Linux Audio

Check our new training course

Loading...
   1/*
   2 * srmmu.c:  SRMMU specific routines for memory management.
   3 *
   4 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   6 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/mm.h>
  13#include <linux/vmalloc.h>
  14#include <linux/pagemap.h>
  15#include <linux/init.h>
  16#include <linux/spinlock.h>
  17#include <linux/bootmem.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/kdebug.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23
  24#include <asm/bitext.h>
  25#include <asm/page.h>
  26#include <asm/pgalloc.h>
  27#include <asm/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/vaddrs.h>
  30#include <asm/traps.h>
  31#include <asm/smp.h>
  32#include <asm/mbus.h>
  33#include <asm/cache.h>
  34#include <asm/oplib.h>
  35#include <asm/asi.h>
  36#include <asm/msi.h>
  37#include <asm/mmu_context.h>
  38#include <asm/io-unit.h>
  39#include <asm/cacheflush.h>
  40#include <asm/tlbflush.h>
  41
  42/* Now the cpu specific definitions. */
  43#include <asm/viking.h>
  44#include <asm/mxcc.h>
  45#include <asm/ross.h>
  46#include <asm/tsunami.h>
  47#include <asm/swift.h>
  48#include <asm/turbosparc.h>
  49#include <asm/leon.h>
  50
  51#include "srmmu.h"
  52
  53enum mbus_module srmmu_modtype;
  54static unsigned int hwbug_bitmask;
  55int vac_cache_size;
  56int vac_line_size;
  57
  58struct ctx_list *ctx_list_pool;
  59struct ctx_list ctx_free;
  60struct ctx_list ctx_used;
  61
  62extern struct resource sparc_iomap;
  63
  64extern unsigned long last_valid_pfn;
  65
  66static pgd_t *srmmu_swapper_pg_dir;
  67
  68const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  69
  70#ifdef CONFIG_SMP
  71const struct sparc32_cachetlb_ops *local_ops;
  72
  73#define FLUSH_BEGIN(mm)
  74#define FLUSH_END
  75#else
  76#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  77#define FLUSH_END	}
  78#endif
  79
  80int flush_page_for_dma_global = 1;
  81
  82char *srmmu_name;
  83
  84ctxd_t *srmmu_ctx_table_phys;
  85static ctxd_t *srmmu_context_table;
  86
  87int viking_mxcc_present;
  88static DEFINE_SPINLOCK(srmmu_context_spinlock);
  89
  90static int is_hypersparc;
  91
  92static int srmmu_cache_pagetables;
  93
  94/* these will be initialized in srmmu_nocache_calcsize() */
  95static unsigned long srmmu_nocache_size;
  96static unsigned long srmmu_nocache_end;
  97
  98/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  99#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
 100
 101/* The context table is a nocache user with the biggest alignment needs. */
 102#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 103
 104void *srmmu_nocache_pool;
 105void *srmmu_nocache_bitmap;
 106static struct bit_map srmmu_nocache_map;
 107
 108static inline int srmmu_pmd_none(pmd_t pmd)
 109{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 110
 111/* XXX should we hyper_flush_whole_icache here - Anton */
 112static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 113{ set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
 114
 115void pmd_set(pmd_t *pmdp, pte_t *ptep)
 116{
 117	unsigned long ptp;	/* Physical address, shifted right by 4 */
 118	int i;
 119
 120	ptp = __nocache_pa((unsigned long) ptep) >> 4;
 121	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 122		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 123		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 124	}
 125}
 126
 127void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
 128{
 129	unsigned long ptp;	/* Physical address, shifted right by 4 */
 130	int i;
 131
 132	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
 133	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 134		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 135		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 136	}
 137}
 138
 139/* Find an entry in the third-level page table.. */ 
 140pte_t *pte_offset_kernel(pmd_t * dir, unsigned long address)
 141{
 142	void *pte;
 143
 144	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 145	return (pte_t *) pte +
 146	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 147}
 148
 149/*
 150 * size: bytes to allocate in the nocache area.
 151 * align: bytes, number to align at.
 152 * Returns the virtual address of the allocated area.
 153 */
 154static unsigned long __srmmu_get_nocache(int size, int align)
 155{
 156	int offset;
 157
 158	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 159		printk("Size 0x%x too small for nocache request\n", size);
 160		size = SRMMU_NOCACHE_BITMAP_SHIFT;
 161	}
 162	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
 163		printk("Size 0x%x unaligned int nocache request\n", size);
 164		size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
 165	}
 166	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 167
 168	offset = bit_map_string_get(&srmmu_nocache_map,
 169		       			size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 170					align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 171	if (offset == -1) {
 172		printk("srmmu: out of nocache %d: %d/%d\n",
 173		    size, (int) srmmu_nocache_size,
 174		    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 175		return 0;
 176	}
 177
 178	return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
 179}
 180
 181unsigned long srmmu_get_nocache(int size, int align)
 182{
 183	unsigned long tmp;
 184
 185	tmp = __srmmu_get_nocache(size, align);
 186
 187	if (tmp)
 188		memset((void *)tmp, 0, size);
 189
 190	return tmp;
 191}
 192
 193void srmmu_free_nocache(unsigned long vaddr, int size)
 194{
 195	int offset;
 196
 197	if (vaddr < SRMMU_NOCACHE_VADDR) {
 198		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 199		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 200		BUG();
 201	}
 202	if (vaddr+size > srmmu_nocache_end) {
 203		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 204		    vaddr, srmmu_nocache_end);
 205		BUG();
 206	}
 207	if (!is_power_of_2(size)) {
 208		printk("Size 0x%x is not a power of 2\n", size);
 209		BUG();
 210	}
 211	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 212		printk("Size 0x%x is too small\n", size);
 213		BUG();
 214	}
 215	if (vaddr & (size-1)) {
 216		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 217		BUG();
 218	}
 219
 220	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 221	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 222
 223	bit_map_clear(&srmmu_nocache_map, offset, size);
 224}
 225
 226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 227						 unsigned long end);
 228
 229extern unsigned long probe_memory(void);	/* in fault.c */
 230
 231/*
 232 * Reserve nocache dynamically proportionally to the amount of
 233 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 234 */
 235static void srmmu_nocache_calcsize(void)
 236{
 237	unsigned long sysmemavail = probe_memory() / 1024;
 238	int srmmu_nocache_npages;
 239
 240	srmmu_nocache_npages =
 241		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 242
 243 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 244	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 245	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 246		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 247
 248	/* anything above 1280 blows up */
 249	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 250		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 251
 252	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 253	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 254}
 255
 256static void __init srmmu_nocache_init(void)
 257{
 258	unsigned int bitmap_bits;
 259	pgd_t *pgd;
 260	pmd_t *pmd;
 261	pte_t *pte;
 262	unsigned long paddr, vaddr;
 263	unsigned long pteval;
 264
 265	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 266
 267	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
 268		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
 269	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 270
 271	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
 272	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 273
 274	srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 275	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 276	init_mm.pgd = srmmu_swapper_pg_dir;
 277
 278	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 279
 280	paddr = __pa((unsigned long)srmmu_nocache_pool);
 281	vaddr = SRMMU_NOCACHE_VADDR;
 282
 283	while (vaddr < srmmu_nocache_end) {
 284		pgd = pgd_offset_k(vaddr);
 285		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
 286		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 287
 288		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 289
 290		if (srmmu_cache_pagetables)
 291			pteval |= SRMMU_CACHE;
 292
 293		set_pte(__nocache_fix(pte), __pte(pteval));
 294
 295		vaddr += PAGE_SIZE;
 296		paddr += PAGE_SIZE;
 297	}
 298
 299	flush_cache_all();
 300	flush_tlb_all();
 301}
 302
 303pgd_t *get_pgd_fast(void)
 304{
 305	pgd_t *pgd = NULL;
 306
 307	pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 308	if (pgd) {
 309		pgd_t *init = pgd_offset_k(0);
 310		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 311		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 312						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 313	}
 314
 315	return pgd;
 316}
 317
 318/*
 319 * Hardware needs alignment to 256 only, but we align to whole page size
 320 * to reduce fragmentation problems due to the buddy principle.
