Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
 
 
 
  25#include "xfs_sb.h"
 
 
  26#include "xfs_mount.h"
  27#include "xfs_defer.h"
  28#include "xfs_da_format.h"
  29#include "xfs_da_btree.h"
 
  30#include "xfs_inode.h"
  31#include "xfs_dir2.h"
  32#include "xfs_ialloc.h"
  33#include "xfs_alloc.h"
  34#include "xfs_rtalloc.h"
  35#include "xfs_bmap.h"
  36#include "xfs_trans.h"
  37#include "xfs_trans_priv.h"
  38#include "xfs_log.h"
  39#include "xfs_error.h"
 
  40#include "xfs_quota.h"
  41#include "xfs_fsops.h"
 
  42#include "xfs_trace.h"
  43#include "xfs_icache.h"
  44#include "xfs_sysfs.h"
  45#include "xfs_rmap_btree.h"
  46#include "xfs_refcount_btree.h"
  47#include "xfs_reflink.h"
  48#include "xfs_extent_busy.h"
  49
  50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51static DEFINE_MUTEX(xfs_uuid_table_mutex);
  52static int xfs_uuid_table_size;
  53static uuid_t *xfs_uuid_table;
  54
  55void
  56xfs_uuid_table_free(void)
  57{
  58	if (xfs_uuid_table_size == 0)
  59		return;
  60	kmem_free(xfs_uuid_table);
  61	xfs_uuid_table = NULL;
  62	xfs_uuid_table_size = 0;
  63}
  64
  65/*
  66 * See if the UUID is unique among mounted XFS filesystems.
  67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  68 */
  69STATIC int
  70xfs_uuid_mount(
  71	struct xfs_mount	*mp)
  72{
  73	uuid_t			*uuid = &mp->m_sb.sb_uuid;
  74	int			hole, i;
  75
  76	/* Publish UUID in struct super_block */
  77	uuid_copy(&mp->m_super->s_uuid, uuid);
  78
  79	if (mp->m_flags & XFS_MOUNT_NOUUID)
  80		return 0;
  81
  82	if (uuid_is_null(uuid)) {
  83		xfs_warn(mp, "Filesystem has null UUID - can't mount");
  84		return -EINVAL;
  85	}
  86
  87	mutex_lock(&xfs_uuid_table_mutex);
  88	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  89		if (uuid_is_null(&xfs_uuid_table[i])) {
  90			hole = i;
  91			continue;
  92		}
  93		if (uuid_equal(uuid, &xfs_uuid_table[i]))
  94			goto out_duplicate;
  95	}
  96
  97	if (hole < 0) {
  98		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  99			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
 
 100			KM_SLEEP);
 101		hole = xfs_uuid_table_size++;
 102	}
 103	xfs_uuid_table[hole] = *uuid;
 104	mutex_unlock(&xfs_uuid_table_mutex);
 105
 106	return 0;
 107
 108 out_duplicate:
 109	mutex_unlock(&xfs_uuid_table_mutex);
 110	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 111	return -EINVAL;
 112}
 113
 114STATIC void
 115xfs_uuid_unmount(
 116	struct xfs_mount	*mp)
 117{
 118	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 119	int			i;
 120
 121	if (mp->m_flags & XFS_MOUNT_NOUUID)
 122		return;
 123
 124	mutex_lock(&xfs_uuid_table_mutex);
 125	for (i = 0; i < xfs_uuid_table_size; i++) {
 126		if (uuid_is_null(&xfs_uuid_table[i]))
 127			continue;
 128		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 129			continue;
 130		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 131		break;
 132	}
 133	ASSERT(i < xfs_uuid_table_size);
 134	mutex_unlock(&xfs_uuid_table_mutex);
 135}
 136
 137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138STATIC void
 139__xfs_free_perag(
 140	struct rcu_head	*head)
 141{
 142	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 143
 144	ASSERT(atomic_read(&pag->pag_ref) == 0);
 145	kmem_free(pag);
 146}
 147
 148/*
 149 * Free up the per-ag resources associated with the mount structure.
 150 */
 151STATIC void
 152xfs_free_perag(
 153	xfs_mount_t	*mp)
 154{
 155	xfs_agnumber_t	agno;
 156	struct xfs_perag *pag;
 157
 158	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 159		spin_lock(&mp->m_perag_lock);
 160		pag = radix_tree_delete(&mp->m_perag_tree, agno);
 161		spin_unlock(&mp->m_perag_lock);
 162		ASSERT(pag);
 163		ASSERT(atomic_read(&pag->pag_ref) == 0);
 164		xfs_buf_hash_destroy(pag);
 165		mutex_destroy(&pag->pag_ici_reclaim_lock);
 166		call_rcu(&pag->rcu_head, __xfs_free_perag);
 167	}
 168}
 169
 170/*
 171 * Check size of device based on the (data/realtime) block count.
 172 * Note: this check is used by the growfs code as well as mount.
 173 */
 174int
 175xfs_sb_validate_fsb_count(
 176	xfs_sb_t	*sbp,
 177	uint64_t	nblocks)
 178{
 179	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 180	ASSERT(sbp->sb_blocklog >= BBSHIFT);
 181
 182	/* Limited by ULONG_MAX of page cache index */
 183	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 184		return -EFBIG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185	return 0;
 186}
 187
 188int
 189xfs_initialize_perag(
 190	xfs_mount_t	*mp,
 191	xfs_agnumber_t	agcount,
 192	xfs_agnumber_t	*maxagi)
 193{
 194	xfs_agnumber_t	index;
 195	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
 196	xfs_perag_t	*pag;
 
 
 
 197	int		error = -ENOMEM;
 198
 199	/*
 200	 * Walk the current per-ag tree so we don't try to initialise AGs
 201	 * that already exist (growfs case). Allocate and insert all the
 202	 * AGs we don't find ready for initialisation.
 203	 */
 204	for (index = 0; index < agcount; index++) {
 205		pag = xfs_perag_get(mp, index);
 206		if (pag) {
 207			xfs_perag_put(pag);
 208			continue;
 209		}
 
 
 210
 211		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 212		if (!pag)
 213			goto out_unwind_new_pags;
 214		pag->pag_agno = index;
 215		pag->pag_mount = mp;
 216		spin_lock_init(&pag->pag_ici_lock);
 217		mutex_init(&pag->pag_ici_reclaim_lock);
 218		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 219		if (xfs_buf_hash_init(pag))
 220			goto out_free_pag;
 221		init_waitqueue_head(&pag->pagb_wait);
 222
 223		if (radix_tree_preload(GFP_NOFS))
 224			goto out_hash_destroy;
 225
 226		spin_lock(&mp->m_perag_lock);
 227		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 228			BUG();
 229			spin_unlock(&mp->m_perag_lock);
 230			radix_tree_preload_end();
 231			error = -EEXIST;
 232			goto out_hash_destroy;
 233		}
 234		spin_unlock(&mp->m_perag_lock);
 235		radix_tree_preload_end();
 236		/* first new pag is fully initialized */
 237		if (first_initialised == NULLAGNUMBER)
 238			first_initialised = index;
 239	}
 240
 241	index = xfs_set_inode_alloc(mp, agcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242
 243	if (maxagi)
 244		*maxagi = index;
 245
 246	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
 247	return 0;
 248
 249out_hash_destroy:
 250	xfs_buf_hash_destroy(pag);
 251out_free_pag:
 252	mutex_destroy(&pag->pag_ici_reclaim_lock);
 253	kmem_free(pag);
 254out_unwind_new_pags:
 255	/* unwind any prior newly initialized pags */
 256	for (index = first_initialised; index < agcount; index++) {
 257		pag = radix_tree_delete(&mp->m_perag_tree, index);
 258		if (!pag)
 259			break;
 260		xfs_buf_hash_destroy(pag);
 261		mutex_destroy(&pag->pag_ici_reclaim_lock);
 262		kmem_free(pag);
 263	}
 264	return error;
 265}
 266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267/*
 268 * xfs_readsb
 269 *
 270 * Does the initial read of the superblock.
 271 */
 272int
 273xfs_readsb(
 274	struct xfs_mount *mp,
 275	int		flags)
 276{
 277	unsigned int	sector_size;
 278	struct xfs_buf	*bp;
 279	struct xfs_sb	*sbp = &mp->m_sb;
 280	int		error;
 281	int		loud = !(flags & XFS_MFSI_QUIET);
 282	const struct xfs_buf_ops *buf_ops;
 283
 284	ASSERT(mp->m_sb_bp == NULL);
 285	ASSERT(mp->m_ddev_targp != NULL);
 286
 287	/*
 288	 * For the initial read, we must guess at the sector
 289	 * size based on the block device.  It's enough to
 290	 * get the sb_sectsize out of the superblock and
 291	 * then reread with the proper length.
 292	 * We don't verify it yet, because it may not be complete.
 293	 */
 294	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 295	buf_ops = NULL;
 296
 297	/*
 298	 * Allocate a (locked) buffer to hold the superblock. This will be kept
 299	 * around at all times to optimize access to the superblock. Therefore,
 300	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
 301	 * elevated.
 302	 */
 303reread:
 304	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 305				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
 306				      buf_ops);
 307	if (error) {
 308		if (loud)
 309			xfs_warn(mp, "SB validate failed with error %d.", error);
 310		/* bad CRC means corrupted metadata */
 311		if (error == -EFSBADCRC)
 312			error = -EFSCORRUPTED;
 313		return error;
 314	}
 315
 316	/*
 317	 * Initialize the mount structure from the superblock.
 
 318	 */
 319	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 320
 321	/*
 322	 * If we haven't validated the superblock, do so now before we try
 323	 * to check the sector size and reread the superblock appropriately.
 324	 */
 325	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 326		if (loud)
 327			xfs_warn(mp, "Invalid superblock magic number");
 328		error = -EINVAL;
 329		goto release_buf;
 330	}
 331
 332	/*
 333	 * We must be able to do sector-sized and sector-aligned IO.
 334	 */
 335	if (sector_size > sbp->sb_sectsize) {
 336		if (loud)
 337			xfs_warn(mp, "device supports %u byte sectors (not %u)",
 338				sector_size, sbp->sb_sectsize);
 339		error = -ENOSYS;
 340		goto release_buf;
 341	}
 342
 343	if (buf_ops == NULL) {
 344		/*
 345		 * Re-read the superblock so the buffer is correctly sized,
 346		 * and properly verified.
 347		 */
 348		xfs_buf_relse(bp);
 349		sector_size = sbp->sb_sectsize;
 350		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 351		goto reread;
 352	}
 353
 354	xfs_reinit_percpu_counters(mp);
 355
 356	/* no need to be quiet anymore, so reset the buf ops */
 357	bp->b_ops = &xfs_sb_buf_ops;
 358
 359	mp->m_sb_bp = bp;
 360	xfs_buf_unlock(bp);
 361	return 0;
 362
 363release_buf:
 364	xfs_buf_relse(bp);
 365	return error;
 366}
 367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368/*
 369 * Update alignment values based on mount options and sb values
 370 */
 371STATIC int
 372xfs_update_alignment(xfs_mount_t *mp)
 373{
 374	xfs_sb_t	*sbp = &(mp->m_sb);
 375
 376	if (mp->m_dalign) {
 377		/*
 378		 * If stripe unit and stripe width are not multiples
 379		 * of the fs blocksize turn off alignment.
 380		 */
 381		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 382		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 383			xfs_warn(mp,
 384		"alignment check failed: sunit/swidth vs. blocksize(%d)",
 385				sbp->sb_blocksize);
 386			return -EINVAL;
 
 
 387		} else {
 388			/*
 389			 * Convert the stripe unit and width to FSBs.
 390			 */
 391			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 392			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 
 
 
 
 
 393				xfs_warn(mp,
 394			"alignment check failed: sunit/swidth vs. agsize(%d)",
 395					 sbp->sb_agblocks);
 396				return -EINVAL;
 
 
 
 
 397			} else if (mp->m_dalign) {
 398				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 399			} else {
 400				xfs_warn(mp,
 401			"alignment check failed: sunit(%d) less than bsize(%d)",
 402					 mp->m_dalign, sbp->sb_blocksize);
 403				return -EINVAL;
 
 
 
 
 404			}
 405		}
 406
 407		/*
 408		 * Update superblock with new values
 409		 * and log changes
 410		 */
 411		if (xfs_sb_version_hasdalign(sbp)) {
 412			if (sbp->sb_unit != mp->m_dalign) {
 413				sbp->sb_unit = mp->m_dalign;
 414				mp->m_update_sb = true;
 415			}
 416			if (sbp->sb_width != mp->m_swidth) {
 417				sbp->sb_width = mp->m_swidth;
 418				mp->m_update_sb = true;
 419			}
 420		} else {
 421			xfs_warn(mp,
 422	"cannot change alignment: superblock does not support data alignment");
 423			return -EINVAL;
 424		}
 425	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 426		    xfs_sb_version_hasdalign(&mp->m_sb)) {
 427			mp->m_dalign = sbp->sb_unit;
 428			mp->m_swidth = sbp->sb_width;
 429	}
 430
 431	return 0;
 432}
 433
 434/*
 435 * Set the maximum inode count for this filesystem
 436 */
 437STATIC void
 438xfs_set_maxicount(xfs_mount_t *mp)
 439{
 440	xfs_sb_t	*sbp = &(mp->m_sb);
 441	uint64_t	icount;
 442
 443	if (sbp->sb_imax_pct) {
 444		/*
 445		 * Make sure the maximum inode count is a multiple
 446		 * of the units we allocate inodes in.
 447		 */
 448		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 449		do_div(icount, 100);
 450		do_div(icount, mp->m_ialloc_blks);
 451		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 452				   sbp->sb_inopblog;
 453	} else {
 454		mp->m_maxicount = 0;
 455	}
 456}
 457
 458/*
 459 * Set the default minimum read and write sizes unless
 460 * already specified in a mount option.
 461 * We use smaller I/O sizes when the file system
 462 * is being used for NFS service (wsync mount option).
 463 */
 464STATIC void
 465xfs_set_rw_sizes(xfs_mount_t *mp)
 466{
 467	xfs_sb_t	*sbp = &(mp->m_sb);
 468	int		readio_log, writeio_log;
 469
 470	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 471		if (mp->m_flags & XFS_MOUNT_WSYNC) {
 472			readio_log = XFS_WSYNC_READIO_LOG;
 473			writeio_log = XFS_WSYNC_WRITEIO_LOG;
 474		} else {
 475			readio_log = XFS_READIO_LOG_LARGE;
 476			writeio_log = XFS_WRITEIO_LOG_LARGE;
 477		}
 478	} else {
 479		readio_log = mp->m_readio_log;
 480		writeio_log = mp->m_writeio_log;
 481	}
 482
 483	if (sbp->sb_blocklog > readio_log) {
 484		mp->m_readio_log = sbp->sb_blocklog;
 485	} else {
 486		mp->m_readio_log = readio_log;
 487	}
 488	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 489	if (sbp->sb_blocklog > writeio_log) {
 490		mp->m_writeio_log = sbp->sb_blocklog;
 491	} else {
 492		mp->m_writeio_log = writeio_log;
 493	}
 494	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 495}
 496
 497/*
 498 * precalculate the low space thresholds for dynamic speculative preallocation.
 499 */
 500void
 501xfs_set_low_space_thresholds(
 502	struct xfs_mount	*mp)
 503{
 504	int i;
 505
 506	for (i = 0; i < XFS_LOWSP_MAX; i++) {
 507		uint64_t space = mp->m_sb.sb_dblocks;
 508
 509		do_div(space, 100);
 510		mp->m_low_space[i] = space * (i + 1);
 511	}
 512}
 513
 514
 515/*
 516 * Set whether we're using inode alignment.
 517 */
 518STATIC void
 519xfs_set_inoalignment(xfs_mount_t *mp)
 520{
 521	if (xfs_sb_version_hasalign(&mp->m_sb) &&
 522		mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
 
