Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
 
 
 
 
 
 
  17#include <linux/fs.h>
 
 
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
 
 
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <linux/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
 
 
 
 
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
 
 
 
 
 
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
 
 
  96	 */
  97	return !t->ptrace;
 
 
 
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 280		smp_mb();	/* advised by wake_up_bit() */
 281		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282	}
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 301{
 302	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304	if (mask & JOBCTL_STOP_PENDING)
 305		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307	task->jobctl &= ~mask;
 308
 309	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310		task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331	struct signal_struct *sig = task->signal;
 332	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338	if (!consume)
 339		return false;
 340
 341	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342		sig->group_stop_count--;
 343
 344	/*
 345	 * Tell the caller to notify completion iff we are entering into a
 346	 * fresh group stop.  Read comment in do_signal_stop() for details.
 347	 */
 348	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 350		return true;
 351	}
 352	return false;
 353}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 362{
 363	struct sigqueue *q = NULL;
 364	struct user_struct *user;
 
 365
 366	/*
 367	 * Protect access to @t credentials. This can go away when all
 368	 * callers hold rcu read lock.
 
 
 
 
 369	 */
 370	rcu_read_lock();
 371	user = get_uid(__task_cred(t)->user);
 372	atomic_inc(&user->sigpending);
 373	rcu_read_unlock();
 
 
 374
 375	if (override_rlimit ||
 376	    atomic_read(&user->sigpending) <=
 377			task_rlimit(t, RLIMIT_SIGPENDING)) {
 378		q = kmem_cache_alloc(sigqueue_cachep, flags);
 379	} else {
 380		print_dropped_signal(sig);
 381	}
 382
 383	if (unlikely(q == NULL)) {
 384		atomic_dec(&user->sigpending);
 385		free_uid(user);
 386	} else {
 387		INIT_LIST_HEAD(&q->list);
 388		q->flags = 0;
 389		q->user = user;
 390	}
 391
 392	return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397	if (q->flags & SIGQUEUE_PREALLOC)
 398		return;
 399	atomic_dec(&q->user->sigpending);
 400	free_uid(q->user);
 
 
 401	kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406	struct sigqueue *q;
 407
 408	sigemptyset(&queue->signal);
 409	while (!list_empty(&queue->list)) {
 410		q = list_entry(queue->list.next, struct sigqueue , list);
 411		list_del_init(&q->list);
 412		__sigqueue_free(q);
 413	}
 414}
 415
 416/*
 417 * Flush all pending signals for this kthread.
 418 */
 419void flush_signals(struct task_struct *t)
 420{
 421	unsigned long flags;
 422
 423	spin_lock_irqsave(&t->sighand->siglock, flags);
 424	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 425	flush_sigqueue(&t->pending);
 426	flush_sigqueue(&t->signal->shared_pending);
 427	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 428}
 
 429
 430#ifdef CONFIG_POSIX_TIMERS
 431static void __flush_itimer_signals(struct sigpending *pending)
 432{
 433	sigset_t signal, retain;
 434	struct sigqueue *q, *n;
 435
 436	signal = pending->signal;
 437	sigemptyset(&retain);
 438
 439	list_for_each_entry_safe(q, n, &pending->list, list) {
 440		int sig = q->info.si_signo;
 441
 442		if (likely(q->info.si_code != SI_TIMER)) {
 443			sigaddset(&retain, sig);
 444		} else {
 445			sigdelset(&signal, sig);
 446			list_del_init(&q->list);
 447			__sigqueue_free(q);
 448		}
 449	}
 450
 451	sigorsets(&pending->signal, &signal, &retain);
 452}
 453
 454void flush_itimer_signals(void)
 455{
 456	struct task_struct *tsk = current;
 457	unsigned long flags;
 458
 459	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 460	__flush_itimer_signals(&tsk->pending);
 461	__flush_itimer_signals(&tsk->signal->shared_pending);
 462	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 463}
 464#endif
 465
 466void ignore_signals(struct task_struct *t)
 467{
 468	int i;
 469
 470	for (i = 0; i < _NSIG; ++i)
 471		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 472
 473	flush_signals(t);
 474}
 475
 476/*
 477 * Flush all handlers for a task.
 478 */
 479
 480void
 481flush_signal_handlers(struct task_struct *t, int force_default)
 482{
 483	int i;
 484	struct k_sigaction *ka = &t->sighand->action[0];
 485	for (i = _NSIG ; i != 0 ; i--) {
 486		if (force_default || ka->sa.sa_handler != SIG_IGN)
 487			ka->sa.sa_handler = SIG_DFL;
 488		ka->sa.sa_flags = 0;
 489#ifdef __ARCH_HAS_SA_RESTORER
 490		ka->sa.sa_restorer = NULL;
 491#endif
 492		sigemptyset(&ka->sa.sa_mask);
 493		ka++;
 494	}
 495}
 496
 497int unhandled_signal(struct task_struct *tsk, int sig)
 498{
 499	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 500	if (is_global_init(tsk))
 501		return 1;
 
 502	if (handler != SIG_IGN && handler != SIG_DFL)
 503		return 0;
 
 
 
 
 
 504	/* if ptraced, let the tracer determine */
 505	return !tsk->ptrace;
 506}
 507
 508static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 
 509{
 510	struct sigqueue *q, *first = NULL;
 511
 512	/*
 513	 * Collect the siginfo appropriate to this signal.  Check if
 514	 * there is another siginfo for the same signal.
 515	*/
 516	list_for_each_entry(q, &list->list, list) {
 517		if (q->info.si_signo == sig) {
 518			if (first)
 519				goto still_pending;
 520			first = q;
 521		}
 522	}
 523
 524	sigdelset(&list->signal, sig);
 525
 526	if (first) {
 527still_pending:
 528		list_del_init(&first->list);
 529		copy_siginfo(info, &first->info);
 
 
 
 
 
 
 530		__sigqueue_free(first);
 531	} else {
 532		/*
 533		 * Ok, it wasn't in the queue.  This must be
 534		 * a fast-pathed signal or we must have been
 535		 * out of queue space.  So zero out the info.
 536		 */
 
 537		info->si_signo = sig;
 538		info->si_errno = 0;
 539		info->si_code = SI_USER;
 540		info->si_pid = 0;
 541		info->si_uid = 0;
 542	}
 543}
 544
 545static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 546			siginfo_t *info)
 547{
 548	int sig = next_signal(pending, mask);
 549
 550	if (sig)
 551		collect_signal(sig, pending, info);
 552	return sig;
 553}
 554
 555/*
 556 * Dequeue a signal and return the element to the caller, which is
 557 * expected to free it.
 558 *
 559 * All callers have to hold the siglock.
 560 */
 561int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 
 562{
 
 563	int signr;
 564
 565	/* We only dequeue private signals from ourselves, we don't let
 566	 * signalfd steal them
 567	 */
 568	signr = __dequeue_signal(&tsk->pending, mask, info);
 
 569	if (!signr) {
 
 570		signr = __dequeue_signal(&tsk->signal->shared_pending,
 571					 mask, info);
 572#ifdef CONFIG_POSIX_TIMERS
 573		/*
 574		 * itimer signal ?
 575		 *
 576		 * itimers are process shared and we restart periodic
 577		 * itimers in the signal delivery path to prevent DoS
 578		 * attacks in the high resolution timer case. This is
 579		 * compliant with the old way of self-restarting
 580		 * itimers, as the SIGALRM is a legacy signal and only
 581		 * queued once. Changing the restart behaviour to
 582		 * restart the timer in the signal dequeue path is
 583		 * reducing the timer noise on heavy loaded !highres
 584		 * systems too.
 585		 */
 586		if (unlikely(signr == SIGALRM)) {
 587			struct hrtimer *tmr = &tsk->signal->real_timer;
 588
 589			if (!hrtimer_is_queued(tmr) &&
 590			    tsk->signal->it_real_incr != 0) {
 591				hrtimer_forward(tmr, tmr->base->get_time(),
 592						tsk->signal->it_real_incr);
 593				hrtimer_restart(tmr);
 594			}
 595		}
 596#endif
 597	}
 598
 599	recalc_sigpending();
 600	if (!signr)
 601		return 0;
 602
 603	if (unlikely(sig_kernel_stop(signr))) {
 604		/*
 605		 * Set a marker that we have dequeued a stop signal.  Our
 606		 * caller might release the siglock and then the pending
 607		 * stop signal it is about to process is no longer in the
 608		 * pending bitmasks, but must still be cleared by a SIGCONT
 609		 * (and overruled by a SIGKILL).  So those cases clear this
 610		 * shared flag after we've set it.  Note that this flag may
 611		 * remain set after the signal we return is ignored or
 612		 * handled.  That doesn't matter because its only purpose
 613		 * is to alert stop-signal processing code when another
 614		 * processor has come along and cleared the flag.
 615		 */
 616		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 617	}
 618#ifdef CONFIG_POSIX_TIMERS
 619	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 620		/*
 621		 * Release the siglock to ensure proper locking order
 622		 * of timer locks outside of siglocks.  Note, we leave
 623		 * irqs disabled here, since the posix-timers code is
 624		 * about to disable them again anyway.
 625		 */
 626		spin_unlock(&tsk->sighand->siglock);
 627		do_schedule_next_timer(info);
 628		spin_lock(&tsk->sighand->siglock);
 
 
 
 629	}
 630#endif
 631	return signr;
 632}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633
 634/*
 635 * Tell a process that it has a new active signal..
 636 *
 637 * NOTE! we rely on the previous spin_lock to
 638 * lock interrupts for us! We can only be called with
 639 * "siglock" held, and the local interrupt must
 640 * have been disabled when that got acquired!
 641 *
 642 * No need to set need_resched since signal event passing
 643 * goes through ->blocked
 644 */
 645void signal_wake_up_state(struct task_struct *t, unsigned int state)
 646{
 
 
 647	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 648	/*
 649	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 650	 * case. We don't check t->state here because there is a race with it
 651	 * executing another processor and just now entering stopped state.
 652	 * By using wake_up_state, we ensure the process will wake up and
 653	 * handle its death signal.
 654	 */
 655	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 656		kick_process(t);
 657}
 658
 659/*
 660 * Remove signals in mask from the pending set and queue.
 661 * Returns 1 if any signals were found.
 662 *
 663 * All callers must be holding the siglock.
 664 */
 665static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 666{
 667	struct sigqueue *q, *n;
 668	sigset_t m;
 669
 670	sigandsets(&m, mask, &s->signal);
 671	if (sigisemptyset(&m))
 672		return 0;
 673
 674	sigandnsets(&s->signal, &s->signal, mask);
 675	list_for_each_entry_safe(q, n, &s->list, list) {
 676		if (sigismember(mask, q->info.si_signo)) {
 677			list_del_init(&q->list);
 678			__sigqueue_free(q);
 679		}
 680	}
 681	return 1;
 682}
 683
 684static inline int is_si_special(const struct siginfo *info)
 685{
 686	return info <= SEND_SIG_FORCED;
 687}
 688
 689static inline bool si_fromuser(const struct siginfo *info)
 690{
 691	return info == SEND_SIG_NOINFO ||
 692		(!is_si_special(info) && SI_FROMUSER(info));
 693}
 694
 695/*
 696 * called with RCU read lock from check_kill_permission()
 697 */
 698static int kill_ok_by_cred(struct task_struct *t)
 699{
 700	const struct cred *cred = current_cred();
 701	const struct cred *tcred = __task_cred(t);
 702
 703	if (uid_eq(cred->euid, tcred->suid) ||
 704	    uid_eq(cred->euid, tcred->uid)  ||
 705	    uid_eq(cred->uid,  tcred->suid) ||
 706	    uid_eq(cred->uid,  tcred->uid))
 707		return 1;
 708
 709	if (ns_capable(tcred->user_ns, CAP_KILL))
 710		return 1;
 711
 712	return 0;
 713}
 714
 715/*
 716 * Bad permissions for sending the signal
 717 * - the caller must hold the RCU read lock
 718 */
 719static int check_kill_permission(int sig, struct siginfo *info,
 720				 struct task_struct *t)
 721{
 722	struct pid *sid;
 723	int error;
 724
 725	if (!valid_signal(sig))
 726		return -EINVAL;
 727
 728	if (!si_fromuser(info))
 729		return 0;
 730
 731	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 732	if (error)
 733		return error;
 734
 735	if (!same_thread_group(current, t) &&
 736	    !kill_ok_by_cred(t)) {
 737		switch (sig) {
 738		case SIGCONT:
 739			sid = task_session(t);
 740			/*
 741			 * We don't return the error if sid == NULL. The
 742			 * task was unhashed, the caller must notice this.
 743			 */
 744			if (!sid || sid == task_session(current))
 745				break;
 
 746		default:
 747			return -EPERM;
 748		}
 749	}
 750
 751	return security_task_kill(t, info, sig, 0);
 752}
 753
 754/**
 755 * ptrace_trap_notify - schedule trap to notify ptracer
 756 * @t: tracee wanting to notify tracer
 757 *
 758 * This function schedules sticky ptrace trap which is cleared on the next
 759 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 760 * ptracer.
 761 *
 762 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 763 * ptracer is listening for events, tracee is woken up so that it can
 764 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 765 * eventually taken without returning to userland after the existing traps
 766 * are finished by PTRACE_CONT.
 767 *
 768 * CONTEXT:
 769 * Must be called with @task->sighand->siglock held.
 770 */
 771static void ptrace_trap_notify(struct task_struct *t)
 772{
 773	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 774	assert_spin_locked(&t->sighand->siglock);
 775
 776	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 777	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 778}
 779
 780/*
 781 * Handle magic process-wide effects of stop/continue signals. Unlike
 782 * the signal actions, these happen immediately at signal-generation
 783 * time regardless of blocking, ignoring, or handling.  This does the
 784 * actual continuing for SIGCONT, but not the actual stopping for stop
 785 * signals. The process stop is done as a signal action for SIG_DFL.
 786 *
 787 * Returns true if the signal should be actually delivered, otherwise
 788 * it should be dropped.
 789 */
 790static bool prepare_signal(int sig, struct task_struct *p, bool force)
 791{
 792	struct signal_struct *signal = p->signal;
 793	struct task_struct *t;
 794	sigset_t flush;
 795
 796	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 797		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 798			return sig == SIGKILL;
 799		/*
 800		 * The process is in the middle of dying, nothing to do.
 801		 */
 
 802	} else if (sig_kernel_stop(sig)) {
 803		/*
 804		 * This is a stop signal.  Remove SIGCONT from all queues.
 805		 */
 806		siginitset(&flush, sigmask(SIGCONT));
 807		flush_sigqueue_mask(&flush, &signal->shared_pending);
 808		for_each_thread(p, t)
 809			flush_sigqueue_mask(&flush, &t->pending);
 810	} else if (sig == SIGCONT) {
 811		unsigned int why;
 812		/*
 813		 * Remove all stop signals from all queues, wake all threads.
 814		 */
 815		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 816		flush_sigqueue_mask(&flush, &signal->shared_pending);
 817		for_each_thread(p, t) {
 818			flush_sigqueue_mask(&flush, &t->pending);
 819			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 820			if (likely(!(t->ptrace & PT_SEIZED)))
 
 821				wake_up_state(t, __TASK_STOPPED);
 822			else
 823				ptrace_trap_notify(t);
 824		}
 825
 826		/*
 827		 * Notify the parent with CLD_CONTINUED if we were stopped.
 828		 *
 829		 * If we were in the middle of a group stop, we pretend it
 830		 * was already finished, and then continued. Since SIGCHLD
 831		 * doesn't queue we report only CLD_STOPPED, as if the next
 832		 * CLD_CONTINUED was dropped.
 833		 */
 834		why = 0;
 835		if (signal->flags & SIGNAL_STOP_STOPPED)
 836			why |= SIGNAL_CLD_CONTINUED;
 837		else if (signal->group_stop_count)
 838			why |= SIGNAL_CLD_STOPPED;
 839
 840		if (why) {
 841			/*
 842			 * The first thread which returns from do_signal_stop()
 843			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 844			 * notify its parent. See get_signal_to_deliver().
 845			 */
 846			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 847			signal->group_stop_count = 0;
 848			signal->group_exit_code = 0;
 849		}
 850	}
 851
 852	return !sig_ignored(p, sig, force);
 853}
 854
 855/*
 856 * Test if P wants to take SIG.  After we've checked all threads with this,
 857 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 858 * blocking SIG were ruled out because they are not running and already
 859 * have pending signals.  Such threads will dequeue from the shared queue
 860 * as soon as they're available, so putting the signal on the shared queue
 861 * will be equivalent to sending it to one such thread.
 862 */
 863static inline int wants_signal(int sig, struct task_struct *p)
 864{
 865	if (sigismember(&p->blocked, sig))
 866		return 0;
 
 867	if (p->flags & PF_EXITING)
 868		return 0;
 
 869	if (sig == SIGKILL)
 870		return 1;
 
 871	if (task_is_stopped_or_traced(p))
 872		return 0;
 873	return task_curr(p) || !signal_pending(p);
 
 874}
 875
 876static void complete_signal(int sig, struct task_struct *p, int group)
 877{
 878	struct signal_struct *signal = p->signal;
 879	struct task_struct *t;
 880
 881	/*
 882	 * Now find a thread we can wake up to take the signal off the queue.
 883	 *
 884	 * If the main thread wants the signal, it gets first crack.
 885	 * Probably the least surprising to the average bear.
 886	 */
 887	if (wants_signal(sig, p))
 888		t = p;
 889	else if (!group || thread_group_empty(p))
 890		/*
 891		 * There is just one thread and it does not need to be woken.
 892		 * It will dequeue unblocked signals before it runs again.
 893		 */
 894		return;
 895	else {
 896		/*
 897		 * Otherwise try to find a suitable thread.
 898		 */
 899		t = signal->curr_target;
 900		while (!wants_signal(sig, t)) {
 901			t = next_thread(t);
 902			if (t == signal->curr_target)
 903				/*
 904				 * No thread needs to be woken.
 905				 * Any eligible threads will see
 906				 * the signal in the queue soon.
 907				 */
 908				return;
 909		}
 910		signal->curr_target = t;
 911	}
 912
 913	/*
 914	 * Found a killable thread.  If the signal will be fatal,
 915	 * then start taking the whole group down immediately.
 916	 */
 917	if (sig_fatal(p, sig) &&
 918	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 919	    !sigismember(&t->real_blocked, sig) &&
 920	    (sig == SIGKILL || !t->ptrace)) {
 921		/*
 922		 * This signal will be fatal to the whole group.
 923		 */
 924		if (!sig_kernel_coredump(sig)) {
 925			/*
 926			 * Start a group exit and wake everybody up.
 927			 * This way we don't have other threads
 928			 * running and doing things after a slower
 929			 * thread has the fatal signal pending.
 930			 */
 931			signal->flags = SIGNAL_GROUP_EXIT;
 932			signal->group_exit_code = sig;
 933			signal->group_stop_count = 0;
 934			t = p;
 935			do {
 936				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 937				sigaddset(&t->pending.signal, SIGKILL);
 938				signal_wake_up(t, 1);
 939			} while_each_thread(p, t);
 940			return;
 941		}
 942	}
 943
 944	/*
 945	 * The signal is already in the shared-pending queue.
 946	 * Tell the chosen thread to wake up and dequeue it.
 947	 */
 948	signal_wake_up(t, sig == SIGKILL);
 949	return;
 950}
 951
 952static inline int legacy_queue(struct sigpending *signals, int sig)
 953{
 954	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 955}
 956
 957#ifdef CONFIG_USER_NS
 958static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 959{
 960	if (current_user_ns() == task_cred_xxx(t, user_ns))
 961		return;
 962
 963	if (SI_FROMKERNEL(info))
 964		return;
 965
 966	rcu_read_lock();
 967	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 968					make_kuid(current_user_ns(), info->si_uid));
 969	rcu_read_unlock();
 970}
 971#else
 972static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 973{
 974	return;
 975}
 976#endif
 977
 978static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 979			int group, int from_ancestor_ns)
 980{
 981	struct sigpending *pending;
 982	struct sigqueue *q;
 983	int override_rlimit;
 984	int ret = 0, result;
 985
 986	assert_spin_locked(&t->sighand->siglock);
 987
 988	result = TRACE_SIGNAL_IGNORED;
 989	if (!prepare_signal(sig, t,
 990			from_ancestor_ns || (info == SEND_SIG_FORCED)))
 991		goto ret;
 992
 993	pending = group ? &t->signal->shared_pending : &t->pending;
 994	/*
 995	 * Short-circuit ignored signals and support queuing
 996	 * exactly one non-rt signal, so that we can get more
 997	 * detailed information about the cause of the signal.
 998	 */
 999	result = TRACE_SIGNAL_ALREADY_PENDING;
1000	if (legacy_queue(pending, sig))
1001		goto ret;
1002
1003	result = TRACE_SIGNAL_DELIVERED;
1004	/*
1005	 * fast-pathed signals for kernel-internal things like SIGSTOP
1006	 * or SIGKILL.
1007	 */
1008	if (info == SEND_SIG_FORCED)
1009		goto out_set;
1010
1011	/*
1012	 * Real-time signals must be queued if sent by sigqueue, or
1013	 * some other real-time mechanism.  It is implementation
1014	 * defined whether kill() does so.  We attempt to do so, on
1015	 * the principle of least surprise, but since kill is not
1016	 * allowed to fail with EAGAIN when low on memory we just
1017	 * make sure at least one signal gets delivered and don't
1018	 * pass on the info struct.
1019	 */
1020	if (sig < SIGRTMIN)
1021		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1022	else
1023		override_rlimit = 0;
1024
1025	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1026		override_rlimit);
1027	if (q) {
1028		list_add_tail(&q->list, &pending->list);
1029		switch ((unsigned long) info) {
1030		case (unsigned long) SEND_SIG_NOINFO:
 
1031			q->info.si_signo = sig;
1032			q->info.si_errno = 0;
1033			q->info.si_code = SI_USER;
1034			q->info.si_pid = task_tgid_nr_ns(current,
1035							task_active_pid_ns(t));
1036			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1037			break;
1038		case (unsigned long) SEND_SIG_PRIV:
 
1039			q->info.si_signo = sig;
1040			q->info.si_errno = 0;
1041			q->info.si_code = SI_KERNEL;
1042			q->info.si_pid = 0;
1043			q->info.si_uid = 0;
1044			break;
1045		default:
1046			copy_siginfo(&q->info, info);
1047			if (from_ancestor_ns)
1048				q->info.si_pid = 0;
1049			break;
1050		}
1051
1052		userns_fixup_signal_uid(&q->info, t);
1053
1054	} else if (!is_si_special(info)) {
1055		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1056			/*
1057			 * Queue overflow, abort.  We may abort if the
1058			 * signal was rt and sent by user using something
1059			 * other than kill().
1060			 */
1061			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1062			ret = -EAGAIN;
1063			goto ret;
1064		} else {
1065			/*
1066			 * This is a silent loss of information.  We still
1067			 * send the signal, but the *info bits are lost.
1068			 */
1069			result = TRACE_SIGNAL_LOSE_INFO;
1070		}
1071	}
1072
1073out_set:
1074	signalfd_notify(t, sig);
1075	sigaddset(&pending->signal, sig);
1076	complete_signal(sig, t, group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077ret:
1078	trace_signal_generate(sig, info, t, group, result);
1079	return ret;
1080}
1081
1082static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1083			int group)
1084{
1085	int from_ancestor_ns = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
1087#ifdef CONFIG_PID_NS
1088	from_ancestor_ns = si_fromuser(info) &&
1089			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1090#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091
1092	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
1093}
1094
1095static void print_fatal_signal(int signr)
1096{
1097	struct pt_regs *regs = signal_pt_regs();
1098	pr_info("potentially unexpected fatal signal %d.\n", signr);
 
 
 
 
 
 
 
 
 
 
1099
1100#if defined(__i386__) && !defined(__arch_um__)
1101	pr_info("code at %08lx: ", regs->ip);
1102	{
1103		int i;
1104		for (i = 0; i < 16; i++) {
1105			unsigned char insn;
1106
1107			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1108				break;
1109			pr_cont("%02x ", insn);
1110		}
1111	}
1112	pr_cont("\n");
1113#endif
1114	preempt_disable();
1115	show_regs(regs);
1116	preempt_enable();
1117}
1118
1119static int __init setup_print_fatal_signals(char *str)
1120{
1121	get_option (&str, &print_fatal_signals);
1122
1123	return 1;
1124}
1125
1126__setup("print-fatal-signals=", setup_print_fatal_signals);
1127
1128int
1129__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1130{
1131	return send_signal(sig, info, p, 1);
1132}
1133
1134static int
1135specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1136{
1137	return send_signal(sig, info, t, 0);
1138}
1139
1140int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1141			bool group)
1142{
1143	unsigned long flags;
1144	int ret = -ESRCH;
1145
1146	if (lock_task_sighand(p, &flags)) {
1147		ret = send_signal(sig, info, p, group);
1148		unlock_task_sighand(p, &flags);
1149	}
1150
1151	return ret;
1152}
1153
 
 
 
 
 
 
1154/*
1155 * Force a signal that the process can't ignore: if necessary
1156 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1157 *
1158 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1159 * since we do not want to have a signal handler that was blocked
1160 * be invoked when user space had explicitly blocked it.
1161 *
1162 * We don't want to have recursive SIGSEGV's etc, for example,
1163 * that is why we also clear SIGNAL_UNKILLABLE.
1164 */
1165int
1166force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 
1167{
1168	unsigned long int flags;
1169	int ret, blocked, ignored;
1170	struct k_sigaction *action;
 
1171
1172	spin_lock_irqsave(&t->sighand->siglock, flags);
1173	action = &t->sighand->action[sig-1];
1174	ignored = action->sa.sa_handler == SIG_IGN;
1175	blocked = sigismember(&t->blocked, sig);
1176	if (blocked || ignored) {
1177		action->sa.sa_handler = SIG_DFL;
1178		if (blocked) {
 
 
1179			sigdelset(&t->blocked, sig);
1180			recalc_sigpending_and_wake(t);
1181		}
1182	}
1183	if (action->sa.sa_handler == SIG_DFL)
 
 
 
 
 
1184		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1185	ret = specific_send_sig_info(sig, info, t);
 
 
 
1186	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1187
1188	return ret;
1189}
1190
 
 
 
 
 
1191/*
1192 * Nuke all other threads in the group.
1193 */
1194int zap_other_threads(struct task_struct *p)
1195{
1196	struct task_struct *t = p;
1197	int count = 0;
1198
1199	p->signal->group_stop_count = 0;
1200
1201	while_each_thread(p, t) {
1202		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1203		count++;
 
 
1204
1205		/* Don't bother with already dead threads */
1206		if (t->exit_state)
1207			continue;
1208		sigaddset(&t->pending.signal, SIGKILL);
1209		signal_wake_up(t, 1);
1210	}
1211
1212	return count;
1213}
1214
1215struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1216					   unsigned long *flags)
1217{
1218	struct sighand_struct *sighand;
1219
 
1220	for (;;) {
1221		/*
1222		 * Disable interrupts early to avoid deadlocks.
1223		 * See rcu_read_unlock() comment header for details.
1224		 */
1225		local_irq_save(*flags);
1226		rcu_read_lock();
1227		sighand = rcu_dereference(tsk->sighand);
1228		if (unlikely(sighand == NULL)) {
1229			rcu_read_unlock();
1230			local_irq_restore(*flags);
1231			break;
1232		}
1233		/*
1234		 * This sighand can be already freed and even reused, but
1235		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1236		 * initializes ->siglock: this slab can't go away, it has
1237		 * the same object type, ->siglock can't be reinitialized.
1238		 *
1239		 * We need to ensure that tsk->sighand is still the same
1240		 * after we take the lock, we can race with de_thread() or
1241		 * __exit_signal(). In the latter case the next iteration
1242		 * must see ->sighand == NULL.
1243		 */
1244		spin_lock(&sighand->siglock);
1245		if (likely(sighand == tsk->sighand)) {
1246			rcu_read_unlock();
1247			break;
1248		}
1249		spin_unlock(&sighand->siglock);
1250		rcu_read_unlock();
1251		local_irq_restore(*flags);
1252	}
 
1253
1254	return sighand;
1255}
1256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1257/*
1258 * send signal info to all the members of a group
 
1259 */
1260int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1261{
1262	int ret;
1263
1264	rcu_read_lock();
1265	ret = check_kill_permission(sig, info, p);
1266	rcu_read_unlock();
1267
1268	if (!ret && sig)
1269		ret = do_send_sig_info(sig, info, p, true);
1270
1271	return ret;
1272}
1273
1274/*
1275 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1276 * control characters do (^C, ^Z etc)
1277 * - the caller must hold at least a readlock on tasklist_lock
1278 */
1279int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1280{
1281	struct task_struct *p = NULL;
1282	int retval, success;
1283
1284	success = 0;
1285	retval = -ESRCH;
1286	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1287		int err = group_send_sig_info(sig, info, p);
1288		success |= !err;
1289		retval = err;
 
 
 
 
 
 
1290	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1291	return success ? 0 : retval;
 
1292}
1293
1294int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
 
1295{
1296	int error = -ESRCH;
1297	struct task_struct *p;
1298
1299	for (;;) {
1300		rcu_read_lock();
1301		p = pid_task(pid, PIDTYPE_PID);
1302		if (p)
1303			error = group_send_sig_info(sig, info, p);
1304		rcu_read_unlock();
1305		if (likely(!p || error != -ESRCH))
1306			return error;
1307
1308		/*
1309		 * The task was unhashed in between, try again.  If it
1310		 * is dead, pid_task() will return NULL, if we race with
1311		 * de_thread() it will find the new leader.
1312		 */
1313	}
1314}
1315
1316int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
 
 
 
 
 
1317{
1318	int error;
1319	rcu_read_lock();
1320	error = kill_pid_info(sig, info, find_vpid(pid));
1321	rcu_read_unlock();
1322	return error;
1323}
1324
1325static int kill_as_cred_perm(const struct cred *cred,
1326			     struct task_struct *target)
1327{
1328	const struct cred *pcred = __task_cred(target);
1329	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1330	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1331		return 0;
1332	return 1;
 
1333}
1334
1335/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1336int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1337			 const struct cred *cred, u32 secid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338{
1339	int ret = -EINVAL;
1340	struct task_struct *p;
1341	unsigned long flags;
 
1342
1343	if (!valid_signal(sig))
1344		return ret;
1345
 
 
 
 
 
