Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_da_format.h"
29#include "xfs_da_btree.h"
30#include "xfs_inode.h"
31#include "xfs_dir2.h"
32#include "xfs_ialloc.h"
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
39#include "xfs_error.h"
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
42#include "xfs_trace.h"
43#include "xfs_icache.h"
44#include "xfs_sysfs.h"
45#include "xfs_rmap_btree.h"
46#include "xfs_refcount_btree.h"
47#include "xfs_reflink.h"
48#include "xfs_extent_busy.h"
49
50
51static DEFINE_MUTEX(xfs_uuid_table_mutex);
52static int xfs_uuid_table_size;
53static uuid_t *xfs_uuid_table;
54
55void
56xfs_uuid_table_free(void)
57{
58 if (xfs_uuid_table_size == 0)
59 return;
60 kmem_free(xfs_uuid_table);
61 xfs_uuid_table = NULL;
62 xfs_uuid_table_size = 0;
63}
64
65/*
66 * See if the UUID is unique among mounted XFS filesystems.
67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68 */
69STATIC int
70xfs_uuid_mount(
71 struct xfs_mount *mp)
72{
73 uuid_t *uuid = &mp->m_sb.sb_uuid;
74 int hole, i;
75
76 /* Publish UUID in struct super_block */
77 uuid_copy(&mp->m_super->s_uuid, uuid);
78
79 if (mp->m_flags & XFS_MOUNT_NOUUID)
80 return 0;
81
82 if (uuid_is_null(uuid)) {
83 xfs_warn(mp, "Filesystem has null UUID - can't mount");
84 return -EINVAL;
85 }
86
87 mutex_lock(&xfs_uuid_table_mutex);
88 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
89 if (uuid_is_null(&xfs_uuid_table[i])) {
90 hole = i;
91 continue;
92 }
93 if (uuid_equal(uuid, &xfs_uuid_table[i]))
94 goto out_duplicate;
95 }
96
97 if (hole < 0) {
98 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
99 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
100 KM_SLEEP);
101 hole = xfs_uuid_table_size++;
102 }
103 xfs_uuid_table[hole] = *uuid;
104 mutex_unlock(&xfs_uuid_table_mutex);
105
106 return 0;
107
108 out_duplicate:
109 mutex_unlock(&xfs_uuid_table_mutex);
110 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
111 return -EINVAL;
112}
113
114STATIC void
115xfs_uuid_unmount(
116 struct xfs_mount *mp)
117{
118 uuid_t *uuid = &mp->m_sb.sb_uuid;
119 int i;
120
121 if (mp->m_flags & XFS_MOUNT_NOUUID)
122 return;
123
124 mutex_lock(&xfs_uuid_table_mutex);
125 for (i = 0; i < xfs_uuid_table_size; i++) {
126 if (uuid_is_null(&xfs_uuid_table[i]))
127 continue;
128 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
129 continue;
130 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
131 break;
132 }
133 ASSERT(i < xfs_uuid_table_size);
134 mutex_unlock(&xfs_uuid_table_mutex);
135}
136
137
138STATIC void
139__xfs_free_perag(
140 struct rcu_head *head)
141{
142 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
143
144 ASSERT(atomic_read(&pag->pag_ref) == 0);
145 kmem_free(pag);
146}
147
148/*
149 * Free up the per-ag resources associated with the mount structure.
150 */
151STATIC void
152xfs_free_perag(
153 xfs_mount_t *mp)
154{
155 xfs_agnumber_t agno;
156 struct xfs_perag *pag;
157
158 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
159 spin_lock(&mp->m_perag_lock);
160 pag = radix_tree_delete(&mp->m_perag_tree, agno);
161 spin_unlock(&mp->m_perag_lock);
162 ASSERT(pag);
163 ASSERT(atomic_read(&pag->pag_ref) == 0);
164 xfs_buf_hash_destroy(pag);
165 mutex_destroy(&pag->pag_ici_reclaim_lock);
166 call_rcu(&pag->rcu_head, __xfs_free_perag);
167 }
168}
169
170/*
171 * Check size of device based on the (data/realtime) block count.
172 * Note: this check is used by the growfs code as well as mount.
173 */
174int
175xfs_sb_validate_fsb_count(
176 xfs_sb_t *sbp,
177 uint64_t nblocks)
178{
179 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
180 ASSERT(sbp->sb_blocklog >= BBSHIFT);
181
182 /* Limited by ULONG_MAX of page cache index */
183 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
184 return -EFBIG;
185 return 0;
186}
187
188int
189xfs_initialize_perag(
190 xfs_mount_t *mp,
191 xfs_agnumber_t agcount,
192 xfs_agnumber_t *maxagi)
193{
194 xfs_agnumber_t index;
195 xfs_agnumber_t first_initialised = NULLAGNUMBER;
196 xfs_perag_t *pag;
197 int error = -ENOMEM;
198
199 /*
200 * Walk the current per-ag tree so we don't try to initialise AGs
201 * that already exist (growfs case). Allocate and insert all the
202 * AGs we don't find ready for initialisation.
203 */
204 for (index = 0; index < agcount; index++) {
205 pag = xfs_perag_get(mp, index);
206 if (pag) {
207 xfs_perag_put(pag);
208 continue;
209 }
210
211 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
212 if (!pag)
213 goto out_unwind_new_pags;
214 pag->pag_agno = index;
215 pag->pag_mount = mp;
216 spin_lock_init(&pag->pag_ici_lock);
217 mutex_init(&pag->pag_ici_reclaim_lock);
218 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
219 if (xfs_buf_hash_init(pag))
220 goto out_free_pag;
221 init_waitqueue_head(&pag->pagb_wait);
222
223 if (radix_tree_preload(GFP_NOFS))
224 goto out_hash_destroy;
225
226 spin_lock(&mp->m_perag_lock);
227 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
228 BUG();
229 spin_unlock(&mp->m_perag_lock);
230 radix_tree_preload_end();
231 error = -EEXIST;
232 goto out_hash_destroy;
233 }
234 spin_unlock(&mp->m_perag_lock);
235 radix_tree_preload_end();
236 /* first new pag is fully initialized */
237 if (first_initialised == NULLAGNUMBER)
238 first_initialised = index;
239 }
240
241 index = xfs_set_inode_alloc(mp, agcount);
242
243 if (maxagi)
244 *maxagi = index;
245
246 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
247 return 0;
248
249out_hash_destroy:
250 xfs_buf_hash_destroy(pag);
251out_free_pag:
252 mutex_destroy(&pag->pag_ici_reclaim_lock);
253 kmem_free(pag);
254out_unwind_new_pags:
255 /* unwind any prior newly initialized pags */
256 for (index = first_initialised; index < agcount; index++) {
257 pag = radix_tree_delete(&mp->m_perag_tree, index);
258 if (!pag)
259 break;
260 xfs_buf_hash_destroy(pag);
261 mutex_destroy(&pag->pag_ici_reclaim_lock);
262 kmem_free(pag);
263 }
264 return error;
265}
266
267/*
268 * xfs_readsb
269 *
270 * Does the initial read of the superblock.
271 */
272int
273xfs_readsb(
274 struct xfs_mount *mp,
275 int flags)
276{
277 unsigned int sector_size;
278 struct xfs_buf *bp;
279 struct xfs_sb *sbp = &mp->m_sb;
280 int error;
281 int loud = !(flags & XFS_MFSI_QUIET);
282 const struct xfs_buf_ops *buf_ops;
283
284 ASSERT(mp->m_sb_bp == NULL);
285 ASSERT(mp->m_ddev_targp != NULL);
286
287 /*
288 * For the initial read, we must guess at the sector
289 * size based on the block device. It's enough to
290 * get the sb_sectsize out of the superblock and
291 * then reread with the proper length.
292 * We don't verify it yet, because it may not be complete.
293 */
294 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295 buf_ops = NULL;
296
297 /*
298 * Allocate a (locked) buffer to hold the superblock. This will be kept
299 * around at all times to optimize access to the superblock. Therefore,
300 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
301 * elevated.
302 */
303reread:
304 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
305 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
306 buf_ops);
307 if (error) {
308 if (loud)
309 xfs_warn(mp, "SB validate failed with error %d.", error);
310 /* bad CRC means corrupted metadata */
311 if (error == -EFSBADCRC)
312 error = -EFSCORRUPTED;
313 return error;
314 }
315
316 /*
317 * Initialize the mount structure from the superblock.
318 */
319 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
320
321 /*
322 * If we haven't validated the superblock, do so now before we try
323 * to check the sector size and reread the superblock appropriately.
324 */
325 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
326 if (loud)
327 xfs_warn(mp, "Invalid superblock magic number");
328 error = -EINVAL;
329 goto release_buf;
330 }
331
332 /*
333 * We must be able to do sector-sized and sector-aligned IO.
334 */
335 if (sector_size > sbp->sb_sectsize) {
336 if (loud)
337 xfs_warn(mp, "device supports %u byte sectors (not %u)",
338 sector_size, sbp->sb_sectsize);
339 error = -ENOSYS;
340 goto release_buf;
341 }
342
343 if (buf_ops == NULL) {
344 /*
345 * Re-read the superblock so the buffer is correctly sized,
346 * and properly verified.
347 */
348 xfs_buf_relse(bp);
349 sector_size = sbp->sb_sectsize;
350 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
351 goto reread;
352 }
353
354 xfs_reinit_percpu_counters(mp);
355
356 /* no need to be quiet anymore, so reset the buf ops */
357 bp->b_ops = &xfs_sb_buf_ops;
358
359 mp->m_sb_bp = bp;
360 xfs_buf_unlock(bp);
361 return 0;
362
363release_buf:
364 xfs_buf_relse(bp);
365 return error;
366}
367
368/*
369 * Update alignment values based on mount options and sb values
370 */
371STATIC int
372xfs_update_alignment(xfs_mount_t *mp)
373{
374 xfs_sb_t *sbp = &(mp->m_sb);
375
376 if (mp->m_dalign) {
377 /*
378 * If stripe unit and stripe width are not multiples
379 * of the fs blocksize turn off alignment.
380 */
381 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
382 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
383 xfs_warn(mp,
384 "alignment check failed: sunit/swidth vs. blocksize(%d)",
385 sbp->sb_blocksize);
386 return -EINVAL;
387 } else {
388 /*
389 * Convert the stripe unit and width to FSBs.