 523		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 524	else
 525		mp->m_inoalign_mask = 0;
 526	/*
 527	 * If we are using stripe alignment, check whether
 528	 * the stripe unit is a multiple of the inode alignment
 529	 */
 530	if (mp->m_dalign && mp->m_inoalign_mask &&
 531	    !(mp->m_dalign & mp->m_inoalign_mask))
 532		mp->m_sinoalign = mp->m_dalign;
 533	else
 534		mp->m_sinoalign = 0;
 535}
 536
 537/*
 538 * Check that the data (and log if separate) is an ok size.
 539 */
 540STATIC int
 541xfs_check_sizes(
 542	struct xfs_mount *mp)
 543{
 544	struct xfs_buf	*bp;
 545	xfs_daddr_t	d;
 546	int		error;
 547
 548	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 549	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 550		xfs_warn(mp, "filesystem size mismatch detected");
 551		return -EFBIG;
 552	}
 553	error = xfs_buf_read_uncached(mp->m_ddev_targp,
 554					d - XFS_FSS_TO_BB(mp, 1),
 555					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 556	if (error) {
 557		xfs_warn(mp, "last sector read failed");
 558		return error;
 559	}
 560	xfs_buf_relse(bp);
 561
 562	if (mp->m_logdev_targp == mp->m_ddev_targp)
 563		return 0;
 564
 565	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 566	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 567		xfs_warn(mp, "log size mismatch detected");
 568		return -EFBIG;
 569	}
 570	error = xfs_buf_read_uncached(mp->m_logdev_targp,
 571					d - XFS_FSB_TO_BB(mp, 1),
 572					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 573	if (error) {
 574		xfs_warn(mp, "log device read failed");
 575		return error;
 
 
 576	}
 577	xfs_buf_relse(bp);
 578	return 0;
 579}
 580
 581/*
 582 * Clear the quotaflags in memory and in the superblock.
 583 */
 584int
 585xfs_mount_reset_sbqflags(
 586	struct xfs_mount	*mp)
 587{
 
 
 
 588	mp->m_qflags = 0;
 589
 590	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 
 
 
 591	if (mp->m_sb.sb_qflags == 0)
 592		return 0;
 593	spin_lock(&mp->m_sb_lock);
 594	mp->m_sb.sb_qflags = 0;
 595	spin_unlock(&mp->m_sb_lock);
 596
 597	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 
 
 
 
 598		return 0;
 599
 600	return xfs_sync_sb(mp, false);
 
 
 
 
 
 
 
 
 
 
 601}
 602
 603uint64_t
 604xfs_default_resblks(xfs_mount_t *mp)
 605{
 606	uint64_t resblks;
 607
 608	/*
 609	 * We default to 5% or 8192 fsbs of space reserved, whichever is
 610	 * smaller.  This is intended to cover concurrent allocation
 611	 * transactions when we initially hit enospc. These each require a 4
 612	 * block reservation. Hence by default we cover roughly 2000 concurrent
 613	 * allocation reservations.
 614	 */
 615	resblks = mp->m_sb.sb_dblocks;
 616	do_div(resblks, 20);
 617	resblks = min_t(uint64_t, resblks, 8192);
 618	return resblks;
 619}
 620
 621/*
 622 * This function does the following on an initial mount of a file system:
 623 *	- reads the superblock from disk and init the mount struct
 624 *	- if we're a 32-bit kernel, do a size check on the superblock
 625 *		so we don't mount terabyte filesystems
 626 *	- init mount struct realtime fields
 627 *	- allocate inode hash table for fs
 628 *	- init directory manager
 629 *	- perform recovery and init the log manager
 630 */
 631int
 632xfs_mountfs(
 633	struct xfs_mount	*mp)
 634{
 635	struct xfs_sb		*sbp = &(mp->m_sb);
 636	struct xfs_inode	*rip;
 637	uint64_t		resblks;
 638	uint			quotamount = 0;
 639	uint			quotaflags = 0;
 640	int			error = 0;
 641
 642	xfs_sb_mount_common(mp, sbp);
 643
 644	/*
 645	 * Check for a mismatched features2 values.  Older kernels read & wrote
 646	 * into the wrong sb offset for sb_features2 on some platforms due to
 647	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 648	 * which made older superblock reading/writing routines swap it as a
 649	 * 64-bit value.
 650	 *
 651	 * For backwards compatibility, we make both slots equal.
 652	 *
 653	 * If we detect a mismatched field, we OR the set bits into the existing
 654	 * features2 field in case it has already been modified; we don't want
 655	 * to lose any features.  We then update the bad location with the ORed
 656	 * value so that older kernels will see any features2 flags. The
 657	 * superblock writeback code ensures the new sb_features2 is copied to
 658	 * sb_bad_features2 before it is logged or written to disk.
 659	 */
 660	if (xfs_sb_has_mismatched_features2(sbp)) {
 661		xfs_warn(mp, "correcting sb_features alignment problem");
 662		sbp->sb_features2 |= sbp->sb_bad_features2;
 663		mp->m_update_sb = true;
 
 664
 665		/*
 666		 * Re-check for ATTR2 in case it was found in bad_features2
 667		 * slot.
 668		 */
 669		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 670		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 671			mp->m_flags |= XFS_MOUNT_ATTR2;
 672	}
 673
 674	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 675	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 676		xfs_sb_version_removeattr2(&mp->m_sb);
 677		mp->m_update_sb = true;
 678
 679		/* update sb_versionnum for the clearing of the morebits */
 680		if (!sbp->sb_features2)
 681			mp->m_update_sb = true;
 682	}
 683
 684	/* always use v2 inodes by default now */
 685	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 686		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 687		mp->m_update_sb = true;
 688	}
 689
 690	/*
 691	 * Check if sb_agblocks is aligned at stripe boundary
 692	 * If sb_agblocks is NOT aligned turn off m_dalign since
 693	 * allocator alignment is within an ag, therefore ag has
 694	 * to be aligned at stripe boundary.
 695	 */
 696	error = xfs_update_alignment(mp);
 697	if (error)
 698		goto out;
 699
 700	xfs_alloc_compute_maxlevels(mp);
 701	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 702	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 703	xfs_ialloc_compute_maxlevels(mp);
 704	xfs_rmapbt_compute_maxlevels(mp);
 705	xfs_refcountbt_compute_maxlevels(mp);
 706
 707	xfs_set_maxicount(mp);
 708
 709	/* enable fail_at_unmount as default */
 710	mp->m_fail_unmount = true;
 711
 712	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
 713	if (error)
 714		goto out;
 715
 716	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
 717			       &mp->m_kobj, "stats");
 718	if (error)
 719		goto out_remove_sysfs;
 720
 721	error = xfs_error_sysfs_init(mp);
 722	if (error)
 723		goto out_del_stats;
 724
 725	error = xfs_errortag_init(mp);
 726	if (error)
 727		goto out_remove_error_sysfs;
 728
 729	error = xfs_uuid_mount(mp);
 730	if (error)
 731		goto out_remove_errortag;
 732
 733	/*
 734	 * Set the minimum read and write sizes
 735	 */
 736	xfs_set_rw_sizes(mp);
 737
 738	/* set the low space thresholds for dynamic preallocation */
 739	xfs_set_low_space_thresholds(mp);
 740
 741	/*
 742	 * Set the inode cluster size.
 743	 * This may still be overridden by the file system
 744	 * block size if it is larger than the chosen cluster size.
 745	 *
 746	 * For v5 filesystems, scale the cluster size with the inode size to
 747	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
 748	 * has set the inode alignment value appropriately for larger cluster
 749	 * sizes.
 750	 */
 751	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 752	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 753		int	new_size = mp->m_inode_cluster_size;
 754
 755		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
 756		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
 757			mp->m_inode_cluster_size = new_size;
 758	}
 759
 760	/*
 761	 * If enabled, sparse inode chunk alignment is expected to match the
 762	 * cluster size. Full inode chunk alignment must match the chunk size,
 763	 * but that is checked on sb read verification...
 764	 */
 765	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
 766	    mp->m_sb.sb_spino_align !=
 767			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
 768		xfs_warn(mp,
 769	"Sparse inode block alignment (%u) must match cluster size (%llu).",
 770			 mp->m_sb.sb_spino_align,
 771			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
 772		error = -EINVAL;
 773		goto out_remove_uuid;
 774	}
 775
 776	/*
 777	 * Set inode alignment fields
 778	 */
 779	xfs_set_inoalignment(mp);
 780
 781	/*
 782	 * Check that the data (and log if separate) is an ok size.
 783	 */
 784	error = xfs_check_sizes(mp);
 785	if (error)
 786		goto out_remove_uuid;
 787
 788	/*
 789	 * Initialize realtime fields in the mount structure
 790	 */
 791	error = xfs_rtmount_init(mp);
 792	if (error) {
 793		xfs_warn(mp, "RT mount failed");
 794		goto out_remove_uuid;
 795	}
 796
 797	/*
 798	 *  Copies the low order bits of the timestamp and the randomly
 799	 *  set "sequence" number out of a UUID.
 800	 */
 801	mp->m_fixedfsid[0] =
 802		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
 803		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
 804	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
 805
 806	error = xfs_da_mount(mp);
 807	if (error) {
 808		xfs_warn(mp, "Failed dir/attr init: %d", error);
 809		goto out_remove_uuid;
 810	}
 
 
 
 811
 812	/*
 813	 * Initialize the precomputed transaction reservations values.
 814	 */
 815	xfs_trans_init(mp);
 816
 817	/*
 818	 * Allocate and initialize the per-ag data.
 819	 */
 
 
 820	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 821	if (error) {
 822		xfs_warn(mp, "Failed per-ag init: %d", error);
 823		goto out_free_dir;
 824	}
 825
 826	if (!sbp->sb_logblocks) {
 827		xfs_warn(mp, "no log defined");
 828		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 829		error = -EFSCORRUPTED;
 830		goto out_free_perag;
 831	}
 832
 833	/*
 834	 * Log's mount-time initialization. The first part of recovery can place
 835	 * some items on the AIL, to be handled when recovery is finished or
 836	 * cancelled.
 837	 */
 838	error = xfs_log_mount(mp, mp->m_logdev_targp,
 839			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 840			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 841	if (error) {
 842		xfs_warn(mp, "log mount failed");
 843		goto out_fail_wait;
 844	}
 845
 846	/*
 847	 * Now the log is mounted, we know if it was an unclean shutdown or
 848	 * not. If it was, with the first phase of recovery has completed, we
 849	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
 850	 * but they are recovered transactionally in the second recovery phase
 851	 * later.
 852	 *
 853	 * Hence we can safely re-initialise incore superblock counters from
 854	 * the per-ag data. These may not be correct if the filesystem was not
 855	 * cleanly unmounted, so we need to wait for recovery to finish before
 856	 * doing this.
 857	 *
 858	 * If the filesystem was cleanly unmounted, then we can trust the
 859	 * values in the superblock to be correct and we don't need to do
 860	 * anything here.
 861	 *
 862	 * If we are currently making the filesystem, the initialisation will
 863	 * fail as the perag data is in an undefined state.
 864	 */
 865	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 866	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 867	     !mp->m_sb.sb_inprogress) {
 868		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 869		if (error)
 870			goto out_log_dealloc;
 871	}
 872
 873	/*
 874	 * Get and sanity-check the root inode.
 875	 * Save the pointer to it in the mount structure.
 876	 */
 877	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 878	if (error) {
 879		xfs_warn(mp, "failed to read root inode");
 880		goto out_log_dealloc;
 881	}
 882
 883	ASSERT(rip != NULL);
 884
 885	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
 886		xfs_warn(mp, "corrupted root inode %llu: not a directory",
 887			(unsigned long long)rip->i_ino);
 888		xfs_iunlock(rip, XFS_ILOCK_EXCL);
 889		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 890				 mp);
 891		error = -EFSCORRUPTED;
 892		goto out_rele_rip;
 893	}
 894	mp->m_rootip = rip;	/* save it */
 895
 896	xfs_iunlock(rip, XFS_ILOCK_EXCL);
 897
 898	/*
 899	 * Initialize realtime inode pointers in the mount structure
 900	 */
 901	error = xfs_rtmount_inodes(mp);
 902	if (error) {
 903		/*
 904		 * Free up the root inode.
 905		 */
 906		xfs_warn(mp, "failed to read RT inodes");
 907		goto out_rele_rip;
 908	}
 909
 910	/*
 911	 * If this is a read-only mount defer the superblock updates until
 912	 * the next remount into writeable mode.  Otherwise we would never
 913	 * perform the update e.g. for the root filesystem.
 914	 */
 915	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 916		error = xfs_sync_sb(mp, false);
 917		if (error) {
 918			xfs_warn(mp, "failed to write sb changes");
 919			goto out_rtunmount;
 920		}
 921	}
 922
 923	/*
 924	 * Initialise the XFS quota management subsystem for this mount
 925	 */
 926	if (XFS_IS_QUOTA_RUNNING(mp)) {
 927		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 928		if (error)
 929			goto out_rtunmount;
 930	} else {
 931		ASSERT(!XFS_IS_QUOTA_ON(mp));
 932
 933		/*
 934		 * If a file system had quotas running earlier, but decided to
 935		 * mount without -o uquota/pquota/gquota options, revoke the
 936		 * quotachecked license.
 937		 */
 938		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 939			xfs_notice(mp, "resetting quota flags");
 940			error = xfs_mount_reset_sbqflags(mp);
 941			if (error)
 942				goto out_rtunmount;
 943		}
 944	}
 945
 946	/*
 947	 * Finish recovering the file system.  This part needed to be delayed
 948	 * until after the root and real-time bitmap inodes were consistently
 949	 * read in.
 950	 */
 951	error = xfs_log_mount_finish(mp);
 952	if (error) {
 953		xfs_warn(mp, "log mount finish failed");
 954		goto out_rtunmount;
 955	}
 956
 957	/*
 958	 * Now the log is fully replayed, we can transition to full read-only
 959	 * mode for read-only mounts. This will sync all the metadata and clean
 960	 * the log so that the recovery we just performed does not have to be
 961	 * replayed again on the next mount.
 962	 *
 963	 * We use the same quiesce mechanism as the rw->ro remount, as they are
 964	 * semantically identical operations.
 965	 */
 966	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
 967							XFS_MOUNT_RDONLY) {
 968		xfs_quiesce_attr(mp);
 969	}
 970
 971	/*
 972	 * Complete the quota initialisation, post-log-replay component.
 973	 */
 974	if (quotamount) {
 975		ASSERT(mp->m_qflags == 0);
 976		mp->m_qflags = quotaflags;
 977
 978		xfs_qm_mount_quotas(mp);
 979	}
 980
 981	/*
 982	 * Now we are mounted, reserve a small amount of unused space for
 983	 * privileged transactions. This is needed so that transaction
 984	 * space required for critical operations can dip into this pool
 985	 * when at ENOSPC. This is needed for operations like create with
 986	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 987	 * are not allowed to use this reserved space.
 988	 *
 989	 * This may drive us straight to ENOSPC on mount, but that implies
 990	 * we were already there on the last unmount. Warn if this occurs.
 991	 */
 992	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 993		resblks = xfs_default_resblks(mp);
 994		error = xfs_reserve_blocks(mp, &resblks, NULL);
 995		if (error)
 996			xfs_warn(mp,
 997	"Unable to allocate reserve blocks. Continuing without reserve pool.");
 998
 999		/* Recover any CoW blocks that never got remapped. */
1000		error = xfs_reflink_recover_cow(mp);
1001		if (error) {
1002			xfs_err(mp,
1003	"Error %d recovering leftover CoW allocations.", error);
1004			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1005			goto out_quota;
1006		}
1007
1008		/* Reserve AG blocks for future btree expansion. */
1009		error = xfs_fs_reserve_ag_blocks(mp);
1010		if (error && error != -ENOSPC)
1011			goto out_agresv;
1012	}
1013
1014	return 0;
1015
1016 out_agresv:
1017	xfs_fs_unreserve_ag_blocks(mp);
1018 out_quota:
1019	xfs_qm_unmount_quotas(mp);
1020 out_rtunmount:
1021	xfs_rtunmount_inodes(mp);
1022 out_rele_rip:
1023	IRELE(rip);
1024	/* Clean out dquots that might be in memory after quotacheck. */
1025	xfs_qm_unmount(mp);
1026	/*
1027	 * Cancel all delayed reclaim work and reclaim the inodes directly.
1028	 * We have to do this /after/ rtunmount and qm_unmount because those
1029	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1030	 *
1031	 * This is slightly different from the unmountfs call sequence
1032	 * because we could be tearing down a partially set up mount.  In
1033	 * particular, if log_mount_finish fails we bail out without calling
1034	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1035	 * quota inodes.
1036	 */
1037	cancel_delayed_work_sync(&mp->m_reclaim_work);
1038	xfs_reclaim_inodes(mp, SYNC_WAIT);
1039 out_log_dealloc:
1040	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1041	xfs_log_mount_cancel(mp);
1042 out_fail_wait:
1043	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1044		xfs_wait_buftarg(mp->m_logdev_targp);
1045	xfs_wait_buftarg(mp->m_ddev_targp);
1046 out_free_perag:
1047	xfs_free_perag(mp);
1048 out_free_dir:
1049	xfs_da_unmount(mp);
1050 out_remove_uuid:
1051	xfs_uuid_unmount(mp);
1052 out_remove_errortag:
1053	xfs_errortag_del(mp);
1054 out_remove_error_sysfs:
1055	xfs_error_sysfs_del(mp);
1056 out_del_stats:
1057	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1058 out_remove_sysfs:
1059	xfs_sysfs_del(&mp->m_kobj);
1060 out:
1061	return error;
1062}
1063
1064/*
1065 * This flushes out the inodes,dquots and the superblock, unmounts the
1066 * log and makes sure that incore structures are freed.
1067 */
1068void
1069xfs_unmountfs(
1070	struct xfs_mount	*mp)
1071{
1072	uint64_t		resblks;
1073	int			error;
1074
1075	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1076	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1077
1078	xfs_fs_unreserve_ag_blocks(mp);
1079	xfs_qm_unmount_quotas(mp);
1080	xfs_rtunmount_inodes(mp);
1081	IRELE(mp->m_rootip);
1082
1083	/*
1084	 * We can potentially deadlock here if we have an inode cluster
1085	 * that has been freed has its buffer still pinned in memory because
1086	 * the transaction is still sitting in a iclog. The stale inodes
1087	 * on that buffer will have their flush locks held until the
1088	 * transaction hits the disk and the callbacks run. the inode
1089	 * flush takes the flush lock unconditionally and with nothing to
1090	 * push out the iclog we will never get that unlocked. hence we
1091	 * need to force the log first.
1092	 */
1093	xfs_log_force(mp, XFS_LOG_SYNC);
1094
1095	/*
1096	 * Wait for all busy extents to be freed, including completion of
1097	 * any discard operation.
 