 
1346	rcu_read_lock();
1347	p = pid_task(pid, PIDTYPE_PID);
1348	if (!p) {
1349		ret = -ESRCH;
1350		goto out_unlock;
1351	}
1352	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1353		ret = -EPERM;
1354		goto out_unlock;
1355	}
1356	ret = security_task_kill(p, info, sig, secid);
1357	if (ret)
1358		goto out_unlock;
1359
1360	if (sig) {
1361		if (lock_task_sighand(p, &flags)) {
1362			ret = __send_signal(sig, info, p, 1, 0);
1363			unlock_task_sighand(p, &flags);
1364		} else
1365			ret = -ESRCH;
1366	}
1367out_unlock:
1368	rcu_read_unlock();
1369	return ret;
1370}
1371EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1372
1373/*
1374 * kill_something_info() interprets pid in interesting ways just like kill(2).
1375 *
1376 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1377 * is probably wrong.  Should make it like BSD or SYSV.
1378 */
1379
1380static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1381{
1382	int ret;
1383
1384	if (pid > 0) {
1385		rcu_read_lock();
1386		ret = kill_pid_info(sig, info, find_vpid(pid));
1387		rcu_read_unlock();
1388		return ret;
1389	}
1390
1391	read_lock(&tasklist_lock);
1392	if (pid != -1) {
1393		ret = __kill_pgrp_info(sig, info,
1394				pid ? find_vpid(-pid) : task_pgrp(current));
1395	} else {
1396		int retval = 0, count = 0;
1397		struct task_struct * p;
1398
1399		for_each_process(p) {
1400			if (task_pid_vnr(p) > 1 &&
1401					!same_thread_group(p, current)) {
1402				int err = group_send_sig_info(sig, info, p);
 
1403				++count;
1404				if (err != -EPERM)
1405					retval = err;
1406			}
1407		}
1408		ret = count ? retval : -ESRCH;
1409	}
1410	read_unlock(&tasklist_lock);
1411
1412	return ret;
1413}
1414
1415/*
1416 * These are for backward compatibility with the rest of the kernel source.
1417 */
1418
1419int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1420{
1421	/*
1422	 * Make sure legacy kernel users don't send in bad values
1423	 * (normal paths check this in check_kill_permission).
1424	 */
1425	if (!valid_signal(sig))
1426		return -EINVAL;
1427
1428	return do_send_sig_info(sig, info, p, false);
1429}
 
1430
1431#define __si_special(priv) \
1432	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1433
1434int
1435send_sig(int sig, struct task_struct *p, int priv)
1436{
1437	return send_sig_info(sig, __si_special(priv), p);
1438}
 
1439
1440void
1441force_sig(int sig, struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442{
1443	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1444}
1445
1446/*
1447 * When things go south during signal handling, we
1448 * will force a SIGSEGV. And if the signal that caused
1449 * the problem was already a SIGSEGV, we'll want to
1450 * make sure we don't even try to deliver the signal..
1451 */
1452int
1453force_sigsegv(int sig, struct task_struct *p)
1454{
1455	if (sig == SIGSEGV) {
1456		unsigned long flags;
1457		spin_lock_irqsave(&p->sighand->siglock, flags);
1458		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1459		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1460	}
1461	force_sig(SIGSEGV, p);
1462	return 0;
1463}
1464
1465int kill_pgrp(struct pid *pid, int sig, int priv)
 
1466{
1467	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469	read_lock(&tasklist_lock);
1470	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1471	read_unlock(&tasklist_lock);
1472
1473	return ret;
1474}
 
 
 
 
 
1475EXPORT_SYMBOL(kill_pgrp);
1476
1477int kill_pid(struct pid *pid, int sig, int priv)
1478{
1479	return kill_pid_info(sig, __si_special(priv), pid);
1480}
1481EXPORT_SYMBOL(kill_pid);
1482
1483/*
1484 * These functions support sending signals using preallocated sigqueue
1485 * structures.  This is needed "because realtime applications cannot
1486 * afford to lose notifications of asynchronous events, like timer
1487 * expirations or I/O completions".  In the case of POSIX Timers
1488 * we allocate the sigqueue structure from the timer_create.  If this
1489 * allocation fails we are able to report the failure to the application
1490 * with an EAGAIN error.
1491 */
1492struct sigqueue *sigqueue_alloc(void)
1493{
1494	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1495
1496	if (q)
1497		q->flags |= SIGQUEUE_PREALLOC;
1498
1499	return q;
1500}
1501
1502void sigqueue_free(struct sigqueue *q)
1503{
1504	unsigned long flags;
1505	spinlock_t *lock = &current->sighand->siglock;
1506
1507	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1508	/*
1509	 * We must hold ->siglock while testing q->list
1510	 * to serialize with collect_signal() or with
1511	 * __exit_signal()->flush_sigqueue().
1512	 */
1513	spin_lock_irqsave(lock, flags);
1514	q->flags &= ~SIGQUEUE_PREALLOC;
1515	/*
1516	 * If it is queued it will be freed when dequeued,
1517	 * like the "regular" sigqueue.
1518	 */
1519	if (!list_empty(&q->list))
1520		q = NULL;
1521	spin_unlock_irqrestore(lock, flags);
1522
1523	if (q)
1524		__sigqueue_free(q);
1525}
1526
1527int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1528{
1529	int sig = q->info.si_signo;
1530	struct sigpending *pending;
 
1531	unsigned long flags;
1532	int ret, result;
1533
1534	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1535
1536	ret = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537	if (!likely(lock_task_sighand(t, &flags)))
1538		goto ret;
1539
1540	ret = 1; /* the signal is ignored */
1541	result = TRACE_SIGNAL_IGNORED;
1542	if (!prepare_signal(sig, t, false))
1543		goto out;
1544
1545	ret = 0;
1546	if (unlikely(!list_empty(&q->list))) {
1547		/*
1548		 * If an SI_TIMER entry is already queue just increment
1549		 * the overrun count.
1550		 */
1551		BUG_ON(q->info.si_code != SI_TIMER);
1552		q->info.si_overrun++;
1553		result = TRACE_SIGNAL_ALREADY_PENDING;
1554		goto out;
1555	}
1556	q->info.si_overrun = 0;
1557
1558	signalfd_notify(t, sig);
1559	pending = group ? &t->signal->shared_pending : &t->pending;
1560	list_add_tail(&q->list, &pending->list);
1561	sigaddset(&pending->signal, sig);
1562	complete_signal(sig, t, group);
1563	result = TRACE_SIGNAL_DELIVERED;
1564out:
1565	trace_signal_generate(sig, &q->info, t, group, result);
1566	unlock_task_sighand(t, &flags);
1567ret:
 
1568	return ret;
1569}
1570
 
 
 
 
 
 
 
 
 
 
1571/*
1572 * Let a parent know about the death of a child.
1573 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1574 *
1575 * Returns true if our parent ignored us and so we've switched to
1576 * self-reaping.
1577 */
1578bool do_notify_parent(struct task_struct *tsk, int sig)
1579{
1580	struct siginfo info;
1581	unsigned long flags;
1582	struct sighand_struct *psig;
1583	bool autoreap = false;
1584	cputime_t utime, stime;
1585
1586	BUG_ON(sig == -1);
1587
1588 	/* do_notify_parent_cldstop should have been called instead.  */
1589 	BUG_ON(task_is_stopped_or_traced(tsk));
1590
1591	BUG_ON(!tsk->ptrace &&
1592	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
 
 
 
 
 
 
1593
1594	if (sig != SIGCHLD) {
1595		/*
1596		 * This is only possible if parent == real_parent.
1597		 * Check if it has changed security domain.
1598		 */
1599		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1600			sig = SIGCHLD;
1601	}
1602
 
1603	info.si_signo = sig;
1604	info.si_errno = 0;
1605	/*
1606	 * We are under tasklist_lock here so our parent is tied to
1607	 * us and cannot change.
1608	 *
1609	 * task_active_pid_ns will always return the same pid namespace
1610	 * until a task passes through release_task.
1611	 *
1612	 * write_lock() currently calls preempt_disable() which is the
1613	 * same as rcu_read_lock(), but according to Oleg, this is not
1614	 * correct to rely on this
1615	 */
1616	rcu_read_lock();
1617	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1618	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1619				       task_uid(tsk));
1620	rcu_read_unlock();
1621
1622	task_cputime(tsk, &utime, &stime);
1623	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1624	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1625
1626	info.si_status = tsk->exit_code & 0x7f;
1627	if (tsk->exit_code & 0x80)
1628		info.si_code = CLD_DUMPED;
1629	else if (tsk->exit_code & 0x7f)
1630		info.si_code = CLD_KILLED;
1631	else {
1632		info.si_code = CLD_EXITED;
1633		info.si_status = tsk->exit_code >> 8;
1634	}
1635
1636	psig = tsk->parent->sighand;
1637	spin_lock_irqsave(&psig->siglock, flags);
1638	if (!tsk->ptrace && sig == SIGCHLD &&
1639	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1640	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1641		/*
1642		 * We are exiting and our parent doesn't care.  POSIX.1
1643		 * defines special semantics for setting SIGCHLD to SIG_IGN
1644		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1645		 * automatically and not left for our parent's wait4 call.
1646		 * Rather than having the parent do it as a magic kind of
1647		 * signal handler, we just set this to tell do_exit that we
1648		 * can be cleaned up without becoming a zombie.  Note that
1649		 * we still call __wake_up_parent in this case, because a
1650		 * blocked sys_wait4 might now return -ECHILD.
1651		 *
1652		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1653		 * is implementation-defined: we do (if you don't want
1654		 * it, just use SIG_IGN instead).
1655		 */
1656		autoreap = true;
1657		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1658			sig = 0;
1659	}
 
 
 
 
1660	if (valid_signal(sig) && sig)
1661		__group_send_sig_info(sig, &info, tsk->parent);
1662	__wake_up_parent(tsk, tsk->parent);
1663	spin_unlock_irqrestore(&psig->siglock, flags);
1664
1665	return autoreap;
1666}
1667
1668/**
1669 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1670 * @tsk: task reporting the state change
1671 * @for_ptracer: the notification is for ptracer
1672 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1673 *
1674 * Notify @tsk's parent that the stopped/continued state has changed.  If
1675 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1676 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1677 *
1678 * CONTEXT:
1679 * Must be called with tasklist_lock at least read locked.
1680 */
1681static void do_notify_parent_cldstop(struct task_struct *tsk,
1682				     bool for_ptracer, int why)
1683{
1684	struct siginfo info;
1685	unsigned long flags;
1686	struct task_struct *parent;
1687	struct sighand_struct *sighand;
1688	cputime_t utime, stime;
1689
1690	if (for_ptracer) {
1691		parent = tsk->parent;
1692	} else {
1693		tsk = tsk->group_leader;
1694		parent = tsk->real_parent;
1695	}
1696
 
1697	info.si_signo = SIGCHLD;
1698	info.si_errno = 0;
1699	/*
1700	 * see comment in do_notify_parent() about the following 4 lines
1701	 */
1702	rcu_read_lock();
1703	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1704	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1705	rcu_read_unlock();
1706
1707	task_cputime(tsk, &utime, &stime);
1708	info.si_utime = cputime_to_clock_t(utime);
1709	info.si_stime = cputime_to_clock_t(stime);
1710
1711 	info.si_code = why;
1712 	switch (why) {
1713 	case CLD_CONTINUED:
1714 		info.si_status = SIGCONT;
1715 		break;
1716 	case CLD_STOPPED:
1717 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1718 		break;
1719 	case CLD_TRAPPED:
1720 		info.si_status = tsk->exit_code & 0x7f;
1721 		break;
1722 	default:
1723 		BUG();
1724 	}
1725
1726	sighand = parent->sighand;
1727	spin_lock_irqsave(&sighand->siglock, flags);
1728	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1729	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1730		__group_send_sig_info(SIGCHLD, &info, parent);
1731	/*
1732	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1733	 */
1734	__wake_up_parent(tsk, parent);
1735	spin_unlock_irqrestore(&sighand->siglock, flags);
1736}
1737
1738static inline int may_ptrace_stop(void)
1739{
1740	if (!likely(current->ptrace))
1741		return 0;
1742	/*
1743	 * Are we in the middle of do_coredump?
1744	 * If so and our tracer is also part of the coredump stopping
1745	 * is a deadlock situation, and pointless because our tracer
1746	 * is dead so don't allow us to stop.
1747	 * If SIGKILL was already sent before the caller unlocked
1748	 * ->siglock we must see ->core_state != NULL. Otherwise it
1749	 * is safe to enter schedule().
1750	 *
1751	 * This is almost outdated, a task with the pending SIGKILL can't
1752	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1753	 * after SIGKILL was already dequeued.
1754	 */
1755	if (unlikely(current->mm->core_state) &&
1756	    unlikely(current->mm == current->parent->mm))
1757		return 0;
1758
1759	return 1;
1760}
1761
1762/*
1763 * Return non-zero if there is a SIGKILL that should be waking us up.
1764 * Called with the siglock held.
1765 */
1766static int sigkill_pending(struct task_struct *tsk)
1767{
1768	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1769		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1770}
1771
1772/*
1773 * This must be called with current->sighand->siglock held.
1774 *
1775 * This should be the path for all ptrace stops.
1776 * We always set current->last_siginfo while stopped here.
1777 * That makes it a way to test a stopped process for
1778 * being ptrace-stopped vs being job-control-stopped.
1779 *
1780 * If we actually decide not to stop at all because the tracer
1781 * is gone, we keep current->exit_code unless clear_code.
 
1782 */
1783static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
 
1784	__releases(&current->sighand->siglock)
1785	__acquires(&current->sighand->siglock)
1786{
1787	bool gstop_done = false;
1788
1789	if (arch_ptrace_stop_needed(exit_code, info)) {
1790		/*
1791		 * The arch code has something special to do before a
1792		 * ptrace stop.  This is allowed to block, e.g. for faults
1793		 * on user stack pages.  We can't keep the siglock while
1794		 * calling arch_ptrace_stop, so we must release it now.
1795		 * To preserve proper semantics, we must do this before
1796		 * any signal bookkeeping like checking group_stop_count.
1797		 * Meanwhile, a SIGKILL could come in before we retake the
1798		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1799		 * So after regaining the lock, we must check for SIGKILL.
1800		 */
1801		spin_unlock_irq(&current->sighand->siglock);
1802		arch_ptrace_stop(exit_code, info);
1803		spin_lock_irq(&current->sighand->siglock);
1804		if (sigkill_pending(current))
1805			return;
1806	}
1807
1808	/*
 
 
 
 
 
 
 
 
 
 
 
 
1809	 * We're committing to trapping.  TRACED should be visible before
1810	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1811	 * Also, transition to TRACED and updates to ->jobctl should be
1812	 * atomic with respect to siglock and should be done after the arch
1813	 * hook as siglock is released and regrabbed across it.
 
 
 
 
 
 
 
 
 
 
 
1814	 */
1815	set_current_state(TASK_TRACED);
1816
 
1817	current->last_siginfo = info;
1818	current->exit_code = exit_code;
1819
1820	/*
1821	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1822	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1823	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1824	 * could be clear now.  We act as if SIGCONT is received after
1825	 * TASK_TRACED is entered - ignore it.
1826	 */
1827	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1828		gstop_done = task_participate_group_stop(current);
1829
1830	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1831	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1832	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1833		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1834
1835	/* entering a trap, clear TRAPPING */
1836	task_clear_jobctl_trapping(current);
1837
1838	spin_unlock_irq(&current->sighand->siglock);
1839	read_lock(&tasklist_lock);
1840	if (may_ptrace_stop()) {
1841		/*
1842		 * Notify parents of the stop.
1843		 *
1844		 * While ptraced, there are two parents - the ptracer and
1845		 * the real_parent of the group_leader.  The ptracer should
1846		 * know about every stop while the real parent is only
1847		 * interested in the completion of group stop.  The states
1848		 * for the two don't interact with each other.  Notify
1849		 * separately unless they're gonna be duplicates.
1850		 */
1851		do_notify_parent_cldstop(current, true, why);
1852		if (gstop_done && ptrace_reparented(current))
1853			do_notify_parent_cldstop(current, false, why);
1854
1855		/*
1856		 * Don't want to allow preemption here, because
1857		 * sys_ptrace() needs this task to be inactive.
1858		 *
1859		 * XXX: implement read_unlock_no_resched().
1860		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861		preempt_disable();
1862		read_unlock(&tasklist_lock);
 
 
1863		preempt_enable_no_resched();
1864		freezable_schedule();
1865	} else {
1866		/*
1867		 * By the time we got the lock, our tracer went away.
1868		 * Don't drop the lock yet, another tracer may come.
1869		 *
1870		 * If @gstop_done, the ptracer went away between group stop
1871		 * completion and here.  During detach, it would have set
1872		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1873		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1874		 * the real parent of the group stop completion is enough.
1875		 */
1876		if (gstop_done)
1877			do_notify_parent_cldstop(current, false, why);
1878
1879		/* tasklist protects us from ptrace_freeze_traced() */
1880		__set_current_state(TASK_RUNNING);
1881		if (clear_code)
1882			current->exit_code = 0;
1883		read_unlock(&tasklist_lock);
1884	}
1885
1886	/*
1887	 * We are back.  Now reacquire the siglock before touching
1888	 * last_siginfo, so that we are sure to have synchronized with
1889	 * any signal-sending on another CPU that wants to examine it.
1890	 */
1891	spin_lock_irq(&current->sighand->siglock);
 
1892	current->last_siginfo = NULL;
 
 
1893
1894	/* LISTENING can be set only during STOP traps, clear it */
1895	current->jobctl &= ~JOBCTL_LISTENING;
1896
1897	/*
1898	 * Queued signals ignored us while we were stopped for tracing.
1899	 * So check for any that we should take before resuming user mode.
1900	 * This sets TIF_SIGPENDING, but never clears it.
1901	 */
1902	recalc_sigpending_tsk(current);
 
1903}
1904
1905static void ptrace_do_notify(int signr, int exit_code, int why)
1906{
1907	siginfo_t info;
1908
1909	memset(&info, 0, sizeof info);
1910	info.si_signo = signr;
1911	info.si_code = exit_code;
1912	info.si_pid = task_pid_vnr(current);
1913	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1914
1915	/* Let the debugger run.  */
1916	ptrace_stop(exit_code, why, 1, &info);
1917}
1918
1919void ptrace_notify(int exit_code)
1920{
 
 
1921	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1922	if (unlikely(current->task_works))
1923		task_work_run();
1924
1925	spin_lock_irq(&current->sighand->siglock);
1926	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1927	spin_unlock_irq(&current->sighand->siglock);
 
1928}
1929
1930/**
1931 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1932 * @signr: signr causing group stop if initiating
1933 *
1934 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1935 * and participate in it.  If already set, participate in the existing
1936 * group stop.  If participated in a group stop (and thus slept), %true is
1937 * returned with siglock released.
1938 *
1939 * If ptraced, this function doesn't handle stop itself.  Instead,
1940 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1941 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1942 * places afterwards.
1943 *
1944 * CONTEXT:
1945 * Must be called with @current->sighand->siglock held, which is released
1946 * on %true return.
1947 *
1948 * RETURNS:
1949 * %false if group stop is already cancelled or ptrace trap is scheduled.
1950 * %true if participated in group stop.
1951 */
1952static bool do_signal_stop(int signr)
1953	__releases(&current->sighand->siglock)
1954{
1955	struct signal_struct *sig = current->signal;
1956
1957	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1958		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1959		struct task_struct *t;
1960
1961		/* signr will be recorded in task->jobctl for retries */
1962		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1963
1964		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1965		    unlikely(signal_group_exit(sig)))
 
1966			return false;
1967		/*
1968		 * There is no group stop already in progress.  We must
1969		 * initiate one now.
1970		 *
1971		 * While ptraced, a task may be resumed while group stop is
1972		 * still in effect and then receive a stop signal and
1973		 * initiate another group stop.  This deviates from the
1974		 * usual behavior as two consecutive stop signals can't
1975		 * cause two group stops when !ptraced.  That is why we
1976		 * also check !task_is_stopped(t) below.
1977		 *
1978		 * The condition can be distinguished by testing whether
1979		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1980		 * group_exit_code in such case.
1981		 *
1982		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1983		 * an intervening stop signal is required to cause two
1984		 * continued events regardless of ptrace.
1985		 */
1986		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1987			sig->group_exit_code = signr;
1988
1989		sig->group_stop_count = 0;
1990
1991		if (task_set_jobctl_pending(current, signr | gstop))
1992			sig->group_stop_count++;
1993
1994		t = current;
1995		while_each_thread(current, t) {
1996			/*
1997			 * Setting state to TASK_STOPPED for a group
1998			 * stop is always done with the siglock held,
1999			 * so this check has no races.
2000			 */
2001			if (!task_is_stopped(t) &&
2002			    task_set_jobctl_pending(t, signr | gstop)) {
2003				sig->group_stop_count++;
2004				if (likely(!(t->ptrace & PT_SEIZED)))
2005					signal_wake_up(t, 0);
2006				else
2007					ptrace_trap_notify(t);
2008			}
2009		}
2010	}
2011
2012	if (likely(!current->ptrace)) {
2013		int notify = 0;
2014
2015		/*
2016		 * If there are no other threads in the group, or if there
2017		 * is a group stop in progress and we are the last to stop,
2018		 * report to the parent.
2019		 */
2020		if (task_participate_group_stop(current))
2021			notify = CLD_STOPPED;
2022
2023		__set_current_state(TASK_STOPPED);
 
2024		spin_unlock_irq(&current->sighand->siglock);
2025
2026		/*
2027		 * Notify the parent of the group stop completion.  Because
2028		 * we're not holding either the siglock or tasklist_lock
2029		 * here, ptracer may attach inbetween; however, this is for
2030		 * group stop and should always be delivered to the real
2031		 * parent of the group leader.  The new ptracer will get
2032		 * its notification when this task transitions into
2033		 * TASK_TRACED.
2034		 */
2035		if (notify) {
2036			read_lock(&tasklist_lock);
2037			do_notify_parent_cldstop(current, false, notify);
2038			read_unlock(&tasklist_lock);
2039		}
2040
2041		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2042		freezable_schedule();
 
2043		return true;
2044	} else {
2045		/*
2046		 * While ptraced, group stop is handled by STOP trap.
2047		 * Schedule it and let the caller deal with it.
2048		 */
2049		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2050		return false;
2051	}
2052}
2053
2054/**
2055 * do_jobctl_trap - take care of ptrace jobctl traps
2056 *
2057 * When PT_SEIZED, it's used for both group stop and explicit
2058 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2059 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2060 * the stop signal; otherwise, %SIGTRAP.
2061 *
2062 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2063 * number as exit_code and no siginfo.
2064 *
2065 * CONTEXT:
2066 * Must be called with @current->sighand->siglock held, which may be
2067 * released and re-acquired before returning with intervening sleep.
2068 */
2069static void do_jobctl_trap(void)
2070{
2071	struct signal_struct *signal = current->signal;
2072	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2073
2074	if (current->ptrace & PT_SEIZED) {
2075		if (!signal->group_stop_count &&
2076		    !(signal->flags & SIGNAL_STOP_STOPPED))
2077			signr = SIGTRAP;
2078		WARN_ON_ONCE(!signr);
2079		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2080				 CLD_STOPPED);
2081	} else {
2082		WARN_ON_ONCE(!signr);
2083		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2084		current->exit_code = 0;
2085	}
2086}
2087
2088static int ptrace_signal(int signr, siginfo_t *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089{
2090	ptrace_signal_deliver();
2091	/*
2092	 * We do not check sig_kernel_stop(signr) but set this marker
2093	 * unconditionally because we do not know whether debugger will
2094	 * change signr. This flag has no meaning unless we are going
2095	 * to stop after return from ptrace_stop(). In this case it will
2096	 * be checked in do_signal_stop(), we should only stop if it was
2097	 * not cleared by SIGCONT while we were sleeping. See also the
2098	 * comment in dequeue_signal().
2099	 */
2100	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2101	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2102
2103	/* We're back.  Did the debugger cancel the sig?  */
2104	signr = current->exit_code;
2105	if (signr == 0)
2106		return signr;
2107
2108	current->exit_code = 0;
2109
2110	/*
2111	 * Update the siginfo structure if the signal has
2112	 * changed.  If the debugger wanted something
2113	 * specific in the siginfo structure then it should
2114	 * have updated *info via PTRACE_SETSIGINFO.
2115	 */
2116	if (signr != info->si_signo) {
 
2117		info->si_signo = signr;
2118		info->si_errno = 0;
2119		info->si_code = SI_USER;
2120		rcu_read_lock();
2121		info->si_pid = task_pid_vnr(current->parent);
2122		info->si_uid = from_kuid_munged(current_user_ns(),
2123						task_uid(current->parent));
2124		rcu_read_unlock();
2125	}
2126
2127	/* If the (new) signal is now blocked, requeue it.  */
2128	if (sigismember(&current->blocked, signr)) {
2129		specific_send_sig_info(signr, info, current);
 
2130		signr = 0;
2131	}
2132
2133	return signr;
2134}
2135
2136int get_signal(struct ksignal *ksig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2137{
2138	struct sighand_struct *sighand = current->sighand;
2139	struct signal_struct *signal = current->signal;
2140	int signr;
2141
2142	if (unlikely(current->task_works))
 
2143		task_work_run();
2144
 
 
 
2145	if (unlikely(uprobe_deny_signal()))
2146		return 0;
2147
2148	/*
2149	 * Do this once, we can't return to user-mode if freezing() == T.
2150	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2151	 * thus do not need another check after return.
2152	 */
2153	try_to_freeze();
2154
2155relock:
2156	spin_lock_irq(&sighand->siglock);
 
2157	/*
2158	 * Every stopped thread goes here after wakeup. Check to see if
2159	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2160	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2161	 */
2162	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2163		int why;
2164
2165		if (signal->flags & SIGNAL_CLD_CONTINUED)
2166			why = CLD_CONTINUED;
2167		else
2168			why = CLD_STOPPED;
2169
2170		signal->flags &= ~SIGNAL_CLD_MASK;
2171
2172		spin_unlock_irq(&sighand->siglock);
2173
2174		/*
2175		 * Notify the parent that we're continuing.  This event is
2176		 * always per-process and doesn't make whole lot of sense
2177		 * for ptracers, who shouldn't consume the state via
2178		 * wait(2) either, but, for backward compatibility, notify
2179		 * the ptracer of the group leader too unless it's gonna be
2180		 * a duplicate.
2181		 */
2182		read_lock(&tasklist_lock);
2183		do_notify_parent_cldstop(current, false, why);
2184
2185		if (ptrace_reparented(current->group_leader))
2186			do_notify_parent_cldstop(current->group_leader,
2187						true, why);
2188		read_unlock(&tasklist_lock);
2189
2190		goto relock;
2191	}
2192
2193	for (;;) {
2194		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195
2196		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2197		    do_signal_stop(0))
2198			goto relock;
2199
2200		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2201			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202			spin_unlock_irq(&sighand->siglock);
 
2203			goto relock;
2204		}
2205
2206		signr = dequeue_signal(current, &current->blocked, &ksig->info);
 
 
 
 
 
 
 
 
 
 
2207
2208		if (!signr)
2209			break; /* will return 0 */
2210
2211		if (unlikely(current->ptrace) && signr != SIGKILL) {
2212			signr = ptrace_signal(signr, &ksig->info);
 
2213			if (!signr)
2214				continue;
2215		}
2216
2217		ka = &sighand->action[signr-1];
2218
2219		/* Trace actually delivered signals. */
2220		trace_signal_deliver(signr, &ksig->info, ka);
2221
2222		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2223			continue;
2224		if (ka->sa.sa_handler != SIG_DFL) {
2225			/* Run the handler.  */
2226			ksig->ka = *ka;
2227
2228			if (ka->sa.sa_flags & SA_ONESHOT)
2229				ka->sa.sa_handler = SIG_DFL;
2230
2231			break; /* will return non-zero "signr" value */
2232		}
2233
2234		/*
2235		 * Now we are doing the default action for this signal.
2236		 */
2237		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2238			continue;
2239
2240		/*
2241		 * Global init gets no signals it doesn't want.
2242		 * Container-init gets no signals it doesn't want from same
2243		 * container.
2244		 *
2245		 * Note that if global/container-init sees a sig_kernel_only()
2246		 * signal here, the signal must have been generated internally
2247		 * or must have come from an ancestor namespace. In either
2248		 * case, the signal cannot be dropped.
2249		 */
2250		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2251				!sig_kernel_only(signr))
2252			continue;
2253
2254		if (sig_kernel_stop(signr)) {
2255			/*
2256			 * The default action is to stop all threads in
2257			 * the thread group.  The job control signals
2258			 * do nothing in an orphaned pgrp, but SIGSTOP
2259			 * always works.  Note that siglock needs to be
2260			 * dropped during the call to is_orphaned_pgrp()
2261			 * because of lock ordering with tasklist_lock.
2262			 * This allows an intervening SIGCONT to be posted.
2263			 * We need to check for that and bail out if necessary.
2264			 */
2265			if (signr != SIGSTOP) {
2266				spin_unlock_irq(&sighand->siglock);
2267
2268				/* signals can be posted during this window */
2269
2270				if (is_current_pgrp_orphaned())
2271					goto relock;
2272
2273				spin_lock_irq(&sighand->siglock);
2274			}
2275
2276			if (likely(do_signal_stop(ksig->info.si_signo))) {
2277				/* It released the siglock.  */
2278				goto relock;
2279			}
2280
2281			/*
2282			 * We didn't actually stop, due to a race
2283			 * with SIGCONT or something like that.
2284			 */
2285			continue;
2286		}
2287
 
2288		spin_unlock_irq(&sighand->siglock);
 
 
2289
2290		/*
2291		 * Anything else is fatal, maybe with a core dump.
2292		 */
2293		current->flags |= PF_SIGNALED;
2294
2295		if (sig_kernel_coredump(signr)) {
2296			if (print_fatal_signals)
2297				print_fatal_signal(ksig->info.si_signo);
2298			proc_coredump_connector(current);
2299			/*
2300			 * If it was able to dump core, this kills all
2301			 * other threads in the group and synchronizes with
2302			 * their demise.  If we lost the race with another
2303			 * thread getting here, it set group_exit_code
2304			 * first and our do_group_exit call below will use
2305			 * that value and ignore the one we pass it.
2306			 */
2307			do_coredump(&ksig->info);
2308		}
2309
2310		/*
 
 
 
 
 
 
 
 
 
2311		 * Death signals, no core dump.
2312		 */
2313		do_group_exit(ksig->info.si_signo);
2314		/* NOTREACHED */
2315	}
2316	spin_unlock_irq(&sighand->siglock);
2317
2318	ksig->sig = signr;
2319	return ksig->sig > 0;
 
 
 
 
2320}
2321
2322/**
2323 * signal_delivered - 
2324 * @ksig:		kernel signal struct
2325 * @stepping:		nonzero if debugger single-step or block-step in use
2326 *
2327 * This function should be called when a signal has successfully been
2328 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2329 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2330 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2331 */
2332static void signal_delivered(struct ksignal *ksig, int stepping)
2333{
2334	sigset_t blocked;
2335
2336	/* A signal was successfully delivered, and the
2337	   saved sigmask was stored on the signal frame,
2338	   and will be restored by sigreturn.  So we can
2339	   simply clear the restore sigmask flag.  */
2340	clear_restore_sigmask();
2341
2342	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2343	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2344		sigaddset(&blocked, ksig->sig);
2345	set_current_blocked(&blocked);
2346	tracehook_signal_handler(stepping);
 
