Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_da_format.h"
29#include "xfs_da_btree.h"
30#include "xfs_inode.h"
31#include "xfs_dir2.h"
32#include "xfs_ialloc.h"
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
39#include "xfs_error.h"
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
42#include "xfs_trace.h"
43#include "xfs_icache.h"
44#include "xfs_sysfs.h"
45#include "xfs_rmap_btree.h"
46#include "xfs_refcount_btree.h"
47#include "xfs_reflink.h"
48#include "xfs_extent_busy.h"
49
50
51static DEFINE_MUTEX(xfs_uuid_table_mutex);
52static int xfs_uuid_table_size;
53static uuid_t *xfs_uuid_table;
54
55void
56xfs_uuid_table_free(void)
57{
58 if (xfs_uuid_table_size == 0)
59 return;
60 kmem_free(xfs_uuid_table);
61 xfs_uuid_table = NULL;
62 xfs_uuid_table_size = 0;
63}
64
65/*
66 * See if the UUID is unique among mounted XFS filesystems.
67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68 */
69STATIC int
70xfs_uuid_mount(
71 struct xfs_mount *mp)
72{
73 uuid_t *uuid = &mp->m_sb.sb_uuid;
74 int hole, i;
75
76 /* Publish UUID in struct super_block */
77 uuid_copy(&mp->m_super->s_uuid, uuid);
78
79 if (mp->m_flags & XFS_MOUNT_NOUUID)
80 return 0;
81
82 if (uuid_is_null(uuid)) {
83 xfs_warn(mp, "Filesystem has null UUID - can't mount");
84 return -EINVAL;
85 }
86
87 mutex_lock(&xfs_uuid_table_mutex);
88 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
89 if (uuid_is_null(&xfs_uuid_table[i])) {
90 hole = i;
91 continue;
92 }
93 if (uuid_equal(uuid, &xfs_uuid_table[i]))
94 goto out_duplicate;
95 }
96
97 if (hole < 0) {
98 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
99 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
100 KM_SLEEP);
101 hole = xfs_uuid_table_size++;
102 }
103 xfs_uuid_table[hole] = *uuid;
104 mutex_unlock(&xfs_uuid_table_mutex);
105
106 return 0;
107
108 out_duplicate:
109 mutex_unlock(&xfs_uuid_table_mutex);
110 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
111 return -EINVAL;
112}
113
114STATIC void
115xfs_uuid_unmount(
116 struct xfs_mount *mp)
117{
118 uuid_t *uuid = &mp->m_sb.sb_uuid;
119 int i;
120
121 if (mp->m_flags & XFS_MOUNT_NOUUID)
122 return;
123
124 mutex_lock(&xfs_uuid_table_mutex);
125 for (i = 0; i < xfs_uuid_table_size; i++) {
126 if (uuid_is_null(&xfs_uuid_table[i]))
127 continue;
128 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
129 continue;
130 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
131 break;
132 }
133 ASSERT(i < xfs_uuid_table_size);
134 mutex_unlock(&xfs_uuid_table_mutex);
135}
136
137
138STATIC void
139__xfs_free_perag(
140 struct rcu_head *head)
141{
142 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
143
144 ASSERT(atomic_read(&pag->pag_ref) == 0);
145 kmem_free(pag);
146}
147
148/*
149 * Free up the per-ag resources associated with the mount structure.
150 */
151STATIC void
152xfs_free_perag(
153 xfs_mount_t *mp)
154{
155 xfs_agnumber_t agno;
156 struct xfs_perag *pag;
157
158 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
159 spin_lock(&mp->m_perag_lock);
160 pag = radix_tree_delete(&mp->m_perag_tree, agno);
161 spin_unlock(&mp->m_perag_lock);
162 ASSERT(pag);
163 ASSERT(atomic_read(&pag->pag_ref) == 0);
164 xfs_buf_hash_destroy(pag);
165 mutex_destroy(&pag->pag_ici_reclaim_lock);
166 call_rcu(&pag->rcu_head, __xfs_free_perag);
167 }
168}
169
170/*
171 * Check size of device based on the (data/realtime) block count.
172 * Note: this check is used by the growfs code as well as mount.
173 */
174int
175xfs_sb_validate_fsb_count(
176 xfs_sb_t *sbp,
177 uint64_t nblocks)
178{
179 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
180 ASSERT(sbp->sb_blocklog >= BBSHIFT);
181
182 /* Limited by ULONG_MAX of page cache index */
183 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
184 return -EFBIG;
185 return 0;
186}
187
188int
189xfs_initialize_perag(
190 xfs_mount_t *mp,
191 xfs_agnumber_t agcount,
192 xfs_agnumber_t *maxagi)
193{
194 xfs_agnumber_t index;
195 xfs_agnumber_t first_initialised = NULLAGNUMBER;
196 xfs_perag_t *pag;
197 int error = -ENOMEM;
198
199 /*
200 * Walk the current per-ag tree so we don't try to initialise AGs
201 * that already exist (growfs case). Allocate and insert all the
202 * AGs we don't find ready for initialisation.
203 */
204 for (index = 0; index < agcount; index++) {
205 pag = xfs_perag_get(mp, index);
206 if (pag) {
207 xfs_perag_put(pag);
208 continue;
209 }
210
211 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
212 if (!pag)
213 goto out_unwind_new_pags;
214 pag->pag_agno = index;
215 pag->pag_mount = mp;
216 spin_lock_init(&pag->pag_ici_lock);
217 mutex_init(&pag->pag_ici_reclaim_lock);
218 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
219 if (xfs_buf_hash_init(pag))
220 goto out_free_pag;
221 init_waitqueue_head(&pag->pagb_wait);
222
223 if (radix_tree_preload(GFP_NOFS))
224 goto out_hash_destroy;
225
226 spin_lock(&mp->m_perag_lock);
227 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
228 BUG();
229 spin_unlock(&mp->m_perag_lock);
230 radix_tree_preload_end();
231 error = -EEXIST;
232 goto out_hash_destroy;
233 }
234 spin_unlock(&mp->m_perag_lock);
235 radix_tree_preload_end();
236 /* first new pag is fully initialized */
237 if (first_initialised == NULLAGNUMBER)
238 first_initialised = index;
239 }
240
241 index = xfs_set_inode_alloc(mp, agcount);
242
243 if (maxagi)
244 *maxagi = index;
245
246 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
247 return 0;
248
249out_hash_destroy:
250 xfs_buf_hash_destroy(pag);
251out_free_pag:
252 mutex_destroy(&pag->pag_ici_reclaim_lock);
253 kmem_free(pag);
254out_unwind_new_pags:
255 /* unwind any prior newly initialized pags */
256 for (index = first_initialised; index < agcount; index++) {
257 pag = radix_tree_delete(&mp->m_perag_tree, index);
258 if (!pag)
259 break;
260 xfs_buf_hash_destroy(pag);
261 mutex_destroy(&pag->pag_ici_reclaim_lock);
262 kmem_free(pag);
263 }
264 return error;
265}
266
267/*
268 * xfs_readsb
269 *
270 * Does the initial read of the superblock.
271 */
272int
273xfs_readsb(
274 struct xfs_mount *mp,
275 int flags)
276{
277 unsigned int sector_size;
278 struct xfs_buf *bp;
279 struct xfs_sb *sbp = &mp->m_sb;
280 int error;
281 int loud = !(flags & XFS_MFSI_QUIET);
282 const struct xfs_buf_ops *buf_ops;
283
284 ASSERT(mp->m_sb_bp == NULL);
285 ASSERT(mp->m_ddev_targp != NULL);
286
287 /*
288 * For the initial read, we must guess at the sector
289 * size based on the block device. It's enough to
290 * get the sb_sectsize out of the superblock and
291 * then reread with the proper length.
292 * We don't verify it yet, because it may not be complete.
293 */
294 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295 buf_ops = NULL;
296
297 /*
298 * Allocate a (locked) buffer to hold the superblock. This will be kept
299 * around at all times to optimize access to the superblock. Therefore,
300 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
301 * elevated.
302 */
303reread:
304 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
305 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
306 buf_ops);
307 if (error) {
308 if (loud)
309 xfs_warn(mp, "SB validate failed with error %d.", error);
310 /* bad CRC means corrupted metadata */
311 if (error == -EFSBADCRC)
312 error = -EFSCORRUPTED;
313 return error;
314 }
315
316 /*
317 * Initialize the mount structure from the superblock.
318 */
319 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
320
321 /*
322 * If we haven't validated the superblock, do so now before we try
323 * to check the sector size and reread the superblock appropriately.
324 */
325 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
326 if (loud)
327 xfs_warn(mp, "Invalid superblock magic number");
328 error = -EINVAL;
329 goto release_buf;
330 }
331
332 /*
333 * We must be able to do sector-sized and sector-aligned IO.
334 */
335 if (sector_size > sbp->sb_sectsize) {
336 if (loud)
337 xfs_warn(mp, "device supports %u byte sectors (not %u)",
338 sector_size, sbp->sb_sectsize);
339 error = -ENOSYS;
340 goto release_buf;
341 }
342
343 if (buf_ops == NULL) {
344 /*
345 * Re-read the superblock so the buffer is correctly sized,
346 * and properly verified.
347 */
348 xfs_buf_relse(bp);
349 sector_size = sbp->sb_sectsize;
350 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
351 goto reread;
352 }
353
354 xfs_reinit_percpu_counters(mp);
355
356 /* no need to be quiet anymore, so reset the buf ops */
357 bp->b_ops = &xfs_sb_buf_ops;
358
359 mp->m_sb_bp = bp;
360 xfs_buf_unlock(bp);
361 return 0;
362
363release_buf:
364 xfs_buf_relse(bp);
365 return error;
366}
367
368/*
369 * Update alignment values based on mount options and sb values
370 */
371STATIC int
372xfs_update_alignment(xfs_mount_t *mp)
373{
374 xfs_sb_t *sbp = &(mp->m_sb);
375
376 if (mp->m_dalign) {
377 /*
378 * If stripe unit and stripe width are not multiples
379 * of the fs blocksize turn off alignment.
380 */
381 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
382 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
383 xfs_warn(mp,
384 "alignment check failed: sunit/swidth vs. blocksize(%d)",
385 sbp->sb_blocksize);
386 return -EINVAL;
387 } else {
388 /*
389 * Convert the stripe unit and width to FSBs.
