Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36#include <linux/sched/mm.h>
37
38#include "xfs_format.h"
39#include "xfs_log_format.h"
40#include "xfs_trans_resv.h"
41#include "xfs_sb.h"
42#include "xfs_mount.h"
43#include "xfs_trace.h"
44#include "xfs_log.h"
45#include "xfs_errortag.h"
46#include "xfs_error.h"
47
48static kmem_zone_t *xfs_buf_zone;
49
50#ifdef XFS_BUF_LOCK_TRACKING
51# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
52# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
53# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
54#else
55# define XB_SET_OWNER(bp) do { } while (0)
56# define XB_CLEAR_OWNER(bp) do { } while (0)
57# define XB_GET_OWNER(bp) do { } while (0)
58#endif
59
60#define xb_to_gfp(flags) \
61 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
62
63
64static inline int
65xfs_buf_is_vmapped(
66 struct xfs_buf *bp)
67{
68 /*
69 * Return true if the buffer is vmapped.
70 *
71 * b_addr is null if the buffer is not mapped, but the code is clever
72 * enough to know it doesn't have to map a single page, so the check has
73 * to be both for b_addr and bp->b_page_count > 1.
74 */
75 return bp->b_addr && bp->b_page_count > 1;
76}
77
78static inline int
79xfs_buf_vmap_len(
80 struct xfs_buf *bp)
81{
82 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83}
84
85/*
86 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
87 * this buffer. The count is incremented once per buffer (per hold cycle)
88 * because the corresponding decrement is deferred to buffer release. Buffers
89 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
90 * tracking adds unnecessary overhead. This is used for sychronization purposes
91 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
92 * in-flight buffers.
93 *
94 * Buffers that are never released (e.g., superblock, iclog buffers) must set
95 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
96 * never reaches zero and unmount hangs indefinitely.
97 */
98static inline void
99xfs_buf_ioacct_inc(
100 struct xfs_buf *bp)
101{
102 if (bp->b_flags & XBF_NO_IOACCT)
103 return;
104
105 ASSERT(bp->b_flags & XBF_ASYNC);
106 spin_lock(&bp->b_lock);
107 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
108 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
109 percpu_counter_inc(&bp->b_target->bt_io_count);
110 }
111 spin_unlock(&bp->b_lock);
112}
113
114/*
115 * Clear the in-flight state on a buffer about to be released to the LRU or
116 * freed and unaccount from the buftarg.
117 */
118static inline void
119__xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 lockdep_assert_held(&bp->b_lock);
123
124 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
125 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
126 percpu_counter_dec(&bp->b_target->bt_io_count);
127 }
128}
129
130static inline void
131xfs_buf_ioacct_dec(
132 struct xfs_buf *bp)
133{
134 spin_lock(&bp->b_lock);
135 __xfs_buf_ioacct_dec(bp);
136 spin_unlock(&bp->b_lock);
137}
138
139/*
140 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
141 * b_lru_ref count so that the buffer is freed immediately when the buffer
142 * reference count falls to zero. If the buffer is already on the LRU, we need
143 * to remove the reference that LRU holds on the buffer.
144 *
145 * This prevents build-up of stale buffers on the LRU.
146 */
147void
148xfs_buf_stale(
149 struct xfs_buf *bp)
150{
151 ASSERT(xfs_buf_islocked(bp));
152
153 bp->b_flags |= XBF_STALE;
154
155 /*
156 * Clear the delwri status so that a delwri queue walker will not
157 * flush this buffer to disk now that it is stale. The delwri queue has
158 * a reference to the buffer, so this is safe to do.
159 */
160 bp->b_flags &= ~_XBF_DELWRI_Q;
161
162 /*
163 * Once the buffer is marked stale and unlocked, a subsequent lookup
164 * could reset b_flags. There is no guarantee that the buffer is
165 * unaccounted (released to LRU) before that occurs. Drop in-flight
166 * status now to preserve accounting consistency.
167 */
168 spin_lock(&bp->b_lock);
169 __xfs_buf_ioacct_dec(bp);
170
171 atomic_set(&bp->b_lru_ref, 0);
172 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
173 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
174 atomic_dec(&bp->b_hold);
175
176 ASSERT(atomic_read(&bp->b_hold) >= 1);
177 spin_unlock(&bp->b_lock);
178}
179
180static int
181xfs_buf_get_maps(
182 struct xfs_buf *bp,
183 int map_count)
184{
185 ASSERT(bp->b_maps == NULL);
186 bp->b_map_count = map_count;
187
188 if (map_count == 1) {
189 bp->b_maps = &bp->__b_map;
190 return 0;
191 }
192
193 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
194 KM_NOFS);
195 if (!bp->b_maps)
196 return -ENOMEM;
197 return 0;
198}
199
200/*
201 * Frees b_pages if it was allocated.
202 */
203static void
204xfs_buf_free_maps(
205 struct xfs_buf *bp)
206{
207 if (bp->b_maps != &bp->__b_map) {
208 kmem_free(bp->b_maps);
209 bp->b_maps = NULL;
210 }
211}
212
213struct xfs_buf *
214_xfs_buf_alloc(
215 struct xfs_buftarg *target,
216 struct xfs_buf_map *map,
217 int nmaps,
218 xfs_buf_flags_t flags)
219{
220 struct xfs_buf *bp;
221 int error;
222 int i;
223
224 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
225 if (unlikely(!bp))
226 return NULL;
227
228 /*
229 * We don't want certain flags to appear in b_flags unless they are
230 * specifically set by later operations on the buffer.
231 */
232 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
233
234 atomic_set(&bp->b_hold, 1);
235 atomic_set(&bp->b_lru_ref, 1);
236 init_completion(&bp->b_iowait);
237 INIT_LIST_HEAD(&bp->b_lru);
238 INIT_LIST_HEAD(&bp->b_list);
239 INIT_LIST_HEAD(&bp->b_li_list);
240 sema_init(&bp->b_sema, 0); /* held, no waiters */
241 spin_lock_init(&bp->b_lock);
242 XB_SET_OWNER(bp);
243 bp->b_target = target;
244 bp->b_flags = flags;
245
246 /*
247 * Set length and io_length to the same value initially.
248 * I/O routines should use io_length, which will be the same in
249 * most cases but may be reset (e.g. XFS recovery).
250 */
251 error = xfs_buf_get_maps(bp, nmaps);
252 if (error) {
253 kmem_zone_free(xfs_buf_zone, bp);
254 return NULL;
255 }
256
257 bp->b_bn = map[0].bm_bn;
258 bp->b_length = 0;
259 for (i = 0; i < nmaps; i++) {
260 bp->b_maps[i].bm_bn = map[i].bm_bn;
261 bp->b_maps[i].bm_len = map[i].bm_len;
262 bp->b_length += map[i].bm_len;
263 }
264 bp->b_io_length = bp->b_length;
265
266 atomic_set(&bp->b_pin_count, 0);
267 init_waitqueue_head(&bp->b_waiters);
268
269 XFS_STATS_INC(target->bt_mount, xb_create);
270 trace_xfs_buf_init(bp, _RET_IP_);
271
272 return bp;
273}
274
275/*
276 * Allocate a page array capable of holding a specified number
277 * of pages, and point the page buf at it.
278 */
279STATIC int
280_xfs_buf_get_pages(
281 xfs_buf_t *bp,
282 int page_count)
283{
284 /* Make sure that we have a page list */
285 if (bp->b_pages == NULL) {
286 bp->b_page_count = page_count;
287 if (page_count <= XB_PAGES) {
288 bp->b_pages = bp->b_page_array;
289 } else {
290 bp->b_pages = kmem_alloc(sizeof(struct page *) *
291 page_count, KM_NOFS);
292 if (bp->b_pages == NULL)
293 return -ENOMEM;
294 }
295 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
296 }
297 return 0;
298}
299
300/*
301 * Frees b_pages if it was allocated.
302 */
303STATIC void
304_xfs_buf_free_pages(
305 xfs_buf_t *bp)
306{
307 if (bp->b_pages != bp->b_page_array) {
308 kmem_free(bp->b_pages);
309 bp->b_pages = NULL;
310 }
311}
312
313/*
314 * Releases the specified buffer.
315 *
316 * The modification state of any associated pages is left unchanged.
317 * The buffer must not be on any hash - use xfs_buf_rele instead for
318 * hashed and refcounted buffers
319 */
320void
321xfs_buf_free(
322 xfs_buf_t *bp)
323{
324 trace_xfs_buf_free(bp, _RET_IP_);
325
326 ASSERT(list_empty(&bp->b_lru));
327
328 if (bp->b_flags & _XBF_PAGES) {
329 uint i;
330
331 if (xfs_buf_is_vmapped(bp))
332 vm_unmap_ram(bp->b_addr - bp->b_offset,
333 bp->b_page_count);
334
335 for (i = 0; i < bp->b_page_count; i++) {
336 struct page *page = bp->b_pages[i];
337
338 __free_page(page);
339 }
340 } else if (bp->b_flags & _XBF_KMEM)
341 kmem_free(bp->b_addr);
342 _xfs_buf_free_pages(bp);
343 xfs_buf_free_maps(bp);
344 kmem_zone_free(xfs_buf_zone, bp);
345}
346
347/*
348 * Allocates all the pages for buffer in question and builds it's page list.
349 */
350STATIC int
351xfs_buf_allocate_memory(
352 xfs_buf_t *bp,
353 uint flags)
354{
355 size_t size;
356 size_t nbytes, offset;
357 gfp_t gfp_mask = xb_to_gfp(flags);
358 unsigned short page_count, i;
359 xfs_off_t start, end;
360 int error;
361
362 /*
363 * for buffers that are contained within a single page, just allocate
364 * the memory from the heap - there's no need for the complexity of
365 * page arrays to keep allocation down to order 0.
366 */
367 size = BBTOB(bp->b_length);
368 if (size < PAGE_SIZE) {
369 bp->b_addr = kmem_alloc(size, KM_NOFS);
370 if (!bp->b_addr) {
371 /* low memory - use alloc_page loop instead */
372 goto use_alloc_page;
373 }
374
375 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
376 ((unsigned long)bp->b_addr & PAGE_MASK)) {
377 /* b_addr spans two pages - use alloc_page instead */
378 kmem_free(bp->b_addr);
379 bp->b_addr = NULL;
380 goto use_alloc_page;
381 }
382 bp->b_offset = offset_in_page(bp->b_addr);
383 bp->b_pages = bp->b_page_array;
384 bp->b_pages[0] = virt_to_page(bp->b_addr);
385 bp->b_page_count = 1;
386 bp->b_flags |= _XBF_KMEM;
387 return 0;
388 }
389
390use_alloc_page:
391 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
392 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
393 >> PAGE_SHIFT;
394 page_count = end - start;
395 error = _xfs_buf_get_pages(bp, page_count);
396 if (unlikely(error))
397 return error;
398
399 offset = bp->b_offset;
400 bp->b_flags |= _XBF_PAGES;
401
402 for (i = 0; i < bp->b_page_count; i++) {
403 struct page *page;
404 uint retries = 0;
405retry:
406 page = alloc_page(gfp_mask);
407 if (unlikely(page == NULL)) {
408 if (flags & XBF_READ_AHEAD) {
409 bp->b_page_count = i;
410 error = -ENOMEM;
411 goto out_free_pages;
412 }
413
414 /*
415 * This could deadlock.
416 *
417 * But until all the XFS lowlevel code is revamped to
418 * handle buffer allocation failures we can't do much.
419 */
420 if (!(++retries % 100))
421 xfs_err(NULL,
422 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
423 current->comm, current->pid,
424 __func__, gfp_mask);
425
426 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
427 congestion_wait(BLK_RW_ASYNC, HZ/50);
428 goto retry;
429 }
430
431 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
432
433 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
434 size -= nbytes;
435 bp->b_pages[i] = page;
436 offset = 0;
437 }
438 return 0;
439
440out_free_pages:
441 for (i = 0; i < bp->b_page_count; i++)
442 __free_page(bp->b_pages[i]);
443 bp->b_flags &= ~_XBF_PAGES;
444 return error;
445}
446
447/*
448 * Map buffer into kernel address-space if necessary.
449 */
450STATIC int
451_xfs_buf_map_pages(
452 xfs_buf_t *bp,
453 uint flags)
454{
455 ASSERT(bp->b_flags & _XBF_PAGES);
456 if (bp->b_page_count == 1) {
457 /* A single page buffer is always mappable */
458 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
459 } else if (flags & XBF_UNMAPPED) {
460 bp->b_addr = NULL;
461 } else {
462 int retried = 0;
463 unsigned nofs_flag;
464
465 /*
466 * vm_map_ram() will allocate auxillary structures (e.g.
467 * pagetables) with GFP_KERNEL, yet we are likely to be under
468 * GFP_NOFS context here. Hence we need to tell memory reclaim
469 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
470 * memory reclaim re-entering the filesystem here and
471 * potentially deadlocking.
472 */
473 nofs_flag = memalloc_nofs_save();
474 do {
475 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
476 -1, PAGE_KERNEL);
477 if (bp->b_addr)
478 break;
479 vm_unmap_aliases();
480 } while (retried++ <= 1);
481 memalloc_nofs_restore(nofs_flag);
482
483 if (!bp->b_addr)
484 return -ENOMEM;
485 bp->b_addr += bp->b_offset;
486 }
487
488 return 0;
489}
490
491/*
492 * Finding and Reading Buffers
493 */
494static int
495_xfs_buf_obj_cmp(
496 struct rhashtable_compare_arg *arg,
497 const void *obj)
498{
499 const struct xfs_buf_map *map = arg->key;
500 const struct xfs_buf *bp = obj;
501
502 /*
503 * The key hashing in the lookup path depends on the key being the
504 * first element of the compare_arg, make sure to assert this.
