Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * srmmu.c: SRMMU specific routines for memory management.
4 *
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10 */
11
12#include <linux/seq_file.h>
13#include <linux/spinlock.h>
14#include <linux/bootmem.h>
15#include <linux/pagemap.h>
16#include <linux/vmalloc.h>
17#include <linux/kdebug.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/init.h>
21#include <linux/log2.h>
22#include <linux/gfp.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25
26#include <asm/mmu_context.h>
27#include <asm/cacheflush.h>
28#include <asm/tlbflush.h>
29#include <asm/io-unit.h>
30#include <asm/pgalloc.h>
31#include <asm/pgtable.h>
32#include <asm/bitext.h>
33#include <asm/vaddrs.h>
34#include <asm/cache.h>
35#include <asm/traps.h>
36#include <asm/oplib.h>
37#include <asm/mbus.h>
38#include <asm/page.h>
39#include <asm/asi.h>
40#include <asm/msi.h>
41#include <asm/smp.h>
42#include <asm/io.h>
43
44/* Now the cpu specific definitions. */
45#include <asm/turbosparc.h>
46#include <asm/tsunami.h>
47#include <asm/viking.h>
48#include <asm/swift.h>
49#include <asm/leon.h>
50#include <asm/mxcc.h>
51#include <asm/ross.h>
52
53#include "mm_32.h"
54
55enum mbus_module srmmu_modtype;
56static unsigned int hwbug_bitmask;
57int vac_cache_size;
58EXPORT_SYMBOL(vac_cache_size);
59int vac_line_size;
60
61extern struct resource sparc_iomap;
62
63extern unsigned long last_valid_pfn;
64
65static pgd_t *srmmu_swapper_pg_dir;
66
67const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
68EXPORT_SYMBOL(sparc32_cachetlb_ops);
69
70#ifdef CONFIG_SMP
71const struct sparc32_cachetlb_ops *local_ops;
72
73#define FLUSH_BEGIN(mm)
74#define FLUSH_END
75#else
76#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77#define FLUSH_END }
78#endif
79
80int flush_page_for_dma_global = 1;
81
82char *srmmu_name;
83
84ctxd_t *srmmu_ctx_table_phys;
85static ctxd_t *srmmu_context_table;
86
87int viking_mxcc_present;
88static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
90static int is_hypersparc;
91
92static int srmmu_cache_pagetables;
93
94/* these will be initialized in srmmu_nocache_calcsize() */
95static unsigned long srmmu_nocache_size;
96static unsigned long srmmu_nocache_end;
97
98/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100
101/* The context table is a nocache user with the biggest alignment needs. */
102#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103
104void *srmmu_nocache_pool;
105static struct bit_map srmmu_nocache_map;
106
107static inline int srmmu_pmd_none(pmd_t pmd)
108{ return !(pmd_val(pmd) & 0xFFFFFFF); }
109
110/* XXX should we hyper_flush_whole_icache here - Anton */
111static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
112{
113 pte_t pte;
114
115 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
116 set_pte((pte_t *)ctxp, pte);
117}
118
119void pmd_set(pmd_t *pmdp, pte_t *ptep)
120{
121 unsigned long ptp; /* Physical address, shifted right by 4 */
122 int i;
123
124 ptp = __nocache_pa(ptep) >> 4;
125 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
126 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
127 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
128 }
129}
130
131void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
132{
133 unsigned long ptp; /* Physical address, shifted right by 4 */
134 int i;
135
136 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
137 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
138 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
139 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
140 }
141}
142
143/* Find an entry in the third-level page table.. */
144pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
145{
146 void *pte;
147
148 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
149 return (pte_t *) pte +
150 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
151}
152
153/*
154 * size: bytes to allocate in the nocache area.
155 * align: bytes, number to align at.
156 * Returns the virtual address of the allocated area.
157 */
158static void *__srmmu_get_nocache(int size, int align)
159{
160 int offset;
161 unsigned long addr;
162
163 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
164 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
165 size);
166 size = SRMMU_NOCACHE_BITMAP_SHIFT;
167 }
168 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
169 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
170 size);
171 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
172 }
173 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
174
175 offset = bit_map_string_get(&srmmu_nocache_map,
176 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
177 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
178 if (offset == -1) {
179 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
180 size, (int) srmmu_nocache_size,
181 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
182 return NULL;
183 }
184
185 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
186 return (void *)addr;
187}
188
189void *srmmu_get_nocache(int size, int align)
190{
191 void *tmp;
192
193 tmp = __srmmu_get_nocache(size, align);
194
195 if (tmp)
196 memset(tmp, 0, size);
197
198 return tmp;
199}
200
201void srmmu_free_nocache(void *addr, int size)
202{
203 unsigned long vaddr;
204 int offset;
205
206 vaddr = (unsigned long)addr;
207 if (vaddr < SRMMU_NOCACHE_VADDR) {
208 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
209 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
210 BUG();
211 }
212 if (vaddr + size > srmmu_nocache_end) {
213 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
214 vaddr, srmmu_nocache_end);
215 BUG();
216 }
217 if (!is_power_of_2(size)) {
218 printk("Size 0x%x is not a power of 2\n", size);
219 BUG();
220 }
221 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
222 printk("Size 0x%x is too small\n", size);
223 BUG();
224 }
225 if (vaddr & (size - 1)) {
226 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
227 BUG();
228 }
229
230 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
231 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
232
233 bit_map_clear(&srmmu_nocache_map, offset, size);
234}
235
236static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
237 unsigned long end);
238
239/* Return how much physical memory we have. */
240static unsigned long __init probe_memory(void)
241{
242 unsigned long total = 0;
243 int i;
244
245 for (i = 0; sp_banks[i].num_bytes; i++)
246 total += sp_banks[i].num_bytes;
247
248 return total;
249}
250
251/*
252 * Reserve nocache dynamically proportionally to the amount of
253 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
254 */
255static void __init srmmu_nocache_calcsize(void)
256{
257 unsigned long sysmemavail = probe_memory() / 1024;
258 int srmmu_nocache_npages;
259
260 srmmu_nocache_npages =
261 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
262
263 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
264 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
265 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
266 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
267
268 /* anything above 1280 blows up */
269 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
270 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
271
272 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
273 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
274}
275
276static void __init srmmu_nocache_init(void)
277{
278 void *srmmu_nocache_bitmap;
279 unsigned int bitmap_bits;
280 pgd_t *pgd;
281 pmd_t *pmd;
282 pte_t *pte;
283 unsigned long paddr, vaddr;
284 unsigned long pteval;
285
286 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
287
288 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
289 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
290 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
291
292 srmmu_nocache_bitmap =
293 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
294 SMP_CACHE_BYTES, 0UL);
295 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
296
297 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
298 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
299 init_mm.pgd = srmmu_swapper_pg_dir;
300
301 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
302
303 paddr = __pa((unsigned long)srmmu_nocache_pool);
304 vaddr = SRMMU_NOCACHE_VADDR;
305
306 while (vaddr < srmmu_nocache_end) {
307 pgd = pgd_offset_k(vaddr);
308 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
309 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
310
311 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
312
313 if (srmmu_cache_pagetables)
314 pteval |= SRMMU_CACHE;
315
316 set_pte(__nocache_fix(pte), __pte(pteval));
317
318 vaddr += PAGE_SIZE;
319 paddr += PAGE_SIZE;
320 }
321
322 flush_cache_all();
323 flush_tlb_all();
324}
325
326pgd_t *get_pgd_fast(void)
327{
328 pgd_t *pgd = NULL;
329
330 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
331 if (pgd) {
332 pgd_t *init = pgd_offset_k(0);
333 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
334 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
335 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
336 }
337
338 return pgd;
339}
340
341/*
342 * Hardware needs alignment to 256 only, but we align to whole page size
343 * to reduce fragmentation problems due to the buddy principle.
344 * XXX Provide actual fragmentation statistics in /proc.
345 *
346 * Alignments up to the page size are the same for physical and virtual
347 * addresses of the nocache area.
348 */
349pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
350{
351 unsigned long pte;
352 struct page *page;
353
354 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
355 return NULL;
356 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
357 if (!pgtable_page_ctor(page)) {
358 __free_page(page);
359 return NULL;
360 }
361 return page;
362}
363
364void pte_free(struct mm_struct *mm, pgtable_t pte)
365{
366 unsigned long p;
367
368 pgtable_page_dtor(pte);
369 p = (unsigned long)page_address(pte); /* Cached address (for test) */
370 if (p == 0)
371 BUG();
372 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
373
374 /* free non cached virtual address*/
375 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
376}
377
378/* context handling - a dynamically sized pool is used */
379#define NO_CONTEXT -1
380
381struct ctx_list {
382 struct ctx_list *next;
383 struct ctx_list *prev;
384 unsigned int ctx_number;
385 struct mm_struct *ctx_mm;
386};
387
388static struct ctx_list *ctx_list_pool;
389static struct ctx_list ctx_free;
390static struct ctx_list ctx_used;
391
392/* At boot time we determine the number of contexts */
393static int num_contexts;
394
395static inline void remove_from_ctx_list(struct ctx_list *entry)
396{
397 entry->next->prev = entry->prev;
398 entry->prev->next = entry->next;
399}
400
401static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
402{
403 entry->next = head;
404 (entry->prev = head->prev)->next = entry;
405 head->prev = entry;
406}
407#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
408#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
409
410
411static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
412{
413 struct ctx_list *ctxp;
414
415 ctxp = ctx_free.next;
416 if (ctxp != &ctx_free) {
417 remove_from_ctx_list(ctxp);
418 add_to_used_ctxlist(ctxp);
419 mm->context = ctxp->ctx_number;
420 ctxp->ctx_mm = mm;
421 return;
422 }
423 ctxp = ctx_used.next;
424 if (ctxp->ctx_mm == old_mm)
425 ctxp = ctxp->next;
426 if (ctxp == &ctx_used)
427 panic("out of mmu contexts");
428 flush_cache_mm(ctxp->ctx_mm);
429 flush_tlb_mm(ctxp->ctx_mm);
430 remove_from_ctx_list(ctxp);
431 add_to_used_ctxlist(ctxp);
432 ctxp->ctx_mm->context = NO_CONTEXT;
433 ctxp->ctx_mm = mm;
434 mm->context = ctxp->ctx_number;
435}
436
437static inline void free_context(int context)
438{
439 struct ctx_list *ctx_old;
440
441 ctx_old = ctx_list_pool + context;
442 remove_from_ctx_list(ctx_old);
443 add_to_free_ctxlist(ctx_old);
444}
445
446static void __init sparc_context_init(int numctx)
447{
448 int ctx;
449 unsigned long size;
450
451 size = numctx * sizeof(struct ctx_list);
452 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
453
454 for (ctx = 0; ctx < numctx; ctx++) {
455 struct ctx_list *clist;
456
457 clist = (ctx_list_pool + ctx);
458 clist->ctx_number = ctx;
459 clist->ctx_mm = NULL;
460 }
461 ctx_free.next = ctx_free.prev = &ctx_free;
462 ctx_used.next = ctx_used.prev = &ctx_used;
463 for (ctx = 0; ctx < numctx; ctx++)
464 add_to_free_ctxlist(ctx_list_pool + ctx);
465}
466
467void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
468 struct task_struct *tsk)
469{
470 unsigned long flags;
471
472 if (mm->context == NO_CONTEXT) {
473 spin_lock_irqsave(&srmmu_context_spinlock, flags);
474 alloc_context(old_mm, mm);
475 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
476 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
477 }
478
479 if (sparc_cpu_model == sparc_leon)
480 leon_switch_mm();
481
482 if (is_hypersparc)
483 hyper_flush_whole_icache();
484
485 srmmu_set_context(mm->context);
486}
487
488/* Low level IO area allocation on the SRMMU. */
489static inline void srmmu_mapioaddr(unsigned long physaddr,
490 unsigned long virt_addr, int bus_type)
491{
492 pgd_t *pgdp;
493 pmd_t *pmdp;
494 pte_t *ptep;
495 unsigned long tmp;
496
497 physaddr &= PAGE_MASK;
498 pgdp = pgd_offset_k(virt_addr);
499 pmdp = pmd_offset(pgdp, virt_addr);
500 ptep = pte_offset_kernel(pmdp, virt_addr);
501 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
502
503 /* I need to test whether this is consistent over all
504 * sun4m's. The bus_type represents the upper 4 bits of
505 * 36-bit physical address on the I/O space lines...
