Loading...
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/export.h>
15#include <linux/init.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/tty.h>
19#include <linux/binfmts.h>
20#include <linux/coredump.h>
21#include <linux/security.h>
22#include <linux/syscalls.h>
23#include <linux/ptrace.h>
24#include <linux/signal.h>
25#include <linux/signalfd.h>
26#include <linux/ratelimit.h>
27#include <linux/tracehook.h>
28#include <linux/capability.h>
29#include <linux/freezer.h>
30#include <linux/pid_namespace.h>
31#include <linux/nsproxy.h>
32#include <linux/user_namespace.h>
33#include <linux/uprobes.h>
34#include <linux/compat.h>
35#include <linux/cn_proc.h>
36#include <linux/compiler.h>
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/signal.h>
40
41#include <asm/param.h>
42#include <linux/uaccess.h>
43#include <asm/unistd.h>
44#include <asm/siginfo.h>
45#include <asm/cacheflush.h>
46#include "audit.h" /* audit_signal_info() */
47
48/*
49 * SLAB caches for signal bits.
50 */
51
52static struct kmem_cache *sigqueue_cachep;
53
54int print_fatal_signals __read_mostly;
55
56static void __user *sig_handler(struct task_struct *t, int sig)
57{
58 return t->sighand->action[sig - 1].sa.sa_handler;
59}
60
61static int sig_handler_ignored(void __user *handler, int sig)
62{
63 /* Is it explicitly or implicitly ignored? */
64 return handler == SIG_IGN ||
65 (handler == SIG_DFL && sig_kernel_ignore(sig));
66}
67
68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69{
70 void __user *handler;
71
72 handler = sig_handler(t, sig);
73
74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 handler == SIG_DFL && !force)
76 return 1;
77
78 return sig_handler_ignored(handler, sig);
79}
80
81static int sig_ignored(struct task_struct *t, int sig, bool force)
82{
83 /*
84 * Blocked signals are never ignored, since the
85 * signal handler may change by the time it is
86 * unblocked.
87 */
88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 return 0;
90
91 if (!sig_task_ignored(t, sig, force))
92 return 0;
93
94 /*
95 * Tracers may want to know about even ignored signals.
96 */
97 return !t->ptrace;
98}
99
100/*
101 * Re-calculate pending state from the set of locally pending
102 * signals, globally pending signals, and blocked signals.
103 */
104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
105{
106 unsigned long ready;
107 long i;
108
109 switch (_NSIG_WORDS) {
110 default:
111 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
112 ready |= signal->sig[i] &~ blocked->sig[i];
113 break;
114
115 case 4: ready = signal->sig[3] &~ blocked->sig[3];
116 ready |= signal->sig[2] &~ blocked->sig[2];
117 ready |= signal->sig[1] &~ blocked->sig[1];
118 ready |= signal->sig[0] &~ blocked->sig[0];
119 break;
120
121 case 2: ready = signal->sig[1] &~ blocked->sig[1];
122 ready |= signal->sig[0] &~ blocked->sig[0];
123 break;
124
125 case 1: ready = signal->sig[0] &~ blocked->sig[0];
126 }
127 return ready != 0;
128}
129
130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
131
132static int recalc_sigpending_tsk(struct task_struct *t)
133{
134 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
135 PENDING(&t->pending, &t->blocked) ||
136 PENDING(&t->signal->shared_pending, &t->blocked)) {
137 set_tsk_thread_flag(t, TIF_SIGPENDING);
138 return 1;
139 }
140 /*
141 * We must never clear the flag in another thread, or in current
142 * when it's possible the current syscall is returning -ERESTART*.
143 * So we don't clear it here, and only callers who know they should do.
144 */
145 return 0;
146}
147
148/*
149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
150 * This is superfluous when called on current, the wakeup is a harmless no-op.
151 */
152void recalc_sigpending_and_wake(struct task_struct *t)
153{
154 if (recalc_sigpending_tsk(t))
155 signal_wake_up(t, 0);
156}
157
158void recalc_sigpending(void)
159{
160 if (!recalc_sigpending_tsk(current) && !freezing(current))
161 clear_thread_flag(TIF_SIGPENDING);
162
163}
164
165/* Given the mask, find the first available signal that should be serviced. */
166
167#define SYNCHRONOUS_MASK \
168 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
169 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
170
171int next_signal(struct sigpending *pending, sigset_t *mask)
172{
173 unsigned long i, *s, *m, x;
174 int sig = 0;
175
176 s = pending->signal.sig;
177 m = mask->sig;
178
179 /*
180 * Handle the first word specially: it contains the
181 * synchronous signals that need to be dequeued first.
182 */
183 x = *s &~ *m;
184 if (x) {
185 if (x & SYNCHRONOUS_MASK)
186 x &= SYNCHRONOUS_MASK;
187 sig = ffz(~x) + 1;
188 return sig;
189 }
190
191 switch (_NSIG_WORDS) {
192 default:
193 for (i = 1; i < _NSIG_WORDS; ++i) {
194 x = *++s &~ *++m;
195 if (!x)
196 continue;
197 sig = ffz(~x) + i*_NSIG_BPW + 1;
198 break;
199 }
200 break;
201
202 case 2:
203 x = s[1] &~ m[1];
204 if (!x)
205 break;
206 sig = ffz(~x) + _NSIG_BPW + 1;
207 break;
208
209 case 1:
210 /* Nothing to do */
211 break;
212 }
213
214 return sig;
215}
216
217static inline void print_dropped_signal(int sig)
218{
219 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
220
221 if (!print_fatal_signals)
222 return;
223
224 if (!__ratelimit(&ratelimit_state))
225 return;
226
227 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
228 current->comm, current->pid, sig);
229}
230
231/**
232 * task_set_jobctl_pending - set jobctl pending bits
233 * @task: target task
234 * @mask: pending bits to set
235 *
236 * Clear @mask from @task->jobctl. @mask must be subset of
237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
238 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
239 * cleared. If @task is already being killed or exiting, this function
240 * becomes noop.
241 *
242 * CONTEXT:
243 * Must be called with @task->sighand->siglock held.
244 *
245 * RETURNS:
246 * %true if @mask is set, %false if made noop because @task was dying.
247 */
248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
249{
250 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
251 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
252 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
253
254 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
255 return false;
256
257 if (mask & JOBCTL_STOP_SIGMASK)
258 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
259
260 task->jobctl |= mask;
261 return true;
262}
263
264/**
265 * task_clear_jobctl_trapping - clear jobctl trapping bit
266 * @task: target task
267 *
268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
269 * Clear it and wake up the ptracer. Note that we don't need any further
270 * locking. @task->siglock guarantees that @task->parent points to the
271 * ptracer.
272 *
273 * CONTEXT:
274 * Must be called with @task->sighand->siglock held.
275 */
276void task_clear_jobctl_trapping(struct task_struct *task)
277{
278 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
279 task->jobctl &= ~JOBCTL_TRAPPING;
280 smp_mb(); /* advised by wake_up_bit() */
281 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
282 }
283}
284
285/**
286 * task_clear_jobctl_pending - clear jobctl pending bits
287 * @task: target task
288 * @mask: pending bits to clear
289 *
290 * Clear @mask from @task->jobctl. @mask must be subset of
291 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
292 * STOP bits are cleared together.
293 *
294 * If clearing of @mask leaves no stop or trap pending, this function calls
295 * task_clear_jobctl_trapping().
296 *
297 * CONTEXT:
298 * Must be called with @task->sighand->siglock held.
299 */
300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
301{
302 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
303
304 if (mask & JOBCTL_STOP_PENDING)
305 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
306
307 task->jobctl &= ~mask;
308
309 if (!(task->jobctl & JOBCTL_PENDING_MASK))
310 task_clear_jobctl_trapping(task);
311}
312
313/**
314 * task_participate_group_stop - participate in a group stop
315 * @task: task participating in a group stop
316 *
317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
318 * Group stop states are cleared and the group stop count is consumed if
319 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
320 * stop, the appropriate %SIGNAL_* flags are set.
321 *
322 * CONTEXT:
323 * Must be called with @task->sighand->siglock held.
324 *
325 * RETURNS:
326 * %true if group stop completion should be notified to the parent, %false
327 * otherwise.
328 */
329static bool task_participate_group_stop(struct task_struct *task)
330{
331 struct signal_struct *sig = task->signal;
332 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
333
334 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
335
336 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
337
338 if (!consume)
339 return false;
340
341 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
342 sig->group_stop_count--;
343
344 /*
345 * Tell the caller to notify completion iff we are entering into a
346 * fresh group stop. Read comment in do_signal_stop() for details.
347 */
348 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
349 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
350 return true;
351 }
352 return false;
353}
354
355/*
356 * allocate a new signal queue record
357 * - this may be called without locks if and only if t == current, otherwise an
358 * appropriate lock must be held to stop the target task from exiting
359 */
360static struct sigqueue *
361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
362{
363 struct sigqueue *q = NULL;
364 struct user_struct *user;
365
366 /*
367 * Protect access to @t credentials. This can go away when all
368 * callers hold rcu read lock.
369 */
370 rcu_read_lock();
371 user = get_uid(__task_cred(t)->user);
372 atomic_inc(&user->sigpending);
373 rcu_read_unlock();
374
375 if (override_rlimit ||
376 atomic_read(&user->sigpending) <=
377 task_rlimit(t, RLIMIT_SIGPENDING)) {
378 q = kmem_cache_alloc(sigqueue_cachep, flags);
379 } else {
380 print_dropped_signal(sig);
381 }
382
383 if (unlikely(q == NULL)) {
384 atomic_dec(&user->sigpending);
385 free_uid(user);
386 } else {
387 INIT_LIST_HEAD(&q->list);
388 q->flags = 0;
389 q->user = user;
390 }
391
392 return q;
393}
394
395static void __sigqueue_free(struct sigqueue *q)
396{
397 if (q->flags & SIGQUEUE_PREALLOC)
398 return;
399 atomic_dec(&q->user->sigpending);
400 free_uid(q->user);
401 kmem_cache_free(sigqueue_cachep, q);
402}
403
404void flush_sigqueue(struct sigpending *queue)
405{
406 struct sigqueue *q;
407
408 sigemptyset(&queue->signal);
409 while (!list_empty(&queue->list)) {
410 q = list_entry(queue->list.next, struct sigqueue , list);
411 list_del_init(&q->list);
412 __sigqueue_free(q);
413 }
414}
415
416/*
417 * Flush all pending signals for this kthread.
418 */
419void flush_signals(struct task_struct *t)
420{
421 unsigned long flags;
422
423 spin_lock_irqsave(&t->sighand->siglock, flags);
424 clear_tsk_thread_flag(t, TIF_SIGPENDING);
425 flush_sigqueue(&t->pending);
426 flush_sigqueue(&t->signal->shared_pending);
427 spin_unlock_irqrestore(&t->sighand->siglock, flags);
428}
429
430#ifdef CONFIG_POSIX_TIMERS
431static void __flush_itimer_signals(struct sigpending *pending)
432{
433 sigset_t signal, retain;
434 struct sigqueue *q, *n;
435
436 signal = pending->signal;
437 sigemptyset(&retain);
438
439 list_for_each_entry_safe(q, n, &pending->list, list) {
440 int sig = q->info.si_signo;
441
442 if (likely(q->info.si_code != SI_TIMER)) {
443 sigaddset(&retain, sig);
444 } else {
445 sigdelset(&signal, sig);
446 list_del_init(&q->list);
447 __sigqueue_free(q);
448 }
449 }
450
451 sigorsets(&pending->signal, &signal, &retain);
452}
453
454void flush_itimer_signals(void)
455{
456 struct task_struct *tsk = current;
457 unsigned long flags;
458
459 spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 __flush_itimer_signals(&tsk->pending);
461 __flush_itimer_signals(&tsk->signal->shared_pending);
462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463}
464#endif
465
466void ignore_signals(struct task_struct *t)
467{
468 int i;
469
470 for (i = 0; i < _NSIG; ++i)
471 t->sighand->action[i].sa.sa_handler = SIG_IGN;
472
473 flush_signals(t);
474}
475
476/*
477 * Flush all handlers for a task.
478 */
479
480void
481flush_signal_handlers(struct task_struct *t, int force_default)
482{
483 int i;
484 struct k_sigaction *ka = &t->sighand->action[0];
485 for (i = _NSIG ; i != 0 ; i--) {
486 if (force_default || ka->sa.sa_handler != SIG_IGN)
487 ka->sa.sa_handler = SIG_DFL;
488 ka->sa.sa_flags = 0;
489#ifdef __ARCH_HAS_SA_RESTORER
490 ka->sa.sa_restorer = NULL;
491#endif
492 sigemptyset(&ka->sa.sa_mask);
493 ka++;
494 }
495}
496
497int unhandled_signal(struct task_struct *tsk, int sig)
498{
499 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
500 if (is_global_init(tsk))
501 return 1;
502 if (handler != SIG_IGN && handler != SIG_DFL)
503 return 0;
504 /* if ptraced, let the tracer determine */
505 return !tsk->ptrace;
506}
507
508static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
509{
510 struct sigqueue *q, *first = NULL;
511
512 /*
513 * Collect the siginfo appropriate to this signal. Check if
514 * there is another siginfo for the same signal.
515 */
516 list_for_each_entry(q, &list->list, list) {
517 if (q->info.si_signo == sig) {
518 if (first)
519 goto still_pending;
520 first = q;
521 }
522 }
523
524 sigdelset(&list->signal, sig);
525
526 if (first) {
527still_pending:
528 list_del_init(&first->list);
529 copy_siginfo(info, &first->info);
530 __sigqueue_free(first);
531 } else {
532 /*
533 * Ok, it wasn't in the queue. This must be
534 * a fast-pathed signal or we must have been
535 * out of queue space. So zero out the info.
536 */
537 info->si_signo = sig;
538 info->si_errno = 0;
539 info->si_code = SI_USER;
540 info->si_pid = 0;
541 info->si_uid = 0;
542 }
543}
544
545static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
546 siginfo_t *info)
547{
548 int sig = next_signal(pending, mask);
549
550 if (sig)
551 collect_signal(sig, pending, info);
552 return sig;
553}
554
555/*
556 * Dequeue a signal and return the element to the caller, which is
557 * expected to free it.
558 *
559 * All callers have to hold the siglock.
560 */
561int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
562{
563 int signr;
564
565 /* We only dequeue private signals from ourselves, we don't let
566 * signalfd steal them
567 */
568 signr = __dequeue_signal(&tsk->pending, mask, info);
569 if (!signr) {
570 signr = __dequeue_signal(&tsk->signal->shared_pending,
571 mask, info);
572#ifdef CONFIG_POSIX_TIMERS
573 /*
574 * itimer signal ?
575 *
576 * itimers are process shared and we restart periodic
577 * itimers in the signal delivery path to prevent DoS
578 * attacks in the high resolution timer case. This is
579 * compliant with the old way of self-restarting
580 * itimers, as the SIGALRM is a legacy signal and only
581 * queued once. Changing the restart behaviour to
582 * restart the timer in the signal dequeue path is
583 * reducing the timer noise on heavy loaded !highres
584 * systems too.
585 */
586 if (unlikely(signr == SIGALRM)) {
587 struct hrtimer *tmr = &tsk->signal->real_timer;
588
589 if (!hrtimer_is_queued(tmr) &&
590 tsk->signal->it_real_incr != 0) {
591 hrtimer_forward(tmr, tmr->base->get_time(),
592 tsk->signal->it_real_incr);
593 hrtimer_restart(tmr);
594 }
595 }
596#endif
597 }
598
599 recalc_sigpending();
600 if (!signr)
601 return 0;
602
603 if (unlikely(sig_kernel_stop(signr))) {
604 /*
605 * Set a marker that we have dequeued a stop signal. Our
606 * caller might release the siglock and then the pending
607 * stop signal it is about to process is no longer in the
608 * pending bitmasks, but must still be cleared by a SIGCONT
609 * (and overruled by a SIGKILL). So those cases clear this
610 * shared flag after we've set it. Note that this flag may
611 * remain set after the signal we return is ignored or
612 * handled. That doesn't matter because its only purpose
613 * is to alert stop-signal processing code when another
614 * processor has come along and cleared the flag.
615 */
616 current->jobctl |= JOBCTL_STOP_DEQUEUED;
617 }
618#ifdef CONFIG_POSIX_TIMERS
619 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
620 /*
621 * Release the siglock to ensure proper locking order
622 * of timer locks outside of siglocks. Note, we leave
623 * irqs disabled here, since the posix-timers code is
624 * about to disable them again anyway.
625 */
626 spin_unlock(&tsk->sighand->siglock);
627 do_schedule_next_timer(info);
628 spin_lock(&tsk->sighand->siglock);
629 }
630#endif
631 return signr;
632}
633
634/*
635 * Tell a process that it has a new active signal..
636 *
637 * NOTE! we rely on the previous spin_lock to
638 * lock interrupts for us! We can only be called with
639 * "siglock" held, and the local interrupt must
640 * have been disabled when that got acquired!
641 *
642 * No need to set need_resched since signal event passing
643 * goes through ->blocked
644 */
645void signal_wake_up_state(struct task_struct *t, unsigned int state)
646{
647 set_tsk_thread_flag(t, TIF_SIGPENDING);
648 /*
649 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
650 * case. We don't check t->state here because there is a race with it
651 * executing another processor and just now entering stopped state.
652 * By using wake_up_state, we ensure the process will wake up and
653 * handle its death signal.
654 */
655 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
656 kick_process(t);
657}
658
659/*
660 * Remove signals in mask from the pending set and queue.
661 * Returns 1 if any signals were found.
662 *
663 * All callers must be holding the siglock.
664 */
665static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
666{
667 struct sigqueue *q, *n;
668 sigset_t m;
669
670 sigandsets(&m, mask, &s->signal);
671 if (sigisemptyset(&m))
672 return 0;
673
674 sigandnsets(&s->signal, &s->signal, mask);
675 list_for_each_entry_safe(q, n, &s->list, list) {
676 if (sigismember(mask, q->info.si_signo)) {
677 list_del_init(&q->list);
678 __sigqueue_free(q);
679 }
680 }
681 return 1;
682}
683
684static inline int is_si_special(const struct siginfo *info)
685{
686 return info <= SEND_SIG_FORCED;
687}
688
689static inline bool si_fromuser(const struct siginfo *info)
690{
691 return info == SEND_SIG_NOINFO ||
692 (!is_si_special(info) && SI_FROMUSER(info));
693}
694
695/*
696 * called with RCU read lock from check_kill_permission()
697 */
698static int kill_ok_by_cred(struct task_struct *t)
699{
700 const struct cred *cred = current_cred();
701 const struct cred *tcred = __task_cred(t);
702
703 if (uid_eq(cred->euid, tcred->suid) ||
704 uid_eq(cred->euid, tcred->uid) ||
705 uid_eq(cred->uid, tcred->suid) ||
706 uid_eq(cred->uid, tcred->uid))
707 return 1;
708
709 if (ns_capable(tcred->user_ns, CAP_KILL))
710 return 1;
711
712 return 0;
713}
714
715/*
716 * Bad permissions for sending the signal
717 * - the caller must hold the RCU read lock
718 */
719static int check_kill_permission(int sig, struct siginfo *info,
720 struct task_struct *t)
721{
722 struct pid *sid;
723 int error;
724
725 if (!valid_signal(sig))
726 return -EINVAL;
727
728 if (!si_fromuser(info))
729 return 0;
730
731 error = audit_signal_info(sig, t); /* Let audit system see the signal */
732 if (error)
733 return error;
734
735 if (!same_thread_group(current, t) &&
736 !kill_ok_by_cred(t)) {
737 switch (sig) {
738 case SIGCONT:
739 sid = task_session(t);
740 /*
741 * We don't return the error if sid == NULL. The
742 * task was unhashed, the caller must notice this.
743 */
744 if (!sid || sid == task_session(current))
745 break;
746 default:
747 return -EPERM;
748 }
749 }
750
751 return security_task_kill(t, info, sig, 0);
752}
753
754/**
755 * ptrace_trap_notify - schedule trap to notify ptracer
756 * @t: tracee wanting to notify tracer
757 *
758 * This function schedules sticky ptrace trap which is cleared on the next
759 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
760 * ptracer.
761 *
762 * If @t is running, STOP trap will be taken. If trapped for STOP and
763 * ptracer is listening for events, tracee is woken up so that it can
764 * re-trap for the new event. If trapped otherwise, STOP trap will be
765 * eventually taken without returning to userland after the existing traps
766 * are finished by PTRACE_CONT.
767 *
768 * CONTEXT:
769 * Must be called with @task->sighand->siglock held.
770 */
771static void ptrace_trap_notify(struct task_struct *t)
772{
773 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
774 assert_spin_locked(&t->sighand->siglock);
775
776 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
777 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
778}
779
780/*
781 * Handle magic process-wide effects of stop/continue signals. Unlike
782 * the signal actions, these happen immediately at signal-generation
783 * time regardless of blocking, ignoring, or handling. This does the
784 * actual continuing for SIGCONT, but not the actual stopping for stop
785 * signals. The process stop is done as a signal action for SIG_DFL.
786 *
787 * Returns true if the signal should be actually delivered, otherwise
788 * it should be dropped.
789 */
790static bool prepare_signal(int sig, struct task_struct *p, bool force)
791{
792 struct signal_struct *signal = p->signal;
793 struct task_struct *t;
794 sigset_t flush;
795
796 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
797 if (!(signal->flags & SIGNAL_GROUP_EXIT))
798 return sig == SIGKILL;
799 /*
800 * The process is in the middle of dying, nothing to do.
801 */
802 } else if (sig_kernel_stop(sig)) {
803 /*
804 * This is a stop signal. Remove SIGCONT from all queues.
805 */
806 siginitset(&flush, sigmask(SIGCONT));
807 flush_sigqueue_mask(&flush, &signal->shared_pending);
808 for_each_thread(p, t)
809 flush_sigqueue_mask(&flush, &t->pending);
810 } else if (sig == SIGCONT) {
811 unsigned int why;
812 /*
813 * Remove all stop signals from all queues, wake all threads.
814 */
815 siginitset(&flush, SIG_KERNEL_STOP_MASK);
816 flush_sigqueue_mask(&flush, &signal->shared_pending);
817 for_each_thread(p, t) {
818 flush_sigqueue_mask(&flush, &t->pending);
819 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
820 if (likely(!(t->ptrace & PT_SEIZED)))
821 wake_up_state(t, __TASK_STOPPED);
822 else
823 ptrace_trap_notify(t);
824 }
825
826 /*
827 * Notify the parent with CLD_CONTINUED if we were stopped.
828 *
829 * If we were in the middle of a group stop, we pretend it
830 * was already finished, and then continued. Since SIGCHLD
831 * doesn't queue we report only CLD_STOPPED, as if the next
832 * CLD_CONTINUED was dropped.
833 */
834 why = 0;
835 if (signal->flags & SIGNAL_STOP_STOPPED)
836 why |= SIGNAL_CLD_CONTINUED;
837 else if (signal->group_stop_count)
838 why |= SIGNAL_CLD_STOPPED;
839
840 if (why) {
841 /*
842 * The first thread which returns from do_signal_stop()
843 * will take ->siglock, notice SIGNAL_CLD_MASK, and
844 * notify its parent. See get_signal_to_deliver().
845 */
846 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
847 signal->group_stop_count = 0;
848 signal->group_exit_code = 0;
849 }
850 }
851
852 return !sig_ignored(p, sig, force);
853}
854
855/*
856 * Test if P wants to take SIG. After we've checked all threads with this,
857 * it's equivalent to finding no threads not blocking SIG. Any threads not
858 * blocking SIG were ruled out because they are not running and already
859 * have pending signals. Such threads will dequeue from the shared queue
860 * as soon as they're available, so putting the signal on the shared queue
861 * will be equivalent to sending it to one such thread.
862 */
863static inline int wants_signal(int sig, struct task_struct *p)
864{
865 if (sigismember(&p->blocked, sig))
866 return 0;
867 if (p->flags & PF_EXITING)
868 return 0;
869 if (sig == SIGKILL)
870 return 1;
871 if (task_is_stopped_or_traced(p))
872 return 0;
873 return task_curr(p) || !signal_pending(p);
874}
875
876static void complete_signal(int sig, struct task_struct *p, int group)
877{
878 struct signal_struct *signal = p->signal;
879 struct task_struct *t;
880
881 /*
882 * Now find a thread we can wake up to take the signal off the queue.
883 *
884 * If the main thread wants the signal, it gets first crack.
885 * Probably the least surprising to the average bear.
886 */
887 if (wants_signal(sig, p))
888 t = p;
889 else if (!group || thread_group_empty(p))
890 /*
891 * There is just one thread and it does not need to be woken.
892 * It will dequeue unblocked signals before it runs again.
893 */
894 return;
895 else {
896 /*
897 * Otherwise try to find a suitable thread.
898 */
899 t = signal->curr_target;
900 while (!wants_signal(sig, t)) {
901 t = next_thread(t);
902 if (t == signal->curr_target)
903 /*
904 * No thread needs to be woken.
905 * Any eligible threads will see
906 * the signal in the queue soon.
907 */
908 return;
909 }
910 signal->curr_target = t;
911 }
912
913 /*
914 * Found a killable thread. If the signal will be fatal,
915 * then start taking the whole group down immediately.
916 */
917 if (sig_fatal(p, sig) &&
918 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
919 !sigismember(&t->real_blocked, sig) &&
920 (sig == SIGKILL || !t->ptrace)) {
921 /*
922 * This signal will be fatal to the whole group.
923 */
924 if (!sig_kernel_coredump(sig)) {
925 /*
926 * Start a group exit and wake everybody up.
927 * This way we don't have other threads
928 * running and doing things after a slower
929 * thread has the fatal signal pending.
930 */
931 signal->flags = SIGNAL_GROUP_EXIT;
932 signal->group_exit_code = sig;
933 signal->group_stop_count = 0;
934 t = p;
935 do {
936 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
937 sigaddset(&t->pending.signal, SIGKILL);
938 signal_wake_up(t, 1);
939 } while_each_thread(p, t);
940 return;
941 }
942 }
943
944 /*
945 * The signal is already in the shared-pending queue.
946 * Tell the chosen thread to wake up and dequeue it.
947 */
948 signal_wake_up(t, sig == SIGKILL);
949 return;
950}
951
952static inline int legacy_queue(struct sigpending *signals, int sig)
953{
954 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
955}
956
957#ifdef CONFIG_USER_NS
958static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
959{
960 if (current_user_ns() == task_cred_xxx(t, user_ns))
961 return;
962
963 if (SI_FROMKERNEL(info))
964 return;
965
966 rcu_read_lock();
967 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
968 make_kuid(current_user_ns(), info->si_uid));
969 rcu_read_unlock();
970}
971#else
972static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
973{
974 return;
975}
976#endif
977
978static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
979 int group, int from_ancestor_ns)
980{
981 struct sigpending *pending;
982 struct sigqueue *q;
983 int override_rlimit;
984 int ret = 0, result;
985
986 assert_spin_locked(&t->sighand->siglock);
987
988 result = TRACE_SIGNAL_IGNORED;
989 if (!prepare_signal(sig, t,
990 from_ancestor_ns || (info == SEND_SIG_FORCED)))
991 goto ret;
992
993 pending = group ? &t->signal->shared_pending : &t->pending;
994 /*
995 * Short-circuit ignored signals and support queuing
996 * exactly one non-rt signal, so that we can get more
997 * detailed information about the cause of the signal.
998 */
999 result = TRACE_SIGNAL_ALREADY_PENDING;
1000 if (legacy_queue(pending, sig))
1001 goto ret;
1002
1003 result = TRACE_SIGNAL_DELIVERED;
1004 /*
1005 * fast-pathed signals for kernel-internal things like SIGSTOP
1006 * or SIGKILL.
1007 */
1008 if (info == SEND_SIG_FORCED)
1009 goto out_set;
1010
1011 /*
1012 * Real-time signals must be queued if sent by sigqueue, or
1013 * some other real-time mechanism. It is implementation
1014 * defined whether kill() does so. We attempt to do so, on
1015 * the principle of least surprise, but since kill is not
1016 * allowed to fail with EAGAIN when low on memory we just
1017 * make sure at least one signal gets delivered and don't
1018 * pass on the info struct.
1019 */
1020 if (sig < SIGRTMIN)
1021 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1022 else
1023 override_rlimit = 0;
1024
1025 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1026 override_rlimit);
1027 if (q) {
1028 list_add_tail(&q->list, &pending->list);
1029 switch ((unsigned long) info) {
1030 case (unsigned long) SEND_SIG_NOINFO:
1031 q->info.si_signo = sig;
1032 q->info.si_errno = 0;
1033 q->info.si_code = SI_USER;
1034 q->info.si_pid = task_tgid_nr_ns(current,
1035 task_active_pid_ns(t));
1036 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1037 break;
1038 case (unsigned long) SEND_SIG_PRIV:
1039 q->info.si_signo = sig;
1040 q->info.si_errno = 0;
1041 q->info.si_code = SI_KERNEL;
1042 q->info.si_pid = 0;
1043 q->info.si_uid = 0;
1044 break;
1045 default:
1046 copy_siginfo(&q->info, info);
1047 if (from_ancestor_ns)
1048 q->info.si_pid = 0;
1049 break;
1050 }
1051
1052 userns_fixup_signal_uid(&q->info, t);
1053
1054 } else if (!is_si_special(info)) {
1055 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1056 /*
1057 * Queue overflow, abort. We may abort if the
1058 * signal was rt and sent by user using something
1059 * other than kill().
1060 */
1061 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1062 ret = -EAGAIN;
1063 goto ret;
1064 } else {
1065 /*
1066 * This is a silent loss of information. We still
1067 * send the signal, but the *info bits are lost.
