Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * srmmu.c: SRMMU specific routines for memory management.
4 *
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10 */
11
12#include <linux/seq_file.h>
13#include <linux/spinlock.h>
14#include <linux/bootmem.h>
15#include <linux/pagemap.h>
16#include <linux/vmalloc.h>
17#include <linux/kdebug.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/init.h>
21#include <linux/log2.h>
22#include <linux/gfp.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25
26#include <asm/mmu_context.h>
27#include <asm/cacheflush.h>
28#include <asm/tlbflush.h>
29#include <asm/io-unit.h>
30#include <asm/pgalloc.h>
31#include <asm/pgtable.h>
32#include <asm/bitext.h>
33#include <asm/vaddrs.h>
34#include <asm/cache.h>
35#include <asm/traps.h>
36#include <asm/oplib.h>
37#include <asm/mbus.h>
38#include <asm/page.h>
39#include <asm/asi.h>
40#include <asm/msi.h>
41#include <asm/smp.h>
42#include <asm/io.h>
43
44/* Now the cpu specific definitions. */
45#include <asm/turbosparc.h>
46#include <asm/tsunami.h>
47#include <asm/viking.h>
48#include <asm/swift.h>
49#include <asm/leon.h>
50#include <asm/mxcc.h>
51#include <asm/ross.h>
52
53#include "mm_32.h"
54
55enum mbus_module srmmu_modtype;
56static unsigned int hwbug_bitmask;
57int vac_cache_size;
58EXPORT_SYMBOL(vac_cache_size);
59int vac_line_size;
60
61extern struct resource sparc_iomap;
62
63extern unsigned long last_valid_pfn;
64
65static pgd_t *srmmu_swapper_pg_dir;
66
67const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
68EXPORT_SYMBOL(sparc32_cachetlb_ops);
69
70#ifdef CONFIG_SMP
71const struct sparc32_cachetlb_ops *local_ops;
72
73#define FLUSH_BEGIN(mm)
74#define FLUSH_END
75#else
76#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77#define FLUSH_END }
78#endif
79
80int flush_page_for_dma_global = 1;
81
82char *srmmu_name;
83
84ctxd_t *srmmu_ctx_table_phys;
85static ctxd_t *srmmu_context_table;
86
87int viking_mxcc_present;
88static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
90static int is_hypersparc;
91
92static int srmmu_cache_pagetables;
93
94/* these will be initialized in srmmu_nocache_calcsize() */
95static unsigned long srmmu_nocache_size;
96static unsigned long srmmu_nocache_end;
97
98/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100
101/* The context table is a nocache user with the biggest alignment needs. */
102#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103
104void *srmmu_nocache_pool;
105static struct bit_map srmmu_nocache_map;
106
107static inline int srmmu_pmd_none(pmd_t pmd)
108{ return !(pmd_val(pmd) & 0xFFFFFFF); }
109
110/* XXX should we hyper_flush_whole_icache here - Anton */
111static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
112{
113 pte_t pte;
114
115 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
116 set_pte((pte_t *)ctxp, pte);
117}
118
119void pmd_set(pmd_t *pmdp, pte_t *ptep)
120{
121 unsigned long ptp; /* Physical address, shifted right by 4 */
122 int i;
123
124 ptp = __nocache_pa(ptep) >> 4;
125 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
126 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
127 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
128 }
129}
130
131void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
132{
133 unsigned long ptp; /* Physical address, shifted right by 4 */
134 int i;
135
136 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
137 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
138 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
139 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
140 }
141}
142
143/* Find an entry in the third-level page table.. */
144pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
145{
146 void *pte;
147
148 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
149 return (pte_t *) pte +
150 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
151}
152
153/*
154 * size: bytes to allocate in the nocache area.
155 * align: bytes, number to align at.
156 * Returns the virtual address of the allocated area.
157 */
158static void *__srmmu_get_nocache(int size, int align)
159{
160 int offset;
161 unsigned long addr;
162
163 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
164 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
165 size);
166 size = SRMMU_NOCACHE_BITMAP_SHIFT;
167 }
168 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
169 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
170 size);
171 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
172 }
173 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
174
175 offset = bit_map_string_get(&srmmu_nocache_map,
176 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
177 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
178 if (offset == -1) {
179 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
180 size, (int) srmmu_nocache_size,
181 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
182 return NULL;
183 }
184
185 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
186 return (void *)addr;
187}
188
189void *srmmu_get_nocache(int size, int align)
190{
191 void *tmp;
192
193 tmp = __srmmu_get_nocache(size, align);
194
195 if (tmp)
196 memset(tmp, 0, size);
197
198 return tmp;
199}
200
201void srmmu_free_nocache(void *addr, int size)
202{
203 unsigned long vaddr;
204 int offset;
205
206 vaddr = (unsigned long)addr;
207 if (vaddr < SRMMU_NOCACHE_VADDR) {
208 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
209 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
210 BUG();
211 }
212 if (vaddr + size > srmmu_nocache_end) {
213 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
214 vaddr, srmmu_nocache_end);
215 BUG();
216 }
217 if (!is_power_of_2(size)) {
218 printk("Size 0x%x is not a power of 2\n", size);
219 BUG();
220 }
221 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
222 printk("Size 0x%x is too small\n", size);
223 BUG();
224 }
225 if (vaddr & (size - 1)) {
226 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
227 BUG();
228 }
229
230 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
231 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
232
233 bit_map_clear(&srmmu_nocache_map, offset, size);
234}
235
236static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
237 unsigned long end);
238
239/* Return how much physical memory we have. */
240static unsigned long __init probe_memory(void)
241{
242 unsigned long total = 0;
243 int i;
244
245 for (i = 0; sp_banks[i].num_bytes; i++)
246 total += sp_banks[i].num_bytes;
247
248 return total;
249}
250
251/*
252 * Reserve nocache dynamically proportionally to the amount of
253 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
254 */
255static void __init srmmu_nocache_calcsize(void)
256{
257 unsigned long sysmemavail = probe_memory() / 1024;
258 int srmmu_nocache_npages;
259
260 srmmu_nocache_npages =
261 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
262
263 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
264 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
265 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
266 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
267
268 /* anything above 1280 blows up */
269 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
270 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
271
272 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
273 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
274}
275
276static void __init srmmu_nocache_init(void)
277{
278 void *srmmu_nocache_bitmap;
279 unsigned int bitmap_bits;
280 pgd_t *pgd;
281 pmd_t *pmd;
282 pte_t *pte;
283 unsigned long paddr, vaddr;
284 unsigned long pteval;
285
286 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
287
288 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
289 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
290 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
291
292 srmmu_nocache_bitmap =
293 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
294 SMP_CACHE_BYTES, 0UL);
295 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
296
297 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
298 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
299 init_mm.pgd = srmmu_swapper_pg_dir;
300
301 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
302
303 paddr = __pa((unsigned long)srmmu_nocache_pool);
304 vaddr = SRMMU_NOCACHE_VADDR;
305
306 while (vaddr < srmmu_nocache_end) {
307 pgd = pgd_offset_k(vaddr);
308 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
309 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
310
311 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
312
313 if (srmmu_cache_pagetables)
314 pteval |= SRMMU_CACHE;
315
316 set_pte(__nocache_fix(pte), __pte(pteval));
317
318 vaddr += PAGE_SIZE;
319 paddr += PAGE_SIZE;
320 }
321
322 flush_cache_all();
323 flush_tlb_all();
324}
325
326pgd_t *get_pgd_fast(void)
327{
328 pgd_t *pgd = NULL;
329
330 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
331 if (pgd) {
332 pgd_t *init = pgd_offset_k(0);
333 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
334 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
335 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
336 }
337
338 return pgd;
339}
340
341/*
342 * Hardware needs alignment to 256 only, but we align to whole page size
343 * to reduce fragmentation problems due to the buddy principle.
344 * XXX Provide actual fragmentation statistics in /proc.
345 *
346 * Alignments up to the page size are the same for physical and virtual
347 * addresses of the nocache area.
348 */
349pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
350{
351 unsigned long pte;
352 struct page *page;
353
354 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
355 return NULL;
356 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
357 if (!pgtable_page_ctor(page)) {
358 __free_page(page);
359 return NULL;
360 }
361 return page;
362}
363
364void pte_free(struct mm_struct *mm, pgtable_t pte)
365{
366 unsigned long p;
367
368 pgtable_page_dtor(pte);
369 p = (unsigned long)page_address(pte); /* Cached address (for test) */
370 if (p == 0)
371 BUG();
372 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
373
374 /* free non cached virtual address*/
375 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
376}
377
378/* context handling - a dynamically sized pool is used */
379#define NO_CONTEXT -1
380
381struct ctx_list {
382 struct ctx_list *next;
383 struct ctx_list *prev;
384 unsigned int ctx_number;
385 struct mm_struct *ctx_mm;
386};
387
388static struct ctx_list *ctx_list_pool;
389static struct ctx_list ctx_free;
390static struct ctx_list ctx_used;
391
392/* At boot time we determine the number of contexts */
393static int num_contexts;
394
395static inline void remove_from_ctx_list(struct ctx_list *entry)
396{
397 entry->next->prev = entry->prev;
398 entry->prev->next = entry->next;
399}
400
401static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
402{
403 entry->next = head;
404 (entry->prev = head->prev)->next = entry;
405 head->prev = entry;
406}
407#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
408#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
409
410
411static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
412{
413 struct ctx_list *ctxp;
414
415 ctxp = ctx_free.next;
416 if (ctxp != &ctx_free) {
417 remove_from_ctx_list(ctxp);
418 add_to_used_ctxlist(ctxp);
419 mm->context = ctxp->ctx_number;
420 ctxp->ctx_mm = mm;
421 return;
422 }
423 ctxp = ctx_used.next;
424 if (ctxp->ctx_mm == old_mm)
425 ctxp = ctxp->next;
426 if (ctxp == &ctx_used)
427 panic("out of mmu contexts");
428 flush_cache_mm(ctxp->ctx_mm);
429 flush_tlb_mm(ctxp->ctx_mm);
430 remove_from_ctx_list(ctxp);
431 add_to_used_ctxlist(ctxp);
432 ctxp->ctx_mm->context = NO_CONTEXT;
433 ctxp->ctx_mm = mm;
434 mm->context = ctxp->ctx_number;
435}
436
437static inline void free_context(int context)
438{
439 struct ctx_list *ctx_old;
440
441 ctx_old = ctx_list_pool + context;
442 remove_from_ctx_list(ctx_old);
443 add_to_free_ctxlist(ctx_old);
444}
445
446static void __init sparc_context_init(int numctx)
447{
448 int ctx;
449 unsigned long size;
450
451 size = numctx * sizeof(struct ctx_list);
452 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
453
454 for (ctx = 0; ctx < numctx; ctx++) {
455 struct ctx_list *clist;
456
457 clist = (ctx_list_pool + ctx);
458 clist->ctx_number = ctx;
459 clist->ctx_mm = NULL;
460 }
461 ctx_free.next = ctx_free.prev = &ctx_free;
462 ctx_used.next = ctx_used.prev = &ctx_used;
463 for (ctx = 0; ctx < numctx; ctx++)
464 add_to_free_ctxlist(ctx_list_pool + ctx);
465}
466
467void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
468 struct task_struct *tsk)
469{
470 unsigned long flags;
471
472 if (mm->context == NO_CONTEXT) {
473 spin_lock_irqsave(&srmmu_context_spinlock, flags);
474 alloc_context(old_mm, mm);
475 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
476 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
477 }
478
479 if (sparc_cpu_model == sparc_leon)
480 leon_switch_mm();
481
482 if (is_hypersparc)
483 hyper_flush_whole_icache();
484
485 srmmu_set_context(mm->context);
486}
487
488/* Low level IO area allocation on the SRMMU. */
489static inline void srmmu_mapioaddr(unsigned long physaddr,
490 unsigned long virt_addr, int bus_type)
491{
492 pgd_t *pgdp;
493 pmd_t *pmdp;
494 pte_t *ptep;
495 unsigned long tmp;
496
497 physaddr &= PAGE_MASK;
498 pgdp = pgd_offset_k(virt_addr);
499 pmdp = pmd_offset(pgdp, virt_addr);
500 ptep = pte_offset_kernel(pmdp, virt_addr);
501 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
502
503 /* I need to test whether this is consistent over all
504 * sun4m's. The bus_type represents the upper 4 bits of
505 * 36-bit physical address on the I/O space lines...