506 */
507 tmp |= (bus_type << 28);
508 tmp |= SRMMU_PRIV;
509 __flush_page_to_ram(virt_addr);
510 set_pte(ptep, __pte(tmp));
511}
512
513void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
514 unsigned long xva, unsigned int len)
515{
516 while (len != 0) {
517 len -= PAGE_SIZE;
518 srmmu_mapioaddr(xpa, xva, bus);
519 xva += PAGE_SIZE;
520 xpa += PAGE_SIZE;
521 }
522 flush_tlb_all();
523}
524
525static inline void srmmu_unmapioaddr(unsigned long virt_addr)
526{
527 pgd_t *pgdp;
528 pmd_t *pmdp;
529 pte_t *ptep;
530
531 pgdp = pgd_offset_k(virt_addr);
532 pmdp = pmd_offset(pgdp, virt_addr);
533 ptep = pte_offset_kernel(pmdp, virt_addr);
534
535 /* No need to flush uncacheable page. */
536 __pte_clear(ptep);
537}
538
539void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
540{
541 while (len != 0) {
542 len -= PAGE_SIZE;
543 srmmu_unmapioaddr(virt_addr);
544 virt_addr += PAGE_SIZE;
545 }
546 flush_tlb_all();
547}
548
549/* tsunami.S */
550extern void tsunami_flush_cache_all(void);
551extern void tsunami_flush_cache_mm(struct mm_struct *mm);
552extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
553extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
554extern void tsunami_flush_page_to_ram(unsigned long page);
555extern void tsunami_flush_page_for_dma(unsigned long page);
556extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
557extern void tsunami_flush_tlb_all(void);
558extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
559extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
560extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
561extern void tsunami_setup_blockops(void);
562
563/* swift.S */
564extern void swift_flush_cache_all(void);
565extern void swift_flush_cache_mm(struct mm_struct *mm);
566extern void swift_flush_cache_range(struct vm_area_struct *vma,
567 unsigned long start, unsigned long end);
568extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
569extern void swift_flush_page_to_ram(unsigned long page);
570extern void swift_flush_page_for_dma(unsigned long page);
571extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
572extern void swift_flush_tlb_all(void);
573extern void swift_flush_tlb_mm(struct mm_struct *mm);
574extern void swift_flush_tlb_range(struct vm_area_struct *vma,
575 unsigned long start, unsigned long end);
576extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
577
578#if 0 /* P3: deadwood to debug precise flushes on Swift. */
579void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
580{
581 int cctx, ctx1;
582
583 page &= PAGE_MASK;
584 if ((ctx1 = vma->vm_mm->context) != -1) {
585 cctx = srmmu_get_context();
586/* Is context # ever different from current context? P3 */
587 if (cctx != ctx1) {
588 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
589 srmmu_set_context(ctx1);
590 swift_flush_page(page);
591 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
592 "r" (page), "i" (ASI_M_FLUSH_PROBE));
593 srmmu_set_context(cctx);
594 } else {
595 /* Rm. prot. bits from virt. c. */
596 /* swift_flush_cache_all(); */
597 /* swift_flush_cache_page(vma, page); */
598 swift_flush_page(page);
599
600 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
601 "r" (page), "i" (ASI_M_FLUSH_PROBE));
602 /* same as above: srmmu_flush_tlb_page() */
603 }
604 }
605}
606#endif
607
608/*
609 * The following are all MBUS based SRMMU modules, and therefore could
610 * be found in a multiprocessor configuration. On the whole, these
611 * chips seems to be much more touchy about DVMA and page tables
612 * with respect to cache coherency.
613 */
614
615/* viking.S */
616extern void viking_flush_cache_all(void);
617extern void viking_flush_cache_mm(struct mm_struct *mm);
618extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
619 unsigned long end);
620extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
621extern void viking_flush_page_to_ram(unsigned long page);
622extern void viking_flush_page_for_dma(unsigned long page);
623extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
624extern void viking_flush_page(unsigned long page);
625extern void viking_mxcc_flush_page(unsigned long page);
626extern void viking_flush_tlb_all(void);
627extern void viking_flush_tlb_mm(struct mm_struct *mm);
628extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
629 unsigned long end);
630extern void viking_flush_tlb_page(struct vm_area_struct *vma,
631 unsigned long page);
632extern void sun4dsmp_flush_tlb_all(void);
633extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
634extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
635 unsigned long end);
636extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
637 unsigned long page);
638
639/* hypersparc.S */
640extern void hypersparc_flush_cache_all(void);
641extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
642extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
643extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
644extern void hypersparc_flush_page_to_ram(unsigned long page);
645extern void hypersparc_flush_page_for_dma(unsigned long page);
646extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
647extern void hypersparc_flush_tlb_all(void);
648extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
649extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
650extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
651extern void hypersparc_setup_blockops(void);
652
653/*
654 * NOTE: All of this startup code assumes the low 16mb (approx.) of
655 * kernel mappings are done with one single contiguous chunk of
656 * ram. On small ram machines (classics mainly) we only get
657 * around 8mb mapped for us.
658 */
659
660static void __init early_pgtable_allocfail(char *type)
661{
662 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
663 prom_halt();
664}
665
666static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
667 unsigned long end)
668{
669 pgd_t *pgdp;
670 pmd_t *pmdp;
671 pte_t *ptep;
672
673 while (start < end) {
674 pgdp = pgd_offset_k(start);
675 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
676 pmdp = __srmmu_get_nocache(
677 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
678 if (pmdp == NULL)
679 early_pgtable_allocfail("pmd");
680 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
681 pgd_set(__nocache_fix(pgdp), pmdp);
682 }
683 pmdp = pmd_offset(__nocache_fix(pgdp), start);
684 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
685 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
686 if (ptep == NULL)
687 early_pgtable_allocfail("pte");
688 memset(__nocache_fix(ptep), 0, PTE_SIZE);
689 pmd_set(__nocache_fix(pmdp), ptep);
690 }
691 if (start > (0xffffffffUL - PMD_SIZE))
692 break;
693 start = (start + PMD_SIZE) & PMD_MASK;
694 }
695}
696
697static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
698 unsigned long end)
699{
700 pgd_t *pgdp;
701 pmd_t *pmdp;
702 pte_t *ptep;
703
704 while (start < end) {
705 pgdp = pgd_offset_k(start);
706 if (pgd_none(*pgdp)) {
707 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
708 if (pmdp == NULL)
709 early_pgtable_allocfail("pmd");
710 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
711 pgd_set(pgdp, pmdp);
712 }
713 pmdp = pmd_offset(pgdp, start);
714 if (srmmu_pmd_none(*pmdp)) {
715 ptep = __srmmu_get_nocache(PTE_SIZE,
716 PTE_SIZE);
717 if (ptep == NULL)
718 early_pgtable_allocfail("pte");
719 memset(ptep, 0, PTE_SIZE);
720 pmd_set(pmdp, ptep);
721 }
722 if (start > (0xffffffffUL - PMD_SIZE))
723 break;
724 start = (start + PMD_SIZE) & PMD_MASK;
725 }
726}
727
728/* These flush types are not available on all chips... */
729static inline unsigned long srmmu_probe(unsigned long vaddr)
730{
731 unsigned long retval;
732
733 if (sparc_cpu_model != sparc_leon) {
734
735 vaddr &= PAGE_MASK;
736 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
737 "=r" (retval) :
738 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
739 } else {
740 retval = leon_swprobe(vaddr, NULL);
741 }
742 return retval;
743}
744
745/*
746 * This is much cleaner than poking around physical address space
747 * looking at the prom's page table directly which is what most
748 * other OS's do. Yuck... this is much better.
749 */
750static void __init srmmu_inherit_prom_mappings(unsigned long start,
751 unsigned long end)
752{
753 unsigned long probed;
754 unsigned long addr;
755 pgd_t *pgdp;
756 pmd_t *pmdp;
757 pte_t *ptep;
758 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
759
760 while (start <= end) {
761 if (start == 0)
762 break; /* probably wrap around */
763 if (start == 0xfef00000)
764 start = KADB_DEBUGGER_BEGVM;
765 probed = srmmu_probe(start);
766 if (!probed) {
767 /* continue probing until we find an entry */
768 start += PAGE_SIZE;
769 continue;
770 }
771
772 /* A red snapper, see what it really is. */
773 what = 0;
774 addr = start - PAGE_SIZE;
775
776 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
777 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
778 what = 1;
779 }
780
781 if (!(start & ~(SRMMU_PGDIR_MASK))) {
782 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
783 what = 2;
784 }
785
786 pgdp = pgd_offset_k(start);
787 if (what == 2) {
788 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
789 start += SRMMU_PGDIR_SIZE;
790 continue;
791 }
792 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
793 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
794 SRMMU_PMD_TABLE_SIZE);
795 if (pmdp == NULL)
796 early_pgtable_allocfail("pmd");
797 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
798 pgd_set(__nocache_fix(pgdp), pmdp);
799 }
800 pmdp = pmd_offset(__nocache_fix(pgdp), start);
801 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
802 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
803 if (ptep == NULL)
804 early_pgtable_allocfail("pte");
805 memset(__nocache_fix(ptep), 0, PTE_SIZE);
806 pmd_set(__nocache_fix(pmdp), ptep);
807 }
808 if (what == 1) {
809 /* We bend the rule where all 16 PTPs in a pmd_t point
810 * inside the same PTE page, and we leak a perfectly
811 * good hardware PTE piece. Alternatives seem worse.
812 */
813 unsigned int x; /* Index of HW PMD in soft cluster */
814 unsigned long *val;
815 x = (start >> PMD_SHIFT) & 15;
816 val = &pmdp->pmdv[x];
817 *(unsigned long *)__nocache_fix(val) = probed;
818 start += SRMMU_REAL_PMD_SIZE;
819 continue;
820 }
821 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
822 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
823 start += PAGE_SIZE;
824 }
825}
826
827#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
828
829/* Create a third-level SRMMU 16MB page mapping. */
830static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
831{
832 pgd_t *pgdp = pgd_offset_k(vaddr);
833 unsigned long big_pte;
834
835 big_pte = KERNEL_PTE(phys_base >> 4);
836 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
837}
838
839/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
840static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
841{
842 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
843 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
844 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
845 /* Map "low" memory only */
846 const unsigned long min_vaddr = PAGE_OFFSET;
847 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
848
849 if (vstart < min_vaddr || vstart >= max_vaddr)
850 return vstart;
851
852 if (vend > max_vaddr || vend < min_vaddr)
853 vend = max_vaddr;
854
855 while (vstart < vend) {
856 do_large_mapping(vstart, pstart);
857 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
858 }
859 return vstart;
860}
861
862static void __init map_kernel(void)
863{
864 int i;
865
866 if (phys_base > 0) {
867 do_large_mapping(PAGE_OFFSET, phys_base);
868 }
869
870 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
871 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
872 }
873}
874
875void (*poke_srmmu)(void) = NULL;
876
877void __init srmmu_paging_init(void)
878{
879 int i;
880 phandle cpunode;
881 char node_str[128];
882 pgd_t *pgd;
883 pmd_t *pmd;
884 pte_t *pte;
885 unsigned long pages_avail;
886
887 init_mm.context = (unsigned long) NO_CONTEXT;
888 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
889
890 if (sparc_cpu_model == sun4d)
891 num_contexts = 65536; /* We know it is Viking */
892 else {
893 /* Find the number of contexts on the srmmu. */
894 cpunode = prom_getchild(prom_root_node);
895 num_contexts = 0;
896 while (cpunode != 0) {
897 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
898 if (!strcmp(node_str, "cpu")) {
899 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
900 break;
901 }
902 cpunode = prom_getsibling(cpunode);
903 }
904 }
905
906 if (!num_contexts) {
907 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
908 prom_halt();
909 }
910
911 pages_avail = 0;
912 last_valid_pfn = bootmem_init(&pages_avail);
913
914 srmmu_nocache_calcsize();
915 srmmu_nocache_init();
916 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
917 map_kernel();
918
919 /* ctx table has to be physically aligned to its size */
920 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
921 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
922
923 for (i = 0; i < num_contexts; i++)
924 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
925
926 flush_cache_all();
927 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
928#ifdef CONFIG_SMP
929 /* Stop from hanging here... */
930 local_ops->tlb_all();
931#else
932 flush_tlb_all();
933#endif
934 poke_srmmu();
935
936 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
937 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
938
939 srmmu_allocate_ptable_skeleton(
940 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
941 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
942
943 pgd = pgd_offset_k(PKMAP_BASE);
944 pmd = pmd_offset(pgd, PKMAP_BASE);
945 pte = pte_offset_kernel(pmd, PKMAP_BASE);
946 pkmap_page_table = pte;
947
948 flush_cache_all();
949 flush_tlb_all();
950
951 sparc_context_init(num_contexts);
952
953 kmap_init();
954
955 {
956 unsigned long zones_size[MAX_NR_ZONES];
957 unsigned long zholes_size[MAX_NR_ZONES];
958 unsigned long npages;
959 int znum;
960
961 for (znum = 0; znum < MAX_NR_ZONES; znum++)
962 zones_size[znum] = zholes_size[znum] = 0;
963
964 npages = max_low_pfn - pfn_base;
965
966 zones_size[ZONE_DMA] = npages;
967 zholes_size[ZONE_DMA] = npages - pages_avail;
968
969 npages = highend_pfn - max_low_pfn;
970 zones_size[ZONE_HIGHMEM] = npages;
971 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
972
973 free_area_init_node(0, zones_size, pfn_base, zholes_size);
974 }
975}
976
977void mmu_info(struct seq_file *m)
978{
979 seq_printf(m,
980 "MMU type\t: %s\n"
981 "contexts\t: %d\n"
982 "nocache total\t: %ld\n"
983 "nocache used\t: %d\n",
984 srmmu_name,
985 num_contexts,
986 srmmu_nocache_size,
987 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
988}
989
990int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
991{
992 mm->context = NO_CONTEXT;
993 return 0;
994}
995
996void destroy_context(struct mm_struct *mm)
997{
998 unsigned long flags;
999
1000 if (mm->context != NO_CONTEXT) {
1001 flush_cache_mm(mm);
1002 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1003 flush_tlb_mm(mm);
1004 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1005 free_context(mm->context);
1006 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1007 mm->context = NO_CONTEXT;
1008 }
1009}
1010
1011/* Init various srmmu chip types. */
1012static void __init srmmu_is_bad(void)
1013{
1014 prom_printf("Could not determine SRMMU chip type.\n");
1015 prom_halt();
1016}
1017
1018static void __init init_vac_layout(void)
1019{
1020 phandle nd;
1021 int cache_lines;
1022 char node_str[128];
1023#ifdef CONFIG_SMP
1024 int cpu = 0;
1025 unsigned long max_size = 0;
1026 unsigned long min_line_size = 0x10000000;
1027#endif
1028
1029 nd = prom_getchild(prom_root_node);
1030 while ((nd = prom_getsibling(nd)) != 0) {
1031 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1032 if (!strcmp(node_str, "cpu")) {
1033 vac_line_size = prom_getint(nd, "cache-line-size");
1034 if (vac_line_size == -1) {
1035 prom_printf("can't determine cache-line-size, halting.\n");
1036 prom_halt();
1037 }
1038 cache_lines = prom_getint(nd, "cache-nlines");
1039 if (cache_lines == -1) {
1040 prom_printf("can't determine cache-nlines, halting.\n");
1041 prom_halt();
1042 }
1043
1044 vac_cache_size = cache_lines * vac_line_size;
1045#ifdef CONFIG_SMP
1046 if (vac_cache_size > max_size)
1047 max_size = vac_cache_size;
1048 if (vac_line_size < min_line_size)
1049 min_line_size = vac_line_size;
1050 //FIXME: cpus not contiguous!!
