Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <linux/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
  96	 */
  97	return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 280		smp_mb();	/* advised by wake_up_bit() */
 281		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282	}
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 301{
 302	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304	if (mask & JOBCTL_STOP_PENDING)
 305		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307	task->jobctl &= ~mask;
 308
 309	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310		task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331	struct signal_struct *sig = task->signal;
 332	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338	if (!consume)
 339		return false;
 340
 341	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342		sig->group_stop_count--;
 343
 344	/*
 345	 * Tell the caller to notify completion iff we are entering into a
 346	 * fresh group stop.  Read comment in do_signal_stop() for details.
 347	 */
 348	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 350		return true;
 351	}
 352	return false;
 353}
 354
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 362{
 363	struct sigqueue *q = NULL;
 364	struct user_struct *user;
 365
 366	/*
 367	 * Protect access to @t credentials. This can go away when all
 368	 * callers hold rcu read lock.
 369	 */
 370	rcu_read_lock();
 371	user = get_uid(__task_cred(t)->user);
 372	atomic_inc(&user->sigpending);
 373	rcu_read_unlock();
 374
 375	if (override_rlimit ||
 376	    atomic_read(&user->sigpending) <=
 377			task_rlimit(t, RLIMIT_SIGPENDING)) {
 378		q = kmem_cache_alloc(sigqueue_cachep, flags);
 379	} else {
 380		print_dropped_signal(sig);
 381	}
 382
 383	if (unlikely(q == NULL)) {
 384		atomic_dec(&user->sigpending);
 385		free_uid(user);
 386	} else {
 387		INIT_LIST_HEAD(&q->list);
 388		q->flags = 0;
 389		q->user = user;
 390	}
 391
 392	return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397	if (q->flags & SIGQUEUE_PREALLOC)
 398		return;
 399	atomic_dec(&q->user->sigpending);
 400	free_uid(q->user);
 401	kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406	struct sigqueue *q;
 407
 408	sigemptyset(&queue->signal);
 409	while (!list_empty(&queue->list)) {
 410		q = list_entry(queue->list.next, struct sigqueue , list);
 411		list_del_init(&q->list);
 412		__sigqueue_free(q);
 413	}
 414}
 415
 416/*
 417 * Flush all pending signals for this kthread.
 418 */
 
 
 
 
 
 
 
 419void flush_signals(struct task_struct *t)
 420{
 421	unsigned long flags;
 422
 423	spin_lock_irqsave(&t->sighand->siglock, flags);
 424	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 425	flush_sigqueue(&t->pending);
 426	flush_sigqueue(&t->signal->shared_pending);
 427	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 428}
 429
 430#ifdef CONFIG_POSIX_TIMERS
 431static void __flush_itimer_signals(struct sigpending *pending)
 432{
 433	sigset_t signal, retain;
 434	struct sigqueue *q, *n;
 435
 436	signal = pending->signal;
 437	sigemptyset(&retain);
 438
 439	list_for_each_entry_safe(q, n, &pending->list, list) {
 440		int sig = q->info.si_signo;
 441
 442		if (likely(q->info.si_code != SI_TIMER)) {
 443			sigaddset(&retain, sig);
 444		} else {
 445			sigdelset(&signal, sig);
 446			list_del_init(&q->list);
 447			__sigqueue_free(q);
 448		}
 449	}
 450
 451	sigorsets(&pending->signal, &signal, &retain);
 452}
 453
 454void flush_itimer_signals(void)
 455{
 456	struct task_struct *tsk = current;
 457	unsigned long flags;
 458
 459	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 460	__flush_itimer_signals(&tsk->pending);
 461	__flush_itimer_signals(&tsk->signal->shared_pending);
 462	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 463}
 464#endif
 465
 466void ignore_signals(struct task_struct *t)
 467{
 468	int i;
 469
 470	for (i = 0; i < _NSIG; ++i)
 471		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 472
 473	flush_signals(t);
 474}
 475
 476/*
 477 * Flush all handlers for a task.
 478 */
 479
 480void
 481flush_signal_handlers(struct task_struct *t, int force_default)
 482{
 483	int i;
 484	struct k_sigaction *ka = &t->sighand->action[0];
 485	for (i = _NSIG ; i != 0 ; i--) {
 486		if (force_default || ka->sa.sa_handler != SIG_IGN)
 487			ka->sa.sa_handler = SIG_DFL;
 488		ka->sa.sa_flags = 0;
 489#ifdef __ARCH_HAS_SA_RESTORER
 490		ka->sa.sa_restorer = NULL;
 491#endif
 492		sigemptyset(&ka->sa.sa_mask);
 493		ka++;
 494	}
 495}
 496
 497int unhandled_signal(struct task_struct *tsk, int sig)
 498{
 499	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 500	if (is_global_init(tsk))
 501		return 1;
 502	if (handler != SIG_IGN && handler != SIG_DFL)
 503		return 0;
 504	/* if ptraced, let the tracer determine */
 505	return !tsk->ptrace;
 506}
 507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 509{
 510	struct sigqueue *q, *first = NULL;
 511
 512	/*
 513	 * Collect the siginfo appropriate to this signal.  Check if
 514	 * there is another siginfo for the same signal.
 515	*/
 516	list_for_each_entry(q, &list->list, list) {
 517		if (q->info.si_signo == sig) {
 518			if (first)
 519				goto still_pending;
 520			first = q;
 521		}
 522	}
 523
 524	sigdelset(&list->signal, sig);
 525
 526	if (first) {
 527still_pending:
 528		list_del_init(&first->list);
 529		copy_siginfo(info, &first->info);
 530		__sigqueue_free(first);
 531	} else {
 532		/*
 533		 * Ok, it wasn't in the queue.  This must be
 534		 * a fast-pathed signal or we must have been
 535		 * out of queue space.  So zero out the info.
 536		 */
 537		info->si_signo = sig;
 538		info->si_errno = 0;
 539		info->si_code = SI_USER;
 540		info->si_pid = 0;
 541		info->si_uid = 0;
 542	}
 543}
 544
 545static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 546			siginfo_t *info)
 547{
 548	int sig = next_signal(pending, mask);
 549
 550	if (sig)
 
 
 
 
 
 
 
 
 
 551		collect_signal(sig, pending, info);
 
 
 552	return sig;
 553}
 554
 555/*
 556 * Dequeue a signal and return the element to the caller, which is
 557 * expected to free it.
 558 *
 559 * All callers have to hold the siglock.
 560 */
 561int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 562{
 563	int signr;
 564
 565	/* We only dequeue private signals from ourselves, we don't let
 566	 * signalfd steal them
 567	 */
 568	signr = __dequeue_signal(&tsk->pending, mask, info);
 569	if (!signr) {
 570		signr = __dequeue_signal(&tsk->signal->shared_pending,
 571					 mask, info);
 572#ifdef CONFIG_POSIX_TIMERS
 573		/*
 574		 * itimer signal ?
 575		 *
 576		 * itimers are process shared and we restart periodic
 577		 * itimers in the signal delivery path to prevent DoS
 578		 * attacks in the high resolution timer case. This is
 579		 * compliant with the old way of self-restarting
 580		 * itimers, as the SIGALRM is a legacy signal and only
 581		 * queued once. Changing the restart behaviour to
 582		 * restart the timer in the signal dequeue path is
 583		 * reducing the timer noise on heavy loaded !highres
 584		 * systems too.
 585		 */
 586		if (unlikely(signr == SIGALRM)) {
 587			struct hrtimer *tmr = &tsk->signal->real_timer;
 588
 589			if (!hrtimer_is_queued(tmr) &&
 590			    tsk->signal->it_real_incr != 0) {
 591				hrtimer_forward(tmr, tmr->base->get_time(),
 592						tsk->signal->it_real_incr);
 593				hrtimer_restart(tmr);
 594			}
 595		}
 596#endif
 597	}
 598
 599	recalc_sigpending();
 600	if (!signr)
 601		return 0;
 602
 603	if (unlikely(sig_kernel_stop(signr))) {
 604		/*
 605		 * Set a marker that we have dequeued a stop signal.  Our
 606		 * caller might release the siglock and then the pending
 607		 * stop signal it is about to process is no longer in the
 608		 * pending bitmasks, but must still be cleared by a SIGCONT
 609		 * (and overruled by a SIGKILL).  So those cases clear this
 610		 * shared flag after we've set it.  Note that this flag may
 611		 * remain set after the signal we return is ignored or
 612		 * handled.  That doesn't matter because its only purpose
 613		 * is to alert stop-signal processing code when another
 614		 * processor has come along and cleared the flag.
 615		 */
 616		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 617	}
 618#ifdef CONFIG_POSIX_TIMERS
 619	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 620		/*
 621		 * Release the siglock to ensure proper locking order
 622		 * of timer locks outside of siglocks.  Note, we leave
 623		 * irqs disabled here, since the posix-timers code is
 624		 * about to disable them again anyway.
 625		 */
 626		spin_unlock(&tsk->sighand->siglock);
 627		do_schedule_next_timer(info);
 628		spin_lock(&tsk->sighand->siglock);
 629	}
 630#endif
 631	return signr;
 632}
 633
 634/*
 635 * Tell a process that it has a new active signal..
 636 *
 637 * NOTE! we rely on the previous spin_lock to
 638 * lock interrupts for us! We can only be called with
 639 * "siglock" held, and the local interrupt must
 640 * have been disabled when that got acquired!
 641 *
 642 * No need to set need_resched since signal event passing
 643 * goes through ->blocked
 644 */
 645void signal_wake_up_state(struct task_struct *t, unsigned int state)
 646{
 
 
 647	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 648	/*
 649	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 650	 * case. We don't check t->state here because there is a race with it
 651	 * executing another processor and just now entering stopped state.
 652	 * By using wake_up_state, we ensure the process will wake up and
 653	 * handle its death signal.
 654	 */
 655	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 
 
 
 656		kick_process(t);
 657}
 658
 659/*
 660 * Remove signals in mask from the pending set and queue.
 661 * Returns 1 if any signals were found.
 662 *
 663 * All callers must be holding the siglock.
 
 
 
 664 */
 665static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 666{
 667	struct sigqueue *q, *n;
 668	sigset_t m;
 669
 670	sigandsets(&m, mask, &s->signal);
 671	if (sigisemptyset(&m))
 672		return 0;
 673
 674	sigandnsets(&s->signal, &s->signal, mask);
 675	list_for_each_entry_safe(q, n, &s->list, list) {
 676		if (sigismember(mask, q->info.si_signo)) {
 677			list_del_init(&q->list);
 678			__sigqueue_free(q);
 679		}
 680	}
 681	return 1;
 682}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683
 684static inline int is_si_special(const struct siginfo *info)
 685{
 686	return info <= SEND_SIG_FORCED;
 687}
 688
 689static inline bool si_fromuser(const struct siginfo *info)
 690{
 691	return info == SEND_SIG_NOINFO ||
 692		(!is_si_special(info) && SI_FROMUSER(info));
 693}
 694
 695/*
 696 * called with RCU read lock from check_kill_permission()
 697 */
 698static int kill_ok_by_cred(struct task_struct *t)
 699{
 700	const struct cred *cred = current_cred();
 701	const struct cred *tcred = __task_cred(t);
 702
 703	if (uid_eq(cred->euid, tcred->suid) ||
 704	    uid_eq(cred->euid, tcred->uid)  ||
 705	    uid_eq(cred->uid,  tcred->suid) ||
 706	    uid_eq(cred->uid,  tcred->uid))
 707		return 1;
 708
 709	if (ns_capable(tcred->user_ns, CAP_KILL))
 710		return 1;
 711
 712	return 0;
 713}
 714
 715/*
 716 * Bad permissions for sending the signal
 717 * - the caller must hold the RCU read lock
 718 */
 719static int check_kill_permission(int sig, struct siginfo *info,
 720				 struct task_struct *t)
 721{
 722	struct pid *sid;
 723	int error;
 724
 725	if (!valid_signal(sig))
 726		return -EINVAL;
 727
 728	if (!si_fromuser(info))
 729		return 0;
 730
 731	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 732	if (error)
 733		return error;
 734
 735	if (!same_thread_group(current, t) &&
 736	    !kill_ok_by_cred(t)) {
 737		switch (sig) {
 738		case SIGCONT:
 739			sid = task_session(t);
 740			/*
 741			 * We don't return the error if sid == NULL. The
 742			 * task was unhashed, the caller must notice this.
 743			 */
 744			if (!sid || sid == task_session(current))
 745				break;
 746		default:
 747			return -EPERM;
 748		}
 749	}
 750
 751	return security_task_kill(t, info, sig, 0);
 752}
 753
 754/**
 755 * ptrace_trap_notify - schedule trap to notify ptracer
 756 * @t: tracee wanting to notify tracer
 757 *
 758 * This function schedules sticky ptrace trap which is cleared on the next
 759 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 760 * ptracer.
 761 *
 762 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 763 * ptracer is listening for events, tracee is woken up so that it can
 764 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 765 * eventually taken without returning to userland after the existing traps
 766 * are finished by PTRACE_CONT.
 767 *
 768 * CONTEXT:
 769 * Must be called with @task->sighand->siglock held.
 770 */
 771static void ptrace_trap_notify(struct task_struct *t)
 772{
 773	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 774	assert_spin_locked(&t->sighand->siglock);
 775
 776	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 777	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 778}
 779
 780/*
 781 * Handle magic process-wide effects of stop/continue signals. Unlike
 782 * the signal actions, these happen immediately at signal-generation
 783 * time regardless of blocking, ignoring, or handling.  This does the
 784 * actual continuing for SIGCONT, but not the actual stopping for stop
 785 * signals. The process stop is done as a signal action for SIG_DFL.
 786 *
 787 * Returns true if the signal should be actually delivered, otherwise
 788 * it should be dropped.
 789 */
 790static bool prepare_signal(int sig, struct task_struct *p, bool force)
 791{
 792	struct signal_struct *signal = p->signal;
 793	struct task_struct *t;
 794	sigset_t flush;
 795
 796	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 797		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 798			return sig == SIGKILL;
 799		/*
 800		 * The process is in the middle of dying, nothing to do.
 801		 */
 802	} else if (sig_kernel_stop(sig)) {
 803		/*
 804		 * This is a stop signal.  Remove SIGCONT from all queues.
 805		 */
 806		siginitset(&flush, sigmask(SIGCONT));
 807		flush_sigqueue_mask(&flush, &signal->shared_pending);
 808		for_each_thread(p, t)
 809			flush_sigqueue_mask(&flush, &t->pending);
 
 810	} else if (sig == SIGCONT) {
 811		unsigned int why;
 812		/*
 813		 * Remove all stop signals from all queues, wake all threads.
 814		 */
 815		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 816		flush_sigqueue_mask(&flush, &signal->shared_pending);
 817		for_each_thread(p, t) {
 818			flush_sigqueue_mask(&flush, &t->pending);
 819			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 
 820			if (likely(!(t->ptrace & PT_SEIZED)))
 821				wake_up_state(t, __TASK_STOPPED);
 822			else
 823				ptrace_trap_notify(t);
 824		}
 825
 826		/*
 827		 * Notify the parent with CLD_CONTINUED if we were stopped.
 828		 *
 829		 * If we were in the middle of a group stop, we pretend it
 830		 * was already finished, and then continued. Since SIGCHLD
 831		 * doesn't queue we report only CLD_STOPPED, as if the next
 832		 * CLD_CONTINUED was dropped.
 833		 */
 834		why = 0;
 835		if (signal->flags & SIGNAL_STOP_STOPPED)
 836			why |= SIGNAL_CLD_CONTINUED;
 837		else if (signal->group_stop_count)
 838			why |= SIGNAL_CLD_STOPPED;
 839
 840		if (why) {
 841			/*
 842			 * The first thread which returns from do_signal_stop()
 843			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 844			 * notify its parent. See get_signal_to_deliver().
 845			 */
 846			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 847			signal->group_stop_count = 0;
 848			signal->group_exit_code = 0;
 849		}
 850	}
 851
 852	return !sig_ignored(p, sig, force);
 853}
 854
 855/*
 856 * Test if P wants to take SIG.  After we've checked all threads with this,
 857 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 858 * blocking SIG were ruled out because they are not running and already
 859 * have pending signals.  Such threads will dequeue from the shared queue
 860 * as soon as they're available, so putting the signal on the shared queue
 861 * will be equivalent to sending it to one such thread.
 862 */
 863static inline int wants_signal(int sig, struct task_struct *p)
 864{
 865	if (sigismember(&p->blocked, sig))
 866		return 0;
 867	if (p->flags & PF_EXITING)
 868		return 0;
 869	if (sig == SIGKILL)
 870		return 1;
 871	if (task_is_stopped_or_traced(p))
 872		return 0;
 873	return task_curr(p) || !signal_pending(p);
 874}
 875
 876static void complete_signal(int sig, struct task_struct *p, int group)
 877{
 878	struct signal_struct *signal = p->signal;
 879	struct task_struct *t;
 880
 881	/*
 882	 * Now find a thread we can wake up to take the signal off the queue.
 883	 *
 884	 * If the main thread wants the signal, it gets first crack.
 885	 * Probably the least surprising to the average bear.
 886	 */
 887	if (wants_signal(sig, p))
 888		t = p;
 889	else if (!group || thread_group_empty(p))
 890		/*
 891		 * There is just one thread and it does not need to be woken.
 892		 * It will dequeue unblocked signals before it runs again.
 893		 */
 894		return;
 895	else {
 896		/*
 897		 * Otherwise try to find a suitable thread.
 898		 */
 899		t = signal->curr_target;
 900		while (!wants_signal(sig, t)) {
 901			t = next_thread(t);
 902			if (t == signal->curr_target)
 903				/*
 904				 * No thread needs to be woken.
 905				 * Any eligible threads will see
 906				 * the signal in the queue soon.
 907				 */
 908				return;
 909		}
 910		signal->curr_target = t;
 911	}
 912
 913	/*
 914	 * Found a killable thread.  If the signal will be fatal,
 915	 * then start taking the whole group down immediately.
 916	 */
 917	if (sig_fatal(p, sig) &&
 918	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 919	    !sigismember(&t->real_blocked, sig) &&
 920	    (sig == SIGKILL || !t->ptrace)) {
 921		/*
 922		 * This signal will be fatal to the whole group.
 923		 */
 924		if (!sig_kernel_coredump(sig)) {
 925			/*
 926			 * Start a group exit and wake everybody up.
 927			 * This way we don't have other threads
 928			 * running and doing things after a slower
 929			 * thread has the fatal signal pending.
 930			 */
 931			signal->flags = SIGNAL_GROUP_EXIT;
 932			signal->group_exit_code = sig;
 933			signal->group_stop_count = 0;
 934			t = p;
 935			do {
 936				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 937				sigaddset(&t->pending.signal, SIGKILL);
 938				signal_wake_up(t, 1);
 939			} while_each_thread(p, t);
 940			return;
 941		}
 942	}
 943
 944	/*
 945	 * The signal is already in the shared-pending queue.
 946	 * Tell the chosen thread to wake up and dequeue it.
 947	 */
 948	signal_wake_up(t, sig == SIGKILL);
 949	return;
 950}
 951
 952static inline int legacy_queue(struct sigpending *signals, int sig)
 953{
 954	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 955}
 956
 957#ifdef CONFIG_USER_NS
 958static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 959{
 960	if (current_user_ns() == task_cred_xxx(t, user_ns))
 961		return;
 962
 963	if (SI_FROMKERNEL(info))
 964		return;
 965
 966	rcu_read_lock();
 967	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 968					make_kuid(current_user_ns(), info->si_uid));
 969	rcu_read_unlock();
 970}
 971#else
 972static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 973{
 974	return;
 975}
 976#endif
 977
 978static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 979			int group, int from_ancestor_ns)
 980{
 981	struct sigpending *pending;
 982	struct sigqueue *q;
 983	int override_rlimit;
 984	int ret = 0, result;
 985
 986	assert_spin_locked(&t->sighand->siglock);
 987
 988	result = TRACE_SIGNAL_IGNORED;
 989	if (!prepare_signal(sig, t,
 990			from_ancestor_ns || (info == SEND_SIG_FORCED)))
 991		goto ret;
 992
 993	pending = group ? &t->signal->shared_pending : &t->pending;
 994	/*
 995	 * Short-circuit ignored signals and support queuing
 996	 * exactly one non-rt signal, so that we can get more
 997	 * detailed information about the cause of the signal.
 998	 */
 999	result = TRACE_SIGNAL_ALREADY_PENDING;
1000	if (legacy_queue(pending, sig))
1001		goto ret;
1002
1003	result = TRACE_SIGNAL_DELIVERED;
1004	/*
1005	 * fast-pathed signals for kernel-internal things like SIGSTOP
1006	 * or SIGKILL.
1007	 */
1008	if (info == SEND_SIG_FORCED)
1009		goto out_set;
1010
1011	/*
1012	 * Real-time signals must be queued if sent by sigqueue, or
1013	 * some other real-time mechanism.  It is implementation
1014	 * defined whether kill() does so.  We attempt to do so, on
1015	 * the principle of least surprise, but since kill is not
1016	 * allowed to fail with EAGAIN when low on memory we just
1017	 * make sure at least one signal gets delivered and don't
1018	 * pass on the info struct.
1019	 */
1020	if (sig < SIGRTMIN)
1021		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1022	else
1023		override_rlimit = 0;
1024
1025	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1026		override_rlimit);
1027	if (q) {
1028		list_add_tail(&q->list, &pending->list);
1029		switch ((unsigned long) info) {
1030		case (unsigned long) SEND_SIG_NOINFO:
1031			q->info.si_signo = sig;
1032			q->info.si_errno = 0;
1033			q->info.si_code = SI_USER;
1034			q->info.si_pid = task_tgid_nr_ns(current,
1035							task_active_pid_ns(t));
1036			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1037			break;
1038		case (unsigned long) SEND_SIG_PRIV:
1039			q->info.si_signo = sig;
1040			q->info.si_errno = 0;
1041			q->info.si_code = SI_KERNEL;
1042			q->info.si_pid = 0;
1043			q->info.si_uid = 0;
1044			break;
1045		default:
1046			copy_siginfo(&q->info, info);
1047			if (from_ancestor_ns)
1048				q->info.si_pid = 0;
1049			break;
1050		}
1051
1052		userns_fixup_signal_uid(&q->info, t);
1053
1054	} else if (!is_si_special(info)) {
1055		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1056			/*
1057			 * Queue overflow, abort.  We may abort if the
1058			 * signal was rt and sent by user using something
1059			 * other than kill().
1060			 */
1061			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1062			ret = -EAGAIN;
1063			goto ret;
1064		} else {
1065			/*
1066			 * This is a silent loss of information.  We still
1067			 * send the signal, but the *info bits are lost.
1068			 */
1069			result = TRACE_SIGNAL_LOSE_INFO;
1070		}
1071	}
1072
1073out_set:
1074	signalfd_notify(t, sig);
1075	sigaddset(&pending->signal, sig);
1076	complete_signal(sig, t, group);
1077ret:
1078	trace_signal_generate(sig, info, t, group, result);
1079	return ret;
1080}
1081
1082static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1083			int group)
1084{
1085	int from_ancestor_ns = 0;
1086
1087#ifdef CONFIG_PID_NS
1088	from_ancestor_ns = si_fromuser(info) &&
1089			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1090#endif
1091
1092	return __send_signal(sig, info, t, group, from_ancestor_ns);
1093}
1094
1095static void print_fatal_signal(int signr)
1096{
1097	struct pt_regs *regs = signal_pt_regs();
1098	pr_info("potentially unexpected fatal signal %d.\n", signr);
1099
1100#if defined(__i386__) && !defined(__arch_um__)
1101	pr_info("code at %08lx: ", regs->ip);
1102	{
1103		int i;
1104		for (i = 0; i < 16; i++) {
1105			unsigned char insn;
1106
1107			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1108				break;
1109			pr_cont("%02x ", insn);
1110		}
1111	}
1112	pr_cont("\n");
1113#endif
 
