Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_da_format.h"
29#include "xfs_da_btree.h"
30#include "xfs_inode.h"
31#include "xfs_dir2.h"
32#include "xfs_ialloc.h"
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
39#include "xfs_error.h"
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
42#include "xfs_trace.h"
43#include "xfs_icache.h"
44#include "xfs_sysfs.h"
45#include "xfs_rmap_btree.h"
46#include "xfs_refcount_btree.h"
47#include "xfs_reflink.h"
48#include "xfs_extent_busy.h"
49
50
51static DEFINE_MUTEX(xfs_uuid_table_mutex);
52static int xfs_uuid_table_size;
53static uuid_t *xfs_uuid_table;
54
55void
56xfs_uuid_table_free(void)
57{
58 if (xfs_uuid_table_size == 0)
59 return;
60 kmem_free(xfs_uuid_table);
61 xfs_uuid_table = NULL;
62 xfs_uuid_table_size = 0;
63}
64
65/*
66 * See if the UUID is unique among mounted XFS filesystems.
67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68 */
69STATIC int
70xfs_uuid_mount(
71 struct xfs_mount *mp)
72{
73 uuid_t *uuid = &mp->m_sb.sb_uuid;
74 int hole, i;
75
76 /* Publish UUID in struct super_block */
77 uuid_copy(&mp->m_super->s_uuid, uuid);
78
79 if (mp->m_flags & XFS_MOUNT_NOUUID)
80 return 0;
81
82 if (uuid_is_null(uuid)) {
83 xfs_warn(mp, "Filesystem has null UUID - can't mount");
84 return -EINVAL;
85 }
86
87 mutex_lock(&xfs_uuid_table_mutex);
88 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
89 if (uuid_is_null(&xfs_uuid_table[i])) {
90 hole = i;
91 continue;
92 }
93 if (uuid_equal(uuid, &xfs_uuid_table[i]))
94 goto out_duplicate;
95 }
96
97 if (hole < 0) {
98 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
99 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
100 KM_SLEEP);
101 hole = xfs_uuid_table_size++;
102 }
103 xfs_uuid_table[hole] = *uuid;
104 mutex_unlock(&xfs_uuid_table_mutex);
105
106 return 0;
107
108 out_duplicate:
109 mutex_unlock(&xfs_uuid_table_mutex);
110 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
111 return -EINVAL;
112}
113
114STATIC void
115xfs_uuid_unmount(
116 struct xfs_mount *mp)
117{
118 uuid_t *uuid = &mp->m_sb.sb_uuid;
119 int i;
120
121 if (mp->m_flags & XFS_MOUNT_NOUUID)
122 return;
123
124 mutex_lock(&xfs_uuid_table_mutex);
125 for (i = 0; i < xfs_uuid_table_size; i++) {
126 if (uuid_is_null(&xfs_uuid_table[i]))
127 continue;
128 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
129 continue;
130 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
131 break;
132 }
133 ASSERT(i < xfs_uuid_table_size);
134 mutex_unlock(&xfs_uuid_table_mutex);
135}
136
137
138STATIC void
139__xfs_free_perag(
140 struct rcu_head *head)
141{
142 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
143
144 ASSERT(atomic_read(&pag->pag_ref) == 0);
145 kmem_free(pag);
146}
147
148/*
149 * Free up the per-ag resources associated with the mount structure.
150 */
151STATIC void
152xfs_free_perag(
153 xfs_mount_t *mp)
154{
155 xfs_agnumber_t agno;
156 struct xfs_perag *pag;
157
158 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
159 spin_lock(&mp->m_perag_lock);
160 pag = radix_tree_delete(&mp->m_perag_tree, agno);
161 spin_unlock(&mp->m_perag_lock);
162 ASSERT(pag);
163 ASSERT(atomic_read(&pag->pag_ref) == 0);
164 xfs_buf_hash_destroy(pag);
165 mutex_destroy(&pag->pag_ici_reclaim_lock);
166 call_rcu(&pag->rcu_head, __xfs_free_perag);
167 }
168}
169
170/*
171 * Check size of device based on the (data/realtime) block count.
172 * Note: this check is used by the growfs code as well as mount.
173 */
174int
175xfs_sb_validate_fsb_count(
176 xfs_sb_t *sbp,
177 uint64_t nblocks)
178{
179 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
180 ASSERT(sbp->sb_blocklog >= BBSHIFT);
181
182 /* Limited by ULONG_MAX of page cache index */
183 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
184 return -EFBIG;
185 return 0;
186}
187
188int
189xfs_initialize_perag(
190 xfs_mount_t *mp,
191 xfs_agnumber_t agcount,
192 xfs_agnumber_t *maxagi)
193{
194 xfs_agnumber_t index;
195 xfs_agnumber_t first_initialised = NULLAGNUMBER;
196 xfs_perag_t *pag;
197 int error = -ENOMEM;
198
199 /*
200 * Walk the current per-ag tree so we don't try to initialise AGs
201 * that already exist (growfs case). Allocate and insert all the
202 * AGs we don't find ready for initialisation.
203 */
204 for (index = 0; index < agcount; index++) {
205 pag = xfs_perag_get(mp, index);
206 if (pag) {
207 xfs_perag_put(pag);
208 continue;
209 }
210
211 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
212 if (!pag)
213 goto out_unwind_new_pags;
214 pag->pag_agno = index;
215 pag->pag_mount = mp;
216 spin_lock_init(&pag->pag_ici_lock);
217 mutex_init(&pag->pag_ici_reclaim_lock);
218 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
219 if (xfs_buf_hash_init(pag))
220 goto out_free_pag;
221 init_waitqueue_head(&pag->pagb_wait);
222
223 if (radix_tree_preload(GFP_NOFS))
224 goto out_hash_destroy;
225
226 spin_lock(&mp->m_perag_lock);
227 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
228 BUG();
229 spin_unlock(&mp->m_perag_lock);
230 radix_tree_preload_end();
231 error = -EEXIST;
232 goto out_hash_destroy;
233 }
234 spin_unlock(&mp->m_perag_lock);
235 radix_tree_preload_end();
236 /* first new pag is fully initialized */
237 if (first_initialised == NULLAGNUMBER)
238 first_initialised = index;
239 }
240
241 index = xfs_set_inode_alloc(mp, agcount);
242
243 if (maxagi)
244 *maxagi = index;
245
246 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
247 return 0;
248
249out_hash_destroy:
250 xfs_buf_hash_destroy(pag);
251out_free_pag:
252 mutex_destroy(&pag->pag_ici_reclaim_lock);
253 kmem_free(pag);
254out_unwind_new_pags:
255 /* unwind any prior newly initialized pags */
256 for (index = first_initialised; index < agcount; index++) {
257 pag = radix_tree_delete(&mp->m_perag_tree, index);
258 if (!pag)
259 break;
260 xfs_buf_hash_destroy(pag);
261 mutex_destroy(&pag->pag_ici_reclaim_lock);
262 kmem_free(pag);
263 }
264 return error;
265}
266
267/*
268 * xfs_readsb
269 *
270 * Does the initial read of the superblock.
271 */
272int
273xfs_readsb(
274 struct xfs_mount *mp,
275 int flags)
276{
277 unsigned int sector_size;
278 struct xfs_buf *bp;
279 struct xfs_sb *sbp = &mp->m_sb;
280 int error;
281 int loud = !(flags & XFS_MFSI_QUIET);
282 const struct xfs_buf_ops *buf_ops;
283
284 ASSERT(mp->m_sb_bp == NULL);
285 ASSERT(mp->m_ddev_targp != NULL);
286
287 /*
288 * For the initial read, we must guess at the sector
289 * size based on the block device. It's enough to
290 * get the sb_sectsize out of the superblock and
291 * then reread with the proper length.
292 * We don't verify it yet, because it may not be complete.
293 */
294 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295 buf_ops = NULL;
296
297 /*
298 * Allocate a (locked) buffer to hold the superblock. This will be kept
299 * around at all times to optimize access to the superblock. Therefore,
300 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
301 * elevated.
302 */
303reread:
304 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
305 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
306 buf_ops);
307 if (error) {
308 if (loud)
309 xfs_warn(mp, "SB validate failed with error %d.", error);
310 /* bad CRC means corrupted metadata */
311 if (error == -EFSBADCRC)
312 error = -EFSCORRUPTED;
313 return error;
314 }
315
316 /*
317 * Initialize the mount structure from the superblock.
318 */
319 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
320
321 /*
322 * If we haven't validated the superblock, do so now before we try
323 * to check the sector size and reread the superblock appropriately.
324 */
325 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
326 if (loud)
327 xfs_warn(mp, "Invalid superblock magic number");
328 error = -EINVAL;
329 goto release_buf;
330 }
331
332 /*
333 * We must be able to do sector-sized and sector-aligned IO.
334 */
335 if (sector_size > sbp->sb_sectsize) {
336 if (loud)
337 xfs_warn(mp, "device supports %u byte sectors (not %u)",
338 sector_size, sbp->sb_sectsize);
339 error = -ENOSYS;
340 goto release_buf;
341 }
342
343 if (buf_ops == NULL) {
344 /*
345 * Re-read the superblock so the buffer is correctly sized,
346 * and properly verified.
347 */
348 xfs_buf_relse(bp);
349 sector_size = sbp->sb_sectsize;
350 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
351 goto reread;
352 }
353
354 xfs_reinit_percpu_counters(mp);
355
356 /* no need to be quiet anymore, so reset the buf ops */
357 bp->b_ops = &xfs_sb_buf_ops;
358
359 mp->m_sb_bp = bp;
360 xfs_buf_unlock(bp);
361 return 0;
362
363release_buf:
364 xfs_buf_relse(bp);
365 return error;
366}
367
368/*
369 * Update alignment values based on mount options and sb values
370 */
371STATIC int
372xfs_update_alignment(xfs_mount_t *mp)
373{
374 xfs_sb_t *sbp = &(mp->m_sb);
375
376 if (mp->m_dalign) {
377 /*
378 * If stripe unit and stripe width are not multiples
379 * of the fs blocksize turn off alignment.
380 */
381 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
382 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
383 xfs_warn(mp,
384 "alignment check failed: sunit/swidth vs. blocksize(%d)",
385 sbp->sb_blocksize);
386 return -EINVAL;
387 } else {
388 /*
389 * Convert the stripe unit and width to FSBs.