1051 cpu++;
1052 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1053 break;
1054#else
1055 break;
1056#endif
1057 }
1058 }
1059 if (nd == 0) {
1060 prom_printf("No CPU nodes found, halting.\n");
1061 prom_halt();
1062 }
1063#ifdef CONFIG_SMP
1064 vac_cache_size = max_size;
1065 vac_line_size = min_line_size;
1066#endif
1067 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1068 (int)vac_cache_size, (int)vac_line_size);
1069}
1070
1071static void poke_hypersparc(void)
1072{
1073 volatile unsigned long clear;
1074 unsigned long mreg = srmmu_get_mmureg();
1075
1076 hyper_flush_unconditional_combined();
1077
1078 mreg &= ~(HYPERSPARC_CWENABLE);
1079 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1080 mreg |= (HYPERSPARC_CMODE);
1081
1082 srmmu_set_mmureg(mreg);
1083
1084#if 0 /* XXX I think this is bad news... -DaveM */
1085 hyper_clear_all_tags();
1086#endif
1087
1088 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1089 hyper_flush_whole_icache();
1090 clear = srmmu_get_faddr();
1091 clear = srmmu_get_fstatus();
1092}
1093
1094static const struct sparc32_cachetlb_ops hypersparc_ops = {
1095 .cache_all = hypersparc_flush_cache_all,
1096 .cache_mm = hypersparc_flush_cache_mm,
1097 .cache_page = hypersparc_flush_cache_page,
1098 .cache_range = hypersparc_flush_cache_range,
1099 .tlb_all = hypersparc_flush_tlb_all,
1100 .tlb_mm = hypersparc_flush_tlb_mm,
1101 .tlb_page = hypersparc_flush_tlb_page,
1102 .tlb_range = hypersparc_flush_tlb_range,
1103 .page_to_ram = hypersparc_flush_page_to_ram,
1104 .sig_insns = hypersparc_flush_sig_insns,
1105 .page_for_dma = hypersparc_flush_page_for_dma,
1106};
1107
1108static void __init init_hypersparc(void)
1109{
1110 srmmu_name = "ROSS HyperSparc";
1111 srmmu_modtype = HyperSparc;
1112
1113 init_vac_layout();
1114
1115 is_hypersparc = 1;
1116 sparc32_cachetlb_ops = &hypersparc_ops;
1117
1118 poke_srmmu = poke_hypersparc;
1119
1120 hypersparc_setup_blockops();
1121}
1122
1123static void poke_swift(void)
1124{
1125 unsigned long mreg;
1126
1127 /* Clear any crap from the cache or else... */
1128 swift_flush_cache_all();
1129
1130 /* Enable I & D caches */
1131 mreg = srmmu_get_mmureg();
1132 mreg |= (SWIFT_IE | SWIFT_DE);
1133 /*
1134 * The Swift branch folding logic is completely broken. At
1135 * trap time, if things are just right, if can mistakenly
1136 * think that a trap is coming from kernel mode when in fact
1137 * it is coming from user mode (it mis-executes the branch in
1138 * the trap code). So you see things like crashme completely
1139 * hosing your machine which is completely unacceptable. Turn
1140 * this shit off... nice job Fujitsu.
1141 */
1142 mreg &= ~(SWIFT_BF);
1143 srmmu_set_mmureg(mreg);
1144}
1145
1146static const struct sparc32_cachetlb_ops swift_ops = {
1147 .cache_all = swift_flush_cache_all,
1148 .cache_mm = swift_flush_cache_mm,
1149 .cache_page = swift_flush_cache_page,
1150 .cache_range = swift_flush_cache_range,
1151 .tlb_all = swift_flush_tlb_all,
1152 .tlb_mm = swift_flush_tlb_mm,
1153 .tlb_page = swift_flush_tlb_page,
1154 .tlb_range = swift_flush_tlb_range,
1155 .page_to_ram = swift_flush_page_to_ram,
1156 .sig_insns = swift_flush_sig_insns,
1157 .page_for_dma = swift_flush_page_for_dma,
1158};
1159
1160#define SWIFT_MASKID_ADDR 0x10003018
1161static void __init init_swift(void)
1162{
1163 unsigned long swift_rev;
1164
1165 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1166 "srl %0, 0x18, %0\n\t" :
1167 "=r" (swift_rev) :
1168 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1169 srmmu_name = "Fujitsu Swift";
1170 switch (swift_rev) {
1171 case 0x11:
1172 case 0x20:
1173 case 0x23:
1174 case 0x30:
1175 srmmu_modtype = Swift_lots_o_bugs;
1176 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1177 /*
1178 * Gee george, I wonder why Sun is so hush hush about
1179 * this hardware bug... really braindamage stuff going
1180 * on here. However I think we can find a way to avoid
1181 * all of the workaround overhead under Linux. Basically,
1182 * any page fault can cause kernel pages to become user
1183 * accessible (the mmu gets confused and clears some of
1184 * the ACC bits in kernel ptes). Aha, sounds pretty
1185 * horrible eh? But wait, after extensive testing it appears
1186 * that if you use pgd_t level large kernel pte's (like the
1187 * 4MB pages on the Pentium) the bug does not get tripped
1188 * at all. This avoids almost all of the major overhead.
1189 * Welcome to a world where your vendor tells you to,
1190 * "apply this kernel patch" instead of "sorry for the
1191 * broken hardware, send it back and we'll give you
1192 * properly functioning parts"
1193 */
1194 break;
1195 case 0x25:
1196 case 0x31:
1197 srmmu_modtype = Swift_bad_c;
1198 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1199 /*
1200 * You see Sun allude to this hardware bug but never
1201 * admit things directly, they'll say things like,
1202 * "the Swift chip cache problems" or similar.
1203 */
1204 break;
1205 default:
1206 srmmu_modtype = Swift_ok;
1207 break;
1208 }
1209
1210 sparc32_cachetlb_ops = &swift_ops;
1211 flush_page_for_dma_global = 0;
1212
1213 /*
1214 * Are you now convinced that the Swift is one of the
1215 * biggest VLSI abortions of all time? Bravo Fujitsu!
1216 * Fujitsu, the !#?!%$'d up processor people. I bet if
1217 * you examined the microcode of the Swift you'd find
1218 * XXX's all over the place.
1219 */
1220 poke_srmmu = poke_swift;
1221}
1222
1223static void turbosparc_flush_cache_all(void)
1224{
1225 flush_user_windows();
1226 turbosparc_idflash_clear();
1227}
1228
1229static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1230{
1231 FLUSH_BEGIN(mm)
1232 flush_user_windows();
1233 turbosparc_idflash_clear();
1234 FLUSH_END
1235}
1236
1237static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1238{
1239 FLUSH_BEGIN(vma->vm_mm)
1240 flush_user_windows();
1241 turbosparc_idflash_clear();
1242 FLUSH_END
1243}
1244
1245static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1246{
1247 FLUSH_BEGIN(vma->vm_mm)
1248 flush_user_windows();
1249 if (vma->vm_flags & VM_EXEC)
1250 turbosparc_flush_icache();
1251 turbosparc_flush_dcache();
1252 FLUSH_END
1253}
1254
1255/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1256static void turbosparc_flush_page_to_ram(unsigned long page)
1257{
1258#ifdef TURBOSPARC_WRITEBACK
1259 volatile unsigned long clear;
1260
1261 if (srmmu_probe(page))
1262 turbosparc_flush_page_cache(page);
1263 clear = srmmu_get_fstatus();
1264#endif
1265}
1266
1267static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1268{
1269}
1270
1271static void turbosparc_flush_page_for_dma(unsigned long page)
1272{
1273 turbosparc_flush_dcache();
1274}
1275
1276static void turbosparc_flush_tlb_all(void)
1277{
1278 srmmu_flush_whole_tlb();
1279}
1280
1281static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1282{
1283 FLUSH_BEGIN(mm)
1284 srmmu_flush_whole_tlb();
1285 FLUSH_END
1286}
1287
1288static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1289{
1290 FLUSH_BEGIN(vma->vm_mm)
1291 srmmu_flush_whole_tlb();
1292 FLUSH_END
1293}
1294
1295static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1296{
1297 FLUSH_BEGIN(vma->vm_mm)
1298 srmmu_flush_whole_tlb();
1299 FLUSH_END
1300}
1301
1302
1303static void poke_turbosparc(void)
1304{
1305 unsigned long mreg = srmmu_get_mmureg();
1306 unsigned long ccreg;
1307
1308 /* Clear any crap from the cache or else... */
1309 turbosparc_flush_cache_all();
1310 /* Temporarily disable I & D caches */
1311 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1312 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1313 srmmu_set_mmureg(mreg);
1314
1315 ccreg = turbosparc_get_ccreg();
1316
1317#ifdef TURBOSPARC_WRITEBACK
1318 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1319 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1320 /* Write-back D-cache, emulate VLSI
1321 * abortion number three, not number one */
1322#else
1323 /* For now let's play safe, optimize later */
1324 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1325 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1326 ccreg &= ~(TURBOSPARC_uS2);
1327 /* Emulate VLSI abortion number three, not number one */
1328#endif
1329
1330 switch (ccreg & 7) {
1331 case 0: /* No SE cache */
1332 case 7: /* Test mode */
1333 break;
1334 default:
1335 ccreg |= (TURBOSPARC_SCENABLE);
1336 }
1337 turbosparc_set_ccreg(ccreg);
1338
1339 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1340 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1341 srmmu_set_mmureg(mreg);
1342}
1343
1344static const struct sparc32_cachetlb_ops turbosparc_ops = {
1345 .cache_all = turbosparc_flush_cache_all,
1346 .cache_mm = turbosparc_flush_cache_mm,
1347 .cache_page = turbosparc_flush_cache_page,
1348 .cache_range = turbosparc_flush_cache_range,
1349 .tlb_all = turbosparc_flush_tlb_all,
1350 .tlb_mm = turbosparc_flush_tlb_mm,
1351 .tlb_page = turbosparc_flush_tlb_page,
1352 .tlb_range = turbosparc_flush_tlb_range,
1353 .page_to_ram = turbosparc_flush_page_to_ram,
1354 .sig_insns = turbosparc_flush_sig_insns,
1355 .page_for_dma = turbosparc_flush_page_for_dma,
1356};
1357
1358static void __init init_turbosparc(void)
1359{
1360 srmmu_name = "Fujitsu TurboSparc";
1361 srmmu_modtype = TurboSparc;
1362 sparc32_cachetlb_ops = &turbosparc_ops;
1363 poke_srmmu = poke_turbosparc;
1364}
1365
1366static void poke_tsunami(void)
1367{
1368 unsigned long mreg = srmmu_get_mmureg();
1369
1370 tsunami_flush_icache();
1371 tsunami_flush_dcache();
1372 mreg &= ~TSUNAMI_ITD;
1373 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1374 srmmu_set_mmureg(mreg);
1375}
1376
1377static const struct sparc32_cachetlb_ops tsunami_ops = {
1378 .cache_all = tsunami_flush_cache_all,
1379 .cache_mm = tsunami_flush_cache_mm,
1380 .cache_page = tsunami_flush_cache_page,
1381 .cache_range = tsunami_flush_cache_range,
1382 .tlb_all = tsunami_flush_tlb_all,
1383 .tlb_mm = tsunami_flush_tlb_mm,
1384 .tlb_page = tsunami_flush_tlb_page,
1385 .tlb_range = tsunami_flush_tlb_range,
1386 .page_to_ram = tsunami_flush_page_to_ram,
1387 .sig_insns = tsunami_flush_sig_insns,
1388 .page_for_dma = tsunami_flush_page_for_dma,
1389};
1390
1391static void __init init_tsunami(void)
1392{
1393 /*
1394 * Tsunami's pretty sane, Sun and TI actually got it
1395 * somewhat right this time. Fujitsu should have
1396 * taken some lessons from them.