1114	preempt_disable();
1115	show_regs(regs);
1116	preempt_enable();
1117}
1118
1119static int __init setup_print_fatal_signals(char *str)
1120{
1121	get_option (&str, &print_fatal_signals);
1122
1123	return 1;
1124}
1125
1126__setup("print-fatal-signals=", setup_print_fatal_signals);
1127
1128int
1129__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1130{
1131	return send_signal(sig, info, p, 1);
1132}
1133
1134static int
1135specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1136{
1137	return send_signal(sig, info, t, 0);
1138}
1139
1140int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1141			bool group)
1142{
1143	unsigned long flags;
1144	int ret = -ESRCH;
1145
1146	if (lock_task_sighand(p, &flags)) {
1147		ret = send_signal(sig, info, p, group);
1148		unlock_task_sighand(p, &flags);
1149	}
1150
1151	return ret;
1152}
1153
1154/*
1155 * Force a signal that the process can't ignore: if necessary
1156 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1157 *
1158 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1159 * since we do not want to have a signal handler that was blocked
1160 * be invoked when user space had explicitly blocked it.
1161 *
1162 * We don't want to have recursive SIGSEGV's etc, for example,
1163 * that is why we also clear SIGNAL_UNKILLABLE.
1164 */
1165int
1166force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1167{
1168	unsigned long int flags;
1169	int ret, blocked, ignored;
1170	struct k_sigaction *action;
1171
1172	spin_lock_irqsave(&t->sighand->siglock, flags);
1173	action = &t->sighand->action[sig-1];
1174	ignored = action->sa.sa_handler == SIG_IGN;
1175	blocked = sigismember(&t->blocked, sig);
1176	if (blocked || ignored) {
1177		action->sa.sa_handler = SIG_DFL;
1178		if (blocked) {
1179			sigdelset(&t->blocked, sig);
1180			recalc_sigpending_and_wake(t);
1181		}
1182	}
1183	if (action->sa.sa_handler == SIG_DFL)
1184		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1185	ret = specific_send_sig_info(sig, info, t);
1186	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1187
1188	return ret;
1189}
1190
1191/*
1192 * Nuke all other threads in the group.
1193 */
1194int zap_other_threads(struct task_struct *p)
1195{
1196	struct task_struct *t = p;
1197	int count = 0;
1198
1199	p->signal->group_stop_count = 0;
1200
1201	while_each_thread(p, t) {
1202		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1203		count++;
1204
1205		/* Don't bother with already dead threads */
1206		if (t->exit_state)
1207			continue;
1208		sigaddset(&t->pending.signal, SIGKILL);
1209		signal_wake_up(t, 1);
1210	}
1211
1212	return count;
1213}
1214
1215struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1216					   unsigned long *flags)
1217{
1218	struct sighand_struct *sighand;
1219
1220	for (;;) {
1221		/*
1222		 * Disable interrupts early to avoid deadlocks.
1223		 * See rcu_read_unlock() comment header for details.
1224		 */
1225		local_irq_save(*flags);
1226		rcu_read_lock();
1227		sighand = rcu_dereference(tsk->sighand);
1228		if (unlikely(sighand == NULL)) {
1229			rcu_read_unlock();
1230			local_irq_restore(*flags);
1231			break;
1232		}
1233		/*
1234		 * This sighand can be already freed and even reused, but
1235		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1236		 * initializes ->siglock: this slab can't go away, it has
1237		 * the same object type, ->siglock can't be reinitialized.
1238		 *
1239		 * We need to ensure that tsk->sighand is still the same
1240		 * after we take the lock, we can race with de_thread() or
1241		 * __exit_signal(). In the latter case the next iteration
1242		 * must see ->sighand == NULL.
1243		 */
1244		spin_lock(&sighand->siglock);
1245		if (likely(sighand == tsk->sighand)) {
1246			rcu_read_unlock();
1247			break;
1248		}
1249		spin_unlock(&sighand->siglock);
1250		rcu_read_unlock();
1251		local_irq_restore(*flags);
1252	}
1253
1254	return sighand;
1255}
1256
1257/*
1258 * send signal info to all the members of a group
1259 */
1260int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1261{
1262	int ret;
1263
1264	rcu_read_lock();
1265	ret = check_kill_permission(sig, info, p);
1266	rcu_read_unlock();
1267
1268	if (!ret && sig)
1269		ret = do_send_sig_info(sig, info, p, true);
1270
1271	return ret;
1272}
1273
1274/*
1275 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1276 * control characters do (^C, ^Z etc)
1277 * - the caller must hold at least a readlock on tasklist_lock
1278 */
1279int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1280{
1281	struct task_struct *p = NULL;
1282	int retval, success;
1283
1284	success = 0;
1285	retval = -ESRCH;
1286	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1287		int err = group_send_sig_info(sig, info, p);
1288		success |= !err;
1289		retval = err;
1290	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1291	return success ? 0 : retval;
1292}
1293
1294int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1295{
1296	int error = -ESRCH;
1297	struct task_struct *p;
1298
1299	for (;;) {
1300		rcu_read_lock();
1301		p = pid_task(pid, PIDTYPE_PID);
1302		if (p)
1303			error = group_send_sig_info(sig, info, p);
1304		rcu_read_unlock();
1305		if (likely(!p || error != -ESRCH))
1306			return error;
1307
1308		/*
1309		 * The task was unhashed in between, try again.  If it
1310		 * is dead, pid_task() will return NULL, if we race with
1311		 * de_thread() it will find the new leader.
1312		 */
1313	}
 
 
 
1314}
1315
1316int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1317{
1318	int error;
1319	rcu_read_lock();
1320	error = kill_pid_info(sig, info, find_vpid(pid));
1321	rcu_read_unlock();
1322	return error;
1323}
1324
1325static int kill_as_cred_perm(const struct cred *cred,
1326			     struct task_struct *target)
1327{
1328	const struct cred *pcred = __task_cred(target);
1329	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1330	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1331		return 0;
1332	return 1;
1333}
1334
1335/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1336int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1337			 const struct cred *cred, u32 secid)
1338{
1339	int ret = -EINVAL;
1340	struct task_struct *p;
1341	unsigned long flags;
1342
1343	if (!valid_signal(sig))
1344		return ret;
1345
1346	rcu_read_lock();
1347	p = pid_task(pid, PIDTYPE_PID);
1348	if (!p) {
1349		ret = -ESRCH;
1350		goto out_unlock;
1351	}
1352	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1353		ret = -EPERM;
1354		goto out_unlock;
1355	}
1356	ret = security_task_kill(p, info, sig, secid);
1357	if (ret)
1358		goto out_unlock;
1359
1360	if (sig) {
1361		if (lock_task_sighand(p, &flags)) {
1362			ret = __send_signal(sig, info, p, 1, 0);
1363			unlock_task_sighand(p, &flags);
1364		} else
1365			ret = -ESRCH;
1366	}
1367out_unlock:
1368	rcu_read_unlock();
1369	return ret;
1370}
1371EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1372
1373/*
1374 * kill_something_info() interprets pid in interesting ways just like kill(2).
1375 *
1376 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1377 * is probably wrong.  Should make it like BSD or SYSV.
1378 */
1379
1380static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1381{
1382	int ret;
1383
1384	if (pid > 0) {
1385		rcu_read_lock();
1386		ret = kill_pid_info(sig, info, find_vpid(pid));
1387		rcu_read_unlock();
1388		return ret;
1389	}
1390
1391	read_lock(&tasklist_lock);
1392	if (pid != -1) {
1393		ret = __kill_pgrp_info(sig, info,
1394				pid ? find_vpid(-pid) : task_pgrp(current));
1395	} else {
1396		int retval = 0, count = 0;
1397		struct task_struct * p;
1398
1399		for_each_process(p) {
1400			if (task_pid_vnr(p) > 1 &&
1401					!same_thread_group(p, current)) {
1402				int err = group_send_sig_info(sig, info, p);
1403				++count;
1404				if (err != -EPERM)
1405					retval = err;
1406			}
1407		}
1408		ret = count ? retval : -ESRCH;
1409	}
1410	read_unlock(&tasklist_lock);
1411
1412	return ret;
1413}
1414
1415/*
1416 * These are for backward compatibility with the rest of the kernel source.
1417 */
1418
1419int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1420{
1421	/*
1422	 * Make sure legacy kernel users don't send in bad values
1423	 * (normal paths check this in check_kill_permission).
1424	 */
1425	if (!valid_signal(sig))
1426		return -EINVAL;
1427
1428	return do_send_sig_info(sig, info, p, false);
1429}
1430
1431#define __si_special(priv) \
1432	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1433
1434int
1435send_sig(int sig, struct task_struct *p, int priv)
1436{
1437	return send_sig_info(sig, __si_special(priv), p);
1438}
1439
1440void
1441force_sig(int sig, struct task_struct *p)
1442{
1443	force_sig_info(sig, SEND_SIG_PRIV, p);
1444}
1445
1446/*
1447 * When things go south during signal handling, we
1448 * will force a SIGSEGV. And if the signal that caused
1449 * the problem was already a SIGSEGV, we'll want to
1450 * make sure we don't even try to deliver the signal..
1451 */
1452int
1453force_sigsegv(int sig, struct task_struct *p)
1454{
1455	if (sig == SIGSEGV) {
1456		unsigned long flags;
1457		spin_lock_irqsave(&p->sighand->siglock, flags);
1458		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1459		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1460	}
1461	force_sig(SIGSEGV, p);
1462	return 0;
1463}
1464
1465int kill_pgrp(struct pid *pid, int sig, int priv)
1466{
1467	int ret;
1468
1469	read_lock(&tasklist_lock);
1470	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1471	read_unlock(&tasklist_lock);
1472
1473	return ret;
1474}
1475EXPORT_SYMBOL(kill_pgrp);
1476
1477int kill_pid(struct pid *pid, int sig, int priv)
1478{
1479	return kill_pid_info(sig, __si_special(priv), pid);
1480}
1481EXPORT_SYMBOL(kill_pid);
1482
1483/*
1484 * These functions support sending signals using preallocated sigqueue
1485 * structures.  This is needed "because realtime applications cannot
1486 * afford to lose notifications of asynchronous events, like timer
1487 * expirations or I/O completions".  In the case of POSIX Timers
1488 * we allocate the sigqueue structure from the timer_create.  If this
1489 * allocation fails we are able to report the failure to the application
1490 * with an EAGAIN error.
1491 */
1492struct sigqueue *sigqueue_alloc(void)
1493{
1494	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1495
1496	if (q)
1497		q->flags |= SIGQUEUE_PREALLOC;
1498
1499	return q;
1500}
1501
1502void sigqueue_free(struct sigqueue *q)
1503{
1504	unsigned long flags;
1505	spinlock_t *lock = &current->sighand->siglock;
1506
1507	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1508	/*
1509	 * We must hold ->siglock while testing q->list
1510	 * to serialize with collect_signal() or with
1511	 * __exit_signal()->flush_sigqueue().
1512	 */
1513	spin_lock_irqsave(lock, flags);
1514	q->flags &= ~SIGQUEUE_PREALLOC;
1515	/*
1516	 * If it is queued it will be freed when dequeued,
1517	 * like the "regular" sigqueue.
1518	 */
1519	if (!list_empty(&q->list))
1520		q = NULL;
1521	spin_unlock_irqrestore(lock, flags);
1522
1523	if (q)
1524		__sigqueue_free(q);
1525}
1526
1527int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1528{
1529	int sig = q->info.si_signo;
1530	struct sigpending *pending;
1531	unsigned long flags;
1532	int ret, result;
1533
1534	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1535
1536	ret = -1;
1537	if (!likely(lock_task_sighand(t, &flags)))
1538		goto ret;
1539
1540	ret = 1; /* the signal is ignored */
1541	result = TRACE_SIGNAL_IGNORED;
1542	if (!prepare_signal(sig, t, false))
1543		goto out;
1544
1545	ret = 0;
1546	if (unlikely(!list_empty(&q->list))) {
1547		/*
1548		 * If an SI_TIMER entry is already queue just increment
1549		 * the overrun count.
1550		 */
1551		BUG_ON(q->info.si_code != SI_TIMER);
1552		q->info.si_overrun++;
1553		result = TRACE_SIGNAL_ALREADY_PENDING;
1554		goto out;
1555	}
1556	q->info.si_overrun = 0;
1557
1558	signalfd_notify(t, sig);
1559	pending = group ? &t->signal->shared_pending : &t->pending;
1560	list_add_tail(&q->list, &pending->list);
1561	sigaddset(&pending->signal, sig);
1562	complete_signal(sig, t, group);
1563	result = TRACE_SIGNAL_DELIVERED;
1564out:
1565	trace_signal_generate(sig, &q->info, t, group, result);
1566	unlock_task_sighand(t, &flags);
1567ret:
1568	return ret;
1569}
1570
1571/*
1572 * Let a parent know about the death of a child.
1573 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1574 *
1575 * Returns true if our parent ignored us and so we've switched to
1576 * self-reaping.
1577 */
1578bool do_notify_parent(struct task_struct *tsk, int sig)
1579{
1580	struct siginfo info;
1581	unsigned long flags;
1582	struct sighand_struct *psig;
1583	bool autoreap = false;
1584	cputime_t utime, stime;
1585
1586	BUG_ON(sig == -1);
1587
1588 	/* do_notify_parent_cldstop should have been called instead.  */
1589 	BUG_ON(task_is_stopped_or_traced(tsk));
1590
1591	BUG_ON(!tsk->ptrace &&
1592	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1593
1594	if (sig != SIGCHLD) {
1595		/*
1596		 * This is only possible if parent == real_parent.
1597		 * Check if it has changed security domain.
1598		 */
1599		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1600			sig = SIGCHLD;
1601	}
1602
1603	info.si_signo = sig;
1604	info.si_errno = 0;
1605	/*
1606	 * We are under tasklist_lock here so our parent is tied to
1607	 * us and cannot change.
1608	 *
1609	 * task_active_pid_ns will always return the same pid namespace
1610	 * until a task passes through release_task.
1611	 *
1612	 * write_lock() currently calls preempt_disable() which is the
1613	 * same as rcu_read_lock(), but according to Oleg, this is not
1614	 * correct to rely on this
1615	 */
1616	rcu_read_lock();
1617	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1618	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1619				       task_uid(tsk));
1620	rcu_read_unlock();
1621
1622	task_cputime(tsk, &utime, &stime);
1623	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1624	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1625
1626	info.si_status = tsk->exit_code & 0x7f;
1627	if (tsk->exit_code & 0x80)
1628		info.si_code = CLD_DUMPED;
1629	else if (tsk->exit_code & 0x7f)
1630		info.si_code = CLD_KILLED;
1631	else {
1632		info.si_code = CLD_EXITED;
1633		info.si_status = tsk->exit_code >> 8;
1634	}
1635
1636	psig = tsk->parent->sighand;
1637	spin_lock_irqsave(&psig->siglock, flags);
1638	if (!tsk->ptrace && sig == SIGCHLD &&
1639	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1640	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1641		/*
1642		 * We are exiting and our parent doesn't care.  POSIX.1
1643		 * defines special semantics for setting SIGCHLD to SIG_IGN
1644		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1645		 * automatically and not left for our parent's wait4 call.
1646		 * Rather than having the parent do it as a magic kind of
1647		 * signal handler, we just set this to tell do_exit that we
1648		 * can be cleaned up without becoming a zombie.  Note that
1649		 * we still call __wake_up_parent in this case, because a
1650		 * blocked sys_wait4 might now return -ECHILD.
1651		 *
1652		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1653		 * is implementation-defined: we do (if you don't want
1654		 * it, just use SIG_IGN instead).
1655		 */
1656		autoreap = true;
1657		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1658			sig = 0;
1659	}
1660	if (valid_signal(sig) && sig)
1661		__group_send_sig_info(sig, &info, tsk->parent);
1662	__wake_up_parent(tsk, tsk->parent);
1663	spin_unlock_irqrestore(&psig->siglock, flags);
1664
1665	return autoreap;
1666}
1667
1668/**
1669 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1670 * @tsk: task reporting the state change
1671 * @for_ptracer: the notification is for ptracer
1672 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1673 *
1674 * Notify @tsk's parent that the stopped/continued state has changed.  If
1675 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1676 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1677 *
1678 * CONTEXT:
1679 * Must be called with tasklist_lock at least read locked.
1680 */
1681static void do_notify_parent_cldstop(struct task_struct *tsk,
1682				     bool for_ptracer, int why)
1683{
1684	struct siginfo info;
1685	unsigned long flags;
1686	struct task_struct *parent;
1687	struct sighand_struct *sighand;
1688	cputime_t utime, stime;
1689
1690	if (for_ptracer) {
1691		parent = tsk->parent;
1692	} else {
1693		tsk = tsk->group_leader;
1694		parent = tsk->real_parent;
1695	}
1696
1697	info.si_signo = SIGCHLD;
1698	info.si_errno = 0;
1699	/*
1700	 * see comment in do_notify_parent() about the following 4 lines
1701	 */
1702	rcu_read_lock();
1703	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1704	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1705	rcu_read_unlock();
1706
1707	task_cputime(tsk, &utime, &stime);
1708	info.si_utime = cputime_to_clock_t(utime);
1709	info.si_stime = cputime_to_clock_t(stime);
1710
1711 	info.si_code = why;
1712 	switch (why) {
1713 	case CLD_CONTINUED:
1714 		info.si_status = SIGCONT;
1715 		break;
1716 	case CLD_STOPPED:
1717 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1718 		break;
1719 	case CLD_TRAPPED:
1720 		info.si_status = tsk->exit_code & 0x7f;
1721 		break;
1722 	default:
1723 		BUG();
1724 	}
1725
1726	sighand = parent->sighand;
1727	spin_lock_irqsave(&sighand->siglock, flags);
1728	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1729	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1730		__group_send_sig_info(SIGCHLD, &info, parent);
1731	/*
1732	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1733	 */
1734	__wake_up_parent(tsk, parent);
1735	spin_unlock_irqrestore(&sighand->siglock, flags);
1736}
1737
1738static inline int may_ptrace_stop(void)
1739{
1740	if (!likely(current->ptrace))
1741		return 0;
1742	/*
1743	 * Are we in the middle of do_coredump?
1744	 * If so and our tracer is also part of the coredump stopping
1745	 * is a deadlock situation, and pointless because our tracer
1746	 * is dead so don't allow us to stop.
1747	 * If SIGKILL was already sent before the caller unlocked
1748	 * ->siglock we must see ->core_state != NULL. Otherwise it
1749	 * is safe to enter schedule().
1750	 *
1751	 * This is almost outdated, a task with the pending SIGKILL can't
1752	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1753	 * after SIGKILL was already dequeued.
1754	 */
1755	if (unlikely(current->mm->core_state) &&
1756	    unlikely(current->mm == current->parent->mm))
1757		return 0;
1758
1759	return 1;
1760}
1761
1762/*
1763 * Return non-zero if there is a SIGKILL that should be waking us up.
1764 * Called with the siglock held.
1765 */
1766static int sigkill_pending(struct task_struct *tsk)
1767{
1768	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1769		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1770}
1771
1772/*
1773 * This must be called with current->sighand->siglock held.
1774 *
1775 * This should be the path for all ptrace stops.
1776 * We always set current->last_siginfo while stopped here.
1777 * That makes it a way to test a stopped process for
1778 * being ptrace-stopped vs being job-control-stopped.
1779 *
1780 * If we actually decide not to stop at all because the tracer
1781 * is gone, we keep current->exit_code unless clear_code.
1782 */
1783static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1784	__releases(&current->sighand->siglock)
1785	__acquires(&current->sighand->siglock)
1786{
1787	bool gstop_done = false;
1788
1789	if (arch_ptrace_stop_needed(exit_code, info)) {
1790		/*
1791		 * The arch code has something special to do before a
1792		 * ptrace stop.  This is allowed to block, e.g. for faults
1793		 * on user stack pages.  We can't keep the siglock while
1794		 * calling arch_ptrace_stop, so we must release it now.
1795		 * To preserve proper semantics, we must do this before
1796		 * any signal bookkeeping like checking group_stop_count.
1797		 * Meanwhile, a SIGKILL could come in before we retake the
1798		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1799		 * So after regaining the lock, we must check for SIGKILL.
1800		 */
1801		spin_unlock_irq(&current->sighand->siglock);
1802		arch_ptrace_stop(exit_code, info);
1803		spin_lock_irq(&current->sighand->siglock);
1804		if (sigkill_pending(current))
1805			return;
1806	}
1807
1808	/*
1809	 * We're committing to trapping.  TRACED should be visible before
1810	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1811	 * Also, transition to TRACED and updates to ->jobctl should be
1812	 * atomic with respect to siglock and should be done after the arch
1813	 * hook as siglock is released and regrabbed across it.
1814	 */
1815	set_current_state(TASK_TRACED);
1816
1817	current->last_siginfo = info;
1818	current->exit_code = exit_code;
1819
1820	/*
1821	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1822	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1823	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1824	 * could be clear now.  We act as if SIGCONT is received after
1825	 * TASK_TRACED is entered - ignore it.
1826	 */
1827	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1828		gstop_done = task_participate_group_stop(current);
1829
1830	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1831	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1832	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1833		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1834
1835	/* entering a trap, clear TRAPPING */
1836	task_clear_jobctl_trapping(current);
1837
1838	spin_unlock_irq(&current->sighand->siglock);
1839	read_lock(&tasklist_lock);
1840	if (may_ptrace_stop()) {
1841		/*
1842		 * Notify parents of the stop.
1843		 *
1844		 * While ptraced, there are two parents - the ptracer and
1845		 * the real_parent of the group_leader.  The ptracer should
1846		 * know about every stop while the real parent is only
1847		 * interested in the completion of group stop.  The states
1848		 * for the two don't interact with each other.  Notify
1849		 * separately unless they're gonna be duplicates.
1850		 */
1851		do_notify_parent_cldstop(current, true, why);
1852		if (gstop_done && ptrace_reparented(current))
1853			do_notify_parent_cldstop(current, false, why);
1854
1855		/*
1856		 * Don't want to allow preemption here, because
1857		 * sys_ptrace() needs this task to be inactive.
1858		 *
1859		 * XXX: implement read_unlock_no_resched().
1860		 */
1861		preempt_disable();
1862		read_unlock(&tasklist_lock);
1863		preempt_enable_no_resched();
1864		freezable_schedule();
1865	} else {
1866		/*
1867		 * By the time we got the lock, our tracer went away.
1868		 * Don't drop the lock yet, another tracer may come.
1869		 *
1870		 * If @gstop_done, the ptracer went away between group stop
1871		 * completion and here.  During detach, it would have set
1872		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1873		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1874		 * the real parent of the group stop completion is enough.
1875		 */
1876		if (gstop_done)
1877			do_notify_parent_cldstop(current, false, why);
1878
1879		/* tasklist protects us from ptrace_freeze_traced() */
1880		__set_current_state(TASK_RUNNING);
1881		if (clear_code)
1882			current->exit_code = 0;
1883		read_unlock(&tasklist_lock);
1884	}
1885
1886	/*
 
 
 
 
 
 
 