 321 * XXX Provide actual fragmentation statistics in /proc.
 322 *
 323 * Alignments up to the page size are the same for physical and virtual
 324 * addresses of the nocache area.
 325 */
 326pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 327{
 328	unsigned long pte;
 329	struct page *page;
 330
 331	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
 332		return NULL;
 333	page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
 334	pgtable_page_ctor(page);
 335	return page;
 336}
 337
 338void pte_free(struct mm_struct *mm, pgtable_t pte)
 339{
 340	unsigned long p;
 341
 342	pgtable_page_dtor(pte);
 343	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
 344	if (p == 0)
 345		BUG();
 346	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
 347	p = (unsigned long) __nocache_va(p);	/* Nocached virtual */
 348	srmmu_free_nocache(p, PTE_SIZE);
 349}
 350
 351/*
 352 */
 353static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 354{
 355	struct ctx_list *ctxp;
 356
 357	ctxp = ctx_free.next;
 358	if(ctxp != &ctx_free) {
 359		remove_from_ctx_list(ctxp);
 360		add_to_used_ctxlist(ctxp);
 361		mm->context = ctxp->ctx_number;
 362		ctxp->ctx_mm = mm;
 363		return;
 364	}
 365	ctxp = ctx_used.next;
 366	if(ctxp->ctx_mm == old_mm)
 367		ctxp = ctxp->next;
 368	if(ctxp == &ctx_used)
 369		panic("out of mmu contexts");
 370	flush_cache_mm(ctxp->ctx_mm);
 371	flush_tlb_mm(ctxp->ctx_mm);
 372	remove_from_ctx_list(ctxp);
 373	add_to_used_ctxlist(ctxp);
 374	ctxp->ctx_mm->context = NO_CONTEXT;
 375	ctxp->ctx_mm = mm;
 376	mm->context = ctxp->ctx_number;
 377}
 378
 379static inline void free_context(int context)
 380{
 381	struct ctx_list *ctx_old;
 382
 383	ctx_old = ctx_list_pool + context;
 384	remove_from_ctx_list(ctx_old);
 385	add_to_free_ctxlist(ctx_old);
 386}
 387
 388
 389void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 390	       struct task_struct *tsk)
 391{
 392	if(mm->context == NO_CONTEXT) {
 393		spin_lock(&srmmu_context_spinlock);
 394		alloc_context(old_mm, mm);
 395		spin_unlock(&srmmu_context_spinlock);
 396		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 397	}
 398
 399	if (sparc_cpu_model == sparc_leon)
 400		leon_switch_mm();
 401
 402	if (is_hypersparc)
 403		hyper_flush_whole_icache();
 404
 405	srmmu_set_context(mm->context);
 406}
 407
 408/* Low level IO area allocation on the SRMMU. */
 409static inline void srmmu_mapioaddr(unsigned long physaddr,
 410    unsigned long virt_addr, int bus_type)
 411{
 412	pgd_t *pgdp;
 413	pmd_t *pmdp;
 414	pte_t *ptep;
 415	unsigned long tmp;
 416
 417	physaddr &= PAGE_MASK;
 418	pgdp = pgd_offset_k(virt_addr);
 419	pmdp = pmd_offset(pgdp, virt_addr);
 420	ptep = pte_offset_kernel(pmdp, virt_addr);
 421	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 422
 423	/*
 424	 * I need to test whether this is consistent over all
 425	 * sun4m's.  The bus_type represents the upper 4 bits of
 426	 * 36-bit physical address on the I/O space lines...
 427	 */
 428	tmp |= (bus_type << 28);
 429	tmp |= SRMMU_PRIV;
 430	__flush_page_to_ram(virt_addr);
 431	set_pte(ptep, __pte(tmp));
 432}
 433
 434void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 435		      unsigned long xva, unsigned int len)
 436{
 437	while (len != 0) {
 438		len -= PAGE_SIZE;
 439		srmmu_mapioaddr(xpa, xva, bus);
 440		xva += PAGE_SIZE;
 441		xpa += PAGE_SIZE;
 442	}
 443	flush_tlb_all();
 444}
 445
 446static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 447{
 448	pgd_t *pgdp;
 449	pmd_t *pmdp;
 450	pte_t *ptep;
 451
 452	pgdp = pgd_offset_k(virt_addr);
 453	pmdp = pmd_offset(pgdp, virt_addr);
 454	ptep = pte_offset_kernel(pmdp, virt_addr);
 455
 456	/* No need to flush uncacheable page. */
 457	__pte_clear(ptep);
 458}
 459
 460void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 461{
 462	while (len != 0) {
 463		len -= PAGE_SIZE;
 464		srmmu_unmapioaddr(virt_addr);
 465		virt_addr += PAGE_SIZE;
 466	}
 467	flush_tlb_all();
 468}
 469
 470/* tsunami.S */
 471extern void tsunami_flush_cache_all(void);
 472extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 473extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 474extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 475extern void tsunami_flush_page_to_ram(unsigned long page);
 476extern void tsunami_flush_page_for_dma(unsigned long page);
 477extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 478extern void tsunami_flush_tlb_all(void);
 479extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 480extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 481extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 482extern void tsunami_setup_blockops(void);
 483
 484/* swift.S */
 485extern void swift_flush_cache_all(void);
 486extern void swift_flush_cache_mm(struct mm_struct *mm);
 487extern void swift_flush_cache_range(struct vm_area_struct *vma,
 488				    unsigned long start, unsigned long end);
 489extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 490extern void swift_flush_page_to_ram(unsigned long page);
 491extern void swift_flush_page_for_dma(unsigned long page);
 492extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 493extern void swift_flush_tlb_all(void);
 494extern void swift_flush_tlb_mm(struct mm_struct *mm);
 495extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 496				  unsigned long start, unsigned long end);
 497extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 498
 499#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 500void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 501{
 502	int cctx, ctx1;
 503
 504	page &= PAGE_MASK;
 505	if ((ctx1 = vma->vm_mm->context) != -1) {
 506		cctx = srmmu_get_context();
 507/* Is context # ever different from current context? P3 */
 508		if (cctx != ctx1) {
 509			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 510			srmmu_set_context(ctx1);
 511			swift_flush_page(page);
 512			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 513					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 514			srmmu_set_context(cctx);
 515		} else {
 516			 /* Rm. prot. bits from virt. c. */
 517			/* swift_flush_cache_all(); */
 518			/* swift_flush_cache_page(vma, page); */
 519			swift_flush_page(page);
 520
 521			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 522				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 523			/* same as above: srmmu_flush_tlb_page() */
 524		}
 525	}
 526}
 527#endif
 528
 529/*
 530 * The following are all MBUS based SRMMU modules, and therefore could
 531 * be found in a multiprocessor configuration.  On the whole, these
 532 * chips seems to be much more touchy about DVMA and page tables
 533 * with respect to cache coherency.
