Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * srmmu.c: SRMMU specific routines for memory management.
4 *
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10 */
11
12#include <linux/seq_file.h>
13#include <linux/spinlock.h>
14#include <linux/bootmem.h>
15#include <linux/pagemap.h>
16#include <linux/vmalloc.h>
17#include <linux/kdebug.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/init.h>
21#include <linux/log2.h>
22#include <linux/gfp.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25
26#include <asm/mmu_context.h>
27#include <asm/cacheflush.h>
28#include <asm/tlbflush.h>
29#include <asm/io-unit.h>
30#include <asm/pgalloc.h>
31#include <asm/pgtable.h>
32#include <asm/bitext.h>
33#include <asm/vaddrs.h>
34#include <asm/cache.h>
35#include <asm/traps.h>
36#include <asm/oplib.h>
37#include <asm/mbus.h>
38#include <asm/page.h>
39#include <asm/asi.h>
40#include <asm/msi.h>
41#include <asm/smp.h>
42#include <asm/io.h>
43
44/* Now the cpu specific definitions. */
45#include <asm/turbosparc.h>
46#include <asm/tsunami.h>
47#include <asm/viking.h>
48#include <asm/swift.h>
49#include <asm/leon.h>
50#include <asm/mxcc.h>
51#include <asm/ross.h>
52
53#include "mm_32.h"
54
55enum mbus_module srmmu_modtype;
56static unsigned int hwbug_bitmask;
57int vac_cache_size;
58EXPORT_SYMBOL(vac_cache_size);
59int vac_line_size;
60
61extern struct resource sparc_iomap;
62
63extern unsigned long last_valid_pfn;
64
65static pgd_t *srmmu_swapper_pg_dir;
66
67const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
68EXPORT_SYMBOL(sparc32_cachetlb_ops);
69
70#ifdef CONFIG_SMP
71const struct sparc32_cachetlb_ops *local_ops;
72
73#define FLUSH_BEGIN(mm)
74#define FLUSH_END
75#else
76#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77#define FLUSH_END }
78#endif
79
80int flush_page_for_dma_global = 1;
81
82char *srmmu_name;
83
84ctxd_t *srmmu_ctx_table_phys;
85static ctxd_t *srmmu_context_table;
86
87int viking_mxcc_present;
88static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
90static int is_hypersparc;
91
92static int srmmu_cache_pagetables;
93
94/* these will be initialized in srmmu_nocache_calcsize() */
95static unsigned long srmmu_nocache_size;
96static unsigned long srmmu_nocache_end;
97
98/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100
101/* The context table is a nocache user with the biggest alignment needs. */
102#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103
104void *srmmu_nocache_pool;
105static struct bit_map srmmu_nocache_map;
106
107static inline int srmmu_pmd_none(pmd_t pmd)
108{ return !(pmd_val(pmd) & 0xFFFFFFF); }
109
110/* XXX should we hyper_flush_whole_icache here - Anton */
111static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
112{
113 pte_t pte;
114
115 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
116 set_pte((pte_t *)ctxp, pte);
117}
118
119void pmd_set(pmd_t *pmdp, pte_t *ptep)
120{
121 unsigned long ptp; /* Physical address, shifted right by 4 */
122 int i;
123
124 ptp = __nocache_pa(ptep) >> 4;
125 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
126 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
127 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
128 }
129}
130
131void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
132{
133 unsigned long ptp; /* Physical address, shifted right by 4 */
134 int i;
135
136 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
137 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
138 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
139 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
140 }
141}
142
143/* Find an entry in the third-level page table.. */
144pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
145{
146 void *pte;
147
148 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
149 return (pte_t *) pte +
150 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
151}
152
153/*
154 * size: bytes to allocate in the nocache area.
155 * align: bytes, number to align at.
156 * Returns the virtual address of the allocated area.
157 */
158static void *__srmmu_get_nocache(int size, int align)
159{
160 int offset;
161 unsigned long addr;
162
163 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
164 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
165 size);
166 size = SRMMU_NOCACHE_BITMAP_SHIFT;
167 }
168 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
169 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
170 size);
171 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
172 }
173 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
174
175 offset = bit_map_string_get(&srmmu_nocache_map,
176 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
177 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
178 if (offset == -1) {
179 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
180 size, (int) srmmu_nocache_size,
181 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
182 return NULL;
183 }
184
185 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
186 return (void *)addr;
187}
188
189void *srmmu_get_nocache(int size, int align)
190{
191 void *tmp;
192
193 tmp = __srmmu_get_nocache(size, align);
194
195 if (tmp)
196 memset(tmp, 0, size);
197
198 return tmp;
199}
200
201void srmmu_free_nocache(void *addr, int size)
202{
203 unsigned long vaddr;
204 int offset;
205
206 vaddr = (unsigned long)addr;
207 if (vaddr < SRMMU_NOCACHE_VADDR) {
208 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
209 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
210 BUG();
211 }
212 if (vaddr + size > srmmu_nocache_end) {
213 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
214 vaddr, srmmu_nocache_end);
215 BUG();
216 }
217 if (!is_power_of_2(size)) {
218 printk("Size 0x%x is not a power of 2\n", size);
219 BUG();
220 }
221 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
222 printk("Size 0x%x is too small\n", size);
223 BUG();
224 }
225 if (vaddr & (size - 1)) {
226 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
227 BUG();
228 }
229
230 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
231 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
232
233 bit_map_clear(&srmmu_nocache_map, offset, size);
234}
235
236static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
237 unsigned long end);
238
239/* Return how much physical memory we have. */
240static unsigned long __init probe_memory(void)
241{
242 unsigned long total = 0;
243 int i;
244
245 for (i = 0; sp_banks[i].num_bytes; i++)
246 total += sp_banks[i].num_bytes;
247
248 return total;
249}
250
251/*
252 * Reserve nocache dynamically proportionally to the amount of
253 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
254 */
255static void __init srmmu_nocache_calcsize(void)
256{
257 unsigned long sysmemavail = probe_memory() / 1024;
258 int srmmu_nocache_npages;
259
260 srmmu_nocache_npages =
261 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
262
263 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
264 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
265 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
266 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
267
268 /* anything above 1280 blows up */
269 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
270 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
271
272 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
273 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
274}
275
276static void __init srmmu_nocache_init(void)
277{
278 void *srmmu_nocache_bitmap;
279 unsigned int bitmap_bits;
280 pgd_t *pgd;
281 pmd_t *pmd;
282 pte_t *pte;
283 unsigned long paddr, vaddr;
284 unsigned long pteval;
285
286 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
287
288 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
289 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
290 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
291
292 srmmu_nocache_bitmap =
293 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
294 SMP_CACHE_BYTES, 0UL);
295 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
296
297 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
298 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
299 init_mm.pgd = srmmu_swapper_pg_dir;
300
301 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
302
303 paddr = __pa((unsigned long)srmmu_nocache_pool);
304 vaddr = SRMMU_NOCACHE_VADDR;
305
306 while (vaddr < srmmu_nocache_end) {
307 pgd = pgd_offset_k(vaddr);
308 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
309 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
310
311 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
312
313 if (srmmu_cache_pagetables)
314 pteval |= SRMMU_CACHE;
315
316 set_pte(__nocache_fix(pte), __pte(pteval));
317
318 vaddr += PAGE_SIZE;
319 paddr += PAGE_SIZE;
320 }
321
322 flush_cache_all();
323 flush_tlb_all();
324}
325
326pgd_t *get_pgd_fast(void)
327{
328 pgd_t *pgd = NULL;
329
330 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
331 if (pgd) {
332 pgd_t *init = pgd_offset_k(0);
333 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
334 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
335 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
336 }
337
338 return pgd;
339}
340
341/*
342 * Hardware needs alignment to 256 only, but we align to whole page size
343 * to reduce fragmentation problems due to the buddy principle.
344 * XXX Provide actual fragmentation statistics in /proc.
345 *
346 * Alignments up to the page size are the same for physical and virtual
347 * addresses of the nocache area.
348 */
349pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
350{
351 unsigned long pte;
352 struct page *page;
353
354 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
355 return NULL;
356 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
357 if (!pgtable_page_ctor(page)) {
358 __free_page(page);
359 return NULL;
360 }
361 return page;
362}
363
364void pte_free(struct mm_struct *mm, pgtable_t pte)
365{
366 unsigned long p;
367
368 pgtable_page_dtor(pte);
369 p = (unsigned long)page_address(pte); /* Cached address (for test) */
370 if (p == 0)
371 BUG();
372 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
373
374 /* free non cached virtual address*/
375 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
376}
377
378/* context handling - a dynamically sized pool is used */
379#define NO_CONTEXT -1
380
381struct ctx_list {
382 struct ctx_list *next;
383 struct ctx_list *prev;
384 unsigned int ctx_number;
385 struct mm_struct *ctx_mm;
386};
387
388static struct ctx_list *ctx_list_pool;
389static struct ctx_list ctx_free;
390static struct ctx_list ctx_used;
391
392/* At boot time we determine the number of contexts */
393static int num_contexts;
394
395static inline void remove_from_ctx_list(struct ctx_list *entry)
396{
397 entry->next->prev = entry->prev;
398 entry->prev->next = entry->next;
399}
400
401static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
402{
403 entry->next = head;
404 (entry->prev = head->prev)->next = entry;
405 head->prev = entry;
406}
407#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
408#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
409
410
411static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
412{
413 struct ctx_list *ctxp;
414
415 ctxp = ctx_free.next;
416 if (ctxp != &ctx_free) {
417 remove_from_ctx_list(ctxp);
418 add_to_used_ctxlist(ctxp);
419 mm->context = ctxp->ctx_number;
420 ctxp->ctx_mm = mm;
421 return;
422 }
423 ctxp = ctx_used.next;
424 if (ctxp->ctx_mm == old_mm)
425 ctxp = ctxp->next;
426 if (ctxp == &ctx_used)
427 panic("out of mmu contexts");
428 flush_cache_mm(ctxp->ctx_mm);
429 flush_tlb_mm(ctxp->ctx_mm);
430 remove_from_ctx_list(ctxp);
431 add_to_used_ctxlist(ctxp);
432 ctxp->ctx_mm->context = NO_CONTEXT;
433 ctxp->ctx_mm = mm;
434 mm->context = ctxp->ctx_number;
435}
436
437static inline void free_context(int context)
438{
439 struct ctx_list *ctx_old;
440
441 ctx_old = ctx_list_pool + context;
442 remove_from_ctx_list(ctx_old);
443 add_to_free_ctxlist(ctx_old);
444}
445
446static void __init sparc_context_init(int numctx)
447{
448 int ctx;
449 unsigned long size;
450
451 size = numctx * sizeof(struct ctx_list);
452 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
453
454 for (ctx = 0; ctx < numctx; ctx++) {
455 struct ctx_list *clist;
456
457 clist = (ctx_list_pool + ctx);
458 clist->ctx_number = ctx;
459 clist->ctx_mm = NULL;
460 }
461 ctx_free.next = ctx_free.prev = &ctx_free;
462 ctx_used.next = ctx_used.prev = &ctx_used;
463 for (ctx = 0; ctx < numctx; ctx++)
464 add_to_free_ctxlist(ctx_list_pool + ctx);
465}
466
467void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
468 struct task_struct *tsk)
469{
470 unsigned long flags;
471
472 if (mm->context == NO_CONTEXT) {
473 spin_lock_irqsave(&srmmu_context_spinlock, flags);
474 alloc_context(old_mm, mm);
475 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
476 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
477 }
478
479 if (sparc_cpu_model == sparc_leon)
480 leon_switch_mm();
481
482 if (is_hypersparc)
483 hyper_flush_whole_icache();
484
485 srmmu_set_context(mm->context);
486}
487
488/* Low level IO area allocation on the SRMMU. */
489static inline void srmmu_mapioaddr(unsigned long physaddr,
490 unsigned long virt_addr, int bus_type)
491{
492 pgd_t *pgdp;
493 pmd_t *pmdp;
494 pte_t *ptep;
495 unsigned long tmp;
496
497 physaddr &= PAGE_MASK;
498 pgdp = pgd_offset_k(virt_addr);
499 pmdp = pmd_offset(pgdp, virt_addr);
500 ptep = pte_offset_kernel(pmdp, virt_addr);
501 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
502
503 /* I need to test whether this is consistent over all
504 * sun4m's. The bus_type represents the upper 4 bits of
505 * 36-bit physical address on the I/O space lines...