390 */
391 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
392 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
393 xfs_warn(mp,
394 "alignment check failed: sunit/swidth vs. agsize(%d)",
395 sbp->sb_agblocks);
396 return -EINVAL;
397 } else if (mp->m_dalign) {
398 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
399 } else {
400 xfs_warn(mp,
401 "alignment check failed: sunit(%d) less than bsize(%d)",
402 mp->m_dalign, sbp->sb_blocksize);
403 return -EINVAL;
404 }
405 }
406
407 /*
408 * Update superblock with new values
409 * and log changes
410 */
411 if (xfs_sb_version_hasdalign(sbp)) {
412 if (sbp->sb_unit != mp->m_dalign) {
413 sbp->sb_unit = mp->m_dalign;
414 mp->m_update_sb = true;
415 }
416 if (sbp->sb_width != mp->m_swidth) {
417 sbp->sb_width = mp->m_swidth;
418 mp->m_update_sb = true;
419 }
420 } else {
421 xfs_warn(mp,
422 "cannot change alignment: superblock does not support data alignment");
423 return -EINVAL;
424 }
425 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
426 xfs_sb_version_hasdalign(&mp->m_sb)) {
427 mp->m_dalign = sbp->sb_unit;
428 mp->m_swidth = sbp->sb_width;
429 }
430
431 return 0;
432}
433
434/*
435 * Set the maximum inode count for this filesystem
436 */
437STATIC void
438xfs_set_maxicount(xfs_mount_t *mp)
439{
440 xfs_sb_t *sbp = &(mp->m_sb);
441 uint64_t icount;
442
443 if (sbp->sb_imax_pct) {
444 /*
445 * Make sure the maximum inode count is a multiple
446 * of the units we allocate inodes in.
447 */
448 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
449 do_div(icount, 100);
450 do_div(icount, mp->m_ialloc_blks);
451 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
452 sbp->sb_inopblog;
453 } else {
454 mp->m_maxicount = 0;
455 }
456}
457
458/*
459 * Set the default minimum read and write sizes unless
460 * already specified in a mount option.
461 * We use smaller I/O sizes when the file system
462 * is being used for NFS service (wsync mount option).
463 */
464STATIC void
465xfs_set_rw_sizes(xfs_mount_t *mp)
466{
467 xfs_sb_t *sbp = &(mp->m_sb);
468 int readio_log, writeio_log;
469
470 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
471 if (mp->m_flags & XFS_MOUNT_WSYNC) {
472 readio_log = XFS_WSYNC_READIO_LOG;
473 writeio_log = XFS_WSYNC_WRITEIO_LOG;
474 } else {
475 readio_log = XFS_READIO_LOG_LARGE;
476 writeio_log = XFS_WRITEIO_LOG_LARGE;
477 }
478 } else {
479 readio_log = mp->m_readio_log;
480 writeio_log = mp->m_writeio_log;
481 }
482
483 if (sbp->sb_blocklog > readio_log) {
484 mp->m_readio_log = sbp->sb_blocklog;
485 } else {
486 mp->m_readio_log = readio_log;
487 }
488 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
489 if (sbp->sb_blocklog > writeio_log) {
490 mp->m_writeio_log = sbp->sb_blocklog;
491 } else {
492 mp->m_writeio_log = writeio_log;
493 }
494 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
495}
496
497/*
498 * precalculate the low space thresholds for dynamic speculative preallocation.
499 */
500void
501xfs_set_low_space_thresholds(
502 struct xfs_mount *mp)
503{
504 int i;
505
506 for (i = 0; i < XFS_LOWSP_MAX; i++) {
507 uint64_t space = mp->m_sb.sb_dblocks;
508
509 do_div(space, 100);
510 mp->m_low_space[i] = space * (i + 1);
511 }
512}
513
514
515/*
516 * Set whether we're using inode alignment.
517 */
518STATIC void
519xfs_set_inoalignment(xfs_mount_t *mp)
520{
521 if (xfs_sb_version_hasalign(&mp->m_sb) &&
522 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
523 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
524 else
525 mp->m_inoalign_mask = 0;
526 /*
527 * If we are using stripe alignment, check whether
528 * the stripe unit is a multiple of the inode alignment
529 */
530 if (mp->m_dalign && mp->m_inoalign_mask &&
531 !(mp->m_dalign & mp->m_inoalign_mask))
532 mp->m_sinoalign = mp->m_dalign;
533 else
534 mp->m_sinoalign = 0;
535}
536
537/*
538 * Check that the data (and log if separate) is an ok size.
539 */
540STATIC int
541xfs_check_sizes(
542 struct xfs_mount *mp)
543{
544 struct xfs_buf *bp;
545 xfs_daddr_t d;
546 int error;
547
548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
550 xfs_warn(mp, "filesystem size mismatch detected");
551 return -EFBIG;
552 }
553 error = xfs_buf_read_uncached(mp->m_ddev_targp,
554 d - XFS_FSS_TO_BB(mp, 1),
555 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
556 if (error) {
557 xfs_warn(mp, "last sector read failed");
558 return error;
559 }
560 xfs_buf_relse(bp);
561
562 if (mp->m_logdev_targp == mp->m_ddev_targp)
563 return 0;
564
565 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
566 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
567 xfs_warn(mp, "log size mismatch detected");
568 return -EFBIG;
569 }
570 error = xfs_buf_read_uncached(mp->m_logdev_targp,
571 d - XFS_FSB_TO_BB(mp, 1),
572 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
573 if (error) {
574 xfs_warn(mp, "log device read failed");
575 return error;
576 }
577 xfs_buf_relse(bp);
578 return 0;
579}
580
581/*
582 * Clear the quotaflags in memory and in the superblock.
583 */
584int
585xfs_mount_reset_sbqflags(
586 struct xfs_mount *mp)
587{
588 mp->m_qflags = 0;
589
590 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
591 if (mp->m_sb.sb_qflags == 0)
592 return 0;
593 spin_lock(&mp->m_sb_lock);
594 mp->m_sb.sb_qflags = 0;
595 spin_unlock(&mp->m_sb_lock);
596
597 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
598 return 0;
599
600 return xfs_sync_sb(mp, false);
601}
602
603uint64_t
604xfs_default_resblks(xfs_mount_t *mp)
605{
606 uint64_t resblks;
607
608 /*
609 * We default to 5% or 8192 fsbs of space reserved, whichever is
610 * smaller. This is intended to cover concurrent allocation
611 * transactions when we initially hit enospc. These each require a 4
612 * block reservation. Hence by default we cover roughly 2000 concurrent
613 * allocation reservations.
614 */
615 resblks = mp->m_sb.sb_dblocks;
616 do_div(resblks, 20);
617 resblks = min_t(uint64_t, resblks, 8192);
618 return resblks;
619}
620
621/*
622 * This function does the following on an initial mount of a file system:
623 * - reads the superblock from disk and init the mount struct
624 * - if we're a 32-bit kernel, do a size check on the superblock
625 * so we don't mount terabyte filesystems
626 * - init mount struct realtime fields
627 * - allocate inode hash table for fs
628 * - init directory manager
629 * - perform recovery and init the log manager
630 */
631int
632xfs_mountfs(
633 struct xfs_mount *mp)
634{
635 struct xfs_sb *sbp = &(mp->m_sb);
636 struct xfs_inode *rip;
637 uint64_t resblks;
638 uint quotamount = 0;
639 uint quotaflags = 0;
640 int error = 0;
641
642 xfs_sb_mount_common(mp, sbp);
643
644 /*
645 * Check for a mismatched features2 values. Older kernels read & wrote
646 * into the wrong sb offset for sb_features2 on some platforms due to
647 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
648 * which made older superblock reading/writing routines swap it as a
649 * 64-bit value.
650 *
651 * For backwards compatibility, we make both slots equal.
652 *
653 * If we detect a mismatched field, we OR the set bits into the existing
654 * features2 field in case it has already been modified; we don't want
655 * to lose any features. We then update the bad location with the ORed
656 * value so that older kernels will see any features2 flags. The
657 * superblock writeback code ensures the new sb_features2 is copied to
658 * sb_bad_features2 before it is logged or written to disk.
659 */
660 if (xfs_sb_has_mismatched_features2(sbp)) {
661 xfs_warn(mp, "correcting sb_features alignment problem");
662 sbp->sb_features2 |= sbp->sb_bad_features2;
663 mp->m_update_sb = true;
664
665 /*
666 * Re-check for ATTR2 in case it was found in bad_features2
667 * slot.
668 */
669 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
670 !(mp->m_flags & XFS_MOUNT_NOATTR2))
671 mp->m_flags |= XFS_MOUNT_ATTR2;
672 }
673
674 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
675 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
676 xfs_sb_version_removeattr2(&mp->m_sb);
677 mp->m_update_sb = true;
678
679 /* update sb_versionnum for the clearing of the morebits */
680 if (!sbp->sb_features2)
681 mp->m_update_sb = true;
682 }
683
684 /* always use v2 inodes by default now */
685 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
686 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
687 mp->m_update_sb = true;
688 }
689
690 /*
691 * Check if sb_agblocks is aligned at stripe boundary
692 * If sb_agblocks is NOT aligned turn off m_dalign since
693 * allocator alignment is within an ag, therefore ag has
694 * to be aligned at stripe boundary.
695 */
696 error = xfs_update_alignment(mp);
697 if (error)
698 goto out;
699
700 xfs_alloc_compute_maxlevels(mp);
701 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
702 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
703 xfs_ialloc_compute_maxlevels(mp);
704 xfs_rmapbt_compute_maxlevels(mp);
705 xfs_refcountbt_compute_maxlevels(mp);
706
707 xfs_set_maxicount(mp);
708
709 /* enable fail_at_unmount as default */
710 mp->m_fail_unmount = true;
711
712 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
713 if (error)
714 goto out;
715
716 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
717 &mp->m_kobj, "stats");
718 if (error)
719 goto out_remove_sysfs;
720
721 error = xfs_error_sysfs_init(mp);
722 if (error)
723 goto out_del_stats;
724
725 error = xfs_errortag_init(mp);
726 if (error)
727 goto out_remove_error_sysfs;
728
729 error = xfs_uuid_mount(mp);
730 if (error)
731 goto out_remove_errortag;
732
733 /*
734 * Set the minimum read and write sizes
735 */
736 xfs_set_rw_sizes(mp);
737
738 /* set the low space thresholds for dynamic preallocation */
739 xfs_set_low_space_thresholds(mp);
740
741 /*
742 * Set the inode cluster size.