390 */
391 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
392 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
393 xfs_warn(mp,
394 "alignment check failed: sunit/swidth vs. agsize(%d)",
395 sbp->sb_agblocks);
396 return -EINVAL;
397 } else if (mp->m_dalign) {
398 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
399 } else {
400 xfs_warn(mp,
401 "alignment check failed: sunit(%d) less than bsize(%d)",
402 mp->m_dalign, sbp->sb_blocksize);
403 return -EINVAL;
404 }
405 }
406
407 /*
408 * Update superblock with new values
409 * and log changes
410 */
411 if (xfs_sb_version_hasdalign(sbp)) {
412 if (sbp->sb_unit != mp->m_dalign) {
413 sbp->sb_unit = mp->m_dalign;
414 mp->m_update_sb = true;
415 }
416 if (sbp->sb_width != mp->m_swidth) {
417 sbp->sb_width = mp->m_swidth;
418 mp->m_update_sb = true;
419 }
420 } else {
421 xfs_warn(mp,
422 "cannot change alignment: superblock does not support data alignment");
423 return -EINVAL;
424 }
425 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
426 xfs_sb_version_hasdalign(&mp->m_sb)) {
427 mp->m_dalign = sbp->sb_unit;
428 mp->m_swidth = sbp->sb_width;
429 }
430
431 return 0;
432}
433
434/*
435 * Set the maximum inode count for this filesystem
436 */
437STATIC void
438xfs_set_maxicount(xfs_mount_t *mp)
439{
440 xfs_sb_t *sbp = &(mp->m_sb);
441 uint64_t icount;
442
443 if (sbp->sb_imax_pct) {
444 /*
445 * Make sure the maximum inode count is a multiple
446 * of the units we allocate inodes in.
447 */
448 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
449 do_div(icount, 100);
450 do_div(icount, mp->m_ialloc_blks);
451 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
452 sbp->sb_inopblog;
453 } else {
454 mp->m_maxicount = 0;
455 }
456}
457
458/*
459 * Set the default minimum read and write sizes unless
460 * already specified in a mount option.
461 * We use smaller I/O sizes when the file system
462 * is being used for NFS service (wsync mount option).
463 */
464STATIC void
465xfs_set_rw_sizes(xfs_mount_t *mp)
466{
467 xfs_sb_t *sbp = &(mp->m_sb);
468 int readio_log, writeio_log;
469
470 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
471 if (mp->m_flags & XFS_MOUNT_WSYNC) {
472 readio_log = XFS_WSYNC_READIO_LOG;
473 writeio_log = XFS_WSYNC_WRITEIO_LOG;
474 } else {
475 readio_log = XFS_READIO_LOG_LARGE;
476 writeio_log = XFS_WRITEIO_LOG_LARGE;
477 }
478 } else {
479 readio_log = mp->m_readio_log;
480 writeio_log = mp->m_writeio_log;
481 }
482
483 if (sbp->sb_blocklog > readio_log) {
484 mp->m_readio_log = sbp->sb_blocklog;
485 } else {
486 mp->m_readio_log = readio_log;
487 }
488 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
489 if (sbp->sb_blocklog > writeio_log) {
490 mp->m_writeio_log = sbp->sb_blocklog;
491 } else {
492 mp->m_writeio_log = writeio_log;
493 }
494 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
495}
496
497/*
498 * precalculate the low space thresholds for dynamic speculative preallocation.
499 */
500void
501xfs_set_low_space_thresholds(
502 struct xfs_mount *mp)
503{
504 int i;
505
506 for (i = 0; i < XFS_LOWSP_MAX; i++) {
507 uint64_t space = mp->m_sb.sb_dblocks;
508
509 do_div(space, 100);
510 mp->m_low_space[i] = space * (i + 1);
511 }
512}
513
514
515/*
516 * Set whether we're using inode alignment.
517 */
518STATIC void
519xfs_set_inoalignment(xfs_mount_t *mp)
520{
521 if (xfs_sb_version_hasalign(&mp->m_sb) &&
522 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
523 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
524 else
525 mp->m_inoalign_mask = 0;
526 /*
527 * If we are using stripe alignment, check whether
528 * the stripe unit is a multiple of the inode alignment
529 */
530 if (mp->m_dalign && mp->m_inoalign_mask &&
531 !(mp->m_dalign & mp->m_inoalign_mask))
532 mp->m_sinoalign = mp->m_dalign;
533 else
534 mp->m_sinoalign = 0;
535}
536
537/*
538 * Check that the data (and log if separate) is an ok size.
539 */
540STATIC int
541xfs_check_sizes(
542 struct xfs_mount *mp)
543{
544 struct xfs_buf *bp;
545 xfs_daddr_t d;
546 int error;
547
548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
550 xfs_warn(mp, "filesystem size mismatch detected");
551 return -EFBIG;
552 }
553 error = xfs_buf_read_uncached(mp->m_ddev_targp,
554 d - XFS_FSS_TO_BB(mp, 1),
555 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
556 if (error) {
557 xfs_warn(mp, "last sector read failed");
558 return error;
559 }
560 xfs_buf_relse(bp);
561
562 if (mp->m_logdev_targp == mp->m_ddev_targp)
563 return 0;
564
565 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
566 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
567 xfs_warn(mp, "log size mismatch detected");
568 return -EFBIG;
569 }
570 error = xfs_buf_read_uncached(mp->m_logdev_targp,
571 d - XFS_FSB_TO_BB(mp, 1),
572 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
573 if (error) {
574 xfs_warn(mp, "log device read failed");
575 return error;
576 }
577 xfs_buf_relse(bp);
578 return 0;
579}
580
581/*
582 * Clear the quotaflags in memory and in the superblock.
583 */
584int
585xfs_mount_reset_sbqflags(
586 struct xfs_mount *mp)
587{
588 mp->m_qflags = 0;
589
590 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
591 if (mp->m_sb.sb_qflags == 0)
592 return 0;
593 spin_lock(&mp->m_sb_lock);
594 mp->m_sb.sb_qflags = 0;
595 spin_unlock(&mp->m_sb_lock);
596
597 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
598 return 0;
599
600 return xfs_sync_sb(mp, false);
601}
602
603uint64_t
604xfs_default_resblks(xfs_mount_t *mp)
605{
606 uint64_t resblks;
607
608 /*
609 * We default to 5% or 8192 fsbs of space reserved, whichever is
610 * smaller. This is intended to cover concurrent allocation
611 * transactions when we initially hit enospc. These each require a 4
612 * block reservation. Hence by default we cover roughly 2000 concurrent
613 * allocation reservations.
614 */
615 resblks = mp->m_sb.sb_dblocks;
616 do_div(resblks, 20);
617 resblks = min_t(uint64_t, resblks, 8192);
618 return resblks;
619}
620
621/*
622 * This function does the following on an initial mount of a file system:
623 * - reads the superblock from disk and init the mount struct
624 * - if we're a 32-bit kernel, do a size check on the superblock
625 * so we don't mount terabyte filesystems
626 * - init mount struct realtime fields
627 * - allocate inode hash table for fs
628 * - init directory manager
629 * - perform recovery and init the log manager
630 */
631int
632xfs_mountfs(
633 struct xfs_mount *mp)
634{
635 struct xfs_sb *sbp = &(mp->m_sb);
636 struct xfs_inode *rip;
637 uint64_t resblks;
638 uint quotamount = 0;
639 uint quotaflags = 0;
640 int error = 0;
641
642 xfs_sb_mount_common(mp, sbp);
643
644 /*
645 * Check for a mismatched features2 values. Older kernels read & wrote
646 * into the wrong sb offset for sb_features2 on some platforms due to
647 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
648 * which made older superblock reading/writing routines swap it as a
649 * 64-bit value.
650 *
651 * For backwards compatibility, we make both slots equal.
652 *
653 * If we detect a mismatched field, we OR the set bits into the existing
654 * features2 field in case it has already been modified; we don't want
655 * to lose any features. We then update the bad location with the ORed
656 * value so that older kernels will see any features2 flags. The
657 * superblock writeback code ensures the new sb_features2 is copied to
658 * sb_bad_features2 before it is logged or written to disk.
659 */
660 if (xfs_sb_has_mismatched_features2(sbp)) {
661 xfs_warn(mp, "correcting sb_features alignment problem");
662 sbp->sb_features2 |= sbp->sb_bad_features2;
663 mp->m_update_sb = true;
664
665 /*
666 * Re-check for ATTR2 in case it was found in bad_features2
667 * slot.
668 */
669 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
670 !(mp->m_flags & XFS_MOUNT_NOATTR2))
671 mp->m_flags |= XFS_MOUNT_ATTR2;
672 }
673
674 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
675 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
676 xfs_sb_version_removeattr2(&mp->m_sb);
677 mp->m_update_sb = true;
678
679 /* update sb_versionnum for the clearing of the morebits */
680 if (!sbp->sb_features2)
681 mp->m_update_sb = true;
682 }
683
684 /* always use v2 inodes by default now */
685 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
686 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
687 mp->m_update_sb = true;
688 }
689
690 /*
691 * Check if sb_agblocks is aligned at stripe boundary
692 * If sb_agblocks is NOT aligned turn off m_dalign since
693 * allocator alignment is within an ag, therefore ag has
694 * to be aligned at stripe boundary.
695 */
696 error = xfs_update_alignment(mp);
697 if (error)
698 goto out;
699
700 xfs_alloc_compute_maxlevels(mp);
701 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
702 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
703 xfs_ialloc_compute_maxlevels(mp);
704 xfs_rmapbt_compute_maxlevels(mp);
705 xfs_refcountbt_compute_maxlevels(mp);
706
707 xfs_set_maxicount(mp);
708
709 /* enable fail_at_unmount as default */
710 mp->m_fail_unmount = true;
711
712 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
713 if (error)
714 goto out;
715
716 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
717 &mp->m_kobj, "stats");
718 if (error)
719 goto out_remove_sysfs;
720
721 error = xfs_error_sysfs_init(mp);
722 if (error)
723 goto out_del_stats;
724
725 error = xfs_errortag_init(mp);
726 if (error)
727 goto out_remove_error_sysfs;
728
729 error = xfs_uuid_mount(mp);
730 if (error)
731 goto out_remove_errortag;
732
733 /*
734 * Set the minimum read and write sizes
735 */
736 xfs_set_rw_sizes(mp);
737
738 /* set the low space thresholds for dynamic preallocation */
739 xfs_set_low_space_thresholds(mp);
740
741 /*
742 * Set the inode cluster size.
743 * This may still be overridden by the file system
744 * block size if it is larger than the chosen cluster size.
745 *
746 * For v5 filesystems, scale the cluster size with the inode size to
747 * keep a constant ratio of inode per cluster buffer, but only if mkfs
748 * has set the inode alignment value appropriately for larger cluster
749 * sizes.