 534 */
 535
 536/* viking.S */
 537extern void viking_flush_cache_all(void);
 538extern void viking_flush_cache_mm(struct mm_struct *mm);
 539extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 540				     unsigned long end);
 541extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 542extern void viking_flush_page_to_ram(unsigned long page);
 543extern void viking_flush_page_for_dma(unsigned long page);
 544extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 545extern void viking_flush_page(unsigned long page);
 546extern void viking_mxcc_flush_page(unsigned long page);
 547extern void viking_flush_tlb_all(void);
 548extern void viking_flush_tlb_mm(struct mm_struct *mm);
 549extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 550				   unsigned long end);
 551extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 552				  unsigned long page);
 553extern void sun4dsmp_flush_tlb_all(void);
 554extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 555extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 556				   unsigned long end);
 557extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 558				  unsigned long page);
 559
 560/* hypersparc.S */
 561extern void hypersparc_flush_cache_all(void);
 562extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 563extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 564extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 565extern void hypersparc_flush_page_to_ram(unsigned long page);
 566extern void hypersparc_flush_page_for_dma(unsigned long page);
 567extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 568extern void hypersparc_flush_tlb_all(void);
 569extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 570extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 571extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 572extern void hypersparc_setup_blockops(void);
 573
 574/*
 575 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 576 *       kernel mappings are done with one single contiguous chunk of
 577 *       ram.  On small ram machines (classics mainly) we only get
 578 *       around 8mb mapped for us.
 579 */
 580
 581static void __init early_pgtable_allocfail(char *type)
 582{
 583	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 584	prom_halt();
 585}
 586
 587static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 588							unsigned long end)
 589{
 590	pgd_t *pgdp;
 591	pmd_t *pmdp;
 592	pte_t *ptep;
 593
 594	while(start < end) {
 595		pgdp = pgd_offset_k(start);
 596		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 597			pmdp = (pmd_t *) __srmmu_get_nocache(
 598			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 599			if (pmdp == NULL)
 600				early_pgtable_allocfail("pmd");
 601			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 602			pgd_set(__nocache_fix(pgdp), pmdp);
 603		}
 604		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 605		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 606			ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 607			if (ptep == NULL)
 608				early_pgtable_allocfail("pte");
 609			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 610			pmd_set(__nocache_fix(pmdp), ptep);
 611		}
 612		if (start > (0xffffffffUL - PMD_SIZE))
 613			break;
 614		start = (start + PMD_SIZE) & PMD_MASK;
 615	}
 616}
 617
 618static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 619						  unsigned long end)
 620{
 621	pgd_t *pgdp;
 622	pmd_t *pmdp;
 623	pte_t *ptep;
 624
 625	while(start < end) {
 626		pgdp = pgd_offset_k(start);
 627		if (pgd_none(*pgdp)) {
 628			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 629			if (pmdp == NULL)
 630				early_pgtable_allocfail("pmd");
 631			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 632			pgd_set(pgdp, pmdp);
 633		}
 634		pmdp = pmd_offset(pgdp, start);
 635		if(srmmu_pmd_none(*pmdp)) {
 636			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
 637							     PTE_SIZE);
 638			if (ptep == NULL)
 639				early_pgtable_allocfail("pte");
 640			memset(ptep, 0, PTE_SIZE);
 641			pmd_set(pmdp, ptep);
 642		}
 643		if (start > (0xffffffffUL - PMD_SIZE))
 644			break;
 645		start = (start + PMD_SIZE) & PMD_MASK;
 646	}
 647}
 648
 649/* These flush types are not available on all chips... */
 650static inline unsigned long srmmu_probe(unsigned long vaddr)
 651{
 652	unsigned long retval;
 653
 654	if (sparc_cpu_model != sparc_leon) {
 655
 656		vaddr &= PAGE_MASK;
 657		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 658				     "=r" (retval) :
 659				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 660	} else {
 661		retval = leon_swprobe(vaddr, 0);
 662	}
 663	return retval;
 664}
 665
 666/*
 667 * This is much cleaner than poking around physical address space
 668 * looking at the prom's page table directly which is what most
 669 * other OS's do.  Yuck... this is much better.
 670 */
 671static void __init srmmu_inherit_prom_mappings(unsigned long start,
 672					       unsigned long end)
 673{
 674	pgd_t *pgdp;
 675	pmd_t *pmdp;
 676	pte_t *ptep;
 677	int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 678	unsigned long prompte;
 679
 680	while(start <= end) {
 681		if (start == 0)
 682			break; /* probably wrap around */
 683		if(start == 0xfef00000)
 684			start = KADB_DEBUGGER_BEGVM;
 685		if(!(prompte = srmmu_probe(start))) {
 686			start += PAGE_SIZE;
 687			continue;
 688		}
 689    
 690		/* A red snapper, see what it really is. */
 691		what = 0;
 692    
 693		if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
 694			if(srmmu_probe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
 695				what = 1;
 696		}
 697    
 698		if(!(start & ~(SRMMU_PGDIR_MASK))) {
 699			if(srmmu_probe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
 700			   prompte)
 701				what = 2;
 702		}
 703    
 704		pgdp = pgd_offset_k(start);
 705		if(what == 2) {
 706			*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
 707			start += SRMMU_PGDIR_SIZE;
 708			continue;
 709		}
 710		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 711			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 712			if (pmdp == NULL)
 713				early_pgtable_allocfail("pmd");
 714			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 715			pgd_set(__nocache_fix(pgdp), pmdp);
 716		}
 717		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 718		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 719			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
 720							     PTE_SIZE);
 721			if (ptep == NULL)
 722				early_pgtable_allocfail("pte");
 723			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 724			pmd_set(__nocache_fix(pmdp), ptep);
 725		}
 726		if(what == 1) {
 727			/*
 728			 * We bend the rule where all 16 PTPs in a pmd_t point
 729			 * inside the same PTE page, and we leak a perfectly
 730			 * good hardware PTE piece. Alternatives seem worse.