506 */
507 tmp |= (bus_type << 28);
508 tmp |= SRMMU_PRIV;
509 __flush_page_to_ram(virt_addr);
510 set_pte(ptep, __pte(tmp));
511}
512
513void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
514 unsigned long xva, unsigned int len)
515{
516 while (len != 0) {
517 len -= PAGE_SIZE;
518 srmmu_mapioaddr(xpa, xva, bus);
519 xva += PAGE_SIZE;
520 xpa += PAGE_SIZE;
521 }
522 flush_tlb_all();
523}
524
525static inline void srmmu_unmapioaddr(unsigned long virt_addr)
526{
527 pgd_t *pgdp;
528 pmd_t *pmdp;
529 pte_t *ptep;
530
531 pgdp = pgd_offset_k(virt_addr);
532 pmdp = pmd_offset(pgdp, virt_addr);
533 ptep = pte_offset_kernel(pmdp, virt_addr);
534
535 /* No need to flush uncacheable page. */
536 __pte_clear(ptep);
537}
538
539void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
540{
541 while (len != 0) {
542 len -= PAGE_SIZE;
543 srmmu_unmapioaddr(virt_addr);
544 virt_addr += PAGE_SIZE;
545 }
546 flush_tlb_all();
547}
548
549/* tsunami.S */
550extern void tsunami_flush_cache_all(void);
551extern void tsunami_flush_cache_mm(struct mm_struct *mm);
552extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
553extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
554extern void tsunami_flush_page_to_ram(unsigned long page);
555extern void tsunami_flush_page_for_dma(unsigned long page);
556extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
557extern void tsunami_flush_tlb_all(void);
558extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
559extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
560extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
561extern void tsunami_setup_blockops(void);
562
563/* swift.S */
564extern void swift_flush_cache_all(void);
565extern void swift_flush_cache_mm(struct mm_struct *mm);
566extern void swift_flush_cache_range(struct vm_area_struct *vma,
567 unsigned long start, unsigned long end);
568extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
569extern void swift_flush_page_to_ram(unsigned long page);
570extern void swift_flush_page_for_dma(unsigned long page);
571extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
572extern void swift_flush_tlb_all(void);
573extern void swift_flush_tlb_mm(struct mm_struct *mm);
574extern void swift_flush_tlb_range(struct vm_area_struct *vma,
575 unsigned long start, unsigned long end);
576extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
577
578#if 0 /* P3: deadwood to debug precise flushes on Swift. */
579void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
580{
581 int cctx, ctx1;
582
583 page &= PAGE_MASK;
584 if ((ctx1 = vma->vm_mm->context) != -1) {
585 cctx = srmmu_get_context();
586/* Is context # ever different from current context? P3 */
587 if (cctx != ctx1) {
588 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
589 srmmu_set_context(ctx1);
590 swift_flush_page(page);
591 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
592 "r" (page), "i" (ASI_M_FLUSH_PROBE));
593 srmmu_set_context(cctx);
594 } else {
595 /* Rm. prot. bits from virt. c. */
596 /* swift_flush_cache_all(); */
597 /* swift_flush_cache_page(vma, page); */
598 swift_flush_page(page);
599
600 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
601 "r" (page), "i" (ASI_M_FLUSH_PROBE));
602 /* same as above: srmmu_flush_tlb_page() */
603 }
604 }
605}
606#endif
607
608/*
609 * The following are all MBUS based SRMMU modules, and therefore could
610 * be found in a multiprocessor configuration. On the whole, these
611 * chips seems to be much more touchy about DVMA and page tables
612 * with respect to cache coherency.
613 */
614
615/* viking.S */
616extern void viking_flush_cache_all(void);
617extern void viking_flush_cache_mm(struct mm_struct *mm);
618extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
619 unsigned long end);
620extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
621extern void viking_flush_page_to_ram(unsigned long page);
622extern void viking_flush_page_for_dma(unsigned long page);
623extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
624extern void viking_flush_page(unsigned long page);
625extern void viking_mxcc_flush_page(unsigned long page);
626extern void viking_flush_tlb_all(void);
627extern void viking_flush_tlb_mm(struct mm_struct *mm);
628extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
629 unsigned long end);
630extern void viking_flush_tlb_page(struct vm_area_struct *vma,
631 unsigned long page);
632extern void sun4dsmp_flush_tlb_all(void);
633extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
634extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
635 unsigned long end);
636extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
637 unsigned long page);
638
639/* hypersparc.S */
640extern void hypersparc_flush_cache_all(void);
641extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
642extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
643extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
644extern void hypersparc_flush_page_to_ram(unsigned long page);
645extern void hypersparc_flush_page_for_dma(unsigned long page);
646extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
647extern void hypersparc_flush_tlb_all(void);
648extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
649extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
650extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
651extern void hypersparc_setup_blockops(void);
652
653/*
654 * NOTE: All of this startup code assumes the low 16mb (approx.) of
655 * kernel mappings are done with one single contiguous chunk of
656 * ram. On small ram machines (classics mainly) we only get
657 * around 8mb mapped for us.
658 */
659
660static void __init early_pgtable_allocfail(char *type)
661{
662 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
663 prom_halt();
664}
665
666static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
667 unsigned long end)
668{
669 pgd_t *pgdp;
670 pmd_t *pmdp;
671 pte_t *ptep;
672
673 while (start < end) {
674 pgdp = pgd_offset_k(start);
675 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
676 pmdp = __srmmu_get_nocache(
677 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
678 if (pmdp == NULL)
679 early_pgtable_allocfail("pmd");
680 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
681 pgd_set(__nocache_fix(pgdp), pmdp);
682 }
683 pmdp = pmd_offset(__nocache_fix(pgdp), start);
684 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
685 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
686 if (ptep == NULL)
687 early_pgtable_allocfail("pte");
688 memset(__nocache_fix(ptep), 0, PTE_SIZE);
689 pmd_set(__nocache_fix(pmdp), ptep);
690 }
691 if (start > (0xffffffffUL - PMD_SIZE))
692 break;
693 start = (start + PMD_SIZE) & PMD_MASK;
694 }
695}
696
697static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
698 unsigned long end)
699{
700 pgd_t *pgdp;
701 pmd_t *pmdp;
702 pte_t *ptep;
703
704 while (start < end) {
705 pgdp = pgd_offset_k(start);
706 if (pgd_none(*pgdp)) {
707 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
708 if (pmdp == NULL)
709 early_pgtable_allocfail("pmd");
710 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
711 pgd_set(pgdp, pmdp);
712 }
713 pmdp = pmd_offset(pgdp, start);
714 if (srmmu_pmd_none(*pmdp)) {
715 ptep = __srmmu_get_nocache(PTE_SIZE,
716 PTE_SIZE);
717 if (ptep == NULL)
718 early_pgtable_allocfail("pte");
719 memset(ptep, 0, PTE_SIZE);
720 pmd_set(pmdp, ptep);
721 }
722 if (start > (0xffffffffUL - PMD_SIZE))
723 break;
724 start = (start + PMD_SIZE) & PMD_MASK;
725 }
726}
727
728/* These flush types are not available on all chips... */
729static inline unsigned long srmmu_probe(unsigned long vaddr)
730{
731 unsigned long retval;
732
733 if (sparc_cpu_model != sparc_leon) {
734
735 vaddr &= PAGE_MASK;
736 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
737 "=r" (retval) :
738 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
739 } else {
740 retval = leon_swprobe(vaddr, NULL);
741 }
742 return retval;
743}
744
745/*
746 * This is much cleaner than poking around physical address space
747 * looking at the prom's page table directly which is what most
748 * other OS's do. Yuck... this is much better.
749 */
750static void __init srmmu_inherit_prom_mappings(unsigned long start,
751 unsigned long end)
752{
753 unsigned long probed;
754 unsigned long addr;
755 pgd_t *pgdp;
756 pmd_t *pmdp;
757 pte_t *ptep;
758 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
759
760 while (start <= end) {
761 if (start == 0)
762 break; /* probably wrap around */
763 if (start == 0xfef00000)
764 start = KADB_DEBUGGER_BEGVM;
765 probed = srmmu_probe(start);
766 if (!probed) {
767 /* continue probing until we find an entry */
768 start += PAGE_SIZE;
769 continue;
770 }
771
772 /* A red snapper, see what it really is. */
773 what = 0;
774 addr = start - PAGE_SIZE;
775
776 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
777 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
778 what = 1;
779 }
780
781 if (!(start & ~(SRMMU_PGDIR_MASK))) {
782 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
783 what = 2;
784 }
785
786 pgdp = pgd_offset_k(start);
787 if (what == 2) {
788 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
789 start += SRMMU_PGDIR_SIZE;
790 continue;
791 }
792 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
793 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
794 SRMMU_PMD_TABLE_SIZE);
795 if (pmdp == NULL)
796 early_pgtable_allocfail("pmd");
797 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
798 pgd_set(__nocache_fix(pgdp), pmdp);
799 }
800 pmdp = pmd_offset(__nocache_fix(pgdp), start);
801 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
802 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
803 if (ptep == NULL)
804 early_pgtable_allocfail("pte");
805 memset(__nocache_fix(ptep), 0, PTE_SIZE);
806 pmd_set(__nocache_fix(pmdp), ptep);
807 }
808 if (what == 1) {
809 /* We bend the rule where all 16 PTPs in a pmd_t point
810 * inside the same PTE page, and we leak a perfectly
811 * good hardware PTE piece. Alternatives seem worse.
812 */
813 unsigned int x; /* Index of HW PMD in soft cluster */
814 unsigned long *val;
815 x = (start >> PMD_SHIFT) & 15;
816 val = &pmdp->pmdv[x];
817 *(unsigned long *)__nocache_fix(val) = probed;
818 start += SRMMU_REAL_PMD_SIZE;
819 continue;
820 }
821 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
822 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
823 start += PAGE_SIZE;
824 }
825}
826
827#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
828
829/* Create a third-level SRMMU 16MB page mapping. */
830static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
831{
832 pgd_t *pgdp = pgd_offset_k(vaddr);
833 unsigned long big_pte;
834
835 big_pte = KERNEL_PTE(phys_base >> 4);
836 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
837}
838
839/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
840static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
841{
842 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
843 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
844 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
845 /* Map "low" memory only */
846 const unsigned long min_vaddr = PAGE_OFFSET;
847 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
848
849 if (vstart < min_vaddr || vstart >= max_vaddr)
850 return vstart;
851
852 if (vend > max_vaddr || vend < min_vaddr)
853 vend = max_vaddr;
854
855 while (vstart < vend) {
856 do_large_mapping(vstart, pstart);
857 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
858 }
859 return vstart;
860}
861
862static void __init map_kernel(void)
863{
864 int i;
865
866 if (phys_base > 0) {
867 do_large_mapping(PAGE_OFFSET, phys_base);
868 }
869
870 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
871 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
872 }
873}
874
875void (*poke_srmmu)(void) = NULL;
876
877void __init srmmu_paging_init(void)
878{
879 int i;
880 phandle cpunode;
881 char node_str[128];
882 pgd_t *pgd;
883 pmd_t *pmd;
884 pte_t *pte;
885 unsigned long pages_avail;
886
887 init_mm.context = (unsigned long) NO_CONTEXT;
888 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
889
890 if (sparc_cpu_model == sun4d)
891 num_contexts = 65536; /* We know it is Viking */
892 else {
893 /* Find the number of contexts on the srmmu. */
894 cpunode = prom_getchild(prom_root_node);
895 num_contexts = 0;
896 while (cpunode != 0) {
897 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
898 if (!strcmp(node_str, "cpu")) {
899 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
900 break;
901 }
902 cpunode = prom_getsibling(cpunode);
903 }
904 }
905
906 if (!num_contexts) {
907 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
908 prom_halt();
909 }
910
911 pages_avail = 0;
912 last_valid_pfn = bootmem_init(&pages_avail);
913
914 srmmu_nocache_calcsize();
915 srmmu_nocache_init();
916 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
917 map_kernel();
918
919 /* ctx table has to be physically aligned to its size */
920 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
921 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
922
923 for (i = 0; i < num_contexts; i++)
924 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
925
926 flush_cache_all();
927 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
928#ifdef CONFIG_SMP
929 /* Stop from hanging here... */
930 local_ops->tlb_all();
931#else
932 flush_tlb_all();
933#endif
934 poke_srmmu();
935
936 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
937 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
938
939 srmmu_allocate_ptable_skeleton(
940 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
941 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
942
943 pgd = pgd_offset_k(PKMAP_BASE);
944 pmd = pmd_offset(pgd, PKMAP_BASE);
945 pte = pte_offset_kernel(pmd, PKMAP_BASE);
946 pkmap_page_table = pte;
947
948 flush_cache_all();
949 flush_tlb_all();
950
951 sparc_context_init(num_contexts);
952
953 kmap_init();
954
955 {
956 unsigned long zones_size[MAX_NR_ZONES];
957 unsigned long zholes_size[MAX_NR_ZONES];
958 unsigned long npages;
959 int znum;
960
961 for (znum = 0; znum < MAX_NR_ZONES; znum++)
962 zones_size[znum] = zholes_size[znum] = 0;
963
964 npages = max_low_pfn - pfn_base;
965
966 zones_size[ZONE_DMA] = npages;
967 zholes_size[ZONE_DMA] = npages - pages_avail;
968
969 npages = highend_pfn - max_low_pfn;
970 zones_size[ZONE_HIGHMEM] = npages;
971 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
972
973 free_area_init_node(0, zones_size, pfn_base, zholes_size);
974 }
975}
976
977void mmu_info(struct seq_file *m)
978{
979 seq_printf(m,
980 "MMU type\t: %s\n"
981 "contexts\t: %d\n"
982 "nocache total\t: %ld\n"
983 "nocache used\t: %d\n",
984 srmmu_name,
985 num_contexts,
986 srmmu_nocache_size,
987 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
988}
989
990int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
991{
992 mm->context = NO_CONTEXT;
993 return 0;
994}
995
996void destroy_context(struct mm_struct *mm)
997{
998 unsigned long flags;
999
1000 if (mm->context != NO_CONTEXT) {
1001 flush_cache_mm(mm);
1002 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1003 flush_tlb_mm(mm);
1004 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1005 free_context(mm->context);
1006 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1007 mm->context = NO_CONTEXT;
1008 }
1009}
1010
1011/* Init various srmmu chip types. */
1012static void __init srmmu_is_bad(void)
1013{
1014 prom_printf("Could not determine SRMMU chip type.\n");
1015 prom_halt();
1016}
1017
1018static void __init init_vac_layout(void)
1019{
1020 phandle nd;
1021 int cache_lines;
1022 char node_str[128];
1023#ifdef CONFIG_SMP
1024 int cpu = 0;
1025 unsigned long max_size = 0;
1026 unsigned long min_line_size = 0x10000000;
1027#endif
1028
1029 nd = prom_getchild(prom_root_node);
1030 while ((nd = prom_getsibling(nd)) != 0) {
1031 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1032 if (!strcmp(node_str, "cpu")) {
1033 vac_line_size = prom_getint(nd, "cache-line-size");
1034 if (vac_line_size == -1) {
1035 prom_printf("can't determine cache-line-size, halting.\n");
1036 prom_halt();
1037 }
1038 cache_lines = prom_getint(nd, "cache-nlines");
1039 if (cache_lines == -1) {
1040 prom_printf("can't determine cache-nlines, halting.\n");
1041 prom_halt();
1042 }
1043
1044 vac_cache_size = cache_lines * vac_line_size;
1045#ifdef CONFIG_SMP
1046 if (vac_cache_size > max_size)
1047 max_size = vac_cache_size;
1048 if (vac_line_size < min_line_size)
1049 min_line_size = vac_line_size;
1050 //FIXME: cpus not contiguous!!