1397 */
1398
1399 srmmu_name = "TI Tsunami";
1400 srmmu_modtype = Tsunami;
1401 sparc32_cachetlb_ops = &tsunami_ops;
1402 poke_srmmu = poke_tsunami;
1403
1404 tsunami_setup_blockops();
1405}
1406
1407static void poke_viking(void)
1408{
1409 unsigned long mreg = srmmu_get_mmureg();
1410 static int smp_catch;
1411
1412 if (viking_mxcc_present) {
1413 unsigned long mxcc_control = mxcc_get_creg();
1414
1415 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1416 mxcc_control &= ~(MXCC_CTL_RRC);
1417 mxcc_set_creg(mxcc_control);
1418
1419 /*
1420 * We don't need memory parity checks.
1421 * XXX This is a mess, have to dig out later. ecd.
1422 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1423 */
1424
1425 /* We do cache ptables on MXCC. */
1426 mreg |= VIKING_TCENABLE;
1427 } else {
1428 unsigned long bpreg;
1429
1430 mreg &= ~(VIKING_TCENABLE);
1431 if (smp_catch++) {
1432 /* Must disable mixed-cmd mode here for other cpu's. */
1433 bpreg = viking_get_bpreg();
1434 bpreg &= ~(VIKING_ACTION_MIX);
1435 viking_set_bpreg(bpreg);
1436
1437 /* Just in case PROM does something funny. */
1438 msi_set_sync();
1439 }
1440 }
1441
1442 mreg |= VIKING_SPENABLE;
1443 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1444 mreg |= VIKING_SBENABLE;
1445 mreg &= ~(VIKING_ACENABLE);
1446 srmmu_set_mmureg(mreg);
1447}
1448
1449static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1450 .cache_all = viking_flush_cache_all,
1451 .cache_mm = viking_flush_cache_mm,
1452 .cache_page = viking_flush_cache_page,
1453 .cache_range = viking_flush_cache_range,
1454 .tlb_all = viking_flush_tlb_all,
1455 .tlb_mm = viking_flush_tlb_mm,
1456 .tlb_page = viking_flush_tlb_page,
1457 .tlb_range = viking_flush_tlb_range,
1458 .page_to_ram = viking_flush_page_to_ram,
1459 .sig_insns = viking_flush_sig_insns,
1460 .page_for_dma = viking_flush_page_for_dma,
1461};
1462
1463#ifdef CONFIG_SMP
1464/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1465 * perform the local TLB flush and all the other cpus will see it.
1466 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1467 * that requires that we add some synchronization to these flushes.
1468 *
1469 * The bug is that the fifo which keeps track of all the pending TLB
1470 * broadcasts in the system is an entry or two too small, so if we
1471 * have too many going at once we'll overflow that fifo and lose a TLB
1472 * flush resulting in corruption.
1473 *
1474 * Our workaround is to take a global spinlock around the TLB flushes,
1475 * which guarentees we won't ever have too many pending. It's a big
1476 * hammer, but a semaphore like system to make sure we only have N TLB
1477 * flushes going at once will require SMP locking anyways so there's
1478 * no real value in trying any harder than this.
1479 */
1480static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1481 .cache_all = viking_flush_cache_all,
1482 .cache_mm = viking_flush_cache_mm,
1483 .cache_page = viking_flush_cache_page,
1484 .cache_range = viking_flush_cache_range,
1485 .tlb_all = sun4dsmp_flush_tlb_all,
1486 .tlb_mm = sun4dsmp_flush_tlb_mm,
1487 .tlb_page = sun4dsmp_flush_tlb_page,
1488 .tlb_range = sun4dsmp_flush_tlb_range,
1489 .page_to_ram = viking_flush_page_to_ram,
1490 .sig_insns = viking_flush_sig_insns,
1491 .page_for_dma = viking_flush_page_for_dma,
1492};
1493#endif
1494
1495static void __init init_viking(void)
1496{
1497 unsigned long mreg = srmmu_get_mmureg();
1498
1499 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1500 if (mreg & VIKING_MMODE) {
1501 srmmu_name = "TI Viking";
1502 viking_mxcc_present = 0;
1503 msi_set_sync();
1504
1505 /*
1506 * We need this to make sure old viking takes no hits
1507 * on it's cache for dma snoops to workaround the
1508 * "load from non-cacheable memory" interrupt bug.
1509 * This is only necessary because of the new way in
1510 * which we use the IOMMU.
1511 */
1512 viking_ops.page_for_dma = viking_flush_page;
1513#ifdef CONFIG_SMP
1514 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1515#endif
1516 flush_page_for_dma_global = 0;
1517 } else {
1518 srmmu_name = "TI Viking/MXCC";
1519 viking_mxcc_present = 1;
1520 srmmu_cache_pagetables = 1;
1521 }
1522
1523 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1524 &viking_ops;
1525#ifdef CONFIG_SMP
1526 if (sparc_cpu_model == sun4d)
1527 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1528 &viking_sun4d_smp_ops;
1529#endif
1530
1531 poke_srmmu = poke_viking;
1532}
1533
1534/* Probe for the srmmu chip version. */
1535static void __init get_srmmu_type(void)
1536{
1537 unsigned long mreg, psr;
1538 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1539
1540 srmmu_modtype = SRMMU_INVAL_MOD;
1541 hwbug_bitmask = 0;
1542
1543 mreg = srmmu_get_mmureg(); psr = get_psr();
1544 mod_typ = (mreg & 0xf0000000) >> 28;
1545 mod_rev = (mreg & 0x0f000000) >> 24;
1546 psr_typ = (psr >> 28) & 0xf;
1547 psr_vers = (psr >> 24) & 0xf;
1548
1549 /* First, check for sparc-leon. */
1550 if (sparc_cpu_model == sparc_leon) {
1551 init_leon();
1552 return;
1553 }
1554
1555 /* Second, check for HyperSparc or Cypress. */
1556 if (mod_typ == 1) {
1557 switch (mod_rev) {
1558 case 7:
1559 /* UP or MP Hypersparc */
1560 init_hypersparc();
1561 break;
1562 case 0:
1563 case 2:
1564 case 10:
1565 case 11:
1566 case 12:
1567 case 13:
1568 case 14:
1569 case 15:
1570 default:
1571 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1572 prom_halt();
1573 break;
1574 }
1575 return;
1576 }
1577
1578 /* Now Fujitsu TurboSparc. It might happen that it is
1579 * in Swift emulation mode, so we will check later...
1580 */
1581 if (psr_typ == 0 && psr_vers == 5) {
1582 init_turbosparc();
1583 return;
1584 }
1585
1586 /* Next check for Fujitsu Swift. */
1587 if (psr_typ == 0 && psr_vers == 4) {
1588 phandle cpunode;
1589 char node_str[128];
1590
1591 /* Look if it is not a TurboSparc emulating Swift... */
1592 cpunode = prom_getchild(prom_root_node);
1593 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1594 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1595 if (!strcmp(node_str, "cpu")) {
1596 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1597 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1598 init_turbosparc();
1599 return;
1600 }
1601 break;
1602 }
1603 }
1604
1605 init_swift();
1606 return;
1607 }
1608
1609 /* Now the Viking family of srmmu. */
1610 if (psr_typ == 4 &&
1611 ((psr_vers == 0) ||
1612 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1613 init_viking();
1614 return;
1615 }
1616
1617 /* Finally the Tsunami. */
1618 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1619 init_tsunami();
1620 return;
1621 }
1622
1623 /* Oh well */
1624 srmmu_is_bad();
1625}
1626
1627#ifdef CONFIG_SMP
1628/* Local cross-calls. */
1629static void smp_flush_page_for_dma(unsigned long page)
1630{
1631 xc1((smpfunc_t) local_ops->page_for_dma, page);
1632 local_ops->page_for_dma(page);
1633}
1634
1635static void smp_flush_cache_all(void)
1636{
1637 xc0((smpfunc_t) local_ops->cache_all);
1638 local_ops->cache_all();
1639}
1640
1641static void smp_flush_tlb_all(void)
1642{
1643 xc0((smpfunc_t) local_ops->tlb_all);
1644 local_ops->tlb_all();
1645}
1646
1647static void smp_flush_cache_mm(struct mm_struct *mm)
1648{
1649 if (mm->context != NO_CONTEXT) {
1650 cpumask_t cpu_mask;
1651 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1652 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1653 if (!cpumask_empty(&cpu_mask))
1654 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1655 local_ops->cache_mm(mm);
1656 }
1657}
1658
1659static void smp_flush_tlb_mm(struct mm_struct *mm)
1660{
1661 if (mm->context != NO_CONTEXT) {
1662 cpumask_t cpu_mask;
1663 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1664 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1665 if (!cpumask_empty(&cpu_mask)) {
1666 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1667 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1668 cpumask_copy(mm_cpumask(mm),
1669 cpumask_of(smp_processor_id()));
1670 }
1671 local_ops->tlb_mm(mm);
1672 }
1673}
1674
1675static void smp_flush_cache_range(struct vm_area_struct *vma,
1676 unsigned long start,
1677 unsigned long end)
1678{
1679 struct mm_struct *mm = vma->vm_mm;
1680
1681 if (mm->context != NO_CONTEXT) {
1682 cpumask_t cpu_mask;
1683 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1684 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1685 if (!cpumask_empty(&cpu_mask))
1686 xc3((smpfunc_t) local_ops->cache_range,
1687 (unsigned long) vma, start, end);
1688 local_ops->cache_range(vma, start, end);
1689 }
1690}
1691
1692static void smp_flush_tlb_range(struct vm_area_struct *vma,
1693 unsigned long start,
1694 unsigned long end)
1695{
1696 struct mm_struct *mm = vma->vm_mm;
1697
1698 if (mm->context != NO_CONTEXT) {
1699 cpumask_t cpu_mask;
1700 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1701 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1702 if (!cpumask_empty(&cpu_mask))
1703 xc3((smpfunc_t) local_ops->tlb_range,
1704 (unsigned long) vma, start, end);
1705 local_ops->tlb_range(vma, start, end);
1706 }
1707}
1708
1709static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1710{
1711 struct mm_struct *mm = vma->vm_mm;
1712
1713 if (mm->context != NO_CONTEXT) {
1714 cpumask_t cpu_mask;
1715 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1716 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1717 if (!cpumask_empty(&cpu_mask))
1718 xc2((smpfunc_t) local_ops->cache_page,
1719 (unsigned long) vma, page);
1720 local_ops->cache_page(vma, page);
1721 }
1722}
1723
1724static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1725{
1726 struct mm_struct *mm = vma->vm_mm;
1727
1728 if (mm->context != NO_CONTEXT) {
1729 cpumask_t cpu_mask;
1730 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1731 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1732 if (!cpumask_empty(&cpu_mask))
1733 xc2((smpfunc_t) local_ops->tlb_page,
1734 (unsigned long) vma, page);
1735 local_ops->tlb_page(vma, page);
1736 }
1737}
1738
1739static void smp_flush_page_to_ram(unsigned long page)
1740{
1741 /* Current theory is that those who call this are the one's
1742 * who have just dirtied their cache with the pages contents
1743 * in kernel space, therefore we only run this on local cpu.