1068 */
1069 result = TRACE_SIGNAL_LOSE_INFO;
1070 }
1071 }
1072
1073out_set:
1074 signalfd_notify(t, sig);
1075 sigaddset(&pending->signal, sig);
1076 complete_signal(sig, t, group);
1077ret:
1078 trace_signal_generate(sig, info, t, group, result);
1079 return ret;
1080}
1081
1082static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1083 int group)
1084{
1085 int from_ancestor_ns = 0;
1086
1087#ifdef CONFIG_PID_NS
1088 from_ancestor_ns = si_fromuser(info) &&
1089 !task_pid_nr_ns(current, task_active_pid_ns(t));
1090#endif
1091
1092 return __send_signal(sig, info, t, group, from_ancestor_ns);
1093}
1094
1095static void print_fatal_signal(int signr)
1096{
1097 struct pt_regs *regs = signal_pt_regs();
1098 pr_info("potentially unexpected fatal signal %d.\n", signr);
1099
1100#if defined(__i386__) && !defined(__arch_um__)
1101 pr_info("code at %08lx: ", regs->ip);
1102 {
1103 int i;
1104 for (i = 0; i < 16; i++) {
1105 unsigned char insn;
1106
1107 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1108 break;
1109 pr_cont("%02x ", insn);
1110 }
1111 }
1112 pr_cont("\n");
1113#endif
1114 preempt_disable();
1115 show_regs(regs);
1116 preempt_enable();
1117}
1118
1119static int __init setup_print_fatal_signals(char *str)
1120{
1121 get_option (&str, &print_fatal_signals);
1122
1123 return 1;
1124}
1125
1126__setup("print-fatal-signals=", setup_print_fatal_signals);
1127
1128int
1129__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1130{
1131 return send_signal(sig, info, p, 1);
1132}
1133
1134static int
1135specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1136{
1137 return send_signal(sig, info, t, 0);
1138}
1139
1140int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1141 bool group)
1142{
1143 unsigned long flags;
1144 int ret = -ESRCH;
1145
1146 if (lock_task_sighand(p, &flags)) {
1147 ret = send_signal(sig, info, p, group);
1148 unlock_task_sighand(p, &flags);
1149 }
1150
1151 return ret;
1152}
1153
1154/*
1155 * Force a signal that the process can't ignore: if necessary
1156 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1157 *
1158 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1159 * since we do not want to have a signal handler that was blocked
1160 * be invoked when user space had explicitly blocked it.
1161 *
1162 * We don't want to have recursive SIGSEGV's etc, for example,
1163 * that is why we also clear SIGNAL_UNKILLABLE.
1164 */
1165int
1166force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1167{
1168 unsigned long int flags;
1169 int ret, blocked, ignored;
1170 struct k_sigaction *action;
1171
1172 spin_lock_irqsave(&t->sighand->siglock, flags);
1173 action = &t->sighand->action[sig-1];
1174 ignored = action->sa.sa_handler == SIG_IGN;
1175 blocked = sigismember(&t->blocked, sig);
1176 if (blocked || ignored) {
1177 action->sa.sa_handler = SIG_DFL;
1178 if (blocked) {
1179 sigdelset(&t->blocked, sig);
1180 recalc_sigpending_and_wake(t);
1181 }
1182 }
1183 if (action->sa.sa_handler == SIG_DFL)
1184 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1185 ret = specific_send_sig_info(sig, info, t);
1186 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1187
1188 return ret;
1189}
1190
1191/*
1192 * Nuke all other threads in the group.
1193 */
1194int zap_other_threads(struct task_struct *p)
1195{
1196 struct task_struct *t = p;
1197 int count = 0;
1198
1199 p->signal->group_stop_count = 0;
1200
1201 while_each_thread(p, t) {
1202 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1203 count++;
1204
1205 /* Don't bother with already dead threads */
1206 if (t->exit_state)
1207 continue;
1208 sigaddset(&t->pending.signal, SIGKILL);
1209 signal_wake_up(t, 1);
1210 }
1211
1212 return count;
1213}
1214
1215struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1216 unsigned long *flags)
1217{
1218 struct sighand_struct *sighand;
1219
1220 for (;;) {
1221 /*
1222 * Disable interrupts early to avoid deadlocks.
1223 * See rcu_read_unlock() comment header for details.
1224 */
1225 local_irq_save(*flags);
1226 rcu_read_lock();
1227 sighand = rcu_dereference(tsk->sighand);
1228 if (unlikely(sighand == NULL)) {
1229 rcu_read_unlock();
1230 local_irq_restore(*flags);
1231 break;
1232 }
1233 /*
1234 * This sighand can be already freed and even reused, but
1235 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1236 * initializes ->siglock: this slab can't go away, it has
1237 * the same object type, ->siglock can't be reinitialized.
1238 *
1239 * We need to ensure that tsk->sighand is still the same
1240 * after we take the lock, we can race with de_thread() or
1241 * __exit_signal(). In the latter case the next iteration
1242 * must see ->sighand == NULL.
1243 */
1244 spin_lock(&sighand->siglock);
1245 if (likely(sighand == tsk->sighand)) {
1246 rcu_read_unlock();
1247 break;
1248 }
1249 spin_unlock(&sighand->siglock);
1250 rcu_read_unlock();
1251 local_irq_restore(*flags);
1252 }
1253
1254 return sighand;
1255}
1256
1257/*
1258 * send signal info to all the members of a group
1259 */
1260int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1261{
1262 int ret;
1263
1264 rcu_read_lock();
1265 ret = check_kill_permission(sig, info, p);
1266 rcu_read_unlock();
1267
1268 if (!ret && sig)
1269 ret = do_send_sig_info(sig, info, p, true);
1270
1271 return ret;
1272}
1273
1274/*
1275 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1276 * control characters do (^C, ^Z etc)
1277 * - the caller must hold at least a readlock on tasklist_lock
1278 */
1279int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1280{
1281 struct task_struct *p = NULL;
1282 int retval, success;
1283
1284 success = 0;
1285 retval = -ESRCH;
1286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1287 int err = group_send_sig_info(sig, info, p);
1288 success |= !err;
1289 retval = err;
1290 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1291 return success ? 0 : retval;
1292}
1293
1294int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1295{
1296 int error = -ESRCH;
1297 struct task_struct *p;
1298
1299 for (;;) {
1300 rcu_read_lock();
1301 p = pid_task(pid, PIDTYPE_PID);
1302 if (p)
1303 error = group_send_sig_info(sig, info, p);
1304 rcu_read_unlock();
1305 if (likely(!p || error != -ESRCH))
1306 return error;
1307
1308 /*
1309 * The task was unhashed in between, try again. If it
1310 * is dead, pid_task() will return NULL, if we race with
1311 * de_thread() it will find the new leader.
1312 */
1313 }
1314}
1315
1316int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1317{
1318 int error;
1319 rcu_read_lock();
1320 error = kill_pid_info(sig, info, find_vpid(pid));
1321 rcu_read_unlock();
1322 return error;
1323}
1324
1325static int kill_as_cred_perm(const struct cred *cred,
1326 struct task_struct *target)
1327{
1328 const struct cred *pcred = __task_cred(target);
1329 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1330 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1331 return 0;
1332 return 1;
1333}
1334
1335/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1336int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1337 const struct cred *cred, u32 secid)
1338{
1339 int ret = -EINVAL;
1340 struct task_struct *p;
1341 unsigned long flags;
1342
1343 if (!valid_signal(sig))
1344 return ret;
1345
1346 rcu_read_lock();
1347 p = pid_task(pid, PIDTYPE_PID);
1348 if (!p) {
1349 ret = -ESRCH;
1350 goto out_unlock;
1351 }
1352 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1353 ret = -EPERM;
1354 goto out_unlock;
1355 }
1356 ret = security_task_kill(p, info, sig, secid);
1357 if (ret)
1358 goto out_unlock;
1359
1360 if (sig) {
1361 if (lock_task_sighand(p, &flags)) {
1362 ret = __send_signal(sig, info, p, 1, 0);
1363 unlock_task_sighand(p, &flags);
1364 } else
1365 ret = -ESRCH;
1366 }
1367out_unlock:
1368 rcu_read_unlock();
1369 return ret;
1370}
1371EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1372
1373/*
1374 * kill_something_info() interprets pid in interesting ways just like kill(2).
1375 *
1376 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1377 * is probably wrong. Should make it like BSD or SYSV.
1378 */
1379
1380static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1381{
1382 int ret;
1383
1384 if (pid > 0) {
1385 rcu_read_lock();
1386 ret = kill_pid_info(sig, info, find_vpid(pid));
1387 rcu_read_unlock();
1388 return ret;
1389 }
1390
1391 read_lock(&tasklist_lock);
1392 if (pid != -1) {
1393 ret = __kill_pgrp_info(sig, info,
1394 pid ? find_vpid(-pid) : task_pgrp(current));
1395 } else {
1396 int retval = 0, count = 0;
1397 struct task_struct * p;
1398
1399 for_each_process(p) {
1400 if (task_pid_vnr(p) > 1 &&
1401 !same_thread_group(p, current)) {
1402 int err = group_send_sig_info(sig, info, p);
1403 ++count;
1404 if (err != -EPERM)
1405 retval = err;
1406 }
1407 }
1408 ret = count ? retval : -ESRCH;
1409 }
1410 read_unlock(&tasklist_lock);
1411
1412 return ret;
1413}
1414
1415/*
1416 * These are for backward compatibility with the rest of the kernel source.
1417 */
1418
1419int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1420{
1421 /*
1422 * Make sure legacy kernel users don't send in bad values
1423 * (normal paths check this in check_kill_permission).
1424 */
1425 if (!valid_signal(sig))
1426 return -EINVAL;
1427
1428 return do_send_sig_info(sig, info, p, false);
1429}
1430
1431#define __si_special(priv) \
1432 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1433
1434int
1435send_sig(int sig, struct task_struct *p, int priv)
1436{
1437 return send_sig_info(sig, __si_special(priv), p);
1438}
1439
1440void
1441force_sig(int sig, struct task_struct *p)
1442{
1443 force_sig_info(sig, SEND_SIG_PRIV, p);
1444}
1445
1446/*
1447 * When things go south during signal handling, we
1448 * will force a SIGSEGV. And if the signal that caused
1449 * the problem was already a SIGSEGV, we'll want to
1450 * make sure we don't even try to deliver the signal..
1451 */
1452int
1453force_sigsegv(int sig, struct task_struct *p)
1454{
1455 if (sig == SIGSEGV) {
1456 unsigned long flags;
1457 spin_lock_irqsave(&p->sighand->siglock, flags);
1458 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1459 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1460 }
1461 force_sig(SIGSEGV, p);
1462 return 0;
1463}
1464
1465int kill_pgrp(struct pid *pid, int sig, int priv)
1466{
1467 int ret;
1468
1469 read_lock(&tasklist_lock);
1470 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1471 read_unlock(&tasklist_lock);
1472
1473 return ret;
1474}
1475EXPORT_SYMBOL(kill_pgrp);
1476
1477int kill_pid(struct pid *pid, int sig, int priv)
1478{
1479 return kill_pid_info(sig, __si_special(priv), pid);
1480}
1481EXPORT_SYMBOL(kill_pid);
1482
1483/*
1484 * These functions support sending signals using preallocated sigqueue
1485 * structures. This is needed "because realtime applications cannot
1486 * afford to lose notifications of asynchronous events, like timer
1487 * expirations or I/O completions". In the case of POSIX Timers
1488 * we allocate the sigqueue structure from the timer_create. If this
1489 * allocation fails we are able to report the failure to the application
1490 * with an EAGAIN error.
1491 */
1492struct sigqueue *sigqueue_alloc(void)
1493{
1494 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1495
1496 if (q)
1497 q->flags |= SIGQUEUE_PREALLOC;
1498
1499 return q;
1500}
1501
1502void sigqueue_free(struct sigqueue *q)
1503{
1504 unsigned long flags;
1505 spinlock_t *lock = ¤t->sighand->siglock;
1506
1507 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1508 /*
1509 * We must hold ->siglock while testing q->list
1510 * to serialize with collect_signal() or with
1511 * __exit_signal()->flush_sigqueue().
1512 */
1513 spin_lock_irqsave(lock, flags);
1514 q->flags &= ~SIGQUEUE_PREALLOC;
1515 /*
1516 * If it is queued it will be freed when dequeued,
1517 * like the "regular" sigqueue.
1518 */
1519 if (!list_empty(&q->list))
1520 q = NULL;
1521 spin_unlock_irqrestore(lock, flags);
1522
1523 if (q)
1524 __sigqueue_free(q);
1525}
1526
1527int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1528{
1529 int sig = q->info.si_signo;
1530 struct sigpending *pending;
1531 unsigned long flags;
1532 int ret, result;
1533
1534 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1535
1536 ret = -1;
1537 if (!likely(lock_task_sighand(t, &flags)))
1538 goto ret;
1539
1540 ret = 1; /* the signal is ignored */
1541 result = TRACE_SIGNAL_IGNORED;
1542 if (!prepare_signal(sig, t, false))
1543 goto out;
1544
1545 ret = 0;
1546 if (unlikely(!list_empty(&q->list))) {
1547 /*
1548 * If an SI_TIMER entry is already queue just increment
1549 * the overrun count.
1550 */
1551 BUG_ON(q->info.si_code != SI_TIMER);
1552 q->info.si_overrun++;
1553 result = TRACE_SIGNAL_ALREADY_PENDING;
1554 goto out;
1555 }
1556 q->info.si_overrun = 0;
1557
1558 signalfd_notify(t, sig);
1559 pending = group ? &t->signal->shared_pending : &t->pending;
1560 list_add_tail(&q->list, &pending->list);
1561 sigaddset(&pending->signal, sig);
1562 complete_signal(sig, t, group);
1563 result = TRACE_SIGNAL_DELIVERED;
1564out:
1565 trace_signal_generate(sig, &q->info, t, group, result);
1566 unlock_task_sighand(t, &flags);
1567ret:
1568 return ret;
1569}
1570
1571/*
1572 * Let a parent know about the death of a child.
1573 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1574 *
1575 * Returns true if our parent ignored us and so we've switched to
1576 * self-reaping.
1577 */
1578bool do_notify_parent(struct task_struct *tsk, int sig)
1579{
1580 struct siginfo info;
1581 unsigned long flags;
1582 struct sighand_struct *psig;
1583 bool autoreap = false;
1584 cputime_t utime, stime;
1585
1586 BUG_ON(sig == -1);
1587
1588 /* do_notify_parent_cldstop should have been called instead. */
1589 BUG_ON(task_is_stopped_or_traced(tsk));
1590
1591 BUG_ON(!tsk->ptrace &&
1592 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1593
1594 if (sig != SIGCHLD) {
1595 /*
1596 * This is only possible if parent == real_parent.
1597 * Check if it has changed security domain.
1598 */
1599 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1600 sig = SIGCHLD;
1601 }
1602
1603 info.si_signo = sig;
1604 info.si_errno = 0;
1605 /*
1606 * We are under tasklist_lock here so our parent is tied to
1607 * us and cannot change.
1608 *
1609 * task_active_pid_ns will always return the same pid namespace
1610 * until a task passes through release_task.
1611 *
1612 * write_lock() currently calls preempt_disable() which is the
1613 * same as rcu_read_lock(), but according to Oleg, this is not
1614 * correct to rely on this
1615 */
1616 rcu_read_lock();
1617 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1618 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1619 task_uid(tsk));
1620 rcu_read_unlock();
1621
1622 task_cputime(tsk, &utime, &stime);
1623 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1624 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1625
1626 info.si_status = tsk->exit_code & 0x7f;
1627 if (tsk->exit_code & 0x80)
1628 info.si_code = CLD_DUMPED;
1629 else if (tsk->exit_code & 0x7f)
1630 info.si_code = CLD_KILLED;
1631 else {
1632 info.si_code = CLD_EXITED;
1633 info.si_status = tsk->exit_code >> 8;
1634 }
1635
1636 psig = tsk->parent->sighand;
1637 spin_lock_irqsave(&psig->siglock, flags);
1638 if (!tsk->ptrace && sig == SIGCHLD &&
1639 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1640 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1641 /*
1642 * We are exiting and our parent doesn't care. POSIX.1
1643 * defines special semantics for setting SIGCHLD to SIG_IGN
1644 * or setting the SA_NOCLDWAIT flag: we should be reaped
1645 * automatically and not left for our parent's wait4 call.
1646 * Rather than having the parent do it as a magic kind of
1647 * signal handler, we just set this to tell do_exit that we
1648 * can be cleaned up without becoming a zombie. Note that
1649 * we still call __wake_up_parent in this case, because a
1650 * blocked sys_wait4 might now return -ECHILD.
1651 *
1652 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1653 * is implementation-defined: we do (if you don't want
1654 * it, just use SIG_IGN instead).
1655 */
1656 autoreap = true;
1657 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1658 sig = 0;
1659 }
1660 if (valid_signal(sig) && sig)
1661 __group_send_sig_info(sig, &info, tsk->parent);
1662 __wake_up_parent(tsk, tsk->parent);
1663 spin_unlock_irqrestore(&psig->siglock, flags);
1664
1665 return autoreap;
1666}
1667
1668/**
1669 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1670 * @tsk: task reporting the state change
1671 * @for_ptracer: the notification is for ptracer
1672 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1673 *
1674 * Notify @tsk's parent that the stopped/continued state has changed. If
1675 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1676 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1677 *
1678 * CONTEXT:
1679 * Must be called with tasklist_lock at least read locked.
1680 */
1681static void do_notify_parent_cldstop(struct task_struct *tsk,
1682 bool for_ptracer, int why)
1683{
1684 struct siginfo info;
1685 unsigned long flags;
1686 struct task_struct *parent;
1687 struct sighand_struct *sighand;
1688 cputime_t utime, stime;
1689
1690 if (for_ptracer) {
1691 parent = tsk->parent;
1692 } else {
1693 tsk = tsk->group_leader;
1694 parent = tsk->real_parent;
1695 }
1696
1697 info.si_signo = SIGCHLD;
1698 info.si_errno = 0;
1699 /*
1700 * see comment in do_notify_parent() about the following 4 lines
1701 */
1702 rcu_read_lock();
1703 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1704 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1705 rcu_read_unlock();
1706
1707 task_cputime(tsk, &utime, &stime);
1708 info.si_utime = cputime_to_clock_t(utime);
1709 info.si_stime = cputime_to_clock_t(stime);
1710
1711 info.si_code = why;
1712 switch (why) {
1713 case CLD_CONTINUED:
1714 info.si_status = SIGCONT;
1715 break;
1716 case CLD_STOPPED:
1717 info.si_status = tsk->signal->group_exit_code & 0x7f;
1718 break;
1719 case CLD_TRAPPED:
1720 info.si_status = tsk->exit_code & 0x7f;
1721 break;
1722 default:
1723 BUG();
1724 }
1725
1726 sighand = parent->sighand;
1727 spin_lock_irqsave(&sighand->siglock, flags);
1728 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1729 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1730 __group_send_sig_info(SIGCHLD, &info, parent);
1731 /*
1732 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1733 */
1734 __wake_up_parent(tsk, parent);
1735 spin_unlock_irqrestore(&sighand->siglock, flags);
1736}
1737
1738static inline int may_ptrace_stop(void)
1739{
1740 if (!likely(current->ptrace))
1741 return 0;
1742 /*
1743 * Are we in the middle of do_coredump?
1744 * If so and our tracer is also part of the coredump stopping
1745 * is a deadlock situation, and pointless because our tracer
1746 * is dead so don't allow us to stop.
1747 * If SIGKILL was already sent before the caller unlocked
1748 * ->siglock we must see ->core_state != NULL. Otherwise it
1749 * is safe to enter schedule().
1750 *
1751 * This is almost outdated, a task with the pending SIGKILL can't
1752 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1753 * after SIGKILL was already dequeued.
1754 */
1755 if (unlikely(current->mm->core_state) &&
1756 unlikely(current->mm == current->parent->mm))
1757 return 0;
1758
1759 return 1;
1760}
1761
1762/*
1763 * Return non-zero if there is a SIGKILL that should be waking us up.
1764 * Called with the siglock held.
1765 */
1766static int sigkill_pending(struct task_struct *tsk)
1767{
1768 return sigismember(&tsk->pending.signal, SIGKILL) ||
1769 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1770}
1771
1772/*
1773 * This must be called with current->sighand->siglock held.
1774 *
1775 * This should be the path for all ptrace stops.
1776 * We always set current->last_siginfo while stopped here.
1777 * That makes it a way to test a stopped process for
1778 * being ptrace-stopped vs being job-control-stopped.
1779 *
1780 * If we actually decide not to stop at all because the tracer
1781 * is gone, we keep current->exit_code unless clear_code.
1782 */
1783static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1784 __releases(¤t->sighand->siglock)
1785 __acquires(¤t->sighand->siglock)
1786{
1787 bool gstop_done = false;
1788
1789 if (arch_ptrace_stop_needed(exit_code, info)) {
1790 /*
1791 * The arch code has something special to do before a
1792 * ptrace stop. This is allowed to block, e.g. for faults
1793 * on user stack pages. We can't keep the siglock while
1794 * calling arch_ptrace_stop, so we must release it now.
1795 * To preserve proper semantics, we must do this before
1796 * any signal bookkeeping like checking group_stop_count.
1797 * Meanwhile, a SIGKILL could come in before we retake the
1798 * siglock. That must prevent us from sleeping in TASK_TRACED.
1799 * So after regaining the lock, we must check for SIGKILL.
1800 */
1801 spin_unlock_irq(¤t->sighand->siglock);
1802 arch_ptrace_stop(exit_code, info);
1803 spin_lock_irq(¤t->sighand->siglock);
1804 if (sigkill_pending(current))
1805 return;
1806 }
1807
1808 /*
1809 * We're committing to trapping. TRACED should be visible before
1810 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1811 * Also, transition to TRACED and updates to ->jobctl should be
1812 * atomic with respect to siglock and should be done after the arch
1813 * hook as siglock is released and regrabbed across it.
1814 */
1815 set_current_state(TASK_TRACED);
1816
1817 current->last_siginfo = info;
1818 current->exit_code = exit_code;
1819
1820 /*
1821 * If @why is CLD_STOPPED, we're trapping to participate in a group
1822 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1823 * across siglock relocks since INTERRUPT was scheduled, PENDING
1824 * could be clear now. We act as if SIGCONT is received after
1825 * TASK_TRACED is entered - ignore it.
1826 */
1827 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1828 gstop_done = task_participate_group_stop(current);
1829
1830 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1831 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1832 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1833 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1834
1835 /* entering a trap, clear TRAPPING */
1836 task_clear_jobctl_trapping(current);
1837
1838 spin_unlock_irq(¤t->sighand->siglock);
1839 read_lock(&tasklist_lock);
1840 if (may_ptrace_stop()) {
1841 /*
1842 * Notify parents of the stop.
1843 *
1844 * While ptraced, there are two parents - the ptracer and
1845 * the real_parent of the group_leader. The ptracer should
1846 * know about every stop while the real parent is only
1847 * interested in the completion of group stop. The states
1848 * for the two don't interact with each other. Notify
1849 * separately unless they're gonna be duplicates.
1850 */
1851 do_notify_parent_cldstop(current, true, why);
1852 if (gstop_done && ptrace_reparented(current))
1853 do_notify_parent_cldstop(current, false, why);
1854
1855 /*
1856 * Don't want to allow preemption here, because
1857 * sys_ptrace() needs this task to be inactive.
1858 *
1859 * XXX: implement read_unlock_no_resched().
1860 */
1861 preempt_disable();
1862 read_unlock(&tasklist_lock);
1863 preempt_enable_no_resched();
1864 freezable_schedule();
1865 } else {
1866 /*
1867 * By the time we got the lock, our tracer went away.
1868 * Don't drop the lock yet, another tracer may come.
1869 *
1870 * If @gstop_done, the ptracer went away between group stop
1871 * completion and here. During detach, it would have set
1872 * JOBCTL_STOP_PENDING on us and we'll re-enter
1873 * TASK_STOPPED in do_signal_stop() on return, so notifying
1874 * the real parent of the group stop completion is enough.
1875 */
1876 if (gstop_done)
1877 do_notify_parent_cldstop(current, false, why);
1878
1879 /* tasklist protects us from ptrace_freeze_traced() */
1880 __set_current_state(TASK_RUNNING);
1881 if (clear_code)
1882 current->exit_code = 0;
1883 read_unlock(&tasklist_lock);
1884 }
1885
1886 /*
1887 * We are back. Now reacquire the siglock before touching
1888 * last_siginfo, so that we are sure to have synchronized with
1889 * any signal-sending on another CPU that wants to examine it.
1890 */
1891 spin_lock_irq(¤t->sighand->siglock);
1892 current->last_siginfo = NULL;
1893
1894 /* LISTENING can be set only during STOP traps, clear it */
1895 current->jobctl &= ~JOBCTL_LISTENING;
1896
1897 /*
1898 * Queued signals ignored us while we were stopped for tracing.
1899 * So check for any that we should take before resuming user mode.
1900 * This sets TIF_SIGPENDING, but never clears it.
1901 */
1902 recalc_sigpending_tsk(current);
1903}
1904
1905static void ptrace_do_notify(int signr, int exit_code, int why)
1906{
1907 siginfo_t info;
1908
1909 memset(&info, 0, sizeof info);
1910 info.si_signo = signr;
1911 info.si_code = exit_code;
1912 info.si_pid = task_pid_vnr(current);
1913 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1914
1915 /* Let the debugger run. */
1916 ptrace_stop(exit_code, why, 1, &info);
1917}
1918
1919void ptrace_notify(int exit_code)
1920{
1921 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1922 if (unlikely(current->task_works))
1923 task_work_run();
1924
1925 spin_lock_irq(¤t->sighand->siglock);
1926 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1927 spin_unlock_irq(¤t->sighand->siglock);
1928}
1929
1930/**
1931 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1932 * @signr: signr causing group stop if initiating
1933 *
1934 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1935 * and participate in it. If already set, participate in the existing
1936 * group stop. If participated in a group stop (and thus slept), %true is
1937 * returned with siglock released.
1938 *
1939 * If ptraced, this function doesn't handle stop itself. Instead,
1940 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1941 * untouched. The caller must ensure that INTERRUPT trap handling takes
1942 * places afterwards.
1943 *
1944 * CONTEXT:
1945 * Must be called with @current->sighand->siglock held, which is released
1946 * on %true return.
1947 *
1948 * RETURNS:
1949 * %false if group stop is already cancelled or ptrace trap is scheduled.
1950 * %true if participated in group stop.
1951 */
1952static bool do_signal_stop(int signr)
1953 __releases(¤t->sighand->siglock)
1954{
1955 struct signal_struct *sig = current->signal;
1956
1957 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1958 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1959 struct task_struct *t;
1960
1961 /* signr will be recorded in task->jobctl for retries */
1962 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1963
1964 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1965 unlikely(signal_group_exit(sig)))
1966 return false;
1967 /*
1968 * There is no group stop already in progress. We must
1969 * initiate one now.
1970 *
1971 * While ptraced, a task may be resumed while group stop is
1972 * still in effect and then receive a stop signal and
1973 * initiate another group stop. This deviates from the
1974 * usual behavior as two consecutive stop signals can't
1975 * cause two group stops when !ptraced. That is why we
1976 * also check !task_is_stopped(t) below.
1977 *
1978 * The condition can be distinguished by testing whether
1979 * SIGNAL_STOP_STOPPED is already set. Don't generate
1980 * group_exit_code in such case.
1981 *
1982 * This is not necessary for SIGNAL_STOP_CONTINUED because
1983 * an intervening stop signal is required to cause two
1984 * continued events regardless of ptrace.
1985 */
1986 if (!(sig->flags & SIGNAL_STOP_STOPPED))
1987 sig->group_exit_code = signr;
1988
1989 sig->group_stop_count = 0;
1990
1991 if (task_set_jobctl_pending(current, signr | gstop))
1992 sig->group_stop_count++;
1993
1994 t = current;
1995 while_each_thread(current, t) {
1996 /*
1997 * Setting state to TASK_STOPPED for a group
1998 * stop is always done with the siglock held,
1999 * so this check has no races.
2000 */
2001 if (!task_is_stopped(t) &&
2002 task_set_jobctl_pending(t, signr | gstop)) {
2003 sig->group_stop_count++;
2004 if (likely(!(t->ptrace & PT_SEIZED)))
2005 signal_wake_up(t, 0);
2006 else
2007 ptrace_trap_notify(t);
2008 }
2009 }
2010 }
2011
2012 if (likely(!current->ptrace)) {
2013 int notify = 0;
2014
2015 /*
2016 * If there are no other threads in the group, or if there
2017 * is a group stop in progress and we are the last to stop,
2018 * report to the parent.
2019 */
2020 if (task_participate_group_stop(current))
2021 notify = CLD_STOPPED;
2022
2023 __set_current_state(TASK_STOPPED);
2024 spin_unlock_irq(¤t->sighand->siglock);
2025
2026 /*
2027 * Notify the parent of the group stop completion. Because
2028 * we're not holding either the siglock or tasklist_lock
2029 * here, ptracer may attach inbetween; however, this is for
2030 * group stop and should always be delivered to the real
2031 * parent of the group leader. The new ptracer will get
2032 * its notification when this task transitions into
2033 * TASK_TRACED.
2034 */
2035 if (notify) {
2036 read_lock(&tasklist_lock);
2037 do_notify_parent_cldstop(current, false, notify);
2038 read_unlock(&tasklist_lock);
2039 }
2040
2041 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2042 freezable_schedule();
2043 return true;
2044 } else {
2045 /*
2046 * While ptraced, group stop is handled by STOP trap.
2047 * Schedule it and let the caller deal with it.
2048 */
2049 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2050 return false;
2051 }
2052}
2053
2054/**
2055 * do_jobctl_trap - take care of ptrace jobctl traps
2056 *
2057 * When PT_SEIZED, it's used for both group stop and explicit
2058 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2059 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2060 * the stop signal; otherwise, %SIGTRAP.
2061 *
2062 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2063 * number as exit_code and no siginfo.
2064 *
2065 * CONTEXT:
2066 * Must be called with @current->sighand->siglock held, which may be
2067 * released and re-acquired before returning with intervening sleep.