1051 cpu++;
1052 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1053 break;
1054#else
1055 break;
1056#endif
1057 }
1058 }
1059 if (nd == 0) {
1060 prom_printf("No CPU nodes found, halting.\n");
1061 prom_halt();
1062 }
1063#ifdef CONFIG_SMP
1064 vac_cache_size = max_size;
1065 vac_line_size = min_line_size;
1066#endif
1067 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1068 (int)vac_cache_size, (int)vac_line_size);
1069}
1070
1071static void poke_hypersparc(void)
1072{
1073 volatile unsigned long clear;
1074 unsigned long mreg = srmmu_get_mmureg();
1075
1076 hyper_flush_unconditional_combined();
1077
1078 mreg &= ~(HYPERSPARC_CWENABLE);
1079 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1080 mreg |= (HYPERSPARC_CMODE);
1081
1082 srmmu_set_mmureg(mreg);
1083
1084#if 0 /* XXX I think this is bad news... -DaveM */
1085 hyper_clear_all_tags();
1086#endif
1087
1088 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1089 hyper_flush_whole_icache();
1090 clear = srmmu_get_faddr();
1091 clear = srmmu_get_fstatus();
1092}
1093
1094static const struct sparc32_cachetlb_ops hypersparc_ops = {
1095 .cache_all = hypersparc_flush_cache_all,
1096 .cache_mm = hypersparc_flush_cache_mm,
1097 .cache_page = hypersparc_flush_cache_page,
1098 .cache_range = hypersparc_flush_cache_range,
1099 .tlb_all = hypersparc_flush_tlb_all,
1100 .tlb_mm = hypersparc_flush_tlb_mm,
1101 .tlb_page = hypersparc_flush_tlb_page,
1102 .tlb_range = hypersparc_flush_tlb_range,
1103 .page_to_ram = hypersparc_flush_page_to_ram,
1104 .sig_insns = hypersparc_flush_sig_insns,
1105 .page_for_dma = hypersparc_flush_page_for_dma,
1106};
1107
1108static void __init init_hypersparc(void)
1109{
1110 srmmu_name = "ROSS HyperSparc";
1111 srmmu_modtype = HyperSparc;
1112
1113 init_vac_layout();
1114
1115 is_hypersparc = 1;
1116 sparc32_cachetlb_ops = &hypersparc_ops;
1117
1118 poke_srmmu = poke_hypersparc;
1119
1120 hypersparc_setup_blockops();
1121}
1122
1123static void poke_swift(void)
1124{
1125 unsigned long mreg;
1126
1127 /* Clear any crap from the cache or else... */
1128 swift_flush_cache_all();
1129
1130 /* Enable I & D caches */
1131 mreg = srmmu_get_mmureg();
1132 mreg |= (SWIFT_IE | SWIFT_DE);
1133 /*
1134 * The Swift branch folding logic is completely broken. At
1135 * trap time, if things are just right, if can mistakenly
1136 * think that a trap is coming from kernel mode when in fact
1137 * it is coming from user mode (it mis-executes the branch in
1138 * the trap code). So you see things like crashme completely
1139 * hosing your machine which is completely unacceptable. Turn
1140 * this shit off... nice job Fujitsu.
1141 */
1142 mreg &= ~(SWIFT_BF);
1143 srmmu_set_mmureg(mreg);
1144}
1145
1146static const struct sparc32_cachetlb_ops swift_ops = {
1147 .cache_all = swift_flush_cache_all,
1148 .cache_mm = swift_flush_cache_mm,
1149 .cache_page = swift_flush_cache_page,
1150 .cache_range = swift_flush_cache_range,
1151 .tlb_all = swift_flush_tlb_all,
1152 .tlb_mm = swift_flush_tlb_mm,
1153 .tlb_page = swift_flush_tlb_page,
1154 .tlb_range = swift_flush_tlb_range,
1155 .page_to_ram = swift_flush_page_to_ram,
1156 .sig_insns = swift_flush_sig_insns,
1157 .page_for_dma = swift_flush_page_for_dma,
1158};
1159
1160#define SWIFT_MASKID_ADDR 0x10003018
1161static void __init init_swift(void)
1162{
1163 unsigned long swift_rev;
1164
1165 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1166 "srl %0, 0x18, %0\n\t" :
1167 "=r" (swift_rev) :
1168 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1169 srmmu_name = "Fujitsu Swift";
1170 switch (swift_rev) {
1171 case 0x11:
1172 case 0x20:
1173 case 0x23:
1174 case 0x30:
1175 srmmu_modtype = Swift_lots_o_bugs;
1176 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1177 /*
1178 * Gee george, I wonder why Sun is so hush hush about
1179 * this hardware bug... really braindamage stuff going
1180 * on here. However I think we can find a way to avoid
1181 * all of the workaround overhead under Linux. Basically,
1182 * any page fault can cause kernel pages to become user
1183 * accessible (the mmu gets confused and clears some of
1184 * the ACC bits in kernel ptes). Aha, sounds pretty
1185 * horrible eh? But wait, after extensive testing it appears
1186 * that if you use pgd_t level large kernel pte's (like the
1187 * 4MB pages on the Pentium) the bug does not get tripped
1188 * at all. This avoids almost all of the major overhead.
1189 * Welcome to a world where your vendor tells you to,
1190 * "apply this kernel patch" instead of "sorry for the
1191 * broken hardware, send it back and we'll give you
1192 * properly functioning parts"
1193 */
1194 break;
1195 case 0x25:
1196 case 0x31:
1197 srmmu_modtype = Swift_bad_c;
1198 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1199 /*
1200 * You see Sun allude to this hardware bug but never
1201 * admit things directly, they'll say things like,
1202 * "the Swift chip cache problems" or similar.
1203 */
1204 break;
1205 default:
1206 srmmu_modtype = Swift_ok;
1207 break;
1208 }
1209
1210 sparc32_cachetlb_ops = &swift_ops;
1211 flush_page_for_dma_global = 0;
1212
1213 /*
1214 * Are you now convinced that the Swift is one of the
1215 * biggest VLSI abortions of all time? Bravo Fujitsu!
1216 * Fujitsu, the !#?!%$'d up processor people. I bet if
1217 * you examined the microcode of the Swift you'd find
1218 * XXX's all over the place.
1219 */
1220 poke_srmmu = poke_swift;
1221}
1222
1223static void turbosparc_flush_cache_all(void)
1224{
1225 flush_user_windows();
1226 turbosparc_idflash_clear();
1227}
1228
1229static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1230{
1231 FLUSH_BEGIN(mm)
1232 flush_user_windows();
1233 turbosparc_idflash_clear();
1234 FLUSH_END
1235}
1236
1237static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1238{
1239 FLUSH_BEGIN(vma->vm_mm)
1240 flush_user_windows();
1241 turbosparc_idflash_clear();
1242 FLUSH_END
1243}
1244
1245static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1246{
1247 FLUSH_BEGIN(vma->vm_mm)
1248 flush_user_windows();
1249 if (vma->vm_flags & VM_EXEC)
1250 turbosparc_flush_icache();
1251 turbosparc_flush_dcache();
1252 FLUSH_END
1253}
1254
1255/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1256static void turbosparc_flush_page_to_ram(unsigned long page)
1257{
1258#ifdef TURBOSPARC_WRITEBACK
1259 volatile unsigned long clear;
1260
1261 if (srmmu_probe(page))
1262 turbosparc_flush_page_cache(page);
1263 clear = srmmu_get_fstatus();
1264#endif
1265}
1266
1267static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1268{
1269}
1270
1271static void turbosparc_flush_page_for_dma(unsigned long page)
1272{
1273 turbosparc_flush_dcache();
1274}
1275
1276static void turbosparc_flush_tlb_all(void)
1277{
1278 srmmu_flush_whole_tlb();
1279}
1280
1281static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1282{
1283 FLUSH_BEGIN(mm)
1284 srmmu_flush_whole_tlb();
1285 FLUSH_END
1286}
1287
1288static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1289{
1290 FLUSH_BEGIN(vma->vm_mm)
1291 srmmu_flush_whole_tlb();
1292 FLUSH_END
1293}
1294
1295static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1296{
1297 FLUSH_BEGIN(vma->vm_mm)
1298 srmmu_flush_whole_tlb();
1299 FLUSH_END
1300}
1301
1302
1303static void poke_turbosparc(void)
1304{
1305 unsigned long mreg = srmmu_get_mmureg();
1306 unsigned long ccreg;
1307
1308 /* Clear any crap from the cache or else... */
1309 turbosparc_flush_cache_all();
1310 /* Temporarily disable I & D caches */
1311 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1312 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1313 srmmu_set_mmureg(mreg);
1314
1315 ccreg = turbosparc_get_ccreg();
1316
1317#ifdef TURBOSPARC_WRITEBACK
1318 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1319 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1320 /* Write-back D-cache, emulate VLSI
1321 * abortion number three, not number one */
1322#else
1323 /* For now let's play safe, optimize later */
1324 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1325 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1326 ccreg &= ~(TURBOSPARC_uS2);
1327 /* Emulate VLSI abortion number three, not number one */
1328#endif
1329
1330 switch (ccreg & 7) {
1331 case 0: /* No SE cache */
1332 case 7: /* Test mode */
1333 break;
1334 default:
1335 ccreg |= (TURBOSPARC_SCENABLE);
1336 }
1337 turbosparc_set_ccreg(ccreg);
1338
1339 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1340 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1341 srmmu_set_mmureg(mreg);
1342}
1343
1344static const struct sparc32_cachetlb_ops turbosparc_ops = {
1345 .cache_all = turbosparc_flush_cache_all,
1346 .cache_mm = turbosparc_flush_cache_mm,
1347 .cache_page = turbosparc_flush_cache_page,
1348 .cache_range = turbosparc_flush_cache_range,
1349 .tlb_all = turbosparc_flush_tlb_all,
1350 .tlb_mm = turbosparc_flush_tlb_mm,
1351 .tlb_page = turbosparc_flush_tlb_page,
1352 .tlb_range = turbosparc_flush_tlb_range,
1353 .page_to_ram = turbosparc_flush_page_to_ram,
1354 .sig_insns = turbosparc_flush_sig_insns,
1355 .page_for_dma = turbosparc_flush_page_for_dma,
1356};
1357
1358static void __init init_turbosparc(void)
1359{
1360 srmmu_name = "Fujitsu TurboSparc";
1361 srmmu_modtype = TurboSparc;
1362 sparc32_cachetlb_ops = &turbosparc_ops;
1363 poke_srmmu = poke_turbosparc;
1364}
1365
1366static void poke_tsunami(void)
1367{
1368 unsigned long mreg = srmmu_get_mmureg();
1369
1370 tsunami_flush_icache();
1371 tsunami_flush_dcache();
1372 mreg &= ~TSUNAMI_ITD;
1373 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1374 srmmu_set_mmureg(mreg);
1375}
1376
1377static const struct sparc32_cachetlb_ops tsunami_ops = {
1378 .cache_all = tsunami_flush_cache_all,
1379 .cache_mm = tsunami_flush_cache_mm,
1380 .cache_page = tsunami_flush_cache_page,
1381 .cache_range = tsunami_flush_cache_range,
1382 .tlb_all = tsunami_flush_tlb_all,
1383 .tlb_mm = tsunami_flush_tlb_mm,
1384 .tlb_page = tsunami_flush_tlb_page,
1385 .tlb_range = tsunami_flush_tlb_range,
1386 .page_to_ram = tsunami_flush_page_to_ram,
1387 .sig_insns = tsunami_flush_sig_insns,
1388 .page_for_dma = tsunami_flush_page_for_dma,
1389};
1390
1391static void __init init_tsunami(void)
1392{
1393 /*
1394 * Tsunami's pretty sane, Sun and TI actually got it
1395 * somewhat right this time. Fujitsu should have
1396 * taken some lessons from them.