390 */
391 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
392 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
393 xfs_warn(mp,
394 "alignment check failed: sunit/swidth vs. agsize(%d)",
395 sbp->sb_agblocks);
396 return -EINVAL;
397 } else if (mp->m_dalign) {
398 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
399 } else {
400 xfs_warn(mp,
401 "alignment check failed: sunit(%d) less than bsize(%d)",
402 mp->m_dalign, sbp->sb_blocksize);
403 return -EINVAL;
404 }
405 }
406
407 /*
408 * Update superblock with new values
409 * and log changes
410 */
411 if (xfs_sb_version_hasdalign(sbp)) {
412 if (sbp->sb_unit != mp->m_dalign) {
413 sbp->sb_unit = mp->m_dalign;
414 mp->m_update_sb = true;
415 }
416 if (sbp->sb_width != mp->m_swidth) {
417 sbp->sb_width = mp->m_swidth;
418 mp->m_update_sb = true;
419 }
420 } else {
421 xfs_warn(mp,
422 "cannot change alignment: superblock does not support data alignment");
423 return -EINVAL;
424 }
425 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
426 xfs_sb_version_hasdalign(&mp->m_sb)) {
427 mp->m_dalign = sbp->sb_unit;
428 mp->m_swidth = sbp->sb_width;
429 }
430
431 return 0;
432}
433
434/*
435 * Set the maximum inode count for this filesystem
436 */
437STATIC void
438xfs_set_maxicount(xfs_mount_t *mp)
439{
440 xfs_sb_t *sbp = &(mp->m_sb);
441 uint64_t icount;
442
443 if (sbp->sb_imax_pct) {
444 /*
445 * Make sure the maximum inode count is a multiple
446 * of the units we allocate inodes in.
447 */
448 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
449 do_div(icount, 100);
450 do_div(icount, mp->m_ialloc_blks);
451 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
452 sbp->sb_inopblog;
453 } else {
454 mp->m_maxicount = 0;
455 }
456}
457
458/*
459 * Set the default minimum read and write sizes unless
460 * already specified in a mount option.
461 * We use smaller I/O sizes when the file system
462 * is being used for NFS service (wsync mount option).
463 */
464STATIC void
465xfs_set_rw_sizes(xfs_mount_t *mp)
466{
467 xfs_sb_t *sbp = &(mp->m_sb);
468 int readio_log, writeio_log;
469
470 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
471 if (mp->m_flags & XFS_MOUNT_WSYNC) {
472 readio_log = XFS_WSYNC_READIO_LOG;
473 writeio_log = XFS_WSYNC_WRITEIO_LOG;
474 } else {
475 readio_log = XFS_READIO_LOG_LARGE;
476 writeio_log = XFS_WRITEIO_LOG_LARGE;
477 }
478 } else {
479 readio_log = mp->m_readio_log;
480 writeio_log = mp->m_writeio_log;
481 }
482
483 if (sbp->sb_blocklog > readio_log) {
484 mp->m_readio_log = sbp->sb_blocklog;
485 } else {
486 mp->m_readio_log = readio_log;
487 }
488 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
489 if (sbp->sb_blocklog > writeio_log) {
490 mp->m_writeio_log = sbp->sb_blocklog;
491 } else {
492 mp->m_writeio_log = writeio_log;
493 }
494 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
495}
496
497/*
498 * precalculate the low space thresholds for dynamic speculative preallocation.
499 */
500void
501xfs_set_low_space_thresholds(
502 struct xfs_mount *mp)
503{
504 int i;
505
506 for (i = 0; i < XFS_LOWSP_MAX; i++) {
507 uint64_t space = mp->m_sb.sb_dblocks;
508
509 do_div(space, 100);
510 mp->m_low_space[i] = space * (i + 1);
511 }
512}
513
514
515/*
516 * Set whether we're using inode alignment.
517 */
518STATIC void
519xfs_set_inoalignment(xfs_mount_t *mp)
520{
521 if (xfs_sb_version_hasalign(&mp->m_sb) &&
522 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
523 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
524 else
525 mp->m_inoalign_mask = 0;
526 /*
527 * If we are using stripe alignment, check whether
528 * the stripe unit is a multiple of the inode alignment
529 */
530 if (mp->m_dalign && mp->m_inoalign_mask &&
531 !(mp->m_dalign & mp->m_inoalign_mask))
532 mp->m_sinoalign = mp->m_dalign;
533 else
534 mp->m_sinoalign = 0;
535}
536
537/*
538 * Check that the data (and log if separate) is an ok size.
539 */
540STATIC int
541xfs_check_sizes(
542 struct xfs_mount *mp)
543{
544 struct xfs_buf *bp;
545 xfs_daddr_t d;
546 int error;
547
548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
550 xfs_warn(mp, "filesystem size mismatch detected");
551 return -EFBIG;
552 }
553 error = xfs_buf_read_uncached(mp->m_ddev_targp,
554 d - XFS_FSS_TO_BB(mp, 1),
555 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
556 if (error) {
557 xfs_warn(mp, "last sector read failed");
558 return error;
559 }
560 xfs_buf_relse(bp);
561
562 if (mp->m_logdev_targp == mp->m_ddev_targp)
563 return 0;
564
565 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
566 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
567 xfs_warn(mp, "log size mismatch detected");
568 return -EFBIG;
569 }
570 error = xfs_buf_read_uncached(mp->m_logdev_targp,
571 d - XFS_FSB_TO_BB(mp, 1),
572 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
573 if (error) {
574 xfs_warn(mp, "log device read failed");
575 return error;
576 }
577 xfs_buf_relse(bp);
578 return 0;
579}
580
581/*
582 * Clear the quotaflags in memory and in the superblock.
583 */
584int
585xfs_mount_reset_sbqflags(
586 struct xfs_mount *mp)
587{
588 mp->m_qflags = 0;
589
590 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
591 if (mp->m_sb.sb_qflags == 0)
592 return 0;
593 spin_lock(&mp->m_sb_lock);
594 mp->m_sb.sb_qflags = 0;
595 spin_unlock(&mp->m_sb_lock);
596
597 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
598 return 0;
599
600 return xfs_sync_sb(mp, false);
601}
602
603uint64_t
604xfs_default_resblks(xfs_mount_t *mp)
605{
606 uint64_t resblks;
607
608 /*
609 * We default to 5% or 8192 fsbs of space reserved, whichever is
610 * smaller. This is intended to cover concurrent allocation
611 * transactions when we initially hit enospc. These each require a 4
612 * block reservation. Hence by default we cover roughly 2000 concurrent
613 * allocation reservations.
614 */
615 resblks = mp->m_sb.sb_dblocks;
616 do_div(resblks, 20);
617 resblks = min_t(uint64_t, resblks, 8192);
618 return resblks;
619}
620
621/*
622 * This function does the following on an initial mount of a file system:
623 * - reads the superblock from disk and init the mount struct
624 * - if we're a 32-bit kernel, do a size check on the superblock
625 * so we don't mount terabyte filesystems
626 * - init mount struct realtime fields
627 * - allocate inode hash table for fs
628 * - init directory manager
629 * - perform recovery and init the log manager
630 */
631int
632xfs_mountfs(
633 struct xfs_mount *mp)
634{
635 struct xfs_sb *sbp = &(mp->m_sb);
636 struct xfs_inode *rip;
637 uint64_t resblks;
638 uint quotamount = 0;
639 uint quotaflags = 0;
640 int error = 0;
641
642 xfs_sb_mount_common(mp, sbp);
643
644 /*
645 * Check for a mismatched features2 values. Older kernels read & wrote
646 * into the wrong sb offset for sb_features2 on some platforms due to
647 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
648 * which made older superblock reading/writing routines swap it as a
649 * 64-bit value.
650 *
651 * For backwards compatibility, we make both slots equal.
652 *
653 * If we detect a mismatched field, we OR the set bits into the existing
654 * features2 field in case it has already been modified; we don't want
655 * to lose any features. We then update the bad location with the ORed
656 * value so that older kernels will see any features2 flags. The
657 * superblock writeback code ensures the new sb_features2 is copied to
658 * sb_bad_features2 before it is logged or written to disk.
659 */
660 if (xfs_sb_has_mismatched_features2(sbp)) {
661 xfs_warn(mp, "correcting sb_features alignment problem");
662 sbp->sb_features2 |= sbp->sb_bad_features2;
663 mp->m_update_sb = true;
664
665 /*
666 * Re-check for ATTR2 in case it was found in bad_features2
667 * slot.
668 */
669 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
670 !(mp->m_flags & XFS_MOUNT_NOATTR2))
671 mp->m_flags |= XFS_MOUNT_ATTR2;
672 }
673
674 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
675 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
676 xfs_sb_version_removeattr2(&mp->m_sb);
677 mp->m_update_sb = true;
678
679 /* update sb_versionnum for the clearing of the morebits */
680 if (!sbp->sb_features2)
681 mp->m_update_sb = true;
682 }
683
684 /* always use v2 inodes by default now */
685 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
686 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
687 mp->m_update_sb = true;
688 }
689
690 /*
691 * Check if sb_agblocks is aligned at stripe boundary
692 * If sb_agblocks is NOT aligned turn off m_dalign since
693 * allocator alignment is within an ag, therefore ag has
694 * to be aligned at stripe boundary.
695 */
696 error = xfs_update_alignment(mp);
697 if (error)
698 goto out;
699
700 xfs_alloc_compute_maxlevels(mp);
701 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
702 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
703 xfs_ialloc_compute_maxlevels(mp);
704 xfs_rmapbt_compute_maxlevels(mp);
705 xfs_refcountbt_compute_maxlevels(mp);
706
707 xfs_set_maxicount(mp);
708
709 /* enable fail_at_unmount as default */
710 mp->m_fail_unmount = true;
711
712 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
713 if (error)
714 goto out;
715
716 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
717 &mp->m_kobj, "stats");
718 if (error)
719 goto out_remove_sysfs;
720
721 error = xfs_error_sysfs_init(mp);
722 if (error)
723 goto out_del_stats;
724
725 error = xfs_errortag_init(mp);
726 if (error)
727 goto out_remove_error_sysfs;
728
729 error = xfs_uuid_mount(mp);
730 if (error)
731 goto out_remove_errortag;
732
733 /*
734 * Set the minimum read and write sizes
735 */
736 xfs_set_rw_sizes(mp);
737
738 /* set the low space thresholds for dynamic preallocation */
739 xfs_set_low_space_thresholds(mp);
740
741 /*
742 * Set the inode cluster size.