2068 */
2069static void do_jobctl_trap(void)
2070{
2071 struct signal_struct *signal = current->signal;
2072 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2073
2074 if (current->ptrace & PT_SEIZED) {
2075 if (!signal->group_stop_count &&
2076 !(signal->flags & SIGNAL_STOP_STOPPED))
2077 signr = SIGTRAP;
2078 WARN_ON_ONCE(!signr);
2079 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2080 CLD_STOPPED);
2081 } else {
2082 WARN_ON_ONCE(!signr);
2083 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2084 current->exit_code = 0;
2085 }
2086}
2087
2088static int ptrace_signal(int signr, siginfo_t *info)
2089{
2090 ptrace_signal_deliver();
2091 /*
2092 * We do not check sig_kernel_stop(signr) but set this marker
2093 * unconditionally because we do not know whether debugger will
2094 * change signr. This flag has no meaning unless we are going
2095 * to stop after return from ptrace_stop(). In this case it will
2096 * be checked in do_signal_stop(), we should only stop if it was
2097 * not cleared by SIGCONT while we were sleeping. See also the
2098 * comment in dequeue_signal().
2099 */
2100 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2101 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2102
2103 /* We're back. Did the debugger cancel the sig? */
2104 signr = current->exit_code;
2105 if (signr == 0)
2106 return signr;
2107
2108 current->exit_code = 0;
2109
2110 /*
2111 * Update the siginfo structure if the signal has
2112 * changed. If the debugger wanted something
2113 * specific in the siginfo structure then it should
2114 * have updated *info via PTRACE_SETSIGINFO.
2115 */
2116 if (signr != info->si_signo) {
2117 info->si_signo = signr;
2118 info->si_errno = 0;
2119 info->si_code = SI_USER;
2120 rcu_read_lock();
2121 info->si_pid = task_pid_vnr(current->parent);
2122 info->si_uid = from_kuid_munged(current_user_ns(),
2123 task_uid(current->parent));
2124 rcu_read_unlock();
2125 }
2126
2127 /* If the (new) signal is now blocked, requeue it. */
2128 if (sigismember(¤t->blocked, signr)) {
2129 specific_send_sig_info(signr, info, current);
2130 signr = 0;
2131 }
2132
2133 return signr;
2134}
2135
2136int get_signal(struct ksignal *ksig)
2137{
2138 struct sighand_struct *sighand = current->sighand;
2139 struct signal_struct *signal = current->signal;
2140 int signr;
2141
2142 if (unlikely(current->task_works))
2143 task_work_run();
2144
2145 if (unlikely(uprobe_deny_signal()))
2146 return 0;
2147
2148 /*
2149 * Do this once, we can't return to user-mode if freezing() == T.
2150 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2151 * thus do not need another check after return.
2152 */
2153 try_to_freeze();
2154
2155relock:
2156 spin_lock_irq(&sighand->siglock);
2157 /*
2158 * Every stopped thread goes here after wakeup. Check to see if
2159 * we should notify the parent, prepare_signal(SIGCONT) encodes
2160 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2161 */
2162 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2163 int why;
2164
2165 if (signal->flags & SIGNAL_CLD_CONTINUED)
2166 why = CLD_CONTINUED;
2167 else
2168 why = CLD_STOPPED;
2169
2170 signal->flags &= ~SIGNAL_CLD_MASK;
2171
2172 spin_unlock_irq(&sighand->siglock);
2173
2174 /*
2175 * Notify the parent that we're continuing. This event is
2176 * always per-process and doesn't make whole lot of sense
2177 * for ptracers, who shouldn't consume the state via
2178 * wait(2) either, but, for backward compatibility, notify
2179 * the ptracer of the group leader too unless it's gonna be
2180 * a duplicate.
2181 */
2182 read_lock(&tasklist_lock);
2183 do_notify_parent_cldstop(current, false, why);
2184
2185 if (ptrace_reparented(current->group_leader))
2186 do_notify_parent_cldstop(current->group_leader,
2187 true, why);
2188 read_unlock(&tasklist_lock);
2189
2190 goto relock;
2191 }
2192
2193 for (;;) {
2194 struct k_sigaction *ka;
2195
2196 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2197 do_signal_stop(0))
2198 goto relock;
2199
2200 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2201 do_jobctl_trap();
2202 spin_unlock_irq(&sighand->siglock);
2203 goto relock;
2204 }
2205
2206 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2207
2208 if (!signr)
2209 break; /* will return 0 */
2210
2211 if (unlikely(current->ptrace) && signr != SIGKILL) {
2212 signr = ptrace_signal(signr, &ksig->info);
2213 if (!signr)
2214 continue;
2215 }
2216
2217 ka = &sighand->action[signr-1];
2218
2219 /* Trace actually delivered signals. */
2220 trace_signal_deliver(signr, &ksig->info, ka);
2221
2222 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2223 continue;
2224 if (ka->sa.sa_handler != SIG_DFL) {
2225 /* Run the handler. */
2226 ksig->ka = *ka;
2227
2228 if (ka->sa.sa_flags & SA_ONESHOT)
2229 ka->sa.sa_handler = SIG_DFL;
2230
2231 break; /* will return non-zero "signr" value */
2232 }
2233
2234 /*
2235 * Now we are doing the default action for this signal.
2236 */
2237 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2238 continue;
2239
2240 /*
2241 * Global init gets no signals it doesn't want.
2242 * Container-init gets no signals it doesn't want from same
2243 * container.
2244 *
2245 * Note that if global/container-init sees a sig_kernel_only()
2246 * signal here, the signal must have been generated internally
2247 * or must have come from an ancestor namespace. In either
2248 * case, the signal cannot be dropped.
2249 */
2250 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2251 !sig_kernel_only(signr))
2252 continue;
2253
2254 if (sig_kernel_stop(signr)) {
2255 /*
2256 * The default action is to stop all threads in
2257 * the thread group. The job control signals
2258 * do nothing in an orphaned pgrp, but SIGSTOP
2259 * always works. Note that siglock needs to be
2260 * dropped during the call to is_orphaned_pgrp()
2261 * because of lock ordering with tasklist_lock.
2262 * This allows an intervening SIGCONT to be posted.
2263 * We need to check for that and bail out if necessary.
2264 */
2265 if (signr != SIGSTOP) {
2266 spin_unlock_irq(&sighand->siglock);
2267
2268 /* signals can be posted during this window */
2269
2270 if (is_current_pgrp_orphaned())
2271 goto relock;
2272
2273 spin_lock_irq(&sighand->siglock);
2274 }
2275
2276 if (likely(do_signal_stop(ksig->info.si_signo))) {
2277 /* It released the siglock. */
2278 goto relock;
2279 }
2280
2281 /*
2282 * We didn't actually stop, due to a race
2283 * with SIGCONT or something like that.
2284 */
2285 continue;
2286 }
2287
2288 spin_unlock_irq(&sighand->siglock);
2289
2290 /*
2291 * Anything else is fatal, maybe with a core dump.
2292 */
2293 current->flags |= PF_SIGNALED;
2294
2295 if (sig_kernel_coredump(signr)) {
2296 if (print_fatal_signals)
2297 print_fatal_signal(ksig->info.si_signo);
2298 proc_coredump_connector(current);
2299 /*
2300 * If it was able to dump core, this kills all
2301 * other threads in the group and synchronizes with
2302 * their demise. If we lost the race with another
2303 * thread getting here, it set group_exit_code
2304 * first and our do_group_exit call below will use
2305 * that value and ignore the one we pass it.
2306 */
2307 do_coredump(&ksig->info);
2308 }
2309
2310 /*
2311 * Death signals, no core dump.
2312 */
2313 do_group_exit(ksig->info.si_signo);
2314 /* NOTREACHED */
2315 }
2316 spin_unlock_irq(&sighand->siglock);
2317
2318 ksig->sig = signr;
2319 return ksig->sig > 0;
2320}
2321
2322/**
2323 * signal_delivered -
2324 * @ksig: kernel signal struct
2325 * @stepping: nonzero if debugger single-step or block-step in use
2326 *
2327 * This function should be called when a signal has successfully been
2328 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2329 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2330 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2331 */
2332static void signal_delivered(struct ksignal *ksig, int stepping)
2333{
2334 sigset_t blocked;
2335
2336 /* A signal was successfully delivered, and the
2337 saved sigmask was stored on the signal frame,
2338 and will be restored by sigreturn. So we can
2339 simply clear the restore sigmask flag. */
2340 clear_restore_sigmask();
2341
2342 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2343 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2344 sigaddset(&blocked, ksig->sig);
2345 set_current_blocked(&blocked);
2346 tracehook_signal_handler(stepping);
2347}
2348
2349void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2350{
2351 if (failed)
2352 force_sigsegv(ksig->sig, current);
2353 else
2354 signal_delivered(ksig, stepping);
2355}
2356
2357/*
2358 * It could be that complete_signal() picked us to notify about the
2359 * group-wide signal. Other threads should be notified now to take
2360 * the shared signals in @which since we will not.
2361 */
2362static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2363{
2364 sigset_t retarget;
2365 struct task_struct *t;
2366
2367 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2368 if (sigisemptyset(&retarget))
2369 return;
2370
2371 t = tsk;
2372 while_each_thread(tsk, t) {
2373 if (t->flags & PF_EXITING)
2374 continue;
2375
2376 if (!has_pending_signals(&retarget, &t->blocked))
2377 continue;
2378 /* Remove the signals this thread can handle. */
2379 sigandsets(&retarget, &retarget, &t->blocked);
2380
2381 if (!signal_pending(t))
2382 signal_wake_up(t, 0);
2383
2384 if (sigisemptyset(&retarget))
2385 break;
2386 }
2387}
2388
2389void exit_signals(struct task_struct *tsk)
2390{
2391 int group_stop = 0;
2392 sigset_t unblocked;
2393
2394 /*
2395 * @tsk is about to have PF_EXITING set - lock out users which
2396 * expect stable threadgroup.
2397 */
2398 threadgroup_change_begin(tsk);
2399
2400 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2401 tsk->flags |= PF_EXITING;
2402 threadgroup_change_end(tsk);
2403 return;
2404 }
2405
2406 spin_lock_irq(&tsk->sighand->siglock);
2407 /*
2408 * From now this task is not visible for group-wide signals,
2409 * see wants_signal(), do_signal_stop().
2410 */
2411 tsk->flags |= PF_EXITING;
2412
2413 threadgroup_change_end(tsk);
2414
2415 if (!signal_pending(tsk))
2416 goto out;
2417
2418 unblocked = tsk->blocked;
2419 signotset(&unblocked);
2420 retarget_shared_pending(tsk, &unblocked);
2421
2422 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2423 task_participate_group_stop(tsk))
2424 group_stop = CLD_STOPPED;
2425out:
2426 spin_unlock_irq(&tsk->sighand->siglock);
2427
2428 /*
2429 * If group stop has completed, deliver the notification. This
2430 * should always go to the real parent of the group leader.
2431 */
2432 if (unlikely(group_stop)) {
2433 read_lock(&tasklist_lock);
2434 do_notify_parent_cldstop(tsk, false, group_stop);
2435 read_unlock(&tasklist_lock);
2436 }
2437}
2438
2439EXPORT_SYMBOL(recalc_sigpending);
2440EXPORT_SYMBOL_GPL(dequeue_signal);
2441EXPORT_SYMBOL(flush_signals);
2442EXPORT_SYMBOL(force_sig);
2443EXPORT_SYMBOL(send_sig);
2444EXPORT_SYMBOL(send_sig_info);
2445EXPORT_SYMBOL(sigprocmask);
2446
2447/*
2448 * System call entry points.
2449 */
2450
2451/**
2452 * sys_restart_syscall - restart a system call
2453 */
2454SYSCALL_DEFINE0(restart_syscall)
2455{
2456 struct restart_block *restart = ¤t->restart_block;
2457 return restart->fn(restart);
2458}
2459
2460long do_no_restart_syscall(struct restart_block *param)
2461{
2462 return -EINTR;
2463}
2464
2465static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2466{
2467 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2468 sigset_t newblocked;
2469 /* A set of now blocked but previously unblocked signals. */
2470 sigandnsets(&newblocked, newset, ¤t->blocked);
2471 retarget_shared_pending(tsk, &newblocked);
2472 }
2473 tsk->blocked = *newset;
2474 recalc_sigpending();
2475}
2476
2477/**
2478 * set_current_blocked - change current->blocked mask
2479 * @newset: new mask
2480 *
2481 * It is wrong to change ->blocked directly, this helper should be used
2482 * to ensure the process can't miss a shared signal we are going to block.
2483 */
2484void set_current_blocked(sigset_t *newset)
2485{
2486 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2487 __set_current_blocked(newset);
2488}
2489
2490void __set_current_blocked(const sigset_t *newset)
2491{
2492 struct task_struct *tsk = current;
2493
2494 /*
2495 * In case the signal mask hasn't changed, there is nothing we need
2496 * to do. The current->blocked shouldn't be modified by other task.
2497 */
2498 if (sigequalsets(&tsk->blocked, newset))
2499 return;
2500
2501 spin_lock_irq(&tsk->sighand->siglock);
2502 __set_task_blocked(tsk, newset);
2503 spin_unlock_irq(&tsk->sighand->siglock);
2504}
2505
2506/*
2507 * This is also useful for kernel threads that want to temporarily
2508 * (or permanently) block certain signals.
2509 *
2510 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2511 * interface happily blocks "unblockable" signals like SIGKILL
2512 * and friends.
2513 */
2514int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2515{
2516 struct task_struct *tsk = current;
2517 sigset_t newset;
2518
2519 /* Lockless, only current can change ->blocked, never from irq */
2520 if (oldset)
2521 *oldset = tsk->blocked;
2522
2523 switch (how) {
2524 case SIG_BLOCK:
2525 sigorsets(&newset, &tsk->blocked, set);
2526 break;
2527 case SIG_UNBLOCK:
2528 sigandnsets(&newset, &tsk->blocked, set);
2529 break;
2530 case SIG_SETMASK:
2531 newset = *set;
2532 break;
2533 default:
2534 return -EINVAL;
2535 }
2536
2537 __set_current_blocked(&newset);
2538 return 0;
2539}
2540
2541/**
2542 * sys_rt_sigprocmask - change the list of currently blocked signals
2543 * @how: whether to add, remove, or set signals
2544 * @nset: stores pending signals
2545 * @oset: previous value of signal mask if non-null
2546 * @sigsetsize: size of sigset_t type
2547 */
2548SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2549 sigset_t __user *, oset, size_t, sigsetsize)
2550{
2551 sigset_t old_set, new_set;
2552 int error;
2553
2554 /* XXX: Don't preclude handling different sized sigset_t's. */
2555 if (sigsetsize != sizeof(sigset_t))
2556 return -EINVAL;
2557
2558 old_set = current->blocked;
2559
2560 if (nset) {
2561 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2562 return -EFAULT;
2563 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2564
2565 error = sigprocmask(how, &new_set, NULL);
2566 if (error)
2567 return error;
2568 }
2569
2570 if (oset) {
2571 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2572 return -EFAULT;
2573 }
2574
2575 return 0;
2576}
2577
2578#ifdef CONFIG_COMPAT
2579COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2580 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2581{
2582#ifdef __BIG_ENDIAN
2583 sigset_t old_set = current->blocked;
2584
2585 /* XXX: Don't preclude handling different sized sigset_t's. */
2586 if (sigsetsize != sizeof(sigset_t))
2587 return -EINVAL;
2588
2589 if (nset) {
2590 compat_sigset_t new32;
2591 sigset_t new_set;
2592 int error;
2593 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2594 return -EFAULT;
2595
2596 sigset_from_compat(&new_set, &new32);
2597 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2598
2599 error = sigprocmask(how, &new_set, NULL);
2600 if (error)
2601 return error;
2602 }
2603 if (oset) {
2604 compat_sigset_t old32;
2605 sigset_to_compat(&old32, &old_set);
2606 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2607 return -EFAULT;
2608 }
2609 return 0;
2610#else
2611 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2612 (sigset_t __user *)oset, sigsetsize);
2613#endif
2614}
2615#endif
2616
2617static int do_sigpending(void *set, unsigned long sigsetsize)
2618{
2619 if (sigsetsize > sizeof(sigset_t))
2620 return -EINVAL;
2621
2622 spin_lock_irq(¤t->sighand->siglock);
2623 sigorsets(set, ¤t->pending.signal,
2624 ¤t->signal->shared_pending.signal);
2625 spin_unlock_irq(¤t->sighand->siglock);
2626
2627 /* Outside the lock because only this thread touches it. */
2628 sigandsets(set, ¤t->blocked, set);
2629 return 0;
2630}
2631
2632/**
2633 * sys_rt_sigpending - examine a pending signal that has been raised
2634 * while blocked
2635 * @uset: stores pending signals
2636 * @sigsetsize: size of sigset_t type or larger
2637 */
2638SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2639{
2640 sigset_t set;
2641 int err = do_sigpending(&set, sigsetsize);
2642 if (!err && copy_to_user(uset, &set, sigsetsize))
2643 err = -EFAULT;
2644 return err;
2645}
2646
2647#ifdef CONFIG_COMPAT
2648COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2649 compat_size_t, sigsetsize)
2650{
2651#ifdef __BIG_ENDIAN
2652 sigset_t set;
2653 int err = do_sigpending(&set, sigsetsize);
2654 if (!err) {
2655 compat_sigset_t set32;
2656 sigset_to_compat(&set32, &set);
2657 /* we can get here only if sigsetsize <= sizeof(set) */
2658 if (copy_to_user(uset, &set32, sigsetsize))
2659 err = -EFAULT;
2660 }
2661 return err;
2662#else
2663 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2664#endif
2665}
2666#endif
2667
2668#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2669
2670int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2671{
2672 int err;
2673
2674 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2675 return -EFAULT;
2676 if (from->si_code < 0)
2677 return __copy_to_user(to, from, sizeof(siginfo_t))
2678 ? -EFAULT : 0;
2679 /*
2680 * If you change siginfo_t structure, please be sure
2681 * this code is fixed accordingly.
2682 * Please remember to update the signalfd_copyinfo() function
2683 * inside fs/signalfd.c too, in case siginfo_t changes.
2684 * It should never copy any pad contained in the structure
2685 * to avoid security leaks, but must copy the generic
2686 * 3 ints plus the relevant union member.
2687 */
2688 err = __put_user(from->si_signo, &to->si_signo);
2689 err |= __put_user(from->si_errno, &to->si_errno);
2690 err |= __put_user((short)from->si_code, &to->si_code);
2691 switch (from->si_code & __SI_MASK) {
2692 case __SI_KILL:
2693 err |= __put_user(from->si_pid, &to->si_pid);
2694 err |= __put_user(from->si_uid, &to->si_uid);
2695 break;
2696 case __SI_TIMER:
2697 err |= __put_user(from->si_tid, &to->si_tid);
2698 err |= __put_user(from->si_overrun, &to->si_overrun);
2699 err |= __put_user(from->si_ptr, &to->si_ptr);
2700 break;
2701 case __SI_POLL:
2702 err |= __put_user(from->si_band, &to->si_band);
2703 err |= __put_user(from->si_fd, &to->si_fd);
2704 break;
2705 case __SI_FAULT:
2706 err |= __put_user(from->si_addr, &to->si_addr);
2707#ifdef __ARCH_SI_TRAPNO
2708 err |= __put_user(from->si_trapno, &to->si_trapno);
2709#endif
2710#ifdef BUS_MCEERR_AO
2711 /*
2712 * Other callers might not initialize the si_lsb field,
2713 * so check explicitly for the right codes here.
2714 */
2715 if (from->si_signo == SIGBUS &&
2716 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2717 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2718#endif
2719#ifdef SEGV_BNDERR
2720 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2721 err |= __put_user(from->si_lower, &to->si_lower);
2722 err |= __put_user(from->si_upper, &to->si_upper);
2723 }
2724#endif
2725#ifdef SEGV_PKUERR
2726 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2727 err |= __put_user(from->si_pkey, &to->si_pkey);
2728#endif
2729 break;
2730 case __SI_CHLD:
2731 err |= __put_user(from->si_pid, &to->si_pid);
2732 err |= __put_user(from->si_uid, &to->si_uid);
2733 err |= __put_user(from->si_status, &to->si_status);
2734 err |= __put_user(from->si_utime, &to->si_utime);
2735 err |= __put_user(from->si_stime, &to->si_stime);
2736 break;
2737 case __SI_RT: /* This is not generated by the kernel as of now. */
2738 case __SI_MESGQ: /* But this is */
2739 err |= __put_user(from->si_pid, &to->si_pid);
2740 err |= __put_user(from->si_uid, &to->si_uid);
2741 err |= __put_user(from->si_ptr, &to->si_ptr);
2742 break;
2743#ifdef __ARCH_SIGSYS
2744 case __SI_SYS:
2745 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2746 err |= __put_user(from->si_syscall, &to->si_syscall);
2747 err |= __put_user(from->si_arch, &to->si_arch);
2748 break;
2749#endif
2750 default: /* this is just in case for now ... */
2751 err |= __put_user(from->si_pid, &to->si_pid);
2752 err |= __put_user(from->si_uid, &to->si_uid);
2753 break;
2754 }
2755 return err;
2756}
2757
2758#endif
2759
2760/**
2761 * do_sigtimedwait - wait for queued signals specified in @which
2762 * @which: queued signals to wait for
2763 * @info: if non-null, the signal's siginfo is returned here
2764 * @ts: upper bound on process time suspension
2765 */
2766int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2767 const struct timespec *ts)
2768{
2769 ktime_t *to = NULL, timeout = KTIME_MAX;
2770 struct task_struct *tsk = current;
2771 sigset_t mask = *which;
2772 int sig, ret = 0;
2773
2774 if (ts) {
2775 if (!timespec_valid(ts))
2776 return -EINVAL;
2777 timeout = timespec_to_ktime(*ts);
2778 to = &timeout;
2779 }
2780
2781 /*
2782 * Invert the set of allowed signals to get those we want to block.
2783 */
2784 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2785 signotset(&mask);
2786
2787 spin_lock_irq(&tsk->sighand->siglock);
2788 sig = dequeue_signal(tsk, &mask, info);
2789 if (!sig && timeout) {
2790 /*
2791 * None ready, temporarily unblock those we're interested
2792 * while we are sleeping in so that we'll be awakened when
2793 * they arrive. Unblocking is always fine, we can avoid
2794 * set_current_blocked().
2795 */
2796 tsk->real_blocked = tsk->blocked;
2797 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2798 recalc_sigpending();
2799 spin_unlock_irq(&tsk->sighand->siglock);
2800
2801 __set_current_state(TASK_INTERRUPTIBLE);
2802 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2803 HRTIMER_MODE_REL);
2804 spin_lock_irq(&tsk->sighand->siglock);
2805 __set_task_blocked(tsk, &tsk->real_blocked);
2806 sigemptyset(&tsk->real_blocked);
2807 sig = dequeue_signal(tsk, &mask, info);
2808 }
2809 spin_unlock_irq(&tsk->sighand->siglock);
2810
2811 if (sig)
2812 return sig;
2813 return ret ? -EINTR : -EAGAIN;
2814}
2815
2816/**
2817 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2818 * in @uthese
2819 * @uthese: queued signals to wait for
2820 * @uinfo: if non-null, the signal's siginfo is returned here
2821 * @uts: upper bound on process time suspension
2822 * @sigsetsize: size of sigset_t type
2823 */
2824SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2825 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2826 size_t, sigsetsize)
2827{
2828 sigset_t these;
2829 struct timespec ts;
2830 siginfo_t info;
2831 int ret;
2832
2833 /* XXX: Don't preclude handling different sized sigset_t's. */
2834 if (sigsetsize != sizeof(sigset_t))
2835 return -EINVAL;
2836
2837 if (copy_from_user(&these, uthese, sizeof(these)))
2838 return -EFAULT;
2839
2840 if (uts) {
2841 if (copy_from_user(&ts, uts, sizeof(ts)))
2842 return -EFAULT;
2843 }
2844
2845 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2846
2847 if (ret > 0 && uinfo) {
2848 if (copy_siginfo_to_user(uinfo, &info))
2849 ret = -EFAULT;
2850 }
2851
2852 return ret;
2853}
2854
2855/**
2856 * sys_kill - send a signal to a process
2857 * @pid: the PID of the process
2858 * @sig: signal to be sent
2859 */
2860SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2861{
2862 struct siginfo info;
2863
2864 info.si_signo = sig;
2865 info.si_errno = 0;
2866 info.si_code = SI_USER;
2867 info.si_pid = task_tgid_vnr(current);
2868 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2869
2870 return kill_something_info(sig, &info, pid);
2871}
2872
2873static int
2874do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2875{
2876 struct task_struct *p;
2877 int error = -ESRCH;
2878
2879 rcu_read_lock();
2880 p = find_task_by_vpid(pid);
2881 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2882 error = check_kill_permission(sig, info, p);
2883 /*
2884 * The null signal is a permissions and process existence
2885 * probe. No signal is actually delivered.
2886 */
2887 if (!error && sig) {
2888 error = do_send_sig_info(sig, info, p, false);
2889 /*
2890 * If lock_task_sighand() failed we pretend the task
2891 * dies after receiving the signal. The window is tiny,
2892 * and the signal is private anyway.
2893 */
2894 if (unlikely(error == -ESRCH))
2895 error = 0;
2896 }
2897 }
2898 rcu_read_unlock();
2899
2900 return error;
2901}
2902
2903static int do_tkill(pid_t tgid, pid_t pid, int sig)
2904{
2905 struct siginfo info = {};
2906
2907 info.si_signo = sig;
2908 info.si_errno = 0;
2909 info.si_code = SI_TKILL;
2910 info.si_pid = task_tgid_vnr(current);
2911 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2912
2913 return do_send_specific(tgid, pid, sig, &info);
2914}
2915
2916/**
2917 * sys_tgkill - send signal to one specific thread
2918 * @tgid: the thread group ID of the thread
2919 * @pid: the PID of the thread
2920 * @sig: signal to be sent
2921 *
2922 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2923 * exists but it's not belonging to the target process anymore. This
2924 * method solves the problem of threads exiting and PIDs getting reused.
2925 */
2926SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2927{
2928 /* This is only valid for single tasks */
2929 if (pid <= 0 || tgid <= 0)
2930 return -EINVAL;
2931
2932 return do_tkill(tgid, pid, sig);
2933}
2934
2935/**
2936 * sys_tkill - send signal to one specific task
2937 * @pid: the PID of the task
2938 * @sig: signal to be sent
2939 *
2940 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2941 */
2942SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2943{
2944 /* This is only valid for single tasks */
2945 if (pid <= 0)
2946 return -EINVAL;
2947
2948 return do_tkill(0, pid, sig);
2949}
2950
2951static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2952{
2953 /* Not even root can pretend to send signals from the kernel.
2954 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2955 */
2956 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2957 (task_pid_vnr(current) != pid))
2958 return -EPERM;
2959
2960 info->si_signo = sig;
2961
2962 /* POSIX.1b doesn't mention process groups. */
2963 return kill_proc_info(sig, info, pid);
2964}
2965
2966/**
2967 * sys_rt_sigqueueinfo - send signal information to a signal
2968 * @pid: the PID of the thread
2969 * @sig: signal to be sent
2970 * @uinfo: signal info to be sent
2971 */
2972SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2973 siginfo_t __user *, uinfo)
2974{
2975 siginfo_t info;
2976 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2977 return -EFAULT;
2978 return do_rt_sigqueueinfo(pid, sig, &info);
2979}
2980
2981#ifdef CONFIG_COMPAT
2982COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2983 compat_pid_t, pid,
2984 int, sig,
2985 struct compat_siginfo __user *, uinfo)
2986{
2987 siginfo_t info = {};
2988 int ret = copy_siginfo_from_user32(&info, uinfo);
2989 if (unlikely(ret))
2990 return ret;
2991 return do_rt_sigqueueinfo(pid, sig, &info);
2992}
2993#endif
2994
2995static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2996{
2997 /* This is only valid for single tasks */
2998 if (pid <= 0 || tgid <= 0)
2999 return -EINVAL;
3000
3001 /* Not even root can pretend to send signals from the kernel.
3002 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3003 */
3004 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3005 (task_pid_vnr(current) != pid))
3006 return -EPERM;
3007
3008 info->si_signo = sig;
3009
3010 return do_send_specific(tgid, pid, sig, info);
3011}
3012
3013SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3014 siginfo_t __user *, uinfo)
3015{
3016 siginfo_t info;
3017
3018 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3019 return -EFAULT;
3020
3021 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3022}
3023
3024#ifdef CONFIG_COMPAT
3025COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3026 compat_pid_t, tgid,
3027 compat_pid_t, pid,
3028 int, sig,
3029 struct compat_siginfo __user *, uinfo)
3030{
3031 siginfo_t info = {};
3032
3033 if (copy_siginfo_from_user32(&info, uinfo))
3034 return -EFAULT;
3035 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3036}
3037#endif
3038
3039/*
3040 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3041 */
3042void kernel_sigaction(int sig, __sighandler_t action)
3043{
3044 spin_lock_irq(¤t->sighand->siglock);
3045 current->sighand->action[sig - 1].sa.sa_handler = action;
3046 if (action == SIG_IGN) {
3047 sigset_t mask;
3048
3049 sigemptyset(&mask);
3050 sigaddset(&mask, sig);
3051
3052 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
3053 flush_sigqueue_mask(&mask, ¤t->pending);
3054 recalc_sigpending();
3055 }
3056 spin_unlock_irq(¤t->sighand->siglock);
3057}
3058EXPORT_SYMBOL(kernel_sigaction);
3059
3060void __weak sigaction_compat_abi(struct k_sigaction *act,
3061 struct k_sigaction *oact)
3062{
3063}
3064
3065int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3066{
3067 struct task_struct *p = current, *t;
3068 struct k_sigaction *k;
3069 sigset_t mask;
3070
3071 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3072 return -EINVAL;
3073
3074 k = &p->sighand->action[sig-1];
3075
3076 spin_lock_irq(&p->sighand->siglock);
3077 if (oact)
3078 *oact = *k;
3079
3080 sigaction_compat_abi(act, oact);
3081
3082 if (act) {
3083 sigdelsetmask(&act->sa.sa_mask,
3084 sigmask(SIGKILL) | sigmask(SIGSTOP));
3085 *k = *act;
3086 /*
3087 * POSIX 3.3.1.3:
3088 * "Setting a signal action to SIG_IGN for a signal that is
3089 * pending shall cause the pending signal to be discarded,
3090 * whether or not it is blocked."
