Linux Audio

Check our new training course

Loading...
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * srmmu.c:  SRMMU specific routines for memory management.
   4 *
   5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10 */
  11
  12#include <linux/seq_file.h>
  13#include <linux/spinlock.h>
  14#include <linux/bootmem.h>
  15#include <linux/pagemap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/kdebug.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/init.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25
  26#include <asm/mmu_context.h>
  27#include <asm/cacheflush.h>
  28#include <asm/tlbflush.h>
  29#include <asm/io-unit.h>
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/bitext.h>
  33#include <asm/vaddrs.h>
  34#include <asm/cache.h>
  35#include <asm/traps.h>
  36#include <asm/oplib.h>
  37#include <asm/mbus.h>
  38#include <asm/page.h>
  39#include <asm/asi.h>
  40#include <asm/msi.h>
  41#include <asm/smp.h>
  42#include <asm/io.h>
  43
  44/* Now the cpu specific definitions. */
  45#include <asm/turbosparc.h>
  46#include <asm/tsunami.h>
  47#include <asm/viking.h>
  48#include <asm/swift.h>
  49#include <asm/leon.h>
  50#include <asm/mxcc.h>
  51#include <asm/ross.h>
  52
  53#include "mm_32.h"
  54
  55enum mbus_module srmmu_modtype;
  56static unsigned int hwbug_bitmask;
  57int vac_cache_size;
  58EXPORT_SYMBOL(vac_cache_size);
  59int vac_line_size;
  60
  61extern struct resource sparc_iomap;
  62
  63extern unsigned long last_valid_pfn;
  64
  65static pgd_t *srmmu_swapper_pg_dir;
  66
  67const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  68EXPORT_SYMBOL(sparc32_cachetlb_ops);
  69
  70#ifdef CONFIG_SMP
  71const struct sparc32_cachetlb_ops *local_ops;
  72
  73#define FLUSH_BEGIN(mm)
  74#define FLUSH_END
  75#else
  76#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  77#define FLUSH_END	}
  78#endif
  79
  80int flush_page_for_dma_global = 1;
  81
  82char *srmmu_name;
  83
  84ctxd_t *srmmu_ctx_table_phys;
  85static ctxd_t *srmmu_context_table;
  86
  87int viking_mxcc_present;
  88static DEFINE_SPINLOCK(srmmu_context_spinlock);
  89
  90static int is_hypersparc;
  91
  92static int srmmu_cache_pagetables;
  93
  94/* these will be initialized in srmmu_nocache_calcsize() */
  95static unsigned long srmmu_nocache_size;
  96static unsigned long srmmu_nocache_end;
  97
  98/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  99#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
 100
 101/* The context table is a nocache user with the biggest alignment needs. */
 102#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 103
 104void *srmmu_nocache_pool;
 
 105static struct bit_map srmmu_nocache_map;
 106
 107static inline int srmmu_pmd_none(pmd_t pmd)
 108{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 109
 110/* XXX should we hyper_flush_whole_icache here - Anton */
 111static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 112{
 113	pte_t pte;
 114
 115	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 116	set_pte((pte_t *)ctxp, pte);
 117}
 118
 119void pmd_set(pmd_t *pmdp, pte_t *ptep)
 120{
 121	unsigned long ptp;	/* Physical address, shifted right by 4 */
 122	int i;
 123
 124	ptp = __nocache_pa(ptep) >> 4;
 125	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 126		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 127		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 128	}
 129}
 130
 131void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
 132{
 133	unsigned long ptp;	/* Physical address, shifted right by 4 */
 134	int i;
 135
 136	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
 137	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 138		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 139		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 140	}
 141}
 142
 143/* Find an entry in the third-level page table.. */
 144pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
 145{
 146	void *pte;
 147
 148	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 149	return (pte_t *) pte +
 150	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 151}
 152
 153/*
 154 * size: bytes to allocate in the nocache area.
 155 * align: bytes, number to align at.
 156 * Returns the virtual address of the allocated area.
 157 */
 158static void *__srmmu_get_nocache(int size, int align)
 159{
 160	int offset;
 161	unsigned long addr;
 162
 163	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 164		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 165		       size);
 166		size = SRMMU_NOCACHE_BITMAP_SHIFT;
 167	}
 168	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
 169		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
 170		       size);
 171		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
 172	}
 173	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 174
 175	offset = bit_map_string_get(&srmmu_nocache_map,
 176				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 177				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 178	if (offset == -1) {
 179		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 180		       size, (int) srmmu_nocache_size,
 181		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 182		return NULL;
 183	}
 184
 185	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 186	return (void *)addr;
 187}
 188
 189void *srmmu_get_nocache(int size, int align)
 190{
 191	void *tmp;
 192
 193	tmp = __srmmu_get_nocache(size, align);
 194
 195	if (tmp)
 196		memset(tmp, 0, size);
 197
 198	return tmp;
 199}
 200
 201void srmmu_free_nocache(void *addr, int size)
 202{
 203	unsigned long vaddr;
 204	int offset;
 205
 206	vaddr = (unsigned long)addr;
 207	if (vaddr < SRMMU_NOCACHE_VADDR) {
 208		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 209		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 210		BUG();
 211	}
 212	if (vaddr + size > srmmu_nocache_end) {
 213		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 214		    vaddr, srmmu_nocache_end);
 215		BUG();
 216	}
 217	if (!is_power_of_2(size)) {
 218		printk("Size 0x%x is not a power of 2\n", size);
 219		BUG();
 220	}
 221	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 222		printk("Size 0x%x is too small\n", size);
 223		BUG();
 224	}
 225	if (vaddr & (size - 1)) {
 226		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 227		BUG();
 228	}
 229
 230	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 231	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 232
 233	bit_map_clear(&srmmu_nocache_map, offset, size);
 234}
 235
 236static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 237						 unsigned long end);
 238
 239/* Return how much physical memory we have.  */
 240static unsigned long __init probe_memory(void)
 241{
 242	unsigned long total = 0;
 243	int i;
 244
 245	for (i = 0; sp_banks[i].num_bytes; i++)
 246		total += sp_banks[i].num_bytes;
 247
 248	return total;
 249}
 250
 251/*
 252 * Reserve nocache dynamically proportionally to the amount of
 253 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 254 */
 255static void __init srmmu_nocache_calcsize(void)
 256{
 257	unsigned long sysmemavail = probe_memory() / 1024;
 258	int srmmu_nocache_npages;
 259
 260	srmmu_nocache_npages =
 261		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 262
 263 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 264	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 265	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 266		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 267
 268	/* anything above 1280 blows up */
 269	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 270		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 271
 272	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 273	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 274}
 275
 276static void __init srmmu_nocache_init(void)
 277{
 278	void *srmmu_nocache_bitmap;
 279	unsigned int bitmap_bits;
 280	pgd_t *pgd;
 281	pmd_t *pmd;
 282	pte_t *pte;
 283	unsigned long paddr, vaddr;
 284	unsigned long pteval;
 285
 286	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 287
 288	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
 289		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
 290	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 291
 292	srmmu_nocache_bitmap =
 293		__alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 294				SMP_CACHE_BYTES, 0UL);
 295	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 296
 297	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 298	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 299	init_mm.pgd = srmmu_swapper_pg_dir;
 300
 301	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 302
 303	paddr = __pa((unsigned long)srmmu_nocache_pool);
 304	vaddr = SRMMU_NOCACHE_VADDR;
 305
 306	while (vaddr < srmmu_nocache_end) {
 307		pgd = pgd_offset_k(vaddr);
 308		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
 309		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 310
 311		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 312
 313		if (srmmu_cache_pagetables)
 314			pteval |= SRMMU_CACHE;
 315
 316		set_pte(__nocache_fix(pte), __pte(pteval));
 317
 318		vaddr += PAGE_SIZE;
 319		paddr += PAGE_SIZE;
 320	}
 321
 322	flush_cache_all();
 323	flush_tlb_all();
 324}
 325
 326pgd_t *get_pgd_fast(void)
 327{
 328	pgd_t *pgd = NULL;
 329
 330	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 331	if (pgd) {
 332		pgd_t *init = pgd_offset_k(0);
 333		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 334		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 335						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 336	}
 337
 338	return pgd;
 339}
 340
 341/*
 342 * Hardware needs alignment to 256 only, but we align to whole page size
 343 * to reduce fragmentation problems due to the buddy principle.
 344 * XXX Provide actual fragmentation statistics in /proc.
 345 *
 346 * Alignments up to the page size are the same for physical and virtual
 347 * addresses of the nocache area.
 348 */
 349pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 350{
 351	unsigned long pte;
 352	struct page *page;
 353
 354	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
 355		return NULL;
 356	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
 357	if (!pgtable_page_ctor(page)) {
 358		__free_page(page);
 359		return NULL;
 360	}
 361	return page;
 362}
 363
 364void pte_free(struct mm_struct *mm, pgtable_t pte)
 365{
 366	unsigned long p;
 367
 368	pgtable_page_dtor(pte);
 369	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
 370	if (p == 0)
 371		BUG();
 372	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
 373
 374	/* free non cached virtual address*/
 375	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
 376}
 377
 378/* context handling - a dynamically sized pool is used */
 379#define NO_CONTEXT	-1
 380
 381struct ctx_list {
 382	struct ctx_list *next;
 383	struct ctx_list *prev;
 384	unsigned int ctx_number;
 385	struct mm_struct *ctx_mm;
 386};
 387
 388static struct ctx_list *ctx_list_pool;
 389static struct ctx_list ctx_free;
 390static struct ctx_list ctx_used;
 391
 392/* At boot time we determine the number of contexts */
 393static int num_contexts;
 394
 395static inline void remove_from_ctx_list(struct ctx_list *entry)
 396{
 397	entry->next->prev = entry->prev;
 398	entry->prev->next = entry->next;
 399}
 400
 401static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 402{
 403	entry->next = head;
 404	(entry->prev = head->prev)->next = entry;
 405	head->prev = entry;
 406}
 407#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 408#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 409
 410
 411static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 412{
 413	struct ctx_list *ctxp;
 414
 415	ctxp = ctx_free.next;
 416	if (ctxp != &ctx_free) {
 417		remove_from_ctx_list(ctxp);
 418		add_to_used_ctxlist(ctxp);
 419		mm->context = ctxp->ctx_number;
 420		ctxp->ctx_mm = mm;
 421		return;
 422	}
 423	ctxp = ctx_used.next;
 424	if (ctxp->ctx_mm == old_mm)
 425		ctxp = ctxp->next;
 426	if (ctxp == &ctx_used)
 427		panic("out of mmu contexts");
 428	flush_cache_mm(ctxp->ctx_mm);
 429	flush_tlb_mm(ctxp->ctx_mm);
 430	remove_from_ctx_list(ctxp);
 431	add_to_used_ctxlist(ctxp);
 432	ctxp->ctx_mm->context = NO_CONTEXT;
 433	ctxp->ctx_mm = mm;
 434	mm->context = ctxp->ctx_number;
 435}
 436
 437static inline void free_context(int context)
 438{
 439	struct ctx_list *ctx_old;
 440
 441	ctx_old = ctx_list_pool + context;
 442	remove_from_ctx_list(ctx_old);
 443	add_to_free_ctxlist(ctx_old);
 444}
 445
 446static void __init sparc_context_init(int numctx)
 447{
 448	int ctx;
 449	unsigned long size;
 450
 451	size = numctx * sizeof(struct ctx_list);
 452	ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
 453
 454	for (ctx = 0; ctx < numctx; ctx++) {
 455		struct ctx_list *clist;
 456
 457		clist = (ctx_list_pool + ctx);
 458		clist->ctx_number = ctx;
 459		clist->ctx_mm = NULL;
 460	}
 461	ctx_free.next = ctx_free.prev = &ctx_free;
 462	ctx_used.next = ctx_used.prev = &ctx_used;
 463	for (ctx = 0; ctx < numctx; ctx++)
 464		add_to_free_ctxlist(ctx_list_pool + ctx);
 465}
 466
 467void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 468	       struct task_struct *tsk)
 469{
 470	unsigned long flags;
 471
 472	if (mm->context == NO_CONTEXT) {
 473		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 474		alloc_context(old_mm, mm);
 475		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 476		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 477	}
 478
 479	if (sparc_cpu_model == sparc_leon)
 480		leon_switch_mm();
 481
 482	if (is_hypersparc)
 483		hyper_flush_whole_icache();
 484
 485	srmmu_set_context(mm->context);
 486}
 487
 488/* Low level IO area allocation on the SRMMU. */
 489static inline void srmmu_mapioaddr(unsigned long physaddr,
 490				   unsigned long virt_addr, int bus_type)
 491{
 492	pgd_t *pgdp;
 493	pmd_t *pmdp;
 494	pte_t *ptep;
 495	unsigned long tmp;
 496
 497	physaddr &= PAGE_MASK;
 498	pgdp = pgd_offset_k(virt_addr);
 499	pmdp = pmd_offset(pgdp, virt_addr);
 500	ptep = pte_offset_kernel(pmdp, virt_addr);
 501	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 502
 503	/* I need to test whether this is consistent over all
 504	 * sun4m's.  The bus_type represents the upper 4 bits of
 505	 * 36-bit physical address on the I/O space lines...