 731			 */
 732			unsigned int x;	/* Index of HW PMD in soft cluster */
 733			x = (start >> PMD_SHIFT) & 15;
 734			*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
 735			start += SRMMU_REAL_PMD_SIZE;
 736			continue;
 737		}
 738		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 739		*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
 740		start += PAGE_SIZE;
 741	}
 742}
 743
 744#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 745
 746/* Create a third-level SRMMU 16MB page mapping. */
 747static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 748{
 749	pgd_t *pgdp = pgd_offset_k(vaddr);
 750	unsigned long big_pte;
 751
 752	big_pte = KERNEL_PTE(phys_base >> 4);
 753	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 754}
 755
 756/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 757static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 758{
 759	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
 760	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
 761	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 762	/* Map "low" memory only */
 763	const unsigned long min_vaddr = PAGE_OFFSET;
 764	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 765
 766	if (vstart < min_vaddr || vstart >= max_vaddr)
 767		return vstart;
 768	
 769	if (vend > max_vaddr || vend < min_vaddr)
 770		vend = max_vaddr;
 771
 772	while(vstart < vend) {
 773		do_large_mapping(vstart, pstart);
 774		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
 775	}
 776	return vstart;
 777}
 778
 779static inline void map_kernel(void)
 780{
 781	int i;
 782
 783	if (phys_base > 0) {
 784		do_large_mapping(PAGE_OFFSET, phys_base);
 785	}
 786
 787	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 788		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 789	}
 790}
 791
 792/* Paging initialization on the Sparc Reference MMU. */
 793extern void sparc_context_init(int);
 794
 795void (*poke_srmmu)(void) __cpuinitdata = NULL;
 796
 797extern unsigned long bootmem_init(unsigned long *pages_avail);
 798
 799void __init srmmu_paging_init(void)
 800{
 801	int i;
 802	phandle cpunode;
 803	char node_str[128];
 804	pgd_t *pgd;
 805	pmd_t *pmd;
 806	pte_t *pte;
 807	unsigned long pages_avail;
 808
 809	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 810
 811	if (sparc_cpu_model == sun4d)
 812		num_contexts = 65536; /* We know it is Viking */
 813	else {
 814		/* Find the number of contexts on the srmmu. */
 815		cpunode = prom_getchild(prom_root_node);
 816		num_contexts = 0;
 817		while(cpunode != 0) {
 818			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 819			if(!strcmp(node_str, "cpu")) {
 820				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 821				break;
 822			}
 823			cpunode = prom_getsibling(cpunode);
 824		}
 825	}
 826
 827	if(!num_contexts) {
 828		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 829		prom_halt();
 830	}
 831
 832	pages_avail = 0;
 833	last_valid_pfn = bootmem_init(&pages_avail);
 834
 835	srmmu_nocache_calcsize();
 836	srmmu_nocache_init();
 837        srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
 838	map_kernel();
 839
 840	/* ctx table has to be physically aligned to its size */
 841	srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
 842	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
 843
 844	for(i = 0; i < num_contexts; i++)
 845		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 846
 847	flush_cache_all();
 848	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 849#ifdef CONFIG_SMP
 850	/* Stop from hanging here... */
 851	local_ops->tlb_all();
 852#else
 853	flush_tlb_all();
 854#endif
 855	poke_srmmu();
 856
 857	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 858	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 859
 860	srmmu_allocate_ptable_skeleton(
 861		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 862	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 863
 864	pgd = pgd_offset_k(PKMAP_BASE);
 865	pmd = pmd_offset(pgd, PKMAP_BASE);
 866	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 867	pkmap_page_table = pte;
 868
 869	flush_cache_all();
 870	flush_tlb_all();
 871
 872	sparc_context_init(num_contexts);
 873
 874	kmap_init();
 875
 876	{
 877		unsigned long zones_size[MAX_NR_ZONES];
 878		unsigned long zholes_size[MAX_NR_ZONES];
 879		unsigned long npages;
 880		int znum;
 881
 882		for (znum = 0; znum < MAX_NR_ZONES; znum++)
 883			zones_size[znum] = zholes_size[znum] = 0;
 884
 885		npages = max_low_pfn - pfn_base;
 886
 887		zones_size[ZONE_DMA] = npages;
 888		zholes_size[ZONE_DMA] = npages - pages_avail;
 889
 890		npages = highend_pfn - max_low_pfn;
 891		zones_size[ZONE_HIGHMEM] = npages;
 892		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
 893
 894		free_area_init_node(0, zones_size, pfn_base, zholes_size);
 895	}
 896}
 897
 898void mmu_info(struct seq_file *m)
 899{
 900	seq_printf(m, 
 901		   "MMU type\t: %s\n"
 902		   "contexts\t: %d\n"
 903		   "nocache total\t: %ld\n"
 904		   "nocache used\t: %d\n",
 905		   srmmu_name,
 906		   num_contexts,
 907		   srmmu_nocache_size,
 908		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 909}
 910
 911void destroy_context(struct mm_struct *mm)
 912{
 913
 914	if(mm->context != NO_CONTEXT) {
 915		flush_cache_mm(mm);
 916		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
 917		flush_tlb_mm(mm);
 918		spin_lock(&srmmu_context_spinlock);
 919		free_context(mm->context);
 920		spin_unlock(&srmmu_context_spinlock);
 921		mm->context = NO_CONTEXT;
 922	}
 923}
 924
 925/* Init various srmmu chip types. */
 926static void __init srmmu_is_bad(void)
 927{
 928	prom_printf("Could not determine SRMMU chip type.\n");
 929	prom_halt();
 930}
 931
 932static void __init init_vac_layout(void)
 933{
 934	phandle nd;
 935	int cache_lines;
 936	char node_str[128];
 937#ifdef CONFIG_SMP
 938	int cpu = 0;
 939	unsigned long max_size = 0;
 940	unsigned long min_line_size = 0x10000000;
 941#endif
 942
 943	nd = prom_getchild(prom_root_node);
 944	while((nd = prom_getsibling(nd)) != 0) {
 945		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
 946		if(!strcmp(node_str, "cpu")) {
 947			vac_line_size = prom_getint(nd, "cache-line-size");
 948			if (vac_line_size == -1) {
 949				prom_printf("can't determine cache-line-size, "
 950					    "halting.\n");
 951				prom_halt();
 952			}
 953			cache_lines = prom_getint(nd, "cache-nlines");
 954			if (cache_lines == -1) {
 955				prom_printf("can't determine cache-nlines, halting.\n");
 956				prom_halt();
 957			}
 958
 959			vac_cache_size = cache_lines * vac_line_size;
 960#ifdef CONFIG_SMP
 961			if(vac_cache_size > max_size)
 962				max_size = vac_cache_size;
 963			if(vac_line_size < min_line_size)
 964				min_line_size = vac_line_size;
 965			//FIXME: cpus not contiguous!!