 
 
2347}
2348
2349void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2350{
2351	if (failed)
2352		force_sigsegv(ksig->sig, current);
2353	else
2354		signal_delivered(ksig, stepping);
2355}
2356
2357/*
2358 * It could be that complete_signal() picked us to notify about the
2359 * group-wide signal. Other threads should be notified now to take
2360 * the shared signals in @which since we will not.
2361 */
2362static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2363{
2364	sigset_t retarget;
2365	struct task_struct *t;
2366
2367	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2368	if (sigisemptyset(&retarget))
2369		return;
2370
2371	t = tsk;
2372	while_each_thread(tsk, t) {
2373		if (t->flags & PF_EXITING)
2374			continue;
2375
2376		if (!has_pending_signals(&retarget, &t->blocked))
2377			continue;
2378		/* Remove the signals this thread can handle. */
2379		sigandsets(&retarget, &retarget, &t->blocked);
2380
2381		if (!signal_pending(t))
2382			signal_wake_up(t, 0);
2383
2384		if (sigisemptyset(&retarget))
2385			break;
2386	}
2387}
2388
2389void exit_signals(struct task_struct *tsk)
2390{
2391	int group_stop = 0;
2392	sigset_t unblocked;
2393
2394	/*
2395	 * @tsk is about to have PF_EXITING set - lock out users which
2396	 * expect stable threadgroup.
2397	 */
2398	threadgroup_change_begin(tsk);
2399
2400	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
 
2401		tsk->flags |= PF_EXITING;
2402		threadgroup_change_end(tsk);
2403		return;
2404	}
2405
2406	spin_lock_irq(&tsk->sighand->siglock);
2407	/*
2408	 * From now this task is not visible for group-wide signals,
2409	 * see wants_signal(), do_signal_stop().
2410	 */
 
2411	tsk->flags |= PF_EXITING;
2412
2413	threadgroup_change_end(tsk);
2414
2415	if (!signal_pending(tsk))
2416		goto out;
2417
2418	unblocked = tsk->blocked;
2419	signotset(&unblocked);
2420	retarget_shared_pending(tsk, &unblocked);
2421
2422	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2423	    task_participate_group_stop(tsk))
2424		group_stop = CLD_STOPPED;
2425out:
2426	spin_unlock_irq(&tsk->sighand->siglock);
2427
2428	/*
2429	 * If group stop has completed, deliver the notification.  This
2430	 * should always go to the real parent of the group leader.
2431	 */
2432	if (unlikely(group_stop)) {
2433		read_lock(&tasklist_lock);
2434		do_notify_parent_cldstop(tsk, false, group_stop);
2435		read_unlock(&tasklist_lock);
2436	}
2437}
2438
2439EXPORT_SYMBOL(recalc_sigpending);
2440EXPORT_SYMBOL_GPL(dequeue_signal);
2441EXPORT_SYMBOL(flush_signals);
2442EXPORT_SYMBOL(force_sig);
2443EXPORT_SYMBOL(send_sig);
2444EXPORT_SYMBOL(send_sig_info);
2445EXPORT_SYMBOL(sigprocmask);
2446
2447/*
2448 * System call entry points.
2449 */
2450
2451/**
2452 *  sys_restart_syscall - restart a system call
2453 */
2454SYSCALL_DEFINE0(restart_syscall)
2455{
2456	struct restart_block *restart = &current->restart_block;
2457	return restart->fn(restart);
2458}
2459
2460long do_no_restart_syscall(struct restart_block *param)
2461{
2462	return -EINTR;
2463}
2464
2465static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2466{
2467	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2468		sigset_t newblocked;
2469		/* A set of now blocked but previously unblocked signals. */
2470		sigandnsets(&newblocked, newset, &current->blocked);
2471		retarget_shared_pending(tsk, &newblocked);
2472	}
2473	tsk->blocked = *newset;
2474	recalc_sigpending();
2475}
2476
2477/**
2478 * set_current_blocked - change current->blocked mask
2479 * @newset: new mask
2480 *
2481 * It is wrong to change ->blocked directly, this helper should be used
2482 * to ensure the process can't miss a shared signal we are going to block.
2483 */
2484void set_current_blocked(sigset_t *newset)
2485{
2486	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2487	__set_current_blocked(newset);
2488}
2489
2490void __set_current_blocked(const sigset_t *newset)
2491{
2492	struct task_struct *tsk = current;
2493
2494	/*
2495	 * In case the signal mask hasn't changed, there is nothing we need
2496	 * to do. The current->blocked shouldn't be modified by other task.
2497	 */
2498	if (sigequalsets(&tsk->blocked, newset))
2499		return;
2500
2501	spin_lock_irq(&tsk->sighand->siglock);
2502	__set_task_blocked(tsk, newset);
2503	spin_unlock_irq(&tsk->sighand->siglock);
2504}
2505
2506/*
2507 * This is also useful for kernel threads that want to temporarily
2508 * (or permanently) block certain signals.
2509 *
2510 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2511 * interface happily blocks "unblockable" signals like SIGKILL
2512 * and friends.
2513 */
2514int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2515{
2516	struct task_struct *tsk = current;
2517	sigset_t newset;
2518
2519	/* Lockless, only current can change ->blocked, never from irq */
2520	if (oldset)
2521		*oldset = tsk->blocked;
2522
2523	switch (how) {
2524	case SIG_BLOCK:
2525		sigorsets(&newset, &tsk->blocked, set);
2526		break;
2527	case SIG_UNBLOCK:
2528		sigandnsets(&newset, &tsk->blocked, set);
2529		break;
2530	case SIG_SETMASK:
2531		newset = *set;
2532		break;
2533	default:
2534		return -EINVAL;
2535	}
2536
2537	__set_current_blocked(&newset);
2538	return 0;
2539}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2540
2541/**
2542 *  sys_rt_sigprocmask - change the list of currently blocked signals
2543 *  @how: whether to add, remove, or set signals
2544 *  @nset: stores pending signals
2545 *  @oset: previous value of signal mask if non-null
2546 *  @sigsetsize: size of sigset_t type
2547 */
2548SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2549		sigset_t __user *, oset, size_t, sigsetsize)
2550{
2551	sigset_t old_set, new_set;
2552	int error;
2553
2554	/* XXX: Don't preclude handling different sized sigset_t's.  */
2555	if (sigsetsize != sizeof(sigset_t))
2556		return -EINVAL;
2557
2558	old_set = current->blocked;
2559
2560	if (nset) {
2561		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2562			return -EFAULT;
2563		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2564
2565		error = sigprocmask(how, &new_set, NULL);
2566		if (error)
2567			return error;
2568	}
2569
2570	if (oset) {
2571		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2572			return -EFAULT;
2573	}
2574
2575	return 0;
2576}
2577
2578#ifdef CONFIG_COMPAT
2579COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2580		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2581{
2582#ifdef __BIG_ENDIAN
2583	sigset_t old_set = current->blocked;
2584
2585	/* XXX: Don't preclude handling different sized sigset_t's.  */
2586	if (sigsetsize != sizeof(sigset_t))
2587		return -EINVAL;
2588
2589	if (nset) {
2590		compat_sigset_t new32;
2591		sigset_t new_set;
2592		int error;
2593		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2594			return -EFAULT;
2595
2596		sigset_from_compat(&new_set, &new32);
2597		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2598
2599		error = sigprocmask(how, &new_set, NULL);
2600		if (error)
2601			return error;
2602	}
2603	if (oset) {
2604		compat_sigset_t old32;
2605		sigset_to_compat(&old32, &old_set);
2606		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2607			return -EFAULT;
2608	}
2609	return 0;
2610#else
2611	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2612				  (sigset_t __user *)oset, sigsetsize);
2613#endif
2614}
2615#endif
2616
2617static int do_sigpending(void *set, unsigned long sigsetsize)
2618{
2619	if (sigsetsize > sizeof(sigset_t))
2620		return -EINVAL;
2621
2622	spin_lock_irq(&current->sighand->siglock);
2623	sigorsets(set, &current->pending.signal,
2624		  &current->signal->shared_pending.signal);
2625	spin_unlock_irq(&current->sighand->siglock);
2626
2627	/* Outside the lock because only this thread touches it.  */
2628	sigandsets(set, &current->blocked, set);
2629	return 0;
2630}
2631
2632/**
2633 *  sys_rt_sigpending - examine a pending signal that has been raised
2634 *			while blocked
2635 *  @uset: stores pending signals
2636 *  @sigsetsize: size of sigset_t type or larger
2637 */
2638SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2639{
2640	sigset_t set;
2641	int err = do_sigpending(&set, sigsetsize);
2642	if (!err && copy_to_user(uset, &set, sigsetsize))
2643		err = -EFAULT;
2644	return err;
 
 
 
 
 
 
2645}
2646
2647#ifdef CONFIG_COMPAT
2648COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2649		compat_size_t, sigsetsize)
2650{
2651#ifdef __BIG_ENDIAN
2652	sigset_t set;
2653	int err = do_sigpending(&set, sigsetsize);
2654	if (!err) {
2655		compat_sigset_t set32;
2656		sigset_to_compat(&set32, &set);
2657		/* we can get here only if sigsetsize <= sizeof(set) */
2658		if (copy_to_user(uset, &set32, sigsetsize))
2659			err = -EFAULT;
2660	}
2661	return err;
2662#else
2663	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2664#endif
2665}
2666#endif
2667
2668#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2669
2670int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2671{
2672	int err;
2673
2674	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2675		return -EFAULT;
2676	if (from->si_code < 0)
2677		return __copy_to_user(to, from, sizeof(siginfo_t))
2678			? -EFAULT : 0;
2679	/*
2680	 * If you change siginfo_t structure, please be sure
2681	 * this code is fixed accordingly.
2682	 * Please remember to update the signalfd_copyinfo() function
2683	 * inside fs/signalfd.c too, in case siginfo_t changes.
2684	 * It should never copy any pad contained in the structure
2685	 * to avoid security leaks, but must copy the generic
2686	 * 3 ints plus the relevant union member.
2687	 */
2688	err = __put_user(from->si_signo, &to->si_signo);
2689	err |= __put_user(from->si_errno, &to->si_errno);
2690	err |= __put_user((short)from->si_code, &to->si_code);
2691	switch (from->si_code & __SI_MASK) {
2692	case __SI_KILL:
2693		err |= __put_user(from->si_pid, &to->si_pid);
2694		err |= __put_user(from->si_uid, &to->si_uid);
2695		break;
2696	case __SI_TIMER:
2697		 err |= __put_user(from->si_tid, &to->si_tid);
2698		 err |= __put_user(from->si_overrun, &to->si_overrun);
2699		 err |= __put_user(from->si_ptr, &to->si_ptr);
2700		break;
2701	case __SI_POLL:
2702		err |= __put_user(from->si_band, &to->si_band);
2703		err |= __put_user(from->si_fd, &to->si_fd);
2704		break;
2705	case __SI_FAULT:
2706		err |= __put_user(from->si_addr, &to->si_addr);
2707#ifdef __ARCH_SI_TRAPNO
2708		err |= __put_user(from->si_trapno, &to->si_trapno);
2709#endif
2710#ifdef BUS_MCEERR_AO
2711		/*
2712		 * Other callers might not initialize the si_lsb field,
2713		 * so check explicitly for the right codes here.
2714		 */
2715		if (from->si_signo == SIGBUS &&
2716		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2717			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2718#endif
2719#ifdef SEGV_BNDERR
2720		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2721			err |= __put_user(from->si_lower, &to->si_lower);
2722			err |= __put_user(from->si_upper, &to->si_upper);
2723		}
2724#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2725#ifdef SEGV_PKUERR
2726		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2727			err |= __put_user(from->si_pkey, &to->si_pkey);
2728#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2729		break;
2730	case __SI_CHLD:
2731		err |= __put_user(from->si_pid, &to->si_pid);
2732		err |= __put_user(from->si_uid, &to->si_uid);
2733		err |= __put_user(from->si_status, &to->si_status);
2734		err |= __put_user(from->si_utime, &to->si_utime);
2735		err |= __put_user(from->si_stime, &to->si_stime);
2736		break;
2737	case __SI_RT: /* This is not generated by the kernel as of now. */
2738	case __SI_MESGQ: /* But this is */
2739		err |= __put_user(from->si_pid, &to->si_pid);
2740		err |= __put_user(from->si_uid, &to->si_uid);
2741		err |= __put_user(from->si_ptr, &to->si_ptr);
2742		break;
2743#ifdef __ARCH_SIGSYS
2744	case __SI_SYS:
2745		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2746		err |= __put_user(from->si_syscall, &to->si_syscall);
2747		err |= __put_user(from->si_arch, &to->si_arch);
2748		break;
2749#endif
2750	default: /* this is just in case for now ... */
2751		err |= __put_user(from->si_pid, &to->si_pid);
2752		err |= __put_user(from->si_uid, &to->si_uid);
 
 
 
 
 
 
 
 
2753		break;
2754	}
2755	return err;
2756}
2757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2758#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2759
2760/**
2761 *  do_sigtimedwait - wait for queued signals specified in @which
2762 *  @which: queued signals to wait for
2763 *  @info: if non-null, the signal's siginfo is returned here
2764 *  @ts: upper bound on process time suspension
2765 */
2766int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2767		    const struct timespec *ts)
2768{
2769	ktime_t *to = NULL, timeout = KTIME_MAX;
2770	struct task_struct *tsk = current;
2771	sigset_t mask = *which;
 
2772	int sig, ret = 0;
2773
2774	if (ts) {
2775		if (!timespec_valid(ts))
2776			return -EINVAL;
2777		timeout = timespec_to_ktime(*ts);
2778		to = &timeout;
2779	}
2780
2781	/*
2782	 * Invert the set of allowed signals to get those we want to block.
2783	 */
2784	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2785	signotset(&mask);
2786
2787	spin_lock_irq(&tsk->sighand->siglock);
2788	sig = dequeue_signal(tsk, &mask, info);
2789	if (!sig && timeout) {
2790		/*
2791		 * None ready, temporarily unblock those we're interested
2792		 * while we are sleeping in so that we'll be awakened when
2793		 * they arrive. Unblocking is always fine, we can avoid
2794		 * set_current_blocked().
2795		 */
2796		tsk->real_blocked = tsk->blocked;
2797		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2798		recalc_sigpending();
2799		spin_unlock_irq(&tsk->sighand->siglock);
2800
2801		__set_current_state(TASK_INTERRUPTIBLE);
2802		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2803							 HRTIMER_MODE_REL);
2804		spin_lock_irq(&tsk->sighand->siglock);
2805		__set_task_blocked(tsk, &tsk->real_blocked);
2806		sigemptyset(&tsk->real_blocked);
2807		sig = dequeue_signal(tsk, &mask, info);
2808	}
2809	spin_unlock_irq(&tsk->sighand->siglock);
2810
2811	if (sig)
2812		return sig;
2813	return ret ? -EINTR : -EAGAIN;
2814}
2815
2816/**
2817 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2818 *			in @uthese
2819 *  @uthese: queued signals to wait for
2820 *  @uinfo: if non-null, the signal's siginfo is returned here
2821 *  @uts: upper bound on process time suspension
2822 *  @sigsetsize: size of sigset_t type
2823 */
2824SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2825		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
2826		size_t, sigsetsize)
2827{
2828	sigset_t these;
2829	struct timespec ts;
2830	siginfo_t info;
2831	int ret;
2832
2833	/* XXX: Don't preclude handling different sized sigset_t's.  */
2834	if (sigsetsize != sizeof(sigset_t))
2835		return -EINVAL;
2836
2837	if (copy_from_user(&these, uthese, sizeof(these)))
2838		return -EFAULT;
2839
2840	if (uts) {
2841		if (copy_from_user(&ts, uts, sizeof(ts)))
2842			return -EFAULT;
2843	}
2844
2845	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2846
2847	if (ret > 0 && uinfo) {
2848		if (copy_siginfo_to_user(uinfo, &info))
2849			ret = -EFAULT;
2850	}
2851
2852	return ret;
2853}
2854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855/**
2856 *  sys_kill - send a signal to a process
2857 *  @pid: the PID of the process
2858 *  @sig: signal to be sent
2859 */
2860SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2861{
2862	struct siginfo info;
2863
2864	info.si_signo = sig;
2865	info.si_errno = 0;
2866	info.si_code = SI_USER;
2867	info.si_pid = task_tgid_vnr(current);
2868	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2869
2870	return kill_something_info(sig, &info, pid);
2871}
2872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2873static int
2874do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2875{
2876	struct task_struct *p;
2877	int error = -ESRCH;
2878
2879	rcu_read_lock();
2880	p = find_task_by_vpid(pid);
2881	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2882		error = check_kill_permission(sig, info, p);
2883		/*
2884		 * The null signal is a permissions and process existence
2885		 * probe.  No signal is actually delivered.
2886		 */
2887		if (!error && sig) {
2888			error = do_send_sig_info(sig, info, p, false);
2889			/*
2890			 * If lock_task_sighand() failed we pretend the task
2891			 * dies after receiving the signal. The window is tiny,
2892			 * and the signal is private anyway.
2893			 */
2894			if (unlikely(error == -ESRCH))
2895				error = 0;
2896		}
2897	}
2898	rcu_read_unlock();
2899
2900	return error;
2901}
2902
2903static int do_tkill(pid_t tgid, pid_t pid, int sig)
2904{
2905	struct siginfo info = {};
2906
2907	info.si_signo = sig;
2908	info.si_errno = 0;
2909	info.si_code = SI_TKILL;
2910	info.si_pid = task_tgid_vnr(current);
2911	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2912
2913	return do_send_specific(tgid, pid, sig, &info);
2914}
2915
2916/**
2917 *  sys_tgkill - send signal to one specific thread
2918 *  @tgid: the thread group ID of the thread
2919 *  @pid: the PID of the thread
2920 *  @sig: signal to be sent
2921 *
2922 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2923 *  exists but it's not belonging to the target process anymore. This
2924 *  method solves the problem of threads exiting and PIDs getting reused.
2925 */
2926SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2927{
2928	/* This is only valid for single tasks */
2929	if (pid <= 0 || tgid <= 0)
2930		return -EINVAL;
2931
2932	return do_tkill(tgid, pid, sig);
2933}
2934
2935/**
2936 *  sys_tkill - send signal to one specific task
2937 *  @pid: the PID of the task
2938 *  @sig: signal to be sent
2939 *
2940 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2941 */
2942SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2943{
2944	/* This is only valid for single tasks */
2945	if (pid <= 0)
2946		return -EINVAL;
2947
2948	return do_tkill(0, pid, sig);
2949}
2950
2951static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2952{
2953	/* Not even root can pretend to send signals from the kernel.
2954	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2955	 */
2956	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2957	    (task_pid_vnr(current) != pid))
2958		return -EPERM;
2959
2960	info->si_signo = sig;
2961
2962	/* POSIX.1b doesn't mention process groups.  */
2963	return kill_proc_info(sig, info, pid);
2964}
2965
2966/**
2967 *  sys_rt_sigqueueinfo - send signal information to a signal
2968 *  @pid: the PID of the thread
2969 *  @sig: signal to be sent
2970 *  @uinfo: signal info to be sent
2971 */
2972SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2973		siginfo_t __user *, uinfo)
2974{
2975	siginfo_t info;
2976	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2977		return -EFAULT;
 
2978	return do_rt_sigqueueinfo(pid, sig, &info);
2979}
2980
2981#ifdef CONFIG_COMPAT
2982COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2983			compat_pid_t, pid,
2984			int, sig,
2985			struct compat_siginfo __user *, uinfo)
2986{
2987	siginfo_t info = {};
2988	int ret = copy_siginfo_from_user32(&info, uinfo);
2989	if (unlikely(ret))
2990		return ret;
2991	return do_rt_sigqueueinfo(pid, sig, &info);
2992}
2993#endif
2994
2995static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2996{
2997	/* This is only valid for single tasks */
2998	if (pid <= 0 || tgid <= 0)
2999		return -EINVAL;
3000
3001	/* Not even root can pretend to send signals from the kernel.
3002	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3003	 */
3004	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3005	    (task_pid_vnr(current) != pid))
3006		return -EPERM;
3007
3008	info->si_signo = sig;
3009
3010	return do_send_specific(tgid, pid, sig, info);
3011}
3012
3013SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3014		siginfo_t __user *, uinfo)
3015{
3016	siginfo_t info;
3017
3018	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3019		return -EFAULT;
3020
3021	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3022}
3023
3024#ifdef CONFIG_COMPAT
3025COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3026			compat_pid_t, tgid,
3027			compat_pid_t, pid,
3028			int, sig,
3029			struct compat_siginfo __user *, uinfo)
3030{
3031	siginfo_t info = {};
3032
3033	if (copy_siginfo_from_user32(&info, uinfo))
3034		return -EFAULT;
3035	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3036}
3037#endif
3038
3039/*
3040 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3041 */
3042void kernel_sigaction(int sig, __sighandler_t action)
3043{
3044	spin_lock_irq(&current->sighand->siglock);
3045	current->sighand->action[sig - 1].sa.sa_handler = action;
3046	if (action == SIG_IGN) {
3047		sigset_t mask;
3048
3049		sigemptyset(&mask);
3050		sigaddset(&mask, sig);
3051
3052		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3053		flush_sigqueue_mask(&mask, &current->pending);
3054		recalc_sigpending();
3055	}
3056	spin_unlock_irq(&current->sighand->siglock);
3057}
3058EXPORT_SYMBOL(kernel_sigaction);
3059
3060void __weak sigaction_compat_abi(struct k_sigaction *act,
3061		struct k_sigaction *oact)
3062{
3063}
3064
3065int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3066{
3067	struct task_struct *p = current, *t;
3068	struct k_sigaction *k;
3069	sigset_t mask;
3070
3071	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3072		return -EINVAL;
3073
3074	k = &p->sighand->action[sig-1];
3075
3076	spin_lock_irq(&p->sighand->siglock);
 
 
 
 
3077	if (oact)
3078		*oact = *k;
3079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3080	sigaction_compat_abi(act, oact);
3081
3082	if (act) {
3083		sigdelsetmask(&act->sa.sa_mask,
3084			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3085		*k = *act;
3086		/*
3087		 * POSIX 3.3.1.3:
3088		 *  "Setting a signal action to SIG_IGN for a signal that is
3089		 *   pending shall cause the pending signal to be discarded,
3090		 *   whether or not it is blocked."
3091		 *
3092		 *  "Setting a signal action to SIG_DFL for a signal that is
3093		 *   pending and whose default action is to ignore the signal
3094		 *   (for example, SIGCHLD), shall cause the pending signal to
3095		 *   be discarded, whether or not it is blocked"
3096		 */
3097		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3098			sigemptyset(&mask);
3099			sigaddset(&mask, sig);
3100			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3101			for_each_thread(p, t)
3102				flush_sigqueue_mask(&mask, &t->pending);
3103		}
3104	}
3105
3106	spin_unlock_irq(&p->sighand->siglock);
3107	return 0;
3108}
3109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3110static int
3111do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 
3112{
3113	stack_t oss;
3114	int error;
3115
3116	oss.ss_sp = (void __user *) current->sas_ss_sp;
3117	oss.ss_size = current->sas_ss_size;
3118	oss.ss_flags = sas_ss_flags(sp) |
3119		(current->sas_ss_flags & SS_FLAG_BITS);
3120
3121	if (uss) {
3122		void __user *ss_sp;
3123		size_t ss_size;
3124		unsigned ss_flags;
3125		int ss_mode;
3126
3127		error = -EFAULT;
3128		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3129			goto out;
3130		error = __get_user(ss_sp, &uss->ss_sp) |
3131			__get_user(ss_flags, &uss->ss_flags) |
3132			__get_user(ss_size, &uss->ss_size);
3133		if (error)
3134			goto out;
3135
3136		error = -EPERM;
3137		if (on_sig_stack(sp))
3138			goto out;
3139
3140		ss_mode = ss_flags & ~SS_FLAG_BITS;
3141		error = -EINVAL;
3142		if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3143				ss_mode != 0)
3144			goto out;
 
 
 
 
 
 
 
 
3145
 
3146		if (ss_mode == SS_DISABLE) {
3147			ss_size = 0;
3148			ss_sp = NULL;
3149		} else {
3150			error = -ENOMEM;
3151			if (ss_size < MINSIGSTKSZ)
3152				goto out;
 
3153		}
3154
3155		current->sas_ss_sp = (unsigned long) ss_sp;
3156		current->sas_ss_size = ss_size;
3157		current->sas_ss_flags = ss_flags;
3158	}
3159
3160	error = 0;
3161	if (uoss) {
3162		error = -EFAULT;
3163		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3164			goto out;
3165		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3166			__put_user(oss.ss_size, &uoss->ss_size) |
3167			__put_user(oss.ss_flags, &uoss->ss_flags);
3168	}
3169
3170out:
3171	return error;
3172}
 
3173SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3174{
3175	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
 
 
 
 
 
 
 
 
 
3176}
3177
3178int restore_altstack(const stack_t __user *uss)
3179{
3180	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
 
 
 
 
3181	/* squash all but EFAULT for now */
3182	return err == -EFAULT ? err : 0;
3183}
3184
3185int __save_altstack(stack_t __user *uss, unsigned long sp)
3186{
3187	struct task_struct *t = current;
3188	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3189		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3190		__put_user(t->sas_ss_size, &uss->ss_size);
3191	if (err)
3192		return err;
3193	if (t->sas_ss_flags & SS_AUTODISARM)
3194		sas_ss_reset(t);
3195	return 0;
3196}
3197
3198#ifdef CONFIG_COMPAT
3199COMPAT_SYSCALL_DEFINE2(sigaltstack,
3200			const compat_stack_t __user *, uss_ptr,
3201			compat_stack_t __user *, uoss_ptr)
3202{
3203	stack_t uss, uoss;
3204	int ret;
3205	mm_segment_t seg;
3206
3207	if (uss_ptr) {
3208		compat_stack_t uss32;
3209
3210		memset(&uss, 0, sizeof(stack_t));
3211		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3212			return -EFAULT;
3213		uss.ss_sp = compat_ptr(uss32.ss_sp);
3214		uss.ss_flags = uss32.ss_flags;
3215		uss.ss_size = uss32.ss_size;
3216	}
3217	seg = get_fs();
3218	set_fs(KERNEL_DS);
3219	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3220			     (stack_t __force __user *) &uoss,
3221			     compat_user_stack_pointer());
3222	set_fs(seg);
3223	if (ret >= 0 && uoss_ptr)  {
3224		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3225		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3226		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3227		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
 
 
3228			ret = -EFAULT;
3229	}
3230	return ret;
3231}
3232
 
 
 
 
 
 
 
3233int compat_restore_altstack(const compat_stack_t __user *uss)
3234{
3235	int err = compat_sys_sigaltstack(uss, NULL);
3236	/* squash all but -EFAULT for now */
3237	return err == -EFAULT ? err : 0;
3238}
3239
3240int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3241{
3242	int err;
3243	struct task_struct *t = current;
3244	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3245			 &uss->ss_sp) |
3246		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3247		__put_user(t->sas_ss_size, &uss->ss_size);
3248	if (err)
3249		return err;
3250	if (t->sas_ss_flags & SS_AUTODISARM)
3251		sas_ss_reset(t);
3252	return 0;
3253}
3254#endif
3255
3256#ifdef __ARCH_WANT_SYS_SIGPENDING
3257
3258/**
3259 *  sys_sigpending - examine pending signals
3260 *  @set: where mask of pending signal is returned
3261 */
3262SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3263{
3264	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3265}
 
3266
3267#endif
3268
3269#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3270/**
3271 *  sys_sigprocmask - examine and change blocked signals
3272 *  @how: whether to add, remove, or set signals
3273 *  @nset: signals to add or remove (if non-null)
3274 *  @oset: previous value of signal mask if non-null
3275 *
3276 * Some platforms have their own version with special arguments;
3277 * others support only sys_rt_sigprocmask.
3278 */
3279
3280SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3281		old_sigset_t __user *, oset)
3282{
3283	old_sigset_t old_set, new_set;
3284	sigset_t new_blocked;
3285
3286	old_set = current->blocked.sig[0];
3287
3288	if (nset) {
3289		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3290			return -EFAULT;
3291
3292		new_blocked = current->blocked;
3293
3294		switch (how) {
3295		case SIG_BLOCK:
3296			sigaddsetmask(&new_blocked, new_set);
3297			break;
3298		case SIG_UNBLOCK:
3299			sigdelsetmask(&new_blocked, new_set);
3300			break;
3301		case SIG_SETMASK:
3302			new_blocked.sig[0] = new_set;
3303			break;
3304		default:
3305			return -EINVAL;
3306		}
3307
3308		set_current_blocked(&new_blocked);
3309	}
3310
3311	if (oset) {
3312		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3313			return -EFAULT;
3314	}
3315
3316	return 0;
3317}
3318#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3319
3320#ifndef CONFIG_ODD_RT_SIGACTION
3321/**
3322 *  sys_rt_sigaction - alter an action taken by a process
3323 *  @sig: signal to be sent
3324 *  @act: new sigaction
3325 *  @oact: used to save the previous sigaction
3326 *  @sigsetsize: size of sigset_t type
3327 */
3328SYSCALL_DEFINE4(rt_sigaction, int, sig,
3329		const struct sigaction __user *, act,
3330		struct sigaction __user *, oact,
3331		size_t, sigsetsize)
3332{
3333	struct k_sigaction new_sa, old_sa;
3334	int ret = -EINVAL;
3335
3336	/* XXX: Don't preclude handling different sized sigset_t's.  */
3337	if (sigsetsize != sizeof(sigset_t))
3338		goto out;
3339
3340	if (act) {
3341		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3342			return -EFAULT;
3343	}
3344
3345	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 
 
3346
3347	if (!ret && oact) {
3348		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3349			return -EFAULT;
3350	}
3351out:
3352	return ret;
3353}
3354#ifdef CONFIG_COMPAT
3355COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3356		const struct compat_sigaction __user *, act,
3357		struct compat_sigaction __user *, oact,
3358		compat_size_t, sigsetsize)
3359{
3360	struct k_sigaction new_ka, old_ka;
3361	compat_sigset_t mask;
3362#ifdef __ARCH_HAS_SA_RESTORER
3363	compat_uptr_t restorer;
3364#endif
3365	int ret;
3366
3367	/* XXX: Don't preclude handling different sized sigset_t's.  */
3368	if (sigsetsize != sizeof(compat_sigset_t))
3369		return -EINVAL;
3370
3371	if (act) {
3372		compat_uptr_t handler;
3373		ret = get_user(handler, &act->sa_handler);
3374		new_ka.sa.sa_handler = compat_ptr(handler);
3375#ifdef __ARCH_HAS_SA_RESTORER
3376		ret |= get_user(restorer, &act->sa_restorer);
3377		new_ka.sa.sa_restorer = compat_ptr(restorer);
3378#endif
3379		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3380		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3381		if (ret)
3382			return -EFAULT;
3383		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3384	}
3385
3386	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3387	if (!ret && oact) {
3388		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3389		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3390			       &oact->sa_handler);
3391		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
 