 506	 */
 507	tmp |= (bus_type << 28);
 508	tmp |= SRMMU_PRIV;
 509	__flush_page_to_ram(virt_addr);
 510	set_pte(ptep, __pte(tmp));
 511}
 512
 513void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 514		      unsigned long xva, unsigned int len)
 515{
 516	while (len != 0) {
 517		len -= PAGE_SIZE;
 518		srmmu_mapioaddr(xpa, xva, bus);
 519		xva += PAGE_SIZE;
 520		xpa += PAGE_SIZE;
 521	}
 522	flush_tlb_all();
 523}
 524
 525static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 526{
 527	pgd_t *pgdp;
 528	pmd_t *pmdp;
 529	pte_t *ptep;
 530
 531	pgdp = pgd_offset_k(virt_addr);
 532	pmdp = pmd_offset(pgdp, virt_addr);
 533	ptep = pte_offset_kernel(pmdp, virt_addr);
 534
 535	/* No need to flush uncacheable page. */
 536	__pte_clear(ptep);
 537}
 538
 539void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 540{
 541	while (len != 0) {
 542		len -= PAGE_SIZE;
 543		srmmu_unmapioaddr(virt_addr);
 544		virt_addr += PAGE_SIZE;
 545	}
 546	flush_tlb_all();
 547}
 548
 549/* tsunami.S */
 550extern void tsunami_flush_cache_all(void);
 551extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 552extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 553extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 554extern void tsunami_flush_page_to_ram(unsigned long page);
 555extern void tsunami_flush_page_for_dma(unsigned long page);
 556extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 557extern void tsunami_flush_tlb_all(void);
 558extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 559extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 560extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 561extern void tsunami_setup_blockops(void);
 562
 563/* swift.S */
 564extern void swift_flush_cache_all(void);
 565extern void swift_flush_cache_mm(struct mm_struct *mm);
 566extern void swift_flush_cache_range(struct vm_area_struct *vma,
 567				    unsigned long start, unsigned long end);
 568extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 569extern void swift_flush_page_to_ram(unsigned long page);
 570extern void swift_flush_page_for_dma(unsigned long page);
 571extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 572extern void swift_flush_tlb_all(void);
 573extern void swift_flush_tlb_mm(struct mm_struct *mm);
 574extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 575				  unsigned long start, unsigned long end);
 576extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 577
 578#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 579void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 580{
 581	int cctx, ctx1;
 582
 583	page &= PAGE_MASK;
 584	if ((ctx1 = vma->vm_mm->context) != -1) {
 585		cctx = srmmu_get_context();
 586/* Is context # ever different from current context? P3 */
 587		if (cctx != ctx1) {
 588			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 589			srmmu_set_context(ctx1);
 590			swift_flush_page(page);
 591			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 592					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 593			srmmu_set_context(cctx);
 594		} else {
 595			 /* Rm. prot. bits from virt. c. */
 596			/* swift_flush_cache_all(); */
 597			/* swift_flush_cache_page(vma, page); */
 598			swift_flush_page(page);
 599
 600			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 601				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 602			/* same as above: srmmu_flush_tlb_page() */
 603		}
 604	}
 605}
 606#endif
 607
 608/*
 609 * The following are all MBUS based SRMMU modules, and therefore could
 610 * be found in a multiprocessor configuration.  On the whole, these
 611 * chips seems to be much more touchy about DVMA and page tables
 612 * with respect to cache coherency.
 613 */
 614
 615/* viking.S */
 616extern void viking_flush_cache_all(void);
 617extern void viking_flush_cache_mm(struct mm_struct *mm);
 618extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 619				     unsigned long end);
 620extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 621extern void viking_flush_page_to_ram(unsigned long page);
 622extern void viking_flush_page_for_dma(unsigned long page);
 623extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 624extern void viking_flush_page(unsigned long page);
 625extern void viking_mxcc_flush_page(unsigned long page);
 626extern void viking_flush_tlb_all(void);
 627extern void viking_flush_tlb_mm(struct mm_struct *mm);
 628extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 629				   unsigned long end);
 630extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 631				  unsigned long page);
 632extern void sun4dsmp_flush_tlb_all(void);
 633extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 634extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 635				   unsigned long end);
 636extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 637				  unsigned long page);
 638
 639/* hypersparc.S */
 640extern void hypersparc_flush_cache_all(void);
 641extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 642extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 643extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 644extern void hypersparc_flush_page_to_ram(unsigned long page);
 645extern void hypersparc_flush_page_for_dma(unsigned long page);
 646extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 647extern void hypersparc_flush_tlb_all(void);
 648extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 649extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 650extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 651extern void hypersparc_setup_blockops(void);
 652
 653/*
 654 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 655 *       kernel mappings are done with one single contiguous chunk of
 656 *       ram.  On small ram machines (classics mainly) we only get
 657 *       around 8mb mapped for us.
 658 */
 659
 660static void __init early_pgtable_allocfail(char *type)
 661{
 662	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 663	prom_halt();
 664}
 665
 666static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 667							unsigned long end)
 668{
 669	pgd_t *pgdp;
 670	pmd_t *pmdp;
 671	pte_t *ptep;
 672
 673	while (start < end) {
 674		pgdp = pgd_offset_k(start);
 675		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 676			pmdp = __srmmu_get_nocache(
 677			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 678			if (pmdp == NULL)
 679				early_pgtable_allocfail("pmd");
 680			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 681			pgd_set(__nocache_fix(pgdp), pmdp);
 682		}
 683		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 684		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 685			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 686			if (ptep == NULL)
 687				early_pgtable_allocfail("pte");
 688			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 689			pmd_set(__nocache_fix(pmdp), ptep);
 690		}
 691		if (start > (0xffffffffUL - PMD_SIZE))
 692			break;
 693		start = (start + PMD_SIZE) & PMD_MASK;
 694	}
 695}
 696
 697static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 698						  unsigned long end)
 699{
 700	pgd_t *pgdp;
 701	pmd_t *pmdp;
 702	pte_t *ptep;
 703
 704	while (start < end) {
 705		pgdp = pgd_offset_k(start);
 706		if (pgd_none(*pgdp)) {
 707			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 708			if (pmdp == NULL)
 709				early_pgtable_allocfail("pmd");
 710			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 711			pgd_set(pgdp, pmdp);
 712		}
 713		pmdp = pmd_offset(pgdp, start);
 714		if (srmmu_pmd_none(*pmdp)) {
 715			ptep = __srmmu_get_nocache(PTE_SIZE,
 716							     PTE_SIZE);
 717			if (ptep == NULL)
 718				early_pgtable_allocfail("pte");
 719			memset(ptep, 0, PTE_SIZE);
 720			pmd_set(pmdp, ptep);
 721		}
 722		if (start > (0xffffffffUL - PMD_SIZE))
 723			break;
 724		start = (start + PMD_SIZE) & PMD_MASK;
 725	}
 726}
 727
 728/* These flush types are not available on all chips... */
 729static inline unsigned long srmmu_probe(unsigned long vaddr)
 730{
 731	unsigned long retval;
 732
 733	if (sparc_cpu_model != sparc_leon) {
 734
 735		vaddr &= PAGE_MASK;
 736		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 737				     "=r" (retval) :
 738				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 739	} else {
 740		retval = leon_swprobe(vaddr, NULL);
 741	}
 742	return retval;
 743}
 744
 745/*
 746 * This is much cleaner than poking around physical address space
 747 * looking at the prom's page table directly which is what most
 748 * other OS's do.  Yuck... this is much better.
 749 */
 750static void __init srmmu_inherit_prom_mappings(unsigned long start,
 751					       unsigned long end)
 752{
 753	unsigned long probed;
 754	unsigned long addr;
 755	pgd_t *pgdp;
 756	pmd_t *pmdp;
 757	pte_t *ptep;
 758	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 759
 760	while (start <= end) {
 761		if (start == 0)
 762			break; /* probably wrap around */
 763		if (start == 0xfef00000)
 764			start = KADB_DEBUGGER_BEGVM;
 765		probed = srmmu_probe(start);
 766		if (!probed) {
 767			/* continue probing until we find an entry */
 768			start += PAGE_SIZE;
 769			continue;
 770		}
 771
 772		/* A red snapper, see what it really is. */
 773		what = 0;
 774		addr = start - PAGE_SIZE;
 775
 776		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
 777			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
 778				what = 1;
 779		}
 780
 781		if (!(start & ~(SRMMU_PGDIR_MASK))) {
 782			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
 783				what = 2;
 784		}
 785
 786		pgdp = pgd_offset_k(start);
 787		if (what == 2) {
 788			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
 789			start += SRMMU_PGDIR_SIZE;
 790			continue;
 791		}
 792		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 793			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 794						   SRMMU_PMD_TABLE_SIZE);
 795			if (pmdp == NULL)
 796				early_pgtable_allocfail("pmd");
 797			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 798			pgd_set(__nocache_fix(pgdp), pmdp);
 799		}
 800		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 801		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 802			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 803			if (ptep == NULL)
 804				early_pgtable_allocfail("pte");
 805			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 806			pmd_set(__nocache_fix(pmdp), ptep);
 807		}
 808		if (what == 1) {
 809			/* We bend the rule where all 16 PTPs in a pmd_t point
 810			 * inside the same PTE page, and we leak a perfectly
 811			 * good hardware PTE piece. Alternatives seem worse.
 812			 */
 813			unsigned int x;	/* Index of HW PMD in soft cluster */
 814			unsigned long *val;
 815			x = (start >> PMD_SHIFT) & 15;
 816			val = &pmdp->pmdv[x];
 817			*(unsigned long *)__nocache_fix(val) = probed;
 818			start += SRMMU_REAL_PMD_SIZE;
 819			continue;
 820		}
 821		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 822		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
 823		start += PAGE_SIZE;
 824	}
 825}
 826
 827#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 828
 829/* Create a third-level SRMMU 16MB page mapping. */
 830static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 831{
 832	pgd_t *pgdp = pgd_offset_k(vaddr);
 833	unsigned long big_pte;
 834
 835	big_pte = KERNEL_PTE(phys_base >> 4);
 836	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 837}
 838
 839/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 840static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 841{
 842	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
 843	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
 844	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 845	/* Map "low" memory only */
 846	const unsigned long min_vaddr = PAGE_OFFSET;
 847	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 848
 849	if (vstart < min_vaddr || vstart >= max_vaddr)
 850		return vstart;
 851
 852	if (vend > max_vaddr || vend < min_vaddr)
 853		vend = max_vaddr;
 854
 855	while (vstart < vend) {
 856		do_large_mapping(vstart, pstart);
 857		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
 858	}
 859	return vstart;
 860}
 861
 862static void __init map_kernel(void)
 863{
 864	int i;
 865
 866	if (phys_base > 0) {
 867		do_large_mapping(PAGE_OFFSET, phys_base);
 868	}
 869
 870	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 871		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 872	}
 873}
 874
 875void (*poke_srmmu)(void) = NULL;
 876
 
 
 877void __init srmmu_paging_init(void)
 878{
 879	int i;
 880	phandle cpunode;
 881	char node_str[128];
 882	pgd_t *pgd;
 883	pmd_t *pmd;
 884	pte_t *pte;
 885	unsigned long pages_avail;
 886
 887	init_mm.context = (unsigned long) NO_CONTEXT;
 888	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 889
 890	if (sparc_cpu_model == sun4d)
 891		num_contexts = 65536; /* We know it is Viking */
 892	else {
 893		/* Find the number of contexts on the srmmu. */
 894		cpunode = prom_getchild(prom_root_node);
 895		num_contexts = 0;
 896		while (cpunode != 0) {
 897			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 898			if (!strcmp(node_str, "cpu")) {
 899				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 900				break;
 901			}
 902			cpunode = prom_getsibling(cpunode);
 903		}
 904	}
 905
 906	if (!num_contexts) {
 907		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 908		prom_halt();
 909	}
 910
 911	pages_avail = 0;
 912	last_valid_pfn = bootmem_init(&pages_avail);
 913
 914	srmmu_nocache_calcsize();
 915	srmmu_nocache_init();
 916	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 917	map_kernel();
 918
 919	/* ctx table has to be physically aligned to its size */
 920	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 921	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 922
 923	for (i = 0; i < num_contexts; i++)
 924		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 925
 926	flush_cache_all();
 927	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 928#ifdef CONFIG_SMP
 929	/* Stop from hanging here... */
 930	local_ops->tlb_all();
 931#else
 932	flush_tlb_all();
 933#endif
 934	poke_srmmu();
 935
 936	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 937	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 938
 939	srmmu_allocate_ptable_skeleton(
 940		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 941	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 942
 943	pgd = pgd_offset_k(PKMAP_BASE);
 944	pmd = pmd_offset(pgd, PKMAP_BASE);
 945	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 946	pkmap_page_table = pte;
 947
 948	flush_cache_all();
 949	flush_tlb_all();
 950
 951	sparc_context_init(num_contexts);
 952
 953	kmap_init();
 954
 955	{
 956		unsigned long zones_size[MAX_NR_ZONES];
 957		unsigned long zholes_size[MAX_NR_ZONES];
 958		unsigned long npages;
 959		int znum;
 960
 961		for (znum = 0; znum < MAX_NR_ZONES; znum++)
 962			zones_size[znum] = zholes_size[znum] = 0;
 963
 964		npages = max_low_pfn - pfn_base;
 965
 966		zones_size[ZONE_DMA] = npages;
 967		zholes_size[ZONE_DMA] = npages - pages_avail;
 968
 969		npages = highend_pfn - max_low_pfn;
 970		zones_size[ZONE_HIGHMEM] = npages;
 971		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
 972
 973		free_area_init_node(0, zones_size, pfn_base, zholes_size);
 974	}
 975}
 976
 977void mmu_info(struct seq_file *m)
 978{
 979	seq_printf(m,
 980		   "MMU type\t: %s\n"
 981		   "contexts\t: %d\n"
 982		   "nocache total\t: %ld\n"
 983		   "nocache used\t: %d\n",
 984		   srmmu_name,
 985		   num_contexts,
 986		   srmmu_nocache_size,
 987		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 988}
 989
 990int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 991{
 992	mm->context = NO_CONTEXT;
 993	return 0;
 994}
 995
 996void destroy_context(struct mm_struct *mm)
 997{
 998	unsigned long flags;
 999
1000	if (mm->context != NO_CONTEXT) {
1001		flush_cache_mm(mm);
1002		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1003		flush_tlb_mm(mm);
1004		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1005		free_context(mm->context);
1006		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1007		mm->context = NO_CONTEXT;
1008	}
1009}
1010
1011/* Init various srmmu chip types. */
1012static void __init srmmu_is_bad(void)
1013{
1014	prom_printf("Could not determine SRMMU chip type.\n");
1015	prom_halt();
1016}
1017
1018static void __init init_vac_layout(void)
1019{
1020	phandle nd;
1021	int cache_lines;
1022	char node_str[128];
1023#ifdef CONFIG_SMP
1024	int cpu = 0;
1025	unsigned long max_size = 0;
1026	unsigned long min_line_size = 0x10000000;
1027#endif
1028
1029	nd = prom_getchild(prom_root_node);
1030	while ((nd = prom_getsibling(nd)) != 0) {
1031		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1032		if (!strcmp(node_str, "cpu")) {
1033			vac_line_size = prom_getint(nd, "cache-line-size");
1034			if (vac_line_size == -1) {
1035				prom_printf("can't determine cache-line-size, halting.\n");
1036				prom_halt();
1037			}
1038			cache_lines = prom_getint(nd, "cache-nlines");
1039			if (cache_lines == -1) {
1040				prom_printf("can't determine cache-nlines, halting.\n");
1041				prom_halt();
1042			}
1043
1044			vac_cache_size = cache_lines * vac_line_size;
1045#ifdef CONFIG_SMP
1046			if (vac_cache_size > max_size)
1047				max_size = vac_cache_size;
1048			if (vac_line_size < min_line_size)
1049				min_line_size = vac_line_size;
1050			//FIXME: cpus not contiguous!!