506 */
507 tmp |= (bus_type << 28);
508 tmp |= SRMMU_PRIV;
509 __flush_page_to_ram(virt_addr);
510 set_pte(ptep, __pte(tmp));
511}
512
513void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
514 unsigned long xva, unsigned int len)
515{
516 while (len != 0) {
517 len -= PAGE_SIZE;
518 srmmu_mapioaddr(xpa, xva, bus);
519 xva += PAGE_SIZE;
520 xpa += PAGE_SIZE;
521 }
522 flush_tlb_all();
523}
524
525static inline void srmmu_unmapioaddr(unsigned long virt_addr)
526{
527 pgd_t *pgdp;
528 pmd_t *pmdp;
529 pte_t *ptep;
530
531 pgdp = pgd_offset_k(virt_addr);
532 pmdp = pmd_offset(pgdp, virt_addr);
533 ptep = pte_offset_kernel(pmdp, virt_addr);
534
535 /* No need to flush uncacheable page. */
536 __pte_clear(ptep);
537}
538
539void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
540{
541 while (len != 0) {
542 len -= PAGE_SIZE;
543 srmmu_unmapioaddr(virt_addr);
544 virt_addr += PAGE_SIZE;
545 }
546 flush_tlb_all();
547}
548
549/* tsunami.S */
550extern void tsunami_flush_cache_all(void);
551extern void tsunami_flush_cache_mm(struct mm_struct *mm);
552extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
553extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
554extern void tsunami_flush_page_to_ram(unsigned long page);
555extern void tsunami_flush_page_for_dma(unsigned long page);
556extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
557extern void tsunami_flush_tlb_all(void);
558extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
559extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
560extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
561extern void tsunami_setup_blockops(void);
562
563/* swift.S */
564extern void swift_flush_cache_all(void);
565extern void swift_flush_cache_mm(struct mm_struct *mm);
566extern void swift_flush_cache_range(struct vm_area_struct *vma,
567 unsigned long start, unsigned long end);
568extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
569extern void swift_flush_page_to_ram(unsigned long page);
570extern void swift_flush_page_for_dma(unsigned long page);
571extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
572extern void swift_flush_tlb_all(void);
573extern void swift_flush_tlb_mm(struct mm_struct *mm);
574extern void swift_flush_tlb_range(struct vm_area_struct *vma,
575 unsigned long start, unsigned long end);
576extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
577
578#if 0 /* P3: deadwood to debug precise flushes on Swift. */
579void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
580{
581 int cctx, ctx1;
582
583 page &= PAGE_MASK;
584 if ((ctx1 = vma->vm_mm->context) != -1) {
585 cctx = srmmu_get_context();
586/* Is context # ever different from current context? P3 */
587 if (cctx != ctx1) {
588 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
589 srmmu_set_context(ctx1);
590 swift_flush_page(page);
591 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
592 "r" (page), "i" (ASI_M_FLUSH_PROBE));
593 srmmu_set_context(cctx);
594 } else {
595 /* Rm. prot. bits from virt. c. */
596 /* swift_flush_cache_all(); */
597 /* swift_flush_cache_page(vma, page); */
598 swift_flush_page(page);
599
600 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
601 "r" (page), "i" (ASI_M_FLUSH_PROBE));
602 /* same as above: srmmu_flush_tlb_page() */
603 }
604 }
605}
606#endif
607
608/*
609 * The following are all MBUS based SRMMU modules, and therefore could
610 * be found in a multiprocessor configuration. On the whole, these
611 * chips seems to be much more touchy about DVMA and page tables
612 * with respect to cache coherency.
613 */
614
615/* viking.S */
616extern void viking_flush_cache_all(void);
617extern void viking_flush_cache_mm(struct mm_struct *mm);
618extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
619 unsigned long end);
620extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
621extern void viking_flush_page_to_ram(unsigned long page);
622extern void viking_flush_page_for_dma(unsigned long page);
623extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
624extern void viking_flush_page(unsigned long page);
625extern void viking_mxcc_flush_page(unsigned long page);
626extern void viking_flush_tlb_all(void);
627extern void viking_flush_tlb_mm(struct mm_struct *mm);
628extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
629 unsigned long end);
630extern void viking_flush_tlb_page(struct vm_area_struct *vma,
631 unsigned long page);
632extern void sun4dsmp_flush_tlb_all(void);
633extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
634extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
635 unsigned long end);
636extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
637 unsigned long page);
638
639/* hypersparc.S */
640extern void hypersparc_flush_cache_all(void);
641extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
642extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
643extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
644extern void hypersparc_flush_page_to_ram(unsigned long page);
645extern void hypersparc_flush_page_for_dma(unsigned long page);
646extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
647extern void hypersparc_flush_tlb_all(void);
648extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
649extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
650extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
651extern void hypersparc_setup_blockops(void);
652
653/*
654 * NOTE: All of this startup code assumes the low 16mb (approx.) of
655 * kernel mappings are done with one single contiguous chunk of
656 * ram. On small ram machines (classics mainly) we only get
657 * around 8mb mapped for us.
658 */
659
660static void __init early_pgtable_allocfail(char *type)
661{
662 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
663 prom_halt();
664}
665
666static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
667 unsigned long end)
668{
669 pgd_t *pgdp;
670 pmd_t *pmdp;
671 pte_t *ptep;
672
673 while (start < end) {
674 pgdp = pgd_offset_k(start);
675 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
676 pmdp = __srmmu_get_nocache(
677 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
678 if (pmdp == NULL)
679 early_pgtable_allocfail("pmd");
680 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
681 pgd_set(__nocache_fix(pgdp), pmdp);
682 }
683 pmdp = pmd_offset(__nocache_fix(pgdp), start);
684 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
685 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
686 if (ptep == NULL)
687 early_pgtable_allocfail("pte");
688 memset(__nocache_fix(ptep), 0, PTE_SIZE);
689 pmd_set(__nocache_fix(pmdp), ptep);
690 }
691 if (start > (0xffffffffUL - PMD_SIZE))
692 break;
693 start = (start + PMD_SIZE) & PMD_MASK;
694 }
695}
696
697static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
698 unsigned long end)
699{
700 pgd_t *pgdp;
701 pmd_t *pmdp;
702 pte_t *ptep;
703
704 while (start < end) {
705 pgdp = pgd_offset_k(start);
706 if (pgd_none(*pgdp)) {
707 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
708 if (pmdp == NULL)
709 early_pgtable_allocfail("pmd");
710 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
711 pgd_set(pgdp, pmdp);
712 }
713 pmdp = pmd_offset(pgdp, start);
714 if (srmmu_pmd_none(*pmdp)) {
715 ptep = __srmmu_get_nocache(PTE_SIZE,
716 PTE_SIZE);
717 if (ptep == NULL)
718 early_pgtable_allocfail("pte");
719 memset(ptep, 0, PTE_SIZE);
720 pmd_set(pmdp, ptep);
721 }
722 if (start > (0xffffffffUL - PMD_SIZE))
723 break;
724 start = (start + PMD_SIZE) & PMD_MASK;
725 }
726}
727
728/* These flush types are not available on all chips... */
729static inline unsigned long srmmu_probe(unsigned long vaddr)
730{
731 unsigned long retval;
732
733 if (sparc_cpu_model != sparc_leon) {
734
735 vaddr &= PAGE_MASK;
736 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
737 "=r" (retval) :
738 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
739 } else {
740 retval = leon_swprobe(vaddr, NULL);
741 }
742 return retval;
743}
744
745/*
746 * This is much cleaner than poking around physical address space
747 * looking at the prom's page table directly which is what most
748 * other OS's do. Yuck... this is much better.
749 */
750static void __init srmmu_inherit_prom_mappings(unsigned long start,
751 unsigned long end)
752{
753 unsigned long probed;
754 unsigned long addr;
755 pgd_t *pgdp;
756 pmd_t *pmdp;
757 pte_t *ptep;
758 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
759
760 while (start <= end) {
761 if (start == 0)
762 break; /* probably wrap around */
763 if (start == 0xfef00000)
764 start = KADB_DEBUGGER_BEGVM;
765 probed = srmmu_probe(start);
766 if (!probed) {
767 /* continue probing until we find an entry */
768 start += PAGE_SIZE;
769 continue;
770 }
771
772 /* A red snapper, see what it really is. */
773 what = 0;
774 addr = start - PAGE_SIZE;
775
776 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
777 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
778 what = 1;
779 }
780
781 if (!(start & ~(SRMMU_PGDIR_MASK))) {
782 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
783 what = 2;
784 }
785
786 pgdp = pgd_offset_k(start);
787 if (what == 2) {
788 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
789 start += SRMMU_PGDIR_SIZE;
790 continue;
791 }
792 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
793 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
794 SRMMU_PMD_TABLE_SIZE);
795 if (pmdp == NULL)
796 early_pgtable_allocfail("pmd");
797 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
798 pgd_set(__nocache_fix(pgdp), pmdp);
799 }
800 pmdp = pmd_offset(__nocache_fix(pgdp), start);
801 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
802 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
803 if (ptep == NULL)
804 early_pgtable_allocfail("pte");
805 memset(__nocache_fix(ptep), 0, PTE_SIZE);
806 pmd_set(__nocache_fix(pmdp), ptep);
807 }
808 if (what == 1) {
809 /* We bend the rule where all 16 PTPs in a pmd_t point
810 * inside the same PTE page, and we leak a perfectly
811 * good hardware PTE piece. Alternatives seem worse.
812 */
813 unsigned int x; /* Index of HW PMD in soft cluster */
814 unsigned long *val;
815 x = (start >> PMD_SHIFT) & 15;
816 val = &pmdp->pmdv[x];
817 *(unsigned long *)__nocache_fix(val) = probed;
818 start += SRMMU_REAL_PMD_SIZE;
819 continue;
820 }
821 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
822 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
823 start += PAGE_SIZE;
824 }
825}
826
827#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
828
829/* Create a third-level SRMMU 16MB page mapping. */
830static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
831{
832 pgd_t *pgdp = pgd_offset_k(vaddr);
833 unsigned long big_pte;
834
835 big_pte = KERNEL_PTE(phys_base >> 4);
836 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
837}
838
839/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
840static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
841{
842 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
843 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
844 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
845 /* Map "low" memory only */
846 const unsigned long min_vaddr = PAGE_OFFSET;
847 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
848
849 if (vstart < min_vaddr || vstart >= max_vaddr)
850 return vstart;
851
852 if (vend > max_vaddr || vend < min_vaddr)
853 vend = max_vaddr;
854
855 while (vstart < vend) {
856 do_large_mapping(vstart, pstart);
857 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
858 }
859 return vstart;
860}
861
862static void __init map_kernel(void)
863{
864 int i;
865
866 if (phys_base > 0) {
867 do_large_mapping(PAGE_OFFSET, phys_base);
868 }
869
870 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
871 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
872 }
873}
874
875void (*poke_srmmu)(void) = NULL;
876
877void __init srmmu_paging_init(void)
878{
879 int i;
880 phandle cpunode;
881 char node_str[128];
882 pgd_t *pgd;
883 pmd_t *pmd;
884 pte_t *pte;
885 unsigned long pages_avail;
886
887 init_mm.context = (unsigned long) NO_CONTEXT;
888 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
889
890 if (sparc_cpu_model == sun4d)
891 num_contexts = 65536; /* We know it is Viking */
892 else {
893 /* Find the number of contexts on the srmmu. */
894 cpunode = prom_getchild(prom_root_node);
895 num_contexts = 0;
896 while (cpunode != 0) {
897 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
898 if (!strcmp(node_str, "cpu")) {
899 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
900 break;
901 }
902 cpunode = prom_getsibling(cpunode);
903 }
904 }
905
906 if (!num_contexts) {
907 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
908 prom_halt();
909 }
910
911 pages_avail = 0;
912 last_valid_pfn = bootmem_init(&pages_avail);
913
914 srmmu_nocache_calcsize();
915 srmmu_nocache_init();
916 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
917 map_kernel();
918
919 /* ctx table has to be physically aligned to its size */
920 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
921 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
922
923 for (i = 0; i < num_contexts; i++)
924 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
925
926 flush_cache_all();
927 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
928#ifdef CONFIG_SMP
929 /* Stop from hanging here... */
930 local_ops->tlb_all();
931#else
932 flush_tlb_all();
933#endif
934 poke_srmmu();
935
936 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
937 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
938
939 srmmu_allocate_ptable_skeleton(
940 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
941 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
942
943 pgd = pgd_offset_k(PKMAP_BASE);
944 pmd = pmd_offset(pgd, PKMAP_BASE);
945 pte = pte_offset_kernel(pmd, PKMAP_BASE);
946 pkmap_page_table = pte;
947
948 flush_cache_all();
949 flush_tlb_all();
950
951 sparc_context_init(num_contexts);
952
953 kmap_init();
954
955 {
956 unsigned long zones_size[MAX_NR_ZONES];
957 unsigned long zholes_size[MAX_NR_ZONES];
958 unsigned long npages;
959 int znum;
960
961 for (znum = 0; znum < MAX_NR_ZONES; znum++)
962 zones_size[znum] = zholes_size[znum] = 0;
963
964 npages = max_low_pfn - pfn_base;
965
966 zones_size[ZONE_DMA] = npages;
967 zholes_size[ZONE_DMA] = npages - pages_avail;
968
969 npages = highend_pfn - max_low_pfn;
970 zones_size[ZONE_HIGHMEM] = npages;
971 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
972
973 free_area_init_node(0, zones_size, pfn_base, zholes_size);
974 }
975}
976
977void mmu_info(struct seq_file *m)
978{
979 seq_printf(m,
980 "MMU type\t: %s\n"
981 "contexts\t: %d\n"
982 "nocache total\t: %ld\n"
983 "nocache used\t: %d\n",
984 srmmu_name,
985 num_contexts,
986 srmmu_nocache_size,
987 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
988}
989
990int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
991{
992 mm->context = NO_CONTEXT;
993 return 0;
994}
995
996void destroy_context(struct mm_struct *mm)
997{
998 unsigned long flags;
999
1000 if (mm->context != NO_CONTEXT) {
1001 flush_cache_mm(mm);
1002 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1003 flush_tlb_mm(mm);
1004 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1005 free_context(mm->context);
1006 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1007 mm->context = NO_CONTEXT;
1008 }
1009}
1010
1011/* Init various srmmu chip types. */
1012static void __init srmmu_is_bad(void)
1013{
1014 prom_printf("Could not determine SRMMU chip type.\n");
1015 prom_halt();
1016}
1017
1018static void __init init_vac_layout(void)
1019{
1020 phandle nd;
1021 int cache_lines;
1022 char node_str[128];
1023#ifdef CONFIG_SMP
1024 int cpu = 0;
1025 unsigned long max_size = 0;
1026 unsigned long min_line_size = 0x10000000;
1027#endif
1028
1029 nd = prom_getchild(prom_root_node);
1030 while ((nd = prom_getsibling(nd)) != 0) {
1031 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1032 if (!strcmp(node_str, "cpu")) {
1033 vac_line_size = prom_getint(nd, "cache-line-size");
1034 if (vac_line_size == -1) {
1035 prom_printf("can't determine cache-line-size, halting.\n");
1036 prom_halt();
1037 }
1038 cache_lines = prom_getint(nd, "cache-nlines");
1039 if (cache_lines == -1) {
1040 prom_printf("can't determine cache-nlines, halting.\n");
1041 prom_halt();
1042 }
1043
1044 vac_cache_size = cache_lines * vac_line_size;
1045#ifdef CONFIG_SMP
1046 if (vac_cache_size > max_size)
1047 max_size = vac_cache_size;
1048 if (vac_line_size < min_line_size)
1049 min_line_size = vac_line_size;
1050 //FIXME: cpus not contiguous!!