 
 
 
1098	 */
1099	xfs_extent_busy_wait_all(mp);
1100	flush_workqueue(xfs_discard_wq);
1101
1102	/*
1103	 * We now need to tell the world we are unmounting. This will allow
1104	 * us to detect that the filesystem is going away and we should error
1105	 * out anything that we have been retrying in the background. This will
1106	 * prevent neverending retries in AIL pushing from hanging the unmount.
1107	 */
1108	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1109
1110	/*
1111	 * Flush all pending changes from the AIL.
1112	 */
1113	xfs_ail_push_all_sync(mp->m_ail);
1114
1115	/*
1116	 * And reclaim all inodes.  At this point there should be no dirty
1117	 * inodes and none should be pinned or locked, but use synchronous
1118	 * reclaim just to be sure. We can stop background inode reclaim
1119	 * here as well if it is still running.
1120	 */
1121	cancel_delayed_work_sync(&mp->m_reclaim_work);
1122	xfs_reclaim_inodes(mp, SYNC_WAIT);
1123
1124	xfs_qm_unmount(mp);
 
 
 
1125
1126	/*
1127	 * Unreserve any blocks we have so that when we unmount we don't account
1128	 * the reserved free space as used. This is really only necessary for
1129	 * lazy superblock counting because it trusts the incore superblock
1130	 * counters to be absolutely correct on clean unmount.
1131	 *
1132	 * We don't bother correcting this elsewhere for lazy superblock
1133	 * counting because on mount of an unclean filesystem we reconstruct the
1134	 * correct counter value and this is irrelevant.
1135	 *
1136	 * For non-lazy counter filesystems, this doesn't matter at all because
1137	 * we only every apply deltas to the superblock and hence the incore
1138	 * value does not matter....
1139	 */
1140	resblks = 0;
1141	error = xfs_reserve_blocks(mp, &resblks, NULL);
1142	if (error)
1143		xfs_warn(mp, "Unable to free reserved block pool. "
1144				"Freespace may not be correct on next mount.");
1145
1146	error = xfs_log_sbcount(mp);
1147	if (error)
1148		xfs_warn(mp, "Unable to update superblock counters. "
1149				"Freespace may not be correct on next mount.");
1150
1151
 
1152	xfs_log_unmount(mp);
1153	xfs_da_unmount(mp);
1154	xfs_uuid_unmount(mp);
1155
1156#if defined(DEBUG)
1157	xfs_errortag_clearall(mp);
1158#endif
1159	xfs_free_perag(mp);
1160
1161	xfs_errortag_del(mp);
1162	xfs_error_sysfs_del(mp);
1163	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1164	xfs_sysfs_del(&mp->m_kobj);
1165}
1166
1167/*
1168 * Determine whether modifications can proceed. The caller specifies the minimum
1169 * freeze level for which modifications should not be allowed. This allows
1170 * certain operations to proceed while the freeze sequence is in progress, if
1171 * necessary.
1172 */
1173bool
1174xfs_fs_writable(
1175	struct xfs_mount	*mp,
1176	int			level)
1177{
1178	ASSERT(level > SB_UNFROZEN);
1179	if ((mp->m_super->s_writers.frozen >= level) ||
1180	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1181		return false;
 
 
1182
1183	return true;
 
 
 
 
1184}
1185
1186/*
1187 * xfs_log_sbcount
1188 *
1189 * Sync the superblock counters to disk.
1190 *
1191 * Note this code can be called during the process of freezing, so we use the
1192 * transaction allocator that does not block when the transaction subsystem is
1193 * in its frozen state.
1194 */
1195int
1196xfs_log_sbcount(xfs_mount_t *mp)
1197{
1198	/* allow this to proceed during the freeze sequence... */
1199	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
 
 
1200		return 0;
1201
 
 
1202	/*
1203	 * we don't need to do this if we are updating the superblock
1204	 * counters on every modification.
1205	 */
1206	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1207		return 0;
1208
1209	return xfs_sync_sb(mp, true);
1210}
1211
1212/*
1213 * Deltas for the inode count are +/-64, hence we use a large batch size
1214 * of 128 so we don't need to take the counter lock on every update.
1215 */
1216#define XFS_ICOUNT_BATCH	128
1217int
1218xfs_mod_icount(
1219	struct xfs_mount	*mp,
1220	int64_t			delta)
1221{
1222	percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1223	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1224		ASSERT(0);
1225		percpu_counter_add(&mp->m_icount, -delta);
1226		return -EINVAL;
1227	}
1228	return 0;
 
 
 
 
1229}
1230
1231int
1232xfs_mod_ifree(
1233	struct xfs_mount	*mp,
1234	int64_t			delta)
1235{
1236	percpu_counter_add(&mp->m_ifree, delta);
1237	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1238		ASSERT(0);
1239		percpu_counter_add(&mp->m_ifree, -delta);
1240		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241	}
1242	return 0;
1243}
1244
1245/*
1246 * Deltas for the block count can vary from 1 to very large, but lock contention
1247 * only occurs on frequent small block count updates such as in the delayed
1248 * allocation path for buffered writes (page a time updates). Hence we set
1249 * a large batch count (1024) to minimise global counter updates except when
1250 * we get near to ENOSPC and we have to be very accurate with our updates.
1251 */
1252#define XFS_FDBLOCKS_BATCH	1024
1253int
1254xfs_mod_fdblocks(
1255	struct xfs_mount	*mp,
1256	int64_t			delta,
1257	bool			rsvd)
1258{
1259	int64_t			lcounter;
1260	long long		res_used;
1261	s32			batch;
 
 
1262
1263	if (delta > 0) {
1264		/*
1265		 * If the reserve pool is depleted, put blocks back into it
1266		 * first. Most of the time the pool is full.
1267		 */
1268		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1269			percpu_counter_add(&mp->m_fdblocks, delta);
1270			return 0;
1271		}
1272
1273		spin_lock(&mp->m_sb_lock);
1274		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1275
1276		if (res_used > delta) {
1277			mp->m_resblks_avail += delta;
1278		} else {
1279			delta -= res_used;
1280			mp->m_resblks_avail = mp->m_resblks;
1281			percpu_counter_add(&mp->m_fdblocks, delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282		}
1283		spin_unlock(&mp->m_sb_lock);
1284		return 0;
1285	}
 
 
 
 
 
 
 
 
 
 
 
 
1286
1287	/*
1288	 * Taking blocks away, need to be more accurate the closer we
1289	 * are to zero.
1290	 *
1291	 * If the counter has a value of less than 2 * max batch size,
1292	 * then make everything serialise as we are real close to
1293	 * ENOSPC.
1294	 */
1295	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1296				     XFS_FDBLOCKS_BATCH) < 0)
1297		batch = 1;
1298	else
1299		batch = XFS_FDBLOCKS_BATCH;
 
 
 
 
 
 
 
 
 
1300
1301	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1302	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1303				     XFS_FDBLOCKS_BATCH) >= 0) {
1304		/* we had space! */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306	}
 
1307
1308	/*
1309	 * lock up the sb for dipping into reserves before releasing the space
1310	 * that took us to ENOSPC.
1311	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312	spin_lock(&mp->m_sb_lock);
1313	percpu_counter_add(&mp->m_fdblocks, -delta);
1314	if (!rsvd)
1315		goto fdblocks_enospc;
1316
1317	lcounter = (long long)mp->m_resblks_avail + delta;
1318	if (lcounter >= 0) {
1319		mp->m_resblks_avail = lcounter;
1320		spin_unlock(&mp->m_sb_lock);
1321		return 0;
1322	}
1323	printk_once(KERN_WARNING
1324		"Filesystem \"%s\": reserve blocks depleted! "
1325		"Consider increasing reserve pool size.",
1326		mp->m_fsname);
1327fdblocks_enospc:
1328	spin_unlock(&mp->m_sb_lock);
1329	return -ENOSPC;
 
1330}
1331
 
 
 
 
 
 
 
 
 
 
 
 
1332int
1333xfs_mod_frextents(
1334	struct xfs_mount	*mp,
1335	int64_t			delta)
 
 
1336{
1337	int64_t			lcounter;
1338	int			ret = 0;
1339
 
 
 
 
 
 
1340	spin_lock(&mp->m_sb_lock);
1341	lcounter = mp->m_sb.sb_frextents + delta;
1342	if (lcounter < 0)
1343		ret = -ENOSPC;
1344	else
1345		mp->m_sb.sb_frextents = lcounter;
 
 
 
 
1346	spin_unlock(&mp->m_sb_lock);
1347	return ret;
 
 
 
 
 
 
 
 
 
1348}
1349
1350/*
1351 * xfs_getsb() is called to obtain the buffer for the superblock.
1352 * The buffer is returned locked and read in from disk.
1353 * The buffer should be released with a call to xfs_brelse().
1354 *
1355 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1356 * the superblock buffer if it can be locked without sleeping.
1357 * If it can't then we'll return NULL.
1358 */
1359struct xfs_buf *
1360xfs_getsb(
1361	struct xfs_mount	*mp,
1362	int			flags)
1363{
1364	struct xfs_buf		*bp = mp->m_sb_bp;
1365
1366	if (!xfs_buf_trylock(bp)) {
1367		if (flags & XBF_TRYLOCK)
1368			return NULL;
1369		xfs_buf_lock(bp);
1370	}
1371
1372	xfs_buf_hold(bp);
1373	ASSERT(bp->b_flags & XBF_DONE);
1374	return bp;
1375}
1376
1377/*
1378 * Used to free the superblock along various error paths.
1379 */
1380void
1381xfs_freesb(
1382	struct xfs_mount	*mp)
1383{
1384	struct xfs_buf		*bp = mp->m_sb_bp;
1385
1386	xfs_buf_lock(bp);
1387	mp->m_sb_bp = NULL;
1388	xfs_buf_relse(bp);
1389}
1390
1391/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392 * If the underlying (data/log/rt) device is readonly, there are some
1393 * operations that cannot proceed.
1394 */
1395int
1396xfs_dev_is_read_only(
1397	struct xfs_mount	*mp,
1398	char			*message)
1399{
1400	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1401	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1402	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1403		xfs_notice(mp, "%s required on read-only device.", message);
1404		xfs_notice(mp, "write access unavailable, cannot proceed.");
1405		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406	}
 
 
1407	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408}
v3.1
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
 
 
 
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_dir2.h"
  28#include "xfs_mount.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_dinode.h"
  33#include "xfs_inode.h"
  34#include "xfs_btree.h"
  35#include "xfs_ialloc.h"
  36#include "xfs_alloc.h"
  37#include "xfs_rtalloc.h"
  38#include "xfs_bmap.h"
 
 
 
  39#include "xfs_error.h"
  40#include "xfs_rw.h"
  41#include "xfs_quota.h"
  42#include "xfs_fsops.h"
  43#include "xfs_utils.h"
  44#include "xfs_trace.h"
 
 
 
 
 
 
  45
  46
  47STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
  48
  49
  50#ifdef HAVE_PERCPU_SB
  51STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
  52						int);
  53STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
  54						int);
  55STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
  56#else
  57
  58#define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
  59#define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
  60#endif
  61
  62static const struct {
  63	short offset;
  64	short type;	/* 0 = integer
  65			 * 1 = binary / string (no translation)
  66			 */
  67} xfs_sb_info[] = {
  68    { offsetof(xfs_sb_t, sb_magicnum),   0 },
  69    { offsetof(xfs_sb_t, sb_blocksize),  0 },
  70    { offsetof(xfs_sb_t, sb_dblocks),    0 },
  71    { offsetof(xfs_sb_t, sb_rblocks),    0 },
  72    { offsetof(xfs_sb_t, sb_rextents),   0 },
  73    { offsetof(xfs_sb_t, sb_uuid),       1 },
  74    { offsetof(xfs_sb_t, sb_logstart),   0 },
  75    { offsetof(xfs_sb_t, sb_rootino),    0 },
  76    { offsetof(xfs_sb_t, sb_rbmino),     0 },
  77    { offsetof(xfs_sb_t, sb_rsumino),    0 },
  78    { offsetof(xfs_sb_t, sb_rextsize),   0 },
  79    { offsetof(xfs_sb_t, sb_agblocks),   0 },
  80    { offsetof(xfs_sb_t, sb_agcount),    0 },
  81    { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
  82    { offsetof(xfs_sb_t, sb_logblocks),  0 },
  83    { offsetof(xfs_sb_t, sb_versionnum), 0 },
  84    { offsetof(xfs_sb_t, sb_sectsize),   0 },
  85    { offsetof(xfs_sb_t, sb_inodesize),  0 },
  86    { offsetof(xfs_sb_t, sb_inopblock),  0 },
  87    { offsetof(xfs_sb_t, sb_fname[0]),   1 },
  88    { offsetof(xfs_sb_t, sb_blocklog),   0 },
  89    { offsetof(xfs_sb_t, sb_sectlog),    0 },
  90    { offsetof(xfs_sb_t, sb_inodelog),   0 },
  91    { offsetof(xfs_sb_t, sb_inopblog),   0 },
  92    { offsetof(xfs_sb_t, sb_agblklog),   0 },
  93    { offsetof(xfs_sb_t, sb_rextslog),   0 },
  94    { offsetof(xfs_sb_t, sb_inprogress), 0 },
  95    { offsetof(xfs_sb_t, sb_imax_pct),   0 },
  96    { offsetof(xfs_sb_t, sb_icount),     0 },
  97    { offsetof(xfs_sb_t, sb_ifree),      0 },
  98    { offsetof(xfs_sb_t, sb_fdblocks),   0 },
  99    { offsetof(xfs_sb_t, sb_frextents),  0 },
 100    { offsetof(xfs_sb_t, sb_uquotino),   0 },
 101    { offsetof(xfs_sb_t, sb_gquotino),   0 },
 102    { offsetof(xfs_sb_t, sb_qflags),     0 },
 103    { offsetof(xfs_sb_t, sb_flags),      0 },
 104    { offsetof(xfs_sb_t, sb_shared_vn),  0 },
 105    { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
 106    { offsetof(xfs_sb_t, sb_unit),	 0 },
 107    { offsetof(xfs_sb_t, sb_width),	 0 },
 108    { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
 109    { offsetof(xfs_sb_t, sb_logsectlog), 0 },
 110    { offsetof(xfs_sb_t, sb_logsectsize),0 },
 111    { offsetof(xfs_sb_t, sb_logsunit),	 0 },
 112    { offsetof(xfs_sb_t, sb_features2),	 0 },
 113    { offsetof(xfs_sb_t, sb_bad_features2), 0 },
 114    { sizeof(xfs_sb_t),			 0 }
 115};
 116
 117static DEFINE_MUTEX(xfs_uuid_table_mutex);
 118static int xfs_uuid_table_size;
 119static uuid_t *xfs_uuid_table;
 120
 
