Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <linux/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
 
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
  96	 */
  97	return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 280		smp_mb();	/* advised by wake_up_bit() */
 281		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282	}
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 301{
 302	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304	if (mask & JOBCTL_STOP_PENDING)
 305		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307	task->jobctl &= ~mask;
 308
 309	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310		task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331	struct signal_struct *sig = task->signal;
 332	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338	if (!consume)
 339		return false;
 340
 341	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342		sig->group_stop_count--;
 343
 344	/*
 345	 * Tell the caller to notify completion iff we are entering into a
 346	 * fresh group stop.  Read comment in do_signal_stop() for details.
 347	 */
 348	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 350		return true;
 351	}
 352	return false;
 353}
 354
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 362{
 363	struct sigqueue *q = NULL;
 364	struct user_struct *user;
 365
 366	/*
 367	 * Protect access to @t credentials. This can go away when all
 368	 * callers hold rcu read lock.
 369	 */
 370	rcu_read_lock();
 371	user = get_uid(__task_cred(t)->user);
 372	atomic_inc(&user->sigpending);
 373	rcu_read_unlock();
 374
 375	if (override_rlimit ||
 376	    atomic_read(&user->sigpending) <=
 377			task_rlimit(t, RLIMIT_SIGPENDING)) {
 378		q = kmem_cache_alloc(sigqueue_cachep, flags);
 379	} else {
 380		print_dropped_signal(sig);
 381	}
 382
 383	if (unlikely(q == NULL)) {
 384		atomic_dec(&user->sigpending);
 385		free_uid(user);
 386	} else {
 387		INIT_LIST_HEAD(&q->list);
 388		q->flags = 0;
 389		q->user = user;
 390	}
 391
 392	return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397	if (q->flags & SIGQUEUE_PREALLOC)
 398		return;
 399	atomic_dec(&q->user->sigpending);
 400	free_uid(q->user);
 401	kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406	struct sigqueue *q;
 407
 408	sigemptyset(&queue->signal);
 409	while (!list_empty(&queue->list)) {
 410		q = list_entry(queue->list.next, struct sigqueue , list);
 411		list_del_init(&q->list);
 412		__sigqueue_free(q);
 413	}
 414}
 415
 416/*
 417 * Flush all pending signals for this kthread.
 418 */
 
 
 
 
 
 
 
 419void flush_signals(struct task_struct *t)
 420{
 421	unsigned long flags;
 422
 423	spin_lock_irqsave(&t->sighand->siglock, flags);
 424	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 425	flush_sigqueue(&t->pending);
 426	flush_sigqueue(&t->signal->shared_pending);
 427	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 428}
 429
 430#ifdef CONFIG_POSIX_TIMERS
 431static void __flush_itimer_signals(struct sigpending *pending)
 432{
 433	sigset_t signal, retain;
 434	struct sigqueue *q, *n;
 435
 436	signal = pending->signal;
 437	sigemptyset(&retain);
 438
 439	list_for_each_entry_safe(q, n, &pending->list, list) {
 440		int sig = q->info.si_signo;
 441
 442		if (likely(q->info.si_code != SI_TIMER)) {
 443			sigaddset(&retain, sig);
 444		} else {
 445			sigdelset(&signal, sig);
 446			list_del_init(&q->list);
 447			__sigqueue_free(q);
 448		}
 449	}
 450
 451	sigorsets(&pending->signal, &signal, &retain);
 452}
 453
 454void flush_itimer_signals(void)
 455{
 456	struct task_struct *tsk = current;
 457	unsigned long flags;
 458
 459	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 460	__flush_itimer_signals(&tsk->pending);
 461	__flush_itimer_signals(&tsk->signal->shared_pending);
 462	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 463}
 464#endif
 465
 466void ignore_signals(struct task_struct *t)
 467{
 468	int i;
 469
 470	for (i = 0; i < _NSIG; ++i)
 471		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 472
 473	flush_signals(t);
 474}
 475
 476/*
 477 * Flush all handlers for a task.
 478 */
 479
 480void
 481flush_signal_handlers(struct task_struct *t, int force_default)
 482{
 483	int i;
 484	struct k_sigaction *ka = &t->sighand->action[0];
 485	for (i = _NSIG ; i != 0 ; i--) {
 486		if (force_default || ka->sa.sa_handler != SIG_IGN)
 487			ka->sa.sa_handler = SIG_DFL;
 488		ka->sa.sa_flags = 0;
 489#ifdef __ARCH_HAS_SA_RESTORER
 490		ka->sa.sa_restorer = NULL;
 491#endif
 492		sigemptyset(&ka->sa.sa_mask);
 493		ka++;
 494	}
 495}
 496
 497int unhandled_signal(struct task_struct *tsk, int sig)
 498{
 499	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 500	if (is_global_init(tsk))
 501		return 1;
 502	if (handler != SIG_IGN && handler != SIG_DFL)
 503		return 0;
 504	/* if ptraced, let the tracer determine */
 505	return !tsk->ptrace;
 506}
 507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 509{
 510	struct sigqueue *q, *first = NULL;
 511
 512	/*
 513	 * Collect the siginfo appropriate to this signal.  Check if
 514	 * there is another siginfo for the same signal.
 515	*/
 516	list_for_each_entry(q, &list->list, list) {
 517		if (q->info.si_signo == sig) {
 518			if (first)
 519				goto still_pending;
 520			first = q;
 521		}
 522	}
 523
 524	sigdelset(&list->signal, sig);
 525
 526	if (first) {
 527still_pending:
 528		list_del_init(&first->list);
 529		copy_siginfo(info, &first->info);
 530		__sigqueue_free(first);
 531	} else {
 532		/*
 533		 * Ok, it wasn't in the queue.  This must be
 534		 * a fast-pathed signal or we must have been
 535		 * out of queue space.  So zero out the info.
 536		 */
 537		info->si_signo = sig;
 538		info->si_errno = 0;
 539		info->si_code = SI_USER;
 540		info->si_pid = 0;
 541		info->si_uid = 0;
 542	}
 543}
 544
 545static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 546			siginfo_t *info)
 547{
 548	int sig = next_signal(pending, mask);
 549
 550	if (sig)
 
 
 
 
 
 
 
 
 
 551		collect_signal(sig, pending, info);
 
 
 552	return sig;
 553}
 554
 555/*
 556 * Dequeue a signal and return the element to the caller, which is
 557 * expected to free it.
 558 *
 559 * All callers have to hold the siglock.
 560 */
 561int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 562{
 563	int signr;
 564
 565	/* We only dequeue private signals from ourselves, we don't let
 566	 * signalfd steal them
 567	 */
 568	signr = __dequeue_signal(&tsk->pending, mask, info);
 569	if (!signr) {
 570		signr = __dequeue_signal(&tsk->signal->shared_pending,
 571					 mask, info);
 572#ifdef CONFIG_POSIX_TIMERS
 573		/*
 574		 * itimer signal ?
 575		 *
 576		 * itimers are process shared and we restart periodic
 577		 * itimers in the signal delivery path to prevent DoS
 578		 * attacks in the high resolution timer case. This is
 579		 * compliant with the old way of self-restarting
 580		 * itimers, as the SIGALRM is a legacy signal and only
 581		 * queued once. Changing the restart behaviour to
 582		 * restart the timer in the signal dequeue path is
 583		 * reducing the timer noise on heavy loaded !highres
 584		 * systems too.
 585		 */
 586		if (unlikely(signr == SIGALRM)) {
 587			struct hrtimer *tmr = &tsk->signal->real_timer;
 588
 589			if (!hrtimer_is_queued(tmr) &&
 590			    tsk->signal->it_real_incr != 0) {
 591				hrtimer_forward(tmr, tmr->base->get_time(),
 592						tsk->signal->it_real_incr);
 593				hrtimer_restart(tmr);
 594			}
 595		}
 596#endif
 597	}
 598
 599	recalc_sigpending();
 600	if (!signr)
 601		return 0;
 602
 603	if (unlikely(sig_kernel_stop(signr))) {
 604		/*
 605		 * Set a marker that we have dequeued a stop signal.  Our
 606		 * caller might release the siglock and then the pending
 607		 * stop signal it is about to process is no longer in the
 608		 * pending bitmasks, but must still be cleared by a SIGCONT
 609		 * (and overruled by a SIGKILL).  So those cases clear this
 610		 * shared flag after we've set it.  Note that this flag may
 611		 * remain set after the signal we return is ignored or
 612		 * handled.  That doesn't matter because its only purpose
 613		 * is to alert stop-signal processing code when another
 614		 * processor has come along and cleared the flag.
 615		 */
 616		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 617	}
 618#ifdef CONFIG_POSIX_TIMERS
 619	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 620		/*
 621		 * Release the siglock to ensure proper locking order
 622		 * of timer locks outside of siglocks.  Note, we leave
 623		 * irqs disabled here, since the posix-timers code is
 624		 * about to disable them again anyway.
 625		 */
 626		spin_unlock(&tsk->sighand->siglock);
 627		do_schedule_next_timer(info);
 628		spin_lock(&tsk->sighand->siglock);
 629	}
 630#endif
 631	return signr;
 632}
 633
 634/*
 635 * Tell a process that it has a new active signal..
 636 *
 637 * NOTE! we rely on the previous spin_lock to
 638 * lock interrupts for us! We can only be called with
 639 * "siglock" held, and the local interrupt must
 640 * have been disabled when that got acquired!
 641 *
 642 * No need to set need_resched since signal event passing
 643 * goes through ->blocked
 644 */
 645void signal_wake_up_state(struct task_struct *t, unsigned int state)
 646{
 
 
 647	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 648	/*
 649	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 650	 * case. We don't check t->state here because there is a race with it
 651	 * executing another processor and just now entering stopped state.
 652	 * By using wake_up_state, we ensure the process will wake up and
 653	 * handle its death signal.
 654	 */
 655	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 
 
 
 656		kick_process(t);
 657}
 658
 659/*
 660 * Remove signals in mask from the pending set and queue.
 661 * Returns 1 if any signals were found.
 662 *
 663 * All callers must be holding the siglock.
 
 
 
 664 */
 665static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 666{
 667	struct sigqueue *q, *n;
 668	sigset_t m;
 669
 670	sigandsets(&m, mask, &s->signal);
 671	if (sigisemptyset(&m))
 672		return 0;
 673
 674	sigandnsets(&s->signal, &s->signal, mask);
 675	list_for_each_entry_safe(q, n, &s->list, list) {
 676		if (sigismember(mask, q->info.si_signo)) {
 677			list_del_init(&q->list);
 678			__sigqueue_free(q);
 679		}
 680	}
 681	return 1;
 682}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683
 684static inline int is_si_special(const struct siginfo *info)
 685{
 686	return info <= SEND_SIG_FORCED;
 687}
 688
 689static inline bool si_fromuser(const struct siginfo *info)
 690{
 691	return info == SEND_SIG_NOINFO ||
 692		(!is_si_special(info) && SI_FROMUSER(info));
 693}
 694
 695/*
 696 * called with RCU read lock from check_kill_permission()
 697 */
 698static int kill_ok_by_cred(struct task_struct *t)
 699{
 700	const struct cred *cred = current_cred();
 701	const struct cred *tcred = __task_cred(t);
 702
 703	if (uid_eq(cred->euid, tcred->suid) ||
 704	    uid_eq(cred->euid, tcred->uid)  ||
 705	    uid_eq(cred->uid,  tcred->suid) ||
 706	    uid_eq(cred->uid,  tcred->uid))
 
 707		return 1;
 708
 709	if (ns_capable(tcred->user_ns, CAP_KILL))
 710		return 1;
 711
 712	return 0;
 713}
 714
 715/*
 716 * Bad permissions for sending the signal
 717 * - the caller must hold the RCU read lock
 718 */
 719static int check_kill_permission(int sig, struct siginfo *info,
 720				 struct task_struct *t)
 721{
 722	struct pid *sid;
 723	int error;
 724
 725	if (!valid_signal(sig))
 726		return -EINVAL;
 727
 728	if (!si_fromuser(info))
 729		return 0;
 730
 731	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 732	if (error)
 733		return error;
 734
 735	if (!same_thread_group(current, t) &&
 736	    !kill_ok_by_cred(t)) {
 737		switch (sig) {
 738		case SIGCONT:
 739			sid = task_session(t);
 740			/*
 741			 * We don't return the error if sid == NULL. The
 742			 * task was unhashed, the caller must notice this.
 743			 */
 744			if (!sid || sid == task_session(current))
 745				break;
 746		default:
 747			return -EPERM;
 748		}
 749	}
 750
 751	return security_task_kill(t, info, sig, 0);
 752}
 753
 754/**
 755 * ptrace_trap_notify - schedule trap to notify ptracer
 756 * @t: tracee wanting to notify tracer
 757 *
 758 * This function schedules sticky ptrace trap which is cleared on the next
 759 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 760 * ptracer.
 761 *
 762 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 763 * ptracer is listening for events, tracee is woken up so that it can
 764 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 765 * eventually taken without returning to userland after the existing traps
 766 * are finished by PTRACE_CONT.
 767 *
 768 * CONTEXT:
 769 * Must be called with @task->sighand->siglock held.
 770 */
 771static void ptrace_trap_notify(struct task_struct *t)
 772{
 773	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 774	assert_spin_locked(&t->sighand->siglock);
 775
 776	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 777	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 778}
 779
 780/*
 781 * Handle magic process-wide effects of stop/continue signals. Unlike
 782 * the signal actions, these happen immediately at signal-generation
 783 * time regardless of blocking, ignoring, or handling.  This does the
 784 * actual continuing for SIGCONT, but not the actual stopping for stop
 785 * signals. The process stop is done as a signal action for SIG_DFL.
 786 *
 787 * Returns true if the signal should be actually delivered, otherwise
 788 * it should be dropped.
 789 */
 790static bool prepare_signal(int sig, struct task_struct *p, bool force)
 791{
 792	struct signal_struct *signal = p->signal;
 793	struct task_struct *t;
 794	sigset_t flush;
 795
 796	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 797		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 798			return sig == SIGKILL;
 799		/*
 800		 * The process is in the middle of dying, nothing to do.
 801		 */
 802	} else if (sig_kernel_stop(sig)) {
 803		/*
 804		 * This is a stop signal.  Remove SIGCONT from all queues.
 805		 */
 806		siginitset(&flush, sigmask(SIGCONT));
 807		flush_sigqueue_mask(&flush, &signal->shared_pending);
 808		for_each_thread(p, t)
 809			flush_sigqueue_mask(&flush, &t->pending);
 
 810	} else if (sig == SIGCONT) {
 811		unsigned int why;
 812		/*
 813		 * Remove all stop signals from all queues, wake all threads.
 814		 */
 815		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 816		flush_sigqueue_mask(&flush, &signal->shared_pending);
 817		for_each_thread(p, t) {
 818			flush_sigqueue_mask(&flush, &t->pending);
 819			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 
 820			if (likely(!(t->ptrace & PT_SEIZED)))
 821				wake_up_state(t, __TASK_STOPPED);
 822			else
 823				ptrace_trap_notify(t);
 824		}
 825
 826		/*
 827		 * Notify the parent with CLD_CONTINUED if we were stopped.
 828		 *
 829		 * If we were in the middle of a group stop, we pretend it
 830		 * was already finished, and then continued. Since SIGCHLD
 831		 * doesn't queue we report only CLD_STOPPED, as if the next
 832		 * CLD_CONTINUED was dropped.
 833		 */
 834		why = 0;
 835		if (signal->flags & SIGNAL_STOP_STOPPED)
 836			why |= SIGNAL_CLD_CONTINUED;
 837		else if (signal->group_stop_count)
 838			why |= SIGNAL_CLD_STOPPED;
 839
 840		if (why) {
 841			/*
 842			 * The first thread which returns from do_signal_stop()
 843			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 844			 * notify its parent. See get_signal_to_deliver().
 845			 */
 846			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 847			signal->group_stop_count = 0;
 848			signal->group_exit_code = 0;
 849		}
 850	}
 851
 852	return !sig_ignored(p, sig, force);
 853}
 854
 855/*
 856 * Test if P wants to take SIG.  After we've checked all threads with this,
 857 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 858 * blocking SIG were ruled out because they are not running and already
 859 * have pending signals.  Such threads will dequeue from the shared queue
 860 * as soon as they're available, so putting the signal on the shared queue
 861 * will be equivalent to sending it to one such thread.
 862 */
 863static inline int wants_signal(int sig, struct task_struct *p)
 864{
 865	if (sigismember(&p->blocked, sig))
 866		return 0;
 867	if (p->flags & PF_EXITING)
 868		return 0;
 869	if (sig == SIGKILL)
 870		return 1;
 871	if (task_is_stopped_or_traced(p))
 872		return 0;
 873	return task_curr(p) || !signal_pending(p);
 874}
 875
 876static void complete_signal(int sig, struct task_struct *p, int group)
 877{
 878	struct signal_struct *signal = p->signal;
 879	struct task_struct *t;
 880
 881	/*
 882	 * Now find a thread we can wake up to take the signal off the queue.
 883	 *
 884	 * If the main thread wants the signal, it gets first crack.
 885	 * Probably the least surprising to the average bear.
 886	 */
 887	if (wants_signal(sig, p))
 888		t = p;
 889	else if (!group || thread_group_empty(p))
 890		/*
 891		 * There is just one thread and it does not need to be woken.
 892		 * It will dequeue unblocked signals before it runs again.
 893		 */
 894		return;
 895	else {
 896		/*
 897		 * Otherwise try to find a suitable thread.
 898		 */
 899		t = signal->curr_target;
 900		while (!wants_signal(sig, t)) {
 901			t = next_thread(t);
 902			if (t == signal->curr_target)
 903				/*
 904				 * No thread needs to be woken.
 905				 * Any eligible threads will see
 906				 * the signal in the queue soon.
 907				 */
 908				return;
 909		}
 910		signal->curr_target = t;
 911	}
 912
 913	/*
 914	 * Found a killable thread.  If the signal will be fatal,
 915	 * then start taking the whole group down immediately.
 916	 */
 917	if (sig_fatal(p, sig) &&
 918	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 919	    !sigismember(&t->real_blocked, sig) &&
 920	    (sig == SIGKILL || !t->ptrace)) {
 921		/*
 922		 * This signal will be fatal to the whole group.
 923		 */
 924		if (!sig_kernel_coredump(sig)) {
 925			/*
 926			 * Start a group exit and wake everybody up.
 927			 * This way we don't have other threads
 928			 * running and doing things after a slower
 929			 * thread has the fatal signal pending.
 930			 */
 931			signal->flags = SIGNAL_GROUP_EXIT;
 932			signal->group_exit_code = sig;
 933			signal->group_stop_count = 0;
 934			t = p;
 935			do {
 936				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 937				sigaddset(&t->pending.signal, SIGKILL);
 938				signal_wake_up(t, 1);
 939			} while_each_thread(p, t);
 940			return;
 941		}
 942	}
 943
 944	/*
 945	 * The signal is already in the shared-pending queue.
 946	 * Tell the chosen thread to wake up and dequeue it.
 947	 */
 948	signal_wake_up(t, sig == SIGKILL);
 949	return;
 950}
 951
 952static inline int legacy_queue(struct sigpending *signals, int sig)
 953{
 954	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 955}
 956
 957#ifdef CONFIG_USER_NS
 958static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 959{
 960	if (current_user_ns() == task_cred_xxx(t, user_ns))
 961		return;
 962
 963	if (SI_FROMKERNEL(info))
 964		return;
 965
 966	rcu_read_lock();
 967	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 968					make_kuid(current_user_ns(), info->si_uid));
 969	rcu_read_unlock();
 970}
 971#else
 972static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 973{
 974	return;
 975}
 976#endif
 977
 978static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 979			int group, int from_ancestor_ns)
 980{
 981	struct sigpending *pending;
 982	struct sigqueue *q;
 983	int override_rlimit;
 984	int ret = 0, result;
 
 985
 986	assert_spin_locked(&t->sighand->siglock);
 987
 988	result = TRACE_SIGNAL_IGNORED;
 989	if (!prepare_signal(sig, t,
 990			from_ancestor_ns || (info == SEND_SIG_FORCED)))
 991		goto ret;
 992
 993	pending = group ? &t->signal->shared_pending : &t->pending;
 994	/*
 995	 * Short-circuit ignored signals and support queuing
 996	 * exactly one non-rt signal, so that we can get more
 997	 * detailed information about the cause of the signal.
 998	 */
 999	result = TRACE_SIGNAL_ALREADY_PENDING;
1000	if (legacy_queue(pending, sig))
1001		goto ret;
1002
1003	result = TRACE_SIGNAL_DELIVERED;
1004	/*
1005	 * fast-pathed signals for kernel-internal things like SIGSTOP
1006	 * or SIGKILL.
1007	 */
1008	if (info == SEND_SIG_FORCED)
1009		goto out_set;
1010
1011	/*
1012	 * Real-time signals must be queued if sent by sigqueue, or
1013	 * some other real-time mechanism.  It is implementation
1014	 * defined whether kill() does so.  We attempt to do so, on
1015	 * the principle of least surprise, but since kill is not
1016	 * allowed to fail with EAGAIN when low on memory we just
1017	 * make sure at least one signal gets delivered and don't
1018	 * pass on the info struct.
1019	 */
1020	if (sig < SIGRTMIN)
1021		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1022	else
1023		override_rlimit = 0;
1024
1025	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1026		override_rlimit);
1027	if (q) {
1028		list_add_tail(&q->list, &pending->list);
1029		switch ((unsigned long) info) {
1030		case (unsigned long) SEND_SIG_NOINFO:
1031			q->info.si_signo = sig;
1032			q->info.si_errno = 0;
1033			q->info.si_code = SI_USER;
1034			q->info.si_pid = task_tgid_nr_ns(current,
1035							task_active_pid_ns(t));
1036			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1037			break;
1038		case (unsigned long) SEND_SIG_PRIV:
1039			q->info.si_signo = sig;
1040			q->info.si_errno = 0;
1041			q->info.si_code = SI_KERNEL;
1042			q->info.si_pid = 0;
1043			q->info.si_uid = 0;
1044			break;
1045		default:
1046			copy_siginfo(&q->info, info);
1047			if (from_ancestor_ns)
1048				q->info.si_pid = 0;
1049			break;
1050		}
1051
1052		userns_fixup_signal_uid(&q->info, t);
1053
1054	} else if (!is_si_special(info)) {
1055		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1056			/*
1057			 * Queue overflow, abort.  We may abort if the
1058			 * signal was rt and sent by user using something
1059			 * other than kill().
1060			 */
1061			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1062			ret = -EAGAIN;
1063			goto ret;
1064		} else {
1065			/*
1066			 * This is a silent loss of information.  We still
1067			 * send the signal, but the *info bits are lost.
1068			 */
1069			result = TRACE_SIGNAL_LOSE_INFO;
1070		}
1071	}
1072
1073out_set:
1074	signalfd_notify(t, sig);
1075	sigaddset(&pending->signal, sig);
1076	complete_signal(sig, t, group);
1077ret:
1078	trace_signal_generate(sig, info, t, group, result);
1079	return ret;
1080}
1081
1082static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1083			int group)
1084{
1085	int from_ancestor_ns = 0;
1086
1087#ifdef CONFIG_PID_NS
1088	from_ancestor_ns = si_fromuser(info) &&
1089			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1090#endif
1091
1092	return __send_signal(sig, info, t, group, from_ancestor_ns);
1093}
1094
1095static void print_fatal_signal(int signr)
1096{
1097	struct pt_regs *regs = signal_pt_regs();
1098	pr_info("potentially unexpected fatal signal %d.\n", signr);
1099
1100#if defined(__i386__) && !defined(__arch_um__)
1101	pr_info("code at %08lx: ", regs->ip);
1102	{
1103		int i;
1104		for (i = 0; i < 16; i++) {
1105			unsigned char insn;
1106
1107			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1108				break;
1109			pr_cont("%02x ", insn);
1110		}
1111	}
1112	pr_cont("\n");
1113#endif
 
