Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *	Documentation/RCU
  29 */
 
 
 
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
 
  38#include <linux/nmi.h>
  39#include <linux/atomic.h>
  40#include <linux/bitops.h>
  41#include <linux/export.h>
  42#include <linux/completion.h>
 
  43#include <linux/moduleparam.h>
 
 
  44#include <linux/percpu.h>
  45#include <linux/notifier.h>
  46#include <linux/cpu.h>
  47#include <linux/mutex.h>
  48#include <linux/time.h>
  49#include <linux/kernel_stat.h>
  50#include <linux/wait.h>
  51#include <linux/kthread.h>
 
  52#include <linux/prefetch.h>
  53#include <linux/delay.h>
  54#include <linux/stop_machine.h>
  55#include <linux/random.h>
  56#include <linux/trace_events.h>
  57#include <linux/suspend.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59#include "tree.h"
  60#include "rcu.h"
  61
  62#ifdef MODULE_PARAM_PREFIX
  63#undef MODULE_PARAM_PREFIX
  64#endif
  65#define MODULE_PARAM_PREFIX "rcutree."
  66
  67/* Data structures. */
 
  68
  69/*
  70 * In order to export the rcu_state name to the tracing tools, it
  71 * needs to be added in the __tracepoint_string section.
  72 * This requires defining a separate variable tp_<sname>_varname
  73 * that points to the string being used, and this will allow
  74 * the tracing userspace tools to be able to decipher the string
  75 * address to the matching string.
  76 */
  77#ifdef CONFIG_TRACING
  78# define DEFINE_RCU_TPS(sname) \
  79static char sname##_varname[] = #sname; \
  80static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  81# define RCU_STATE_NAME(sname) sname##_varname
  82#else
  83# define DEFINE_RCU_TPS(sname)
  84# define RCU_STATE_NAME(sname) __stringify(sname)
 
 
 
  85#endif
  86
  87#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  88DEFINE_RCU_TPS(sname) \
  89static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  90struct rcu_state sname##_state = { \
  91	.level = { &sname##_state.node[0] }, \
  92	.rda = &sname##_data, \
  93	.call = cr, \
  94	.gp_state = RCU_GP_IDLE, \
  95	.gpnum = 0UL - 300UL, \
  96	.completed = 0UL - 300UL, \
  97	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  98	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
  99	.orphan_donetail = &sname##_state.orphan_donelist, \
 100	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 101	.name = RCU_STATE_NAME(sname), \
 102	.abbr = sabbr, \
 103	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
 104	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
 105}
 106
 107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 109
 110static struct rcu_state *const rcu_state_p;
 111LIST_HEAD(rcu_struct_flavors);
 112
 113/* Dump rcu_node combining tree at boot to verify correct setup. */
 114static bool dump_tree;
 115module_param(dump_tree, bool, 0444);
 
 
 
 
 
 116/* Control rcu_node-tree auto-balancing at boot time. */
 117static bool rcu_fanout_exact;
 118module_param(rcu_fanout_exact, bool, 0444);
 119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 121module_param(rcu_fanout_leaf, int, 0444);
 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 123/* Number of rcu_nodes at specified level. */
 124static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 126/* panic() on RCU Stall sysctl. */
 127int sysctl_panic_on_rcu_stall __read_mostly;
 128
 129/*
 130 * The rcu_scheduler_active variable is initialized to the value
 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 132 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 133 * RCU can assume that there is but one task, allowing RCU to (for example)
 134 * optimize synchronize_rcu() to a simple barrier().  When this variable
 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 136 * to detect real grace periods.  This variable is also used to suppress
 137 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 139 * is fully initialized, including all of its kthreads having been spawned.
 140 */
 141int rcu_scheduler_active __read_mostly;
 142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 143
 144/*
 145 * The rcu_scheduler_fully_active variable transitions from zero to one
 146 * during the early_initcall() processing, which is after the scheduler
 147 * is capable of creating new tasks.  So RCU processing (for example,
 148 * creating tasks for RCU priority boosting) must be delayed until after
 149 * rcu_scheduler_fully_active transitions from zero to one.  We also
 150 * currently delay invocation of any RCU callbacks until after this point.
 151 *
 152 * It might later prove better for people registering RCU callbacks during
 153 * early boot to take responsibility for these callbacks, but one step at
 154 * a time.
 155 */
 156static int rcu_scheduler_fully_active __read_mostly;
 157
 158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 161static void invoke_rcu_core(void);
 162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 163static void rcu_report_exp_rdp(struct rcu_state *rsp,
 164			       struct rcu_data *rdp, bool wake);
 165static void sync_sched_exp_online_cleanup(int cpu);
 
 
 
 
 
 
 166
 167/* rcuc/rcub kthread realtime priority */
 168#ifdef CONFIG_RCU_KTHREAD_PRIO
 169static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
 170#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
 
 171static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 172#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
 173module_param(kthread_prio, int, 0644);
 174
 175/* Delay in jiffies for grace-period initialization delays, debug only. */
 176
 177#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
 178static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
 179module_param(gp_preinit_delay, int, 0644);
 180#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 181static const int gp_preinit_delay;
 182#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 183
 184#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
 185static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
 186module_param(gp_init_delay, int, 0644);
 187#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 188static const int gp_init_delay;
 189#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 190
 191#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
 192static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
 193module_param(gp_cleanup_delay, int, 0644);
 194#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 195static const int gp_cleanup_delay;
 196#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197
 198/*
 199 * Number of grace periods between delays, normalized by the duration of
 200 * the delay.  The longer the the delay, the more the grace periods between
 201 * each delay.  The reason for this normalization is that it means that,
 202 * for non-zero delays, the overall slowdown of grace periods is constant
 203 * regardless of the duration of the delay.  This arrangement balances
 204 * the need for long delays to increase some race probabilities with the
 205 * need for fast grace periods to increase other race probabilities.
 206 */
 207#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 208
 209/*
 210 * Track the rcutorture test sequence number and the update version
 211 * number within a given test.  The rcutorture_testseq is incremented
 212 * on every rcutorture module load and unload, so has an odd value
 213 * when a test is running.  The rcutorture_vernum is set to zero
 214 * when rcutorture starts and is incremented on each rcutorture update.
 215 * These variables enable correlating rcutorture output with the
 216 * RCU tracing information.
 217 */
 218unsigned long rcutorture_testseq;
 219unsigned long rcutorture_vernum;
 
 
 220
 221/*
 222 * Compute the mask of online CPUs for the specified rcu_node structure.
 223 * This will not be stable unless the rcu_node structure's ->lock is
 224 * held, but the bit corresponding to the current CPU will be stable
 225 * in most contexts.
 226 */
 227unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 228{
 229	return READ_ONCE(rnp->qsmaskinitnext);
 
 
 
 
 230}
 231
 232/*
 233 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 234 * permit this function to be invoked without holding the root rcu_node
 235 * structure's ->lock, but of course results can be subject to change.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236 */
 237static int rcu_gp_in_progress(struct rcu_state *rsp)
 238{
 239	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 
 
 
 
 
 
 240}
 241
 242/*
 243 * Note a quiescent state.  Because we do not need to know
 244 * how many quiescent states passed, just if there was at least
 245 * one since the start of the grace period, this just sets a flag.
 246 * The caller must have disabled preemption.
 
 
 
 
 247 */
 248void rcu_sched_qs(void)
 249{
 250	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 251		return;
 252	trace_rcu_grace_period(TPS("rcu_sched"),
 253			       __this_cpu_read(rcu_sched_data.gpnum),
 254			       TPS("cpuqs"));
 255	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 256	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 257		return;
 258	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 259	rcu_report_exp_rdp(&rcu_sched_state,
 260			   this_cpu_ptr(&rcu_sched_data), true);
 261}
 262
 263void rcu_bh_qs(void)
 
 
 
 
 264{
 265	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 266		trace_rcu_grace_period(TPS("rcu_bh"),
 267				       __this_cpu_read(rcu_bh_data.gpnum),
 268				       TPS("cpuqs"));
 269		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 270	}
 271}
 272
 273static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274
 275static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 276	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 277	.dynticks = ATOMIC_INIT(1),
 278#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 279	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
 280	.dynticks_idle = ATOMIC_INIT(1),
 281#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 282};
 
 
 283
 284DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
 285EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
 
 
 
 
 
 
 
 
 286
 287/*
 288 * Let the RCU core know that this CPU has gone through the scheduler,
 289 * which is a quiescent state.  This is called when the need for a
 290 * quiescent state is urgent, so we burn an atomic operation and full
 291 * memory barriers to let the RCU core know about it, regardless of what
 292 * this CPU might (or might not) do in the near future.
 293 *
 294 * We inform the RCU core by emulating a zero-duration dyntick-idle
 295 * period, which we in turn do by incrementing the ->dynticks counter
 296 * by two.
 297 *
 298 * The caller must have disabled interrupts.
 299 */
 300static void rcu_momentary_dyntick_idle(void)
 301{
 302	struct rcu_data *rdp;
 303	struct rcu_dynticks *rdtp;
 304	int resched_mask;
 305	struct rcu_state *rsp;
 306
 307	/*
 308	 * Yes, we can lose flag-setting operations.  This is OK, because
 309	 * the flag will be set again after some delay.
 310	 */
 311	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
 312	raw_cpu_write(rcu_sched_qs_mask, 0);
 313
 314	/* Find the flavor that needs a quiescent state. */
 315	for_each_rcu_flavor(rsp) {
 316		rdp = raw_cpu_ptr(rsp->rda);
 317		if (!(resched_mask & rsp->flavor_mask))
 318			continue;
 319		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
 320		if (READ_ONCE(rdp->mynode->completed) !=
 321		    READ_ONCE(rdp->cond_resched_completed))
 322			continue;
 323
 324		/*
 325		 * Pretend to be momentarily idle for the quiescent state.
 326		 * This allows the grace-period kthread to record the
 327		 * quiescent state, with no need for this CPU to do anything
 328		 * further.
 329		 */
 330		rdtp = this_cpu_ptr(&rcu_dynticks);
 331		smp_mb__before_atomic(); /* Earlier stuff before QS. */
 332		atomic_add(2, &rdtp->dynticks);  /* QS. */
 333		smp_mb__after_atomic(); /* Later stuff after QS. */
 334		break;
 335	}
 336}
 337
 338/*
 339 * Note a context switch.  This is a quiescent state for RCU-sched,
 340 * and requires special handling for preemptible RCU.
 341 * The caller must have disabled interrupts.
 342 */
 343void rcu_note_context_switch(void)
 344{
 345	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 346	trace_rcu_utilization(TPS("Start context switch"));
 347	rcu_sched_qs();
 348	rcu_preempt_note_context_switch();
 349	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
 350		rcu_momentary_dyntick_idle();
 351	trace_rcu_utilization(TPS("End context switch"));
 352	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 353}
 354EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 355
 356/*
 357 * Register a quiescent state for all RCU flavors.  If there is an
 358 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 359 * dyntick-idle quiescent state visible to other CPUs (but only for those
 360 * RCU flavors in desperate need of a quiescent state, which will normally
 361 * be none of them).  Either way, do a lightweight quiescent state for
 362 * all RCU flavors.
 363 *
 364 * The barrier() calls are redundant in the common case when this is
 365 * called externally, but just in case this is called from within this
 366 * file.
 367 *
 
 368 */
 369void rcu_all_qs(void)
 370{
 371	unsigned long flags;
 372
 373	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 374	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
 375		local_irq_save(flags);
 376		rcu_momentary_dyntick_idle();
 377		local_irq_restore(flags);
 378	}
 379	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
 380		/*
 381		 * Yes, we just checked a per-CPU variable with preemption
 382		 * enabled, so we might be migrated to some other CPU at
 383		 * this point.  That is OK because in that case, the
 384		 * migration will supply the needed quiescent state.
 385		 * We might end up needlessly disabling preemption and
 386		 * invoking rcu_sched_qs() on the destination CPU, but
 387		 * the probability and cost are both quite low, so this
 388		 * should not be a problem in practice.
 389		 */
 390		preempt_disable();
 391		rcu_sched_qs();
 392		preempt_enable();
 393	}
 394	this_cpu_inc(rcu_qs_ctr);
 395	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 396}
 397EXPORT_SYMBOL_GPL(rcu_all_qs);
 398
 399static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
 400static long qhimark = 10000;	/* If this many pending, ignore blimit. */
 401static long qlowmark = 100;	/* Once only this many pending, use blimit. */
 
 
 
 
 
 
 
 
 
 
 402
 403module_param(blimit, long, 0444);
 404module_param(qhimark, long, 0444);
 405module_param(qlowmark, long, 0444);
 
 406
 407static ulong jiffies_till_first_fqs = ULONG_MAX;
 408static ulong jiffies_till_next_fqs = ULONG_MAX;
 409static bool rcu_kick_kthreads;
 
 
 410
 411module_param(jiffies_till_first_fqs, ulong, 0644);
 412module_param(jiffies_till_next_fqs, ulong, 0644);
 413module_param(rcu_kick_kthreads, bool, 0644);
 414
 415/*
 416 * How long the grace period must be before we start recruiting
 417 * quiescent-state help from rcu_note_context_switch().
 418 */
 419static ulong jiffies_till_sched_qs = HZ / 20;
 420module_param(jiffies_till_sched_qs, ulong, 0644);
 421
 422static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 423				  struct rcu_data *rdp);
 424static void force_qs_rnp(struct rcu_state *rsp,
 425			 int (*f)(struct rcu_data *rsp, bool *isidle,
 426				  unsigned long *maxj),
 427			 bool *isidle, unsigned long *maxj);
 428static void force_quiescent_state(struct rcu_state *rsp);
 429static int rcu_pending(void);
 430
 431/*
 432 * Return the number of RCU batches started thus far for debug & stats.
 
 
 
 433 */
 434unsigned long rcu_batches_started(void)
 435{
 436	return rcu_state_p->gpnum;
 437}
 438EXPORT_SYMBOL_GPL(rcu_batches_started);
 439
 440/*
 441 * Return the number of RCU-sched batches started thus far for debug & stats.
 442 */
 443unsigned long rcu_batches_started_sched(void)
 444{
 445	return rcu_sched_state.gpnum;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446}
 447EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 448
 449/*
 450 * Return the number of RCU BH batches started thus far for debug & stats.
 451 */
 452unsigned long rcu_batches_started_bh(void)
 453{
 454	return rcu_bh_state.gpnum;
 455}
 456EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 457
 458/*
 459 * Return the number of RCU batches completed thus far for debug & stats.
 460 */
 461unsigned long rcu_batches_completed(void)
 462{
 463	return rcu_state_p->completed;
 464}
 465EXPORT_SYMBOL_GPL(rcu_batches_completed);
 466
 467/*
 468 * Return the number of RCU-sched batches completed thus far for debug & stats.
 469 */
 470unsigned long rcu_batches_completed_sched(void)
 471{
 472	return rcu_sched_state.completed;
 473}
 474EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 
 
 
 
 
 
 
 
 475
 476/*
 477 * Return the number of RCU BH batches completed thus far for debug & stats.
 478 */
 479unsigned long rcu_batches_completed_bh(void)
 480{
 481	return rcu_bh_state.completed;
 482}
 483EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 484
 485/*
 486 * Return the number of RCU expedited batches completed thus far for
 487 * debug & stats.  Odd numbers mean that a batch is in progress, even
 488 * numbers mean idle.  The value returned will thus be roughly double
 489 * the cumulative batches since boot.
 490 */
 491unsigned long rcu_exp_batches_completed(void)
 492{
 493	return rcu_state_p->expedited_sequence;
 494}
 495EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 496
 497/*
 498 * Return the number of RCU-sched expedited batches completed thus far
 499 * for debug & stats.  Similar to rcu_exp_batches_completed().
 500 */
 501unsigned long rcu_exp_batches_completed_sched(void)
 502{
 503	return rcu_sched_state.expedited_sequence;
 504}
 505EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
 506
 507/*
 508 * Force a quiescent state.
 509 */
 510void rcu_force_quiescent_state(void)
 511{
 512	force_quiescent_state(rcu_state_p);
 
 513}
 514EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 515
 
 516/*
 517 * Force a quiescent state for RCU BH.
 
 518 */
 519void rcu_bh_force_quiescent_state(void)
 520{
 521	force_quiescent_state(&rcu_bh_state);
 522}
 523EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 524
 525/*
 526 * Force a quiescent state for RCU-sched.
 527 */
 528void rcu_sched_force_quiescent_state(void)
 529{
 530	force_quiescent_state(&rcu_sched_state);
 531}
 532EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 533
 534/*
 535 * Show the state of the grace-period kthreads.
 
 
 
 
 
 
 
 536 */
 537void show_rcu_gp_kthreads(void)
 538{
 539	struct rcu_state *rsp;
 540
 541	for_each_rcu_flavor(rsp) {
 542		pr_info("%s: wait state: %d ->state: %#lx\n",
 543			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 544		/* sched_show_task(rsp->gp_kthread); */
 
 
 
 
 
 545	}
 
 546}
 547EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 548
 549/*
 550 * Record the number of times rcutorture tests have been initiated and
 551 * terminated.  This information allows the debugfs tracing stats to be
 552 * correlated to the rcutorture messages, even when the rcutorture module
 553 * is being repeatedly loaded and unloaded.  In other words, we cannot
 554 * store this state in rcutorture itself.
 555 */
 556void rcutorture_record_test_transition(void)
 557{
 558	rcutorture_testseq++;
 559	rcutorture_vernum = 0;
 
 
 
 
 
 
 
 560}
 561EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 562
 563/*
 564 * Send along grace-period-related data for rcutorture diagnostics.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565 */
 566void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 567			    unsigned long *gpnum, unsigned long *completed)
 568{
 569	struct rcu_state *rsp = NULL;
 570
 571	switch (test_type) {
 572	case RCU_FLAVOR:
 573		rsp = rcu_state_p;
 574		break;
 575	case RCU_BH_FLAVOR:
 576		rsp = &rcu_bh_state;
 577		break;
 578	case RCU_SCHED_FLAVOR:
 579		rsp = &rcu_sched_state;
 580		break;
 581	default:
 582		break;
 583	}
 584	if (rsp != NULL) {
 585		*flags = READ_ONCE(rsp->gp_flags);
 586		*gpnum = READ_ONCE(rsp->gpnum);
 587		*completed = READ_ONCE(rsp->completed);
 588		return;
 589	}
 590	*flags = 0;
 591	*gpnum = 0;
 592	*completed = 0;
 593}
 594EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 595
 596/*
 597 * Record the number of writer passes through the current rcutorture test.
 598 * This is also used to correlate debugfs tracing stats with the rcutorture
 599 * messages.
 600 */
 601void rcutorture_record_progress(unsigned long vernum)
 602{
 603	rcutorture_vernum++;
 
 
 
 
 
 
 604}
 605EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 
 606
 607/*
 608 * Does the CPU have callbacks ready to be invoked?
 
 
 
 
 
 
 
 
 609 */
 610static int
 611cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 612{
 613	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
 614	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
 615}
 616
 617/*
 618 * Return the root node of the specified rcu_state structure.
 
 
 619 */
 620static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 621{
 622	return &rsp->node[0];
 
 
 
 
 
 
 623}
 624
 625/*
 626 * Is there any need for future grace periods?
 627 * Interrupts must be disabled.  If the caller does not hold the root
 628 * rnp_node structure's ->lock, the results are advisory only.
 
 
 
 
 
 
 
 
 
 
 629 */
 630static int rcu_future_needs_gp(struct rcu_state *rsp)
 631{
 632	struct rcu_node *rnp = rcu_get_root(rsp);
 633	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 634	int *fp = &rnp->need_future_gp[idx];
 635
 636	return READ_ONCE(*fp);
 
 
 
 637}
 
 638
 639/*
 640 * Does the current CPU require a not-yet-started grace period?
 641 * The caller must have disabled interrupts to prevent races with
 642 * normal callback registry.
 
 
 643 */
 644static bool
 645cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 646{
 647	int i;
 648
 649	if (rcu_gp_in_progress(rsp))
 650		return false;  /* No, a grace period is already in progress. */
 651	if (rcu_future_needs_gp(rsp))
 652		return true;  /* Yes, a no-CBs CPU needs one. */
 653	if (!rdp->nxttail[RCU_NEXT_TAIL])
 654		return false;  /* No, this is a no-CBs (or offline) CPU. */
 655	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
 656		return true;  /* Yes, CPU has newly registered callbacks. */
 657	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
 658		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
 659		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
 660				 rdp->nxtcompleted[i]))
 661			return true;  /* Yes, CBs for future grace period. */
 662	return false; /* No grace period needed. */
 663}
 664
 665/*
 666 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
 667 *
 668 * If the new value of the ->dynticks_nesting counter now is zero,
 669 * we really have entered idle, and must do the appropriate accounting.
 670 * The caller must have disabled interrupts.
 671 */
 672static void rcu_eqs_enter_common(long long oldval, bool user)
 673{
 674	struct rcu_state *rsp;
 675	struct rcu_data *rdp;
 676	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 677
 678	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
 679	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 680	    !user && !is_idle_task(current)) {
 681		struct task_struct *idle __maybe_unused =
 682			idle_task(smp_processor_id());
 683
 684		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
 685		rcu_ftrace_dump(DUMP_ORIG);
 686		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 687			  current->pid, current->comm,
 688			  idle->pid, idle->comm); /* must be idle task! */
 689	}
 690	for_each_rcu_flavor(rsp) {
 691		rdp = this_cpu_ptr(rsp->rda);
 692		do_nocb_deferred_wakeup(rdp);
 693	}
 694	rcu_prepare_for_idle();
 695	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 696	smp_mb__before_atomic();  /* See above. */
 697	atomic_inc(&rdtp->dynticks);
 698	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
 699	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 700		     atomic_read(&rdtp->dynticks) & 0x1);
 701	rcu_dynticks_task_enter();
 702
 703	/*
 704	 * It is illegal to enter an extended quiescent state while
 705	 * in an RCU read-side critical section.
 706	 */
 707	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 708			 "Illegal idle entry in RCU read-side critical section.");
 709	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
 710			 "Illegal idle entry in RCU-bh read-side critical section.");
 711	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
 712			 "Illegal idle entry in RCU-sched read-side critical section.");
 713}
 714
 715/*
 716 * Enter an RCU extended quiescent state, which can be either the
 717 * idle loop or adaptive-tickless usermode execution.
 718 */
 719static void rcu_eqs_enter(bool user)
 720{
 721	long long oldval;
 722	struct rcu_dynticks *rdtp;
 723
 724	rdtp = this_cpu_ptr(&rcu_dynticks);
 725	oldval = rdtp->dynticks_nesting;
 726	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 727		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
 728	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
 729		rdtp->dynticks_nesting = 0;
 730		rcu_eqs_enter_common(oldval, user);
 731	} else {
 732		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 733	}
 734}
 735
 736/**
 737 * rcu_idle_enter - inform RCU that current CPU is entering idle
 738 *
 739 * Enter idle mode, in other words, -leave- the mode in which RCU
 740 * read-side critical sections can occur.  (Though RCU read-side
 741 * critical sections can occur in irq handlers in idle, a possibility
 742 * handled by irq_enter() and irq_exit().)
 743 *
 744 * We crowbar the ->dynticks_nesting field to zero to allow for
 745 * the possibility of usermode upcalls having messed up our count
 746 * of interrupt nesting level during the prior busy period.
 747 */
 748void rcu_idle_enter(void)
 749{
 750	unsigned long flags;
 751
 752	local_irq_save(flags);
 753	rcu_eqs_enter(false);
 754	rcu_sysidle_enter(0);
 755	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 756}
 757EXPORT_SYMBOL_GPL(rcu_idle_enter);
 758
 759#ifdef CONFIG_NO_HZ_FULL
 760/**
 761 * rcu_user_enter - inform RCU that we are resuming userspace.
 
 
 762 *
 763 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 764 * is permitted between this call and rcu_user_exit(). This way the
 765 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 766 * when the CPU runs in userspace.
 767 */
 768void rcu_user_enter(void)
 769{
 770	rcu_eqs_enter(1);
 771}
 772#endif /* CONFIG_NO_HZ_FULL */
 773
 774/**
 775 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 776 *
 777 * Exit from an interrupt handler, which might possibly result in entering
 778 * idle mode, in other words, leaving the mode in which read-side critical
 779 * sections can occur.  The caller must have disabled interrupts.
 780 *
 781 * This code assumes that the idle loop never does anything that might
 782 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 783 * architecture violates this assumption, RCU will give you what you
 784 * deserve, good and hard.  But very infrequently and irreproducibly.
 785 *
 786 * Use things like work queues to work around this limitation.
 787 *
 788 * You have been warned.
 789 */
 790void rcu_irq_exit(void)
 791{
 792	long long oldval;
 793	struct rcu_dynticks *rdtp;
 794
 795	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
 796	rdtp = this_cpu_ptr(&rcu_dynticks);
 797	oldval = rdtp->dynticks_nesting;
 798	rdtp->dynticks_nesting--;
 799	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 800		     rdtp->dynticks_nesting < 0);
 801	if (rdtp->dynticks_nesting)
 802		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
 803	else
 804		rcu_eqs_enter_common(oldval, true);
 805	rcu_sysidle_enter(1);
 806}
 807
 808/*
 809 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 810 */
 811void rcu_irq_exit_irqson(void)
 812{
 813	unsigned long flags;
 
 
 814
 815	local_irq_save(flags);
 816	rcu_irq_exit();
 817	local_irq_restore(flags);
 818}
 
 
 
 
 
 
 
 
 
 819
 820/*
 821 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 822 *
 823 * If the new value of the ->dynticks_nesting counter was previously zero,
 824 * we really have exited idle, and must do the appropriate accounting.
 825 * The caller must have disabled interrupts.
 826 */
 827static void rcu_eqs_exit_common(long long oldval, int user)
 828{
 829	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 
 
 
 
 
 
 
 
 
 
 830
 831	rcu_dynticks_task_exit();
 832	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
 833	atomic_inc(&rdtp->dynticks);
 834	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 835	smp_mb__after_atomic();  /* See above. */
 836	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 837		     !(atomic_read(&rdtp->dynticks) & 0x1));
 838	rcu_cleanup_after_idle();
 839	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 840	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 841	    !user && !is_idle_task(current)) {
 842		struct task_struct *idle __maybe_unused =
 843			idle_task(smp_processor_id());
 844
 845		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 846				  oldval, rdtp->dynticks_nesting);
 847		rcu_ftrace_dump(DUMP_ORIG);
 848		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 849			  current->pid, current->comm,
 850			  idle->pid, idle->comm); /* must be idle task! */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851	}
 852}
 853
 854/*
 855 * Exit an RCU extended quiescent state, which can be either the
 856 * idle loop or adaptive-tickless usermode execution.
 857 */
 858static void rcu_eqs_exit(bool user)
 859{
 860	struct rcu_dynticks *rdtp;
 861	long long oldval;
 
 
 
 
 
 
 
 862
 863	rdtp = this_cpu_ptr(&rcu_dynticks);
 864	oldval = rdtp->dynticks_nesting;
 865	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 866	if (oldval & DYNTICK_TASK_NEST_MASK) {
 867		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 868	} else {
 869		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 870		rcu_eqs_exit_common(oldval, user);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871	}
 
 
 872}
 873
 874/**
 875 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 876 *
 877 * Exit idle mode, in other words, -enter- the mode in which RCU
 878 * read-side critical sections can occur.
 879 *
 880 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 881 * allow for the possibility of usermode upcalls messing up our count
 882 * of interrupt nesting level during the busy period that is just
 883 * now starting.
 884 */
 885void rcu_idle_exit(void)
 886{
 887	unsigned long flags;
 888
 889	local_irq_save(flags);
 890	rcu_eqs_exit(false);
 891	rcu_sysidle_exit(0);
 892	local_irq_restore(flags);
 893}
 894EXPORT_SYMBOL_GPL(rcu_idle_exit);
 895
 896#ifdef CONFIG_NO_HZ_FULL
 897/**
 898 * rcu_user_exit - inform RCU that we are exiting userspace.
 
 
 
 
 
 
 
 899 *
 900 * Exit RCU idle mode while entering the kernel because it can
 901 * run a RCU read side critical section anytime.
 
 
 902 */
 903void rcu_user_exit(void)
 
 904{
 905	rcu_eqs_exit(1);
 906}
 907#endif /* CONFIG_NO_HZ_FULL */
 908
 909/**
 910 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 911 *
 912 * Enter an interrupt handler, which might possibly result in exiting
 913 * idle mode, in other words, entering the mode in which read-side critical
 914 * sections can occur.  The caller must have disabled interrupts.
 915 *
 916 * Note that the Linux kernel is fully capable of entering an interrupt
 917 * handler that it never exits, for example when doing upcalls to
 918 * user mode!  This code assumes that the idle loop never does upcalls to
 919 * user mode.  If your architecture does do upcalls from the idle loop (or
 920 * does anything else that results in unbalanced calls to the irq_enter()
 921 * and irq_exit() functions), RCU will give you what you deserve, good
 922 * and hard.  But very infrequently and irreproducibly.
 923 *
 924 * Use things like work queues to work around this limitation.
 925 *
 926 * You have been warned.
 927 */
 928void rcu_irq_enter(void)
 929{
 930	struct rcu_dynticks *rdtp;
 931	long long oldval;
 932
 933	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
 934	rdtp = this_cpu_ptr(&rcu_dynticks);
 935	oldval = rdtp->dynticks_nesting;
 936	rdtp->dynticks_nesting++;
 937	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 938		     rdtp->dynticks_nesting == 0);
 939	if (oldval)
 940		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
 941	else
 942		rcu_eqs_exit_common(oldval, true);
 943	rcu_sysidle_exit(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944}
 945
 946/*
 947 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 
 948 */
 949void rcu_irq_enter_irqson(void)
 950{
 951	unsigned long flags;
 
 952
 953	local_irq_save(flags);
 954	rcu_irq_enter();
 955	local_irq_restore(flags);
 
 
 
 956}
 957
 958/**
 959 * rcu_nmi_enter - inform RCU of entry to NMI context
 960 *
 961 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 962 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 963 * that the CPU is active.  This implementation permits nested NMIs, as
 964 * long as the nesting level does not overflow an int.  (You will probably
 965 * run out of stack space first.)
 966 */
 967void rcu_nmi_enter(void)
 968{
 969	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 970	int incby = 2;
 971
 972	/* Complain about underflow. */
 973	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
 974
 975	/*
 976	 * If idle from RCU viewpoint, atomically increment ->dynticks
 977	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 978	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 979	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 980	 * to be in the outermost NMI handler that interrupted an RCU-idle
 981	 * period (observation due to Andy Lutomirski).
 982	 */
 983	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
 984		smp_mb__before_atomic();  /* Force delay from prior write. */
 985		atomic_inc(&rdtp->dynticks);
 986		/* atomic_inc() before later RCU read-side crit sects */
 987		smp_mb__after_atomic();  /* See above. */
 988		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 989		incby = 1;
 990	}
 991	rdtp->dynticks_nmi_nesting += incby;
 992	barrier();
 993}
 994
 995/**
 996 * rcu_nmi_exit - inform RCU of exit from NMI context
 997 *
 998 * If we are returning from the outermost NMI handler that interrupted an
 999 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1000 * to let the RCU grace-period handling know that the CPU is back to
1001 * being RCU-idle.
1002 */
1003void rcu_nmi_exit(void)
1004{
1005	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1006
1007	/*
1008	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1009	 * (We are exiting an NMI handler, so RCU better be paying attention
1010	 * to us!)
 
1011	 */
1012	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1013	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1014
1015	/*
1016	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1017	 * leave it in non-RCU-idle state.
1018	 */
1019	if (rdtp->dynticks_nmi_nesting != 1) {
1020		rdtp->dynticks_nmi_nesting -= 2;
1021		return;
1022	}
1023
1024	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1025	rdtp->dynticks_nmi_nesting = 0;
1026	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1027	smp_mb__before_atomic();  /* See above. */
1028	atomic_inc(&rdtp->dynticks);
1029	smp_mb__after_atomic();  /* Force delay to next write. */
1030	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1031}
1032
1033/**
1034 * __rcu_is_watching - are RCU read-side critical sections safe?
 
 
 
 
 
 
1035 *
1036 * Return true if RCU is watching the running CPU, which means that
1037 * this CPU can safely enter RCU read-side critical sections.  Unlike
1038 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1039 * least disabled preemption.
 
1040 */
1041bool notrace __rcu_is_watching(void)
1042{
1043	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
 
 
 
 
 
 
 
1044}
1045
1046/**
1047 * rcu_is_watching - see if RCU thinks that the current CPU is idle
 
 
 
 
 
 
 
1048 *
1049 * If the current CPU is in its idle loop and is neither in an interrupt
1050 * or NMI handler, return true.
1051 */
1052bool notrace rcu_is_watching(void)
1053{
1054	bool ret;
 
1055
1056	preempt_disable_notrace();
1057	ret = __rcu_is_watching();
1058	preempt_enable_notrace();
1059	return ret;
1060}
1061EXPORT_SYMBOL_GPL(rcu_is_watching);
1062
1063#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 
 
1064
1065/*
1066 * Is the current CPU online?  Disable preemption to avoid false positives
1067 * that could otherwise happen due to the current CPU number being sampled,
1068 * this task being preempted, its old CPU being taken offline, resuming
1069 * on some other CPU, then determining that its old CPU is now offline.
1070 * It is OK to use RCU on an offline processor during initial boot, hence
1071 * the check for rcu_scheduler_fully_active.  Note also that it is OK
1072 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1073 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1074 * offline to continue to use RCU for one jiffy after marking itself
1075 * offline in the cpu_online_mask.  This leniency is necessary given the
1076 * non-atomic nature of the online and offline processing, for example,
1077 * the fact that a CPU enters the scheduler after completing the teardown
1078 * of the CPU.
1079 *
1080 * This is also why RCU internally marks CPUs online during in the
1081 * preparation phase and offline after the CPU has been taken down.
1082 *
1083 * Disable checking if in an NMI handler because we cannot safely report
1084 * errors from NMI handlers anyway.
1085 */
1086bool rcu_lockdep_current_cpu_online(void)
1087{
1088	struct rcu_data *rdp;
1089	struct rcu_node *rnp;
1090	bool ret;
1091
1092	if (in_nmi())
1093		return true;
1094	preempt_disable();
1095	rdp = this_cpu_ptr(&rcu_sched_data);
1096	rnp = rdp->mynode;
1097	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1098	      !rcu_scheduler_fully_active;
1099	preempt_enable();
1100	return ret;
1101}
1102EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 
 
1103
1104#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 
 
 
 
1105
1106/**
1107 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1108 *
1109 * If the current CPU is idle or running at a first-level (not nested)
1110 * interrupt from idle, return true.  The caller must have at least
1111 * disabled preemption.
1112 */
1113static int rcu_is_cpu_rrupt_from_idle(void)
1114{
1115	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1116}
1117
1118/*
1119 * Snapshot the specified CPU's dynticks counter so that we can later
1120 * credit them with an implicit quiescent state.  Return 1 if this CPU
1121 * is in dynticks idle mode, which is an extended quiescent state.
 
 
1122 */
1123static int dyntick_save_progress_counter(struct rcu_data *rdp,
1124					 bool *isidle, unsigned long *maxj)
1125{
1126	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1127	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1128	if ((rdp->dynticks_snap & 0x1) == 0) {
1129		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1130		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1131				 rdp->mynode->gpnum))
1132			WRITE_ONCE(rdp->gpwrap, true);
1133		return 1;
 
1134	}
1135	return 0;
 
 
 
 
1136}
1137
1138/*
1139 * Return true if the specified CPU has passed through a quiescent
1140 * state by virtue of being in or having passed through an dynticks
1141 * idle state since the last call to dyntick_save_progress_counter()
1142 * for this same CPU, or by virtue of having been offline.
1143 */
1144static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1145				    bool *isidle, unsigned long *maxj)
1146{
1147	unsigned int curr;
1148	int *rcrmp;
1149	unsigned int snap;
1150
1151	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1152	snap = (unsigned int)rdp->dynticks_snap;
1153
1154	/*
1155	 * If the CPU passed through or entered a dynticks idle phase with
1156	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1157	 * already acknowledged the request to pass through a quiescent
1158	 * state.  Either way, that CPU cannot possibly be in an RCU
1159	 * read-side critical section that started before the beginning
1160	 * of the current RCU grace period.
1161	 */
1162	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1163		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1164		rdp->dynticks_fqs++;
1165		return 1;
1166	}
1167
1168	/*
1169	 * Check for the CPU being offline, but only if the grace period
1170	 * is old enough.  We don't need to worry about the CPU changing
1171	 * state: If we see it offline even once, it has been through a
1172	 * quiescent state.
1173	 *
1174	 * The reason for insisting that the grace period be at least
1175	 * one jiffy old is that CPUs that are not quite online and that
1176	 * have just gone offline can still execute RCU read-side critical
1177	 * sections.
1178	 */
1179	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1180		return 0;  /* Grace period is not old enough. */
1181	barrier();
1182	if (cpu_is_offline(rdp->cpu)) {
1183		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1184		rdp->offline_fqs++;
1185		return 1;
1186	}
1187
1188	/*
1189	 * A CPU running for an extended time within the kernel can
1190	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1191	 * even context-switching back and forth between a pair of
1192	 * in-kernel CPU-bound tasks cannot advance grace periods.
1193	 * So if the grace period is old enough, make the CPU pay attention.
1194	 * Note that the unsynchronized assignments to the per-CPU
1195	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1196	 * bits can be lost, but they will be set again on the next
1197	 * force-quiescent-state pass.  So lost bit sets do not result
1198	 * in incorrect behavior, merely in a grace period lasting
1199	 * a few jiffies longer than it might otherwise.  Because
1200	 * there are at most four threads involved, and because the
1201	 * updates are only once every few jiffies, the probability of
1202	 * lossage (and thus of slight grace-period extension) is
1203	 * quite low.
1204	 *
1205	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1206	 * is set too high, we override with half of the RCU CPU stall
1207	 * warning delay.
1208	 */
1209	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1210	if (ULONG_CMP_GE(jiffies,
1211			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1212	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1213		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1214			WRITE_ONCE(rdp->cond_resched_completed,
1215				   READ_ONCE(rdp->mynode->completed));
1216			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1217			WRITE_ONCE(*rcrmp,
1218				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1219		}
1220		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1221	}
1222
1223	/* And if it has been a really long time, kick the CPU as well. */
1224	if (ULONG_CMP_GE(jiffies,
1225			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1226	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1227		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1228
1229	return 0;
1230}
1231
1232static void record_gp_stall_check_time(struct rcu_state *rsp)
1233{
1234	unsigned long j = jiffies;
1235	unsigned long j1;
1236
1237	rsp->gp_start = j;
1238	smp_wmb(); /* Record start time before stall time. */
1239	j1 = rcu_jiffies_till_stall_check();
1240	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1241	rsp->jiffies_resched = j + j1 / 2;
1242	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1243}
1244
1245/*
1246 * Convert a ->gp_state value to a character string.
 
1247 */
1248static const char *gp_state_getname(short gs)
 
1249{
1250	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1251		return "???";
1252	return gp_state_names[gs];
 
 
 
 
1253}
1254
1255/*
1256 * Complain about starvation of grace-period kthread.
 
 
1257 */
1258static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1259{
1260	unsigned long gpa;
1261	unsigned long j;
1262
1263	j = jiffies;
1264	gpa = READ_ONCE(rsp->gp_activity);
1265	if (j - gpa > 2 * HZ) {
1266		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1267		       rsp->name, j - gpa,
1268		       rsp->gpnum, rsp->completed,
1269		       rsp->gp_flags,
1270		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1271		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1272		if (rsp->gp_kthread) {
1273			sched_show_task(rsp->gp_kthread);
1274			wake_up_process(rsp->gp_kthread);
1275		}
1276	}
1277}
1278
1279/*
1280 * Dump stacks of all tasks running on stalled CPUs.
 