505 */
506 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
507
508 if (bp->b_bn != map->bm_bn)
509 return 1;
510
511 if (unlikely(bp->b_length != map->bm_len)) {
512 /*
513 * found a block number match. If the range doesn't
514 * match, the only way this is allowed is if the buffer
515 * in the cache is stale and the transaction that made
516 * it stale has not yet committed. i.e. we are
517 * reallocating a busy extent. Skip this buffer and
518 * continue searching for an exact match.
519 */
520 ASSERT(bp->b_flags & XBF_STALE);
521 return 1;
522 }
523 return 0;
524}
525
526static const struct rhashtable_params xfs_buf_hash_params = {
527 .min_size = 32, /* empty AGs have minimal footprint */
528 .nelem_hint = 16,
529 .key_len = sizeof(xfs_daddr_t),
530 .key_offset = offsetof(struct xfs_buf, b_bn),
531 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
532 .automatic_shrinking = true,
533 .obj_cmpfn = _xfs_buf_obj_cmp,
534};
535
536int
537xfs_buf_hash_init(
538 struct xfs_perag *pag)
539{
540 spin_lock_init(&pag->pag_buf_lock);
541 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
542}
543
544void
545xfs_buf_hash_destroy(
546 struct xfs_perag *pag)
547{
548 rhashtable_destroy(&pag->pag_buf_hash);
549}
550
551/*
552 * Look up, and creates if absent, a lockable buffer for
553 * a given range of an inode. The buffer is returned
554 * locked. No I/O is implied by this call.
555 */
556xfs_buf_t *
557_xfs_buf_find(
558 struct xfs_buftarg *btp,
559 struct xfs_buf_map *map,
560 int nmaps,
561 xfs_buf_flags_t flags,
562 xfs_buf_t *new_bp)
563{
564 struct xfs_perag *pag;
565 xfs_buf_t *bp;
566 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
567 xfs_daddr_t eofs;
568 int i;
569
570 for (i = 0; i < nmaps; i++)
571 cmap.bm_len += map[i].bm_len;
572
573 /* Check for IOs smaller than the sector size / not sector aligned */
574 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
575 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
576
577 /*
578 * Corrupted block numbers can get through to here, unfortunately, so we
579 * have to check that the buffer falls within the filesystem bounds.
580 */
581 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
582 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
583 /*
584 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
585 * but none of the higher level infrastructure supports
586 * returning a specific error on buffer lookup failures.
587 */
588 xfs_alert(btp->bt_mount,
589 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
590 __func__, cmap.bm_bn, eofs);
591 WARN_ON(1);
592 return NULL;
593 }
594
595 pag = xfs_perag_get(btp->bt_mount,
596 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
597
598 spin_lock(&pag->pag_buf_lock);
599 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
600 xfs_buf_hash_params);
601 if (bp) {
602 atomic_inc(&bp->b_hold);
603 goto found;
604 }
605
606 /* No match found */
607 if (new_bp) {
608 /* the buffer keeps the perag reference until it is freed */
609 new_bp->b_pag = pag;
610 rhashtable_insert_fast(&pag->pag_buf_hash,
611 &new_bp->b_rhash_head,
612 xfs_buf_hash_params);
613 spin_unlock(&pag->pag_buf_lock);
614 } else {
615 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
616 spin_unlock(&pag->pag_buf_lock);
617 xfs_perag_put(pag);
618 }
619 return new_bp;
620
621found:
622 spin_unlock(&pag->pag_buf_lock);
623 xfs_perag_put(pag);
624
625 if (!xfs_buf_trylock(bp)) {
626 if (flags & XBF_TRYLOCK) {
627 xfs_buf_rele(bp);
628 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
629 return NULL;
630 }
631 xfs_buf_lock(bp);
632 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
633 }
634
635 /*
636 * if the buffer is stale, clear all the external state associated with
637 * it. We need to keep flags such as how we allocated the buffer memory
638 * intact here.
639 */
640 if (bp->b_flags & XBF_STALE) {
641 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
642 ASSERT(bp->b_iodone == NULL);
643 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
644 bp->b_ops = NULL;
645 }
646
647 trace_xfs_buf_find(bp, flags, _RET_IP_);
648 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
649 return bp;
650}
651
652/*
653 * Assembles a buffer covering the specified range. The code is optimised for
654 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
655 * more hits than misses.
656 */
657struct xfs_buf *
658xfs_buf_get_map(
659 struct xfs_buftarg *target,
660 struct xfs_buf_map *map,
661 int nmaps,
662 xfs_buf_flags_t flags)
663{
664 struct xfs_buf *bp;
665 struct xfs_buf *new_bp;
666 int error = 0;
667
668 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
669 if (likely(bp))
670 goto found;
671
672 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
673 if (unlikely(!new_bp))
674 return NULL;
675
676 error = xfs_buf_allocate_memory(new_bp, flags);
677 if (error) {
678 xfs_buf_free(new_bp);
679 return NULL;
680 }
681
682 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
683 if (!bp) {
684 xfs_buf_free(new_bp);
685 return NULL;
686 }
687
688 if (bp != new_bp)
689 xfs_buf_free(new_bp);
690
691found:
692 if (!bp->b_addr) {
693 error = _xfs_buf_map_pages(bp, flags);
694 if (unlikely(error)) {
695 xfs_warn(target->bt_mount,
696 "%s: failed to map pagesn", __func__);
697 xfs_buf_relse(bp);
698 return NULL;
699 }
700 }
701
702 /*
703 * Clear b_error if this is a lookup from a caller that doesn't expect
704 * valid data to be found in the buffer.
705 */
706 if (!(flags & XBF_READ))
707 xfs_buf_ioerror(bp, 0);
708
709 XFS_STATS_INC(target->bt_mount, xb_get);
710 trace_xfs_buf_get(bp, flags, _RET_IP_);
711 return bp;
712}
713
714STATIC int
715_xfs_buf_read(
716 xfs_buf_t *bp,
717 xfs_buf_flags_t flags)
718{
719 ASSERT(!(flags & XBF_WRITE));
720 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
721
722 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
723 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
724
725 if (flags & XBF_ASYNC) {
726 xfs_buf_submit(bp);
727 return 0;
728 }
729 return xfs_buf_submit_wait(bp);
730}
731
732xfs_buf_t *
733xfs_buf_read_map(
734 struct xfs_buftarg *target,
735 struct xfs_buf_map *map,
736 int nmaps,
737 xfs_buf_flags_t flags,
738 const struct xfs_buf_ops *ops)
739{
740 struct xfs_buf *bp;
741
742 flags |= XBF_READ;
743
744 bp = xfs_buf_get_map(target, map, nmaps, flags);
745 if (bp) {
746 trace_xfs_buf_read(bp, flags, _RET_IP_);
747
748 if (!(bp->b_flags & XBF_DONE)) {
749 XFS_STATS_INC(target->bt_mount, xb_get_read);
750 bp->b_ops = ops;
751 _xfs_buf_read(bp, flags);
752 } else if (flags & XBF_ASYNC) {
753 /*
754 * Read ahead call which is already satisfied,
755 * drop the buffer
756 */
757 xfs_buf_relse(bp);
758 return NULL;
759 } else {
760 /* We do not want read in the flags */
761 bp->b_flags &= ~XBF_READ;
762 }
763 }
764
765 return bp;
766}
767
768/*
769 * If we are not low on memory then do the readahead in a deadlock
770 * safe manner.
771 */
772void
773xfs_buf_readahead_map(
774 struct xfs_buftarg *target,
775 struct xfs_buf_map *map,
776 int nmaps,
777 const struct xfs_buf_ops *ops)
778{
779 if (bdi_read_congested(target->bt_bdev->bd_bdi))
780 return;
781
782 xfs_buf_read_map(target, map, nmaps,
783 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
784}
785
786/*
787 * Read an uncached buffer from disk. Allocates and returns a locked
788 * buffer containing the disk contents or nothing.
789 */
790int
791xfs_buf_read_uncached(
792 struct xfs_buftarg *target,
793 xfs_daddr_t daddr,
794 size_t numblks,
795 int flags,
796 struct xfs_buf **bpp,
797 const struct xfs_buf_ops *ops)
798{
799 struct xfs_buf *bp;
800
801 *bpp = NULL;
802
803 bp = xfs_buf_get_uncached(target, numblks, flags);
804 if (!bp)
805 return -ENOMEM;
806
807 /* set up the buffer for a read IO */
808 ASSERT(bp->b_map_count == 1);
809 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
810 bp->b_maps[0].bm_bn = daddr;
811 bp->b_flags |= XBF_READ;
812 bp->b_ops = ops;
813
814 xfs_buf_submit_wait(bp);
815 if (bp->b_error) {
816 int error = bp->b_error;
817 xfs_buf_relse(bp);
818 return error;
819 }
820
821 *bpp = bp;
822 return 0;
823}
824
825/*
826 * Return a buffer allocated as an empty buffer and associated to external
827 * memory via xfs_buf_associate_memory() back to it's empty state.
828 */
829void
830xfs_buf_set_empty(
831 struct xfs_buf *bp,
832 size_t numblks)
833{
834 if (bp->b_pages)
835 _xfs_buf_free_pages(bp);
836
837 bp->b_pages = NULL;
838 bp->b_page_count = 0;
839 bp->b_addr = NULL;
840 bp->b_length = numblks;
841 bp->b_io_length = numblks;
842
843 ASSERT(bp->b_map_count == 1);
844 bp->b_bn = XFS_BUF_DADDR_NULL;
845 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
846 bp->b_maps[0].bm_len = bp->b_length;
847}
848
849static inline struct page *
850mem_to_page(
851 void *addr)
852{
853 if ((!is_vmalloc_addr(addr))) {
854 return virt_to_page(addr);
855 } else {
856 return vmalloc_to_page(addr);
857 }
858}
859
860int
861xfs_buf_associate_memory(
862 xfs_buf_t *bp,
863 void *mem,
864 size_t len)
865{
866 int rval;
867 int i = 0;
868 unsigned long pageaddr;
869 unsigned long offset;
870 size_t buflen;
871 int page_count;
872
873 pageaddr = (unsigned long)mem & PAGE_MASK;
874 offset = (unsigned long)mem - pageaddr;
875 buflen = PAGE_ALIGN(len + offset);
876 page_count = buflen >> PAGE_SHIFT;
877
878 /* Free any previous set of page pointers */
879 if (bp->b_pages)
880 _xfs_buf_free_pages(bp);
881
882 bp->b_pages = NULL;
883 bp->b_addr = mem;
884
885 rval = _xfs_buf_get_pages(bp, page_count);
886 if (rval)
887 return rval;
888
889 bp->b_offset = offset;
890
891 for (i = 0; i < bp->b_page_count; i++) {
892 bp->b_pages[i] = mem_to_page((void *)pageaddr);
893 pageaddr += PAGE_SIZE;
894 }
895
896 bp->b_io_length = BTOBB(len);
897 bp->b_length = BTOBB(buflen);
898
899 return 0;
900}
901
902xfs_buf_t *
903xfs_buf_get_uncached(
904 struct xfs_buftarg *target,
905 size_t numblks,
906 int flags)
907{
908 unsigned long page_count;
909 int error, i;
910 struct xfs_buf *bp;
911 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
912
913 /* flags might contain irrelevant bits, pass only what we care about */
914 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
915 if (unlikely(bp == NULL))
916 goto fail;
917
918 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
919 error = _xfs_buf_get_pages(bp, page_count);
920 if (error)
921 goto fail_free_buf;
922
923 for (i = 0; i < page_count; i++) {
924 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
925 if (!bp->b_pages[i])
926 goto fail_free_mem;
927 }
928 bp->b_flags |= _XBF_PAGES;
929
930 error = _xfs_buf_map_pages(bp, 0);
931 if (unlikely(error)) {
932 xfs_warn(target->bt_mount,
933 "%s: failed to map pages", __func__);
934 goto fail_free_mem;
935 }
936
937 trace_xfs_buf_get_uncached(bp, _RET_IP_);
938 return bp;
939
940 fail_free_mem:
941 while (--i >= 0)
942 __free_page(bp->b_pages[i]);
943 _xfs_buf_free_pages(bp);
944 fail_free_buf:
945 xfs_buf_free_maps(bp);
946 kmem_zone_free(xfs_buf_zone, bp);
947 fail:
948 return NULL;
949}
950
951/*
952 * Increment reference count on buffer, to hold the buffer concurrently
953 * with another thread which may release (free) the buffer asynchronously.
954 * Must hold the buffer already to call this function.
955 */
956void
957xfs_buf_hold(
958 xfs_buf_t *bp)
959{
960 trace_xfs_buf_hold(bp, _RET_IP_);
961 atomic_inc(&bp->b_hold);
962}
963
964/*
965 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
966 * placed on LRU or freed (depending on b_lru_ref).
967 */
968void
969xfs_buf_rele(
970 xfs_buf_t *bp)
971{
972 struct xfs_perag *pag = bp->b_pag;
973 bool release;
974 bool freebuf = false;
975
976 trace_xfs_buf_rele(bp, _RET_IP_);
977
978 if (!pag) {
979 ASSERT(list_empty(&bp->b_lru));
980 if (atomic_dec_and_test(&bp->b_hold)) {
981 xfs_buf_ioacct_dec(bp);
982 xfs_buf_free(bp);
983 }
984 return;
985 }
986
987 ASSERT(atomic_read(&bp->b_hold) > 0);
988
989 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
990 spin_lock(&bp->b_lock);
991 if (!release) {
992 /*
993 * Drop the in-flight state if the buffer is already on the LRU
994 * and it holds the only reference. This is racy because we
995 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
996 * ensures the decrement occurs only once per-buf.