1114	preempt_disable();
1115	show_regs(regs);
1116	preempt_enable();
1117}
1118
1119static int __init setup_print_fatal_signals(char *str)
1120{
1121	get_option (&str, &print_fatal_signals);
1122
1123	return 1;
1124}
1125
1126__setup("print-fatal-signals=", setup_print_fatal_signals);
1127
1128int
1129__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1130{
1131	return send_signal(sig, info, p, 1);
1132}
1133
1134static int
1135specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1136{
1137	return send_signal(sig, info, t, 0);
1138}
1139
1140int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1141			bool group)
1142{
1143	unsigned long flags;
1144	int ret = -ESRCH;
1145
1146	if (lock_task_sighand(p, &flags)) {
1147		ret = send_signal(sig, info, p, group);
1148		unlock_task_sighand(p, &flags);
1149	}
1150
1151	return ret;
1152}
1153
1154/*
1155 * Force a signal that the process can't ignore: if necessary
1156 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1157 *
1158 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1159 * since we do not want to have a signal handler that was blocked
1160 * be invoked when user space had explicitly blocked it.
1161 *
1162 * We don't want to have recursive SIGSEGV's etc, for example,
1163 * that is why we also clear SIGNAL_UNKILLABLE.
1164 */
1165int
1166force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1167{
1168	unsigned long int flags;
1169	int ret, blocked, ignored;
1170	struct k_sigaction *action;
1171
1172	spin_lock_irqsave(&t->sighand->siglock, flags);
1173	action = &t->sighand->action[sig-1];
1174	ignored = action->sa.sa_handler == SIG_IGN;
1175	blocked = sigismember(&t->blocked, sig);
1176	if (blocked || ignored) {
1177		action->sa.sa_handler = SIG_DFL;
1178		if (blocked) {
1179			sigdelset(&t->blocked, sig);
1180			recalc_sigpending_and_wake(t);
1181		}
1182	}
1183	if (action->sa.sa_handler == SIG_DFL)
1184		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1185	ret = specific_send_sig_info(sig, info, t);
1186	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1187
1188	return ret;
1189}
1190
1191/*
1192 * Nuke all other threads in the group.
1193 */
1194int zap_other_threads(struct task_struct *p)
1195{
1196	struct task_struct *t = p;
1197	int count = 0;
1198
1199	p->signal->group_stop_count = 0;
1200
1201	while_each_thread(p, t) {
1202		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1203		count++;
1204
1205		/* Don't bother with already dead threads */
1206		if (t->exit_state)
1207			continue;
1208		sigaddset(&t->pending.signal, SIGKILL);
1209		signal_wake_up(t, 1);
1210	}
1211
1212	return count;
1213}
1214
1215struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1216					   unsigned long *flags)
1217{
1218	struct sighand_struct *sighand;
1219
1220	for (;;) {
1221		/*
1222		 * Disable interrupts early to avoid deadlocks.
1223		 * See rcu_read_unlock() comment header for details.
1224		 */
1225		local_irq_save(*flags);
1226		rcu_read_lock();
1227		sighand = rcu_dereference(tsk->sighand);
1228		if (unlikely(sighand == NULL)) {
1229			rcu_read_unlock();
1230			local_irq_restore(*flags);
1231			break;
1232		}
1233		/*
1234		 * This sighand can be already freed and even reused, but
1235		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1236		 * initializes ->siglock: this slab can't go away, it has
1237		 * the same object type, ->siglock can't be reinitialized.
1238		 *
1239		 * We need to ensure that tsk->sighand is still the same
1240		 * after we take the lock, we can race with de_thread() or
1241		 * __exit_signal(). In the latter case the next iteration
1242		 * must see ->sighand == NULL.
1243		 */
1244		spin_lock(&sighand->siglock);
1245		if (likely(sighand == tsk->sighand)) {
1246			rcu_read_unlock();
1247			break;
1248		}
1249		spin_unlock(&sighand->siglock);
1250		rcu_read_unlock();
1251		local_irq_restore(*flags);
1252	}
1253
1254	return sighand;
1255}
1256
1257/*
1258 * send signal info to all the members of a group
1259 */
1260int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1261{
1262	int ret;
1263
1264	rcu_read_lock();
1265	ret = check_kill_permission(sig, info, p);
1266	rcu_read_unlock();
1267
1268	if (!ret && sig)
1269		ret = do_send_sig_info(sig, info, p, true);
1270
1271	return ret;
1272}
1273
1274/*
1275 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1276 * control characters do (^C, ^Z etc)
1277 * - the caller must hold at least a readlock on tasklist_lock
1278 */
1279int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1280{
1281	struct task_struct *p = NULL;
1282	int retval, success;
1283
1284	success = 0;
1285	retval = -ESRCH;
1286	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1287		int err = group_send_sig_info(sig, info, p);
1288		success |= !err;
1289		retval = err;
1290	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1291	return success ? 0 : retval;
1292}
1293
1294int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1295{
1296	int error = -ESRCH;
1297	struct task_struct *p;
1298
1299	for (;;) {
1300		rcu_read_lock();
1301		p = pid_task(pid, PIDTYPE_PID);
1302		if (p)
1303			error = group_send_sig_info(sig, info, p);
1304		rcu_read_unlock();
1305		if (likely(!p || error != -ESRCH))
1306			return error;
1307
1308		/*
1309		 * The task was unhashed in between, try again.  If it
1310		 * is dead, pid_task() will return NULL, if we race with
1311		 * de_thread() it will find the new leader.
1312		 */
1313	}
 
 
 
1314}
1315
1316int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1317{
1318	int error;
1319	rcu_read_lock();
1320	error = kill_pid_info(sig, info, find_vpid(pid));
1321	rcu_read_unlock();
1322	return error;
1323}
1324
1325static int kill_as_cred_perm(const struct cred *cred,
1326			     struct task_struct *target)
1327{
1328	const struct cred *pcred = __task_cred(target);
1329	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1330	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1331		return 0;
1332	return 1;
1333}
1334
1335/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1336int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1337			 const struct cred *cred, u32 secid)
1338{
1339	int ret = -EINVAL;
1340	struct task_struct *p;
 
1341	unsigned long flags;
1342
1343	if (!valid_signal(sig))
1344		return ret;
1345
1346	rcu_read_lock();
1347	p = pid_task(pid, PIDTYPE_PID);
1348	if (!p) {
1349		ret = -ESRCH;
1350		goto out_unlock;
1351	}
1352	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
 
 
 
1353		ret = -EPERM;
1354		goto out_unlock;
1355	}
1356	ret = security_task_kill(p, info, sig, secid);
1357	if (ret)
1358		goto out_unlock;
1359
1360	if (sig) {
1361		if (lock_task_sighand(p, &flags)) {
1362			ret = __send_signal(sig, info, p, 1, 0);
1363			unlock_task_sighand(p, &flags);
1364		} else
1365			ret = -ESRCH;
1366	}
1367out_unlock:
1368	rcu_read_unlock();
1369	return ret;
1370}
1371EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1372
1373/*
1374 * kill_something_info() interprets pid in interesting ways just like kill(2).
1375 *
1376 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1377 * is probably wrong.  Should make it like BSD or SYSV.
1378 */
1379
1380static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1381{
1382	int ret;
1383
1384	if (pid > 0) {
1385		rcu_read_lock();
1386		ret = kill_pid_info(sig, info, find_vpid(pid));
1387		rcu_read_unlock();
1388		return ret;
1389	}
1390
1391	read_lock(&tasklist_lock);
1392	if (pid != -1) {
1393		ret = __kill_pgrp_info(sig, info,
1394				pid ? find_vpid(-pid) : task_pgrp(current));
1395	} else {
1396		int retval = 0, count = 0;
1397		struct task_struct * p;
1398
1399		for_each_process(p) {
1400			if (task_pid_vnr(p) > 1 &&
1401					!same_thread_group(p, current)) {
1402				int err = group_send_sig_info(sig, info, p);
1403				++count;
1404				if (err != -EPERM)
1405					retval = err;
1406			}
1407		}
1408		ret = count ? retval : -ESRCH;
1409	}
1410	read_unlock(&tasklist_lock);
1411
1412	return ret;
1413}
1414
1415/*
1416 * These are for backward compatibility with the rest of the kernel source.
1417 */
1418
1419int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1420{
1421	/*
1422	 * Make sure legacy kernel users don't send in bad values
1423	 * (normal paths check this in check_kill_permission).
1424	 */
1425	if (!valid_signal(sig))
1426		return -EINVAL;
1427
1428	return do_send_sig_info(sig, info, p, false);
1429}
1430
1431#define __si_special(priv) \
1432	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1433
1434int
1435send_sig(int sig, struct task_struct *p, int priv)
1436{
1437	return send_sig_info(sig, __si_special(priv), p);
1438}
1439
1440void
1441force_sig(int sig, struct task_struct *p)
1442{
1443	force_sig_info(sig, SEND_SIG_PRIV, p);
1444}
1445
1446/*
1447 * When things go south during signal handling, we
1448 * will force a SIGSEGV. And if the signal that caused
1449 * the problem was already a SIGSEGV, we'll want to
1450 * make sure we don't even try to deliver the signal..
1451 */
1452int
1453force_sigsegv(int sig, struct task_struct *p)
1454{
1455	if (sig == SIGSEGV) {
1456		unsigned long flags;
1457		spin_lock_irqsave(&p->sighand->siglock, flags);
1458		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1459		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1460	}
1461	force_sig(SIGSEGV, p);
1462	return 0;
1463}
1464
1465int kill_pgrp(struct pid *pid, int sig, int priv)
1466{
1467	int ret;
1468
1469	read_lock(&tasklist_lock);
1470	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1471	read_unlock(&tasklist_lock);
1472
1473	return ret;
1474}
1475EXPORT_SYMBOL(kill_pgrp);
1476
1477int kill_pid(struct pid *pid, int sig, int priv)
1478{
1479	return kill_pid_info(sig, __si_special(priv), pid);
1480}
1481EXPORT_SYMBOL(kill_pid);
1482
1483/*
1484 * These functions support sending signals using preallocated sigqueue
1485 * structures.  This is needed "because realtime applications cannot
1486 * afford to lose notifications of asynchronous events, like timer
1487 * expirations or I/O completions".  In the case of POSIX Timers
1488 * we allocate the sigqueue structure from the timer_create.  If this
1489 * allocation fails we are able to report the failure to the application
1490 * with an EAGAIN error.
1491 */
1492struct sigqueue *sigqueue_alloc(void)
1493{
1494	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1495
1496	if (q)
1497		q->flags |= SIGQUEUE_PREALLOC;
1498
1499	return q;
1500}
1501
1502void sigqueue_free(struct sigqueue *q)
1503{
1504	unsigned long flags;
1505	spinlock_t *lock = &current->sighand->siglock;
1506
1507	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1508	/*
1509	 * We must hold ->siglock while testing q->list
1510	 * to serialize with collect_signal() or with
1511	 * __exit_signal()->flush_sigqueue().
1512	 */
1513	spin_lock_irqsave(lock, flags);
1514	q->flags &= ~SIGQUEUE_PREALLOC;
1515	/*
1516	 * If it is queued it will be freed when dequeued,
1517	 * like the "regular" sigqueue.
1518	 */
1519	if (!list_empty(&q->list))
1520		q = NULL;
1521	spin_unlock_irqrestore(lock, flags);
1522
1523	if (q)
1524		__sigqueue_free(q);
1525}
1526
1527int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1528{
1529	int sig = q->info.si_signo;
1530	struct sigpending *pending;
1531	unsigned long flags;
1532	int ret, result;
1533
1534	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1535
1536	ret = -1;
1537	if (!likely(lock_task_sighand(t, &flags)))
1538		goto ret;
1539
1540	ret = 1; /* the signal is ignored */
1541	result = TRACE_SIGNAL_IGNORED;
1542	if (!prepare_signal(sig, t, false))
1543		goto out;
1544
1545	ret = 0;
1546	if (unlikely(!list_empty(&q->list))) {
1547		/*
1548		 * If an SI_TIMER entry is already queue just increment
1549		 * the overrun count.
1550		 */
1551		BUG_ON(q->info.si_code != SI_TIMER);
1552		q->info.si_overrun++;
1553		result = TRACE_SIGNAL_ALREADY_PENDING;
1554		goto out;
1555	}
1556	q->info.si_overrun = 0;
1557
1558	signalfd_notify(t, sig);
1559	pending = group ? &t->signal->shared_pending : &t->pending;
1560	list_add_tail(&q->list, &pending->list);
1561	sigaddset(&pending->signal, sig);
1562	complete_signal(sig, t, group);
1563	result = TRACE_SIGNAL_DELIVERED;
1564out:
1565	trace_signal_generate(sig, &q->info, t, group, result);
1566	unlock_task_sighand(t, &flags);
1567ret:
1568	return ret;
1569}
1570
1571/*
1572 * Let a parent know about the death of a child.
1573 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1574 *
1575 * Returns true if our parent ignored us and so we've switched to
1576 * self-reaping.
1577 */
1578bool do_notify_parent(struct task_struct *tsk, int sig)
1579{
1580	struct siginfo info;
1581	unsigned long flags;
1582	struct sighand_struct *psig;
1583	bool autoreap = false;
1584	cputime_t utime, stime;
1585
1586	BUG_ON(sig == -1);
1587
1588 	/* do_notify_parent_cldstop should have been called instead.  */
1589 	BUG_ON(task_is_stopped_or_traced(tsk));
1590
1591	BUG_ON(!tsk->ptrace &&
1592	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1593
1594	if (sig != SIGCHLD) {
1595		/*
1596		 * This is only possible if parent == real_parent.
1597		 * Check if it has changed security domain.
1598		 */
1599		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1600			sig = SIGCHLD;
1601	}
1602
1603	info.si_signo = sig;
1604	info.si_errno = 0;
1605	/*
1606	 * We are under tasklist_lock here so our parent is tied to
1607	 * us and cannot change.
1608	 *
1609	 * task_active_pid_ns will always return the same pid namespace
1610	 * until a task passes through release_task.
 
1611	 *
1612	 * write_lock() currently calls preempt_disable() which is the
1613	 * same as rcu_read_lock(), but according to Oleg, this is not
1614	 * correct to rely on this
1615	 */
1616	rcu_read_lock();
1617	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1618	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1619				       task_uid(tsk));
1620	rcu_read_unlock();
1621
1622	task_cputime(tsk, &utime, &stime);
1623	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1624	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
 
1625
1626	info.si_status = tsk->exit_code & 0x7f;
1627	if (tsk->exit_code & 0x80)
1628		info.si_code = CLD_DUMPED;
1629	else if (tsk->exit_code & 0x7f)
1630		info.si_code = CLD_KILLED;
1631	else {
1632		info.si_code = CLD_EXITED;
1633		info.si_status = tsk->exit_code >> 8;
1634	}
1635
1636	psig = tsk->parent->sighand;
1637	spin_lock_irqsave(&psig->siglock, flags);
1638	if (!tsk->ptrace && sig == SIGCHLD &&
1639	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1640	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1641		/*
1642		 * We are exiting and our parent doesn't care.  POSIX.1
1643		 * defines special semantics for setting SIGCHLD to SIG_IGN
1644		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1645		 * automatically and not left for our parent's wait4 call.
1646		 * Rather than having the parent do it as a magic kind of
1647		 * signal handler, we just set this to tell do_exit that we
1648		 * can be cleaned up without becoming a zombie.  Note that
1649		 * we still call __wake_up_parent in this case, because a
1650		 * blocked sys_wait4 might now return -ECHILD.
1651		 *
1652		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1653		 * is implementation-defined: we do (if you don't want
1654		 * it, just use SIG_IGN instead).
1655		 */
1656		autoreap = true;
1657		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1658			sig = 0;
1659	}
1660	if (valid_signal(sig) && sig)
1661		__group_send_sig_info(sig, &info, tsk->parent);
1662	__wake_up_parent(tsk, tsk->parent);
1663	spin_unlock_irqrestore(&psig->siglock, flags);
1664
1665	return autoreap;
1666}
1667
1668/**
1669 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1670 * @tsk: task reporting the state change
1671 * @for_ptracer: the notification is for ptracer
1672 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1673 *
1674 * Notify @tsk's parent that the stopped/continued state has changed.  If
1675 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1676 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1677 *
1678 * CONTEXT:
1679 * Must be called with tasklist_lock at least read locked.
1680 */
1681static void do_notify_parent_cldstop(struct task_struct *tsk,
1682				     bool for_ptracer, int why)
1683{
1684	struct siginfo info;
1685	unsigned long flags;
1686	struct task_struct *parent;
1687	struct sighand_struct *sighand;
1688	cputime_t utime, stime;
1689
1690	if (for_ptracer) {
1691		parent = tsk->parent;
1692	} else {
1693		tsk = tsk->group_leader;
1694		parent = tsk->real_parent;
1695	}
1696
1697	info.si_signo = SIGCHLD;
1698	info.si_errno = 0;
1699	/*
1700	 * see comment in do_notify_parent() about the following 4 lines
1701	 */
1702	rcu_read_lock();
1703	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1704	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1705	rcu_read_unlock();
1706
1707	task_cputime(tsk, &utime, &stime);
1708	info.si_utime = cputime_to_clock_t(utime);
1709	info.si_stime = cputime_to_clock_t(stime);
1710
1711 	info.si_code = why;
1712 	switch (why) {
1713 	case CLD_CONTINUED:
1714 		info.si_status = SIGCONT;
1715 		break;
1716 	case CLD_STOPPED:
1717 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1718 		break;
1719 	case CLD_TRAPPED:
1720 		info.si_status = tsk->exit_code & 0x7f;
1721 		break;
1722 	default:
1723 		BUG();
1724 	}
1725
1726	sighand = parent->sighand;
1727	spin_lock_irqsave(&sighand->siglock, flags);
1728	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1729	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1730		__group_send_sig_info(SIGCHLD, &info, parent);
1731	/*
1732	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1733	 */
1734	__wake_up_parent(tsk, parent);
1735	spin_unlock_irqrestore(&sighand->siglock, flags);
1736}
1737
1738static inline int may_ptrace_stop(void)
1739{
1740	if (!likely(current->ptrace))
1741		return 0;
1742	/*
1743	 * Are we in the middle of do_coredump?
1744	 * If so and our tracer is also part of the coredump stopping
1745	 * is a deadlock situation, and pointless because our tracer
1746	 * is dead so don't allow us to stop.
1747	 * If SIGKILL was already sent before the caller unlocked
1748	 * ->siglock we must see ->core_state != NULL. Otherwise it
1749	 * is safe to enter schedule().
1750	 *
1751	 * This is almost outdated, a task with the pending SIGKILL can't
1752	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1753	 * after SIGKILL was already dequeued.
1754	 */
1755	if (unlikely(current->mm->core_state) &&
1756	    unlikely(current->mm == current->parent->mm))
1757		return 0;
1758
1759	return 1;
1760}
1761
1762/*
1763 * Return non-zero if there is a SIGKILL that should be waking us up.
1764 * Called with the siglock held.
1765 */
1766static int sigkill_pending(struct task_struct *tsk)
1767{
1768	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1769		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1770}
1771
1772/*
1773 * This must be called with current->sighand->siglock held.
1774 *
1775 * This should be the path for all ptrace stops.
1776 * We always set current->last_siginfo while stopped here.
1777 * That makes it a way to test a stopped process for
1778 * being ptrace-stopped vs being job-control-stopped.
1779 *
1780 * If we actually decide not to stop at all because the tracer
1781 * is gone, we keep current->exit_code unless clear_code.
1782 */
1783static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1784	__releases(&current->sighand->siglock)
1785	__acquires(&current->sighand->siglock)
1786{
1787	bool gstop_done = false;
1788
1789	if (arch_ptrace_stop_needed(exit_code, info)) {
1790		/*
1791		 * The arch code has something special to do before a
1792		 * ptrace stop.  This is allowed to block, e.g. for faults
1793		 * on user stack pages.  We can't keep the siglock while
1794		 * calling arch_ptrace_stop, so we must release it now.
1795		 * To preserve proper semantics, we must do this before
1796		 * any signal bookkeeping like checking group_stop_count.
1797		 * Meanwhile, a SIGKILL could come in before we retake the
1798		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1799		 * So after regaining the lock, we must check for SIGKILL.
1800		 */
1801		spin_unlock_irq(&current->sighand->siglock);
1802		arch_ptrace_stop(exit_code, info);
1803		spin_lock_irq(&current->sighand->siglock);
1804		if (sigkill_pending(current))
1805			return;
1806	}
1807
1808	/*
1809	 * We're committing to trapping.  TRACED should be visible before
1810	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1811	 * Also, transition to TRACED and updates to ->jobctl should be
1812	 * atomic with respect to siglock and should be done after the arch
1813	 * hook as siglock is released and regrabbed across it.
1814	 */
1815	set_current_state(TASK_TRACED);
1816
1817	current->last_siginfo = info;
1818	current->exit_code = exit_code;
1819
1820	/*
1821	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1822	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1823	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1824	 * could be clear now.  We act as if SIGCONT is received after
1825	 * TASK_TRACED is entered - ignore it.
1826	 */
1827	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1828		gstop_done = task_participate_group_stop(current);
1829
1830	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1831	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1832	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1833		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1834
1835	/* entering a trap, clear TRAPPING */
1836	task_clear_jobctl_trapping(current);
1837
1838	spin_unlock_irq(&current->sighand->siglock);
1839	read_lock(&tasklist_lock);
1840	if (may_ptrace_stop()) {
1841		/*
1842		 * Notify parents of the stop.
1843		 *
1844		 * While ptraced, there are two parents - the ptracer and
1845		 * the real_parent of the group_leader.  The ptracer should
1846		 * know about every stop while the real parent is only
1847		 * interested in the completion of group stop.  The states
1848		 * for the two don't interact with each other.  Notify
1849		 * separately unless they're gonna be duplicates.
1850		 */
1851		do_notify_parent_cldstop(current, true, why);
1852		if (gstop_done && ptrace_reparented(current))
1853			do_notify_parent_cldstop(current, false, why);
1854
1855		/*
1856		 * Don't want to allow preemption here, because
1857		 * sys_ptrace() needs this task to be inactive.
1858		 *
1859		 * XXX: implement read_unlock_no_resched().
1860		 */
1861		preempt_disable();
1862		read_unlock(&tasklist_lock);
1863		preempt_enable_no_resched();
1864		freezable_schedule();
1865	} else {
1866		/*
1867		 * By the time we got the lock, our tracer went away.
1868		 * Don't drop the lock yet, another tracer may come.
1869		 *
1870		 * If @gstop_done, the ptracer went away between group stop
1871		 * completion and here.  During detach, it would have set
1872		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1873		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1874		 * the real parent of the group stop completion is enough.
1875		 */
1876		if (gstop_done)
1877			do_notify_parent_cldstop(current, false, why);
1878
1879		/* tasklist protects us from ptrace_freeze_traced() */
1880		__set_current_state(TASK_RUNNING);
1881		if (clear_code)
1882			current->exit_code = 0;
1883		read_unlock(&tasklist_lock);
1884	}
1885
1886	/*
 
 
 
 
 
 
 
1887	 * We are back.  Now reacquire the siglock before touching
1888	 * last_siginfo, so that we are sure to have synchronized with
1889	 * any signal-sending on another CPU that wants to examine it.
1890	 */
1891	spin_lock_irq(&current->sighand->siglock);
1892	current->last_siginfo = NULL;
1893
1894	/* LISTENING can be set only during STOP traps, clear it */
1895	current->jobctl &= ~JOBCTL_LISTENING;
1896
1897	/*
1898	 * Queued signals ignored us while we were stopped for tracing.
1899	 * So check for any that we should take before resuming user mode.
1900	 * This sets TIF_SIGPENDING, but never clears it.
1901	 */
1902	recalc_sigpending_tsk(current);
1903}
1904
1905static void ptrace_do_notify(int signr, int exit_code, int why)
1906{
1907	siginfo_t info;
1908
1909	memset(&info, 0, sizeof info);
1910	info.si_signo = signr;
1911	info.si_code = exit_code;
1912	info.si_pid = task_pid_vnr(current);
1913	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1914
1915	/* Let the debugger run.  */
1916	ptrace_stop(exit_code, why, 1, &info);
1917}
1918
1919void ptrace_notify(int exit_code)
1920{
1921	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1922	if (unlikely(current->task_works))
1923		task_work_run();
1924
1925	spin_lock_irq(&current->sighand->siglock);
1926	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1927	spin_unlock_irq(&current->sighand->siglock);
1928}
1929
1930/**
1931 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1932 * @signr: signr causing group stop if initiating
1933 *
1934 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1935 * and participate in it.  If already set, participate in the existing
1936 * group stop.  If participated in a group stop (and thus slept), %true is
1937 * returned with siglock released.
1938 *
1939 * If ptraced, this function doesn't handle stop itself.  Instead,
1940 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1941 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1942 * places afterwards.
1943 *
1944 * CONTEXT:
1945 * Must be called with @current->sighand->siglock held, which is released
1946 * on %true return.
1947 *
1948 * RETURNS:
1949 * %false if group stop is already cancelled or ptrace trap is scheduled.
1950 * %true if participated in group stop.
1951 */
1952static bool do_signal_stop(int signr)
1953	__releases(&current->sighand->siglock)
1954{
1955	struct signal_struct *sig = current->signal;
1956
1957	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1958		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1959		struct task_struct *t;
1960
1961		/* signr will be recorded in task->jobctl for retries */
1962		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1963
1964		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1965		    unlikely(signal_group_exit(sig)))
1966			return false;
1967		/*
1968		 * There is no group stop already in progress.  We must
1969		 * initiate one now.
1970		 *
1971		 * While ptraced, a task may be resumed while group stop is
1972		 * still in effect and then receive a stop signal and
1973		 * initiate another group stop.  This deviates from the
1974		 * usual behavior as two consecutive stop signals can't
1975		 * cause two group stops when !ptraced.  That is why we
1976		 * also check !task_is_stopped(t) below.
1977		 *
1978		 * The condition can be distinguished by testing whether
1979		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1980		 * group_exit_code in such case.
1981		 *
1982		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1983		 * an intervening stop signal is required to cause two
1984		 * continued events regardless of ptrace.
1985		 */
1986		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1987			sig->group_exit_code = signr;
 