3091 *
3092 * "Setting a signal action to SIG_DFL for a signal that is
3093 * pending and whose default action is to ignore the signal
3094 * (for example, SIGCHLD), shall cause the pending signal to
3095 * be discarded, whether or not it is blocked"
3096 */
3097 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3098 sigemptyset(&mask);
3099 sigaddset(&mask, sig);
3100 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3101 for_each_thread(p, t)
3102 flush_sigqueue_mask(&mask, &t->pending);
3103 }
3104 }
3105
3106 spin_unlock_irq(&p->sighand->siglock);
3107 return 0;
3108}
3109
3110static int
3111do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3112{
3113 stack_t oss;
3114 int error;
3115
3116 oss.ss_sp = (void __user *) current->sas_ss_sp;
3117 oss.ss_size = current->sas_ss_size;
3118 oss.ss_flags = sas_ss_flags(sp) |
3119 (current->sas_ss_flags & SS_FLAG_BITS);
3120
3121 if (uss) {
3122 void __user *ss_sp;
3123 size_t ss_size;
3124 unsigned ss_flags;
3125 int ss_mode;
3126
3127 error = -EFAULT;
3128 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3129 goto out;
3130 error = __get_user(ss_sp, &uss->ss_sp) |
3131 __get_user(ss_flags, &uss->ss_flags) |
3132 __get_user(ss_size, &uss->ss_size);
3133 if (error)
3134 goto out;
3135
3136 error = -EPERM;
3137 if (on_sig_stack(sp))
3138 goto out;
3139
3140 ss_mode = ss_flags & ~SS_FLAG_BITS;
3141 error = -EINVAL;
3142 if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3143 ss_mode != 0)
3144 goto out;
3145
3146 if (ss_mode == SS_DISABLE) {
3147 ss_size = 0;
3148 ss_sp = NULL;
3149 } else {
3150 error = -ENOMEM;
3151 if (ss_size < MINSIGSTKSZ)
3152 goto out;
3153 }
3154
3155 current->sas_ss_sp = (unsigned long) ss_sp;
3156 current->sas_ss_size = ss_size;
3157 current->sas_ss_flags = ss_flags;
3158 }
3159
3160 error = 0;
3161 if (uoss) {
3162 error = -EFAULT;
3163 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3164 goto out;
3165 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3166 __put_user(oss.ss_size, &uoss->ss_size) |
3167 __put_user(oss.ss_flags, &uoss->ss_flags);
3168 }
3169
3170out:
3171 return error;
3172}
3173SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3174{
3175 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3176}
3177
3178int restore_altstack(const stack_t __user *uss)
3179{
3180 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3181 /* squash all but EFAULT for now */
3182 return err == -EFAULT ? err : 0;
3183}
3184
3185int __save_altstack(stack_t __user *uss, unsigned long sp)
3186{
3187 struct task_struct *t = current;
3188 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3189 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3190 __put_user(t->sas_ss_size, &uss->ss_size);
3191 if (err)
3192 return err;
3193 if (t->sas_ss_flags & SS_AUTODISARM)
3194 sas_ss_reset(t);
3195 return 0;
3196}
3197
3198#ifdef CONFIG_COMPAT
3199COMPAT_SYSCALL_DEFINE2(sigaltstack,
3200 const compat_stack_t __user *, uss_ptr,
3201 compat_stack_t __user *, uoss_ptr)
3202{
3203 stack_t uss, uoss;
3204 int ret;
3205 mm_segment_t seg;
3206
3207 if (uss_ptr) {
3208 compat_stack_t uss32;
3209
3210 memset(&uss, 0, sizeof(stack_t));
3211 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3212 return -EFAULT;
3213 uss.ss_sp = compat_ptr(uss32.ss_sp);
3214 uss.ss_flags = uss32.ss_flags;
3215 uss.ss_size = uss32.ss_size;
3216 }
3217 seg = get_fs();
3218 set_fs(KERNEL_DS);
3219 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3220 (stack_t __force __user *) &uoss,
3221 compat_user_stack_pointer());
3222 set_fs(seg);
3223 if (ret >= 0 && uoss_ptr) {
3224 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3225 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3226 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3227 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3228 ret = -EFAULT;
3229 }
3230 return ret;
3231}
3232
3233int compat_restore_altstack(const compat_stack_t __user *uss)
3234{
3235 int err = compat_sys_sigaltstack(uss, NULL);
3236 /* squash all but -EFAULT for now */
3237 return err == -EFAULT ? err : 0;
3238}
3239
3240int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3241{
3242 int err;
3243 struct task_struct *t = current;
3244 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3245 &uss->ss_sp) |
3246 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3247 __put_user(t->sas_ss_size, &uss->ss_size);
3248 if (err)
3249 return err;
3250 if (t->sas_ss_flags & SS_AUTODISARM)
3251 sas_ss_reset(t);
3252 return 0;
3253}
3254#endif
3255
3256#ifdef __ARCH_WANT_SYS_SIGPENDING
3257
3258/**
3259 * sys_sigpending - examine pending signals
3260 * @set: where mask of pending signal is returned
3261 */
3262SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3263{
3264 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3265}
3266
3267#endif
3268
3269#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3270/**
3271 * sys_sigprocmask - examine and change blocked signals
3272 * @how: whether to add, remove, or set signals
3273 * @nset: signals to add or remove (if non-null)
3274 * @oset: previous value of signal mask if non-null
3275 *
3276 * Some platforms have their own version with special arguments;
3277 * others support only sys_rt_sigprocmask.
3278 */
3279
3280SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3281 old_sigset_t __user *, oset)
3282{
3283 old_sigset_t old_set, new_set;
3284 sigset_t new_blocked;
3285
3286 old_set = current->blocked.sig[0];
3287
3288 if (nset) {
3289 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3290 return -EFAULT;
3291
3292 new_blocked = current->blocked;
3293
3294 switch (how) {
3295 case SIG_BLOCK:
3296 sigaddsetmask(&new_blocked, new_set);
3297 break;
3298 case SIG_UNBLOCK:
3299 sigdelsetmask(&new_blocked, new_set);
3300 break;
3301 case SIG_SETMASK:
3302 new_blocked.sig[0] = new_set;
3303 break;
3304 default:
3305 return -EINVAL;
3306 }
3307
3308 set_current_blocked(&new_blocked);
3309 }
3310
3311 if (oset) {
3312 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3313 return -EFAULT;
3314 }
3315
3316 return 0;
3317}
3318#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3319
3320#ifndef CONFIG_ODD_RT_SIGACTION
3321/**
3322 * sys_rt_sigaction - alter an action taken by a process
3323 * @sig: signal to be sent
3324 * @act: new sigaction
3325 * @oact: used to save the previous sigaction
3326 * @sigsetsize: size of sigset_t type
3327 */
3328SYSCALL_DEFINE4(rt_sigaction, int, sig,
3329 const struct sigaction __user *, act,
3330 struct sigaction __user *, oact,
3331 size_t, sigsetsize)
3332{
3333 struct k_sigaction new_sa, old_sa;
3334 int ret = -EINVAL;
3335
3336 /* XXX: Don't preclude handling different sized sigset_t's. */
3337 if (sigsetsize != sizeof(sigset_t))
3338 goto out;
3339
3340 if (act) {
3341 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3342 return -EFAULT;
3343 }
3344
3345 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3346
3347 if (!ret && oact) {
3348 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3349 return -EFAULT;
3350 }
3351out:
3352 return ret;
3353}
3354#ifdef CONFIG_COMPAT
3355COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3356 const struct compat_sigaction __user *, act,
3357 struct compat_sigaction __user *, oact,
3358 compat_size_t, sigsetsize)
3359{
3360 struct k_sigaction new_ka, old_ka;
3361 compat_sigset_t mask;
3362#ifdef __ARCH_HAS_SA_RESTORER
3363 compat_uptr_t restorer;
3364#endif
3365 int ret;
3366
3367 /* XXX: Don't preclude handling different sized sigset_t's. */
3368 if (sigsetsize != sizeof(compat_sigset_t))
3369 return -EINVAL;
3370
3371 if (act) {
3372 compat_uptr_t handler;
3373 ret = get_user(handler, &act->sa_handler);
3374 new_ka.sa.sa_handler = compat_ptr(handler);
3375#ifdef __ARCH_HAS_SA_RESTORER
3376 ret |= get_user(restorer, &act->sa_restorer);
3377 new_ka.sa.sa_restorer = compat_ptr(restorer);
3378#endif
3379 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3380 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3381 if (ret)
3382 return -EFAULT;
3383 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3384 }
3385
3386 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3387 if (!ret && oact) {
3388 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3389 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3390 &oact->sa_handler);
3391 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3392 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3395 &oact->sa_restorer);
3396#endif
3397 }
3398 return ret;
3399}
3400#endif
3401#endif /* !CONFIG_ODD_RT_SIGACTION */
3402
3403#ifdef CONFIG_OLD_SIGACTION
3404SYSCALL_DEFINE3(sigaction, int, sig,
3405 const struct old_sigaction __user *, act,
3406 struct old_sigaction __user *, oact)
3407{
3408 struct k_sigaction new_ka, old_ka;
3409 int ret;
3410
3411 if (act) {
3412 old_sigset_t mask;
3413 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3414 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3415 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3416 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3417 __get_user(mask, &act->sa_mask))
3418 return -EFAULT;
3419#ifdef __ARCH_HAS_KA_RESTORER
3420 new_ka.ka_restorer = NULL;
3421#endif
3422 siginitset(&new_ka.sa.sa_mask, mask);
3423 }
3424
3425 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3426
3427 if (!ret && oact) {
3428 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3429 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3430 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3431 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3432 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3433 return -EFAULT;
3434 }
3435
3436 return ret;
3437}
3438#endif
3439#ifdef CONFIG_COMPAT_OLD_SIGACTION
3440COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3441 const struct compat_old_sigaction __user *, act,
3442 struct compat_old_sigaction __user *, oact)
3443{
3444 struct k_sigaction new_ka, old_ka;
3445 int ret;
3446 compat_old_sigset_t mask;
3447 compat_uptr_t handler, restorer;
3448
3449 if (act) {
3450 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3451 __get_user(handler, &act->sa_handler) ||
3452 __get_user(restorer, &act->sa_restorer) ||
3453 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3454 __get_user(mask, &act->sa_mask))
3455 return -EFAULT;
3456
3457#ifdef __ARCH_HAS_KA_RESTORER
3458 new_ka.ka_restorer = NULL;
3459#endif
3460 new_ka.sa.sa_handler = compat_ptr(handler);
3461 new_ka.sa.sa_restorer = compat_ptr(restorer);
3462 siginitset(&new_ka.sa.sa_mask, mask);
3463 }
3464
3465 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3466
3467 if (!ret && oact) {
3468 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3469 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3470 &oact->sa_handler) ||
3471 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3472 &oact->sa_restorer) ||
3473 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3474 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3475 return -EFAULT;
3476 }
3477 return ret;
3478}
3479#endif
3480
3481#ifdef CONFIG_SGETMASK_SYSCALL
3482
3483/*
3484 * For backwards compatibility. Functionality superseded by sigprocmask.
3485 */
3486SYSCALL_DEFINE0(sgetmask)
3487{
3488 /* SMP safe */
3489 return current->blocked.sig[0];
3490}
3491
3492SYSCALL_DEFINE1(ssetmask, int, newmask)
3493{
3494 int old = current->blocked.sig[0];
3495 sigset_t newset;
3496
3497 siginitset(&newset, newmask);
3498 set_current_blocked(&newset);
3499
3500 return old;
3501}
3502#endif /* CONFIG_SGETMASK_SYSCALL */
3503
3504#ifdef __ARCH_WANT_SYS_SIGNAL
3505/*
3506 * For backwards compatibility. Functionality superseded by sigaction.
3507 */
3508SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3509{
3510 struct k_sigaction new_sa, old_sa;
3511 int ret;
3512
3513 new_sa.sa.sa_handler = handler;
3514 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3515 sigemptyset(&new_sa.sa.sa_mask);
3516
3517 ret = do_sigaction(sig, &new_sa, &old_sa);
3518
3519 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3520}
3521#endif /* __ARCH_WANT_SYS_SIGNAL */
3522
3523#ifdef __ARCH_WANT_SYS_PAUSE
3524
3525SYSCALL_DEFINE0(pause)
3526{
3527 while (!signal_pending(current)) {
3528 __set_current_state(TASK_INTERRUPTIBLE);
3529 schedule();
3530 }
3531 return -ERESTARTNOHAND;
3532}
3533
3534#endif
3535
3536static int sigsuspend(sigset_t *set)
3537{
3538 current->saved_sigmask = current->blocked;
3539 set_current_blocked(set);
3540
3541 while (!signal_pending(current)) {
3542 __set_current_state(TASK_INTERRUPTIBLE);
3543 schedule();
3544 }
3545 set_restore_sigmask();
3546 return -ERESTARTNOHAND;
3547}
3548
3549/**
3550 * sys_rt_sigsuspend - replace the signal mask for a value with the
3551 * @unewset value until a signal is received
3552 * @unewset: new signal mask value
3553 * @sigsetsize: size of sigset_t type
3554 */
3555SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3556{
3557 sigset_t newset;
3558
3559 /* XXX: Don't preclude handling different sized sigset_t's. */
3560 if (sigsetsize != sizeof(sigset_t))
3561 return -EINVAL;
3562
3563 if (copy_from_user(&newset, unewset, sizeof(newset)))
3564 return -EFAULT;
3565 return sigsuspend(&newset);
3566}
3567
3568#ifdef CONFIG_COMPAT
3569COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3570{
3571#ifdef __BIG_ENDIAN
3572 sigset_t newset;
3573 compat_sigset_t newset32;
3574
3575 /* XXX: Don't preclude handling different sized sigset_t's. */
3576 if (sigsetsize != sizeof(sigset_t))
3577 return -EINVAL;
3578
3579 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3580 return -EFAULT;
3581 sigset_from_compat(&newset, &newset32);
3582 return sigsuspend(&newset);
3583#else
3584 /* on little-endian bitmaps don't care about granularity */
3585 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3586#endif
3587}
3588#endif
3589
3590#ifdef CONFIG_OLD_SIGSUSPEND
3591SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3592{
3593 sigset_t blocked;
3594 siginitset(&blocked, mask);
3595 return sigsuspend(&blocked);
3596}
3597#endif
3598#ifdef CONFIG_OLD_SIGSUSPEND3
3599SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3600{
3601 sigset_t blocked;
3602 siginitset(&blocked, mask);
3603 return sigsuspend(&blocked);
3604}
3605#endif
3606
3607__weak const char *arch_vma_name(struct vm_area_struct *vma)
3608{
3609 return NULL;
3610}
3611
3612void __init signals_init(void)
3613{
3614 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3615 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3616 != offsetof(struct siginfo, _sifields._pad));
3617
3618 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3619}
3620
3621#ifdef CONFIG_KGDB_KDB
3622#include <linux/kdb.h>
3623/*
3624 * kdb_send_sig_info - Allows kdb to send signals without exposing
3625 * signal internals. This function checks if the required locks are
3626 * available before calling the main signal code, to avoid kdb
3627 * deadlocks.
3628 */
3629void
3630kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3631{
3632 static struct task_struct *kdb_prev_t;
3633 int sig, new_t;
3634 if (!spin_trylock(&t->sighand->siglock)) {
3635 kdb_printf("Can't do kill command now.\n"
3636 "The sigmask lock is held somewhere else in "
3637 "kernel, try again later\n");
3638 return;
3639 }
3640 spin_unlock(&t->sighand->siglock);
3641 new_t = kdb_prev_t != t;
3642 kdb_prev_t = t;
3643 if (t->state != TASK_RUNNING && new_t) {
3644 kdb_printf("Process is not RUNNING, sending a signal from "
3645 "kdb risks deadlock\n"
3646 "on the run queue locks. "
3647 "The signal has _not_ been sent.\n"
3648 "Reissue the kill command if you want to risk "
3649 "the deadlock.\n");
3650 return;
3651 }
3652 sig = info->si_signo;
3653 if (send_sig_info(sig, info, t))
3654 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3655 sig, t->pid);
3656 else
3657 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3658}
3659#endif /* CONFIG_KGDB_KDB */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/init.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/user.h>
19#include <linux/sched/debug.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/sched/cputime.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/proc_fs.h>
26#include <linux/tty.h>
27#include <linux/binfmts.h>
28#include <linux/coredump.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
31#include <linux/ptrace.h>
32#include <linux/signal.h>
33#include <linux/signalfd.h>
34#include <linux/ratelimit.h>
35#include <linux/task_work.h>
36#include <linux/capability.h>
37#include <linux/freezer.h>
38#include <linux/pid_namespace.h>
39#include <linux/nsproxy.h>
40#include <linux/user_namespace.h>
41#include <linux/uprobes.h>
42#include <linux/compat.h>
43#include <linux/cn_proc.h>
44#include <linux/compiler.h>
45#include <linux/posix-timers.h>
46#include <linux/cgroup.h>
47#include <linux/audit.h>
48
49#define CREATE_TRACE_POINTS
50#include <trace/events/signal.h>
51
52#include <asm/param.h>
53#include <linux/uaccess.h>
54#include <asm/unistd.h>
55#include <asm/siginfo.h>
56#include <asm/cacheflush.h>
57#include <asm/syscall.h> /* for syscall_get_* */
58
59/*
60 * SLAB caches for signal bits.
61 */
62
63static struct kmem_cache *sigqueue_cachep;
64
65int print_fatal_signals __read_mostly;
66
67static void __user *sig_handler(struct task_struct *t, int sig)
68{
69 return t->sighand->action[sig - 1].sa.sa_handler;
70}
71
72static inline bool sig_handler_ignored(void __user *handler, int sig)
73{
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77}
78
79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80{
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99}
100
101static bool sig_ignored(struct task_struct *t, int sig, bool force)
102{
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120}
121
122/*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127{
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150}
151
152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154static bool recalc_sigpending_tsk(struct task_struct *t)
155{
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170}
171
172/*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
176void recalc_sigpending_and_wake(struct task_struct *t)
177{
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180}
181
182void recalc_sigpending(void)
183{
184 if (!recalc_sigpending_tsk(current) && !freezing(current))
185 clear_thread_flag(TIF_SIGPENDING);
186
187}
188EXPORT_SYMBOL(recalc_sigpending);
189
190void calculate_sigpending(void)
191{
192 /* Have any signals or users of TIF_SIGPENDING been delayed
193 * until after fork?
194 */
195 spin_lock_irq(¤t->sighand->siglock);
196 set_tsk_thread_flag(current, TIF_SIGPENDING);
197 recalc_sigpending();
198 spin_unlock_irq(¤t->sighand->siglock);
199}
200
201/* Given the mask, find the first available signal that should be serviced. */
202
203#define SYNCHRONOUS_MASK \
204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206
207int next_signal(struct sigpending *pending, sigset_t *mask)
208{
209 unsigned long i, *s, *m, x;
210 int sig = 0;
211
212 s = pending->signal.sig;
213 m = mask->sig;
214
215 /*
216 * Handle the first word specially: it contains the
217 * synchronous signals that need to be dequeued first.
218 */
219 x = *s &~ *m;
220 if (x) {
221 if (x & SYNCHRONOUS_MASK)
222 x &= SYNCHRONOUS_MASK;
223 sig = ffz(~x) + 1;
224 return sig;
225 }
226
227 switch (_NSIG_WORDS) {
228 default:
229 for (i = 1; i < _NSIG_WORDS; ++i) {
230 x = *++s &~ *++m;
231 if (!x)
232 continue;
233 sig = ffz(~x) + i*_NSIG_BPW + 1;
234 break;
235 }
236 break;
237
238 case 2:
239 x = s[1] &~ m[1];
240 if (!x)
241 break;
242 sig = ffz(~x) + _NSIG_BPW + 1;
243 break;
244
245 case 1:
246 /* Nothing to do */
247 break;
248 }
249
250 return sig;
251}
252
253static inline void print_dropped_signal(int sig)
254{
255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256
257 if (!print_fatal_signals)
258 return;
259
260 if (!__ratelimit(&ratelimit_state))
261 return;
262
263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 current->comm, current->pid, sig);
265}
266
267/**
268 * task_set_jobctl_pending - set jobctl pending bits
269 * @task: target task
270 * @mask: pending bits to set
271 *
272 * Clear @mask from @task->jobctl. @mask must be subset of
273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
275 * cleared. If @task is already being killed or exiting, this function
276 * becomes noop.
277 *
278 * CONTEXT:
279 * Must be called with @task->sighand->siglock held.
280 *
281 * RETURNS:
282 * %true if @mask is set, %false if made noop because @task was dying.
283 */
284bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285{
286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289
290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 return false;
292
293 if (mask & JOBCTL_STOP_SIGMASK)
294 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295
296 task->jobctl |= mask;
297 return true;
298}
299
300/**
301 * task_clear_jobctl_trapping - clear jobctl trapping bit
302 * @task: target task
303 *
304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305 * Clear it and wake up the ptracer. Note that we don't need any further
306 * locking. @task->siglock guarantees that @task->parent points to the
307 * ptracer.
308 *
309 * CONTEXT:
310 * Must be called with @task->sighand->siglock held.
311 */
312void task_clear_jobctl_trapping(struct task_struct *task)
313{
314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 task->jobctl &= ~JOBCTL_TRAPPING;
316 smp_mb(); /* advised by wake_up_bit() */
317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 }
319}
320
321/**
322 * task_clear_jobctl_pending - clear jobctl pending bits
323 * @task: target task
324 * @mask: pending bits to clear
325 *
326 * Clear @mask from @task->jobctl. @mask must be subset of
327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
328 * STOP bits are cleared together.
329 *
330 * If clearing of @mask leaves no stop or trap pending, this function calls
331 * task_clear_jobctl_trapping().
332 *
333 * CONTEXT:
334 * Must be called with @task->sighand->siglock held.
335 */
336void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337{
338 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339
340 if (mask & JOBCTL_STOP_PENDING)
341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342
343 task->jobctl &= ~mask;
344
345 if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 task_clear_jobctl_trapping(task);
347}
348
349/**
350 * task_participate_group_stop - participate in a group stop
351 * @task: task participating in a group stop
352 *
353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354 * Group stop states are cleared and the group stop count is consumed if
355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
356 * stop, the appropriate `SIGNAL_*` flags are set.
357 *
358 * CONTEXT:
359 * Must be called with @task->sighand->siglock held.
360 *
361 * RETURNS:
362 * %true if group stop completion should be notified to the parent, %false
363 * otherwise.
364 */
365static bool task_participate_group_stop(struct task_struct *task)
366{
367 struct signal_struct *sig = task->signal;
368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369
370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371
372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373
374 if (!consume)
375 return false;
376
377 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 sig->group_stop_count--;
379
380 /*
381 * Tell the caller to notify completion iff we are entering into a
382 * fresh group stop. Read comment in do_signal_stop() for details.
383 */
384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 return true;
387 }
388 return false;
389}
390
391void task_join_group_stop(struct task_struct *task)
392{
393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 struct signal_struct *sig = current->signal;
395
396 if (sig->group_stop_count) {
397 sig->group_stop_count++;
398 mask |= JOBCTL_STOP_CONSUME;
399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 return;
401
402 /* Have the new thread join an on-going signal group stop */
403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404}
405
406/*
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
410 */
411static struct sigqueue *
412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 int override_rlimit, const unsigned int sigqueue_flags)
414{
415 struct sigqueue *q = NULL;
416 struct ucounts *ucounts = NULL;
417 long sigpending;
418
419 /*
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
422 *
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
426 */
427 rcu_read_lock();
428 ucounts = task_ucounts(t);
429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 rcu_read_unlock();
431 if (!sigpending)
432 return NULL;
433
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 } else {
437 print_dropped_signal(sig);
438 }
439
440 if (unlikely(q == NULL)) {
441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 } else {
443 INIT_LIST_HEAD(&q->list);
444 q->flags = sigqueue_flags;
445 q->ucounts = ucounts;
446 }
447 return q;
448}
449
450static void __sigqueue_free(struct sigqueue *q)
451{
452 if (q->flags & SIGQUEUE_PREALLOC)
453 return;
454 if (q->ucounts) {
455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 q->ucounts = NULL;
457 }
458 kmem_cache_free(sigqueue_cachep, q);
459}
460
461void flush_sigqueue(struct sigpending *queue)
462{
463 struct sigqueue *q;
464
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
469 __sigqueue_free(q);
470 }
471}
472
473/*
474 * Flush all pending signals for this kthread.
475 */
476void flush_signals(struct task_struct *t)
477{
478 unsigned long flags;
479
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
485}
486EXPORT_SYMBOL(flush_signals);
487
488#ifdef CONFIG_POSIX_TIMERS
489static void __flush_itimer_signals(struct sigpending *pending)
490{
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
493
494 signal = pending->signal;
495 sigemptyset(&retain);
496
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
499
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
502 } else {
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
505 __sigqueue_free(q);
506 }
507 }
508
509 sigorsets(&pending->signal, &signal, &retain);
510}
511
512void flush_itimer_signals(void)
513{
514 struct task_struct *tsk = current;
515 unsigned long flags;
516
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521}
522#endif
523
524void ignore_signals(struct task_struct *t)
525{
526 int i;
527
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
530
531 flush_signals(t);
532}
533
534/*
535 * Flush all handlers for a task.
536 */
537
538void
539flush_signal_handlers(struct task_struct *t, int force_default)
540{
541 int i;
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
546 ka->sa.sa_flags = 0;
547#ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
549#endif
550 sigemptyset(&ka->sa.sa_mask);
551 ka++;
552 }
553}
554
555bool unhandled_signal(struct task_struct *tsk, int sig)
556{
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
559 return true;
560
561 if (handler != SIG_IGN && handler != SIG_DFL)
562 return false;
563
564 /* if ptraced, let the tracer determine */
565 return !tsk->ptrace;
566}
567
568static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 bool *resched_timer)
570{
571 struct sigqueue *q, *first = NULL;
572
573 /*
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
576 */
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
579 if (first)
580 goto still_pending;
581 first = q;
582 }
583 }
584
585 sigdelset(&list->signal, sig);
586
587 if (first) {
588still_pending:
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
591
592 *resched_timer =
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
596
597 __sigqueue_free(first);
598 } else {
599 /*
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
603 */
604 clear_siginfo(info);
605 info->si_signo = sig;
606 info->si_errno = 0;
607 info->si_code = SI_USER;
608 info->si_pid = 0;
609 info->si_uid = 0;
610 }
611}
612
613static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
615{
616 int sig = next_signal(pending, mask);
617
618 if (sig)
619 collect_signal(sig, pending, info, resched_timer);
620 return sig;
621}
622
623/*
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
626 *
627 * All callers have to hold the siglock.
628 */
629int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 kernel_siginfo_t *info, enum pid_type *type)
631{
632 bool resched_timer = false;
633 int signr;
634
635 /* We only dequeue private signals from ourselves, we don't let
636 * signalfd steal them
637 */
638 *type = PIDTYPE_PID;
639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
640 if (!signr) {
641 *type = PIDTYPE_TGID;
642 signr = __dequeue_signal(&tsk->signal->shared_pending,
643 mask, info, &resched_timer);
644#ifdef CONFIG_POSIX_TIMERS
645 /*
646 * itimer signal ?
647 *
648 * itimers are process shared and we restart periodic
649 * itimers in the signal delivery path to prevent DoS
650 * attacks in the high resolution timer case. This is
651 * compliant with the old way of self-restarting
652 * itimers, as the SIGALRM is a legacy signal and only
653 * queued once. Changing the restart behaviour to
654 * restart the timer in the signal dequeue path is
655 * reducing the timer noise on heavy loaded !highres
656 * systems too.
657 */
658 if (unlikely(signr == SIGALRM)) {
659 struct hrtimer *tmr = &tsk->signal->real_timer;
660
661 if (!hrtimer_is_queued(tmr) &&
662 tsk->signal->it_real_incr != 0) {
663 hrtimer_forward(tmr, tmr->base->get_time(),
664 tsk->signal->it_real_incr);
665 hrtimer_restart(tmr);
666 }
667 }
668#endif
669 }
670
671 recalc_sigpending();
672 if (!signr)
673 return 0;
674
675 if (unlikely(sig_kernel_stop(signr))) {
676 /*
677 * Set a marker that we have dequeued a stop signal. Our
678 * caller might release the siglock and then the pending
679 * stop signal it is about to process is no longer in the
680 * pending bitmasks, but must still be cleared by a SIGCONT
681 * (and overruled by a SIGKILL). So those cases clear this
682 * shared flag after we've set it. Note that this flag may
683 * remain set after the signal we return is ignored or
684 * handled. That doesn't matter because its only purpose
685 * is to alert stop-signal processing code when another
686 * processor has come along and cleared the flag.
687 */
688 current->jobctl |= JOBCTL_STOP_DEQUEUED;
689 }
690#ifdef CONFIG_POSIX_TIMERS
691 if (resched_timer) {
692 /*
693 * Release the siglock to ensure proper locking order
694 * of timer locks outside of siglocks. Note, we leave
695 * irqs disabled here, since the posix-timers code is
696 * about to disable them again anyway.
697 */
698 spin_unlock(&tsk->sighand->siglock);
699 posixtimer_rearm(info);
700 spin_lock(&tsk->sighand->siglock);
701
702 /* Don't expose the si_sys_private value to userspace */
703 info->si_sys_private = 0;
704 }
705#endif
706 return signr;
707}
708EXPORT_SYMBOL_GPL(dequeue_signal);
709
710static int dequeue_synchronous_signal(kernel_siginfo_t *info)
711{
712 struct task_struct *tsk = current;
713 struct sigpending *pending = &tsk->pending;
714 struct sigqueue *q, *sync = NULL;
715
716 /*
717 * Might a synchronous signal be in the queue?
718 */
719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
720 return 0;
721
722 /*
723 * Return the first synchronous signal in the queue.
724 */
725 list_for_each_entry(q, &pending->list, list) {
726 /* Synchronous signals have a positive si_code */
727 if ((q->info.si_code > SI_USER) &&
728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
729 sync = q;
730 goto next;
731 }
732 }
733 return 0;
734next:
735 /*
736 * Check if there is another siginfo for the same signal.
