Loading...
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/export.h>
15#include <linux/init.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/tty.h>
19#include <linux/binfmts.h>
20#include <linux/coredump.h>
21#include <linux/security.h>
22#include <linux/syscalls.h>
23#include <linux/ptrace.h>
24#include <linux/signal.h>
25#include <linux/signalfd.h>
26#include <linux/ratelimit.h>
27#include <linux/tracehook.h>
28#include <linux/capability.h>
29#include <linux/freezer.h>
30#include <linux/pid_namespace.h>
31#include <linux/nsproxy.h>
32#include <linux/user_namespace.h>
33#include <linux/uprobes.h>
34#include <linux/compat.h>
35#include <linux/cn_proc.h>
36#include <linux/compiler.h>
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/signal.h>
40
41#include <asm/param.h>
42#include <linux/uaccess.h>
43#include <asm/unistd.h>
44#include <asm/siginfo.h>
45#include <asm/cacheflush.h>
46#include "audit.h" /* audit_signal_info() */
47
48/*
49 * SLAB caches for signal bits.
50 */
51
52static struct kmem_cache *sigqueue_cachep;
53
54int print_fatal_signals __read_mostly;
55
56static void __user *sig_handler(struct task_struct *t, int sig)
57{
58 return t->sighand->action[sig - 1].sa.sa_handler;
59}
60
61static int sig_handler_ignored(void __user *handler, int sig)
62{
63 /* Is it explicitly or implicitly ignored? */
64 return handler == SIG_IGN ||
65 (handler == SIG_DFL && sig_kernel_ignore(sig));
66}
67
68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69{
70 void __user *handler;
71
72 handler = sig_handler(t, sig);
73
74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 handler == SIG_DFL && !force)
76 return 1;
77
78 return sig_handler_ignored(handler, sig);
79}
80
81static int sig_ignored(struct task_struct *t, int sig, bool force)
82{
83 /*
84 * Blocked signals are never ignored, since the
85 * signal handler may change by the time it is
86 * unblocked.
87 */
88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 return 0;
90
91 if (!sig_task_ignored(t, sig, force))
92 return 0;
93
94 /*
95 * Tracers may want to know about even ignored signals.
96 */
97 return !t->ptrace;
98}
99
100/*
101 * Re-calculate pending state from the set of locally pending
102 * signals, globally pending signals, and blocked signals.
103 */
104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
105{
106 unsigned long ready;
107 long i;
108
109 switch (_NSIG_WORDS) {
110 default:
111 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
112 ready |= signal->sig[i] &~ blocked->sig[i];
113 break;
114
115 case 4: ready = signal->sig[3] &~ blocked->sig[3];
116 ready |= signal->sig[2] &~ blocked->sig[2];
117 ready |= signal->sig[1] &~ blocked->sig[1];
118 ready |= signal->sig[0] &~ blocked->sig[0];
119 break;
120
121 case 2: ready = signal->sig[1] &~ blocked->sig[1];
122 ready |= signal->sig[0] &~ blocked->sig[0];
123 break;
124
125 case 1: ready = signal->sig[0] &~ blocked->sig[0];
126 }
127 return ready != 0;
128}
129
130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
131
132static int recalc_sigpending_tsk(struct task_struct *t)
133{
134 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
135 PENDING(&t->pending, &t->blocked) ||
136 PENDING(&t->signal->shared_pending, &t->blocked)) {
137 set_tsk_thread_flag(t, TIF_SIGPENDING);
138 return 1;
139 }
140 /*
141 * We must never clear the flag in another thread, or in current
142 * when it's possible the current syscall is returning -ERESTART*.
143 * So we don't clear it here, and only callers who know they should do.
144 */
145 return 0;
146}
147
148/*
149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
150 * This is superfluous when called on current, the wakeup is a harmless no-op.
151 */
152void recalc_sigpending_and_wake(struct task_struct *t)
153{
154 if (recalc_sigpending_tsk(t))
155 signal_wake_up(t, 0);
156}
157
158void recalc_sigpending(void)
159{
160 if (!recalc_sigpending_tsk(current) && !freezing(current))
161 clear_thread_flag(TIF_SIGPENDING);
162
163}
164
165/* Given the mask, find the first available signal that should be serviced. */
166
167#define SYNCHRONOUS_MASK \
168 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
169 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
170
171int next_signal(struct sigpending *pending, sigset_t *mask)
172{
173 unsigned long i, *s, *m, x;
174 int sig = 0;
175
176 s = pending->signal.sig;
177 m = mask->sig;
178
179 /*
180 * Handle the first word specially: it contains the
181 * synchronous signals that need to be dequeued first.
182 */
183 x = *s &~ *m;
184 if (x) {
185 if (x & SYNCHRONOUS_MASK)
186 x &= SYNCHRONOUS_MASK;
187 sig = ffz(~x) + 1;
188 return sig;
189 }
190
191 switch (_NSIG_WORDS) {
192 default:
193 for (i = 1; i < _NSIG_WORDS; ++i) {
194 x = *++s &~ *++m;
195 if (!x)
196 continue;
197 sig = ffz(~x) + i*_NSIG_BPW + 1;
198 break;
199 }
200 break;
201
202 case 2:
203 x = s[1] &~ m[1];
204 if (!x)
205 break;
206 sig = ffz(~x) + _NSIG_BPW + 1;
207 break;
208
209 case 1:
210 /* Nothing to do */
211 break;
212 }
213
214 return sig;
215}
216
217static inline void print_dropped_signal(int sig)
218{
219 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
220
221 if (!print_fatal_signals)
222 return;
223
224 if (!__ratelimit(&ratelimit_state))
225 return;
226
227 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
228 current->comm, current->pid, sig);
229}
230
231/**
232 * task_set_jobctl_pending - set jobctl pending bits
233 * @task: target task
234 * @mask: pending bits to set
235 *
236 * Clear @mask from @task->jobctl. @mask must be subset of
237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
238 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
239 * cleared. If @task is already being killed or exiting, this function
240 * becomes noop.
241 *
242 * CONTEXT:
243 * Must be called with @task->sighand->siglock held.
244 *
245 * RETURNS:
246 * %true if @mask is set, %false if made noop because @task was dying.
247 */
248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
249{
250 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
251 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
252 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
253
254 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
255 return false;
256
257 if (mask & JOBCTL_STOP_SIGMASK)
258 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
259
260 task->jobctl |= mask;
261 return true;
262}
263
264/**
265 * task_clear_jobctl_trapping - clear jobctl trapping bit
266 * @task: target task
267 *
268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
269 * Clear it and wake up the ptracer. Note that we don't need any further
270 * locking. @task->siglock guarantees that @task->parent points to the
271 * ptracer.
272 *
273 * CONTEXT:
274 * Must be called with @task->sighand->siglock held.
275 */
276void task_clear_jobctl_trapping(struct task_struct *task)
277{
278 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
279 task->jobctl &= ~JOBCTL_TRAPPING;
280 smp_mb(); /* advised by wake_up_bit() */
281 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
282 }
283}
284
285/**
286 * task_clear_jobctl_pending - clear jobctl pending bits
287 * @task: target task
288 * @mask: pending bits to clear
289 *
290 * Clear @mask from @task->jobctl. @mask must be subset of
291 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
292 * STOP bits are cleared together.
293 *
294 * If clearing of @mask leaves no stop or trap pending, this function calls
295 * task_clear_jobctl_trapping().
296 *
297 * CONTEXT:
298 * Must be called with @task->sighand->siglock held.
299 */
300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
301{
302 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
303
304 if (mask & JOBCTL_STOP_PENDING)
305 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
306
307 task->jobctl &= ~mask;
308
309 if (!(task->jobctl & JOBCTL_PENDING_MASK))
310 task_clear_jobctl_trapping(task);
311}
312
313/**
314 * task_participate_group_stop - participate in a group stop
315 * @task: task participating in a group stop
316 *
317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
318 * Group stop states are cleared and the group stop count is consumed if
319 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
320 * stop, the appropriate %SIGNAL_* flags are set.
321 *
322 * CONTEXT:
323 * Must be called with @task->sighand->siglock held.
324 *
325 * RETURNS:
326 * %true if group stop completion should be notified to the parent, %false
327 * otherwise.
328 */
329static bool task_participate_group_stop(struct task_struct *task)
330{
331 struct signal_struct *sig = task->signal;
332 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
333
334 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
335
336 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
337
338 if (!consume)
339 return false;
340
341 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
342 sig->group_stop_count--;
343
344 /*
345 * Tell the caller to notify completion iff we are entering into a
346 * fresh group stop. Read comment in do_signal_stop() for details.
347 */
348 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
349 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
350 return true;
351 }
352 return false;
353}
354
355/*
356 * allocate a new signal queue record
357 * - this may be called without locks if and only if t == current, otherwise an
358 * appropriate lock must be held to stop the target task from exiting
359 */
360static struct sigqueue *
361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
362{
363 struct sigqueue *q = NULL;
364 struct user_struct *user;
365
366 /*
367 * Protect access to @t credentials. This can go away when all
368 * callers hold rcu read lock.
369 */
370 rcu_read_lock();
371 user = get_uid(__task_cred(t)->user);
372 atomic_inc(&user->sigpending);
373 rcu_read_unlock();
374
375 if (override_rlimit ||
376 atomic_read(&user->sigpending) <=
377 task_rlimit(t, RLIMIT_SIGPENDING)) {
378 q = kmem_cache_alloc(sigqueue_cachep, flags);
379 } else {
380 print_dropped_signal(sig);
381 }
382
383 if (unlikely(q == NULL)) {
384 atomic_dec(&user->sigpending);
385 free_uid(user);
386 } else {
387 INIT_LIST_HEAD(&q->list);
388 q->flags = 0;
389 q->user = user;
390 }
391
392 return q;
393}
394
395static void __sigqueue_free(struct sigqueue *q)
396{
397 if (q->flags & SIGQUEUE_PREALLOC)
398 return;
399 atomic_dec(&q->user->sigpending);
400 free_uid(q->user);
401 kmem_cache_free(sigqueue_cachep, q);
402}
403
404void flush_sigqueue(struct sigpending *queue)
405{
406 struct sigqueue *q;
407
408 sigemptyset(&queue->signal);
409 while (!list_empty(&queue->list)) {
410 q = list_entry(queue->list.next, struct sigqueue , list);
411 list_del_init(&q->list);
412 __sigqueue_free(q);
413 }
414}
415
416/*
417 * Flush all pending signals for this kthread.
418 */
419void flush_signals(struct task_struct *t)
420{
421 unsigned long flags;
422
423 spin_lock_irqsave(&t->sighand->siglock, flags);
424 clear_tsk_thread_flag(t, TIF_SIGPENDING);
425 flush_sigqueue(&t->pending);
426 flush_sigqueue(&t->signal->shared_pending);
427 spin_unlock_irqrestore(&t->sighand->siglock, flags);
428}
429
430#ifdef CONFIG_POSIX_TIMERS
431static void __flush_itimer_signals(struct sigpending *pending)
432{
433 sigset_t signal, retain;
434 struct sigqueue *q, *n;
435
436 signal = pending->signal;
437 sigemptyset(&retain);
438
439 list_for_each_entry_safe(q, n, &pending->list, list) {
440 int sig = q->info.si_signo;
441
442 if (likely(q->info.si_code != SI_TIMER)) {
443 sigaddset(&retain, sig);
444 } else {
445 sigdelset(&signal, sig);
446 list_del_init(&q->list);
447 __sigqueue_free(q);
448 }
449 }
450
451 sigorsets(&pending->signal, &signal, &retain);
452}
453
454void flush_itimer_signals(void)
455{
456 struct task_struct *tsk = current;
457 unsigned long flags;
458
459 spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 __flush_itimer_signals(&tsk->pending);
461 __flush_itimer_signals(&tsk->signal->shared_pending);
462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463}
464#endif
465
466void ignore_signals(struct task_struct *t)
467{
468 int i;
469
470 for (i = 0; i < _NSIG; ++i)
471 t->sighand->action[i].sa.sa_handler = SIG_IGN;
472
473 flush_signals(t);
474}
475
476/*
477 * Flush all handlers for a task.
478 */
479
480void
481flush_signal_handlers(struct task_struct *t, int force_default)
482{
483 int i;
484 struct k_sigaction *ka = &t->sighand->action[0];
485 for (i = _NSIG ; i != 0 ; i--) {
486 if (force_default || ka->sa.sa_handler != SIG_IGN)
487 ka->sa.sa_handler = SIG_DFL;
488 ka->sa.sa_flags = 0;
489#ifdef __ARCH_HAS_SA_RESTORER
490 ka->sa.sa_restorer = NULL;
491#endif
492 sigemptyset(&ka->sa.sa_mask);
493 ka++;
494 }
495}
496
497int unhandled_signal(struct task_struct *tsk, int sig)
498{
499 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
500 if (is_global_init(tsk))
501 return 1;
502 if (handler != SIG_IGN && handler != SIG_DFL)
503 return 0;
504 /* if ptraced, let the tracer determine */
505 return !tsk->ptrace;
506}
507
508static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
509{
510 struct sigqueue *q, *first = NULL;
511
512 /*
513 * Collect the siginfo appropriate to this signal. Check if
514 * there is another siginfo for the same signal.
515 */
516 list_for_each_entry(q, &list->list, list) {
517 if (q->info.si_signo == sig) {
518 if (first)
519 goto still_pending;
520 first = q;
521 }
522 }
523
524 sigdelset(&list->signal, sig);
525
526 if (first) {
527still_pending:
528 list_del_init(&first->list);
529 copy_siginfo(info, &first->info);
530 __sigqueue_free(first);
531 } else {
532 /*
533 * Ok, it wasn't in the queue. This must be
534 * a fast-pathed signal or we must have been
535 * out of queue space. So zero out the info.
536 */
537 info->si_signo = sig;
538 info->si_errno = 0;
539 info->si_code = SI_USER;
540 info->si_pid = 0;
541 info->si_uid = 0;
542 }
543}
544
545static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
546 siginfo_t *info)
547{
548 int sig = next_signal(pending, mask);
549
550 if (sig)
551 collect_signal(sig, pending, info);
552 return sig;
553}
554
555/*
556 * Dequeue a signal and return the element to the caller, which is
557 * expected to free it.
558 *
559 * All callers have to hold the siglock.
560 */
561int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
562{
563 int signr;
564
565 /* We only dequeue private signals from ourselves, we don't let
566 * signalfd steal them
567 */
568 signr = __dequeue_signal(&tsk->pending, mask, info);
569 if (!signr) {
570 signr = __dequeue_signal(&tsk->signal->shared_pending,
571 mask, info);
572#ifdef CONFIG_POSIX_TIMERS
573 /*
574 * itimer signal ?
575 *
576 * itimers are process shared and we restart periodic
577 * itimers in the signal delivery path to prevent DoS
578 * attacks in the high resolution timer case. This is
579 * compliant with the old way of self-restarting
580 * itimers, as the SIGALRM is a legacy signal and only
581 * queued once. Changing the restart behaviour to
582 * restart the timer in the signal dequeue path is
583 * reducing the timer noise on heavy loaded !highres
584 * systems too.
585 */
586 if (unlikely(signr == SIGALRM)) {
587 struct hrtimer *tmr = &tsk->signal->real_timer;
588
589 if (!hrtimer_is_queued(tmr) &&
590 tsk->signal->it_real_incr != 0) {
591 hrtimer_forward(tmr, tmr->base->get_time(),
592 tsk->signal->it_real_incr);
593 hrtimer_restart(tmr);
594 }
595 }
596#endif
597 }
598
599 recalc_sigpending();
600 if (!signr)
601 return 0;
602
603 if (unlikely(sig_kernel_stop(signr))) {
604 /*
605 * Set a marker that we have dequeued a stop signal. Our
606 * caller might release the siglock and then the pending
607 * stop signal it is about to process is no longer in the
608 * pending bitmasks, but must still be cleared by a SIGCONT
609 * (and overruled by a SIGKILL). So those cases clear this
610 * shared flag after we've set it. Note that this flag may
611 * remain set after the signal we return is ignored or
612 * handled. That doesn't matter because its only purpose
613 * is to alert stop-signal processing code when another
614 * processor has come along and cleared the flag.
615 */
616 current->jobctl |= JOBCTL_STOP_DEQUEUED;
617 }
618#ifdef CONFIG_POSIX_TIMERS
619 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
620 /*
621 * Release the siglock to ensure proper locking order
622 * of timer locks outside of siglocks. Note, we leave
623 * irqs disabled here, since the posix-timers code is
624 * about to disable them again anyway.
625 */
626 spin_unlock(&tsk->sighand->siglock);
627 do_schedule_next_timer(info);
628 spin_lock(&tsk->sighand->siglock);
629 }
630#endif
631 return signr;
632}
633
634/*
635 * Tell a process that it has a new active signal..
636 *
637 * NOTE! we rely on the previous spin_lock to
638 * lock interrupts for us! We can only be called with
639 * "siglock" held, and the local interrupt must
640 * have been disabled when that got acquired!
641 *
642 * No need to set need_resched since signal event passing
643 * goes through ->blocked
644 */
645void signal_wake_up_state(struct task_struct *t, unsigned int state)
646{
647 set_tsk_thread_flag(t, TIF_SIGPENDING);
648 /*
649 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
650 * case. We don't check t->state here because there is a race with it
651 * executing another processor and just now entering stopped state.
652 * By using wake_up_state, we ensure the process will wake up and
653 * handle its death signal.
654 */
655 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
656 kick_process(t);
657}
658
659/*
660 * Remove signals in mask from the pending set and queue.
661 * Returns 1 if any signals were found.
662 *
663 * All callers must be holding the siglock.
664 */
665static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
666{
667 struct sigqueue *q, *n;
668 sigset_t m;
669
670 sigandsets(&m, mask, &s->signal);
671 if (sigisemptyset(&m))
672 return 0;
673
674 sigandnsets(&s->signal, &s->signal, mask);
675 list_for_each_entry_safe(q, n, &s->list, list) {
676 if (sigismember(mask, q->info.si_signo)) {
677 list_del_init(&q->list);
678 __sigqueue_free(q);
679 }
680 }
681 return 1;
682}
683
684static inline int is_si_special(const struct siginfo *info)
685{
686 return info <= SEND_SIG_FORCED;
687}
688
689static inline bool si_fromuser(const struct siginfo *info)
690{
691 return info == SEND_SIG_NOINFO ||
692 (!is_si_special(info) && SI_FROMUSER(info));
693}
694
695/*
696 * called with RCU read lock from check_kill_permission()
697 */
698static int kill_ok_by_cred(struct task_struct *t)
699{
700 const struct cred *cred = current_cred();
701 const struct cred *tcred = __task_cred(t);
702
703 if (uid_eq(cred->euid, tcred->suid) ||
704 uid_eq(cred->euid, tcred->uid) ||
705 uid_eq(cred->uid, tcred->suid) ||
706 uid_eq(cred->uid, tcred->uid))
707 return 1;
708
709 if (ns_capable(tcred->user_ns, CAP_KILL))
710 return 1;
711
712 return 0;
713}
714
715/*
716 * Bad permissions for sending the signal
717 * - the caller must hold the RCU read lock
718 */
719static int check_kill_permission(int sig, struct siginfo *info,
720 struct task_struct *t)
721{
722 struct pid *sid;
723 int error;
724
725 if (!valid_signal(sig))
726 return -EINVAL;
727
728 if (!si_fromuser(info))
729 return 0;
730
731 error = audit_signal_info(sig, t); /* Let audit system see the signal */
732 if (error)
733 return error;
734
735 if (!same_thread_group(current, t) &&
736 !kill_ok_by_cred(t)) {
737 switch (sig) {
738 case SIGCONT:
739 sid = task_session(t);
740 /*
741 * We don't return the error if sid == NULL. The
742 * task was unhashed, the caller must notice this.
743 */
744 if (!sid || sid == task_session(current))
745 break;
746 default:
747 return -EPERM;
748 }
749 }
750
751 return security_task_kill(t, info, sig, 0);
752}
753
754/**
755 * ptrace_trap_notify - schedule trap to notify ptracer
756 * @t: tracee wanting to notify tracer
757 *
758 * This function schedules sticky ptrace trap which is cleared on the next
759 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
760 * ptracer.
761 *
762 * If @t is running, STOP trap will be taken. If trapped for STOP and
763 * ptracer is listening for events, tracee is woken up so that it can
764 * re-trap for the new event. If trapped otherwise, STOP trap will be
765 * eventually taken without returning to userland after the existing traps
766 * are finished by PTRACE_CONT.
767 *
768 * CONTEXT:
769 * Must be called with @task->sighand->siglock held.
770 */
771static void ptrace_trap_notify(struct task_struct *t)
772{
773 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
774 assert_spin_locked(&t->sighand->siglock);
775
776 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
777 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
778}
779
780/*
781 * Handle magic process-wide effects of stop/continue signals. Unlike
782 * the signal actions, these happen immediately at signal-generation
783 * time regardless of blocking, ignoring, or handling. This does the
784 * actual continuing for SIGCONT, but not the actual stopping for stop
785 * signals. The process stop is done as a signal action for SIG_DFL.
786 *
787 * Returns true if the signal should be actually delivered, otherwise
788 * it should be dropped.
789 */
790static bool prepare_signal(int sig, struct task_struct *p, bool force)
791{
792 struct signal_struct *signal = p->signal;
793 struct task_struct *t;
794 sigset_t flush;
795
796 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
797 if (!(signal->flags & SIGNAL_GROUP_EXIT))
798 return sig == SIGKILL;
799 /*
800 * The process is in the middle of dying, nothing to do.
801 */
802 } else if (sig_kernel_stop(sig)) {
803 /*
804 * This is a stop signal. Remove SIGCONT from all queues.
805 */
806 siginitset(&flush, sigmask(SIGCONT));
807 flush_sigqueue_mask(&flush, &signal->shared_pending);
808 for_each_thread(p, t)
809 flush_sigqueue_mask(&flush, &t->pending);
810 } else if (sig == SIGCONT) {
811 unsigned int why;
812 /*
813 * Remove all stop signals from all queues, wake all threads.
814 */
815 siginitset(&flush, SIG_KERNEL_STOP_MASK);
816 flush_sigqueue_mask(&flush, &signal->shared_pending);
817 for_each_thread(p, t) {
818 flush_sigqueue_mask(&flush, &t->pending);
819 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
820 if (likely(!(t->ptrace & PT_SEIZED)))
821 wake_up_state(t, __TASK_STOPPED);
822 else
823 ptrace_trap_notify(t);
824 }
825
826 /*
827 * Notify the parent with CLD_CONTINUED if we were stopped.
828 *
829 * If we were in the middle of a group stop, we pretend it
830 * was already finished, and then continued. Since SIGCHLD
831 * doesn't queue we report only CLD_STOPPED, as if the next
832 * CLD_CONTINUED was dropped.
833 */
834 why = 0;
835 if (signal->flags & SIGNAL_STOP_STOPPED)
836 why |= SIGNAL_CLD_CONTINUED;
837 else if (signal->group_stop_count)
838 why |= SIGNAL_CLD_STOPPED;
839
840 if (why) {
841 /*
842 * The first thread which returns from do_signal_stop()
843 * will take ->siglock, notice SIGNAL_CLD_MASK, and
844 * notify its parent. See get_signal_to_deliver().
845 */
846 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
847 signal->group_stop_count = 0;
848 signal->group_exit_code = 0;
849 }
850 }
851
852 return !sig_ignored(p, sig, force);
853}
854
855/*
856 * Test if P wants to take SIG. After we've checked all threads with this,
857 * it's equivalent to finding no threads not blocking SIG. Any threads not
858 * blocking SIG were ruled out because they are not running and already
859 * have pending signals. Such threads will dequeue from the shared queue
860 * as soon as they're available, so putting the signal on the shared queue
861 * will be equivalent to sending it to one such thread.
862 */
863static inline int wants_signal(int sig, struct task_struct *p)
864{
865 if (sigismember(&p->blocked, sig))
866 return 0;
867 if (p->flags & PF_EXITING)
868 return 0;
869 if (sig == SIGKILL)
870 return 1;
871 if (task_is_stopped_or_traced(p))
872 return 0;
873 return task_curr(p) || !signal_pending(p);
874}
875
876static void complete_signal(int sig, struct task_struct *p, int group)
877{
878 struct signal_struct *signal = p->signal;
879 struct task_struct *t;
880
881 /*
882 * Now find a thread we can wake up to take the signal off the queue.
883 *
884 * If the main thread wants the signal, it gets first crack.
885 * Probably the least surprising to the average bear.
886 */
887 if (wants_signal(sig, p))
888 t = p;
889 else if (!group || thread_group_empty(p))
890 /*
891 * There is just one thread and it does not need to be woken.
892 * It will dequeue unblocked signals before it runs again.
893 */
894 return;
895 else {
896 /*
897 * Otherwise try to find a suitable thread.
898 */
899 t = signal->curr_target;
900 while (!wants_signal(sig, t)) {
901 t = next_thread(t);
902 if (t == signal->curr_target)
903 /*
904 * No thread needs to be woken.
905 * Any eligible threads will see
906 * the signal in the queue soon.
907 */
908 return;
909 }
910 signal->curr_target = t;
911 }
912
913 /*
914 * Found a killable thread. If the signal will be fatal,
915 * then start taking the whole group down immediately.
916 */
917 if (sig_fatal(p, sig) &&
918 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
919 !sigismember(&t->real_blocked, sig) &&
920 (sig == SIGKILL || !t->ptrace)) {
921 /*
922 * This signal will be fatal to the whole group.
923 */
924 if (!sig_kernel_coredump(sig)) {
925 /*
926 * Start a group exit and wake everybody up.
927 * This way we don't have other threads
928 * running and doing things after a slower
929 * thread has the fatal signal pending.
930 */
931 signal->flags = SIGNAL_GROUP_EXIT;
932 signal->group_exit_code = sig;
933 signal->group_stop_count = 0;
934 t = p;
935 do {
936 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
937 sigaddset(&t->pending.signal, SIGKILL);
938 signal_wake_up(t, 1);
939 } while_each_thread(p, t);
940 return;
941 }
942 }
943
944 /*
945 * The signal is already in the shared-pending queue.
946 * Tell the chosen thread to wake up and dequeue it.
947 */
948 signal_wake_up(t, sig == SIGKILL);
949 return;
950}
951
952static inline int legacy_queue(struct sigpending *signals, int sig)
953{
954 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
955}
956
957#ifdef CONFIG_USER_NS
958static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
959{
960 if (current_user_ns() == task_cred_xxx(t, user_ns))
961 return;
962
963 if (SI_FROMKERNEL(info))
964 return;
965
966 rcu_read_lock();
967 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
968 make_kuid(current_user_ns(), info->si_uid));
969 rcu_read_unlock();
970}
971#else
972static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
973{
974 return;
975}
976#endif
977
978static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
979 int group, int from_ancestor_ns)
980{
981 struct sigpending *pending;
982 struct sigqueue *q;
983 int override_rlimit;
984 int ret = 0, result;
985
986 assert_spin_locked(&t->sighand->siglock);
987
988 result = TRACE_SIGNAL_IGNORED;
989 if (!prepare_signal(sig, t,
990 from_ancestor_ns || (info == SEND_SIG_FORCED)))
991 goto ret;
992
993 pending = group ? &t->signal->shared_pending : &t->pending;
994 /*
995 * Short-circuit ignored signals and support queuing
996 * exactly one non-rt signal, so that we can get more
997 * detailed information about the cause of the signal.
998 */
999 result = TRACE_SIGNAL_ALREADY_PENDING;
1000 if (legacy_queue(pending, sig))
1001 goto ret;
1002
1003 result = TRACE_SIGNAL_DELIVERED;
1004 /*
1005 * fast-pathed signals for kernel-internal things like SIGSTOP
1006 * or SIGKILL.
1007 */
1008 if (info == SEND_SIG_FORCED)
1009 goto out_set;
1010
1011 /*
1012 * Real-time signals must be queued if sent by sigqueue, or
1013 * some other real-time mechanism. It is implementation
1014 * defined whether kill() does so. We attempt to do so, on
1015 * the principle of least surprise, but since kill is not
1016 * allowed to fail with EAGAIN when low on memory we just
1017 * make sure at least one signal gets delivered and don't
1018 * pass on the info struct.
1019 */
1020 if (sig < SIGRTMIN)
1021 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1022 else
1023 override_rlimit = 0;
1024
1025 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1026 override_rlimit);
1027 if (q) {
1028 list_add_tail(&q->list, &pending->list);
1029 switch ((unsigned long) info) {
1030 case (unsigned long) SEND_SIG_NOINFO:
1031 q->info.si_signo = sig;
1032 q->info.si_errno = 0;
1033 q->info.si_code = SI_USER;
1034 q->info.si_pid = task_tgid_nr_ns(current,
1035 task_active_pid_ns(t));
1036 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1037 break;
1038 case (unsigned long) SEND_SIG_PRIV:
1039 q->info.si_signo = sig;
1040 q->info.si_errno = 0;
1041 q->info.si_code = SI_KERNEL;
1042 q->info.si_pid = 0;
1043 q->info.si_uid = 0;
1044 break;
1045 default:
1046 copy_siginfo(&q->info, info);
1047 if (from_ancestor_ns)
1048 q->info.si_pid = 0;
1049 break;
1050 }
1051
1052 userns_fixup_signal_uid(&q->info, t);
1053
1054 } else if (!is_si_special(info)) {
1055 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1056 /*
1057 * Queue overflow, abort. We may abort if the
1058 * signal was rt and sent by user using something
1059 * other than kill().
1060 */
1061 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1062 ret = -EAGAIN;
1063 goto ret;
1064 } else {
1065 /*
1066 * This is a silent loss of information. We still
1067 * send the signal, but the *info bits are lost.
1068 */
1069 result = TRACE_SIGNAL_LOSE_INFO;
1070 }
1071 }
1072
1073out_set:
1074 signalfd_notify(t, sig);
1075 sigaddset(&pending->signal, sig);
1076 complete_signal(sig, t, group);
1077ret:
1078 trace_signal_generate(sig, info, t, group, result);
1079 return ret;
1080}
1081
1082static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1083 int group)
1084{
1085 int from_ancestor_ns = 0;
1086
1087#ifdef CONFIG_PID_NS
1088 from_ancestor_ns = si_fromuser(info) &&
1089 !task_pid_nr_ns(current, task_active_pid_ns(t));
1090#endif
1091
1092 return __send_signal(sig, info, t, group, from_ancestor_ns);
1093}
1094
1095static void print_fatal_signal(int signr)
1096{
1097 struct pt_regs *regs = signal_pt_regs();
1098 pr_info("potentially unexpected fatal signal %d.\n", signr);
1099
1100#if defined(__i386__) && !defined(__arch_um__)
1101 pr_info("code at %08lx: ", regs->ip);
1102 {
1103 int i;
1104 for (i = 0; i < 16; i++) {
1105 unsigned char insn;
1106
1107 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1108 break;
1109 pr_cont("%02x ", insn);
1110 }
1111 }
1112 pr_cont("\n");
1113#endif
1114 preempt_disable();
1115 show_regs(regs);
1116 preempt_enable();
1117}
1118
1119static int __init setup_print_fatal_signals(char *str)
1120{
1121 get_option (&str, &print_fatal_signals);
1122
1123 return 1;
1124}
1125
1126__setup("print-fatal-signals=", setup_print_fatal_signals);
1127
1128int
1129__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1130{
1131 return send_signal(sig, info, p, 1);
1132}
1133
1134static int
1135specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1136{
1137 return send_signal(sig, info, t, 0);
1138}
1139
1140int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1141 bool group)
1142{
1143 unsigned long flags;
1144 int ret = -ESRCH;
1145
1146 if (lock_task_sighand(p, &flags)) {
1147 ret = send_signal(sig, info, p, group);
1148 unlock_task_sighand(p, &flags);
1149 }
1150
1151 return ret;
1152}
1153
1154/*
1155 * Force a signal that the process can't ignore: if necessary
1156 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1157 *
1158 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1159 * since we do not want to have a signal handler that was blocked
1160 * be invoked when user space had explicitly blocked it.