743 * This may still be overridden by the file system
744 * block size if it is larger than the chosen cluster size.
745 *
746 * For v5 filesystems, scale the cluster size with the inode size to
747 * keep a constant ratio of inode per cluster buffer, but only if mkfs
748 * has set the inode alignment value appropriately for larger cluster
749 * sizes.
750 */
751 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
752 if (xfs_sb_version_hascrc(&mp->m_sb)) {
753 int new_size = mp->m_inode_cluster_size;
754
755 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
756 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
757 mp->m_inode_cluster_size = new_size;
758 }
759
760 /*
761 * If enabled, sparse inode chunk alignment is expected to match the
762 * cluster size. Full inode chunk alignment must match the chunk size,
763 * but that is checked on sb read verification...
764 */
765 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
766 mp->m_sb.sb_spino_align !=
767 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
768 xfs_warn(mp,
769 "Sparse inode block alignment (%u) must match cluster size (%llu).",
770 mp->m_sb.sb_spino_align,
771 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
772 error = -EINVAL;
773 goto out_remove_uuid;
774 }
775
776 /*
777 * Set inode alignment fields
778 */
779 xfs_set_inoalignment(mp);
780
781 /*
782 * Check that the data (and log if separate) is an ok size.
783 */
784 error = xfs_check_sizes(mp);
785 if (error)
786 goto out_remove_uuid;
787
788 /*
789 * Initialize realtime fields in the mount structure
790 */
791 error = xfs_rtmount_init(mp);
792 if (error) {
793 xfs_warn(mp, "RT mount failed");
794 goto out_remove_uuid;
795 }
796
797 /*
798 * Copies the low order bits of the timestamp and the randomly
799 * set "sequence" number out of a UUID.
800 */
801 mp->m_fixedfsid[0] =
802 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
803 get_unaligned_be16(&sbp->sb_uuid.b[4]);
804 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
805
806 error = xfs_da_mount(mp);
807 if (error) {
808 xfs_warn(mp, "Failed dir/attr init: %d", error);
809 goto out_remove_uuid;
810 }
811
812 /*
813 * Initialize the precomputed transaction reservations values.
814 */
815 xfs_trans_init(mp);
816
817 /*
818 * Allocate and initialize the per-ag data.
819 */
820 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
821 if (error) {
822 xfs_warn(mp, "Failed per-ag init: %d", error);
823 goto out_free_dir;
824 }
825
826 if (!sbp->sb_logblocks) {
827 xfs_warn(mp, "no log defined");
828 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
829 error = -EFSCORRUPTED;
830 goto out_free_perag;
831 }
832
833 /*
834 * Log's mount-time initialization. The first part of recovery can place
835 * some items on the AIL, to be handled when recovery is finished or
836 * cancelled.
837 */
838 error = xfs_log_mount(mp, mp->m_logdev_targp,
839 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
840 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
841 if (error) {
842 xfs_warn(mp, "log mount failed");
843 goto out_fail_wait;
844 }
845
846 /*
847 * Now the log is mounted, we know if it was an unclean shutdown or
848 * not. If it was, with the first phase of recovery has completed, we
849 * have consistent AG blocks on disk. We have not recovered EFIs yet,
850 * but they are recovered transactionally in the second recovery phase
851 * later.
852 *
853 * Hence we can safely re-initialise incore superblock counters from
854 * the per-ag data. These may not be correct if the filesystem was not
855 * cleanly unmounted, so we need to wait for recovery to finish before
856 * doing this.
857 *
858 * If the filesystem was cleanly unmounted, then we can trust the
859 * values in the superblock to be correct and we don't need to do
860 * anything here.
861 *
862 * If we are currently making the filesystem, the initialisation will
863 * fail as the perag data is in an undefined state.
864 */
865 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
866 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
867 !mp->m_sb.sb_inprogress) {
868 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
869 if (error)
870 goto out_log_dealloc;
871 }
872
873 /*
874 * Get and sanity-check the root inode.
875 * Save the pointer to it in the mount structure.
876 */
877 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
878 if (error) {
879 xfs_warn(mp, "failed to read root inode");
880 goto out_log_dealloc;
881 }
882
883 ASSERT(rip != NULL);
884
885 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
886 xfs_warn(mp, "corrupted root inode %llu: not a directory",
887 (unsigned long long)rip->i_ino);
888 xfs_iunlock(rip, XFS_ILOCK_EXCL);
889 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
890 mp);
891 error = -EFSCORRUPTED;
892 goto out_rele_rip;
893 }
894 mp->m_rootip = rip; /* save it */
895
896 xfs_iunlock(rip, XFS_ILOCK_EXCL);
897
898 /*
899 * Initialize realtime inode pointers in the mount structure
900 */
901 error = xfs_rtmount_inodes(mp);
902 if (error) {
903 /*
904 * Free up the root inode.
905 */
906 xfs_warn(mp, "failed to read RT inodes");
907 goto out_rele_rip;
908 }
909
910 /*
911 * If this is a read-only mount defer the superblock updates until
912 * the next remount into writeable mode. Otherwise we would never
913 * perform the update e.g. for the root filesystem.
914 */
915 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
916 error = xfs_sync_sb(mp, false);
917 if (error) {
918 xfs_warn(mp, "failed to write sb changes");
919 goto out_rtunmount;
920 }
921 }
922
923 /*
924 * Initialise the XFS quota management subsystem for this mount
925 */
926 if (XFS_IS_QUOTA_RUNNING(mp)) {
927 error = xfs_qm_newmount(mp, "amount, "aflags);
928 if (error)
929 goto out_rtunmount;
930 } else {
931 ASSERT(!XFS_IS_QUOTA_ON(mp));
932
933 /*
934 * If a file system had quotas running earlier, but decided to
935 * mount without -o uquota/pquota/gquota options, revoke the
936 * quotachecked license.
937 */
938 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
939 xfs_notice(mp, "resetting quota flags");
940 error = xfs_mount_reset_sbqflags(mp);
941 if (error)
942 goto out_rtunmount;
943 }
944 }
945
946 /*
947 * Finish recovering the file system. This part needed to be delayed
948 * until after the root and real-time bitmap inodes were consistently
949 * read in.
950 */
951 error = xfs_log_mount_finish(mp);
952 if (error) {
953 xfs_warn(mp, "log mount finish failed");
954 goto out_rtunmount;
955 }
956
957 /*
958 * Now the log is fully replayed, we can transition to full read-only
959 * mode for read-only mounts. This will sync all the metadata and clean
960 * the log so that the recovery we just performed does not have to be
961 * replayed again on the next mount.
962 *
963 * We use the same quiesce mechanism as the rw->ro remount, as they are
964 * semantically identical operations.
965 */
966 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
967 XFS_MOUNT_RDONLY) {
968 xfs_quiesce_attr(mp);
969 }
970
971 /*
972 * Complete the quota initialisation, post-log-replay component.
973 */
974 if (quotamount) {
975 ASSERT(mp->m_qflags == 0);
976 mp->m_qflags = quotaflags;
977
978 xfs_qm_mount_quotas(mp);
979 }
980
981 /*
982 * Now we are mounted, reserve a small amount of unused space for
983 * privileged transactions. This is needed so that transaction
984 * space required for critical operations can dip into this pool
985 * when at ENOSPC. This is needed for operations like create with
986 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
987 * are not allowed to use this reserved space.
988 *
989 * This may drive us straight to ENOSPC on mount, but that implies
990 * we were already there on the last unmount. Warn if this occurs.
991 */
992 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
993 resblks = xfs_default_resblks(mp);
994 error = xfs_reserve_blocks(mp, &resblks, NULL);
995 if (error)
996 xfs_warn(mp,
997 "Unable to allocate reserve blocks. Continuing without reserve pool.");
998
999 /* Recover any CoW blocks that never got remapped. */
1000 error = xfs_reflink_recover_cow(mp);
1001 if (error) {
1002 xfs_err(mp,
1003 "Error %d recovering leftover CoW allocations.", error);
1004 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1005 goto out_quota;
1006 }
1007
1008 /* Reserve AG blocks for future btree expansion. */
1009 error = xfs_fs_reserve_ag_blocks(mp);
1010 if (error && error != -ENOSPC)
1011 goto out_agresv;
1012 }
1013
1014 return 0;
1015
1016 out_agresv:
1017 xfs_fs_unreserve_ag_blocks(mp);
1018 out_quota:
1019 xfs_qm_unmount_quotas(mp);
1020 out_rtunmount:
1021 xfs_rtunmount_inodes(mp);
1022 out_rele_rip:
1023 IRELE(rip);
1024 /* Clean out dquots that might be in memory after quotacheck. */
1025 xfs_qm_unmount(mp);
1026 /*
1027 * Cancel all delayed reclaim work and reclaim the inodes directly.
1028 * We have to do this /after/ rtunmount and qm_unmount because those
1029 * two will have scheduled delayed reclaim for the rt/quota inodes.
1030 *
1031 * This is slightly different from the unmountfs call sequence
1032 * because we could be tearing down a partially set up mount. In
1033 * particular, if log_mount_finish fails we bail out without calling
1034 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1035 * quota inodes.
1036 */
1037 cancel_delayed_work_sync(&mp->m_reclaim_work);
1038 xfs_reclaim_inodes(mp, SYNC_WAIT);
1039 out_log_dealloc:
1040 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1041 xfs_log_mount_cancel(mp);
1042 out_fail_wait:
1043 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1044 xfs_wait_buftarg(mp->m_logdev_targp);
1045 xfs_wait_buftarg(mp->m_ddev_targp);
1046 out_free_perag:
1047 xfs_free_perag(mp);
1048 out_free_dir:
1049 xfs_da_unmount(mp);
1050 out_remove_uuid:
1051 xfs_uuid_unmount(mp);
1052 out_remove_errortag:
1053 xfs_errortag_del(mp);
1054 out_remove_error_sysfs:
1055 xfs_error_sysfs_del(mp);
1056 out_del_stats:
1057 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1058 out_remove_sysfs:
1059 xfs_sysfs_del(&mp->m_kobj);
1060 out:
1061 return error;
1062}
1063
1064/*
1065 * This flushes out the inodes,dquots and the superblock, unmounts the
1066 * log and makes sure that incore structures are freed.