 
 
 
 
 
 
 
 
 
 121/*
 122 * See if the UUID is unique among mounted XFS filesystems.
 123 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
 124 */
 125STATIC int
 126xfs_uuid_mount(
 127	struct xfs_mount	*mp)
 128{
 129	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 130	int			hole, i;
 131
 
 
 
 132	if (mp->m_flags & XFS_MOUNT_NOUUID)
 133		return 0;
 134
 135	if (uuid_is_nil(uuid)) {
 136		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
 137		return XFS_ERROR(EINVAL);
 138	}
 139
 140	mutex_lock(&xfs_uuid_table_mutex);
 141	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
 142		if (uuid_is_nil(&xfs_uuid_table[i])) {
 143			hole = i;
 144			continue;
 145		}
 146		if (uuid_equal(uuid, &xfs_uuid_table[i]))
 147			goto out_duplicate;
 148	}
 149
 150	if (hole < 0) {
 151		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
 152			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
 153			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
 154			KM_SLEEP);
 155		hole = xfs_uuid_table_size++;
 156	}
 157	xfs_uuid_table[hole] = *uuid;
 158	mutex_unlock(&xfs_uuid_table_mutex);
 159
 160	return 0;
 161
 162 out_duplicate:
 163	mutex_unlock(&xfs_uuid_table_mutex);
 164	xfs_warn(mp, "Filesystem has duplicate UUID - can't mount");
 165	return XFS_ERROR(EINVAL);
 166}
 167
 168STATIC void
 169xfs_uuid_unmount(
 170	struct xfs_mount	*mp)
 171{
 172	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 173	int			i;
 174
 175	if (mp->m_flags & XFS_MOUNT_NOUUID)
 176		return;
 177
 178	mutex_lock(&xfs_uuid_table_mutex);
 179	for (i = 0; i < xfs_uuid_table_size; i++) {
 180		if (uuid_is_nil(&xfs_uuid_table[i]))
 181			continue;
 182		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 183			continue;
 184		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 185		break;
 186	}
 187	ASSERT(i < xfs_uuid_table_size);
 188	mutex_unlock(&xfs_uuid_table_mutex);
 189}
 190
 191
 192/*
 193 * Reference counting access wrappers to the perag structures.
 194 * Because we never free per-ag structures, the only thing we
 195 * have to protect against changes is the tree structure itself.
 196 */
 197struct xfs_perag *
 198xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
 199{
 200	struct xfs_perag	*pag;
 201	int			ref = 0;
 202
 203	rcu_read_lock();
 204	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
 205	if (pag) {
 206		ASSERT(atomic_read(&pag->pag_ref) >= 0);
 207		ref = atomic_inc_return(&pag->pag_ref);
 208	}
 209	rcu_read_unlock();
 210	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
 211	return pag;
 212}
 213
 214/*
 215 * search from @first to find the next perag with the given tag set.
 216 */
 217struct xfs_perag *
 218xfs_perag_get_tag(
 219	struct xfs_mount	*mp,
 220	xfs_agnumber_t		first,
 221	int			tag)
 222{
 223	struct xfs_perag	*pag;
 224	int			found;
 225	int			ref;
 226
 227	rcu_read_lock();
 228	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
 229					(void **)&pag, first, 1, tag);
 230	if (found <= 0) {
 231		rcu_read_unlock();
 232		return NULL;
 233	}
 234	ref = atomic_inc_return(&pag->pag_ref);
 235	rcu_read_unlock();
 236	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
 237	return pag;
 238}
 239
 240void
 241xfs_perag_put(struct xfs_perag *pag)
 242{
 243	int	ref;
 244
 245	ASSERT(atomic_read(&pag->pag_ref) > 0);
 246	ref = atomic_dec_return(&pag->pag_ref);
 247	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
 248}
 249
 250STATIC void
 251__xfs_free_perag(
 252	struct rcu_head	*head)
 253{
 254	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 255
 256	ASSERT(atomic_read(&pag->pag_ref) == 0);
 257	kmem_free(pag);
 258}
 259
 260/*
 261 * Free up the per-ag resources associated with the mount structure.
 262 */
 263STATIC void
 264xfs_free_perag(
 265	xfs_mount_t	*mp)
 266{
 267	xfs_agnumber_t	agno;
 268	struct xfs_perag *pag;
 269
 270	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 271		spin_lock(&mp->m_perag_lock);
 272		pag = radix_tree_delete(&mp->m_perag_tree, agno);
 273		spin_unlock(&mp->m_perag_lock);
 274		ASSERT(pag);
 275		ASSERT(atomic_read(&pag->pag_ref) == 0);
 
 
 276		call_rcu(&pag->rcu_head, __xfs_free_perag);
 277	}
 278}
 279
 280/*
 281 * Check size of device based on the (data/realtime) block count.
 282 * Note: this check is used by the growfs code as well as mount.
 283 */
 284int
 285xfs_sb_validate_fsb_count(
 286	xfs_sb_t	*sbp,
 287	__uint64_t	nblocks)
 288{
 289	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 290	ASSERT(sbp->sb_blocklog >= BBSHIFT);
 291
 292#if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
 293	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 294		return EFBIG;
 295#else                  /* Limited by UINT_MAX of sectors */
 296	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
 297		return EFBIG;
 298#endif
 299	return 0;
 300}
 301
 302/*
 303 * Check the validity of the SB found.
 304 */
 305STATIC int
 306xfs_mount_validate_sb(
 307	xfs_mount_t	*mp,
 308	xfs_sb_t	*sbp,
 309	int		flags)
 310{
 311	int		loud = !(flags & XFS_MFSI_QUIET);
 312
 313	/*
 314	 * If the log device and data device have the
 315	 * same device number, the log is internal.
 316	 * Consequently, the sb_logstart should be non-zero.  If
 317	 * we have a zero sb_logstart in this case, we may be trying to mount
 318	 * a volume filesystem in a non-volume manner.
 319	 */
 320	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 321		if (loud)
 322			xfs_warn(mp, "bad magic number");
 323		return XFS_ERROR(EWRONGFS);
 324	}
 325
 326	if (!xfs_sb_good_version(sbp)) {
 327		if (loud)
 328			xfs_warn(mp, "bad version");
 329		return XFS_ERROR(EWRONGFS);
 330	}
 331
 332	if (unlikely(
 333	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
 334		if (loud)
 335			xfs_warn(mp,
 336		"filesystem is marked as having an external log; "
 337		"specify logdev on the mount command line.");
 338		return XFS_ERROR(EINVAL);
 339	}
 340
 341	if (unlikely(
 342	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
 343		if (loud)
 344			xfs_warn(mp,
 345		"filesystem is marked as having an internal log; "
 346		"do not specify logdev on the mount command line.");
 347		return XFS_ERROR(EINVAL);
 348	}
 349
 350	/*
 351	 * More sanity checking.  Most of these were stolen directly from
 352	 * xfs_repair.
 353	 */
 354	if (unlikely(
 355	    sbp->sb_agcount <= 0					||
 356	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
 357	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
 358	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
 359	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
 360	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
 361	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
 362	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
 363	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
 364	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
 365	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
 366	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
 367	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
 368	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
 369	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
 370	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
 371	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
 372	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
 373	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
 374	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */)	||
 375	    sbp->sb_dblocks == 0					||
 376	    sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp)			||
 377	    sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
 378		if (loud)
 379			XFS_CORRUPTION_ERROR("SB sanity check failed",
 380				XFS_ERRLEVEL_LOW, mp, sbp);
 381		return XFS_ERROR(EFSCORRUPTED);
 382	}
 383
 384	/*
 385	 * Until this is fixed only page-sized or smaller data blocks work.
 386	 */
 387	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
 388		if (loud) {
 389			xfs_warn(mp,
 390		"File system with blocksize %d bytes. "
 391		"Only pagesize (%ld) or less will currently work.",
 392				sbp->sb_blocksize, PAGE_SIZE);
 393		}
 394		return XFS_ERROR(ENOSYS);
 395	}
 396
 397	/*
 398	 * Currently only very few inode sizes are supported.
 399	 */
 400	switch (sbp->sb_inodesize) {
 401	case 256:
 402	case 512:
 403	case 1024:
 404	case 2048:
 405		break;
 406	default:
 407		if (loud)
 408			xfs_warn(mp, "inode size of %d bytes not supported",
 409				sbp->sb_inodesize);
 410		return XFS_ERROR(ENOSYS);
 411	}
 412
 413	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
 414	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
 415		if (loud)
 416			xfs_warn(mp,
 417		"file system too large to be mounted on this system.");
 418		return XFS_ERROR(EFBIG);
 419	}
 420
 421	if (unlikely(sbp->sb_inprogress)) {
 422		if (loud)
 423			xfs_warn(mp, "file system busy");
 424		return XFS_ERROR(EFSCORRUPTED);
 425	}
 426
 427	/*
 428	 * Version 1 directory format has never worked on Linux.
 429	 */
 430	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
 431		if (loud)
 432			xfs_warn(mp,
 433				"file system using version 1 directory format");
 434		return XFS_ERROR(ENOSYS);
 435	}
 436
 437	return 0;
 438}
 439
 440int
 441xfs_initialize_perag(
 442	xfs_mount_t	*mp,
 443	xfs_agnumber_t	agcount,
 444	xfs_agnumber_t	*maxagi)
 445{
 446	xfs_agnumber_t	index, max_metadata;
 447	xfs_agnumber_t	first_initialised = 0;
 448	xfs_perag_t	*pag;
 449	xfs_agino_t	agino;
 450	xfs_ino_t	ino;
 451	xfs_sb_t	*sbp = &mp->m_sb;
 452	int		error = -ENOMEM;
 453
 454	/*
 455	 * Walk the current per-ag tree so we don't try to initialise AGs
 456	 * that already exist (growfs case). Allocate and insert all the
 457	 * AGs we don't find ready for initialisation.
 458	 */
 459	for (index = 0; index < agcount; index++) {
 460		pag = xfs_perag_get(mp, index);
 461		if (pag) {
 462			xfs_perag_put(pag);
 463			continue;
 464		}
 465		if (!first_initialised)
 466			first_initialised = index;
 467
 468		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 469		if (!pag)
 470			goto out_unwind;
 471		pag->pag_agno = index;
 472		pag->pag_mount = mp;
 473		spin_lock_init(&pag->pag_ici_lock);
 474		mutex_init(&pag->pag_ici_reclaim_lock);
 475		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 476		spin_lock_init(&pag->pag_buf_lock);
 477		pag->pag_buf_tree = RB_ROOT;
 
 478
 479		if (radix_tree_preload(GFP_NOFS))
 480			goto out_unwind;
 481
 482		spin_lock(&mp->m_perag_lock);
 483		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 484			BUG();
 485			spin_unlock(&mp->m_perag_lock);
 486			radix_tree_preload_end();
 487			error = -EEXIST;
 488			goto out_unwind;
 489		}
 490		spin_unlock(&mp->m_perag_lock);
 491		radix_tree_preload_end();
 
 
 
 492	}
 493
 494	/*
 495	 * If we mount with the inode64 option, or no inode overflows
 496	 * the legacy 32-bit address space clear the inode32 option.
 497	 */
 498	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
 499	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
 500
 501	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
 502		mp->m_flags |= XFS_MOUNT_32BITINODES;
 503	else
 504		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
 505
 506	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
 507		/*
 508		 * Calculate how much should be reserved for inodes to meet
 509		 * the max inode percentage.
 510		 */
 511		if (mp->m_maxicount) {
 512			__uint64_t	icount;
 513
 514			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 515			do_div(icount, 100);
 516			icount += sbp->sb_agblocks - 1;
 517			do_div(icount, sbp->sb_agblocks);
 518			max_metadata = icount;
 519		} else {
 520			max_metadata = agcount;
 521		}
 522
 523		for (index = 0; index < agcount; index++) {
 524			ino = XFS_AGINO_TO_INO(mp, index, agino);
 525			if (ino > XFS_MAXINUMBER_32) {
 526				index++;
 527				break;
 528			}
 529
 530			pag = xfs_perag_get(mp, index);
 531			pag->pagi_inodeok = 1;
 532			if (index < max_metadata)
 533				pag->pagf_metadata = 1;
 534			xfs_perag_put(pag);
 535		}
 536	} else {
 537		for (index = 0; index < agcount; index++) {
 538			pag = xfs_perag_get(mp, index);
 539			pag->pagi_inodeok = 1;
 540			xfs_perag_put(pag);
 541		}
 542	}
 543
 544	if (maxagi)
 545		*maxagi = index;
 
 
 546	return 0;
 547
 548out_unwind:
 
 
 
 549	kmem_free(pag);
 550	for (; index > first_initialised; index--) {
 
 
 551		pag = radix_tree_delete(&mp->m_perag_tree, index);
 
 
 
