028STATIC int
1029xfs_bioerror_relse(
1030	struct xfs_buf	*bp)
1031{
1032	int64_t		fl = bp->b_flags;
1033	/*
1034	 * No need to wait until the buffer is unpinned.
1035	 * We aren't flushing it.
1036	 *
1037	 * chunkhold expects B_DONE to be set, whether
1038	 * we actually finish the I/O or not. We don't want to
1039	 * change that interface.
1040	 */
1041	XFS_BUF_UNREAD(bp);
1042	XFS_BUF_DONE(bp);
1043	xfs_buf_stale(bp);
1044	bp->b_iodone = NULL;
1045	if (!(fl & XBF_ASYNC)) {
1046		/*
1047		 * Mark b_error and B_ERROR _both_.
1048		 * Lot's of chunkcache code assumes that.
1049		 * There's no reason to mark error for
1050		 * ASYNC buffers.
1051		 */
1052		xfs_buf_ioerror(bp, EIO);
1053		complete(&bp->b_iowait);
1054	} else {
1055		xfs_buf_relse(bp);
1056	}
1057
1058	return EIO;
1059}
1060
1061STATIC int
1062xfs_bdstrat_cb(
1063	struct xfs_buf	*bp)
1064{
1065	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1066		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1067		/*
1068		 * Metadata write that didn't get logged but
1069		 * written delayed anyway. These aren't associated
1070		 * with a transaction, and can be ignored.
1071		 */
1072		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1073			return xfs_bioerror_relse(bp);
1074		else
1075			return xfs_bioerror(bp);
1076	}
1077
1078	xfs_buf_iorequest(bp);
1079	return 0;
1080}
1081
1082int
1083xfs_bwrite(
1084	struct xfs_buf		*bp)
1085{
1086	int			error;
1087
1088	ASSERT(xfs_buf_islocked(bp));
1089
1090	bp->b_flags |= XBF_WRITE;
1091	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1092
1093	xfs_bdstrat_cb(bp);
1094
1095	error = xfs_buf_iowait(bp);
1096	if (error) {
1097		xfs_force_shutdown(bp->b_target->bt_mount,
1098				   SHUTDOWN_META_IO_ERROR);
1099	}
1100	return error;
1101}
1102
1103/*
1104 * Wrapper around bdstrat so that we can stop data from going to disk in case
1105 * we are shutting down the filesystem.  Typically user data goes thru this
1106 * path; one of the exceptions is the superblock.
1107 */
1108void
1109xfsbdstrat(
1110	struct xfs_mount	*mp,
1111	struct xfs_buf		*bp)
1112{
1113	if (XFS_FORCED_SHUTDOWN(mp)) {
1114		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1115		xfs_bioerror_relse(bp);
1116		return;
1117	}
1118
1119	xfs_buf_iorequest(bp);
1120}
1121
1122STATIC void
1123_xfs_buf_ioend(
1124	xfs_buf_t		*bp,
1125	int			schedule)
1126{
1127	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1128		xfs_buf_ioend(bp, schedule);
1129}
1130
1131STATIC void
1132xfs_buf_bio_end_io(
1133	struct bio		*bio,
1134	int			error)
1135{
1136	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1137
1138	xfs_buf_ioerror(bp, -error);
1139
1140	if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1141		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1142
1143	_xfs_buf_ioend(bp, 1);
1144	bio_put(bio);
1145}
1146
1147STATIC void
1148_xfs_buf_ioapply(
1149	xfs_buf_t		*bp)
1150{
1151	int			rw, map_i, total_nr_pages, nr_pages;
1152	struct bio		*bio;
1153	int			offset = bp->b_offset;
1154	int			size = BBTOB(bp->b_io_length);