 
 
1281 */
1282static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1283{
1284	int cpu;
1285	unsigned long flags;
1286	struct rcu_node *rnp;
1287
1288	rcu_for_each_leaf_node(rsp, rnp) {
1289		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1290		if (rnp->qsmask != 0) {
1291			for_each_leaf_node_possible_cpu(rnp, cpu)
1292				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1293					dump_cpu_task(cpu);
1294		}
1295		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1296	}
1297}
1298
1299/*
1300 * If too much time has passed in the current grace period, and if
1301 * so configured, go kick the relevant kthreads.
1302 */
1303static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1304{
1305	unsigned long j;
1306
1307	if (!rcu_kick_kthreads)
1308		return;
1309	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1310	if (time_after(jiffies, j) && rsp->gp_kthread &&
1311	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1312		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1313		rcu_ftrace_dump(DUMP_ALL);
1314		wake_up_process(rsp->gp_kthread);
1315		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
 
 
 
1316	}
1317}
1318
1319static inline void panic_on_rcu_stall(void)
1320{
1321	if (sysctl_panic_on_rcu_stall)
1322		panic("RCU Stall\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323}
1324
1325static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1326{
1327	int cpu;
1328	long delta;
1329	unsigned long flags;
1330	unsigned long gpa;
1331	unsigned long j;
1332	int ndetected = 0;
1333	struct rcu_node *rnp = rcu_get_root(rsp);
1334	long totqlen = 0;
1335
1336	/* Kick and suppress, if so configured. */
1337	rcu_stall_kick_kthreads(rsp);
1338	if (rcu_cpu_stall_suppress)
1339		return;
1340
1341	/* Only let one CPU complain about others per time interval. */
1342
1343	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1344	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1345	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1346		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
1347		return;
1348	}
1349	WRITE_ONCE(rsp->jiffies_stall,
1350		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1351	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
 
 
1352
1353	/*
1354	 * OK, time to rat on our buddy...
1355	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1356	 * RCU CPU stall warnings.
1357	 */
1358	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1359	       rsp->name);
1360	print_cpu_stall_info_begin();
1361	rcu_for_each_leaf_node(rsp, rnp) {
1362		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1363		ndetected += rcu_print_task_stall(rnp);
1364		if (rnp->qsmask != 0) {
1365			for_each_leaf_node_possible_cpu(rnp, cpu)
1366				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1367					print_cpu_stall_info(rsp, cpu);
1368					ndetected++;
1369				}
1370		}
1371		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1372	}
1373
1374	print_cpu_stall_info_end();
1375	for_each_possible_cpu(cpu)
1376		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1377	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1378	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1379	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1380	if (ndetected) {
1381		rcu_dump_cpu_stacks(rsp);
1382	} else {
1383		if (READ_ONCE(rsp->gpnum) != gpnum ||
1384		    READ_ONCE(rsp->completed) == gpnum) {
1385			pr_err("INFO: Stall ended before state dump start\n");
1386		} else {
1387			j = jiffies;
1388			gpa = READ_ONCE(rsp->gp_activity);
1389			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1390			       rsp->name, j - gpa, j, gpa,
1391			       jiffies_till_next_fqs,
1392			       rcu_get_root(rsp)->qsmask);
1393			/* In this case, the current CPU might be at fault. */
1394			sched_show_task(current);
1395		}
1396	}
1397
1398	/* Complain about tasks blocking the grace period. */
1399	rcu_print_detail_task_stall(rsp);
1400
1401	rcu_check_gp_kthread_starvation(rsp);
1402
1403	panic_on_rcu_stall();
 
 
 
1404
1405	force_quiescent_state(rsp);  /* Kick them all. */
1406}
 
1407
1408static void print_cpu_stall(struct rcu_state *rsp)
 
1409{
1410	int cpu;
1411	unsigned long flags;
1412	struct rcu_node *rnp = rcu_get_root(rsp);
1413	long totqlen = 0;
1414
1415	/* Kick and suppress, if so configured. */
1416	rcu_stall_kick_kthreads(rsp);
1417	if (rcu_cpu_stall_suppress)
1418		return;
1419
1420	/*
1421	 * OK, time to rat on ourselves...
1422	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1423	 * RCU CPU stall warnings.
1424	 */
1425	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1426	print_cpu_stall_info_begin();
1427	print_cpu_stall_info(rsp, smp_processor_id());
1428	print_cpu_stall_info_end();
1429	for_each_possible_cpu(cpu)
1430		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1431	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1432		jiffies - rsp->gp_start,
1433		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1434
1435	rcu_check_gp_kthread_starvation(rsp);
 
 
1436
1437	rcu_dump_cpu_stacks(rsp);
 
1438
1439	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1440	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1441		WRITE_ONCE(rsp->jiffies_stall,
1442			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1443	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
1444
1445	panic_on_rcu_stall();
1446
1447	/*
1448	 * Attempt to revive the RCU machinery by forcing a context switch.
1449	 *
1450	 * A context switch would normally allow the RCU state machine to make
1451	 * progress and it could be we're stuck in kernel space without context
1452	 * switches for an entirely unreasonable amount of time.
1453	 */
1454	resched_cpu(smp_processor_id());
1455}
 
1456
1457static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 
1458{
1459	unsigned long completed;
1460	unsigned long gpnum;
1461	unsigned long gps;
1462	unsigned long j;
1463	unsigned long js;
1464	struct rcu_node *rnp;
1465
1466	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1467	    !rcu_gp_in_progress(rsp))
1468		return;
1469	rcu_stall_kick_kthreads(rsp);
1470	j = jiffies;
1471
1472	/*
1473	 * Lots of memory barriers to reject false positives.
1474	 *
1475	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1476	 * then rsp->gp_start, and finally rsp->completed.  These values
1477	 * are updated in the opposite order with memory barriers (or
1478	 * equivalent) during grace-period initialization and cleanup.
1479	 * Now, a false positive can occur if we get an new value of
1480	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1481	 * the memory barriers, the only way that this can happen is if one
1482	 * grace period ends and another starts between these two fetches.
1483	 * Detect this by comparing rsp->completed with the previous fetch
1484	 * from rsp->gpnum.
1485	 *
1486	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1487	 * and rsp->gp_start suffice to forestall false positives.
1488	 */
1489	gpnum = READ_ONCE(rsp->gpnum);
1490	smp_rmb(); /* Pick up ->gpnum first... */
1491	js = READ_ONCE(rsp->jiffies_stall);
1492	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1493	gps = READ_ONCE(rsp->gp_start);
1494	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1495	completed = READ_ONCE(rsp->completed);
1496	if (ULONG_CMP_GE(completed, gpnum) ||
1497	    ULONG_CMP_LT(j, js) ||
1498	    ULONG_CMP_GE(gps, js))
1499		return; /* No stall or GP completed since entering function. */
1500	rnp = rdp->mynode;
1501	if (rcu_gp_in_progress(rsp) &&
1502	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1503
1504		/* We haven't checked in, so go dump stack. */
1505		print_cpu_stall(rsp);
1506
1507	} else if (rcu_gp_in_progress(rsp) &&
1508		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1509
1510		/* They had a few time units to dump stack, so complain. */
1511		print_other_cpu_stall(rsp, gpnum);
1512	}
1513}
1514
1515/**
1516 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1517 *
1518 * Set the stall-warning timeout way off into the future, thus preventing
1519 * any RCU CPU stall-warning messages from appearing in the current set of
1520 * RCU grace periods.
1521 *
1522 * The caller must disable hard irqs.
1523 */
1524void rcu_cpu_stall_reset(void)
1525{
1526	struct rcu_state *rsp;
1527
1528	for_each_rcu_flavor(rsp)
1529		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1530}
1531
1532/*
1533 * Initialize the specified rcu_data structure's default callback list
1534 * to empty.  The default callback list is the one that is not used by
1535 * no-callbacks CPUs.
1536 */
1537static void init_default_callback_list(struct rcu_data *rdp)
1538{
1539	int i;
1540
1541	rdp->nxtlist = NULL;
1542	for (i = 0; i < RCU_NEXT_SIZE; i++)
1543		rdp->nxttail[i] = &rdp->nxtlist;
 
 
 
 
 
 
1544}
1545
1546/*
1547 * Initialize the specified rcu_data structure's callback list to empty.
1548 */
1549static void init_callback_list(struct rcu_data *rdp)
1550{
1551	if (init_nocb_callback_list(rdp))
1552		return;
1553	init_default_callback_list(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
1554}
1555
1556/*
1557 * Determine the value that ->completed will have at the end of the
1558 * next subsequent grace period.  This is used to tag callbacks so that
1559 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1560 * been dyntick-idle for an extended period with callbacks under the
1561 * influence of RCU_FAST_NO_HZ.
1562 *
1563 * The caller must hold rnp->lock with interrupts disabled.
1564 */
1565static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1566				       struct rcu_node *rnp)
1567{
1568	/*
1569	 * If RCU is idle, we just wait for the next grace period.
1570	 * But we can only be sure that RCU is idle if we are looking
1571	 * at the root rcu_node structure -- otherwise, a new grace
1572	 * period might have started, but just not yet gotten around
1573	 * to initializing the current non-root rcu_node structure.
1574	 */
1575	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1576		return rnp->completed + 1;
1577
1578	/*
1579	 * Otherwise, wait for a possible partial grace period and
1580	 * then the subsequent full grace period.
1581	 */
1582	return rnp->completed + 2;
 
 
 
1583}
1584
1585/*
1586 * Trace-event helper function for rcu_start_future_gp() and
1587 * rcu_nocb_wait_gp().
1588 */
1589static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1590				unsigned long c, const char *s)
1591{
1592	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1593				      rnp->completed, c, rnp->level,
1594				      rnp->grplo, rnp->grphi, s);
 
 
 
 
 
 
 
 
1595}
1596
1597/*
1598 * Start some future grace period, as needed to handle newly arrived
1599 * callbacks.  The required future grace periods are recorded in each
1600 * rcu_node structure's ->need_future_gp field.  Returns true if there
1601 * is reason to awaken the grace-period kthread.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602 *
1603 * The caller must hold the specified rcu_node structure's ->lock.
1604 */
1605static bool __maybe_unused
1606rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1607		    unsigned long *c_out)
1608{
1609	unsigned long c;
 
 
 
 
 
 
1610	int i;
1611	bool ret = false;
1612	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1613
1614	/*
1615	 * Pick up grace-period number for new callbacks.  If this
1616	 * grace period is already marked as needed, return to the caller.
1617	 */
1618	c = rcu_cbs_completed(rdp->rsp, rnp);
1619	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1620	if (rnp->need_future_gp[c & 0x1]) {
1621		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1622		goto out;
1623	}
1624
1625	/*
1626	 * If either this rcu_node structure or the root rcu_node structure
1627	 * believe that a grace period is in progress, then we must wait
1628	 * for the one following, which is in "c".  Because our request
1629	 * will be noticed at the end of the current grace period, we don't
1630	 * need to explicitly start one.  We only do the lockless check
1631	 * of rnp_root's fields if the current rcu_node structure thinks
1632	 * there is no grace period in flight, and because we hold rnp->lock,
1633	 * the only possible change is when rnp_root's two fields are
1634	 * equal, in which case rnp_root->gpnum might be concurrently
1635	 * incremented.  But that is OK, as it will just result in our
1636	 * doing some extra useless work.
1637	 */
1638	if (rnp->gpnum != rnp->completed ||
1639	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1640		rnp->need_future_gp[c & 0x1]++;
1641		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1642		goto out;
1643	}
1644
1645	/*
1646	 * There might be no grace period in progress.  If we don't already
1647	 * hold it, acquire the root rcu_node structure's lock in order to
1648	 * start one (if needed).
1649	 */
1650	if (rnp != rnp_root)
1651		raw_spin_lock_rcu_node(rnp_root);
1652
1653	/*
1654	 * Get a new grace-period number.  If there really is no grace
1655	 * period in progress, it will be smaller than the one we obtained
1656	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1657	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1658	 */
1659	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1660	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1661		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1662			rdp->nxtcompleted[i] = c;
1663
1664	/*
1665	 * If the needed for the required grace period is already
1666	 * recorded, trace and leave.
1667	 */
1668	if (rnp_root->need_future_gp[c & 0x1]) {
1669		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1670		goto unlock_out;
1671	}
1672
1673	/* Record the need for the future grace period. */
1674	rnp_root->need_future_gp[c & 0x1]++;
 
 
1675
1676	/* If a grace period is not already in progress, start one. */
1677	if (rnp_root->gpnum != rnp_root->completed) {
1678		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1679	} else {
1680		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1681		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1682	}
1683unlock_out:
1684	if (rnp != rnp_root)
1685		raw_spin_unlock_rcu_node(rnp_root);
1686out:
1687	if (c_out != NULL)
1688		*c_out = c;
1689	return ret;
1690}
1691
1692/*
1693 * Clean up any old requests for the just-ended grace period.  Also return
1694 * whether any additional grace periods have been requested.  Also invoke
1695 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1696 * waiting for this grace period to complete.
1697 */
1698static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1699{
1700	int c = rnp->completed;
1701	int needmore;
1702	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1703
1704	rnp->need_future_gp[c & 0x1] = 0;
1705	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1706	trace_rcu_future_gp(rnp, rdp, c,
1707			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1708	return needmore;
1709}
1710
1711/*
1712 * Awaken the grace-period kthread for the specified flavor of RCU.
1713 * Don't do a self-awaken, and don't bother awakening when there is
1714 * nothing for the grace-period kthread to do (as in several CPUs
1715 * raced to awaken, and we lost), and finally don't try to awaken
1716 * a kthread that has not yet been created.
1717 */
1718static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1719{
1720	if (current == rsp->gp_kthread ||
1721	    !READ_ONCE(rsp->gp_flags) ||
1722	    !rsp->gp_kthread)
1723		return;
1724	swake_up(&rsp->gp_wq);
1725}
1726
1727/*
1728 * If there is room, assign a ->completed number to any callbacks on
1729 * this CPU that have not already been assigned.  Also accelerate any
1730 * callbacks that were previously assigned a ->completed number that has
1731 * since proven to be too conservative, which can happen if callbacks get
1732 * assigned a ->completed number while RCU is idle, but with reference to
1733 * a non-root rcu_node structure.  This function is idempotent, so it does
1734 * not hurt to call it repeatedly.  Returns an flag saying that we should
1735 * awaken the RCU grace-period kthread.
1736 *
1737 * The caller must hold rnp->lock with interrupts disabled.
1738 */
1739static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1740			       struct rcu_data *rdp)
1741{
1742	unsigned long c;
1743	int i;
1744	bool ret;
1745
1746	/* If the CPU has no callbacks, nothing to do. */
1747	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1748		return false;
1749
1750	/*
1751	 * Starting from the sublist containing the callbacks most
1752	 * recently assigned a ->completed number and working down, find the
1753	 * first sublist that is not assignable to an upcoming grace period.
1754	 * Such a sublist has something in it (first two tests) and has
1755	 * a ->completed number assigned that will complete sooner than
1756	 * the ->completed number for newly arrived callbacks (last test).
1757	 *
1758	 * The key point is that any later sublist can be assigned the
1759	 * same ->completed number as the newly arrived callbacks, which
1760	 * means that the callbacks in any of these later sublist can be
1761	 * grouped into a single sublist, whether or not they have already
1762	 * been assigned a ->completed number.
1763	 */
1764	c = rcu_cbs_completed(rsp, rnp);
1765	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1766		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1767		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1768			break;
1769
1770	/*
1771	 * If there are no sublist for unassigned callbacks, leave.
1772	 * At the same time, advance "i" one sublist, so that "i" will
1773	 * index into the sublist where all the remaining callbacks should
1774	 * be grouped into.
1775	 */
1776	if (++i >= RCU_NEXT_TAIL)
1777		return false;
 
1778
1779	/*
1780	 * Assign all subsequent callbacks' ->completed number to the next
1781	 * full grace period and group them all in the sublist initially
1782	 * indexed by "i".
1783	 */
1784	for (; i <= RCU_NEXT_TAIL; i++) {
1785		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1786		rdp->nxtcompleted[i] = c;
 
 
 
 
 
 
 
 
 
 
 
 
1787	}
1788	/* Record any needed additional grace periods. */
1789	ret = rcu_start_future_gp(rnp, rdp, NULL);
1790
1791	/* Trace depending on how much we were able to accelerate. */
1792	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1793		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1794	else
1795		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1796	return ret;
1797}
1798
1799/*
1800 * Move any callbacks whose grace period has completed to the
1801 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1802 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1803 * sublist.  This function is idempotent, so it does not hurt to
1804 * invoke it repeatedly.  As long as it is not invoked -too- often...
1805 * Returns true if the RCU grace-period kthread needs to be awakened.
1806 *
1807 * The caller must hold rnp->lock with interrupts disabled.
1808 */
1809static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1810			    struct rcu_data *rdp)
1811{
1812	int i, j;
 
1813
1814	/* If the CPU has no callbacks, nothing to do. */
1815	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1816		return false;
 
 
 
 
1817
1818	/*
1819	 * Find all callbacks whose ->completed numbers indicate that they
1820	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1821	 */
1822	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1823		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1824			break;
1825		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1826	}
1827	/* Clean up any sublist tail pointers that were misordered above. */
1828	for (j = RCU_WAIT_TAIL; j < i; j++)
1829		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1830
1831	/* Copy down callbacks to fill in empty sublists. */
1832	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1833		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1834			break;
1835		rdp->nxttail[j] = rdp->nxttail[i];
1836		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1837	}
1838
1839	/* Classify any remaining callbacks. */
1840	return rcu_accelerate_cbs(rsp, rnp, rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841}
1842
1843/*
1844 * Update CPU-local rcu_data state to record the beginnings and ends of
1845 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1846 * structure corresponding to the current CPU, and must have irqs disabled.
1847 * Returns true if the grace-period kthread needs to be awakened.
1848 */
1849static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1850			      struct rcu_data *rdp)
1851{
1852	bool ret;
1853	bool need_gp;
 
1854
1855	/* Handle the ends of any preceding grace periods first. */
1856	if (rdp->completed == rnp->completed &&
1857	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1858
1859		/* No grace period end, so just accelerate recent callbacks. */
1860		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1861
1862	} else {
1863
1864		/* Advance callbacks. */
1865		ret = rcu_advance_cbs(rsp, rnp, rdp);
1866
1867		/* Remember that we saw this grace-period completion. */
1868		rdp->completed = rnp->completed;
1869		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1870	}
1871
1872	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1873		/*
1874		 * If the current grace period is waiting for this CPU,
1875		 * set up to detect a quiescent state, otherwise don't
1876		 * go looking for one.
1877		 */
1878		rdp->gpnum = rnp->gpnum;
1879		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1880		need_gp = !!(rnp->qsmask & rdp->grpmask);
1881		rdp->cpu_no_qs.b.norm = need_gp;
1882		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1883		rdp->core_needs_qs = need_gp;
1884		zero_cpu_stall_ticks(rdp);
1885		WRITE_ONCE(rdp->gpwrap, false);
1886	}
1887	return ret;
1888}
1889
1890static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1891{
1892	unsigned long flags;
1893	bool needwake;
1894	struct rcu_node *rnp;
 
 
 
1895
1896	local_irq_save(flags);
1897	rnp = rdp->mynode;
1898	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1899	     rdp->completed == READ_ONCE(rnp->completed) &&
1900	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1901	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1902		local_irq_restore(flags);
1903		return;
1904	}
1905	needwake = __note_gp_changes(rsp, rnp, rdp);
1906	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1907	if (needwake)
1908		rcu_gp_kthread_wake(rsp);
1909}
1910
1911static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1912{
1913	if (delay > 0 &&
1914	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1915		schedule_timeout_uninterruptible(delay);
1916}
1917
1918/*
1919 * Initialize a new grace period.  Return false if no grace period required.
1920 */
1921static bool rcu_gp_init(struct rcu_state *rsp)
1922{
 
1923	unsigned long oldmask;
 
1924	struct rcu_data *rdp;
1925	struct rcu_node *rnp = rcu_get_root(rsp);
 
1926
1927	WRITE_ONCE(rsp->gp_activity, jiffies);
1928	raw_spin_lock_irq_rcu_node(rnp);
1929	if (!READ_ONCE(rsp->gp_flags)) {
1930		/* Spurious wakeup, tell caller to go back to sleep.  */
1931		raw_spin_unlock_irq_rcu_node(rnp);
1932		return false;
1933	}
1934	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1935
1936	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1937		/*
1938		 * Grace period already in progress, don't start another.
1939		 * Not supposed to be able to happen.
1940		 */
1941		raw_spin_unlock_irq_rcu_node(rnp);
1942		return false;
1943	}
1944
1945	/* Advance to a new grace period and initialize state. */
1946	record_gp_stall_check_time(rsp);
1947	/* Record GP times before starting GP, hence smp_store_release(). */
1948	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1949	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
 
 
 
1950	raw_spin_unlock_irq_rcu_node(rnp);
1951
1952	/*
1953	 * Apply per-leaf buffered online and offline operations to the
1954	 * rcu_node tree.  Note that this new grace period need not wait
1955	 * for subsequent online CPUs, and that quiescent-state forcing
1956	 * will handle subsequent offline CPUs.
1957	 */
1958	rcu_for_each_leaf_node(rsp, rnp) {
1959		rcu_gp_slow(rsp, gp_preinit_delay);
1960		raw_spin_lock_irq_rcu_node(rnp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1961		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1962		    !rnp->wait_blkd_tasks) {
1963			/* Nothing to do on this leaf rcu_node structure. */
1964			raw_spin_unlock_irq_rcu_node(rnp);
 
 
1965			continue;
1966		}
1967
1968		/* Record old state, apply changes to ->qsmaskinit field. */
1969		oldmask = rnp->qsmaskinit;
1970		rnp->qsmaskinit = rnp->qsmaskinitnext;
1971
1972		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1973		if (!oldmask != !rnp->qsmaskinit) {
1974			if (!oldmask) /* First online CPU for this rcu_node. */
1975				rcu_init_new_rnp(rnp);
1976			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1977				rnp->wait_blkd_tasks = true;
1978			else /* Last offline CPU and can propagate. */
 
1979				rcu_cleanup_dead_rnp(rnp);
 
1980		}
1981
1982		/*
1983		 * If all waited-on tasks from prior grace period are
1984		 * done, and if all this rcu_node structure's CPUs are
1985		 * still offline, propagate up the rcu_node tree and
1986		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1987		 * rcu_node structure's CPUs has since come back online,
1988		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1989		 * checks for this, so just call it unconditionally).
1990		 */
1991		if (rnp->wait_blkd_tasks &&
1992		    (!rcu_preempt_has_tasks(rnp) ||
1993		     rnp->qsmaskinit)) {
1994			rnp->wait_blkd_tasks = false;
1995			rcu_cleanup_dead_rnp(rnp);
 
1996		}
1997
1998		raw_spin_unlock_irq_rcu_node(rnp);
 
 
1999	}
 
2000
2001	/*
2002	 * Set the quiescent-state-needed bits in all the rcu_node
2003	 * structures for all currently online CPUs in breadth-first order,
2004	 * starting from the root rcu_node structure, relying on the layout
2005	 * of the tree within the rsp->node[] array.  Note that other CPUs
2006	 * will access only the leaves of the hierarchy, thus seeing that no
2007	 * grace period is in progress, at least until the corresponding
2008	 * leaf node has been initialized.
2009	 *
2010	 * The grace period cannot complete until the initialization
2011	 * process finishes, because this kthread handles both.
2012	 */
2013	rcu_for_each_node_breadth_first(rsp, rnp) {
2014		rcu_gp_slow(rsp, gp_init_delay);
2015		raw_spin_lock_irq_rcu_node(rnp);
2016		rdp = this_cpu_ptr(rsp->rda);
 
2017		rcu_preempt_check_blocked_tasks(rnp);
2018		rnp->qsmask = rnp->qsmaskinit;
2019		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2020		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2021			WRITE_ONCE(rnp->completed, rsp->completed);
2022		if (rnp == rdp->mynode)
2023			(void)__note_gp_changes(rsp, rnp, rdp);
2024		rcu_preempt_boost_start_gp(rnp);
2025		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2026					    rnp->level, rnp->grplo,
2027					    rnp->grphi, rnp->qsmask);
2028		raw_spin_unlock_irq_rcu_node(rnp);
2029		cond_resched_rcu_qs();
2030		WRITE_ONCE(rsp->gp_activity, jiffies);
 
 
 
 
 
 
2031	}
2032
 
 
 
 
2033	return true;
2034}
2035
2036/*
2037 * Helper function for wait_event_interruptible_timeout() wakeup
2038 * at force-quiescent-state time.
2039 */
2040static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2041{
2042	struct rcu_node *rnp = rcu_get_root(rsp);
 
 
 
 
2043
2044	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2045	*gfp = READ_ONCE(rsp->gp_flags);
2046	if (*gfp & RCU_GP_FLAG_FQS)
2047		return true;
2048
2049	/* The current grace period has completed. */
2050	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2051		return true;
2052
2053	return false;
2054}
2055
2056/*
2057 * Do one round of quiescent-state forcing.
2058 */
2059static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2060{
2061	bool isidle = false;
2062	unsigned long maxj;
2063	struct rcu_node *rnp = rcu_get_root(rsp);
 
 
 
 
 
 
 
 
 
 
 
 
2064
2065	WRITE_ONCE(rsp->gp_activity, jiffies);
2066	rsp->n_force_qs++;
2067	if (first_time) {
2068		/* Collect dyntick-idle snapshots. */
2069		if (is_sysidle_rcu_state(rsp)) {
2070			isidle = true;
2071			maxj = jiffies - ULONG_MAX / 4;
2072		}
2073		force_qs_rnp(rsp, dyntick_save_progress_counter,
2074			     &isidle, &maxj);
2075		rcu_sysidle_report_gp(rsp, isidle, maxj);
2076	} else {
2077		/* Handle dyntick-idle and offline CPUs. */
2078		isidle = true;
2079		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2080	}
2081	/* Clear flag to prevent immediate re-entry. */
2082	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2083		raw_spin_lock_irq_rcu_node(rnp);
2084		WRITE_ONCE(rsp->gp_flags,
2085			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2086		raw_spin_unlock_irq_rcu_node(rnp);
2087	}
2088}
2089
2090/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2091 * Clean up after the old grace period.
2092 */
2093static void rcu_gp_cleanup(struct rcu_state *rsp)
2094{
2095	unsigned long gp_duration;
2096	bool needgp = false;
2097	int nocb = 0;
 
 
2098	struct rcu_data *rdp;
2099	struct rcu_node *rnp = rcu_get_root(rsp);
2100	struct swait_queue_head *sq;
2101
2102	WRITE_ONCE(rsp->gp_activity, jiffies);
2103	raw_spin_lock_irq_rcu_node(rnp);
2104	gp_duration = jiffies - rsp->gp_start;
2105	if (gp_duration > rsp->gp_max)
2106		rsp->gp_max = gp_duration;
 
2107
2108	/*
2109	 * We know the grace period is complete, but to everyone else
2110	 * it appears to still be ongoing.  But it is also the case
2111	 * that to everyone else it looks like there is nothing that
2112	 * they can do to advance the grace period.  It is therefore
2113	 * safe for us to drop the lock in order to mark the grace
2114	 * period as completed in all of the rcu_node structures.
2115	 */
 
2116	raw_spin_unlock_irq_rcu_node(rnp);
2117
2118	/*
2119	 * Propagate new ->completed value to rcu_node structures so
2120	 * that other CPUs don't have to wait until the start of the next
2121	 * grace period to process their callbacks.  This also avoids
2122	 * some nasty RCU grace-period initialization races by forcing
2123	 * the end of the current grace period to be completely recorded in
2124	 * all of the rcu_node structures before the beginning of the next
2125	 * grace period is recorded in any of the rcu_node structures.
2126	 */
2127	rcu_for_each_node_breadth_first(rsp, rnp) {
 
 
2128		raw_spin_lock_irq_rcu_node(rnp);
2129		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 
2130		WARN_ON_ONCE(rnp->qsmask);
2131		WRITE_ONCE(rnp->completed, rsp->gpnum);
2132		rdp = this_cpu_ptr(rsp->rda);
 
 
2133		if (rnp == rdp->mynode)
2134			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2135		/* smp_mb() provided by prior unlock-lock pair. */
2136		nocb += rcu_future_gp_cleanup(rsp, rnp);
 
 
 
 
 
 
2137		sq = rcu_nocb_gp_get(rnp);
2138		raw_spin_unlock_irq_rcu_node(rnp);
2139		rcu_nocb_gp_cleanup(sq);
2140		cond_resched_rcu_qs();
2141		WRITE_ONCE(rsp->gp_activity, jiffies);
2142		rcu_gp_slow(rsp, gp_cleanup_delay);
2143	}
2144	rnp = rcu_get_root(rsp);
2145	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2146	rcu_nocb_gp_set(rnp, nocb);
2147
2148	/* Declare grace period done. */
2149	WRITE_ONCE(rsp->completed, rsp->gpnum);
2150	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2151	rsp->gp_state = RCU_GP_IDLE;
2152	rdp = this_cpu_ptr(rsp->rda);
 
 
 
 
 
 
2153	/* Advance CBs to reduce false positives below. */
2154	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2155	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2156		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2157		trace_rcu_grace_period(rsp->name,
2158				       READ_ONCE(rsp->gpnum),
2159				       TPS("newreq"));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2160	}
2161	raw_spin_unlock_irq_rcu_node(rnp);
 
 
 
 
 
 
 
2162}
2163
2164/*
2165 * Body of kthread that handles grace periods.
2166 */
2167static int __noreturn rcu_gp_kthread(void *arg)
2168{
2169	bool first_gp_fqs;
2170	int gf;
2171	unsigned long j;
2172	int ret;
2173	struct rcu_state *rsp = arg;
2174	struct rcu_node *rnp = rcu_get_root(rsp);
2175
2176	rcu_bind_gp_kthread();
2177	for (;;) {
2178
2179		/* Handle grace-period start. */
2180		for (;;) {
2181			trace_rcu_grace_period(rsp->name,
2182					       READ_ONCE(rsp->gpnum),
2183					       TPS("reqwait"));
2184			rsp->gp_state = RCU_GP_WAIT_GPS;
2185			swait_event_interruptible(rsp->gp_wq,
2186						 READ_ONCE(rsp->gp_flags) &
2187						 RCU_GP_FLAG_INIT);
2188			rsp->gp_state = RCU_GP_DONE_GPS;
 
2189			/* Locking provides needed memory barrier. */
2190			if (rcu_gp_init(rsp))
2191				break;
2192			cond_resched_rcu_qs();
2193			WRITE_ONCE(rsp->gp_activity, jiffies);
2194			WARN_ON(signal_pending(current));
2195			trace_rcu_grace_period(rsp->name,
2196					       READ_ONCE(rsp->gpnum),
2197					       TPS("reqwaitsig"));
2198		}
2199
2200		/* Handle quiescent-state forcing. */
2201		first_gp_fqs = true;
2202		j = jiffies_till_first_fqs;
2203		if (j > HZ) {
2204			j = HZ;
2205			jiffies_till_first_fqs = HZ;
2206		}
2207		ret = 0;
2208		for (;;) {
2209			if (!ret) {
2210				rsp->jiffies_force_qs = jiffies + j;
2211				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2212					   jiffies + 3 * j);
2213			}
2214			trace_rcu_grace_period(rsp->name,
2215					       READ_ONCE(rsp->gpnum),
2216					       TPS("fqswait"));
2217			rsp->gp_state = RCU_GP_WAIT_FQS;
2218			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2219					rcu_gp_fqs_check_wake(rsp, &gf), j);
2220			rsp->gp_state = RCU_GP_DOING_FQS;
2221			/* Locking provides needed memory barriers. */
2222			/* If grace period done, leave loop. */
2223			if (!READ_ONCE(rnp->qsmask) &&
2224			    !rcu_preempt_blocked_readers_cgp(rnp))
2225				break;
2226			/* If time for quiescent-state forcing, do it. */
2227			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2228			    (gf & RCU_GP_FLAG_FQS)) {
2229				trace_rcu_grace_period(rsp->name,
2230						       READ_ONCE(rsp->gpnum),
2231						       TPS("fqsstart"));
2232				rcu_gp_fqs(rsp, first_gp_fqs);
2233				first_gp_fqs = false;
2234				trace_rcu_grace_period(rsp->name,
2235						       READ_ONCE(rsp->gpnum),
2236						       TPS("fqsend"));
2237				cond_resched_rcu_qs();
2238				WRITE_ONCE(rsp->gp_activity, jiffies);
2239				ret = 0; /* Force full wait till next FQS. */
2240				j = jiffies_till_next_fqs;
2241				if (j > HZ) {
2242					j = HZ;
2243					jiffies_till_next_fqs = HZ;
2244				} else if (j < 1) {
2245					j = 1;
2246					jiffies_till_next_fqs = 1;
2247				}
2248			} else {
2249				/* Deal with stray signal. */
2250				cond_resched_rcu_qs();
2251				WRITE_ONCE(rsp->gp_activity, jiffies);
2252				WARN_ON(signal_pending(current));
2253				trace_rcu_grace_period(rsp->name,
2254						       READ_ONCE(rsp->gpnum),
2255						       TPS("fqswaitsig"));
2256				ret = 1; /* Keep old FQS timing. */
2257				j = jiffies;
2258				if (time_after(jiffies, rsp->jiffies_force_qs))
2259					j = 1;
2260				else
2261					j = rsp->jiffies_force_qs - j;
2262			}
2263		}
2264
2265		/* Handle grace-period end. */
2266		rsp->gp_state = RCU_GP_CLEANUP;
2267		rcu_gp_cleanup(rsp);
2268		rsp->gp_state = RCU_GP_CLEANED;
2269	}
2270}
2271
2272/*
2273 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2274 * in preparation for detecting the next grace period.  The caller must hold
2275 * the root node's ->lock and hard irqs must be disabled.
2276 *
2277 * Note that it is legal for a dying CPU (which is marked as offline) to
2278 * invoke this function.  This can happen when the dying CPU reports its
2279 * quiescent state.
2280 *
2281 * Returns true if the grace-period kthread must be awakened.
2282 */
2283static bool
2284rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2285		      struct rcu_data *rdp)
2286{
2287	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2288		/*
2289		 * Either we have not yet spawned the grace-period
2290		 * task, this CPU does not need another grace period,
2291		 * or a grace period is already in progress.
2292		 * Either way, don't start a new grace period.
2293		 */
2294		return false;
2295	}
2296	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2297	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2298			       TPS("newreq"));
2299
2300	/*
2301	 * We can't do wakeups while holding the rnp->lock, as that
2302	 * could cause possible deadlocks with the rq->lock. Defer
2303	 * the wakeup to our caller.
2304	 */
2305	return true;
2306}
2307
2308/*
2309 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2310 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2311 * is invoked indirectly from rcu_advance_cbs(), which would result in
2312 * endless recursion -- or would do so if it wasn't for the self-deadlock
2313 * that is encountered beforehand.
2314 *
2315 * Returns true if the grace-period kthread needs to be awakened.
2316 */
2317static bool rcu_start_gp(struct rcu_state *rsp)
2318{
2319	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2320	struct rcu_node *rnp = rcu_get_root(rsp);
2321	bool ret = false;
2322
2323	/*
2324	 * If there is no grace period in progress right now, any
2325	 * callbacks we have up to this point will be satisfied by the
2326	 * next grace period.  Also, advancing the callbacks reduces the
2327	 * probability of false positives from cpu_needs_another_gp()
2328	 * resulting in pointless grace periods.  So, advance callbacks
2329	 * then start the grace period!
2330	 */
2331	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2332	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2333	return ret;
2334}
2335
2336/*
2337 * Report a full set of quiescent states to the specified rcu_state data
2338 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2339 * kthread if another grace period is required.  Whether we wake
2340 * the grace-period kthread or it awakens itself for the next round
2341 * of quiescent-state forcing, that kthread will clean up after the
2342 * just-completed grace period.  Note that the caller must hold rnp->lock,
2343 * which is released before return.
2344 */
2345static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2346	__releases(rcu_get_root(rsp)->lock)
2347{
2348	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2349	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2350	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2351	rcu_gp_kthread_wake(rsp);
2352}
2353
2354/*
2355 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2356 * Allows quiescent states for a group of CPUs to be reported at one go
2357 * to the specified rcu_node structure, though all the CPUs in the group
2358 * must be represented by the same rcu_node structure (which need not be a
2359 * leaf rcu_node structure, though it often will be).  The gps parameter
2360 * is the grace-period snapshot, which means that the quiescent states
2361 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2362 * must be held upon entry, and it is released before return.
 
 
 
 
2363 */
2364static void
2365rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2366		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2367	__releases(rnp->lock)
2368{
2369	unsigned long oldmask = 0;
2370	struct rcu_node *rnp_c;
2371
 
 
2372	/* Walk up the rcu_node hierarchy. */
2373	for (;;) {
2374		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2375
2376			/*
2377			 * Our bit has already been cleared, or the
2378			 * relevant grace period is already over, so done.
2379			 */
2380			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2381			return;
2382		}
2383		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2384		rnp->qsmask &= ~mask;
2385		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
 
 
2386						 mask, rnp->qsmask, rnp->level,
2387						 rnp->grplo, rnp->grphi,
2388						 !!rnp->gp_tasks);
2389		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2390
2391			/* Other bits still set at this level, so done. */
2392			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2393			return;
2394		}
 
2395		mask = rnp->grpmask;
2396		if (rnp->parent == NULL) {
2397
2398			/* No more levels.  Exit loop holding root lock. */
2399
2400			break;
2401		}
2402		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2403		rnp_c = rnp;
2404		rnp = rnp->parent;
2405		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2406		oldmask = rnp_c->qsmask;
2407	}
2408
2409	/*
2410	 * Get here if we are the last CPU to pass through a quiescent
2411	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2412	 * to clean up and start the next grace period if one is needed.
2413	 */
2414	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2415}
2416
2417/*
2418 * Record a quiescent state for all tasks that were previously queued
2419 * on the specified rcu_node structure and that were blocking the current
2420 * RCU grace period.  The caller must hold the specified rnp->lock with
2421 * irqs disabled, and this lock is released upon return, but irqs remain
2422 * disabled.
2423 */
2424static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2425				      struct rcu_node *rnp, unsigned long flags)
2426	__releases(rnp->lock)
2427{
2428	unsigned long gps;
2429	unsigned long mask;
2430	struct rcu_node *rnp_p;
2431
2432	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2433	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 
 
2434		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2435		return;  /* Still need more quiescent states! */
2436	}
2437
 
2438	rnp_p = rnp->parent;
2439	if (rnp_p == NULL) {
2440		/*
2441		 * Only one rcu_node structure in the tree, so don't
2442		 * try to report up to its nonexistent parent!
2443		 */
2444		rcu_report_qs_rsp(rsp, flags);
2445		return;
2446	}
2447
2448	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2449	gps = rnp->gpnum;
2450	mask = rnp->grpmask;
2451	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2452	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2453	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2454}
2455
2456/*
2457 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2458 * structure.  This must be called from the specified CPU.
2459 */
2460static void
2461rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2462{
2463	unsigned long flags;
2464	unsigned long mask;
2465	bool needwake;
2466	struct rcu_node *rnp;
2467
 
2468	rnp = rdp->mynode;
2469	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2470	if ((rdp->cpu_no_qs.b.norm &&
2471	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2472	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2473	    rdp->gpwrap) {
2474
2475		/*
2476		 * The grace period in which this quiescent state was
2477		 * recorded has ended, so don't report it upwards.
2478		 * We will instead need a new quiescent state that lies
2479		 * within the current grace period.
2480		 */
2481		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2482		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2483		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2484		return;
2485	}
2486	mask = rdp->grpmask;
 
2487	if ((rnp->qsmask & mask) == 0) {
2488		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2489	} else {
2490		rdp->core_needs_qs = false;
2491
2492		/*
2493		 * This GP can't end until cpu checks in, so all of our
2494		 * callbacks can be processed during the next GP.
 
