Loading...
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 * Copyright (C) 2016 Mellanox Technologies
21 *
22 * This program is free software; you can redistribute it and/or modify
23 * it under the terms of the GNU General Public License version 2,
24 * as published by the Free Software Foundation.
25 */
26
27#include <linux/init.h>
28#include <linux/kd.h>
29#include <linux/kernel.h>
30#include <linux/tracehook.h>
31#include <linux/errno.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/task.h>
34#include <linux/lsm_hooks.h>
35#include <linux/xattr.h>
36#include <linux/capability.h>
37#include <linux/unistd.h>
38#include <linux/mm.h>
39#include <linux/mman.h>
40#include <linux/slab.h>
41#include <linux/pagemap.h>
42#include <linux/proc_fs.h>
43#include <linux/swap.h>
44#include <linux/spinlock.h>
45#include <linux/syscalls.h>
46#include <linux/dcache.h>
47#include <linux/file.h>
48#include <linux/fdtable.h>
49#include <linux/namei.h>
50#include <linux/mount.h>
51#include <linux/netfilter_ipv4.h>
52#include <linux/netfilter_ipv6.h>
53#include <linux/tty.h>
54#include <net/icmp.h>
55#include <net/ip.h> /* for local_port_range[] */
56#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
57#include <net/inet_connection_sock.h>
58#include <net/net_namespace.h>
59#include <net/netlabel.h>
60#include <linux/uaccess.h>
61#include <asm/ioctls.h>
62#include <linux/atomic.h>
63#include <linux/bitops.h>
64#include <linux/interrupt.h>
65#include <linux/netdevice.h> /* for network interface checks */
66#include <net/netlink.h>
67#include <linux/tcp.h>
68#include <linux/udp.h>
69#include <linux/dccp.h>
70#include <linux/sctp.h>
71#include <net/sctp/structs.h>
72#include <linux/quota.h>
73#include <linux/un.h> /* for Unix socket types */
74#include <net/af_unix.h> /* for Unix socket types */
75#include <linux/parser.h>
76#include <linux/nfs_mount.h>
77#include <net/ipv6.h>
78#include <linux/hugetlb.h>
79#include <linux/personality.h>
80#include <linux/audit.h>
81#include <linux/string.h>
82#include <linux/selinux.h>
83#include <linux/mutex.h>
84#include <linux/posix-timers.h>
85#include <linux/syslog.h>
86#include <linux/user_namespace.h>
87#include <linux/export.h>
88#include <linux/msg.h>
89#include <linux/shm.h>
90#include <linux/bpf.h>
91
92#include "avc.h"
93#include "objsec.h"
94#include "netif.h"
95#include "netnode.h"
96#include "netport.h"
97#include "ibpkey.h"
98#include "xfrm.h"
99#include "netlabel.h"
100#include "audit.h"
101#include "avc_ss.h"
102
103struct selinux_state selinux_state;
104
105/* SECMARK reference count */
106static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
107
108#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
109static int selinux_enforcing_boot;
110
111static int __init enforcing_setup(char *str)
112{
113 unsigned long enforcing;
114 if (!kstrtoul(str, 0, &enforcing))
115 selinux_enforcing_boot = enforcing ? 1 : 0;
116 return 1;
117}
118__setup("enforcing=", enforcing_setup);
119#else
120#define selinux_enforcing_boot 1
121#endif
122
123#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
124int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
125
126static int __init selinux_enabled_setup(char *str)
127{
128 unsigned long enabled;
129 if (!kstrtoul(str, 0, &enabled))
130 selinux_enabled = enabled ? 1 : 0;
131 return 1;
132}
133__setup("selinux=", selinux_enabled_setup);
134#else
135int selinux_enabled = 1;
136#endif
137
138static unsigned int selinux_checkreqprot_boot =
139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141static int __init checkreqprot_setup(char *str)
142{
143 unsigned long checkreqprot;
144
145 if (!kstrtoul(str, 0, &checkreqprot))
146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 return 1;
148}
149__setup("checkreqprot=", checkreqprot_setup);
150
151static struct kmem_cache *sel_inode_cache;
152static struct kmem_cache *file_security_cache;
153
154/**
155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156 *
157 * Description:
158 * This function checks the SECMARK reference counter to see if any SECMARK
159 * targets are currently configured, if the reference counter is greater than
160 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
161 * enabled, false (0) if SECMARK is disabled. If the always_check_network
162 * policy capability is enabled, SECMARK is always considered enabled.
163 *
164 */
165static int selinux_secmark_enabled(void)
166{
167 return (selinux_policycap_alwaysnetwork() ||
168 atomic_read(&selinux_secmark_refcount));
169}
170
171/**
172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173 *
174 * Description:
175 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
176 * (1) if any are enabled or false (0) if neither are enabled. If the
177 * always_check_network policy capability is enabled, peer labeling
178 * is always considered enabled.
179 *
180 */
181static int selinux_peerlbl_enabled(void)
182{
183 return (selinux_policycap_alwaysnetwork() ||
184 netlbl_enabled() || selinux_xfrm_enabled());
185}
186
187static int selinux_netcache_avc_callback(u32 event)
188{
189 if (event == AVC_CALLBACK_RESET) {
190 sel_netif_flush();
191 sel_netnode_flush();
192 sel_netport_flush();
193 synchronize_net();
194 }
195 return 0;
196}
197
198static int selinux_lsm_notifier_avc_callback(u32 event)
199{
200 if (event == AVC_CALLBACK_RESET) {
201 sel_ib_pkey_flush();
202 call_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 }
204
205 return 0;
206}
207
208/*
209 * initialise the security for the init task
210 */
211static void cred_init_security(void)
212{
213 struct cred *cred = (struct cred *) current->real_cred;
214 struct task_security_struct *tsec;
215
216 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
217 if (!tsec)
218 panic("SELinux: Failed to initialize initial task.\n");
219
220 tsec->osid = tsec->sid = SECINITSID_KERNEL;
221 cred->security = tsec;
222}
223
224/*
225 * get the security ID of a set of credentials
226 */
227static inline u32 cred_sid(const struct cred *cred)
228{
229 const struct task_security_struct *tsec;
230
231 tsec = cred->security;
232 return tsec->sid;
233}
234
235/*
236 * get the objective security ID of a task
237 */
238static inline u32 task_sid(const struct task_struct *task)
239{
240 u32 sid;
241
242 rcu_read_lock();
243 sid = cred_sid(__task_cred(task));
244 rcu_read_unlock();
245 return sid;
246}
247
248/* Allocate and free functions for each kind of security blob. */
249
250static int inode_alloc_security(struct inode *inode)
251{
252 struct inode_security_struct *isec;
253 u32 sid = current_sid();
254
255 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
256 if (!isec)
257 return -ENOMEM;
258
259 spin_lock_init(&isec->lock);
260 INIT_LIST_HEAD(&isec->list);
261 isec->inode = inode;
262 isec->sid = SECINITSID_UNLABELED;
263 isec->sclass = SECCLASS_FILE;
264 isec->task_sid = sid;
265 isec->initialized = LABEL_INVALID;
266 inode->i_security = isec;
267
268 return 0;
269}
270
271static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
272
273/*
274 * Try reloading inode security labels that have been marked as invalid. The
275 * @may_sleep parameter indicates when sleeping and thus reloading labels is
276 * allowed; when set to false, returns -ECHILD when the label is
277 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
278 * when no dentry is available, set it to NULL instead.
279 */
280static int __inode_security_revalidate(struct inode *inode,
281 struct dentry *opt_dentry,
282 bool may_sleep)
283{
284 struct inode_security_struct *isec = inode->i_security;
285
286 might_sleep_if(may_sleep);
287
288 if (selinux_state.initialized &&
289 isec->initialized != LABEL_INITIALIZED) {
290 if (!may_sleep)
291 return -ECHILD;
292
293 /*
294 * Try reloading the inode security label. This will fail if
295 * @opt_dentry is NULL and no dentry for this inode can be
296 * found; in that case, continue using the old label.
297 */
298 inode_doinit_with_dentry(inode, opt_dentry);
299 }
300 return 0;
301}
302
303static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
304{
305 return inode->i_security;
306}
307
308static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
309{
310 int error;
311
312 error = __inode_security_revalidate(inode, NULL, !rcu);
313 if (error)
314 return ERR_PTR(error);
315 return inode->i_security;
316}
317
318/*
319 * Get the security label of an inode.
320 */
321static struct inode_security_struct *inode_security(struct inode *inode)
322{
323 __inode_security_revalidate(inode, NULL, true);
324 return inode->i_security;
325}
326
327static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
328{
329 struct inode *inode = d_backing_inode(dentry);
330
331 return inode->i_security;
332}
333
334/*
335 * Get the security label of a dentry's backing inode.
336 */
337static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
338{
339 struct inode *inode = d_backing_inode(dentry);
340
341 __inode_security_revalidate(inode, dentry, true);
342 return inode->i_security;
343}
344
345static void inode_free_rcu(struct rcu_head *head)
346{
347 struct inode_security_struct *isec;
348
349 isec = container_of(head, struct inode_security_struct, rcu);
350 kmem_cache_free(sel_inode_cache, isec);
351}
352
353static void inode_free_security(struct inode *inode)
354{
355 struct inode_security_struct *isec = inode->i_security;
356 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
357
358 /*
359 * As not all inode security structures are in a list, we check for
360 * empty list outside of the lock to make sure that we won't waste
361 * time taking a lock doing nothing.
362 *
363 * The list_del_init() function can be safely called more than once.
364 * It should not be possible for this function to be called with
365 * concurrent list_add(), but for better safety against future changes
366 * in the code, we use list_empty_careful() here.
367 */
368 if (!list_empty_careful(&isec->list)) {
369 spin_lock(&sbsec->isec_lock);
370 list_del_init(&isec->list);
371 spin_unlock(&sbsec->isec_lock);
372 }
373
374 /*
375 * The inode may still be referenced in a path walk and
376 * a call to selinux_inode_permission() can be made
377 * after inode_free_security() is called. Ideally, the VFS
378 * wouldn't do this, but fixing that is a much harder
379 * job. For now, simply free the i_security via RCU, and
380 * leave the current inode->i_security pointer intact.
381 * The inode will be freed after the RCU grace period too.
382 */
383 call_rcu(&isec->rcu, inode_free_rcu);
384}
385
386static int file_alloc_security(struct file *file)
387{
388 struct file_security_struct *fsec;
389 u32 sid = current_sid();
390
391 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
392 if (!fsec)
393 return -ENOMEM;
394
395 fsec->sid = sid;
396 fsec->fown_sid = sid;
397 file->f_security = fsec;
398
399 return 0;
400}
401
402static void file_free_security(struct file *file)
403{
404 struct file_security_struct *fsec = file->f_security;
405 file->f_security = NULL;
406 kmem_cache_free(file_security_cache, fsec);
407}
408
409static int superblock_alloc_security(struct super_block *sb)
410{
411 struct superblock_security_struct *sbsec;
412
413 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
414 if (!sbsec)
415 return -ENOMEM;
416
417 mutex_init(&sbsec->lock);
418 INIT_LIST_HEAD(&sbsec->isec_head);
419 spin_lock_init(&sbsec->isec_lock);
420 sbsec->sb = sb;
421 sbsec->sid = SECINITSID_UNLABELED;
422 sbsec->def_sid = SECINITSID_FILE;
423 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
424 sb->s_security = sbsec;
425
426 return 0;
427}
428
429static void superblock_free_security(struct super_block *sb)
430{
431 struct superblock_security_struct *sbsec = sb->s_security;
432 sb->s_security = NULL;
433 kfree(sbsec);
434}
435
436static inline int inode_doinit(struct inode *inode)
437{
438 return inode_doinit_with_dentry(inode, NULL);
439}
440
441enum {
442 Opt_error = -1,
443 Opt_context = 1,
444 Opt_fscontext = 2,
445 Opt_defcontext = 3,
446 Opt_rootcontext = 4,
447 Opt_labelsupport = 5,
448 Opt_nextmntopt = 6,
449};
450
451#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
452
453static const match_table_t tokens = {
454 {Opt_context, CONTEXT_STR "%s"},
455 {Opt_fscontext, FSCONTEXT_STR "%s"},
456 {Opt_defcontext, DEFCONTEXT_STR "%s"},
457 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
458 {Opt_labelsupport, LABELSUPP_STR},
459 {Opt_error, NULL},
460};
461
462#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
463
464static int may_context_mount_sb_relabel(u32 sid,
465 struct superblock_security_struct *sbsec,
466 const struct cred *cred)
467{
468 const struct task_security_struct *tsec = cred->security;
469 int rc;
470
471 rc = avc_has_perm(&selinux_state,
472 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
473 FILESYSTEM__RELABELFROM, NULL);
474 if (rc)
475 return rc;
476
477 rc = avc_has_perm(&selinux_state,
478 tsec->sid, sid, SECCLASS_FILESYSTEM,
479 FILESYSTEM__RELABELTO, NULL);
480 return rc;
481}
482
483static int may_context_mount_inode_relabel(u32 sid,
484 struct superblock_security_struct *sbsec,
485 const struct cred *cred)
486{
487 const struct task_security_struct *tsec = cred->security;
488 int rc;
489 rc = avc_has_perm(&selinux_state,
490 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
491 FILESYSTEM__RELABELFROM, NULL);
492 if (rc)
493 return rc;
494
495 rc = avc_has_perm(&selinux_state,
496 sid, sbsec->sid, SECCLASS_FILESYSTEM,
497 FILESYSTEM__ASSOCIATE, NULL);
498 return rc;
499}
500
501static int selinux_is_sblabel_mnt(struct super_block *sb)
502{
503 struct superblock_security_struct *sbsec = sb->s_security;
504
505 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
506 sbsec->behavior == SECURITY_FS_USE_TRANS ||
507 sbsec->behavior == SECURITY_FS_USE_TASK ||
508 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
509 /* Special handling. Genfs but also in-core setxattr handler */
510 !strcmp(sb->s_type->name, "sysfs") ||
511 !strcmp(sb->s_type->name, "pstore") ||
512 !strcmp(sb->s_type->name, "debugfs") ||
513 !strcmp(sb->s_type->name, "tracefs") ||
514 !strcmp(sb->s_type->name, "rootfs") ||
515 (selinux_policycap_cgroupseclabel() &&
516 (!strcmp(sb->s_type->name, "cgroup") ||
517 !strcmp(sb->s_type->name, "cgroup2")));
518}
519
520static int sb_finish_set_opts(struct super_block *sb)
521{
522 struct superblock_security_struct *sbsec = sb->s_security;
523 struct dentry *root = sb->s_root;
524 struct inode *root_inode = d_backing_inode(root);
525 int rc = 0;
526
527 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
528 /* Make sure that the xattr handler exists and that no
529 error other than -ENODATA is returned by getxattr on
530 the root directory. -ENODATA is ok, as this may be
531 the first boot of the SELinux kernel before we have
532 assigned xattr values to the filesystem. */
533 if (!(root_inode->i_opflags & IOP_XATTR)) {
534 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
535 "xattr support\n", sb->s_id, sb->s_type->name);
536 rc = -EOPNOTSUPP;
537 goto out;
538 }
539
540 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
541 if (rc < 0 && rc != -ENODATA) {
542 if (rc == -EOPNOTSUPP)
543 printk(KERN_WARNING "SELinux: (dev %s, type "
544 "%s) has no security xattr handler\n",
545 sb->s_id, sb->s_type->name);
546 else
547 printk(KERN_WARNING "SELinux: (dev %s, type "
548 "%s) getxattr errno %d\n", sb->s_id,
549 sb->s_type->name, -rc);
550 goto out;
551 }
552 }
553
554 sbsec->flags |= SE_SBINITIALIZED;
555
556 /*
557 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
558 * leave the flag untouched because sb_clone_mnt_opts might be handing
559 * us a superblock that needs the flag to be cleared.
560 */
561 if (selinux_is_sblabel_mnt(sb))
562 sbsec->flags |= SBLABEL_MNT;
563 else
564 sbsec->flags &= ~SBLABEL_MNT;
565
566 /* Initialize the root inode. */
567 rc = inode_doinit_with_dentry(root_inode, root);
568
569 /* Initialize any other inodes associated with the superblock, e.g.
570 inodes created prior to initial policy load or inodes created
571 during get_sb by a pseudo filesystem that directly
572 populates itself. */
573 spin_lock(&sbsec->isec_lock);
574next_inode:
575 if (!list_empty(&sbsec->isec_head)) {
576 struct inode_security_struct *isec =
577 list_entry(sbsec->isec_head.next,
578 struct inode_security_struct, list);
579 struct inode *inode = isec->inode;
580 list_del_init(&isec->list);
581 spin_unlock(&sbsec->isec_lock);
582 inode = igrab(inode);
583 if (inode) {
584 if (!IS_PRIVATE(inode))
585 inode_doinit(inode);
586 iput(inode);
587 }
588 spin_lock(&sbsec->isec_lock);
589 goto next_inode;
590 }
591 spin_unlock(&sbsec->isec_lock);
592out:
593 return rc;
594}
595
596/*
597 * This function should allow an FS to ask what it's mount security
598 * options were so it can use those later for submounts, displaying
599 * mount options, or whatever.
600 */
601static int selinux_get_mnt_opts(const struct super_block *sb,
602 struct security_mnt_opts *opts)
603{
604 int rc = 0, i;
605 struct superblock_security_struct *sbsec = sb->s_security;
606 char *context = NULL;
607 u32 len;
608 char tmp;
609
610 security_init_mnt_opts(opts);
611
612 if (!(sbsec->flags & SE_SBINITIALIZED))
613 return -EINVAL;
614
615 if (!selinux_state.initialized)
616 return -EINVAL;
617
618 /* make sure we always check enough bits to cover the mask */
619 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
620
621 tmp = sbsec->flags & SE_MNTMASK;
622 /* count the number of mount options for this sb */
623 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
624 if (tmp & 0x01)
625 opts->num_mnt_opts++;
626 tmp >>= 1;
627 }
628 /* Check if the Label support flag is set */
629 if (sbsec->flags & SBLABEL_MNT)
630 opts->num_mnt_opts++;
631
632 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
633 if (!opts->mnt_opts) {
634 rc = -ENOMEM;
635 goto out_free;
636 }
637
638 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
639 if (!opts->mnt_opts_flags) {
640 rc = -ENOMEM;
641 goto out_free;
642 }
643
644 i = 0;
645 if (sbsec->flags & FSCONTEXT_MNT) {
646 rc = security_sid_to_context(&selinux_state, sbsec->sid,
647 &context, &len);
648 if (rc)
649 goto out_free;
650 opts->mnt_opts[i] = context;
651 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
652 }
653 if (sbsec->flags & CONTEXT_MNT) {
654 rc = security_sid_to_context(&selinux_state,
655 sbsec->mntpoint_sid,
656 &context, &len);
657 if (rc)
658 goto out_free;
659 opts->mnt_opts[i] = context;
660 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
661 }
662 if (sbsec->flags & DEFCONTEXT_MNT) {
663 rc = security_sid_to_context(&selinux_state, sbsec->def_sid,
664 &context, &len);
665 if (rc)
666 goto out_free;
667 opts->mnt_opts[i] = context;
668 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
669 }
670 if (sbsec->flags & ROOTCONTEXT_MNT) {
671 struct dentry *root = sbsec->sb->s_root;
672 struct inode_security_struct *isec = backing_inode_security(root);
673
674 rc = security_sid_to_context(&selinux_state, isec->sid,
675 &context, &len);
676 if (rc)
677 goto out_free;
678 opts->mnt_opts[i] = context;
679 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
680 }
681 if (sbsec->flags & SBLABEL_MNT) {
682 opts->mnt_opts[i] = NULL;
683 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
684 }
685
686 BUG_ON(i != opts->num_mnt_opts);
687
688 return 0;
689
690out_free:
691 security_free_mnt_opts(opts);
692 return rc;
693}
694
695static int bad_option(struct superblock_security_struct *sbsec, char flag,
696 u32 old_sid, u32 new_sid)
697{
698 char mnt_flags = sbsec->flags & SE_MNTMASK;
699
700 /* check if the old mount command had the same options */
701 if (sbsec->flags & SE_SBINITIALIZED)
702 if (!(sbsec->flags & flag) ||
703 (old_sid != new_sid))
704 return 1;
705
706 /* check if we were passed the same options twice,
707 * aka someone passed context=a,context=b
708 */
709 if (!(sbsec->flags & SE_SBINITIALIZED))
710 if (mnt_flags & flag)
711 return 1;
712 return 0;
713}
714
715/*
716 * Allow filesystems with binary mount data to explicitly set mount point
717 * labeling information.
718 */
719static int selinux_set_mnt_opts(struct super_block *sb,
720 struct security_mnt_opts *opts,
721 unsigned long kern_flags,
722 unsigned long *set_kern_flags)
723{
724 const struct cred *cred = current_cred();
725 int rc = 0, i;
726 struct superblock_security_struct *sbsec = sb->s_security;
727 const char *name = sb->s_type->name;
728 struct dentry *root = sbsec->sb->s_root;
729 struct inode_security_struct *root_isec;
730 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
731 u32 defcontext_sid = 0;
732 char **mount_options = opts->mnt_opts;
733 int *flags = opts->mnt_opts_flags;
734 int num_opts = opts->num_mnt_opts;
735
736 mutex_lock(&sbsec->lock);
737
738 if (!selinux_state.initialized) {
739 if (!num_opts) {
740 /* Defer initialization until selinux_complete_init,
741 after the initial policy is loaded and the security
742 server is ready to handle calls. */
743 goto out;
744 }
745 rc = -EINVAL;
746 printk(KERN_WARNING "SELinux: Unable to set superblock options "
747 "before the security server is initialized\n");
748 goto out;
749 }
750 if (kern_flags && !set_kern_flags) {
751 /* Specifying internal flags without providing a place to
752 * place the results is not allowed */
753 rc = -EINVAL;
754 goto out;
755 }
756
757 /*
758 * Binary mount data FS will come through this function twice. Once
759 * from an explicit call and once from the generic calls from the vfs.
760 * Since the generic VFS calls will not contain any security mount data
761 * we need to skip the double mount verification.
762 *
763 * This does open a hole in which we will not notice if the first
764 * mount using this sb set explict options and a second mount using
765 * this sb does not set any security options. (The first options
766 * will be used for both mounts)
767 */
768 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
769 && (num_opts == 0))
770 goto out;
771
772 root_isec = backing_inode_security_novalidate(root);
773
774 /*
775 * parse the mount options, check if they are valid sids.
776 * also check if someone is trying to mount the same sb more
777 * than once with different security options.
778 */
779 for (i = 0; i < num_opts; i++) {
780 u32 sid;
781
782 if (flags[i] == SBLABEL_MNT)
783 continue;
784 rc = security_context_str_to_sid(&selinux_state,
785 mount_options[i], &sid,
786 GFP_KERNEL);
787 if (rc) {
788 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
789 "(%s) failed for (dev %s, type %s) errno=%d\n",
790 mount_options[i], sb->s_id, name, rc);
791 goto out;
792 }
793 switch (flags[i]) {
794 case FSCONTEXT_MNT:
795 fscontext_sid = sid;
796
797 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
798 fscontext_sid))
799 goto out_double_mount;
800
801 sbsec->flags |= FSCONTEXT_MNT;
802 break;
803 case CONTEXT_MNT:
804 context_sid = sid;
805
806 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
807 context_sid))
808 goto out_double_mount;
809
810 sbsec->flags |= CONTEXT_MNT;
811 break;
812 case ROOTCONTEXT_MNT:
813 rootcontext_sid = sid;
814
815 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
816 rootcontext_sid))
817 goto out_double_mount;
818
819 sbsec->flags |= ROOTCONTEXT_MNT;
820
821 break;
822 case DEFCONTEXT_MNT:
823 defcontext_sid = sid;
824
825 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
826 defcontext_sid))
827 goto out_double_mount;
828
829 sbsec->flags |= DEFCONTEXT_MNT;
830
831 break;
832 default:
833 rc = -EINVAL;
834 goto out;
835 }
836 }
837
838 if (sbsec->flags & SE_SBINITIALIZED) {
839 /* previously mounted with options, but not on this attempt? */
840 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
841 goto out_double_mount;
842 rc = 0;
843 goto out;
844 }
845
846 if (strcmp(sb->s_type->name, "proc") == 0)
847 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
848
849 if (!strcmp(sb->s_type->name, "debugfs") ||
850 !strcmp(sb->s_type->name, "tracefs") ||
851 !strcmp(sb->s_type->name, "sysfs") ||
852 !strcmp(sb->s_type->name, "pstore") ||
853 !strcmp(sb->s_type->name, "cgroup") ||
854 !strcmp(sb->s_type->name, "cgroup2"))
855 sbsec->flags |= SE_SBGENFS;
856
857 if (!sbsec->behavior) {
858 /*
859 * Determine the labeling behavior to use for this
860 * filesystem type.
861 */
862 rc = security_fs_use(&selinux_state, sb);
863 if (rc) {
864 printk(KERN_WARNING
865 "%s: security_fs_use(%s) returned %d\n",
866 __func__, sb->s_type->name, rc);
867 goto out;
868 }
869 }
870
871 /*
872 * If this is a user namespace mount and the filesystem type is not
873 * explicitly whitelisted, then no contexts are allowed on the command
874 * line and security labels must be ignored.
875 */
876 if (sb->s_user_ns != &init_user_ns &&
877 strcmp(sb->s_type->name, "tmpfs") &&
878 strcmp(sb->s_type->name, "ramfs") &&
879 strcmp(sb->s_type->name, "devpts")) {
880 if (context_sid || fscontext_sid || rootcontext_sid ||
881 defcontext_sid) {
882 rc = -EACCES;
883 goto out;
884 }
885 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
886 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
887 rc = security_transition_sid(&selinux_state,
888 current_sid(),
889 current_sid(),
890 SECCLASS_FILE, NULL,
891 &sbsec->mntpoint_sid);
892 if (rc)
893 goto out;
894 }
895 goto out_set_opts;
896 }
897
898 /* sets the context of the superblock for the fs being mounted. */
899 if (fscontext_sid) {
900 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
901 if (rc)
902 goto out;
903
904 sbsec->sid = fscontext_sid;
905 }
906
907 /*
908 * Switch to using mount point labeling behavior.
909 * sets the label used on all file below the mountpoint, and will set
910 * the superblock context if not already set.
911 */
912 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
913 sbsec->behavior = SECURITY_FS_USE_NATIVE;
914 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
915 }
916
917 if (context_sid) {
918 if (!fscontext_sid) {
919 rc = may_context_mount_sb_relabel(context_sid, sbsec,
920 cred);
921 if (rc)
922 goto out;
923 sbsec->sid = context_sid;
924 } else {
925 rc = may_context_mount_inode_relabel(context_sid, sbsec,
926 cred);
927 if (rc)
928 goto out;
929 }
930 if (!rootcontext_sid)
931 rootcontext_sid = context_sid;
932
933 sbsec->mntpoint_sid = context_sid;
934 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
935 }
936
937 if (rootcontext_sid) {
938 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
939 cred);
940 if (rc)
941 goto out;
942
943 root_isec->sid = rootcontext_sid;
944 root_isec->initialized = LABEL_INITIALIZED;
945 }
946
947 if (defcontext_sid) {
948 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
949 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
950 rc = -EINVAL;
951 printk(KERN_WARNING "SELinux: defcontext option is "
952 "invalid for this filesystem type\n");
953 goto out;
954 }
955
956 if (defcontext_sid != sbsec->def_sid) {
957 rc = may_context_mount_inode_relabel(defcontext_sid,
958 sbsec, cred);
959 if (rc)
960 goto out;
961 }
962
963 sbsec->def_sid = defcontext_sid;
964 }
965
966out_set_opts:
967 rc = sb_finish_set_opts(sb);
968out:
969 mutex_unlock(&sbsec->lock);
970 return rc;
971out_double_mount:
972 rc = -EINVAL;
973 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
974 "security settings for (dev %s, type %s)\n", sb->s_id, name);
975 goto out;
976}
977
978static int selinux_cmp_sb_context(const struct super_block *oldsb,
979 const struct super_block *newsb)
980{
981 struct superblock_security_struct *old = oldsb->s_security;
982 struct superblock_security_struct *new = newsb->s_security;
983 char oldflags = old->flags & SE_MNTMASK;
984 char newflags = new->flags & SE_MNTMASK;
985
986 if (oldflags != newflags)
987 goto mismatch;
988 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
989 goto mismatch;
990 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
991 goto mismatch;
992 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
993 goto mismatch;
994 if (oldflags & ROOTCONTEXT_MNT) {
995 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
996 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
997 if (oldroot->sid != newroot->sid)
998 goto mismatch;
999 }
1000 return 0;
1001mismatch:
1002 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
1003 "different security settings for (dev %s, "
1004 "type %s)\n", newsb->s_id, newsb->s_type->name);
1005 return -EBUSY;
1006}
1007
1008static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
1009 struct super_block *newsb,
1010 unsigned long kern_flags,
1011 unsigned long *set_kern_flags)
1012{
1013 int rc = 0;
1014 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
1015 struct superblock_security_struct *newsbsec = newsb->s_security;
1016
1017 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
1018 int set_context = (oldsbsec->flags & CONTEXT_MNT);
1019 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
1020
1021 /*
1022 * if the parent was able to be mounted it clearly had no special lsm
1023 * mount options. thus we can safely deal with this superblock later
1024 */
1025 if (!selinux_state.initialized)
1026 return 0;
1027
1028 /*
1029 * Specifying internal flags without providing a place to
1030 * place the results is not allowed.
1031 */
1032 if (kern_flags && !set_kern_flags)
1033 return -EINVAL;
1034
1035 /* how can we clone if the old one wasn't set up?? */
1036 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
1037
1038 /* if fs is reusing a sb, make sure that the contexts match */
1039 if (newsbsec->flags & SE_SBINITIALIZED)
1040 return selinux_cmp_sb_context(oldsb, newsb);
1041
1042 mutex_lock(&newsbsec->lock);
1043
1044 newsbsec->flags = oldsbsec->flags;
1045
1046 newsbsec->sid = oldsbsec->sid;
1047 newsbsec->def_sid = oldsbsec->def_sid;
1048 newsbsec->behavior = oldsbsec->behavior;
1049
1050 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
1051 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
1052 rc = security_fs_use(&selinux_state, newsb);
1053 if (rc)
1054 goto out;
1055 }
1056
1057 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
1058 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
1059 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
1060 }
1061
1062 if (set_context) {
1063 u32 sid = oldsbsec->mntpoint_sid;
1064
1065 if (!set_fscontext)
1066 newsbsec->sid = sid;
1067 if (!set_rootcontext) {
1068 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1069 newisec->sid = sid;
1070 }
1071 newsbsec->mntpoint_sid = sid;
1072 }
1073 if (set_rootcontext) {
1074 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1075 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1076
1077 newisec->sid = oldisec->sid;
1078 }
1079
1080 sb_finish_set_opts(newsb);
1081out:
1082 mutex_unlock(&newsbsec->lock);
1083 return rc;
1084}
1085
1086static int selinux_parse_opts_str(char *options,
1087 struct security_mnt_opts *opts)
1088{
1089 char *p;
1090 char *context = NULL, *defcontext = NULL;
1091 char *fscontext = NULL, *rootcontext = NULL;
1092 int rc, num_mnt_opts = 0;
1093
1094 opts->num_mnt_opts = 0;
1095
1096 /* Standard string-based options. */
1097 while ((p = strsep(&options, "|")) != NULL) {
1098 int token;
1099 substring_t args[MAX_OPT_ARGS];
1100
1101 if (!*p)
1102 continue;
1103
1104 token = match_token(p, tokens, args);
1105
1106 switch (token) {
1107 case Opt_context:
1108 if (context || defcontext) {
1109 rc = -EINVAL;
1110 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1111 goto out_err;
1112 }
1113 context = match_strdup(&args[0]);
1114 if (!context) {
1115 rc = -ENOMEM;
1116 goto out_err;
1117 }
1118 break;
1119
1120 case Opt_fscontext:
1121 if (fscontext) {
1122 rc = -EINVAL;
1123 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1124 goto out_err;
1125 }
1126 fscontext = match_strdup(&args[0]);
1127 if (!fscontext) {
1128 rc = -ENOMEM;
1129 goto out_err;
1130 }
1131 break;
1132
1133 case Opt_rootcontext:
1134 if (rootcontext) {
1135 rc = -EINVAL;
1136 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1137 goto out_err;
1138 }
1139 rootcontext = match_strdup(&args[0]);
1140 if (!rootcontext) {
1141 rc = -ENOMEM;
1142 goto out_err;
1143 }
1144 break;
1145
1146 case Opt_defcontext:
1147 if (context || defcontext) {
1148 rc = -EINVAL;
1149 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1150 goto out_err;
1151 }
1152 defcontext = match_strdup(&args[0]);
1153 if (!defcontext) {
1154 rc = -ENOMEM;
1155 goto out_err;
1156 }
1157 break;
1158 case Opt_labelsupport:
1159 break;
1160 default:
1161 rc = -EINVAL;
1162 printk(KERN_WARNING "SELinux: unknown mount option\n");
1163 goto out_err;
1164
1165 }
1166 }
1167
1168 rc = -ENOMEM;
1169 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1170 if (!opts->mnt_opts)
1171 goto out_err;
1172
1173 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1174 GFP_KERNEL);
1175 if (!opts->mnt_opts_flags)
1176 goto out_err;
1177
1178 if (fscontext) {
1179 opts->mnt_opts[num_mnt_opts] = fscontext;
1180 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1181 }
1182 if (context) {
1183 opts->mnt_opts[num_mnt_opts] = context;
1184 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1185 }
1186 if (rootcontext) {
1187 opts->mnt_opts[num_mnt_opts] = rootcontext;
1188 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1189 }
1190 if (defcontext) {
1191 opts->mnt_opts[num_mnt_opts] = defcontext;
1192 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1193 }
1194
1195 opts->num_mnt_opts = num_mnt_opts;
1196 return 0;
1197
1198out_err:
1199 security_free_mnt_opts(opts);
1200 kfree(context);
1201 kfree(defcontext);
1202 kfree(fscontext);
1203 kfree(rootcontext);
1204 return rc;
1205}
1206/*
1207 * string mount options parsing and call set the sbsec
1208 */
1209static int superblock_doinit(struct super_block *sb, void *data)
1210{
1211 int rc = 0;
1212 char *options = data;
1213 struct security_mnt_opts opts;
1214
1215 security_init_mnt_opts(&opts);
1216
1217 if (!data)
1218 goto out;
1219
1220 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1221
1222 rc = selinux_parse_opts_str(options, &opts);
1223 if (rc)
1224 goto out_err;
1225
1226out:
1227 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1228
1229out_err:
1230 security_free_mnt_opts(&opts);
1231 return rc;
1232}
1233
1234static void selinux_write_opts(struct seq_file *m,
1235 struct security_mnt_opts *opts)
1236{
1237 int i;
1238 char *prefix;
1239
1240 for (i = 0; i < opts->num_mnt_opts; i++) {
1241 char *has_comma;
1242
1243 if (opts->mnt_opts[i])
1244 has_comma = strchr(opts->mnt_opts[i], ',');
1245 else
1246 has_comma = NULL;
1247
1248 switch (opts->mnt_opts_flags[i]) {
1249 case CONTEXT_MNT:
1250 prefix = CONTEXT_STR;
1251 break;
1252 case FSCONTEXT_MNT:
1253 prefix = FSCONTEXT_STR;
1254 break;
1255 case ROOTCONTEXT_MNT:
1256 prefix = ROOTCONTEXT_STR;
1257 break;
1258 case DEFCONTEXT_MNT:
1259 prefix = DEFCONTEXT_STR;
1260 break;
1261 case SBLABEL_MNT:
1262 seq_putc(m, ',');
1263 seq_puts(m, LABELSUPP_STR);
1264 continue;
1265 default:
1266 BUG();
1267 return;
1268 };
1269 /* we need a comma before each option */
1270 seq_putc(m, ',');
1271 seq_puts(m, prefix);
1272 if (has_comma)
1273 seq_putc(m, '\"');
1274 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1275 if (has_comma)
1276 seq_putc(m, '\"');
1277 }
1278}
1279
1280static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1281{
1282 struct security_mnt_opts opts;
1283 int rc;
1284
1285 rc = selinux_get_mnt_opts(sb, &opts);
1286 if (rc) {
1287 /* before policy load we may get EINVAL, don't show anything */
1288 if (rc == -EINVAL)
1289 rc = 0;
1290 return rc;
1291 }
1292
1293 selinux_write_opts(m, &opts);
1294
1295 security_free_mnt_opts(&opts);
1296
1297 return rc;
1298}
1299
1300static inline u16 inode_mode_to_security_class(umode_t mode)
1301{
1302 switch (mode & S_IFMT) {
1303 case S_IFSOCK:
1304 return SECCLASS_SOCK_FILE;
1305 case S_IFLNK:
1306 return SECCLASS_LNK_FILE;
1307 case S_IFREG:
1308 return SECCLASS_FILE;
1309 case S_IFBLK:
1310 return SECCLASS_BLK_FILE;
1311 case S_IFDIR:
1312 return SECCLASS_DIR;
1313 case S_IFCHR:
1314 return SECCLASS_CHR_FILE;
1315 case S_IFIFO:
1316 return SECCLASS_FIFO_FILE;
1317
1318 }
1319
1320 return SECCLASS_FILE;
1321}
1322
1323static inline int default_protocol_stream(int protocol)
1324{
1325 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1326}
1327
1328static inline int default_protocol_dgram(int protocol)
1329{
1330 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1331}
1332
1333static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1334{
1335 int extsockclass = selinux_policycap_extsockclass();
1336
1337 switch (family) {
1338 case PF_UNIX:
1339 switch (type) {
1340 case SOCK_STREAM:
1341 case SOCK_SEQPACKET:
1342 return SECCLASS_UNIX_STREAM_SOCKET;
1343 case SOCK_DGRAM:
1344 case SOCK_RAW:
1345 return SECCLASS_UNIX_DGRAM_SOCKET;
1346 }
1347 break;
1348 case PF_INET:
1349 case PF_INET6:
1350 switch (type) {
1351 case SOCK_STREAM:
1352 case SOCK_SEQPACKET:
1353 if (default_protocol_stream(protocol))
1354 return SECCLASS_TCP_SOCKET;
1355 else if (extsockclass && protocol == IPPROTO_SCTP)
1356 return SECCLASS_SCTP_SOCKET;
1357 else
1358 return SECCLASS_RAWIP_SOCKET;
1359 case SOCK_DGRAM:
1360 if (default_protocol_dgram(protocol))
1361 return SECCLASS_UDP_SOCKET;
1362 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1363 protocol == IPPROTO_ICMPV6))
1364 return SECCLASS_ICMP_SOCKET;
1365 else
1366 return SECCLASS_RAWIP_SOCKET;
1367 case SOCK_DCCP:
1368 return SECCLASS_DCCP_SOCKET;
1369 default:
1370 return SECCLASS_RAWIP_SOCKET;
1371 }
1372 break;
1373 case PF_NETLINK:
1374 switch (protocol) {
1375 case NETLINK_ROUTE:
1376 return SECCLASS_NETLINK_ROUTE_SOCKET;
1377 case NETLINK_SOCK_DIAG:
1378 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1379 case NETLINK_NFLOG:
1380 return SECCLASS_NETLINK_NFLOG_SOCKET;
1381 case NETLINK_XFRM:
1382 return SECCLASS_NETLINK_XFRM_SOCKET;
1383 case NETLINK_SELINUX:
1384 return SECCLASS_NETLINK_SELINUX_SOCKET;
1385 case NETLINK_ISCSI:
1386 return SECCLASS_NETLINK_ISCSI_SOCKET;
1387 case NETLINK_AUDIT:
1388 return SECCLASS_NETLINK_AUDIT_SOCKET;
1389 case NETLINK_FIB_LOOKUP:
1390 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1391 case NETLINK_CONNECTOR:
1392 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1393 case NETLINK_NETFILTER:
1394 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1395 case NETLINK_DNRTMSG:
1396 return SECCLASS_NETLINK_DNRT_SOCKET;
1397 case NETLINK_KOBJECT_UEVENT:
1398 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1399 case NETLINK_GENERIC:
1400 return SECCLASS_NETLINK_GENERIC_SOCKET;
1401 case NETLINK_SCSITRANSPORT:
1402 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1403 case NETLINK_RDMA:
1404 return SECCLASS_NETLINK_RDMA_SOCKET;
1405 case NETLINK_CRYPTO:
1406 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1407 default:
1408 return SECCLASS_NETLINK_SOCKET;
1409 }
1410 case PF_PACKET:
1411 return SECCLASS_PACKET_SOCKET;
1412 case PF_KEY:
1413 return SECCLASS_KEY_SOCKET;
1414 case PF_APPLETALK:
1415 return SECCLASS_APPLETALK_SOCKET;
1416 }
1417
1418 if (extsockclass) {
1419 switch (family) {
1420 case PF_AX25:
1421 return SECCLASS_AX25_SOCKET;
1422 case PF_IPX:
1423 return SECCLASS_IPX_SOCKET;
1424 case PF_NETROM:
1425 return SECCLASS_NETROM_SOCKET;
1426 case PF_ATMPVC:
1427 return SECCLASS_ATMPVC_SOCKET;
1428 case PF_X25:
1429 return SECCLASS_X25_SOCKET;
1430 case PF_ROSE:
1431 return SECCLASS_ROSE_SOCKET;
1432 case PF_DECnet:
1433 return SECCLASS_DECNET_SOCKET;
1434 case PF_ATMSVC:
1435 return SECCLASS_ATMSVC_SOCKET;
1436 case PF_RDS:
1437 return SECCLASS_RDS_SOCKET;
1438 case PF_IRDA:
1439 return SECCLASS_IRDA_SOCKET;
1440 case PF_PPPOX:
1441 return SECCLASS_PPPOX_SOCKET;
1442 case PF_LLC:
1443 return SECCLASS_LLC_SOCKET;
1444 case PF_CAN:
1445 return SECCLASS_CAN_SOCKET;
1446 case PF_TIPC:
1447 return SECCLASS_TIPC_SOCKET;
1448 case PF_BLUETOOTH:
1449 return SECCLASS_BLUETOOTH_SOCKET;
1450 case PF_IUCV:
1451 return SECCLASS_IUCV_SOCKET;
1452 case PF_RXRPC:
1453 return SECCLASS_RXRPC_SOCKET;
1454 case PF_ISDN:
1455 return SECCLASS_ISDN_SOCKET;
1456 case PF_PHONET:
1457 return SECCLASS_PHONET_SOCKET;
1458 case PF_IEEE802154:
1459 return SECCLASS_IEEE802154_SOCKET;
1460 case PF_CAIF:
1461 return SECCLASS_CAIF_SOCKET;
1462 case PF_ALG:
1463 return SECCLASS_ALG_SOCKET;
1464 case PF_NFC:
1465 return SECCLASS_NFC_SOCKET;
1466 case PF_VSOCK:
1467 return SECCLASS_VSOCK_SOCKET;
1468 case PF_KCM:
1469 return SECCLASS_KCM_SOCKET;
1470 case PF_QIPCRTR:
1471 return SECCLASS_QIPCRTR_SOCKET;
1472 case PF_SMC:
1473 return SECCLASS_SMC_SOCKET;
1474#if PF_MAX > 44
1475#error New address family defined, please update this function.
1476#endif
1477 }
1478 }
1479
1480 return SECCLASS_SOCKET;
1481}
1482
1483static int selinux_genfs_get_sid(struct dentry *dentry,
1484 u16 tclass,
1485 u16 flags,
1486 u32 *sid)
1487{
1488 int rc;
1489 struct super_block *sb = dentry->d_sb;
1490 char *buffer, *path;
1491
1492 buffer = (char *)__get_free_page(GFP_KERNEL);
1493 if (!buffer)
1494 return -ENOMEM;
1495
1496 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1497 if (IS_ERR(path))
1498 rc = PTR_ERR(path);
1499 else {
1500 if (flags & SE_SBPROC) {
1501 /* each process gets a /proc/PID/ entry. Strip off the
1502 * PID part to get a valid selinux labeling.
1503 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1504 while (path[1] >= '0' && path[1] <= '9') {
1505 path[1] = '/';
1506 path++;
1507 }
1508 }
1509 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1510 path, tclass, sid);
1511 }
1512 free_page((unsigned long)buffer);
1513 return rc;
1514}
1515
1516/* The inode's security attributes must be initialized before first use. */
1517static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1518{
1519 struct superblock_security_struct *sbsec = NULL;
1520 struct inode_security_struct *isec = inode->i_security;
1521 u32 task_sid, sid = 0;
1522 u16 sclass;
1523 struct dentry *dentry;
1524#define INITCONTEXTLEN 255
1525 char *context = NULL;
1526 unsigned len = 0;
1527 int rc = 0;
1528
1529 if (isec->initialized == LABEL_INITIALIZED)
1530 return 0;
1531
1532 spin_lock(&isec->lock);
1533 if (isec->initialized == LABEL_INITIALIZED)
1534 goto out_unlock;
1535
1536 if (isec->sclass == SECCLASS_FILE)
1537 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1538
1539 sbsec = inode->i_sb->s_security;
1540 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1541 /* Defer initialization until selinux_complete_init,
1542 after the initial policy is loaded and the security
1543 server is ready to handle calls. */
1544 spin_lock(&sbsec->isec_lock);
1545 if (list_empty(&isec->list))
1546 list_add(&isec->list, &sbsec->isec_head);
1547 spin_unlock(&sbsec->isec_lock);
1548 goto out_unlock;
1549 }
1550
1551 sclass = isec->sclass;
1552 task_sid = isec->task_sid;
1553 sid = isec->sid;
1554 isec->initialized = LABEL_PENDING;
1555 spin_unlock(&isec->lock);
1556
1557 switch (sbsec->behavior) {
1558 case SECURITY_FS_USE_NATIVE:
1559 break;
1560 case SECURITY_FS_USE_XATTR:
1561 if (!(inode->i_opflags & IOP_XATTR)) {
1562 sid = sbsec->def_sid;
1563 break;
1564 }
1565 /* Need a dentry, since the xattr API requires one.
1566 Life would be simpler if we could just pass the inode. */
1567 if (opt_dentry) {
1568 /* Called from d_instantiate or d_splice_alias. */
1569 dentry = dget(opt_dentry);
1570 } else {
1571 /*
1572 * Called from selinux_complete_init, try to find a dentry.
1573 * Some filesystems really want a connected one, so try
1574 * that first. We could split SECURITY_FS_USE_XATTR in
1575 * two, depending upon that...
1576 */
1577 dentry = d_find_alias(inode);
1578 if (!dentry)
1579 dentry = d_find_any_alias(inode);
1580 }
1581 if (!dentry) {
1582 /*
1583 * this is can be hit on boot when a file is accessed
1584 * before the policy is loaded. When we load policy we
1585 * may find inodes that have no dentry on the
1586 * sbsec->isec_head list. No reason to complain as these
1587 * will get fixed up the next time we go through
1588 * inode_doinit with a dentry, before these inodes could
1589 * be used again by userspace.