1887	 * We are back.  Now reacquire the siglock before touching
1888	 * last_siginfo, so that we are sure to have synchronized with
1889	 * any signal-sending on another CPU that wants to examine it.
1890	 */
1891	spin_lock_irq(&current->sighand->siglock);
1892	current->last_siginfo = NULL;
1893
1894	/* LISTENING can be set only during STOP traps, clear it */
1895	current->jobctl &= ~JOBCTL_LISTENING;
1896
1897	/*
1898	 * Queued signals ignored us while we were stopped for tracing.
1899	 * So check for any that we should take before resuming user mode.
1900	 * This sets TIF_SIGPENDING, but never clears it.
1901	 */
1902	recalc_sigpending_tsk(current);
1903}
1904
1905static void ptrace_do_notify(int signr, int exit_code, int why)
1906{
1907	siginfo_t info;
1908
1909	memset(&info, 0, sizeof info);
1910	info.si_signo = signr;
1911	info.si_code = exit_code;
1912	info.si_pid = task_pid_vnr(current);
1913	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1914
1915	/* Let the debugger run.  */
1916	ptrace_stop(exit_code, why, 1, &info);
1917}
1918
1919void ptrace_notify(int exit_code)
1920{
1921	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1922	if (unlikely(current->task_works))
1923		task_work_run();
1924
1925	spin_lock_irq(&current->sighand->siglock);
1926	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1927	spin_unlock_irq(&current->sighand->siglock);
1928}
1929
1930/**
1931 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1932 * @signr: signr causing group stop if initiating
1933 *
1934 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1935 * and participate in it.  If already set, participate in the existing
1936 * group stop.  If participated in a group stop (and thus slept), %true is
1937 * returned with siglock released.
1938 *
1939 * If ptraced, this function doesn't handle stop itself.  Instead,
1940 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1941 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1942 * places afterwards.
1943 *
1944 * CONTEXT:
1945 * Must be called with @current->sighand->siglock held, which is released
1946 * on %true return.
1947 *
1948 * RETURNS:
1949 * %false if group stop is already cancelled or ptrace trap is scheduled.
1950 * %true if participated in group stop.
1951 */
1952static bool do_signal_stop(int signr)
1953	__releases(&current->sighand->siglock)
1954{
1955	struct signal_struct *sig = current->signal;
1956
1957	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1958		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1959		struct task_struct *t;
1960
1961		/* signr will be recorded in task->jobctl for retries */
1962		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1963
1964		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1965		    unlikely(signal_group_exit(sig)))
1966			return false;
1967		/*
1968		 * There is no group stop already in progress.  We must
1969		 * initiate one now.
1970		 *
1971		 * While ptraced, a task may be resumed while group stop is
1972		 * still in effect and then receive a stop signal and
1973		 * initiate another group stop.  This deviates from the
1974		 * usual behavior as two consecutive stop signals can't
1975		 * cause two group stops when !ptraced.  That is why we
1976		 * also check !task_is_stopped(t) below.
1977		 *
1978		 * The condition can be distinguished by testing whether
1979		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1980		 * group_exit_code in such case.
1981		 *
1982		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1983		 * an intervening stop signal is required to cause two
1984		 * continued events regardless of ptrace.
1985		 */
1986		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1987			sig->group_exit_code = signr;
1988
1989		sig->group_stop_count = 0;
1990
1991		if (task_set_jobctl_pending(current, signr | gstop))
1992			sig->group_stop_count++;
1993
1994		t = current;
1995		while_each_thread(current, t) {
1996			/*
1997			 * Setting state to TASK_STOPPED for a group
1998			 * stop is always done with the siglock held,
1999			 * so this check has no races.
2000			 */
2001			if (!task_is_stopped(t) &&
2002			    task_set_jobctl_pending(t, signr | gstop)) {
2003				sig->group_stop_count++;
2004				if (likely(!(t->ptrace & PT_SEIZED)))
2005					signal_wake_up(t, 0);
2006				else
2007					ptrace_trap_notify(t);
2008			}
2009		}
2010	}
2011
2012	if (likely(!current->ptrace)) {
2013		int notify = 0;
2014
2015		/*
2016		 * If there are no other threads in the group, or if there
2017		 * is a group stop in progress and we are the last to stop,
2018		 * report to the parent.
2019		 */
2020		if (task_participate_group_stop(current))
2021			notify = CLD_STOPPED;
2022
2023		__set_current_state(TASK_STOPPED);
2024		spin_unlock_irq(&current->sighand->siglock);
2025
2026		/*
2027		 * Notify the parent of the group stop completion.  Because
2028		 * we're not holding either the siglock or tasklist_lock
2029		 * here, ptracer may attach inbetween; however, this is for
2030		 * group stop and should always be delivered to the real
2031		 * parent of the group leader.  The new ptracer will get
2032		 * its notification when this task transitions into
2033		 * TASK_TRACED.
2034		 */
2035		if (notify) {
2036			read_lock(&tasklist_lock);
2037			do_notify_parent_cldstop(current, false, notify);
2038			read_unlock(&tasklist_lock);
2039		}
2040
2041		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2042		freezable_schedule();
2043		return true;
2044	} else {
2045		/*
2046		 * While ptraced, group stop is handled by STOP trap.
2047		 * Schedule it and let the caller deal with it.
2048		 */
2049		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2050		return false;
2051	}
2052}
2053
2054/**
2055 * do_jobctl_trap - take care of ptrace jobctl traps
2056 *
2057 * When PT_SEIZED, it's used for both group stop and explicit
2058 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2059 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2060 * the stop signal; otherwise, %SIGTRAP.
2061 *
2062 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2063 * number as exit_code and no siginfo.
2064 *
2065 * CONTEXT:
2066 * Must be called with @current->sighand->siglock held, which may be
2067 * released and re-acquired before returning with intervening sleep.
2068 */
2069static void do_jobctl_trap(void)
2070{
2071	struct signal_struct *signal = current->signal;
2072	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2073
2074	if (current->ptrace & PT_SEIZED) {
2075		if (!signal->group_stop_count &&
2076		    !(signal->flags & SIGNAL_STOP_STOPPED))
2077			signr = SIGTRAP;
2078		WARN_ON_ONCE(!signr);
2079		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2080				 CLD_STOPPED);
2081	} else {
2082		WARN_ON_ONCE(!signr);
2083		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2084		current->exit_code = 0;
2085	}
2086}
2087
2088static int ptrace_signal(int signr, siginfo_t *info)
 
2089{
2090	ptrace_signal_deliver();
2091	/*
2092	 * We do not check sig_kernel_stop(signr) but set this marker
2093	 * unconditionally because we do not know whether debugger will
2094	 * change signr. This flag has no meaning unless we are going
2095	 * to stop after return from ptrace_stop(). In this case it will
2096	 * be checked in do_signal_stop(), we should only stop if it was
2097	 * not cleared by SIGCONT while we were sleeping. See also the
2098	 * comment in dequeue_signal().
2099	 */
2100	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2101	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2102
2103	/* We're back.  Did the debugger cancel the sig?  */
2104	signr = current->exit_code;
2105	if (signr == 0)
2106		return signr;
2107
2108	current->exit_code = 0;
2109
2110	/*
2111	 * Update the siginfo structure if the signal has
2112	 * changed.  If the debugger wanted something
2113	 * specific in the siginfo structure then it should
2114	 * have updated *info via PTRACE_SETSIGINFO.
2115	 */
2116	if (signr != info->si_signo) {
2117		info->si_signo = signr;
2118		info->si_errno = 0;
2119		info->si_code = SI_USER;
2120		rcu_read_lock();
2121		info->si_pid = task_pid_vnr(current->parent);
2122		info->si_uid = from_kuid_munged(current_user_ns(),
2123						task_uid(current->parent));
2124		rcu_read_unlock();
2125	}
2126
2127	/* If the (new) signal is now blocked, requeue it.  */
2128	if (sigismember(&current->blocked, signr)) {
2129		specific_send_sig_info(signr, info, current);
2130		signr = 0;
2131	}
2132
2133	return signr;
2134}
2135
2136int get_signal(struct ksignal *ksig)
 
2137{
2138	struct sighand_struct *sighand = current->sighand;
2139	struct signal_struct *signal = current->signal;
2140	int signr;
2141
2142	if (unlikely(current->task_works))
2143		task_work_run();
2144
2145	if (unlikely(uprobe_deny_signal()))
2146		return 0;
2147
 
2148	/*
2149	 * Do this once, we can't return to user-mode if freezing() == T.
2150	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2151	 * thus do not need another check after return.
 
2152	 */
2153	try_to_freeze();
2154
2155relock:
2156	spin_lock_irq(&sighand->siglock);
2157	/*
2158	 * Every stopped thread goes here after wakeup. Check to see if
2159	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2160	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2161	 */
2162	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2163		int why;
2164
2165		if (signal->flags & SIGNAL_CLD_CONTINUED)
2166			why = CLD_CONTINUED;
2167		else
2168			why = CLD_STOPPED;
2169
2170		signal->flags &= ~SIGNAL_CLD_MASK;
2171
2172		spin_unlock_irq(&sighand->siglock);
2173
2174		/*
2175		 * Notify the parent that we're continuing.  This event is
2176		 * always per-process and doesn't make whole lot of sense
2177		 * for ptracers, who shouldn't consume the state via
2178		 * wait(2) either, but, for backward compatibility, notify
2179		 * the ptracer of the group leader too unless it's gonna be
2180		 * a duplicate.
2181		 */
2182		read_lock(&tasklist_lock);
2183		do_notify_parent_cldstop(current, false, why);
2184
2185		if (ptrace_reparented(current->group_leader))
2186			do_notify_parent_cldstop(current->group_leader,
2187						true, why);
2188		read_unlock(&tasklist_lock);
2189
2190		goto relock;
2191	}
2192
2193	for (;;) {
2194		struct k_sigaction *ka;
2195
2196		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2197		    do_signal_stop(0))
2198			goto relock;
2199
2200		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2201			do_jobctl_trap();
2202			spin_unlock_irq(&sighand->siglock);
2203			goto relock;
2204		}
2205
2206		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2207
2208		if (!signr)
2209			break; /* will return 0 */
2210
2211		if (unlikely(current->ptrace) && signr != SIGKILL) {
2212			signr = ptrace_signal(signr, &ksig->info);
 
2213			if (!signr)
2214				continue;
2215		}
2216
2217		ka = &sighand->action[signr-1];
2218
2219		/* Trace actually delivered signals. */
2220		trace_signal_deliver(signr, &ksig->info, ka);
2221
2222		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2223			continue;
2224		if (ka->sa.sa_handler != SIG_DFL) {
2225			/* Run the handler.  */
2226			ksig->ka = *ka;
2227
2228			if (ka->sa.sa_flags & SA_ONESHOT)
2229				ka->sa.sa_handler = SIG_DFL;
2230
2231			break; /* will return non-zero "signr" value */
2232		}
2233
2234		/*
2235		 * Now we are doing the default action for this signal.
2236		 */
2237		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2238			continue;
2239
2240		/*
2241		 * Global init gets no signals it doesn't want.
2242		 * Container-init gets no signals it doesn't want from same
2243		 * container.
2244		 *
2245		 * Note that if global/container-init sees a sig_kernel_only()
2246		 * signal here, the signal must have been generated internally
2247		 * or must have come from an ancestor namespace. In either
2248		 * case, the signal cannot be dropped.
2249		 */
2250		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2251				!sig_kernel_only(signr))
2252			continue;
2253
2254		if (sig_kernel_stop(signr)) {
2255			/*
2256			 * The default action is to stop all threads in
2257			 * the thread group.  The job control signals
2258			 * do nothing in an orphaned pgrp, but SIGSTOP
2259			 * always works.  Note that siglock needs to be
2260			 * dropped during the call to is_orphaned_pgrp()
2261			 * because of lock ordering with tasklist_lock.
2262			 * This allows an intervening SIGCONT to be posted.
2263			 * We need to check for that and bail out if necessary.
2264			 */
2265			if (signr != SIGSTOP) {
2266				spin_unlock_irq(&sighand->siglock);
2267
2268				/* signals can be posted during this window */
2269
2270				if (is_current_pgrp_orphaned())
2271					goto relock;
2272
2273				spin_lock_irq(&sighand->siglock);
2274			}
2275
2276			if (likely(do_signal_stop(ksig->info.si_signo))) {
2277				/* It released the siglock.  */
2278				goto relock;
2279			}
2280
2281			/*
2282			 * We didn't actually stop, due to a race
2283			 * with SIGCONT or something like that.
2284			 */
2285			continue;
2286		}
2287
2288		spin_unlock_irq(&sighand->siglock);
2289
2290		/*
2291		 * Anything else is fatal, maybe with a core dump.
2292		 */
2293		current->flags |= PF_SIGNALED;
2294
2295		if (sig_kernel_coredump(signr)) {
2296			if (print_fatal_signals)
2297				print_fatal_signal(ksig->info.si_signo);
2298			proc_coredump_connector(current);
2299			/*
2300			 * If it was able to dump core, this kills all
2301			 * other threads in the group and synchronizes with
2302			 * their demise.  If we lost the race with another
2303			 * thread getting here, it set group_exit_code
2304			 * first and our do_group_exit call below will use
2305			 * that value and ignore the one we pass it.
2306			 */
2307			do_coredump(&ksig->info);
2308		}
2309
2310		/*
2311		 * Death signals, no core dump.
2312		 */
2313		do_group_exit(ksig->info.si_signo);
2314		/* NOTREACHED */
2315	}
2316	spin_unlock_irq(&sighand->siglock);
2317
2318	ksig->sig = signr;
2319	return ksig->sig > 0;
2320}
2321
2322/**
2323 * signal_delivered - 
2324 * @ksig:		kernel signal struct
 
 
 
2325 * @stepping:		nonzero if debugger single-step or block-step in use
2326 *
2327 * This function should be called when a signal has successfully been
2328 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2329 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2330 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2331 */
2332static void signal_delivered(struct ksignal *ksig, int stepping)
 
2333{
2334	sigset_t blocked;
2335
2336	/* A signal was successfully delivered, and the
2337	   saved sigmask was stored on the signal frame,
2338	   and will be restored by sigreturn.  So we can
2339	   simply clear the restore sigmask flag.  */
2340	clear_restore_sigmask();
2341
2342	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2343	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2344		sigaddset(&blocked, ksig->sig);
2345	set_current_blocked(&blocked);
2346	tracehook_signal_handler(stepping);
2347}
2348
2349void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2350{
2351	if (failed)
2352		force_sigsegv(ksig->sig, current);
2353	else
2354		signal_delivered(ksig, stepping);
2355}
2356
2357/*
2358 * It could be that complete_signal() picked us to notify about the
2359 * group-wide signal. Other threads should be notified now to take
2360 * the shared signals in @which since we will not.
2361 */
2362static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2363{
2364	sigset_t retarget;
2365	struct task_struct *t;
2366
2367	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2368	if (sigisemptyset(&retarget))
2369		return;
2370
2371	t = tsk;
2372	while_each_thread(tsk, t) {
2373		if (t->flags & PF_EXITING)
2374			continue;
2375
2376		if (!has_pending_signals(&retarget, &t->blocked))
2377			continue;
2378		/* Remove the signals this thread can handle. */
2379		sigandsets(&retarget, &retarget, &t->blocked);
2380
2381		if (!signal_pending(t))
2382			signal_wake_up(t, 0);
2383
2384		if (sigisemptyset(&retarget))
2385			break;
2386	}
2387}
2388
2389void exit_signals(struct task_struct *tsk)
2390{
2391	int group_stop = 0;
2392	sigset_t unblocked;
2393
2394	/*
2395	 * @tsk is about to have PF_EXITING set - lock out users which
2396	 * expect stable threadgroup.
2397	 */
2398	threadgroup_change_begin(tsk);
2399
2400	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2401		tsk->flags |= PF_EXITING;
2402		threadgroup_change_end(tsk);
2403		return;
2404	}
2405
2406	spin_lock_irq(&tsk->sighand->siglock);
2407	/*
2408	 * From now this task is not visible for group-wide signals,
2409	 * see wants_signal(), do_signal_stop().
2410	 */
2411	tsk->flags |= PF_EXITING;
2412
2413	threadgroup_change_end(tsk);
2414
2415	if (!signal_pending(tsk))
2416		goto out;
2417
2418	unblocked = tsk->blocked;
2419	signotset(&unblocked);
2420	retarget_shared_pending(tsk, &unblocked);
2421
2422	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2423	    task_participate_group_stop(tsk))
2424		group_stop = CLD_STOPPED;
2425out:
2426	spin_unlock_irq(&tsk->sighand->siglock);
2427
2428	/*
2429	 * If group stop has completed, deliver the notification.  This
2430	 * should always go to the real parent of the group leader.
2431	 */
2432	if (unlikely(group_stop)) {
2433		read_lock(&tasklist_lock);
2434		do_notify_parent_cldstop(tsk, false, group_stop);
2435		read_unlock(&tasklist_lock);
2436	}
2437}
2438
2439EXPORT_SYMBOL(recalc_sigpending);
2440EXPORT_SYMBOL_GPL(dequeue_signal);
2441EXPORT_SYMBOL(flush_signals);
2442EXPORT_SYMBOL(force_sig);
2443EXPORT_SYMBOL(send_sig);
2444EXPORT_SYMBOL(send_sig_info);
2445EXPORT_SYMBOL(sigprocmask);
 
 
 
2446
2447/*
2448 * System call entry points.
2449 */
2450
2451/**
2452 *  sys_restart_syscall - restart a system call
2453 */
2454SYSCALL_DEFINE0(restart_syscall)
2455{
2456	struct restart_block *restart = &current->restart_block;
2457	return restart->fn(restart);
2458}
2459
2460long do_no_restart_syscall(struct restart_block *param)
2461{
2462	return -EINTR;
2463}
2464
2465static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2466{
2467	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2468		sigset_t newblocked;
2469		/* A set of now blocked but previously unblocked signals. */
2470		sigandnsets(&newblocked, newset, &current->blocked);
2471		retarget_shared_pending(tsk, &newblocked);
2472	}
2473	tsk->blocked = *newset;
2474	recalc_sigpending();
2475}
2476
2477/**
2478 * set_current_blocked - change current->blocked mask
2479 * @newset: new mask
2480 *
2481 * It is wrong to change ->blocked directly, this helper should be used
2482 * to ensure the process can't miss a shared signal we are going to block.
2483 */
2484void set_current_blocked(sigset_t *newset)
2485{
 
2486	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2487	__set_current_blocked(newset);
 
 
2488}
2489
2490void __set_current_blocked(const sigset_t *newset)
2491{
2492	struct task_struct *tsk = current;
2493
2494	/*
2495	 * In case the signal mask hasn't changed, there is nothing we need
2496	 * to do. The current->blocked shouldn't be modified by other task.
2497	 */
2498	if (sigequalsets(&tsk->blocked, newset))
2499		return;
2500
2501	spin_lock_irq(&tsk->sighand->siglock);
2502	__set_task_blocked(tsk, newset);
2503	spin_unlock_irq(&tsk->sighand->siglock);
2504}
2505
2506/*
2507 * This is also useful for kernel threads that want to temporarily
2508 * (or permanently) block certain signals.
2509 *
2510 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2511 * interface happily blocks "unblockable" signals like SIGKILL
2512 * and friends.
2513 */
2514int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2515{
2516	struct task_struct *tsk = current;
2517	sigset_t newset;
2518
2519	/* Lockless, only current can change ->blocked, never from irq */
2520	if (oldset)
2521		*oldset = tsk->blocked;
2522
2523	switch (how) {
2524	case SIG_BLOCK:
2525		sigorsets(&newset, &tsk->blocked, set);
2526		break;
2527	case SIG_UNBLOCK:
2528		sigandnsets(&newset, &tsk->blocked, set);
2529		break;
2530	case SIG_SETMASK:
2531		newset = *set;
2532		break;
2533	default:
2534		return -EINVAL;
2535	}
2536
2537	__set_current_blocked(&newset);
2538	return 0;
2539}
2540
2541/**
2542 *  sys_rt_sigprocmask - change the list of currently blocked signals
2543 *  @how: whether to add, remove, or set signals
2544 *  @nset: stores pending signals
2545 *  @oset: previous value of signal mask if non-null
2546 *  @sigsetsize: size of sigset_t type
2547 */
2548SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2549		sigset_t __user *, oset, size_t, sigsetsize)
2550{
2551	sigset_t old_set, new_set;
2552	int error;
2553
2554	/* XXX: Don't preclude handling different sized sigset_t's.  */
2555	if (sigsetsize != sizeof(sigset_t))
2556		return -EINVAL;
2557
2558	old_set = current->blocked;
2559
2560	if (nset) {
2561		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2562			return -EFAULT;
2563		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2564
2565		error = sigprocmask(how, &new_set, NULL);
2566		if (error)
2567			return error;
2568	}
2569
2570	if (oset) {
2571		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2572			return -EFAULT;
2573	}
2574
2575	return 0;
2576}
2577
2578#ifdef CONFIG_COMPAT
2579COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2580		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2581{
2582#ifdef __BIG_ENDIAN
2583	sigset_t old_set = current->blocked;
2584
2585	/* XXX: Don't preclude handling different sized sigset_t's.  */
2586	if (sigsetsize != sizeof(sigset_t))
2587		return -EINVAL;
2588
2589	if (nset) {
2590		compat_sigset_t new32;
2591		sigset_t new_set;
2592		int error;
2593		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2594			return -EFAULT;
2595
2596		sigset_from_compat(&new_set, &new32);
2597		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2598
2599		error = sigprocmask(how, &new_set, NULL);
2600		if (error)
2601			return error;
2602	}
2603	if (oset) {
2604		compat_sigset_t old32;
2605		sigset_to_compat(&old32, &old_set);
2606		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2607			return -EFAULT;
2608	}
2609	return 0;
2610#else
2611	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2612				  (sigset_t __user *)oset, sigsetsize);
2613#endif
2614}
2615#endif
2616
2617static int do_sigpending(void *set, unsigned long sigsetsize)
2618{
2619	if (sigsetsize > sizeof(sigset_t))
2620		return -EINVAL;
2621
2622	spin_lock_irq(&current->sighand->siglock);
2623	sigorsets(set, &current->pending.signal,
2624		  &current->signal->shared_pending.signal);
2625	spin_unlock_irq(&current->sighand->siglock);
2626
2627	/* Outside the lock because only this thread touches it.  */
2628	sigandsets(set, &current->blocked, set);
2629	return 0;
 
 
 
 
 
 
2630}
2631
2632/**
2633 *  sys_rt_sigpending - examine a pending signal that has been raised
2634 *			while blocked
2635 *  @uset: stores pending signals
2636 *  @sigsetsize: size of sigset_t type or larger
2637 */
2638SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2639{
2640	sigset_t set;
2641	int err = do_sigpending(&set, sigsetsize);
2642	if (!err && copy_to_user(uset, &set, sigsetsize))
2643		err = -EFAULT;
2644	return err;
2645}
2646
2647#ifdef CONFIG_COMPAT
2648COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2649		compat_size_t, sigsetsize)
2650{
2651#ifdef __BIG_ENDIAN
2652	sigset_t set;
2653	int err = do_sigpending(&set, sigsetsize);
2654	if (!err) {
2655		compat_sigset_t set32;
2656		sigset_to_compat(&set32, &set);
2657		/* we can get here only if sigsetsize <= sizeof(set) */
2658		if (copy_to_user(uset, &set32, sigsetsize))
2659			err = -EFAULT;
2660	}
2661	return err;
2662#else
2663	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2664#endif
2665}
2666#endif
2667
2668#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2669
2670int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2671{
2672	int err;
2673
2674	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2675		return -EFAULT;
2676	if (from->si_code < 0)
2677		return __copy_to_user(to, from, sizeof(siginfo_t))
2678			? -EFAULT : 0;
2679	/*
2680	 * If you change siginfo_t structure, please be sure
2681	 * this code is fixed accordingly.
2682	 * Please remember to update the signalfd_copyinfo() function
2683	 * inside fs/signalfd.c too, in case siginfo_t changes.
2684	 * It should never copy any pad contained in the structure
2685	 * to avoid security leaks, but must copy the generic
2686	 * 3 ints plus the relevant union member.
2687	 */
2688	err = __put_user(from->si_signo, &to->si_signo);
2689	err |= __put_user(from->si_errno, &to->si_errno);
2690	err |= __put_user((short)from->si_code, &to->si_code);
2691	switch (from->si_code & __SI_MASK) {
2692	case __SI_KILL:
2693		err |= __put_user(from->si_pid, &to->si_pid);
2694		err |= __put_user(from->si_uid, &to->si_uid);
2695		break;
2696	case __SI_TIMER:
2697		 err |= __put_user(from->si_tid, &to->si_tid);
2698		 err |= __put_user(from->si_overrun, &to->si_overrun);
2699		 err |= __put_user(from->si_ptr, &to->si_ptr);
2700		break;
2701	case __SI_POLL:
2702		err |= __put_user(from->si_band, &to->si_band);
2703		err |= __put_user(from->si_fd, &to->si_fd);
2704		break;
2705	case __SI_FAULT:
2706		err |= __put_user(from->si_addr, &to->si_addr);
2707#ifdef __ARCH_SI_TRAPNO
2708		err |= __put_user(from->si_trapno, &to->si_trapno);
2709#endif
2710#ifdef BUS_MCEERR_AO
2711		/*
2712		 * Other callers might not initialize the si_lsb field,
2713		 * so check explicitly for the right codes here.
2714		 */
2715		if (from->si_signo == SIGBUS &&
2716		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2717			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2718#endif
2719#ifdef SEGV_BNDERR
2720		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2721			err |= __put_user(from->si_lower, &to->si_lower);
2722			err |= __put_user(from->si_upper, &to->si_upper);
2723		}
2724#endif
2725#ifdef SEGV_PKUERR
2726		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2727			err |= __put_user(from->si_pkey, &to->si_pkey);
2728#endif
2729		break;
2730	case __SI_CHLD:
2731		err |= __put_user(from->si_pid, &to->si_pid);
2732		err |= __put_user(from->si_uid, &to->si_uid);
2733		err |= __put_user(from->si_status, &to->si_status);
2734		err |= __put_user(from->si_utime, &to->si_utime);
2735		err |= __put_user(from->si_stime, &to->si_stime);
2736		break;
2737	case __SI_RT: /* This is not generated by the kernel as of now. */
2738	case __SI_MESGQ: /* But this is */
2739		err |= __put_user(from->si_pid, &to->si_pid);
2740		err |= __put_user(from->si_uid, &to->si_uid);
2741		err |= __put_user(from->si_ptr, &to->si_ptr);
2742		break;
2743#ifdef __ARCH_SIGSYS
2744	case __SI_SYS:
2745		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2746		err |= __put_user(from->si_syscall, &to->si_syscall);
2747		err |= __put_user(from->si_arch, &to->si_arch);
2748		break;
2749#endif
2750	default: /* this is just in case for now ... */
2751		err |= __put_user(from->si_pid, &to->si_pid);
2752		err |= __put_user(from->si_uid, &to->si_uid);
2753		break;
2754	}
2755	return err;
2756}
2757
2758#endif
2759
2760/**
2761 *  do_sigtimedwait - wait for queued signals specified in @which
2762 *  @which: queued signals to wait for
2763 *  @info: if non-null, the signal's siginfo is returned here
2764 *  @ts: upper bound on process time suspension
2765 */
2766int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2767		    const struct timespec *ts)
2768{
2769	ktime_t *to = NULL, timeout = KTIME_MAX;
2770	struct task_struct *tsk = current;
 