 
2495		 */
2496		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
 
 
 
 
 
 
 
2497
2498		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
 
2499		/* ^^^ Released rnp->lock */
2500		if (needwake)
2501			rcu_gp_kthread_wake(rsp);
2502	}
2503}
2504
2505/*
2506 * Check to see if there is a new grace period of which this CPU
2507 * is not yet aware, and if so, set up local rcu_data state for it.
2508 * Otherwise, see if this CPU has just passed through its first
2509 * quiescent state for this grace period, and record that fact if so.
2510 */
2511static void
2512rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2513{
2514	/* Check for grace-period ends and beginnings. */
2515	note_gp_changes(rsp, rdp);
2516
2517	/*
2518	 * Does this CPU still need to do its part for current grace period?
2519	 * If no, return and let the other CPUs do their part as well.
2520	 */
2521	if (!rdp->core_needs_qs)
2522		return;
2523
2524	/*
2525	 * Was there a quiescent state since the beginning of the grace
2526	 * period? If no, then exit and wait for the next call.
2527	 */
2528	if (rdp->cpu_no_qs.b.norm &&
2529	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2530		return;
2531
2532	/*
2533	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2534	 * judge of that).
2535	 */
2536	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2537}
2538
2539/*
2540 * Send the specified CPU's RCU callbacks to the orphanage.  The
2541 * specified CPU must be offline, and the caller must hold the
2542 * ->orphan_lock.
2543 */
2544static void
2545rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2546			  struct rcu_node *rnp, struct rcu_data *rdp)
2547{
2548	/* No-CBs CPUs do not have orphanable callbacks. */
2549	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2550		return;
2551
2552	/*
2553	 * Orphan the callbacks.  First adjust the counts.  This is safe
2554	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2555	 * cannot be running now.  Thus no memory barrier is required.
2556	 */
2557	if (rdp->nxtlist != NULL) {
2558		rsp->qlen_lazy += rdp->qlen_lazy;
2559		rsp->qlen += rdp->qlen;
2560		rdp->n_cbs_orphaned += rdp->qlen;
2561		rdp->qlen_lazy = 0;
2562		WRITE_ONCE(rdp->qlen, 0);
2563	}
2564
2565	/*
2566	 * Next, move those callbacks still needing a grace period to
2567	 * the orphanage, where some other CPU will pick them up.
2568	 * Some of the callbacks might have gone partway through a grace
2569	 * period, but that is too bad.  They get to start over because we
2570	 * cannot assume that grace periods are synchronized across CPUs.
2571	 * We don't bother updating the ->nxttail[] array yet, instead
2572	 * we just reset the whole thing later on.
2573	 */
2574	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2575		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2576		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2577		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2578	}
2579
2580	/*
2581	 * Then move the ready-to-invoke callbacks to the orphanage,
2582	 * where some other CPU will pick them up.  These will not be
2583	 * required to pass though another grace period: They are done.
2584	 */
2585	if (rdp->nxtlist != NULL) {
2586		*rsp->orphan_donetail = rdp->nxtlist;
2587		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2588	}
2589
2590	/*
2591	 * Finally, initialize the rcu_data structure's list to empty and
2592	 * disallow further callbacks on this CPU.
2593	 */
2594	init_callback_list(rdp);
2595	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2596}
2597
2598/*
2599 * Adopt the RCU callbacks from the specified rcu_state structure's
2600 * orphanage.  The caller must hold the ->orphan_lock.
2601 */
2602static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2603{
2604	int i;
2605	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2606
2607	/* No-CBs CPUs are handled specially. */
2608	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2609	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2610		return;
2611
2612	/* Do the accounting first. */
2613	rdp->qlen_lazy += rsp->qlen_lazy;
2614	rdp->qlen += rsp->qlen;
2615	rdp->n_cbs_adopted += rsp->qlen;
2616	if (rsp->qlen_lazy != rsp->qlen)
2617		rcu_idle_count_callbacks_posted();
2618	rsp->qlen_lazy = 0;
2619	rsp->qlen = 0;
2620
2621	/*
2622	 * We do not need a memory barrier here because the only way we
2623	 * can get here if there is an rcu_barrier() in flight is if
2624	 * we are the task doing the rcu_barrier().
2625	 */
2626
2627	/* First adopt the ready-to-invoke callbacks. */
2628	if (rsp->orphan_donelist != NULL) {
2629		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2630		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2631		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2632			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2633				rdp->nxttail[i] = rsp->orphan_donetail;
2634		rsp->orphan_donelist = NULL;
2635		rsp->orphan_donetail = &rsp->orphan_donelist;
2636	}
2637
2638	/* And then adopt the callbacks that still need a grace period. */
2639	if (rsp->orphan_nxtlist != NULL) {
2640		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2641		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2642		rsp->orphan_nxtlist = NULL;
2643		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2644	}
2645}
2646
2647/*
2648 * Trace the fact that this CPU is going offline.
2649 */
2650static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2651{
2652	RCU_TRACE(unsigned long mask);
2653	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2654	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2655
2656	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2657		return;
2658
2659	RCU_TRACE(mask = rdp->grpmask);
2660	trace_rcu_grace_period(rsp->name,
2661			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2662			       TPS("cpuofl"));
2663}
2664
2665/*
2666 * All CPUs for the specified rcu_node structure have gone offline,
2667 * and all tasks that were preempted within an RCU read-side critical
2668 * section while running on one of those CPUs have since exited their RCU
2669 * read-side critical section.  Some other CPU is reporting this fact with
2670 * the specified rcu_node structure's ->lock held and interrupts disabled.
2671 * This function therefore goes up the tree of rcu_node structures,
2672 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2673 * the leaf rcu_node structure's ->qsmaskinit field has already been
2674 * updated
2675 *
2676 * This function does check that the specified rcu_node structure has
2677 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2678 * prematurely.  That said, invoking it after the fact will cost you
2679 * a needless lock acquisition.  So once it has done its work, don't
2680 * invoke it again.
2681 */
2682static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2683{
2684	long mask;
2685	struct rcu_node *rnp = rnp_leaf;
2686
2687	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2688	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2689		return;
2690	for (;;) {
2691		mask = rnp->grpmask;
2692		rnp = rnp->parent;
2693		if (!rnp)
2694			break;
2695		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2696		rnp->qsmaskinit &= ~mask;
2697		rnp->qsmask &= ~mask;
2698		if (rnp->qsmaskinit) {
2699			raw_spin_unlock_rcu_node(rnp);
2700			/* irqs remain disabled. */
2701			return;
2702		}
2703		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2704	}
2705}
2706
2707/*
2708 * The CPU has been completely removed, and some other CPU is reporting
2709 * this fact from process context.  Do the remainder of the cleanup,
2710 * including orphaning the outgoing CPU's RCU callbacks, and also
2711 * adopting them.  There can only be one CPU hotplug operation at a time,
2712 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2713 */
2714static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2715{
2716	unsigned long flags;
2717	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2718	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2719
2720	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2721		return;
2722
2723	/* Adjust any no-longer-needed kthreads. */
2724	rcu_boost_kthread_setaffinity(rnp, -1);
2725
2726	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2727	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2728	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2729	rcu_adopt_orphan_cbs(rsp, flags);
2730	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2731
2732	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2733		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2734		  cpu, rdp->qlen, rdp->nxtlist);
2735}
2736
2737/*
2738 * Invoke any RCU callbacks that have made it to the end of their grace
2739 * period.  Thottle as specified by rdp->blimit.
2740 */
2741static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2742{
 
 
 
 
2743	unsigned long flags;
2744	struct rcu_head *next, *list, **tail;
2745	long bl, count, count_lazy;
2746	int i;
 
 
 
2747
2748	/* If no callbacks are ready, just return. */
2749	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2750		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2751		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
 
 
2752				    need_resched(), is_idle_task(current),
2753				    rcu_is_callbacks_kthread());
2754		return;
2755	}
2756
2757	/*
2758	 * Extract the list of ready callbacks, disabling to prevent
2759	 * races with call_rcu() from interrupt handlers.
 
 
 
 
 
 
 
2760	 */
2761	local_irq_save(flags);
2762	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2763	bl = rdp->blimit;
2764	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2765	list = rdp->nxtlist;
2766	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2767	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2768	tail = rdp->nxttail[RCU_DONE_TAIL];
2769	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2770		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2771			rdp->nxttail[i] = &rdp->nxtlist;
2772	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
2773
2774	/* Invoke callbacks. */
2775	count = count_lazy = 0;
2776	while (list) {
2777		next = list->next;
2778		prefetch(next);
2779		debug_rcu_head_unqueue(list);
2780		if (__rcu_reclaim(rsp->name, list))
2781			count_lazy++;
2782		list = next;
2783		/* Stop only if limit reached and CPU has something to do. */
2784		if (++count >= bl &&
2785		    (need_resched() ||
2786		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2787			break;
2788	}
2789
2790	local_irq_save(flags);
2791	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2792			    is_idle_task(current),
2793			    rcu_is_callbacks_kthread());
2794
2795	/* Update count, and requeue any remaining callbacks. */
2796	if (list != NULL) {
2797		*tail = rdp->nxtlist;
2798		rdp->nxtlist = list;
2799		for (i = 0; i < RCU_NEXT_SIZE; i++)
2800			if (&rdp->nxtlist == rdp->nxttail[i])
2801				rdp->nxttail[i] = tail;
2802			else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2803				break;
 
 
2804	}
2805	smp_mb(); /* List handling before counting for rcu_barrier(). */
2806	rdp->qlen_lazy -= count_lazy;
2807	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2808	rdp->n_cbs_invoked += count;
 
 
 
 
 
 
2809
2810	/* Reinstate batch limit if we have worked down the excess. */
2811	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
 
2812		rdp->blimit = blimit;
2813
2814	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2815	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2816		rdp->qlen_last_fqs_check = 0;
2817		rdp->n_force_qs_snap = rsp->n_force_qs;
2818	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2819		rdp->qlen_last_fqs_check = rdp->qlen;
2820	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2821
2822	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
2823
2824	/* Re-invoke RCU core processing if there are callbacks remaining. */
2825	if (cpu_has_callbacks_ready_to_invoke(rdp))
2826		invoke_rcu_core();
2827}
2828
2829/*
2830 * Check to see if this CPU is in a non-context-switch quiescent state
2831 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2832 * Also schedule RCU core processing.
2833 *
2834 * This function must be called from hardirq context.  It is normally
2835 * invoked from the scheduling-clock interrupt.
2836 */
2837void rcu_check_callbacks(int user)
2838{
2839	trace_rcu_utilization(TPS("Start scheduler-tick"));
2840	increment_cpu_stall_ticks();
2841	if (user || rcu_is_cpu_rrupt_from_idle()) {
2842
2843		/*
2844		 * Get here if this CPU took its interrupt from user
2845		 * mode or from the idle loop, and if this is not a
2846		 * nested interrupt.  In this case, the CPU is in
2847		 * a quiescent state, so note it.
2848		 *
2849		 * No memory barrier is required here because both
2850		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2851		 * variables that other CPUs neither access nor modify,
2852		 * at least not while the corresponding CPU is online.
2853		 */
2854
2855		rcu_sched_qs();
2856		rcu_bh_qs();
2857
2858	} else if (!in_softirq()) {
2859
2860		/*
2861		 * Get here if this CPU did not take its interrupt from
2862		 * softirq, in other words, if it is not interrupting
2863		 * a rcu_bh read-side critical section.  This is an _bh
2864		 * critical section, so note it.
2865		 */
2866
2867		rcu_bh_qs();
 
 
 
2868	}
2869	rcu_preempt_check_callbacks();
2870	if (rcu_pending())
 
 
 
 
 
 
 
 
 
 
 
 
2871		invoke_rcu_core();
2872	if (user)
2873		rcu_note_voluntary_context_switch(current);
 
 
2874	trace_rcu_utilization(TPS("End scheduler-tick"));
2875}
2876
2877/*
2878 * Scan the leaf rcu_node structures, processing dyntick state for any that
2879 * have not yet encountered a quiescent state, using the function specified.
2880 * Also initiate boosting for any threads blocked on the root rcu_node.
2881 *
2882 * The caller must have suppressed start of new grace periods.
2883 */
2884static void force_qs_rnp(struct rcu_state *rsp,
2885			 int (*f)(struct rcu_data *rsp, bool *isidle,
2886				  unsigned long *maxj),
2887			 bool *isidle, unsigned long *maxj)
2888{
2889	int cpu;
2890	unsigned long flags;
2891	unsigned long mask;
2892	struct rcu_node *rnp;
2893
2894	rcu_for_each_leaf_node(rsp, rnp) {
2895		cond_resched_rcu_qs();
2896		mask = 0;
 
 
 
 
2897		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
2898		if (rnp->qsmask == 0) {
2899			if (rcu_state_p == &rcu_sched_state ||
2900			    rsp != rcu_state_p ||
2901			    rcu_preempt_blocked_readers_cgp(rnp)) {
2902				/*
2903				 * No point in scanning bits because they
2904				 * are all zero.  But we might need to
2905				 * priority-boost blocked readers.
2906				 */
2907				rcu_initiate_boost(rnp, flags);
2908				/* rcu_initiate_boost() releases rnp->lock */
2909				continue;
2910			}
2911			if (rnp->parent &&
2912			    (rnp->parent->qsmask & rnp->grpmask)) {
2913				/*
2914				 * Race between grace-period
2915				 * initialization and task exiting RCU
2916				 * read-side critical section: Report.
2917				 */
2918				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2919				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2920				continue;
2921			}
2922		}
2923		for_each_leaf_node_possible_cpu(rnp, cpu) {
2924			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2925			if ((rnp->qsmask & bit) != 0) {
2926				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2927					mask |= bit;
 
 
 
 
2928			}
 
 
2929		}
2930		if (mask != 0) {
2931			/* Idle/offline CPUs, report (releases rnp->lock. */
2932			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2933		} else {
2934			/* Nothing to do here, so just drop the lock. */
2935			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2936		}
 
 
 
2937	}
2938}
2939
2940/*
2941 * Force quiescent states on reluctant CPUs, and also detect which
2942 * CPUs are in dyntick-idle mode.
2943 */
2944static void force_quiescent_state(struct rcu_state *rsp)
2945{
2946	unsigned long flags;
2947	bool ret;
2948	struct rcu_node *rnp;
2949	struct rcu_node *rnp_old = NULL;
2950
 
 
2951	/* Funnel through hierarchy to reduce memory contention. */
2952	rnp = __this_cpu_read(rsp->rda->mynode);
2953	for (; rnp != NULL; rnp = rnp->parent) {
2954		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2955		      !raw_spin_trylock(&rnp->fqslock);
2956		if (rnp_old != NULL)
2957			raw_spin_unlock(&rnp_old->fqslock);
2958		if (ret) {
2959			rsp->n_force_qs_lh++;
2960			return;
2961		}
2962		rnp_old = rnp;
2963	}
2964	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2965
2966	/* Reached the root of the rcu_node tree, acquire lock. */
2967	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2968	raw_spin_unlock(&rnp_old->fqslock);
2969	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2970		rsp->n_force_qs_lh++;
2971		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2972		return;  /* Someone beat us to it. */
2973	}
2974	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2975	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2976	rcu_gp_kthread_wake(rsp);
2977}
 
2978
2979/*
2980 * This does the RCU core processing work for the specified rcu_state
2981 * and rcu_data structures.  This may be called only from the CPU to
2982 * whom the rdp belongs.
2983 */
2984static void
2985__rcu_process_callbacks(struct rcu_state *rsp)
 
 
 
2986{
2987	unsigned long flags;
2988	bool needwake;
2989	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2990
2991	WARN_ON_ONCE(rdp->beenonline == 0);
 
 
 
 
 
 
 
 
 
 
 
2992
2993	/* Update RCU state based on any recent quiescent states. */
2994	rcu_check_quiescent_state(rsp, rdp);
2995
2996	/* Does this CPU require a not-yet-started grace period? */
2997	local_irq_save(flags);
2998	if (cpu_needs_another_gp(rsp, rdp)) {
2999		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3000		needwake = rcu_start_gp(rsp);
3001		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3002		if (needwake)
3003			rcu_gp_kthread_wake(rsp);
3004	} else {
3005		local_irq_restore(flags);
3006	}
3007
 
 
3008	/* If there are callbacks ready, invoke them. */
3009	if (cpu_has_callbacks_ready_to_invoke(rdp))
3010		invoke_rcu_callbacks(rsp, rdp);
 
 
 
 
 
3011
3012	/* Do any needed deferred wakeups of rcuo kthreads. */
3013	do_nocb_deferred_wakeup(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3014}
3015
3016/*
3017 * Do RCU core processing for the current CPU.
3018 */
3019static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3020{
3021	struct rcu_state *rsp;
3022
3023	if (cpu_is_offline(smp_processor_id()))
3024		return;
3025	trace_rcu_utilization(TPS("Start RCU core"));
3026	for_each_rcu_flavor(rsp)
3027		__rcu_process_callbacks(rsp);
3028	trace_rcu_utilization(TPS("End RCU core"));
 
 
 
 
 
 
 
 
 
 
3029}
3030
3031/*
3032 * Schedule RCU callback invocation.  If the specified type of RCU
3033 * does not support RCU priority boosting, just do a direct call,
3034 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3035 * are running on the current CPU with softirqs disabled, the
3036 * rcu_cpu_kthread_task cannot disappear out from under us.
3037 */
3038static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3039{
3040	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3041		return;
3042	if (likely(!rsp->boost)) {
3043		rcu_do_batch(rsp, rdp);
3044		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3045	}
3046	invoke_rcu_callbacks_kthread();
 
 
 
 
 
3047}
3048
3049static void invoke_rcu_core(void)
 
 
 
 
 
 
 
 
 
 
 
 
3050{
3051	if (cpu_online(smp_processor_id()))
3052		raise_softirq(RCU_SOFTIRQ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3053}
3054
3055/*
3056 * Handle any core-RCU processing required by a call_rcu() invocation.
3057 */
3058static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3059			    struct rcu_head *head, unsigned long flags)
3060{
3061	bool needwake;
3062
3063	/*
3064	 * If called from an extended quiescent state, invoke the RCU
3065	 * core in order to force a re-evaluation of RCU's idleness.
3066	 */
3067	if (!rcu_is_watching())
3068		invoke_rcu_core();
3069
3070	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3071	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3072		return;
3073
3074	/*
3075	 * Force the grace period if too many callbacks or too long waiting.
3076	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3077	 * if some other CPU has recently done so.  Also, don't bother
3078	 * invoking force_quiescent_state() if the newly enqueued callback
3079	 * is the only one waiting for a grace period to complete.
3080	 */
3081	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
 
3082
3083		/* Are we ignoring a completed grace period? */
3084		note_gp_changes(rsp, rdp);
3085
3086		/* Start a new grace period if one not already started. */
3087		if (!rcu_gp_in_progress(rsp)) {
3088			struct rcu_node *rnp_root = rcu_get_root(rsp);
3089
3090			raw_spin_lock_rcu_node(rnp_root);
3091			needwake = rcu_start_gp(rsp);
3092			raw_spin_unlock_rcu_node(rnp_root);
3093			if (needwake)
3094				rcu_gp_kthread_wake(rsp);
3095		} else {
3096			/* Give the grace period a kick. */
3097			rdp->blimit = LONG_MAX;
3098			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3099			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3100				force_quiescent_state(rsp);
3101			rdp->n_force_qs_snap = rsp->n_force_qs;
3102			rdp->qlen_last_fqs_check = rdp->qlen;
3103		}
3104	}
3105}
3106
3107/*
3108 * RCU callback function to leak a callback.
3109 */
3110static void rcu_leak_callback(struct rcu_head *rhp)
3111{
3112}
3113
3114/*
3115 * Helper function for call_rcu() and friends.  The cpu argument will
3116 * normally be -1, indicating "currently running CPU".  It may specify
3117 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3118 * is expected to specify a CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3119 */
 
 
 
 
 
 
 
 
 
 
 
 
 
3120static void
3121__call_rcu(struct rcu_head *head, rcu_callback_t func,
3122	   struct rcu_state *rsp, int cpu, bool lazy)
3123{
 
3124	unsigned long flags;
 
3125	struct rcu_data *rdp;
3126
3127	/* Misaligned rcu_head! */
3128	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3129
3130	if (debug_rcu_head_queue(head)) {
3131		/* Probable double call_rcu(), so leak the callback. */
 
 
 
 
 
 
 
 
3132		WRITE_ONCE(head->func, rcu_leak_callback);
3133		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3134		return;
3135	}
3136	head->func = func;
3137	head->next = NULL;
 
3138	local_irq_save(flags);
3139	rdp = this_cpu_ptr(rsp->rda);
 
3140
3141	/* Add the callback to our list. */
3142	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3143		int offline;
3144
3145		if (cpu != -1)
3146			rdp = per_cpu_ptr(rsp->rda, cpu);
3147		if (likely(rdp->mynode)) {
3148			/* Post-boot, so this should be for a no-CBs CPU. */
3149			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3150			WARN_ON_ONCE(offline);
3151			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3152			local_irq_restore(flags);
3153			return;
3154		}
3155		/*
3156		 * Very early boot, before rcu_init().  Initialize if needed
3157		 * and then drop through to queue the callback.
3158		 */
3159		BUG_ON(cpu != -1);
3160		WARN_ON_ONCE(!rcu_is_watching());
3161		if (!likely(rdp->nxtlist))
3162			init_default_callback_list(rdp);
 
 
3163	}
3164	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3165	if (lazy)
3166		rdp->qlen_lazy++;
3167	else
3168		rcu_idle_count_callbacks_posted();
3169	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3170	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3171	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3172
3173	if (__is_kfree_rcu_offset((unsigned long)func))
3174		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3175					 rdp->qlen_lazy, rdp->qlen);
3176	else
3177		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3178
3179	/* Go handle any RCU core processing required. */
3180	__call_rcu_core(rsp, rdp, head, flags);
 
 
 
 
3181	local_irq_restore(flags);
3182}
3183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3184/*
3185 * Queue an RCU-sched callback for invocation after a grace period.
3186 */
3187void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
 
3188{
3189	__call_rcu(head, func, &rcu_sched_state, -1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3190}
3191EXPORT_SYMBOL_GPL(call_rcu_sched);
3192
3193/*
3194 * Queue an RCU callback for invocation after a quicker grace period.
3195 */
3196void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3197{
3198	__call_rcu(head, func, &rcu_bh_state, -1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3199}
3200EXPORT_SYMBOL_GPL(call_rcu_bh);
3201
3202/*
3203 * Queue an RCU callback for lazy invocation after a grace period.
3204 * This will likely be later named something like "call_rcu_lazy()",
3205 * but this change will require some way of tagging the lazy RCU
3206 * callbacks in the list of pending callbacks. Until then, this
3207 * function may only be called from __kfree_rcu().
 
 
 
 
 
3208 */
3209void kfree_call_rcu(struct rcu_head *head,
3210		    rcu_callback_t func)
3211{
3212	__call_rcu(head, func, rcu_state_p, -1, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3213}
3214EXPORT_SYMBOL_GPL(kfree_call_rcu);
3215
3216/*
3217 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3218 * any blocking grace-period wait automatically implies a grace period
3219 * if there is only one CPU online at any point time during execution
3220 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3221 * occasionally incorrectly indicate that there are multiple CPUs online
3222 * when there was in fact only one the whole time, as this just adds
3223 * some overhead: RCU still operates correctly.
 
3224 */
3225static inline int rcu_blocking_is_gp(void)
3226{
3227	int ret;
 
 
 
 
 
3228
3229	might_sleep();  /* Check for RCU read-side critical section. */
3230	preempt_disable();
3231	ret = num_online_cpus() <= 1;
3232	preempt_enable();
3233	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3234}
3235
3236/**
3237 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3238 *
3239 * Control will return to the caller some time after a full rcu-sched
3240 * grace period has elapsed, in other words after all currently executing
3241 * rcu-sched read-side critical sections have completed.   These read-side
3242 * critical sections are delimited by rcu_read_lock_sched() and
3243 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3244 * local_irq_disable(), and so on may be used in place of
3245 * rcu_read_lock_sched().
3246 *
3247 * This means that all preempt_disable code sequences, including NMI and
3248 * non-threaded hardware-interrupt handlers, in progress on entry will
3249 * have completed before this primitive returns.  However, this does not
3250 * guarantee that softirq handlers will have completed, since in some
3251 * kernels, these handlers can run in process context, and can block.
3252 *
3253 * Note that this guarantee implies further memory-ordering guarantees.
3254 * On systems with more than one CPU, when synchronize_sched() returns,
3255 * each CPU is guaranteed to have executed a full memory barrier since the
3256 * end of its last RCU-sched read-side critical section whose beginning
3257 * preceded the call to synchronize_sched().  In addition, each CPU having
3258 * an RCU read-side critical section that extends beyond the return from
3259 * synchronize_sched() is guaranteed to have executed a full memory barrier
3260 * after the beginning of synchronize_sched() and before the beginning of
3261 * that RCU read-side critical section.  Note that these guarantees include
3262 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3263 * that are executing in the kernel.
3264 *
3265 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3266 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3267 * to have executed a full memory barrier during the execution of
3268 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3269 * again only if the system has more than one CPU).
3270 *
3271 * This primitive provides the guarantees made by the (now removed)
3272 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3273 * guarantees that rcu_read_lock() sections will have completed.
3274 * In "classic RCU", these two guarantees happen to be one and
3275 * the same, but can differ in realtime RCU implementations.
3276 */
3277void synchronize_sched(void)
3278{
 
 
 
3279	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3280			 lock_is_held(&rcu_lock_map) ||
3281			 lock_is_held(&rcu_sched_lock_map),
3282			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3283	if (rcu_blocking_is_gp())
 
 
 
 
3284		return;
3285	if (rcu_gp_is_expedited())
3286		synchronize_sched_expedited();
3287	else
3288		wait_rcu_gp(call_rcu_sched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3289}
3290EXPORT_SYMBOL_GPL(synchronize_sched);
3291
3292/**
3293 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3294 *
3295 * Control will return to the caller some time after a full rcu_bh grace
3296 * period has elapsed, in other words after all currently executing rcu_bh
3297 * read-side critical sections have completed.  RCU read-side critical
3298 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3299 * and may be nested.
3300 *
3301 * See the description of synchronize_sched() for more detailed information
3302 * on memory ordering guarantees.
 
3303 */
3304void synchronize_rcu_bh(void)
3305{
3306	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3307			 lock_is_held(&rcu_lock_map) ||
3308			 lock_is_held(&rcu_sched_lock_map),
3309			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3310	if (rcu_blocking_is_gp())
3311		return;
3312	if (rcu_gp_is_expedited())
3313		synchronize_rcu_bh_expedited();
3314	else
3315		wait_rcu_gp(call_rcu_bh);
3316}
3317EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3318
3319/**
3320 * get_state_synchronize_rcu - Snapshot current RCU state
3321 *
3322 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3323 * to determine whether or not a full grace period has elapsed in the
3324 * meantime.
3325 */
3326unsigned long get_state_synchronize_rcu(void)
3327{
3328	/*
3329	 * Any prior manipulation of RCU-protected data must happen
3330	 * before the load from ->gpnum.
3331	 */
3332	smp_mb();  /* ^^^ */
3333
3334	/*
3335	 * Make sure this load happens before the purportedly
3336	 * time-consuming work between get_state_synchronize_rcu()
3337	 * and cond_synchronize_rcu().
3338	 */
3339	return smp_load_acquire(&rcu_state_p->gpnum);
3340}
3341EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3342
3343/**
3344 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3345 *
3346 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3347 *
3348 * If a full RCU grace period has elapsed since the earlier call to
3349 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3350 * synchronize_rcu() to wait for a full grace period.
 
 
 
 
 
3351 *
3352 * Yes, this function does not take counter wrap into account.  But
3353 * counter wrap is harmless.  If the counter wraps, we have waited for
3354 * more than 2 billion grace periods (and way more on a 64-bit system!),
3355 * so waiting for one additional grace period should be just fine.
3356 */
3357void cond_synchronize_rcu(unsigned long oldstate)
3358{
3359	unsigned long newstate;
3360
3361	/*
3362	 * Ensure that this load happens before any RCU-destructive
3363	 * actions the caller might carry out after we return.
3364	 */
3365	newstate = smp_load_acquire(&rcu_state_p->completed);
3366	if (ULONG_CMP_GE(oldstate, newstate))
3367		synchronize_rcu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368}
3369EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3370
3371/**
3372 * get_state_synchronize_sched - Snapshot current RCU-sched state
3373 *
3374 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3375 * to determine whether or not a full grace period has elapsed in the
3376 * meantime.
 
 
3377 */
3378unsigned long get_state_synchronize_sched(void)
3379{
3380	/*
3381	 * Any prior manipulation of RCU-protected data must happen
3382	 * before the load from ->gpnum.
3383	 */
3384	smp_mb();  /* ^^^ */
3385
3386	/*
3387	 * Make sure this load happens before the purportedly
3388	 * time-consuming work between get_state_synchronize_sched()
3389	 * and cond_synchronize_sched().
3390	 */
3391	return smp_load_acquire(&rcu_sched_state.gpnum);
3392}
3393EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3394
3395/**
3396 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3397 *
3398 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3399 *
3400 * If a full RCU-sched grace period has elapsed since the earlier call to
3401 * get_state_synchronize_sched(), just return.  Otherwise, invoke
3402 * synchronize_sched() to wait for a full grace period.
3403 *
3404 * Yes, this function does not take counter wrap into account.  But
3405 * counter wrap is harmless.  If the counter wraps, we have waited for
3406 * more than 2 billion grace periods (and way more on a 64-bit system!),
3407 * so waiting for one additional grace period should be just fine.
3408 */
3409void cond_synchronize_sched(unsigned long oldstate)
3410{
3411	unsigned long newstate;
3412
3413	/*
3414	 * Ensure that this load happens before any RCU-destructive
3415	 * actions the caller might carry out after we return.
3416	 */
3417	newstate = smp_load_acquire(&rcu_sched_state.completed);
3418	if (ULONG_CMP_GE(oldstate, newstate))
3419		synchronize_sched();
3420}
3421EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3422
3423/* Adjust sequence number for start of update-side operation. */
3424static void rcu_seq_start(unsigned long *sp)
3425{
3426	WRITE_ONCE(*sp, *sp + 1);
3427	smp_mb(); /* Ensure update-side operation after counter increment. */
3428	WARN_ON_ONCE(!(*sp & 0x1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3429}
 
3430
3431/* Adjust sequence number for end of update-side operation. */
3432static void rcu_seq_end(unsigned long *sp)
3433{
3434	smp_mb(); /* Ensure update-side operation before counter increment. */
3435	WRITE_ONCE(*sp, *sp + 1);
3436	WARN_ON_ONCE(*sp & 0x1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3437}
 
3438
3439/* Take a snapshot of the update side's sequence number. */
3440static unsigned long rcu_seq_snap(unsigned long *sp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3441{
3442	unsigned long s;
3443
3444	s = (READ_ONCE(*sp) + 3) & ~0x1;
3445	smp_mb(); /* Above access must not bleed into critical section. */
3446	return s;
3447}
 
3448
3449/*
3450 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3451 * full update-side operation has occurred.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3452 */
3453static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3454{
3455	return ULONG_CMP_GE(READ_ONCE(*sp), s);
 
3456}
 
3457
3458/*
3459 * Check to see if there is any immediate RCU-related work to be done
3460 * by the current CPU, for the specified type of RCU, returning 1 if so.
3461 * The checks are in order of increasing expense: checks that can be
3462 * carried out against CPU-local state are performed first.  However,
3463 * we must check for CPU stalls first, else we might not get a chance.
3464 */
3465static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3466{
 
 
3467	struct rcu_node *rnp = rdp->mynode;
3468
3469	rdp->n_rcu_pending++;
3470
3471	/* Check for CPU stalls, if enabled. */
3472	check_cpu_stall(rsp, rdp);
3473
3474	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3475	if (rcu_nohz_full_cpu(rsp))
 
 
 
 
 
 
 
 
 
3476		return 0;
3477
3478	/* Is the RCU core waiting for a quiescent state from this CPU? */
3479	if (rcu_scheduler_fully_active &&
3480	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3481	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3482		rdp->n_rp_core_needs_qs++;
3483	} else if (rdp->core_needs_qs &&
3484		   (!rdp->cpu_no_qs.b.norm ||
3485		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3486		rdp->n_rp_report_qs++;
3487		return 1;
3488	}
3489
3490	/* Does this CPU have callbacks ready to invoke? */
3491	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3492		rdp->n_rp_cb_ready++;
3493		return 1;
3494	}
3495
3496	/* Has RCU gone idle with this CPU needing another grace period? */
3497	if (cpu_needs_another_gp(rsp, rdp)) {
3498		rdp->n_rp_cpu_needs_gp++;
 
3499		return 1;
3500	}
3501
3502	/* Has another RCU grace period completed?  */
3503	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3504		rdp->n_rp_gp_completed++;
3505		return 1;
3506	}
3507
3508	/* Has a new RCU grace period started? */
3509	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3510	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3511		rdp->n_rp_gp_started++;
3512		return 1;
3513	}
3514
3515	/* Does this CPU need a deferred NOCB wakeup? */
3516	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3517		rdp->n_rp_nocb_defer_wakeup++;
3518		return 1;
3519	}
3520
3521	/* nothing to do */
3522	rdp->n_rp_need_nothing++;
3523	return 0;
3524}
3525
3526/*
3527 * Check to see if there is any immediate RCU-related work to be done
3528 * by the current CPU, returning 1 if so.  This function is part of the
3529 * RCU implementation; it is -not- an exported member of the RCU API.
3530 */
3531static int rcu_pending(void)
3532{
3533	struct rcu_state *rsp;
3534
3535	for_each_rcu_flavor(rsp)
3536		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3537			return 1;
3538	return 0;
3539}
3540
3541/*
3542 * Return true if the specified CPU has any callback.  If all_lazy is
3543 * non-NULL, store an indication of whether all callbacks are lazy.
3544 * (If there are no callbacks, all of them are deemed to be lazy.)
 
 
 
 
 
3545 */
3546static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3547{
3548	bool al = true;
3549	bool hc = false;
3550	struct rcu_data *rdp;
3551	struct rcu_state *rsp;
3552
3553	for_each_rcu_flavor(rsp) {
3554		rdp = this_cpu_ptr(rsp->rda);
3555		if (!rdp->nxtlist)
3556			continue;
3557		hc = true;
3558		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3559			al = false;
3560			break;
3561		}
3562	}
3563	if (all_lazy)
3564		*all_lazy = al;
3565	return hc;
3566}
3567
3568/*
3569 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3570 * the compiler is expected to optimize this away.
3571 */
3572static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3573			       int cpu, unsigned long done)
3574{
3575	trace_rcu_barrier(rsp->name, s, cpu,
3576			  atomic_read(&rsp->barrier_cpu_count), done);
3577}
3578
3579/*
3580 * RCU callback function for _rcu_barrier().  If we are last, wake
3581 * up the task executing _rcu_barrier().
3582 */
3583static void rcu_barrier_callback(struct rcu_head *rhp)
3584{
3585	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3586	struct rcu_state *rsp = rdp->rsp;
 
 
3587
3588	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3589		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3590		complete(&rsp->barrier_completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3591	} else {
3592		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
 
3593	}
 
 
 
 
3594}
3595
3596/*
3597 * Called with preemption disabled, and from cross-cpu IRQ context.
3598 */
3599static void rcu_barrier_func(void *type)
3600{
3601	struct rcu_state *rsp = type;
3602	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3603
3604	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3605	atomic_inc(&rsp->barrier_cpu_count);
3606	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
 
 
 
3607}
3608
3609/*
3610 * Orchestrate the specified type of RCU barrier, waiting for all
3611 * RCU callbacks of the specified type to complete.
 
 
 
 
3612 */
3613static void _rcu_barrier(struct rcu_state *rsp)
3614{
3615	int cpu;
 
 
3616	struct rcu_data *rdp;
3617	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3618
3619	_rcu_barrier_trace(rsp, "Begin", -1, s);
3620
3621	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3622	mutex_lock(&rsp->barrier_mutex);
3623
3624	/* Did someone else do our work for us? */
3625	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3626		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3627		smp_mb(); /* caller's subsequent code after above check. */
3628		mutex_unlock(&rsp->barrier_mutex);
3629		return;
3630	}
3631
3632	/* Mark the start of the barrier operation. */
3633	rcu_seq_start(&rsp->barrier_sequence);
3634	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
 
 
3635
3636	/*
3637	 * Initialize the count to one rather than to zero in order to
3638	 * avoid a too-soon return to zero in case of a short grace period
3639	 * (or preemption of this task).  Exclude CPU-hotplug operations
3640	 * to ensure that no offline CPU has callbacks queued.
3641	 */
3642	init_completion(&rsp->barrier_completion);
3643	atomic_set(&rsp->barrier_cpu_count, 1);
3644	get_online_cpus();
 
3645
3646	/*
3647	 * Force each CPU with callbacks to register a new callback.
3648	 * When that callback is invoked, we will know that all of the
3649	 * corresponding CPU's preceding callbacks have been invoked.
3650	 */
3651	for_each_possible_cpu(cpu) {
3652		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
 
 
3653			continue;
3654		rdp = per_cpu_ptr(rsp->rda, cpu);
3655		if (rcu_is_nocb_cpu(cpu)) {
3656			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3657				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3658						   rsp->barrier_sequence);
3659			} else {
3660				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3661						   rsp->barrier_sequence);
3662				smp_mb__before_atomic();
3663				atomic_inc(&rsp->barrier_cpu_count);
3664				__call_rcu(&rdp->barrier_head,
3665					   rcu_barrier_callback, rsp, cpu, 0);
3666			}
3667		} else if (READ_ONCE(rdp->qlen)) {
3668			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3669					   rsp->barrier_sequence);
3670			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3671		} else {
3672			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3673					   rsp->barrier_sequence);
3674		}
 
 
3675	}
3676	put_online_cpus();
3677
3678	/*
3679	 * Now that we have an rcu_barrier_callback() callback on each
3680	 * CPU, and thus each counted, remove the initial count.
3681	 */
3682	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3683		complete(&rsp->barrier_completion);
3684
3685	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3686	wait_for_completion(&rsp->barrier_completion);
3687
3688	/* Mark the end of the barrier operation. */
3689	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3690	rcu_seq_end(&rsp->barrier_sequence);
 
 
 
 
 
 
3691
3692	/* Other rcu_barrier() invocations can now safely proceed. */
3693	mutex_unlock(&rsp->barrier_mutex);
3694}
 
 
 
3695
3696/**
3697 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3698 */
3699void rcu_barrier_bh(void)
3700{
3701	_rcu_barrier(&rcu_bh_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3702}
3703EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3704
3705/**
3706 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3707 */
3708void rcu_barrier_sched(void)
3709{
3710	_rcu_barrier(&rcu_sched_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3711}
3712EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3713
3714/*
3715 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3716 * first CPU in a given leaf rcu_node structure coming online.  The caller
3717 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3718 * disabled.
3719 */
3720static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3721{
3722	long mask;
 
3723	struct rcu_node *rnp = rnp_leaf;
3724
 
 
3725	for (;;) {
3726		mask = rnp->grpmask;
3727		rnp = rnp->parent;
3728		if (rnp == NULL)
3729			return;
3730		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
 
3731		rnp->qsmaskinit |= mask;
3732		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
 
 
3733	}
3734}
3735
3736/*
3737 * Do boot-time initialization of a CPU's per-CPU RCU data.
3738 */
3739static void __init
3740rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3741{
3742	unsigned long flags;
3743	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3744	struct rcu_node *rnp = rcu_get_root(rsp);
3745
3746	/* Set up local state, ensuring consistent view of global state. */
3747	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3748	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3749	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3750	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3751	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
 
 
 
 
 
 
3752	rdp->cpu = cpu;
3753	rdp->rsp = rsp;
3754	rcu_boot_init_nocb_percpu_data(rdp);
3755	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3756}
3757
3758/*
3759 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3760 * offline event can be happening at a given time.  Note also that we
3761 * can accept some slop in the rsp->completed access due to the fact
3762 * that this CPU cannot possibly have any RCU callbacks in flight yet.
 