743 * This may still be overridden by the file system
744 * block size if it is larger than the chosen cluster size.
745 *
746 * For v5 filesystems, scale the cluster size with the inode size to
747 * keep a constant ratio of inode per cluster buffer, but only if mkfs
748 * has set the inode alignment value appropriately for larger cluster
749 * sizes.
750 */
751 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
752 if (xfs_sb_version_hascrc(&mp->m_sb)) {
753 int new_size = mp->m_inode_cluster_size;
754
755 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
756 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
757 mp->m_inode_cluster_size = new_size;
758 }
759
760 /*
761 * If enabled, sparse inode chunk alignment is expected to match the
762 * cluster size. Full inode chunk alignment must match the chunk size,
763 * but that is checked on sb read verification...
764 */
765 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
766 mp->m_sb.sb_spino_align !=
767 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
768 xfs_warn(mp,
769 "Sparse inode block alignment (%u) must match cluster size (%llu).",
770 mp->m_sb.sb_spino_align,
771 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
772 error = -EINVAL;
773 goto out_remove_uuid;
774 }
775
776 /*
777 * Set inode alignment fields
778 */
779 xfs_set_inoalignment(mp);
780
781 /*
782 * Check that the data (and log if separate) is an ok size.
783 */
784 error = xfs_check_sizes(mp);
785 if (error)
786 goto out_remove_uuid;
787
788 /*
789 * Initialize realtime fields in the mount structure
790 */
791 error = xfs_rtmount_init(mp);
792 if (error) {
793 xfs_warn(mp, "RT mount failed");
794 goto out_remove_uuid;
795 }
796
797 /*
798 * Copies the low order bits of the timestamp and the randomly
799 * set "sequence" number out of a UUID.
800 */
801 mp->m_fixedfsid[0] =
802 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
803 get_unaligned_be16(&sbp->sb_uuid.b[4]);
804 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
805
806 error = xfs_da_mount(mp);
807 if (error) {
808 xfs_warn(mp, "Failed dir/attr init: %d", error);
809 goto out_remove_uuid;
810 }
811
812 /*
813 * Initialize the precomputed transaction reservations values.
814 */
815 xfs_trans_init(mp);
816
817 /*
818 * Allocate and initialize the per-ag data.
819 */
820 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
821 if (error) {
822 xfs_warn(mp, "Failed per-ag init: %d", error);
823 goto out_free_dir;
824 }
825
826 if (!sbp->sb_logblocks) {
827 xfs_warn(mp, "no log defined");
828 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
829 error = -EFSCORRUPTED;
830 goto out_free_perag;
831 }
832
833 /*
834 * Log's mount-time initialization. The first part of recovery can place
835 * some items on the AIL, to be handled when recovery is finished or
836 * cancelled.
837 */
838 error = xfs_log_mount(mp, mp->m_logdev_targp,
839 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
840 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
841 if (error) {
842 xfs_warn(mp, "log mount failed");
843 goto out_fail_wait;
844 }
845
846 /*
847 * Now the log is mounted, we know if it was an unclean shutdown or
848 * not. If it was, with the first phase of recovery has completed, we
849 * have consistent AG blocks on disk. We have not recovered EFIs yet,
850 * but they are recovered transactionally in the second recovery phase
851 * later.
852 *
853 * Hence we can safely re-initialise incore superblock counters from
854 * the per-ag data. These may not be correct if the filesystem was not
855 * cleanly unmounted, so we need to wait for recovery to finish before
856 * doing this.
857 *
858 * If the filesystem was cleanly unmounted, then we can trust the
859 * values in the superblock to be correct and we don't need to do
860 * anything here.
861 *
862 * If we are currently making the filesystem, the initialisation will
863 * fail as the perag data is in an undefined state.
864 */
865 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
866 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
867 !mp->m_sb.sb_inprogress) {
868 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
869 if (error)
870 goto out_log_dealloc;
871 }
872
873 /*
874 * Get and sanity-check the root inode.
875 * Save the pointer to it in the mount structure.
876 */
877 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
878 if (error) {
879 xfs_warn(mp, "failed to read root inode");
880 goto out_log_dealloc;
881 }
882
883 ASSERT(rip != NULL);
884
885 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
886 xfs_warn(mp, "corrupted root inode %llu: not a directory",
887 (unsigned long long)rip->i_ino);
888 xfs_iunlock(rip, XFS_ILOCK_EXCL);
889 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
890 mp);
891 error = -EFSCORRUPTED;
892 goto out_rele_rip;
893 }
894 mp->m_rootip = rip; /* save it */
895
896 xfs_iunlock(rip, XFS_ILOCK_EXCL);
897
898 /*
899 * Initialize realtime inode pointers in the mount structure
900 */
901 error = xfs_rtmount_inodes(mp);
902 if (error) {
903 /*
904 * Free up the root inode.
905 */
906 xfs_warn(mp, "failed to read RT inodes");
907 goto out_rele_rip;
908 }
909
910 /*
911 * If this is a read-only mount defer the superblock updates until
912 * the next remount into writeable mode. Otherwise we would never
913 * perform the update e.g. for the root filesystem.
914 */
915 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
916 error = xfs_sync_sb(mp, false);
917 if (error) {
918 xfs_warn(mp, "failed to write sb changes");
919 goto out_rtunmount;
920 }
921 }
922
923 /*
924 * Initialise the XFS quota management subsystem for this mount
925 */
926 if (XFS_IS_QUOTA_RUNNING(mp)) {
927 error = xfs_qm_newmount(mp, "amount, "aflags);
928 if (error)
929 goto out_rtunmount;
930 } else {
931 ASSERT(!XFS_IS_QUOTA_ON(mp));
932
933 /*
934 * If a file system had quotas running earlier, but decided to
935 * mount without -o uquota/pquota/gquota options, revoke the
936 * quotachecked license.
937 */
938 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
939 xfs_notice(mp, "resetting quota flags");
940 error = xfs_mount_reset_sbqflags(mp);
941 if (error)
942 goto out_rtunmount;
943 }
944 }
945
946 /*
947 * Finish recovering the file system. This part needed to be delayed
948 * until after the root and real-time bitmap inodes were consistently
949 * read in.
950 */
951 error = xfs_log_mount_finish(mp);
952 if (error) {
953 xfs_warn(mp, "log mount finish failed");
954 goto out_rtunmount;
955 }
956
957 /*
958 * Now the log is fully replayed, we can transition to full read-only
959 * mode for read-only mounts. This will sync all the metadata and clean
960 * the log so that the recovery we just performed does not have to be
961 * replayed again on the next mount.
962 *
963 * We use the same quiesce mechanism as the rw->ro remount, as they are
964 * semantically identical operations.
965 */
966 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
967 XFS_MOUNT_RDONLY) {
968 xfs_quiesce_attr(mp);
969 }
970
971 /*
972 * Complete the quota initialisation, post-log-replay component.
973 */
974 if (quotamount) {
975 ASSERT(mp->m_qflags == 0);
976 mp->m_qflags = quotaflags;
977
978 xfs_qm_mount_quotas(mp);
979 }
980
981 /*
982 * Now we are mounted, reserve a small amount of unused space for
983 * privileged transactions. This is needed so that transaction
984 * space required for critical operations can dip into this pool
985 * when at ENOSPC. This is needed for operations like create with
986 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
987 * are not allowed to use this reserved space.
988 *
989 * This may drive us straight to ENOSPC on mount, but that implies
990 * we were already there on the last unmount. Warn if this occurs.
991 */
992 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
993 resblks = xfs_default_resblks(mp);
994 error = xfs_reserve_blocks(mp, &resblks, NULL);
995 if (error)
996 xfs_warn(mp,
997 "Unable to allocate reserve blocks. Continuing without reserve pool.");
998
999 /* Recover any CoW blocks that never got remapped. */
1000 error = xfs_reflink_recover_cow(mp);
1001 if (error) {
1002 xfs_err(mp,
1003 "Error %d recovering leftover CoW allocations.", error);
1004 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1005 goto out_quota;
1006 }
1007
1008 /* Reserve AG blocks for future btree expansion. */
1009 error = xfs_fs_reserve_ag_blocks(mp);
1010 if (error && error != -ENOSPC)
1011 goto out_agresv;
1012 }
1013
1014 return 0;
1015
1016 out_agresv:
1017 xfs_fs_unreserve_ag_blocks(mp);
1018 out_quota:
1019 xfs_qm_unmount_quotas(mp);
1020 out_rtunmount:
1021 xfs_rtunmount_inodes(mp);
1022 out_rele_rip:
1023 IRELE(rip);
1024 /* Clean out dquots that might be in memory after quotacheck. */
1025 xfs_qm_unmount(mp);
1026 /*
1027 * Cancel all delayed reclaim work and reclaim the inodes directly.
1028 * We have to do this /after/ rtunmount and qm_unmount because those
1029 * two will have scheduled delayed reclaim for the rt/quota inodes.
1030 *
1031 * This is slightly different from the unmountfs call sequence
1032 * because we could be tearing down a partially set up mount. In
1033 * particular, if log_mount_finish fails we bail out without calling
1034 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1035 * quota inodes.
1036 */
1037 cancel_delayed_work_sync(&mp->m_reclaim_work);
1038 xfs_reclaim_inodes(mp, SYNC_WAIT);
1039 out_log_dealloc:
1040 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1041 xfs_log_mount_cancel(mp);
1042 out_fail_wait:
1043 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1044 xfs_wait_buftarg(mp->m_logdev_targp);
1045 xfs_wait_buftarg(mp->m_ddev_targp);
1046 out_free_perag:
1047 xfs_free_perag(mp);
1048 out_free_dir:
1049 xfs_da_unmount(mp);
1050 out_remove_uuid:
1051 xfs_uuid_unmount(mp);
1052 out_remove_errortag:
1053 xfs_errortag_del(mp);
1054 out_remove_error_sysfs:
1055 xfs_error_sysfs_del(mp);
1056 out_del_stats:
1057 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1058 out_remove_sysfs:
1059 xfs_sysfs_del(&mp->m_kobj);
1060 out:
1061 return error;
1062}
1063
1064/*
1065 * This flushes out the inodes,dquots and the superblock, unmounts the
1066 * log and makes sure that incore structures are freed.