2771	sigset_t mask = *which;
2772	int sig, ret = 0;
2773
2774	if (ts) {
2775		if (!timespec_valid(ts))
2776			return -EINVAL;
2777		timeout = timespec_to_ktime(*ts);
2778		to = &timeout;
 
 
 
 
 
2779	}
2780
2781	/*
2782	 * Invert the set of allowed signals to get those we want to block.
2783	 */
2784	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2785	signotset(&mask);
2786
2787	spin_lock_irq(&tsk->sighand->siglock);
2788	sig = dequeue_signal(tsk, &mask, info);
2789	if (!sig && timeout) {
2790		/*
2791		 * None ready, temporarily unblock those we're interested
2792		 * while we are sleeping in so that we'll be awakened when
2793		 * they arrive. Unblocking is always fine, we can avoid
2794		 * set_current_blocked().
2795		 */
2796		tsk->real_blocked = tsk->blocked;
2797		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2798		recalc_sigpending();
2799		spin_unlock_irq(&tsk->sighand->siglock);
2800
2801		__set_current_state(TASK_INTERRUPTIBLE);
2802		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2803							 HRTIMER_MODE_REL);
2804		spin_lock_irq(&tsk->sighand->siglock);
2805		__set_task_blocked(tsk, &tsk->real_blocked);
2806		sigemptyset(&tsk->real_blocked);
2807		sig = dequeue_signal(tsk, &mask, info);
2808	}
2809	spin_unlock_irq(&tsk->sighand->siglock);
2810
2811	if (sig)
2812		return sig;
2813	return ret ? -EINTR : -EAGAIN;
2814}
2815
2816/**
2817 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2818 *			in @uthese
2819 *  @uthese: queued signals to wait for
2820 *  @uinfo: if non-null, the signal's siginfo is returned here
2821 *  @uts: upper bound on process time suspension
2822 *  @sigsetsize: size of sigset_t type
2823 */
2824SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2825		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2826		size_t, sigsetsize)
2827{
2828	sigset_t these;
2829	struct timespec ts;
2830	siginfo_t info;
2831	int ret;
2832
2833	/* XXX: Don't preclude handling different sized sigset_t's.  */
2834	if (sigsetsize != sizeof(sigset_t))
2835		return -EINVAL;
2836
2837	if (copy_from_user(&these, uthese, sizeof(these)))
2838		return -EFAULT;
2839
2840	if (uts) {
2841		if (copy_from_user(&ts, uts, sizeof(ts)))
2842			return -EFAULT;
2843	}
2844
2845	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2846
2847	if (ret > 0 && uinfo) {
2848		if (copy_siginfo_to_user(uinfo, &info))
2849			ret = -EFAULT;
2850	}
2851
2852	return ret;
2853}
2854
2855/**
2856 *  sys_kill - send a signal to a process
2857 *  @pid: the PID of the process
2858 *  @sig: signal to be sent
2859 */
2860SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2861{
2862	struct siginfo info;
2863
2864	info.si_signo = sig;
2865	info.si_errno = 0;
2866	info.si_code = SI_USER;
2867	info.si_pid = task_tgid_vnr(current);
2868	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2869
2870	return kill_something_info(sig, &info, pid);
2871}
2872
2873static int
2874do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2875{
2876	struct task_struct *p;
2877	int error = -ESRCH;
2878
2879	rcu_read_lock();
2880	p = find_task_by_vpid(pid);
2881	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2882		error = check_kill_permission(sig, info, p);
2883		/*
2884		 * The null signal is a permissions and process existence
2885		 * probe.  No signal is actually delivered.
2886		 */
2887		if (!error && sig) {
2888			error = do_send_sig_info(sig, info, p, false);
2889			/*
2890			 * If lock_task_sighand() failed we pretend the task
2891			 * dies after receiving the signal. The window is tiny,
2892			 * and the signal is private anyway.
2893			 */
2894			if (unlikely(error == -ESRCH))
2895				error = 0;
2896		}
2897	}
2898	rcu_read_unlock();
2899
2900	return error;
2901}
2902
2903static int do_tkill(pid_t tgid, pid_t pid, int sig)
2904{
2905	struct siginfo info = {};
2906
2907	info.si_signo = sig;
2908	info.si_errno = 0;
2909	info.si_code = SI_TKILL;
2910	info.si_pid = task_tgid_vnr(current);
2911	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2912
2913	return do_send_specific(tgid, pid, sig, &info);
2914}
2915
2916/**
2917 *  sys_tgkill - send signal to one specific thread
2918 *  @tgid: the thread group ID of the thread
2919 *  @pid: the PID of the thread
2920 *  @sig: signal to be sent
2921 *
2922 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2923 *  exists but it's not belonging to the target process anymore. This
2924 *  method solves the problem of threads exiting and PIDs getting reused.
2925 */
2926SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2927{
2928	/* This is only valid for single tasks */
2929	if (pid <= 0 || tgid <= 0)
2930		return -EINVAL;
2931
2932	return do_tkill(tgid, pid, sig);
2933}
2934
2935/**
2936 *  sys_tkill - send signal to one specific task
2937 *  @pid: the PID of the task
2938 *  @sig: signal to be sent
2939 *
2940 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2941 */
2942SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2943{
2944	/* This is only valid for single tasks */
2945	if (pid <= 0)
2946		return -EINVAL;
2947
2948	return do_tkill(0, pid, sig);
2949}
2950
2951static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2952{
2953	/* Not even root can pretend to send signals from the kernel.
2954	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2955	 */
2956	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2957	    (task_pid_vnr(current) != pid))
2958		return -EPERM;
2959
2960	info->si_signo = sig;
2961
2962	/* POSIX.1b doesn't mention process groups.  */
2963	return kill_proc_info(sig, info, pid);
2964}
2965
2966/**
2967 *  sys_rt_sigqueueinfo - send signal information to a signal
2968 *  @pid: the PID of the thread
2969 *  @sig: signal to be sent
2970 *  @uinfo: signal info to be sent
2971 */
2972SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2973		siginfo_t __user *, uinfo)
2974{
2975	siginfo_t info;
 
2976	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2977		return -EFAULT;
2978	return do_rt_sigqueueinfo(pid, sig, &info);
2979}
2980
2981#ifdef CONFIG_COMPAT
2982COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2983			compat_pid_t, pid,
2984			int, sig,
2985			struct compat_siginfo __user *, uinfo)
2986{
2987	siginfo_t info = {};
2988	int ret = copy_siginfo_from_user32(&info, uinfo);
2989	if (unlikely(ret))
2990		return ret;
2991	return do_rt_sigqueueinfo(pid, sig, &info);
 
2992}
2993#endif
2994
2995static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2996{
2997	/* This is only valid for single tasks */
2998	if (pid <= 0 || tgid <= 0)
2999		return -EINVAL;
3000
3001	/* Not even root can pretend to send signals from the kernel.
3002	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3003	 */
3004	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3005	    (task_pid_vnr(current) != pid))
 
3006		return -EPERM;
3007
3008	info->si_signo = sig;
3009
3010	return do_send_specific(tgid, pid, sig, info);
3011}
3012
3013SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3014		siginfo_t __user *, uinfo)
3015{
3016	siginfo_t info;
3017
3018	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3019		return -EFAULT;
3020
3021	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3022}
3023
3024#ifdef CONFIG_COMPAT
3025COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3026			compat_pid_t, tgid,
3027			compat_pid_t, pid,
3028			int, sig,
3029			struct compat_siginfo __user *, uinfo)
3030{
3031	siginfo_t info = {};
3032
3033	if (copy_siginfo_from_user32(&info, uinfo))
3034		return -EFAULT;
3035	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3036}
3037#endif
3038
3039/*
3040 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3041 */
3042void kernel_sigaction(int sig, __sighandler_t action)
3043{
3044	spin_lock_irq(&current->sighand->siglock);
3045	current->sighand->action[sig - 1].sa.sa_handler = action;
3046	if (action == SIG_IGN) {
3047		sigset_t mask;
3048
3049		sigemptyset(&mask);
3050		sigaddset(&mask, sig);
3051
3052		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3053		flush_sigqueue_mask(&mask, &current->pending);
3054		recalc_sigpending();
3055	}
3056	spin_unlock_irq(&current->sighand->siglock);
3057}
3058EXPORT_SYMBOL(kernel_sigaction);
3059
3060void __weak sigaction_compat_abi(struct k_sigaction *act,
3061		struct k_sigaction *oact)
3062{
3063}
3064
3065int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3066{
3067	struct task_struct *p = current, *t;
3068	struct k_sigaction *k;
3069	sigset_t mask;
3070
3071	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3072		return -EINVAL;
3073
3074	k = &p->sighand->action[sig-1];
3075
3076	spin_lock_irq(&p->sighand->siglock);
3077	if (oact)
3078		*oact = *k;
3079
3080	sigaction_compat_abi(act, oact);
3081
3082	if (act) {
3083		sigdelsetmask(&act->sa.sa_mask,
3084			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3085		*k = *act;
3086		/*
3087		 * POSIX 3.3.1.3:
3088		 *  "Setting a signal action to SIG_IGN for a signal that is
3089		 *   pending shall cause the pending signal to be discarded,
3090		 *   whether or not it is blocked."
3091		 *
3092		 *  "Setting a signal action to SIG_DFL for a signal that is
3093		 *   pending and whose default action is to ignore the signal
3094		 *   (for example, SIGCHLD), shall cause the pending signal to
3095		 *   be discarded, whether or not it is blocked"
3096		 */
3097		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3098			sigemptyset(&mask);
3099			sigaddset(&mask, sig);
3100			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3101			for_each_thread(p, t)
3102				flush_sigqueue_mask(&mask, &t->pending);
 
 
3103		}
3104	}
3105
3106	spin_unlock_irq(&p->sighand->siglock);
3107	return 0;
3108}
3109
3110static int
3111do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3112{
3113	stack_t oss;
3114	int error;
3115
3116	oss.ss_sp = (void __user *) current->sas_ss_sp;
3117	oss.ss_size = current->sas_ss_size;
3118	oss.ss_flags = sas_ss_flags(sp) |
3119		(current->sas_ss_flags & SS_FLAG_BITS);
3120
3121	if (uss) {
3122		void __user *ss_sp;
3123		size_t ss_size;
3124		unsigned ss_flags;
3125		int ss_mode;
3126
3127		error = -EFAULT;
3128		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3129			goto out;
3130		error = __get_user(ss_sp, &uss->ss_sp) |
3131			__get_user(ss_flags, &uss->ss_flags) |
3132			__get_user(ss_size, &uss->ss_size);
3133		if (error)
3134			goto out;
3135
3136		error = -EPERM;
3137		if (on_sig_stack(sp))
3138			goto out;
3139
3140		ss_mode = ss_flags & ~SS_FLAG_BITS;
3141		error = -EINVAL;
3142		if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3143				ss_mode != 0)
 
 
 
 
 
 
3144			goto out;
3145
3146		if (ss_mode == SS_DISABLE) {
3147			ss_size = 0;
3148			ss_sp = NULL;
3149		} else {
3150			error = -ENOMEM;
3151			if (ss_size < MINSIGSTKSZ)
3152				goto out;
3153		}
3154
3155		current->sas_ss_sp = (unsigned long) ss_sp;
3156		current->sas_ss_size = ss_size;
3157		current->sas_ss_flags = ss_flags;
3158	}
3159
3160	error = 0;
3161	if (uoss) {
3162		error = -EFAULT;
3163		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3164			goto out;
3165		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3166			__put_user(oss.ss_size, &uoss->ss_size) |
3167			__put_user(oss.ss_flags, &uoss->ss_flags);
3168	}
3169
3170out:
3171	return error;
3172}
3173SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3174{
3175	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3176}
3177
3178int restore_altstack(const stack_t __user *uss)
3179{
3180	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3181	/* squash all but EFAULT for now */
3182	return err == -EFAULT ? err : 0;
3183}
3184
3185int __save_altstack(stack_t __user *uss, unsigned long sp)
3186{
3187	struct task_struct *t = current;
3188	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3189		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3190		__put_user(t->sas_ss_size, &uss->ss_size);
3191	if (err)
3192		return err;
3193	if (t->sas_ss_flags & SS_AUTODISARM)
3194		sas_ss_reset(t);
3195	return 0;
3196}
3197
3198#ifdef CONFIG_COMPAT
3199COMPAT_SYSCALL_DEFINE2(sigaltstack,
3200			const compat_stack_t __user *, uss_ptr,
3201			compat_stack_t __user *, uoss_ptr)
3202{
3203	stack_t uss, uoss;
3204	int ret;
3205	mm_segment_t seg;
3206
3207	if (uss_ptr) {
3208		compat_stack_t uss32;
3209
3210		memset(&uss, 0, sizeof(stack_t));
3211		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3212			return -EFAULT;
3213		uss.ss_sp = compat_ptr(uss32.ss_sp);
3214		uss.ss_flags = uss32.ss_flags;
3215		uss.ss_size = uss32.ss_size;
3216	}
3217	seg = get_fs();
3218	set_fs(KERNEL_DS);
3219	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3220			     (stack_t __force __user *) &uoss,
3221			     compat_user_stack_pointer());
3222	set_fs(seg);
3223	if (ret >= 0 && uoss_ptr)  {
3224		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3225		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3226		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3227		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3228			ret = -EFAULT;
3229	}
3230	return ret;
3231}
3232
3233int compat_restore_altstack(const compat_stack_t __user *uss)
3234{
3235	int err = compat_sys_sigaltstack(uss, NULL);
3236	/* squash all but -EFAULT for now */
3237	return err == -EFAULT ? err : 0;
3238}
3239
3240int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3241{
3242	int err;
3243	struct task_struct *t = current;
3244	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3245			 &uss->ss_sp) |
3246		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3247		__put_user(t->sas_ss_size, &uss->ss_size);
3248	if (err)
3249		return err;
3250	if (t->sas_ss_flags & SS_AUTODISARM)
3251		sas_ss_reset(t);
3252	return 0;
3253}
3254#endif
3255
3256#ifdef __ARCH_WANT_SYS_SIGPENDING
3257
3258/**
3259 *  sys_sigpending - examine pending signals
3260 *  @set: where mask of pending signal is returned
3261 */
3262SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3263{
3264	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3265}
3266
3267#endif
3268
3269#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3270/**
3271 *  sys_sigprocmask - examine and change blocked signals
3272 *  @how: whether to add, remove, or set signals
3273 *  @nset: signals to add or remove (if non-null)
3274 *  @oset: previous value of signal mask if non-null
3275 *
3276 * Some platforms have their own version with special arguments;
3277 * others support only sys_rt_sigprocmask.
3278 */
3279
3280SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3281		old_sigset_t __user *, oset)
3282{
3283	old_sigset_t old_set, new_set;
3284	sigset_t new_blocked;
3285
3286	old_set = current->blocked.sig[0];
3287
3288	if (nset) {
3289		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3290			return -EFAULT;
 
3291
3292		new_blocked = current->blocked;
3293
3294		switch (how) {
3295		case SIG_BLOCK:
3296			sigaddsetmask(&new_blocked, new_set);
3297			break;
3298		case SIG_UNBLOCK:
3299			sigdelsetmask(&new_blocked, new_set);
3300			break;
3301		case SIG_SETMASK:
3302			new_blocked.sig[0] = new_set;
3303			break;
3304		default:
3305			return -EINVAL;
3306		}
3307
3308		set_current_blocked(&new_blocked);
3309	}
3310
3311	if (oset) {
3312		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3313			return -EFAULT;
3314	}
3315
3316	return 0;
3317}
3318#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3319
3320#ifndef CONFIG_ODD_RT_SIGACTION
3321/**
3322 *  sys_rt_sigaction - alter an action taken by a process
3323 *  @sig: signal to be sent
3324 *  @act: new sigaction
3325 *  @oact: used to save the previous sigaction
3326 *  @sigsetsize: size of sigset_t type
3327 */
3328SYSCALL_DEFINE4(rt_sigaction, int, sig,
3329		const struct sigaction __user *, act,
3330		struct sigaction __user *, oact,
3331		size_t, sigsetsize)
3332{
3333	struct k_sigaction new_sa, old_sa;
3334	int ret = -EINVAL;
3335
3336	/* XXX: Don't preclude handling different sized sigset_t's.  */
3337	if (sigsetsize != sizeof(sigset_t))
3338		goto out;
3339
3340	if (act) {
3341		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3342			return -EFAULT;
3343	}
3344
3345	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3346
3347	if (!ret && oact) {
3348		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3349			return -EFAULT;
3350	}
3351out:
3352	return ret;
3353}
3354#ifdef CONFIG_COMPAT
3355COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3356		const struct compat_sigaction __user *, act,
3357		struct compat_sigaction __user *, oact,
3358		compat_size_t, sigsetsize)
3359{
3360	struct k_sigaction new_ka, old_ka;
3361	compat_sigset_t mask;
3362#ifdef __ARCH_HAS_SA_RESTORER
3363	compat_uptr_t restorer;
3364#endif
3365	int ret;
3366
3367	/* XXX: Don't preclude handling different sized sigset_t's.  */
3368	if (sigsetsize != sizeof(compat_sigset_t))
3369		return -EINVAL;
3370
3371	if (act) {
3372		compat_uptr_t handler;
3373		ret = get_user(handler, &act->sa_handler);
3374		new_ka.sa.sa_handler = compat_ptr(handler);
3375#ifdef __ARCH_HAS_SA_RESTORER
3376		ret |= get_user(restorer, &act->sa_restorer);
3377		new_ka.sa.sa_restorer = compat_ptr(restorer);
3378#endif
3379		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3380		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3381		if (ret)
3382			return -EFAULT;
3383		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3384	}
3385
3386	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3387	if (!ret && oact) {
3388		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3389		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3390			       &oact->sa_handler);
3391		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3392		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3395				&oact->sa_restorer);
3396#endif
3397	}
3398	return ret;
3399}
3400#endif
3401#endif /* !CONFIG_ODD_RT_SIGACTION */
3402
3403#ifdef CONFIG_OLD_SIGACTION
3404SYSCALL_DEFINE3(sigaction, int, sig,
3405		const struct old_sigaction __user *, act,
3406	        struct old_sigaction __user *, oact)
3407{
3408	struct k_sigaction new_ka, old_ka;
3409	int ret;
3410
3411	if (act) {
3412		old_sigset_t mask;
3413		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3414		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3415		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3416		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3417		    __get_user(mask, &act->sa_mask))
3418			return -EFAULT;
3419#ifdef __ARCH_HAS_KA_RESTORER
3420		new_ka.ka_restorer = NULL;
3421#endif
3422		siginitset(&new_ka.sa.sa_mask, mask);
3423	}
3424
3425	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3426
3427	if (!ret && oact) {
3428		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3429		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3430		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3431		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3432		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3433			return -EFAULT;
3434	}
3435
3436	return ret;
3437}
3438#endif
3439#ifdef CONFIG_COMPAT_OLD_SIGACTION
3440COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3441		const struct compat_old_sigaction __user *, act,
3442	        struct compat_old_sigaction __user *, oact)
3443{
3444	struct k_sigaction new_ka, old_ka;
3445	int ret;
3446	compat_old_sigset_t mask;
3447	compat_uptr_t handler, restorer;
3448
3449	if (act) {
3450		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3451		    __get_user(handler, &act->sa_handler) ||
3452		    __get_user(restorer, &act->sa_restorer) ||
3453		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3454		    __get_user(mask, &act->sa_mask))
3455			return -EFAULT;
3456
3457#ifdef __ARCH_HAS_KA_RESTORER
3458		new_ka.ka_restorer = NULL;
3459#endif
3460		new_ka.sa.sa_handler = compat_ptr(handler);
3461		new_ka.sa.sa_restorer = compat_ptr(restorer);
3462		siginitset(&new_ka.sa.sa_mask, mask);
3463	}
3464
3465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3466
3467	if (!ret && oact) {
3468		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3469		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3470			       &oact->sa_handler) ||
3471		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3472			       &oact->sa_restorer) ||
3473		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3474		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3475			return -EFAULT;
3476	}
3477	return ret;
3478}
3479#endif
3480
3481#ifdef CONFIG_SGETMASK_SYSCALL
3482
3483/*
3484 * For backwards compatibility.  Functionality superseded by sigprocmask.
3485 */
3486SYSCALL_DEFINE0(sgetmask)
3487{
3488	/* SMP safe */
3489	return current->blocked.sig[0];
3490}
3491
3492SYSCALL_DEFINE1(ssetmask, int, newmask)
3493{
3494	int old = current->blocked.sig[0];
3495	sigset_t newset;
3496
3497	siginitset(&newset, newmask);
3498	set_current_blocked(&newset);
3499
3500	return old;
3501}
3502#endif /* CONFIG_SGETMASK_SYSCALL */
3503
3504#ifdef __ARCH_WANT_SYS_SIGNAL
3505/*
3506 * For backwards compatibility.  Functionality superseded by sigaction.
3507 */
3508SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3509{
3510	struct k_sigaction new_sa, old_sa;
3511	int ret;
3512
3513	new_sa.sa.sa_handler = handler;
3514	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3515	sigemptyset(&new_sa.sa.sa_mask);
3516
3517	ret = do_sigaction(sig, &new_sa, &old_sa);
3518
3519	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3520}
3521#endif /* __ARCH_WANT_SYS_SIGNAL */
3522
3523#ifdef __ARCH_WANT_SYS_PAUSE
3524
3525SYSCALL_DEFINE0(pause)
3526{
3527	while (!signal_pending(current)) {
3528		__set_current_state(TASK_INTERRUPTIBLE);
3529		schedule();
3530	}
3531	return -ERESTARTNOHAND;
3532}
3533
3534#endif
3535
3536static int sigsuspend(sigset_t *set)
3537{
3538	current->saved_sigmask = current->blocked;
3539	set_current_blocked(set);
3540
3541	while (!signal_pending(current)) {
3542		__set_current_state(TASK_INTERRUPTIBLE);
3543		schedule();
3544	}
3545	set_restore_sigmask();
3546	return -ERESTARTNOHAND;
3547}
3548
 
3549/**
3550 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3551 *	@unewset value until a signal is received
3552 *  @unewset: new signal mask value
3553 *  @sigsetsize: size of sigset_t type
3554 */
3555SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3556{
3557	sigset_t newset;
3558
3559	/* XXX: Don't preclude handling different sized sigset_t's.  */
3560	if (sigsetsize != sizeof(sigset_t))
3561		return -EINVAL;
3562
3563	if (copy_from_user(&newset, unewset, sizeof(newset)))
3564		return -EFAULT;
3565	return sigsuspend(&newset);
3566}
3567 
3568#ifdef CONFIG_COMPAT
3569COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3570{
3571#ifdef __BIG_ENDIAN
3572	sigset_t newset;
3573	compat_sigset_t newset32;
3574
3575	/* XXX: Don't preclude handling different sized sigset_t's.  */
3576	if (sigsetsize != sizeof(sigset_t))
3577		return -EINVAL;
3578
3579	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3580		return -EFAULT;
3581	sigset_from_compat(&newset, &newset32);
3582	return sigsuspend(&newset);
3583#else
3584	/* on little-endian bitmaps don't care about granularity */
3585	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3586#endif
3587}
3588#endif
3589
3590#ifdef CONFIG_OLD_SIGSUSPEND
3591SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3592{
3593	sigset_t blocked;
3594	siginitset(&blocked, mask);
3595	return sigsuspend(&blocked);
3596}
3597#endif
3598#ifdef CONFIG_OLD_SIGSUSPEND3
3599SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3600{
3601	sigset_t blocked;
3602	siginitset(&blocked, mask);
3603	return sigsuspend(&blocked);
3604}
3605#endif
3606
3607__weak const char *arch_vma_name(struct vm_area_struct *vma)
3608{
3609	return NULL;
3610}
3611
3612void __init signals_init(void)
3613{
3614	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3615	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3616		!= offsetof(struct siginfo, _sifields._pad));
3617
3618	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3619}
3620
3621#ifdef CONFIG_KGDB_KDB
3622#include <linux/kdb.h>
3623/*
3624 * kdb_send_sig_info - Allows kdb to send signals without exposing
3625 * signal internals.  This function checks if the required locks are
3626 * available before calling the main signal code, to avoid kdb
3627 * deadlocks.
3628 */
3629void
3630kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3631{
3632	static struct task_struct *kdb_prev_t;
3633	int sig, new_t;
3634	if (!spin_trylock(&t->sighand->siglock)) {
3635		kdb_printf("Can't do kill command now.\n"
3636			   "The sigmask lock is held somewhere else in "
3637			   "kernel, try again later\n");
3638		return;
3639	}
3640	spin_unlock(&t->sighand->siglock);
3641	new_t = kdb_prev_t != t;
3642	kdb_prev_t = t;
3643	if (t->state != TASK_RUNNING && new_t) {
3644		kdb_printf("Process is not RUNNING, sending a signal from "
3645			   "kdb risks deadlock\n"
3646			   "on the run queue locks. "
3647			   "The signal has _not_ been sent.\n"
3648			   "Reissue the kill command if you want to risk "
3649			   "the deadlock.\n");
3650		return;
3651	}
3652	sig = info->si_signo;
3653	if (send_sig_info(sig, info, t))
3654		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3655			   sig, t->pid);
3656	else
3657		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3658}
3659#endif	/* CONFIG_KGDB_KDB */
v3.5.6
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
 