 
1988
1989		sig->group_stop_count = 0;
1990
1991		if (task_set_jobctl_pending(current, signr | gstop))
1992			sig->group_stop_count++;
1993
1994		t = current;
1995		while_each_thread(current, t) {
1996			/*
1997			 * Setting state to TASK_STOPPED for a group
1998			 * stop is always done with the siglock held,
1999			 * so this check has no races.
2000			 */
2001			if (!task_is_stopped(t) &&
2002			    task_set_jobctl_pending(t, signr | gstop)) {
2003				sig->group_stop_count++;
2004				if (likely(!(t->ptrace & PT_SEIZED)))
2005					signal_wake_up(t, 0);
2006				else
2007					ptrace_trap_notify(t);
2008			}
2009		}
2010	}
2011
2012	if (likely(!current->ptrace)) {
2013		int notify = 0;
2014
2015		/*
2016		 * If there are no other threads in the group, or if there
2017		 * is a group stop in progress and we are the last to stop,
2018		 * report to the parent.
2019		 */
2020		if (task_participate_group_stop(current))
2021			notify = CLD_STOPPED;
2022
2023		__set_current_state(TASK_STOPPED);
2024		spin_unlock_irq(&current->sighand->siglock);
2025
2026		/*
2027		 * Notify the parent of the group stop completion.  Because
2028		 * we're not holding either the siglock or tasklist_lock
2029		 * here, ptracer may attach inbetween; however, this is for
2030		 * group stop and should always be delivered to the real
2031		 * parent of the group leader.  The new ptracer will get
2032		 * its notification when this task transitions into
2033		 * TASK_TRACED.
2034		 */
2035		if (notify) {
2036			read_lock(&tasklist_lock);
2037			do_notify_parent_cldstop(current, false, notify);
2038			read_unlock(&tasklist_lock);
2039		}
2040
2041		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2042		freezable_schedule();
2043		return true;
2044	} else {
2045		/*
2046		 * While ptraced, group stop is handled by STOP trap.
2047		 * Schedule it and let the caller deal with it.
2048		 */
2049		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2050		return false;
2051	}
2052}
2053
2054/**
2055 * do_jobctl_trap - take care of ptrace jobctl traps
2056 *
2057 * When PT_SEIZED, it's used for both group stop and explicit
2058 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2059 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2060 * the stop signal; otherwise, %SIGTRAP.
2061 *
2062 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2063 * number as exit_code and no siginfo.
2064 *
2065 * CONTEXT:
2066 * Must be called with @current->sighand->siglock held, which may be
2067 * released and re-acquired before returning with intervening sleep.
2068 */
2069static void do_jobctl_trap(void)
2070{
2071	struct signal_struct *signal = current->signal;
2072	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2073
2074	if (current->ptrace & PT_SEIZED) {
2075		if (!signal->group_stop_count &&
2076		    !(signal->flags & SIGNAL_STOP_STOPPED))
2077			signr = SIGTRAP;
2078		WARN_ON_ONCE(!signr);
2079		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2080				 CLD_STOPPED);
2081	} else {
2082		WARN_ON_ONCE(!signr);
2083		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2084		current->exit_code = 0;
2085	}
2086}
2087
2088static int ptrace_signal(int signr, siginfo_t *info)
 
2089{
2090	ptrace_signal_deliver();
2091	/*
2092	 * We do not check sig_kernel_stop(signr) but set this marker
2093	 * unconditionally because we do not know whether debugger will
2094	 * change signr. This flag has no meaning unless we are going
2095	 * to stop after return from ptrace_stop(). In this case it will
2096	 * be checked in do_signal_stop(), we should only stop if it was
2097	 * not cleared by SIGCONT while we were sleeping. See also the
2098	 * comment in dequeue_signal().
2099	 */
2100	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2101	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2102
2103	/* We're back.  Did the debugger cancel the sig?  */
2104	signr = current->exit_code;
2105	if (signr == 0)
2106		return signr;
2107
2108	current->exit_code = 0;
2109
2110	/*
2111	 * Update the siginfo structure if the signal has
2112	 * changed.  If the debugger wanted something
2113	 * specific in the siginfo structure then it should
2114	 * have updated *info via PTRACE_SETSIGINFO.
2115	 */
2116	if (signr != info->si_signo) {
2117		info->si_signo = signr;
2118		info->si_errno = 0;
2119		info->si_code = SI_USER;
2120		rcu_read_lock();
2121		info->si_pid = task_pid_vnr(current->parent);
2122		info->si_uid = from_kuid_munged(current_user_ns(),
2123						task_uid(current->parent));
2124		rcu_read_unlock();
2125	}
2126
2127	/* If the (new) signal is now blocked, requeue it.  */
2128	if (sigismember(&current->blocked, signr)) {
2129		specific_send_sig_info(signr, info, current);
2130		signr = 0;
2131	}
2132
2133	return signr;
2134}
2135
2136int get_signal(struct ksignal *ksig)
 
2137{
2138	struct sighand_struct *sighand = current->sighand;
2139	struct signal_struct *signal = current->signal;
2140	int signr;
2141
2142	if (unlikely(current->task_works))
2143		task_work_run();
2144
2145	if (unlikely(uprobe_deny_signal()))
2146		return 0;
2147
2148	/*
2149	 * Do this once, we can't return to user-mode if freezing() == T.
2150	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2151	 * thus do not need another check after return.
 
2152	 */
2153	try_to_freeze();
2154
2155relock:
2156	spin_lock_irq(&sighand->siglock);
2157	/*
2158	 * Every stopped thread goes here after wakeup. Check to see if
2159	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2160	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2161	 */
2162	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2163		int why;
2164
2165		if (signal->flags & SIGNAL_CLD_CONTINUED)
2166			why = CLD_CONTINUED;
2167		else
2168			why = CLD_STOPPED;
2169
2170		signal->flags &= ~SIGNAL_CLD_MASK;
2171
2172		spin_unlock_irq(&sighand->siglock);
2173
2174		/*
2175		 * Notify the parent that we're continuing.  This event is
2176		 * always per-process and doesn't make whole lot of sense
2177		 * for ptracers, who shouldn't consume the state via
2178		 * wait(2) either, but, for backward compatibility, notify
2179		 * the ptracer of the group leader too unless it's gonna be
2180		 * a duplicate.
2181		 */
2182		read_lock(&tasklist_lock);
2183		do_notify_parent_cldstop(current, false, why);
2184
2185		if (ptrace_reparented(current->group_leader))
2186			do_notify_parent_cldstop(current->group_leader,
2187						true, why);
2188		read_unlock(&tasklist_lock);
2189
2190		goto relock;
2191	}
2192
2193	for (;;) {
2194		struct k_sigaction *ka;
2195
2196		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2197		    do_signal_stop(0))
2198			goto relock;
2199
2200		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2201			do_jobctl_trap();
2202			spin_unlock_irq(&sighand->siglock);
2203			goto relock;
2204		}
2205
2206		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2207
2208		if (!signr)
2209			break; /* will return 0 */
2210
2211		if (unlikely(current->ptrace) && signr != SIGKILL) {
2212			signr = ptrace_signal(signr, &ksig->info);
 
2213			if (!signr)
2214				continue;
2215		}
2216
2217		ka = &sighand->action[signr-1];
2218
2219		/* Trace actually delivered signals. */
2220		trace_signal_deliver(signr, &ksig->info, ka);
2221
2222		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2223			continue;
2224		if (ka->sa.sa_handler != SIG_DFL) {
2225			/* Run the handler.  */
2226			ksig->ka = *ka;
2227
2228			if (ka->sa.sa_flags & SA_ONESHOT)
2229				ka->sa.sa_handler = SIG_DFL;
2230
2231			break; /* will return non-zero "signr" value */
2232		}
2233
2234		/*
2235		 * Now we are doing the default action for this signal.
2236		 */
2237		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2238			continue;
2239
2240		/*
2241		 * Global init gets no signals it doesn't want.
2242		 * Container-init gets no signals it doesn't want from same
2243		 * container.
2244		 *
2245		 * Note that if global/container-init sees a sig_kernel_only()
2246		 * signal here, the signal must have been generated internally
2247		 * or must have come from an ancestor namespace. In either
2248		 * case, the signal cannot be dropped.
2249		 */
2250		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2251				!sig_kernel_only(signr))
2252			continue;
2253
2254		if (sig_kernel_stop(signr)) {
2255			/*
2256			 * The default action is to stop all threads in
2257			 * the thread group.  The job control signals
2258			 * do nothing in an orphaned pgrp, but SIGSTOP
2259			 * always works.  Note that siglock needs to be
2260			 * dropped during the call to is_orphaned_pgrp()
2261			 * because of lock ordering with tasklist_lock.
2262			 * This allows an intervening SIGCONT to be posted.
2263			 * We need to check for that and bail out if necessary.
2264			 */
2265			if (signr != SIGSTOP) {
2266				spin_unlock_irq(&sighand->siglock);
2267
2268				/* signals can be posted during this window */
2269
2270				if (is_current_pgrp_orphaned())
2271					goto relock;
2272
2273				spin_lock_irq(&sighand->siglock);
2274			}
2275
2276			if (likely(do_signal_stop(ksig->info.si_signo))) {
2277				/* It released the siglock.  */
2278				goto relock;
2279			}
2280
2281			/*
2282			 * We didn't actually stop, due to a race
2283			 * with SIGCONT or something like that.
2284			 */
2285			continue;
2286		}
2287
2288		spin_unlock_irq(&sighand->siglock);
2289
2290		/*
2291		 * Anything else is fatal, maybe with a core dump.
2292		 */
2293		current->flags |= PF_SIGNALED;
2294
2295		if (sig_kernel_coredump(signr)) {
2296			if (print_fatal_signals)
2297				print_fatal_signal(ksig->info.si_signo);
2298			proc_coredump_connector(current);
2299			/*
2300			 * If it was able to dump core, this kills all
2301			 * other threads in the group and synchronizes with
2302			 * their demise.  If we lost the race with another
2303			 * thread getting here, it set group_exit_code
2304			 * first and our do_group_exit call below will use
2305			 * that value and ignore the one we pass it.
2306			 */
2307			do_coredump(&ksig->info);
2308		}
2309
2310		/*
2311		 * Death signals, no core dump.
2312		 */
2313		do_group_exit(ksig->info.si_signo);
2314		/* NOTREACHED */
2315	}
2316	spin_unlock_irq(&sighand->siglock);
2317
2318	ksig->sig = signr;
2319	return ksig->sig > 0;
2320}
2321
2322/**
2323 * signal_delivered - 
2324 * @ksig:		kernel signal struct
2325 * @stepping:		nonzero if debugger single-step or block-step in use
2326 *
2327 * This function should be called when a signal has successfully been
2328 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2329 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2330 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2331 */
2332static void signal_delivered(struct ksignal *ksig, int stepping)
2333{
2334	sigset_t blocked;
2335
2336	/* A signal was successfully delivered, and the
2337	   saved sigmask was stored on the signal frame,
2338	   and will be restored by sigreturn.  So we can
2339	   simply clear the restore sigmask flag.  */
2340	clear_restore_sigmask();
2341
2342	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2343	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2344		sigaddset(&blocked, ksig->sig);
2345	set_current_blocked(&blocked);
2346	tracehook_signal_handler(stepping);
2347}
2348
2349void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2350{
2351	if (failed)
2352		force_sigsegv(ksig->sig, current);
2353	else
2354		signal_delivered(ksig, stepping);
2355}
2356
2357/*
2358 * It could be that complete_signal() picked us to notify about the
2359 * group-wide signal. Other threads should be notified now to take
2360 * the shared signals in @which since we will not.
2361 */
2362static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2363{
2364	sigset_t retarget;
2365	struct task_struct *t;
2366
2367	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2368	if (sigisemptyset(&retarget))
2369		return;
2370
2371	t = tsk;
2372	while_each_thread(tsk, t) {
2373		if (t->flags & PF_EXITING)
2374			continue;
2375
2376		if (!has_pending_signals(&retarget, &t->blocked))
2377			continue;
2378		/* Remove the signals this thread can handle. */
2379		sigandsets(&retarget, &retarget, &t->blocked);
2380
2381		if (!signal_pending(t))
2382			signal_wake_up(t, 0);
2383
2384		if (sigisemptyset(&retarget))
2385			break;
2386	}
2387}
2388
2389void exit_signals(struct task_struct *tsk)
2390{
2391	int group_stop = 0;
2392	sigset_t unblocked;
2393
2394	/*
2395	 * @tsk is about to have PF_EXITING set - lock out users which
2396	 * expect stable threadgroup.
2397	 */
2398	threadgroup_change_begin(tsk);
2399
2400	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2401		tsk->flags |= PF_EXITING;
2402		threadgroup_change_end(tsk);
2403		return;
2404	}
2405
2406	spin_lock_irq(&tsk->sighand->siglock);
2407	/*
2408	 * From now this task is not visible for group-wide signals,
2409	 * see wants_signal(), do_signal_stop().
2410	 */
2411	tsk->flags |= PF_EXITING;
2412
2413	threadgroup_change_end(tsk);
2414
2415	if (!signal_pending(tsk))
2416		goto out;
2417
2418	unblocked = tsk->blocked;
2419	signotset(&unblocked);
2420	retarget_shared_pending(tsk, &unblocked);
2421
2422	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2423	    task_participate_group_stop(tsk))
2424		group_stop = CLD_STOPPED;
2425out:
2426	spin_unlock_irq(&tsk->sighand->siglock);
2427
2428	/*
2429	 * If group stop has completed, deliver the notification.  This
2430	 * should always go to the real parent of the group leader.
2431	 */
2432	if (unlikely(group_stop)) {
2433		read_lock(&tasklist_lock);
2434		do_notify_parent_cldstop(tsk, false, group_stop);
2435		read_unlock(&tasklist_lock);
2436	}
2437}
2438
2439EXPORT_SYMBOL(recalc_sigpending);
2440EXPORT_SYMBOL_GPL(dequeue_signal);
2441EXPORT_SYMBOL(flush_signals);
2442EXPORT_SYMBOL(force_sig);
2443EXPORT_SYMBOL(send_sig);
2444EXPORT_SYMBOL(send_sig_info);
2445EXPORT_SYMBOL(sigprocmask);
 
 
 
2446
2447/*
2448 * System call entry points.
2449 */
2450
2451/**
2452 *  sys_restart_syscall - restart a system call
2453 */
2454SYSCALL_DEFINE0(restart_syscall)
2455{
2456	struct restart_block *restart = &current->restart_block;
2457	return restart->fn(restart);
2458}
2459
2460long do_no_restart_syscall(struct restart_block *param)
2461{
2462	return -EINTR;
2463}
2464
2465static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2466{
2467	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2468		sigset_t newblocked;
2469		/* A set of now blocked but previously unblocked signals. */
2470		sigandnsets(&newblocked, newset, &current->blocked);
2471		retarget_shared_pending(tsk, &newblocked);
2472	}
2473	tsk->blocked = *newset;
2474	recalc_sigpending();
2475}
2476
2477/**
2478 * set_current_blocked - change current->blocked mask
2479 * @newset: new mask
2480 *
2481 * It is wrong to change ->blocked directly, this helper should be used
2482 * to ensure the process can't miss a shared signal we are going to block.
2483 */
2484void set_current_blocked(sigset_t *newset)
2485{
2486	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2487	__set_current_blocked(newset);
2488}
2489
2490void __set_current_blocked(const sigset_t *newset)
2491{
2492	struct task_struct *tsk = current;
2493
2494	/*
2495	 * In case the signal mask hasn't changed, there is nothing we need
2496	 * to do. The current->blocked shouldn't be modified by other task.
2497	 */
2498	if (sigequalsets(&tsk->blocked, newset))
2499		return;
2500
2501	spin_lock_irq(&tsk->sighand->siglock);
2502	__set_task_blocked(tsk, newset);
2503	spin_unlock_irq(&tsk->sighand->siglock);
2504}
2505
2506/*
2507 * This is also useful for kernel threads that want to temporarily
2508 * (or permanently) block certain signals.
2509 *
2510 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2511 * interface happily blocks "unblockable" signals like SIGKILL
2512 * and friends.
2513 */
2514int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2515{
2516	struct task_struct *tsk = current;
2517	sigset_t newset;
2518
2519	/* Lockless, only current can change ->blocked, never from irq */
2520	if (oldset)
2521		*oldset = tsk->blocked;
2522
2523	switch (how) {
2524	case SIG_BLOCK:
2525		sigorsets(&newset, &tsk->blocked, set);
2526		break;
2527	case SIG_UNBLOCK:
2528		sigandnsets(&newset, &tsk->blocked, set);
2529		break;
2530	case SIG_SETMASK:
2531		newset = *set;
2532		break;
2533	default:
2534		return -EINVAL;
2535	}
2536
2537	__set_current_blocked(&newset);
2538	return 0;
2539}
2540
2541/**
2542 *  sys_rt_sigprocmask - change the list of currently blocked signals
2543 *  @how: whether to add, remove, or set signals
2544 *  @nset: stores pending signals
2545 *  @oset: previous value of signal mask if non-null
2546 *  @sigsetsize: size of sigset_t type
2547 */
2548SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2549		sigset_t __user *, oset, size_t, sigsetsize)
2550{
2551	sigset_t old_set, new_set;
2552	int error;
2553
2554	/* XXX: Don't preclude handling different sized sigset_t's.  */
2555	if (sigsetsize != sizeof(sigset_t))
2556		return -EINVAL;
2557
2558	old_set = current->blocked;
2559
2560	if (nset) {
2561		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2562			return -EFAULT;
2563		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2564
2565		error = sigprocmask(how, &new_set, NULL);
2566		if (error)
2567			return error;
2568	}
2569
2570	if (oset) {
2571		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2572			return -EFAULT;
2573	}
2574
2575	return 0;
2576}
2577
2578#ifdef CONFIG_COMPAT
2579COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2580		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2581{
2582#ifdef __BIG_ENDIAN
2583	sigset_t old_set = current->blocked;
2584
2585	/* XXX: Don't preclude handling different sized sigset_t's.  */
2586	if (sigsetsize != sizeof(sigset_t))
2587		return -EINVAL;
2588
2589	if (nset) {
2590		compat_sigset_t new32;
2591		sigset_t new_set;
2592		int error;
2593		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2594			return -EFAULT;
2595
2596		sigset_from_compat(&new_set, &new32);
2597		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2598
2599		error = sigprocmask(how, &new_set, NULL);
2600		if (error)
2601			return error;
2602	}
2603	if (oset) {
2604		compat_sigset_t old32;
2605		sigset_to_compat(&old32, &old_set);
2606		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2607			return -EFAULT;
2608	}
2609	return 0;
2610#else
2611	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2612				  (sigset_t __user *)oset, sigsetsize);
2613#endif
2614}
2615#endif
2616
2617static int do_sigpending(void *set, unsigned long sigsetsize)
2618{
2619	if (sigsetsize > sizeof(sigset_t))
2620		return -EINVAL;
2621
2622	spin_lock_irq(&current->sighand->siglock);
2623	sigorsets(set, &current->pending.signal,
2624		  &current->signal->shared_pending.signal);
2625	spin_unlock_irq(&current->sighand->siglock);
2626
2627	/* Outside the lock because only this thread touches it.  */
2628	sigandsets(set, &current->blocked, set);
2629	return 0;
 
 
 
 
 
 
2630}
2631
2632/**
2633 *  sys_rt_sigpending - examine a pending signal that has been raised
2634 *			while blocked
2635 *  @uset: stores pending signals
2636 *  @sigsetsize: size of sigset_t type or larger
2637 */
2638SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2639{
2640	sigset_t set;
2641	int err = do_sigpending(&set, sigsetsize);
2642	if (!err && copy_to_user(uset, &set, sigsetsize))
2643		err = -EFAULT;
2644	return err;
2645}
2646
2647#ifdef CONFIG_COMPAT
2648COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2649		compat_size_t, sigsetsize)
2650{
2651#ifdef __BIG_ENDIAN
2652	sigset_t set;
2653	int err = do_sigpending(&set, sigsetsize);
2654	if (!err) {
2655		compat_sigset_t set32;
2656		sigset_to_compat(&set32, &set);
2657		/* we can get here only if sigsetsize <= sizeof(set) */
2658		if (copy_to_user(uset, &set32, sigsetsize))
2659			err = -EFAULT;
2660	}
2661	return err;
2662#else
2663	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2664#endif
2665}
2666#endif
2667
2668#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2669
2670int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2671{
2672	int err;
2673
2674	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2675		return -EFAULT;
2676	if (from->si_code < 0)
2677		return __copy_to_user(to, from, sizeof(siginfo_t))
2678			? -EFAULT : 0;
2679	/*
2680	 * If you change siginfo_t structure, please be sure
2681	 * this code is fixed accordingly.
2682	 * Please remember to update the signalfd_copyinfo() function
2683	 * inside fs/signalfd.c too, in case siginfo_t changes.
2684	 * It should never copy any pad contained in the structure
2685	 * to avoid security leaks, but must copy the generic
2686	 * 3 ints plus the relevant union member.
2687	 */
2688	err = __put_user(from->si_signo, &to->si_signo);
2689	err |= __put_user(from->si_errno, &to->si_errno);
2690	err |= __put_user((short)from->si_code, &to->si_code);
2691	switch (from->si_code & __SI_MASK) {
2692	case __SI_KILL:
2693		err |= __put_user(from->si_pid, &to->si_pid);
2694		err |= __put_user(from->si_uid, &to->si_uid);
2695		break;
2696	case __SI_TIMER:
2697		 err |= __put_user(from->si_tid, &to->si_tid);
2698		 err |= __put_user(from->si_overrun, &to->si_overrun);
2699		 err |= __put_user(from->si_ptr, &to->si_ptr);
2700		break;
2701	case __SI_POLL:
2702		err |= __put_user(from->si_band, &to->si_band);
2703		err |= __put_user(from->si_fd, &to->si_fd);
2704		break;
2705	case __SI_FAULT:
2706		err |= __put_user(from->si_addr, &to->si_addr);
2707#ifdef __ARCH_SI_TRAPNO
2708		err |= __put_user(from->si_trapno, &to->si_trapno);
2709#endif
2710#ifdef BUS_MCEERR_AO
2711		/*
2712		 * Other callers might not initialize the si_lsb field,
2713		 * so check explicitly for the right codes here.
2714		 */
2715		if (from->si_signo == SIGBUS &&
2716		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2717			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2718#endif
2719#ifdef SEGV_BNDERR
2720		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2721			err |= __put_user(from->si_lower, &to->si_lower);
2722			err |= __put_user(from->si_upper, &to->si_upper);
2723		}
2724#endif
2725#ifdef SEGV_PKUERR
2726		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2727			err |= __put_user(from->si_pkey, &to->si_pkey);
2728#endif
2729		break;
2730	case __SI_CHLD:
2731		err |= __put_user(from->si_pid, &to->si_pid);
2732		err |= __put_user(from->si_uid, &to->si_uid);
2733		err |= __put_user(from->si_status, &to->si_status);
2734		err |= __put_user(from->si_utime, &to->si_utime);
2735		err |= __put_user(from->si_stime, &to->si_stime);
2736		break;
2737	case __SI_RT: /* This is not generated by the kernel as of now. */
2738	case __SI_MESGQ: /* But this is */
2739		err |= __put_user(from->si_pid, &to->si_pid);
2740		err |= __put_user(from->si_uid, &to->si_uid);
2741		err |= __put_user(from->si_ptr, &to->si_ptr);
2742		break;
2743#ifdef __ARCH_SIGSYS
2744	case __SI_SYS:
2745		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2746		err |= __put_user(from->si_syscall, &to->si_syscall);
2747		err |= __put_user(from->si_arch, &to->si_arch);
2748		break;
2749#endif
2750	default: /* this is just in case for now ... */
2751		err |= __put_user(from->si_pid, &to->si_pid);
2752		err |= __put_user(from->si_uid, &to->si_uid);
2753		break;
2754	}
2755	return err;
2756}
2757
2758#endif
2759
2760/**
2761 *  do_sigtimedwait - wait for queued signals specified in @which
2762 *  @which: queued signals to wait for
2763 *  @info: if non-null, the signal's siginfo is returned here
2764 *  @ts: upper bound on process time suspension
2765 */
2766int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2767		    const struct timespec *ts)
2768{
2769	ktime_t *to = NULL, timeout = KTIME_MAX;
2770	struct task_struct *tsk = current;
 