997 */
998 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
999 __xfs_buf_ioacct_dec(bp);
1000 goto out_unlock;
1001 }
1002
1003 /* the last reference has been dropped ... */
1004 __xfs_buf_ioacct_dec(bp);
1005 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1006 /*
1007 * If the buffer is added to the LRU take a new reference to the
1008 * buffer for the LRU and clear the (now stale) dispose list
1009 * state flag
1010 */
1011 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1012 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1013 atomic_inc(&bp->b_hold);
1014 }
1015 spin_unlock(&pag->pag_buf_lock);
1016 } else {
1017 /*
1018 * most of the time buffers will already be removed from the
1019 * LRU, so optimise that case by checking for the
1020 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1021 * was on was the disposal list
1022 */
1023 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1024 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1025 } else {
1026 ASSERT(list_empty(&bp->b_lru));
1027 }
1028
1029 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1030 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1031 xfs_buf_hash_params);
1032 spin_unlock(&pag->pag_buf_lock);
1033 xfs_perag_put(pag);
1034 freebuf = true;
1035 }
1036
1037out_unlock:
1038 spin_unlock(&bp->b_lock);
1039
1040 if (freebuf)
1041 xfs_buf_free(bp);
1042}
1043
1044
1045/*
1046 * Lock a buffer object, if it is not already locked.
1047 *
1048 * If we come across a stale, pinned, locked buffer, we know that we are
1049 * being asked to lock a buffer that has been reallocated. Because it is
1050 * pinned, we know that the log has not been pushed to disk and hence it
1051 * will still be locked. Rather than continuing to have trylock attempts
1052 * fail until someone else pushes the log, push it ourselves before
1053 * returning. This means that the xfsaild will not get stuck trying
1054 * to push on stale inode buffers.
1055 */
1056int
1057xfs_buf_trylock(
1058 struct xfs_buf *bp)
1059{
1060 int locked;
1061
1062 locked = down_trylock(&bp->b_sema) == 0;
1063 if (locked) {
1064 XB_SET_OWNER(bp);
1065 trace_xfs_buf_trylock(bp, _RET_IP_);
1066 } else {
1067 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1068 }
1069 return locked;
1070}
1071
1072/*
1073 * Lock a buffer object.
1074 *
1075 * If we come across a stale, pinned, locked buffer, we know that we
1076 * are being asked to lock a buffer that has been reallocated. Because
1077 * it is pinned, we know that the log has not been pushed to disk and
1078 * hence it will still be locked. Rather than sleeping until someone
1079 * else pushes the log, push it ourselves before trying to get the lock.
1080 */
1081void
1082xfs_buf_lock(
1083 struct xfs_buf *bp)
1084{
1085 trace_xfs_buf_lock(bp, _RET_IP_);
1086
1087 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1088 xfs_log_force(bp->b_target->bt_mount, 0);
1089 down(&bp->b_sema);
1090 XB_SET_OWNER(bp);
1091
1092 trace_xfs_buf_lock_done(bp, _RET_IP_);
1093}
1094
1095void
1096xfs_buf_unlock(
1097 struct xfs_buf *bp)
1098{
1099 ASSERT(xfs_buf_islocked(bp));
1100
1101 XB_CLEAR_OWNER(bp);
1102 up(&bp->b_sema);
1103
1104 trace_xfs_buf_unlock(bp, _RET_IP_);
1105}
1106
1107STATIC void
1108xfs_buf_wait_unpin(
1109 xfs_buf_t *bp)
1110{
1111 DECLARE_WAITQUEUE (wait, current);
1112
1113 if (atomic_read(&bp->b_pin_count) == 0)
1114 return;
1115
1116 add_wait_queue(&bp->b_waiters, &wait);
1117 for (;;) {
1118 set_current_state(TASK_UNINTERRUPTIBLE);
1119 if (atomic_read(&bp->b_pin_count) == 0)
1120 break;
1121 io_schedule();
1122 }
1123 remove_wait_queue(&bp->b_waiters, &wait);
1124 set_current_state(TASK_RUNNING);
1125}
1126
1127/*
1128 * Buffer Utility Routines
1129 */
1130
1131void
1132xfs_buf_ioend(
1133 struct xfs_buf *bp)
1134{
1135 bool read = bp->b_flags & XBF_READ;
1136
1137 trace_xfs_buf_iodone(bp, _RET_IP_);
1138
1139 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1140
1141 /*
1142 * Pull in IO completion errors now. We are guaranteed to be running
1143 * single threaded, so we don't need the lock to read b_io_error.
1144 */
1145 if (!bp->b_error && bp->b_io_error)
1146 xfs_buf_ioerror(bp, bp->b_io_error);
1147
1148 /* Only validate buffers that were read without errors */
1149 if (read && !bp->b_error && bp->b_ops) {
1150 ASSERT(!bp->b_iodone);
1151 bp->b_ops->verify_read(bp);
1152 }
1153
1154 if (!bp->b_error)
1155 bp->b_flags |= XBF_DONE;
1156
1157 if (bp->b_iodone)
1158 (*(bp->b_iodone))(bp);
1159 else if (bp->b_flags & XBF_ASYNC)
1160 xfs_buf_relse(bp);
1161 else
1162 complete(&bp->b_iowait);
1163}
1164
1165static void
1166xfs_buf_ioend_work(
1167 struct work_struct *work)
1168{
1169 struct xfs_buf *bp =
1170 container_of(work, xfs_buf_t, b_ioend_work);
1171
1172 xfs_buf_ioend(bp);
1173}
1174
1175static void
1176xfs_buf_ioend_async(
1177 struct xfs_buf *bp)
1178{
1179 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1180 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1181}
1182
1183void
1184__xfs_buf_ioerror(
1185 xfs_buf_t *bp,
1186 int error,
1187 xfs_failaddr_t failaddr)
1188{
1189 ASSERT(error <= 0 && error >= -1000);
1190 bp->b_error = error;
1191 trace_xfs_buf_ioerror(bp, error, failaddr);
1192}
1193
1194void
1195xfs_buf_ioerror_alert(
1196 struct xfs_buf *bp,
1197 const char *func)
1198{
1199 xfs_alert(bp->b_target->bt_mount,
1200"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1201 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1202 -bp->b_error);
1203}
1204
1205int
1206xfs_bwrite(
1207 struct xfs_buf *bp)
1208{
1209 int error;
1210
1211 ASSERT(xfs_buf_islocked(bp));
1212
1213 bp->b_flags |= XBF_WRITE;
1214 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1215 XBF_WRITE_FAIL | XBF_DONE);
1216
1217 error = xfs_buf_submit_wait(bp);
1218 if (error) {
1219 xfs_force_shutdown(bp->b_target->bt_mount,
1220 SHUTDOWN_META_IO_ERROR);
1221 }
1222 return error;
1223}
1224
1225static void
1226xfs_buf_bio_end_io(
1227 struct bio *bio)
1228{
1229 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1230
1231 /*
1232 * don't overwrite existing errors - otherwise we can lose errors on
1233 * buffers that require multiple bios to complete.
1234 */
1235 if (bio->bi_status) {
1236 int error = blk_status_to_errno(bio->bi_status);
1237
1238 cmpxchg(&bp->b_io_error, 0, error);
1239 }
1240
1241 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1242 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1243
1244 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1245 xfs_buf_ioend_async(bp);
1246 bio_put(bio);
1247}
1248
1249static void
1250xfs_buf_ioapply_map(
1251 struct xfs_buf *bp,
1252 int map,
1253 int *buf_offset,
1254 int *count,
1255 int op,
1256 int op_flags)
1257{
1258 int page_index;
1259 int total_nr_pages = bp->b_page_count;
1260 int nr_pages;
1261 struct bio *bio;
1262 sector_t sector = bp->b_maps[map].bm_bn;
1263 int size;
1264 int offset;
1265
1266 /* skip the pages in the buffer before the start offset */
1267 page_index = 0;
1268 offset = *buf_offset;
1269 while (offset >= PAGE_SIZE) {
1270 page_index++;
1271 offset -= PAGE_SIZE;
1272 }
1273
1274 /*
1275 * Limit the IO size to the length of the current vector, and update the
1276 * remaining IO count for the next time around.
1277 */
1278 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1279 *count -= size;
1280 *buf_offset += size;
1281
1282next_chunk:
1283 atomic_inc(&bp->b_io_remaining);
1284 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1285
1286 bio = bio_alloc(GFP_NOIO, nr_pages);
1287 bio_set_dev(bio, bp->b_target->bt_bdev);
1288 bio->bi_iter.bi_sector = sector;
1289 bio->bi_end_io = xfs_buf_bio_end_io;
1290 bio->bi_private = bp;
1291 bio_set_op_attrs(bio, op, op_flags);
1292
1293 for (; size && nr_pages; nr_pages--, page_index++) {
1294 int rbytes, nbytes = PAGE_SIZE - offset;
1295
1296 if (nbytes > size)
1297 nbytes = size;
1298
1299 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1300 offset);
1301 if (rbytes < nbytes)
1302 break;
1303
1304 offset = 0;
1305 sector += BTOBB(nbytes);
1306 size -= nbytes;
1307 total_nr_pages--;
1308 }
1309
1310 if (likely(bio->bi_iter.bi_size)) {
1311 if (xfs_buf_is_vmapped(bp)) {
1312 flush_kernel_vmap_range(bp->b_addr,
1313 xfs_buf_vmap_len(bp));
1314 }
1315 submit_bio(bio);
1316 if (size)
1317 goto next_chunk;
1318 } else {
1319 /*
1320 * This is guaranteed not to be the last io reference count
1321 * because the caller (xfs_buf_submit) holds a count itself.
1322 */
1323 atomic_dec(&bp->b_io_remaining);
1324 xfs_buf_ioerror(bp, -EIO);
1325 bio_put(bio);
1326 }
1327
1328}
1329
1330STATIC void
1331_xfs_buf_ioapply(
1332 struct xfs_buf *bp)
1333{
1334 struct blk_plug plug;
1335 int op;
1336 int op_flags = 0;
1337 int offset;
1338 int size;
1339 int i;
1340
1341 /*
1342 * Make sure we capture only current IO errors rather than stale errors
1343 * left over from previous use of the buffer (e.g. failed readahead).
1344 */
1345 bp->b_error = 0;
1346
1347 /*
1348 * Initialize the I/O completion workqueue if we haven't yet or the
1349 * submitter has not opted to specify a custom one.
1350 */
1351 if (!bp->b_ioend_wq)
1352 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1353
1354 if (bp->b_flags & XBF_WRITE) {
1355 op = REQ_OP_WRITE;
1356 if (bp->b_flags & XBF_SYNCIO)
1357 op_flags = REQ_SYNC;
1358 if (bp->b_flags & XBF_FUA)
1359 op_flags |= REQ_FUA;
1360 if (bp->b_flags & XBF_FLUSH)
1361 op_flags |= REQ_PREFLUSH;
1362
1363 /*
1364 * Run the write verifier callback function if it exists. If
1365 * this function fails it will mark the buffer with an error and
1366 * the IO should not be dispatched.
1367 */
1368 if (bp->b_ops) {
1369 bp->b_ops->verify_write(bp);
1370 if (bp->b_error) {
1371 xfs_force_shutdown(bp->b_target->bt_mount,
1372 SHUTDOWN_CORRUPT_INCORE);
1373 return;
1374 }
1375 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1376 struct xfs_mount *mp = bp->b_target->bt_mount;
1377
1378 /*
1379 * non-crc filesystems don't attach verifiers during
1380 * log recovery, so don't warn for such filesystems.
1381 */
1382 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1383 xfs_warn(mp,
1384 "%s: no buf ops on daddr 0x%llx len %d",
1385 __func__, bp->b_bn, bp->b_length);
1386 xfs_hex_dump(bp->b_addr,
1387 XFS_CORRUPTION_DUMP_LEN);
1388 dump_stack();
1389 }
1390 }
1391 } else if (bp->b_flags & XBF_READ_AHEAD) {
1392 op = REQ_OP_READ;
1393 op_flags = REQ_RAHEAD;
1394 } else {
1395 op = REQ_OP_READ;
1396 }
1397
1398 /* we only use the buffer cache for meta-data */
1399 op_flags |= REQ_META;
1400
1401 /*
1402 * Walk all the vectors issuing IO on them. Set up the initial offset
1403 * into the buffer and the desired IO size before we start -
1404 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1405 * subsequent call.
1406 */
1407 offset = bp->b_offset;
1408 size = BBTOB(bp->b_io_length);
1409 blk_start_plug(&plug);
1410 for (i = 0; i < bp->b_map_count; i++) {
1411 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1412 if (bp->b_error)
1413 break;
1414 if (size <= 0)
1415 break; /* all done */
1416 }
1417 blk_finish_plug(&plug);
1418}
1419
1420/*
1421 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1422 * the current reference to the IO. It is not safe to reference the buffer after
1423 * a call to this function unless the caller holds an additional reference
1424 * itself.
1425 */
1426void
1427xfs_buf_submit(
1428 struct xfs_buf *bp)
1429{
1430 trace_xfs_buf_submit(bp, _RET_IP_);
1431
1432 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1433 ASSERT(bp->b_flags & XBF_ASYNC);
1434
1435 /* on shutdown we stale and complete the buffer immediately */
1436 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1437 xfs_buf_ioerror(bp, -EIO);
1438 bp->b_flags &= ~XBF_DONE;
1439 xfs_buf_stale(bp);
1440 xfs_buf_ioend(bp);
1441 return;
1442 }
1443
1444 if (bp->b_flags & XBF_WRITE)
1445 xfs_buf_wait_unpin(bp);
1446
1447 /* clear the internal error state to avoid spurious errors */
1448 bp->b_io_error = 0;
1449
1450 /*
1451 * The caller's reference is released during I/O completion.