737 */
738 list_for_each_entry_continue(q, &pending->list, list) {
739 if (q->info.si_signo == sync->info.si_signo)
740 goto still_pending;
741 }
742
743 sigdelset(&pending->signal, sync->info.si_signo);
744 recalc_sigpending();
745still_pending:
746 list_del_init(&sync->list);
747 copy_siginfo(info, &sync->info);
748 __sigqueue_free(sync);
749 return info->si_signo;
750}
751
752/*
753 * Tell a process that it has a new active signal..
754 *
755 * NOTE! we rely on the previous spin_lock to
756 * lock interrupts for us! We can only be called with
757 * "siglock" held, and the local interrupt must
758 * have been disabled when that got acquired!
759 *
760 * No need to set need_resched since signal event passing
761 * goes through ->blocked
762 */
763void signal_wake_up_state(struct task_struct *t, unsigned int state)
764{
765 lockdep_assert_held(&t->sighand->siglock);
766
767 set_tsk_thread_flag(t, TIF_SIGPENDING);
768
769 /*
770 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
771 * case. We don't check t->state here because there is a race with it
772 * executing another processor and just now entering stopped state.
773 * By using wake_up_state, we ensure the process will wake up and
774 * handle its death signal.
775 */
776 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
777 kick_process(t);
778}
779
780/*
781 * Remove signals in mask from the pending set and queue.
782 * Returns 1 if any signals were found.
783 *
784 * All callers must be holding the siglock.
785 */
786static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
787{
788 struct sigqueue *q, *n;
789 sigset_t m;
790
791 sigandsets(&m, mask, &s->signal);
792 if (sigisemptyset(&m))
793 return;
794
795 sigandnsets(&s->signal, &s->signal, mask);
796 list_for_each_entry_safe(q, n, &s->list, list) {
797 if (sigismember(mask, q->info.si_signo)) {
798 list_del_init(&q->list);
799 __sigqueue_free(q);
800 }
801 }
802}
803
804static inline int is_si_special(const struct kernel_siginfo *info)
805{
806 return info <= SEND_SIG_PRIV;
807}
808
809static inline bool si_fromuser(const struct kernel_siginfo *info)
810{
811 return info == SEND_SIG_NOINFO ||
812 (!is_si_special(info) && SI_FROMUSER(info));
813}
814
815/*
816 * called with RCU read lock from check_kill_permission()
817 */
818static bool kill_ok_by_cred(struct task_struct *t)
819{
820 const struct cred *cred = current_cred();
821 const struct cred *tcred = __task_cred(t);
822
823 return uid_eq(cred->euid, tcred->suid) ||
824 uid_eq(cred->euid, tcred->uid) ||
825 uid_eq(cred->uid, tcred->suid) ||
826 uid_eq(cred->uid, tcred->uid) ||
827 ns_capable(tcred->user_ns, CAP_KILL);
828}
829
830/*
831 * Bad permissions for sending the signal
832 * - the caller must hold the RCU read lock
833 */
834static int check_kill_permission(int sig, struct kernel_siginfo *info,
835 struct task_struct *t)
836{
837 struct pid *sid;
838 int error;
839
840 if (!valid_signal(sig))
841 return -EINVAL;
842
843 if (!si_fromuser(info))
844 return 0;
845
846 error = audit_signal_info(sig, t); /* Let audit system see the signal */
847 if (error)
848 return error;
849
850 if (!same_thread_group(current, t) &&
851 !kill_ok_by_cred(t)) {
852 switch (sig) {
853 case SIGCONT:
854 sid = task_session(t);
855 /*
856 * We don't return the error if sid == NULL. The
857 * task was unhashed, the caller must notice this.
858 */
859 if (!sid || sid == task_session(current))
860 break;
861 fallthrough;
862 default:
863 return -EPERM;
864 }
865 }
866
867 return security_task_kill(t, info, sig, NULL);
868}
869
870/**
871 * ptrace_trap_notify - schedule trap to notify ptracer
872 * @t: tracee wanting to notify tracer
873 *
874 * This function schedules sticky ptrace trap which is cleared on the next
875 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
876 * ptracer.
877 *
878 * If @t is running, STOP trap will be taken. If trapped for STOP and
879 * ptracer is listening for events, tracee is woken up so that it can
880 * re-trap for the new event. If trapped otherwise, STOP trap will be
881 * eventually taken without returning to userland after the existing traps
882 * are finished by PTRACE_CONT.
883 *
884 * CONTEXT:
885 * Must be called with @task->sighand->siglock held.
886 */
887static void ptrace_trap_notify(struct task_struct *t)
888{
889 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
890 lockdep_assert_held(&t->sighand->siglock);
891
892 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
893 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
894}
895
896/*
897 * Handle magic process-wide effects of stop/continue signals. Unlike
898 * the signal actions, these happen immediately at signal-generation
899 * time regardless of blocking, ignoring, or handling. This does the
900 * actual continuing for SIGCONT, but not the actual stopping for stop
901 * signals. The process stop is done as a signal action for SIG_DFL.
902 *
903 * Returns true if the signal should be actually delivered, otherwise
904 * it should be dropped.
905 */
906static bool prepare_signal(int sig, struct task_struct *p, bool force)
907{
908 struct signal_struct *signal = p->signal;
909 struct task_struct *t;
910 sigset_t flush;
911
912 if (signal->flags & SIGNAL_GROUP_EXIT) {
913 if (signal->core_state)
914 return sig == SIGKILL;
915 /*
916 * The process is in the middle of dying, drop the signal.
917 */
918 return false;
919 } else if (sig_kernel_stop(sig)) {
920 /*
921 * This is a stop signal. Remove SIGCONT from all queues.
922 */
923 siginitset(&flush, sigmask(SIGCONT));
924 flush_sigqueue_mask(&flush, &signal->shared_pending);
925 for_each_thread(p, t)
926 flush_sigqueue_mask(&flush, &t->pending);
927 } else if (sig == SIGCONT) {
928 unsigned int why;
929 /*
930 * Remove all stop signals from all queues, wake all threads.
931 */
932 siginitset(&flush, SIG_KERNEL_STOP_MASK);
933 flush_sigqueue_mask(&flush, &signal->shared_pending);
934 for_each_thread(p, t) {
935 flush_sigqueue_mask(&flush, &t->pending);
936 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
937 if (likely(!(t->ptrace & PT_SEIZED))) {
938 t->jobctl &= ~JOBCTL_STOPPED;
939 wake_up_state(t, __TASK_STOPPED);
940 } else
941 ptrace_trap_notify(t);
942 }
943
944 /*
945 * Notify the parent with CLD_CONTINUED if we were stopped.
946 *
947 * If we were in the middle of a group stop, we pretend it
948 * was already finished, and then continued. Since SIGCHLD
949 * doesn't queue we report only CLD_STOPPED, as if the next
950 * CLD_CONTINUED was dropped.
951 */
952 why = 0;
953 if (signal->flags & SIGNAL_STOP_STOPPED)
954 why |= SIGNAL_CLD_CONTINUED;
955 else if (signal->group_stop_count)
956 why |= SIGNAL_CLD_STOPPED;
957
958 if (why) {
959 /*
960 * The first thread which returns from do_signal_stop()
961 * will take ->siglock, notice SIGNAL_CLD_MASK, and
962 * notify its parent. See get_signal().
963 */
964 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
965 signal->group_stop_count = 0;
966 signal->group_exit_code = 0;
967 }
968 }
969
970 return !sig_ignored(p, sig, force);
971}
972
973/*
974 * Test if P wants to take SIG. After we've checked all threads with this,
975 * it's equivalent to finding no threads not blocking SIG. Any threads not
976 * blocking SIG were ruled out because they are not running and already
977 * have pending signals. Such threads will dequeue from the shared queue
978 * as soon as they're available, so putting the signal on the shared queue
979 * will be equivalent to sending it to one such thread.
980 */
981static inline bool wants_signal(int sig, struct task_struct *p)
982{
983 if (sigismember(&p->blocked, sig))
984 return false;
985
986 if (p->flags & PF_EXITING)
987 return false;
988
989 if (sig == SIGKILL)
990 return true;
991
992 if (task_is_stopped_or_traced(p))
993 return false;
994
995 return task_curr(p) || !task_sigpending(p);
996}
997
998static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
999{
1000 struct signal_struct *signal = p->signal;
1001 struct task_struct *t;
1002
1003 /*
1004 * Now find a thread we can wake up to take the signal off the queue.
1005 *
1006 * If the main thread wants the signal, it gets first crack.
1007 * Probably the least surprising to the average bear.
1008 */
1009 if (wants_signal(sig, p))
1010 t = p;
1011 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012 /*
1013 * There is just one thread and it does not need to be woken.
1014 * It will dequeue unblocked signals before it runs again.
1015 */
1016 return;
1017 else {
1018 /*
1019 * Otherwise try to find a suitable thread.
1020 */
1021 t = signal->curr_target;
1022 while (!wants_signal(sig, t)) {
1023 t = next_thread(t);
1024 if (t == signal->curr_target)
1025 /*
1026 * No thread needs to be woken.
1027 * Any eligible threads will see
1028 * the signal in the queue soon.
1029 */
1030 return;
1031 }
1032 signal->curr_target = t;
1033 }
1034
1035 /*
1036 * Found a killable thread. If the signal will be fatal,
1037 * then start taking the whole group down immediately.
1038 */
1039 if (sig_fatal(p, sig) &&
1040 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041 !sigismember(&t->real_blocked, sig) &&
1042 (sig == SIGKILL || !p->ptrace)) {
1043 /*
1044 * This signal will be fatal to the whole group.
1045 */
1046 if (!sig_kernel_coredump(sig)) {
1047 /*
1048 * Start a group exit and wake everybody up.
1049 * This way we don't have other threads
1050 * running and doing things after a slower
1051 * thread has the fatal signal pending.
1052 */
1053 signal->flags = SIGNAL_GROUP_EXIT;
1054 signal->group_exit_code = sig;
1055 signal->group_stop_count = 0;
1056 t = p;
1057 do {
1058 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059 sigaddset(&t->pending.signal, SIGKILL);
1060 signal_wake_up(t, 1);
1061 } while_each_thread(p, t);
1062 return;
1063 }
1064 }
1065
1066 /*
1067 * The signal is already in the shared-pending queue.
1068 * Tell the chosen thread to wake up and dequeue it.
1069 */
1070 signal_wake_up(t, sig == SIGKILL);
1071 return;
1072}
1073
1074static inline bool legacy_queue(struct sigpending *signals, int sig)
1075{
1076 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077}
1078
1079static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080 struct task_struct *t, enum pid_type type, bool force)
1081{
1082 struct sigpending *pending;
1083 struct sigqueue *q;
1084 int override_rlimit;
1085 int ret = 0, result;
1086
1087 lockdep_assert_held(&t->sighand->siglock);
1088
1089 result = TRACE_SIGNAL_IGNORED;
1090 if (!prepare_signal(sig, t, force))
1091 goto ret;
1092
1093 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094 /*
1095 * Short-circuit ignored signals and support queuing
1096 * exactly one non-rt signal, so that we can get more
1097 * detailed information about the cause of the signal.
1098 */
1099 result = TRACE_SIGNAL_ALREADY_PENDING;
1100 if (legacy_queue(pending, sig))
1101 goto ret;
1102
1103 result = TRACE_SIGNAL_DELIVERED;
1104 /*
1105 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106 */
1107 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108 goto out_set;
1109
1110 /*
1111 * Real-time signals must be queued if sent by sigqueue, or
1112 * some other real-time mechanism. It is implementation
1113 * defined whether kill() does so. We attempt to do so, on
1114 * the principle of least surprise, but since kill is not
1115 * allowed to fail with EAGAIN when low on memory we just
1116 * make sure at least one signal gets delivered and don't
1117 * pass on the info struct.
1118 */
1119 if (sig < SIGRTMIN)
1120 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121 else
1122 override_rlimit = 0;
1123
1124 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125
1126 if (q) {
1127 list_add_tail(&q->list, &pending->list);
1128 switch ((unsigned long) info) {
1129 case (unsigned long) SEND_SIG_NOINFO:
1130 clear_siginfo(&q->info);
1131 q->info.si_signo = sig;
1132 q->info.si_errno = 0;
1133 q->info.si_code = SI_USER;
1134 q->info.si_pid = task_tgid_nr_ns(current,
1135 task_active_pid_ns(t));
1136 rcu_read_lock();
1137 q->info.si_uid =
1138 from_kuid_munged(task_cred_xxx(t, user_ns),
1139 current_uid());
1140 rcu_read_unlock();
1141 break;
1142 case (unsigned long) SEND_SIG_PRIV:
1143 clear_siginfo(&q->info);
1144 q->info.si_signo = sig;
1145 q->info.si_errno = 0;
1146 q->info.si_code = SI_KERNEL;
1147 q->info.si_pid = 0;
1148 q->info.si_uid = 0;
1149 break;
1150 default:
1151 copy_siginfo(&q->info, info);
1152 break;
1153 }
1154 } else if (!is_si_special(info) &&
1155 sig >= SIGRTMIN && info->si_code != SI_USER) {
1156 /*
1157 * Queue overflow, abort. We may abort if the
1158 * signal was rt and sent by user using something
1159 * other than kill().
1160 */
1161 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162 ret = -EAGAIN;
1163 goto ret;
1164 } else {
1165 /*
1166 * This is a silent loss of information. We still
1167 * send the signal, but the *info bits are lost.
1168 */
1169 result = TRACE_SIGNAL_LOSE_INFO;
1170 }
1171
1172out_set:
1173 signalfd_notify(t, sig);
1174 sigaddset(&pending->signal, sig);
1175
1176 /* Let multiprocess signals appear after on-going forks */
1177 if (type > PIDTYPE_TGID) {
1178 struct multiprocess_signals *delayed;
1179 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180 sigset_t *signal = &delayed->signal;
1181 /* Can't queue both a stop and a continue signal */
1182 if (sig == SIGCONT)
1183 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184 else if (sig_kernel_stop(sig))
1185 sigdelset(signal, SIGCONT);
1186 sigaddset(signal, sig);
1187 }
1188 }
1189
1190 complete_signal(sig, t, type);
1191ret:
1192 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193 return ret;
1194}
1195
1196static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197{
1198 bool ret = false;
1199 switch (siginfo_layout(info->si_signo, info->si_code)) {
1200 case SIL_KILL:
1201 case SIL_CHLD:
1202 case SIL_RT:
1203 ret = true;
1204 break;
1205 case SIL_TIMER:
1206 case SIL_POLL:
1207 case SIL_FAULT:
1208 case SIL_FAULT_TRAPNO:
1209 case SIL_FAULT_MCEERR:
1210 case SIL_FAULT_BNDERR:
1211 case SIL_FAULT_PKUERR:
1212 case SIL_FAULT_PERF_EVENT:
1213 case SIL_SYS:
1214 ret = false;
1215 break;
1216 }
1217 return ret;
1218}
1219
1220int send_signal_locked(int sig, struct kernel_siginfo *info,
1221 struct task_struct *t, enum pid_type type)
1222{
1223 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224 bool force = false;
1225
1226 if (info == SEND_SIG_NOINFO) {
1227 /* Force if sent from an ancestor pid namespace */
1228 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229 } else if (info == SEND_SIG_PRIV) {
1230 /* Don't ignore kernel generated signals */
1231 force = true;
1232 } else if (has_si_pid_and_uid(info)) {
1233 /* SIGKILL and SIGSTOP is special or has ids */
1234 struct user_namespace *t_user_ns;
1235
1236 rcu_read_lock();
1237 t_user_ns = task_cred_xxx(t, user_ns);
1238 if (current_user_ns() != t_user_ns) {
1239 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240 info->si_uid = from_kuid_munged(t_user_ns, uid);
1241 }
1242 rcu_read_unlock();
1243
1244 /* A kernel generated signal? */
1245 force = (info->si_code == SI_KERNEL);
1246
1247 /* From an ancestor pid namespace? */
1248 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249 info->si_pid = 0;
1250 force = true;
1251 }
1252 }
1253 return __send_signal_locked(sig, info, t, type, force);
1254}
1255
1256static void print_fatal_signal(int signr)
1257{
1258 struct pt_regs *regs = task_pt_regs(current);
1259 pr_info("potentially unexpected fatal signal %d.\n", signr);
1260
1261#if defined(__i386__) && !defined(__arch_um__)
1262 pr_info("code at %08lx: ", regs->ip);
1263 {
1264 int i;
1265 for (i = 0; i < 16; i++) {
1266 unsigned char insn;
1267
1268 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269 break;
1270 pr_cont("%02x ", insn);
1271 }
1272 }
1273 pr_cont("\n");
1274#endif
1275 preempt_disable();
1276 show_regs(regs);
1277 preempt_enable();
1278}
1279
1280static int __init setup_print_fatal_signals(char *str)
1281{
1282 get_option (&str, &print_fatal_signals);
1283
1284 return 1;
1285}
1286
1287__setup("print-fatal-signals=", setup_print_fatal_signals);
1288
1289int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1290 enum pid_type type)
1291{
1292 unsigned long flags;
1293 int ret = -ESRCH;
1294
1295 if (lock_task_sighand(p, &flags)) {
1296 ret = send_signal_locked(sig, info, p, type);
1297 unlock_task_sighand(p, &flags);
1298 }
1299
1300 return ret;
1301}
1302
1303enum sig_handler {
1304 HANDLER_CURRENT, /* If reachable use the current handler */
1305 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1306 HANDLER_EXIT, /* Only visible as the process exit code */
1307};
1308
1309/*
1310 * Force a signal that the process can't ignore: if necessary
1311 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312 *
1313 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1314 * since we do not want to have a signal handler that was blocked
1315 * be invoked when user space had explicitly blocked it.
1316 *
1317 * We don't want to have recursive SIGSEGV's etc, for example,
1318 * that is why we also clear SIGNAL_UNKILLABLE.
1319 */
1320static int
1321force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1322 enum sig_handler handler)
1323{
1324 unsigned long int flags;
1325 int ret, blocked, ignored;
1326 struct k_sigaction *action;
1327 int sig = info->si_signo;
1328
1329 spin_lock_irqsave(&t->sighand->siglock, flags);
1330 action = &t->sighand->action[sig-1];
1331 ignored = action->sa.sa_handler == SIG_IGN;
1332 blocked = sigismember(&t->blocked, sig);
1333 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1334 action->sa.sa_handler = SIG_DFL;
1335 if (handler == HANDLER_EXIT)
1336 action->sa.sa_flags |= SA_IMMUTABLE;
1337 if (blocked) {
1338 sigdelset(&t->blocked, sig);
1339 recalc_sigpending_and_wake(t);
1340 }
1341 }
1342 /*
1343 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1344 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345 */
1346 if (action->sa.sa_handler == SIG_DFL &&
1347 (!t->ptrace || (handler == HANDLER_EXIT)))
1348 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1350 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351
1352 return ret;
1353}
1354
1355int force_sig_info(struct kernel_siginfo *info)
1356{
1357 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1358}
1359
1360/*
1361 * Nuke all other threads in the group.
1362 */
1363int zap_other_threads(struct task_struct *p)
1364{
1365 struct task_struct *t = p;
1366 int count = 0;
1367
1368 p->signal->group_stop_count = 0;
1369
1370 while_each_thread(p, t) {
1371 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372 count++;
1373
1374 /* Don't bother with already dead threads */
1375 if (t->exit_state)
1376 continue;
1377 sigaddset(&t->pending.signal, SIGKILL);
1378 signal_wake_up(t, 1);
1379 }
1380
1381 return count;
1382}
1383
1384struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385 unsigned long *flags)
1386{
1387 struct sighand_struct *sighand;
1388
1389 rcu_read_lock();
1390 for (;;) {
1391 sighand = rcu_dereference(tsk->sighand);
1392 if (unlikely(sighand == NULL))
1393 break;
1394
1395 /*
1396 * This sighand can be already freed and even reused, but
1397 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398 * initializes ->siglock: this slab can't go away, it has
1399 * the same object type, ->siglock can't be reinitialized.
1400 *
1401 * We need to ensure that tsk->sighand is still the same
1402 * after we take the lock, we can race with de_thread() or
1403 * __exit_signal(). In the latter case the next iteration
1404 * must see ->sighand == NULL.
1405 */
1406 spin_lock_irqsave(&sighand->siglock, *flags);
1407 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408 break;
1409 spin_unlock_irqrestore(&sighand->siglock, *flags);
1410 }
1411 rcu_read_unlock();
1412
1413 return sighand;
1414}
1415
1416#ifdef CONFIG_LOCKDEP
1417void lockdep_assert_task_sighand_held(struct task_struct *task)
1418{
1419 struct sighand_struct *sighand;
1420
1421 rcu_read_lock();
1422 sighand = rcu_dereference(task->sighand);
1423 if (sighand)
1424 lockdep_assert_held(&sighand->siglock);
1425 else
1426 WARN_ON_ONCE(1);
1427 rcu_read_unlock();
1428}
1429#endif
1430
1431/*
1432 * send signal info to all the members of a group
1433 */
1434int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435 struct task_struct *p, enum pid_type type)
1436{
1437 int ret;
1438
1439 rcu_read_lock();
1440 ret = check_kill_permission(sig, info, p);
1441 rcu_read_unlock();
1442
1443 if (!ret && sig)
1444 ret = do_send_sig_info(sig, info, p, type);
1445
1446 return ret;
1447}
1448
1449/*
1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451 * control characters do (^C, ^Z etc)
1452 * - the caller must hold at least a readlock on tasklist_lock
1453 */
1454int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455{
1456 struct task_struct *p = NULL;
1457 int retval, success;
1458
1459 success = 0;
1460 retval = -ESRCH;
1461 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1463 success |= !err;
1464 retval = err;
1465 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466 return success ? 0 : retval;
1467}
1468
1469int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1470{
1471 int error = -ESRCH;
1472 struct task_struct *p;
1473
1474 for (;;) {
1475 rcu_read_lock();
1476 p = pid_task(pid, PIDTYPE_PID);
1477 if (p)
1478 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479 rcu_read_unlock();
1480 if (likely(!p || error != -ESRCH))
1481 return error;
1482
1483 /*
1484 * The task was unhashed in between, try again. If it
1485 * is dead, pid_task() will return NULL, if we race with
1486 * de_thread() it will find the new leader.
1487 */
1488 }
1489}
1490
1491static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1492{
1493 int error;
1494 rcu_read_lock();
1495 error = kill_pid_info(sig, info, find_vpid(pid));
1496 rcu_read_unlock();
1497 return error;
1498}
1499
1500static inline bool kill_as_cred_perm(const struct cred *cred,
1501 struct task_struct *target)
1502{
1503 const struct cred *pcred = __task_cred(target);
1504
1505 return uid_eq(cred->euid, pcred->suid) ||
1506 uid_eq(cred->euid, pcred->uid) ||
1507 uid_eq(cred->uid, pcred->suid) ||
1508 uid_eq(cred->uid, pcred->uid);
1509}
1510
1511/*
1512 * The usb asyncio usage of siginfo is wrong. The glibc support
1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514 * AKA after the generic fields:
1515 * kernel_pid_t si_pid;
1516 * kernel_uid32_t si_uid;
1517 * sigval_t si_value;
1518 *
1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520 * after the generic fields is:
1521 * void __user *si_addr;
1522 *
1523 * This is a practical problem when there is a 64bit big endian kernel
1524 * and a 32bit userspace. As the 32bit address will encoded in the low
1525 * 32bits of the pointer. Those low 32bits will be stored at higher
1526 * address than appear in a 32 bit pointer. So userspace will not
1527 * see the address it was expecting for it's completions.
1528 *
1529 * There is nothing in the encoding that can allow
1530 * copy_siginfo_to_user32 to detect this confusion of formats, so
1531 * handle this by requiring the caller of kill_pid_usb_asyncio to
1532 * notice when this situration takes place and to store the 32bit
1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1534 * parameter.
1535 */
1536int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537 struct pid *pid, const struct cred *cred)
1538{
1539 struct kernel_siginfo info;
1540 struct task_struct *p;
1541 unsigned long flags;
1542 int ret = -EINVAL;
1543
1544 if (!valid_signal(sig))
1545 return ret;
1546
1547 clear_siginfo(&info);
1548 info.si_signo = sig;
1549 info.si_errno = errno;
1550 info.si_code = SI_ASYNCIO;
1551 *((sigval_t *)&info.si_pid) = addr;
1552
1553 rcu_read_lock();
1554 p = pid_task(pid, PIDTYPE_PID);
1555 if (!p) {
1556 ret = -ESRCH;
1557 goto out_unlock;
1558 }
1559 if (!kill_as_cred_perm(cred, p)) {
1560 ret = -EPERM;
1561 goto out_unlock;
1562 }
1563 ret = security_task_kill(p, &info, sig, cred);
1564 if (ret)
1565 goto out_unlock;
1566
1567 if (sig) {
1568 if (lock_task_sighand(p, &flags)) {
1569 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1570 unlock_task_sighand(p, &flags);
1571 } else
1572 ret = -ESRCH;
1573 }
1574out_unlock:
1575 rcu_read_unlock();
1576 return ret;
1577}
1578EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1579
1580/*
1581 * kill_something_info() interprets pid in interesting ways just like kill(2).
1582 *
1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584 * is probably wrong. Should make it like BSD or SYSV.
1585 */
1586
1587static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1588{
1589 int ret;
1590
1591 if (pid > 0)
1592 return kill_proc_info(sig, info, pid);
1593
1594 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1595 if (pid == INT_MIN)
1596 return -ESRCH;
1597
1598 read_lock(&tasklist_lock);
1599 if (pid != -1) {
1600 ret = __kill_pgrp_info(sig, info,
1601 pid ? find_vpid(-pid) : task_pgrp(current));
1602 } else {
1603 int retval = 0, count = 0;
1604 struct task_struct * p;
1605
1606 for_each_process(p) {
1607 if (task_pid_vnr(p) > 1 &&
1608 !same_thread_group(p, current)) {
1609 int err = group_send_sig_info(sig, info, p,
1610 PIDTYPE_MAX);
1611 ++count;
1612 if (err != -EPERM)
1613 retval = err;
1614 }
1615 }
1616 ret = count ? retval : -ESRCH;
1617 }
1618 read_unlock(&tasklist_lock);
1619
1620 return ret;
1621}
1622
1623/*
1624 * These are for backward compatibility with the rest of the kernel source.
1625 */
1626
1627int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1628{
1629 /*
1630 * Make sure legacy kernel users don't send in bad values
1631 * (normal paths check this in check_kill_permission).
1632 */
1633 if (!valid_signal(sig))
1634 return -EINVAL;
1635
1636 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637}
1638EXPORT_SYMBOL(send_sig_info);
1639
1640#define __si_special(priv) \
1641 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1642
1643int
1644send_sig(int sig, struct task_struct *p, int priv)
1645{
1646 return send_sig_info(sig, __si_special(priv), p);
1647}
1648EXPORT_SYMBOL(send_sig);
1649
1650void force_sig(int sig)
1651{
1652 struct kernel_siginfo info;
1653
1654 clear_siginfo(&info);
1655 info.si_signo = sig;
1656 info.si_errno = 0;
1657 info.si_code = SI_KERNEL;
1658 info.si_pid = 0;
1659 info.si_uid = 0;
1660 force_sig_info(&info);
1661}
1662EXPORT_SYMBOL(force_sig);
1663
1664void force_fatal_sig(int sig)
1665{
1666 struct kernel_siginfo info;
1667
1668 clear_siginfo(&info);
1669 info.si_signo = sig;
1670 info.si_errno = 0;
1671 info.si_code = SI_KERNEL;
1672 info.si_pid = 0;
1673 info.si_uid = 0;
1674 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1675}
1676
1677void force_exit_sig(int sig)
1678{
1679 struct kernel_siginfo info;
1680
1681 clear_siginfo(&info);
1682 info.si_signo = sig;
1683 info.si_errno = 0;
1684 info.si_code = SI_KERNEL;
1685 info.si_pid = 0;
1686 info.si_uid = 0;
1687 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1688}
1689
1690/*
1691 * When things go south during signal handling, we
1692 * will force a SIGSEGV. And if the signal that caused
1693 * the problem was already a SIGSEGV, we'll want to
1694 * make sure we don't even try to deliver the signal..
1695 */
1696void force_sigsegv(int sig)
1697{
1698 if (sig == SIGSEGV)
1699 force_fatal_sig(SIGSEGV);
1700 else
1701 force_sig(SIGSEGV);
1702}
1703
1704int force_sig_fault_to_task(int sig, int code, void __user *addr
1705 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1706 , struct task_struct *t)
1707{
1708 struct kernel_siginfo info;
1709
1710 clear_siginfo(&info);
1711 info.si_signo = sig;
1712 info.si_errno = 0;
1713 info.si_code = code;
1714 info.si_addr = addr;
1715#ifdef __ia64__
1716 info.si_imm = imm;
1717 info.si_flags = flags;
1718 info.si_isr = isr;
1719#endif
1720 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1721}
1722
1723int force_sig_fault(int sig, int code, void __user *addr
1724 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725{
1726 return force_sig_fault_to_task(sig, code, addr
1727 ___ARCH_SI_IA64(imm, flags, isr), current);
1728}
1729
1730int send_sig_fault(int sig, int code, void __user *addr
1731 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1732 , struct task_struct *t)
1733{
1734 struct kernel_siginfo info;
1735
1736 clear_siginfo(&info);
1737 info.si_signo = sig;
1738 info.si_errno = 0;
1739 info.si_code = code;
1740 info.si_addr = addr;
1741#ifdef __ia64__
1742 info.si_imm = imm;
1743 info.si_flags = flags;
1744 info.si_isr = isr;
1745#endif
1746 return send_sig_info(info.si_signo, &info, t);
1747}
1748
1749int force_sig_mceerr(int code, void __user *addr, short lsb)
1750{
1751 struct kernel_siginfo info;
1752
1753 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754 clear_siginfo(&info);
1755 info.si_signo = SIGBUS;
1756 info.si_errno = 0;
1757 info.si_code = code;
1758 info.si_addr = addr;
1759 info.si_addr_lsb = lsb;
1760 return force_sig_info(&info);
1761}
1762
1763int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764{
1765 struct kernel_siginfo info;
1766
1767 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768 clear_siginfo(&info);
1769 info.si_signo = SIGBUS;
1770 info.si_errno = 0;
1771 info.si_code = code;
1772 info.si_addr = addr;
1773 info.si_addr_lsb = lsb;
1774 return send_sig_info(info.si_signo, &info, t);
1775}
1776EXPORT_SYMBOL(send_sig_mceerr);
1777
1778int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779{
1780 struct kernel_siginfo info;
1781
1782 clear_siginfo(&info);
1783 info.si_signo = SIGSEGV;
1784 info.si_errno = 0;
1785 info.si_code = SEGV_BNDERR;
1786 info.si_addr = addr;
1787 info.si_lower = lower;
1788 info.si_upper = upper;
1789 return force_sig_info(&info);
1790}
1791
1792#ifdef SEGV_PKUERR
1793int force_sig_pkuerr(void __user *addr, u32 pkey)
1794{
1795 struct kernel_siginfo info;
1796
1797 clear_siginfo(&info);
1798 info.si_signo = SIGSEGV;
1799 info.si_errno = 0;
1800 info.si_code = SEGV_PKUERR;
1801 info.si_addr = addr;
1802 info.si_pkey = pkey;
1803 return force_sig_info(&info);
1804}
1805#endif
1806
1807int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808{
1809 struct kernel_siginfo info;
1810
1811 clear_siginfo(&info);
1812 info.si_signo = SIGTRAP;
1813 info.si_errno = 0;
1814 info.si_code = TRAP_PERF;
1815 info.si_addr = addr;
1816 info.si_perf_data = sig_data;
1817 info.si_perf_type = type;
1818
1819 /*
1820 * Signals generated by perf events should not terminate the whole
1821 * process if SIGTRAP is blocked, however, delivering the signal
1822 * asynchronously is better than not delivering at all. But tell user
1823 * space if the signal was asynchronous, so it can clearly be
1824 * distinguished from normal synchronous ones.