2771	sigset_t mask = *which;
2772	int sig, ret = 0;
2773
2774	if (ts) {
2775		if (!timespec_valid(ts))
2776			return -EINVAL;
2777		timeout = timespec_to_ktime(*ts);
2778		to = &timeout;
 
 
 
 
 
2779	}
2780
2781	/*
2782	 * Invert the set of allowed signals to get those we want to block.
2783	 */
2784	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2785	signotset(&mask);
2786
2787	spin_lock_irq(&tsk->sighand->siglock);
2788	sig = dequeue_signal(tsk, &mask, info);
2789	if (!sig && timeout) {
2790		/*
2791		 * None ready, temporarily unblock those we're interested
2792		 * while we are sleeping in so that we'll be awakened when
2793		 * they arrive. Unblocking is always fine, we can avoid
2794		 * set_current_blocked().
2795		 */
2796		tsk->real_blocked = tsk->blocked;
2797		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2798		recalc_sigpending();
2799		spin_unlock_irq(&tsk->sighand->siglock);
2800
2801		__set_current_state(TASK_INTERRUPTIBLE);
2802		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2803							 HRTIMER_MODE_REL);
2804		spin_lock_irq(&tsk->sighand->siglock);
2805		__set_task_blocked(tsk, &tsk->real_blocked);
2806		sigemptyset(&tsk->real_blocked);
2807		sig = dequeue_signal(tsk, &mask, info);
2808	}
2809	spin_unlock_irq(&tsk->sighand->siglock);
2810
2811	if (sig)
2812		return sig;
2813	return ret ? -EINTR : -EAGAIN;
2814}
2815
2816/**
2817 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2818 *			in @uthese
2819 *  @uthese: queued signals to wait for
2820 *  @uinfo: if non-null, the signal's siginfo is returned here
2821 *  @uts: upper bound on process time suspension
2822 *  @sigsetsize: size of sigset_t type
2823 */
2824SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2825		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2826		size_t, sigsetsize)
2827{
2828	sigset_t these;
2829	struct timespec ts;
2830	siginfo_t info;
2831	int ret;
2832
2833	/* XXX: Don't preclude handling different sized sigset_t's.  */
2834	if (sigsetsize != sizeof(sigset_t))
2835		return -EINVAL;
2836
2837	if (copy_from_user(&these, uthese, sizeof(these)))
2838		return -EFAULT;
2839
2840	if (uts) {
2841		if (copy_from_user(&ts, uts, sizeof(ts)))
2842			return -EFAULT;
2843	}
2844
2845	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2846
2847	if (ret > 0 && uinfo) {
2848		if (copy_siginfo_to_user(uinfo, &info))
2849			ret = -EFAULT;
2850	}
2851
2852	return ret;
2853}
2854
2855/**
2856 *  sys_kill - send a signal to a process
2857 *  @pid: the PID of the process
2858 *  @sig: signal to be sent
2859 */
2860SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2861{
2862	struct siginfo info;
2863
2864	info.si_signo = sig;
2865	info.si_errno = 0;
2866	info.si_code = SI_USER;
2867	info.si_pid = task_tgid_vnr(current);
2868	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2869
2870	return kill_something_info(sig, &info, pid);
2871}
2872
2873static int
2874do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2875{
2876	struct task_struct *p;
2877	int error = -ESRCH;
2878
2879	rcu_read_lock();
2880	p = find_task_by_vpid(pid);
2881	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2882		error = check_kill_permission(sig, info, p);
2883		/*
2884		 * The null signal is a permissions and process existence
2885		 * probe.  No signal is actually delivered.
2886		 */
2887		if (!error && sig) {
2888			error = do_send_sig_info(sig, info, p, false);
2889			/*
2890			 * If lock_task_sighand() failed we pretend the task
2891			 * dies after receiving the signal. The window is tiny,
2892			 * and the signal is private anyway.
2893			 */
2894			if (unlikely(error == -ESRCH))
2895				error = 0;
2896		}
2897	}
2898	rcu_read_unlock();
2899
2900	return error;
2901}
2902
2903static int do_tkill(pid_t tgid, pid_t pid, int sig)
2904{
2905	struct siginfo info = {};
2906
2907	info.si_signo = sig;
2908	info.si_errno = 0;
2909	info.si_code = SI_TKILL;
2910	info.si_pid = task_tgid_vnr(current);
2911	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2912
2913	return do_send_specific(tgid, pid, sig, &info);
2914}
2915
2916/**
2917 *  sys_tgkill - send signal to one specific thread
2918 *  @tgid: the thread group ID of the thread
2919 *  @pid: the PID of the thread
2920 *  @sig: signal to be sent
2921 *
2922 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2923 *  exists but it's not belonging to the target process anymore. This
2924 *  method solves the problem of threads exiting and PIDs getting reused.
2925 */
2926SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2927{
2928	/* This is only valid for single tasks */
2929	if (pid <= 0 || tgid <= 0)
2930		return -EINVAL;
2931
2932	return do_tkill(tgid, pid, sig);
2933}
2934
2935/**
2936 *  sys_tkill - send signal to one specific task
2937 *  @pid: the PID of the task
2938 *  @sig: signal to be sent
2939 *
2940 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2941 */
2942SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2943{
2944	/* This is only valid for single tasks */
2945	if (pid <= 0)
2946		return -EINVAL;
2947
2948	return do_tkill(0, pid, sig);
2949}
2950
2951static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2952{
2953	/* Not even root can pretend to send signals from the kernel.
2954	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2955	 */
2956	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2957	    (task_pid_vnr(current) != pid))
2958		return -EPERM;
2959
2960	info->si_signo = sig;
2961
2962	/* POSIX.1b doesn't mention process groups.  */
2963	return kill_proc_info(sig, info, pid);
2964}
2965
2966/**
2967 *  sys_rt_sigqueueinfo - send signal information to a signal
2968 *  @pid: the PID of the thread
2969 *  @sig: signal to be sent
2970 *  @uinfo: signal info to be sent
2971 */
2972SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2973		siginfo_t __user *, uinfo)
2974{
2975	siginfo_t info;
 
2976	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2977		return -EFAULT;
2978	return do_rt_sigqueueinfo(pid, sig, &info);
2979}
2980
2981#ifdef CONFIG_COMPAT
2982COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2983			compat_pid_t, pid,
2984			int, sig,
2985			struct compat_siginfo __user *, uinfo)
2986{
2987	siginfo_t info = {};
2988	int ret = copy_siginfo_from_user32(&info, uinfo);
2989	if (unlikely(ret))
2990		return ret;
2991	return do_rt_sigqueueinfo(pid, sig, &info);
 
2992}
2993#endif
2994
2995static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2996{
2997	/* This is only valid for single tasks */
2998	if (pid <= 0 || tgid <= 0)
2999		return -EINVAL;
3000
3001	/* Not even root can pretend to send signals from the kernel.
3002	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3003	 */
3004	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3005	    (task_pid_vnr(current) != pid))
 
3006		return -EPERM;
3007
3008	info->si_signo = sig;
3009
3010	return do_send_specific(tgid, pid, sig, info);
3011}
3012
3013SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3014		siginfo_t __user *, uinfo)
3015{
3016	siginfo_t info;
3017
3018	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3019		return -EFAULT;
3020
3021	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3022}
3023
3024#ifdef CONFIG_COMPAT
3025COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3026			compat_pid_t, tgid,
3027			compat_pid_t, pid,
3028			int, sig,
3029			struct compat_siginfo __user *, uinfo)
3030{
3031	siginfo_t info = {};
3032
3033	if (copy_siginfo_from_user32(&info, uinfo))
3034		return -EFAULT;
3035	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3036}
3037#endif
3038
3039/*
3040 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3041 */
3042void kernel_sigaction(int sig, __sighandler_t action)
3043{
3044	spin_lock_irq(&current->sighand->siglock);
3045	current->sighand->action[sig - 1].sa.sa_handler = action;
3046	if (action == SIG_IGN) {
3047		sigset_t mask;
3048
3049		sigemptyset(&mask);
3050		sigaddset(&mask, sig);
3051
3052		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3053		flush_sigqueue_mask(&mask, &current->pending);
3054		recalc_sigpending();
3055	}
3056	spin_unlock_irq(&current->sighand->siglock);
3057}
3058EXPORT_SYMBOL(kernel_sigaction);
3059
3060void __weak sigaction_compat_abi(struct k_sigaction *act,
3061		struct k_sigaction *oact)
3062{
3063}
3064
3065int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3066{
3067	struct task_struct *p = current, *t;
3068	struct k_sigaction *k;
3069	sigset_t mask;
3070
3071	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3072		return -EINVAL;
3073
3074	k = &p->sighand->action[sig-1];
3075
3076	spin_lock_irq(&p->sighand->siglock);
3077	if (oact)
3078		*oact = *k;
3079
3080	sigaction_compat_abi(act, oact);
3081
3082	if (act) {
3083		sigdelsetmask(&act->sa.sa_mask,
3084			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3085		*k = *act;
3086		/*
3087		 * POSIX 3.3.1.3:
3088		 *  "Setting a signal action to SIG_IGN for a signal that is
3089		 *   pending shall cause the pending signal to be discarded,
3090		 *   whether or not it is blocked."
3091		 *
3092		 *  "Setting a signal action to SIG_DFL for a signal that is
3093		 *   pending and whose default action is to ignore the signal
3094		 *   (for example, SIGCHLD), shall cause the pending signal to
3095		 *   be discarded, whether or not it is blocked"
3096		 */
3097		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3098			sigemptyset(&mask);
3099			sigaddset(&mask, sig);
3100			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3101			for_each_thread(p, t)
3102				flush_sigqueue_mask(&mask, &t->pending);
 
 
3103		}
3104	}
3105
3106	spin_unlock_irq(&p->sighand->siglock);
3107	return 0;
3108}
3109
3110static int
3111do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3112{
3113	stack_t oss;
3114	int error;
3115
3116	oss.ss_sp = (void __user *) current->sas_ss_sp;
3117	oss.ss_size = current->sas_ss_size;
3118	oss.ss_flags = sas_ss_flags(sp) |
3119		(current->sas_ss_flags & SS_FLAG_BITS);
3120
3121	if (uss) {
3122		void __user *ss_sp;
3123		size_t ss_size;
3124		unsigned ss_flags;
3125		int ss_mode;
3126
3127		error = -EFAULT;
3128		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3129			goto out;
3130		error = __get_user(ss_sp, &uss->ss_sp) |
3131			__get_user(ss_flags, &uss->ss_flags) |
3132			__get_user(ss_size, &uss->ss_size);
3133		if (error)
3134			goto out;
3135
3136		error = -EPERM;
3137		if (on_sig_stack(sp))
3138			goto out;
3139
3140		ss_mode = ss_flags & ~SS_FLAG_BITS;
3141		error = -EINVAL;
3142		if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3143				ss_mode != 0)
 
 
 
 
 
 
3144			goto out;
3145
3146		if (ss_mode == SS_DISABLE) {
3147			ss_size = 0;
3148			ss_sp = NULL;
3149		} else {
3150			error = -ENOMEM;
3151			if (ss_size < MINSIGSTKSZ)
3152				goto out;
3153		}
3154
3155		current->sas_ss_sp = (unsigned long) ss_sp;
3156		current->sas_ss_size = ss_size;
3157		current->sas_ss_flags = ss_flags;
3158	}
3159
3160	error = 0;
3161	if (uoss) {
3162		error = -EFAULT;
3163		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3164			goto out;
3165		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3166			__put_user(oss.ss_size, &uoss->ss_size) |
3167			__put_user(oss.ss_flags, &uoss->ss_flags);
3168	}
3169
3170out:
3171	return error;
3172}
3173SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3174{
3175	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3176}
3177
3178int restore_altstack(const stack_t __user *uss)
3179{
3180	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3181	/* squash all but EFAULT for now */
3182	return err == -EFAULT ? err : 0;
3183}
3184
3185int __save_altstack(stack_t __user *uss, unsigned long sp)
3186{
3187	struct task_struct *t = current;
3188	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3189		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3190		__put_user(t->sas_ss_size, &uss->ss_size);
3191	if (err)
3192		return err;
3193	if (t->sas_ss_flags & SS_AUTODISARM)
3194		sas_ss_reset(t);
3195	return 0;
3196}
3197
3198#ifdef CONFIG_COMPAT
3199COMPAT_SYSCALL_DEFINE2(sigaltstack,
3200			const compat_stack_t __user *, uss_ptr,
3201			compat_stack_t __user *, uoss_ptr)
3202{
3203	stack_t uss, uoss;
3204	int ret;
3205	mm_segment_t seg;
3206
3207	if (uss_ptr) {
3208		compat_stack_t uss32;
3209
3210		memset(&uss, 0, sizeof(stack_t));
3211		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3212			return -EFAULT;
3213		uss.ss_sp = compat_ptr(uss32.ss_sp);
3214		uss.ss_flags = uss32.ss_flags;
3215		uss.ss_size = uss32.ss_size;
3216	}
3217	seg = get_fs();
3218	set_fs(KERNEL_DS);
3219	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3220			     (stack_t __force __user *) &uoss,
3221			     compat_user_stack_pointer());
3222	set_fs(seg);
3223	if (ret >= 0 && uoss_ptr)  {
3224		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3225		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3226		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3227		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3228			ret = -EFAULT;
3229	}
3230	return ret;
3231}
3232
3233int compat_restore_altstack(const compat_stack_t __user *uss)
3234{
3235	int err = compat_sys_sigaltstack(uss, NULL);
3236	/* squash all but -EFAULT for now */
3237	return err == -EFAULT ? err : 0;
3238}
3239
3240int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3241{
3242	int err;
3243	struct task_struct *t = current;
3244	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3245			 &uss->ss_sp) |
3246		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3247		__put_user(t->sas_ss_size, &uss->ss_size);
3248	if (err)
3249		return err;
3250	if (t->sas_ss_flags & SS_AUTODISARM)
3251		sas_ss_reset(t);
3252	return 0;
3253}
3254#endif
3255
3256#ifdef __ARCH_WANT_SYS_SIGPENDING
3257
3258/**
3259 *  sys_sigpending - examine pending signals
3260 *  @set: where mask of pending signal is returned
3261 */
3262SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3263{
3264	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3265}
3266
3267#endif
3268
3269#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3270/**
3271 *  sys_sigprocmask - examine and change blocked signals
3272 *  @how: whether to add, remove, or set signals
3273 *  @nset: signals to add or remove (if non-null)
3274 *  @oset: previous value of signal mask if non-null
3275 *
3276 * Some platforms have their own version with special arguments;
3277 * others support only sys_rt_sigprocmask.
3278 */
3279
3280SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3281		old_sigset_t __user *, oset)
3282{
3283	old_sigset_t old_set, new_set;
3284	sigset_t new_blocked;
3285
3286	old_set = current->blocked.sig[0];
3287
3288	if (nset) {
3289		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3290			return -EFAULT;
 
3291
3292		new_blocked = current->blocked;
3293
3294		switch (how) {
3295		case SIG_BLOCK:
3296			sigaddsetmask(&new_blocked, new_set);
3297			break;
3298		case SIG_UNBLOCK:
3299			sigdelsetmask(&new_blocked, new_set);
3300			break;
3301		case SIG_SETMASK:
3302			new_blocked.sig[0] = new_set;
3303			break;
3304		default:
3305			return -EINVAL;
3306		}
3307
3308		set_current_blocked(&new_blocked);
3309	}
3310
3311	if (oset) {
3312		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3313			return -EFAULT;
3314	}
3315
3316	return 0;
3317}
3318#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3319
3320#ifndef CONFIG_ODD_RT_SIGACTION
3321/**
3322 *  sys_rt_sigaction - alter an action taken by a process
3323 *  @sig: signal to be sent
3324 *  @act: new sigaction
3325 *  @oact: used to save the previous sigaction
3326 *  @sigsetsize: size of sigset_t type
3327 */
3328SYSCALL_DEFINE4(rt_sigaction, int, sig,
3329		const struct sigaction __user *, act,
3330		struct sigaction __user *, oact,
3331		size_t, sigsetsize)
3332{
3333	struct k_sigaction new_sa, old_sa;
3334	int ret = -EINVAL;
3335
3336	/* XXX: Don't preclude handling different sized sigset_t's.  */
3337	if (sigsetsize != sizeof(sigset_t))
3338		goto out;
3339
3340	if (act) {
3341		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3342			return -EFAULT;
3343	}
3344
3345	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3346
3347	if (!ret && oact) {
3348		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3349			return -EFAULT;
3350	}
3351out:
3352	return ret;
3353}
3354#ifdef CONFIG_COMPAT
3355COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3356		const struct compat_sigaction __user *, act,
3357		struct compat_sigaction __user *, oact,
3358		compat_size_t, sigsetsize)
3359{
3360	struct k_sigaction new_ka, old_ka;
3361	compat_sigset_t mask;
3362#ifdef __ARCH_HAS_SA_RESTORER
3363	compat_uptr_t restorer;
3364#endif
3365	int ret;
3366
3367	/* XXX: Don't preclude handling different sized sigset_t's.  */
3368	if (sigsetsize != sizeof(compat_sigset_t))
3369		return -EINVAL;
3370
3371	if (act) {
3372		compat_uptr_t handler;
3373		ret = get_user(handler, &act->sa_handler);
3374		new_ka.sa.sa_handler = compat_ptr(handler);
3375#ifdef __ARCH_HAS_SA_RESTORER
3376		ret |= get_user(restorer, &act->sa_restorer);
3377		new_ka.sa.sa_restorer = compat_ptr(restorer);
3378#endif
3379		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3380		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3381		if (ret)
3382			return -EFAULT;
3383		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3384	}
3385
3386	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3387	if (!ret && oact) {
3388		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3389		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3390			       &oact->sa_handler);
3391		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3392		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3395				&oact->sa_restorer);
3396#endif
3397	}
3398	return ret;
3399}
3400#endif
3401#endif /* !CONFIG_ODD_RT_SIGACTION */
3402
3403#ifdef CONFIG_OLD_SIGACTION
3404SYSCALL_DEFINE3(sigaction, int, sig,
3405		const struct old_sigaction __user *, act,
3406	        struct old_sigaction __user *, oact)
3407{
3408	struct k_sigaction new_ka, old_ka;
3409	int ret;
3410
3411	if (act) {
3412		old_sigset_t mask;
3413		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3414		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3415		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3416		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3417		    __get_user(mask, &act->sa_mask))
3418			return -EFAULT;
3419#ifdef __ARCH_HAS_KA_RESTORER
3420		new_ka.ka_restorer = NULL;
3421#endif
3422		siginitset(&new_ka.sa.sa_mask, mask);
3423	}
3424
3425	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3426
3427	if (!ret && oact) {
3428		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3429		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3430		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3431		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3432		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3433			return -EFAULT;
3434	}
3435
3436	return ret;
3437}
3438#endif
3439#ifdef CONFIG_COMPAT_OLD_SIGACTION
3440COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3441		const struct compat_old_sigaction __user *, act,
3442	        struct compat_old_sigaction __user *, oact)
3443{
3444	struct k_sigaction new_ka, old_ka;
3445	int ret;
3446	compat_old_sigset_t mask;
3447	compat_uptr_t handler, restorer;
3448
3449	if (act) {
3450		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3451		    __get_user(handler, &act->sa_handler) ||
3452		    __get_user(restorer, &act->sa_restorer) ||
3453		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3454		    __get_user(mask, &act->sa_mask))
3455			return -EFAULT;
3456
3457#ifdef __ARCH_HAS_KA_RESTORER
3458		new_ka.ka_restorer = NULL;
3459#endif
3460		new_ka.sa.sa_handler = compat_ptr(handler);
3461		new_ka.sa.sa_restorer = compat_ptr(restorer);
3462		siginitset(&new_ka.sa.sa_mask, mask);
3463	}
3464
3465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3466
3467	if (!ret && oact) {
3468		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3469		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3470			       &oact->sa_handler) ||
3471		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3472			       &oact->sa_restorer) ||
3473		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3474		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3475			return -EFAULT;
3476	}
3477	return ret;
3478}
3479#endif
3480
3481#ifdef CONFIG_SGETMASK_SYSCALL
3482
3483/*
3484 * For backwards compatibility.  Functionality superseded by sigprocmask.
3485 */
3486SYSCALL_DEFINE0(sgetmask)
3487{
3488	/* SMP safe */
3489	return current->blocked.sig[0];
3490}
3491
3492SYSCALL_DEFINE1(ssetmask, int, newmask)
3493{
3494	int old = current->blocked.sig[0];
3495	sigset_t newset;
3496
3497	siginitset(&newset, newmask);
3498	set_current_blocked(&newset);
3499
3500	return old;
3501}
3502#endif /* CONFIG_SGETMASK_SYSCALL */
3503
3504#ifdef __ARCH_WANT_SYS_SIGNAL
3505/*
3506 * For backwards compatibility.  Functionality superseded by sigaction.
3507 */
3508SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3509{
3510	struct k_sigaction new_sa, old_sa;
3511	int ret;
3512
3513	new_sa.sa.sa_handler = handler;
3514	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3515	sigemptyset(&new_sa.sa.sa_mask);
3516
3517	ret = do_sigaction(sig, &new_sa, &old_sa);
3518
3519	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3520}
3521#endif /* __ARCH_WANT_SYS_SIGNAL */
3522
3523#ifdef __ARCH_WANT_SYS_PAUSE
3524
3525SYSCALL_DEFINE0(pause)
3526{
3527	while (!signal_pending(current)) {
3528		__set_current_state(TASK_INTERRUPTIBLE);
3529		schedule();
3530	}
3531	return -ERESTARTNOHAND;
3532}
3533
3534#endif
3535
3536static int sigsuspend(sigset_t *set)
3537{
3538	current->saved_sigmask = current->blocked;
3539	set_current_blocked(set);
3540
3541	while (!signal_pending(current)) {
3542		__set_current_state(TASK_INTERRUPTIBLE);
3543		schedule();
3544	}
3545	set_restore_sigmask();
3546	return -ERESTARTNOHAND;
3547}
3548
3549/**
3550 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3551 *	@unewset value until a signal is received
3552 *  @unewset: new signal mask value
3553 *  @sigsetsize: size of sigset_t type
3554 */
3555SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3556{
3557	sigset_t newset;
3558
3559	/* XXX: Don't preclude handling different sized sigset_t's.  */
3560	if (sigsetsize != sizeof(sigset_t))
3561		return -EINVAL;
3562
3563	if (copy_from_user(&newset, unewset, sizeof(newset)))
3564		return -EFAULT;
3565	return sigsuspend(&newset);
3566}
3567 
3568#ifdef CONFIG_COMPAT
3569COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3570{
3571#ifdef __BIG_ENDIAN
3572	sigset_t newset;
3573	compat_sigset_t newset32;
3574
3575	/* XXX: Don't preclude handling different sized sigset_t's.  */
3576	if (sigsetsize != sizeof(sigset_t))
3577		return -EINVAL;
3578
3579	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3580		return -EFAULT;
3581	sigset_from_compat(&newset, &newset32);
3582	return sigsuspend(&newset);
3583#else
3584	/* on little-endian bitmaps don't care about granularity */
3585	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3586#endif
3587}
3588#endif
3589
3590#ifdef CONFIG_OLD_SIGSUSPEND
3591SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3592{
3593	sigset_t blocked;
3594	siginitset(&blocked, mask);
3595	return sigsuspend(&blocked);
3596}
3597#endif
3598#ifdef CONFIG_OLD_SIGSUSPEND3
3599SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3600{
3601	sigset_t blocked;
3602	siginitset(&blocked, mask);
3603	return sigsuspend(&blocked);
3604}
3605#endif
3606
3607__weak const char *arch_vma_name(struct vm_area_struct *vma)
3608{
3609	return NULL;
3610}
3611
3612void __init signals_init(void)
3613{
3614	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3615	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3616		!= offsetof(struct siginfo, _sifields._pad));
3617
3618	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3619}
3620
3621#ifdef CONFIG_KGDB_KDB
3622#include <linux/kdb.h>
3623/*
3624 * kdb_send_sig_info - Allows kdb to send signals without exposing
3625 * signal internals.  This function checks if the required locks are
3626 * available before calling the main signal code, to avoid kdb
3627 * deadlocks.
3628 */
3629void
3630kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3631{
3632	static struct task_struct *kdb_prev_t;
3633	int sig, new_t;
3634	if (!spin_trylock(&t->sighand->siglock)) {
3635		kdb_printf("Can't do kill command now.\n"
3636			   "The sigmask lock is held somewhere else in "
3637			   "kernel, try again later\n");
3638		return;
3639	}
3640	spin_unlock(&t->sighand->siglock);
3641	new_t = kdb_prev_t != t;
3642	kdb_prev_t = t;
3643	if (t->state != TASK_RUNNING && new_t) {
3644		kdb_printf("Process is not RUNNING, sending a signal from "
3645			   "kdb risks deadlock\n"
3646			   "on the run queue locks. "
3647			   "The signal has _not_ been sent.\n"
3648			   "Reissue the kill command if you want to risk "
3649			   "the deadlock.\n");
3650		return;
3651	}
3652	sig = info->si_signo;
3653	if (send_sig_info(sig, info, t))
3654		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3655			   sig, t->pid);
3656	else
3657		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3658}
3659#endif	/* CONFIG_KGDB_KDB */
v3.1
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
 