1452 * This occurs some time after the last b_io_remaining reference is
1453 * released, so after we drop our Io reference we have to have some
1454 * other reference to ensure the buffer doesn't go away from underneath
1455 * us. Take a direct reference to ensure we have safe access to the
1456 * buffer until we are finished with it.
1457 */
1458 xfs_buf_hold(bp);
1459
1460 /*
1461 * Set the count to 1 initially, this will stop an I/O completion
1462 * callout which happens before we have started all the I/O from calling
1463 * xfs_buf_ioend too early.
1464 */
1465 atomic_set(&bp->b_io_remaining, 1);
1466 xfs_buf_ioacct_inc(bp);
1467 _xfs_buf_ioapply(bp);
1468
1469 /*
1470 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1471 * reference we took above. If we drop it to zero, run completion so
1472 * that we don't return to the caller with completion still pending.
1473 */
1474 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1475 if (bp->b_error)
1476 xfs_buf_ioend(bp);
1477 else
1478 xfs_buf_ioend_async(bp);
1479 }
1480
1481 xfs_buf_rele(bp);
1482 /* Note: it is not safe to reference bp now we've dropped our ref */
1483}
1484
1485/*
1486 * Synchronous buffer IO submission path, read or write.
1487 */
1488int
1489xfs_buf_submit_wait(
1490 struct xfs_buf *bp)
1491{
1492 int error;
1493
1494 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1495
1496 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1497
1498 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1499 xfs_buf_ioerror(bp, -EIO);
1500 xfs_buf_stale(bp);
1501 bp->b_flags &= ~XBF_DONE;
1502 return -EIO;
1503 }
1504
1505 if (bp->b_flags & XBF_WRITE)
1506 xfs_buf_wait_unpin(bp);
1507
1508 /* clear the internal error state to avoid spurious errors */
1509 bp->b_io_error = 0;
1510
1511 /*
1512 * For synchronous IO, the IO does not inherit the submitters reference
1513 * count, nor the buffer lock. Hence we cannot release the reference we
1514 * are about to take until we've waited for all IO completion to occur,
1515 * including any xfs_buf_ioend_async() work that may be pending.
1516 */
1517 xfs_buf_hold(bp);
1518
1519 /*
1520 * Set the count to 1 initially, this will stop an I/O completion
1521 * callout which happens before we have started all the I/O from calling
1522 * xfs_buf_ioend too early.
1523 */
1524 atomic_set(&bp->b_io_remaining, 1);
1525 _xfs_buf_ioapply(bp);
1526
1527 /*
1528 * make sure we run completion synchronously if it raced with us and is
1529 * already complete.
1530 */
1531 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1532 xfs_buf_ioend(bp);
1533
1534 /* wait for completion before gathering the error from the buffer */
1535 trace_xfs_buf_iowait(bp, _RET_IP_);
1536 wait_for_completion(&bp->b_iowait);
1537 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1538 error = bp->b_error;
1539
1540 /*
1541 * all done now, we can release the hold that keeps the buffer
1542 * referenced for the entire IO.
1543 */
1544 xfs_buf_rele(bp);
1545 return error;
1546}
1547
1548void *
1549xfs_buf_offset(
1550 struct xfs_buf *bp,
1551 size_t offset)
1552{
1553 struct page *page;
1554
1555 if (bp->b_addr)
1556 return bp->b_addr + offset;
1557
1558 offset += bp->b_offset;
1559 page = bp->b_pages[offset >> PAGE_SHIFT];
1560 return page_address(page) + (offset & (PAGE_SIZE-1));
1561}
1562
1563/*
1564 * Move data into or out of a buffer.
1565 */
1566void
1567xfs_buf_iomove(
1568 xfs_buf_t *bp, /* buffer to process */
1569 size_t boff, /* starting buffer offset */
1570 size_t bsize, /* length to copy */
1571 void *data, /* data address */
1572 xfs_buf_rw_t mode) /* read/write/zero flag */
1573{
1574 size_t bend;
1575
1576 bend = boff + bsize;
1577 while (boff < bend) {
1578 struct page *page;
1579 int page_index, page_offset, csize;
1580
1581 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1582 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1583 page = bp->b_pages[page_index];
1584 csize = min_t(size_t, PAGE_SIZE - page_offset,
1585 BBTOB(bp->b_io_length) - boff);
1586
1587 ASSERT((csize + page_offset) <= PAGE_SIZE);
1588
1589 switch (mode) {
1590 case XBRW_ZERO:
1591 memset(page_address(page) + page_offset, 0, csize);
1592 break;
1593 case XBRW_READ:
1594 memcpy(data, page_address(page) + page_offset, csize);
1595 break;
1596 case XBRW_WRITE:
1597 memcpy(page_address(page) + page_offset, data, csize);
1598 }
1599
1600 boff += csize;
1601 data += csize;
1602 }
1603}
1604
1605/*
1606 * Handling of buffer targets (buftargs).
1607 */
1608
1609/*
1610 * Wait for any bufs with callbacks that have been submitted but have not yet
1611 * returned. These buffers will have an elevated hold count, so wait on those
1612 * while freeing all the buffers only held by the LRU.
1613 */
1614static enum lru_status
1615xfs_buftarg_wait_rele(
1616 struct list_head *item,
1617 struct list_lru_one *lru,
1618 spinlock_t *lru_lock,
1619 void *arg)
1620
1621{
1622 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1623 struct list_head *dispose = arg;
1624
1625 if (atomic_read(&bp->b_hold) > 1) {
1626 /* need to wait, so skip it this pass */
1627 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1628 return LRU_SKIP;
1629 }
1630 if (!spin_trylock(&bp->b_lock))
1631 return LRU_SKIP;
1632
1633 /*
1634 * clear the LRU reference count so the buffer doesn't get
1635 * ignored in xfs_buf_rele().
1636 */
1637 atomic_set(&bp->b_lru_ref, 0);
1638 bp->b_state |= XFS_BSTATE_DISPOSE;
1639 list_lru_isolate_move(lru, item, dispose);
1640 spin_unlock(&bp->b_lock);
1641 return LRU_REMOVED;
1642}
1643
1644void
1645xfs_wait_buftarg(
1646 struct xfs_buftarg *btp)
1647{
1648 LIST_HEAD(dispose);
1649 int loop = 0;
1650
1651 /*
1652 * First wait on the buftarg I/O count for all in-flight buffers to be
1653 * released. This is critical as new buffers do not make the LRU until
1654 * they are released.
1655 *
1656 * Next, flush the buffer workqueue to ensure all completion processing
1657 * has finished. Just waiting on buffer locks is not sufficient for
1658 * async IO as the reference count held over IO is not released until
1659 * after the buffer lock is dropped. Hence we need to ensure here that
1660 * all reference counts have been dropped before we start walking the
1661 * LRU list.
1662 */
1663 while (percpu_counter_sum(&btp->bt_io_count))
1664 delay(100);
1665 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1666
1667 /* loop until there is nothing left on the lru list. */
1668 while (list_lru_count(&btp->bt_lru)) {
1669 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1670 &dispose, LONG_MAX);
1671
1672 while (!list_empty(&dispose)) {
1673 struct xfs_buf *bp;
1674 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1675 list_del_init(&bp->b_lru);
1676 if (bp->b_flags & XBF_WRITE_FAIL) {
1677 xfs_alert(btp->bt_mount,
1678"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1679 (long long)bp->b_bn);
1680 xfs_alert(btp->bt_mount,
1681"Please run xfs_repair to determine the extent of the problem.");
1682 }
1683 xfs_buf_rele(bp);
1684 }
1685 if (loop++ != 0)
1686 delay(100);
1687 }
1688}
1689
1690static enum lru_status
1691xfs_buftarg_isolate(
1692 struct list_head *item,
1693 struct list_lru_one *lru,
1694 spinlock_t *lru_lock,
1695 void *arg)
1696{
1697 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1698 struct list_head *dispose = arg;
1699
1700 /*
1701 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1702 * If we fail to get the lock, just skip it.
1703 */
1704 if (!spin_trylock(&bp->b_lock))
1705 return LRU_SKIP;
1706 /*
1707 * Decrement the b_lru_ref count unless the value is already
1708 * zero. If the value is already zero, we need to reclaim the
1709 * buffer, otherwise it gets another trip through the LRU.
1710 */
1711 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1712 spin_unlock(&bp->b_lock);
1713 return LRU_ROTATE;
1714 }
1715
1716 bp->b_state |= XFS_BSTATE_DISPOSE;
1717 list_lru_isolate_move(lru, item, dispose);
1718 spin_unlock(&bp->b_lock);
1719 return LRU_REMOVED;
1720}
1721
1722static unsigned long
1723xfs_buftarg_shrink_scan(
1724 struct shrinker *shrink,
1725 struct shrink_control *sc)
1726{
1727 struct xfs_buftarg *btp = container_of(shrink,
1728 struct xfs_buftarg, bt_shrinker);
1729 LIST_HEAD(dispose);
1730 unsigned long freed;
1731
1732 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1733 xfs_buftarg_isolate, &dispose);
1734
1735 while (!list_empty(&dispose)) {
1736 struct xfs_buf *bp;
1737 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1738 list_del_init(&bp->b_lru);
1739 xfs_buf_rele(bp);
1740 }
1741
1742 return freed;
1743}
1744
1745static unsigned long
1746xfs_buftarg_shrink_count(
1747 struct shrinker *shrink,
1748 struct shrink_control *sc)
1749{
1750 struct xfs_buftarg *btp = container_of(shrink,
1751 struct xfs_buftarg, bt_shrinker);
1752 return list_lru_shrink_count(&btp->bt_lru, sc);
1753}
1754
1755void
1756xfs_free_buftarg(
1757 struct xfs_buftarg *btp)
1758{
1759 unregister_shrinker(&btp->bt_shrinker);
1760 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1761 percpu_counter_destroy(&btp->bt_io_count);
1762 list_lru_destroy(&btp->bt_lru);
1763
1764 xfs_blkdev_issue_flush(btp);
1765
1766 kmem_free(btp);
1767}
1768
1769int
1770xfs_setsize_buftarg(
1771 xfs_buftarg_t *btp,
1772 unsigned int sectorsize)
1773{
1774 /* Set up metadata sector size info */
1775 btp->bt_meta_sectorsize = sectorsize;
1776 btp->bt_meta_sectormask = sectorsize - 1;
1777
1778 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1779 xfs_warn(btp->bt_mount,
1780 "Cannot set_blocksize to %u on device %pg",
1781 sectorsize, btp->bt_bdev);
1782 return -EINVAL;
1783 }
1784
1785 /* Set up device logical sector size mask */
1786 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1787 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1788
1789 return 0;
1790}
1791
1792/*
1793 * When allocating the initial buffer target we have not yet
1794 * read in the superblock, so don't know what sized sectors
1795 * are being used at this early stage. Play safe.
1796 */
1797STATIC int
1798xfs_setsize_buftarg_early(
1799 xfs_buftarg_t *btp,
1800 struct block_device *bdev)
1801{
1802 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1803}
1804
1805xfs_buftarg_t *
1806xfs_alloc_buftarg(
1807 struct xfs_mount *mp,
1808 struct block_device *bdev,
1809 struct dax_device *dax_dev)
1810{
1811 xfs_buftarg_t *btp;
1812
1813 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1814
1815 btp->bt_mount = mp;
1816 btp->bt_dev = bdev->bd_dev;
1817 btp->bt_bdev = bdev;
1818 btp->bt_daxdev = dax_dev;
1819
1820 if (xfs_setsize_buftarg_early(btp, bdev))
1821 goto error_free;
1822
1823 if (list_lru_init(&btp->bt_lru))
1824 goto error_free;
1825
1826 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1827 goto error_lru;
1828
1829 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1830 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1831 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1832 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1833 if (register_shrinker(&btp->bt_shrinker))
1834 goto error_pcpu;
1835 return btp;
1836
1837error_pcpu:
1838 percpu_counter_destroy(&btp->bt_io_count);
1839error_lru:
1840 list_lru_destroy(&btp->bt_lru);
1841error_free:
1842 kmem_free(btp);
1843 return NULL;
1844}
1845
1846/*
1847 * Cancel a delayed write list.
1848 *
1849 * Remove each buffer from the list, clear the delwri queue flag and drop the
1850 * associated buffer reference.
1851 */
1852void
1853xfs_buf_delwri_cancel(
1854 struct list_head *list)
1855{
1856 struct xfs_buf *bp;
1857
1858 while (!list_empty(list)) {
1859 bp = list_first_entry(list, struct xfs_buf, b_list);
1860
1861 xfs_buf_lock(bp);
1862 bp->b_flags &= ~_XBF_DELWRI_Q;
1863 list_del_init(&bp->b_list);
1864 xfs_buf_relse(bp);
1865 }
1866}
1867
1868/*
1869 * Add a buffer to the delayed write list.
1870 *
1871 * This queues a buffer for writeout if it hasn't already been. Note that
1872 * neither this routine nor the buffer list submission functions perform
1873 * any internal synchronization. It is expected that the lists are thread-local
1874 * to the callers.
1875 *
1876 * Returns true if we queued up the buffer, or false if it already had
1877 * been on the buffer list.
1878 */
1879bool
1880xfs_buf_delwri_queue(
1881 struct xfs_buf *bp,
1882 struct list_head *list)
1883{
1884 ASSERT(xfs_buf_islocked(bp));
1885 ASSERT(!(bp->b_flags & XBF_READ));
1886
1887 /*
1888 * If the buffer is already marked delwri it already is queued up
1889 * by someone else for imediate writeout. Just ignore it in that
1890 * case.