1067 */
1068void
1069xfs_unmountfs(
1070 struct xfs_mount *mp)
1071{
1072 uint64_t resblks;
1073 int error;
1074
1075 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1076 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1077
1078 xfs_fs_unreserve_ag_blocks(mp);
1079 xfs_qm_unmount_quotas(mp);
1080 xfs_rtunmount_inodes(mp);
1081 IRELE(mp->m_rootip);
1082
1083 /*
1084 * We can potentially deadlock here if we have an inode cluster
1085 * that has been freed has its buffer still pinned in memory because
1086 * the transaction is still sitting in a iclog. The stale inodes
1087 * on that buffer will have their flush locks held until the
1088 * transaction hits the disk and the callbacks run. the inode
1089 * flush takes the flush lock unconditionally and with nothing to
1090 * push out the iclog we will never get that unlocked. hence we
1091 * need to force the log first.
1092 */
1093 xfs_log_force(mp, XFS_LOG_SYNC);
1094
1095 /*
1096 * Wait for all busy extents to be freed, including completion of
1097 * any discard operation.
1098 */
1099 xfs_extent_busy_wait_all(mp);
1100 flush_workqueue(xfs_discard_wq);
1101
1102 /*
1103 * We now need to tell the world we are unmounting. This will allow
1104 * us to detect that the filesystem is going away and we should error
1105 * out anything that we have been retrying in the background. This will
1106 * prevent neverending retries in AIL pushing from hanging the unmount.
1107 */
1108 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1109
1110 /*
1111 * Flush all pending changes from the AIL.
1112 */
1113 xfs_ail_push_all_sync(mp->m_ail);
1114
1115 /*
1116 * And reclaim all inodes. At this point there should be no dirty
1117 * inodes and none should be pinned or locked, but use synchronous
1118 * reclaim just to be sure. We can stop background inode reclaim
1119 * here as well if it is still running.
1120 */
1121 cancel_delayed_work_sync(&mp->m_reclaim_work);
1122 xfs_reclaim_inodes(mp, SYNC_WAIT);
1123
1124 xfs_qm_unmount(mp);
1125
1126 /*
1127 * Unreserve any blocks we have so that when we unmount we don't account
1128 * the reserved free space as used. This is really only necessary for
1129 * lazy superblock counting because it trusts the incore superblock
1130 * counters to be absolutely correct on clean unmount.
1131 *
1132 * We don't bother correcting this elsewhere for lazy superblock
1133 * counting because on mount of an unclean filesystem we reconstruct the
1134 * correct counter value and this is irrelevant.
1135 *
1136 * For non-lazy counter filesystems, this doesn't matter at all because
1137 * we only every apply deltas to the superblock and hence the incore
1138 * value does not matter....
1139 */
1140 resblks = 0;
1141 error = xfs_reserve_blocks(mp, &resblks, NULL);
1142 if (error)
1143 xfs_warn(mp, "Unable to free reserved block pool. "
1144 "Freespace may not be correct on next mount.");
1145
1146 error = xfs_log_sbcount(mp);
1147 if (error)
1148 xfs_warn(mp, "Unable to update superblock counters. "
1149 "Freespace may not be correct on next mount.");
1150
1151
1152 xfs_log_unmount(mp);
1153 xfs_da_unmount(mp);
1154 xfs_uuid_unmount(mp);
1155
1156#if defined(DEBUG)
1157 xfs_errortag_clearall(mp);
1158#endif
1159 xfs_free_perag(mp);
1160
1161 xfs_errortag_del(mp);
1162 xfs_error_sysfs_del(mp);
1163 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1164 xfs_sysfs_del(&mp->m_kobj);
1165}
1166
1167/*
1168 * Determine whether modifications can proceed. The caller specifies the minimum
1169 * freeze level for which modifications should not be allowed. This allows
1170 * certain operations to proceed while the freeze sequence is in progress, if
1171 * necessary.
1172 */
1173bool
1174xfs_fs_writable(
1175 struct xfs_mount *mp,
1176 int level)
1177{
1178 ASSERT(level > SB_UNFROZEN);
1179 if ((mp->m_super->s_writers.frozen >= level) ||
1180 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1181 return false;
1182
1183 return true;
1184}
1185
1186/*
1187 * xfs_log_sbcount
1188 *
1189 * Sync the superblock counters to disk.
1190 *
1191 * Note this code can be called during the process of freezing, so we use the
1192 * transaction allocator that does not block when the transaction subsystem is
1193 * in its frozen state.
1194 */
1195int
1196xfs_log_sbcount(xfs_mount_t *mp)
1197{
1198 /* allow this to proceed during the freeze sequence... */
1199 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1200 return 0;
1201
1202 /*
1203 * we don't need to do this if we are updating the superblock
1204 * counters on every modification.
1205 */
1206 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1207 return 0;
1208
1209 return xfs_sync_sb(mp, true);
1210}
1211
1212/*
1213 * Deltas for the inode count are +/-64, hence we use a large batch size
1214 * of 128 so we don't need to take the counter lock on every update.
1215 */
1216#define XFS_ICOUNT_BATCH 128
1217int
1218xfs_mod_icount(
1219 struct xfs_mount *mp,
1220 int64_t delta)
1221{
1222 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1223 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1224 ASSERT(0);
1225 percpu_counter_add(&mp->m_icount, -delta);
1226 return -EINVAL;
1227 }
1228 return 0;
1229}
1230
1231int
1232xfs_mod_ifree(
1233 struct xfs_mount *mp,
1234 int64_t delta)
1235{
1236 percpu_counter_add(&mp->m_ifree, delta);
1237 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1238 ASSERT(0);
1239 percpu_counter_add(&mp->m_ifree, -delta);
1240 return -EINVAL;
1241 }
1242 return 0;
1243}
1244
1245/*
1246 * Deltas for the block count can vary from 1 to very large, but lock contention
1247 * only occurs on frequent small block count updates such as in the delayed
1248 * allocation path for buffered writes (page a time updates). Hence we set
1249 * a large batch count (1024) to minimise global counter updates except when
1250 * we get near to ENOSPC and we have to be very accurate with our updates.
1251 */
1252#define XFS_FDBLOCKS_BATCH 1024
1253int
1254xfs_mod_fdblocks(
1255 struct xfs_mount *mp,
1256 int64_t delta,
1257 bool rsvd)
1258{
1259 int64_t lcounter;
1260 long long res_used;
1261 s32 batch;
1262
1263 if (delta > 0) {
1264 /*
1265 * If the reserve pool is depleted, put blocks back into it
1266 * first. Most of the time the pool is full.
1267 */
1268 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1269 percpu_counter_add(&mp->m_fdblocks, delta);
1270 return 0;
1271 }
1272
1273 spin_lock(&mp->m_sb_lock);
1274 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1275
1276 if (res_used > delta) {
1277 mp->m_resblks_avail += delta;
1278 } else {
1279 delta -= res_used;
1280 mp->m_resblks_avail = mp->m_resblks;
1281 percpu_counter_add(&mp->m_fdblocks, delta);
1282 }
1283 spin_unlock(&mp->m_sb_lock);
1284 return 0;
1285 }
1286
1287 /*
1288 * Taking blocks away, need to be more accurate the closer we
1289 * are to zero.
1290 *
1291 * If the counter has a value of less than 2 * max batch size,
1292 * then make everything serialise as we are real close to
1293 * ENOSPC.
1294 */
1295 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1296 XFS_FDBLOCKS_BATCH) < 0)
1297 batch = 1;
1298 else
1299 batch = XFS_FDBLOCKS_BATCH;
1300
1301 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1302 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1303 XFS_FDBLOCKS_BATCH) >= 0) {
1304 /* we had space! */
1305 return 0;
1306 }
1307
1308 /*
1309 * lock up the sb for dipping into reserves before releasing the space
1310 * that took us to ENOSPC.
1311 */
1312 spin_lock(&mp->m_sb_lock);
1313 percpu_counter_add(&mp->m_fdblocks, -delta);
1314 if (!rsvd)
1315 goto fdblocks_enospc;
1316
1317 lcounter = (long long)mp->m_resblks_avail + delta;
1318 if (lcounter >= 0) {
1319 mp->m_resblks_avail = lcounter;
1320 spin_unlock(&mp->m_sb_lock);
1321 return 0;
1322 }
1323 printk_once(KERN_WARNING
1324 "Filesystem \"%s\": reserve blocks depleted! "
1325 "Consider increasing reserve pool size.",
1326 mp->m_fsname);
1327fdblocks_enospc:
1328 spin_unlock(&mp->m_sb_lock);
1329 return -ENOSPC;
1330}
1331
1332int
1333xfs_mod_frextents(
1334 struct xfs_mount *mp,
1335 int64_t delta)
1336{
1337 int64_t lcounter;
1338 int ret = 0;
1339
1340 spin_lock(&mp->m_sb_lock);
1341 lcounter = mp->m_sb.sb_frextents + delta;
1342 if (lcounter < 0)
1343 ret = -ENOSPC;
1344 else
1345 mp->m_sb.sb_frextents = lcounter;
1346 spin_unlock(&mp->m_sb_lock);
1347 return ret;
1348}
1349
1350/*
1351 * xfs_getsb() is called to obtain the buffer for the superblock.
1352 * The buffer is returned locked and read in from disk.
1353 * The buffer should be released with a call to xfs_brelse().
1354 *
1355 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1356 * the superblock buffer if it can be locked without sleeping.
1357 * If it can't then we'll return NULL.
1358 */
1359struct xfs_buf *
1360xfs_getsb(
1361 struct xfs_mount *mp,
1362 int flags)
1363{
1364 struct xfs_buf *bp = mp->m_sb_bp;
1365
1366 if (!xfs_buf_trylock(bp)) {
1367 if (flags & XBF_TRYLOCK)
1368 return NULL;
1369 xfs_buf_lock(bp);
1370 }
1371
1372 xfs_buf_hold(bp);
1373 ASSERT(bp->b_flags & XBF_DONE);
1374 return bp;
1375}
1376
1377/*
1378 * Used to free the superblock along various error paths.
1379 */
1380void
1381xfs_freesb(
1382 struct xfs_mount *mp)
1383{
1384 struct xfs_buf *bp = mp->m_sb_bp;
1385
1386 xfs_buf_lock(bp);
1387 mp->m_sb_bp = NULL;
1388 xfs_buf_relse(bp);
1389}
1390
1391/*
1392 * If the underlying (data/log/rt) device is readonly, there are some
1393 * operations that cannot proceed.