 966			cpu++;
 967			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
 968				break;
 969#else
 970			break;
 971#endif
 972		}
 973	}
 974	if(nd == 0) {
 975		prom_printf("No CPU nodes found, halting.\n");
 976		prom_halt();
 977	}
 978#ifdef CONFIG_SMP
 979	vac_cache_size = max_size;
 980	vac_line_size = min_line_size;
 981#endif
 982	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
 983	       (int)vac_cache_size, (int)vac_line_size);
 984}
 985
 986static void __cpuinit poke_hypersparc(void)
 987{
 988	volatile unsigned long clear;
 989	unsigned long mreg = srmmu_get_mmureg();
 990
 991	hyper_flush_unconditional_combined();
 992
 993	mreg &= ~(HYPERSPARC_CWENABLE);
 994	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
 995	mreg |= (HYPERSPARC_CMODE);
 996
 997	srmmu_set_mmureg(mreg);
 998
 999#if 0 /* XXX I think this is bad news... -DaveM */
1000	hyper_clear_all_tags();
1001#endif
1002
1003	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1004	hyper_flush_whole_icache();
1005	clear = srmmu_get_faddr();
1006	clear = srmmu_get_fstatus();
1007}
1008
1009static const struct sparc32_cachetlb_ops hypersparc_ops = {
1010	.cache_all	= hypersparc_flush_cache_all,
1011	.cache_mm	= hypersparc_flush_cache_mm,
1012	.cache_page	= hypersparc_flush_cache_page,
1013	.cache_range	= hypersparc_flush_cache_range,
1014	.tlb_all	= hypersparc_flush_tlb_all,
1015	.tlb_mm		= hypersparc_flush_tlb_mm,
1016	.tlb_page	= hypersparc_flush_tlb_page,
1017	.tlb_range	= hypersparc_flush_tlb_range,
1018	.page_to_ram	= hypersparc_flush_page_to_ram,
1019	.sig_insns	= hypersparc_flush_sig_insns,
1020	.page_for_dma	= hypersparc_flush_page_for_dma,
1021};
1022
1023static void __init init_hypersparc(void)
1024{
1025	srmmu_name = "ROSS HyperSparc";
1026	srmmu_modtype = HyperSparc;
1027
1028	init_vac_layout();
1029
1030	is_hypersparc = 1;
1031	sparc32_cachetlb_ops = &hypersparc_ops;
1032
1033	poke_srmmu = poke_hypersparc;
1034
1035	hypersparc_setup_blockops();
1036}
1037
1038static void __cpuinit poke_swift(void)
1039{
1040	unsigned long mreg;
1041
1042	/* Clear any crap from the cache or else... */
1043	swift_flush_cache_all();
1044
1045	/* Enable I & D caches */
1046	mreg = srmmu_get_mmureg();
1047	mreg |= (SWIFT_IE | SWIFT_DE);
1048	/*
1049	 * The Swift branch folding logic is completely broken.  At
1050	 * trap time, if things are just right, if can mistakenly
1051	 * think that a trap is coming from kernel mode when in fact
1052	 * it is coming from user mode (it mis-executes the branch in
1053	 * the trap code).  So you see things like crashme completely
1054	 * hosing your machine which is completely unacceptable.  Turn
1055	 * this shit off... nice job Fujitsu.
1056	 */
1057	mreg &= ~(SWIFT_BF);
1058	srmmu_set_mmureg(mreg);
1059}
1060
1061static const struct sparc32_cachetlb_ops swift_ops = {
1062	.cache_all	= swift_flush_cache_all,
1063	.cache_mm	= swift_flush_cache_mm,
1064	.cache_page	= swift_flush_cache_page,
1065	.cache_range	= swift_flush_cache_range,
1066	.tlb_all	= swift_flush_tlb_all,
1067	.tlb_mm		= swift_flush_tlb_mm,
1068	.tlb_page	= swift_flush_tlb_page,
1069	.tlb_range	= swift_flush_tlb_range,
1070	.page_to_ram	= swift_flush_page_to_ram,
1071	.sig_insns	= swift_flush_sig_insns,
1072	.page_for_dma	= swift_flush_page_for_dma,
1073};
1074
1075#define SWIFT_MASKID_ADDR  0x10003018
1076static void __init init_swift(void)
1077{
1078	unsigned long swift_rev;
1079
1080	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1081			     "srl %0, 0x18, %0\n\t" :
1082			     "=r" (swift_rev) :
1083			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1084	srmmu_name = "Fujitsu Swift";
1085	switch(swift_rev) {
1086	case 0x11:
1087	case 0x20:
1088	case 0x23:
1089	case 0x30:
1090		srmmu_modtype = Swift_lots_o_bugs;
1091		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1092		/*
1093		 * Gee george, I wonder why Sun is so hush hush about
1094		 * this hardware bug... really braindamage stuff going
1095		 * on here.  However I think we can find a way to avoid
1096		 * all of the workaround overhead under Linux.  Basically,
1097		 * any page fault can cause kernel pages to become user
1098		 * accessible (the mmu gets confused and clears some of
1099		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1100		 * horrible eh?  But wait, after extensive testing it appears
1101		 * that if you use pgd_t level large kernel pte's (like the
1102		 * 4MB pages on the Pentium) the bug does not get tripped
1103		 * at all.  This avoids almost all of the major overhead.
1104		 * Welcome to a world where your vendor tells you to,
1105		 * "apply this kernel patch" instead of "sorry for the
1106		 * broken hardware, send it back and we'll give you
1107		 * properly functioning parts"
1108		 */
1109		break;
1110	case 0x25:
1111	case 0x31:
1112		srmmu_modtype = Swift_bad_c;
1113		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1114		/*
1115		 * You see Sun allude to this hardware bug but never
1116		 * admit things directly, they'll say things like,
1117		 * "the Swift chip cache problems" or similar.