1891 */
1892 if (bp->b_flags & _XBF_DELWRI_Q) {
1893 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1894 return false;
1895 }
1896
1897 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1898
1899 /*
1900 * If a buffer gets written out synchronously or marked stale while it
1901 * is on a delwri list we lazily remove it. To do this, the other party
1902 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1903 * It remains referenced and on the list. In a rare corner case it
1904 * might get readded to a delwri list after the synchronous writeout, in
1905 * which case we need just need to re-add the flag here.
1906 */
1907 bp->b_flags |= _XBF_DELWRI_Q;
1908 if (list_empty(&bp->b_list)) {
1909 atomic_inc(&bp->b_hold);
1910 list_add_tail(&bp->b_list, list);
1911 }
1912
1913 return true;
1914}
1915
1916/*
1917 * Compare function is more complex than it needs to be because
1918 * the return value is only 32 bits and we are doing comparisons
1919 * on 64 bit values
1920 */
1921static int
1922xfs_buf_cmp(
1923 void *priv,
1924 struct list_head *a,
1925 struct list_head *b)
1926{
1927 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1928 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1929 xfs_daddr_t diff;
1930
1931 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1932 if (diff < 0)
1933 return -1;
1934 if (diff > 0)
1935 return 1;
1936 return 0;
1937}
1938
1939/*
1940 * submit buffers for write.
1941 *
1942 * When we have a large buffer list, we do not want to hold all the buffers
1943 * locked while we block on the request queue waiting for IO dispatch. To avoid
1944 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1945 * the lock hold times for lists which may contain thousands of objects.
1946 *
1947 * To do this, we sort the buffer list before we walk the list to lock and
1948 * submit buffers, and we plug and unplug around each group of buffers we
1949 * submit.
1950 */
1951static int
1952xfs_buf_delwri_submit_buffers(
1953 struct list_head *buffer_list,
1954 struct list_head *wait_list)
1955{
1956 struct xfs_buf *bp, *n;
1957 LIST_HEAD (submit_list);
1958 int pinned = 0;
1959 struct blk_plug plug;
1960
1961 list_sort(NULL, buffer_list, xfs_buf_cmp);
1962
1963 blk_start_plug(&plug);
1964 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1965 if (!wait_list) {
1966 if (xfs_buf_ispinned(bp)) {
1967 pinned++;
1968 continue;
1969 }
1970 if (!xfs_buf_trylock(bp))
1971 continue;
1972 } else {
1973 xfs_buf_lock(bp);
1974 }
1975
1976 /*
1977 * Someone else might have written the buffer synchronously or
1978 * marked it stale in the meantime. In that case only the
1979 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1980 * reference and remove it from the list here.
1981 */
1982 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1983 list_del_init(&bp->b_list);
1984 xfs_buf_relse(bp);
1985 continue;
1986 }
1987
1988 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1989
1990 /*
1991 * We do all IO submission async. This means if we need
1992 * to wait for IO completion we need to take an extra
1993 * reference so the buffer is still valid on the other
1994 * side. We need to move the buffer onto the io_list
1995 * at this point so the caller can still access it.
1996 */
1997 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1998 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1999 if (wait_list) {
2000 xfs_buf_hold(bp);
2001 list_move_tail(&bp->b_list, wait_list);
2002 } else
2003 list_del_init(&bp->b_list);
2004
2005 xfs_buf_submit(bp);
2006 }
2007 blk_finish_plug(&plug);
2008
2009 return pinned;
2010}
2011
2012/*
2013 * Write out a buffer list asynchronously.
2014 *
2015 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2016 * out and not wait for I/O completion on any of the buffers. This interface
2017 * is only safely useable for callers that can track I/O completion by higher
2018 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2019 * function.
2020 */
2021int
2022xfs_buf_delwri_submit_nowait(
2023 struct list_head *buffer_list)
2024{
2025 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2026}
2027
2028/*
2029 * Write out a buffer list synchronously.
2030 *
2031 * This will take the @buffer_list, write all buffers out and wait for I/O
2032 * completion on all of the buffers. @buffer_list is consumed by the function,
2033 * so callers must have some other way of tracking buffers if they require such
2034 * functionality.
2035 */
2036int
2037xfs_buf_delwri_submit(
2038 struct list_head *buffer_list)
2039{
2040 LIST_HEAD (wait_list);
2041 int error = 0, error2;
2042 struct xfs_buf *bp;
2043
2044 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2045
2046 /* Wait for IO to complete. */
2047 while (!list_empty(&wait_list)) {
2048 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2049
2050 list_del_init(&bp->b_list);
2051
2052 /* locking the buffer will wait for async IO completion. */
2053 xfs_buf_lock(bp);
2054 error2 = bp->b_error;
2055 xfs_buf_relse(bp);
2056 if (!error)
2057 error = error2;
2058 }
2059
2060 return error;
2061}
2062
2063/*
2064 * Push a single buffer on a delwri queue.
2065 *
2066 * The purpose of this function is to submit a single buffer of a delwri queue
2067 * and return with the buffer still on the original queue. The waiting delwri
2068 * buffer submission infrastructure guarantees transfer of the delwri queue
2069 * buffer reference to a temporary wait list. We reuse this infrastructure to
2070 * transfer the buffer back to the original queue.
2071 *
2072 * Note the buffer transitions from the queued state, to the submitted and wait
2073 * listed state and back to the queued state during this call. The buffer
2074 * locking and queue management logic between _delwri_pushbuf() and
2075 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2076 * before returning.
2077 */
2078int
2079xfs_buf_delwri_pushbuf(
2080 struct xfs_buf *bp,
2081 struct list_head *buffer_list)
2082{
2083 LIST_HEAD (submit_list);
2084 int error;
2085
2086 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2087
2088 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2089
2090 /*
2091 * Isolate the buffer to a new local list so we can submit it for I/O
2092 * independently from the rest of the original list.
2093 */
2094 xfs_buf_lock(bp);
2095 list_move(&bp->b_list, &submit_list);
2096 xfs_buf_unlock(bp);
2097
2098 /*
2099 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2100 * the buffer on the wait list with an associated reference. Rather than
2101 * bounce the buffer from a local wait list back to the original list
2102 * after I/O completion, reuse the original list as the wait list.
2103 */
2104 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2105
2106 /*
2107 * The buffer is now under I/O and wait listed as during typical delwri
2108 * submission. Lock the buffer to wait for I/O completion. Rather than
2109 * remove the buffer from the wait list and release the reference, we
2110 * want to return with the buffer queued to the original list. The
2111 * buffer already sits on the original list with a wait list reference,
2112 * however. If we let the queue inherit that wait list reference, all we
2113 * need to do is reset the DELWRI_Q flag.
2114 */
2115 xfs_buf_lock(bp);
2116 error = bp->b_error;
2117 bp->b_flags |= _XBF_DELWRI_Q;
2118 xfs_buf_unlock(bp);
2119
2120 return error;
2121}
2122
2123int __init
2124xfs_buf_init(void)
2125{
2126 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2127 KM_ZONE_HWALIGN, NULL);
2128 if (!xfs_buf_zone)
2129 goto out;
2130
2131 return 0;
2132
2133 out:
2134 return -ENOMEM;
2135}
2136
2137void
2138xfs_buf_terminate(void)
2139{
2140 kmem_zone_destroy(xfs_buf_zone);
2141}
2142
2143void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2144{
2145 /*
2146 * Set the lru reference count to 0 based on the error injection tag.
2147 * This allows userspace to disrupt buffer caching for debug/testing
2148 * purposes.
2149 */
2150 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2151 XFS_ERRTAG_BUF_LRU_REF))
2152 lru_ref = 0;
2153
2154 atomic_set(&bp->b_lru_ref, lru_ref);
2155}
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37#include "xfs_sb.h"
38#include "xfs_log.h"
39#include "xfs_ag.h"
40#include "xfs_mount.h"
41#include "xfs_trace.h"
42
43static kmem_zone_t *xfs_buf_zone;
44
45static struct workqueue_struct *xfslogd_workqueue;
46
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51#else
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
55#endif
56
57#define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
82/*
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88STATIC void
89xfs_buf_lru_add(
90 struct xfs_buf *bp)
91{
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
99 }
100 spin_unlock(&btp->bt_lru_lock);
101}
102
103/*
104 * xfs_buf_lru_del - remove a buffer from the LRU
105 *
106 * The unlocked check is safe here because it only occurs when there are not
107 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
108 * to optimise the shrinker removing the buffer from the LRU and calling
109 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
110 * bt_lru_lock.
111 */
112STATIC void
113xfs_buf_lru_del(
114 struct xfs_buf *bp)
115{
116 struct xfs_buftarg *btp = bp->b_target;
117
118 if (list_empty(&bp->b_lru))
119 return;
120
121 spin_lock(&btp->bt_lru_lock);
122 if (!list_empty(&bp->b_lru)) {
123 list_del_init(&bp->b_lru);
124 btp->bt_lru_nr--;
125 }
126 spin_unlock(&btp->bt_lru_lock);
127}
128
129/*
130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
131 * b_lru_ref count so that the buffer is freed immediately when the buffer
132 * reference count falls to zero. If the buffer is already on the LRU, we need
133 * to remove the reference that LRU holds on the buffer.
134 *
135 * This prevents build-up of stale buffers on the LRU.
136 */
137void
138xfs_buf_stale(
139 struct xfs_buf *bp)
140{
141 ASSERT(xfs_buf_islocked(bp));
142
143 bp->b_flags |= XBF_STALE;
144
145 /*
146 * Clear the delwri status so that a delwri queue walker will not
147 * flush this buffer to disk now that it is stale. The delwri queue has
148 * a reference to the buffer, so this is safe to do.
149 */
150 bp->b_flags &= ~_XBF_DELWRI_Q;
151
152 atomic_set(&(bp)->b_lru_ref, 0);
153 if (!list_empty(&bp->b_lru)) {
154 struct xfs_buftarg *btp = bp->b_target;
155
156 spin_lock(&btp->bt_lru_lock);
157 if (!list_empty(&bp->b_lru)) {
158 list_del_init(&bp->b_lru);
159 btp->bt_lru_nr--;
160 atomic_dec(&bp->b_hold);
161 }
162 spin_unlock(&btp->bt_lru_lock);
163 }
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
165}
166
167struct xfs_buf *
168xfs_buf_alloc(
169 struct xfs_buftarg *target,
170 xfs_daddr_t blkno,
171 size_t numblks,
172 xfs_buf_flags_t flags)
173{
174 struct xfs_buf *bp;
175
176 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
177 if (unlikely(!bp))
178 return NULL;
179
180 /*
181 * We don't want certain flags to appear in b_flags unless they are
182 * specifically set by later operations on the buffer.
183 */
184 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
185
186 atomic_set(&bp->b_hold, 1);
187 atomic_set(&bp->b_lru_ref, 1);
188 init_completion(&bp->b_iowait);
189 INIT_LIST_HEAD(&bp->b_lru);
190 INIT_LIST_HEAD(&bp->b_list);
191 RB_CLEAR_NODE(&bp->b_rbnode);
192 sema_init(&bp->b_sema, 0); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195
196 /*
197 * Set length and io_length to the same value initially.
198 * I/O routines should use io_length, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
201 bp->b_length = numblks;
202 bp->b_io_length = numblks;
203 bp->b_flags = flags;
204 bp->b_bn = blkno;
205 atomic_set(&bp->b_pin_count, 0);
206 init_waitqueue_head(&bp->b_waiters);
207
208 XFS_STATS_INC(xb_create);
209 trace_xfs_buf_init(bp, _RET_IP_);
210
211 return bp;
212}
213
214/*
215 * Allocate a page array capable of holding a specified number
216 * of pages, and point the page buf at it.
217 */
218STATIC int
219_xfs_buf_get_pages(
220 xfs_buf_t *bp,
221 int page_count,
222 xfs_buf_flags_t flags)
223{
224 /* Make sure that we have a page list */
225 if (bp->b_pages == NULL) {
226 bp->b_page_count = page_count;
227 if (page_count <= XB_PAGES) {
228 bp->b_pages = bp->b_page_array;
229 } else {
230 bp->b_pages = kmem_alloc(sizeof(struct page *) *
231 page_count, KM_NOFS);
232 if (bp->b_pages == NULL)
233 return -ENOMEM;
234 }
235 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
236 }
237 return 0;
238}
239
240/*
241 * Frees b_pages if it was allocated.
242 */
243STATIC void
244_xfs_buf_free_pages(
245 xfs_buf_t *bp)
246{
247 if (bp->b_pages != bp->b_page_array) {
248 kmem_free(bp->b_pages);
249 bp->b_pages = NULL;
250 }
251}
252
253/*
254 * Releases the specified buffer.
255 *
256 * The modification state of any associated pages is left unchanged.
257 * The buffer most not be on any hash - use xfs_buf_rele instead for
258 * hashed and refcounted buffers
259 */
260void
261xfs_buf_free(
262 xfs_buf_t *bp)
263{
264 trace_xfs_buf_free(bp, _RET_IP_);
265
266 ASSERT(list_empty(&bp->b_lru));
267
268 if (bp->b_flags & _XBF_PAGES) {
269 uint i;
270
271 if (xfs_buf_is_vmapped(bp))
272 vm_unmap_ram(bp->b_addr - bp->b_offset,
273 bp->b_page_count);
274
275 for (i = 0; i < bp->b_page_count; i++) {
276 struct page *page = bp->b_pages[i];
277
278 __free_page(page);
279 }
280 } else if (bp->b_flags & _XBF_KMEM)
281 kmem_free(bp->b_addr);
282 _xfs_buf_free_pages(bp);
283 kmem_zone_free(xfs_buf_zone, bp);
284}
285
286/*
287 * Allocates all the pages for buffer in question and builds it's page list.