1067 */
1068void
1069xfs_unmountfs(
1070 struct xfs_mount *mp)
1071{
1072 uint64_t resblks;
1073 int error;
1074
1075 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1076 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1077
1078 xfs_fs_unreserve_ag_blocks(mp);
1079 xfs_qm_unmount_quotas(mp);
1080 xfs_rtunmount_inodes(mp);
1081 IRELE(mp->m_rootip);
1082
1083 /*
1084 * We can potentially deadlock here if we have an inode cluster
1085 * that has been freed has its buffer still pinned in memory because
1086 * the transaction is still sitting in a iclog. The stale inodes
1087 * on that buffer will have their flush locks held until the
1088 * transaction hits the disk and the callbacks run. the inode
1089 * flush takes the flush lock unconditionally and with nothing to
1090 * push out the iclog we will never get that unlocked. hence we
1091 * need to force the log first.
1092 */
1093 xfs_log_force(mp, XFS_LOG_SYNC);
1094
1095 /*
1096 * Wait for all busy extents to be freed, including completion of
1097 * any discard operation.
1098 */
1099 xfs_extent_busy_wait_all(mp);
1100 flush_workqueue(xfs_discard_wq);
1101
1102 /*
1103 * We now need to tell the world we are unmounting. This will allow
1104 * us to detect that the filesystem is going away and we should error
1105 * out anything that we have been retrying in the background. This will
1106 * prevent neverending retries in AIL pushing from hanging the unmount.
1107 */
1108 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1109
1110 /*
1111 * Flush all pending changes from the AIL.
1112 */
1113 xfs_ail_push_all_sync(mp->m_ail);
1114
1115 /*
1116 * And reclaim all inodes. At this point there should be no dirty
1117 * inodes and none should be pinned or locked, but use synchronous
1118 * reclaim just to be sure. We can stop background inode reclaim
1119 * here as well if it is still running.
1120 */
1121 cancel_delayed_work_sync(&mp->m_reclaim_work);
1122 xfs_reclaim_inodes(mp, SYNC_WAIT);
1123
1124 xfs_qm_unmount(mp);
1125
1126 /*
1127 * Unreserve any blocks we have so that when we unmount we don't account
1128 * the reserved free space as used. This is really only necessary for
1129 * lazy superblock counting because it trusts the incore superblock
1130 * counters to be absolutely correct on clean unmount.
1131 *
1132 * We don't bother correcting this elsewhere for lazy superblock
1133 * counting because on mount of an unclean filesystem we reconstruct the
1134 * correct counter value and this is irrelevant.
1135 *
1136 * For non-lazy counter filesystems, this doesn't matter at all because
1137 * we only every apply deltas to the superblock and hence the incore
1138 * value does not matter....
1139 */
1140 resblks = 0;
1141 error = xfs_reserve_blocks(mp, &resblks, NULL);
1142 if (error)
1143 xfs_warn(mp, "Unable to free reserved block pool. "
1144 "Freespace may not be correct on next mount.");
1145
1146 error = xfs_log_sbcount(mp);
1147 if (error)
1148 xfs_warn(mp, "Unable to update superblock counters. "
1149 "Freespace may not be correct on next mount.");
1150
1151
1152 xfs_log_unmount(mp);
1153 xfs_da_unmount(mp);
1154 xfs_uuid_unmount(mp);
1155
1156#if defined(DEBUG)
1157 xfs_errortag_clearall(mp);
1158#endif
1159 xfs_free_perag(mp);
1160
1161 xfs_errortag_del(mp);
1162 xfs_error_sysfs_del(mp);
1163 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1164 xfs_sysfs_del(&mp->m_kobj);
1165}
1166
1167/*
1168 * Determine whether modifications can proceed. The caller specifies the minimum
1169 * freeze level for which modifications should not be allowed. This allows
1170 * certain operations to proceed while the freeze sequence is in progress, if
1171 * necessary.
1172 */
1173bool
1174xfs_fs_writable(
1175 struct xfs_mount *mp,
1176 int level)
1177{
1178 ASSERT(level > SB_UNFROZEN);
1179 if ((mp->m_super->s_writers.frozen >= level) ||
1180 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1181 return false;
1182
1183 return true;
1184}
1185
1186/*
1187 * xfs_log_sbcount
1188 *
1189 * Sync the superblock counters to disk.
1190 *
1191 * Note this code can be called during the process of freezing, so we use the
1192 * transaction allocator that does not block when the transaction subsystem is
1193 * in its frozen state.
1194 */
1195int
1196xfs_log_sbcount(xfs_mount_t *mp)
1197{
1198 /* allow this to proceed during the freeze sequence... */
1199 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1200 return 0;
1201
1202 /*
1203 * we don't need to do this if we are updating the superblock
1204 * counters on every modification.
1205 */
1206 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1207 return 0;
1208
1209 return xfs_sync_sb(mp, true);
1210}
1211
1212/*
1213 * Deltas for the inode count are +/-64, hence we use a large batch size
1214 * of 128 so we don't need to take the counter lock on every update.
1215 */
1216#define XFS_ICOUNT_BATCH 128
1217int
1218xfs_mod_icount(
1219 struct xfs_mount *mp,
1220 int64_t delta)
1221{
1222 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1223 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1224 ASSERT(0);
1225 percpu_counter_add(&mp->m_icount, -delta);
1226 return -EINVAL;
1227 }
1228 return 0;
1229}
1230
1231int
1232xfs_mod_ifree(
1233 struct xfs_mount *mp,
1234 int64_t delta)
1235{
1236 percpu_counter_add(&mp->m_ifree, delta);
1237 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1238 ASSERT(0);
1239 percpu_counter_add(&mp->m_ifree, -delta);
1240 return -EINVAL;
1241 }
1242 return 0;
1243}
1244
1245/*
1246 * Deltas for the block count can vary from 1 to very large, but lock contention
1247 * only occurs on frequent small block count updates such as in the delayed
1248 * allocation path for buffered writes (page a time updates). Hence we set
1249 * a large batch count (1024) to minimise global counter updates except when
1250 * we get near to ENOSPC and we have to be very accurate with our updates.
1251 */
1252#define XFS_FDBLOCKS_BATCH 1024
1253int
1254xfs_mod_fdblocks(
1255 struct xfs_mount *mp,
1256 int64_t delta,
1257 bool rsvd)
1258{
1259 int64_t lcounter;
1260 long long res_used;
1261 s32 batch;
1262
1263 if (delta > 0) {
1264 /*
1265 * If the reserve pool is depleted, put blocks back into it
1266 * first. Most of the time the pool is full.
1267 */
1268 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1269 percpu_counter_add(&mp->m_fdblocks, delta);
1270 return 0;
1271 }
1272
1273 spin_lock(&mp->m_sb_lock);
1274 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1275
1276 if (res_used > delta) {
1277 mp->m_resblks_avail += delta;
1278 } else {
1279 delta -= res_used;
1280 mp->m_resblks_avail = mp->m_resblks;
1281 percpu_counter_add(&mp->m_fdblocks, delta);
1282 }
1283 spin_unlock(&mp->m_sb_lock);
1284 return 0;
1285 }
1286
1287 /*
1288 * Taking blocks away, need to be more accurate the closer we
1289 * are to zero.
1290 *
1291 * If the counter has a value of less than 2 * max batch size,
1292 * then make everything serialise as we are real close to
1293 * ENOSPC.
1294 */
1295 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1296 XFS_FDBLOCKS_BATCH) < 0)
1297 batch = 1;
1298 else
1299 batch = XFS_FDBLOCKS_BATCH;
1300
1301 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1302 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1303 XFS_FDBLOCKS_BATCH) >= 0) {
1304 /* we had space! */
1305 return 0;
1306 }
1307
1308 /*
1309 * lock up the sb for dipping into reserves before releasing the space
1310 * that took us to ENOSPC.
1311 */
1312 spin_lock(&mp->m_sb_lock);
1313 percpu_counter_add(&mp->m_fdblocks, -delta);
1314 if (!rsvd)
1315 goto fdblocks_enospc;
1316
1317 lcounter = (long long)mp->m_resblks_avail + delta;
1318 if (lcounter >= 0) {
1319 mp->m_resblks_avail = lcounter;
1320 spin_unlock(&mp->m_sb_lock);
1321 return 0;
1322 }
1323 printk_once(KERN_WARNING
1324 "Filesystem \"%s\": reserve blocks depleted! "
1325 "Consider increasing reserve pool size.",
1326 mp->m_fsname);
1327fdblocks_enospc:
1328 spin_unlock(&mp->m_sb_lock);
1329 return -ENOSPC;
1330}
1331
1332int
1333xfs_mod_frextents(
1334 struct xfs_mount *mp,
1335 int64_t delta)
1336{
1337 int64_t lcounter;
1338 int ret = 0;
1339
1340 spin_lock(&mp->m_sb_lock);
1341 lcounter = mp->m_sb.sb_frextents + delta;
1342 if (lcounter < 0)
1343 ret = -ENOSPC;
1344 else
1345 mp->m_sb.sb_frextents = lcounter;
1346 spin_unlock(&mp->m_sb_lock);
1347 return ret;
1348}
1349
1350/*
1351 * xfs_getsb() is called to obtain the buffer for the superblock.
1352 * The buffer is returned locked and read in from disk.
1353 * The buffer should be released with a call to xfs_brelse().
1354 *
1355 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1356 * the superblock buffer if it can be locked without sleeping.
1357 * If it can't then we'll return NULL.
1358 */
1359struct xfs_buf *
1360xfs_getsb(
1361 struct xfs_mount *mp,
1362 int flags)
1363{
1364 struct xfs_buf *bp = mp->m_sb_bp;
1365
1366 if (!xfs_buf_trylock(bp)) {
1367 if (flags & XBF_TRYLOCK)
1368 return NULL;
1369 xfs_buf_lock(bp);
1370 }
1371
1372 xfs_buf_hold(bp);
1373 ASSERT(bp->b_flags & XBF_DONE);
1374 return bp;
1375}
1376
1377/*
1378 * Used to free the superblock along various error paths.