1161 *
1162 * We don't want to have recursive SIGSEGV's etc, for example,
1163 * that is why we also clear SIGNAL_UNKILLABLE.
1164 */
1165int
1166force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1167{
1168 unsigned long int flags;
1169 int ret, blocked, ignored;
1170 struct k_sigaction *action;
1171
1172 spin_lock_irqsave(&t->sighand->siglock, flags);
1173 action = &t->sighand->action[sig-1];
1174 ignored = action->sa.sa_handler == SIG_IGN;
1175 blocked = sigismember(&t->blocked, sig);
1176 if (blocked || ignored) {
1177 action->sa.sa_handler = SIG_DFL;
1178 if (blocked) {
1179 sigdelset(&t->blocked, sig);
1180 recalc_sigpending_and_wake(t);
1181 }
1182 }
1183 if (action->sa.sa_handler == SIG_DFL)
1184 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1185 ret = specific_send_sig_info(sig, info, t);
1186 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1187
1188 return ret;
1189}
1190
1191/*
1192 * Nuke all other threads in the group.
1193 */
1194int zap_other_threads(struct task_struct *p)
1195{
1196 struct task_struct *t = p;
1197 int count = 0;
1198
1199 p->signal->group_stop_count = 0;
1200
1201 while_each_thread(p, t) {
1202 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1203 count++;
1204
1205 /* Don't bother with already dead threads */
1206 if (t->exit_state)
1207 continue;
1208 sigaddset(&t->pending.signal, SIGKILL);
1209 signal_wake_up(t, 1);
1210 }
1211
1212 return count;
1213}
1214
1215struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1216 unsigned long *flags)
1217{
1218 struct sighand_struct *sighand;
1219
1220 for (;;) {
1221 /*
1222 * Disable interrupts early to avoid deadlocks.
1223 * See rcu_read_unlock() comment header for details.
1224 */
1225 local_irq_save(*flags);
1226 rcu_read_lock();
1227 sighand = rcu_dereference(tsk->sighand);
1228 if (unlikely(sighand == NULL)) {
1229 rcu_read_unlock();
1230 local_irq_restore(*flags);
1231 break;
1232 }
1233 /*
1234 * This sighand can be already freed and even reused, but
1235 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1236 * initializes ->siglock: this slab can't go away, it has
1237 * the same object type, ->siglock can't be reinitialized.
1238 *
1239 * We need to ensure that tsk->sighand is still the same
1240 * after we take the lock, we can race with de_thread() or
1241 * __exit_signal(). In the latter case the next iteration
1242 * must see ->sighand == NULL.
1243 */
1244 spin_lock(&sighand->siglock);
1245 if (likely(sighand == tsk->sighand)) {
1246 rcu_read_unlock();
1247 break;
1248 }
1249 spin_unlock(&sighand->siglock);
1250 rcu_read_unlock();
1251 local_irq_restore(*flags);
1252 }
1253
1254 return sighand;
1255}
1256
1257/*
1258 * send signal info to all the members of a group
1259 */
1260int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1261{
1262 int ret;
1263
1264 rcu_read_lock();
1265 ret = check_kill_permission(sig, info, p);
1266 rcu_read_unlock();
1267
1268 if (!ret && sig)
1269 ret = do_send_sig_info(sig, info, p, true);
1270
1271 return ret;
1272}
1273
1274/*
1275 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1276 * control characters do (^C, ^Z etc)
1277 * - the caller must hold at least a readlock on tasklist_lock
1278 */
1279int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1280{
1281 struct task_struct *p = NULL;
1282 int retval, success;
1283
1284 success = 0;
1285 retval = -ESRCH;
1286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1287 int err = group_send_sig_info(sig, info, p);
1288 success |= !err;
1289 retval = err;
1290 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1291 return success ? 0 : retval;
1292}
1293
1294int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1295{
1296 int error = -ESRCH;
1297 struct task_struct *p;
1298
1299 for (;;) {
1300 rcu_read_lock();
1301 p = pid_task(pid, PIDTYPE_PID);
1302 if (p)
1303 error = group_send_sig_info(sig, info, p);
1304 rcu_read_unlock();
1305 if (likely(!p || error != -ESRCH))
1306 return error;
1307
1308 /*
1309 * The task was unhashed in between, try again. If it
1310 * is dead, pid_task() will return NULL, if we race with
1311 * de_thread() it will find the new leader.
1312 */
1313 }
1314}
1315
1316int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1317{
1318 int error;
1319 rcu_read_lock();
1320 error = kill_pid_info(sig, info, find_vpid(pid));
1321 rcu_read_unlock();
1322 return error;
1323}
1324
1325static int kill_as_cred_perm(const struct cred *cred,
1326 struct task_struct *target)
1327{
1328 const struct cred *pcred = __task_cred(target);
1329 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1330 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1331 return 0;
1332 return 1;
1333}
1334
1335/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1336int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1337 const struct cred *cred, u32 secid)
1338{
1339 int ret = -EINVAL;
1340 struct task_struct *p;
1341 unsigned long flags;
1342
1343 if (!valid_signal(sig))
1344 return ret;
1345
1346 rcu_read_lock();
1347 p = pid_task(pid, PIDTYPE_PID);
1348 if (!p) {
1349 ret = -ESRCH;
1350 goto out_unlock;
1351 }
1352 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1353 ret = -EPERM;
1354 goto out_unlock;
1355 }
1356 ret = security_task_kill(p, info, sig, secid);
1357 if (ret)
1358 goto out_unlock;
1359
1360 if (sig) {
1361 if (lock_task_sighand(p, &flags)) {
1362 ret = __send_signal(sig, info, p, 1, 0);
1363 unlock_task_sighand(p, &flags);
1364 } else
1365 ret = -ESRCH;
1366 }
1367out_unlock:
1368 rcu_read_unlock();
1369 return ret;
1370}
1371EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1372
1373/*
1374 * kill_something_info() interprets pid in interesting ways just like kill(2).
1375 *
1376 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1377 * is probably wrong. Should make it like BSD or SYSV.
1378 */
1379
1380static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1381{
1382 int ret;
1383
1384 if (pid > 0) {
1385 rcu_read_lock();
1386 ret = kill_pid_info(sig, info, find_vpid(pid));
1387 rcu_read_unlock();
1388 return ret;
1389 }
1390
1391 read_lock(&tasklist_lock);
1392 if (pid != -1) {
1393 ret = __kill_pgrp_info(sig, info,
1394 pid ? find_vpid(-pid) : task_pgrp(current));
1395 } else {
1396 int retval = 0, count = 0;
1397 struct task_struct * p;
1398
1399 for_each_process(p) {
1400 if (task_pid_vnr(p) > 1 &&
1401 !same_thread_group(p, current)) {
1402 int err = group_send_sig_info(sig, info, p);
1403 ++count;
1404 if (err != -EPERM)
1405 retval = err;
1406 }
1407 }
1408 ret = count ? retval : -ESRCH;
1409 }
1410 read_unlock(&tasklist_lock);
1411
1412 return ret;
1413}
1414
1415/*
1416 * These are for backward compatibility with the rest of the kernel source.
1417 */
1418
1419int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1420{
1421 /*
1422 * Make sure legacy kernel users don't send in bad values
1423 * (normal paths check this in check_kill_permission).
1424 */
1425 if (!valid_signal(sig))
1426 return -EINVAL;
1427
1428 return do_send_sig_info(sig, info, p, false);
1429}
1430
1431#define __si_special(priv) \
1432 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1433
1434int
1435send_sig(int sig, struct task_struct *p, int priv)
1436{
1437 return send_sig_info(sig, __si_special(priv), p);
1438}
1439
1440void
1441force_sig(int sig, struct task_struct *p)
1442{
1443 force_sig_info(sig, SEND_SIG_PRIV, p);
1444}
1445
1446/*
1447 * When things go south during signal handling, we
1448 * will force a SIGSEGV. And if the signal that caused
1449 * the problem was already a SIGSEGV, we'll want to
1450 * make sure we don't even try to deliver the signal..
1451 */
1452int
1453force_sigsegv(int sig, struct task_struct *p)
1454{
1455 if (sig == SIGSEGV) {
1456 unsigned long flags;
1457 spin_lock_irqsave(&p->sighand->siglock, flags);
1458 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1459 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1460 }
1461 force_sig(SIGSEGV, p);
1462 return 0;
1463}
1464
1465int kill_pgrp(struct pid *pid, int sig, int priv)
1466{
1467 int ret;
1468
1469 read_lock(&tasklist_lock);
1470 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1471 read_unlock(&tasklist_lock);
1472
1473 return ret;
1474}
1475EXPORT_SYMBOL(kill_pgrp);
1476
1477int kill_pid(struct pid *pid, int sig, int priv)
1478{
1479 return kill_pid_info(sig, __si_special(priv), pid);
1480}
1481EXPORT_SYMBOL(kill_pid);
1482
1483/*
1484 * These functions support sending signals using preallocated sigqueue
1485 * structures. This is needed "because realtime applications cannot
1486 * afford to lose notifications of asynchronous events, like timer
1487 * expirations or I/O completions". In the case of POSIX Timers
1488 * we allocate the sigqueue structure from the timer_create. If this
1489 * allocation fails we are able to report the failure to the application
1490 * with an EAGAIN error.
1491 */
1492struct sigqueue *sigqueue_alloc(void)
1493{
1494 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1495
1496 if (q)
1497 q->flags |= SIGQUEUE_PREALLOC;
1498
1499 return q;
1500}
1501
1502void sigqueue_free(struct sigqueue *q)
1503{
1504 unsigned long flags;
1505 spinlock_t *lock = ¤t->sighand->siglock;
1506
1507 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1508 /*
1509 * We must hold ->siglock while testing q->list
1510 * to serialize with collect_signal() or with
1511 * __exit_signal()->flush_sigqueue().
1512 */
1513 spin_lock_irqsave(lock, flags);
1514 q->flags &= ~SIGQUEUE_PREALLOC;
1515 /*
1516 * If it is queued it will be freed when dequeued,
1517 * like the "regular" sigqueue.
1518 */
1519 if (!list_empty(&q->list))
1520 q = NULL;
1521 spin_unlock_irqrestore(lock, flags);
1522
1523 if (q)
1524 __sigqueue_free(q);
1525}
1526
1527int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1528{
1529 int sig = q->info.si_signo;
1530 struct sigpending *pending;
1531 unsigned long flags;
1532 int ret, result;
1533
1534 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1535
1536 ret = -1;
1537 if (!likely(lock_task_sighand(t, &flags)))
1538 goto ret;
1539
1540 ret = 1; /* the signal is ignored */
1541 result = TRACE_SIGNAL_IGNORED;
1542 if (!prepare_signal(sig, t, false))
1543 goto out;
1544
1545 ret = 0;
1546 if (unlikely(!list_empty(&q->list))) {
1547 /*
1548 * If an SI_TIMER entry is already queue just increment
1549 * the overrun count.
1550 */
1551 BUG_ON(q->info.si_code != SI_TIMER);
1552 q->info.si_overrun++;
1553 result = TRACE_SIGNAL_ALREADY_PENDING;
1554 goto out;
1555 }
1556 q->info.si_overrun = 0;
1557
1558 signalfd_notify(t, sig);
1559 pending = group ? &t->signal->shared_pending : &t->pending;
1560 list_add_tail(&q->list, &pending->list);
1561 sigaddset(&pending->signal, sig);
1562 complete_signal(sig, t, group);
1563 result = TRACE_SIGNAL_DELIVERED;
1564out:
1565 trace_signal_generate(sig, &q->info, t, group, result);
1566 unlock_task_sighand(t, &flags);
1567ret:
1568 return ret;
1569}
1570
1571/*
1572 * Let a parent know about the death of a child.
1573 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1574 *
1575 * Returns true if our parent ignored us and so we've switched to
1576 * self-reaping.
1577 */
1578bool do_notify_parent(struct task_struct *tsk, int sig)
1579{
1580 struct siginfo info;
1581 unsigned long flags;
1582 struct sighand_struct *psig;
1583 bool autoreap = false;
1584 cputime_t utime, stime;
1585
1586 BUG_ON(sig == -1);
1587
1588 /* do_notify_parent_cldstop should have been called instead. */
1589 BUG_ON(task_is_stopped_or_traced(tsk));
1590
1591 BUG_ON(!tsk->ptrace &&
1592 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1593
1594 if (sig != SIGCHLD) {
1595 /*
1596 * This is only possible if parent == real_parent.
1597 * Check if it has changed security domain.
1598 */
1599 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1600 sig = SIGCHLD;
1601 }
1602
1603 info.si_signo = sig;
1604 info.si_errno = 0;
1605 /*
1606 * We are under tasklist_lock here so our parent is tied to
1607 * us and cannot change.
1608 *
1609 * task_active_pid_ns will always return the same pid namespace
1610 * until a task passes through release_task.
1611 *
1612 * write_lock() currently calls preempt_disable() which is the
1613 * same as rcu_read_lock(), but according to Oleg, this is not
1614 * correct to rely on this
1615 */
1616 rcu_read_lock();
1617 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1618 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1619 task_uid(tsk));
1620 rcu_read_unlock();
1621
1622 task_cputime(tsk, &utime, &stime);
1623 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1624 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1625
1626 info.si_status = tsk->exit_code & 0x7f;
1627 if (tsk->exit_code & 0x80)
1628 info.si_code = CLD_DUMPED;
1629 else if (tsk->exit_code & 0x7f)
1630 info.si_code = CLD_KILLED;
1631 else {
1632 info.si_code = CLD_EXITED;
1633 info.si_status = tsk->exit_code >> 8;
1634 }
1635
1636 psig = tsk->parent->sighand;
1637 spin_lock_irqsave(&psig->siglock, flags);
1638 if (!tsk->ptrace && sig == SIGCHLD &&
1639 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1640 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1641 /*
1642 * We are exiting and our parent doesn't care. POSIX.1
1643 * defines special semantics for setting SIGCHLD to SIG_IGN
1644 * or setting the SA_NOCLDWAIT flag: we should be reaped
1645 * automatically and not left for our parent's wait4 call.
1646 * Rather than having the parent do it as a magic kind of
1647 * signal handler, we just set this to tell do_exit that we
1648 * can be cleaned up without becoming a zombie. Note that
1649 * we still call __wake_up_parent in this case, because a
1650 * blocked sys_wait4 might now return -ECHILD.
1651 *
1652 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1653 * is implementation-defined: we do (if you don't want
1654 * it, just use SIG_IGN instead).
1655 */
1656 autoreap = true;
1657 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1658 sig = 0;
1659 }
1660 if (valid_signal(sig) && sig)
1661 __group_send_sig_info(sig, &info, tsk->parent);
1662 __wake_up_parent(tsk, tsk->parent);
1663 spin_unlock_irqrestore(&psig->siglock, flags);
1664
1665 return autoreap;
1666}
1667
1668/**
1669 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1670 * @tsk: task reporting the state change
1671 * @for_ptracer: the notification is for ptracer
1672 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1673 *
1674 * Notify @tsk's parent that the stopped/continued state has changed. If
1675 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1676 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1677 *
1678 * CONTEXT:
1679 * Must be called with tasklist_lock at least read locked.
1680 */
1681static void do_notify_parent_cldstop(struct task_struct *tsk,
1682 bool for_ptracer, int why)
1683{
1684 struct siginfo info;
1685 unsigned long flags;
1686 struct task_struct *parent;
1687 struct sighand_struct *sighand;
1688 cputime_t utime, stime;
1689
1690 if (for_ptracer) {
1691 parent = tsk->parent;
1692 } else {
1693 tsk = tsk->group_leader;
1694 parent = tsk->real_parent;
1695 }
1696
1697 info.si_signo = SIGCHLD;
1698 info.si_errno = 0;
1699 /*
1700 * see comment in do_notify_parent() about the following 4 lines
1701 */
1702 rcu_read_lock();
1703 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1704 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1705 rcu_read_unlock();
1706
1707 task_cputime(tsk, &utime, &stime);
1708 info.si_utime = cputime_to_clock_t(utime);
1709 info.si_stime = cputime_to_clock_t(stime);
1710
1711 info.si_code = why;
1712 switch (why) {
1713 case CLD_CONTINUED:
1714 info.si_status = SIGCONT;
1715 break;
1716 case CLD_STOPPED:
1717 info.si_status = tsk->signal->group_exit_code & 0x7f;
1718 break;
1719 case CLD_TRAPPED:
1720 info.si_status = tsk->exit_code & 0x7f;
1721 break;
1722 default:
1723 BUG();
1724 }
1725
1726 sighand = parent->sighand;
1727 spin_lock_irqsave(&sighand->siglock, flags);
1728 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1729 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1730 __group_send_sig_info(SIGCHLD, &info, parent);
1731 /*
1732 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1733 */
1734 __wake_up_parent(tsk, parent);
1735 spin_unlock_irqrestore(&sighand->siglock, flags);
1736}
1737
1738static inline int may_ptrace_stop(void)
1739{
1740 if (!likely(current->ptrace))
1741 return 0;
1742 /*
1743 * Are we in the middle of do_coredump?
1744 * If so and our tracer is also part of the coredump stopping
1745 * is a deadlock situation, and pointless because our tracer
1746 * is dead so don't allow us to stop.
1747 * If SIGKILL was already sent before the caller unlocked
1748 * ->siglock we must see ->core_state != NULL. Otherwise it
1749 * is safe to enter schedule().
1750 *
1751 * This is almost outdated, a task with the pending SIGKILL can't
1752 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1753 * after SIGKILL was already dequeued.
1754 */
1755 if (unlikely(current->mm->core_state) &&
1756 unlikely(current->mm == current->parent->mm))
1757 return 0;
1758
1759 return 1;
1760}
1761
1762/*
1763 * Return non-zero if there is a SIGKILL that should be waking us up.
1764 * Called with the siglock held.
1765 */
1766static int sigkill_pending(struct task_struct *tsk)
1767{
1768 return sigismember(&tsk->pending.signal, SIGKILL) ||
1769 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1770}
1771
1772/*
1773 * This must be called with current->sighand->siglock held.
1774 *
1775 * This should be the path for all ptrace stops.
1776 * We always set current->last_siginfo while stopped here.
1777 * That makes it a way to test a stopped process for
1778 * being ptrace-stopped vs being job-control-stopped.
1779 *
1780 * If we actually decide not to stop at all because the tracer
1781 * is gone, we keep current->exit_code unless clear_code.
1782 */
1783static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1784 __releases(¤t->sighand->siglock)
1785 __acquires(¤t->sighand->siglock)
1786{
1787 bool gstop_done = false;
1788
1789 if (arch_ptrace_stop_needed(exit_code, info)) {
1790 /*
1791 * The arch code has something special to do before a
1792 * ptrace stop. This is allowed to block, e.g. for faults
1793 * on user stack pages. We can't keep the siglock while
1794 * calling arch_ptrace_stop, so we must release it now.
1795 * To preserve proper semantics, we must do this before
1796 * any signal bookkeeping like checking group_stop_count.
1797 * Meanwhile, a SIGKILL could come in before we retake the
1798 * siglock. That must prevent us from sleeping in TASK_TRACED.
1799 * So after regaining the lock, we must check for SIGKILL.
1800 */
1801 spin_unlock_irq(¤t->sighand->siglock);
1802 arch_ptrace_stop(exit_code, info);
1803 spin_lock_irq(¤t->sighand->siglock);
1804 if (sigkill_pending(current))
1805 return;
1806 }
1807
1808 /*
1809 * We're committing to trapping. TRACED should be visible before
1810 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1811 * Also, transition to TRACED and updates to ->jobctl should be
1812 * atomic with respect to siglock and should be done after the arch
1813 * hook as siglock is released and regrabbed across it.
1814 */
1815 set_current_state(TASK_TRACED);
1816
1817 current->last_siginfo = info;
1818 current->exit_code = exit_code;
1819
1820 /*
1821 * If @why is CLD_STOPPED, we're trapping to participate in a group
1822 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1823 * across siglock relocks since INTERRUPT was scheduled, PENDING
1824 * could be clear now. We act as if SIGCONT is received after
1825 * TASK_TRACED is entered - ignore it.
1826 */
1827 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1828 gstop_done = task_participate_group_stop(current);
1829
1830 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1831 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1832 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1833 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1834
1835 /* entering a trap, clear TRAPPING */
1836 task_clear_jobctl_trapping(current);
1837
1838 spin_unlock_irq(¤t->sighand->siglock);
1839 read_lock(&tasklist_lock);
1840 if (may_ptrace_stop()) {
1841 /*
1842 * Notify parents of the stop.
1843 *
1844 * While ptraced, there are two parents - the ptracer and
1845 * the real_parent of the group_leader. The ptracer should
1846 * know about every stop while the real parent is only
1847 * interested in the completion of group stop. The states
1848 * for the two don't interact with each other. Notify
1849 * separately unless they're gonna be duplicates.
1850 */
1851 do_notify_parent_cldstop(current, true, why);
1852 if (gstop_done && ptrace_reparented(current))
1853 do_notify_parent_cldstop(current, false, why);
1854
1855 /*
1856 * Don't want to allow preemption here, because
1857 * sys_ptrace() needs this task to be inactive.
1858 *
1859 * XXX: implement read_unlock_no_resched().
1860 */
1861 preempt_disable();
1862 read_unlock(&tasklist_lock);
1863 preempt_enable_no_resched();
1864 freezable_schedule();
1865 } else {
1866 /*
1867 * By the time we got the lock, our tracer went away.
1868 * Don't drop the lock yet, another tracer may come.
1869 *
1870 * If @gstop_done, the ptracer went away between group stop
1871 * completion and here. During detach, it would have set
1872 * JOBCTL_STOP_PENDING on us and we'll re-enter
1873 * TASK_STOPPED in do_signal_stop() on return, so notifying
1874 * the real parent of the group stop completion is enough.
1875 */
1876 if (gstop_done)
1877 do_notify_parent_cldstop(current, false, why);
1878
1879 /* tasklist protects us from ptrace_freeze_traced() */
1880 __set_current_state(TASK_RUNNING);
1881 if (clear_code)
1882 current->exit_code = 0;
1883 read_unlock(&tasklist_lock);
1884 }
1885
1886 /*
1887 * We are back. Now reacquire the siglock before touching
1888 * last_siginfo, so that we are sure to have synchronized with
1889 * any signal-sending on another CPU that wants to examine it.
1890 */
1891 spin_lock_irq(¤t->sighand->siglock);
1892 current->last_siginfo = NULL;
1893
1894 /* LISTENING can be set only during STOP traps, clear it */
1895 current->jobctl &= ~JOBCTL_LISTENING;
1896
1897 /*
1898 * Queued signals ignored us while we were stopped for tracing.
1899 * So check for any that we should take before resuming user mode.
1900 * This sets TIF_SIGPENDING, but never clears it.
1901 */
1902 recalc_sigpending_tsk(current);
1903}
1904
1905static void ptrace_do_notify(int signr, int exit_code, int why)
1906{
1907 siginfo_t info;
1908
1909 memset(&info, 0, sizeof info);
1910 info.si_signo = signr;
1911 info.si_code = exit_code;
1912 info.si_pid = task_pid_vnr(current);
1913 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1914
1915 /* Let the debugger run. */
1916 ptrace_stop(exit_code, why, 1, &info);
1917}
1918
1919void ptrace_notify(int exit_code)
1920{
1921 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1922 if (unlikely(current->task_works))
1923 task_work_run();
1924
1925 spin_lock_irq(¤t->sighand->siglock);
1926 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1927 spin_unlock_irq(¤t->sighand->siglock);
1928}
1929
1930/**
1931 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1932 * @signr: signr causing group stop if initiating
1933 *
1934 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1935 * and participate in it. If already set, participate in the existing
1936 * group stop. If participated in a group stop (and thus slept), %true is
1937 * returned with siglock released.
1938 *
1939 * If ptraced, this function doesn't handle stop itself. Instead,
1940 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1941 * untouched. The caller must ensure that INTERRUPT trap handling takes
1942 * places afterwards.
1943 *
1944 * CONTEXT:
1945 * Must be called with @current->sighand->siglock held, which is released
1946 * on %true return.
1947 *
1948 * RETURNS:
1949 * %false if group stop is already cancelled or ptrace trap is scheduled.
1950 * %true if participated in group stop.
1951 */
1952static bool do_signal_stop(int signr)
1953 __releases(¤t->sighand->siglock)
1954{
1955 struct signal_struct *sig = current->signal;
1956
1957 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1958 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1959 struct task_struct *t;
1960
1961 /* signr will be recorded in task->jobctl for retries */
1962 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1963
1964 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1965 unlikely(signal_group_exit(sig)))
1966 return false;
1967 /*
1968 * There is no group stop already in progress. We must
1969 * initiate one now.
1970 *
1971 * While ptraced, a task may be resumed while group stop is
1972 * still in effect and then receive a stop signal and
1973 * initiate another group stop. This deviates from the
1974 * usual behavior as two consecutive stop signals can't
1975 * cause two group stops when !ptraced. That is why we
1976 * also check !task_is_stopped(t) below.
1977 *
1978 * The condition can be distinguished by testing whether
1979 * SIGNAL_STOP_STOPPED is already set. Don't generate
1980 * group_exit_code in such case.
1981 *
1982 * This is not necessary for SIGNAL_STOP_CONTINUED because
1983 * an intervening stop signal is required to cause two
1984 * continued events regardless of ptrace.
1985 */
1986 if (!(sig->flags & SIGNAL_STOP_STOPPED))
1987 sig->group_exit_code = signr;
1988
1989 sig->group_stop_count = 0;
1990
1991 if (task_set_jobctl_pending(current, signr | gstop))
1992 sig->group_stop_count++;
1993
1994 t = current;
1995 while_each_thread(current, t) {
1996 /*
1997 * Setting state to TASK_STOPPED for a group
1998 * stop is always done with the siglock held,
1999 * so this check has no races.
2000 */
2001 if (!task_is_stopped(t) &&
2002 task_set_jobctl_pending(t, signr | gstop)) {
2003 sig->group_stop_count++;
2004 if (likely(!(t->ptrace & PT_SEIZED)))
2005 signal_wake_up(t, 0);
2006 else
2007 ptrace_trap_notify(t);
2008 }
2009 }
2010 }
2011
2012 if (likely(!current->ptrace)) {
2013 int notify = 0;
2014
2015 /*
2016 * If there are no other threads in the group, or if there
2017 * is a group stop in progress and we are the last to stop,
2018 * report to the parent.
2019 */
2020 if (task_participate_group_stop(current))
2021 notify = CLD_STOPPED;
2022
2023 __set_current_state(TASK_STOPPED);
2024 spin_unlock_irq(¤t->sighand->siglock);
2025
2026 /*
2027 * Notify the parent of the group stop completion. Because
2028 * we're not holding either the siglock or tasklist_lock
2029 * here, ptracer may attach inbetween; however, this is for
2030 * group stop and should always be delivered to the real
2031 * parent of the group leader. The new ptracer will get
2032 * its notification when this task transitions into
2033 * TASK_TRACED.
2034 */
2035 if (notify) {
2036 read_lock(&tasklist_lock);
2037 do_notify_parent_cldstop(current, false, notify);
2038 read_unlock(&tasklist_lock);
2039 }
2040
2041 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2042 freezable_schedule();
2043 return true;
2044 } else {
2045 /*
2046 * While ptraced, group stop is handled by STOP trap.
2047 * Schedule it and let the caller deal with it.
2048 */
2049 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2050 return false;
2051 }
2052}
2053
2054/**
2055 * do_jobctl_trap - take care of ptrace jobctl traps
2056 *
2057 * When PT_SEIZED, it's used for both group stop and explicit
2058 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2059 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2060 * the stop signal; otherwise, %SIGTRAP.
2061 *
2062 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2063 * number as exit_code and no siginfo.
2064 *
2065 * CONTEXT:
2066 * Must be called with @current->sighand->siglock held, which may be
2067 * released and re-acquired before returning with intervening sleep.
2068 */
2069static void do_jobctl_trap(void)
2070{
2071 struct signal_struct *signal = current->signal;
2072 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2073
2074 if (current->ptrace & PT_SEIZED) {
2075 if (!signal->group_stop_count &&
2076 !(signal->flags & SIGNAL_STOP_STOPPED))
2077 signr = SIGTRAP;
2078 WARN_ON_ONCE(!signr);
2079 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2080 CLD_STOPPED);
2081 } else {
2082 WARN_ON_ONCE(!signr);
2083 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2084 current->exit_code = 0;
2085 }
2086}
2087
2088static int ptrace_signal(int signr, siginfo_t *info)
2089{
2090 ptrace_signal_deliver();
2091 /*
2092 * We do not check sig_kernel_stop(signr) but set this marker
2093 * unconditionally because we do not know whether debugger will
2094 * change signr. This flag has no meaning unless we are going
2095 * to stop after return from ptrace_stop(). In this case it will
2096 * be checked in do_signal_stop(), we should only stop if it was
2097 * not cleared by SIGCONT while we were sleeping. See also the
2098 * comment in dequeue_signal().
2099 */
2100 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2101 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2102
2103 /* We're back. Did the debugger cancel the sig? */
2104 signr = current->exit_code;
2105 if (signr == 0)
2106 return signr;
2107
2108 current->exit_code = 0;
2109
2110 /*
2111 * Update the siginfo structure if the signal has
2112 * changed. If the debugger wanted something
2113 * specific in the siginfo structure then it should
2114 * have updated *info via PTRACE_SETSIGINFO.
2115 */
2116 if (signr != info->si_signo) {
2117 info->si_signo = signr;
2118 info->si_errno = 0;
2119 info->si_code = SI_USER;
2120 rcu_read_lock();
2121 info->si_pid = task_pid_vnr(current->parent);
2122 info->si_uid = from_kuid_munged(current_user_ns(),
2123 task_uid(current->parent));
2124 rcu_read_unlock();
2125 }
2126
2127 /* If the (new) signal is now blocked, requeue it. */
2128 if (sigismember(¤t->blocked, signr)) {
2129 specific_send_sig_info(signr, info, current);
2130 signr = 0;
2131 }
2132
2133 return signr;
2134}
2135
2136int get_signal(struct ksignal *ksig)
2137{
2138 struct sighand_struct *sighand = current->sighand;
2139 struct signal_struct *signal = current->signal;
2140 int signr;
2141
2142 if (unlikely(current->task_works))
2143 task_work_run();
2144
2145 if (unlikely(uprobe_deny_signal()))
2146 return 0;
2147
2148 /*
2149 * Do this once, we can't return to user-mode if freezing() == T.