  20#include <linux/security.h>
  21#include <linux/syscalls.h>
  22#include <linux/ptrace.h>
  23#include <linux/signal.h>
  24#include <linux/signalfd.h>
  25#include <linux/ratelimit.h>
  26#include <linux/tracehook.h>
  27#include <linux/capability.h>
  28#include <linux/freezer.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/nsproxy.h>
 
 
 
 
 
 
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/signal.h>
  33
  34#include <asm/param.h>
  35#include <asm/uaccess.h>
  36#include <asm/unistd.h>
  37#include <asm/siginfo.h>
 
  38#include "audit.h"	/* audit_signal_info() */
  39
  40/*
  41 * SLAB caches for signal bits.
  42 */
  43
  44static struct kmem_cache *sigqueue_cachep;
  45
  46int print_fatal_signals __read_mostly;
  47
  48static void __user *sig_handler(struct task_struct *t, int sig)
  49{
  50	return t->sighand->action[sig - 1].sa.sa_handler;
  51}
  52
  53static int sig_handler_ignored(void __user *handler, int sig)
  54{
  55	/* Is it explicitly or implicitly ignored? */
  56	return handler == SIG_IGN ||
  57		(handler == SIG_DFL && sig_kernel_ignore(sig));
  58}
  59
  60static int sig_task_ignored(struct task_struct *t, int sig,
  61		int from_ancestor_ns)
  62{
  63	void __user *handler;
  64
  65	handler = sig_handler(t, sig);
  66
  67	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  68			handler == SIG_DFL && !from_ancestor_ns)
  69		return 1;
  70
  71	return sig_handler_ignored(handler, sig);
  72}
  73
  74static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
  75{
  76	/*
  77	 * Blocked signals are never ignored, since the
  78	 * signal handler may change by the time it is
  79	 * unblocked.
  80	 */
  81	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  82		return 0;
  83
  84	if (!sig_task_ignored(t, sig, from_ancestor_ns))
  85		return 0;
  86
  87	/*
  88	 * Tracers may want to know about even ignored signals.
  89	 */
  90	return !t->ptrace;
  91}
  92
  93/*
  94 * Re-calculate pending state from the set of locally pending
  95 * signals, globally pending signals, and blocked signals.
  96 */
  97static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
  98{
  99	unsigned long ready;
 100	long i;
 101
 102	switch (_NSIG_WORDS) {
 103	default:
 104		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 105			ready |= signal->sig[i] &~ blocked->sig[i];
 106		break;
 107
 108	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 109		ready |= signal->sig[2] &~ blocked->sig[2];
 110		ready |= signal->sig[1] &~ blocked->sig[1];
 111		ready |= signal->sig[0] &~ blocked->sig[0];
 112		break;
 113
 114	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 115		ready |= signal->sig[0] &~ blocked->sig[0];
 116		break;
 117
 118	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 119	}
 120	return ready !=	0;
 121}
 122
 123#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 124
 125static int recalc_sigpending_tsk(struct task_struct *t)
 126{
 127	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 128	    PENDING(&t->pending, &t->blocked) ||
 129	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 130		set_tsk_thread_flag(t, TIF_SIGPENDING);
 131		return 1;
 132	}
 133	/*
 134	 * We must never clear the flag in another thread, or in current
 135	 * when it's possible the current syscall is returning -ERESTART*.
 136	 * So we don't clear it here, and only callers who know they should do.
 137	 */
 138	return 0;
 139}
 140
 141/*
 142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 143 * This is superfluous when called on current, the wakeup is a harmless no-op.
 144 */
 145void recalc_sigpending_and_wake(struct task_struct *t)
 146{
 147	if (recalc_sigpending_tsk(t))
 148		signal_wake_up(t, 0);
 149}
 150
 151void recalc_sigpending(void)
 152{
 153	if (!recalc_sigpending_tsk(current) && !freezing(current))
 154		clear_thread_flag(TIF_SIGPENDING);
 155
 156}
 157
 158/* Given the mask, find the first available signal that should be serviced. */
 159
 160#define SYNCHRONOUS_MASK \
 161	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 162	 sigmask(SIGTRAP) | sigmask(SIGFPE))
 163
 164int next_signal(struct sigpending *pending, sigset_t *mask)
 165{
 166	unsigned long i, *s, *m, x;
 167	int sig = 0;
 168
 169	s = pending->signal.sig;
 170	m = mask->sig;
 171
 172	/*
 173	 * Handle the first word specially: it contains the
 174	 * synchronous signals that need to be dequeued first.
 175	 */
 176	x = *s &~ *m;
 177	if (x) {
 178		if (x & SYNCHRONOUS_MASK)
 179			x &= SYNCHRONOUS_MASK;
 180		sig = ffz(~x) + 1;
 181		return sig;
 182	}
 183
 184	switch (_NSIG_WORDS) {
 185	default:
 186		for (i = 1; i < _NSIG_WORDS; ++i) {
 187			x = *++s &~ *++m;
 188			if (!x)
 189				continue;
 190			sig = ffz(~x) + i*_NSIG_BPW + 1;
 191			break;
 192		}
 193		break;
 194
 195	case 2:
 196		x = s[1] &~ m[1];
 197		if (!x)
 198			break;
 199		sig = ffz(~x) + _NSIG_BPW + 1;
 200		break;
 201
 202	case 1:
 203		/* Nothing to do */
 204		break;
 205	}
 206
 207	return sig;
 208}
 209
 210static inline void print_dropped_signal(int sig)
 211{
 212	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 213
 214	if (!print_fatal_signals)
 215		return;
 216
 217	if (!__ratelimit(&ratelimit_state))
 218		return;
 219
 220	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 221				current->comm, current->pid, sig);
 222}
 223
 224/**
 225 * task_set_jobctl_pending - set jobctl pending bits
 226 * @task: target task
 227 * @mask: pending bits to set
 228 *
 229 * Clear @mask from @task->jobctl.  @mask must be subset of
 230 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 231 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 232 * cleared.  If @task is already being killed or exiting, this function
 233 * becomes noop.
 234 *
 235 * CONTEXT:
 236 * Must be called with @task->sighand->siglock held.
 237 *
 238 * RETURNS:
 239 * %true if @mask is set, %false if made noop because @task was dying.
 240 */
 241bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 242{
 243	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 244			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 245	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 246
 247	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 248		return false;
 249
 250	if (mask & JOBCTL_STOP_SIGMASK)
 251		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 252
 253	task->jobctl |= mask;
 254	return true;
 255}
 256
 257/**
 258 * task_clear_jobctl_trapping - clear jobctl trapping bit
 259 * @task: target task
 260 *
 261 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 262 * Clear it and wake up the ptracer.  Note that we don't need any further
 263 * locking.  @task->siglock guarantees that @task->parent points to the
 264 * ptracer.
 265 *
 266 * CONTEXT:
 267 * Must be called with @task->sighand->siglock held.
 268 */
 269void task_clear_jobctl_trapping(struct task_struct *task)
 270{
 271	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 272		task->jobctl &= ~JOBCTL_TRAPPING;
 
 273		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 274	}
 275}
 276
 277/**
 278 * task_clear_jobctl_pending - clear jobctl pending bits
 279 * @task: target task
 280 * @mask: pending bits to clear
 281 *
 282 * Clear @mask from @task->jobctl.  @mask must be subset of
 283 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 284 * STOP bits are cleared together.
 285 *
 286 * If clearing of @mask leaves no stop or trap pending, this function calls
 287 * task_clear_jobctl_trapping().
 288 *
 289 * CONTEXT:
 290 * Must be called with @task->sighand->siglock held.
 291 */
 292void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 293{
 294	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 295
 296	if (mask & JOBCTL_STOP_PENDING)
 297		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 298
 299	task->jobctl &= ~mask;
 300
 301	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 302		task_clear_jobctl_trapping(task);
 303}
 304
 305/**
 306 * task_participate_group_stop - participate in a group stop
 307 * @task: task participating in a group stop
 308 *
 309 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 310 * Group stop states are cleared and the group stop count is consumed if
 311 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 312 * stop, the appropriate %SIGNAL_* flags are set.
 313 *
 314 * CONTEXT:
 315 * Must be called with @task->sighand->siglock held.
 316 *
 317 * RETURNS:
 318 * %true if group stop completion should be notified to the parent, %false
 319 * otherwise.
 320 */
 321static bool task_participate_group_stop(struct task_struct *task)
 322{
 323	struct signal_struct *sig = task->signal;
 324	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 325
 326	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 327
 328	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 329
 330	if (!consume)
 331		return false;
 332
 333	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 334		sig->group_stop_count--;
 335
 336	/*
 337	 * Tell the caller to notify completion iff we are entering into a
 338	 * fresh group stop.  Read comment in do_signal_stop() for details.
 339	 */
 340	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 341		sig->flags = SIGNAL_STOP_STOPPED;
 342		return true;
 343	}
 344	return false;
 345}
 346
 347/*
 348 * allocate a new signal queue record
 349 * - this may be called without locks if and only if t == current, otherwise an
 350 *   appropriate lock must be held to stop the target task from exiting
 351 */
 352static struct sigqueue *
 353__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 354{
 355	struct sigqueue *q = NULL;
 356	struct user_struct *user;
 357
 358	/*
 359	 * Protect access to @t credentials. This can go away when all
 360	 * callers hold rcu read lock.
 361	 */
 362	rcu_read_lock();
 363	user = get_uid(__task_cred(t)->user);
 364	atomic_inc(&user->sigpending);
 365	rcu_read_unlock();
 366
 367	if (override_rlimit ||
 368	    atomic_read(&user->sigpending) <=
 369			task_rlimit(t, RLIMIT_SIGPENDING)) {
 370		q = kmem_cache_alloc(sigqueue_cachep, flags);
 371	} else {
 372		print_dropped_signal(sig);
 373	}
 374
 375	if (unlikely(q == NULL)) {
 376		atomic_dec(&user->sigpending);
 377		free_uid(user);
 378	} else {
 379		INIT_LIST_HEAD(&q->list);
 380		q->flags = 0;
 381		q->user = user;
 382	}
 383
 384	return q;
 385}
 386
 387static void __sigqueue_free(struct sigqueue *q)
 388{
 389	if (q->flags & SIGQUEUE_PREALLOC)
 390		return;
 391	atomic_dec(&q->user->sigpending);
 392	free_uid(q->user);
 393	kmem_cache_free(sigqueue_cachep, q);
 394}
 395
 396void flush_sigqueue(struct sigpending *queue)
 397{
 398	struct sigqueue *q;
 399
 400	sigemptyset(&queue->signal);
 401	while (!list_empty(&queue->list)) {
 402		q = list_entry(queue->list.next, struct sigqueue , list);
 403		list_del_init(&q->list);
 404		__sigqueue_free(q);
 405	}
 406}
 407
 408/*
 409 * Flush all pending signals for a task.
 410 */
 411void __flush_signals(struct task_struct *t)
 412{
 413	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 414	flush_sigqueue(&t->pending);
 415	flush_sigqueue(&t->signal->shared_pending);
 416}
 417
 418void flush_signals(struct task_struct *t)
 419{
 420	unsigned long flags;
 421
 422	spin_lock_irqsave(&t->sighand->siglock, flags);
 423	__flush_signals(t);
 
 
 424	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 425}
 426
 
 427static void __flush_itimer_signals(struct sigpending *pending)
 428{
 429	sigset_t signal, retain;
 430	struct sigqueue *q, *n;
 431
 432	signal = pending->signal;
 433	sigemptyset(&retain);
 434
 435	list_for_each_entry_safe(q, n, &pending->list, list) {
 436		int sig = q->info.si_signo;
 437
 438		if (likely(q->info.si_code != SI_TIMER)) {
 439			sigaddset(&retain, sig);
 440		} else {
 441			sigdelset(&signal, sig);
 442			list_del_init(&q->list);
 443			__sigqueue_free(q);
 444		}
 445	}
 446
 447	sigorsets(&pending->signal, &signal, &retain);
 448}
 449
 450void flush_itimer_signals(void)
 451{
 452	struct task_struct *tsk = current;
 453	unsigned long flags;
 454
 455	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 456	__flush_itimer_signals(&tsk->pending);
 457	__flush_itimer_signals(&tsk->signal->shared_pending);
 458	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 459}
 
 460
 461void ignore_signals(struct task_struct *t)
 462{
 463	int i;
 464
 465	for (i = 0; i < _NSIG; ++i)
 466		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 467
 468	flush_signals(t);
 469}
 470
 471/*
 472 * Flush all handlers for a task.
 473 */
 474
 475void
 476flush_signal_handlers(struct task_struct *t, int force_default)
 477{
 478	int i;
 479	struct k_sigaction *ka = &t->sighand->action[0];
 480	for (i = _NSIG ; i != 0 ; i--) {
 481		if (force_default || ka->sa.sa_handler != SIG_IGN)
 482			ka->sa.sa_handler = SIG_DFL;
 483		ka->sa.sa_flags = 0;
 
 
 
 484		sigemptyset(&ka->sa.sa_mask);
 485		ka++;
 486	}
 487}
 488
 489int unhandled_signal(struct task_struct *tsk, int sig)
 490{
 491	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 492	if (is_global_init(tsk))
 493		return 1;
 494	if (handler != SIG_IGN && handler != SIG_DFL)
 495		return 0;
 496	/* if ptraced, let the tracer determine */
 497	return !tsk->ptrace;
 498}
 499
 500/*
 501 * Notify the system that a driver wants to block all signals for this
 502 * process, and wants to be notified if any signals at all were to be
 503 * sent/acted upon.  If the notifier routine returns non-zero, then the
 504 * signal will be acted upon after all.  If the notifier routine returns 0,
 505 * then then signal will be blocked.  Only one block per process is
 506 * allowed.  priv is a pointer to private data that the notifier routine
 507 * can use to determine if the signal should be blocked or not.
 508 */
 509void
 510block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 511{
 512	unsigned long flags;
 513
 514	spin_lock_irqsave(&current->sighand->siglock, flags);
 515	current->notifier_mask = mask;
 516	current->notifier_data = priv;
 517	current->notifier = notifier;
 518	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 519}
 520
 521/* Notify the system that blocking has ended. */
 522
 523void
 524unblock_all_signals(void)
 525{
 526	unsigned long flags;
 527
 528	spin_lock_irqsave(&current->sighand->siglock, flags);
 529	current->notifier = NULL;
 530	current->notifier_data = NULL;
 531	recalc_sigpending();
 532	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 533}
 534
 535static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 536{
 537	struct sigqueue *q, *first = NULL;
 538
 539	/*
 540	 * Collect the siginfo appropriate to this signal.  Check if
 541	 * there is another siginfo for the same signal.
 542	*/
 543	list_for_each_entry(q, &list->list, list) {
 544		if (q->info.si_signo == sig) {
 545			if (first)
 546				goto still_pending;
 547			first = q;
 548		}
 549	}
 550
 551	sigdelset(&list->signal, sig);
 552
 553	if (first) {
 554still_pending:
 555		list_del_init(&first->list);
 556		copy_siginfo(info, &first->info);
 557		__sigqueue_free(first);
 558	} else {
 559		/*
 560		 * Ok, it wasn't in the queue.  This must be
 561		 * a fast-pathed signal or we must have been
 562		 * out of queue space.  So zero out the info.
 563		 */
 564		info->si_signo = sig;
 565		info->si_errno = 0;
 566		info->si_code = SI_USER;
 567		info->si_pid = 0;
 568		info->si_uid = 0;
 569	}
 570}
 571
 572static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 573			siginfo_t *info)
 574{
 575	int sig = next_signal(pending, mask);
 576
 577	if (sig) {
 578		if (current->notifier) {
 579			if (sigismember(current->notifier_mask, sig)) {
 580				if (!(current->notifier)(current->notifier_data)) {
 581					clear_thread_flag(TIF_SIGPENDING);
 582					return 0;
 583				}
 584			}
 585		}
 586
 587		collect_signal(sig, pending, info);
 588	}
 589
 590	return sig;
 591}
 592
 593/*
 594 * Dequeue a signal and return the element to the caller, which is
 595 * expected to free it.
 596 *
 597 * All callers have to hold the siglock.
 598 */
 599int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 600{
 601	int signr;
 602
 603	/* We only dequeue private signals from ourselves, we don't let
 604	 * signalfd steal them
 605	 */
 606	signr = __dequeue_signal(&tsk->pending, mask, info);
 607	if (!signr) {
 608		signr = __dequeue_signal(&tsk->signal->shared_pending,
 609					 mask, info);
 
 610		/*
 611		 * itimer signal ?
 612		 *
 613		 * itimers are process shared and we restart periodic
 614		 * itimers in the signal delivery path to prevent DoS
 615		 * attacks in the high resolution timer case. This is
 616		 * compliant with the old way of self-restarting
 617		 * itimers, as the SIGALRM is a legacy signal and only
 618		 * queued once. Changing the restart behaviour to
 619		 * restart the timer in the signal dequeue path is
 620		 * reducing the timer noise on heavy loaded !highres
 621		 * systems too.
 622		 */
 623		if (unlikely(signr == SIGALRM)) {
 624			struct hrtimer *tmr = &tsk->signal->real_timer;
 625
 626			if (!hrtimer_is_queued(tmr) &&
 627			    tsk->signal->it_real_incr.tv64 != 0) {
 628				hrtimer_forward(tmr, tmr->base->get_time(),
 629						tsk->signal->it_real_incr);
 630				hrtimer_restart(tmr);
 631			}
 632		}
 
 633	}
 634
 635	recalc_sigpending();
 636	if (!signr)
 637		return 0;
 638
 639	if (unlikely(sig_kernel_stop(signr))) {
 640		/*
 641		 * Set a marker that we have dequeued a stop signal.  Our
 642		 * caller might release the siglock and then the pending
 643		 * stop signal it is about to process is no longer in the
 644		 * pending bitmasks, but must still be cleared by a SIGCONT
 645		 * (and overruled by a SIGKILL).  So those cases clear this
 646		 * shared flag after we've set it.  Note that this flag may
 647		 * remain set after the signal we return is ignored or
 648		 * handled.  That doesn't matter because its only purpose
 649		 * is to alert stop-signal processing code when another
 650		 * processor has come along and cleared the flag.
 651		 */
 652		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 653	}
 
 654	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 655		/*
 656		 * Release the siglock to ensure proper locking order
 657		 * of timer locks outside of siglocks.  Note, we leave
 658		 * irqs disabled here, since the posix-timers code is
 659		 * about to disable them again anyway.
 660		 */
 661		spin_unlock(&tsk->sighand->siglock);
 662		do_schedule_next_timer(info);
 663		spin_lock(&tsk->sighand->siglock);
 664	}
 
 665	return signr;
 666}
 667
 668/*
 669 * Tell a process that it has a new active signal..
 670 *
 671 * NOTE! we rely on the previous spin_lock to
 672 * lock interrupts for us! We can only be called with
 673 * "siglock" held, and the local interrupt must
 674 * have been disabled when that got acquired!
 675 *
 676 * No need to set need_resched since signal event passing
 677 * goes through ->blocked
 678 */
 679void signal_wake_up(struct task_struct *t, int resume)
 680{
 681	unsigned int mask;
 682
 683	set_tsk_thread_flag(t, TIF_SIGPENDING);
 684
 685	/*
 686	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
 687	 * case. We don't check t->state here because there is a race with it
 688	 * executing another processor and just now entering stopped state.
 689	 * By using wake_up_state, we ensure the process will wake up and
 690	 * handle its death signal.
 691	 */
 692	mask = TASK_INTERRUPTIBLE;
 693	if (resume)
 694		mask |= TASK_WAKEKILL;
 695	if (!wake_up_state(t, mask))
 696		kick_process(t);
 697}
 698
 699/*
 700 * Remove signals in mask from the pending set and queue.
 701 * Returns 1 if any signals were found.
 702 *
 703 * All callers must be holding the siglock.
 704 *
 705 * This version takes a sigset mask and looks at all signals,
 706 * not just those in the first mask word.
 707 */
 708static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 709{
 710	struct sigqueue *q, *n;
 711	sigset_t m;
 712
 713	sigandsets(&m, mask, &s->signal);
 714	if (sigisemptyset(&m))
 715		return 0;
 716
 717	sigandnsets(&s->signal, &s->signal, mask);
 718	list_for_each_entry_safe(q, n, &s->list, list) {
 719		if (sigismember(mask, q->info.si_signo)) {
 720			list_del_init(&q->list);
 721			__sigqueue_free(q);
 722		}
 723	}
 724	return 1;
 725}
 726/*
 727 * Remove signals in mask from the pending set and queue.
 728 * Returns 1 if any signals were found.
 729 *
 730 * All callers must be holding the siglock.
 731 */
 732static int rm_from_queue(unsigned long mask, struct sigpending *s)
 733{
 734	struct sigqueue *q, *n;
 735
 736	if (!sigtestsetmask(&s->signal, mask))
 737		return 0;
 738
 739	sigdelsetmask(&s->signal, mask);
 740	list_for_each_entry_safe(q, n, &s->list, list) {
 741		if (q->info.si_signo < SIGRTMIN &&
 742		    (mask & sigmask(q->info.si_signo))) {
 743			list_del_init(&q->list);
 744			__sigqueue_free(q);
 745		}
 746	}
 747	return 1;
 748}
 749
 750static inline int is_si_special(const struct siginfo *info)
 751{
 752	return info <= SEND_SIG_FORCED;
 753}
 754
 755static inline bool si_fromuser(const struct siginfo *info)
 756{
 757	return info == SEND_SIG_NOINFO ||
 758		(!is_si_special(info) && SI_FROMUSER(info));
 759}
 760
 761/*
 762 * called with RCU read lock from check_kill_permission()
 763 */
 764static int kill_ok_by_cred(struct task_struct *t)
 765{
 766	const struct cred *cred = current_cred();
 767	const struct cred *tcred = __task_cred(t);
 768
 769	if (cred->user->user_ns == tcred->user->user_ns &&
 770	    (cred->euid == tcred->suid ||
 771	     cred->euid == tcred->uid ||
 772	     cred->uid  == tcred->suid ||
 773	     cred->uid  == tcred->uid))
 774		return 1;
 775
 776	if (ns_capable(tcred->user->user_ns, CAP_KILL))
 777		return 1;
 778
 779	return 0;
 780}
 781
 782/*
 783 * Bad permissions for sending the signal
 784 * - the caller must hold the RCU read lock
 785 */
 786static int check_kill_permission(int sig, struct siginfo *info,
 787				 struct task_struct *t)
 788{
 789	struct pid *sid;
 790	int error;
 791
 792	if (!valid_signal(sig))
 793		return -EINVAL;
 794
 795	if (!si_fromuser(info))
 796		return 0;
 797
 798	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 799	if (error)
 800		return error;
 801
 802	if (!same_thread_group(current, t) &&
 803	    !kill_ok_by_cred(t)) {
 804		switch (sig) {
 805		case SIGCONT:
 806			sid = task_session(t);
 807			/*
 808			 * We don't return the error if sid == NULL. The
 809			 * task was unhashed, the caller must notice this.
 810			 */
 811			if (!sid || sid == task_session(current))
 812				break;
 813		default:
 814			return -EPERM;
 815		}
 816	}
 817
 818	return security_task_kill(t, info, sig, 0);
 819}
 820
 821/**
 822 * ptrace_trap_notify - schedule trap to notify ptracer
 823 * @t: tracee wanting to notify tracer
 824 *
 825 * This function schedules sticky ptrace trap which is cleared on the next
 826 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 827 * ptracer.
 828 *
 829 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 830 * ptracer is listening for events, tracee is woken up so that it can
 831 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 832 * eventually taken without returning to userland after the existing traps
 833 * are finished by PTRACE_CONT.
 834 *
 835 * CONTEXT:
 836 * Must be called with @task->sighand->siglock held.
 837 */
 838static void ptrace_trap_notify(struct task_struct *t)
 839{
 840	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 841	assert_spin_locked(&t->sighand->siglock);
 842
 843	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 844	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 845}
 846
 847/*
 848 * Handle magic process-wide effects of stop/continue signals. Unlike
 849 * the signal actions, these happen immediately at signal-generation
 850 * time regardless of blocking, ignoring, or handling.  This does the
 851 * actual continuing for SIGCONT, but not the actual stopping for stop
 852 * signals. The process stop is done as a signal action for SIG_DFL.
 853 *
 854 * Returns true if the signal should be actually delivered, otherwise
 855 * it should be dropped.
 856 */
 857static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
 858{
 859	struct signal_struct *signal = p->signal;
 860	struct task_struct *t;
 