 
 
 
3763 */
3764static void
3765rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3766{
3767	unsigned long flags;
3768	unsigned long mask;
3769	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3770	struct rcu_node *rnp = rcu_get_root(rsp);
3771
3772	/* Set up local state, ensuring consistent view of global state. */
3773	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3774	rdp->qlen_last_fqs_check = 0;
3775	rdp->n_force_qs_snap = rsp->n_force_qs;
3776	rdp->blimit = blimit;
3777	if (!rdp->nxtlist)
3778		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3779	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3780	rcu_sysidle_init_percpu_data(rdp->dynticks);
3781	atomic_set(&rdp->dynticks->dynticks,
3782		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3783	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3784
3785	/*
 
 
 
 
 
 
 
3786	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3787	 * propagation up the rcu_node tree will happen at the beginning
3788	 * of the next grace period.
3789	 */
3790	rnp = rdp->mynode;
3791	mask = rdp->grpmask;
3792	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3793	if (!rdp->beenonline)
3794		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3795	rdp->beenonline = true;	 /* We have now been online. */
3796	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3797	rdp->completed = rnp->completed;
3798	rdp->cpu_no_qs.b.norm = true;
3799	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3800	rdp->core_needs_qs = false;
3801	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
 
 
 
3802	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
 
 
 
 
3803}
3804
3805int rcutree_prepare_cpu(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
3806{
3807	struct rcu_state *rsp;
 
 
 
 
3808
3809	for_each_rcu_flavor(rsp)
3810		rcu_init_percpu_data(cpu, rsp);
3811
3812	rcu_prepare_kthreads(cpu);
3813	rcu_spawn_all_nocb_kthreads(cpu);
3814
3815	return 0;
3816}
 
 
 
 
3817
3818static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3819{
3820	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3821
3822	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3823}
 
 
 
 
 
 
 
 
 
 
3824
3825int rcutree_online_cpu(unsigned int cpu)
3826{
3827	sync_sched_exp_online_cleanup(cpu);
3828	rcutree_affinity_setting(cpu, -1);
3829	return 0;
3830}
3831
3832int rcutree_offline_cpu(unsigned int cpu)
3833{
3834	rcutree_affinity_setting(cpu, cpu);
3835	return 0;
3836}
3837
 
3838
3839int rcutree_dying_cpu(unsigned int cpu)
 
 
 
 
 
 
3840{
3841	struct rcu_state *rsp;
3842
3843	for_each_rcu_flavor(rsp)
3844		rcu_cleanup_dying_cpu(rsp);
3845	return 0;
3846}
3847
3848int rcutree_dead_cpu(unsigned int cpu)
 
 
 
 
3849{
3850	struct rcu_state *rsp;
 
 
3851
3852	for_each_rcu_flavor(rsp) {
3853		rcu_cleanup_dead_cpu(cpu, rsp);
3854		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3855	}
 
 
 
 
 
 
 
 
3856	return 0;
3857}
3858
3859/*
3860 * Mark the specified CPU as being online so that subsequent grace periods
3861 * (both expedited and normal) will wait on it.  Note that this means that
3862 * incoming CPUs are not allowed to use RCU read-side critical sections
3863 * until this function is called.  Failing to observe this restriction
3864 * will result in lockdep splats.
 
 
 
 
 
 
 
3865 */
3866void rcu_cpu_starting(unsigned int cpu)
3867{
3868	unsigned long flags;
3869	unsigned long mask;
3870	struct rcu_data *rdp;
3871	struct rcu_node *rnp;
3872	struct rcu_state *rsp;
3873
3874	for_each_rcu_flavor(rsp) {
3875		rdp = this_cpu_ptr(rsp->rda);
3876		rnp = rdp->mynode;
3877		mask = rdp->grpmask;
3878		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3879		rnp->qsmaskinitnext |= mask;
3880		rnp->expmaskinitnext |= mask;
3881		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3882	}
 
 
 
3883}
3884
3885#ifdef CONFIG_HOTPLUG_CPU
3886/*
3887 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3888 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3889 * bit masks.
3890 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3891 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3892 * bit masks.
 
 
3893 */
3894static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3895{
3896	unsigned long flags;
3897	unsigned long mask;
3898	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3899	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3900
 
 
 
 
 
 
 
 
 
 
3901	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3902	mask = rdp->grpmask;
 
3903	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3904	rnp->qsmaskinitnext &= ~mask;
 
 
 
 
 
 
 
 
3905	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
3906}
3907
3908void rcu_report_dead(unsigned int cpu)
 
 
 
 
 
 
3909{
3910	struct rcu_state *rsp;
 
 
 
 
 
 
 
3911
3912	/* QS for any half-done expedited RCU-sched GP. */
3913	preempt_disable();
3914	rcu_report_exp_rdp(&rcu_sched_state,
3915			   this_cpu_ptr(rcu_sched_state.rda), true);
3916	preempt_enable();
3917	for_each_rcu_flavor(rsp)
3918		rcu_cleanup_dying_idle_cpu(cpu, rsp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3919}
3920#endif
3921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3922static int rcu_pm_notify(struct notifier_block *self,
3923			 unsigned long action, void *hcpu)
3924{
3925	switch (action) {
3926	case PM_HIBERNATION_PREPARE:
3927	case PM_SUSPEND_PREPARE:
3928		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3929			rcu_expedite_gp();
3930		break;
3931	case PM_POST_HIBERNATION:
3932	case PM_POST_SUSPEND:
3933		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3934			rcu_unexpedite_gp();
3935		break;
3936	default:
3937		break;
3938	}
3939	return NOTIFY_OK;
3940}
3941
3942/*
3943 * Spawn the kthreads that handle each RCU flavor's grace periods.
3944 */
3945static int __init rcu_spawn_gp_kthread(void)
3946{
3947	unsigned long flags;
3948	int kthread_prio_in = kthread_prio;
3949	struct rcu_node *rnp;
3950	struct rcu_state *rsp;
3951	struct sched_param sp;
3952	struct task_struct *t;
3953
3954	/* Force priority into range. */
3955	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3956		kthread_prio = 1;
3957	else if (kthread_prio < 0)
3958		kthread_prio = 0;
3959	else if (kthread_prio > 99)
3960		kthread_prio = 99;
3961	if (kthread_prio != kthread_prio_in)
3962		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3963			 kthread_prio, kthread_prio_in);
3964
3965	rcu_scheduler_fully_active = 1;
3966	for_each_rcu_flavor(rsp) {
3967		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3968		BUG_ON(IS_ERR(t));
3969		rnp = rcu_get_root(rsp);
3970		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3971		rsp->gp_kthread = t;
3972		if (kthread_prio) {
3973			sp.sched_priority = kthread_prio;
3974			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3975		}
3976		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3977		wake_up_process(t);
3978	}
3979	rcu_spawn_nocb_kthreads();
3980	rcu_spawn_boost_kthreads();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3981	return 0;
3982}
3983early_initcall(rcu_spawn_gp_kthread);
3984
3985/*
3986 * This function is invoked towards the end of the scheduler's
3987 * initialization process.  Before this is called, the idle task might
3988 * contain synchronous grace-period primitives (during which time, this idle
3989 * task is booting the system, and such primitives are no-ops).  After this
3990 * function is called, any synchronous grace-period primitives are run as
3991 * expedited, with the requesting task driving the grace period forward.
3992 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
3993 * runtime RCU functionality.
3994 */
3995void rcu_scheduler_starting(void)
3996{
 
 
 
3997	WARN_ON(num_online_cpus() != 1);
3998	WARN_ON(nr_context_switches() > 0);
3999	rcu_test_sync_prims();
4000	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4001	rcu_test_sync_prims();
4002}
4003
4004/*
4005 * Compute the per-level fanout, either using the exact fanout specified
4006 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4007 */
4008static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4009{
4010	int i;
4011
4012	if (rcu_fanout_exact) {
4013		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4014		for (i = rcu_num_lvls - 2; i >= 0; i--)
4015			levelspread[i] = RCU_FANOUT;
4016	} else {
4017		int ccur;
4018		int cprv;
4019
4020		cprv = nr_cpu_ids;
4021		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4022			ccur = levelcnt[i];
4023			levelspread[i] = (cprv + ccur - 1) / ccur;
4024			cprv = ccur;
4025		}
4026	}
4027}
4028
4029/*
4030 * Helper function for rcu_init() that initializes one rcu_state structure.
4031 */
4032static void __init rcu_init_one(struct rcu_state *rsp)
4033{
4034	static const char * const buf[] = RCU_NODE_NAME_INIT;
4035	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4036	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4037	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4038	static u8 fl_mask = 0x1;
4039
4040	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4041	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4042	int cpustride = 1;
4043	int i;
4044	int j;
4045	struct rcu_node *rnp;
4046
4047	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4048
4049	/* Silence gcc 4.8 false positive about array index out of range. */
4050	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4051		panic("rcu_init_one: rcu_num_lvls out of range");
4052
4053	/* Initialize the level-tracking arrays. */
4054
4055	for (i = 0; i < rcu_num_lvls; i++)
4056		levelcnt[i] = num_rcu_lvl[i];
4057	for (i = 1; i < rcu_num_lvls; i++)
4058		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4059	rcu_init_levelspread(levelspread, levelcnt);
4060	rsp->flavor_mask = fl_mask;
4061	fl_mask <<= 1;
4062
4063	/* Initialize the elements themselves, starting from the leaves. */
4064
4065	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4066		cpustride *= levelspread[i];
4067		rnp = rsp->level[i];
4068		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4069			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4070			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4071						   &rcu_node_class[i], buf[i]);
4072			raw_spin_lock_init(&rnp->fqslock);
4073			lockdep_set_class_and_name(&rnp->fqslock,
4074						   &rcu_fqs_class[i], fqs[i]);
4075			rnp->gpnum = rsp->gpnum;
4076			rnp->completed = rsp->completed;
 
4077			rnp->qsmask = 0;
4078			rnp->qsmaskinit = 0;
4079			rnp->grplo = j * cpustride;
4080			rnp->grphi = (j + 1) * cpustride - 1;
4081			if (rnp->grphi >= nr_cpu_ids)
4082				rnp->grphi = nr_cpu_ids - 1;
4083			if (i == 0) {
4084				rnp->grpnum = 0;
4085				rnp->grpmask = 0;
4086				rnp->parent = NULL;
4087			} else {
4088				rnp->grpnum = j % levelspread[i - 1];
4089				rnp->grpmask = 1UL << rnp->grpnum;
4090				rnp->parent = rsp->level[i - 1] +
4091					      j / levelspread[i - 1];
4092			}
4093			rnp->level = i;
4094			INIT_LIST_HEAD(&rnp->blkd_tasks);
4095			rcu_init_one_nocb(rnp);
4096			init_waitqueue_head(&rnp->exp_wq[0]);
4097			init_waitqueue_head(&rnp->exp_wq[1]);
4098			init_waitqueue_head(&rnp->exp_wq[2]);
4099			init_waitqueue_head(&rnp->exp_wq[3]);
4100			spin_lock_init(&rnp->exp_lock);
 
 
 
 
4101		}
4102	}
4103
4104	init_swait_queue_head(&rsp->gp_wq);
4105	init_swait_queue_head(&rsp->expedited_wq);
4106	rnp = rsp->level[rcu_num_lvls - 1];
4107	for_each_possible_cpu(i) {
4108		while (i > rnp->grphi)
4109			rnp++;
4110		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4111		rcu_boot_init_percpu_data(i, rsp);
 
 
4112	}
4113	list_add(&rsp->flavors, &rcu_struct_flavors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4114}
4115
4116/*
4117 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4118 * replace the definitions in tree.h because those are needed to size
4119 * the ->node array in the rcu_state structure.
4120 */
4121static void __init rcu_init_geometry(void)
4122{
4123	ulong d;
4124	int i;
 
4125	int rcu_capacity[RCU_NUM_LVLS];
 
 
 
 
 
 
 
 
 
 
 
 
 
4126
4127	/*
4128	 * Initialize any unspecified boot parameters.
4129	 * The default values of jiffies_till_first_fqs and
4130	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4131	 * value, which is a function of HZ, then adding one for each
4132	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4133	 */
4134	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4135	if (jiffies_till_first_fqs == ULONG_MAX)
4136		jiffies_till_first_fqs = d;
4137	if (jiffies_till_next_fqs == ULONG_MAX)
4138		jiffies_till_next_fqs = d;
 
4139
4140	/* If the compile-time values are accurate, just leave. */
4141	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4142	    nr_cpu_ids == NR_CPUS)
4143		return;
4144	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4145		rcu_fanout_leaf, nr_cpu_ids);
4146
4147	/*
4148	 * The boot-time rcu_fanout_leaf parameter must be at least two
4149	 * and cannot exceed the number of bits in the rcu_node masks.
4150	 * Complain and fall back to the compile-time values if this
4151	 * limit is exceeded.
4152	 */
4153	if (rcu_fanout_leaf < 2 ||
4154	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4155		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4156		WARN_ON(1);
4157		return;
4158	}
4159
4160	/*
4161	 * Compute number of nodes that can be handled an rcu_node tree
4162	 * with the given number of levels.
4163	 */
4164	rcu_capacity[0] = rcu_fanout_leaf;
4165	for (i = 1; i < RCU_NUM_LVLS; i++)
4166		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4167
4168	/*
4169	 * The tree must be able to accommodate the configured number of CPUs.
4170	 * If this limit is exceeded, fall back to the compile-time values.
4171	 */
4172	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4173		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4174		WARN_ON(1);
4175		return;
4176	}
4177
4178	/* Calculate the number of levels in the tree. */
4179	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4180	}
4181	rcu_num_lvls = i + 1;
4182
4183	/* Calculate the number of rcu_nodes at each level of the tree. */
4184	for (i = 0; i < rcu_num_lvls; i++) {
4185		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4186		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4187	}
4188
4189	/* Calculate the total number of rcu_node structures. */
4190	rcu_num_nodes = 0;
4191	for (i = 0; i < rcu_num_lvls; i++)
4192		rcu_num_nodes += num_rcu_lvl[i];
4193}
4194
4195/*
4196 * Dump out the structure of the rcu_node combining tree associated
4197 * with the rcu_state structure referenced by rsp.
4198 */
4199static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4200{
4201	int level = 0;
4202	struct rcu_node *rnp;
4203
4204	pr_info("rcu_node tree layout dump\n");
4205	pr_info(" ");
4206	rcu_for_each_node_breadth_first(rsp, rnp) {
4207		if (rnp->level != level) {
4208			pr_cont("\n");
4209			pr_info(" ");
4210			level = rnp->level;
4211		}
4212		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4213	}
4214	pr_cont("\n");
4215}
4216
4217void __init rcu_init(void)
 
 
4218{
4219	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4220
4221	rcu_early_boot_tests();
4222
 
4223	rcu_bootup_announce();
 
4224	rcu_init_geometry();
4225	rcu_init_one(&rcu_bh_state);
4226	rcu_init_one(&rcu_sched_state);
4227	if (dump_tree)
4228		rcu_dump_rcu_node_tree(&rcu_sched_state);
4229	__rcu_init_preempt();
4230	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4231
4232	/*
4233	 * We don't need protection against CPU-hotplug here because
4234	 * this is called early in boot, before either interrupts
4235	 * or the scheduler are operational.
4236	 */
4237	pm_notifier(rcu_pm_notify, 0);
4238	for_each_online_cpu(cpu) {
4239		rcutree_prepare_cpu(cpu);
4240		rcu_cpu_starting(cpu);
4241	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4242}
4243
 
4244#include "tree_exp.h"
 
4245#include "tree_plugin.h"
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com>
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/kmemleak.h>
  35#include <linux/moduleparam.h>
  36#include <linux/panic.h>
  37#include <linux/panic_notifier.h>
  38#include <linux/percpu.h>
  39#include <linux/notifier.h>
  40#include <linux/cpu.h>
  41#include <linux/mutex.h>
  42#include <linux/time.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/wait.h>
  45#include <linux/kthread.h>
  46#include <uapi/linux/sched/types.h>
  47#include <linux/prefetch.h>
  48#include <linux/delay.h>
 
  49#include <linux/random.h>
  50#include <linux/trace_events.h>
  51#include <linux/suspend.h>
  52#include <linux/ftrace.h>
  53#include <linux/tick.h>
  54#include <linux/sysrq.h>
  55#include <linux/kprobes.h>
  56#include <linux/gfp.h>
  57#include <linux/oom.h>
  58#include <linux/smpboot.h>
  59#include <linux/jiffies.h>
  60#include <linux/slab.h>
  61#include <linux/sched/isolation.h>
  62#include <linux/sched/clock.h>
  63#include <linux/vmalloc.h>
  64#include <linux/mm.h>
  65#include <linux/kasan.h>
  66#include <linux/context_tracking.h>
  67#include "../time/tick-internal.h"
  68
  69#include "tree.h"
  70#include "rcu.h"
  71
  72#ifdef MODULE_PARAM_PREFIX
  73#undef MODULE_PARAM_PREFIX
  74#endif
  75#define MODULE_PARAM_PREFIX "rcutree."
  76
  77/* Data structures. */
  78static void rcu_sr_normal_gp_cleanup_work(struct work_struct *);
  79
  80static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  81	.gpwrap = true,
  82};
  83static struct rcu_state rcu_state = {
  84	.level = { &rcu_state.node[0] },
  85	.gp_state = RCU_GP_IDLE,
  86	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  87	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  88	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
  89	.name = RCU_NAME,
  90	.abbr = RCU_ABBR,
  91	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  92	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  93	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
  94	.srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work,
  95		rcu_sr_normal_gp_cleanup_work),
  96	.srs_cleanups_pending = ATOMIC_INIT(0),
  97#ifdef CONFIG_RCU_NOCB_CPU
  98	.nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex),
  99#endif
 100};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101
 102/* Dump rcu_node combining tree at boot to verify correct setup. */
 103static bool dump_tree;
 104module_param(dump_tree, bool, 0444);
 105/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 106static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 107#ifndef CONFIG_PREEMPT_RT
 108module_param(use_softirq, bool, 0444);
 109#endif
 110/* Control rcu_node-tree auto-balancing at boot time. */
 111static bool rcu_fanout_exact;
 112module_param(rcu_fanout_exact, bool, 0444);
 113/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 114static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 115module_param(rcu_fanout_leaf, int, 0444);
 116int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 117/* Number of rcu_nodes at specified level. */
 118int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 119int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 
 
 120
 121/*
 122 * The rcu_scheduler_active variable is initialized to the value
 123 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 124 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 125 * RCU can assume that there is but one task, allowing RCU to (for example)
 126 * optimize synchronize_rcu() to a simple barrier().  When this variable
 127 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 128 * to detect real grace periods.  This variable is also used to suppress
 129 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 130 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 131 * is fully initialized, including all of its kthreads having been spawned.
 132 */
 133int rcu_scheduler_active __read_mostly;
 134EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 135
 136/*
 137 * The rcu_scheduler_fully_active variable transitions from zero to one
 138 * during the early_initcall() processing, which is after the scheduler
 139 * is capable of creating new tasks.  So RCU processing (for example,
 140 * creating tasks for RCU priority boosting) must be delayed until after
 141 * rcu_scheduler_fully_active transitions from zero to one.  We also
 142 * currently delay invocation of any RCU callbacks until after this point.
 143 *
 144 * It might later prove better for people registering RCU callbacks during
 145 * early boot to take responsibility for these callbacks, but one step at
 146 * a time.
 147 */
 148static int rcu_scheduler_fully_active __read_mostly;
 149
 150static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 151			      unsigned long gps, unsigned long flags);
 152static struct task_struct *rcu_boost_task(struct rcu_node *rnp);
 153static void invoke_rcu_core(void);
 154static void rcu_report_exp_rdp(struct rcu_data *rdp);
 
 
 155static void sync_sched_exp_online_cleanup(int cpu);
 156static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 157static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 158static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
 159static bool rcu_init_invoked(void);
 160static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 161static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 162
 163/*
 164 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
 165 * real-time priority(enabling/disabling) is controlled by
 166 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
 167 */
 168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 169module_param(kthread_prio, int, 0444);
 
 170
 171/* Delay in jiffies for grace-period initialization delays, debug only. */
 172
 173static int gp_preinit_delay;
 174module_param(gp_preinit_delay, int, 0444);
 175static int gp_init_delay;
 176module_param(gp_init_delay, int, 0444);
 177static int gp_cleanup_delay;
 178module_param(gp_cleanup_delay, int, 0444);
 179static int nohz_full_patience_delay;
 180module_param(nohz_full_patience_delay, int, 0444);
 181static int nohz_full_patience_delay_jiffies;
 182
 183// Add delay to rcu_read_unlock() for strict grace periods.
 184static int rcu_unlock_delay;
 185#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 186module_param(rcu_unlock_delay, int, 0444);
 187#endif
 188
 189/*
 190 * This rcu parameter is runtime-read-only. It reflects
 191 * a minimum allowed number of objects which can be cached
 192 * per-CPU. Object size is equal to one page. This value
 193 * can be changed at boot time.
 194 */
 195static int rcu_min_cached_objs = 5;
 196module_param(rcu_min_cached_objs, int, 0444);
 197
 198// A page shrinker can ask for pages to be freed to make them
 199// available for other parts of the system. This usually happens
 200// under low memory conditions, and in that case we should also
 201// defer page-cache filling for a short time period.
 202//
 203// The default value is 5 seconds, which is long enough to reduce
 204// interference with the shrinker while it asks other systems to
 205// drain their caches.
 206static int rcu_delay_page_cache_fill_msec = 5000;
 207module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 208
 209/* Retrieve RCU kthreads priority for rcutorture */
 210int rcu_get_gp_kthreads_prio(void)
 211{
 212	return kthread_prio;
 213}
 214EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 215
 216/*
 217 * Number of grace periods between delays, normalized by the duration of
 218 * the delay.  The longer the delay, the more the grace periods between
 219 * each delay.  The reason for this normalization is that it means that,
 220 * for non-zero delays, the overall slowdown of grace periods is constant
 221 * regardless of the duration of the delay.  This arrangement balances
 222 * the need for long delays to increase some race probabilities with the
 223 * need for fast grace periods to increase other race probabilities.
 224 */
 225#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
 226
 227/*
 228 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 229 * permit this function to be invoked without holding the root rcu_node
 230 * structure's ->lock, but of course results can be subject to change.
 
 
 
 
 231 */
 232static int rcu_gp_in_progress(void)
 233{
 234	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 235}
 236
 237/*
 238 * Return the number of callbacks queued on the specified CPU.
 239 * Handles both the nocbs and normal cases.
 
 
 240 */
 241static long rcu_get_n_cbs_cpu(int cpu)
 242{
 243	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 244
 245	if (rcu_segcblist_is_enabled(&rdp->cblist))
 246		return rcu_segcblist_n_cbs(&rdp->cblist);
 247	return 0;
 248}
 249
 250/**
 251 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing
 252 *
 253 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU.
 254 * This is a special-purpose function to be used in the softirq
 255 * infrastructure and perhaps the occasional long-running softirq
 256 * handler.
 257 *
 258 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is
 259 * equivalent to momentarily completely enabling preemption.  For
 260 * example, given this code::
 261 *
 262 *	local_bh_disable();
 263 *	do_something();
 264 *	rcu_softirq_qs();  // A
 265 *	do_something_else();
 266 *	local_bh_enable();  // B
 267 *
 268 * A call to synchronize_rcu() that began concurrently with the
 269 * call to do_something() would be guaranteed to wait only until
 270 * execution reached statement A.  Without that rcu_softirq_qs(),
 271 * that same synchronize_rcu() would instead be guaranteed to wait
 272 * until execution reached statement B.
 273 */
 274void rcu_softirq_qs(void)
 275{
 276	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 277			 lock_is_held(&rcu_lock_map) ||
 278			 lock_is_held(&rcu_sched_lock_map),
 279			 "Illegal rcu_softirq_qs() in RCU read-side critical section");
 280	rcu_qs();
 281	rcu_preempt_deferred_qs(current);
 282	rcu_tasks_qs(current, false);
 283}
 284
 285/*
 286 * Reset the current CPU's RCU_WATCHING counter to indicate that the
 287 * newly onlined CPU is no longer in an extended quiescent state.
 288 * This will either leave the counter unchanged, or increment it
 289 * to the next non-quiescent value.
 290 *
 291 * The non-atomic test/increment sequence works because the upper bits
 292 * of the ->state variable are manipulated only by the corresponding CPU,
 293 * or when the corresponding CPU is offline.
 294 */
 295static void rcu_watching_online(void)
 296{
 297	if (ct_rcu_watching() & CT_RCU_WATCHING)
 298		return;
 299	ct_state_inc(CT_RCU_WATCHING);
 
 
 
 
 
 
 
 
 300}
 301
 302/*
 303 * Return true if the snapshot returned from ct_rcu_watching()
 304 * indicates that RCU is in an extended quiescent state.
 305 */
 306static bool rcu_watching_snap_in_eqs(int snap)
 307{
 308	return !(snap & CT_RCU_WATCHING);
 
 
 
 
 
 309}
 310
 311/**
 312 * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU
 313 * since the specified @snap?
 314 *
 315 * @rdp: The rcu_data corresponding to the CPU for which to check EQS.
 316 * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS.
 317 *
 318 * Returns true if the CPU corresponding to @rdp has spent some time in an
 319 * extended quiescent state since @snap. Note that this doesn't check if it
 320 * /still/ is in an EQS, just that it went through one since @snap.
 321 *
 322 * This is meant to be used in a loop waiting for a CPU to go through an EQS.
 323 */
 324static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap)
 325{
 326	/*
 327	 * The first failing snapshot is already ordered against the accesses
 328	 * performed by the remote CPU after it exits idle.
 329	 *
 330	 * The second snapshot therefore only needs to order against accesses
 331	 * performed by the remote CPU prior to entering idle and therefore can
 332	 * rely solely on acquire semantics.
 333	 */
 334	if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap)))
 335		return true;
 336
 337	return snap != ct_rcu_watching_cpu_acquire(rdp->cpu);
 338}
 339
 340/*
 341 * Return true if the referenced integer is zero while the specified
 342 * CPU remains within a single extended quiescent state.
 343 */
 344bool rcu_watching_zero_in_eqs(int cpu, int *vp)
 345{
 346	int snap;
 347
 348	// If not quiescent, force back to earlier extended quiescent state.
 349	snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING;
 350	smp_rmb(); // Order CT state and *vp reads.
 351	if (READ_ONCE(*vp))
 352		return false;  // Non-zero, so report failure;
 353	smp_rmb(); // Order *vp read and CT state re-read.
 354
 355	// If still in the same extended quiescent state, we are good!
 356	return snap == ct_rcu_watching_cpu(cpu);
 357}
 358
 359/*
 360 * Let the RCU core know that this CPU has gone through the scheduler,
 361 * which is a quiescent state.  This is called when the need for a
 362 * quiescent state is urgent, so we burn an atomic operation and full
 363 * memory barriers to let the RCU core know about it, regardless of what
 364 * this CPU might (or might not) do in the near future.
 365 *
 366 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 
 
 367 *
 368 * The caller must have disabled interrupts and must not be idle.
 369 */
 370notrace void rcu_momentary_eqs(void)
 371{
 372	int seq;
 
 
 
 373
 374	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 375	seq = ct_state_inc(2 * CT_RCU_WATCHING);
 376	/* It is illegal to call this from idle state. */
 377	WARN_ON_ONCE(!(seq & CT_RCU_WATCHING));
 378	rcu_preempt_deferred_qs(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379}
 380EXPORT_SYMBOL_GPL(rcu_momentary_eqs);
 381
 382/**
 383 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 
 
 
 
 
 384 *
 385 * If the current CPU is idle and running at a first-level (not nested)
 386 * interrupt, or directly, from idle, return true.
 
 387 *
 388 * The caller must have at least disabled IRQs.
 389 */
 390static int rcu_is_cpu_rrupt_from_idle(void)
 391{
 392	long nesting;
 393
 394	/*
 395	 * Usually called from the tick; but also used from smp_function_call()
 396	 * for expedited grace periods. This latter can result in running from
 397	 * the idle task, instead of an actual IPI.
 398	 */
 399	lockdep_assert_irqs_disabled();
 400
 401	/* Check for counter underflows */
 402	RCU_LOCKDEP_WARN(ct_nesting() < 0,
 403			 "RCU nesting counter underflow!");
 404	RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0,
 405			 "RCU nmi_nesting counter underflow/zero!");
 406
 407	/* Are we at first interrupt nesting level? */
 408	nesting = ct_nmi_nesting();
 409	if (nesting > 1)
 410		return false;
 411
 412	/*
 413	 * If we're not in an interrupt, we must be in the idle task!
 414	 */
 415	WARN_ON_ONCE(!nesting && !is_idle_task(current));
 416
 417	/* Does CPU appear to be idle from an RCU standpoint? */
 418	return ct_nesting() == 0;
 419}
 420
 421#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 422				// Maximum callbacks per rcu_do_batch ...
 423#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 424static long blimit = DEFAULT_RCU_BLIMIT;
 425#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 426static long qhimark = DEFAULT_RCU_QHIMARK;
 427#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 428static long qlowmark = DEFAULT_RCU_QLOMARK;
 429#define DEFAULT_RCU_QOVLD_MULT 2
 430#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 431static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 432static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
 433
 434module_param(blimit, long, 0444);
 435module_param(qhimark, long, 0444);
 436module_param(qlowmark, long, 0444);
 437module_param(qovld, long, 0444);
 438
 439static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 440static ulong jiffies_till_next_fqs = ULONG_MAX;
 441static bool rcu_kick_kthreads;
 442static int rcu_divisor = 7;
 443module_param(rcu_divisor, int, 0644);
 444
 445/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 446static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 447module_param(rcu_resched_ns, long, 0644);
 448
 449/*
 450 * How long the grace period must be before we start recruiting
 451 * quiescent-state help from rcu_note_context_switch().
 452 */
 453static ulong jiffies_till_sched_qs = ULONG_MAX;
 454module_param(jiffies_till_sched_qs, ulong, 0444);
 455static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 456module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 
 
 
 
 
 
 
 457
 458/*
 459 * Make sure that we give the grace-period kthread time to detect any
 460 * idle CPUs before taking active measures to force quiescent states.
 461 * However, don't go below 100 milliseconds, adjusted upwards for really
 462 * large systems.
 463 */
 464static void adjust_jiffies_till_sched_qs(void)
 465{
 466	unsigned long j;
 
 
 467
 468	/* If jiffies_till_sched_qs was specified, respect the request. */
 469	if (jiffies_till_sched_qs != ULONG_MAX) {
 470		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 471		return;
 472	}
 473	/* Otherwise, set to third fqs scan, but bound below on large system. */
 474	j = READ_ONCE(jiffies_till_first_fqs) +
 475		      2 * READ_ONCE(jiffies_till_next_fqs);
 476	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 477		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 478	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 479	WRITE_ONCE(jiffies_to_sched_qs, j);
 480}
 481
 482static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 483{
 484	ulong j;
 485	int ret = kstrtoul(val, 0, &j);
 486
 487	if (!ret) {
 488		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 489		adjust_jiffies_till_sched_qs();
 490	}
 491	return ret;
 492}
 
 493
 494static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 
 
 
 495{
 496	ulong j;
 497	int ret = kstrtoul(val, 0, &j);
 
 498
 499	if (!ret) {
 500		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 501		adjust_jiffies_till_sched_qs();
 502	}
 503	return ret;
 
 504}
 
 505
 506static const struct kernel_param_ops first_fqs_jiffies_ops = {
 507	.set = param_set_first_fqs_jiffies,
 508	.get = param_get_ulong,
 509};
 510
 511static const struct kernel_param_ops next_fqs_jiffies_ops = {
 512	.set = param_set_next_fqs_jiffies,
 513	.get = param_get_ulong,
 514};
 515
 516module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 517module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 518module_param(rcu_kick_kthreads, bool, 0644);
 519
 520static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 521static int rcu_pending(int user);
 522
 523/*
 524 * Return the number of RCU GPs completed thus far for debug & stats.
 525 */
 526unsigned long rcu_get_gp_seq(void)
 527{
 528	return READ_ONCE(rcu_state.gp_seq);
 529}
 530EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 531
 532/*
 533 * Return the number of RCU expedited batches completed thus far for
 534 * debug & stats.  Odd numbers mean that a batch is in progress, even
 535 * numbers mean idle.  The value returned will thus be roughly double
 536 * the cumulative batches since boot.
 537 */
 538unsigned long rcu_exp_batches_completed(void)
 539{
 540	return rcu_state.expedited_sequence;
 541}
 542EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 543
 544/*
 545 * Return the root node of the rcu_state structure.
 
 546 */
 547static struct rcu_node *rcu_get_root(void)
 548{
 549	return &rcu_state.node[0];
 550}
 
 551
 552/*
 553 * Send along grace-period-related data for rcutorture diagnostics.
 554 */
 555void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
 556{
 557	*flags = READ_ONCE(rcu_state.gp_flags);
 558	*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 559}
 560EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 561
 562#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
 563/*
 564 * An empty function that will trigger a reschedule on
 565 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 566 */
 567static void late_wakeup_func(struct irq_work *work)
 568{
 
 569}
 
 570
 571static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 572	IRQ_WORK_INIT(late_wakeup_func);
 
 
 
 
 
 
 573
 574/*
 575 * If either:
 576 *
 577 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 578 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 579 *
 580 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 581 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 582 * get re-enabled again.
 583 */
 584noinstr void rcu_irq_work_resched(void)
 585{
 586	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 587
 588	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 589		return;
 590
 591	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 592		return;
 593
 594	instrumentation_begin();
 595	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 596		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 597	}
 598	instrumentation_end();
 599}
 600#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
 601
 602#ifdef CONFIG_PROVE_RCU
 603/**
 604 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 
 
 
 605 */
 606void rcu_irq_exit_check_preempt(void)
 607{
 608	lockdep_assert_irqs_disabled();
 609
 610	RCU_LOCKDEP_WARN(ct_nesting() <= 0,
 611			 "RCU nesting counter underflow/zero!");
 612	RCU_LOCKDEP_WARN(ct_nmi_nesting() !=
 613			 CT_NESTING_IRQ_NONIDLE,
 614			 "Bad RCU  nmi_nesting counter\n");
 615	RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
 616			 "RCU in extended quiescent state!");
 617}
 618#endif /* #ifdef CONFIG_PROVE_RCU */
 619
 620#ifdef CONFIG_NO_HZ_FULL
 621/**
 622 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 623 *
 624 * The scheduler tick is not normally enabled when CPUs enter the kernel
 625 * from nohz_full userspace execution.  After all, nohz_full userspace
 626 * execution is an RCU quiescent state and the time executing in the kernel
 627 * is quite short.  Except of course when it isn't.  And it is not hard to
 628 * cause a large system to spend tens of seconds or even minutes looping
 629 * in the kernel, which can cause a number of problems, include RCU CPU
 630 * stall warnings.
 631 *
 632 * Therefore, if a nohz_full CPU fails to report a quiescent state
 633 * in a timely manner, the RCU grace-period kthread sets that CPU's
 634 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 635 * exception will invoke this function, which will turn on the scheduler
 636 * tick, which will enable RCU to detect that CPU's quiescent states,
 637 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 638 * The tick will be disabled once a quiescent state is reported for
 639 * this CPU.
 640 *
 641 * Of course, in carefully tuned systems, there might never be an
 642 * interrupt or exception.  In that case, the RCU grace-period kthread
 643 * will eventually cause one to happen.  However, in less carefully
 644 * controlled environments, this function allows RCU to get what it
 645 * needs without creating otherwise useless interruptions.
 646 */
 647void __rcu_irq_enter_check_tick(void)
 
 648{
 649	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 650
 651	// If we're here from NMI there's nothing to do.
 652	if (in_nmi())
 653		return;
 654
 655	RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
 656			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 657
 658	if (!tick_nohz_full_cpu(rdp->cpu) ||
 659	    !READ_ONCE(rdp->rcu_urgent_qs) ||
 660	    READ_ONCE(rdp->rcu_forced_tick)) {
 661		// RCU doesn't need nohz_full help from this CPU, or it is
 662		// already getting that help.
 
 
 
 
 
 663		return;
 664	}
 
 
 
 
 
 665
 666	// We get here only when not in an extended quiescent state and
 667	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
 668	// already watching and (2) The fact that we are in an interrupt
 669	// handler and that the rcu_node lock is an irq-disabled lock
 670	// prevents self-deadlock.  So we can safely recheck under the lock.
 671	// Note that the nohz_full state currently cannot change.
 672	raw_spin_lock_rcu_node(rdp->mynode);
 673	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
 674		// A nohz_full CPU is in the kernel and RCU needs a
 675		// quiescent state.  Turn on the tick!
 676		WRITE_ONCE(rdp->rcu_forced_tick, true);
 677		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 678	}
 679	raw_spin_unlock_rcu_node(rdp->mynode);
 680}
 681NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
 682#endif /* CONFIG_NO_HZ_FULL */
 683
 684/*
 685 * Check to see if any future non-offloaded RCU-related work will need
 686 * to be done by the current CPU, even if none need be done immediately,
 687 * returning 1 if so.  This function is part of the RCU implementation;
 688 * it is -not- an exported member of the RCU API.  This is used by
 689 * the idle-entry code to figure out whether it is safe to disable the
 690 * scheduler-clock interrupt.
 691 *
 692 * Just check whether or not this CPU has non-offloaded RCU callbacks
 693 * queued.
 694 */
 695int rcu_needs_cpu(void)
 
 696{
 697	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
 698		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
 699}
 700
 701/*
 702 * If any sort of urgency was applied to the current CPU (for example,
 703 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
 704 * to get to a quiescent state, disable it.
 705 */
 706static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
 707{
 708	raw_lockdep_assert_held_rcu_node(rdp->mynode);
 709	WRITE_ONCE(rdp->rcu_urgent_qs, false);
 710	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
 711	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
 712		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 713		WRITE_ONCE(rdp->rcu_forced_tick, false);
 714	}
 715}
 716
 717/**
 718 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
 719 *
 720 * Return @true if RCU is watching the running CPU and @false otherwise.
 721 * An @true return means that this CPU can safely enter RCU read-side
 722 * critical sections.
 723 *
 724 * Although calls to rcu_is_watching() from most parts of the kernel
 725 * will return @true, there are important exceptions.  For example, if the
 726 * current CPU is deep within its idle loop, in kernel entry/exit code,
 727 * or offline, rcu_is_watching() will return @false.
 728 *
 729 * Make notrace because it can be called by the internal functions of
 730 * ftrace, and making this notrace removes unnecessary recursion calls.
 731 */
 732notrace bool rcu_is_watching(void)
 733{
 734	bool ret;
 
 
 735
 736	preempt_disable_notrace();
 737	ret = rcu_is_watching_curr_cpu();
 738	preempt_enable_notrace();
 739	return ret;
 740}
 741EXPORT_SYMBOL_GPL(rcu_is_watching);
 742
 743/*
 744 * If a holdout task is actually running, request an urgent quiescent
 745 * state from its CPU.  This is unsynchronized, so migrations can cause
 746 * the request to go to the wrong CPU.  Which is OK, all that will happen
 747 * is that the CPU's next context switch will be a bit slower and next
 748 * time around this task will generate another request.
 749 */
 750void rcu_request_urgent_qs_task(struct task_struct *t)
 
 751{
 752	int cpu;
 753
 754	barrier();
 755	cpu = task_cpu(t);
 756	if (!task_curr(t))
 757		return; /* This task is not running on that CPU. */
 758	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 
 
 
 
 
 
 
 
 
 759}
 760
 761/*
 762 * When trying to report a quiescent state on behalf of some other CPU,
 763 * it is our responsibility to check for and handle potential overflow
 764 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 765 * After all, the CPU might be in deep idle state, and thus executing no
 766 * code whatsoever.
 767 */
 768static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 769{
 770	raw_lockdep_assert_held_rcu_node(rnp);
 771	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 772			 rnp->gp_seq))
 773		WRITE_ONCE(rdp->gpwrap, true);
 774	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 775		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776}
 777
 778/*
 779 * Snapshot the specified CPU's RCU_WATCHING counter so that we can later
 780 * credit them with an implicit quiescent state.  Return 1 if this CPU
 781 * is in dynticks idle mode, which is an extended quiescent state.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782 */
 783static int rcu_watching_snap_save(struct rcu_data *rdp)
 784{
 785	/*
 786	 * Full ordering between remote CPU's post idle accesses and updater's
 787	 * accesses prior to current GP (and also the started GP sequence number)
 788	 * is enforced by rcu_seq_start() implicit barrier and even further by
 789	 * smp_mb__after_unlock_lock() barriers chained all the way throughout the
 790	 * rnp locking tree since rcu_gp_init() and up to the current leaf rnp
 791	 * locking.
 792	 *
 793	 * Ordering between remote CPU's pre idle accesses and post grace period
 794	 * updater's accesses is enforced by the below acquire semantic.
 795	 */
 796	rdp->watching_snap = ct_rcu_watching_cpu_acquire(rdp->cpu);
 797	if (rcu_watching_snap_in_eqs(rdp->watching_snap)) {
 798		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 799		rcu_gpnum_ovf(rdp->mynode, rdp);
 800		return 1;
 801	}
 802	return 0;
 803}
 
 804
 805/*
 806 * Returns positive if the specified CPU has passed through a quiescent state
 807 * by virtue of being in or having passed through an dynticks idle state since
 808 * the last call to rcu_watching_snap_save() for this same CPU, or by
 809 * virtue of having been offline.
 810 *
 811 * Returns negative if the specified CPU needs a force resched.
 