2150 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2151 * thus do not need another check after return.
2152 */
2153 try_to_freeze();
2154
2155relock:
2156 spin_lock_irq(&sighand->siglock);
2157 /*
2158 * Every stopped thread goes here after wakeup. Check to see if
2159 * we should notify the parent, prepare_signal(SIGCONT) encodes
2160 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2161 */
2162 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2163 int why;
2164
2165 if (signal->flags & SIGNAL_CLD_CONTINUED)
2166 why = CLD_CONTINUED;
2167 else
2168 why = CLD_STOPPED;
2169
2170 signal->flags &= ~SIGNAL_CLD_MASK;
2171
2172 spin_unlock_irq(&sighand->siglock);
2173
2174 /*
2175 * Notify the parent that we're continuing. This event is
2176 * always per-process and doesn't make whole lot of sense
2177 * for ptracers, who shouldn't consume the state via
2178 * wait(2) either, but, for backward compatibility, notify
2179 * the ptracer of the group leader too unless it's gonna be
2180 * a duplicate.
2181 */
2182 read_lock(&tasklist_lock);
2183 do_notify_parent_cldstop(current, false, why);
2184
2185 if (ptrace_reparented(current->group_leader))
2186 do_notify_parent_cldstop(current->group_leader,
2187 true, why);
2188 read_unlock(&tasklist_lock);
2189
2190 goto relock;
2191 }
2192
2193 for (;;) {
2194 struct k_sigaction *ka;
2195
2196 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2197 do_signal_stop(0))
2198 goto relock;
2199
2200 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2201 do_jobctl_trap();
2202 spin_unlock_irq(&sighand->siglock);
2203 goto relock;
2204 }
2205
2206 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2207
2208 if (!signr)
2209 break; /* will return 0 */
2210
2211 if (unlikely(current->ptrace) && signr != SIGKILL) {
2212 signr = ptrace_signal(signr, &ksig->info);
2213 if (!signr)
2214 continue;
2215 }
2216
2217 ka = &sighand->action[signr-1];
2218
2219 /* Trace actually delivered signals. */
2220 trace_signal_deliver(signr, &ksig->info, ka);
2221
2222 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2223 continue;
2224 if (ka->sa.sa_handler != SIG_DFL) {
2225 /* Run the handler. */
2226 ksig->ka = *ka;
2227
2228 if (ka->sa.sa_flags & SA_ONESHOT)
2229 ka->sa.sa_handler = SIG_DFL;
2230
2231 break; /* will return non-zero "signr" value */
2232 }
2233
2234 /*
2235 * Now we are doing the default action for this signal.
2236 */
2237 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2238 continue;
2239
2240 /*
2241 * Global init gets no signals it doesn't want.
2242 * Container-init gets no signals it doesn't want from same
2243 * container.
2244 *
2245 * Note that if global/container-init sees a sig_kernel_only()
2246 * signal here, the signal must have been generated internally
2247 * or must have come from an ancestor namespace. In either
2248 * case, the signal cannot be dropped.
2249 */
2250 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2251 !sig_kernel_only(signr))
2252 continue;
2253
2254 if (sig_kernel_stop(signr)) {
2255 /*
2256 * The default action is to stop all threads in
2257 * the thread group. The job control signals
2258 * do nothing in an orphaned pgrp, but SIGSTOP
2259 * always works. Note that siglock needs to be
2260 * dropped during the call to is_orphaned_pgrp()
2261 * because of lock ordering with tasklist_lock.
2262 * This allows an intervening SIGCONT to be posted.
2263 * We need to check for that and bail out if necessary.
2264 */
2265 if (signr != SIGSTOP) {
2266 spin_unlock_irq(&sighand->siglock);
2267
2268 /* signals can be posted during this window */
2269
2270 if (is_current_pgrp_orphaned())
2271 goto relock;
2272
2273 spin_lock_irq(&sighand->siglock);
2274 }
2275
2276 if (likely(do_signal_stop(ksig->info.si_signo))) {
2277 /* It released the siglock. */
2278 goto relock;
2279 }
2280
2281 /*
2282 * We didn't actually stop, due to a race
2283 * with SIGCONT or something like that.
2284 */
2285 continue;
2286 }
2287
2288 spin_unlock_irq(&sighand->siglock);
2289
2290 /*
2291 * Anything else is fatal, maybe with a core dump.
2292 */
2293 current->flags |= PF_SIGNALED;
2294
2295 if (sig_kernel_coredump(signr)) {
2296 if (print_fatal_signals)
2297 print_fatal_signal(ksig->info.si_signo);
2298 proc_coredump_connector(current);
2299 /*
2300 * If it was able to dump core, this kills all
2301 * other threads in the group and synchronizes with
2302 * their demise. If we lost the race with another
2303 * thread getting here, it set group_exit_code
2304 * first and our do_group_exit call below will use
2305 * that value and ignore the one we pass it.
2306 */
2307 do_coredump(&ksig->info);
2308 }
2309
2310 /*
2311 * Death signals, no core dump.
2312 */
2313 do_group_exit(ksig->info.si_signo);
2314 /* NOTREACHED */
2315 }
2316 spin_unlock_irq(&sighand->siglock);
2317
2318 ksig->sig = signr;
2319 return ksig->sig > 0;
2320}
2321
2322/**
2323 * signal_delivered -
2324 * @ksig: kernel signal struct
2325 * @stepping: nonzero if debugger single-step or block-step in use
2326 *
2327 * This function should be called when a signal has successfully been
2328 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2329 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2330 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2331 */
2332static void signal_delivered(struct ksignal *ksig, int stepping)
2333{
2334 sigset_t blocked;
2335
2336 /* A signal was successfully delivered, and the
2337 saved sigmask was stored on the signal frame,
2338 and will be restored by sigreturn. So we can
2339 simply clear the restore sigmask flag. */
2340 clear_restore_sigmask();
2341
2342 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2343 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2344 sigaddset(&blocked, ksig->sig);
2345 set_current_blocked(&blocked);
2346 tracehook_signal_handler(stepping);
2347}
2348
2349void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2350{
2351 if (failed)
2352 force_sigsegv(ksig->sig, current);
2353 else
2354 signal_delivered(ksig, stepping);
2355}
2356
2357/*
2358 * It could be that complete_signal() picked us to notify about the
2359 * group-wide signal. Other threads should be notified now to take
2360 * the shared signals in @which since we will not.
2361 */
2362static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2363{
2364 sigset_t retarget;
2365 struct task_struct *t;
2366
2367 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2368 if (sigisemptyset(&retarget))
2369 return;
2370
2371 t = tsk;
2372 while_each_thread(tsk, t) {
2373 if (t->flags & PF_EXITING)
2374 continue;
2375
2376 if (!has_pending_signals(&retarget, &t->blocked))
2377 continue;
2378 /* Remove the signals this thread can handle. */
2379 sigandsets(&retarget, &retarget, &t->blocked);
2380
2381 if (!signal_pending(t))
2382 signal_wake_up(t, 0);
2383
2384 if (sigisemptyset(&retarget))
2385 break;
2386 }
2387}
2388
2389void exit_signals(struct task_struct *tsk)
2390{
2391 int group_stop = 0;
2392 sigset_t unblocked;
2393
2394 /*
2395 * @tsk is about to have PF_EXITING set - lock out users which
2396 * expect stable threadgroup.
2397 */
2398 threadgroup_change_begin(tsk);
2399
2400 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2401 tsk->flags |= PF_EXITING;
2402 threadgroup_change_end(tsk);
2403 return;
2404 }
2405
2406 spin_lock_irq(&tsk->sighand->siglock);
2407 /*
2408 * From now this task is not visible for group-wide signals,
2409 * see wants_signal(), do_signal_stop().
2410 */
2411 tsk->flags |= PF_EXITING;
2412
2413 threadgroup_change_end(tsk);
2414
2415 if (!signal_pending(tsk))
2416 goto out;
2417
2418 unblocked = tsk->blocked;
2419 signotset(&unblocked);
2420 retarget_shared_pending(tsk, &unblocked);
2421
2422 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2423 task_participate_group_stop(tsk))
2424 group_stop = CLD_STOPPED;
2425out:
2426 spin_unlock_irq(&tsk->sighand->siglock);
2427
2428 /*
2429 * If group stop has completed, deliver the notification. This
2430 * should always go to the real parent of the group leader.
2431 */
2432 if (unlikely(group_stop)) {
2433 read_lock(&tasklist_lock);
2434 do_notify_parent_cldstop(tsk, false, group_stop);
2435 read_unlock(&tasklist_lock);
2436 }
2437}
2438
2439EXPORT_SYMBOL(recalc_sigpending);
2440EXPORT_SYMBOL_GPL(dequeue_signal);
2441EXPORT_SYMBOL(flush_signals);
2442EXPORT_SYMBOL(force_sig);
2443EXPORT_SYMBOL(send_sig);
2444EXPORT_SYMBOL(send_sig_info);
2445EXPORT_SYMBOL(sigprocmask);
2446
2447/*
2448 * System call entry points.
2449 */
2450
2451/**
2452 * sys_restart_syscall - restart a system call
2453 */
2454SYSCALL_DEFINE0(restart_syscall)
2455{
2456 struct restart_block *restart = ¤t->restart_block;
2457 return restart->fn(restart);
2458}
2459
2460long do_no_restart_syscall(struct restart_block *param)
2461{
2462 return -EINTR;
2463}
2464
2465static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2466{
2467 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2468 sigset_t newblocked;
2469 /* A set of now blocked but previously unblocked signals. */
2470 sigandnsets(&newblocked, newset, ¤t->blocked);
2471 retarget_shared_pending(tsk, &newblocked);
2472 }
2473 tsk->blocked = *newset;
2474 recalc_sigpending();
2475}
2476
2477/**
2478 * set_current_blocked - change current->blocked mask
2479 * @newset: new mask
2480 *
2481 * It is wrong to change ->blocked directly, this helper should be used
2482 * to ensure the process can't miss a shared signal we are going to block.
2483 */
2484void set_current_blocked(sigset_t *newset)
2485{
2486 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2487 __set_current_blocked(newset);
2488}
2489
2490void __set_current_blocked(const sigset_t *newset)
2491{
2492 struct task_struct *tsk = current;
2493
2494 /*
2495 * In case the signal mask hasn't changed, there is nothing we need
2496 * to do. The current->blocked shouldn't be modified by other task.
2497 */
2498 if (sigequalsets(&tsk->blocked, newset))
2499 return;
2500
2501 spin_lock_irq(&tsk->sighand->siglock);
2502 __set_task_blocked(tsk, newset);
2503 spin_unlock_irq(&tsk->sighand->siglock);
2504}
2505
2506/*
2507 * This is also useful for kernel threads that want to temporarily
2508 * (or permanently) block certain signals.
2509 *
2510 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2511 * interface happily blocks "unblockable" signals like SIGKILL
2512 * and friends.
2513 */
2514int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2515{
2516 struct task_struct *tsk = current;
2517 sigset_t newset;
2518
2519 /* Lockless, only current can change ->blocked, never from irq */
2520 if (oldset)
2521 *oldset = tsk->blocked;
2522
2523 switch (how) {
2524 case SIG_BLOCK:
2525 sigorsets(&newset, &tsk->blocked, set);
2526 break;
2527 case SIG_UNBLOCK:
2528 sigandnsets(&newset, &tsk->blocked, set);
2529 break;
2530 case SIG_SETMASK:
2531 newset = *set;
2532 break;
2533 default:
2534 return -EINVAL;
2535 }
2536
2537 __set_current_blocked(&newset);
2538 return 0;
2539}
2540
2541/**
2542 * sys_rt_sigprocmask - change the list of currently blocked signals
2543 * @how: whether to add, remove, or set signals
2544 * @nset: stores pending signals
2545 * @oset: previous value of signal mask if non-null
2546 * @sigsetsize: size of sigset_t type
2547 */
2548SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2549 sigset_t __user *, oset, size_t, sigsetsize)
2550{
2551 sigset_t old_set, new_set;
2552 int error;
2553
2554 /* XXX: Don't preclude handling different sized sigset_t's. */
2555 if (sigsetsize != sizeof(sigset_t))
2556 return -EINVAL;
2557
2558 old_set = current->blocked;
2559
2560 if (nset) {
2561 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2562 return -EFAULT;
2563 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2564
2565 error = sigprocmask(how, &new_set, NULL);
2566 if (error)
2567 return error;
2568 }
2569
2570 if (oset) {
2571 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2572 return -EFAULT;
2573 }
2574
2575 return 0;
2576}
2577
2578#ifdef CONFIG_COMPAT
2579COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2580 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2581{
2582#ifdef __BIG_ENDIAN
2583 sigset_t old_set = current->blocked;
2584
2585 /* XXX: Don't preclude handling different sized sigset_t's. */
2586 if (sigsetsize != sizeof(sigset_t))
2587 return -EINVAL;
2588
2589 if (nset) {
2590 compat_sigset_t new32;
2591 sigset_t new_set;
2592 int error;
2593 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2594 return -EFAULT;
2595
2596 sigset_from_compat(&new_set, &new32);
2597 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2598
2599 error = sigprocmask(how, &new_set, NULL);
2600 if (error)
2601 return error;
2602 }
2603 if (oset) {
2604 compat_sigset_t old32;
2605 sigset_to_compat(&old32, &old_set);
2606 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2607 return -EFAULT;
2608 }
2609 return 0;
2610#else
2611 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2612 (sigset_t __user *)oset, sigsetsize);
2613#endif
2614}
2615#endif
2616
2617static int do_sigpending(void *set, unsigned long sigsetsize)
2618{
2619 if (sigsetsize > sizeof(sigset_t))
2620 return -EINVAL;
2621
2622 spin_lock_irq(¤t->sighand->siglock);
2623 sigorsets(set, ¤t->pending.signal,
2624 ¤t->signal->shared_pending.signal);
2625 spin_unlock_irq(¤t->sighand->siglock);
2626
2627 /* Outside the lock because only this thread touches it. */
2628 sigandsets(set, ¤t->blocked, set);
2629 return 0;
2630}
2631
2632/**
2633 * sys_rt_sigpending - examine a pending signal that has been raised
2634 * while blocked
2635 * @uset: stores pending signals
2636 * @sigsetsize: size of sigset_t type or larger
2637 */
2638SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2639{
2640 sigset_t set;
2641 int err = do_sigpending(&set, sigsetsize);
2642 if (!err && copy_to_user(uset, &set, sigsetsize))
2643 err = -EFAULT;
2644 return err;
2645}
2646
2647#ifdef CONFIG_COMPAT
2648COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2649 compat_size_t, sigsetsize)
2650{
2651#ifdef __BIG_ENDIAN
2652 sigset_t set;
2653 int err = do_sigpending(&set, sigsetsize);
2654 if (!err) {
2655 compat_sigset_t set32;
2656 sigset_to_compat(&set32, &set);
2657 /* we can get here only if sigsetsize <= sizeof(set) */
2658 if (copy_to_user(uset, &set32, sigsetsize))
2659 err = -EFAULT;
2660 }
2661 return err;
2662#else
2663 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2664#endif
2665}
2666#endif
2667
2668#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2669
2670int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2671{
2672 int err;
2673
2674 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2675 return -EFAULT;
2676 if (from->si_code < 0)
2677 return __copy_to_user(to, from, sizeof(siginfo_t))
2678 ? -EFAULT : 0;
2679 /*
2680 * If you change siginfo_t structure, please be sure
2681 * this code is fixed accordingly.
2682 * Please remember to update the signalfd_copyinfo() function
2683 * inside fs/signalfd.c too, in case siginfo_t changes.
2684 * It should never copy any pad contained in the structure
2685 * to avoid security leaks, but must copy the generic
2686 * 3 ints plus the relevant union member.
2687 */
2688 err = __put_user(from->si_signo, &to->si_signo);
2689 err |= __put_user(from->si_errno, &to->si_errno);
2690 err |= __put_user((short)from->si_code, &to->si_code);
2691 switch (from->si_code & __SI_MASK) {
2692 case __SI_KILL:
2693 err |= __put_user(from->si_pid, &to->si_pid);
2694 err |= __put_user(from->si_uid, &to->si_uid);
2695 break;
2696 case __SI_TIMER:
2697 err |= __put_user(from->si_tid, &to->si_tid);
2698 err |= __put_user(from->si_overrun, &to->si_overrun);
2699 err |= __put_user(from->si_ptr, &to->si_ptr);
2700 break;
2701 case __SI_POLL:
2702 err |= __put_user(from->si_band, &to->si_band);
2703 err |= __put_user(from->si_fd, &to->si_fd);
2704 break;
2705 case __SI_FAULT:
2706 err |= __put_user(from->si_addr, &to->si_addr);
2707#ifdef __ARCH_SI_TRAPNO
2708 err |= __put_user(from->si_trapno, &to->si_trapno);
2709#endif
2710#ifdef BUS_MCEERR_AO
2711 /*
2712 * Other callers might not initialize the si_lsb field,
2713 * so check explicitly for the right codes here.
2714 */
2715 if (from->si_signo == SIGBUS &&
2716 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2717 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2718#endif
2719#ifdef SEGV_BNDERR
2720 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2721 err |= __put_user(from->si_lower, &to->si_lower);
2722 err |= __put_user(from->si_upper, &to->si_upper);
2723 }
2724#endif
2725#ifdef SEGV_PKUERR
2726 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2727 err |= __put_user(from->si_pkey, &to->si_pkey);
2728#endif
2729 break;
2730 case __SI_CHLD:
2731 err |= __put_user(from->si_pid, &to->si_pid);
2732 err |= __put_user(from->si_uid, &to->si_uid);
2733 err |= __put_user(from->si_status, &to->si_status);
2734 err |= __put_user(from->si_utime, &to->si_utime);
2735 err |= __put_user(from->si_stime, &to->si_stime);
2736 break;
2737 case __SI_RT: /* This is not generated by the kernel as of now. */
2738 case __SI_MESGQ: /* But this is */
2739 err |= __put_user(from->si_pid, &to->si_pid);
2740 err |= __put_user(from->si_uid, &to->si_uid);
2741 err |= __put_user(from->si_ptr, &to->si_ptr);
2742 break;
2743#ifdef __ARCH_SIGSYS
2744 case __SI_SYS:
2745 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2746 err |= __put_user(from->si_syscall, &to->si_syscall);
2747 err |= __put_user(from->si_arch, &to->si_arch);
2748 break;
2749#endif
2750 default: /* this is just in case for now ... */
2751 err |= __put_user(from->si_pid, &to->si_pid);
2752 err |= __put_user(from->si_uid, &to->si_uid);
2753 break;
2754 }
2755 return err;
2756}
2757
2758#endif
2759
2760/**
2761 * do_sigtimedwait - wait for queued signals specified in @which
2762 * @which: queued signals to wait for
2763 * @info: if non-null, the signal's siginfo is returned here
2764 * @ts: upper bound on process time suspension
2765 */
2766int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2767 const struct timespec *ts)
2768{
2769 ktime_t *to = NULL, timeout = KTIME_MAX;
2770 struct task_struct *tsk = current;
2771 sigset_t mask = *which;
2772 int sig, ret = 0;
2773
2774 if (ts) {
2775 if (!timespec_valid(ts))
2776 return -EINVAL;
2777 timeout = timespec_to_ktime(*ts);
2778 to = &timeout;
2779 }
2780
2781 /*
2782 * Invert the set of allowed signals to get those we want to block.
2783 */
2784 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2785 signotset(&mask);
2786
2787 spin_lock_irq(&tsk->sighand->siglock);
2788 sig = dequeue_signal(tsk, &mask, info);
2789 if (!sig && timeout) {
2790 /*
2791 * None ready, temporarily unblock those we're interested
2792 * while we are sleeping in so that we'll be awakened when
2793 * they arrive. Unblocking is always fine, we can avoid
2794 * set_current_blocked().
2795 */
2796 tsk->real_blocked = tsk->blocked;
2797 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2798 recalc_sigpending();
2799 spin_unlock_irq(&tsk->sighand->siglock);
2800
2801 __set_current_state(TASK_INTERRUPTIBLE);
2802 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2803 HRTIMER_MODE_REL);
2804 spin_lock_irq(&tsk->sighand->siglock);
2805 __set_task_blocked(tsk, &tsk->real_blocked);
2806 sigemptyset(&tsk->real_blocked);
2807 sig = dequeue_signal(tsk, &mask, info);
2808 }
2809 spin_unlock_irq(&tsk->sighand->siglock);
2810
2811 if (sig)
2812 return sig;
2813 return ret ? -EINTR : -EAGAIN;
2814}
2815
2816/**
2817 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2818 * in @uthese
2819 * @uthese: queued signals to wait for
2820 * @uinfo: if non-null, the signal's siginfo is returned here
2821 * @uts: upper bound on process time suspension
2822 * @sigsetsize: size of sigset_t type
2823 */
2824SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2825 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2826 size_t, sigsetsize)
2827{
2828 sigset_t these;
2829 struct timespec ts;
2830 siginfo_t info;
2831 int ret;
2832
2833 /* XXX: Don't preclude handling different sized sigset_t's. */
2834 if (sigsetsize != sizeof(sigset_t))
2835 return -EINVAL;
2836
2837 if (copy_from_user(&these, uthese, sizeof(these)))
2838 return -EFAULT;
2839
2840 if (uts) {
2841 if (copy_from_user(&ts, uts, sizeof(ts)))
2842 return -EFAULT;
2843 }
2844
2845 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2846
2847 if (ret > 0 && uinfo) {
2848 if (copy_siginfo_to_user(uinfo, &info))
2849 ret = -EFAULT;
2850 }
2851
2852 return ret;
2853}
2854
2855/**
2856 * sys_kill - send a signal to a process
2857 * @pid: the PID of the process
2858 * @sig: signal to be sent
2859 */
2860SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2861{
2862 struct siginfo info;
2863
2864 info.si_signo = sig;
2865 info.si_errno = 0;
2866 info.si_code = SI_USER;
2867 info.si_pid = task_tgid_vnr(current);
2868 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2869
2870 return kill_something_info(sig, &info, pid);
2871}
2872
2873static int
2874do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2875{
2876 struct task_struct *p;
2877 int error = -ESRCH;
2878
2879 rcu_read_lock();
2880 p = find_task_by_vpid(pid);
2881 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2882 error = check_kill_permission(sig, info, p);
2883 /*
2884 * The null signal is a permissions and process existence
2885 * probe. No signal is actually delivered.
2886 */
2887 if (!error && sig) {
2888 error = do_send_sig_info(sig, info, p, false);
2889 /*
2890 * If lock_task_sighand() failed we pretend the task
2891 * dies after receiving the signal. The window is tiny,
2892 * and the signal is private anyway.
2893 */
2894 if (unlikely(error == -ESRCH))
2895 error = 0;
2896 }
2897 }
2898 rcu_read_unlock();
2899
2900 return error;
2901}
2902
2903static int do_tkill(pid_t tgid, pid_t pid, int sig)
2904{
2905 struct siginfo info = {};
2906
2907 info.si_signo = sig;
2908 info.si_errno = 0;
2909 info.si_code = SI_TKILL;
2910 info.si_pid = task_tgid_vnr(current);
2911 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2912
2913 return do_send_specific(tgid, pid, sig, &info);
2914}
2915
2916/**
2917 * sys_tgkill - send signal to one specific thread
2918 * @tgid: the thread group ID of the thread
2919 * @pid: the PID of the thread
2920 * @sig: signal to be sent
2921 *
2922 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2923 * exists but it's not belonging to the target process anymore. This
2924 * method solves the problem of threads exiting and PIDs getting reused.
2925 */
2926SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2927{
2928 /* This is only valid for single tasks */
2929 if (pid <= 0 || tgid <= 0)
2930 return -EINVAL;
2931
2932 return do_tkill(tgid, pid, sig);
2933}
2934
2935/**
2936 * sys_tkill - send signal to one specific task
2937 * @pid: the PID of the task
2938 * @sig: signal to be sent
2939 *
2940 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2941 */
2942SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2943{
2944 /* This is only valid for single tasks */
2945 if (pid <= 0)
2946 return -EINVAL;
2947
2948 return do_tkill(0, pid, sig);
2949}
2950
2951static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2952{
2953 /* Not even root can pretend to send signals from the kernel.
2954 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2955 */
2956 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2957 (task_pid_vnr(current) != pid))
2958 return -EPERM;
2959
2960 info->si_signo = sig;
2961
2962 /* POSIX.1b doesn't mention process groups. */
2963 return kill_proc_info(sig, info, pid);
2964}
2965
2966/**
2967 * sys_rt_sigqueueinfo - send signal information to a signal
2968 * @pid: the PID of the thread
2969 * @sig: signal to be sent
2970 * @uinfo: signal info to be sent
2971 */
2972SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2973 siginfo_t __user *, uinfo)
2974{
2975 siginfo_t info;
2976 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2977 return -EFAULT;
2978 return do_rt_sigqueueinfo(pid, sig, &info);
2979}
2980
2981#ifdef CONFIG_COMPAT
2982COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2983 compat_pid_t, pid,
2984 int, sig,
2985 struct compat_siginfo __user *, uinfo)
2986{
2987 siginfo_t info = {};
2988 int ret = copy_siginfo_from_user32(&info, uinfo);
2989 if (unlikely(ret))
2990 return ret;
2991 return do_rt_sigqueueinfo(pid, sig, &info);
2992}
2993#endif
2994
2995static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2996{
2997 /* This is only valid for single tasks */
2998 if (pid <= 0 || tgid <= 0)
2999 return -EINVAL;
3000
3001 /* Not even root can pretend to send signals from the kernel.
3002 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3003 */
3004 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3005 (task_pid_vnr(current) != pid))
3006 return -EPERM;
3007
3008 info->si_signo = sig;
3009
3010 return do_send_specific(tgid, pid, sig, info);
3011}
3012
3013SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3014 siginfo_t __user *, uinfo)
3015{
3016 siginfo_t info;
3017
3018 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3019 return -EFAULT;
3020
3021 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3022}
3023
3024#ifdef CONFIG_COMPAT
3025COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3026 compat_pid_t, tgid,
3027 compat_pid_t, pid,
3028 int, sig,
3029 struct compat_siginfo __user *, uinfo)
3030{
3031 siginfo_t info = {};
3032
3033 if (copy_siginfo_from_user32(&info, uinfo))
3034 return -EFAULT;
3035 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3036}
3037#endif
3038
3039/*
3040 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3041 */
3042void kernel_sigaction(int sig, __sighandler_t action)
3043{
3044 spin_lock_irq(¤t->sighand->siglock);
3045 current->sighand->action[sig - 1].sa.sa_handler = action;
3046 if (action == SIG_IGN) {
3047 sigset_t mask;
3048
3049 sigemptyset(&mask);
3050 sigaddset(&mask, sig);
3051
3052 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
3053 flush_sigqueue_mask(&mask, ¤t->pending);
3054 recalc_sigpending();
3055 }
3056 spin_unlock_irq(¤t->sighand->siglock);
3057}
3058EXPORT_SYMBOL(kernel_sigaction);
3059
3060void __weak sigaction_compat_abi(struct k_sigaction *act,
3061 struct k_sigaction *oact)
3062{
3063}
3064
3065int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3066{
3067 struct task_struct *p = current, *t;
3068 struct k_sigaction *k;
3069 sigset_t mask;
3070
3071 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3072 return -EINVAL;
3073
3074 k = &p->sighand->action[sig-1];
3075
3076 spin_lock_irq(&p->sighand->siglock);
3077 if (oact)
3078 *oact = *k;
3079
3080 sigaction_compat_abi(act, oact);
3081
3082 if (act) {
3083 sigdelsetmask(&act->sa.sa_mask,
3084 sigmask(SIGKILL) | sigmask(SIGSTOP));
3085 *k = *act;
3086 /*
3087 * POSIX 3.3.1.3:
3088 * "Setting a signal action to SIG_IGN for a signal that is
3089 * pending shall cause the pending signal to be discarded,
3090 * whether or not it is blocked."
3091 *
3092 * "Setting a signal action to SIG_DFL for a signal that is
3093 * pending and whose default action is to ignore the signal
3094 * (for example, SIGCHLD), shall cause the pending signal to
3095 * be discarded, whether or not it is blocked"
3096 */
3097 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3098 sigemptyset(&mask);
3099 sigaddset(&mask, sig);
3100 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3101 for_each_thread(p, t)
3102 flush_sigqueue_mask(&mask, &t->pending);
3103 }
3104 }
3105
3106 spin_unlock_irq(&p->sighand->siglock);
3107 return 0;
3108}
3109
3110static int
3111do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3112{
3113 stack_t oss;
3114 int error;
3115
3116 oss.ss_sp = (void __user *) current->sas_ss_sp;
3117 oss.ss_size = current->sas_ss_size;
3118 oss.ss_flags = sas_ss_flags(sp) |
3119 (current->sas_ss_flags & SS_FLAG_BITS);
3120
3121 if (uss) {
3122 void __user *ss_sp;
3123 size_t ss_size;
3124 unsigned ss_flags;
3125 int ss_mode;
3126
3127 error = -EFAULT;
3128 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3129 goto out;
3130 error = __get_user(ss_sp, &uss->ss_sp) |
3131 __get_user(ss_flags, &uss->ss_flags) |
3132 __get_user(ss_size, &uss->ss_size);
3133 if (error)
3134 goto out;
3135
3136 error = -EPERM;
3137 if (on_sig_stack(sp))
3138 goto out;
3139
3140 ss_mode = ss_flags & ~SS_FLAG_BITS;
3141 error = -EINVAL;
3142 if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3143 ss_mode != 0)
3144 goto out;
3145
3146 if (ss_mode == SS_DISABLE) {
3147 ss_size = 0;
3148 ss_sp = NULL;
3149 } else {
3150 error = -ENOMEM;
3151 if (ss_size < MINSIGSTKSZ)
3152 goto out;
3153 }
3154
3155 current->sas_ss_sp = (unsigned long) ss_sp;
3156 current->sas_ss_size = ss_size;
3157 current->sas_ss_flags = ss_flags;
3158 }
3159
3160 error = 0;
3161 if (uoss) {
3162 error = -EFAULT;
3163 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3164 goto out;
3165 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3166 __put_user(oss.ss_size, &uoss->ss_size) |
3167 __put_user(oss.ss_flags, &uoss->ss_flags);
3168 }
3169
3170out:
3171 return error;
3172}
3173SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3174{
3175 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3176}
3177
3178int restore_altstack(const stack_t __user *uss)
3179{
3180 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3181 /* squash all but EFAULT for now */
3182 return err == -EFAULT ? err : 0;
3183}
3184
3185int __save_altstack(stack_t __user *uss, unsigned long sp)
3186{
3187 struct task_struct *t = current;
3188 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3189 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3190 __put_user(t->sas_ss_size, &uss->ss_size);
3191 if (err)
3192 return err;
3193 if (t->sas_ss_flags & SS_AUTODISARM)
3194 sas_ss_reset(t);
3195 return 0;
3196}
3197
3198#ifdef CONFIG_COMPAT
3199COMPAT_SYSCALL_DEFINE2(sigaltstack,
3200 const compat_stack_t __user *, uss_ptr,
3201 compat_stack_t __user *, uoss_ptr)
3202{
3203 stack_t uss, uoss;
3204 int ret;
3205 mm_segment_t seg;
3206
3207 if (uss_ptr) {
3208 compat_stack_t uss32;
3209
3210 memset(&uss, 0, sizeof(stack_t));
3211 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3212 return -EFAULT;
3213 uss.ss_sp = compat_ptr(uss32.ss_sp);
3214 uss.ss_flags = uss32.ss_flags;
3215 uss.ss_size = uss32.ss_size;
3216 }
3217 seg = get_fs();
3218 set_fs(KERNEL_DS);
3219 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3220 (stack_t __force __user *) &uoss,
3221 compat_user_stack_pointer());
3222 set_fs(seg);
3223 if (ret >= 0 && uoss_ptr) {
3224 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3225 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3226 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3227 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3228 ret = -EFAULT;
3229 }
3230 return ret;
3231}
3232
3233int compat_restore_altstack(const compat_stack_t __user *uss)
3234{
3235 int err = compat_sys_sigaltstack(uss, NULL);
3236 /* squash all but -EFAULT for now */
3237 return err == -EFAULT ? err : 0;
3238}
3239
3240int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3241{
3242 int err;
3243 struct task_struct *t = current;
3244 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3245 &uss->ss_sp) |
3246 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3247 __put_user(t->sas_ss_size, &uss->ss_size);
3248 if (err)
3249 return err;
3250 if (t->sas_ss_flags & SS_AUTODISARM)
3251 sas_ss_reset(t);
3252 return 0;
3253}
3254#endif
3255
3256#ifdef __ARCH_WANT_SYS_SIGPENDING
3257
3258/**
3259 * sys_sigpending - examine pending signals
3260 * @set: where mask of pending signal is returned
3261 */
3262SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3263{
3264 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3265}
3266
3267#endif
3268
3269#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3270/**
3271 * sys_sigprocmask - examine and change blocked signals
3272 * @how: whether to add, remove, or set signals
3273 * @nset: signals to add or remove (if non-null)
3274 * @oset: previous value of signal mask if non-null
3275 *
3276 * Some platforms have their own version with special arguments;
3277 * others support only sys_rt_sigprocmask.