1825 */
1826 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1827 TRAP_PERF_FLAG_ASYNC :
1828 0;
1829
1830 return send_sig_info(info.si_signo, &info, current);
1831}
1832
1833/**
1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1835 * @syscall: syscall number to send to userland
1836 * @reason: filter-supplied reason code to send to userland (via si_errno)
1837 * @force_coredump: true to trigger a coredump
1838 *
1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840 */
1841int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842{
1843 struct kernel_siginfo info;
1844
1845 clear_siginfo(&info);
1846 info.si_signo = SIGSYS;
1847 info.si_code = SYS_SECCOMP;
1848 info.si_call_addr = (void __user *)KSTK_EIP(current);
1849 info.si_errno = reason;
1850 info.si_arch = syscall_get_arch(current);
1851 info.si_syscall = syscall;
1852 return force_sig_info_to_task(&info, current,
1853 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1854}
1855
1856/* For the crazy architectures that include trap information in
1857 * the errno field, instead of an actual errno value.
1858 */
1859int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860{
1861 struct kernel_siginfo info;
1862
1863 clear_siginfo(&info);
1864 info.si_signo = SIGTRAP;
1865 info.si_errno = errno;
1866 info.si_code = TRAP_HWBKPT;
1867 info.si_addr = addr;
1868 return force_sig_info(&info);
1869}
1870
1871/* For the rare architectures that include trap information using
1872 * si_trapno.
1873 */
1874int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875{
1876 struct kernel_siginfo info;
1877
1878 clear_siginfo(&info);
1879 info.si_signo = sig;
1880 info.si_errno = 0;
1881 info.si_code = code;
1882 info.si_addr = addr;
1883 info.si_trapno = trapno;
1884 return force_sig_info(&info);
1885}
1886
1887/* For the rare architectures that include trap information using
1888 * si_trapno.
1889 */
1890int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891 struct task_struct *t)
1892{
1893 struct kernel_siginfo info;
1894
1895 clear_siginfo(&info);
1896 info.si_signo = sig;
1897 info.si_errno = 0;
1898 info.si_code = code;
1899 info.si_addr = addr;
1900 info.si_trapno = trapno;
1901 return send_sig_info(info.si_signo, &info, t);
1902}
1903
1904int kill_pgrp(struct pid *pid, int sig, int priv)
1905{
1906 int ret;
1907
1908 read_lock(&tasklist_lock);
1909 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1910 read_unlock(&tasklist_lock);
1911
1912 return ret;
1913}
1914EXPORT_SYMBOL(kill_pgrp);
1915
1916int kill_pid(struct pid *pid, int sig, int priv)
1917{
1918 return kill_pid_info(sig, __si_special(priv), pid);
1919}
1920EXPORT_SYMBOL(kill_pid);
1921
1922/*
1923 * These functions support sending signals using preallocated sigqueue
1924 * structures. This is needed "because realtime applications cannot
1925 * afford to lose notifications of asynchronous events, like timer
1926 * expirations or I/O completions". In the case of POSIX Timers
1927 * we allocate the sigqueue structure from the timer_create. If this
1928 * allocation fails we are able to report the failure to the application
1929 * with an EAGAIN error.
1930 */
1931struct sigqueue *sigqueue_alloc(void)
1932{
1933 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1934}
1935
1936void sigqueue_free(struct sigqueue *q)
1937{
1938 unsigned long flags;
1939 spinlock_t *lock = ¤t->sighand->siglock;
1940
1941 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942 /*
1943 * We must hold ->siglock while testing q->list
1944 * to serialize with collect_signal() or with
1945 * __exit_signal()->flush_sigqueue().
1946 */
1947 spin_lock_irqsave(lock, flags);
1948 q->flags &= ~SIGQUEUE_PREALLOC;
1949 /*
1950 * If it is queued it will be freed when dequeued,
1951 * like the "regular" sigqueue.
1952 */
1953 if (!list_empty(&q->list))
1954 q = NULL;
1955 spin_unlock_irqrestore(lock, flags);
1956
1957 if (q)
1958 __sigqueue_free(q);
1959}
1960
1961int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962{
1963 int sig = q->info.si_signo;
1964 struct sigpending *pending;
1965 struct task_struct *t;
1966 unsigned long flags;
1967 int ret, result;
1968
1969 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1970
1971 ret = -1;
1972 rcu_read_lock();
1973 t = pid_task(pid, type);
1974 if (!t || !likely(lock_task_sighand(t, &flags)))
1975 goto ret;
1976
1977 ret = 1; /* the signal is ignored */
1978 result = TRACE_SIGNAL_IGNORED;
1979 if (!prepare_signal(sig, t, false))
1980 goto out;
1981
1982 ret = 0;
1983 if (unlikely(!list_empty(&q->list))) {
1984 /*
1985 * If an SI_TIMER entry is already queue just increment
1986 * the overrun count.
1987 */
1988 BUG_ON(q->info.si_code != SI_TIMER);
1989 q->info.si_overrun++;
1990 result = TRACE_SIGNAL_ALREADY_PENDING;
1991 goto out;
1992 }
1993 q->info.si_overrun = 0;
1994
1995 signalfd_notify(t, sig);
1996 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1997 list_add_tail(&q->list, &pending->list);
1998 sigaddset(&pending->signal, sig);
1999 complete_signal(sig, t, type);
2000 result = TRACE_SIGNAL_DELIVERED;
2001out:
2002 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2003 unlock_task_sighand(t, &flags);
2004ret:
2005 rcu_read_unlock();
2006 return ret;
2007}
2008
2009static void do_notify_pidfd(struct task_struct *task)
2010{
2011 struct pid *pid;
2012
2013 WARN_ON(task->exit_state == 0);
2014 pid = task_pid(task);
2015 wake_up_all(&pid->wait_pidfd);
2016}
2017
2018/*
2019 * Let a parent know about the death of a child.
2020 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021 *
2022 * Returns true if our parent ignored us and so we've switched to
2023 * self-reaping.
2024 */
2025bool do_notify_parent(struct task_struct *tsk, int sig)
2026{
2027 struct kernel_siginfo info;
2028 unsigned long flags;
2029 struct sighand_struct *psig;
2030 bool autoreap = false;
2031 u64 utime, stime;
2032
2033 WARN_ON_ONCE(sig == -1);
2034
2035 /* do_notify_parent_cldstop should have been called instead. */
2036 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2037
2038 WARN_ON_ONCE(!tsk->ptrace &&
2039 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040
2041 /* Wake up all pidfd waiters */
2042 do_notify_pidfd(tsk);
2043
2044 if (sig != SIGCHLD) {
2045 /*
2046 * This is only possible if parent == real_parent.
2047 * Check if it has changed security domain.
2048 */
2049 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2050 sig = SIGCHLD;
2051 }
2052
2053 clear_siginfo(&info);
2054 info.si_signo = sig;
2055 info.si_errno = 0;
2056 /*
2057 * We are under tasklist_lock here so our parent is tied to
2058 * us and cannot change.
2059 *
2060 * task_active_pid_ns will always return the same pid namespace
2061 * until a task passes through release_task.
2062 *
2063 * write_lock() currently calls preempt_disable() which is the
2064 * same as rcu_read_lock(), but according to Oleg, this is not
2065 * correct to rely on this
2066 */
2067 rcu_read_lock();
2068 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2069 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2070 task_uid(tsk));
2071 rcu_read_unlock();
2072
2073 task_cputime(tsk, &utime, &stime);
2074 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2075 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2076
2077 info.si_status = tsk->exit_code & 0x7f;
2078 if (tsk->exit_code & 0x80)
2079 info.si_code = CLD_DUMPED;
2080 else if (tsk->exit_code & 0x7f)
2081 info.si_code = CLD_KILLED;
2082 else {
2083 info.si_code = CLD_EXITED;
2084 info.si_status = tsk->exit_code >> 8;
2085 }
2086
2087 psig = tsk->parent->sighand;
2088 spin_lock_irqsave(&psig->siglock, flags);
2089 if (!tsk->ptrace && sig == SIGCHLD &&
2090 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2091 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092 /*
2093 * We are exiting and our parent doesn't care. POSIX.1
2094 * defines special semantics for setting SIGCHLD to SIG_IGN
2095 * or setting the SA_NOCLDWAIT flag: we should be reaped
2096 * automatically and not left for our parent's wait4 call.
2097 * Rather than having the parent do it as a magic kind of
2098 * signal handler, we just set this to tell do_exit that we
2099 * can be cleaned up without becoming a zombie. Note that
2100 * we still call __wake_up_parent in this case, because a
2101 * blocked sys_wait4 might now return -ECHILD.
2102 *
2103 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2104 * is implementation-defined: we do (if you don't want
2105 * it, just use SIG_IGN instead).
2106 */
2107 autoreap = true;
2108 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2109 sig = 0;
2110 }
2111 /*
2112 * Send with __send_signal as si_pid and si_uid are in the
2113 * parent's namespaces.
2114 */
2115 if (valid_signal(sig) && sig)
2116 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2117 __wake_up_parent(tsk, tsk->parent);
2118 spin_unlock_irqrestore(&psig->siglock, flags);
2119
2120 return autoreap;
2121}
2122
2123/**
2124 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2125 * @tsk: task reporting the state change
2126 * @for_ptracer: the notification is for ptracer
2127 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128 *
2129 * Notify @tsk's parent that the stopped/continued state has changed. If
2130 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2131 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2132 *
2133 * CONTEXT:
2134 * Must be called with tasklist_lock at least read locked.
2135 */
2136static void do_notify_parent_cldstop(struct task_struct *tsk,
2137 bool for_ptracer, int why)
2138{
2139 struct kernel_siginfo info;
2140 unsigned long flags;
2141 struct task_struct *parent;
2142 struct sighand_struct *sighand;
2143 u64 utime, stime;
2144
2145 if (for_ptracer) {
2146 parent = tsk->parent;
2147 } else {
2148 tsk = tsk->group_leader;
2149 parent = tsk->real_parent;
2150 }
2151
2152 clear_siginfo(&info);
2153 info.si_signo = SIGCHLD;
2154 info.si_errno = 0;
2155 /*
2156 * see comment in do_notify_parent() about the following 4 lines
2157 */
2158 rcu_read_lock();
2159 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2160 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2161 rcu_read_unlock();
2162
2163 task_cputime(tsk, &utime, &stime);
2164 info.si_utime = nsec_to_clock_t(utime);
2165 info.si_stime = nsec_to_clock_t(stime);
2166
2167 info.si_code = why;
2168 switch (why) {
2169 case CLD_CONTINUED:
2170 info.si_status = SIGCONT;
2171 break;
2172 case CLD_STOPPED:
2173 info.si_status = tsk->signal->group_exit_code & 0x7f;
2174 break;
2175 case CLD_TRAPPED:
2176 info.si_status = tsk->exit_code & 0x7f;
2177 break;
2178 default:
2179 BUG();
2180 }
2181
2182 sighand = parent->sighand;
2183 spin_lock_irqsave(&sighand->siglock, flags);
2184 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2185 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2186 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2187 /*
2188 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189 */
2190 __wake_up_parent(tsk, parent);
2191 spin_unlock_irqrestore(&sighand->siglock, flags);
2192}
2193
2194/*
2195 * This must be called with current->sighand->siglock held.
2196 *
2197 * This should be the path for all ptrace stops.
2198 * We always set current->last_siginfo while stopped here.
2199 * That makes it a way to test a stopped process for
2200 * being ptrace-stopped vs being job-control-stopped.
2201 *
2202 * Returns the signal the ptracer requested the code resume
2203 * with. If the code did not stop because the tracer is gone,
2204 * the stop signal remains unchanged unless clear_code.
2205 */
2206static int ptrace_stop(int exit_code, int why, unsigned long message,
2207 kernel_siginfo_t *info)
2208 __releases(¤t->sighand->siglock)
2209 __acquires(¤t->sighand->siglock)
2210{
2211 bool gstop_done = false;
2212
2213 if (arch_ptrace_stop_needed()) {
2214 /*
2215 * The arch code has something special to do before a
2216 * ptrace stop. This is allowed to block, e.g. for faults
2217 * on user stack pages. We can't keep the siglock while
2218 * calling arch_ptrace_stop, so we must release it now.
2219 * To preserve proper semantics, we must do this before
2220 * any signal bookkeeping like checking group_stop_count.
2221 */
2222 spin_unlock_irq(¤t->sighand->siglock);
2223 arch_ptrace_stop();
2224 spin_lock_irq(¤t->sighand->siglock);
2225 }
2226
2227 /*
2228 * After this point ptrace_signal_wake_up or signal_wake_up
2229 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2230 * signal comes in. Handle previous ptrace_unlinks and fatal
2231 * signals here to prevent ptrace_stop sleeping in schedule.
2232 */
2233 if (!current->ptrace || __fatal_signal_pending(current))
2234 return exit_code;
2235
2236 set_special_state(TASK_TRACED);
2237 current->jobctl |= JOBCTL_TRACED;
2238
2239 /*
2240 * We're committing to trapping. TRACED should be visible before
2241 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2242 * Also, transition to TRACED and updates to ->jobctl should be
2243 * atomic with respect to siglock and should be done after the arch
2244 * hook as siglock is released and regrabbed across it.
2245 *
2246 * TRACER TRACEE
2247 *
2248 * ptrace_attach()
2249 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2250 * do_wait()
2251 * set_current_state() smp_wmb();
2252 * ptrace_do_wait()
2253 * wait_task_stopped()
2254 * task_stopped_code()
2255 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2256 */
2257 smp_wmb();
2258
2259 current->ptrace_message = message;
2260 current->last_siginfo = info;
2261 current->exit_code = exit_code;
2262
2263 /*
2264 * If @why is CLD_STOPPED, we're trapping to participate in a group
2265 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2266 * across siglock relocks since INTERRUPT was scheduled, PENDING
2267 * could be clear now. We act as if SIGCONT is received after
2268 * TASK_TRACED is entered - ignore it.
2269 */
2270 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2271 gstop_done = task_participate_group_stop(current);
2272
2273 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2274 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2275 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2276 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2277
2278 /* entering a trap, clear TRAPPING */
2279 task_clear_jobctl_trapping(current);
2280
2281 spin_unlock_irq(¤t->sighand->siglock);
2282 read_lock(&tasklist_lock);
2283 /*
2284 * Notify parents of the stop.
2285 *
2286 * While ptraced, there are two parents - the ptracer and
2287 * the real_parent of the group_leader. The ptracer should
2288 * know about every stop while the real parent is only
2289 * interested in the completion of group stop. The states
2290 * for the two don't interact with each other. Notify
2291 * separately unless they're gonna be duplicates.
2292 */
2293 if (current->ptrace)
2294 do_notify_parent_cldstop(current, true, why);
2295 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2296 do_notify_parent_cldstop(current, false, why);
2297
2298 /*
2299 * Don't want to allow preemption here, because
2300 * sys_ptrace() needs this task to be inactive.
2301 *
2302 * XXX: implement read_unlock_no_resched().
2303 */
2304 preempt_disable();
2305 read_unlock(&tasklist_lock);
2306 cgroup_enter_frozen();
2307 preempt_enable_no_resched();
2308 schedule();
2309 cgroup_leave_frozen(true);
2310
2311 /*
2312 * We are back. Now reacquire the siglock before touching
2313 * last_siginfo, so that we are sure to have synchronized with
2314 * any signal-sending on another CPU that wants to examine it.
2315 */
2316 spin_lock_irq(¤t->sighand->siglock);
2317 exit_code = current->exit_code;
2318 current->last_siginfo = NULL;
2319 current->ptrace_message = 0;
2320 current->exit_code = 0;
2321
2322 /* LISTENING can be set only during STOP traps, clear it */
2323 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2324
2325 /*
2326 * Queued signals ignored us while we were stopped for tracing.
2327 * So check for any that we should take before resuming user mode.
2328 * This sets TIF_SIGPENDING, but never clears it.
2329 */
2330 recalc_sigpending_tsk(current);
2331 return exit_code;
2332}
2333
2334static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2335{
2336 kernel_siginfo_t info;
2337
2338 clear_siginfo(&info);
2339 info.si_signo = signr;
2340 info.si_code = exit_code;
2341 info.si_pid = task_pid_vnr(current);
2342 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2343
2344 /* Let the debugger run. */
2345 return ptrace_stop(exit_code, why, message, &info);
2346}
2347
2348int ptrace_notify(int exit_code, unsigned long message)
2349{
2350 int signr;
2351
2352 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2353 if (unlikely(task_work_pending(current)))
2354 task_work_run();
2355
2356 spin_lock_irq(¤t->sighand->siglock);
2357 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2358 spin_unlock_irq(¤t->sighand->siglock);
2359 return signr;
2360}
2361
2362/**
2363 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2364 * @signr: signr causing group stop if initiating
2365 *
2366 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2367 * and participate in it. If already set, participate in the existing
2368 * group stop. If participated in a group stop (and thus slept), %true is
2369 * returned with siglock released.
2370 *
2371 * If ptraced, this function doesn't handle stop itself. Instead,
2372 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2373 * untouched. The caller must ensure that INTERRUPT trap handling takes
2374 * places afterwards.
2375 *
2376 * CONTEXT:
2377 * Must be called with @current->sighand->siglock held, which is released
2378 * on %true return.
2379 *
2380 * RETURNS:
2381 * %false if group stop is already cancelled or ptrace trap is scheduled.
2382 * %true if participated in group stop.
2383 */
2384static bool do_signal_stop(int signr)
2385 __releases(¤t->sighand->siglock)
2386{
2387 struct signal_struct *sig = current->signal;
2388
2389 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2390 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2391 struct task_struct *t;
2392
2393 /* signr will be recorded in task->jobctl for retries */
2394 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2395
2396 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2397 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2398 unlikely(sig->group_exec_task))
2399 return false;
2400 /*
2401 * There is no group stop already in progress. We must
2402 * initiate one now.
2403 *
2404 * While ptraced, a task may be resumed while group stop is
2405 * still in effect and then receive a stop signal and
2406 * initiate another group stop. This deviates from the
2407 * usual behavior as two consecutive stop signals can't
2408 * cause two group stops when !ptraced. That is why we
2409 * also check !task_is_stopped(t) below.
2410 *
2411 * The condition can be distinguished by testing whether
2412 * SIGNAL_STOP_STOPPED is already set. Don't generate
2413 * group_exit_code in such case.
2414 *
2415 * This is not necessary for SIGNAL_STOP_CONTINUED because
2416 * an intervening stop signal is required to cause two
2417 * continued events regardless of ptrace.
2418 */
2419 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2420 sig->group_exit_code = signr;
2421
2422 sig->group_stop_count = 0;
2423
2424 if (task_set_jobctl_pending(current, signr | gstop))
2425 sig->group_stop_count++;
2426
2427 t = current;
2428 while_each_thread(current, t) {
2429 /*
2430 * Setting state to TASK_STOPPED for a group
2431 * stop is always done with the siglock held,
2432 * so this check has no races.
2433 */
2434 if (!task_is_stopped(t) &&
2435 task_set_jobctl_pending(t, signr | gstop)) {
2436 sig->group_stop_count++;
2437 if (likely(!(t->ptrace & PT_SEIZED)))
2438 signal_wake_up(t, 0);
2439 else
2440 ptrace_trap_notify(t);
2441 }
2442 }
2443 }
2444
2445 if (likely(!current->ptrace)) {
2446 int notify = 0;
2447
2448 /*
2449 * If there are no other threads in the group, or if there
2450 * is a group stop in progress and we are the last to stop,
2451 * report to the parent.
2452 */
2453 if (task_participate_group_stop(current))
2454 notify = CLD_STOPPED;
2455
2456 current->jobctl |= JOBCTL_STOPPED;
2457 set_special_state(TASK_STOPPED);
2458 spin_unlock_irq(¤t->sighand->siglock);
2459
2460 /*
2461 * Notify the parent of the group stop completion. Because
2462 * we're not holding either the siglock or tasklist_lock
2463 * here, ptracer may attach inbetween; however, this is for
2464 * group stop and should always be delivered to the real
2465 * parent of the group leader. The new ptracer will get
2466 * its notification when this task transitions into
2467 * TASK_TRACED.
2468 */
2469 if (notify) {
2470 read_lock(&tasklist_lock);
2471 do_notify_parent_cldstop(current, false, notify);
2472 read_unlock(&tasklist_lock);
2473 }
2474
2475 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2476 cgroup_enter_frozen();
2477 schedule();
2478 return true;
2479 } else {
2480 /*
2481 * While ptraced, group stop is handled by STOP trap.
2482 * Schedule it and let the caller deal with it.
2483 */
2484 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2485 return false;
2486 }
2487}
2488
2489/**
2490 * do_jobctl_trap - take care of ptrace jobctl traps
2491 *
2492 * When PT_SEIZED, it's used for both group stop and explicit
2493 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2494 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2495 * the stop signal; otherwise, %SIGTRAP.
2496 *
2497 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2498 * number as exit_code and no siginfo.
2499 *
2500 * CONTEXT:
2501 * Must be called with @current->sighand->siglock held, which may be
2502 * released and re-acquired before returning with intervening sleep.
2503 */
2504static void do_jobctl_trap(void)
2505{
2506 struct signal_struct *signal = current->signal;
2507 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2508
2509 if (current->ptrace & PT_SEIZED) {
2510 if (!signal->group_stop_count &&
2511 !(signal->flags & SIGNAL_STOP_STOPPED))
2512 signr = SIGTRAP;
2513 WARN_ON_ONCE(!signr);
2514 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2515 CLD_STOPPED, 0);
2516 } else {
2517 WARN_ON_ONCE(!signr);
2518 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2519 }
2520}
2521
2522/**
2523 * do_freezer_trap - handle the freezer jobctl trap
2524 *
2525 * Puts the task into frozen state, if only the task is not about to quit.
2526 * In this case it drops JOBCTL_TRAP_FREEZE.
2527 *
2528 * CONTEXT:
2529 * Must be called with @current->sighand->siglock held,
2530 * which is always released before returning.
2531 */
2532static void do_freezer_trap(void)
2533 __releases(¤t->sighand->siglock)
2534{
2535 /*
2536 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2537 * let's make another loop to give it a chance to be handled.
2538 * In any case, we'll return back.
2539 */
2540 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2541 JOBCTL_TRAP_FREEZE) {
2542 spin_unlock_irq(¤t->sighand->siglock);
2543 return;
2544 }
2545
2546 /*
2547 * Now we're sure that there is no pending fatal signal and no
2548 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2549 * immediately (if there is a non-fatal signal pending), and
2550 * put the task into sleep.
2551 */
2552 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2553 clear_thread_flag(TIF_SIGPENDING);
2554 spin_unlock_irq(¤t->sighand->siglock);
2555 cgroup_enter_frozen();
2556 schedule();
2557}
2558
2559static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2560{
2561 /*
2562 * We do not check sig_kernel_stop(signr) but set this marker
2563 * unconditionally because we do not know whether debugger will
2564 * change signr. This flag has no meaning unless we are going
2565 * to stop after return from ptrace_stop(). In this case it will
2566 * be checked in do_signal_stop(), we should only stop if it was
2567 * not cleared by SIGCONT while we were sleeping. See also the
2568 * comment in dequeue_signal().
2569 */
2570 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2571 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2572
2573 /* We're back. Did the debugger cancel the sig? */
2574 if (signr == 0)
2575 return signr;
2576
2577 /*
2578 * Update the siginfo structure if the signal has
2579 * changed. If the debugger wanted something
2580 * specific in the siginfo structure then it should
2581 * have updated *info via PTRACE_SETSIGINFO.
2582 */
2583 if (signr != info->si_signo) {
2584 clear_siginfo(info);
2585 info->si_signo = signr;
2586 info->si_errno = 0;
2587 info->si_code = SI_USER;
2588 rcu_read_lock();
2589 info->si_pid = task_pid_vnr(current->parent);
2590 info->si_uid = from_kuid_munged(current_user_ns(),
2591 task_uid(current->parent));
2592 rcu_read_unlock();
2593 }
2594
2595 /* If the (new) signal is now blocked, requeue it. */
2596 if (sigismember(¤t->blocked, signr) ||
2597 fatal_signal_pending(current)) {
2598 send_signal_locked(signr, info, current, type);
2599 signr = 0;
2600 }
2601
2602 return signr;
2603}
2604
2605static void hide_si_addr_tag_bits(struct ksignal *ksig)
2606{
2607 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2608 case SIL_FAULT:
2609 case SIL_FAULT_TRAPNO:
2610 case SIL_FAULT_MCEERR:
2611 case SIL_FAULT_BNDERR:
2612 case SIL_FAULT_PKUERR:
2613 case SIL_FAULT_PERF_EVENT:
2614 ksig->info.si_addr = arch_untagged_si_addr(
2615 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2616 break;
2617 case SIL_KILL:
2618 case SIL_TIMER:
2619 case SIL_POLL:
2620 case SIL_CHLD:
2621 case SIL_RT:
2622 case SIL_SYS:
2623 break;
2624 }
2625}
2626
2627bool get_signal(struct ksignal *ksig)
2628{
2629 struct sighand_struct *sighand = current->sighand;
2630 struct signal_struct *signal = current->signal;
2631 int signr;
2632
2633 clear_notify_signal();
2634 if (unlikely(task_work_pending(current)))
2635 task_work_run();
2636
2637 if (!task_sigpending(current))
2638 return false;
2639
2640 if (unlikely(uprobe_deny_signal()))
2641 return false;
2642
2643 /*
2644 * Do this once, we can't return to user-mode if freezing() == T.
2645 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2646 * thus do not need another check after return.
2647 */
2648 try_to_freeze();
2649
2650relock:
2651 spin_lock_irq(&sighand->siglock);
2652
2653 /*
2654 * Every stopped thread goes here after wakeup. Check to see if
2655 * we should notify the parent, prepare_signal(SIGCONT) encodes
2656 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2657 */
2658 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2659 int why;
2660
2661 if (signal->flags & SIGNAL_CLD_CONTINUED)
2662 why = CLD_CONTINUED;
2663 else
2664 why = CLD_STOPPED;
2665
2666 signal->flags &= ~SIGNAL_CLD_MASK;
2667
2668 spin_unlock_irq(&sighand->siglock);
2669
2670 /*
2671 * Notify the parent that we're continuing. This event is
2672 * always per-process and doesn't make whole lot of sense
2673 * for ptracers, who shouldn't consume the state via
2674 * wait(2) either, but, for backward compatibility, notify
2675 * the ptracer of the group leader too unless it's gonna be
2676 * a duplicate.
2677 */
2678 read_lock(&tasklist_lock);
2679 do_notify_parent_cldstop(current, false, why);
2680
2681 if (ptrace_reparented(current->group_leader))
2682 do_notify_parent_cldstop(current->group_leader,
2683 true, why);
2684 read_unlock(&tasklist_lock);
2685
2686 goto relock;
2687 }
2688
2689 for (;;) {
2690 struct k_sigaction *ka;
2691 enum pid_type type;
2692
2693 /* Has this task already been marked for death? */
2694 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2695 signal->group_exec_task) {
2696 clear_siginfo(&ksig->info);
2697 ksig->info.si_signo = signr = SIGKILL;
2698 sigdelset(¤t->pending.signal, SIGKILL);
2699 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2700 &sighand->action[SIGKILL - 1]);
2701 recalc_sigpending();
2702 goto fatal;
2703 }
2704
2705 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2706 do_signal_stop(0))
2707 goto relock;
2708
2709 if (unlikely(current->jobctl &
2710 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2711 if (current->jobctl & JOBCTL_TRAP_MASK) {
2712 do_jobctl_trap();
2713 spin_unlock_irq(&sighand->siglock);
2714 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2715 do_freezer_trap();
2716
2717 goto relock;
2718 }
2719
2720 /*
2721 * If the task is leaving the frozen state, let's update
2722 * cgroup counters and reset the frozen bit.
2723 */
2724 if (unlikely(cgroup_task_frozen(current))) {
2725 spin_unlock_irq(&sighand->siglock);
2726 cgroup_leave_frozen(false);
2727 goto relock;
2728 }
2729
2730 /*
2731 * Signals generated by the execution of an instruction
2732 * need to be delivered before any other pending signals
2733 * so that the instruction pointer in the signal stack
2734 * frame points to the faulting instruction.