1118		 */
1119		break;
1120	default:
1121		srmmu_modtype = Swift_ok;
1122		break;
1123	}
1124
1125	sparc32_cachetlb_ops = &swift_ops;
1126	flush_page_for_dma_global = 0;
1127
1128	/*
1129	 * Are you now convinced that the Swift is one of the
1130	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1131	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1132	 * you examined the microcode of the Swift you'd find
1133	 * XXX's all over the place.
1134	 */
1135	poke_srmmu = poke_swift;
1136}
1137
1138static void turbosparc_flush_cache_all(void)
1139{
1140	flush_user_windows();
1141	turbosparc_idflash_clear();
1142}
1143
1144static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1145{
1146	FLUSH_BEGIN(mm)
1147	flush_user_windows();
1148	turbosparc_idflash_clear();
1149	FLUSH_END
1150}
1151
1152static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1153{
1154	FLUSH_BEGIN(vma->vm_mm)
1155	flush_user_windows();
1156	turbosparc_idflash_clear();
1157	FLUSH_END
1158}
1159
1160static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1161{
1162	FLUSH_BEGIN(vma->vm_mm)
1163	flush_user_windows();
1164	if (vma->vm_flags & VM_EXEC)
1165		turbosparc_flush_icache();
1166	turbosparc_flush_dcache();
1167	FLUSH_END
1168}
1169
1170/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1171static void turbosparc_flush_page_to_ram(unsigned long page)
1172{
1173#ifdef TURBOSPARC_WRITEBACK
1174	volatile unsigned long clear;
1175
1176	if (srmmu_probe(page))
1177		turbosparc_flush_page_cache(page);
1178	clear = srmmu_get_fstatus();
1179#endif
1180}
1181
1182static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1183{
1184}
1185
1186static void turbosparc_flush_page_for_dma(unsigned long page)
1187{
1188	turbosparc_flush_dcache();
1189}
1190
1191static void turbosparc_flush_tlb_all(void)
1192{
1193	srmmu_flush_whole_tlb();
1194}
1195
1196static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1197{
1198	FLUSH_BEGIN(mm)
1199	srmmu_flush_whole_tlb();
1200	FLUSH_END
1201}
1202
1203static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1204{
1205	FLUSH_BEGIN(vma->vm_mm)
1206	srmmu_flush_whole_tlb();
1207	FLUSH_END
1208}
1209
1210static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1211{
1212	FLUSH_BEGIN(vma->vm_mm)
1213	srmmu_flush_whole_tlb();
1214	FLUSH_END
1215}
1216
1217
1218static void __cpuinit poke_turbosparc(void)
1219{
1220	unsigned long mreg = srmmu_get_mmureg();
1221	unsigned long ccreg;
1222
1223	/* Clear any crap from the cache or else... */
1224	turbosparc_flush_cache_all();
1225	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1226	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1227	srmmu_set_mmureg(mreg);
1228	
1229	ccreg = turbosparc_get_ccreg();
1230
1231#ifdef TURBOSPARC_WRITEBACK
1232	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1233	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1234			/* Write-back D-cache, emulate VLSI
1235			 * abortion number three, not number one */
1236#else
1237	/* For now let's play safe, optimize later */
1238	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1239			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1240	ccreg &= ~(TURBOSPARC_uS2);
1241			/* Emulate VLSI abortion number three, not number one */
1242#endif
1243
1244	switch (ccreg & 7) {
1245	case 0: /* No SE cache */
1246	case 7: /* Test mode */
1247		break;
1248	default:
1249		ccreg |= (TURBOSPARC_SCENABLE);
1250	}
1251	turbosparc_set_ccreg (ccreg);
1252
1253	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1254	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1255	srmmu_set_mmureg(mreg);
1256}
1257
1258static const struct sparc32_cachetlb_ops turbosparc_ops = {
1259	.cache_all	= turbosparc_flush_cache_all,
1260	.cache_mm	= turbosparc_flush_cache_mm,
1261	.cache_page	= turbosparc_flush_cache_page,
1262	.cache_range	= turbosparc_flush_cache_range,
1263	.tlb_all	= turbosparc_flush_tlb_all,
1264	.tlb_mm		= turbosparc_flush_tlb_mm,
1265	.tlb_page	= turbosparc_flush_tlb_page,
1266	.tlb_range	= turbosparc_flush_tlb_range,
1267	.page_to_ram	= turbosparc_flush_page_to_ram,
1268	.sig_insns	= turbosparc_flush_sig_insns,
1269	.page_for_dma	= turbosparc_flush_page_for_dma,
1270};
1271
1272static void __init init_turbosparc(void)
1273{
1274	srmmu_name = "Fujitsu TurboSparc";
1275	srmmu_modtype = TurboSparc;
1276	sparc32_cachetlb_ops = &turbosparc_ops;
1277	poke_srmmu = poke_turbosparc;
1278}
1279
1280static void __cpuinit poke_tsunami(void)
1281{
1282	unsigned long mreg = srmmu_get_mmureg();
1283
1284	tsunami_flush_icache();
1285	tsunami_flush_dcache();
1286	mreg &= ~TSUNAMI_ITD;
1287	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1288	srmmu_set_mmureg(mreg);
1289}
1290
1291static const struct sparc32_cachetlb_ops tsunami_ops = {
1292	.cache_all	= tsunami_flush_cache_all,
1293	.cache_mm	= tsunami_flush_cache_mm,
1294	.cache_page	= tsunami_flush_cache_page,
1295	.cache_range	= tsunami_flush_cache_range,
1296	.tlb_all	= tsunami_flush_tlb_all,
1297	.tlb_mm		= tsunami_flush_tlb_mm,
1298	.tlb_page	= tsunami_flush_tlb_page,
1299	.tlb_range	= tsunami_flush_tlb_range,
1300	.page_to_ram	= tsunami_flush_page_to_ram,
1301	.sig_insns	= tsunami_flush_sig_insns,
1302	.page_for_dma	= tsunami_flush_page_for_dma,
1303};
1304
1305static void __init init_tsunami(void)
1306{
1307	/*
1308	 * Tsunami's pretty sane, Sun and TI actually got it
1309	 * somewhat right this time.  Fujitsu should have
1310	 * taken some lessons from them.
1311	 */
1312
1313	srmmu_name = "TI Tsunami";
1314	srmmu_modtype = Tsunami;
1315	sparc32_cachetlb_ops = &tsunami_ops;
1316	poke_srmmu = poke_tsunami;
1317
1318	tsunami_setup_blockops();
1319}
1320
1321static void __cpuinit poke_viking(void)
1322{
1323	unsigned long mreg = srmmu_get_mmureg();
1324	static int smp_catch;
1325
1326	if (viking_mxcc_present) {
1327		unsigned long mxcc_control = mxcc_get_creg();
1328
1329		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1330		mxcc_control &= ~(MXCC_CTL_RRC);
1331		mxcc_set_creg(mxcc_control);
1332
1333		/*
1334		 * We don't need memory parity checks.