1051			cpu++;
1052			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1053				break;
1054#else
1055			break;
1056#endif
1057		}
1058	}
1059	if (nd == 0) {
1060		prom_printf("No CPU nodes found, halting.\n");
1061		prom_halt();
1062	}
1063#ifdef CONFIG_SMP
1064	vac_cache_size = max_size;
1065	vac_line_size = min_line_size;
1066#endif
1067	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1068	       (int)vac_cache_size, (int)vac_line_size);
1069}
1070
1071static void poke_hypersparc(void)
1072{
1073	volatile unsigned long clear;
1074	unsigned long mreg = srmmu_get_mmureg();
1075
1076	hyper_flush_unconditional_combined();
1077
1078	mreg &= ~(HYPERSPARC_CWENABLE);
1079	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1080	mreg |= (HYPERSPARC_CMODE);
1081
1082	srmmu_set_mmureg(mreg);
1083
1084#if 0 /* XXX I think this is bad news... -DaveM */
1085	hyper_clear_all_tags();
1086#endif
1087
1088	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1089	hyper_flush_whole_icache();
1090	clear = srmmu_get_faddr();
1091	clear = srmmu_get_fstatus();
1092}
1093
1094static const struct sparc32_cachetlb_ops hypersparc_ops = {
1095	.cache_all	= hypersparc_flush_cache_all,
1096	.cache_mm	= hypersparc_flush_cache_mm,
1097	.cache_page	= hypersparc_flush_cache_page,
1098	.cache_range	= hypersparc_flush_cache_range,
1099	.tlb_all	= hypersparc_flush_tlb_all,
1100	.tlb_mm		= hypersparc_flush_tlb_mm,
1101	.tlb_page	= hypersparc_flush_tlb_page,
1102	.tlb_range	= hypersparc_flush_tlb_range,
1103	.page_to_ram	= hypersparc_flush_page_to_ram,
1104	.sig_insns	= hypersparc_flush_sig_insns,
1105	.page_for_dma	= hypersparc_flush_page_for_dma,
1106};
1107
1108static void __init init_hypersparc(void)
1109{
1110	srmmu_name = "ROSS HyperSparc";
1111	srmmu_modtype = HyperSparc;
1112
1113	init_vac_layout();
1114
1115	is_hypersparc = 1;
1116	sparc32_cachetlb_ops = &hypersparc_ops;
1117
1118	poke_srmmu = poke_hypersparc;
1119
1120	hypersparc_setup_blockops();
1121}
1122
1123static void poke_swift(void)
1124{
1125	unsigned long mreg;
1126
1127	/* Clear any crap from the cache or else... */
1128	swift_flush_cache_all();
1129
1130	/* Enable I & D caches */
1131	mreg = srmmu_get_mmureg();
1132	mreg |= (SWIFT_IE | SWIFT_DE);
1133	/*
1134	 * The Swift branch folding logic is completely broken.  At
1135	 * trap time, if things are just right, if can mistakenly
1136	 * think that a trap is coming from kernel mode when in fact
1137	 * it is coming from user mode (it mis-executes the branch in
1138	 * the trap code).  So you see things like crashme completely
1139	 * hosing your machine which is completely unacceptable.  Turn
1140	 * this shit off... nice job Fujitsu.
1141	 */
1142	mreg &= ~(SWIFT_BF);
1143	srmmu_set_mmureg(mreg);
1144}
1145
1146static const struct sparc32_cachetlb_ops swift_ops = {
1147	.cache_all	= swift_flush_cache_all,
1148	.cache_mm	= swift_flush_cache_mm,
1149	.cache_page	= swift_flush_cache_page,
1150	.cache_range	= swift_flush_cache_range,
1151	.tlb_all	= swift_flush_tlb_all,
1152	.tlb_mm		= swift_flush_tlb_mm,
1153	.tlb_page	= swift_flush_tlb_page,
1154	.tlb_range	= swift_flush_tlb_range,
1155	.page_to_ram	= swift_flush_page_to_ram,
1156	.sig_insns	= swift_flush_sig_insns,
1157	.page_for_dma	= swift_flush_page_for_dma,
1158};
1159
1160#define SWIFT_MASKID_ADDR  0x10003018
1161static void __init init_swift(void)
1162{
1163	unsigned long swift_rev;
1164
1165	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1166			     "srl %0, 0x18, %0\n\t" :
1167			     "=r" (swift_rev) :
1168			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1169	srmmu_name = "Fujitsu Swift";
1170	switch (swift_rev) {
1171	case 0x11:
1172	case 0x20:
1173	case 0x23:
1174	case 0x30:
1175		srmmu_modtype = Swift_lots_o_bugs;
1176		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1177		/*
1178		 * Gee george, I wonder why Sun is so hush hush about
1179		 * this hardware bug... really braindamage stuff going
1180		 * on here.  However I think we can find a way to avoid
1181		 * all of the workaround overhead under Linux.  Basically,
1182		 * any page fault can cause kernel pages to become user
1183		 * accessible (the mmu gets confused and clears some of
1184		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1185		 * horrible eh?  But wait, after extensive testing it appears
1186		 * that if you use pgd_t level large kernel pte's (like the
1187		 * 4MB pages on the Pentium) the bug does not get tripped
1188		 * at all.  This avoids almost all of the major overhead.
1189		 * Welcome to a world where your vendor tells you to,
1190		 * "apply this kernel patch" instead of "sorry for the
1191		 * broken hardware, send it back and we'll give you
1192		 * properly functioning parts"
1193		 */
1194		break;
1195	case 0x25:
1196	case 0x31:
1197		srmmu_modtype = Swift_bad_c;
1198		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1199		/*
1200		 * You see Sun allude to this hardware bug but never
1201		 * admit things directly, they'll say things like,
1202		 * "the Swift chip cache problems" or similar.
1203		 */
1204		break;
1205	default:
1206		srmmu_modtype = Swift_ok;
1207		break;
1208	}
1209
1210	sparc32_cachetlb_ops = &swift_ops;
1211	flush_page_for_dma_global = 0;
1212
1213	/*
1214	 * Are you now convinced that the Swift is one of the
1215	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1216	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1217	 * you examined the microcode of the Swift you'd find
1218	 * XXX's all over the place.
1219	 */
1220	poke_srmmu = poke_swift;
1221}
1222
1223static void turbosparc_flush_cache_all(void)
1224{
1225	flush_user_windows();
1226	turbosparc_idflash_clear();
1227}
1228
1229static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1230{
1231	FLUSH_BEGIN(mm)
1232	flush_user_windows();
1233	turbosparc_idflash_clear();
1234	FLUSH_END
1235}
1236
1237static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1238{
1239	FLUSH_BEGIN(vma->vm_mm)
1240	flush_user_windows();
1241	turbosparc_idflash_clear();
1242	FLUSH_END
1243}
1244
1245static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1246{
1247	FLUSH_BEGIN(vma->vm_mm)
1248	flush_user_windows();
1249	if (vma->vm_flags & VM_EXEC)
1250		turbosparc_flush_icache();
1251	turbosparc_flush_dcache();
1252	FLUSH_END
1253}
1254
1255/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1256static void turbosparc_flush_page_to_ram(unsigned long page)
1257{
1258#ifdef TURBOSPARC_WRITEBACK
1259	volatile unsigned long clear;
1260
1261	if (srmmu_probe(page))
1262		turbosparc_flush_page_cache(page);
1263	clear = srmmu_get_fstatus();
1264#endif
1265}
1266
1267static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1268{
1269}
1270
1271static void turbosparc_flush_page_for_dma(unsigned long page)
1272{
1273	turbosparc_flush_dcache();
1274}
1275
1276static void turbosparc_flush_tlb_all(void)
1277{
1278	srmmu_flush_whole_tlb();
1279}
1280
1281static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1282{
1283	FLUSH_BEGIN(mm)
1284	srmmu_flush_whole_tlb();
1285	FLUSH_END
1286}
1287
1288static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1289{
1290	FLUSH_BEGIN(vma->vm_mm)
1291	srmmu_flush_whole_tlb();
1292	FLUSH_END
1293}
1294
1295static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1296{
1297	FLUSH_BEGIN(vma->vm_mm)
1298	srmmu_flush_whole_tlb();
1299	FLUSH_END
1300}
1301
1302
1303static void poke_turbosparc(void)
1304{
1305	unsigned long mreg = srmmu_get_mmureg();
1306	unsigned long ccreg;
1307
1308	/* Clear any crap from the cache or else... */
1309	turbosparc_flush_cache_all();
1310	/* Temporarily disable I & D caches */
1311	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1312	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1313	srmmu_set_mmureg(mreg);
1314
1315	ccreg = turbosparc_get_ccreg();
1316
1317#ifdef TURBOSPARC_WRITEBACK
1318	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1319	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1320			/* Write-back D-cache, emulate VLSI
1321			 * abortion number three, not number one */
1322#else
1323	/* For now let's play safe, optimize later */
1324	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1325			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1326	ccreg &= ~(TURBOSPARC_uS2);
1327			/* Emulate VLSI abortion number three, not number one */
1328#endif
1329
1330	switch (ccreg & 7) {
1331	case 0: /* No SE cache */
1332	case 7: /* Test mode */
1333		break;
1334	default:
1335		ccreg |= (TURBOSPARC_SCENABLE);
1336	}
1337	turbosparc_set_ccreg(ccreg);
1338
1339	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1340	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1341	srmmu_set_mmureg(mreg);
1342}
1343
1344static const struct sparc32_cachetlb_ops turbosparc_ops = {
1345	.cache_all	= turbosparc_flush_cache_all,
1346	.cache_mm	= turbosparc_flush_cache_mm,
1347	.cache_page	= turbosparc_flush_cache_page,
1348	.cache_range	= turbosparc_flush_cache_range,
1349	.tlb_all	= turbosparc_flush_tlb_all,
1350	.tlb_mm		= turbosparc_flush_tlb_mm,
1351	.tlb_page	= turbosparc_flush_tlb_page,
1352	.tlb_range	= turbosparc_flush_tlb_range,
1353	.page_to_ram	= turbosparc_flush_page_to_ram,
1354	.sig_insns	= turbosparc_flush_sig_insns,
1355	.page_for_dma	= turbosparc_flush_page_for_dma,
1356};
1357
1358static void __init init_turbosparc(void)
1359{
1360	srmmu_name = "Fujitsu TurboSparc";
1361	srmmu_modtype = TurboSparc;
1362	sparc32_cachetlb_ops = &turbosparc_ops;
1363	poke_srmmu = poke_turbosparc;
1364}
1365
1366static void poke_tsunami(void)
1367{
1368	unsigned long mreg = srmmu_get_mmureg();
1369
1370	tsunami_flush_icache();
1371	tsunami_flush_dcache();
1372	mreg &= ~TSUNAMI_ITD;
1373	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1374	srmmu_set_mmureg(mreg);
1375}
1376
1377static const struct sparc32_cachetlb_ops tsunami_ops = {
1378	.cache_all	= tsunami_flush_cache_all,
1379	.cache_mm	= tsunami_flush_cache_mm,
1380	.cache_page	= tsunami_flush_cache_page,
1381	.cache_range	= tsunami_flush_cache_range,
1382	.tlb_all	= tsunami_flush_tlb_all,
1383	.tlb_mm		= tsunami_flush_tlb_mm,
1384	.tlb_page	= tsunami_flush_tlb_page,
1385	.tlb_range	= tsunami_flush_tlb_range,
1386	.page_to_ram	= tsunami_flush_page_to_ram,
1387	.sig_insns	= tsunami_flush_sig_insns,
1388	.page_for_dma	= tsunami_flush_page_for_dma,
1389};
1390
1391static void __init init_tsunami(void)
1392{
1393	/*
1394	 * Tsunami's pretty sane, Sun and TI actually got it
1395	 * somewhat right this time.  Fujitsu should have
1396	 * taken some lessons from them.