1744 *
1745 * XXX This experiment failed, research further... -DaveM
1746 */
1747#if 1
1748 xc1((smpfunc_t) local_ops->page_to_ram, page);
1749#endif
1750 local_ops->page_to_ram(page);
1751}
1752
1753static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1754{
1755 cpumask_t cpu_mask;
1756 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758 if (!cpumask_empty(&cpu_mask))
1759 xc2((smpfunc_t) local_ops->sig_insns,
1760 (unsigned long) mm, insn_addr);
1761 local_ops->sig_insns(mm, insn_addr);
1762}
1763
1764static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1765 .cache_all = smp_flush_cache_all,
1766 .cache_mm = smp_flush_cache_mm,
1767 .cache_page = smp_flush_cache_page,
1768 .cache_range = smp_flush_cache_range,
1769 .tlb_all = smp_flush_tlb_all,
1770 .tlb_mm = smp_flush_tlb_mm,
1771 .tlb_page = smp_flush_tlb_page,
1772 .tlb_range = smp_flush_tlb_range,
1773 .page_to_ram = smp_flush_page_to_ram,
1774 .sig_insns = smp_flush_sig_insns,
1775 .page_for_dma = smp_flush_page_for_dma,
1776};
1777#endif
1778
1779/* Load up routines and constants for sun4m and sun4d mmu */
1780void __init load_mmu(void)
1781{
1782 /* Functions */
1783 get_srmmu_type();
1784
1785#ifdef CONFIG_SMP
1786 /* El switcheroo... */
1787 local_ops = sparc32_cachetlb_ops;
1788
1789 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1790 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1791 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1792 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1793 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1794 }
1795
1796 if (poke_srmmu == poke_viking) {
1797 /* Avoid unnecessary cross calls. */
1798 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1799 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1800 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1801 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1802
1803 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1804 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1805 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1806 }
1807
1808 /* It really is const after this point. */
1809 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1810 &smp_cachetlb_ops;
1811#endif
1812
1813 if (sparc_cpu_model == sun4d)
1814 ld_mmu_iounit();
1815 else
1816 ld_mmu_iommu();
1817#ifdef CONFIG_SMP
1818 if (sparc_cpu_model == sun4d)
1819 sun4d_init_smp();
1820 else if (sparc_cpu_model == sparc_leon)
1821 leon_init_smp();
1822 else
1823 sun4m_init_smp();
1824#endif
1825}
1/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11#include <linux/kernel.h>
12#include <linux/mm.h>
13#include <linux/vmalloc.h>
14#include <linux/pagemap.h>
15#include <linux/init.h>
16#include <linux/spinlock.h>
17#include <linux/bootmem.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/kdebug.h>
21#include <linux/log2.h>
22#include <linux/gfp.h>
23
24#include <asm/bitext.h>
25#include <asm/page.h>
26#include <asm/pgalloc.h>
27#include <asm/pgtable.h>
28#include <asm/io.h>
29#include <asm/vaddrs.h>
30#include <asm/traps.h>
31#include <asm/smp.h>
32#include <asm/mbus.h>
33#include <asm/cache.h>
34#include <asm/oplib.h>
35#include <asm/asi.h>
36#include <asm/msi.h>
37#include <asm/mmu_context.h>
38#include <asm/io-unit.h>
39#include <asm/cacheflush.h>
40#include <asm/tlbflush.h>
41
42/* Now the cpu specific definitions. */
43#include <asm/viking.h>
44#include <asm/mxcc.h>
45#include <asm/ross.h>
46#include <asm/tsunami.h>
47#include <asm/swift.h>
48#include <asm/turbosparc.h>
49#include <asm/leon.h>
50
51#include "srmmu.h"
52
53enum mbus_module srmmu_modtype;
54static unsigned int hwbug_bitmask;
55int vac_cache_size;
56int vac_line_size;
57
58struct ctx_list *ctx_list_pool;
59struct ctx_list ctx_free;
60struct ctx_list ctx_used;
61
62extern struct resource sparc_iomap;
63
64extern unsigned long last_valid_pfn;
65
66static pgd_t *srmmu_swapper_pg_dir;
67
68const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
69
70#ifdef CONFIG_SMP
71const struct sparc32_cachetlb_ops *local_ops;
72
73#define FLUSH_BEGIN(mm)
74#define FLUSH_END
75#else
76#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77#define FLUSH_END }
78#endif
79
80int flush_page_for_dma_global = 1;
81
82char *srmmu_name;
83
84ctxd_t *srmmu_ctx_table_phys;
85static ctxd_t *srmmu_context_table;
86
87int viking_mxcc_present;
88static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
90static int is_hypersparc;
91
92static int srmmu_cache_pagetables;
93
94/* these will be initialized in srmmu_nocache_calcsize() */
95static unsigned long srmmu_nocache_size;
96static unsigned long srmmu_nocache_end;
97
98/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100
101/* The context table is a nocache user with the biggest alignment needs. */
102#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103
104void *srmmu_nocache_pool;
105void *srmmu_nocache_bitmap;
106static struct bit_map srmmu_nocache_map;
107
108static inline int srmmu_pmd_none(pmd_t pmd)
109{ return !(pmd_val(pmd) & 0xFFFFFFF); }
110
111/* XXX should we hyper_flush_whole_icache here - Anton */
112static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
113{ set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
114
115void pmd_set(pmd_t *pmdp, pte_t *ptep)
116{
117 unsigned long ptp; /* Physical address, shifted right by 4 */
118 int i;
119
120 ptp = __nocache_pa((unsigned long) ptep) >> 4;
121 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
122 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
123 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
124 }
125}
126
127void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
128{
129 unsigned long ptp; /* Physical address, shifted right by 4 */
130 int i;
131
132 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
133 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
134 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
135 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
136 }
137}
138
139/* Find an entry in the third-level page table.. */
140pte_t *pte_offset_kernel(pmd_t * dir, unsigned long address)
141{
142 void *pte;
143
144 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
145 return (pte_t *) pte +
146 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
147}
148
149/*
150 * size: bytes to allocate in the nocache area.
151 * align: bytes, number to align at.
152 * Returns the virtual address of the allocated area.
153 */
154static unsigned long __srmmu_get_nocache(int size, int align)
155{
156 int offset;
157
158 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
159 printk("Size 0x%x too small for nocache request\n", size);
160 size = SRMMU_NOCACHE_BITMAP_SHIFT;
161 }
162 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
163 printk("Size 0x%x unaligned int nocache request\n", size);
164 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
165 }
166 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167
168 offset = bit_map_string_get(&srmmu_nocache_map,
169 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
170 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171 if (offset == -1) {
172 printk("srmmu: out of nocache %d: %d/%d\n",
173 size, (int) srmmu_nocache_size,
174 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175 return 0;
176 }
177
178 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
179}
180
181unsigned long srmmu_get_nocache(int size, int align)
182{
183 unsigned long tmp;
184
185 tmp = __srmmu_get_nocache(size, align);
186
187 if (tmp)
188 memset((void *)tmp, 0, size);
189
190 return tmp;
191}
192
193void srmmu_free_nocache(unsigned long vaddr, int size)
194{
195 int offset;
196
197 if (vaddr < SRMMU_NOCACHE_VADDR) {
198 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200 BUG();
201 }
202 if (vaddr+size > srmmu_nocache_end) {
203 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204 vaddr, srmmu_nocache_end);
205 BUG();
206 }
207 if (!is_power_of_2(size)) {
208 printk("Size 0x%x is not a power of 2\n", size);
209 BUG();
210 }
211 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212 printk("Size 0x%x is too small\n", size);
213 BUG();
214 }
215 if (vaddr & (size-1)) {
216 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217 BUG();
218 }
219
220 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
222
223 bit_map_clear(&srmmu_nocache_map, offset, size);
224}
225
226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227 unsigned long end);
228
229extern unsigned long probe_memory(void); /* in fault.c */
230
231/*
232 * Reserve nocache dynamically proportionally to the amount of
233 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
234 */
235static void srmmu_nocache_calcsize(void)
236{
237 unsigned long sysmemavail = probe_memory() / 1024;
238 int srmmu_nocache_npages;
239
240 srmmu_nocache_npages =
241 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
242
243 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
244 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
245 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
246 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
247
248 /* anything above 1280 blows up */
249 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
250 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
251
252 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
253 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
254}
255
256static void __init srmmu_nocache_init(void)
257{
258 unsigned int bitmap_bits;
259 pgd_t *pgd;
260 pmd_t *pmd;
261 pte_t *pte;
262 unsigned long paddr, vaddr;
263 unsigned long pteval;
264
265 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
266
267 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
268 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
269 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
270
271 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
272 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
273
274 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
275 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
276 init_mm.pgd = srmmu_swapper_pg_dir;
277
278 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
279
280 paddr = __pa((unsigned long)srmmu_nocache_pool);
281 vaddr = SRMMU_NOCACHE_VADDR;
282
283 while (vaddr < srmmu_nocache_end) {
284 pgd = pgd_offset_k(vaddr);
285 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
286 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
287
288 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
289
290 if (srmmu_cache_pagetables)
291 pteval |= SRMMU_CACHE;
292
293 set_pte(__nocache_fix(pte), __pte(pteval));
294
295 vaddr += PAGE_SIZE;
296 paddr += PAGE_SIZE;
297 }
298
299 flush_cache_all();
300 flush_tlb_all();
301}
302
303pgd_t *get_pgd_fast(void)
304{
305 pgd_t *pgd = NULL;
306
307 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
308 if (pgd) {
309 pgd_t *init = pgd_offset_k(0);
310 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
311 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
312 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
313 }
314
315 return pgd;
316}
317
318/*
319 * Hardware needs alignment to 256 only, but we align to whole page size
320 * to reduce fragmentation problems due to the buddy principle.
321 * XXX Provide actual fragmentation statistics in /proc.
322 *
323 * Alignments up to the page size are the same for physical and virtual
324 * addresses of the nocache area.
325 */
326pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
327{
328 unsigned long pte;
329 struct page *page;
330
331 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
332 return NULL;
333 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
334 pgtable_page_ctor(page);
335 return page;
336}
337
338void pte_free(struct mm_struct *mm, pgtable_t pte)
339{
340 unsigned long p;
341
342 pgtable_page_dtor(pte);
343 p = (unsigned long)page_address(pte); /* Cached address (for test) */
344 if (p == 0)
345 BUG();
346 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
347 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
348 srmmu_free_nocache(p, PTE_SIZE);
349}
350
351/*
352 */
353static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
354{
355 struct ctx_list *ctxp;
356
357 ctxp = ctx_free.next;
358 if(ctxp != &ctx_free) {
359 remove_from_ctx_list(ctxp);
360 add_to_used_ctxlist(ctxp);
361 mm->context = ctxp->ctx_number;
362 ctxp->ctx_mm = mm;
363 return;
364 }
365 ctxp = ctx_used.next;
366 if(ctxp->ctx_mm == old_mm)
367 ctxp = ctxp->next;
368 if(ctxp == &ctx_used)
369 panic("out of mmu contexts");
370 flush_cache_mm(ctxp->ctx_mm);
371 flush_tlb_mm(ctxp->ctx_mm);
372 remove_from_ctx_list(ctxp);
373 add_to_used_ctxlist(ctxp);
374 ctxp->ctx_mm->context = NO_CONTEXT;
375 ctxp->ctx_mm = mm;
376 mm->context = ctxp->ctx_number;
377}
378
379static inline void free_context(int context)
380{
381 struct ctx_list *ctx_old;
382
383 ctx_old = ctx_list_pool + context;
384 remove_from_ctx_list(ctx_old);
385 add_to_free_ctxlist(ctx_old);
386}
387
388
389void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
390 struct task_struct *tsk)
391{
392 if(mm->context == NO_CONTEXT) {
393 spin_lock(&srmmu_context_spinlock);
394 alloc_context(old_mm, mm);
395 spin_unlock(&srmmu_context_spinlock);
396 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
397 }
398
399 if (sparc_cpu_model == sparc_leon)
400 leon_switch_mm();
401
402 if (is_hypersparc)
403 hyper_flush_whole_icache();
404
405 srmmu_set_context(mm->context);
406}
407
408/* Low level IO area allocation on the SRMMU. */
409static inline void srmmu_mapioaddr(unsigned long physaddr,
410 unsigned long virt_addr, int bus_type)
411{
412 pgd_t *pgdp;
413 pmd_t *pmdp;
414 pte_t *ptep;
415 unsigned long tmp;
416
417 physaddr &= PAGE_MASK;
418 pgdp = pgd_offset_k(virt_addr);
419 pmdp = pmd_offset(pgdp, virt_addr);
420 ptep = pte_offset_kernel(pmdp, virt_addr);
421 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
422
423 /*
424 * I need to test whether this is consistent over all
425 * sun4m's. The bus_type represents the upper 4 bits of
426 * 36-bit physical address on the I/O space lines...