 861
 862	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
 
 
 863		/*
 864		 * The process is in the middle of dying, nothing to do.
 865		 */
 866	} else if (sig_kernel_stop(sig)) {
 867		/*
 868		 * This is a stop signal.  Remove SIGCONT from all queues.
 869		 */
 870		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 871		t = p;
 872		do {
 873			rm_from_queue(sigmask(SIGCONT), &t->pending);
 874		} while_each_thread(p, t);
 875	} else if (sig == SIGCONT) {
 876		unsigned int why;
 877		/*
 878		 * Remove all stop signals from all queues, wake all threads.
 879		 */
 880		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 881		t = p;
 882		do {
 
 883			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 884			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 885			if (likely(!(t->ptrace & PT_SEIZED)))
 886				wake_up_state(t, __TASK_STOPPED);
 887			else
 888				ptrace_trap_notify(t);
 889		} while_each_thread(p, t);
 890
 891		/*
 892		 * Notify the parent with CLD_CONTINUED if we were stopped.
 893		 *
 894		 * If we were in the middle of a group stop, we pretend it
 895		 * was already finished, and then continued. Since SIGCHLD
 896		 * doesn't queue we report only CLD_STOPPED, as if the next
 897		 * CLD_CONTINUED was dropped.
 898		 */
 899		why = 0;
 900		if (signal->flags & SIGNAL_STOP_STOPPED)
 901			why |= SIGNAL_CLD_CONTINUED;
 902		else if (signal->group_stop_count)
 903			why |= SIGNAL_CLD_STOPPED;
 904
 905		if (why) {
 906			/*
 907			 * The first thread which returns from do_signal_stop()
 908			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 909			 * notify its parent. See get_signal_to_deliver().
 910			 */
 911			signal->flags = why | SIGNAL_STOP_CONTINUED;
 912			signal->group_stop_count = 0;
 913			signal->group_exit_code = 0;
 914		}
 915	}
 916
 917	return !sig_ignored(p, sig, from_ancestor_ns);
 918}
 919
 920/*
 921 * Test if P wants to take SIG.  After we've checked all threads with this,
 922 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 923 * blocking SIG were ruled out because they are not running and already
 924 * have pending signals.  Such threads will dequeue from the shared queue
 925 * as soon as they're available, so putting the signal on the shared queue
 926 * will be equivalent to sending it to one such thread.
 927 */
 928static inline int wants_signal(int sig, struct task_struct *p)
 929{
 930	if (sigismember(&p->blocked, sig))
 931		return 0;
 932	if (p->flags & PF_EXITING)
 933		return 0;
 934	if (sig == SIGKILL)
 935		return 1;
 936	if (task_is_stopped_or_traced(p))
 937		return 0;
 938	return task_curr(p) || !signal_pending(p);
 939}
 940
 941static void complete_signal(int sig, struct task_struct *p, int group)
 942{
 943	struct signal_struct *signal = p->signal;
 944	struct task_struct *t;
 945
 946	/*
 947	 * Now find a thread we can wake up to take the signal off the queue.
 948	 *
 949	 * If the main thread wants the signal, it gets first crack.
 950	 * Probably the least surprising to the average bear.
 951	 */
 952	if (wants_signal(sig, p))
 953		t = p;
 954	else if (!group || thread_group_empty(p))
 955		/*
 956		 * There is just one thread and it does not need to be woken.
 957		 * It will dequeue unblocked signals before it runs again.
 958		 */
 959		return;
 960	else {
 961		/*
 962		 * Otherwise try to find a suitable thread.
 963		 */
 964		t = signal->curr_target;
 965		while (!wants_signal(sig, t)) {
 966			t = next_thread(t);
 967			if (t == signal->curr_target)
 968				/*
 969				 * No thread needs to be woken.
 970				 * Any eligible threads will see
 971				 * the signal in the queue soon.
 972				 */
 973				return;
 974		}
 975		signal->curr_target = t;
 976	}
 977
 978	/*
 979	 * Found a killable thread.  If the signal will be fatal,
 980	 * then start taking the whole group down immediately.
 981	 */
 982	if (sig_fatal(p, sig) &&
 983	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 984	    !sigismember(&t->real_blocked, sig) &&
 985	    (sig == SIGKILL || !t->ptrace)) {
 986		/*
 987		 * This signal will be fatal to the whole group.
 988		 */
 989		if (!sig_kernel_coredump(sig)) {
 990			/*
 991			 * Start a group exit and wake everybody up.
 992			 * This way we don't have other threads
 993			 * running and doing things after a slower
 994			 * thread has the fatal signal pending.
 995			 */
 996			signal->flags = SIGNAL_GROUP_EXIT;
 997			signal->group_exit_code = sig;
 998			signal->group_stop_count = 0;
 999			t = p;
1000			do {
1001				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002				sigaddset(&t->pending.signal, SIGKILL);
1003				signal_wake_up(t, 1);
1004			} while_each_thread(p, t);
1005			return;
1006		}
1007	}
1008
1009	/*
1010	 * The signal is already in the shared-pending queue.
1011	 * Tell the chosen thread to wake up and dequeue it.
1012	 */
1013	signal_wake_up(t, sig == SIGKILL);
1014	return;
1015}
1016
1017static inline int legacy_queue(struct sigpending *signals, int sig)
1018{
1019	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1020}
1021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1023			int group, int from_ancestor_ns)
1024{
1025	struct sigpending *pending;
1026	struct sigqueue *q;
1027	int override_rlimit;
1028
1029	trace_signal_generate(sig, info, t);
1030
1031	assert_spin_locked(&t->sighand->siglock);
1032
1033	if (!prepare_signal(sig, t, from_ancestor_ns))
1034		return 0;
 
 
1035
1036	pending = group ? &t->signal->shared_pending : &t->pending;
1037	/*
1038	 * Short-circuit ignored signals and support queuing
1039	 * exactly one non-rt signal, so that we can get more
1040	 * detailed information about the cause of the signal.
1041	 */
 
1042	if (legacy_queue(pending, sig))
1043		return 0;
 
 
1044	/*
1045	 * fast-pathed signals for kernel-internal things like SIGSTOP
1046	 * or SIGKILL.
1047	 */
1048	if (info == SEND_SIG_FORCED)
1049		goto out_set;
1050
1051	/*
1052	 * Real-time signals must be queued if sent by sigqueue, or
1053	 * some other real-time mechanism.  It is implementation
1054	 * defined whether kill() does so.  We attempt to do so, on
1055	 * the principle of least surprise, but since kill is not
1056	 * allowed to fail with EAGAIN when low on memory we just
1057	 * make sure at least one signal gets delivered and don't
1058	 * pass on the info struct.
1059	 */
1060	if (sig < SIGRTMIN)
1061		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062	else
1063		override_rlimit = 0;
1064
1065	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066		override_rlimit);
1067	if (q) {
1068		list_add_tail(&q->list, &pending->list);
1069		switch ((unsigned long) info) {
1070		case (unsigned long) SEND_SIG_NOINFO:
1071			q->info.si_signo = sig;
1072			q->info.si_errno = 0;
1073			q->info.si_code = SI_USER;
1074			q->info.si_pid = task_tgid_nr_ns(current,
1075							task_active_pid_ns(t));
1076			q->info.si_uid = current_uid();
1077			break;
1078		case (unsigned long) SEND_SIG_PRIV:
1079			q->info.si_signo = sig;
1080			q->info.si_errno = 0;
1081			q->info.si_code = SI_KERNEL;
1082			q->info.si_pid = 0;
1083			q->info.si_uid = 0;
1084			break;
1085		default:
1086			copy_siginfo(&q->info, info);
1087			if (from_ancestor_ns)
1088				q->info.si_pid = 0;
1089			break;
1090		}
 
 
 
1091	} else if (!is_si_special(info)) {
1092		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1093			/*
1094			 * Queue overflow, abort.  We may abort if the
1095			 * signal was rt and sent by user using something
1096			 * other than kill().
1097			 */
1098			trace_signal_overflow_fail(sig, group, info);
1099			return -EAGAIN;
 
1100		} else {
1101			/*
1102			 * This is a silent loss of information.  We still
1103			 * send the signal, but the *info bits are lost.
1104			 */
1105			trace_signal_lose_info(sig, group, info);
1106		}
1107	}
1108
1109out_set:
1110	signalfd_notify(t, sig);
1111	sigaddset(&pending->signal, sig);
1112	complete_signal(sig, t, group);
1113	return 0;
 
 
1114}
1115
1116static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1117			int group)
1118{
1119	int from_ancestor_ns = 0;
1120
1121#ifdef CONFIG_PID_NS
1122	from_ancestor_ns = si_fromuser(info) &&
1123			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1124#endif
1125
1126	return __send_signal(sig, info, t, group, from_ancestor_ns);
1127}
1128
1129static void print_fatal_signal(struct pt_regs *regs, int signr)
1130{
1131	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1132		current->comm, task_pid_nr(current), signr);
1133
1134#if defined(__i386__) && !defined(__arch_um__)
1135	printk("code at %08lx: ", regs->ip);
1136	{
1137		int i;
1138		for (i = 0; i < 16; i++) {
1139			unsigned char insn;
1140
1141			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1142				break;
1143			printk("%02x ", insn);
1144		}
1145	}
 
1146#endif
1147	printk("\n");
1148	preempt_disable();
1149	show_regs(regs);
1150	preempt_enable();
1151}
1152
1153static int __init setup_print_fatal_signals(char *str)
1154{
1155	get_option (&str, &print_fatal_signals);
1156
1157	return 1;
1158}
1159
1160__setup("print-fatal-signals=", setup_print_fatal_signals);
1161
1162int
1163__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1164{
1165	return send_signal(sig, info, p, 1);
1166}
1167
1168static int
1169specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1170{
1171	return send_signal(sig, info, t, 0);
1172}
1173
1174int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1175			bool group)
1176{
1177	unsigned long flags;
1178	int ret = -ESRCH;
1179
1180	if (lock_task_sighand(p, &flags)) {
1181		ret = send_signal(sig, info, p, group);
1182		unlock_task_sighand(p, &flags);
1183	}
1184
1185	return ret;
1186}
1187
1188/*
1189 * Force a signal that the process can't ignore: if necessary
1190 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1191 *
1192 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1193 * since we do not want to have a signal handler that was blocked
1194 * be invoked when user space had explicitly blocked it.
1195 *
1196 * We don't want to have recursive SIGSEGV's etc, for example,
1197 * that is why we also clear SIGNAL_UNKILLABLE.
1198 */
1199int
1200force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1201{
1202	unsigned long int flags;
1203	int ret, blocked, ignored;
1204	struct k_sigaction *action;
1205
1206	spin_lock_irqsave(&t->sighand->siglock, flags);
1207	action = &t->sighand->action[sig-1];
1208	ignored = action->sa.sa_handler == SIG_IGN;
1209	blocked = sigismember(&t->blocked, sig);
1210	if (blocked || ignored) {
1211		action->sa.sa_handler = SIG_DFL;
1212		if (blocked) {
1213			sigdelset(&t->blocked, sig);
1214			recalc_sigpending_and_wake(t);
1215		}
1216	}
1217	if (action->sa.sa_handler == SIG_DFL)
1218		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1219	ret = specific_send_sig_info(sig, info, t);
1220	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1221
1222	return ret;
1223}
1224
1225/*
1226 * Nuke all other threads in the group.
1227 */
1228int zap_other_threads(struct task_struct *p)
1229{
1230	struct task_struct *t = p;
1231	int count = 0;
1232
1233	p->signal->group_stop_count = 0;
1234
1235	while_each_thread(p, t) {
1236		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1237		count++;
1238
1239		/* Don't bother with already dead threads */
1240		if (t->exit_state)
1241			continue;
1242		sigaddset(&t->pending.signal, SIGKILL);
1243		signal_wake_up(t, 1);
1244	}
1245
1246	return count;
1247}
1248
1249struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1250					   unsigned long *flags)
1251{
1252	struct sighand_struct *sighand;
1253
1254	for (;;) {
 
 
 
 
1255		local_irq_save(*flags);
1256		rcu_read_lock();
1257		sighand = rcu_dereference(tsk->sighand);
1258		if (unlikely(sighand == NULL)) {
1259			rcu_read_unlock();
1260			local_irq_restore(*flags);
1261			break;
1262		}
1263
 
 
 
 
 
 
 
 
 
 
1264		spin_lock(&sighand->siglock);
1265		if (likely(sighand == tsk->sighand)) {
1266			rcu_read_unlock();
1267			break;
1268		}
1269		spin_unlock(&sighand->siglock);
1270		rcu_read_unlock();
1271		local_irq_restore(*flags);
1272	}
1273
1274	return sighand;
1275}
1276
1277/*
1278 * send signal info to all the members of a group
1279 */
1280int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1281{
1282	int ret;
1283
1284	rcu_read_lock();
1285	ret = check_kill_permission(sig, info, p);
1286	rcu_read_unlock();
1287
1288	if (!ret && sig)
1289		ret = do_send_sig_info(sig, info, p, true);
1290
1291	return ret;
1292}
1293
1294/*
1295 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1296 * control characters do (^C, ^Z etc)
1297 * - the caller must hold at least a readlock on tasklist_lock
1298 */
1299int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1300{
1301	struct task_struct *p = NULL;
1302	int retval, success;
1303
1304	success = 0;
1305	retval = -ESRCH;
1306	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1307		int err = group_send_sig_info(sig, info, p);
1308		success |= !err;
1309		retval = err;
1310	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1311	return success ? 0 : retval;
1312}
1313
1314int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1315{
1316	int error = -ESRCH;
1317	struct task_struct *p;
1318
1319	rcu_read_lock();
1320retry:
1321	p = pid_task(pid, PIDTYPE_PID);
1322	if (p) {
1323		error = group_send_sig_info(sig, info, p);
1324		if (unlikely(error == -ESRCH))
1325			/*
1326			 * The task was unhashed in between, try again.
1327			 * If it is dead, pid_task() will return NULL,
1328			 * if we race with de_thread() it will find the
1329			 * new leader.
1330			 */
1331			goto retry;
 
1332	}
1333	rcu_read_unlock();
1334
1335	return error;
1336}
1337
1338int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1339{
1340	int error;
1341	rcu_read_lock();
1342	error = kill_pid_info(sig, info, find_vpid(pid));
1343	rcu_read_unlock();
1344	return error;
1345}
1346
 
 
 
 
 
 
 
 
 
 
1347/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1348int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1349		      uid_t uid, uid_t euid, u32 secid)
1350{
1351	int ret = -EINVAL;
1352	struct task_struct *p;
1353	const struct cred *pcred;
1354	unsigned long flags;
1355
1356	if (!valid_signal(sig))
1357		return ret;
1358
1359	rcu_read_lock();
1360	p = pid_task(pid, PIDTYPE_PID);
1361	if (!p) {
1362		ret = -ESRCH;
1363		goto out_unlock;
1364	}
1365	pcred = __task_cred(p);
1366	if (si_fromuser(info) &&
1367	    euid != pcred->suid && euid != pcred->uid &&
1368	    uid  != pcred->suid && uid  != pcred->uid) {
1369		ret = -EPERM;
1370		goto out_unlock;
1371	}
1372	ret = security_task_kill(p, info, sig, secid);
1373	if (ret)
1374		goto out_unlock;
1375
1376	if (sig) {
1377		if (lock_task_sighand(p, &flags)) {
1378			ret = __send_signal(sig, info, p, 1, 0);
1379			unlock_task_sighand(p, &flags);
1380		} else
1381			ret = -ESRCH;
1382	}
1383out_unlock:
1384	rcu_read_unlock();
1385	return ret;
1386}
1387EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1388
1389/*
1390 * kill_something_info() interprets pid in interesting ways just like kill(2).
1391 *
1392 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1393 * is probably wrong.  Should make it like BSD or SYSV.
1394 */
1395
1396static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1397{
1398	int ret;
1399
1400	if (pid > 0) {
1401		rcu_read_lock();
1402		ret = kill_pid_info(sig, info, find_vpid(pid));
1403		rcu_read_unlock();
1404		return ret;
1405	}
1406
1407	read_lock(&tasklist_lock);
1408	if (pid != -1) {
1409		ret = __kill_pgrp_info(sig, info,
1410				pid ? find_vpid(-pid) : task_pgrp(current));
1411	} else {
1412		int retval = 0, count = 0;
1413		struct task_struct * p;
1414
1415		for_each_process(p) {
1416			if (task_pid_vnr(p) > 1 &&
1417					!same_thread_group(p, current)) {
1418				int err = group_send_sig_info(sig, info, p);
1419				++count;
1420				if (err != -EPERM)
1421					retval = err;
1422			}
1423		}
1424		ret = count ? retval : -ESRCH;
1425	}
1426	read_unlock(&tasklist_lock);
1427
1428	return ret;
1429}
1430
1431/*
1432 * These are for backward compatibility with the rest of the kernel source.
1433 */
1434
1435int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1436{
1437	/*
1438	 * Make sure legacy kernel users don't send in bad values
1439	 * (normal paths check this in check_kill_permission).
1440	 */
1441	if (!valid_signal(sig))
1442		return -EINVAL;
1443
1444	return do_send_sig_info(sig, info, p, false);
1445}
1446
1447#define __si_special(priv) \
1448	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1449
1450int
1451send_sig(int sig, struct task_struct *p, int priv)
1452{
1453	return send_sig_info(sig, __si_special(priv), p);
1454}
1455
1456void
1457force_sig(int sig, struct task_struct *p)
1458{
1459	force_sig_info(sig, SEND_SIG_PRIV, p);
1460}
1461
1462/*
1463 * When things go south during signal handling, we
1464 * will force a SIGSEGV. And if the signal that caused
1465 * the problem was already a SIGSEGV, we'll want to
1466 * make sure we don't even try to deliver the signal..
1467 */
1468int
1469force_sigsegv(int sig, struct task_struct *p)
1470{
1471	if (sig == SIGSEGV) {
1472		unsigned long flags;
1473		spin_lock_irqsave(&p->sighand->siglock, flags);
1474		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1475		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1476	}
1477	force_sig(SIGSEGV, p);
1478	return 0;
1479}
1480
1481int kill_pgrp(struct pid *pid, int sig, int priv)
1482{
1483	int ret;
1484
1485	read_lock(&tasklist_lock);
1486	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1487	read_unlock(&tasklist_lock);
1488
1489	return ret;
1490}
1491EXPORT_SYMBOL(kill_pgrp);
1492
1493int kill_pid(struct pid *pid, int sig, int priv)
1494{
1495	return kill_pid_info(sig, __si_special(priv), pid);
1496}
1497EXPORT_SYMBOL(kill_pid);
1498
1499/*
1500 * These functions support sending signals using preallocated sigqueue
1501 * structures.  This is needed "because realtime applications cannot
1502 * afford to lose notifications of asynchronous events, like timer
1503 * expirations or I/O completions".  In the case of POSIX Timers
1504 * we allocate the sigqueue structure from the timer_create.  If this
1505 * allocation fails we are able to report the failure to the application
1506 * with an EAGAIN error.
1507 */
1508struct sigqueue *sigqueue_alloc(void)
1509{
1510	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1511
1512	if (q)
1513		q->flags |= SIGQUEUE_PREALLOC;
1514
1515	return q;
1516}
1517
1518void sigqueue_free(struct sigqueue *q)
1519{
1520	unsigned long flags;
1521	spinlock_t *lock = &current->sighand->siglock;
1522
1523	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1524	/*
1525	 * We must hold ->siglock while testing q->list
1526	 * to serialize with collect_signal() or with
1527	 * __exit_signal()->flush_sigqueue().
1528	 */
1529	spin_lock_irqsave(lock, flags);
1530	q->flags &= ~SIGQUEUE_PREALLOC;
1531	/*
1532	 * If it is queued it will be freed when dequeued,
1533	 * like the "regular" sigqueue.
1534	 */
1535	if (!list_empty(&q->list))
1536		q = NULL;
1537	spin_unlock_irqrestore(lock, flags);
1538
1539	if (q)
1540		__sigqueue_free(q);
1541}
1542
1543int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1544{
1545	int sig = q->info.si_signo;
1546	struct sigpending *pending;
1547	unsigned long flags;
1548	int ret;
1549
1550	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1551
1552	ret = -1;
1553	if (!likely(lock_task_sighand(t, &flags)))
1554		goto ret;
1555
1556	ret = 1; /* the signal is ignored */
1557	if (!prepare_signal(sig, t, 0))
 
1558		goto out;
1559
1560	ret = 0;
1561	if (unlikely(!list_empty(&q->list))) {
1562		/*
1563		 * If an SI_TIMER entry is already queue just increment
1564		 * the overrun count.
1565		 */
1566		BUG_ON(q->info.si_code != SI_TIMER);
1567		q->info.si_overrun++;
 
1568		goto out;
1569	}
1570	q->info.si_overrun = 0;
1571
1572	signalfd_notify(t, sig);
1573	pending = group ? &t->signal->shared_pending : &t->pending;
1574	list_add_tail(&q->list, &pending->list);
1575	sigaddset(&pending->signal, sig);
1576	complete_signal(sig, t, group);
 
1577out:
 
1578	unlock_task_sighand(t, &flags);
1579ret:
1580	return ret;
1581}
1582
1583/*
1584 * Let a parent know about the death of a child.
1585 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1586 *
1587 * Returns true if our parent ignored us and so we've switched to
1588 * self-reaping.
1589 */
1590bool do_notify_parent(struct task_struct *tsk, int sig)
1591{
1592	struct siginfo info;
1593	unsigned long flags;
1594	struct sighand_struct *psig;
1595	bool autoreap = false;
 
1596
1597	BUG_ON(sig == -1);
1598
1599 	/* do_notify_parent_cldstop should have been called instead.  */
1600 	BUG_ON(task_is_stopped_or_traced(tsk));
1601
1602	BUG_ON(!tsk->ptrace &&
1603	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1604
 
 
 
 
 
 
 
 
 
1605	info.si_signo = sig;
1606	info.si_errno = 0;
1607	/*
1608	 * we are under tasklist_lock here so our parent is tied to
1609	 * us and cannot exit and release its namespace.
1610	 *
1611	 * the only it can is to switch its nsproxy with sys_unshare,
1612	 * bu uncharing pid namespaces is not allowed, so we'll always
1613	 * see relevant namespace
1614	 *
1615	 * write_lock() currently calls preempt_disable() which is the
1616	 * same as rcu_read_lock(), but according to Oleg, this is not
1617	 * correct to rely on this
1618	 */
1619	rcu_read_lock();
1620	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1621	info.si_uid = __task_cred(tsk)->uid;
 