750 */
751 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
752 if (xfs_sb_version_hascrc(&mp->m_sb)) {
753 int new_size = mp->m_inode_cluster_size;
754
755 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
756 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
757 mp->m_inode_cluster_size = new_size;
758 }
759
760 /*
761 * If enabled, sparse inode chunk alignment is expected to match the
762 * cluster size. Full inode chunk alignment must match the chunk size,
763 * but that is checked on sb read verification...
764 */
765 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
766 mp->m_sb.sb_spino_align !=
767 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
768 xfs_warn(mp,
769 "Sparse inode block alignment (%u) must match cluster size (%llu).",
770 mp->m_sb.sb_spino_align,
771 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
772 error = -EINVAL;
773 goto out_remove_uuid;
774 }
775
776 /*
777 * Set inode alignment fields
778 */
779 xfs_set_inoalignment(mp);
780
781 /*
782 * Check that the data (and log if separate) is an ok size.
783 */
784 error = xfs_check_sizes(mp);
785 if (error)
786 goto out_remove_uuid;
787
788 /*
789 * Initialize realtime fields in the mount structure
790 */
791 error = xfs_rtmount_init(mp);
792 if (error) {
793 xfs_warn(mp, "RT mount failed");
794 goto out_remove_uuid;
795 }
796
797 /*
798 * Copies the low order bits of the timestamp and the randomly
799 * set "sequence" number out of a UUID.
800 */
801 mp->m_fixedfsid[0] =
802 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
803 get_unaligned_be16(&sbp->sb_uuid.b[4]);
804 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
805
806 error = xfs_da_mount(mp);
807 if (error) {
808 xfs_warn(mp, "Failed dir/attr init: %d", error);
809 goto out_remove_uuid;
810 }
811
812 /*
813 * Initialize the precomputed transaction reservations values.
814 */
815 xfs_trans_init(mp);
816
817 /*
818 * Allocate and initialize the per-ag data.
819 */
820 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
821 if (error) {
822 xfs_warn(mp, "Failed per-ag init: %d", error);
823 goto out_free_dir;
824 }
825
826 if (!sbp->sb_logblocks) {
827 xfs_warn(mp, "no log defined");
828 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
829 error = -EFSCORRUPTED;
830 goto out_free_perag;
831 }
832
833 /*
834 * Log's mount-time initialization. The first part of recovery can place
835 * some items on the AIL, to be handled when recovery is finished or
836 * cancelled.
837 */
838 error = xfs_log_mount(mp, mp->m_logdev_targp,
839 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
840 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
841 if (error) {
842 xfs_warn(mp, "log mount failed");
843 goto out_fail_wait;
844 }
845
846 /*
847 * Now the log is mounted, we know if it was an unclean shutdown or
848 * not. If it was, with the first phase of recovery has completed, we
849 * have consistent AG blocks on disk. We have not recovered EFIs yet,
850 * but they are recovered transactionally in the second recovery phase
851 * later.
852 *
853 * Hence we can safely re-initialise incore superblock counters from
854 * the per-ag data. These may not be correct if the filesystem was not
855 * cleanly unmounted, so we need to wait for recovery to finish before
856 * doing this.
857 *
858 * If the filesystem was cleanly unmounted, then we can trust the
859 * values in the superblock to be correct and we don't need to do
860 * anything here.
861 *
862 * If we are currently making the filesystem, the initialisation will
863 * fail as the perag data is in an undefined state.
864 */
865 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
866 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
867 !mp->m_sb.sb_inprogress) {
868 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
869 if (error)
870 goto out_log_dealloc;
871 }
872
873 /*
874 * Get and sanity-check the root inode.
875 * Save the pointer to it in the mount structure.
876 */
877 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
878 if (error) {
879 xfs_warn(mp, "failed to read root inode");
880 goto out_log_dealloc;
881 }
882
883 ASSERT(rip != NULL);
884
885 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
886 xfs_warn(mp, "corrupted root inode %llu: not a directory",
887 (unsigned long long)rip->i_ino);
888 xfs_iunlock(rip, XFS_ILOCK_EXCL);
889 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
890 mp);
891 error = -EFSCORRUPTED;
892 goto out_rele_rip;
893 }
894 mp->m_rootip = rip; /* save it */
895
896 xfs_iunlock(rip, XFS_ILOCK_EXCL);
897
898 /*
899 * Initialize realtime inode pointers in the mount structure
900 */
901 error = xfs_rtmount_inodes(mp);
902 if (error) {
903 /*
904 * Free up the root inode.
905 */
906 xfs_warn(mp, "failed to read RT inodes");
907 goto out_rele_rip;
908 }
909
910 /*
911 * If this is a read-only mount defer the superblock updates until
912 * the next remount into writeable mode. Otherwise we would never
913 * perform the update e.g. for the root filesystem.
914 */
915 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
916 error = xfs_sync_sb(mp, false);
917 if (error) {
918 xfs_warn(mp, "failed to write sb changes");
919 goto out_rtunmount;
920 }
921 }
922
923 /*
924 * Initialise the XFS quota management subsystem for this mount
925 */
926 if (XFS_IS_QUOTA_RUNNING(mp)) {
927 error = xfs_qm_newmount(mp, "amount, "aflags);
928 if (error)
929 goto out_rtunmount;
930 } else {
931 ASSERT(!XFS_IS_QUOTA_ON(mp));
932
933 /*
934 * If a file system had quotas running earlier, but decided to
935 * mount without -o uquota/pquota/gquota options, revoke the
936 * quotachecked license.
937 */
938 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
939 xfs_notice(mp, "resetting quota flags");
940 error = xfs_mount_reset_sbqflags(mp);
941 if (error)
942 goto out_rtunmount;
943 }
944 }
945
946 /*
947 * Finish recovering the file system. This part needed to be delayed
948 * until after the root and real-time bitmap inodes were consistently
949 * read in.
950 */
951 error = xfs_log_mount_finish(mp);
952 if (error) {
953 xfs_warn(mp, "log mount finish failed");
954 goto out_rtunmount;
955 }
956
957 /*
958 * Now the log is fully replayed, we can transition to full read-only
959 * mode for read-only mounts. This will sync all the metadata and clean
960 * the log so that the recovery we just performed does not have to be
961 * replayed again on the next mount.
962 *
963 * We use the same quiesce mechanism as the rw->ro remount, as they are
964 * semantically identical operations.
965 */
966 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
967 XFS_MOUNT_RDONLY) {
968 xfs_quiesce_attr(mp);
969 }
970
971 /*
972 * Complete the quota initialisation, post-log-replay component.
973 */
974 if (quotamount) {
975 ASSERT(mp->m_qflags == 0);
976 mp->m_qflags = quotaflags;
977
978 xfs_qm_mount_quotas(mp);
979 }
980
981 /*
982 * Now we are mounted, reserve a small amount of unused space for
983 * privileged transactions. This is needed so that transaction
984 * space required for critical operations can dip into this pool
985 * when at ENOSPC. This is needed for operations like create with
986 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
987 * are not allowed to use this reserved space.
988 *
989 * This may drive us straight to ENOSPC on mount, but that implies
990 * we were already there on the last unmount. Warn if this occurs.
991 */
992 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
993 resblks = xfs_default_resblks(mp);
994 error = xfs_reserve_blocks(mp, &resblks, NULL);
995 if (error)
996 xfs_warn(mp,
997 "Unable to allocate reserve blocks. Continuing without reserve pool.");
998
999 /* Recover any CoW blocks that never got remapped. */
1000 error = xfs_reflink_recover_cow(mp);
1001 if (error) {
1002 xfs_err(mp,
1003 "Error %d recovering leftover CoW allocations.", error);
1004 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1005 goto out_quota;
1006 }
1007
1008 /* Reserve AG blocks for future btree expansion. */
1009 error = xfs_fs_reserve_ag_blocks(mp);
1010 if (error && error != -ENOSPC)
1011 goto out_agresv;
1012 }
1013
1014 return 0;
1015
1016 out_agresv:
1017 xfs_fs_unreserve_ag_blocks(mp);
1018 out_quota:
1019 xfs_qm_unmount_quotas(mp);
1020 out_rtunmount:
1021 xfs_rtunmount_inodes(mp);
1022 out_rele_rip:
1023 IRELE(rip);
1024 /* Clean out dquots that might be in memory after quotacheck. */
1025 xfs_qm_unmount(mp);
1026 /*
1027 * Cancel all delayed reclaim work and reclaim the inodes directly.
1028 * We have to do this /after/ rtunmount and qm_unmount because those
1029 * two will have scheduled delayed reclaim for the rt/quota inodes.
1030 *
1031 * This is slightly different from the unmountfs call sequence
1032 * because we could be tearing down a partially set up mount. In
1033 * particular, if log_mount_finish fails we bail out without calling
1034 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1035 * quota inodes.
1036 */
1037 cancel_delayed_work_sync(&mp->m_reclaim_work);
1038 xfs_reclaim_inodes(mp, SYNC_WAIT);
1039 out_log_dealloc:
1040 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1041 xfs_log_mount_cancel(mp);
1042 out_fail_wait:
1043 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1044 xfs_wait_buftarg(mp->m_logdev_targp);
1045 xfs_wait_buftarg(mp->m_ddev_targp);
1046 out_free_perag:
1047 xfs_free_perag(mp);
1048 out_free_dir:
1049 xfs_da_unmount(mp);
1050 out_remove_uuid:
1051 xfs_uuid_unmount(mp);
1052 out_remove_errortag:
1053 xfs_errortag_del(mp);
1054 out_remove_error_sysfs:
1055 xfs_error_sysfs_del(mp);
1056 out_del_stats:
1057 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1058 out_remove_sysfs:
1059 xfs_sysfs_del(&mp->m_kobj);
1060 out:
1061 return error;
1062}
1063
1064/*
1065 * This flushes out the inodes,dquots and the superblock, unmounts the
1066 * log and makes sure that incore structures are freed.
1067 */
1068void
1069xfs_unmountfs(
1070 struct xfs_mount *mp)
1071{
1072 uint64_t resblks;
1073 int error;
1074
1075 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1076 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1077
1078 xfs_fs_unreserve_ag_blocks(mp);
1079 xfs_qm_unmount_quotas(mp);
1080 xfs_rtunmount_inodes(mp);
1081 IRELE(mp->m_rootip);
1082
1083 /*
1084 * We can potentially deadlock here if we have an inode cluster
1085 * that has been freed has its buffer still pinned in memory because
1086 * the transaction is still sitting in a iclog. The stale inodes
1087 * on that buffer will have their flush locks held until the
1088 * transaction hits the disk and the callbacks run. the inode
1089 * flush takes the flush lock unconditionally and with nothing to
1090 * push out the iclog we will never get that unlocked. hence we
1091 * need to force the log first.