1397	 */
1398
1399	srmmu_name = "TI Tsunami";
1400	srmmu_modtype = Tsunami;
1401	sparc32_cachetlb_ops = &tsunami_ops;
1402	poke_srmmu = poke_tsunami;
1403
1404	tsunami_setup_blockops();
1405}
1406
1407static void poke_viking(void)
1408{
1409	unsigned long mreg = srmmu_get_mmureg();
1410	static int smp_catch;
1411
1412	if (viking_mxcc_present) {
1413		unsigned long mxcc_control = mxcc_get_creg();
1414
1415		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1416		mxcc_control &= ~(MXCC_CTL_RRC);
1417		mxcc_set_creg(mxcc_control);
1418
1419		/*
1420		 * We don't need memory parity checks.
1421		 * XXX This is a mess, have to dig out later. ecd.
1422		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1423		 */
1424
1425		/* We do cache ptables on MXCC. */
1426		mreg |= VIKING_TCENABLE;
1427	} else {
1428		unsigned long bpreg;
1429
1430		mreg &= ~(VIKING_TCENABLE);
1431		if (smp_catch++) {
1432			/* Must disable mixed-cmd mode here for other cpu's. */
1433			bpreg = viking_get_bpreg();
1434			bpreg &= ~(VIKING_ACTION_MIX);
1435			viking_set_bpreg(bpreg);
1436
1437			/* Just in case PROM does something funny. */
1438			msi_set_sync();
1439		}
1440	}
1441
1442	mreg |= VIKING_SPENABLE;
1443	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1444	mreg |= VIKING_SBENABLE;
1445	mreg &= ~(VIKING_ACENABLE);
1446	srmmu_set_mmureg(mreg);
1447}
1448
1449static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1450	.cache_all	= viking_flush_cache_all,
1451	.cache_mm	= viking_flush_cache_mm,
1452	.cache_page	= viking_flush_cache_page,
1453	.cache_range	= viking_flush_cache_range,
1454	.tlb_all	= viking_flush_tlb_all,
1455	.tlb_mm		= viking_flush_tlb_mm,
1456	.tlb_page	= viking_flush_tlb_page,
1457	.tlb_range	= viking_flush_tlb_range,
1458	.page_to_ram	= viking_flush_page_to_ram,
1459	.sig_insns	= viking_flush_sig_insns,
1460	.page_for_dma	= viking_flush_page_for_dma,
1461};
1462
1463#ifdef CONFIG_SMP
1464/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1465 * perform the local TLB flush and all the other cpus will see it.
1466 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1467 * that requires that we add some synchronization to these flushes.
1468 *
1469 * The bug is that the fifo which keeps track of all the pending TLB
1470 * broadcasts in the system is an entry or two too small, so if we
1471 * have too many going at once we'll overflow that fifo and lose a TLB
1472 * flush resulting in corruption.
1473 *
1474 * Our workaround is to take a global spinlock around the TLB flushes,
1475 * which guarentees we won't ever have too many pending.  It's a big
1476 * hammer, but a semaphore like system to make sure we only have N TLB
1477 * flushes going at once will require SMP locking anyways so there's
1478 * no real value in trying any harder than this.
1479 */
1480static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1481	.cache_all	= viking_flush_cache_all,
1482	.cache_mm	= viking_flush_cache_mm,
1483	.cache_page	= viking_flush_cache_page,
1484	.cache_range	= viking_flush_cache_range,
1485	.tlb_all	= sun4dsmp_flush_tlb_all,
1486	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1487	.tlb_page	= sun4dsmp_flush_tlb_page,
1488	.tlb_range	= sun4dsmp_flush_tlb_range,
1489	.page_to_ram	= viking_flush_page_to_ram,
1490	.sig_insns	= viking_flush_sig_insns,
1491	.page_for_dma	= viking_flush_page_for_dma,
1492};
1493#endif
1494
1495static void __init init_viking(void)
1496{
1497	unsigned long mreg = srmmu_get_mmureg();
1498
1499	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1500	if (mreg & VIKING_MMODE) {
1501		srmmu_name = "TI Viking";
1502		viking_mxcc_present = 0;
1503		msi_set_sync();
1504
1505		/*
1506		 * We need this to make sure old viking takes no hits
1507		 * on it's cache for dma snoops to workaround the
1508		 * "load from non-cacheable memory" interrupt bug.
1509		 * This is only necessary because of the new way in
1510		 * which we use the IOMMU.
1511		 */
1512		viking_ops.page_for_dma = viking_flush_page;
1513#ifdef CONFIG_SMP
1514		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1515#endif
1516		flush_page_for_dma_global = 0;
1517	} else {
1518		srmmu_name = "TI Viking/MXCC";
1519		viking_mxcc_present = 1;
1520		srmmu_cache_pagetables = 1;
1521	}
1522
1523	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1524		&viking_ops;
1525#ifdef CONFIG_SMP
1526	if (sparc_cpu_model == sun4d)
1527		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1528			&viking_sun4d_smp_ops;
1529#endif
1530
1531	poke_srmmu = poke_viking;
1532}
1533
1534/* Probe for the srmmu chip version. */
1535static void __init get_srmmu_type(void)
1536{
1537	unsigned long mreg, psr;
1538	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1539
1540	srmmu_modtype = SRMMU_INVAL_MOD;
1541	hwbug_bitmask = 0;
1542
1543	mreg = srmmu_get_mmureg(); psr = get_psr();
1544	mod_typ = (mreg & 0xf0000000) >> 28;
1545	mod_rev = (mreg & 0x0f000000) >> 24;
1546	psr_typ = (psr >> 28) & 0xf;
1547	psr_vers = (psr >> 24) & 0xf;
1548
1549	/* First, check for sparc-leon. */
1550	if (sparc_cpu_model == sparc_leon) {
1551		init_leon();
1552		return;
1553	}
1554
1555	/* Second, check for HyperSparc or Cypress. */
1556	if (mod_typ == 1) {
1557		switch (mod_rev) {
1558		case 7:
1559			/* UP or MP Hypersparc */
1560			init_hypersparc();
1561			break;
1562		case 0:
1563		case 2:
1564		case 10:
1565		case 11:
1566		case 12:
1567		case 13:
1568		case 14:
1569		case 15:
1570		default:
1571			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1572			prom_halt();
1573			break;
1574		}
1575		return;
1576	}
1577
1578	/* Now Fujitsu TurboSparc. It might happen that it is
1579	 * in Swift emulation mode, so we will check later...
1580	 */
1581	if (psr_typ == 0 && psr_vers == 5) {
1582		init_turbosparc();
1583		return;
1584	}
1585
1586	/* Next check for Fujitsu Swift. */
1587	if (psr_typ == 0 && psr_vers == 4) {
1588		phandle cpunode;
1589		char node_str[128];
1590
1591		/* Look if it is not a TurboSparc emulating Swift... */
1592		cpunode = prom_getchild(prom_root_node);
1593		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1594			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1595			if (!strcmp(node_str, "cpu")) {
1596				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1597				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1598					init_turbosparc();
1599					return;
1600				}
1601				break;
1602			}
1603		}
1604
1605		init_swift();
1606		return;
1607	}
1608
1609	/* Now the Viking family of srmmu. */
1610	if (psr_typ == 4 &&
1611	   ((psr_vers == 0) ||
1612	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1613		init_viking();
1614		return;
1615	}
1616
1617	/* Finally the Tsunami. */
1618	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1619		init_tsunami();
1620		return;
1621	}
1622
1623	/* Oh well */
1624	srmmu_is_bad();
1625}
1626
1627#ifdef CONFIG_SMP
1628/* Local cross-calls. */
1629static void smp_flush_page_for_dma(unsigned long page)
1630{
1631	xc1((smpfunc_t) local_ops->page_for_dma, page);
1632	local_ops->page_for_dma(page);
1633}
1634
1635static void smp_flush_cache_all(void)
1636{
1637	xc0((smpfunc_t) local_ops->cache_all);
1638	local_ops->cache_all();
1639}
1640
1641static void smp_flush_tlb_all(void)
1642{
1643	xc0((smpfunc_t) local_ops->tlb_all);
1644	local_ops->tlb_all();
1645}
1646
1647static void smp_flush_cache_mm(struct mm_struct *mm)
1648{
1649	if (mm->context != NO_CONTEXT) {
1650		cpumask_t cpu_mask;
1651		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1652		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1653		if (!cpumask_empty(&cpu_mask))
1654			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1655		local_ops->cache_mm(mm);
1656	}
1657}
1658
1659static void smp_flush_tlb_mm(struct mm_struct *mm)
1660{
1661	if (mm->context != NO_CONTEXT) {
1662		cpumask_t cpu_mask;
1663		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1664		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1665		if (!cpumask_empty(&cpu_mask)) {
1666			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1667			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1668				cpumask_copy(mm_cpumask(mm),
1669					     cpumask_of(smp_processor_id()));
1670		}
1671		local_ops->tlb_mm(mm);
1672	}
1673}
1674
1675static void smp_flush_cache_range(struct vm_area_struct *vma,
1676				  unsigned long start,
1677				  unsigned long end)
1678{
1679	struct mm_struct *mm = vma->vm_mm;
1680
1681	if (mm->context != NO_CONTEXT) {
1682		cpumask_t cpu_mask;
1683		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1684		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1685		if (!cpumask_empty(&cpu_mask))
1686			xc3((smpfunc_t) local_ops->cache_range,
1687			    (unsigned long) vma, start, end);
1688		local_ops->cache_range(vma, start, end);
1689	}
1690}
1691
1692static void smp_flush_tlb_range(struct vm_area_struct *vma,
1693				unsigned long start,
1694				unsigned long end)
1695{
1696	struct mm_struct *mm = vma->vm_mm;
1697
1698	if (mm->context != NO_CONTEXT) {
1699		cpumask_t cpu_mask;
1700		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1701		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1702		if (!cpumask_empty(&cpu_mask))
1703			xc3((smpfunc_t) local_ops->tlb_range,
1704			    (unsigned long) vma, start, end);
1705		local_ops->tlb_range(vma, start, end);
1706	}
1707}
1708
1709static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1710{
1711	struct mm_struct *mm = vma->vm_mm;
1712
1713	if (mm->context != NO_CONTEXT) {
1714		cpumask_t cpu_mask;
1715		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1716		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1717		if (!cpumask_empty(&cpu_mask))
1718			xc2((smpfunc_t) local_ops->cache_page,
1719			    (unsigned long) vma, page);
1720		local_ops->cache_page(vma, page);
1721	}
1722}
1723
1724static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1725{
1726	struct mm_struct *mm = vma->vm_mm;
1727
1728	if (mm->context != NO_CONTEXT) {
1729		cpumask_t cpu_mask;
1730		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1731		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1732		if (!cpumask_empty(&cpu_mask))
1733			xc2((smpfunc_t) local_ops->tlb_page,
1734			    (unsigned long) vma, page);
1735		local_ops->tlb_page(vma, page);
1736	}
1737}
1738
1739static void smp_flush_page_to_ram(unsigned long page)
1740{
1741	/* Current theory is that those who call this are the one's
1742	 * who have just dirtied their cache with the pages contents
1743	 * in kernel space, therefore we only run this on local cpu.
1744	 *
1745	 * XXX This experiment failed, research further... -DaveM
1746	 */
1747#if 1
1748	xc1((smpfunc_t) local_ops->page_to_ram, page);
1749#endif
1750	local_ops->page_to_ram(page);
1751}
1752
1753static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1754{
1755	cpumask_t cpu_mask;
1756	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758	if (!cpumask_empty(&cpu_mask))
1759		xc2((smpfunc_t) local_ops->sig_insns,
1760		    (unsigned long) mm, insn_addr);
1761	local_ops->sig_insns(mm, insn_addr);
1762}
1763
1764static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1765	.cache_all	= smp_flush_cache_all,
1766	.cache_mm	= smp_flush_cache_mm,
1767	.cache_page	= smp_flush_cache_page,
1768	.cache_range	= smp_flush_cache_range,
1769	.tlb_all	= smp_flush_tlb_all,
1770	.tlb_mm		= smp_flush_tlb_mm,
1771	.tlb_page	= smp_flush_tlb_page,
1772	.tlb_range	= smp_flush_tlb_range,
1773	.page_to_ram	= smp_flush_page_to_ram,
1774	.sig_insns	= smp_flush_sig_insns,
1775	.page_for_dma	= smp_flush_page_for_dma,
1776};
1777#endif
1778
1779/* Load up routines and constants for sun4m and sun4d mmu */
1780void __init load_mmu(void)
1781{
 
 
 
1782	/* Functions */
1783	get_srmmu_type();
1784
1785#ifdef CONFIG_SMP
1786	/* El switcheroo... */
1787	local_ops = sparc32_cachetlb_ops;
1788
1789	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1790		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1791		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1792		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1793		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1794	}
1795
1796	if (poke_srmmu == poke_viking) {
1797		/* Avoid unnecessary cross calls. */
1798		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1799		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1800		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1801		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1802
1803		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1804		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1805		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1806	}
1807
1808	/* It really is const after this point. */
1809	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1810		&smp_cachetlb_ops;
1811#endif
1812
1813	if (sparc_cpu_model == sun4d)
1814		ld_mmu_iounit();
1815	else
1816		ld_mmu_iommu();
1817#ifdef CONFIG_SMP
1818	if (sparc_cpu_model == sun4d)
1819		sun4d_init_smp();
1820	else if (sparc_cpu_model == sparc_leon)
1821		leon_init_smp();
1822	else
1823		sun4m_init_smp();
1824#endif
1825}
v3.15
 
   1/*
   2 * srmmu.c:  SRMMU specific routines for memory management.