1590 */
1591 goto out;
1592 }
1593
1594 len = INITCONTEXTLEN;
1595 context = kmalloc(len+1, GFP_NOFS);
1596 if (!context) {
1597 rc = -ENOMEM;
1598 dput(dentry);
1599 goto out;
1600 }
1601 context[len] = '\0';
1602 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1603 if (rc == -ERANGE) {
1604 kfree(context);
1605
1606 /* Need a larger buffer. Query for the right size. */
1607 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1608 if (rc < 0) {
1609 dput(dentry);
1610 goto out;
1611 }
1612 len = rc;
1613 context = kmalloc(len+1, GFP_NOFS);
1614 if (!context) {
1615 rc = -ENOMEM;
1616 dput(dentry);
1617 goto out;
1618 }
1619 context[len] = '\0';
1620 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1621 }
1622 dput(dentry);
1623 if (rc < 0) {
1624 if (rc != -ENODATA) {
1625 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1626 "%d for dev=%s ino=%ld\n", __func__,
1627 -rc, inode->i_sb->s_id, inode->i_ino);
1628 kfree(context);
1629 goto out;
1630 }
1631 /* Map ENODATA to the default file SID */
1632 sid = sbsec->def_sid;
1633 rc = 0;
1634 } else {
1635 rc = security_context_to_sid_default(&selinux_state,
1636 context, rc, &sid,
1637 sbsec->def_sid,
1638 GFP_NOFS);
1639 if (rc) {
1640 char *dev = inode->i_sb->s_id;
1641 unsigned long ino = inode->i_ino;
1642
1643 if (rc == -EINVAL) {
1644 if (printk_ratelimit())
1645 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1646 "context=%s. This indicates you may need to relabel the inode or the "
1647 "filesystem in question.\n", ino, dev, context);
1648 } else {
1649 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1650 "returned %d for dev=%s ino=%ld\n",
1651 __func__, context, -rc, dev, ino);
1652 }
1653 kfree(context);
1654 /* Leave with the unlabeled SID */
1655 rc = 0;
1656 break;
1657 }
1658 }
1659 kfree(context);
1660 break;
1661 case SECURITY_FS_USE_TASK:
1662 sid = task_sid;
1663 break;
1664 case SECURITY_FS_USE_TRANS:
1665 /* Default to the fs SID. */
1666 sid = sbsec->sid;
1667
1668 /* Try to obtain a transition SID. */
1669 rc = security_transition_sid(&selinux_state, task_sid, sid,
1670 sclass, NULL, &sid);
1671 if (rc)
1672 goto out;
1673 break;
1674 case SECURITY_FS_USE_MNTPOINT:
1675 sid = sbsec->mntpoint_sid;
1676 break;
1677 default:
1678 /* Default to the fs superblock SID. */
1679 sid = sbsec->sid;
1680
1681 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1682 /* We must have a dentry to determine the label on
1683 * procfs inodes */
1684 if (opt_dentry) {
1685 /* Called from d_instantiate or
1686 * d_splice_alias. */
1687 dentry = dget(opt_dentry);
1688 } else {
1689 /* Called from selinux_complete_init, try to
1690 * find a dentry. Some filesystems really want
1691 * a connected one, so try that first.
1692 */
1693 dentry = d_find_alias(inode);
1694 if (!dentry)
1695 dentry = d_find_any_alias(inode);
1696 }
1697 /*
1698 * This can be hit on boot when a file is accessed
1699 * before the policy is loaded. When we load policy we
1700 * may find inodes that have no dentry on the
1701 * sbsec->isec_head list. No reason to complain as
1702 * these will get fixed up the next time we go through
1703 * inode_doinit() with a dentry, before these inodes
1704 * could be used again by userspace.
1705 */
1706 if (!dentry)
1707 goto out;
1708 rc = selinux_genfs_get_sid(dentry, sclass,
1709 sbsec->flags, &sid);
1710 dput(dentry);
1711 if (rc)
1712 goto out;
1713 }
1714 break;
1715 }
1716
1717out:
1718 spin_lock(&isec->lock);
1719 if (isec->initialized == LABEL_PENDING) {
1720 if (!sid || rc) {
1721 isec->initialized = LABEL_INVALID;
1722 goto out_unlock;
1723 }
1724
1725 isec->initialized = LABEL_INITIALIZED;
1726 isec->sid = sid;
1727 }
1728
1729out_unlock:
1730 spin_unlock(&isec->lock);
1731 return rc;
1732}
1733
1734/* Convert a Linux signal to an access vector. */
1735static inline u32 signal_to_av(int sig)
1736{
1737 u32 perm = 0;
1738
1739 switch (sig) {
1740 case SIGCHLD:
1741 /* Commonly granted from child to parent. */
1742 perm = PROCESS__SIGCHLD;
1743 break;
1744 case SIGKILL:
1745 /* Cannot be caught or ignored */
1746 perm = PROCESS__SIGKILL;
1747 break;
1748 case SIGSTOP:
1749 /* Cannot be caught or ignored */
1750 perm = PROCESS__SIGSTOP;
1751 break;
1752 default:
1753 /* All other signals. */
1754 perm = PROCESS__SIGNAL;
1755 break;
1756 }
1757
1758 return perm;
1759}
1760
1761#if CAP_LAST_CAP > 63
1762#error Fix SELinux to handle capabilities > 63.
1763#endif
1764
1765/* Check whether a task is allowed to use a capability. */
1766static int cred_has_capability(const struct cred *cred,
1767 int cap, int audit, bool initns)
1768{
1769 struct common_audit_data ad;
1770 struct av_decision avd;
1771 u16 sclass;
1772 u32 sid = cred_sid(cred);
1773 u32 av = CAP_TO_MASK(cap);
1774 int rc;
1775
1776 ad.type = LSM_AUDIT_DATA_CAP;
1777 ad.u.cap = cap;
1778
1779 switch (CAP_TO_INDEX(cap)) {
1780 case 0:
1781 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1782 break;
1783 case 1:
1784 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1785 break;
1786 default:
1787 printk(KERN_ERR
1788 "SELinux: out of range capability %d\n", cap);
1789 BUG();
1790 return -EINVAL;
1791 }
1792
1793 rc = avc_has_perm_noaudit(&selinux_state,
1794 sid, sid, sclass, av, 0, &avd);
1795 if (audit == SECURITY_CAP_AUDIT) {
1796 int rc2 = avc_audit(&selinux_state,
1797 sid, sid, sclass, av, &avd, rc, &ad, 0);
1798 if (rc2)
1799 return rc2;
1800 }
1801 return rc;
1802}
1803
1804/* Check whether a task has a particular permission to an inode.
1805 The 'adp' parameter is optional and allows other audit
1806 data to be passed (e.g. the dentry). */
1807static int inode_has_perm(const struct cred *cred,
1808 struct inode *inode,
1809 u32 perms,
1810 struct common_audit_data *adp)
1811{
1812 struct inode_security_struct *isec;
1813 u32 sid;
1814
1815 validate_creds(cred);
1816
1817 if (unlikely(IS_PRIVATE(inode)))
1818 return 0;
1819
1820 sid = cred_sid(cred);
1821 isec = inode->i_security;
1822
1823 return avc_has_perm(&selinux_state,
1824 sid, isec->sid, isec->sclass, perms, adp);
1825}
1826
1827/* Same as inode_has_perm, but pass explicit audit data containing
1828 the dentry to help the auditing code to more easily generate the
1829 pathname if needed. */
1830static inline int dentry_has_perm(const struct cred *cred,
1831 struct dentry *dentry,
1832 u32 av)
1833{
1834 struct inode *inode = d_backing_inode(dentry);
1835 struct common_audit_data ad;
1836
1837 ad.type = LSM_AUDIT_DATA_DENTRY;
1838 ad.u.dentry = dentry;
1839 __inode_security_revalidate(inode, dentry, true);
1840 return inode_has_perm(cred, inode, av, &ad);
1841}
1842
1843/* Same as inode_has_perm, but pass explicit audit data containing
1844 the path to help the auditing code to more easily generate the
1845 pathname if needed. */
1846static inline int path_has_perm(const struct cred *cred,
1847 const struct path *path,
1848 u32 av)
1849{
1850 struct inode *inode = d_backing_inode(path->dentry);
1851 struct common_audit_data ad;
1852
1853 ad.type = LSM_AUDIT_DATA_PATH;
1854 ad.u.path = *path;
1855 __inode_security_revalidate(inode, path->dentry, true);
1856 return inode_has_perm(cred, inode, av, &ad);
1857}
1858
1859/* Same as path_has_perm, but uses the inode from the file struct. */
1860static inline int file_path_has_perm(const struct cred *cred,
1861 struct file *file,
1862 u32 av)
1863{
1864 struct common_audit_data ad;
1865
1866 ad.type = LSM_AUDIT_DATA_FILE;
1867 ad.u.file = file;
1868 return inode_has_perm(cred, file_inode(file), av, &ad);
1869}
1870
1871#ifdef CONFIG_BPF_SYSCALL
1872static int bpf_fd_pass(struct file *file, u32 sid);
1873#endif
1874
1875/* Check whether a task can use an open file descriptor to
1876 access an inode in a given way. Check access to the
1877 descriptor itself, and then use dentry_has_perm to
1878 check a particular permission to the file.
1879 Access to the descriptor is implicitly granted if it
1880 has the same SID as the process. If av is zero, then
1881 access to the file is not checked, e.g. for cases
1882 where only the descriptor is affected like seek. */
1883static int file_has_perm(const struct cred *cred,
1884 struct file *file,
1885 u32 av)
1886{
1887 struct file_security_struct *fsec = file->f_security;
1888 struct inode *inode = file_inode(file);
1889 struct common_audit_data ad;
1890 u32 sid = cred_sid(cred);
1891 int rc;
1892
1893 ad.type = LSM_AUDIT_DATA_FILE;
1894 ad.u.file = file;
1895
1896 if (sid != fsec->sid) {
1897 rc = avc_has_perm(&selinux_state,
1898 sid, fsec->sid,
1899 SECCLASS_FD,
1900 FD__USE,
1901 &ad);
1902 if (rc)
1903 goto out;
1904 }
1905
1906#ifdef CONFIG_BPF_SYSCALL
1907 rc = bpf_fd_pass(file, cred_sid(cred));
1908 if (rc)
1909 return rc;
1910#endif
1911
1912 /* av is zero if only checking access to the descriptor. */
1913 rc = 0;
1914 if (av)
1915 rc = inode_has_perm(cred, inode, av, &ad);
1916
1917out:
1918 return rc;
1919}
1920
1921/*
1922 * Determine the label for an inode that might be unioned.
1923 */
1924static int
1925selinux_determine_inode_label(const struct task_security_struct *tsec,
1926 struct inode *dir,
1927 const struct qstr *name, u16 tclass,
1928 u32 *_new_isid)
1929{
1930 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1931
1932 if ((sbsec->flags & SE_SBINITIALIZED) &&
1933 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1934 *_new_isid = sbsec->mntpoint_sid;
1935 } else if ((sbsec->flags & SBLABEL_MNT) &&
1936 tsec->create_sid) {
1937 *_new_isid = tsec->create_sid;
1938 } else {
1939 const struct inode_security_struct *dsec = inode_security(dir);
1940 return security_transition_sid(&selinux_state, tsec->sid,
1941 dsec->sid, tclass,
1942 name, _new_isid);
1943 }
1944
1945 return 0;
1946}
1947
1948/* Check whether a task can create a file. */
1949static int may_create(struct inode *dir,
1950 struct dentry *dentry,
1951 u16 tclass)
1952{
1953 const struct task_security_struct *tsec = current_security();
1954 struct inode_security_struct *dsec;
1955 struct superblock_security_struct *sbsec;
1956 u32 sid, newsid;
1957 struct common_audit_data ad;
1958 int rc;
1959
1960 dsec = inode_security(dir);
1961 sbsec = dir->i_sb->s_security;
1962
1963 sid = tsec->sid;
1964
1965 ad.type = LSM_AUDIT_DATA_DENTRY;
1966 ad.u.dentry = dentry;
1967
1968 rc = avc_has_perm(&selinux_state,
1969 sid, dsec->sid, SECCLASS_DIR,
1970 DIR__ADD_NAME | DIR__SEARCH,
1971 &ad);
1972 if (rc)
1973 return rc;
1974
1975 rc = selinux_determine_inode_label(current_security(), dir,
1976 &dentry->d_name, tclass, &newsid);
1977 if (rc)
1978 return rc;
1979
1980 rc = avc_has_perm(&selinux_state,
1981 sid, newsid, tclass, FILE__CREATE, &ad);
1982 if (rc)
1983 return rc;
1984
1985 return avc_has_perm(&selinux_state,
1986 newsid, sbsec->sid,
1987 SECCLASS_FILESYSTEM,
1988 FILESYSTEM__ASSOCIATE, &ad);
1989}
1990
1991#define MAY_LINK 0
1992#define MAY_UNLINK 1
1993#define MAY_RMDIR 2
1994
1995/* Check whether a task can link, unlink, or rmdir a file/directory. */
1996static int may_link(struct inode *dir,
1997 struct dentry *dentry,
1998 int kind)
1999
2000{
2001 struct inode_security_struct *dsec, *isec;
2002 struct common_audit_data ad;
2003 u32 sid = current_sid();
2004 u32 av;
2005 int rc;
2006
2007 dsec = inode_security(dir);
2008 isec = backing_inode_security(dentry);
2009
2010 ad.type = LSM_AUDIT_DATA_DENTRY;
2011 ad.u.dentry = dentry;
2012
2013 av = DIR__SEARCH;
2014 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
2015 rc = avc_has_perm(&selinux_state,
2016 sid, dsec->sid, SECCLASS_DIR, av, &ad);
2017 if (rc)
2018 return rc;
2019
2020 switch (kind) {
2021 case MAY_LINK:
2022 av = FILE__LINK;
2023 break;
2024 case MAY_UNLINK:
2025 av = FILE__UNLINK;
2026 break;
2027 case MAY_RMDIR:
2028 av = DIR__RMDIR;
2029 break;
2030 default:
2031 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
2032 __func__, kind);
2033 return 0;
2034 }
2035
2036 rc = avc_has_perm(&selinux_state,
2037 sid, isec->sid, isec->sclass, av, &ad);
2038 return rc;
2039}
2040
2041static inline int may_rename(struct inode *old_dir,
2042 struct dentry *old_dentry,
2043 struct inode *new_dir,
2044 struct dentry *new_dentry)
2045{
2046 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
2047 struct common_audit_data ad;
2048 u32 sid = current_sid();
2049 u32 av;
2050 int old_is_dir, new_is_dir;
2051 int rc;
2052
2053 old_dsec = inode_security(old_dir);
2054 old_isec = backing_inode_security(old_dentry);
2055 old_is_dir = d_is_dir(old_dentry);
2056 new_dsec = inode_security(new_dir);
2057
2058 ad.type = LSM_AUDIT_DATA_DENTRY;
2059
2060 ad.u.dentry = old_dentry;
2061 rc = avc_has_perm(&selinux_state,
2062 sid, old_dsec->sid, SECCLASS_DIR,
2063 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
2064 if (rc)
2065 return rc;
2066 rc = avc_has_perm(&selinux_state,
2067 sid, old_isec->sid,
2068 old_isec->sclass, FILE__RENAME, &ad);
2069 if (rc)
2070 return rc;
2071 if (old_is_dir && new_dir != old_dir) {
2072 rc = avc_has_perm(&selinux_state,
2073 sid, old_isec->sid,
2074 old_isec->sclass, DIR__REPARENT, &ad);
2075 if (rc)
2076 return rc;
2077 }
2078
2079 ad.u.dentry = new_dentry;
2080 av = DIR__ADD_NAME | DIR__SEARCH;
2081 if (d_is_positive(new_dentry))
2082 av |= DIR__REMOVE_NAME;
2083 rc = avc_has_perm(&selinux_state,
2084 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
2085 if (rc)
2086 return rc;
2087 if (d_is_positive(new_dentry)) {
2088 new_isec = backing_inode_security(new_dentry);
2089 new_is_dir = d_is_dir(new_dentry);
2090 rc = avc_has_perm(&selinux_state,
2091 sid, new_isec->sid,
2092 new_isec->sclass,
2093 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
2094 if (rc)
2095 return rc;
2096 }
2097
2098 return 0;
2099}
2100
2101/* Check whether a task can perform a filesystem operation. */
2102static int superblock_has_perm(const struct cred *cred,
2103 struct super_block *sb,
2104 u32 perms,
2105 struct common_audit_data *ad)
2106{
2107 struct superblock_security_struct *sbsec;
2108 u32 sid = cred_sid(cred);
2109
2110 sbsec = sb->s_security;
2111 return avc_has_perm(&selinux_state,
2112 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2113}
2114
2115/* Convert a Linux mode and permission mask to an access vector. */
2116static inline u32 file_mask_to_av(int mode, int mask)
2117{
2118 u32 av = 0;
2119
2120 if (!S_ISDIR(mode)) {
2121 if (mask & MAY_EXEC)
2122 av |= FILE__EXECUTE;
2123 if (mask & MAY_READ)
2124 av |= FILE__READ;
2125
2126 if (mask & MAY_APPEND)
2127 av |= FILE__APPEND;
2128 else if (mask & MAY_WRITE)
2129 av |= FILE__WRITE;
2130
2131 } else {
2132 if (mask & MAY_EXEC)
2133 av |= DIR__SEARCH;
2134 if (mask & MAY_WRITE)
2135 av |= DIR__WRITE;
2136 if (mask & MAY_READ)
2137 av |= DIR__READ;
2138 }
2139
2140 return av;
2141}
2142
2143/* Convert a Linux file to an access vector. */
2144static inline u32 file_to_av(struct file *file)
2145{
2146 u32 av = 0;
2147
2148 if (file->f_mode & FMODE_READ)
2149 av |= FILE__READ;
2150 if (file->f_mode & FMODE_WRITE) {
2151 if (file->f_flags & O_APPEND)
2152 av |= FILE__APPEND;
2153 else
2154 av |= FILE__WRITE;
2155 }
2156 if (!av) {
2157 /*
2158 * Special file opened with flags 3 for ioctl-only use.
2159 */
2160 av = FILE__IOCTL;
2161 }
2162
2163 return av;
2164}
2165
2166/*
2167 * Convert a file to an access vector and include the correct open
2168 * open permission.
2169 */
2170static inline u32 open_file_to_av(struct file *file)
2171{
2172 u32 av = file_to_av(file);
2173 struct inode *inode = file_inode(file);
2174
2175 if (selinux_policycap_openperm() &&
2176 inode->i_sb->s_magic != SOCKFS_MAGIC)
2177 av |= FILE__OPEN;
2178
2179 return av;
2180}
2181
2182/* Hook functions begin here. */
2183
2184static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2185{
2186 u32 mysid = current_sid();
2187 u32 mgrsid = task_sid(mgr);
2188
2189 return avc_has_perm(&selinux_state,
2190 mysid, mgrsid, SECCLASS_BINDER,
2191 BINDER__SET_CONTEXT_MGR, NULL);
2192}
2193
2194static int selinux_binder_transaction(struct task_struct *from,
2195 struct task_struct *to)
2196{
2197 u32 mysid = current_sid();
2198 u32 fromsid = task_sid(from);
2199 u32 tosid = task_sid(to);
2200 int rc;
2201
2202 if (mysid != fromsid) {
2203 rc = avc_has_perm(&selinux_state,
2204 mysid, fromsid, SECCLASS_BINDER,
2205 BINDER__IMPERSONATE, NULL);
2206 if (rc)
2207 return rc;
2208 }
2209
2210 return avc_has_perm(&selinux_state,
2211 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2212 NULL);
2213}
2214
2215static int selinux_binder_transfer_binder(struct task_struct *from,
2216 struct task_struct *to)
2217{
2218 u32 fromsid = task_sid(from);
2219 u32 tosid = task_sid(to);
2220
2221 return avc_has_perm(&selinux_state,
2222 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2223 NULL);
2224}
2225
2226static int selinux_binder_transfer_file(struct task_struct *from,
2227 struct task_struct *to,
2228 struct file *file)
2229{
2230 u32 sid = task_sid(to);
2231 struct file_security_struct *fsec = file->f_security;
2232 struct dentry *dentry = file->f_path.dentry;
2233 struct inode_security_struct *isec;
2234 struct common_audit_data ad;
2235 int rc;
2236
2237 ad.type = LSM_AUDIT_DATA_PATH;
2238 ad.u.path = file->f_path;
2239
2240 if (sid != fsec->sid) {
2241 rc = avc_has_perm(&selinux_state,
2242 sid, fsec->sid,
2243 SECCLASS_FD,
2244 FD__USE,
2245 &ad);
2246 if (rc)
2247 return rc;
2248 }
2249
2250#ifdef CONFIG_BPF_SYSCALL
2251 rc = bpf_fd_pass(file, sid);
2252 if (rc)
2253 return rc;
2254#endif
2255
2256 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2257 return 0;
2258
2259 isec = backing_inode_security(dentry);
2260 return avc_has_perm(&selinux_state,
2261 sid, isec->sid, isec->sclass, file_to_av(file),
2262 &ad);
2263}
2264
2265static int selinux_ptrace_access_check(struct task_struct *child,
2266 unsigned int mode)
2267{
2268 u32 sid = current_sid();
2269 u32 csid = task_sid(child);
2270
2271 if (mode & PTRACE_MODE_READ)
2272 return avc_has_perm(&selinux_state,
2273 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2274
2275 return avc_has_perm(&selinux_state,
2276 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2277}
2278
2279static int selinux_ptrace_traceme(struct task_struct *parent)
2280{
2281 return avc_has_perm(&selinux_state,
2282 task_sid(parent), current_sid(), SECCLASS_PROCESS,
2283 PROCESS__PTRACE, NULL);
2284}
2285
2286static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2287 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2288{
2289 return avc_has_perm(&selinux_state,
2290 current_sid(), task_sid(target), SECCLASS_PROCESS,
2291 PROCESS__GETCAP, NULL);
2292}
2293
2294static int selinux_capset(struct cred *new, const struct cred *old,
2295 const kernel_cap_t *effective,
2296 const kernel_cap_t *inheritable,
2297 const kernel_cap_t *permitted)
2298{
2299 return avc_has_perm(&selinux_state,
2300 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2301 PROCESS__SETCAP, NULL);
2302}
2303
2304/*
2305 * (This comment used to live with the selinux_task_setuid hook,
2306 * which was removed).
2307 *
2308 * Since setuid only affects the current process, and since the SELinux
2309 * controls are not based on the Linux identity attributes, SELinux does not
2310 * need to control this operation. However, SELinux does control the use of
2311 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2312 */
2313
2314static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2315 int cap, int audit)
2316{
2317 return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2318}
2319
2320static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2321{
2322 const struct cred *cred = current_cred();
2323 int rc = 0;
2324
2325 if (!sb)
2326 return 0;
2327
2328 switch (cmds) {
2329 case Q_SYNC:
2330 case Q_QUOTAON:
2331 case Q_QUOTAOFF:
2332 case Q_SETINFO:
2333 case Q_SETQUOTA:
2334 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2335 break;
2336 case Q_GETFMT:
2337 case Q_GETINFO:
2338 case Q_GETQUOTA:
2339 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2340 break;
2341 default:
2342 rc = 0; /* let the kernel handle invalid cmds */
2343 break;
2344 }
2345 return rc;
2346}
2347
2348static int selinux_quota_on(struct dentry *dentry)
2349{
2350 const struct cred *cred = current_cred();
2351
2352 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2353}
2354
2355static int selinux_syslog(int type)
2356{
2357 switch (type) {
2358 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2359 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2360 return avc_has_perm(&selinux_state,
2361 current_sid(), SECINITSID_KERNEL,
2362 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2363 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2364 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2365 /* Set level of messages printed to console */
2366 case SYSLOG_ACTION_CONSOLE_LEVEL:
2367 return avc_has_perm(&selinux_state,
2368 current_sid(), SECINITSID_KERNEL,
2369 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2370 NULL);
2371 }
2372 /* All other syslog types */
2373 return avc_has_perm(&selinux_state,
2374 current_sid(), SECINITSID_KERNEL,
2375 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2376}
2377
2378/*
2379 * Check that a process has enough memory to allocate a new virtual
2380 * mapping. 0 means there is enough memory for the allocation to
2381 * succeed and -ENOMEM implies there is not.
2382 *
2383 * Do not audit the selinux permission check, as this is applied to all
2384 * processes that allocate mappings.
2385 */
2386static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2387{
2388 int rc, cap_sys_admin = 0;
2389
2390 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2391 SECURITY_CAP_NOAUDIT, true);
2392 if (rc == 0)
2393 cap_sys_admin = 1;
2394
2395 return cap_sys_admin;
2396}
2397
2398/* binprm security operations */
2399
2400static u32 ptrace_parent_sid(void)
2401{
2402 u32 sid = 0;
2403 struct task_struct *tracer;
2404
2405 rcu_read_lock();
2406 tracer = ptrace_parent(current);
2407 if (tracer)
2408 sid = task_sid(tracer);
2409 rcu_read_unlock();
2410
2411 return sid;
2412}
2413
2414static int check_nnp_nosuid(const struct linux_binprm *bprm,
2415 const struct task_security_struct *old_tsec,
2416 const struct task_security_struct *new_tsec)
2417{
2418 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2419 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2420 int rc;
2421 u32 av;
2422
2423 if (!nnp && !nosuid)
2424 return 0; /* neither NNP nor nosuid */
2425
2426 if (new_tsec->sid == old_tsec->sid)
2427 return 0; /* No change in credentials */
2428
2429 /*
2430 * If the policy enables the nnp_nosuid_transition policy capability,
2431 * then we permit transitions under NNP or nosuid if the
2432 * policy allows the corresponding permission between
2433 * the old and new contexts.
2434 */
2435 if (selinux_policycap_nnp_nosuid_transition()) {
2436 av = 0;
2437 if (nnp)
2438 av |= PROCESS2__NNP_TRANSITION;
2439 if (nosuid)
2440 av |= PROCESS2__NOSUID_TRANSITION;
2441 rc = avc_has_perm(&selinux_state,
2442 old_tsec->sid, new_tsec->sid,
2443 SECCLASS_PROCESS2, av, NULL);
2444 if (!rc)
2445 return 0;
2446 }
2447
2448 /*
2449 * We also permit NNP or nosuid transitions to bounded SIDs,
2450 * i.e. SIDs that are guaranteed to only be allowed a subset
2451 * of the permissions of the current SID.
2452 */
2453 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2454 new_tsec->sid);
2455 if (!rc)
2456 return 0;
2457
2458 /*
2459 * On failure, preserve the errno values for NNP vs nosuid.
2460 * NNP: Operation not permitted for caller.
2461 * nosuid: Permission denied to file.
2462 */
2463 if (nnp)
2464 return -EPERM;
2465 return -EACCES;
2466}
2467
2468static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2469{
2470 const struct task_security_struct *old_tsec;
2471 struct task_security_struct *new_tsec;
2472 struct inode_security_struct *isec;
2473 struct common_audit_data ad;
2474 struct inode *inode = file_inode(bprm->file);
2475 int rc;
2476
2477 /* SELinux context only depends on initial program or script and not
2478 * the script interpreter */
2479 if (bprm->called_set_creds)
2480 return 0;
2481
2482 old_tsec = current_security();
2483 new_tsec = bprm->cred->security;
2484 isec = inode_security(inode);
2485
2486 /* Default to the current task SID. */
2487 new_tsec->sid = old_tsec->sid;
2488 new_tsec->osid = old_tsec->sid;
2489
2490 /* Reset fs, key, and sock SIDs on execve. */
2491 new_tsec->create_sid = 0;
2492 new_tsec->keycreate_sid = 0;
2493 new_tsec->sockcreate_sid = 0;
2494
2495 if (old_tsec->exec_sid) {
2496 new_tsec->sid = old_tsec->exec_sid;
2497 /* Reset exec SID on execve. */
2498 new_tsec->exec_sid = 0;
2499
2500 /* Fail on NNP or nosuid if not an allowed transition. */
2501 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2502 if (rc)
2503 return rc;
2504 } else {
2505 /* Check for a default transition on this program. */
2506 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2507 isec->sid, SECCLASS_PROCESS, NULL,
2508 &new_tsec->sid);
2509 if (rc)
2510 return rc;
2511
2512 /*
2513 * Fallback to old SID on NNP or nosuid if not an allowed
2514 * transition.
2515 */
2516 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2517 if (rc)
2518 new_tsec->sid = old_tsec->sid;
2519 }
2520
2521 ad.type = LSM_AUDIT_DATA_FILE;
2522 ad.u.file = bprm->file;
2523
2524 if (new_tsec->sid == old_tsec->sid) {
2525 rc = avc_has_perm(&selinux_state,
2526 old_tsec->sid, isec->sid,
2527 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2528 if (rc)
2529 return rc;
2530 } else {
2531 /* Check permissions for the transition. */
2532 rc = avc_has_perm(&selinux_state,
2533 old_tsec->sid, new_tsec->sid,
2534 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2535 if (rc)
2536 return rc;
2537
2538 rc = avc_has_perm(&selinux_state,
2539 new_tsec->sid, isec->sid,
2540 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2541 if (rc)
2542 return rc;
2543
2544 /* Check for shared state */
2545 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2546 rc = avc_has_perm(&selinux_state,
2547 old_tsec->sid, new_tsec->sid,
2548 SECCLASS_PROCESS, PROCESS__SHARE,
2549 NULL);
2550 if (rc)
2551 return -EPERM;
2552 }
2553
2554 /* Make sure that anyone attempting to ptrace over a task that
2555 * changes its SID has the appropriate permit */
2556 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2557 u32 ptsid = ptrace_parent_sid();
2558 if (ptsid != 0) {
2559 rc = avc_has_perm(&selinux_state,
2560 ptsid, new_tsec->sid,
2561 SECCLASS_PROCESS,
2562 PROCESS__PTRACE, NULL);
2563 if (rc)
2564 return -EPERM;
2565 }
2566 }
2567
2568 /* Clear any possibly unsafe personality bits on exec: */
2569 bprm->per_clear |= PER_CLEAR_ON_SETID;
2570
2571 /* Enable secure mode for SIDs transitions unless
2572 the noatsecure permission is granted between
2573 the two SIDs, i.e. ahp returns 0. */
2574 rc = avc_has_perm(&selinux_state,
2575 old_tsec->sid, new_tsec->sid,
2576 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2577 NULL);
2578 bprm->secureexec |= !!rc;
2579 }
2580
2581 return 0;
2582}
2583
2584static int match_file(const void *p, struct file *file, unsigned fd)
2585{
2586 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2587}
2588
2589/* Derived from fs/exec.c:flush_old_files. */
2590static inline void flush_unauthorized_files(const struct cred *cred,
2591 struct files_struct *files)
2592{
2593 struct file *file, *devnull = NULL;
2594 struct tty_struct *tty;
2595 int drop_tty = 0;
2596 unsigned n;
2597
2598 tty = get_current_tty();
2599 if (tty) {
2600 spin_lock(&tty->files_lock);
2601 if (!list_empty(&tty->tty_files)) {
2602 struct tty_file_private *file_priv;
2603
2604 /* Revalidate access to controlling tty.
2605 Use file_path_has_perm on the tty path directly
2606 rather than using file_has_perm, as this particular
2607 open file may belong to another process and we are
2608 only interested in the inode-based check here. */
2609 file_priv = list_first_entry(&tty->tty_files,
2610 struct tty_file_private, list);
2611 file = file_priv->file;
2612 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2613 drop_tty = 1;
2614 }
2615 spin_unlock(&tty->files_lock);
2616 tty_kref_put(tty);
2617 }
2618 /* Reset controlling tty. */
2619 if (drop_tty)
2620 no_tty();
2621
2622 /* Revalidate access to inherited open files. */
2623 n = iterate_fd(files, 0, match_file, cred);
2624 if (!n) /* none found? */
2625 return;
2626
2627 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2628 if (IS_ERR(devnull))
2629 devnull = NULL;
2630 /* replace all the matching ones with this */
2631 do {
2632 replace_fd(n - 1, devnull, 0);
2633 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2634 if (devnull)
2635 fput(devnull);
2636}
2637
2638/*
2639 * Prepare a process for imminent new credential changes due to exec
2640 */
2641static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2642{
2643 struct task_security_struct *new_tsec;
2644 struct rlimit *rlim, *initrlim;
2645 int rc, i;
2646
2647 new_tsec = bprm->cred->security;
2648 if (new_tsec->sid == new_tsec->osid)
2649 return;
2650
2651 /* Close files for which the new task SID is not authorized. */
2652 flush_unauthorized_files(bprm->cred, current->files);
2653
2654 /* Always clear parent death signal on SID transitions. */
2655 current->pdeath_signal = 0;
2656
2657 /* Check whether the new SID can inherit resource limits from the old
2658 * SID. If not, reset all soft limits to the lower of the current
2659 * task's hard limit and the init task's soft limit.
2660 *
2661 * Note that the setting of hard limits (even to lower them) can be
2662 * controlled by the setrlimit check. The inclusion of the init task's
2663 * soft limit into the computation is to avoid resetting soft limits
2664 * higher than the default soft limit for cases where the default is
2665 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2666 */
2667 rc = avc_has_perm(&selinux_state,
2668 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2669 PROCESS__RLIMITINH, NULL);
2670 if (rc) {
2671 /* protect against do_prlimit() */
2672 task_lock(current);
2673 for (i = 0; i < RLIM_NLIMITS; i++) {
2674 rlim = current->signal->rlim + i;
2675 initrlim = init_task.signal->rlim + i;
2676 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2677 }
2678 task_unlock(current);
2679 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2680 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2681 }
2682}
2683
2684/*
2685 * Clean up the process immediately after the installation of new credentials
2686 * due to exec
2687 */
2688static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2689{
2690 const struct task_security_struct *tsec = current_security();
2691 struct itimerval itimer;
2692 u32 osid, sid;
2693 int rc, i;
2694
2695 osid = tsec->osid;
2696 sid = tsec->sid;
2697
2698 if (sid == osid)
2699 return;
2700
2701 /* Check whether the new SID can inherit signal state from the old SID.
2702 * If not, clear itimers to avoid subsequent signal generation and
2703 * flush and unblock signals.
2704 *
2705 * This must occur _after_ the task SID has been updated so that any
2706 * kill done after the flush will be checked against the new SID.
2707 */
2708 rc = avc_has_perm(&selinux_state,
2709 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2710 if (rc) {
2711 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2712 memset(&itimer, 0, sizeof itimer);
2713 for (i = 0; i < 3; i++)
2714 do_setitimer(i, &itimer, NULL);
2715 }
2716 spin_lock_irq(¤t->sighand->siglock);
2717 if (!fatal_signal_pending(current)) {
2718 flush_sigqueue(¤t->pending);
2719 flush_sigqueue(¤t->signal->shared_pending);
2720 flush_signal_handlers(current, 1);
2721 sigemptyset(¤t->blocked);
2722 recalc_sigpending();
2723 }
2724 spin_unlock_irq(¤t->sighand->siglock);
2725 }
2726
2727 /* Wake up the parent if it is waiting so that it can recheck
2728 * wait permission to the new task SID. */
2729 read_lock(&tasklist_lock);
2730 __wake_up_parent(current, current->real_parent);
2731 read_unlock(&tasklist_lock);
2732}
2733
2734/* superblock security operations */
2735
2736static int selinux_sb_alloc_security(struct super_block *sb)
2737{
2738 return superblock_alloc_security(sb);
2739}
2740
2741static void selinux_sb_free_security(struct super_block *sb)
2742{
2743 superblock_free_security(sb);
2744}
2745
2746static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2747{
2748 if (plen > olen)
2749 return 0;
2750
2751 return !memcmp(prefix, option, plen);
2752}
2753
2754static inline int selinux_option(char *option, int len)
2755{
2756 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2757 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2758 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2759 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2760 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2761}
2762
2763static inline void take_option(char **to, char *from, int *first, int len)
2764{
2765 if (!*first) {
2766 **to = ',';
2767 *to += 1;
2768 } else
2769 *first = 0;
2770 memcpy(*to, from, len);
2771 *to += len;
2772}
2773
2774static inline void take_selinux_option(char **to, char *from, int *first,
2775 int len)
2776{
2777 int current_size = 0;
2778
2779 if (!*first) {
2780 **to = '|';
2781 *to += 1;
2782 } else
2783 *first = 0;
2784
2785 while (current_size < len) {
2786 if (*from != '"') {
2787 **to = *from;
2788 *to += 1;
2789 }
2790 from += 1;
2791 current_size += 1;
2792 }
2793}
2794
2795static int selinux_sb_copy_data(char *orig, char *copy)
2796{
2797 int fnosec, fsec, rc = 0;
2798 char *in_save, *in_curr, *in_end;
2799 char *sec_curr, *nosec_save, *nosec;
2800 int open_quote = 0;
2801
2802 in_curr = orig;
2803 sec_curr = copy;
2804
2805 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2806 if (!nosec) {
2807 rc = -ENOMEM;
2808 goto out;
2809 }
2810
2811 nosec_save = nosec;
2812 fnosec = fsec = 1;
2813 in_save = in_end = orig;
2814
2815 do {
2816 if (*in_end == '"')
2817 open_quote = !open_quote;
2818 if ((*in_end == ',' && open_quote == 0) ||
2819 *in_end == '\0') {
2820 int len = in_end - in_curr;
2821
2822 if (selinux_option(in_curr, len))
2823 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2824 else
2825 take_option(&nosec, in_curr, &fnosec, len);
2826
2827 in_curr = in_end + 1;
2828 }
2829 } while (*in_end++);
2830
2831 strcpy(in_save, nosec_save);
2832 free_page((unsigned long)nosec_save);
2833out:
2834 return rc;
2835}
2836
2837static int selinux_sb_remount(struct super_block *sb, void *data)
2838{
2839 int rc, i, *flags;
2840 struct security_mnt_opts opts;
2841 char *secdata, **mount_options;
2842 struct superblock_security_struct *sbsec = sb->s_security;
2843
2844 if (!(sbsec->flags & SE_SBINITIALIZED))
2845 return 0;
2846
2847 if (!data)
2848 return 0;
2849
2850 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2851 return 0;
2852
2853 security_init_mnt_opts(&opts);
2854 secdata = alloc_secdata();
2855 if (!secdata)
2856 return -ENOMEM;
2857 rc = selinux_sb_copy_data(data, secdata);
2858 if (rc)
2859 goto out_free_secdata;
2860
2861 rc = selinux_parse_opts_str(secdata, &opts);
2862 if (rc)
2863 goto out_free_secdata;
2864
2865 mount_options = opts.mnt_opts;
2866 flags = opts.mnt_opts_flags;
2867
2868 for (i = 0; i < opts.num_mnt_opts; i++) {
2869 u32 sid;
2870
2871 if (flags[i] == SBLABEL_MNT)
2872 continue;
2873 rc = security_context_str_to_sid(&selinux_state,
2874 mount_options[i], &sid,
2875 GFP_KERNEL);
2876 if (rc) {
2877 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2878 "(%s) failed for (dev %s, type %s) errno=%d\n",
2879 mount_options[i], sb->s_id, sb->s_type->name, rc);
2880 goto out_free_opts;
2881 }
2882 rc = -EINVAL;
2883 switch (flags[i]) {
2884 case FSCONTEXT_MNT:
2885 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2886 goto out_bad_option;
2887 break;
2888 case CONTEXT_MNT:
2889 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2890 goto out_bad_option;
2891 break;
2892 case ROOTCONTEXT_MNT: {
2893 struct inode_security_struct *root_isec;
2894 root_isec = backing_inode_security(sb->s_root);
2895
2896 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2897 goto out_bad_option;
2898 break;
2899 }
2900 case DEFCONTEXT_MNT:
2901 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2902 goto out_bad_option;
2903 break;
2904 default:
2905 goto out_free_opts;
2906 }
2907 }
2908
2909 rc = 0;
2910out_free_opts:
2911 security_free_mnt_opts(&opts);
2912out_free_secdata:
2913 free_secdata(secdata);
2914 return rc;
2915out_bad_option:
2916 printk(KERN_WARNING "SELinux: unable to change security options "
2917 "during remount (dev %s, type=%s)\n", sb->s_id,
2918 sb->s_type->name);
2919 goto out_free_opts;
2920}
2921
2922static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2923{
2924 const struct cred *cred = current_cred();
2925 struct common_audit_data ad;
2926 int rc;
2927
2928 rc = superblock_doinit(sb, data);
2929 if (rc)
2930 return rc;
2931
2932 /* Allow all mounts performed by the kernel */
2933 if (flags & MS_KERNMOUNT)
2934 return 0;
2935
2936 ad.type = LSM_AUDIT_DATA_DENTRY;
2937 ad.u.dentry = sb->s_root;
2938 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2939}
2940
2941static int selinux_sb_statfs(struct dentry *dentry)
2942{
2943 const struct cred *cred = current_cred();
2944 struct common_audit_data ad;
2945
2946 ad.type = LSM_AUDIT_DATA_DENTRY;
2947 ad.u.dentry = dentry->d_sb->s_root;
2948 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2949}
2950
2951static int selinux_mount(const char *dev_name,
2952 const struct path *path,
2953 const char *type,
2954 unsigned long flags,
2955 void *data)
2956{
2957 const struct cred *cred = current_cred();
2958
2959 if (flags & MS_REMOUNT)
2960 return superblock_has_perm(cred, path->dentry->d_sb,
2961 FILESYSTEM__REMOUNT, NULL);
2962 else
2963 return path_has_perm(cred, path, FILE__MOUNTON);
2964}
2965
2966static int selinux_umount(struct vfsmount *mnt, int flags)
2967{
2968 const struct cred *cred = current_cred();
2969
2970 return superblock_has_perm(cred, mnt->mnt_sb,
2971 FILESYSTEM__UNMOUNT, NULL);
2972}
2973
2974/* inode security operations */
2975
2976static int selinux_inode_alloc_security(struct inode *inode)
2977{
2978 return inode_alloc_security(inode);
2979}
2980
2981static void selinux_inode_free_security(struct inode *inode)
2982{
2983 inode_free_security(inode);
2984}
2985
2986static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2987 const struct qstr *name, void **ctx,
2988 u32 *ctxlen)
2989{
2990 u32 newsid;
2991 int rc;
2992
2993 rc = selinux_determine_inode_label(current_security(),
2994 d_inode(dentry->d_parent), name,
2995 inode_mode_to_security_class(mode),
2996 &newsid);
2997 if (rc)
2998 return rc;
2999
3000 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
3001 ctxlen);
3002}
3003
3004static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
3005 struct qstr *name,
3006 const struct cred *old,
3007 struct cred *new)
3008{
3009 u32 newsid;
3010 int rc;
3011 struct task_security_struct *tsec;
3012
3013 rc = selinux_determine_inode_label(old->security,
3014 d_inode(dentry->d_parent), name,
3015 inode_mode_to_security_class(mode),
3016 &newsid);
3017 if (rc)
3018 return rc;
3019
3020 tsec = new->security;
3021 tsec->create_sid = newsid;
3022 return 0;
3023}
3024
3025static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
3026 const struct qstr *qstr,
3027 const char **name,
3028 void **value, size_t *len)
3029{
3030 const struct task_security_struct *tsec = current_security();
3031 struct superblock_security_struct *sbsec;
3032 u32 newsid, clen;
3033 int rc;
3034 char *context;
3035
3036 sbsec = dir->i_sb->s_security;
3037
3038 newsid = tsec->create_sid;
3039
3040 rc = selinux_determine_inode_label(current_security(),
3041 dir, qstr,
3042 inode_mode_to_security_class(inode->i_mode),
3043 &newsid);
3044 if (rc)
3045 return rc;
3046
3047 /* Possibly defer initialization to selinux_complete_init. */
3048 if (sbsec->flags & SE_SBINITIALIZED) {
3049 struct inode_security_struct *isec = inode->i_security;
3050 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3051 isec->sid = newsid;
3052 isec->initialized = LABEL_INITIALIZED;
3053 }
3054
3055 if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
3056 return -EOPNOTSUPP;
3057
3058 if (name)
3059 *name = XATTR_SELINUX_SUFFIX;
3060
3061 if (value && len) {
3062 rc = security_sid_to_context_force(&selinux_state, newsid,
3063 &context, &clen);
3064 if (rc)
3065 return rc;
3066 *value = context;
3067 *len = clen;
3068 }
3069
3070 return 0;
3071}
3072
3073static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3074{
3075 return may_create(dir, dentry, SECCLASS_FILE);
3076}
3077
3078static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3079{
3080 return may_link(dir, old_dentry, MAY_LINK);
3081}
3082
3083static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3084{
3085 return may_link(dir, dentry, MAY_UNLINK);
3086}
3087
3088static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3089{
3090 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3091}
3092
3093static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3094{
3095 return may_create(dir, dentry, SECCLASS_DIR);
3096}
3097
3098static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3099{
3100 return may_link(dir, dentry, MAY_RMDIR);
3101}
3102
3103static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3104{
3105 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3106}
3107
3108static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3109 struct inode *new_inode, struct dentry *new_dentry)
3110{
3111 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3112}
3113
3114static int selinux_inode_readlink(struct dentry *dentry)
3115{
3116 const struct cred *cred = current_cred();
3117
3118 return dentry_has_perm(cred, dentry, FILE__READ);
3119}
3120
3121static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3122 bool rcu)
3123{
3124 const struct cred *cred = current_cred();
3125 struct common_audit_data ad;
3126 struct inode_security_struct *isec;
3127 u32 sid;
3128
3129 validate_creds(cred);
3130
3131 ad.type = LSM_AUDIT_DATA_DENTRY;
3132 ad.u.dentry = dentry;
3133 sid = cred_sid(cred);
3134 isec = inode_security_rcu(inode, rcu);
3135 if (IS_ERR(isec))
3136 return PTR_ERR(isec);
3137
3138 return avc_has_perm_flags(&selinux_state,
3139 sid, isec->sid, isec->sclass, FILE__READ, &ad,
3140 rcu ? MAY_NOT_BLOCK : 0);
3141}
3142
3143static noinline int audit_inode_permission(struct inode *inode,
3144 u32 perms, u32 audited, u32 denied,
3145 int result,
3146 unsigned flags)
3147{
3148 struct common_audit_data ad;
3149 struct inode_security_struct *isec = inode->i_security;
3150 int rc;
3151
3152 ad.type = LSM_AUDIT_DATA_INODE;
3153 ad.u.inode = inode;
3154
3155 rc = slow_avc_audit(&selinux_state,
3156 current_sid(), isec->sid, isec->sclass, perms,
3157 audited, denied, result, &ad, flags);
3158 if (rc)
3159 return rc;
3160 return 0;
3161}
3162
3163static int selinux_inode_permission(struct inode *inode, int mask)
3164{
3165 const struct cred *cred = current_cred();
3166 u32 perms;
3167 bool from_access;
3168 unsigned flags = mask & MAY_NOT_BLOCK;
3169 struct inode_security_struct *isec;
3170 u32 sid;
3171 struct av_decision avd;
3172 int rc, rc2;
3173 u32 audited, denied;
3174
3175 from_access = mask & MAY_ACCESS;
3176 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3177
3178 /* No permission to check. Existence test. */
3179 if (!mask)
3180 return 0;
3181
3182 validate_creds(cred);
3183
3184 if (unlikely(IS_PRIVATE(inode)))
3185 return 0;
3186
3187 perms = file_mask_to_av(inode->i_mode, mask);
3188
3189 sid = cred_sid(cred);
3190 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3191 if (IS_ERR(isec))
3192 return PTR_ERR(isec);
3193
3194 rc = avc_has_perm_noaudit(&selinux_state,
3195 sid, isec->sid, isec->sclass, perms, 0, &avd);
3196 audited = avc_audit_required(perms, &avd, rc,
3197 from_access ? FILE__AUDIT_ACCESS : 0,
3198 &denied);
3199 if (likely(!audited))
3200 return rc;
3201
3202 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3203 if (rc2)
3204 return rc2;
3205 return rc;
3206}
3207
3208static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3209{
3210 const struct cred *cred = current_cred();
3211 struct inode *inode = d_backing_inode(dentry);
3212 unsigned int ia_valid = iattr->ia_valid;
3213 __u32 av = FILE__WRITE;
3214
3215 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3216 if (ia_valid & ATTR_FORCE) {
3217 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3218 ATTR_FORCE);
3219 if (!ia_valid)
3220 return 0;
3221 }
3222
3223 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3224 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3225 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3226
3227 if (selinux_policycap_openperm() &&
3228 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3229 (ia_valid & ATTR_SIZE) &&
3230 !(ia_valid & ATTR_FILE))
3231 av |= FILE__OPEN;
3232
3233 return dentry_has_perm(cred, dentry, av);
3234}
3235
3236static int selinux_inode_getattr(const struct path *path)
3237{
3238 return path_has_perm(current_cred(), path, FILE__GETATTR);
3239}
3240
3241static bool has_cap_mac_admin(bool audit)
3242{
3243 const struct cred *cred = current_cred();
3244 int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT;
3245
3246 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit))
3247 return false;
3248 if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true))
3249 return false;
3250 return true;
3251}
3252
3253static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3254 const void *value, size_t size, int flags)
3255{
3256 struct inode *inode = d_backing_inode(dentry);
3257 struct inode_security_struct *isec;
3258 struct superblock_security_struct *sbsec;
3259 struct common_audit_data ad;
3260 u32 newsid, sid = current_sid();
3261 int rc = 0;
3262
3263 if (strcmp(name, XATTR_NAME_SELINUX)) {
3264 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3265 if (rc)
3266 return rc;
3267
3268 /* Not an attribute we recognize, so just check the
3269 ordinary setattr permission. */
3270 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3271 }
3272
3273 sbsec = inode->i_sb->s_security;
3274 if (!(sbsec->flags & SBLABEL_MNT))
3275 return -EOPNOTSUPP;
3276
3277 if (!inode_owner_or_capable(inode))
3278 return -EPERM;
3279
3280 ad.type = LSM_AUDIT_DATA_DENTRY;
3281 ad.u.dentry = dentry;
3282
3283 isec = backing_inode_security(dentry);
3284 rc = avc_has_perm(&selinux_state,
3285 sid, isec->sid, isec->sclass,
3286 FILE__RELABELFROM, &ad);
3287 if (rc)
3288 return rc;
3289
3290 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3291 GFP_KERNEL);
3292 if (rc == -EINVAL) {
3293 if (!has_cap_mac_admin(true)) {
3294 struct audit_buffer *ab;
3295 size_t audit_size;
3296
3297 /* We strip a nul only if it is at the end, otherwise the
3298 * context contains a nul and we should audit that */
3299 if (value) {
3300 const char *str = value;
3301
3302 if (str[size - 1] == '\0')
3303 audit_size = size - 1;
3304 else
3305 audit_size = size;
3306 } else {
3307 audit_size = 0;
3308 }
3309 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3310 audit_log_format(ab, "op=setxattr invalid_context=");
3311 audit_log_n_untrustedstring(ab, value, audit_size);
3312 audit_log_end(ab);
3313
3314 return rc;
3315 }
3316 rc = security_context_to_sid_force(&selinux_state, value,
3317 size, &newsid);
3318 }
3319 if (rc)
3320 return rc;
3321
3322 rc = avc_has_perm(&selinux_state,
3323 sid, newsid, isec->sclass,
3324 FILE__RELABELTO, &ad);
3325 if (rc)
3326 return rc;
3327
3328 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3329 sid, isec->sclass);
3330 if (rc)
3331 return rc;
3332
3333 return avc_has_perm(&selinux_state,
3334 newsid,
3335 sbsec->sid,
3336 SECCLASS_FILESYSTEM,
3337 FILESYSTEM__ASSOCIATE,
3338 &ad);
3339}
3340
3341static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3342 const void *value, size_t size,
3343 int flags)
3344{
3345 struct inode *inode = d_backing_inode(dentry);
3346 struct inode_security_struct *isec;
3347 u32 newsid;
3348 int rc;
3349
3350 if (strcmp(name, XATTR_NAME_SELINUX)) {
3351 /* Not an attribute we recognize, so nothing to do. */
3352 return;
3353 }
3354
3355 rc = security_context_to_sid_force(&selinux_state, value, size,
3356 &newsid);
3357 if (rc) {
3358 printk(KERN_ERR "SELinux: unable to map context to SID"
3359 "for (%s, %lu), rc=%d\n",
3360 inode->i_sb->s_id, inode->i_ino, -rc);
3361 return;
3362 }
3363
3364 isec = backing_inode_security(dentry);
3365 spin_lock(&isec->lock);
3366 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3367 isec->sid = newsid;
3368 isec->initialized = LABEL_INITIALIZED;
3369 spin_unlock(&isec->lock);
3370
3371 return;
3372}
3373
3374static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3375{
3376 const struct cred *cred = current_cred();
3377
3378 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3379}
3380
3381static int selinux_inode_listxattr(struct dentry *dentry)
3382{
3383 const struct cred *cred = current_cred();
3384
3385 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3386}
3387
3388static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3389{
3390 if (strcmp(name, XATTR_NAME_SELINUX)) {
3391 int rc = cap_inode_removexattr(dentry, name);
3392 if (rc)
3393 return rc;
3394
3395 /* Not an attribute we recognize, so just check the
3396 ordinary setattr permission. */
3397 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3398 }
3399
3400 /* No one is allowed to remove a SELinux security label.