1397 */
1398
1399 srmmu_name = "TI Tsunami";
1400 srmmu_modtype = Tsunami;
1401 sparc32_cachetlb_ops = &tsunami_ops;
1402 poke_srmmu = poke_tsunami;
1403
1404 tsunami_setup_blockops();
1405}
1406
1407static void poke_viking(void)
1408{
1409 unsigned long mreg = srmmu_get_mmureg();
1410 static int smp_catch;
1411
1412 if (viking_mxcc_present) {
1413 unsigned long mxcc_control = mxcc_get_creg();
1414
1415 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1416 mxcc_control &= ~(MXCC_CTL_RRC);
1417 mxcc_set_creg(mxcc_control);
1418
1419 /*
1420 * We don't need memory parity checks.
1421 * XXX This is a mess, have to dig out later. ecd.
1422 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1423 */
1424
1425 /* We do cache ptables on MXCC. */
1426 mreg |= VIKING_TCENABLE;
1427 } else {
1428 unsigned long bpreg;
1429
1430 mreg &= ~(VIKING_TCENABLE);
1431 if (smp_catch++) {
1432 /* Must disable mixed-cmd mode here for other cpu's. */
1433 bpreg = viking_get_bpreg();
1434 bpreg &= ~(VIKING_ACTION_MIX);
1435 viking_set_bpreg(bpreg);
1436
1437 /* Just in case PROM does something funny. */
1438 msi_set_sync();
1439 }
1440 }
1441
1442 mreg |= VIKING_SPENABLE;
1443 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1444 mreg |= VIKING_SBENABLE;
1445 mreg &= ~(VIKING_ACENABLE);
1446 srmmu_set_mmureg(mreg);
1447}
1448
1449static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1450 .cache_all = viking_flush_cache_all,
1451 .cache_mm = viking_flush_cache_mm,
1452 .cache_page = viking_flush_cache_page,
1453 .cache_range = viking_flush_cache_range,
1454 .tlb_all = viking_flush_tlb_all,
1455 .tlb_mm = viking_flush_tlb_mm,
1456 .tlb_page = viking_flush_tlb_page,
1457 .tlb_range = viking_flush_tlb_range,
1458 .page_to_ram = viking_flush_page_to_ram,
1459 .sig_insns = viking_flush_sig_insns,
1460 .page_for_dma = viking_flush_page_for_dma,
1461};
1462
1463#ifdef CONFIG_SMP
1464/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1465 * perform the local TLB flush and all the other cpus will see it.
1466 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1467 * that requires that we add some synchronization to these flushes.
1468 *
1469 * The bug is that the fifo which keeps track of all the pending TLB
1470 * broadcasts in the system is an entry or two too small, so if we
1471 * have too many going at once we'll overflow that fifo and lose a TLB
1472 * flush resulting in corruption.
1473 *
1474 * Our workaround is to take a global spinlock around the TLB flushes,
1475 * which guarentees we won't ever have too many pending. It's a big
1476 * hammer, but a semaphore like system to make sure we only have N TLB
1477 * flushes going at once will require SMP locking anyways so there's
1478 * no real value in trying any harder than this.
1479 */
1480static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1481 .cache_all = viking_flush_cache_all,
1482 .cache_mm = viking_flush_cache_mm,
1483 .cache_page = viking_flush_cache_page,
1484 .cache_range = viking_flush_cache_range,
1485 .tlb_all = sun4dsmp_flush_tlb_all,
1486 .tlb_mm = sun4dsmp_flush_tlb_mm,
1487 .tlb_page = sun4dsmp_flush_tlb_page,
1488 .tlb_range = sun4dsmp_flush_tlb_range,
1489 .page_to_ram = viking_flush_page_to_ram,
1490 .sig_insns = viking_flush_sig_insns,
1491 .page_for_dma = viking_flush_page_for_dma,
1492};
1493#endif
1494
1495static void __init init_viking(void)
1496{
1497 unsigned long mreg = srmmu_get_mmureg();
1498
1499 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1500 if (mreg & VIKING_MMODE) {
1501 srmmu_name = "TI Viking";
1502 viking_mxcc_present = 0;
1503 msi_set_sync();
1504
1505 /*
1506 * We need this to make sure old viking takes no hits
1507 * on it's cache for dma snoops to workaround the
1508 * "load from non-cacheable memory" interrupt bug.
1509 * This is only necessary because of the new way in
1510 * which we use the IOMMU.
1511 */
1512 viking_ops.page_for_dma = viking_flush_page;
1513#ifdef CONFIG_SMP
1514 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1515#endif
1516 flush_page_for_dma_global = 0;
1517 } else {
1518 srmmu_name = "TI Viking/MXCC";
1519 viking_mxcc_present = 1;
1520 srmmu_cache_pagetables = 1;
1521 }
1522
1523 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1524 &viking_ops;
1525#ifdef CONFIG_SMP
1526 if (sparc_cpu_model == sun4d)
1527 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1528 &viking_sun4d_smp_ops;
1529#endif
1530
1531 poke_srmmu = poke_viking;
1532}
1533
1534/* Probe for the srmmu chip version. */
1535static void __init get_srmmu_type(void)
1536{
1537 unsigned long mreg, psr;
1538 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1539
1540 srmmu_modtype = SRMMU_INVAL_MOD;
1541 hwbug_bitmask = 0;
1542
1543 mreg = srmmu_get_mmureg(); psr = get_psr();
1544 mod_typ = (mreg & 0xf0000000) >> 28;
1545 mod_rev = (mreg & 0x0f000000) >> 24;
1546 psr_typ = (psr >> 28) & 0xf;
1547 psr_vers = (psr >> 24) & 0xf;
1548
1549 /* First, check for sparc-leon. */
1550 if (sparc_cpu_model == sparc_leon) {
1551 init_leon();
1552 return;
1553 }
1554
1555 /* Second, check for HyperSparc or Cypress. */
1556 if (mod_typ == 1) {
1557 switch (mod_rev) {
1558 case 7:
1559 /* UP or MP Hypersparc */
1560 init_hypersparc();
1561 break;
1562 case 0:
1563 case 2:
1564 case 10:
1565 case 11:
1566 case 12:
1567 case 13:
1568 case 14:
1569 case 15:
1570 default:
1571 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1572 prom_halt();
1573 break;
1574 }
1575 return;
1576 }
1577
1578 /* Now Fujitsu TurboSparc. It might happen that it is
1579 * in Swift emulation mode, so we will check later...
1580 */
1581 if (psr_typ == 0 && psr_vers == 5) {
1582 init_turbosparc();
1583 return;
1584 }
1585
1586 /* Next check for Fujitsu Swift. */
1587 if (psr_typ == 0 && psr_vers == 4) {
1588 phandle cpunode;
1589 char node_str[128];
1590
1591 /* Look if it is not a TurboSparc emulating Swift... */
1592 cpunode = prom_getchild(prom_root_node);
1593 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1594 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1595 if (!strcmp(node_str, "cpu")) {
1596 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1597 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1598 init_turbosparc();
1599 return;
1600 }
1601 break;
1602 }
1603 }
1604
1605 init_swift();
1606 return;
1607 }
1608
1609 /* Now the Viking family of srmmu. */
1610 if (psr_typ == 4 &&
1611 ((psr_vers == 0) ||
1612 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1613 init_viking();
1614 return;
1615 }
1616
1617 /* Finally the Tsunami. */
1618 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1619 init_tsunami();
1620 return;
1621 }
1622
1623 /* Oh well */
1624 srmmu_is_bad();
1625}
1626
1627#ifdef CONFIG_SMP
1628/* Local cross-calls. */
1629static void smp_flush_page_for_dma(unsigned long page)
1630{
1631 xc1((smpfunc_t) local_ops->page_for_dma, page);
1632 local_ops->page_for_dma(page);
1633}
1634
1635static void smp_flush_cache_all(void)
1636{
1637 xc0((smpfunc_t) local_ops->cache_all);
1638 local_ops->cache_all();
1639}
1640
1641static void smp_flush_tlb_all(void)
1642{
1643 xc0((smpfunc_t) local_ops->tlb_all);
1644 local_ops->tlb_all();
1645}
1646
1647static void smp_flush_cache_mm(struct mm_struct *mm)
1648{
1649 if (mm->context != NO_CONTEXT) {
1650 cpumask_t cpu_mask;
1651 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1652 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1653 if (!cpumask_empty(&cpu_mask))
1654 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1655 local_ops->cache_mm(mm);
1656 }
1657}
1658
1659static void smp_flush_tlb_mm(struct mm_struct *mm)
1660{
1661 if (mm->context != NO_CONTEXT) {
1662 cpumask_t cpu_mask;
1663 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1664 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1665 if (!cpumask_empty(&cpu_mask)) {
1666 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1667 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1668 cpumask_copy(mm_cpumask(mm),
1669 cpumask_of(smp_processor_id()));
1670 }
1671 local_ops->tlb_mm(mm);
1672 }
1673}
1674
1675static void smp_flush_cache_range(struct vm_area_struct *vma,
1676 unsigned long start,
1677 unsigned long end)
1678{
1679 struct mm_struct *mm = vma->vm_mm;
1680
1681 if (mm->context != NO_CONTEXT) {
1682 cpumask_t cpu_mask;
1683 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1684 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1685 if (!cpumask_empty(&cpu_mask))
1686 xc3((smpfunc_t) local_ops->cache_range,
1687 (unsigned long) vma, start, end);
1688 local_ops->cache_range(vma, start, end);
1689 }
1690}
1691
1692static void smp_flush_tlb_range(struct vm_area_struct *vma,
1693 unsigned long start,
1694 unsigned long end)
1695{
1696 struct mm_struct *mm = vma->vm_mm;
1697
1698 if (mm->context != NO_CONTEXT) {
1699 cpumask_t cpu_mask;
1700 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1701 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1702 if (!cpumask_empty(&cpu_mask))
1703 xc3((smpfunc_t) local_ops->tlb_range,
1704 (unsigned long) vma, start, end);
1705 local_ops->tlb_range(vma, start, end);
1706 }
1707}
1708
1709static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1710{
1711 struct mm_struct *mm = vma->vm_mm;
1712
1713 if (mm->context != NO_CONTEXT) {
1714 cpumask_t cpu_mask;
1715 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1716 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1717 if (!cpumask_empty(&cpu_mask))
1718 xc2((smpfunc_t) local_ops->cache_page,
1719 (unsigned long) vma, page);
1720 local_ops->cache_page(vma, page);
1721 }
1722}
1723
1724static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1725{
1726 struct mm_struct *mm = vma->vm_mm;
1727
1728 if (mm->context != NO_CONTEXT) {
1729 cpumask_t cpu_mask;
1730 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1731 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1732 if (!cpumask_empty(&cpu_mask))
1733 xc2((smpfunc_t) local_ops->tlb_page,
1734 (unsigned long) vma, page);
1735 local_ops->tlb_page(vma, page);
1736 }
1737}
1738
1739static void smp_flush_page_to_ram(unsigned long page)
1740{
1741 /* Current theory is that those who call this are the one's
1742 * who have just dirtied their cache with the pages contents
1743 * in kernel space, therefore we only run this on local cpu.