288 */
289STATIC int
290xfs_buf_allocate_memory(
291 xfs_buf_t *bp,
292 uint flags)
293{
294 size_t size;
295 size_t nbytes, offset;
296 gfp_t gfp_mask = xb_to_gfp(flags);
297 unsigned short page_count, i;
298 xfs_off_t start, end;
299 int error;
300
301 /*
302 * for buffers that are contained within a single page, just allocate
303 * the memory from the heap - there's no need for the complexity of
304 * page arrays to keep allocation down to order 0.
305 */
306 size = BBTOB(bp->b_length);
307 if (size < PAGE_SIZE) {
308 bp->b_addr = kmem_alloc(size, KM_NOFS);
309 if (!bp->b_addr) {
310 /* low memory - use alloc_page loop instead */
311 goto use_alloc_page;
312 }
313
314 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
315 ((unsigned long)bp->b_addr & PAGE_MASK)) {
316 /* b_addr spans two pages - use alloc_page instead */
317 kmem_free(bp->b_addr);
318 bp->b_addr = NULL;
319 goto use_alloc_page;
320 }
321 bp->b_offset = offset_in_page(bp->b_addr);
322 bp->b_pages = bp->b_page_array;
323 bp->b_pages[0] = virt_to_page(bp->b_addr);
324 bp->b_page_count = 1;
325 bp->b_flags |= _XBF_KMEM;
326 return 0;
327 }
328
329use_alloc_page:
330 start = BBTOB(bp->b_bn) >> PAGE_SHIFT;
331 end = (BBTOB(bp->b_bn + bp->b_length) + PAGE_SIZE - 1) >> PAGE_SHIFT;
332 page_count = end - start;
333 error = _xfs_buf_get_pages(bp, page_count, flags);
334 if (unlikely(error))
335 return error;
336
337 offset = bp->b_offset;
338 bp->b_flags |= _XBF_PAGES;
339
340 for (i = 0; i < bp->b_page_count; i++) {
341 struct page *page;
342 uint retries = 0;
343retry:
344 page = alloc_page(gfp_mask);
345 if (unlikely(page == NULL)) {
346 if (flags & XBF_READ_AHEAD) {
347 bp->b_page_count = i;
348 error = ENOMEM;
349 goto out_free_pages;
350 }
351
352 /*
353 * This could deadlock.
354 *
355 * But until all the XFS lowlevel code is revamped to
356 * handle buffer allocation failures we can't do much.
357 */
358 if (!(++retries % 100))
359 xfs_err(NULL,
360 "possible memory allocation deadlock in %s (mode:0x%x)",
361 __func__, gfp_mask);
362
363 XFS_STATS_INC(xb_page_retries);
364 congestion_wait(BLK_RW_ASYNC, HZ/50);
365 goto retry;
366 }
367
368 XFS_STATS_INC(xb_page_found);
369
370 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
371 size -= nbytes;
372 bp->b_pages[i] = page;
373 offset = 0;
374 }
375 return 0;
376
377out_free_pages:
378 for (i = 0; i < bp->b_page_count; i++)
379 __free_page(bp->b_pages[i]);
380 return error;
381}
382
383/*
384 * Map buffer into kernel address-space if necessary.
385 */
386STATIC int
387_xfs_buf_map_pages(
388 xfs_buf_t *bp,
389 uint flags)
390{
391 ASSERT(bp->b_flags & _XBF_PAGES);
392 if (bp->b_page_count == 1) {
393 /* A single page buffer is always mappable */
394 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
395 } else if (flags & XBF_UNMAPPED) {
396 bp->b_addr = NULL;
397 } else {
398 int retried = 0;
399
400 do {
401 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
402 -1, PAGE_KERNEL);
403 if (bp->b_addr)
404 break;
405 vm_unmap_aliases();
406 } while (retried++ <= 1);
407
408 if (!bp->b_addr)
409 return -ENOMEM;
410 bp->b_addr += bp->b_offset;
411 }
412
413 return 0;
414}
415
416/*
417 * Finding and Reading Buffers
418 */
419
420/*
421 * Look up, and creates if absent, a lockable buffer for
422 * a given range of an inode. The buffer is returned
423 * locked. No I/O is implied by this call.
424 */
425xfs_buf_t *
426_xfs_buf_find(
427 struct xfs_buftarg *btp,
428 xfs_daddr_t blkno,
429 size_t numblks,
430 xfs_buf_flags_t flags,
431 xfs_buf_t *new_bp)
432{
433 size_t numbytes;
434 struct xfs_perag *pag;
435 struct rb_node **rbp;
436 struct rb_node *parent;
437 xfs_buf_t *bp;
438
439 numbytes = BBTOB(numblks);
440
441 /* Check for IOs smaller than the sector size / not sector aligned */
442 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
443 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
444
445 /* get tree root */
446 pag = xfs_perag_get(btp->bt_mount,
447 xfs_daddr_to_agno(btp->bt_mount, blkno));
448
449 /* walk tree */
450 spin_lock(&pag->pag_buf_lock);
451 rbp = &pag->pag_buf_tree.rb_node;
452 parent = NULL;
453 bp = NULL;
454 while (*rbp) {
455 parent = *rbp;
456 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
457
458 if (blkno < bp->b_bn)
459 rbp = &(*rbp)->rb_left;
460 else if (blkno > bp->b_bn)
461 rbp = &(*rbp)->rb_right;
462 else {
463 /*
464 * found a block number match. If the range doesn't
465 * match, the only way this is allowed is if the buffer
466 * in the cache is stale and the transaction that made
467 * it stale has not yet committed. i.e. we are
468 * reallocating a busy extent. Skip this buffer and
469 * continue searching to the right for an exact match.
470 */
471 if (bp->b_length != numblks) {
472 ASSERT(bp->b_flags & XBF_STALE);
473 rbp = &(*rbp)->rb_right;
474 continue;
475 }
476 atomic_inc(&bp->b_hold);
477 goto found;
478 }
479 }
480
481 /* No match found */
482 if (new_bp) {
483 rb_link_node(&new_bp->b_rbnode, parent, rbp);
484 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
485 /* the buffer keeps the perag reference until it is freed */
486 new_bp->b_pag = pag;
487 spin_unlock(&pag->pag_buf_lock);
488 } else {
489 XFS_STATS_INC(xb_miss_locked);
490 spin_unlock(&pag->pag_buf_lock);
491 xfs_perag_put(pag);
492 }
493 return new_bp;
494
495found:
496 spin_unlock(&pag->pag_buf_lock);
497 xfs_perag_put(pag);
498
499 if (!xfs_buf_trylock(bp)) {
500 if (flags & XBF_TRYLOCK) {
501 xfs_buf_rele(bp);
502 XFS_STATS_INC(xb_busy_locked);
503 return NULL;
504 }
505 xfs_buf_lock(bp);
506 XFS_STATS_INC(xb_get_locked_waited);
507 }
508
509 /*
510 * if the buffer is stale, clear all the external state associated with
511 * it. We need to keep flags such as how we allocated the buffer memory
512 * intact here.
513 */
514 if (bp->b_flags & XBF_STALE) {
515 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
516 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
517 }
518
519 trace_xfs_buf_find(bp, flags, _RET_IP_);
520 XFS_STATS_INC(xb_get_locked);
521 return bp;
522}
523
524/*
525 * Assembles a buffer covering the specified range. The code is optimised for
526 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
527 * more hits than misses.
528 */
529struct xfs_buf *
530xfs_buf_get(
531 xfs_buftarg_t *target,
532 xfs_daddr_t blkno,
533 size_t numblks,
534 xfs_buf_flags_t flags)
535{
536 struct xfs_buf *bp;
537 struct xfs_buf *new_bp;
538 int error = 0;
539
540 bp = _xfs_buf_find(target, blkno, numblks, flags, NULL);
541 if (likely(bp))
542 goto found;
543
544 new_bp = xfs_buf_alloc(target, blkno, numblks, flags);
545 if (unlikely(!new_bp))
546 return NULL;
547
548 error = xfs_buf_allocate_memory(new_bp, flags);
549 if (error) {
550 kmem_zone_free(xfs_buf_zone, new_bp);
551 return NULL;
552 }
553
554 bp = _xfs_buf_find(target, blkno, numblks, flags, new_bp);
555 if (!bp) {
556 xfs_buf_free(new_bp);
557 return NULL;
558 }
559
560 if (bp != new_bp)
561 xfs_buf_free(new_bp);
562
563 bp->b_io_length = bp->b_length;
564
565found:
566 if (!bp->b_addr) {
567 error = _xfs_buf_map_pages(bp, flags);
568 if (unlikely(error)) {
569 xfs_warn(target->bt_mount,
570 "%s: failed to map pages\n", __func__);
571 xfs_buf_relse(bp);
572 return NULL;
573 }
574 }
575
576 XFS_STATS_INC(xb_get);
577 trace_xfs_buf_get(bp, flags, _RET_IP_);
578 return bp;
579}
580
581STATIC int
582_xfs_buf_read(
583 xfs_buf_t *bp,
584 xfs_buf_flags_t flags)
585{
586 ASSERT(!(flags & XBF_WRITE));
587 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
588
589 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
590 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
591
592 xfs_buf_iorequest(bp);
593 if (flags & XBF_ASYNC)
594 return 0;
595 return xfs_buf_iowait(bp);
596}
597
598xfs_buf_t *
599xfs_buf_read(
600 xfs_buftarg_t *target,
601 xfs_daddr_t blkno,
602 size_t numblks,
603 xfs_buf_flags_t flags)
604{
605 xfs_buf_t *bp;
606
607 flags |= XBF_READ;
608
609 bp = xfs_buf_get(target, blkno, numblks, flags);
610 if (bp) {
611 trace_xfs_buf_read(bp, flags, _RET_IP_);
612
613 if (!XFS_BUF_ISDONE(bp)) {
614 XFS_STATS_INC(xb_get_read);
615 _xfs_buf_read(bp, flags);
616 } else if (flags & XBF_ASYNC) {
617 /*
618 * Read ahead call which is already satisfied,
619 * drop the buffer
620 */
621 xfs_buf_relse(bp);
622 return NULL;
623 } else {
624 /* We do not want read in the flags */
625 bp->b_flags &= ~XBF_READ;
626 }
627 }
628
629 return bp;
630}
631
632/*
633 * If we are not low on memory then do the readahead in a deadlock
634 * safe manner.
635 */
636void
637xfs_buf_readahead(
638 xfs_buftarg_t *target,
639 xfs_daddr_t blkno,
640 size_t numblks)
641{
642 if (bdi_read_congested(target->bt_bdi))
643 return;
644
645 xfs_buf_read(target, blkno, numblks,
646 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
647}
648
649/*
650 * Read an uncached buffer from disk. Allocates and returns a locked
651 * buffer containing the disk contents or nothing.
652 */
653struct xfs_buf *
654xfs_buf_read_uncached(
655 struct xfs_buftarg *target,
656 xfs_daddr_t daddr,
657 size_t numblks,
658 int flags)
659{
660 xfs_buf_t *bp;
661 int error;
662
663 bp = xfs_buf_get_uncached(target, numblks, flags);
664 if (!bp)
665 return NULL;
666
667 /* set up the buffer for a read IO */
668 XFS_BUF_SET_ADDR(bp, daddr);
669 XFS_BUF_READ(bp);
670
671 xfsbdstrat(target->bt_mount, bp);
672 error = xfs_buf_iowait(bp);
673 if (error) {
674 xfs_buf_relse(bp);
675 return NULL;
676 }
677 return bp;
678}
679
680/*
681 * Return a buffer allocated as an empty buffer and associated to external
682 * memory via xfs_buf_associate_memory() back to it's empty state.
683 */
684void
685xfs_buf_set_empty(
686 struct xfs_buf *bp,
687 size_t numblks)
688{
689 if (bp->b_pages)
690 _xfs_buf_free_pages(bp);
691
692 bp->b_pages = NULL;
693 bp->b_page_count = 0;
694 bp->b_addr = NULL;
695 bp->b_length = numblks;
696 bp->b_io_length = numblks;
697 bp->b_bn = XFS_BUF_DADDR_NULL;
698}
699
700static inline struct page *
701mem_to_page(
702 void *addr)
703{
704 if ((!is_vmalloc_addr(addr))) {
705 return virt_to_page(addr);
706 } else {
707 return vmalloc_to_page(addr);
708 }
709}
710
711int
712xfs_buf_associate_memory(
713 xfs_buf_t *bp,
714 void *mem,
715 size_t len)
716{
717 int rval;
718 int i = 0;
719 unsigned long pageaddr;
720 unsigned long offset;
721 size_t buflen;
722 int page_count;
723
724 pageaddr = (unsigned long)mem & PAGE_MASK;
725 offset = (unsigned long)mem - pageaddr;
726 buflen = PAGE_ALIGN(len + offset);
727 page_count = buflen >> PAGE_SHIFT;
728
729 /* Free any previous set of page pointers */
730 if (bp->b_pages)
731 _xfs_buf_free_pages(bp);
732
733 bp->b_pages = NULL;
734 bp->b_addr = mem;
735
736 rval = _xfs_buf_get_pages(bp, page_count, 0);
737 if (rval)
738 return rval;
739
740 bp->b_offset = offset;
741
742 for (i = 0; i < bp->b_page_count; i++) {
743 bp->b_pages[i] = mem_to_page((void *)pageaddr);
744 pageaddr += PAGE_SIZE;
745 }
746
747 bp->b_io_length = BTOBB(len);
748 bp->b_length = BTOBB(buflen);
749
750 return 0;
751}
752
753xfs_buf_t *
754xfs_buf_get_uncached(
755 struct xfs_buftarg *target,
756 size_t numblks,
757 int flags)
758{
759 unsigned long page_count;
760 int error, i;
761 xfs_buf_t *bp;
762
763 bp = xfs_buf_alloc(target, XFS_BUF_DADDR_NULL, numblks, 0);
764 if (unlikely(bp == NULL))
765 goto fail;
766
767 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
768 error = _xfs_buf_get_pages(bp, page_count, 0);
769 if (error)
770 goto fail_free_buf;
771
772 for (i = 0; i < page_count; i++) {
773 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
774 if (!bp->b_pages[i])
775 goto fail_free_mem;
776 }
777 bp->b_flags |= _XBF_PAGES;
778
779 error = _xfs_buf_map_pages(bp, 0);
780 if (unlikely(error)) {
781 xfs_warn(target->bt_mount,
782 "%s: failed to map pages\n", __func__);
783 goto fail_free_mem;
784 }
785
786 trace_xfs_buf_get_uncached(bp, _RET_IP_);
787 return bp;
788
789 fail_free_mem:
790 while (--i >= 0)
791 __free_page(bp->b_pages[i]);
792 _xfs_buf_free_pages(bp);
793 fail_free_buf:
794 kmem_zone_free(xfs_buf_zone, bp);
795 fail:
796 return NULL;
797}
798
799/*
800 * Increment reference count on buffer, to hold the buffer concurrently
801 * with another thread which may release (free) the buffer asynchronously.