1155	sector_t		sector = bp->b_bn;
1156
1157	total_nr_pages = bp->b_page_count;
1158	map_i = 0;
1159
1160	if (bp->b_flags & XBF_WRITE) {
1161		if (bp->b_flags & XBF_SYNCIO)
1162			rw = WRITE_SYNC;
1163		else
1164			rw = WRITE;
1165		if (bp->b_flags & XBF_FUA)
1166			rw |= REQ_FUA;
1167		if (bp->b_flags & XBF_FLUSH)
1168			rw |= REQ_FLUSH;
1169	} else if (bp->b_flags & XBF_READ_AHEAD) {
1170		rw = READA;
1171	} else {
1172		rw = READ;
1173	}
1174
1175	/* we only use the buffer cache for meta-data */
1176	rw |= REQ_META;
1177
1178next_chunk:
1179	atomic_inc(&bp->b_io_remaining);
1180	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1181	if (nr_pages > total_nr_pages)
1182		nr_pages = total_nr_pages;
1183
1184	bio = bio_alloc(GFP_NOIO, nr_pages);
1185	bio->bi_bdev = bp->b_target->bt_bdev;
1186	bio->bi_sector = sector;
1187	bio->bi_end_io = xfs_buf_bio_end_io;
1188	bio->bi_private = bp;
1189
1190
1191	for (; size && nr_pages; nr_pages--, map_i++) {
1192		int	rbytes, nbytes = PAGE_SIZE - offset;
1193
1194		if (nbytes > size)
1195			nbytes = size;
1196
1197		rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1198		if (rbytes < nbytes)
1199			break;
1200
1201		offset = 0;
1202		sector += BTOBB(nbytes);
1203		size -= nbytes;
1204		total_nr_pages--;
1205	}
1206
1207	if (likely(bio->bi_size)) {
1208		if (xfs_buf_is_vmapped(bp)) {
1209			flush_kernel_vmap_range(bp->b_addr,
1210						xfs_buf_vmap_len(bp));
1211		}
1212		submit_bio(rw, bio);
1213		if (size)
1214			goto next_chunk;
1215	} else {
1216		xfs_buf_ioerror(bp, EIO);
1217		bio_put(bio);
1218	}
1219}
1220
1221void
1222xfs_buf_iorequest(
1223	xfs_buf_t		*bp)
1224{
1225	trace_xfs_buf_iorequest(bp, _RET_IP_);
1226
1227	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1228
1229	if (bp->b_flags & XBF_WRITE)
1230		xfs_buf_wait_unpin(bp);
1231	xfs_buf_hold(bp);
1232
1233	/* Set the count to 1 initially, this will stop an I/O
1234	 * completion callout which happens before we have started
1235	 * all the I/O from calling xfs_buf_ioend too early.
1236	 */
1237	atomic_set(&bp->b_io_remaining, 1);
1238	_xfs_buf_ioapply(bp);
1239	_xfs_buf_ioend(bp, 1);
1240
1241	xfs_buf_rele(bp);
1242}
1243
1244/*
1245 * Waits for I/O to complete on the buffer supplied.  It returns immediately if
1246 * no I/O is pending or there is already a pending error on the buffer.  It
1247 * returns the I/O error code, if any, or 0 if there was no error.
1248 */
1249int
1250xfs_buf_iowait(
1251	xfs_buf_t		*bp)
1252{
1253	trace_xfs_buf_iowait(bp, _RET_IP_);
1254
1255	if (!bp->b_error)
1256		wait_for_completion(&bp->b_iowait);
1257
1258	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1259	return bp->b_error;
1260}
1261
1262xfs_caddr_t
1263xfs_buf_offset(
1264	xfs_buf_t		*bp,
1265	size_t			offset)
1266{
1267	struct page		*page;
1268
1269	if (bp->b_addr)
1270		return bp->b_addr + offset;
1271
1272	offset += bp->b_offset;
1273	page = bp->b_pages[offset >> PAGE_SHIFT];
1274	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1275}
1276
1277/*
1278 *	Move data into or out of a buffer.