1379 */
1380void
1381xfs_freesb(
1382 struct xfs_mount *mp)
1383{
1384 struct xfs_buf *bp = mp->m_sb_bp;
1385
1386 xfs_buf_lock(bp);
1387 mp->m_sb_bp = NULL;
1388 xfs_buf_relse(bp);
1389}
1390
1391/*
1392 * If the underlying (data/log/rt) device is readonly, there are some
1393 * operations that cannot proceed.
1394 */
1395int
1396xfs_dev_is_read_only(
1397 struct xfs_mount *mp,
1398 char *message)
1399{
1400 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1401 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1402 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1403 xfs_notice(mp, "%s required on read-only device.", message);
1404 xfs_notice(mp, "write access unavailable, cannot proceed.");
1405 return -EROFS;
1406 }
1407 return 0;
1408}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_error.h"
25#include "xfs_quota.h"
26#include "xfs_fsops.h"
27#include "xfs_icache.h"
28#include "xfs_sysfs.h"
29#include "xfs_rmap_btree.h"
30#include "xfs_refcount_btree.h"
31#include "xfs_reflink.h"
32#include "xfs_extent_busy.h"
33#include "xfs_health.h"
34#include "xfs_trace.h"
35
36static DEFINE_MUTEX(xfs_uuid_table_mutex);
37static int xfs_uuid_table_size;
38static uuid_t *xfs_uuid_table;
39
40void
41xfs_uuid_table_free(void)
42{
43 if (xfs_uuid_table_size == 0)
44 return;
45 kmem_free(xfs_uuid_table);
46 xfs_uuid_table = NULL;
47 xfs_uuid_table_size = 0;
48}
49
50/*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54STATIC int
55xfs_uuid_mount(
56 struct xfs_mount *mp)
57{
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
60
61 /* Publish UUID in struct super_block */
62 uuid_copy(&mp->m_super->s_uuid, uuid);
63
64 if (mp->m_flags & XFS_MOUNT_NOUUID)
65 return 0;
66
67 if (uuid_is_null(uuid)) {
68 xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 return -EINVAL;
70 }
71
72 mutex_lock(&xfs_uuid_table_mutex);
73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 if (uuid_is_null(&xfs_uuid_table[i])) {
75 hole = i;
76 continue;
77 }
78 if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 goto out_duplicate;
80 }
81
82 if (hole < 0) {
83 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 0);
86 hole = xfs_uuid_table_size++;
87 }
88 xfs_uuid_table[hole] = *uuid;
89 mutex_unlock(&xfs_uuid_table_mutex);
90
91 return 0;
92
93 out_duplicate:
94 mutex_unlock(&xfs_uuid_table_mutex);
95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 return -EINVAL;
97}
98
99STATIC void
100xfs_uuid_unmount(
101 struct xfs_mount *mp)
102{
103 uuid_t *uuid = &mp->m_sb.sb_uuid;
104 int i;
105
106 if (mp->m_flags & XFS_MOUNT_NOUUID)
107 return;
108
109 mutex_lock(&xfs_uuid_table_mutex);
110 for (i = 0; i < xfs_uuid_table_size; i++) {
111 if (uuid_is_null(&xfs_uuid_table[i]))
112 continue;
113 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 continue;
115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 break;
117 }
118 ASSERT(i < xfs_uuid_table_size);
119 mutex_unlock(&xfs_uuid_table_mutex);
120}
121
122
123STATIC void
124__xfs_free_perag(
125 struct rcu_head *head)
126{
127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128
129 ASSERT(atomic_read(&pag->pag_ref) == 0);
130 kmem_free(pag);
131}
132
133/*
134 * Free up the per-ag resources associated with the mount structure.
135 */
136STATIC void
137xfs_free_perag(
138 xfs_mount_t *mp)
139{
140 xfs_agnumber_t agno;
141 struct xfs_perag *pag;
142
143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 spin_lock(&mp->m_perag_lock);
145 pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 spin_unlock(&mp->m_perag_lock);
147 ASSERT(pag);
148 ASSERT(atomic_read(&pag->pag_ref) == 0);
149 xfs_iunlink_destroy(pag);
150 xfs_buf_hash_destroy(pag);
151 call_rcu(&pag->rcu_head, __xfs_free_perag);
152 }
153}
154
155/*
156 * Check size of device based on the (data/realtime) block count.
157 * Note: this check is used by the growfs code as well as mount.
158 */
159int
160xfs_sb_validate_fsb_count(
161 xfs_sb_t *sbp,
162 uint64_t nblocks)
163{
164 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
165 ASSERT(sbp->sb_blocklog >= BBSHIFT);
166
167 /* Limited by ULONG_MAX of page cache index */
168 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
169 return -EFBIG;
170 return 0;
171}
172
173int
174xfs_initialize_perag(
175 xfs_mount_t *mp,
176 xfs_agnumber_t agcount,
177 xfs_agnumber_t *maxagi)
178{
179 xfs_agnumber_t index;
180 xfs_agnumber_t first_initialised = NULLAGNUMBER;
181 xfs_perag_t *pag;
182 int error = -ENOMEM;
183
184 /*
185 * Walk the current per-ag tree so we don't try to initialise AGs
186 * that already exist (growfs case). Allocate and insert all the
187 * AGs we don't find ready for initialisation.
188 */
189 for (index = 0; index < agcount; index++) {
190 pag = xfs_perag_get(mp, index);
191 if (pag) {
192 xfs_perag_put(pag);
193 continue;
194 }
195
196 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
197 if (!pag)
198 goto out_unwind_new_pags;
199 pag->pag_agno = index;
200 pag->pag_mount = mp;
201 spin_lock_init(&pag->pag_ici_lock);
202 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
203 if (xfs_buf_hash_init(pag))
204 goto out_free_pag;
205 init_waitqueue_head(&pag->pagb_wait);
206 spin_lock_init(&pag->pagb_lock);
207 pag->pagb_count = 0;
208 pag->pagb_tree = RB_ROOT;
209
210 if (radix_tree_preload(GFP_NOFS))
211 goto out_hash_destroy;
212
213 spin_lock(&mp->m_perag_lock);
214 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
215 WARN_ON_ONCE(1);
216 spin_unlock(&mp->m_perag_lock);
217 radix_tree_preload_end();
218 error = -EEXIST;
219 goto out_hash_destroy;
220 }
221 spin_unlock(&mp->m_perag_lock);
222 radix_tree_preload_end();
223 /* first new pag is fully initialized */
224 if (first_initialised == NULLAGNUMBER)
225 first_initialised = index;
226 error = xfs_iunlink_init(pag);
227 if (error)
228 goto out_hash_destroy;
229 spin_lock_init(&pag->pag_state_lock);
230 }
231
232 index = xfs_set_inode_alloc(mp, agcount);
233
234 if (maxagi)
235 *maxagi = index;
236
237 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
238 return 0;
239
240out_hash_destroy:
241 xfs_buf_hash_destroy(pag);
242out_free_pag:
243 kmem_free(pag);
244out_unwind_new_pags:
245 /* unwind any prior newly initialized pags */
246 for (index = first_initialised; index < agcount; index++) {
247 pag = radix_tree_delete(&mp->m_perag_tree, index);
248 if (!pag)
249 break;
250 xfs_buf_hash_destroy(pag);
251 xfs_iunlink_destroy(pag);
252 kmem_free(pag);
253 }
254 return error;
255}
256
257/*
258 * xfs_readsb
259 *
260 * Does the initial read of the superblock.
261 */
262int
263xfs_readsb(
264 struct xfs_mount *mp,
265 int flags)
266{
267 unsigned int sector_size;
268 struct xfs_buf *bp;
269 struct xfs_sb *sbp = &mp->m_sb;
270 int error;
271 int loud = !(flags & XFS_MFSI_QUIET);
272 const struct xfs_buf_ops *buf_ops;
273
274 ASSERT(mp->m_sb_bp == NULL);
275 ASSERT(mp->m_ddev_targp != NULL);
276
277 /*
278 * For the initial read, we must guess at the sector
279 * size based on the block device. It's enough to
280 * get the sb_sectsize out of the superblock and
281 * then reread with the proper length.
282 * We don't verify it yet, because it may not be complete.
283 */
284 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
285 buf_ops = NULL;
286
287 /*
288 * Allocate a (locked) buffer to hold the superblock. This will be kept
289 * around at all times to optimize access to the superblock. Therefore,
290 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
291 * elevated.
292 */
293reread:
294 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
295 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
296 buf_ops);
297 if (error) {
298 if (loud)
299 xfs_warn(mp, "SB validate failed with error %d.", error);
300 /* bad CRC means corrupted metadata */
301 if (error == -EFSBADCRC)
302 error = -EFSCORRUPTED;
303 return error;
304 }
305
306 /*
307 * Initialize the mount structure from the superblock.
308 */
309 xfs_sb_from_disk(sbp, bp->b_addr);
310
311 /*
312 * If we haven't validated the superblock, do so now before we try
313 * to check the sector size and reread the superblock appropriately.
314 */
315 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
316 if (loud)
317 xfs_warn(mp, "Invalid superblock magic number");
318 error = -EINVAL;
319 goto release_buf;
320 }
321
322 /*
323 * We must be able to do sector-sized and sector-aligned IO.
324 */
325 if (sector_size > sbp->sb_sectsize) {
326 if (loud)
327 xfs_warn(mp, "device supports %u byte sectors (not %u)",
328 sector_size, sbp->sb_sectsize);
329 error = -ENOSYS;
330 goto release_buf;
331 }
332
333 if (buf_ops == NULL) {
334 /*
335 * Re-read the superblock so the buffer is correctly sized,
336 * and properly verified.
337 */
338 xfs_buf_relse(bp);
339 sector_size = sbp->sb_sectsize;
340 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
341 goto reread;
342 }
343
344 xfs_reinit_percpu_counters(mp);
345
346 /* no need to be quiet anymore, so reset the buf ops */
347 bp->b_ops = &xfs_sb_buf_ops;
348
349 mp->m_sb_bp = bp;
350 xfs_buf_unlock(bp);
351 return 0;
352
353release_buf:
354 xfs_buf_relse(bp);
355 return error;
356}
357
358/*
359 * If the sunit/swidth change would move the precomputed root inode value, we
360 * must reject the ondisk change because repair will stumble over that.
361 * However, we allow the mount to proceed because we never rejected this
362 * combination before. Returns true to update the sb, false otherwise.