3392		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3395				&oact->sa_restorer);
3396#endif
3397	}
3398	return ret;
3399}
3400#endif
3401#endif /* !CONFIG_ODD_RT_SIGACTION */
3402
3403#ifdef CONFIG_OLD_SIGACTION
3404SYSCALL_DEFINE3(sigaction, int, sig,
3405		const struct old_sigaction __user *, act,
3406	        struct old_sigaction __user *, oact)
3407{
3408	struct k_sigaction new_ka, old_ka;
3409	int ret;
3410
3411	if (act) {
3412		old_sigset_t mask;
3413		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3414		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3415		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3416		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3417		    __get_user(mask, &act->sa_mask))
3418			return -EFAULT;
3419#ifdef __ARCH_HAS_KA_RESTORER
3420		new_ka.ka_restorer = NULL;
3421#endif
3422		siginitset(&new_ka.sa.sa_mask, mask);
3423	}
3424
3425	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3426
3427	if (!ret && oact) {
3428		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3429		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3430		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3431		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3432		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3433			return -EFAULT;
3434	}
3435
3436	return ret;
3437}
3438#endif
3439#ifdef CONFIG_COMPAT_OLD_SIGACTION
3440COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3441		const struct compat_old_sigaction __user *, act,
3442	        struct compat_old_sigaction __user *, oact)
3443{
3444	struct k_sigaction new_ka, old_ka;
3445	int ret;
3446	compat_old_sigset_t mask;
3447	compat_uptr_t handler, restorer;
3448
3449	if (act) {
3450		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3451		    __get_user(handler, &act->sa_handler) ||
3452		    __get_user(restorer, &act->sa_restorer) ||
3453		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3454		    __get_user(mask, &act->sa_mask))
3455			return -EFAULT;
3456
3457#ifdef __ARCH_HAS_KA_RESTORER
3458		new_ka.ka_restorer = NULL;
3459#endif
3460		new_ka.sa.sa_handler = compat_ptr(handler);
3461		new_ka.sa.sa_restorer = compat_ptr(restorer);
3462		siginitset(&new_ka.sa.sa_mask, mask);
3463	}
3464
3465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3466
3467	if (!ret && oact) {
3468		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3469		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3470			       &oact->sa_handler) ||
3471		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3472			       &oact->sa_restorer) ||
3473		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3474		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3475			return -EFAULT;
3476	}
3477	return ret;
3478}
3479#endif
3480
3481#ifdef CONFIG_SGETMASK_SYSCALL
3482
3483/*
3484 * For backwards compatibility.  Functionality superseded by sigprocmask.
3485 */
3486SYSCALL_DEFINE0(sgetmask)
3487{
3488	/* SMP safe */
3489	return current->blocked.sig[0];
3490}
3491
3492SYSCALL_DEFINE1(ssetmask, int, newmask)
3493{
3494	int old = current->blocked.sig[0];
3495	sigset_t newset;
3496
3497	siginitset(&newset, newmask);
3498	set_current_blocked(&newset);
3499
3500	return old;
3501}
3502#endif /* CONFIG_SGETMASK_SYSCALL */
3503
3504#ifdef __ARCH_WANT_SYS_SIGNAL
3505/*
3506 * For backwards compatibility.  Functionality superseded by sigaction.
3507 */
3508SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3509{
3510	struct k_sigaction new_sa, old_sa;
3511	int ret;
3512
3513	new_sa.sa.sa_handler = handler;
3514	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3515	sigemptyset(&new_sa.sa.sa_mask);
3516
3517	ret = do_sigaction(sig, &new_sa, &old_sa);
3518
3519	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3520}
3521#endif /* __ARCH_WANT_SYS_SIGNAL */
3522
3523#ifdef __ARCH_WANT_SYS_PAUSE
3524
3525SYSCALL_DEFINE0(pause)
3526{
3527	while (!signal_pending(current)) {
3528		__set_current_state(TASK_INTERRUPTIBLE);
3529		schedule();
3530	}
3531	return -ERESTARTNOHAND;
3532}
3533
3534#endif
3535
3536static int sigsuspend(sigset_t *set)
3537{
3538	current->saved_sigmask = current->blocked;
3539	set_current_blocked(set);
3540
3541	while (!signal_pending(current)) {
3542		__set_current_state(TASK_INTERRUPTIBLE);
3543		schedule();
3544	}
3545	set_restore_sigmask();
3546	return -ERESTARTNOHAND;
3547}
3548
3549/**
3550 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3551 *	@unewset value until a signal is received
3552 *  @unewset: new signal mask value
3553 *  @sigsetsize: size of sigset_t type
3554 */
3555SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3556{
3557	sigset_t newset;
3558
3559	/* XXX: Don't preclude handling different sized sigset_t's.  */
3560	if (sigsetsize != sizeof(sigset_t))
3561		return -EINVAL;
3562
3563	if (copy_from_user(&newset, unewset, sizeof(newset)))
3564		return -EFAULT;
3565	return sigsuspend(&newset);
3566}
3567 
3568#ifdef CONFIG_COMPAT
3569COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3570{
3571#ifdef __BIG_ENDIAN
3572	sigset_t newset;
3573	compat_sigset_t newset32;
3574
3575	/* XXX: Don't preclude handling different sized sigset_t's.  */
3576	if (sigsetsize != sizeof(sigset_t))
3577		return -EINVAL;
3578
3579	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3580		return -EFAULT;
3581	sigset_from_compat(&newset, &newset32);
3582	return sigsuspend(&newset);
3583#else
3584	/* on little-endian bitmaps don't care about granularity */
3585	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3586#endif
3587}
3588#endif
3589
3590#ifdef CONFIG_OLD_SIGSUSPEND
3591SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3592{
3593	sigset_t blocked;
3594	siginitset(&blocked, mask);
3595	return sigsuspend(&blocked);
3596}
3597#endif
3598#ifdef CONFIG_OLD_SIGSUSPEND3
3599SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3600{
3601	sigset_t blocked;
3602	siginitset(&blocked, mask);
3603	return sigsuspend(&blocked);
3604}
3605#endif
3606
3607__weak const char *arch_vma_name(struct vm_area_struct *vma)
3608{
3609	return NULL;
3610}
3611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3612void __init signals_init(void)
3613{
3614	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3615	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3616		!= offsetof(struct siginfo, _sifields._pad));
3617
3618	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3619}
3620
3621#ifdef CONFIG_KGDB_KDB
3622#include <linux/kdb.h>
3623/*
3624 * kdb_send_sig_info - Allows kdb to send signals without exposing
3625 * signal internals.  This function checks if the required locks are
3626 * available before calling the main signal code, to avoid kdb
3627 * deadlocks.
3628 */
3629void
3630kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3631{
3632	static struct task_struct *kdb_prev_t;
3633	int sig, new_t;
3634	if (!spin_trylock(&t->sighand->siglock)) {
3635		kdb_printf("Can't do kill command now.\n"
3636			   "The sigmask lock is held somewhere else in "
3637			   "kernel, try again later\n");
3638		return;
3639	}
3640	spin_unlock(&t->sighand->siglock);
3641	new_t = kdb_prev_t != t;
3642	kdb_prev_t = t;
3643	if (t->state != TASK_RUNNING && new_t) {
 
3644		kdb_printf("Process is not RUNNING, sending a signal from "
3645			   "kdb risks deadlock\n"
3646			   "on the run queue locks. "
3647			   "The signal has _not_ been sent.\n"
3648			   "Reissue the kill command if you want to risk "
3649			   "the deadlock.\n");
3650		return;
3651	}
3652	sig = info->si_signo;
3653	if (send_sig_info(sig, info, t))
 
3654		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3655			   sig, t->pid);
3656	else
3657		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3658}
3659#endif	/* CONFIG_KGDB_KDB */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/mm.h>
  26#include <linux/proc_fs.h>
  27#include <linux/tty.h>
  28#include <linux/binfmts.h>
  29#include <linux/coredump.h>
  30#include <linux/security.h>
  31#include <linux/syscalls.h>
  32#include <linux/ptrace.h>
  33#include <linux/signal.h>
  34#include <linux/signalfd.h>
  35#include <linux/ratelimit.h>
  36#include <linux/task_work.h>
  37#include <linux/capability.h>
  38#include <linux/freezer.h>
  39#include <linux/pid_namespace.h>
  40#include <linux/nsproxy.h>
  41#include <linux/user_namespace.h>
  42#include <linux/uprobes.h>
  43#include <linux/compat.h>
  44#include <linux/cn_proc.h>
  45#include <linux/compiler.h>
  46#include <linux/posix-timers.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49#include <linux/sysctl.h>
  50#include <uapi/linux/pidfd.h>
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/signal.h>
  54
  55#include <asm/param.h>
  56#include <linux/uaccess.h>
  57#include <asm/unistd.h>
  58#include <asm/siginfo.h>
  59#include <asm/cacheflush.h>
  60#include <asm/syscall.h>	/* for syscall_get_* */
  61
  62/*
  63 * SLAB caches for signal bits.
  64 */
  65
  66static struct kmem_cache *sigqueue_cachep;
  67
  68int print_fatal_signals __read_mostly;
  69
  70static void __user *sig_handler(struct task_struct *t, int sig)
  71{
  72	return t->sighand->action[sig - 1].sa.sa_handler;
  73}
  74
  75static inline bool sig_handler_ignored(void __user *handler, int sig)
  76{
  77	/* Is it explicitly or implicitly ignored? */
  78	return handler == SIG_IGN ||
  79	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  80}
  81
  82static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  83{
  84	void __user *handler;
  85
  86	handler = sig_handler(t, sig);
  87
  88	/* SIGKILL and SIGSTOP may not be sent to the global init */
  89	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  90		return true;
  91
  92	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  93	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  94		return true;
  95
  96	/* Only allow kernel generated signals to this kthread */
  97	if (unlikely((t->flags & PF_KTHREAD) &&
  98		     (handler == SIG_KTHREAD_KERNEL) && !force))
  99		return true;
 100
 101	return sig_handler_ignored(handler, sig);
 102}
 103
 104static bool sig_ignored(struct task_struct *t, int sig, bool force)
 105{
 106	/*
 107	 * Blocked signals are never ignored, since the
 108	 * signal handler may change by the time it is
 109	 * unblocked.
 110	 */
 111	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 112		return false;
 
 
 
 113
 114	/*
 115	 * Tracers may want to know about even ignored signal unless it
 116	 * is SIGKILL which can't be reported anyway but can be ignored
 117	 * by SIGNAL_UNKILLABLE task.
 118	 */
 119	if (t->ptrace && sig != SIGKILL)
 120		return false;
 121
 122	return sig_task_ignored(t, sig, force);
 123}
 124
 125/*
 126 * Re-calculate pending state from the set of locally pending
 127 * signals, globally pending signals, and blocked signals.
 128 */
 129static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 130{
 131	unsigned long ready;
 132	long i;
 133
 134	switch (_NSIG_WORDS) {
 135	default:
 136		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 137			ready |= signal->sig[i] &~ blocked->sig[i];
 138		break;
 139
 140	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 141		ready |= signal->sig[2] &~ blocked->sig[2];
 142		ready |= signal->sig[1] &~ blocked->sig[1];
 143		ready |= signal->sig[0] &~ blocked->sig[0];
 144		break;
 145
 146	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 147		ready |= signal->sig[0] &~ blocked->sig[0];
 148		break;
 149
 150	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 151	}
 152	return ready !=	0;
 153}
 154
 155#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 156
 157static bool recalc_sigpending_tsk(struct task_struct *t)
 158{
 159	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 160	    PENDING(&t->pending, &t->blocked) ||
 161	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 162	    cgroup_task_frozen(t)) {
 163		set_tsk_thread_flag(t, TIF_SIGPENDING);
 164		return true;
 165	}
 166
 167	/*
 168	 * We must never clear the flag in another thread, or in current
 169	 * when it's possible the current syscall is returning -ERESTART*.
 170	 * So we don't clear it here, and only callers who know they should do.
 171	 */
 172	return false;
 
 
 
 
 
 
 
 
 
 
 173}
 174
 175void recalc_sigpending(void)
 176{
 177	if (!recalc_sigpending_tsk(current) && !freezing(current))
 178		clear_thread_flag(TIF_SIGPENDING);
 179
 180}
 181EXPORT_SYMBOL(recalc_sigpending);
 182
 183void calculate_sigpending(void)
 184{
 185	/* Have any signals or users of TIF_SIGPENDING been delayed
 186	 * until after fork?
 187	 */
 188	spin_lock_irq(&current->sighand->siglock);
 189	set_tsk_thread_flag(current, TIF_SIGPENDING);
 190	recalc_sigpending();
 191	spin_unlock_irq(&current->sighand->siglock);
 192}
 193
 194/* Given the mask, find the first available signal that should be serviced. */
 195
 196#define SYNCHRONOUS_MASK \
 197	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 198	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 199
 200int next_signal(struct sigpending *pending, sigset_t *mask)
 201{
 202	unsigned long i, *s, *m, x;
 203	int sig = 0;
 204
 205	s = pending->signal.sig;
 206	m = mask->sig;
 207
 208	/*
 209	 * Handle the first word specially: it contains the
 210	 * synchronous signals that need to be dequeued first.
 211	 */
 212	x = *s &~ *m;
 213	if (x) {
 214		if (x & SYNCHRONOUS_MASK)
 215			x &= SYNCHRONOUS_MASK;
 216		sig = ffz(~x) + 1;
 217		return sig;
 218	}
 219
 220	switch (_NSIG_WORDS) {
 221	default:
 222		for (i = 1; i < _NSIG_WORDS; ++i) {
 223			x = *++s &~ *++m;
 224			if (!x)
 225				continue;
 226			sig = ffz(~x) + i*_NSIG_BPW + 1;
 227			break;
 228		}
 229		break;
 230
 231	case 2:
 232		x = s[1] &~ m[1];
 233		if (!x)
 234			break;
 235		sig = ffz(~x) + _NSIG_BPW + 1;
 236		break;
 237
 238	case 1:
 239		/* Nothing to do */
 240		break;
 241	}
 242
 243	return sig;
 244}
 245
 246static inline void print_dropped_signal(int sig)
 247{
 248	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 249
 250	if (!print_fatal_signals)
 251		return;
 252
 253	if (!__ratelimit(&ratelimit_state))
 254		return;
 255
 256	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 257				current->comm, current->pid, sig);
 258}
 259
 260/**
 261 * task_set_jobctl_pending - set jobctl pending bits
 262 * @task: target task
 263 * @mask: pending bits to set
 264 *
 265 * Clear @mask from @task->jobctl.  @mask must be subset of
 266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 267 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 268 * cleared.  If @task is already being killed or exiting, this function
 269 * becomes noop.
 270 *
 271 * CONTEXT:
 272 * Must be called with @task->sighand->siglock held.
 273 *
 274 * RETURNS:
 275 * %true if @mask is set, %false if made noop because @task was dying.
 276 */
 277bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 278{
 279	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 280			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 281	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 282
 283	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 284		return false;
 285
 286	if (mask & JOBCTL_STOP_SIGMASK)
 287		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 288
 289	task->jobctl |= mask;
 290	return true;
 291}
 292
 293/**
 294 * task_clear_jobctl_trapping - clear jobctl trapping bit
 295 * @task: target task
 296 *
 297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 298 * Clear it and wake up the ptracer.  Note that we don't need any further
 299 * locking.  @task->siglock guarantees that @task->parent points to the
 300 * ptracer.
 301 *
 302 * CONTEXT:
 303 * Must be called with @task->sighand->siglock held.
 304 */
 305void task_clear_jobctl_trapping(struct task_struct *task)
 306{
 307	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 308		task->jobctl &= ~JOBCTL_TRAPPING;
 309		smp_mb();	/* advised by wake_up_bit() */
 310		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 311	}
 312}
 313
 314/**
 315 * task_clear_jobctl_pending - clear jobctl pending bits
 316 * @task: target task
 317 * @mask: pending bits to clear
 318 *
 319 * Clear @mask from @task->jobctl.  @mask must be subset of
 320 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 321 * STOP bits are cleared together.
 322 *
 323 * If clearing of @mask leaves no stop or trap pending, this function calls
 324 * task_clear_jobctl_trapping().
 325 *
 326 * CONTEXT:
 327 * Must be called with @task->sighand->siglock held.
 328 */
 329void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 330{
 331	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 332
 333	if (mask & JOBCTL_STOP_PENDING)
 334		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 335
 336	task->jobctl &= ~mask;
 337
 338	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 339		task_clear_jobctl_trapping(task);
 340}
 341
 342/**
 343 * task_participate_group_stop - participate in a group stop
 344 * @task: task participating in a group stop
 345 *
 346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 347 * Group stop states are cleared and the group stop count is consumed if
 348 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 349 * stop, the appropriate `SIGNAL_*` flags are set.
 350 *
 351 * CONTEXT:
 352 * Must be called with @task->sighand->siglock held.
 353 *
 354 * RETURNS:
 355 * %true if group stop completion should be notified to the parent, %false
 356 * otherwise.
 357 */
 358static bool task_participate_group_stop(struct task_struct *task)
 359{
 360	struct signal_struct *sig = task->signal;
 361	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 362
 363	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 364
 365	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 366
 367	if (!consume)
 368		return false;
 369
 370	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 371		sig->group_stop_count--;
 372
 373	/*
 374	 * Tell the caller to notify completion iff we are entering into a
 375	 * fresh group stop.  Read comment in do_signal_stop() for details.
 376	 */
 377	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 378		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 379		return true;
 380	}
 381	return false;
 382}
 383
 384void task_join_group_stop(struct task_struct *task)
 385{
 386	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 387	struct signal_struct *sig = current->signal;
 388
 389	if (sig->group_stop_count) {
 390		sig->group_stop_count++;
 391		mask |= JOBCTL_STOP_CONSUME;
 392	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 393		return;
 394
 395	/* Have the new thread join an on-going signal group stop */
 396	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 397}
 398
 399/*
 400 * allocate a new signal queue record
 401 * - this may be called without locks if and only if t == current, otherwise an
 402 *   appropriate lock must be held to stop the target task from exiting
 403 */
 404static struct sigqueue *
 405__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 406		 int override_rlimit, const unsigned int sigqueue_flags)
 407{
 408	struct sigqueue *q = NULL;
 409	struct ucounts *ucounts;
 410	long sigpending;
 411
 412	/*
 413	 * Protect access to @t credentials. This can go away when all
 414	 * callers hold rcu read lock.
 415	 *
 416	 * NOTE! A pending signal will hold on to the user refcount,
 417	 * and we get/put the refcount only when the sigpending count
 418	 * changes from/to zero.
 419	 */
 420	rcu_read_lock();
 421	ucounts = task_ucounts(t);
 422	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 423	rcu_read_unlock();
 424	if (!sigpending)
 425		return NULL;
 426
 427	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 428		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 
 
 429	} else {
 430		print_dropped_signal(sig);
 431	}
 432
 433	if (unlikely(q == NULL)) {
 434		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 435	} else {
 436		INIT_LIST_HEAD(&q->list);
 437		q->flags = sigqueue_flags;
 438		q->ucounts = ucounts;
 439	}
 
 440	return q;
 441}
 442
 443static void __sigqueue_free(struct sigqueue *q)
 444{
 445	if (q->flags & SIGQUEUE_PREALLOC)
 446		return;
 447	if (q->ucounts) {
 448		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 449		q->ucounts = NULL;
 450	}
 451	kmem_cache_free(sigqueue_cachep, q);
 452}
 453
 454void flush_sigqueue(struct sigpending *queue)
 455{
 456	struct sigqueue *q;
 457
 458	sigemptyset(&queue->signal);
 459	while (!list_empty(&queue->list)) {
 460		q = list_entry(queue->list.next, struct sigqueue , list);
 461		list_del_init(&q->list);
 462		__sigqueue_free(q);
 463	}
 464}
 465
 466/*
 467 * Flush all pending signals for this kthread.
 468 */
 469void flush_signals(struct task_struct *t)
 470{
 471	unsigned long flags;
 472
 473	spin_lock_irqsave(&t->sighand->siglock, flags);
 474	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 475	flush_sigqueue(&t->pending);
 476	flush_sigqueue(&t->signal->shared_pending);
 477	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 478}
 479EXPORT_SYMBOL(flush_signals);
 480
 481#ifdef CONFIG_POSIX_TIMERS
 482static void __flush_itimer_signals(struct sigpending *pending)
 483{
 484	sigset_t signal, retain;
 485	struct sigqueue *q, *n;
 486
 487	signal = pending->signal;
 488	sigemptyset(&retain);
 489
 490	list_for_each_entry_safe(q, n, &pending->list, list) {
 491		int sig = q->info.si_signo;
 492
 493		if (likely(q->info.si_code != SI_TIMER)) {
 494			sigaddset(&retain, sig);
 495		} else {
 496			sigdelset(&signal, sig);
 497			list_del_init(&q->list);
 498			__sigqueue_free(q);
 499		}
 500	}
 501
 502	sigorsets(&pending->signal, &signal, &retain);
 503}
 504
 505void flush_itimer_signals(void)
 506{
 507	struct task_struct *tsk = current;
 508	unsigned long flags;
 509
 510	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 511	__flush_itimer_signals(&tsk->pending);
 512	__flush_itimer_signals(&tsk->signal->shared_pending);
 513	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 514}
 515#endif
 516
 517void ignore_signals(struct task_struct *t)
 518{
 519	int i;
 520
 521	for (i = 0; i < _NSIG; ++i)
 522		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 523
 524	flush_signals(t);
 525}
 526
 527/*
 528 * Flush all handlers for a task.
 529 */
 530
 531void
 532flush_signal_handlers(struct task_struct *t, int force_default)
 533{
 534	int i;
 535	struct k_sigaction *ka = &t->sighand->action[0];
 536	for (i = _NSIG ; i != 0 ; i--) {
 537		if (force_default || ka->sa.sa_handler != SIG_IGN)
 538			ka->sa.sa_handler = SIG_DFL;
 539		ka->sa.sa_flags = 0;
 540#ifdef __ARCH_HAS_SA_RESTORER
 541		ka->sa.sa_restorer = NULL;
 542#endif
 543		sigemptyset(&ka->sa.sa_mask);
 544		ka++;
 545	}
 546}
 547
 548bool unhandled_signal(struct task_struct *tsk, int sig)
 549{
 550	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 551	if (is_global_init(tsk))
 552		return true;
 553
 554	if (handler != SIG_IGN && handler != SIG_DFL)
 555		return false;
 556
 557	/* If dying, we handle all new signals by ignoring them */
 558	if (fatal_signal_pending(tsk))
 559		return false;
 560
 561	/* if ptraced, let the tracer determine */
 562	return !tsk->ptrace;
 563}
 564
 565static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 566			   bool *resched_timer)
 567{
 568	struct sigqueue *q, *first = NULL;
 569
 570	/*
 571	 * Collect the siginfo appropriate to this signal.  Check if
 572	 * there is another siginfo for the same signal.
 573	*/
 574	list_for_each_entry(q, &list->list, list) {
 575		if (q->info.si_signo == sig) {
 576			if (first)
 577				goto still_pending;
 578			first = q;
 579		}
 580	}
 581
 582	sigdelset(&list->signal, sig);
 583
 584	if (first) {
 585still_pending:
 586		list_del_init(&first->list);
 587		copy_siginfo(info, &first->info);
 588
 589		*resched_timer =
 590			(first->flags & SIGQUEUE_PREALLOC) &&
 591			(info->si_code == SI_TIMER) &&
 592			(info->si_sys_private);
 593
 594		__sigqueue_free(first);
 595	} else {
 596		/*
 597		 * Ok, it wasn't in the queue.  This must be
 598		 * a fast-pathed signal or we must have been
 599		 * out of queue space.  So zero out the info.
 600		 */
 601		clear_siginfo(info);
 602		info->si_signo = sig;
 603		info->si_errno = 0;
 604		info->si_code = SI_USER;
 605		info->si_pid = 0;
 606		info->si_uid = 0;
 607	}
 608}
 609
 610static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 611			kernel_siginfo_t *info, bool *resched_timer)
 612{
 613	int sig = next_signal(pending, mask);
 614
 615	if (sig)
 616		collect_signal(sig, pending, info, resched_timer);
 617	return sig;
 618}
 619
 620/*
 621 * Dequeue a signal and return the element to the caller, which is
 622 * expected to free it.
 623 *
 624 * All callers have to hold the siglock.
 625 */
 626int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 627		   kernel_siginfo_t *info, enum pid_type *type)
 628{
 629	bool resched_timer = false;
 630	int signr;
 631
 632	/* We only dequeue private signals from ourselves, we don't let
 633	 * signalfd steal them
 634	 */
 635	*type = PIDTYPE_PID;
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 637	if (!signr) {
 638		*type = PIDTYPE_TGID;
 639		signr = __dequeue_signal(&tsk->signal->shared_pending,
 640					 mask, info, &resched_timer);
 641#ifdef CONFIG_POSIX_TIMERS
 642		/*
 643		 * itimer signal ?
 644		 *
 645		 * itimers are process shared and we restart periodic
 646		 * itimers in the signal delivery path to prevent DoS
 647		 * attacks in the high resolution timer case. This is
 648		 * compliant with the old way of self-restarting
 649		 * itimers, as the SIGALRM is a legacy signal and only
 650		 * queued once. Changing the restart behaviour to
 651		 * restart the timer in the signal dequeue path is
 652		 * reducing the timer noise on heavy loaded !highres
 653		 * systems too.
 654		 */
 655		if (unlikely(signr == SIGALRM)) {
 656			struct hrtimer *tmr = &tsk->signal->real_timer;
 657
 658			if (!hrtimer_is_queued(tmr) &&
 659			    tsk->signal->it_real_incr != 0) {
 660				hrtimer_forward(tmr, tmr->base->get_time(),
 661						tsk->signal->it_real_incr);
 662				hrtimer_restart(tmr);
 663			}
 664		}
 665#endif
 666	}
 667
 668	recalc_sigpending();
 669	if (!signr)
 670		return 0;
 671
 672	if (unlikely(sig_kernel_stop(signr))) {
 673		/*
 674		 * Set a marker that we have dequeued a stop signal.  Our
 675		 * caller might release the siglock and then the pending
 676		 * stop signal it is about to process is no longer in the
 677		 * pending bitmasks, but must still be cleared by a SIGCONT
 678		 * (and overruled by a SIGKILL).  So those cases clear this
 679		 * shared flag after we've set it.  Note that this flag may
 680		 * remain set after the signal we return is ignored or
 681		 * handled.  That doesn't matter because its only purpose
 682		 * is to alert stop-signal processing code when another
 683		 * processor has come along and cleared the flag.
 684		 */
 685		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 686	}
 687#ifdef CONFIG_POSIX_TIMERS
 688	if (resched_timer) {
 689		/*
 690		 * Release the siglock to ensure proper locking order
 691		 * of timer locks outside of siglocks.  Note, we leave
 692		 * irqs disabled here, since the posix-timers code is
 693		 * about to disable them again anyway.
 694		 */
 695		spin_unlock(&tsk->sighand->siglock);
 696		posixtimer_rearm(info);
 697		spin_lock(&tsk->sighand->siglock);
 698
 699		/* Don't expose the si_sys_private value to userspace */
 700		info->si_sys_private = 0;
 701	}
 702#endif
 703	return signr;
 704}
 705EXPORT_SYMBOL_GPL(dequeue_signal);
 706
 707static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 708{
 709	struct task_struct *tsk = current;
 710	struct sigpending *pending = &tsk->pending;
 711	struct sigqueue *q, *sync = NULL;
 712
 713	/*
 714	 * Might a synchronous signal be in the queue?
 715	 */
 716	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 717		return 0;
 718
 719	/*
 720	 * Return the first synchronous signal in the queue.
 721	 */
 722	list_for_each_entry(q, &pending->list, list) {
 723		/* Synchronous signals have a positive si_code */
 724		if ((q->info.si_code > SI_USER) &&
 725		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 726			sync = q;
 727			goto next;
 728		}
 729	}
 730	return 0;
 731next:
 732	/*
 733	 * Check if there is another siginfo for the same signal.
 734	 */
 735	list_for_each_entry_continue(q, &pending->list, list) {
 736		if (q->info.si_signo == sync->info.si_signo)
 737			goto still_pending;
 738	}
 739
 740	sigdelset(&pending->signal, sync->info.si_signo);
 741	recalc_sigpending();
 742still_pending:
 743	list_del_init(&sync->list);
 744	copy_siginfo(info, &sync->info);
 745	__sigqueue_free(sync);
 746	return info->si_signo;
 747}
 748
 749/*
 750 * Tell a process that it has a new active signal..
 751 *
 752 * NOTE! we rely on the previous spin_lock to
 753 * lock interrupts for us! We can only be called with
 754 * "siglock" held, and the local interrupt must
 755 * have been disabled when that got acquired!
 756 *
 757 * No need to set need_resched since signal event passing
 758 * goes through ->blocked
 759 */
 760void signal_wake_up_state(struct task_struct *t, unsigned int state)
 761{
 762	lockdep_assert_held(&t->sighand->siglock);
 763
 764	set_tsk_thread_flag(t, TIF_SIGPENDING);
 765
 766	/*
 767	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 768	 * case. We don't check t->state here because there is a race with it
 769	 * executing another processor and just now entering stopped state.
 770	 * By using wake_up_state, we ensure the process will wake up and
 771	 * handle its death signal.
 772	 */
 773	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 774		kick_process(t);
 775}
 776
 777/*
 778 * Remove signals in mask from the pending set and queue.
 779 * Returns 1 if any signals were found.
 780 *
 781 * All callers must be holding the siglock.
 782 */
 783static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 784{
 785	struct sigqueue *q, *n;
 786	sigset_t m;
 787
 788	sigandsets(&m, mask, &s->signal);
 789	if (sigisemptyset(&m))
 790		return;
 791
 792	sigandnsets(&s->signal, &s->signal, mask);
 793	list_for_each_entry_safe(q, n, &s->list, list) {
 794		if (sigismember(mask, q->info.si_signo)) {
 795			list_del_init(&q->list);
 796			__sigqueue_free(q);
 797		}
 798	}
 