1092 */
1093 xfs_log_force(mp, XFS_LOG_SYNC);
1094
1095 /*
1096 * Wait for all busy extents to be freed, including completion of
1097 * any discard operation.
1098 */
1099 xfs_extent_busy_wait_all(mp);
1100 flush_workqueue(xfs_discard_wq);
1101
1102 /*
1103 * We now need to tell the world we are unmounting. This will allow
1104 * us to detect that the filesystem is going away and we should error
1105 * out anything that we have been retrying in the background. This will
1106 * prevent neverending retries in AIL pushing from hanging the unmount.
1107 */
1108 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1109
1110 /*
1111 * Flush all pending changes from the AIL.
1112 */
1113 xfs_ail_push_all_sync(mp->m_ail);
1114
1115 /*
1116 * And reclaim all inodes. At this point there should be no dirty
1117 * inodes and none should be pinned or locked, but use synchronous
1118 * reclaim just to be sure. We can stop background inode reclaim
1119 * here as well if it is still running.
1120 */
1121 cancel_delayed_work_sync(&mp->m_reclaim_work);
1122 xfs_reclaim_inodes(mp, SYNC_WAIT);
1123
1124 xfs_qm_unmount(mp);
1125
1126 /*
1127 * Unreserve any blocks we have so that when we unmount we don't account
1128 * the reserved free space as used. This is really only necessary for
1129 * lazy superblock counting because it trusts the incore superblock
1130 * counters to be absolutely correct on clean unmount.
1131 *
1132 * We don't bother correcting this elsewhere for lazy superblock
1133 * counting because on mount of an unclean filesystem we reconstruct the
1134 * correct counter value and this is irrelevant.
1135 *
1136 * For non-lazy counter filesystems, this doesn't matter at all because
1137 * we only every apply deltas to the superblock and hence the incore
1138 * value does not matter....
1139 */
1140 resblks = 0;
1141 error = xfs_reserve_blocks(mp, &resblks, NULL);
1142 if (error)
1143 xfs_warn(mp, "Unable to free reserved block pool. "
1144 "Freespace may not be correct on next mount.");
1145
1146 error = xfs_log_sbcount(mp);
1147 if (error)
1148 xfs_warn(mp, "Unable to update superblock counters. "
1149 "Freespace may not be correct on next mount.");
1150
1151
1152 xfs_log_unmount(mp);
1153 xfs_da_unmount(mp);
1154 xfs_uuid_unmount(mp);
1155
1156#if defined(DEBUG)
1157 xfs_errortag_clearall(mp);
1158#endif
1159 xfs_free_perag(mp);
1160
1161 xfs_errortag_del(mp);
1162 xfs_error_sysfs_del(mp);
1163 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1164 xfs_sysfs_del(&mp->m_kobj);
1165}
1166
1167/*
1168 * Determine whether modifications can proceed. The caller specifies the minimum
1169 * freeze level for which modifications should not be allowed. This allows
1170 * certain operations to proceed while the freeze sequence is in progress, if
1171 * necessary.
1172 */
1173bool
1174xfs_fs_writable(
1175 struct xfs_mount *mp,
1176 int level)
1177{
1178 ASSERT(level > SB_UNFROZEN);
1179 if ((mp->m_super->s_writers.frozen >= level) ||
1180 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1181 return false;
1182
1183 return true;
1184}
1185
1186/*
1187 * xfs_log_sbcount
1188 *
1189 * Sync the superblock counters to disk.
1190 *
1191 * Note this code can be called during the process of freezing, so we use the
1192 * transaction allocator that does not block when the transaction subsystem is
1193 * in its frozen state.
1194 */
1195int
1196xfs_log_sbcount(xfs_mount_t *mp)
1197{
1198 /* allow this to proceed during the freeze sequence... */
1199 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1200 return 0;
1201
1202 /*
1203 * we don't need to do this if we are updating the superblock
1204 * counters on every modification.
1205 */
1206 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1207 return 0;
1208
1209 return xfs_sync_sb(mp, true);
1210}
1211
1212/*
1213 * Deltas for the inode count are +/-64, hence we use a large batch size
1214 * of 128 so we don't need to take the counter lock on every update.
1215 */
1216#define XFS_ICOUNT_BATCH 128
1217int
1218xfs_mod_icount(
1219 struct xfs_mount *mp,
1220 int64_t delta)
1221{
1222 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1223 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1224 ASSERT(0);
1225 percpu_counter_add(&mp->m_icount, -delta);
1226 return -EINVAL;
1227 }
1228 return 0;
1229}
1230
1231int
1232xfs_mod_ifree(
1233 struct xfs_mount *mp,
1234 int64_t delta)
1235{
1236 percpu_counter_add(&mp->m_ifree, delta);
1237 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1238 ASSERT(0);
1239 percpu_counter_add(&mp->m_ifree, -delta);
1240 return -EINVAL;
1241 }
1242 return 0;
1243}
1244
1245/*
1246 * Deltas for the block count can vary from 1 to very large, but lock contention
1247 * only occurs on frequent small block count updates such as in the delayed
1248 * allocation path for buffered writes (page a time updates). Hence we set
1249 * a large batch count (1024) to minimise global counter updates except when
1250 * we get near to ENOSPC and we have to be very accurate with our updates.
1251 */
1252#define XFS_FDBLOCKS_BATCH 1024
1253int
1254xfs_mod_fdblocks(
1255 struct xfs_mount *mp,
1256 int64_t delta,
1257 bool rsvd)
1258{
1259 int64_t lcounter;
1260 long long res_used;
1261 s32 batch;
1262
1263 if (delta > 0) {
1264 /*
1265 * If the reserve pool is depleted, put blocks back into it
1266 * first. Most of the time the pool is full.
1267 */
1268 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1269 percpu_counter_add(&mp->m_fdblocks, delta);
1270 return 0;
1271 }
1272
1273 spin_lock(&mp->m_sb_lock);
1274 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1275
1276 if (res_used > delta) {
1277 mp->m_resblks_avail += delta;
1278 } else {
1279 delta -= res_used;
1280 mp->m_resblks_avail = mp->m_resblks;
1281 percpu_counter_add(&mp->m_fdblocks, delta);
1282 }
1283 spin_unlock(&mp->m_sb_lock);
1284 return 0;
1285 }
1286
1287 /*
1288 * Taking blocks away, need to be more accurate the closer we
1289 * are to zero.
1290 *
1291 * If the counter has a value of less than 2 * max batch size,
1292 * then make everything serialise as we are real close to
1293 * ENOSPC.
1294 */
1295 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1296 XFS_FDBLOCKS_BATCH) < 0)
1297 batch = 1;
1298 else
1299 batch = XFS_FDBLOCKS_BATCH;
1300
1301 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1302 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1303 XFS_FDBLOCKS_BATCH) >= 0) {
1304 /* we had space! */
1305 return 0;
1306 }
1307
1308 /*
1309 * lock up the sb for dipping into reserves before releasing the space
1310 * that took us to ENOSPC.
1311 */
1312 spin_lock(&mp->m_sb_lock);
1313 percpu_counter_add(&mp->m_fdblocks, -delta);
1314 if (!rsvd)
1315 goto fdblocks_enospc;
1316
1317 lcounter = (long long)mp->m_resblks_avail + delta;
1318 if (lcounter >= 0) {
1319 mp->m_resblks_avail = lcounter;
1320 spin_unlock(&mp->m_sb_lock);
1321 return 0;
1322 }
1323 printk_once(KERN_WARNING
1324 "Filesystem \"%s\": reserve blocks depleted! "
1325 "Consider increasing reserve pool size.",
1326 mp->m_fsname);
1327fdblocks_enospc:
1328 spin_unlock(&mp->m_sb_lock);
1329 return -ENOSPC;
1330}
1331
1332int
1333xfs_mod_frextents(
1334 struct xfs_mount *mp,
1335 int64_t delta)
1336{
1337 int64_t lcounter;
1338 int ret = 0;
1339
1340 spin_lock(&mp->m_sb_lock);
1341 lcounter = mp->m_sb.sb_frextents + delta;
1342 if (lcounter < 0)
1343 ret = -ENOSPC;
1344 else
1345 mp->m_sb.sb_frextents = lcounter;
1346 spin_unlock(&mp->m_sb_lock);
1347 return ret;
1348}
1349
1350/*
1351 * xfs_getsb() is called to obtain the buffer for the superblock.
1352 * The buffer is returned locked and read in from disk.
1353 * The buffer should be released with a call to xfs_brelse().
1354 *
1355 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1356 * the superblock buffer if it can be locked without sleeping.
1357 * If it can't then we'll return NULL.
1358 */
1359struct xfs_buf *
1360xfs_getsb(
1361 struct xfs_mount *mp,
1362 int flags)
1363{
1364 struct xfs_buf *bp = mp->m_sb_bp;
1365
1366 if (!xfs_buf_trylock(bp)) {
1367 if (flags & XBF_TRYLOCK)
1368 return NULL;
1369 xfs_buf_lock(bp);
1370 }
1371
1372 xfs_buf_hold(bp);
1373 ASSERT(bp->b_flags & XBF_DONE);
1374 return bp;
1375}
1376
1377/*
1378 * Used to free the superblock along various error paths.
1379 */
1380void
1381xfs_freesb(
1382 struct xfs_mount *mp)
1383{
1384 struct xfs_buf *bp = mp->m_sb_bp;
1385
1386 xfs_buf_lock(bp);
1387 mp->m_sb_bp = NULL;
1388 xfs_buf_relse(bp);
1389}
1390
1391/*
1392 * If the underlying (data/log/rt) device is readonly, there are some
1393 * operations that cannot proceed.
1394 */
1395int
1396xfs_dev_is_read_only(
1397 struct xfs_mount *mp,
1398 char *message)
1399{
1400 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1401 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1402 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1403 xfs_notice(mp, "%s required on read-only device.", message);
1404 xfs_notice(mp, "write access unavailable, cannot proceed.");
1405 return -EROFS;
1406 }
1407 return 0;
1408}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_log_priv.h"
25#include "xfs_error.h"
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
28#include "xfs_icache.h"
29#include "xfs_sysfs.h"
30#include "xfs_rmap_btree.h"
31#include "xfs_refcount_btree.h"
32#include "xfs_reflink.h"
33#include "xfs_extent_busy.h"
34#include "xfs_health.h"
35#include "xfs_trace.h"
36#include "xfs_ag.h"
37
38static DEFINE_MUTEX(xfs_uuid_table_mutex);
39static int xfs_uuid_table_size;
40static uuid_t *xfs_uuid_table;
41
42void
43xfs_uuid_table_free(void)
44{
45 if (xfs_uuid_table_size == 0)
46 return;
47 kmem_free(xfs_uuid_table);
48 xfs_uuid_table = NULL;
49 xfs_uuid_table_size = 0;
50}
51
52/*
53 * See if the UUID is unique among mounted XFS filesystems.