2735 */
2736 type = PIDTYPE_PID;
2737 signr = dequeue_synchronous_signal(&ksig->info);
2738 if (!signr)
2739 signr = dequeue_signal(current, ¤t->blocked,
2740 &ksig->info, &type);
2741
2742 if (!signr)
2743 break; /* will return 0 */
2744
2745 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2746 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2747 signr = ptrace_signal(signr, &ksig->info, type);
2748 if (!signr)
2749 continue;
2750 }
2751
2752 ka = &sighand->action[signr-1];
2753
2754 /* Trace actually delivered signals. */
2755 trace_signal_deliver(signr, &ksig->info, ka);
2756
2757 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2758 continue;
2759 if (ka->sa.sa_handler != SIG_DFL) {
2760 /* Run the handler. */
2761 ksig->ka = *ka;
2762
2763 if (ka->sa.sa_flags & SA_ONESHOT)
2764 ka->sa.sa_handler = SIG_DFL;
2765
2766 break; /* will return non-zero "signr" value */
2767 }
2768
2769 /*
2770 * Now we are doing the default action for this signal.
2771 */
2772 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2773 continue;
2774
2775 /*
2776 * Global init gets no signals it doesn't want.
2777 * Container-init gets no signals it doesn't want from same
2778 * container.
2779 *
2780 * Note that if global/container-init sees a sig_kernel_only()
2781 * signal here, the signal must have been generated internally
2782 * or must have come from an ancestor namespace. In either
2783 * case, the signal cannot be dropped.
2784 */
2785 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2786 !sig_kernel_only(signr))
2787 continue;
2788
2789 if (sig_kernel_stop(signr)) {
2790 /*
2791 * The default action is to stop all threads in
2792 * the thread group. The job control signals
2793 * do nothing in an orphaned pgrp, but SIGSTOP
2794 * always works. Note that siglock needs to be
2795 * dropped during the call to is_orphaned_pgrp()
2796 * because of lock ordering with tasklist_lock.
2797 * This allows an intervening SIGCONT to be posted.
2798 * We need to check for that and bail out if necessary.
2799 */
2800 if (signr != SIGSTOP) {
2801 spin_unlock_irq(&sighand->siglock);
2802
2803 /* signals can be posted during this window */
2804
2805 if (is_current_pgrp_orphaned())
2806 goto relock;
2807
2808 spin_lock_irq(&sighand->siglock);
2809 }
2810
2811 if (likely(do_signal_stop(ksig->info.si_signo))) {
2812 /* It released the siglock. */
2813 goto relock;
2814 }
2815
2816 /*
2817 * We didn't actually stop, due to a race
2818 * with SIGCONT or something like that.
2819 */
2820 continue;
2821 }
2822
2823 fatal:
2824 spin_unlock_irq(&sighand->siglock);
2825 if (unlikely(cgroup_task_frozen(current)))
2826 cgroup_leave_frozen(true);
2827
2828 /*
2829 * Anything else is fatal, maybe with a core dump.
2830 */
2831 current->flags |= PF_SIGNALED;
2832
2833 if (sig_kernel_coredump(signr)) {
2834 if (print_fatal_signals)
2835 print_fatal_signal(ksig->info.si_signo);
2836 proc_coredump_connector(current);
2837 /*
2838 * If it was able to dump core, this kills all
2839 * other threads in the group and synchronizes with
2840 * their demise. If we lost the race with another
2841 * thread getting here, it set group_exit_code
2842 * first and our do_group_exit call below will use
2843 * that value and ignore the one we pass it.
2844 */
2845 do_coredump(&ksig->info);
2846 }
2847
2848 /*
2849 * PF_IO_WORKER threads will catch and exit on fatal signals
2850 * themselves. They have cleanup that must be performed, so
2851 * we cannot call do_exit() on their behalf.
2852 */
2853 if (current->flags & PF_IO_WORKER)
2854 goto out;
2855
2856 /*
2857 * Death signals, no core dump.
2858 */
2859 do_group_exit(ksig->info.si_signo);
2860 /* NOTREACHED */
2861 }
2862 spin_unlock_irq(&sighand->siglock);
2863out:
2864 ksig->sig = signr;
2865
2866 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2867 hide_si_addr_tag_bits(ksig);
2868
2869 return ksig->sig > 0;
2870}
2871
2872/**
2873 * signal_delivered - called after signal delivery to update blocked signals
2874 * @ksig: kernel signal struct
2875 * @stepping: nonzero if debugger single-step or block-step in use
2876 *
2877 * This function should be called when a signal has successfully been
2878 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2879 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2880 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2881 */
2882static void signal_delivered(struct ksignal *ksig, int stepping)
2883{
2884 sigset_t blocked;
2885
2886 /* A signal was successfully delivered, and the
2887 saved sigmask was stored on the signal frame,
2888 and will be restored by sigreturn. So we can
2889 simply clear the restore sigmask flag. */
2890 clear_restore_sigmask();
2891
2892 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2893 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2894 sigaddset(&blocked, ksig->sig);
2895 set_current_blocked(&blocked);
2896 if (current->sas_ss_flags & SS_AUTODISARM)
2897 sas_ss_reset(current);
2898 if (stepping)
2899 ptrace_notify(SIGTRAP, 0);
2900}
2901
2902void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2903{
2904 if (failed)
2905 force_sigsegv(ksig->sig);
2906 else
2907 signal_delivered(ksig, stepping);
2908}
2909
2910/*
2911 * It could be that complete_signal() picked us to notify about the
2912 * group-wide signal. Other threads should be notified now to take
2913 * the shared signals in @which since we will not.
2914 */
2915static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2916{
2917 sigset_t retarget;
2918 struct task_struct *t;
2919
2920 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2921 if (sigisemptyset(&retarget))
2922 return;
2923
2924 t = tsk;
2925 while_each_thread(tsk, t) {
2926 if (t->flags & PF_EXITING)
2927 continue;
2928
2929 if (!has_pending_signals(&retarget, &t->blocked))
2930 continue;
2931 /* Remove the signals this thread can handle. */
2932 sigandsets(&retarget, &retarget, &t->blocked);
2933
2934 if (!task_sigpending(t))
2935 signal_wake_up(t, 0);
2936
2937 if (sigisemptyset(&retarget))
2938 break;
2939 }
2940}
2941
2942void exit_signals(struct task_struct *tsk)
2943{
2944 int group_stop = 0;
2945 sigset_t unblocked;
2946
2947 /*
2948 * @tsk is about to have PF_EXITING set - lock out users which
2949 * expect stable threadgroup.
2950 */
2951 cgroup_threadgroup_change_begin(tsk);
2952
2953 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2954 tsk->flags |= PF_EXITING;
2955 cgroup_threadgroup_change_end(tsk);
2956 return;
2957 }
2958
2959 spin_lock_irq(&tsk->sighand->siglock);
2960 /*
2961 * From now this task is not visible for group-wide signals,
2962 * see wants_signal(), do_signal_stop().
2963 */
2964 tsk->flags |= PF_EXITING;
2965
2966 cgroup_threadgroup_change_end(tsk);
2967
2968 if (!task_sigpending(tsk))
2969 goto out;
2970
2971 unblocked = tsk->blocked;
2972 signotset(&unblocked);
2973 retarget_shared_pending(tsk, &unblocked);
2974
2975 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2976 task_participate_group_stop(tsk))
2977 group_stop = CLD_STOPPED;
2978out:
2979 spin_unlock_irq(&tsk->sighand->siglock);
2980
2981 /*
2982 * If group stop has completed, deliver the notification. This
2983 * should always go to the real parent of the group leader.
2984 */
2985 if (unlikely(group_stop)) {
2986 read_lock(&tasklist_lock);
2987 do_notify_parent_cldstop(tsk, false, group_stop);
2988 read_unlock(&tasklist_lock);
2989 }
2990}
2991
2992/*
2993 * System call entry points.
2994 */
2995
2996/**
2997 * sys_restart_syscall - restart a system call
2998 */
2999SYSCALL_DEFINE0(restart_syscall)
3000{
3001 struct restart_block *restart = ¤t->restart_block;
3002 return restart->fn(restart);
3003}
3004
3005long do_no_restart_syscall(struct restart_block *param)
3006{
3007 return -EINTR;
3008}
3009
3010static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3011{
3012 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3013 sigset_t newblocked;
3014 /* A set of now blocked but previously unblocked signals. */
3015 sigandnsets(&newblocked, newset, ¤t->blocked);
3016 retarget_shared_pending(tsk, &newblocked);
3017 }
3018 tsk->blocked = *newset;
3019 recalc_sigpending();
3020}
3021
3022/**
3023 * set_current_blocked - change current->blocked mask
3024 * @newset: new mask
3025 *
3026 * It is wrong to change ->blocked directly, this helper should be used
3027 * to ensure the process can't miss a shared signal we are going to block.
3028 */
3029void set_current_blocked(sigset_t *newset)
3030{
3031 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3032 __set_current_blocked(newset);
3033}
3034
3035void __set_current_blocked(const sigset_t *newset)
3036{
3037 struct task_struct *tsk = current;
3038
3039 /*
3040 * In case the signal mask hasn't changed, there is nothing we need
3041 * to do. The current->blocked shouldn't be modified by other task.
3042 */
3043 if (sigequalsets(&tsk->blocked, newset))
3044 return;
3045
3046 spin_lock_irq(&tsk->sighand->siglock);
3047 __set_task_blocked(tsk, newset);
3048 spin_unlock_irq(&tsk->sighand->siglock);
3049}
3050
3051/*
3052 * This is also useful for kernel threads that want to temporarily
3053 * (or permanently) block certain signals.
3054 *
3055 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3056 * interface happily blocks "unblockable" signals like SIGKILL
3057 * and friends.
3058 */
3059int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3060{
3061 struct task_struct *tsk = current;
3062 sigset_t newset;
3063
3064 /* Lockless, only current can change ->blocked, never from irq */
3065 if (oldset)
3066 *oldset = tsk->blocked;
3067
3068 switch (how) {
3069 case SIG_BLOCK:
3070 sigorsets(&newset, &tsk->blocked, set);
3071 break;
3072 case SIG_UNBLOCK:
3073 sigandnsets(&newset, &tsk->blocked, set);
3074 break;
3075 case SIG_SETMASK:
3076 newset = *set;
3077 break;
3078 default:
3079 return -EINVAL;
3080 }
3081
3082 __set_current_blocked(&newset);
3083 return 0;
3084}
3085EXPORT_SYMBOL(sigprocmask);
3086
3087/*
3088 * The api helps set app-provided sigmasks.
3089 *
3090 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3091 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3092 *
3093 * Note that it does set_restore_sigmask() in advance, so it must be always
3094 * paired with restore_saved_sigmask_unless() before return from syscall.
3095 */
3096int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3097{
3098 sigset_t kmask;
3099
3100 if (!umask)
3101 return 0;
3102 if (sigsetsize != sizeof(sigset_t))
3103 return -EINVAL;
3104 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3105 return -EFAULT;
3106
3107 set_restore_sigmask();
3108 current->saved_sigmask = current->blocked;
3109 set_current_blocked(&kmask);
3110
3111 return 0;
3112}
3113
3114#ifdef CONFIG_COMPAT
3115int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3116 size_t sigsetsize)
3117{
3118 sigset_t kmask;
3119
3120 if (!umask)
3121 return 0;
3122 if (sigsetsize != sizeof(compat_sigset_t))
3123 return -EINVAL;
3124 if (get_compat_sigset(&kmask, umask))
3125 return -EFAULT;
3126
3127 set_restore_sigmask();
3128 current->saved_sigmask = current->blocked;
3129 set_current_blocked(&kmask);
3130
3131 return 0;
3132}
3133#endif
3134
3135/**
3136 * sys_rt_sigprocmask - change the list of currently blocked signals
3137 * @how: whether to add, remove, or set signals
3138 * @nset: stores pending signals
3139 * @oset: previous value of signal mask if non-null
3140 * @sigsetsize: size of sigset_t type
3141 */
3142SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3143 sigset_t __user *, oset, size_t, sigsetsize)
3144{
3145 sigset_t old_set, new_set;
3146 int error;
3147
3148 /* XXX: Don't preclude handling different sized sigset_t's. */
3149 if (sigsetsize != sizeof(sigset_t))
3150 return -EINVAL;
3151
3152 old_set = current->blocked;
3153
3154 if (nset) {
3155 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3156 return -EFAULT;
3157 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3158
3159 error = sigprocmask(how, &new_set, NULL);
3160 if (error)
3161 return error;
3162 }
3163
3164 if (oset) {
3165 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3166 return -EFAULT;
3167 }
3168
3169 return 0;
3170}
3171
3172#ifdef CONFIG_COMPAT
3173COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3174 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3175{
3176 sigset_t old_set = current->blocked;
3177
3178 /* XXX: Don't preclude handling different sized sigset_t's. */
3179 if (sigsetsize != sizeof(sigset_t))
3180 return -EINVAL;
3181
3182 if (nset) {
3183 sigset_t new_set;
3184 int error;
3185 if (get_compat_sigset(&new_set, nset))
3186 return -EFAULT;
3187 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3188
3189 error = sigprocmask(how, &new_set, NULL);
3190 if (error)
3191 return error;
3192 }
3193 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3194}
3195#endif
3196
3197static void do_sigpending(sigset_t *set)
3198{
3199 spin_lock_irq(¤t->sighand->siglock);
3200 sigorsets(set, ¤t->pending.signal,
3201 ¤t->signal->shared_pending.signal);
3202 spin_unlock_irq(¤t->sighand->siglock);
3203
3204 /* Outside the lock because only this thread touches it. */
3205 sigandsets(set, ¤t->blocked, set);
3206}
3207
3208/**
3209 * sys_rt_sigpending - examine a pending signal that has been raised
3210 * while blocked
3211 * @uset: stores pending signals
3212 * @sigsetsize: size of sigset_t type or larger
3213 */
3214SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3215{
3216 sigset_t set;
3217
3218 if (sigsetsize > sizeof(*uset))
3219 return -EINVAL;
3220
3221 do_sigpending(&set);
3222
3223 if (copy_to_user(uset, &set, sigsetsize))
3224 return -EFAULT;
3225
3226 return 0;
3227}
3228
3229#ifdef CONFIG_COMPAT
3230COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3231 compat_size_t, sigsetsize)
3232{
3233 sigset_t set;
3234
3235 if (sigsetsize > sizeof(*uset))
3236 return -EINVAL;
3237
3238 do_sigpending(&set);
3239
3240 return put_compat_sigset(uset, &set, sigsetsize);
3241}
3242#endif
3243
3244static const struct {
3245 unsigned char limit, layout;
3246} sig_sicodes[] = {
3247 [SIGILL] = { NSIGILL, SIL_FAULT },
3248 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3249 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3250 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3251 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3252#if defined(SIGEMT)
3253 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3254#endif
3255 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3256 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3257 [SIGSYS] = { NSIGSYS, SIL_SYS },
3258};
3259
3260static bool known_siginfo_layout(unsigned sig, int si_code)
3261{
3262 if (si_code == SI_KERNEL)
3263 return true;
3264 else if ((si_code > SI_USER)) {
3265 if (sig_specific_sicodes(sig)) {
3266 if (si_code <= sig_sicodes[sig].limit)
3267 return true;
3268 }
3269 else if (si_code <= NSIGPOLL)
3270 return true;
3271 }
3272 else if (si_code >= SI_DETHREAD)
3273 return true;
3274 else if (si_code == SI_ASYNCNL)
3275 return true;
3276 return false;
3277}
3278
3279enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3280{
3281 enum siginfo_layout layout = SIL_KILL;
3282 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3283 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3284 (si_code <= sig_sicodes[sig].limit)) {
3285 layout = sig_sicodes[sig].layout;
3286 /* Handle the exceptions */
3287 if ((sig == SIGBUS) &&
3288 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3289 layout = SIL_FAULT_MCEERR;
3290 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3291 layout = SIL_FAULT_BNDERR;
3292#ifdef SEGV_PKUERR
3293 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3294 layout = SIL_FAULT_PKUERR;
3295#endif
3296 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3297 layout = SIL_FAULT_PERF_EVENT;
3298 else if (IS_ENABLED(CONFIG_SPARC) &&
3299 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3300 layout = SIL_FAULT_TRAPNO;
3301 else if (IS_ENABLED(CONFIG_ALPHA) &&
3302 ((sig == SIGFPE) ||
3303 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3304 layout = SIL_FAULT_TRAPNO;
3305 }
3306 else if (si_code <= NSIGPOLL)
3307 layout = SIL_POLL;
3308 } else {
3309 if (si_code == SI_TIMER)
3310 layout = SIL_TIMER;
3311 else if (si_code == SI_SIGIO)
3312 layout = SIL_POLL;
3313 else if (si_code < 0)
3314 layout = SIL_RT;
3315 }
3316 return layout;
3317}
3318
3319static inline char __user *si_expansion(const siginfo_t __user *info)
3320{
3321 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3322}
3323
3324int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3325{
3326 char __user *expansion = si_expansion(to);
3327 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3328 return -EFAULT;
3329 if (clear_user(expansion, SI_EXPANSION_SIZE))
3330 return -EFAULT;
3331 return 0;
3332}
3333
3334static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3335 const siginfo_t __user *from)
3336{
3337 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3338 char __user *expansion = si_expansion(from);
3339 char buf[SI_EXPANSION_SIZE];
3340 int i;
3341 /*
3342 * An unknown si_code might need more than
3343 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3344 * extra bytes are 0. This guarantees copy_siginfo_to_user
3345 * will return this data to userspace exactly.
3346 */
3347 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3348 return -EFAULT;
3349 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3350 if (buf[i] != 0)
3351 return -E2BIG;
3352 }
3353 }
3354 return 0;
3355}
3356
3357static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3358 const siginfo_t __user *from)
3359{
3360 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3361 return -EFAULT;
3362 to->si_signo = signo;
3363 return post_copy_siginfo_from_user(to, from);
3364}
3365
3366int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3367{
3368 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3369 return -EFAULT;
3370 return post_copy_siginfo_from_user(to, from);
3371}
3372
3373#ifdef CONFIG_COMPAT
3374/**
3375 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3376 * @to: compat siginfo destination
3377 * @from: kernel siginfo source
3378 *
3379 * Note: This function does not work properly for the SIGCHLD on x32, but
3380 * fortunately it doesn't have to. The only valid callers for this function are
3381 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3382 * The latter does not care because SIGCHLD will never cause a coredump.
3383 */
3384void copy_siginfo_to_external32(struct compat_siginfo *to,
3385 const struct kernel_siginfo *from)
3386{
3387 memset(to, 0, sizeof(*to));
3388
3389 to->si_signo = from->si_signo;
3390 to->si_errno = from->si_errno;
3391 to->si_code = from->si_code;
3392 switch(siginfo_layout(from->si_signo, from->si_code)) {
3393 case SIL_KILL:
3394 to->si_pid = from->si_pid;
3395 to->si_uid = from->si_uid;
3396 break;
3397 case SIL_TIMER:
3398 to->si_tid = from->si_tid;
3399 to->si_overrun = from->si_overrun;
3400 to->si_int = from->si_int;
3401 break;
3402 case SIL_POLL:
3403 to->si_band = from->si_band;
3404 to->si_fd = from->si_fd;
3405 break;
3406 case SIL_FAULT:
3407 to->si_addr = ptr_to_compat(from->si_addr);
3408 break;
3409 case SIL_FAULT_TRAPNO:
3410 to->si_addr = ptr_to_compat(from->si_addr);
3411 to->si_trapno = from->si_trapno;
3412 break;
3413 case SIL_FAULT_MCEERR:
3414 to->si_addr = ptr_to_compat(from->si_addr);
3415 to->si_addr_lsb = from->si_addr_lsb;
3416 break;
3417 case SIL_FAULT_BNDERR:
3418 to->si_addr = ptr_to_compat(from->si_addr);
3419 to->si_lower = ptr_to_compat(from->si_lower);
3420 to->si_upper = ptr_to_compat(from->si_upper);
3421 break;
3422 case SIL_FAULT_PKUERR:
3423 to->si_addr = ptr_to_compat(from->si_addr);
3424 to->si_pkey = from->si_pkey;
3425 break;
3426 case SIL_FAULT_PERF_EVENT:
3427 to->si_addr = ptr_to_compat(from->si_addr);
3428 to->si_perf_data = from->si_perf_data;
3429 to->si_perf_type = from->si_perf_type;
3430 to->si_perf_flags = from->si_perf_flags;
3431 break;
3432 case SIL_CHLD:
3433 to->si_pid = from->si_pid;
3434 to->si_uid = from->si_uid;
3435 to->si_status = from->si_status;
3436 to->si_utime = from->si_utime;
3437 to->si_stime = from->si_stime;
3438 break;
3439 case SIL_RT:
3440 to->si_pid = from->si_pid;
3441 to->si_uid = from->si_uid;
3442 to->si_int = from->si_int;
3443 break;
3444 case SIL_SYS:
3445 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3446 to->si_syscall = from->si_syscall;
3447 to->si_arch = from->si_arch;
3448 break;
3449 }
3450}
3451
3452int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3453 const struct kernel_siginfo *from)
3454{
3455 struct compat_siginfo new;
3456
3457 copy_siginfo_to_external32(&new, from);
3458 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3459 return -EFAULT;
3460 return 0;
3461}
3462
3463static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3464 const struct compat_siginfo *from)
3465{
3466 clear_siginfo(to);
3467 to->si_signo = from->si_signo;
3468 to->si_errno = from->si_errno;
3469 to->si_code = from->si_code;
3470 switch(siginfo_layout(from->si_signo, from->si_code)) {
3471 case SIL_KILL:
3472 to->si_pid = from->si_pid;
3473 to->si_uid = from->si_uid;
3474 break;
3475 case SIL_TIMER:
3476 to->si_tid = from->si_tid;
3477 to->si_overrun = from->si_overrun;
3478 to->si_int = from->si_int;
3479 break;
3480 case SIL_POLL:
3481 to->si_band = from->si_band;
3482 to->si_fd = from->si_fd;
3483 break;
3484 case SIL_FAULT:
3485 to->si_addr = compat_ptr(from->si_addr);
3486 break;
3487 case SIL_FAULT_TRAPNO:
3488 to->si_addr = compat_ptr(from->si_addr);
3489 to->si_trapno = from->si_trapno;
3490 break;
3491 case SIL_FAULT_MCEERR:
3492 to->si_addr = compat_ptr(from->si_addr);
3493 to->si_addr_lsb = from->si_addr_lsb;
3494 break;
3495 case SIL_FAULT_BNDERR:
3496 to->si_addr = compat_ptr(from->si_addr);
3497 to->si_lower = compat_ptr(from->si_lower);
3498 to->si_upper = compat_ptr(from->si_upper);
3499 break;
3500 case SIL_FAULT_PKUERR:
3501 to->si_addr = compat_ptr(from->si_addr);
3502 to->si_pkey = from->si_pkey;
3503 break;
3504 case SIL_FAULT_PERF_EVENT:
3505 to->si_addr = compat_ptr(from->si_addr);
3506 to->si_perf_data = from->si_perf_data;
3507 to->si_perf_type = from->si_perf_type;
3508 to->si_perf_flags = from->si_perf_flags;
3509 break;
3510 case SIL_CHLD:
3511 to->si_pid = from->si_pid;
3512 to->si_uid = from->si_uid;
3513 to->si_status = from->si_status;
3514#ifdef CONFIG_X86_X32_ABI
3515 if (in_x32_syscall()) {
3516 to->si_utime = from->_sifields._sigchld_x32._utime;
3517 to->si_stime = from->_sifields._sigchld_x32._stime;
3518 } else
3519#endif
3520 {
3521 to->si_utime = from->si_utime;
3522 to->si_stime = from->si_stime;
3523 }
3524 break;
3525 case SIL_RT:
3526 to->si_pid = from->si_pid;
3527 to->si_uid = from->si_uid;
3528 to->si_int = from->si_int;
3529 break;
3530 case SIL_SYS:
3531 to->si_call_addr = compat_ptr(from->si_call_addr);
3532 to->si_syscall = from->si_syscall;
3533 to->si_arch = from->si_arch;
3534 break;
3535 }
3536 return 0;
3537}
3538
3539static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3540 const struct compat_siginfo __user *ufrom)
3541{
3542 struct compat_siginfo from;
3543
3544 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3545 return -EFAULT;
3546
3547 from.si_signo = signo;
3548 return post_copy_siginfo_from_user32(to, &from);
3549}
3550
3551int copy_siginfo_from_user32(struct kernel_siginfo *to,
3552 const struct compat_siginfo __user *ufrom)
3553{
3554 struct compat_siginfo from;
3555
3556 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3557 return -EFAULT;
3558
3559 return post_copy_siginfo_from_user32(to, &from);
3560}
3561#endif /* CONFIG_COMPAT */
3562
3563/**
3564 * do_sigtimedwait - wait for queued signals specified in @which
3565 * @which: queued signals to wait for
3566 * @info: if non-null, the signal's siginfo is returned here
3567 * @ts: upper bound on process time suspension
3568 */
3569static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3570 const struct timespec64 *ts)
3571{
3572 ktime_t *to = NULL, timeout = KTIME_MAX;
3573 struct task_struct *tsk = current;
3574 sigset_t mask = *which;
3575 enum pid_type type;
3576 int sig, ret = 0;
3577
3578 if (ts) {
3579 if (!timespec64_valid(ts))
3580 return -EINVAL;
3581 timeout = timespec64_to_ktime(*ts);
3582 to = &timeout;
3583 }
3584
3585 /*
3586 * Invert the set of allowed signals to get those we want to block.
3587 */
3588 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3589 signotset(&mask);
3590
3591 spin_lock_irq(&tsk->sighand->siglock);
3592 sig = dequeue_signal(tsk, &mask, info, &type);
3593 if (!sig && timeout) {
3594 /*
3595 * None ready, temporarily unblock those we're interested
3596 * while we are sleeping in so that we'll be awakened when
3597 * they arrive. Unblocking is always fine, we can avoid
3598 * set_current_blocked().
3599 */
3600 tsk->real_blocked = tsk->blocked;
3601 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3602 recalc_sigpending();
3603 spin_unlock_irq(&tsk->sighand->siglock);
3604
3605 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3606 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3607 HRTIMER_MODE_REL);
3608 spin_lock_irq(&tsk->sighand->siglock);
3609 __set_task_blocked(tsk, &tsk->real_blocked);
3610 sigemptyset(&tsk->real_blocked);
3611 sig = dequeue_signal(tsk, &mask, info, &type);
3612 }
3613 spin_unlock_irq(&tsk->sighand->siglock);
3614
3615 if (sig)
3616 return sig;
3617 return ret ? -EINTR : -EAGAIN;
3618}
3619
3620/**
3621 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3622 * in @uthese
3623 * @uthese: queued signals to wait for
3624 * @uinfo: if non-null, the signal's siginfo is returned here
3625 * @uts: upper bound on process time suspension
3626 * @sigsetsize: size of sigset_t type
3627 */
3628SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3629 siginfo_t __user *, uinfo,
3630 const struct __kernel_timespec __user *, uts,
3631 size_t, sigsetsize)
3632{
3633 sigset_t these;
3634 struct timespec64 ts;
3635 kernel_siginfo_t info;
3636 int ret;
3637
3638 /* XXX: Don't preclude handling different sized sigset_t's. */
3639 if (sigsetsize != sizeof(sigset_t))
3640 return -EINVAL;
3641
3642 if (copy_from_user(&these, uthese, sizeof(these)))
3643 return -EFAULT;
3644
3645 if (uts) {
3646 if (get_timespec64(&ts, uts))
3647 return -EFAULT;
3648 }
3649
3650 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3651
3652 if (ret > 0 && uinfo) {
3653 if (copy_siginfo_to_user(uinfo, &info))
3654 ret = -EFAULT;
3655 }
3656
3657 return ret;
3658}
3659
3660#ifdef CONFIG_COMPAT_32BIT_TIME
3661SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3662 siginfo_t __user *, uinfo,
3663 const struct old_timespec32 __user *, uts,
3664 size_t, sigsetsize)
3665{
3666 sigset_t these;
3667 struct timespec64 ts;
3668 kernel_siginfo_t info;
3669 int ret;
3670
3671 if (sigsetsize != sizeof(sigset_t))
3672 return -EINVAL;
3673
3674 if (copy_from_user(&these, uthese, sizeof(these)))
3675 return -EFAULT;
3676
3677 if (uts) {
3678 if (get_old_timespec32(&ts, uts))
3679 return -EFAULT;
3680 }
3681
3682 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3683
3684 if (ret > 0 && uinfo) {
3685 if (copy_siginfo_to_user(uinfo, &info))
3686 ret = -EFAULT;
3687 }
3688
3689 return ret;
3690}
3691#endif
3692
3693#ifdef CONFIG_COMPAT
3694COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3695 struct compat_siginfo __user *, uinfo,
3696 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3697{
3698 sigset_t s;
3699 struct timespec64 t;
3700 kernel_siginfo_t info;
3701 long ret;
3702
3703 if (sigsetsize != sizeof(sigset_t))
3704 return -EINVAL;
3705
3706 if (get_compat_sigset(&s, uthese))
3707 return -EFAULT;
3708
3709 if (uts) {
3710 if (get_timespec64(&t, uts))
3711 return -EFAULT;
3712 }
3713
3714 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3715
3716 if (ret > 0 && uinfo) {
3717 if (copy_siginfo_to_user32(uinfo, &info))
3718 ret = -EFAULT;
3719 }
3720
3721 return ret;
3722}
3723
3724#ifdef CONFIG_COMPAT_32BIT_TIME
3725COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3726 struct compat_siginfo __user *, uinfo,
3727 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3728{
3729 sigset_t s;
3730 struct timespec64 t;
3731 kernel_siginfo_t info;
3732 long ret;
3733
3734 if (sigsetsize != sizeof(sigset_t))
3735 return -EINVAL;
3736
3737 if (get_compat_sigset(&s, uthese))
3738 return -EFAULT;
3739
3740 if (uts) {
3741 if (get_old_timespec32(&t, uts))
3742 return -EFAULT;
3743 }
3744
3745 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3746
3747 if (ret > 0 && uinfo) {
3748 if (copy_siginfo_to_user32(uinfo, &info))
3749 ret = -EFAULT;
3750 }
3751
3752 return ret;
3753}
3754#endif
3755#endif
3756
3757static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3758{
3759 clear_siginfo(info);
3760 info->si_signo = sig;
3761 info->si_errno = 0;
3762 info->si_code = SI_USER;
3763 info->si_pid = task_tgid_vnr(current);
3764 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3765}
3766
3767/**
3768 * sys_kill - send a signal to a process
3769 * @pid: the PID of the process
3770 * @sig: signal to be sent
3771 */
3772SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3773{
3774 struct kernel_siginfo info;
3775
3776 prepare_kill_siginfo(sig, &info);
3777
3778 return kill_something_info(sig, &info, pid);
3779}
3780
3781/*
3782 * Verify that the signaler and signalee either are in the same pid namespace
3783 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3784 * namespace.