 
 552		kmem_free(pag);
 553	}
 554	return error;
 555}
 556
 557void
 558xfs_sb_from_disk(
 559	xfs_sb_t	*to,
 560	xfs_dsb_t	*from)
 561{
 562	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
 563	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
 564	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
 565	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
 566	to->sb_rextents = be64_to_cpu(from->sb_rextents);
 567	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
 568	to->sb_logstart = be64_to_cpu(from->sb_logstart);
 569	to->sb_rootino = be64_to_cpu(from->sb_rootino);
 570	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
 571	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
 572	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
 573	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
 574	to->sb_agcount = be32_to_cpu(from->sb_agcount);
 575	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
 576	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
 577	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
 578	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
 579	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
 580	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
 581	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
 582	to->sb_blocklog = from->sb_blocklog;
 583	to->sb_sectlog = from->sb_sectlog;
 584	to->sb_inodelog = from->sb_inodelog;
 585	to->sb_inopblog = from->sb_inopblog;
 586	to->sb_agblklog = from->sb_agblklog;
 587	to->sb_rextslog = from->sb_rextslog;
 588	to->sb_inprogress = from->sb_inprogress;
 589	to->sb_imax_pct = from->sb_imax_pct;
 590	to->sb_icount = be64_to_cpu(from->sb_icount);
 591	to->sb_ifree = be64_to_cpu(from->sb_ifree);
 592	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
 593	to->sb_frextents = be64_to_cpu(from->sb_frextents);
 594	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
 595	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
 596	to->sb_qflags = be16_to_cpu(from->sb_qflags);
 597	to->sb_flags = from->sb_flags;
 598	to->sb_shared_vn = from->sb_shared_vn;
 599	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
 600	to->sb_unit = be32_to_cpu(from->sb_unit);
 601	to->sb_width = be32_to_cpu(from->sb_width);
 602	to->sb_dirblklog = from->sb_dirblklog;
 603	to->sb_logsectlog = from->sb_logsectlog;
 604	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
 605	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
 606	to->sb_features2 = be32_to_cpu(from->sb_features2);
 607	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
 608}
 609
 610/*
 611 * Copy in core superblock to ondisk one.
 612 *
 613 * The fields argument is mask of superblock fields to copy.
 614 */
 615void
 616xfs_sb_to_disk(
 617	xfs_dsb_t	*to,
 618	xfs_sb_t	*from,
 619	__int64_t	fields)
 620{
 621	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
 622	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
 623	xfs_sb_field_t	f;
 624	int		first;
 625	int		size;
 626
 627	ASSERT(fields);
 628	if (!fields)
 629		return;
 630
 631	while (fields) {
 632		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
 633		first = xfs_sb_info[f].offset;
 634		size = xfs_sb_info[f + 1].offset - first;
 635
 636		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
 637
 638		if (size == 1 || xfs_sb_info[f].type == 1) {
 639			memcpy(to_ptr + first, from_ptr + first, size);
 640		} else {
 641			switch (size) {
 642			case 2:
 643				*(__be16 *)(to_ptr + first) =
 644					cpu_to_be16(*(__u16 *)(from_ptr + first));
 645				break;
 646			case 4:
 647				*(__be32 *)(to_ptr + first) =
 648					cpu_to_be32(*(__u32 *)(from_ptr + first));
 649				break;
 650			case 8:
 651				*(__be64 *)(to_ptr + first) =
 652					cpu_to_be64(*(__u64 *)(from_ptr + first));
 653				break;
 654			default:
 655				ASSERT(0);
 656			}
 657		}
 658
 659		fields &= ~(1LL << f);
 660	}
 661}
 662
 663/*
 664 * xfs_readsb
 665 *
 666 * Does the initial read of the superblock.
 667 */
 668int
 669xfs_readsb(xfs_mount_t *mp, int flags)
 
 
 670{
 671	unsigned int	sector_size;
 672	xfs_buf_t	*bp;
 
 673	int		error;
 674	int		loud = !(flags & XFS_MFSI_QUIET);
 
 675
 676	ASSERT(mp->m_sb_bp == NULL);
 677	ASSERT(mp->m_ddev_targp != NULL);
 678
 679	/*
 680	 * Allocate a (locked) buffer to hold the superblock.
 681	 * This will be kept around at all times to optimize
 682	 * access to the superblock.
 
 
 683	 */
 684	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 
 685
 
 
 
 
 
 
 686reread:
 687	bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
 688					XFS_SB_DADDR, sector_size, 0);
 689	if (!bp) {
 
 690		if (loud)
 691			xfs_warn(mp, "SB buffer read failed");
 692		return EIO;
 
 
 
 693	}
 694
 695	/*
 696	 * Initialize the mount structure from the superblock.
 697	 * But first do some basic consistency checking.
 698	 */
 699	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
 700	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
 701	if (error) {
 
 
 
 
 702		if (loud)
 703			xfs_warn(mp, "SB validate failed");
 
 704		goto release_buf;
 705	}
 706
 707	/*
 708	 * We must be able to do sector-sized and sector-aligned IO.
 709	 */
 710	if (sector_size > mp->m_sb.sb_sectsize) {
 711		if (loud)
 712			xfs_warn(mp, "device supports %u byte sectors (not %u)",
 713				sector_size, mp->m_sb.sb_sectsize);
 714		error = ENOSYS;
 715		goto release_buf;
 716	}
 717
 718	/*
 719	 * If device sector size is smaller than the superblock size,
 720	 * re-read the superblock so the buffer is correctly sized.
 721	 */
 722	if (sector_size < mp->m_sb.sb_sectsize) {
 723		xfs_buf_relse(bp);
 724		sector_size = mp->m_sb.sb_sectsize;
 
 725		goto reread;
 726	}
 727
 728	/* Initialize per-cpu counters */
 729	xfs_icsb_reinit_counters(mp);
 
 
 730
 731	mp->m_sb_bp = bp;
 732	xfs_buf_unlock(bp);
 733	return 0;
 734
 735release_buf:
 736	xfs_buf_relse(bp);
 737	return error;
 738}
 739
 740
 741/*
 742 * xfs_mount_common
 743 *
 744 * Mount initialization code establishing various mount
 745 * fields from the superblock associated with the given
 746 * mount structure
 747 */
 748STATIC void
 749xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
 750{
 751	mp->m_agfrotor = mp->m_agirotor = 0;
 752	spin_lock_init(&mp->m_agirotor_lock);
 753	mp->m_maxagi = mp->m_sb.sb_agcount;
 754	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
 755	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
 756	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
 757	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
 758	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
 759	mp->m_blockmask = sbp->sb_blocksize - 1;
 760	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
 761	mp->m_blockwmask = mp->m_blockwsize - 1;
 762
 763	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
 764	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
 765	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
 766	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
 767
 768	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
 769	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
 770	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
 771	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
 772
 773	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
 774	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
 775	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
 776	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
 777
 778	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
 779	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
 780					sbp->sb_inopblock);
 781	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
 782}
 783
 784/*
 785 * xfs_initialize_perag_data
 786 *
 787 * Read in each per-ag structure so we can count up the number of
 788 * allocated inodes, free inodes and used filesystem blocks as this
 789 * information is no longer persistent in the superblock. Once we have
 790 * this information, write it into the in-core superblock structure.
 791 */
 792STATIC int
 793xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
 794{
 795	xfs_agnumber_t	index;
 796	xfs_perag_t	*pag;
 797	xfs_sb_t	*sbp = &mp->m_sb;
 798	uint64_t	ifree = 0;
 799	uint64_t	ialloc = 0;
 800	uint64_t	bfree = 0;
 801	uint64_t	bfreelst = 0;
 802	uint64_t	btree = 0;
 803	int		error;
 804
 805	for (index = 0; index < agcount; index++) {
 806		/*
 807		 * read the agf, then the agi. This gets us
 808		 * all the information we need and populates the
 809		 * per-ag structures for us.
 810		 */
 811		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
 812		if (error)
 813			return error;
 814
 815		error = xfs_ialloc_pagi_init(mp, NULL, index);
 816		if (error)
 817			return error;
 818		pag = xfs_perag_get(mp, index);
 819		ifree += pag->pagi_freecount;
 820		ialloc += pag->pagi_count;
 821		bfree += pag->pagf_freeblks;
 822		bfreelst += pag->pagf_flcount;
 823		btree += pag->pagf_btreeblks;
 824		xfs_perag_put(pag);
 825	}
 826	/*
 827	 * Overwrite incore superblock counters with just-read data
 828	 */
 829	spin_lock(&mp->m_sb_lock);
 830	sbp->sb_ifree = ifree;
 831	sbp->sb_icount = ialloc;
 832	sbp->sb_fdblocks = bfree + bfreelst + btree;
 833	spin_unlock(&mp->m_sb_lock);
 834
 835	/* Fixup the per-cpu counters as well. */
 836	xfs_icsb_reinit_counters(mp);
 837
 838	return 0;
 839}
 840
 841/*
 842 * Update alignment values based on mount options and sb values
 843 */
 844STATIC int
 845xfs_update_alignment(xfs_mount_t *mp)
 846{
 847	xfs_sb_t	*sbp = &(mp->m_sb);
 848
 849	if (mp->m_dalign) {
 850		/*
 851		 * If stripe unit and stripe width are not multiples
 852		 * of the fs blocksize turn off alignment.
 853		 */
 854		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 855		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 856			if (mp->m_flags & XFS_MOUNT_RETERR) {
 857				xfs_warn(mp, "alignment check failed: "
 858					 "(sunit/swidth vs. blocksize)");
 859				return XFS_ERROR(EINVAL);
 860			}
 861			mp->m_dalign = mp->m_swidth = 0;
 862		} else {
 863			/*
 864			 * Convert the stripe unit and width to FSBs.
 865			 */
 866			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 867			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 868				if (mp->m_flags & XFS_MOUNT_RETERR) {
 869					xfs_warn(mp, "alignment check failed: "
 870						 "(sunit/swidth vs. ag size)");
 871					return XFS_ERROR(EINVAL);
 872				}
 873				xfs_warn(mp,
 874		"stripe alignment turned off: sunit(%d)/swidth(%d) "
 875		"incompatible with agsize(%d)",
 876					mp->m_dalign, mp->m_swidth,
 877					sbp->sb_agblocks);
 878
 879				mp->m_dalign = 0;
 880				mp->m_swidth = 0;
 881			} else if (mp->m_dalign) {
 882				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 883			} else {
 884				if (mp->m_flags & XFS_MOUNT_RETERR) {
 885					xfs_warn(mp, "alignment check failed: "
 886						"sunit(%d) less than bsize(%d)",
 887						mp->m_dalign,
 888						mp->m_blockmask +1);
 889					return XFS_ERROR(EINVAL);
 890				}
 891				mp->m_swidth = 0;
 892			}
 893		}
 894
 895		/*
 896		 * Update superblock with new values
 897		 * and log changes
 898		 */
 899		if (xfs_sb_version_hasdalign(sbp)) {
 900			if (sbp->sb_unit != mp->m_dalign) {
 901				sbp->sb_unit = mp->m_dalign;
 902				mp->m_update_flags |= XFS_SB_UNIT;
 903			}
 904			if (sbp->sb_width != mp->m_swidth) {
 905				sbp->sb_width = mp->m_swidth;
 906				mp->m_update_flags |= XFS_SB_WIDTH;
 907			}
 
 
 
 
 908		}
 909	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 910		    xfs_sb_version_hasdalign(&mp->m_sb)) {
 911			mp->m_dalign = sbp->sb_unit;
 912			mp->m_swidth = sbp->sb_width;
 913	}
 914
 915	return 0;
 916}
 917
 918/*
 919 * Set the maximum inode count for this filesystem
 920 */
 921STATIC void
 922xfs_set_maxicount(xfs_mount_t *mp)
 923{
 924	xfs_sb_t	*sbp = &(mp->m_sb);
 925	__uint64_t	icount;
 926
 927	if (sbp->sb_imax_pct) {
 928		/*
 929		 * Make sure the maximum inode count is a multiple
 930		 * of the units we allocate inodes in.
 931		 */
 932		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 933		do_div(icount, 100);
 934		do_div(icount, mp->m_ialloc_blks);
 935		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 936				   sbp->sb_inopblog;
 937	} else {
 938		mp->m_maxicount = 0;
 939	}
 940}
 941
 942/*
 943 * Set the default minimum read and write sizes unless
 944 * already specified in a mount option.
 945 * We use smaller I/O sizes when the file system
 946 * is being used for NFS service (wsync mount option).
 947 */
 948STATIC void
 949xfs_set_rw_sizes(xfs_mount_t *mp)
 950{
 951	xfs_sb_t	*sbp = &(mp->m_sb);
 952	int		readio_log, writeio_log;
 953
 954	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 955		if (mp->m_flags & XFS_MOUNT_WSYNC) {
 956			readio_log = XFS_WSYNC_READIO_LOG;
 957			writeio_log = XFS_WSYNC_WRITEIO_LOG;
 958		} else {
 959			readio_log = XFS_READIO_LOG_LARGE;
 960			writeio_log = XFS_WRITEIO_LOG_LARGE;
 961		}
 962	} else {
 963		readio_log = mp->m_readio_log;
 964		writeio_log = mp->m_writeio_log;
 965	}
 966
 967	if (sbp->sb_blocklog > readio_log) {
 968		mp->m_readio_log = sbp->sb_blocklog;
 969	} else {
 970		mp->m_readio_log = readio_log;
 971	}
 972	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 973	if (sbp->sb_blocklog > writeio_log) {
 974		mp->m_writeio_log = sbp->sb_blocklog;
 975	} else {
 976		mp->m_writeio_log = writeio_log;
 977	}
 978	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 979}
 980
 981/*
 982 * precalculate the low space thresholds for dynamic speculative preallocation.
 983 */
 984void
 985xfs_set_low_space_thresholds(
 986	struct xfs_mount	*mp)
 987{
 988	int i;
 989
 990	for (i = 0; i < XFS_LOWSP_MAX; i++) {
 991		__uint64_t space = mp->m_sb.sb_dblocks;
 992
 993		do_div(space, 100);
 994		mp->m_low_space[i] = space * (i + 1);
 995	}
 996}
 997
 998
 999/*
1000 * Set whether we're using inode alignment.
1001 */
1002STATIC void
1003xfs_set_inoalignment(xfs_mount_t *mp)
1004{
1005	if (xfs_sb_version_hasalign(&mp->m_sb) &&
1006	    mp->m_sb.sb_inoalignmt >=
1007	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1008		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1009	else
1010		mp->m_inoalign_mask = 0;
1011	/*
1012	 * If we are using stripe alignment, check whether
1013	 * the stripe unit is a multiple of the inode alignment
1014	 */
1015	if (mp->m_dalign && mp->m_inoalign_mask &&
1016	    !(mp->m_dalign & mp->m_inoalign_mask))
1017		mp->m_sinoalign = mp->m_dalign;
1018	else
1019		mp->m_sinoalign = 0;
1020}
1021
1022/*
1023 * Check that the data (and log if separate) are an ok size.
1024 */
1025STATIC int
1026xfs_check_sizes(xfs_mount_t *mp)
 
1027{
1028	xfs_buf_t	*bp;
1029	xfs_daddr_t	d;
 
1030
1031	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1032	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1033		xfs_warn(mp, "filesystem size mismatch detected");
1034		return XFS_ERROR(EFBIG);
1035	}
1036	bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
1037					d - XFS_FSS_TO_BB(mp, 1),
1038					BBTOB(XFS_FSS_TO_BB(mp, 1)), 0);
1039	if (!bp) {
1040		xfs_warn(mp, "last sector read failed");
1041		return EIO;
1042	}
1043	xfs_buf_relse(bp);
1044
1045	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1046		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1047		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1048			xfs_warn(mp, "log size mismatch detected");
1049			return XFS_ERROR(EFBIG);
1050		}
1051		bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp,
 
 
1052					d - XFS_FSB_TO_BB(mp, 1),
1053					XFS_FSB_TO_B(mp, 1), 0);
1054		if (!bp) {
1055			xfs_warn(mp, "log device read failed");
1056			return EIO;
1057		}
1058		xfs_buf_relse(bp);
1059	}
 