1744 *
1745 * XXX This experiment failed, research further... -DaveM
1746 */
1747#if 1
1748 xc1((smpfunc_t) local_ops->page_to_ram, page);
1749#endif
1750 local_ops->page_to_ram(page);
1751}
1752
1753static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1754{
1755 cpumask_t cpu_mask;
1756 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758 if (!cpumask_empty(&cpu_mask))
1759 xc2((smpfunc_t) local_ops->sig_insns,
1760 (unsigned long) mm, insn_addr);
1761 local_ops->sig_insns(mm, insn_addr);
1762}
1763
1764static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1765 .cache_all = smp_flush_cache_all,
1766 .cache_mm = smp_flush_cache_mm,
1767 .cache_page = smp_flush_cache_page,
1768 .cache_range = smp_flush_cache_range,
1769 .tlb_all = smp_flush_tlb_all,
1770 .tlb_mm = smp_flush_tlb_mm,
1771 .tlb_page = smp_flush_tlb_page,
1772 .tlb_range = smp_flush_tlb_range,
1773 .page_to_ram = smp_flush_page_to_ram,
1774 .sig_insns = smp_flush_sig_insns,
1775 .page_for_dma = smp_flush_page_for_dma,
1776};
1777#endif
1778
1779/* Load up routines and constants for sun4m and sun4d mmu */
1780void __init load_mmu(void)
1781{
1782 /* Functions */
1783 get_srmmu_type();
1784
1785#ifdef CONFIG_SMP
1786 /* El switcheroo... */
1787 local_ops = sparc32_cachetlb_ops;
1788
1789 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1790 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1791 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1792 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1793 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1794 }
1795
1796 if (poke_srmmu == poke_viking) {
1797 /* Avoid unnecessary cross calls. */
1798 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1799 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1800 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1801 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1802
1803 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1804 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1805 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1806 }
1807
1808 /* It really is const after this point. */
1809 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1810 &smp_cachetlb_ops;
1811#endif
1812
1813 if (sparc_cpu_model == sun4d)
1814 ld_mmu_iounit();
1815 else
1816 ld_mmu_iommu();
1817#ifdef CONFIG_SMP
1818 if (sparc_cpu_model == sun4d)
1819 sun4d_init_smp();
1820 else if (sparc_cpu_model == sparc_leon)
1821 leon_init_smp();
1822 else
1823 sun4m_init_smp();
1824#endif
1825}
1/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11#include <linux/seq_file.h>
12#include <linux/spinlock.h>
13#include <linux/bootmem.h>
14#include <linux/pagemap.h>
15#include <linux/vmalloc.h>
16#include <linux/kdebug.h>
17#include <linux/export.h>
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/log2.h>
21#include <linux/gfp.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
24
25#include <asm/mmu_context.h>
26#include <asm/cacheflush.h>
27#include <asm/tlbflush.h>
28#include <asm/io-unit.h>
29#include <asm/pgalloc.h>
30#include <asm/pgtable.h>
31#include <asm/bitext.h>
32#include <asm/vaddrs.h>
33#include <asm/cache.h>
34#include <asm/traps.h>
35#include <asm/oplib.h>
36#include <asm/mbus.h>
37#include <asm/page.h>
38#include <asm/asi.h>
39#include <asm/msi.h>
40#include <asm/smp.h>
41#include <asm/io.h>
42
43/* Now the cpu specific definitions. */
44#include <asm/turbosparc.h>
45#include <asm/tsunami.h>
46#include <asm/viking.h>
47#include <asm/swift.h>
48#include <asm/leon.h>
49#include <asm/mxcc.h>
50#include <asm/ross.h>
51
52#include "mm_32.h"
53
54enum mbus_module srmmu_modtype;
55static unsigned int hwbug_bitmask;
56int vac_cache_size;
57int vac_line_size;
58
59extern struct resource sparc_iomap;
60
61extern unsigned long last_valid_pfn;
62
63static pgd_t *srmmu_swapper_pg_dir;
64
65const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
66EXPORT_SYMBOL(sparc32_cachetlb_ops);
67
68#ifdef CONFIG_SMP
69const struct sparc32_cachetlb_ops *local_ops;
70
71#define FLUSH_BEGIN(mm)
72#define FLUSH_END
73#else
74#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
75#define FLUSH_END }
76#endif
77
78int flush_page_for_dma_global = 1;
79
80char *srmmu_name;
81
82ctxd_t *srmmu_ctx_table_phys;
83static ctxd_t *srmmu_context_table;
84
85int viking_mxcc_present;
86static DEFINE_SPINLOCK(srmmu_context_spinlock);
87
88static int is_hypersparc;
89
90static int srmmu_cache_pagetables;
91
92/* these will be initialized in srmmu_nocache_calcsize() */
93static unsigned long srmmu_nocache_size;
94static unsigned long srmmu_nocache_end;
95
96/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
97#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
98
99/* The context table is a nocache user with the biggest alignment needs. */
100#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
101
102void *srmmu_nocache_pool;
103static struct bit_map srmmu_nocache_map;
104
105static inline int srmmu_pmd_none(pmd_t pmd)
106{ return !(pmd_val(pmd) & 0xFFFFFFF); }
107
108/* XXX should we hyper_flush_whole_icache here - Anton */
109static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
110{ set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
111
112void pmd_set(pmd_t *pmdp, pte_t *ptep)
113{
114 unsigned long ptp; /* Physical address, shifted right by 4 */
115 int i;
116
117 ptp = __nocache_pa((unsigned long) ptep) >> 4;
118 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
119 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
120 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
121 }
122}
123
124void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
125{
126 unsigned long ptp; /* Physical address, shifted right by 4 */
127 int i;
128
129 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
130 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
131 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
132 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
133 }
134}
135
136/* Find an entry in the third-level page table.. */
137pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
138{
139 void *pte;
140
141 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
142 return (pte_t *) pte +
143 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
144}
145
146/*
147 * size: bytes to allocate in the nocache area.
148 * align: bytes, number to align at.
149 * Returns the virtual address of the allocated area.
150 */
151static void *__srmmu_get_nocache(int size, int align)
152{
153 int offset;
154 unsigned long addr;
155
156 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
157 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
158 size);
159 size = SRMMU_NOCACHE_BITMAP_SHIFT;
160 }
161 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
162 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
163 size);
164 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
165 }
166 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167
168 offset = bit_map_string_get(&srmmu_nocache_map,
169 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
170 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171 if (offset == -1) {
172 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
173 size, (int) srmmu_nocache_size,
174 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175 return NULL;
176 }
177
178 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
179 return (void *)addr;
180}
181
182void *srmmu_get_nocache(int size, int align)
183{
184 void *tmp;
185
186 tmp = __srmmu_get_nocache(size, align);
187
188 if (tmp)
189 memset(tmp, 0, size);
190
191 return tmp;
192}
193
194void srmmu_free_nocache(void *addr, int size)
195{
196 unsigned long vaddr;
197 int offset;
198
199 vaddr = (unsigned long)addr;
200 if (vaddr < SRMMU_NOCACHE_VADDR) {
201 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
202 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
203 BUG();
204 }
205 if (vaddr + size > srmmu_nocache_end) {
206 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
207 vaddr, srmmu_nocache_end);
208 BUG();
209 }
210 if (!is_power_of_2(size)) {
211 printk("Size 0x%x is not a power of 2\n", size);
212 BUG();
213 }
214 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
215 printk("Size 0x%x is too small\n", size);
216 BUG();
217 }
218 if (vaddr & (size - 1)) {
219 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
220 BUG();
221 }
222
223 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
224 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
225
226 bit_map_clear(&srmmu_nocache_map, offset, size);
227}
228
229static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
230 unsigned long end);
231
232/* Return how much physical memory we have. */
233static unsigned long __init probe_memory(void)
234{
235 unsigned long total = 0;
236 int i;
237
238 for (i = 0; sp_banks[i].num_bytes; i++)
239 total += sp_banks[i].num_bytes;
240
241 return total;
242}
243
244/*
245 * Reserve nocache dynamically proportionally to the amount of
246 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
247 */
248static void __init srmmu_nocache_calcsize(void)
249{
250 unsigned long sysmemavail = probe_memory() / 1024;
251 int srmmu_nocache_npages;
252
253 srmmu_nocache_npages =
254 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
255
256 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
257 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
258 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
259 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
260
261 /* anything above 1280 blows up */
262 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
263 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
264
265 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
266 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
267}
268
269static void __init srmmu_nocache_init(void)
270{
271 void *srmmu_nocache_bitmap;
272 unsigned int bitmap_bits;
273 pgd_t *pgd;
274 pmd_t *pmd;
275 pte_t *pte;
276 unsigned long paddr, vaddr;
277 unsigned long pteval;
278
279 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
280
281 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
282 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
283 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
284
285 srmmu_nocache_bitmap =
286 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
287 SMP_CACHE_BYTES, 0UL);
288 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
289
290 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
291 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
292 init_mm.pgd = srmmu_swapper_pg_dir;
293
294 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
295
296 paddr = __pa((unsigned long)srmmu_nocache_pool);
297 vaddr = SRMMU_NOCACHE_VADDR;
298
299 while (vaddr < srmmu_nocache_end) {
300 pgd = pgd_offset_k(vaddr);
301 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
302 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
303
304 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
305
306 if (srmmu_cache_pagetables)
307 pteval |= SRMMU_CACHE;
308
309 set_pte(__nocache_fix(pte), __pte(pteval));
310
311 vaddr += PAGE_SIZE;
312 paddr += PAGE_SIZE;
313 }
314
315 flush_cache_all();
316 flush_tlb_all();
317}
318
319pgd_t *get_pgd_fast(void)
320{
321 pgd_t *pgd = NULL;
322
323 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
324 if (pgd) {
325 pgd_t *init = pgd_offset_k(0);
326 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
327 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
328 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
329 }
330
331 return pgd;
332}
333
334/*
335 * Hardware needs alignment to 256 only, but we align to whole page size
336 * to reduce fragmentation problems due to the buddy principle.
337 * XXX Provide actual fragmentation statistics in /proc.
338 *
339 * Alignments up to the page size are the same for physical and virtual
340 * addresses of the nocache area.
341 */
342pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
343{
344 unsigned long pte;
345 struct page *page;
346
347 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
348 return NULL;
349 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
350 if (!pgtable_page_ctor(page)) {
351 __free_page(page);
352 return NULL;
353 }
354 return page;
355}
356
357void pte_free(struct mm_struct *mm, pgtable_t pte)
358{
359 unsigned long p;
360
361 pgtable_page_dtor(pte);
362 p = (unsigned long)page_address(pte); /* Cached address (for test) */
363 if (p == 0)
364 BUG();
365 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
366
367 /* free non cached virtual address*/
368 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
369}
370
371/* context handling - a dynamically sized pool is used */
372#define NO_CONTEXT -1
373
374struct ctx_list {
375 struct ctx_list *next;
376 struct ctx_list *prev;
377 unsigned int ctx_number;
378 struct mm_struct *ctx_mm;
379};
380
381static struct ctx_list *ctx_list_pool;
382static struct ctx_list ctx_free;
383static struct ctx_list ctx_used;
384
385/* At boot time we determine the number of contexts */
386static int num_contexts;
387
388static inline void remove_from_ctx_list(struct ctx_list *entry)
389{
390 entry->next->prev = entry->prev;
391 entry->prev->next = entry->next;
392}
393
394static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
395{
396 entry->next = head;
397 (entry->prev = head->prev)->next = entry;
398 head->prev = entry;
399}
400#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
401#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
402
403
404static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
405{
406 struct ctx_list *ctxp;
407
408 ctxp = ctx_free.next;
409 if (ctxp != &ctx_free) {
410 remove_from_ctx_list(ctxp);
411 add_to_used_ctxlist(ctxp);
412 mm->context = ctxp->ctx_number;
413 ctxp->ctx_mm = mm;
414 return;
415 }
416 ctxp = ctx_used.next;
417 if (ctxp->ctx_mm == old_mm)
418 ctxp = ctxp->next;
419 if (ctxp == &ctx_used)
420 panic("out of mmu contexts");
421 flush_cache_mm(ctxp->ctx_mm);
422 flush_tlb_mm(ctxp->ctx_mm);
423 remove_from_ctx_list(ctxp);
424 add_to_used_ctxlist(ctxp);
425 ctxp->ctx_mm->context = NO_CONTEXT;
426 ctxp->ctx_mm = mm;
427 mm->context = ctxp->ctx_number;
428}
429
430static inline void free_context(int context)
431{
432 struct ctx_list *ctx_old;
433
434 ctx_old = ctx_list_pool + context;
435 remove_from_ctx_list(ctx_old);
436 add_to_free_ctxlist(ctx_old);
437}
438
439static void __init sparc_context_init(int numctx)
440{
441 int ctx;
442 unsigned long size;
443
444 size = numctx * sizeof(struct ctx_list);
445 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
446
447 for (ctx = 0; ctx < numctx; ctx++) {
448 struct ctx_list *clist;
449
450 clist = (ctx_list_pool + ctx);
451 clist->ctx_number = ctx;
452 clist->ctx_mm = NULL;
453 }
454 ctx_free.next = ctx_free.prev = &ctx_free;
455 ctx_used.next = ctx_used.prev = &ctx_used;
456 for (ctx = 0; ctx < numctx; ctx++)
457 add_to_free_ctxlist(ctx_list_pool + ctx);
458}
459
460void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
461 struct task_struct *tsk)
462{
463 unsigned long flags;
464
465 if (mm->context == NO_CONTEXT) {
466 spin_lock_irqsave(&srmmu_context_spinlock, flags);
467 alloc_context(old_mm, mm);
468 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
469 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
470 }
471
472 if (sparc_cpu_model == sparc_leon)
473 leon_switch_mm();
474
475 if (is_hypersparc)
476 hyper_flush_whole_icache();
477
478 srmmu_set_context(mm->context);
479}
480
481/* Low level IO area allocation on the SRMMU. */
482static inline void srmmu_mapioaddr(unsigned long physaddr,
483 unsigned long virt_addr, int bus_type)
484{
485 pgd_t *pgdp;
486 pmd_t *pmdp;
487 pte_t *ptep;
488 unsigned long tmp;
489
490 physaddr &= PAGE_MASK;
491 pgdp = pgd_offset_k(virt_addr);
492 pmdp = pmd_offset(pgdp, virt_addr);
493 ptep = pte_offset_kernel(pmdp, virt_addr);
494 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
495
496 /* I need to test whether this is consistent over all
497 * sun4m's. The bus_type represents the upper 4 bits of
498 * 36-bit physical address on the I/O space lines...