1622	rcu_read_unlock();
1623
1624	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1625				tsk->signal->utime));
1626	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1627				tsk->signal->stime));
1628
1629	info.si_status = tsk->exit_code & 0x7f;
1630	if (tsk->exit_code & 0x80)
1631		info.si_code = CLD_DUMPED;
1632	else if (tsk->exit_code & 0x7f)
1633		info.si_code = CLD_KILLED;
1634	else {
1635		info.si_code = CLD_EXITED;
1636		info.si_status = tsk->exit_code >> 8;
1637	}
1638
1639	psig = tsk->parent->sighand;
1640	spin_lock_irqsave(&psig->siglock, flags);
1641	if (!tsk->ptrace && sig == SIGCHLD &&
1642	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1643	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1644		/*
1645		 * We are exiting and our parent doesn't care.  POSIX.1
1646		 * defines special semantics for setting SIGCHLD to SIG_IGN
1647		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1648		 * automatically and not left for our parent's wait4 call.
1649		 * Rather than having the parent do it as a magic kind of
1650		 * signal handler, we just set this to tell do_exit that we
1651		 * can be cleaned up without becoming a zombie.  Note that
1652		 * we still call __wake_up_parent in this case, because a
1653		 * blocked sys_wait4 might now return -ECHILD.
1654		 *
1655		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1656		 * is implementation-defined: we do (if you don't want
1657		 * it, just use SIG_IGN instead).
1658		 */
1659		autoreap = true;
1660		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1661			sig = 0;
1662	}
1663	if (valid_signal(sig) && sig)
1664		__group_send_sig_info(sig, &info, tsk->parent);
1665	__wake_up_parent(tsk, tsk->parent);
1666	spin_unlock_irqrestore(&psig->siglock, flags);
1667
1668	return autoreap;
1669}
1670
1671/**
1672 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1673 * @tsk: task reporting the state change
1674 * @for_ptracer: the notification is for ptracer
1675 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1676 *
1677 * Notify @tsk's parent that the stopped/continued state has changed.  If
1678 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1679 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1680 *
1681 * CONTEXT:
1682 * Must be called with tasklist_lock at least read locked.
1683 */
1684static void do_notify_parent_cldstop(struct task_struct *tsk,
1685				     bool for_ptracer, int why)
1686{
1687	struct siginfo info;
1688	unsigned long flags;
1689	struct task_struct *parent;
1690	struct sighand_struct *sighand;
 
1691
1692	if (for_ptracer) {
1693		parent = tsk->parent;
1694	} else {
1695		tsk = tsk->group_leader;
1696		parent = tsk->real_parent;
1697	}
1698
1699	info.si_signo = SIGCHLD;
1700	info.si_errno = 0;
1701	/*
1702	 * see comment in do_notify_parent() about the following 4 lines
1703	 */
1704	rcu_read_lock();
1705	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1706	info.si_uid = __task_cred(tsk)->uid;
1707	rcu_read_unlock();
1708
1709	info.si_utime = cputime_to_clock_t(tsk->utime);
1710	info.si_stime = cputime_to_clock_t(tsk->stime);
 
1711
1712 	info.si_code = why;
1713 	switch (why) {
1714 	case CLD_CONTINUED:
1715 		info.si_status = SIGCONT;
1716 		break;
1717 	case CLD_STOPPED:
1718 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1719 		break;
1720 	case CLD_TRAPPED:
1721 		info.si_status = tsk->exit_code & 0x7f;
1722 		break;
1723 	default:
1724 		BUG();
1725 	}
1726
1727	sighand = parent->sighand;
1728	spin_lock_irqsave(&sighand->siglock, flags);
1729	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1730	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1731		__group_send_sig_info(SIGCHLD, &info, parent);
1732	/*
1733	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1734	 */
1735	__wake_up_parent(tsk, parent);
1736	spin_unlock_irqrestore(&sighand->siglock, flags);
1737}
1738
1739static inline int may_ptrace_stop(void)
1740{
1741	if (!likely(current->ptrace))
1742		return 0;
1743	/*
1744	 * Are we in the middle of do_coredump?
1745	 * If so and our tracer is also part of the coredump stopping
1746	 * is a deadlock situation, and pointless because our tracer
1747	 * is dead so don't allow us to stop.
1748	 * If SIGKILL was already sent before the caller unlocked
1749	 * ->siglock we must see ->core_state != NULL. Otherwise it
1750	 * is safe to enter schedule().
 
 
 
 
1751	 */
1752	if (unlikely(current->mm->core_state) &&
1753	    unlikely(current->mm == current->parent->mm))
1754		return 0;
1755
1756	return 1;
1757}
1758
1759/*
1760 * Return non-zero if there is a SIGKILL that should be waking us up.
1761 * Called with the siglock held.
1762 */
1763static int sigkill_pending(struct task_struct *tsk)
1764{
1765	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1766		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1767}
1768
1769/*
1770 * This must be called with current->sighand->siglock held.
1771 *
1772 * This should be the path for all ptrace stops.
1773 * We always set current->last_siginfo while stopped here.
1774 * That makes it a way to test a stopped process for
1775 * being ptrace-stopped vs being job-control-stopped.
1776 *
1777 * If we actually decide not to stop at all because the tracer
1778 * is gone, we keep current->exit_code unless clear_code.
1779 */
1780static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1781	__releases(&current->sighand->siglock)
1782	__acquires(&current->sighand->siglock)
1783{
1784	bool gstop_done = false;
1785
1786	if (arch_ptrace_stop_needed(exit_code, info)) {
1787		/*
1788		 * The arch code has something special to do before a
1789		 * ptrace stop.  This is allowed to block, e.g. for faults
1790		 * on user stack pages.  We can't keep the siglock while
1791		 * calling arch_ptrace_stop, so we must release it now.
1792		 * To preserve proper semantics, we must do this before
1793		 * any signal bookkeeping like checking group_stop_count.
1794		 * Meanwhile, a SIGKILL could come in before we retake the
1795		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1796		 * So after regaining the lock, we must check for SIGKILL.
1797		 */
1798		spin_unlock_irq(&current->sighand->siglock);
1799		arch_ptrace_stop(exit_code, info);
1800		spin_lock_irq(&current->sighand->siglock);
1801		if (sigkill_pending(current))
1802			return;
1803	}
1804
1805	/*
1806	 * We're committing to trapping.  TRACED should be visible before
1807	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1808	 * Also, transition to TRACED and updates to ->jobctl should be
1809	 * atomic with respect to siglock and should be done after the arch
1810	 * hook as siglock is released and regrabbed across it.
1811	 */
1812	set_current_state(TASK_TRACED);
1813
1814	current->last_siginfo = info;
1815	current->exit_code = exit_code;
1816
1817	/*
1818	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1819	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1820	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1821	 * could be clear now.  We act as if SIGCONT is received after
1822	 * TASK_TRACED is entered - ignore it.
1823	 */
1824	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1825		gstop_done = task_participate_group_stop(current);
1826
1827	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1828	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1829	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1830		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1831
1832	/* entering a trap, clear TRAPPING */
1833	task_clear_jobctl_trapping(current);
1834
1835	spin_unlock_irq(&current->sighand->siglock);
1836	read_lock(&tasklist_lock);
1837	if (may_ptrace_stop()) {
1838		/*
1839		 * Notify parents of the stop.
1840		 *
1841		 * While ptraced, there are two parents - the ptracer and
1842		 * the real_parent of the group_leader.  The ptracer should
1843		 * know about every stop while the real parent is only
1844		 * interested in the completion of group stop.  The states
1845		 * for the two don't interact with each other.  Notify
1846		 * separately unless they're gonna be duplicates.
1847		 */
1848		do_notify_parent_cldstop(current, true, why);
1849		if (gstop_done && ptrace_reparented(current))
1850			do_notify_parent_cldstop(current, false, why);
1851
1852		/*
1853		 * Don't want to allow preemption here, because
1854		 * sys_ptrace() needs this task to be inactive.
1855		 *
1856		 * XXX: implement read_unlock_no_resched().
1857		 */
1858		preempt_disable();
1859		read_unlock(&tasklist_lock);
1860		preempt_enable_no_resched();
1861		schedule();
1862	} else {
1863		/*
1864		 * By the time we got the lock, our tracer went away.
1865		 * Don't drop the lock yet, another tracer may come.
1866		 *
1867		 * If @gstop_done, the ptracer went away between group stop
1868		 * completion and here.  During detach, it would have set
1869		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1870		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1871		 * the real parent of the group stop completion is enough.
1872		 */
1873		if (gstop_done)
1874			do_notify_parent_cldstop(current, false, why);
1875
 
1876		__set_current_state(TASK_RUNNING);
1877		if (clear_code)
1878			current->exit_code = 0;
1879		read_unlock(&tasklist_lock);
1880	}
1881
1882	/*
1883	 * While in TASK_TRACED, we were considered "frozen enough".
1884	 * Now that we woke up, it's crucial if we're supposed to be
1885	 * frozen that we freeze now before running anything substantial.
1886	 */
1887	try_to_freeze();
1888
1889	/*
1890	 * We are back.  Now reacquire the siglock before touching
1891	 * last_siginfo, so that we are sure to have synchronized with
1892	 * any signal-sending on another CPU that wants to examine it.
1893	 */
1894	spin_lock_irq(&current->sighand->siglock);
1895	current->last_siginfo = NULL;
1896
1897	/* LISTENING can be set only during STOP traps, clear it */
1898	current->jobctl &= ~JOBCTL_LISTENING;
1899
1900	/*
1901	 * Queued signals ignored us while we were stopped for tracing.
1902	 * So check for any that we should take before resuming user mode.
1903	 * This sets TIF_SIGPENDING, but never clears it.
1904	 */
1905	recalc_sigpending_tsk(current);
1906}
1907
1908static void ptrace_do_notify(int signr, int exit_code, int why)
1909{
1910	siginfo_t info;
1911
1912	memset(&info, 0, sizeof info);
1913	info.si_signo = signr;
1914	info.si_code = exit_code;
1915	info.si_pid = task_pid_vnr(current);
1916	info.si_uid = current_uid();
1917
1918	/* Let the debugger run.  */
1919	ptrace_stop(exit_code, why, 1, &info);
1920}
1921
1922void ptrace_notify(int exit_code)
1923{
1924	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
 
 
1925
1926	spin_lock_irq(&current->sighand->siglock);
1927	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1928	spin_unlock_irq(&current->sighand->siglock);
1929}
1930
1931/**
1932 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1933 * @signr: signr causing group stop if initiating
1934 *
1935 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1936 * and participate in it.  If already set, participate in the existing
1937 * group stop.  If participated in a group stop (and thus slept), %true is
1938 * returned with siglock released.
1939 *
1940 * If ptraced, this function doesn't handle stop itself.  Instead,
1941 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1942 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1943 * places afterwards.
1944 *
1945 * CONTEXT:
1946 * Must be called with @current->sighand->siglock held, which is released
1947 * on %true return.
1948 *
1949 * RETURNS:
1950 * %false if group stop is already cancelled or ptrace trap is scheduled.
1951 * %true if participated in group stop.
1952 */
1953static bool do_signal_stop(int signr)
1954	__releases(&current->sighand->siglock)
1955{
1956	struct signal_struct *sig = current->signal;
1957
1958	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1959		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1960		struct task_struct *t;
1961
1962		/* signr will be recorded in task->jobctl for retries */
1963		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1964
1965		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1966		    unlikely(signal_group_exit(sig)))
1967			return false;
1968		/*
1969		 * There is no group stop already in progress.  We must
1970		 * initiate one now.
1971		 *
1972		 * While ptraced, a task may be resumed while group stop is
1973		 * still in effect and then receive a stop signal and
1974		 * initiate another group stop.  This deviates from the
1975		 * usual behavior as two consecutive stop signals can't
1976		 * cause two group stops when !ptraced.  That is why we
1977		 * also check !task_is_stopped(t) below.
1978		 *
1979		 * The condition can be distinguished by testing whether
1980		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1981		 * group_exit_code in such case.
1982		 *
1983		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1984		 * an intervening stop signal is required to cause two
1985		 * continued events regardless of ptrace.
1986		 */
1987		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1988			sig->group_exit_code = signr;
1989		else
1990			WARN_ON_ONCE(!current->ptrace);
1991
1992		sig->group_stop_count = 0;
1993
1994		if (task_set_jobctl_pending(current, signr | gstop))
1995			sig->group_stop_count++;
1996
1997		for (t = next_thread(current); t != current;
1998		     t = next_thread(t)) {
1999			/*
2000			 * Setting state to TASK_STOPPED for a group
2001			 * stop is always done with the siglock held,
2002			 * so this check has no races.
2003			 */
2004			if (!task_is_stopped(t) &&
2005			    task_set_jobctl_pending(t, signr | gstop)) {
2006				sig->group_stop_count++;
2007				if (likely(!(t->ptrace & PT_SEIZED)))
2008					signal_wake_up(t, 0);
2009				else
2010					ptrace_trap_notify(t);
2011			}
2012		}
2013	}
2014
2015	if (likely(!current->ptrace)) {
2016		int notify = 0;
2017
2018		/*
2019		 * If there are no other threads in the group, or if there
2020		 * is a group stop in progress and we are the last to stop,
2021		 * report to the parent.
2022		 */
2023		if (task_participate_group_stop(current))
2024			notify = CLD_STOPPED;
2025
2026		__set_current_state(TASK_STOPPED);
2027		spin_unlock_irq(&current->sighand->siglock);
2028
2029		/*
2030		 * Notify the parent of the group stop completion.  Because
2031		 * we're not holding either the siglock or tasklist_lock
2032		 * here, ptracer may attach inbetween; however, this is for
2033		 * group stop and should always be delivered to the real
2034		 * parent of the group leader.  The new ptracer will get
2035		 * its notification when this task transitions into
2036		 * TASK_TRACED.
2037		 */
2038		if (notify) {
2039			read_lock(&tasklist_lock);
2040			do_notify_parent_cldstop(current, false, notify);
2041			read_unlock(&tasklist_lock);
2042		}
2043
2044		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2045		schedule();
2046		return true;
2047	} else {
2048		/*
2049		 * While ptraced, group stop is handled by STOP trap.
2050		 * Schedule it and let the caller deal with it.
2051		 */
2052		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2053		return false;
2054	}
2055}
2056
2057/**
2058 * do_jobctl_trap - take care of ptrace jobctl traps
2059 *
2060 * When PT_SEIZED, it's used for both group stop and explicit
2061 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2062 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2063 * the stop signal; otherwise, %SIGTRAP.
2064 *
2065 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2066 * number as exit_code and no siginfo.
2067 *
2068 * CONTEXT:
2069 * Must be called with @current->sighand->siglock held, which may be
2070 * released and re-acquired before returning with intervening sleep.
2071 */
2072static void do_jobctl_trap(void)
2073{
2074	struct signal_struct *signal = current->signal;
2075	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2076
2077	if (current->ptrace & PT_SEIZED) {
2078		if (!signal->group_stop_count &&
2079		    !(signal->flags & SIGNAL_STOP_STOPPED))
2080			signr = SIGTRAP;
2081		WARN_ON_ONCE(!signr);
2082		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2083				 CLD_STOPPED);
2084	} else {
2085		WARN_ON_ONCE(!signr);
2086		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2087		current->exit_code = 0;
2088	}
2089}
2090
2091static int ptrace_signal(int signr, siginfo_t *info,
2092			 struct pt_regs *regs, void *cookie)
2093{
2094	ptrace_signal_deliver(regs, cookie);
2095	/*
2096	 * We do not check sig_kernel_stop(signr) but set this marker
2097	 * unconditionally because we do not know whether debugger will
2098	 * change signr. This flag has no meaning unless we are going
2099	 * to stop after return from ptrace_stop(). In this case it will
2100	 * be checked in do_signal_stop(), we should only stop if it was
2101	 * not cleared by SIGCONT while we were sleeping. See also the
2102	 * comment in dequeue_signal().
2103	 */
2104	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2105	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2106
2107	/* We're back.  Did the debugger cancel the sig?  */
2108	signr = current->exit_code;
2109	if (signr == 0)
2110		return signr;
2111
2112	current->exit_code = 0;
2113
2114	/*
2115	 * Update the siginfo structure if the signal has
2116	 * changed.  If the debugger wanted something
2117	 * specific in the siginfo structure then it should
2118	 * have updated *info via PTRACE_SETSIGINFO.
2119	 */
2120	if (signr != info->si_signo) {
2121		info->si_signo = signr;
2122		info->si_errno = 0;
2123		info->si_code = SI_USER;
 
2124		info->si_pid = task_pid_vnr(current->parent);
2125		info->si_uid = task_uid(current->parent);
 
 
2126	}
2127
2128	/* If the (new) signal is now blocked, requeue it.  */
2129	if (sigismember(&current->blocked, signr)) {
2130		specific_send_sig_info(signr, info, current);
2131		signr = 0;
2132	}
2133
2134	return signr;
2135}
2136
2137int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2138			  struct pt_regs *regs, void *cookie)
2139{
2140	struct sighand_struct *sighand = current->sighand;
2141	struct signal_struct *signal = current->signal;
2142	int signr;
2143
2144relock:
 
 
 
 
 
2145	/*
2146	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2147	 * While in TASK_STOPPED, we were considered "frozen enough".
2148	 * Now that we woke up, it's crucial if we're supposed to be
2149	 * frozen that we freeze now before running anything substantial.
2150	 */
2151	try_to_freeze();
2152
 
2153	spin_lock_irq(&sighand->siglock);
2154	/*
2155	 * Every stopped thread goes here after wakeup. Check to see if
2156	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2157	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2158	 */
2159	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2160		int why;
2161
2162		if (signal->flags & SIGNAL_CLD_CONTINUED)
2163			why = CLD_CONTINUED;
2164		else
2165			why = CLD_STOPPED;
2166
2167		signal->flags &= ~SIGNAL_CLD_MASK;
2168
2169		spin_unlock_irq(&sighand->siglock);
2170
2171		/*
2172		 * Notify the parent that we're continuing.  This event is
2173		 * always per-process and doesn't make whole lot of sense
2174		 * for ptracers, who shouldn't consume the state via
2175		 * wait(2) either, but, for backward compatibility, notify
2176		 * the ptracer of the group leader too unless it's gonna be
2177		 * a duplicate.
2178		 */
2179		read_lock(&tasklist_lock);
2180		do_notify_parent_cldstop(current, false, why);
2181
2182		if (ptrace_reparented(current->group_leader))
2183			do_notify_parent_cldstop(current->group_leader,
2184						true, why);
2185		read_unlock(&tasklist_lock);
2186
2187		goto relock;
2188	}
2189
2190	for (;;) {
2191		struct k_sigaction *ka;
2192
2193		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2194		    do_signal_stop(0))
2195			goto relock;
2196
2197		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2198			do_jobctl_trap();
2199			spin_unlock_irq(&sighand->siglock);
2200			goto relock;
2201		}
2202
2203		signr = dequeue_signal(current, &current->blocked, info);
2204
2205		if (!signr)
2206			break; /* will return 0 */
2207
2208		if (unlikely(current->ptrace) && signr != SIGKILL) {
2209			signr = ptrace_signal(signr, info,
2210					      regs, cookie);
2211			if (!signr)
2212				continue;
2213		}
2214
2215		ka = &sighand->action[signr-1];
2216
2217		/* Trace actually delivered signals. */
2218		trace_signal_deliver(signr, info, ka);
2219
2220		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2221			continue;
2222		if (ka->sa.sa_handler != SIG_DFL) {
2223			/* Run the handler.  */
2224			*return_ka = *ka;
2225
2226			if (ka->sa.sa_flags & SA_ONESHOT)
2227				ka->sa.sa_handler = SIG_DFL;
2228
2229			break; /* will return non-zero "signr" value */
2230		}
2231
2232		/*
2233		 * Now we are doing the default action for this signal.
2234		 */
2235		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2236			continue;
2237
2238		/*
2239		 * Global init gets no signals it doesn't want.
2240		 * Container-init gets no signals it doesn't want from same
2241		 * container.
2242		 *
2243		 * Note that if global/container-init sees a sig_kernel_only()
2244		 * signal here, the signal must have been generated internally
2245		 * or must have come from an ancestor namespace. In either
2246		 * case, the signal cannot be dropped.
2247		 */
2248		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2249				!sig_kernel_only(signr))
2250			continue;
2251
2252		if (sig_kernel_stop(signr)) {
2253			/*
2254			 * The default action is to stop all threads in
2255			 * the thread group.  The job control signals
2256			 * do nothing in an orphaned pgrp, but SIGSTOP
2257			 * always works.  Note that siglock needs to be
2258			 * dropped during the call to is_orphaned_pgrp()
2259			 * because of lock ordering with tasklist_lock.
2260			 * This allows an intervening SIGCONT to be posted.
2261			 * We need to check for that and bail out if necessary.
2262			 */
2263			if (signr != SIGSTOP) {
2264				spin_unlock_irq(&sighand->siglock);
2265
2266				/* signals can be posted during this window */
2267
2268				if (is_current_pgrp_orphaned())
2269					goto relock;
2270
2271				spin_lock_irq(&sighand->siglock);
2272			}
2273
2274			if (likely(do_signal_stop(info->si_signo))) {
2275				/* It released the siglock.  */
2276				goto relock;
2277			}
2278
2279			/*
2280			 * We didn't actually stop, due to a race
2281			 * with SIGCONT or something like that.
2282			 */
2283			continue;
2284		}
2285
2286		spin_unlock_irq(&sighand->siglock);
2287
2288		/*
2289		 * Anything else is fatal, maybe with a core dump.
2290		 */
2291		current->flags |= PF_SIGNALED;
2292
2293		if (sig_kernel_coredump(signr)) {
2294			if (print_fatal_signals)
2295				print_fatal_signal(regs, info->si_signo);
 
2296			/*
2297			 * If it was able to dump core, this kills all
2298			 * other threads in the group and synchronizes with
2299			 * their demise.  If we lost the race with another
2300			 * thread getting here, it set group_exit_code
2301			 * first and our do_group_exit call below will use
2302			 * that value and ignore the one we pass it.
2303			 */
2304			do_coredump(info->si_signo, info->si_signo, regs);
2305		}
2306
2307		/*
2308		 * Death signals, no core dump.
2309		 */
2310		do_group_exit(info->si_signo);
2311		/* NOTREACHED */
2312	}
2313	spin_unlock_irq(&sighand->siglock);
2314	return signr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2315}
2316
2317/*
2318 * It could be that complete_signal() picked us to notify about the
2319 * group-wide signal. Other threads should be notified now to take
2320 * the shared signals in @which since we will not.
2321 */
2322static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2323{
2324	sigset_t retarget;
2325	struct task_struct *t;
2326
2327	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2328	if (sigisemptyset(&retarget))
2329		return;
2330
2331	t = tsk;
2332	while_each_thread(tsk, t) {
2333		if (t->flags & PF_EXITING)
2334			continue;
2335
2336		if (!has_pending_signals(&retarget, &t->blocked))
2337			continue;
2338		/* Remove the signals this thread can handle. */
2339		sigandsets(&retarget, &retarget, &t->blocked);
2340
2341		if (!signal_pending(t))
2342			signal_wake_up(t, 0);
2343
2344		if (sigisemptyset(&retarget))
2345			break;
2346	}
2347}
2348
2349void exit_signals(struct task_struct *tsk)
2350{
2351	int group_stop = 0;
2352	sigset_t unblocked;
2353
 
 
 
 
 
 
2354	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2355		tsk->flags |= PF_EXITING;
 
2356		return;
2357	}
2358
2359	spin_lock_irq(&tsk->sighand->siglock);
2360	/*
2361	 * From now this task is not visible for group-wide signals,
2362	 * see wants_signal(), do_signal_stop().
2363	 */
2364	tsk->flags |= PF_EXITING;
 
 
 
2365	if (!signal_pending(tsk))
2366		goto out;
2367
2368	unblocked = tsk->blocked;
2369	signotset(&unblocked);
2370	retarget_shared_pending(tsk, &unblocked);
2371
2372	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2373	    task_participate_group_stop(tsk))
2374		group_stop = CLD_STOPPED;
2375out:
2376	spin_unlock_irq(&tsk->sighand->siglock);
2377
2378	/*
2379	 * If group stop has completed, deliver the notification.  This
2380	 * should always go to the real parent of the group leader.
2381	 */
2382	if (unlikely(group_stop)) {
2383		read_lock(&tasklist_lock);
2384		do_notify_parent_cldstop(tsk, false, group_stop);
2385		read_unlock(&tasklist_lock);
2386	}
2387}
2388
2389EXPORT_SYMBOL(recalc_sigpending);
2390EXPORT_SYMBOL_GPL(dequeue_signal);
2391EXPORT_SYMBOL(flush_signals);
2392EXPORT_SYMBOL(force_sig);
2393EXPORT_SYMBOL(send_sig);
2394EXPORT_SYMBOL(send_sig_info);
2395EXPORT_SYMBOL(sigprocmask);
2396EXPORT_SYMBOL(block_all_signals);
2397EXPORT_SYMBOL(unblock_all_signals);
2398
2399
2400/*
2401 * System call entry points.
2402 */
2403
2404/**
2405 *  sys_restart_syscall - restart a system call
2406 */
2407SYSCALL_DEFINE0(restart_syscall)
2408{
2409	struct restart_block *restart = &current_thread_info()->restart_block;
2410	return restart->fn(restart);
2411}
2412
2413long do_no_restart_syscall(struct restart_block *param)
2414{
2415	return -EINTR;
2416}
2417
2418static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2419{
2420	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2421		sigset_t newblocked;
2422		/* A set of now blocked but previously unblocked signals. */
2423		sigandnsets(&newblocked, newset, &current->blocked);
2424		retarget_shared_pending(tsk, &newblocked);
2425	}
2426	tsk->blocked = *newset;
2427	recalc_sigpending();
2428}
2429
2430/**
2431 * set_current_blocked - change current->blocked mask
2432 * @newset: new mask
2433 *
2434 * It is wrong to change ->blocked directly, this helper should be used
2435 * to ensure the process can't miss a shared signal we are going to block.
2436 */
2437void set_current_blocked(const sigset_t *newset)
 