54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
55 */
56STATIC int
57xfs_uuid_mount(
58 struct xfs_mount *mp)
59{
60 uuid_t *uuid = &mp->m_sb.sb_uuid;
61 int hole, i;
62
63 /* Publish UUID in struct super_block */
64 uuid_copy(&mp->m_super->s_uuid, uuid);
65
66 if (xfs_has_nouuid(mp))
67 return 0;
68
69 if (uuid_is_null(uuid)) {
70 xfs_warn(mp, "Filesystem has null UUID - can't mount");
71 return -EINVAL;
72 }
73
74 mutex_lock(&xfs_uuid_table_mutex);
75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
76 if (uuid_is_null(&xfs_uuid_table[i])) {
77 hole = i;
78 continue;
79 }
80 if (uuid_equal(uuid, &xfs_uuid_table[i]))
81 goto out_duplicate;
82 }
83
84 if (hole < 0) {
85 xfs_uuid_table = krealloc(xfs_uuid_table,
86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
87 GFP_KERNEL | __GFP_NOFAIL);
88 hole = xfs_uuid_table_size++;
89 }
90 xfs_uuid_table[hole] = *uuid;
91 mutex_unlock(&xfs_uuid_table_mutex);
92
93 return 0;
94
95 out_duplicate:
96 mutex_unlock(&xfs_uuid_table_mutex);
97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
98 return -EINVAL;
99}
100
101STATIC void
102xfs_uuid_unmount(
103 struct xfs_mount *mp)
104{
105 uuid_t *uuid = &mp->m_sb.sb_uuid;
106 int i;
107
108 if (xfs_has_nouuid(mp))
109 return;
110
111 mutex_lock(&xfs_uuid_table_mutex);
112 for (i = 0; i < xfs_uuid_table_size; i++) {
113 if (uuid_is_null(&xfs_uuid_table[i]))
114 continue;
115 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
116 continue;
117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
118 break;
119 }
120 ASSERT(i < xfs_uuid_table_size);
121 mutex_unlock(&xfs_uuid_table_mutex);
122}
123
124/*
125 * Check size of device based on the (data/realtime) block count.
126 * Note: this check is used by the growfs code as well as mount.
127 */
128int
129xfs_sb_validate_fsb_count(
130 xfs_sb_t *sbp,
131 uint64_t nblocks)
132{
133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
134 ASSERT(sbp->sb_blocklog >= BBSHIFT);
135
136 /* Limited by ULONG_MAX of page cache index */
137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
138 return -EFBIG;
139 return 0;
140}
141
142/*
143 * xfs_readsb
144 *
145 * Does the initial read of the superblock.
146 */
147int
148xfs_readsb(
149 struct xfs_mount *mp,
150 int flags)
151{
152 unsigned int sector_size;
153 struct xfs_buf *bp;
154 struct xfs_sb *sbp = &mp->m_sb;
155 int error;
156 int loud = !(flags & XFS_MFSI_QUIET);
157 const struct xfs_buf_ops *buf_ops;
158
159 ASSERT(mp->m_sb_bp == NULL);
160 ASSERT(mp->m_ddev_targp != NULL);
161
162 /*
163 * For the initial read, we must guess at the sector
164 * size based on the block device. It's enough to
165 * get the sb_sectsize out of the superblock and
166 * then reread with the proper length.
167 * We don't verify it yet, because it may not be complete.
168 */
169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
170 buf_ops = NULL;
171
172 /*
173 * Allocate a (locked) buffer to hold the superblock. This will be kept
174 * around at all times to optimize access to the superblock. Therefore,
175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
176 * elevated.
177 */
178reread:
179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
180 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
181 buf_ops);
182 if (error) {
183 if (loud)
184 xfs_warn(mp, "SB validate failed with error %d.", error);
185 /* bad CRC means corrupted metadata */
186 if (error == -EFSBADCRC)
187 error = -EFSCORRUPTED;
188 return error;
189 }
190
191 /*
192 * Initialize the mount structure from the superblock.
193 */
194 xfs_sb_from_disk(sbp, bp->b_addr);
195
196 /*
197 * If we haven't validated the superblock, do so now before we try
198 * to check the sector size and reread the superblock appropriately.
199 */
200 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
201 if (loud)
202 xfs_warn(mp, "Invalid superblock magic number");
203 error = -EINVAL;
204 goto release_buf;
205 }
206
207 /*
208 * We must be able to do sector-sized and sector-aligned IO.
209 */
210 if (sector_size > sbp->sb_sectsize) {
211 if (loud)
212 xfs_warn(mp, "device supports %u byte sectors (not %u)",
213 sector_size, sbp->sb_sectsize);
214 error = -ENOSYS;
215 goto release_buf;
216 }
217
218 if (buf_ops == NULL) {
219 /*
220 * Re-read the superblock so the buffer is correctly sized,
221 * and properly verified.
222 */
223 xfs_buf_relse(bp);
224 sector_size = sbp->sb_sectsize;
225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
226 goto reread;
227 }
228
229 mp->m_features |= xfs_sb_version_to_features(sbp);
230 xfs_reinit_percpu_counters(mp);
231
232 /* no need to be quiet anymore, so reset the buf ops */
233 bp->b_ops = &xfs_sb_buf_ops;
234
235 mp->m_sb_bp = bp;
236 xfs_buf_unlock(bp);
237 return 0;
238
239release_buf:
240 xfs_buf_relse(bp);
241 return error;
242}
243
244/*
245 * If the sunit/swidth change would move the precomputed root inode value, we
246 * must reject the ondisk change because repair will stumble over that.
247 * However, we allow the mount to proceed because we never rejected this
248 * combination before. Returns true to update the sb, false otherwise.
249 */
250static inline int
251xfs_check_new_dalign(
252 struct xfs_mount *mp,
253 int new_dalign,
254 bool *update_sb)
255{
256 struct xfs_sb *sbp = &mp->m_sb;
257 xfs_ino_t calc_ino;
258
259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
261
262 if (sbp->sb_rootino == calc_ino) {
263 *update_sb = true;
264 return 0;
265 }
266
267 xfs_warn(mp,
268"Cannot change stripe alignment; would require moving root inode.");
269
270 /*
271 * XXX: Next time we add a new incompat feature, this should start
272 * returning -EINVAL to fail the mount. Until then, spit out a warning
273 * that we're ignoring the administrator's instructions.
274 */
275 xfs_warn(mp, "Skipping superblock stripe alignment update.");
276 *update_sb = false;
277 return 0;
278}
279
280/*
281 * If we were provided with new sunit/swidth values as mount options, make sure
282 * that they pass basic alignment and superblock feature checks, and convert
283 * them into the same units (FSB) that everything else expects. This step
284 * /must/ be done before computing the inode geometry.
285 */
286STATIC int
287xfs_validate_new_dalign(
288 struct xfs_mount *mp)
289{
290 if (mp->m_dalign == 0)
291 return 0;
292
293 /*
294 * If stripe unit and stripe width are not multiples
295 * of the fs blocksize turn off alignment.
296 */
297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
299 xfs_warn(mp,
300 "alignment check failed: sunit/swidth vs. blocksize(%d)",
301 mp->m_sb.sb_blocksize);
302 return -EINVAL;
303 }
304
305 /*
306 * Convert the stripe unit and width to FSBs.
307 */
308 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
309 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
310 xfs_warn(mp,
311 "alignment check failed: sunit/swidth vs. agsize(%d)",
312 mp->m_sb.sb_agblocks);
313 return -EINVAL;
314 }
315
316 if (!mp->m_dalign) {
317 xfs_warn(mp,
318 "alignment check failed: sunit(%d) less than bsize(%d)",
319 mp->m_dalign, mp->m_sb.sb_blocksize);
320 return -EINVAL;
321 }
322
323 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
324
325 if (!xfs_has_dalign(mp)) {
326 xfs_warn(mp,
327"cannot change alignment: superblock does not support data alignment");
328 return -EINVAL;
329 }
330
331 return 0;
332}
333
334/* Update alignment values based on mount options and sb values. */
335STATIC int
336xfs_update_alignment(
337 struct xfs_mount *mp)
338{
339 struct xfs_sb *sbp = &mp->m_sb;
340
341 if (mp->m_dalign) {
342 bool update_sb;
343 int error;
344
345 if (sbp->sb_unit == mp->m_dalign &&
346 sbp->sb_width == mp->m_swidth)
347 return 0;
348
349 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
350 if (error || !update_sb)
351 return error;
352
353 sbp->sb_unit = mp->m_dalign;
354 sbp->sb_width = mp->m_swidth;
355 mp->m_update_sb = true;
356 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
357 mp->m_dalign = sbp->sb_unit;
358 mp->m_swidth = sbp->sb_width;
359 }
360
361 return 0;
362}
363
364/*
365 * precalculate the low space thresholds for dynamic speculative preallocation.
366 */
367void
368xfs_set_low_space_thresholds(
369 struct xfs_mount *mp)
370{
371 uint64_t dblocks = mp->m_sb.sb_dblocks;
372 uint64_t rtexts = mp->m_sb.sb_rextents;
373 int i;
374
375 do_div(dblocks, 100);
376 do_div(rtexts, 100);
377
378 for (i = 0; i < XFS_LOWSP_MAX; i++) {
379 mp->m_low_space[i] = dblocks * (i + 1);
380 mp->m_low_rtexts[i] = rtexts * (i + 1);
381 }
382}
383
384/*
385 * Check that the data (and log if separate) is an ok size.
386 */
387STATIC int
388xfs_check_sizes(
389 struct xfs_mount *mp)
390{
391 struct xfs_buf *bp;
392 xfs_daddr_t d;
393 int error;
394
395 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
396 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
397 xfs_warn(mp, "filesystem size mismatch detected");
398 return -EFBIG;
399 }
400 error = xfs_buf_read_uncached(mp->m_ddev_targp,
401 d - XFS_FSS_TO_BB(mp, 1),
402 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
403 if (error) {
404 xfs_warn(mp, "last sector read failed");
405 return error;
406 }
407 xfs_buf_relse(bp);
408
409 if (mp->m_logdev_targp == mp->m_ddev_targp)
410 return 0;
411
412 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
413 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
414 xfs_warn(mp, "log size mismatch detected");
415 return -EFBIG;
416 }
417 error = xfs_buf_read_uncached(mp->m_logdev_targp,
418 d - XFS_FSB_TO_BB(mp, 1),
419 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
420 if (error) {
421 xfs_warn(mp, "log device read failed");
422 return error;
423 }
424 xfs_buf_relse(bp);
425 return 0;
426}
427
428/*
429 * Clear the quotaflags in memory and in the superblock.