 
 
 
 
 
 
 
 
 
 
 
 812 *
 813 * Returns zero otherwise.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814 */
 815static int rcu_watching_snap_recheck(struct rcu_data *rdp)
 816{
 817	unsigned long jtsq;
 818	int ret = 0;
 819	struct rcu_node *rnp = rdp->mynode;
 820
 821	/*
 822	 * If the CPU passed through or entered a dynticks idle phase with
 823	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 824	 * already acknowledged the request to pass through a quiescent
 825	 * state.  Either way, that CPU cannot possibly be in an RCU
 826	 * read-side critical section that started before the beginning
 827	 * of the current RCU grace period.
 828	 */
 829	if (rcu_watching_snap_stopped_since(rdp, rdp->watching_snap)) {
 830		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 831		rcu_gpnum_ovf(rnp, rdp);
 832		return 1;
 833	}
 834
 835	/*
 836	 * Complain if a CPU that is considered to be offline from RCU's
 837	 * perspective has not yet reported a quiescent state.  After all,
 838	 * the offline CPU should have reported a quiescent state during
 839	 * the CPU-offline process, or, failing that, by rcu_gp_init()
 840	 * if it ran concurrently with either the CPU going offline or the
 841	 * last task on a leaf rcu_node structure exiting its RCU read-side
 842	 * critical section while all CPUs corresponding to that structure
 843	 * are offline.  This added warning detects bugs in any of these
 844	 * code paths.
 845	 *
 846	 * The rcu_node structure's ->lock is held here, which excludes
 847	 * the relevant portions the CPU-hotplug code, the grace-period
 848	 * initialization code, and the rcu_read_unlock() code paths.
 849	 *
 850	 * For more detail, please refer to the "Hotplug CPU" section
 851	 * of RCU's Requirements documentation.
 852	 */
 853	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
 854		struct rcu_node *rnp1;
 855
 856		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 857			__func__, rnp->grplo, rnp->grphi, rnp->level,
 858			(long)rnp->gp_seq, (long)rnp->completedqs);
 859		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 860			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
 861				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
 862		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
 863			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
 864			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
 865			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
 866		return 1; /* Break things loose after complaining. */
 867	}
 
 868
 869	/*
 870	 * A CPU running for an extended time within the kernel can
 871	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
 872	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
 873	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
 874	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
 875	 * variable are safe because the assignments are repeated if this
 876	 * CPU failed to pass through a quiescent state.  This code
 877	 * also checks .jiffies_resched in case jiffies_to_sched_qs
 878	 * is set way high.
 879	 */
 880	jtsq = READ_ONCE(jiffies_to_sched_qs);
 881	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
 882	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
 883	     time_after(jiffies, rcu_state.jiffies_resched) ||
 884	     rcu_state.cbovld)) {
 885		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
 886		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 887		smp_store_release(&rdp->rcu_urgent_qs, true);
 888	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
 889		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 890	}
 
 891
 892	/*
 893	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
 894	 * The above code handles this, but only for straight cond_resched().
 895	 * And some in-kernel loops check need_resched() before calling
 896	 * cond_resched(), which defeats the above code for CPUs that are
 897	 * running in-kernel with scheduling-clock interrupts disabled.
 898	 * So hit them over the head with the resched_cpu() hammer!
 899	 */
 900	if (tick_nohz_full_cpu(rdp->cpu) &&
 901	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
 902	     rcu_state.cbovld)) {
 903		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 904		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 905		ret = -1;
 906	}
 907
 908	/*
 909	 * If more than halfway to RCU CPU stall-warning time, invoke
 910	 * resched_cpu() more frequently to try to loosen things up a bit.
 911	 * Also check to see if the CPU is getting hammered with interrupts,
 912	 * but only once per grace period, just to keep the IPIs down to
 913	 * a dull roar.
 914	 */
 915	if (time_after(jiffies, rcu_state.jiffies_resched)) {
 916		if (time_after(jiffies,
 917			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
 918			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 919			ret = -1;
 920		}
 921		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
 922		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
 923		    (rnp->ffmask & rdp->grpmask)) {
 924			rdp->rcu_iw_pending = true;
 925			rdp->rcu_iw_gp_seq = rnp->gp_seq;
 926			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 927		}
 928
 929		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
 930			int cpu = rdp->cpu;
 931			struct rcu_snap_record *rsrp;
 932			struct kernel_cpustat *kcsp;
 933
 934			kcsp = &kcpustat_cpu(cpu);
 935
 936			rsrp = &rdp->snap_record;
 937			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
 938			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
 939			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
 940			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
 941			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
 942			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
 943			rsrp->jiffies = jiffies;
 944			rsrp->gp_seq = rdp->gp_seq;
 945		}
 946	}
 947
 948	return ret;
 949}
 950
 951/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
 952static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 953			      unsigned long gp_seq_req, const char *s)
 
 
 
 
 
 
 
 
 
 954{
 955	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
 956				      gp_seq_req, rnp->level,
 957				      rnp->grplo, rnp->grphi, s);
 
 
 
 958}
 
 959
 960/*
 961 * rcu_start_this_gp - Request the start of a particular grace period
 962 * @rnp_start: The leaf node of the CPU from which to start.
 963 * @rdp: The rcu_data corresponding to the CPU from which to start.
 964 * @gp_seq_req: The gp_seq of the grace period to start.
 965 *
 966 * Start the specified grace period, as needed to handle newly arrived
 967 * callbacks.  The required future grace periods are recorded in each
 968 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 969 * is reason to awaken the grace-period kthread.
 970 *
 971 * The caller must hold the specified rcu_node structure's ->lock, which
 972 * is why the caller is responsible for waking the grace-period kthread.
 973 *
 974 * Returns true if the GP thread needs to be awakened else false.
 975 */
 976static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
 977			      unsigned long gp_seq_req)
 978{
 979	bool ret = false;
 980	struct rcu_node *rnp;
 
 981
 982	/*
 983	 * Use funnel locking to either acquire the root rcu_node
 984	 * structure's lock or bail out if the need for this grace period
 985	 * has already been recorded -- or if that grace period has in
 986	 * fact already started.  If there is already a grace period in
 987	 * progress in a non-leaf node, no recording is needed because the
 988	 * end of the grace period will scan the leaf rcu_node structures.
 989	 * Note that rnp_start->lock must not be released.
 990	 */
 991	raw_lockdep_assert_held_rcu_node(rnp_start);
 992	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
 993	for (rnp = rnp_start; 1; rnp = rnp->parent) {
 994		if (rnp != rnp_start)
 995			raw_spin_lock_rcu_node(rnp);
 996		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
 997		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
 998		    (rnp != rnp_start &&
 999		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1000			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1001					  TPS("Prestarted"));
1002			goto unlock_out;
1003		}
1004		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1005		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1006			/*
1007			 * We just marked the leaf or internal node, and a
1008			 * grace period is in progress, which means that
1009			 * rcu_gp_cleanup() will see the marking.  Bail to
1010			 * reduce contention.
1011			 */
1012			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1013					  TPS("Startedleaf"));
1014			goto unlock_out;
1015		}
1016		if (rnp != rnp_start && rnp->parent != NULL)
1017			raw_spin_unlock_rcu_node(rnp);
1018		if (!rnp->parent)
1019			break;  /* At root, and perhaps also leaf. */
1020	}
1021
1022	/* If GP already in progress, just leave, otherwise start one. */
1023	if (rcu_gp_in_progress()) {
1024		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1025		goto unlock_out;
1026	}
1027	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1028	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1029	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1030	if (!READ_ONCE(rcu_state.gp_kthread)) {
1031		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1032		goto unlock_out;
1033	}
1034	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1035	ret = true;  /* Caller must wake GP kthread. */
1036unlock_out:
1037	/* Push furthest requested GP to leaf node and rcu_data structure. */
1038	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1039		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1040		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1041	}
1042	if (rnp != rnp_start)
1043		raw_spin_unlock_rcu_node(rnp);
1044	return ret;
1045}
1046
1047/*
1048 * Clean up any old requests for the just-ended grace period.  Also return
1049 * whether any additional grace periods have been requested.
1050 */
1051static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1052{
1053	bool needmore;
1054	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1055
1056	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1057	if (!needmore)
1058		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1059	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1060			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1061	return needmore;
1062}
1063
1064static void swake_up_one_online_ipi(void *arg)
1065{
1066	struct swait_queue_head *wqh = arg;
1067
1068	swake_up_one(wqh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069}
1070
1071static void swake_up_one_online(struct swait_queue_head *wqh)
 
 
 
 
 
 
 
 
1072{
1073	int cpu = get_cpu();
1074
1075	/*
1076	 * If called from rcutree_report_cpu_starting(), wake up
1077	 * is dangerous that late in the CPU-down hotplug process. The
1078	 * scheduler might queue an ignored hrtimer. Defer the wake up
1079	 * to an online CPU instead.
1080	 */
1081	if (unlikely(cpu_is_offline(cpu))) {
1082		int target;
1083
1084		target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1085					 cpu_online_mask);
 
 
 
 
 
 
1086
1087		smp_call_function_single(target, swake_up_one_online_ipi,
1088					 wqh, 0);
1089		put_cpu();
1090	} else {
1091		put_cpu();
1092		swake_up_one(wqh);
1093	}
1094}
1095
1096/*
1097 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1098 * interrupt or softirq handler, in which case we just might immediately
1099 * sleep upon return, resulting in a grace-period hang), and don't bother
1100 * awakening when there is nothing for the grace-period kthread to do
1101 * (as in several CPUs raced to awaken, we lost), and finally don't try
1102 * to awaken a kthread that has not yet been created.  If all those checks
1103 * are passed, track some debug information and awaken.
1104 *
1105 * So why do the self-wakeup when in an interrupt or softirq handler
1106 * in the grace-period kthread's context?  Because the kthread might have
1107 * been interrupted just as it was going to sleep, and just after the final
1108 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1109 * is required, and is therefore supplied.
1110 */
1111static void rcu_gp_kthread_wake(void)
1112{
1113	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1114
1115	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1116	    !READ_ONCE(rcu_state.gp_flags) || !t)
1117		return;
1118	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1119	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1120	swake_up_one_online(&rcu_state.gp_wq);
1121}
1122
1123/*
1124 * If there is room, assign a ->gp_seq number to any callbacks on this
1125 * CPU that have not already been assigned.  Also accelerate any callbacks
1126 * that were previously assigned a ->gp_seq number that has since proven
1127 * to be too conservative, which can happen if callbacks get assigned a
1128 * ->gp_seq number while RCU is idle, but with reference to a non-root
1129 * rcu_node structure.  This function is idempotent, so it does not hurt
1130 * to call it repeatedly.  Returns an flag saying that we should awaken
1131 * the RCU grace-period kthread.
1132 *
1133 * The caller must hold rnp->lock with interrupts disabled.
 
1134 */
1135static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1136{
1137	unsigned long gp_seq_req;
1138	bool ret = false;
1139
1140	rcu_lockdep_assert_cblist_protected(rdp);
1141	raw_lockdep_assert_held_rcu_node(rnp);
 
 
 
 
1142
1143	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1144	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1145		return false;
1146
1147	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148
1149	/*
1150	 * Callbacks are often registered with incomplete grace-period
1151	 * information.  Something about the fact that getting exact
1152	 * information requires acquiring a global lock...  RCU therefore
1153	 * makes a conservative estimate of the grace period number at which
1154	 * a given callback will become ready to invoke.	The following
1155	 * code checks this estimate and improves it when possible, thus
1156	 * accelerating callback invocation to an earlier grace-period
1157	 * number.
1158	 */
1159	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1160	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1161		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1162
1163	/* Trace depending on how much we were able to accelerate. */
1164	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1165		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1166	else
1167		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1168
1169	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1170
1171	return ret;
 
 
 
 
 
 
 
1172}
1173
1174/*
1175 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1176 * rcu_node structure's ->lock be held.  It consults the cached value
1177 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1178 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1179 * while holding the leaf rcu_node structure's ->lock.
1180 */
1181static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1182					struct rcu_data *rdp)
1183{
1184	unsigned long c;
1185	bool needwake;
1186
1187	rcu_lockdep_assert_cblist_protected(rdp);
1188	c = rcu_seq_snap(&rcu_state.gp_seq);
1189	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1190		/* Old request still live, so mark recent callbacks. */
1191		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1192		return;
1193	}
1194	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1195	needwake = rcu_accelerate_cbs(rnp, rdp);
1196	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1197	if (needwake)
1198		rcu_gp_kthread_wake();
1199}
1200
1201/*
1202 * Move any callbacks whose grace period has completed to the
1203 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1204 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1205 * sublist.  This function is idempotent, so it does not hurt to
1206 * invoke it repeatedly.  As long as it is not invoked -too- often...
1207 * Returns true if the RCU grace-period kthread needs to be awakened.
1208 *
1209 * The caller must hold rnp->lock with interrupts disabled.
1210 */
1211static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1212{
1213	rcu_lockdep_assert_cblist_protected(rdp);
1214	raw_lockdep_assert_held_rcu_node(rnp);
 
1215
1216	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1217	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1218		return false;
 
 
 
 
 
 
 
 
 
 
1219
1220	/*
1221	 * Find all callbacks whose ->gp_seq numbers indicate that they
1222	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
 
 
 
 
 
 
 
1223	 */
1224	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225
1226	/* Classify any remaining callbacks. */
1227	return rcu_accelerate_cbs(rnp, rdp);
 
 
 
 
 
 
 
 
 
 
 
 
1228}
1229
1230/*
1231 * Move and classify callbacks, but only if doing so won't require
1232 * that the RCU grace-period kthread be awakened.
1233 */
1234static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1235						  struct rcu_data *rdp)
1236{
1237	rcu_lockdep_assert_cblist_protected(rdp);
1238	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1239		return;
1240	// The grace period cannot end while we hold the rcu_node lock.
1241	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1242		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1243	raw_spin_unlock_rcu_node(rnp);
1244}
1245
1246/*
1247 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1248 * quiescent state.  This is intended to be invoked when the CPU notices
1249 * a new grace period.
1250 */
1251static void rcu_strict_gp_check_qs(void)
1252{
1253	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1254		rcu_read_lock();
1255		rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
1256	}
1257}
1258
1259/*
1260 * Update CPU-local rcu_data state to record the beginnings and ends of
1261 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1262 * structure corresponding to the current CPU, and must have irqs disabled.
1263 * Returns true if the grace-period kthread needs to be awakened.
1264 */
1265static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1266{
1267	bool ret = false;
1268	bool need_qs;
1269	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1270
1271	raw_lockdep_assert_held_rcu_node(rnp);
 
 
 
 
 
 
 
 
 
1272
1273	if (rdp->gp_seq == rnp->gp_seq)
1274		return false; /* Nothing to do. */
 
 
 
 
 
1275
1276	/* Handle the ends of any preceding grace periods first. */
1277	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1278	    unlikely(READ_ONCE(rdp->gpwrap))) {
1279		if (!offloaded)
1280			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1281		rdp->core_needs_qs = false;
1282		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1283	} else {
1284		if (!offloaded)
1285			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1286		if (rdp->core_needs_qs)
1287			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1288	}
 
1289
1290	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1291	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1292	    unlikely(READ_ONCE(rdp->gpwrap))) {
1293		/*
1294		 * If the current grace period is waiting for this CPU,
1295		 * set up to detect a quiescent state, otherwise don't
1296		 * go looking for one.
1297		 */
1298		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1299		need_qs = !!(rnp->qsmask & rdp->grpmask);
1300		rdp->cpu_no_qs.b.norm = need_qs;
1301		rdp->core_needs_qs = need_qs;
1302		zero_cpu_stall_ticks(rdp);
1303	}
1304	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1305	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1306		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1307	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1308		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1309	WRITE_ONCE(rdp->gpwrap, false);
1310	rcu_gpnum_ovf(rnp, rdp);
1311	return ret;
1312}
1313
1314static void note_gp_changes(struct rcu_data *rdp)
1315{
 
 
1316	unsigned long flags;
1317	bool needwake;
1318	struct rcu_node *rnp;
 
 
 
 
 
 
 
 
 
 
1319
1320	local_irq_save(flags);
1321	rnp = rdp->mynode;
1322	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1323	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1324	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1325		local_irq_restore(flags);
1326		return;
1327	}
1328	needwake = __note_gp_changes(rnp, rdp);
 
1329	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1330	rcu_strict_gp_check_qs();
1331	if (needwake)
1332		rcu_gp_kthread_wake();
1333}
1334
1335static atomic_t *rcu_gp_slow_suppress;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336
1337/* Register a counter to suppress debugging grace-period delays. */
1338void rcu_gp_slow_register(atomic_t *rgssp)
1339{
1340	WARN_ON_ONCE(rcu_gp_slow_suppress);
1341
1342	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1343}
1344EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1345
1346/* Unregister a counter, with NULL for not caring which. */
1347void rcu_gp_slow_unregister(atomic_t *rgssp)
1348{
1349	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
 
 
 
1350
1351	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1352}
1353EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1354
1355static bool rcu_gp_slow_is_suppressed(void)
1356{
1357	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1358
1359	return rgssp && atomic_read(rgssp);
1360}
1361
1362static void rcu_gp_slow(int delay)
1363{
1364	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1365	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1366		schedule_timeout_idle(delay);
1367}
1368
1369static unsigned long sleep_duration;
1370
1371/* Allow rcutorture to stall the grace-period kthread. */
1372void rcu_gp_set_torture_wait(int duration)
1373{
1374	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1375		WRITE_ONCE(sleep_duration, duration);
 
 
 
1376}
1377EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1378
1379/* Actually implement the aforementioned wait. */
1380static void rcu_gp_torture_wait(void)
1381{
1382	unsigned long duration;
 
 
 
 
 
1383
1384	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
 
1385		return;
1386	duration = xchg(&sleep_duration, 0UL);
1387	if (duration > 0) {
1388		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1389		schedule_timeout_idle(duration);
1390		pr_alert("%s: Wait complete\n", __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391	}
1392}
1393
1394/*
1395 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1396 * processing.
 
 
 
 
 
1397 */
1398static void rcu_strict_gp_boundary(void *unused)
1399{
1400	invoke_rcu_core();
 
 
 
1401}
1402
1403// Make the polled API aware of the beginning of a grace period.
1404static void rcu_poll_gp_seq_start(unsigned long *snap)
 
 
 
 
1405{
1406	struct rcu_node *rnp = rcu_get_root();
1407
1408	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1409		raw_lockdep_assert_held_rcu_node(rnp);
1410
1411	// If RCU was idle, note beginning of GP.
1412	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1413		rcu_seq_start(&rcu_state.gp_seq_polled);
1414
1415	// Either way, record current state.
1416	*snap = rcu_state.gp_seq_polled;
1417}
1418
1419// Make the polled API aware of the end of a grace period.
1420static void rcu_poll_gp_seq_end(unsigned long *snap)
 
 
1421{
1422	struct rcu_node *rnp = rcu_get_root();
1423
1424	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1425		raw_lockdep_assert_held_rcu_node(rnp);
1426
1427	// If the previously noted GP is still in effect, record the
1428	// end of that GP.  Either way, zero counter to avoid counter-wrap
1429	// problems.
1430	if (*snap && *snap == rcu_state.gp_seq_polled) {
1431		rcu_seq_end(&rcu_state.gp_seq_polled);
1432		rcu_state.gp_seq_polled_snap = 0;
1433		rcu_state.gp_seq_polled_exp_snap = 0;
1434	} else {
1435		*snap = 0;
1436	}
1437}
1438
1439// Make the polled API aware of the beginning of a grace period, but
1440// where caller does not hold the root rcu_node structure's lock.
1441static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
 
 
 
 
 
 
 
 
1442{
1443	unsigned long flags;
1444	struct rcu_node *rnp = rcu_get_root();
 
 
 
 
 
 
 
1445
1446	if (rcu_init_invoked()) {
1447		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1448			lockdep_assert_irqs_enabled();
1449		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1450	}
1451	rcu_poll_gp_seq_start(snap);
1452	if (rcu_init_invoked())
1453		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1454}
1455
1456// Make the polled API aware of the end of a grace period, but where
1457// caller does not hold the root rcu_node structure's lock.
1458static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
 
 
 
1459{
1460	unsigned long flags;
1461	struct rcu_node *rnp = rcu_get_root();
1462
1463	if (rcu_init_invoked()) {
1464		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1465			lockdep_assert_irqs_enabled();
1466		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1467	}
1468	rcu_poll_gp_seq_end(snap);
1469	if (rcu_init_invoked())
1470		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1471}
1472
1473/*
1474 * There is a single llist, which is used for handling
1475 * synchronize_rcu() users' enqueued rcu_synchronize nodes.
1476 * Within this llist, there are two tail pointers:
1477 *
1478 * wait tail: Tracks the set of nodes, which need to
1479 *            wait for the current GP to complete.
1480 * done tail: Tracks the set of nodes, for which grace
1481 *            period has elapsed. These nodes processing
1482 *            will be done as part of the cleanup work
1483 *            execution by a kworker.
1484 *
1485 * At every grace period init, a new wait node is added
1486 * to the llist. This wait node is used as wait tail
1487 * for this new grace period. Given that there are a fixed
1488 * number of wait nodes, if all wait nodes are in use
1489 * (which can happen when kworker callback processing
1490 * is delayed) and additional grace period is requested.
1491 * This means, a system is slow in processing callbacks.
1492 *
1493 * TODO: If a slow processing is detected, a first node
1494 * in the llist should be used as a wait-tail for this
1495 * grace period, therefore users which should wait due
1496 * to a slow process are handled by _this_ grace period
1497 * and not next.
1498 *
1499 * Below is an illustration of how the done and wait
1500 * tail pointers move from one set of rcu_synchronize nodes
1501 * to the other, as grace periods start and finish and
1502 * nodes are processed by kworker.
1503 *
1504 *
1505 * a. Initial llist callbacks list:
1506 *
1507 * +----------+           +--------+          +-------+
1508 * |          |           |        |          |       |
1509 * |   head   |---------> |   cb2  |--------->| cb1   |
1510 * |          |           |        |          |       |
1511 * +----------+           +--------+          +-------+
1512 *
1513 *
1514 *
1515 * b. New GP1 Start:
1516 *
1517 *                    WAIT TAIL
1518 *                      |
1519 *                      |
1520 *                      v
1521 * +----------+     +--------+      +--------+        +-------+
1522 * |          |     |        |      |        |        |       |
1523 * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
1524 * |          |     | head1  |      |        |        |       |
1525 * +----------+     +--------+      +--------+        +-------+
1526 *
1527 *
1528 *
1529 * c. GP completion:
1530 *
1531 * WAIT_TAIL == DONE_TAIL
1532 *
1533 *                   DONE TAIL
1534 *                     |
1535 *                     |
1536 *                     v
1537 * +----------+     +--------+      +--------+        +-------+
1538 * |          |     |        |      |        |        |       |
1539 * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
1540 * |          |     | head1  |      |        |        |       |
1541 * +----------+     +--------+      +--------+        +-------+
1542 *
1543 *
1544 *
1545 * d. New callbacks and GP2 start:
1546 *
1547 *                    WAIT TAIL                          DONE TAIL
1548 *                      |                                 |
1549 *                      |                                 |
1550 *                      v                                 v
1551 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1552 * |          |     |      |    |      |    |      |    |     |    |     |    |     |
1553 * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
1554 * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
1555 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1556 *
1557 *
1558 *
1559 * e. GP2 completion:
1560 *
1561 * WAIT_TAIL == DONE_TAIL
1562 *                   DONE TAIL
1563 *                      |
1564 *                      |
1565 *                      v
1566 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1567 * |          |     |      |    |      |    |      |    |     |    |     |    |     |
1568 * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
1569 * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
1570 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1571 *
1572 *
1573 * While the llist state transitions from d to e, a kworker
1574 * can start executing rcu_sr_normal_gp_cleanup_work() and
1575 * can observe either the old done tail (@c) or the new
1576 * done tail (@e). So, done tail updates and reads need
1577 * to use the rel-acq semantics. If the concurrent kworker
1578 * observes the old done tail, the newly queued work
1579 * execution will process the updated done tail. If the
1580 * concurrent kworker observes the new done tail, then
1581 * the newly queued work will skip processing the done
1582 * tail, as workqueue semantics guarantees that the new
1583 * work is executed only after the previous one completes.
1584 *
1585 * f. kworker callbacks processing complete:
1586 *
1587 *
1588 *                   DONE TAIL
1589 *                     |
1590 *                     |
1591 *                     v
1592 * +----------+     +--------+
1593 * |          |     |        |
1594 * |   head   ------> wait   |
1595 * |          |     | head2  |
1596 * +----------+     +--------+
1597 *
 
1598 */
1599static bool rcu_sr_is_wait_head(struct llist_node *node)
 
 
1600{
1601	return &(rcu_state.srs_wait_nodes)[0].node <= node &&
1602		node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node;
1603}
1604
1605static struct llist_node *rcu_sr_get_wait_head(void)
1606{
1607	struct sr_wait_node *sr_wn;
1608	int i;
 
 
1609
1610	for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) {
1611		sr_wn = &(rcu_state.srs_wait_nodes)[i];
 
 
 
 
 
 
 
 
1612
1613		if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1))
1614			return &sr_wn->node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615	}
1616
1617	return NULL;
1618}
 
 
 
 
 
1619
1620static void rcu_sr_put_wait_head(struct llist_node *node)
1621{
1622	struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node);
 
 
 
 
 
 
 
1623
1624	atomic_set_release(&sr_wn->inuse, 0);
1625}
 
 
 
 
 
 
1626
1627/* Disabled by default. */
1628static int rcu_normal_wake_from_gp;
1629module_param(rcu_normal_wake_from_gp, int, 0644);
1630static struct workqueue_struct *sync_wq;
1631
1632static void rcu_sr_normal_complete(struct llist_node *node)
1633{
1634	struct rcu_synchronize *rs = container_of(
1635		(struct rcu_head *) node, struct rcu_synchronize, head);
1636	unsigned long oldstate = (unsigned long) rs->head.func;
 
 
 
 
 
 
 
 
 
 
1637
1638	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) &&
1639		!poll_state_synchronize_rcu(oldstate),
1640		"A full grace period is not passed yet: %lu",
1641		rcu_seq_diff(get_state_synchronize_rcu(), oldstate));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1642
1643	/* Finally. */
1644	complete(&rs->completion);
 
 
 
 
 
 
 
 
 
 
 
 
1645}
1646
1647static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
1648{
1649	struct llist_node *done, *rcu, *next, *head;
 
 
 
 
 
 
1650
1651	/*
1652	 * This work execution can potentially execute
1653	 * while a new done tail is being updated by
1654	 * grace period kthread in rcu_sr_normal_gp_cleanup().
1655	 * So, read and updates of done tail need to
1656	 * follow acq-rel semantics.
 
1657	 *
1658	 * Given that wq semantics guarantees that a single work
1659	 * cannot execute concurrently by multiple kworkers,
1660	 * the done tail list manipulations are protected here.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1661	 */
1662	done = smp_load_acquire(&rcu_state.srs_done_tail);
1663	if (WARN_ON_ONCE(!done))
1664		return;
1665
1666	WARN_ON_ONCE(!rcu_sr_is_wait_head(done));
1667	head = done->next;
1668	done->next = NULL;
1669
1670	/*
1671	 * The dummy node, which is pointed to by the
1672	 * done tail which is acq-read above is not removed
1673	 * here.  This allows lockless additions of new
1674	 * rcu_synchronize nodes in rcu_sr_normal_add_req(),
1675	 * while the cleanup work executes. The dummy
1676	 * nodes is removed, in next round of cleanup
1677	 * work execution.
1678	 */
1679	llist_for_each_safe(rcu, next, head) {
1680		if (!rcu_sr_is_wait_head(rcu)) {
1681			rcu_sr_normal_complete(rcu);
1682			continue;
1683		}
1684
1685		rcu_sr_put_wait_head(rcu);
1686	}
 
 
1687
1688	/* Order list manipulations with atomic access. */
1689	atomic_dec_return_release(&rcu_state.srs_cleanups_pending);
 
 
 
 
1690}
1691
1692/*
1693 * Helper function for rcu_gp_cleanup().
 
 
 
 
 
 
 
1694 */
1695static void rcu_sr_normal_gp_cleanup(void)
 
1696{
1697	struct llist_node *wait_tail, *next = NULL, *rcu = NULL;
1698	int done = 0;
1699
1700	wait_tail = rcu_state.srs_wait_tail;
1701	if (wait_tail == NULL)
1702		return;
1703
1704	rcu_state.srs_wait_tail = NULL;
1705	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1706	WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail));
1707
1708	/*
1709	 * Process (a) and (d) cases. See an illustration.
 
1710	 */
1711	llist_for_each_safe(rcu, next, wait_tail->next) {
1712		if (rcu_sr_is_wait_head(rcu))
1713			break;
1714
1715		rcu_sr_normal_complete(rcu);
1716		// It can be last, update a next on this step.
1717		wait_tail->next = next;
1718
1719		if (++done == SR_MAX_USERS_WAKE_FROM_GP)
 
 
 
1720			break;
 
 
1721	}
1722
1723	/*
1724	 * Fast path, no more users to process except putting the second last
1725	 * wait head if no inflight-workers. If there are in-flight workers,
1726	 * they will remove the last wait head.
1727	 *
1728	 * Note that the ACQUIRE orders atomic access with list manipulation.
1729	 */
1730	if (wait_tail->next && wait_tail->next->next == NULL &&
1731	    rcu_sr_is_wait_head(wait_tail->next) &&
1732	    !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) {
1733		rcu_sr_put_wait_head(wait_tail->next);
1734		wait_tail->next = NULL;
1735	}
1736
1737	/* Concurrent sr_normal_gp_cleanup work might observe this update. */
1738	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail);
1739	smp_store_release(&rcu_state.srs_done_tail, wait_tail);
1740
1741	/*
1742	 * We schedule a work in order to perform a final processing
1743	 * of outstanding users(if still left) and releasing wait-heads
1744	 * added by rcu_sr_normal_gp_init() call.
1745	 */
1746	if (wait_tail->next) {
1747		atomic_inc(&rcu_state.srs_cleanups_pending);
1748		if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work))
1749			atomic_dec(&rcu_state.srs_cleanups_pending);
1750	}
1751}
1752
1753/*
1754 * Helper function for rcu_gp_init().
 
 
 
1755 */
1756static bool rcu_sr_normal_gp_init(void)
 
1757{
1758	struct llist_node *first;
1759	struct llist_node *wait_head;
1760	bool start_new_poll = false;
1761
1762	first = READ_ONCE(rcu_state.srs_next.first);
1763	if (!first || rcu_sr_is_wait_head(first))
1764		return start_new_poll;
 
 
 
1765
1766	wait_head = rcu_sr_get_wait_head();
1767	if (!wait_head) {
1768		// Kick another GP to retry.
1769		start_new_poll = true;
1770		return start_new_poll;
 
 
 
1771	}
1772
1773	/* Inject a wait-dummy-node. */
1774	llist_add(wait_head, &rcu_state.srs_next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775
1776	/*
1777	 * A waiting list of rcu_synchronize nodes should be empty on
1778	 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(),
1779	 * rolls it over. If not, it is a BUG, warn a user.
1780	 */
1781	WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL);
1782	rcu_state.srs_wait_tail = wait_head;
1783	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1784
1785	return start_new_poll;
 
 
 
 
 
 
 
 
 
 
 
 
1786}
1787
1788static void rcu_sr_normal_add_req(struct rcu_synchronize *rs)
1789{
1790	llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next);
 
 
1791}
1792
1793/*
1794 * Initialize a new grace period.  Return false if no grace period required.
1795 */
1796static noinline_for_stack bool rcu_gp_init(void)
1797{
1798	unsigned long flags;
1799	unsigned long oldmask;
1800	unsigned long mask;
1801	struct rcu_data *rdp;
1802	struct rcu_node *rnp = rcu_get_root();
1803	bool start_new_poll;
1804
1805	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1806	raw_spin_lock_irq_rcu_node(rnp);
1807	if (!rcu_state.gp_flags) {
1808		/* Spurious wakeup, tell caller to go back to sleep.  */
1809		raw_spin_unlock_irq_rcu_node(rnp);
1810		return false;
1811	}
1812	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1813
1814	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1815		/*
1816		 * Grace period already in progress, don't start another.
1817		 * Not supposed to be able to happen.
1818		 */
1819		raw_spin_unlock_irq_rcu_node(rnp);
1820		return false;
1821	}
1822
1823	/* Advance to a new grace period and initialize state. */
1824	record_gp_stall_check_time();
1825	/* Record GP times before starting GP, hence rcu_seq_start(). */
1826	rcu_seq_start(&rcu_state.gp_seq);
1827	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1828	start_new_poll = rcu_sr_normal_gp_init();
1829	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1830	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1831	raw_spin_unlock_irq_rcu_node(rnp);
1832
1833	/*
1834	 * The "start_new_poll" is set to true, only when this GP is not able
1835	 * to handle anything and there are outstanding users. It happens when
1836	 * the rcu_sr_normal_gp_init() function was not able to insert a dummy
1837	 * separator to the llist, because there were no left any dummy-nodes.
1838	 *
1839	 * Number of dummy-nodes is fixed, it could be that we are run out of
1840	 * them, if so we start a new pool request to repeat a try. It is rare
1841	 * and it means that a system is doing a slow processing of callbacks.
1842	 */
1843	if (start_new_poll)
1844		(void) start_poll_synchronize_rcu();
1845
1846	/*
1847	 * Apply per-leaf buffered online and offline operations to
1848	 * the rcu_node tree. Note that this new grace period need not
1849	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1850	 * offlining path, when combined with checks in this function,
1851	 * will handle CPUs that are currently going offline or that will
1852	 * go offline later.  Please also refer to "Hotplug CPU" section
1853	 * of RCU's Requirements documentation.
1854	 */
1855	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1856	/* Exclude CPU hotplug operations. */
1857	rcu_for_each_leaf_node(rnp) {
1858		local_irq_disable();
1859		arch_spin_lock(&rcu_state.ofl_lock);
1860		raw_spin_lock_rcu_node(rnp);
1861		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1862		    !rnp->wait_blkd_tasks) {
1863			/* Nothing to do on this leaf rcu_node structure. */
1864			raw_spin_unlock_rcu_node(rnp);
1865			arch_spin_unlock(&rcu_state.ofl_lock);
1866			local_irq_enable();
1867			continue;
1868		}
1869
1870		/* Record old state, apply changes to ->qsmaskinit field. */
1871		oldmask = rnp->qsmaskinit;
1872		rnp->qsmaskinit = rnp->qsmaskinitnext;
1873
1874		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1875		if (!oldmask != !rnp->qsmaskinit) {
1876			if (!oldmask) { /* First online CPU for rcu_node. */
1877				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1878					rcu_init_new_rnp(rnp);
1879			} else if (rcu_preempt_has_tasks(rnp)) {
1880				rnp->wait_blkd_tasks = true; /* blocked tasks */
1881			} else { /* Last offline CPU and can propagate. */
1882				rcu_cleanup_dead_rnp(rnp);
1883			}
1884		}
1885
1886		/*
1887		 * If all waited-on tasks from prior grace period are
1888		 * done, and if all this rcu_node structure's CPUs are
1889		 * still offline, propagate up the rcu_node tree and
1890		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1891		 * rcu_node structure's CPUs has since come back online,
1892		 * simply clear ->wait_blkd_tasks.
 