1060	return 0;
1061}
1062
1063/*
1064 * Clear the quotaflags in memory and in the superblock.
1065 */
1066int
1067xfs_mount_reset_sbqflags(
1068	struct xfs_mount	*mp)
1069{
1070	int			error;
1071	struct xfs_trans	*tp;
1072
1073	mp->m_qflags = 0;
1074
1075	/*
1076	 * It is OK to look at sb_qflags here in mount path,
1077	 * without m_sb_lock.
1078	 */
1079	if (mp->m_sb.sb_qflags == 0)
1080		return 0;
1081	spin_lock(&mp->m_sb_lock);
1082	mp->m_sb.sb_qflags = 0;
1083	spin_unlock(&mp->m_sb_lock);
1084
1085	/*
1086	 * If the fs is readonly, let the incore superblock run
1087	 * with quotas off but don't flush the update out to disk
1088	 */
1089	if (mp->m_flags & XFS_MOUNT_RDONLY)
1090		return 0;
1091
1092	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1093	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1094				      XFS_DEFAULT_LOG_COUNT);
1095	if (error) {
1096		xfs_trans_cancel(tp, 0);
1097		xfs_alert(mp, "%s: Superblock update failed!", __func__);
1098		return error;
1099	}
1100
1101	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1102	return xfs_trans_commit(tp, 0);
1103}
1104
1105__uint64_t
1106xfs_default_resblks(xfs_mount_t *mp)
1107{
1108	__uint64_t resblks;
1109
1110	/*
1111	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1112	 * smaller.  This is intended to cover concurrent allocation
1113	 * transactions when we initially hit enospc. These each require a 4
1114	 * block reservation. Hence by default we cover roughly 2000 concurrent
1115	 * allocation reservations.
1116	 */
1117	resblks = mp->m_sb.sb_dblocks;
1118	do_div(resblks, 20);
1119	resblks = min_t(__uint64_t, resblks, 8192);
1120	return resblks;
1121}
1122
1123/*
1124 * This function does the following on an initial mount of a file system:
1125 *	- reads the superblock from disk and init the mount struct
1126 *	- if we're a 32-bit kernel, do a size check on the superblock
1127 *		so we don't mount terabyte filesystems
1128 *	- init mount struct realtime fields
1129 *	- allocate inode hash table for fs
1130 *	- init directory manager
1131 *	- perform recovery and init the log manager
1132 */
1133int
1134xfs_mountfs(
1135	xfs_mount_t	*mp)
1136{
1137	xfs_sb_t	*sbp = &(mp->m_sb);
1138	xfs_inode_t	*rip;
1139	__uint64_t	resblks;
1140	uint		quotamount = 0;
1141	uint		quotaflags = 0;
1142	int		error = 0;
1143
1144	xfs_mount_common(mp, sbp);
1145
1146	/*
1147	 * Check for a mismatched features2 values.  Older kernels
1148	 * read & wrote into the wrong sb offset for sb_features2
1149	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1150	 * when sb_features2 was added, which made older superblock
1151	 * reading/writing routines swap it as a 64-bit value.
1152	 *
1153	 * For backwards compatibility, we make both slots equal.
1154	 *
1155	 * If we detect a mismatched field, we OR the set bits into the
1156	 * existing features2 field in case it has already been modified; we
1157	 * don't want to lose any features.  We then update the bad location
1158	 * with the ORed value so that older kernels will see any features2
1159	 * flags, and mark the two fields as needing updates once the
1160	 * transaction subsystem is online.
1161	 */
1162	if (xfs_sb_has_mismatched_features2(sbp)) {
1163		xfs_warn(mp, "correcting sb_features alignment problem");
1164		sbp->sb_features2 |= sbp->sb_bad_features2;
1165		sbp->sb_bad_features2 = sbp->sb_features2;
1166		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1167
1168		/*
1169		 * Re-check for ATTR2 in case it was found in bad_features2
1170		 * slot.
1171		 */
1172		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1173		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1174			mp->m_flags |= XFS_MOUNT_ATTR2;
1175	}
1176
1177	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1178	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1179		xfs_sb_version_removeattr2(&mp->m_sb);
1180		mp->m_update_flags |= XFS_SB_FEATURES2;
1181
1182		/* update sb_versionnum for the clearing of the morebits */
1183		if (!sbp->sb_features2)
1184			mp->m_update_flags |= XFS_SB_VERSIONNUM;
 
 
 
 
 
 
1185	}
1186
1187	/*
1188	 * Check if sb_agblocks is aligned at stripe boundary
1189	 * If sb_agblocks is NOT aligned turn off m_dalign since
1190	 * allocator alignment is within an ag, therefore ag has
1191	 * to be aligned at stripe boundary.
1192	 */
1193	error = xfs_update_alignment(mp);
1194	if (error)
1195		goto out;
1196
1197	xfs_alloc_compute_maxlevels(mp);
1198	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1199	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1200	xfs_ialloc_compute_maxlevels(mp);
 
 
1201
1202	xfs_set_maxicount(mp);
1203
1204	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205
1206	error = xfs_uuid_mount(mp);
1207	if (error)
1208		goto out;
1209
1210	/*
1211	 * Set the minimum read and write sizes
1212	 */
1213	xfs_set_rw_sizes(mp);
1214
1215	/* set the low space thresholds for dynamic preallocation */
1216	xfs_set_low_space_thresholds(mp);
1217
1218	/*
1219	 * Set the inode cluster size.
1220	 * This may still be overridden by the file system
1221	 * block size if it is larger than the chosen cluster size.
 
 
 
 
 
1222	 */
1223	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1224
1225	/*
1226	 * Set inode alignment fields
1227	 */
1228	xfs_set_inoalignment(mp);
1229
1230	/*
1231	 * Check that the data (and log if separate) are an ok size.
1232	 */
1233	error = xfs_check_sizes(mp);
1234	if (error)
1235		goto out_remove_uuid;
1236
1237	/*
1238	 * Initialize realtime fields in the mount structure
1239	 */
1240	error = xfs_rtmount_init(mp);
1241	if (error) {
1242		xfs_warn(mp, "RT mount failed");
1243		goto out_remove_uuid;
1244	}
1245
1246	/*
1247	 *  Copies the low order bits of the timestamp and the randomly
1248	 *  set "sequence" number out of a UUID.
1249	 */
1250	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
 
 
 
1251
1252	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1253
1254	xfs_dir_mount(mp);
1255
1256	/*
1257	 * Initialize the attribute manager's entries.
1258	 */
1259	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1260
1261	/*
1262	 * Initialize the precomputed transaction reservations values.
1263	 */
1264	xfs_trans_init(mp);
1265
1266	/*
1267	 * Allocate and initialize the per-ag data.
1268	 */
1269	spin_lock_init(&mp->m_perag_lock);
1270	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1271	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1272	if (error) {
1273		xfs_warn(mp, "Failed per-ag init: %d", error);
1274		goto out_remove_uuid;
1275	}
1276
1277	if (!sbp->sb_logblocks) {
1278		xfs_warn(mp, "no log defined");
1279		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1280		error = XFS_ERROR(EFSCORRUPTED);
1281		goto out_free_perag;
1282	}
1283
1284	/*
1285	 * log's mount-time initialization. Perform 1st part recovery if needed
 
 
1286	 */
1287	error = xfs_log_mount(mp, mp->m_logdev_targp,
1288			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1289			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1290	if (error) {
1291		xfs_warn(mp, "log mount failed");
1292		goto out_free_perag;
1293	}
1294
1295	/*
1296	 * Now the log is mounted, we know if it was an unclean shutdown or
1297	 * not. If it was, with the first phase of recovery has completed, we
1298	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1299	 * but they are recovered transactionally in the second recovery phase
1300	 * later.
1301	 *
1302	 * Hence we can safely re-initialise incore superblock counters from
1303	 * the per-ag data. These may not be correct if the filesystem was not
1304	 * cleanly unmounted, so we need to wait for recovery to finish before
1305	 * doing this.
1306	 *
1307	 * If the filesystem was cleanly unmounted, then we can trust the
1308	 * values in the superblock to be correct and we don't need to do
1309	 * anything here.
1310	 *
1311	 * If we are currently making the filesystem, the initialisation will
1312	 * fail as the perag data is in an undefined state.
1313	 */
1314	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1315	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1316	     !mp->m_sb.sb_inprogress) {
1317		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1318		if (error)
1319			goto out_free_perag;
1320	}
1321
1322	/*
1323	 * Get and sanity-check the root inode.
1324	 * Save the pointer to it in the mount structure.
1325	 */
1326	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1327	if (error) {
1328		xfs_warn(mp, "failed to read root inode");
1329		goto out_log_dealloc;
1330	}
1331
1332	ASSERT(rip != NULL);
1333
1334	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1335		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1336			(unsigned long long)rip->i_ino);
1337		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1338		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1339				 mp);
1340		error = XFS_ERROR(EFSCORRUPTED);
1341		goto out_rele_rip;
1342	}
1343	mp->m_rootip = rip;	/* save it */
1344
1345	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1346
1347	/*
1348	 * Initialize realtime inode pointers in the mount structure
1349	 */
1350	error = xfs_rtmount_inodes(mp);
1351	if (error) {
1352		/*
1353		 * Free up the root inode.
1354		 */
1355		xfs_warn(mp, "failed to read RT inodes");
1356		goto out_rele_rip;
1357	}
1358
1359	/*
1360	 * If this is a read-only mount defer the superblock updates until
1361	 * the next remount into writeable mode.  Otherwise we would never
1362	 * perform the update e.g. for the root filesystem.
1363	 */
1364	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1365		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1366		if (error) {
1367			xfs_warn(mp, "failed to write sb changes");
1368			goto out_rtunmount;
1369		}
1370	}
1371
1372	/*
1373	 * Initialise the XFS quota management subsystem for this mount
1374	 */
1375	if (XFS_IS_QUOTA_RUNNING(mp)) {
1376		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1377		if (error)
1378			goto out_rtunmount;
1379	} else {
1380		ASSERT(!XFS_IS_QUOTA_ON(mp));
1381
1382		/*
1383		 * If a file system had quotas running earlier, but decided to
1384		 * mount without -o uquota/pquota/gquota options, revoke the
1385		 * quotachecked license.
1386		 */
1387		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1388			xfs_notice(mp, "resetting quota flags");
1389			error = xfs_mount_reset_sbqflags(mp);
1390			if (error)
1391				return error;
1392		}
1393	}
1394
1395	/*
1396	 * Finish recovering the file system.  This part needed to be
1397	 * delayed until after the root and real-time bitmap inodes
1398	 * were consistently read in.
1399	 */
1400	error = xfs_log_mount_finish(mp);
1401	if (error) {
1402		xfs_warn(mp, "log mount finish failed");
1403		goto out_rtunmount;
1404	}
1405
1406	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407	 * Complete the quota initialisation, post-log-replay component.
1408	 */
1409	if (quotamount) {
1410		ASSERT(mp->m_qflags == 0);
1411		mp->m_qflags = quotaflags;
1412
1413		xfs_qm_mount_quotas(mp);
1414	}
1415
1416	/*
1417	 * Now we are mounted, reserve a small amount of unused space for
1418	 * privileged transactions. This is needed so that transaction
1419	 * space required for critical operations can dip into this pool
1420	 * when at ENOSPC. This is needed for operations like create with
1421	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1422	 * are not allowed to use this reserved space.
1423	 *
1424	 * This may drive us straight to ENOSPC on mount, but that implies
1425	 * we were already there on the last unmount. Warn if this occurs.
1426	 */
1427	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1428		resblks = xfs_default_resblks(mp);
1429		error = xfs_reserve_blocks(mp, &resblks, NULL);
1430		if (error)
1431			xfs_warn(mp,
1432	"Unable to allocate reserve blocks. Continuing without reserve pool.");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433	}
1434
1435	return 0;
1436
 
 
 
 
1437 out_rtunmount:
1438	xfs_rtunmount_inodes(mp);
1439 out_rele_rip:
1440	IRELE(rip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441 out_log_dealloc:
1442	xfs_log_unmount(mp);
 
 
 
 
 
1443 out_free_perag:
1444	xfs_free_perag(mp);
 
 
1445 out_remove_uuid:
1446	xfs_uuid_unmount(mp);
 
 
 
 
 
 
 
 
1447 out:
1448	return error;
1449}
1450
1451/*
1452 * This flushes out the inodes,dquots and the superblock, unmounts the
1453 * log and makes sure that incore structures are freed.
1454 */
1455void
1456xfs_unmountfs(
1457	struct xfs_mount	*mp)
1458{
1459	__uint64_t		resblks;
1460	int			error;
1461
 
 
 
 
1462	xfs_qm_unmount_quotas(mp);
1463	xfs_rtunmount_inodes(mp);
1464	IRELE(mp->m_rootip);
1465
1466	/*
1467	 * We can potentially deadlock here if we have an inode cluster
1468	 * that has been freed has its buffer still pinned in memory because
1469	 * the transaction is still sitting in a iclog. The stale inodes
1470	 * on that buffer will have their flush locks held until the
1471	 * transaction hits the disk and the callbacks run. the inode
1472	 * flush takes the flush lock unconditionally and with nothing to
1473	 * push out the iclog we will never get that unlocked. hence we
1474	 * need to force the log first.
1475	 */
1476	xfs_log_force(mp, XFS_LOG_SYNC);
1477
1478	/*
1479	 * Do a delwri reclaim pass first so that as many dirty inodes are
1480	 * queued up for IO as possible. Then flush the buffers before making
1481	 * a synchronous path to catch all the remaining inodes are reclaimed.
1482	 * This makes the reclaim process as quick as possible by avoiding
1483	 * synchronous writeout and blocking on inodes already in the delwri
1484	 * state as much as possible.
1485	 */
1486	xfs_reclaim_inodes(mp, 0);
1487	XFS_bflush(mp->m_ddev_targp);
1488	xfs_reclaim_inodes(mp, SYNC_WAIT);
 
 
 
 
 
 
 
1489
1490	xfs_qm_unmount(mp);
 
 
 
1491
1492	/*
1493	 * Flush out the log synchronously so that we know for sure
1494	 * that nothing is pinned.  This is important because bflush()
1495	 * will skip pinned buffers.
 
1496	 */
1497	xfs_log_force(mp, XFS_LOG_SYNC);
 
1498
1499	xfs_binval(mp->m_ddev_targp);
1500	if (mp->m_rtdev_targp) {
1501		xfs_binval(mp->m_rtdev_targp);
1502	}
1503
1504	/*
1505	 * Unreserve any blocks we have so that when we unmount we don't account
1506	 * the reserved free space as used. This is really only necessary for
1507	 * lazy superblock counting because it trusts the incore superblock
1508	 * counters to be absolutely correct on clean unmount.
1509	 *
1510	 * We don't bother correcting this elsewhere for lazy superblock
1511	 * counting because on mount of an unclean filesystem we reconstruct the
1512	 * correct counter value and this is irrelevant.
1513	 *
1514	 * For non-lazy counter filesystems, this doesn't matter at all because
1515	 * we only every apply deltas to the superblock and hence the incore
1516	 * value does not matter....
1517	 */
1518	resblks = 0;
1519	error = xfs_reserve_blocks(mp, &resblks, NULL);
1520	if (error)
1521		xfs_warn(mp, "Unable to free reserved block pool. "
1522				"Freespace may not be correct on next mount.");
1523
1524	error = xfs_log_sbcount(mp);
1525	if (error)
1526		xfs_warn(mp, "Unable to update superblock counters. "
1527				"Freespace may not be correct on next mount.");
1528	xfs_unmountfs_writesb(mp);
1529	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1530	xfs_log_unmount_write(mp);
1531	xfs_log_unmount(mp);
 
1532	xfs_uuid_unmount(mp);
1533
1534#if defined(DEBUG)
1535	xfs_errortag_clearall(mp, 0);
1536#endif
1537	xfs_free_perag(mp);
 
 
 
 
 
1538}
1539
1540STATIC void
1541xfs_unmountfs_wait(xfs_mount_t *mp)
 
 
 
 
 
 
 
 
1542{
1543	if (mp->m_logdev_targp != mp->m_ddev_targp)
1544		xfs_wait_buftarg(mp->m_logdev_targp);
1545	if (mp->m_rtdev_targp)
1546		xfs_wait_buftarg(mp->m_rtdev_targp);
1547	xfs_wait_buftarg(mp->m_ddev_targp);
1548}
1549
1550int
1551xfs_fs_writable(xfs_mount_t *mp)
1552{
1553	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1554		(mp->m_flags & XFS_MOUNT_RDONLY));
1555}
1556
1557/*
1558 * xfs_log_sbcount
1559 *
1560 * Sync the superblock counters to disk.
1561 *
1562 * Note this code can be called during the process of freezing, so
1563 * we may need to use the transaction allocator which does not
1564 * block when the transaction subsystem is in its frozen state.
1565 */
1566int
1567xfs_log_sbcount(xfs_mount_t *mp)
1568{
1569	xfs_trans_t	*tp;
1570	int		error;
1571
1572	if (!xfs_fs_writable(mp))
1573		return 0;
1574
1575	xfs_icsb_sync_counters(mp, 0);
1576
1577	/*
1578	 * we don't need to do this if we are updating the superblock
1579	 * counters on every modification.
1580	 */
1581	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1582		return 0;
1583
1584	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1585	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1586					XFS_DEFAULT_LOG_COUNT);
1587	if (error) {
1588		xfs_trans_cancel(tp, 0);
1589		return error;
 