1394 */
1395int
1396xfs_dev_is_read_only(
1397 struct xfs_mount *mp,
1398 char *message)
1399{
1400 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1401 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1402 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1403 xfs_notice(mp, "%s required on read-only device.", message);
1404 xfs_notice(mp, "write access unavailable, cannot proceed.");
1405 return -EROFS;
1406 }
1407 return 0;
1408}
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_da_format.h"
29#include "xfs_da_btree.h"
30#include "xfs_inode.h"
31#include "xfs_dir2.h"
32#include "xfs_ialloc.h"
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
39#include "xfs_error.h"
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
42#include "xfs_trace.h"
43#include "xfs_icache.h"
44#include "xfs_sysfs.h"
45#include "xfs_rmap_btree.h"
46#include "xfs_refcount_btree.h"
47#include "xfs_reflink.h"
48
49
50static DEFINE_MUTEX(xfs_uuid_table_mutex);
51static int xfs_uuid_table_size;
52static uuid_t *xfs_uuid_table;
53
54void
55xfs_uuid_table_free(void)
56{
57 if (xfs_uuid_table_size == 0)
58 return;
59 kmem_free(xfs_uuid_table);
60 xfs_uuid_table = NULL;
61 xfs_uuid_table_size = 0;
62}
63
64/*
65 * See if the UUID is unique among mounted XFS filesystems.
66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
67 */
68STATIC int
69xfs_uuid_mount(
70 struct xfs_mount *mp)
71{
72 uuid_t *uuid = &mp->m_sb.sb_uuid;
73 int hole, i;
74
75 if (mp->m_flags & XFS_MOUNT_NOUUID)
76 return 0;
77
78 if (uuid_is_nil(uuid)) {
79 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
80 return -EINVAL;
81 }
82
83 mutex_lock(&xfs_uuid_table_mutex);
84 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
85 if (uuid_is_nil(&xfs_uuid_table[i])) {
86 hole = i;
87 continue;
88 }
89 if (uuid_equal(uuid, &xfs_uuid_table[i]))
90 goto out_duplicate;
91 }
92
93 if (hole < 0) {
94 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
95 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
96 KM_SLEEP);
97 hole = xfs_uuid_table_size++;
98 }
99 xfs_uuid_table[hole] = *uuid;
100 mutex_unlock(&xfs_uuid_table_mutex);
101
102 return 0;
103
104 out_duplicate:
105 mutex_unlock(&xfs_uuid_table_mutex);
106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 return -EINVAL;
108}
109
110STATIC void
111xfs_uuid_unmount(
112 struct xfs_mount *mp)
113{
114 uuid_t *uuid = &mp->m_sb.sb_uuid;
115 int i;
116
117 if (mp->m_flags & XFS_MOUNT_NOUUID)
118 return;
119
120 mutex_lock(&xfs_uuid_table_mutex);
121 for (i = 0; i < xfs_uuid_table_size; i++) {
122 if (uuid_is_nil(&xfs_uuid_table[i]))
123 continue;
124 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 continue;
126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 break;
128 }
129 ASSERT(i < xfs_uuid_table_size);
130 mutex_unlock(&xfs_uuid_table_mutex);
131}
132
133
134STATIC void
135__xfs_free_perag(
136 struct rcu_head *head)
137{
138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139
140 ASSERT(atomic_read(&pag->pag_ref) == 0);
141 kmem_free(pag);
142}
143
144/*
145 * Free up the per-ag resources associated with the mount structure.
146 */
147STATIC void
148xfs_free_perag(
149 xfs_mount_t *mp)
150{
151 xfs_agnumber_t agno;
152 struct xfs_perag *pag;
153
154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 spin_lock(&mp->m_perag_lock);
156 pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 spin_unlock(&mp->m_perag_lock);
158 ASSERT(pag);
159 ASSERT(atomic_read(&pag->pag_ref) == 0);
160 xfs_buf_hash_destroy(pag);
161 call_rcu(&pag->rcu_head, __xfs_free_perag);
162 }
163}
164
165/*
166 * Check size of device based on the (data/realtime) block count.
167 * Note: this check is used by the growfs code as well as mount.
168 */
169int
170xfs_sb_validate_fsb_count(
171 xfs_sb_t *sbp,
172 __uint64_t nblocks)
173{
174 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
175 ASSERT(sbp->sb_blocklog >= BBSHIFT);
176
177 /* Limited by ULONG_MAX of page cache index */
178 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
179 return -EFBIG;
180 return 0;
181}
182
183int
184xfs_initialize_perag(
185 xfs_mount_t *mp,
186 xfs_agnumber_t agcount,
187 xfs_agnumber_t *maxagi)
188{
189 xfs_agnumber_t index;
190 xfs_agnumber_t first_initialised = NULLAGNUMBER;
191 xfs_perag_t *pag;
192 int error = -ENOMEM;
193
194 /*
195 * Walk the current per-ag tree so we don't try to initialise AGs
196 * that already exist (growfs case). Allocate and insert all the
197 * AGs we don't find ready for initialisation.
198 */
199 for (index = 0; index < agcount; index++) {
200 pag = xfs_perag_get(mp, index);
201 if (pag) {
202 xfs_perag_put(pag);
203 continue;
204 }
205
206 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
207 if (!pag)
208 goto out_unwind_new_pags;
209 pag->pag_agno = index;
210 pag->pag_mount = mp;
211 spin_lock_init(&pag->pag_ici_lock);
212 mutex_init(&pag->pag_ici_reclaim_lock);
213 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
214 if (xfs_buf_hash_init(pag))
215 goto out_free_pag;
216
217 if (radix_tree_preload(GFP_NOFS))
218 goto out_hash_destroy;
219
220 spin_lock(&mp->m_perag_lock);
221 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
222 BUG();
223 spin_unlock(&mp->m_perag_lock);
224 radix_tree_preload_end();
225 error = -EEXIST;
226 goto out_hash_destroy;
227 }
228 spin_unlock(&mp->m_perag_lock);
229 radix_tree_preload_end();
230 /* first new pag is fully initialized */
231 if (first_initialised == NULLAGNUMBER)
232 first_initialised = index;
233 }
234
235 index = xfs_set_inode_alloc(mp, agcount);
236
237 if (maxagi)
238 *maxagi = index;
239
240 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
241 return 0;
242
243out_hash_destroy:
244 xfs_buf_hash_destroy(pag);
245out_free_pag:
246 kmem_free(pag);
247out_unwind_new_pags:
248 /* unwind any prior newly initialized pags */
249 for (index = first_initialised; index < agcount; index++) {
250 pag = radix_tree_delete(&mp->m_perag_tree, index);
251 if (!pag)
252 break;
253 xfs_buf_hash_destroy(pag);
254 kmem_free(pag);
255 }
256 return error;
257}
258
259/*
260 * xfs_readsb
261 *
262 * Does the initial read of the superblock.
263 */
264int
265xfs_readsb(
266 struct xfs_mount *mp,
267 int flags)
268{
269 unsigned int sector_size;
270 struct xfs_buf *bp;
271 struct xfs_sb *sbp = &mp->m_sb;
272 int error;
273 int loud = !(flags & XFS_MFSI_QUIET);
274 const struct xfs_buf_ops *buf_ops;
275
276 ASSERT(mp->m_sb_bp == NULL);
277 ASSERT(mp->m_ddev_targp != NULL);
278
279 /*
280 * For the initial read, we must guess at the sector
281 * size based on the block device. It's enough to
282 * get the sb_sectsize out of the superblock and
283 * then reread with the proper length.
284 * We don't verify it yet, because it may not be complete.
285 */
286 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
287 buf_ops = NULL;
288
289 /*
290 * Allocate a (locked) buffer to hold the superblock. This will be kept
291 * around at all times to optimize access to the superblock. Therefore,
292 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
293 * elevated.
294 */
295reread:
296 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
297 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
298 buf_ops);
299 if (error) {
300 if (loud)
301 xfs_warn(mp, "SB validate failed with error %d.", error);
302 /* bad CRC means corrupted metadata */
303 if (error == -EFSBADCRC)
304 error = -EFSCORRUPTED;
305 return error;
306 }
307
308 /*
309 * Initialize the mount structure from the superblock.
310 */
311 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
312
313 /*
314 * If we haven't validated the superblock, do so now before we try
315 * to check the sector size and reread the superblock appropriately.
316 */
317 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
318 if (loud)
319 xfs_warn(mp, "Invalid superblock magic number");
320 error = -EINVAL;
321 goto release_buf;
322 }
323
324 /*
325 * We must be able to do sector-sized and sector-aligned IO.
326 */
327 if (sector_size > sbp->sb_sectsize) {
328 if (loud)
329 xfs_warn(mp, "device supports %u byte sectors (not %u)",
330 sector_size, sbp->sb_sectsize);
331 error = -ENOSYS;
332 goto release_buf;
333 }
334
335 if (buf_ops == NULL) {
336 /*
337 * Re-read the superblock so the buffer is correctly sized,
338 * and properly verified.
339 */
340 xfs_buf_relse(bp);
341 sector_size = sbp->sb_sectsize;
342 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
343 goto reread;
344 }
345
346 xfs_reinit_percpu_counters(mp);
347
348 /* no need to be quiet anymore, so reset the buf ops */
349 bp->b_ops = &xfs_sb_buf_ops;
350
351 mp->m_sb_bp = bp;
352 xfs_buf_unlock(bp);
353 return 0;
354
355release_buf:
356 xfs_buf_relse(bp);
357 return error;
358}
359
360/*
361 * Update alignment values based on mount options and sb values
362 */
363STATIC int
364xfs_update_alignment(xfs_mount_t *mp)
365{
366 xfs_sb_t *sbp = &(mp->m_sb);
367
368 if (mp->m_dalign) {
369 /*
370 * If stripe unit and stripe width are not multiples
371 * of the fs blocksize turn off alignment.
372 */
373 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
374 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
375 xfs_warn(mp,
376 "alignment check failed: sunit/swidth vs. blocksize(%d)",
377 sbp->sb_blocksize);
378 return -EINVAL;
379 } else {
380 /*
381 * Convert the stripe unit and width to FSBs.