363 */
364static inline int
365xfs_check_new_dalign(
366 struct xfs_mount *mp,
367 int new_dalign,
368 bool *update_sb)
369{
370 struct xfs_sb *sbp = &mp->m_sb;
371 xfs_ino_t calc_ino;
372
373 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
374 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
375
376 if (sbp->sb_rootino == calc_ino) {
377 *update_sb = true;
378 return 0;
379 }
380
381 xfs_warn(mp,
382"Cannot change stripe alignment; would require moving root inode.");
383
384 /*
385 * XXX: Next time we add a new incompat feature, this should start
386 * returning -EINVAL to fail the mount. Until then, spit out a warning
387 * that we're ignoring the administrator's instructions.
388 */
389 xfs_warn(mp, "Skipping superblock stripe alignment update.");
390 *update_sb = false;
391 return 0;
392}
393
394/*
395 * If we were provided with new sunit/swidth values as mount options, make sure
396 * that they pass basic alignment and superblock feature checks, and convert
397 * them into the same units (FSB) that everything else expects. This step
398 * /must/ be done before computing the inode geometry.
399 */
400STATIC int
401xfs_validate_new_dalign(
402 struct xfs_mount *mp)
403{
404 if (mp->m_dalign == 0)
405 return 0;
406
407 /*
408 * If stripe unit and stripe width are not multiples
409 * of the fs blocksize turn off alignment.
410 */
411 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
412 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
413 xfs_warn(mp,
414 "alignment check failed: sunit/swidth vs. blocksize(%d)",
415 mp->m_sb.sb_blocksize);
416 return -EINVAL;
417 } else {
418 /*
419 * Convert the stripe unit and width to FSBs.
420 */
421 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
422 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
423 xfs_warn(mp,
424 "alignment check failed: sunit/swidth vs. agsize(%d)",
425 mp->m_sb.sb_agblocks);
426 return -EINVAL;
427 } else if (mp->m_dalign) {
428 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
429 } else {
430 xfs_warn(mp,
431 "alignment check failed: sunit(%d) less than bsize(%d)",
432 mp->m_dalign, mp->m_sb.sb_blocksize);
433 return -EINVAL;
434 }
435 }
436
437 if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
438 xfs_warn(mp,
439"cannot change alignment: superblock does not support data alignment");
440 return -EINVAL;
441 }
442
443 return 0;
444}
445
446/* Update alignment values based on mount options and sb values. */
447STATIC int
448xfs_update_alignment(
449 struct xfs_mount *mp)
450{
451 struct xfs_sb *sbp = &mp->m_sb;
452
453 if (mp->m_dalign) {
454 bool update_sb;
455 int error;
456
457 if (sbp->sb_unit == mp->m_dalign &&
458 sbp->sb_width == mp->m_swidth)
459 return 0;
460
461 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
462 if (error || !update_sb)
463 return error;
464
465 sbp->sb_unit = mp->m_dalign;
466 sbp->sb_width = mp->m_swidth;
467 mp->m_update_sb = true;
468 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
469 xfs_sb_version_hasdalign(&mp->m_sb)) {
470 mp->m_dalign = sbp->sb_unit;
471 mp->m_swidth = sbp->sb_width;
472 }
473
474 return 0;
475}
476
477/*
478 * precalculate the low space thresholds for dynamic speculative preallocation.
479 */
480void
481xfs_set_low_space_thresholds(
482 struct xfs_mount *mp)
483{
484 int i;
485
486 for (i = 0; i < XFS_LOWSP_MAX; i++) {
487 uint64_t space = mp->m_sb.sb_dblocks;
488
489 do_div(space, 100);
490 mp->m_low_space[i] = space * (i + 1);
491 }
492}
493
494/*
495 * Check that the data (and log if separate) is an ok size.
496 */
497STATIC int
498xfs_check_sizes(
499 struct xfs_mount *mp)
500{
501 struct xfs_buf *bp;
502 xfs_daddr_t d;
503 int error;
504
505 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
506 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
507 xfs_warn(mp, "filesystem size mismatch detected");
508 return -EFBIG;
509 }
510 error = xfs_buf_read_uncached(mp->m_ddev_targp,
511 d - XFS_FSS_TO_BB(mp, 1),
512 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
513 if (error) {
514 xfs_warn(mp, "last sector read failed");
515 return error;
516 }
517 xfs_buf_relse(bp);
518
519 if (mp->m_logdev_targp == mp->m_ddev_targp)
520 return 0;
521
522 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
523 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
524 xfs_warn(mp, "log size mismatch detected");
525 return -EFBIG;
526 }
527 error = xfs_buf_read_uncached(mp->m_logdev_targp,
528 d - XFS_FSB_TO_BB(mp, 1),
529 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
530 if (error) {
531 xfs_warn(mp, "log device read failed");
532 return error;
533 }
534 xfs_buf_relse(bp);
535 return 0;
536}
537
538/*
539 * Clear the quotaflags in memory and in the superblock.
540 */
541int
542xfs_mount_reset_sbqflags(
543 struct xfs_mount *mp)
544{
545 mp->m_qflags = 0;
546
547 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
548 if (mp->m_sb.sb_qflags == 0)
549 return 0;
550 spin_lock(&mp->m_sb_lock);
551 mp->m_sb.sb_qflags = 0;
552 spin_unlock(&mp->m_sb_lock);
553
554 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
555 return 0;
556
557 return xfs_sync_sb(mp, false);
558}
559
560uint64_t
561xfs_default_resblks(xfs_mount_t *mp)
562{
563 uint64_t resblks;
564
565 /*
566 * We default to 5% or 8192 fsbs of space reserved, whichever is
567 * smaller. This is intended to cover concurrent allocation
568 * transactions when we initially hit enospc. These each require a 4
569 * block reservation. Hence by default we cover roughly 2000 concurrent
570 * allocation reservations.
571 */
572 resblks = mp->m_sb.sb_dblocks;
573 do_div(resblks, 20);
574 resblks = min_t(uint64_t, resblks, 8192);
575 return resblks;
576}
577
578/* Ensure the summary counts are correct. */
579STATIC int
580xfs_check_summary_counts(
581 struct xfs_mount *mp)
582{
583 /*
584 * The AG0 superblock verifier rejects in-progress filesystems,
585 * so we should never see the flag set this far into mounting.
586 */
587 if (mp->m_sb.sb_inprogress) {
588 xfs_err(mp, "sb_inprogress set after log recovery??");
589 WARN_ON(1);
590 return -EFSCORRUPTED;
591 }
592
593 /*
594 * Now the log is mounted, we know if it was an unclean shutdown or
595 * not. If it was, with the first phase of recovery has completed, we
596 * have consistent AG blocks on disk. We have not recovered EFIs yet,
597 * but they are recovered transactionally in the second recovery phase
598 * later.
599 *
600 * If the log was clean when we mounted, we can check the summary
601 * counters. If any of them are obviously incorrect, we can recompute
602 * them from the AGF headers in the next step.
603 */
604 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
605 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
606 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
607 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
608 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
609
610 /*
611 * We can safely re-initialise incore superblock counters from the
612 * per-ag data. These may not be correct if the filesystem was not
613 * cleanly unmounted, so we waited for recovery to finish before doing
614 * this.
615 *
616 * If the filesystem was cleanly unmounted or the previous check did
617 * not flag anything weird, then we can trust the values in the
618 * superblock to be correct and we don't need to do anything here.
619 * Otherwise, recalculate the summary counters.
620 */
621 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
622 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
623 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
624 return 0;
625
626 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
627}
628
629/*
630 * This function does the following on an initial mount of a file system:
631 * - reads the superblock from disk and init the mount struct
632 * - if we're a 32-bit kernel, do a size check on the superblock
633 * so we don't mount terabyte filesystems
634 * - init mount struct realtime fields
635 * - allocate inode hash table for fs
636 * - init directory manager
637 * - perform recovery and init the log manager
638 */
639int
640xfs_mountfs(
641 struct xfs_mount *mp)
642{
643 struct xfs_sb *sbp = &(mp->m_sb);
644 struct xfs_inode *rip;
645 struct xfs_ino_geometry *igeo = M_IGEO(mp);
646 uint64_t resblks;
647 uint quotamount = 0;
648 uint quotaflags = 0;
649 int error = 0;
650
651 xfs_sb_mount_common(mp, sbp);
652
653 /*
654 * Check for a mismatched features2 values. Older kernels read & wrote
655 * into the wrong sb offset for sb_features2 on some platforms due to
656 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
657 * which made older superblock reading/writing routines swap it as a
658 * 64-bit value.
659 *
660 * For backwards compatibility, we make both slots equal.
661 *
662 * If we detect a mismatched field, we OR the set bits into the existing
663 * features2 field in case it has already been modified; we don't want
664 * to lose any features. We then update the bad location with the ORed
665 * value so that older kernels will see any features2 flags. The
666 * superblock writeback code ensures the new sb_features2 is copied to
667 * sb_bad_features2 before it is logged or written to disk.
668 */
669 if (xfs_sb_has_mismatched_features2(sbp)) {
670 xfs_warn(mp, "correcting sb_features alignment problem");
671 sbp->sb_features2 |= sbp->sb_bad_features2;
672 mp->m_update_sb = true;
673
674 /*
675 * Re-check for ATTR2 in case it was found in bad_features2
676 * slot.
677 */
678 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
679 !(mp->m_flags & XFS_MOUNT_NOATTR2))
680 mp->m_flags |= XFS_MOUNT_ATTR2;
681 }
682
683 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
684 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
685 xfs_sb_version_removeattr2(&mp->m_sb);
686 mp->m_update_sb = true;
687
688 /* update sb_versionnum for the clearing of the morebits */
689 if (!sbp->sb_features2)
690 mp->m_update_sb = true;
691 }
692
693 /* always use v2 inodes by default now */
694 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
695 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
696 mp->m_update_sb = true;
697 }
698
699 /*
700 * If we were given new sunit/swidth options, do some basic validation
701 * checks and convert the incore dalign and swidth values to the
702 * same units (FSB) that everything else uses. This /must/ happen
703 * before computing the inode geometry.