3278 */
3279
3280SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3281 old_sigset_t __user *, oset)
3282{
3283 old_sigset_t old_set, new_set;
3284 sigset_t new_blocked;
3285
3286 old_set = current->blocked.sig[0];
3287
3288 if (nset) {
3289 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3290 return -EFAULT;
3291
3292 new_blocked = current->blocked;
3293
3294 switch (how) {
3295 case SIG_BLOCK:
3296 sigaddsetmask(&new_blocked, new_set);
3297 break;
3298 case SIG_UNBLOCK:
3299 sigdelsetmask(&new_blocked, new_set);
3300 break;
3301 case SIG_SETMASK:
3302 new_blocked.sig[0] = new_set;
3303 break;
3304 default:
3305 return -EINVAL;
3306 }
3307
3308 set_current_blocked(&new_blocked);
3309 }
3310
3311 if (oset) {
3312 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3313 return -EFAULT;
3314 }
3315
3316 return 0;
3317}
3318#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3319
3320#ifndef CONFIG_ODD_RT_SIGACTION
3321/**
3322 * sys_rt_sigaction - alter an action taken by a process
3323 * @sig: signal to be sent
3324 * @act: new sigaction
3325 * @oact: used to save the previous sigaction
3326 * @sigsetsize: size of sigset_t type
3327 */
3328SYSCALL_DEFINE4(rt_sigaction, int, sig,
3329 const struct sigaction __user *, act,
3330 struct sigaction __user *, oact,
3331 size_t, sigsetsize)
3332{
3333 struct k_sigaction new_sa, old_sa;
3334 int ret = -EINVAL;
3335
3336 /* XXX: Don't preclude handling different sized sigset_t's. */
3337 if (sigsetsize != sizeof(sigset_t))
3338 goto out;
3339
3340 if (act) {
3341 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3342 return -EFAULT;
3343 }
3344
3345 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3346
3347 if (!ret && oact) {
3348 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3349 return -EFAULT;
3350 }
3351out:
3352 return ret;
3353}
3354#ifdef CONFIG_COMPAT
3355COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3356 const struct compat_sigaction __user *, act,
3357 struct compat_sigaction __user *, oact,
3358 compat_size_t, sigsetsize)
3359{
3360 struct k_sigaction new_ka, old_ka;
3361 compat_sigset_t mask;
3362#ifdef __ARCH_HAS_SA_RESTORER
3363 compat_uptr_t restorer;
3364#endif
3365 int ret;
3366
3367 /* XXX: Don't preclude handling different sized sigset_t's. */
3368 if (sigsetsize != sizeof(compat_sigset_t))
3369 return -EINVAL;
3370
3371 if (act) {
3372 compat_uptr_t handler;
3373 ret = get_user(handler, &act->sa_handler);
3374 new_ka.sa.sa_handler = compat_ptr(handler);
3375#ifdef __ARCH_HAS_SA_RESTORER
3376 ret |= get_user(restorer, &act->sa_restorer);
3377 new_ka.sa.sa_restorer = compat_ptr(restorer);
3378#endif
3379 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3380 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3381 if (ret)
3382 return -EFAULT;
3383 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3384 }
3385
3386 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3387 if (!ret && oact) {
3388 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3389 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3390 &oact->sa_handler);
3391 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3392 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3395 &oact->sa_restorer);
3396#endif
3397 }
3398 return ret;
3399}
3400#endif
3401#endif /* !CONFIG_ODD_RT_SIGACTION */
3402
3403#ifdef CONFIG_OLD_SIGACTION
3404SYSCALL_DEFINE3(sigaction, int, sig,
3405 const struct old_sigaction __user *, act,
3406 struct old_sigaction __user *, oact)
3407{
3408 struct k_sigaction new_ka, old_ka;
3409 int ret;
3410
3411 if (act) {
3412 old_sigset_t mask;
3413 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3414 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3415 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3416 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3417 __get_user(mask, &act->sa_mask))
3418 return -EFAULT;
3419#ifdef __ARCH_HAS_KA_RESTORER
3420 new_ka.ka_restorer = NULL;
3421#endif
3422 siginitset(&new_ka.sa.sa_mask, mask);
3423 }
3424
3425 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3426
3427 if (!ret && oact) {
3428 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3429 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3430 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3431 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3432 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3433 return -EFAULT;
3434 }
3435
3436 return ret;
3437}
3438#endif
3439#ifdef CONFIG_COMPAT_OLD_SIGACTION
3440COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3441 const struct compat_old_sigaction __user *, act,
3442 struct compat_old_sigaction __user *, oact)
3443{
3444 struct k_sigaction new_ka, old_ka;
3445 int ret;
3446 compat_old_sigset_t mask;
3447 compat_uptr_t handler, restorer;
3448
3449 if (act) {
3450 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3451 __get_user(handler, &act->sa_handler) ||
3452 __get_user(restorer, &act->sa_restorer) ||
3453 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3454 __get_user(mask, &act->sa_mask))
3455 return -EFAULT;
3456
3457#ifdef __ARCH_HAS_KA_RESTORER
3458 new_ka.ka_restorer = NULL;
3459#endif
3460 new_ka.sa.sa_handler = compat_ptr(handler);
3461 new_ka.sa.sa_restorer = compat_ptr(restorer);
3462 siginitset(&new_ka.sa.sa_mask, mask);
3463 }
3464
3465 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3466
3467 if (!ret && oact) {
3468 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3469 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3470 &oact->sa_handler) ||
3471 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3472 &oact->sa_restorer) ||
3473 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3474 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3475 return -EFAULT;
3476 }
3477 return ret;
3478}
3479#endif
3480
3481#ifdef CONFIG_SGETMASK_SYSCALL
3482
3483/*
3484 * For backwards compatibility. Functionality superseded by sigprocmask.
3485 */
3486SYSCALL_DEFINE0(sgetmask)
3487{
3488 /* SMP safe */
3489 return current->blocked.sig[0];
3490}
3491
3492SYSCALL_DEFINE1(ssetmask, int, newmask)
3493{
3494 int old = current->blocked.sig[0];
3495 sigset_t newset;
3496
3497 siginitset(&newset, newmask);
3498 set_current_blocked(&newset);
3499
3500 return old;
3501}
3502#endif /* CONFIG_SGETMASK_SYSCALL */
3503
3504#ifdef __ARCH_WANT_SYS_SIGNAL
3505/*
3506 * For backwards compatibility. Functionality superseded by sigaction.
3507 */
3508SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3509{
3510 struct k_sigaction new_sa, old_sa;
3511 int ret;
3512
3513 new_sa.sa.sa_handler = handler;
3514 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3515 sigemptyset(&new_sa.sa.sa_mask);
3516
3517 ret = do_sigaction(sig, &new_sa, &old_sa);
3518
3519 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3520}
3521#endif /* __ARCH_WANT_SYS_SIGNAL */
3522
3523#ifdef __ARCH_WANT_SYS_PAUSE
3524
3525SYSCALL_DEFINE0(pause)
3526{
3527 while (!signal_pending(current)) {
3528 __set_current_state(TASK_INTERRUPTIBLE);
3529 schedule();
3530 }
3531 return -ERESTARTNOHAND;
3532}
3533
3534#endif
3535
3536static int sigsuspend(sigset_t *set)
3537{
3538 current->saved_sigmask = current->blocked;
3539 set_current_blocked(set);
3540
3541 while (!signal_pending(current)) {
3542 __set_current_state(TASK_INTERRUPTIBLE);
3543 schedule();
3544 }
3545 set_restore_sigmask();
3546 return -ERESTARTNOHAND;
3547}
3548
3549/**
3550 * sys_rt_sigsuspend - replace the signal mask for a value with the
3551 * @unewset value until a signal is received
3552 * @unewset: new signal mask value
3553 * @sigsetsize: size of sigset_t type
3554 */
3555SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3556{
3557 sigset_t newset;
3558
3559 /* XXX: Don't preclude handling different sized sigset_t's. */
3560 if (sigsetsize != sizeof(sigset_t))
3561 return -EINVAL;
3562
3563 if (copy_from_user(&newset, unewset, sizeof(newset)))
3564 return -EFAULT;
3565 return sigsuspend(&newset);
3566}
3567
3568#ifdef CONFIG_COMPAT
3569COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3570{
3571#ifdef __BIG_ENDIAN
3572 sigset_t newset;
3573 compat_sigset_t newset32;
3574
3575 /* XXX: Don't preclude handling different sized sigset_t's. */
3576 if (sigsetsize != sizeof(sigset_t))
3577 return -EINVAL;
3578
3579 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3580 return -EFAULT;
3581 sigset_from_compat(&newset, &newset32);
3582 return sigsuspend(&newset);
3583#else
3584 /* on little-endian bitmaps don't care about granularity */
3585 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3586#endif
3587}
3588#endif
3589
3590#ifdef CONFIG_OLD_SIGSUSPEND
3591SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3592{
3593 sigset_t blocked;
3594 siginitset(&blocked, mask);
3595 return sigsuspend(&blocked);
3596}
3597#endif
3598#ifdef CONFIG_OLD_SIGSUSPEND3
3599SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3600{
3601 sigset_t blocked;
3602 siginitset(&blocked, mask);
3603 return sigsuspend(&blocked);
3604}
3605#endif
3606
3607__weak const char *arch_vma_name(struct vm_area_struct *vma)
3608{
3609 return NULL;
3610}
3611
3612void __init signals_init(void)
3613{
3614 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3615 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3616 != offsetof(struct siginfo, _sifields._pad));
3617
3618 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3619}
3620
3621#ifdef CONFIG_KGDB_KDB
3622#include <linux/kdb.h>
3623/*
3624 * kdb_send_sig_info - Allows kdb to send signals without exposing
3625 * signal internals. This function checks if the required locks are
3626 * available before calling the main signal code, to avoid kdb
3627 * deadlocks.
3628 */
3629void
3630kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3631{
3632 static struct task_struct *kdb_prev_t;
3633 int sig, new_t;
3634 if (!spin_trylock(&t->sighand->siglock)) {
3635 kdb_printf("Can't do kill command now.\n"
3636 "The sigmask lock is held somewhere else in "
3637 "kernel, try again later\n");
3638 return;
3639 }
3640 spin_unlock(&t->sighand->siglock);
3641 new_t = kdb_prev_t != t;
3642 kdb_prev_t = t;
3643 if (t->state != TASK_RUNNING && new_t) {
3644 kdb_printf("Process is not RUNNING, sending a signal from "
3645 "kdb risks deadlock\n"
3646 "on the run queue locks. "
3647 "The signal has _not_ been sent.\n"
3648 "Reissue the kill command if you want to risk "
3649 "the deadlock.\n");
3650 return;
3651 }
3652 sig = info->si_signo;
3653 if (send_sig_info(sig, info, t))
3654 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3655 sig, t->pid);
3656 else
3657 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3658}
3659#endif /* CONFIG_KGDB_KDB */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/init.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/user.h>
19#include <linux/sched/debug.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/sched/cputime.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/mm.h>
26#include <linux/proc_fs.h>
27#include <linux/tty.h>
28#include <linux/binfmts.h>
29#include <linux/coredump.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include <linux/ptrace.h>
33#include <linux/signal.h>
34#include <linux/signalfd.h>
35#include <linux/ratelimit.h>
36#include <linux/task_work.h>
37#include <linux/capability.h>
38#include <linux/freezer.h>
39#include <linux/pid_namespace.h>
40#include <linux/nsproxy.h>
41#include <linux/user_namespace.h>
42#include <linux/uprobes.h>
43#include <linux/compat.h>
44#include <linux/cn_proc.h>
45#include <linux/compiler.h>
46#include <linux/posix-timers.h>
47#include <linux/cgroup.h>
48#include <linux/audit.h>
49#include <linux/sysctl.h>
50#include <uapi/linux/pidfd.h>
51
52#define CREATE_TRACE_POINTS
53#include <trace/events/signal.h>
54
55#include <asm/param.h>
56#include <linux/uaccess.h>
57#include <asm/unistd.h>
58#include <asm/siginfo.h>
59#include <asm/cacheflush.h>
60#include <asm/syscall.h> /* for syscall_get_* */
61
62/*
63 * SLAB caches for signal bits.
64 */
65
66static struct kmem_cache *sigqueue_cachep;
67
68int print_fatal_signals __read_mostly;
69
70static void __user *sig_handler(struct task_struct *t, int sig)
71{
72 return t->sighand->action[sig - 1].sa.sa_handler;
73}
74
75static inline bool sig_handler_ignored(void __user *handler, int sig)
76{
77 /* Is it explicitly or implicitly ignored? */
78 return handler == SIG_IGN ||
79 (handler == SIG_DFL && sig_kernel_ignore(sig));
80}
81
82static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
83{
84 void __user *handler;
85
86 handler = sig_handler(t, sig);
87
88 /* SIGKILL and SIGSTOP may not be sent to the global init */
89 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
90 return true;
91
92 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
93 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
94 return true;
95
96 /* Only allow kernel generated signals to this kthread */
97 if (unlikely((t->flags & PF_KTHREAD) &&
98 (handler == SIG_KTHREAD_KERNEL) && !force))
99 return true;
100
101 return sig_handler_ignored(handler, sig);
102}
103
104static bool sig_ignored(struct task_struct *t, int sig, bool force)
105{
106 /*
107 * Blocked signals are never ignored, since the
108 * signal handler may change by the time it is
109 * unblocked.
110 */
111 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
112 return false;
113
114 /*
115 * Tracers may want to know about even ignored signal unless it
116 * is SIGKILL which can't be reported anyway but can be ignored
117 * by SIGNAL_UNKILLABLE task.
118 */
119 if (t->ptrace && sig != SIGKILL)
120 return false;
121
122 return sig_task_ignored(t, sig, force);
123}
124
125/*
126 * Re-calculate pending state from the set of locally pending
127 * signals, globally pending signals, and blocked signals.
128 */
129static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
130{
131 unsigned long ready;
132 long i;
133
134 switch (_NSIG_WORDS) {
135 default:
136 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
137 ready |= signal->sig[i] &~ blocked->sig[i];
138 break;
139
140 case 4: ready = signal->sig[3] &~ blocked->sig[3];
141 ready |= signal->sig[2] &~ blocked->sig[2];
142 ready |= signal->sig[1] &~ blocked->sig[1];
143 ready |= signal->sig[0] &~ blocked->sig[0];
144 break;
145
146 case 2: ready = signal->sig[1] &~ blocked->sig[1];
147 ready |= signal->sig[0] &~ blocked->sig[0];
148 break;
149
150 case 1: ready = signal->sig[0] &~ blocked->sig[0];
151 }
152 return ready != 0;
153}
154
155#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
156
157static bool recalc_sigpending_tsk(struct task_struct *t)
158{
159 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
160 PENDING(&t->pending, &t->blocked) ||
161 PENDING(&t->signal->shared_pending, &t->blocked) ||
162 cgroup_task_frozen(t)) {
163 set_tsk_thread_flag(t, TIF_SIGPENDING);
164 return true;
165 }
166
167 /*
168 * We must never clear the flag in another thread, or in current
169 * when it's possible the current syscall is returning -ERESTART*.
170 * So we don't clear it here, and only callers who know they should do.
171 */
172 return false;
173}
174
175void recalc_sigpending(void)
176{
177 if (!recalc_sigpending_tsk(current) && !freezing(current))
178 clear_thread_flag(TIF_SIGPENDING);
179
180}
181EXPORT_SYMBOL(recalc_sigpending);
182
183void calculate_sigpending(void)
184{
185 /* Have any signals or users of TIF_SIGPENDING been delayed
186 * until after fork?
187 */
188 spin_lock_irq(¤t->sighand->siglock);
189 set_tsk_thread_flag(current, TIF_SIGPENDING);
190 recalc_sigpending();
191 spin_unlock_irq(¤t->sighand->siglock);
192}
193
194/* Given the mask, find the first available signal that should be serviced. */
195
196#define SYNCHRONOUS_MASK \
197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
199
200int next_signal(struct sigpending *pending, sigset_t *mask)
201{
202 unsigned long i, *s, *m, x;
203 int sig = 0;
204
205 s = pending->signal.sig;
206 m = mask->sig;
207
208 /*
209 * Handle the first word specially: it contains the
210 * synchronous signals that need to be dequeued first.
211 */
212 x = *s &~ *m;
213 if (x) {
214 if (x & SYNCHRONOUS_MASK)
215 x &= SYNCHRONOUS_MASK;
216 sig = ffz(~x) + 1;
217 return sig;
218 }
219
220 switch (_NSIG_WORDS) {
221 default:
222 for (i = 1; i < _NSIG_WORDS; ++i) {
223 x = *++s &~ *++m;
224 if (!x)
225 continue;
226 sig = ffz(~x) + i*_NSIG_BPW + 1;
227 break;
228 }
229 break;
230
231 case 2:
232 x = s[1] &~ m[1];
233 if (!x)
234 break;
235 sig = ffz(~x) + _NSIG_BPW + 1;
236 break;
237
238 case 1:
239 /* Nothing to do */
240 break;
241 }
242
243 return sig;
244}
245
246static inline void print_dropped_signal(int sig)
247{
248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
249
250 if (!print_fatal_signals)
251 return;
252
253 if (!__ratelimit(&ratelimit_state))
254 return;
255
256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
257 current->comm, current->pid, sig);
258}
259
260/**
261 * task_set_jobctl_pending - set jobctl pending bits
262 * @task: target task
263 * @mask: pending bits to set
264 *
265 * Clear @mask from @task->jobctl. @mask must be subset of
266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
268 * cleared. If @task is already being killed or exiting, this function
269 * becomes noop.
270 *
271 * CONTEXT:
272 * Must be called with @task->sighand->siglock held.
273 *
274 * RETURNS:
275 * %true if @mask is set, %false if made noop because @task was dying.
276 */
277bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
278{
279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
282
283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
284 return false;
285
286 if (mask & JOBCTL_STOP_SIGMASK)
287 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
288
289 task->jobctl |= mask;
290 return true;
291}
292
293/**
294 * task_clear_jobctl_trapping - clear jobctl trapping bit
295 * @task: target task
296 *
297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
298 * Clear it and wake up the ptracer. Note that we don't need any further
299 * locking. @task->siglock guarantees that @task->parent points to the
300 * ptracer.
301 *
302 * CONTEXT:
303 * Must be called with @task->sighand->siglock held.
304 */
305void task_clear_jobctl_trapping(struct task_struct *task)
306{
307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
308 task->jobctl &= ~JOBCTL_TRAPPING;
309 smp_mb(); /* advised by wake_up_bit() */
310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
311 }
312}
313
314/**
315 * task_clear_jobctl_pending - clear jobctl pending bits
316 * @task: target task
317 * @mask: pending bits to clear
318 *
319 * Clear @mask from @task->jobctl. @mask must be subset of
320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
321 * STOP bits are cleared together.
322 *
323 * If clearing of @mask leaves no stop or trap pending, this function calls
324 * task_clear_jobctl_trapping().
325 *
326 * CONTEXT:
327 * Must be called with @task->sighand->siglock held.
328 */
329void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
330{
331 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
332
333 if (mask & JOBCTL_STOP_PENDING)
334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
335
336 task->jobctl &= ~mask;
337
338 if (!(task->jobctl & JOBCTL_PENDING_MASK))
339 task_clear_jobctl_trapping(task);
340}
341
342/**
343 * task_participate_group_stop - participate in a group stop
344 * @task: task participating in a group stop
345 *
346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
347 * Group stop states are cleared and the group stop count is consumed if
348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
349 * stop, the appropriate `SIGNAL_*` flags are set.
350 *
351 * CONTEXT:
352 * Must be called with @task->sighand->siglock held.
353 *
354 * RETURNS:
355 * %true if group stop completion should be notified to the parent, %false
356 * otherwise.
357 */
358static bool task_participate_group_stop(struct task_struct *task)
359{
360 struct signal_struct *sig = task->signal;
361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
362
363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
364
365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
366
367 if (!consume)
368 return false;
369
370 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
371 sig->group_stop_count--;
372
373 /*
374 * Tell the caller to notify completion iff we are entering into a
375 * fresh group stop. Read comment in do_signal_stop() for details.
376 */
377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
379 return true;
380 }
381 return false;
382}
383
384void task_join_group_stop(struct task_struct *task)
385{
386 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
387 struct signal_struct *sig = current->signal;
388
389 if (sig->group_stop_count) {
390 sig->group_stop_count++;
391 mask |= JOBCTL_STOP_CONSUME;
392 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
393 return;
394
395 /* Have the new thread join an on-going signal group stop */
396 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
397}
398
399/*
400 * allocate a new signal queue record
401 * - this may be called without locks if and only if t == current, otherwise an
402 * appropriate lock must be held to stop the target task from exiting
403 */
404static struct sigqueue *
405__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
406 int override_rlimit, const unsigned int sigqueue_flags)
407{
408 struct sigqueue *q = NULL;
409 struct ucounts *ucounts;
410 long sigpending;
411
412 /*
413 * Protect access to @t credentials. This can go away when all
414 * callers hold rcu read lock.
415 *
416 * NOTE! A pending signal will hold on to the user refcount,
417 * and we get/put the refcount only when the sigpending count
418 * changes from/to zero.
419 */
420 rcu_read_lock();
421 ucounts = task_ucounts(t);
422 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
423 rcu_read_unlock();
424 if (!sigpending)
425 return NULL;
426
427 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
428 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
429 } else {
430 print_dropped_signal(sig);
431 }
432
433 if (unlikely(q == NULL)) {
434 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
435 } else {
436 INIT_LIST_HEAD(&q->list);
437 q->flags = sigqueue_flags;
438 q->ucounts = ucounts;
439 }
440 return q;
441}
442
443static void __sigqueue_free(struct sigqueue *q)
444{
445 if (q->flags & SIGQUEUE_PREALLOC)
446 return;
447 if (q->ucounts) {
448 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
449 q->ucounts = NULL;
450 }
451 kmem_cache_free(sigqueue_cachep, q);
452}
453
454void flush_sigqueue(struct sigpending *queue)
455{
456 struct sigqueue *q;
457
458 sigemptyset(&queue->signal);
459 while (!list_empty(&queue->list)) {
460 q = list_entry(queue->list.next, struct sigqueue , list);
461 list_del_init(&q->list);
462 __sigqueue_free(q);
463 }
464}
465
466/*
467 * Flush all pending signals for this kthread.
468 */
469void flush_signals(struct task_struct *t)
470{
471 unsigned long flags;
472
473 spin_lock_irqsave(&t->sighand->siglock, flags);
474 clear_tsk_thread_flag(t, TIF_SIGPENDING);
475 flush_sigqueue(&t->pending);
476 flush_sigqueue(&t->signal->shared_pending);
477 spin_unlock_irqrestore(&t->sighand->siglock, flags);
478}
479EXPORT_SYMBOL(flush_signals);
480
481#ifdef CONFIG_POSIX_TIMERS
482static void __flush_itimer_signals(struct sigpending *pending)
483{
484 sigset_t signal, retain;
485 struct sigqueue *q, *n;
486
487 signal = pending->signal;
488 sigemptyset(&retain);
489
490 list_for_each_entry_safe(q, n, &pending->list, list) {
491 int sig = q->info.si_signo;
492
493 if (likely(q->info.si_code != SI_TIMER)) {
494 sigaddset(&retain, sig);
495 } else {
496 sigdelset(&signal, sig);
497 list_del_init(&q->list);
498 __sigqueue_free(q);
499 }
500 }
501
502 sigorsets(&pending->signal, &signal, &retain);
503}
504
505void flush_itimer_signals(void)
506{
507 struct task_struct *tsk = current;
508 unsigned long flags;
509
510 spin_lock_irqsave(&tsk->sighand->siglock, flags);
511 __flush_itimer_signals(&tsk->pending);
512 __flush_itimer_signals(&tsk->signal->shared_pending);
513 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
514}
515#endif
516
517void ignore_signals(struct task_struct *t)
518{
519 int i;
520
521 for (i = 0; i < _NSIG; ++i)
522 t->sighand->action[i].sa.sa_handler = SIG_IGN;
523
524 flush_signals(t);
525}
526
527/*
528 * Flush all handlers for a task.
529 */
530
531void
532flush_signal_handlers(struct task_struct *t, int force_default)
533{
534 int i;
535 struct k_sigaction *ka = &t->sighand->action[0];
536 for (i = _NSIG ; i != 0 ; i--) {
537 if (force_default || ka->sa.sa_handler != SIG_IGN)
538 ka->sa.sa_handler = SIG_DFL;
539 ka->sa.sa_flags = 0;
540#ifdef __ARCH_HAS_SA_RESTORER
541 ka->sa.sa_restorer = NULL;
542#endif
543 sigemptyset(&ka->sa.sa_mask);
544 ka++;
545 }
546}
547
548bool unhandled_signal(struct task_struct *tsk, int sig)
549{
550 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
551 if (is_global_init(tsk))
552 return true;
553
554 if (handler != SIG_IGN && handler != SIG_DFL)
555 return false;
556
557 /* If dying, we handle all new signals by ignoring them */
558 if (fatal_signal_pending(tsk))
559 return false;
560
561 /* if ptraced, let the tracer determine */
562 return !tsk->ptrace;
563}
564
565static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
566 bool *resched_timer)
567{
568 struct sigqueue *q, *first = NULL;
569
570 /*
571 * Collect the siginfo appropriate to this signal. Check if
572 * there is another siginfo for the same signal.
573 */
574 list_for_each_entry(q, &list->list, list) {
575 if (q->info.si_signo == sig) {
576 if (first)
577 goto still_pending;
578 first = q;
579 }
580 }
581
582 sigdelset(&list->signal, sig);
583
584 if (first) {
585still_pending:
586 list_del_init(&first->list);
587 copy_siginfo(info, &first->info);
588
589 *resched_timer =
590 (first->flags & SIGQUEUE_PREALLOC) &&
591 (info->si_code == SI_TIMER) &&
592 (info->si_sys_private);
593
594 __sigqueue_free(first);
595 } else {
596 /*
597 * Ok, it wasn't in the queue. This must be
598 * a fast-pathed signal or we must have been
599 * out of queue space. So zero out the info.
600 */
601 clear_siginfo(info);
602 info->si_signo = sig;
603 info->si_errno = 0;
604 info->si_code = SI_USER;
605 info->si_pid = 0;
606 info->si_uid = 0;
607 }
608}
609
610static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
611 kernel_siginfo_t *info, bool *resched_timer)
612{
613 int sig = next_signal(pending, mask);
614
615 if (sig)
616 collect_signal(sig, pending, info, resched_timer);
617 return sig;
618}
619
620/*
621 * Dequeue a signal and return the element to the caller, which is
622 * expected to free it.
623 *
624 * All callers have to hold the siglock.
625 */
626int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
627 kernel_siginfo_t *info, enum pid_type *type)
628{
629 bool resched_timer = false;
630 int signr;
631
632 /* We only dequeue private signals from ourselves, we don't let
633 * signalfd steal them
634 */
635 *type = PIDTYPE_PID;
636 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637 if (!signr) {
638 *type = PIDTYPE_TGID;
639 signr = __dequeue_signal(&tsk->signal->shared_pending,
640 mask, info, &resched_timer);
641#ifdef CONFIG_POSIX_TIMERS
642 /*
643 * itimer signal ?
644 *
645 * itimers are process shared and we restart periodic
646 * itimers in the signal delivery path to prevent DoS
647 * attacks in the high resolution timer case. This is
648 * compliant with the old way of self-restarting
649 * itimers, as the SIGALRM is a legacy signal and only
650 * queued once. Changing the restart behaviour to
651 * restart the timer in the signal dequeue path is
652 * reducing the timer noise on heavy loaded !highres
653 * systems too.
654 */
655 if (unlikely(signr == SIGALRM)) {
656 struct hrtimer *tmr = &tsk->signal->real_timer;
657
658 if (!hrtimer_is_queued(tmr) &&
659 tsk->signal->it_real_incr != 0) {
660 hrtimer_forward(tmr, tmr->base->get_time(),
661 tsk->signal->it_real_incr);
662 hrtimer_restart(tmr);
663 }
664 }
665#endif
666 }
667
668 recalc_sigpending();
669 if (!signr)
670 return 0;
671
672 if (unlikely(sig_kernel_stop(signr))) {
673 /*
674 * Set a marker that we have dequeued a stop signal. Our
675 * caller might release the siglock and then the pending
676 * stop signal it is about to process is no longer in the
677 * pending bitmasks, but must still be cleared by a SIGCONT
678 * (and overruled by a SIGKILL). So those cases clear this
679 * shared flag after we've set it. Note that this flag may
680 * remain set after the signal we return is ignored or
681 * handled. That doesn't matter because its only purpose
682 * is to alert stop-signal processing code when another
683 * processor has come along and cleared the flag.
684 */
685 current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 }
687#ifdef CONFIG_POSIX_TIMERS
688 if (resched_timer) {
689 /*
690 * Release the siglock to ensure proper locking order
691 * of timer locks outside of siglocks. Note, we leave
692 * irqs disabled here, since the posix-timers code is
693 * about to disable them again anyway.