499 */
500 tmp |= (bus_type << 28);
501 tmp |= SRMMU_PRIV;
502 __flush_page_to_ram(virt_addr);
503 set_pte(ptep, __pte(tmp));
504}
505
506void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
507 unsigned long xva, unsigned int len)
508{
509 while (len != 0) {
510 len -= PAGE_SIZE;
511 srmmu_mapioaddr(xpa, xva, bus);
512 xva += PAGE_SIZE;
513 xpa += PAGE_SIZE;
514 }
515 flush_tlb_all();
516}
517
518static inline void srmmu_unmapioaddr(unsigned long virt_addr)
519{
520 pgd_t *pgdp;
521 pmd_t *pmdp;
522 pte_t *ptep;
523
524 pgdp = pgd_offset_k(virt_addr);
525 pmdp = pmd_offset(pgdp, virt_addr);
526 ptep = pte_offset_kernel(pmdp, virt_addr);
527
528 /* No need to flush uncacheable page. */
529 __pte_clear(ptep);
530}
531
532void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
533{
534 while (len != 0) {
535 len -= PAGE_SIZE;
536 srmmu_unmapioaddr(virt_addr);
537 virt_addr += PAGE_SIZE;
538 }
539 flush_tlb_all();
540}
541
542/* tsunami.S */
543extern void tsunami_flush_cache_all(void);
544extern void tsunami_flush_cache_mm(struct mm_struct *mm);
545extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
546extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
547extern void tsunami_flush_page_to_ram(unsigned long page);
548extern void tsunami_flush_page_for_dma(unsigned long page);
549extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
550extern void tsunami_flush_tlb_all(void);
551extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
552extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
553extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
554extern void tsunami_setup_blockops(void);
555
556/* swift.S */
557extern void swift_flush_cache_all(void);
558extern void swift_flush_cache_mm(struct mm_struct *mm);
559extern void swift_flush_cache_range(struct vm_area_struct *vma,
560 unsigned long start, unsigned long end);
561extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
562extern void swift_flush_page_to_ram(unsigned long page);
563extern void swift_flush_page_for_dma(unsigned long page);
564extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
565extern void swift_flush_tlb_all(void);
566extern void swift_flush_tlb_mm(struct mm_struct *mm);
567extern void swift_flush_tlb_range(struct vm_area_struct *vma,
568 unsigned long start, unsigned long end);
569extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
570
571#if 0 /* P3: deadwood to debug precise flushes on Swift. */
572void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
573{
574 int cctx, ctx1;
575
576 page &= PAGE_MASK;
577 if ((ctx1 = vma->vm_mm->context) != -1) {
578 cctx = srmmu_get_context();
579/* Is context # ever different from current context? P3 */
580 if (cctx != ctx1) {
581 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
582 srmmu_set_context(ctx1);
583 swift_flush_page(page);
584 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
585 "r" (page), "i" (ASI_M_FLUSH_PROBE));
586 srmmu_set_context(cctx);
587 } else {
588 /* Rm. prot. bits from virt. c. */
589 /* swift_flush_cache_all(); */
590 /* swift_flush_cache_page(vma, page); */
591 swift_flush_page(page);
592
593 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
594 "r" (page), "i" (ASI_M_FLUSH_PROBE));
595 /* same as above: srmmu_flush_tlb_page() */
596 }
597 }
598}
599#endif
600
601/*
602 * The following are all MBUS based SRMMU modules, and therefore could
603 * be found in a multiprocessor configuration. On the whole, these
604 * chips seems to be much more touchy about DVMA and page tables
605 * with respect to cache coherency.
606 */
607
608/* viking.S */
609extern void viking_flush_cache_all(void);
610extern void viking_flush_cache_mm(struct mm_struct *mm);
611extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
612 unsigned long end);
613extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
614extern void viking_flush_page_to_ram(unsigned long page);
615extern void viking_flush_page_for_dma(unsigned long page);
616extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
617extern void viking_flush_page(unsigned long page);
618extern void viking_mxcc_flush_page(unsigned long page);
619extern void viking_flush_tlb_all(void);
620extern void viking_flush_tlb_mm(struct mm_struct *mm);
621extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
622 unsigned long end);
623extern void viking_flush_tlb_page(struct vm_area_struct *vma,
624 unsigned long page);
625extern void sun4dsmp_flush_tlb_all(void);
626extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
627extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
628 unsigned long end);
629extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
630 unsigned long page);
631
632/* hypersparc.S */
633extern void hypersparc_flush_cache_all(void);
634extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
635extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
636extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
637extern void hypersparc_flush_page_to_ram(unsigned long page);
638extern void hypersparc_flush_page_for_dma(unsigned long page);
639extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
640extern void hypersparc_flush_tlb_all(void);
641extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
642extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
643extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
644extern void hypersparc_setup_blockops(void);
645
646/*
647 * NOTE: All of this startup code assumes the low 16mb (approx.) of
648 * kernel mappings are done with one single contiguous chunk of
649 * ram. On small ram machines (classics mainly) we only get
650 * around 8mb mapped for us.
651 */
652
653static void __init early_pgtable_allocfail(char *type)
654{
655 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
656 prom_halt();
657}
658
659static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
660 unsigned long end)
661{
662 pgd_t *pgdp;
663 pmd_t *pmdp;
664 pte_t *ptep;
665
666 while (start < end) {
667 pgdp = pgd_offset_k(start);
668 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
669 pmdp = __srmmu_get_nocache(
670 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
671 if (pmdp == NULL)
672 early_pgtable_allocfail("pmd");
673 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
674 pgd_set(__nocache_fix(pgdp), pmdp);
675 }
676 pmdp = pmd_offset(__nocache_fix(pgdp), start);
677 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
678 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
679 if (ptep == NULL)
680 early_pgtable_allocfail("pte");
681 memset(__nocache_fix(ptep), 0, PTE_SIZE);
682 pmd_set(__nocache_fix(pmdp), ptep);
683 }
684 if (start > (0xffffffffUL - PMD_SIZE))
685 break;
686 start = (start + PMD_SIZE) & PMD_MASK;
687 }
688}
689
690static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
691 unsigned long end)
692{
693 pgd_t *pgdp;
694 pmd_t *pmdp;
695 pte_t *ptep;
696
697 while (start < end) {
698 pgdp = pgd_offset_k(start);
699 if (pgd_none(*pgdp)) {
700 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
701 if (pmdp == NULL)
702 early_pgtable_allocfail("pmd");
703 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
704 pgd_set(pgdp, pmdp);
705 }
706 pmdp = pmd_offset(pgdp, start);
707 if (srmmu_pmd_none(*pmdp)) {
708 ptep = __srmmu_get_nocache(PTE_SIZE,
709 PTE_SIZE);
710 if (ptep == NULL)
711 early_pgtable_allocfail("pte");
712 memset(ptep, 0, PTE_SIZE);
713 pmd_set(pmdp, ptep);
714 }
715 if (start > (0xffffffffUL - PMD_SIZE))
716 break;
717 start = (start + PMD_SIZE) & PMD_MASK;
718 }
719}
720
721/* These flush types are not available on all chips... */
722static inline unsigned long srmmu_probe(unsigned long vaddr)
723{
724 unsigned long retval;
725
726 if (sparc_cpu_model != sparc_leon) {
727
728 vaddr &= PAGE_MASK;
729 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
730 "=r" (retval) :
731 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
732 } else {
733 retval = leon_swprobe(vaddr, NULL);
734 }
735 return retval;
736}
737
738/*
739 * This is much cleaner than poking around physical address space
740 * looking at the prom's page table directly which is what most
741 * other OS's do. Yuck... this is much better.
742 */
743static void __init srmmu_inherit_prom_mappings(unsigned long start,
744 unsigned long end)
745{
746 unsigned long probed;
747 unsigned long addr;
748 pgd_t *pgdp;
749 pmd_t *pmdp;
750 pte_t *ptep;
751 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
752
753 while (start <= end) {
754 if (start == 0)
755 break; /* probably wrap around */
756 if (start == 0xfef00000)
757 start = KADB_DEBUGGER_BEGVM;
758 probed = srmmu_probe(start);
759 if (!probed) {
760 /* continue probing until we find an entry */
761 start += PAGE_SIZE;
762 continue;
763 }
764
765 /* A red snapper, see what it really is. */
766 what = 0;
767 addr = start - PAGE_SIZE;
768
769 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
770 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
771 what = 1;
772 }
773
774 if (!(start & ~(SRMMU_PGDIR_MASK))) {
775 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
776 what = 2;
777 }
778
779 pgdp = pgd_offset_k(start);
780 if (what == 2) {
781 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
782 start += SRMMU_PGDIR_SIZE;
783 continue;
784 }
785 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
786 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
787 SRMMU_PMD_TABLE_SIZE);
788 if (pmdp == NULL)
789 early_pgtable_allocfail("pmd");
790 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
791 pgd_set(__nocache_fix(pgdp), pmdp);
792 }
793 pmdp = pmd_offset(__nocache_fix(pgdp), start);
794 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
795 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
796 if (ptep == NULL)
797 early_pgtable_allocfail("pte");
798 memset(__nocache_fix(ptep), 0, PTE_SIZE);
799 pmd_set(__nocache_fix(pmdp), ptep);
800 }
801 if (what == 1) {
802 /* We bend the rule where all 16 PTPs in a pmd_t point
803 * inside the same PTE page, and we leak a perfectly
804 * good hardware PTE piece. Alternatives seem worse.
805 */
806 unsigned int x; /* Index of HW PMD in soft cluster */
807 unsigned long *val;
808 x = (start >> PMD_SHIFT) & 15;
809 val = &pmdp->pmdv[x];
810 *(unsigned long *)__nocache_fix(val) = probed;
811 start += SRMMU_REAL_PMD_SIZE;
812 continue;
813 }
814 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
815 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
816 start += PAGE_SIZE;
817 }
818}
819
820#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
821
822/* Create a third-level SRMMU 16MB page mapping. */
823static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
824{
825 pgd_t *pgdp = pgd_offset_k(vaddr);
826 unsigned long big_pte;
827
828 big_pte = KERNEL_PTE(phys_base >> 4);
829 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
830}
831
832/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
833static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
834{
835 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
836 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
837 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
838 /* Map "low" memory only */
839 const unsigned long min_vaddr = PAGE_OFFSET;
840 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
841
842 if (vstart < min_vaddr || vstart >= max_vaddr)
843 return vstart;
844
845 if (vend > max_vaddr || vend < min_vaddr)
846 vend = max_vaddr;
847
848 while (vstart < vend) {
849 do_large_mapping(vstart, pstart);
850 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
851 }
852 return vstart;
853}
854
855static void __init map_kernel(void)
856{
857 int i;
858
859 if (phys_base > 0) {
860 do_large_mapping(PAGE_OFFSET, phys_base);
861 }
862
863 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
864 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
865 }
866}
867
868void (*poke_srmmu)(void) = NULL;
869
870void __init srmmu_paging_init(void)
871{
872 int i;
873 phandle cpunode;
874 char node_str[128];
875 pgd_t *pgd;
876 pmd_t *pmd;
877 pte_t *pte;
878 unsigned long pages_avail;
879
880 init_mm.context = (unsigned long) NO_CONTEXT;
881 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
882
883 if (sparc_cpu_model == sun4d)
884 num_contexts = 65536; /* We know it is Viking */
885 else {
886 /* Find the number of contexts on the srmmu. */
887 cpunode = prom_getchild(prom_root_node);
888 num_contexts = 0;
889 while (cpunode != 0) {
890 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
891 if (!strcmp(node_str, "cpu")) {
892 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
893 break;
894 }
895 cpunode = prom_getsibling(cpunode);
896 }
897 }
898
899 if (!num_contexts) {
900 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
901 prom_halt();
902 }
903
904 pages_avail = 0;
905 last_valid_pfn = bootmem_init(&pages_avail);
906
907 srmmu_nocache_calcsize();
908 srmmu_nocache_init();
909 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
910 map_kernel();
911
912 /* ctx table has to be physically aligned to its size */
913 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
914 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
915
916 for (i = 0; i < num_contexts; i++)
917 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
918
919 flush_cache_all();
920 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
921#ifdef CONFIG_SMP
922 /* Stop from hanging here... */
923 local_ops->tlb_all();
924#else
925 flush_tlb_all();
926#endif
927 poke_srmmu();
928
929 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
930 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
931
932 srmmu_allocate_ptable_skeleton(
933 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
934 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
935
936 pgd = pgd_offset_k(PKMAP_BASE);
937 pmd = pmd_offset(pgd, PKMAP_BASE);
938 pte = pte_offset_kernel(pmd, PKMAP_BASE);
939 pkmap_page_table = pte;
940
941 flush_cache_all();
942 flush_tlb_all();
943
944 sparc_context_init(num_contexts);
945
946 kmap_init();
947
948 {
949 unsigned long zones_size[MAX_NR_ZONES];
950 unsigned long zholes_size[MAX_NR_ZONES];
951 unsigned long npages;
952 int znum;
953
954 for (znum = 0; znum < MAX_NR_ZONES; znum++)
955 zones_size[znum] = zholes_size[znum] = 0;
956
957 npages = max_low_pfn - pfn_base;
958
959 zones_size[ZONE_DMA] = npages;
960 zholes_size[ZONE_DMA] = npages - pages_avail;
961
962 npages = highend_pfn - max_low_pfn;
963 zones_size[ZONE_HIGHMEM] = npages;
964 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
965
966 free_area_init_node(0, zones_size, pfn_base, zholes_size);
967 }
968}
969
970void mmu_info(struct seq_file *m)
971{
972 seq_printf(m,
973 "MMU type\t: %s\n"
974 "contexts\t: %d\n"
975 "nocache total\t: %ld\n"
976 "nocache used\t: %d\n",
977 srmmu_name,
978 num_contexts,
979 srmmu_nocache_size,
980 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
981}
982
983int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
984{
985 mm->context = NO_CONTEXT;
986 return 0;
987}
988
989void destroy_context(struct mm_struct *mm)
990{
991 unsigned long flags;
992
993 if (mm->context != NO_CONTEXT) {
994 flush_cache_mm(mm);
995 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
996 flush_tlb_mm(mm);
997 spin_lock_irqsave(&srmmu_context_spinlock, flags);
998 free_context(mm->context);
999 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1000 mm->context = NO_CONTEXT;
1001 }
1002}
1003
1004/* Init various srmmu chip types. */
1005static void __init srmmu_is_bad(void)
1006{
1007 prom_printf("Could not determine SRMMU chip type.\n");
1008 prom_halt();
1009}
1010
1011static void __init init_vac_layout(void)
1012{
1013 phandle nd;
1014 int cache_lines;
1015 char node_str[128];
1016#ifdef CONFIG_SMP
1017 int cpu = 0;
1018 unsigned long max_size = 0;
1019 unsigned long min_line_size = 0x10000000;
1020#endif
1021
1022 nd = prom_getchild(prom_root_node);
1023 while ((nd = prom_getsibling(nd)) != 0) {
1024 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1025 if (!strcmp(node_str, "cpu")) {
1026 vac_line_size = prom_getint(nd, "cache-line-size");
1027 if (vac_line_size == -1) {
1028 prom_printf("can't determine cache-line-size, halting.\n");
1029 prom_halt();
1030 }
1031 cache_lines = prom_getint(nd, "cache-nlines");
1032 if (cache_lines == -1) {
1033 prom_printf("can't determine cache-nlines, halting.\n");
1034 prom_halt();
1035 }
1036
1037 vac_cache_size = cache_lines * vac_line_size;
1038#ifdef CONFIG_SMP
1039 if (vac_cache_size > max_size)
1040 max_size = vac_cache_size;
1041 if (vac_line_size < min_line_size)
1042 min_line_size = vac_line_size;
1043 //FIXME: cpus not contiguous!!