1279 */
1280void
1281xfs_buf_iomove(
1282	xfs_buf_t		*bp,	/* buffer to process		*/
1283	size_t			boff,	/* starting buffer offset	*/
1284	size_t			bsize,	/* length to copy		*/
1285	void			*data,	/* data address			*/
1286	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1287{
1288	size_t			bend;
1289
1290	bend = boff + bsize;
1291	while (boff < bend) {
1292		struct page	*page;
1293		int		page_index, page_offset, csize;
1294
1295		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1296		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1297		page = bp->b_pages[page_index];
1298		csize = min_t(size_t, PAGE_SIZE - page_offset,
1299				      BBTOB(bp->b_io_length) - boff);
1300
1301		ASSERT((csize + page_offset) <= PAGE_SIZE);
1302
1303		switch (mode) {
1304		case XBRW_ZERO:
1305			memset(page_address(page) + page_offset, 0, csize);
1306			break;
1307		case XBRW_READ:
1308			memcpy(data, page_address(page) + page_offset, csize);
1309			break;
1310		case XBRW_WRITE:
1311			memcpy(page_address(page) + page_offset, data, csize);
1312		}
1313
1314		boff += csize;
1315		data += csize;
1316	}
1317}
1318
1319/*
1320 *	Handling of buffer targets (buftargs).
1321 */
1322
1323/*
1324 * Wait for any bufs with callbacks that have been submitted but have not yet
1325 * returned. These buffers will have an elevated hold count, so wait on those
1326 * while freeing all the buffers only held by the LRU.
1327 */
1328void
1329xfs_wait_buftarg(
1330	struct xfs_buftarg	*btp)
1331{
1332	struct xfs_buf		*bp;
1333
1334restart:
1335	spin_lock(&btp->bt_lru_lock);
1336	while (!list_empty(&btp->bt_lru)) {
1337		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1338		if (atomic_read(&bp->b_hold) > 1) {
1339			spin_unlock(&btp->bt_lru_lock);
1340			delay(100);
1341			goto restart;
1342		}
1343		/*
1344		 * clear the LRU reference count so the buffer doesn't get
1345		 * ignored in xfs_buf_rele().
1346		 */
1347		atomic_set(&bp->b_lru_ref, 0);
1348		spin_unlock(&btp->bt_lru_lock);
1349		xfs_buf_rele(bp);
1350		spin_lock(&btp->bt_lru_lock);
1351	}
1352	spin_unlock(&btp->bt_lru_lock);
1353}
1354
1355int
1356xfs_buftarg_shrink(
1357	struct shrinker		*shrink,
1358	struct shrink_control	*sc)
1359{
1360	struct xfs_buftarg	*btp = container_of(shrink,
1361					struct xfs_buftarg, bt_shrinker);
1362	struct xfs_buf		*bp;
1363	int nr_to_scan = sc->nr_to_scan;
1364	LIST_HEAD(dispose);
1365
1366	if (!nr_to_scan)
1367		return btp->bt_lru_nr;
1368
1369	spin_lock(&btp->bt_lru_lock);
1370	while (!list_empty(&btp->bt_lru)) {
1371		if (nr_to_scan-- <= 0)
1372			break;
1373
1374		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1375
1376		/*
1377		 * Decrement the b_lru_ref count unless the value is already
1378		 * zero. If the value is already zero, we need to reclaim the
1379		 * buffer, otherwise it gets another trip through the LRU.
1380		 */
1381		if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1382			list_move_tail(&bp->b_lru, &btp->bt_lru);
1383			continue;
1384		}
1385
1386		/*
1387		 * remove the buffer from the LRU now to avoid needing another
1388		 * lock round trip inside xfs_buf_rele().
1389		 */
1390		list_move(&bp->b_lru, &dispose);
1391		btp->bt_lru_nr--;
1392	}
1393	spin_unlock(&btp->bt_lru_lock);
1394
1395	while (!list_empty(&dispose)) {
1396		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1397		list_del_init(&bp->b_lru);
1398		xfs_buf_rele(bp);
1399	}
1400
1401	return btp->bt_lru_nr;
1402}
1403
1404void
1405xfs_free_buftarg(
1406	struct xfs_mount	*mp,
1407	struct xfs_buftarg	*btp)
1408{
1409	unregister_shrinker(&btp->bt_shrinker);
1410
1411	if (mp->m_flags & XFS_MOUNT_BARRIER)
1412		xfs_blkdev_issue_flush(btp);
1413
1414	kmem_free(btp);
1415}
1416
1417STATIC int
1418xfs_setsize_buftarg_flags(
1419	xfs_buftarg_t		*btp,
1420	unsigned int		blocksize,
1421	unsigned int		sectorsize,
1422	int			verbose)
1423{
1424	btp->bt_bsize = blocksize;
1425	btp->bt_sshift = ffs(sectorsize) - 1;
1426	btp->bt_smask = sectorsize - 1;
1427
1428	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1429		char name[BDEVNAME_SIZE];
1430
1431		bdevname(btp->bt_bdev, name);
1432
1433		xfs_warn(btp->bt_mount,
1434			"Cannot set_blocksize to %u on device %s\n",
1435			sectorsize, name);
1436		return EINVAL;
1437	}
1438
1439	return 0;
1440}
1441
1442/*
1443 *	When allocating the initial buffer target we have not yet
1444 *	read in the superblock, so don't know what sized sectors
1445 *	are being used is at this early stage.  Play safe.