694 */
695 spin_unlock(&tsk->sighand->siglock);
696 posixtimer_rearm(info);
697 spin_lock(&tsk->sighand->siglock);
698
699 /* Don't expose the si_sys_private value to userspace */
700 info->si_sys_private = 0;
701 }
702#endif
703 return signr;
704}
705EXPORT_SYMBOL_GPL(dequeue_signal);
706
707static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708{
709 struct task_struct *tsk = current;
710 struct sigpending *pending = &tsk->pending;
711 struct sigqueue *q, *sync = NULL;
712
713 /*
714 * Might a synchronous signal be in the queue?
715 */
716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 return 0;
718
719 /*
720 * Return the first synchronous signal in the queue.
721 */
722 list_for_each_entry(q, &pending->list, list) {
723 /* Synchronous signals have a positive si_code */
724 if ((q->info.si_code > SI_USER) &&
725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 sync = q;
727 goto next;
728 }
729 }
730 return 0;
731next:
732 /*
733 * Check if there is another siginfo for the same signal.
734 */
735 list_for_each_entry_continue(q, &pending->list, list) {
736 if (q->info.si_signo == sync->info.si_signo)
737 goto still_pending;
738 }
739
740 sigdelset(&pending->signal, sync->info.si_signo);
741 recalc_sigpending();
742still_pending:
743 list_del_init(&sync->list);
744 copy_siginfo(info, &sync->info);
745 __sigqueue_free(sync);
746 return info->si_signo;
747}
748
749/*
750 * Tell a process that it has a new active signal..
751 *
752 * NOTE! we rely on the previous spin_lock to
753 * lock interrupts for us! We can only be called with
754 * "siglock" held, and the local interrupt must
755 * have been disabled when that got acquired!
756 *
757 * No need to set need_resched since signal event passing
758 * goes through ->blocked
759 */
760void signal_wake_up_state(struct task_struct *t, unsigned int state)
761{
762 lockdep_assert_held(&t->sighand->siglock);
763
764 set_tsk_thread_flag(t, TIF_SIGPENDING);
765
766 /*
767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768 * case. We don't check t->state here because there is a race with it
769 * executing another processor and just now entering stopped state.
770 * By using wake_up_state, we ensure the process will wake up and
771 * handle its death signal.
772 */
773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
774 kick_process(t);
775}
776
777/*
778 * Remove signals in mask from the pending set and queue.
779 * Returns 1 if any signals were found.
780 *
781 * All callers must be holding the siglock.
782 */
783static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
784{
785 struct sigqueue *q, *n;
786 sigset_t m;
787
788 sigandsets(&m, mask, &s->signal);
789 if (sigisemptyset(&m))
790 return;
791
792 sigandnsets(&s->signal, &s->signal, mask);
793 list_for_each_entry_safe(q, n, &s->list, list) {
794 if (sigismember(mask, q->info.si_signo)) {
795 list_del_init(&q->list);
796 __sigqueue_free(q);
797 }
798 }
799}
800
801static inline int is_si_special(const struct kernel_siginfo *info)
802{
803 return info <= SEND_SIG_PRIV;
804}
805
806static inline bool si_fromuser(const struct kernel_siginfo *info)
807{
808 return info == SEND_SIG_NOINFO ||
809 (!is_si_special(info) && SI_FROMUSER(info));
810}
811
812/*
813 * called with RCU read lock from check_kill_permission()
814 */
815static bool kill_ok_by_cred(struct task_struct *t)
816{
817 const struct cred *cred = current_cred();
818 const struct cred *tcred = __task_cred(t);
819
820 return uid_eq(cred->euid, tcred->suid) ||
821 uid_eq(cred->euid, tcred->uid) ||
822 uid_eq(cred->uid, tcred->suid) ||
823 uid_eq(cred->uid, tcred->uid) ||
824 ns_capable(tcred->user_ns, CAP_KILL);
825}
826
827/*
828 * Bad permissions for sending the signal
829 * - the caller must hold the RCU read lock
830 */
831static int check_kill_permission(int sig, struct kernel_siginfo *info,
832 struct task_struct *t)
833{
834 struct pid *sid;
835 int error;
836
837 if (!valid_signal(sig))
838 return -EINVAL;
839
840 if (!si_fromuser(info))
841 return 0;
842
843 error = audit_signal_info(sig, t); /* Let audit system see the signal */
844 if (error)
845 return error;
846
847 if (!same_thread_group(current, t) &&
848 !kill_ok_by_cred(t)) {
849 switch (sig) {
850 case SIGCONT:
851 sid = task_session(t);
852 /*
853 * We don't return the error if sid == NULL. The
854 * task was unhashed, the caller must notice this.
855 */
856 if (!sid || sid == task_session(current))
857 break;
858 fallthrough;
859 default:
860 return -EPERM;
861 }
862 }
863
864 return security_task_kill(t, info, sig, NULL);
865}
866
867/**
868 * ptrace_trap_notify - schedule trap to notify ptracer
869 * @t: tracee wanting to notify tracer
870 *
871 * This function schedules sticky ptrace trap which is cleared on the next
872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
873 * ptracer.
874 *
875 * If @t is running, STOP trap will be taken. If trapped for STOP and
876 * ptracer is listening for events, tracee is woken up so that it can
877 * re-trap for the new event. If trapped otherwise, STOP trap will be
878 * eventually taken without returning to userland after the existing traps
879 * are finished by PTRACE_CONT.
880 *
881 * CONTEXT:
882 * Must be called with @task->sighand->siglock held.
883 */
884static void ptrace_trap_notify(struct task_struct *t)
885{
886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887 lockdep_assert_held(&t->sighand->siglock);
888
889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
891}
892
893/*
894 * Handle magic process-wide effects of stop/continue signals. Unlike
895 * the signal actions, these happen immediately at signal-generation
896 * time regardless of blocking, ignoring, or handling. This does the
897 * actual continuing for SIGCONT, but not the actual stopping for stop
898 * signals. The process stop is done as a signal action for SIG_DFL.
899 *
900 * Returns true if the signal should be actually delivered, otherwise
901 * it should be dropped.
902 */
903static bool prepare_signal(int sig, struct task_struct *p, bool force)
904{
905 struct signal_struct *signal = p->signal;
906 struct task_struct *t;
907 sigset_t flush;
908
909 if (signal->flags & SIGNAL_GROUP_EXIT) {
910 if (signal->core_state)
911 return sig == SIGKILL;
912 /*
913 * The process is in the middle of dying, drop the signal.
914 */
915 return false;
916 } else if (sig_kernel_stop(sig)) {
917 /*
918 * This is a stop signal. Remove SIGCONT from all queues.
919 */
920 siginitset(&flush, sigmask(SIGCONT));
921 flush_sigqueue_mask(&flush, &signal->shared_pending);
922 for_each_thread(p, t)
923 flush_sigqueue_mask(&flush, &t->pending);
924 } else if (sig == SIGCONT) {
925 unsigned int why;
926 /*
927 * Remove all stop signals from all queues, wake all threads.
928 */
929 siginitset(&flush, SIG_KERNEL_STOP_MASK);
930 flush_sigqueue_mask(&flush, &signal->shared_pending);
931 for_each_thread(p, t) {
932 flush_sigqueue_mask(&flush, &t->pending);
933 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
934 if (likely(!(t->ptrace & PT_SEIZED))) {
935 t->jobctl &= ~JOBCTL_STOPPED;
936 wake_up_state(t, __TASK_STOPPED);
937 } else
938 ptrace_trap_notify(t);
939 }
940
941 /*
942 * Notify the parent with CLD_CONTINUED if we were stopped.
943 *
944 * If we were in the middle of a group stop, we pretend it
945 * was already finished, and then continued. Since SIGCHLD
946 * doesn't queue we report only CLD_STOPPED, as if the next
947 * CLD_CONTINUED was dropped.
948 */
949 why = 0;
950 if (signal->flags & SIGNAL_STOP_STOPPED)
951 why |= SIGNAL_CLD_CONTINUED;
952 else if (signal->group_stop_count)
953 why |= SIGNAL_CLD_STOPPED;
954
955 if (why) {
956 /*
957 * The first thread which returns from do_signal_stop()
958 * will take ->siglock, notice SIGNAL_CLD_MASK, and
959 * notify its parent. See get_signal().
960 */
961 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
962 signal->group_stop_count = 0;
963 signal->group_exit_code = 0;
964 }
965 }
966
967 return !sig_ignored(p, sig, force);
968}
969
970/*
971 * Test if P wants to take SIG. After we've checked all threads with this,
972 * it's equivalent to finding no threads not blocking SIG. Any threads not
973 * blocking SIG were ruled out because they are not running and already
974 * have pending signals. Such threads will dequeue from the shared queue
975 * as soon as they're available, so putting the signal on the shared queue
976 * will be equivalent to sending it to one such thread.
977 */
978static inline bool wants_signal(int sig, struct task_struct *p)
979{
980 if (sigismember(&p->blocked, sig))
981 return false;
982
983 if (p->flags & PF_EXITING)
984 return false;
985
986 if (sig == SIGKILL)
987 return true;
988
989 if (task_is_stopped_or_traced(p))
990 return false;
991
992 return task_curr(p) || !task_sigpending(p);
993}
994
995static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
996{
997 struct signal_struct *signal = p->signal;
998 struct task_struct *t;
999
1000 /*
1001 * Now find a thread we can wake up to take the signal off the queue.
1002 *
1003 * Try the suggested task first (may or may not be the main thread).
1004 */
1005 if (wants_signal(sig, p))
1006 t = p;
1007 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008 /*
1009 * There is just one thread and it does not need to be woken.
1010 * It will dequeue unblocked signals before it runs again.
1011 */
1012 return;
1013 else {
1014 /*
1015 * Otherwise try to find a suitable thread.
1016 */
1017 t = signal->curr_target;
1018 while (!wants_signal(sig, t)) {
1019 t = next_thread(t);
1020 if (t == signal->curr_target)
1021 /*
1022 * No thread needs to be woken.
1023 * Any eligible threads will see
1024 * the signal in the queue soon.
1025 */
1026 return;
1027 }
1028 signal->curr_target = t;
1029 }
1030
1031 /*
1032 * Found a killable thread. If the signal will be fatal,
1033 * then start taking the whole group down immediately.
1034 */
1035 if (sig_fatal(p, sig) &&
1036 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037 !sigismember(&t->real_blocked, sig) &&
1038 (sig == SIGKILL || !p->ptrace)) {
1039 /*
1040 * This signal will be fatal to the whole group.
1041 */
1042 if (!sig_kernel_coredump(sig)) {
1043 /*
1044 * Start a group exit and wake everybody up.
1045 * This way we don't have other threads
1046 * running and doing things after a slower
1047 * thread has the fatal signal pending.
1048 */
1049 signal->flags = SIGNAL_GROUP_EXIT;
1050 signal->group_exit_code = sig;
1051 signal->group_stop_count = 0;
1052 __for_each_thread(signal, t) {
1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 sigaddset(&t->pending.signal, SIGKILL);
1055 signal_wake_up(t, 1);
1056 }
1057 return;
1058 }
1059 }
1060
1061 /*
1062 * The signal is already in the shared-pending queue.
1063 * Tell the chosen thread to wake up and dequeue it.
1064 */
1065 signal_wake_up(t, sig == SIGKILL);
1066 return;
1067}
1068
1069static inline bool legacy_queue(struct sigpending *signals, int sig)
1070{
1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072}
1073
1074static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075 struct task_struct *t, enum pid_type type, bool force)
1076{
1077 struct sigpending *pending;
1078 struct sigqueue *q;
1079 int override_rlimit;
1080 int ret = 0, result;
1081
1082 lockdep_assert_held(&t->sighand->siglock);
1083
1084 result = TRACE_SIGNAL_IGNORED;
1085 if (!prepare_signal(sig, t, force))
1086 goto ret;
1087
1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089 /*
1090 * Short-circuit ignored signals and support queuing
1091 * exactly one non-rt signal, so that we can get more
1092 * detailed information about the cause of the signal.
1093 */
1094 result = TRACE_SIGNAL_ALREADY_PENDING;
1095 if (legacy_queue(pending, sig))
1096 goto ret;
1097
1098 result = TRACE_SIGNAL_DELIVERED;
1099 /*
1100 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101 */
1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103 goto out_set;
1104
1105 /*
1106 * Real-time signals must be queued if sent by sigqueue, or
1107 * some other real-time mechanism. It is implementation
1108 * defined whether kill() does so. We attempt to do so, on
1109 * the principle of least surprise, but since kill is not
1110 * allowed to fail with EAGAIN when low on memory we just
1111 * make sure at least one signal gets delivered and don't
1112 * pass on the info struct.
1113 */
1114 if (sig < SIGRTMIN)
1115 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116 else
1117 override_rlimit = 0;
1118
1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120
1121 if (q) {
1122 list_add_tail(&q->list, &pending->list);
1123 switch ((unsigned long) info) {
1124 case (unsigned long) SEND_SIG_NOINFO:
1125 clear_siginfo(&q->info);
1126 q->info.si_signo = sig;
1127 q->info.si_errno = 0;
1128 q->info.si_code = SI_USER;
1129 q->info.si_pid = task_tgid_nr_ns(current,
1130 task_active_pid_ns(t));
1131 rcu_read_lock();
1132 q->info.si_uid =
1133 from_kuid_munged(task_cred_xxx(t, user_ns),
1134 current_uid());
1135 rcu_read_unlock();
1136 break;
1137 case (unsigned long) SEND_SIG_PRIV:
1138 clear_siginfo(&q->info);
1139 q->info.si_signo = sig;
1140 q->info.si_errno = 0;
1141 q->info.si_code = SI_KERNEL;
1142 q->info.si_pid = 0;
1143 q->info.si_uid = 0;
1144 break;
1145 default:
1146 copy_siginfo(&q->info, info);
1147 break;
1148 }
1149 } else if (!is_si_special(info) &&
1150 sig >= SIGRTMIN && info->si_code != SI_USER) {
1151 /*
1152 * Queue overflow, abort. We may abort if the
1153 * signal was rt and sent by user using something
1154 * other than kill().
1155 */
1156 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157 ret = -EAGAIN;
1158 goto ret;
1159 } else {
1160 /*
1161 * This is a silent loss of information. We still
1162 * send the signal, but the *info bits are lost.
1163 */
1164 result = TRACE_SIGNAL_LOSE_INFO;
1165 }
1166
1167out_set:
1168 signalfd_notify(t, sig);
1169 sigaddset(&pending->signal, sig);
1170
1171 /* Let multiprocess signals appear after on-going forks */
1172 if (type > PIDTYPE_TGID) {
1173 struct multiprocess_signals *delayed;
1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 sigset_t *signal = &delayed->signal;
1176 /* Can't queue both a stop and a continue signal */
1177 if (sig == SIGCONT)
1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 else if (sig_kernel_stop(sig))
1180 sigdelset(signal, SIGCONT);
1181 sigaddset(signal, sig);
1182 }
1183 }
1184
1185 complete_signal(sig, t, type);
1186ret:
1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188 return ret;
1189}
1190
1191static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192{
1193 bool ret = false;
1194 switch (siginfo_layout(info->si_signo, info->si_code)) {
1195 case SIL_KILL:
1196 case SIL_CHLD:
1197 case SIL_RT:
1198 ret = true;
1199 break;
1200 case SIL_TIMER:
1201 case SIL_POLL:
1202 case SIL_FAULT:
1203 case SIL_FAULT_TRAPNO:
1204 case SIL_FAULT_MCEERR:
1205 case SIL_FAULT_BNDERR:
1206 case SIL_FAULT_PKUERR:
1207 case SIL_FAULT_PERF_EVENT:
1208 case SIL_SYS:
1209 ret = false;
1210 break;
1211 }
1212 return ret;
1213}
1214
1215int send_signal_locked(int sig, struct kernel_siginfo *info,
1216 struct task_struct *t, enum pid_type type)
1217{
1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219 bool force = false;
1220
1221 if (info == SEND_SIG_NOINFO) {
1222 /* Force if sent from an ancestor pid namespace */
1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 } else if (info == SEND_SIG_PRIV) {
1225 /* Don't ignore kernel generated signals */
1226 force = true;
1227 } else if (has_si_pid_and_uid(info)) {
1228 /* SIGKILL and SIGSTOP is special or has ids */
1229 struct user_namespace *t_user_ns;
1230
1231 rcu_read_lock();
1232 t_user_ns = task_cred_xxx(t, user_ns);
1233 if (current_user_ns() != t_user_ns) {
1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 info->si_uid = from_kuid_munged(t_user_ns, uid);
1236 }
1237 rcu_read_unlock();
1238
1239 /* A kernel generated signal? */
1240 force = (info->si_code == SI_KERNEL);
1241
1242 /* From an ancestor pid namespace? */
1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244 info->si_pid = 0;
1245 force = true;
1246 }
1247 }
1248 return __send_signal_locked(sig, info, t, type, force);
1249}
1250
1251static void print_fatal_signal(int signr)
1252{
1253 struct pt_regs *regs = task_pt_regs(current);
1254 struct file *exe_file;
1255
1256 exe_file = get_task_exe_file(current);
1257 if (exe_file) {
1258 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259 exe_file, current->comm, signr);
1260 fput(exe_file);
1261 } else {
1262 pr_info("%s: potentially unexpected fatal signal %d.\n",
1263 current->comm, signr);
1264 }
1265
1266#if defined(__i386__) && !defined(__arch_um__)
1267 pr_info("code at %08lx: ", regs->ip);
1268 {
1269 int i;
1270 for (i = 0; i < 16; i++) {
1271 unsigned char insn;
1272
1273 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274 break;
1275 pr_cont("%02x ", insn);
1276 }
1277 }
1278 pr_cont("\n");
1279#endif
1280 preempt_disable();
1281 show_regs(regs);
1282 preempt_enable();
1283}
1284
1285static int __init setup_print_fatal_signals(char *str)
1286{
1287 get_option (&str, &print_fatal_signals);
1288
1289 return 1;
1290}
1291
1292__setup("print-fatal-signals=", setup_print_fatal_signals);
1293
1294int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1295 enum pid_type type)
1296{
1297 unsigned long flags;
1298 int ret = -ESRCH;
1299
1300 if (lock_task_sighand(p, &flags)) {
1301 ret = send_signal_locked(sig, info, p, type);
1302 unlock_task_sighand(p, &flags);
1303 }
1304
1305 return ret;
1306}
1307
1308enum sig_handler {
1309 HANDLER_CURRENT, /* If reachable use the current handler */
1310 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311 HANDLER_EXIT, /* Only visible as the process exit code */
1312};
1313
1314/*
1315 * Force a signal that the process can't ignore: if necessary
1316 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317 *
1318 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319 * since we do not want to have a signal handler that was blocked
1320 * be invoked when user space had explicitly blocked it.
1321 *
1322 * We don't want to have recursive SIGSEGV's etc, for example,
1323 * that is why we also clear SIGNAL_UNKILLABLE.
1324 */
1325static int
1326force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327 enum sig_handler handler)
1328{
1329 unsigned long int flags;
1330 int ret, blocked, ignored;
1331 struct k_sigaction *action;
1332 int sig = info->si_signo;
1333
1334 spin_lock_irqsave(&t->sighand->siglock, flags);
1335 action = &t->sighand->action[sig-1];
1336 ignored = action->sa.sa_handler == SIG_IGN;
1337 blocked = sigismember(&t->blocked, sig);
1338 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339 action->sa.sa_handler = SIG_DFL;
1340 if (handler == HANDLER_EXIT)
1341 action->sa.sa_flags |= SA_IMMUTABLE;
1342 if (blocked)
1343 sigdelset(&t->blocked, sig);
1344 }
1345 /*
1346 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1348 */
1349 if (action->sa.sa_handler == SIG_DFL &&
1350 (!t->ptrace || (handler == HANDLER_EXIT)))
1351 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353 /* This can happen if the signal was already pending and blocked */
1354 if (!task_sigpending(t))
1355 signal_wake_up(t, 0);
1356 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1357
1358 return ret;
1359}
1360
1361int force_sig_info(struct kernel_siginfo *info)
1362{
1363 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1364}
1365
1366/*
1367 * Nuke all other threads in the group.
1368 */
1369int zap_other_threads(struct task_struct *p)
1370{
1371 struct task_struct *t;
1372 int count = 0;
1373
1374 p->signal->group_stop_count = 0;
1375
1376 for_other_threads(p, t) {
1377 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1378 /* Don't require de_thread to wait for the vhost_worker */
1379 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1380 count++;
1381
1382 /* Don't bother with already dead threads */
1383 if (t->exit_state)
1384 continue;
1385 sigaddset(&t->pending.signal, SIGKILL);
1386 signal_wake_up(t, 1);
1387 }
1388
1389 return count;
1390}
1391
1392struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1393 unsigned long *flags)
1394{
1395 struct sighand_struct *sighand;
1396
1397 rcu_read_lock();
1398 for (;;) {
1399 sighand = rcu_dereference(tsk->sighand);
1400 if (unlikely(sighand == NULL))
1401 break;
1402
1403 /*
1404 * This sighand can be already freed and even reused, but
1405 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1406 * initializes ->siglock: this slab can't go away, it has
1407 * the same object type, ->siglock can't be reinitialized.
1408 *
1409 * We need to ensure that tsk->sighand is still the same
1410 * after we take the lock, we can race with de_thread() or
1411 * __exit_signal(). In the latter case the next iteration
1412 * must see ->sighand == NULL.
1413 */
1414 spin_lock_irqsave(&sighand->siglock, *flags);
1415 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1416 break;
1417 spin_unlock_irqrestore(&sighand->siglock, *flags);
1418 }
1419 rcu_read_unlock();
1420
1421 return sighand;
1422}
1423
1424#ifdef CONFIG_LOCKDEP
1425void lockdep_assert_task_sighand_held(struct task_struct *task)
1426{
1427 struct sighand_struct *sighand;
1428
1429 rcu_read_lock();
1430 sighand = rcu_dereference(task->sighand);
1431 if (sighand)
1432 lockdep_assert_held(&sighand->siglock);
1433 else
1434 WARN_ON_ONCE(1);
1435 rcu_read_unlock();
1436}
1437#endif
1438
1439/*
1440 * send signal info to all the members of a thread group or to the
1441 * individual thread if type == PIDTYPE_PID.
1442 */
1443int group_send_sig_info(int sig, struct kernel_siginfo *info,
1444 struct task_struct *p, enum pid_type type)
1445{
1446 int ret;
1447
1448 rcu_read_lock();
1449 ret = check_kill_permission(sig, info, p);
1450 rcu_read_unlock();
1451
1452 if (!ret && sig)
1453 ret = do_send_sig_info(sig, info, p, type);
1454
1455 return ret;
1456}
1457
1458/*
1459 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1460 * control characters do (^C, ^Z etc)
1461 * - the caller must hold at least a readlock on tasklist_lock
1462 */
1463int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1464{
1465 struct task_struct *p = NULL;
1466 int ret = -ESRCH;
1467
1468 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1469 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1470 /*
1471 * If group_send_sig_info() succeeds at least once ret
1472 * becomes 0 and after that the code below has no effect.
1473 * Otherwise we return the last err or -ESRCH if this
1474 * process group is empty.
1475 */
1476 if (ret)
1477 ret = err;
1478 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1479
1480 return ret;
1481}
1482
1483static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1484 struct pid *pid, enum pid_type type)
1485{
1486 int error = -ESRCH;
1487 struct task_struct *p;
1488
1489 for (;;) {
1490 rcu_read_lock();
1491 p = pid_task(pid, PIDTYPE_PID);
1492 if (p)
1493 error = group_send_sig_info(sig, info, p, type);
1494 rcu_read_unlock();
1495 if (likely(!p || error != -ESRCH))
1496 return error;
1497 /*
1498 * The task was unhashed in between, try again. If it
1499 * is dead, pid_task() will return NULL, if we race with
1500 * de_thread() it will find the new leader.
1501 */
1502 }
1503}
1504
1505int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1506{
1507 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1508}
1509
1510static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1511{
1512 int error;
1513 rcu_read_lock();
1514 error = kill_pid_info(sig, info, find_vpid(pid));
1515 rcu_read_unlock();
1516 return error;
1517}
1518
1519static inline bool kill_as_cred_perm(const struct cred *cred,
1520 struct task_struct *target)
1521{
1522 const struct cred *pcred = __task_cred(target);
1523
1524 return uid_eq(cred->euid, pcred->suid) ||
1525 uid_eq(cred->euid, pcred->uid) ||
1526 uid_eq(cred->uid, pcred->suid) ||
1527 uid_eq(cred->uid, pcred->uid);
1528}
1529
1530/*
1531 * The usb asyncio usage of siginfo is wrong. The glibc support
1532 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1533 * AKA after the generic fields:
1534 * kernel_pid_t si_pid;
1535 * kernel_uid32_t si_uid;
1536 * sigval_t si_value;
1537 *
1538 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1539 * after the generic fields is:
1540 * void __user *si_addr;
1541 *
1542 * This is a practical problem when there is a 64bit big endian kernel
1543 * and a 32bit userspace. As the 32bit address will encoded in the low
1544 * 32bits of the pointer. Those low 32bits will be stored at higher
1545 * address than appear in a 32 bit pointer. So userspace will not
1546 * see the address it was expecting for it's completions.
1547 *
1548 * There is nothing in the encoding that can allow
1549 * copy_siginfo_to_user32 to detect this confusion of formats, so
1550 * handle this by requiring the caller of kill_pid_usb_asyncio to
1551 * notice when this situration takes place and to store the 32bit
1552 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1553 * parameter.
1554 */
1555int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1556 struct pid *pid, const struct cred *cred)
1557{
1558 struct kernel_siginfo info;
1559 struct task_struct *p;
1560 unsigned long flags;
1561 int ret = -EINVAL;
1562
1563 if (!valid_signal(sig))
1564 return ret;
1565
1566 clear_siginfo(&info);
1567 info.si_signo = sig;
1568 info.si_errno = errno;
1569 info.si_code = SI_ASYNCIO;
1570 *((sigval_t *)&info.si_pid) = addr;
1571
1572 rcu_read_lock();
1573 p = pid_task(pid, PIDTYPE_PID);
1574 if (!p) {
1575 ret = -ESRCH;
1576 goto out_unlock;
1577 }
1578 if (!kill_as_cred_perm(cred, p)) {
1579 ret = -EPERM;
1580 goto out_unlock;
1581 }
1582 ret = security_task_kill(p, &info, sig, cred);
1583 if (ret)
1584 goto out_unlock;
1585
1586 if (sig) {
1587 if (lock_task_sighand(p, &flags)) {
1588 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1589 unlock_task_sighand(p, &flags);
1590 } else
1591 ret = -ESRCH;
1592 }
1593out_unlock:
1594 rcu_read_unlock();
1595 return ret;
1596}
1597EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1598
1599/*
1600 * kill_something_info() interprets pid in interesting ways just like kill(2).
1601 *
1602 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1603 * is probably wrong. Should make it like BSD or SYSV.
1604 */
1605
1606static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1607{
1608 int ret;
1609
1610 if (pid > 0)
1611 return kill_proc_info(sig, info, pid);
1612
1613 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1614 if (pid == INT_MIN)
1615 return -ESRCH;
1616
1617 read_lock(&tasklist_lock);
1618 if (pid != -1) {
1619 ret = __kill_pgrp_info(sig, info,
1620 pid ? find_vpid(-pid) : task_pgrp(current));
1621 } else {
1622 int retval = 0, count = 0;
1623 struct task_struct * p;
1624
1625 for_each_process(p) {
1626 if (task_pid_vnr(p) > 1 &&
1627 !same_thread_group(p, current)) {
1628 int err = group_send_sig_info(sig, info, p,
1629 PIDTYPE_MAX);
1630 ++count;
1631 if (err != -EPERM)
1632 retval = err;
1633 }
1634 }
1635 ret = count ? retval : -ESRCH;
1636 }
1637 read_unlock(&tasklist_lock);
1638
1639 return ret;
1640}
1641
1642/*
1643 * These are for backward compatibility with the rest of the kernel source.
1644 */
1645
1646int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1647{
1648 /*
1649 * Make sure legacy kernel users don't send in bad values
1650 * (normal paths check this in check_kill_permission).
1651 */
1652 if (!valid_signal(sig))
1653 return -EINVAL;
1654
1655 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1656}
1657EXPORT_SYMBOL(send_sig_info);
1658
1659#define __si_special(priv) \
1660 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1661
1662int
1663send_sig(int sig, struct task_struct *p, int priv)
1664{
1665 return send_sig_info(sig, __si_special(priv), p);
1666}
1667EXPORT_SYMBOL(send_sig);
1668
1669void force_sig(int sig)
1670{
1671 struct kernel_siginfo info;
1672
1673 clear_siginfo(&info);
1674 info.si_signo = sig;
1675 info.si_errno = 0;
1676 info.si_code = SI_KERNEL;
1677 info.si_pid = 0;
1678 info.si_uid = 0;
1679 force_sig_info(&info);
1680}
1681EXPORT_SYMBOL(force_sig);
1682
1683void force_fatal_sig(int sig)
1684{
1685 struct kernel_siginfo info;
1686
1687 clear_siginfo(&info);
1688 info.si_signo = sig;
1689 info.si_errno = 0;
1690 info.si_code = SI_KERNEL;
1691 info.si_pid = 0;
1692 info.si_uid = 0;
1693 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1694}
1695
1696void force_exit_sig(int sig)
1697{
1698 struct kernel_siginfo info;
1699
1700 clear_siginfo(&info);
1701 info.si_signo = sig;
1702 info.si_errno = 0;
1703 info.si_code = SI_KERNEL;
1704 info.si_pid = 0;
1705 info.si_uid = 0;
1706 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1707}
1708
1709/*
1710 * When things go south during signal handling, we
1711 * will force a SIGSEGV. And if the signal that caused
1712 * the problem was already a SIGSEGV, we'll want to
1713 * make sure we don't even try to deliver the signal..