1044 cpu++;
1045 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1046 break;
1047#else
1048 break;
1049#endif
1050 }
1051 }
1052 if (nd == 0) {
1053 prom_printf("No CPU nodes found, halting.\n");
1054 prom_halt();
1055 }
1056#ifdef CONFIG_SMP
1057 vac_cache_size = max_size;
1058 vac_line_size = min_line_size;
1059#endif
1060 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1061 (int)vac_cache_size, (int)vac_line_size);
1062}
1063
1064static void poke_hypersparc(void)
1065{
1066 volatile unsigned long clear;
1067 unsigned long mreg = srmmu_get_mmureg();
1068
1069 hyper_flush_unconditional_combined();
1070
1071 mreg &= ~(HYPERSPARC_CWENABLE);
1072 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1073 mreg |= (HYPERSPARC_CMODE);
1074
1075 srmmu_set_mmureg(mreg);
1076
1077#if 0 /* XXX I think this is bad news... -DaveM */
1078 hyper_clear_all_tags();
1079#endif
1080
1081 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1082 hyper_flush_whole_icache();
1083 clear = srmmu_get_faddr();
1084 clear = srmmu_get_fstatus();
1085}
1086
1087static const struct sparc32_cachetlb_ops hypersparc_ops = {
1088 .cache_all = hypersparc_flush_cache_all,
1089 .cache_mm = hypersparc_flush_cache_mm,
1090 .cache_page = hypersparc_flush_cache_page,
1091 .cache_range = hypersparc_flush_cache_range,
1092 .tlb_all = hypersparc_flush_tlb_all,
1093 .tlb_mm = hypersparc_flush_tlb_mm,
1094 .tlb_page = hypersparc_flush_tlb_page,
1095 .tlb_range = hypersparc_flush_tlb_range,
1096 .page_to_ram = hypersparc_flush_page_to_ram,
1097 .sig_insns = hypersparc_flush_sig_insns,
1098 .page_for_dma = hypersparc_flush_page_for_dma,
1099};
1100
1101static void __init init_hypersparc(void)
1102{
1103 srmmu_name = "ROSS HyperSparc";
1104 srmmu_modtype = HyperSparc;
1105
1106 init_vac_layout();
1107
1108 is_hypersparc = 1;
1109 sparc32_cachetlb_ops = &hypersparc_ops;
1110
1111 poke_srmmu = poke_hypersparc;
1112
1113 hypersparc_setup_blockops();
1114}
1115
1116static void poke_swift(void)
1117{
1118 unsigned long mreg;
1119
1120 /* Clear any crap from the cache or else... */
1121 swift_flush_cache_all();
1122
1123 /* Enable I & D caches */
1124 mreg = srmmu_get_mmureg();
1125 mreg |= (SWIFT_IE | SWIFT_DE);
1126 /*
1127 * The Swift branch folding logic is completely broken. At
1128 * trap time, if things are just right, if can mistakenly
1129 * think that a trap is coming from kernel mode when in fact
1130 * it is coming from user mode (it mis-executes the branch in
1131 * the trap code). So you see things like crashme completely
1132 * hosing your machine which is completely unacceptable. Turn
1133 * this shit off... nice job Fujitsu.
1134 */
1135 mreg &= ~(SWIFT_BF);
1136 srmmu_set_mmureg(mreg);
1137}
1138
1139static const struct sparc32_cachetlb_ops swift_ops = {
1140 .cache_all = swift_flush_cache_all,
1141 .cache_mm = swift_flush_cache_mm,
1142 .cache_page = swift_flush_cache_page,
1143 .cache_range = swift_flush_cache_range,
1144 .tlb_all = swift_flush_tlb_all,
1145 .tlb_mm = swift_flush_tlb_mm,
1146 .tlb_page = swift_flush_tlb_page,
1147 .tlb_range = swift_flush_tlb_range,
1148 .page_to_ram = swift_flush_page_to_ram,
1149 .sig_insns = swift_flush_sig_insns,
1150 .page_for_dma = swift_flush_page_for_dma,
1151};
1152
1153#define SWIFT_MASKID_ADDR 0x10003018
1154static void __init init_swift(void)
1155{
1156 unsigned long swift_rev;
1157
1158 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1159 "srl %0, 0x18, %0\n\t" :
1160 "=r" (swift_rev) :
1161 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1162 srmmu_name = "Fujitsu Swift";
1163 switch (swift_rev) {
1164 case 0x11:
1165 case 0x20:
1166 case 0x23:
1167 case 0x30:
1168 srmmu_modtype = Swift_lots_o_bugs;
1169 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1170 /*
1171 * Gee george, I wonder why Sun is so hush hush about
1172 * this hardware bug... really braindamage stuff going
1173 * on here. However I think we can find a way to avoid
1174 * all of the workaround overhead under Linux. Basically,
1175 * any page fault can cause kernel pages to become user
1176 * accessible (the mmu gets confused and clears some of
1177 * the ACC bits in kernel ptes). Aha, sounds pretty
1178 * horrible eh? But wait, after extensive testing it appears
1179 * that if you use pgd_t level large kernel pte's (like the
1180 * 4MB pages on the Pentium) the bug does not get tripped
1181 * at all. This avoids almost all of the major overhead.
1182 * Welcome to a world where your vendor tells you to,
1183 * "apply this kernel patch" instead of "sorry for the
1184 * broken hardware, send it back and we'll give you
1185 * properly functioning parts"
1186 */
1187 break;
1188 case 0x25:
1189 case 0x31:
1190 srmmu_modtype = Swift_bad_c;
1191 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1192 /*
1193 * You see Sun allude to this hardware bug but never
1194 * admit things directly, they'll say things like,
1195 * "the Swift chip cache problems" or similar.
1196 */
1197 break;
1198 default:
1199 srmmu_modtype = Swift_ok;
1200 break;
1201 }
1202
1203 sparc32_cachetlb_ops = &swift_ops;
1204 flush_page_for_dma_global = 0;
1205
1206 /*
1207 * Are you now convinced that the Swift is one of the
1208 * biggest VLSI abortions of all time? Bravo Fujitsu!
1209 * Fujitsu, the !#?!%$'d up processor people. I bet if
1210 * you examined the microcode of the Swift you'd find
1211 * XXX's all over the place.
1212 */
1213 poke_srmmu = poke_swift;
1214}
1215
1216static void turbosparc_flush_cache_all(void)
1217{
1218 flush_user_windows();
1219 turbosparc_idflash_clear();
1220}
1221
1222static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1223{
1224 FLUSH_BEGIN(mm)
1225 flush_user_windows();
1226 turbosparc_idflash_clear();
1227 FLUSH_END
1228}
1229
1230static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1231{
1232 FLUSH_BEGIN(vma->vm_mm)
1233 flush_user_windows();
1234 turbosparc_idflash_clear();
1235 FLUSH_END
1236}
1237
1238static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1239{
1240 FLUSH_BEGIN(vma->vm_mm)
1241 flush_user_windows();
1242 if (vma->vm_flags & VM_EXEC)
1243 turbosparc_flush_icache();
1244 turbosparc_flush_dcache();
1245 FLUSH_END
1246}
1247
1248/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1249static void turbosparc_flush_page_to_ram(unsigned long page)
1250{
1251#ifdef TURBOSPARC_WRITEBACK
1252 volatile unsigned long clear;
1253
1254 if (srmmu_probe(page))
1255 turbosparc_flush_page_cache(page);
1256 clear = srmmu_get_fstatus();
1257#endif
1258}
1259
1260static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1261{
1262}
1263
1264static void turbosparc_flush_page_for_dma(unsigned long page)
1265{
1266 turbosparc_flush_dcache();
1267}
1268
1269static void turbosparc_flush_tlb_all(void)
1270{
1271 srmmu_flush_whole_tlb();
1272}
1273
1274static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1275{
1276 FLUSH_BEGIN(mm)
1277 srmmu_flush_whole_tlb();
1278 FLUSH_END
1279}
1280
1281static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1282{
1283 FLUSH_BEGIN(vma->vm_mm)
1284 srmmu_flush_whole_tlb();
1285 FLUSH_END
1286}
1287
1288static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1289{
1290 FLUSH_BEGIN(vma->vm_mm)
1291 srmmu_flush_whole_tlb();
1292 FLUSH_END
1293}
1294
1295
1296static void poke_turbosparc(void)
1297{
1298 unsigned long mreg = srmmu_get_mmureg();
1299 unsigned long ccreg;
1300
1301 /* Clear any crap from the cache or else... */
1302 turbosparc_flush_cache_all();
1303 /* Temporarily disable I & D caches */
1304 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1305 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1306 srmmu_set_mmureg(mreg);
1307
1308 ccreg = turbosparc_get_ccreg();
1309
1310#ifdef TURBOSPARC_WRITEBACK
1311 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1312 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1313 /* Write-back D-cache, emulate VLSI
1314 * abortion number three, not number one */
1315#else
1316 /* For now let's play safe, optimize later */
1317 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1318 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1319 ccreg &= ~(TURBOSPARC_uS2);
1320 /* Emulate VLSI abortion number three, not number one */
1321#endif
1322
1323 switch (ccreg & 7) {
1324 case 0: /* No SE cache */
1325 case 7: /* Test mode */
1326 break;
1327 default:
1328 ccreg |= (TURBOSPARC_SCENABLE);
1329 }
1330 turbosparc_set_ccreg(ccreg);
1331
1332 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1333 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1334 srmmu_set_mmureg(mreg);
1335}
1336
1337static const struct sparc32_cachetlb_ops turbosparc_ops = {
1338 .cache_all = turbosparc_flush_cache_all,
1339 .cache_mm = turbosparc_flush_cache_mm,
1340 .cache_page = turbosparc_flush_cache_page,
1341 .cache_range = turbosparc_flush_cache_range,
1342 .tlb_all = turbosparc_flush_tlb_all,
1343 .tlb_mm = turbosparc_flush_tlb_mm,
1344 .tlb_page = turbosparc_flush_tlb_page,
1345 .tlb_range = turbosparc_flush_tlb_range,
1346 .page_to_ram = turbosparc_flush_page_to_ram,
1347 .sig_insns = turbosparc_flush_sig_insns,
1348 .page_for_dma = turbosparc_flush_page_for_dma,
1349};
1350
1351static void __init init_turbosparc(void)
1352{
1353 srmmu_name = "Fujitsu TurboSparc";
1354 srmmu_modtype = TurboSparc;
1355 sparc32_cachetlb_ops = &turbosparc_ops;
1356 poke_srmmu = poke_turbosparc;
1357}
1358
1359static void poke_tsunami(void)
1360{
1361 unsigned long mreg = srmmu_get_mmureg();
1362
1363 tsunami_flush_icache();
1364 tsunami_flush_dcache();
1365 mreg &= ~TSUNAMI_ITD;
1366 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1367 srmmu_set_mmureg(mreg);
1368}
1369
1370static const struct sparc32_cachetlb_ops tsunami_ops = {
1371 .cache_all = tsunami_flush_cache_all,
1372 .cache_mm = tsunami_flush_cache_mm,
1373 .cache_page = tsunami_flush_cache_page,
1374 .cache_range = tsunami_flush_cache_range,
1375 .tlb_all = tsunami_flush_tlb_all,
1376 .tlb_mm = tsunami_flush_tlb_mm,
1377 .tlb_page = tsunami_flush_tlb_page,
1378 .tlb_range = tsunami_flush_tlb_range,
1379 .page_to_ram = tsunami_flush_page_to_ram,
1380 .sig_insns = tsunami_flush_sig_insns,
1381 .page_for_dma = tsunami_flush_page_for_dma,
1382};
1383
1384static void __init init_tsunami(void)
1385{
1386 /*
1387 * Tsunami's pretty sane, Sun and TI actually got it
1388 * somewhat right this time. Fujitsu should have
1389 * taken some lessons from them.