1051 cpu++;
1052 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1053 break;
1054#else
1055 break;
1056#endif
1057 }
1058 }
1059 if (nd == 0) {
1060 prom_printf("No CPU nodes found, halting.\n");
1061 prom_halt();
1062 }
1063#ifdef CONFIG_SMP
1064 vac_cache_size = max_size;
1065 vac_line_size = min_line_size;
1066#endif
1067 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1068 (int)vac_cache_size, (int)vac_line_size);
1069}
1070
1071static void poke_hypersparc(void)
1072{
1073 volatile unsigned long clear;
1074 unsigned long mreg = srmmu_get_mmureg();
1075
1076 hyper_flush_unconditional_combined();
1077
1078 mreg &= ~(HYPERSPARC_CWENABLE);
1079 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1080 mreg |= (HYPERSPARC_CMODE);
1081
1082 srmmu_set_mmureg(mreg);
1083
1084#if 0 /* XXX I think this is bad news... -DaveM */
1085 hyper_clear_all_tags();
1086#endif
1087
1088 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1089 hyper_flush_whole_icache();
1090 clear = srmmu_get_faddr();
1091 clear = srmmu_get_fstatus();
1092}
1093
1094static const struct sparc32_cachetlb_ops hypersparc_ops = {
1095 .cache_all = hypersparc_flush_cache_all,
1096 .cache_mm = hypersparc_flush_cache_mm,
1097 .cache_page = hypersparc_flush_cache_page,
1098 .cache_range = hypersparc_flush_cache_range,
1099 .tlb_all = hypersparc_flush_tlb_all,
1100 .tlb_mm = hypersparc_flush_tlb_mm,
1101 .tlb_page = hypersparc_flush_tlb_page,
1102 .tlb_range = hypersparc_flush_tlb_range,
1103 .page_to_ram = hypersparc_flush_page_to_ram,
1104 .sig_insns = hypersparc_flush_sig_insns,
1105 .page_for_dma = hypersparc_flush_page_for_dma,
1106};
1107
1108static void __init init_hypersparc(void)
1109{
1110 srmmu_name = "ROSS HyperSparc";
1111 srmmu_modtype = HyperSparc;
1112
1113 init_vac_layout();
1114
1115 is_hypersparc = 1;
1116 sparc32_cachetlb_ops = &hypersparc_ops;
1117
1118 poke_srmmu = poke_hypersparc;
1119
1120 hypersparc_setup_blockops();
1121}
1122
1123static void poke_swift(void)
1124{
1125 unsigned long mreg;
1126
1127 /* Clear any crap from the cache or else... */
1128 swift_flush_cache_all();
1129
1130 /* Enable I & D caches */
1131 mreg = srmmu_get_mmureg();
1132 mreg |= (SWIFT_IE | SWIFT_DE);
1133 /*
1134 * The Swift branch folding logic is completely broken. At
1135 * trap time, if things are just right, if can mistakenly
1136 * think that a trap is coming from kernel mode when in fact
1137 * it is coming from user mode (it mis-executes the branch in
1138 * the trap code). So you see things like crashme completely
1139 * hosing your machine which is completely unacceptable. Turn
1140 * this shit off... nice job Fujitsu.
1141 */
1142 mreg &= ~(SWIFT_BF);
1143 srmmu_set_mmureg(mreg);
1144}
1145
1146static const struct sparc32_cachetlb_ops swift_ops = {
1147 .cache_all = swift_flush_cache_all,
1148 .cache_mm = swift_flush_cache_mm,
1149 .cache_page = swift_flush_cache_page,
1150 .cache_range = swift_flush_cache_range,
1151 .tlb_all = swift_flush_tlb_all,
1152 .tlb_mm = swift_flush_tlb_mm,
1153 .tlb_page = swift_flush_tlb_page,
1154 .tlb_range = swift_flush_tlb_range,
1155 .page_to_ram = swift_flush_page_to_ram,
1156 .sig_insns = swift_flush_sig_insns,
1157 .page_for_dma = swift_flush_page_for_dma,
1158};
1159
1160#define SWIFT_MASKID_ADDR 0x10003018
1161static void __init init_swift(void)
1162{
1163 unsigned long swift_rev;
1164
1165 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1166 "srl %0, 0x18, %0\n\t" :
1167 "=r" (swift_rev) :
1168 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1169 srmmu_name = "Fujitsu Swift";
1170 switch (swift_rev) {
1171 case 0x11:
1172 case 0x20:
1173 case 0x23:
1174 case 0x30:
1175 srmmu_modtype = Swift_lots_o_bugs;
1176 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1177 /*
1178 * Gee george, I wonder why Sun is so hush hush about
1179 * this hardware bug... really braindamage stuff going
1180 * on here. However I think we can find a way to avoid
1181 * all of the workaround overhead under Linux. Basically,
1182 * any page fault can cause kernel pages to become user
1183 * accessible (the mmu gets confused and clears some of
1184 * the ACC bits in kernel ptes). Aha, sounds pretty
1185 * horrible eh? But wait, after extensive testing it appears
1186 * that if you use pgd_t level large kernel pte's (like the
1187 * 4MB pages on the Pentium) the bug does not get tripped
1188 * at all. This avoids almost all of the major overhead.
1189 * Welcome to a world where your vendor tells you to,
1190 * "apply this kernel patch" instead of "sorry for the
1191 * broken hardware, send it back and we'll give you
1192 * properly functioning parts"
1193 */
1194 break;
1195 case 0x25:
1196 case 0x31:
1197 srmmu_modtype = Swift_bad_c;
1198 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1199 /*
1200 * You see Sun allude to this hardware bug but never
1201 * admit things directly, they'll say things like,
1202 * "the Swift chip cache problems" or similar.
1203 */
1204 break;
1205 default:
1206 srmmu_modtype = Swift_ok;
1207 break;
1208 }
1209
1210 sparc32_cachetlb_ops = &swift_ops;
1211 flush_page_for_dma_global = 0;
1212
1213 /*
1214 * Are you now convinced that the Swift is one of the
1215 * biggest VLSI abortions of all time? Bravo Fujitsu!
1216 * Fujitsu, the !#?!%$'d up processor people. I bet if
1217 * you examined the microcode of the Swift you'd find
1218 * XXX's all over the place.
1219 */
1220 poke_srmmu = poke_swift;
1221}
1222
1223static void turbosparc_flush_cache_all(void)
1224{
1225 flush_user_windows();
1226 turbosparc_idflash_clear();
1227}
1228
1229static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1230{
1231 FLUSH_BEGIN(mm)
1232 flush_user_windows();
1233 turbosparc_idflash_clear();
1234 FLUSH_END
1235}
1236
1237static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1238{
1239 FLUSH_BEGIN(vma->vm_mm)
1240 flush_user_windows();
1241 turbosparc_idflash_clear();
1242 FLUSH_END
1243}
1244
1245static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1246{
1247 FLUSH_BEGIN(vma->vm_mm)
1248 flush_user_windows();
1249 if (vma->vm_flags & VM_EXEC)
1250 turbosparc_flush_icache();
1251 turbosparc_flush_dcache();
1252 FLUSH_END
1253}
1254
1255/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1256static void turbosparc_flush_page_to_ram(unsigned long page)
1257{
1258#ifdef TURBOSPARC_WRITEBACK
1259 volatile unsigned long clear;
1260
1261 if (srmmu_probe(page))
1262 turbosparc_flush_page_cache(page);
1263 clear = srmmu_get_fstatus();
1264#endif
1265}
1266
1267static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1268{
1269}
1270
1271static void turbosparc_flush_page_for_dma(unsigned long page)
1272{
1273 turbosparc_flush_dcache();
1274}
1275
1276static void turbosparc_flush_tlb_all(void)
1277{
1278 srmmu_flush_whole_tlb();
1279}
1280
1281static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1282{
1283 FLUSH_BEGIN(mm)
1284 srmmu_flush_whole_tlb();
1285 FLUSH_END
1286}
1287
1288static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1289{
1290 FLUSH_BEGIN(vma->vm_mm)
1291 srmmu_flush_whole_tlb();
1292 FLUSH_END
1293}
1294
1295static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1296{
1297 FLUSH_BEGIN(vma->vm_mm)
1298 srmmu_flush_whole_tlb();
1299 FLUSH_END
1300}
1301
1302
1303static void poke_turbosparc(void)
1304{
1305 unsigned long mreg = srmmu_get_mmureg();
1306 unsigned long ccreg;
1307
1308 /* Clear any crap from the cache or else... */
1309 turbosparc_flush_cache_all();
1310 /* Temporarily disable I & D caches */
1311 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1312 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1313 srmmu_set_mmureg(mreg);
1314
1315 ccreg = turbosparc_get_ccreg();
1316
1317#ifdef TURBOSPARC_WRITEBACK
1318 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1319 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1320 /* Write-back D-cache, emulate VLSI
1321 * abortion number three, not number one */
1322#else
1323 /* For now let's play safe, optimize later */
1324 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1325 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1326 ccreg &= ~(TURBOSPARC_uS2);
1327 /* Emulate VLSI abortion number three, not number one */
1328#endif
1329
1330 switch (ccreg & 7) {
1331 case 0: /* No SE cache */
1332 case 7: /* Test mode */
1333 break;
1334 default:
1335 ccreg |= (TURBOSPARC_SCENABLE);
1336 }
1337 turbosparc_set_ccreg(ccreg);
1338
1339 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1340 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1341 srmmu_set_mmureg(mreg);
1342}
1343
1344static const struct sparc32_cachetlb_ops turbosparc_ops = {
1345 .cache_all = turbosparc_flush_cache_all,
1346 .cache_mm = turbosparc_flush_cache_mm,
1347 .cache_page = turbosparc_flush_cache_page,
1348 .cache_range = turbosparc_flush_cache_range,
1349 .tlb_all = turbosparc_flush_tlb_all,
1350 .tlb_mm = turbosparc_flush_tlb_mm,
1351 .tlb_page = turbosparc_flush_tlb_page,
1352 .tlb_range = turbosparc_flush_tlb_range,
1353 .page_to_ram = turbosparc_flush_page_to_ram,
1354 .sig_insns = turbosparc_flush_sig_insns,
1355 .page_for_dma = turbosparc_flush_page_for_dma,
1356};
1357
1358static void __init init_turbosparc(void)
1359{
1360 srmmu_name = "Fujitsu TurboSparc";
1361 srmmu_modtype = TurboSparc;
1362 sparc32_cachetlb_ops = &turbosparc_ops;
1363 poke_srmmu = poke_turbosparc;
1364}
1365
1366static void poke_tsunami(void)
1367{
1368 unsigned long mreg = srmmu_get_mmureg();
1369
1370 tsunami_flush_icache();
1371 tsunami_flush_dcache();
1372 mreg &= ~TSUNAMI_ITD;
1373 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1374 srmmu_set_mmureg(mreg);
1375}
1376
1377static const struct sparc32_cachetlb_ops tsunami_ops = {
1378 .cache_all = tsunami_flush_cache_all,
1379 .cache_mm = tsunami_flush_cache_mm,
1380 .cache_page = tsunami_flush_cache_page,
1381 .cache_range = tsunami_flush_cache_range,
1382 .tlb_all = tsunami_flush_tlb_all,
1383 .tlb_mm = tsunami_flush_tlb_mm,
1384 .tlb_page = tsunami_flush_tlb_page,
1385 .tlb_range = tsunami_flush_tlb_range,
1386 .page_to_ram = tsunami_flush_page_to_ram,
1387 .sig_insns = tsunami_flush_sig_insns,
1388 .page_for_dma = tsunami_flush_page_for_dma,
1389};
1390
1391static void __init init_tsunami(void)
1392{
1393 /*
1394 * Tsunami's pretty sane, Sun and TI actually got it
1395 * somewhat right this time. Fujitsu should have
1396 * taken some lessons from them.