802 * Must hold the buffer already to call this function.
803 */
804void
805xfs_buf_hold(
806 xfs_buf_t *bp)
807{
808 trace_xfs_buf_hold(bp, _RET_IP_);
809 atomic_inc(&bp->b_hold);
810}
811
812/*
813 * Releases a hold on the specified buffer. If the
814 * the hold count is 1, calls xfs_buf_free.
815 */
816void
817xfs_buf_rele(
818 xfs_buf_t *bp)
819{
820 struct xfs_perag *pag = bp->b_pag;
821
822 trace_xfs_buf_rele(bp, _RET_IP_);
823
824 if (!pag) {
825 ASSERT(list_empty(&bp->b_lru));
826 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
827 if (atomic_dec_and_test(&bp->b_hold))
828 xfs_buf_free(bp);
829 return;
830 }
831
832 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
833
834 ASSERT(atomic_read(&bp->b_hold) > 0);
835 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
836 if (!(bp->b_flags & XBF_STALE) &&
837 atomic_read(&bp->b_lru_ref)) {
838 xfs_buf_lru_add(bp);
839 spin_unlock(&pag->pag_buf_lock);
840 } else {
841 xfs_buf_lru_del(bp);
842 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
843 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
844 spin_unlock(&pag->pag_buf_lock);
845 xfs_perag_put(pag);
846 xfs_buf_free(bp);
847 }
848 }
849}
850
851
852/*
853 * Lock a buffer object, if it is not already locked.
854 *
855 * If we come across a stale, pinned, locked buffer, we know that we are
856 * being asked to lock a buffer that has been reallocated. Because it is
857 * pinned, we know that the log has not been pushed to disk and hence it
858 * will still be locked. Rather than continuing to have trylock attempts
859 * fail until someone else pushes the log, push it ourselves before
860 * returning. This means that the xfsaild will not get stuck trying
861 * to push on stale inode buffers.
862 */
863int
864xfs_buf_trylock(
865 struct xfs_buf *bp)
866{
867 int locked;
868
869 locked = down_trylock(&bp->b_sema) == 0;
870 if (locked)
871 XB_SET_OWNER(bp);
872 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
873 xfs_log_force(bp->b_target->bt_mount, 0);
874
875 trace_xfs_buf_trylock(bp, _RET_IP_);
876 return locked;
877}
878
879/*
880 * Lock a buffer object.
881 *
882 * If we come across a stale, pinned, locked buffer, we know that we
883 * are being asked to lock a buffer that has been reallocated. Because
884 * it is pinned, we know that the log has not been pushed to disk and
885 * hence it will still be locked. Rather than sleeping until someone
886 * else pushes the log, push it ourselves before trying to get the lock.
887 */
888void
889xfs_buf_lock(
890 struct xfs_buf *bp)
891{
892 trace_xfs_buf_lock(bp, _RET_IP_);
893
894 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
895 xfs_log_force(bp->b_target->bt_mount, 0);
896 down(&bp->b_sema);
897 XB_SET_OWNER(bp);
898
899 trace_xfs_buf_lock_done(bp, _RET_IP_);
900}
901
902void
903xfs_buf_unlock(
904 struct xfs_buf *bp)
905{
906 XB_CLEAR_OWNER(bp);
907 up(&bp->b_sema);
908
909 trace_xfs_buf_unlock(bp, _RET_IP_);
910}
911
912STATIC void
913xfs_buf_wait_unpin(
914 xfs_buf_t *bp)
915{
916 DECLARE_WAITQUEUE (wait, current);
917
918 if (atomic_read(&bp->b_pin_count) == 0)
919 return;
920
921 add_wait_queue(&bp->b_waiters, &wait);
922 for (;;) {
923 set_current_state(TASK_UNINTERRUPTIBLE);
924 if (atomic_read(&bp->b_pin_count) == 0)
925 break;
926 io_schedule();
927 }
928 remove_wait_queue(&bp->b_waiters, &wait);
929 set_current_state(TASK_RUNNING);
930}
931
932/*
933 * Buffer Utility Routines
934 */
935
936STATIC void
937xfs_buf_iodone_work(
938 struct work_struct *work)
939{
940 xfs_buf_t *bp =
941 container_of(work, xfs_buf_t, b_iodone_work);
942
943 if (bp->b_iodone)
944 (*(bp->b_iodone))(bp);
945 else if (bp->b_flags & XBF_ASYNC)
946 xfs_buf_relse(bp);
947}
948
949void
950xfs_buf_ioend(
951 xfs_buf_t *bp,
952 int schedule)
953{
954 trace_xfs_buf_iodone(bp, _RET_IP_);
955
956 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
957 if (bp->b_error == 0)
958 bp->b_flags |= XBF_DONE;
959
960 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
961 if (schedule) {
962 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
963 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
964 } else {
965 xfs_buf_iodone_work(&bp->b_iodone_work);
966 }
967 } else {
968 complete(&bp->b_iowait);
969 }
970}
971
972void
973xfs_buf_ioerror(
974 xfs_buf_t *bp,
975 int error)
976{
977 ASSERT(error >= 0 && error <= 0xffff);
978 bp->b_error = (unsigned short)error;
979 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
980}
981
982void
983xfs_buf_ioerror_alert(
984 struct xfs_buf *bp,
985 const char *func)
986{
987 xfs_alert(bp->b_target->bt_mount,
988"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
989 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
990}
991
992/*
993 * Called when we want to stop a buffer from getting written or read.
994 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
995 * so that the proper iodone callbacks get called.
996 */
997STATIC int
998xfs_bioerror(
999 xfs_buf_t *bp)
1000{
1001#ifdef XFSERRORDEBUG
1002 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1003#endif
1004
1005 /*
1006 * No need to wait until the buffer is unpinned, we aren't flushing it.
1007 */
1008 xfs_buf_ioerror(bp, EIO);
1009
1010 /*
1011 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1012 */
1013 XFS_BUF_UNREAD(bp);
1014 XFS_BUF_UNDONE(bp);
1015 xfs_buf_stale(bp);
1016
1017 xfs_buf_ioend(bp, 0);
1018
1019 return EIO;
1020}
1021
1022/*
1023 * Same as xfs_bioerror, except that we are releasing the buffer
1024 * here ourselves, and avoiding the xfs_buf_ioend call.
1025 * This is meant for userdata errors; metadata bufs come with
1026 * iodone functions attached, so that we can track down errors.
1027 */
1028STATIC int
1029xfs_bioerror_relse(
1030 struct xfs_buf *bp)
1031{
1032 int64_t fl = bp->b_flags;
1033 /*
1034 * No need to wait until the buffer is unpinned.
1035 * We aren't flushing it.
1036 *
1037 * chunkhold expects B_DONE to be set, whether
1038 * we actually finish the I/O or not. We don't want to
1039 * change that interface.
1040 */
1041 XFS_BUF_UNREAD(bp);
1042 XFS_BUF_DONE(bp);
1043 xfs_buf_stale(bp);
1044 bp->b_iodone = NULL;
1045 if (!(fl & XBF_ASYNC)) {
1046 /*
1047 * Mark b_error and B_ERROR _both_.
1048 * Lot's of chunkcache code assumes that.
1049 * There's no reason to mark error for
1050 * ASYNC buffers.
1051 */
1052 xfs_buf_ioerror(bp, EIO);
1053 complete(&bp->b_iowait);
1054 } else {
1055 xfs_buf_relse(bp);
1056 }
1057
1058 return EIO;
1059}
1060
1061STATIC int
1062xfs_bdstrat_cb(
1063 struct xfs_buf *bp)
1064{
1065 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1066 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1067 /*
1068 * Metadata write that didn't get logged but
1069 * written delayed anyway. These aren't associated
1070 * with a transaction, and can be ignored.
1071 */
1072 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1073 return xfs_bioerror_relse(bp);
1074 else
1075 return xfs_bioerror(bp);
1076 }
1077
1078 xfs_buf_iorequest(bp);
1079 return 0;
1080}
1081
1082int
1083xfs_bwrite(
1084 struct xfs_buf *bp)
1085{
1086 int error;
1087
1088 ASSERT(xfs_buf_islocked(bp));
1089
1090 bp->b_flags |= XBF_WRITE;
1091 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1092
1093 xfs_bdstrat_cb(bp);
1094
1095 error = xfs_buf_iowait(bp);
1096 if (error) {
1097 xfs_force_shutdown(bp->b_target->bt_mount,
1098 SHUTDOWN_META_IO_ERROR);
1099 }
1100 return error;
1101}
1102
1103/*
1104 * Wrapper around bdstrat so that we can stop data from going to disk in case
1105 * we are shutting down the filesystem. Typically user data goes thru this
1106 * path; one of the exceptions is the superblock.
1107 */
1108void
1109xfsbdstrat(
1110 struct xfs_mount *mp,
1111 struct xfs_buf *bp)
1112{
1113 if (XFS_FORCED_SHUTDOWN(mp)) {
1114 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1115 xfs_bioerror_relse(bp);
1116 return;
1117 }
1118
1119 xfs_buf_iorequest(bp);
1120}
1121
1122STATIC void
1123_xfs_buf_ioend(
1124 xfs_buf_t *bp,
1125 int schedule)
1126{
1127 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1128 xfs_buf_ioend(bp, schedule);
1129}
1130
1131STATIC void
1132xfs_buf_bio_end_io(
1133 struct bio *bio,
1134 int error)
1135{
1136 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1137
1138 xfs_buf_ioerror(bp, -error);
1139
1140 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1141 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1142
1143 _xfs_buf_ioend(bp, 1);
1144 bio_put(bio);
1145}
1146
1147STATIC void
1148_xfs_buf_ioapply(
1149 xfs_buf_t *bp)
1150{
1151 int rw, map_i, total_nr_pages, nr_pages;
1152 struct bio *bio;
1153 int offset = bp->b_offset;
1154 int size = BBTOB(bp->b_io_length);
1155 sector_t sector = bp->b_bn;
1156
1157 total_nr_pages = bp->b_page_count;
1158 map_i = 0;
1159
1160 if (bp->b_flags & XBF_WRITE) {
1161 if (bp->b_flags & XBF_SYNCIO)
1162 rw = WRITE_SYNC;
1163 else
1164 rw = WRITE;
1165 if (bp->b_flags & XBF_FUA)
1166 rw |= REQ_FUA;
1167 if (bp->b_flags & XBF_FLUSH)
1168 rw |= REQ_FLUSH;
1169 } else if (bp->b_flags & XBF_READ_AHEAD) {
1170 rw = READA;
1171 } else {
1172 rw = READ;
1173 }
1174
1175 /* we only use the buffer cache for meta-data */
1176 rw |= REQ_META;
1177
1178next_chunk:
1179 atomic_inc(&bp->b_io_remaining);
1180 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1181 if (nr_pages > total_nr_pages)
1182 nr_pages = total_nr_pages;
1183
1184 bio = bio_alloc(GFP_NOIO, nr_pages);
1185 bio->bi_bdev = bp->b_target->bt_bdev;
1186 bio->bi_sector = sector;
1187 bio->bi_end_io = xfs_buf_bio_end_io;
1188 bio->bi_private = bp;
1189
1190
1191 for (; size && nr_pages; nr_pages--, map_i++) {
1192 int rbytes, nbytes = PAGE_SIZE - offset;
1193
1194 if (nbytes > size)
1195 nbytes = size;
1196
1197 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1198 if (rbytes < nbytes)
1199 break;
1200
1201 offset = 0;
1202 sector += BTOBB(nbytes);
1203 size -= nbytes;
1204 total_nr_pages--;
1205 }
1206
1207 if (likely(bio->bi_size)) {
1208 if (xfs_buf_is_vmapped(bp)) {
1209 flush_kernel_vmap_range(bp->b_addr,
1210 xfs_buf_vmap_len(bp));
1211 }
1212 submit_bio(rw, bio);
1213 if (size)
1214 goto next_chunk;
1215 } else {
1216 xfs_buf_ioerror(bp, EIO);
1217 bio_put(bio);
1218 }
1219}
1220
1221void
1222xfs_buf_iorequest(
1223 xfs_buf_t *bp)
1224{
1225 trace_xfs_buf_iorequest(bp, _RET_IP_);
1226
1227 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1228
1229 if (bp->b_flags & XBF_WRITE)
1230 xfs_buf_wait_unpin(bp);
1231 xfs_buf_hold(bp);
1232
1233 /* Set the count to 1 initially, this will stop an I/O
1234 * completion callout which happens before we have started
1235 * all the I/O from calling xfs_buf_ioend too early.