1390 */
1391
1392 srmmu_name = "TI Tsunami";
1393 srmmu_modtype = Tsunami;
1394 sparc32_cachetlb_ops = &tsunami_ops;
1395 poke_srmmu = poke_tsunami;
1396
1397 tsunami_setup_blockops();
1398}
1399
1400static void poke_viking(void)
1401{
1402 unsigned long mreg = srmmu_get_mmureg();
1403 static int smp_catch;
1404
1405 if (viking_mxcc_present) {
1406 unsigned long mxcc_control = mxcc_get_creg();
1407
1408 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1409 mxcc_control &= ~(MXCC_CTL_RRC);
1410 mxcc_set_creg(mxcc_control);
1411
1412 /*
1413 * We don't need memory parity checks.
1414 * XXX This is a mess, have to dig out later. ecd.
1415 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1416 */
1417
1418 /* We do cache ptables on MXCC. */
1419 mreg |= VIKING_TCENABLE;
1420 } else {
1421 unsigned long bpreg;
1422
1423 mreg &= ~(VIKING_TCENABLE);
1424 if (smp_catch++) {
1425 /* Must disable mixed-cmd mode here for other cpu's. */
1426 bpreg = viking_get_bpreg();
1427 bpreg &= ~(VIKING_ACTION_MIX);
1428 viking_set_bpreg(bpreg);
1429
1430 /* Just in case PROM does something funny. */
1431 msi_set_sync();
1432 }
1433 }
1434
1435 mreg |= VIKING_SPENABLE;
1436 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1437 mreg |= VIKING_SBENABLE;
1438 mreg &= ~(VIKING_ACENABLE);
1439 srmmu_set_mmureg(mreg);
1440}
1441
1442static struct sparc32_cachetlb_ops viking_ops = {
1443 .cache_all = viking_flush_cache_all,
1444 .cache_mm = viking_flush_cache_mm,
1445 .cache_page = viking_flush_cache_page,
1446 .cache_range = viking_flush_cache_range,
1447 .tlb_all = viking_flush_tlb_all,
1448 .tlb_mm = viking_flush_tlb_mm,
1449 .tlb_page = viking_flush_tlb_page,
1450 .tlb_range = viking_flush_tlb_range,
1451 .page_to_ram = viking_flush_page_to_ram,
1452 .sig_insns = viking_flush_sig_insns,
1453 .page_for_dma = viking_flush_page_for_dma,
1454};
1455
1456#ifdef CONFIG_SMP
1457/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1458 * perform the local TLB flush and all the other cpus will see it.
1459 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1460 * that requires that we add some synchronization to these flushes.
1461 *
1462 * The bug is that the fifo which keeps track of all the pending TLB
1463 * broadcasts in the system is an entry or two too small, so if we
1464 * have too many going at once we'll overflow that fifo and lose a TLB
1465 * flush resulting in corruption.
1466 *
1467 * Our workaround is to take a global spinlock around the TLB flushes,
1468 * which guarentees we won't ever have too many pending. It's a big
1469 * hammer, but a semaphore like system to make sure we only have N TLB
1470 * flushes going at once will require SMP locking anyways so there's
1471 * no real value in trying any harder than this.
1472 */
1473static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1474 .cache_all = viking_flush_cache_all,
1475 .cache_mm = viking_flush_cache_mm,
1476 .cache_page = viking_flush_cache_page,
1477 .cache_range = viking_flush_cache_range,
1478 .tlb_all = sun4dsmp_flush_tlb_all,
1479 .tlb_mm = sun4dsmp_flush_tlb_mm,
1480 .tlb_page = sun4dsmp_flush_tlb_page,
1481 .tlb_range = sun4dsmp_flush_tlb_range,
1482 .page_to_ram = viking_flush_page_to_ram,
1483 .sig_insns = viking_flush_sig_insns,
1484 .page_for_dma = viking_flush_page_for_dma,
1485};
1486#endif
1487
1488static void __init init_viking(void)
1489{
1490 unsigned long mreg = srmmu_get_mmureg();
1491
1492 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1493 if (mreg & VIKING_MMODE) {
1494 srmmu_name = "TI Viking";
1495 viking_mxcc_present = 0;
1496 msi_set_sync();
1497
1498 /*
1499 * We need this to make sure old viking takes no hits
1500 * on it's cache for dma snoops to workaround the
1501 * "load from non-cacheable memory" interrupt bug.
1502 * This is only necessary because of the new way in
1503 * which we use the IOMMU.
1504 */
1505 viking_ops.page_for_dma = viking_flush_page;
1506#ifdef CONFIG_SMP
1507 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1508#endif
1509 flush_page_for_dma_global = 0;
1510 } else {
1511 srmmu_name = "TI Viking/MXCC";
1512 viking_mxcc_present = 1;
1513 srmmu_cache_pagetables = 1;
1514 }
1515
1516 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1517 &viking_ops;
1518#ifdef CONFIG_SMP
1519 if (sparc_cpu_model == sun4d)
1520 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1521 &viking_sun4d_smp_ops;
1522#endif
1523
1524 poke_srmmu = poke_viking;
1525}
1526
1527/* Probe for the srmmu chip version. */
1528static void __init get_srmmu_type(void)
1529{
1530 unsigned long mreg, psr;
1531 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1532
1533 srmmu_modtype = SRMMU_INVAL_MOD;
1534 hwbug_bitmask = 0;
1535
1536 mreg = srmmu_get_mmureg(); psr = get_psr();
1537 mod_typ = (mreg & 0xf0000000) >> 28;
1538 mod_rev = (mreg & 0x0f000000) >> 24;
1539 psr_typ = (psr >> 28) & 0xf;
1540 psr_vers = (psr >> 24) & 0xf;
1541
1542 /* First, check for sparc-leon. */
1543 if (sparc_cpu_model == sparc_leon) {
1544 init_leon();
1545 return;
1546 }
1547
1548 /* Second, check for HyperSparc or Cypress. */
1549 if (mod_typ == 1) {
1550 switch (mod_rev) {
1551 case 7:
1552 /* UP or MP Hypersparc */
1553 init_hypersparc();
1554 break;
1555 case 0:
1556 case 2:
1557 case 10:
1558 case 11:
1559 case 12:
1560 case 13:
1561 case 14:
1562 case 15:
1563 default:
1564 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1565 prom_halt();
1566 break;
1567 }
1568 return;
1569 }
1570
1571 /* Now Fujitsu TurboSparc. It might happen that it is
1572 * in Swift emulation mode, so we will check later...
1573 */
1574 if (psr_typ == 0 && psr_vers == 5) {
1575 init_turbosparc();
1576 return;
1577 }
1578
1579 /* Next check for Fujitsu Swift. */
1580 if (psr_typ == 0 && psr_vers == 4) {
1581 phandle cpunode;
1582 char node_str[128];
1583
1584 /* Look if it is not a TurboSparc emulating Swift... */
1585 cpunode = prom_getchild(prom_root_node);
1586 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1587 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1588 if (!strcmp(node_str, "cpu")) {
1589 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1590 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1591 init_turbosparc();
1592 return;
1593 }
1594 break;
1595 }
1596 }
1597
1598 init_swift();
1599 return;
1600 }
1601
1602 /* Now the Viking family of srmmu. */
1603 if (psr_typ == 4 &&
1604 ((psr_vers == 0) ||
1605 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1606 init_viking();
1607 return;
1608 }
1609
1610 /* Finally the Tsunami. */
1611 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1612 init_tsunami();
1613 return;
1614 }
1615
1616 /* Oh well */
1617 srmmu_is_bad();
1618}
1619
1620#ifdef CONFIG_SMP
1621/* Local cross-calls. */
1622static void smp_flush_page_for_dma(unsigned long page)
1623{
1624 xc1((smpfunc_t) local_ops->page_for_dma, page);
1625 local_ops->page_for_dma(page);
1626}
1627
1628static void smp_flush_cache_all(void)
1629{
1630 xc0((smpfunc_t) local_ops->cache_all);
1631 local_ops->cache_all();
1632}
1633
1634static void smp_flush_tlb_all(void)
1635{
1636 xc0((smpfunc_t) local_ops->tlb_all);
1637 local_ops->tlb_all();
1638}
1639
1640static void smp_flush_cache_mm(struct mm_struct *mm)
1641{
1642 if (mm->context != NO_CONTEXT) {
1643 cpumask_t cpu_mask;
1644 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1645 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1646 if (!cpumask_empty(&cpu_mask))
1647 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1648 local_ops->cache_mm(mm);
1649 }
1650}
1651
1652static void smp_flush_tlb_mm(struct mm_struct *mm)
1653{
1654 if (mm->context != NO_CONTEXT) {
1655 cpumask_t cpu_mask;
1656 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1657 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1658 if (!cpumask_empty(&cpu_mask)) {
1659 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1660 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1661 cpumask_copy(mm_cpumask(mm),
1662 cpumask_of(smp_processor_id()));
1663 }
1664 local_ops->tlb_mm(mm);
1665 }
1666}
1667
1668static void smp_flush_cache_range(struct vm_area_struct *vma,
1669 unsigned long start,
1670 unsigned long end)
1671{
1672 struct mm_struct *mm = vma->vm_mm;
1673
1674 if (mm->context != NO_CONTEXT) {
1675 cpumask_t cpu_mask;
1676 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1677 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1678 if (!cpumask_empty(&cpu_mask))
1679 xc3((smpfunc_t) local_ops->cache_range,
1680 (unsigned long) vma, start, end);
1681 local_ops->cache_range(vma, start, end);
1682 }
1683}
1684
1685static void smp_flush_tlb_range(struct vm_area_struct *vma,
1686 unsigned long start,
1687 unsigned long end)
1688{
1689 struct mm_struct *mm = vma->vm_mm;
1690
1691 if (mm->context != NO_CONTEXT) {
1692 cpumask_t cpu_mask;
1693 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1694 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1695 if (!cpumask_empty(&cpu_mask))
1696 xc3((smpfunc_t) local_ops->tlb_range,
1697 (unsigned long) vma, start, end);
1698 local_ops->tlb_range(vma, start, end);
1699 }
1700}
1701
1702static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1703{
1704 struct mm_struct *mm = vma->vm_mm;
1705
1706 if (mm->context != NO_CONTEXT) {
1707 cpumask_t cpu_mask;
1708 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710 if (!cpumask_empty(&cpu_mask))
1711 xc2((smpfunc_t) local_ops->cache_page,
1712 (unsigned long) vma, page);
1713 local_ops->cache_page(vma, page);
1714 }
1715}
1716
1717static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1718{
1719 struct mm_struct *mm = vma->vm_mm;
1720
1721 if (mm->context != NO_CONTEXT) {
1722 cpumask_t cpu_mask;
1723 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1724 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1725 if (!cpumask_empty(&cpu_mask))
1726 xc2((smpfunc_t) local_ops->tlb_page,
1727 (unsigned long) vma, page);
1728 local_ops->tlb_page(vma, page);
1729 }
1730}
1731
1732static void smp_flush_page_to_ram(unsigned long page)
1733{
1734 /* Current theory is that those who call this are the one's
1735 * who have just dirtied their cache with the pages contents
1736 * in kernel space, therefore we only run this on local cpu.
1737 *
1738 * XXX This experiment failed, research further... -DaveM
1739 */
1740#if 1
1741 xc1((smpfunc_t) local_ops->page_to_ram, page);
1742#endif
1743 local_ops->page_to_ram(page);
1744}
1745
1746static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1747{
1748 cpumask_t cpu_mask;
1749 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1750 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1751 if (!cpumask_empty(&cpu_mask))
1752 xc2((smpfunc_t) local_ops->sig_insns,
1753 (unsigned long) mm, insn_addr);
1754 local_ops->sig_insns(mm, insn_addr);
1755}
1756
1757static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1758 .cache_all = smp_flush_cache_all,
1759 .cache_mm = smp_flush_cache_mm,
1760 .cache_page = smp_flush_cache_page,
1761 .cache_range = smp_flush_cache_range,
1762 .tlb_all = smp_flush_tlb_all,
1763 .tlb_mm = smp_flush_tlb_mm,
1764 .tlb_page = smp_flush_tlb_page,
1765 .tlb_range = smp_flush_tlb_range,
1766 .page_to_ram = smp_flush_page_to_ram,
1767 .sig_insns = smp_flush_sig_insns,
1768 .page_for_dma = smp_flush_page_for_dma,
1769};
1770#endif
1771
1772/* Load up routines and constants for sun4m and sun4d mmu */
1773void __init load_mmu(void)
1774{
1775 /* Functions */
1776 get_srmmu_type();
1777
1778#ifdef CONFIG_SMP
1779 /* El switcheroo... */
1780 local_ops = sparc32_cachetlb_ops;
1781
1782 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1783 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1784 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1785 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1786 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1787 }
1788
1789 if (poke_srmmu == poke_viking) {
1790 /* Avoid unnecessary cross calls. */
1791 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1792 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1793 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1794 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1795
1796 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1797 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1798 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1799 }
1800
1801 /* It really is const after this point. */
1802 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1803 &smp_cachetlb_ops;
1804#endif
1805
1806 if (sparc_cpu_model == sun4d)
1807 ld_mmu_iounit();
1808 else
1809 ld_mmu_iommu();
1810#ifdef CONFIG_SMP
1811 if (sparc_cpu_model == sun4d)
1812 sun4d_init_smp();
1813 else if (sparc_cpu_model == sparc_leon)
1814 leon_init_smp();
1815 else
1816 sun4m_init_smp();
1817#endif
1818}