3401 You can change the label, but all data must be labeled. */
3402 return -EACCES;
3403}
3404
3405/*
3406 * Copy the inode security context value to the user.
3407 *
3408 * Permission check is handled by selinux_inode_getxattr hook.
3409 */
3410static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3411{
3412 u32 size;
3413 int error;
3414 char *context = NULL;
3415 struct inode_security_struct *isec;
3416
3417 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3418 return -EOPNOTSUPP;
3419
3420 /*
3421 * If the caller has CAP_MAC_ADMIN, then get the raw context
3422 * value even if it is not defined by current policy; otherwise,
3423 * use the in-core value under current policy.
3424 * Use the non-auditing forms of the permission checks since
3425 * getxattr may be called by unprivileged processes commonly
3426 * and lack of permission just means that we fall back to the
3427 * in-core context value, not a denial.
3428 */
3429 isec = inode_security(inode);
3430 if (has_cap_mac_admin(false))
3431 error = security_sid_to_context_force(&selinux_state,
3432 isec->sid, &context,
3433 &size);
3434 else
3435 error = security_sid_to_context(&selinux_state, isec->sid,
3436 &context, &size);
3437 if (error)
3438 return error;
3439 error = size;
3440 if (alloc) {
3441 *buffer = context;
3442 goto out_nofree;
3443 }
3444 kfree(context);
3445out_nofree:
3446 return error;
3447}
3448
3449static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3450 const void *value, size_t size, int flags)
3451{
3452 struct inode_security_struct *isec = inode_security_novalidate(inode);
3453 u32 newsid;
3454 int rc;
3455
3456 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3457 return -EOPNOTSUPP;
3458
3459 if (!value || !size)
3460 return -EACCES;
3461
3462 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3463 GFP_KERNEL);
3464 if (rc)
3465 return rc;
3466
3467 spin_lock(&isec->lock);
3468 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3469 isec->sid = newsid;
3470 isec->initialized = LABEL_INITIALIZED;
3471 spin_unlock(&isec->lock);
3472 return 0;
3473}
3474
3475static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3476{
3477 const int len = sizeof(XATTR_NAME_SELINUX);
3478 if (buffer && len <= buffer_size)
3479 memcpy(buffer, XATTR_NAME_SELINUX, len);
3480 return len;
3481}
3482
3483static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3484{
3485 struct inode_security_struct *isec = inode_security_novalidate(inode);
3486 *secid = isec->sid;
3487}
3488
3489static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3490{
3491 u32 sid;
3492 struct task_security_struct *tsec;
3493 struct cred *new_creds = *new;
3494
3495 if (new_creds == NULL) {
3496 new_creds = prepare_creds();
3497 if (!new_creds)
3498 return -ENOMEM;
3499 }
3500
3501 tsec = new_creds->security;
3502 /* Get label from overlay inode and set it in create_sid */
3503 selinux_inode_getsecid(d_inode(src), &sid);
3504 tsec->create_sid = sid;
3505 *new = new_creds;
3506 return 0;
3507}
3508
3509static int selinux_inode_copy_up_xattr(const char *name)
3510{
3511 /* The copy_up hook above sets the initial context on an inode, but we
3512 * don't then want to overwrite it by blindly copying all the lower
3513 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3514 */
3515 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3516 return 1; /* Discard */
3517 /*
3518 * Any other attribute apart from SELINUX is not claimed, supported
3519 * by selinux.
3520 */
3521 return -EOPNOTSUPP;
3522}
3523
3524/* file security operations */
3525
3526static int selinux_revalidate_file_permission(struct file *file, int mask)
3527{
3528 const struct cred *cred = current_cred();
3529 struct inode *inode = file_inode(file);
3530
3531 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3532 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3533 mask |= MAY_APPEND;
3534
3535 return file_has_perm(cred, file,
3536 file_mask_to_av(inode->i_mode, mask));
3537}
3538
3539static int selinux_file_permission(struct file *file, int mask)
3540{
3541 struct inode *inode = file_inode(file);
3542 struct file_security_struct *fsec = file->f_security;
3543 struct inode_security_struct *isec;
3544 u32 sid = current_sid();
3545
3546 if (!mask)
3547 /* No permission to check. Existence test. */
3548 return 0;
3549
3550 isec = inode_security(inode);
3551 if (sid == fsec->sid && fsec->isid == isec->sid &&
3552 fsec->pseqno == avc_policy_seqno(&selinux_state))
3553 /* No change since file_open check. */
3554 return 0;
3555
3556 return selinux_revalidate_file_permission(file, mask);
3557}
3558
3559static int selinux_file_alloc_security(struct file *file)
3560{
3561 return file_alloc_security(file);
3562}
3563
3564static void selinux_file_free_security(struct file *file)
3565{
3566 file_free_security(file);
3567}
3568
3569/*
3570 * Check whether a task has the ioctl permission and cmd
3571 * operation to an inode.
3572 */
3573static int ioctl_has_perm(const struct cred *cred, struct file *file,
3574 u32 requested, u16 cmd)
3575{
3576 struct common_audit_data ad;
3577 struct file_security_struct *fsec = file->f_security;
3578 struct inode *inode = file_inode(file);
3579 struct inode_security_struct *isec;
3580 struct lsm_ioctlop_audit ioctl;
3581 u32 ssid = cred_sid(cred);
3582 int rc;
3583 u8 driver = cmd >> 8;
3584 u8 xperm = cmd & 0xff;
3585
3586 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3587 ad.u.op = &ioctl;
3588 ad.u.op->cmd = cmd;
3589 ad.u.op->path = file->f_path;
3590
3591 if (ssid != fsec->sid) {
3592 rc = avc_has_perm(&selinux_state,
3593 ssid, fsec->sid,
3594 SECCLASS_FD,
3595 FD__USE,
3596 &ad);
3597 if (rc)
3598 goto out;
3599 }
3600
3601 if (unlikely(IS_PRIVATE(inode)))
3602 return 0;
3603
3604 isec = inode_security(inode);
3605 rc = avc_has_extended_perms(&selinux_state,
3606 ssid, isec->sid, isec->sclass,
3607 requested, driver, xperm, &ad);
3608out:
3609 return rc;
3610}
3611
3612static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3613 unsigned long arg)
3614{
3615 const struct cred *cred = current_cred();
3616 int error = 0;
3617
3618 switch (cmd) {
3619 case FIONREAD:
3620 /* fall through */
3621 case FIBMAP:
3622 /* fall through */
3623 case FIGETBSZ:
3624 /* fall through */
3625 case FS_IOC_GETFLAGS:
3626 /* fall through */
3627 case FS_IOC_GETVERSION:
3628 error = file_has_perm(cred, file, FILE__GETATTR);
3629 break;
3630
3631 case FS_IOC_SETFLAGS:
3632 /* fall through */
3633 case FS_IOC_SETVERSION:
3634 error = file_has_perm(cred, file, FILE__SETATTR);
3635 break;
3636
3637 /* sys_ioctl() checks */
3638 case FIONBIO:
3639 /* fall through */
3640 case FIOASYNC:
3641 error = file_has_perm(cred, file, 0);
3642 break;
3643
3644 case KDSKBENT:
3645 case KDSKBSENT:
3646 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3647 SECURITY_CAP_AUDIT, true);
3648 break;
3649
3650 /* default case assumes that the command will go
3651 * to the file's ioctl() function.
3652 */
3653 default:
3654 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3655 }
3656 return error;
3657}
3658
3659static int default_noexec;
3660
3661static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3662{
3663 const struct cred *cred = current_cred();
3664 u32 sid = cred_sid(cred);
3665 int rc = 0;
3666
3667 if (default_noexec &&
3668 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3669 (!shared && (prot & PROT_WRITE)))) {
3670 /*
3671 * We are making executable an anonymous mapping or a
3672 * private file mapping that will also be writable.
3673 * This has an additional check.
3674 */
3675 rc = avc_has_perm(&selinux_state,
3676 sid, sid, SECCLASS_PROCESS,
3677 PROCESS__EXECMEM, NULL);
3678 if (rc)
3679 goto error;
3680 }
3681
3682 if (file) {
3683 /* read access is always possible with a mapping */
3684 u32 av = FILE__READ;
3685
3686 /* write access only matters if the mapping is shared */
3687 if (shared && (prot & PROT_WRITE))
3688 av |= FILE__WRITE;
3689
3690 if (prot & PROT_EXEC)
3691 av |= FILE__EXECUTE;
3692
3693 return file_has_perm(cred, file, av);
3694 }
3695
3696error:
3697 return rc;
3698}
3699
3700static int selinux_mmap_addr(unsigned long addr)
3701{
3702 int rc = 0;
3703
3704 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3705 u32 sid = current_sid();
3706 rc = avc_has_perm(&selinux_state,
3707 sid, sid, SECCLASS_MEMPROTECT,
3708 MEMPROTECT__MMAP_ZERO, NULL);
3709 }
3710
3711 return rc;
3712}
3713
3714static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3715 unsigned long prot, unsigned long flags)
3716{
3717 struct common_audit_data ad;
3718 int rc;
3719
3720 if (file) {
3721 ad.type = LSM_AUDIT_DATA_FILE;
3722 ad.u.file = file;
3723 rc = inode_has_perm(current_cred(), file_inode(file),
3724 FILE__MAP, &ad);
3725 if (rc)
3726 return rc;
3727 }
3728
3729 if (selinux_state.checkreqprot)
3730 prot = reqprot;
3731
3732 return file_map_prot_check(file, prot,
3733 (flags & MAP_TYPE) == MAP_SHARED);
3734}
3735
3736static int selinux_file_mprotect(struct vm_area_struct *vma,
3737 unsigned long reqprot,
3738 unsigned long prot)
3739{
3740 const struct cred *cred = current_cred();
3741 u32 sid = cred_sid(cred);
3742
3743 if (selinux_state.checkreqprot)
3744 prot = reqprot;
3745
3746 if (default_noexec &&
3747 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3748 int rc = 0;
3749 if (vma->vm_start >= vma->vm_mm->start_brk &&
3750 vma->vm_end <= vma->vm_mm->brk) {
3751 rc = avc_has_perm(&selinux_state,
3752 sid, sid, SECCLASS_PROCESS,
3753 PROCESS__EXECHEAP, NULL);
3754 } else if (!vma->vm_file &&
3755 ((vma->vm_start <= vma->vm_mm->start_stack &&
3756 vma->vm_end >= vma->vm_mm->start_stack) ||
3757 vma_is_stack_for_current(vma))) {
3758 rc = avc_has_perm(&selinux_state,
3759 sid, sid, SECCLASS_PROCESS,
3760 PROCESS__EXECSTACK, NULL);
3761 } else if (vma->vm_file && vma->anon_vma) {
3762 /*
3763 * We are making executable a file mapping that has
3764 * had some COW done. Since pages might have been
3765 * written, check ability to execute the possibly
3766 * modified content. This typically should only
3767 * occur for text relocations.
3768 */
3769 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3770 }
3771 if (rc)
3772 return rc;
3773 }
3774
3775 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3776}
3777
3778static int selinux_file_lock(struct file *file, unsigned int cmd)
3779{
3780 const struct cred *cred = current_cred();
3781
3782 return file_has_perm(cred, file, FILE__LOCK);
3783}
3784
3785static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3786 unsigned long arg)
3787{
3788 const struct cred *cred = current_cred();
3789 int err = 0;
3790
3791 switch (cmd) {
3792 case F_SETFL:
3793 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3794 err = file_has_perm(cred, file, FILE__WRITE);
3795 break;
3796 }
3797 /* fall through */
3798 case F_SETOWN:
3799 case F_SETSIG:
3800 case F_GETFL:
3801 case F_GETOWN:
3802 case F_GETSIG:
3803 case F_GETOWNER_UIDS:
3804 /* Just check FD__USE permission */
3805 err = file_has_perm(cred, file, 0);
3806 break;
3807 case F_GETLK:
3808 case F_SETLK:
3809 case F_SETLKW:
3810 case F_OFD_GETLK:
3811 case F_OFD_SETLK:
3812 case F_OFD_SETLKW:
3813#if BITS_PER_LONG == 32
3814 case F_GETLK64:
3815 case F_SETLK64:
3816 case F_SETLKW64:
3817#endif
3818 err = file_has_perm(cred, file, FILE__LOCK);
3819 break;
3820 }
3821
3822 return err;
3823}
3824
3825static void selinux_file_set_fowner(struct file *file)
3826{
3827 struct file_security_struct *fsec;
3828
3829 fsec = file->f_security;
3830 fsec->fown_sid = current_sid();
3831}
3832
3833static int selinux_file_send_sigiotask(struct task_struct *tsk,
3834 struct fown_struct *fown, int signum)
3835{
3836 struct file *file;
3837 u32 sid = task_sid(tsk);
3838 u32 perm;
3839 struct file_security_struct *fsec;
3840
3841 /* struct fown_struct is never outside the context of a struct file */
3842 file = container_of(fown, struct file, f_owner);
3843
3844 fsec = file->f_security;
3845
3846 if (!signum)
3847 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3848 else
3849 perm = signal_to_av(signum);
3850
3851 return avc_has_perm(&selinux_state,
3852 fsec->fown_sid, sid,
3853 SECCLASS_PROCESS, perm, NULL);
3854}
3855
3856static int selinux_file_receive(struct file *file)
3857{
3858 const struct cred *cred = current_cred();
3859
3860 return file_has_perm(cred, file, file_to_av(file));
3861}
3862
3863static int selinux_file_open(struct file *file, const struct cred *cred)
3864{
3865 struct file_security_struct *fsec;
3866 struct inode_security_struct *isec;
3867
3868 fsec = file->f_security;
3869 isec = inode_security(file_inode(file));
3870 /*
3871 * Save inode label and policy sequence number
3872 * at open-time so that selinux_file_permission
3873 * can determine whether revalidation is necessary.
3874 * Task label is already saved in the file security
3875 * struct as its SID.
3876 */
3877 fsec->isid = isec->sid;
3878 fsec->pseqno = avc_policy_seqno(&selinux_state);
3879 /*
3880 * Since the inode label or policy seqno may have changed
3881 * between the selinux_inode_permission check and the saving
3882 * of state above, recheck that access is still permitted.
3883 * Otherwise, access might never be revalidated against the
3884 * new inode label or new policy.
3885 * This check is not redundant - do not remove.
3886 */
3887 return file_path_has_perm(cred, file, open_file_to_av(file));
3888}
3889
3890/* task security operations */
3891
3892static int selinux_task_alloc(struct task_struct *task,
3893 unsigned long clone_flags)
3894{
3895 u32 sid = current_sid();
3896
3897 return avc_has_perm(&selinux_state,
3898 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3899}
3900
3901/*
3902 * allocate the SELinux part of blank credentials
3903 */
3904static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3905{
3906 struct task_security_struct *tsec;
3907
3908 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3909 if (!tsec)
3910 return -ENOMEM;
3911
3912 cred->security = tsec;
3913 return 0;
3914}
3915
3916/*
3917 * detach and free the LSM part of a set of credentials
3918 */
3919static void selinux_cred_free(struct cred *cred)
3920{
3921 struct task_security_struct *tsec = cred->security;
3922
3923 /*
3924 * cred->security == NULL if security_cred_alloc_blank() or
3925 * security_prepare_creds() returned an error.
3926 */
3927 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3928 cred->security = (void *) 0x7UL;
3929 kfree(tsec);
3930}
3931
3932/*
3933 * prepare a new set of credentials for modification
3934 */
3935static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3936 gfp_t gfp)
3937{
3938 const struct task_security_struct *old_tsec;
3939 struct task_security_struct *tsec;
3940
3941 old_tsec = old->security;
3942
3943 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3944 if (!tsec)
3945 return -ENOMEM;
3946
3947 new->security = tsec;
3948 return 0;
3949}
3950
3951/*
3952 * transfer the SELinux data to a blank set of creds
3953 */
3954static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3955{
3956 const struct task_security_struct *old_tsec = old->security;
3957 struct task_security_struct *tsec = new->security;
3958
3959 *tsec = *old_tsec;
3960}
3961
3962static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3963{
3964 *secid = cred_sid(c);
3965}
3966
3967/*
3968 * set the security data for a kernel service
3969 * - all the creation contexts are set to unlabelled
3970 */
3971static int selinux_kernel_act_as(struct cred *new, u32 secid)
3972{
3973 struct task_security_struct *tsec = new->security;
3974 u32 sid = current_sid();
3975 int ret;
3976
3977 ret = avc_has_perm(&selinux_state,
3978 sid, secid,
3979 SECCLASS_KERNEL_SERVICE,
3980 KERNEL_SERVICE__USE_AS_OVERRIDE,
3981 NULL);
3982 if (ret == 0) {
3983 tsec->sid = secid;
3984 tsec->create_sid = 0;
3985 tsec->keycreate_sid = 0;
3986 tsec->sockcreate_sid = 0;
3987 }
3988 return ret;
3989}
3990
3991/*
3992 * set the file creation context in a security record to the same as the
3993 * objective context of the specified inode
3994 */
3995static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3996{
3997 struct inode_security_struct *isec = inode_security(inode);
3998 struct task_security_struct *tsec = new->security;
3999 u32 sid = current_sid();
4000 int ret;
4001
4002 ret = avc_has_perm(&selinux_state,
4003 sid, isec->sid,
4004 SECCLASS_KERNEL_SERVICE,
4005 KERNEL_SERVICE__CREATE_FILES_AS,
4006 NULL);
4007
4008 if (ret == 0)
4009 tsec->create_sid = isec->sid;
4010 return ret;
4011}
4012
4013static int selinux_kernel_module_request(char *kmod_name)
4014{
4015 struct common_audit_data ad;
4016
4017 ad.type = LSM_AUDIT_DATA_KMOD;
4018 ad.u.kmod_name = kmod_name;
4019
4020 return avc_has_perm(&selinux_state,
4021 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4022 SYSTEM__MODULE_REQUEST, &ad);
4023}
4024
4025static int selinux_kernel_module_from_file(struct file *file)
4026{
4027 struct common_audit_data ad;
4028 struct inode_security_struct *isec;
4029 struct file_security_struct *fsec;
4030 u32 sid = current_sid();
4031 int rc;
4032
4033 /* init_module */
4034 if (file == NULL)
4035 return avc_has_perm(&selinux_state,
4036 sid, sid, SECCLASS_SYSTEM,
4037 SYSTEM__MODULE_LOAD, NULL);
4038
4039 /* finit_module */
4040
4041 ad.type = LSM_AUDIT_DATA_FILE;
4042 ad.u.file = file;
4043
4044 fsec = file->f_security;
4045 if (sid != fsec->sid) {
4046 rc = avc_has_perm(&selinux_state,
4047 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4048 if (rc)
4049 return rc;
4050 }
4051
4052 isec = inode_security(file_inode(file));
4053 return avc_has_perm(&selinux_state,
4054 sid, isec->sid, SECCLASS_SYSTEM,
4055 SYSTEM__MODULE_LOAD, &ad);
4056}
4057
4058static int selinux_kernel_read_file(struct file *file,
4059 enum kernel_read_file_id id)
4060{
4061 int rc = 0;
4062
4063 switch (id) {
4064 case READING_MODULE:
4065 rc = selinux_kernel_module_from_file(file);
4066 break;
4067 default:
4068 break;
4069 }
4070
4071 return rc;
4072}
4073
4074static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4075{
4076 return avc_has_perm(&selinux_state,
4077 current_sid(), task_sid(p), SECCLASS_PROCESS,
4078 PROCESS__SETPGID, NULL);
4079}
4080
4081static int selinux_task_getpgid(struct task_struct *p)
4082{
4083 return avc_has_perm(&selinux_state,
4084 current_sid(), task_sid(p), SECCLASS_PROCESS,
4085 PROCESS__GETPGID, NULL);
4086}
4087
4088static int selinux_task_getsid(struct task_struct *p)
4089{
4090 return avc_has_perm(&selinux_state,
4091 current_sid(), task_sid(p), SECCLASS_PROCESS,
4092 PROCESS__GETSESSION, NULL);
4093}
4094
4095static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4096{
4097 *secid = task_sid(p);
4098}
4099
4100static int selinux_task_setnice(struct task_struct *p, int nice)
4101{
4102 return avc_has_perm(&selinux_state,
4103 current_sid(), task_sid(p), SECCLASS_PROCESS,
4104 PROCESS__SETSCHED, NULL);
4105}
4106
4107static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4108{
4109 return avc_has_perm(&selinux_state,
4110 current_sid(), task_sid(p), SECCLASS_PROCESS,
4111 PROCESS__SETSCHED, NULL);
4112}
4113
4114static int selinux_task_getioprio(struct task_struct *p)
4115{
4116 return avc_has_perm(&selinux_state,
4117 current_sid(), task_sid(p), SECCLASS_PROCESS,
4118 PROCESS__GETSCHED, NULL);
4119}
4120
4121static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4122 unsigned int flags)
4123{
4124 u32 av = 0;
4125
4126 if (!flags)
4127 return 0;
4128 if (flags & LSM_PRLIMIT_WRITE)
4129 av |= PROCESS__SETRLIMIT;
4130 if (flags & LSM_PRLIMIT_READ)
4131 av |= PROCESS__GETRLIMIT;
4132 return avc_has_perm(&selinux_state,
4133 cred_sid(cred), cred_sid(tcred),
4134 SECCLASS_PROCESS, av, NULL);
4135}
4136
4137static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4138 struct rlimit *new_rlim)
4139{
4140 struct rlimit *old_rlim = p->signal->rlim + resource;
4141
4142 /* Control the ability to change the hard limit (whether
4143 lowering or raising it), so that the hard limit can
4144 later be used as a safe reset point for the soft limit
4145 upon context transitions. See selinux_bprm_committing_creds. */
4146 if (old_rlim->rlim_max != new_rlim->rlim_max)
4147 return avc_has_perm(&selinux_state,
4148 current_sid(), task_sid(p),
4149 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4150
4151 return 0;
4152}
4153
4154static int selinux_task_setscheduler(struct task_struct *p)
4155{
4156 return avc_has_perm(&selinux_state,
4157 current_sid(), task_sid(p), SECCLASS_PROCESS,
4158 PROCESS__SETSCHED, NULL);
4159}
4160
4161static int selinux_task_getscheduler(struct task_struct *p)
4162{
4163 return avc_has_perm(&selinux_state,
4164 current_sid(), task_sid(p), SECCLASS_PROCESS,
4165 PROCESS__GETSCHED, NULL);
4166}
4167
4168static int selinux_task_movememory(struct task_struct *p)
4169{
4170 return avc_has_perm(&selinux_state,
4171 current_sid(), task_sid(p), SECCLASS_PROCESS,
4172 PROCESS__SETSCHED, NULL);
4173}
4174
4175static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
4176 int sig, const struct cred *cred)
4177{
4178 u32 secid;
4179 u32 perm;
4180
4181 if (!sig)
4182 perm = PROCESS__SIGNULL; /* null signal; existence test */
4183 else
4184 perm = signal_to_av(sig);
4185 if (!cred)
4186 secid = current_sid();
4187 else
4188 secid = cred_sid(cred);
4189 return avc_has_perm(&selinux_state,
4190 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4191}
4192
4193static void selinux_task_to_inode(struct task_struct *p,
4194 struct inode *inode)
4195{
4196 struct inode_security_struct *isec = inode->i_security;
4197 u32 sid = task_sid(p);
4198
4199 spin_lock(&isec->lock);
4200 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4201 isec->sid = sid;
4202 isec->initialized = LABEL_INITIALIZED;
4203 spin_unlock(&isec->lock);
4204}
4205
4206/* Returns error only if unable to parse addresses */
4207static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4208 struct common_audit_data *ad, u8 *proto)
4209{
4210 int offset, ihlen, ret = -EINVAL;
4211 struct iphdr _iph, *ih;
4212
4213 offset = skb_network_offset(skb);
4214 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4215 if (ih == NULL)
4216 goto out;
4217
4218 ihlen = ih->ihl * 4;
4219 if (ihlen < sizeof(_iph))
4220 goto out;
4221
4222 ad->u.net->v4info.saddr = ih->saddr;
4223 ad->u.net->v4info.daddr = ih->daddr;
4224 ret = 0;
4225
4226 if (proto)
4227 *proto = ih->protocol;
4228
4229 switch (ih->protocol) {
4230 case IPPROTO_TCP: {
4231 struct tcphdr _tcph, *th;
4232
4233 if (ntohs(ih->frag_off) & IP_OFFSET)
4234 break;
4235
4236 offset += ihlen;
4237 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4238 if (th == NULL)
4239 break;
4240
4241 ad->u.net->sport = th->source;
4242 ad->u.net->dport = th->dest;
4243 break;
4244 }
4245
4246 case IPPROTO_UDP: {
4247 struct udphdr _udph, *uh;
4248
4249 if (ntohs(ih->frag_off) & IP_OFFSET)
4250 break;
4251
4252 offset += ihlen;
4253 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4254 if (uh == NULL)
4255 break;
4256
4257 ad->u.net->sport = uh->source;
4258 ad->u.net->dport = uh->dest;
4259 break;
4260 }
4261
4262 case IPPROTO_DCCP: {
4263 struct dccp_hdr _dccph, *dh;
4264
4265 if (ntohs(ih->frag_off) & IP_OFFSET)
4266 break;
4267
4268 offset += ihlen;
4269 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4270 if (dh == NULL)
4271 break;
4272
4273 ad->u.net->sport = dh->dccph_sport;
4274 ad->u.net->dport = dh->dccph_dport;
4275 break;
4276 }
4277
4278#if IS_ENABLED(CONFIG_IP_SCTP)
4279 case IPPROTO_SCTP: {
4280 struct sctphdr _sctph, *sh;
4281
4282 if (ntohs(ih->frag_off) & IP_OFFSET)
4283 break;
4284
4285 offset += ihlen;
4286 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4287 if (sh == NULL)
4288 break;
4289
4290 ad->u.net->sport = sh->source;
4291 ad->u.net->dport = sh->dest;
4292 break;
4293 }
4294#endif
4295 default:
4296 break;
4297 }
4298out:
4299 return ret;
4300}
4301
4302#if IS_ENABLED(CONFIG_IPV6)
4303
4304/* Returns error only if unable to parse addresses */
4305static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4306 struct common_audit_data *ad, u8 *proto)
4307{
4308 u8 nexthdr;
4309 int ret = -EINVAL, offset;
4310 struct ipv6hdr _ipv6h, *ip6;
4311 __be16 frag_off;
4312
4313 offset = skb_network_offset(skb);
4314 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4315 if (ip6 == NULL)
4316 goto out;
4317
4318 ad->u.net->v6info.saddr = ip6->saddr;
4319 ad->u.net->v6info.daddr = ip6->daddr;
4320 ret = 0;
4321
4322 nexthdr = ip6->nexthdr;
4323 offset += sizeof(_ipv6h);
4324 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4325 if (offset < 0)
4326 goto out;
4327
4328 if (proto)
4329 *proto = nexthdr;
4330
4331 switch (nexthdr) {
4332 case IPPROTO_TCP: {
4333 struct tcphdr _tcph, *th;
4334
4335 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4336 if (th == NULL)
4337 break;
4338
4339 ad->u.net->sport = th->source;
4340 ad->u.net->dport = th->dest;
4341 break;
4342 }
4343
4344 case IPPROTO_UDP: {
4345 struct udphdr _udph, *uh;
4346
4347 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4348 if (uh == NULL)
4349 break;
4350
4351 ad->u.net->sport = uh->source;
4352 ad->u.net->dport = uh->dest;
4353 break;
4354 }
4355
4356 case IPPROTO_DCCP: {
4357 struct dccp_hdr _dccph, *dh;
4358
4359 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4360 if (dh == NULL)
4361 break;
4362
4363 ad->u.net->sport = dh->dccph_sport;
4364 ad->u.net->dport = dh->dccph_dport;
4365 break;
4366 }
4367
4368#if IS_ENABLED(CONFIG_IP_SCTP)
4369 case IPPROTO_SCTP: {
4370 struct sctphdr _sctph, *sh;
4371
4372 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4373 if (sh == NULL)
4374 break;
4375
4376 ad->u.net->sport = sh->source;
4377 ad->u.net->dport = sh->dest;
4378 break;
4379 }
4380#endif
4381 /* includes fragments */
4382 default:
4383 break;
4384 }
4385out:
4386 return ret;
4387}
4388
4389#endif /* IPV6 */
4390
4391static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4392 char **_addrp, int src, u8 *proto)
4393{
4394 char *addrp;
4395 int ret;
4396
4397 switch (ad->u.net->family) {
4398 case PF_INET:
4399 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4400 if (ret)
4401 goto parse_error;
4402 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4403 &ad->u.net->v4info.daddr);
4404 goto okay;
4405
4406#if IS_ENABLED(CONFIG_IPV6)
4407 case PF_INET6:
4408 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4409 if (ret)
4410 goto parse_error;
4411 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4412 &ad->u.net->v6info.daddr);
4413 goto okay;
4414#endif /* IPV6 */
4415 default:
4416 addrp = NULL;
4417 goto okay;
4418 }
4419
4420parse_error:
4421 printk(KERN_WARNING
4422 "SELinux: failure in selinux_parse_skb(),"
4423 " unable to parse packet\n");
4424 return ret;
4425
4426okay:
4427 if (_addrp)
4428 *_addrp = addrp;
4429 return 0;
4430}
4431
4432/**
4433 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4434 * @skb: the packet
4435 * @family: protocol family
4436 * @sid: the packet's peer label SID
4437 *
4438 * Description:
4439 * Check the various different forms of network peer labeling and determine
4440 * the peer label/SID for the packet; most of the magic actually occurs in
4441 * the security server function security_net_peersid_cmp(). The function
4442 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4443 * or -EACCES if @sid is invalid due to inconsistencies with the different
4444 * peer labels.
4445 *
4446 */
4447static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4448{
4449 int err;
4450 u32 xfrm_sid;
4451 u32 nlbl_sid;
4452 u32 nlbl_type;
4453
4454 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4455 if (unlikely(err))
4456 return -EACCES;
4457 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4458 if (unlikely(err))
4459 return -EACCES;
4460
4461 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4462 nlbl_type, xfrm_sid, sid);
4463 if (unlikely(err)) {
4464 printk(KERN_WARNING
4465 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4466 " unable to determine packet's peer label\n");
4467 return -EACCES;
4468 }
4469
4470 return 0;
4471}
4472
4473/**
4474 * selinux_conn_sid - Determine the child socket label for a connection
4475 * @sk_sid: the parent socket's SID
4476 * @skb_sid: the packet's SID
4477 * @conn_sid: the resulting connection SID
4478 *
4479 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4480 * combined with the MLS information from @skb_sid in order to create
4481 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4482 * of @sk_sid. Returns zero on success, negative values on failure.
4483 *
4484 */
4485static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4486{
4487 int err = 0;
4488
4489 if (skb_sid != SECSID_NULL)
4490 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4491 conn_sid);
4492 else
4493 *conn_sid = sk_sid;
4494
4495 return err;
4496}
4497
4498/* socket security operations */
4499
4500static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4501 u16 secclass, u32 *socksid)
4502{
4503 if (tsec->sockcreate_sid > SECSID_NULL) {
4504 *socksid = tsec->sockcreate_sid;
4505 return 0;
4506 }
4507
4508 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4509 secclass, NULL, socksid);
4510}
4511
4512static int sock_has_perm(struct sock *sk, u32 perms)
4513{
4514 struct sk_security_struct *sksec = sk->sk_security;
4515 struct common_audit_data ad;
4516 struct lsm_network_audit net = {0,};
4517
4518 if (sksec->sid == SECINITSID_KERNEL)
4519 return 0;
4520
4521 ad.type = LSM_AUDIT_DATA_NET;
4522 ad.u.net = &net;
4523 ad.u.net->sk = sk;
4524
4525 return avc_has_perm(&selinux_state,
4526 current_sid(), sksec->sid, sksec->sclass, perms,
4527 &ad);
4528}
4529
4530static int selinux_socket_create(int family, int type,
4531 int protocol, int kern)
4532{
4533 const struct task_security_struct *tsec = current_security();
4534 u32 newsid;
4535 u16 secclass;
4536 int rc;
4537
4538 if (kern)
4539 return 0;
4540
4541 secclass = socket_type_to_security_class(family, type, protocol);
4542 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4543 if (rc)
4544 return rc;
4545
4546 return avc_has_perm(&selinux_state,
4547 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4548}
4549
4550static int selinux_socket_post_create(struct socket *sock, int family,
4551 int type, int protocol, int kern)
4552{
4553 const struct task_security_struct *tsec = current_security();
4554 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4555 struct sk_security_struct *sksec;
4556 u16 sclass = socket_type_to_security_class(family, type, protocol);
4557 u32 sid = SECINITSID_KERNEL;
4558 int err = 0;
4559
4560 if (!kern) {
4561 err = socket_sockcreate_sid(tsec, sclass, &sid);
4562 if (err)
4563 return err;
4564 }
4565
4566 isec->sclass = sclass;
4567 isec->sid = sid;
4568 isec->initialized = LABEL_INITIALIZED;
4569
4570 if (sock->sk) {
4571 sksec = sock->sk->sk_security;
4572 sksec->sclass = sclass;
4573 sksec->sid = sid;
4574 /* Allows detection of the first association on this socket */
4575 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4576 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4577
4578 err = selinux_netlbl_socket_post_create(sock->sk, family);
4579 }
4580
4581 return err;
4582}
4583
4584/* Range of port numbers used to automatically bind.
4585 Need to determine whether we should perform a name_bind
4586 permission check between the socket and the port number. */
4587
4588static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4589{
4590 struct sock *sk = sock->sk;
4591 struct sk_security_struct *sksec = sk->sk_security;
4592 u16 family;
4593 int err;
4594
4595 err = sock_has_perm(sk, SOCKET__BIND);
4596 if (err)
4597 goto out;
4598
4599 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4600 family = sk->sk_family;
4601 if (family == PF_INET || family == PF_INET6) {
4602 char *addrp;
4603 struct common_audit_data ad;
4604 struct lsm_network_audit net = {0,};
4605 struct sockaddr_in *addr4 = NULL;
4606 struct sockaddr_in6 *addr6 = NULL;
4607 u16 family_sa = address->sa_family;
4608 unsigned short snum;
4609 u32 sid, node_perm;
4610
4611 /*
4612 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4613 * that validates multiple binding addresses. Because of this
4614 * need to check address->sa_family as it is possible to have
4615 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4616 */
4617 switch (family_sa) {
4618 case AF_UNSPEC:
4619 case AF_INET:
4620 if (addrlen < sizeof(struct sockaddr_in))
4621 return -EINVAL;
4622 addr4 = (struct sockaddr_in *)address;
4623 if (family_sa == AF_UNSPEC) {
4624 /* see __inet_bind(), we only want to allow
4625 * AF_UNSPEC if the address is INADDR_ANY
4626 */
4627 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4628 goto err_af;
4629 family_sa = AF_INET;
4630 }
4631 snum = ntohs(addr4->sin_port);
4632 addrp = (char *)&addr4->sin_addr.s_addr;
4633 break;
4634 case AF_INET6:
4635 if (addrlen < SIN6_LEN_RFC2133)
4636 return -EINVAL;
4637 addr6 = (struct sockaddr_in6 *)address;
4638 snum = ntohs(addr6->sin6_port);
4639 addrp = (char *)&addr6->sin6_addr.s6_addr;
4640 break;
4641 default:
4642 goto err_af;
4643 }
4644
4645 ad.type = LSM_AUDIT_DATA_NET;
4646 ad.u.net = &net;
4647 ad.u.net->sport = htons(snum);
4648 ad.u.net->family = family_sa;
4649
4650 if (snum) {
4651 int low, high;
4652
4653 inet_get_local_port_range(sock_net(sk), &low, &high);
4654
4655 if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4656 snum > high) {
4657 err = sel_netport_sid(sk->sk_protocol,
4658 snum, &sid);
4659 if (err)
4660 goto out;
4661 err = avc_has_perm(&selinux_state,
4662 sksec->sid, sid,
4663 sksec->sclass,
4664 SOCKET__NAME_BIND, &ad);
4665 if (err)
4666 goto out;
4667 }
4668 }
4669
4670 switch (sksec->sclass) {
4671 case SECCLASS_TCP_SOCKET:
4672 node_perm = TCP_SOCKET__NODE_BIND;
4673 break;
4674
4675 case SECCLASS_UDP_SOCKET:
4676 node_perm = UDP_SOCKET__NODE_BIND;
4677 break;
4678
4679 case SECCLASS_DCCP_SOCKET:
4680 node_perm = DCCP_SOCKET__NODE_BIND;
4681 break;
4682
4683 case SECCLASS_SCTP_SOCKET:
4684 node_perm = SCTP_SOCKET__NODE_BIND;
4685 break;
4686
4687 default:
4688 node_perm = RAWIP_SOCKET__NODE_BIND;
4689 break;
4690 }
4691
4692 err = sel_netnode_sid(addrp, family_sa, &sid);
4693 if (err)
4694 goto out;
4695
4696 if (family_sa == AF_INET)
4697 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4698 else
4699 ad.u.net->v6info.saddr = addr6->sin6_addr;
4700
4701 err = avc_has_perm(&selinux_state,
4702 sksec->sid, sid,
4703 sksec->sclass, node_perm, &ad);
4704 if (err)
4705 goto out;
4706 }
4707out:
4708 return err;
4709err_af:
4710 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4711 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4712 return -EINVAL;
4713 return -EAFNOSUPPORT;
4714}
4715
4716/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4717 * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt
4718 */
4719static int selinux_socket_connect_helper(struct socket *sock,
4720 struct sockaddr *address, int addrlen)
4721{
4722 struct sock *sk = sock->sk;
4723 struct sk_security_struct *sksec = sk->sk_security;
4724 int err;
4725
4726 err = sock_has_perm(sk, SOCKET__CONNECT);
4727 if (err)
4728 return err;
4729
4730 /*
4731 * If a TCP, DCCP or SCTP socket, check name_connect permission
4732 * for the port.
4733 */
4734 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4735 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4736 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4737 struct common_audit_data ad;
4738 struct lsm_network_audit net = {0,};
4739 struct sockaddr_in *addr4 = NULL;
4740 struct sockaddr_in6 *addr6 = NULL;
4741 unsigned short snum;
4742 u32 sid, perm;
4743
4744 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4745 * that validates multiple connect addresses. Because of this
4746 * need to check address->sa_family as it is possible to have
4747 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4748 */
4749 switch (address->sa_family) {
4750 case AF_INET:
4751 addr4 = (struct sockaddr_in *)address;
4752 if (addrlen < sizeof(struct sockaddr_in))
4753 return -EINVAL;
4754 snum = ntohs(addr4->sin_port);
4755 break;
4756 case AF_INET6:
4757 addr6 = (struct sockaddr_in6 *)address;
4758 if (addrlen < SIN6_LEN_RFC2133)
4759 return -EINVAL;
4760 snum = ntohs(addr6->sin6_port);
4761 break;
4762 default:
4763 /* Note that SCTP services expect -EINVAL, whereas
4764 * others expect -EAFNOSUPPORT.