  20#include <linux/security.h>
  21#include <linux/syscalls.h>
  22#include <linux/ptrace.h>
  23#include <linux/signal.h>
  24#include <linux/signalfd.h>
  25#include <linux/ratelimit.h>
  26#include <linux/tracehook.h>
  27#include <linux/capability.h>
  28#include <linux/freezer.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/nsproxy.h>
  31#include <linux/user_namespace.h>
  32#include <linux/uprobes.h>
 
 
 
 
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/signal.h>
  35
  36#include <asm/param.h>
  37#include <asm/uaccess.h>
  38#include <asm/unistd.h>
  39#include <asm/siginfo.h>
  40#include <asm/cacheflush.h>
  41#include "audit.h"	/* audit_signal_info() */
  42
  43/*
  44 * SLAB caches for signal bits.
  45 */
  46
  47static struct kmem_cache *sigqueue_cachep;
  48
  49int print_fatal_signals __read_mostly;
  50
  51static void __user *sig_handler(struct task_struct *t, int sig)
  52{
  53	return t->sighand->action[sig - 1].sa.sa_handler;
  54}
  55
  56static int sig_handler_ignored(void __user *handler, int sig)
  57{
  58	/* Is it explicitly or implicitly ignored? */
  59	return handler == SIG_IGN ||
  60		(handler == SIG_DFL && sig_kernel_ignore(sig));
  61}
  62
  63static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  64{
  65	void __user *handler;
  66
  67	handler = sig_handler(t, sig);
  68
  69	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  70			handler == SIG_DFL && !force)
  71		return 1;
  72
  73	return sig_handler_ignored(handler, sig);
  74}
  75
  76static int sig_ignored(struct task_struct *t, int sig, bool force)
  77{
  78	/*
  79	 * Blocked signals are never ignored, since the
  80	 * signal handler may change by the time it is
  81	 * unblocked.
  82	 */
  83	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  84		return 0;
  85
  86	if (!sig_task_ignored(t, sig, force))
  87		return 0;
  88
  89	/*
  90	 * Tracers may want to know about even ignored signals.
  91	 */
  92	return !t->ptrace;
  93}
  94
  95/*
  96 * Re-calculate pending state from the set of locally pending
  97 * signals, globally pending signals, and blocked signals.
  98 */
  99static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 100{
 101	unsigned long ready;
 102	long i;
 103
 104	switch (_NSIG_WORDS) {
 105	default:
 106		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 107			ready |= signal->sig[i] &~ blocked->sig[i];
 108		break;
 109
 110	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 111		ready |= signal->sig[2] &~ blocked->sig[2];
 112		ready |= signal->sig[1] &~ blocked->sig[1];
 113		ready |= signal->sig[0] &~ blocked->sig[0];
 114		break;
 115
 116	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 117		ready |= signal->sig[0] &~ blocked->sig[0];
 118		break;
 119
 120	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 121	}
 122	return ready !=	0;
 123}
 124
 125#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 126
 127static int recalc_sigpending_tsk(struct task_struct *t)
 128{
 129	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 130	    PENDING(&t->pending, &t->blocked) ||
 131	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 132		set_tsk_thread_flag(t, TIF_SIGPENDING);
 133		return 1;
 134	}
 135	/*
 136	 * We must never clear the flag in another thread, or in current
 137	 * when it's possible the current syscall is returning -ERESTART*.
 138	 * So we don't clear it here, and only callers who know they should do.
 139	 */
 140	return 0;
 141}
 142
 143/*
 144 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 145 * This is superfluous when called on current, the wakeup is a harmless no-op.
 146 */
 147void recalc_sigpending_and_wake(struct task_struct *t)
 148{
 149	if (recalc_sigpending_tsk(t))
 150		signal_wake_up(t, 0);
 151}
 152
 153void recalc_sigpending(void)
 154{
 155	if (!recalc_sigpending_tsk(current) && !freezing(current))
 156		clear_thread_flag(TIF_SIGPENDING);
 157
 158}
 159
 160/* Given the mask, find the first available signal that should be serviced. */
 161
 162#define SYNCHRONOUS_MASK \
 163	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 164	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 165
 166int next_signal(struct sigpending *pending, sigset_t *mask)
 167{
 168	unsigned long i, *s, *m, x;
 169	int sig = 0;
 170
 171	s = pending->signal.sig;
 172	m = mask->sig;
 173
 174	/*
 175	 * Handle the first word specially: it contains the
 176	 * synchronous signals that need to be dequeued first.
 177	 */
 178	x = *s &~ *m;
 179	if (x) {
 180		if (x & SYNCHRONOUS_MASK)
 181			x &= SYNCHRONOUS_MASK;
 182		sig = ffz(~x) + 1;
 183		return sig;
 184	}
 185
 186	switch (_NSIG_WORDS) {
 187	default:
 188		for (i = 1; i < _NSIG_WORDS; ++i) {
 189			x = *++s &~ *++m;
 190			if (!x)
 191				continue;
 192			sig = ffz(~x) + i*_NSIG_BPW + 1;
 193			break;
 194		}
 195		break;
 196
 197	case 2:
 198		x = s[1] &~ m[1];
 199		if (!x)
 200			break;
 201		sig = ffz(~x) + _NSIG_BPW + 1;
 202		break;
 203
 204	case 1:
 205		/* Nothing to do */
 206		break;
 207	}
 208
 209	return sig;
 210}
 211
 212static inline void print_dropped_signal(int sig)
 213{
 214	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 215
 216	if (!print_fatal_signals)
 217		return;
 218
 219	if (!__ratelimit(&ratelimit_state))
 220		return;
 221
 222	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 223				current->comm, current->pid, sig);
 224}
 225
 226/**
 227 * task_set_jobctl_pending - set jobctl pending bits
 228 * @task: target task
 229 * @mask: pending bits to set
 230 *
 231 * Clear @mask from @task->jobctl.  @mask must be subset of
 232 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 233 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 234 * cleared.  If @task is already being killed or exiting, this function
 235 * becomes noop.
 236 *
 237 * CONTEXT:
 238 * Must be called with @task->sighand->siglock held.
 239 *
 240 * RETURNS:
 241 * %true if @mask is set, %false if made noop because @task was dying.
 242 */
 243bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 244{
 245	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 246			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 247	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 248
 249	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 250		return false;
 251
 252	if (mask & JOBCTL_STOP_SIGMASK)
 253		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 254
 255	task->jobctl |= mask;
 256	return true;
 257}
 258
 259/**
 260 * task_clear_jobctl_trapping - clear jobctl trapping bit
 261 * @task: target task
 262 *
 263 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 264 * Clear it and wake up the ptracer.  Note that we don't need any further
 265 * locking.  @task->siglock guarantees that @task->parent points to the
 266 * ptracer.
 267 *
 268 * CONTEXT:
 269 * Must be called with @task->sighand->siglock held.
 270 */
 271void task_clear_jobctl_trapping(struct task_struct *task)
 272{
 273	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 274		task->jobctl &= ~JOBCTL_TRAPPING;
 
 275		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 276	}
 277}
 278
 279/**
 280 * task_clear_jobctl_pending - clear jobctl pending bits
 281 * @task: target task
 282 * @mask: pending bits to clear
 283 *
 284 * Clear @mask from @task->jobctl.  @mask must be subset of
 285 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 286 * STOP bits are cleared together.
 287 *
 288 * If clearing of @mask leaves no stop or trap pending, this function calls
 289 * task_clear_jobctl_trapping().
 290 *
 291 * CONTEXT:
 292 * Must be called with @task->sighand->siglock held.
 293 */
 294void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 295{
 296	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 297
 298	if (mask & JOBCTL_STOP_PENDING)
 299		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 300
 301	task->jobctl &= ~mask;
 302
 303	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 304		task_clear_jobctl_trapping(task);
 305}
 306
 307/**
 308 * task_participate_group_stop - participate in a group stop
 309 * @task: task participating in a group stop
 310 *
 311 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 312 * Group stop states are cleared and the group stop count is consumed if
 313 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 314 * stop, the appropriate %SIGNAL_* flags are set.
 315 *
 316 * CONTEXT:
 317 * Must be called with @task->sighand->siglock held.
 318 *
 319 * RETURNS:
 320 * %true if group stop completion should be notified to the parent, %false
 321 * otherwise.
 322 */
 323static bool task_participate_group_stop(struct task_struct *task)
 324{
 325	struct signal_struct *sig = task->signal;
 326	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 327
 328	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 329
 330	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 331
 332	if (!consume)
 333		return false;
 334
 335	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 336		sig->group_stop_count--;
 337
 338	/*
 339	 * Tell the caller to notify completion iff we are entering into a
 340	 * fresh group stop.  Read comment in do_signal_stop() for details.
 341	 */
 342	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 343		sig->flags = SIGNAL_STOP_STOPPED;
 344		return true;
 345	}
 346	return false;
 347}
 348
 349/*
 350 * allocate a new signal queue record
 351 * - this may be called without locks if and only if t == current, otherwise an
 352 *   appropriate lock must be held to stop the target task from exiting
 353 */
 354static struct sigqueue *
 355__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 356{
 357	struct sigqueue *q = NULL;
 358	struct user_struct *user;
 359
 360	/*
 361	 * Protect access to @t credentials. This can go away when all
 362	 * callers hold rcu read lock.
 363	 */
 364	rcu_read_lock();
 365	user = get_uid(__task_cred(t)->user);
 366	atomic_inc(&user->sigpending);
 367	rcu_read_unlock();
 368
 369	if (override_rlimit ||
 370	    atomic_read(&user->sigpending) <=
 371			task_rlimit(t, RLIMIT_SIGPENDING)) {
 372		q = kmem_cache_alloc(sigqueue_cachep, flags);
 373	} else {
 374		print_dropped_signal(sig);
 375	}
 376
 377	if (unlikely(q == NULL)) {
 378		atomic_dec(&user->sigpending);
 379		free_uid(user);
 380	} else {
 381		INIT_LIST_HEAD(&q->list);
 382		q->flags = 0;
 383		q->user = user;
 384	}
 385
 386	return q;
 387}
 388
 389static void __sigqueue_free(struct sigqueue *q)
 390{
 391	if (q->flags & SIGQUEUE_PREALLOC)
 392		return;
 393	atomic_dec(&q->user->sigpending);
 394	free_uid(q->user);
 395	kmem_cache_free(sigqueue_cachep, q);
 396}
 397
 398void flush_sigqueue(struct sigpending *queue)
 399{
 400	struct sigqueue *q;
 401
 402	sigemptyset(&queue->signal);
 403	while (!list_empty(&queue->list)) {
 404		q = list_entry(queue->list.next, struct sigqueue , list);
 405		list_del_init(&q->list);
 406		__sigqueue_free(q);
 407	}
 408}
 409
 410/*
 411 * Flush all pending signals for a task.
 412 */
 413void __flush_signals(struct task_struct *t)
 414{
 415	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 416	flush_sigqueue(&t->pending);
 417	flush_sigqueue(&t->signal->shared_pending);
 418}
 419
 420void flush_signals(struct task_struct *t)
 421{
 422	unsigned long flags;
 423
 424	spin_lock_irqsave(&t->sighand->siglock, flags);
 425	__flush_signals(t);
 
 
 426	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 427}
 428
 
 429static void __flush_itimer_signals(struct sigpending *pending)
 430{
 431	sigset_t signal, retain;
 432	struct sigqueue *q, *n;
 433
 434	signal = pending->signal;
 435	sigemptyset(&retain);
 436
 437	list_for_each_entry_safe(q, n, &pending->list, list) {
 438		int sig = q->info.si_signo;
 439
 440		if (likely(q->info.si_code != SI_TIMER)) {
 441			sigaddset(&retain, sig);
 442		} else {
 443			sigdelset(&signal, sig);
 444			list_del_init(&q->list);
 445			__sigqueue_free(q);
 446		}
 447	}
 448
 449	sigorsets(&pending->signal, &signal, &retain);
 450}
 451
 452void flush_itimer_signals(void)
 453{
 454	struct task_struct *tsk = current;
 455	unsigned long flags;
 456
 457	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 458	__flush_itimer_signals(&tsk->pending);
 459	__flush_itimer_signals(&tsk->signal->shared_pending);
 460	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 461}
 
 462
 463void ignore_signals(struct task_struct *t)
 464{
 465	int i;
 466
 467	for (i = 0; i < _NSIG; ++i)
 468		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 469
 470	flush_signals(t);
 471}
 472
 473/*
 474 * Flush all handlers for a task.
 475 */
 476
 477void
 478flush_signal_handlers(struct task_struct *t, int force_default)
 479{
 480	int i;
 481	struct k_sigaction *ka = &t->sighand->action[0];
 482	for (i = _NSIG ; i != 0 ; i--) {
 483		if (force_default || ka->sa.sa_handler != SIG_IGN)
 484			ka->sa.sa_handler = SIG_DFL;
 485		ka->sa.sa_flags = 0;
 
 
 
 486		sigemptyset(&ka->sa.sa_mask);
 487		ka++;
 488	}
 489}
 490
 491int unhandled_signal(struct task_struct *tsk, int sig)
 492{
 493	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 494	if (is_global_init(tsk))
 495		return 1;
 496	if (handler != SIG_IGN && handler != SIG_DFL)
 497		return 0;
 498	/* if ptraced, let the tracer determine */
 499	return !tsk->ptrace;
 500}
 501
 502/*
 503 * Notify the system that a driver wants to block all signals for this
 504 * process, and wants to be notified if any signals at all were to be
 505 * sent/acted upon.  If the notifier routine returns non-zero, then the
 506 * signal will be acted upon after all.  If the notifier routine returns 0,
 507 * then then signal will be blocked.  Only one block per process is
 508 * allowed.  priv is a pointer to private data that the notifier routine
 509 * can use to determine if the signal should be blocked or not.
 510 */
 511void
 512block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 513{
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&current->sighand->siglock, flags);
 517	current->notifier_mask = mask;
 518	current->notifier_data = priv;
 519	current->notifier = notifier;
 520	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 521}
 522
 523/* Notify the system that blocking has ended. */
 524
 525void
 526unblock_all_signals(void)
 527{
 528	unsigned long flags;
 529
 530	spin_lock_irqsave(&current->sighand->siglock, flags);
 531	current->notifier = NULL;
 532	current->notifier_data = NULL;
 533	recalc_sigpending();
 534	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 535}
 536
 537static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 538{
 539	struct sigqueue *q, *first = NULL;
 540
 541	/*
 542	 * Collect the siginfo appropriate to this signal.  Check if
 543	 * there is another siginfo for the same signal.
 544	*/
 545	list_for_each_entry(q, &list->list, list) {
 546		if (q->info.si_signo == sig) {
 547			if (first)
 548				goto still_pending;
 549			first = q;
 550		}
 551	}
 552
 553	sigdelset(&list->signal, sig);
 554
 555	if (first) {
 556still_pending:
 557		list_del_init(&first->list);
 558		copy_siginfo(info, &first->info);
 559		__sigqueue_free(first);
 560	} else {
 561		/*
 562		 * Ok, it wasn't in the queue.  This must be
 563		 * a fast-pathed signal or we must have been
 564		 * out of queue space.  So zero out the info.
 565		 */
 566		info->si_signo = sig;
 567		info->si_errno = 0;
 568		info->si_code = SI_USER;
 569		info->si_pid = 0;
 570		info->si_uid = 0;
 571	}
 572}
 573
 574static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 575			siginfo_t *info)
 576{
 577	int sig = next_signal(pending, mask);
 578
 579	if (sig) {
 580		if (current->notifier) {
 581			if (sigismember(current->notifier_mask, sig)) {
 582				if (!(current->notifier)(current->notifier_data)) {
 583					clear_thread_flag(TIF_SIGPENDING);
 584					return 0;
 585				}
 586			}
 587		}
 588
 589		collect_signal(sig, pending, info);
 590	}
 591
 592	return sig;
 593}
 594
 595/*
 596 * Dequeue a signal and return the element to the caller, which is
 597 * expected to free it.
 598 *
 599 * All callers have to hold the siglock.
 600 */
 601int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 602{
 603	int signr;
 604
 605	/* We only dequeue private signals from ourselves, we don't let
 606	 * signalfd steal them
 607	 */
 608	signr = __dequeue_signal(&tsk->pending, mask, info);
 609	if (!signr) {
 610		signr = __dequeue_signal(&tsk->signal->shared_pending,
 611					 mask, info);
 
 612		/*
 613		 * itimer signal ?
 614		 *
 615		 * itimers are process shared and we restart periodic
 616		 * itimers in the signal delivery path to prevent DoS
 617		 * attacks in the high resolution timer case. This is
 618		 * compliant with the old way of self-restarting
 619		 * itimers, as the SIGALRM is a legacy signal and only
 620		 * queued once. Changing the restart behaviour to
 621		 * restart the timer in the signal dequeue path is
 622		 * reducing the timer noise on heavy loaded !highres
 623		 * systems too.
 624		 */
 625		if (unlikely(signr == SIGALRM)) {
 626			struct hrtimer *tmr = &tsk->signal->real_timer;
 627
 628			if (!hrtimer_is_queued(tmr) &&
 629			    tsk->signal->it_real_incr.tv64 != 0) {
 630				hrtimer_forward(tmr, tmr->base->get_time(),
 631						tsk->signal->it_real_incr);
 632				hrtimer_restart(tmr);
 633			}
 634		}
 
 635	}
 636
 637	recalc_sigpending();
 638	if (!signr)
 639		return 0;
 640
 641	if (unlikely(sig_kernel_stop(signr))) {
 642		/*
 643		 * Set a marker that we have dequeued a stop signal.  Our
 644		 * caller might release the siglock and then the pending
 645		 * stop signal it is about to process is no longer in the
 646		 * pending bitmasks, but must still be cleared by a SIGCONT
 647		 * (and overruled by a SIGKILL).  So those cases clear this
 648		 * shared flag after we've set it.  Note that this flag may
 649		 * remain set after the signal we return is ignored or
 650		 * handled.  That doesn't matter because its only purpose
 651		 * is to alert stop-signal processing code when another
 652		 * processor has come along and cleared the flag.
 653		 */
 654		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 655	}
 
 656	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 657		/*
 658		 * Release the siglock to ensure proper locking order
 659		 * of timer locks outside of siglocks.  Note, we leave
 660		 * irqs disabled here, since the posix-timers code is
 661		 * about to disable them again anyway.
 662		 */
 663		spin_unlock(&tsk->sighand->siglock);
 664		do_schedule_next_timer(info);
 665		spin_lock(&tsk->sighand->siglock);
 666	}
 
 667	return signr;
 668}
 669
 670/*
 671 * Tell a process that it has a new active signal..
 672 *
 673 * NOTE! we rely on the previous spin_lock to
 674 * lock interrupts for us! We can only be called with
 675 * "siglock" held, and the local interrupt must
 676 * have been disabled when that got acquired!
 677 *
 678 * No need to set need_resched since signal event passing
 679 * goes through ->blocked
 680 */
 681void signal_wake_up(struct task_struct *t, int resume)
 682{
 683	unsigned int mask;
 684
 685	set_tsk_thread_flag(t, TIF_SIGPENDING);
 686
 687	/*
 688	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
 689	 * case. We don't check t->state here because there is a race with it
 690	 * executing another processor and just now entering stopped state.
 691	 * By using wake_up_state, we ensure the process will wake up and
 692	 * handle its death signal.
 693	 */
 694	mask = TASK_INTERRUPTIBLE;
 695	if (resume)
 696		mask |= TASK_WAKEKILL;
 697	if (!wake_up_state(t, mask))
 698		kick_process(t);
 699}
 700
 701/*
 702 * Remove signals in mask from the pending set and queue.
 703 * Returns 1 if any signals were found.
 704 *
 705 * All callers must be holding the siglock.
 706 *
 707 * This version takes a sigset mask and looks at all signals,
 708 * not just those in the first mask word.
 709 */
 710static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 711{
 712	struct sigqueue *q, *n;
 713	sigset_t m;
 714
 715	sigandsets(&m, mask, &s->signal);
 716	if (sigisemptyset(&m))
 717		return 0;
 718
 719	sigandnsets(&s->signal, &s->signal, mask);
 720	list_for_each_entry_safe(q, n, &s->list, list) {
 721		if (sigismember(mask, q->info.si_signo)) {
 722			list_del_init(&q->list);
 723			__sigqueue_free(q);
 724		}
 725	}
 726	return 1;
 727}
 728/*
 729 * Remove signals in mask from the pending set and queue.
 730 * Returns 1 if any signals were found.
 731 *
 732 * All callers must be holding the siglock.
 733 */
 734static int rm_from_queue(unsigned long mask, struct sigpending *s)
 735{
 736	struct sigqueue *q, *n;
 737
 738	if (!sigtestsetmask(&s->signal, mask))
 739		return 0;
 740
 741	sigdelsetmask(&s->signal, mask);
 742	list_for_each_entry_safe(q, n, &s->list, list) {
 743		if (q->info.si_signo < SIGRTMIN &&
 744		    (mask & sigmask(q->info.si_signo))) {
 745			list_del_init(&q->list);
 746			__sigqueue_free(q);
 747		}
 748	}
 749	return 1;
 750}
 751
 752static inline int is_si_special(const struct siginfo *info)
 753{
 754	return info <= SEND_SIG_FORCED;
 755}
 756
 757static inline bool si_fromuser(const struct siginfo *info)
 758{
 759	return info == SEND_SIG_NOINFO ||
 760		(!is_si_special(info) && SI_FROMUSER(info));
 761}
 762
 763/*
 764 * called with RCU read lock from check_kill_permission()
 765 */
 766static int kill_ok_by_cred(struct task_struct *t)
 767{
 768	const struct cred *cred = current_cred();
 769	const struct cred *tcred = __task_cred(t);
 770
 771	if (uid_eq(cred->euid, tcred->suid) ||
 772	    uid_eq(cred->euid, tcred->uid)  ||
 773	    uid_eq(cred->uid,  tcred->suid) ||
 774	    uid_eq(cred->uid,  tcred->uid))
 775		return 1;
 776
 777	if (ns_capable(tcred->user_ns, CAP_KILL))
 778		return 1;
 779
 780	return 0;
 781}
 782
 783/*
 784 * Bad permissions for sending the signal
 785 * - the caller must hold the RCU read lock
 786 */
 787static int check_kill_permission(int sig, struct siginfo *info,
 788				 struct task_struct *t)
 789{
 790	struct pid *sid;
 791	int error;
 792
 793	if (!valid_signal(sig))
 794		return -EINVAL;
 795
 796	if (!si_fromuser(info))
 797		return 0;
 798
 799	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 800	if (error)
 801		return error;
 802
 803	if (!same_thread_group(current, t) &&
 804	    !kill_ok_by_cred(t)) {
 805		switch (sig) {
 806		case SIGCONT:
 807			sid = task_session(t);
 808			/*
 809			 * We don't return the error if sid == NULL. The
 810			 * task was unhashed, the caller must notice this.
 811			 */
 812			if (!sid || sid == task_session(current))
 813				break;
 814		default:
 815			return -EPERM;
 816		}
 817	}
 818
 819	return security_task_kill(t, info, sig, 0);
 820}
 821
 822/**
 823 * ptrace_trap_notify - schedule trap to notify ptracer
 824 * @t: tracee wanting to notify tracer
 825 *
 826 * This function schedules sticky ptrace trap which is cleared on the next
 827 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 828 * ptracer.
 829 *
 830 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 831 * ptracer is listening for events, tracee is woken up so that it can
 832 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 833 * eventually taken without returning to userland after the existing traps
 834 * are finished by PTRACE_CONT.
 835 *
 836 * CONTEXT:
 837 * Must be called with @task->sighand->siglock held.
 838 */
 839static void ptrace_trap_notify(struct task_struct *t)
 840{
 841	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 842	assert_spin_locked(&t->sighand->siglock);
 843
 844	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 845	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 846}
 847
 848/*
 849 * Handle magic process-wide effects of stop/continue signals. Unlike
 850 * the signal actions, these happen immediately at signal-generation
 851 * time regardless of blocking, ignoring, or handling.  This does the
 852 * actual continuing for SIGCONT, but not the actual stopping for stop
 853 * signals. The process stop is done as a signal action for SIG_DFL.
 854 *
 855 * Returns true if the signal should be actually delivered, otherwise
 856 * it should be dropped.
 857 */
 858static int prepare_signal(int sig, struct task_struct *p, bool force)
 859{
 860	struct signal_struct *signal = p->signal;
 861	struct task_struct *t;
 