 799}
 800
 801static inline int is_si_special(const struct kernel_siginfo *info)
 802{
 803	return info <= SEND_SIG_PRIV;
 804}
 805
 806static inline bool si_fromuser(const struct kernel_siginfo *info)
 807{
 808	return info == SEND_SIG_NOINFO ||
 809		(!is_si_special(info) && SI_FROMUSER(info));
 810}
 811
 812/*
 813 * called with RCU read lock from check_kill_permission()
 814 */
 815static bool kill_ok_by_cred(struct task_struct *t)
 816{
 817	const struct cred *cred = current_cred();
 818	const struct cred *tcred = __task_cred(t);
 819
 820	return uid_eq(cred->euid, tcred->suid) ||
 821	       uid_eq(cred->euid, tcred->uid) ||
 822	       uid_eq(cred->uid, tcred->suid) ||
 823	       uid_eq(cred->uid, tcred->uid) ||
 824	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 825}
 826
 827/*
 828 * Bad permissions for sending the signal
 829 * - the caller must hold the RCU read lock
 830 */
 831static int check_kill_permission(int sig, struct kernel_siginfo *info,
 832				 struct task_struct *t)
 833{
 834	struct pid *sid;
 835	int error;
 836
 837	if (!valid_signal(sig))
 838		return -EINVAL;
 839
 840	if (!si_fromuser(info))
 841		return 0;
 842
 843	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 844	if (error)
 845		return error;
 846
 847	if (!same_thread_group(current, t) &&
 848	    !kill_ok_by_cred(t)) {
 849		switch (sig) {
 850		case SIGCONT:
 851			sid = task_session(t);
 852			/*
 853			 * We don't return the error if sid == NULL. The
 854			 * task was unhashed, the caller must notice this.
 855			 */
 856			if (!sid || sid == task_session(current))
 857				break;
 858			fallthrough;
 859		default:
 860			return -EPERM;
 861		}
 862	}
 863
 864	return security_task_kill(t, info, sig, NULL);
 865}
 866
 867/**
 868 * ptrace_trap_notify - schedule trap to notify ptracer
 869 * @t: tracee wanting to notify tracer
 870 *
 871 * This function schedules sticky ptrace trap which is cleared on the next
 872 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 873 * ptracer.
 874 *
 875 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 876 * ptracer is listening for events, tracee is woken up so that it can
 877 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 878 * eventually taken without returning to userland after the existing traps
 879 * are finished by PTRACE_CONT.
 880 *
 881 * CONTEXT:
 882 * Must be called with @task->sighand->siglock held.
 883 */
 884static void ptrace_trap_notify(struct task_struct *t)
 885{
 886	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 887	lockdep_assert_held(&t->sighand->siglock);
 888
 889	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 890	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 891}
 892
 893/*
 894 * Handle magic process-wide effects of stop/continue signals. Unlike
 895 * the signal actions, these happen immediately at signal-generation
 896 * time regardless of blocking, ignoring, or handling.  This does the
 897 * actual continuing for SIGCONT, but not the actual stopping for stop
 898 * signals. The process stop is done as a signal action for SIG_DFL.
 899 *
 900 * Returns true if the signal should be actually delivered, otherwise
 901 * it should be dropped.
 902 */
 903static bool prepare_signal(int sig, struct task_struct *p, bool force)
 904{
 905	struct signal_struct *signal = p->signal;
 906	struct task_struct *t;
 907	sigset_t flush;
 908
 909	if (signal->flags & SIGNAL_GROUP_EXIT) {
 910		if (signal->core_state)
 911			return sig == SIGKILL;
 912		/*
 913		 * The process is in the middle of dying, drop the signal.
 914		 */
 915		return false;
 916	} else if (sig_kernel_stop(sig)) {
 917		/*
 918		 * This is a stop signal.  Remove SIGCONT from all queues.
 919		 */
 920		siginitset(&flush, sigmask(SIGCONT));
 921		flush_sigqueue_mask(&flush, &signal->shared_pending);
 922		for_each_thread(p, t)
 923			flush_sigqueue_mask(&flush, &t->pending);
 924	} else if (sig == SIGCONT) {
 925		unsigned int why;
 926		/*
 927		 * Remove all stop signals from all queues, wake all threads.
 928		 */
 929		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 930		flush_sigqueue_mask(&flush, &signal->shared_pending);
 931		for_each_thread(p, t) {
 932			flush_sigqueue_mask(&flush, &t->pending);
 933			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 934			if (likely(!(t->ptrace & PT_SEIZED))) {
 935				t->jobctl &= ~JOBCTL_STOPPED;
 936				wake_up_state(t, __TASK_STOPPED);
 937			} else
 938				ptrace_trap_notify(t);
 939		}
 940
 941		/*
 942		 * Notify the parent with CLD_CONTINUED if we were stopped.
 943		 *
 944		 * If we were in the middle of a group stop, we pretend it
 945		 * was already finished, and then continued. Since SIGCHLD
 946		 * doesn't queue we report only CLD_STOPPED, as if the next
 947		 * CLD_CONTINUED was dropped.
 948		 */
 949		why = 0;
 950		if (signal->flags & SIGNAL_STOP_STOPPED)
 951			why |= SIGNAL_CLD_CONTINUED;
 952		else if (signal->group_stop_count)
 953			why |= SIGNAL_CLD_STOPPED;
 954
 955		if (why) {
 956			/*
 957			 * The first thread which returns from do_signal_stop()
 958			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 959			 * notify its parent. See get_signal().
 960			 */
 961			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 962			signal->group_stop_count = 0;
 963			signal->group_exit_code = 0;
 964		}
 965	}
 966
 967	return !sig_ignored(p, sig, force);
 968}
 969
 970/*
 971 * Test if P wants to take SIG.  After we've checked all threads with this,
 972 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 973 * blocking SIG were ruled out because they are not running and already
 974 * have pending signals.  Such threads will dequeue from the shared queue
 975 * as soon as they're available, so putting the signal on the shared queue
 976 * will be equivalent to sending it to one such thread.
 977 */
 978static inline bool wants_signal(int sig, struct task_struct *p)
 979{
 980	if (sigismember(&p->blocked, sig))
 981		return false;
 982
 983	if (p->flags & PF_EXITING)
 984		return false;
 985
 986	if (sig == SIGKILL)
 987		return true;
 988
 989	if (task_is_stopped_or_traced(p))
 990		return false;
 991
 992	return task_curr(p) || !task_sigpending(p);
 993}
 994
 995static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 996{
 997	struct signal_struct *signal = p->signal;
 998	struct task_struct *t;
 999
1000	/*
1001	 * Now find a thread we can wake up to take the signal off the queue.
1002	 *
1003	 * Try the suggested task first (may or may not be the main thread).
 
1004	 */
1005	if (wants_signal(sig, p))
1006		t = p;
1007	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008		/*
1009		 * There is just one thread and it does not need to be woken.
1010		 * It will dequeue unblocked signals before it runs again.
1011		 */
1012		return;
1013	else {
1014		/*
1015		 * Otherwise try to find a suitable thread.
1016		 */
1017		t = signal->curr_target;
1018		while (!wants_signal(sig, t)) {
1019			t = next_thread(t);
1020			if (t == signal->curr_target)
1021				/*
1022				 * No thread needs to be woken.
1023				 * Any eligible threads will see
1024				 * the signal in the queue soon.
1025				 */
1026				return;
1027		}
1028		signal->curr_target = t;
1029	}
1030
1031	/*
1032	 * Found a killable thread.  If the signal will be fatal,
1033	 * then start taking the whole group down immediately.
1034	 */
1035	if (sig_fatal(p, sig) &&
1036	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037	    !sigismember(&t->real_blocked, sig) &&
1038	    (sig == SIGKILL || !p->ptrace)) {
1039		/*
1040		 * This signal will be fatal to the whole group.
1041		 */
1042		if (!sig_kernel_coredump(sig)) {
1043			/*
1044			 * Start a group exit and wake everybody up.
1045			 * This way we don't have other threads
1046			 * running and doing things after a slower
1047			 * thread has the fatal signal pending.
1048			 */
1049			signal->flags = SIGNAL_GROUP_EXIT;
1050			signal->group_exit_code = sig;
1051			signal->group_stop_count = 0;
1052			__for_each_thread(signal, t) {
 
1053				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054				sigaddset(&t->pending.signal, SIGKILL);
1055				signal_wake_up(t, 1);
1056			}
1057			return;
1058		}
1059	}
1060
1061	/*
1062	 * The signal is already in the shared-pending queue.
1063	 * Tell the chosen thread to wake up and dequeue it.
1064	 */
1065	signal_wake_up(t, sig == SIGKILL);
1066	return;
1067}
1068
1069static inline bool legacy_queue(struct sigpending *signals, int sig)
1070{
1071	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072}
1073
1074static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075				struct task_struct *t, enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076{
1077	struct sigpending *pending;
1078	struct sigqueue *q;
1079	int override_rlimit;
1080	int ret = 0, result;
1081
1082	lockdep_assert_held(&t->sighand->siglock);
1083
1084	result = TRACE_SIGNAL_IGNORED;
1085	if (!prepare_signal(sig, t, force))
 
1086		goto ret;
1087
1088	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089	/*
1090	 * Short-circuit ignored signals and support queuing
1091	 * exactly one non-rt signal, so that we can get more
1092	 * detailed information about the cause of the signal.
1093	 */
1094	result = TRACE_SIGNAL_ALREADY_PENDING;
1095	if (legacy_queue(pending, sig))
1096		goto ret;
1097
1098	result = TRACE_SIGNAL_DELIVERED;
1099	/*
1100	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1101	 */
1102	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103		goto out_set;
1104
1105	/*
1106	 * Real-time signals must be queued if sent by sigqueue, or
1107	 * some other real-time mechanism.  It is implementation
1108	 * defined whether kill() does so.  We attempt to do so, on
1109	 * the principle of least surprise, but since kill is not
1110	 * allowed to fail with EAGAIN when low on memory we just
1111	 * make sure at least one signal gets delivered and don't
1112	 * pass on the info struct.
1113	 */
1114	if (sig < SIGRTMIN)
1115		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116	else
1117		override_rlimit = 0;
1118
1119	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120
1121	if (q) {
1122		list_add_tail(&q->list, &pending->list);
1123		switch ((unsigned long) info) {
1124		case (unsigned long) SEND_SIG_NOINFO:
1125			clear_siginfo(&q->info);
1126			q->info.si_signo = sig;
1127			q->info.si_errno = 0;
1128			q->info.si_code = SI_USER;
1129			q->info.si_pid = task_tgid_nr_ns(current,
1130							task_active_pid_ns(t));
1131			rcu_read_lock();
1132			q->info.si_uid =
1133				from_kuid_munged(task_cred_xxx(t, user_ns),
1134						 current_uid());
1135			rcu_read_unlock();
1136			break;
1137		case (unsigned long) SEND_SIG_PRIV:
1138			clear_siginfo(&q->info);
1139			q->info.si_signo = sig;
1140			q->info.si_errno = 0;
1141			q->info.si_code = SI_KERNEL;
1142			q->info.si_pid = 0;
1143			q->info.si_uid = 0;
1144			break;
1145		default:
1146			copy_siginfo(&q->info, info);
 
 
1147			break;
1148		}
1149	} else if (!is_si_special(info) &&
1150		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1151		/*
1152		 * Queue overflow, abort.  We may abort if the
1153		 * signal was rt and sent by user using something
1154		 * other than kill().
1155		 */
1156		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157		ret = -EAGAIN;
1158		goto ret;
1159	} else {
1160		/*
1161		 * This is a silent loss of information.  We still
1162		 * send the signal, but the *info bits are lost.
1163		 */
1164		result = TRACE_SIGNAL_LOSE_INFO;
 
 
 
 
1165	}
1166
1167out_set:
1168	signalfd_notify(t, sig);
1169	sigaddset(&pending->signal, sig);
1170
1171	/* Let multiprocess signals appear after on-going forks */
1172	if (type > PIDTYPE_TGID) {
1173		struct multiprocess_signals *delayed;
1174		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175			sigset_t *signal = &delayed->signal;
1176			/* Can't queue both a stop and a continue signal */
1177			if (sig == SIGCONT)
1178				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179			else if (sig_kernel_stop(sig))
1180				sigdelset(signal, SIGCONT);
1181			sigaddset(signal, sig);
1182		}
1183	}
1184
1185	complete_signal(sig, t, type);
1186ret:
1187	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188	return ret;
1189}
1190
1191static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
 
1192{
1193	bool ret = false;
1194	switch (siginfo_layout(info->si_signo, info->si_code)) {
1195	case SIL_KILL:
1196	case SIL_CHLD:
1197	case SIL_RT:
1198		ret = true;
1199		break;
1200	case SIL_TIMER:
1201	case SIL_POLL:
1202	case SIL_FAULT:
1203	case SIL_FAULT_TRAPNO:
1204	case SIL_FAULT_MCEERR:
1205	case SIL_FAULT_BNDERR:
1206	case SIL_FAULT_PKUERR:
1207	case SIL_FAULT_PERF_EVENT:
1208	case SIL_SYS:
1209		ret = false;
1210		break;
1211	}
1212	return ret;
1213}
1214
1215int send_signal_locked(int sig, struct kernel_siginfo *info,
1216		       struct task_struct *t, enum pid_type type)
1217{
1218	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219	bool force = false;
1220
1221	if (info == SEND_SIG_NOINFO) {
1222		/* Force if sent from an ancestor pid namespace */
1223		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224	} else if (info == SEND_SIG_PRIV) {
1225		/* Don't ignore kernel generated signals */
1226		force = true;
1227	} else if (has_si_pid_and_uid(info)) {
1228		/* SIGKILL and SIGSTOP is special or has ids */
1229		struct user_namespace *t_user_ns;
1230
1231		rcu_read_lock();
1232		t_user_ns = task_cred_xxx(t, user_ns);
1233		if (current_user_ns() != t_user_ns) {
1234			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235			info->si_uid = from_kuid_munged(t_user_ns, uid);
1236		}
1237		rcu_read_unlock();
1238
1239		/* A kernel generated signal? */
1240		force = (info->si_code == SI_KERNEL);
1241
1242		/* From an ancestor pid namespace? */
1243		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244			info->si_pid = 0;
1245			force = true;
1246		}
1247	}
1248	return __send_signal_locked(sig, info, t, type, force);
1249}
1250
1251static void print_fatal_signal(int signr)
1252{
1253	struct pt_regs *regs = task_pt_regs(current);
1254	struct file *exe_file;
1255
1256	exe_file = get_task_exe_file(current);
1257	if (exe_file) {
1258		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259			exe_file, current->comm, signr);
1260		fput(exe_file);
1261	} else {
1262		pr_info("%s: potentially unexpected fatal signal %d.\n",
1263			current->comm, signr);
1264	}
1265
1266#if defined(__i386__) && !defined(__arch_um__)
1267	pr_info("code at %08lx: ", regs->ip);
1268	{
1269		int i;
1270		for (i = 0; i < 16; i++) {
1271			unsigned char insn;
1272
1273			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274				break;
1275			pr_cont("%02x ", insn);
1276		}
1277	}
1278	pr_cont("\n");
1279#endif
1280	preempt_disable();
1281	show_regs(regs);
1282	preempt_enable();
1283}
1284
1285static int __init setup_print_fatal_signals(char *str)
1286{
1287	get_option (&str, &print_fatal_signals);
1288
1289	return 1;
1290}
1291
1292__setup("print-fatal-signals=", setup_print_fatal_signals);
1293
1294int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1295			enum pid_type type)
 
 
 
 
 
 
 
 
 
 
 
 
1296{
1297	unsigned long flags;
1298	int ret = -ESRCH;
1299
1300	if (lock_task_sighand(p, &flags)) {
1301		ret = send_signal_locked(sig, info, p, type);
1302		unlock_task_sighand(p, &flags);
1303	}
1304
1305	return ret;
1306}
1307
1308enum sig_handler {
1309	HANDLER_CURRENT, /* If reachable use the current handler */
1310	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311	HANDLER_EXIT,	 /* Only visible as the process exit code */
1312};
1313
1314/*
1315 * Force a signal that the process can't ignore: if necessary
1316 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317 *
1318 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319 * since we do not want to have a signal handler that was blocked
1320 * be invoked when user space had explicitly blocked it.
1321 *
1322 * We don't want to have recursive SIGSEGV's etc, for example,
1323 * that is why we also clear SIGNAL_UNKILLABLE.
1324 */
1325static int
1326force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327	enum sig_handler handler)
1328{
1329	unsigned long int flags;
1330	int ret, blocked, ignored;
1331	struct k_sigaction *action;
1332	int sig = info->si_signo;
1333
1334	spin_lock_irqsave(&t->sighand->siglock, flags);
1335	action = &t->sighand->action[sig-1];
1336	ignored = action->sa.sa_handler == SIG_IGN;
1337	blocked = sigismember(&t->blocked, sig);
1338	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339		action->sa.sa_handler = SIG_DFL;
1340		if (handler == HANDLER_EXIT)
1341			action->sa.sa_flags |= SA_IMMUTABLE;
1342		if (blocked)
1343			sigdelset(&t->blocked, sig);
 
 
1344	}
1345	/*
1346	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1348	 */
1349	if (action->sa.sa_handler == SIG_DFL &&
1350	    (!t->ptrace || (handler == HANDLER_EXIT)))
1351		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353	/* This can happen if the signal was already pending and blocked */
1354	if (!task_sigpending(t))
1355		signal_wake_up(t, 0);
1356	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1357
1358	return ret;
1359}
1360
1361int force_sig_info(struct kernel_siginfo *info)
1362{
1363	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1364}
1365
1366/*
1367 * Nuke all other threads in the group.
1368 */
1369int zap_other_threads(struct task_struct *p)
1370{
1371	struct task_struct *t;
1372	int count = 0;
1373
1374	p->signal->group_stop_count = 0;
1375
1376	for_other_threads(p, t) {
1377		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1378		/* Don't require de_thread to wait for the vhost_worker */
1379		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1380			count++;
1381
1382		/* Don't bother with already dead threads */
1383		if (t->exit_state)
1384			continue;
1385		sigaddset(&t->pending.signal, SIGKILL);
1386		signal_wake_up(t, 1);
1387	}
1388
1389	return count;
1390}
1391
1392struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1393					   unsigned long *flags)
1394{
1395	struct sighand_struct *sighand;
1396
1397	rcu_read_lock();
1398	for (;;) {
 
 
 
 
 
 
1399		sighand = rcu_dereference(tsk->sighand);
1400		if (unlikely(sighand == NULL))
 
 
1401			break;
1402
1403		/*
1404		 * This sighand can be already freed and even reused, but
1405		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1406		 * initializes ->siglock: this slab can't go away, it has
1407		 * the same object type, ->siglock can't be reinitialized.
1408		 *
1409		 * We need to ensure that tsk->sighand is still the same
1410		 * after we take the lock, we can race with de_thread() or
1411		 * __exit_signal(). In the latter case the next iteration
1412		 * must see ->sighand == NULL.
1413		 */
1414		spin_lock_irqsave(&sighand->siglock, *flags);
1415		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
 
1416			break;
1417		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1418	}
1419	rcu_read_unlock();
1420
1421	return sighand;
1422}
1423
1424#ifdef CONFIG_LOCKDEP
1425void lockdep_assert_task_sighand_held(struct task_struct *task)
1426{
1427	struct sighand_struct *sighand;
1428
1429	rcu_read_lock();
1430	sighand = rcu_dereference(task->sighand);
1431	if (sighand)
1432		lockdep_assert_held(&sighand->siglock);
1433	else
1434		WARN_ON_ONCE(1);
1435	rcu_read_unlock();
1436}
1437#endif
1438
1439/*
1440 * send signal info to all the members of a thread group or to the
1441 * individual thread if type == PIDTYPE_PID.
1442 */
1443int group_send_sig_info(int sig, struct kernel_siginfo *info,
1444			struct task_struct *p, enum pid_type type)
1445{
1446	int ret;
1447
1448	rcu_read_lock();
1449	ret = check_kill_permission(sig, info, p);
1450	rcu_read_unlock();
1451
1452	if (!ret && sig)
1453		ret = do_send_sig_info(sig, info, p, type);
1454
1455	return ret;
1456}
1457
1458/*
1459 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1460 * control characters do (^C, ^Z etc)
1461 * - the caller must hold at least a readlock on tasklist_lock
1462 */
1463int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1464{
1465	struct task_struct *p = NULL;
1466	int ret = -ESRCH;
1467
 
 
1468	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1469		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1470		/*
1471		 * If group_send_sig_info() succeeds at least once ret
1472		 * becomes 0 and after that the code below has no effect.
1473		 * Otherwise we return the last err or -ESRCH if this
1474		 * process group is empty.
1475		 */
1476		if (ret)
1477			ret = err;
1478	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1479
1480	return ret;
1481}
1482
1483static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1484				struct pid *pid, enum pid_type type)
1485{
1486	int error = -ESRCH;
1487	struct task_struct *p;
1488
1489	for (;;) {
1490		rcu_read_lock();
1491		p = pid_task(pid, PIDTYPE_PID);
1492		if (p)
1493			error = group_send_sig_info(sig, info, p, type);
1494		rcu_read_unlock();
1495		if (likely(!p || error != -ESRCH))
1496			return error;
 
1497		/*
1498		 * The task was unhashed in between, try again.  If it
1499		 * is dead, pid_task() will return NULL, if we race with
1500		 * de_thread() it will find the new leader.
1501		 */
1502	}
1503}
1504
1505int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1506{
1507	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1508}
1509
1510static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1511{
1512	int error;
1513	rcu_read_lock();
1514	error = kill_pid_info(sig, info, find_vpid(pid));
1515	rcu_read_unlock();
1516	return error;
1517}
1518
1519static inline bool kill_as_cred_perm(const struct cred *cred,
1520				     struct task_struct *target)
1521{
1522	const struct cred *pcred = __task_cred(target);
1523
1524	return uid_eq(cred->euid, pcred->suid) ||
1525	       uid_eq(cred->euid, pcred->uid) ||
1526	       uid_eq(cred->uid, pcred->suid) ||
1527	       uid_eq(cred->uid, pcred->uid);
1528}
1529
1530/*
1531 * The usb asyncio usage of siginfo is wrong.  The glibc support
1532 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1533 * AKA after the generic fields:
1534 *	kernel_pid_t	si_pid;
1535 *	kernel_uid32_t	si_uid;
1536 *	sigval_t	si_value;
1537 *
1538 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1539 * after the generic fields is:
1540 *	void __user 	*si_addr;
1541 *
1542 * This is a practical problem when there is a 64bit big endian kernel
1543 * and a 32bit userspace.  As the 32bit address will encoded in the low
1544 * 32bits of the pointer.  Those low 32bits will be stored at higher
1545 * address than appear in a 32 bit pointer.  So userspace will not
1546 * see the address it was expecting for it's completions.
1547 *
1548 * There is nothing in the encoding that can allow
1549 * copy_siginfo_to_user32 to detect this confusion of formats, so
1550 * handle this by requiring the caller of kill_pid_usb_asyncio to
1551 * notice when this situration takes place and to store the 32bit
1552 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1553 * parameter.
1554 */
1555int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1556			 struct pid *pid, const struct cred *cred)
1557{
1558	struct kernel_siginfo info;
1559	struct task_struct *p;
1560	unsigned long flags;
1561	int ret = -EINVAL;
1562
1563	if (!valid_signal(sig))
1564		return ret;
1565
1566	clear_siginfo(&info);
1567	info.si_signo = sig;
1568	info.si_errno = errno;
1569	info.si_code = SI_ASYNCIO;
1570	*((sigval_t *)&info.si_pid) = addr;
1571
1572	rcu_read_lock();
1573	p = pid_task(pid, PIDTYPE_PID);
1574	if (!p) {
1575		ret = -ESRCH;
1576		goto out_unlock;
1577	}
1578	if (!kill_as_cred_perm(cred, p)) {
1579		ret = -EPERM;
1580		goto out_unlock;
1581	}
1582	ret = security_task_kill(p, &info, sig, cred);
1583	if (ret)
1584		goto out_unlock;
1585
1586	if (sig) {
1587		if (lock_task_sighand(p, &flags)) {
1588			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1589			unlock_task_sighand(p, &flags);
1590		} else
1591			ret = -ESRCH;
1592	}
1593out_unlock:
1594	rcu_read_unlock();
1595	return ret;
1596}
1597EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1598
1599/*
1600 * kill_something_info() interprets pid in interesting ways just like kill(2).
1601 *
1602 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1603 * is probably wrong.  Should make it like BSD or SYSV.
1604 */
1605
1606static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1607{
1608	int ret;
1609
1610	if (pid > 0)
1611		return kill_proc_info(sig, info, pid);
1612
1613	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1614	if (pid == INT_MIN)
1615		return -ESRCH;
1616
1617	read_lock(&tasklist_lock);
1618	if (pid != -1) {
1619		ret = __kill_pgrp_info(sig, info,
1620				pid ? find_vpid(-pid) : task_pgrp(current));
1621	} else {
1622		int retval = 0, count = 0;
1623		struct task_struct * p;
1624
1625		for_each_process(p) {
1626			if (task_pid_vnr(p) > 1 &&
1627					!same_thread_group(p, current)) {
1628				int err = group_send_sig_info(sig, info, p,
1629							      PIDTYPE_MAX);
1630				++count;
1631				if (err != -EPERM)
1632					retval = err;
1633			}
1634		}
1635		ret = count ? retval : -ESRCH;
1636	}
1637	read_unlock(&tasklist_lock);
1638
1639	return ret;
1640}
1641
1642/*
1643 * These are for backward compatibility with the rest of the kernel source.
1644 */
1645
1646int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1647{
1648	/*
1649	 * Make sure legacy kernel users don't send in bad values
1650	 * (normal paths check this in check_kill_permission).
1651	 */
1652	if (!valid_signal(sig))
1653		return -EINVAL;
1654
1655	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1656}
1657EXPORT_SYMBOL(send_sig_info);
1658
1659#define __si_special(priv) \
1660	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1661
1662int
1663send_sig(int sig, struct task_struct *p, int priv)
1664{
1665	return send_sig_info(sig, __si_special(priv), p);
1666}
1667EXPORT_SYMBOL(send_sig);
1668
1669void force_sig(int sig)
1670{
1671	struct kernel_siginfo info;
1672
1673	clear_siginfo(&info);
1674	info.si_signo = sig;
1675	info.si_errno = 0;
1676	info.si_code = SI_KERNEL;
1677	info.si_pid = 0;
1678	info.si_uid = 0;
1679	force_sig_info(&info);
1680}
1681EXPORT_SYMBOL(force_sig);
1682
1683void force_fatal_sig(int sig)
1684{
1685	struct kernel_siginfo info;
1686
1687	clear_siginfo(&info);
1688	info.si_signo = sig;
1689	info.si_errno = 0;
1690	info.si_code = SI_KERNEL;
1691	info.si_pid = 0;
1692	info.si_uid = 0;
1693	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1694}
1695
1696void force_exit_sig(int sig)
1697{
1698	struct kernel_siginfo info;
1699
1700	clear_siginfo(&info);
1701	info.si_signo = sig;
1702	info.si_errno = 0;
1703	info.si_code = SI_KERNEL;
1704	info.si_pid = 0;
1705	info.si_uid = 0;
1706	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1707}
1708
1709/*
1710 * When things go south during signal handling, we
1711 * will force a SIGSEGV. And if the signal that caused
1712 * the problem was already a SIGSEGV, we'll want to
1713 * make sure we don't even try to deliver the signal..
1714 */
1715void force_sigsegv(int sig)
 
1716{
1717	if (sig == SIGSEGV)
1718		force_fatal_sig(SIGSEGV);
1719	else
1720		force_sig(SIGSEGV);
 
 
 
 
1721}
1722
1723int force_sig_fault_to_task(int sig, int code, void __user *addr,
1724			    struct task_struct *t)
1725{
1726	struct kernel_siginfo info;
1727
1728	clear_siginfo(&info);
1729	info.si_signo = sig;
1730	info.si_errno = 0;
1731	info.si_code  = code;
1732	info.si_addr  = addr;
1733	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1734}
1735
1736int force_sig_fault(int sig, int code, void __user *addr)
1737{
1738	return force_sig_fault_to_task(sig, code, addr, current);
1739}
1740
1741int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1742{
1743	struct kernel_siginfo info;
1744
1745	clear_siginfo(&info);
1746	info.si_signo = sig;
1747	info.si_errno = 0;
1748	info.si_code  = code;
1749	info.si_addr  = addr;
1750	return send_sig_info(info.si_signo, &info, t);
1751}
1752
1753int force_sig_mceerr(int code, void __user *addr, short lsb)
1754{
1755	struct kernel_siginfo info;
1756
1757	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1758	clear_siginfo(&info);
1759	info.si_signo = SIGBUS;
1760	info.si_errno = 0;
1761	info.si_code = code;
1762	info.si_addr = addr;
1763	info.si_addr_lsb = lsb;
1764	return force_sig_info(&info);
1765}
1766
1767int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1768{
1769	struct kernel_siginfo info;
1770
1771	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1772	clear_siginfo(&info);
1773	info.si_signo = SIGBUS;
1774	info.si_errno = 0;
1775	info.si_code = code;
1776	info.si_addr = addr;
1777	info.si_addr_lsb = lsb;
1778	return send_sig_info(info.si_signo, &info, t);
1779}
1780EXPORT_SYMBOL(send_sig_mceerr);
1781
1782int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1783{
1784	struct kernel_siginfo info;
1785
1786	clear_siginfo(&info);
1787	info.si_signo = SIGSEGV;
1788	info.si_errno = 0;
1789	info.si_code  = SEGV_BNDERR;
1790	info.si_addr  = addr;
1791	info.si_lower = lower;
1792	info.si_upper = upper;
1793	return force_sig_info(&info);
1794}
1795
1796#ifdef SEGV_PKUERR
1797int force_sig_pkuerr(void __user *addr, u32 pkey)
1798{
1799	struct kernel_siginfo info;
1800
1801	clear_siginfo(&info);
1802	info.si_signo = SIGSEGV;
1803	info.si_errno = 0;
1804	info.si_code  = SEGV_PKUERR;
1805	info.si_addr  = addr;
1806	info.si_pkey  = pkey;
1807	return force_sig_info(&info);
1808}
1809#endif
1810
1811int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1812{
1813	struct kernel_siginfo info;
1814
1815	clear_siginfo(&info);
1816	info.si_signo     = SIGTRAP;
1817	info.si_errno     = 0;
1818	info.si_code      = TRAP_PERF;
1819	info.si_addr      = addr;
1820	info.si_perf_data = sig_data;
1821	info.si_perf_type = type;
1822
1823	/*
1824	 * Signals generated by perf events should not terminate the whole
1825	 * process if SIGTRAP is blocked, however, delivering the signal
1826	 * asynchronously is better than not delivering at all. But tell user
1827	 * space if the signal was asynchronous, so it can clearly be
1828	 * distinguished from normal synchronous ones.
1829	 */
1830	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1831				     TRAP_PERF_FLAG_ASYNC :
1832				     0;
1833
1834	return send_sig_info(info.si_signo, &info, current);
1835}
1836
1837/**
1838 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1839 * @syscall: syscall number to send to userland
1840 * @reason: filter-supplied reason code to send to userland (via si_errno)
1841 * @force_coredump: true to trigger a coredump
1842 *
1843 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1844 */
1845int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1846{
1847	struct kernel_siginfo info;
1848
1849	clear_siginfo(&info);
1850	info.si_signo = SIGSYS;
1851	info.si_code = SYS_SECCOMP;
1852	info.si_call_addr = (void __user *)KSTK_EIP(current);
1853	info.si_errno = reason;
1854	info.si_arch = syscall_get_arch(current);
1855	info.si_syscall = syscall;
1856	return force_sig_info_to_task(&info, current,
1857		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1858}
1859
1860/* For the crazy architectures that include trap information in
1861 * the errno field, instead of an actual errno value.
1862 */
1863int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1864{
1865	struct kernel_siginfo info;
1866
1867	clear_siginfo(&info);
1868	info.si_signo = SIGTRAP;
1869	info.si_errno = errno;
1870	info.si_code  = TRAP_HWBKPT;
1871	info.si_addr  = addr;
1872	return force_sig_info(&info);
1873}
1874
1875/* For the rare architectures that include trap information using
1876 * si_trapno.
1877 */
1878int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1879{
1880	struct kernel_siginfo info;
1881
1882	clear_siginfo(&info);
1883	info.si_signo = sig;
1884	info.si_errno = 0;
1885	info.si_code  = code;
1886	info.si_addr  = addr;
1887	info.si_trapno = trapno;
1888	return force_sig_info(&info);
1889}
1890
1891/* For the rare architectures that include trap information using
1892 * si_trapno.
1893 */
1894int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1895			  struct task_struct *t)
1896{
1897	struct kernel_siginfo info;
1898
1899	clear_siginfo(&info);
1900	info.si_signo = sig;
1901	info.si_errno = 0;
1902	info.si_code  = code;
1903	info.si_addr  = addr;
1904	info.si_trapno = trapno;
1905	return send_sig_info(info.si_signo, &info, t);
1906}
1907
1908static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1909{
1910	int ret;
1911	read_lock(&tasklist_lock);
1912	ret = __kill_pgrp_info(sig, info, pgrp);
1913	read_unlock(&tasklist_lock);
 