1335		 * XXX This is a mess, have to dig out later. ecd.
1336		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1337		 */
1338
1339		/* We do cache ptables on MXCC. */
1340		mreg |= VIKING_TCENABLE;
1341	} else {
1342		unsigned long bpreg;
1343
1344		mreg &= ~(VIKING_TCENABLE);
1345		if(smp_catch++) {
1346			/* Must disable mixed-cmd mode here for other cpu's. */
1347			bpreg = viking_get_bpreg();
1348			bpreg &= ~(VIKING_ACTION_MIX);
1349			viking_set_bpreg(bpreg);
1350
1351			/* Just in case PROM does something funny. */
1352			msi_set_sync();
1353		}
1354	}
1355
1356	mreg |= VIKING_SPENABLE;
1357	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1358	mreg |= VIKING_SBENABLE;
1359	mreg &= ~(VIKING_ACENABLE);
1360	srmmu_set_mmureg(mreg);
1361}
1362
1363static struct sparc32_cachetlb_ops viking_ops = {
1364	.cache_all	= viking_flush_cache_all,
1365	.cache_mm	= viking_flush_cache_mm,
1366	.cache_page	= viking_flush_cache_page,
1367	.cache_range	= viking_flush_cache_range,
1368	.tlb_all	= viking_flush_tlb_all,
1369	.tlb_mm		= viking_flush_tlb_mm,
1370	.tlb_page	= viking_flush_tlb_page,
1371	.tlb_range	= viking_flush_tlb_range,
1372	.page_to_ram	= viking_flush_page_to_ram,
1373	.sig_insns	= viking_flush_sig_insns,
1374	.page_for_dma	= viking_flush_page_for_dma,
1375};
1376
1377#ifdef CONFIG_SMP
1378/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1379 * perform the local TLB flush and all the other cpus will see it.
1380 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1381 * that requires that we add some synchronization to these flushes.
1382 *
1383 * The bug is that the fifo which keeps track of all the pending TLB
1384 * broadcasts in the system is an entry or two too small, so if we
1385 * have too many going at once we'll overflow that fifo and lose a TLB
1386 * flush resulting in corruption.
1387 *
1388 * Our workaround is to take a global spinlock around the TLB flushes,
1389 * which guarentees we won't ever have too many pending.  It's a big
1390 * hammer, but a semaphore like system to make sure we only have N TLB
1391 * flushes going at once will require SMP locking anyways so there's
1392 * no real value in trying any harder than this.
1393 */
1394static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1395	.cache_all	= viking_flush_cache_all,
1396	.cache_mm	= viking_flush_cache_mm,
1397	.cache_page	= viking_flush_cache_page,
1398	.cache_range	= viking_flush_cache_range,
1399	.tlb_all	= sun4dsmp_flush_tlb_all,
1400	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1401	.tlb_page	= sun4dsmp_flush_tlb_page,
1402	.tlb_range	= sun4dsmp_flush_tlb_range,
1403	.page_to_ram	= viking_flush_page_to_ram,
1404	.sig_insns	= viking_flush_sig_insns,
1405	.page_for_dma	= viking_flush_page_for_dma,
1406};
1407#endif
1408
1409static void __init init_viking(void)
1410{
1411	unsigned long mreg = srmmu_get_mmureg();
1412
1413	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1414	if(mreg & VIKING_MMODE) {
1415		srmmu_name = "TI Viking";
1416		viking_mxcc_present = 0;
1417		msi_set_sync();
1418
1419		/*
1420		 * We need this to make sure old viking takes no hits
1421		 * on it's cache for dma snoops to workaround the
1422		 * "load from non-cacheable memory" interrupt bug.
1423		 * This is only necessary because of the new way in
1424		 * which we use the IOMMU.
1425		 */
1426		viking_ops.page_for_dma = viking_flush_page;
1427#ifdef CONFIG_SMP
1428		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1429#endif
1430		flush_page_for_dma_global = 0;
1431	} else {
1432		srmmu_name = "TI Viking/MXCC";
1433		viking_mxcc_present = 1;
1434		srmmu_cache_pagetables = 1;
1435	}
1436
1437	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1438		&viking_ops;
1439#ifdef CONFIG_SMP
1440	if (sparc_cpu_model == sun4d)
1441		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1442			&viking_sun4d_smp_ops;
1443#endif
1444
1445	poke_srmmu = poke_viking;
1446}
1447
1448/* Probe for the srmmu chip version. */
1449static void __init get_srmmu_type(void)
1450{
1451	unsigned long mreg, psr;
1452	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1453
1454	srmmu_modtype = SRMMU_INVAL_MOD;
1455	hwbug_bitmask = 0;
1456
1457	mreg = srmmu_get_mmureg(); psr = get_psr();
1458	mod_typ = (mreg & 0xf0000000) >> 28;
1459	mod_rev = (mreg & 0x0f000000) >> 24;
1460	psr_typ = (psr >> 28) & 0xf;
1461	psr_vers = (psr >> 24) & 0xf;
1462
1463	/* First, check for sparc-leon. */
1464	if (sparc_cpu_model == sparc_leon) {
1465		init_leon();
1466		return;
1467	}
1468
1469	/* Second, check for HyperSparc or Cypress. */
1470	if(mod_typ == 1) {
1471		switch(mod_rev) {
1472		case 7:
1473			/* UP or MP Hypersparc */
1474			init_hypersparc();
1475			break;
1476		case 0:
1477		case 2:
1478		case 10:
1479		case 11:
1480		case 12:
1481		case 13:
1482		case 14:
1483		case 15:
1484		default:
1485			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1486			prom_halt();
1487			break;
1488		}
1489		return;
1490	}
1491	
1492	/*
1493	 * Now Fujitsu TurboSparc. It might happen that it is
1494	 * in Swift emulation mode, so we will check later...