1446 */
1447STATIC int
1448xfs_setsize_buftarg_early(
1449	xfs_buftarg_t		*btp,
1450	struct block_device	*bdev)
1451{
1452	return xfs_setsize_buftarg_flags(btp,
1453			PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1454}
1455
1456int
1457xfs_setsize_buftarg(
1458	xfs_buftarg_t		*btp,
1459	unsigned int		blocksize,
1460	unsigned int		sectorsize)
1461{
1462	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1463}
1464
1465xfs_buftarg_t *
1466xfs_alloc_buftarg(
1467	struct xfs_mount	*mp,
1468	struct block_device	*bdev,
1469	int			external,
1470	const char		*fsname)
1471{
1472	xfs_buftarg_t		*btp;
1473
1474	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1475
1476	btp->bt_mount = mp;
1477	btp->bt_dev =  bdev->bd_dev;
1478	btp->bt_bdev = bdev;
1479	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1480	if (!btp->bt_bdi)
1481		goto error;
1482
1483	INIT_LIST_HEAD(&btp->bt_lru);
1484	spin_lock_init(&btp->bt_lru_lock);
1485	if (xfs_setsize_buftarg_early(btp, bdev))
1486		goto error;
1487	btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1488	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1489	register_shrinker(&btp->bt_shrinker);
1490	return btp;
1491
1492error:
1493	kmem_free(btp);
1494	return NULL;
1495}
1496
1497/*
1498 * Add a buffer to the delayed write list.
1499 *
1500 * This queues a buffer for writeout if it hasn't already been.  Note that
1501 * neither this routine nor the buffer list submission functions perform
1502 * any internal synchronization.  It is expected that the lists are thread-local
1503 * to the callers.
1504 *
1505 * Returns true if we queued up the buffer, or false if it already had
1506 * been on the buffer list.
1507 */
1508bool
1509xfs_buf_delwri_queue(
1510	struct xfs_buf		*bp,
1511	struct list_head	*list)
1512{
1513	ASSERT(xfs_buf_islocked(bp));
1514	ASSERT(!(bp->b_flags & XBF_READ));
1515
1516	/*
1517	 * If the buffer is already marked delwri it already is queued up
1518	 * by someone else for imediate writeout.  Just ignore it in that
1519	 * case.
1520	 */
1521	if (bp->b_flags & _XBF_DELWRI_Q) {
1522		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1523		return false;
1524	}
1525
1526	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1527
1528	/*
1529	 * If a buffer gets written out synchronously or marked stale while it
1530	 * is on a delwri list we lazily remove it. To do this, the other party
1531	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1532	 * It remains referenced and on the list.  In a rare corner case it
1533	 * might get readded to a delwri list after the synchronous writeout, in
1534	 * which case we need just need to re-add the flag here.