427 */
428 tmp |= (bus_type << 28);
429 tmp |= SRMMU_PRIV;
430 __flush_page_to_ram(virt_addr);
431 set_pte(ptep, __pte(tmp));
432}
433
434void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
435 unsigned long xva, unsigned int len)
436{
437 while (len != 0) {
438 len -= PAGE_SIZE;
439 srmmu_mapioaddr(xpa, xva, bus);
440 xva += PAGE_SIZE;
441 xpa += PAGE_SIZE;
442 }
443 flush_tlb_all();
444}
445
446static inline void srmmu_unmapioaddr(unsigned long virt_addr)
447{
448 pgd_t *pgdp;
449 pmd_t *pmdp;
450 pte_t *ptep;
451
452 pgdp = pgd_offset_k(virt_addr);
453 pmdp = pmd_offset(pgdp, virt_addr);
454 ptep = pte_offset_kernel(pmdp, virt_addr);
455
456 /* No need to flush uncacheable page. */
457 __pte_clear(ptep);
458}
459
460void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
461{
462 while (len != 0) {
463 len -= PAGE_SIZE;
464 srmmu_unmapioaddr(virt_addr);
465 virt_addr += PAGE_SIZE;
466 }
467 flush_tlb_all();
468}
469
470/* tsunami.S */
471extern void tsunami_flush_cache_all(void);
472extern void tsunami_flush_cache_mm(struct mm_struct *mm);
473extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
474extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
475extern void tsunami_flush_page_to_ram(unsigned long page);
476extern void tsunami_flush_page_for_dma(unsigned long page);
477extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
478extern void tsunami_flush_tlb_all(void);
479extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
480extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
481extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
482extern void tsunami_setup_blockops(void);
483
484/* swift.S */
485extern void swift_flush_cache_all(void);
486extern void swift_flush_cache_mm(struct mm_struct *mm);
487extern void swift_flush_cache_range(struct vm_area_struct *vma,
488 unsigned long start, unsigned long end);
489extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
490extern void swift_flush_page_to_ram(unsigned long page);
491extern void swift_flush_page_for_dma(unsigned long page);
492extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
493extern void swift_flush_tlb_all(void);
494extern void swift_flush_tlb_mm(struct mm_struct *mm);
495extern void swift_flush_tlb_range(struct vm_area_struct *vma,
496 unsigned long start, unsigned long end);
497extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
498
499#if 0 /* P3: deadwood to debug precise flushes on Swift. */
500void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
501{
502 int cctx, ctx1;
503
504 page &= PAGE_MASK;
505 if ((ctx1 = vma->vm_mm->context) != -1) {
506 cctx = srmmu_get_context();
507/* Is context # ever different from current context? P3 */
508 if (cctx != ctx1) {
509 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
510 srmmu_set_context(ctx1);
511 swift_flush_page(page);
512 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
513 "r" (page), "i" (ASI_M_FLUSH_PROBE));
514 srmmu_set_context(cctx);
515 } else {
516 /* Rm. prot. bits from virt. c. */
517 /* swift_flush_cache_all(); */
518 /* swift_flush_cache_page(vma, page); */
519 swift_flush_page(page);
520
521 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
522 "r" (page), "i" (ASI_M_FLUSH_PROBE));
523 /* same as above: srmmu_flush_tlb_page() */
524 }
525 }
526}
527#endif
528
529/*
530 * The following are all MBUS based SRMMU modules, and therefore could
531 * be found in a multiprocessor configuration. On the whole, these
532 * chips seems to be much more touchy about DVMA and page tables
533 * with respect to cache coherency.
534 */
535
536/* viking.S */
537extern void viking_flush_cache_all(void);
538extern void viking_flush_cache_mm(struct mm_struct *mm);
539extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
540 unsigned long end);
541extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
542extern void viking_flush_page_to_ram(unsigned long page);
543extern void viking_flush_page_for_dma(unsigned long page);
544extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
545extern void viking_flush_page(unsigned long page);
546extern void viking_mxcc_flush_page(unsigned long page);
547extern void viking_flush_tlb_all(void);
548extern void viking_flush_tlb_mm(struct mm_struct *mm);
549extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
550 unsigned long end);
551extern void viking_flush_tlb_page(struct vm_area_struct *vma,
552 unsigned long page);
553extern void sun4dsmp_flush_tlb_all(void);
554extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
555extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
556 unsigned long end);
557extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
558 unsigned long page);
559
560/* hypersparc.S */
561extern void hypersparc_flush_cache_all(void);
562extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
563extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
564extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
565extern void hypersparc_flush_page_to_ram(unsigned long page);
566extern void hypersparc_flush_page_for_dma(unsigned long page);
567extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
568extern void hypersparc_flush_tlb_all(void);
569extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
570extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
571extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
572extern void hypersparc_setup_blockops(void);
573
574/*
575 * NOTE: All of this startup code assumes the low 16mb (approx.) of
576 * kernel mappings are done with one single contiguous chunk of
577 * ram. On small ram machines (classics mainly) we only get
578 * around 8mb mapped for us.
579 */
580
581static void __init early_pgtable_allocfail(char *type)
582{
583 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
584 prom_halt();
585}
586
587static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
588 unsigned long end)
589{
590 pgd_t *pgdp;
591 pmd_t *pmdp;
592 pte_t *ptep;
593
594 while(start < end) {
595 pgdp = pgd_offset_k(start);
596 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
597 pmdp = (pmd_t *) __srmmu_get_nocache(
598 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
599 if (pmdp == NULL)
600 early_pgtable_allocfail("pmd");
601 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
602 pgd_set(__nocache_fix(pgdp), pmdp);
603 }
604 pmdp = pmd_offset(__nocache_fix(pgdp), start);
605 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
606 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
607 if (ptep == NULL)
608 early_pgtable_allocfail("pte");
609 memset(__nocache_fix(ptep), 0, PTE_SIZE);
610 pmd_set(__nocache_fix(pmdp), ptep);
611 }
612 if (start > (0xffffffffUL - PMD_SIZE))
613 break;
614 start = (start + PMD_SIZE) & PMD_MASK;
615 }
616}
617
618static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
619 unsigned long end)
620{
621 pgd_t *pgdp;
622 pmd_t *pmdp;
623 pte_t *ptep;
624
625 while(start < end) {
626 pgdp = pgd_offset_k(start);
627 if (pgd_none(*pgdp)) {
628 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
629 if (pmdp == NULL)
630 early_pgtable_allocfail("pmd");
631 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
632 pgd_set(pgdp, pmdp);
633 }
634 pmdp = pmd_offset(pgdp, start);
635 if(srmmu_pmd_none(*pmdp)) {
636 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
637 PTE_SIZE);
638 if (ptep == NULL)
639 early_pgtable_allocfail("pte");
640 memset(ptep, 0, PTE_SIZE);
641 pmd_set(pmdp, ptep);
642 }
643 if (start > (0xffffffffUL - PMD_SIZE))
644 break;
645 start = (start + PMD_SIZE) & PMD_MASK;
646 }
647}
648
649/* These flush types are not available on all chips... */
650static inline unsigned long srmmu_probe(unsigned long vaddr)
651{
652 unsigned long retval;
653
654 if (sparc_cpu_model != sparc_leon) {
655
656 vaddr &= PAGE_MASK;
657 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
658 "=r" (retval) :
659 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
660 } else {
661 retval = leon_swprobe(vaddr, 0);
662 }
663 return retval;
664}
665
666/*
667 * This is much cleaner than poking around physical address space
668 * looking at the prom's page table directly which is what most
669 * other OS's do. Yuck... this is much better.
670 */
671static void __init srmmu_inherit_prom_mappings(unsigned long start,
672 unsigned long end)
673{
674 pgd_t *pgdp;
675 pmd_t *pmdp;
676 pte_t *ptep;
677 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
678 unsigned long prompte;
679
680 while(start <= end) {
681 if (start == 0)
682 break; /* probably wrap around */
683 if(start == 0xfef00000)
684 start = KADB_DEBUGGER_BEGVM;
685 if(!(prompte = srmmu_probe(start))) {
686 start += PAGE_SIZE;
687 continue;
688 }
689
690 /* A red snapper, see what it really is. */
691 what = 0;
692
693 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
694 if(srmmu_probe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
695 what = 1;
696 }
697
698 if(!(start & ~(SRMMU_PGDIR_MASK))) {
699 if(srmmu_probe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
700 prompte)
701 what = 2;
702 }
703
704 pgdp = pgd_offset_k(start);
705 if(what == 2) {
706 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
707 start += SRMMU_PGDIR_SIZE;
708 continue;
709 }
710 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
711 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
712 if (pmdp == NULL)
713 early_pgtable_allocfail("pmd");
714 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
715 pgd_set(__nocache_fix(pgdp), pmdp);
716 }
717 pmdp = pmd_offset(__nocache_fix(pgdp), start);
718 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
719 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
720 PTE_SIZE);
721 if (ptep == NULL)
722 early_pgtable_allocfail("pte");
723 memset(__nocache_fix(ptep), 0, PTE_SIZE);
724 pmd_set(__nocache_fix(pmdp), ptep);
725 }
726 if(what == 1) {
727 /*
728 * We bend the rule where all 16 PTPs in a pmd_t point
729 * inside the same PTE page, and we leak a perfectly
730 * good hardware PTE piece. Alternatives seem worse.
731 */
732 unsigned int x; /* Index of HW PMD in soft cluster */
733 x = (start >> PMD_SHIFT) & 15;
734 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
735 start += SRMMU_REAL_PMD_SIZE;
736 continue;
737 }
738 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
739 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
740 start += PAGE_SIZE;
741 }
742}
743
744#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
745
746/* Create a third-level SRMMU 16MB page mapping. */
747static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
748{
749 pgd_t *pgdp = pgd_offset_k(vaddr);
750 unsigned long big_pte;
751
752 big_pte = KERNEL_PTE(phys_base >> 4);
753 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
754}
755
756/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
757static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
758{
759 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
760 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
761 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
762 /* Map "low" memory only */
763 const unsigned long min_vaddr = PAGE_OFFSET;
764 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
765
766 if (vstart < min_vaddr || vstart >= max_vaddr)
767 return vstart;
768
769 if (vend > max_vaddr || vend < min_vaddr)
770 vend = max_vaddr;
771
772 while(vstart < vend) {
773 do_large_mapping(vstart, pstart);
774 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
775 }
776 return vstart;
777}
778
779static inline void map_kernel(void)
780{
781 int i;
782
783 if (phys_base > 0) {
784 do_large_mapping(PAGE_OFFSET, phys_base);
785 }
786
787 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
788 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
789 }
790}
791
792/* Paging initialization on the Sparc Reference MMU. */
793extern void sparc_context_init(int);
794
795void (*poke_srmmu)(void) __cpuinitdata = NULL;
796
797extern unsigned long bootmem_init(unsigned long *pages_avail);
798
799void __init srmmu_paging_init(void)
800{
801 int i;
802 phandle cpunode;
803 char node_str[128];
804 pgd_t *pgd;
805 pmd_t *pmd;
806 pte_t *pte;
807 unsigned long pages_avail;
808
809 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
810
811 if (sparc_cpu_model == sun4d)
812 num_contexts = 65536; /* We know it is Viking */
813 else {
814 /* Find the number of contexts on the srmmu. */
815 cpunode = prom_getchild(prom_root_node);
816 num_contexts = 0;
817 while(cpunode != 0) {
818 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
819 if(!strcmp(node_str, "cpu")) {
820 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
821 break;
822 }
823 cpunode = prom_getsibling(cpunode);
824 }
825 }
826
827 if(!num_contexts) {
828 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
829 prom_halt();
830 }
831
832 pages_avail = 0;
833 last_valid_pfn = bootmem_init(&pages_avail);
834
835 srmmu_nocache_calcsize();
836 srmmu_nocache_init();
837 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
838 map_kernel();
839
840 /* ctx table has to be physically aligned to its size */
841 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
842 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
843
844 for(i = 0; i < num_contexts; i++)
845 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
846
847 flush_cache_all();
848 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
849#ifdef CONFIG_SMP
850 /* Stop from hanging here... */
851 local_ops->tlb_all();
852#else
853 flush_tlb_all();
854#endif
855 poke_srmmu();
856
857 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
858 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
859
860 srmmu_allocate_ptable_skeleton(
861 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
862 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
863
864 pgd = pgd_offset_k(PKMAP_BASE);
865 pmd = pmd_offset(pgd, PKMAP_BASE);
866 pte = pte_offset_kernel(pmd, PKMAP_BASE);
867 pkmap_page_table = pte;
868
869 flush_cache_all();
870 flush_tlb_all();
871
872 sparc_context_init(num_contexts);
873
874 kmap_init();
875
876 {
877 unsigned long zones_size[MAX_NR_ZONES];
878 unsigned long zholes_size[MAX_NR_ZONES];
879 unsigned long npages;
880 int znum;
881
882 for (znum = 0; znum < MAX_NR_ZONES; znum++)
883 zones_size[znum] = zholes_size[znum] = 0;
884
885 npages = max_low_pfn - pfn_base;
886
887 zones_size[ZONE_DMA] = npages;
888 zholes_size[ZONE_DMA] = npages - pages_avail;
889
890 npages = highend_pfn - max_low_pfn;
891 zones_size[ZONE_HIGHMEM] = npages;
892 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
893
894 free_area_init_node(0, zones_size, pfn_base, zholes_size);
895 }
896}
897
898void mmu_info(struct seq_file *m)
899{
900 seq_printf(m,
901 "MMU type\t: %s\n"
902 "contexts\t: %d\n"
903 "nocache total\t: %ld\n"
904 "nocache used\t: %d\n",
905 srmmu_name,
906 num_contexts,
907 srmmu_nocache_size,
908 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
909}
910
911void destroy_context(struct mm_struct *mm)
912{
913
914 if(mm->context != NO_CONTEXT) {
915 flush_cache_mm(mm);
916 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
917 flush_tlb_mm(mm);
918 spin_lock(&srmmu_context_spinlock);
919 free_context(mm->context);
920 spin_unlock(&srmmu_context_spinlock);
921 mm->context = NO_CONTEXT;
922 }
923}
924
925/* Init various srmmu chip types. */
926static void __init srmmu_is_bad(void)
927{
928 prom_printf("Could not determine SRMMU chip type.\n");
929 prom_halt();
930}
931
932static void __init init_vac_layout(void)
933{
934 phandle nd;
935 int cache_lines;
936 char node_str[128];
937#ifdef CONFIG_SMP
938 int cpu = 0;
939 unsigned long max_size = 0;
940 unsigned long min_line_size = 0x10000000;
941#endif
942
943 nd = prom_getchild(prom_root_node);
944 while((nd = prom_getsibling(nd)) != 0) {
945 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
946 if(!strcmp(node_str, "cpu")) {
947 vac_line_size = prom_getint(nd, "cache-line-size");
948 if (vac_line_size == -1) {
949 prom_printf("can't determine cache-line-size, "
950 "halting.\n");
951 prom_halt();
952 }
953 cache_lines = prom_getint(nd, "cache-nlines");
954 if (cache_lines == -1) {
955 prom_printf("can't determine cache-nlines, halting.\n");
956 prom_halt();
957 }
958
959 vac_cache_size = cache_lines * vac_line_size;
960#ifdef CONFIG_SMP
961 if(vac_cache_size > max_size)
962 max_size = vac_cache_size;
963 if(vac_line_size < min_line_size)
964 min_line_size = vac_line_size;
965 //FIXME: cpus not contiguous!!