704 */
705 error = xfs_validate_new_dalign(mp);
706 if (error)
707 goto out;
708
709 xfs_alloc_compute_maxlevels(mp);
710 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
711 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
712 xfs_ialloc_setup_geometry(mp);
713 xfs_rmapbt_compute_maxlevels(mp);
714 xfs_refcountbt_compute_maxlevels(mp);
715
716 /*
717 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
718 * is NOT aligned turn off m_dalign since allocator alignment is within
719 * an ag, therefore ag has to be aligned at stripe boundary. Note that
720 * we must compute the free space and rmap btree geometry before doing
721 * this.
722 */
723 error = xfs_update_alignment(mp);
724 if (error)
725 goto out;
726
727 /* enable fail_at_unmount as default */
728 mp->m_fail_unmount = true;
729
730 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
731 NULL, mp->m_super->s_id);
732 if (error)
733 goto out;
734
735 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
736 &mp->m_kobj, "stats");
737 if (error)
738 goto out_remove_sysfs;
739
740 error = xfs_error_sysfs_init(mp);
741 if (error)
742 goto out_del_stats;
743
744 error = xfs_errortag_init(mp);
745 if (error)
746 goto out_remove_error_sysfs;
747
748 error = xfs_uuid_mount(mp);
749 if (error)
750 goto out_remove_errortag;
751
752 /*
753 * Update the preferred write size based on the information from the
754 * on-disk superblock.
755 */
756 mp->m_allocsize_log =
757 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
758 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
759
760 /* set the low space thresholds for dynamic preallocation */
761 xfs_set_low_space_thresholds(mp);
762
763 /*
764 * If enabled, sparse inode chunk alignment is expected to match the
765 * cluster size. Full inode chunk alignment must match the chunk size,
766 * but that is checked on sb read verification...
767 */
768 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
769 mp->m_sb.sb_spino_align !=
770 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
771 xfs_warn(mp,
772 "Sparse inode block alignment (%u) must match cluster size (%llu).",
773 mp->m_sb.sb_spino_align,
774 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
775 error = -EINVAL;
776 goto out_remove_uuid;
777 }
778
779 /*
780 * Check that the data (and log if separate) is an ok size.
781 */
782 error = xfs_check_sizes(mp);
783 if (error)
784 goto out_remove_uuid;
785
786 /*
787 * Initialize realtime fields in the mount structure
788 */
789 error = xfs_rtmount_init(mp);
790 if (error) {
791 xfs_warn(mp, "RT mount failed");
792 goto out_remove_uuid;
793 }
794
795 /*
796 * Copies the low order bits of the timestamp and the randomly
797 * set "sequence" number out of a UUID.
798 */
799 mp->m_fixedfsid[0] =
800 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
801 get_unaligned_be16(&sbp->sb_uuid.b[4]);
802 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
803
804 error = xfs_da_mount(mp);
805 if (error) {
806 xfs_warn(mp, "Failed dir/attr init: %d", error);
807 goto out_remove_uuid;
808 }
809
810 /*
811 * Initialize the precomputed transaction reservations values.
812 */
813 xfs_trans_init(mp);
814
815 /*
816 * Allocate and initialize the per-ag data.
817 */
818 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
819 if (error) {
820 xfs_warn(mp, "Failed per-ag init: %d", error);
821 goto out_free_dir;
822 }
823
824 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
825 xfs_warn(mp, "no log defined");
826 error = -EFSCORRUPTED;
827 goto out_free_perag;
828 }
829
830 /*
831 * Log's mount-time initialization. The first part of recovery can place
832 * some items on the AIL, to be handled when recovery is finished or
833 * cancelled.
834 */
835 error = xfs_log_mount(mp, mp->m_logdev_targp,
836 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
837 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
838 if (error) {
839 xfs_warn(mp, "log mount failed");
840 goto out_fail_wait;
841 }
842
843 /* Make sure the summary counts are ok. */
844 error = xfs_check_summary_counts(mp);
845 if (error)
846 goto out_log_dealloc;
847
848 /*
849 * Get and sanity-check the root inode.
850 * Save the pointer to it in the mount structure.
851 */
852 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
853 XFS_ILOCK_EXCL, &rip);
854 if (error) {
855 xfs_warn(mp,
856 "Failed to read root inode 0x%llx, error %d",
857 sbp->sb_rootino, -error);
858 goto out_log_dealloc;
859 }
860
861 ASSERT(rip != NULL);
862
863 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
864 xfs_warn(mp, "corrupted root inode %llu: not a directory",
865 (unsigned long long)rip->i_ino);
866 xfs_iunlock(rip, XFS_ILOCK_EXCL);
867 error = -EFSCORRUPTED;
868 goto out_rele_rip;
869 }
870 mp->m_rootip = rip; /* save it */
871
872 xfs_iunlock(rip, XFS_ILOCK_EXCL);
873
874 /*
875 * Initialize realtime inode pointers in the mount structure
876 */
877 error = xfs_rtmount_inodes(mp);
878 if (error) {
879 /*
880 * Free up the root inode.
881 */
882 xfs_warn(mp, "failed to read RT inodes");
883 goto out_rele_rip;
884 }
885
886 /*
887 * If this is a read-only mount defer the superblock updates until
888 * the next remount into writeable mode. Otherwise we would never
889 * perform the update e.g. for the root filesystem.
890 */
891 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
892 error = xfs_sync_sb(mp, false);
893 if (error) {
894 xfs_warn(mp, "failed to write sb changes");
895 goto out_rtunmount;
896 }
897 }
898
899 /*
900 * Initialise the XFS quota management subsystem for this mount
901 */
902 if (XFS_IS_QUOTA_RUNNING(mp)) {
903 error = xfs_qm_newmount(mp, "amount, "aflags);
904 if (error)
905 goto out_rtunmount;
906 } else {
907 ASSERT(!XFS_IS_QUOTA_ON(mp));
908
909 /*
910 * If a file system had quotas running earlier, but decided to
911 * mount without -o uquota/pquota/gquota options, revoke the
912 * quotachecked license.
913 */
914 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
915 xfs_notice(mp, "resetting quota flags");
916 error = xfs_mount_reset_sbqflags(mp);
917 if (error)
918 goto out_rtunmount;
919 }
920 }
921
922 /*
923 * Finish recovering the file system. This part needed to be delayed
924 * until after the root and real-time bitmap inodes were consistently
925 * read in.
926 */
927 error = xfs_log_mount_finish(mp);
928 if (error) {
929 xfs_warn(mp, "log mount finish failed");
930 goto out_rtunmount;
931 }
932
933 /*
934 * Now the log is fully replayed, we can transition to full read-only
935 * mode for read-only mounts. This will sync all the metadata and clean
936 * the log so that the recovery we just performed does not have to be
937 * replayed again on the next mount.
938 *
939 * We use the same quiesce mechanism as the rw->ro remount, as they are
940 * semantically identical operations.
941 */
942 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
943 XFS_MOUNT_RDONLY) {
944 xfs_quiesce_attr(mp);
945 }
946
947 /*
948 * Complete the quota initialisation, post-log-replay component.
949 */
950 if (quotamount) {
951 ASSERT(mp->m_qflags == 0);
952 mp->m_qflags = quotaflags;
953
954 xfs_qm_mount_quotas(mp);
955 }
956
957 /*
958 * Now we are mounted, reserve a small amount of unused space for
959 * privileged transactions. This is needed so that transaction
960 * space required for critical operations can dip into this pool
961 * when at ENOSPC. This is needed for operations like create with
962 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
963 * are not allowed to use this reserved space.
964 *
965 * This may drive us straight to ENOSPC on mount, but that implies
966 * we were already there on the last unmount. Warn if this occurs.
967 */
968 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
969 resblks = xfs_default_resblks(mp);
970 error = xfs_reserve_blocks(mp, &resblks, NULL);
971 if (error)
972 xfs_warn(mp,
973 "Unable to allocate reserve blocks. Continuing without reserve pool.");
974
975 /* Recover any CoW blocks that never got remapped. */
976 error = xfs_reflink_recover_cow(mp);
977 if (error) {
978 xfs_err(mp,
979 "Error %d recovering leftover CoW allocations.", error);
980 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
981 goto out_quota;
982 }
983
984 /* Reserve AG blocks for future btree expansion. */
985 error = xfs_fs_reserve_ag_blocks(mp);
986 if (error && error != -ENOSPC)
987 goto out_agresv;
988 }
989
990 return 0;
991
992 out_agresv:
993 xfs_fs_unreserve_ag_blocks(mp);
994 out_quota:
995 xfs_qm_unmount_quotas(mp);
996 out_rtunmount:
997 xfs_rtunmount_inodes(mp);
998 out_rele_rip:
999 xfs_irele(rip);
1000 /* Clean out dquots that might be in memory after quotacheck. */
1001 xfs_qm_unmount(mp);
1002 /*
1003 * Cancel all delayed reclaim work and reclaim the inodes directly.
1004 * We have to do this /after/ rtunmount and qm_unmount because those
1005 * two will have scheduled delayed reclaim for the rt/quota inodes.
1006 *
1007 * This is slightly different from the unmountfs call sequence
1008 * because we could be tearing down a partially set up mount. In
1009 * particular, if log_mount_finish fails we bail out without calling
1010 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1011 * quota inodes.
1012 */
1013 cancel_delayed_work_sync(&mp->m_reclaim_work);
1014 xfs_reclaim_inodes(mp);
1015 xfs_health_unmount(mp);
1016 out_log_dealloc:
1017 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1018 xfs_log_mount_cancel(mp);
1019 out_fail_wait:
1020 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1021 xfs_wait_buftarg(mp->m_logdev_targp);
1022 xfs_wait_buftarg(mp->m_ddev_targp);
1023 out_free_perag:
1024 xfs_free_perag(mp);
1025 out_free_dir:
1026 xfs_da_unmount(mp);
1027 out_remove_uuid:
1028 xfs_uuid_unmount(mp);
1029 out_remove_errortag:
1030 xfs_errortag_del(mp);
1031 out_remove_error_sysfs:
1032 xfs_error_sysfs_del(mp);
1033 out_del_stats:
1034 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1035 out_remove_sysfs:
1036 xfs_sysfs_del(&mp->m_kobj);
1037 out:
1038 return error;
1039}
1040
1041/*
1042 * This flushes out the inodes,dquots and the superblock, unmounts the
1043 * log and makes sure that incore structures are freed.