1397 */
1398
1399 srmmu_name = "TI Tsunami";
1400 srmmu_modtype = Tsunami;
1401 sparc32_cachetlb_ops = &tsunami_ops;
1402 poke_srmmu = poke_tsunami;
1403
1404 tsunami_setup_blockops();
1405}
1406
1407static void poke_viking(void)
1408{
1409 unsigned long mreg = srmmu_get_mmureg();
1410 static int smp_catch;
1411
1412 if (viking_mxcc_present) {
1413 unsigned long mxcc_control = mxcc_get_creg();
1414
1415 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1416 mxcc_control &= ~(MXCC_CTL_RRC);
1417 mxcc_set_creg(mxcc_control);
1418
1419 /*
1420 * We don't need memory parity checks.
1421 * XXX This is a mess, have to dig out later. ecd.
1422 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1423 */
1424
1425 /* We do cache ptables on MXCC. */
1426 mreg |= VIKING_TCENABLE;
1427 } else {
1428 unsigned long bpreg;
1429
1430 mreg &= ~(VIKING_TCENABLE);
1431 if (smp_catch++) {
1432 /* Must disable mixed-cmd mode here for other cpu's. */
1433 bpreg = viking_get_bpreg();
1434 bpreg &= ~(VIKING_ACTION_MIX);
1435 viking_set_bpreg(bpreg);
1436
1437 /* Just in case PROM does something funny. */
1438 msi_set_sync();
1439 }
1440 }
1441
1442 mreg |= VIKING_SPENABLE;
1443 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1444 mreg |= VIKING_SBENABLE;
1445 mreg &= ~(VIKING_ACENABLE);
1446 srmmu_set_mmureg(mreg);
1447}
1448
1449static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1450 .cache_all = viking_flush_cache_all,
1451 .cache_mm = viking_flush_cache_mm,
1452 .cache_page = viking_flush_cache_page,
1453 .cache_range = viking_flush_cache_range,
1454 .tlb_all = viking_flush_tlb_all,
1455 .tlb_mm = viking_flush_tlb_mm,
1456 .tlb_page = viking_flush_tlb_page,
1457 .tlb_range = viking_flush_tlb_range,
1458 .page_to_ram = viking_flush_page_to_ram,
1459 .sig_insns = viking_flush_sig_insns,
1460 .page_for_dma = viking_flush_page_for_dma,
1461};
1462
1463#ifdef CONFIG_SMP
1464/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1465 * perform the local TLB flush and all the other cpus will see it.
1466 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1467 * that requires that we add some synchronization to these flushes.
1468 *
1469 * The bug is that the fifo which keeps track of all the pending TLB
1470 * broadcasts in the system is an entry or two too small, so if we
1471 * have too many going at once we'll overflow that fifo and lose a TLB
1472 * flush resulting in corruption.
1473 *
1474 * Our workaround is to take a global spinlock around the TLB flushes,
1475 * which guarentees we won't ever have too many pending. It's a big
1476 * hammer, but a semaphore like system to make sure we only have N TLB
1477 * flushes going at once will require SMP locking anyways so there's
1478 * no real value in trying any harder than this.
1479 */
1480static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1481 .cache_all = viking_flush_cache_all,
1482 .cache_mm = viking_flush_cache_mm,
1483 .cache_page = viking_flush_cache_page,
1484 .cache_range = viking_flush_cache_range,
1485 .tlb_all = sun4dsmp_flush_tlb_all,
1486 .tlb_mm = sun4dsmp_flush_tlb_mm,
1487 .tlb_page = sun4dsmp_flush_tlb_page,
1488 .tlb_range = sun4dsmp_flush_tlb_range,
1489 .page_to_ram = viking_flush_page_to_ram,
1490 .sig_insns = viking_flush_sig_insns,
1491 .page_for_dma = viking_flush_page_for_dma,
1492};
1493#endif
1494
1495static void __init init_viking(void)
1496{
1497 unsigned long mreg = srmmu_get_mmureg();
1498
1499 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1500 if (mreg & VIKING_MMODE) {
1501 srmmu_name = "TI Viking";
1502 viking_mxcc_present = 0;
1503 msi_set_sync();
1504
1505 /*
1506 * We need this to make sure old viking takes no hits
1507 * on it's cache for dma snoops to workaround the
1508 * "load from non-cacheable memory" interrupt bug.
1509 * This is only necessary because of the new way in
1510 * which we use the IOMMU.
1511 */
1512 viking_ops.page_for_dma = viking_flush_page;
1513#ifdef CONFIG_SMP
1514 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1515#endif
1516 flush_page_for_dma_global = 0;
1517 } else {
1518 srmmu_name = "TI Viking/MXCC";
1519 viking_mxcc_present = 1;
1520 srmmu_cache_pagetables = 1;
1521 }
1522
1523 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1524 &viking_ops;
1525#ifdef CONFIG_SMP
1526 if (sparc_cpu_model == sun4d)
1527 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1528 &viking_sun4d_smp_ops;
1529#endif
1530
1531 poke_srmmu = poke_viking;
1532}
1533
1534/* Probe for the srmmu chip version. */
1535static void __init get_srmmu_type(void)
1536{
1537 unsigned long mreg, psr;
1538 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1539
1540 srmmu_modtype = SRMMU_INVAL_MOD;
1541 hwbug_bitmask = 0;
1542
1543 mreg = srmmu_get_mmureg(); psr = get_psr();
1544 mod_typ = (mreg & 0xf0000000) >> 28;
1545 mod_rev = (mreg & 0x0f000000) >> 24;
1546 psr_typ = (psr >> 28) & 0xf;
1547 psr_vers = (psr >> 24) & 0xf;
1548
1549 /* First, check for sparc-leon. */
1550 if (sparc_cpu_model == sparc_leon) {
1551 init_leon();
1552 return;
1553 }
1554
1555 /* Second, check for HyperSparc or Cypress. */
1556 if (mod_typ == 1) {
1557 switch (mod_rev) {
1558 case 7:
1559 /* UP or MP Hypersparc */
1560 init_hypersparc();
1561 break;
1562 case 0:
1563 case 2:
1564 case 10:
1565 case 11:
1566 case 12:
1567 case 13:
1568 case 14:
1569 case 15:
1570 default:
1571 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1572 prom_halt();
1573 break;
1574 }
1575 return;
1576 }
1577
1578 /* Now Fujitsu TurboSparc. It might happen that it is
1579 * in Swift emulation mode, so we will check later...
1580 */
1581 if (psr_typ == 0 && psr_vers == 5) {
1582 init_turbosparc();
1583 return;
1584 }
1585
1586 /* Next check for Fujitsu Swift. */
1587 if (psr_typ == 0 && psr_vers == 4) {
1588 phandle cpunode;
1589 char node_str[128];
1590
1591 /* Look if it is not a TurboSparc emulating Swift... */
1592 cpunode = prom_getchild(prom_root_node);
1593 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1594 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1595 if (!strcmp(node_str, "cpu")) {
1596 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1597 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1598 init_turbosparc();
1599 return;
1600 }
1601 break;
1602 }
1603 }
1604
1605 init_swift();
1606 return;
1607 }
1608
1609 /* Now the Viking family of srmmu. */
1610 if (psr_typ == 4 &&
1611 ((psr_vers == 0) ||
1612 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1613 init_viking();
1614 return;
1615 }
1616
1617 /* Finally the Tsunami. */
1618 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1619 init_tsunami();
1620 return;
1621 }
1622
1623 /* Oh well */
1624 srmmu_is_bad();
1625}
1626
1627#ifdef CONFIG_SMP
1628/* Local cross-calls. */
1629static void smp_flush_page_for_dma(unsigned long page)
1630{
1631 xc1((smpfunc_t) local_ops->page_for_dma, page);
1632 local_ops->page_for_dma(page);
1633}
1634
1635static void smp_flush_cache_all(void)
1636{
1637 xc0((smpfunc_t) local_ops->cache_all);
1638 local_ops->cache_all();
1639}
1640
1641static void smp_flush_tlb_all(void)
1642{
1643 xc0((smpfunc_t) local_ops->tlb_all);
1644 local_ops->tlb_all();
1645}
1646
1647static void smp_flush_cache_mm(struct mm_struct *mm)
1648{
1649 if (mm->context != NO_CONTEXT) {
1650 cpumask_t cpu_mask;
1651 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1652 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1653 if (!cpumask_empty(&cpu_mask))
1654 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1655 local_ops->cache_mm(mm);
1656 }
1657}
1658
1659static void smp_flush_tlb_mm(struct mm_struct *mm)
1660{
1661 if (mm->context != NO_CONTEXT) {
1662 cpumask_t cpu_mask;
1663 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1664 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1665 if (!cpumask_empty(&cpu_mask)) {
1666 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1667 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1668 cpumask_copy(mm_cpumask(mm),
1669 cpumask_of(smp_processor_id()));
1670 }
1671 local_ops->tlb_mm(mm);
1672 }
1673}
1674
1675static void smp_flush_cache_range(struct vm_area_struct *vma,
1676 unsigned long start,
1677 unsigned long end)
1678{
1679 struct mm_struct *mm = vma->vm_mm;
1680
1681 if (mm->context != NO_CONTEXT) {
1682 cpumask_t cpu_mask;
1683 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1684 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1685 if (!cpumask_empty(&cpu_mask))
1686 xc3((smpfunc_t) local_ops->cache_range,
1687 (unsigned long) vma, start, end);
1688 local_ops->cache_range(vma, start, end);
1689 }
1690}
1691
1692static void smp_flush_tlb_range(struct vm_area_struct *vma,
1693 unsigned long start,
1694 unsigned long end)
1695{
1696 struct mm_struct *mm = vma->vm_mm;
1697
1698 if (mm->context != NO_CONTEXT) {
1699 cpumask_t cpu_mask;
1700 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1701 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1702 if (!cpumask_empty(&cpu_mask))
1703 xc3((smpfunc_t) local_ops->tlb_range,
1704 (unsigned long) vma, start, end);
1705 local_ops->tlb_range(vma, start, end);
1706 }
1707}
1708
1709static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1710{
1711 struct mm_struct *mm = vma->vm_mm;
1712
1713 if (mm->context != NO_CONTEXT) {
1714 cpumask_t cpu_mask;
1715 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1716 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1717 if (!cpumask_empty(&cpu_mask))
1718 xc2((smpfunc_t) local_ops->cache_page,
1719 (unsigned long) vma, page);
1720 local_ops->cache_page(vma, page);
1721 }
1722}
1723
1724static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1725{
1726 struct mm_struct *mm = vma->vm_mm;
1727
1728 if (mm->context != NO_CONTEXT) {
1729 cpumask_t cpu_mask;
1730 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1731 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1732 if (!cpumask_empty(&cpu_mask))
1733 xc2((smpfunc_t) local_ops->tlb_page,
1734 (unsigned long) vma, page);
1735 local_ops->tlb_page(vma, page);
1736 }
1737}
1738
1739static void smp_flush_page_to_ram(unsigned long page)
1740{
1741 /* Current theory is that those who call this are the one's
1742 * who have just dirtied their cache with the pages contents
1743 * in kernel space, therefore we only run this on local cpu.
1744 *
1745 * XXX This experiment failed, research further... -DaveM
1746 */
1747#if 1
1748 xc1((smpfunc_t) local_ops->page_to_ram, page);
1749#endif
1750 local_ops->page_to_ram(page);
1751}
1752
1753static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1754{
1755 cpumask_t cpu_mask;
1756 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758 if (!cpumask_empty(&cpu_mask))
1759 xc2((smpfunc_t) local_ops->sig_insns,
1760 (unsigned long) mm, insn_addr);
1761 local_ops->sig_insns(mm, insn_addr);
1762}
1763
1764static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1765 .cache_all = smp_flush_cache_all,
1766 .cache_mm = smp_flush_cache_mm,
1767 .cache_page = smp_flush_cache_page,
1768 .cache_range = smp_flush_cache_range,
1769 .tlb_all = smp_flush_tlb_all,
1770 .tlb_mm = smp_flush_tlb_mm,
1771 .tlb_page = smp_flush_tlb_page,
1772 .tlb_range = smp_flush_tlb_range,
1773 .page_to_ram = smp_flush_page_to_ram,
1774 .sig_insns = smp_flush_sig_insns,
1775 .page_for_dma = smp_flush_page_for_dma,
1776};
1777#endif
1778
1779/* Load up routines and constants for sun4m and sun4d mmu */
1780void __init load_mmu(void)
1781{
1782 /* Functions */
1783 get_srmmu_type();
1784
1785#ifdef CONFIG_SMP
1786 /* El switcheroo... */
1787 local_ops = sparc32_cachetlb_ops;
1788
1789 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1790 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1791 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1792 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1793 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1794 }
1795
1796 if (poke_srmmu == poke_viking) {
1797 /* Avoid unnecessary cross calls. */
1798 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1799 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1800 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1801 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1802
1803 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1804 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1805 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1806 }
1807
1808 /* It really is const after this point. */
1809 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1810 &smp_cachetlb_ops;
1811#endif
1812
1813 if (sparc_cpu_model == sun4d)
1814 ld_mmu_iounit();
1815 else
1816 ld_mmu_iommu();
1817#ifdef CONFIG_SMP
1818 if (sparc_cpu_model == sun4d)
1819 sun4d_init_smp();
1820 else if (sparc_cpu_model == sparc_leon)
1821 leon_init_smp();
1822 else
1823 sun4m_init_smp();
1824#endif
1825}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * srmmu.c: SRMMU specific routines for memory management.