430 */
431int
432xfs_mount_reset_sbqflags(
433 struct xfs_mount *mp)
434{
435 mp->m_qflags = 0;
436
437 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
438 if (mp->m_sb.sb_qflags == 0)
439 return 0;
440 spin_lock(&mp->m_sb_lock);
441 mp->m_sb.sb_qflags = 0;
442 spin_unlock(&mp->m_sb_lock);
443
444 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
445 return 0;
446
447 return xfs_sync_sb(mp, false);
448}
449
450uint64_t
451xfs_default_resblks(xfs_mount_t *mp)
452{
453 uint64_t resblks;
454
455 /*
456 * We default to 5% or 8192 fsbs of space reserved, whichever is
457 * smaller. This is intended to cover concurrent allocation
458 * transactions when we initially hit enospc. These each require a 4
459 * block reservation. Hence by default we cover roughly 2000 concurrent
460 * allocation reservations.
461 */
462 resblks = mp->m_sb.sb_dblocks;
463 do_div(resblks, 20);
464 resblks = min_t(uint64_t, resblks, 8192);
465 return resblks;
466}
467
468/* Ensure the summary counts are correct. */
469STATIC int
470xfs_check_summary_counts(
471 struct xfs_mount *mp)
472{
473 int error = 0;
474
475 /*
476 * The AG0 superblock verifier rejects in-progress filesystems,
477 * so we should never see the flag set this far into mounting.
478 */
479 if (mp->m_sb.sb_inprogress) {
480 xfs_err(mp, "sb_inprogress set after log recovery??");
481 WARN_ON(1);
482 return -EFSCORRUPTED;
483 }
484
485 /*
486 * Now the log is mounted, we know if it was an unclean shutdown or
487 * not. If it was, with the first phase of recovery has completed, we
488 * have consistent AG blocks on disk. We have not recovered EFIs yet,
489 * but they are recovered transactionally in the second recovery phase
490 * later.
491 *
492 * If the log was clean when we mounted, we can check the summary
493 * counters. If any of them are obviously incorrect, we can recompute
494 * them from the AGF headers in the next step.
495 */
496 if (xfs_is_clean(mp) &&
497 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
498 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
499 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
500 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
501
502 /*
503 * We can safely re-initialise incore superblock counters from the
504 * per-ag data. These may not be correct if the filesystem was not
505 * cleanly unmounted, so we waited for recovery to finish before doing
506 * this.
507 *
508 * If the filesystem was cleanly unmounted or the previous check did
509 * not flag anything weird, then we can trust the values in the
510 * superblock to be correct and we don't need to do anything here.
511 * Otherwise, recalculate the summary counters.
512 */
513 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
514 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
515 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
516 if (error)
517 return error;
518 }
519
520 /*
521 * Older kernels misused sb_frextents to reflect both incore
522 * reservations made by running transactions and the actual count of
523 * free rt extents in the ondisk metadata. Transactions committed
524 * during runtime can therefore contain a superblock update that
525 * undercounts the number of free rt extents tracked in the rt bitmap.
526 * A clean unmount record will have the correct frextents value since
527 * there can be no other transactions running at that point.
528 *
529 * If we're mounting the rt volume after recovering the log, recompute
530 * frextents from the rtbitmap file to fix the inconsistency.
531 */
532 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
533 error = xfs_rtalloc_reinit_frextents(mp);
534 if (error)
535 return error;
536 }
537
538 return 0;
539}
540
541static void
542xfs_unmount_check(
543 struct xfs_mount *mp)
544{
545 if (xfs_is_shutdown(mp))
546 return;
547
548 if (percpu_counter_sum(&mp->m_ifree) >
549 percpu_counter_sum(&mp->m_icount)) {
550 xfs_alert(mp, "ifree/icount mismatch at unmount");
551 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
552 }
553}
554
555/*
556 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
557 * internal inode structures can be sitting in the CIL and AIL at this point,
558 * so we need to unpin them, write them back and/or reclaim them before unmount
559 * can proceed. In other words, callers are required to have inactivated all
560 * inodes.
561 *
562 * An inode cluster that has been freed can have its buffer still pinned in
563 * memory because the transaction is still sitting in a iclog. The stale inodes
564 * on that buffer will be pinned to the buffer until the transaction hits the
565 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
566 * may never see the pinned buffer, so nothing will push out the iclog and
567 * unpin the buffer.
568 *
569 * Hence we need to force the log to unpin everything first. However, log
570 * forces don't wait for the discards they issue to complete, so we have to
571 * explicitly wait for them to complete here as well.
572 *
573 * Then we can tell the world we are unmounting so that error handling knows
574 * that the filesystem is going away and we should error out anything that we
575 * have been retrying in the background. This will prevent never-ending
576 * retries in AIL pushing from hanging the unmount.
577 *
578 * Finally, we can push the AIL to clean all the remaining dirty objects, then
579 * reclaim the remaining inodes that are still in memory at this point in time.
580 */
581static void
582xfs_unmount_flush_inodes(
583 struct xfs_mount *mp)
584{
585 xfs_log_force(mp, XFS_LOG_SYNC);
586 xfs_extent_busy_wait_all(mp);
587 flush_workqueue(xfs_discard_wq);
588
589 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
590
591 xfs_ail_push_all_sync(mp->m_ail);
592 xfs_inodegc_stop(mp);
593 cancel_delayed_work_sync(&mp->m_reclaim_work);
594 xfs_reclaim_inodes(mp);
595 xfs_health_unmount(mp);
596}
597
598static void
599xfs_mount_setup_inode_geom(
600 struct xfs_mount *mp)
601{
602 struct xfs_ino_geometry *igeo = M_IGEO(mp);
603
604 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
605 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
606
607 xfs_ialloc_setup_geometry(mp);
608}
609
610/* Compute maximum possible height for per-AG btree types for this fs. */
611static inline void
612xfs_agbtree_compute_maxlevels(
613 struct xfs_mount *mp)
614{
615 unsigned int levels;
616
617 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
618 levels = max(levels, mp->m_rmap_maxlevels);
619 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
620}
621
622/*
623 * This function does the following on an initial mount of a file system:
624 * - reads the superblock from disk and init the mount struct
625 * - if we're a 32-bit kernel, do a size check on the superblock
626 * so we don't mount terabyte filesystems
627 * - init mount struct realtime fields
628 * - allocate inode hash table for fs
629 * - init directory manager
630 * - perform recovery and init the log manager
631 */
632int
633xfs_mountfs(
634 struct xfs_mount *mp)
635{
636 struct xfs_sb *sbp = &(mp->m_sb);
637 struct xfs_inode *rip;
638 struct xfs_ino_geometry *igeo = M_IGEO(mp);
639 uint64_t resblks;
640 uint quotamount = 0;
641 uint quotaflags = 0;
642 int error = 0;
643
644 xfs_sb_mount_common(mp, sbp);
645
646 /*
647 * Check for a mismatched features2 values. Older kernels read & wrote
648 * into the wrong sb offset for sb_features2 on some platforms due to
649 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
650 * which made older superblock reading/writing routines swap it as a
651 * 64-bit value.
652 *
653 * For backwards compatibility, we make both slots equal.
654 *
655 * If we detect a mismatched field, we OR the set bits into the existing
656 * features2 field in case it has already been modified; we don't want
657 * to lose any features. We then update the bad location with the ORed
658 * value so that older kernels will see any features2 flags. The
659 * superblock writeback code ensures the new sb_features2 is copied to
660 * sb_bad_features2 before it is logged or written to disk.
661 */
662 if (xfs_sb_has_mismatched_features2(sbp)) {
663 xfs_warn(mp, "correcting sb_features alignment problem");
664 sbp->sb_features2 |= sbp->sb_bad_features2;
665 mp->m_update_sb = true;
666 }
667
668
669 /* always use v2 inodes by default now */
670 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
671 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
672 mp->m_features |= XFS_FEAT_NLINK;
673 mp->m_update_sb = true;
674 }
675
676 /*
677 * If we were given new sunit/swidth options, do some basic validation
678 * checks and convert the incore dalign and swidth values to the
679 * same units (FSB) that everything else uses. This /must/ happen
680 * before computing the inode geometry.
681 */
682 error = xfs_validate_new_dalign(mp);
683 if (error)
684 goto out;
685
686 xfs_alloc_compute_maxlevels(mp);
687 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
688 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
689 xfs_mount_setup_inode_geom(mp);
690 xfs_rmapbt_compute_maxlevels(mp);
691 xfs_refcountbt_compute_maxlevels(mp);
692
693 xfs_agbtree_compute_maxlevels(mp);
694
695 /*
696 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
697 * is NOT aligned turn off m_dalign since allocator alignment is within
698 * an ag, therefore ag has to be aligned at stripe boundary. Note that
699 * we must compute the free space and rmap btree geometry before doing
700 * this.
701 */
702 error = xfs_update_alignment(mp);
703 if (error)
704 goto out;
705
706 /* enable fail_at_unmount as default */
707 mp->m_fail_unmount = true;
708
709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
710 NULL, mp->m_super->s_id);
711 if (error)
712 goto out;
713
714 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
715 &mp->m_kobj, "stats");
716 if (error)
717 goto out_remove_sysfs;
718
719 error = xfs_error_sysfs_init(mp);
720 if (error)
721 goto out_del_stats;
722
723 error = xfs_errortag_init(mp);
724 if (error)
725 goto out_remove_error_sysfs;
726
727 error = xfs_uuid_mount(mp);
728 if (error)
729 goto out_remove_errortag;
730
731 /*
732 * Update the preferred write size based on the information from the
733 * on-disk superblock.
734 */
735 mp->m_allocsize_log =
736 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
737 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
738
739 /* set the low space thresholds for dynamic preallocation */
740 xfs_set_low_space_thresholds(mp);
741
742 /*
743 * If enabled, sparse inode chunk alignment is expected to match the
744 * cluster size. Full inode chunk alignment must match the chunk size,
745 * but that is checked on sb read verification...
746 */
747 if (xfs_has_sparseinodes(mp) &&
748 mp->m_sb.sb_spino_align !=
749 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
750 xfs_warn(mp,
751 "Sparse inode block alignment (%u) must match cluster size (%llu).",
752 mp->m_sb.sb_spino_align,
753 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
754 error = -EINVAL;
755 goto out_remove_uuid;
756 }
757
758 /*
759 * Check that the data (and log if separate) is an ok size.