 
 
 
 
 
 
 
 
 
 
 
1590	}
1591
1592	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1593	xfs_trans_set_sync(tp);
1594	error = xfs_trans_commit(tp, 0);
1595	return error;
1596}
1597
1598int
1599xfs_unmountfs_writesb(xfs_mount_t *mp)
 
 
1600{
1601	xfs_buf_t	*sbp;
1602	int		error = 0;
1603
1604	/*
1605	 * skip superblock write if fs is read-only, or
1606	 * if we are doing a forced umount.
1607	 */
1608	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1609		XFS_FORCED_SHUTDOWN(mp))) {
1610
1611		sbp = xfs_getsb(mp, 0);
1612
1613		XFS_BUF_UNDONE(sbp);
1614		XFS_BUF_UNREAD(sbp);
1615		XFS_BUF_UNDELAYWRITE(sbp);
1616		XFS_BUF_WRITE(sbp);
1617		XFS_BUF_UNASYNC(sbp);
1618		ASSERT(sbp->b_target == mp->m_ddev_targp);
1619		xfsbdstrat(mp, sbp);
1620		error = xfs_buf_iowait(sbp);
1621		if (error)
1622			xfs_ioerror_alert("xfs_unmountfs_writesb",
1623					  mp, sbp, XFS_BUF_ADDR(sbp));
1624		xfs_buf_relse(sbp);
1625	}
1626	return error;
1627}
1628
1629/*
1630 * xfs_mod_sb() can be used to copy arbitrary changes to the
1631 * in-core superblock into the superblock buffer to be logged.
1632 * It does not provide the higher level of locking that is
1633 * needed to protect the in-core superblock from concurrent
1634 * access.
1635 */
1636void
1637xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
 
 
 
 
1638{
1639	xfs_buf_t	*bp;
1640	int		first;
1641	int		last;
1642	xfs_mount_t	*mp;
1643	xfs_sb_field_t	f;
1644
1645	ASSERT(fields);
1646	if (!fields)
1647		return;
1648	mp = tp->t_mountp;
1649	bp = xfs_trans_getsb(tp, mp, 0);
1650	first = sizeof(xfs_sb_t);
1651	last = 0;
 