382 */
383 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
384 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
385 xfs_warn(mp,
386 "alignment check failed: sunit/swidth vs. agsize(%d)",
387 sbp->sb_agblocks);
388 return -EINVAL;
389 } else if (mp->m_dalign) {
390 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
391 } else {
392 xfs_warn(mp,
393 "alignment check failed: sunit(%d) less than bsize(%d)",
394 mp->m_dalign, sbp->sb_blocksize);
395 return -EINVAL;
396 }
397 }
398
399 /*
400 * Update superblock with new values
401 * and log changes
402 */
403 if (xfs_sb_version_hasdalign(sbp)) {
404 if (sbp->sb_unit != mp->m_dalign) {
405 sbp->sb_unit = mp->m_dalign;
406 mp->m_update_sb = true;
407 }
408 if (sbp->sb_width != mp->m_swidth) {
409 sbp->sb_width = mp->m_swidth;
410 mp->m_update_sb = true;
411 }
412 } else {
413 xfs_warn(mp,
414 "cannot change alignment: superblock does not support data alignment");
415 return -EINVAL;
416 }
417 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
418 xfs_sb_version_hasdalign(&mp->m_sb)) {
419 mp->m_dalign = sbp->sb_unit;
420 mp->m_swidth = sbp->sb_width;
421 }
422
423 return 0;
424}
425
426/*
427 * Set the maximum inode count for this filesystem
428 */
429STATIC void
430xfs_set_maxicount(xfs_mount_t *mp)
431{
432 xfs_sb_t *sbp = &(mp->m_sb);
433 __uint64_t icount;
434
435 if (sbp->sb_imax_pct) {
436 /*
437 * Make sure the maximum inode count is a multiple
438 * of the units we allocate inodes in.
439 */
440 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
441 do_div(icount, 100);
442 do_div(icount, mp->m_ialloc_blks);
443 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
444 sbp->sb_inopblog;
445 } else {
446 mp->m_maxicount = 0;
447 }
448}
449
450/*
451 * Set the default minimum read and write sizes unless
452 * already specified in a mount option.
453 * We use smaller I/O sizes when the file system
454 * is being used for NFS service (wsync mount option).
455 */
456STATIC void
457xfs_set_rw_sizes(xfs_mount_t *mp)
458{
459 xfs_sb_t *sbp = &(mp->m_sb);
460 int readio_log, writeio_log;
461
462 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
463 if (mp->m_flags & XFS_MOUNT_WSYNC) {
464 readio_log = XFS_WSYNC_READIO_LOG;
465 writeio_log = XFS_WSYNC_WRITEIO_LOG;
466 } else {
467 readio_log = XFS_READIO_LOG_LARGE;
468 writeio_log = XFS_WRITEIO_LOG_LARGE;
469 }
470 } else {
471 readio_log = mp->m_readio_log;
472 writeio_log = mp->m_writeio_log;
473 }
474
475 if (sbp->sb_blocklog > readio_log) {
476 mp->m_readio_log = sbp->sb_blocklog;
477 } else {
478 mp->m_readio_log = readio_log;
479 }
480 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
481 if (sbp->sb_blocklog > writeio_log) {
482 mp->m_writeio_log = sbp->sb_blocklog;
483 } else {
484 mp->m_writeio_log = writeio_log;
485 }
486 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
487}
488
489/*
490 * precalculate the low space thresholds for dynamic speculative preallocation.
491 */
492void
493xfs_set_low_space_thresholds(
494 struct xfs_mount *mp)
495{
496 int i;
497
498 for (i = 0; i < XFS_LOWSP_MAX; i++) {
499 __uint64_t space = mp->m_sb.sb_dblocks;
500
501 do_div(space, 100);
502 mp->m_low_space[i] = space * (i + 1);
503 }
504}
505
506
507/*
508 * Set whether we're using inode alignment.
509 */
510STATIC void
511xfs_set_inoalignment(xfs_mount_t *mp)
512{
513 if (xfs_sb_version_hasalign(&mp->m_sb) &&
514 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
515 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
516 else
517 mp->m_inoalign_mask = 0;
518 /*
519 * If we are using stripe alignment, check whether
520 * the stripe unit is a multiple of the inode alignment
521 */
522 if (mp->m_dalign && mp->m_inoalign_mask &&
523 !(mp->m_dalign & mp->m_inoalign_mask))
524 mp->m_sinoalign = mp->m_dalign;
525 else
526 mp->m_sinoalign = 0;
527}
528
529/*
530 * Check that the data (and log if separate) is an ok size.
531 */
532STATIC int
533xfs_check_sizes(
534 struct xfs_mount *mp)
535{
536 struct xfs_buf *bp;
537 xfs_daddr_t d;
538 int error;
539
540 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
541 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
542 xfs_warn(mp, "filesystem size mismatch detected");
543 return -EFBIG;
544 }
545 error = xfs_buf_read_uncached(mp->m_ddev_targp,
546 d - XFS_FSS_TO_BB(mp, 1),
547 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
548 if (error) {
549 xfs_warn(mp, "last sector read failed");
550 return error;
551 }
552 xfs_buf_relse(bp);
553
554 if (mp->m_logdev_targp == mp->m_ddev_targp)
555 return 0;
556
557 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
558 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
559 xfs_warn(mp, "log size mismatch detected");
560 return -EFBIG;
561 }
562 error = xfs_buf_read_uncached(mp->m_logdev_targp,
563 d - XFS_FSB_TO_BB(mp, 1),
564 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
565 if (error) {
566 xfs_warn(mp, "log device read failed");
567 return error;
568 }
569 xfs_buf_relse(bp);
570 return 0;
571}
572
573/*
574 * Clear the quotaflags in memory and in the superblock.
575 */
576int
577xfs_mount_reset_sbqflags(
578 struct xfs_mount *mp)
579{
580 mp->m_qflags = 0;
581
582 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
583 if (mp->m_sb.sb_qflags == 0)
584 return 0;
585 spin_lock(&mp->m_sb_lock);
586 mp->m_sb.sb_qflags = 0;
587 spin_unlock(&mp->m_sb_lock);
588
589 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
590 return 0;
591
592 return xfs_sync_sb(mp, false);
593}
594
595__uint64_t
596xfs_default_resblks(xfs_mount_t *mp)
597{
598 __uint64_t resblks;
599
600 /*
601 * We default to 5% or 8192 fsbs of space reserved, whichever is
602 * smaller. This is intended to cover concurrent allocation
603 * transactions when we initially hit enospc. These each require a 4
604 * block reservation. Hence by default we cover roughly 2000 concurrent
605 * allocation reservations.
606 */
607 resblks = mp->m_sb.sb_dblocks;
608 do_div(resblks, 20);
609 resblks = min_t(__uint64_t, resblks, 8192);
610 return resblks;
611}
612
613/*
614 * This function does the following on an initial mount of a file system:
615 * - reads the superblock from disk and init the mount struct
616 * - if we're a 32-bit kernel, do a size check on the superblock
617 * so we don't mount terabyte filesystems
618 * - init mount struct realtime fields
619 * - allocate inode hash table for fs
620 * - init directory manager
621 * - perform recovery and init the log manager
622 */
623int
624xfs_mountfs(
625 struct xfs_mount *mp)
626{
627 struct xfs_sb *sbp = &(mp->m_sb);
628 struct xfs_inode *rip;
629 __uint64_t resblks;
630 uint quotamount = 0;
631 uint quotaflags = 0;
632 int error = 0;
633
634 xfs_sb_mount_common(mp, sbp);
635
636 /*
637 * Check for a mismatched features2 values. Older kernels read & wrote
638 * into the wrong sb offset for sb_features2 on some platforms due to
639 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
640 * which made older superblock reading/writing routines swap it as a
641 * 64-bit value.
642 *
643 * For backwards compatibility, we make both slots equal.
644 *
645 * If we detect a mismatched field, we OR the set bits into the existing
646 * features2 field in case it has already been modified; we don't want
647 * to lose any features. We then update the bad location with the ORed
648 * value so that older kernels will see any features2 flags. The
649 * superblock writeback code ensures the new sb_features2 is copied to
650 * sb_bad_features2 before it is logged or written to disk.
651 */
652 if (xfs_sb_has_mismatched_features2(sbp)) {
653 xfs_warn(mp, "correcting sb_features alignment problem");
654 sbp->sb_features2 |= sbp->sb_bad_features2;
655 mp->m_update_sb = true;
656
657 /*
658 * Re-check for ATTR2 in case it was found in bad_features2
659 * slot.
660 */
661 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
662 !(mp->m_flags & XFS_MOUNT_NOATTR2))
663 mp->m_flags |= XFS_MOUNT_ATTR2;
664 }
665
666 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
667 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
668 xfs_sb_version_removeattr2(&mp->m_sb);
669 mp->m_update_sb = true;
670
671 /* update sb_versionnum for the clearing of the morebits */
672 if (!sbp->sb_features2)
673 mp->m_update_sb = true;
674 }
675
676 /* always use v2 inodes by default now */
677 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
678 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
679 mp->m_update_sb = true;
680 }
681
682 /*
683 * Check if sb_agblocks is aligned at stripe boundary
684 * If sb_agblocks is NOT aligned turn off m_dalign since
685 * allocator alignment is within an ag, therefore ag has
686 * to be aligned at stripe boundary.
687 */
688 error = xfs_update_alignment(mp);
689 if (error)
690 goto out;
691
692 xfs_alloc_compute_maxlevels(mp);
693 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
694 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
695 xfs_ialloc_compute_maxlevels(mp);
696 xfs_rmapbt_compute_maxlevels(mp);
697 xfs_refcountbt_compute_maxlevels(mp);
698
699 xfs_set_maxicount(mp);
700
701 /* enable fail_at_unmount as default */
702 mp->m_fail_unmount = 1;
703
704 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
705 if (error)
706 goto out;
707
708 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
709 &mp->m_kobj, "stats");
710 if (error)
711 goto out_remove_sysfs;
712
713 error = xfs_error_sysfs_init(mp);
714 if (error)
715 goto out_del_stats;
716
717
718 error = xfs_uuid_mount(mp);
719 if (error)
720 goto out_remove_error_sysfs;
721
722 /*
723 * Set the minimum read and write sizes
724 */
725 xfs_set_rw_sizes(mp);
726
727 /* set the low space thresholds for dynamic preallocation */
728 xfs_set_low_space_thresholds(mp);
729
730 /*
731 * Set the inode cluster size.