1714 */
1715void force_sigsegv(int sig)
1716{
1717 if (sig == SIGSEGV)
1718 force_fatal_sig(SIGSEGV);
1719 else
1720 force_sig(SIGSEGV);
1721}
1722
1723int force_sig_fault_to_task(int sig, int code, void __user *addr,
1724 struct task_struct *t)
1725{
1726 struct kernel_siginfo info;
1727
1728 clear_siginfo(&info);
1729 info.si_signo = sig;
1730 info.si_errno = 0;
1731 info.si_code = code;
1732 info.si_addr = addr;
1733 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1734}
1735
1736int force_sig_fault(int sig, int code, void __user *addr)
1737{
1738 return force_sig_fault_to_task(sig, code, addr, current);
1739}
1740
1741int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1742{
1743 struct kernel_siginfo info;
1744
1745 clear_siginfo(&info);
1746 info.si_signo = sig;
1747 info.si_errno = 0;
1748 info.si_code = code;
1749 info.si_addr = addr;
1750 return send_sig_info(info.si_signo, &info, t);
1751}
1752
1753int force_sig_mceerr(int code, void __user *addr, short lsb)
1754{
1755 struct kernel_siginfo info;
1756
1757 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1758 clear_siginfo(&info);
1759 info.si_signo = SIGBUS;
1760 info.si_errno = 0;
1761 info.si_code = code;
1762 info.si_addr = addr;
1763 info.si_addr_lsb = lsb;
1764 return force_sig_info(&info);
1765}
1766
1767int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1768{
1769 struct kernel_siginfo info;
1770
1771 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1772 clear_siginfo(&info);
1773 info.si_signo = SIGBUS;
1774 info.si_errno = 0;
1775 info.si_code = code;
1776 info.si_addr = addr;
1777 info.si_addr_lsb = lsb;
1778 return send_sig_info(info.si_signo, &info, t);
1779}
1780EXPORT_SYMBOL(send_sig_mceerr);
1781
1782int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1783{
1784 struct kernel_siginfo info;
1785
1786 clear_siginfo(&info);
1787 info.si_signo = SIGSEGV;
1788 info.si_errno = 0;
1789 info.si_code = SEGV_BNDERR;
1790 info.si_addr = addr;
1791 info.si_lower = lower;
1792 info.si_upper = upper;
1793 return force_sig_info(&info);
1794}
1795
1796#ifdef SEGV_PKUERR
1797int force_sig_pkuerr(void __user *addr, u32 pkey)
1798{
1799 struct kernel_siginfo info;
1800
1801 clear_siginfo(&info);
1802 info.si_signo = SIGSEGV;
1803 info.si_errno = 0;
1804 info.si_code = SEGV_PKUERR;
1805 info.si_addr = addr;
1806 info.si_pkey = pkey;
1807 return force_sig_info(&info);
1808}
1809#endif
1810
1811int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1812{
1813 struct kernel_siginfo info;
1814
1815 clear_siginfo(&info);
1816 info.si_signo = SIGTRAP;
1817 info.si_errno = 0;
1818 info.si_code = TRAP_PERF;
1819 info.si_addr = addr;
1820 info.si_perf_data = sig_data;
1821 info.si_perf_type = type;
1822
1823 /*
1824 * Signals generated by perf events should not terminate the whole
1825 * process if SIGTRAP is blocked, however, delivering the signal
1826 * asynchronously is better than not delivering at all. But tell user
1827 * space if the signal was asynchronous, so it can clearly be
1828 * distinguished from normal synchronous ones.
1829 */
1830 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1831 TRAP_PERF_FLAG_ASYNC :
1832 0;
1833
1834 return send_sig_info(info.si_signo, &info, current);
1835}
1836
1837/**
1838 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1839 * @syscall: syscall number to send to userland
1840 * @reason: filter-supplied reason code to send to userland (via si_errno)
1841 * @force_coredump: true to trigger a coredump
1842 *
1843 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1844 */
1845int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1846{
1847 struct kernel_siginfo info;
1848
1849 clear_siginfo(&info);
1850 info.si_signo = SIGSYS;
1851 info.si_code = SYS_SECCOMP;
1852 info.si_call_addr = (void __user *)KSTK_EIP(current);
1853 info.si_errno = reason;
1854 info.si_arch = syscall_get_arch(current);
1855 info.si_syscall = syscall;
1856 return force_sig_info_to_task(&info, current,
1857 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1858}
1859
1860/* For the crazy architectures that include trap information in
1861 * the errno field, instead of an actual errno value.
1862 */
1863int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1864{
1865 struct kernel_siginfo info;
1866
1867 clear_siginfo(&info);
1868 info.si_signo = SIGTRAP;
1869 info.si_errno = errno;
1870 info.si_code = TRAP_HWBKPT;
1871 info.si_addr = addr;
1872 return force_sig_info(&info);
1873}
1874
1875/* For the rare architectures that include trap information using
1876 * si_trapno.
1877 */
1878int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1879{
1880 struct kernel_siginfo info;
1881
1882 clear_siginfo(&info);
1883 info.si_signo = sig;
1884 info.si_errno = 0;
1885 info.si_code = code;
1886 info.si_addr = addr;
1887 info.si_trapno = trapno;
1888 return force_sig_info(&info);
1889}
1890
1891/* For the rare architectures that include trap information using
1892 * si_trapno.
1893 */
1894int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1895 struct task_struct *t)
1896{
1897 struct kernel_siginfo info;
1898
1899 clear_siginfo(&info);
1900 info.si_signo = sig;
1901 info.si_errno = 0;
1902 info.si_code = code;
1903 info.si_addr = addr;
1904 info.si_trapno = trapno;
1905 return send_sig_info(info.si_signo, &info, t);
1906}
1907
1908static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1909{
1910 int ret;
1911 read_lock(&tasklist_lock);
1912 ret = __kill_pgrp_info(sig, info, pgrp);
1913 read_unlock(&tasklist_lock);
1914 return ret;
1915}
1916
1917int kill_pgrp(struct pid *pid, int sig, int priv)
1918{
1919 return kill_pgrp_info(sig, __si_special(priv), pid);
1920}
1921EXPORT_SYMBOL(kill_pgrp);
1922
1923int kill_pid(struct pid *pid, int sig, int priv)
1924{
1925 return kill_pid_info(sig, __si_special(priv), pid);
1926}
1927EXPORT_SYMBOL(kill_pid);
1928
1929/*
1930 * These functions support sending signals using preallocated sigqueue
1931 * structures. This is needed "because realtime applications cannot
1932 * afford to lose notifications of asynchronous events, like timer
1933 * expirations or I/O completions". In the case of POSIX Timers
1934 * we allocate the sigqueue structure from the timer_create. If this
1935 * allocation fails we are able to report the failure to the application
1936 * with an EAGAIN error.
1937 */
1938struct sigqueue *sigqueue_alloc(void)
1939{
1940 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1941}
1942
1943void sigqueue_free(struct sigqueue *q)
1944{
1945 unsigned long flags;
1946 spinlock_t *lock = ¤t->sighand->siglock;
1947
1948 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1949 /*
1950 * We must hold ->siglock while testing q->list
1951 * to serialize with collect_signal() or with
1952 * __exit_signal()->flush_sigqueue().
1953 */
1954 spin_lock_irqsave(lock, flags);
1955 q->flags &= ~SIGQUEUE_PREALLOC;
1956 /*
1957 * If it is queued it will be freed when dequeued,
1958 * like the "regular" sigqueue.
1959 */
1960 if (!list_empty(&q->list))
1961 q = NULL;
1962 spin_unlock_irqrestore(lock, flags);
1963
1964 if (q)
1965 __sigqueue_free(q);
1966}
1967
1968int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1969{
1970 int sig = q->info.si_signo;
1971 struct sigpending *pending;
1972 struct task_struct *t;
1973 unsigned long flags;
1974 int ret, result;
1975
1976 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1977
1978 ret = -1;
1979 rcu_read_lock();
1980
1981 /*
1982 * This function is used by POSIX timers to deliver a timer signal.
1983 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1984 * set), the signal must be delivered to the specific thread (queues
1985 * into t->pending).
1986 *
1987 * Where type is not PIDTYPE_PID, signals must be delivered to the
1988 * process. In this case, prefer to deliver to current if it is in
1989 * the same thread group as the target process, which avoids
1990 * unnecessarily waking up a potentially idle task.
1991 */
1992 t = pid_task(pid, type);
1993 if (!t)
1994 goto ret;
1995 if (type != PIDTYPE_PID && same_thread_group(t, current))
1996 t = current;
1997 if (!likely(lock_task_sighand(t, &flags)))
1998 goto ret;
1999
2000 ret = 1; /* the signal is ignored */
2001 result = TRACE_SIGNAL_IGNORED;
2002 if (!prepare_signal(sig, t, false))
2003 goto out;
2004
2005 ret = 0;
2006 if (unlikely(!list_empty(&q->list))) {
2007 /*
2008 * If an SI_TIMER entry is already queue just increment
2009 * the overrun count.
2010 */
2011 BUG_ON(q->info.si_code != SI_TIMER);
2012 q->info.si_overrun++;
2013 result = TRACE_SIGNAL_ALREADY_PENDING;
2014 goto out;
2015 }
2016 q->info.si_overrun = 0;
2017
2018 signalfd_notify(t, sig);
2019 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2020 list_add_tail(&q->list, &pending->list);
2021 sigaddset(&pending->signal, sig);
2022 complete_signal(sig, t, type);
2023 result = TRACE_SIGNAL_DELIVERED;
2024out:
2025 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2026 unlock_task_sighand(t, &flags);
2027ret:
2028 rcu_read_unlock();
2029 return ret;
2030}
2031
2032void do_notify_pidfd(struct task_struct *task)
2033{
2034 struct pid *pid = task_pid(task);
2035
2036 WARN_ON(task->exit_state == 0);
2037
2038 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2039 poll_to_key(EPOLLIN | EPOLLRDNORM));
2040}
2041
2042/*
2043 * Let a parent know about the death of a child.
2044 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2045 *
2046 * Returns true if our parent ignored us and so we've switched to
2047 * self-reaping.
2048 */
2049bool do_notify_parent(struct task_struct *tsk, int sig)
2050{
2051 struct kernel_siginfo info;
2052 unsigned long flags;
2053 struct sighand_struct *psig;
2054 bool autoreap = false;
2055 u64 utime, stime;
2056
2057 WARN_ON_ONCE(sig == -1);
2058
2059 /* do_notify_parent_cldstop should have been called instead. */
2060 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2061
2062 WARN_ON_ONCE(!tsk->ptrace &&
2063 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2064 /*
2065 * tsk is a group leader and has no threads, wake up the
2066 * non-PIDFD_THREAD waiters.
2067 */
2068 if (thread_group_empty(tsk))
2069 do_notify_pidfd(tsk);
2070
2071 if (sig != SIGCHLD) {
2072 /*
2073 * This is only possible if parent == real_parent.
2074 * Check if it has changed security domain.
2075 */
2076 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2077 sig = SIGCHLD;
2078 }
2079
2080 clear_siginfo(&info);
2081 info.si_signo = sig;
2082 info.si_errno = 0;
2083 /*
2084 * We are under tasklist_lock here so our parent is tied to
2085 * us and cannot change.
2086 *
2087 * task_active_pid_ns will always return the same pid namespace
2088 * until a task passes through release_task.
2089 *
2090 * write_lock() currently calls preempt_disable() which is the
2091 * same as rcu_read_lock(), but according to Oleg, this is not
2092 * correct to rely on this
2093 */
2094 rcu_read_lock();
2095 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2096 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2097 task_uid(tsk));
2098 rcu_read_unlock();
2099
2100 task_cputime(tsk, &utime, &stime);
2101 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2102 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2103
2104 info.si_status = tsk->exit_code & 0x7f;
2105 if (tsk->exit_code & 0x80)
2106 info.si_code = CLD_DUMPED;
2107 else if (tsk->exit_code & 0x7f)
2108 info.si_code = CLD_KILLED;
2109 else {
2110 info.si_code = CLD_EXITED;
2111 info.si_status = tsk->exit_code >> 8;
2112 }
2113
2114 psig = tsk->parent->sighand;
2115 spin_lock_irqsave(&psig->siglock, flags);
2116 if (!tsk->ptrace && sig == SIGCHLD &&
2117 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2118 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2119 /*
2120 * We are exiting and our parent doesn't care. POSIX.1
2121 * defines special semantics for setting SIGCHLD to SIG_IGN
2122 * or setting the SA_NOCLDWAIT flag: we should be reaped
2123 * automatically and not left for our parent's wait4 call.
2124 * Rather than having the parent do it as a magic kind of
2125 * signal handler, we just set this to tell do_exit that we
2126 * can be cleaned up without becoming a zombie. Note that
2127 * we still call __wake_up_parent in this case, because a
2128 * blocked sys_wait4 might now return -ECHILD.
2129 *
2130 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2131 * is implementation-defined: we do (if you don't want
2132 * it, just use SIG_IGN instead).
2133 */
2134 autoreap = true;
2135 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2136 sig = 0;
2137 }
2138 /*
2139 * Send with __send_signal as si_pid and si_uid are in the
2140 * parent's namespaces.
2141 */
2142 if (valid_signal(sig) && sig)
2143 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2144 __wake_up_parent(tsk, tsk->parent);
2145 spin_unlock_irqrestore(&psig->siglock, flags);
2146
2147 return autoreap;
2148}
2149
2150/**
2151 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2152 * @tsk: task reporting the state change
2153 * @for_ptracer: the notification is for ptracer
2154 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2155 *
2156 * Notify @tsk's parent that the stopped/continued state has changed. If
2157 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2158 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2159 *
2160 * CONTEXT:
2161 * Must be called with tasklist_lock at least read locked.
2162 */
2163static void do_notify_parent_cldstop(struct task_struct *tsk,
2164 bool for_ptracer, int why)
2165{
2166 struct kernel_siginfo info;
2167 unsigned long flags;
2168 struct task_struct *parent;
2169 struct sighand_struct *sighand;
2170 u64 utime, stime;
2171
2172 if (for_ptracer) {
2173 parent = tsk->parent;
2174 } else {
2175 tsk = tsk->group_leader;
2176 parent = tsk->real_parent;
2177 }
2178
2179 clear_siginfo(&info);
2180 info.si_signo = SIGCHLD;
2181 info.si_errno = 0;
2182 /*
2183 * see comment in do_notify_parent() about the following 4 lines
2184 */
2185 rcu_read_lock();
2186 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2187 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2188 rcu_read_unlock();
2189
2190 task_cputime(tsk, &utime, &stime);
2191 info.si_utime = nsec_to_clock_t(utime);
2192 info.si_stime = nsec_to_clock_t(stime);
2193
2194 info.si_code = why;
2195 switch (why) {
2196 case CLD_CONTINUED:
2197 info.si_status = SIGCONT;
2198 break;
2199 case CLD_STOPPED:
2200 info.si_status = tsk->signal->group_exit_code & 0x7f;
2201 break;
2202 case CLD_TRAPPED:
2203 info.si_status = tsk->exit_code & 0x7f;
2204 break;
2205 default:
2206 BUG();
2207 }
2208
2209 sighand = parent->sighand;
2210 spin_lock_irqsave(&sighand->siglock, flags);
2211 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2212 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2213 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2214 /*
2215 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2216 */
2217 __wake_up_parent(tsk, parent);
2218 spin_unlock_irqrestore(&sighand->siglock, flags);
2219}
2220
2221/*
2222 * This must be called with current->sighand->siglock held.
2223 *
2224 * This should be the path for all ptrace stops.
2225 * We always set current->last_siginfo while stopped here.
2226 * That makes it a way to test a stopped process for
2227 * being ptrace-stopped vs being job-control-stopped.
2228 *
2229 * Returns the signal the ptracer requested the code resume
2230 * with. If the code did not stop because the tracer is gone,
2231 * the stop signal remains unchanged unless clear_code.
2232 */
2233static int ptrace_stop(int exit_code, int why, unsigned long message,
2234 kernel_siginfo_t *info)
2235 __releases(¤t->sighand->siglock)
2236 __acquires(¤t->sighand->siglock)
2237{
2238 bool gstop_done = false;
2239
2240 if (arch_ptrace_stop_needed()) {
2241 /*
2242 * The arch code has something special to do before a
2243 * ptrace stop. This is allowed to block, e.g. for faults
2244 * on user stack pages. We can't keep the siglock while
2245 * calling arch_ptrace_stop, so we must release it now.
2246 * To preserve proper semantics, we must do this before
2247 * any signal bookkeeping like checking group_stop_count.
2248 */
2249 spin_unlock_irq(¤t->sighand->siglock);
2250 arch_ptrace_stop();
2251 spin_lock_irq(¤t->sighand->siglock);
2252 }
2253
2254 /*
2255 * After this point ptrace_signal_wake_up or signal_wake_up
2256 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2257 * signal comes in. Handle previous ptrace_unlinks and fatal
2258 * signals here to prevent ptrace_stop sleeping in schedule.
2259 */
2260 if (!current->ptrace || __fatal_signal_pending(current))
2261 return exit_code;
2262
2263 set_special_state(TASK_TRACED);
2264 current->jobctl |= JOBCTL_TRACED;
2265
2266 /*
2267 * We're committing to trapping. TRACED should be visible before
2268 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2269 * Also, transition to TRACED and updates to ->jobctl should be
2270 * atomic with respect to siglock and should be done after the arch
2271 * hook as siglock is released and regrabbed across it.
2272 *
2273 * TRACER TRACEE
2274 *
2275 * ptrace_attach()
2276 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2277 * do_wait()
2278 * set_current_state() smp_wmb();
2279 * ptrace_do_wait()
2280 * wait_task_stopped()
2281 * task_stopped_code()
2282 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2283 */
2284 smp_wmb();
2285
2286 current->ptrace_message = message;
2287 current->last_siginfo = info;
2288 current->exit_code = exit_code;
2289
2290 /*
2291 * If @why is CLD_STOPPED, we're trapping to participate in a group
2292 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2293 * across siglock relocks since INTERRUPT was scheduled, PENDING
2294 * could be clear now. We act as if SIGCONT is received after
2295 * TASK_TRACED is entered - ignore it.
2296 */
2297 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2298 gstop_done = task_participate_group_stop(current);
2299
2300 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2301 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2302 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2303 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2304
2305 /* entering a trap, clear TRAPPING */
2306 task_clear_jobctl_trapping(current);
2307
2308 spin_unlock_irq(¤t->sighand->siglock);
2309 read_lock(&tasklist_lock);
2310 /*
2311 * Notify parents of the stop.
2312 *
2313 * While ptraced, there are two parents - the ptracer and
2314 * the real_parent of the group_leader. The ptracer should
2315 * know about every stop while the real parent is only
2316 * interested in the completion of group stop. The states
2317 * for the two don't interact with each other. Notify
2318 * separately unless they're gonna be duplicates.
2319 */
2320 if (current->ptrace)
2321 do_notify_parent_cldstop(current, true, why);
2322 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2323 do_notify_parent_cldstop(current, false, why);
2324
2325 /*
2326 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2327 * One a PREEMPTION kernel this can result in preemption requirement
2328 * which will be fulfilled after read_unlock() and the ptracer will be
2329 * put on the CPU.
2330 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2331 * this task wait in schedule(). If this task gets preempted then it
2332 * remains enqueued on the runqueue. The ptracer will observe this and
2333 * then sleep for a delay of one HZ tick. In the meantime this task
2334 * gets scheduled, enters schedule() and will wait for the ptracer.
2335 *
2336 * This preemption point is not bad from a correctness point of
2337 * view but extends the runtime by one HZ tick time due to the
2338 * ptracer's sleep. The preempt-disable section ensures that there
2339 * will be no preemption between unlock and schedule() and so
2340 * improving the performance since the ptracer will observe that
2341 * the tracee is scheduled out once it gets on the CPU.
2342 *
2343 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2344 * Therefore the task can be preempted after do_notify_parent_cldstop()
2345 * before unlocking tasklist_lock so there is no benefit in doing this.
2346 *
2347 * In fact disabling preemption is harmful on PREEMPT_RT because
2348 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2349 * with preemption disabled due to the 'sleeping' spinlock
2350 * substitution of RT.
2351 */
2352 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2353 preempt_disable();
2354 read_unlock(&tasklist_lock);
2355 cgroup_enter_frozen();
2356 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2357 preempt_enable_no_resched();
2358 schedule();
2359 cgroup_leave_frozen(true);
2360
2361 /*
2362 * We are back. Now reacquire the siglock before touching
2363 * last_siginfo, so that we are sure to have synchronized with
2364 * any signal-sending on another CPU that wants to examine it.
2365 */
2366 spin_lock_irq(¤t->sighand->siglock);
2367 exit_code = current->exit_code;
2368 current->last_siginfo = NULL;
2369 current->ptrace_message = 0;
2370 current->exit_code = 0;
2371
2372 /* LISTENING can be set only during STOP traps, clear it */
2373 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2374
2375 /*
2376 * Queued signals ignored us while we were stopped for tracing.
2377 * So check for any that we should take before resuming user mode.
2378 * This sets TIF_SIGPENDING, but never clears it.
2379 */
2380 recalc_sigpending_tsk(current);
2381 return exit_code;
2382}
2383
2384static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2385{
2386 kernel_siginfo_t info;
2387
2388 clear_siginfo(&info);
2389 info.si_signo = signr;
2390 info.si_code = exit_code;
2391 info.si_pid = task_pid_vnr(current);
2392 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2393
2394 /* Let the debugger run. */
2395 return ptrace_stop(exit_code, why, message, &info);
2396}
2397
2398int ptrace_notify(int exit_code, unsigned long message)
2399{
2400 int signr;
2401
2402 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2403 if (unlikely(task_work_pending(current)))
2404 task_work_run();
2405
2406 spin_lock_irq(¤t->sighand->siglock);
2407 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2408 spin_unlock_irq(¤t->sighand->siglock);
2409 return signr;
2410}
2411
2412/**
2413 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2414 * @signr: signr causing group stop if initiating
2415 *
2416 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2417 * and participate in it. If already set, participate in the existing
2418 * group stop. If participated in a group stop (and thus slept), %true is
2419 * returned with siglock released.
2420 *
2421 * If ptraced, this function doesn't handle stop itself. Instead,
2422 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2423 * untouched. The caller must ensure that INTERRUPT trap handling takes
2424 * places afterwards.
2425 *
2426 * CONTEXT:
2427 * Must be called with @current->sighand->siglock held, which is released
2428 * on %true return.
2429 *
2430 * RETURNS:
2431 * %false if group stop is already cancelled or ptrace trap is scheduled.
2432 * %true if participated in group stop.
2433 */
2434static bool do_signal_stop(int signr)
2435 __releases(¤t->sighand->siglock)
2436{
2437 struct signal_struct *sig = current->signal;
2438
2439 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2440 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2441 struct task_struct *t;
2442
2443 /* signr will be recorded in task->jobctl for retries */
2444 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2445
2446 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2447 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2448 unlikely(sig->group_exec_task))
2449 return false;
2450 /*
2451 * There is no group stop already in progress. We must
2452 * initiate one now.
2453 *
2454 * While ptraced, a task may be resumed while group stop is
2455 * still in effect and then receive a stop signal and
2456 * initiate another group stop. This deviates from the
2457 * usual behavior as two consecutive stop signals can't
2458 * cause two group stops when !ptraced. That is why we
2459 * also check !task_is_stopped(t) below.
2460 *
2461 * The condition can be distinguished by testing whether
2462 * SIGNAL_STOP_STOPPED is already set. Don't generate
2463 * group_exit_code in such case.
2464 *
2465 * This is not necessary for SIGNAL_STOP_CONTINUED because
2466 * an intervening stop signal is required to cause two
2467 * continued events regardless of ptrace.
2468 */
2469 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2470 sig->group_exit_code = signr;
2471
2472 sig->group_stop_count = 0;
2473 if (task_set_jobctl_pending(current, signr | gstop))
2474 sig->group_stop_count++;
2475
2476 for_other_threads(current, t) {
2477 /*
2478 * Setting state to TASK_STOPPED for a group
2479 * stop is always done with the siglock held,
2480 * so this check has no races.
2481 */
2482 if (!task_is_stopped(t) &&
2483 task_set_jobctl_pending(t, signr | gstop)) {
2484 sig->group_stop_count++;
2485 if (likely(!(t->ptrace & PT_SEIZED)))
2486 signal_wake_up(t, 0);
2487 else
2488 ptrace_trap_notify(t);
2489 }
2490 }
2491 }
2492
2493 if (likely(!current->ptrace)) {
2494 int notify = 0;
2495
2496 /*
2497 * If there are no other threads in the group, or if there
2498 * is a group stop in progress and we are the last to stop,
2499 * report to the parent.
2500 */
2501 if (task_participate_group_stop(current))
2502 notify = CLD_STOPPED;
2503
2504 current->jobctl |= JOBCTL_STOPPED;
2505 set_special_state(TASK_STOPPED);
2506 spin_unlock_irq(¤t->sighand->siglock);
2507
2508 /*
2509 * Notify the parent of the group stop completion. Because
2510 * we're not holding either the siglock or tasklist_lock
2511 * here, ptracer may attach inbetween; however, this is for
2512 * group stop and should always be delivered to the real
2513 * parent of the group leader. The new ptracer will get
2514 * its notification when this task transitions into
2515 * TASK_TRACED.
2516 */
2517 if (notify) {
2518 read_lock(&tasklist_lock);
2519 do_notify_parent_cldstop(current, false, notify);
2520 read_unlock(&tasklist_lock);
2521 }
2522
2523 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2524 cgroup_enter_frozen();
2525 schedule();
2526 return true;
2527 } else {
2528 /*
2529 * While ptraced, group stop is handled by STOP trap.
2530 * Schedule it and let the caller deal with it.
2531 */
2532 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2533 return false;
2534 }
2535}
2536
2537/**
2538 * do_jobctl_trap - take care of ptrace jobctl traps
2539 *
2540 * When PT_SEIZED, it's used for both group stop and explicit
2541 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2542 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2543 * the stop signal; otherwise, %SIGTRAP.
2544 *
2545 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2546 * number as exit_code and no siginfo.
2547 *
2548 * CONTEXT:
2549 * Must be called with @current->sighand->siglock held, which may be
2550 * released and re-acquired before returning with intervening sleep.
2551 */
2552static void do_jobctl_trap(void)
2553{
2554 struct signal_struct *signal = current->signal;
2555 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2556
2557 if (current->ptrace & PT_SEIZED) {
2558 if (!signal->group_stop_count &&
2559 !(signal->flags & SIGNAL_STOP_STOPPED))
2560 signr = SIGTRAP;
2561 WARN_ON_ONCE(!signr);
2562 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2563 CLD_STOPPED, 0);
2564 } else {
2565 WARN_ON_ONCE(!signr);
2566 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2567 }
2568}
2569
2570/**
2571 * do_freezer_trap - handle the freezer jobctl trap
2572 *
2573 * Puts the task into frozen state, if only the task is not about to quit.
2574 * In this case it drops JOBCTL_TRAP_FREEZE.
2575 *
2576 * CONTEXT:
2577 * Must be called with @current->sighand->siglock held,
2578 * which is always released before returning.
2579 */
2580static void do_freezer_trap(void)
2581 __releases(¤t->sighand->siglock)
2582{
2583 /*
2584 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2585 * let's make another loop to give it a chance to be handled.
2586 * In any case, we'll return back.
2587 */
2588 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2589 JOBCTL_TRAP_FREEZE) {
2590 spin_unlock_irq(¤t->sighand->siglock);
2591 return;
2592 }
2593
2594 /*
2595 * Now we're sure that there is no pending fatal signal and no
2596 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2597 * immediately (if there is a non-fatal signal pending), and
2598 * put the task into sleep.
2599 */
2600 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2601 clear_thread_flag(TIF_SIGPENDING);
2602 spin_unlock_irq(¤t->sighand->siglock);
2603 cgroup_enter_frozen();
2604 schedule();
2605}
2606
2607static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2608{
2609 /*
2610 * We do not check sig_kernel_stop(signr) but set this marker
2611 * unconditionally because we do not know whether debugger will
2612 * change signr. This flag has no meaning unless we are going
2613 * to stop after return from ptrace_stop(). In this case it will
2614 * be checked in do_signal_stop(), we should only stop if it was
2615 * not cleared by SIGCONT while we were sleeping. See also the
2616 * comment in dequeue_signal().
2617 */
2618 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2619 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2620
2621 /* We're back. Did the debugger cancel the sig? */
2622 if (signr == 0)
2623 return signr;
2624
2625 /*
2626 * Update the siginfo structure if the signal has
2627 * changed. If the debugger wanted something
2628 * specific in the siginfo structure then it should
2629 * have updated *info via PTRACE_SETSIGINFO.
2630 */
2631 if (signr != info->si_signo) {
2632 clear_siginfo(info);
2633 info->si_signo = signr;
2634 info->si_errno = 0;
2635 info->si_code = SI_USER;
2636 rcu_read_lock();
2637 info->si_pid = task_pid_vnr(current->parent);
2638 info->si_uid = from_kuid_munged(current_user_ns(),
2639 task_uid(current->parent));
2640 rcu_read_unlock();
2641 }
2642
2643 /* If the (new) signal is now blocked, requeue it. */
2644 if (sigismember(¤t->blocked, signr) ||
2645 fatal_signal_pending(current)) {
2646 send_signal_locked(signr, info, current, type);
2647 signr = 0;
2648 }
2649
2650 return signr;
2651}
2652
2653static void hide_si_addr_tag_bits(struct ksignal *ksig)
2654{
2655 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2656 case SIL_FAULT:
2657 case SIL_FAULT_TRAPNO:
2658 case SIL_FAULT_MCEERR:
2659 case SIL_FAULT_BNDERR:
2660 case SIL_FAULT_PKUERR:
2661 case SIL_FAULT_PERF_EVENT:
2662 ksig->info.si_addr = arch_untagged_si_addr(
2663 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2664 break;
2665 case SIL_KILL:
2666 case SIL_TIMER:
2667 case SIL_POLL:
2668 case SIL_CHLD:
2669 case SIL_RT:
2670 case SIL_SYS:
2671 break;
2672 }
2673}
2674
2675bool get_signal(struct ksignal *ksig)
2676{
2677 struct sighand_struct *sighand = current->sighand;
2678 struct signal_struct *signal = current->signal;
2679 int signr;
2680
2681 clear_notify_signal();
2682 if (unlikely(task_work_pending(current)))
2683 task_work_run();
2684
2685 if (!task_sigpending(current))
2686 return false;
2687
2688 if (unlikely(uprobe_deny_signal()))
2689 return false;
2690
2691 /*
2692 * Do this once, we can't return to user-mode if freezing() == T.
2693 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2694 * thus do not need another check after return.
2695 */
2696 try_to_freeze();
2697
2698relock:
2699 spin_lock_irq(&sighand->siglock);
2700
2701 /*
2702 * Every stopped thread goes here after wakeup. Check to see if
2703 * we should notify the parent, prepare_signal(SIGCONT) encodes
2704 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2705 */
2706 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2707 int why;
2708
2709 if (signal->flags & SIGNAL_CLD_CONTINUED)
2710 why = CLD_CONTINUED;
2711 else
2712 why = CLD_STOPPED;
2713
2714 signal->flags &= ~SIGNAL_CLD_MASK;
2715
2716 spin_unlock_irq(&sighand->siglock);
2717
2718 /*
2719 * Notify the parent that we're continuing. This event is
2720 * always per-process and doesn't make whole lot of sense
2721 * for ptracers, who shouldn't consume the state via
2722 * wait(2) either, but, for backward compatibility, notify
2723 * the ptracer of the group leader too unless it's gonna be
2724 * a duplicate.
2725 */
2726 read_lock(&tasklist_lock);
2727 do_notify_parent_cldstop(current, false, why);
2728
2729 if (ptrace_reparented(current->group_leader))
2730 do_notify_parent_cldstop(current->group_leader,
2731 true, why);
2732 read_unlock(&tasklist_lock);
2733
2734 goto relock;
2735 }
2736
2737 for (;;) {
2738 struct k_sigaction *ka;
2739 enum pid_type type;
2740
2741 /* Has this task already been marked for death? */
2742 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2743 signal->group_exec_task) {
2744 signr = SIGKILL;
2745 sigdelset(¤t->pending.signal, SIGKILL);
2746 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2747 &sighand->action[SIGKILL-1]);
2748 recalc_sigpending();
2749 /*
2750 * implies do_group_exit() or return to PF_USER_WORKER,
2751 * no need to initialize ksig->info/etc.
2752 */
2753 goto fatal;
2754 }
2755
2756 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2757 do_signal_stop(0))
2758 goto relock;
2759
2760 if (unlikely(current->jobctl &
2761 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2762 if (current->jobctl & JOBCTL_TRAP_MASK) {
2763 do_jobctl_trap();
2764 spin_unlock_irq(&sighand->siglock);
2765 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2766 do_freezer_trap();
2767
2768 goto relock;
2769 }
2770
2771 /*
2772 * If the task is leaving the frozen state, let's update
2773 * cgroup counters and reset the frozen bit.