 
 
 
 
 
2438{
2439	struct task_struct *tsk = current;
2440
 
 
 
 
 
 
 
2441	spin_lock_irq(&tsk->sighand->siglock);
2442	__set_task_blocked(tsk, newset);
2443	spin_unlock_irq(&tsk->sighand->siglock);
2444}
2445
2446/*
2447 * This is also useful for kernel threads that want to temporarily
2448 * (or permanently) block certain signals.
2449 *
2450 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2451 * interface happily blocks "unblockable" signals like SIGKILL
2452 * and friends.
2453 */
2454int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2455{
2456	struct task_struct *tsk = current;
2457	sigset_t newset;
2458
2459	/* Lockless, only current can change ->blocked, never from irq */
2460	if (oldset)
2461		*oldset = tsk->blocked;
2462
2463	switch (how) {
2464	case SIG_BLOCK:
2465		sigorsets(&newset, &tsk->blocked, set);
2466		break;
2467	case SIG_UNBLOCK:
2468		sigandnsets(&newset, &tsk->blocked, set);
2469		break;
2470	case SIG_SETMASK:
2471		newset = *set;
2472		break;
2473	default:
2474		return -EINVAL;
2475	}
2476
2477	set_current_blocked(&newset);
2478	return 0;
2479}
2480
2481/**
2482 *  sys_rt_sigprocmask - change the list of currently blocked signals
2483 *  @how: whether to add, remove, or set signals
2484 *  @nset: stores pending signals
2485 *  @oset: previous value of signal mask if non-null
2486 *  @sigsetsize: size of sigset_t type
2487 */
2488SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2489		sigset_t __user *, oset, size_t, sigsetsize)
2490{
2491	sigset_t old_set, new_set;
2492	int error;
2493
2494	/* XXX: Don't preclude handling different sized sigset_t's.  */
2495	if (sigsetsize != sizeof(sigset_t))
2496		return -EINVAL;
2497
2498	old_set = current->blocked;
2499
2500	if (nset) {
2501		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2502			return -EFAULT;
2503		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2504
2505		error = sigprocmask(how, &new_set, NULL);
2506		if (error)
2507			return error;
2508	}
2509
2510	if (oset) {
2511		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2512			return -EFAULT;
2513	}
2514
2515	return 0;
2516}
2517
2518long do_sigpending(void __user *set, unsigned long sigsetsize)
 
 
2519{
2520	long error = -EINVAL;
2521	sigset_t pending;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2523	if (sigsetsize > sizeof(sigset_t))
2524		goto out;
2525
2526	spin_lock_irq(&current->sighand->siglock);
2527	sigorsets(&pending, &current->pending.signal,
2528		  &current->signal->shared_pending.signal);
2529	spin_unlock_irq(&current->sighand->siglock);
2530
2531	/* Outside the lock because only this thread touches it.  */
2532	sigandsets(&pending, &current->blocked, &pending);
2533
2534	error = -EFAULT;
2535	if (!copy_to_user(set, &pending, sigsetsize))
2536		error = 0;
2537
2538out:
2539	return error;
2540}
2541
2542/**
2543 *  sys_rt_sigpending - examine a pending signal that has been raised
2544 *			while blocked
2545 *  @set: stores pending signals
2546 *  @sigsetsize: size of sigset_t type or larger
2547 */
2548SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2549{
2550	return do_sigpending(set, sigsetsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2551}
 
2552
2553#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2554
2555int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2556{
2557	int err;
2558
2559	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2560		return -EFAULT;
2561	if (from->si_code < 0)
2562		return __copy_to_user(to, from, sizeof(siginfo_t))
2563			? -EFAULT : 0;
2564	/*
2565	 * If you change siginfo_t structure, please be sure
2566	 * this code is fixed accordingly.
2567	 * Please remember to update the signalfd_copyinfo() function
2568	 * inside fs/signalfd.c too, in case siginfo_t changes.
2569	 * It should never copy any pad contained in the structure
2570	 * to avoid security leaks, but must copy the generic
2571	 * 3 ints plus the relevant union member.
2572	 */
2573	err = __put_user(from->si_signo, &to->si_signo);
2574	err |= __put_user(from->si_errno, &to->si_errno);
2575	err |= __put_user((short)from->si_code, &to->si_code);
2576	switch (from->si_code & __SI_MASK) {
2577	case __SI_KILL:
2578		err |= __put_user(from->si_pid, &to->si_pid);
2579		err |= __put_user(from->si_uid, &to->si_uid);
2580		break;
2581	case __SI_TIMER:
2582		 err |= __put_user(from->si_tid, &to->si_tid);
2583		 err |= __put_user(from->si_overrun, &to->si_overrun);
2584		 err |= __put_user(from->si_ptr, &to->si_ptr);
2585		break;
2586	case __SI_POLL:
2587		err |= __put_user(from->si_band, &to->si_band);
2588		err |= __put_user(from->si_fd, &to->si_fd);
2589		break;
2590	case __SI_FAULT:
2591		err |= __put_user(from->si_addr, &to->si_addr);
2592#ifdef __ARCH_SI_TRAPNO
2593		err |= __put_user(from->si_trapno, &to->si_trapno);
2594#endif
2595#ifdef BUS_MCEERR_AO
2596		/*
2597		 * Other callers might not initialize the si_lsb field,
2598		 * so check explicitly for the right codes here.
2599		 */
2600		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
 
2601			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2602#endif
 
 
 
 
 
 
 
 
 
 
2603		break;
2604	case __SI_CHLD:
2605		err |= __put_user(from->si_pid, &to->si_pid);
2606		err |= __put_user(from->si_uid, &to->si_uid);
2607		err |= __put_user(from->si_status, &to->si_status);
2608		err |= __put_user(from->si_utime, &to->si_utime);
2609		err |= __put_user(from->si_stime, &to->si_stime);
2610		break;
2611	case __SI_RT: /* This is not generated by the kernel as of now. */
2612	case __SI_MESGQ: /* But this is */
2613		err |= __put_user(from->si_pid, &to->si_pid);
2614		err |= __put_user(from->si_uid, &to->si_uid);
2615		err |= __put_user(from->si_ptr, &to->si_ptr);
2616		break;
 
 
 
 
 
 
 
2617	default: /* this is just in case for now ... */
2618		err |= __put_user(from->si_pid, &to->si_pid);
2619		err |= __put_user(from->si_uid, &to->si_uid);
2620		break;
2621	}
2622	return err;
2623}
2624
2625#endif
2626
2627/**
2628 *  do_sigtimedwait - wait for queued signals specified in @which
2629 *  @which: queued signals to wait for
2630 *  @info: if non-null, the signal's siginfo is returned here
2631 *  @ts: upper bound on process time suspension
2632 */
2633int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2634			const struct timespec *ts)
2635{
 
2636	struct task_struct *tsk = current;
2637	long timeout = MAX_SCHEDULE_TIMEOUT;
2638	sigset_t mask = *which;
2639	int sig;
2640
2641	if (ts) {
2642		if (!timespec_valid(ts))
2643			return -EINVAL;
2644		timeout = timespec_to_jiffies(ts);
2645		/*
2646		 * We can be close to the next tick, add another one
2647		 * to ensure we will wait at least the time asked for.
2648		 */
2649		if (ts->tv_sec || ts->tv_nsec)
2650			timeout++;
2651	}
2652
2653	/*
2654	 * Invert the set of allowed signals to get those we want to block.
2655	 */
2656	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2657	signotset(&mask);
2658
2659	spin_lock_irq(&tsk->sighand->siglock);
2660	sig = dequeue_signal(tsk, &mask, info);
2661	if (!sig && timeout) {
2662		/*
2663		 * None ready, temporarily unblock those we're interested
2664		 * while we are sleeping in so that we'll be awakened when
2665		 * they arrive. Unblocking is always fine, we can avoid
2666		 * set_current_blocked().
2667		 */
2668		tsk->real_blocked = tsk->blocked;
2669		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2670		recalc_sigpending();
2671		spin_unlock_irq(&tsk->sighand->siglock);
2672
2673		timeout = schedule_timeout_interruptible(timeout);
2674
 
2675		spin_lock_irq(&tsk->sighand->siglock);
2676		__set_task_blocked(tsk, &tsk->real_blocked);
2677		siginitset(&tsk->real_blocked, 0);
2678		sig = dequeue_signal(tsk, &mask, info);
2679	}
2680	spin_unlock_irq(&tsk->sighand->siglock);
2681
2682	if (sig)
2683		return sig;
2684	return timeout ? -EINTR : -EAGAIN;
2685}
2686
2687/**
2688 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2689 *			in @uthese
2690 *  @uthese: queued signals to wait for
2691 *  @uinfo: if non-null, the signal's siginfo is returned here
2692 *  @uts: upper bound on process time suspension
2693 *  @sigsetsize: size of sigset_t type
2694 */
2695SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2696		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2697		size_t, sigsetsize)
2698{
2699	sigset_t these;
2700	struct timespec ts;
2701	siginfo_t info;
2702	int ret;
2703
2704	/* XXX: Don't preclude handling different sized sigset_t's.  */
2705	if (sigsetsize != sizeof(sigset_t))
2706		return -EINVAL;
2707
2708	if (copy_from_user(&these, uthese, sizeof(these)))
2709		return -EFAULT;
2710
2711	if (uts) {
2712		if (copy_from_user(&ts, uts, sizeof(ts)))
2713			return -EFAULT;
2714	}
2715
2716	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2717
2718	if (ret > 0 && uinfo) {
2719		if (copy_siginfo_to_user(uinfo, &info))
2720			ret = -EFAULT;
2721	}
2722
2723	return ret;
2724}
2725
2726/**
2727 *  sys_kill - send a signal to a process
2728 *  @pid: the PID of the process
2729 *  @sig: signal to be sent
2730 */
2731SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2732{
2733	struct siginfo info;
2734
2735	info.si_signo = sig;
2736	info.si_errno = 0;
2737	info.si_code = SI_USER;
2738	info.si_pid = task_tgid_vnr(current);
2739	info.si_uid = current_uid();
2740
2741	return kill_something_info(sig, &info, pid);
2742}
2743
2744static int
2745do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2746{
2747	struct task_struct *p;
2748	int error = -ESRCH;
2749
2750	rcu_read_lock();
2751	p = find_task_by_vpid(pid);
2752	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2753		error = check_kill_permission(sig, info, p);
2754		/*
2755		 * The null signal is a permissions and process existence
2756		 * probe.  No signal is actually delivered.
2757		 */
2758		if (!error && sig) {
2759			error = do_send_sig_info(sig, info, p, false);
2760			/*
2761			 * If lock_task_sighand() failed we pretend the task
2762			 * dies after receiving the signal. The window is tiny,
2763			 * and the signal is private anyway.
2764			 */
2765			if (unlikely(error == -ESRCH))
2766				error = 0;
2767		}
2768	}
2769	rcu_read_unlock();
2770
2771	return error;
2772}
2773
2774static int do_tkill(pid_t tgid, pid_t pid, int sig)
2775{
2776	struct siginfo info;
2777
2778	info.si_signo = sig;
2779	info.si_errno = 0;
2780	info.si_code = SI_TKILL;
2781	info.si_pid = task_tgid_vnr(current);
2782	info.si_uid = current_uid();
2783
2784	return do_send_specific(tgid, pid, sig, &info);
2785}
2786
2787/**
2788 *  sys_tgkill - send signal to one specific thread
2789 *  @tgid: the thread group ID of the thread
2790 *  @pid: the PID of the thread
2791 *  @sig: signal to be sent
2792 *
2793 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2794 *  exists but it's not belonging to the target process anymore. This
2795 *  method solves the problem of threads exiting and PIDs getting reused.
2796 */
2797SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2798{
2799	/* This is only valid for single tasks */
2800	if (pid <= 0 || tgid <= 0)
2801		return -EINVAL;
2802
2803	return do_tkill(tgid, pid, sig);
2804}
2805
2806/**
2807 *  sys_tkill - send signal to one specific task
2808 *  @pid: the PID of the task
2809 *  @sig: signal to be sent
2810 *
2811 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2812 */
2813SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2814{
2815	/* This is only valid for single tasks */
2816	if (pid <= 0)
2817		return -EINVAL;
2818
2819	return do_tkill(0, pid, sig);
2820}
2821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822/**
2823 *  sys_rt_sigqueueinfo - send signal information to a signal
2824 *  @pid: the PID of the thread
2825 *  @sig: signal to be sent
2826 *  @uinfo: signal info to be sent
2827 */
2828SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2829		siginfo_t __user *, uinfo)
2830{
2831	siginfo_t info;
2832
2833	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2834		return -EFAULT;
 
 
2835
2836	/* Not even root can pretend to send signals from the kernel.
2837	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2838	 */
2839	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2840		/* We used to allow any < 0 si_code */
2841		WARN_ON_ONCE(info.si_code < 0);
2842		return -EPERM;
2843	}
2844	info.si_signo = sig;
2845
2846	/* POSIX.1b doesn't mention process groups.  */
2847	return kill_proc_info(sig, &info, pid);
2848}
 
2849
2850long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2851{
2852	/* This is only valid for single tasks */
2853	if (pid <= 0 || tgid <= 0)
2854		return -EINVAL;
2855
2856	/* Not even root can pretend to send signals from the kernel.
2857	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2858	 */
2859	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2860		/* We used to allow any < 0 si_code */
2861		WARN_ON_ONCE(info->si_code < 0);
2862		return -EPERM;
2863	}
2864	info->si_signo = sig;
2865
2866	return do_send_specific(tgid, pid, sig, info);
2867}
2868
2869SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2870		siginfo_t __user *, uinfo)
2871{
2872	siginfo_t info;
2873
2874	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2875		return -EFAULT;
2876
2877	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2878}
2879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2880int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2881{
2882	struct task_struct *t = current;
2883	struct k_sigaction *k;
2884	sigset_t mask;
2885
2886	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2887		return -EINVAL;
2888
2889	k = &t->sighand->action[sig-1];
2890
2891	spin_lock_irq(&current->sighand->siglock);
2892	if (oact)
2893		*oact = *k;
2894
 
 
2895	if (act) {
2896		sigdelsetmask(&act->sa.sa_mask,
2897			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2898		*k = *act;
2899		/*
2900		 * POSIX 3.3.1.3:
2901		 *  "Setting a signal action to SIG_IGN for a signal that is
2902		 *   pending shall cause the pending signal to be discarded,
2903		 *   whether or not it is blocked."
2904		 *
2905		 *  "Setting a signal action to SIG_DFL for a signal that is
2906		 *   pending and whose default action is to ignore the signal
2907		 *   (for example, SIGCHLD), shall cause the pending signal to
2908		 *   be discarded, whether or not it is blocked"
2909		 */
2910		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2911			sigemptyset(&mask);
2912			sigaddset(&mask, sig);
2913			rm_from_queue_full(&mask, &t->signal->shared_pending);
2914			do {
2915				rm_from_queue_full(&mask, &t->pending);
2916				t = next_thread(t);
2917			} while (t != current);
2918		}
2919	}
2920
2921	spin_unlock_irq(&current->sighand->siglock);
2922	return 0;
2923}
2924
2925int 
2926do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2927{
2928	stack_t oss;
2929	int error;
2930
2931	oss.ss_sp = (void __user *) current->sas_ss_sp;
2932	oss.ss_size = current->sas_ss_size;
2933	oss.ss_flags = sas_ss_flags(sp);
 
2934
2935	if (uss) {
2936		void __user *ss_sp;
2937		size_t ss_size;
2938		int ss_flags;
 
2939
2940		error = -EFAULT;
2941		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2942			goto out;
2943		error = __get_user(ss_sp, &uss->ss_sp) |
2944			__get_user(ss_flags, &uss->ss_flags) |
2945			__get_user(ss_size, &uss->ss_size);
2946		if (error)
2947			goto out;
2948
2949		error = -EPERM;
2950		if (on_sig_stack(sp))
2951			goto out;
2952
 
2953		error = -EINVAL;
2954		/*
2955		 * Note - this code used to test ss_flags incorrectly:
2956		 *  	  old code may have been written using ss_flags==0
2957		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
2958		 *	  way that worked) - this fix preserves that older
2959		 *	  mechanism.
2960		 */
2961		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2962			goto out;
2963
2964		if (ss_flags == SS_DISABLE) {
2965			ss_size = 0;
2966			ss_sp = NULL;
2967		} else {
2968			error = -ENOMEM;
2969			if (ss_size < MINSIGSTKSZ)
2970				goto out;
2971		}
2972
2973		current->sas_ss_sp = (unsigned long) ss_sp;
2974		current->sas_ss_size = ss_size;
 
2975	}
2976
2977	error = 0;
2978	if (uoss) {
2979		error = -EFAULT;
2980		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2981			goto out;
2982		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2983			__put_user(oss.ss_size, &uoss->ss_size) |
2984			__put_user(oss.ss_flags, &uoss->ss_flags);
2985	}
2986
2987out:
2988	return error;
2989}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2990
2991#ifdef __ARCH_WANT_SYS_SIGPENDING
2992
2993/**
2994 *  sys_sigpending - examine pending signals
2995 *  @set: where mask of pending signal is returned
2996 */
2997SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2998{
2999	return do_sigpending(set, sizeof(*set));
3000}
3001
3002#endif
3003
3004#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3005/**
3006 *  sys_sigprocmask - examine and change blocked signals
3007 *  @how: whether to add, remove, or set signals
3008 *  @nset: signals to add or remove (if non-null)
3009 *  @oset: previous value of signal mask if non-null
3010 *
3011 * Some platforms have their own version with special arguments;
3012 * others support only sys_rt_sigprocmask.
3013 */
3014
3015SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3016		old_sigset_t __user *, oset)
3017{
3018	old_sigset_t old_set, new_set;
3019	sigset_t new_blocked;
3020
3021	old_set = current->blocked.sig[0];
3022
3023	if (nset) {
3024		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3025			return -EFAULT;
3026		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3027
3028		new_blocked = current->blocked;
3029
3030		switch (how) {
3031		case SIG_BLOCK:
3032			sigaddsetmask(&new_blocked, new_set);
3033			break;
3034		case SIG_UNBLOCK:
3035			sigdelsetmask(&new_blocked, new_set);
3036			break;
3037		case SIG_SETMASK:
3038			new_blocked.sig[0] = new_set;
3039			break;
3040		default:
3041			return -EINVAL;
3042		}
3043
3044		set_current_blocked(&new_blocked);
3045	}
3046
3047	if (oset) {
3048		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3049			return -EFAULT;
3050	}
3051
3052	return 0;
3053}
3054#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3055
3056#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3057/**
3058 *  sys_rt_sigaction - alter an action taken by a process
3059 *  @sig: signal to be sent
3060 *  @act: new sigaction
3061 *  @oact: used to save the previous sigaction
3062 *  @sigsetsize: size of sigset_t type
3063 */
3064SYSCALL_DEFINE4(rt_sigaction, int, sig,
3065		const struct sigaction __user *, act,
3066		struct sigaction __user *, oact,
3067		size_t, sigsetsize)
3068{
3069	struct k_sigaction new_sa, old_sa;
3070	int ret = -EINVAL;
3071
3072	/* XXX: Don't preclude handling different sized sigset_t's.  */
3073	if (sigsetsize != sizeof(sigset_t))
3074		goto out;
3075
3076	if (act) {
3077		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3078			return -EFAULT;
3079	}
3080
3081	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3082
3083	if (!ret && oact) {
3084		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3085			return -EFAULT;
3086	}
3087out:
3088	return ret;
3089}
3090#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091
3092#ifdef __ARCH_WANT_SYS_SGETMASK
3093
3094/*
3095 * For backwards compatibility.  Functionality superseded by sigprocmask.
3096 */
3097SYSCALL_DEFINE0(sgetmask)
3098{
3099	/* SMP safe */
3100	return current->blocked.sig[0];
3101}
3102
3103SYSCALL_DEFINE1(ssetmask, int, newmask)
3104{
3105	int old = current->blocked.sig[0];
3106	sigset_t newset;
3107
3108	siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3109	set_current_blocked(&newset);
3110
3111	return old;
3112}
3113#endif /* __ARCH_WANT_SGETMASK */
3114
3115#ifdef __ARCH_WANT_SYS_SIGNAL
3116/*
3117 * For backwards compatibility.  Functionality superseded by sigaction.
3118 */
3119SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3120{
3121	struct k_sigaction new_sa, old_sa;
3122	int ret;
3123
3124	new_sa.sa.sa_handler = handler;
3125	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3126	sigemptyset(&new_sa.sa.sa_mask);
3127
3128	ret = do_sigaction(sig, &new_sa, &old_sa);
3129
3130	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3131}
3132#endif /* __ARCH_WANT_SYS_SIGNAL */
3133
3134#ifdef __ARCH_WANT_SYS_PAUSE
3135
3136SYSCALL_DEFINE0(pause)
3137{
3138	while (!signal_pending(current)) {
3139		current->state = TASK_INTERRUPTIBLE;
3140		schedule();
3141	}
3142	return -ERESTARTNOHAND;
3143}
3144
3145#endif
3146
3147#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
 
 
 
 
 
 
 
 
 
 
 
 
3148/**
3149 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3150 *	@unewset value until a signal is received
3151 *  @unewset: new signal mask value
3152 *  @sigsetsize: size of sigset_t type
3153 */
3154SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3155{
3156	sigset_t newset;
3157
3158	/* XXX: Don't preclude handling different sized sigset_t's.  */
3159	if (sigsetsize != sizeof(sigset_t))
3160		return -EINVAL;
3161
3162	if (copy_from_user(&newset, unewset, sizeof(newset)))
3163		return -EFAULT;
3164	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
 
 
 
 
 
 
 
 
 
 
 
 
3165
3166	current->saved_sigmask = current->blocked;
3167	set_current_blocked(&newset);
 
 
 
 
 
 
 
 
3168
3169	current->state = TASK_INTERRUPTIBLE;
3170	schedule();
3171	set_restore_sigmask();
3172	return -ERESTARTNOHAND;
 
 
 
 
 
 
 
 
 
 
3173}
3174#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3175
3176__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3177{
3178	return NULL;
3179}
3180
3181void __init signals_init(void)
3182{
 
 
 
 
3183	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3184}
3185
3186#ifdef CONFIG_KGDB_KDB
3187#include <linux/kdb.h>
3188/*
3189 * kdb_send_sig_info - Allows kdb to send signals without exposing
3190 * signal internals.  This function checks if the required locks are
3191 * available before calling the main signal code, to avoid kdb
3192 * deadlocks.
3193 */
3194void
3195kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3196{
3197	static struct task_struct *kdb_prev_t;
3198	int sig, new_t;
3199	if (!spin_trylock(&t->sighand->siglock)) {
3200		kdb_printf("Can't do kill command now.\n"
3201			   "The sigmask lock is held somewhere else in "
3202			   "kernel, try again later\n");
3203		return;
3204	}
3205	spin_unlock(&t->sighand->siglock);
3206	new_t = kdb_prev_t != t;
3207	kdb_prev_t = t;
3208	if (t->state != TASK_RUNNING && new_t) {
3209		kdb_printf("Process is not RUNNING, sending a signal from "
3210			   "kdb risks deadlock\n"
3211			   "on the run queue locks. "
3212			   "The signal has _not_ been sent.\n"
3213			   "Reissue the kill command if you want to risk "
3214			   "the deadlock.\n");
3215		return;
3216	}
3217	sig = info->si_signo;
3218	if (send_sig_info(sig, info, t))
3219		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3220			   sig, t->pid);
3221	else
3222		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3223}
3224#endif	/* CONFIG_KGDB_KDB */