   3 *
   4 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   6 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
   9 */
  10
  11#include <linux/seq_file.h>
  12#include <linux/spinlock.h>
  13#include <linux/bootmem.h>
  14#include <linux/pagemap.h>
  15#include <linux/vmalloc.h>
  16#include <linux/kdebug.h>
  17#include <linux/export.h>
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/log2.h>
  21#include <linux/gfp.h>
  22#include <linux/fs.h>
  23#include <linux/mm.h>
  24
  25#include <asm/mmu_context.h>
  26#include <asm/cacheflush.h>
  27#include <asm/tlbflush.h>
  28#include <asm/io-unit.h>
  29#include <asm/pgalloc.h>
  30#include <asm/pgtable.h>
  31#include <asm/bitext.h>
  32#include <asm/vaddrs.h>
  33#include <asm/cache.h>
  34#include <asm/traps.h>
  35#include <asm/oplib.h>
  36#include <asm/mbus.h>
  37#include <asm/page.h>
  38#include <asm/asi.h>
  39#include <asm/msi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "srmmu.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
 
  57int vac_line_size;
  58
  59extern struct resource sparc_iomap;
  60
  61extern unsigned long last_valid_pfn;
  62
  63static pgd_t *srmmu_swapper_pg_dir;
  64
  65const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  66EXPORT_SYMBOL(sparc32_cachetlb_ops);
  67
  68#ifdef CONFIG_SMP
  69const struct sparc32_cachetlb_ops *local_ops;
  70
  71#define FLUSH_BEGIN(mm)
  72#define FLUSH_END
  73#else
  74#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  75#define FLUSH_END	}
  76#endif
  77
  78int flush_page_for_dma_global = 1;
  79
  80char *srmmu_name;
  81
  82ctxd_t *srmmu_ctx_table_phys;
  83static ctxd_t *srmmu_context_table;
  84
  85int viking_mxcc_present;
  86static DEFINE_SPINLOCK(srmmu_context_spinlock);
  87
  88static int is_hypersparc;
  89
  90static int srmmu_cache_pagetables;
  91
  92/* these will be initialized in srmmu_nocache_calcsize() */
  93static unsigned long srmmu_nocache_size;
  94static unsigned long srmmu_nocache_end;
  95
  96/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  97#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  98
  99/* The context table is a nocache user with the biggest alignment needs. */
 100#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 101
 102void *srmmu_nocache_pool;
 103void *srmmu_nocache_bitmap;
 104static struct bit_map srmmu_nocache_map;
 105
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 111{ set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
 
 
 
 
 
 112
 113void pmd_set(pmd_t *pmdp, pte_t *ptep)
 114{
 115	unsigned long ptp;	/* Physical address, shifted right by 4 */
 116	int i;
 117
 118	ptp = __nocache_pa((unsigned long) ptep) >> 4;
 119	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 120		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 121		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 122	}
 123}
 124
 125void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
 126{
 127	unsigned long ptp;	/* Physical address, shifted right by 4 */
 128	int i;
 129
 130	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
 131	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 132		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 133		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 134	}
 135}
 136
 137/* Find an entry in the third-level page table.. */
 138pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
 139{
 140	void *pte;
 141
 142	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 143	return (pte_t *) pte +
 144	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 145}
 146
 147/*
 148 * size: bytes to allocate in the nocache area.
 149 * align: bytes, number to align at.
 150 * Returns the virtual address of the allocated area.
 151 */
 152static void *__srmmu_get_nocache(int size, int align)
 153{
 154	int offset;
 155	unsigned long addr;
 156
 157	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 158		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 159		       size);
 160		size = SRMMU_NOCACHE_BITMAP_SHIFT;
 161	}
 162	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
 163		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
 164		       size);
 165		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
 166	}
 167	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 168
 169	offset = bit_map_string_get(&srmmu_nocache_map,
 170				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 171				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 172	if (offset == -1) {
 173		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 174		       size, (int) srmmu_nocache_size,
 175		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 176		return 0;
 177	}
 178
 179	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 180	return (void *)addr;
 181}
 182
 183void *srmmu_get_nocache(int size, int align)
 184{
 185	void *tmp;
 186
 187	tmp = __srmmu_get_nocache(size, align);
 188
 189	if (tmp)
 190		memset(tmp, 0, size);
 191
 192	return tmp;
 193}
 194
 195void srmmu_free_nocache(void *addr, int size)
 196{
 197	unsigned long vaddr;
 198	int offset;
 199
 200	vaddr = (unsigned long)addr;
 201	if (vaddr < SRMMU_NOCACHE_VADDR) {
 202		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 203		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 204		BUG();
 205	}
 206	if (vaddr + size > srmmu_nocache_end) {
 207		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 208		    vaddr, srmmu_nocache_end);
 209		BUG();
 210	}
 211	if (!is_power_of_2(size)) {
 212		printk("Size 0x%x is not a power of 2\n", size);
 213		BUG();
 214	}
 215	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 216		printk("Size 0x%x is too small\n", size);
 217		BUG();
 218	}
 219	if (vaddr & (size - 1)) {
 220		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 221		BUG();
 222	}
 223
 224	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 225	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 226
 227	bit_map_clear(&srmmu_nocache_map, offset, size);
 228}
 229
 230static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 231						 unsigned long end);
 232
 233/* Return how much physical memory we have.  */
 234static unsigned long __init probe_memory(void)
 235{
 236	unsigned long total = 0;
 237	int i;
 238
 239	for (i = 0; sp_banks[i].num_bytes; i++)
 240		total += sp_banks[i].num_bytes;
 241
 242	return total;
 243}
 244
 245/*
 246 * Reserve nocache dynamically proportionally to the amount of
 247 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 248 */
 249static void __init srmmu_nocache_calcsize(void)
 250{
 251	unsigned long sysmemavail = probe_memory() / 1024;
 252	int srmmu_nocache_npages;
 253
 254	srmmu_nocache_npages =
 255		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 256
 257 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 258	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 259	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 260		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 261
 262	/* anything above 1280 blows up */
 263	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 264		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 265
 266	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 267	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 268}
 269
 270static void __init srmmu_nocache_init(void)
 271{
 
 272	unsigned int bitmap_bits;
 273	pgd_t *pgd;
 274	pmd_t *pmd;
 275	pte_t *pte;
 276	unsigned long paddr, vaddr;
 277	unsigned long pteval;
 278
 279	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 280
 281	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
 282		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
 283	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 284
 285	srmmu_nocache_bitmap =
 286		__alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 287				SMP_CACHE_BYTES, 0UL);
 288	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 289
 290	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 291	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 292	init_mm.pgd = srmmu_swapper_pg_dir;
 293
 294	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 295
 296	paddr = __pa((unsigned long)srmmu_nocache_pool);
 297	vaddr = SRMMU_NOCACHE_VADDR;
 298
 299	while (vaddr < srmmu_nocache_end) {
 300		pgd = pgd_offset_k(vaddr);
 301		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
 302		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 303
 304		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 305
 306		if (srmmu_cache_pagetables)
 307			pteval |= SRMMU_CACHE;
 308
 309		set_pte(__nocache_fix(pte), __pte(pteval));
 310
 311		vaddr += PAGE_SIZE;
 312		paddr += PAGE_SIZE;
 313	}
 314
 315	flush_cache_all();
 316	flush_tlb_all();
 317}
 318
 319pgd_t *get_pgd_fast(void)
 320{
 321	pgd_t *pgd = NULL;
 322
 323	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 324	if (pgd) {
 325		pgd_t *init = pgd_offset_k(0);
 326		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 327		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 328						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 329	}
 330
 331	return pgd;
 332}
 333
 334/*
 335 * Hardware needs alignment to 256 only, but we align to whole page size
 336 * to reduce fragmentation problems due to the buddy principle.
 337 * XXX Provide actual fragmentation statistics in /proc.
 338 *
 339 * Alignments up to the page size are the same for physical and virtual
 340 * addresses of the nocache area.
 341 */
 342pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 343{
 344	unsigned long pte;
 345	struct page *page;
 346
 347	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
 348		return NULL;
 349	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
 350	if (!pgtable_page_ctor(page)) {
 351		__free_page(page);
 352		return NULL;
 353	}
 354	return page;
 355}
 356
 357void pte_free(struct mm_struct *mm, pgtable_t pte)
 358{
 359	unsigned long p;
 360
 361	pgtable_page_dtor(pte);
 362	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
 363	if (p == 0)
 364		BUG();
 365	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
 366
 367	/* free non cached virtual address*/
 368	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
 369}
 370
 371/* context handling - a dynamically sized pool is used */
 372#define NO_CONTEXT	-1
 373
 374struct ctx_list {
 375	struct ctx_list *next;
 376	struct ctx_list *prev;
 377	unsigned int ctx_number;
 378	struct mm_struct *ctx_mm;
 379};
 380
 381static struct ctx_list *ctx_list_pool;
 382static struct ctx_list ctx_free;
 383static struct ctx_list ctx_used;
 384
 385/* At boot time we determine the number of contexts */
 386static int num_contexts;
 387
 388static inline void remove_from_ctx_list(struct ctx_list *entry)
 389{
 390	entry->next->prev = entry->prev;
 391	entry->prev->next = entry->next;
 392}
 393
 394static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 395{
 396	entry->next = head;
 397	(entry->prev = head->prev)->next = entry;
 398	head->prev = entry;
 399}
 400#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 401#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 402
 403
 404static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 405{
 406	struct ctx_list *ctxp;
 407
 408	ctxp = ctx_free.next;
 409	if (ctxp != &ctx_free) {
 410		remove_from_ctx_list(ctxp);
 411		add_to_used_ctxlist(ctxp);
 412		mm->context = ctxp->ctx_number;
 413		ctxp->ctx_mm = mm;
 414		return;
 415	}
 416	ctxp = ctx_used.next;
 417	if (ctxp->ctx_mm == old_mm)
 418		ctxp = ctxp->next;
 419	if (ctxp == &ctx_used)
 420		panic("out of mmu contexts");
 421	flush_cache_mm(ctxp->ctx_mm);
 422	flush_tlb_mm(ctxp->ctx_mm);
 423	remove_from_ctx_list(ctxp);
 424	add_to_used_ctxlist(ctxp);
 425	ctxp->ctx_mm->context = NO_CONTEXT;
 426	ctxp->ctx_mm = mm;
 427	mm->context = ctxp->ctx_number;
 428}
 429
 430static inline void free_context(int context)
 431{
 432	struct ctx_list *ctx_old;
 433
 434	ctx_old = ctx_list_pool + context;
 435	remove_from_ctx_list(ctx_old);
 436	add_to_free_ctxlist(ctx_old);
 437}
 438
 439static void __init sparc_context_init(int numctx)
 440{
 441	int ctx;
 442	unsigned long size;
 443
 444	size = numctx * sizeof(struct ctx_list);
 445	ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
 446
 447	for (ctx = 0; ctx < numctx; ctx++) {
 448		struct ctx_list *clist;
 449
 450		clist = (ctx_list_pool + ctx);
 451		clist->ctx_number = ctx;
 452		clist->ctx_mm = NULL;
 453	}
 454	ctx_free.next = ctx_free.prev = &ctx_free;
 455	ctx_used.next = ctx_used.prev = &ctx_used;
 456	for (ctx = 0; ctx < numctx; ctx++)
 457		add_to_free_ctxlist(ctx_list_pool + ctx);
 458}
 459
 460void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 461	       struct task_struct *tsk)
 462{
 
 
 463	if (mm->context == NO_CONTEXT) {
 464		spin_lock(&srmmu_context_spinlock);
 465		alloc_context(old_mm, mm);
 466		spin_unlock(&srmmu_context_spinlock);
 467		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 468	}
 469
 470	if (sparc_cpu_model == sparc_leon)
 471		leon_switch_mm();
 472
 473	if (is_hypersparc)
 474		hyper_flush_whole_icache();
 475
 476	srmmu_set_context(mm->context);
 477}
 478
 479/* Low level IO area allocation on the SRMMU. */
 480static inline void srmmu_mapioaddr(unsigned long physaddr,
 481				   unsigned long virt_addr, int bus_type)
 482{
 483	pgd_t *pgdp;
 484	pmd_t *pmdp;
 485	pte_t *ptep;
 486	unsigned long tmp;
 487
 488	physaddr &= PAGE_MASK;
 489	pgdp = pgd_offset_k(virt_addr);
 490	pmdp = pmd_offset(pgdp, virt_addr);
 491	ptep = pte_offset_kernel(pmdp, virt_addr);
 492	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 493
 494	/* I need to test whether this is consistent over all
 495	 * sun4m's.  The bus_type represents the upper 4 bits of
 496	 * 36-bit physical address on the I/O space lines...