4765 */
4766 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4767 return -EINVAL;
4768 else
4769 return -EAFNOSUPPORT;
4770 }
4771
4772 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4773 if (err)
4774 return err;
4775
4776 switch (sksec->sclass) {
4777 case SECCLASS_TCP_SOCKET:
4778 perm = TCP_SOCKET__NAME_CONNECT;
4779 break;
4780 case SECCLASS_DCCP_SOCKET:
4781 perm = DCCP_SOCKET__NAME_CONNECT;
4782 break;
4783 case SECCLASS_SCTP_SOCKET:
4784 perm = SCTP_SOCKET__NAME_CONNECT;
4785 break;
4786 }
4787
4788 ad.type = LSM_AUDIT_DATA_NET;
4789 ad.u.net = &net;
4790 ad.u.net->dport = htons(snum);
4791 ad.u.net->family = address->sa_family;
4792 err = avc_has_perm(&selinux_state,
4793 sksec->sid, sid, sksec->sclass, perm, &ad);
4794 if (err)
4795 return err;
4796 }
4797
4798 return 0;
4799}
4800
4801/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4802static int selinux_socket_connect(struct socket *sock,
4803 struct sockaddr *address, int addrlen)
4804{
4805 int err;
4806 struct sock *sk = sock->sk;
4807
4808 err = selinux_socket_connect_helper(sock, address, addrlen);
4809 if (err)
4810 return err;
4811
4812 return selinux_netlbl_socket_connect(sk, address);
4813}
4814
4815static int selinux_socket_listen(struct socket *sock, int backlog)
4816{
4817 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4818}
4819
4820static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4821{
4822 int err;
4823 struct inode_security_struct *isec;
4824 struct inode_security_struct *newisec;
4825 u16 sclass;
4826 u32 sid;
4827
4828 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4829 if (err)
4830 return err;
4831
4832 isec = inode_security_novalidate(SOCK_INODE(sock));
4833 spin_lock(&isec->lock);
4834 sclass = isec->sclass;
4835 sid = isec->sid;
4836 spin_unlock(&isec->lock);
4837
4838 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4839 newisec->sclass = sclass;
4840 newisec->sid = sid;
4841 newisec->initialized = LABEL_INITIALIZED;
4842
4843 return 0;
4844}
4845
4846static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4847 int size)
4848{
4849 return sock_has_perm(sock->sk, SOCKET__WRITE);
4850}
4851
4852static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4853 int size, int flags)
4854{
4855 return sock_has_perm(sock->sk, SOCKET__READ);
4856}
4857
4858static int selinux_socket_getsockname(struct socket *sock)
4859{
4860 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4861}
4862
4863static int selinux_socket_getpeername(struct socket *sock)
4864{
4865 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4866}
4867
4868static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4869{
4870 int err;
4871
4872 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4873 if (err)
4874 return err;
4875
4876 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4877}
4878
4879static int selinux_socket_getsockopt(struct socket *sock, int level,
4880 int optname)
4881{
4882 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4883}
4884
4885static int selinux_socket_shutdown(struct socket *sock, int how)
4886{
4887 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4888}
4889
4890static int selinux_socket_unix_stream_connect(struct sock *sock,
4891 struct sock *other,
4892 struct sock *newsk)
4893{
4894 struct sk_security_struct *sksec_sock = sock->sk_security;
4895 struct sk_security_struct *sksec_other = other->sk_security;
4896 struct sk_security_struct *sksec_new = newsk->sk_security;
4897 struct common_audit_data ad;
4898 struct lsm_network_audit net = {0,};
4899 int err;
4900
4901 ad.type = LSM_AUDIT_DATA_NET;
4902 ad.u.net = &net;
4903 ad.u.net->sk = other;
4904
4905 err = avc_has_perm(&selinux_state,
4906 sksec_sock->sid, sksec_other->sid,
4907 sksec_other->sclass,
4908 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4909 if (err)
4910 return err;
4911
4912 /* server child socket */
4913 sksec_new->peer_sid = sksec_sock->sid;
4914 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4915 sksec_sock->sid, &sksec_new->sid);
4916 if (err)
4917 return err;
4918
4919 /* connecting socket */
4920 sksec_sock->peer_sid = sksec_new->sid;
4921
4922 return 0;
4923}
4924
4925static int selinux_socket_unix_may_send(struct socket *sock,
4926 struct socket *other)
4927{
4928 struct sk_security_struct *ssec = sock->sk->sk_security;
4929 struct sk_security_struct *osec = other->sk->sk_security;
4930 struct common_audit_data ad;
4931 struct lsm_network_audit net = {0,};
4932
4933 ad.type = LSM_AUDIT_DATA_NET;
4934 ad.u.net = &net;
4935 ad.u.net->sk = other->sk;
4936
4937 return avc_has_perm(&selinux_state,
4938 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4939 &ad);
4940}
4941
4942static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4943 char *addrp, u16 family, u32 peer_sid,
4944 struct common_audit_data *ad)
4945{
4946 int err;
4947 u32 if_sid;
4948 u32 node_sid;
4949
4950 err = sel_netif_sid(ns, ifindex, &if_sid);
4951 if (err)
4952 return err;
4953 err = avc_has_perm(&selinux_state,
4954 peer_sid, if_sid,
4955 SECCLASS_NETIF, NETIF__INGRESS, ad);
4956 if (err)
4957 return err;
4958
4959 err = sel_netnode_sid(addrp, family, &node_sid);
4960 if (err)
4961 return err;
4962 return avc_has_perm(&selinux_state,
4963 peer_sid, node_sid,
4964 SECCLASS_NODE, NODE__RECVFROM, ad);
4965}
4966
4967static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4968 u16 family)
4969{
4970 int err = 0;
4971 struct sk_security_struct *sksec = sk->sk_security;
4972 u32 sk_sid = sksec->sid;
4973 struct common_audit_data ad;
4974 struct lsm_network_audit net = {0,};
4975 char *addrp;
4976
4977 ad.type = LSM_AUDIT_DATA_NET;
4978 ad.u.net = &net;
4979 ad.u.net->netif = skb->skb_iif;
4980 ad.u.net->family = family;
4981 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4982 if (err)
4983 return err;
4984
4985 if (selinux_secmark_enabled()) {
4986 err = avc_has_perm(&selinux_state,
4987 sk_sid, skb->secmark, SECCLASS_PACKET,
4988 PACKET__RECV, &ad);
4989 if (err)
4990 return err;
4991 }
4992
4993 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4994 if (err)
4995 return err;
4996 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4997
4998 return err;
4999}
5000
5001static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5002{
5003 int err;
5004 struct sk_security_struct *sksec = sk->sk_security;
5005 u16 family = sk->sk_family;
5006 u32 sk_sid = sksec->sid;
5007 struct common_audit_data ad;
5008 struct lsm_network_audit net = {0,};
5009 char *addrp;
5010 u8 secmark_active;
5011 u8 peerlbl_active;
5012
5013 if (family != PF_INET && family != PF_INET6)
5014 return 0;
5015
5016 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5017 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5018 family = PF_INET;
5019
5020 /* If any sort of compatibility mode is enabled then handoff processing
5021 * to the selinux_sock_rcv_skb_compat() function to deal with the
5022 * special handling. We do this in an attempt to keep this function
5023 * as fast and as clean as possible. */
5024 if (!selinux_policycap_netpeer())
5025 return selinux_sock_rcv_skb_compat(sk, skb, family);
5026
5027 secmark_active = selinux_secmark_enabled();
5028 peerlbl_active = selinux_peerlbl_enabled();
5029 if (!secmark_active && !peerlbl_active)
5030 return 0;
5031
5032 ad.type = LSM_AUDIT_DATA_NET;
5033 ad.u.net = &net;
5034 ad.u.net->netif = skb->skb_iif;
5035 ad.u.net->family = family;
5036 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5037 if (err)
5038 return err;
5039
5040 if (peerlbl_active) {
5041 u32 peer_sid;
5042
5043 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5044 if (err)
5045 return err;
5046 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5047 addrp, family, peer_sid, &ad);
5048 if (err) {
5049 selinux_netlbl_err(skb, family, err, 0);
5050 return err;
5051 }
5052 err = avc_has_perm(&selinux_state,
5053 sk_sid, peer_sid, SECCLASS_PEER,
5054 PEER__RECV, &ad);
5055 if (err) {
5056 selinux_netlbl_err(skb, family, err, 0);
5057 return err;
5058 }
5059 }
5060
5061 if (secmark_active) {
5062 err = avc_has_perm(&selinux_state,
5063 sk_sid, skb->secmark, SECCLASS_PACKET,
5064 PACKET__RECV, &ad);
5065 if (err)
5066 return err;
5067 }
5068
5069 return err;
5070}
5071
5072static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5073 int __user *optlen, unsigned len)
5074{
5075 int err = 0;
5076 char *scontext;
5077 u32 scontext_len;
5078 struct sk_security_struct *sksec = sock->sk->sk_security;
5079 u32 peer_sid = SECSID_NULL;
5080
5081 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5082 sksec->sclass == SECCLASS_TCP_SOCKET ||
5083 sksec->sclass == SECCLASS_SCTP_SOCKET)
5084 peer_sid = sksec->peer_sid;
5085 if (peer_sid == SECSID_NULL)
5086 return -ENOPROTOOPT;
5087
5088 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5089 &scontext_len);
5090 if (err)
5091 return err;
5092
5093 if (scontext_len > len) {
5094 err = -ERANGE;
5095 goto out_len;
5096 }
5097
5098 if (copy_to_user(optval, scontext, scontext_len))
5099 err = -EFAULT;
5100
5101out_len:
5102 if (put_user(scontext_len, optlen))
5103 err = -EFAULT;
5104 kfree(scontext);
5105 return err;
5106}
5107
5108static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5109{
5110 u32 peer_secid = SECSID_NULL;
5111 u16 family;
5112 struct inode_security_struct *isec;
5113
5114 if (skb && skb->protocol == htons(ETH_P_IP))
5115 family = PF_INET;
5116 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5117 family = PF_INET6;
5118 else if (sock)
5119 family = sock->sk->sk_family;
5120 else
5121 goto out;
5122
5123 if (sock && family == PF_UNIX) {
5124 isec = inode_security_novalidate(SOCK_INODE(sock));
5125 peer_secid = isec->sid;
5126 } else if (skb)
5127 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5128
5129out:
5130 *secid = peer_secid;
5131 if (peer_secid == SECSID_NULL)
5132 return -EINVAL;
5133 return 0;
5134}
5135
5136static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5137{
5138 struct sk_security_struct *sksec;
5139
5140 sksec = kzalloc(sizeof(*sksec), priority);
5141 if (!sksec)
5142 return -ENOMEM;
5143
5144 sksec->peer_sid = SECINITSID_UNLABELED;
5145 sksec->sid = SECINITSID_UNLABELED;
5146 sksec->sclass = SECCLASS_SOCKET;
5147 selinux_netlbl_sk_security_reset(sksec);
5148 sk->sk_security = sksec;
5149
5150 return 0;
5151}
5152
5153static void selinux_sk_free_security(struct sock *sk)
5154{
5155 struct sk_security_struct *sksec = sk->sk_security;
5156
5157 sk->sk_security = NULL;
5158 selinux_netlbl_sk_security_free(sksec);
5159 kfree(sksec);
5160}
5161
5162static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5163{
5164 struct sk_security_struct *sksec = sk->sk_security;
5165 struct sk_security_struct *newsksec = newsk->sk_security;
5166
5167 newsksec->sid = sksec->sid;
5168 newsksec->peer_sid = sksec->peer_sid;
5169 newsksec->sclass = sksec->sclass;
5170
5171 selinux_netlbl_sk_security_reset(newsksec);
5172}
5173
5174static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5175{
5176 if (!sk)
5177 *secid = SECINITSID_ANY_SOCKET;
5178 else {
5179 struct sk_security_struct *sksec = sk->sk_security;
5180
5181 *secid = sksec->sid;
5182 }
5183}
5184
5185static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5186{
5187 struct inode_security_struct *isec =
5188 inode_security_novalidate(SOCK_INODE(parent));
5189 struct sk_security_struct *sksec = sk->sk_security;
5190
5191 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5192 sk->sk_family == PF_UNIX)
5193 isec->sid = sksec->sid;
5194 sksec->sclass = isec->sclass;
5195}
5196
5197/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5198 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5199 * already present).
5200 */
5201static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5202 struct sk_buff *skb)
5203{
5204 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5205 struct common_audit_data ad;
5206 struct lsm_network_audit net = {0,};
5207 u8 peerlbl_active;
5208 u32 peer_sid = SECINITSID_UNLABELED;
5209 u32 conn_sid;
5210 int err = 0;
5211
5212 if (!selinux_policycap_extsockclass())
5213 return 0;
5214
5215 peerlbl_active = selinux_peerlbl_enabled();
5216
5217 if (peerlbl_active) {
5218 /* This will return peer_sid = SECSID_NULL if there are
5219 * no peer labels, see security_net_peersid_resolve().
5220 */
5221 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5222 &peer_sid);
5223 if (err)
5224 return err;
5225
5226 if (peer_sid == SECSID_NULL)
5227 peer_sid = SECINITSID_UNLABELED;
5228 }
5229
5230 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5231 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5232
5233 /* Here as first association on socket. As the peer SID
5234 * was allowed by peer recv (and the netif/node checks),
5235 * then it is approved by policy and used as the primary
5236 * peer SID for getpeercon(3).
5237 */
5238 sksec->peer_sid = peer_sid;
5239 } else if (sksec->peer_sid != peer_sid) {
5240 /* Other association peer SIDs are checked to enforce
5241 * consistency among the peer SIDs.
5242 */
5243 ad.type = LSM_AUDIT_DATA_NET;
5244 ad.u.net = &net;
5245 ad.u.net->sk = ep->base.sk;
5246 err = avc_has_perm(&selinux_state,
5247 sksec->peer_sid, peer_sid, sksec->sclass,
5248 SCTP_SOCKET__ASSOCIATION, &ad);
5249 if (err)
5250 return err;
5251 }
5252
5253 /* Compute the MLS component for the connection and store
5254 * the information in ep. This will be used by SCTP TCP type
5255 * sockets and peeled off connections as they cause a new
5256 * socket to be generated. selinux_sctp_sk_clone() will then
5257 * plug this into the new socket.
5258 */
5259 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5260 if (err)
5261 return err;
5262
5263 ep->secid = conn_sid;
5264 ep->peer_secid = peer_sid;
5265
5266 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5267 return selinux_netlbl_sctp_assoc_request(ep, skb);
5268}
5269
5270/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5271 * based on their @optname.
5272 */
5273static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5274 struct sockaddr *address,
5275 int addrlen)
5276{
5277 int len, err = 0, walk_size = 0;
5278 void *addr_buf;
5279 struct sockaddr *addr;
5280 struct socket *sock;
5281
5282 if (!selinux_policycap_extsockclass())
5283 return 0;
5284
5285 /* Process one or more addresses that may be IPv4 or IPv6 */
5286 sock = sk->sk_socket;
5287 addr_buf = address;
5288
5289 while (walk_size < addrlen) {
5290 addr = addr_buf;
5291 switch (addr->sa_family) {
5292 case AF_UNSPEC:
5293 case AF_INET:
5294 len = sizeof(struct sockaddr_in);
5295 break;
5296 case AF_INET6:
5297 len = sizeof(struct sockaddr_in6);
5298 break;
5299 default:
5300 return -EINVAL;
5301 }
5302
5303 err = -EINVAL;
5304 switch (optname) {
5305 /* Bind checks */
5306 case SCTP_PRIMARY_ADDR:
5307 case SCTP_SET_PEER_PRIMARY_ADDR:
5308 case SCTP_SOCKOPT_BINDX_ADD:
5309 err = selinux_socket_bind(sock, addr, len);
5310 break;
5311 /* Connect checks */
5312 case SCTP_SOCKOPT_CONNECTX:
5313 case SCTP_PARAM_SET_PRIMARY:
5314 case SCTP_PARAM_ADD_IP:
5315 case SCTP_SENDMSG_CONNECT:
5316 err = selinux_socket_connect_helper(sock, addr, len);
5317 if (err)
5318 return err;
5319
5320 /* As selinux_sctp_bind_connect() is called by the
5321 * SCTP protocol layer, the socket is already locked,
5322 * therefore selinux_netlbl_socket_connect_locked() is
5323 * is called here. The situations handled are:
5324 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5325 * whenever a new IP address is added or when a new
5326 * primary address is selected.
5327 * Note that an SCTP connect(2) call happens before
5328 * the SCTP protocol layer and is handled via
5329 * selinux_socket_connect().
5330 */
5331 err = selinux_netlbl_socket_connect_locked(sk, addr);
5332 break;
5333 }
5334
5335 if (err)
5336 return err;
5337
5338 addr_buf += len;
5339 walk_size += len;
5340 }
5341
5342 return 0;
5343}
5344
5345/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5346static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5347 struct sock *newsk)
5348{
5349 struct sk_security_struct *sksec = sk->sk_security;
5350 struct sk_security_struct *newsksec = newsk->sk_security;
5351
5352 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5353 * the non-sctp clone version.
5354 */
5355 if (!selinux_policycap_extsockclass())
5356 return selinux_sk_clone_security(sk, newsk);
5357
5358 newsksec->sid = ep->secid;
5359 newsksec->peer_sid = ep->peer_secid;
5360 newsksec->sclass = sksec->sclass;
5361 selinux_netlbl_sctp_sk_clone(sk, newsk);
5362}
5363
5364static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5365 struct request_sock *req)
5366{
5367 struct sk_security_struct *sksec = sk->sk_security;
5368 int err;
5369 u16 family = req->rsk_ops->family;
5370 u32 connsid;
5371 u32 peersid;
5372
5373 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5374 if (err)
5375 return err;
5376 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5377 if (err)
5378 return err;
5379 req->secid = connsid;
5380 req->peer_secid = peersid;
5381
5382 return selinux_netlbl_inet_conn_request(req, family);
5383}
5384
5385static void selinux_inet_csk_clone(struct sock *newsk,
5386 const struct request_sock *req)
5387{
5388 struct sk_security_struct *newsksec = newsk->sk_security;
5389
5390 newsksec->sid = req->secid;
5391 newsksec->peer_sid = req->peer_secid;
5392 /* NOTE: Ideally, we should also get the isec->sid for the
5393 new socket in sync, but we don't have the isec available yet.
5394 So we will wait until sock_graft to do it, by which
5395 time it will have been created and available. */
5396
5397 /* We don't need to take any sort of lock here as we are the only
5398 * thread with access to newsksec */
5399 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5400}
5401
5402static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5403{
5404 u16 family = sk->sk_family;
5405 struct sk_security_struct *sksec = sk->sk_security;
5406
5407 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5408 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5409 family = PF_INET;
5410
5411 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5412}
5413
5414static int selinux_secmark_relabel_packet(u32 sid)
5415{
5416 const struct task_security_struct *__tsec;
5417 u32 tsid;
5418
5419 __tsec = current_security();
5420 tsid = __tsec->sid;
5421
5422 return avc_has_perm(&selinux_state,
5423 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5424 NULL);
5425}
5426
5427static void selinux_secmark_refcount_inc(void)
5428{
5429 atomic_inc(&selinux_secmark_refcount);
5430}
5431
5432static void selinux_secmark_refcount_dec(void)
5433{
5434 atomic_dec(&selinux_secmark_refcount);
5435}
5436
5437static void selinux_req_classify_flow(const struct request_sock *req,
5438 struct flowi *fl)
5439{
5440 fl->flowi_secid = req->secid;
5441}
5442
5443static int selinux_tun_dev_alloc_security(void **security)
5444{
5445 struct tun_security_struct *tunsec;
5446
5447 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5448 if (!tunsec)
5449 return -ENOMEM;
5450 tunsec->sid = current_sid();
5451
5452 *security = tunsec;
5453 return 0;
5454}
5455
5456static void selinux_tun_dev_free_security(void *security)
5457{
5458 kfree(security);
5459}
5460
5461static int selinux_tun_dev_create(void)
5462{
5463 u32 sid = current_sid();
5464
5465 /* we aren't taking into account the "sockcreate" SID since the socket
5466 * that is being created here is not a socket in the traditional sense,
5467 * instead it is a private sock, accessible only to the kernel, and
5468 * representing a wide range of network traffic spanning multiple
5469 * connections unlike traditional sockets - check the TUN driver to
5470 * get a better understanding of why this socket is special */
5471
5472 return avc_has_perm(&selinux_state,
5473 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5474 NULL);
5475}
5476
5477static int selinux_tun_dev_attach_queue(void *security)
5478{
5479 struct tun_security_struct *tunsec = security;
5480
5481 return avc_has_perm(&selinux_state,
5482 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5483 TUN_SOCKET__ATTACH_QUEUE, NULL);
5484}
5485
5486static int selinux_tun_dev_attach(struct sock *sk, void *security)
5487{
5488 struct tun_security_struct *tunsec = security;
5489 struct sk_security_struct *sksec = sk->sk_security;
5490
5491 /* we don't currently perform any NetLabel based labeling here and it
5492 * isn't clear that we would want to do so anyway; while we could apply
5493 * labeling without the support of the TUN user the resulting labeled
5494 * traffic from the other end of the connection would almost certainly
5495 * cause confusion to the TUN user that had no idea network labeling
5496 * protocols were being used */
5497
5498 sksec->sid = tunsec->sid;
5499 sksec->sclass = SECCLASS_TUN_SOCKET;
5500
5501 return 0;
5502}
5503
5504static int selinux_tun_dev_open(void *security)
5505{
5506 struct tun_security_struct *tunsec = security;
5507 u32 sid = current_sid();
5508 int err;
5509
5510 err = avc_has_perm(&selinux_state,
5511 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5512 TUN_SOCKET__RELABELFROM, NULL);
5513 if (err)
5514 return err;
5515 err = avc_has_perm(&selinux_state,
5516 sid, sid, SECCLASS_TUN_SOCKET,
5517 TUN_SOCKET__RELABELTO, NULL);
5518 if (err)
5519 return err;
5520 tunsec->sid = sid;
5521
5522 return 0;
5523}
5524
5525static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5526{
5527 int err = 0;
5528 u32 perm;
5529 struct nlmsghdr *nlh;
5530 struct sk_security_struct *sksec = sk->sk_security;
5531
5532 if (skb->len < NLMSG_HDRLEN) {
5533 err = -EINVAL;
5534 goto out;
5535 }
5536 nlh = nlmsg_hdr(skb);
5537
5538 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5539 if (err) {
5540 if (err == -EINVAL) {
5541 pr_warn_ratelimited("SELinux: unrecognized netlink"
5542 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5543 " pig=%d comm=%s\n",
5544 sk->sk_protocol, nlh->nlmsg_type,
5545 secclass_map[sksec->sclass - 1].name,
5546 task_pid_nr(current), current->comm);
5547 if (!enforcing_enabled(&selinux_state) ||
5548 security_get_allow_unknown(&selinux_state))
5549 err = 0;
5550 }
5551
5552 /* Ignore */
5553 if (err == -ENOENT)
5554 err = 0;
5555 goto out;
5556 }
5557
5558 err = sock_has_perm(sk, perm);
5559out:
5560 return err;
5561}
5562
5563#ifdef CONFIG_NETFILTER
5564
5565static unsigned int selinux_ip_forward(struct sk_buff *skb,
5566 const struct net_device *indev,
5567 u16 family)
5568{
5569 int err;
5570 char *addrp;
5571 u32 peer_sid;
5572 struct common_audit_data ad;
5573 struct lsm_network_audit net = {0,};
5574 u8 secmark_active;
5575 u8 netlbl_active;
5576 u8 peerlbl_active;
5577
5578 if (!selinux_policycap_netpeer())
5579 return NF_ACCEPT;
5580
5581 secmark_active = selinux_secmark_enabled();
5582 netlbl_active = netlbl_enabled();
5583 peerlbl_active = selinux_peerlbl_enabled();
5584 if (!secmark_active && !peerlbl_active)
5585 return NF_ACCEPT;
5586
5587 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5588 return NF_DROP;
5589
5590 ad.type = LSM_AUDIT_DATA_NET;
5591 ad.u.net = &net;
5592 ad.u.net->netif = indev->ifindex;
5593 ad.u.net->family = family;
5594 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5595 return NF_DROP;
5596
5597 if (peerlbl_active) {
5598 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5599 addrp, family, peer_sid, &ad);
5600 if (err) {
5601 selinux_netlbl_err(skb, family, err, 1);
5602 return NF_DROP;
5603 }
5604 }
5605
5606 if (secmark_active)
5607 if (avc_has_perm(&selinux_state,
5608 peer_sid, skb->secmark,
5609 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5610 return NF_DROP;
5611
5612 if (netlbl_active)
5613 /* we do this in the FORWARD path and not the POST_ROUTING
5614 * path because we want to make sure we apply the necessary
5615 * labeling before IPsec is applied so we can leverage AH
5616 * protection */
5617 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5618 return NF_DROP;
5619
5620 return NF_ACCEPT;
5621}
5622
5623static unsigned int selinux_ipv4_forward(void *priv,
5624 struct sk_buff *skb,
5625 const struct nf_hook_state *state)
5626{
5627 return selinux_ip_forward(skb, state->in, PF_INET);
5628}
5629
5630#if IS_ENABLED(CONFIG_IPV6)
5631static unsigned int selinux_ipv6_forward(void *priv,
5632 struct sk_buff *skb,
5633 const struct nf_hook_state *state)
5634{
5635 return selinux_ip_forward(skb, state->in, PF_INET6);
5636}
5637#endif /* IPV6 */
5638
5639static unsigned int selinux_ip_output(struct sk_buff *skb,
5640 u16 family)
5641{
5642 struct sock *sk;
5643 u32 sid;
5644
5645 if (!netlbl_enabled())
5646 return NF_ACCEPT;
5647
5648 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5649 * because we want to make sure we apply the necessary labeling
5650 * before IPsec is applied so we can leverage AH protection */
5651 sk = skb->sk;
5652 if (sk) {
5653 struct sk_security_struct *sksec;
5654
5655 if (sk_listener(sk))
5656 /* if the socket is the listening state then this
5657 * packet is a SYN-ACK packet which means it needs to
5658 * be labeled based on the connection/request_sock and
5659 * not the parent socket. unfortunately, we can't
5660 * lookup the request_sock yet as it isn't queued on
5661 * the parent socket until after the SYN-ACK is sent.
5662 * the "solution" is to simply pass the packet as-is
5663 * as any IP option based labeling should be copied
5664 * from the initial connection request (in the IP
5665 * layer). it is far from ideal, but until we get a
5666 * security label in the packet itself this is the
5667 * best we can do. */
5668 return NF_ACCEPT;
5669
5670 /* standard practice, label using the parent socket */
5671 sksec = sk->sk_security;
5672 sid = sksec->sid;
5673 } else
5674 sid = SECINITSID_KERNEL;
5675 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5676 return NF_DROP;
5677
5678 return NF_ACCEPT;
5679}
5680
5681static unsigned int selinux_ipv4_output(void *priv,
5682 struct sk_buff *skb,
5683 const struct nf_hook_state *state)
5684{
5685 return selinux_ip_output(skb, PF_INET);
5686}
5687
5688#if IS_ENABLED(CONFIG_IPV6)
5689static unsigned int selinux_ipv6_output(void *priv,
5690 struct sk_buff *skb,
5691 const struct nf_hook_state *state)
5692{
5693 return selinux_ip_output(skb, PF_INET6);
5694}
5695#endif /* IPV6 */
5696
5697static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5698 int ifindex,
5699 u16 family)
5700{
5701 struct sock *sk = skb_to_full_sk(skb);
5702 struct sk_security_struct *sksec;
5703 struct common_audit_data ad;
5704 struct lsm_network_audit net = {0,};
5705 char *addrp;
5706 u8 proto;
5707
5708 if (sk == NULL)
5709 return NF_ACCEPT;
5710 sksec = sk->sk_security;
5711
5712 ad.type = LSM_AUDIT_DATA_NET;
5713 ad.u.net = &net;
5714 ad.u.net->netif = ifindex;
5715 ad.u.net->family = family;
5716 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5717 return NF_DROP;
5718
5719 if (selinux_secmark_enabled())
5720 if (avc_has_perm(&selinux_state,
5721 sksec->sid, skb->secmark,
5722 SECCLASS_PACKET, PACKET__SEND, &ad))
5723 return NF_DROP_ERR(-ECONNREFUSED);
5724
5725 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5726 return NF_DROP_ERR(-ECONNREFUSED);
5727
5728 return NF_ACCEPT;
5729}
5730
5731static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5732 const struct net_device *outdev,
5733 u16 family)
5734{
5735 u32 secmark_perm;
5736 u32 peer_sid;
5737 int ifindex = outdev->ifindex;
5738 struct sock *sk;
5739 struct common_audit_data ad;
5740 struct lsm_network_audit net = {0,};
5741 char *addrp;
5742 u8 secmark_active;
5743 u8 peerlbl_active;
5744
5745 /* If any sort of compatibility mode is enabled then handoff processing
5746 * to the selinux_ip_postroute_compat() function to deal with the
5747 * special handling. We do this in an attempt to keep this function
5748 * as fast and as clean as possible. */
5749 if (!selinux_policycap_netpeer())
5750 return selinux_ip_postroute_compat(skb, ifindex, family);
5751
5752 secmark_active = selinux_secmark_enabled();
5753 peerlbl_active = selinux_peerlbl_enabled();
5754 if (!secmark_active && !peerlbl_active)
5755 return NF_ACCEPT;
5756
5757 sk = skb_to_full_sk(skb);
5758
5759#ifdef CONFIG_XFRM
5760 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5761 * packet transformation so allow the packet to pass without any checks
5762 * since we'll have another chance to perform access control checks
5763 * when the packet is on it's final way out.
5764 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5765 * is NULL, in this case go ahead and apply access control.
5766 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5767 * TCP listening state we cannot wait until the XFRM processing
5768 * is done as we will miss out on the SA label if we do;
5769 * unfortunately, this means more work, but it is only once per
5770 * connection. */
5771 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5772 !(sk && sk_listener(sk)))
5773 return NF_ACCEPT;
5774#endif
5775
5776 if (sk == NULL) {
5777 /* Without an associated socket the packet is either coming
5778 * from the kernel or it is being forwarded; check the packet
5779 * to determine which and if the packet is being forwarded
5780 * query the packet directly to determine the security label. */
5781 if (skb->skb_iif) {
5782 secmark_perm = PACKET__FORWARD_OUT;
5783 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5784 return NF_DROP;
5785 } else {
5786 secmark_perm = PACKET__SEND;
5787 peer_sid = SECINITSID_KERNEL;
5788 }
5789 } else if (sk_listener(sk)) {
5790 /* Locally generated packet but the associated socket is in the
5791 * listening state which means this is a SYN-ACK packet. In
5792 * this particular case the correct security label is assigned
5793 * to the connection/request_sock but unfortunately we can't
5794 * query the request_sock as it isn't queued on the parent
5795 * socket until after the SYN-ACK packet is sent; the only
5796 * viable choice is to regenerate the label like we do in
5797 * selinux_inet_conn_request(). See also selinux_ip_output()
5798 * for similar problems. */
5799 u32 skb_sid;
5800 struct sk_security_struct *sksec;
5801
5802 sksec = sk->sk_security;
5803 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5804 return NF_DROP;
5805 /* At this point, if the returned skb peerlbl is SECSID_NULL
5806 * and the packet has been through at least one XFRM
5807 * transformation then we must be dealing with the "final"
5808 * form of labeled IPsec packet; since we've already applied
5809 * all of our access controls on this packet we can safely
5810 * pass the packet. */
5811 if (skb_sid == SECSID_NULL) {
5812 switch (family) {
5813 case PF_INET:
5814 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5815 return NF_ACCEPT;
5816 break;
5817 case PF_INET6:
5818 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5819 return NF_ACCEPT;
5820 break;
5821 default:
5822 return NF_DROP_ERR(-ECONNREFUSED);
5823 }
5824 }
5825 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5826 return NF_DROP;
5827 secmark_perm = PACKET__SEND;
5828 } else {
5829 /* Locally generated packet, fetch the security label from the
5830 * associated socket. */
5831 struct sk_security_struct *sksec = sk->sk_security;
5832 peer_sid = sksec->sid;
5833 secmark_perm = PACKET__SEND;
5834 }
5835
5836 ad.type = LSM_AUDIT_DATA_NET;
5837 ad.u.net = &net;
5838 ad.u.net->netif = ifindex;
5839 ad.u.net->family = family;
5840 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5841 return NF_DROP;
5842
5843 if (secmark_active)
5844 if (avc_has_perm(&selinux_state,
5845 peer_sid, skb->secmark,
5846 SECCLASS_PACKET, secmark_perm, &ad))
5847 return NF_DROP_ERR(-ECONNREFUSED);
5848
5849 if (peerlbl_active) {
5850 u32 if_sid;
5851 u32 node_sid;
5852
5853 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5854 return NF_DROP;
5855 if (avc_has_perm(&selinux_state,
5856 peer_sid, if_sid,
5857 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5858 return NF_DROP_ERR(-ECONNREFUSED);
5859
5860 if (sel_netnode_sid(addrp, family, &node_sid))
5861 return NF_DROP;
5862 if (avc_has_perm(&selinux_state,
5863 peer_sid, node_sid,
5864 SECCLASS_NODE, NODE__SENDTO, &ad))
5865 return NF_DROP_ERR(-ECONNREFUSED);
5866 }
5867
5868 return NF_ACCEPT;
5869}
5870
5871static unsigned int selinux_ipv4_postroute(void *priv,
5872 struct sk_buff *skb,
5873 const struct nf_hook_state *state)
5874{
5875 return selinux_ip_postroute(skb, state->out, PF_INET);
5876}
5877
5878#if IS_ENABLED(CONFIG_IPV6)
5879static unsigned int selinux_ipv6_postroute(void *priv,
5880 struct sk_buff *skb,
5881 const struct nf_hook_state *state)
5882{
5883 return selinux_ip_postroute(skb, state->out, PF_INET6);
5884}
5885#endif /* IPV6 */
5886
5887#endif /* CONFIG_NETFILTER */
5888
5889static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5890{
5891 return selinux_nlmsg_perm(sk, skb);
5892}
5893
5894static int ipc_alloc_security(struct kern_ipc_perm *perm,
5895 u16 sclass)
5896{
5897 struct ipc_security_struct *isec;
5898
5899 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5900 if (!isec)
5901 return -ENOMEM;
5902
5903 isec->sclass = sclass;
5904 isec->sid = current_sid();
5905 perm->security = isec;
5906
5907 return 0;
5908}
5909
5910static void ipc_free_security(struct kern_ipc_perm *perm)
5911{
5912 struct ipc_security_struct *isec = perm->security;
5913 perm->security = NULL;
5914 kfree(isec);
5915}
5916
5917static int msg_msg_alloc_security(struct msg_msg *msg)
5918{
5919 struct msg_security_struct *msec;
5920
5921 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5922 if (!msec)
5923 return -ENOMEM;
5924
5925 msec->sid = SECINITSID_UNLABELED;
5926 msg->security = msec;
5927
5928 return 0;
5929}
5930
5931static void msg_msg_free_security(struct msg_msg *msg)
5932{
5933 struct msg_security_struct *msec = msg->security;
5934
5935 msg->security = NULL;
5936 kfree(msec);
5937}
5938
5939static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5940 u32 perms)
5941{
5942 struct ipc_security_struct *isec;
5943 struct common_audit_data ad;
5944 u32 sid = current_sid();
5945
5946 isec = ipc_perms->security;
5947
5948 ad.type = LSM_AUDIT_DATA_IPC;
5949 ad.u.ipc_id = ipc_perms->key;
5950
5951 return avc_has_perm(&selinux_state,
5952 sid, isec->sid, isec->sclass, perms, &ad);
5953}
5954
5955static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5956{
5957 return msg_msg_alloc_security(msg);
5958}
5959
5960static void selinux_msg_msg_free_security(struct msg_msg *msg)
5961{
5962 msg_msg_free_security(msg);
5963}
5964
5965/* message queue security operations */
5966static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5967{
5968 struct ipc_security_struct *isec;
5969 struct common_audit_data ad;
5970 u32 sid = current_sid();
5971 int rc;
5972
5973 rc = ipc_alloc_security(msq, SECCLASS_MSGQ);
5974 if (rc)
5975 return rc;
5976
5977 isec = msq->security;
5978
5979 ad.type = LSM_AUDIT_DATA_IPC;
5980 ad.u.ipc_id = msq->key;
5981
5982 rc = avc_has_perm(&selinux_state,
5983 sid, isec->sid, SECCLASS_MSGQ,
5984 MSGQ__CREATE, &ad);
5985 if (rc) {
5986 ipc_free_security(msq);
5987 return rc;
5988 }
5989 return 0;
5990}
5991
5992static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq)
5993{
5994 ipc_free_security(msq);
5995}
5996
5997static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5998{
5999 struct ipc_security_struct *isec;
6000 struct common_audit_data ad;
6001 u32 sid = current_sid();
6002
6003 isec = msq->security;
6004
6005 ad.type = LSM_AUDIT_DATA_IPC;
6006 ad.u.ipc_id = msq->key;
6007
6008 return avc_has_perm(&selinux_state,
6009 sid, isec->sid, SECCLASS_MSGQ,
6010 MSGQ__ASSOCIATE, &ad);
6011}
6012
6013static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6014{
6015 int err;
6016 int perms;
6017
6018 switch (cmd) {
6019 case IPC_INFO:
6020 case MSG_INFO:
6021 /* No specific object, just general system-wide information. */
6022 return avc_has_perm(&selinux_state,
6023 current_sid(), SECINITSID_KERNEL,
6024 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6025 case IPC_STAT:
6026 case MSG_STAT:
6027 case MSG_STAT_ANY:
6028 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6029 break;
6030 case IPC_SET:
6031 perms = MSGQ__SETATTR;
6032 break;
6033 case IPC_RMID:
6034 perms = MSGQ__DESTROY;
6035 break;
6036 default:
6037 return 0;
6038 }
6039
6040 err = ipc_has_perm(msq, perms);
6041 return err;
6042}
6043
6044static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6045{
6046 struct ipc_security_struct *isec;
6047 struct msg_security_struct *msec;
6048 struct common_audit_data ad;
6049 u32 sid = current_sid();
6050 int rc;
6051
6052 isec = msq->security;
6053 msec = msg->security;
6054
6055 /*
6056 * First time through, need to assign label to the message
6057 */
6058 if (msec->sid == SECINITSID_UNLABELED) {
6059 /*
6060 * Compute new sid based on current process and
6061 * message queue this message will be stored in
6062 */
6063 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6064 SECCLASS_MSG, NULL, &msec->sid);
6065 if (rc)
6066 return rc;
6067 }
6068
6069 ad.type = LSM_AUDIT_DATA_IPC;
6070 ad.u.ipc_id = msq->key;
6071
6072 /* Can this process write to the queue? */
6073 rc = avc_has_perm(&selinux_state,
6074 sid, isec->sid, SECCLASS_MSGQ,
6075 MSGQ__WRITE, &ad);
6076 if (!rc)
6077 /* Can this process send the message */
6078 rc = avc_has_perm(&selinux_state,
6079 sid, msec->sid, SECCLASS_MSG,
6080 MSG__SEND, &ad);
6081 if (!rc)
6082 /* Can the message be put in the queue? */
6083 rc = avc_has_perm(&selinux_state,
6084 msec->sid, isec->sid, SECCLASS_MSGQ,
6085 MSGQ__ENQUEUE, &ad);
6086
6087 return rc;
6088}
6089
6090static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6091 struct task_struct *target,
6092 long type, int mode)
6093{
6094 struct ipc_security_struct *isec;
6095 struct msg_security_struct *msec;
6096 struct common_audit_data ad;
6097 u32 sid = task_sid(target);
6098 int rc;
6099
6100 isec = msq->security;
6101 msec = msg->security;
6102
6103 ad.type = LSM_AUDIT_DATA_IPC;
6104 ad.u.ipc_id = msq->key;
6105
6106 rc = avc_has_perm(&selinux_state,
6107 sid, isec->sid,
6108 SECCLASS_MSGQ, MSGQ__READ, &ad);
6109 if (!rc)
6110 rc = avc_has_perm(&selinux_state,
6111 sid, msec->sid,
6112 SECCLASS_MSG, MSG__RECEIVE, &ad);
6113 return rc;
6114}
6115
6116/* Shared Memory security operations */
6117static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6118{
6119 struct ipc_security_struct *isec;
6120 struct common_audit_data ad;
6121 u32 sid = current_sid();
6122 int rc;
6123
6124 rc = ipc_alloc_security(shp, SECCLASS_SHM);
6125 if (rc)
6126 return rc;
6127
6128 isec = shp->security;
6129
6130 ad.type = LSM_AUDIT_DATA_IPC;
6131 ad.u.ipc_id = shp->key;
6132
6133 rc = avc_has_perm(&selinux_state,
6134 sid, isec->sid, SECCLASS_SHM,
6135 SHM__CREATE, &ad);
6136 if (rc) {
6137 ipc_free_security(shp);
6138 return rc;
6139 }
6140 return 0;
6141}
6142
6143static void selinux_shm_free_security(struct kern_ipc_perm *shp)
6144{
6145 ipc_free_security(shp);
6146}
6147
6148static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6149{
6150 struct ipc_security_struct *isec;
6151 struct common_audit_data ad;
6152 u32 sid = current_sid();
6153
6154 isec = shp->security;
6155
6156 ad.type = LSM_AUDIT_DATA_IPC;
6157 ad.u.ipc_id = shp->key;
6158
6159 return avc_has_perm(&selinux_state,
6160 sid, isec->sid, SECCLASS_SHM,
6161 SHM__ASSOCIATE, &ad);
6162}
6163
6164/* Note, at this point, shp is locked down */
6165static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6166{
6167 int perms;
6168 int err;
6169
6170 switch (cmd) {
6171 case IPC_INFO:
6172 case SHM_INFO:
6173 /* No specific object, just general system-wide information. */
6174 return avc_has_perm(&selinux_state,
6175 current_sid(), SECINITSID_KERNEL,
6176 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6177 case IPC_STAT:
6178 case SHM_STAT:
6179 case SHM_STAT_ANY:
6180 perms = SHM__GETATTR | SHM__ASSOCIATE;
6181 break;
6182 case IPC_SET:
6183 perms = SHM__SETATTR;
6184 break;
6185 case SHM_LOCK:
6186 case SHM_UNLOCK:
6187 perms = SHM__LOCK;
6188 break;
6189 case IPC_RMID:
6190 perms = SHM__DESTROY;
6191 break;
6192 default:
6193 return 0;
6194 }
6195
6196 err = ipc_has_perm(shp, perms);
6197 return err;
6198}
6199
6200static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6201 char __user *shmaddr, int shmflg)
6202{
6203 u32 perms;
6204
6205 if (shmflg & SHM_RDONLY)
6206 perms = SHM__READ;
6207 else
6208 perms = SHM__READ | SHM__WRITE;
6209
6210 return ipc_has_perm(shp, perms);
6211}
6212
6213/* Semaphore security operations */
6214static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6215{
6216 struct ipc_security_struct *isec;
6217 struct common_audit_data ad;
6218 u32 sid = current_sid();
6219 int rc;
6220
6221 rc = ipc_alloc_security(sma, SECCLASS_SEM);
6222 if (rc)
6223 return rc;
6224
6225 isec = sma->security;
6226
6227 ad.type = LSM_AUDIT_DATA_IPC;
6228 ad.u.ipc_id = sma->key;
6229
6230 rc = avc_has_perm(&selinux_state,
6231 sid, isec->sid, SECCLASS_SEM,
6232 SEM__CREATE, &ad);
6233 if (rc) {
6234 ipc_free_security(sma);
6235 return rc;
6236 }
6237 return 0;
6238}
6239
6240static void selinux_sem_free_security(struct kern_ipc_perm *sma)
6241{
6242 ipc_free_security(sma);
6243}
6244
6245static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6246{
6247 struct ipc_security_struct *isec;
6248 struct common_audit_data ad;
6249 u32 sid = current_sid();
6250
6251 isec = sma->security;
6252
6253 ad.type = LSM_AUDIT_DATA_IPC;
6254 ad.u.ipc_id = sma->key;
6255
6256 return avc_has_perm(&selinux_state,
6257 sid, isec->sid, SECCLASS_SEM,
6258 SEM__ASSOCIATE, &ad);
6259}
6260
6261/* Note, at this point, sma is locked down */
6262static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6263{
6264 int err;
6265 u32 perms;
6266
6267 switch (cmd) {
6268 case IPC_INFO:
6269 case SEM_INFO:
6270 /* No specific object, just general system-wide information. */
6271 return avc_has_perm(&selinux_state,
6272 current_sid(), SECINITSID_KERNEL,
6273 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6274 case GETPID:
6275 case GETNCNT:
6276 case GETZCNT:
6277 perms = SEM__GETATTR;
6278 break;
6279 case GETVAL:
6280 case GETALL:
6281 perms = SEM__READ;
6282 break;
6283 case SETVAL:
6284 case SETALL:
6285 perms = SEM__WRITE;
6286 break;
6287 case IPC_RMID:
6288 perms = SEM__DESTROY;
6289 break;
6290 case IPC_SET:
6291 perms = SEM__SETATTR;
6292 break;
6293 case IPC_STAT:
6294 case SEM_STAT:
6295 case SEM_STAT_ANY:
6296 perms = SEM__GETATTR | SEM__ASSOCIATE;
6297 break;
6298 default:
6299 return 0;
6300 }
6301
6302 err = ipc_has_perm(sma, perms);
6303 return err;
6304}
6305
6306static int selinux_sem_semop(struct kern_ipc_perm *sma,
6307 struct sembuf *sops, unsigned nsops, int alter)
6308{
6309 u32 perms;
6310
6311 if (alter)
6312 perms = SEM__READ | SEM__WRITE;
6313 else
6314 perms = SEM__READ;
6315
6316 return ipc_has_perm(sma, perms);
6317}
6318
6319static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6320{
6321 u32 av = 0;
6322
6323 av = 0;
6324 if (flag & S_IRUGO)
6325 av |= IPC__UNIX_READ;
6326 if (flag & S_IWUGO)
6327 av |= IPC__UNIX_WRITE;
6328
6329 if (av == 0)
6330 return 0;
6331
6332 return ipc_has_perm(ipcp, av);
6333}
6334
6335static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6336{
6337 struct ipc_security_struct *isec = ipcp->security;
6338 *secid = isec->sid;
6339}
6340
6341static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6342{
6343 if (inode)
6344 inode_doinit_with_dentry(inode, dentry);
6345}
6346
6347static int selinux_getprocattr(struct task_struct *p,
6348 char *name, char **value)
6349{
6350 const struct task_security_struct *__tsec;
6351 u32 sid;
6352 int error;
6353 unsigned len;
6354
6355 rcu_read_lock();
6356 __tsec = __task_cred(p)->security;
6357
6358 if (current != p) {
6359 error = avc_has_perm(&selinux_state,
6360 current_sid(), __tsec->sid,
6361 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362 if (error)
6363 goto bad;
6364 }
6365
6366 if (!strcmp(name, "current"))
6367 sid = __tsec->sid;
6368 else if (!strcmp(name, "prev"))
6369 sid = __tsec->osid;
6370 else if (!strcmp(name, "exec"))
6371 sid = __tsec->exec_sid;
6372 else if (!strcmp(name, "fscreate"))
6373 sid = __tsec->create_sid;
6374 else if (!strcmp(name, "keycreate"))
6375 sid = __tsec->keycreate_sid;
6376 else if (!strcmp(name, "sockcreate"))
6377 sid = __tsec->sockcreate_sid;
6378 else {
6379 error = -EINVAL;
6380 goto bad;
6381 }
6382 rcu_read_unlock();
6383
6384 if (!sid)
6385 return 0;
6386
6387 error = security_sid_to_context(&selinux_state, sid, value, &len);
6388 if (error)
6389 return error;
6390 return len;
6391
6392bad:
6393 rcu_read_unlock();
6394 return error;
6395}
6396
6397static int selinux_setprocattr(const char *name, void *value, size_t size)
6398{
6399 struct task_security_struct *tsec;
6400 struct cred *new;
6401 u32 mysid = current_sid(), sid = 0, ptsid;
6402 int error;
6403 char *str = value;
6404
6405 /*
6406 * Basic control over ability to set these attributes at all.