 862
 863	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
 
 
 864		/*
 865		 * The process is in the middle of dying, nothing to do.
 866		 */
 867	} else if (sig_kernel_stop(sig)) {
 868		/*
 869		 * This is a stop signal.  Remove SIGCONT from all queues.
 870		 */
 871		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 872		t = p;
 873		do {
 874			rm_from_queue(sigmask(SIGCONT), &t->pending);
 875		} while_each_thread(p, t);
 876	} else if (sig == SIGCONT) {
 877		unsigned int why;
 878		/*
 879		 * Remove all stop signals from all queues, wake all threads.
 880		 */
 881		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 882		t = p;
 883		do {
 
 884			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 885			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 886			if (likely(!(t->ptrace & PT_SEIZED)))
 887				wake_up_state(t, __TASK_STOPPED);
 888			else
 889				ptrace_trap_notify(t);
 890		} while_each_thread(p, t);
 891
 892		/*
 893		 * Notify the parent with CLD_CONTINUED if we were stopped.
 894		 *
 895		 * If we were in the middle of a group stop, we pretend it
 896		 * was already finished, and then continued. Since SIGCHLD
 897		 * doesn't queue we report only CLD_STOPPED, as if the next
 898		 * CLD_CONTINUED was dropped.
 899		 */
 900		why = 0;
 901		if (signal->flags & SIGNAL_STOP_STOPPED)
 902			why |= SIGNAL_CLD_CONTINUED;
 903		else if (signal->group_stop_count)
 904			why |= SIGNAL_CLD_STOPPED;
 905
 906		if (why) {
 907			/*
 908			 * The first thread which returns from do_signal_stop()
 909			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 910			 * notify its parent. See get_signal_to_deliver().
 911			 */
 912			signal->flags = why | SIGNAL_STOP_CONTINUED;
 913			signal->group_stop_count = 0;
 914			signal->group_exit_code = 0;
 915		}
 916	}
 917
 918	return !sig_ignored(p, sig, force);
 919}
 920
 921/*
 922 * Test if P wants to take SIG.  After we've checked all threads with this,
 923 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 924 * blocking SIG were ruled out because they are not running and already
 925 * have pending signals.  Such threads will dequeue from the shared queue
 926 * as soon as they're available, so putting the signal on the shared queue
 927 * will be equivalent to sending it to one such thread.
 928 */
 929static inline int wants_signal(int sig, struct task_struct *p)
 930{
 931	if (sigismember(&p->blocked, sig))
 932		return 0;
 933	if (p->flags & PF_EXITING)
 934		return 0;
 935	if (sig == SIGKILL)
 936		return 1;
 937	if (task_is_stopped_or_traced(p))
 938		return 0;
 939	return task_curr(p) || !signal_pending(p);
 940}
 941
 942static void complete_signal(int sig, struct task_struct *p, int group)
 943{
 944	struct signal_struct *signal = p->signal;
 945	struct task_struct *t;
 946
 947	/*
 948	 * Now find a thread we can wake up to take the signal off the queue.
 949	 *
 950	 * If the main thread wants the signal, it gets first crack.
 951	 * Probably the least surprising to the average bear.
 952	 */
 953	if (wants_signal(sig, p))
 954		t = p;
 955	else if (!group || thread_group_empty(p))
 956		/*
 957		 * There is just one thread and it does not need to be woken.
 958		 * It will dequeue unblocked signals before it runs again.
 959		 */
 960		return;
 961	else {
 962		/*
 963		 * Otherwise try to find a suitable thread.
 964		 */
 965		t = signal->curr_target;
 966		while (!wants_signal(sig, t)) {
 967			t = next_thread(t);
 968			if (t == signal->curr_target)
 969				/*
 970				 * No thread needs to be woken.
 971				 * Any eligible threads will see
 972				 * the signal in the queue soon.
 973				 */
 974				return;
 975		}
 976		signal->curr_target = t;
 977	}
 978
 979	/*
 980	 * Found a killable thread.  If the signal will be fatal,
 981	 * then start taking the whole group down immediately.
 982	 */
 983	if (sig_fatal(p, sig) &&
 984	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 985	    !sigismember(&t->real_blocked, sig) &&
 986	    (sig == SIGKILL || !t->ptrace)) {
 987		/*
 988		 * This signal will be fatal to the whole group.
 989		 */
 990		if (!sig_kernel_coredump(sig)) {
 991			/*
 992			 * Start a group exit and wake everybody up.
 993			 * This way we don't have other threads
 994			 * running and doing things after a slower
 995			 * thread has the fatal signal pending.
 996			 */
 997			signal->flags = SIGNAL_GROUP_EXIT;
 998			signal->group_exit_code = sig;
 999			signal->group_stop_count = 0;
1000			t = p;
1001			do {
1002				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003				sigaddset(&t->pending.signal, SIGKILL);
1004				signal_wake_up(t, 1);
1005			} while_each_thread(p, t);
1006			return;
1007		}
1008	}
1009
1010	/*
1011	 * The signal is already in the shared-pending queue.
1012	 * Tell the chosen thread to wake up and dequeue it.
1013	 */
1014	signal_wake_up(t, sig == SIGKILL);
1015	return;
1016}
1017
1018static inline int legacy_queue(struct sigpending *signals, int sig)
1019{
1020	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021}
1022
1023#ifdef CONFIG_USER_NS
1024static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1025{
1026	if (current_user_ns() == task_cred_xxx(t, user_ns))
1027		return;
1028
1029	if (SI_FROMKERNEL(info))
1030		return;
1031
1032	rcu_read_lock();
1033	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1034					make_kuid(current_user_ns(), info->si_uid));
1035	rcu_read_unlock();
1036}
1037#else
1038static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1039{
1040	return;
1041}
1042#endif
1043
1044static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1045			int group, int from_ancestor_ns)
1046{
1047	struct sigpending *pending;
1048	struct sigqueue *q;
1049	int override_rlimit;
1050	int ret = 0, result;
1051
1052	assert_spin_locked(&t->sighand->siglock);
1053
1054	result = TRACE_SIGNAL_IGNORED;
1055	if (!prepare_signal(sig, t,
1056			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1057		goto ret;
1058
1059	pending = group ? &t->signal->shared_pending : &t->pending;
1060	/*
1061	 * Short-circuit ignored signals and support queuing
1062	 * exactly one non-rt signal, so that we can get more
1063	 * detailed information about the cause of the signal.
1064	 */
1065	result = TRACE_SIGNAL_ALREADY_PENDING;
1066	if (legacy_queue(pending, sig))
1067		goto ret;
1068
1069	result = TRACE_SIGNAL_DELIVERED;
1070	/*
1071	 * fast-pathed signals for kernel-internal things like SIGSTOP
1072	 * or SIGKILL.
1073	 */
1074	if (info == SEND_SIG_FORCED)
1075		goto out_set;
1076
1077	/*
1078	 * Real-time signals must be queued if sent by sigqueue, or
1079	 * some other real-time mechanism.  It is implementation
1080	 * defined whether kill() does so.  We attempt to do so, on
1081	 * the principle of least surprise, but since kill is not
1082	 * allowed to fail with EAGAIN when low on memory we just
1083	 * make sure at least one signal gets delivered and don't
1084	 * pass on the info struct.
1085	 */
1086	if (sig < SIGRTMIN)
1087		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1088	else
1089		override_rlimit = 0;
1090
1091	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1092		override_rlimit);
1093	if (q) {
1094		list_add_tail(&q->list, &pending->list);
1095		switch ((unsigned long) info) {
1096		case (unsigned long) SEND_SIG_NOINFO:
1097			q->info.si_signo = sig;
1098			q->info.si_errno = 0;
1099			q->info.si_code = SI_USER;
1100			q->info.si_pid = task_tgid_nr_ns(current,
1101							task_active_pid_ns(t));
1102			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1103			break;
1104		case (unsigned long) SEND_SIG_PRIV:
1105			q->info.si_signo = sig;
1106			q->info.si_errno = 0;
1107			q->info.si_code = SI_KERNEL;
1108			q->info.si_pid = 0;
1109			q->info.si_uid = 0;
1110			break;
1111		default:
1112			copy_siginfo(&q->info, info);
1113			if (from_ancestor_ns)
1114				q->info.si_pid = 0;
1115			break;
1116		}
1117
1118		userns_fixup_signal_uid(&q->info, t);
1119
1120	} else if (!is_si_special(info)) {
1121		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1122			/*
1123			 * Queue overflow, abort.  We may abort if the
1124			 * signal was rt and sent by user using something
1125			 * other than kill().
1126			 */
1127			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1128			ret = -EAGAIN;
1129			goto ret;
1130		} else {
1131			/*
1132			 * This is a silent loss of information.  We still
1133			 * send the signal, but the *info bits are lost.
1134			 */
1135			result = TRACE_SIGNAL_LOSE_INFO;
1136		}
1137	}
1138
1139out_set:
1140	signalfd_notify(t, sig);
1141	sigaddset(&pending->signal, sig);
1142	complete_signal(sig, t, group);
1143ret:
1144	trace_signal_generate(sig, info, t, group, result);
1145	return ret;
1146}
1147
1148static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149			int group)
1150{
1151	int from_ancestor_ns = 0;
1152
1153#ifdef CONFIG_PID_NS
1154	from_ancestor_ns = si_fromuser(info) &&
1155			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1156#endif
1157
1158	return __send_signal(sig, info, t, group, from_ancestor_ns);
1159}
1160
1161static void print_fatal_signal(struct pt_regs *regs, int signr)
1162{
1163	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1164		current->comm, task_pid_nr(current), signr);
1165
1166#if defined(__i386__) && !defined(__arch_um__)
1167	printk("code at %08lx: ", regs->ip);
1168	{
1169		int i;
1170		for (i = 0; i < 16; i++) {
1171			unsigned char insn;
1172
1173			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174				break;
1175			printk("%02x ", insn);
1176		}
1177	}
 
1178#endif
1179	printk("\n");
1180	preempt_disable();
1181	show_regs(regs);
1182	preempt_enable();
1183}
1184
1185static int __init setup_print_fatal_signals(char *str)
1186{
1187	get_option (&str, &print_fatal_signals);
1188
1189	return 1;
1190}
1191
1192__setup("print-fatal-signals=", setup_print_fatal_signals);
1193
1194int
1195__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196{
1197	return send_signal(sig, info, p, 1);
1198}
1199
1200static int
1201specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1202{
1203	return send_signal(sig, info, t, 0);
1204}
1205
1206int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207			bool group)
1208{
1209	unsigned long flags;
1210	int ret = -ESRCH;
1211
1212	if (lock_task_sighand(p, &flags)) {
1213		ret = send_signal(sig, info, p, group);
1214		unlock_task_sighand(p, &flags);
1215	}
1216
1217	return ret;
1218}
1219
1220/*
1221 * Force a signal that the process can't ignore: if necessary
1222 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1223 *
1224 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225 * since we do not want to have a signal handler that was blocked
1226 * be invoked when user space had explicitly blocked it.
1227 *
1228 * We don't want to have recursive SIGSEGV's etc, for example,
1229 * that is why we also clear SIGNAL_UNKILLABLE.
1230 */
1231int
1232force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1233{
1234	unsigned long int flags;
1235	int ret, blocked, ignored;
1236	struct k_sigaction *action;
1237
1238	spin_lock_irqsave(&t->sighand->siglock, flags);
1239	action = &t->sighand->action[sig-1];
1240	ignored = action->sa.sa_handler == SIG_IGN;
1241	blocked = sigismember(&t->blocked, sig);
1242	if (blocked || ignored) {
1243		action->sa.sa_handler = SIG_DFL;
1244		if (blocked) {
1245			sigdelset(&t->blocked, sig);
1246			recalc_sigpending_and_wake(t);
1247		}
1248	}
1249	if (action->sa.sa_handler == SIG_DFL)
1250		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251	ret = specific_send_sig_info(sig, info, t);
1252	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1253
1254	return ret;
1255}
1256
1257/*
1258 * Nuke all other threads in the group.
1259 */
1260int zap_other_threads(struct task_struct *p)
1261{
1262	struct task_struct *t = p;
1263	int count = 0;
1264
1265	p->signal->group_stop_count = 0;
1266
1267	while_each_thread(p, t) {
1268		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269		count++;
1270
1271		/* Don't bother with already dead threads */
1272		if (t->exit_state)
1273			continue;
1274		sigaddset(&t->pending.signal, SIGKILL);
1275		signal_wake_up(t, 1);
1276	}
1277
1278	return count;
1279}
1280
1281struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282					   unsigned long *flags)
1283{
1284	struct sighand_struct *sighand;
1285
1286	for (;;) {
 
 
 
 
1287		local_irq_save(*flags);
1288		rcu_read_lock();
1289		sighand = rcu_dereference(tsk->sighand);
1290		if (unlikely(sighand == NULL)) {
1291			rcu_read_unlock();
1292			local_irq_restore(*flags);
1293			break;
1294		}
1295
 
 
 
 
 
 
 
 
 
 
1296		spin_lock(&sighand->siglock);
1297		if (likely(sighand == tsk->sighand)) {
1298			rcu_read_unlock();
1299			break;
1300		}
1301		spin_unlock(&sighand->siglock);
1302		rcu_read_unlock();
1303		local_irq_restore(*flags);
1304	}
1305
1306	return sighand;
1307}
1308
1309/*
1310 * send signal info to all the members of a group
1311 */
1312int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1313{
1314	int ret;
1315
1316	rcu_read_lock();
1317	ret = check_kill_permission(sig, info, p);
1318	rcu_read_unlock();
1319
1320	if (!ret && sig)
1321		ret = do_send_sig_info(sig, info, p, true);
1322
1323	return ret;
1324}
1325
1326/*
1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328 * control characters do (^C, ^Z etc)
1329 * - the caller must hold at least a readlock on tasklist_lock
1330 */
1331int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1332{
1333	struct task_struct *p = NULL;
1334	int retval, success;
1335
1336	success = 0;
1337	retval = -ESRCH;
1338	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339		int err = group_send_sig_info(sig, info, p);
1340		success |= !err;
1341		retval = err;
1342	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343	return success ? 0 : retval;
1344}
1345
1346int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1347{
1348	int error = -ESRCH;
1349	struct task_struct *p;
1350
1351	rcu_read_lock();
1352retry:
1353	p = pid_task(pid, PIDTYPE_PID);
1354	if (p) {
1355		error = group_send_sig_info(sig, info, p);
1356		if (unlikely(error == -ESRCH))
1357			/*
1358			 * The task was unhashed in between, try again.
1359			 * If it is dead, pid_task() will return NULL,
1360			 * if we race with de_thread() it will find the
1361			 * new leader.
1362			 */
1363			goto retry;
 
1364	}
1365	rcu_read_unlock();
1366
1367	return error;
1368}
1369
1370int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1371{
1372	int error;
1373	rcu_read_lock();
1374	error = kill_pid_info(sig, info, find_vpid(pid));
1375	rcu_read_unlock();
1376	return error;
1377}
1378
1379static int kill_as_cred_perm(const struct cred *cred,
1380			     struct task_struct *target)
1381{
1382	const struct cred *pcred = __task_cred(target);
1383	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1384	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1385		return 0;
1386	return 1;
1387}
1388
1389/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1390int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1391			 const struct cred *cred, u32 secid)
1392{
1393	int ret = -EINVAL;
1394	struct task_struct *p;
1395	unsigned long flags;
1396
1397	if (!valid_signal(sig))
1398		return ret;
1399
1400	rcu_read_lock();
1401	p = pid_task(pid, PIDTYPE_PID);
1402	if (!p) {
1403		ret = -ESRCH;
1404		goto out_unlock;
1405	}
1406	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1407		ret = -EPERM;
1408		goto out_unlock;
1409	}
1410	ret = security_task_kill(p, info, sig, secid);
1411	if (ret)
1412		goto out_unlock;
1413
1414	if (sig) {
1415		if (lock_task_sighand(p, &flags)) {
1416			ret = __send_signal(sig, info, p, 1, 0);
1417			unlock_task_sighand(p, &flags);
1418		} else
1419			ret = -ESRCH;
1420	}
1421out_unlock:
1422	rcu_read_unlock();
1423	return ret;
1424}
1425EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1426
1427/*
1428 * kill_something_info() interprets pid in interesting ways just like kill(2).
1429 *
1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1431 * is probably wrong.  Should make it like BSD or SYSV.
1432 */
1433
1434static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1435{
1436	int ret;
1437
1438	if (pid > 0) {
1439		rcu_read_lock();
1440		ret = kill_pid_info(sig, info, find_vpid(pid));
1441		rcu_read_unlock();
1442		return ret;
1443	}
1444
1445	read_lock(&tasklist_lock);
1446	if (pid != -1) {
1447		ret = __kill_pgrp_info(sig, info,
1448				pid ? find_vpid(-pid) : task_pgrp(current));
1449	} else {
1450		int retval = 0, count = 0;
1451		struct task_struct * p;
1452
1453		for_each_process(p) {
1454			if (task_pid_vnr(p) > 1 &&
1455					!same_thread_group(p, current)) {
1456				int err = group_send_sig_info(sig, info, p);
1457				++count;
1458				if (err != -EPERM)
1459					retval = err;
1460			}
1461		}
1462		ret = count ? retval : -ESRCH;
1463	}
1464	read_unlock(&tasklist_lock);
1465
1466	return ret;
1467}
1468
1469/*
1470 * These are for backward compatibility with the rest of the kernel source.
1471 */
1472
1473int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1474{
1475	/*
1476	 * Make sure legacy kernel users don't send in bad values
1477	 * (normal paths check this in check_kill_permission).
1478	 */
1479	if (!valid_signal(sig))
1480		return -EINVAL;
1481
1482	return do_send_sig_info(sig, info, p, false);
1483}
1484
1485#define __si_special(priv) \
1486	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1487
1488int
1489send_sig(int sig, struct task_struct *p, int priv)
1490{
1491	return send_sig_info(sig, __si_special(priv), p);
1492}
1493
1494void
1495force_sig(int sig, struct task_struct *p)
1496{
1497	force_sig_info(sig, SEND_SIG_PRIV, p);
1498}
1499
1500/*
1501 * When things go south during signal handling, we
1502 * will force a SIGSEGV. And if the signal that caused
1503 * the problem was already a SIGSEGV, we'll want to
1504 * make sure we don't even try to deliver the signal..
1505 */
1506int
1507force_sigsegv(int sig, struct task_struct *p)
1508{
1509	if (sig == SIGSEGV) {
1510		unsigned long flags;
1511		spin_lock_irqsave(&p->sighand->siglock, flags);
1512		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1513		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1514	}
1515	force_sig(SIGSEGV, p);
1516	return 0;
1517}
1518
1519int kill_pgrp(struct pid *pid, int sig, int priv)
1520{
1521	int ret;
1522
1523	read_lock(&tasklist_lock);
1524	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1525	read_unlock(&tasklist_lock);
1526
1527	return ret;
1528}
1529EXPORT_SYMBOL(kill_pgrp);
1530
1531int kill_pid(struct pid *pid, int sig, int priv)
1532{
1533	return kill_pid_info(sig, __si_special(priv), pid);
1534}
1535EXPORT_SYMBOL(kill_pid);
1536
1537/*
1538 * These functions support sending signals using preallocated sigqueue
1539 * structures.  This is needed "because realtime applications cannot
1540 * afford to lose notifications of asynchronous events, like timer
1541 * expirations or I/O completions".  In the case of POSIX Timers
1542 * we allocate the sigqueue structure from the timer_create.  If this
1543 * allocation fails we are able to report the failure to the application
1544 * with an EAGAIN error.
1545 */
1546struct sigqueue *sigqueue_alloc(void)
1547{
1548	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1549
1550	if (q)
1551		q->flags |= SIGQUEUE_PREALLOC;
1552
1553	return q;
1554}
1555
1556void sigqueue_free(struct sigqueue *q)
1557{
1558	unsigned long flags;
1559	spinlock_t *lock = &current->sighand->siglock;
1560
1561	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1562	/*
1563	 * We must hold ->siglock while testing q->list
1564	 * to serialize with collect_signal() or with
1565	 * __exit_signal()->flush_sigqueue().
1566	 */
1567	spin_lock_irqsave(lock, flags);
1568	q->flags &= ~SIGQUEUE_PREALLOC;
1569	/*
1570	 * If it is queued it will be freed when dequeued,
1571	 * like the "regular" sigqueue.
1572	 */
1573	if (!list_empty(&q->list))
1574		q = NULL;
1575	spin_unlock_irqrestore(lock, flags);
1576
1577	if (q)
1578		__sigqueue_free(q);
1579}
1580
1581int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1582{
1583	int sig = q->info.si_signo;
1584	struct sigpending *pending;
1585	unsigned long flags;
1586	int ret, result;
1587
1588	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1589
1590	ret = -1;
1591	if (!likely(lock_task_sighand(t, &flags)))
1592		goto ret;
1593
1594	ret = 1; /* the signal is ignored */
1595	result = TRACE_SIGNAL_IGNORED;
1596	if (!prepare_signal(sig, t, false))
1597		goto out;
1598
1599	ret = 0;
1600	if (unlikely(!list_empty(&q->list))) {
1601		/*
1602		 * If an SI_TIMER entry is already queue just increment
1603		 * the overrun count.
1604		 */
1605		BUG_ON(q->info.si_code != SI_TIMER);
1606		q->info.si_overrun++;
1607		result = TRACE_SIGNAL_ALREADY_PENDING;
1608		goto out;
1609	}
1610	q->info.si_overrun = 0;
1611
1612	signalfd_notify(t, sig);
1613	pending = group ? &t->signal->shared_pending : &t->pending;
1614	list_add_tail(&q->list, &pending->list);
1615	sigaddset(&pending->signal, sig);
1616	complete_signal(sig, t, group);
1617	result = TRACE_SIGNAL_DELIVERED;
1618out:
1619	trace_signal_generate(sig, &q->info, t, group, result);
1620	unlock_task_sighand(t, &flags);
1621ret:
1622	return ret;
1623}
1624
1625/*
1626 * Let a parent know about the death of a child.
1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1628 *
1629 * Returns true if our parent ignored us and so we've switched to
1630 * self-reaping.
1631 */
1632bool do_notify_parent(struct task_struct *tsk, int sig)
1633{
1634	struct siginfo info;
1635	unsigned long flags;
1636	struct sighand_struct *psig;
1637	bool autoreap = false;
 
1638
1639	BUG_ON(sig == -1);
1640
1641 	/* do_notify_parent_cldstop should have been called instead.  */
1642 	BUG_ON(task_is_stopped_or_traced(tsk));
1643
1644	BUG_ON(!tsk->ptrace &&
1645	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1646
1647	if (sig != SIGCHLD) {
1648		/*
1649		 * This is only possible if parent == real_parent.
1650		 * Check if it has changed security domain.
1651		 */
1652		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1653			sig = SIGCHLD;
1654	}
1655
1656	info.si_signo = sig;
1657	info.si_errno = 0;
1658	/*
1659	 * We are under tasklist_lock here so our parent is tied to
1660	 * us and cannot change.
1661	 *
1662	 * task_active_pid_ns will always return the same pid namespace
1663	 * until a task passes through release_task.
1664	 *
1665	 * write_lock() currently calls preempt_disable() which is the
1666	 * same as rcu_read_lock(), but according to Oleg, this is not
1667	 * correct to rely on this
1668	 */
1669	rcu_read_lock();
1670	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1671	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672				       task_uid(tsk));
1673	rcu_read_unlock();
1674
1675	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1676	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
 
1677
1678	info.si_status = tsk->exit_code & 0x7f;
1679	if (tsk->exit_code & 0x80)
1680		info.si_code = CLD_DUMPED;
1681	else if (tsk->exit_code & 0x7f)
1682		info.si_code = CLD_KILLED;
1683	else {
1684		info.si_code = CLD_EXITED;
1685		info.si_status = tsk->exit_code >> 8;
1686	}
1687
1688	psig = tsk->parent->sighand;
1689	spin_lock_irqsave(&psig->siglock, flags);
1690	if (!tsk->ptrace && sig == SIGCHLD &&
1691	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1692	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1693		/*
1694		 * We are exiting and our parent doesn't care.  POSIX.1
1695		 * defines special semantics for setting SIGCHLD to SIG_IGN
1696		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1697		 * automatically and not left for our parent's wait4 call.
1698		 * Rather than having the parent do it as a magic kind of
1699		 * signal handler, we just set this to tell do_exit that we
1700		 * can be cleaned up without becoming a zombie.  Note that
1701		 * we still call __wake_up_parent in this case, because a
1702		 * blocked sys_wait4 might now return -ECHILD.
1703		 *
1704		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1705		 * is implementation-defined: we do (if you don't want
1706		 * it, just use SIG_IGN instead).
1707		 */
1708		autoreap = true;
1709		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1710			sig = 0;
1711	}
1712	if (valid_signal(sig) && sig)
1713		__group_send_sig_info(sig, &info, tsk->parent);
1714	__wake_up_parent(tsk, tsk->parent);
1715	spin_unlock_irqrestore(&psig->siglock, flags);
1716
1717	return autoreap;
1718}
1719
1720/**
1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1722 * @tsk: task reporting the state change
1723 * @for_ptracer: the notification is for ptracer
1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1725 *
1726 * Notify @tsk's parent that the stopped/continued state has changed.  If
1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1729 *
1730 * CONTEXT:
1731 * Must be called with tasklist_lock at least read locked.
1732 */
1733static void do_notify_parent_cldstop(struct task_struct *tsk,
1734				     bool for_ptracer, int why)
1735{
1736	struct siginfo info;
1737	unsigned long flags;
1738	struct task_struct *parent;
1739	struct sighand_struct *sighand;
 
1740
1741	if (for_ptracer) {
1742		parent = tsk->parent;
1743	} else {
1744		tsk = tsk->group_leader;
1745		parent = tsk->real_parent;
1746	}
1747
1748	info.si_signo = SIGCHLD;
1749	info.si_errno = 0;
1750	/*
1751	 * see comment in do_notify_parent() about the following 4 lines
1752	 */
1753	rcu_read_lock();
1754	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1755	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756	rcu_read_unlock();
1757
1758	info.si_utime = cputime_to_clock_t(tsk->utime);
1759	info.si_stime = cputime_to_clock_t(tsk->stime);
 
1760
1761 	info.si_code = why;
1762 	switch (why) {
1763 	case CLD_CONTINUED:
1764 		info.si_status = SIGCONT;
1765 		break;
1766 	case CLD_STOPPED:
1767 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1768 		break;
1769 	case CLD_TRAPPED:
1770 		info.si_status = tsk->exit_code & 0x7f;
1771 		break;
1772 	default:
1773 		BUG();
1774 	}
1775
1776	sighand = parent->sighand;
1777	spin_lock_irqsave(&sighand->siglock, flags);
1778	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780		__group_send_sig_info(SIGCHLD, &info, parent);
1781	/*
1782	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1783	 */
1784	__wake_up_parent(tsk, parent);
1785	spin_unlock_irqrestore(&sighand->siglock, flags);
1786}
1787
1788static inline int may_ptrace_stop(void)
1789{
1790	if (!likely(current->ptrace))
1791		return 0;
1792	/*
1793	 * Are we in the middle of do_coredump?
1794	 * If so and our tracer is also part of the coredump stopping
1795	 * is a deadlock situation, and pointless because our tracer
1796	 * is dead so don't allow us to stop.
1797	 * If SIGKILL was already sent before the caller unlocked
1798	 * ->siglock we must see ->core_state != NULL. Otherwise it
1799	 * is safe to enter schedule().
 