 497	 */
 498	tmp |= (bus_type << 28);
 499	tmp |= SRMMU_PRIV;
 500	__flush_page_to_ram(virt_addr);
 501	set_pte(ptep, __pte(tmp));
 502}
 503
 504void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 505		      unsigned long xva, unsigned int len)
 506{
 507	while (len != 0) {
 508		len -= PAGE_SIZE;
 509		srmmu_mapioaddr(xpa, xva, bus);
 510		xva += PAGE_SIZE;
 511		xpa += PAGE_SIZE;
 512	}
 513	flush_tlb_all();
 514}
 515
 516static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 517{
 518	pgd_t *pgdp;
 519	pmd_t *pmdp;
 520	pte_t *ptep;
 521
 522	pgdp = pgd_offset_k(virt_addr);
 523	pmdp = pmd_offset(pgdp, virt_addr);
 524	ptep = pte_offset_kernel(pmdp, virt_addr);
 525
 526	/* No need to flush uncacheable page. */
 527	__pte_clear(ptep);
 528}
 529
 530void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 531{
 532	while (len != 0) {
 533		len -= PAGE_SIZE;
 534		srmmu_unmapioaddr(virt_addr);
 535		virt_addr += PAGE_SIZE;
 536	}
 537	flush_tlb_all();
 538}
 539
 540/* tsunami.S */
 541extern void tsunami_flush_cache_all(void);
 542extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 543extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 544extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 545extern void tsunami_flush_page_to_ram(unsigned long page);
 546extern void tsunami_flush_page_for_dma(unsigned long page);
 547extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 548extern void tsunami_flush_tlb_all(void);
 549extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 550extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 551extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 552extern void tsunami_setup_blockops(void);
 553
 554/* swift.S */
 555extern void swift_flush_cache_all(void);
 556extern void swift_flush_cache_mm(struct mm_struct *mm);
 557extern void swift_flush_cache_range(struct vm_area_struct *vma,
 558				    unsigned long start, unsigned long end);
 559extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 560extern void swift_flush_page_to_ram(unsigned long page);
 561extern void swift_flush_page_for_dma(unsigned long page);
 562extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 563extern void swift_flush_tlb_all(void);
 564extern void swift_flush_tlb_mm(struct mm_struct *mm);
 565extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 566				  unsigned long start, unsigned long end);
 567extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 568
 569#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 570void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 571{
 572	int cctx, ctx1;
 573
 574	page &= PAGE_MASK;
 575	if ((ctx1 = vma->vm_mm->context) != -1) {
 576		cctx = srmmu_get_context();
 577/* Is context # ever different from current context? P3 */
 578		if (cctx != ctx1) {
 579			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 580			srmmu_set_context(ctx1);
 581			swift_flush_page(page);
 582			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 583					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 584			srmmu_set_context(cctx);
 585		} else {
 586			 /* Rm. prot. bits from virt. c. */
 587			/* swift_flush_cache_all(); */
 588			/* swift_flush_cache_page(vma, page); */
 589			swift_flush_page(page);
 590
 591			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 592				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 593			/* same as above: srmmu_flush_tlb_page() */
 594		}
 595	}
 596}
 597#endif
 598
 599/*
 600 * The following are all MBUS based SRMMU modules, and therefore could
 601 * be found in a multiprocessor configuration.  On the whole, these
 602 * chips seems to be much more touchy about DVMA and page tables
 603 * with respect to cache coherency.
 604 */
 605
 606/* viking.S */
 607extern void viking_flush_cache_all(void);
 608extern void viking_flush_cache_mm(struct mm_struct *mm);
 609extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 610				     unsigned long end);
 611extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 612extern void viking_flush_page_to_ram(unsigned long page);
 613extern void viking_flush_page_for_dma(unsigned long page);
 614extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 615extern void viking_flush_page(unsigned long page);
 616extern void viking_mxcc_flush_page(unsigned long page);
 617extern void viking_flush_tlb_all(void);
 618extern void viking_flush_tlb_mm(struct mm_struct *mm);
 619extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 620				   unsigned long end);
 621extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 622				  unsigned long page);
 623extern void sun4dsmp_flush_tlb_all(void);
 624extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 625extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 626				   unsigned long end);
 627extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 628				  unsigned long page);
 629
 630/* hypersparc.S */
 631extern void hypersparc_flush_cache_all(void);
 632extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 633extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 634extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 635extern void hypersparc_flush_page_to_ram(unsigned long page);
 636extern void hypersparc_flush_page_for_dma(unsigned long page);
 637extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 638extern void hypersparc_flush_tlb_all(void);
 639extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 640extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 641extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 642extern void hypersparc_setup_blockops(void);
 643
 644/*
 645 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 646 *       kernel mappings are done with one single contiguous chunk of
 647 *       ram.  On small ram machines (classics mainly) we only get
 648 *       around 8mb mapped for us.
 649 */
 650
 651static void __init early_pgtable_allocfail(char *type)
 652{
 653	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 654	prom_halt();
 655}
 656
 657static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 658							unsigned long end)
 659{
 660	pgd_t *pgdp;
 661	pmd_t *pmdp;
 662	pte_t *ptep;
 663
 664	while (start < end) {
 665		pgdp = pgd_offset_k(start);
 666		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 667			pmdp = __srmmu_get_nocache(
 668			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 669			if (pmdp == NULL)
 670				early_pgtable_allocfail("pmd");
 671			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 672			pgd_set(__nocache_fix(pgdp), pmdp);
 673		}
 674		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 675		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 676			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 677			if (ptep == NULL)
 678				early_pgtable_allocfail("pte");
 679			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 680			pmd_set(__nocache_fix(pmdp), ptep);
 681		}
 682		if (start > (0xffffffffUL - PMD_SIZE))
 683			break;
 684		start = (start + PMD_SIZE) & PMD_MASK;
 685	}
 686}
 687
 688static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 689						  unsigned long end)
 690{
 691	pgd_t *pgdp;
 692	pmd_t *pmdp;
 693	pte_t *ptep;
 694
 695	while (start < end) {
 696		pgdp = pgd_offset_k(start);
 697		if (pgd_none(*pgdp)) {
 698			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 699			if (pmdp == NULL)
 700				early_pgtable_allocfail("pmd");
 701			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 702			pgd_set(pgdp, pmdp);
 703		}
 704		pmdp = pmd_offset(pgdp, start);
 705		if (srmmu_pmd_none(*pmdp)) {
 706			ptep = __srmmu_get_nocache(PTE_SIZE,
 707							     PTE_SIZE);
 708			if (ptep == NULL)
 709				early_pgtable_allocfail("pte");
 710			memset(ptep, 0, PTE_SIZE);
 711			pmd_set(pmdp, ptep);
 712		}
 713		if (start > (0xffffffffUL - PMD_SIZE))
 714			break;
 715		start = (start + PMD_SIZE) & PMD_MASK;
 716	}
 717}
 718
 719/* These flush types are not available on all chips... */
 720static inline unsigned long srmmu_probe(unsigned long vaddr)
 721{
 722	unsigned long retval;
 723
 724	if (sparc_cpu_model != sparc_leon) {
 725
 726		vaddr &= PAGE_MASK;
 727		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 728				     "=r" (retval) :
 729				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 730	} else {
 731		retval = leon_swprobe(vaddr, 0);
 732	}
 733	return retval;
 734}
 735
 736/*
 737 * This is much cleaner than poking around physical address space
 738 * looking at the prom's page table directly which is what most
 739 * other OS's do.  Yuck... this is much better.
 740 */
 741static void __init srmmu_inherit_prom_mappings(unsigned long start,
 742					       unsigned long end)
 743{
 744	unsigned long probed;
 745	unsigned long addr;
 746	pgd_t *pgdp;
 747	pmd_t *pmdp;
 748	pte_t *ptep;
 749	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 750
 751	while (start <= end) {
 752		if (start == 0)
 753			break; /* probably wrap around */
 754		if (start == 0xfef00000)
 755			start = KADB_DEBUGGER_BEGVM;
 756		probed = srmmu_probe(start);
 757		if (!probed) {
 758			/* continue probing until we find an entry */
 759			start += PAGE_SIZE;
 760			continue;
 761		}
 762
 763		/* A red snapper, see what it really is. */
 764		what = 0;
 765		addr = start - PAGE_SIZE;
 766
 767		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
 768			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
 769				what = 1;
 770		}
 771
 772		if (!(start & ~(SRMMU_PGDIR_MASK))) {
 773			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
 774				what = 2;
 775		}
 776
 777		pgdp = pgd_offset_k(start);
 778		if (what == 2) {
 779			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
 780			start += SRMMU_PGDIR_SIZE;
 781			continue;
 782		}
 783		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 784			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 785						   SRMMU_PMD_TABLE_SIZE);
 786			if (pmdp == NULL)
 787				early_pgtable_allocfail("pmd");
 788			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 789			pgd_set(__nocache_fix(pgdp), pmdp);
 790		}
 791		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 792		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 793			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 794			if (ptep == NULL)
 795				early_pgtable_allocfail("pte");
 796			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 797			pmd_set(__nocache_fix(pmdp), ptep);
 798		}
 799		if (what == 1) {
 800			/* We bend the rule where all 16 PTPs in a pmd_t point
 801			 * inside the same PTE page, and we leak a perfectly
 802			 * good hardware PTE piece. Alternatives seem worse.
 803			 */
 804			unsigned int x;	/* Index of HW PMD in soft cluster */
 805			unsigned long *val;
 806			x = (start >> PMD_SHIFT) & 15;
 807			val = &pmdp->pmdv[x];
 808			*(unsigned long *)__nocache_fix(val) = probed;
 809			start += SRMMU_REAL_PMD_SIZE;
 810			continue;
 811		}
 812		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 813		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
 814		start += PAGE_SIZE;
 815	}
 816}
 817
 818#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 819
 820/* Create a third-level SRMMU 16MB page mapping. */
 821static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 822{
 823	pgd_t *pgdp = pgd_offset_k(vaddr);
 824	unsigned long big_pte;
 825
 826	big_pte = KERNEL_PTE(phys_base >> 4);
 827	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 828}
 829
 830/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 831static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 832{
 833	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
 834	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
 835	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 836	/* Map "low" memory only */
 837	const unsigned long min_vaddr = PAGE_OFFSET;
 838	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 839
 840	if (vstart < min_vaddr || vstart >= max_vaddr)
 841		return vstart;
 842
 843	if (vend > max_vaddr || vend < min_vaddr)
 844		vend = max_vaddr;
 845
 846	while (vstart < vend) {
 847		do_large_mapping(vstart, pstart);
 848		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
 849	}
 850	return vstart;
 851}
 852
 853static void __init map_kernel(void)
 854{
 855	int i;
 856
 857	if (phys_base > 0) {
 858		do_large_mapping(PAGE_OFFSET, phys_base);
 859	}
 860
 861	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 862		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 863	}
 864}
 865
 866void (*poke_srmmu)(void) = NULL;
 867
 868extern unsigned long bootmem_init(unsigned long *pages_avail);
 869
 870void __init srmmu_paging_init(void)
 871{
 872	int i;
 873	phandle cpunode;
 874	char node_str[128];
 875	pgd_t *pgd;
 876	pmd_t *pmd;
 877	pte_t *pte;
 878	unsigned long pages_avail;
 879
 880	init_mm.context = (unsigned long) NO_CONTEXT;
 881	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 882
 883	if (sparc_cpu_model == sun4d)
 884		num_contexts = 65536; /* We know it is Viking */
 885	else {
 886		/* Find the number of contexts on the srmmu. */
 887		cpunode = prom_getchild(prom_root_node);
 888		num_contexts = 0;
 889		while (cpunode != 0) {
 890			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 891			if (!strcmp(node_str, "cpu")) {
 892				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 893				break;
 894			}
 895			cpunode = prom_getsibling(cpunode);
 896		}
 897	}
 898
 899	if (!num_contexts) {
 900		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 901		prom_halt();
 902	}
 903
 904	pages_avail = 0;
 905	last_valid_pfn = bootmem_init(&pages_avail);
 906
 907	srmmu_nocache_calcsize();
 908	srmmu_nocache_init();
 909	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 910	map_kernel();
 911
 912	/* ctx table has to be physically aligned to its size */
 913	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 914	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
 915
 916	for (i = 0; i < num_contexts; i++)
 917		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 918
 919	flush_cache_all();
 920	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 921#ifdef CONFIG_SMP
 922	/* Stop from hanging here... */
 923	local_ops->tlb_all();
 924#else
 925	flush_tlb_all();
 926#endif
 927	poke_srmmu();
 928
 929	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 930	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 931
 932	srmmu_allocate_ptable_skeleton(
 933		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 934	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 935
 936	pgd = pgd_offset_k(PKMAP_BASE);
 937	pmd = pmd_offset(pgd, PKMAP_BASE);
 938	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 939	pkmap_page_table = pte;
 940
 941	flush_cache_all();
 942	flush_tlb_all();
 943
 944	sparc_context_init(num_contexts);
 945
 946	kmap_init();
 947
 948	{
 949		unsigned long zones_size[MAX_NR_ZONES];
 950		unsigned long zholes_size[MAX_NR_ZONES];
 951		unsigned long npages;
 952		int znum;
 953
 954		for (znum = 0; znum < MAX_NR_ZONES; znum++)
 955			zones_size[znum] = zholes_size[znum] = 0;
 956
 957		npages = max_low_pfn - pfn_base;
 958
 959		zones_size[ZONE_DMA] = npages;
 960		zholes_size[ZONE_DMA] = npages - pages_avail;
 961
 962		npages = highend_pfn - max_low_pfn;
 963		zones_size[ZONE_HIGHMEM] = npages;
 964		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
 965
 966		free_area_init_node(0, zones_size, pfn_base, zholes_size);
 967	}
 968}
 969
 970void mmu_info(struct seq_file *m)
 971{
 972	seq_printf(m,
 973		   "MMU type\t: %s\n"
 974		   "contexts\t: %d\n"
 975		   "nocache total\t: %ld\n"
 976		   "nocache used\t: %d\n",
 977		   srmmu_name,
 978		   num_contexts,
 979		   srmmu_nocache_size,
 980		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 981}
 982
 983int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 984{
 985	mm->context = NO_CONTEXT;
 986	return 0;
 987}
 988
 989void destroy_context(struct mm_struct *mm)
 990{
 
 991
 992	if (mm->context != NO_CONTEXT) {
 993		flush_cache_mm(mm);
 994		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
 995		flush_tlb_mm(mm);
 996		spin_lock(&srmmu_context_spinlock);
 997		free_context(mm->context);
 998		spin_unlock(&srmmu_context_spinlock);
 999		mm->context = NO_CONTEXT;
1000	}
1001}
1002
1003/* Init various srmmu chip types. */
1004static void __init srmmu_is_bad(void)
1005{
1006	prom_printf("Could not determine SRMMU chip type.\n");
1007	prom_halt();
1008}
1009
1010static void __init init_vac_layout(void)
1011{
1012	phandle nd;
1013	int cache_lines;
1014	char node_str[128];
1015#ifdef CONFIG_SMP
1016	int cpu = 0;
1017	unsigned long max_size = 0;
1018	unsigned long min_line_size = 0x10000000;
1019#endif
1020
1021	nd = prom_getchild(prom_root_node);
1022	while ((nd = prom_getsibling(nd)) != 0) {
1023		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1024		if (!strcmp(node_str, "cpu")) {
1025			vac_line_size = prom_getint(nd, "cache-line-size");
1026			if (vac_line_size == -1) {
1027				prom_printf("can't determine cache-line-size, halting.\n");
1028				prom_halt();
1029			}
1030			cache_lines = prom_getint(nd, "cache-nlines");
1031			if (cache_lines == -1) {
1032				prom_printf("can't determine cache-nlines, halting.\n");
1033				prom_halt();
1034			}
1035
1036			vac_cache_size = cache_lines * vac_line_size;
1037#ifdef CONFIG_SMP
1038			if (vac_cache_size > max_size)
1039				max_size = vac_cache_size;
1040			if (vac_line_size < min_line_size)
1041				min_line_size = vac_line_size;
1042			//FIXME: cpus not contiguous!!