4 *
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10 */
11
12#include <linux/seq_file.h>
13#include <linux/spinlock.h>
14#include <linux/memblock.h>
15#include <linux/pagemap.h>
16#include <linux/vmalloc.h>
17#include <linux/kdebug.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/init.h>
21#include <linux/log2.h>
22#include <linux/gfp.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25
26#include <asm/mmu_context.h>
27#include <asm/cacheflush.h>
28#include <asm/tlbflush.h>
29#include <asm/io-unit.h>
30#include <asm/pgalloc.h>
31#include <asm/pgtable.h>
32#include <asm/bitext.h>
33#include <asm/vaddrs.h>
34#include <asm/cache.h>
35#include <asm/traps.h>
36#include <asm/oplib.h>
37#include <asm/mbus.h>
38#include <asm/page.h>
39#include <asm/asi.h>
40#include <asm/smp.h>
41#include <asm/io.h>
42
43/* Now the cpu specific definitions. */
44#include <asm/turbosparc.h>
45#include <asm/tsunami.h>
46#include <asm/viking.h>
47#include <asm/swift.h>
48#include <asm/leon.h>
49#include <asm/mxcc.h>
50#include <asm/ross.h>
51
52#include "mm_32.h"
53
54enum mbus_module srmmu_modtype;
55static unsigned int hwbug_bitmask;
56int vac_cache_size;
57EXPORT_SYMBOL(vac_cache_size);
58int vac_line_size;
59
60extern struct resource sparc_iomap;
61
62extern unsigned long last_valid_pfn;
63
64static pgd_t *srmmu_swapper_pg_dir;
65
66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67EXPORT_SYMBOL(sparc32_cachetlb_ops);
68
69#ifdef CONFIG_SMP
70const struct sparc32_cachetlb_ops *local_ops;
71
72#define FLUSH_BEGIN(mm)
73#define FLUSH_END
74#else
75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76#define FLUSH_END }
77#endif
78
79int flush_page_for_dma_global = 1;
80
81char *srmmu_name;
82
83ctxd_t *srmmu_ctx_table_phys;
84static ctxd_t *srmmu_context_table;
85
86int viking_mxcc_present;
87static DEFINE_SPINLOCK(srmmu_context_spinlock);
88
89static int is_hypersparc;
90
91static int srmmu_cache_pagetables;
92
93/* these will be initialized in srmmu_nocache_calcsize() */
94static unsigned long srmmu_nocache_size;
95static unsigned long srmmu_nocache_end;
96
97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99
100/* The context table is a nocache user with the biggest alignment needs. */
101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102
103void *srmmu_nocache_pool;
104static struct bit_map srmmu_nocache_map;
105
106static inline int srmmu_pmd_none(pmd_t pmd)
107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
108
109/* XXX should we hyper_flush_whole_icache here - Anton */
110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111{
112 pte_t pte;
113
114 pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 set_pte((pte_t *)ctxp, pte);
116}
117
118/*
119 * Locations of MSI Registers.
120 */
121#define MSI_MBUS_ARBEN 0xe0001008 /* MBus Arbiter Enable register */
122
123/*
124 * Useful bits in the MSI Registers.
125 */
126#define MSI_ASYNC_MODE 0x80000000 /* Operate the MSI asynchronously */
127
128static void msi_set_sync(void)
129{
130 __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 "andn %%g3, %2, %%g3\n\t"
132 "sta %%g3, [%0] %1\n\t" : :
133 "r" (MSI_MBUS_ARBEN),
134 "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135}
136
137void pmd_set(pmd_t *pmdp, pte_t *ptep)
138{
139 unsigned long ptp; /* Physical address, shifted right by 4 */
140 int i;
141
142 ptp = __nocache_pa(ptep) >> 4;
143 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
146 }
147}
148
149void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
150{
151 unsigned long ptp; /* Physical address, shifted right by 4 */
152 int i;
153
154 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
155 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
158 }
159}
160
161/* Find an entry in the third-level page table.. */
162pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
163{
164 void *pte;
165
166 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167 return (pte_t *) pte +
168 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
169}
170
171/*
172 * size: bytes to allocate in the nocache area.
173 * align: bytes, number to align at.
174 * Returns the virtual address of the allocated area.
175 */
176static void *__srmmu_get_nocache(int size, int align)
177{
178 int offset;
179 unsigned long addr;
180
181 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183 size);
184 size = SRMMU_NOCACHE_BITMAP_SHIFT;
185 }
186 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188 size);
189 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
190 }
191 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
192
193 offset = bit_map_string_get(&srmmu_nocache_map,
194 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196 if (offset == -1) {
197 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198 size, (int) srmmu_nocache_size,
199 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200 return NULL;
201 }
202
203 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204 return (void *)addr;
205}
206
207void *srmmu_get_nocache(int size, int align)
208{
209 void *tmp;
210
211 tmp = __srmmu_get_nocache(size, align);
212
213 if (tmp)
214 memset(tmp, 0, size);
215
216 return tmp;
217}
218
219void srmmu_free_nocache(void *addr, int size)
220{
221 unsigned long vaddr;
222 int offset;
223
224 vaddr = (unsigned long)addr;
225 if (vaddr < SRMMU_NOCACHE_VADDR) {
226 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228 BUG();
229 }
230 if (vaddr + size > srmmu_nocache_end) {
231 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 vaddr, srmmu_nocache_end);
233 BUG();
234 }
235 if (!is_power_of_2(size)) {
236 printk("Size 0x%x is not a power of 2\n", size);
237 BUG();
238 }
239 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240 printk("Size 0x%x is too small\n", size);
241 BUG();
242 }
243 if (vaddr & (size - 1)) {
244 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245 BUG();
246 }
247
248 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
250
251 bit_map_clear(&srmmu_nocache_map, offset, size);
252}
253
254static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255 unsigned long end);
256
257/* Return how much physical memory we have. */
258static unsigned long __init probe_memory(void)
259{
260 unsigned long total = 0;
261 int i;
262
263 for (i = 0; sp_banks[i].num_bytes; i++)
264 total += sp_banks[i].num_bytes;
265
266 return total;
267}
268
269/*
270 * Reserve nocache dynamically proportionally to the amount of
271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
272 */
273static void __init srmmu_nocache_calcsize(void)
274{
275 unsigned long sysmemavail = probe_memory() / 1024;
276 int srmmu_nocache_npages;
277
278 srmmu_nocache_npages =
279 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
280
281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
285
286 /* anything above 1280 blows up */
287 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
289
290 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
292}
293
294static void __init srmmu_nocache_init(void)
295{
296 void *srmmu_nocache_bitmap;
297 unsigned int bitmap_bits;
298 pgd_t *pgd;
299 pmd_t *pmd;
300 pte_t *pte;
301 unsigned long paddr, vaddr;
302 unsigned long pteval;
303
304 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
305
306 srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
307 SRMMU_NOCACHE_ALIGN_MAX);
308 if (!srmmu_nocache_pool)
309 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
310 __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
311 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
312
313 srmmu_nocache_bitmap =
314 memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
315 SMP_CACHE_BYTES);
316 if (!srmmu_nocache_bitmap)
317 panic("%s: Failed to allocate %zu bytes\n", __func__,
318 BITS_TO_LONGS(bitmap_bits) * sizeof(long));
319 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
320
321 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
323 init_mm.pgd = srmmu_swapper_pg_dir;
324
325 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
326
327 paddr = __pa((unsigned long)srmmu_nocache_pool);
328 vaddr = SRMMU_NOCACHE_VADDR;
329
330 while (vaddr < srmmu_nocache_end) {
331 pgd = pgd_offset_k(vaddr);
332 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
333 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
334
335 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
336
337 if (srmmu_cache_pagetables)
338 pteval |= SRMMU_CACHE;
339
340 set_pte(__nocache_fix(pte), __pte(pteval));
341
342 vaddr += PAGE_SIZE;
343 paddr += PAGE_SIZE;
344 }
345
346 flush_cache_all();
347 flush_tlb_all();
348}
349
350pgd_t *get_pgd_fast(void)
351{
352 pgd_t *pgd = NULL;
353
354 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
355 if (pgd) {
356 pgd_t *init = pgd_offset_k(0);
357 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
358 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
359 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
360 }
361
362 return pgd;
363}
364
365/*
366 * Hardware needs alignment to 256 only, but we align to whole page size
367 * to reduce fragmentation problems due to the buddy principle.
368 * XXX Provide actual fragmentation statistics in /proc.
369 *
370 * Alignments up to the page size are the same for physical and virtual
371 * addresses of the nocache area.
372 */
373pgtable_t pte_alloc_one(struct mm_struct *mm)
374{
375 unsigned long pte;
376 struct page *page;
377
378 if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
379 return NULL;
380 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
381 if (!pgtable_pte_page_ctor(page)) {
382 __free_page(page);
383 return NULL;
384 }
385 return page;
386}
387
388void pte_free(struct mm_struct *mm, pgtable_t pte)
389{
390 unsigned long p;
391
392 pgtable_pte_page_dtor(pte);
393 p = (unsigned long)page_address(pte); /* Cached address (for test) */
394 if (p == 0)
395 BUG();
396 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
397
398 /* free non cached virtual address*/
399 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
400}
401
402/* context handling - a dynamically sized pool is used */
403#define NO_CONTEXT -1
404
405struct ctx_list {
406 struct ctx_list *next;
407 struct ctx_list *prev;
408 unsigned int ctx_number;
409 struct mm_struct *ctx_mm;
410};
411
412static struct ctx_list *ctx_list_pool;
413static struct ctx_list ctx_free;
414static struct ctx_list ctx_used;
415
416/* At boot time we determine the number of contexts */
417static int num_contexts;
418
419static inline void remove_from_ctx_list(struct ctx_list *entry)
420{
421 entry->next->prev = entry->prev;
422 entry->prev->next = entry->next;
423}
424
425static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
426{
427 entry->next = head;
428 (entry->prev = head->prev)->next = entry;
429 head->prev = entry;
430}
431#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
432#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
433
434
435static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
436{
437 struct ctx_list *ctxp;
438
439 ctxp = ctx_free.next;
440 if (ctxp != &ctx_free) {
441 remove_from_ctx_list(ctxp);
442 add_to_used_ctxlist(ctxp);
443 mm->context = ctxp->ctx_number;
444 ctxp->ctx_mm = mm;
445 return;
446 }
447 ctxp = ctx_used.next;
448 if (ctxp->ctx_mm == old_mm)
449 ctxp = ctxp->next;
450 if (ctxp == &ctx_used)
451 panic("out of mmu contexts");
452 flush_cache_mm(ctxp->ctx_mm);
453 flush_tlb_mm(ctxp->ctx_mm);
454 remove_from_ctx_list(ctxp);
455 add_to_used_ctxlist(ctxp);
456 ctxp->ctx_mm->context = NO_CONTEXT;
457 ctxp->ctx_mm = mm;
458 mm->context = ctxp->ctx_number;
459}
460
461static inline void free_context(int context)
462{
463 struct ctx_list *ctx_old;
464
465 ctx_old = ctx_list_pool + context;
466 remove_from_ctx_list(ctx_old);
467 add_to_free_ctxlist(ctx_old);
468}
469
470static void __init sparc_context_init(int numctx)
471{
472 int ctx;
473 unsigned long size;
474
475 size = numctx * sizeof(struct ctx_list);
476 ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
477 if (!ctx_list_pool)
478 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
479
480 for (ctx = 0; ctx < numctx; ctx++) {
481 struct ctx_list *clist;
482
483 clist = (ctx_list_pool + ctx);
484 clist->ctx_number = ctx;
485 clist->ctx_mm = NULL;
486 }
487 ctx_free.next = ctx_free.prev = &ctx_free;
488 ctx_used.next = ctx_used.prev = &ctx_used;
489 for (ctx = 0; ctx < numctx; ctx++)
490 add_to_free_ctxlist(ctx_list_pool + ctx);
491}
492
493void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
494 struct task_struct *tsk)
495{
496 unsigned long flags;
497
498 if (mm->context == NO_CONTEXT) {
499 spin_lock_irqsave(&srmmu_context_spinlock, flags);
500 alloc_context(old_mm, mm);
501 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
502 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
503 }
504
505 if (sparc_cpu_model == sparc_leon)
506 leon_switch_mm();
507
508 if (is_hypersparc)
509 hyper_flush_whole_icache();
510
511 srmmu_set_context(mm->context);
512}
513
514/* Low level IO area allocation on the SRMMU. */
515static inline void srmmu_mapioaddr(unsigned long physaddr,
516 unsigned long virt_addr, int bus_type)
517{
518 pgd_t *pgdp;
519 pmd_t *pmdp;
520 pte_t *ptep;
521 unsigned long tmp;
522
523 physaddr &= PAGE_MASK;
524 pgdp = pgd_offset_k(virt_addr);
525 pmdp = pmd_offset(pgdp, virt_addr);
526 ptep = pte_offset_kernel(pmdp, virt_addr);
527 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
528
529 /* I need to test whether this is consistent over all
530 * sun4m's. The bus_type represents the upper 4 bits of
531 * 36-bit physical address on the I/O space lines...