 
 
 
1800	 */
1801	if (unlikely(current->mm->core_state) &&
1802	    unlikely(current->mm == current->parent->mm))
1803		return 0;
1804
1805	return 1;
1806}
1807
1808/*
1809 * Return non-zero if there is a SIGKILL that should be waking us up.
1810 * Called with the siglock held.
1811 */
1812static int sigkill_pending(struct task_struct *tsk)
1813{
1814	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1815		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1816}
1817
1818/*
1819 * This must be called with current->sighand->siglock held.
1820 *
1821 * This should be the path for all ptrace stops.
1822 * We always set current->last_siginfo while stopped here.
1823 * That makes it a way to test a stopped process for
1824 * being ptrace-stopped vs being job-control-stopped.
1825 *
1826 * If we actually decide not to stop at all because the tracer
1827 * is gone, we keep current->exit_code unless clear_code.
1828 */
1829static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1830	__releases(&current->sighand->siglock)
1831	__acquires(&current->sighand->siglock)
1832{
1833	bool gstop_done = false;
1834
1835	if (arch_ptrace_stop_needed(exit_code, info)) {
1836		/*
1837		 * The arch code has something special to do before a
1838		 * ptrace stop.  This is allowed to block, e.g. for faults
1839		 * on user stack pages.  We can't keep the siglock while
1840		 * calling arch_ptrace_stop, so we must release it now.
1841		 * To preserve proper semantics, we must do this before
1842		 * any signal bookkeeping like checking group_stop_count.
1843		 * Meanwhile, a SIGKILL could come in before we retake the
1844		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1845		 * So after regaining the lock, we must check for SIGKILL.
1846		 */
1847		spin_unlock_irq(&current->sighand->siglock);
1848		arch_ptrace_stop(exit_code, info);
1849		spin_lock_irq(&current->sighand->siglock);
1850		if (sigkill_pending(current))
1851			return;
1852	}
1853
1854	/*
1855	 * We're committing to trapping.  TRACED should be visible before
1856	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1857	 * Also, transition to TRACED and updates to ->jobctl should be
1858	 * atomic with respect to siglock and should be done after the arch
1859	 * hook as siglock is released and regrabbed across it.
1860	 */
1861	set_current_state(TASK_TRACED);
1862
1863	current->last_siginfo = info;
1864	current->exit_code = exit_code;
1865
1866	/*
1867	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1868	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1869	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1870	 * could be clear now.  We act as if SIGCONT is received after
1871	 * TASK_TRACED is entered - ignore it.
1872	 */
1873	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1874		gstop_done = task_participate_group_stop(current);
1875
1876	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1877	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1878	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1879		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1880
1881	/* entering a trap, clear TRAPPING */
1882	task_clear_jobctl_trapping(current);
1883
1884	spin_unlock_irq(&current->sighand->siglock);
1885	read_lock(&tasklist_lock);
1886	if (may_ptrace_stop()) {
1887		/*
1888		 * Notify parents of the stop.
1889		 *
1890		 * While ptraced, there are two parents - the ptracer and
1891		 * the real_parent of the group_leader.  The ptracer should
1892		 * know about every stop while the real parent is only
1893		 * interested in the completion of group stop.  The states
1894		 * for the two don't interact with each other.  Notify
1895		 * separately unless they're gonna be duplicates.
1896		 */
1897		do_notify_parent_cldstop(current, true, why);
1898		if (gstop_done && ptrace_reparented(current))
1899			do_notify_parent_cldstop(current, false, why);
1900
1901		/*
1902		 * Don't want to allow preemption here, because
1903		 * sys_ptrace() needs this task to be inactive.
1904		 *
1905		 * XXX: implement read_unlock_no_resched().
1906		 */
1907		preempt_disable();
1908		read_unlock(&tasklist_lock);
1909		preempt_enable_no_resched();
1910		schedule();
1911	} else {
1912		/*
1913		 * By the time we got the lock, our tracer went away.
1914		 * Don't drop the lock yet, another tracer may come.
1915		 *
1916		 * If @gstop_done, the ptracer went away between group stop
1917		 * completion and here.  During detach, it would have set
1918		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1919		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1920		 * the real parent of the group stop completion is enough.
1921		 */
1922		if (gstop_done)
1923			do_notify_parent_cldstop(current, false, why);
1924
 
1925		__set_current_state(TASK_RUNNING);
1926		if (clear_code)
1927			current->exit_code = 0;
1928		read_unlock(&tasklist_lock);
1929	}
1930
1931	/*
1932	 * While in TASK_TRACED, we were considered "frozen enough".
1933	 * Now that we woke up, it's crucial if we're supposed to be
1934	 * frozen that we freeze now before running anything substantial.
1935	 */
1936	try_to_freeze();
1937
1938	/*
1939	 * We are back.  Now reacquire the siglock before touching
1940	 * last_siginfo, so that we are sure to have synchronized with
1941	 * any signal-sending on another CPU that wants to examine it.
1942	 */
1943	spin_lock_irq(&current->sighand->siglock);
1944	current->last_siginfo = NULL;
1945
1946	/* LISTENING can be set only during STOP traps, clear it */
1947	current->jobctl &= ~JOBCTL_LISTENING;
1948
1949	/*
1950	 * Queued signals ignored us while we were stopped for tracing.
1951	 * So check for any that we should take before resuming user mode.
1952	 * This sets TIF_SIGPENDING, but never clears it.
1953	 */
1954	recalc_sigpending_tsk(current);
1955}
1956
1957static void ptrace_do_notify(int signr, int exit_code, int why)
1958{
1959	siginfo_t info;
1960
1961	memset(&info, 0, sizeof info);
1962	info.si_signo = signr;
1963	info.si_code = exit_code;
1964	info.si_pid = task_pid_vnr(current);
1965	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1966
1967	/* Let the debugger run.  */
1968	ptrace_stop(exit_code, why, 1, &info);
1969}
1970
1971void ptrace_notify(int exit_code)
1972{
1973	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
 
 
1974
1975	spin_lock_irq(&current->sighand->siglock);
1976	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1977	spin_unlock_irq(&current->sighand->siglock);
1978}
1979
1980/**
1981 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1982 * @signr: signr causing group stop if initiating
1983 *
1984 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1985 * and participate in it.  If already set, participate in the existing
1986 * group stop.  If participated in a group stop (and thus slept), %true is
1987 * returned with siglock released.
1988 *
1989 * If ptraced, this function doesn't handle stop itself.  Instead,
1990 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1991 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1992 * places afterwards.
1993 *
1994 * CONTEXT:
1995 * Must be called with @current->sighand->siglock held, which is released
1996 * on %true return.
1997 *
1998 * RETURNS:
1999 * %false if group stop is already cancelled or ptrace trap is scheduled.
2000 * %true if participated in group stop.
2001 */
2002static bool do_signal_stop(int signr)
2003	__releases(&current->sighand->siglock)
2004{
2005	struct signal_struct *sig = current->signal;
2006
2007	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2008		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2009		struct task_struct *t;
2010
2011		/* signr will be recorded in task->jobctl for retries */
2012		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2013
2014		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2015		    unlikely(signal_group_exit(sig)))
2016			return false;
2017		/*
2018		 * There is no group stop already in progress.  We must
2019		 * initiate one now.
2020		 *
2021		 * While ptraced, a task may be resumed while group stop is
2022		 * still in effect and then receive a stop signal and
2023		 * initiate another group stop.  This deviates from the
2024		 * usual behavior as two consecutive stop signals can't
2025		 * cause two group stops when !ptraced.  That is why we
2026		 * also check !task_is_stopped(t) below.
2027		 *
2028		 * The condition can be distinguished by testing whether
2029		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2030		 * group_exit_code in such case.
2031		 *
2032		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2033		 * an intervening stop signal is required to cause two
2034		 * continued events regardless of ptrace.
2035		 */
2036		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2037			sig->group_exit_code = signr;
2038
2039		sig->group_stop_count = 0;
2040
2041		if (task_set_jobctl_pending(current, signr | gstop))
2042			sig->group_stop_count++;
2043
2044		for (t = next_thread(current); t != current;
2045		     t = next_thread(t)) {
2046			/*
2047			 * Setting state to TASK_STOPPED for a group
2048			 * stop is always done with the siglock held,
2049			 * so this check has no races.
2050			 */
2051			if (!task_is_stopped(t) &&
2052			    task_set_jobctl_pending(t, signr | gstop)) {
2053				sig->group_stop_count++;
2054				if (likely(!(t->ptrace & PT_SEIZED)))
2055					signal_wake_up(t, 0);
2056				else
2057					ptrace_trap_notify(t);
2058			}
2059		}
2060	}
2061
2062	if (likely(!current->ptrace)) {
2063		int notify = 0;
2064
2065		/*
2066		 * If there are no other threads in the group, or if there
2067		 * is a group stop in progress and we are the last to stop,
2068		 * report to the parent.
2069		 */
2070		if (task_participate_group_stop(current))
2071			notify = CLD_STOPPED;
2072
2073		__set_current_state(TASK_STOPPED);
2074		spin_unlock_irq(&current->sighand->siglock);
2075
2076		/*
2077		 * Notify the parent of the group stop completion.  Because
2078		 * we're not holding either the siglock or tasklist_lock
2079		 * here, ptracer may attach inbetween; however, this is for
2080		 * group stop and should always be delivered to the real
2081		 * parent of the group leader.  The new ptracer will get
2082		 * its notification when this task transitions into
2083		 * TASK_TRACED.
2084		 */
2085		if (notify) {
2086			read_lock(&tasklist_lock);
2087			do_notify_parent_cldstop(current, false, notify);
2088			read_unlock(&tasklist_lock);
2089		}
2090
2091		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2092		schedule();
2093		return true;
2094	} else {
2095		/*
2096		 * While ptraced, group stop is handled by STOP trap.
2097		 * Schedule it and let the caller deal with it.
2098		 */
2099		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2100		return false;
2101	}
2102}
2103
2104/**
2105 * do_jobctl_trap - take care of ptrace jobctl traps
2106 *
2107 * When PT_SEIZED, it's used for both group stop and explicit
2108 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2109 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2110 * the stop signal; otherwise, %SIGTRAP.
2111 *
2112 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2113 * number as exit_code and no siginfo.
2114 *
2115 * CONTEXT:
2116 * Must be called with @current->sighand->siglock held, which may be
2117 * released and re-acquired before returning with intervening sleep.
2118 */
2119static void do_jobctl_trap(void)
2120{
2121	struct signal_struct *signal = current->signal;
2122	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2123
2124	if (current->ptrace & PT_SEIZED) {
2125		if (!signal->group_stop_count &&
2126		    !(signal->flags & SIGNAL_STOP_STOPPED))
2127			signr = SIGTRAP;
2128		WARN_ON_ONCE(!signr);
2129		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2130				 CLD_STOPPED);
2131	} else {
2132		WARN_ON_ONCE(!signr);
2133		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2134		current->exit_code = 0;
2135	}
2136}
2137
2138static int ptrace_signal(int signr, siginfo_t *info,
2139			 struct pt_regs *regs, void *cookie)
2140{
2141	ptrace_signal_deliver(regs, cookie);
2142	/*
2143	 * We do not check sig_kernel_stop(signr) but set this marker
2144	 * unconditionally because we do not know whether debugger will
2145	 * change signr. This flag has no meaning unless we are going
2146	 * to stop after return from ptrace_stop(). In this case it will
2147	 * be checked in do_signal_stop(), we should only stop if it was
2148	 * not cleared by SIGCONT while we were sleeping. See also the
2149	 * comment in dequeue_signal().
2150	 */
2151	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2152	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2153
2154	/* We're back.  Did the debugger cancel the sig?  */
2155	signr = current->exit_code;
2156	if (signr == 0)
2157		return signr;
2158
2159	current->exit_code = 0;
2160
2161	/*
2162	 * Update the siginfo structure if the signal has
2163	 * changed.  If the debugger wanted something
2164	 * specific in the siginfo structure then it should
2165	 * have updated *info via PTRACE_SETSIGINFO.
2166	 */
2167	if (signr != info->si_signo) {
2168		info->si_signo = signr;
2169		info->si_errno = 0;
2170		info->si_code = SI_USER;
2171		rcu_read_lock();
2172		info->si_pid = task_pid_vnr(current->parent);
2173		info->si_uid = from_kuid_munged(current_user_ns(),
2174						task_uid(current->parent));
2175		rcu_read_unlock();
2176	}
2177
2178	/* If the (new) signal is now blocked, requeue it.  */
2179	if (sigismember(&current->blocked, signr)) {
2180		specific_send_sig_info(signr, info, current);
2181		signr = 0;
2182	}
2183
2184	return signr;
2185}
2186
2187int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2188			  struct pt_regs *regs, void *cookie)
2189{
2190	struct sighand_struct *sighand = current->sighand;
2191	struct signal_struct *signal = current->signal;
2192	int signr;
2193
 
 
 
2194	if (unlikely(uprobe_deny_signal()))
2195		return 0;
2196
2197relock:
2198	/*
2199	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2200	 * While in TASK_STOPPED, we were considered "frozen enough".
2201	 * Now that we woke up, it's crucial if we're supposed to be
2202	 * frozen that we freeze now before running anything substantial.
2203	 */
2204	try_to_freeze();
2205
 
2206	spin_lock_irq(&sighand->siglock);
2207	/*
2208	 * Every stopped thread goes here after wakeup. Check to see if
2209	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2210	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2211	 */
2212	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2213		int why;
2214
2215		if (signal->flags & SIGNAL_CLD_CONTINUED)
2216			why = CLD_CONTINUED;
2217		else
2218			why = CLD_STOPPED;
2219
2220		signal->flags &= ~SIGNAL_CLD_MASK;
2221
2222		spin_unlock_irq(&sighand->siglock);
2223
2224		/*
2225		 * Notify the parent that we're continuing.  This event is
2226		 * always per-process and doesn't make whole lot of sense
2227		 * for ptracers, who shouldn't consume the state via
2228		 * wait(2) either, but, for backward compatibility, notify
2229		 * the ptracer of the group leader too unless it's gonna be
2230		 * a duplicate.
2231		 */
2232		read_lock(&tasklist_lock);
2233		do_notify_parent_cldstop(current, false, why);
2234
2235		if (ptrace_reparented(current->group_leader))
2236			do_notify_parent_cldstop(current->group_leader,
2237						true, why);
2238		read_unlock(&tasklist_lock);
2239
2240		goto relock;
2241	}
2242
2243	for (;;) {
2244		struct k_sigaction *ka;
2245
2246		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2247		    do_signal_stop(0))
2248			goto relock;
2249
2250		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2251			do_jobctl_trap();
2252			spin_unlock_irq(&sighand->siglock);
2253			goto relock;
2254		}
2255
2256		signr = dequeue_signal(current, &current->blocked, info);
2257
2258		if (!signr)
2259			break; /* will return 0 */
2260
2261		if (unlikely(current->ptrace) && signr != SIGKILL) {
2262			signr = ptrace_signal(signr, info,
2263					      regs, cookie);
2264			if (!signr)
2265				continue;
2266		}
2267
2268		ka = &sighand->action[signr-1];
2269
2270		/* Trace actually delivered signals. */
2271		trace_signal_deliver(signr, info, ka);
2272
2273		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2274			continue;
2275		if (ka->sa.sa_handler != SIG_DFL) {
2276			/* Run the handler.  */
2277			*return_ka = *ka;
2278
2279			if (ka->sa.sa_flags & SA_ONESHOT)
2280				ka->sa.sa_handler = SIG_DFL;
2281
2282			break; /* will return non-zero "signr" value */
2283		}
2284
2285		/*
2286		 * Now we are doing the default action for this signal.
2287		 */
2288		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2289			continue;
2290
2291		/*
2292		 * Global init gets no signals it doesn't want.
2293		 * Container-init gets no signals it doesn't want from same
2294		 * container.
2295		 *
2296		 * Note that if global/container-init sees a sig_kernel_only()
2297		 * signal here, the signal must have been generated internally
2298		 * or must have come from an ancestor namespace. In either
2299		 * case, the signal cannot be dropped.
2300		 */
2301		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2302				!sig_kernel_only(signr))
2303			continue;
2304
2305		if (sig_kernel_stop(signr)) {
2306			/*
2307			 * The default action is to stop all threads in
2308			 * the thread group.  The job control signals
2309			 * do nothing in an orphaned pgrp, but SIGSTOP
2310			 * always works.  Note that siglock needs to be
2311			 * dropped during the call to is_orphaned_pgrp()
2312			 * because of lock ordering with tasklist_lock.
2313			 * This allows an intervening SIGCONT to be posted.
2314			 * We need to check for that and bail out if necessary.
2315			 */
2316			if (signr != SIGSTOP) {
2317				spin_unlock_irq(&sighand->siglock);
2318
2319				/* signals can be posted during this window */
2320
2321				if (is_current_pgrp_orphaned())
2322					goto relock;
2323
2324				spin_lock_irq(&sighand->siglock);
2325			}
2326
2327			if (likely(do_signal_stop(info->si_signo))) {
2328				/* It released the siglock.  */
2329				goto relock;
2330			}
2331
2332			/*
2333			 * We didn't actually stop, due to a race
2334			 * with SIGCONT or something like that.
2335			 */
2336			continue;
2337		}
2338
2339		spin_unlock_irq(&sighand->siglock);
2340
2341		/*
2342		 * Anything else is fatal, maybe with a core dump.
2343		 */
2344		current->flags |= PF_SIGNALED;
2345
2346		if (sig_kernel_coredump(signr)) {
2347			if (print_fatal_signals)
2348				print_fatal_signal(regs, info->si_signo);
 
2349			/*
2350			 * If it was able to dump core, this kills all
2351			 * other threads in the group and synchronizes with
2352			 * their demise.  If we lost the race with another
2353			 * thread getting here, it set group_exit_code
2354			 * first and our do_group_exit call below will use
2355			 * that value and ignore the one we pass it.
2356			 */
2357			do_coredump(info->si_signo, info->si_signo, regs);
2358		}
2359
2360		/*
2361		 * Death signals, no core dump.
2362		 */
2363		do_group_exit(info->si_signo);
2364		/* NOTREACHED */
2365	}
2366	spin_unlock_irq(&sighand->siglock);
2367	return signr;
 
 
2368}
2369
2370/**
2371 * signal_delivered - 
2372 * @sig:		number of signal being delivered
2373 * @info:		siginfo_t of signal being delivered
2374 * @ka:			sigaction setting that chose the handler
2375 * @regs:		user register state
2376 * @stepping:		nonzero if debugger single-step or block-step in use
2377 *
2378 * This function should be called when a signal has succesfully been
2379 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2380 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2381 * is set in @ka->sa.sa_flags.  Tracing is notified.
2382 */
2383void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2384			struct pt_regs *regs, int stepping)
2385{
2386	sigset_t blocked;
2387
2388	/* A signal was successfully delivered, and the
2389	   saved sigmask was stored on the signal frame,
2390	   and will be restored by sigreturn.  So we can
2391	   simply clear the restore sigmask flag.  */
2392	clear_restore_sigmask();
2393
2394	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2395	if (!(ka->sa.sa_flags & SA_NODEFER))
2396		sigaddset(&blocked, sig);
2397	set_current_blocked(&blocked);
2398	tracehook_signal_handler(sig, info, ka, regs, stepping);
 
 
 
 
 
 
 
 
2399}
2400
2401/*
2402 * It could be that complete_signal() picked us to notify about the
2403 * group-wide signal. Other threads should be notified now to take
2404 * the shared signals in @which since we will not.
2405 */
2406static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2407{
2408	sigset_t retarget;
2409	struct task_struct *t;
2410
2411	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2412	if (sigisemptyset(&retarget))
2413		return;
2414
2415	t = tsk;
2416	while_each_thread(tsk, t) {
2417		if (t->flags & PF_EXITING)
2418			continue;
2419
2420		if (!has_pending_signals(&retarget, &t->blocked))
2421			continue;
2422		/* Remove the signals this thread can handle. */
2423		sigandsets(&retarget, &retarget, &t->blocked);
2424
2425		if (!signal_pending(t))
2426			signal_wake_up(t, 0);
2427
2428		if (sigisemptyset(&retarget))
2429			break;
2430	}
2431}
2432
2433void exit_signals(struct task_struct *tsk)
2434{
2435	int group_stop = 0;
2436	sigset_t unblocked;
2437
2438	/*
2439	 * @tsk is about to have PF_EXITING set - lock out users which
2440	 * expect stable threadgroup.
2441	 */
2442	threadgroup_change_begin(tsk);
2443
2444	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2445		tsk->flags |= PF_EXITING;
2446		threadgroup_change_end(tsk);
2447		return;
2448	}
2449
2450	spin_lock_irq(&tsk->sighand->siglock);
2451	/*
2452	 * From now this task is not visible for group-wide signals,
2453	 * see wants_signal(), do_signal_stop().
2454	 */
2455	tsk->flags |= PF_EXITING;
2456
2457	threadgroup_change_end(tsk);
2458
2459	if (!signal_pending(tsk))
2460		goto out;
2461
2462	unblocked = tsk->blocked;
2463	signotset(&unblocked);
2464	retarget_shared_pending(tsk, &unblocked);
2465
2466	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2467	    task_participate_group_stop(tsk))
2468		group_stop = CLD_STOPPED;
2469out:
2470	spin_unlock_irq(&tsk->sighand->siglock);
2471
2472	/*
2473	 * If group stop has completed, deliver the notification.  This
2474	 * should always go to the real parent of the group leader.
2475	 */
2476	if (unlikely(group_stop)) {
2477		read_lock(&tasklist_lock);
2478		do_notify_parent_cldstop(tsk, false, group_stop);
2479		read_unlock(&tasklist_lock);
2480	}
2481}
2482
2483EXPORT_SYMBOL(recalc_sigpending);
2484EXPORT_SYMBOL_GPL(dequeue_signal);
2485EXPORT_SYMBOL(flush_signals);
2486EXPORT_SYMBOL(force_sig);
2487EXPORT_SYMBOL(send_sig);
2488EXPORT_SYMBOL(send_sig_info);
2489EXPORT_SYMBOL(sigprocmask);
2490EXPORT_SYMBOL(block_all_signals);
2491EXPORT_SYMBOL(unblock_all_signals);
2492
2493
2494/*
2495 * System call entry points.
2496 */
2497
2498/**
2499 *  sys_restart_syscall - restart a system call
2500 */
2501SYSCALL_DEFINE0(restart_syscall)
2502{
2503	struct restart_block *restart = &current_thread_info()->restart_block;
2504	return restart->fn(restart);
2505}
2506
2507long do_no_restart_syscall(struct restart_block *param)
2508{
2509	return -EINTR;
2510}
2511
2512static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2513{
2514	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2515		sigset_t newblocked;
2516		/* A set of now blocked but previously unblocked signals. */
2517		sigandnsets(&newblocked, newset, &current->blocked);
2518		retarget_shared_pending(tsk, &newblocked);
2519	}
2520	tsk->blocked = *newset;
2521	recalc_sigpending();
2522}
2523
2524/**
2525 * set_current_blocked - change current->blocked mask
2526 * @newset: new mask
2527 *
2528 * It is wrong to change ->blocked directly, this helper should be used
2529 * to ensure the process can't miss a shared signal we are going to block.
2530 */
2531void set_current_blocked(sigset_t *newset)
2532{
2533	struct task_struct *tsk = current;
2534	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2535	spin_lock_irq(&tsk->sighand->siglock);
2536	__set_task_blocked(tsk, newset);
2537	spin_unlock_irq(&tsk->sighand->siglock);
2538}
2539
2540void __set_current_blocked(const sigset_t *newset)
2541{
2542	struct task_struct *tsk = current;
2543
 