1043			cpu++;
1044			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1045				break;
1046#else
1047			break;
1048#endif
1049		}
1050	}
1051	if (nd == 0) {
1052		prom_printf("No CPU nodes found, halting.\n");
1053		prom_halt();
1054	}
1055#ifdef CONFIG_SMP
1056	vac_cache_size = max_size;
1057	vac_line_size = min_line_size;
1058#endif
1059	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1060	       (int)vac_cache_size, (int)vac_line_size);
1061}
1062
1063static void poke_hypersparc(void)
1064{
1065	volatile unsigned long clear;
1066	unsigned long mreg = srmmu_get_mmureg();
1067
1068	hyper_flush_unconditional_combined();
1069
1070	mreg &= ~(HYPERSPARC_CWENABLE);
1071	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1072	mreg |= (HYPERSPARC_CMODE);
1073
1074	srmmu_set_mmureg(mreg);
1075
1076#if 0 /* XXX I think this is bad news... -DaveM */
1077	hyper_clear_all_tags();
1078#endif
1079
1080	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1081	hyper_flush_whole_icache();
1082	clear = srmmu_get_faddr();
1083	clear = srmmu_get_fstatus();
1084}
1085
1086static const struct sparc32_cachetlb_ops hypersparc_ops = {
1087	.cache_all	= hypersparc_flush_cache_all,
1088	.cache_mm	= hypersparc_flush_cache_mm,
1089	.cache_page	= hypersparc_flush_cache_page,
1090	.cache_range	= hypersparc_flush_cache_range,
1091	.tlb_all	= hypersparc_flush_tlb_all,
1092	.tlb_mm		= hypersparc_flush_tlb_mm,
1093	.tlb_page	= hypersparc_flush_tlb_page,
1094	.tlb_range	= hypersparc_flush_tlb_range,
1095	.page_to_ram	= hypersparc_flush_page_to_ram,
1096	.sig_insns	= hypersparc_flush_sig_insns,
1097	.page_for_dma	= hypersparc_flush_page_for_dma,
1098};
1099
1100static void __init init_hypersparc(void)
1101{
1102	srmmu_name = "ROSS HyperSparc";
1103	srmmu_modtype = HyperSparc;
1104
1105	init_vac_layout();
1106
1107	is_hypersparc = 1;
1108	sparc32_cachetlb_ops = &hypersparc_ops;
1109
1110	poke_srmmu = poke_hypersparc;
1111
1112	hypersparc_setup_blockops();
1113}
1114
1115static void poke_swift(void)
1116{
1117	unsigned long mreg;
1118
1119	/* Clear any crap from the cache or else... */
1120	swift_flush_cache_all();
1121
1122	/* Enable I & D caches */
1123	mreg = srmmu_get_mmureg();
1124	mreg |= (SWIFT_IE | SWIFT_DE);
1125	/*
1126	 * The Swift branch folding logic is completely broken.  At
1127	 * trap time, if things are just right, if can mistakenly
1128	 * think that a trap is coming from kernel mode when in fact
1129	 * it is coming from user mode (it mis-executes the branch in
1130	 * the trap code).  So you see things like crashme completely
1131	 * hosing your machine which is completely unacceptable.  Turn
1132	 * this shit off... nice job Fujitsu.
1133	 */
1134	mreg &= ~(SWIFT_BF);
1135	srmmu_set_mmureg(mreg);
1136}
1137
1138static const struct sparc32_cachetlb_ops swift_ops = {
1139	.cache_all	= swift_flush_cache_all,
1140	.cache_mm	= swift_flush_cache_mm,
1141	.cache_page	= swift_flush_cache_page,
1142	.cache_range	= swift_flush_cache_range,
1143	.tlb_all	= swift_flush_tlb_all,
1144	.tlb_mm		= swift_flush_tlb_mm,
1145	.tlb_page	= swift_flush_tlb_page,
1146	.tlb_range	= swift_flush_tlb_range,
1147	.page_to_ram	= swift_flush_page_to_ram,
1148	.sig_insns	= swift_flush_sig_insns,
1149	.page_for_dma	= swift_flush_page_for_dma,
1150};
1151
1152#define SWIFT_MASKID_ADDR  0x10003018
1153static void __init init_swift(void)
1154{
1155	unsigned long swift_rev;
1156
1157	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1158			     "srl %0, 0x18, %0\n\t" :
1159			     "=r" (swift_rev) :
1160			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1161	srmmu_name = "Fujitsu Swift";
1162	switch (swift_rev) {
1163	case 0x11:
1164	case 0x20:
1165	case 0x23:
1166	case 0x30:
1167		srmmu_modtype = Swift_lots_o_bugs;
1168		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1169		/*
1170		 * Gee george, I wonder why Sun is so hush hush about
1171		 * this hardware bug... really braindamage stuff going
1172		 * on here.  However I think we can find a way to avoid
1173		 * all of the workaround overhead under Linux.  Basically,
1174		 * any page fault can cause kernel pages to become user
1175		 * accessible (the mmu gets confused and clears some of
1176		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1177		 * horrible eh?  But wait, after extensive testing it appears
1178		 * that if you use pgd_t level large kernel pte's (like the
1179		 * 4MB pages on the Pentium) the bug does not get tripped
1180		 * at all.  This avoids almost all of the major overhead.
1181		 * Welcome to a world where your vendor tells you to,
1182		 * "apply this kernel patch" instead of "sorry for the
1183		 * broken hardware, send it back and we'll give you
1184		 * properly functioning parts"
1185		 */
1186		break;
1187	case 0x25:
1188	case 0x31:
1189		srmmu_modtype = Swift_bad_c;
1190		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1191		/*
1192		 * You see Sun allude to this hardware bug but never
1193		 * admit things directly, they'll say things like,
1194		 * "the Swift chip cache problems" or similar.
1195		 */
1196		break;
1197	default:
1198		srmmu_modtype = Swift_ok;
1199		break;
1200	}
1201
1202	sparc32_cachetlb_ops = &swift_ops;
1203	flush_page_for_dma_global = 0;
1204
1205	/*
1206	 * Are you now convinced that the Swift is one of the
1207	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1208	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1209	 * you examined the microcode of the Swift you'd find
1210	 * XXX's all over the place.
1211	 */
1212	poke_srmmu = poke_swift;
1213}
1214
1215static void turbosparc_flush_cache_all(void)
1216{
1217	flush_user_windows();
1218	turbosparc_idflash_clear();
1219}
1220
1221static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1222{
1223	FLUSH_BEGIN(mm)
1224	flush_user_windows();
1225	turbosparc_idflash_clear();
1226	FLUSH_END
1227}
1228
1229static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1230{
1231	FLUSH_BEGIN(vma->vm_mm)
1232	flush_user_windows();
1233	turbosparc_idflash_clear();
1234	FLUSH_END
1235}
1236
1237static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1238{
1239	FLUSH_BEGIN(vma->vm_mm)
1240	flush_user_windows();
1241	if (vma->vm_flags & VM_EXEC)
1242		turbosparc_flush_icache();
1243	turbosparc_flush_dcache();
1244	FLUSH_END
1245}
1246
1247/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1248static void turbosparc_flush_page_to_ram(unsigned long page)
1249{
1250#ifdef TURBOSPARC_WRITEBACK
1251	volatile unsigned long clear;
1252
1253	if (srmmu_probe(page))
1254		turbosparc_flush_page_cache(page);
1255	clear = srmmu_get_fstatus();
1256#endif
1257}
1258
1259static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1260{
1261}
1262
1263static void turbosparc_flush_page_for_dma(unsigned long page)
1264{
1265	turbosparc_flush_dcache();
1266}
1267
1268static void turbosparc_flush_tlb_all(void)
1269{
1270	srmmu_flush_whole_tlb();
1271}
1272
1273static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1274{
1275	FLUSH_BEGIN(mm)
1276	srmmu_flush_whole_tlb();
1277	FLUSH_END
1278}
1279
1280static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1281{
1282	FLUSH_BEGIN(vma->vm_mm)
1283	srmmu_flush_whole_tlb();
1284	FLUSH_END
1285}
1286
1287static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1288{
1289	FLUSH_BEGIN(vma->vm_mm)
1290	srmmu_flush_whole_tlb();
1291	FLUSH_END
1292}
1293
1294
1295static void poke_turbosparc(void)
1296{
1297	unsigned long mreg = srmmu_get_mmureg();
1298	unsigned long ccreg;
1299
1300	/* Clear any crap from the cache or else... */
1301	turbosparc_flush_cache_all();
1302	/* Temporarily disable I & D caches */
1303	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1304	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1305	srmmu_set_mmureg(mreg);
1306
1307	ccreg = turbosparc_get_ccreg();
1308
1309#ifdef TURBOSPARC_WRITEBACK
1310	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1311	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1312			/* Write-back D-cache, emulate VLSI
1313			 * abortion number three, not number one */
1314#else
1315	/* For now let's play safe, optimize later */
1316	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1317			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1318	ccreg &= ~(TURBOSPARC_uS2);
1319			/* Emulate VLSI abortion number three, not number one */
1320#endif
1321
1322	switch (ccreg & 7) {
1323	case 0: /* No SE cache */
1324	case 7: /* Test mode */
1325		break;
1326	default:
1327		ccreg |= (TURBOSPARC_SCENABLE);
1328	}
1329	turbosparc_set_ccreg(ccreg);
1330
1331	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1332	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1333	srmmu_set_mmureg(mreg);
1334}
1335
1336static const struct sparc32_cachetlb_ops turbosparc_ops = {
1337	.cache_all	= turbosparc_flush_cache_all,
1338	.cache_mm	= turbosparc_flush_cache_mm,
1339	.cache_page	= turbosparc_flush_cache_page,
1340	.cache_range	= turbosparc_flush_cache_range,
1341	.tlb_all	= turbosparc_flush_tlb_all,
1342	.tlb_mm		= turbosparc_flush_tlb_mm,
1343	.tlb_page	= turbosparc_flush_tlb_page,
1344	.tlb_range	= turbosparc_flush_tlb_range,
1345	.page_to_ram	= turbosparc_flush_page_to_ram,
1346	.sig_insns	= turbosparc_flush_sig_insns,
1347	.page_for_dma	= turbosparc_flush_page_for_dma,
1348};
1349
1350static void __init init_turbosparc(void)
1351{
1352	srmmu_name = "Fujitsu TurboSparc";
1353	srmmu_modtype = TurboSparc;
1354	sparc32_cachetlb_ops = &turbosparc_ops;
1355	poke_srmmu = poke_turbosparc;
1356}
1357
1358static void poke_tsunami(void)
1359{
1360	unsigned long mreg = srmmu_get_mmureg();
1361
1362	tsunami_flush_icache();
1363	tsunami_flush_dcache();
1364	mreg &= ~TSUNAMI_ITD;
1365	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1366	srmmu_set_mmureg(mreg);
1367}
1368
1369static const struct sparc32_cachetlb_ops tsunami_ops = {
1370	.cache_all	= tsunami_flush_cache_all,
1371	.cache_mm	= tsunami_flush_cache_mm,
1372	.cache_page	= tsunami_flush_cache_page,
1373	.cache_range	= tsunami_flush_cache_range,
1374	.tlb_all	= tsunami_flush_tlb_all,
1375	.tlb_mm		= tsunami_flush_tlb_mm,
1376	.tlb_page	= tsunami_flush_tlb_page,
1377	.tlb_range	= tsunami_flush_tlb_range,
1378	.page_to_ram	= tsunami_flush_page_to_ram,
1379	.sig_insns	= tsunami_flush_sig_insns,
1380	.page_for_dma	= tsunami_flush_page_for_dma,
1381};
1382
1383static void __init init_tsunami(void)
1384{
1385	/*
1386	 * Tsunami's pretty sane, Sun and TI actually got it
1387	 * somewhat right this time.  Fujitsu should have
1388	 * taken some lessons from them.