1535	 */
1536	bp->b_flags |= _XBF_DELWRI_Q;
1537	if (list_empty(&bp->b_list)) {
1538		atomic_inc(&bp->b_hold);
1539		list_add_tail(&bp->b_list, list);
1540	}
1541
1542	return true;
1543}
1544
1545/*
1546 * Compare function is more complex than it needs to be because
1547 * the return value is only 32 bits and we are doing comparisons
1548 * on 64 bit values
1549 */
1550static int
1551xfs_buf_cmp(
1552	void		*priv,
1553	struct list_head *a,
1554	struct list_head *b)
1555{
1556	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1557	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1558	xfs_daddr_t		diff;
1559
1560	diff = ap->b_bn - bp->b_bn;
1561	if (diff < 0)
1562		return -1;
1563	if (diff > 0)
1564		return 1;
1565	return 0;
1566}
1567
1568static int
1569__xfs_buf_delwri_submit(
1570	struct list_head	*buffer_list,
1571	struct list_head	*io_list,
1572	bool			wait)
1573{
1574	struct blk_plug		plug;
1575	struct xfs_buf		*bp, *n;
1576	int			pinned = 0;
1577
1578	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1579		if (!wait) {
1580			if (xfs_buf_ispinned(bp)) {
1581				pinned++;
1582				continue;
1583			}
1584			if (!xfs_buf_trylock(bp))
1585				continue;
1586		} else {
1587			xfs_buf_lock(bp);
1588		}
1589
1590		/*
1591		 * Someone else might have written the buffer synchronously or
1592		 * marked it stale in the meantime.  In that case only the
1593		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1594		 * reference and remove it from the list here.
1595		 */
1596		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1597			list_del_init(&bp->b_list);
1598			xfs_buf_relse(bp);
1599			continue;
1600		}
1601
1602		list_move_tail(&bp->b_list, io_list);
1603		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1604	}
1605
1606	list_sort(NULL, io_list, xfs_buf_cmp);
1607
1608	blk_start_plug(&plug);
1609	list_for_each_entry_safe(bp, n, io_list, b_list) {
1610		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1611		bp->b_flags |= XBF_WRITE;
1612
1613		if (!wait) {
1614			bp->b_flags |= XBF_ASYNC;
1615			list_del_init(&bp->b_list);
1616		}
1617		xfs_bdstrat_cb(bp);
1618	}
1619	blk_finish_plug(&plug);
1620
1621	return pinned;
1622}
1623
1624/*
1625 * Write out a buffer list asynchronously.
1626 *
1627 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1628 * out and not wait for I/O completion on any of the buffers.  This interface
1629 * is only safely useable for callers that can track I/O completion by higher
1630 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1631 * function.
1632 */
1633int
1634xfs_buf_delwri_submit_nowait(
1635	struct list_head	*buffer_list)
1636{
1637	LIST_HEAD		(io_list);
1638	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1639}
1640
1641/*
1642 * Write out a buffer list synchronously.
1643 *
1644 * This will take the @buffer_list, write all buffers out and wait for I/O
1645 * completion on all of the buffers. @buffer_list is consumed by the function,
1646 * so callers must have some other way of tracking buffers if they require such
1647 * functionality.
1648 */
1649int
1650xfs_buf_delwri_submit(
1651	struct list_head	*buffer_list)
1652{
1653	LIST_HEAD		(io_list);
1654	int			error = 0, error2;
1655	struct xfs_buf		*bp;
1656
1657	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1658
1659	/* Wait for IO to complete. */
1660	while (!list_empty(&io_list)) {
1661		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1662
1663		list_del_init(&bp->b_list);
1664		error2 = xfs_buf_iowait(bp);
1665		xfs_buf_relse(bp);
1666		if (!error)
1667			error = error2;
1668	}
1669
1670	return error;
1671}
1672
1673int __init
1674xfs_buf_init(void)
1675{
1676	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1677						KM_ZONE_HWALIGN, NULL);
1678	if (!xfs_buf_zone)
1679		goto out;
1680
1681	xfslogd_workqueue = alloc_workqueue("xfslogd",
1682					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1683	if (!xfslogd_workqueue)
1684		goto out_free_buf_zone;
1685
1686	return 0;
1687
1688 out_free_buf_zone:
1689	kmem_zone_destroy(xfs_buf_zone);
1690 out:
1691	return -ENOMEM;
1692}
1693
1694void
1695xfs_buf_terminate(void)
1696{
1697	destroy_workqueue(xfslogd_workqueue);
1698	kmem_zone_destroy(xfs_buf_zone);
1699}