532 */
533 tmp |= (bus_type << 28);
534 tmp |= SRMMU_PRIV;
535 __flush_page_to_ram(virt_addr);
536 set_pte(ptep, __pte(tmp));
537}
538
539void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
540 unsigned long xva, unsigned int len)
541{
542 while (len != 0) {
543 len -= PAGE_SIZE;
544 srmmu_mapioaddr(xpa, xva, bus);
545 xva += PAGE_SIZE;
546 xpa += PAGE_SIZE;
547 }
548 flush_tlb_all();
549}
550
551static inline void srmmu_unmapioaddr(unsigned long virt_addr)
552{
553 pgd_t *pgdp;
554 pmd_t *pmdp;
555 pte_t *ptep;
556
557 pgdp = pgd_offset_k(virt_addr);
558 pmdp = pmd_offset(pgdp, virt_addr);
559 ptep = pte_offset_kernel(pmdp, virt_addr);
560
561 /* No need to flush uncacheable page. */
562 __pte_clear(ptep);
563}
564
565void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
566{
567 while (len != 0) {
568 len -= PAGE_SIZE;
569 srmmu_unmapioaddr(virt_addr);
570 virt_addr += PAGE_SIZE;
571 }
572 flush_tlb_all();
573}
574
575/* tsunami.S */
576extern void tsunami_flush_cache_all(void);
577extern void tsunami_flush_cache_mm(struct mm_struct *mm);
578extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
579extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
580extern void tsunami_flush_page_to_ram(unsigned long page);
581extern void tsunami_flush_page_for_dma(unsigned long page);
582extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
583extern void tsunami_flush_tlb_all(void);
584extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
585extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
586extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
587extern void tsunami_setup_blockops(void);
588
589/* swift.S */
590extern void swift_flush_cache_all(void);
591extern void swift_flush_cache_mm(struct mm_struct *mm);
592extern void swift_flush_cache_range(struct vm_area_struct *vma,
593 unsigned long start, unsigned long end);
594extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
595extern void swift_flush_page_to_ram(unsigned long page);
596extern void swift_flush_page_for_dma(unsigned long page);
597extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
598extern void swift_flush_tlb_all(void);
599extern void swift_flush_tlb_mm(struct mm_struct *mm);
600extern void swift_flush_tlb_range(struct vm_area_struct *vma,
601 unsigned long start, unsigned long end);
602extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
603
604#if 0 /* P3: deadwood to debug precise flushes on Swift. */
605void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
606{
607 int cctx, ctx1;
608
609 page &= PAGE_MASK;
610 if ((ctx1 = vma->vm_mm->context) != -1) {
611 cctx = srmmu_get_context();
612/* Is context # ever different from current context? P3 */
613 if (cctx != ctx1) {
614 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
615 srmmu_set_context(ctx1);
616 swift_flush_page(page);
617 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
618 "r" (page), "i" (ASI_M_FLUSH_PROBE));
619 srmmu_set_context(cctx);
620 } else {
621 /* Rm. prot. bits from virt. c. */
622 /* swift_flush_cache_all(); */
623 /* swift_flush_cache_page(vma, page); */
624 swift_flush_page(page);
625
626 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
627 "r" (page), "i" (ASI_M_FLUSH_PROBE));
628 /* same as above: srmmu_flush_tlb_page() */
629 }
630 }
631}
632#endif
633
634/*
635 * The following are all MBUS based SRMMU modules, and therefore could
636 * be found in a multiprocessor configuration. On the whole, these
637 * chips seems to be much more touchy about DVMA and page tables
638 * with respect to cache coherency.
639 */
640
641/* viking.S */
642extern void viking_flush_cache_all(void);
643extern void viking_flush_cache_mm(struct mm_struct *mm);
644extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
645 unsigned long end);
646extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
647extern void viking_flush_page_to_ram(unsigned long page);
648extern void viking_flush_page_for_dma(unsigned long page);
649extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
650extern void viking_flush_page(unsigned long page);
651extern void viking_mxcc_flush_page(unsigned long page);
652extern void viking_flush_tlb_all(void);
653extern void viking_flush_tlb_mm(struct mm_struct *mm);
654extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
655 unsigned long end);
656extern void viking_flush_tlb_page(struct vm_area_struct *vma,
657 unsigned long page);
658extern void sun4dsmp_flush_tlb_all(void);
659extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
660extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
661 unsigned long end);
662extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
663 unsigned long page);
664
665/* hypersparc.S */
666extern void hypersparc_flush_cache_all(void);
667extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
668extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
669extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
670extern void hypersparc_flush_page_to_ram(unsigned long page);
671extern void hypersparc_flush_page_for_dma(unsigned long page);
672extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
673extern void hypersparc_flush_tlb_all(void);
674extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
675extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
676extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
677extern void hypersparc_setup_blockops(void);
678
679/*
680 * NOTE: All of this startup code assumes the low 16mb (approx.) of
681 * kernel mappings are done with one single contiguous chunk of
682 * ram. On small ram machines (classics mainly) we only get
683 * around 8mb mapped for us.
684 */
685
686static void __init early_pgtable_allocfail(char *type)
687{
688 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
689 prom_halt();
690}
691
692static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
693 unsigned long end)
694{
695 pgd_t *pgdp;
696 pmd_t *pmdp;
697 pte_t *ptep;
698
699 while (start < end) {
700 pgdp = pgd_offset_k(start);
701 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
702 pmdp = __srmmu_get_nocache(
703 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
704 if (pmdp == NULL)
705 early_pgtable_allocfail("pmd");
706 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
707 pgd_set(__nocache_fix(pgdp), pmdp);
708 }
709 pmdp = pmd_offset(__nocache_fix(pgdp), start);
710 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
711 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
712 if (ptep == NULL)
713 early_pgtable_allocfail("pte");
714 memset(__nocache_fix(ptep), 0, PTE_SIZE);
715 pmd_set(__nocache_fix(pmdp), ptep);
716 }
717 if (start > (0xffffffffUL - PMD_SIZE))
718 break;
719 start = (start + PMD_SIZE) & PMD_MASK;
720 }
721}
722
723static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
724 unsigned long end)
725{
726 pgd_t *pgdp;
727 pmd_t *pmdp;
728 pte_t *ptep;
729
730 while (start < end) {
731 pgdp = pgd_offset_k(start);
732 if (pgd_none(*pgdp)) {
733 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
734 if (pmdp == NULL)
735 early_pgtable_allocfail("pmd");
736 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
737 pgd_set(pgdp, pmdp);
738 }
739 pmdp = pmd_offset(pgdp, start);
740 if (srmmu_pmd_none(*pmdp)) {
741 ptep = __srmmu_get_nocache(PTE_SIZE,
742 PTE_SIZE);
743 if (ptep == NULL)
744 early_pgtable_allocfail("pte");
745 memset(ptep, 0, PTE_SIZE);
746 pmd_set(pmdp, ptep);
747 }
748 if (start > (0xffffffffUL - PMD_SIZE))
749 break;
750 start = (start + PMD_SIZE) & PMD_MASK;
751 }
752}
753
754/* These flush types are not available on all chips... */
755static inline unsigned long srmmu_probe(unsigned long vaddr)
756{
757 unsigned long retval;
758
759 if (sparc_cpu_model != sparc_leon) {
760
761 vaddr &= PAGE_MASK;
762 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
763 "=r" (retval) :
764 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
765 } else {
766 retval = leon_swprobe(vaddr, NULL);
767 }
768 return retval;
769}
770
771/*
772 * This is much cleaner than poking around physical address space
773 * looking at the prom's page table directly which is what most
774 * other OS's do. Yuck... this is much better.
775 */
776static void __init srmmu_inherit_prom_mappings(unsigned long start,
777 unsigned long end)
778{
779 unsigned long probed;
780 unsigned long addr;
781 pgd_t *pgdp;
782 pmd_t *pmdp;
783 pte_t *ptep;
784 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
785
786 while (start <= end) {
787 if (start == 0)
788 break; /* probably wrap around */
789 if (start == 0xfef00000)
790 start = KADB_DEBUGGER_BEGVM;
791 probed = srmmu_probe(start);
792 if (!probed) {
793 /* continue probing until we find an entry */
794 start += PAGE_SIZE;
795 continue;
796 }
797
798 /* A red snapper, see what it really is. */
799 what = 0;
800 addr = start - PAGE_SIZE;
801
802 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
803 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
804 what = 1;
805 }
806
807 if (!(start & ~(SRMMU_PGDIR_MASK))) {
808 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
809 what = 2;
810 }
811
812 pgdp = pgd_offset_k(start);
813 if (what == 2) {
814 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
815 start += SRMMU_PGDIR_SIZE;
816 continue;
817 }
818 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
819 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
820 SRMMU_PMD_TABLE_SIZE);
821 if (pmdp == NULL)
822 early_pgtable_allocfail("pmd");
823 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
824 pgd_set(__nocache_fix(pgdp), pmdp);
825 }
826 pmdp = pmd_offset(__nocache_fix(pgdp), start);
827 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
828 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
829 if (ptep == NULL)
830 early_pgtable_allocfail("pte");
831 memset(__nocache_fix(ptep), 0, PTE_SIZE);
832 pmd_set(__nocache_fix(pmdp), ptep);
833 }
834 if (what == 1) {
835 /* We bend the rule where all 16 PTPs in a pmd_t point
836 * inside the same PTE page, and we leak a perfectly
837 * good hardware PTE piece. Alternatives seem worse.
838 */
839 unsigned int x; /* Index of HW PMD in soft cluster */
840 unsigned long *val;
841 x = (start >> PMD_SHIFT) & 15;
842 val = &pmdp->pmdv[x];
843 *(unsigned long *)__nocache_fix(val) = probed;
844 start += SRMMU_REAL_PMD_SIZE;
845 continue;
846 }
847 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
848 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
849 start += PAGE_SIZE;
850 }
851}
852
853#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
854
855/* Create a third-level SRMMU 16MB page mapping. */
856static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
857{
858 pgd_t *pgdp = pgd_offset_k(vaddr);
859 unsigned long big_pte;
860
861 big_pte = KERNEL_PTE(phys_base >> 4);
862 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
863}
864
865/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
866static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
867{
868 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
869 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
870 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
871 /* Map "low" memory only */
872 const unsigned long min_vaddr = PAGE_OFFSET;
873 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
874
875 if (vstart < min_vaddr || vstart >= max_vaddr)
876 return vstart;
877
878 if (vend > max_vaddr || vend < min_vaddr)
879 vend = max_vaddr;
880
881 while (vstart < vend) {
882 do_large_mapping(vstart, pstart);
883 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
884 }
885 return vstart;
886}
887
888static void __init map_kernel(void)
889{
890 int i;
891
892 if (phys_base > 0) {
893 do_large_mapping(PAGE_OFFSET, phys_base);
894 }
895
896 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
897 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
898 }
899}
900
901void (*poke_srmmu)(void) = NULL;
902
903void __init srmmu_paging_init(void)
904{
905 int i;
906 phandle cpunode;
907 char node_str[128];
908 pgd_t *pgd;
909 pmd_t *pmd;
910 pte_t *pte;
911 unsigned long pages_avail;
912
913 init_mm.context = (unsigned long) NO_CONTEXT;
914 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
915
916 if (sparc_cpu_model == sun4d)
917 num_contexts = 65536; /* We know it is Viking */
918 else {
919 /* Find the number of contexts on the srmmu. */
920 cpunode = prom_getchild(prom_root_node);
921 num_contexts = 0;
922 while (cpunode != 0) {
923 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
924 if (!strcmp(node_str, "cpu")) {
925 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
926 break;
927 }
928 cpunode = prom_getsibling(cpunode);
929 }
930 }
931
932 if (!num_contexts) {
933 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
934 prom_halt();
935 }
936
937 pages_avail = 0;
938 last_valid_pfn = bootmem_init(&pages_avail);
939
940 srmmu_nocache_calcsize();
941 srmmu_nocache_init();
942 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
943 map_kernel();
944
945 /* ctx table has to be physically aligned to its size */
946 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
947 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
948
949 for (i = 0; i < num_contexts; i++)
950 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
951
952 flush_cache_all();
953 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
954#ifdef CONFIG_SMP
955 /* Stop from hanging here... */
956 local_ops->tlb_all();
957#else
958 flush_tlb_all();
959#endif
960 poke_srmmu();
961
962 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
963 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
964
965 srmmu_allocate_ptable_skeleton(
966 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
967 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
968
969 pgd = pgd_offset_k(PKMAP_BASE);
970 pmd = pmd_offset(pgd, PKMAP_BASE);
971 pte = pte_offset_kernel(pmd, PKMAP_BASE);
972 pkmap_page_table = pte;
973
974 flush_cache_all();
975 flush_tlb_all();
976
977 sparc_context_init(num_contexts);
978
979 kmap_init();
980
981 {
982 unsigned long zones_size[MAX_NR_ZONES];
983 unsigned long zholes_size[MAX_NR_ZONES];
984 unsigned long npages;
985 int znum;
986
987 for (znum = 0; znum < MAX_NR_ZONES; znum++)
988 zones_size[znum] = zholes_size[znum] = 0;
989
990 npages = max_low_pfn - pfn_base;
991
992 zones_size[ZONE_DMA] = npages;
993 zholes_size[ZONE_DMA] = npages - pages_avail;
994
995 npages = highend_pfn - max_low_pfn;
996 zones_size[ZONE_HIGHMEM] = npages;
997 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
998
999 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1000 }
1001}
1002
1003void mmu_info(struct seq_file *m)
1004{
1005 seq_printf(m,
1006 "MMU type\t: %s\n"
1007 "contexts\t: %d\n"
1008 "nocache total\t: %ld\n"
1009 "nocache used\t: %d\n",
1010 srmmu_name,
1011 num_contexts,
1012 srmmu_nocache_size,
1013 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1014}
1015
1016int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1017{
1018 mm->context = NO_CONTEXT;
1019 return 0;
1020}
1021
1022void destroy_context(struct mm_struct *mm)
1023{
1024 unsigned long flags;
1025
1026 if (mm->context != NO_CONTEXT) {
1027 flush_cache_mm(mm);
1028 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1029 flush_tlb_mm(mm);
1030 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1031 free_context(mm->context);
1032 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1033 mm->context = NO_CONTEXT;
1034 }
1035}
1036
1037/* Init various srmmu chip types. */
1038static void __init srmmu_is_bad(void)
1039{
1040 prom_printf("Could not determine SRMMU chip type.\n");
1041 prom_halt();
1042}
1043
1044static void __init init_vac_layout(void)
1045{
1046 phandle nd;
1047 int cache_lines;
1048 char node_str[128];
1049#ifdef CONFIG_SMP
1050 int cpu = 0;
1051 unsigned long max_size = 0;
1052 unsigned long min_line_size = 0x10000000;
1053#endif
1054
1055 nd = prom_getchild(prom_root_node);
1056 while ((nd = prom_getsibling(nd)) != 0) {
1057 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1058 if (!strcmp(node_str, "cpu")) {
1059 vac_line_size = prom_getint(nd, "cache-line-size");
1060 if (vac_line_size == -1) {
1061 prom_printf("can't determine cache-line-size, halting.\n");
1062 prom_halt();
1063 }
1064 cache_lines = prom_getint(nd, "cache-nlines");
1065 if (cache_lines == -1) {
1066 prom_printf("can't determine cache-nlines, halting.\n");
1067 prom_halt();
1068 }
1069
1070 vac_cache_size = cache_lines * vac_line_size;
1071#ifdef CONFIG_SMP
1072 if (vac_cache_size > max_size)
1073 max_size = vac_cache_size;
1074 if (vac_line_size < min_line_size)
1075 min_line_size = vac_line_size;
1076 //FIXME: cpus not contiguous!!