1044 */
1045void
1046xfs_unmountfs(
1047 struct xfs_mount *mp)
1048{
1049 uint64_t resblks;
1050 int error;
1051
1052 xfs_stop_block_reaping(mp);
1053 xfs_fs_unreserve_ag_blocks(mp);
1054 xfs_qm_unmount_quotas(mp);
1055 xfs_rtunmount_inodes(mp);
1056 xfs_irele(mp->m_rootip);
1057
1058 /*
1059 * We can potentially deadlock here if we have an inode cluster
1060 * that has been freed has its buffer still pinned in memory because
1061 * the transaction is still sitting in a iclog. The stale inodes
1062 * on that buffer will have their flush locks held until the
1063 * transaction hits the disk and the callbacks run. the inode
1064 * flush takes the flush lock unconditionally and with nothing to
1065 * push out the iclog we will never get that unlocked. hence we
1066 * need to force the log first.
1067 */
1068 xfs_log_force(mp, XFS_LOG_SYNC);
1069
1070 /*
1071 * Wait for all busy extents to be freed, including completion of
1072 * any discard operation.
1073 */
1074 xfs_extent_busy_wait_all(mp);
1075 flush_workqueue(xfs_discard_wq);
1076
1077 /*
1078 * We now need to tell the world we are unmounting. This will allow
1079 * us to detect that the filesystem is going away and we should error
1080 * out anything that we have been retrying in the background. This will
1081 * prevent neverending retries in AIL pushing from hanging the unmount.
1082 */
1083 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1084
1085 /*
1086 * Flush all pending changes from the AIL.
1087 */
1088 xfs_ail_push_all_sync(mp->m_ail);
1089
1090 /*
1091 * Reclaim all inodes. At this point there should be no dirty inodes and
1092 * none should be pinned or locked. Stop background inode reclaim here
1093 * if it is still running.
1094 */
1095 cancel_delayed_work_sync(&mp->m_reclaim_work);
1096 xfs_reclaim_inodes(mp);
1097 xfs_health_unmount(mp);
1098
1099 xfs_qm_unmount(mp);
1100
1101 /*
1102 * Unreserve any blocks we have so that when we unmount we don't account
1103 * the reserved free space as used. This is really only necessary for
1104 * lazy superblock counting because it trusts the incore superblock
1105 * counters to be absolutely correct on clean unmount.
1106 *
1107 * We don't bother correcting this elsewhere for lazy superblock
1108 * counting because on mount of an unclean filesystem we reconstruct the
1109 * correct counter value and this is irrelevant.
1110 *
1111 * For non-lazy counter filesystems, this doesn't matter at all because
1112 * we only every apply deltas to the superblock and hence the incore
1113 * value does not matter....
1114 */
1115 resblks = 0;
1116 error = xfs_reserve_blocks(mp, &resblks, NULL);
1117 if (error)
1118 xfs_warn(mp, "Unable to free reserved block pool. "
1119 "Freespace may not be correct on next mount.");
1120
1121 error = xfs_log_sbcount(mp);
1122 if (error)
1123 xfs_warn(mp, "Unable to update superblock counters. "
1124 "Freespace may not be correct on next mount.");
1125
1126
1127 xfs_log_unmount(mp);
1128 xfs_da_unmount(mp);
1129 xfs_uuid_unmount(mp);
1130
1131#if defined(DEBUG)
1132 xfs_errortag_clearall(mp);
1133#endif
1134 xfs_free_perag(mp);
1135
1136 xfs_errortag_del(mp);
1137 xfs_error_sysfs_del(mp);
1138 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1139 xfs_sysfs_del(&mp->m_kobj);
1140}
1141
1142/*
1143 * Determine whether modifications can proceed. The caller specifies the minimum
1144 * freeze level for which modifications should not be allowed. This allows
1145 * certain operations to proceed while the freeze sequence is in progress, if
1146 * necessary.
1147 */
1148bool
1149xfs_fs_writable(
1150 struct xfs_mount *mp,
1151 int level)
1152{
1153 ASSERT(level > SB_UNFROZEN);
1154 if ((mp->m_super->s_writers.frozen >= level) ||
1155 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1156 return false;
1157
1158 return true;
1159}
1160
1161/*
1162 * xfs_log_sbcount
1163 *
1164 * Sync the superblock counters to disk.
1165 *
1166 * Note this code can be called during the process of freezing, so we use the
1167 * transaction allocator that does not block when the transaction subsystem is
1168 * in its frozen state.
1169 */
1170int
1171xfs_log_sbcount(xfs_mount_t *mp)
1172{
1173 /* allow this to proceed during the freeze sequence... */
1174 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1175 return 0;
1176
1177 /*
1178 * we don't need to do this if we are updating the superblock
1179 * counters on every modification.
1180 */
1181 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1182 return 0;
1183
1184 return xfs_sync_sb(mp, true);
1185}
1186
1187/*
1188 * Deltas for the block count can vary from 1 to very large, but lock contention
1189 * only occurs on frequent small block count updates such as in the delayed
1190 * allocation path for buffered writes (page a time updates). Hence we set
1191 * a large batch count (1024) to minimise global counter updates except when
1192 * we get near to ENOSPC and we have to be very accurate with our updates.
1193 */
1194#define XFS_FDBLOCKS_BATCH 1024
1195int
1196xfs_mod_fdblocks(
1197 struct xfs_mount *mp,
1198 int64_t delta,
1199 bool rsvd)
1200{
1201 int64_t lcounter;
1202 long long res_used;
1203 s32 batch;
1204
1205 if (delta > 0) {
1206 /*
1207 * If the reserve pool is depleted, put blocks back into it
1208 * first. Most of the time the pool is full.
1209 */
1210 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1211 percpu_counter_add(&mp->m_fdblocks, delta);
1212 return 0;
1213 }
1214
1215 spin_lock(&mp->m_sb_lock);
1216 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1217
1218 if (res_used > delta) {
1219 mp->m_resblks_avail += delta;
1220 } else {
1221 delta -= res_used;
1222 mp->m_resblks_avail = mp->m_resblks;
1223 percpu_counter_add(&mp->m_fdblocks, delta);
1224 }
1225 spin_unlock(&mp->m_sb_lock);
1226 return 0;
1227 }
1228
1229 /*
1230 * Taking blocks away, need to be more accurate the closer we
1231 * are to zero.
1232 *
1233 * If the counter has a value of less than 2 * max batch size,
1234 * then make everything serialise as we are real close to
1235 * ENOSPC.
1236 */
1237 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1238 XFS_FDBLOCKS_BATCH) < 0)
1239 batch = 1;
1240 else
1241 batch = XFS_FDBLOCKS_BATCH;
1242
1243 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1244 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1245 XFS_FDBLOCKS_BATCH) >= 0) {
1246 /* we had space! */
1247 return 0;
1248 }
1249
1250 /*
1251 * lock up the sb for dipping into reserves before releasing the space
1252 * that took us to ENOSPC.
1253 */
1254 spin_lock(&mp->m_sb_lock);
1255 percpu_counter_add(&mp->m_fdblocks, -delta);
1256 if (!rsvd)
1257 goto fdblocks_enospc;
1258
1259 lcounter = (long long)mp->m_resblks_avail + delta;
1260 if (lcounter >= 0) {
1261 mp->m_resblks_avail = lcounter;
1262 spin_unlock(&mp->m_sb_lock);
1263 return 0;
1264 }
1265 xfs_warn_once(mp,
1266"Reserve blocks depleted! Consider increasing reserve pool size.");
1267
1268fdblocks_enospc:
1269 spin_unlock(&mp->m_sb_lock);
1270 return -ENOSPC;
1271}
1272
1273int
1274xfs_mod_frextents(
1275 struct xfs_mount *mp,
1276 int64_t delta)
1277{
1278 int64_t lcounter;
1279 int ret = 0;
1280
1281 spin_lock(&mp->m_sb_lock);
1282 lcounter = mp->m_sb.sb_frextents + delta;
1283 if (lcounter < 0)
1284 ret = -ENOSPC;
1285 else
1286 mp->m_sb.sb_frextents = lcounter;
1287 spin_unlock(&mp->m_sb_lock);
1288 return ret;
1289}
1290
1291/*
1292 * xfs_getsb() is called to obtain the buffer for the superblock.
1293 * The buffer is returned locked and read in from disk.
1294 * The buffer should be released with a call to xfs_brelse().
1295 */
1296struct xfs_buf *
1297xfs_getsb(
1298 struct xfs_mount *mp)
1299{
1300 struct xfs_buf *bp = mp->m_sb_bp;
1301
1302 xfs_buf_lock(bp);
1303 xfs_buf_hold(bp);
1304 ASSERT(bp->b_flags & XBF_DONE);
1305 return bp;
1306}
1307
1308/*
1309 * Used to free the superblock along various error paths.
1310 */
1311void
1312xfs_freesb(
1313 struct xfs_mount *mp)
1314{
1315 struct xfs_buf *bp = mp->m_sb_bp;
1316
1317 xfs_buf_lock(bp);
1318 mp->m_sb_bp = NULL;
1319 xfs_buf_relse(bp);
1320}
1321
1322/*
1323 * If the underlying (data/log/rt) device is readonly, there are some
1324 * operations that cannot proceed.
1325 */
1326int
1327xfs_dev_is_read_only(
1328 struct xfs_mount *mp,
1329 char *message)
1330{
1331 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1332 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1333 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1334 xfs_notice(mp, "%s required on read-only device.", message);
1335 xfs_notice(mp, "write access unavailable, cannot proceed.");
1336 return -EROFS;
1337 }
1338 return 0;
1339}
1340
1341/* Force the summary counters to be recalculated at next mount. */
1342void
1343xfs_force_summary_recalc(
1344 struct xfs_mount *mp)
1345{
1346 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1347 return;
1348
1349 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1350}
1351
1352/*
1353 * Update the in-core delayed block counter.
1354 *
1355 * We prefer to update the counter without having to take a spinlock for every
1356 * counter update (i.e. batching). Each change to delayed allocation
1357 * reservations can change can easily exceed the default percpu counter
1358 * batching, so we use a larger batch factor here.
1359 *
1360 * Note that we don't currently have any callers requiring fast summation
1361 * (e.g. percpu_counter_read) so we can use a big batch value here.
1362 */
1363#define XFS_DELALLOC_BATCH (4096)
1364void
1365xfs_mod_delalloc(
1366 struct xfs_mount *mp,
1367 int64_t delta)
1368{
1369 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1370 XFS_DELALLOC_BATCH);
1371}