966 cpu++;
967 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
968 break;
969#else
970 break;
971#endif
972 }
973 }
974 if(nd == 0) {
975 prom_printf("No CPU nodes found, halting.\n");
976 prom_halt();
977 }
978#ifdef CONFIG_SMP
979 vac_cache_size = max_size;
980 vac_line_size = min_line_size;
981#endif
982 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
983 (int)vac_cache_size, (int)vac_line_size);
984}
985
986static void __cpuinit poke_hypersparc(void)
987{
988 volatile unsigned long clear;
989 unsigned long mreg = srmmu_get_mmureg();
990
991 hyper_flush_unconditional_combined();
992
993 mreg &= ~(HYPERSPARC_CWENABLE);
994 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
995 mreg |= (HYPERSPARC_CMODE);
996
997 srmmu_set_mmureg(mreg);
998
999#if 0 /* XXX I think this is bad news... -DaveM */
1000 hyper_clear_all_tags();
1001#endif
1002
1003 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1004 hyper_flush_whole_icache();
1005 clear = srmmu_get_faddr();
1006 clear = srmmu_get_fstatus();
1007}
1008
1009static const struct sparc32_cachetlb_ops hypersparc_ops = {
1010 .cache_all = hypersparc_flush_cache_all,
1011 .cache_mm = hypersparc_flush_cache_mm,
1012 .cache_page = hypersparc_flush_cache_page,
1013 .cache_range = hypersparc_flush_cache_range,
1014 .tlb_all = hypersparc_flush_tlb_all,
1015 .tlb_mm = hypersparc_flush_tlb_mm,
1016 .tlb_page = hypersparc_flush_tlb_page,
1017 .tlb_range = hypersparc_flush_tlb_range,
1018 .page_to_ram = hypersparc_flush_page_to_ram,
1019 .sig_insns = hypersparc_flush_sig_insns,
1020 .page_for_dma = hypersparc_flush_page_for_dma,
1021};
1022
1023static void __init init_hypersparc(void)
1024{
1025 srmmu_name = "ROSS HyperSparc";
1026 srmmu_modtype = HyperSparc;
1027
1028 init_vac_layout();
1029
1030 is_hypersparc = 1;
1031 sparc32_cachetlb_ops = &hypersparc_ops;
1032
1033 poke_srmmu = poke_hypersparc;
1034
1035 hypersparc_setup_blockops();
1036}
1037
1038static void __cpuinit poke_swift(void)
1039{
1040 unsigned long mreg;
1041
1042 /* Clear any crap from the cache or else... */
1043 swift_flush_cache_all();
1044
1045 /* Enable I & D caches */
1046 mreg = srmmu_get_mmureg();
1047 mreg |= (SWIFT_IE | SWIFT_DE);
1048 /*
1049 * The Swift branch folding logic is completely broken. At
1050 * trap time, if things are just right, if can mistakenly
1051 * think that a trap is coming from kernel mode when in fact
1052 * it is coming from user mode (it mis-executes the branch in
1053 * the trap code). So you see things like crashme completely
1054 * hosing your machine which is completely unacceptable. Turn
1055 * this shit off... nice job Fujitsu.
1056 */
1057 mreg &= ~(SWIFT_BF);
1058 srmmu_set_mmureg(mreg);
1059}
1060
1061static const struct sparc32_cachetlb_ops swift_ops = {
1062 .cache_all = swift_flush_cache_all,
1063 .cache_mm = swift_flush_cache_mm,
1064 .cache_page = swift_flush_cache_page,
1065 .cache_range = swift_flush_cache_range,
1066 .tlb_all = swift_flush_tlb_all,
1067 .tlb_mm = swift_flush_tlb_mm,
1068 .tlb_page = swift_flush_tlb_page,
1069 .tlb_range = swift_flush_tlb_range,
1070 .page_to_ram = swift_flush_page_to_ram,
1071 .sig_insns = swift_flush_sig_insns,
1072 .page_for_dma = swift_flush_page_for_dma,
1073};
1074
1075#define SWIFT_MASKID_ADDR 0x10003018
1076static void __init init_swift(void)
1077{
1078 unsigned long swift_rev;
1079
1080 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1081 "srl %0, 0x18, %0\n\t" :
1082 "=r" (swift_rev) :
1083 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1084 srmmu_name = "Fujitsu Swift";
1085 switch(swift_rev) {
1086 case 0x11:
1087 case 0x20:
1088 case 0x23:
1089 case 0x30:
1090 srmmu_modtype = Swift_lots_o_bugs;
1091 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1092 /*
1093 * Gee george, I wonder why Sun is so hush hush about
1094 * this hardware bug... really braindamage stuff going
1095 * on here. However I think we can find a way to avoid
1096 * all of the workaround overhead under Linux. Basically,
1097 * any page fault can cause kernel pages to become user
1098 * accessible (the mmu gets confused and clears some of
1099 * the ACC bits in kernel ptes). Aha, sounds pretty
1100 * horrible eh? But wait, after extensive testing it appears
1101 * that if you use pgd_t level large kernel pte's (like the
1102 * 4MB pages on the Pentium) the bug does not get tripped
1103 * at all. This avoids almost all of the major overhead.
1104 * Welcome to a world where your vendor tells you to,
1105 * "apply this kernel patch" instead of "sorry for the
1106 * broken hardware, send it back and we'll give you
1107 * properly functioning parts"
1108 */
1109 break;
1110 case 0x25:
1111 case 0x31:
1112 srmmu_modtype = Swift_bad_c;
1113 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1114 /*
1115 * You see Sun allude to this hardware bug but never
1116 * admit things directly, they'll say things like,
1117 * "the Swift chip cache problems" or similar.
1118 */
1119 break;
1120 default:
1121 srmmu_modtype = Swift_ok;
1122 break;
1123 }
1124
1125 sparc32_cachetlb_ops = &swift_ops;
1126 flush_page_for_dma_global = 0;
1127
1128 /*
1129 * Are you now convinced that the Swift is one of the
1130 * biggest VLSI abortions of all time? Bravo Fujitsu!
1131 * Fujitsu, the !#?!%$'d up processor people. I bet if
1132 * you examined the microcode of the Swift you'd find
1133 * XXX's all over the place.
1134 */
1135 poke_srmmu = poke_swift;
1136}
1137
1138static void turbosparc_flush_cache_all(void)
1139{
1140 flush_user_windows();
1141 turbosparc_idflash_clear();
1142}
1143
1144static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1145{
1146 FLUSH_BEGIN(mm)
1147 flush_user_windows();
1148 turbosparc_idflash_clear();
1149 FLUSH_END
1150}
1151
1152static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1153{
1154 FLUSH_BEGIN(vma->vm_mm)
1155 flush_user_windows();
1156 turbosparc_idflash_clear();
1157 FLUSH_END
1158}
1159
1160static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1161{
1162 FLUSH_BEGIN(vma->vm_mm)
1163 flush_user_windows();
1164 if (vma->vm_flags & VM_EXEC)
1165 turbosparc_flush_icache();
1166 turbosparc_flush_dcache();
1167 FLUSH_END
1168}
1169
1170/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1171static void turbosparc_flush_page_to_ram(unsigned long page)
1172{
1173#ifdef TURBOSPARC_WRITEBACK
1174 volatile unsigned long clear;
1175
1176 if (srmmu_probe(page))
1177 turbosparc_flush_page_cache(page);
1178 clear = srmmu_get_fstatus();
1179#endif
1180}
1181
1182static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1183{
1184}
1185
1186static void turbosparc_flush_page_for_dma(unsigned long page)
1187{
1188 turbosparc_flush_dcache();
1189}
1190
1191static void turbosparc_flush_tlb_all(void)
1192{
1193 srmmu_flush_whole_tlb();
1194}
1195
1196static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1197{
1198 FLUSH_BEGIN(mm)
1199 srmmu_flush_whole_tlb();
1200 FLUSH_END
1201}
1202
1203static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1204{
1205 FLUSH_BEGIN(vma->vm_mm)
1206 srmmu_flush_whole_tlb();
1207 FLUSH_END
1208}
1209
1210static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1211{
1212 FLUSH_BEGIN(vma->vm_mm)
1213 srmmu_flush_whole_tlb();
1214 FLUSH_END
1215}
1216
1217
1218static void __cpuinit poke_turbosparc(void)
1219{
1220 unsigned long mreg = srmmu_get_mmureg();
1221 unsigned long ccreg;
1222
1223 /* Clear any crap from the cache or else... */
1224 turbosparc_flush_cache_all();
1225 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1226 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1227 srmmu_set_mmureg(mreg);
1228
1229 ccreg = turbosparc_get_ccreg();
1230
1231#ifdef TURBOSPARC_WRITEBACK
1232 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1233 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1234 /* Write-back D-cache, emulate VLSI
1235 * abortion number three, not number one */
1236#else
1237 /* For now let's play safe, optimize later */
1238 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1239 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1240 ccreg &= ~(TURBOSPARC_uS2);
1241 /* Emulate VLSI abortion number three, not number one */
1242#endif
1243
1244 switch (ccreg & 7) {
1245 case 0: /* No SE cache */
1246 case 7: /* Test mode */
1247 break;
1248 default:
1249 ccreg |= (TURBOSPARC_SCENABLE);
1250 }
1251 turbosparc_set_ccreg (ccreg);
1252
1253 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1254 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1255 srmmu_set_mmureg(mreg);
1256}
1257
1258static const struct sparc32_cachetlb_ops turbosparc_ops = {
1259 .cache_all = turbosparc_flush_cache_all,
1260 .cache_mm = turbosparc_flush_cache_mm,
1261 .cache_page = turbosparc_flush_cache_page,
1262 .cache_range = turbosparc_flush_cache_range,
1263 .tlb_all = turbosparc_flush_tlb_all,
1264 .tlb_mm = turbosparc_flush_tlb_mm,
1265 .tlb_page = turbosparc_flush_tlb_page,
1266 .tlb_range = turbosparc_flush_tlb_range,
1267 .page_to_ram = turbosparc_flush_page_to_ram,
1268 .sig_insns = turbosparc_flush_sig_insns,
1269 .page_for_dma = turbosparc_flush_page_for_dma,
1270};
1271
1272static void __init init_turbosparc(void)
1273{
1274 srmmu_name = "Fujitsu TurboSparc";
1275 srmmu_modtype = TurboSparc;
1276 sparc32_cachetlb_ops = &turbosparc_ops;
1277 poke_srmmu = poke_turbosparc;
1278}
1279
1280static void __cpuinit poke_tsunami(void)
1281{
1282 unsigned long mreg = srmmu_get_mmureg();
1283
1284 tsunami_flush_icache();
1285 tsunami_flush_dcache();
1286 mreg &= ~TSUNAMI_ITD;
1287 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1288 srmmu_set_mmureg(mreg);
1289}
1290
1291static const struct sparc32_cachetlb_ops tsunami_ops = {
1292 .cache_all = tsunami_flush_cache_all,
1293 .cache_mm = tsunami_flush_cache_mm,
1294 .cache_page = tsunami_flush_cache_page,
1295 .cache_range = tsunami_flush_cache_range,
1296 .tlb_all = tsunami_flush_tlb_all,
1297 .tlb_mm = tsunami_flush_tlb_mm,
1298 .tlb_page = tsunami_flush_tlb_page,
1299 .tlb_range = tsunami_flush_tlb_range,
1300 .page_to_ram = tsunami_flush_page_to_ram,
1301 .sig_insns = tsunami_flush_sig_insns,
1302 .page_for_dma = tsunami_flush_page_for_dma,
1303};
1304
1305static void __init init_tsunami(void)
1306{
1307 /*
1308 * Tsunami's pretty sane, Sun and TI actually got it
1309 * somewhat right this time. Fujitsu should have
1310 * taken some lessons from them.
1311 */
1312
1313 srmmu_name = "TI Tsunami";
1314 srmmu_modtype = Tsunami;
1315 sparc32_cachetlb_ops = &tsunami_ops;
1316 poke_srmmu = poke_tsunami;
1317
1318 tsunami_setup_blockops();
1319}
1320
1321static void __cpuinit poke_viking(void)
1322{
1323 unsigned long mreg = srmmu_get_mmureg();
1324 static int smp_catch;
1325
1326 if (viking_mxcc_present) {
1327 unsigned long mxcc_control = mxcc_get_creg();
1328
1329 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1330 mxcc_control &= ~(MXCC_CTL_RRC);
1331 mxcc_set_creg(mxcc_control);
1332
1333 /*
1334 * We don't need memory parity checks.