760 */
761 error = xfs_check_sizes(mp);
762 if (error)
763 goto out_remove_uuid;
764
765 /*
766 * Initialize realtime fields in the mount structure
767 */
768 error = xfs_rtmount_init(mp);
769 if (error) {
770 xfs_warn(mp, "RT mount failed");
771 goto out_remove_uuid;
772 }
773
774 /*
775 * Copies the low order bits of the timestamp and the randomly
776 * set "sequence" number out of a UUID.
777 */
778 mp->m_fixedfsid[0] =
779 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
780 get_unaligned_be16(&sbp->sb_uuid.b[4]);
781 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
782
783 error = xfs_da_mount(mp);
784 if (error) {
785 xfs_warn(mp, "Failed dir/attr init: %d", error);
786 goto out_remove_uuid;
787 }
788
789 /*
790 * Initialize the precomputed transaction reservations values.
791 */
792 xfs_trans_init(mp);
793
794 /*
795 * Allocate and initialize the per-ag data.
796 */
797 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
798 &mp->m_maxagi);
799 if (error) {
800 xfs_warn(mp, "Failed per-ag init: %d", error);
801 goto out_free_dir;
802 }
803
804 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
805 xfs_warn(mp, "no log defined");
806 error = -EFSCORRUPTED;
807 goto out_free_perag;
808 }
809
810 error = xfs_inodegc_register_shrinker(mp);
811 if (error)
812 goto out_fail_wait;
813
814 /*
815 * Log's mount-time initialization. The first part of recovery can place
816 * some items on the AIL, to be handled when recovery is finished or
817 * cancelled.
818 */
819 error = xfs_log_mount(mp, mp->m_logdev_targp,
820 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
821 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
822 if (error) {
823 xfs_warn(mp, "log mount failed");
824 goto out_inodegc_shrinker;
825 }
826
827 /* Enable background inode inactivation workers. */
828 xfs_inodegc_start(mp);
829 xfs_blockgc_start(mp);
830
831 /*
832 * Now that we've recovered any pending superblock feature bit
833 * additions, we can finish setting up the attr2 behaviour for the
834 * mount. The noattr2 option overrides the superblock flag, so only
835 * check the superblock feature flag if the mount option is not set.
836 */
837 if (xfs_has_noattr2(mp)) {
838 mp->m_features &= ~XFS_FEAT_ATTR2;
839 } else if (!xfs_has_attr2(mp) &&
840 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
841 mp->m_features |= XFS_FEAT_ATTR2;
842 }
843
844 /*
845 * Get and sanity-check the root inode.
846 * Save the pointer to it in the mount structure.
847 */
848 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
849 XFS_ILOCK_EXCL, &rip);
850 if (error) {
851 xfs_warn(mp,
852 "Failed to read root inode 0x%llx, error %d",
853 sbp->sb_rootino, -error);
854 goto out_log_dealloc;
855 }
856
857 ASSERT(rip != NULL);
858
859 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
860 xfs_warn(mp, "corrupted root inode %llu: not a directory",
861 (unsigned long long)rip->i_ino);
862 xfs_iunlock(rip, XFS_ILOCK_EXCL);
863 error = -EFSCORRUPTED;
864 goto out_rele_rip;
865 }
866 mp->m_rootip = rip; /* save it */
867
868 xfs_iunlock(rip, XFS_ILOCK_EXCL);
869
870 /*
871 * Initialize realtime inode pointers in the mount structure
872 */
873 error = xfs_rtmount_inodes(mp);
874 if (error) {
875 /*
876 * Free up the root inode.
877 */
878 xfs_warn(mp, "failed to read RT inodes");
879 goto out_rele_rip;
880 }
881
882 /* Make sure the summary counts are ok. */
883 error = xfs_check_summary_counts(mp);
884 if (error)
885 goto out_rtunmount;
886
887 /*
888 * If this is a read-only mount defer the superblock updates until
889 * the next remount into writeable mode. Otherwise we would never
890 * perform the update e.g. for the root filesystem.
891 */
892 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
893 error = xfs_sync_sb(mp, false);
894 if (error) {
895 xfs_warn(mp, "failed to write sb changes");
896 goto out_rtunmount;
897 }
898 }
899
900 /*
901 * Initialise the XFS quota management subsystem for this mount
902 */
903 if (XFS_IS_QUOTA_ON(mp)) {
904 error = xfs_qm_newmount(mp, "amount, "aflags);
905 if (error)
906 goto out_rtunmount;
907 } else {
908 /*
909 * If a file system had quotas running earlier, but decided to
910 * mount without -o uquota/pquota/gquota options, revoke the
911 * quotachecked license.
912 */
913 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
914 xfs_notice(mp, "resetting quota flags");
915 error = xfs_mount_reset_sbqflags(mp);
916 if (error)
917 goto out_rtunmount;
918 }
919 }
920
921 /*
922 * Finish recovering the file system. This part needed to be delayed
923 * until after the root and real-time bitmap inodes were consistently
924 * read in. Temporarily create per-AG space reservations for metadata
925 * btree shape changes because space freeing transactions (for inode
926 * inactivation) require the per-AG reservation in lieu of reserving
927 * blocks.
928 */
929 error = xfs_fs_reserve_ag_blocks(mp);
930 if (error && error == -ENOSPC)
931 xfs_warn(mp,
932 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
933 error = xfs_log_mount_finish(mp);
934 xfs_fs_unreserve_ag_blocks(mp);
935 if (error) {
936 xfs_warn(mp, "log mount finish failed");
937 goto out_rtunmount;
938 }
939
940 /*
941 * Now the log is fully replayed, we can transition to full read-only
942 * mode for read-only mounts. This will sync all the metadata and clean
943 * the log so that the recovery we just performed does not have to be
944 * replayed again on the next mount.
945 *
946 * We use the same quiesce mechanism as the rw->ro remount, as they are
947 * semantically identical operations.
948 */
949 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
950 xfs_log_clean(mp);
951
952 /*
953 * Complete the quota initialisation, post-log-replay component.
954 */
955 if (quotamount) {
956 ASSERT(mp->m_qflags == 0);
957 mp->m_qflags = quotaflags;
958
959 xfs_qm_mount_quotas(mp);
960 }
961
962 /*
963 * Now we are mounted, reserve a small amount of unused space for
964 * privileged transactions. This is needed so that transaction
965 * space required for critical operations can dip into this pool
966 * when at ENOSPC. This is needed for operations like create with
967 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
968 * are not allowed to use this reserved space.
969 *
970 * This may drive us straight to ENOSPC on mount, but that implies
971 * we were already there on the last unmount. Warn if this occurs.
972 */
973 if (!xfs_is_readonly(mp)) {
974 resblks = xfs_default_resblks(mp);
975 error = xfs_reserve_blocks(mp, &resblks, NULL);
976 if (error)
977 xfs_warn(mp,
978 "Unable to allocate reserve blocks. Continuing without reserve pool.");
979
980 /* Reserve AG blocks for future btree expansion. */
981 error = xfs_fs_reserve_ag_blocks(mp);
982 if (error && error != -ENOSPC)
983 goto out_agresv;
984 }
985
986 return 0;
987
988 out_agresv:
989 xfs_fs_unreserve_ag_blocks(mp);
990 xfs_qm_unmount_quotas(mp);
991 out_rtunmount:
992 xfs_rtunmount_inodes(mp);
993 out_rele_rip:
994 xfs_irele(rip);
995 /* Clean out dquots that might be in memory after quotacheck. */
996 xfs_qm_unmount(mp);
997
998 /*
999 * Inactivate all inodes that might still be in memory after a log
1000 * intent recovery failure so that reclaim can free them. Metadata
1001 * inodes and the root directory shouldn't need inactivation, but the
1002 * mount failed for some reason, so pull down all the state and flee.
1003 */
1004 xfs_inodegc_flush(mp);
1005
1006 /*
1007 * Flush all inode reclamation work and flush the log.
1008 * We have to do this /after/ rtunmount and qm_unmount because those
1009 * two will have scheduled delayed reclaim for the rt/quota inodes.
1010 *
1011 * This is slightly different from the unmountfs call sequence
1012 * because we could be tearing down a partially set up mount. In
1013 * particular, if log_mount_finish fails we bail out without calling
1014 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1015 * quota inodes.
1016 */
1017 xfs_unmount_flush_inodes(mp);
1018 out_log_dealloc:
1019 xfs_log_mount_cancel(mp);
1020 out_inodegc_shrinker:
1021 unregister_shrinker(&mp->m_inodegc_shrinker);
1022 out_fail_wait:
1023 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1024 xfs_buftarg_drain(mp->m_logdev_targp);
1025 xfs_buftarg_drain(mp->m_ddev_targp);
1026 out_free_perag:
1027 xfs_free_perag(mp);
1028 out_free_dir:
1029 xfs_da_unmount(mp);
1030 out_remove_uuid:
1031 xfs_uuid_unmount(mp);
1032 out_remove_errortag:
1033 xfs_errortag_del(mp);
1034 out_remove_error_sysfs:
1035 xfs_error_sysfs_del(mp);
1036 out_del_stats:
1037 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1038 out_remove_sysfs:
1039 xfs_sysfs_del(&mp->m_kobj);
1040 out:
1041 return error;
1042}
1043
1044/*
1045 * This flushes out the inodes,dquots and the superblock, unmounts the
1046 * log and makes sure that incore structures are freed.
1047 */
1048void
1049xfs_unmountfs(
1050 struct xfs_mount *mp)
1051{
1052 uint64_t resblks;
1053 int error;
1054
1055 /*
1056 * Perform all on-disk metadata updates required to inactivate inodes
1057 * that the VFS evicted earlier in the unmount process. Freeing inodes
1058 * and discarding CoW fork preallocations can cause shape changes to
1059 * the free inode and refcount btrees, respectively, so we must finish
1060 * this before we discard the metadata space reservations. Metadata
1061 * inodes and the root directory do not require inactivation.
1062 */
1063 xfs_inodegc_flush(mp);
1064
1065 xfs_blockgc_stop(mp);
1066 xfs_fs_unreserve_ag_blocks(mp);
1067 xfs_qm_unmount_quotas(mp);
1068 xfs_rtunmount_inodes(mp);
1069 xfs_irele(mp->m_rootip);
1070
1071 xfs_unmount_flush_inodes(mp);
1072
1073 xfs_qm_unmount(mp);
1074
1075 /*
1076 * Unreserve any blocks we have so that when we unmount we don't account
1077 * the reserved free space as used. This is really only necessary for
1078 * lazy superblock counting because it trusts the incore superblock
1079 * counters to be absolutely correct on clean unmount.