1914	return ret;
1915}
1916
1917int kill_pgrp(struct pid *pid, int sig, int priv)
1918{
1919	return kill_pgrp_info(sig, __si_special(priv), pid);
1920}
1921EXPORT_SYMBOL(kill_pgrp);
1922
1923int kill_pid(struct pid *pid, int sig, int priv)
1924{
1925	return kill_pid_info(sig, __si_special(priv), pid);
1926}
1927EXPORT_SYMBOL(kill_pid);
1928
1929/*
1930 * These functions support sending signals using preallocated sigqueue
1931 * structures.  This is needed "because realtime applications cannot
1932 * afford to lose notifications of asynchronous events, like timer
1933 * expirations or I/O completions".  In the case of POSIX Timers
1934 * we allocate the sigqueue structure from the timer_create.  If this
1935 * allocation fails we are able to report the failure to the application
1936 * with an EAGAIN error.
1937 */
1938struct sigqueue *sigqueue_alloc(void)
1939{
1940	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1941}
1942
1943void sigqueue_free(struct sigqueue *q)
1944{
1945	unsigned long flags;
1946	spinlock_t *lock = &current->sighand->siglock;
1947
1948	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1949	/*
1950	 * We must hold ->siglock while testing q->list
1951	 * to serialize with collect_signal() or with
1952	 * __exit_signal()->flush_sigqueue().
1953	 */
1954	spin_lock_irqsave(lock, flags);
1955	q->flags &= ~SIGQUEUE_PREALLOC;
1956	/*
1957	 * If it is queued it will be freed when dequeued,
1958	 * like the "regular" sigqueue.
1959	 */
1960	if (!list_empty(&q->list))
1961		q = NULL;
1962	spin_unlock_irqrestore(lock, flags);
1963
1964	if (q)
1965		__sigqueue_free(q);
1966}
1967
1968int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1969{
1970	int sig = q->info.si_signo;
1971	struct sigpending *pending;
1972	struct task_struct *t;
1973	unsigned long flags;
1974	int ret, result;
1975
1976	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1977
1978	ret = -1;
1979	rcu_read_lock();
1980
1981	/*
1982	 * This function is used by POSIX timers to deliver a timer signal.
1983	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1984	 * set), the signal must be delivered to the specific thread (queues
1985	 * into t->pending).
1986	 *
1987	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1988	 * process. In this case, prefer to deliver to current if it is in
1989	 * the same thread group as the target process, which avoids
1990	 * unnecessarily waking up a potentially idle task.
1991	 */
1992	t = pid_task(pid, type);
1993	if (!t)
1994		goto ret;
1995	if (type != PIDTYPE_PID && same_thread_group(t, current))
1996		t = current;
1997	if (!likely(lock_task_sighand(t, &flags)))
1998		goto ret;
1999
2000	ret = 1; /* the signal is ignored */
2001	result = TRACE_SIGNAL_IGNORED;
2002	if (!prepare_signal(sig, t, false))
2003		goto out;
2004
2005	ret = 0;
2006	if (unlikely(!list_empty(&q->list))) {
2007		/*
2008		 * If an SI_TIMER entry is already queue just increment
2009		 * the overrun count.
2010		 */
2011		BUG_ON(q->info.si_code != SI_TIMER);
2012		q->info.si_overrun++;
2013		result = TRACE_SIGNAL_ALREADY_PENDING;
2014		goto out;
2015	}
2016	q->info.si_overrun = 0;
2017
2018	signalfd_notify(t, sig);
2019	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2020	list_add_tail(&q->list, &pending->list);
2021	sigaddset(&pending->signal, sig);
2022	complete_signal(sig, t, type);
2023	result = TRACE_SIGNAL_DELIVERED;
2024out:
2025	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2026	unlock_task_sighand(t, &flags);
2027ret:
2028	rcu_read_unlock();
2029	return ret;
2030}
2031
2032void do_notify_pidfd(struct task_struct *task)
2033{
2034	struct pid *pid = task_pid(task);
2035
2036	WARN_ON(task->exit_state == 0);
2037
2038	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2039			poll_to_key(EPOLLIN | EPOLLRDNORM));
2040}
2041
2042/*
2043 * Let a parent know about the death of a child.
2044 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2045 *
2046 * Returns true if our parent ignored us and so we've switched to
2047 * self-reaping.
2048 */
2049bool do_notify_parent(struct task_struct *tsk, int sig)
2050{
2051	struct kernel_siginfo info;
2052	unsigned long flags;
2053	struct sighand_struct *psig;
2054	bool autoreap = false;
2055	u64 utime, stime;
2056
2057	WARN_ON_ONCE(sig == -1);
2058
2059	/* do_notify_parent_cldstop should have been called instead.  */
2060	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2061
2062	WARN_ON_ONCE(!tsk->ptrace &&
2063	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2064	/*
2065	 * tsk is a group leader and has no threads, wake up the
2066	 * non-PIDFD_THREAD waiters.
2067	 */
2068	if (thread_group_empty(tsk))
2069		do_notify_pidfd(tsk);
2070
2071	if (sig != SIGCHLD) {
2072		/*
2073		 * This is only possible if parent == real_parent.
2074		 * Check if it has changed security domain.
2075		 */
2076		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2077			sig = SIGCHLD;
2078	}
2079
2080	clear_siginfo(&info);
2081	info.si_signo = sig;
2082	info.si_errno = 0;
2083	/*
2084	 * We are under tasklist_lock here so our parent is tied to
2085	 * us and cannot change.
2086	 *
2087	 * task_active_pid_ns will always return the same pid namespace
2088	 * until a task passes through release_task.
2089	 *
2090	 * write_lock() currently calls preempt_disable() which is the
2091	 * same as rcu_read_lock(), but according to Oleg, this is not
2092	 * correct to rely on this
2093	 */
2094	rcu_read_lock();
2095	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2096	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2097				       task_uid(tsk));
2098	rcu_read_unlock();
2099
2100	task_cputime(tsk, &utime, &stime);
2101	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2102	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2103
2104	info.si_status = tsk->exit_code & 0x7f;
2105	if (tsk->exit_code & 0x80)
2106		info.si_code = CLD_DUMPED;
2107	else if (tsk->exit_code & 0x7f)
2108		info.si_code = CLD_KILLED;
2109	else {
2110		info.si_code = CLD_EXITED;
2111		info.si_status = tsk->exit_code >> 8;
2112	}
2113
2114	psig = tsk->parent->sighand;
2115	spin_lock_irqsave(&psig->siglock, flags);
2116	if (!tsk->ptrace && sig == SIGCHLD &&
2117	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2118	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2119		/*
2120		 * We are exiting and our parent doesn't care.  POSIX.1
2121		 * defines special semantics for setting SIGCHLD to SIG_IGN
2122		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2123		 * automatically and not left for our parent's wait4 call.
2124		 * Rather than having the parent do it as a magic kind of
2125		 * signal handler, we just set this to tell do_exit that we
2126		 * can be cleaned up without becoming a zombie.  Note that
2127		 * we still call __wake_up_parent in this case, because a
2128		 * blocked sys_wait4 might now return -ECHILD.
2129		 *
2130		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2131		 * is implementation-defined: we do (if you don't want
2132		 * it, just use SIG_IGN instead).
2133		 */
2134		autoreap = true;
2135		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2136			sig = 0;
2137	}
2138	/*
2139	 * Send with __send_signal as si_pid and si_uid are in the
2140	 * parent's namespaces.
2141	 */
2142	if (valid_signal(sig) && sig)
2143		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2144	__wake_up_parent(tsk, tsk->parent);
2145	spin_unlock_irqrestore(&psig->siglock, flags);
2146
2147	return autoreap;
2148}
2149
2150/**
2151 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2152 * @tsk: task reporting the state change
2153 * @for_ptracer: the notification is for ptracer
2154 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2155 *
2156 * Notify @tsk's parent that the stopped/continued state has changed.  If
2157 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2158 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2159 *
2160 * CONTEXT:
2161 * Must be called with tasklist_lock at least read locked.
2162 */
2163static void do_notify_parent_cldstop(struct task_struct *tsk,
2164				     bool for_ptracer, int why)
2165{
2166	struct kernel_siginfo info;
2167	unsigned long flags;
2168	struct task_struct *parent;
2169	struct sighand_struct *sighand;
2170	u64 utime, stime;
2171
2172	if (for_ptracer) {
2173		parent = tsk->parent;
2174	} else {
2175		tsk = tsk->group_leader;
2176		parent = tsk->real_parent;
2177	}
2178
2179	clear_siginfo(&info);
2180	info.si_signo = SIGCHLD;
2181	info.si_errno = 0;
2182	/*
2183	 * see comment in do_notify_parent() about the following 4 lines
2184	 */
2185	rcu_read_lock();
2186	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2187	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2188	rcu_read_unlock();
2189
2190	task_cputime(tsk, &utime, &stime);
2191	info.si_utime = nsec_to_clock_t(utime);
2192	info.si_stime = nsec_to_clock_t(stime);
2193
2194 	info.si_code = why;
2195 	switch (why) {
2196 	case CLD_CONTINUED:
2197 		info.si_status = SIGCONT;
2198 		break;
2199 	case CLD_STOPPED:
2200 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2201 		break;
2202 	case CLD_TRAPPED:
2203 		info.si_status = tsk->exit_code & 0x7f;
2204 		break;
2205 	default:
2206 		BUG();
2207 	}
2208
2209	sighand = parent->sighand;
2210	spin_lock_irqsave(&sighand->siglock, flags);
2211	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2212	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2213		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2214	/*
2215	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2216	 */
2217	__wake_up_parent(tsk, parent);
2218	spin_unlock_irqrestore(&sighand->siglock, flags);
2219}
2220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221/*
2222 * This must be called with current->sighand->siglock held.
2223 *
2224 * This should be the path for all ptrace stops.
2225 * We always set current->last_siginfo while stopped here.
2226 * That makes it a way to test a stopped process for
2227 * being ptrace-stopped vs being job-control-stopped.
2228 *
2229 * Returns the signal the ptracer requested the code resume
2230 * with.  If the code did not stop because the tracer is gone,
2231 * the stop signal remains unchanged unless clear_code.
2232 */
2233static int ptrace_stop(int exit_code, int why, unsigned long message,
2234		       kernel_siginfo_t *info)
2235	__releases(&current->sighand->siglock)
2236	__acquires(&current->sighand->siglock)
2237{
2238	bool gstop_done = false;
2239
2240	if (arch_ptrace_stop_needed()) {
2241		/*
2242		 * The arch code has something special to do before a
2243		 * ptrace stop.  This is allowed to block, e.g. for faults
2244		 * on user stack pages.  We can't keep the siglock while
2245		 * calling arch_ptrace_stop, so we must release it now.
2246		 * To preserve proper semantics, we must do this before
2247		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2248		 */
2249		spin_unlock_irq(&current->sighand->siglock);
2250		arch_ptrace_stop();
2251		spin_lock_irq(&current->sighand->siglock);
 
 
2252	}
2253
2254	/*
2255	 * After this point ptrace_signal_wake_up or signal_wake_up
2256	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2257	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2258	 * signals here to prevent ptrace_stop sleeping in schedule.
2259	 */
2260	if (!current->ptrace || __fatal_signal_pending(current))
2261		return exit_code;
2262
2263	set_special_state(TASK_TRACED);
2264	current->jobctl |= JOBCTL_TRACED;
2265
2266	/*
2267	 * We're committing to trapping.  TRACED should be visible before
2268	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2269	 * Also, transition to TRACED and updates to ->jobctl should be
2270	 * atomic with respect to siglock and should be done after the arch
2271	 * hook as siglock is released and regrabbed across it.
2272	 *
2273	 *     TRACER				    TRACEE
2274	 *
2275	 *     ptrace_attach()
2276	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2277	 *     do_wait()
2278	 *       set_current_state()                smp_wmb();
2279	 *       ptrace_do_wait()
2280	 *         wait_task_stopped()
2281	 *           task_stopped_code()
2282	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2283	 */
2284	smp_wmb();
2285
2286	current->ptrace_message = message;
2287	current->last_siginfo = info;
2288	current->exit_code = exit_code;
2289
2290	/*
2291	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2292	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2293	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2294	 * could be clear now.  We act as if SIGCONT is received after
2295	 * TASK_TRACED is entered - ignore it.
2296	 */
2297	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2298		gstop_done = task_participate_group_stop(current);
2299
2300	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2301	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2302	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2303		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2304
2305	/* entering a trap, clear TRAPPING */
2306	task_clear_jobctl_trapping(current);
2307
2308	spin_unlock_irq(&current->sighand->siglock);
2309	read_lock(&tasklist_lock);
2310	/*
2311	 * Notify parents of the stop.
2312	 *
2313	 * While ptraced, there are two parents - the ptracer and
2314	 * the real_parent of the group_leader.  The ptracer should
2315	 * know about every stop while the real parent is only
2316	 * interested in the completion of group stop.  The states
2317	 * for the two don't interact with each other.  Notify
2318	 * separately unless they're gonna be duplicates.
2319	 */
2320	if (current->ptrace)
2321		do_notify_parent_cldstop(current, true, why);
2322	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2323		do_notify_parent_cldstop(current, false, why);
2324
2325	/*
2326	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2327	 * One a PREEMPTION kernel this can result in preemption requirement
2328	 * which will be fulfilled after read_unlock() and the ptracer will be
2329	 * put on the CPU.
2330	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2331	 * this task wait in schedule(). If this task gets preempted then it
2332	 * remains enqueued on the runqueue. The ptracer will observe this and
2333	 * then sleep for a delay of one HZ tick. In the meantime this task
2334	 * gets scheduled, enters schedule() and will wait for the ptracer.
2335	 *
2336	 * This preemption point is not bad from a correctness point of
2337	 * view but extends the runtime by one HZ tick time due to the
2338	 * ptracer's sleep.  The preempt-disable section ensures that there
2339	 * will be no preemption between unlock and schedule() and so
2340	 * improving the performance since the ptracer will observe that
2341	 * the tracee is scheduled out once it gets on the CPU.
2342	 *
2343	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2344	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2345	 * before unlocking tasklist_lock so there is no benefit in doing this.
2346	 *
2347	 * In fact disabling preemption is harmful on PREEMPT_RT because
2348	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2349	 * with preemption disabled due to the 'sleeping' spinlock
2350	 * substitution of RT.
2351	 */
2352	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2353		preempt_disable();
2354	read_unlock(&tasklist_lock);
2355	cgroup_enter_frozen();
2356	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2357		preempt_enable_no_resched();
2358	schedule();
2359	cgroup_leave_frozen(true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2360
2361	/*
2362	 * We are back.  Now reacquire the siglock before touching
2363	 * last_siginfo, so that we are sure to have synchronized with
2364	 * any signal-sending on another CPU that wants to examine it.
2365	 */
2366	spin_lock_irq(&current->sighand->siglock);
2367	exit_code = current->exit_code;
2368	current->last_siginfo = NULL;
2369	current->ptrace_message = 0;
2370	current->exit_code = 0;
2371
2372	/* LISTENING can be set only during STOP traps, clear it */
2373	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2374
2375	/*
2376	 * Queued signals ignored us while we were stopped for tracing.
2377	 * So check for any that we should take before resuming user mode.
2378	 * This sets TIF_SIGPENDING, but never clears it.
2379	 */
2380	recalc_sigpending_tsk(current);
2381	return exit_code;
2382}
2383
2384static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2385{
2386	kernel_siginfo_t info;
2387
2388	clear_siginfo(&info);
2389	info.si_signo = signr;
2390	info.si_code = exit_code;
2391	info.si_pid = task_pid_vnr(current);
2392	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2393
2394	/* Let the debugger run.  */
2395	return ptrace_stop(exit_code, why, message, &info);
2396}
2397
2398int ptrace_notify(int exit_code, unsigned long message)
2399{
2400	int signr;
2401
2402	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2403	if (unlikely(task_work_pending(current)))
2404		task_work_run();
2405
2406	spin_lock_irq(&current->sighand->siglock);
2407	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2408	spin_unlock_irq(&current->sighand->siglock);
2409	return signr;
2410}
2411
2412/**
2413 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2414 * @signr: signr causing group stop if initiating
2415 *
2416 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2417 * and participate in it.  If already set, participate in the existing
2418 * group stop.  If participated in a group stop (and thus slept), %true is
2419 * returned with siglock released.
2420 *
2421 * If ptraced, this function doesn't handle stop itself.  Instead,
2422 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2423 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2424 * places afterwards.
2425 *
2426 * CONTEXT:
2427 * Must be called with @current->sighand->siglock held, which is released
2428 * on %true return.
2429 *
2430 * RETURNS:
2431 * %false if group stop is already cancelled or ptrace trap is scheduled.
2432 * %true if participated in group stop.
2433 */
2434static bool do_signal_stop(int signr)
2435	__releases(&current->sighand->siglock)
2436{
2437	struct signal_struct *sig = current->signal;
2438
2439	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2440		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2441		struct task_struct *t;
2442
2443		/* signr will be recorded in task->jobctl for retries */
2444		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2445
2446		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2447		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2448		    unlikely(sig->group_exec_task))
2449			return false;
2450		/*
2451		 * There is no group stop already in progress.  We must
2452		 * initiate one now.
2453		 *
2454		 * While ptraced, a task may be resumed while group stop is
2455		 * still in effect and then receive a stop signal and
2456		 * initiate another group stop.  This deviates from the
2457		 * usual behavior as two consecutive stop signals can't
2458		 * cause two group stops when !ptraced.  That is why we
2459		 * also check !task_is_stopped(t) below.
2460		 *
2461		 * The condition can be distinguished by testing whether
2462		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2463		 * group_exit_code in such case.
2464		 *
2465		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2466		 * an intervening stop signal is required to cause two
2467		 * continued events regardless of ptrace.
2468		 */
2469		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2470			sig->group_exit_code = signr;
2471
2472		sig->group_stop_count = 0;
 
2473		if (task_set_jobctl_pending(current, signr | gstop))
2474			sig->group_stop_count++;
2475
2476		for_other_threads(current, t) {
 
2477			/*
2478			 * Setting state to TASK_STOPPED for a group
2479			 * stop is always done with the siglock held,
2480			 * so this check has no races.
2481			 */
2482			if (!task_is_stopped(t) &&
2483			    task_set_jobctl_pending(t, signr | gstop)) {
2484				sig->group_stop_count++;
2485				if (likely(!(t->ptrace & PT_SEIZED)))
2486					signal_wake_up(t, 0);
2487				else
2488					ptrace_trap_notify(t);
2489			}
2490		}
2491	}
2492
2493	if (likely(!current->ptrace)) {
2494		int notify = 0;
2495
2496		/*
2497		 * If there are no other threads in the group, or if there
2498		 * is a group stop in progress and we are the last to stop,
2499		 * report to the parent.
2500		 */
2501		if (task_participate_group_stop(current))
2502			notify = CLD_STOPPED;
2503
2504		current->jobctl |= JOBCTL_STOPPED;
2505		set_special_state(TASK_STOPPED);
2506		spin_unlock_irq(&current->sighand->siglock);
2507
2508		/*
2509		 * Notify the parent of the group stop completion.  Because
2510		 * we're not holding either the siglock or tasklist_lock
2511		 * here, ptracer may attach inbetween; however, this is for
2512		 * group stop and should always be delivered to the real
2513		 * parent of the group leader.  The new ptracer will get
2514		 * its notification when this task transitions into
2515		 * TASK_TRACED.
2516		 */
2517		if (notify) {
2518			read_lock(&tasklist_lock);
2519			do_notify_parent_cldstop(current, false, notify);
2520			read_unlock(&tasklist_lock);
2521		}
2522
2523		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2524		cgroup_enter_frozen();
2525		schedule();
2526		return true;
2527	} else {
2528		/*
2529		 * While ptraced, group stop is handled by STOP trap.
2530		 * Schedule it and let the caller deal with it.
2531		 */
2532		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2533		return false;
2534	}
2535}
2536
2537/**
2538 * do_jobctl_trap - take care of ptrace jobctl traps
2539 *
2540 * When PT_SEIZED, it's used for both group stop and explicit
2541 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2542 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2543 * the stop signal; otherwise, %SIGTRAP.
2544 *
2545 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2546 * number as exit_code and no siginfo.
2547 *
2548 * CONTEXT:
2549 * Must be called with @current->sighand->siglock held, which may be
2550 * released and re-acquired before returning with intervening sleep.
2551 */
2552static void do_jobctl_trap(void)
2553{
2554	struct signal_struct *signal = current->signal;
2555	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2556
2557	if (current->ptrace & PT_SEIZED) {
2558		if (!signal->group_stop_count &&
2559		    !(signal->flags & SIGNAL_STOP_STOPPED))
2560			signr = SIGTRAP;
2561		WARN_ON_ONCE(!signr);
2562		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2563				 CLD_STOPPED, 0);
2564	} else {
2565		WARN_ON_ONCE(!signr);
2566		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2567	}
2568}
2569
2570/**
2571 * do_freezer_trap - handle the freezer jobctl trap
2572 *
2573 * Puts the task into frozen state, if only the task is not about to quit.
2574 * In this case it drops JOBCTL_TRAP_FREEZE.
2575 *
2576 * CONTEXT:
2577 * Must be called with @current->sighand->siglock held,
2578 * which is always released before returning.
2579 */
2580static void do_freezer_trap(void)
2581	__releases(&current->sighand->siglock)
2582{
2583	/*
2584	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2585	 * let's make another loop to give it a chance to be handled.
2586	 * In any case, we'll return back.
2587	 */
2588	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2589	     JOBCTL_TRAP_FREEZE) {
2590		spin_unlock_irq(&current->sighand->siglock);
2591		return;
2592	}
2593
2594	/*
2595	 * Now we're sure that there is no pending fatal signal and no
2596	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2597	 * immediately (if there is a non-fatal signal pending), and
2598	 * put the task into sleep.
2599	 */
2600	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2601	clear_thread_flag(TIF_SIGPENDING);
2602	spin_unlock_irq(&current->sighand->siglock);
2603	cgroup_enter_frozen();
2604	schedule();
2605}
2606
2607static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2608{
 
2609	/*
2610	 * We do not check sig_kernel_stop(signr) but set this marker
2611	 * unconditionally because we do not know whether debugger will
2612	 * change signr. This flag has no meaning unless we are going
2613	 * to stop after return from ptrace_stop(). In this case it will
2614	 * be checked in do_signal_stop(), we should only stop if it was
2615	 * not cleared by SIGCONT while we were sleeping. See also the
2616	 * comment in dequeue_signal().
2617	 */
2618	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2619	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2620
2621	/* We're back.  Did the debugger cancel the sig?  */
 
2622	if (signr == 0)
2623		return signr;
2624
 
 
2625	/*
2626	 * Update the siginfo structure if the signal has
2627	 * changed.  If the debugger wanted something
2628	 * specific in the siginfo structure then it should
2629	 * have updated *info via PTRACE_SETSIGINFO.
2630	 */
2631	if (signr != info->si_signo) {
2632		clear_siginfo(info);
2633		info->si_signo = signr;
2634		info->si_errno = 0;
2635		info->si_code = SI_USER;
2636		rcu_read_lock();
2637		info->si_pid = task_pid_vnr(current->parent);
2638		info->si_uid = from_kuid_munged(current_user_ns(),
2639						task_uid(current->parent));
2640		rcu_read_unlock();
2641	}
2642
2643	/* If the (new) signal is now blocked, requeue it.  */
2644	if (sigismember(&current->blocked, signr) ||
2645	    fatal_signal_pending(current)) {
2646		send_signal_locked(signr, info, current, type);
2647		signr = 0;
2648	}
2649
2650	return signr;
2651}
2652
2653static void hide_si_addr_tag_bits(struct ksignal *ksig)
2654{
2655	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2656	case SIL_FAULT:
2657	case SIL_FAULT_TRAPNO:
2658	case SIL_FAULT_MCEERR:
2659	case SIL_FAULT_BNDERR:
2660	case SIL_FAULT_PKUERR:
2661	case SIL_FAULT_PERF_EVENT:
2662		ksig->info.si_addr = arch_untagged_si_addr(
2663			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2664		break;
2665	case SIL_KILL:
2666	case SIL_TIMER:
2667	case SIL_POLL:
2668	case SIL_CHLD:
2669	case SIL_RT:
2670	case SIL_SYS:
2671		break;
2672	}
2673}
2674
2675bool get_signal(struct ksignal *ksig)
2676{
2677	struct sighand_struct *sighand = current->sighand;
2678	struct signal_struct *signal = current->signal;
2679	int signr;
2680
2681	clear_notify_signal();
2682	if (unlikely(task_work_pending(current)))
2683		task_work_run();
2684
2685	if (!task_sigpending(current))
2686		return false;
2687
2688	if (unlikely(uprobe_deny_signal()))
2689		return false;
2690
2691	/*
2692	 * Do this once, we can't return to user-mode if freezing() == T.
2693	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2694	 * thus do not need another check after return.
2695	 */
2696	try_to_freeze();
2697
2698relock:
2699	spin_lock_irq(&sighand->siglock);
2700
2701	/*
2702	 * Every stopped thread goes here after wakeup. Check to see if
2703	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2704	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2705	 */
2706	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2707		int why;
2708
2709		if (signal->flags & SIGNAL_CLD_CONTINUED)
2710			why = CLD_CONTINUED;
2711		else
2712			why = CLD_STOPPED;
2713
2714		signal->flags &= ~SIGNAL_CLD_MASK;
2715
2716		spin_unlock_irq(&sighand->siglock);
2717
2718		/*
2719		 * Notify the parent that we're continuing.  This event is
2720		 * always per-process and doesn't make whole lot of sense
2721		 * for ptracers, who shouldn't consume the state via
2722		 * wait(2) either, but, for backward compatibility, notify
2723		 * the ptracer of the group leader too unless it's gonna be
2724		 * a duplicate.
2725		 */
2726		read_lock(&tasklist_lock);
2727		do_notify_parent_cldstop(current, false, why);
2728
2729		if (ptrace_reparented(current->group_leader))
2730			do_notify_parent_cldstop(current->group_leader,
2731						true, why);
2732		read_unlock(&tasklist_lock);
2733
2734		goto relock;
2735	}
2736
2737	for (;;) {
2738		struct k_sigaction *ka;
2739		enum pid_type type;
2740
2741		/* Has this task already been marked for death? */
2742		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2743		     signal->group_exec_task) {
2744			signr = SIGKILL;
2745			sigdelset(&current->pending.signal, SIGKILL);
2746			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2747					     &sighand->action[SIGKILL-1]);
2748			recalc_sigpending();
2749			/*
2750			 * implies do_group_exit() or return to PF_USER_WORKER,
2751			 * no need to initialize ksig->info/etc.
2752			 */
2753			goto fatal;
2754		}
2755
2756		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2757		    do_signal_stop(0))
2758			goto relock;
2759
2760		if (unlikely(current->jobctl &
2761			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2762			if (current->jobctl & JOBCTL_TRAP_MASK) {
2763				do_jobctl_trap();
2764				spin_unlock_irq(&sighand->siglock);
2765			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2766				do_freezer_trap();
2767
2768			goto relock;
2769		}
2770
2771		/*
2772		 * If the task is leaving the frozen state, let's update
2773		 * cgroup counters and reset the frozen bit.
2774		 */
2775		if (unlikely(cgroup_task_frozen(current))) {
2776			spin_unlock_irq(&sighand->siglock);
2777			cgroup_leave_frozen(false);
2778			goto relock;
2779		}
2780
2781		/*
2782		 * Signals generated by the execution of an instruction
2783		 * need to be delivered before any other pending signals
2784		 * so that the instruction pointer in the signal stack
2785		 * frame points to the faulting instruction.
2786		 */
2787		type = PIDTYPE_PID;
2788		signr = dequeue_synchronous_signal(&ksig->info);
2789		if (!signr)
2790			signr = dequeue_signal(current, &current->blocked,
2791					       &ksig->info, &type);
2792
2793		if (!signr)
2794			break; /* will return 0 */
2795
2796		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2797		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2798			signr = ptrace_signal(signr, &ksig->info, type);
2799			if (!signr)
2800				continue;
2801		}
2802
2803		ka = &sighand->action[signr-1];
2804
2805		/* Trace actually delivered signals. */
2806		trace_signal_deliver(signr, &ksig->info, ka);
2807
2808		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2809			continue;
2810		if (ka->sa.sa_handler != SIG_DFL) {
2811			/* Run the handler.  */
2812			ksig->ka = *ka;
2813
2814			if (ka->sa.sa_flags & SA_ONESHOT)
2815				ka->sa.sa_handler = SIG_DFL;
2816
2817			break; /* will return non-zero "signr" value */
2818		}
2819
2820		/*
2821		 * Now we are doing the default action for this signal.
2822		 */
2823		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2824			continue;
2825
2826		/*
2827		 * Global init gets no signals it doesn't want.
2828		 * Container-init gets no signals it doesn't want from same
2829		 * container.
2830		 *
2831		 * Note that if global/container-init sees a sig_kernel_only()
2832		 * signal here, the signal must have been generated internally
2833		 * or must have come from an ancestor namespace. In either
2834		 * case, the signal cannot be dropped.
2835		 */
2836		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2837				!sig_kernel_only(signr))
2838			continue;
2839
2840		if (sig_kernel_stop(signr)) {
2841			/*
2842			 * The default action is to stop all threads in
2843			 * the thread group.  The job control signals
2844			 * do nothing in an orphaned pgrp, but SIGSTOP
2845			 * always works.  Note that siglock needs to be
2846			 * dropped during the call to is_orphaned_pgrp()
2847			 * because of lock ordering with tasklist_lock.
2848			 * This allows an intervening SIGCONT to be posted.
2849			 * We need to check for that and bail out if necessary.
2850			 */
2851			if (signr != SIGSTOP) {
2852				spin_unlock_irq(&sighand->siglock);
2853
2854				/* signals can be posted during this window */
2855
2856				if (is_current_pgrp_orphaned())
2857					goto relock;
2858
2859				spin_lock_irq(&sighand->siglock);
2860			}
2861
2862			if (likely(do_signal_stop(signr))) {
2863				/* It released the siglock.  */
2864				goto relock;
2865			}
2866
2867			/*
2868			 * We didn't actually stop, due to a race
2869			 * with SIGCONT or something like that.
2870			 */
2871			continue;
2872		}
2873
2874	fatal:
2875		spin_unlock_irq(&sighand->siglock);
2876		if (unlikely(cgroup_task_frozen(current)))
2877			cgroup_leave_frozen(true);
2878
2879		/*
2880		 * Anything else is fatal, maybe with a core dump.
2881		 */
2882		current->flags |= PF_SIGNALED;
2883
2884		if (sig_kernel_coredump(signr)) {
2885			if (print_fatal_signals)
2886				print_fatal_signal(signr);
2887			proc_coredump_connector(current);
2888			/*
2889			 * If it was able to dump core, this kills all
2890			 * other threads in the group and synchronizes with
2891			 * their demise.  If we lost the race with another
2892			 * thread getting here, it set group_exit_code
2893			 * first and our do_group_exit call below will use
2894			 * that value and ignore the one we pass it.
2895			 */
2896			do_coredump(&ksig->info);
2897		}
2898
2899		/*
2900		 * PF_USER_WORKER threads will catch and exit on fatal signals
2901		 * themselves. They have cleanup that must be performed, so we
2902		 * cannot call do_exit() on their behalf. Note that ksig won't
2903		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
2904		 */
2905		if (current->flags & PF_USER_WORKER)
2906			goto out;
2907
2908		/*
2909		 * Death signals, no core dump.
2910		 */
2911		do_group_exit(signr);
2912		/* NOTREACHED */
2913	}
2914	spin_unlock_irq(&sighand->siglock);
2915
2916	ksig->sig = signr;
2917
2918	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2919		hide_si_addr_tag_bits(ksig);
2920out:
2921	return signr > 0;
2922}
2923
2924/**
2925 * signal_delivered - called after signal delivery to update blocked signals
2926 * @ksig:		kernel signal struct
2927 * @stepping:		nonzero if debugger single-step or block-step in use
2928 *
2929 * This function should be called when a signal has successfully been
2930 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2931 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2932 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2933 */
2934static void signal_delivered(struct ksignal *ksig, int stepping)
2935{
2936	sigset_t blocked;
2937
2938	/* A signal was successfully delivered, and the
2939	   saved sigmask was stored on the signal frame,
2940	   and will be restored by sigreturn.  So we can
2941	   simply clear the restore sigmask flag.  */
2942	clear_restore_sigmask();
2943
2944	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2945	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2946		sigaddset(&blocked, ksig->sig);
2947	set_current_blocked(&blocked);
2948	if (current->sas_ss_flags & SS_AUTODISARM)
2949		sas_ss_reset(current);
2950	if (stepping)
2951		ptrace_notify(SIGTRAP, 0);
2952}
2953
2954void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2955{
2956	if (failed)
2957		force_sigsegv(ksig->sig);
2958	else
2959		signal_delivered(ksig, stepping);
2960}
2961
2962/*
2963 * It could be that complete_signal() picked us to notify about the
2964 * group-wide signal. Other threads should be notified now to take
2965 * the shared signals in @which since we will not.
2966 */
2967static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2968{
2969	sigset_t retarget;
2970	struct task_struct *t;
2971
2972	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2973	if (sigisemptyset(&retarget))
2974		return;
2975
2976	for_other_threads(tsk, t) {
 