6407 */
6408 if (!strcmp(name, "exec"))
6409 error = avc_has_perm(&selinux_state,
6410 mysid, mysid, SECCLASS_PROCESS,
6411 PROCESS__SETEXEC, NULL);
6412 else if (!strcmp(name, "fscreate"))
6413 error = avc_has_perm(&selinux_state,
6414 mysid, mysid, SECCLASS_PROCESS,
6415 PROCESS__SETFSCREATE, NULL);
6416 else if (!strcmp(name, "keycreate"))
6417 error = avc_has_perm(&selinux_state,
6418 mysid, mysid, SECCLASS_PROCESS,
6419 PROCESS__SETKEYCREATE, NULL);
6420 else if (!strcmp(name, "sockcreate"))
6421 error = avc_has_perm(&selinux_state,
6422 mysid, mysid, SECCLASS_PROCESS,
6423 PROCESS__SETSOCKCREATE, NULL);
6424 else if (!strcmp(name, "current"))
6425 error = avc_has_perm(&selinux_state,
6426 mysid, mysid, SECCLASS_PROCESS,
6427 PROCESS__SETCURRENT, NULL);
6428 else
6429 error = -EINVAL;
6430 if (error)
6431 return error;
6432
6433 /* Obtain a SID for the context, if one was specified. */
6434 if (size && str[0] && str[0] != '\n') {
6435 if (str[size-1] == '\n') {
6436 str[size-1] = 0;
6437 size--;
6438 }
6439 error = security_context_to_sid(&selinux_state, value, size,
6440 &sid, GFP_KERNEL);
6441 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6442 if (!has_cap_mac_admin(true)) {
6443 struct audit_buffer *ab;
6444 size_t audit_size;
6445
6446 /* We strip a nul only if it is at the end, otherwise the
6447 * context contains a nul and we should audit that */
6448 if (str[size - 1] == '\0')
6449 audit_size = size - 1;
6450 else
6451 audit_size = size;
6452 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
6453 audit_log_format(ab, "op=fscreate invalid_context=");
6454 audit_log_n_untrustedstring(ab, value, audit_size);
6455 audit_log_end(ab);
6456
6457 return error;
6458 }
6459 error = security_context_to_sid_force(
6460 &selinux_state,
6461 value, size, &sid);
6462 }
6463 if (error)
6464 return error;
6465 }
6466
6467 new = prepare_creds();
6468 if (!new)
6469 return -ENOMEM;
6470
6471 /* Permission checking based on the specified context is
6472 performed during the actual operation (execve,
6473 open/mkdir/...), when we know the full context of the
6474 operation. See selinux_bprm_set_creds for the execve
6475 checks and may_create for the file creation checks. The
6476 operation will then fail if the context is not permitted. */
6477 tsec = new->security;
6478 if (!strcmp(name, "exec")) {
6479 tsec->exec_sid = sid;
6480 } else if (!strcmp(name, "fscreate")) {
6481 tsec->create_sid = sid;
6482 } else if (!strcmp(name, "keycreate")) {
6483 error = avc_has_perm(&selinux_state,
6484 mysid, sid, SECCLASS_KEY, KEY__CREATE,
6485 NULL);
6486 if (error)
6487 goto abort_change;
6488 tsec->keycreate_sid = sid;
6489 } else if (!strcmp(name, "sockcreate")) {
6490 tsec->sockcreate_sid = sid;
6491 } else if (!strcmp(name, "current")) {
6492 error = -EINVAL;
6493 if (sid == 0)
6494 goto abort_change;
6495
6496 /* Only allow single threaded processes to change context */
6497 error = -EPERM;
6498 if (!current_is_single_threaded()) {
6499 error = security_bounded_transition(&selinux_state,
6500 tsec->sid, sid);
6501 if (error)
6502 goto abort_change;
6503 }
6504
6505 /* Check permissions for the transition. */
6506 error = avc_has_perm(&selinux_state,
6507 tsec->sid, sid, SECCLASS_PROCESS,
6508 PROCESS__DYNTRANSITION, NULL);
6509 if (error)
6510 goto abort_change;
6511
6512 /* Check for ptracing, and update the task SID if ok.
6513 Otherwise, leave SID unchanged and fail. */
6514 ptsid = ptrace_parent_sid();
6515 if (ptsid != 0) {
6516 error = avc_has_perm(&selinux_state,
6517 ptsid, sid, SECCLASS_PROCESS,
6518 PROCESS__PTRACE, NULL);
6519 if (error)
6520 goto abort_change;
6521 }
6522
6523 tsec->sid = sid;
6524 } else {
6525 error = -EINVAL;
6526 goto abort_change;
6527 }
6528
6529 commit_creds(new);
6530 return size;
6531
6532abort_change:
6533 abort_creds(new);
6534 return error;
6535}
6536
6537static int selinux_ismaclabel(const char *name)
6538{
6539 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6540}
6541
6542static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6543{
6544 return security_sid_to_context(&selinux_state, secid,
6545 secdata, seclen);
6546}
6547
6548static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6549{
6550 return security_context_to_sid(&selinux_state, secdata, seclen,
6551 secid, GFP_KERNEL);
6552}
6553
6554static void selinux_release_secctx(char *secdata, u32 seclen)
6555{
6556 kfree(secdata);
6557}
6558
6559static void selinux_inode_invalidate_secctx(struct inode *inode)
6560{
6561 struct inode_security_struct *isec = inode->i_security;
6562
6563 spin_lock(&isec->lock);
6564 isec->initialized = LABEL_INVALID;
6565 spin_unlock(&isec->lock);
6566}
6567
6568/*
6569 * called with inode->i_mutex locked
6570 */
6571static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6572{
6573 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6574}
6575
6576/*
6577 * called with inode->i_mutex locked
6578 */
6579static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6580{
6581 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6582}
6583
6584static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6585{
6586 int len = 0;
6587 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6588 ctx, true);
6589 if (len < 0)
6590 return len;
6591 *ctxlen = len;
6592 return 0;
6593}
6594#ifdef CONFIG_KEYS
6595
6596static int selinux_key_alloc(struct key *k, const struct cred *cred,
6597 unsigned long flags)
6598{
6599 const struct task_security_struct *tsec;
6600 struct key_security_struct *ksec;
6601
6602 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6603 if (!ksec)
6604 return -ENOMEM;
6605
6606 tsec = cred->security;
6607 if (tsec->keycreate_sid)
6608 ksec->sid = tsec->keycreate_sid;
6609 else
6610 ksec->sid = tsec->sid;
6611
6612 k->security = ksec;
6613 return 0;
6614}
6615
6616static void selinux_key_free(struct key *k)
6617{
6618 struct key_security_struct *ksec = k->security;
6619
6620 k->security = NULL;
6621 kfree(ksec);
6622}
6623
6624static int selinux_key_permission(key_ref_t key_ref,
6625 const struct cred *cred,
6626 unsigned perm)
6627{
6628 struct key *key;
6629 struct key_security_struct *ksec;
6630 u32 sid;
6631
6632 /* if no specific permissions are requested, we skip the
6633 permission check. No serious, additional covert channels
6634 appear to be created. */
6635 if (perm == 0)
6636 return 0;
6637
6638 sid = cred_sid(cred);
6639
6640 key = key_ref_to_ptr(key_ref);
6641 ksec = key->security;
6642
6643 return avc_has_perm(&selinux_state,
6644 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6645}
6646
6647static int selinux_key_getsecurity(struct key *key, char **_buffer)
6648{
6649 struct key_security_struct *ksec = key->security;
6650 char *context = NULL;
6651 unsigned len;
6652 int rc;
6653
6654 rc = security_sid_to_context(&selinux_state, ksec->sid,
6655 &context, &len);
6656 if (!rc)
6657 rc = len;
6658 *_buffer = context;
6659 return rc;
6660}
6661#endif
6662
6663#ifdef CONFIG_SECURITY_INFINIBAND
6664static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6665{
6666 struct common_audit_data ad;
6667 int err;
6668 u32 sid = 0;
6669 struct ib_security_struct *sec = ib_sec;
6670 struct lsm_ibpkey_audit ibpkey;
6671
6672 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6673 if (err)
6674 return err;
6675
6676 ad.type = LSM_AUDIT_DATA_IBPKEY;
6677 ibpkey.subnet_prefix = subnet_prefix;
6678 ibpkey.pkey = pkey_val;
6679 ad.u.ibpkey = &ibpkey;
6680 return avc_has_perm(&selinux_state,
6681 sec->sid, sid,
6682 SECCLASS_INFINIBAND_PKEY,
6683 INFINIBAND_PKEY__ACCESS, &ad);
6684}
6685
6686static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6687 u8 port_num)
6688{
6689 struct common_audit_data ad;
6690 int err;
6691 u32 sid = 0;
6692 struct ib_security_struct *sec = ib_sec;
6693 struct lsm_ibendport_audit ibendport;
6694
6695 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6696 &sid);
6697
6698 if (err)
6699 return err;
6700
6701 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6702 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6703 ibendport.port = port_num;
6704 ad.u.ibendport = &ibendport;
6705 return avc_has_perm(&selinux_state,
6706 sec->sid, sid,
6707 SECCLASS_INFINIBAND_ENDPORT,
6708 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6709}
6710
6711static int selinux_ib_alloc_security(void **ib_sec)
6712{
6713 struct ib_security_struct *sec;
6714
6715 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6716 if (!sec)
6717 return -ENOMEM;
6718 sec->sid = current_sid();
6719
6720 *ib_sec = sec;
6721 return 0;
6722}
6723
6724static void selinux_ib_free_security(void *ib_sec)
6725{
6726 kfree(ib_sec);
6727}
6728#endif
6729
6730#ifdef CONFIG_BPF_SYSCALL
6731static int selinux_bpf(int cmd, union bpf_attr *attr,
6732 unsigned int size)
6733{
6734 u32 sid = current_sid();
6735 int ret;
6736
6737 switch (cmd) {
6738 case BPF_MAP_CREATE:
6739 ret = avc_has_perm(&selinux_state,
6740 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6741 NULL);
6742 break;
6743 case BPF_PROG_LOAD:
6744 ret = avc_has_perm(&selinux_state,
6745 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6746 NULL);
6747 break;
6748 default:
6749 ret = 0;
6750 break;
6751 }
6752
6753 return ret;
6754}
6755
6756static u32 bpf_map_fmode_to_av(fmode_t fmode)
6757{
6758 u32 av = 0;
6759
6760 if (fmode & FMODE_READ)
6761 av |= BPF__MAP_READ;
6762 if (fmode & FMODE_WRITE)
6763 av |= BPF__MAP_WRITE;
6764 return av;
6765}
6766
6767/* This function will check the file pass through unix socket or binder to see
6768 * if it is a bpf related object. And apply correspinding checks on the bpf
6769 * object based on the type. The bpf maps and programs, not like other files and
6770 * socket, are using a shared anonymous inode inside the kernel as their inode.
6771 * So checking that inode cannot identify if the process have privilege to
6772 * access the bpf object and that's why we have to add this additional check in
6773 * selinux_file_receive and selinux_binder_transfer_files.
6774 */
6775static int bpf_fd_pass(struct file *file, u32 sid)
6776{
6777 struct bpf_security_struct *bpfsec;
6778 struct bpf_prog *prog;
6779 struct bpf_map *map;
6780 int ret;
6781
6782 if (file->f_op == &bpf_map_fops) {
6783 map = file->private_data;
6784 bpfsec = map->security;
6785 ret = avc_has_perm(&selinux_state,
6786 sid, bpfsec->sid, SECCLASS_BPF,
6787 bpf_map_fmode_to_av(file->f_mode), NULL);
6788 if (ret)
6789 return ret;
6790 } else if (file->f_op == &bpf_prog_fops) {
6791 prog = file->private_data;
6792 bpfsec = prog->aux->security;
6793 ret = avc_has_perm(&selinux_state,
6794 sid, bpfsec->sid, SECCLASS_BPF,
6795 BPF__PROG_RUN, NULL);
6796 if (ret)
6797 return ret;
6798 }
6799 return 0;
6800}
6801
6802static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6803{
6804 u32 sid = current_sid();
6805 struct bpf_security_struct *bpfsec;
6806
6807 bpfsec = map->security;
6808 return avc_has_perm(&selinux_state,
6809 sid, bpfsec->sid, SECCLASS_BPF,
6810 bpf_map_fmode_to_av(fmode), NULL);
6811}
6812
6813static int selinux_bpf_prog(struct bpf_prog *prog)
6814{
6815 u32 sid = current_sid();
6816 struct bpf_security_struct *bpfsec;
6817
6818 bpfsec = prog->aux->security;
6819 return avc_has_perm(&selinux_state,
6820 sid, bpfsec->sid, SECCLASS_BPF,
6821 BPF__PROG_RUN, NULL);
6822}
6823
6824static int selinux_bpf_map_alloc(struct bpf_map *map)
6825{
6826 struct bpf_security_struct *bpfsec;
6827
6828 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6829 if (!bpfsec)
6830 return -ENOMEM;
6831
6832 bpfsec->sid = current_sid();
6833 map->security = bpfsec;
6834
6835 return 0;
6836}
6837
6838static void selinux_bpf_map_free(struct bpf_map *map)
6839{
6840 struct bpf_security_struct *bpfsec = map->security;
6841
6842 map->security = NULL;
6843 kfree(bpfsec);
6844}
6845
6846static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6847{
6848 struct bpf_security_struct *bpfsec;
6849
6850 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6851 if (!bpfsec)
6852 return -ENOMEM;
6853
6854 bpfsec->sid = current_sid();
6855 aux->security = bpfsec;
6856
6857 return 0;
6858}
6859
6860static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6861{
6862 struct bpf_security_struct *bpfsec = aux->security;
6863
6864 aux->security = NULL;
6865 kfree(bpfsec);
6866}
6867#endif
6868
6869static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6870 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6871 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6872 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6873 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6874
6875 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6876 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6877 LSM_HOOK_INIT(capget, selinux_capget),
6878 LSM_HOOK_INIT(capset, selinux_capset),
6879 LSM_HOOK_INIT(capable, selinux_capable),
6880 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6881 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6882 LSM_HOOK_INIT(syslog, selinux_syslog),
6883 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6884
6885 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6886
6887 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6888 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6889 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6890
6891 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6892 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6893 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6894 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6895 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6896 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6897 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6898 LSM_HOOK_INIT(sb_mount, selinux_mount),
6899 LSM_HOOK_INIT(sb_umount, selinux_umount),
6900 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6901 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6902 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6903
6904 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6905 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6906
6907 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6908 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6909 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6910 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6911 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6912 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6913 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6914 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6915 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6916 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6917 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6918 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6919 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6920 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6921 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6922 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6923 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6924 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6925 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6926 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6927 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6928 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6929 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6930 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6931 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6932 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6933 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6934
6935 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6936 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6937 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6938 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6939 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6940 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6941 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6942 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6943 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6944 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6945 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6946 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6947
6948 LSM_HOOK_INIT(file_open, selinux_file_open),
6949
6950 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6951 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6952 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6953 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6954 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6955 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6956 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6957 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6958 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6959 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6960 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6961 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6962 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6963 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6964 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6965 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6966 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6967 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6968 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6969 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6970 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6971 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6972 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6973 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6974
6975 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6976 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6977
6978 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6979 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6980
6981 LSM_HOOK_INIT(msg_queue_alloc_security,
6982 selinux_msg_queue_alloc_security),
6983 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6984 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6985 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6986 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6987 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6988
6989 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6990 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6991 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6992 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6993 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6994
6995 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6996 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6997 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6998 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6999 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7000
7001 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7002
7003 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7004 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7005
7006 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7007 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7008 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7009 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7010 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7011 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7012 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7013 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7014
7015 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7016 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7017
7018 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7019 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7020 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7021 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7022 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7023 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7024 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7025 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7026 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7027 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7028 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7029 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7030 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7031 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7032 LSM_HOOK_INIT(socket_getpeersec_stream,
7033 selinux_socket_getpeersec_stream),
7034 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7035 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7036 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7037 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7038 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7039 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7040 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7041 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7042 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7043 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7044 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7045 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7046 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7047 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7048 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7049 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7050 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7051 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7052 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7053 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7054 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7055 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7056#ifdef CONFIG_SECURITY_INFINIBAND
7057 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7058 LSM_HOOK_INIT(ib_endport_manage_subnet,
7059 selinux_ib_endport_manage_subnet),
7060 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7061 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7062#endif
7063#ifdef CONFIG_SECURITY_NETWORK_XFRM
7064 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7065 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7066 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7067 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7068 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7069 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7070 selinux_xfrm_state_alloc_acquire),
7071 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7072 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7073 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7074 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7075 selinux_xfrm_state_pol_flow_match),
7076 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7077#endif
7078
7079#ifdef CONFIG_KEYS
7080 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7081 LSM_HOOK_INIT(key_free, selinux_key_free),
7082 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7083 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7084#endif
7085
7086#ifdef CONFIG_AUDIT
7087 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7088 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7089 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7090 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7091#endif
7092
7093#ifdef CONFIG_BPF_SYSCALL
7094 LSM_HOOK_INIT(bpf, selinux_bpf),
7095 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7096 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7097 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7098 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7099 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7100 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7101#endif
7102};
7103
7104static __init int selinux_init(void)
7105{
7106 if (!security_module_enable("selinux")) {
7107 selinux_enabled = 0;
7108 return 0;
7109 }
7110
7111 if (!selinux_enabled) {
7112 printk(KERN_INFO "SELinux: Disabled at boot.\n");
7113 return 0;
7114 }
7115
7116 printk(KERN_INFO "SELinux: Initializing.\n");
7117
7118 memset(&selinux_state, 0, sizeof(selinux_state));
7119 enforcing_set(&selinux_state, selinux_enforcing_boot);
7120 selinux_state.checkreqprot = selinux_checkreqprot_boot;
7121 selinux_ss_init(&selinux_state.ss);
7122 selinux_avc_init(&selinux_state.avc);
7123
7124 /* Set the security state for the initial task. */
7125 cred_init_security();
7126
7127 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7128
7129 sel_inode_cache = kmem_cache_create("selinux_inode_security",
7130 sizeof(struct inode_security_struct),
7131 0, SLAB_PANIC, NULL);
7132 file_security_cache = kmem_cache_create("selinux_file_security",
7133 sizeof(struct file_security_struct),
7134 0, SLAB_PANIC, NULL);
7135 avc_init();
7136
7137 avtab_cache_init();
7138
7139 ebitmap_cache_init();
7140
7141 hashtab_cache_init();
7142
7143 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7144
7145 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7146 panic("SELinux: Unable to register AVC netcache callback\n");
7147
7148 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7149 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7150
7151 if (selinux_enforcing_boot)
7152 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
7153 else
7154 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
7155
7156 return 0;
7157}
7158
7159static void delayed_superblock_init(struct super_block *sb, void *unused)
7160{
7161 superblock_doinit(sb, NULL);
7162}
7163
7164void selinux_complete_init(void)
7165{
7166 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
7167
7168 /* Set up any superblocks initialized prior to the policy load. */
7169 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
7170 iterate_supers(delayed_superblock_init, NULL);
7171}
7172
7173/* SELinux requires early initialization in order to label
7174 all processes and objects when they are created. */
7175security_initcall(selinux_init);
7176
7177#if defined(CONFIG_NETFILTER)
7178
7179static const struct nf_hook_ops selinux_nf_ops[] = {
7180 {
7181 .hook = selinux_ipv4_postroute,
7182 .pf = NFPROTO_IPV4,
7183 .hooknum = NF_INET_POST_ROUTING,
7184 .priority = NF_IP_PRI_SELINUX_LAST,
7185 },
7186 {
7187 .hook = selinux_ipv4_forward,
7188 .pf = NFPROTO_IPV4,
7189 .hooknum = NF_INET_FORWARD,
7190 .priority = NF_IP_PRI_SELINUX_FIRST,
7191 },
7192 {
7193 .hook = selinux_ipv4_output,
7194 .pf = NFPROTO_IPV4,
7195 .hooknum = NF_INET_LOCAL_OUT,
7196 .priority = NF_IP_PRI_SELINUX_FIRST,
7197 },
7198#if IS_ENABLED(CONFIG_IPV6)
7199 {
7200 .hook = selinux_ipv6_postroute,
7201 .pf = NFPROTO_IPV6,
7202 .hooknum = NF_INET_POST_ROUTING,
7203 .priority = NF_IP6_PRI_SELINUX_LAST,
7204 },
7205 {
7206 .hook = selinux_ipv6_forward,
7207 .pf = NFPROTO_IPV6,
7208 .hooknum = NF_INET_FORWARD,
7209 .priority = NF_IP6_PRI_SELINUX_FIRST,
7210 },
7211 {
7212 .hook = selinux_ipv6_output,
7213 .pf = NFPROTO_IPV6,
7214 .hooknum = NF_INET_LOCAL_OUT,
7215 .priority = NF_IP6_PRI_SELINUX_FIRST,
7216 },
7217#endif /* IPV6 */
7218};
7219
7220static int __net_init selinux_nf_register(struct net *net)
7221{
7222 return nf_register_net_hooks(net, selinux_nf_ops,
7223 ARRAY_SIZE(selinux_nf_ops));
7224}
7225
7226static void __net_exit selinux_nf_unregister(struct net *net)
7227{
7228 nf_unregister_net_hooks(net, selinux_nf_ops,
7229 ARRAY_SIZE(selinux_nf_ops));
7230}
7231
7232static struct pernet_operations selinux_net_ops = {
7233 .init = selinux_nf_register,
7234 .exit = selinux_nf_unregister,
7235};
7236
7237static int __init selinux_nf_ip_init(void)
7238{
7239 int err;
7240
7241 if (!selinux_enabled)
7242 return 0;
7243
7244 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
7245
7246 err = register_pernet_subsys(&selinux_net_ops);
7247 if (err)
7248 panic("SELinux: register_pernet_subsys: error %d\n", err);
7249
7250 return 0;
7251}
7252__initcall(selinux_nf_ip_init);
7253
7254#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7255static void selinux_nf_ip_exit(void)
7256{
7257 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
7258
7259 unregister_pernet_subsys(&selinux_net_ops);
7260}
7261#endif
7262
7263#else /* CONFIG_NETFILTER */
7264
7265#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7266#define selinux_nf_ip_exit()
7267#endif
7268
7269#endif /* CONFIG_NETFILTER */
7270
7271#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7272int selinux_disable(struct selinux_state *state)
7273{
7274 if (state->initialized) {
7275 /* Not permitted after initial policy load. */
7276 return -EINVAL;
7277 }
7278
7279 if (state->disabled) {
7280 /* Only do this once. */
7281 return -EINVAL;
7282 }
7283
7284 state->disabled = 1;
7285
7286 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
7287
7288 selinux_enabled = 0;
7289
7290 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7291
7292 /* Try to destroy the avc node cache */
7293 avc_disable();
7294
7295 /* Unregister netfilter hooks. */
7296 selinux_nf_ip_exit();
7297
7298 /* Unregister selinuxfs. */
7299 exit_sel_fs();
7300
7301 return 0;
7302}
7303#endif
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/security.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55#include <net/net_namespace.h>
56#include <net/netlabel.h>
57#include <linux/uaccess.h>
58#include <asm/ioctls.h>
59#include <linux/atomic.h>
60#include <linux/bitops.h>
61#include <linux/interrupt.h>
62#include <linux/netdevice.h> /* for network interface checks */
63#include <linux/netlink.h>
64#include <linux/tcp.h>
65#include <linux/udp.h>
66#include <linux/dccp.h>
67#include <linux/quota.h>
68#include <linux/un.h> /* for Unix socket types */
69#include <net/af_unix.h> /* for Unix socket types */
70#include <linux/parser.h>
71#include <linux/nfs_mount.h>
72#include <net/ipv6.h>
73#include <linux/hugetlb.h>
74#include <linux/personality.h>
75#include <linux/audit.h>
76#include <linux/string.h>
77#include <linux/selinux.h>
78#include <linux/mutex.h>
79#include <linux/posix-timers.h>
80#include <linux/syslog.h>
81#include <linux/user_namespace.h>
82#include <linux/export.h>
83#include <linux/msg.h>
84#include <linux/shm.h>
85
86#include "avc.h"
87#include "objsec.h"
88#include "netif.h"
89#include "netnode.h"
90#include "netport.h"
91#include "xfrm.h"
92#include "netlabel.h"
93#include "audit.h"
94#include "avc_ss.h"
95
96#define NUM_SEL_MNT_OPTS 5
97
98extern struct security_operations *security_ops;
99
100/* SECMARK reference count */
101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102
103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104int selinux_enforcing;
105
106static int __init enforcing_setup(char *str)
107{
108 unsigned long enforcing;
109 if (!strict_strtoul(str, 0, &enforcing))
110 selinux_enforcing = enforcing ? 1 : 0;
111 return 1;
112}
113__setup("enforcing=", enforcing_setup);
114#endif
115
116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118
119static int __init selinux_enabled_setup(char *str)
120{
121 unsigned long enabled;
122 if (!strict_strtoul(str, 0, &enabled))
123 selinux_enabled = enabled ? 1 : 0;
124 return 1;
125}
126__setup("selinux=", selinux_enabled_setup);
127#else
128int selinux_enabled = 1;
129#endif
130
131static struct kmem_cache *sel_inode_cache;
132
133/**
134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135 *
136 * Description:
137 * This function checks the SECMARK reference counter to see if any SECMARK
138 * targets are currently configured, if the reference counter is greater than
139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
140 * enabled, false (0) if SECMARK is disabled.
141 *
142 */
143static int selinux_secmark_enabled(void)
144{
145 return (atomic_read(&selinux_secmark_refcount) > 0);
146}
147
148/*
149 * initialise the security for the init task
150 */
151static void cred_init_security(void)
152{
153 struct cred *cred = (struct cred *) current->real_cred;
154 struct task_security_struct *tsec;
155
156 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157 if (!tsec)
158 panic("SELinux: Failed to initialize initial task.\n");
159
160 tsec->osid = tsec->sid = SECINITSID_KERNEL;
161 cred->security = tsec;
162}
163
164/*
165 * get the security ID of a set of credentials
166 */
167static inline u32 cred_sid(const struct cred *cred)
168{
169 const struct task_security_struct *tsec;
170
171 tsec = cred->security;
172 return tsec->sid;
173}
174
175/*
176 * get the objective security ID of a task
177 */
178static inline u32 task_sid(const struct task_struct *task)
179{
180 u32 sid;
181
182 rcu_read_lock();
183 sid = cred_sid(__task_cred(task));
184 rcu_read_unlock();
185 return sid;
186}
187
188/*
189 * get the subjective security ID of the current task
190 */
191static inline u32 current_sid(void)
192{
193 const struct task_security_struct *tsec = current_security();
194
195 return tsec->sid;
196}
197
198/* Allocate and free functions for each kind of security blob. */
199
200static int inode_alloc_security(struct inode *inode)
201{
202 struct inode_security_struct *isec;
203 u32 sid = current_sid();
204
205 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206 if (!isec)
207 return -ENOMEM;
208
209 mutex_init(&isec->lock);
210 INIT_LIST_HEAD(&isec->list);
211 isec->inode = inode;
212 isec->sid = SECINITSID_UNLABELED;
213 isec->sclass = SECCLASS_FILE;
214 isec->task_sid = sid;
215 inode->i_security = isec;
216
217 return 0;
218}
219
220static void inode_free_security(struct inode *inode)
221{
222 struct inode_security_struct *isec = inode->i_security;
223 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224
225 spin_lock(&sbsec->isec_lock);
226 if (!list_empty(&isec->list))
227 list_del_init(&isec->list);
228 spin_unlock(&sbsec->isec_lock);
229
230 inode->i_security = NULL;
231 kmem_cache_free(sel_inode_cache, isec);
232}
233
234static int file_alloc_security(struct file *file)
235{
236 struct file_security_struct *fsec;
237 u32 sid = current_sid();
238
239 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240 if (!fsec)
241 return -ENOMEM;
242
243 fsec->sid = sid;
244 fsec->fown_sid = sid;
245 file->f_security = fsec;
246
247 return 0;
248}
249
250static void file_free_security(struct file *file)
251{
252 struct file_security_struct *fsec = file->f_security;
253 file->f_security = NULL;
254 kfree(fsec);
255}
256
257static int superblock_alloc_security(struct super_block *sb)
258{
259 struct superblock_security_struct *sbsec;
260
261 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262 if (!sbsec)
263 return -ENOMEM;
264
265 mutex_init(&sbsec->lock);
266 INIT_LIST_HEAD(&sbsec->isec_head);
267 spin_lock_init(&sbsec->isec_lock);
268 sbsec->sb = sb;
269 sbsec->sid = SECINITSID_UNLABELED;
270 sbsec->def_sid = SECINITSID_FILE;
271 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272 sb->s_security = sbsec;
273
274 return 0;
275}
276
277static void superblock_free_security(struct super_block *sb)
278{
279 struct superblock_security_struct *sbsec = sb->s_security;
280 sb->s_security = NULL;
281 kfree(sbsec);
282}
283
284/* The file system's label must be initialized prior to use. */
285
286static const char *labeling_behaviors[6] = {
287 "uses xattr",
288 "uses transition SIDs",
289 "uses task SIDs",
290 "uses genfs_contexts",
291 "not configured for labeling",
292 "uses mountpoint labeling",
293};
294
295static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296
297static inline int inode_doinit(struct inode *inode)
298{
299 return inode_doinit_with_dentry(inode, NULL);
300}
301
302enum {
303 Opt_error = -1,
304 Opt_context = 1,
305 Opt_fscontext = 2,
306 Opt_defcontext = 3,
307 Opt_rootcontext = 4,
308 Opt_labelsupport = 5,
309};
310
311static const match_table_t tokens = {
312 {Opt_context, CONTEXT_STR "%s"},
313 {Opt_fscontext, FSCONTEXT_STR "%s"},
314 {Opt_defcontext, DEFCONTEXT_STR "%s"},
315 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316 {Opt_labelsupport, LABELSUPP_STR},
317 {Opt_error, NULL},
318};
319
320#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
321
322static int may_context_mount_sb_relabel(u32 sid,
323 struct superblock_security_struct *sbsec,
324 const struct cred *cred)
325{
326 const struct task_security_struct *tsec = cred->security;
327 int rc;
328
329 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330 FILESYSTEM__RELABELFROM, NULL);
331 if (rc)
332 return rc;
333
334 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335 FILESYSTEM__RELABELTO, NULL);
336 return rc;
337}
338
339static int may_context_mount_inode_relabel(u32 sid,
340 struct superblock_security_struct *sbsec,
341 const struct cred *cred)
342{
343 const struct task_security_struct *tsec = cred->security;
344 int rc;
345 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346 FILESYSTEM__RELABELFROM, NULL);
347 if (rc)
348 return rc;
349
350 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351 FILESYSTEM__ASSOCIATE, NULL);
352 return rc;
353}
354
355static int sb_finish_set_opts(struct super_block *sb)
356{
357 struct superblock_security_struct *sbsec = sb->s_security;
358 struct dentry *root = sb->s_root;
359 struct inode *root_inode = root->d_inode;
360 int rc = 0;
361
362 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363 /* Make sure that the xattr handler exists and that no
364 error other than -ENODATA is returned by getxattr on
365 the root directory. -ENODATA is ok, as this may be
366 the first boot of the SELinux kernel before we have
367 assigned xattr values to the filesystem. */
368 if (!root_inode->i_op->getxattr) {
369 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370 "xattr support\n", sb->s_id, sb->s_type->name);
371 rc = -EOPNOTSUPP;
372 goto out;
373 }
374 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375 if (rc < 0 && rc != -ENODATA) {
376 if (rc == -EOPNOTSUPP)
377 printk(KERN_WARNING "SELinux: (dev %s, type "
378 "%s) has no security xattr handler\n",
379 sb->s_id, sb->s_type->name);
380 else
381 printk(KERN_WARNING "SELinux: (dev %s, type "
382 "%s) getxattr errno %d\n", sb->s_id,
383 sb->s_type->name, -rc);
384 goto out;
385 }
386 }
387
388 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389
390 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392 sb->s_id, sb->s_type->name);
393 else
394 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395 sb->s_id, sb->s_type->name,
396 labeling_behaviors[sbsec->behavior-1]);
397
398 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400 sbsec->behavior == SECURITY_FS_USE_NONE ||
401 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402 sbsec->flags &= ~SE_SBLABELSUPP;
403
404 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
405 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406 sbsec->flags |= SE_SBLABELSUPP;
407
408 /* Initialize the root inode. */
409 rc = inode_doinit_with_dentry(root_inode, root);
410
411 /* Initialize any other inodes associated with the superblock, e.g.
412 inodes created prior to initial policy load or inodes created
413 during get_sb by a pseudo filesystem that directly
414 populates itself. */
415 spin_lock(&sbsec->isec_lock);
416next_inode:
417 if (!list_empty(&sbsec->isec_head)) {
418 struct inode_security_struct *isec =
419 list_entry(sbsec->isec_head.next,
420 struct inode_security_struct, list);
421 struct inode *inode = isec->inode;
422 spin_unlock(&sbsec->isec_lock);
423 inode = igrab(inode);
424 if (inode) {
425 if (!IS_PRIVATE(inode))
426 inode_doinit(inode);
427 iput(inode);
428 }
429 spin_lock(&sbsec->isec_lock);
430 list_del_init(&isec->list);
431 goto next_inode;
432 }
433 spin_unlock(&sbsec->isec_lock);
434out:
435 return rc;
436}
437
438/*
439 * This function should allow an FS to ask what it's mount security
440 * options were so it can use those later for submounts, displaying
441 * mount options, or whatever.
442 */
443static int selinux_get_mnt_opts(const struct super_block *sb,
444 struct security_mnt_opts *opts)
445{
446 int rc = 0, i;
447 struct superblock_security_struct *sbsec = sb->s_security;
448 char *context = NULL;
449 u32 len;
450 char tmp;
451
452 security_init_mnt_opts(opts);
453
454 if (!(sbsec->flags & SE_SBINITIALIZED))
455 return -EINVAL;
456
457 if (!ss_initialized)
458 return -EINVAL;
459
460 tmp = sbsec->flags & SE_MNTMASK;
461 /* count the number of mount options for this sb */
462 for (i = 0; i < 8; i++) {
463 if (tmp & 0x01)
464 opts->num_mnt_opts++;
465 tmp >>= 1;
466 }
467 /* Check if the Label support flag is set */
468 if (sbsec->flags & SE_SBLABELSUPP)
469 opts->num_mnt_opts++;
470
471 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472 if (!opts->mnt_opts) {
473 rc = -ENOMEM;
474 goto out_free;
475 }
476
477 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478 if (!opts->mnt_opts_flags) {
479 rc = -ENOMEM;
480 goto out_free;
481 }
482
483 i = 0;
484 if (sbsec->flags & FSCONTEXT_MNT) {
485 rc = security_sid_to_context(sbsec->sid, &context, &len);
486 if (rc)
487 goto out_free;
488 opts->mnt_opts[i] = context;
489 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490 }
491 if (sbsec->flags & CONTEXT_MNT) {
492 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493 if (rc)
494 goto out_free;
495 opts->mnt_opts[i] = context;
496 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497 }
498 if (sbsec->flags & DEFCONTEXT_MNT) {
499 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500 if (rc)
501 goto out_free;
502 opts->mnt_opts[i] = context;
503 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504 }
505 if (sbsec->flags & ROOTCONTEXT_MNT) {
506 struct inode *root = sbsec->sb->s_root->d_inode;
507 struct inode_security_struct *isec = root->i_security;
508
509 rc = security_sid_to_context(isec->sid, &context, &len);
510 if (rc)
511 goto out_free;
512 opts->mnt_opts[i] = context;
513 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514 }
515 if (sbsec->flags & SE_SBLABELSUPP) {
516 opts->mnt_opts[i] = NULL;
517 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518 }
519
520 BUG_ON(i != opts->num_mnt_opts);
521
522 return 0;
523
524out_free:
525 security_free_mnt_opts(opts);
526 return rc;
527}
528
529static int bad_option(struct superblock_security_struct *sbsec, char flag,
530 u32 old_sid, u32 new_sid)
531{
532 char mnt_flags = sbsec->flags & SE_MNTMASK;
533
534 /* check if the old mount command had the same options */
535 if (sbsec->flags & SE_SBINITIALIZED)
536 if (!(sbsec->flags & flag) ||
537 (old_sid != new_sid))
538 return 1;
539
540 /* check if we were passed the same options twice,
541 * aka someone passed context=a,context=b
542 */
543 if (!(sbsec->flags & SE_SBINITIALIZED))
544 if (mnt_flags & flag)
545 return 1;
546 return 0;
547}
548
549/*
550 * Allow filesystems with binary mount data to explicitly set mount point
551 * labeling information.
552 */
553static int selinux_set_mnt_opts(struct super_block *sb,
554 struct security_mnt_opts *opts)
555{
556 const struct cred *cred = current_cred();
557 int rc = 0, i;
558 struct superblock_security_struct *sbsec = sb->s_security;
559 const char *name = sb->s_type->name;
560 struct inode *inode = sbsec->sb->s_root->d_inode;
561 struct inode_security_struct *root_isec = inode->i_security;
562 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563 u32 defcontext_sid = 0;
564 char **mount_options = opts->mnt_opts;
565 int *flags = opts->mnt_opts_flags;
566 int num_opts = opts->num_mnt_opts;
567
568 mutex_lock(&sbsec->lock);
569
570 if (!ss_initialized) {
571 if (!num_opts) {
572 /* Defer initialization until selinux_complete_init,
573 after the initial policy is loaded and the security
574 server is ready to handle calls. */
575 goto out;
576 }
577 rc = -EINVAL;
578 printk(KERN_WARNING "SELinux: Unable to set superblock options "
579 "before the security server is initialized\n");
580 goto out;
581 }
582
583 /*
584 * Binary mount data FS will come through this function twice. Once
585 * from an explicit call and once from the generic calls from the vfs.
586 * Since the generic VFS calls will not contain any security mount data
587 * we need to skip the double mount verification.
588 *
589 * This does open a hole in which we will not notice if the first
590 * mount using this sb set explict options and a second mount using
591 * this sb does not set any security options. (The first options
592 * will be used for both mounts)
593 */
594 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595 && (num_opts == 0))
596 goto out;
597
598 /*
599 * parse the mount options, check if they are valid sids.
600 * also check if someone is trying to mount the same sb more
601 * than once with different security options.
602 */
603 for (i = 0; i < num_opts; i++) {
604 u32 sid;
605
606 if (flags[i] == SE_SBLABELSUPP)
607 continue;
608 rc = security_context_to_sid(mount_options[i],
609 strlen(mount_options[i]), &sid);
610 if (rc) {
611 printk(KERN_WARNING "SELinux: security_context_to_sid"
612 "(%s) failed for (dev %s, type %s) errno=%d\n",
613 mount_options[i], sb->s_id, name, rc);
614 goto out;
615 }
616 switch (flags[i]) {
617 case FSCONTEXT_MNT:
618 fscontext_sid = sid;
619
620 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621 fscontext_sid))
622 goto out_double_mount;
623
624 sbsec->flags |= FSCONTEXT_MNT;
625 break;
626 case CONTEXT_MNT:
627 context_sid = sid;
628
629 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630 context_sid))
631 goto out_double_mount;
632
633 sbsec->flags |= CONTEXT_MNT;
634 break;
635 case ROOTCONTEXT_MNT:
636 rootcontext_sid = sid;
637
638 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639 rootcontext_sid))
640 goto out_double_mount;
641
642 sbsec->flags |= ROOTCONTEXT_MNT;
643
644 break;
645 case DEFCONTEXT_MNT:
646 defcontext_sid = sid;
647
648 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649 defcontext_sid))
650 goto out_double_mount;
651
652 sbsec->flags |= DEFCONTEXT_MNT;
653
654 break;
655 default:
656 rc = -EINVAL;
657 goto out;
658 }
659 }
660
661 if (sbsec->flags & SE_SBINITIALIZED) {
662 /* previously mounted with options, but not on this attempt? */
663 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664 goto out_double_mount;
665 rc = 0;
666 goto out;
667 }
668
669 if (strcmp(sb->s_type->name, "proc") == 0)
670 sbsec->flags |= SE_SBPROC;
671
672 /* Determine the labeling behavior to use for this filesystem type. */
673 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674 if (rc) {
675 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676 __func__, sb->s_type->name, rc);
677 goto out;
678 }
679
680 /* sets the context of the superblock for the fs being mounted. */
681 if (fscontext_sid) {
682 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683 if (rc)
684 goto out;
685
686 sbsec->sid = fscontext_sid;
687 }
688
689 /*
690 * Switch to using mount point labeling behavior.
691 * sets the label used on all file below the mountpoint, and will set
692 * the superblock context if not already set.
693 */
694 if (context_sid) {
695 if (!fscontext_sid) {
696 rc = may_context_mount_sb_relabel(context_sid, sbsec,
697 cred);
698 if (rc)
699 goto out;
700 sbsec->sid = context_sid;
701 } else {
702 rc = may_context_mount_inode_relabel(context_sid, sbsec,
703 cred);
704 if (rc)
705 goto out;
706 }
707 if (!rootcontext_sid)
708 rootcontext_sid = context_sid;
709
710 sbsec->mntpoint_sid = context_sid;
711 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712 }
713
714 if (rootcontext_sid) {
715 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716 cred);
717 if (rc)
718 goto out;
719
720 root_isec->sid = rootcontext_sid;
721 root_isec->initialized = 1;
722 }
723
724 if (defcontext_sid) {
725 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726 rc = -EINVAL;
727 printk(KERN_WARNING "SELinux: defcontext option is "
728 "invalid for this filesystem type\n");
729 goto out;
730 }
731
732 if (defcontext_sid != sbsec->def_sid) {
733 rc = may_context_mount_inode_relabel(defcontext_sid,
734 sbsec, cred);
735 if (rc)
736 goto out;
737 }
738
739 sbsec->def_sid = defcontext_sid;
740 }
741
742 rc = sb_finish_set_opts(sb);
743out:
744 mutex_unlock(&sbsec->lock);
745 return rc;
746out_double_mount:
747 rc = -EINVAL;
748 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
749 "security settings for (dev %s, type %s)\n", sb->s_id, name);
750 goto out;
751}
752
753static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754 struct super_block *newsb)
755{
756 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757 struct superblock_security_struct *newsbsec = newsb->s_security;
758
759 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
760 int set_context = (oldsbsec->flags & CONTEXT_MNT);
761 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
762
763 /*
764 * if the parent was able to be mounted it clearly had no special lsm
765 * mount options. thus we can safely deal with this superblock later
766 */
767 if (!ss_initialized)
768 return;
769
770 /* how can we clone if the old one wasn't set up?? */
771 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772
773 /* if fs is reusing a sb, just let its options stand... */
774 if (newsbsec->flags & SE_SBINITIALIZED)
775 return;
776
777 mutex_lock(&newsbsec->lock);
778
779 newsbsec->flags = oldsbsec->flags;
780
781 newsbsec->sid = oldsbsec->sid;
782 newsbsec->def_sid = oldsbsec->def_sid;
783 newsbsec->behavior = oldsbsec->behavior;
784
785 if (set_context) {
786 u32 sid = oldsbsec->mntpoint_sid;
787
788 if (!set_fscontext)
789 newsbsec->sid = sid;
790 if (!set_rootcontext) {
791 struct inode *newinode = newsb->s_root->d_inode;
792 struct inode_security_struct *newisec = newinode->i_security;
793 newisec->sid = sid;
794 }
795 newsbsec->mntpoint_sid = sid;
796 }
797 if (set_rootcontext) {
798 const struct inode *oldinode = oldsb->s_root->d_inode;
799 const struct inode_security_struct *oldisec = oldinode->i_security;
800 struct inode *newinode = newsb->s_root->d_inode;
801 struct inode_security_struct *newisec = newinode->i_security;
802
803 newisec->sid = oldisec->sid;
804 }
805
806 sb_finish_set_opts(newsb);
807 mutex_unlock(&newsbsec->lock);
808}
809
810static int selinux_parse_opts_str(char *options,
811 struct security_mnt_opts *opts)
812{
813 char *p;
814 char *context = NULL, *defcontext = NULL;
815 char *fscontext = NULL, *rootcontext = NULL;
816 int rc, num_mnt_opts = 0;
817
818 opts->num_mnt_opts = 0;
819
820 /* Standard string-based options. */
821 while ((p = strsep(&options, "|")) != NULL) {
822 int token;
823 substring_t args[MAX_OPT_ARGS];
824
825 if (!*p)
826 continue;
827
828 token = match_token(p, tokens, args);
829
830 switch (token) {
831 case Opt_context:
832 if (context || defcontext) {
833 rc = -EINVAL;
834 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835 goto out_err;
836 }
837 context = match_strdup(&args[0]);
838 if (!context) {
839 rc = -ENOMEM;
840 goto out_err;
841 }
842 break;
843
844 case Opt_fscontext:
845 if (fscontext) {
846 rc = -EINVAL;
847 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848 goto out_err;
849 }
850 fscontext = match_strdup(&args[0]);
851 if (!fscontext) {
852 rc = -ENOMEM;
853 goto out_err;
854 }
855 break;
856
857 case Opt_rootcontext:
858 if (rootcontext) {
859 rc = -EINVAL;
860 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861 goto out_err;
862 }
863 rootcontext = match_strdup(&args[0]);
864 if (!rootcontext) {
865 rc = -ENOMEM;
866 goto out_err;
867 }
868 break;
869
870 case Opt_defcontext:
871 if (context || defcontext) {
872 rc = -EINVAL;
873 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 goto out_err;
875 }
876 defcontext = match_strdup(&args[0]);
877 if (!defcontext) {
878 rc = -ENOMEM;
879 goto out_err;
880 }
881 break;
882 case Opt_labelsupport:
883 break;
884 default:
885 rc = -EINVAL;
886 printk(KERN_WARNING "SELinux: unknown mount option\n");
887 goto out_err;
888
889 }
890 }
891
892 rc = -ENOMEM;
893 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894 if (!opts->mnt_opts)
895 goto out_err;
896
897 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898 if (!opts->mnt_opts_flags) {
899 kfree(opts->mnt_opts);
900 goto out_err;
901 }
902
903 if (fscontext) {
904 opts->mnt_opts[num_mnt_opts] = fscontext;
905 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906 }
907 if (context) {
908 opts->mnt_opts[num_mnt_opts] = context;
909 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910 }
911 if (rootcontext) {
912 opts->mnt_opts[num_mnt_opts] = rootcontext;
913 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914 }
915 if (defcontext) {
916 opts->mnt_opts[num_mnt_opts] = defcontext;
917 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918 }
919
920 opts->num_mnt_opts = num_mnt_opts;
921 return 0;
922
923out_err:
924 kfree(context);
925 kfree(defcontext);
926 kfree(fscontext);
927 kfree(rootcontext);
928 return rc;
929}
930/*
931 * string mount options parsing and call set the sbsec
932 */
933static int superblock_doinit(struct super_block *sb, void *data)
934{
935 int rc = 0;
936 char *options = data;
937 struct security_mnt_opts opts;
938
939 security_init_mnt_opts(&opts);
940
941 if (!data)
942 goto out;
943
944 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945
946 rc = selinux_parse_opts_str(options, &opts);
947 if (rc)
948 goto out_err;
949
950out:
951 rc = selinux_set_mnt_opts(sb, &opts);
952
953out_err:
954 security_free_mnt_opts(&opts);
955 return rc;
956}
957
958static void selinux_write_opts(struct seq_file *m,
959 struct security_mnt_opts *opts)
960{
961 int i;
962 char *prefix;
963
964 for (i = 0; i < opts->num_mnt_opts; i++) {
965 char *has_comma;
966
967 if (opts->mnt_opts[i])
968 has_comma = strchr(opts->mnt_opts[i], ',');
969 else
970 has_comma = NULL;
971
972 switch (opts->mnt_opts_flags[i]) {
973 case CONTEXT_MNT:
974 prefix = CONTEXT_STR;
975 break;
976 case FSCONTEXT_MNT:
977 prefix = FSCONTEXT_STR;
978 break;
979 case ROOTCONTEXT_MNT:
980 prefix = ROOTCONTEXT_STR;
981 break;
982 case DEFCONTEXT_MNT:
983 prefix = DEFCONTEXT_STR;
984 break;
985 case SE_SBLABELSUPP:
986 seq_putc(m, ',');
987 seq_puts(m, LABELSUPP_STR);
988 continue;
989 default:
990 BUG();
991 return;
992 };
993 /* we need a comma before each option */
994 seq_putc(m, ',');
995 seq_puts(m, prefix);
996 if (has_comma)
997 seq_putc(m, '\"');
998 seq_puts(m, opts->mnt_opts[i]);
999 if (has_comma)
1000 seq_putc(m, '\"');
1001 }
1002}
1003
1004static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005{
1006 struct security_mnt_opts opts;
1007 int rc;
1008
1009 rc = selinux_get_mnt_opts(sb, &opts);
1010 if (rc) {
1011 /* before policy load we may get EINVAL, don't show anything */
1012 if (rc == -EINVAL)
1013 rc = 0;
1014 return rc;
1015 }
1016
1017 selinux_write_opts(m, &opts);
1018
1019 security_free_mnt_opts(&opts);
1020
1021 return rc;
1022}
1023
1024static inline u16 inode_mode_to_security_class(umode_t mode)
1025{
1026 switch (mode & S_IFMT) {
1027 case S_IFSOCK:
1028 return SECCLASS_SOCK_FILE;
1029 case S_IFLNK:
1030 return SECCLASS_LNK_FILE;
1031 case S_IFREG:
1032 return SECCLASS_FILE;
1033 case S_IFBLK:
1034 return SECCLASS_BLK_FILE;
1035 case S_IFDIR:
1036 return SECCLASS_DIR;
1037 case S_IFCHR:
1038 return SECCLASS_CHR_FILE;
1039 case S_IFIFO:
1040 return SECCLASS_FIFO_FILE;
1041
1042 }
1043
1044 return SECCLASS_FILE;
1045}
1046
1047static inline int default_protocol_stream(int protocol)
1048{
1049 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050}
1051
1052static inline int default_protocol_dgram(int protocol)
1053{
1054 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055}
1056
1057static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058{
1059 switch (family) {
1060 case PF_UNIX:
1061 switch (type) {
1062 case SOCK_STREAM:
1063 case SOCK_SEQPACKET:
1064 return SECCLASS_UNIX_STREAM_SOCKET;
1065 case SOCK_DGRAM:
1066 return SECCLASS_UNIX_DGRAM_SOCKET;
1067 }
1068 break;
1069 case PF_INET:
1070 case PF_INET6:
1071 switch (type) {
1072 case SOCK_STREAM:
1073 if (default_protocol_stream(protocol))
1074 return SECCLASS_TCP_SOCKET;
1075 else
1076 return SECCLASS_RAWIP_SOCKET;
1077 case SOCK_DGRAM:
1078 if (default_protocol_dgram(protocol))
1079 return SECCLASS_UDP_SOCKET;
1080 else
1081 return SECCLASS_RAWIP_SOCKET;
1082 case SOCK_DCCP:
1083 return SECCLASS_DCCP_SOCKET;
1084 default:
1085 return SECCLASS_RAWIP_SOCKET;
1086 }
1087 break;
1088 case PF_NETLINK:
1089 switch (protocol) {
1090 case NETLINK_ROUTE:
1091 return SECCLASS_NETLINK_ROUTE_SOCKET;
1092 case NETLINK_FIREWALL:
1093 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094 case NETLINK_SOCK_DIAG:
1095 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096 case NETLINK_NFLOG:
1097 return SECCLASS_NETLINK_NFLOG_SOCKET;
1098 case NETLINK_XFRM:
1099 return SECCLASS_NETLINK_XFRM_SOCKET;
1100 case NETLINK_SELINUX:
1101 return SECCLASS_NETLINK_SELINUX_SOCKET;
1102 case NETLINK_AUDIT:
1103 return SECCLASS_NETLINK_AUDIT_SOCKET;
1104 case NETLINK_IP6_FW:
1105 return SECCLASS_NETLINK_IP6FW_SOCKET;
1106 case NETLINK_DNRTMSG:
1107 return SECCLASS_NETLINK_DNRT_SOCKET;
1108 case NETLINK_KOBJECT_UEVENT:
1109 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110 default:
1111 return SECCLASS_NETLINK_SOCKET;
1112 }
1113 case PF_PACKET:
1114 return SECCLASS_PACKET_SOCKET;
1115 case PF_KEY:
1116 return SECCLASS_KEY_SOCKET;
1117 case PF_APPLETALK:
1118 return SECCLASS_APPLETALK_SOCKET;
1119 }
1120
1121 return SECCLASS_SOCKET;
1122}
1123
1124#ifdef CONFIG_PROC_FS
1125static int selinux_proc_get_sid(struct dentry *dentry,
1126 u16 tclass,
1127 u32 *sid)
1128{
1129 int rc;
1130 char *buffer, *path;
1131
1132 buffer = (char *)__get_free_page(GFP_KERNEL);
1133 if (!buffer)
1134 return -ENOMEM;
1135
1136 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137 if (IS_ERR(path))
1138 rc = PTR_ERR(path);
1139 else {
1140 /* each process gets a /proc/PID/ entry. Strip off the
1141 * PID part to get a valid selinux labeling.