732 * This may still be overridden by the file system
733 * block size if it is larger than the chosen cluster size.
734 *
735 * For v5 filesystems, scale the cluster size with the inode size to
736 * keep a constant ratio of inode per cluster buffer, but only if mkfs
737 * has set the inode alignment value appropriately for larger cluster
738 * sizes.
739 */
740 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
741 if (xfs_sb_version_hascrc(&mp->m_sb)) {
742 int new_size = mp->m_inode_cluster_size;
743
744 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
745 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
746 mp->m_inode_cluster_size = new_size;
747 }
748
749 /*
750 * If enabled, sparse inode chunk alignment is expected to match the
751 * cluster size. Full inode chunk alignment must match the chunk size,
752 * but that is checked on sb read verification...
753 */
754 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
755 mp->m_sb.sb_spino_align !=
756 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
757 xfs_warn(mp,
758 "Sparse inode block alignment (%u) must match cluster size (%llu).",
759 mp->m_sb.sb_spino_align,
760 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
761 error = -EINVAL;
762 goto out_remove_uuid;
763 }
764
765 /*
766 * Set inode alignment fields
767 */
768 xfs_set_inoalignment(mp);
769
770 /*
771 * Check that the data (and log if separate) is an ok size.
772 */
773 error = xfs_check_sizes(mp);
774 if (error)
775 goto out_remove_uuid;
776
777 /*
778 * Initialize realtime fields in the mount structure
779 */
780 error = xfs_rtmount_init(mp);
781 if (error) {
782 xfs_warn(mp, "RT mount failed");
783 goto out_remove_uuid;
784 }
785
786 /*
787 * Copies the low order bits of the timestamp and the randomly
788 * set "sequence" number out of a UUID.
789 */
790 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
791
792 mp->m_dmevmask = 0; /* not persistent; set after each mount */
793
794 error = xfs_da_mount(mp);
795 if (error) {
796 xfs_warn(mp, "Failed dir/attr init: %d", error);
797 goto out_remove_uuid;
798 }
799
800 /*
801 * Initialize the precomputed transaction reservations values.
802 */
803 xfs_trans_init(mp);
804
805 /*
806 * Allocate and initialize the per-ag data.
807 */
808 spin_lock_init(&mp->m_perag_lock);
809 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
810 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
811 if (error) {
812 xfs_warn(mp, "Failed per-ag init: %d", error);
813 goto out_free_dir;
814 }
815
816 if (!sbp->sb_logblocks) {
817 xfs_warn(mp, "no log defined");
818 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
819 error = -EFSCORRUPTED;
820 goto out_free_perag;
821 }
822
823 /*
824 * Log's mount-time initialization. The first part of recovery can place
825 * some items on the AIL, to be handled when recovery is finished or
826 * cancelled.
827 */
828 error = xfs_log_mount(mp, mp->m_logdev_targp,
829 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
830 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
831 if (error) {
832 xfs_warn(mp, "log mount failed");
833 goto out_fail_wait;
834 }
835
836 /*
837 * Now the log is mounted, we know if it was an unclean shutdown or
838 * not. If it was, with the first phase of recovery has completed, we
839 * have consistent AG blocks on disk. We have not recovered EFIs yet,
840 * but they are recovered transactionally in the second recovery phase
841 * later.
842 *
843 * Hence we can safely re-initialise incore superblock counters from
844 * the per-ag data. These may not be correct if the filesystem was not
845 * cleanly unmounted, so we need to wait for recovery to finish before
846 * doing this.
847 *
848 * If the filesystem was cleanly unmounted, then we can trust the
849 * values in the superblock to be correct and we don't need to do
850 * anything here.
851 *
852 * If we are currently making the filesystem, the initialisation will
853 * fail as the perag data is in an undefined state.
854 */
855 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
856 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
857 !mp->m_sb.sb_inprogress) {
858 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
859 if (error)
860 goto out_log_dealloc;
861 }
862
863 /*
864 * Get and sanity-check the root inode.
865 * Save the pointer to it in the mount structure.
866 */
867 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
868 if (error) {
869 xfs_warn(mp, "failed to read root inode");
870 goto out_log_dealloc;
871 }
872
873 ASSERT(rip != NULL);
874
875 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
876 xfs_warn(mp, "corrupted root inode %llu: not a directory",
877 (unsigned long long)rip->i_ino);
878 xfs_iunlock(rip, XFS_ILOCK_EXCL);
879 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
880 mp);
881 error = -EFSCORRUPTED;
882 goto out_rele_rip;
883 }
884 mp->m_rootip = rip; /* save it */
885
886 xfs_iunlock(rip, XFS_ILOCK_EXCL);
887
888 /*
889 * Initialize realtime inode pointers in the mount structure
890 */
891 error = xfs_rtmount_inodes(mp);
892 if (error) {
893 /*
894 * Free up the root inode.
895 */
896 xfs_warn(mp, "failed to read RT inodes");
897 goto out_rele_rip;
898 }
899
900 /*
901 * If this is a read-only mount defer the superblock updates until
902 * the next remount into writeable mode. Otherwise we would never
903 * perform the update e.g. for the root filesystem.
904 */
905 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
906 error = xfs_sync_sb(mp, false);
907 if (error) {
908 xfs_warn(mp, "failed to write sb changes");
909 goto out_rtunmount;
910 }
911 }
912
913 /*
914 * Initialise the XFS quota management subsystem for this mount
915 */
916 if (XFS_IS_QUOTA_RUNNING(mp)) {
917 error = xfs_qm_newmount(mp, "amount, "aflags);
918 if (error)
919 goto out_rtunmount;
920 } else {
921 ASSERT(!XFS_IS_QUOTA_ON(mp));
922
923 /*
924 * If a file system had quotas running earlier, but decided to
925 * mount without -o uquota/pquota/gquota options, revoke the
926 * quotachecked license.
927 */
928 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
929 xfs_notice(mp, "resetting quota flags");
930 error = xfs_mount_reset_sbqflags(mp);
931 if (error)
932 goto out_rtunmount;
933 }
934 }
935
936 /*
937 * During the second phase of log recovery, we need iget and
938 * iput to behave like they do for an active filesystem.
939 * xfs_fs_drop_inode needs to be able to prevent the deletion
940 * of inodes before we're done replaying log items on those
941 * inodes.
942 */
943 mp->m_super->s_flags |= MS_ACTIVE;
944
945 /*
946 * Finish recovering the file system. This part needed to be delayed
947 * until after the root and real-time bitmap inodes were consistently
948 * read in.
949 */
950 error = xfs_log_mount_finish(mp);
951 if (error) {
952 xfs_warn(mp, "log mount finish failed");
953 goto out_rtunmount;
954 }
955
956 /*
957 * Now the log is fully replayed, we can transition to full read-only
958 * mode for read-only mounts. This will sync all the metadata and clean
959 * the log so that the recovery we just performed does not have to be
960 * replayed again on the next mount.
961 *
962 * We use the same quiesce mechanism as the rw->ro remount, as they are
963 * semantically identical operations.
964 */
965 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
966 XFS_MOUNT_RDONLY) {
967 xfs_quiesce_attr(mp);
968 }
969
970 /*
971 * Complete the quota initialisation, post-log-replay component.
972 */
973 if (quotamount) {
974 ASSERT(mp->m_qflags == 0);
975 mp->m_qflags = quotaflags;
976
977 xfs_qm_mount_quotas(mp);
978 }
979
980 /*
981 * Now we are mounted, reserve a small amount of unused space for
982 * privileged transactions. This is needed so that transaction
983 * space required for critical operations can dip into this pool
984 * when at ENOSPC. This is needed for operations like create with
985 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
986 * are not allowed to use this reserved space.
987 *
988 * This may drive us straight to ENOSPC on mount, but that implies
989 * we were already there on the last unmount. Warn if this occurs.
990 */
991 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
992 resblks = xfs_default_resblks(mp);
993 error = xfs_reserve_blocks(mp, &resblks, NULL);
994 if (error)
995 xfs_warn(mp,
996 "Unable to allocate reserve blocks. Continuing without reserve pool.");
997
998 /* Recover any CoW blocks that never got remapped. */
999 error = xfs_reflink_recover_cow(mp);
1000 if (error) {
1001 xfs_err(mp,
1002 "Error %d recovering leftover CoW allocations.", error);
1003 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1004 goto out_quota;
1005 }
1006
1007 /* Reserve AG blocks for future btree expansion. */
1008 error = xfs_fs_reserve_ag_blocks(mp);
1009 if (error && error != -ENOSPC)
1010 goto out_agresv;
1011 }
1012
1013 return 0;
1014
1015 out_agresv:
1016 xfs_fs_unreserve_ag_blocks(mp);
1017 out_quota:
1018 xfs_qm_unmount_quotas(mp);
1019 out_rtunmount:
1020 mp->m_super->s_flags &= ~MS_ACTIVE;
1021 xfs_rtunmount_inodes(mp);
1022 out_rele_rip:
1023 IRELE(rip);
1024 cancel_delayed_work_sync(&mp->m_reclaim_work);
1025 xfs_reclaim_inodes(mp, SYNC_WAIT);
1026 out_log_dealloc:
1027 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1028 xfs_log_mount_cancel(mp);
1029 out_fail_wait:
1030 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1031 xfs_wait_buftarg(mp->m_logdev_targp);
1032 xfs_wait_buftarg(mp->m_ddev_targp);
1033 out_free_perag:
1034 xfs_free_perag(mp);
1035 out_free_dir:
1036 xfs_da_unmount(mp);
1037 out_remove_uuid:
1038 xfs_uuid_unmount(mp);
1039 out_remove_error_sysfs:
1040 xfs_error_sysfs_del(mp);
1041 out_del_stats:
1042 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1043 out_remove_sysfs:
1044 xfs_sysfs_del(&mp->m_kobj);
1045 out:
1046 return error;
1047}
1048
1049/*
1050 * This flushes out the inodes,dquots and the superblock, unmounts the
1051 * log and makes sure that incore structures are freed.