1077 cpu++;
1078 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1079 break;
1080#else
1081 break;
1082#endif
1083 }
1084 }
1085 if (nd == 0) {
1086 prom_printf("No CPU nodes found, halting.\n");
1087 prom_halt();
1088 }
1089#ifdef CONFIG_SMP
1090 vac_cache_size = max_size;
1091 vac_line_size = min_line_size;
1092#endif
1093 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1094 (int)vac_cache_size, (int)vac_line_size);
1095}
1096
1097static void poke_hypersparc(void)
1098{
1099 volatile unsigned long clear;
1100 unsigned long mreg = srmmu_get_mmureg();
1101
1102 hyper_flush_unconditional_combined();
1103
1104 mreg &= ~(HYPERSPARC_CWENABLE);
1105 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1106 mreg |= (HYPERSPARC_CMODE);
1107
1108 srmmu_set_mmureg(mreg);
1109
1110#if 0 /* XXX I think this is bad news... -DaveM */
1111 hyper_clear_all_tags();
1112#endif
1113
1114 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1115 hyper_flush_whole_icache();
1116 clear = srmmu_get_faddr();
1117 clear = srmmu_get_fstatus();
1118}
1119
1120static const struct sparc32_cachetlb_ops hypersparc_ops = {
1121 .cache_all = hypersparc_flush_cache_all,
1122 .cache_mm = hypersparc_flush_cache_mm,
1123 .cache_page = hypersparc_flush_cache_page,
1124 .cache_range = hypersparc_flush_cache_range,
1125 .tlb_all = hypersparc_flush_tlb_all,
1126 .tlb_mm = hypersparc_flush_tlb_mm,
1127 .tlb_page = hypersparc_flush_tlb_page,
1128 .tlb_range = hypersparc_flush_tlb_range,
1129 .page_to_ram = hypersparc_flush_page_to_ram,
1130 .sig_insns = hypersparc_flush_sig_insns,
1131 .page_for_dma = hypersparc_flush_page_for_dma,
1132};
1133
1134static void __init init_hypersparc(void)
1135{
1136 srmmu_name = "ROSS HyperSparc";
1137 srmmu_modtype = HyperSparc;
1138
1139 init_vac_layout();
1140
1141 is_hypersparc = 1;
1142 sparc32_cachetlb_ops = &hypersparc_ops;
1143
1144 poke_srmmu = poke_hypersparc;
1145
1146 hypersparc_setup_blockops();
1147}
1148
1149static void poke_swift(void)
1150{
1151 unsigned long mreg;
1152
1153 /* Clear any crap from the cache or else... */
1154 swift_flush_cache_all();
1155
1156 /* Enable I & D caches */
1157 mreg = srmmu_get_mmureg();
1158 mreg |= (SWIFT_IE | SWIFT_DE);
1159 /*
1160 * The Swift branch folding logic is completely broken. At
1161 * trap time, if things are just right, if can mistakenly
1162 * think that a trap is coming from kernel mode when in fact
1163 * it is coming from user mode (it mis-executes the branch in
1164 * the trap code). So you see things like crashme completely
1165 * hosing your machine which is completely unacceptable. Turn
1166 * this shit off... nice job Fujitsu.
1167 */
1168 mreg &= ~(SWIFT_BF);
1169 srmmu_set_mmureg(mreg);
1170}
1171
1172static const struct sparc32_cachetlb_ops swift_ops = {
1173 .cache_all = swift_flush_cache_all,
1174 .cache_mm = swift_flush_cache_mm,
1175 .cache_page = swift_flush_cache_page,
1176 .cache_range = swift_flush_cache_range,
1177 .tlb_all = swift_flush_tlb_all,
1178 .tlb_mm = swift_flush_tlb_mm,
1179 .tlb_page = swift_flush_tlb_page,
1180 .tlb_range = swift_flush_tlb_range,
1181 .page_to_ram = swift_flush_page_to_ram,
1182 .sig_insns = swift_flush_sig_insns,
1183 .page_for_dma = swift_flush_page_for_dma,
1184};
1185
1186#define SWIFT_MASKID_ADDR 0x10003018
1187static void __init init_swift(void)
1188{
1189 unsigned long swift_rev;
1190
1191 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1192 "srl %0, 0x18, %0\n\t" :
1193 "=r" (swift_rev) :
1194 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1195 srmmu_name = "Fujitsu Swift";
1196 switch (swift_rev) {
1197 case 0x11:
1198 case 0x20:
1199 case 0x23:
1200 case 0x30:
1201 srmmu_modtype = Swift_lots_o_bugs;
1202 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1203 /*
1204 * Gee george, I wonder why Sun is so hush hush about
1205 * this hardware bug... really braindamage stuff going
1206 * on here. However I think we can find a way to avoid
1207 * all of the workaround overhead under Linux. Basically,
1208 * any page fault can cause kernel pages to become user
1209 * accessible (the mmu gets confused and clears some of
1210 * the ACC bits in kernel ptes). Aha, sounds pretty
1211 * horrible eh? But wait, after extensive testing it appears
1212 * that if you use pgd_t level large kernel pte's (like the
1213 * 4MB pages on the Pentium) the bug does not get tripped
1214 * at all. This avoids almost all of the major overhead.
1215 * Welcome to a world where your vendor tells you to,
1216 * "apply this kernel patch" instead of "sorry for the
1217 * broken hardware, send it back and we'll give you
1218 * properly functioning parts"
1219 */
1220 break;
1221 case 0x25:
1222 case 0x31:
1223 srmmu_modtype = Swift_bad_c;
1224 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1225 /*
1226 * You see Sun allude to this hardware bug but never
1227 * admit things directly, they'll say things like,
1228 * "the Swift chip cache problems" or similar.
1229 */
1230 break;
1231 default:
1232 srmmu_modtype = Swift_ok;
1233 break;
1234 }
1235
1236 sparc32_cachetlb_ops = &swift_ops;
1237 flush_page_for_dma_global = 0;
1238
1239 /*
1240 * Are you now convinced that the Swift is one of the
1241 * biggest VLSI abortions of all time? Bravo Fujitsu!
1242 * Fujitsu, the !#?!%$'d up processor people. I bet if
1243 * you examined the microcode of the Swift you'd find
1244 * XXX's all over the place.
1245 */
1246 poke_srmmu = poke_swift;
1247}
1248
1249static void turbosparc_flush_cache_all(void)
1250{
1251 flush_user_windows();
1252 turbosparc_idflash_clear();
1253}
1254
1255static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1256{
1257 FLUSH_BEGIN(mm)
1258 flush_user_windows();
1259 turbosparc_idflash_clear();
1260 FLUSH_END
1261}
1262
1263static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1264{
1265 FLUSH_BEGIN(vma->vm_mm)
1266 flush_user_windows();
1267 turbosparc_idflash_clear();
1268 FLUSH_END
1269}
1270
1271static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1272{
1273 FLUSH_BEGIN(vma->vm_mm)
1274 flush_user_windows();
1275 if (vma->vm_flags & VM_EXEC)
1276 turbosparc_flush_icache();
1277 turbosparc_flush_dcache();
1278 FLUSH_END
1279}
1280
1281/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1282static void turbosparc_flush_page_to_ram(unsigned long page)
1283{
1284#ifdef TURBOSPARC_WRITEBACK
1285 volatile unsigned long clear;
1286
1287 if (srmmu_probe(page))
1288 turbosparc_flush_page_cache(page);
1289 clear = srmmu_get_fstatus();
1290#endif
1291}
1292
1293static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1294{
1295}
1296
1297static void turbosparc_flush_page_for_dma(unsigned long page)
1298{
1299 turbosparc_flush_dcache();
1300}
1301
1302static void turbosparc_flush_tlb_all(void)
1303{
1304 srmmu_flush_whole_tlb();
1305}
1306
1307static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1308{
1309 FLUSH_BEGIN(mm)
1310 srmmu_flush_whole_tlb();
1311 FLUSH_END
1312}
1313
1314static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1315{
1316 FLUSH_BEGIN(vma->vm_mm)
1317 srmmu_flush_whole_tlb();
1318 FLUSH_END
1319}
1320
1321static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1322{
1323 FLUSH_BEGIN(vma->vm_mm)
1324 srmmu_flush_whole_tlb();
1325 FLUSH_END
1326}
1327
1328
1329static void poke_turbosparc(void)
1330{
1331 unsigned long mreg = srmmu_get_mmureg();
1332 unsigned long ccreg;
1333
1334 /* Clear any crap from the cache or else... */
1335 turbosparc_flush_cache_all();
1336 /* Temporarily disable I & D caches */
1337 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1338 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1339 srmmu_set_mmureg(mreg);
1340
1341 ccreg = turbosparc_get_ccreg();
1342
1343#ifdef TURBOSPARC_WRITEBACK
1344 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1345 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1346 /* Write-back D-cache, emulate VLSI
1347 * abortion number three, not number one */
1348#else
1349 /* For now let's play safe, optimize later */
1350 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1351 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1352 ccreg &= ~(TURBOSPARC_uS2);
1353 /* Emulate VLSI abortion number three, not number one */
1354#endif
1355
1356 switch (ccreg & 7) {
1357 case 0: /* No SE cache */
1358 case 7: /* Test mode */
1359 break;
1360 default:
1361 ccreg |= (TURBOSPARC_SCENABLE);
1362 }
1363 turbosparc_set_ccreg(ccreg);
1364
1365 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1366 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1367 srmmu_set_mmureg(mreg);
1368}
1369
1370static const struct sparc32_cachetlb_ops turbosparc_ops = {
1371 .cache_all = turbosparc_flush_cache_all,
1372 .cache_mm = turbosparc_flush_cache_mm,
1373 .cache_page = turbosparc_flush_cache_page,
1374 .cache_range = turbosparc_flush_cache_range,
1375 .tlb_all = turbosparc_flush_tlb_all,
1376 .tlb_mm = turbosparc_flush_tlb_mm,
1377 .tlb_page = turbosparc_flush_tlb_page,
1378 .tlb_range = turbosparc_flush_tlb_range,
1379 .page_to_ram = turbosparc_flush_page_to_ram,
1380 .sig_insns = turbosparc_flush_sig_insns,
1381 .page_for_dma = turbosparc_flush_page_for_dma,
1382};
1383
1384static void __init init_turbosparc(void)
1385{
1386 srmmu_name = "Fujitsu TurboSparc";
1387 srmmu_modtype = TurboSparc;
1388 sparc32_cachetlb_ops = &turbosparc_ops;
1389 poke_srmmu = poke_turbosparc;
1390}
1391
1392static void poke_tsunami(void)
1393{
1394 unsigned long mreg = srmmu_get_mmureg();
1395
1396 tsunami_flush_icache();
1397 tsunami_flush_dcache();
1398 mreg &= ~TSUNAMI_ITD;
1399 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1400 srmmu_set_mmureg(mreg);
1401}
1402
1403static const struct sparc32_cachetlb_ops tsunami_ops = {
1404 .cache_all = tsunami_flush_cache_all,
1405 .cache_mm = tsunami_flush_cache_mm,
1406 .cache_page = tsunami_flush_cache_page,
1407 .cache_range = tsunami_flush_cache_range,
1408 .tlb_all = tsunami_flush_tlb_all,
1409 .tlb_mm = tsunami_flush_tlb_mm,
1410 .tlb_page = tsunami_flush_tlb_page,
1411 .tlb_range = tsunami_flush_tlb_range,
1412 .page_to_ram = tsunami_flush_page_to_ram,
1413 .sig_insns = tsunami_flush_sig_insns,
1414 .page_for_dma = tsunami_flush_page_for_dma,
1415};
1416
1417static void __init init_tsunami(void)
1418{
1419 /*
1420 * Tsunami's pretty sane, Sun and TI actually got it
1421 * somewhat right this time. Fujitsu should have
1422 * taken some lessons from them.