1142 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143 while (path[1] >= '0' && path[1] <= '9') {
1144 path[1] = '/';
1145 path++;
1146 }
1147 rc = security_genfs_sid("proc", path, tclass, sid);
1148 }
1149 free_page((unsigned long)buffer);
1150 return rc;
1151}
1152#else
1153static int selinux_proc_get_sid(struct dentry *dentry,
1154 u16 tclass,
1155 u32 *sid)
1156{
1157 return -EINVAL;
1158}
1159#endif
1160
1161/* The inode's security attributes must be initialized before first use. */
1162static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163{
1164 struct superblock_security_struct *sbsec = NULL;
1165 struct inode_security_struct *isec = inode->i_security;
1166 u32 sid;
1167 struct dentry *dentry;
1168#define INITCONTEXTLEN 255
1169 char *context = NULL;
1170 unsigned len = 0;
1171 int rc = 0;
1172
1173 if (isec->initialized)
1174 goto out;
1175
1176 mutex_lock(&isec->lock);
1177 if (isec->initialized)
1178 goto out_unlock;
1179
1180 sbsec = inode->i_sb->s_security;
1181 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182 /* Defer initialization until selinux_complete_init,
1183 after the initial policy is loaded and the security
1184 server is ready to handle calls. */
1185 spin_lock(&sbsec->isec_lock);
1186 if (list_empty(&isec->list))
1187 list_add(&isec->list, &sbsec->isec_head);
1188 spin_unlock(&sbsec->isec_lock);
1189 goto out_unlock;
1190 }
1191
1192 switch (sbsec->behavior) {
1193 case SECURITY_FS_USE_XATTR:
1194 if (!inode->i_op->getxattr) {
1195 isec->sid = sbsec->def_sid;
1196 break;
1197 }
1198
1199 /* Need a dentry, since the xattr API requires one.
1200 Life would be simpler if we could just pass the inode. */
1201 if (opt_dentry) {
1202 /* Called from d_instantiate or d_splice_alias. */
1203 dentry = dget(opt_dentry);
1204 } else {
1205 /* Called from selinux_complete_init, try to find a dentry. */
1206 dentry = d_find_alias(inode);
1207 }
1208 if (!dentry) {
1209 /*
1210 * this is can be hit on boot when a file is accessed
1211 * before the policy is loaded. When we load policy we
1212 * may find inodes that have no dentry on the
1213 * sbsec->isec_head list. No reason to complain as these
1214 * will get fixed up the next time we go through
1215 * inode_doinit with a dentry, before these inodes could
1216 * be used again by userspace.
1217 */
1218 goto out_unlock;
1219 }
1220
1221 len = INITCONTEXTLEN;
1222 context = kmalloc(len+1, GFP_NOFS);
1223 if (!context) {
1224 rc = -ENOMEM;
1225 dput(dentry);
1226 goto out_unlock;
1227 }
1228 context[len] = '\0';
1229 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230 context, len);
1231 if (rc == -ERANGE) {
1232 kfree(context);
1233
1234 /* Need a larger buffer. Query for the right size. */
1235 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236 NULL, 0);
1237 if (rc < 0) {
1238 dput(dentry);
1239 goto out_unlock;
1240 }
1241 len = rc;
1242 context = kmalloc(len+1, GFP_NOFS);
1243 if (!context) {
1244 rc = -ENOMEM;
1245 dput(dentry);
1246 goto out_unlock;
1247 }
1248 context[len] = '\0';
1249 rc = inode->i_op->getxattr(dentry,
1250 XATTR_NAME_SELINUX,
1251 context, len);
1252 }
1253 dput(dentry);
1254 if (rc < 0) {
1255 if (rc != -ENODATA) {
1256 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1257 "%d for dev=%s ino=%ld\n", __func__,
1258 -rc, inode->i_sb->s_id, inode->i_ino);
1259 kfree(context);
1260 goto out_unlock;
1261 }
1262 /* Map ENODATA to the default file SID */
1263 sid = sbsec->def_sid;
1264 rc = 0;
1265 } else {
1266 rc = security_context_to_sid_default(context, rc, &sid,
1267 sbsec->def_sid,
1268 GFP_NOFS);
1269 if (rc) {
1270 char *dev = inode->i_sb->s_id;
1271 unsigned long ino = inode->i_ino;
1272
1273 if (rc == -EINVAL) {
1274 if (printk_ratelimit())
1275 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276 "context=%s. This indicates you may need to relabel the inode or the "
1277 "filesystem in question.\n", ino, dev, context);
1278 } else {
1279 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1280 "returned %d for dev=%s ino=%ld\n",
1281 __func__, context, -rc, dev, ino);
1282 }
1283 kfree(context);
1284 /* Leave with the unlabeled SID */
1285 rc = 0;
1286 break;
1287 }
1288 }
1289 kfree(context);
1290 isec->sid = sid;
1291 break;
1292 case SECURITY_FS_USE_TASK:
1293 isec->sid = isec->task_sid;
1294 break;
1295 case SECURITY_FS_USE_TRANS:
1296 /* Default to the fs SID. */
1297 isec->sid = sbsec->sid;
1298
1299 /* Try to obtain a transition SID. */
1300 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302 isec->sclass, NULL, &sid);
1303 if (rc)
1304 goto out_unlock;
1305 isec->sid = sid;
1306 break;
1307 case SECURITY_FS_USE_MNTPOINT:
1308 isec->sid = sbsec->mntpoint_sid;
1309 break;
1310 default:
1311 /* Default to the fs superblock SID. */
1312 isec->sid = sbsec->sid;
1313
1314 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315 if (opt_dentry) {
1316 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317 rc = selinux_proc_get_sid(opt_dentry,
1318 isec->sclass,
1319 &sid);
1320 if (rc)
1321 goto out_unlock;
1322 isec->sid = sid;
1323 }
1324 }
1325 break;
1326 }
1327
1328 isec->initialized = 1;
1329
1330out_unlock:
1331 mutex_unlock(&isec->lock);
1332out:
1333 if (isec->sclass == SECCLASS_FILE)
1334 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335 return rc;
1336}
1337
1338/* Convert a Linux signal to an access vector. */
1339static inline u32 signal_to_av(int sig)
1340{
1341 u32 perm = 0;
1342
1343 switch (sig) {
1344 case SIGCHLD:
1345 /* Commonly granted from child to parent. */
1346 perm = PROCESS__SIGCHLD;
1347 break;
1348 case SIGKILL:
1349 /* Cannot be caught or ignored */
1350 perm = PROCESS__SIGKILL;
1351 break;
1352 case SIGSTOP:
1353 /* Cannot be caught or ignored */
1354 perm = PROCESS__SIGSTOP;
1355 break;
1356 default:
1357 /* All other signals. */
1358 perm = PROCESS__SIGNAL;
1359 break;
1360 }
1361
1362 return perm;
1363}
1364
1365/*
1366 * Check permission between a pair of credentials
1367 * fork check, ptrace check, etc.
1368 */
1369static int cred_has_perm(const struct cred *actor,
1370 const struct cred *target,
1371 u32 perms)
1372{
1373 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374
1375 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376}
1377
1378/*
1379 * Check permission between a pair of tasks, e.g. signal checks,
1380 * fork check, ptrace check, etc.
1381 * tsk1 is the actor and tsk2 is the target
1382 * - this uses the default subjective creds of tsk1
1383 */
1384static int task_has_perm(const struct task_struct *tsk1,
1385 const struct task_struct *tsk2,
1386 u32 perms)
1387{
1388 const struct task_security_struct *__tsec1, *__tsec2;
1389 u32 sid1, sid2;
1390
1391 rcu_read_lock();
1392 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1393 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1394 rcu_read_unlock();
1395 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396}
1397
1398/*
1399 * Check permission between current and another task, e.g. signal checks,
1400 * fork check, ptrace check, etc.
1401 * current is the actor and tsk2 is the target
1402 * - this uses current's subjective creds
1403 */
1404static int current_has_perm(const struct task_struct *tsk,
1405 u32 perms)
1406{
1407 u32 sid, tsid;
1408
1409 sid = current_sid();
1410 tsid = task_sid(tsk);
1411 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412}
1413
1414#if CAP_LAST_CAP > 63
1415#error Fix SELinux to handle capabilities > 63.
1416#endif
1417
1418/* Check whether a task is allowed to use a capability. */
1419static int cred_has_capability(const struct cred *cred,
1420 int cap, int audit)
1421{
1422 struct common_audit_data ad;
1423 struct av_decision avd;
1424 u16 sclass;
1425 u32 sid = cred_sid(cred);
1426 u32 av = CAP_TO_MASK(cap);
1427 int rc;
1428
1429 ad.type = LSM_AUDIT_DATA_CAP;
1430 ad.u.cap = cap;
1431
1432 switch (CAP_TO_INDEX(cap)) {
1433 case 0:
1434 sclass = SECCLASS_CAPABILITY;
1435 break;
1436 case 1:
1437 sclass = SECCLASS_CAPABILITY2;
1438 break;
1439 default:
1440 printk(KERN_ERR
1441 "SELinux: out of range capability %d\n", cap);
1442 BUG();
1443 return -EINVAL;
1444 }
1445
1446 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447 if (audit == SECURITY_CAP_AUDIT) {
1448 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449 if (rc2)
1450 return rc2;
1451 }
1452 return rc;
1453}
1454
1455/* Check whether a task is allowed to use a system operation. */
1456static int task_has_system(struct task_struct *tsk,
1457 u32 perms)
1458{
1459 u32 sid = task_sid(tsk);
1460
1461 return avc_has_perm(sid, SECINITSID_KERNEL,
1462 SECCLASS_SYSTEM, perms, NULL);
1463}
1464
1465/* Check whether a task has a particular permission to an inode.
1466 The 'adp' parameter is optional and allows other audit
1467 data to be passed (e.g. the dentry). */
1468static int inode_has_perm(const struct cred *cred,
1469 struct inode *inode,
1470 u32 perms,
1471 struct common_audit_data *adp,
1472 unsigned flags)
1473{
1474 struct inode_security_struct *isec;
1475 u32 sid;
1476
1477 validate_creds(cred);
1478
1479 if (unlikely(IS_PRIVATE(inode)))
1480 return 0;
1481
1482 sid = cred_sid(cred);
1483 isec = inode->i_security;
1484
1485 return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486}
1487
1488/* Same as inode_has_perm, but pass explicit audit data containing
1489 the dentry to help the auditing code to more easily generate the
1490 pathname if needed. */
1491static inline int dentry_has_perm(const struct cred *cred,
1492 struct dentry *dentry,
1493 u32 av)
1494{
1495 struct inode *inode = dentry->d_inode;
1496 struct common_audit_data ad;
1497
1498 ad.type = LSM_AUDIT_DATA_DENTRY;
1499 ad.u.dentry = dentry;
1500 return inode_has_perm(cred, inode, av, &ad, 0);
1501}
1502
1503/* Same as inode_has_perm, but pass explicit audit data containing
1504 the path to help the auditing code to more easily generate the
1505 pathname if needed. */
1506static inline int path_has_perm(const struct cred *cred,
1507 struct path *path,
1508 u32 av)
1509{
1510 struct inode *inode = path->dentry->d_inode;
1511 struct common_audit_data ad;
1512
1513 ad.type = LSM_AUDIT_DATA_PATH;
1514 ad.u.path = *path;
1515 return inode_has_perm(cred, inode, av, &ad, 0);
1516}
1517
1518/* Check whether a task can use an open file descriptor to
1519 access an inode in a given way. Check access to the
1520 descriptor itself, and then use dentry_has_perm to
1521 check a particular permission to the file.
1522 Access to the descriptor is implicitly granted if it
1523 has the same SID as the process. If av is zero, then
1524 access to the file is not checked, e.g. for cases
1525 where only the descriptor is affected like seek. */
1526static int file_has_perm(const struct cred *cred,
1527 struct file *file,
1528 u32 av)
1529{
1530 struct file_security_struct *fsec = file->f_security;
1531 struct inode *inode = file->f_path.dentry->d_inode;
1532 struct common_audit_data ad;
1533 u32 sid = cred_sid(cred);
1534 int rc;
1535
1536 ad.type = LSM_AUDIT_DATA_PATH;
1537 ad.u.path = file->f_path;
1538
1539 if (sid != fsec->sid) {
1540 rc = avc_has_perm(sid, fsec->sid,
1541 SECCLASS_FD,
1542 FD__USE,
1543 &ad);
1544 if (rc)
1545 goto out;
1546 }
1547
1548 /* av is zero if only checking access to the descriptor. */
1549 rc = 0;
1550 if (av)
1551 rc = inode_has_perm(cred, inode, av, &ad, 0);
1552
1553out:
1554 return rc;
1555}
1556
1557/* Check whether a task can create a file. */
1558static int may_create(struct inode *dir,
1559 struct dentry *dentry,
1560 u16 tclass)
1561{
1562 const struct task_security_struct *tsec = current_security();
1563 struct inode_security_struct *dsec;
1564 struct superblock_security_struct *sbsec;
1565 u32 sid, newsid;
1566 struct common_audit_data ad;
1567 int rc;
1568
1569 dsec = dir->i_security;
1570 sbsec = dir->i_sb->s_security;
1571
1572 sid = tsec->sid;
1573 newsid = tsec->create_sid;
1574
1575 ad.type = LSM_AUDIT_DATA_DENTRY;
1576 ad.u.dentry = dentry;
1577
1578 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579 DIR__ADD_NAME | DIR__SEARCH,
1580 &ad);
1581 if (rc)
1582 return rc;
1583
1584 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585 rc = security_transition_sid(sid, dsec->sid, tclass,
1586 &dentry->d_name, &newsid);
1587 if (rc)
1588 return rc;
1589 }
1590
1591 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592 if (rc)
1593 return rc;
1594
1595 return avc_has_perm(newsid, sbsec->sid,
1596 SECCLASS_FILESYSTEM,
1597 FILESYSTEM__ASSOCIATE, &ad);
1598}
1599
1600/* Check whether a task can create a key. */
1601static int may_create_key(u32 ksid,
1602 struct task_struct *ctx)
1603{
1604 u32 sid = task_sid(ctx);
1605
1606 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607}
1608
1609#define MAY_LINK 0
1610#define MAY_UNLINK 1
1611#define MAY_RMDIR 2
1612
1613/* Check whether a task can link, unlink, or rmdir a file/directory. */
1614static int may_link(struct inode *dir,
1615 struct dentry *dentry,
1616 int kind)
1617
1618{
1619 struct inode_security_struct *dsec, *isec;
1620 struct common_audit_data ad;
1621 u32 sid = current_sid();
1622 u32 av;
1623 int rc;
1624
1625 dsec = dir->i_security;
1626 isec = dentry->d_inode->i_security;
1627
1628 ad.type = LSM_AUDIT_DATA_DENTRY;
1629 ad.u.dentry = dentry;
1630
1631 av = DIR__SEARCH;
1632 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634 if (rc)
1635 return rc;
1636
1637 switch (kind) {
1638 case MAY_LINK:
1639 av = FILE__LINK;
1640 break;
1641 case MAY_UNLINK:
1642 av = FILE__UNLINK;
1643 break;
1644 case MAY_RMDIR:
1645 av = DIR__RMDIR;
1646 break;
1647 default:
1648 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1649 __func__, kind);
1650 return 0;
1651 }
1652
1653 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654 return rc;
1655}
1656
1657static inline int may_rename(struct inode *old_dir,
1658 struct dentry *old_dentry,
1659 struct inode *new_dir,
1660 struct dentry *new_dentry)
1661{
1662 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663 struct common_audit_data ad;
1664 u32 sid = current_sid();
1665 u32 av;
1666 int old_is_dir, new_is_dir;
1667 int rc;
1668
1669 old_dsec = old_dir->i_security;
1670 old_isec = old_dentry->d_inode->i_security;
1671 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672 new_dsec = new_dir->i_security;
1673
1674 ad.type = LSM_AUDIT_DATA_DENTRY;
1675
1676 ad.u.dentry = old_dentry;
1677 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679 if (rc)
1680 return rc;
1681 rc = avc_has_perm(sid, old_isec->sid,
1682 old_isec->sclass, FILE__RENAME, &ad);
1683 if (rc)
1684 return rc;
1685 if (old_is_dir && new_dir != old_dir) {
1686 rc = avc_has_perm(sid, old_isec->sid,
1687 old_isec->sclass, DIR__REPARENT, &ad);
1688 if (rc)
1689 return rc;
1690 }
1691
1692 ad.u.dentry = new_dentry;
1693 av = DIR__ADD_NAME | DIR__SEARCH;
1694 if (new_dentry->d_inode)
1695 av |= DIR__REMOVE_NAME;
1696 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697 if (rc)
1698 return rc;
1699 if (new_dentry->d_inode) {
1700 new_isec = new_dentry->d_inode->i_security;
1701 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702 rc = avc_has_perm(sid, new_isec->sid,
1703 new_isec->sclass,
1704 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705 if (rc)
1706 return rc;
1707 }
1708
1709 return 0;
1710}
1711
1712/* Check whether a task can perform a filesystem operation. */
1713static int superblock_has_perm(const struct cred *cred,
1714 struct super_block *sb,
1715 u32 perms,
1716 struct common_audit_data *ad)
1717{
1718 struct superblock_security_struct *sbsec;
1719 u32 sid = cred_sid(cred);
1720
1721 sbsec = sb->s_security;
1722 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723}
1724
1725/* Convert a Linux mode and permission mask to an access vector. */
1726static inline u32 file_mask_to_av(int mode, int mask)
1727{
1728 u32 av = 0;
1729
1730 if (!S_ISDIR(mode)) {
1731 if (mask & MAY_EXEC)
1732 av |= FILE__EXECUTE;
1733 if (mask & MAY_READ)
1734 av |= FILE__READ;
1735
1736 if (mask & MAY_APPEND)
1737 av |= FILE__APPEND;
1738 else if (mask & MAY_WRITE)
1739 av |= FILE__WRITE;
1740
1741 } else {
1742 if (mask & MAY_EXEC)
1743 av |= DIR__SEARCH;
1744 if (mask & MAY_WRITE)
1745 av |= DIR__WRITE;
1746 if (mask & MAY_READ)
1747 av |= DIR__READ;
1748 }
1749
1750 return av;
1751}
1752
1753/* Convert a Linux file to an access vector. */
1754static inline u32 file_to_av(struct file *file)
1755{
1756 u32 av = 0;
1757
1758 if (file->f_mode & FMODE_READ)
1759 av |= FILE__READ;
1760 if (file->f_mode & FMODE_WRITE) {
1761 if (file->f_flags & O_APPEND)
1762 av |= FILE__APPEND;
1763 else
1764 av |= FILE__WRITE;
1765 }
1766 if (!av) {
1767 /*
1768 * Special file opened with flags 3 for ioctl-only use.
1769 */
1770 av = FILE__IOCTL;
1771 }
1772
1773 return av;
1774}
1775
1776/*
1777 * Convert a file to an access vector and include the correct open
1778 * open permission.
1779 */
1780static inline u32 open_file_to_av(struct file *file)
1781{
1782 u32 av = file_to_av(file);
1783
1784 if (selinux_policycap_openperm)
1785 av |= FILE__OPEN;
1786
1787 return av;
1788}
1789
1790/* Hook functions begin here. */
1791
1792static int selinux_ptrace_access_check(struct task_struct *child,
1793 unsigned int mode)
1794{
1795 int rc;
1796
1797 rc = cap_ptrace_access_check(child, mode);
1798 if (rc)
1799 return rc;
1800
1801 if (mode & PTRACE_MODE_READ) {
1802 u32 sid = current_sid();
1803 u32 csid = task_sid(child);
1804 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805 }
1806
1807 return current_has_perm(child, PROCESS__PTRACE);
1808}
1809
1810static int selinux_ptrace_traceme(struct task_struct *parent)
1811{
1812 int rc;
1813
1814 rc = cap_ptrace_traceme(parent);
1815 if (rc)
1816 return rc;
1817
1818 return task_has_perm(parent, current, PROCESS__PTRACE);
1819}
1820
1821static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823{
1824 int error;
1825
1826 error = current_has_perm(target, PROCESS__GETCAP);
1827 if (error)
1828 return error;
1829
1830 return cap_capget(target, effective, inheritable, permitted);
1831}
1832
1833static int selinux_capset(struct cred *new, const struct cred *old,
1834 const kernel_cap_t *effective,
1835 const kernel_cap_t *inheritable,
1836 const kernel_cap_t *permitted)
1837{
1838 int error;
1839
1840 error = cap_capset(new, old,
1841 effective, inheritable, permitted);
1842 if (error)
1843 return error;
1844
1845 return cred_has_perm(old, new, PROCESS__SETCAP);
1846}
1847
1848/*
1849 * (This comment used to live with the selinux_task_setuid hook,
1850 * which was removed).
1851 *
1852 * Since setuid only affects the current process, and since the SELinux
1853 * controls are not based on the Linux identity attributes, SELinux does not
1854 * need to control this operation. However, SELinux does control the use of
1855 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856 */
1857
1858static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859 int cap, int audit)
1860{
1861 int rc;
1862
1863 rc = cap_capable(cred, ns, cap, audit);
1864 if (rc)
1865 return rc;
1866
1867 return cred_has_capability(cred, cap, audit);
1868}
1869
1870static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871{
1872 const struct cred *cred = current_cred();
1873 int rc = 0;
1874
1875 if (!sb)
1876 return 0;
1877
1878 switch (cmds) {
1879 case Q_SYNC:
1880 case Q_QUOTAON:
1881 case Q_QUOTAOFF:
1882 case Q_SETINFO:
1883 case Q_SETQUOTA:
1884 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885 break;
1886 case Q_GETFMT:
1887 case Q_GETINFO:
1888 case Q_GETQUOTA:
1889 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890 break;
1891 default:
1892 rc = 0; /* let the kernel handle invalid cmds */
1893 break;
1894 }
1895 return rc;
1896}
1897
1898static int selinux_quota_on(struct dentry *dentry)
1899{
1900 const struct cred *cred = current_cred();
1901
1902 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903}
1904
1905static int selinux_syslog(int type)
1906{
1907 int rc;
1908
1909 switch (type) {
1910 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
1911 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1912 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913 break;
1914 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1915 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
1916 /* Set level of messages printed to console */
1917 case SYSLOG_ACTION_CONSOLE_LEVEL:
1918 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919 break;
1920 case SYSLOG_ACTION_CLOSE: /* Close log */
1921 case SYSLOG_ACTION_OPEN: /* Open log */
1922 case SYSLOG_ACTION_READ: /* Read from log */
1923 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
1924 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
1925 default:
1926 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927 break;
1928 }
1929 return rc;
1930}
1931
1932/*
1933 * Check that a process has enough memory to allocate a new virtual
1934 * mapping. 0 means there is enough memory for the allocation to
1935 * succeed and -ENOMEM implies there is not.
1936 *
1937 * Do not audit the selinux permission check, as this is applied to all
1938 * processes that allocate mappings.
1939 */
1940static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941{
1942 int rc, cap_sys_admin = 0;
1943
1944 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945 SECURITY_CAP_NOAUDIT);
1946 if (rc == 0)
1947 cap_sys_admin = 1;
1948
1949 return __vm_enough_memory(mm, pages, cap_sys_admin);
1950}
1951
1952/* binprm security operations */
1953
1954static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955{
1956 const struct task_security_struct *old_tsec;
1957 struct task_security_struct *new_tsec;
1958 struct inode_security_struct *isec;
1959 struct common_audit_data ad;
1960 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961 int rc;
1962
1963 rc = cap_bprm_set_creds(bprm);
1964 if (rc)
1965 return rc;
1966
1967 /* SELinux context only depends on initial program or script and not
1968 * the script interpreter */
1969 if (bprm->cred_prepared)
1970 return 0;
1971
1972 old_tsec = current_security();
1973 new_tsec = bprm->cred->security;
1974 isec = inode->i_security;
1975
1976 /* Default to the current task SID. */
1977 new_tsec->sid = old_tsec->sid;
1978 new_tsec->osid = old_tsec->sid;
1979
1980 /* Reset fs, key, and sock SIDs on execve. */
1981 new_tsec->create_sid = 0;
1982 new_tsec->keycreate_sid = 0;
1983 new_tsec->sockcreate_sid = 0;
1984
1985 if (old_tsec->exec_sid) {
1986 new_tsec->sid = old_tsec->exec_sid;
1987 /* Reset exec SID on execve. */
1988 new_tsec->exec_sid = 0;
1989
1990 /*
1991 * Minimize confusion: if no_new_privs and a transition is
1992 * explicitly requested, then fail the exec.
1993 */
1994 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995 return -EPERM;
1996 } else {
1997 /* Check for a default transition on this program. */
1998 rc = security_transition_sid(old_tsec->sid, isec->sid,
1999 SECCLASS_PROCESS, NULL,
2000 &new_tsec->sid);
2001 if (rc)
2002 return rc;
2003 }
2004
2005 ad.type = LSM_AUDIT_DATA_PATH;
2006 ad.u.path = bprm->file->f_path;
2007
2008 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010 new_tsec->sid = old_tsec->sid;
2011
2012 if (new_tsec->sid == old_tsec->sid) {
2013 rc = avc_has_perm(old_tsec->sid, isec->sid,
2014 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015 if (rc)
2016 return rc;
2017 } else {
2018 /* Check permissions for the transition. */
2019 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021 if (rc)
2022 return rc;
2023
2024 rc = avc_has_perm(new_tsec->sid, isec->sid,
2025 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026 if (rc)
2027 return rc;
2028
2029 /* Check for shared state */
2030 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032 SECCLASS_PROCESS, PROCESS__SHARE,
2033 NULL);
2034 if (rc)
2035 return -EPERM;
2036 }
2037
2038 /* Make sure that anyone attempting to ptrace over a task that
2039 * changes its SID has the appropriate permit */
2040 if (bprm->unsafe &
2041 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042 struct task_struct *tracer;
2043 struct task_security_struct *sec;
2044 u32 ptsid = 0;
2045
2046 rcu_read_lock();
2047 tracer = ptrace_parent(current);
2048 if (likely(tracer != NULL)) {
2049 sec = __task_cred(tracer)->security;
2050 ptsid = sec->sid;
2051 }
2052 rcu_read_unlock();
2053
2054 if (ptsid != 0) {
2055 rc = avc_has_perm(ptsid, new_tsec->sid,
2056 SECCLASS_PROCESS,
2057 PROCESS__PTRACE, NULL);
2058 if (rc)
2059 return -EPERM;
2060 }
2061 }
2062
2063 /* Clear any possibly unsafe personality bits on exec: */
2064 bprm->per_clear |= PER_CLEAR_ON_SETID;
2065 }
2066
2067 return 0;
2068}
2069
2070static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071{
2072 const struct task_security_struct *tsec = current_security();
2073 u32 sid, osid;
2074 int atsecure = 0;
2075
2076 sid = tsec->sid;
2077 osid = tsec->osid;
2078
2079 if (osid != sid) {
2080 /* Enable secure mode for SIDs transitions unless
2081 the noatsecure permission is granted between
2082 the two SIDs, i.e. ahp returns 0. */
2083 atsecure = avc_has_perm(osid, sid,
2084 SECCLASS_PROCESS,
2085 PROCESS__NOATSECURE, NULL);
2086 }
2087
2088 return (atsecure || cap_bprm_secureexec(bprm));
2089}
2090
2091/* Derived from fs/exec.c:flush_old_files. */
2092static inline void flush_unauthorized_files(const struct cred *cred,
2093 struct files_struct *files)
2094{
2095 struct file *file, *devnull = NULL;
2096 struct tty_struct *tty;
2097 struct fdtable *fdt;
2098 long j = -1;
2099 int drop_tty = 0;
2100
2101 tty = get_current_tty();
2102 if (tty) {
2103 spin_lock(&tty_files_lock);
2104 if (!list_empty(&tty->tty_files)) {
2105 struct tty_file_private *file_priv;
2106
2107 /* Revalidate access to controlling tty.
2108 Use path_has_perm on the tty path directly rather
2109 than using file_has_perm, as this particular open
2110 file may belong to another process and we are only
2111 interested in the inode-based check here. */
2112 file_priv = list_first_entry(&tty->tty_files,
2113 struct tty_file_private, list);
2114 file = file_priv->file;
2115 if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2116 drop_tty = 1;
2117 }
2118 spin_unlock(&tty_files_lock);
2119 tty_kref_put(tty);
2120 }
2121 /* Reset controlling tty. */
2122 if (drop_tty)
2123 no_tty();
2124
2125 /* Revalidate access to inherited open files. */
2126 spin_lock(&files->file_lock);
2127 for (;;) {
2128 unsigned long set, i;
2129 int fd;
2130
2131 j++;
2132 i = j * BITS_PER_LONG;
2133 fdt = files_fdtable(files);
2134 if (i >= fdt->max_fds)
2135 break;
2136 set = fdt->open_fds[j];
2137 if (!set)
2138 continue;
2139 spin_unlock(&files->file_lock);
2140 for ( ; set ; i++, set >>= 1) {
2141 if (set & 1) {
2142 file = fget(i);
2143 if (!file)
2144 continue;
2145 if (file_has_perm(cred,
2146 file,
2147 file_to_av(file))) {
2148 sys_close(i);
2149 fd = get_unused_fd();
2150 if (fd != i) {
2151 if (fd >= 0)
2152 put_unused_fd(fd);
2153 fput(file);
2154 continue;
2155 }
2156 if (devnull) {
2157 get_file(devnull);
2158 } else {
2159 devnull = dentry_open(
2160 dget(selinux_null),
2161 mntget(selinuxfs_mount),
2162 O_RDWR, cred);
2163 if (IS_ERR(devnull)) {
2164 devnull = NULL;
2165 put_unused_fd(fd);
2166 fput(file);
2167 continue;
2168 }
2169 }
2170 fd_install(fd, devnull);
2171 }
2172 fput(file);
2173 }
2174 }
2175 spin_lock(&files->file_lock);
2176
2177 }
2178 spin_unlock(&files->file_lock);
2179}
2180
2181/*
2182 * Prepare a process for imminent new credential changes due to exec
2183 */
2184static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2185{
2186 struct task_security_struct *new_tsec;
2187 struct rlimit *rlim, *initrlim;
2188 int rc, i;
2189
2190 new_tsec = bprm->cred->security;
2191 if (new_tsec->sid == new_tsec->osid)
2192 return;
2193
2194 /* Close files for which the new task SID is not authorized. */
2195 flush_unauthorized_files(bprm->cred, current->files);
2196
2197 /* Always clear parent death signal on SID transitions. */
2198 current->pdeath_signal = 0;
2199
2200 /* Check whether the new SID can inherit resource limits from the old
2201 * SID. If not, reset all soft limits to the lower of the current
2202 * task's hard limit and the init task's soft limit.
2203 *
2204 * Note that the setting of hard limits (even to lower them) can be
2205 * controlled by the setrlimit check. The inclusion of the init task's
2206 * soft limit into the computation is to avoid resetting soft limits
2207 * higher than the default soft limit for cases where the default is
2208 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2209 */
2210 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2211 PROCESS__RLIMITINH, NULL);
2212 if (rc) {
2213 /* protect against do_prlimit() */
2214 task_lock(current);
2215 for (i = 0; i < RLIM_NLIMITS; i++) {
2216 rlim = current->signal->rlim + i;
2217 initrlim = init_task.signal->rlim + i;
2218 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2219 }
2220 task_unlock(current);
2221 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2222 }
2223}
2224
2225/*
2226 * Clean up the process immediately after the installation of new credentials
2227 * due to exec
2228 */
2229static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2230{
2231 const struct task_security_struct *tsec = current_security();
2232 struct itimerval itimer;
2233 u32 osid, sid;
2234 int rc, i;
2235
2236 osid = tsec->osid;
2237 sid = tsec->sid;
2238
2239 if (sid == osid)
2240 return;
2241
2242 /* Check whether the new SID can inherit signal state from the old SID.
2243 * If not, clear itimers to avoid subsequent signal generation and
2244 * flush and unblock signals.
2245 *
2246 * This must occur _after_ the task SID has been updated so that any
2247 * kill done after the flush will be checked against the new SID.
2248 */
2249 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2250 if (rc) {
2251 memset(&itimer, 0, sizeof itimer);
2252 for (i = 0; i < 3; i++)
2253 do_setitimer(i, &itimer, NULL);
2254 spin_lock_irq(¤t->sighand->siglock);
2255 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2256 __flush_signals(current);
2257 flush_signal_handlers(current, 1);
2258 sigemptyset(¤t->blocked);
2259 }
2260 spin_unlock_irq(¤t->sighand->siglock);
2261 }
2262
2263 /* Wake up the parent if it is waiting so that it can recheck
2264 * wait permission to the new task SID. */
2265 read_lock(&tasklist_lock);
2266 __wake_up_parent(current, current->real_parent);
2267 read_unlock(&tasklist_lock);
2268}
2269
2270/* superblock security operations */
2271
2272static int selinux_sb_alloc_security(struct super_block *sb)
2273{
2274 return superblock_alloc_security(sb);
2275}
2276
2277static void selinux_sb_free_security(struct super_block *sb)
2278{
2279 superblock_free_security(sb);
2280}
2281
2282static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2283{
2284 if (plen > olen)
2285 return 0;
2286
2287 return !memcmp(prefix, option, plen);
2288}
2289
2290static inline int selinux_option(char *option, int len)
2291{
2292 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2293 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2294 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2295 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2296 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2297}
2298
2299static inline void take_option(char **to, char *from, int *first, int len)
2300{
2301 if (!*first) {
2302 **to = ',';
2303 *to += 1;
2304 } else
2305 *first = 0;
2306 memcpy(*to, from, len);
2307 *to += len;
2308}
2309
2310static inline void take_selinux_option(char **to, char *from, int *first,
2311 int len)
2312{
2313 int current_size = 0;
2314
2315 if (!*first) {
2316 **to = '|';
2317 *to += 1;
2318 } else
2319 *first = 0;
2320
2321 while (current_size < len) {
2322 if (*from != '"') {
2323 **to = *from;
2324 *to += 1;
2325 }
2326 from += 1;
2327 current_size += 1;
2328 }
2329}
2330
2331static int selinux_sb_copy_data(char *orig, char *copy)
2332{
2333 int fnosec, fsec, rc = 0;
2334 char *in_save, *in_curr, *in_end;
2335 char *sec_curr, *nosec_save, *nosec;
2336 int open_quote = 0;
2337
2338 in_curr = orig;
2339 sec_curr = copy;
2340
2341 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2342 if (!nosec) {
2343 rc = -ENOMEM;
2344 goto out;
2345 }
2346
2347 nosec_save = nosec;
2348 fnosec = fsec = 1;
2349 in_save = in_end = orig;
2350
2351 do {
2352 if (*in_end == '"')
2353 open_quote = !open_quote;
2354 if ((*in_end == ',' && open_quote == 0) ||
2355 *in_end == '\0') {
2356 int len = in_end - in_curr;
2357
2358 if (selinux_option(in_curr, len))
2359 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2360 else
2361 take_option(&nosec, in_curr, &fnosec, len);
2362
2363 in_curr = in_end + 1;
2364 }
2365 } while (*in_end++);
2366
2367 strcpy(in_save, nosec_save);
2368 free_page((unsigned long)nosec_save);
2369out:
2370 return rc;
2371}
2372
2373static int selinux_sb_remount(struct super_block *sb, void *data)
2374{
2375 int rc, i, *flags;
2376 struct security_mnt_opts opts;
2377 char *secdata, **mount_options;
2378 struct superblock_security_struct *sbsec = sb->s_security;
2379
2380 if (!(sbsec->flags & SE_SBINITIALIZED))
2381 return 0;
2382
2383 if (!data)
2384 return 0;
2385
2386 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2387 return 0;
2388
2389 security_init_mnt_opts(&opts);
2390 secdata = alloc_secdata();
2391 if (!secdata)
2392 return -ENOMEM;
2393 rc = selinux_sb_copy_data(data, secdata);
2394 if (rc)
2395 goto out_free_secdata;
2396
2397 rc = selinux_parse_opts_str(secdata, &opts);
2398 if (rc)
2399 goto out_free_secdata;
2400
2401 mount_options = opts.mnt_opts;
2402 flags = opts.mnt_opts_flags;
2403
2404 for (i = 0; i < opts.num_mnt_opts; i++) {
2405 u32 sid;
2406 size_t len;
2407
2408 if (flags[i] == SE_SBLABELSUPP)
2409 continue;
2410 len = strlen(mount_options[i]);
2411 rc = security_context_to_sid(mount_options[i], len, &sid);
2412 if (rc) {
2413 printk(KERN_WARNING "SELinux: security_context_to_sid"
2414 "(%s) failed for (dev %s, type %s) errno=%d\n",
2415 mount_options[i], sb->s_id, sb->s_type->name, rc);
2416 goto out_free_opts;
2417 }
2418 rc = -EINVAL;
2419 switch (flags[i]) {
2420 case FSCONTEXT_MNT:
2421 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2422 goto out_bad_option;
2423 break;
2424 case CONTEXT_MNT:
2425 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2426 goto out_bad_option;
2427 break;
2428 case ROOTCONTEXT_MNT: {
2429 struct inode_security_struct *root_isec;
2430 root_isec = sb->s_root->d_inode->i_security;
2431
2432 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2433 goto out_bad_option;
2434 break;
2435 }
2436 case DEFCONTEXT_MNT:
2437 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2438 goto out_bad_option;
2439 break;
2440 default:
2441 goto out_free_opts;
2442 }
2443 }
2444
2445 rc = 0;
2446out_free_opts:
2447 security_free_mnt_opts(&opts);
2448out_free_secdata:
2449 free_secdata(secdata);
2450 return rc;
2451out_bad_option:
2452 printk(KERN_WARNING "SELinux: unable to change security options "
2453 "during remount (dev %s, type=%s)\n", sb->s_id,
2454 sb->s_type->name);
2455 goto out_free_opts;
2456}
2457
2458static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2459{
2460 const struct cred *cred = current_cred();
2461 struct common_audit_data ad;
2462 int rc;
2463
2464 rc = superblock_doinit(sb, data);
2465 if (rc)
2466 return rc;
2467
2468 /* Allow all mounts performed by the kernel */
2469 if (flags & MS_KERNMOUNT)
2470 return 0;
2471
2472 ad.type = LSM_AUDIT_DATA_DENTRY;
2473 ad.u.dentry = sb->s_root;
2474 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2475}
2476
2477static int selinux_sb_statfs(struct dentry *dentry)
2478{
2479 const struct cred *cred = current_cred();
2480 struct common_audit_data ad;
2481
2482 ad.type = LSM_AUDIT_DATA_DENTRY;
2483 ad.u.dentry = dentry->d_sb->s_root;
2484 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2485}
2486
2487static int selinux_mount(char *dev_name,
2488 struct path *path,
2489 char *type,
2490 unsigned long flags,
2491 void *data)
2492{
2493 const struct cred *cred = current_cred();
2494
2495 if (flags & MS_REMOUNT)
2496 return superblock_has_perm(cred, path->dentry->d_sb,
2497 FILESYSTEM__REMOUNT, NULL);
2498 else
2499 return path_has_perm(cred, path, FILE__MOUNTON);
2500}
2501
2502static int selinux_umount(struct vfsmount *mnt, int flags)
2503{
2504 const struct cred *cred = current_cred();
2505
2506 return superblock_has_perm(cred, mnt->mnt_sb,
2507 FILESYSTEM__UNMOUNT, NULL);
2508}
2509
2510/* inode security operations */
2511
2512static int selinux_inode_alloc_security(struct inode *inode)
2513{
2514 return inode_alloc_security(inode);
2515}
2516
2517static void selinux_inode_free_security(struct inode *inode)
2518{
2519 inode_free_security(inode);
2520}
2521
2522static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2523 const struct qstr *qstr, char **name,
2524 void **value, size_t *len)
2525{
2526 const struct task_security_struct *tsec = current_security();
2527 struct inode_security_struct *dsec;
2528 struct superblock_security_struct *sbsec;
2529 u32 sid, newsid, clen;
2530 int rc;
2531 char *namep = NULL, *context;
2532
2533 dsec = dir->i_security;
2534 sbsec = dir->i_sb->s_security;
2535
2536 sid = tsec->sid;
2537 newsid = tsec->create_sid;
2538
2539 if ((sbsec->flags & SE_SBINITIALIZED) &&
2540 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2541 newsid = sbsec->mntpoint_sid;
2542 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2543 rc = security_transition_sid(sid, dsec->sid,
2544 inode_mode_to_security_class(inode->i_mode),
2545 qstr, &newsid);
2546 if (rc) {
2547 printk(KERN_WARNING "%s: "
2548 "security_transition_sid failed, rc=%d (dev=%s "
2549 "ino=%ld)\n",
2550 __func__,
2551 -rc, inode->i_sb->s_id, inode->i_ino);
2552 return rc;
2553 }
2554 }
2555
2556 /* Possibly defer initialization to selinux_complete_init. */
2557 if (sbsec->flags & SE_SBINITIALIZED) {
2558 struct inode_security_struct *isec = inode->i_security;
2559 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2560 isec->sid = newsid;
2561 isec->initialized = 1;
2562 }
2563
2564 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2565 return -EOPNOTSUPP;
2566
2567 if (name) {
2568 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2569 if (!namep)
2570 return -ENOMEM;
2571 *name = namep;
2572 }
2573
2574 if (value && len) {
2575 rc = security_sid_to_context_force(newsid, &context, &clen);
2576 if (rc) {
2577 kfree(namep);
2578 return rc;
2579 }
2580 *value = context;
2581 *len = clen;
2582 }
2583
2584 return 0;
2585}
2586
2587static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2588{
2589 return may_create(dir, dentry, SECCLASS_FILE);
2590}
2591
2592static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2593{
2594 return may_link(dir, old_dentry, MAY_LINK);
2595}
2596
2597static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2598{
2599 return may_link(dir, dentry, MAY_UNLINK);
2600}
2601
2602static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2603{
2604 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2605}
2606
2607static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2608{
2609 return may_create(dir, dentry, SECCLASS_DIR);
2610}
2611
2612static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2613{
2614 return may_link(dir, dentry, MAY_RMDIR);
2615}
2616
2617static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2618{
2619 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2620}
2621
2622static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2623 struct inode *new_inode, struct dentry *new_dentry)
2624{
2625 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2626}
2627
2628static int selinux_inode_readlink(struct dentry *dentry)
2629{
2630 const struct cred *cred = current_cred();
2631
2632 return dentry_has_perm(cred, dentry, FILE__READ);
2633}
2634
2635static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2636{
2637 const struct cred *cred = current_cred();
2638
2639 return dentry_has_perm(cred, dentry, FILE__READ);
2640}
2641
2642static noinline int audit_inode_permission(struct inode *inode,
2643 u32 perms, u32 audited, u32 denied,
2644 unsigned flags)
2645{
2646 struct common_audit_data ad;
2647 struct inode_security_struct *isec = inode->i_security;
2648 int rc;
2649
2650 ad.type = LSM_AUDIT_DATA_INODE;
2651 ad.u.inode = inode;
2652
2653 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2654 audited, denied, &ad, flags);
2655 if (rc)
2656 return rc;
2657 return 0;
2658}
2659
2660static int selinux_inode_permission(struct inode *inode, int mask)
2661{
2662 const struct cred *cred = current_cred();
2663 u32 perms;
2664 bool from_access;
2665 unsigned flags = mask & MAY_NOT_BLOCK;
2666 struct inode_security_struct *isec;
2667 u32 sid;
2668 struct av_decision avd;
2669 int rc, rc2;
2670 u32 audited, denied;
2671
2672 from_access = mask & MAY_ACCESS;
2673 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2674
2675 /* No permission to check. Existence test. */
2676 if (!mask)
2677 return 0;
2678
2679 validate_creds(cred);
2680
2681 if (unlikely(IS_PRIVATE(inode)))
2682 return 0;
2683
2684 perms = file_mask_to_av(inode->i_mode, mask);
2685
2686 sid = cred_sid(cred);
2687 isec = inode->i_security;
2688
2689 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2690 audited = avc_audit_required(perms, &avd, rc,
2691 from_access ? FILE__AUDIT_ACCESS : 0,
2692 &denied);
2693 if (likely(!audited))
2694 return rc;
2695
2696 rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2697 if (rc2)
2698 return rc2;
2699 return rc;
2700}
2701
2702static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2703{
2704 const struct cred *cred = current_cred();
2705 unsigned int ia_valid = iattr->ia_valid;
2706 __u32 av = FILE__WRITE;
2707
2708 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2709 if (ia_valid & ATTR_FORCE) {
2710 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2711 ATTR_FORCE);
2712 if (!ia_valid)
2713 return 0;
2714 }
2715
2716 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2717 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2718 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2719
2720 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2721 av |= FILE__OPEN;
2722
2723 return dentry_has_perm(cred, dentry, av);
2724}
2725
2726static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2727{
2728 const struct cred *cred = current_cred();
2729 struct path path;
2730
2731 path.dentry = dentry;
2732 path.mnt = mnt;
2733
2734 return path_has_perm(cred, &path, FILE__GETATTR);
2735}
2736
2737static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2738{
2739 const struct cred *cred = current_cred();
2740
2741 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2742 sizeof XATTR_SECURITY_PREFIX - 1)) {
2743 if (!strcmp(name, XATTR_NAME_CAPS)) {
2744 if (!capable(CAP_SETFCAP))
2745 return -EPERM;
2746 } else if (!capable(CAP_SYS_ADMIN)) {
2747 /* A different attribute in the security namespace.