2774 */
2775 if (unlikely(cgroup_task_frozen(current))) {
2776 spin_unlock_irq(&sighand->siglock);
2777 cgroup_leave_frozen(false);
2778 goto relock;
2779 }
2780
2781 /*
2782 * Signals generated by the execution of an instruction
2783 * need to be delivered before any other pending signals
2784 * so that the instruction pointer in the signal stack
2785 * frame points to the faulting instruction.
2786 */
2787 type = PIDTYPE_PID;
2788 signr = dequeue_synchronous_signal(&ksig->info);
2789 if (!signr)
2790 signr = dequeue_signal(current, ¤t->blocked,
2791 &ksig->info, &type);
2792
2793 if (!signr)
2794 break; /* will return 0 */
2795
2796 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2797 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2798 signr = ptrace_signal(signr, &ksig->info, type);
2799 if (!signr)
2800 continue;
2801 }
2802
2803 ka = &sighand->action[signr-1];
2804
2805 /* Trace actually delivered signals. */
2806 trace_signal_deliver(signr, &ksig->info, ka);
2807
2808 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2809 continue;
2810 if (ka->sa.sa_handler != SIG_DFL) {
2811 /* Run the handler. */
2812 ksig->ka = *ka;
2813
2814 if (ka->sa.sa_flags & SA_ONESHOT)
2815 ka->sa.sa_handler = SIG_DFL;
2816
2817 break; /* will return non-zero "signr" value */
2818 }
2819
2820 /*
2821 * Now we are doing the default action for this signal.
2822 */
2823 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2824 continue;
2825
2826 /*
2827 * Global init gets no signals it doesn't want.
2828 * Container-init gets no signals it doesn't want from same
2829 * container.
2830 *
2831 * Note that if global/container-init sees a sig_kernel_only()
2832 * signal here, the signal must have been generated internally
2833 * or must have come from an ancestor namespace. In either
2834 * case, the signal cannot be dropped.
2835 */
2836 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2837 !sig_kernel_only(signr))
2838 continue;
2839
2840 if (sig_kernel_stop(signr)) {
2841 /*
2842 * The default action is to stop all threads in
2843 * the thread group. The job control signals
2844 * do nothing in an orphaned pgrp, but SIGSTOP
2845 * always works. Note that siglock needs to be
2846 * dropped during the call to is_orphaned_pgrp()
2847 * because of lock ordering with tasklist_lock.
2848 * This allows an intervening SIGCONT to be posted.
2849 * We need to check for that and bail out if necessary.
2850 */
2851 if (signr != SIGSTOP) {
2852 spin_unlock_irq(&sighand->siglock);
2853
2854 /* signals can be posted during this window */
2855
2856 if (is_current_pgrp_orphaned())
2857 goto relock;
2858
2859 spin_lock_irq(&sighand->siglock);
2860 }
2861
2862 if (likely(do_signal_stop(signr))) {
2863 /* It released the siglock. */
2864 goto relock;
2865 }
2866
2867 /*
2868 * We didn't actually stop, due to a race
2869 * with SIGCONT or something like that.
2870 */
2871 continue;
2872 }
2873
2874 fatal:
2875 spin_unlock_irq(&sighand->siglock);
2876 if (unlikely(cgroup_task_frozen(current)))
2877 cgroup_leave_frozen(true);
2878
2879 /*
2880 * Anything else is fatal, maybe with a core dump.
2881 */
2882 current->flags |= PF_SIGNALED;
2883
2884 if (sig_kernel_coredump(signr)) {
2885 if (print_fatal_signals)
2886 print_fatal_signal(signr);
2887 proc_coredump_connector(current);
2888 /*
2889 * If it was able to dump core, this kills all
2890 * other threads in the group and synchronizes with
2891 * their demise. If we lost the race with another
2892 * thread getting here, it set group_exit_code
2893 * first and our do_group_exit call below will use
2894 * that value and ignore the one we pass it.
2895 */
2896 do_coredump(&ksig->info);
2897 }
2898
2899 /*
2900 * PF_USER_WORKER threads will catch and exit on fatal signals
2901 * themselves. They have cleanup that must be performed, so we
2902 * cannot call do_exit() on their behalf. Note that ksig won't
2903 * be properly initialized, PF_USER_WORKER's shouldn't use it.
2904 */
2905 if (current->flags & PF_USER_WORKER)
2906 goto out;
2907
2908 /*
2909 * Death signals, no core dump.
2910 */
2911 do_group_exit(signr);
2912 /* NOTREACHED */
2913 }
2914 spin_unlock_irq(&sighand->siglock);
2915
2916 ksig->sig = signr;
2917
2918 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2919 hide_si_addr_tag_bits(ksig);
2920out:
2921 return signr > 0;
2922}
2923
2924/**
2925 * signal_delivered - called after signal delivery to update blocked signals
2926 * @ksig: kernel signal struct
2927 * @stepping: nonzero if debugger single-step or block-step in use
2928 *
2929 * This function should be called when a signal has successfully been
2930 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2931 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2932 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2933 */
2934static void signal_delivered(struct ksignal *ksig, int stepping)
2935{
2936 sigset_t blocked;
2937
2938 /* A signal was successfully delivered, and the
2939 saved sigmask was stored on the signal frame,
2940 and will be restored by sigreturn. So we can
2941 simply clear the restore sigmask flag. */
2942 clear_restore_sigmask();
2943
2944 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2945 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2946 sigaddset(&blocked, ksig->sig);
2947 set_current_blocked(&blocked);
2948 if (current->sas_ss_flags & SS_AUTODISARM)
2949 sas_ss_reset(current);
2950 if (stepping)
2951 ptrace_notify(SIGTRAP, 0);
2952}
2953
2954void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2955{
2956 if (failed)
2957 force_sigsegv(ksig->sig);
2958 else
2959 signal_delivered(ksig, stepping);
2960}
2961
2962/*
2963 * It could be that complete_signal() picked us to notify about the
2964 * group-wide signal. Other threads should be notified now to take
2965 * the shared signals in @which since we will not.
2966 */
2967static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2968{
2969 sigset_t retarget;
2970 struct task_struct *t;
2971
2972 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2973 if (sigisemptyset(&retarget))
2974 return;
2975
2976 for_other_threads(tsk, t) {
2977 if (t->flags & PF_EXITING)
2978 continue;
2979
2980 if (!has_pending_signals(&retarget, &t->blocked))
2981 continue;
2982 /* Remove the signals this thread can handle. */
2983 sigandsets(&retarget, &retarget, &t->blocked);
2984
2985 if (!task_sigpending(t))
2986 signal_wake_up(t, 0);
2987
2988 if (sigisemptyset(&retarget))
2989 break;
2990 }
2991}
2992
2993void exit_signals(struct task_struct *tsk)
2994{
2995 int group_stop = 0;
2996 sigset_t unblocked;
2997
2998 /*
2999 * @tsk is about to have PF_EXITING set - lock out users which
3000 * expect stable threadgroup.
3001 */
3002 cgroup_threadgroup_change_begin(tsk);
3003
3004 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3005 sched_mm_cid_exit_signals(tsk);
3006 tsk->flags |= PF_EXITING;
3007 cgroup_threadgroup_change_end(tsk);
3008 return;
3009 }
3010
3011 spin_lock_irq(&tsk->sighand->siglock);
3012 /*
3013 * From now this task is not visible for group-wide signals,
3014 * see wants_signal(), do_signal_stop().
3015 */
3016 sched_mm_cid_exit_signals(tsk);
3017 tsk->flags |= PF_EXITING;
3018
3019 cgroup_threadgroup_change_end(tsk);
3020
3021 if (!task_sigpending(tsk))
3022 goto out;
3023
3024 unblocked = tsk->blocked;
3025 signotset(&unblocked);
3026 retarget_shared_pending(tsk, &unblocked);
3027
3028 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3029 task_participate_group_stop(tsk))
3030 group_stop = CLD_STOPPED;
3031out:
3032 spin_unlock_irq(&tsk->sighand->siglock);
3033
3034 /*
3035 * If group stop has completed, deliver the notification. This
3036 * should always go to the real parent of the group leader.
3037 */
3038 if (unlikely(group_stop)) {
3039 read_lock(&tasklist_lock);
3040 do_notify_parent_cldstop(tsk, false, group_stop);
3041 read_unlock(&tasklist_lock);
3042 }
3043}
3044
3045/*
3046 * System call entry points.
3047 */
3048
3049/**
3050 * sys_restart_syscall - restart a system call
3051 */
3052SYSCALL_DEFINE0(restart_syscall)
3053{
3054 struct restart_block *restart = ¤t->restart_block;
3055 return restart->fn(restart);
3056}
3057
3058long do_no_restart_syscall(struct restart_block *param)
3059{
3060 return -EINTR;
3061}
3062
3063static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3064{
3065 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3066 sigset_t newblocked;
3067 /* A set of now blocked but previously unblocked signals. */
3068 sigandnsets(&newblocked, newset, ¤t->blocked);
3069 retarget_shared_pending(tsk, &newblocked);
3070 }
3071 tsk->blocked = *newset;
3072 recalc_sigpending();
3073}
3074
3075/**
3076 * set_current_blocked - change current->blocked mask
3077 * @newset: new mask
3078 *
3079 * It is wrong to change ->blocked directly, this helper should be used
3080 * to ensure the process can't miss a shared signal we are going to block.
3081 */
3082void set_current_blocked(sigset_t *newset)
3083{
3084 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3085 __set_current_blocked(newset);
3086}
3087
3088void __set_current_blocked(const sigset_t *newset)
3089{
3090 struct task_struct *tsk = current;
3091
3092 /*
3093 * In case the signal mask hasn't changed, there is nothing we need
3094 * to do. The current->blocked shouldn't be modified by other task.
3095 */
3096 if (sigequalsets(&tsk->blocked, newset))
3097 return;
3098
3099 spin_lock_irq(&tsk->sighand->siglock);
3100 __set_task_blocked(tsk, newset);
3101 spin_unlock_irq(&tsk->sighand->siglock);
3102}
3103
3104/*
3105 * This is also useful for kernel threads that want to temporarily
3106 * (or permanently) block certain signals.
3107 *
3108 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3109 * interface happily blocks "unblockable" signals like SIGKILL
3110 * and friends.
3111 */
3112int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3113{
3114 struct task_struct *tsk = current;
3115 sigset_t newset;
3116
3117 /* Lockless, only current can change ->blocked, never from irq */
3118 if (oldset)
3119 *oldset = tsk->blocked;
3120
3121 switch (how) {
3122 case SIG_BLOCK:
3123 sigorsets(&newset, &tsk->blocked, set);
3124 break;
3125 case SIG_UNBLOCK:
3126 sigandnsets(&newset, &tsk->blocked, set);
3127 break;
3128 case SIG_SETMASK:
3129 newset = *set;
3130 break;
3131 default:
3132 return -EINVAL;
3133 }
3134
3135 __set_current_blocked(&newset);
3136 return 0;
3137}
3138EXPORT_SYMBOL(sigprocmask);
3139
3140/*
3141 * The api helps set app-provided sigmasks.
3142 *
3143 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3144 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3145 *
3146 * Note that it does set_restore_sigmask() in advance, so it must be always
3147 * paired with restore_saved_sigmask_unless() before return from syscall.
3148 */
3149int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3150{
3151 sigset_t kmask;
3152
3153 if (!umask)
3154 return 0;
3155 if (sigsetsize != sizeof(sigset_t))
3156 return -EINVAL;
3157 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3158 return -EFAULT;
3159
3160 set_restore_sigmask();
3161 current->saved_sigmask = current->blocked;
3162 set_current_blocked(&kmask);
3163
3164 return 0;
3165}
3166
3167#ifdef CONFIG_COMPAT
3168int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3169 size_t sigsetsize)
3170{
3171 sigset_t kmask;
3172
3173 if (!umask)
3174 return 0;
3175 if (sigsetsize != sizeof(compat_sigset_t))
3176 return -EINVAL;
3177 if (get_compat_sigset(&kmask, umask))
3178 return -EFAULT;
3179
3180 set_restore_sigmask();
3181 current->saved_sigmask = current->blocked;
3182 set_current_blocked(&kmask);
3183
3184 return 0;
3185}
3186#endif
3187
3188/**
3189 * sys_rt_sigprocmask - change the list of currently blocked signals
3190 * @how: whether to add, remove, or set signals
3191 * @nset: stores pending signals
3192 * @oset: previous value of signal mask if non-null
3193 * @sigsetsize: size of sigset_t type
3194 */
3195SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3196 sigset_t __user *, oset, size_t, sigsetsize)
3197{
3198 sigset_t old_set, new_set;
3199 int error;
3200
3201 /* XXX: Don't preclude handling different sized sigset_t's. */
3202 if (sigsetsize != sizeof(sigset_t))
3203 return -EINVAL;
3204
3205 old_set = current->blocked;
3206
3207 if (nset) {
3208 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3209 return -EFAULT;
3210 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3211
3212 error = sigprocmask(how, &new_set, NULL);
3213 if (error)
3214 return error;
3215 }
3216
3217 if (oset) {
3218 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3219 return -EFAULT;
3220 }
3221
3222 return 0;
3223}
3224
3225#ifdef CONFIG_COMPAT
3226COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3227 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3228{
3229 sigset_t old_set = current->blocked;
3230
3231 /* XXX: Don't preclude handling different sized sigset_t's. */
3232 if (sigsetsize != sizeof(sigset_t))
3233 return -EINVAL;
3234
3235 if (nset) {
3236 sigset_t new_set;
3237 int error;
3238 if (get_compat_sigset(&new_set, nset))
3239 return -EFAULT;
3240 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3241
3242 error = sigprocmask(how, &new_set, NULL);
3243 if (error)
3244 return error;
3245 }
3246 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3247}
3248#endif
3249
3250static void do_sigpending(sigset_t *set)
3251{
3252 spin_lock_irq(¤t->sighand->siglock);
3253 sigorsets(set, ¤t->pending.signal,
3254 ¤t->signal->shared_pending.signal);
3255 spin_unlock_irq(¤t->sighand->siglock);
3256
3257 /* Outside the lock because only this thread touches it. */
3258 sigandsets(set, ¤t->blocked, set);
3259}
3260
3261/**
3262 * sys_rt_sigpending - examine a pending signal that has been raised
3263 * while blocked
3264 * @uset: stores pending signals
3265 * @sigsetsize: size of sigset_t type or larger
3266 */
3267SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3268{
3269 sigset_t set;
3270
3271 if (sigsetsize > sizeof(*uset))
3272 return -EINVAL;
3273
3274 do_sigpending(&set);
3275
3276 if (copy_to_user(uset, &set, sigsetsize))
3277 return -EFAULT;
3278
3279 return 0;
3280}
3281
3282#ifdef CONFIG_COMPAT
3283COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3284 compat_size_t, sigsetsize)
3285{
3286 sigset_t set;
3287
3288 if (sigsetsize > sizeof(*uset))
3289 return -EINVAL;
3290
3291 do_sigpending(&set);
3292
3293 return put_compat_sigset(uset, &set, sigsetsize);
3294}
3295#endif
3296
3297static const struct {
3298 unsigned char limit, layout;
3299} sig_sicodes[] = {
3300 [SIGILL] = { NSIGILL, SIL_FAULT },
3301 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3302 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3303 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3304 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3305#if defined(SIGEMT)
3306 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3307#endif
3308 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3309 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3310 [SIGSYS] = { NSIGSYS, SIL_SYS },
3311};
3312
3313static bool known_siginfo_layout(unsigned sig, int si_code)
3314{
3315 if (si_code == SI_KERNEL)
3316 return true;
3317 else if ((si_code > SI_USER)) {
3318 if (sig_specific_sicodes(sig)) {
3319 if (si_code <= sig_sicodes[sig].limit)
3320 return true;
3321 }
3322 else if (si_code <= NSIGPOLL)
3323 return true;
3324 }
3325 else if (si_code >= SI_DETHREAD)
3326 return true;
3327 else if (si_code == SI_ASYNCNL)
3328 return true;
3329 return false;
3330}
3331
3332enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3333{
3334 enum siginfo_layout layout = SIL_KILL;
3335 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3336 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3337 (si_code <= sig_sicodes[sig].limit)) {
3338 layout = sig_sicodes[sig].layout;
3339 /* Handle the exceptions */
3340 if ((sig == SIGBUS) &&
3341 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3342 layout = SIL_FAULT_MCEERR;
3343 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3344 layout = SIL_FAULT_BNDERR;
3345#ifdef SEGV_PKUERR
3346 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3347 layout = SIL_FAULT_PKUERR;
3348#endif
3349 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3350 layout = SIL_FAULT_PERF_EVENT;
3351 else if (IS_ENABLED(CONFIG_SPARC) &&
3352 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3353 layout = SIL_FAULT_TRAPNO;
3354 else if (IS_ENABLED(CONFIG_ALPHA) &&
3355 ((sig == SIGFPE) ||
3356 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3357 layout = SIL_FAULT_TRAPNO;
3358 }
3359 else if (si_code <= NSIGPOLL)
3360 layout = SIL_POLL;
3361 } else {
3362 if (si_code == SI_TIMER)
3363 layout = SIL_TIMER;
3364 else if (si_code == SI_SIGIO)
3365 layout = SIL_POLL;
3366 else if (si_code < 0)
3367 layout = SIL_RT;
3368 }
3369 return layout;
3370}
3371
3372static inline char __user *si_expansion(const siginfo_t __user *info)
3373{
3374 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3375}
3376
3377int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3378{
3379 char __user *expansion = si_expansion(to);
3380 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3381 return -EFAULT;
3382 if (clear_user(expansion, SI_EXPANSION_SIZE))
3383 return -EFAULT;
3384 return 0;
3385}
3386
3387static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3388 const siginfo_t __user *from)
3389{
3390 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3391 char __user *expansion = si_expansion(from);
3392 char buf[SI_EXPANSION_SIZE];
3393 int i;
3394 /*
3395 * An unknown si_code might need more than
3396 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3397 * extra bytes are 0. This guarantees copy_siginfo_to_user
3398 * will return this data to userspace exactly.
3399 */
3400 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3401 return -EFAULT;
3402 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3403 if (buf[i] != 0)
3404 return -E2BIG;
3405 }
3406 }
3407 return 0;
3408}
3409
3410static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3411 const siginfo_t __user *from)
3412{
3413 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3414 return -EFAULT;
3415 to->si_signo = signo;
3416 return post_copy_siginfo_from_user(to, from);
3417}
3418
3419int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3420{
3421 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3422 return -EFAULT;
3423 return post_copy_siginfo_from_user(to, from);
3424}
3425
3426#ifdef CONFIG_COMPAT
3427/**
3428 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3429 * @to: compat siginfo destination
3430 * @from: kernel siginfo source
3431 *
3432 * Note: This function does not work properly for the SIGCHLD on x32, but
3433 * fortunately it doesn't have to. The only valid callers for this function are
3434 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3435 * The latter does not care because SIGCHLD will never cause a coredump.
3436 */
3437void copy_siginfo_to_external32(struct compat_siginfo *to,
3438 const struct kernel_siginfo *from)
3439{
3440 memset(to, 0, sizeof(*to));
3441
3442 to->si_signo = from->si_signo;
3443 to->si_errno = from->si_errno;
3444 to->si_code = from->si_code;
3445 switch(siginfo_layout(from->si_signo, from->si_code)) {
3446 case SIL_KILL:
3447 to->si_pid = from->si_pid;
3448 to->si_uid = from->si_uid;
3449 break;
3450 case SIL_TIMER:
3451 to->si_tid = from->si_tid;
3452 to->si_overrun = from->si_overrun;
3453 to->si_int = from->si_int;
3454 break;
3455 case SIL_POLL:
3456 to->si_band = from->si_band;
3457 to->si_fd = from->si_fd;
3458 break;
3459 case SIL_FAULT:
3460 to->si_addr = ptr_to_compat(from->si_addr);
3461 break;
3462 case SIL_FAULT_TRAPNO:
3463 to->si_addr = ptr_to_compat(from->si_addr);
3464 to->si_trapno = from->si_trapno;
3465 break;
3466 case SIL_FAULT_MCEERR:
3467 to->si_addr = ptr_to_compat(from->si_addr);
3468 to->si_addr_lsb = from->si_addr_lsb;
3469 break;
3470 case SIL_FAULT_BNDERR:
3471 to->si_addr = ptr_to_compat(from->si_addr);
3472 to->si_lower = ptr_to_compat(from->si_lower);
3473 to->si_upper = ptr_to_compat(from->si_upper);
3474 break;
3475 case SIL_FAULT_PKUERR:
3476 to->si_addr = ptr_to_compat(from->si_addr);
3477 to->si_pkey = from->si_pkey;
3478 break;
3479 case SIL_FAULT_PERF_EVENT:
3480 to->si_addr = ptr_to_compat(from->si_addr);
3481 to->si_perf_data = from->si_perf_data;
3482 to->si_perf_type = from->si_perf_type;
3483 to->si_perf_flags = from->si_perf_flags;
3484 break;
3485 case SIL_CHLD:
3486 to->si_pid = from->si_pid;
3487 to->si_uid = from->si_uid;
3488 to->si_status = from->si_status;
3489 to->si_utime = from->si_utime;
3490 to->si_stime = from->si_stime;
3491 break;
3492 case SIL_RT:
3493 to->si_pid = from->si_pid;
3494 to->si_uid = from->si_uid;
3495 to->si_int = from->si_int;
3496 break;
3497 case SIL_SYS:
3498 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3499 to->si_syscall = from->si_syscall;
3500 to->si_arch = from->si_arch;
3501 break;
3502 }
3503}
3504
3505int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3506 const struct kernel_siginfo *from)
3507{
3508 struct compat_siginfo new;
3509
3510 copy_siginfo_to_external32(&new, from);
3511 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3512 return -EFAULT;
3513 return 0;
3514}
3515
3516static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3517 const struct compat_siginfo *from)
3518{
3519 clear_siginfo(to);
3520 to->si_signo = from->si_signo;
3521 to->si_errno = from->si_errno;
3522 to->si_code = from->si_code;
3523 switch(siginfo_layout(from->si_signo, from->si_code)) {
3524 case SIL_KILL:
3525 to->si_pid = from->si_pid;
3526 to->si_uid = from->si_uid;
3527 break;
3528 case SIL_TIMER:
3529 to->si_tid = from->si_tid;
3530 to->si_overrun = from->si_overrun;
3531 to->si_int = from->si_int;
3532 break;
3533 case SIL_POLL:
3534 to->si_band = from->si_band;
3535 to->si_fd = from->si_fd;
3536 break;
3537 case SIL_FAULT:
3538 to->si_addr = compat_ptr(from->si_addr);
3539 break;
3540 case SIL_FAULT_TRAPNO:
3541 to->si_addr = compat_ptr(from->si_addr);
3542 to->si_trapno = from->si_trapno;
3543 break;
3544 case SIL_FAULT_MCEERR:
3545 to->si_addr = compat_ptr(from->si_addr);
3546 to->si_addr_lsb = from->si_addr_lsb;
3547 break;
3548 case SIL_FAULT_BNDERR:
3549 to->si_addr = compat_ptr(from->si_addr);
3550 to->si_lower = compat_ptr(from->si_lower);
3551 to->si_upper = compat_ptr(from->si_upper);
3552 break;
3553 case SIL_FAULT_PKUERR:
3554 to->si_addr = compat_ptr(from->si_addr);
3555 to->si_pkey = from->si_pkey;
3556 break;
3557 case SIL_FAULT_PERF_EVENT:
3558 to->si_addr = compat_ptr(from->si_addr);
3559 to->si_perf_data = from->si_perf_data;
3560 to->si_perf_type = from->si_perf_type;
3561 to->si_perf_flags = from->si_perf_flags;
3562 break;
3563 case SIL_CHLD:
3564 to->si_pid = from->si_pid;
3565 to->si_uid = from->si_uid;
3566 to->si_status = from->si_status;
3567#ifdef CONFIG_X86_X32_ABI
3568 if (in_x32_syscall()) {
3569 to->si_utime = from->_sifields._sigchld_x32._utime;
3570 to->si_stime = from->_sifields._sigchld_x32._stime;
3571 } else
3572#endif
3573 {
3574 to->si_utime = from->si_utime;
3575 to->si_stime = from->si_stime;
3576 }
3577 break;
3578 case SIL_RT:
3579 to->si_pid = from->si_pid;
3580 to->si_uid = from->si_uid;
3581 to->si_int = from->si_int;
3582 break;
3583 case SIL_SYS:
3584 to->si_call_addr = compat_ptr(from->si_call_addr);
3585 to->si_syscall = from->si_syscall;
3586 to->si_arch = from->si_arch;
3587 break;
3588 }
3589 return 0;
3590}
3591
3592static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3593 const struct compat_siginfo __user *ufrom)
3594{
3595 struct compat_siginfo from;
3596
3597 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3598 return -EFAULT;
3599
3600 from.si_signo = signo;
3601 return post_copy_siginfo_from_user32(to, &from);
3602}
3603
3604int copy_siginfo_from_user32(struct kernel_siginfo *to,
3605 const struct compat_siginfo __user *ufrom)
3606{
3607 struct compat_siginfo from;
3608
3609 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3610 return -EFAULT;
3611
3612 return post_copy_siginfo_from_user32(to, &from);
3613}
3614#endif /* CONFIG_COMPAT */
3615
3616/**
3617 * do_sigtimedwait - wait for queued signals specified in @which
3618 * @which: queued signals to wait for
3619 * @info: if non-null, the signal's siginfo is returned here
3620 * @ts: upper bound on process time suspension
3621 */
3622static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3623 const struct timespec64 *ts)
3624{
3625 ktime_t *to = NULL, timeout = KTIME_MAX;
3626 struct task_struct *tsk = current;
3627 sigset_t mask = *which;
3628 enum pid_type type;
3629 int sig, ret = 0;
3630
3631 if (ts) {
3632 if (!timespec64_valid(ts))
3633 return -EINVAL;
3634 timeout = timespec64_to_ktime(*ts);
3635 to = &timeout;
3636 }
3637
3638 /*
3639 * Invert the set of allowed signals to get those we want to block.
3640 */
3641 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3642 signotset(&mask);
3643
3644 spin_lock_irq(&tsk->sighand->siglock);
3645 sig = dequeue_signal(tsk, &mask, info, &type);
3646 if (!sig && timeout) {
3647 /*
3648 * None ready, temporarily unblock those we're interested
3649 * while we are sleeping in so that we'll be awakened when
3650 * they arrive. Unblocking is always fine, we can avoid
3651 * set_current_blocked().
3652 */
3653 tsk->real_blocked = tsk->blocked;
3654 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3655 recalc_sigpending();
3656 spin_unlock_irq(&tsk->sighand->siglock);
3657
3658 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3659 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3660 HRTIMER_MODE_REL);
3661 spin_lock_irq(&tsk->sighand->siglock);
3662 __set_task_blocked(tsk, &tsk->real_blocked);
3663 sigemptyset(&tsk->real_blocked);
3664 sig = dequeue_signal(tsk, &mask, info, &type);
3665 }
3666 spin_unlock_irq(&tsk->sighand->siglock);
3667
3668 if (sig)
3669 return sig;
3670 return ret ? -EINTR : -EAGAIN;
3671}
3672
3673/**
3674 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3675 * in @uthese
3676 * @uthese: queued signals to wait for
3677 * @uinfo: if non-null, the signal's siginfo is returned here
3678 * @uts: upper bound on process time suspension
3679 * @sigsetsize: size of sigset_t type
3680 */
3681SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3682 siginfo_t __user *, uinfo,
3683 const struct __kernel_timespec __user *, uts,
3684 size_t, sigsetsize)
3685{
3686 sigset_t these;
3687 struct timespec64 ts;
3688 kernel_siginfo_t info;
3689 int ret;
3690
3691 /* XXX: Don't preclude handling different sized sigset_t's. */
3692 if (sigsetsize != sizeof(sigset_t))
3693 return -EINVAL;
3694
3695 if (copy_from_user(&these, uthese, sizeof(these)))
3696 return -EFAULT;
3697
3698 if (uts) {
3699 if (get_timespec64(&ts, uts))
3700 return -EFAULT;
3701 }
3702
3703 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3704
3705 if (ret > 0 && uinfo) {
3706 if (copy_siginfo_to_user(uinfo, &info))
3707 ret = -EFAULT;
3708 }
3709
3710 return ret;
3711}
3712
3713#ifdef CONFIG_COMPAT_32BIT_TIME
3714SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3715 siginfo_t __user *, uinfo,
3716 const struct old_timespec32 __user *, uts,
3717 size_t, sigsetsize)
3718{
3719 sigset_t these;
3720 struct timespec64 ts;
3721 kernel_siginfo_t info;
3722 int ret;
3723
3724 if (sigsetsize != sizeof(sigset_t))
3725 return -EINVAL;
3726
3727 if (copy_from_user(&these, uthese, sizeof(these)))
3728 return -EFAULT;
3729
3730 if (uts) {
3731 if (get_old_timespec32(&ts, uts))
3732 return -EFAULT;
3733 }
3734
3735 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3736
3737 if (ret > 0 && uinfo) {
3738 if (copy_siginfo_to_user(uinfo, &info))
3739 ret = -EFAULT;
3740 }
3741
3742 return ret;
3743}
3744#endif
3745
3746#ifdef CONFIG_COMPAT
3747COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3748 struct compat_siginfo __user *, uinfo,
3749 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3750{
3751 sigset_t s;
3752 struct timespec64 t;
3753 kernel_siginfo_t info;
3754 long ret;
3755
3756 if (sigsetsize != sizeof(sigset_t))
3757 return -EINVAL;
3758
3759 if (get_compat_sigset(&s, uthese))
3760 return -EFAULT;
3761
3762 if (uts) {
3763 if (get_timespec64(&t, uts))
3764 return -EFAULT;
3765 }
3766
3767 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3768
3769 if (ret > 0 && uinfo) {
3770 if (copy_siginfo_to_user32(uinfo, &info))
3771 ret = -EFAULT;
3772 }
3773
3774 return ret;
3775}
3776
3777#ifdef CONFIG_COMPAT_32BIT_TIME
3778COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3779 struct compat_siginfo __user *, uinfo,
3780 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3781{
3782 sigset_t s;
3783 struct timespec64 t;
3784 kernel_siginfo_t info;
3785 long ret;
3786
3787 if (sigsetsize != sizeof(sigset_t))
3788 return -EINVAL;
3789
3790 if (get_compat_sigset(&s, uthese))
3791 return -EFAULT;
3792
3793 if (uts) {
3794 if (get_old_timespec32(&t, uts))
3795 return -EFAULT;
3796 }
3797
3798 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3799
3800 if (ret > 0 && uinfo) {
3801 if (copy_siginfo_to_user32(uinfo, &info))
3802 ret = -EFAULT;
3803 }
3804
3805 return ret;
3806}
3807#endif
3808#endif
3809
3810static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3811 enum pid_type type)
3812{
3813 clear_siginfo(info);
3814 info->si_signo = sig;
3815 info->si_errno = 0;
3816 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3817 info->si_pid = task_tgid_vnr(current);
3818 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3819}
3820
3821/**
3822 * sys_kill - send a signal to a process
3823 * @pid: the PID of the process
3824 * @sig: signal to be sent
3825 */
3826SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3827{
3828 struct kernel_siginfo info;
3829
3830 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3831
3832 return kill_something_info(sig, &info, pid);
3833}
3834
3835/*
3836 * Verify that the signaler and signalee either are in the same pid namespace
3837 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3838 * namespace.