1423 */
1424
1425 srmmu_name = "TI Tsunami";
1426 srmmu_modtype = Tsunami;
1427 sparc32_cachetlb_ops = &tsunami_ops;
1428 poke_srmmu = poke_tsunami;
1429
1430 tsunami_setup_blockops();
1431}
1432
1433static void poke_viking(void)
1434{
1435 unsigned long mreg = srmmu_get_mmureg();
1436 static int smp_catch;
1437
1438 if (viking_mxcc_present) {
1439 unsigned long mxcc_control = mxcc_get_creg();
1440
1441 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1442 mxcc_control &= ~(MXCC_CTL_RRC);
1443 mxcc_set_creg(mxcc_control);
1444
1445 /*
1446 * We don't need memory parity checks.
1447 * XXX This is a mess, have to dig out later. ecd.
1448 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1449 */
1450
1451 /* We do cache ptables on MXCC. */
1452 mreg |= VIKING_TCENABLE;
1453 } else {
1454 unsigned long bpreg;
1455
1456 mreg &= ~(VIKING_TCENABLE);
1457 if (smp_catch++) {
1458 /* Must disable mixed-cmd mode here for other cpu's. */
1459 bpreg = viking_get_bpreg();
1460 bpreg &= ~(VIKING_ACTION_MIX);
1461 viking_set_bpreg(bpreg);
1462
1463 /* Just in case PROM does something funny. */
1464 msi_set_sync();
1465 }
1466 }
1467
1468 mreg |= VIKING_SPENABLE;
1469 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1470 mreg |= VIKING_SBENABLE;
1471 mreg &= ~(VIKING_ACENABLE);
1472 srmmu_set_mmureg(mreg);
1473}
1474
1475static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1476 .cache_all = viking_flush_cache_all,
1477 .cache_mm = viking_flush_cache_mm,
1478 .cache_page = viking_flush_cache_page,
1479 .cache_range = viking_flush_cache_range,
1480 .tlb_all = viking_flush_tlb_all,
1481 .tlb_mm = viking_flush_tlb_mm,
1482 .tlb_page = viking_flush_tlb_page,
1483 .tlb_range = viking_flush_tlb_range,
1484 .page_to_ram = viking_flush_page_to_ram,
1485 .sig_insns = viking_flush_sig_insns,
1486 .page_for_dma = viking_flush_page_for_dma,
1487};
1488
1489#ifdef CONFIG_SMP
1490/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1491 * perform the local TLB flush and all the other cpus will see it.
1492 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1493 * that requires that we add some synchronization to these flushes.
1494 *
1495 * The bug is that the fifo which keeps track of all the pending TLB
1496 * broadcasts in the system is an entry or two too small, so if we
1497 * have too many going at once we'll overflow that fifo and lose a TLB
1498 * flush resulting in corruption.
1499 *
1500 * Our workaround is to take a global spinlock around the TLB flushes,
1501 * which guarentees we won't ever have too many pending. It's a big
1502 * hammer, but a semaphore like system to make sure we only have N TLB
1503 * flushes going at once will require SMP locking anyways so there's
1504 * no real value in trying any harder than this.
1505 */
1506static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1507 .cache_all = viking_flush_cache_all,
1508 .cache_mm = viking_flush_cache_mm,
1509 .cache_page = viking_flush_cache_page,
1510 .cache_range = viking_flush_cache_range,
1511 .tlb_all = sun4dsmp_flush_tlb_all,
1512 .tlb_mm = sun4dsmp_flush_tlb_mm,
1513 .tlb_page = sun4dsmp_flush_tlb_page,
1514 .tlb_range = sun4dsmp_flush_tlb_range,
1515 .page_to_ram = viking_flush_page_to_ram,
1516 .sig_insns = viking_flush_sig_insns,
1517 .page_for_dma = viking_flush_page_for_dma,
1518};
1519#endif
1520
1521static void __init init_viking(void)
1522{
1523 unsigned long mreg = srmmu_get_mmureg();
1524
1525 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1526 if (mreg & VIKING_MMODE) {
1527 srmmu_name = "TI Viking";
1528 viking_mxcc_present = 0;
1529 msi_set_sync();
1530
1531 /*
1532 * We need this to make sure old viking takes no hits
1533 * on it's cache for dma snoops to workaround the
1534 * "load from non-cacheable memory" interrupt bug.
1535 * This is only necessary because of the new way in
1536 * which we use the IOMMU.
1537 */
1538 viking_ops.page_for_dma = viking_flush_page;
1539#ifdef CONFIG_SMP
1540 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1541#endif
1542 flush_page_for_dma_global = 0;
1543 } else {
1544 srmmu_name = "TI Viking/MXCC";
1545 viking_mxcc_present = 1;
1546 srmmu_cache_pagetables = 1;
1547 }
1548
1549 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1550 &viking_ops;
1551#ifdef CONFIG_SMP
1552 if (sparc_cpu_model == sun4d)
1553 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1554 &viking_sun4d_smp_ops;
1555#endif
1556
1557 poke_srmmu = poke_viking;
1558}
1559
1560/* Probe for the srmmu chip version. */
1561static void __init get_srmmu_type(void)
1562{
1563 unsigned long mreg, psr;
1564 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1565
1566 srmmu_modtype = SRMMU_INVAL_MOD;
1567 hwbug_bitmask = 0;
1568
1569 mreg = srmmu_get_mmureg(); psr = get_psr();
1570 mod_typ = (mreg & 0xf0000000) >> 28;
1571 mod_rev = (mreg & 0x0f000000) >> 24;
1572 psr_typ = (psr >> 28) & 0xf;
1573 psr_vers = (psr >> 24) & 0xf;
1574
1575 /* First, check for sparc-leon. */
1576 if (sparc_cpu_model == sparc_leon) {
1577 init_leon();
1578 return;
1579 }
1580
1581 /* Second, check for HyperSparc or Cypress. */
1582 if (mod_typ == 1) {
1583 switch (mod_rev) {
1584 case 7:
1585 /* UP or MP Hypersparc */
1586 init_hypersparc();
1587 break;
1588 case 0:
1589 case 2:
1590 case 10:
1591 case 11:
1592 case 12:
1593 case 13:
1594 case 14:
1595 case 15:
1596 default:
1597 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1598 prom_halt();
1599 break;
1600 }
1601 return;
1602 }
1603
1604 /* Now Fujitsu TurboSparc. It might happen that it is
1605 * in Swift emulation mode, so we will check later...
1606 */
1607 if (psr_typ == 0 && psr_vers == 5) {
1608 init_turbosparc();
1609 return;
1610 }
1611
1612 /* Next check for Fujitsu Swift. */
1613 if (psr_typ == 0 && psr_vers == 4) {
1614 phandle cpunode;
1615 char node_str[128];
1616
1617 /* Look if it is not a TurboSparc emulating Swift... */
1618 cpunode = prom_getchild(prom_root_node);
1619 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1620 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1621 if (!strcmp(node_str, "cpu")) {
1622 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1623 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1624 init_turbosparc();
1625 return;
1626 }
1627 break;
1628 }
1629 }
1630
1631 init_swift();
1632 return;
1633 }
1634
1635 /* Now the Viking family of srmmu. */
1636 if (psr_typ == 4 &&
1637 ((psr_vers == 0) ||
1638 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1639 init_viking();
1640 return;
1641 }
1642
1643 /* Finally the Tsunami. */
1644 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1645 init_tsunami();
1646 return;
1647 }
1648
1649 /* Oh well */
1650 srmmu_is_bad();
1651}
1652
1653#ifdef CONFIG_SMP
1654/* Local cross-calls. */
1655static void smp_flush_page_for_dma(unsigned long page)
1656{
1657 xc1((smpfunc_t) local_ops->page_for_dma, page);
1658 local_ops->page_for_dma(page);
1659}
1660
1661static void smp_flush_cache_all(void)
1662{
1663 xc0((smpfunc_t) local_ops->cache_all);
1664 local_ops->cache_all();
1665}
1666
1667static void smp_flush_tlb_all(void)
1668{
1669 xc0((smpfunc_t) local_ops->tlb_all);
1670 local_ops->tlb_all();
1671}
1672
1673static void smp_flush_cache_mm(struct mm_struct *mm)
1674{
1675 if (mm->context != NO_CONTEXT) {
1676 cpumask_t cpu_mask;
1677 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1678 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1679 if (!cpumask_empty(&cpu_mask))
1680 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1681 local_ops->cache_mm(mm);
1682 }
1683}
1684
1685static void smp_flush_tlb_mm(struct mm_struct *mm)
1686{
1687 if (mm->context != NO_CONTEXT) {
1688 cpumask_t cpu_mask;
1689 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1690 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1691 if (!cpumask_empty(&cpu_mask)) {
1692 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1693 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1694 cpumask_copy(mm_cpumask(mm),
1695 cpumask_of(smp_processor_id()));
1696 }
1697 local_ops->tlb_mm(mm);
1698 }
1699}
1700
1701static void smp_flush_cache_range(struct vm_area_struct *vma,
1702 unsigned long start,
1703 unsigned long end)
1704{
1705 struct mm_struct *mm = vma->vm_mm;
1706
1707 if (mm->context != NO_CONTEXT) {
1708 cpumask_t cpu_mask;
1709 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1710 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1711 if (!cpumask_empty(&cpu_mask))
1712 xc3((smpfunc_t) local_ops->cache_range,
1713 (unsigned long) vma, start, end);
1714 local_ops->cache_range(vma, start, end);
1715 }
1716}
1717
1718static void smp_flush_tlb_range(struct vm_area_struct *vma,
1719 unsigned long start,
1720 unsigned long end)
1721{
1722 struct mm_struct *mm = vma->vm_mm;
1723
1724 if (mm->context != NO_CONTEXT) {
1725 cpumask_t cpu_mask;
1726 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1727 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1728 if (!cpumask_empty(&cpu_mask))
1729 xc3((smpfunc_t) local_ops->tlb_range,
1730 (unsigned long) vma, start, end);
1731 local_ops->tlb_range(vma, start, end);
1732 }
1733}
1734
1735static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1736{
1737 struct mm_struct *mm = vma->vm_mm;
1738
1739 if (mm->context != NO_CONTEXT) {
1740 cpumask_t cpu_mask;
1741 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1742 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1743 if (!cpumask_empty(&cpu_mask))
1744 xc2((smpfunc_t) local_ops->cache_page,
1745 (unsigned long) vma, page);
1746 local_ops->cache_page(vma, page);
1747 }
1748}
1749
1750static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1751{
1752 struct mm_struct *mm = vma->vm_mm;
1753
1754 if (mm->context != NO_CONTEXT) {
1755 cpumask_t cpu_mask;
1756 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758 if (!cpumask_empty(&cpu_mask))
1759 xc2((smpfunc_t) local_ops->tlb_page,
1760 (unsigned long) vma, page);
1761 local_ops->tlb_page(vma, page);
1762 }
1763}
1764
1765static void smp_flush_page_to_ram(unsigned long page)
1766{
1767 /* Current theory is that those who call this are the one's
1768 * who have just dirtied their cache with the pages contents
1769 * in kernel space, therefore we only run this on local cpu.
1770 *
1771 * XXX This experiment failed, research further... -DaveM
1772 */
1773#if 1
1774 xc1((smpfunc_t) local_ops->page_to_ram, page);
1775#endif
1776 local_ops->page_to_ram(page);
1777}
1778
1779static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1780{
1781 cpumask_t cpu_mask;
1782 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1783 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1784 if (!cpumask_empty(&cpu_mask))
1785 xc2((smpfunc_t) local_ops->sig_insns,
1786 (unsigned long) mm, insn_addr);
1787 local_ops->sig_insns(mm, insn_addr);
1788}
1789
1790static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1791 .cache_all = smp_flush_cache_all,
1792 .cache_mm = smp_flush_cache_mm,
1793 .cache_page = smp_flush_cache_page,
1794 .cache_range = smp_flush_cache_range,
1795 .tlb_all = smp_flush_tlb_all,
1796 .tlb_mm = smp_flush_tlb_mm,
1797 .tlb_page = smp_flush_tlb_page,
1798 .tlb_range = smp_flush_tlb_range,
1799 .page_to_ram = smp_flush_page_to_ram,
1800 .sig_insns = smp_flush_sig_insns,
1801 .page_for_dma = smp_flush_page_for_dma,
1802};
1803#endif
1804
1805/* Load up routines and constants for sun4m and sun4d mmu */
1806void __init load_mmu(void)
1807{
1808 /* Functions */
1809 get_srmmu_type();
1810
1811#ifdef CONFIG_SMP
1812 /* El switcheroo... */
1813 local_ops = sparc32_cachetlb_ops;
1814
1815 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1816 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1817 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1818 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1819 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1820 }
1821
1822 if (poke_srmmu == poke_viking) {
1823 /* Avoid unnecessary cross calls. */
1824 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1825 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1826 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1827 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1828
1829 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1830 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1831 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1832 }
1833
1834 /* It really is const after this point. */
1835 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1836 &smp_cachetlb_ops;
1837#endif
1838
1839 if (sparc_cpu_model == sun4d)
1840 ld_mmu_iounit();
1841 else
1842 ld_mmu_iommu();
1843#ifdef CONFIG_SMP
1844 if (sparc_cpu_model == sun4d)
1845 sun4d_init_smp();
1846 else if (sparc_cpu_model == sparc_leon)
1847 leon_init_smp();
1848 else
1849 sun4m_init_smp();
1850#endif
1851}