2748 Restrict to administrator. */
2749 return -EPERM;
2750 }
2751 }
2752
2753 /* Not an attribute we recognize, so just check the
2754 ordinary setattr permission. */
2755 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2756}
2757
2758static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2759 const void *value, size_t size, int flags)
2760{
2761 struct inode *inode = dentry->d_inode;
2762 struct inode_security_struct *isec = inode->i_security;
2763 struct superblock_security_struct *sbsec;
2764 struct common_audit_data ad;
2765 u32 newsid, sid = current_sid();
2766 int rc = 0;
2767
2768 if (strcmp(name, XATTR_NAME_SELINUX))
2769 return selinux_inode_setotherxattr(dentry, name);
2770
2771 sbsec = inode->i_sb->s_security;
2772 if (!(sbsec->flags & SE_SBLABELSUPP))
2773 return -EOPNOTSUPP;
2774
2775 if (!inode_owner_or_capable(inode))
2776 return -EPERM;
2777
2778 ad.type = LSM_AUDIT_DATA_DENTRY;
2779 ad.u.dentry = dentry;
2780
2781 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2782 FILE__RELABELFROM, &ad);
2783 if (rc)
2784 return rc;
2785
2786 rc = security_context_to_sid(value, size, &newsid);
2787 if (rc == -EINVAL) {
2788 if (!capable(CAP_MAC_ADMIN)) {
2789 struct audit_buffer *ab;
2790 size_t audit_size;
2791 const char *str;
2792
2793 /* We strip a nul only if it is at the end, otherwise the
2794 * context contains a nul and we should audit that */
2795 if (value) {
2796 str = value;
2797 if (str[size - 1] == '\0')
2798 audit_size = size - 1;
2799 else
2800 audit_size = size;
2801 } else {
2802 str = "";
2803 audit_size = 0;
2804 }
2805 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2806 audit_log_format(ab, "op=setxattr invalid_context=");
2807 audit_log_n_untrustedstring(ab, value, audit_size);
2808 audit_log_end(ab);
2809
2810 return rc;
2811 }
2812 rc = security_context_to_sid_force(value, size, &newsid);
2813 }
2814 if (rc)
2815 return rc;
2816
2817 rc = avc_has_perm(sid, newsid, isec->sclass,
2818 FILE__RELABELTO, &ad);
2819 if (rc)
2820 return rc;
2821
2822 rc = security_validate_transition(isec->sid, newsid, sid,
2823 isec->sclass);
2824 if (rc)
2825 return rc;
2826
2827 return avc_has_perm(newsid,
2828 sbsec->sid,
2829 SECCLASS_FILESYSTEM,
2830 FILESYSTEM__ASSOCIATE,
2831 &ad);
2832}
2833
2834static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2835 const void *value, size_t size,
2836 int flags)
2837{
2838 struct inode *inode = dentry->d_inode;
2839 struct inode_security_struct *isec = inode->i_security;
2840 u32 newsid;
2841 int rc;
2842
2843 if (strcmp(name, XATTR_NAME_SELINUX)) {
2844 /* Not an attribute we recognize, so nothing to do. */
2845 return;
2846 }
2847
2848 rc = security_context_to_sid_force(value, size, &newsid);
2849 if (rc) {
2850 printk(KERN_ERR "SELinux: unable to map context to SID"
2851 "for (%s, %lu), rc=%d\n",
2852 inode->i_sb->s_id, inode->i_ino, -rc);
2853 return;
2854 }
2855
2856 isec->sid = newsid;
2857 return;
2858}
2859
2860static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2861{
2862 const struct cred *cred = current_cred();
2863
2864 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2865}
2866
2867static int selinux_inode_listxattr(struct dentry *dentry)
2868{
2869 const struct cred *cred = current_cred();
2870
2871 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2872}
2873
2874static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2875{
2876 if (strcmp(name, XATTR_NAME_SELINUX))
2877 return selinux_inode_setotherxattr(dentry, name);
2878
2879 /* No one is allowed to remove a SELinux security label.
2880 You can change the label, but all data must be labeled. */
2881 return -EACCES;
2882}
2883
2884/*
2885 * Copy the inode security context value to the user.
2886 *
2887 * Permission check is handled by selinux_inode_getxattr hook.
2888 */
2889static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2890{
2891 u32 size;
2892 int error;
2893 char *context = NULL;
2894 struct inode_security_struct *isec = inode->i_security;
2895
2896 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2897 return -EOPNOTSUPP;
2898
2899 /*
2900 * If the caller has CAP_MAC_ADMIN, then get the raw context
2901 * value even if it is not defined by current policy; otherwise,
2902 * use the in-core value under current policy.
2903 * Use the non-auditing forms of the permission checks since
2904 * getxattr may be called by unprivileged processes commonly
2905 * and lack of permission just means that we fall back to the
2906 * in-core context value, not a denial.
2907 */
2908 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2909 SECURITY_CAP_NOAUDIT);
2910 if (!error)
2911 error = security_sid_to_context_force(isec->sid, &context,
2912 &size);
2913 else
2914 error = security_sid_to_context(isec->sid, &context, &size);
2915 if (error)
2916 return error;
2917 error = size;
2918 if (alloc) {
2919 *buffer = context;
2920 goto out_nofree;
2921 }
2922 kfree(context);
2923out_nofree:
2924 return error;
2925}
2926
2927static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2928 const void *value, size_t size, int flags)
2929{
2930 struct inode_security_struct *isec = inode->i_security;
2931 u32 newsid;
2932 int rc;
2933
2934 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2935 return -EOPNOTSUPP;
2936
2937 if (!value || !size)
2938 return -EACCES;
2939
2940 rc = security_context_to_sid((void *)value, size, &newsid);
2941 if (rc)
2942 return rc;
2943
2944 isec->sid = newsid;
2945 isec->initialized = 1;
2946 return 0;
2947}
2948
2949static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2950{
2951 const int len = sizeof(XATTR_NAME_SELINUX);
2952 if (buffer && len <= buffer_size)
2953 memcpy(buffer, XATTR_NAME_SELINUX, len);
2954 return len;
2955}
2956
2957static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2958{
2959 struct inode_security_struct *isec = inode->i_security;
2960 *secid = isec->sid;
2961}
2962
2963/* file security operations */
2964
2965static int selinux_revalidate_file_permission(struct file *file, int mask)
2966{
2967 const struct cred *cred = current_cred();
2968 struct inode *inode = file->f_path.dentry->d_inode;
2969
2970 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2971 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2972 mask |= MAY_APPEND;
2973
2974 return file_has_perm(cred, file,
2975 file_mask_to_av(inode->i_mode, mask));
2976}
2977
2978static int selinux_file_permission(struct file *file, int mask)
2979{
2980 struct inode *inode = file->f_path.dentry->d_inode;
2981 struct file_security_struct *fsec = file->f_security;
2982 struct inode_security_struct *isec = inode->i_security;
2983 u32 sid = current_sid();
2984
2985 if (!mask)
2986 /* No permission to check. Existence test. */
2987 return 0;
2988
2989 if (sid == fsec->sid && fsec->isid == isec->sid &&
2990 fsec->pseqno == avc_policy_seqno())
2991 /* No change since file_open check. */
2992 return 0;
2993
2994 return selinux_revalidate_file_permission(file, mask);
2995}
2996
2997static int selinux_file_alloc_security(struct file *file)
2998{
2999 return file_alloc_security(file);
3000}
3001
3002static void selinux_file_free_security(struct file *file)
3003{
3004 file_free_security(file);
3005}
3006
3007static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3008 unsigned long arg)
3009{
3010 const struct cred *cred = current_cred();
3011 int error = 0;
3012
3013 switch (cmd) {
3014 case FIONREAD:
3015 /* fall through */
3016 case FIBMAP:
3017 /* fall through */
3018 case FIGETBSZ:
3019 /* fall through */
3020 case FS_IOC_GETFLAGS:
3021 /* fall through */
3022 case FS_IOC_GETVERSION:
3023 error = file_has_perm(cred, file, FILE__GETATTR);
3024 break;
3025
3026 case FS_IOC_SETFLAGS:
3027 /* fall through */
3028 case FS_IOC_SETVERSION:
3029 error = file_has_perm(cred, file, FILE__SETATTR);
3030 break;
3031
3032 /* sys_ioctl() checks */
3033 case FIONBIO:
3034 /* fall through */
3035 case FIOASYNC:
3036 error = file_has_perm(cred, file, 0);
3037 break;
3038
3039 case KDSKBENT:
3040 case KDSKBSENT:
3041 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3042 SECURITY_CAP_AUDIT);
3043 break;
3044
3045 /* default case assumes that the command will go
3046 * to the file's ioctl() function.
3047 */
3048 default:
3049 error = file_has_perm(cred, file, FILE__IOCTL);
3050 }
3051 return error;
3052}
3053
3054static int default_noexec;
3055
3056static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3057{
3058 const struct cred *cred = current_cred();
3059 int rc = 0;
3060
3061 if (default_noexec &&
3062 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3063 /*
3064 * We are making executable an anonymous mapping or a
3065 * private file mapping that will also be writable.
3066 * This has an additional check.
3067 */
3068 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3069 if (rc)
3070 goto error;
3071 }
3072
3073 if (file) {
3074 /* read access is always possible with a mapping */
3075 u32 av = FILE__READ;
3076
3077 /* write access only matters if the mapping is shared */
3078 if (shared && (prot & PROT_WRITE))
3079 av |= FILE__WRITE;
3080
3081 if (prot & PROT_EXEC)
3082 av |= FILE__EXECUTE;
3083
3084 return file_has_perm(cred, file, av);
3085 }
3086
3087error:
3088 return rc;
3089}
3090
3091static int selinux_mmap_addr(unsigned long addr)
3092{
3093 int rc = 0;
3094 u32 sid = current_sid();
3095
3096 /*
3097 * notice that we are intentionally putting the SELinux check before
3098 * the secondary cap_file_mmap check. This is such a likely attempt
3099 * at bad behaviour/exploit that we always want to get the AVC, even
3100 * if DAC would have also denied the operation.
3101 */
3102 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3103 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3104 MEMPROTECT__MMAP_ZERO, NULL);
3105 if (rc)
3106 return rc;
3107 }
3108
3109 /* do DAC check on address space usage */
3110 return cap_mmap_addr(addr);
3111}
3112
3113static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3114 unsigned long prot, unsigned long flags)
3115{
3116 if (selinux_checkreqprot)
3117 prot = reqprot;
3118
3119 return file_map_prot_check(file, prot,
3120 (flags & MAP_TYPE) == MAP_SHARED);
3121}
3122
3123static int selinux_file_mprotect(struct vm_area_struct *vma,
3124 unsigned long reqprot,
3125 unsigned long prot)
3126{
3127 const struct cred *cred = current_cred();
3128
3129 if (selinux_checkreqprot)
3130 prot = reqprot;
3131
3132 if (default_noexec &&
3133 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3134 int rc = 0;
3135 if (vma->vm_start >= vma->vm_mm->start_brk &&
3136 vma->vm_end <= vma->vm_mm->brk) {
3137 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3138 } else if (!vma->vm_file &&
3139 vma->vm_start <= vma->vm_mm->start_stack &&
3140 vma->vm_end >= vma->vm_mm->start_stack) {
3141 rc = current_has_perm(current, PROCESS__EXECSTACK);
3142 } else if (vma->vm_file && vma->anon_vma) {
3143 /*
3144 * We are making executable a file mapping that has
3145 * had some COW done. Since pages might have been
3146 * written, check ability to execute the possibly
3147 * modified content. This typically should only
3148 * occur for text relocations.
3149 */
3150 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3151 }
3152 if (rc)
3153 return rc;
3154 }
3155
3156 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3157}
3158
3159static int selinux_file_lock(struct file *file, unsigned int cmd)
3160{
3161 const struct cred *cred = current_cred();
3162
3163 return file_has_perm(cred, file, FILE__LOCK);
3164}
3165
3166static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3167 unsigned long arg)
3168{
3169 const struct cred *cred = current_cred();
3170 int err = 0;
3171
3172 switch (cmd) {
3173 case F_SETFL:
3174 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3175 err = -EINVAL;
3176 break;
3177 }
3178
3179 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3180 err = file_has_perm(cred, file, FILE__WRITE);
3181 break;
3182 }
3183 /* fall through */
3184 case F_SETOWN:
3185 case F_SETSIG:
3186 case F_GETFL:
3187 case F_GETOWN:
3188 case F_GETSIG:
3189 /* Just check FD__USE permission */
3190 err = file_has_perm(cred, file, 0);
3191 break;
3192 case F_GETLK:
3193 case F_SETLK:
3194 case F_SETLKW:
3195#if BITS_PER_LONG == 32
3196 case F_GETLK64:
3197 case F_SETLK64:
3198 case F_SETLKW64:
3199#endif
3200 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3201 err = -EINVAL;
3202 break;
3203 }
3204 err = file_has_perm(cred, file, FILE__LOCK);
3205 break;
3206 }
3207
3208 return err;
3209}
3210
3211static int selinux_file_set_fowner(struct file *file)
3212{
3213 struct file_security_struct *fsec;
3214
3215 fsec = file->f_security;
3216 fsec->fown_sid = current_sid();
3217
3218 return 0;
3219}
3220
3221static int selinux_file_send_sigiotask(struct task_struct *tsk,
3222 struct fown_struct *fown, int signum)
3223{
3224 struct file *file;
3225 u32 sid = task_sid(tsk);
3226 u32 perm;
3227 struct file_security_struct *fsec;
3228
3229 /* struct fown_struct is never outside the context of a struct file */
3230 file = container_of(fown, struct file, f_owner);
3231
3232 fsec = file->f_security;
3233
3234 if (!signum)
3235 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3236 else
3237 perm = signal_to_av(signum);
3238
3239 return avc_has_perm(fsec->fown_sid, sid,
3240 SECCLASS_PROCESS, perm, NULL);
3241}
3242
3243static int selinux_file_receive(struct file *file)
3244{
3245 const struct cred *cred = current_cred();
3246
3247 return file_has_perm(cred, file, file_to_av(file));
3248}
3249
3250static int selinux_file_open(struct file *file, const struct cred *cred)
3251{
3252 struct file_security_struct *fsec;
3253 struct inode_security_struct *isec;
3254
3255 fsec = file->f_security;
3256 isec = file->f_path.dentry->d_inode->i_security;
3257 /*
3258 * Save inode label and policy sequence number
3259 * at open-time so that selinux_file_permission
3260 * can determine whether revalidation is necessary.
3261 * Task label is already saved in the file security
3262 * struct as its SID.
3263 */
3264 fsec->isid = isec->sid;
3265 fsec->pseqno = avc_policy_seqno();
3266 /*
3267 * Since the inode label or policy seqno may have changed
3268 * between the selinux_inode_permission check and the saving
3269 * of state above, recheck that access is still permitted.
3270 * Otherwise, access might never be revalidated against the
3271 * new inode label or new policy.
3272 * This check is not redundant - do not remove.
3273 */
3274 return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3275}
3276
3277/* task security operations */
3278
3279static int selinux_task_create(unsigned long clone_flags)
3280{
3281 return current_has_perm(current, PROCESS__FORK);
3282}
3283
3284/*
3285 * allocate the SELinux part of blank credentials
3286 */
3287static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3288{
3289 struct task_security_struct *tsec;
3290
3291 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3292 if (!tsec)
3293 return -ENOMEM;
3294
3295 cred->security = tsec;
3296 return 0;
3297}
3298
3299/*
3300 * detach and free the LSM part of a set of credentials
3301 */
3302static void selinux_cred_free(struct cred *cred)
3303{
3304 struct task_security_struct *tsec = cred->security;
3305
3306 /*
3307 * cred->security == NULL if security_cred_alloc_blank() or
3308 * security_prepare_creds() returned an error.
3309 */
3310 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3311 cred->security = (void *) 0x7UL;
3312 kfree(tsec);
3313}
3314
3315/*
3316 * prepare a new set of credentials for modification
3317 */
3318static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3319 gfp_t gfp)
3320{
3321 const struct task_security_struct *old_tsec;
3322 struct task_security_struct *tsec;
3323
3324 old_tsec = old->security;
3325
3326 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3327 if (!tsec)
3328 return -ENOMEM;
3329
3330 new->security = tsec;
3331 return 0;
3332}
3333
3334/*
3335 * transfer the SELinux data to a blank set of creds
3336 */
3337static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3338{
3339 const struct task_security_struct *old_tsec = old->security;
3340 struct task_security_struct *tsec = new->security;
3341
3342 *tsec = *old_tsec;
3343}
3344
3345/*
3346 * set the security data for a kernel service
3347 * - all the creation contexts are set to unlabelled
3348 */
3349static int selinux_kernel_act_as(struct cred *new, u32 secid)
3350{
3351 struct task_security_struct *tsec = new->security;
3352 u32 sid = current_sid();
3353 int ret;
3354
3355 ret = avc_has_perm(sid, secid,
3356 SECCLASS_KERNEL_SERVICE,
3357 KERNEL_SERVICE__USE_AS_OVERRIDE,
3358 NULL);
3359 if (ret == 0) {
3360 tsec->sid = secid;
3361 tsec->create_sid = 0;
3362 tsec->keycreate_sid = 0;
3363 tsec->sockcreate_sid = 0;
3364 }
3365 return ret;
3366}
3367
3368/*
3369 * set the file creation context in a security record to the same as the
3370 * objective context of the specified inode
3371 */
3372static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3373{
3374 struct inode_security_struct *isec = inode->i_security;
3375 struct task_security_struct *tsec = new->security;
3376 u32 sid = current_sid();
3377 int ret;
3378
3379 ret = avc_has_perm(sid, isec->sid,
3380 SECCLASS_KERNEL_SERVICE,
3381 KERNEL_SERVICE__CREATE_FILES_AS,
3382 NULL);
3383
3384 if (ret == 0)
3385 tsec->create_sid = isec->sid;
3386 return ret;
3387}
3388
3389static int selinux_kernel_module_request(char *kmod_name)
3390{
3391 u32 sid;
3392 struct common_audit_data ad;
3393
3394 sid = task_sid(current);
3395
3396 ad.type = LSM_AUDIT_DATA_KMOD;
3397 ad.u.kmod_name = kmod_name;
3398
3399 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3400 SYSTEM__MODULE_REQUEST, &ad);
3401}
3402
3403static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3404{
3405 return current_has_perm(p, PROCESS__SETPGID);
3406}
3407
3408static int selinux_task_getpgid(struct task_struct *p)
3409{
3410 return current_has_perm(p, PROCESS__GETPGID);
3411}
3412
3413static int selinux_task_getsid(struct task_struct *p)
3414{
3415 return current_has_perm(p, PROCESS__GETSESSION);
3416}
3417
3418static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3419{
3420 *secid = task_sid(p);
3421}
3422
3423static int selinux_task_setnice(struct task_struct *p, int nice)
3424{
3425 int rc;
3426
3427 rc = cap_task_setnice(p, nice);
3428 if (rc)
3429 return rc;
3430
3431 return current_has_perm(p, PROCESS__SETSCHED);
3432}
3433
3434static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3435{
3436 int rc;
3437
3438 rc = cap_task_setioprio(p, ioprio);
3439 if (rc)
3440 return rc;
3441
3442 return current_has_perm(p, PROCESS__SETSCHED);
3443}
3444
3445static int selinux_task_getioprio(struct task_struct *p)
3446{
3447 return current_has_perm(p, PROCESS__GETSCHED);
3448}
3449
3450static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3451 struct rlimit *new_rlim)
3452{
3453 struct rlimit *old_rlim = p->signal->rlim + resource;
3454
3455 /* Control the ability to change the hard limit (whether
3456 lowering or raising it), so that the hard limit can
3457 later be used as a safe reset point for the soft limit
3458 upon context transitions. See selinux_bprm_committing_creds. */
3459 if (old_rlim->rlim_max != new_rlim->rlim_max)
3460 return current_has_perm(p, PROCESS__SETRLIMIT);
3461
3462 return 0;
3463}
3464
3465static int selinux_task_setscheduler(struct task_struct *p)
3466{
3467 int rc;
3468
3469 rc = cap_task_setscheduler(p);
3470 if (rc)
3471 return rc;
3472
3473 return current_has_perm(p, PROCESS__SETSCHED);
3474}
3475
3476static int selinux_task_getscheduler(struct task_struct *p)
3477{
3478 return current_has_perm(p, PROCESS__GETSCHED);
3479}
3480
3481static int selinux_task_movememory(struct task_struct *p)
3482{
3483 return current_has_perm(p, PROCESS__SETSCHED);
3484}
3485
3486static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3487 int sig, u32 secid)
3488{
3489 u32 perm;
3490 int rc;
3491
3492 if (!sig)
3493 perm = PROCESS__SIGNULL; /* null signal; existence test */
3494 else
3495 perm = signal_to_av(sig);
3496 if (secid)
3497 rc = avc_has_perm(secid, task_sid(p),
3498 SECCLASS_PROCESS, perm, NULL);
3499 else
3500 rc = current_has_perm(p, perm);
3501 return rc;
3502}
3503
3504static int selinux_task_wait(struct task_struct *p)
3505{
3506 return task_has_perm(p, current, PROCESS__SIGCHLD);
3507}
3508
3509static void selinux_task_to_inode(struct task_struct *p,
3510 struct inode *inode)
3511{
3512 struct inode_security_struct *isec = inode->i_security;
3513 u32 sid = task_sid(p);
3514
3515 isec->sid = sid;
3516 isec->initialized = 1;
3517}
3518
3519/* Returns error only if unable to parse addresses */
3520static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3521 struct common_audit_data *ad, u8 *proto)
3522{
3523 int offset, ihlen, ret = -EINVAL;
3524 struct iphdr _iph, *ih;
3525
3526 offset = skb_network_offset(skb);
3527 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3528 if (ih == NULL)
3529 goto out;
3530
3531 ihlen = ih->ihl * 4;
3532 if (ihlen < sizeof(_iph))
3533 goto out;
3534
3535 ad->u.net->v4info.saddr = ih->saddr;
3536 ad->u.net->v4info.daddr = ih->daddr;
3537 ret = 0;
3538
3539 if (proto)
3540 *proto = ih->protocol;
3541
3542 switch (ih->protocol) {
3543 case IPPROTO_TCP: {
3544 struct tcphdr _tcph, *th;
3545
3546 if (ntohs(ih->frag_off) & IP_OFFSET)
3547 break;
3548
3549 offset += ihlen;
3550 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3551 if (th == NULL)
3552 break;
3553
3554 ad->u.net->sport = th->source;
3555 ad->u.net->dport = th->dest;
3556 break;
3557 }
3558
3559 case IPPROTO_UDP: {
3560 struct udphdr _udph, *uh;
3561
3562 if (ntohs(ih->frag_off) & IP_OFFSET)
3563 break;
3564
3565 offset += ihlen;
3566 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3567 if (uh == NULL)
3568 break;
3569
3570 ad->u.net->sport = uh->source;
3571 ad->u.net->dport = uh->dest;
3572 break;
3573 }
3574
3575 case IPPROTO_DCCP: {
3576 struct dccp_hdr _dccph, *dh;
3577
3578 if (ntohs(ih->frag_off) & IP_OFFSET)
3579 break;
3580
3581 offset += ihlen;
3582 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3583 if (dh == NULL)
3584 break;
3585
3586 ad->u.net->sport = dh->dccph_sport;
3587 ad->u.net->dport = dh->dccph_dport;
3588 break;
3589 }
3590
3591 default:
3592 break;
3593 }
3594out:
3595 return ret;
3596}
3597
3598#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3599
3600/* Returns error only if unable to parse addresses */
3601static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3602 struct common_audit_data *ad, u8 *proto)
3603{
3604 u8 nexthdr;
3605 int ret = -EINVAL, offset;
3606 struct ipv6hdr _ipv6h, *ip6;
3607 __be16 frag_off;
3608
3609 offset = skb_network_offset(skb);
3610 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3611 if (ip6 == NULL)
3612 goto out;
3613
3614 ad->u.net->v6info.saddr = ip6->saddr;
3615 ad->u.net->v6info.daddr = ip6->daddr;
3616 ret = 0;
3617
3618 nexthdr = ip6->nexthdr;
3619 offset += sizeof(_ipv6h);
3620 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3621 if (offset < 0)
3622 goto out;
3623
3624 if (proto)
3625 *proto = nexthdr;
3626
3627 switch (nexthdr) {
3628 case IPPROTO_TCP: {
3629 struct tcphdr _tcph, *th;
3630
3631 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3632 if (th == NULL)
3633 break;
3634
3635 ad->u.net->sport = th->source;
3636 ad->u.net->dport = th->dest;
3637 break;
3638 }
3639
3640 case IPPROTO_UDP: {
3641 struct udphdr _udph, *uh;
3642
3643 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3644 if (uh == NULL)
3645 break;
3646
3647 ad->u.net->sport = uh->source;
3648 ad->u.net->dport = uh->dest;
3649 break;
3650 }
3651
3652 case IPPROTO_DCCP: {
3653 struct dccp_hdr _dccph, *dh;
3654
3655 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3656 if (dh == NULL)
3657 break;
3658
3659 ad->u.net->sport = dh->dccph_sport;
3660 ad->u.net->dport = dh->dccph_dport;
3661 break;
3662 }
3663
3664 /* includes fragments */
3665 default:
3666 break;
3667 }
3668out:
3669 return ret;
3670}
3671
3672#endif /* IPV6 */
3673
3674static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3675 char **_addrp, int src, u8 *proto)
3676{
3677 char *addrp;
3678 int ret;
3679
3680 switch (ad->u.net->family) {
3681 case PF_INET:
3682 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3683 if (ret)
3684 goto parse_error;
3685 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3686 &ad->u.net->v4info.daddr);
3687 goto okay;
3688
3689#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3690 case PF_INET6:
3691 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3692 if (ret)
3693 goto parse_error;
3694 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3695 &ad->u.net->v6info.daddr);
3696 goto okay;
3697#endif /* IPV6 */
3698 default:
3699 addrp = NULL;
3700 goto okay;
3701 }
3702
3703parse_error:
3704 printk(KERN_WARNING
3705 "SELinux: failure in selinux_parse_skb(),"
3706 " unable to parse packet\n");
3707 return ret;
3708
3709okay:
3710 if (_addrp)
3711 *_addrp = addrp;
3712 return 0;
3713}
3714
3715/**
3716 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3717 * @skb: the packet
3718 * @family: protocol family
3719 * @sid: the packet's peer label SID
3720 *
3721 * Description:
3722 * Check the various different forms of network peer labeling and determine
3723 * the peer label/SID for the packet; most of the magic actually occurs in
3724 * the security server function security_net_peersid_cmp(). The function
3725 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3726 * or -EACCES if @sid is invalid due to inconsistencies with the different
3727 * peer labels.
3728 *
3729 */
3730static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3731{
3732 int err;
3733 u32 xfrm_sid;
3734 u32 nlbl_sid;
3735 u32 nlbl_type;
3736
3737 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3738 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3739
3740 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3741 if (unlikely(err)) {
3742 printk(KERN_WARNING
3743 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3744 " unable to determine packet's peer label\n");
3745 return -EACCES;
3746 }
3747
3748 return 0;
3749}
3750
3751/* socket security operations */
3752
3753static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3754 u16 secclass, u32 *socksid)
3755{
3756 if (tsec->sockcreate_sid > SECSID_NULL) {
3757 *socksid = tsec->sockcreate_sid;
3758 return 0;
3759 }
3760
3761 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3762 socksid);
3763}
3764
3765static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3766{
3767 struct sk_security_struct *sksec = sk->sk_security;
3768 struct common_audit_data ad;
3769 struct lsm_network_audit net = {0,};
3770 u32 tsid = task_sid(task);
3771
3772 if (sksec->sid == SECINITSID_KERNEL)
3773 return 0;
3774
3775 ad.type = LSM_AUDIT_DATA_NET;
3776 ad.u.net = &net;
3777 ad.u.net->sk = sk;
3778
3779 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3780}
3781
3782static int selinux_socket_create(int family, int type,
3783 int protocol, int kern)
3784{
3785 const struct task_security_struct *tsec = current_security();
3786 u32 newsid;
3787 u16 secclass;
3788 int rc;
3789
3790 if (kern)
3791 return 0;
3792
3793 secclass = socket_type_to_security_class(family, type, protocol);
3794 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3795 if (rc)
3796 return rc;
3797
3798 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3799}
3800
3801static int selinux_socket_post_create(struct socket *sock, int family,
3802 int type, int protocol, int kern)
3803{
3804 const struct task_security_struct *tsec = current_security();
3805 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3806 struct sk_security_struct *sksec;
3807 int err = 0;
3808
3809 isec->sclass = socket_type_to_security_class(family, type, protocol);
3810
3811 if (kern)
3812 isec->sid = SECINITSID_KERNEL;
3813 else {
3814 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3815 if (err)
3816 return err;
3817 }
3818
3819 isec->initialized = 1;
3820
3821 if (sock->sk) {
3822 sksec = sock->sk->sk_security;
3823 sksec->sid = isec->sid;
3824 sksec->sclass = isec->sclass;
3825 err = selinux_netlbl_socket_post_create(sock->sk, family);
3826 }
3827
3828 return err;
3829}
3830
3831/* Range of port numbers used to automatically bind.
3832 Need to determine whether we should perform a name_bind
3833 permission check between the socket and the port number. */
3834
3835static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3836{
3837 struct sock *sk = sock->sk;
3838 u16 family;
3839 int err;
3840
3841 err = sock_has_perm(current, sk, SOCKET__BIND);
3842 if (err)
3843 goto out;
3844
3845 /*
3846 * If PF_INET or PF_INET6, check name_bind permission for the port.
3847 * Multiple address binding for SCTP is not supported yet: we just
3848 * check the first address now.
3849 */
3850 family = sk->sk_family;
3851 if (family == PF_INET || family == PF_INET6) {
3852 char *addrp;
3853 struct sk_security_struct *sksec = sk->sk_security;
3854 struct common_audit_data ad;
3855 struct lsm_network_audit net = {0,};
3856 struct sockaddr_in *addr4 = NULL;
3857 struct sockaddr_in6 *addr6 = NULL;
3858 unsigned short snum;
3859 u32 sid, node_perm;
3860
3861 if (family == PF_INET) {
3862 addr4 = (struct sockaddr_in *)address;
3863 snum = ntohs(addr4->sin_port);
3864 addrp = (char *)&addr4->sin_addr.s_addr;
3865 } else {
3866 addr6 = (struct sockaddr_in6 *)address;
3867 snum = ntohs(addr6->sin6_port);
3868 addrp = (char *)&addr6->sin6_addr.s6_addr;
3869 }
3870
3871 if (snum) {
3872 int low, high;
3873
3874 inet_get_local_port_range(&low, &high);
3875
3876 if (snum < max(PROT_SOCK, low) || snum > high) {
3877 err = sel_netport_sid(sk->sk_protocol,
3878 snum, &sid);
3879 if (err)
3880 goto out;
3881 ad.type = LSM_AUDIT_DATA_NET;
3882 ad.u.net = &net;
3883 ad.u.net->sport = htons(snum);
3884 ad.u.net->family = family;
3885 err = avc_has_perm(sksec->sid, sid,
3886 sksec->sclass,
3887 SOCKET__NAME_BIND, &ad);
3888 if (err)
3889 goto out;
3890 }
3891 }
3892
3893 switch (sksec->sclass) {
3894 case SECCLASS_TCP_SOCKET:
3895 node_perm = TCP_SOCKET__NODE_BIND;
3896 break;
3897
3898 case SECCLASS_UDP_SOCKET:
3899 node_perm = UDP_SOCKET__NODE_BIND;
3900 break;
3901
3902 case SECCLASS_DCCP_SOCKET:
3903 node_perm = DCCP_SOCKET__NODE_BIND;
3904 break;
3905
3906 default:
3907 node_perm = RAWIP_SOCKET__NODE_BIND;
3908 break;
3909 }
3910
3911 err = sel_netnode_sid(addrp, family, &sid);
3912 if (err)
3913 goto out;
3914
3915 ad.type = LSM_AUDIT_DATA_NET;
3916 ad.u.net = &net;
3917 ad.u.net->sport = htons(snum);
3918 ad.u.net->family = family;
3919
3920 if (family == PF_INET)
3921 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3922 else
3923 ad.u.net->v6info.saddr = addr6->sin6_addr;
3924
3925 err = avc_has_perm(sksec->sid, sid,
3926 sksec->sclass, node_perm, &ad);
3927 if (err)
3928 goto out;
3929 }
3930out:
3931 return err;
3932}
3933
3934static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3935{
3936 struct sock *sk = sock->sk;
3937 struct sk_security_struct *sksec = sk->sk_security;
3938 int err;
3939
3940 err = sock_has_perm(current, sk, SOCKET__CONNECT);
3941 if (err)
3942 return err;
3943
3944 /*
3945 * If a TCP or DCCP socket, check name_connect permission for the port.
3946 */
3947 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3948 sksec->sclass == SECCLASS_DCCP_SOCKET) {
3949 struct common_audit_data ad;
3950 struct lsm_network_audit net = {0,};
3951 struct sockaddr_in *addr4 = NULL;
3952 struct sockaddr_in6 *addr6 = NULL;
3953 unsigned short snum;
3954 u32 sid, perm;
3955
3956 if (sk->sk_family == PF_INET) {
3957 addr4 = (struct sockaddr_in *)address;
3958 if (addrlen < sizeof(struct sockaddr_in))
3959 return -EINVAL;
3960 snum = ntohs(addr4->sin_port);
3961 } else {
3962 addr6 = (struct sockaddr_in6 *)address;
3963 if (addrlen < SIN6_LEN_RFC2133)
3964 return -EINVAL;
3965 snum = ntohs(addr6->sin6_port);
3966 }
3967
3968 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3969 if (err)
3970 goto out;
3971
3972 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3973 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3974
3975 ad.type = LSM_AUDIT_DATA_NET;
3976 ad.u.net = &net;
3977 ad.u.net->dport = htons(snum);
3978 ad.u.net->family = sk->sk_family;
3979 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3980 if (err)
3981 goto out;
3982 }
3983
3984 err = selinux_netlbl_socket_connect(sk, address);
3985
3986out:
3987 return err;
3988}
3989
3990static int selinux_socket_listen(struct socket *sock, int backlog)
3991{
3992 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3993}
3994
3995static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3996{
3997 int err;
3998 struct inode_security_struct *isec;
3999 struct inode_security_struct *newisec;
4000
4001 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4002 if (err)
4003 return err;
4004
4005 newisec = SOCK_INODE(newsock)->i_security;
4006
4007 isec = SOCK_INODE(sock)->i_security;
4008 newisec->sclass = isec->sclass;
4009 newisec->sid = isec->sid;
4010 newisec->initialized = 1;
4011
4012 return 0;
4013}
4014
4015static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4016 int size)
4017{
4018 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4019}
4020
4021static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4022 int size, int flags)
4023{
4024 return sock_has_perm(current, sock->sk, SOCKET__READ);
4025}
4026
4027static int selinux_socket_getsockname(struct socket *sock)
4028{
4029 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4030}
4031
4032static int selinux_socket_getpeername(struct socket *sock)
4033{
4034 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4035}
4036
4037static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4038{
4039 int err;
4040
4041 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4042 if (err)
4043 return err;
4044
4045 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4046}
4047
4048static int selinux_socket_getsockopt(struct socket *sock, int level,
4049 int optname)
4050{
4051 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4052}
4053
4054static int selinux_socket_shutdown(struct socket *sock, int how)
4055{
4056 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4057}
4058
4059static int selinux_socket_unix_stream_connect(struct sock *sock,
4060 struct sock *other,
4061 struct sock *newsk)
4062{
4063 struct sk_security_struct *sksec_sock = sock->sk_security;
4064 struct sk_security_struct *sksec_other = other->sk_security;
4065 struct sk_security_struct *sksec_new = newsk->sk_security;
4066 struct common_audit_data ad;
4067 struct lsm_network_audit net = {0,};
4068 int err;
4069
4070 ad.type = LSM_AUDIT_DATA_NET;
4071 ad.u.net = &net;
4072 ad.u.net->sk = other;
4073
4074 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4075 sksec_other->sclass,
4076 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4077 if (err)
4078 return err;
4079
4080 /* server child socket */
4081 sksec_new->peer_sid = sksec_sock->sid;
4082 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4083 &sksec_new->sid);
4084 if (err)
4085 return err;
4086
4087 /* connecting socket */
4088 sksec_sock->peer_sid = sksec_new->sid;
4089
4090 return 0;
4091}
4092
4093static int selinux_socket_unix_may_send(struct socket *sock,
4094 struct socket *other)
4095{
4096 struct sk_security_struct *ssec = sock->sk->sk_security;
4097 struct sk_security_struct *osec = other->sk->sk_security;
4098 struct common_audit_data ad;
4099 struct lsm_network_audit net = {0,};
4100
4101 ad.type = LSM_AUDIT_DATA_NET;
4102 ad.u.net = &net;
4103 ad.u.net->sk = other->sk;
4104
4105 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4106 &ad);
4107}
4108
4109static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4110 u32 peer_sid,
4111 struct common_audit_data *ad)
4112{
4113 int err;
4114 u32 if_sid;
4115 u32 node_sid;
4116
4117 err = sel_netif_sid(ifindex, &if_sid);
4118 if (err)
4119 return err;
4120 err = avc_has_perm(peer_sid, if_sid,
4121 SECCLASS_NETIF, NETIF__INGRESS, ad);
4122 if (err)
4123 return err;
4124
4125 err = sel_netnode_sid(addrp, family, &node_sid);
4126 if (err)
4127 return err;
4128 return avc_has_perm(peer_sid, node_sid,
4129 SECCLASS_NODE, NODE__RECVFROM, ad);
4130}
4131
4132static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4133 u16 family)
4134{
4135 int err = 0;
4136 struct sk_security_struct *sksec = sk->sk_security;
4137 u32 sk_sid = sksec->sid;
4138 struct common_audit_data ad;
4139 struct lsm_network_audit net = {0,};
4140 char *addrp;
4141
4142 ad.type = LSM_AUDIT_DATA_NET;
4143 ad.u.net = &net;
4144 ad.u.net->netif = skb->skb_iif;
4145 ad.u.net->family = family;
4146 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4147 if (err)
4148 return err;
4149
4150 if (selinux_secmark_enabled()) {
4151 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4152 PACKET__RECV, &ad);
4153 if (err)
4154 return err;
4155 }
4156
4157 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4158 if (err)
4159 return err;
4160 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4161
4162 return err;
4163}
4164
4165static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4166{
4167 int err;
4168 struct sk_security_struct *sksec = sk->sk_security;
4169 u16 family = sk->sk_family;
4170 u32 sk_sid = sksec->sid;
4171 struct common_audit_data ad;
4172 struct lsm_network_audit net = {0,};
4173 char *addrp;
4174 u8 secmark_active;
4175 u8 peerlbl_active;
4176
4177 if (family != PF_INET && family != PF_INET6)
4178 return 0;
4179
4180 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4181 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4182 family = PF_INET;
4183
4184 /* If any sort of compatibility mode is enabled then handoff processing
4185 * to the selinux_sock_rcv_skb_compat() function to deal with the
4186 * special handling. We do this in an attempt to keep this function
4187 * as fast and as clean as possible. */
4188 if (!selinux_policycap_netpeer)
4189 return selinux_sock_rcv_skb_compat(sk, skb, family);
4190
4191 secmark_active = selinux_secmark_enabled();
4192 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4193 if (!secmark_active && !peerlbl_active)
4194 return 0;
4195
4196 ad.type = LSM_AUDIT_DATA_NET;
4197 ad.u.net = &net;
4198 ad.u.net->netif = skb->skb_iif;
4199 ad.u.net->family = family;
4200 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4201 if (err)
4202 return err;
4203
4204 if (peerlbl_active) {
4205 u32 peer_sid;
4206
4207 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4208 if (err)
4209 return err;
4210 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4211 peer_sid, &ad);
4212 if (err) {
4213 selinux_netlbl_err(skb, err, 0);
4214 return err;
4215 }
4216 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4217 PEER__RECV, &ad);
4218 if (err)
4219 selinux_netlbl_err(skb, err, 0);
4220 }
4221
4222 if (secmark_active) {
4223 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4224 PACKET__RECV, &ad);
4225 if (err)
4226 return err;
4227 }
4228
4229 return err;
4230}
4231
4232static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4233 int __user *optlen, unsigned len)
4234{
4235 int err = 0;
4236 char *scontext;
4237 u32 scontext_len;
4238 struct sk_security_struct *sksec = sock->sk->sk_security;
4239 u32 peer_sid = SECSID_NULL;
4240
4241 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4242 sksec->sclass == SECCLASS_TCP_SOCKET)
4243 peer_sid = sksec->peer_sid;
4244 if (peer_sid == SECSID_NULL)
4245 return -ENOPROTOOPT;
4246
4247 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4248 if (err)
4249 return err;
4250
4251 if (scontext_len > len) {
4252 err = -ERANGE;
4253 goto out_len;
4254 }
4255
4256 if (copy_to_user(optval, scontext, scontext_len))
4257 err = -EFAULT;
4258
4259out_len:
4260 if (put_user(scontext_len, optlen))
4261 err = -EFAULT;
4262 kfree(scontext);
4263 return err;
4264}
4265
4266static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4267{
4268 u32 peer_secid = SECSID_NULL;
4269 u16 family;
4270
4271 if (skb && skb->protocol == htons(ETH_P_IP))
4272 family = PF_INET;
4273 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4274 family = PF_INET6;
4275 else if (sock)
4276 family = sock->sk->sk_family;
4277 else
4278 goto out;
4279
4280 if (sock && family == PF_UNIX)
4281 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4282 else if (skb)
4283 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4284
4285out:
4286 *secid = peer_secid;
4287 if (peer_secid == SECSID_NULL)
4288 return -EINVAL;
4289 return 0;
4290}
4291
4292static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4293{
4294 struct sk_security_struct *sksec;
4295
4296 sksec = kzalloc(sizeof(*sksec), priority);
4297 if (!sksec)
4298 return -ENOMEM;
4299
4300 sksec->peer_sid = SECINITSID_UNLABELED;
4301 sksec->sid = SECINITSID_UNLABELED;
4302 selinux_netlbl_sk_security_reset(sksec);
4303 sk->sk_security = sksec;
4304
4305 return 0;
4306}
4307
4308static void selinux_sk_free_security(struct sock *sk)
4309{
4310 struct sk_security_struct *sksec = sk->sk_security;
4311
4312 sk->sk_security = NULL;
4313 selinux_netlbl_sk_security_free(sksec);
4314 kfree(sksec);
4315}
4316
4317static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4318{
4319 struct sk_security_struct *sksec = sk->sk_security;
4320 struct sk_security_struct *newsksec = newsk->sk_security;
4321
4322 newsksec->sid = sksec->sid;
4323 newsksec->peer_sid = sksec->peer_sid;
4324 newsksec->sclass = sksec->sclass;
4325
4326 selinux_netlbl_sk_security_reset(newsksec);
4327}
4328
4329static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4330{
4331 if (!sk)
4332 *secid = SECINITSID_ANY_SOCKET;
4333 else {
4334 struct sk_security_struct *sksec = sk->sk_security;
4335
4336 *secid = sksec->sid;
4337 }
4338}
4339
4340static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4341{
4342 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4343 struct sk_security_struct *sksec = sk->sk_security;
4344
4345 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4346 sk->sk_family == PF_UNIX)
4347 isec->sid = sksec->sid;
4348 sksec->sclass = isec->sclass;
4349}
4350
4351static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4352 struct request_sock *req)
4353{
4354 struct sk_security_struct *sksec = sk->sk_security;
4355 int err;
4356 u16 family = sk->sk_family;
4357 u32 newsid;
4358 u32 peersid;
4359
4360 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4361 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4362 family = PF_INET;
4363
4364 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4365 if (err)
4366 return err;
4367 if (peersid == SECSID_NULL) {
4368 req->secid = sksec->sid;
4369 req->peer_secid = SECSID_NULL;
4370 } else {
4371 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4372 if (err)
4373 return err;
4374 req->secid = newsid;
4375 req->peer_secid = peersid;
4376 }
4377
4378 return selinux_netlbl_inet_conn_request(req, family);
4379}
4380
4381static void selinux_inet_csk_clone(struct sock *newsk,
4382 const struct request_sock *req)
4383{
4384 struct sk_security_struct *newsksec = newsk->sk_security;
4385
4386 newsksec->sid = req->secid;
4387 newsksec->peer_sid = req->peer_secid;
4388 /* NOTE: Ideally, we should also get the isec->sid for the
4389 new socket in sync, but we don't have the isec available yet.