3839 */
3840static bool access_pidfd_pidns(struct pid *pid)
3841{
3842 struct pid_namespace *active = task_active_pid_ns(current);
3843 struct pid_namespace *p = ns_of_pid(pid);
3844
3845 for (;;) {
3846 if (!p)
3847 return false;
3848 if (p == active)
3849 break;
3850 p = p->parent;
3851 }
3852
3853 return true;
3854}
3855
3856static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3857 siginfo_t __user *info)
3858{
3859#ifdef CONFIG_COMPAT
3860 /*
3861 * Avoid hooking up compat syscalls and instead handle necessary
3862 * conversions here. Note, this is a stop-gap measure and should not be
3863 * considered a generic solution.
3864 */
3865 if (in_compat_syscall())
3866 return copy_siginfo_from_user32(
3867 kinfo, (struct compat_siginfo __user *)info);
3868#endif
3869 return copy_siginfo_from_user(kinfo, info);
3870}
3871
3872static struct pid *pidfd_to_pid(const struct file *file)
3873{
3874 struct pid *pid;
3875
3876 pid = pidfd_pid(file);
3877 if (!IS_ERR(pid))
3878 return pid;
3879
3880 return tgid_pidfd_to_pid(file);
3881}
3882
3883#define PIDFD_SEND_SIGNAL_FLAGS \
3884 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3885 PIDFD_SIGNAL_PROCESS_GROUP)
3886
3887/**
3888 * sys_pidfd_send_signal - Signal a process through a pidfd
3889 * @pidfd: file descriptor of the process
3890 * @sig: signal to send
3891 * @info: signal info
3892 * @flags: future flags
3893 *
3894 * Send the signal to the thread group or to the individual thread depending
3895 * on PIDFD_THREAD.
3896 * In the future extension to @flags may be used to override the default scope
3897 * of @pidfd.
3898 *
3899 * Return: 0 on success, negative errno on failure
3900 */
3901SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3902 siginfo_t __user *, info, unsigned int, flags)
3903{
3904 int ret;
3905 struct fd f;
3906 struct pid *pid;
3907 kernel_siginfo_t kinfo;
3908 enum pid_type type;
3909
3910 /* Enforce flags be set to 0 until we add an extension. */
3911 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3912 return -EINVAL;
3913
3914 /* Ensure that only a single signal scope determining flag is set. */
3915 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3916 return -EINVAL;
3917
3918 f = fdget(pidfd);
3919 if (!f.file)
3920 return -EBADF;
3921
3922 /* Is this a pidfd? */
3923 pid = pidfd_to_pid(f.file);
3924 if (IS_ERR(pid)) {
3925 ret = PTR_ERR(pid);
3926 goto err;
3927 }
3928
3929 ret = -EINVAL;
3930 if (!access_pidfd_pidns(pid))
3931 goto err;
3932
3933 switch (flags) {
3934 case 0:
3935 /* Infer scope from the type of pidfd. */
3936 if (f.file->f_flags & PIDFD_THREAD)
3937 type = PIDTYPE_PID;
3938 else
3939 type = PIDTYPE_TGID;
3940 break;
3941 case PIDFD_SIGNAL_THREAD:
3942 type = PIDTYPE_PID;
3943 break;
3944 case PIDFD_SIGNAL_THREAD_GROUP:
3945 type = PIDTYPE_TGID;
3946 break;
3947 case PIDFD_SIGNAL_PROCESS_GROUP:
3948 type = PIDTYPE_PGID;
3949 break;
3950 }
3951
3952 if (info) {
3953 ret = copy_siginfo_from_user_any(&kinfo, info);
3954 if (unlikely(ret))
3955 goto err;
3956
3957 ret = -EINVAL;
3958 if (unlikely(sig != kinfo.si_signo))
3959 goto err;
3960
3961 /* Only allow sending arbitrary signals to yourself. */
3962 ret = -EPERM;
3963 if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3964 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3965 goto err;
3966 } else {
3967 prepare_kill_siginfo(sig, &kinfo, type);
3968 }
3969
3970 if (type == PIDTYPE_PGID)
3971 ret = kill_pgrp_info(sig, &kinfo, pid);
3972 else
3973 ret = kill_pid_info_type(sig, &kinfo, pid, type);
3974err:
3975 fdput(f);
3976 return ret;
3977}
3978
3979static int
3980do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3981{
3982 struct task_struct *p;
3983 int error = -ESRCH;
3984
3985 rcu_read_lock();
3986 p = find_task_by_vpid(pid);
3987 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3988 error = check_kill_permission(sig, info, p);
3989 /*
3990 * The null signal is a permissions and process existence
3991 * probe. No signal is actually delivered.
3992 */
3993 if (!error && sig) {
3994 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3995 /*
3996 * If lock_task_sighand() failed we pretend the task
3997 * dies after receiving the signal. The window is tiny,
3998 * and the signal is private anyway.
3999 */
4000 if (unlikely(error == -ESRCH))
4001 error = 0;
4002 }
4003 }
4004 rcu_read_unlock();
4005
4006 return error;
4007}
4008
4009static int do_tkill(pid_t tgid, pid_t pid, int sig)
4010{
4011 struct kernel_siginfo info;
4012
4013 prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4014
4015 return do_send_specific(tgid, pid, sig, &info);
4016}
4017
4018/**
4019 * sys_tgkill - send signal to one specific thread
4020 * @tgid: the thread group ID of the thread
4021 * @pid: the PID of the thread
4022 * @sig: signal to be sent
4023 *
4024 * This syscall also checks the @tgid and returns -ESRCH even if the PID
4025 * exists but it's not belonging to the target process anymore. This
4026 * method solves the problem of threads exiting and PIDs getting reused.
4027 */
4028SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4029{
4030 /* This is only valid for single tasks */
4031 if (pid <= 0 || tgid <= 0)
4032 return -EINVAL;
4033
4034 return do_tkill(tgid, pid, sig);
4035}
4036
4037/**
4038 * sys_tkill - send signal to one specific task
4039 * @pid: the PID of the task
4040 * @sig: signal to be sent
4041 *
4042 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4043 */
4044SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4045{
4046 /* This is only valid for single tasks */
4047 if (pid <= 0)
4048 return -EINVAL;
4049
4050 return do_tkill(0, pid, sig);
4051}
4052
4053static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4054{
4055 /* Not even root can pretend to send signals from the kernel.
4056 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4057 */
4058 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4059 (task_pid_vnr(current) != pid))
4060 return -EPERM;
4061
4062 /* POSIX.1b doesn't mention process groups. */
4063 return kill_proc_info(sig, info, pid);
4064}
4065
4066/**
4067 * sys_rt_sigqueueinfo - send signal information to a signal
4068 * @pid: the PID of the thread
4069 * @sig: signal to be sent
4070 * @uinfo: signal info to be sent
4071 */
4072SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4073 siginfo_t __user *, uinfo)
4074{
4075 kernel_siginfo_t info;
4076 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4077 if (unlikely(ret))
4078 return ret;
4079 return do_rt_sigqueueinfo(pid, sig, &info);
4080}
4081
4082#ifdef CONFIG_COMPAT
4083COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4084 compat_pid_t, pid,
4085 int, sig,
4086 struct compat_siginfo __user *, uinfo)
4087{
4088 kernel_siginfo_t info;
4089 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4090 if (unlikely(ret))
4091 return ret;
4092 return do_rt_sigqueueinfo(pid, sig, &info);
4093}
4094#endif
4095
4096static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4097{
4098 /* This is only valid for single tasks */
4099 if (pid <= 0 || tgid <= 0)
4100 return -EINVAL;
4101
4102 /* Not even root can pretend to send signals from the kernel.
4103 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4104 */
4105 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4106 (task_pid_vnr(current) != pid))
4107 return -EPERM;
4108
4109 return do_send_specific(tgid, pid, sig, info);
4110}
4111
4112SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4113 siginfo_t __user *, uinfo)
4114{
4115 kernel_siginfo_t info;
4116 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4117 if (unlikely(ret))
4118 return ret;
4119 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4120}
4121
4122#ifdef CONFIG_COMPAT
4123COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4124 compat_pid_t, tgid,
4125 compat_pid_t, pid,
4126 int, sig,
4127 struct compat_siginfo __user *, uinfo)
4128{
4129 kernel_siginfo_t info;
4130 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4131 if (unlikely(ret))
4132 return ret;
4133 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4134}
4135#endif
4136
4137/*
4138 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4139 */
4140void kernel_sigaction(int sig, __sighandler_t action)
4141{
4142 spin_lock_irq(¤t->sighand->siglock);
4143 current->sighand->action[sig - 1].sa.sa_handler = action;
4144 if (action == SIG_IGN) {
4145 sigset_t mask;
4146
4147 sigemptyset(&mask);
4148 sigaddset(&mask, sig);
4149
4150 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4151 flush_sigqueue_mask(&mask, ¤t->pending);
4152 recalc_sigpending();
4153 }
4154 spin_unlock_irq(¤t->sighand->siglock);
4155}
4156EXPORT_SYMBOL(kernel_sigaction);
4157
4158void __weak sigaction_compat_abi(struct k_sigaction *act,
4159 struct k_sigaction *oact)
4160{
4161}
4162
4163int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4164{
4165 struct task_struct *p = current, *t;
4166 struct k_sigaction *k;
4167 sigset_t mask;
4168
4169 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4170 return -EINVAL;
4171
4172 k = &p->sighand->action[sig-1];
4173
4174 spin_lock_irq(&p->sighand->siglock);
4175 if (k->sa.sa_flags & SA_IMMUTABLE) {
4176 spin_unlock_irq(&p->sighand->siglock);
4177 return -EINVAL;
4178 }
4179 if (oact)
4180 *oact = *k;
4181
4182 /*
4183 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4184 * e.g. by having an architecture use the bit in their uapi.
4185 */
4186 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4187
4188 /*
4189 * Clear unknown flag bits in order to allow userspace to detect missing
4190 * support for flag bits and to allow the kernel to use non-uapi bits
4191 * internally.
4192 */
4193 if (act)
4194 act->sa.sa_flags &= UAPI_SA_FLAGS;
4195 if (oact)
4196 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4197
4198 sigaction_compat_abi(act, oact);
4199
4200 if (act) {
4201 sigdelsetmask(&act->sa.sa_mask,
4202 sigmask(SIGKILL) | sigmask(SIGSTOP));
4203 *k = *act;
4204 /*
4205 * POSIX 3.3.1.3:
4206 * "Setting a signal action to SIG_IGN for a signal that is
4207 * pending shall cause the pending signal to be discarded,
4208 * whether or not it is blocked."
4209 *
4210 * "Setting a signal action to SIG_DFL for a signal that is
4211 * pending and whose default action is to ignore the signal
4212 * (for example, SIGCHLD), shall cause the pending signal to
4213 * be discarded, whether or not it is blocked"
4214 */
4215 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4216 sigemptyset(&mask);
4217 sigaddset(&mask, sig);
4218 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4219 for_each_thread(p, t)
4220 flush_sigqueue_mask(&mask, &t->pending);
4221 }
4222 }
4223
4224 spin_unlock_irq(&p->sighand->siglock);
4225 return 0;
4226}
4227
4228#ifdef CONFIG_DYNAMIC_SIGFRAME
4229static inline void sigaltstack_lock(void)
4230 __acquires(¤t->sighand->siglock)
4231{
4232 spin_lock_irq(¤t->sighand->siglock);
4233}
4234
4235static inline void sigaltstack_unlock(void)
4236 __releases(¤t->sighand->siglock)
4237{
4238 spin_unlock_irq(¤t->sighand->siglock);
4239}
4240#else
4241static inline void sigaltstack_lock(void) { }
4242static inline void sigaltstack_unlock(void) { }
4243#endif
4244
4245static int
4246do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4247 size_t min_ss_size)
4248{
4249 struct task_struct *t = current;
4250 int ret = 0;
4251
4252 if (oss) {
4253 memset(oss, 0, sizeof(stack_t));
4254 oss->ss_sp = (void __user *) t->sas_ss_sp;
4255 oss->ss_size = t->sas_ss_size;
4256 oss->ss_flags = sas_ss_flags(sp) |
4257 (current->sas_ss_flags & SS_FLAG_BITS);
4258 }
4259
4260 if (ss) {
4261 void __user *ss_sp = ss->ss_sp;
4262 size_t ss_size = ss->ss_size;
4263 unsigned ss_flags = ss->ss_flags;
4264 int ss_mode;
4265
4266 if (unlikely(on_sig_stack(sp)))
4267 return -EPERM;
4268
4269 ss_mode = ss_flags & ~SS_FLAG_BITS;
4270 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4271 ss_mode != 0))
4272 return -EINVAL;
4273
4274 /*
4275 * Return before taking any locks if no actual
4276 * sigaltstack changes were requested.
4277 */
4278 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4279 t->sas_ss_size == ss_size &&
4280 t->sas_ss_flags == ss_flags)
4281 return 0;
4282
4283 sigaltstack_lock();
4284 if (ss_mode == SS_DISABLE) {
4285 ss_size = 0;
4286 ss_sp = NULL;
4287 } else {
4288 if (unlikely(ss_size < min_ss_size))
4289 ret = -ENOMEM;
4290 if (!sigaltstack_size_valid(ss_size))
4291 ret = -ENOMEM;
4292 }
4293 if (!ret) {
4294 t->sas_ss_sp = (unsigned long) ss_sp;
4295 t->sas_ss_size = ss_size;
4296 t->sas_ss_flags = ss_flags;
4297 }
4298 sigaltstack_unlock();
4299 }
4300 return ret;
4301}
4302
4303SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4304{
4305 stack_t new, old;
4306 int err;
4307 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4308 return -EFAULT;
4309 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4310 current_user_stack_pointer(),
4311 MINSIGSTKSZ);
4312 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4313 err = -EFAULT;
4314 return err;
4315}
4316
4317int restore_altstack(const stack_t __user *uss)
4318{
4319 stack_t new;
4320 if (copy_from_user(&new, uss, sizeof(stack_t)))
4321 return -EFAULT;
4322 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4323 MINSIGSTKSZ);
4324 /* squash all but EFAULT for now */
4325 return 0;
4326}
4327
4328int __save_altstack(stack_t __user *uss, unsigned long sp)
4329{
4330 struct task_struct *t = current;
4331 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4332 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4333 __put_user(t->sas_ss_size, &uss->ss_size);
4334 return err;
4335}
4336
4337#ifdef CONFIG_COMPAT
4338static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4339 compat_stack_t __user *uoss_ptr)
4340{
4341 stack_t uss, uoss;
4342 int ret;
4343
4344 if (uss_ptr) {
4345 compat_stack_t uss32;
4346 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4347 return -EFAULT;
4348 uss.ss_sp = compat_ptr(uss32.ss_sp);
4349 uss.ss_flags = uss32.ss_flags;
4350 uss.ss_size = uss32.ss_size;
4351 }
4352 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4353 compat_user_stack_pointer(),
4354 COMPAT_MINSIGSTKSZ);
4355 if (ret >= 0 && uoss_ptr) {
4356 compat_stack_t old;
4357 memset(&old, 0, sizeof(old));
4358 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4359 old.ss_flags = uoss.ss_flags;
4360 old.ss_size = uoss.ss_size;
4361 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4362 ret = -EFAULT;
4363 }
4364 return ret;
4365}
4366
4367COMPAT_SYSCALL_DEFINE2(sigaltstack,
4368 const compat_stack_t __user *, uss_ptr,
4369 compat_stack_t __user *, uoss_ptr)
4370{
4371 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4372}
4373
4374int compat_restore_altstack(const compat_stack_t __user *uss)
4375{
4376 int err = do_compat_sigaltstack(uss, NULL);
4377 /* squash all but -EFAULT for now */
4378 return err == -EFAULT ? err : 0;
4379}
4380
4381int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4382{
4383 int err;
4384 struct task_struct *t = current;
4385 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4386 &uss->ss_sp) |
4387 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4388 __put_user(t->sas_ss_size, &uss->ss_size);
4389 return err;
4390}
4391#endif
4392
4393#ifdef __ARCH_WANT_SYS_SIGPENDING
4394
4395/**
4396 * sys_sigpending - examine pending signals
4397 * @uset: where mask of pending signal is returned
4398 */
4399SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4400{
4401 sigset_t set;
4402
4403 if (sizeof(old_sigset_t) > sizeof(*uset))
4404 return -EINVAL;
4405
4406 do_sigpending(&set);
4407
4408 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4409 return -EFAULT;
4410
4411 return 0;
4412}
4413
4414#ifdef CONFIG_COMPAT
4415COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4416{
4417 sigset_t set;
4418
4419 do_sigpending(&set);
4420
4421 return put_user(set.sig[0], set32);
4422}
4423#endif
4424
4425#endif
4426
4427#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4428/**
4429 * sys_sigprocmask - examine and change blocked signals
4430 * @how: whether to add, remove, or set signals
4431 * @nset: signals to add or remove (if non-null)
4432 * @oset: previous value of signal mask if non-null
4433 *
4434 * Some platforms have their own version with special arguments;
4435 * others support only sys_rt_sigprocmask.
4436 */
4437
4438SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4439 old_sigset_t __user *, oset)
4440{
4441 old_sigset_t old_set, new_set;
4442 sigset_t new_blocked;
4443
4444 old_set = current->blocked.sig[0];
4445
4446 if (nset) {
4447 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4448 return -EFAULT;
4449
4450 new_blocked = current->blocked;
4451
4452 switch (how) {
4453 case SIG_BLOCK:
4454 sigaddsetmask(&new_blocked, new_set);
4455 break;
4456 case SIG_UNBLOCK:
4457 sigdelsetmask(&new_blocked, new_set);
4458 break;
4459 case SIG_SETMASK:
4460 new_blocked.sig[0] = new_set;
4461 break;
4462 default:
4463 return -EINVAL;
4464 }
4465
4466 set_current_blocked(&new_blocked);
4467 }
4468
4469 if (oset) {
4470 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4471 return -EFAULT;
4472 }
4473
4474 return 0;
4475}
4476#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4477
4478#ifndef CONFIG_ODD_RT_SIGACTION
4479/**
4480 * sys_rt_sigaction - alter an action taken by a process
4481 * @sig: signal to be sent
4482 * @act: new sigaction
4483 * @oact: used to save the previous sigaction
4484 * @sigsetsize: size of sigset_t type
4485 */
4486SYSCALL_DEFINE4(rt_sigaction, int, sig,
4487 const struct sigaction __user *, act,
4488 struct sigaction __user *, oact,
4489 size_t, sigsetsize)
4490{
4491 struct k_sigaction new_sa, old_sa;
4492 int ret;
4493
4494 /* XXX: Don't preclude handling different sized sigset_t's. */
4495 if (sigsetsize != sizeof(sigset_t))
4496 return -EINVAL;
4497
4498 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4499 return -EFAULT;
4500
4501 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4502 if (ret)
4503 return ret;
4504
4505 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4506 return -EFAULT;
4507
4508 return 0;
4509}
4510#ifdef CONFIG_COMPAT
4511COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4512 const struct compat_sigaction __user *, act,
4513 struct compat_sigaction __user *, oact,
4514 compat_size_t, sigsetsize)
4515{
4516 struct k_sigaction new_ka, old_ka;
4517#ifdef __ARCH_HAS_SA_RESTORER
4518 compat_uptr_t restorer;
4519#endif
4520 int ret;
4521
4522 /* XXX: Don't preclude handling different sized sigset_t's. */
4523 if (sigsetsize != sizeof(compat_sigset_t))
4524 return -EINVAL;
4525
4526 if (act) {
4527 compat_uptr_t handler;
4528 ret = get_user(handler, &act->sa_handler);
4529 new_ka.sa.sa_handler = compat_ptr(handler);
4530#ifdef __ARCH_HAS_SA_RESTORER
4531 ret |= get_user(restorer, &act->sa_restorer);
4532 new_ka.sa.sa_restorer = compat_ptr(restorer);
4533#endif
4534 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4535 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4536 if (ret)
4537 return -EFAULT;
4538 }
4539
4540 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4541 if (!ret && oact) {
4542 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4543 &oact->sa_handler);
4544 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4545 sizeof(oact->sa_mask));
4546 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4547#ifdef __ARCH_HAS_SA_RESTORER
4548 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4549 &oact->sa_restorer);
4550#endif
4551 }
4552 return ret;
4553}
4554#endif
4555#endif /* !CONFIG_ODD_RT_SIGACTION */
4556
4557#ifdef CONFIG_OLD_SIGACTION
4558SYSCALL_DEFINE3(sigaction, int, sig,
4559 const struct old_sigaction __user *, act,
4560 struct old_sigaction __user *, oact)
4561{
4562 struct k_sigaction new_ka, old_ka;
4563 int ret;
4564
4565 if (act) {
4566 old_sigset_t mask;
4567 if (!access_ok(act, sizeof(*act)) ||
4568 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4569 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4570 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4571 __get_user(mask, &act->sa_mask))
4572 return -EFAULT;
4573#ifdef __ARCH_HAS_KA_RESTORER
4574 new_ka.ka_restorer = NULL;
4575#endif
4576 siginitset(&new_ka.sa.sa_mask, mask);
4577 }
4578
4579 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4580
4581 if (!ret && oact) {
4582 if (!access_ok(oact, sizeof(*oact)) ||
4583 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4584 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4585 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4586 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4587 return -EFAULT;
4588 }
4589
4590 return ret;
4591}
4592#endif
4593#ifdef CONFIG_COMPAT_OLD_SIGACTION
4594COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4595 const struct compat_old_sigaction __user *, act,
4596 struct compat_old_sigaction __user *, oact)
4597{
4598 struct k_sigaction new_ka, old_ka;
4599 int ret;
4600 compat_old_sigset_t mask;
4601 compat_uptr_t handler, restorer;
4602
4603 if (act) {
4604 if (!access_ok(act, sizeof(*act)) ||
4605 __get_user(handler, &act->sa_handler) ||
4606 __get_user(restorer, &act->sa_restorer) ||
4607 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4608 __get_user(mask, &act->sa_mask))
4609 return -EFAULT;
4610
4611#ifdef __ARCH_HAS_KA_RESTORER
4612 new_ka.ka_restorer = NULL;
4613#endif
4614 new_ka.sa.sa_handler = compat_ptr(handler);
4615 new_ka.sa.sa_restorer = compat_ptr(restorer);
4616 siginitset(&new_ka.sa.sa_mask, mask);
4617 }
4618
4619 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4620
4621 if (!ret && oact) {
4622 if (!access_ok(oact, sizeof(*oact)) ||
4623 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4624 &oact->sa_handler) ||
4625 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4626 &oact->sa_restorer) ||
4627 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4628 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4629 return -EFAULT;
4630 }
4631 return ret;
4632}
4633#endif
4634
4635#ifdef CONFIG_SGETMASK_SYSCALL
4636
4637/*
4638 * For backwards compatibility. Functionality superseded by sigprocmask.
4639 */
4640SYSCALL_DEFINE0(sgetmask)
4641{
4642 /* SMP safe */
4643 return current->blocked.sig[0];
4644}
4645
4646SYSCALL_DEFINE1(ssetmask, int, newmask)
4647{
4648 int old = current->blocked.sig[0];
4649 sigset_t newset;
4650
4651 siginitset(&newset, newmask);
4652 set_current_blocked(&newset);
4653
4654 return old;
4655}
4656#endif /* CONFIG_SGETMASK_SYSCALL */
4657
4658#ifdef __ARCH_WANT_SYS_SIGNAL
4659/*
4660 * For backwards compatibility. Functionality superseded by sigaction.
4661 */
4662SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4663{
4664 struct k_sigaction new_sa, old_sa;
4665 int ret;
4666
4667 new_sa.sa.sa_handler = handler;
4668 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4669 sigemptyset(&new_sa.sa.sa_mask);
4670
4671 ret = do_sigaction(sig, &new_sa, &old_sa);
4672
4673 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4674}
4675#endif /* __ARCH_WANT_SYS_SIGNAL */
4676
4677#ifdef __ARCH_WANT_SYS_PAUSE
4678
4679SYSCALL_DEFINE0(pause)
4680{
4681 while (!signal_pending(current)) {
4682 __set_current_state(TASK_INTERRUPTIBLE);
4683 schedule();
4684 }
4685 return -ERESTARTNOHAND;
4686}
4687
4688#endif
4689
4690static int sigsuspend(sigset_t *set)
4691{
4692 current->saved_sigmask = current->blocked;
4693 set_current_blocked(set);
4694
4695 while (!signal_pending(current)) {
4696 __set_current_state(TASK_INTERRUPTIBLE);
4697 schedule();
4698 }
4699 set_restore_sigmask();
4700 return -ERESTARTNOHAND;
4701}
4702
4703/**
4704 * sys_rt_sigsuspend - replace the signal mask for a value with the
4705 * @unewset value until a signal is received
4706 * @unewset: new signal mask value
4707 * @sigsetsize: size of sigset_t type
4708 */
4709SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4710{
4711 sigset_t newset;
4712
4713 /* XXX: Don't preclude handling different sized sigset_t's. */
4714 if (sigsetsize != sizeof(sigset_t))
4715 return -EINVAL;
4716
4717 if (copy_from_user(&newset, unewset, sizeof(newset)))
4718 return -EFAULT;
4719 return sigsuspend(&newset);
4720}
4721
4722#ifdef CONFIG_COMPAT
4723COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4724{
4725 sigset_t newset;
4726
4727 /* XXX: Don't preclude handling different sized sigset_t's. */
4728 if (sigsetsize != sizeof(sigset_t))
4729 return -EINVAL;
4730
4731 if (get_compat_sigset(&newset, unewset))
4732 return -EFAULT;
4733 return sigsuspend(&newset);
4734}
4735#endif
4736
4737#ifdef CONFIG_OLD_SIGSUSPEND
4738SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4739{
4740 sigset_t blocked;
4741 siginitset(&blocked, mask);
4742 return sigsuspend(&blocked);
4743}
4744#endif
4745#ifdef CONFIG_OLD_SIGSUSPEND3
4746SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4747{
4748 sigset_t blocked;
4749 siginitset(&blocked, mask);
4750 return sigsuspend(&blocked);
4751}
4752#endif
4753
4754__weak const char *arch_vma_name(struct vm_area_struct *vma)
4755{
4756 return NULL;
4757}
4758
4759static inline void siginfo_buildtime_checks(void)
4760{
4761 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4762
4763 /* Verify the offsets in the two siginfos match */
4764#define CHECK_OFFSET(field) \
4765 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4766
4767 /* kill */
4768 CHECK_OFFSET(si_pid);
4769 CHECK_OFFSET(si_uid);
4770
4771 /* timer */
4772 CHECK_OFFSET(si_tid);
4773 CHECK_OFFSET(si_overrun);
4774 CHECK_OFFSET(si_value);
4775
4776 /* rt */
4777 CHECK_OFFSET(si_pid);
4778 CHECK_OFFSET(si_uid);
4779 CHECK_OFFSET(si_value);
4780
4781 /* sigchld */
4782 CHECK_OFFSET(si_pid);
4783 CHECK_OFFSET(si_uid);
4784 CHECK_OFFSET(si_status);
4785 CHECK_OFFSET(si_utime);
4786 CHECK_OFFSET(si_stime);
4787
4788 /* sigfault */
4789 CHECK_OFFSET(si_addr);
4790 CHECK_OFFSET(si_trapno);
4791 CHECK_OFFSET(si_addr_lsb);
4792 CHECK_OFFSET(si_lower);
4793 CHECK_OFFSET(si_upper);
4794 CHECK_OFFSET(si_pkey);
4795 CHECK_OFFSET(si_perf_data);
4796 CHECK_OFFSET(si_perf_type);
4797 CHECK_OFFSET(si_perf_flags);
4798
4799 /* sigpoll */
4800 CHECK_OFFSET(si_band);
4801 CHECK_OFFSET(si_fd);
4802
4803 /* sigsys */
4804 CHECK_OFFSET(si_call_addr);
4805 CHECK_OFFSET(si_syscall);
4806 CHECK_OFFSET(si_arch);
4807#undef CHECK_OFFSET
4808
4809 /* usb asyncio */
4810 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4811 offsetof(struct siginfo, si_addr));
4812 if (sizeof(int) == sizeof(void __user *)) {
4813 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4814 sizeof(void __user *));
4815 } else {
4816 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4817 sizeof_field(struct siginfo, si_uid)) !=
4818 sizeof(void __user *));
4819 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4820 offsetof(struct siginfo, si_uid));
4821 }
4822#ifdef CONFIG_COMPAT
4823 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4824 offsetof(struct compat_siginfo, si_addr));
4825 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4826 sizeof(compat_uptr_t));
4827 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4828 sizeof_field(struct siginfo, si_pid));
4829#endif
4830}
4831
4832#if defined(CONFIG_SYSCTL)
4833static struct ctl_table signal_debug_table[] = {
4834#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4835 {
4836 .procname = "exception-trace",
4837 .data = &show_unhandled_signals,
4838 .maxlen = sizeof(int),
4839 .mode = 0644,
4840 .proc_handler = proc_dointvec
4841 },
4842#endif
4843 { }
4844};
4845
4846static int __init init_signal_sysctls(void)
4847{
4848 register_sysctl_init("debug", signal_debug_table);
4849 return 0;
4850}
4851early_initcall(init_signal_sysctls);
4852#endif /* CONFIG_SYSCTL */
4853
4854void __init signals_init(void)
4855{
4856 siginfo_buildtime_checks();
4857
4858 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4859}
4860
4861#ifdef CONFIG_KGDB_KDB
4862#include <linux/kdb.h>
4863/*
4864 * kdb_send_sig - Allows kdb to send signals without exposing
4865 * signal internals. This function checks if the required locks are
4866 * available before calling the main signal code, to avoid kdb
4867 * deadlocks.
4868 */
4869void kdb_send_sig(struct task_struct *t, int sig)
4870{
4871 static struct task_struct *kdb_prev_t;
4872 int new_t, ret;
4873 if (!spin_trylock(&t->sighand->siglock)) {
4874 kdb_printf("Can't do kill command now.\n"
4875 "The sigmask lock is held somewhere else in "
4876 "kernel, try again later\n");
4877 return;
4878 }
4879 new_t = kdb_prev_t != t;
4880 kdb_prev_t = t;
4881 if (!task_is_running(t) && new_t) {
4882 spin_unlock(&t->sighand->siglock);
4883 kdb_printf("Process is not RUNNING, sending a signal from "
4884 "kdb risks deadlock\n"
4885 "on the run queue locks. "
4886 "The signal has _not_ been sent.\n"
4887 "Reissue the kill command if you want to risk "
4888 "the deadlock.\n");
4889 return;
4890 }
4891 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4892 spin_unlock(&t->sighand->siglock);
4893 if (ret)
4894 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4895 sig, t->pid);
4896 else
4897 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4898}
4899#endif /* CONFIG_KGDB_KDB */