1080 *
1081 * We don't bother correcting this elsewhere for lazy superblock
1082 * counting because on mount of an unclean filesystem we reconstruct the
1083 * correct counter value and this is irrelevant.
1084 *
1085 * For non-lazy counter filesystems, this doesn't matter at all because
1086 * we only every apply deltas to the superblock and hence the incore
1087 * value does not matter....
1088 */
1089 resblks = 0;
1090 error = xfs_reserve_blocks(mp, &resblks, NULL);
1091 if (error)
1092 xfs_warn(mp, "Unable to free reserved block pool. "
1093 "Freespace may not be correct on next mount.");
1094 xfs_unmount_check(mp);
1095
1096 xfs_log_unmount(mp);
1097 xfs_da_unmount(mp);
1098 xfs_uuid_unmount(mp);
1099
1100#if defined(DEBUG)
1101 xfs_errortag_clearall(mp);
1102#endif
1103 unregister_shrinker(&mp->m_inodegc_shrinker);
1104 xfs_free_perag(mp);
1105
1106 xfs_errortag_del(mp);
1107 xfs_error_sysfs_del(mp);
1108 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1109 xfs_sysfs_del(&mp->m_kobj);
1110}
1111
1112/*
1113 * Determine whether modifications can proceed. The caller specifies the minimum
1114 * freeze level for which modifications should not be allowed. This allows
1115 * certain operations to proceed while the freeze sequence is in progress, if
1116 * necessary.
1117 */
1118bool
1119xfs_fs_writable(
1120 struct xfs_mount *mp,
1121 int level)
1122{
1123 ASSERT(level > SB_UNFROZEN);
1124 if ((mp->m_super->s_writers.frozen >= level) ||
1125 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1126 return false;
1127
1128 return true;
1129}
1130
1131/* Adjust m_fdblocks or m_frextents. */
1132int
1133xfs_mod_freecounter(
1134 struct xfs_mount *mp,
1135 struct percpu_counter *counter,
1136 int64_t delta,
1137 bool rsvd)
1138{
1139 int64_t lcounter;
1140 long long res_used;
1141 uint64_t set_aside = 0;
1142 s32 batch;
1143 bool has_resv_pool;
1144
1145 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1146 has_resv_pool = (counter == &mp->m_fdblocks);
1147 if (rsvd)
1148 ASSERT(has_resv_pool);
1149
1150 if (delta > 0) {
1151 /*
1152 * If the reserve pool is depleted, put blocks back into it
1153 * first. Most of the time the pool is full.
1154 */
1155 if (likely(!has_resv_pool ||
1156 mp->m_resblks == mp->m_resblks_avail)) {
1157 percpu_counter_add(counter, delta);
1158 return 0;
1159 }
1160
1161 spin_lock(&mp->m_sb_lock);
1162 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1163
1164 if (res_used > delta) {
1165 mp->m_resblks_avail += delta;
1166 } else {
1167 delta -= res_used;
1168 mp->m_resblks_avail = mp->m_resblks;
1169 percpu_counter_add(counter, delta);
1170 }
1171 spin_unlock(&mp->m_sb_lock);
1172 return 0;
1173 }
1174
1175 /*
1176 * Taking blocks away, need to be more accurate the closer we
1177 * are to zero.
1178 *
1179 * If the counter has a value of less than 2 * max batch size,
1180 * then make everything serialise as we are real close to
1181 * ENOSPC.
1182 */
1183 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1184 XFS_FDBLOCKS_BATCH) < 0)
1185 batch = 1;
1186 else
1187 batch = XFS_FDBLOCKS_BATCH;
1188
1189 /*
1190 * Set aside allocbt blocks because these blocks are tracked as free
1191 * space but not available for allocation. Technically this means that a
1192 * single reservation cannot consume all remaining free space, but the
1193 * ratio of allocbt blocks to usable free blocks should be rather small.
1194 * The tradeoff without this is that filesystems that maintain high
1195 * perag block reservations can over reserve physical block availability
1196 * and fail physical allocation, which leads to much more serious
1197 * problems (i.e. transaction abort, pagecache discards, etc.) than
1198 * slightly premature -ENOSPC.
1199 */
1200 if (has_resv_pool)
1201 set_aside = xfs_fdblocks_unavailable(mp);
1202 percpu_counter_add_batch(counter, delta, batch);
1203 if (__percpu_counter_compare(counter, set_aside,
1204 XFS_FDBLOCKS_BATCH) >= 0) {
1205 /* we had space! */
1206 return 0;
1207 }
1208
1209 /*
1210 * lock up the sb for dipping into reserves before releasing the space
1211 * that took us to ENOSPC.
1212 */
1213 spin_lock(&mp->m_sb_lock);
1214 percpu_counter_add(counter, -delta);
1215 if (!has_resv_pool || !rsvd)
1216 goto fdblocks_enospc;
1217
1218 lcounter = (long long)mp->m_resblks_avail + delta;
1219 if (lcounter >= 0) {
1220 mp->m_resblks_avail = lcounter;
1221 spin_unlock(&mp->m_sb_lock);
1222 return 0;
1223 }
1224 xfs_warn_once(mp,
1225"Reserve blocks depleted! Consider increasing reserve pool size.");
1226
1227fdblocks_enospc:
1228 spin_unlock(&mp->m_sb_lock);
1229 return -ENOSPC;
1230}
1231
1232/*
1233 * Used to free the superblock along various error paths.
1234 */
1235void
1236xfs_freesb(
1237 struct xfs_mount *mp)
1238{
1239 struct xfs_buf *bp = mp->m_sb_bp;
1240
1241 xfs_buf_lock(bp);
1242 mp->m_sb_bp = NULL;
1243 xfs_buf_relse(bp);
1244}
1245
1246/*
1247 * If the underlying (data/log/rt) device is readonly, there are some
1248 * operations that cannot proceed.
1249 */
1250int
1251xfs_dev_is_read_only(
1252 struct xfs_mount *mp,
1253 char *message)
1254{
1255 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1256 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1257 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1258 xfs_notice(mp, "%s required on read-only device.", message);
1259 xfs_notice(mp, "write access unavailable, cannot proceed.");
1260 return -EROFS;
1261 }
1262 return 0;
1263}
1264
1265/* Force the summary counters to be recalculated at next mount. */
1266void
1267xfs_force_summary_recalc(
1268 struct xfs_mount *mp)
1269{
1270 if (!xfs_has_lazysbcount(mp))
1271 return;
1272
1273 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1274}
1275
1276/*
1277 * Enable a log incompat feature flag in the primary superblock. The caller
1278 * cannot have any other transactions in progress.
1279 */
1280int
1281xfs_add_incompat_log_feature(
1282 struct xfs_mount *mp,
1283 uint32_t feature)
1284{
1285 struct xfs_dsb *dsb;
1286 int error;
1287
1288 ASSERT(hweight32(feature) == 1);
1289 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1290
1291 /*
1292 * Force the log to disk and kick the background AIL thread to reduce
1293 * the chances that the bwrite will stall waiting for the AIL to unpin
1294 * the primary superblock buffer. This isn't a data integrity
1295 * operation, so we don't need a synchronous push.
1296 */
1297 error = xfs_log_force(mp, XFS_LOG_SYNC);
1298 if (error)
1299 return error;
1300 xfs_ail_push_all(mp->m_ail);
1301
1302 /*
1303 * Lock the primary superblock buffer to serialize all callers that
1304 * are trying to set feature bits.
1305 */
1306 xfs_buf_lock(mp->m_sb_bp);
1307 xfs_buf_hold(mp->m_sb_bp);
1308
1309 if (xfs_is_shutdown(mp)) {
1310 error = -EIO;
1311 goto rele;
1312 }
1313
1314 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1315 goto rele;
1316
1317 /*
1318 * Write the primary superblock to disk immediately, because we need
1319 * the log_incompat bit to be set in the primary super now to protect
1320 * the log items that we're going to commit later.
1321 */
1322 dsb = mp->m_sb_bp->b_addr;
1323 xfs_sb_to_disk(dsb, &mp->m_sb);
1324 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1325 error = xfs_bwrite(mp->m_sb_bp);
1326 if (error)
1327 goto shutdown;
1328
1329 /*
1330 * Add the feature bits to the incore superblock before we unlock the
1331 * buffer.
1332 */
1333 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1334 xfs_buf_relse(mp->m_sb_bp);
1335
1336 /* Log the superblock to disk. */
1337 return xfs_sync_sb(mp, false);
1338shutdown:
1339 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1340rele:
1341 xfs_buf_relse(mp->m_sb_bp);
1342 return error;
1343}
1344
1345/*
1346 * Clear all the log incompat flags from the superblock.
1347 *
1348 * The caller cannot be in a transaction, must ensure that the log does not
1349 * contain any log items protected by any log incompat bit, and must ensure
1350 * that there are no other threads that depend on the state of the log incompat
1351 * feature flags in the primary super.
1352 *
1353 * Returns true if the superblock is dirty.
1354 */
1355bool
1356xfs_clear_incompat_log_features(
1357 struct xfs_mount *mp)
1358{
1359 bool ret = false;
1360
1361 if (!xfs_has_crc(mp) ||
1362 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1363 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1364 xfs_is_shutdown(mp))
1365 return false;
1366
1367 /*
1368 * Update the incore superblock. We synchronize on the primary super
1369 * buffer lock to be consistent with the add function, though at least
1370 * in theory this shouldn't be necessary.
1371 */
1372 xfs_buf_lock(mp->m_sb_bp);
1373 xfs_buf_hold(mp->m_sb_bp);
1374
1375 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1376 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1377 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1378 ret = true;
1379 }
1380
1381 xfs_buf_relse(mp->m_sb_bp);
1382 return ret;
1383}
1384
1385/*
1386 * Update the in-core delayed block counter.
1387 *
1388 * We prefer to update the counter without having to take a spinlock for every
1389 * counter update (i.e. batching). Each change to delayed allocation
1390 * reservations can change can easily exceed the default percpu counter
1391 * batching, so we use a larger batch factor here.
1392 *
1393 * Note that we don't currently have any callers requiring fast summation
1394 * (e.g. percpu_counter_read) so we can use a big batch value here.
1395 */
1396#define XFS_DELALLOC_BATCH (4096)
1397void
1398xfs_mod_delalloc(
1399 struct xfs_mount *mp,
1400 int64_t delta)
1401{
1402 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1403 XFS_DELALLOC_BATCH);
1404}