3785 */
3786static bool access_pidfd_pidns(struct pid *pid)
3787{
3788 struct pid_namespace *active = task_active_pid_ns(current);
3789 struct pid_namespace *p = ns_of_pid(pid);
3790
3791 for (;;) {
3792 if (!p)
3793 return false;
3794 if (p == active)
3795 break;
3796 p = p->parent;
3797 }
3798
3799 return true;
3800}
3801
3802static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3803 siginfo_t __user *info)
3804{
3805#ifdef CONFIG_COMPAT
3806 /*
3807 * Avoid hooking up compat syscalls and instead handle necessary
3808 * conversions here. Note, this is a stop-gap measure and should not be
3809 * considered a generic solution.
3810 */
3811 if (in_compat_syscall())
3812 return copy_siginfo_from_user32(
3813 kinfo, (struct compat_siginfo __user *)info);
3814#endif
3815 return copy_siginfo_from_user(kinfo, info);
3816}
3817
3818static struct pid *pidfd_to_pid(const struct file *file)
3819{
3820 struct pid *pid;
3821
3822 pid = pidfd_pid(file);
3823 if (!IS_ERR(pid))
3824 return pid;
3825
3826 return tgid_pidfd_to_pid(file);
3827}
3828
3829/**
3830 * sys_pidfd_send_signal - Signal a process through a pidfd
3831 * @pidfd: file descriptor of the process
3832 * @sig: signal to send
3833 * @info: signal info
3834 * @flags: future flags
3835 *
3836 * The syscall currently only signals via PIDTYPE_PID which covers
3837 * kill(<positive-pid>, <signal>. It does not signal threads or process
3838 * groups.
3839 * In order to extend the syscall to threads and process groups the @flags
3840 * argument should be used. In essence, the @flags argument will determine
3841 * what is signaled and not the file descriptor itself. Put in other words,
3842 * grouping is a property of the flags argument not a property of the file
3843 * descriptor.
3844 *
3845 * Return: 0 on success, negative errno on failure
3846 */
3847SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3848 siginfo_t __user *, info, unsigned int, flags)
3849{
3850 int ret;
3851 struct fd f;
3852 struct pid *pid;
3853 kernel_siginfo_t kinfo;
3854
3855 /* Enforce flags be set to 0 until we add an extension. */
3856 if (flags)
3857 return -EINVAL;
3858
3859 f = fdget(pidfd);
3860 if (!f.file)
3861 return -EBADF;
3862
3863 /* Is this a pidfd? */
3864 pid = pidfd_to_pid(f.file);
3865 if (IS_ERR(pid)) {
3866 ret = PTR_ERR(pid);
3867 goto err;
3868 }
3869
3870 ret = -EINVAL;
3871 if (!access_pidfd_pidns(pid))
3872 goto err;
3873
3874 if (info) {
3875 ret = copy_siginfo_from_user_any(&kinfo, info);
3876 if (unlikely(ret))
3877 goto err;
3878
3879 ret = -EINVAL;
3880 if (unlikely(sig != kinfo.si_signo))
3881 goto err;
3882
3883 /* Only allow sending arbitrary signals to yourself. */
3884 ret = -EPERM;
3885 if ((task_pid(current) != pid) &&
3886 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3887 goto err;
3888 } else {
3889 prepare_kill_siginfo(sig, &kinfo);
3890 }
3891
3892 ret = kill_pid_info(sig, &kinfo, pid);
3893
3894err:
3895 fdput(f);
3896 return ret;
3897}
3898
3899static int
3900do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3901{
3902 struct task_struct *p;
3903 int error = -ESRCH;
3904
3905 rcu_read_lock();
3906 p = find_task_by_vpid(pid);
3907 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3908 error = check_kill_permission(sig, info, p);
3909 /*
3910 * The null signal is a permissions and process existence
3911 * probe. No signal is actually delivered.
3912 */
3913 if (!error && sig) {
3914 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3915 /*
3916 * If lock_task_sighand() failed we pretend the task
3917 * dies after receiving the signal. The window is tiny,
3918 * and the signal is private anyway.
3919 */
3920 if (unlikely(error == -ESRCH))
3921 error = 0;
3922 }
3923 }
3924 rcu_read_unlock();
3925
3926 return error;
3927}
3928
3929static int do_tkill(pid_t tgid, pid_t pid, int sig)
3930{
3931 struct kernel_siginfo info;
3932
3933 clear_siginfo(&info);
3934 info.si_signo = sig;
3935 info.si_errno = 0;
3936 info.si_code = SI_TKILL;
3937 info.si_pid = task_tgid_vnr(current);
3938 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3939
3940 return do_send_specific(tgid, pid, sig, &info);
3941}
3942
3943/**
3944 * sys_tgkill - send signal to one specific thread
3945 * @tgid: the thread group ID of the thread
3946 * @pid: the PID of the thread
3947 * @sig: signal to be sent
3948 *
3949 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3950 * exists but it's not belonging to the target process anymore. This
3951 * method solves the problem of threads exiting and PIDs getting reused.
3952 */
3953SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3954{
3955 /* This is only valid for single tasks */
3956 if (pid <= 0 || tgid <= 0)
3957 return -EINVAL;
3958
3959 return do_tkill(tgid, pid, sig);
3960}
3961
3962/**
3963 * sys_tkill - send signal to one specific task
3964 * @pid: the PID of the task
3965 * @sig: signal to be sent
3966 *
3967 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3968 */
3969SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3970{
3971 /* This is only valid for single tasks */
3972 if (pid <= 0)
3973 return -EINVAL;
3974
3975 return do_tkill(0, pid, sig);
3976}
3977
3978static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3979{
3980 /* Not even root can pretend to send signals from the kernel.
3981 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3982 */
3983 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3984 (task_pid_vnr(current) != pid))
3985 return -EPERM;
3986
3987 /* POSIX.1b doesn't mention process groups. */
3988 return kill_proc_info(sig, info, pid);
3989}
3990
3991/**
3992 * sys_rt_sigqueueinfo - send signal information to a signal
3993 * @pid: the PID of the thread
3994 * @sig: signal to be sent
3995 * @uinfo: signal info to be sent
3996 */
3997SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3998 siginfo_t __user *, uinfo)
3999{
4000 kernel_siginfo_t info;
4001 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4002 if (unlikely(ret))
4003 return ret;
4004 return do_rt_sigqueueinfo(pid, sig, &info);
4005}
4006
4007#ifdef CONFIG_COMPAT
4008COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4009 compat_pid_t, pid,
4010 int, sig,
4011 struct compat_siginfo __user *, uinfo)
4012{
4013 kernel_siginfo_t info;
4014 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4015 if (unlikely(ret))
4016 return ret;
4017 return do_rt_sigqueueinfo(pid, sig, &info);
4018}
4019#endif
4020
4021static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4022{
4023 /* This is only valid for single tasks */
4024 if (pid <= 0 || tgid <= 0)
4025 return -EINVAL;
4026
4027 /* Not even root can pretend to send signals from the kernel.
4028 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4029 */
4030 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4031 (task_pid_vnr(current) != pid))
4032 return -EPERM;
4033
4034 return do_send_specific(tgid, pid, sig, info);
4035}
4036
4037SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4038 siginfo_t __user *, uinfo)
4039{
4040 kernel_siginfo_t info;
4041 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4042 if (unlikely(ret))
4043 return ret;
4044 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4045}
4046
4047#ifdef CONFIG_COMPAT
4048COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4049 compat_pid_t, tgid,
4050 compat_pid_t, pid,
4051 int, sig,
4052 struct compat_siginfo __user *, uinfo)
4053{
4054 kernel_siginfo_t info;
4055 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4056 if (unlikely(ret))
4057 return ret;
4058 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4059}
4060#endif
4061
4062/*
4063 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4064 */
4065void kernel_sigaction(int sig, __sighandler_t action)
4066{
4067 spin_lock_irq(¤t->sighand->siglock);
4068 current->sighand->action[sig - 1].sa.sa_handler = action;
4069 if (action == SIG_IGN) {
4070 sigset_t mask;
4071
4072 sigemptyset(&mask);
4073 sigaddset(&mask, sig);
4074
4075 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4076 flush_sigqueue_mask(&mask, ¤t->pending);
4077 recalc_sigpending();
4078 }
4079 spin_unlock_irq(¤t->sighand->siglock);
4080}
4081EXPORT_SYMBOL(kernel_sigaction);
4082
4083void __weak sigaction_compat_abi(struct k_sigaction *act,
4084 struct k_sigaction *oact)
4085{
4086}
4087
4088int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4089{
4090 struct task_struct *p = current, *t;
4091 struct k_sigaction *k;
4092 sigset_t mask;
4093
4094 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4095 return -EINVAL;
4096
4097 k = &p->sighand->action[sig-1];
4098
4099 spin_lock_irq(&p->sighand->siglock);
4100 if (k->sa.sa_flags & SA_IMMUTABLE) {
4101 spin_unlock_irq(&p->sighand->siglock);
4102 return -EINVAL;
4103 }
4104 if (oact)
4105 *oact = *k;
4106
4107 /*
4108 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4109 * e.g. by having an architecture use the bit in their uapi.
4110 */
4111 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4112
4113 /*
4114 * Clear unknown flag bits in order to allow userspace to detect missing
4115 * support for flag bits and to allow the kernel to use non-uapi bits
4116 * internally.
4117 */
4118 if (act)
4119 act->sa.sa_flags &= UAPI_SA_FLAGS;
4120 if (oact)
4121 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4122
4123 sigaction_compat_abi(act, oact);
4124
4125 if (act) {
4126 sigdelsetmask(&act->sa.sa_mask,
4127 sigmask(SIGKILL) | sigmask(SIGSTOP));
4128 *k = *act;
4129 /*
4130 * POSIX 3.3.1.3:
4131 * "Setting a signal action to SIG_IGN for a signal that is
4132 * pending shall cause the pending signal to be discarded,
4133 * whether or not it is blocked."
4134 *
4135 * "Setting a signal action to SIG_DFL for a signal that is
4136 * pending and whose default action is to ignore the signal
4137 * (for example, SIGCHLD), shall cause the pending signal to
4138 * be discarded, whether or not it is blocked"
4139 */
4140 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4141 sigemptyset(&mask);
4142 sigaddset(&mask, sig);
4143 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4144 for_each_thread(p, t)
4145 flush_sigqueue_mask(&mask, &t->pending);
4146 }
4147 }
4148
4149 spin_unlock_irq(&p->sighand->siglock);
4150 return 0;
4151}
4152
4153#ifdef CONFIG_DYNAMIC_SIGFRAME
4154static inline void sigaltstack_lock(void)
4155 __acquires(¤t->sighand->siglock)
4156{
4157 spin_lock_irq(¤t->sighand->siglock);
4158}
4159
4160static inline void sigaltstack_unlock(void)
4161 __releases(¤t->sighand->siglock)
4162{
4163 spin_unlock_irq(¤t->sighand->siglock);
4164}
4165#else
4166static inline void sigaltstack_lock(void) { }
4167static inline void sigaltstack_unlock(void) { }
4168#endif
4169
4170static int
4171do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4172 size_t min_ss_size)
4173{
4174 struct task_struct *t = current;
4175 int ret = 0;
4176
4177 if (oss) {
4178 memset(oss, 0, sizeof(stack_t));
4179 oss->ss_sp = (void __user *) t->sas_ss_sp;
4180 oss->ss_size = t->sas_ss_size;
4181 oss->ss_flags = sas_ss_flags(sp) |
4182 (current->sas_ss_flags & SS_FLAG_BITS);
4183 }
4184
4185 if (ss) {
4186 void __user *ss_sp = ss->ss_sp;
4187 size_t ss_size = ss->ss_size;
4188 unsigned ss_flags = ss->ss_flags;
4189 int ss_mode;
4190
4191 if (unlikely(on_sig_stack(sp)))
4192 return -EPERM;
4193
4194 ss_mode = ss_flags & ~SS_FLAG_BITS;
4195 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4196 ss_mode != 0))
4197 return -EINVAL;
4198
4199 /*
4200 * Return before taking any locks if no actual
4201 * sigaltstack changes were requested.
4202 */
4203 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4204 t->sas_ss_size == ss_size &&
4205 t->sas_ss_flags == ss_flags)
4206 return 0;
4207
4208 sigaltstack_lock();
4209 if (ss_mode == SS_DISABLE) {
4210 ss_size = 0;
4211 ss_sp = NULL;
4212 } else {
4213 if (unlikely(ss_size < min_ss_size))
4214 ret = -ENOMEM;
4215 if (!sigaltstack_size_valid(ss_size))
4216 ret = -ENOMEM;
4217 }
4218 if (!ret) {
4219 t->sas_ss_sp = (unsigned long) ss_sp;
4220 t->sas_ss_size = ss_size;
4221 t->sas_ss_flags = ss_flags;
4222 }
4223 sigaltstack_unlock();
4224 }
4225 return ret;
4226}
4227
4228SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4229{
4230 stack_t new, old;
4231 int err;
4232 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4233 return -EFAULT;
4234 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4235 current_user_stack_pointer(),
4236 MINSIGSTKSZ);
4237 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4238 err = -EFAULT;
4239 return err;
4240}
4241
4242int restore_altstack(const stack_t __user *uss)
4243{
4244 stack_t new;
4245 if (copy_from_user(&new, uss, sizeof(stack_t)))
4246 return -EFAULT;
4247 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4248 MINSIGSTKSZ);
4249 /* squash all but EFAULT for now */
4250 return 0;
4251}
4252
4253int __save_altstack(stack_t __user *uss, unsigned long sp)
4254{
4255 struct task_struct *t = current;
4256 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4257 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4258 __put_user(t->sas_ss_size, &uss->ss_size);
4259 return err;
4260}
4261
4262#ifdef CONFIG_COMPAT
4263static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4264 compat_stack_t __user *uoss_ptr)
4265{
4266 stack_t uss, uoss;
4267 int ret;
4268
4269 if (uss_ptr) {
4270 compat_stack_t uss32;
4271 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4272 return -EFAULT;
4273 uss.ss_sp = compat_ptr(uss32.ss_sp);
4274 uss.ss_flags = uss32.ss_flags;
4275 uss.ss_size = uss32.ss_size;
4276 }
4277 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4278 compat_user_stack_pointer(),
4279 COMPAT_MINSIGSTKSZ);
4280 if (ret >= 0 && uoss_ptr) {
4281 compat_stack_t old;
4282 memset(&old, 0, sizeof(old));
4283 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4284 old.ss_flags = uoss.ss_flags;
4285 old.ss_size = uoss.ss_size;
4286 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4287 ret = -EFAULT;
4288 }
4289 return ret;
4290}
4291
4292COMPAT_SYSCALL_DEFINE2(sigaltstack,
4293 const compat_stack_t __user *, uss_ptr,
4294 compat_stack_t __user *, uoss_ptr)
4295{
4296 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4297}
4298
4299int compat_restore_altstack(const compat_stack_t __user *uss)
4300{
4301 int err = do_compat_sigaltstack(uss, NULL);
4302 /* squash all but -EFAULT for now */
4303 return err == -EFAULT ? err : 0;
4304}
4305
4306int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4307{
4308 int err;
4309 struct task_struct *t = current;
4310 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4311 &uss->ss_sp) |
4312 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4313 __put_user(t->sas_ss_size, &uss->ss_size);
4314 return err;
4315}
4316#endif
4317
4318#ifdef __ARCH_WANT_SYS_SIGPENDING
4319
4320/**
4321 * sys_sigpending - examine pending signals
4322 * @uset: where mask of pending signal is returned
4323 */
4324SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4325{
4326 sigset_t set;
4327
4328 if (sizeof(old_sigset_t) > sizeof(*uset))
4329 return -EINVAL;
4330
4331 do_sigpending(&set);
4332
4333 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4334 return -EFAULT;
4335
4336 return 0;
4337}
4338
4339#ifdef CONFIG_COMPAT
4340COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4341{
4342 sigset_t set;
4343
4344 do_sigpending(&set);
4345
4346 return put_user(set.sig[0], set32);
4347}
4348#endif
4349
4350#endif
4351
4352#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4353/**
4354 * sys_sigprocmask - examine and change blocked signals
4355 * @how: whether to add, remove, or set signals
4356 * @nset: signals to add or remove (if non-null)
4357 * @oset: previous value of signal mask if non-null
4358 *
4359 * Some platforms have their own version with special arguments;
4360 * others support only sys_rt_sigprocmask.
4361 */
4362
4363SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4364 old_sigset_t __user *, oset)
4365{
4366 old_sigset_t old_set, new_set;
4367 sigset_t new_blocked;
4368
4369 old_set = current->blocked.sig[0];
4370
4371 if (nset) {
4372 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4373 return -EFAULT;
4374
4375 new_blocked = current->blocked;
4376
4377 switch (how) {
4378 case SIG_BLOCK:
4379 sigaddsetmask(&new_blocked, new_set);
4380 break;
4381 case SIG_UNBLOCK:
4382 sigdelsetmask(&new_blocked, new_set);
4383 break;
4384 case SIG_SETMASK:
4385 new_blocked.sig[0] = new_set;
4386 break;
4387 default:
4388 return -EINVAL;
4389 }
4390
4391 set_current_blocked(&new_blocked);
4392 }
4393
4394 if (oset) {
4395 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4396 return -EFAULT;
4397 }
4398
4399 return 0;
4400}
4401#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4402
4403#ifndef CONFIG_ODD_RT_SIGACTION
4404/**
4405 * sys_rt_sigaction - alter an action taken by a process
4406 * @sig: signal to be sent
4407 * @act: new sigaction
4408 * @oact: used to save the previous sigaction
4409 * @sigsetsize: size of sigset_t type
4410 */
4411SYSCALL_DEFINE4(rt_sigaction, int, sig,
4412 const struct sigaction __user *, act,
4413 struct sigaction __user *, oact,
4414 size_t, sigsetsize)
4415{
4416 struct k_sigaction new_sa, old_sa;
4417 int ret;
4418
4419 /* XXX: Don't preclude handling different sized sigset_t's. */
4420 if (sigsetsize != sizeof(sigset_t))
4421 return -EINVAL;
4422
4423 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4424 return -EFAULT;
4425
4426 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4427 if (ret)
4428 return ret;
4429
4430 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4431 return -EFAULT;
4432
4433 return 0;
4434}
4435#ifdef CONFIG_COMPAT
4436COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4437 const struct compat_sigaction __user *, act,
4438 struct compat_sigaction __user *, oact,
4439 compat_size_t, sigsetsize)
4440{
4441 struct k_sigaction new_ka, old_ka;
4442#ifdef __ARCH_HAS_SA_RESTORER
4443 compat_uptr_t restorer;
4444#endif
4445 int ret;
4446
4447 /* XXX: Don't preclude handling different sized sigset_t's. */
4448 if (sigsetsize != sizeof(compat_sigset_t))
4449 return -EINVAL;
4450
4451 if (act) {
4452 compat_uptr_t handler;
4453 ret = get_user(handler, &act->sa_handler);
4454 new_ka.sa.sa_handler = compat_ptr(handler);
4455#ifdef __ARCH_HAS_SA_RESTORER
4456 ret |= get_user(restorer, &act->sa_restorer);
4457 new_ka.sa.sa_restorer = compat_ptr(restorer);
4458#endif
4459 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4460 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4461 if (ret)
4462 return -EFAULT;
4463 }
4464
4465 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4466 if (!ret && oact) {
4467 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4468 &oact->sa_handler);
4469 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4470 sizeof(oact->sa_mask));
4471 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4472#ifdef __ARCH_HAS_SA_RESTORER
4473 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4474 &oact->sa_restorer);
4475#endif
4476 }
4477 return ret;
4478}
4479#endif
4480#endif /* !CONFIG_ODD_RT_SIGACTION */
4481
4482#ifdef CONFIG_OLD_SIGACTION
4483SYSCALL_DEFINE3(sigaction, int, sig,
4484 const struct old_sigaction __user *, act,
4485 struct old_sigaction __user *, oact)
4486{
4487 struct k_sigaction new_ka, old_ka;
4488 int ret;
4489
4490 if (act) {
4491 old_sigset_t mask;
4492 if (!access_ok(act, sizeof(*act)) ||
4493 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4494 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4495 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4496 __get_user(mask, &act->sa_mask))
4497 return -EFAULT;
4498#ifdef __ARCH_HAS_KA_RESTORER
4499 new_ka.ka_restorer = NULL;
4500#endif
4501 siginitset(&new_ka.sa.sa_mask, mask);
4502 }
4503
4504 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4505
4506 if (!ret && oact) {
4507 if (!access_ok(oact, sizeof(*oact)) ||
4508 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4509 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4510 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4511 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4512 return -EFAULT;
4513 }
4514
4515 return ret;
4516}
4517#endif
4518#ifdef CONFIG_COMPAT_OLD_SIGACTION
4519COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4520 const struct compat_old_sigaction __user *, act,
4521 struct compat_old_sigaction __user *, oact)
4522{
4523 struct k_sigaction new_ka, old_ka;
4524 int ret;
4525 compat_old_sigset_t mask;
4526 compat_uptr_t handler, restorer;
4527
4528 if (act) {
4529 if (!access_ok(act, sizeof(*act)) ||
4530 __get_user(handler, &act->sa_handler) ||
4531 __get_user(restorer, &act->sa_restorer) ||
4532 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4533 __get_user(mask, &act->sa_mask))
4534 return -EFAULT;
4535
4536#ifdef __ARCH_HAS_KA_RESTORER
4537 new_ka.ka_restorer = NULL;
4538#endif
4539 new_ka.sa.sa_handler = compat_ptr(handler);
4540 new_ka.sa.sa_restorer = compat_ptr(restorer);
4541 siginitset(&new_ka.sa.sa_mask, mask);
4542 }
4543
4544 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4545
4546 if (!ret && oact) {
4547 if (!access_ok(oact, sizeof(*oact)) ||
4548 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4549 &oact->sa_handler) ||
4550 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4551 &oact->sa_restorer) ||
4552 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4553 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4554 return -EFAULT;
4555 }
4556 return ret;
4557}
4558#endif
4559
4560#ifdef CONFIG_SGETMASK_SYSCALL
4561
4562/*
4563 * For backwards compatibility. Functionality superseded by sigprocmask.
4564 */
4565SYSCALL_DEFINE0(sgetmask)
4566{
4567 /* SMP safe */
4568 return current->blocked.sig[0];
4569}
4570
4571SYSCALL_DEFINE1(ssetmask, int, newmask)
4572{
4573 int old = current->blocked.sig[0];
4574 sigset_t newset;
4575
4576 siginitset(&newset, newmask);
4577 set_current_blocked(&newset);
4578
4579 return old;
4580}
4581#endif /* CONFIG_SGETMASK_SYSCALL */
4582
4583#ifdef __ARCH_WANT_SYS_SIGNAL
4584/*
4585 * For backwards compatibility. Functionality superseded by sigaction.
4586 */
4587SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4588{
4589 struct k_sigaction new_sa, old_sa;
4590 int ret;
4591
4592 new_sa.sa.sa_handler = handler;
4593 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4594 sigemptyset(&new_sa.sa.sa_mask);
4595
4596 ret = do_sigaction(sig, &new_sa, &old_sa);
4597
4598 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4599}
4600#endif /* __ARCH_WANT_SYS_SIGNAL */
4601
4602#ifdef __ARCH_WANT_SYS_PAUSE
4603
4604SYSCALL_DEFINE0(pause)
4605{
4606 while (!signal_pending(current)) {
4607 __set_current_state(TASK_INTERRUPTIBLE);
4608 schedule();
4609 }
4610 return -ERESTARTNOHAND;
4611}
4612
4613#endif
4614
4615static int sigsuspend(sigset_t *set)
4616{
4617 current->saved_sigmask = current->blocked;
4618 set_current_blocked(set);
4619
4620 while (!signal_pending(current)) {
4621 __set_current_state(TASK_INTERRUPTIBLE);
4622 schedule();
4623 }
4624 set_restore_sigmask();
4625 return -ERESTARTNOHAND;
4626}
4627
4628/**
4629 * sys_rt_sigsuspend - replace the signal mask for a value with the
4630 * @unewset value until a signal is received
4631 * @unewset: new signal mask value
4632 * @sigsetsize: size of sigset_t type
4633 */
4634SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4635{
4636 sigset_t newset;
4637
4638 /* XXX: Don't preclude handling different sized sigset_t's. */
4639 if (sigsetsize != sizeof(sigset_t))
4640 return -EINVAL;
4641
4642 if (copy_from_user(&newset, unewset, sizeof(newset)))
4643 return -EFAULT;
4644 return sigsuspend(&newset);
4645}
4646
4647#ifdef CONFIG_COMPAT
4648COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4649{
4650 sigset_t newset;
4651
4652 /* XXX: Don't preclude handling different sized sigset_t's. */
4653 if (sigsetsize != sizeof(sigset_t))
4654 return -EINVAL;
4655
4656 if (get_compat_sigset(&newset, unewset))
4657 return -EFAULT;
4658 return sigsuspend(&newset);
4659}
4660#endif
4661
4662#ifdef CONFIG_OLD_SIGSUSPEND
4663SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4664{
4665 sigset_t blocked;
4666 siginitset(&blocked, mask);
4667 return sigsuspend(&blocked);
4668}
4669#endif
4670#ifdef CONFIG_OLD_SIGSUSPEND3
4671SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4672{
4673 sigset_t blocked;
4674 siginitset(&blocked, mask);
4675 return sigsuspend(&blocked);
4676}
4677#endif
4678
4679__weak const char *arch_vma_name(struct vm_area_struct *vma)
4680{
4681 return NULL;
4682}
4683
4684static inline void siginfo_buildtime_checks(void)
4685{
4686 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4687
4688 /* Verify the offsets in the two siginfos match */
4689#define CHECK_OFFSET(field) \
4690 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4691
4692 /* kill */
4693 CHECK_OFFSET(si_pid);
4694 CHECK_OFFSET(si_uid);
4695
4696 /* timer */
4697 CHECK_OFFSET(si_tid);
4698 CHECK_OFFSET(si_overrun);
4699 CHECK_OFFSET(si_value);
4700
4701 /* rt */
4702 CHECK_OFFSET(si_pid);
4703 CHECK_OFFSET(si_uid);
4704 CHECK_OFFSET(si_value);
4705
4706 /* sigchld */
4707 CHECK_OFFSET(si_pid);
4708 CHECK_OFFSET(si_uid);
4709 CHECK_OFFSET(si_status);
4710 CHECK_OFFSET(si_utime);
4711 CHECK_OFFSET(si_stime);
4712
4713 /* sigfault */
4714 CHECK_OFFSET(si_addr);
4715 CHECK_OFFSET(si_trapno);
4716 CHECK_OFFSET(si_addr_lsb);
4717 CHECK_OFFSET(si_lower);
4718 CHECK_OFFSET(si_upper);
4719 CHECK_OFFSET(si_pkey);
4720 CHECK_OFFSET(si_perf_data);
4721 CHECK_OFFSET(si_perf_type);
4722 CHECK_OFFSET(si_perf_flags);
4723
4724 /* sigpoll */
4725 CHECK_OFFSET(si_band);
4726 CHECK_OFFSET(si_fd);
4727
4728 /* sigsys */
4729 CHECK_OFFSET(si_call_addr);
4730 CHECK_OFFSET(si_syscall);
4731 CHECK_OFFSET(si_arch);
4732#undef CHECK_OFFSET
4733
4734 /* usb asyncio */
4735 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4736 offsetof(struct siginfo, si_addr));
4737 if (sizeof(int) == sizeof(void __user *)) {
4738 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4739 sizeof(void __user *));
4740 } else {
4741 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4742 sizeof_field(struct siginfo, si_uid)) !=
4743 sizeof(void __user *));
4744 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4745 offsetof(struct siginfo, si_uid));
4746 }
4747#ifdef CONFIG_COMPAT
4748 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4749 offsetof(struct compat_siginfo, si_addr));
4750 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4751 sizeof(compat_uptr_t));
4752 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4753 sizeof_field(struct siginfo, si_pid));
4754#endif
4755}
4756
4757void __init signals_init(void)
4758{
4759 siginfo_buildtime_checks();
4760
4761 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4762}
4763
4764#ifdef CONFIG_KGDB_KDB
4765#include <linux/kdb.h>
4766/*
4767 * kdb_send_sig - Allows kdb to send signals without exposing
4768 * signal internals. This function checks if the required locks are
4769 * available before calling the main signal code, to avoid kdb
4770 * deadlocks.
4771 */
4772void kdb_send_sig(struct task_struct *t, int sig)
4773{
4774 static struct task_struct *kdb_prev_t;
4775 int new_t, ret;
4776 if (!spin_trylock(&t->sighand->siglock)) {
4777 kdb_printf("Can't do kill command now.\n"
4778 "The sigmask lock is held somewhere else in "
4779 "kernel, try again later\n");
4780 return;
4781 }
4782 new_t = kdb_prev_t != t;
4783 kdb_prev_t = t;
4784 if (!task_is_running(t) && new_t) {
4785 spin_unlock(&t->sighand->siglock);
4786 kdb_printf("Process is not RUNNING, sending a signal from "
4787 "kdb risks deadlock\n"
4788 "on the run queue locks. "
4789 "The signal has _not_ been sent.\n"
4790 "Reissue the kill command if you want to risk "
4791 "the deadlock.\n");
4792 return;
4793 }
4794 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4795 spin_unlock(&t->sighand->siglock);
4796 if (ret)
4797 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4798 sig, t->pid);
4799 else
4800 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4801}
4802#endif /* CONFIG_KGDB_KDB */