 
 
 
 
 
 
2544	spin_lock_irq(&tsk->sighand->siglock);
2545	__set_task_blocked(tsk, newset);
2546	spin_unlock_irq(&tsk->sighand->siglock);
2547}
2548
2549/*
2550 * This is also useful for kernel threads that want to temporarily
2551 * (or permanently) block certain signals.
2552 *
2553 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2554 * interface happily blocks "unblockable" signals like SIGKILL
2555 * and friends.
2556 */
2557int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2558{
2559	struct task_struct *tsk = current;
2560	sigset_t newset;
2561
2562	/* Lockless, only current can change ->blocked, never from irq */
2563	if (oldset)
2564		*oldset = tsk->blocked;
2565
2566	switch (how) {
2567	case SIG_BLOCK:
2568		sigorsets(&newset, &tsk->blocked, set);
2569		break;
2570	case SIG_UNBLOCK:
2571		sigandnsets(&newset, &tsk->blocked, set);
2572		break;
2573	case SIG_SETMASK:
2574		newset = *set;
2575		break;
2576	default:
2577		return -EINVAL;
2578	}
2579
2580	__set_current_blocked(&newset);
2581	return 0;
2582}
2583
2584/**
2585 *  sys_rt_sigprocmask - change the list of currently blocked signals
2586 *  @how: whether to add, remove, or set signals
2587 *  @nset: stores pending signals
2588 *  @oset: previous value of signal mask if non-null
2589 *  @sigsetsize: size of sigset_t type
2590 */
2591SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2592		sigset_t __user *, oset, size_t, sigsetsize)
2593{
2594	sigset_t old_set, new_set;
2595	int error;
2596
2597	/* XXX: Don't preclude handling different sized sigset_t's.  */
2598	if (sigsetsize != sizeof(sigset_t))
2599		return -EINVAL;
2600
2601	old_set = current->blocked;
2602
2603	if (nset) {
2604		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2605			return -EFAULT;
2606		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2607
2608		error = sigprocmask(how, &new_set, NULL);
2609		if (error)
2610			return error;
2611	}
2612
2613	if (oset) {
2614		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2615			return -EFAULT;
2616	}
2617
2618	return 0;
2619}
2620
2621long do_sigpending(void __user *set, unsigned long sigsetsize)
 
 
2622{
2623	long error = -EINVAL;
2624	sigset_t pending;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625
 
 
2626	if (sigsetsize > sizeof(sigset_t))
2627		goto out;
2628
2629	spin_lock_irq(&current->sighand->siglock);
2630	sigorsets(&pending, &current->pending.signal,
2631		  &current->signal->shared_pending.signal);
2632	spin_unlock_irq(&current->sighand->siglock);
2633
2634	/* Outside the lock because only this thread touches it.  */
2635	sigandsets(&pending, &current->blocked, &pending);
2636
2637	error = -EFAULT;
2638	if (!copy_to_user(set, &pending, sigsetsize))
2639		error = 0;
2640
2641out:
2642	return error;
2643}
2644
2645/**
2646 *  sys_rt_sigpending - examine a pending signal that has been raised
2647 *			while blocked
2648 *  @set: stores pending signals
2649 *  @sigsetsize: size of sigset_t type or larger
2650 */
2651SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2652{
2653	return do_sigpending(set, sigsetsize);
 
 
 
 
2654}
2655
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2656#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2657
2658int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2659{
2660	int err;
2661
2662	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2663		return -EFAULT;
2664	if (from->si_code < 0)
2665		return __copy_to_user(to, from, sizeof(siginfo_t))
2666			? -EFAULT : 0;
2667	/*
2668	 * If you change siginfo_t structure, please be sure
2669	 * this code is fixed accordingly.
2670	 * Please remember to update the signalfd_copyinfo() function
2671	 * inside fs/signalfd.c too, in case siginfo_t changes.
2672	 * It should never copy any pad contained in the structure
2673	 * to avoid security leaks, but must copy the generic
2674	 * 3 ints plus the relevant union member.
2675	 */
2676	err = __put_user(from->si_signo, &to->si_signo);
2677	err |= __put_user(from->si_errno, &to->si_errno);
2678	err |= __put_user((short)from->si_code, &to->si_code);
2679	switch (from->si_code & __SI_MASK) {
2680	case __SI_KILL:
2681		err |= __put_user(from->si_pid, &to->si_pid);
2682		err |= __put_user(from->si_uid, &to->si_uid);
2683		break;
2684	case __SI_TIMER:
2685		 err |= __put_user(from->si_tid, &to->si_tid);
2686		 err |= __put_user(from->si_overrun, &to->si_overrun);
2687		 err |= __put_user(from->si_ptr, &to->si_ptr);
2688		break;
2689	case __SI_POLL:
2690		err |= __put_user(from->si_band, &to->si_band);
2691		err |= __put_user(from->si_fd, &to->si_fd);
2692		break;
2693	case __SI_FAULT:
2694		err |= __put_user(from->si_addr, &to->si_addr);
2695#ifdef __ARCH_SI_TRAPNO
2696		err |= __put_user(from->si_trapno, &to->si_trapno);
2697#endif
2698#ifdef BUS_MCEERR_AO
2699		/*
2700		 * Other callers might not initialize the si_lsb field,
2701		 * so check explicitly for the right codes here.
2702		 */
2703		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
 
2704			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2705#endif
 
 
 
 
 
 
 
 
 
 
2706		break;
2707	case __SI_CHLD:
2708		err |= __put_user(from->si_pid, &to->si_pid);
2709		err |= __put_user(from->si_uid, &to->si_uid);
2710		err |= __put_user(from->si_status, &to->si_status);
2711		err |= __put_user(from->si_utime, &to->si_utime);
2712		err |= __put_user(from->si_stime, &to->si_stime);
2713		break;
2714	case __SI_RT: /* This is not generated by the kernel as of now. */
2715	case __SI_MESGQ: /* But this is */
2716		err |= __put_user(from->si_pid, &to->si_pid);
2717		err |= __put_user(from->si_uid, &to->si_uid);
2718		err |= __put_user(from->si_ptr, &to->si_ptr);
2719		break;
2720#ifdef __ARCH_SIGSYS
2721	case __SI_SYS:
2722		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2723		err |= __put_user(from->si_syscall, &to->si_syscall);
2724		err |= __put_user(from->si_arch, &to->si_arch);
2725		break;
2726#endif
2727	default: /* this is just in case for now ... */
2728		err |= __put_user(from->si_pid, &to->si_pid);
2729		err |= __put_user(from->si_uid, &to->si_uid);
2730		break;
2731	}
2732	return err;
2733}
2734
2735#endif
2736
2737/**
2738 *  do_sigtimedwait - wait for queued signals specified in @which
2739 *  @which: queued signals to wait for
2740 *  @info: if non-null, the signal's siginfo is returned here
2741 *  @ts: upper bound on process time suspension
2742 */
2743int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2744			const struct timespec *ts)
2745{
 
2746	struct task_struct *tsk = current;
2747	long timeout = MAX_SCHEDULE_TIMEOUT;
2748	sigset_t mask = *which;
2749	int sig;
2750
2751	if (ts) {
2752		if (!timespec_valid(ts))
2753			return -EINVAL;
2754		timeout = timespec_to_jiffies(ts);
2755		/*
2756		 * We can be close to the next tick, add another one
2757		 * to ensure we will wait at least the time asked for.
2758		 */
2759		if (ts->tv_sec || ts->tv_nsec)
2760			timeout++;
2761	}
2762
2763	/*
2764	 * Invert the set of allowed signals to get those we want to block.
2765	 */
2766	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2767	signotset(&mask);
2768
2769	spin_lock_irq(&tsk->sighand->siglock);
2770	sig = dequeue_signal(tsk, &mask, info);
2771	if (!sig && timeout) {
2772		/*
2773		 * None ready, temporarily unblock those we're interested
2774		 * while we are sleeping in so that we'll be awakened when
2775		 * they arrive. Unblocking is always fine, we can avoid
2776		 * set_current_blocked().
2777		 */
2778		tsk->real_blocked = tsk->blocked;
2779		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2780		recalc_sigpending();
2781		spin_unlock_irq(&tsk->sighand->siglock);
2782
2783		timeout = schedule_timeout_interruptible(timeout);
2784
 
2785		spin_lock_irq(&tsk->sighand->siglock);
2786		__set_task_blocked(tsk, &tsk->real_blocked);
2787		siginitset(&tsk->real_blocked, 0);
2788		sig = dequeue_signal(tsk, &mask, info);
2789	}
2790	spin_unlock_irq(&tsk->sighand->siglock);
2791
2792	if (sig)
2793		return sig;
2794	return timeout ? -EINTR : -EAGAIN;
2795}
2796
2797/**
2798 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2799 *			in @uthese
2800 *  @uthese: queued signals to wait for
2801 *  @uinfo: if non-null, the signal's siginfo is returned here
2802 *  @uts: upper bound on process time suspension
2803 *  @sigsetsize: size of sigset_t type
2804 */
2805SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2806		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2807		size_t, sigsetsize)
2808{
2809	sigset_t these;
2810	struct timespec ts;
2811	siginfo_t info;
2812	int ret;
2813
2814	/* XXX: Don't preclude handling different sized sigset_t's.  */
2815	if (sigsetsize != sizeof(sigset_t))
2816		return -EINVAL;
2817
2818	if (copy_from_user(&these, uthese, sizeof(these)))
2819		return -EFAULT;
2820
2821	if (uts) {
2822		if (copy_from_user(&ts, uts, sizeof(ts)))
2823			return -EFAULT;
2824	}
2825
2826	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2827
2828	if (ret > 0 && uinfo) {
2829		if (copy_siginfo_to_user(uinfo, &info))
2830			ret = -EFAULT;
2831	}
2832
2833	return ret;
2834}
2835
2836/**
2837 *  sys_kill - send a signal to a process
2838 *  @pid: the PID of the process
2839 *  @sig: signal to be sent
2840 */
2841SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2842{
2843	struct siginfo info;
2844
2845	info.si_signo = sig;
2846	info.si_errno = 0;
2847	info.si_code = SI_USER;
2848	info.si_pid = task_tgid_vnr(current);
2849	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2850
2851	return kill_something_info(sig, &info, pid);
2852}
2853
2854static int
2855do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2856{
2857	struct task_struct *p;
2858	int error = -ESRCH;
2859
2860	rcu_read_lock();
2861	p = find_task_by_vpid(pid);
2862	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2863		error = check_kill_permission(sig, info, p);
2864		/*
2865		 * The null signal is a permissions and process existence
2866		 * probe.  No signal is actually delivered.
2867		 */
2868		if (!error && sig) {
2869			error = do_send_sig_info(sig, info, p, false);
2870			/*
2871			 * If lock_task_sighand() failed we pretend the task
2872			 * dies after receiving the signal. The window is tiny,
2873			 * and the signal is private anyway.
2874			 */
2875			if (unlikely(error == -ESRCH))
2876				error = 0;
2877		}
2878	}
2879	rcu_read_unlock();
2880
2881	return error;
2882}
2883
2884static int do_tkill(pid_t tgid, pid_t pid, int sig)
2885{
2886	struct siginfo info;
2887
2888	info.si_signo = sig;
2889	info.si_errno = 0;
2890	info.si_code = SI_TKILL;
2891	info.si_pid = task_tgid_vnr(current);
2892	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2893
2894	return do_send_specific(tgid, pid, sig, &info);
2895}
2896
2897/**
2898 *  sys_tgkill - send signal to one specific thread
2899 *  @tgid: the thread group ID of the thread
2900 *  @pid: the PID of the thread
2901 *  @sig: signal to be sent
2902 *
2903 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2904 *  exists but it's not belonging to the target process anymore. This
2905 *  method solves the problem of threads exiting and PIDs getting reused.
2906 */
2907SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2908{
2909	/* This is only valid for single tasks */
2910	if (pid <= 0 || tgid <= 0)
2911		return -EINVAL;
2912
2913	return do_tkill(tgid, pid, sig);
2914}
2915
2916/**
2917 *  sys_tkill - send signal to one specific task
2918 *  @pid: the PID of the task
2919 *  @sig: signal to be sent
2920 *
2921 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2922 */
2923SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2924{
2925	/* This is only valid for single tasks */
2926	if (pid <= 0)
2927		return -EINVAL;
2928
2929	return do_tkill(0, pid, sig);
2930}
2931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2932/**
2933 *  sys_rt_sigqueueinfo - send signal information to a signal
2934 *  @pid: the PID of the thread
2935 *  @sig: signal to be sent
2936 *  @uinfo: signal info to be sent
2937 */
2938SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2939		siginfo_t __user *, uinfo)
2940{
2941	siginfo_t info;
2942
2943	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2944		return -EFAULT;
 
 
2945
2946	/* Not even root can pretend to send signals from the kernel.
2947	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2948	 */
2949	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2950		/* We used to allow any < 0 si_code */
2951		WARN_ON_ONCE(info.si_code < 0);
2952		return -EPERM;
2953	}
2954	info.si_signo = sig;
2955
2956	/* POSIX.1b doesn't mention process groups.  */
2957	return kill_proc_info(sig, &info, pid);
2958}
 
2959
2960long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2961{
2962	/* This is only valid for single tasks */
2963	if (pid <= 0 || tgid <= 0)
2964		return -EINVAL;
2965
2966	/* Not even root can pretend to send signals from the kernel.
2967	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2968	 */
2969	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2970		/* We used to allow any < 0 si_code */
2971		WARN_ON_ONCE(info->si_code < 0);
2972		return -EPERM;
2973	}
2974	info->si_signo = sig;
2975
2976	return do_send_specific(tgid, pid, sig, info);
2977}
2978
2979SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2980		siginfo_t __user *, uinfo)
2981{
2982	siginfo_t info;
2983
2984	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2985		return -EFAULT;
2986
2987	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2988}
2989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2990int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2991{
2992	struct task_struct *t = current;
2993	struct k_sigaction *k;
2994	sigset_t mask;
2995
2996	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2997		return -EINVAL;
2998
2999	k = &t->sighand->action[sig-1];
3000
3001	spin_lock_irq(&current->sighand->siglock);
3002	if (oact)
3003		*oact = *k;
3004
 
 
3005	if (act) {
3006		sigdelsetmask(&act->sa.sa_mask,
3007			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3008		*k = *act;
3009		/*
3010		 * POSIX 3.3.1.3:
3011		 *  "Setting a signal action to SIG_IGN for a signal that is
3012		 *   pending shall cause the pending signal to be discarded,
3013		 *   whether or not it is blocked."
3014		 *
3015		 *  "Setting a signal action to SIG_DFL for a signal that is
3016		 *   pending and whose default action is to ignore the signal
3017		 *   (for example, SIGCHLD), shall cause the pending signal to
3018		 *   be discarded, whether or not it is blocked"
3019		 */
3020		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3021			sigemptyset(&mask);
3022			sigaddset(&mask, sig);
3023			rm_from_queue_full(&mask, &t->signal->shared_pending);
3024			do {
3025				rm_from_queue_full(&mask, &t->pending);
3026				t = next_thread(t);
3027			} while (t != current);
3028		}
3029	}
3030
3031	spin_unlock_irq(&current->sighand->siglock);
3032	return 0;
3033}
3034
3035int 
3036do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3037{
3038	stack_t oss;
3039	int error;
3040
3041	oss.ss_sp = (void __user *) current->sas_ss_sp;
3042	oss.ss_size = current->sas_ss_size;
3043	oss.ss_flags = sas_ss_flags(sp);
 
3044
3045	if (uss) {
3046		void __user *ss_sp;
3047		size_t ss_size;
3048		int ss_flags;
 
3049
3050		error = -EFAULT;
3051		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3052			goto out;
3053		error = __get_user(ss_sp, &uss->ss_sp) |
3054			__get_user(ss_flags, &uss->ss_flags) |
3055			__get_user(ss_size, &uss->ss_size);
3056		if (error)
3057			goto out;
3058
3059		error = -EPERM;
3060		if (on_sig_stack(sp))
3061			goto out;
3062
 
3063		error = -EINVAL;
3064		/*
3065		 * Note - this code used to test ss_flags incorrectly:
3066		 *  	  old code may have been written using ss_flags==0
3067		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3068		 *	  way that worked) - this fix preserves that older
3069		 *	  mechanism.
3070		 */
3071		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3072			goto out;
3073
3074		if (ss_flags == SS_DISABLE) {
3075			ss_size = 0;
3076			ss_sp = NULL;
3077		} else {
3078			error = -ENOMEM;
3079			if (ss_size < MINSIGSTKSZ)
3080				goto out;
3081		}
3082
3083		current->sas_ss_sp = (unsigned long) ss_sp;
3084		current->sas_ss_size = ss_size;
 
3085	}
3086
3087	error = 0;
3088	if (uoss) {
3089		error = -EFAULT;
3090		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3091			goto out;
3092		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3093			__put_user(oss.ss_size, &uoss->ss_size) |
3094			__put_user(oss.ss_flags, &uoss->ss_flags);
3095	}
3096
3097out:
3098	return error;
3099}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3100
3101#ifdef __ARCH_WANT_SYS_SIGPENDING
3102
3103/**
3104 *  sys_sigpending - examine pending signals
3105 *  @set: where mask of pending signal is returned
3106 */
3107SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3108{
3109	return do_sigpending(set, sizeof(*set));
3110}
3111
3112#endif
3113
3114#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3115/**
3116 *  sys_sigprocmask - examine and change blocked signals
3117 *  @how: whether to add, remove, or set signals
3118 *  @nset: signals to add or remove (if non-null)
3119 *  @oset: previous value of signal mask if non-null
3120 *
3121 * Some platforms have their own version with special arguments;
3122 * others support only sys_rt_sigprocmask.
3123 */
3124
3125SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3126		old_sigset_t __user *, oset)
3127{
3128	old_sigset_t old_set, new_set;
3129	sigset_t new_blocked;
3130
3131	old_set = current->blocked.sig[0];
3132
3133	if (nset) {
3134		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3135			return -EFAULT;
3136		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3137
3138		new_blocked = current->blocked;
3139
3140		switch (how) {
3141		case SIG_BLOCK:
3142			sigaddsetmask(&new_blocked, new_set);
3143			break;
3144		case SIG_UNBLOCK:
3145			sigdelsetmask(&new_blocked, new_set);
3146			break;
3147		case SIG_SETMASK:
3148			new_blocked.sig[0] = new_set;
3149			break;
3150		default:
3151			return -EINVAL;
3152		}
3153
3154		__set_current_blocked(&new_blocked);
3155	}
3156
3157	if (oset) {
3158		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3159			return -EFAULT;
3160	}
3161
3162	return 0;
3163}
3164#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3165
3166#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3167/**
3168 *  sys_rt_sigaction - alter an action taken by a process
3169 *  @sig: signal to be sent
3170 *  @act: new sigaction
3171 *  @oact: used to save the previous sigaction
3172 *  @sigsetsize: size of sigset_t type
3173 */
3174SYSCALL_DEFINE4(rt_sigaction, int, sig,
3175		const struct sigaction __user *, act,
3176		struct sigaction __user *, oact,
3177		size_t, sigsetsize)
3178{
3179	struct k_sigaction new_sa, old_sa;
3180	int ret = -EINVAL;
3181
3182	/* XXX: Don't preclude handling different sized sigset_t's.  */
3183	if (sigsetsize != sizeof(sigset_t))
3184		goto out;
3185
3186	if (act) {
3187		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3188			return -EFAULT;
3189	}
3190
3191	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3192
3193	if (!ret && oact) {
3194		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3195			return -EFAULT;
3196	}
3197out:
3198	return ret;
3199}
3200#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3201
3202#ifdef __ARCH_WANT_SYS_SGETMASK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3203
3204/*
3205 * For backwards compatibility.  Functionality superseded by sigprocmask.
3206 */
3207SYSCALL_DEFINE0(sgetmask)
3208{
3209	/* SMP safe */
3210	return current->blocked.sig[0];
3211}
3212
3213SYSCALL_DEFINE1(ssetmask, int, newmask)
3214{
3215	int old = current->blocked.sig[0];
3216	sigset_t newset;
3217
 
3218	set_current_blocked(&newset);
3219
3220	return old;
3221}
3222#endif /* __ARCH_WANT_SGETMASK */
3223
3224#ifdef __ARCH_WANT_SYS_SIGNAL
3225/*
3226 * For backwards compatibility.  Functionality superseded by sigaction.
3227 */
3228SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3229{
3230	struct k_sigaction new_sa, old_sa;
3231	int ret;
3232
3233	new_sa.sa.sa_handler = handler;
3234	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3235	sigemptyset(&new_sa.sa.sa_mask);
3236
3237	ret = do_sigaction(sig, &new_sa, &old_sa);
3238
3239	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3240}
3241#endif /* __ARCH_WANT_SYS_SIGNAL */
3242
3243#ifdef __ARCH_WANT_SYS_PAUSE
3244
3245SYSCALL_DEFINE0(pause)
3246{
3247	while (!signal_pending(current)) {
3248		current->state = TASK_INTERRUPTIBLE;
3249		schedule();
3250	}
3251	return -ERESTARTNOHAND;
3252}
3253
3254#endif
3255
3256int sigsuspend(sigset_t *set)
3257{
3258	current->saved_sigmask = current->blocked;
3259	set_current_blocked(set);
3260
3261	current->state = TASK_INTERRUPTIBLE;
3262	schedule();
 
 
3263	set_restore_sigmask();
3264	return -ERESTARTNOHAND;
3265}
3266
3267#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3268/**
3269 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3270 *	@unewset value until a signal is received
3271 *  @unewset: new signal mask value
3272 *  @sigsetsize: size of sigset_t type
3273 */
3274SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3275{
3276	sigset_t newset;
3277
3278	/* XXX: Don't preclude handling different sized sigset_t's.  */
3279	if (sigsetsize != sizeof(sigset_t))
3280		return -EINVAL;
3281
3282	if (copy_from_user(&newset, unewset, sizeof(newset)))
3283		return -EFAULT;
3284	return sigsuspend(&newset);
3285}
3286#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287
3288__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3289{
3290	return NULL;
3291}
3292
3293void __init signals_init(void)
3294{
 
 
 
 
3295	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3296}
3297
3298#ifdef CONFIG_KGDB_KDB
3299#include <linux/kdb.h>
3300/*
3301 * kdb_send_sig_info - Allows kdb to send signals without exposing
3302 * signal internals.  This function checks if the required locks are
3303 * available before calling the main signal code, to avoid kdb
3304 * deadlocks.
3305 */
3306void
3307kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3308{
3309	static struct task_struct *kdb_prev_t;
3310	int sig, new_t;
3311	if (!spin_trylock(&t->sighand->siglock)) {
3312		kdb_printf("Can't do kill command now.\n"
3313			   "The sigmask lock is held somewhere else in "
3314			   "kernel, try again later\n");
3315		return;
3316	}
3317	spin_unlock(&t->sighand->siglock);
3318	new_t = kdb_prev_t != t;
3319	kdb_prev_t = t;
3320	if (t->state != TASK_RUNNING && new_t) {
3321		kdb_printf("Process is not RUNNING, sending a signal from "
3322			   "kdb risks deadlock\n"
3323			   "on the run queue locks. "
3324			   "The signal has _not_ been sent.\n"
3325			   "Reissue the kill command if you want to risk "
3326			   "the deadlock.\n");
3327		return;
3328	}
3329	sig = info->si_signo;
3330	if (send_sig_info(sig, info, t))
3331		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3332			   sig, t->pid);
3333	else
3334		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3335}
3336#endif	/* CONFIG_KGDB_KDB */