1335 * XXX This is a mess, have to dig out later. ecd.
1336 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1337 */
1338
1339 /* We do cache ptables on MXCC. */
1340 mreg |= VIKING_TCENABLE;
1341 } else {
1342 unsigned long bpreg;
1343
1344 mreg &= ~(VIKING_TCENABLE);
1345 if(smp_catch++) {
1346 /* Must disable mixed-cmd mode here for other cpu's. */
1347 bpreg = viking_get_bpreg();
1348 bpreg &= ~(VIKING_ACTION_MIX);
1349 viking_set_bpreg(bpreg);
1350
1351 /* Just in case PROM does something funny. */
1352 msi_set_sync();
1353 }
1354 }
1355
1356 mreg |= VIKING_SPENABLE;
1357 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1358 mreg |= VIKING_SBENABLE;
1359 mreg &= ~(VIKING_ACENABLE);
1360 srmmu_set_mmureg(mreg);
1361}
1362
1363static struct sparc32_cachetlb_ops viking_ops = {
1364 .cache_all = viking_flush_cache_all,
1365 .cache_mm = viking_flush_cache_mm,
1366 .cache_page = viking_flush_cache_page,
1367 .cache_range = viking_flush_cache_range,
1368 .tlb_all = viking_flush_tlb_all,
1369 .tlb_mm = viking_flush_tlb_mm,
1370 .tlb_page = viking_flush_tlb_page,
1371 .tlb_range = viking_flush_tlb_range,
1372 .page_to_ram = viking_flush_page_to_ram,
1373 .sig_insns = viking_flush_sig_insns,
1374 .page_for_dma = viking_flush_page_for_dma,
1375};
1376
1377#ifdef CONFIG_SMP
1378/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1379 * perform the local TLB flush and all the other cpus will see it.
1380 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1381 * that requires that we add some synchronization to these flushes.
1382 *
1383 * The bug is that the fifo which keeps track of all the pending TLB
1384 * broadcasts in the system is an entry or two too small, so if we
1385 * have too many going at once we'll overflow that fifo and lose a TLB
1386 * flush resulting in corruption.
1387 *
1388 * Our workaround is to take a global spinlock around the TLB flushes,
1389 * which guarentees we won't ever have too many pending. It's a big
1390 * hammer, but a semaphore like system to make sure we only have N TLB
1391 * flushes going at once will require SMP locking anyways so there's
1392 * no real value in trying any harder than this.
1393 */
1394static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1395 .cache_all = viking_flush_cache_all,
1396 .cache_mm = viking_flush_cache_mm,
1397 .cache_page = viking_flush_cache_page,
1398 .cache_range = viking_flush_cache_range,
1399 .tlb_all = sun4dsmp_flush_tlb_all,
1400 .tlb_mm = sun4dsmp_flush_tlb_mm,
1401 .tlb_page = sun4dsmp_flush_tlb_page,
1402 .tlb_range = sun4dsmp_flush_tlb_range,
1403 .page_to_ram = viking_flush_page_to_ram,
1404 .sig_insns = viking_flush_sig_insns,
1405 .page_for_dma = viking_flush_page_for_dma,
1406};
1407#endif
1408
1409static void __init init_viking(void)
1410{
1411 unsigned long mreg = srmmu_get_mmureg();
1412
1413 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1414 if(mreg & VIKING_MMODE) {
1415 srmmu_name = "TI Viking";
1416 viking_mxcc_present = 0;
1417 msi_set_sync();
1418
1419 /*
1420 * We need this to make sure old viking takes no hits
1421 * on it's cache for dma snoops to workaround the
1422 * "load from non-cacheable memory" interrupt bug.
1423 * This is only necessary because of the new way in
1424 * which we use the IOMMU.
1425 */
1426 viking_ops.page_for_dma = viking_flush_page;
1427#ifdef CONFIG_SMP
1428 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1429#endif
1430 flush_page_for_dma_global = 0;
1431 } else {
1432 srmmu_name = "TI Viking/MXCC";
1433 viking_mxcc_present = 1;
1434 srmmu_cache_pagetables = 1;
1435 }
1436
1437 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1438 &viking_ops;
1439#ifdef CONFIG_SMP
1440 if (sparc_cpu_model == sun4d)
1441 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1442 &viking_sun4d_smp_ops;
1443#endif
1444
1445 poke_srmmu = poke_viking;
1446}
1447
1448/* Probe for the srmmu chip version. */
1449static void __init get_srmmu_type(void)
1450{
1451 unsigned long mreg, psr;
1452 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1453
1454 srmmu_modtype = SRMMU_INVAL_MOD;
1455 hwbug_bitmask = 0;
1456
1457 mreg = srmmu_get_mmureg(); psr = get_psr();
1458 mod_typ = (mreg & 0xf0000000) >> 28;
1459 mod_rev = (mreg & 0x0f000000) >> 24;
1460 psr_typ = (psr >> 28) & 0xf;
1461 psr_vers = (psr >> 24) & 0xf;
1462
1463 /* First, check for sparc-leon. */
1464 if (sparc_cpu_model == sparc_leon) {
1465 init_leon();
1466 return;
1467 }
1468
1469 /* Second, check for HyperSparc or Cypress. */
1470 if(mod_typ == 1) {
1471 switch(mod_rev) {
1472 case 7:
1473 /* UP or MP Hypersparc */
1474 init_hypersparc();
1475 break;
1476 case 0:
1477 case 2:
1478 case 10:
1479 case 11:
1480 case 12:
1481 case 13:
1482 case 14:
1483 case 15:
1484 default:
1485 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1486 prom_halt();
1487 break;
1488 }
1489 return;
1490 }
1491
1492 /*
1493 * Now Fujitsu TurboSparc. It might happen that it is
1494 * in Swift emulation mode, so we will check later...
1495 */
1496 if (psr_typ == 0 && psr_vers == 5) {
1497 init_turbosparc();
1498 return;
1499 }
1500
1501 /* Next check for Fujitsu Swift. */
1502 if(psr_typ == 0 && psr_vers == 4) {
1503 phandle cpunode;
1504 char node_str[128];
1505
1506 /* Look if it is not a TurboSparc emulating Swift... */
1507 cpunode = prom_getchild(prom_root_node);
1508 while((cpunode = prom_getsibling(cpunode)) != 0) {
1509 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1510 if(!strcmp(node_str, "cpu")) {
1511 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1512 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1513 init_turbosparc();
1514 return;
1515 }
1516 break;
1517 }
1518 }
1519
1520 init_swift();
1521 return;
1522 }
1523
1524 /* Now the Viking family of srmmu. */
1525 if(psr_typ == 4 &&
1526 ((psr_vers == 0) ||
1527 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1528 init_viking();
1529 return;
1530 }
1531
1532 /* Finally the Tsunami. */
1533 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1534 init_tsunami();
1535 return;
1536 }
1537
1538 /* Oh well */
1539 srmmu_is_bad();
1540}
1541
1542#ifdef CONFIG_SMP
1543/* Local cross-calls. */
1544static void smp_flush_page_for_dma(unsigned long page)
1545{
1546 xc1((smpfunc_t) local_ops->page_for_dma, page);
1547 local_ops->page_for_dma(page);
1548}
1549
1550static void smp_flush_cache_all(void)
1551{
1552 xc0((smpfunc_t) local_ops->cache_all);
1553 local_ops->cache_all();
1554}
1555
1556static void smp_flush_tlb_all(void)
1557{
1558 xc0((smpfunc_t) local_ops->tlb_all);
1559 local_ops->tlb_all();
1560}
1561
1562static void smp_flush_cache_mm(struct mm_struct *mm)
1563{
1564 if (mm->context != NO_CONTEXT) {
1565 cpumask_t cpu_mask;
1566 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1567 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1568 if (!cpumask_empty(&cpu_mask))
1569 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1570 local_ops->cache_mm(mm);
1571 }
1572}
1573
1574static void smp_flush_tlb_mm(struct mm_struct *mm)
1575{
1576 if (mm->context != NO_CONTEXT) {
1577 cpumask_t cpu_mask;
1578 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1579 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1580 if (!cpumask_empty(&cpu_mask)) {
1581 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1582 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1583 cpumask_copy(mm_cpumask(mm),
1584 cpumask_of(smp_processor_id()));
1585 }
1586 local_ops->tlb_mm(mm);
1587 }
1588}
1589
1590static void smp_flush_cache_range(struct vm_area_struct *vma,
1591 unsigned long start,
1592 unsigned long end)
1593{
1594 struct mm_struct *mm = vma->vm_mm;
1595
1596 if (mm->context != NO_CONTEXT) {
1597 cpumask_t cpu_mask;
1598 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1599 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1600 if (!cpumask_empty(&cpu_mask))
1601 xc3((smpfunc_t) local_ops->cache_range,
1602 (unsigned long) vma, start, end);
1603 local_ops->cache_range(vma, start, end);
1604 }
1605}
1606
1607static void smp_flush_tlb_range(struct vm_area_struct *vma,
1608 unsigned long start,
1609 unsigned long end)
1610{
1611 struct mm_struct *mm = vma->vm_mm;
1612
1613 if (mm->context != NO_CONTEXT) {
1614 cpumask_t cpu_mask;
1615 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1616 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1617 if (!cpumask_empty(&cpu_mask))
1618 xc3((smpfunc_t) local_ops->tlb_range,
1619 (unsigned long) vma, start, end);
1620 local_ops->tlb_range(vma, start, end);
1621 }
1622}
1623
1624static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1625{
1626 struct mm_struct *mm = vma->vm_mm;
1627
1628 if (mm->context != NO_CONTEXT) {
1629 cpumask_t cpu_mask;
1630 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1631 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1632 if (!cpumask_empty(&cpu_mask))
1633 xc2((smpfunc_t) local_ops->cache_page,
1634 (unsigned long) vma, page);
1635 local_ops->cache_page(vma, page);
1636 }
1637}
1638
1639static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1640{
1641 struct mm_struct *mm = vma->vm_mm;
1642
1643 if (mm->context != NO_CONTEXT) {
1644 cpumask_t cpu_mask;
1645 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1646 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1647 if (!cpumask_empty(&cpu_mask))
1648 xc2((smpfunc_t) local_ops->tlb_page,
1649 (unsigned long) vma, page);
1650 local_ops->tlb_page(vma, page);
1651 }
1652}
1653
1654static void smp_flush_page_to_ram(unsigned long page)
1655{
1656 /* Current theory is that those who call this are the one's
1657 * who have just dirtied their cache with the pages contents
1658 * in kernel space, therefore we only run this on local cpu.
1659 *
1660 * XXX This experiment failed, research further... -DaveM
1661 */
1662#if 1
1663 xc1((smpfunc_t) local_ops->page_to_ram, page);
1664#endif
1665 local_ops->page_to_ram(page);
1666}
1667
1668static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1669{
1670 cpumask_t cpu_mask;
1671 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673 if (!cpumask_empty(&cpu_mask))
1674 xc2((smpfunc_t) local_ops->sig_insns,
1675 (unsigned long) mm, insn_addr);
1676 local_ops->sig_insns(mm, insn_addr);
1677}
1678
1679static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1680 .cache_all = smp_flush_cache_all,
1681 .cache_mm = smp_flush_cache_mm,
1682 .cache_page = smp_flush_cache_page,
1683 .cache_range = smp_flush_cache_range,
1684 .tlb_all = smp_flush_tlb_all,
1685 .tlb_mm = smp_flush_tlb_mm,
1686 .tlb_page = smp_flush_tlb_page,
1687 .tlb_range = smp_flush_tlb_range,
1688 .page_to_ram = smp_flush_page_to_ram,
1689 .sig_insns = smp_flush_sig_insns,
1690 .page_for_dma = smp_flush_page_for_dma,
1691};
1692#endif
1693
1694/* Load up routines and constants for sun4m and sun4d mmu */
1695void __init load_mmu(void)
1696{
1697 extern void ld_mmu_iommu(void);
1698 extern void ld_mmu_iounit(void);
1699
1700 /* Functions */
1701 get_srmmu_type();
1702
1703#ifdef CONFIG_SMP
1704 /* El switcheroo... */
1705 local_ops = sparc32_cachetlb_ops;
1706
1707 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1708 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1709 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1710 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1711 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1712 }
1713
1714 if (poke_srmmu == poke_viking) {
1715 /* Avoid unnecessary cross calls. */
1716 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1717 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1718 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1719 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1720
1721 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1722 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1723 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1724 }
1725
1726 /* It really is const after this point. */
1727 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1728 &smp_cachetlb_ops;
1729#endif
1730
1731 if (sparc_cpu_model == sun4d)
1732 ld_mmu_iounit();
1733 else
1734 ld_mmu_iommu();
1735#ifdef CONFIG_SMP
1736 if (sparc_cpu_model == sun4d)
1737 sun4d_init_smp();
1738 else if (sparc_cpu_model == sparc_leon)
1739 leon_init_smp();
1740 else
1741 sun4m_init_smp();
1742#endif
1743}