1893		 */
1894		if (rnp->wait_blkd_tasks &&
1895		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
 
1896			rnp->wait_blkd_tasks = false;
1897			if (!rnp->qsmaskinit)
1898				rcu_cleanup_dead_rnp(rnp);
1899		}
1900
1901		raw_spin_unlock_rcu_node(rnp);
1902		arch_spin_unlock(&rcu_state.ofl_lock);
1903		local_irq_enable();
1904	}
1905	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1906
1907	/*
1908	 * Set the quiescent-state-needed bits in all the rcu_node
1909	 * structures for all currently online CPUs in breadth-first
1910	 * order, starting from the root rcu_node structure, relying on the
1911	 * layout of the tree within the rcu_state.node[] array.  Note that
1912	 * other CPUs will access only the leaves of the hierarchy, thus
1913	 * seeing that no grace period is in progress, at least until the
1914	 * corresponding leaf node has been initialized.
1915	 *
1916	 * The grace period cannot complete until the initialization
1917	 * process finishes, because this kthread handles both.
1918	 */
1919	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1920	rcu_for_each_node_breadth_first(rnp) {
1921		rcu_gp_slow(gp_init_delay);
1922		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1923		rdp = this_cpu_ptr(&rcu_data);
1924		rcu_preempt_check_blocked_tasks(rnp);
1925		rnp->qsmask = rnp->qsmaskinit;
1926		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
 
 
1927		if (rnp == rdp->mynode)
1928			(void)__note_gp_changes(rnp, rdp);
1929		rcu_preempt_boost_start_gp(rnp);
1930		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1931					    rnp->level, rnp->grplo,
1932					    rnp->grphi, rnp->qsmask);
1933		/* Quiescent states for tasks on any now-offline CPUs. */
1934		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1935		rnp->rcu_gp_init_mask = mask;
1936		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1937			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1938		else
1939			raw_spin_unlock_irq_rcu_node(rnp);
1940		cond_resched_tasks_rcu_qs();
1941		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1942	}
1943
1944	// If strict, make all CPUs aware of new grace period.
1945	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1946		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1947
1948	return true;
1949}
1950
1951/*
1952 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1953 * time.
1954 */
1955static bool rcu_gp_fqs_check_wake(int *gfp)
1956{
1957	struct rcu_node *rnp = rcu_get_root();
1958
1959	// If under overload conditions, force an immediate FQS scan.
1960	if (*gfp & RCU_GP_FLAG_OVLD)
1961		return true;
1962
1963	// Someone like call_rcu() requested a force-quiescent-state scan.
1964	*gfp = READ_ONCE(rcu_state.gp_flags);
1965	if (*gfp & RCU_GP_FLAG_FQS)
1966		return true;
1967
1968	// The current grace period has completed.
1969	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1970		return true;
1971
1972	return false;
1973}
1974
1975/*
1976 * Do one round of quiescent-state forcing.
1977 */
1978static void rcu_gp_fqs(bool first_time)
1979{
1980	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1981	struct rcu_node *rnp = rcu_get_root();
1982
1983	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1984	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1985
1986	WARN_ON_ONCE(nr_fqs > 3);
1987	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1988	if (nr_fqs) {
1989		if (nr_fqs == 1) {
1990			WRITE_ONCE(rcu_state.jiffies_stall,
1991				   jiffies + rcu_jiffies_till_stall_check());
1992		}
1993		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1994	}
1995
 
 
1996	if (first_time) {
1997		/* Collect dyntick-idle snapshots. */
1998		force_qs_rnp(rcu_watching_snap_save);
 
 
 
 
 
 
1999	} else {
2000		/* Handle dyntick-idle and offline CPUs. */
2001		force_qs_rnp(rcu_watching_snap_recheck);
 
2002	}
2003	/* Clear flag to prevent immediate re-entry. */
2004	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2005		raw_spin_lock_irq_rcu_node(rnp);
2006		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS);
 
2007		raw_spin_unlock_irq_rcu_node(rnp);
2008	}
2009}
2010
2011/*
2012 * Loop doing repeated quiescent-state forcing until the grace period ends.
2013 */
2014static noinline_for_stack void rcu_gp_fqs_loop(void)
2015{
2016	bool first_gp_fqs = true;
2017	int gf = 0;
2018	unsigned long j;
2019	int ret;
2020	struct rcu_node *rnp = rcu_get_root();
2021
2022	j = READ_ONCE(jiffies_till_first_fqs);
2023	if (rcu_state.cbovld)
2024		gf = RCU_GP_FLAG_OVLD;
2025	ret = 0;
2026	for (;;) {
2027		if (rcu_state.cbovld) {
2028			j = (j + 2) / 3;
2029			if (j <= 0)
2030				j = 1;
2031		}
2032		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
2033			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
2034			/*
2035			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
2036			 * update; required for stall checks.
2037			 */
2038			smp_wmb();
2039			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
2040				   jiffies + (j ? 3 * j : 2));
2041		}
2042		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2043				       TPS("fqswait"));
2044		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
2045		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
2046				 rcu_gp_fqs_check_wake(&gf), j);
2047		rcu_gp_torture_wait();
2048		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2049		/* Locking provides needed memory barriers. */
2050		/*
2051		 * Exit the loop if the root rcu_node structure indicates that the grace period
2052		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
2053		 * is required only for single-node rcu_node trees because readers blocking
2054		 * the current grace period are queued only on leaf rcu_node structures.
2055		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
2056		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
2057		 * the corresponding leaf nodes have passed through their quiescent state.
2058		 */
2059		if (!READ_ONCE(rnp->qsmask) &&
2060		    !rcu_preempt_blocked_readers_cgp(rnp))
2061			break;
2062		/* If time for quiescent-state forcing, do it. */
2063		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2064		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2065			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2066					       TPS("fqsstart"));
2067			rcu_gp_fqs(first_gp_fqs);
2068			gf = 0;
2069			if (first_gp_fqs) {
2070				first_gp_fqs = false;
2071				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2072			}
2073			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2074					       TPS("fqsend"));
2075			cond_resched_tasks_rcu_qs();
2076			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2077			ret = 0; /* Force full wait till next FQS. */
2078			j = READ_ONCE(jiffies_till_next_fqs);
2079		} else {
2080			/* Deal with stray signal. */
2081			cond_resched_tasks_rcu_qs();
2082			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2083			WARN_ON(signal_pending(current));
2084			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2085					       TPS("fqswaitsig"));
2086			ret = 1; /* Keep old FQS timing. */
2087			j = jiffies;
2088			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2089				j = 1;
2090			else
2091				j = rcu_state.jiffies_force_qs - j;
2092			gf = 0;
2093		}
2094	}
2095}
2096
2097/*
2098 * Clean up after the old grace period.
2099 */
2100static noinline void rcu_gp_cleanup(void)
2101{
2102	int cpu;
2103	bool needgp = false;
2104	unsigned long gp_duration;
2105	unsigned long new_gp_seq;
2106	bool offloaded;
2107	struct rcu_data *rdp;
2108	struct rcu_node *rnp = rcu_get_root();
2109	struct swait_queue_head *sq;
2110
2111	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2112	raw_spin_lock_irq_rcu_node(rnp);
2113	rcu_state.gp_end = jiffies;
2114	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2115	if (gp_duration > rcu_state.gp_max)
2116		rcu_state.gp_max = gp_duration;
2117
2118	/*
2119	 * We know the grace period is complete, but to everyone else
2120	 * it appears to still be ongoing.  But it is also the case
2121	 * that to everyone else it looks like there is nothing that
2122	 * they can do to advance the grace period.  It is therefore
2123	 * safe for us to drop the lock in order to mark the grace
2124	 * period as completed in all of the rcu_node structures.
2125	 */
2126	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
2127	raw_spin_unlock_irq_rcu_node(rnp);
2128
2129	/*
2130	 * Propagate new ->gp_seq value to rcu_node structures so that
2131	 * other CPUs don't have to wait until the start of the next grace
2132	 * period to process their callbacks.  This also avoids some nasty
2133	 * RCU grace-period initialization races by forcing the end of
2134	 * the current grace period to be completely recorded in all of
2135	 * the rcu_node structures before the beginning of the next grace
2136	 * period is recorded in any of the rcu_node structures.
2137	 */
2138	new_gp_seq = rcu_state.gp_seq;
2139	rcu_seq_end(&new_gp_seq);
2140	rcu_for_each_node_breadth_first(rnp) {
2141		raw_spin_lock_irq_rcu_node(rnp);
2142		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2143			dump_blkd_tasks(rnp, 10);
2144		WARN_ON_ONCE(rnp->qsmask);
2145		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2146		if (!rnp->parent)
2147			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
2148		rdp = this_cpu_ptr(&rcu_data);
2149		if (rnp == rdp->mynode)
2150			needgp = __note_gp_changes(rnp, rdp) || needgp;
2151		/* smp_mb() provided by prior unlock-lock pair. */
2152		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2153		// Reset overload indication for CPUs no longer overloaded
2154		if (rcu_is_leaf_node(rnp))
2155			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2156				rdp = per_cpu_ptr(&rcu_data, cpu);
2157				check_cb_ovld_locked(rdp, rnp);
2158			}
2159		sq = rcu_nocb_gp_get(rnp);
2160		raw_spin_unlock_irq_rcu_node(rnp);
2161		rcu_nocb_gp_cleanup(sq);
2162		cond_resched_tasks_rcu_qs();
2163		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2164		rcu_gp_slow(gp_cleanup_delay);
2165	}
2166	rnp = rcu_get_root();
2167	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2168
2169	/* Declare grace period done, trace first to use old GP number. */
2170	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2171	rcu_seq_end(&rcu_state.gp_seq);
2172	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2173	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2174	/* Check for GP requests since above loop. */
2175	rdp = this_cpu_ptr(&rcu_data);
2176	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2177		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2178				  TPS("CleanupMore"));
2179		needgp = true;
2180	}
2181	/* Advance CBs to reduce false positives below. */
2182	offloaded = rcu_rdp_is_offloaded(rdp);
2183	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2184
2185		// We get here if a grace period was needed (“needgp”)
2186		// and the above call to rcu_accelerate_cbs() did not set
2187		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
2188		// the need for another grace period).  The purpose
2189		// of the “offloaded” check is to avoid invoking
2190		// rcu_accelerate_cbs() on an offloaded CPU because we do not
2191		// hold the ->nocb_lock needed to safely access an offloaded
2192		// ->cblist.  We do not want to acquire that lock because
2193		// it can be heavily contended during callback floods.
2194
2195		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2196		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2197		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
2198	} else {
2199
2200		// We get here either if there is no need for an
2201		// additional grace period or if rcu_accelerate_cbs() has
2202		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
2203		// So all we need to do is to clear all of the other
2204		// ->gp_flags bits.
2205
2206		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2207	}
2208	raw_spin_unlock_irq_rcu_node(rnp);
2209
2210	// Make synchronize_rcu() users aware of the end of old grace period.
2211	rcu_sr_normal_gp_cleanup();
2212
2213	// If strict, make all CPUs aware of the end of the old grace period.
2214	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2215		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2216}
2217
2218/*
2219 * Body of kthread that handles grace periods.
2220 */
2221static int __noreturn rcu_gp_kthread(void *unused)
2222{
 
 
 
 
 
 
 
2223	rcu_bind_gp_kthread();
2224	for (;;) {
2225
2226		/* Handle grace-period start. */
2227		for (;;) {
2228			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2229					       TPS("reqwait"));
2230			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2231			swait_event_idle_exclusive(rcu_state.gp_wq,
2232					 READ_ONCE(rcu_state.gp_flags) &
2233					 RCU_GP_FLAG_INIT);
2234			rcu_gp_torture_wait();
2235			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2236			/* Locking provides needed memory barrier. */
2237			if (rcu_gp_init())
2238				break;
2239			cond_resched_tasks_rcu_qs();
2240			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2241			WARN_ON(signal_pending(current));
2242			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
2243					       TPS("reqwaitsig"));
2244		}
2245
2246		/* Handle quiescent-state forcing. */
2247		rcu_gp_fqs_loop();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248
2249		/* Handle grace-period end. */
2250		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2251		rcu_gp_cleanup();
2252		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2253	}
2254}
2255
2256/*
2257 * Report a full set of quiescent states to the rcu_state data structure.
2258 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2259 * another grace period is required.  Whether we wake the grace-period
2260 * kthread or it awakens itself for the next round of quiescent-state
2261 * forcing, that kthread will clean up after the just-completed grace
2262 * period.  Note that the caller must hold rnp->lock, which is released
2263 * before return.
 
 
2264 */
2265static void rcu_report_qs_rsp(unsigned long flags)
2266	__releases(rcu_get_root()->lock)
 
2267{
2268	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2269	WARN_ON_ONCE(!rcu_gp_in_progress());
2270	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2271	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2272	rcu_gp_kthread_wake();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2273}
2274
2275/*
2276 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2277 * Allows quiescent states for a group of CPUs to be reported at one go
2278 * to the specified rcu_node structure, though all the CPUs in the group
2279 * must be represented by the same rcu_node structure (which need not be a
2280 * leaf rcu_node structure, though it often will be).  The gps parameter
2281 * is the grace-period snapshot, which means that the quiescent states
2282 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2283 * must be held upon entry, and it is released before return.
2284 *
2285 * As a special case, if mask is zero, the bit-already-cleared check is
2286 * disabled.  This allows propagating quiescent state due to resumed tasks
2287 * during grace-period initialization.
2288 */
2289static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2290			      unsigned long gps, unsigned long flags)
 
2291	__releases(rnp->lock)
2292{
2293	unsigned long oldmask = 0;
2294	struct rcu_node *rnp_c;
2295
2296	raw_lockdep_assert_held_rcu_node(rnp);
2297
2298	/* Walk up the rcu_node hierarchy. */
2299	for (;;) {
2300		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2301
2302			/*
2303			 * Our bit has already been cleared, or the
2304			 * relevant grace period is already over, so done.
2305			 */
2306			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2307			return;
2308		}
2309		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2310		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2311			     rcu_preempt_blocked_readers_cgp(rnp));
2312		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2313		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2314						 mask, rnp->qsmask, rnp->level,
2315						 rnp->grplo, rnp->grphi,
2316						 !!rnp->gp_tasks);
2317		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2318
2319			/* Other bits still set at this level, so done. */
2320			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2321			return;
2322		}
2323		rnp->completedqs = rnp->gp_seq;
2324		mask = rnp->grpmask;
2325		if (rnp->parent == NULL) {
2326
2327			/* No more levels.  Exit loop holding root lock. */
2328
2329			break;
2330		}
2331		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2332		rnp_c = rnp;
2333		rnp = rnp->parent;
2334		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2335		oldmask = READ_ONCE(rnp_c->qsmask);
2336	}
2337
2338	/*
2339	 * Get here if we are the last CPU to pass through a quiescent
2340	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2341	 * to clean up and start the next grace period if one is needed.
2342	 */
2343	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2344}
2345
2346/*
2347 * Record a quiescent state for all tasks that were previously queued
2348 * on the specified rcu_node structure and that were blocking the current
2349 * RCU grace period.  The caller must hold the corresponding rnp->lock with
2350 * irqs disabled, and this lock is released upon return, but irqs remain
2351 * disabled.
2352 */
2353static void __maybe_unused
2354rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2355	__releases(rnp->lock)
2356{
2357	unsigned long gps;
2358	unsigned long mask;
2359	struct rcu_node *rnp_p;
2360
2361	raw_lockdep_assert_held_rcu_node(rnp);
2362	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2363	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2364	    rnp->qsmask != 0) {
2365		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2366		return;  /* Still need more quiescent states! */
2367	}
2368
2369	rnp->completedqs = rnp->gp_seq;
2370	rnp_p = rnp->parent;
2371	if (rnp_p == NULL) {
2372		/*
2373		 * Only one rcu_node structure in the tree, so don't
2374		 * try to report up to its nonexistent parent!
2375		 */
2376		rcu_report_qs_rsp(flags);
2377		return;
2378	}
2379
2380	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2381	gps = rnp->gp_seq;
2382	mask = rnp->grpmask;
2383	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2384	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2385	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2386}
2387
2388/*
2389 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2390 * structure.  This must be called from the specified CPU.
2391 */
2392static void
2393rcu_report_qs_rdp(struct rcu_data *rdp)
2394{
2395	unsigned long flags;
2396	unsigned long mask;
 
2397	struct rcu_node *rnp;
2398
2399	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2400	rnp = rdp->mynode;
2401	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2402	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
 
 
2403	    rdp->gpwrap) {
2404
2405		/*
2406		 * The grace period in which this quiescent state was
2407		 * recorded has ended, so don't report it upwards.
2408		 * We will instead need a new quiescent state that lies
2409		 * within the current grace period.
2410		 */
2411		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
 
2412		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2413		return;
2414	}
2415	mask = rdp->grpmask;
2416	rdp->core_needs_qs = false;
2417	if ((rnp->qsmask & mask) == 0) {
2418		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2419	} else {
 
 
2420		/*
2421		 * This GP can't end until cpu checks in, so all of our
2422		 * callbacks can be processed during the next GP.
2423		 *
2424		 * NOCB kthreads have their own way to deal with that...
2425		 */
2426		if (!rcu_rdp_is_offloaded(rdp)) {
2427			/*
2428			 * The current GP has not yet ended, so it
2429			 * should not be possible for rcu_accelerate_cbs()
2430			 * to return true.  So complain, but don't awaken.
2431			 */
2432			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2433		}
2434
2435		rcu_disable_urgency_upon_qs(rdp);
2436		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2437		/* ^^^ Released rnp->lock */
 
 
2438	}
2439}
2440
2441/*
2442 * Check to see if there is a new grace period of which this CPU
2443 * is not yet aware, and if so, set up local rcu_data state for it.
2444 * Otherwise, see if this CPU has just passed through its first
2445 * quiescent state for this grace period, and record that fact if so.
2446 */
2447static void
2448rcu_check_quiescent_state(struct rcu_data *rdp)
2449{
2450	/* Check for grace-period ends and beginnings. */
2451	note_gp_changes(rdp);
2452
2453	/*
2454	 * Does this CPU still need to do its part for current grace period?
2455	 * If no, return and let the other CPUs do their part as well.
2456	 */
2457	if (!rdp->core_needs_qs)
2458		return;
2459
2460	/*
2461	 * Was there a quiescent state since the beginning of the grace
2462	 * period? If no, then exit and wait for the next call.
2463	 */
2464	if (rdp->cpu_no_qs.b.norm)
 
2465		return;
2466
2467	/*
2468	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2469	 * judge of that).
2470	 */
2471	rcu_report_qs_rdp(rdp);
2472}
2473
2474/* Return true if callback-invocation time limit exceeded. */
2475static bool rcu_do_batch_check_time(long count, long tlimit,
2476				    bool jlimit_check, unsigned long jlimit)
2477{
2478	// Invoke local_clock() only once per 32 consecutive callbacks.
2479	return unlikely(tlimit) &&
2480	       (!likely(count & 31) ||
2481		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2482		 jlimit_check && time_after(jiffies, jlimit))) &&
2483	       local_clock() >= tlimit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484}
2485
2486/*
2487 * Invoke any RCU callbacks that have made it to the end of their grace
2488 * period.  Throttle as specified by rdp->blimit.
2489 */
2490static void rcu_do_batch(struct rcu_data *rdp)
2491{
2492	long bl;
2493	long count = 0;
2494	int div;
2495	bool __maybe_unused empty;
2496	unsigned long flags;
2497	unsigned long jlimit;
2498	bool jlimit_check = false;
2499	long pending;
2500	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2501	struct rcu_head *rhp;
2502	long tlimit = 0;
2503
2504	/* If no callbacks are ready, just return. */
2505	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2506		trace_rcu_batch_start(rcu_state.name,
2507				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2508		trace_rcu_batch_end(rcu_state.name, 0,
2509				    !rcu_segcblist_empty(&rdp->cblist),
2510				    need_resched(), is_idle_task(current),
2511				    rcu_is_callbacks_kthread(rdp));
2512		return;
2513	}
2514
2515	/*
2516	 * Extract the list of ready callbacks, disabling IRQs to prevent
2517	 * races with call_rcu() from interrupt handlers.  Leave the
2518	 * callback counts, as rcu_barrier() needs to be conservative.
2519	 *
2520	 * Callbacks execution is fully ordered against preceding grace period
2521	 * completion (materialized by rnp->gp_seq update) thanks to the
2522	 * smp_mb__after_unlock_lock() upon node locking required for callbacks
2523	 * advancing. In NOCB mode this ordering is then further relayed through
2524	 * the nocb locking that protects both callbacks advancing and extraction.
2525	 */
2526	rcu_nocb_lock_irqsave(rdp, flags);
2527	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2528	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2529	div = READ_ONCE(rcu_divisor);
2530	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2531	bl = max(rdp->blimit, pending >> div);
2532	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2533	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2534		const long npj = NSEC_PER_SEC / HZ;
2535		long rrn = READ_ONCE(rcu_resched_ns);
2536
2537		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2538		tlimit = local_clock() + rrn;
2539		jlimit = jiffies + (rrn + npj + 1) / npj;
2540		jlimit_check = true;
2541	}
2542	trace_rcu_batch_start(rcu_state.name,
2543			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2544	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2545	if (rcu_rdp_is_offloaded(rdp))
2546		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2547
2548	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2549	rcu_nocb_unlock_irqrestore(rdp, flags);
2550
2551	/* Invoke callbacks. */
2552	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2553	rhp = rcu_cblist_dequeue(&rcl);
 
 
 
 
 
 
 
 
 
 
 
 
2554
2555	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2556		rcu_callback_t f;
2557
2558		count++;
2559		debug_rcu_head_unqueue(rhp);
2560
2561		rcu_lock_acquire(&rcu_callback_map);
2562		trace_rcu_invoke_callback(rcu_state.name, rhp);
2563
2564		f = rhp->func;
2565		debug_rcu_head_callback(rhp);
2566		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2567		f(rhp);
2568
2569		rcu_lock_release(&rcu_callback_map);
2570
2571		/*
2572		 * Stop only if limit reached and CPU has something to do.
2573		 */
2574		if (in_serving_softirq()) {
2575			if (count >= bl && (need_resched() || !is_idle_task(current)))
2576				break;
2577			/*
2578			 * Make sure we don't spend too much time here and deprive other
2579			 * softirq vectors of CPU cycles.
2580			 */
2581			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2582				break;
2583		} else {
2584			// In rcuc/rcuoc context, so no worries about
2585			// depriving other softirq vectors of CPU cycles.
2586			local_bh_enable();
2587			lockdep_assert_irqs_enabled();
2588			cond_resched_tasks_rcu_qs();
2589			lockdep_assert_irqs_enabled();
2590			local_bh_disable();
2591			// But rcuc kthreads can delay quiescent-state
2592			// reporting, so check time limits for them.
2593			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2594			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2595				rdp->rcu_cpu_has_work = 1;
2596				break;
2597			}
2598		}
2599	}
2600
2601	rcu_nocb_lock_irqsave(rdp, flags);
 
2602	rdp->n_cbs_invoked += count;
2603	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2604			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2605
2606	/* Update counts and requeue any remaining callbacks. */
2607	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2608	rcu_segcblist_add_len(&rdp->cblist, -count);
2609
2610	/* Reinstate batch limit if we have worked down the excess. */
2611	count = rcu_segcblist_n_cbs(&rdp->cblist);
2612	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2613		rdp->blimit = blimit;
2614
2615	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2616	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2617		rdp->qlen_last_fqs_check = 0;
2618		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2619	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2620		rdp->qlen_last_fqs_check = count;
 
2621
2622	/*
2623	 * The following usually indicates a double call_rcu().  To track
2624	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2625	 */
2626	empty = rcu_segcblist_empty(&rdp->cblist);
2627	WARN_ON_ONCE(count == 0 && !empty);
2628	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2629		     count != 0 && empty);
2630	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2631	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2632
2633	rcu_nocb_unlock_irqrestore(rdp, flags);
2634
2635	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2636}
2637
2638/*
2639 * This function is invoked from each scheduling-clock interrupt,
2640 * and checks to see if this CPU is in a non-context-switch quiescent
2641 * state, for example, user mode or idle loop.  It also schedules RCU
2642 * core processing.  If the current grace period has gone on too long,
2643 * it will ask the scheduler to manufacture a context switch for the sole
2644 * purpose of providing the needed quiescent state.
2645 */
2646void rcu_sched_clock_irq(int user)
2647{
2648	unsigned long j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649
2650	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2651		j = jiffies;
2652		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2653		__this_cpu_write(rcu_data.last_sched_clock, j);
2654	}
2655	trace_rcu_utilization(TPS("Start scheduler-tick"));
2656	lockdep_assert_irqs_disabled();
2657	raw_cpu_inc(rcu_data.ticks_this_gp);
2658	/* The load-acquire pairs with the store-release setting to true. */
2659	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2660		/* Idle and userspace execution already are quiescent states. */
2661		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2662			set_tsk_need_resched(current);
2663			set_preempt_need_resched();
2664		}
2665		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2666	}
2667	rcu_flavor_sched_clock_irq(user);
2668	if (rcu_pending(user))
2669		invoke_rcu_core();
2670	if (user || rcu_is_cpu_rrupt_from_idle())
2671		rcu_note_voluntary_context_switch(current);
2672	lockdep_assert_irqs_disabled();
2673
2674	trace_rcu_utilization(TPS("End scheduler-tick"));
2675}
2676
2677/*
2678 * Scan the leaf rcu_node structures.  For each structure on which all
2679 * CPUs have reported a quiescent state and on which there are tasks
2680 * blocking the current grace period, initiate RCU priority boosting.
2681 * Otherwise, invoke the specified function to check dyntick state for
2682 * each CPU that has not yet reported a quiescent state.
2683 */
2684static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
 
 
 
2685{
2686	int cpu;
2687	unsigned long flags;
 
2688	struct rcu_node *rnp;
2689
2690	rcu_state.cbovld = rcu_state.cbovldnext;
2691	rcu_state.cbovldnext = false;
2692	rcu_for_each_leaf_node(rnp) {
2693		unsigned long mask = 0;
2694		unsigned long rsmask = 0;
2695
2696		cond_resched_tasks_rcu_qs();
2697		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2698		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2699		if (rnp->qsmask == 0) {
2700			if (rcu_preempt_blocked_readers_cgp(rnp)) {
 
 
2701				/*
2702				 * No point in scanning bits because they
2703				 * are all zero.  But we might need to
2704				 * priority-boost blocked readers.
2705				 */
2706				rcu_initiate_boost(rnp, flags);
2707				/* rcu_initiate_boost() releases rnp->lock */
2708				continue;
2709			}
2710			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2711			continue;
 
 
 
 
 
 
 
 
 
2712		}
2713		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2714			struct rcu_data *rdp;
2715			int ret;
2716
2717			rdp = per_cpu_ptr(&rcu_data, cpu);
2718			ret = f(rdp);
2719			if (ret > 0) {
2720				mask |= rdp->grpmask;
2721				rcu_disable_urgency_upon_qs(rdp);
2722			}
2723			if (ret < 0)
2724				rsmask |= rdp->grpmask;
2725		}
2726		if (mask != 0) {
2727			/* Idle/offline CPUs, report (releases rnp->lock). */
2728			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2729		} else {
2730			/* Nothing to do here, so just drop the lock. */
2731			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2732		}
2733
2734		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2735			resched_cpu(cpu);
2736	}
2737}
2738
2739/*
2740 * Force quiescent states on reluctant CPUs, and also detect which
2741 * CPUs are in dyntick-idle mode.
2742 */
2743void rcu_force_quiescent_state(void)
2744{
2745	unsigned long flags;
2746	bool ret;
2747	struct rcu_node *rnp;
2748	struct rcu_node *rnp_old = NULL;
2749
2750	if (!rcu_gp_in_progress())
2751		return;
2752	/* Funnel through hierarchy to reduce memory contention. */
2753	rnp = raw_cpu_read(rcu_data.mynode);
2754	for (; rnp != NULL; rnp = rnp->parent) {
2755		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2756		       !raw_spin_trylock(&rnp->fqslock);
2757		if (rnp_old != NULL)
2758			raw_spin_unlock(&rnp_old->fqslock);
2759		if (ret)
 
2760			return;
 
2761		rnp_old = rnp;
2762	}
2763	/* rnp_old == rcu_get_root(), rnp == NULL. */
2764
2765	/* Reached the root of the rcu_node tree, acquire lock. */
2766	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2767	raw_spin_unlock(&rnp_old->fqslock);
2768	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
 
2769		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2770		return;  /* Someone beat us to it. */
2771	}
2772	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2773	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2774	rcu_gp_kthread_wake();
2775}
2776EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2777
2778// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2779// grace periods.
2780static void strict_work_handler(struct work_struct *work)
2781{
2782	rcu_read_lock();
2783	rcu_read_unlock();
2784}
2785
2786/* Perform RCU core processing work for the current CPU.  */
2787static __latent_entropy void rcu_core(void)
2788{
2789	unsigned long flags;
2790	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2791	struct rcu_node *rnp = rdp->mynode;
2792
2793	if (cpu_is_offline(smp_processor_id()))
2794		return;
2795	trace_rcu_utilization(TPS("Start RCU core"));
2796	WARN_ON_ONCE(!rdp->beenonline);
2797
2798	/* Report any deferred quiescent states if preemption enabled. */
2799	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2800		rcu_preempt_deferred_qs(current);
2801	} else if (rcu_preempt_need_deferred_qs(current)) {
2802		set_tsk_need_resched(current);
2803		set_preempt_need_resched();
2804	}
2805
2806	/* Update RCU state based on any recent quiescent states. */
2807	rcu_check_quiescent_state(rdp);
2808
2809	/* No grace period and unregistered callbacks? */
2810	if (!rcu_gp_in_progress() &&
2811	    rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) {
2812		local_irq_save(flags);
2813		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2814			rcu_accelerate_cbs_unlocked(rnp, rdp);
 
 
 
2815		local_irq_restore(flags);
2816	}
2817
2818	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2819
2820	/* If there are callbacks ready, invoke them. */
2821	if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2822	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2823		rcu_do_batch(rdp);
2824		/* Re-invoke RCU core processing if there are callbacks remaining. */
2825		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2826			invoke_rcu_core();
2827	}
2828
2829	/* Do any needed deferred wakeups of rcuo kthreads. */
2830	do_nocb_deferred_wakeup(rdp);
2831	trace_rcu_utilization(TPS("End RCU core"));
2832
2833	// If strict GPs, schedule an RCU reader in a clean environment.
2834	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2835		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2836}
2837
2838static void rcu_core_si(void)
2839{
2840	rcu_core();
2841}
2842
2843static void rcu_wake_cond(struct task_struct *t, int status)
2844{
2845	/*
2846	 * If the thread is yielding, only wake it when this
2847	 * is invoked from idle
2848	 */
2849	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2850		wake_up_process(t);
2851}
2852
2853static void invoke_rcu_core_kthread(void)
2854{
2855	struct task_struct *t;
2856	unsigned long flags;
2857
2858	local_irq_save(flags);
2859	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2860	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2861	if (t != NULL && t != current)
2862		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2863	local_irq_restore(flags);
2864}
2865
2866/*
2867 * Wake up this CPU's rcuc kthread to do RCU core processing.
2868 */
2869static void invoke_rcu_core(void)
2870{
2871	if (!cpu_online(smp_processor_id()))
 
 
2872		return;
2873	if (use_softirq)
2874		raise_softirq(RCU_SOFTIRQ);
2875	else
2876		invoke_rcu_core_kthread();
2877}
2878
2879static void rcu_cpu_kthread_park(unsigned int cpu)
2880{
2881	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2882}
2883
2884static int rcu_cpu_kthread_should_run(unsigned int cpu)
2885{
2886	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2887}
2888
2889/*
2890 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2891 * the RCU softirq used in configurations of RCU that do not support RCU
2892 * priority boosting.
 
 
2893 */
2894static void rcu_cpu_kthread(unsigned int cpu)
2895{
2896	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2897	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2898	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2899	int spincnt;
2900
2901	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2902	for (spincnt = 0; spincnt < 10; spincnt++) {
2903		WRITE_ONCE(*j, jiffies);
2904		local_bh_disable();
2905		*statusp = RCU_KTHREAD_RUNNING;
2906		local_irq_disable();
2907		work = *workp;
2908		WRITE_ONCE(*workp, 0);
2909		local_irq_enable();
2910		if (work)
2911			rcu_core();
2912		local_bh_enable();
2913		if (!READ_ONCE(*workp)) {
2914			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2915			*statusp = RCU_KTHREAD_WAITING;
2916			return;
2917		}
2918	}
2919	*statusp = RCU_KTHREAD_YIELDING;
2920	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2921	schedule_timeout_idle(2);
2922	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2923	*statusp = RCU_KTHREAD_WAITING;
2924	WRITE_ONCE(*j, jiffies);
2925}
2926
2927static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2928	.store			= &rcu_data.rcu_cpu_kthread_task,
2929	.thread_should_run	= rcu_cpu_kthread_should_run,
2930	.thread_fn		= rcu_cpu_kthread,
2931	.thread_comm		= "rcuc/%u",
2932	.setup			= rcu_cpu_kthread_setup,
2933	.park			= rcu_cpu_kthread_park,
2934};
2935
2936/*
2937 * Spawn per-CPU RCU core processing kthreads.
2938 */
2939static int __init rcu_spawn_core_kthreads(void)
2940{
2941	int cpu;
2942
2943	for_each_possible_cpu(cpu)
2944		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2945	if (use_softirq)
2946		return 0;
2947	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2948		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2949	return 0;
2950}
2951
2952static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
2953{
2954	rcu_segcblist_enqueue(&rdp->cblist, head);
2955	if (__is_kvfree_rcu_offset((unsigned long)func))
2956		trace_rcu_kvfree_callback(rcu_state.name, head,
2957					 (unsigned long)func,
2958					 rcu_segcblist_n_cbs(&rdp->cblist));
2959	else
2960		trace_rcu_callback(rcu_state.name, head,
2961				   rcu_segcblist_n_cbs(&rdp->cblist));
2962	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2963}
2964
2965/*
2966 * Handle any core-RCU processing required by a call_rcu() invocation.
2967 */
2968static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2969			  rcu_callback_t func, unsigned long flags)
2970{
2971	rcutree_enqueue(rdp, head, func);
 
2972	/*
2973	 * If called from an extended quiescent state, invoke the RCU
2974	 * core in order to force a re-evaluation of RCU's idleness.
2975	 */
2976	if (!rcu_is_watching())
2977		invoke_rcu_core();
2978
2979	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2980	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2981		return;
2982
2983	/*
2984	 * Force the grace period if too many callbacks or too long waiting.
2985	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2986	 * if some other CPU has recently done so.  Also, don't bother
2987	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2988	 * is the only one waiting for a grace period to complete.
2989	 */
2990	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2991		     rdp->qlen_last_fqs_check + qhimark)) {
2992
2993		/* Are we ignoring a completed grace period? */
2994		note_gp_changes(rdp);
2995
2996		/* Start a new grace period if one not already started. */
2997		if (!rcu_gp_in_progress()) {
2998			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
 
 
 
 
 
 
2999		} else {
3000			/* Give the grace period a kick. */
3001			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
3002			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
3003			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3004				rcu_force_quiescent_state();
3005			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
3006			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3007		}
3008	}
3009}
3010
3011/*
3012 * RCU callback function to leak a callback.
3013 */
3014static void rcu_leak_callback(struct rcu_head *rhp)
3015{
3016}
3017
3018/*
3019 * Check and if necessary update the leaf rcu_node structure's
3020 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3021 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
3022 * structure's ->lock.
3023 */
3024static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
3025{
3026	raw_lockdep_assert_held_rcu_node(rnp);
3027	if (qovld_calc <= 0)
3028		return; // Early boot and wildcard value set.
3029	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
3030		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
3031	else
3032		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
3033}
3034
3035/*
3036 * Check and if necessary update the leaf rcu_node structure's
3037 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3038 * number of queued RCU callbacks.  No locks need be held, but the
3039 * caller must have disabled interrupts.
3040 *
3041 * Note that this function ignores the possibility that there are a lot
3042 * of callbacks all of which have already seen the end of their respective
3043 * grace periods.  This omission is due to the need for no-CBs CPUs to
3044 * be holding ->nocb_lock to do this check, which is too heavy for a
3045 * common-case operation.
3046 */
3047static void check_cb_ovld(struct rcu_data *rdp)
3048{
3049	struct rcu_node *const rnp = rdp->mynode;
3050
3051	if (qovld_calc <= 0 ||
3052	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
3053	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3054		return; // Early boot wildcard value or already set correctly.
3055	raw_spin_lock_rcu_node(rnp);
3056	check_cb_ovld_locked(rdp, rnp);
3057	raw_spin_unlock_rcu_node(rnp);
3058}
3059
3060static void
3061__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
 
3062{
3063	static atomic_t doublefrees;
3064	unsigned long flags;
3065	bool lazy;
3066	struct rcu_data *rdp;
3067
3068	/* Misaligned rcu_head! */
3069	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3070
3071	if (debug_rcu_head_queue(head)) {
3072		/*
3073		 * Probable double call_rcu(), so leak the callback.
3074		 * Use rcu:rcu_callback trace event to find the previous
3075		 * time callback was passed to call_rcu().
3076		 */
3077		if (atomic_inc_return(&doublefrees) < 4) {
3078			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3079			mem_dump_obj(head);
3080		}
3081		WRITE_ONCE(head->func, rcu_leak_callback);
 