1495	 */
1496	if (psr_typ == 0 && psr_vers == 5) {
1497		init_turbosparc();
1498		return;
1499	}
1500
1501	/* Next check for Fujitsu Swift. */
1502	if(psr_typ == 0 && psr_vers == 4) {
1503		phandle cpunode;
1504		char node_str[128];
1505
1506		/* Look if it is not a TurboSparc emulating Swift... */
1507		cpunode = prom_getchild(prom_root_node);
1508		while((cpunode = prom_getsibling(cpunode)) != 0) {
1509			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1510			if(!strcmp(node_str, "cpu")) {
1511				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1512				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1513					init_turbosparc();
1514					return;
1515				}
1516				break;
1517			}
1518		}
1519		
1520		init_swift();
1521		return;
1522	}
1523
1524	/* Now the Viking family of srmmu. */
1525	if(psr_typ == 4 &&
1526	   ((psr_vers == 0) ||
1527	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1528		init_viking();
1529		return;
1530	}
1531
1532	/* Finally the Tsunami. */
1533	if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1534		init_tsunami();
1535		return;
1536	}
1537
1538	/* Oh well */
1539	srmmu_is_bad();
1540}
1541
1542#ifdef CONFIG_SMP
1543/* Local cross-calls. */
1544static void smp_flush_page_for_dma(unsigned long page)
1545{
1546	xc1((smpfunc_t) local_ops->page_for_dma, page);
1547	local_ops->page_for_dma(page);
1548}
1549
1550static void smp_flush_cache_all(void)
1551{
1552	xc0((smpfunc_t) local_ops->cache_all);
1553	local_ops->cache_all();
1554}
1555
1556static void smp_flush_tlb_all(void)
1557{
1558	xc0((smpfunc_t) local_ops->tlb_all);
1559	local_ops->tlb_all();
1560}
1561
1562static void smp_flush_cache_mm(struct mm_struct *mm)
1563{
1564	if (mm->context != NO_CONTEXT) {
1565		cpumask_t cpu_mask;
1566		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1567		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1568		if (!cpumask_empty(&cpu_mask))
1569			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1570		local_ops->cache_mm(mm);
1571	}
1572}
1573
1574static void smp_flush_tlb_mm(struct mm_struct *mm)
1575{
1576	if (mm->context != NO_CONTEXT) {
1577		cpumask_t cpu_mask;
1578		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1579		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1580		if (!cpumask_empty(&cpu_mask)) {
1581			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1582			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1583				cpumask_copy(mm_cpumask(mm),
1584					     cpumask_of(smp_processor_id()));
1585		}
1586		local_ops->tlb_mm(mm);
1587	}
1588}
1589
1590static void smp_flush_cache_range(struct vm_area_struct *vma,
1591				  unsigned long start,
1592				  unsigned long end)
1593{
1594	struct mm_struct *mm = vma->vm_mm;
1595
1596	if (mm->context != NO_CONTEXT) {
1597		cpumask_t cpu_mask;
1598		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1599		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1600		if (!cpumask_empty(&cpu_mask))
1601			xc3((smpfunc_t) local_ops->cache_range,
1602			    (unsigned long) vma, start, end);
1603		local_ops->cache_range(vma, start, end);
1604	}
1605}
1606
1607static void smp_flush_tlb_range(struct vm_area_struct *vma,
1608				unsigned long start,
1609				unsigned long end)
1610{
1611	struct mm_struct *mm = vma->vm_mm;
1612
1613	if (mm->context != NO_CONTEXT) {
1614		cpumask_t cpu_mask;
1615		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1616		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1617		if (!cpumask_empty(&cpu_mask))
1618			xc3((smpfunc_t) local_ops->tlb_range,
1619			    (unsigned long) vma, start, end);
1620		local_ops->tlb_range(vma, start, end);
1621	}
1622}
1623
1624static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1625{
1626	struct mm_struct *mm = vma->vm_mm;
1627
1628	if (mm->context != NO_CONTEXT) {
1629		cpumask_t cpu_mask;
1630		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1631		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1632		if (!cpumask_empty(&cpu_mask))
1633			xc2((smpfunc_t) local_ops->cache_page,
1634			    (unsigned long) vma, page);
1635		local_ops->cache_page(vma, page);
1636	}
1637}
1638
1639static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1640{
1641	struct mm_struct *mm = vma->vm_mm;
1642
1643	if (mm->context != NO_CONTEXT) {
1644		cpumask_t cpu_mask;
1645		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1646		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1647		if (!cpumask_empty(&cpu_mask))
1648			xc2((smpfunc_t) local_ops->tlb_page,
1649			    (unsigned long) vma, page);
1650		local_ops->tlb_page(vma, page);
1651	}
1652}
1653
1654static void smp_flush_page_to_ram(unsigned long page)
1655{
1656	/* Current theory is that those who call this are the one's
1657	 * who have just dirtied their cache with the pages contents
1658	 * in kernel space, therefore we only run this on local cpu.
1659	 *
1660	 * XXX This experiment failed, research further... -DaveM
1661	 */
1662#if 1
1663	xc1((smpfunc_t) local_ops->page_to_ram, page);
1664#endif
1665	local_ops->page_to_ram(page);
1666}
1667
1668static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1669{
1670	cpumask_t cpu_mask;
1671	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673	if (!cpumask_empty(&cpu_mask))
1674		xc2((smpfunc_t) local_ops->sig_insns,
1675		    (unsigned long) mm, insn_addr);
1676	local_ops->sig_insns(mm, insn_addr);
1677}
1678
1679static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1680	.cache_all	= smp_flush_cache_all,
1681	.cache_mm	= smp_flush_cache_mm,
1682	.cache_page	= smp_flush_cache_page,
1683	.cache_range	= smp_flush_cache_range,
1684	.tlb_all	= smp_flush_tlb_all,
1685	.tlb_mm		= smp_flush_tlb_mm,
1686	.tlb_page	= smp_flush_tlb_page,
1687	.tlb_range	= smp_flush_tlb_range,
1688	.page_to_ram	= smp_flush_page_to_ram,
1689	.sig_insns	= smp_flush_sig_insns,
1690	.page_for_dma	= smp_flush_page_for_dma,
1691};
1692#endif
1693
1694/* Load up routines and constants for sun4m and sun4d mmu */
1695void __init load_mmu(void)
1696{
1697	extern void ld_mmu_iommu(void);
1698	extern void ld_mmu_iounit(void);
1699
1700	/* Functions */
1701	get_srmmu_type();
1702
1703#ifdef CONFIG_SMP
1704	/* El switcheroo... */
1705	local_ops = sparc32_cachetlb_ops;
1706
1707	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1708		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1709		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1710		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1711		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1712	}
1713
1714	if (poke_srmmu == poke_viking) {
1715		/* Avoid unnecessary cross calls. */
1716		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1717		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1718		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1719		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1720
1721		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1722		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1723		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1724	}
1725
1726	/* It really is const after this point. */
1727	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1728		&smp_cachetlb_ops;
1729#endif
1730
1731	if (sparc_cpu_model == sun4d)
1732		ld_mmu_iounit();
1733	else
1734		ld_mmu_iommu();
1735#ifdef CONFIG_SMP
1736	if (sparc_cpu_model == sun4d)
1737		sun4d_init_smp();
1738	else if (sparc_cpu_model == sparc_leon)
1739		leon_init_smp();
1740	else
1741		sun4m_init_smp();
1742#endif
1743}