2977		if (t->flags & PF_EXITING)
2978			continue;
2979
2980		if (!has_pending_signals(&retarget, &t->blocked))
2981			continue;
2982		/* Remove the signals this thread can handle. */
2983		sigandsets(&retarget, &retarget, &t->blocked);
2984
2985		if (!task_sigpending(t))
2986			signal_wake_up(t, 0);
2987
2988		if (sigisemptyset(&retarget))
2989			break;
2990	}
2991}
2992
2993void exit_signals(struct task_struct *tsk)
2994{
2995	int group_stop = 0;
2996	sigset_t unblocked;
2997
2998	/*
2999	 * @tsk is about to have PF_EXITING set - lock out users which
3000	 * expect stable threadgroup.
3001	 */
3002	cgroup_threadgroup_change_begin(tsk);
3003
3004	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3005		sched_mm_cid_exit_signals(tsk);
3006		tsk->flags |= PF_EXITING;
3007		cgroup_threadgroup_change_end(tsk);
3008		return;
3009	}
3010
3011	spin_lock_irq(&tsk->sighand->siglock);
3012	/*
3013	 * From now this task is not visible for group-wide signals,
3014	 * see wants_signal(), do_signal_stop().
3015	 */
3016	sched_mm_cid_exit_signals(tsk);
3017	tsk->flags |= PF_EXITING;
3018
3019	cgroup_threadgroup_change_end(tsk);
3020
3021	if (!task_sigpending(tsk))
3022		goto out;
3023
3024	unblocked = tsk->blocked;
3025	signotset(&unblocked);
3026	retarget_shared_pending(tsk, &unblocked);
3027
3028	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3029	    task_participate_group_stop(tsk))
3030		group_stop = CLD_STOPPED;
3031out:
3032	spin_unlock_irq(&tsk->sighand->siglock);
3033
3034	/*
3035	 * If group stop has completed, deliver the notification.  This
3036	 * should always go to the real parent of the group leader.
3037	 */
3038	if (unlikely(group_stop)) {
3039		read_lock(&tasklist_lock);
3040		do_notify_parent_cldstop(tsk, false, group_stop);
3041		read_unlock(&tasklist_lock);
3042	}
3043}
3044
 
 
 
 
 
 
 
 
3045/*
3046 * System call entry points.
3047 */
3048
3049/**
3050 *  sys_restart_syscall - restart a system call
3051 */
3052SYSCALL_DEFINE0(restart_syscall)
3053{
3054	struct restart_block *restart = &current->restart_block;
3055	return restart->fn(restart);
3056}
3057
3058long do_no_restart_syscall(struct restart_block *param)
3059{
3060	return -EINTR;
3061}
3062
3063static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3064{
3065	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3066		sigset_t newblocked;
3067		/* A set of now blocked but previously unblocked signals. */
3068		sigandnsets(&newblocked, newset, &current->blocked);
3069		retarget_shared_pending(tsk, &newblocked);
3070	}
3071	tsk->blocked = *newset;
3072	recalc_sigpending();
3073}
3074
3075/**
3076 * set_current_blocked - change current->blocked mask
3077 * @newset: new mask
3078 *
3079 * It is wrong to change ->blocked directly, this helper should be used
3080 * to ensure the process can't miss a shared signal we are going to block.
3081 */
3082void set_current_blocked(sigset_t *newset)
3083{
3084	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3085	__set_current_blocked(newset);
3086}
3087
3088void __set_current_blocked(const sigset_t *newset)
3089{
3090	struct task_struct *tsk = current;
3091
3092	/*
3093	 * In case the signal mask hasn't changed, there is nothing we need
3094	 * to do. The current->blocked shouldn't be modified by other task.
3095	 */
3096	if (sigequalsets(&tsk->blocked, newset))
3097		return;
3098
3099	spin_lock_irq(&tsk->sighand->siglock);
3100	__set_task_blocked(tsk, newset);
3101	spin_unlock_irq(&tsk->sighand->siglock);
3102}
3103
3104/*
3105 * This is also useful for kernel threads that want to temporarily
3106 * (or permanently) block certain signals.
3107 *
3108 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3109 * interface happily blocks "unblockable" signals like SIGKILL
3110 * and friends.
3111 */
3112int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3113{
3114	struct task_struct *tsk = current;
3115	sigset_t newset;
3116
3117	/* Lockless, only current can change ->blocked, never from irq */
3118	if (oldset)
3119		*oldset = tsk->blocked;
3120
3121	switch (how) {
3122	case SIG_BLOCK:
3123		sigorsets(&newset, &tsk->blocked, set);
3124		break;
3125	case SIG_UNBLOCK:
3126		sigandnsets(&newset, &tsk->blocked, set);
3127		break;
3128	case SIG_SETMASK:
3129		newset = *set;
3130		break;
3131	default:
3132		return -EINVAL;
3133	}
3134
3135	__set_current_blocked(&newset);
3136	return 0;
3137}
3138EXPORT_SYMBOL(sigprocmask);
3139
3140/*
3141 * The api helps set app-provided sigmasks.
3142 *
3143 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3144 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3145 *
3146 * Note that it does set_restore_sigmask() in advance, so it must be always
3147 * paired with restore_saved_sigmask_unless() before return from syscall.
3148 */
3149int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3150{
3151	sigset_t kmask;
3152
3153	if (!umask)
3154		return 0;
3155	if (sigsetsize != sizeof(sigset_t))
3156		return -EINVAL;
3157	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3158		return -EFAULT;
3159
3160	set_restore_sigmask();
3161	current->saved_sigmask = current->blocked;
3162	set_current_blocked(&kmask);
3163
3164	return 0;
3165}
3166
3167#ifdef CONFIG_COMPAT
3168int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3169			    size_t sigsetsize)
3170{
3171	sigset_t kmask;
3172
3173	if (!umask)
3174		return 0;
3175	if (sigsetsize != sizeof(compat_sigset_t))
3176		return -EINVAL;
3177	if (get_compat_sigset(&kmask, umask))
3178		return -EFAULT;
3179
3180	set_restore_sigmask();
3181	current->saved_sigmask = current->blocked;
3182	set_current_blocked(&kmask);
3183
3184	return 0;
3185}
3186#endif
3187
3188/**
3189 *  sys_rt_sigprocmask - change the list of currently blocked signals
3190 *  @how: whether to add, remove, or set signals
3191 *  @nset: stores pending signals
3192 *  @oset: previous value of signal mask if non-null
3193 *  @sigsetsize: size of sigset_t type
3194 */
3195SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3196		sigset_t __user *, oset, size_t, sigsetsize)
3197{
3198	sigset_t old_set, new_set;
3199	int error;
3200
3201	/* XXX: Don't preclude handling different sized sigset_t's.  */
3202	if (sigsetsize != sizeof(sigset_t))
3203		return -EINVAL;
3204
3205	old_set = current->blocked;
3206
3207	if (nset) {
3208		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3209			return -EFAULT;
3210		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3211
3212		error = sigprocmask(how, &new_set, NULL);
3213		if (error)
3214			return error;
3215	}
3216
3217	if (oset) {
3218		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3219			return -EFAULT;
3220	}
3221
3222	return 0;
3223}
3224
3225#ifdef CONFIG_COMPAT
3226COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3227		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3228{
 
3229	sigset_t old_set = current->blocked;
3230
3231	/* XXX: Don't preclude handling different sized sigset_t's.  */
3232	if (sigsetsize != sizeof(sigset_t))
3233		return -EINVAL;
3234
3235	if (nset) {
 
3236		sigset_t new_set;
3237		int error;
3238		if (get_compat_sigset(&new_set, nset))
3239			return -EFAULT;
 
 
3240		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3241
3242		error = sigprocmask(how, &new_set, NULL);
3243		if (error)
3244			return error;
3245	}
3246	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
 
 
 
 
 
 
 
 
 
 
3247}
3248#endif
3249
3250static void do_sigpending(sigset_t *set)
3251{
 
 
 
3252	spin_lock_irq(&current->sighand->siglock);
3253	sigorsets(set, &current->pending.signal,
3254		  &current->signal->shared_pending.signal);
3255	spin_unlock_irq(&current->sighand->siglock);
3256
3257	/* Outside the lock because only this thread touches it.  */
3258	sigandsets(set, &current->blocked, set);
 
3259}
3260
3261/**
3262 *  sys_rt_sigpending - examine a pending signal that has been raised
3263 *			while blocked
3264 *  @uset: stores pending signals
3265 *  @sigsetsize: size of sigset_t type or larger
3266 */
3267SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3268{
3269	sigset_t set;
3270
3271	if (sigsetsize > sizeof(*uset))
3272		return -EINVAL;
3273
3274	do_sigpending(&set);
3275
3276	if (copy_to_user(uset, &set, sigsetsize))
3277		return -EFAULT;
3278
3279	return 0;
3280}
3281
3282#ifdef CONFIG_COMPAT
3283COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3284		compat_size_t, sigsetsize)
3285{
 
3286	sigset_t set;
3287
3288	if (sigsetsize > sizeof(*uset))
3289		return -EINVAL;
3290
3291	do_sigpending(&set);
3292
3293	return put_compat_sigset(uset, &set, sigsetsize);
 
 
 
 
 
3294}
3295#endif
3296
3297static const struct {
3298	unsigned char limit, layout;
3299} sig_sicodes[] = {
3300	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3301	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3302	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3303	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3304	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3305#if defined(SIGEMT)
3306	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3307#endif
3308	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3309	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3310	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3311};
3312
3313static bool known_siginfo_layout(unsigned sig, int si_code)
3314{
3315	if (si_code == SI_KERNEL)
3316		return true;
3317	else if ((si_code > SI_USER)) {
3318		if (sig_specific_sicodes(sig)) {
3319			if (si_code <= sig_sicodes[sig].limit)
3320				return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3321		}
3322		else if (si_code <= NSIGPOLL)
3323			return true;
3324	}
3325	else if (si_code >= SI_DETHREAD)
3326		return true;
3327	else if (si_code == SI_ASYNCNL)
3328		return true;
3329	return false;
3330}
3331
3332enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3333{
3334	enum siginfo_layout layout = SIL_KILL;
3335	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3336		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3337		    (si_code <= sig_sicodes[sig].limit)) {
3338			layout = sig_sicodes[sig].layout;
3339			/* Handle the exceptions */
3340			if ((sig == SIGBUS) &&
3341			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3342				layout = SIL_FAULT_MCEERR;
3343			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3344				layout = SIL_FAULT_BNDERR;
3345#ifdef SEGV_PKUERR
3346			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3347				layout = SIL_FAULT_PKUERR;
3348#endif
3349			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3350				layout = SIL_FAULT_PERF_EVENT;
3351			else if (IS_ENABLED(CONFIG_SPARC) &&
3352				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3353				layout = SIL_FAULT_TRAPNO;
3354			else if (IS_ENABLED(CONFIG_ALPHA) &&
3355				 ((sig == SIGFPE) ||
3356				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3357				layout = SIL_FAULT_TRAPNO;
3358		}
3359		else if (si_code <= NSIGPOLL)
3360			layout = SIL_POLL;
3361	} else {
3362		if (si_code == SI_TIMER)
3363			layout = SIL_TIMER;
3364		else if (si_code == SI_SIGIO)
3365			layout = SIL_POLL;
3366		else if (si_code < 0)
3367			layout = SIL_RT;
3368	}
3369	return layout;
3370}
3371
3372static inline char __user *si_expansion(const siginfo_t __user *info)
3373{
3374	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3375}
3376
3377int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3378{
3379	char __user *expansion = si_expansion(to);
3380	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3381		return -EFAULT;
3382	if (clear_user(expansion, SI_EXPANSION_SIZE))
3383		return -EFAULT;
3384	return 0;
3385}
3386
3387static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3388				       const siginfo_t __user *from)
3389{
3390	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3391		char __user *expansion = si_expansion(from);
3392		char buf[SI_EXPANSION_SIZE];
3393		int i;
3394		/*
3395		 * An unknown si_code might need more than
3396		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3397		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3398		 * will return this data to userspace exactly.
3399		 */
3400		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3401			return -EFAULT;
3402		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3403			if (buf[i] != 0)
3404				return -E2BIG;
3405		}
3406	}
3407	return 0;
3408}
3409
3410static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3411				    const siginfo_t __user *from)
3412{
3413	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3414		return -EFAULT;
3415	to->si_signo = signo;
3416	return post_copy_siginfo_from_user(to, from);
3417}
3418
3419int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3420{
3421	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3422		return -EFAULT;
3423	return post_copy_siginfo_from_user(to, from);
3424}
3425
3426#ifdef CONFIG_COMPAT
3427/**
3428 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3429 * @to: compat siginfo destination
3430 * @from: kernel siginfo source
3431 *
3432 * Note: This function does not work properly for the SIGCHLD on x32, but
3433 * fortunately it doesn't have to.  The only valid callers for this function are
3434 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3435 * The latter does not care because SIGCHLD will never cause a coredump.
3436 */
3437void copy_siginfo_to_external32(struct compat_siginfo *to,
3438		const struct kernel_siginfo *from)
3439{
3440	memset(to, 0, sizeof(*to));
3441
3442	to->si_signo = from->si_signo;
3443	to->si_errno = from->si_errno;
3444	to->si_code  = from->si_code;
3445	switch(siginfo_layout(from->si_signo, from->si_code)) {
3446	case SIL_KILL:
3447		to->si_pid = from->si_pid;
3448		to->si_uid = from->si_uid;
3449		break;
3450	case SIL_TIMER:
3451		to->si_tid     = from->si_tid;
3452		to->si_overrun = from->si_overrun;
3453		to->si_int     = from->si_int;
3454		break;
3455	case SIL_POLL:
3456		to->si_band = from->si_band;
3457		to->si_fd   = from->si_fd;
3458		break;
3459	case SIL_FAULT:
3460		to->si_addr = ptr_to_compat(from->si_addr);
3461		break;
3462	case SIL_FAULT_TRAPNO:
3463		to->si_addr = ptr_to_compat(from->si_addr);
3464		to->si_trapno = from->si_trapno;
3465		break;
3466	case SIL_FAULT_MCEERR:
3467		to->si_addr = ptr_to_compat(from->si_addr);
3468		to->si_addr_lsb = from->si_addr_lsb;
3469		break;
3470	case SIL_FAULT_BNDERR:
3471		to->si_addr = ptr_to_compat(from->si_addr);
3472		to->si_lower = ptr_to_compat(from->si_lower);
3473		to->si_upper = ptr_to_compat(from->si_upper);
3474		break;
3475	case SIL_FAULT_PKUERR:
3476		to->si_addr = ptr_to_compat(from->si_addr);
3477		to->si_pkey = from->si_pkey;
3478		break;
3479	case SIL_FAULT_PERF_EVENT:
3480		to->si_addr = ptr_to_compat(from->si_addr);
3481		to->si_perf_data = from->si_perf_data;
3482		to->si_perf_type = from->si_perf_type;
3483		to->si_perf_flags = from->si_perf_flags;
3484		break;
3485	case SIL_CHLD:
3486		to->si_pid = from->si_pid;
3487		to->si_uid = from->si_uid;
3488		to->si_status = from->si_status;
3489		to->si_utime = from->si_utime;
3490		to->si_stime = from->si_stime;
3491		break;
3492	case SIL_RT:
3493		to->si_pid = from->si_pid;
3494		to->si_uid = from->si_uid;
3495		to->si_int = from->si_int;
3496		break;
3497	case SIL_SYS:
3498		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3499		to->si_syscall   = from->si_syscall;
3500		to->si_arch      = from->si_arch;
3501		break;
3502	}
 
3503}
3504
3505int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3506			   const struct kernel_siginfo *from)
3507{
3508	struct compat_siginfo new;
3509
3510	copy_siginfo_to_external32(&new, from);
3511	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3512		return -EFAULT;
3513	return 0;
3514}
3515
3516static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3517					 const struct compat_siginfo *from)
3518{
3519	clear_siginfo(to);
3520	to->si_signo = from->si_signo;
3521	to->si_errno = from->si_errno;
3522	to->si_code  = from->si_code;
3523	switch(siginfo_layout(from->si_signo, from->si_code)) {
3524	case SIL_KILL:
3525		to->si_pid = from->si_pid;
3526		to->si_uid = from->si_uid;
3527		break;
3528	case SIL_TIMER:
3529		to->si_tid     = from->si_tid;
3530		to->si_overrun = from->si_overrun;
3531		to->si_int     = from->si_int;
3532		break;
3533	case SIL_POLL:
3534		to->si_band = from->si_band;
3535		to->si_fd   = from->si_fd;
3536		break;
3537	case SIL_FAULT:
3538		to->si_addr = compat_ptr(from->si_addr);
3539		break;
3540	case SIL_FAULT_TRAPNO:
3541		to->si_addr = compat_ptr(from->si_addr);
3542		to->si_trapno = from->si_trapno;
3543		break;
3544	case SIL_FAULT_MCEERR:
3545		to->si_addr = compat_ptr(from->si_addr);
3546		to->si_addr_lsb = from->si_addr_lsb;
3547		break;
3548	case SIL_FAULT_BNDERR:
3549		to->si_addr = compat_ptr(from->si_addr);
3550		to->si_lower = compat_ptr(from->si_lower);
3551		to->si_upper = compat_ptr(from->si_upper);
3552		break;
3553	case SIL_FAULT_PKUERR:
3554		to->si_addr = compat_ptr(from->si_addr);
3555		to->si_pkey = from->si_pkey;
3556		break;
3557	case SIL_FAULT_PERF_EVENT:
3558		to->si_addr = compat_ptr(from->si_addr);
3559		to->si_perf_data = from->si_perf_data;
3560		to->si_perf_type = from->si_perf_type;
3561		to->si_perf_flags = from->si_perf_flags;
3562		break;
3563	case SIL_CHLD:
3564		to->si_pid    = from->si_pid;
3565		to->si_uid    = from->si_uid;
3566		to->si_status = from->si_status;
3567#ifdef CONFIG_X86_X32_ABI
3568		if (in_x32_syscall()) {
3569			to->si_utime = from->_sifields._sigchld_x32._utime;
3570			to->si_stime = from->_sifields._sigchld_x32._stime;
3571		} else
3572#endif
3573		{
3574			to->si_utime = from->si_utime;
3575			to->si_stime = from->si_stime;
3576		}
3577		break;
3578	case SIL_RT:
3579		to->si_pid = from->si_pid;
3580		to->si_uid = from->si_uid;
3581		to->si_int = from->si_int;
3582		break;
3583	case SIL_SYS:
3584		to->si_call_addr = compat_ptr(from->si_call_addr);
3585		to->si_syscall   = from->si_syscall;
3586		to->si_arch      = from->si_arch;
3587		break;
3588	}
3589	return 0;
3590}
3591
3592static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3593				      const struct compat_siginfo __user *ufrom)
3594{
3595	struct compat_siginfo from;
3596
3597	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3598		return -EFAULT;
3599
3600	from.si_signo = signo;
3601	return post_copy_siginfo_from_user32(to, &from);
3602}
3603
3604int copy_siginfo_from_user32(struct kernel_siginfo *to,
3605			     const struct compat_siginfo __user *ufrom)
3606{
3607	struct compat_siginfo from;
3608
3609	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3610		return -EFAULT;
3611
3612	return post_copy_siginfo_from_user32(to, &from);
3613}
3614#endif /* CONFIG_COMPAT */
3615
3616/**
3617 *  do_sigtimedwait - wait for queued signals specified in @which
3618 *  @which: queued signals to wait for
3619 *  @info: if non-null, the signal's siginfo is returned here
3620 *  @ts: upper bound on process time suspension
3621 */
3622static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3623		    const struct timespec64 *ts)
3624{
3625	ktime_t *to = NULL, timeout = KTIME_MAX;
3626	struct task_struct *tsk = current;
3627	sigset_t mask = *which;
3628	enum pid_type type;
3629	int sig, ret = 0;
3630
3631	if (ts) {
3632		if (!timespec64_valid(ts))
3633			return -EINVAL;
3634		timeout = timespec64_to_ktime(*ts);
3635		to = &timeout;
3636	}
3637
3638	/*
3639	 * Invert the set of allowed signals to get those we want to block.
3640	 */
3641	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3642	signotset(&mask);
3643
3644	spin_lock_irq(&tsk->sighand->siglock);
3645	sig = dequeue_signal(tsk, &mask, info, &type);
3646	if (!sig && timeout) {
3647		/*
3648		 * None ready, temporarily unblock those we're interested
3649		 * while we are sleeping in so that we'll be awakened when
3650		 * they arrive. Unblocking is always fine, we can avoid
3651		 * set_current_blocked().
3652		 */
3653		tsk->real_blocked = tsk->blocked;
3654		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3655		recalc_sigpending();
3656		spin_unlock_irq(&tsk->sighand->siglock);
3657
3658		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3659		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3660					       HRTIMER_MODE_REL);
3661		spin_lock_irq(&tsk->sighand->siglock);
3662		__set_task_blocked(tsk, &tsk->real_blocked);
3663		sigemptyset(&tsk->real_blocked);
3664		sig = dequeue_signal(tsk, &mask, info, &type);
3665	}
3666	spin_unlock_irq(&tsk->sighand->siglock);
3667
3668	if (sig)
3669		return sig;
3670	return ret ? -EINTR : -EAGAIN;
3671}
3672
3673/**
3674 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3675 *			in @uthese
3676 *  @uthese: queued signals to wait for
3677 *  @uinfo: if non-null, the signal's siginfo is returned here
3678 *  @uts: upper bound on process time suspension
3679 *  @sigsetsize: size of sigset_t type
3680 */
3681SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3682		siginfo_t __user *, uinfo,
3683		const struct __kernel_timespec __user *, uts,
3684		size_t, sigsetsize)
3685{
3686	sigset_t these;
3687	struct timespec64 ts;
3688	kernel_siginfo_t info;
3689	int ret;
3690
3691	/* XXX: Don't preclude handling different sized sigset_t's.  */
3692	if (sigsetsize != sizeof(sigset_t))
3693		return -EINVAL;
3694
3695	if (copy_from_user(&these, uthese, sizeof(these)))
3696		return -EFAULT;
3697
3698	if (uts) {
3699		if (get_timespec64(&ts, uts))
3700			return -EFAULT;
3701	}
3702
3703	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3704
3705	if (ret > 0 && uinfo) {
3706		if (copy_siginfo_to_user(uinfo, &info))
3707			ret = -EFAULT;
3708	}
3709
3710	return ret;
3711}
3712
3713#ifdef CONFIG_COMPAT_32BIT_TIME
3714SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3715		siginfo_t __user *, uinfo,
3716		const struct old_timespec32 __user *, uts,
3717		size_t, sigsetsize)
3718{
3719	sigset_t these;
3720	struct timespec64 ts;
3721	kernel_siginfo_t info;
3722	int ret;
3723
3724	if (sigsetsize != sizeof(sigset_t))
3725		return -EINVAL;
3726
3727	if (copy_from_user(&these, uthese, sizeof(these)))
3728		return -EFAULT;
3729
3730	if (uts) {
3731		if (get_old_timespec32(&ts, uts))
3732			return -EFAULT;
3733	}
3734
3735	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3736
3737	if (ret > 0 && uinfo) {
3738		if (copy_siginfo_to_user(uinfo, &info))
3739			ret = -EFAULT;
3740	}
3741
3742	return ret;
3743}
3744#endif
3745
3746#ifdef CONFIG_COMPAT
3747COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3748		struct compat_siginfo __user *, uinfo,
3749		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3750{
3751	sigset_t s;
3752	struct timespec64 t;
3753	kernel_siginfo_t info;
3754	long ret;
3755
3756	if (sigsetsize != sizeof(sigset_t))
3757		return -EINVAL;
3758
3759	if (get_compat_sigset(&s, uthese))
3760		return -EFAULT;
3761
3762	if (uts) {
3763		if (get_timespec64(&t, uts))
3764			return -EFAULT;
3765	}
3766
3767	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3768
3769	if (ret > 0 && uinfo) {
3770		if (copy_siginfo_to_user32(uinfo, &info))
3771			ret = -EFAULT;
3772	}
3773
3774	return ret;
3775}
3776
3777#ifdef CONFIG_COMPAT_32BIT_TIME
3778COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3779		struct compat_siginfo __user *, uinfo,
3780		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3781{
3782	sigset_t s;
3783	struct timespec64 t;
3784	kernel_siginfo_t info;
3785	long ret;
3786
3787	if (sigsetsize != sizeof(sigset_t))
3788		return -EINVAL;
3789
3790	if (get_compat_sigset(&s, uthese))
3791		return -EFAULT;
3792
3793	if (uts) {
3794		if (get_old_timespec32(&t, uts))
3795			return -EFAULT;
3796	}
3797
3798	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3799
3800	if (ret > 0 && uinfo) {
3801		if (copy_siginfo_to_user32(uinfo, &info))
3802			ret = -EFAULT;
3803	}
3804
3805	return ret;
3806}
3807#endif
3808#endif
3809
3810static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3811				 enum pid_type type)
3812{
3813	clear_siginfo(info);
3814	info->si_signo = sig;
3815	info->si_errno = 0;
3816	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3817	info->si_pid = task_tgid_vnr(current);
3818	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3819}
3820
3821/**
3822 *  sys_kill - send a signal to a process
3823 *  @pid: the PID of the process
3824 *  @sig: signal to be sent
3825 */
3826SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3827{
3828	struct kernel_siginfo info;
3829
3830	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
 
 
 