 
1652
1653	/* translate/copy */
 
1654
1655	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1656
1657	/* find modified range */
1658	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1659	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1660	last = xfs_sb_info[f + 1].offset - 1;
1661
1662	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1663	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1664	first = xfs_sb_info[f].offset;
1665
1666	xfs_trans_log_buf(tp, bp, first, last);
1667}
1668
1669
1670/*
1671 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1672 * a delta to a specified field in the in-core superblock.  Simply
1673 * switch on the field indicated and apply the delta to that field.
1674 * Fields are not allowed to dip below zero, so if the delta would
1675 * do this do not apply it and return EINVAL.
1676 *
1677 * The m_sb_lock must be held when this routine is called.
1678 */
1679STATIC int
1680xfs_mod_incore_sb_unlocked(
1681	xfs_mount_t	*mp,
1682	xfs_sb_field_t	field,
1683	int64_t		delta,
1684	int		rsvd)
1685{
1686	int		scounter;	/* short counter for 32 bit fields */
1687	long long	lcounter;	/* long counter for 64 bit fields */
1688	long long	res_used, rem;
1689
1690	/*
1691	 * With the in-core superblock spin lock held, switch
1692	 * on the indicated field.  Apply the delta to the
1693	 * proper field.  If the fields value would dip below
1694	 * 0, then do not apply the delta and return EINVAL.
1695	 */
1696	switch (field) {
1697	case XFS_SBS_ICOUNT:
1698		lcounter = (long long)mp->m_sb.sb_icount;
1699		lcounter += delta;
1700		if (lcounter < 0) {
1701			ASSERT(0);
1702			return XFS_ERROR(EINVAL);
1703		}
1704		mp->m_sb.sb_icount = lcounter;
1705		return 0;
1706	case XFS_SBS_IFREE:
1707		lcounter = (long long)mp->m_sb.sb_ifree;
1708		lcounter += delta;
1709		if (lcounter < 0) {
1710			ASSERT(0);
1711			return XFS_ERROR(EINVAL);
1712		}
1713		mp->m_sb.sb_ifree = lcounter;
1714		return 0;
1715	case XFS_SBS_FDBLOCKS:
1716		lcounter = (long long)
1717			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1718		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1719
1720		if (delta > 0) {		/* Putting blocks back */
1721			if (res_used > delta) {
1722				mp->m_resblks_avail += delta;
1723			} else {
1724				rem = delta - res_used;
1725				mp->m_resblks_avail = mp->m_resblks;
1726				lcounter += rem;
1727			}
1728		} else {				/* Taking blocks away */
1729			lcounter += delta;
1730			if (lcounter >= 0) {
1731				mp->m_sb.sb_fdblocks = lcounter +
1732							XFS_ALLOC_SET_ASIDE(mp);
1733				return 0;
1734			}
1735
1736			/*
1737			 * We are out of blocks, use any available reserved
1738			 * blocks if were allowed to.
1739			 */
1740			if (!rsvd)
1741				return XFS_ERROR(ENOSPC);
1742
1743			lcounter = (long long)mp->m_resblks_avail + delta;
1744			if (lcounter >= 0) {
1745				mp->m_resblks_avail = lcounter;
1746				return 0;
1747			}
1748			printk_once(KERN_WARNING
1749				"Filesystem \"%s\": reserve blocks depleted! "
1750				"Consider increasing reserve pool size.",
1751				mp->m_fsname);
1752			return XFS_ERROR(ENOSPC);
1753		}
1754
1755		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1756		return 0;
1757	case XFS_SBS_FREXTENTS:
1758		lcounter = (long long)mp->m_sb.sb_frextents;
1759		lcounter += delta;
1760		if (lcounter < 0) {
1761			return XFS_ERROR(ENOSPC);
1762		}
1763		mp->m_sb.sb_frextents = lcounter;
1764		return 0;
1765	case XFS_SBS_DBLOCKS:
1766		lcounter = (long long)mp->m_sb.sb_dblocks;
1767		lcounter += delta;
1768		if (lcounter < 0) {
1769			ASSERT(0);
1770			return XFS_ERROR(EINVAL);
1771		}
1772		mp->m_sb.sb_dblocks = lcounter;
1773		return 0;
1774	case XFS_SBS_AGCOUNT:
1775		scounter = mp->m_sb.sb_agcount;
1776		scounter += delta;
1777		if (scounter < 0) {
1778			ASSERT(0);
1779			return XFS_ERROR(EINVAL);
1780		}
1781		mp->m_sb.sb_agcount = scounter;
1782		return 0;
1783	case XFS_SBS_IMAX_PCT:
1784		scounter = mp->m_sb.sb_imax_pct;
1785		scounter += delta;
1786		if (scounter < 0) {
1787			ASSERT(0);
1788			return XFS_ERROR(EINVAL);
1789		}
1790		mp->m_sb.sb_imax_pct = scounter;
1791		return 0;
1792	case XFS_SBS_REXTSIZE:
1793		scounter = mp->m_sb.sb_rextsize;
1794		scounter += delta;
1795		if (scounter < 0) {
1796			ASSERT(0);
1797			return XFS_ERROR(EINVAL);
1798		}
1799		mp->m_sb.sb_rextsize = scounter;
1800		return 0;
1801	case XFS_SBS_RBMBLOCKS:
1802		scounter = mp->m_sb.sb_rbmblocks;
1803		scounter += delta;
1804		if (scounter < 0) {
1805			ASSERT(0);
1806			return XFS_ERROR(EINVAL);
1807		}
1808		mp->m_sb.sb_rbmblocks = scounter;
1809		return 0;
1810	case XFS_SBS_RBLOCKS:
1811		lcounter = (long long)mp->m_sb.sb_rblocks;
1812		lcounter += delta;
1813		if (lcounter < 0) {
1814			ASSERT(0);
1815			return XFS_ERROR(EINVAL);
1816		}
1817		mp->m_sb.sb_rblocks = lcounter;
1818		return 0;
1819	case XFS_SBS_REXTENTS:
1820		lcounter = (long long)mp->m_sb.sb_rextents;
1821		lcounter += delta;
1822		if (lcounter < 0) {
1823			ASSERT(0);
1824			return XFS_ERROR(EINVAL);
1825		}
1826		mp->m_sb.sb_rextents = lcounter;
1827		return 0;
1828	case XFS_SBS_REXTSLOG:
1829		scounter = mp->m_sb.sb_rextslog;
1830		scounter += delta;
1831		if (scounter < 0) {
1832			ASSERT(0);
1833			return XFS_ERROR(EINVAL);
1834		}
1835		mp->m_sb.sb_rextslog = scounter;
1836		return 0;
1837	default:
1838		ASSERT(0);
1839		return XFS_ERROR(EINVAL);
1840	}
1841}
1842
1843/*
1844 * xfs_mod_incore_sb() is used to change a field in the in-core
1845 * superblock structure by the specified delta.  This modification
1846 * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1847 * routine to do the work.
1848 */
1849int
1850xfs_mod_incore_sb(
1851	struct xfs_mount	*mp,
1852	xfs_sb_field_t		field,
1853	int64_t			delta,
1854	int			rsvd)
1855{
1856	int			status;
1857
1858#ifdef HAVE_PERCPU_SB
1859	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1860#endif
1861	spin_lock(&mp->m_sb_lock);
1862	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1863	spin_unlock(&mp->m_sb_lock);
1864
1865	return status;
1866}
1867
1868/*
1869 * Change more than one field in the in-core superblock structure at a time.
1870 *
1871 * The fields and changes to those fields are specified in the array of
1872 * xfs_mod_sb structures passed in.  Either all of the specified deltas
1873 * will be applied or none of them will.  If any modified field dips below 0,
1874 * then all modifications will be backed out and EINVAL will be returned.
1875 *
1876 * Note that this function may not be used for the superblock values that
1877 * are tracked with the in-memory per-cpu counters - a direct call to
1878 * xfs_icsb_modify_counters is required for these.
1879 */
1880int
1881xfs_mod_incore_sb_batch(
1882	struct xfs_mount	*mp,
1883	xfs_mod_sb_t		*msb,
1884	uint			nmsb,
1885	int			rsvd)
1886{
1887	xfs_mod_sb_t		*msbp;
1888	int			error = 0;
1889
1890	/*
1891	 * Loop through the array of mod structures and apply each individually.
1892	 * If any fail, then back out all those which have already been applied.
1893	 * Do all of this within the scope of the m_sb_lock so that all of the
1894	 * changes will be atomic.
1895	 */
1896	spin_lock(&mp->m_sb_lock);
1897	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1898		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1899		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1900
1901		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1902						   msbp->msb_delta, rsvd);
1903		if (error)
1904			goto unwind;
1905	}
1906	spin_unlock(&mp->m_sb_lock);
1907	return 0;
1908
1909unwind:
1910	while (--msbp >= msb) {
1911		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1912						   -msbp->msb_delta, rsvd);
1913		ASSERT(error == 0);
1914	}
1915	spin_unlock(&mp->m_sb_lock);
1916	return error;
1917}
1918
1919/*
1920 * xfs_getsb() is called to obtain the buffer for the superblock.
1921 * The buffer is returned locked and read in from disk.
1922 * The buffer should be released with a call to xfs_brelse().
1923 *
1924 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1925 * the superblock buffer if it can be locked without sleeping.
1926 * If it can't then we'll return NULL.
1927 */
1928struct xfs_buf *
1929xfs_getsb(
1930	struct xfs_mount	*mp,
1931	int			flags)
1932{
1933	struct xfs_buf		*bp = mp->m_sb_bp;
1934
1935	if (!xfs_buf_trylock(bp)) {
1936		if (flags & XBF_TRYLOCK)
1937			return NULL;
1938		xfs_buf_lock(bp);
1939	}
1940
1941	xfs_buf_hold(bp);
1942	ASSERT(XFS_BUF_ISDONE(bp));
1943	return bp;
1944}
1945
1946/*
1947 * Used to free the superblock along various error paths.
1948 */
1949void
1950xfs_freesb(
1951	struct xfs_mount	*mp)
1952{
1953	struct xfs_buf		*bp = mp->m_sb_bp;
1954
1955	xfs_buf_lock(bp);
1956	mp->m_sb_bp = NULL;
1957	xfs_buf_relse(bp);
1958}
1959
1960/*
1961 * Used to log changes to the superblock unit and width fields which could
1962 * be altered by the mount options, as well as any potential sb_features2
1963 * fixup. Only the first superblock is updated.
1964 */
1965int
1966xfs_mount_log_sb(
1967	xfs_mount_t	*mp,
1968	__int64_t	fields)
1969{
1970	xfs_trans_t	*tp;
1971	int		error;
1972
1973	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1974			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1975			 XFS_SB_VERSIONNUM));
1976
1977	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1978	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1979				XFS_DEFAULT_LOG_COUNT);
1980	if (error) {
1981		xfs_trans_cancel(tp, 0);
1982		return error;
1983	}
1984	xfs_mod_sb(tp, fields);
1985	error = xfs_trans_commit(tp, 0);
1986	return error;
1987}
1988
1989/*
1990 * If the underlying (data/log/rt) device is readonly, there are some
1991 * operations that cannot proceed.
1992 */
1993int
1994xfs_dev_is_read_only(
1995	struct xfs_mount	*mp,
1996	char			*message)
1997{
1998	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1999	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
2000	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2001		xfs_notice(mp, "%s required on read-only device.", message);
2002		xfs_notice(mp, "write access unavailable, cannot proceed.");
2003		return EROFS;
2004	}
2005	return 0;
2006}
2007
2008#ifdef HAVE_PERCPU_SB
2009/*
2010 * Per-cpu incore superblock counters
2011 *
2012 * Simple concept, difficult implementation
2013 *
2014 * Basically, replace the incore superblock counters with a distributed per cpu
2015 * counter for contended fields (e.g.  free block count).
2016 *
2017 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2018 * hence needs to be accurately read when we are running low on space. Hence
2019 * there is a method to enable and disable the per-cpu counters based on how
2020 * much "stuff" is available in them.
2021 *
2022 * Basically, a counter is enabled if there is enough free resource to justify
2023 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2024 * ENOSPC), then we disable the counters to synchronise all callers and
2025 * re-distribute the available resources.
2026 *
2027 * If, once we redistributed the available resources, we still get a failure,
2028 * we disable the per-cpu counter and go through the slow path.
2029 *
2030 * The slow path is the current xfs_mod_incore_sb() function.  This means that
2031 * when we disable a per-cpu counter, we need to drain its resources back to
2032 * the global superblock. We do this after disabling the counter to prevent
2033 * more threads from queueing up on the counter.
2034 *
2035 * Essentially, this means that we still need a lock in the fast path to enable
2036 * synchronisation between the global counters and the per-cpu counters. This
2037 * is not a problem because the lock will be local to a CPU almost all the time
2038 * and have little contention except when we get to ENOSPC conditions.
2039 *
2040 * Basically, this lock becomes a barrier that enables us to lock out the fast
2041 * path while we do things like enabling and disabling counters and
2042 * synchronising the counters.
2043 *
2044 * Locking rules:
2045 *
2046 * 	1. m_sb_lock before picking up per-cpu locks
2047 * 	2. per-cpu locks always picked up via for_each_online_cpu() order
2048 * 	3. accurate counter sync requires m_sb_lock + per cpu locks
2049 * 	4. modifying per-cpu counters requires holding per-cpu lock
2050 * 	5. modifying global counters requires holding m_sb_lock
2051 *	6. enabling or disabling a counter requires holding the m_sb_lock 
2052 *	   and _none_ of the per-cpu locks.
2053 *
2054 * Disabled counters are only ever re-enabled by a balance operation
2055 * that results in more free resources per CPU than a given threshold.
2056 * To ensure counters don't remain disabled, they are rebalanced when
2057 * the global resource goes above a higher threshold (i.e. some hysteresis
2058 * is present to prevent thrashing).
2059 */
2060
2061#ifdef CONFIG_HOTPLUG_CPU
2062/*
2063 * hot-plug CPU notifier support.
2064 *
2065 * We need a notifier per filesystem as we need to be able to identify
2066 * the filesystem to balance the counters out. This is achieved by
2067 * having a notifier block embedded in the xfs_mount_t and doing pointer
2068 * magic to get the mount pointer from the notifier block address.
2069 */
2070STATIC int
2071xfs_icsb_cpu_notify(
2072	struct notifier_block *nfb,
2073	unsigned long action,
2074	void *hcpu)
2075{
2076	xfs_icsb_cnts_t *cntp;
2077	xfs_mount_t	*mp;
2078
2079	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2080	cntp = (xfs_icsb_cnts_t *)
2081			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2082	switch (action) {
2083	case CPU_UP_PREPARE:
2084	case CPU_UP_PREPARE_FROZEN:
2085		/* Easy Case - initialize the area and locks, and
2086		 * then rebalance when online does everything else for us. */
2087		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2088		break;
2089	case CPU_ONLINE:
2090	case CPU_ONLINE_FROZEN:
2091		xfs_icsb_lock(mp);
2092		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2093		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2094		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2095		xfs_icsb_unlock(mp);
2096		break;
2097	case CPU_DEAD:
2098	case CPU_DEAD_FROZEN:
2099		/* Disable all the counters, then fold the dead cpu's
2100		 * count into the total on the global superblock and
2101		 * re-enable the counters. */
2102		xfs_icsb_lock(mp);
2103		spin_lock(&mp->m_sb_lock);
2104		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2105		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2106		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2107
2108		mp->m_sb.sb_icount += cntp->icsb_icount;
2109		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2110		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2111
2112		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2113
2114		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2115		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2116		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2117		spin_unlock(&mp->m_sb_lock);
2118		xfs_icsb_unlock(mp);
2119		break;
2120	}
2121
2122	return NOTIFY_OK;
2123}
2124#endif /* CONFIG_HOTPLUG_CPU */
2125
2126int
2127xfs_icsb_init_counters(
2128	xfs_mount_t	*mp)
2129{
2130	xfs_icsb_cnts_t *cntp;
2131	int		i;
2132
2133	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2134	if (mp->m_sb_cnts == NULL)
2135		return -ENOMEM;
2136
2137#ifdef CONFIG_HOTPLUG_CPU
2138	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2139	mp->m_icsb_notifier.priority = 0;
2140	register_hotcpu_notifier(&mp->m_icsb_notifier);
2141#endif /* CONFIG_HOTPLUG_CPU */
2142
2143	for_each_online_cpu(i) {
2144		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2145		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2146	}
2147
2148	mutex_init(&mp->m_icsb_mutex);
2149
2150	/*
2151	 * start with all counters disabled so that the
2152	 * initial balance kicks us off correctly
2153	 */
2154	mp->m_icsb_counters = -1;
2155	return 0;
2156}
2157
2158void
2159xfs_icsb_reinit_counters(
2160	xfs_mount_t	*mp)
2161{
2162	xfs_icsb_lock(mp);
2163	/*
2164	 * start with all counters disabled so that the
2165	 * initial balance kicks us off correctly
2166	 */
2167	mp->m_icsb_counters = -1;
2168	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2169	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2170	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2171	xfs_icsb_unlock(mp);
2172}
2173
2174void
2175xfs_icsb_destroy_counters(
2176	xfs_mount_t	*mp)
2177{
2178	if (mp->m_sb_cnts) {
2179		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2180		free_percpu(mp->m_sb_cnts);
2181	}
2182	mutex_destroy(&mp->m_icsb_mutex);
2183}
2184
2185STATIC void
2186xfs_icsb_lock_cntr(
2187	xfs_icsb_cnts_t	*icsbp)
2188{
2189	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2190		ndelay(1000);
2191	}
2192}
2193
2194STATIC void
2195xfs_icsb_unlock_cntr(
2196	xfs_icsb_cnts_t	*icsbp)
2197{
2198	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2199}
2200
2201
2202STATIC void
2203xfs_icsb_lock_all_counters(
2204	xfs_mount_t	*mp)
2205{
2206	xfs_icsb_cnts_t *cntp;
2207	int		i;
2208
2209	for_each_online_cpu(i) {
2210		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2211		xfs_icsb_lock_cntr(cntp);
2212	}
2213}
2214
2215STATIC void
2216xfs_icsb_unlock_all_counters(
2217	xfs_mount_t	*mp)
2218{
2219	xfs_icsb_cnts_t *cntp;
2220	int		i;
2221
2222	for_each_online_cpu(i) {
2223		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2224		xfs_icsb_unlock_cntr(cntp);
2225	}
2226}
2227
2228STATIC void
2229xfs_icsb_count(
2230	xfs_mount_t	*mp,
2231	xfs_icsb_cnts_t	*cnt,
2232	int		flags)
2233{
2234	xfs_icsb_cnts_t *cntp;
2235	int		i;
2236
2237	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2238
2239	if (!(flags & XFS_ICSB_LAZY_COUNT))
2240		xfs_icsb_lock_all_counters(mp);
2241
2242	for_each_online_cpu(i) {
2243		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2244		cnt->icsb_icount += cntp->icsb_icount;
2245		cnt->icsb_ifree += cntp->icsb_ifree;
2246		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2247	}
2248
2249	if (!(flags & XFS_ICSB_LAZY_COUNT))
2250		xfs_icsb_unlock_all_counters(mp);
2251}
2252
2253STATIC int
2254xfs_icsb_counter_disabled(
2255	xfs_mount_t	*mp,
2256	xfs_sb_field_t	field)
2257{
2258	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2259	return test_bit(field, &mp->m_icsb_counters);
2260}
2261
2262STATIC void
2263xfs_icsb_disable_counter(
2264	xfs_mount_t	*mp,
2265	xfs_sb_field_t	field)
2266{
2267	xfs_icsb_cnts_t	cnt;
2268
2269	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2270
2271	/*
2272	 * If we are already disabled, then there is nothing to do
2273	 * here. We check before locking all the counters to avoid
2274	 * the expensive lock operation when being called in the
2275	 * slow path and the counter is already disabled. This is
2276	 * safe because the only time we set or clear this state is under
2277	 * the m_icsb_mutex.
2278	 */
2279	if (xfs_icsb_counter_disabled(mp, field))
2280		return;
2281
2282	xfs_icsb_lock_all_counters(mp);
2283	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2284		/* drain back to superblock */
2285
2286		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2287		switch(field) {
2288		case XFS_SBS_ICOUNT:
2289			mp->m_sb.sb_icount = cnt.icsb_icount;
2290			break;
2291		case XFS_SBS_IFREE:
2292			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2293			break;
2294		case XFS_SBS_FDBLOCKS:
2295			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2296			break;
2297		default:
2298			BUG();
2299		}
2300	}
2301
2302	xfs_icsb_unlock_all_counters(mp);
2303}
2304
2305STATIC void
2306xfs_icsb_enable_counter(
2307	xfs_mount_t	*mp,
2308	xfs_sb_field_t	field,
2309	uint64_t	count,
2310	uint64_t	resid)
2311{
2312	xfs_icsb_cnts_t	*cntp;
2313	int		i;
2314
2315	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2316
2317	xfs_icsb_lock_all_counters(mp);
2318	for_each_online_cpu(i) {
2319		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2320		switch (field) {
2321		case XFS_SBS_ICOUNT:
2322			cntp->icsb_icount = count + resid;
2323			break;
2324		case XFS_SBS_IFREE:
2325			cntp->icsb_ifree = count + resid;
2326			break;
2327		case XFS_SBS_FDBLOCKS:
2328			cntp->icsb_fdblocks = count + resid;
2329			break;
2330		default:
2331			BUG();
2332			break;
2333		}
2334		resid = 0;
2335	}
2336	clear_bit(field, &mp->m_icsb_counters);
2337	xfs_icsb_unlock_all_counters(mp);
2338}
2339
2340void
2341xfs_icsb_sync_counters_locked(
2342	xfs_mount_t	*mp,
2343	int		flags)
2344{
2345	xfs_icsb_cnts_t	cnt;
2346
2347	xfs_icsb_count(mp, &cnt, flags);
2348
2349	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2350		mp->m_sb.sb_icount = cnt.icsb_icount;
2351	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2352		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2353	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2354		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2355}
2356
2357/*
2358 * Accurate update of per-cpu counters to incore superblock
2359 */
2360void
2361xfs_icsb_sync_counters(
2362	xfs_mount_t	*mp,
2363	int		flags)
2364{
2365	spin_lock(&mp->m_sb_lock);
2366	xfs_icsb_sync_counters_locked(mp, flags);
2367	spin_unlock(&mp->m_sb_lock);
2368}
2369
2370/*
2371 * Balance and enable/disable counters as necessary.
2372 *
2373 * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2374 * chosen to be the same number as single on disk allocation chunk per CPU, and
2375 * free blocks is something far enough zero that we aren't going thrash when we
2376 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2377 * prevent looping endlessly when xfs_alloc_space asks for more than will
2378 * be distributed to a single CPU but each CPU has enough blocks to be
2379 * reenabled.
2380 *
2381 * Note that we can be called when counters are already disabled.
2382 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2383 * prevent locking every per-cpu counter needlessly.
2384 */
2385
2386#define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2387#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2388		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2389STATIC void
2390xfs_icsb_balance_counter_locked(
2391	xfs_mount_t	*mp,
2392	xfs_sb_field_t  field,
2393	int		min_per_cpu)
2394{
2395	uint64_t	count, resid;
2396	int		weight = num_online_cpus();
2397	uint64_t	min = (uint64_t)min_per_cpu;
2398
2399	/* disable counter and sync counter */
2400	xfs_icsb_disable_counter(mp, field);
2401
2402	/* update counters  - first CPU gets residual*/
2403	switch (field) {
2404	case XFS_SBS_ICOUNT:
2405		count = mp->m_sb.sb_icount;
2406		resid = do_div(count, weight);
2407		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2408			return;
2409		break;
2410	case XFS_SBS_IFREE:
2411		count = mp->m_sb.sb_ifree;
2412		resid = do_div(count, weight);
2413		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2414			return;
2415		break;
2416	case XFS_SBS_FDBLOCKS:
2417		count = mp->m_sb.sb_fdblocks;
2418		resid = do_div(count, weight);
2419		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2420			return;
2421		break;
2422	default:
2423		BUG();
2424		count = resid = 0;	/* quiet, gcc */
2425		break;
2426	}
2427
2428	xfs_icsb_enable_counter(mp, field, count, resid);
2429}
2430
2431STATIC void
2432xfs_icsb_balance_counter(
2433	xfs_mount_t	*mp,
2434	xfs_sb_field_t  fields,
2435	int		min_per_cpu)
2436{
2437	spin_lock(&mp->m_sb_lock);
2438	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2439	spin_unlock(&mp->m_sb_lock);
2440}
2441
2442int
2443xfs_icsb_modify_counters(
2444	xfs_mount_t	*mp,
2445	xfs_sb_field_t	field,
2446	int64_t		delta,
2447	int		rsvd)
2448{
2449	xfs_icsb_cnts_t	*icsbp;
2450	long long	lcounter;	/* long counter for 64 bit fields */
2451	int		ret = 0;
2452
2453	might_sleep();
2454again:
2455	preempt_disable();
2456	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2457
2458	/*
2459	 * if the counter is disabled, go to slow path
2460	 */
2461	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2462		goto slow_path;
2463	xfs_icsb_lock_cntr(icsbp);
2464	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2465		xfs_icsb_unlock_cntr(icsbp);
2466		goto slow_path;
2467	}
2468
2469	switch (field) {
2470	case XFS_SBS_ICOUNT:
2471		lcounter = icsbp->icsb_icount;
2472		lcounter += delta;
2473		if (unlikely(lcounter < 0))
2474			goto balance_counter;
2475		icsbp->icsb_icount = lcounter;
2476		break;
2477
2478	case XFS_SBS_IFREE:
2479		lcounter = icsbp->icsb_ifree;
2480		lcounter += delta;
2481		if (unlikely(lcounter < 0))
2482			goto balance_counter;
2483		icsbp->icsb_ifree = lcounter;
2484		break;
2485
2486	case XFS_SBS_FDBLOCKS:
2487		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2488
2489		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2490		lcounter += delta;
2491		if (unlikely(lcounter < 0))
2492			goto balance_counter;
2493		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2494		break;
2495	default:
2496		BUG();
2497		break;
2498	}
2499	xfs_icsb_unlock_cntr(icsbp);
2500	preempt_enable();
2501	return 0;
2502
2503slow_path:
2504	preempt_enable();
2505
2506	/*
2507	 * serialise with a mutex so we don't burn lots of cpu on
2508	 * the superblock lock. We still need to hold the superblock
2509	 * lock, however, when we modify the global structures.
2510	 */
2511	xfs_icsb_lock(mp);
2512
2513	/*
2514	 * Now running atomically.
2515	 *
2516	 * If the counter is enabled, someone has beaten us to rebalancing.
2517	 * Drop the lock and try again in the fast path....
2518	 */
2519	if (!(xfs_icsb_counter_disabled(mp, field))) {
2520		xfs_icsb_unlock(mp);
2521		goto again;
2522	}
2523
2524	/*
2525	 * The counter is currently disabled. Because we are
2526	 * running atomically here, we know a rebalance cannot
2527	 * be in progress. Hence we can go straight to operating
2528	 * on the global superblock. We do not call xfs_mod_incore_sb()
2529	 * here even though we need to get the m_sb_lock. Doing so
2530	 * will cause us to re-enter this function and deadlock.
2531	 * Hence we get the m_sb_lock ourselves and then call
2532	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2533	 * directly on the global counters.
2534	 */
2535	spin_lock(&mp->m_sb_lock);
2536	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2537	spin_unlock(&mp->m_sb_lock);
2538
2539	/*
2540	 * Now that we've modified the global superblock, we
2541	 * may be able to re-enable the distributed counters
2542	 * (e.g. lots of space just got freed). After that
2543	 * we are done.
2544	 */
2545	if (ret != ENOSPC)
2546		xfs_icsb_balance_counter(mp, field, 0);
2547	xfs_icsb_unlock(mp);
2548	return ret;
2549
2550balance_counter:
2551	xfs_icsb_unlock_cntr(icsbp);
2552	preempt_enable();
2553
2554	/*
2555	 * We may have multiple threads here if multiple per-cpu
2556	 * counters run dry at the same time. This will mean we can
2557	 * do more balances than strictly necessary but it is not
2558	 * the common slowpath case.
2559	 */
2560	xfs_icsb_lock(mp);
2561
2562	/*
2563	 * running atomically.
2564	 *
2565	 * This will leave the counter in the correct state for future
2566	 * accesses. After the rebalance, we simply try again and our retry
2567	 * will either succeed through the fast path or slow path without
2568	 * another balance operation being required.
2569	 */
2570	xfs_icsb_balance_counter(mp, field, delta);
2571	xfs_icsb_unlock(mp);
2572	goto again;
2573}
2574
2575#endif