3082		return;
3083	}
3084	head->func = func;
3085	head->next = NULL;
3086	kasan_record_aux_stack_noalloc(head);
3087	local_irq_save(flags);
3088	rdp = this_cpu_ptr(&rcu_data);
3089	lazy = lazy_in && !rcu_async_should_hurry();
3090
3091	/* Add the callback to our list. */
3092	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3093		// This can trigger due to call_rcu() from offline CPU:
3094		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095		WARN_ON_ONCE(!rcu_is_watching());
3096		// Very early boot, before rcu_init().  Initialize if needed
3097		// and then drop through to queue the callback.
3098		if (rcu_segcblist_empty(&rdp->cblist))
3099			rcu_segcblist_init(&rdp->cblist);
3100	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3101
3102	check_cb_ovld(rdp);
3103
3104	if (unlikely(rcu_rdp_is_offloaded(rdp)))
3105		call_rcu_nocb(rdp, head, func, flags, lazy);
3106	else
3107		call_rcu_core(rdp, head, func, flags);
3108	local_irq_restore(flags);
3109}
3110
3111#ifdef CONFIG_RCU_LAZY
3112static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
3113module_param(enable_rcu_lazy, bool, 0444);
3114
3115/**
3116 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
3117 * flush all lazy callbacks (including the new one) to the main ->cblist while
3118 * doing so.
3119 *
3120 * @head: structure to be used for queueing the RCU updates.
3121 * @func: actual callback function to be invoked after the grace period
3122 *
3123 * The callback function will be invoked some time after a full grace
3124 * period elapses, in other words after all pre-existing RCU read-side
3125 * critical sections have completed.
3126 *
3127 * Use this API instead of call_rcu() if you don't want the callback to be
3128 * invoked after very long periods of time, which can happen on systems without
3129 * memory pressure and on systems which are lightly loaded or mostly idle.
3130 * This function will cause callbacks to be invoked sooner than later at the
3131 * expense of extra power. Other than that, this function is identical to, and
3132 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
3133 * ordering and other functionality.
3134 */
3135void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
3136{
3137	__call_rcu_common(head, func, false);
3138}
3139EXPORT_SYMBOL_GPL(call_rcu_hurry);
3140#else
3141#define enable_rcu_lazy		false
3142#endif
3143
3144/**
3145 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3146 * By default the callbacks are 'lazy' and are kept hidden from the main
3147 * ->cblist to prevent starting of grace periods too soon.
3148 * If you desire grace periods to start very soon, use call_rcu_hurry().
3149 *
3150 * @head: structure to be used for queueing the RCU updates.
3151 * @func: actual callback function to be invoked after the grace period
3152 *
3153 * The callback function will be invoked some time after a full grace
3154 * period elapses, in other words after all pre-existing RCU read-side
3155 * critical sections have completed.  However, the callback function
3156 * might well execute concurrently with RCU read-side critical sections
3157 * that started after call_rcu() was invoked.
3158 *
3159 * RCU read-side critical sections are delimited by rcu_read_lock()
3160 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3161 * v5.0 and later, regions of code across which interrupts, preemption,
3162 * or softirqs have been disabled also serve as RCU read-side critical
3163 * sections.  This includes hardware interrupt handlers, softirq handlers,
3164 * and NMI handlers.
3165 *
3166 * Note that all CPUs must agree that the grace period extended beyond
3167 * all pre-existing RCU read-side critical section.  On systems with more
3168 * than one CPU, this means that when "func()" is invoked, each CPU is
3169 * guaranteed to have executed a full memory barrier since the end of its
3170 * last RCU read-side critical section whose beginning preceded the call
3171 * to call_rcu().  It also means that each CPU executing an RCU read-side
3172 * critical section that continues beyond the start of "func()" must have
3173 * executed a memory barrier after the call_rcu() but before the beginning
3174 * of that RCU read-side critical section.  Note that these guarantees
3175 * include CPUs that are offline, idle, or executing in user mode, as
3176 * well as CPUs that are executing in the kernel.
3177 *
3178 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3179 * resulting RCU callback function "func()", then both CPU A and CPU B are
3180 * guaranteed to execute a full memory barrier during the time interval
3181 * between the call to call_rcu() and the invocation of "func()" -- even
3182 * if CPU A and CPU B are the same CPU (but again only if the system has
3183 * more than one CPU).
3184 *
3185 * Implementation of these memory-ordering guarantees is described here:
3186 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3187 */
3188void call_rcu(struct rcu_head *head, rcu_callback_t func)
3189{
3190	__call_rcu_common(head, func, enable_rcu_lazy);
3191}
3192EXPORT_SYMBOL_GPL(call_rcu);
3193
3194/* Maximum number of jiffies to wait before draining a batch. */
3195#define KFREE_DRAIN_JIFFIES (5 * HZ)
3196#define KFREE_N_BATCHES 2
3197#define FREE_N_CHANNELS 2
3198
3199/**
3200 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3201 * @list: List node. All blocks are linked between each other
3202 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
3203 * @nr_records: Number of active pointers in the array
3204 * @records: Array of the kvfree_rcu() pointers
3205 */
3206struct kvfree_rcu_bulk_data {
3207	struct list_head list;
3208	struct rcu_gp_oldstate gp_snap;
3209	unsigned long nr_records;
3210	void *records[] __counted_by(nr_records);
3211};
3212
3213/*
3214 * This macro defines how many entries the "records" array
3215 * will contain. It is based on the fact that the size of
3216 * kvfree_rcu_bulk_data structure becomes exactly one page.
3217 */
3218#define KVFREE_BULK_MAX_ENTR \
3219	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3220
3221/**
3222 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3223 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3224 * @head_free: List of kfree_rcu() objects waiting for a grace period
3225 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
3226 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3227 * @krcp: Pointer to @kfree_rcu_cpu structure
3228 */
3229
3230struct kfree_rcu_cpu_work {
3231	struct rcu_work rcu_work;
3232	struct rcu_head *head_free;
3233	struct rcu_gp_oldstate head_free_gp_snap;
3234	struct list_head bulk_head_free[FREE_N_CHANNELS];
3235	struct kfree_rcu_cpu *krcp;
3236};
3237
3238/**
3239 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3240 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3241 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
3242 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3243 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3244 * @lock: Synchronize access to this structure
3245 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3246 * @initialized: The @rcu_work fields have been initialized
3247 * @head_count: Number of objects in rcu_head singular list
3248 * @bulk_count: Number of objects in bulk-list
3249 * @bkvcache:
3250 *	A simple cache list that contains objects for reuse purpose.
3251 *	In order to save some per-cpu space the list is singular.
3252 *	Even though it is lockless an access has to be protected by the
3253 *	per-cpu lock.
3254 * @page_cache_work: A work to refill the cache when it is empty
3255 * @backoff_page_cache_fill: Delay cache refills
3256 * @work_in_progress: Indicates that page_cache_work is running
3257 * @hrtimer: A hrtimer for scheduling a page_cache_work
3258 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3259 *
3260 * This is a per-CPU structure.  The reason that it is not included in
3261 * the rcu_data structure is to permit this code to be extracted from
3262 * the RCU files.  Such extraction could allow further optimization of
3263 * the interactions with the slab allocators.
3264 */
3265struct kfree_rcu_cpu {
3266	// Objects queued on a linked list
3267	// through their rcu_head structures.
3268	struct rcu_head *head;
3269	unsigned long head_gp_snap;
3270	atomic_t head_count;
3271
3272	// Objects queued on a bulk-list.
3273	struct list_head bulk_head[FREE_N_CHANNELS];
3274	atomic_t bulk_count[FREE_N_CHANNELS];
3275
3276	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3277	raw_spinlock_t lock;
3278	struct delayed_work monitor_work;
3279	bool initialized;
3280
3281	struct delayed_work page_cache_work;
3282	atomic_t backoff_page_cache_fill;
3283	atomic_t work_in_progress;
3284	struct hrtimer hrtimer;
3285
3286	struct llist_head bkvcache;
3287	int nr_bkv_objs;
3288};
3289
3290static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3291	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3292};
3293
3294static __always_inline void
3295debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3296{
3297#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3298	int i;
3299
3300	for (i = 0; i < bhead->nr_records; i++)
3301		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3302#endif
3303}
3304
3305static inline struct kfree_rcu_cpu *
3306krc_this_cpu_lock(unsigned long *flags)
3307{
3308	struct kfree_rcu_cpu *krcp;
3309
3310	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3311	krcp = this_cpu_ptr(&krc);
3312	raw_spin_lock(&krcp->lock);
3313
3314	return krcp;
3315}
3316
3317static inline void
3318krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3319{
3320	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3321}
3322
3323static inline struct kvfree_rcu_bulk_data *
3324get_cached_bnode(struct kfree_rcu_cpu *krcp)
3325{
3326	if (!krcp->nr_bkv_objs)
3327		return NULL;
3328
3329	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3330	return (struct kvfree_rcu_bulk_data *)
3331		llist_del_first(&krcp->bkvcache);
3332}
3333
3334static inline bool
3335put_cached_bnode(struct kfree_rcu_cpu *krcp,
3336	struct kvfree_rcu_bulk_data *bnode)
3337{
3338	// Check the limit.
3339	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3340		return false;
3341
3342	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3343	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3344	return true;
3345}
3346
3347static int
3348drain_page_cache(struct kfree_rcu_cpu *krcp)
3349{
3350	unsigned long flags;
3351	struct llist_node *page_list, *pos, *n;
3352	int freed = 0;
3353
3354	if (!rcu_min_cached_objs)
3355		return 0;
3356
3357	raw_spin_lock_irqsave(&krcp->lock, flags);
3358	page_list = llist_del_all(&krcp->bkvcache);
3359	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3360	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3361
3362	llist_for_each_safe(pos, n, page_list) {
3363		free_page((unsigned long)pos);
3364		freed++;
3365	}
3366
3367	return freed;
3368}
3369
3370static void
3371kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3372	struct kvfree_rcu_bulk_data *bnode, int idx)
3373{
3374	unsigned long flags;
3375	int i;
3376
3377	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3378		debug_rcu_bhead_unqueue(bnode);
3379		rcu_lock_acquire(&rcu_callback_map);
3380		if (idx == 0) { // kmalloc() / kfree().
3381			trace_rcu_invoke_kfree_bulk_callback(
3382				rcu_state.name, bnode->nr_records,
3383				bnode->records);
3384
3385			kfree_bulk(bnode->nr_records, bnode->records);
3386		} else { // vmalloc() / vfree().
3387			for (i = 0; i < bnode->nr_records; i++) {
3388				trace_rcu_invoke_kvfree_callback(
3389					rcu_state.name, bnode->records[i], 0);
3390
3391				vfree(bnode->records[i]);
3392			}
3393		}
3394		rcu_lock_release(&rcu_callback_map);
3395	}
3396
3397	raw_spin_lock_irqsave(&krcp->lock, flags);
3398	if (put_cached_bnode(krcp, bnode))
3399		bnode = NULL;
3400	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3401
3402	if (bnode)
3403		free_page((unsigned long) bnode);
3404
3405	cond_resched_tasks_rcu_qs();
3406}
3407
3408static void
3409kvfree_rcu_list(struct rcu_head *head)
3410{
3411	struct rcu_head *next;
3412
3413	for (; head; head = next) {
3414		void *ptr = (void *) head->func;
3415		unsigned long offset = (void *) head - ptr;
3416
3417		next = head->next;
3418		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3419		rcu_lock_acquire(&rcu_callback_map);
3420		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3421
3422		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3423			kvfree(ptr);
3424
3425		rcu_lock_release(&rcu_callback_map);
3426		cond_resched_tasks_rcu_qs();
3427	}
3428}
3429
3430/*
3431 * This function is invoked in workqueue context after a grace period.
3432 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3433 */
3434static void kfree_rcu_work(struct work_struct *work)
3435{
3436	unsigned long flags;
3437	struct kvfree_rcu_bulk_data *bnode, *n;
3438	struct list_head bulk_head[FREE_N_CHANNELS];
3439	struct rcu_head *head;
3440	struct kfree_rcu_cpu *krcp;
3441	struct kfree_rcu_cpu_work *krwp;
3442	struct rcu_gp_oldstate head_gp_snap;
3443	int i;
3444
3445	krwp = container_of(to_rcu_work(work),
3446		struct kfree_rcu_cpu_work, rcu_work);
3447	krcp = krwp->krcp;
3448
3449	raw_spin_lock_irqsave(&krcp->lock, flags);
3450	// Channels 1 and 2.
3451	for (i = 0; i < FREE_N_CHANNELS; i++)
3452		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3453
3454	// Channel 3.
3455	head = krwp->head_free;
3456	krwp->head_free = NULL;
3457	head_gp_snap = krwp->head_free_gp_snap;
3458	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3459
3460	// Handle the first two channels.
3461	for (i = 0; i < FREE_N_CHANNELS; i++) {
3462		// Start from the tail page, so a GP is likely passed for it.
3463		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3464			kvfree_rcu_bulk(krcp, bnode, i);
3465	}
3466
3467	/*
3468	 * This is used when the "bulk" path can not be used for the
3469	 * double-argument of kvfree_rcu().  This happens when the
3470	 * page-cache is empty, which means that objects are instead
3471	 * queued on a linked list through their rcu_head structures.
3472	 * This list is named "Channel 3".
3473	 */
3474	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3475		kvfree_rcu_list(head);
3476}
3477
3478static bool
3479need_offload_krc(struct kfree_rcu_cpu *krcp)
3480{
3481	int i;
3482
3483	for (i = 0; i < FREE_N_CHANNELS; i++)
3484		if (!list_empty(&krcp->bulk_head[i]))
3485			return true;
3486
3487	return !!READ_ONCE(krcp->head);
3488}
3489
3490static bool
3491need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3492{
3493	int i;
3494
3495	for (i = 0; i < FREE_N_CHANNELS; i++)
3496		if (!list_empty(&krwp->bulk_head_free[i]))
3497			return true;
3498
3499	return !!krwp->head_free;
3500}
3501
3502static int krc_count(struct kfree_rcu_cpu *krcp)
3503{
3504	int sum = atomic_read(&krcp->head_count);
3505	int i;
3506
3507	for (i = 0; i < FREE_N_CHANNELS; i++)
3508		sum += atomic_read(&krcp->bulk_count[i]);
3509
3510	return sum;
3511}
3512
3513static void
3514__schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3515{
3516	long delay, delay_left;
3517
3518	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3519	if (delayed_work_pending(&krcp->monitor_work)) {
3520		delay_left = krcp->monitor_work.timer.expires - jiffies;
3521		if (delay < delay_left)
3522			mod_delayed_work(system_unbound_wq, &krcp->monitor_work, delay);
3523		return;
3524	}
3525	queue_delayed_work(system_unbound_wq, &krcp->monitor_work, delay);
3526}
3527
3528static void
3529schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3530{
3531	unsigned long flags;
3532
3533	raw_spin_lock_irqsave(&krcp->lock, flags);
3534	__schedule_delayed_monitor_work(krcp);
3535	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3536}
3537
3538static void
3539kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3540{
3541	struct list_head bulk_ready[FREE_N_CHANNELS];
3542	struct kvfree_rcu_bulk_data *bnode, *n;
3543	struct rcu_head *head_ready = NULL;
3544	unsigned long flags;
3545	int i;
3546
3547	raw_spin_lock_irqsave(&krcp->lock, flags);
3548	for (i = 0; i < FREE_N_CHANNELS; i++) {
3549		INIT_LIST_HEAD(&bulk_ready[i]);
3550
3551		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3552			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3553				break;
3554
3555			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3556			list_move(&bnode->list, &bulk_ready[i]);
3557		}
3558	}
3559
3560	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3561		head_ready = krcp->head;
3562		atomic_set(&krcp->head_count, 0);
3563		WRITE_ONCE(krcp->head, NULL);
3564	}
3565	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3566
3567	for (i = 0; i < FREE_N_CHANNELS; i++) {
3568		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3569			kvfree_rcu_bulk(krcp, bnode, i);
3570	}
3571
3572	if (head_ready)
3573		kvfree_rcu_list(head_ready);
3574}
3575
3576/*
3577 * Return: %true if a work is queued, %false otherwise.
3578 */
3579static bool
3580kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp)
3581{
3582	unsigned long flags;
3583	bool queued = false;
3584	int i, j;
3585
3586	raw_spin_lock_irqsave(&krcp->lock, flags);
3587
3588	// Attempt to start a new batch.
3589	for (i = 0; i < KFREE_N_BATCHES; i++) {
3590		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3591
3592		// Try to detach bulk_head or head and attach it, only when
3593		// all channels are free.  Any channel is not free means at krwp
3594		// there is on-going rcu work to handle krwp's free business.
3595		if (need_wait_for_krwp_work(krwp))
3596			continue;
3597
3598		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3599		if (need_offload_krc(krcp)) {
3600			// Channel 1 corresponds to the SLAB-pointer bulk path.
3601			// Channel 2 corresponds to vmalloc-pointer bulk path.
3602			for (j = 0; j < FREE_N_CHANNELS; j++) {
3603				if (list_empty(&krwp->bulk_head_free[j])) {
3604					atomic_set(&krcp->bulk_count[j], 0);
3605					list_replace_init(&krcp->bulk_head[j],
3606						&krwp->bulk_head_free[j]);
3607				}
3608			}
3609
3610			// Channel 3 corresponds to both SLAB and vmalloc
3611			// objects queued on the linked list.
3612			if (!krwp->head_free) {
3613				krwp->head_free = krcp->head;
3614				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3615				atomic_set(&krcp->head_count, 0);
3616				WRITE_ONCE(krcp->head, NULL);
3617			}
3618
3619			// One work is per one batch, so there are three
3620			// "free channels", the batch can handle. Break
3621			// the loop since it is done with this CPU thus
3622			// queuing an RCU work is _always_ success here.
3623			queued = queue_rcu_work(system_unbound_wq, &krwp->rcu_work);
3624			WARN_ON_ONCE(!queued);
3625			break;
3626		}
3627	}
3628
3629	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3630	return queued;
3631}
 
3632
3633/*
3634 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3635 */
3636static void kfree_rcu_monitor(struct work_struct *work)
3637{
3638	struct kfree_rcu_cpu *krcp = container_of(work,
3639		struct kfree_rcu_cpu, monitor_work.work);
3640
3641	// Drain ready for reclaim.
3642	kvfree_rcu_drain_ready(krcp);
3643
3644	// Queue a batch for a rest.
3645	kvfree_rcu_queue_batch(krcp);
3646
3647	// If there is nothing to detach, it means that our job is
3648	// successfully done here. In case of having at least one
3649	// of the channels that is still busy we should rearm the
3650	// work to repeat an attempt. Because previous batches are
3651	// still in progress.
3652	if (need_offload_krc(krcp))
3653		schedule_delayed_monitor_work(krcp);
3654}
3655
3656static enum hrtimer_restart
3657schedule_page_work_fn(struct hrtimer *t)
3658{
3659	struct kfree_rcu_cpu *krcp =
3660		container_of(t, struct kfree_rcu_cpu, hrtimer);
3661
3662	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3663	return HRTIMER_NORESTART;
3664}
3665
3666static void fill_page_cache_func(struct work_struct *work)
3667{
3668	struct kvfree_rcu_bulk_data *bnode;
3669	struct kfree_rcu_cpu *krcp =
3670		container_of(work, struct kfree_rcu_cpu,
3671			page_cache_work.work);
3672	unsigned long flags;
3673	int nr_pages;
3674	bool pushed;
3675	int i;
3676
3677	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3678		1 : rcu_min_cached_objs;
3679
3680	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3681		bnode = (struct kvfree_rcu_bulk_data *)
3682			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3683
3684		if (!bnode)
3685			break;
3686
3687		raw_spin_lock_irqsave(&krcp->lock, flags);
3688		pushed = put_cached_bnode(krcp, bnode);
3689		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3690
3691		if (!pushed) {
3692			free_page((unsigned long) bnode);
3693			break;
3694		}
3695	}
3696
3697	atomic_set(&krcp->work_in_progress, 0);
3698	atomic_set(&krcp->backoff_page_cache_fill, 0);
3699}
3700
3701static void
3702run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3703{
3704	// If cache disabled, bail out.
3705	if (!rcu_min_cached_objs)
3706		return;
3707
3708	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3709			!atomic_xchg(&krcp->work_in_progress, 1)) {
3710		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3711			queue_delayed_work(system_unbound_wq,
3712				&krcp->page_cache_work,
3713					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3714		} else {
3715			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3716			krcp->hrtimer.function = schedule_page_work_fn;
3717			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3718		}
3719	}
3720}
3721
3722// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3723// state specified by flags.  If can_alloc is true, the caller must
3724// be schedulable and not be holding any locks or mutexes that might be
3725// acquired by the memory allocator or anything that it might invoke.
3726// Returns true if ptr was successfully recorded, else the caller must
3727// use a fallback.
3728static inline bool
3729add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3730	unsigned long *flags, void *ptr, bool can_alloc)
3731{
3732	struct kvfree_rcu_bulk_data *bnode;
3733	int idx;
3734
3735	*krcp = krc_this_cpu_lock(flags);
3736	if (unlikely(!(*krcp)->initialized))
3737		return false;
3738
3739	idx = !!is_vmalloc_addr(ptr);
3740	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3741		struct kvfree_rcu_bulk_data, list);
3742
3743	/* Check if a new block is required. */
3744	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3745		bnode = get_cached_bnode(*krcp);
3746		if (!bnode && can_alloc) {
3747			krc_this_cpu_unlock(*krcp, *flags);
3748
3749			// __GFP_NORETRY - allows a light-weight direct reclaim
3750			// what is OK from minimizing of fallback hitting point of
3751			// view. Apart of that it forbids any OOM invoking what is
3752			// also beneficial since we are about to release memory soon.
3753			//
3754			// __GFP_NOMEMALLOC - prevents from consuming of all the
3755			// memory reserves. Please note we have a fallback path.
3756			//
3757			// __GFP_NOWARN - it is supposed that an allocation can
3758			// be failed under low memory or high memory pressure
3759			// scenarios.
3760			bnode = (struct kvfree_rcu_bulk_data *)
3761				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3762			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3763		}
3764
3765		if (!bnode)
3766			return false;
3767
3768		// Initialize the new block and attach it.
3769		bnode->nr_records = 0;
3770		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3771	}
3772
3773	// Finally insert and update the GP for this page.
3774	bnode->nr_records++;
3775	bnode->records[bnode->nr_records - 1] = ptr;
3776	get_state_synchronize_rcu_full(&bnode->gp_snap);
3777	atomic_inc(&(*krcp)->bulk_count[idx]);
3778
3779	return true;
3780}
 
3781
3782/*
3783 * Queue a request for lazy invocation of the appropriate free routine
3784 * after a grace period.  Please note that three paths are maintained,
3785 * two for the common case using arrays of pointers and a third one that
3786 * is used only when the main paths cannot be used, for example, due to
3787 * memory pressure.
3788 *
3789 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3790 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3791 * be free'd in workqueue context. This allows us to: batch requests together to
3792 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3793 */
3794void kvfree_call_rcu(struct rcu_head *head, void *ptr)
 
3795{
3796	unsigned long flags;
3797	struct kfree_rcu_cpu *krcp;
3798	bool success;
3799
3800	/*
3801	 * Please note there is a limitation for the head-less
3802	 * variant, that is why there is a clear rule for such
3803	 * objects: it can be used from might_sleep() context
3804	 * only. For other places please embed an rcu_head to
3805	 * your data.
3806	 */
3807	if (!head)
3808		might_sleep();
3809
3810	// Queue the object but don't yet schedule the batch.
3811	if (debug_rcu_head_queue(ptr)) {
3812		// Probable double kfree_rcu(), just leak.
3813		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3814			  __func__, head);
3815
3816		// Mark as success and leave.
3817		return;
3818	}
3819
3820	kasan_record_aux_stack_noalloc(ptr);
3821	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3822	if (!success) {
3823		run_page_cache_worker(krcp);
3824
3825		if (head == NULL)
3826			// Inline if kvfree_rcu(one_arg) call.
3827			goto unlock_return;
3828
3829		head->func = ptr;
3830		head->next = krcp->head;
3831		WRITE_ONCE(krcp->head, head);
3832		atomic_inc(&krcp->head_count);
3833
3834		// Take a snapshot for this krcp.
3835		krcp->head_gp_snap = get_state_synchronize_rcu();
3836		success = true;
3837	}
3838
3839	/*
3840	 * The kvfree_rcu() caller considers the pointer freed at this point
3841	 * and likely removes any references to it. Since the actual slab
3842	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3843	 * this object (no scanning or false positives reporting).
3844	 */
3845	kmemleak_ignore(ptr);
3846
3847	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3848	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3849		__schedule_delayed_monitor_work(krcp);
3850
3851unlock_return:
3852	krc_this_cpu_unlock(krcp, flags);
3853
3854	/*
3855	 * Inline kvfree() after synchronize_rcu(). We can do
3856	 * it from might_sleep() context only, so the current
3857	 * CPU can pass the QS state.
3858	 */
3859	if (!success) {
3860		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3861		synchronize_rcu();
3862		kvfree(ptr);
3863	}
3864}
3865EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3866
3867/**
3868 * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete.
3869 *
3870 * Note that a single argument of kvfree_rcu() call has a slow path that
3871 * triggers synchronize_rcu() following by freeing a pointer. It is done
3872 * before the return from the function. Therefore for any single-argument
3873 * call that will result in a kfree() to a cache that is to be destroyed
3874 * during module exit, it is developer's responsibility to ensure that all
3875 * such calls have returned before the call to kmem_cache_destroy().
3876 */
3877void kvfree_rcu_barrier(void)
3878{
3879	struct kfree_rcu_cpu_work *krwp;
3880	struct kfree_rcu_cpu *krcp;
3881	bool queued;
3882	int i, cpu;
3883
3884	/*
3885	 * Firstly we detach objects and queue them over an RCU-batch
3886	 * for all CPUs. Finally queued works are flushed for each CPU.
3887	 *
3888	 * Please note. If there are outstanding batches for a particular
3889	 * CPU, those have to be finished first following by queuing a new.
3890	 */
3891	for_each_possible_cpu(cpu) {
3892		krcp = per_cpu_ptr(&krc, cpu);
3893
3894		/*
3895		 * Check if this CPU has any objects which have been queued for a
3896		 * new GP completion. If not(means nothing to detach), we are done
3897		 * with it. If any batch is pending/running for this "krcp", below
3898		 * per-cpu flush_rcu_work() waits its completion(see last step).
3899		 */
3900		if (!need_offload_krc(krcp))
3901			continue;
3902
3903		while (1) {
3904			/*
3905			 * If we are not able to queue a new RCU work it means:
3906			 * - batches for this CPU are still in flight which should
3907			 *   be flushed first and then repeat;
3908			 * - no objects to detach, because of concurrency.
3909			 */
3910			queued = kvfree_rcu_queue_batch(krcp);
3911
3912			/*
3913			 * Bail out, if there is no need to offload this "krcp"
3914			 * anymore. As noted earlier it can run concurrently.
3915			 */
3916			if (queued || !need_offload_krc(krcp))
3917				break;
3918
3919			/* There are ongoing batches. */
3920			for (i = 0; i < KFREE_N_BATCHES; i++) {
3921				krwp = &(krcp->krw_arr[i]);
3922				flush_rcu_work(&krwp->rcu_work);
3923			}
3924		}
3925	}
3926
3927	/*
3928	 * Now we guarantee that all objects are flushed.
3929	 */
3930	for_each_possible_cpu(cpu) {
3931		krcp = per_cpu_ptr(&krc, cpu);
3932
3933		/*
3934		 * A monitor work can drain ready to reclaim objects
3935		 * directly. Wait its completion if running or pending.
3936		 */
3937		cancel_delayed_work_sync(&krcp->monitor_work);
3938
3939		for (i = 0; i < KFREE_N_BATCHES; i++) {
3940			krwp = &(krcp->krw_arr[i]);
3941			flush_rcu_work(&krwp->rcu_work);
3942		}
3943	}
3944}
3945EXPORT_SYMBOL_GPL(kvfree_rcu_barrier);
3946
3947static unsigned long
3948kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3949{
3950	int cpu;
3951	unsigned long count = 0;
3952
3953	/* Snapshot count of all CPUs */
3954	for_each_possible_cpu(cpu) {
3955		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3956
3957		count += krc_count(krcp);
3958		count += READ_ONCE(krcp->nr_bkv_objs);
3959		atomic_set(&krcp->backoff_page_cache_fill, 1);
3960	}
3961
3962	return count == 0 ? SHRINK_EMPTY : count;
3963}
3964
3965static unsigned long
3966kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3967{
3968	int cpu, freed = 0;
3969
3970	for_each_possible_cpu(cpu) {
3971		int count;
3972		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3973
3974		count = krc_count(krcp);
3975		count += drain_page_cache(krcp);
3976		kfree_rcu_monitor(&krcp->monitor_work.work);
3977
3978		sc->nr_to_scan -= count;
3979		freed += count;
3980
3981		if (sc->nr_to_scan <= 0)
3982			break;
3983	}
3984
3985	return freed == 0 ? SHRINK_STOP : freed;
3986}
3987
3988void __init kfree_rcu_scheduler_running(void)
3989{
3990	int cpu;
3991
3992	for_each_possible_cpu(cpu) {
3993		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3994
3995		if (need_offload_krc(krcp))
3996			schedule_delayed_monitor_work(krcp);
3997	}
3998}
 
3999
4000/*
4001 * During early boot, any blocking grace-period wait automatically
4002 * implies a grace period.
4003 *
4004 * Later on, this could in theory be the case for kernels built with
4005 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
4006 * is not a common case.  Furthermore, this optimization would cause
4007 * the rcu_gp_oldstate structure to expand by 50%, so this potential
4008 * grace-period optimization is ignored once the scheduler is running.
4009 */
4010static int rcu_blocking_is_gp(void)
4011{
4012	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
4013		might_sleep();
4014		return false;
4015	}
4016	return true;
4017}
4018
4019/*
4020 * Helper function for the synchronize_rcu() API.
4021 */
4022static void synchronize_rcu_normal(void)
4023{
4024	struct rcu_synchronize rs;
4025
4026	trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request"));
4027
4028	if (!READ_ONCE(rcu_normal_wake_from_gp)) {
4029		wait_rcu_gp(call_rcu_hurry);
4030		goto trace_complete_out;
4031	}
4032
4033	init_rcu_head_on_stack(&rs.head);
4034	init_completion(&rs.completion);
4035
4036	/*
4037	 * This code might be preempted, therefore take a GP
4038	 * snapshot before adding a request.
4039	 */
4040	if (IS_ENABLED(CONFIG_PROVE_RCU))
4041		rs.head.func = (void *) get_state_synchronize_rcu();
4042
4043	rcu_sr_normal_add_req(&rs);
4044
4045	/* Kick a GP and start waiting. */
4046	(void) start_poll_synchronize_rcu();
4047
4048	/* Now we can wait. */
4049	wait_for_completion(&rs.completion);
4050	destroy_rcu_head_on_stack(&rs.head);
4051
4052trace_complete_out:
4053	trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete"));
4054}
4055
4056/**
4057 * synchronize_rcu - wait until a grace period has elapsed.
4058 *
4059 * Control will return to the caller some time after a full grace
4060 * period has elapsed, in other words after all currently executing RCU
4061 * read-side critical sections have completed.  Note, however, that
4062 * upon return from synchronize_rcu(), the caller might well be executing
4063 * concurrently with new RCU read-side critical sections that began while
4064 * synchronize_rcu() was waiting.
4065 *
4066 * RCU read-side critical sections are delimited by rcu_read_lock()
4067 * and rcu_read_unlock(), and may be nested.  In addition, but only in
4068 * v5.0 and later, regions of code across which interrupts, preemption,
4069 * or softirqs have been disabled also serve as RCU read-side critical
4070 * sections.  This includes hardware interrupt handlers, softirq handlers,
4071 * and NMI handlers.
4072 *
4073 * Note that this guarantee implies further memory-ordering guarantees.
4074 * On systems with more than one CPU, when synchronize_rcu() returns,
4075 * each CPU is guaranteed to have executed a full memory barrier since
4076 * the end of its last RCU read-side critical section whose beginning
4077 * preceded the call to synchronize_rcu().  In addition, each CPU having
4078 * an RCU read-side critical section that extends beyond the return from
4079 * synchronize_rcu() is guaranteed to have executed a full memory barrier
4080 * after the beginning of synchronize_rcu() and before the beginning of
4081 * that RCU read-side critical section.  Note that these guarantees include
4082 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
4083 * that are executing in the kernel.
4084 *
4085 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
4086 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
4087 * to have executed a full memory barrier during the execution of
4088 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
4089 * again only if the system has more than one CPU).
4090 *
4091 * Implementation of these memory-ordering guarantees is described here:
4092 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
 
 
 
4093 */
4094void synchronize_rcu(void)
4095{
4096	unsigned long flags;
4097	struct rcu_node *rnp;
4098
4099	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
4100			 lock_is_held(&rcu_lock_map) ||
4101			 lock_is_held(&rcu_sched_lock_map),
4102			 "Illegal synchronize_rcu() in RCU read-side critical section");
4103	if (!rcu_blocking_is_gp()) {
4104		if (rcu_gp_is_expedited())
4105			synchronize_rcu_expedited();
4106		else
4107			synchronize_rcu_normal();
4108		return;
4109	}
4110
4111	// Context allows vacuous grace periods.
4112	// Note well that this code runs with !PREEMPT && !SMP.
4113	// In addition, all code that advances grace periods runs at
4114	// process level.  Therefore, this normal GP overlaps with other
4115	// normal GPs only by being fully nested within them, which allows
4116	// reuse of ->gp_seq_polled_snap.
4117	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
4118	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
4119
4120	// Update the normal grace-period counters to record
4121	// this grace period, but only those used by the boot CPU.
4122	// The rcu_scheduler_starting() will take care of the rest of
4123	// these counters.
4124	local_irq_save(flags);
4125	WARN_ON_ONCE(num_online_cpus() > 1);
4126	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
4127	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
4128		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4129	local_irq_restore(flags);
4130}
4131EXPORT_SYMBOL_GPL(synchronize_rcu);
4132
4133/**
4134 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
4135 * @rgosp: Place to put state cookie
 
 
 
 
 
4136 *
4137 * Stores into @rgosp a value that will always be treated by functions
4138 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
4139 * has already completed.
4140 */
4141void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4142{
4143	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
4144	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
 
 
 
 
 
 
 
 
4145}
4146EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
4147
4148/**
4149 * get_state_synchronize_rcu - Snapshot current RCU state
4150 *
4151 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
4152 * or poll_state_synchronize_rcu() to determine whether or not a full
4153 * grace period has elapsed in the meantime.
4154 */
4155unsigned long get_state_synchronize_rcu(void)
4156{
4157	/*
4158	 * Any prior manipulation of RCU-protected data must happen
4159	 * before the load from ->gp_seq.
4160	 */
4161	smp_mb();  /* ^^^ */
4162	return rcu_seq_snap(&rcu_state.gp_seq_polled);
 
 
 
 
 
 
4163}
4164EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
4165
4166/**
4167 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
4168 * @rgosp: location to place combined normal/expedited grace-period state
 
4169 *
4170 * Places the normal and expedited grace-period states in @rgosp.  This
4171 * state value can be passed to a later call to cond_synchronize_rcu_full()
4172 * or poll_state_synchronize_rcu_full() to determine whether or not a
4173 * grace period (whether normal or expedited) has elapsed in the meantime.
4174 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
4175 * long, but is guaranteed to see all grace periods.  In contrast, the
4176 * combined state occupies less memory, but can sometimes fail to take
4177 * grace periods into account.
4178 *
4179 * This does not guarantee that the needed grace period will actually
4180 * start.
 
 
4181 */
4182void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4183{
4184	struct rcu_node *rnp = rcu_get_root();
4185
4186	/*
4187	 * Any prior manipulation of RCU-protected data must happen
4188	 * before the loads from ->gp_seq and ->expedited_sequence.
4189	 */
4190	smp_mb();  /* ^^^ */
4191	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
4192	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
4193}
4194EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
4195
4196/*
4197 * Helper function for start_poll_synchronize_rcu() and
4198 * start_poll_synchronize_rcu_full().
4199 */
4200static void start_poll_synchronize_rcu_common(void)
4201{
4202	unsigned long flags;
4203	bool needwake;
4204	struct rcu_data *rdp;
4205	struct rcu_node *rnp;
4206
4207	local_irq_save(flags);
4208	rdp = this_cpu_ptr(&rcu_data);
4209	rnp = rdp->mynode;
4210	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
4211	// Note it is possible for a grace period to have elapsed between
4212	// the above call to get_state_synchronize_rcu() and the below call
4213	// to rcu_seq_snap.  This is OK, the worst that happens is that we
4214	// get a grace period that no one needed.  These accesses are ordered
4215	// by smp_mb(), and we are accessing them in the opposite order
4216	// from which they are updated at grace-period start, as required.
4217	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
4218	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4219	if (needwake)
4220		rcu_gp_kthread_wake();
4221}
 
4222
4223/**
4224 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
4225 *
4226 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
4227 * or poll_state_synchronize_rcu() to determine whether or not a full
4228 * grace period has elapsed in the meantime.  If the needed grace period
4229 * is not already slated to start, notifies RCU core of the need for that
4230 * grace period.
4231 */
4232unsigned long start_poll_synchronize_rcu(void)
4233{
4234	unsigned long gp_seq = get_state_synchronize_rcu();
 
 
 
 
4235
4236	start_poll_synchronize_rcu_common();
4237	return gp_seq;
 
 
 
 
4238}
4239EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
4240
4241/**
4242 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
4243 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
 
4244 *
4245 * Places the normal and expedited grace-period states in *@rgos.  This
4246 * state value can be passed to a later call to cond_synchronize_rcu_full()
4247 * or poll_state_synchronize_rcu_full() to determine whether or not a
4248 * grace period (whether normal or expedited) has elapsed in the meantime.
4249 * If the needed grace period is not already slated to start, notifies
4250 * RCU core of the need for that grace period.
 
 
4251 */
4252void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4253{
4254	get_state_synchronize_rcu_full(rgosp);
4255
4256	start_poll_synchronize_rcu_common();
 
 
 
 
 
 
4257}
4258EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
4259
4260/**
4261 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
4262 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
4263 *
4264 * If a full RCU grace period has elapsed since the earlier call from
4265 * which @oldstate was obtained, return @true, otherwise return @false.
4266 * If @false is returned, it is the caller's responsibility to invoke this
4267 * function later on until it does return @true.  Alternatively, the caller
4268 * can explicitly wait for a grace period, for example, by passing @oldstate
4269 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
4270 * on the one hand or by directly invoking either synchronize_rcu() or
4271 * synchronize_rcu_expedited() on the other.
4272 *
4273 * Yes, this function does not take counter wrap into account.
4274 * But counter wrap is harmless.  If the counter wraps, we have waited for
4275 * more than a billion grace periods (and way more on a 64-bit system!).
4276 * Those needing to keep old state values for very long time periods
4277 * (many hours even on 32-bit systems) should check them occasionally and
4278 * either refresh them or set a flag indicating that the grace period has
4279 * completed.  Alternatively, they can use get_completed_synchronize_rcu()
4280 * to get a guaranteed-completed grace-period state.
4281 *
4282 * In addition, because oldstate compresses the grace-period state for
4283 * both normal and expedited grace periods into a single unsigned long,
4284 * it can miss a grace period when synchronize_rcu() runs concurrently
4285 * with synchronize_rcu_expedited().  If this is unacceptable, please
4286 * instead use the _full() variant of these polling APIs.
4287 *
4288 * This function provides the same memory-ordering guarantees that
4289 * would be provided by a synchronize_rcu() that was invoked at the call
4290 * to the function that provided @oldstate, and that returned at the end
4291 * of this function.
4292 */
4293bool poll_state_synchronize_rcu(unsigned long oldstate)
4294{
4295	if (oldstate == RCU_GET_STATE_COMPLETED ||
4296	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
4297		smp_mb(); /* Ensure GP ends before subsequent accesses. */
4298		return true;
4299	}
4300	return false;
4301}
4302EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
4303
4304/**
4305 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
4306 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
4307 *
4308 * If a full RCU grace period has elapsed since the earlier call from
4309 * which *rgosp was obtained, return @true, otherwise return @false.
4310 * If @false is returned, it is the caller's responsibility to invoke this
4311 * function later on until it does return @true.  Alternatively, the caller
4312 * can explicitly wait for a grace period, for example, by passing @rgosp
4313 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
4314 *
4315 * Yes, this function does not take counter wrap into account.
4316 * But counter wrap is harmless.  If the counter wraps, we have waited
4317 * for more than a billion grace periods (and way more on a 64-bit
4318 * system!).  Those needing to keep rcu_gp_oldstate values for very
4319 * long time periods (many hours even on 32-bit systems) should check
4320 * them occasionally and either refresh them or set a flag indicating
4321 * that the grace period has completed.  Alternatively, they can use
4322 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
4323 * grace-period state.
4324 *
4325 * This function provides the same memory-ordering guarantees that would
4326 * be provided by a synchronize_rcu() that was invoked at the call to
4327 * the function that provided @rgosp, and that returned at the end of this
4328 * function.  And this guarantee requires that the root rcu_node structure's
4329 * ->gp_seq field be checked instead of that of the rcu_state structure.
4330 * The problem is that the just-ending grace-period's callbacks can be
4331 * invoked between the time that the root rcu_node structure's ->gp_seq
4332 * field is updated and the time that the rcu_state structure's ->gp_seq
4333 * field is updated.  Therefore, if a single synchronize_rcu() is to
4334 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
4335 * then the root rcu_node structure is the one that needs to be polled.
4336 */
4337bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4338{
4339	struct rcu_node *rnp = rcu_get_root();
4340
4341	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
4342	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
4343	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
4344	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
4345	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
4346		smp_mb(); /* Ensure GP ends before subsequent accesses. */
4347		return true;
4348	}
4349	return false;
4350}
4351EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
4352
4353/**
4354 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
4355 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
4356 *
4357 * If a full RCU grace period has elapsed since the earlier call to
4358 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
4359 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
4360 *
4361 * Yes, this function does not take counter wrap into account.
4362 * But counter wrap is harmless.  If the counter wraps, we have waited for
4363 * more than 2 billion grace periods (and way more on a 64-bit system!),
4364 * so waiting for a couple of additional grace periods should be just fine.
4365 *
4366 * This function provides the same memory-ordering guarantees that
4367 * would be provided by a synchronize_rcu() that was invoked at the call
4368 * to the function that provided @oldstate and that returned at the end
4369 * of this function.
4370 */
4371void cond_synchronize_rcu(unsigned long oldstate)
4372{
4373	if (!poll_state_synchronize_rcu(oldstate))
4374		synchronize_rcu();
 
 
 
4375}
4376EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
4377
4378/**
4379 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
4380 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
4381 *
4382 * If a full RCU grace period has elapsed since the call to
4383 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
4384 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
4385 * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
4386 * for a full grace period.
4387 *
4388 * Yes, this function does not take counter wrap into account.
4389 * But counter wrap is harmless.  If the counter wraps, we have waited for
4390 * more than 2 billion grace periods (and way more on a 64-bit system!),
4391 * so waiting for a couple of additional grace periods should be just fine.
4392 *
4393 * This function provides the same memory-ordering guarantees that
4394 * would be provided by a synchronize_rcu() that was invoked at the call
4395 * to the function that provided @rgosp and that returned at the end of
4396 * this function.
4397 */
4398void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4399{
4400	if (!poll_state_synchronize_rcu_full(rgosp))
4401		synchronize_rcu();
4402}
4403EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
4404
4405/*
4406 * Check to see if there is any immediate RCU-related work to be done by
4407 * the current CPU, returning 1 if so and zero otherwise.  The checks are
4408 * in order of increasing expense: checks that can be carried out against
4409 * CPU-local state are performed first.  However, we must check for CPU
4410 * stalls first, else we might not get a chance.
4411 */
4412static int rcu_pending(int user)
4413{
4414	bool gp_in_progress;
4415	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4416	struct rcu_node *rnp = rdp->mynode;
4417
4418	lockdep_assert_irqs_disabled();
4419
4420	/* Check for CPU stalls, if enabled. */
4421	check_cpu_stall(rdp);
4422
4423	/* Does this CPU need a deferred NOCB wakeup? */
4424	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
4425		return 1;
4426
4427	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
4428	gp_in_progress = rcu_gp_in_progress();
4429	if ((user || rcu_is_cpu_rrupt_from_idle() ||
4430	     (gp_in_progress &&
4431	      time_before(jiffies, READ_ONCE(rcu_state.gp_start) +
4432			  nohz_full_patience_delay_jiffies))) &&
4433	    rcu_nohz_full_cpu())
4434		return 0;
4435
4436	/* Is the RCU core waiting for a quiescent state from this CPU? */
4437	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
 
 
 
 
 
 
 
4438		return 1;
 
4439
4440	/* Does this CPU have callbacks ready to invoke? */
4441	if (!rcu_rdp_is_offloaded(rdp) &&
4442	    rcu_segcblist_ready_cbs(&rdp->cblist))
4443		return 1;
 
4444
4445	/* Has RCU gone idle with this CPU needing another grace period? */
4446	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
4447	    !rcu_rdp_is_offloaded(rdp) &&
4448	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
4449		return 1;
 
4450
4451	/* Have RCU grace period completed or started?  */
4452	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
4453	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
4454		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4455
4456	/* nothing to do */
 
4457	return 0;
4458}
4459
4460/*
4461 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
4462 * the compiler is expected to optimize this away.
 