 
3831
3832	return kill_something_info(sig, &info, pid);
3833}
3834
3835/*
3836 * Verify that the signaler and signalee either are in the same pid namespace
3837 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3838 * namespace.
3839 */
3840static bool access_pidfd_pidns(struct pid *pid)
3841{
3842	struct pid_namespace *active = task_active_pid_ns(current);
3843	struct pid_namespace *p = ns_of_pid(pid);
3844
3845	for (;;) {
3846		if (!p)
3847			return false;
3848		if (p == active)
3849			break;
3850		p = p->parent;
3851	}
3852
3853	return true;
3854}
3855
3856static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3857		siginfo_t __user *info)
3858{
3859#ifdef CONFIG_COMPAT
3860	/*
3861	 * Avoid hooking up compat syscalls and instead handle necessary
3862	 * conversions here. Note, this is a stop-gap measure and should not be
3863	 * considered a generic solution.
3864	 */
3865	if (in_compat_syscall())
3866		return copy_siginfo_from_user32(
3867			kinfo, (struct compat_siginfo __user *)info);
3868#endif
3869	return copy_siginfo_from_user(kinfo, info);
3870}
3871
3872static struct pid *pidfd_to_pid(const struct file *file)
3873{
3874	struct pid *pid;
3875
3876	pid = pidfd_pid(file);
3877	if (!IS_ERR(pid))
3878		return pid;
3879
3880	return tgid_pidfd_to_pid(file);
3881}
3882
3883#define PIDFD_SEND_SIGNAL_FLAGS                            \
3884	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3885	 PIDFD_SIGNAL_PROCESS_GROUP)
3886
3887/**
3888 * sys_pidfd_send_signal - Signal a process through a pidfd
3889 * @pidfd:  file descriptor of the process
3890 * @sig:    signal to send
3891 * @info:   signal info
3892 * @flags:  future flags
3893 *
3894 * Send the signal to the thread group or to the individual thread depending
3895 * on PIDFD_THREAD.
3896 * In the future extension to @flags may be used to override the default scope
3897 * of @pidfd.
3898 *
3899 * Return: 0 on success, negative errno on failure
3900 */
3901SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3902		siginfo_t __user *, info, unsigned int, flags)
3903{
3904	int ret;
3905	struct fd f;
3906	struct pid *pid;
3907	kernel_siginfo_t kinfo;
3908	enum pid_type type;
3909
3910	/* Enforce flags be set to 0 until we add an extension. */
3911	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3912		return -EINVAL;
3913
3914	/* Ensure that only a single signal scope determining flag is set. */
3915	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3916		return -EINVAL;
3917
3918	f = fdget(pidfd);
3919	if (!f.file)
3920		return -EBADF;
3921
3922	/* Is this a pidfd? */
3923	pid = pidfd_to_pid(f.file);
3924	if (IS_ERR(pid)) {
3925		ret = PTR_ERR(pid);
3926		goto err;
3927	}
3928
3929	ret = -EINVAL;
3930	if (!access_pidfd_pidns(pid))
3931		goto err;
3932
3933	switch (flags) {
3934	case 0:
3935		/* Infer scope from the type of pidfd. */
3936		if (f.file->f_flags & PIDFD_THREAD)
3937			type = PIDTYPE_PID;
3938		else
3939			type = PIDTYPE_TGID;
3940		break;
3941	case PIDFD_SIGNAL_THREAD:
3942		type = PIDTYPE_PID;
3943		break;
3944	case PIDFD_SIGNAL_THREAD_GROUP:
3945		type = PIDTYPE_TGID;
3946		break;
3947	case PIDFD_SIGNAL_PROCESS_GROUP:
3948		type = PIDTYPE_PGID;
3949		break;
3950	}
3951
3952	if (info) {
3953		ret = copy_siginfo_from_user_any(&kinfo, info);
3954		if (unlikely(ret))
3955			goto err;
3956
3957		ret = -EINVAL;
3958		if (unlikely(sig != kinfo.si_signo))
3959			goto err;
3960
3961		/* Only allow sending arbitrary signals to yourself. */
3962		ret = -EPERM;
3963		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3964		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3965			goto err;
3966	} else {
3967		prepare_kill_siginfo(sig, &kinfo, type);
3968	}
3969
3970	if (type == PIDTYPE_PGID)
3971		ret = kill_pgrp_info(sig, &kinfo, pid);
3972	else
3973		ret = kill_pid_info_type(sig, &kinfo, pid, type);
3974err:
3975	fdput(f);
3976	return ret;
3977}
3978
3979static int
3980do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3981{
3982	struct task_struct *p;
3983	int error = -ESRCH;
3984
3985	rcu_read_lock();
3986	p = find_task_by_vpid(pid);
3987	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3988		error = check_kill_permission(sig, info, p);
3989		/*
3990		 * The null signal is a permissions and process existence
3991		 * probe.  No signal is actually delivered.
3992		 */
3993		if (!error && sig) {
3994			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3995			/*
3996			 * If lock_task_sighand() failed we pretend the task
3997			 * dies after receiving the signal. The window is tiny,
3998			 * and the signal is private anyway.
3999			 */
4000			if (unlikely(error == -ESRCH))
4001				error = 0;
4002		}
4003	}
4004	rcu_read_unlock();
4005
4006	return error;
4007}
4008
4009static int do_tkill(pid_t tgid, pid_t pid, int sig)
4010{
4011	struct kernel_siginfo info;
4012
4013	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
 
 
 
 
4014
4015	return do_send_specific(tgid, pid, sig, &info);
4016}
4017
4018/**
4019 *  sys_tgkill - send signal to one specific thread
4020 *  @tgid: the thread group ID of the thread
4021 *  @pid: the PID of the thread
4022 *  @sig: signal to be sent
4023 *
4024 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4025 *  exists but it's not belonging to the target process anymore. This
4026 *  method solves the problem of threads exiting and PIDs getting reused.
4027 */
4028SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4029{
4030	/* This is only valid for single tasks */
4031	if (pid <= 0 || tgid <= 0)
4032		return -EINVAL;
4033
4034	return do_tkill(tgid, pid, sig);
4035}
4036
4037/**
4038 *  sys_tkill - send signal to one specific task
4039 *  @pid: the PID of the task
4040 *  @sig: signal to be sent
4041 *
4042 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4043 */
4044SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4045{
4046	/* This is only valid for single tasks */
4047	if (pid <= 0)
4048		return -EINVAL;
4049
4050	return do_tkill(0, pid, sig);
4051}
4052
4053static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4054{
4055	/* Not even root can pretend to send signals from the kernel.
4056	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4057	 */
4058	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4059	    (task_pid_vnr(current) != pid))
4060		return -EPERM;
4061
 
 
4062	/* POSIX.1b doesn't mention process groups.  */
4063	return kill_proc_info(sig, info, pid);
4064}
4065
4066/**
4067 *  sys_rt_sigqueueinfo - send signal information to a signal
4068 *  @pid: the PID of the thread
4069 *  @sig: signal to be sent
4070 *  @uinfo: signal info to be sent
4071 */
4072SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4073		siginfo_t __user *, uinfo)
4074{
4075	kernel_siginfo_t info;
4076	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4077	if (unlikely(ret))
4078		return ret;
4079	return do_rt_sigqueueinfo(pid, sig, &info);
4080}
4081
4082#ifdef CONFIG_COMPAT
4083COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4084			compat_pid_t, pid,
4085			int, sig,
4086			struct compat_siginfo __user *, uinfo)
4087{
4088	kernel_siginfo_t info;
4089	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4090	if (unlikely(ret))
4091		return ret;
4092	return do_rt_sigqueueinfo(pid, sig, &info);
4093}
4094#endif
4095
4096static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4097{
4098	/* This is only valid for single tasks */
4099	if (pid <= 0 || tgid <= 0)
4100		return -EINVAL;
4101
4102	/* Not even root can pretend to send signals from the kernel.
4103	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4104	 */
4105	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4106	    (task_pid_vnr(current) != pid))
4107		return -EPERM;
4108
 
 
4109	return do_send_specific(tgid, pid, sig, info);
4110}
4111
4112SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4113		siginfo_t __user *, uinfo)
4114{
4115	kernel_siginfo_t info;
4116	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4117	if (unlikely(ret))
4118		return ret;
 
4119	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4120}
4121
4122#ifdef CONFIG_COMPAT
4123COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4124			compat_pid_t, tgid,
4125			compat_pid_t, pid,
4126			int, sig,
4127			struct compat_siginfo __user *, uinfo)
4128{
4129	kernel_siginfo_t info;
4130	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4131	if (unlikely(ret))
4132		return ret;
4133	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4134}
4135#endif
4136
4137/*
4138 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4139 */
4140void kernel_sigaction(int sig, __sighandler_t action)
4141{
4142	spin_lock_irq(&current->sighand->siglock);
4143	current->sighand->action[sig - 1].sa.sa_handler = action;
4144	if (action == SIG_IGN) {
4145		sigset_t mask;
4146
4147		sigemptyset(&mask);
4148		sigaddset(&mask, sig);
4149
4150		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4151		flush_sigqueue_mask(&mask, &current->pending);
4152		recalc_sigpending();
4153	}
4154	spin_unlock_irq(&current->sighand->siglock);
4155}
4156EXPORT_SYMBOL(kernel_sigaction);
4157
4158void __weak sigaction_compat_abi(struct k_sigaction *act,
4159		struct k_sigaction *oact)
4160{
4161}
4162
4163int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4164{
4165	struct task_struct *p = current, *t;
4166	struct k_sigaction *k;
4167	sigset_t mask;
4168
4169	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4170		return -EINVAL;
4171
4172	k = &p->sighand->action[sig-1];
4173
4174	spin_lock_irq(&p->sighand->siglock);
4175	if (k->sa.sa_flags & SA_IMMUTABLE) {
4176		spin_unlock_irq(&p->sighand->siglock);
4177		return -EINVAL;
4178	}
4179	if (oact)
4180		*oact = *k;
4181
4182	/*
4183	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4184	 * e.g. by having an architecture use the bit in their uapi.
4185	 */
4186	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4187
4188	/*
4189	 * Clear unknown flag bits in order to allow userspace to detect missing
4190	 * support for flag bits and to allow the kernel to use non-uapi bits
4191	 * internally.
4192	 */
4193	if (act)
4194		act->sa.sa_flags &= UAPI_SA_FLAGS;
4195	if (oact)
4196		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4197
4198	sigaction_compat_abi(act, oact);
4199
4200	if (act) {
4201		sigdelsetmask(&act->sa.sa_mask,
4202			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4203		*k = *act;
4204		/*
4205		 * POSIX 3.3.1.3:
4206		 *  "Setting a signal action to SIG_IGN for a signal that is
4207		 *   pending shall cause the pending signal to be discarded,
4208		 *   whether or not it is blocked."
4209		 *
4210		 *  "Setting a signal action to SIG_DFL for a signal that is
4211		 *   pending and whose default action is to ignore the signal
4212		 *   (for example, SIGCHLD), shall cause the pending signal to
4213		 *   be discarded, whether or not it is blocked"
4214		 */
4215		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4216			sigemptyset(&mask);
4217			sigaddset(&mask, sig);
4218			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4219			for_each_thread(p, t)
4220				flush_sigqueue_mask(&mask, &t->pending);
4221		}
4222	}
4223
4224	spin_unlock_irq(&p->sighand->siglock);
4225	return 0;
4226}
4227
4228#ifdef CONFIG_DYNAMIC_SIGFRAME
4229static inline void sigaltstack_lock(void)
4230	__acquires(&current->sighand->siglock)
4231{
4232	spin_lock_irq(&current->sighand->siglock);
4233}
4234
4235static inline void sigaltstack_unlock(void)
4236	__releases(&current->sighand->siglock)
4237{
4238	spin_unlock_irq(&current->sighand->siglock);
4239}
4240#else
4241static inline void sigaltstack_lock(void) { }
4242static inline void sigaltstack_unlock(void) { }
4243#endif
4244
4245static int
4246do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4247		size_t min_ss_size)
4248{
4249	struct task_struct *t = current;
4250	int ret = 0;
4251
4252	if (oss) {
4253		memset(oss, 0, sizeof(stack_t));
4254		oss->ss_sp = (void __user *) t->sas_ss_sp;
4255		oss->ss_size = t->sas_ss_size;
4256		oss->ss_flags = sas_ss_flags(sp) |
4257			(current->sas_ss_flags & SS_FLAG_BITS);
4258	}
 
 
 
4259
4260	if (ss) {
4261		void __user *ss_sp = ss->ss_sp;
4262		size_t ss_size = ss->ss_size;
4263		unsigned ss_flags = ss->ss_flags;
4264		int ss_mode;
 
 
 
4265
4266		if (unlikely(on_sig_stack(sp)))
4267			return -EPERM;
 
4268
4269		ss_mode = ss_flags & ~SS_FLAG_BITS;
4270		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4271				ss_mode != 0))
4272			return -EINVAL;
4273
4274		/*
4275		 * Return before taking any locks if no actual
4276		 * sigaltstack changes were requested.
4277		 */
4278		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4279		    t->sas_ss_size == ss_size &&
4280		    t->sas_ss_flags == ss_flags)
4281			return 0;
4282
4283		sigaltstack_lock();
4284		if (ss_mode == SS_DISABLE) {
4285			ss_size = 0;
4286			ss_sp = NULL;
4287		} else {
4288			if (unlikely(ss_size < min_ss_size))
4289				ret = -ENOMEM;
4290			if (!sigaltstack_size_valid(ss_size))
4291				ret = -ENOMEM;
4292		}
4293		if (!ret) {
4294			t->sas_ss_sp = (unsigned long) ss_sp;
4295			t->sas_ss_size = ss_size;
4296			t->sas_ss_flags = ss_flags;
4297		}
4298		sigaltstack_unlock();
 
 
 
 
 
 
 
 
4299	}
4300	return ret;
 
 
4301}
4302
4303SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4304{
4305	stack_t new, old;
4306	int err;
4307	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4308		return -EFAULT;
4309	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4310			      current_user_stack_pointer(),
4311			      MINSIGSTKSZ);
4312	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4313		err = -EFAULT;
4314	return err;
4315}
4316
4317int restore_altstack(const stack_t __user *uss)
4318{
4319	stack_t new;
4320	if (copy_from_user(&new, uss, sizeof(stack_t)))
4321		return -EFAULT;
4322	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4323			     MINSIGSTKSZ);
4324	/* squash all but EFAULT for now */
4325	return 0;
4326}
4327
4328int __save_altstack(stack_t __user *uss, unsigned long sp)
4329{
4330	struct task_struct *t = current;
4331	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4332		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4333		__put_user(t->sas_ss_size, &uss->ss_size);
4334	return err;
 
 
 
 
4335}
4336
4337#ifdef CONFIG_COMPAT
4338static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4339				 compat_stack_t __user *uoss_ptr)
 
4340{
4341	stack_t uss, uoss;
4342	int ret;
 
4343
4344	if (uss_ptr) {
4345		compat_stack_t uss32;
 
 
4346		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4347			return -EFAULT;
4348		uss.ss_sp = compat_ptr(uss32.ss_sp);
4349		uss.ss_flags = uss32.ss_flags;
4350		uss.ss_size = uss32.ss_size;
4351	}
4352	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4353			     compat_user_stack_pointer(),
4354			     COMPAT_MINSIGSTKSZ);
 
 
 
4355	if (ret >= 0 && uoss_ptr)  {
4356		compat_stack_t old;
4357		memset(&old, 0, sizeof(old));
4358		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4359		old.ss_flags = uoss.ss_flags;
4360		old.ss_size = uoss.ss_size;
4361		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4362			ret = -EFAULT;
4363	}
4364	return ret;
4365}
4366
4367COMPAT_SYSCALL_DEFINE2(sigaltstack,
4368			const compat_stack_t __user *, uss_ptr,
4369			compat_stack_t __user *, uoss_ptr)
4370{
4371	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4372}
4373
4374int compat_restore_altstack(const compat_stack_t __user *uss)
4375{
4376	int err = do_compat_sigaltstack(uss, NULL);
4377	/* squash all but -EFAULT for now */
4378	return err == -EFAULT ? err : 0;
4379}
4380
4381int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4382{
4383	int err;
4384	struct task_struct *t = current;
4385	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4386			 &uss->ss_sp) |
4387		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4388		__put_user(t->sas_ss_size, &uss->ss_size);
4389	return err;
 
 
 
 
4390}
4391#endif
4392
4393#ifdef __ARCH_WANT_SYS_SIGPENDING
4394
4395/**
4396 *  sys_sigpending - examine pending signals
4397 *  @uset: where mask of pending signal is returned
4398 */
4399SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4400{
4401	sigset_t set;
4402
4403	if (sizeof(old_sigset_t) > sizeof(*uset))
4404		return -EINVAL;
4405
4406	do_sigpending(&set);
4407
4408	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4409		return -EFAULT;
4410
4411	return 0;
4412}
4413
4414#ifdef CONFIG_COMPAT
4415COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4416{
4417	sigset_t set;
4418
4419	do_sigpending(&set);
4420
4421	return put_user(set.sig[0], set32);
4422}
4423#endif
4424
4425#endif
4426
4427#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4428/**
4429 *  sys_sigprocmask - examine and change blocked signals
4430 *  @how: whether to add, remove, or set signals
4431 *  @nset: signals to add or remove (if non-null)
4432 *  @oset: previous value of signal mask if non-null
4433 *
4434 * Some platforms have their own version with special arguments;
4435 * others support only sys_rt_sigprocmask.
4436 */
4437
4438SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4439		old_sigset_t __user *, oset)
4440{
4441	old_sigset_t old_set, new_set;
4442	sigset_t new_blocked;
4443
4444	old_set = current->blocked.sig[0];
4445
4446	if (nset) {
4447		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4448			return -EFAULT;
4449
4450		new_blocked = current->blocked;
4451
4452		switch (how) {
4453		case SIG_BLOCK:
4454			sigaddsetmask(&new_blocked, new_set);
4455			break;
4456		case SIG_UNBLOCK:
4457			sigdelsetmask(&new_blocked, new_set);
4458			break;
4459		case SIG_SETMASK:
4460			new_blocked.sig[0] = new_set;
4461			break;
4462		default:
4463			return -EINVAL;
4464		}
4465
4466		set_current_blocked(&new_blocked);
4467	}
4468
4469	if (oset) {
4470		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4471			return -EFAULT;
4472	}
4473
4474	return 0;
4475}
4476#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4477
4478#ifndef CONFIG_ODD_RT_SIGACTION
4479/**
4480 *  sys_rt_sigaction - alter an action taken by a process
4481 *  @sig: signal to be sent
4482 *  @act: new sigaction
4483 *  @oact: used to save the previous sigaction
4484 *  @sigsetsize: size of sigset_t type
4485 */
4486SYSCALL_DEFINE4(rt_sigaction, int, sig,
4487		const struct sigaction __user *, act,
4488		struct sigaction __user *, oact,
4489		size_t, sigsetsize)
4490{
4491	struct k_sigaction new_sa, old_sa;
4492	int ret;
4493
4494	/* XXX: Don't preclude handling different sized sigset_t's.  */
4495	if (sigsetsize != sizeof(sigset_t))
4496		return -EINVAL;
4497
4498	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4499		return -EFAULT;
 
 
4500
4501	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4502	if (ret)
4503		return ret;
4504
4505	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4506		return -EFAULT;
4507
4508	return 0;
 
 
4509}
4510#ifdef CONFIG_COMPAT
4511COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4512		const struct compat_sigaction __user *, act,
4513		struct compat_sigaction __user *, oact,
4514		compat_size_t, sigsetsize)
4515{
4516	struct k_sigaction new_ka, old_ka;
 
4517#ifdef __ARCH_HAS_SA_RESTORER
4518	compat_uptr_t restorer;
4519#endif
4520	int ret;
4521
4522	/* XXX: Don't preclude handling different sized sigset_t's.  */
4523	if (sigsetsize != sizeof(compat_sigset_t))
4524		return -EINVAL;
4525
4526	if (act) {
4527		compat_uptr_t handler;
4528		ret = get_user(handler, &act->sa_handler);
4529		new_ka.sa.sa_handler = compat_ptr(handler);
4530#ifdef __ARCH_HAS_SA_RESTORER
4531		ret |= get_user(restorer, &act->sa_restorer);
4532		new_ka.sa.sa_restorer = compat_ptr(restorer);
4533#endif
4534		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4535		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4536		if (ret)
4537			return -EFAULT;
 
4538	}
4539
4540	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4541	if (!ret && oact) {
 
4542		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4543			       &oact->sa_handler);
4544		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4545					 sizeof(oact->sa_mask));
4546		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4547#ifdef __ARCH_HAS_SA_RESTORER
4548		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4549				&oact->sa_restorer);
4550#endif
4551	}
4552	return ret;
4553}
4554#endif
4555#endif /* !CONFIG_ODD_RT_SIGACTION */
4556
4557#ifdef CONFIG_OLD_SIGACTION
4558SYSCALL_DEFINE3(sigaction, int, sig,
4559		const struct old_sigaction __user *, act,
4560	        struct old_sigaction __user *, oact)
4561{
4562	struct k_sigaction new_ka, old_ka;
4563	int ret;
4564
4565	if (act) {
4566		old_sigset_t mask;
4567		if (!access_ok(act, sizeof(*act)) ||
4568		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4569		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4570		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4571		    __get_user(mask, &act->sa_mask))
4572			return -EFAULT;
4573#ifdef __ARCH_HAS_KA_RESTORER
4574		new_ka.ka_restorer = NULL;
4575#endif
4576		siginitset(&new_ka.sa.sa_mask, mask);
4577	}
4578
4579	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4580
4581	if (!ret && oact) {
4582		if (!access_ok(oact, sizeof(*oact)) ||
4583		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4584		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4585		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4586		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4587			return -EFAULT;
4588	}
4589
4590	return ret;
4591}
4592#endif
4593#ifdef CONFIG_COMPAT_OLD_SIGACTION
4594COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4595		const struct compat_old_sigaction __user *, act,
4596	        struct compat_old_sigaction __user *, oact)
4597{
4598	struct k_sigaction new_ka, old_ka;
4599	int ret;
4600	compat_old_sigset_t mask;
4601	compat_uptr_t handler, restorer;
4602
4603	if (act) {
4604		if (!access_ok(act, sizeof(*act)) ||
4605		    __get_user(handler, &act->sa_handler) ||
4606		    __get_user(restorer, &act->sa_restorer) ||
4607		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4608		    __get_user(mask, &act->sa_mask))
4609			return -EFAULT;
4610
4611#ifdef __ARCH_HAS_KA_RESTORER
4612		new_ka.ka_restorer = NULL;
4613#endif
4614		new_ka.sa.sa_handler = compat_ptr(handler);
4615		new_ka.sa.sa_restorer = compat_ptr(restorer);
4616		siginitset(&new_ka.sa.sa_mask, mask);
4617	}
4618
4619	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4620
4621	if (!ret && oact) {
4622		if (!access_ok(oact, sizeof(*oact)) ||
4623		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4624			       &oact->sa_handler) ||
4625		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4626			       &oact->sa_restorer) ||
4627		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4628		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4629			return -EFAULT;
4630	}
4631	return ret;
4632}
4633#endif
4634
4635#ifdef CONFIG_SGETMASK_SYSCALL
4636
4637/*
4638 * For backwards compatibility.  Functionality superseded by sigprocmask.
4639 */
4640SYSCALL_DEFINE0(sgetmask)
4641{
4642	/* SMP safe */
4643	return current->blocked.sig[0];
4644}
4645
4646SYSCALL_DEFINE1(ssetmask, int, newmask)
4647{
4648	int old = current->blocked.sig[0];
4649	sigset_t newset;
4650
4651	siginitset(&newset, newmask);
4652	set_current_blocked(&newset);
4653
4654	return old;
4655}
4656#endif /* CONFIG_SGETMASK_SYSCALL */
4657
4658#ifdef __ARCH_WANT_SYS_SIGNAL
4659/*
4660 * For backwards compatibility.  Functionality superseded by sigaction.
4661 */
4662SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4663{
4664	struct k_sigaction new_sa, old_sa;
4665	int ret;
4666
4667	new_sa.sa.sa_handler = handler;
4668	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4669	sigemptyset(&new_sa.sa.sa_mask);
4670
4671	ret = do_sigaction(sig, &new_sa, &old_sa);
4672
4673	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4674}
4675#endif /* __ARCH_WANT_SYS_SIGNAL */
4676
4677#ifdef __ARCH_WANT_SYS_PAUSE
4678
4679SYSCALL_DEFINE0(pause)
4680{
4681	while (!signal_pending(current)) {
4682		__set_current_state(TASK_INTERRUPTIBLE);
4683		schedule();
4684	}
4685	return -ERESTARTNOHAND;
4686}
4687
4688#endif
4689
4690static int sigsuspend(sigset_t *set)
4691{
4692	current->saved_sigmask = current->blocked;
4693	set_current_blocked(set);
4694
4695	while (!signal_pending(current)) {
4696		__set_current_state(TASK_INTERRUPTIBLE);
4697		schedule();
4698	}
4699	set_restore_sigmask();
4700	return -ERESTARTNOHAND;
4701}
4702
4703/**
4704 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4705 *	@unewset value until a signal is received
4706 *  @unewset: new signal mask value
4707 *  @sigsetsize: size of sigset_t type
4708 */
4709SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4710{
4711	sigset_t newset;
4712
4713	/* XXX: Don't preclude handling different sized sigset_t's.  */
4714	if (sigsetsize != sizeof(sigset_t))
4715		return -EINVAL;
4716
4717	if (copy_from_user(&newset, unewset, sizeof(newset)))
4718		return -EFAULT;
4719	return sigsuspend(&newset);
4720}
4721 
4722#ifdef CONFIG_COMPAT
4723COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4724{
 
4725	sigset_t newset;
 
4726
4727	/* XXX: Don't preclude handling different sized sigset_t's.  */
4728	if (sigsetsize != sizeof(sigset_t))
4729		return -EINVAL;
4730
4731	if (get_compat_sigset(&newset, unewset))
4732		return -EFAULT;
 
4733	return sigsuspend(&newset);
 
 
 
 
4734}
4735#endif
4736
4737#ifdef CONFIG_OLD_SIGSUSPEND
4738SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4739{
4740	sigset_t blocked;
4741	siginitset(&blocked, mask);
4742	return sigsuspend(&blocked);
4743}
4744#endif
4745#ifdef CONFIG_OLD_SIGSUSPEND3
4746SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4747{
4748	sigset_t blocked;
4749	siginitset(&blocked, mask);
4750	return sigsuspend(&blocked);
4751}
4752#endif
4753
4754__weak const char *arch_vma_name(struct vm_area_struct *vma)
4755{
4756	return NULL;
4757}
4758
4759static inline void siginfo_buildtime_checks(void)
4760{
4761	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4762
4763	/* Verify the offsets in the two siginfos match */
4764#define CHECK_OFFSET(field) \
4765	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4766
4767	/* kill */
4768	CHECK_OFFSET(si_pid);
4769	CHECK_OFFSET(si_uid);
4770
4771	/* timer */
4772	CHECK_OFFSET(si_tid);
4773	CHECK_OFFSET(si_overrun);
4774	CHECK_OFFSET(si_value);
4775
4776	/* rt */
4777	CHECK_OFFSET(si_pid);
4778	CHECK_OFFSET(si_uid);
4779	CHECK_OFFSET(si_value);
4780
4781	/* sigchld */
4782	CHECK_OFFSET(si_pid);
4783	CHECK_OFFSET(si_uid);
4784	CHECK_OFFSET(si_status);
4785	CHECK_OFFSET(si_utime);
4786	CHECK_OFFSET(si_stime);
4787
4788	/* sigfault */
4789	CHECK_OFFSET(si_addr);
4790	CHECK_OFFSET(si_trapno);
4791	CHECK_OFFSET(si_addr_lsb);
4792	CHECK_OFFSET(si_lower);
4793	CHECK_OFFSET(si_upper);
4794	CHECK_OFFSET(si_pkey);
4795	CHECK_OFFSET(si_perf_data);
4796	CHECK_OFFSET(si_perf_type);
4797	CHECK_OFFSET(si_perf_flags);
4798
4799	/* sigpoll */
4800	CHECK_OFFSET(si_band);
4801	CHECK_OFFSET(si_fd);
4802
4803	/* sigsys */
4804	CHECK_OFFSET(si_call_addr);
4805	CHECK_OFFSET(si_syscall);
4806	CHECK_OFFSET(si_arch);
4807#undef CHECK_OFFSET
4808
4809	/* usb asyncio */
4810	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4811		     offsetof(struct siginfo, si_addr));
4812	if (sizeof(int) == sizeof(void __user *)) {
4813		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4814			     sizeof(void __user *));
4815	} else {
4816		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4817			      sizeof_field(struct siginfo, si_uid)) !=
4818			     sizeof(void __user *));
4819		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4820			     offsetof(struct siginfo, si_uid));
4821	}
4822#ifdef CONFIG_COMPAT
4823	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4824		     offsetof(struct compat_siginfo, si_addr));
4825	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4826		     sizeof(compat_uptr_t));
4827	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4828		     sizeof_field(struct siginfo, si_pid));
4829#endif
4830}
4831
4832#if defined(CONFIG_SYSCTL)
4833static struct ctl_table signal_debug_table[] = {
4834#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4835	{
4836		.procname	= "exception-trace",
4837		.data		= &show_unhandled_signals,
4838		.maxlen		= sizeof(int),
4839		.mode		= 0644,
4840		.proc_handler	= proc_dointvec
4841	},
4842#endif
4843	{ }
4844};
4845
4846static int __init init_signal_sysctls(void)
4847{
4848	register_sysctl_init("debug", signal_debug_table);
4849	return 0;
4850}
4851early_initcall(init_signal_sysctls);
4852#endif /* CONFIG_SYSCTL */
4853
4854void __init signals_init(void)
4855{
4856	siginfo_buildtime_checks();
 
 
4857
4858	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4859}
4860
4861#ifdef CONFIG_KGDB_KDB
4862#include <linux/kdb.h>
4863/*
4864 * kdb_send_sig - Allows kdb to send signals without exposing
4865 * signal internals.  This function checks if the required locks are
4866 * available before calling the main signal code, to avoid kdb
4867 * deadlocks.
4868 */
4869void kdb_send_sig(struct task_struct *t, int sig)
 
4870{
4871	static struct task_struct *kdb_prev_t;
4872	int new_t, ret;
4873	if (!spin_trylock(&t->sighand->siglock)) {
4874		kdb_printf("Can't do kill command now.\n"
4875			   "The sigmask lock is held somewhere else in "
4876			   "kernel, try again later\n");
4877		return;
4878	}
 
4879	new_t = kdb_prev_t != t;
4880	kdb_prev_t = t;
4881	if (!task_is_running(t) && new_t) {
4882		spin_unlock(&t->sighand->siglock);
4883		kdb_printf("Process is not RUNNING, sending a signal from "
4884			   "kdb risks deadlock\n"
4885			   "on the run queue locks. "
4886			   "The signal has _not_ been sent.\n"
4887			   "Reissue the kill command if you want to risk "
4888			   "the deadlock.\n");
4889		return;
4890	}
4891	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4892	spin_unlock(&t->sighand->siglock);
4893	if (ret)
4894		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4895			   sig, t->pid);
4896	else
4897		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4898}
4899#endif	/* CONFIG_KGDB_KDB */