1052 */
1053void
1054xfs_unmountfs(
1055 struct xfs_mount *mp)
1056{
1057 __uint64_t resblks;
1058 int error;
1059
1060 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1061 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1062
1063 xfs_fs_unreserve_ag_blocks(mp);
1064 xfs_qm_unmount_quotas(mp);
1065 xfs_rtunmount_inodes(mp);
1066 IRELE(mp->m_rootip);
1067
1068 /*
1069 * We can potentially deadlock here if we have an inode cluster
1070 * that has been freed has its buffer still pinned in memory because
1071 * the transaction is still sitting in a iclog. The stale inodes
1072 * on that buffer will have their flush locks held until the
1073 * transaction hits the disk and the callbacks run. the inode
1074 * flush takes the flush lock unconditionally and with nothing to
1075 * push out the iclog we will never get that unlocked. hence we
1076 * need to force the log first.
1077 */
1078 xfs_log_force(mp, XFS_LOG_SYNC);
1079
1080 /*
1081 * We now need to tell the world we are unmounting. This will allow
1082 * us to detect that the filesystem is going away and we should error
1083 * out anything that we have been retrying in the background. This will
1084 * prevent neverending retries in AIL pushing from hanging the unmount.
1085 */
1086 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1087
1088 /*
1089 * Flush all pending changes from the AIL.
1090 */
1091 xfs_ail_push_all_sync(mp->m_ail);
1092
1093 /*
1094 * And reclaim all inodes. At this point there should be no dirty
1095 * inodes and none should be pinned or locked, but use synchronous
1096 * reclaim just to be sure. We can stop background inode reclaim
1097 * here as well if it is still running.
1098 */
1099 cancel_delayed_work_sync(&mp->m_reclaim_work);
1100 xfs_reclaim_inodes(mp, SYNC_WAIT);
1101
1102 xfs_qm_unmount(mp);
1103
1104 /*
1105 * Unreserve any blocks we have so that when we unmount we don't account
1106 * the reserved free space as used. This is really only necessary for
1107 * lazy superblock counting because it trusts the incore superblock
1108 * counters to be absolutely correct on clean unmount.
1109 *
1110 * We don't bother correcting this elsewhere for lazy superblock
1111 * counting because on mount of an unclean filesystem we reconstruct the
1112 * correct counter value and this is irrelevant.
1113 *
1114 * For non-lazy counter filesystems, this doesn't matter at all because
1115 * we only every apply deltas to the superblock and hence the incore
1116 * value does not matter....
1117 */
1118 resblks = 0;
1119 error = xfs_reserve_blocks(mp, &resblks, NULL);
1120 if (error)
1121 xfs_warn(mp, "Unable to free reserved block pool. "
1122 "Freespace may not be correct on next mount.");
1123
1124 error = xfs_log_sbcount(mp);
1125 if (error)
1126 xfs_warn(mp, "Unable to update superblock counters. "
1127 "Freespace may not be correct on next mount.");
1128
1129
1130 xfs_log_unmount(mp);
1131 xfs_da_unmount(mp);
1132 xfs_uuid_unmount(mp);
1133
1134#if defined(DEBUG)
1135 xfs_errortag_clearall(mp, 0);
1136#endif
1137 xfs_free_perag(mp);
1138
1139 xfs_error_sysfs_del(mp);
1140 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1141 xfs_sysfs_del(&mp->m_kobj);
1142}
1143
1144/*
1145 * Determine whether modifications can proceed. The caller specifies the minimum
1146 * freeze level for which modifications should not be allowed. This allows
1147 * certain operations to proceed while the freeze sequence is in progress, if
1148 * necessary.
1149 */
1150bool
1151xfs_fs_writable(
1152 struct xfs_mount *mp,
1153 int level)
1154{
1155 ASSERT(level > SB_UNFROZEN);
1156 if ((mp->m_super->s_writers.frozen >= level) ||
1157 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1158 return false;
1159
1160 return true;
1161}
1162
1163/*
1164 * xfs_log_sbcount
1165 *
1166 * Sync the superblock counters to disk.
1167 *
1168 * Note this code can be called during the process of freezing, so we use the
1169 * transaction allocator that does not block when the transaction subsystem is
1170 * in its frozen state.
1171 */
1172int
1173xfs_log_sbcount(xfs_mount_t *mp)
1174{
1175 /* allow this to proceed during the freeze sequence... */
1176 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1177 return 0;
1178
1179 /*
1180 * we don't need to do this if we are updating the superblock
1181 * counters on every modification.
1182 */
1183 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1184 return 0;
1185
1186 return xfs_sync_sb(mp, true);
1187}
1188
1189/*
1190 * Deltas for the inode count are +/-64, hence we use a large batch size
1191 * of 128 so we don't need to take the counter lock on every update.
1192 */
1193#define XFS_ICOUNT_BATCH 128
1194int
1195xfs_mod_icount(
1196 struct xfs_mount *mp,
1197 int64_t delta)
1198{
1199 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1200 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1201 ASSERT(0);
1202 percpu_counter_add(&mp->m_icount, -delta);
1203 return -EINVAL;
1204 }
1205 return 0;
1206}
1207
1208int
1209xfs_mod_ifree(
1210 struct xfs_mount *mp,
1211 int64_t delta)
1212{
1213 percpu_counter_add(&mp->m_ifree, delta);
1214 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1215 ASSERT(0);
1216 percpu_counter_add(&mp->m_ifree, -delta);
1217 return -EINVAL;
1218 }
1219 return 0;
1220}
1221
1222/*
1223 * Deltas for the block count can vary from 1 to very large, but lock contention
1224 * only occurs on frequent small block count updates such as in the delayed
1225 * allocation path for buffered writes (page a time updates). Hence we set
1226 * a large batch count (1024) to minimise global counter updates except when
1227 * we get near to ENOSPC and we have to be very accurate with our updates.
1228 */
1229#define XFS_FDBLOCKS_BATCH 1024
1230int
1231xfs_mod_fdblocks(
1232 struct xfs_mount *mp,
1233 int64_t delta,
1234 bool rsvd)
1235{
1236 int64_t lcounter;
1237 long long res_used;
1238 s32 batch;
1239
1240 if (delta > 0) {
1241 /*
1242 * If the reserve pool is depleted, put blocks back into it
1243 * first. Most of the time the pool is full.
1244 */
1245 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1246 percpu_counter_add(&mp->m_fdblocks, delta);
1247 return 0;
1248 }
1249
1250 spin_lock(&mp->m_sb_lock);
1251 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1252
1253 if (res_used > delta) {
1254 mp->m_resblks_avail += delta;
1255 } else {
1256 delta -= res_used;
1257 mp->m_resblks_avail = mp->m_resblks;
1258 percpu_counter_add(&mp->m_fdblocks, delta);
1259 }
1260 spin_unlock(&mp->m_sb_lock);
1261 return 0;
1262 }
1263
1264 /*
1265 * Taking blocks away, need to be more accurate the closer we
1266 * are to zero.
1267 *
1268 * If the counter has a value of less than 2 * max batch size,
1269 * then make everything serialise as we are real close to
1270 * ENOSPC.
1271 */
1272 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1273 XFS_FDBLOCKS_BATCH) < 0)
1274 batch = 1;
1275 else
1276 batch = XFS_FDBLOCKS_BATCH;
1277
1278 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1279 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1280 XFS_FDBLOCKS_BATCH) >= 0) {
1281 /* we had space! */
1282 return 0;
1283 }
1284
1285 /*
1286 * lock up the sb for dipping into reserves before releasing the space
1287 * that took us to ENOSPC.
1288 */
1289 spin_lock(&mp->m_sb_lock);
1290 percpu_counter_add(&mp->m_fdblocks, -delta);
1291 if (!rsvd)
1292 goto fdblocks_enospc;
1293
1294 lcounter = (long long)mp->m_resblks_avail + delta;
1295 if (lcounter >= 0) {
1296 mp->m_resblks_avail = lcounter;
1297 spin_unlock(&mp->m_sb_lock);
1298 return 0;
1299 }
1300 printk_once(KERN_WARNING
1301 "Filesystem \"%s\": reserve blocks depleted! "
1302 "Consider increasing reserve pool size.",
1303 mp->m_fsname);
1304fdblocks_enospc:
1305 spin_unlock(&mp->m_sb_lock);
1306 return -ENOSPC;
1307}
1308
1309int
1310xfs_mod_frextents(
1311 struct xfs_mount *mp,
1312 int64_t delta)
1313{
1314 int64_t lcounter;
1315 int ret = 0;
1316
1317 spin_lock(&mp->m_sb_lock);
1318 lcounter = mp->m_sb.sb_frextents + delta;
1319 if (lcounter < 0)
1320 ret = -ENOSPC;
1321 else
1322 mp->m_sb.sb_frextents = lcounter;
1323 spin_unlock(&mp->m_sb_lock);
1324 return ret;
1325}
1326
1327/*
1328 * xfs_getsb() is called to obtain the buffer for the superblock.
1329 * The buffer is returned locked and read in from disk.
1330 * The buffer should be released with a call to xfs_brelse().
1331 *
1332 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1333 * the superblock buffer if it can be locked without sleeping.
1334 * If it can't then we'll return NULL.
1335 */
1336struct xfs_buf *
1337xfs_getsb(
1338 struct xfs_mount *mp,
1339 int flags)
1340{
1341 struct xfs_buf *bp = mp->m_sb_bp;
1342
1343 if (!xfs_buf_trylock(bp)) {
1344 if (flags & XBF_TRYLOCK)
1345 return NULL;
1346 xfs_buf_lock(bp);
1347 }
1348
1349 xfs_buf_hold(bp);
1350 ASSERT(bp->b_flags & XBF_DONE);
1351 return bp;
1352}
1353
1354/*
1355 * Used to free the superblock along various error paths.
1356 */
1357void
1358xfs_freesb(
1359 struct xfs_mount *mp)
1360{
1361 struct xfs_buf *bp = mp->m_sb_bp;
1362
1363 xfs_buf_lock(bp);
1364 mp->m_sb_bp = NULL;
1365 xfs_buf_relse(bp);
1366}
1367
1368/*
1369 * If the underlying (data/log/rt) device is readonly, there are some
1370 * operations that cannot proceed.
1371 */
1372int
1373xfs_dev_is_read_only(
1374 struct xfs_mount *mp,
1375 char *message)
1376{
1377 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1378 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1379 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1380 xfs_notice(mp, "%s required on read-only device.", message);
1381 xfs_notice(mp, "write access unavailable, cannot proceed.");
1382 return -EROFS;
1383 }
1384 return 0;
1385}