4463 */
4464static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
4465{
4466	trace_rcu_barrier(rcu_state.name, s, cpu,
4467			  atomic_read(&rcu_state.barrier_cpu_count), done);
 
 
 
 
4468}
4469
4470/*
4471 * RCU callback function for rcu_barrier().  If we are last, wake
4472 * up the task executing rcu_barrier().
4473 *
4474 * Note that the value of rcu_state.barrier_sequence must be captured
4475 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
4476 * other CPUs might count the value down to zero before this CPU gets
4477 * around to invoking rcu_barrier_trace(), which might result in bogus
4478 * data from the next instance of rcu_barrier().
4479 */
4480static void rcu_barrier_callback(struct rcu_head *rhp)
4481{
4482	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
 
 
 
4483
4484	rhp->next = rhp; // Mark the callback as having been invoked.
4485	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
4486		rcu_barrier_trace(TPS("LastCB"), -1, s);
4487		complete(&rcu_state.barrier_completion);
4488	} else {
4489		rcu_barrier_trace(TPS("CB"), -1, s);
 
 
 
4490	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4491}
4492
4493/*
4494 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
 
4495 */
4496static void rcu_barrier_entrain(struct rcu_data *rdp)
4497{
4498	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4499	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4500	bool wake_nocb = false;
4501	bool was_alldone = false;
4502
4503	lockdep_assert_held(&rcu_state.barrier_lock);
4504	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4505		return;
4506	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4507	rdp->barrier_head.func = rcu_barrier_callback;
4508	debug_rcu_head_queue(&rdp->barrier_head);
4509	rcu_nocb_lock(rdp);
4510	/*
4511	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4512	 * queue. This way we don't wait for bypass timer that can reach seconds
4513	 * if it's fully lazy.
4514	 */
4515	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4516	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4517	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4518	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4519		atomic_inc(&rcu_state.barrier_cpu_count);
4520	} else {
4521		debug_rcu_head_unqueue(&rdp->barrier_head);
4522		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4523	}
4524	rcu_nocb_unlock(rdp);
4525	if (wake_nocb)
4526		wake_nocb_gp(rdp, false);
4527	smp_store_release(&rdp->barrier_seq_snap, gseq);
4528}
4529
4530/*
4531 * Called with preemption disabled, and from cross-cpu IRQ context.
4532 */
4533static void rcu_barrier_handler(void *cpu_in)
4534{
4535	uintptr_t cpu = (uintptr_t)cpu_in;
4536	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4537
4538	lockdep_assert_irqs_disabled();
4539	WARN_ON_ONCE(cpu != rdp->cpu);
4540	WARN_ON_ONCE(cpu != smp_processor_id());
4541	raw_spin_lock(&rcu_state.barrier_lock);
4542	rcu_barrier_entrain(rdp);
4543	raw_spin_unlock(&rcu_state.barrier_lock);
4544}
4545
4546/**
4547 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4548 *
4549 * Note that this primitive does not necessarily wait for an RCU grace period
4550 * to complete.  For example, if there are no RCU callbacks queued anywhere
4551 * in the system, then rcu_barrier() is within its rights to return
4552 * immediately, without waiting for anything, much less an RCU grace period.
4553 */
4554void rcu_barrier(void)
4555{
4556	uintptr_t cpu;
4557	unsigned long flags;
4558	unsigned long gseq;
4559	struct rcu_data *rdp;
4560	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4561
4562	rcu_barrier_trace(TPS("Begin"), -1, s);
4563
4564	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4565	mutex_lock(&rcu_state.barrier_mutex);
4566
4567	/* Did someone else do our work for us? */
4568	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4569		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4570		smp_mb(); /* caller's subsequent code after above check. */
4571		mutex_unlock(&rcu_state.barrier_mutex);
4572		return;
4573	}
4574
4575	/* Mark the start of the barrier operation. */
4576	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4577	rcu_seq_start(&rcu_state.barrier_sequence);
4578	gseq = rcu_state.barrier_sequence;
4579	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4580
4581	/*
4582	 * Initialize the count to two rather than to zero in order
4583	 * to avoid a too-soon return to zero in case of an immediate
4584	 * invocation of the just-enqueued callback (or preemption of
4585	 * this task).  Exclude CPU-hotplug operations to ensure that no
4586	 * offline non-offloaded CPU has callbacks queued.
4587	 */
4588	init_completion(&rcu_state.barrier_completion);
4589	atomic_set(&rcu_state.barrier_cpu_count, 2);
4590	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4591
4592	/*
4593	 * Force each CPU with callbacks to register a new callback.
4594	 * When that callback is invoked, we will know that all of the
4595	 * corresponding CPU's preceding callbacks have been invoked.
4596	 */
4597	for_each_possible_cpu(cpu) {
4598		rdp = per_cpu_ptr(&rcu_data, cpu);
4599retry:
4600		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4601			continue;
4602		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4603		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4604			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4605			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4606			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4607			continue;
4608		}
4609		if (!rcu_rdp_cpu_online(rdp)) {
4610			rcu_barrier_entrain(rdp);
4611			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4612			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4613			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4614			continue;
4615		}
4616		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4617		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4618			schedule_timeout_uninterruptible(1);
4619			goto retry;
 
 
4620		}
4621		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4622		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4623	}
 
4624
4625	/*
4626	 * Now that we have an rcu_barrier_callback() callback on each
4627	 * CPU, and thus each counted, remove the initial count.
4628	 */
4629	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4630		complete(&rcu_state.barrier_completion);
4631
4632	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4633	wait_for_completion(&rcu_state.barrier_completion);
4634
4635	/* Mark the end of the barrier operation. */
4636	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4637	rcu_seq_end(&rcu_state.barrier_sequence);
4638	gseq = rcu_state.barrier_sequence;
4639	for_each_possible_cpu(cpu) {
4640		rdp = per_cpu_ptr(&rcu_data, cpu);
4641
4642		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4643	}
4644
4645	/* Other rcu_barrier() invocations can now safely proceed. */
4646	mutex_unlock(&rcu_state.barrier_mutex);
4647}
4648EXPORT_SYMBOL_GPL(rcu_barrier);
4649
4650static unsigned long rcu_barrier_last_throttle;
4651
4652/**
4653 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
4654 *
4655 * This can be thought of as guard rails around rcu_barrier() that
4656 * permits unrestricted userspace use, at least assuming the hardware's
4657 * try_cmpxchg() is robust.  There will be at most one call per second to
4658 * rcu_barrier() system-wide from use of this function, which means that
4659 * callers might needlessly wait a second or three.
4660 *
4661 * This is intended for use by test suites to avoid OOM by flushing RCU
4662 * callbacks from the previous test before starting the next.  See the
4663 * rcutree.do_rcu_barrier module parameter for more information.
4664 *
4665 * Why not simply make rcu_barrier() more scalable?  That might be
4666 * the eventual endpoint, but let's keep it simple for the time being.
4667 * Note that the module parameter infrastructure serializes calls to a
4668 * given .set() function, but should concurrent .set() invocation ever be
4669 * possible, we are ready!
4670 */
4671static void rcu_barrier_throttled(void)
4672{
4673	unsigned long j = jiffies;
4674	unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
4675	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4676
4677	while (time_in_range(j, old, old + HZ / 16) ||
4678	       !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
4679		schedule_timeout_idle(HZ / 16);
4680		if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4681			smp_mb(); /* caller's subsequent code after above check. */
4682			return;
4683		}
4684		j = jiffies;
4685		old = READ_ONCE(rcu_barrier_last_throttle);
4686	}
4687	rcu_barrier();
4688}
 
4689
4690/*
4691 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
4692 * request arrives.  We insist on a true value to allow for possible
4693 * future expansion.
4694 */
4695static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
4696{
4697	bool b;
4698	int ret;
4699
4700	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
4701		return -EAGAIN;
4702	ret = kstrtobool(val, &b);
4703	if (!ret && b) {
4704		atomic_inc((atomic_t *)kp->arg);
4705		rcu_barrier_throttled();
4706		atomic_dec((atomic_t *)kp->arg);
4707	}
4708	return ret;
4709}
4710
4711/*
4712 * Output the number of outstanding rcutree.do_rcu_barrier requests.
4713 */
4714static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
4715{
4716	return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
4717}
4718
4719static const struct kernel_param_ops do_rcu_barrier_ops = {
4720	.set = param_set_do_rcu_barrier,
4721	.get = param_get_do_rcu_barrier,
4722};
4723static atomic_t do_rcu_barrier;
4724module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
4725
4726/*
4727 * Compute the mask of online CPUs for the specified rcu_node structure.
4728 * This will not be stable unless the rcu_node structure's ->lock is
4729 * held, but the bit corresponding to the current CPU will be stable
4730 * in most contexts.
4731 */
4732static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4733{
4734	return READ_ONCE(rnp->qsmaskinitnext);
4735}
4736
4737/*
4738 * Is the CPU corresponding to the specified rcu_data structure online
4739 * from RCU's perspective?  This perspective is given by that structure's
4740 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4741 */
4742static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4743{
4744	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4745}
4746
4747bool rcu_cpu_online(int cpu)
4748{
4749	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4750
4751	return rcu_rdp_cpu_online(rdp);
4752}
4753
4754#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4755
4756/*
4757 * Is the current CPU online as far as RCU is concerned?
4758 *
4759 * Disable preemption to avoid false positives that could otherwise
4760 * happen due to the current CPU number being sampled, this task being
4761 * preempted, its old CPU being taken offline, resuming on some other CPU,
4762 * then determining that its old CPU is now offline.
4763 *
4764 * Disable checking if in an NMI handler because we cannot safely
4765 * report errors from NMI handlers anyway.  In addition, it is OK to use
4766 * RCU on an offline processor during initial boot, hence the check for
4767 * rcu_scheduler_fully_active.
4768 */
4769bool rcu_lockdep_current_cpu_online(void)
4770{
4771	struct rcu_data *rdp;
4772	bool ret = false;
4773
4774	if (in_nmi() || !rcu_scheduler_fully_active)
4775		return true;
4776	preempt_disable_notrace();
4777	rdp = this_cpu_ptr(&rcu_data);
4778	/*
4779	 * Strictly, we care here about the case where the current CPU is
4780	 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
4781	 * not being up to date. So arch_spin_is_locked() might have a
4782	 * false positive if it's held by some *other* CPU, but that's
4783	 * OK because that just means a false *negative* on the warning.
4784	 */
4785	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4786		ret = true;
4787	preempt_enable_notrace();
4788	return ret;
4789}
4790EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4791
4792#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4793
4794// Has rcu_init() been invoked?  This is used (for example) to determine
4795// whether spinlocks may be acquired safely.
4796static bool rcu_init_invoked(void)
4797{
4798	return !!READ_ONCE(rcu_state.n_online_cpus);
4799}
4800
4801/*
4802 * All CPUs for the specified rcu_node structure have gone offline,
4803 * and all tasks that were preempted within an RCU read-side critical
4804 * section while running on one of those CPUs have since exited their RCU
4805 * read-side critical section.  Some other CPU is reporting this fact with
4806 * the specified rcu_node structure's ->lock held and interrupts disabled.
4807 * This function therefore goes up the tree of rcu_node structures,
4808 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4809 * the leaf rcu_node structure's ->qsmaskinit field has already been
4810 * updated.
4811 *
4812 * This function does check that the specified rcu_node structure has
4813 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4814 * prematurely.  That said, invoking it after the fact will cost you
4815 * a needless lock acquisition.  So once it has done its work, don't
4816 * invoke it again.
4817 */
4818static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4819{
4820	long mask;
4821	struct rcu_node *rnp = rnp_leaf;
4822
4823	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4824	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4825	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4826	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4827		return;
4828	for (;;) {
4829		mask = rnp->grpmask;
4830		rnp = rnp->parent;
4831		if (!rnp)
4832			break;
4833		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4834		rnp->qsmaskinit &= ~mask;
4835		/* Between grace periods, so better already be zero! */
4836		WARN_ON_ONCE(rnp->qsmask);
4837		if (rnp->qsmaskinit) {
4838			raw_spin_unlock_rcu_node(rnp);
4839			/* irqs remain disabled. */
4840			return;
4841		}
4842		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4843	}
4844}
 
4845
4846/*
4847 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4848 * first CPU in a given leaf rcu_node structure coming online.  The caller
4849 * must hold the corresponding leaf rcu_node ->lock with interrupts
4850 * disabled.
4851 */
4852static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4853{
4854	long mask;
4855	long oldmask;
4856	struct rcu_node *rnp = rnp_leaf;
4857
4858	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4859	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4860	for (;;) {
4861		mask = rnp->grpmask;
4862		rnp = rnp->parent;
4863		if (rnp == NULL)
4864			return;
4865		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4866		oldmask = rnp->qsmaskinit;
4867		rnp->qsmaskinit |= mask;
4868		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4869		if (oldmask)
4870			return;
4871	}
4872}
4873
4874/*
4875 * Do boot-time initialization of a CPU's per-CPU RCU data.
4876 */
4877static void __init
4878rcu_boot_init_percpu_data(int cpu)
4879{
4880	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4881	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 
4882
4883	/* Set up local state, ensuring consistent view of global state. */
 
4884	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4885	INIT_WORK(&rdp->strict_work, strict_work_handler);
4886	WARN_ON_ONCE(ct->nesting != 1);
4887	WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu)));
4888	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4889	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4890	rdp->rcu_ofl_gp_state = RCU_GP_CLEANED;
4891	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4892	rdp->rcu_onl_gp_state = RCU_GP_CLEANED;
4893	rdp->last_sched_clock = jiffies;
4894	rdp->cpu = cpu;
 
4895	rcu_boot_init_nocb_percpu_data(rdp);
4896}
4897
4898struct kthread_worker *rcu_exp_gp_kworker;
4899
4900static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
4901{
4902	struct kthread_worker *kworker;
4903	const char *name = "rcu_exp_par_gp_kthread_worker/%d";
4904	struct sched_param param = { .sched_priority = kthread_prio };
4905	int rnp_index = rnp - rcu_get_root();
4906
4907	if (rnp->exp_kworker)
4908		return;
4909
4910	kworker = kthread_create_worker(0, name, rnp_index);
4911	if (IS_ERR_OR_NULL(kworker)) {
4912		pr_err("Failed to create par gp kworker on %d/%d\n",
4913		       rnp->grplo, rnp->grphi);
4914		return;
4915	}
4916	WRITE_ONCE(rnp->exp_kworker, kworker);
4917
4918	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4919		sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, &param);
4920}
4921
4922static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp)
4923{
4924	struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker);
4925
4926	if (!kworker)
4927		return NULL;
4928
4929	return kworker->task;
4930}
4931
4932static void __init rcu_start_exp_gp_kworker(void)
4933{
4934	const char *name = "rcu_exp_gp_kthread_worker";
4935	struct sched_param param = { .sched_priority = kthread_prio };
4936
4937	rcu_exp_gp_kworker = kthread_create_worker(0, name);
4938	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4939		pr_err("Failed to create %s!\n", name);
4940		rcu_exp_gp_kworker = NULL;
4941		return;
4942	}
4943
4944	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4945		sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4946}
4947
4948static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
4949{
4950	if (rcu_scheduler_fully_active) {
4951		mutex_lock(&rnp->kthread_mutex);
4952		rcu_spawn_one_boost_kthread(rnp);
4953		rcu_spawn_exp_par_gp_kworker(rnp);
4954		mutex_unlock(&rnp->kthread_mutex);
4955	}
4956}
4957
4958/*
4959 * Invoked early in the CPU-online process, when pretty much all services
4960 * are available.  The incoming CPU is not present.
4961 *
4962 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4963 * offline event can be happening at a given time.  Note also that we can
4964 * accept some slop in the rsp->gp_seq access due to the fact that this
4965 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4966 * And any offloaded callbacks are being numbered elsewhere.
4967 */
4968int rcutree_prepare_cpu(unsigned int cpu)
 
4969{
4970	unsigned long flags;
4971	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4972	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4973	struct rcu_node *rnp = rcu_get_root();
4974
4975	/* Set up local state, ensuring consistent view of global state. */
4976	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4977	rdp->qlen_last_fqs_check = 0;
4978	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4979	rdp->blimit = blimit;
4980	ct->nesting = 1;	/* CPU not up, no tearing. */
 
 
 
 
 
4981	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4982
4983	/*
4984	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4985	 * (re-)initialized.
4986	 */
4987	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4988		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4989
4990	/*
4991	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4992	 * propagation up the rcu_node tree will happen at the beginning
4993	 * of the next grace period.
4994	 */
4995	rnp = rdp->mynode;
 
4996	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4997	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4998	rdp->gp_seq_needed = rdp->gp_seq;
 
 
 
4999	rdp->cpu_no_qs.b.norm = true;
 
5000	rdp->core_needs_qs = false;
5001	rdp->rcu_iw_pending = false;
5002	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
5003	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
5004	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
5005	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5006	rcu_spawn_rnp_kthreads(rnp);
5007	rcu_spawn_cpu_nocb_kthread(cpu);
5008	ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
5009	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
5010
5011	return 0;
5012}
5013
5014/*
5015 * Update kthreads affinity during CPU-hotplug changes.
5016 *
5017 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
5018 * served by the rcu_node in question.  The CPU hotplug lock is still
5019 * held, so the value of rnp->qsmaskinit will be stable.
5020 *
5021 * We don't include outgoingcpu in the affinity set, use -1 if there is
5022 * no outgoing CPU.  If there are no CPUs left in the affinity set,
5023 * this function allows the kthread to execute on any CPU.
5024 *
5025 * Any future concurrent calls are serialized via ->kthread_mutex.
5026 */
5027static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu)
5028{
5029	cpumask_var_t cm;
5030	unsigned long mask;
5031	struct rcu_data *rdp;
5032	struct rcu_node *rnp;
5033	struct task_struct *task_boost, *task_exp;
5034
5035	rdp = per_cpu_ptr(&rcu_data, cpu);
5036	rnp = rdp->mynode;
5037
5038	task_boost = rcu_boost_task(rnp);
5039	task_exp = rcu_exp_par_gp_task(rnp);
5040
5041	/*
5042	 * If CPU is the boot one, those tasks are created later from early
5043	 * initcall since kthreadd must be created first.
5044	 */
5045	if (!task_boost && !task_exp)
5046		return;
5047
5048	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
5049		return;
 
5050
5051	mutex_lock(&rnp->kthread_mutex);
5052	mask = rcu_rnp_online_cpus(rnp);
5053	for_each_leaf_node_possible_cpu(rnp, cpu)
5054		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
5055		    cpu != outgoingcpu)
5056			cpumask_set_cpu(cpu, cm);
5057	cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
5058	if (cpumask_empty(cm)) {
5059		cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
5060		if (outgoingcpu >= 0)
5061			cpumask_clear_cpu(outgoingcpu, cm);
5062	}
5063
5064	if (task_exp)
5065		set_cpus_allowed_ptr(task_exp, cm);
 
 
 
 
5066
5067	if (task_boost)
5068		set_cpus_allowed_ptr(task_boost, cm);
 
 
 
5069
5070	mutex_unlock(&rnp->kthread_mutex);
5071
5072	free_cpumask_var(cm);
5073}
5074
5075/*
5076 * Has the specified (known valid) CPU ever been fully online?
5077 */
5078bool rcu_cpu_beenfullyonline(int cpu)
5079{
5080	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5081
5082	return smp_load_acquire(&rdp->beenonline);
 
 
5083}
5084
5085/*
5086 * Near the end of the CPU-online process.  Pretty much all services
5087 * enabled, and the CPU is now very much alive.
5088 */
5089int rcutree_online_cpu(unsigned int cpu)
5090{
5091	unsigned long flags;
5092	struct rcu_data *rdp;
5093	struct rcu_node *rnp;
5094
5095	rdp = per_cpu_ptr(&rcu_data, cpu);
5096	rnp = rdp->mynode;
5097	raw_spin_lock_irqsave_rcu_node(rnp, flags);
5098	rnp->ffmask |= rdp->grpmask;
5099	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5100	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
5101		return 0; /* Too early in boot for scheduler work. */
5102	sync_sched_exp_online_cleanup(cpu);
5103	rcutree_affinity_setting(cpu, -1);
5104
5105	// Stop-machine done, so allow nohz_full to disable tick.
5106	tick_dep_clear(TICK_DEP_BIT_RCU);
5107	return 0;
5108}
5109
5110/*
5111 * Mark the specified CPU as being online so that subsequent grace periods
5112 * (both expedited and normal) will wait on it.  Note that this means that
5113 * incoming CPUs are not allowed to use RCU read-side critical sections
5114 * until this function is called.  Failing to observe this restriction
5115 * will result in lockdep splats.
5116 *
5117 * Note that this function is special in that it is invoked directly
5118 * from the incoming CPU rather than from the cpuhp_step mechanism.
5119 * This is because this function must be invoked at a precise location.
5120 * This incoming CPU must not have enabled interrupts yet.
5121 *
5122 * This mirrors the effects of rcutree_report_cpu_dead().
5123 */
5124void rcutree_report_cpu_starting(unsigned int cpu)
5125{
 
5126	unsigned long mask;
5127	struct rcu_data *rdp;
5128	struct rcu_node *rnp;
5129	bool newcpu;
5130
5131	lockdep_assert_irqs_disabled();
5132	rdp = per_cpu_ptr(&rcu_data, cpu);
5133	if (rdp->cpu_started)
5134		return;
5135	rdp->cpu_started = true;
5136
5137	rnp = rdp->mynode;
5138	mask = rdp->grpmask;
5139	arch_spin_lock(&rcu_state.ofl_lock);
5140	rcu_watching_online();
5141	raw_spin_lock(&rcu_state.barrier_lock);
5142	raw_spin_lock_rcu_node(rnp);
5143	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
5144	raw_spin_unlock(&rcu_state.barrier_lock);
5145	newcpu = !(rnp->expmaskinitnext & mask);
5146	rnp->expmaskinitnext |= mask;
5147	/* Allow lockless access for expedited grace periods. */
5148	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
5149	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
5150	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
5151	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
5152	rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state);
5153
5154	/* An incoming CPU should never be blocking a grace period. */
5155	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
5156		/* rcu_report_qs_rnp() *really* wants some flags to restore */
5157		unsigned long flags;
5158
5159		local_irq_save(flags);
5160		rcu_disable_urgency_upon_qs(rdp);
5161		/* Report QS -after- changing ->qsmaskinitnext! */
5162		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
5163	} else {
5164		raw_spin_unlock_rcu_node(rnp);
5165	}
5166	arch_spin_unlock(&rcu_state.ofl_lock);
5167	smp_store_release(&rdp->beenonline, true);
5168	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
5169}
5170
 
5171/*
5172 * The outgoing function has no further need of RCU, so remove it from
5173 * the rcu_node tree's ->qsmaskinitnext bit masks.
5174 *
5175 * Note that this function is special in that it is invoked directly
5176 * from the outgoing CPU rather than from the cpuhp_step mechanism.
5177 * This is because this function must be invoked at a precise location.
5178 *
5179 * This mirrors the effect of rcutree_report_cpu_starting().
5180 */
5181void rcutree_report_cpu_dead(void)
5182{
5183	unsigned long flags;
5184	unsigned long mask;
5185	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
5186	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
5187
5188	/*
5189	 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
5190	 * may introduce a new READ-side while it is actually off the QS masks.
5191	 */
5192	lockdep_assert_irqs_disabled();
5193	// Do any dangling deferred wakeups.
5194	do_nocb_deferred_wakeup(rdp);
5195
5196	rcu_preempt_deferred_qs(current);
5197
5198	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
5199	mask = rdp->grpmask;
5200	arch_spin_lock(&rcu_state.ofl_lock);
5201	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
5202	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
5203	rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state);
5204	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
5205		/* Report quiescent state -before- changing ->qsmaskinitnext! */
5206		rcu_disable_urgency_upon_qs(rdp);
5207		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
5208		raw_spin_lock_irqsave_rcu_node(rnp, flags);
5209	}
5210	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
5211	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5212	arch_spin_unlock(&rcu_state.ofl_lock);
5213	rdp->cpu_started = false;
5214}
5215
5216#ifdef CONFIG_HOTPLUG_CPU
5217/*
5218 * The outgoing CPU has just passed through the dying-idle state, and we
5219 * are being invoked from the CPU that was IPIed to continue the offline
5220 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
5221 */
5222void rcutree_migrate_callbacks(int cpu)
5223{
5224	unsigned long flags;
5225	struct rcu_data *my_rdp;
5226	struct rcu_node *my_rnp;
5227	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5228	bool needwake;
5229
5230	if (rcu_rdp_is_offloaded(rdp))
5231		return;
5232
5233	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
5234	if (rcu_segcblist_empty(&rdp->cblist)) {
5235		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
5236		return;  /* No callbacks to migrate. */
5237	}
5238
5239	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
5240	rcu_barrier_entrain(rdp);
5241	my_rdp = this_cpu_ptr(&rcu_data);
5242	my_rnp = my_rdp->mynode;
5243	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
5244	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
5245	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
5246	/* Leverage recent GPs and set GP for new callbacks. */
5247	needwake = rcu_advance_cbs(my_rnp, rdp) ||
5248		   rcu_advance_cbs(my_rnp, my_rdp);
5249	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
5250	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
5251	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
5252	rcu_segcblist_disable(&rdp->cblist);
5253	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
5254	check_cb_ovld_locked(my_rdp, my_rnp);
5255	if (rcu_rdp_is_offloaded(my_rdp)) {
5256		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
5257		__call_rcu_nocb_wake(my_rdp, true, flags);
5258	} else {
5259		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
5260		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
5261	}
5262	local_irq_restore(flags);
5263	if (needwake)
5264		rcu_gp_kthread_wake();
5265	lockdep_assert_irqs_enabled();
5266	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
5267		  !rcu_segcblist_empty(&rdp->cblist),
5268		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
5269		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
5270		  rcu_segcblist_first_cb(&rdp->cblist));
5271}
 
5272
5273/*
5274 * The CPU has been completely removed, and some other CPU is reporting
5275 * this fact from process context.  Do the remainder of the cleanup.
5276 * There can only be one CPU hotplug operation at a time, so no need for
5277 * explicit locking.
5278 */
5279int rcutree_dead_cpu(unsigned int cpu)
5280{
5281	ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
5282	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
5283	// Stop-machine done, so allow nohz_full to disable tick.
5284	tick_dep_clear(TICK_DEP_BIT_RCU);
5285	return 0;
5286}
5287
5288/*
5289 * Near the end of the offline process.  Trace the fact that this CPU
5290 * is going offline.
5291 */
5292int rcutree_dying_cpu(unsigned int cpu)
5293{
5294	bool blkd;
5295	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5296	struct rcu_node *rnp = rdp->mynode;
5297
5298	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
5299	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
5300			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
5301	return 0;
5302}
5303
5304/*
5305 * Near the beginning of the process.  The CPU is still very much alive
5306 * with pretty much all services enabled.
5307 */
5308int rcutree_offline_cpu(unsigned int cpu)
5309{
5310	unsigned long flags;
5311	struct rcu_data *rdp;
5312	struct rcu_node *rnp;
5313
5314	rdp = per_cpu_ptr(&rcu_data, cpu);
5315	rnp = rdp->mynode;
5316	raw_spin_lock_irqsave_rcu_node(rnp, flags);
5317	rnp->ffmask &= ~rdp->grpmask;
5318	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5319
5320	rcutree_affinity_setting(cpu, cpu);
5321
5322	// nohz_full CPUs need the tick for stop-machine to work quickly
5323	tick_dep_set(TICK_DEP_BIT_RCU);
5324	return 0;
5325}
5326#endif /* #ifdef CONFIG_HOTPLUG_CPU */
5327
5328/*
5329 * On non-huge systems, use expedited RCU grace periods to make suspend
5330 * and hibernation run faster.
5331 */
5332static int rcu_pm_notify(struct notifier_block *self,
5333			 unsigned long action, void *hcpu)
5334{
5335	switch (action) {
5336	case PM_HIBERNATION_PREPARE:
5337	case PM_SUSPEND_PREPARE:
5338		rcu_async_hurry();
5339		rcu_expedite_gp();
5340		break;
5341	case PM_POST_HIBERNATION:
5342	case PM_POST_SUSPEND:
5343		rcu_unexpedite_gp();
5344		rcu_async_relax();
5345		break;
5346	default:
5347		break;
5348	}
5349	return NOTIFY_OK;
5350}
5351
5352/*
5353 * Spawn the kthreads that handle RCU's grace periods.
5354 */
5355static int __init rcu_spawn_gp_kthread(void)
5356{
5357	unsigned long flags;
 
5358	struct rcu_node *rnp;
 
5359	struct sched_param sp;
5360	struct task_struct *t;
5361	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 
 
 
 
 
 
 
 
5362
5363	rcu_scheduler_fully_active = 1;
5364	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
5365	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
5366		return 0;
5367	if (kthread_prio) {
5368		sp.sched_priority = kthread_prio;
5369		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 
 
 
 
 
 
5370	}
5371	rnp = rcu_get_root();
5372	raw_spin_lock_irqsave_rcu_node(rnp, flags);
5373	WRITE_ONCE(rcu_state.gp_activity, jiffies);
5374	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
5375	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
5376	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
5377	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5378	wake_up_process(t);
5379	/* This is a pre-SMP initcall, we expect a single CPU */
5380	WARN_ON(num_online_cpus() > 1);
5381	/*
5382	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
5383	 * due to rcu_scheduler_fully_active.
5384	 */
5385	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
5386	rcu_spawn_rnp_kthreads(rdp->mynode);
5387	rcu_spawn_core_kthreads();
5388	/* Create kthread worker for expedited GPs */
5389	rcu_start_exp_gp_kworker();
5390	return 0;
5391}
5392early_initcall(rcu_spawn_gp_kthread);
5393
5394/*
5395 * This function is invoked towards the end of the scheduler's
5396 * initialization process.  Before this is called, the idle task might
5397 * contain synchronous grace-period primitives (during which time, this idle
5398 * task is booting the system, and such primitives are no-ops).  After this
5399 * function is called, any synchronous grace-period primitives are run as
5400 * expedited, with the requesting task driving the grace period forward.
5401 * A later core_initcall() rcu_set_runtime_mode() will switch to full
5402 * runtime RCU functionality.
5403 */
5404void rcu_scheduler_starting(void)
5405{
5406	unsigned long flags;
5407	struct rcu_node *rnp;
5408
5409	WARN_ON(num_online_cpus() != 1);
5410	WARN_ON(nr_context_switches() > 0);
5411	rcu_test_sync_prims();
 
 
 
 
 
 
 
 
 
 
 
5412
5413	// Fix up the ->gp_seq counters.
5414	local_irq_save(flags);
5415	rcu_for_each_node_breadth_first(rnp)
5416		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
5417	local_irq_restore(flags);
 
 
5418
5419	// Switch out of early boot mode.
5420	rcu_scheduler_active = RCU_SCHEDULER_INIT;
5421	rcu_test_sync_prims();
 
 
 
 
5422}
5423
5424/*
5425 * Helper function for rcu_init() that initializes the rcu_state structure.
5426 */
5427static void __init rcu_init_one(void)
5428{
5429	static const char * const buf[] = RCU_NODE_NAME_INIT;
5430	static const char * const fqs[] = RCU_FQS_NAME_INIT;
5431	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
5432	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
 
5433
 
5434	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
5435	int cpustride = 1;
5436	int i;
5437	int j;
5438	struct rcu_node *rnp;
5439
5440	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
5441
5442	/* Silence gcc 4.8 false positive about array index out of range. */
5443	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
5444		panic("rcu_init_one: rcu_num_lvls out of range");
5445
5446	/* Initialize the level-tracking arrays. */
5447
 
 
5448	for (i = 1; i < rcu_num_lvls; i++)
5449		rcu_state.level[i] =
5450			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
5451	rcu_init_levelspread(levelspread, num_rcu_lvl);
 
5452
5453	/* Initialize the elements themselves, starting from the leaves. */
5454
5455	for (i = rcu_num_lvls - 1; i >= 0; i--) {
5456		cpustride *= levelspread[i];
5457		rnp = rcu_state.level[i];
5458		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
5459			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
5460			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
5461						   &rcu_node_class[i], buf[i]);
5462			raw_spin_lock_init(&rnp->fqslock);
5463			lockdep_set_class_and_name(&rnp->fqslock,
5464						   &rcu_fqs_class[i], fqs[i]);
5465			rnp->gp_seq = rcu_state.gp_seq;
5466			rnp->gp_seq_needed = rcu_state.gp_seq;
5467			rnp->completedqs = rcu_state.gp_seq;
5468			rnp->qsmask = 0;
5469			rnp->qsmaskinit = 0;
5470			rnp->grplo = j * cpustride;
5471			rnp->grphi = (j + 1) * cpustride - 1;
5472			if (rnp->grphi >= nr_cpu_ids)
5473				rnp->grphi = nr_cpu_ids - 1;
5474			if (i == 0) {
5475				rnp->grpnum = 0;
5476				rnp->grpmask = 0;
5477				rnp->parent = NULL;
5478			} else {
5479				rnp->grpnum = j % levelspread[i - 1];
5480				rnp->grpmask = BIT(rnp->grpnum);
5481				rnp->parent = rcu_state.level[i - 1] +
5482					      j / levelspread[i - 1];
5483			}
5484			rnp->level = i;
5485			INIT_LIST_HEAD(&rnp->blkd_tasks);
5486			rcu_init_one_nocb(rnp);
5487			init_waitqueue_head(&rnp->exp_wq[0]);
5488			init_waitqueue_head(&rnp->exp_wq[1]);
5489			init_waitqueue_head(&rnp->exp_wq[2]);
5490			init_waitqueue_head(&rnp->exp_wq[3]);
5491			spin_lock_init(&rnp->exp_lock);
5492			mutex_init(&rnp->kthread_mutex);
5493			raw_spin_lock_init(&rnp->exp_poll_lock);
5494			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
5495			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
5496		}
5497	}
5498
5499	init_swait_queue_head(&rcu_state.gp_wq);
5500	init_swait_queue_head(&rcu_state.expedited_wq);
5501	rnp = rcu_first_leaf_node();
5502	for_each_possible_cpu(i) {
5503		while (i > rnp->grphi)
5504			rnp++;
5505		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
5506		per_cpu_ptr(&rcu_data, i)->barrier_head.next =
5507			&per_cpu_ptr(&rcu_data, i)->barrier_head;
5508		rcu_boot_init_percpu_data(i);
5509	}
5510}
5511
5512/*
5513 * Force priority from the kernel command-line into range.
5514 */
5515static void __init sanitize_kthread_prio(void)
5516{
5517	int kthread_prio_in = kthread_prio;
5518
5519	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
5520	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
5521		kthread_prio = 2;
5522	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
5523		kthread_prio = 1;
5524	else if (kthread_prio < 0)
5525		kthread_prio = 0;
5526	else if (kthread_prio > 99)
5527		kthread_prio = 99;
5528
5529	if (kthread_prio != kthread_prio_in)
5530		pr_alert("%s: Limited prio to %d from %d\n",
5531			 __func__, kthread_prio, kthread_prio_in);
5532}
5533
5534/*
5535 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
5536 * replace the definitions in tree.h because those are needed to size
5537 * the ->node array in the rcu_state structure.
5538 */
5539void rcu_init_geometry(void)
5540{
5541	ulong d;
5542	int i;
5543	static unsigned long old_nr_cpu_ids;
5544	int rcu_capacity[RCU_NUM_LVLS];
5545	static bool initialized;
5546
5547	if (initialized) {
5548		/*
5549		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
5550		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
5551		 */
5552		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
5553		return;
5554	}
5555
5556	old_nr_cpu_ids = nr_cpu_ids;
5557	initialized = true;
5558
5559	/*
5560	 * Initialize any unspecified boot parameters.
5561	 * The default values of jiffies_till_first_fqs and
5562	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
5563	 * value, which is a function of HZ, then adding one for each
5564	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
5565	 */
5566	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
5567	if (jiffies_till_first_fqs == ULONG_MAX)
5568		jiffies_till_first_fqs = d;
5569	if (jiffies_till_next_fqs == ULONG_MAX)
5570		jiffies_till_next_fqs = d;
5571	adjust_jiffies_till_sched_qs();
5572
5573	/* If the compile-time values are accurate, just leave. */
5574	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
5575	    nr_cpu_ids == NR_CPUS)
5576		return;
5577	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
5578		rcu_fanout_leaf, nr_cpu_ids);
5579
5580	/*
5581	 * The boot-time rcu_fanout_leaf parameter must be at least two
5582	 * and cannot exceed the number of bits in the rcu_node masks.
5583	 * Complain and fall back to the compile-time values if this
5584	 * limit is exceeded.
5585	 */
5586	if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) {
 
5587		rcu_fanout_leaf = RCU_FANOUT_LEAF;
5588		WARN_ON(1);
5589		return;
5590	}
5591
5592	/*
5593	 * Compute number of nodes that can be handled an rcu_node tree
5594	 * with the given number of levels.
5595	 */
5596	rcu_capacity[0] = rcu_fanout_leaf;
5597	for (i = 1; i < RCU_NUM_LVLS; i++)
5598		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
5599
5600	/*
5601	 * The tree must be able to accommodate the configured number of CPUs.
5602	 * If this limit is exceeded, fall back to the compile-time values.
5603	 */
5604	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
5605		rcu_fanout_leaf = RCU_FANOUT_LEAF;
5606		WARN_ON(1);
5607		return;
5608	}
5609
5610	/* Calculate the number of levels in the tree. */
5611	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
5612	}
5613	rcu_num_lvls = i + 1;
5614
5615	/* Calculate the number of rcu_nodes at each level of the tree. */
5616	for (i = 0; i < rcu_num_lvls; i++) {
5617		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5618		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5619	}
5620
5621	/* Calculate the total number of rcu_node structures. */
5622	rcu_num_nodes = 0;
5623	for (i = 0; i < rcu_num_lvls; i++)
5624		rcu_num_nodes += num_rcu_lvl[i];
5625}
5626
5627/*
5628 * Dump out the structure of the rcu_node combining tree associated
5629 * with the rcu_state structure.
5630 */
5631static void __init rcu_dump_rcu_node_tree(void)
5632{
5633	int level = 0;
5634	struct rcu_node *rnp;
5635
5636	pr_info("rcu_node tree layout dump\n");
5637	pr_info(" ");
5638	rcu_for_each_node_breadth_first(rnp) {
5639		if (rnp->level != level) {
5640			pr_cont("\n");
5641			pr_info(" ");
5642			level = rnp->level;
5643		}
5644		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
5645	}
5646	pr_cont("\n");
5647}
5648
5649struct workqueue_struct *rcu_gp_wq;
5650
5651static void __init kfree_rcu_batch_init(void)
5652{
5653	int cpu;
5654	int i, j;
5655	struct shrinker *kfree_rcu_shrinker;
5656
5657	/* Clamp it to [0:100] seconds interval. */
5658	if (rcu_delay_page_cache_fill_msec < 0 ||
5659		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5660
5661		rcu_delay_page_cache_fill_msec =
5662			clamp(rcu_delay_page_cache_fill_msec, 0,
5663				(int) (100 * MSEC_PER_SEC));
5664
5665		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5666			rcu_delay_page_cache_fill_msec);
5667	}
5668
5669	for_each_possible_cpu(cpu) {
5670		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5671
5672		for (i = 0; i < KFREE_N_BATCHES; i++) {
5673			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5674			krcp->krw_arr[i].krcp = krcp;
5675
5676			for (j = 0; j < FREE_N_CHANNELS; j++)
5677				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5678		}
5679
5680		for (i = 0; i < FREE_N_CHANNELS; i++)
5681			INIT_LIST_HEAD(&krcp->bulk_head[i]);
5682
5683		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5684		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5685		krcp->initialized = true;
5686	}
5687
5688	kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree");
5689	if (!kfree_rcu_shrinker) {
5690		pr_err("Failed to allocate kfree_rcu() shrinker!\n");
5691		return;
5692	}
5693
5694	kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
5695	kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
5696
5697	shrinker_register(kfree_rcu_shrinker);
5698}
5699
5700void __init rcu_init(void)
5701{
5702	int cpu = smp_processor_id();
5703
5704	rcu_early_boot_tests();
5705
5706	kfree_rcu_batch_init();
5707	rcu_bootup_announce();
5708	sanitize_kthread_prio();
5709	rcu_init_geometry();
5710	rcu_init_one();
 
5711	if (dump_tree)
5712		rcu_dump_rcu_node_tree();
5713	if (use_softirq)
5714		open_softirq(RCU_SOFTIRQ, rcu_core_si);
5715
5716	/*
5717	 * We don't need protection against CPU-hotplug here because
5718	 * this is called early in boot, before either interrupts
5719	 * or the scheduler are operational.
5720	 */
5721	pm_notifier(rcu_pm_notify, 0);
5722	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5723	rcutree_prepare_cpu(cpu);
5724	rcutree_report_cpu_starting(cpu);
5725	rcutree_online_cpu(cpu);
5726
5727	/* Create workqueue for Tree SRCU and for expedited GPs. */
5728	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5729	WARN_ON(!rcu_gp_wq);
5730
5731	sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0);
5732	WARN_ON(!sync_wq);
5733
5734	/* Fill in default value for rcutree.qovld boot parameter. */
5735	/* -After- the rcu_node ->lock fields are initialized! */
5736	if (qovld < 0)
5737		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5738	else
5739		qovld_calc = qovld;
5740
5741	// Kick-start in case any polled grace periods started early.
5742	(void)start_poll_synchronize_rcu_expedited();
5743
5744	rcu_test_sync_prims();
5745
5746	tasks_cblist_init_generic();
5747}
5748
5749#include "tree_stall.h"
5750#include "tree_exp.h"
5751#include "tree_nocb.h"
5752#include "tree_plugin.h"