1236 */
1237 atomic_set(&bp->b_io_remaining, 1);
1238 _xfs_buf_ioapply(bp);
1239 _xfs_buf_ioend(bp, 1);
1240
1241 xfs_buf_rele(bp);
1242}
1243
1244/*
1245 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1246 * no I/O is pending or there is already a pending error on the buffer. It
1247 * returns the I/O error code, if any, or 0 if there was no error.
1248 */
1249int
1250xfs_buf_iowait(
1251 xfs_buf_t *bp)
1252{
1253 trace_xfs_buf_iowait(bp, _RET_IP_);
1254
1255 if (!bp->b_error)
1256 wait_for_completion(&bp->b_iowait);
1257
1258 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1259 return bp->b_error;
1260}
1261
1262xfs_caddr_t
1263xfs_buf_offset(
1264 xfs_buf_t *bp,
1265 size_t offset)
1266{
1267 struct page *page;
1268
1269 if (bp->b_addr)
1270 return bp->b_addr + offset;
1271
1272 offset += bp->b_offset;
1273 page = bp->b_pages[offset >> PAGE_SHIFT];
1274 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1275}
1276
1277/*
1278 * Move data into or out of a buffer.
1279 */
1280void
1281xfs_buf_iomove(
1282 xfs_buf_t *bp, /* buffer to process */
1283 size_t boff, /* starting buffer offset */
1284 size_t bsize, /* length to copy */
1285 void *data, /* data address */
1286 xfs_buf_rw_t mode) /* read/write/zero flag */
1287{
1288 size_t bend;
1289
1290 bend = boff + bsize;
1291 while (boff < bend) {
1292 struct page *page;
1293 int page_index, page_offset, csize;
1294
1295 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1296 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1297 page = bp->b_pages[page_index];
1298 csize = min_t(size_t, PAGE_SIZE - page_offset,
1299 BBTOB(bp->b_io_length) - boff);
1300
1301 ASSERT((csize + page_offset) <= PAGE_SIZE);
1302
1303 switch (mode) {
1304 case XBRW_ZERO:
1305 memset(page_address(page) + page_offset, 0, csize);
1306 break;
1307 case XBRW_READ:
1308 memcpy(data, page_address(page) + page_offset, csize);
1309 break;
1310 case XBRW_WRITE:
1311 memcpy(page_address(page) + page_offset, data, csize);
1312 }
1313
1314 boff += csize;
1315 data += csize;
1316 }
1317}
1318
1319/*
1320 * Handling of buffer targets (buftargs).
1321 */
1322
1323/*
1324 * Wait for any bufs with callbacks that have been submitted but have not yet
1325 * returned. These buffers will have an elevated hold count, so wait on those
1326 * while freeing all the buffers only held by the LRU.
1327 */
1328void
1329xfs_wait_buftarg(
1330 struct xfs_buftarg *btp)
1331{
1332 struct xfs_buf *bp;
1333
1334restart:
1335 spin_lock(&btp->bt_lru_lock);
1336 while (!list_empty(&btp->bt_lru)) {
1337 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1338 if (atomic_read(&bp->b_hold) > 1) {
1339 spin_unlock(&btp->bt_lru_lock);
1340 delay(100);
1341 goto restart;
1342 }
1343 /*
1344 * clear the LRU reference count so the buffer doesn't get
1345 * ignored in xfs_buf_rele().
1346 */
1347 atomic_set(&bp->b_lru_ref, 0);
1348 spin_unlock(&btp->bt_lru_lock);
1349 xfs_buf_rele(bp);
1350 spin_lock(&btp->bt_lru_lock);
1351 }
1352 spin_unlock(&btp->bt_lru_lock);
1353}
1354
1355int
1356xfs_buftarg_shrink(
1357 struct shrinker *shrink,
1358 struct shrink_control *sc)
1359{
1360 struct xfs_buftarg *btp = container_of(shrink,
1361 struct xfs_buftarg, bt_shrinker);
1362 struct xfs_buf *bp;
1363 int nr_to_scan = sc->nr_to_scan;
1364 LIST_HEAD(dispose);
1365
1366 if (!nr_to_scan)
1367 return btp->bt_lru_nr;
1368
1369 spin_lock(&btp->bt_lru_lock);
1370 while (!list_empty(&btp->bt_lru)) {
1371 if (nr_to_scan-- <= 0)
1372 break;
1373
1374 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1375
1376 /*
1377 * Decrement the b_lru_ref count unless the value is already
1378 * zero. If the value is already zero, we need to reclaim the
1379 * buffer, otherwise it gets another trip through the LRU.
1380 */
1381 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1382 list_move_tail(&bp->b_lru, &btp->bt_lru);
1383 continue;
1384 }
1385
1386 /*
1387 * remove the buffer from the LRU now to avoid needing another
1388 * lock round trip inside xfs_buf_rele().
1389 */
1390 list_move(&bp->b_lru, &dispose);
1391 btp->bt_lru_nr--;
1392 }
1393 spin_unlock(&btp->bt_lru_lock);
1394
1395 while (!list_empty(&dispose)) {
1396 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1397 list_del_init(&bp->b_lru);
1398 xfs_buf_rele(bp);
1399 }
1400
1401 return btp->bt_lru_nr;
1402}
1403
1404void
1405xfs_free_buftarg(
1406 struct xfs_mount *mp,
1407 struct xfs_buftarg *btp)
1408{
1409 unregister_shrinker(&btp->bt_shrinker);
1410
1411 if (mp->m_flags & XFS_MOUNT_BARRIER)
1412 xfs_blkdev_issue_flush(btp);
1413
1414 kmem_free(btp);
1415}
1416
1417STATIC int
1418xfs_setsize_buftarg_flags(
1419 xfs_buftarg_t *btp,
1420 unsigned int blocksize,
1421 unsigned int sectorsize,
1422 int verbose)
1423{
1424 btp->bt_bsize = blocksize;
1425 btp->bt_sshift = ffs(sectorsize) - 1;
1426 btp->bt_smask = sectorsize - 1;
1427
1428 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1429 char name[BDEVNAME_SIZE];
1430
1431 bdevname(btp->bt_bdev, name);
1432
1433 xfs_warn(btp->bt_mount,
1434 "Cannot set_blocksize to %u on device %s\n",
1435 sectorsize, name);
1436 return EINVAL;
1437 }
1438
1439 return 0;
1440}
1441
1442/*
1443 * When allocating the initial buffer target we have not yet
1444 * read in the superblock, so don't know what sized sectors
1445 * are being used is at this early stage. Play safe.
1446 */
1447STATIC int
1448xfs_setsize_buftarg_early(
1449 xfs_buftarg_t *btp,
1450 struct block_device *bdev)
1451{
1452 return xfs_setsize_buftarg_flags(btp,
1453 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1454}
1455
1456int
1457xfs_setsize_buftarg(
1458 xfs_buftarg_t *btp,
1459 unsigned int blocksize,
1460 unsigned int sectorsize)
1461{
1462 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1463}
1464
1465xfs_buftarg_t *
1466xfs_alloc_buftarg(
1467 struct xfs_mount *mp,
1468 struct block_device *bdev,
1469 int external,
1470 const char *fsname)
1471{
1472 xfs_buftarg_t *btp;
1473
1474 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1475
1476 btp->bt_mount = mp;
1477 btp->bt_dev = bdev->bd_dev;
1478 btp->bt_bdev = bdev;
1479 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1480 if (!btp->bt_bdi)
1481 goto error;
1482
1483 INIT_LIST_HEAD(&btp->bt_lru);
1484 spin_lock_init(&btp->bt_lru_lock);
1485 if (xfs_setsize_buftarg_early(btp, bdev))
1486 goto error;
1487 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1488 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1489 register_shrinker(&btp->bt_shrinker);
1490 return btp;
1491
1492error:
1493 kmem_free(btp);
1494 return NULL;
1495}
1496
1497/*
1498 * Add a buffer to the delayed write list.
1499 *
1500 * This queues a buffer for writeout if it hasn't already been. Note that
1501 * neither this routine nor the buffer list submission functions perform
1502 * any internal synchronization. It is expected that the lists are thread-local
1503 * to the callers.
1504 *
1505 * Returns true if we queued up the buffer, or false if it already had
1506 * been on the buffer list.
1507 */
1508bool
1509xfs_buf_delwri_queue(
1510 struct xfs_buf *bp,
1511 struct list_head *list)
1512{
1513 ASSERT(xfs_buf_islocked(bp));
1514 ASSERT(!(bp->b_flags & XBF_READ));
1515
1516 /*
1517 * If the buffer is already marked delwri it already is queued up
1518 * by someone else for imediate writeout. Just ignore it in that
1519 * case.
1520 */
1521 if (bp->b_flags & _XBF_DELWRI_Q) {
1522 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1523 return false;
1524 }
1525
1526 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1527
1528 /*
1529 * If a buffer gets written out synchronously or marked stale while it
1530 * is on a delwri list we lazily remove it. To do this, the other party
1531 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1532 * It remains referenced and on the list. In a rare corner case it
1533 * might get readded to a delwri list after the synchronous writeout, in
1534 * which case we need just need to re-add the flag here.
1535 */
1536 bp->b_flags |= _XBF_DELWRI_Q;
1537 if (list_empty(&bp->b_list)) {
1538 atomic_inc(&bp->b_hold);
1539 list_add_tail(&bp->b_list, list);
1540 }
1541
1542 return true;
1543}
1544
1545/*
1546 * Compare function is more complex than it needs to be because
1547 * the return value is only 32 bits and we are doing comparisons
1548 * on 64 bit values
1549 */
1550static int
1551xfs_buf_cmp(
1552 void *priv,
1553 struct list_head *a,
1554 struct list_head *b)
1555{
1556 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1557 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1558 xfs_daddr_t diff;
1559
1560 diff = ap->b_bn - bp->b_bn;
1561 if (diff < 0)
1562 return -1;
1563 if (diff > 0)
1564 return 1;
1565 return 0;
1566}
1567
1568static int
1569__xfs_buf_delwri_submit(
1570 struct list_head *buffer_list,
1571 struct list_head *io_list,
1572 bool wait)
1573{
1574 struct blk_plug plug;
1575 struct xfs_buf *bp, *n;
1576 int pinned = 0;
1577
1578 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1579 if (!wait) {
1580 if (xfs_buf_ispinned(bp)) {
1581 pinned++;
1582 continue;
1583 }
1584 if (!xfs_buf_trylock(bp))
1585 continue;
1586 } else {
1587 xfs_buf_lock(bp);
1588 }
1589
1590 /*
1591 * Someone else might have written the buffer synchronously or
1592 * marked it stale in the meantime. In that case only the
1593 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1594 * reference and remove it from the list here.
1595 */
1596 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1597 list_del_init(&bp->b_list);
1598 xfs_buf_relse(bp);
1599 continue;
1600 }
1601
1602 list_move_tail(&bp->b_list, io_list);
1603 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1604 }
1605
1606 list_sort(NULL, io_list, xfs_buf_cmp);
1607
1608 blk_start_plug(&plug);
1609 list_for_each_entry_safe(bp, n, io_list, b_list) {
1610 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1611 bp->b_flags |= XBF_WRITE;
1612
1613 if (!wait) {
1614 bp->b_flags |= XBF_ASYNC;
1615 list_del_init(&bp->b_list);
1616 }
1617 xfs_bdstrat_cb(bp);
1618 }
1619 blk_finish_plug(&plug);
1620
1621 return pinned;
1622}
1623
1624/*
1625 * Write out a buffer list asynchronously.
1626 *
1627 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1628 * out and not wait for I/O completion on any of the buffers. This interface
1629 * is only safely useable for callers that can track I/O completion by higher
1630 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1631 * function.
1632 */
1633int
1634xfs_buf_delwri_submit_nowait(
1635 struct list_head *buffer_list)
1636{
1637 LIST_HEAD (io_list);
1638 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1639}
1640
1641/*
1642 * Write out a buffer list synchronously.
1643 *
1644 * This will take the @buffer_list, write all buffers out and wait for I/O
1645 * completion on all of the buffers. @buffer_list is consumed by the function,
1646 * so callers must have some other way of tracking buffers if they require such
1647 * functionality.
1648 */
1649int
1650xfs_buf_delwri_submit(
1651 struct list_head *buffer_list)
1652{
1653 LIST_HEAD (io_list);
1654 int error = 0, error2;
1655 struct xfs_buf *bp;
1656
1657 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1658
1659 /* Wait for IO to complete. */
1660 while (!list_empty(&io_list)) {
1661 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1662
1663 list_del_init(&bp->b_list);
1664 error2 = xfs_buf_iowait(bp);
1665 xfs_buf_relse(bp);
1666 if (!error)
1667 error = error2;
1668 }
1669
1670 return error;
1671}
1672
1673int __init
1674xfs_buf_init(void)
1675{
1676 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1677 KM_ZONE_HWALIGN, NULL);
1678 if (!xfs_buf_zone)
1679 goto out;
1680
1681 xfslogd_workqueue = alloc_workqueue("xfslogd",
1682 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1683 if (!xfslogd_workqueue)
1684 goto out_free_buf_zone;
1685
1686 return 0;
1687
1688 out_free_buf_zone:
1689 kmem_zone_destroy(xfs_buf_zone);
1690 out:
1691 return -ENOMEM;
1692}
1693
1694void
1695xfs_buf_terminate(void)
1696{
1697 destroy_workqueue(xfslogd_workqueue);
1698 kmem_zone_destroy(xfs_buf_zone);
1699}