4390 So we will wait until sock_graft to do it, by which
4391 time it will have been created and available. */
4392
4393 /* We don't need to take any sort of lock here as we are the only
4394 * thread with access to newsksec */
4395 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4396}
4397
4398static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4399{
4400 u16 family = sk->sk_family;
4401 struct sk_security_struct *sksec = sk->sk_security;
4402
4403 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4404 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4405 family = PF_INET;
4406
4407 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4408}
4409
4410static int selinux_secmark_relabel_packet(u32 sid)
4411{
4412 const struct task_security_struct *__tsec;
4413 u32 tsid;
4414
4415 __tsec = current_security();
4416 tsid = __tsec->sid;
4417
4418 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4419}
4420
4421static void selinux_secmark_refcount_inc(void)
4422{
4423 atomic_inc(&selinux_secmark_refcount);
4424}
4425
4426static void selinux_secmark_refcount_dec(void)
4427{
4428 atomic_dec(&selinux_secmark_refcount);
4429}
4430
4431static void selinux_req_classify_flow(const struct request_sock *req,
4432 struct flowi *fl)
4433{
4434 fl->flowi_secid = req->secid;
4435}
4436
4437static int selinux_tun_dev_create(void)
4438{
4439 u32 sid = current_sid();
4440
4441 /* we aren't taking into account the "sockcreate" SID since the socket
4442 * that is being created here is not a socket in the traditional sense,
4443 * instead it is a private sock, accessible only to the kernel, and
4444 * representing a wide range of network traffic spanning multiple
4445 * connections unlike traditional sockets - check the TUN driver to
4446 * get a better understanding of why this socket is special */
4447
4448 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4449 NULL);
4450}
4451
4452static void selinux_tun_dev_post_create(struct sock *sk)
4453{
4454 struct sk_security_struct *sksec = sk->sk_security;
4455
4456 /* we don't currently perform any NetLabel based labeling here and it
4457 * isn't clear that we would want to do so anyway; while we could apply
4458 * labeling without the support of the TUN user the resulting labeled
4459 * traffic from the other end of the connection would almost certainly
4460 * cause confusion to the TUN user that had no idea network labeling
4461 * protocols were being used */
4462
4463 /* see the comments in selinux_tun_dev_create() about why we don't use
4464 * the sockcreate SID here */
4465
4466 sksec->sid = current_sid();
4467 sksec->sclass = SECCLASS_TUN_SOCKET;
4468}
4469
4470static int selinux_tun_dev_attach(struct sock *sk)
4471{
4472 struct sk_security_struct *sksec = sk->sk_security;
4473 u32 sid = current_sid();
4474 int err;
4475
4476 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4477 TUN_SOCKET__RELABELFROM, NULL);
4478 if (err)
4479 return err;
4480 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4481 TUN_SOCKET__RELABELTO, NULL);
4482 if (err)
4483 return err;
4484
4485 sksec->sid = sid;
4486
4487 return 0;
4488}
4489
4490static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4491{
4492 int err = 0;
4493 u32 perm;
4494 struct nlmsghdr *nlh;
4495 struct sk_security_struct *sksec = sk->sk_security;
4496
4497 if (skb->len < NLMSG_SPACE(0)) {
4498 err = -EINVAL;
4499 goto out;
4500 }
4501 nlh = nlmsg_hdr(skb);
4502
4503 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4504 if (err) {
4505 if (err == -EINVAL) {
4506 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4507 "SELinux: unrecognized netlink message"
4508 " type=%hu for sclass=%hu\n",
4509 nlh->nlmsg_type, sksec->sclass);
4510 if (!selinux_enforcing || security_get_allow_unknown())
4511 err = 0;
4512 }
4513
4514 /* Ignore */
4515 if (err == -ENOENT)
4516 err = 0;
4517 goto out;
4518 }
4519
4520 err = sock_has_perm(current, sk, perm);
4521out:
4522 return err;
4523}
4524
4525#ifdef CONFIG_NETFILTER
4526
4527static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4528 u16 family)
4529{
4530 int err;
4531 char *addrp;
4532 u32 peer_sid;
4533 struct common_audit_data ad;
4534 struct lsm_network_audit net = {0,};
4535 u8 secmark_active;
4536 u8 netlbl_active;
4537 u8 peerlbl_active;
4538
4539 if (!selinux_policycap_netpeer)
4540 return NF_ACCEPT;
4541
4542 secmark_active = selinux_secmark_enabled();
4543 netlbl_active = netlbl_enabled();
4544 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4545 if (!secmark_active && !peerlbl_active)
4546 return NF_ACCEPT;
4547
4548 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4549 return NF_DROP;
4550
4551 ad.type = LSM_AUDIT_DATA_NET;
4552 ad.u.net = &net;
4553 ad.u.net->netif = ifindex;
4554 ad.u.net->family = family;
4555 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4556 return NF_DROP;
4557
4558 if (peerlbl_active) {
4559 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4560 peer_sid, &ad);
4561 if (err) {
4562 selinux_netlbl_err(skb, err, 1);
4563 return NF_DROP;
4564 }
4565 }
4566
4567 if (secmark_active)
4568 if (avc_has_perm(peer_sid, skb->secmark,
4569 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4570 return NF_DROP;
4571
4572 if (netlbl_active)
4573 /* we do this in the FORWARD path and not the POST_ROUTING
4574 * path because we want to make sure we apply the necessary
4575 * labeling before IPsec is applied so we can leverage AH
4576 * protection */
4577 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4578 return NF_DROP;
4579
4580 return NF_ACCEPT;
4581}
4582
4583static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4584 struct sk_buff *skb,
4585 const struct net_device *in,
4586 const struct net_device *out,
4587 int (*okfn)(struct sk_buff *))
4588{
4589 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4590}
4591
4592#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4593static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4594 struct sk_buff *skb,
4595 const struct net_device *in,
4596 const struct net_device *out,
4597 int (*okfn)(struct sk_buff *))
4598{
4599 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4600}
4601#endif /* IPV6 */
4602
4603static unsigned int selinux_ip_output(struct sk_buff *skb,
4604 u16 family)
4605{
4606 u32 sid;
4607
4608 if (!netlbl_enabled())
4609 return NF_ACCEPT;
4610
4611 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4612 * because we want to make sure we apply the necessary labeling
4613 * before IPsec is applied so we can leverage AH protection */
4614 if (skb->sk) {
4615 struct sk_security_struct *sksec = skb->sk->sk_security;
4616 sid = sksec->sid;
4617 } else
4618 sid = SECINITSID_KERNEL;
4619 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4620 return NF_DROP;
4621
4622 return NF_ACCEPT;
4623}
4624
4625static unsigned int selinux_ipv4_output(unsigned int hooknum,
4626 struct sk_buff *skb,
4627 const struct net_device *in,
4628 const struct net_device *out,
4629 int (*okfn)(struct sk_buff *))
4630{
4631 return selinux_ip_output(skb, PF_INET);
4632}
4633
4634static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4635 int ifindex,
4636 u16 family)
4637{
4638 struct sock *sk = skb->sk;
4639 struct sk_security_struct *sksec;
4640 struct common_audit_data ad;
4641 struct lsm_network_audit net = {0,};
4642 char *addrp;
4643 u8 proto;
4644
4645 if (sk == NULL)
4646 return NF_ACCEPT;
4647 sksec = sk->sk_security;
4648
4649 ad.type = LSM_AUDIT_DATA_NET;
4650 ad.u.net = &net;
4651 ad.u.net->netif = ifindex;
4652 ad.u.net->family = family;
4653 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4654 return NF_DROP;
4655
4656 if (selinux_secmark_enabled())
4657 if (avc_has_perm(sksec->sid, skb->secmark,
4658 SECCLASS_PACKET, PACKET__SEND, &ad))
4659 return NF_DROP_ERR(-ECONNREFUSED);
4660
4661 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4662 return NF_DROP_ERR(-ECONNREFUSED);
4663
4664 return NF_ACCEPT;
4665}
4666
4667static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4668 u16 family)
4669{
4670 u32 secmark_perm;
4671 u32 peer_sid;
4672 struct sock *sk;
4673 struct common_audit_data ad;
4674 struct lsm_network_audit net = {0,};
4675 char *addrp;
4676 u8 secmark_active;
4677 u8 peerlbl_active;
4678
4679 /* If any sort of compatibility mode is enabled then handoff processing
4680 * to the selinux_ip_postroute_compat() function to deal with the
4681 * special handling. We do this in an attempt to keep this function
4682 * as fast and as clean as possible. */
4683 if (!selinux_policycap_netpeer)
4684 return selinux_ip_postroute_compat(skb, ifindex, family);
4685#ifdef CONFIG_XFRM
4686 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4687 * packet transformation so allow the packet to pass without any checks
4688 * since we'll have another chance to perform access control checks
4689 * when the packet is on it's final way out.
4690 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4691 * is NULL, in this case go ahead and apply access control. */
4692 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4693 return NF_ACCEPT;
4694#endif
4695 secmark_active = selinux_secmark_enabled();
4696 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4697 if (!secmark_active && !peerlbl_active)
4698 return NF_ACCEPT;
4699
4700 /* if the packet is being forwarded then get the peer label from the
4701 * packet itself; otherwise check to see if it is from a local
4702 * application or the kernel, if from an application get the peer label
4703 * from the sending socket, otherwise use the kernel's sid */
4704 sk = skb->sk;
4705 if (sk == NULL) {
4706 if (skb->skb_iif) {
4707 secmark_perm = PACKET__FORWARD_OUT;
4708 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4709 return NF_DROP;
4710 } else {
4711 secmark_perm = PACKET__SEND;
4712 peer_sid = SECINITSID_KERNEL;
4713 }
4714 } else {
4715 struct sk_security_struct *sksec = sk->sk_security;
4716 peer_sid = sksec->sid;
4717 secmark_perm = PACKET__SEND;
4718 }
4719
4720 ad.type = LSM_AUDIT_DATA_NET;
4721 ad.u.net = &net;
4722 ad.u.net->netif = ifindex;
4723 ad.u.net->family = family;
4724 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4725 return NF_DROP;
4726
4727 if (secmark_active)
4728 if (avc_has_perm(peer_sid, skb->secmark,
4729 SECCLASS_PACKET, secmark_perm, &ad))
4730 return NF_DROP_ERR(-ECONNREFUSED);
4731
4732 if (peerlbl_active) {
4733 u32 if_sid;
4734 u32 node_sid;
4735
4736 if (sel_netif_sid(ifindex, &if_sid))
4737 return NF_DROP;
4738 if (avc_has_perm(peer_sid, if_sid,
4739 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4740 return NF_DROP_ERR(-ECONNREFUSED);
4741
4742 if (sel_netnode_sid(addrp, family, &node_sid))
4743 return NF_DROP;
4744 if (avc_has_perm(peer_sid, node_sid,
4745 SECCLASS_NODE, NODE__SENDTO, &ad))
4746 return NF_DROP_ERR(-ECONNREFUSED);
4747 }
4748
4749 return NF_ACCEPT;
4750}
4751
4752static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4753 struct sk_buff *skb,
4754 const struct net_device *in,
4755 const struct net_device *out,
4756 int (*okfn)(struct sk_buff *))
4757{
4758 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4759}
4760
4761#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4762static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4763 struct sk_buff *skb,
4764 const struct net_device *in,
4765 const struct net_device *out,
4766 int (*okfn)(struct sk_buff *))
4767{
4768 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4769}
4770#endif /* IPV6 */
4771
4772#endif /* CONFIG_NETFILTER */
4773
4774static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4775{
4776 int err;
4777
4778 err = cap_netlink_send(sk, skb);
4779 if (err)
4780 return err;
4781
4782 return selinux_nlmsg_perm(sk, skb);
4783}
4784
4785static int ipc_alloc_security(struct task_struct *task,
4786 struct kern_ipc_perm *perm,
4787 u16 sclass)
4788{
4789 struct ipc_security_struct *isec;
4790 u32 sid;
4791
4792 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4793 if (!isec)
4794 return -ENOMEM;
4795
4796 sid = task_sid(task);
4797 isec->sclass = sclass;
4798 isec->sid = sid;
4799 perm->security = isec;
4800
4801 return 0;
4802}
4803
4804static void ipc_free_security(struct kern_ipc_perm *perm)
4805{
4806 struct ipc_security_struct *isec = perm->security;
4807 perm->security = NULL;
4808 kfree(isec);
4809}
4810
4811static int msg_msg_alloc_security(struct msg_msg *msg)
4812{
4813 struct msg_security_struct *msec;
4814
4815 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4816 if (!msec)
4817 return -ENOMEM;
4818
4819 msec->sid = SECINITSID_UNLABELED;
4820 msg->security = msec;
4821
4822 return 0;
4823}
4824
4825static void msg_msg_free_security(struct msg_msg *msg)
4826{
4827 struct msg_security_struct *msec = msg->security;
4828
4829 msg->security = NULL;
4830 kfree(msec);
4831}
4832
4833static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4834 u32 perms)
4835{
4836 struct ipc_security_struct *isec;
4837 struct common_audit_data ad;
4838 u32 sid = current_sid();
4839
4840 isec = ipc_perms->security;
4841
4842 ad.type = LSM_AUDIT_DATA_IPC;
4843 ad.u.ipc_id = ipc_perms->key;
4844
4845 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4846}
4847
4848static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4849{
4850 return msg_msg_alloc_security(msg);
4851}
4852
4853static void selinux_msg_msg_free_security(struct msg_msg *msg)
4854{
4855 msg_msg_free_security(msg);
4856}
4857
4858/* message queue security operations */
4859static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4860{
4861 struct ipc_security_struct *isec;
4862 struct common_audit_data ad;
4863 u32 sid = current_sid();
4864 int rc;
4865
4866 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4867 if (rc)
4868 return rc;
4869
4870 isec = msq->q_perm.security;
4871
4872 ad.type = LSM_AUDIT_DATA_IPC;
4873 ad.u.ipc_id = msq->q_perm.key;
4874
4875 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4876 MSGQ__CREATE, &ad);
4877 if (rc) {
4878 ipc_free_security(&msq->q_perm);
4879 return rc;
4880 }
4881 return 0;
4882}
4883
4884static void selinux_msg_queue_free_security(struct msg_queue *msq)
4885{
4886 ipc_free_security(&msq->q_perm);
4887}
4888
4889static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4890{
4891 struct ipc_security_struct *isec;
4892 struct common_audit_data ad;
4893 u32 sid = current_sid();
4894
4895 isec = msq->q_perm.security;
4896
4897 ad.type = LSM_AUDIT_DATA_IPC;
4898 ad.u.ipc_id = msq->q_perm.key;
4899
4900 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4901 MSGQ__ASSOCIATE, &ad);
4902}
4903
4904static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4905{
4906 int err;
4907 int perms;
4908
4909 switch (cmd) {
4910 case IPC_INFO:
4911 case MSG_INFO:
4912 /* No specific object, just general system-wide information. */
4913 return task_has_system(current, SYSTEM__IPC_INFO);
4914 case IPC_STAT:
4915 case MSG_STAT:
4916 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4917 break;
4918 case IPC_SET:
4919 perms = MSGQ__SETATTR;
4920 break;
4921 case IPC_RMID:
4922 perms = MSGQ__DESTROY;
4923 break;
4924 default:
4925 return 0;
4926 }
4927
4928 err = ipc_has_perm(&msq->q_perm, perms);
4929 return err;
4930}
4931
4932static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4933{
4934 struct ipc_security_struct *isec;
4935 struct msg_security_struct *msec;
4936 struct common_audit_data ad;
4937 u32 sid = current_sid();
4938 int rc;
4939
4940 isec = msq->q_perm.security;
4941 msec = msg->security;
4942
4943 /*
4944 * First time through, need to assign label to the message
4945 */
4946 if (msec->sid == SECINITSID_UNLABELED) {
4947 /*
4948 * Compute new sid based on current process and
4949 * message queue this message will be stored in
4950 */
4951 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4952 NULL, &msec->sid);
4953 if (rc)
4954 return rc;
4955 }
4956
4957 ad.type = LSM_AUDIT_DATA_IPC;
4958 ad.u.ipc_id = msq->q_perm.key;
4959
4960 /* Can this process write to the queue? */
4961 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4962 MSGQ__WRITE, &ad);
4963 if (!rc)
4964 /* Can this process send the message */
4965 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4966 MSG__SEND, &ad);
4967 if (!rc)
4968 /* Can the message be put in the queue? */
4969 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4970 MSGQ__ENQUEUE, &ad);
4971
4972 return rc;
4973}
4974
4975static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4976 struct task_struct *target,
4977 long type, int mode)
4978{
4979 struct ipc_security_struct *isec;
4980 struct msg_security_struct *msec;
4981 struct common_audit_data ad;
4982 u32 sid = task_sid(target);
4983 int rc;
4984
4985 isec = msq->q_perm.security;
4986 msec = msg->security;
4987
4988 ad.type = LSM_AUDIT_DATA_IPC;
4989 ad.u.ipc_id = msq->q_perm.key;
4990
4991 rc = avc_has_perm(sid, isec->sid,
4992 SECCLASS_MSGQ, MSGQ__READ, &ad);
4993 if (!rc)
4994 rc = avc_has_perm(sid, msec->sid,
4995 SECCLASS_MSG, MSG__RECEIVE, &ad);
4996 return rc;
4997}
4998
4999/* Shared Memory security operations */
5000static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5001{
5002 struct ipc_security_struct *isec;
5003 struct common_audit_data ad;
5004 u32 sid = current_sid();
5005 int rc;
5006
5007 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5008 if (rc)
5009 return rc;
5010
5011 isec = shp->shm_perm.security;
5012
5013 ad.type = LSM_AUDIT_DATA_IPC;
5014 ad.u.ipc_id = shp->shm_perm.key;
5015
5016 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5017 SHM__CREATE, &ad);
5018 if (rc) {
5019 ipc_free_security(&shp->shm_perm);
5020 return rc;
5021 }
5022 return 0;
5023}
5024
5025static void selinux_shm_free_security(struct shmid_kernel *shp)
5026{
5027 ipc_free_security(&shp->shm_perm);
5028}
5029
5030static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5031{
5032 struct ipc_security_struct *isec;
5033 struct common_audit_data ad;
5034 u32 sid = current_sid();
5035
5036 isec = shp->shm_perm.security;
5037
5038 ad.type = LSM_AUDIT_DATA_IPC;
5039 ad.u.ipc_id = shp->shm_perm.key;
5040
5041 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5042 SHM__ASSOCIATE, &ad);
5043}
5044
5045/* Note, at this point, shp is locked down */
5046static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5047{
5048 int perms;
5049 int err;
5050
5051 switch (cmd) {
5052 case IPC_INFO:
5053 case SHM_INFO:
5054 /* No specific object, just general system-wide information. */
5055 return task_has_system(current, SYSTEM__IPC_INFO);
5056 case IPC_STAT:
5057 case SHM_STAT:
5058 perms = SHM__GETATTR | SHM__ASSOCIATE;
5059 break;
5060 case IPC_SET:
5061 perms = SHM__SETATTR;
5062 break;
5063 case SHM_LOCK:
5064 case SHM_UNLOCK:
5065 perms = SHM__LOCK;
5066 break;
5067 case IPC_RMID:
5068 perms = SHM__DESTROY;
5069 break;
5070 default:
5071 return 0;
5072 }
5073
5074 err = ipc_has_perm(&shp->shm_perm, perms);
5075 return err;
5076}
5077
5078static int selinux_shm_shmat(struct shmid_kernel *shp,
5079 char __user *shmaddr, int shmflg)
5080{
5081 u32 perms;
5082
5083 if (shmflg & SHM_RDONLY)
5084 perms = SHM__READ;
5085 else
5086 perms = SHM__READ | SHM__WRITE;
5087
5088 return ipc_has_perm(&shp->shm_perm, perms);
5089}
5090
5091/* Semaphore security operations */
5092static int selinux_sem_alloc_security(struct sem_array *sma)
5093{
5094 struct ipc_security_struct *isec;
5095 struct common_audit_data ad;
5096 u32 sid = current_sid();
5097 int rc;
5098
5099 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5100 if (rc)
5101 return rc;
5102
5103 isec = sma->sem_perm.security;
5104
5105 ad.type = LSM_AUDIT_DATA_IPC;
5106 ad.u.ipc_id = sma->sem_perm.key;
5107
5108 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5109 SEM__CREATE, &ad);
5110 if (rc) {
5111 ipc_free_security(&sma->sem_perm);
5112 return rc;
5113 }
5114 return 0;
5115}
5116
5117static void selinux_sem_free_security(struct sem_array *sma)
5118{
5119 ipc_free_security(&sma->sem_perm);
5120}
5121
5122static int selinux_sem_associate(struct sem_array *sma, int semflg)
5123{
5124 struct ipc_security_struct *isec;
5125 struct common_audit_data ad;
5126 u32 sid = current_sid();
5127
5128 isec = sma->sem_perm.security;
5129
5130 ad.type = LSM_AUDIT_DATA_IPC;
5131 ad.u.ipc_id = sma->sem_perm.key;
5132
5133 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5134 SEM__ASSOCIATE, &ad);
5135}
5136
5137/* Note, at this point, sma is locked down */
5138static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5139{
5140 int err;
5141 u32 perms;
5142
5143 switch (cmd) {
5144 case IPC_INFO:
5145 case SEM_INFO:
5146 /* No specific object, just general system-wide information. */
5147 return task_has_system(current, SYSTEM__IPC_INFO);
5148 case GETPID:
5149 case GETNCNT:
5150 case GETZCNT:
5151 perms = SEM__GETATTR;
5152 break;
5153 case GETVAL:
5154 case GETALL:
5155 perms = SEM__READ;
5156 break;
5157 case SETVAL:
5158 case SETALL:
5159 perms = SEM__WRITE;
5160 break;
5161 case IPC_RMID:
5162 perms = SEM__DESTROY;
5163 break;
5164 case IPC_SET:
5165 perms = SEM__SETATTR;
5166 break;
5167 case IPC_STAT:
5168 case SEM_STAT:
5169 perms = SEM__GETATTR | SEM__ASSOCIATE;
5170 break;
5171 default:
5172 return 0;
5173 }
5174
5175 err = ipc_has_perm(&sma->sem_perm, perms);
5176 return err;
5177}
5178
5179static int selinux_sem_semop(struct sem_array *sma,
5180 struct sembuf *sops, unsigned nsops, int alter)
5181{
5182 u32 perms;
5183
5184 if (alter)
5185 perms = SEM__READ | SEM__WRITE;
5186 else
5187 perms = SEM__READ;
5188
5189 return ipc_has_perm(&sma->sem_perm, perms);
5190}
5191
5192static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5193{
5194 u32 av = 0;
5195
5196 av = 0;
5197 if (flag & S_IRUGO)
5198 av |= IPC__UNIX_READ;
5199 if (flag & S_IWUGO)
5200 av |= IPC__UNIX_WRITE;
5201
5202 if (av == 0)
5203 return 0;
5204
5205 return ipc_has_perm(ipcp, av);
5206}
5207
5208static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5209{
5210 struct ipc_security_struct *isec = ipcp->security;
5211 *secid = isec->sid;
5212}
5213
5214static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5215{
5216 if (inode)
5217 inode_doinit_with_dentry(inode, dentry);
5218}
5219
5220static int selinux_getprocattr(struct task_struct *p,
5221 char *name, char **value)
5222{
5223 const struct task_security_struct *__tsec;
5224 u32 sid;
5225 int error;
5226 unsigned len;
5227
5228 if (current != p) {
5229 error = current_has_perm(p, PROCESS__GETATTR);
5230 if (error)
5231 return error;
5232 }
5233
5234 rcu_read_lock();
5235 __tsec = __task_cred(p)->security;
5236
5237 if (!strcmp(name, "current"))
5238 sid = __tsec->sid;
5239 else if (!strcmp(name, "prev"))
5240 sid = __tsec->osid;
5241 else if (!strcmp(name, "exec"))
5242 sid = __tsec->exec_sid;
5243 else if (!strcmp(name, "fscreate"))
5244 sid = __tsec->create_sid;
5245 else if (!strcmp(name, "keycreate"))
5246 sid = __tsec->keycreate_sid;
5247 else if (!strcmp(name, "sockcreate"))
5248 sid = __tsec->sockcreate_sid;
5249 else
5250 goto invalid;
5251 rcu_read_unlock();
5252
5253 if (!sid)
5254 return 0;
5255
5256 error = security_sid_to_context(sid, value, &len);
5257 if (error)
5258 return error;
5259 return len;
5260
5261invalid:
5262 rcu_read_unlock();
5263 return -EINVAL;
5264}
5265
5266static int selinux_setprocattr(struct task_struct *p,
5267 char *name, void *value, size_t size)
5268{
5269 struct task_security_struct *tsec;
5270 struct task_struct *tracer;
5271 struct cred *new;
5272 u32 sid = 0, ptsid;
5273 int error;
5274 char *str = value;
5275
5276 if (current != p) {
5277 /* SELinux only allows a process to change its own
5278 security attributes. */
5279 return -EACCES;
5280 }
5281
5282 /*
5283 * Basic control over ability to set these attributes at all.
5284 * current == p, but we'll pass them separately in case the
5285 * above restriction is ever removed.
5286 */
5287 if (!strcmp(name, "exec"))
5288 error = current_has_perm(p, PROCESS__SETEXEC);
5289 else if (!strcmp(name, "fscreate"))
5290 error = current_has_perm(p, PROCESS__SETFSCREATE);
5291 else if (!strcmp(name, "keycreate"))
5292 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5293 else if (!strcmp(name, "sockcreate"))
5294 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5295 else if (!strcmp(name, "current"))
5296 error = current_has_perm(p, PROCESS__SETCURRENT);
5297 else
5298 error = -EINVAL;
5299 if (error)
5300 return error;
5301
5302 /* Obtain a SID for the context, if one was specified. */
5303 if (size && str[1] && str[1] != '\n') {
5304 if (str[size-1] == '\n') {
5305 str[size-1] = 0;
5306 size--;
5307 }
5308 error = security_context_to_sid(value, size, &sid);
5309 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5310 if (!capable(CAP_MAC_ADMIN)) {
5311 struct audit_buffer *ab;
5312 size_t audit_size;
5313
5314 /* We strip a nul only if it is at the end, otherwise the
5315 * context contains a nul and we should audit that */
5316 if (str[size - 1] == '\0')
5317 audit_size = size - 1;
5318 else
5319 audit_size = size;
5320 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5321 audit_log_format(ab, "op=fscreate invalid_context=");
5322 audit_log_n_untrustedstring(ab, value, audit_size);
5323 audit_log_end(ab);
5324
5325 return error;
5326 }
5327 error = security_context_to_sid_force(value, size,
5328 &sid);
5329 }
5330 if (error)
5331 return error;
5332 }
5333
5334 new = prepare_creds();
5335 if (!new)
5336 return -ENOMEM;
5337
5338 /* Permission checking based on the specified context is
5339 performed during the actual operation (execve,
5340 open/mkdir/...), when we know the full context of the
5341 operation. See selinux_bprm_set_creds for the execve
5342 checks and may_create for the file creation checks. The
5343 operation will then fail if the context is not permitted. */
5344 tsec = new->security;
5345 if (!strcmp(name, "exec")) {
5346 tsec->exec_sid = sid;
5347 } else if (!strcmp(name, "fscreate")) {
5348 tsec->create_sid = sid;
5349 } else if (!strcmp(name, "keycreate")) {
5350 error = may_create_key(sid, p);
5351 if (error)
5352 goto abort_change;
5353 tsec->keycreate_sid = sid;
5354 } else if (!strcmp(name, "sockcreate")) {
5355 tsec->sockcreate_sid = sid;
5356 } else if (!strcmp(name, "current")) {
5357 error = -EINVAL;
5358 if (sid == 0)
5359 goto abort_change;
5360
5361 /* Only allow single threaded processes to change context */
5362 error = -EPERM;
5363 if (!current_is_single_threaded()) {
5364 error = security_bounded_transition(tsec->sid, sid);
5365 if (error)
5366 goto abort_change;
5367 }
5368
5369 /* Check permissions for the transition. */
5370 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5371 PROCESS__DYNTRANSITION, NULL);
5372 if (error)
5373 goto abort_change;
5374
5375 /* Check for ptracing, and update the task SID if ok.
5376 Otherwise, leave SID unchanged and fail. */
5377 ptsid = 0;
5378 task_lock(p);
5379 tracer = ptrace_parent(p);
5380 if (tracer)
5381 ptsid = task_sid(tracer);
5382 task_unlock(p);
5383
5384 if (tracer) {
5385 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5386 PROCESS__PTRACE, NULL);
5387 if (error)
5388 goto abort_change;
5389 }
5390
5391 tsec->sid = sid;
5392 } else {
5393 error = -EINVAL;
5394 goto abort_change;
5395 }
5396
5397 commit_creds(new);
5398 return size;
5399
5400abort_change:
5401 abort_creds(new);
5402 return error;
5403}
5404
5405static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5406{
5407 return security_sid_to_context(secid, secdata, seclen);
5408}
5409
5410static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5411{
5412 return security_context_to_sid(secdata, seclen, secid);
5413}
5414
5415static void selinux_release_secctx(char *secdata, u32 seclen)
5416{
5417 kfree(secdata);
5418}
5419
5420/*
5421 * called with inode->i_mutex locked
5422 */
5423static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5424{
5425 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5426}
5427
5428/*
5429 * called with inode->i_mutex locked
5430 */
5431static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5432{
5433 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5434}
5435
5436static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5437{
5438 int len = 0;
5439 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5440 ctx, true);
5441 if (len < 0)
5442 return len;
5443 *ctxlen = len;
5444 return 0;
5445}
5446#ifdef CONFIG_KEYS
5447
5448static int selinux_key_alloc(struct key *k, const struct cred *cred,
5449 unsigned long flags)
5450{
5451 const struct task_security_struct *tsec;
5452 struct key_security_struct *ksec;
5453
5454 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5455 if (!ksec)
5456 return -ENOMEM;
5457
5458 tsec = cred->security;
5459 if (tsec->keycreate_sid)
5460 ksec->sid = tsec->keycreate_sid;
5461 else
5462 ksec->sid = tsec->sid;
5463
5464 k->security = ksec;
5465 return 0;
5466}
5467
5468static void selinux_key_free(struct key *k)
5469{
5470 struct key_security_struct *ksec = k->security;
5471
5472 k->security = NULL;
5473 kfree(ksec);
5474}
5475
5476static int selinux_key_permission(key_ref_t key_ref,
5477 const struct cred *cred,
5478 key_perm_t perm)
5479{
5480 struct key *key;
5481 struct key_security_struct *ksec;
5482 u32 sid;
5483
5484 /* if no specific permissions are requested, we skip the
5485 permission check. No serious, additional covert channels
5486 appear to be created. */
5487 if (perm == 0)
5488 return 0;
5489
5490 sid = cred_sid(cred);
5491
5492 key = key_ref_to_ptr(key_ref);
5493 ksec = key->security;
5494
5495 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5496}
5497
5498static int selinux_key_getsecurity(struct key *key, char **_buffer)
5499{
5500 struct key_security_struct *ksec = key->security;
5501 char *context = NULL;
5502 unsigned len;
5503 int rc;
5504
5505 rc = security_sid_to_context(ksec->sid, &context, &len);
5506 if (!rc)
5507 rc = len;
5508 *_buffer = context;
5509 return rc;
5510}
5511
5512#endif
5513
5514static struct security_operations selinux_ops = {
5515 .name = "selinux",
5516
5517 .ptrace_access_check = selinux_ptrace_access_check,
5518 .ptrace_traceme = selinux_ptrace_traceme,
5519 .capget = selinux_capget,
5520 .capset = selinux_capset,
5521 .capable = selinux_capable,
5522 .quotactl = selinux_quotactl,
5523 .quota_on = selinux_quota_on,
5524 .syslog = selinux_syslog,
5525 .vm_enough_memory = selinux_vm_enough_memory,
5526
5527 .netlink_send = selinux_netlink_send,
5528
5529 .bprm_set_creds = selinux_bprm_set_creds,
5530 .bprm_committing_creds = selinux_bprm_committing_creds,
5531 .bprm_committed_creds = selinux_bprm_committed_creds,
5532 .bprm_secureexec = selinux_bprm_secureexec,
5533
5534 .sb_alloc_security = selinux_sb_alloc_security,
5535 .sb_free_security = selinux_sb_free_security,
5536 .sb_copy_data = selinux_sb_copy_data,
5537 .sb_remount = selinux_sb_remount,
5538 .sb_kern_mount = selinux_sb_kern_mount,
5539 .sb_show_options = selinux_sb_show_options,
5540 .sb_statfs = selinux_sb_statfs,
5541 .sb_mount = selinux_mount,
5542 .sb_umount = selinux_umount,
5543 .sb_set_mnt_opts = selinux_set_mnt_opts,
5544 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5545 .sb_parse_opts_str = selinux_parse_opts_str,
5546
5547
5548 .inode_alloc_security = selinux_inode_alloc_security,
5549 .inode_free_security = selinux_inode_free_security,
5550 .inode_init_security = selinux_inode_init_security,
5551 .inode_create = selinux_inode_create,
5552 .inode_link = selinux_inode_link,
5553 .inode_unlink = selinux_inode_unlink,
5554 .inode_symlink = selinux_inode_symlink,
5555 .inode_mkdir = selinux_inode_mkdir,
5556 .inode_rmdir = selinux_inode_rmdir,
5557 .inode_mknod = selinux_inode_mknod,
5558 .inode_rename = selinux_inode_rename,
5559 .inode_readlink = selinux_inode_readlink,
5560 .inode_follow_link = selinux_inode_follow_link,
5561 .inode_permission = selinux_inode_permission,
5562 .inode_setattr = selinux_inode_setattr,
5563 .inode_getattr = selinux_inode_getattr,
5564 .inode_setxattr = selinux_inode_setxattr,
5565 .inode_post_setxattr = selinux_inode_post_setxattr,
5566 .inode_getxattr = selinux_inode_getxattr,
5567 .inode_listxattr = selinux_inode_listxattr,
5568 .inode_removexattr = selinux_inode_removexattr,
5569 .inode_getsecurity = selinux_inode_getsecurity,
5570 .inode_setsecurity = selinux_inode_setsecurity,
5571 .inode_listsecurity = selinux_inode_listsecurity,
5572 .inode_getsecid = selinux_inode_getsecid,
5573
5574 .file_permission = selinux_file_permission,
5575 .file_alloc_security = selinux_file_alloc_security,
5576 .file_free_security = selinux_file_free_security,
5577 .file_ioctl = selinux_file_ioctl,
5578 .mmap_file = selinux_mmap_file,
5579 .mmap_addr = selinux_mmap_addr,
5580 .file_mprotect = selinux_file_mprotect,
5581 .file_lock = selinux_file_lock,
5582 .file_fcntl = selinux_file_fcntl,
5583 .file_set_fowner = selinux_file_set_fowner,
5584 .file_send_sigiotask = selinux_file_send_sigiotask,
5585 .file_receive = selinux_file_receive,
5586
5587 .file_open = selinux_file_open,
5588
5589 .task_create = selinux_task_create,
5590 .cred_alloc_blank = selinux_cred_alloc_blank,
5591 .cred_free = selinux_cred_free,
5592 .cred_prepare = selinux_cred_prepare,
5593 .cred_transfer = selinux_cred_transfer,
5594 .kernel_act_as = selinux_kernel_act_as,
5595 .kernel_create_files_as = selinux_kernel_create_files_as,
5596 .kernel_module_request = selinux_kernel_module_request,
5597 .task_setpgid = selinux_task_setpgid,
5598 .task_getpgid = selinux_task_getpgid,
5599 .task_getsid = selinux_task_getsid,
5600 .task_getsecid = selinux_task_getsecid,
5601 .task_setnice = selinux_task_setnice,
5602 .task_setioprio = selinux_task_setioprio,
5603 .task_getioprio = selinux_task_getioprio,
5604 .task_setrlimit = selinux_task_setrlimit,
5605 .task_setscheduler = selinux_task_setscheduler,
5606 .task_getscheduler = selinux_task_getscheduler,
5607 .task_movememory = selinux_task_movememory,
5608 .task_kill = selinux_task_kill,
5609 .task_wait = selinux_task_wait,
5610 .task_to_inode = selinux_task_to_inode,
5611
5612 .ipc_permission = selinux_ipc_permission,
5613 .ipc_getsecid = selinux_ipc_getsecid,
5614
5615 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5616 .msg_msg_free_security = selinux_msg_msg_free_security,
5617
5618 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5619 .msg_queue_free_security = selinux_msg_queue_free_security,
5620 .msg_queue_associate = selinux_msg_queue_associate,
5621 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5622 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5623 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5624
5625 .shm_alloc_security = selinux_shm_alloc_security,
5626 .shm_free_security = selinux_shm_free_security,
5627 .shm_associate = selinux_shm_associate,
5628 .shm_shmctl = selinux_shm_shmctl,
5629 .shm_shmat = selinux_shm_shmat,
5630
5631 .sem_alloc_security = selinux_sem_alloc_security,
5632 .sem_free_security = selinux_sem_free_security,
5633 .sem_associate = selinux_sem_associate,
5634 .sem_semctl = selinux_sem_semctl,
5635 .sem_semop = selinux_sem_semop,
5636
5637 .d_instantiate = selinux_d_instantiate,
5638
5639 .getprocattr = selinux_getprocattr,
5640 .setprocattr = selinux_setprocattr,
5641
5642 .secid_to_secctx = selinux_secid_to_secctx,
5643 .secctx_to_secid = selinux_secctx_to_secid,
5644 .release_secctx = selinux_release_secctx,
5645 .inode_notifysecctx = selinux_inode_notifysecctx,
5646 .inode_setsecctx = selinux_inode_setsecctx,
5647 .inode_getsecctx = selinux_inode_getsecctx,
5648
5649 .unix_stream_connect = selinux_socket_unix_stream_connect,
5650 .unix_may_send = selinux_socket_unix_may_send,
5651
5652 .socket_create = selinux_socket_create,
5653 .socket_post_create = selinux_socket_post_create,
5654 .socket_bind = selinux_socket_bind,
5655 .socket_connect = selinux_socket_connect,
5656 .socket_listen = selinux_socket_listen,
5657 .socket_accept = selinux_socket_accept,
5658 .socket_sendmsg = selinux_socket_sendmsg,
5659 .socket_recvmsg = selinux_socket_recvmsg,
5660 .socket_getsockname = selinux_socket_getsockname,
5661 .socket_getpeername = selinux_socket_getpeername,
5662 .socket_getsockopt = selinux_socket_getsockopt,
5663 .socket_setsockopt = selinux_socket_setsockopt,
5664 .socket_shutdown = selinux_socket_shutdown,
5665 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5666 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5667 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5668 .sk_alloc_security = selinux_sk_alloc_security,
5669 .sk_free_security = selinux_sk_free_security,
5670 .sk_clone_security = selinux_sk_clone_security,
5671 .sk_getsecid = selinux_sk_getsecid,
5672 .sock_graft = selinux_sock_graft,
5673 .inet_conn_request = selinux_inet_conn_request,
5674 .inet_csk_clone = selinux_inet_csk_clone,
5675 .inet_conn_established = selinux_inet_conn_established,
5676 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5677 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5678 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5679 .req_classify_flow = selinux_req_classify_flow,
5680 .tun_dev_create = selinux_tun_dev_create,
5681 .tun_dev_post_create = selinux_tun_dev_post_create,
5682 .tun_dev_attach = selinux_tun_dev_attach,
5683
5684#ifdef CONFIG_SECURITY_NETWORK_XFRM
5685 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5686 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5687 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5688 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5689 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5690 .xfrm_state_free_security = selinux_xfrm_state_free,
5691 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5692 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5693 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5694 .xfrm_decode_session = selinux_xfrm_decode_session,
5695#endif
5696
5697#ifdef CONFIG_KEYS
5698 .key_alloc = selinux_key_alloc,
5699 .key_free = selinux_key_free,
5700 .key_permission = selinux_key_permission,
5701 .key_getsecurity = selinux_key_getsecurity,
5702#endif
5703
5704#ifdef CONFIG_AUDIT
5705 .audit_rule_init = selinux_audit_rule_init,
5706 .audit_rule_known = selinux_audit_rule_known,
5707 .audit_rule_match = selinux_audit_rule_match,
5708 .audit_rule_free = selinux_audit_rule_free,
5709#endif
5710};
5711
5712static __init int selinux_init(void)
5713{
5714 if (!security_module_enable(&selinux_ops)) {
5715 selinux_enabled = 0;
5716 return 0;
5717 }
5718
5719 if (!selinux_enabled) {
5720 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5721 return 0;
5722 }
5723
5724 printk(KERN_INFO "SELinux: Initializing.\n");
5725
5726 /* Set the security state for the initial task. */
5727 cred_init_security();
5728
5729 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5730
5731 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5732 sizeof(struct inode_security_struct),
5733 0, SLAB_PANIC, NULL);
5734 avc_init();
5735
5736 if (register_security(&selinux_ops))
5737 panic("SELinux: Unable to register with kernel.\n");
5738
5739 if (selinux_enforcing)
5740 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5741 else
5742 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5743
5744 return 0;
5745}
5746
5747static void delayed_superblock_init(struct super_block *sb, void *unused)
5748{
5749 superblock_doinit(sb, NULL);
5750}
5751
5752void selinux_complete_init(void)
5753{
5754 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5755
5756 /* Set up any superblocks initialized prior to the policy load. */
5757 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5758 iterate_supers(delayed_superblock_init, NULL);
5759}
5760
5761/* SELinux requires early initialization in order to label
5762 all processes and objects when they are created. */
5763security_initcall(selinux_init);
5764
5765#if defined(CONFIG_NETFILTER)
5766
5767static struct nf_hook_ops selinux_ipv4_ops[] = {
5768 {
5769 .hook = selinux_ipv4_postroute,
5770 .owner = THIS_MODULE,
5771 .pf = PF_INET,
5772 .hooknum = NF_INET_POST_ROUTING,
5773 .priority = NF_IP_PRI_SELINUX_LAST,
5774 },
5775 {
5776 .hook = selinux_ipv4_forward,
5777 .owner = THIS_MODULE,
5778 .pf = PF_INET,
5779 .hooknum = NF_INET_FORWARD,
5780 .priority = NF_IP_PRI_SELINUX_FIRST,
5781 },
5782 {
5783 .hook = selinux_ipv4_output,
5784 .owner = THIS_MODULE,
5785 .pf = PF_INET,
5786 .hooknum = NF_INET_LOCAL_OUT,
5787 .priority = NF_IP_PRI_SELINUX_FIRST,
5788 }
5789};
5790
5791#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5792
5793static struct nf_hook_ops selinux_ipv6_ops[] = {
5794 {
5795 .hook = selinux_ipv6_postroute,
5796 .owner = THIS_MODULE,
5797 .pf = PF_INET6,
5798 .hooknum = NF_INET_POST_ROUTING,
5799 .priority = NF_IP6_PRI_SELINUX_LAST,
5800 },
5801 {
5802 .hook = selinux_ipv6_forward,
5803 .owner = THIS_MODULE,
5804 .pf = PF_INET6,
5805 .hooknum = NF_INET_FORWARD,
5806 .priority = NF_IP6_PRI_SELINUX_FIRST,
5807 }
5808};
5809
5810#endif /* IPV6 */
5811
5812static int __init selinux_nf_ip_init(void)
5813{
5814 int err = 0;
5815
5816 if (!selinux_enabled)
5817 goto out;
5818
5819 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5820
5821 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5822 if (err)
5823 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5824
5825#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5826 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5827 if (err)
5828 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5829#endif /* IPV6 */
5830
5831out:
5832 return err;
5833}
5834
5835__initcall(selinux_nf_ip_init);
5836
5837#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5838static void selinux_nf_ip_exit(void)
5839{
5840 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5841
5842 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5843#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5844 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5845#endif /* IPV6 */
5846}
5847#endif
5848
5849#else /* CONFIG_NETFILTER */
5850
5851#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5852#define selinux_nf_ip_exit()
5853#endif
5854
5855#endif /* CONFIG_NETFILTER */
5856
5857#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5858static int selinux_disabled;
5859
5860int selinux_disable(void)
5861{
5862 if (ss_initialized) {
5863 /* Not permitted after initial policy load. */
5864 return -EINVAL;
5865 }
5866
5867 if (selinux_disabled) {
5868 /* Only do this once. */
5869 return -EINVAL;
5870 }
5871
5872 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5873
5874 selinux_disabled = 1;
5875 selinux_enabled = 0;
5876
5877 reset_security_ops();
5878
5879 /* Try to destroy the avc node cache */
5880 avc_disable();
5881
5882 /* Unregister netfilter hooks. */
5883 selinux_nf_ip_exit();
5884
5885 /* Unregister selinuxfs. */
5886 exit_sel_fs();
5887
5888 return 0;
5889}
5890#endif