1389	 */
1390
1391	srmmu_name = "TI Tsunami";
1392	srmmu_modtype = Tsunami;
1393	sparc32_cachetlb_ops = &tsunami_ops;
1394	poke_srmmu = poke_tsunami;
1395
1396	tsunami_setup_blockops();
1397}
1398
1399static void poke_viking(void)
1400{
1401	unsigned long mreg = srmmu_get_mmureg();
1402	static int smp_catch;
1403
1404	if (viking_mxcc_present) {
1405		unsigned long mxcc_control = mxcc_get_creg();
1406
1407		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1408		mxcc_control &= ~(MXCC_CTL_RRC);
1409		mxcc_set_creg(mxcc_control);
1410
1411		/*
1412		 * We don't need memory parity checks.
1413		 * XXX This is a mess, have to dig out later. ecd.
1414		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1415		 */
1416
1417		/* We do cache ptables on MXCC. */
1418		mreg |= VIKING_TCENABLE;
1419	} else {
1420		unsigned long bpreg;
1421
1422		mreg &= ~(VIKING_TCENABLE);
1423		if (smp_catch++) {
1424			/* Must disable mixed-cmd mode here for other cpu's. */
1425			bpreg = viking_get_bpreg();
1426			bpreg &= ~(VIKING_ACTION_MIX);
1427			viking_set_bpreg(bpreg);
1428
1429			/* Just in case PROM does something funny. */
1430			msi_set_sync();
1431		}
1432	}
1433
1434	mreg |= VIKING_SPENABLE;
1435	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1436	mreg |= VIKING_SBENABLE;
1437	mreg &= ~(VIKING_ACENABLE);
1438	srmmu_set_mmureg(mreg);
1439}
1440
1441static struct sparc32_cachetlb_ops viking_ops = {
1442	.cache_all	= viking_flush_cache_all,
1443	.cache_mm	= viking_flush_cache_mm,
1444	.cache_page	= viking_flush_cache_page,
1445	.cache_range	= viking_flush_cache_range,
1446	.tlb_all	= viking_flush_tlb_all,
1447	.tlb_mm		= viking_flush_tlb_mm,
1448	.tlb_page	= viking_flush_tlb_page,
1449	.tlb_range	= viking_flush_tlb_range,
1450	.page_to_ram	= viking_flush_page_to_ram,
1451	.sig_insns	= viking_flush_sig_insns,
1452	.page_for_dma	= viking_flush_page_for_dma,
1453};
1454
1455#ifdef CONFIG_SMP
1456/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1457 * perform the local TLB flush and all the other cpus will see it.
1458 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1459 * that requires that we add some synchronization to these flushes.
1460 *
1461 * The bug is that the fifo which keeps track of all the pending TLB
1462 * broadcasts in the system is an entry or two too small, so if we
1463 * have too many going at once we'll overflow that fifo and lose a TLB
1464 * flush resulting in corruption.
1465 *
1466 * Our workaround is to take a global spinlock around the TLB flushes,
1467 * which guarentees we won't ever have too many pending.  It's a big
1468 * hammer, but a semaphore like system to make sure we only have N TLB
1469 * flushes going at once will require SMP locking anyways so there's
1470 * no real value in trying any harder than this.
1471 */
1472static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1473	.cache_all	= viking_flush_cache_all,
1474	.cache_mm	= viking_flush_cache_mm,
1475	.cache_page	= viking_flush_cache_page,
1476	.cache_range	= viking_flush_cache_range,
1477	.tlb_all	= sun4dsmp_flush_tlb_all,
1478	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1479	.tlb_page	= sun4dsmp_flush_tlb_page,
1480	.tlb_range	= sun4dsmp_flush_tlb_range,
1481	.page_to_ram	= viking_flush_page_to_ram,
1482	.sig_insns	= viking_flush_sig_insns,
1483	.page_for_dma	= viking_flush_page_for_dma,
1484};
1485#endif
1486
1487static void __init init_viking(void)
1488{
1489	unsigned long mreg = srmmu_get_mmureg();
1490
1491	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1492	if (mreg & VIKING_MMODE) {
1493		srmmu_name = "TI Viking";
1494		viking_mxcc_present = 0;
1495		msi_set_sync();
1496
1497		/*
1498		 * We need this to make sure old viking takes no hits
1499		 * on it's cache for dma snoops to workaround the
1500		 * "load from non-cacheable memory" interrupt bug.
1501		 * This is only necessary because of the new way in
1502		 * which we use the IOMMU.
1503		 */
1504		viking_ops.page_for_dma = viking_flush_page;
1505#ifdef CONFIG_SMP
1506		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1507#endif
1508		flush_page_for_dma_global = 0;
1509	} else {
1510		srmmu_name = "TI Viking/MXCC";
1511		viking_mxcc_present = 1;
1512		srmmu_cache_pagetables = 1;
1513	}
1514
1515	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1516		&viking_ops;
1517#ifdef CONFIG_SMP
1518	if (sparc_cpu_model == sun4d)
1519		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1520			&viking_sun4d_smp_ops;
1521#endif
1522
1523	poke_srmmu = poke_viking;
1524}
1525
1526/* Probe for the srmmu chip version. */
1527static void __init get_srmmu_type(void)
1528{
1529	unsigned long mreg, psr;
1530	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1531
1532	srmmu_modtype = SRMMU_INVAL_MOD;
1533	hwbug_bitmask = 0;
1534
1535	mreg = srmmu_get_mmureg(); psr = get_psr();
1536	mod_typ = (mreg & 0xf0000000) >> 28;
1537	mod_rev = (mreg & 0x0f000000) >> 24;
1538	psr_typ = (psr >> 28) & 0xf;
1539	psr_vers = (psr >> 24) & 0xf;
1540
1541	/* First, check for sparc-leon. */
1542	if (sparc_cpu_model == sparc_leon) {
1543		init_leon();
1544		return;
1545	}
1546
1547	/* Second, check for HyperSparc or Cypress. */
1548	if (mod_typ == 1) {
1549		switch (mod_rev) {
1550		case 7:
1551			/* UP or MP Hypersparc */
1552			init_hypersparc();
1553			break;
1554		case 0:
1555		case 2:
1556		case 10:
1557		case 11:
1558		case 12:
1559		case 13:
1560		case 14:
1561		case 15:
1562		default:
1563			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1564			prom_halt();
1565			break;
1566		}
1567		return;
1568	}
1569
1570	/* Now Fujitsu TurboSparc. It might happen that it is
1571	 * in Swift emulation mode, so we will check later...
1572	 */
1573	if (psr_typ == 0 && psr_vers == 5) {
1574		init_turbosparc();
1575		return;
1576	}
1577
1578	/* Next check for Fujitsu Swift. */
1579	if (psr_typ == 0 && psr_vers == 4) {
1580		phandle cpunode;
1581		char node_str[128];
1582
1583		/* Look if it is not a TurboSparc emulating Swift... */
1584		cpunode = prom_getchild(prom_root_node);
1585		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1586			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1587			if (!strcmp(node_str, "cpu")) {
1588				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1589				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1590					init_turbosparc();
1591					return;
1592				}
1593				break;
1594			}
1595		}
1596
1597		init_swift();
1598		return;
1599	}
1600
1601	/* Now the Viking family of srmmu. */
1602	if (psr_typ == 4 &&
1603	   ((psr_vers == 0) ||
1604	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1605		init_viking();
1606		return;
1607	}
1608
1609	/* Finally the Tsunami. */
1610	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1611		init_tsunami();
1612		return;
1613	}
1614
1615	/* Oh well */
1616	srmmu_is_bad();
1617}
1618
1619#ifdef CONFIG_SMP
1620/* Local cross-calls. */
1621static void smp_flush_page_for_dma(unsigned long page)
1622{
1623	xc1((smpfunc_t) local_ops->page_for_dma, page);
1624	local_ops->page_for_dma(page);
1625}
1626
1627static void smp_flush_cache_all(void)
1628{
1629	xc0((smpfunc_t) local_ops->cache_all);
1630	local_ops->cache_all();
1631}
1632
1633static void smp_flush_tlb_all(void)
1634{
1635	xc0((smpfunc_t) local_ops->tlb_all);
1636	local_ops->tlb_all();
1637}
1638
1639static void smp_flush_cache_mm(struct mm_struct *mm)
1640{
1641	if (mm->context != NO_CONTEXT) {
1642		cpumask_t cpu_mask;
1643		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1644		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1645		if (!cpumask_empty(&cpu_mask))
1646			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1647		local_ops->cache_mm(mm);
1648	}
1649}
1650
1651static void smp_flush_tlb_mm(struct mm_struct *mm)
1652{
1653	if (mm->context != NO_CONTEXT) {
1654		cpumask_t cpu_mask;
1655		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1656		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1657		if (!cpumask_empty(&cpu_mask)) {
1658			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1659			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1660				cpumask_copy(mm_cpumask(mm),
1661					     cpumask_of(smp_processor_id()));
1662		}
1663		local_ops->tlb_mm(mm);
1664	}
1665}
1666
1667static void smp_flush_cache_range(struct vm_area_struct *vma,
1668				  unsigned long start,
1669				  unsigned long end)
1670{
1671	struct mm_struct *mm = vma->vm_mm;
1672
1673	if (mm->context != NO_CONTEXT) {
1674		cpumask_t cpu_mask;
1675		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1676		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1677		if (!cpumask_empty(&cpu_mask))
1678			xc3((smpfunc_t) local_ops->cache_range,
1679			    (unsigned long) vma, start, end);
1680		local_ops->cache_range(vma, start, end);
1681	}
1682}
1683
1684static void smp_flush_tlb_range(struct vm_area_struct *vma,
1685				unsigned long start,
1686				unsigned long end)
1687{
1688	struct mm_struct *mm = vma->vm_mm;
1689
1690	if (mm->context != NO_CONTEXT) {
1691		cpumask_t cpu_mask;
1692		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1693		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1694		if (!cpumask_empty(&cpu_mask))
1695			xc3((smpfunc_t) local_ops->tlb_range,
1696			    (unsigned long) vma, start, end);
1697		local_ops->tlb_range(vma, start, end);
1698	}
1699}
1700
1701static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1702{
1703	struct mm_struct *mm = vma->vm_mm;
1704
1705	if (mm->context != NO_CONTEXT) {
1706		cpumask_t cpu_mask;
1707		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1708		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1709		if (!cpumask_empty(&cpu_mask))
1710			xc2((smpfunc_t) local_ops->cache_page,
1711			    (unsigned long) vma, page);
1712		local_ops->cache_page(vma, page);
1713	}
1714}
1715
1716static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1717{
1718	struct mm_struct *mm = vma->vm_mm;
1719
1720	if (mm->context != NO_CONTEXT) {
1721		cpumask_t cpu_mask;
1722		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1723		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1724		if (!cpumask_empty(&cpu_mask))
1725			xc2((smpfunc_t) local_ops->tlb_page,
1726			    (unsigned long) vma, page);
1727		local_ops->tlb_page(vma, page);
1728	}
1729}
1730
1731static void smp_flush_page_to_ram(unsigned long page)
1732{
1733	/* Current theory is that those who call this are the one's
1734	 * who have just dirtied their cache with the pages contents
1735	 * in kernel space, therefore we only run this on local cpu.
1736	 *
1737	 * XXX This experiment failed, research further... -DaveM
1738	 */
1739#if 1
1740	xc1((smpfunc_t) local_ops->page_to_ram, page);
1741#endif
1742	local_ops->page_to_ram(page);
1743}
1744
1745static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1746{
1747	cpumask_t cpu_mask;
1748	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1749	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1750	if (!cpumask_empty(&cpu_mask))
1751		xc2((smpfunc_t) local_ops->sig_insns,
1752		    (unsigned long) mm, insn_addr);
1753	local_ops->sig_insns(mm, insn_addr);
1754}
1755
1756static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1757	.cache_all	= smp_flush_cache_all,
1758	.cache_mm	= smp_flush_cache_mm,
1759	.cache_page	= smp_flush_cache_page,
1760	.cache_range	= smp_flush_cache_range,
1761	.tlb_all	= smp_flush_tlb_all,
1762	.tlb_mm		= smp_flush_tlb_mm,
1763	.tlb_page	= smp_flush_tlb_page,
1764	.tlb_range	= smp_flush_tlb_range,
1765	.page_to_ram	= smp_flush_page_to_ram,
1766	.sig_insns	= smp_flush_sig_insns,
1767	.page_for_dma	= smp_flush_page_for_dma,
1768};
1769#endif
1770
1771/* Load up routines and constants for sun4m and sun4d mmu */
1772void __init load_mmu(void)
1773{
1774	extern void ld_mmu_iommu(void);
1775	extern void ld_mmu_iounit(void);
1776
1777	/* Functions */
1778	get_srmmu_type();
1779
1780#ifdef CONFIG_SMP
1781	/* El switcheroo... */
1782	local_ops = sparc32_cachetlb_ops;
1783
1784	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1785		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1786		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1787		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1788		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1789	}
1790
1791	if (poke_srmmu == poke_viking) {
1792		/* Avoid unnecessary cross calls. */
1793		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1794		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1795		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1796		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1797
1798		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1799		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1800		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1801	}
1802
1803	/* It really is const after this point. */
1804	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1805		&smp_cachetlb_ops;
1806#endif
1807
1808	if (sparc_cpu_model == sun4d)
1809		ld_mmu_iounit();
1810	else
1811		ld_mmu_iommu();
1812#ifdef CONFIG_SMP
1813	if (sparc_cpu_model == sun4d)
1814		sun4d_init_smp();
1815	else if (sparc_cpu_model == sparc_leon)
1816		leon_init_smp();
1817	else
1818		sun4m_init_smp();
1819#endif
1820}